-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_multi_weighted.py
199 lines (157 loc) · 7.06 KB
/
test_multi_weighted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import os
import logging
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from core.configs import cfg
from core.datasets import build_dataset
from core.models import build_feature_extractor, build_classifier
from core.utils.misc import mkdir, AverageMeter, intersectionAndUnionGPU, get_color_pallete
from core.utils.logger import setup_logger
NUM_WORKERS = 4
def knn_weights(dataset_weights, name, datasets):
weights_dict = dataset_weights[name]
weights = []
for dataset in datasets:
weights.append(weights_dict[dataset])
if sum(weights) <= 1 - 0.00001:
print(sum(weights))
return weights
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "")] = value
return stripped_state_dict
def inference(feature_extractor, classifier, image, label, flip=True):
size = label.shape[-2:]
if flip:
image = torch.cat([image, torch.flip(image, [3])], 0)
with torch.no_grad():
output = classifier(feature_extractor(image))
output = F.interpolate(output, size=size, mode='bilinear', align_corners=True)
output = F.softmax(output, dim=1)
if flip:
output = (output[0] + output[1].flip(2)) / 2
else:
output = output[0]
return output.unsqueeze(dim=0)
def test(cfg, saveres):
logger = logging.getLogger("FADA.tester")
logger.info("Start testing")
device = torch.device(cfg.MODEL.DEVICE)
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
torch.cuda.empty_cache()
output_folder = '.'
if cfg.OUTPUT_DIR:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
mkdir(output_folder)
feature_extractors = []
classifiers = []
for i in range(len(cfg.MODEL.MULTI_TEST_WEIGHTS)):
feature_extractor = build_feature_extractor(cfg)
feature_extractor.to(device)
classifier = build_classifier(cfg)
classifier.to(device)
# load current checkpoint
curr_resume = cfg.MODEL.MULTI_TEST_WEIGHTS[i]
logger.info("Loading checkpoint from {}".format(curr_resume))
checkpoint = torch.load(curr_resume, map_location=torch.device('cpu'))
feature_extractor_weights = strip_prefix_if_present(checkpoint['feature_extractor'], 'module.')
feature_extractor.load_state_dict(feature_extractor_weights)
classifier_weights = strip_prefix_if_present(checkpoint['classifier'], 'module.')
classifier.load_state_dict(classifier_weights)
feature_extractor.eval()
classifier.eval()
feature_extractors.append(feature_extractor)
classifiers.append(classifier)
dataset_weights = torch.load(cfg.DATASETS.WEIGHT_VEC_DICT_PATH)
# Build dataset
test_data = build_dataset(cfg, mode='test', is_source=False)
test_loader = DataLoader(test_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS,
pin_memory=True, sampler=None)
print("Testing Dataset: {}".format(cfg.DATASETS.TEST))
mkdir(os.path.join(output_folder, 'masks'))
mkdir(os.path.join(output_folder, 'masks_on_images'))
mkdir(os.path.join(output_folder, 'masks_id'))
for i, batch in enumerate(tqdm(test_loader)):
x, y, name, path = batch
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True).long()
pred = torch.tensor(np.zeros((1, 12, y[0].shape[0], y[0].shape[1]))).to(device)
for i in range(len(cfg.MODEL.MULTI_TEST_WEIGHTS)):
weights = knn_weights(dataset_weights, name[0], cfg.DATASETS.MULTI_TEST_WEIGHTS_DATASETS)
out = inference(feature_extractors[i], classifiers[i], x, y, flip=False)
pred += out.detach() * weights[i]
output = pred.max(1)[1]
intersection, union, target = intersectionAndUnionGPU(output, y, cfg.MODEL.NUM_CLASSES, cfg.INPUT.IGNORE_LABEL)
intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
if saveres:
pred = pred.cpu().numpy().squeeze()
pred_max = np.max(pred, 0)
pred = pred.argmax(0)
mask = get_color_pallete(pred, "pascal12")
mask_filename = name[0] if len(name[0].split("/"))<2 else name[0].split("/")[1]
mask.save(os.path.join(output_folder, 'masks', mask_filename + '.png'))
id_pred = Image.fromarray(pred.astype(np.int8))
id_pred.save(os.path.join(output_folder, 'masks_id', mask_filename + '.png'))
np_mask = np.array(mask.convert('RGB'))
im = np.array(Image.open(path[0]).convert('RGB'))
added_image = cv2.addWeighted(im, 0.35, np_mask, 0.65, 0)
cv2.imwrite(os.path.join(output_folder, 'masks_on_images', mask_filename + '.png'), added_image[:, :, ::-1])
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(cfg.MODEL.NUM_CLASSES):
logger.info('{} {} iou/accuracy: {:.4f}/{:.4f}.'.format(i, test_data.trainid2name[i], iou_class[i], accuracy_class[i]))
def main():
parser = argparse.ArgumentParser(description="PyTorch Semantic Segmentation Testing")
parser.add_argument("-cfg",
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument('--saveres', action="store_true",
help='save the result')
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
path, model = os.path.split(cfg.resume)
save_dir = os.path.join(path, os.path.splitext(model)[0])
if save_dir:
mkdir(save_dir)
logger = setup_logger("FADA", save_dir, 0)
logger.info(cfg)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
test(cfg, args.saveres)
if __name__ == "__main__":
main()