-
Notifications
You must be signed in to change notification settings - Fork 238
/
Copy pathtrain.py
127 lines (113 loc) · 5.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
import os
import sys
import argparse
import shutil
from tensorboardX import SummaryWriter
from utils import get_config, get_train_loaders, make_result_folders
from utils import write_loss, write_html, write_1images, Timer
from trainer import Trainer
import torch.backends.cudnn as cudnn
# Enable auto-tuner to find the best algorithm to use for your hardware.
cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--config',
type=str,
default='configs/funit_animals.yaml',
help='configuration file for training and testing')
parser.add_argument('--output_path',
type=str,
default='.',
help="outputs path")
parser.add_argument('--multigpus',
action="store_true")
parser.add_argument('--batch_size',
type=int,
default=0)
parser.add_argument('--test_batch_size',
type=int,
default=4)
parser.add_argument("--resume",
action="store_true")
opts = parser.parse_args()
# Load experiment setting
config = get_config(opts.config)
max_iter = config['max_iter']
# Override the batch size if specified.
if opts.batch_size != 0:
config['batch_size'] = opts.batch_size
trainer = Trainer(config)
trainer.cuda()
if opts.multigpus:
ngpus = torch.cuda.device_count()
config['gpus'] = ngpus
print("Number of GPUs: %d" % ngpus)
trainer.model = torch.nn.DataParallel(
trainer.model, device_ids=range(ngpus))
else:
config['gpus'] = 1
loaders = get_train_loaders(config)
train_content_loader = loaders[0]
train_class_loader = loaders[1]
test_content_loader = loaders[2]
test_class_loader = loaders[3]
# Setup logger and output folders
model_name = os.path.splitext(os.path.basename(opts.config))[0]
train_writer = SummaryWriter(
os.path.join(opts.output_path + "/logs", model_name))
output_directory = os.path.join(opts.output_path + "/outputs", model_name)
checkpoint_directory, image_directory = make_result_folders(output_directory)
shutil.copy(opts.config, os.path.join(output_directory, 'config.yaml'))
iterations = trainer.resume(checkpoint_directory,
hp=config,
multigpus=opts.multigpus) if opts.resume else 0
while True:
for it, (co_data, cl_data) in enumerate(
zip(train_content_loader, train_class_loader)):
with Timer("Elapsed time in update: %f"):
d_acc = trainer.dis_update(co_data, cl_data, config)
g_acc = trainer.gen_update(co_data, cl_data, config,
opts.multigpus)
torch.cuda.synchronize()
print('D acc: %.4f\t G acc: %.4f' % (d_acc, g_acc))
if (iterations + 1) % config['log_iter'] == 0:
print("Iteration: %08d/%08d" % (iterations + 1, max_iter))
write_loss(iterations, trainer, train_writer)
if ((iterations + 1) % config['image_save_iter'] == 0 or (
iterations + 1) % config['image_display_iter'] == 0):
if (iterations + 1) % config['image_save_iter'] == 0:
key_str = '%08d' % (iterations + 1)
write_html(output_directory + "/index.html", iterations + 1,
config['image_save_iter'], 'images')
else:
key_str = 'current'
with torch.no_grad():
for t, (val_co_data, val_cl_data) in enumerate(
zip(train_content_loader, train_class_loader)):
if t >= opts.test_batch_size:
break
val_image_outputs = trainer.test(val_co_data, val_cl_data,
opts.multigpus)
write_1images(val_image_outputs, image_directory,
'train_%s_%02d' % (key_str, t))
for t, (test_co_data, test_cl_data) in enumerate(
zip(test_content_loader, test_class_loader)):
if t >= opts.test_batch_size:
break
test_image_outputs = trainer.test(test_co_data,
test_cl_data,
opts.multigpus)
write_1images(test_image_outputs, image_directory,
'test_%s_%02d' % (key_str, t))
if (iterations + 1) % config['snapshot_save_iter'] == 0:
trainer.save(checkpoint_directory, iterations, opts.multigpus)
print('Saved model at iteration %d' % (iterations + 1))
iterations += 1
if iterations >= max_iter:
print("Finish Training")
sys.exit(0)