From 1d29c97c3f6e42cab39f0bf09fc62d1ffc400be8 Mon Sep 17 00:00:00 2001 From: Boris Bonev Date: Tue, 24 Oct 2023 13:04:50 +0200 Subject: [PATCH] Fixing centering --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 2e5fd4f..c0c0e02 100644 --- a/README.md +++ b/README.md @@ -102,14 +102,16 @@ $$ where $\theta$ and $\lambda$ are colatitude and longitude respectively, and $P_l^m$ the normalized, [associated Legendre polynomials](https://en.wikipedia.org/wiki/Associated_Legendre_polynomials). -
+

+ +

### Spherical harmonic transform The spherical harmonic transform (SHT) $$ -\hat{f}_l^m = \int_{S^2} \overline{Y_l^m}(\theta, \lambda) \, f(\theta, \lambda) \; \mathrm{d} \mu(\theta, \lambda) +f_l^m = \int_{S^2} \overline{Y_l^m}(\theta, \lambda) \, f(\theta, \lambda) \; \mathrm{d} \mu(\theta, \lambda) $$ realizes the projection of a signal $f(\theta, \lambda)$ on $S^2$ onto the spherical harmonics basis.