From e4f4dcfcc85219a139b5a555cea0a7b2a9994226 Mon Sep 17 00:00:00 2001 From: cuda-quantum-bot Date: Wed, 1 Jan 2025 00:43:52 +0000 Subject: [PATCH] Docs preview for PR #2491. --- .../examples_python_visualization_11_0.png | Bin 55402 -> 57904 bytes .../examples_python_visualization_13_0.png | Bin 107467 -> 111245 bytes .../examples_python_visualization_17_0.png | Bin 118287 -> 125147 bytes .../examples_python_visualization_7_0.png | Bin 101572 -> 105696 bytes .../examples_python_visualization_9_0.png | Bin 75958 -> 79094 bytes .../examples/python/visualization.ipynb.txt | 45 ++++++++---------- .../python/deutschs_algorithm.html | 4 +- .../python/performance_optimizations.html | 4 +- pr-2491/examples/python/visualization.html | 28 +++++------ pr-2491/examples/python/visualization.ipynb | 45 ++++++++---------- pr-2491/searchindex.js | 2 +- .../examples/python/visualization.ipynb | 45 ++++++++---------- 12 files changed, 79 insertions(+), 94 deletions(-) diff --git a/pr-2491/_images/examples_python_visualization_11_0.png b/pr-2491/_images/examples_python_visualization_11_0.png index 29a762e70d154cb1ad90458e48b6b71b7d444615..d402b49b890197499629a0160022fefba492ab5f 100644 GIT binary patch literal 57904 zcmX_HWmJ@1*TzDm5u`z+yBxZ^ySuxj8w6zNp<6&&q(QnA7`l;X=jX8-;?`6^OshlI42BPS`Q>GS#U!8?Q0&TBd9vD;Gm&&XML==H9%N8#j> z?RTCcNqGr3+jJ@;^&|MW5NuLfMX|BI28a16Bx9Q&Y7>uOWto%f5c9qEgUdT)HvuG5_U4xGQNr%yW@y z!sYtaqC#`PEoa`{;?8W7%iG(4+{ectOfvpnw)<|j3Fjun{bBsyoA^RI;+4M-E5R{i zSGdtWWN*=g|K5)Giw2yo!*jcW_lnck)ywdn3H@EDw^0fBz1X64{r9fx?;QvB&iUZ(ofm5uM^jLz+lPG`5uIHX?T%xwjqRo>;-jr`y>sXQM7bxF5S7n*MUD2;Xi- zI|*O6jJvJ`UOzcu>N;b(>0EI)$$PvgeR8u-&?VcR>u@8h%X5<*D{|i>q8RiTm3I@B zyRh3j7XL6C|3tM?`*vTaYu>%>_%`=gY#KsKN9TJ`*(7}B-a$~~e8NM-)^*Q`1lCmM zZJ@`@QEu?#?dFb-v2XDXw}piTDZdBG$8=-AJqy8M|Ca~I!O5=szZj6bj^@MdvdW#C zTvj^YHmEn?qsGpGaf2p$(Sghe$LP{`{C}o-l8AVbZIyk4}7W8rw!i0@jZ_} ztqTTeFFragI5;XD@utBo&MZYrW0=NBT zEqFg1xH-qIZza1_{*3(-1XeKSTjAIeyXRs*7F@a>Dswi4pq^n}Q3IBo=;-K3ACBf5 zxSEU%4HeOY&bLP$obS$t*>L+g_B^tBBCvu5>HOnOmsVXke|P;2LK@2xQNey*?(F^N zVsFz%%hL$M$VKklrEnpKIX1XY6}FF8D0+!&Z*>vYuyKb@0Q%;JAv&!$sEJ zJ=i@IW)@?F>&E}K@A$6sSRv@Ka^+8D?t-LR@A3WEF_LPT=D+XLSz1Y?l4*9^LIqp) z_Qk(_IKA13KR>J=e|kdFbxP8HHSfUGcndeVmr~B*4>u#c|E2QqE9;Hkn=w*BpOaR2 zg=av5MjLmXfME2nv!g#Vnx62? zVMmYJ$e@o#>A}V}^oGQx*d>ix%9c*sX3@r~PoEg3`xQRPk}fusepY4N*4J?ADkd01 ziH!V`A$9mZ4{WDlyGN9Z|8Ksa-IqZ~i1QDI1pThMhPq$0tCNR!d{6Qtct4y_Y`JA> zGB!LSd6)_n?S=5dT#X188p~K%IeCQQ4tRTAW1R^%>-0F&!jUsdqU^GEOQOmS;5%@UgnV%XJO$u*P80VD7DbY z=lKUBhJ7;dGi>wRx56>aoba_Y4pmRjuLDoo(h{HZ1_ZC~J?~5Mpp3_#VneB@#p+S& zWuMFlo36K)tt&_ZUZy1S9C#jT$IP!&#xxL%VSj;h%sJwd)sVehXpHJk(4CG%Vu6L% zIuJvv=#05&-lAZj^d!(nf8{2&WR6kfkK6HmuGYI5j`o?)AAh*6`ESTeaAj>JSsIHC=2??$grrfMznkqdwKSn1O3@F`v3uIl=m;L zIC@x=B|Z&|5{c64LQRqxWBFW=wEx|IkZ$(g>%anDd~#u!9fUYGKHj2f!Ew1gv(li+ ze3##;|D977cn1$gxWRF|1R+%LVKaI2%y&0ZvXGuKmQt~Y!b%Sh?S(WH>T|o5&gZ|4 zjwO77edL#;T`BEk7P42yAiu>K78a(-m}=nP2tP*PJUd!>Ji_k(m8~=nlb}t`S1kkOija(qCVhAbxAsxU=ERJ!uDN+& zbCWtICdQ{R?p621v|ZgCvl?N+9=|rDRGFrDI&#_}Rdi&Lj?PKo+wp5$37s{ioujyQ z!nT=$qgKO~fK0f3Dld$Pn4H#xJ|PWlq{51(FMZT{(3*2_feKn2=yfQNhLveXSftK? ze)|zw>_>Xny%lQs({aIb^wuie=T92^a-_?pY7I-MF}lE(8?t&Q|Gv)&@$XyR;I%e0 z3n|yBRxh8SK%eYMFr<|zHl)oSPON1XTq&Ki$C1J*Hcw26%@;@{^uop-5Yf_>7JCNS z3l!^oA{ft(&KJ0ij^^&}xZIi=lg@g2B7tQ_j2wh*nnmkMYT-{_wWG#}M@U3o0xlV| zDjv=NHZ4kzr4e@cyO8@pI`rux?efz;5|@)757+fJ$IF{*7~Kisa4B=8LRCh!Doy(I z;fu@5O1-0w?9;*aZ>-?1u^Kj0pbMeM+7Y)nrh(=feJhw{XbClwHSi+Ys++UwBd6+U z-idPJ?_d%owJ1@~D8plz?w#;Nx9dI9R`A*3-QJAC{l4HtF5rP8foSpDd;O4#3bl)l zknJ?OkbYKxf^f~q&9#1)TAmt zk%4cY(Z4}O$3Qo=;@mwO)-?IH!P~0_N`)Lk4IA2A6;s`f_vsoI@*VOaH6CG!0#IEq zhgVzNQL8QIO3>y2P67Mo?M|Ky54wGw0Yj>MA{(A9ceb3N@mzCac=!v_+gtYNjGR0h zGuOmuMGkwTcggv7gnN(ybY()R=V$L`Tl{&>(a=8g2WA}>#uxBm?rEY9*U{t06iwNE zi-}QGQdBk4HJwgl@p*UvtAAOBkiebcLMYzT(Yw9oM@ zhlkQexXWKJ&N=1=d#$23R))@5v~cr8>v}ng_cEaNYVs?|J^B~UQO8nlJ8|iFrGA`xODt0lZ4Y}5bBtSyV&P2pwIJ(f zk@1rg_Rbv+UdTn%D_3D6oyqXIIX%{ZlPAvQQmBOFvV5js*>?5ilTqm~`%39|d8PCO9bes#^|S1L^wo0w zVSGc|*FX2&4!7!n7P08uBxddF(IXmfvAw;Wlya0-X&{0l9eiyf_EK*Sfs(zQMex6J@ zwAq6vec3KkUuS$CZ+95*P}@hGb-(mUMe)P7FZo-r>@#zE_u4U?ZkbL7P3p|}=|c}W zZzmuDE2Y}ywav{LMHljLO0ag~wX*y<#%6~@KSC_c_I=4O{e*l4@K9fzwUElhlUdl? zN7Lo{gvy)b@j8;?4rzD&=IokpG9$!0^F=2jFAM(;9ceh=2Ow@O|J|RL$Tge3V>;!r zDoUWV|J+N&^2O_y6n*Zv*qj)U|6{J+<{gX!66Z)u_1}v#mPF-J4iB=nrM^^`!tgmg zSmy)x5s9sISMq5TyHCF>Z}1hfbG_VZYb-hj2ZUFaHQk``YfPamc4I)EeS^GFUvKVl zvT`vYDJgaGAc{Rw1$v;Uk5^iI391=HiHha?3Y@KLm7MjdVg)4K+JCFaL&Y$JqR@${xUUxlLdiH;vB74kZ(M0|*Kd8*HfBez1C zCZ$!DqN3u5Kff5Rj#tLFSq##SnD*)QFH!AG%W6`TOKUlaP$aUBxSilDi3ivXxc~yX zwT#T}(gR|ZVm49d)Ysqt0=FIw&>~8h1uZRII!p7`Pu!m4g9BWxMf%r!vtHTK^@CgI zJDHiE+b64cVckY#J#>A`&Y-r!-H0R*gI1j8A&l<{%m~e!7I>?&neprAnA5D*{K#{w zk~v3nWAqwOezh`|j9TNGa0hLk-%4^-EZLv_7C5f)9mc=8cjo6QX2Ko9K^A8^q zz6TUq*6Sf7BWHZhFa-oj;UF7!@E>*qN@Z7`Uwza@tDMNkRys56nl=6;N^j!d`dG)j zm~TG|$e1n^B$``F5{8zT>7|*n@AEevYg8j#14TG4I_1L+xtUNUa%Iq&@GUyJ39$Qg zT_C*^p}Zxk^wfRiQaCQ{x3r)phP}jMwNiv&DEVzsphzal_Z?@IL{TOcU=F`G<#xfpaMI~iU0ig$+uAd8GZBwg-^y};4XrEvb^X#(_ZfR7n_2mX{fBEkUBk`O{uo^o-`)ZVA2X-DpsfVHQWaQK1oa84+A$ZDew`B`TRdt#FQ zKK3GlXY3fyz`M-Y`%IPZ)awnw3v7Sw>JomNP{UeZlUpIoHgz=1a!Mi%l~NfJiHENG|;3o=Qa9D zFWJ9PpiAMl;EEMs#l)8(Hqpono-R z#w={e)#(#TSqfq)AqFiu3)D%Z04PJf6_mvJ`m(0bZy^qJCB{_qATzOq;g9+qxt~pT zYTU!*-3oR>g5cfs)bclQ?i* zqt5V$DRoo9)sTmwu~)Q3vl|ktW#I}heAS(RvbN^$+s7Vl>+y+W&JgzF`c;uygxC*2 zML}`$-Tm>z5dlw2LZIeIZ~Br4VMp4R9K3!W@&)7N6W9(*FumA)+d;wIV;x?}`aDu| zCmXSbhmq=2Y8t&{m-gQWb<8o7i8$K?`1EP=pMJm<(r4T4rlaB2Lr=>bRMDJ7P?931 zAWCj?6$4(k!gTR(>0ld0S075(s@QMnqccd}_Pdjcn_8MuoDNlbk@UNM@>0M~NNu?o zOY&p;B=!;J6X?CuBa!J{^`E`mjs|yfzFM_Jf2Yy-#>n0@Iy%PW%1YjenTJ+$QjA5o zB~FHN^6*yLRSx*DOf%ob41%$}mA3M6#miTSKR|vmYOPUZCQ$tj_5!Z^dJ(+`+qK!! zW50E5VwIw`%KfbO6+S+}pk+M(tQU|!mSPp%;zs>gp}lGuC7GY|c3M9N91E@UT6^?B zNgiP?Z+`oP#TTGd8<(~;M-o8MFE69a(I;%Vlf|C31d#VYq_D~kl1vKS>7+NeCq1V) zSB`wi&9GO8OJD$MU_U2>)>fd&`l|LoZdb#wP`VRj$b)zX3q1NehtCc;gT{BDJIJ@5=y$p(q@a9Z?YrXRYVUt%6eI| zX2WZp496|3ondCT6cz1u1<)^=#De2gGqtt|j~qwtYzVwP_@4I%nazcF=g$T1nOom( zdeHRn6lf@k?7vFc)T(0pv58V(EZ0?RzFCYSY(a5qvg6JstlLszK$3L*3~{t%X39t1 zB@?Qk*e){$=kM;V&nlFrT&p6W@cztlZGJT17euk=3q9Y38J^i76q7oi^{z0LZge6kh*YGNAnj+WlO!(4NE_dJZGVxOOb6&+ z3Qhd3@(;3{;#WolD~)#C#6Tbb6xNJT{a_$GU4e#q_%#O69>i|=sUD7|^=m5gC7|uB zuNRmSHR^xjbc!m8qD9vOU+9JxBL$6s4(zxU$b27`jVBk9&sQ}?R2lJjunf(v_PL#) zI(U*Y6r`8f&62hF8bLV#gmI*m0BE+_5MPQ@uUFk}7D!3uGn9G5YXX>~*2xaZ$%8j! zy89PT>9@{bEq!UL#Q9V@zI9GXf(QM~8x)}T^T2BZc6p*k_*!<~fv_K7M$R;;N^PoW zi=U3ncCad-IT0V=kBgBh=7pK?| zuo}1a-gg7W3uMJ*KfPy7=xlyk(mE1!*FjvCTcK)PiKT65#$>T_Mu>2Y1b7`UOphM_ z)G$583b4$t3a@@D=u~q;*hPmRrvYz`5Vgz-6{+aY)^(YGv=QZ4;a;foosg z1n_;9%dDYsJhztKXW!Ul0;80Oo?0<8t@R-dqiVO7xNcwAfgAoe4C{*dzQRw*0TNh& zT)8pc&>k>fH-RC+-00*V^~CpCID^7}jHLZIWIDHk0Ol1W4CBDX=^4{5o+4boG9)sV zWwo!X9s2RQ&oP6-ay0a&Sfg2DVfoYPH40y z5!XO9EI6f#wuNK^rNt7oQ|?n?1wH%8Mm> zuv$!yp!3y9ml}Ve7pp|WlqgRH5lY13e(zo-Q`;%36_63tGkHP-gyVPaBsOU+ zxKU>@i090m{4*6@2X59%)?6qUaM(JyUhlL}u*o_Xzh$mw%h9Oc43nU5QYcj~Dh^=_ zE85J0inZt#SuHfzdDqjpANobS!$%G0>WR}Xhlj@y_lyNO98_NHbUl{p5VAe zt+vINYOMF!G->TL4HV9U(itB79f}189k#w`Re(au(oIQJk{w|Z_kvVxDJ_eomFQpumH4&I?l=pS*HX`&)rKc$se(YVNBBQLJ3 z#E1CoI@HZO5+Z{q2H>2&NBv>M)hO$m2~rwMt5(?kW`lz`-U0V2c(ht4y6`mpN+?r# z*p_;fb{h*P3(B$rcRDV5Kl#1^Q@g`UAnd1Vq8d%>>KZC;?xncu?s=#jFWEwx1NL5H zk@0?zP=B+8HZpbzm*Ki83Uk0v!I~N##w<2A7M`s1UZNf@P%nm?*Y4bI)#-J+WoBv0 zux}BPV`I5V3)|-YYKfwD;sq+upk-3vw+dAtm;w=~ZtjpJ{iu@)9SEi3L_D-g_+kmW zr82I}-+bi#rNj>?xSuF+oOs5HYta^JMvDu_6MtN7txEWuc1Fq=?(^ru4(KuqjZST~ zX#1QuE}lP86+WjeM;P!M%YVy<*QrTz)xE6ao-F$UEio%rFDk+t)Zfuz#s{d%x*QG) zG0?(ZEs0vSfxXO8-Wc#N+Xh-!=BEF9jIi%kwY)qswYrM7{Y|LepMJ`?eL}CRSVev48%vkjzsHT2lC}pCCERAnyt37rdJ!Tt^N!fcH3o? zSO;)y1ErV~0rw=GZv?78?^MhmvaoScL8N><)427Fe}+@&M=Qb%vI?0?(Ne|afc%d@ zD;~6z>}jzwv*HxOpiLfJ^(PukEfBPUNaDA8XIb1dZpr!Un-;+MjZQ1-@bv}fe=SYH-VrG2%eE-;6`NKm z3N#}P>kdTShVf)&Km&`yHd1DkFw3HSF-<+Tbt0&uxRrqH3zmFp>Z@{|aGcWuK*CvZ z$QWgui!6SYdfMh0X;z8yrBOvSiB@{%tSMC+zT`lAGza?wq<*pcebwifJ*pGVLh)B4 zik#!GWV3p>ekhg>+SCKNq^{-j1U%&;ls={@2Zs*bh!;3ZhhN1g=!5B2Oks;WZrj;NP3g3kk z#y3!D=_FoA_GmO}r6H9^uD8ZMmsfwqjD2cysdBB=a9VCMFQuLc(wdQlq<1Qnr@dqU z&&0WkG{tF{iX!#C4Szw6=02h4Gy>7Io=f}sQxa7@K6=j=^|IBmvDcC~06`ja_j*g% zEoDQ+48{iR8}$bhBC?7&z=EE+iTT&NE?@{J4Qac(yHoxxx6{o;ZxLUE3VM0J40a^! z-fhDkVtYwMSypuqhf8hm?C9z0ng%(uzBAj}I>j*B0VfU*ExcFvfkL+3l@9nGNoz?Z z2d`N2XPoK6>o=8(>|VVaPL3HU@}Y4*0_DmhZ}W!?BLP+sa}0nPjOkL&!qM!O$7RQN zyhq&b=jYvD9kc6g##TYkqpi~1eM@Ls)0Oua5<*>BHh6yYUxv;#pEUCit-u~HQsTQl3InJ41S`YO)D$j00;c5Q8K*>0vP;)^bQ4gGtgm>K)m zdDX~9h!@w(o~K3xGPEdJm;7N865sVJ4b($ADv{svV>Z~o>2I9G2>Y4;&J}kC5E_6RVS_ckz&g~ zq%Dd#kF?-;p$h*anzXL@B6rMPXW>O1O^qfqZ5T;wTy?!mBW{@oagXcCR<~YUmF8Rt zXmtiI9W>v$3L_CF!A9tOE$xQ-kiG6P_3VQwDUSi}?y zi*sH5@kIVCMqLSyNf`69NN_HOg@r?3+7g;oYNaeWd5^667uzh`=HDOfp<`C{LVSW| zcx&=$1<{EjBcCXhre*c;^D8*Lz35x2hO=Edgt{liN15J-E?n+O{F-aFUUZO4>nMElJP5X+ct*#0Jnf>Nvmmt_$d$ z{5%m<8`A;#qRNdCQfi-QZ;#6hVoD1hf48uvvzcs9!DApox+7S<4rfCST4Pld+4(qr4&u`Bx~@M5qEJoXoflMdmP)8`=v>F4 zVaDJ&e6Vm+ergYrTY)yBtTHXa{y{-Kr3t>89furL9)93!>CT7R@>#c+!HjwiFMukt zn5WBQ?J0tm7HRgoD;1W=8Op=M!!HM}PP6%|f8<3eJKsVpOKat=V`Y)Q#LL0)GvwLJs)N*Oo5OvJV&07iQxBm^ICHg-$o2&Ha}Fy>H!Z;1TFnh_3;(OiqgOJFa6$V%e% zN^suI!!;2xvH5tekmjF18QFQI3>vW=t=TEOm1F9K%G}vB_Dy=grw{&sz0l}lAAJVi zp>R?Z?J1=!W5m+uGiPM8r!9o-ZkLS5dHho4Gyg6YmdHIjuy==Jd0>(2CU9VVZBUre?mh%DPHv`<^>0wU$?ZTdrz{nv;T>j9sbokpKhp( ziOfB66voF_khI;A7~$y`30}3*Gdlq*JC_I(8{iX5#0yF1>ncKtnT&%bYMu9AWu70; zjD3~NZ**MfYa|nB_Bf?19nZD$a)xE@*^&F+tXYjoS7s(fg^^)WS?GPo$CrfrxT>|+ zx;%Bx{I|qAysN(E^v1mv8q zhOVfiP0v!RI`5fus*{p?o>rkL8T6TI{#v3Q*}L)9nr%`0s;lG4e~Fr-xe;!EXW)u8 z?_}(|^#)jHnKrp*qL>sgL9CT?_M&Soc(vAa)IPC4QTxSz@*Pe)V>yoV-=lEpRNS1* zL)ijvhe-o&%($HwGZx=l9ol#8w`25BWDnL*^klUyuNonw4hEvBmpd%hGEO?U;syuh zKx9N5`#EXACJu-ZxJhV+v7?__9(HO+E7+COhhY^&I_Ol_S@grO0-apb#k_a6Q_~e6 zJ1-O_dEdo(&)EowxA!J{i%x&fU9Uz0hQq%sQ<38POmdWh%pSC-f-5R+`%VnIS&3m8 z{^HvcZ5;u>wkkxicf5|5mHz%fB49IGzvNl|ceDiqR*~$=Sh|P-eg_ysF6hzP(!sgx zXL(&4H1dhRFA$WQJ^n!I>+54-Ft?M{pQ*K`bgfrwyqGwY?`yT|p{<#Wn;E%T-RBP^ z`W1{GI#N2h`kz0W&;>SHyrh&GnpYe@5ZZN>i524G8w5>Ks#tw3iY`|-jRmN`{6Mr9 z1Kz)Nfnhr>Rcfknke-HuPO~;Wo-J4Q;c`pz_AdR-Snk&N-}`YOu!hjMuvIG@P*jwe z;oEaN=F6y^7{FQVPGbsWeT>F?Cg2pcn=!}DdOD!l3``b+5KE2!wKJy3 z>-REI8(b!nqLe=0oUdleb;?qP-$sqsW{t}aJ?Oif($K(K|G;zxr#$WrY;HUr?|qGf zA3V7oXMcc1T0JM%*QiG=BSdmmgt>q*ff1rcQNQir-b1NSlQDmfKioW#z$75i&E)Mr z?*#AJ5jeqXES-6qi=G3-ONL=SPeyAe%FltS8lpr zzGa69j_mHz7Zw(ZV-}$0G|i_<4D%aIXop2_6w-I2Jq0pz%iqpB;i=2YtE}I#t^ymU zzsEhU+P#QXY%->mEGGE>##+ESuE_~l4NXD46+HRztUT9Y9)eq3$D5oFf`Ae4%S9_m zv<+fy-1)L9@nOII1e`_D{R_z*lkh5IW$6Zz8#J&{~_K%Z#uCW`I zQ;V1F0tqALaRrf44hWR6Rf+KTLmve!j*JnNRhd4%V_gJvfpCsiJJcl-TXV|(gX*ra zUl)*FfxU_16SjcU#S;c6$r1kC3i^`HhQ8YkSVf?Kecyl%p(5H$~=)a-P`0i zC(fF_(SR`7aWJ_fRuMTzZ*k-v9Ce7iuq~XC-<}FuY_{SEAcXEF$j&~&?*Gi|oAlmh zti~VUhTrpWfUwjE)fv+n(&P{4I!MN^Gc$9o?ftSq)o}a0$Oi&&K0Xc962Up^A{FpTTg9%mag@h6DAT&|r-q6U zd|*I!9J@@wBrgeKr80!J&F$2>=B|$ALXW^GH_Bcg{#u*WxB+@Sh=Ke|YV6GD7_S}t zdljKu>MeOGS?DLTBo2p_QF3x@rFr#vG2dJexc#uUE`=$0f!*eH)O{)V%Mw#7RvZ_% zipObjpd^k2o{?ssT2{tTQc}w2w;8!Qgomoh_@=L~55Q2ws6PoO$!05S{rmTV_a{9_ zgQN)Mih04&`RdCzndw+DT;?}^4MW4#?c&%{f_L}ln*V*-W<9@2`tQ(>9JaCgLhM){ zZm&wjwYTOURmP~sV1yXla)S`Z6`u;CI6tDXwf`uu?&w2wonqt$Ug#_rlL|W)BLK*c(~Ang*YdC`*vq& zru?6ayfyR&fHnZAV`F1cTqjt^$@Z|gH>sOi?>g%32zRq+`D@p8Ap_+bOFu4|vZ~dSWyjJ}<0!)ego)M< zeT~l^3^LKjh3=SF0&cDTU4CPqweZcjFLt49)yuPQ>73^Z-hASju!22wTrXQ3FLy-M zN<^R=G4GZ*unKOa+Z0cuV_+nvPtAoKzZVi3y|{oJx1VDoJp=}#55N3UUCrj}zT2wo zX%^zva=+GYh~TS$x^NZkH5?D8v$}$y4m2Wy@8V`-80OwH0ZB|s(P)S%o{IkV`|^rV z-bl%)k%d-0#0ao#McOdH`W>^~`n~NlXjKGHpPM}F>-cV5B7CprY?1@NmSo10fQx$x z!>vZxx8H7OgX(<-LQ`xj%F{`m<$It&hwLyXSPYB zvoXf5LLgH%UzgwNt}b8gVR5}&D2wi^5!-*j6}02dN6HYWen@Y&V!+!?A%>P4E`J?uT1PkGe&9ej|akOb#9S$2Cvq#*)w`_m6 zv^tu;HMZn>OF-1dJ;SF$m<_78-$0C1zE)xho*;q9@L1b1CqUUCbf~Y1SabD%{i4%4)?1WBo0W}uM;%hC35E3cY^qy)&I*YMDt?#)t z{`Su8YWEA&e_68->q4=Xh=9SS&}`?Ep*FZ$Z|ZP5h^ifA(QJ6|$Njvd$rJm8-g!*d zEzgMPi1n}2H>1u5!WlTHb6~7MjgXTIobq3I>8vKw2ndMH01jksYD+))Rma|J9oxLl zt2#naBCXa+Te71isebZ%(d(?F`Yb$8?W6JYz_HK5EH{!bvD8`9lPwrMA|N?KR`wK< z)m)!;e4DG72vfvrycl(I(k)w&)u?w#c)rw^C5&%<9_@Y;=D1Gf<282}(3lCZec^LY&h+CC`Yb9NT@<6fc8_)0Qrg{y5!9%sQzc;{wP0*lr=5kAN{hm66 z?WoT{W9z=f5;i?ZV{w>f6{d8KifCGJsxs;r8e3}PP{LhkgvU;iOPlJYechIt{FW=4 zdT3mu%W|sJF|1?_pTSdT))WJ=IL;J(k0&p_P15SQgE_PTGG7YHg0V`vfFKJ!XUfl=p z`QUi&&f4HO7@7dH3;dM7B8#KzC>Ll*^T>B9rNj4IVRnSi)hE8aZ`a4rrcFkvoPz6} z1?JI5&w}jQKQ&+-9wX?p`Xi#%g(uWteXZKKLw>04->ixgUr3KDX@1D;6S#m}v3j$5 zT>12>*4KjORr{;2#7nc~wnYTB*LQ0z{?Trbwu_#S4_qtHQF*!LGXrle zG4q-To*@Q99-zPWQfexbzpTAc8s39;aPrt2s=AH0!5S(qYc~92-eqPH4!2a>1NjeU z7|(`3)!fqZ({!oIdtu?R!U)Wzi3jj*9$}!XfO6N<)AP}^2c%biq3N@rhKH_dcn6qi z^T)w-n`w8*-Oj`TS!v)@nAAtR6%3_Yya#l;lJNO$Gjpf2ifH6jz@klq9AxSKn3EJ zPMOYImmX_~Z#R8pT{?(2&!1FUCxh3gMKjYHj_k&!Lw8MxwoOZg`1GquQV{G74oqnA zO3JJ8me~*Ax#-~=V^dEXftjlF{DR2Oj*Tjr|01PP+3c6cB_#JV4v5H*e9X9XabcB? zNo+?UhT8w4zLT17`{fSQdb5?7>hTtSxzJBpZrkyVdbi8Tl%!mok(Dd`Od1-2%bA^2 z_S=zouYuwq06T?8!v&wls>$ZsIct=50~eQ>mDTNNo(s&wbj6-<^YdpNo)5GguQ#)* zh+N|JP*JTDi%81;GP+kM*AlA832^^-8~y?~s-_)wjEG`+jn|w!drWP8GL*8p6GyGf5cY~nN*v&%P8Q1SIkI~j z>0p1=9Md~e37q2$drcMXGxSljvE=+FXQx@89wH*5BE4T%?vE!w!!ukbYk;5ltK_=a zv|@v|JEYf@vs_LL0nui{^%8D&C8gu^4>{IwfUsNr(JYqQ&>h*?KR(#lZ*TzrVJ-0f zw5}f4Ts1I+VHP0kZ{T+kMGO@a&LdE1J3t-vg2%xuI9o_zsQ!M0g3MbXfh(m;&UAck z7&!Zu+IHvJ2D-ZceRUc--52W*b6auT&1$K2%9vC(^5a@3(z0wqmL)^PS$MRP!^i1XGInh7JI&<_gClO36PmL>E8V*M zT0A5m#Vvz>KLVYszQ~I2^;AM zgz+)h{z(CjYl5R*xF4Gwj!$~9?%CNE|31w<-~@-QxA*x5qRRDliYBoo;cN!Hih`C} zDyC*zdcSIy#^3*ZF|`=tmTsZ%(Iv1aH#d)r=ZIFWljU~p7$%7O%qg38T8lP|;@|8J zRW!^WS^n*SNX`TrI9UH~3N`31-rI8F7Yen~qi7)mLm&wlWOIg?O-vQFPT79-uhb-! zwRPR+4mkm|jHUqPTl{Tjp_%xgS~;(A`jTo+->;2szrTxtInf($q3!2m0w91J_kbll zpi>p-H0PypBzJ`+C^}y^+iryhJdFazIp=yX0s?q27y^7jz2xhWl9>N4KXP$z@-p?= z5P!!baLS-&70r*zQ^qP`*MgK3h1-&Y?5eI&PZ#pwKkCtH1rk{%{DFLrYyye5U!7?&nTbtL;CVwg!^r|)1)z$q{ z-4zT^PvTTki@SIrnJO_6D?IvR&QIWwdvG>?Pz`pAFW`pVf`q3a&O5?~36mnr=+E68 zJ9pm$mf*(?-p~UPzQLCFHa>rQUx5J|K%bFcz9ce^JNXaCespAnot?dA{f|-)MS|kM z?{X~u|D?-c9z`_u##IN=w|ZitU+DW8@7_qwHpbDF66)_k(yXG6iEyO#)fEZSx`*1- z?Nz2BXK>0m{Yo3hGJeN(7(%yJw`j(G?Jh|D1xDz{y-XrtC8xx_3rro#g0{?uI-3RM z*2a;f7ylN8a<%4KeiZg#WHug?QhTRdKC@oQv(kGm2)ODTb&7tby^-^26s=Xi7s%j% ziKIHu1MLEOb7wDY%|ILLW}mgEw&I5#x?X;%!&_E6csIiJ?(Txk!GEVFEt|`9znOhc z>MGzBDH{vg+}z0e^0!1CLX5!y?OXzxkx3+(vAMXO1V`2;Nc9XPDilcsMN&q;y_fri z+9WsnMxW-Y@N?&HKS`iJ`{GDi+_urdY=j1`s%yZtDZ3Kx(r?&j)t4X~cN+R}a#Ahv zzbPG9_8xSZs_H5*&$@g@Z#2ubU~ff~X_ME&35+SaD)#3u zMJvysx=Nn9(-34UDQ^*T^;KZ;frk2-FEHy`B^S@bCi9XApm=L*C@*^Y4AQS!556JJ zwF!?3ou`AcMhCgTDg{gJv@l4jgT406j?hxT4h@AC7Hcv} z;l)fIIvjN&T8j*#ok46LWZ%udRL9fh1-MCl&97~YI5s?4K>@Lu1@A*sAQOEO`>}X0 zIL&z+3~WB?g``I2pB0CGF=d3pC=vw}qUngY$YQU@76*h7xkBp5lzrQ(Pkuq%g!S~-#~cjHE>5df5lk6YPqn7ivn#&0Gk*!> zOwgiS?{8eY>DPx%{=9Ap$W_a{eoIO$?{nT-f>TQ^hv0K}(DH=R%j4Gs{hRfIi@(bx zSa2}Se7&LmP7{x9=a%h1`}P|g58>(vK-Nm^I3fH)&7Z&J4>OA=Wgpe9)|0)|@j}u& zYY-F=P-rlwD?IpA_r)r!gwTDNVX0sJvR;5^(GfB*@Is5N$da_2FudHp>f(k+X*#ke zp%5fufg9TBw9p5pHFb_r_c?QSk)fiJHU(7?oJ@R8${2S)Wg3P7XRJB&b^Ao;CHR!Vx@EUW6lWZ=CTf&8phd_F&lgJIvAD{Hjq zJ%~_RtwAxLlU4tgF03u_Dq8oEQFr`KK+uKY3p@E#-El<>6lyTG`@wE((w@WTTEs&z zV?X4DpR$Br409uKNl6J%O#sUQklE5BC1O1T1RK8}o(q9}%P$geAtWnyG5r`I%tkDu zS^ZJbh_UK*!hq-IFH)90TMr{T6Z#3~1{AAGsl*o;El9A93>1!f9j!E#j=#bJUcU|d zy8bkOP!PQT@dF8HqP##Dahz-S_083pejOCKJ{b0e$iwdqmoB2wsc&Zp6HmZV;qVVhjaA-RGF1(PqXYY%a0`URk4Zb>!cLpSeuHrqYhf1 zo5}9-&cdklhd>%{5ny*Pobg{3k0OtHNfd@d37x=b2N>Q1<}EnfY=YOMa5vwmf*L5! zzEOw5(syfJA&Gi@+4}k0R#*?{Z!fE+#Zr=pMS#txn+6{_WClf6lK|i6_{OzBHnLDOBQfbpF3bh`62Rd(+6L$3-v~Jz5;K zJ`QZVIj(f(OqVKG9_plW7?buBLMPo5LWZu1lSIM-m;jmTOa)U|`3aG~Uv{bt{~HPT zMS{WM#E<@hVUK^Oyy&|CAAbis5IqoGkDiHM0gt}&WR5bPW94Qn5dlU**;;-=It!2U z4Gy+7irF0mnzQS^>1Wu!2z(JqmM7izZjOWzvlv}fzH9ahq=7dKO`<6 zZin7D7Pr<6nd>7iCI7T1ejT!(8l zwe67`$Jt(oe#{Z@`X`ev`)pw3`u^G5yxecDnqW++?lMLxj06)K)9guVTR98%Sx_rI z-889`;izwABh6r{|8UW8oe$i6O@~l&An1o;wn^){pRP;&)5?Gy5rIi2-@M47K<=Xy zcC4(>r`A92>UQjB)^HQpF#GRS(J`>9{aEZrUq62WLIP>Tcf^!JpOuRTw%pJ?PU63j z{mDJn9kIucLhq6(QA}%Kz>V<7QD<$GKjcyxmw6 zH*NV1Ucjrwzkj%SUAFPy!b%Z|-xuVG9w?R}2yVq}Lj(_y?E6J3WhA0H>N1dXP1x{7 zdbUoDL-V)l_9en8=t7nElut_UNY~CB2`pK=OtrFx8^ODB5VBoUwT{#ng2%(7PczsQ z8Uu}Vhrbtp4u~a_FJX2q@;YTZb*UeKH%^4$-}TY!oDZKyyRj27Geq{_^9Gk2M%y)4_}XC7Tr&tv9$B;fd1~w7wA*{y{Ns3=!TQNalj{Z^hA(ESlX!@$HZMxuMOk z7!0RfqKFVeZ?1*I`9T+}lVDH3AVOwho%6ojNkiVd6uLQ1zgD@Gh6wL3pm@I-aBQSR zPM66UmXDS?Gy;c_OqSl-WSP->8U^qKa*o-&#Ct4>MGGcJri#)UsYmC(4Jh;dik z5>pSzktx=a&7UvAB`K_`0VUStrdU~`9xMm{?%rMc%U8vn^C4MTTT(E^r9Soh{w&Rh z!lRdC&Z*Z;Lg0w20ZHyH(I@iOdU&YG9>>cNJ;qmE%VZrD<2(X;fe0_DXR$1(BGj~a1T<8ET* z%{Wr3&4xWXp@t)Gi+1H1g7ht02)kH!)I;2hI(;z&WAf8!Im`7fyq+xO_ilz6ihE>K z{X7N}>14Ud1MMnnvS4xu3nj$KV1SucYHYIJgBvg+ym{r{{jItBL@@;0>-U=aKmo2? zs(~}o74uEs&7B_z;L1TaMTE|oj$LAl85{nL#9d+3Zc^Lc>wlMsM;mlW5v1+kwH0e- zul;zz1EXvJgG-2vaZrA{C#mp7BTW4Mb3F`F>LGjBv0_szywSvs5dKTEp(?||n==|u z-b@?(_S=0M$1Z1SS^Eryp>Lr=Yisz%x6*Gt44cHI9pnkOsG24fLM{k?5csD6EbZIa>N(}xZBK*BFTK3-}+6D#44`1P#xK3+h}!UAcB$OkxS3_C*( ziK5(}IqLhKf?yBgS$+rb4A@jLSq7Jk-HDC-^o*F^wC7Fv6oWdIsQEO5)NFF)!f!5c$OauBhrMxe zi34AN5>q_FKqS_S{a8@iWWTqMPC0JxQnuW~>G*ED?7$SO?456XnU5kdXH}DvIo>>( zTaV(&lTP)L$Nsy`mnl-v(9~LKH32WBwuks0m`KtDzhv_4q@HN#j%nTelKvV3Z||%Y z`jRFYyZ|sd+^0{LFJ=y3HVLC8MZcc^SMMWPKl^8;CtBcmSoBuI&GqHgrO(aY?emTF zYYUJVZP%UP*W9X8$feNDU$Sju;d#4o3kGX&MMiBad7RcU11y*dCr{W$;1Sa40%iKU z@x79#fJbqeC5+NjmjFJDg+dBXOZPgB$LX#v*SFj4zIiY0jH1$}%D=@v=dd`o?ak;V zZ=!O0J{73k_2$l(JkK+&fXUibh&U9fhjhWi77##0!zT%mV2LSRY^!hdIEHbdZtm_$ z+;gtJq3CL0n5EGwpHa-A7ueCMX*&6(9n|8p>zGb~dIz=*F$`LENY%y)g(5=f)W4i{ zCZ5ROvrk!ReYZUcg0AoYY)JGke@`T&r|&gJKf24JLJN9IZZW&CaI;)m7WPX_O#ciG zyb`72*AJSj=iNRboFeo8&W?sZ+{NQ2-Ay9h{k*;IOe8OBIQ}{C^ZUTJ(x_i4a%wXT z{&WuBdJjpAS4^>SC%cx1!n$dBAA4K6>{D<)*%~i4{!T8x{OU`(02jaEu$Lb4_6O?} z5vY;W1)s)vgBnV#G8aJDinemS+^N2O9xZ%d?73*GMkbuQ!l#` z=|T5AshmI<1|kGc@y=%7rFY|XtLi>CI_9)*yNaLFAy{qpV5GC_-XceXNKdr2zQ0Yr zh^TIw{}Qw2hEwL7x3i^ou{^r}6b#@-F7aHYPvLb8X!JNkSWB{}#KMME!(P;SHmzx& z?=QB!-`@vBTUT{l7Ay4x|ag=U|%98WqyDkM5i$k#uzKpu;2PXz-i%DJd^H! zM=O&{l4tAKEx_1RVqP|62-covEi5dOE{iQ!AyyMs6eJ=j9%-w<|zWF#q zo7GMez2tM>nniC2x+e)^yms7>dPv=Dy$ig>J4YxaT~}jYPqOg!hNtpxP|91HutC_$ z@`MlezZ!9s3`M_sB3`H1kX|f(9j7a4`b$?=d~|g*RI)G)dpdq}djUH&i(QlTZwiOVvq#p}(PH#-WyK=yM-O+q&;gk3JC)YoTX1^Mm^lDa-O8~4P zB2U- zGmcT41_v#L-zV+CQ>M3zt@prW+5!((d^u@SCuAMr_O1zUGpv+J?_YBXFW6`Y_7ac# z3M$xJpQ|te2zDqrAe(qn_$wmJ(n;Uaf2ZiA6qAv#C`kwx{E6zvKAJKYT zDl`lp^cLR~G-j)mfKXg<&))J?u7=5>pNZ!7WNoxy{X2Fc z)|Ly$wey85H^fOlt$p#!_RySW$7F2%G~@*!>8_xmM#Ktc0)>OeRft1aiqZ2`cUAdOOHISsZ_U zoXKPA>6tQSHu$Pg9iND31>vcCYc9pGtF|kMUPj42TK-L}k|D}{zb-o*Lq9K^O+cU@ zz7QS(!IJ)UpO2gGJ7Y@Qke0j04uC9)PyhD+tk6efzgeBoc)rs|w=96>gyE|E1%g+tMj;8~0 zSiI%^$IRPQ+vwo(R;wO-)RcW&;S(!C$KqrIHD^r5@^Np5|zj3S73t&@Tl1;h$r)$G%KR zlzgTNjwAS2Hx@N9tq+D-Ps5Lwd(F-7WK_t5$#wAS&Fb@q3ZK!Vi^9dIaoUJ7Fa5=V zFu8%e$9S^)b!%P2m$!C{$^@aA3!QM#88kKD zy2C0Lm>Ia1=3(3MG-5JcekUY6i3V>M>T2{u6S8uhS>5@ ztohmD{r#jUn&#`R=D~@kQ_dGG6wPY)o2E_oNd@Fy(JXKffNcd5D#jCa8Ha5$xJkQ{ z%46$$TUk0xM?dajuz)9Rbn3~N znU^&?j8z|Kv2*l9c1TK%Vg-H++PnOyj)i0%72(+Els#+fcyVa5>$C8I^I>Z&L8?7Y zaCotYjWW%zw5a!K8ojw1W2bsZz&LnOW)P-ea4`nwztk3dVE z#G-l{JW(K%x&oo`d@B8)=B?{p*p&&~Tpdl+Vo!A0aGw89y0(Z)zP%hPqboi)bl6$< z`g;E660$fzO}m)5`KwQ@U#^uxP&fEvffUZxS12$g1Md|A&D3)3t><=O!Y1?H3CtY& z@hDjCbXI;`8%}(YL5{lIv>kWvS87OWK;$X|nZQW^&z>kcd~Bs#w(2?F2Z?F>x4KU$ z&@G&-ODukuleL*XZ9JQ~IKs>A3AdS6Pc>feD_CR|$&uqmUt%!^<`D2DOwCMTD@7gd zFX01HCBpt^?&|8l@@|b#y~jSk`Lan-`_J?^&ofdbV;3SxDS}ScofhBC53c7?$CBT{vz?r~lq{+TNn@zui4Hn2~We zU&tfOT_$?e!A94!fR2QPo>+J6ya^7ZmSM=C_dRhSsU%=$XV+=+#OG)!Ap!Ca@H}K{ z8!YvUL^{jO{mH6qs6#mP!$U_j2>KG()|i$H#|J$~SW|&)1LqfMH}aU3Jg~ zNXx4VpVJ|sy2m4|sD9{q$bez-9zBARBj8J#h+~9+;7)t@Hl0Za?MVpfta)z?ZM>aVnfQ&R{z|FXr&DaBf<8$1hqOBsW) z6|P&~?MxF%d-c2IA3^h}Rr4uU(Z=7J9psWNKETXK;28LkWo(0)IJvdWshmPS`bBP6 z6Ch60^>0q}5e}IWpB<})eVh3J+^(yG^lMt5(>0$*Ki+w5s$9kHT`Bx#v;DdHl!aGt zARrP842p!@wsI@B}PL$|FdhElAhD$(R%RV$4q@p15oHWo%&U=PH{D2w;Itd81IZ2DWbDYf2^Kpd@7G zFypqpKk6Wd8wFvd*x1s>l5onb_~5BFj`XCnJ6*JZHd~;nw>!W3y_O>!^c3Q^He zDFsQKkVvKnKsMWSCI~~Ww1i1^kkRzHL4u#I7K53(Nkz7?3`exWgH*z{7x6oOaOO^+ zQkd3r!5|3ZgS3-ub{+N})AYX>zW_KI+VC%;V2Sq+4UAZG0W=7V>M#@rrXpm>k_1fi zxICEiYuxdN@=>B#kV$cO0&Va+X(|KTD=Lh)cU<@r?^jxk<#LkLB?s}hE;vuA33GEx zrYIP7OBjQFNwL5w!7g%P+skc9B=Mo?7xH8or%h( zQyVF|D0trzAp~i!n`>r@hfkn2vV|r>ln>Xl{DMEa4-rZ_1R&S`E= z2Z|DoIFYb-%H`Rf8Q8gLoH-|)?IDrie9x!DzWdLS6?V_}a9ok8EBnT`$nDzwRXfi+ z68cQB4K>$9z~;0#n-$17U8O{WW9uq%(G>RAmK zJc6BD<5%!iEpi{SB#n_?q^(*f{mo`CTJ3Kip=8}$q}i$8YjsS3IBoiH8}>58?2Mj; zZ@1=Ytw^JL0@3B^DE;DB=u1qd4Gq~d`|ii(iZ`4uh4ifTt+L&0r~hM*G~NE&I;wp6 zObpq;*i{23+bMNp!vf;LdzU{~N{z=^l<8ulBG-QeBV)!2zDmSjr=jg&wOv2-X*jd< zFDtp7!-?OE)$H=-$S3XmtR|z{a2lM~e@xA$ZWeq6E!r8Uk>x3<+X%oxKsweEDwA+C6vU1R}Q=@*C+8{cS(}ec5S~D&gP0q*K#4_ zuQ3rlQCQalV@L*EU(z=qjv{VbDWR>p-NV=Ky0*BJ`$nqbmrQjhK*D|ec&Ki0`~c=+ zX4ney1sXUPmKVcCT<<5qE&9T){N|AzUMH6K_bLg>_a8L!0~i!bT)2b9%3cW(5)f?i zKFVdJjGr=Xs;X9#N*J66>uS0fF2ygx-MW2DTU?tmw(-z#c{F9TFlj{|vv zA>Y+y4@Q7Xn4z!96RNvp)hweEBULvJ&o|HfSh+Lmteat1Uei7FujGb4OoAc^CY%G1QN;Cg_SmaS!AlSm+>xf=ZyCbCDaRXg_YU6>Z+h>+ z&j9KYkAZ+tCegUVb>>h(Nf~`&XT6%YA3%2U#Sp47Bne**v~Vl6K7YS?O4m(G#5!!v z^}7GZoyT*L4h*Thr=}IOe*-u(ZYLc-a>|K#DZqoEUN(lu_LS~@K(V!=$$BeE(2#3! zjPXeMm1q2;wusC?$g1yMpV|TMw4DY0`a<|-O@OWvyZLIBxngp5`m04uuZh-<3!9`= zOKg9a6P4(%a^Th`*4C=^tu^K&^|TUTaXEdu?_)GC)A7wVA?TC-Xzj(~>`hy_4Il;f znn6vhveVC<%`9$<4Ew{&t7g{$vU8@jyW|-7x#){kq{G&86H6&|CvqrBFlSldcag@p ztK^5<<+LjuK9v$!2uDIAYj zWuu;=@ykrRnYR7jF_(yM5pF(kvAbCPM+&2=CqqVq=?)Ougr-&v?p4wVJcFm$I6;*aHa=4Z#^Sz zw_XkVpy3m6%e%QIh}5RYg`Q^#|D|B+trbInyrUU9eido+p08&i8FcG=o)jXSOw+HW zWoiprOf%#P#O*^(G{IU8GX+sm(S-6$ezNOv9XG=e%*1ODB;TSW|j38rtbW%mU@R^Rr zVZJu!erW>%IglZ?r|RP^E9sEU#Ic0W?+TNS8Ys20#76AWx+23v}xICSKIBWw2Ax%k1q|Exn@(UlQCCw z_PTTYE}`JaW7N)f+5DEwrr3O^&{&KEfX7>WXg!>^BMPUmN zJc^?RFlZ79c_#3LyXkKB(L|>6ghQAH;HzZHbb_x-aB^w8gm701o7Ich7)4VC{dMvV z=#5unqEMq)L=nFOYGcFI;l096GZ!z@sXf361?O%BZQ=%&_QY*;If14Yztv-@Q+U8{ zl9Y+Y=${Keij6eZi&3h>VC=Ew7A4VDRZ&U4SipevJ0(3#<|>0XK0j5AQccC6=@Uq* zU)}fFsz_g*ji#Qef5+@|)a8@XAXkZ>Bq92U--;{wYFyEaPFntY&gWl=A>{k8)Sfc0 z-m&Fx|Kyl8qpkFy1)RHKvPCTPmUJU{DUucX2!Y_{oU!00Dpq1nW!!^`6yZC%|EErNfKu}R5fgda(v(0{`Gi?qbT%#|mb z;pmxHOG_04xM1K=M(fyR-w&d>{=eT7i0L}e$pBPCiLzVljO{sZ=IyQLnW5wtDZ>h@ zu!ypji5bx}E_;q4neOWtXfxI(}~GrpLdUU(J>U=TjnUlTfCEu}#x2(8bWNM`pRZ^mqn5P+e~RAr!%-KKaIm@V8*@)GcL~o7 zjA4-YU|kq}Iju3%UTx!PFvVGbcU?9jIi-%t=&po!_=nK$ji!2(10okH=t5Y})9|Za zzKjAXWEp`loY*3lClvoU_${P|Fpl7&C#sD3Xnk~YEKVF||LHxi;t52JlDR8jW5@q% za*>I{6_bxnU5FVub=4u8;Q@W@Iuc&6!aS4gj6+%lqKxjLSj(8gq>3`mEl!Z_@4*zV^JM%F~wz7b~6K;t1j8|HT1fq z*f`RsjuP87B8d4V8b=lm+CH(O`@$Q`xW=SAJJf3`pXdOi&vn!OImZBbVig~HecL_1D zu??6{Sgx?)FBW}#@#;>w=F6N|KDGh%5TIlHF3&$cv0vR(12m4#V|VHY(M_5cXM?#1 z85v{*15_d7bRX7Og;-z0!hy_AGgK_Ctfs=Wt-5^NxkPn(y0h57l=$46r2A261;g_V zCjF-VRoQq%kOrWun{0k#POLjx^3PwJTxAmw1O#0-E@gaTb5b%aC2dFnkMn26(TABd zGERHR&ybmHeI@8p6_OUmhd;qUiKFe!@~e_8z$-yV>P!N zHhroB&4}f}Z_7%UdE|{wbS-qF!rW3X76uxx#_dYOmfv{Jw+6DjI&X~pqM~*|HR#9hAG_^&g7Q{Bd20viRj-QzC zE;F8xI4J(cEFzaJAjX7MKp=Fv?q{KzHE*mKr`uCmN>=wqfDI!W3_xuSHDK+fi6dLN zrSEm3CNjUa(1t-h-fzuS|CKKxse1FW$+gXy;mbo^>Qn{l#B5U3(pAxkjpa<9&ghEN zzw}Q=WEqamz7A*Kw&}`HFUrJ6POh>ub8?D#NXRu~?{>Pih;6Wsc9(*}?}hFoe)?WC z1G5j^!_HNElP!R<($vv`Bcly?Qt3rA;o+#C#SPI)%u~!$&WupgPx?4fkXeY^40zQ3 zb($(0c2=SAwM!0d#-yS+saR7sLwoul?Vj@!nk5LwgY(>RKT=XGIi*;odo@b@xfDL; zYN`o+_Qy;lyxc^NFptBR>j9g@>?RQ}=u$gFjYf>V67N0|Et%LlFP3dmHfWo~17OW=W$VWuWA9|Ag|JO+$$ z5@+wXeI`YZZZZ1`fhBUXUq26S1$-cuF^lsSb>RD_=olVGvCRFsgyknG_(z{6o;4B<~lWrH6a=p#Ia zc-BOO6lixwICd`+97YlZqykzHTfOBl?zx2w6p|I6D-R#Ljj${W(&UDR1+PlcXFZd` z1H!c`gSXszUhxba#i6k$Nx*0nL+Fadi<{;A!nTEaw2eOB_F}X3j%`Iy_&SoZi8s`f z{GDh9YP-PYc7-(6iu<#8){iK=b;UH>Vp#gF8(`jmD~kA$psre=32zaAo!Bw zza)GmvR-OElIb?75IEd#^ZW-54&GNhV7S7JGodW=7P-4S$Naq9CxhriRt3jg6TsUx z`NEfh2L{oHmrm^H4&^8=E~WtiF*noI?@9uXOeob%l%udte@y1eZ_ibrOxU}goJ>sJ z{J1N9TZS|Bov4XD&|3DrSnuD9YVg1dQ0+Bgb4arW244D5g-O>VwCb17H`EufZT8XP zOb{p>Lq0~;+TS)QT4B&Y0mJdL`FA9F3aObelYxQ{Srd;+-*6o#Gp3ng4#PGnf^_~h zDar&E9(QN2orFiW9iZ0dE)hVVWGEy<+^u}nSubeCG<8y;H+ctRbIfEd&95P)QNWEW&?S@QgZkTD{Pp`AH{u^Hyaj?>ED29wM?0 z;EV7x=*|=Vw_(g$l$%siV=6C8OqVlb1)w{*0EYrGFe3#pg-E3vi@vTgL)UAGT9hkL zeH_+#!lzf*0n_3iWfYP;r*j_LlTE1rSShb1N*r`k=&kRICIQwR~${ zD#!fS77@QYjxg$EvyU*O+6~=ZxH4`%S5uOg>j6n&+J67}4P~MEU{WVVgix>D^&dM2 z8_yJwfn0Vc%i521?#ZnDv?qe2bX~Cu9WFi*f#F+YzYiH1(@d%M^!7ve4Ih>HVE#pZ zw#&29XENu${1Eb25j#Ag=on+ees6Cq>q1lgz9mqeX29~i)PCR8)U+M7OOjYxIp)LO zgPtF|kLadMjB}Nx)i_3szcWB8Xu8^N%@mKAfGTm=T#R_1 zAQaHOrb{N_V^QJn$7G2n_dmYCtNED^;8HoJu3rPm_=JR6qw_x6vCX#JyKcUF0TxM~ zUHTXF+cS;H@t}x=r|`VgFYBhNUGJwEY&2&4wdK4S^^}AH=^wYbs;!mXB&BGhFycH zKccEnfOzhnbMV+zZz;B3B{+44WSlvv#~9T!{by$w`so=v#4Hb%yWGxy+#YF+mB~n^ zQWsKWipO5m${{!JkLqd)hqfvv2}#L|4zA#2$YwuG?VzOg)sgs(*9HOwAGOtV6Pe ze8c#n$8#lz>8gF@Ic!mS8YovI3(F}$$IaL>PwJnr1euEvDf{rk&#gd0jiCItXk>HD zghGyTsO{trU|iTU#Q5Ee>i?CkK9iUchyJVxV6S}cF^;qEfL0fCbE*CpQRUt+0ABR% ziyz?#^ZoRw%%U&OulI{ae5w&${Q)>pX-7(gJ0N>P&m-h+SG+ojM zb%RdCw{$;(^H7dZAO0df_=}iY(yuqtmo9~Jlxgp$|2kMKBW|0gJV*GbdRN)zFB|9U z2R~lnmJ+v>ET^@)OI3t>plu;H|9|{%p9l7!P$Sy&5P)1@wZU!x3he^*&;9kk%-WV* zOp)9iAiBm7D%lNg>JBx|0iO`AC)D#rd^m?pw;<%8WSKkQf*`wJSA%SEK2z&hxO;Qv zb8}`yI=FUJW;4ybK__&fakgK5OER2jkv;taoTHeuNDuwo|X;y3@@ETs3o zITF4(3d*|y?`88QtI$b-V#kZCsUh!EBY`822V2C~RLcY0^D79w;g-*(-HlC}=V8y2 zX-_Z!E;n87-d%VNop1YI&1+3R^OKpq4?^0v%CAZ8|JNe-$>;o2&yer|w(y7}q3*;* z8ObHaz41$H57(9=fFmMC{vvF0{0 zJLjx>3)rwp(*>n}2)Mc%+kGZ-_M_i%`ZT4mv-3z^Ys!l!j}bE8{rcbVR0Ps!d*pwcCacm z*s@wZqc3wW@_5FLZt^85m+_K&{s`6gefs6=n_xw+vvS4 zDoc2&`D)?@k+6V6<#GvpD2MBQd{F&M0m%Zzestn8e-6}kb#tix=e{5TZta_CE(5$J zo=3LzVS7B=lV!dtT@mb#J5cvj2aP83!EqhTVDvnA(0tVg2vhHW)!rfcd#H8*ChM*$ z(!S_vKB+bz-{L4#Go_-Y#YOvKfgr~YP(`b#0OtV(!~ucnKcH&d^g{&_h^(PuVXPb+ zPK0~Cv$q-bsMY5&mw0l=Ez3$vUsUMj%~~$jGkw_0x@`ul^Y+D2!}--w<^qm*`;sp- zL$SpnxV|?#Iq|OWs3j&Qw{ggG!JFs-=*dSzf|5B5l)?^L~u$H;-lfmBcEwOb{ea z8x@9F*Yky!F1vH`Wg5?u2Mm+`{1yEHEBqZL9AKk?1zx>TAxkSqy#)K-Z6zY8_vzNa zg&ep6NV=}}p^wb#!gDR~plYn|BTXyD9i1VHKytVkfXN56avskT2}uM+@$H)zew;D*p;COnT%1^OjD>RdTF?^SwDSlih9pr} zdlIseSiWA|Gv)yeA)H)`$6c&SL`I2JXG?D^fSZN-A@DKLIu#$?itO&G-u${8mDr$)k1O{rwl!gAOifs94M(wKMZ{y~_ zETNJPa1v7xBIApKR_2p+gcSxpytB}WDjx5^1xD7eD zmZ-xsO^4|dBT4W#6Uy(4D;kH253xk>>mJoTQWERsh(1ChyRlz7w|^vjfCQzpz=AT( z`mpS_f_AUh%L^)L*m-zrmUz;|W>o$o%S!kbLT6u*y8Sa0LDcT-G2?R0!zl)Eu1StM zsT9OWJ#+!CIl0^PQaGL<`p5Qq@TEMAgjYH#>b^ikoQ)&2IDI4~MHQ{Goec)>qDp~S zB22lRbn|o=l$mf)SCd5>X+h|XSM|5YpShRw0@e}HYXQ3_CT8xMRF{l`2dq&+(2KqTrMAR;qGyGnn zB52Fa{6(#fUgQ*Nmek5ZPW7Xlya>LfccK&iWr-&Xy%Ny^o z6N2sCYi{6fW3l_#4VJuEb28g$@uTIUNw10po~z=a`4eP7|)T zin9LK+>G04d$1(g6ER=58vQsE5EyEMC(J^%&fqf_x?G!71D%wwWp&5hYzqh(zui2x z0Hhou0s`}U^T1z1V;tgjY~ieODtNm~~FP9cgJ4vFi z>b_?>q+@X9qG6TQQ#a(q--U+NVhe!A_HvL#lf_vDLox_{aKHhXE>GgU#LMJWC?_RZ z-^qbTG~2jXCO&JsuJ9wU~*cP$V*mI2JZGwoaW>Q1=luIudf*KnRR_e8?7X zQHGnOq_GO%6pMp4M5Wx-JIb�jzd{cIPIzo$XVe7mk^8AUaoJ+_C_0ZgSiRBSXwG zp7)T3U4<&zX=mU$kfMWxK$r7)l_yuJ1Z*cjsGst`_XqbW?bDE+X{o!0iGs=)X;foL zv|}qRD8vhJwCEogEH_w|I5^!G&>3oDLI38IL=y}%cK-`Eo#|YgY3aqS==X{#E&Sna z;37>-PQ5pjl`v2a2anM>|6=8UXMs5=w%?~Yrftx5yVm#Dp{>NE#OfHjf2*=fbW}%wVb;qf1G;;We7ii9Z z-H44N@YLcKszD_p_@$r^k<@LU?;(lU`gfZ?TqfPR_PIun`NxKg5F`MQ+#jK zL7vrZhhV@RVI}}ipU`f}R@^eS$v(ukbQ&GR{aBh5ee_Ad>xQ!!!tj?SA6*6$i36G} zD+$2R%7_ceH-Je1?g(G*HS2wOAm>JAius9#FTd|EhQ2tWu0_BbX26o)_2}7SH)njq zTRlrkFQ3r^S_T6c^|Ux4hT8JjA$<;s$^~MLQ^o+29X`9)l{b~$tc*n#n0tS>S_i3c z-v+YD2(=zImSDQV9nF=->4GjydXi&^bWL;7jy*>cB{<=up7)3lJe%!W&{cSK+5R)Z z%*?FTWfe^iW{_i(ENra-4++J9b|asUiF6zML+)8*?$XN%K>UGetG}UrZP~jQ{v-sl z+$BJ5@3hSsgE3|+%StRj>Y@h@SE3cEz8aO~28le$toivM30jfYqVE}1OyOAFmTHZo z35N#}FdgYh{(ve7P&IHnrwV#um!;xn_;2{KHsCd(gEdVS>SN;czP^aXO zhmJ~Z_%&}e-^_W0_Wg;jf0B;sn-29BK<6f}MJ2>1kO?J?Tl8l;B}MnonAmbv&Up;J;!&9d=^viI*W(pr-`2hV`IN}X(zJkFd1Yc6kNArg%bvoMK zrRA}?>*BT$gh?pZKJ+D>iZ{T6FA2W+4pBqA?>5N?2L~n(mIo7HylnGx>tyvY$tW%K z2t>v)-~hn7{k_%nWVk41fKI(2la9>hD9!5K@$^h4N*iZsJxMc?dsq@=Ser|s79Bc(87tJG$z%R(s?KWS;eEMT z>6${p2Da1gqjmaN8mWRh9VQfpfoN!q(aQR;cG(`-ku9@DOZh=hU&rixbmKs9K5xz( zGk`3hSY?ytwD5KD+l@mLVz-sZRe$>0H>WueflJ%BB~PqW^67k*5twUXY+~B&oU&5n zCqUg;$P+VQjQ0#IybMun=y&GLpm9yBD9$>I5E+bL5FBQlrFNTvXOch^cNlV}(5Xy5 zAMuvx2pW7gotaVv>vJEsr3TjjY8wKc3a8K`cq(&50L`IP^1wF80&O{noPaG11v;L= z2ZO%avy7*2Dp&WgDY|6zewV#@<#c-zRetM~wMexMS8{{L3aWOswE+y0`-EwpM$)Cg z23j$feY`e*x#L;7(sZuzFR-s0;e<$ErDs#{Kg!wSTZI-vAxJiMRN3HeI{(pnaCO!p zY-VM_juE!A1~J!GXI-{9O1yM7m28a!%Nxx;5fmp)*9RZpn-=<$An6GCr0sZ|&Tz&o zLm}Vv&MBJ_V&$K;eb6SK1LUp=XA6D>Y&xkQB4GeE(5*Xec8gorN5Ak&CJRcOFeV&V#(63Qy?eXA8WkcEqvQFBc(KQrM#O-lGOJWGJYtZ5p8RQ&u% zc13;f!kU?x{a3Y*EXHl!-O5^u4)Rd(!GS({(IB8We9^QyrSMoGCE zce`(1WWTmL;fqz4)-mcL%-X5Gz@WZnzCJ!oXRMF=9B5C4H~e=haax)$wbMlxqCXeJ z^3Zli{Xk2%I1Ju!iK84Gy41jgml>Vi{)yA&`~DxwqnR?+f4WBd3iSg^?MToc$rRfS z*XgMxM{>I*Yd+65-9S~RkXqY`WtKV7M9#Q1RFcG*VD%Y^m!p$(vYIKTcOH4U?97ER zx*hi{VTc7Q3CV$0FNsxWeI{$F_BCA%O*P;}W8kI`S=wF~6i@Sn>04 z=htrBZ@3d(az{pjH1MN`Dt?^Kxb(77x!(t=We++4LoIPYA;j~nffMnp96LIb70{6 zTf!GNpJQSTVW}b#bV08lN1%!pTUws*LcQ)T_Ia8O}EMe;B&WK*W(aRc0^;lP5 zo#)PrUay+8uEb4z@15gjvlh)C?d|JV>83Bf85m@$6JufdvqWsUL9UZ%0)%VRKYt(* zKsrIuaNkS6eK+dy4zxs8h6Z&1@iPeA;eqX?!(ro@>;B@Wz5Imha4tlToE9T2Uj{fz zP&m$p4+(0r%AfLM*{Td5SK`3Ew{Xc5UeT)E@p*r`@Px0}COU39|H=^$2`TMUY!Be# zXkujqn@b_pSPGmmn1z?tl~u$TC{5g@4-qdU(`+v;Z-N^&C5^wWg!tdPp9RZ3H_jrG zUBl?dlcfGZ#Ap%8;}tyNqGa(#-uA4teDVYREKn+@hr9PCNDkTXS(X+ye~El*iHWAU zytFuqg=w1#7b84CA7=_Ir?cF%ZvIk?U@oNoElBMB|1%VT+c_0b|ua=z!X;^ zC(a>|AupIIZJja77>icOBf}M}AW0FFRgXFX)vtR-2@lDyNPQFuOEU5m_Gg@#k8=E9 znN<>FOJwHQ3Kvms+aw!{E>z zH5%Gf465eOR(9lI|2u$<03*UDlcat|hSFDsSW>Y_)AnKw%!IFhYO~eqS!{34F!nvR zkeyh)N@VXDu9^WJrdx6Nc$ooM*RpAwuayKR?$0KiN1ReW zW^evM^Y=r_MSUghO=N!;XOFPwsXpThFp{J9ni1z0?P{C)-AbpV4Xv1kEiXM?Gj7$9 z%@W%i1@AuvH{3(Eu5q3zPXiidShB77%s+F-qYK5gb2xv4Xq-cE@Z#lqIT&9=t*3EQ zh%K(1+7D*U@IYx7R@T;8X}vh=@v6}U=etl`z*DIf@*!vJgAq9@iuEcsX6S5(j^pep zTWao6nLJwD5Lj1Pd00qk?v=)v#-NL@HfHhUQjWV-C`Wj4!Y+_iSa`@=Q-1pzBRjJ9 zp9{hJuch9TA4A=F)W~FWC`B*!NJG6#d4AlKZhe~6oD6qMl^P#LcNkq@Pedn>WjBHK zYswn!uNarC5}OSBsJ2xd6Tz!Y)UGPcZ|dS_P*D zS9fEJu>2`>spI=b;8??qgXr3{)~Cab=16{u z^igoqmRet-Vw^lCC3)Mq?ntreMhGU!zz8}!PERf9$mW;UO%7h<7ic&f?#)+gk^VO$ z%{^>9&d#eoQ3j=1t|vUNlV10Xd6dltd1_f_nd1Rd$g)yQu~_cJmWU8Lv!rhDYKc4v zq42{5JDbv^4dYJIj>{j(LL z?0UQkDd`K*)b8Q@LMG788hQ97c~;&jx}18Yj7B-6iz1A{Uqrdz{P|SWfYPK7kM*Y~ zkNk-ocsNYEGmE^+1YSm3OJ|EIH=$-C zSg5zu5}D^c+~#W6(vDL19ypotPp$mKx$xBcIWtikt`J`E!={C(=^lR@o45Wyk1TC% z`7v`I`Rj$>BxpD`+kM_uS0i=y9hfJli!Qtu7!~2}`7?(eI8pf&H(6em)wK-&=qGd+FrpcUjclhh9rrg+b2z1e*i&>OG5|Al=f|~G9 zfa!mcbl!nfzkeGKl~E}BYlZApWRoI$@4ZJhkv&6JLUst*A$ycf$ll|SnVG%!dfw;v z{2w{ze9nEp$926fpx@U3C5P6?t^x7m`bT`_TEm2A|IJv6p?Lw1I9iJ>IYW!$&XtvL z-4^;;>go+k`s6t-<{Hh|S?{=?l;TfG4Cc5VlHk9IB(X51)E`~7CY_u$@cZiJ>-bR9 zX?CNWG&ZJ?IW5F=Dw9>Os9FZaDqw}yHn~?$zO1sc^7YZ0?<9IIYknpWdY6ca9mzW^ z7MW$g*BO)0nsEF=xurRnr193(-1>8iG`)8B>fVFTdr+W_*<#Hmy>Y)&{d(cp4k(iY zkRak!TRl&FW562{)#QC{-)9 zP&_+nmN+iO(n$iY)~9ftfIANhu`HrcK&x=mL3;^$$=sO^7GcP$6!C0#EcL`a~Ga9y=L zgn^z1H92|H8WBziW(jKAJ)KUjwY4>4n9q0?Nhl}K7rh)4PyE;QhEYr%#|L4}otz-f zN=lexB>$M+xGQPf9xo>8Ok@)M*WVdWikYXNMz+oog@o;DJG^p(G--NGajpWauXb7w!-hb!R6lyN*4+hihqLJtFvl zU?Bn&;l7lG`};;=%2(uVxks002QBxkpBq;>a^FW0ifttxl6r5+)%~4!VD6)j>DiX0 z5ceU$RWyoB4j%TTkjl!7-oK@WF#YTBB#NC*I1}|RmkXjP5F>YQqISH1%xh;WJ1F}^ zx$vmTaqzK%z9sgsva#bub=-NgjWT($y$dothPNj$v&ztFb0zOp3bmJJu1t7bn9}gj z!tHrfLEHR$^ETzz!J@S0l-83xM-qW1Wt~SGh_H@DBoX#)JXXB*7=x;d5bns+P|2)c zm|4m(UD;8gAEi1)RVB_XS?MWF^0C#K<4=G8Xlw^xrX+JbUbG=69*az*Xg;mwOK1IC zi?rzd3&VKexO_5YNcTNxS%O>aJw{!4-A|Vdq70=_cUB3FeXC&6jL0FihhjzXJWR6m zaB$0GIgOOm7H=(UaMPK8rXRCb7rXGJkjzvx9b$YtGU9x4cxqOT`)k%OBypbul)N!Z z?wCQMv@z1k^m+r)gvWZnG&Rw5P<*@OpWUaC(SM~=F=+;gQ;;hPOeifKonHyH3Ru+t zMYaE1+oGe4!dIllU_p-=Bfi6XTvxF#@?C~z^s}CF9MkGE`HCzO|3yAuI&qYxWG5U% zmECOG^H*1*fdou9&lTy@sd78CKc^FqNI3=brb&I;TFc-~A?)p1bC!L7BBVIo>O%Ue zcoo!ASA<1c>~2egnylu=|&%2f?H+^ zvr|(W_)XTG&1Eu2v=c%b+v|8$C$D3jazsx^>tmDYNhZ14uDc`-U(l4Jktxzj703+u zRG*CfZFn6k(a@jieC$r+zgkPc5+9*|$^1}%gsc8md)kHv3@8#35@4U-tp#N%yl^L24K>p0S4cF3GRP`Mv z!tv72?I#I`Gd0I)!K=%KA_u1$-<&%XXMS5}FMKS}{U15mrnn2Sf5u!gu&}b~GVFpa zuEa<=bRqTE=NtF!|3C=2U(biE;>VVMrQWO2h%{ z6&tS7r7QTk4I0IrpoS8hxla_T2*=RhCT3nBY zG-5chhojboWzyDltkZe%H}Nuo-I;8RvJRoX#{xsQfH?<27Jv@0+H}YyXs=o9+$O z9v>Pk=k1ZHM_H4WN(E{<1;ip1wkaSFEOXfy->EUneILfn6o}7NrSjQdJ?pBW`NQb; z$&)L8!(g@JXI_4_S*jAhj16^}fBGRqb`IA@U;zZ%IH-_dYyo5mSjaCNx7|htg{8X9 z(M8K~)_OeCm5|g8vF3`9W2RFf>&aBh|0JEG@uhXYN4(ZbiZPVAr@ya1MlR>un05BJ z`%OdXN&8=ljts`V@nB;NJSC=s%u-^TTrPjc0(+B+AtU&Bba@?MH7%X10y3WvsE-La zM5%}K<3gJ`XB;)P>3;w2C__>We$0)zxQKBT{QC5^F@Y5W$ySg}WJiA3Q4~U*NbpK}5iouwcpP4vnceQGhV{$xajKwRy>l4E z50zWJ`2;)cb9b87r%=bjP8co&4sFj(Z)%gbB?SUymT@4!m=-zN!Bzk0q2CF2i4ppBQL-z*!se1DS{!zKpj@Tj;Lh@n!7TfO7Q> z1p@Q~Zy|!}cSi@(xF+bfC3+xah$41}>`VfJcm0gsUHhZpQ1UfTobvs!pIw?NX;R>f zHnOw~)$?m&%L)Rg+8U|ONu(d$TB9|$<|&0-`^HjR7!S;{&C4fW?dqBZ^w8Jq79qUM9o zNl8GfceF%%8bD-mA`r`0^n1lclYY+2I;@@mKT?jZr6;HmIDQagrSF}@Q;tD z`2m)vD0D^(zRc^_f2zL|+FA{MIOTdpUF|T}e{44enb%7z5oCG|o*)t|DK|fO?fQH_ zl;nM)R&pdBzyI^F^}*m*)YDS$RdN8%cA|cJC-J#b$ca#tN(R;Fp_#$PE2qGRZrH2H z4mI^2u@+=Y=KV;tc(I3h?o>m#Q^s~rHi3F7KKIJrLhx8(1bH!bIseJq#ecEwE!=|9 zlw6lDbXiQF`llaPK5I?qvcJwS?uL+VxKZoTi^|0c8{TlCC~&eMv+RltR(J6gpH^DM z`jyyC5q-{7ND;pyi<7{_-8Xl*Jpoy>x<5!Bk(mMp3B=Z(o?c7|J)(TYTgg`ywt{m~ zw4z{gUhP!`XBi6S2#f*Sjbh6+dNVWs#{+pL4tL6@{hc5>&>x8G%F|VzJc_VnqTnm~u!? z{cS(9a9(8t0=|&OYhRkbPa6v3{?k|7o%-qj4lhbV{Gd#2y_3(eWYeF&exnv{6Xzb( zwRc-+#KN+g%^5JDvgrTv7rty}Dokktt{+=kS`xlZZ`*2AtocQ!1`BXanya@-eBd!% z@2Ak~Fg7#GUgZ8}mAf1@e))R@%U;Sw-v94b9gm0p^6R7*4f_`U>8+2S*Lm3QYB!0D z1(3%3DFR$|e@VKwwwBNHkP+L%Fu)eg+A>R3=J69eeS0p=G!P$3@quhvxEoY-9w)!< z0PzSOTH~Fx=e9G|MRz0#gb-A5)C4%MazqV|F<=|NeeG-4O!>K$mlRvCN3_E3qmre$ zGrC{1miV`@Jx7Rt2+y@5_gKITmXsJTadkIQF%UmdNNJzfN@J;^L-|cl|F4crUq$|# z`KhV`MJc0*dNBtCx$;I=XNd{ysZc{g0Az zrPMZ!$y?!BDaWBU)%e6$w}r1EFYm|*_eM*-@4%&?N$hciW2XO$V8`evK?v+lMePR5 z5g4NX0iilgN=Zv6Q;XG?i`?LzcTMV-ZWn!L`A?x~kmU;t4Ist*ZEguP8O#c-@_UHg zv)}HGAf0^X?DHQMl}j`{VZid=4K87t5F19twHq9*Df+sqL}sB)qtAw$&Z@Y-)#dQx z6K})QOH?mU*C%ckfjdV+{b_<75oEj*RW`%`%Q^BR#0d$aEHXc1(Jj)sBT(`l2&oO~ z`_Fd2RvEsn{z3ds&W#s@D&7aWb0#;9KDM*v=Iu3i1I1{`>C*>P<1I%nl#4vR;_OUT zD{8Ou`k?Xxps;xEXA7KQom^Lk=JGbOR-~M@9hpPiBN+0-&fhSE94~l+i^H*Jo^xuV z{xDj!H5EC~OMIe#gV&-j(-yiP8|BLWN+7b;t?5D^r2I%@Y?fUwRlS2I4kyCxm~>!El>51H!O zfoDTMQW*~d3B?yzhgcSxL|8#eYSXu>tgG5l5amXlJpmrJo7$67u@ zidVf^@fu{!POR7e79RD?g{NC&Y5Q7stX?9%Ehfm&8Tf5+3(dnYL$~5PF-}M#y1r1$ zG1=7D)>bF1wPL)Pc=2DxCS@eBNE9uT0?K*1=ifU>es$y3IS@+*Cxjj4aFbypGphH4P(#csI-be{uT!kSzyg4hQ198#)OW$ffe|DMs+Pa(y4a`u*FH~t#yQ8X#4;{z?)pADXU0BYA08OM*WH03MX-E%c zflFhD$_wM}j}K;_D(q6EXn%n{z7=qG$XHz@&z9eE`#F{=yV5cz-ebwco6jHA>HPz4dtLU>DRyU4~P0rK%g5amE+eR zn=f8wV{`KpEO^e=5+;wo3PYDHBdnBkkJ6xP7NZe)oDN!|uza?&Yp81cbSeCK` zumznDUKd=PJcE-5=tkgTZuHuxP0k$}nPGc6gNBx!BlV_KKZ?Fn85<0mb8_gq;kxZ! zxJ-RT3vAccn>Gss=I{MH=b4TVH;K|$`RZNHxj@deIrk%~XsWsho9&+wtnStYs$}j6 zMP-XIx)xNqc{f$}T7IV~U*D`wm*paD|AZ^mV8B57?ZjcO3~j2~<7Ai);CuiFzDCRW zOe-9Rv(s&#mMn-2Hh^4Up^NFaY@uR7CWj9Q6C)oAyjy{j%91C=*_`wK;R$|J2b6T6 z*L?QudEYXNru*uQTbKk5&CVkdDux^cApC&NX6xY4(`b^l5;!;>NND@?mseT`h&aWC z6xHpyn(SULh$W8 zKCA!u5xa(UVF0W!4PA0dB*Q#IiSf<)C=(L@y%19~8MEmGUyaaKvQ8ny!B1c#BMV#T zK?P0Nob$74l@qk59N`tX`>U9-5}9uNFD^HL&BoXtfIXl%0f*D8Sk)J>xykWPlXTnh z9Y9oTs5wswL~l%XCB@c1KXIL(AWf${Bbd}mkg4e3Zh0=(Tw6vMW@q-=t7vVDYsny-{y_`*$w^y=2)%cM}ETDE=9jd=~X%<5KHPdS9@X zP_p~EUi%G-^A0gABRJk5jxA!xcU4fX zzju(qYRP`KJ`7Y%7w06OTyD&aP$fC=`HDB55o`6W6et%@+Mcf^A*hM56Zj2luIyH9 z4no(ojQ#vhFSK-6-$0!MG&NX^q3^orqZkTJsC_iA{Zyj&Bx3);zcE|Gx!~8*J_>B-ZA|v~;HOrLM)JA{u@0A=0$zP9acE61dsw%FQzGC=C>`SX z($}g`o0eQ61Up|Gs0jjv$wv4XG>n0<+!U#E2hcTSy+}0O0Joa6n<`VH_&RXz1b6CN zC*Q7yb}Swq9}ka=ywcRvWSMb!x+5+ol0$^*G&aPQ?j#WUV~EQxsfuc8_r>oUbi#sb z2^R}bbbi5(qm=&{o8fS~wkS})o$VU8IH;gj)ZZFsa#te7$tXvqC0a#P#@0mLMpobZ z{*}IwejHvVi*&JoeC*M(6Rj!}bi!*r%L3&O{7PKsC=4RDX6ij4k47FqVP)NS7Cn5e zhbviy5c=FVM?#8JPaj50@P14Xx#NdvKsUU6?~e5m@`?MGJns!{7SJENj*pBdd1PZg zTS4+V1ZLjX&&$gT0s294lb^Oy-+_i0Yln+f_Y+pUFz1gy3sCon@eMPKh;@8V^bWP* zbL|2&E}#4E{0GZ*4@!t);KxaTx-V+#nBiYC;{kUeg{IyMFE20Ml&AjFZbgSCVRViBS49cw zTi848Nlp_DUc6wgS)ceh%!S?e^y%_Wz-qC;6a-VLE7{+&L$urTWK5db`x-pWOUnJH zB0Hnb{kZfGKa2H4)qq=LtNCwr*nVifYqYNV!=bPKcR^YcPGZ43$B>7zIpkr+1n1BTbX-&5wBI1=Cn0fUWwcy)*s6rOmOZ#K2xpI=6*%($29(DnAA~9 zB=XOvcT8hcumXii@zYxatAI zL+JPZ^(;%dOk|@>GtQWaHjSWaKhJ*t`{sP}1yTXbNYuV&d#kq2z+-q|jqd1pcsPc{ zGfGUyvVlpbp`jMn-H3y&Nym7eE=OQJ{ z#EiI`Z>I7TOHkonw(cvVZ2Fzb*>o>sczq6YjS}cn04Gb6W?c!+jt3>Yx3)VwhSV#Bi66YH za`pGH8NEaoanl z!xQHmH;VbWr(M4P&Dr<&*WIytN0;$^Pgp0H~HJ?f7YJx1scc z@^31RLbmmImso&G{`<$N!qoAL;3*=Cx(ID_4LM=C&h$#Z;E%QK zZDa^(S{kJxWA6+49x}B%V-JXZ+$?)R?e65ip~-#j$`@i!(q_Vu8I6J6lgV6FO+J;Y z#{4jPpT|Z$<8no()a*NHc=F1<%>0)b2E_5U&L=tz7mbqcsF6e0f;pcdSFJQ>MVXc8 zz?}I&C3CoZE1^+wf z*WmxTWBEb@JY9YG44tb75F{Tp0`$`8$C7QV&As=ZsjBMLc>g!$h!N5XZ4~rO7w>q- zZtbtJYfP3FyHdzRRcRVKeqzEpeOY;YVpSWNVb!+i$U5~qZdExp-;@jQq0c9r)rYLa zg|lJF4_=LEWV5WFf8>!mXehtf*&XEc{wjB6m}vGT$LYVi$!yldUifH92_r{h#($=L zN-i1S$X@yY5^pFb-KN!R#{I!cwOda#pB(eGjLx~)VgDPs_H|109Gf#f#h2pP)0D!@p1ZyJQAp%SXm+u~lhWl68QY03u+EJ? z?ou@hbr^(=DaodKGCBj2$h$$IK_knc@a&&t;m}u=!l5{9mIu)i*e>7sT&EH#DudeF zHO{0xaDa#_9n^G0f;)OKe(6K?Yp&5JMKw=hXlkUj%(UZn&$#Cf?o&!JQw}gibpws? z&a{Vb8pIvs=H()X%E`qS@#!$1r%oF*7C%BJQaYibnY?%~-^OttZPabd^$IJ^$np=C zc(Wy!3?q52PW~xpd^JIu5>>NK!}eU18Rwd66{At=ADcTC>FV7F8Kk$MmTApBMr+w;HxO0Uwnjr|T2oPfTrwU1fxhtb~ z8uQET%x)7iPGJ@eRUVOA&i_n?7>ien?#XYBepDX&5~tR7FF9jFSi7l8!9ykWB6$oG zu{@k33o5BHNLGe`y0@BRaYrl0W0MRq(yp|z(2-ylP9A36^d55YI!wPzJh%mZcCKW3 zjz?4}??hBxj*mTS)BD|LlUZU-JVE{fs-T9++Xy?Mc>CY=6n@Jh$Zc> z=3IGj{wiO@pQq(GX>+k^y!DnpI5UX@-WONvu5rT_5l)bIOlBQV4J*Qi+raP21-8@3 zk=6$DeWQ&ePj`*1(_Pt^^+mxiip=pe@iJxLzFV&%HM}`TbeVBZ*Z8DtAc~DiB<{`2 zCmseyZs5gypu*-hs*n*_^hj$K=O)#{^ZaT>`uzFxOj(vks6r)lp^S1-A9hRYjn%Pc zcbJsEn?ivS|9bE=RgnDqm^XQ4o=(5rSxM%Y2HP6!RfQ22W@1^stmr)5|J98 z4Lr-K^_QSp4|sEGMpI^;Y}8GSC;7`-6aV=}rGV8-AoRfTbbEfU;}J1Smp)I>S3>4e z<~;e3f?l13fmKKH5U^>-O3^bBhC^eG6wTX#T2}Vc_0nSYqdQeIZXvw?3#{1N%4cFX z_}L8BMDZo;%A7zPwP>eca1P1kh}p9V`kHrT#YpG1;M?Aj*Vg91&N5vc*pZ&zYEfF6eeLmMQaCZ>y4GLrIYHrM43Z`(;T5UHhT@k}grN2Dw`v!DIvy7ecB z@OC{2h;6*dN4UD6d7T+~<;T97^@sw|9y4e+_HM+iik_7aEs!WaqPg}xl?@(GCP6QE zSZbLa85c*7_tm*eWYg|1pNHb^R5*{Yf+ot|GMMt(mzs9q#E8r&+9k!7=@kB*a1F0u zkef}*w_qPfqCc-4^6z@sIp)fgBZ=jA#*#Pe1!Gq^0lSJ z+~r2h`9DV+F#JI8mAF^VYT7Xu|?Y3nopF=Y)w?c;rH$YF`izB8qpOyc>cq&n)vkVpE<&ohv9g>_5(gEw7mhCs2 zT0)T~Y=sDG-}jmo*qZDHw4@Q`ZxQTrBWCXIB=RGW!9YCTaO_5Fo}O!U*>Q9FNYiKL zYNt}>ol;*ll(ggOxCR7}-Wr3a*4Re%se6%{VZy z?IW!hC2&30&wHJ+!RdHW{U!~EkC=PkLJ%j?jNseYh6$Q=GEL|0-`AN#jG#P(JLXlx z&@R6(a%~5BKey-Q$FJUAU9pW(=#PYUn5Y%1CnwMaBuo=e*LuVPXkB=(_u2LH7qFi+ zJReTv^Ep4P^@%dPUN-#gNRE71o?QNV^8LIPU9^oLOzfLF^F#ujR<40Z5Ms_fkT}hc zQXX;T?Z!4t5%fecTLp-^u=MD{8BysT4I~N^d$Z^W%e^~9f=?@LwG-Yk%ic;(w!(JR zpE|<^vNTLs-=7o|QiL{R*gQKF7rxY`y#8EWj2l|H~MHB>epH5)w$r z$QI$TSwbb%?TDmUL}GK`+sUF?ybGy*&O%WTEf($Iy-0TJ@*MCy$XxUHH;zAWZ@n;6i@u1-O=TtTQ&FZBgk1S7$`9M|_c;v5)6MNwA z-wwLhmZ{vbHHnZEqU>-ahk+D8u*{sD)flg>NdLZTWf62)SCb6+!5Z#&J#fQM)kcNn z<`lWh4^rO$k!}3ogV?SuSw}fc4TW4bNsyn$&X*ShX_Ai!af7Ozf(hD)mnL|U8U7{J z)z(_}_ha3CuV(#fx$t#`w3b5O1^K>8g<3>;e*UAe$Cfflk_br6N?iuRj))c0+joBv@71qMy(UA8IxB=N-o8N8Gr5ig{H~6jgMH02e_ZZ)@GZb*dV*yRl+|~q@c;cY*G27}G-O%?kt&eEvIB$Ud zqL3z3v+$Ofi0JeOK+{n{GqQ&-#7<~7UXH%LYp&mc^U-!0PR2)k&F%My-H+lm-PhOh zt}H2*GB6d0nKrh!bLpvD$*dT;*IjDSUg6p#W#)x5;OV_^iv*Z}>&|Q+RP1kTb@_r< z&r;Ym1u~q3WN}2$MiFmHts5d)DD>o=J(B6)PwP?Nm{j`Ld};3fYST07o1FVlL|7}> zKf?-o+azaBY1hY>AJZh^`t7J8tLel+Vdm={Qb3@XwC%4H>9)}psB*Uoy^lrL+=L`a zM|fEE9&$hKnzhYzDv6Ag^IaWJ^$zrxd!5+3 z?o0*-$N6r)n^S&sOSAk=Avqsu#5u0*Q_{ji)c;WAF>_J*oh(R%&y~x(BEXhor+`LPqlG@-7XaN@}t8)6_CP!ZsmRuVGT{wXkMiLiNEbQW)TMrb?r+TDF(uF}2@ zv@C(sA3N(S*$GcZRVbr6&X)ET4_{Z*U;nW|!X33XlwaGB>g(&jC%EfHxXdg5ETcf2 zWre*(Q63WEJbODBb**w#osEP0&z?vJx$xEp|xv z2vpwnojErc(5g-`3~ZXJ`SY$1u0iI+$wr(%O6u{n=A|tp!*q=CQE;3}s28Jp5}nwSokO-BNBp+XFxvcS+d{ z{Pk$GBUVCTA2tZYx#UfqH#8txsxfNTHettmRS>DZx@NUu*Z@JaZSv3J9?_8FYU|Qd zvR7+M9}IBke@Bqj@2wyYK9A!`i>r`V2p45L6pr?{>3vV6T|>W;#lNfZT|@$dX0b7< z^5e(jsG5w_t<*=xS7r}|qM)RNpo$x$AcFFRbErj{m%=B(e4l{qBaAy*y|sc;R4qjZQU*MRIqP`pZ9$p5eclTM5(Eb|US^7gs)W9Z;qZ%_N{aCXHC=>TA%!hK-d2p|R!iZr|%z_(xkuh<|FDK7cnC@{V!5sGOfU(I%^wkk&lFT5S3p9C^=pzYTA z+@Xg!l71Pu(i!}FOAuL?P)(uXYm2C+h)aHODk}8egH6K+RSWg5{wiUO5pSZvBcnme zOsAl>ybIi#`?vovPYb6Oa8lisL$Wo1Z;27qDs(lfYBH+Sm`9`C11=c?oN&tbt7mh@ zbIr{KsWVxUQRidavilPNFN6XK@guq61!R(M<@Rgg6Js zi(@;WmJR?&9odUPV8}@dEqs0dKWPaBNWgkNU6Z{CTt;igx&vvh)%MyfcsQyq_H&$^4=6j3W#>MmztobXhMm9McsQb+sjxjbj| z{NQ3#g_Y$uIyz(-&kXm2_vg|M&Vj!9!NG#ng3n1$4C*nOk%Y9yRjY5H`bANhWR?Bl zpjtR4MUN*M_Uk}{FPBpv#|OeB(~()PN8NY0&uY^+f+m=Q)9P0f|r@Z%TRy&mhG8C@sSj)EX)%xpN^qG5Kj$E8sAn_08%T>eP0?NYqv?16rT7S zeNmF<6CZ)mZUno(we>eMww`4t0EPTHhgT;=PfdIUBsz_rF+xJG=D}7 zd(wq`A?!B#Bd?FJ!Fdbwv|@vX?)XB@$x17Hs4}4ShWU<`o?hF1H56xgq;?zMp;4NP zba`^I!-szQi1b-1$zOI9%QwPx&UC8rSC{?ZPWDl~Fk5RqqG$lDhxl z%pb|k$lyK^MAm5Wng%HIbC)T8728Ke<~u2^uwPqP<5~{7L+z|y_%N(p!$oLDi>aL? zOk(nf!y_bk7qr=M6U~14+tV@7%TUlATOg@GR5-b6ap`05s?eP9yO<#C-LtTVs zh*5o#OILM$@A=AZ%Rtjq+-q3bfw^U5!*(e-A;?tQJ-PZE!?fA9X947(AETncmL2$- z1X4Q7K>~69hw(aqDc|$u%lo$I%U+}r!Rbv5BWvc-%j%m4={G{RfO@}Z;dg9-c)nT% zABMa92>7fg#tMv3#$9?}ZZzTV+$+z-UwVgvqB~Io-wC&E+Vp{Et{X(4H=J&KE9uPo z_@N$Rxi{$!>fjPl}@-At^!-PgA%|<(tTcg|DnMp>e5W(?^S~MnFlfS9) z_p7IXUl&ea#kUc2!)?JpK@AyQFiVrn*D`x;A6b+1-^$8rJ})VhDy}c~ks`F7897XR zEw=K&H?FdHeC?)X3C{!m2*Q#yw=kT&J@849P7xBg%kMD6uk&)6eD3=A z2NDPVu8H5}dDIi{zxSp|$sUtq?IjI(2kSJjONGL;#&?UfHg{-dily16hWxpTs|wIz`Z9elu4PFj{WS#FasVBQCei!rI6{*vNJ!T!qfz zqF?ICRA!vCqTlG91l||WM9SyePT0F>$M13VS(vA#fL_f$ax&>Z5Ho}Od}|Ga@Qg{$ z$=Ck=@wk-?xtThi4F1urU-`sYDGjN8HDWP_K3Q>=n}=h(@%OswfEYcN;e^MMk+v8c zjSsyHDGWw#3y!N)gwZo4+8ouAkYI-BWK8k0d(&!dtK0fAsI2o^o##~JQ zc~ofX?o=*&$qzMVr0W>s+BM}fn3p-9y?qN4fA~c~-f5ZH6r1bY;H7x~WjLApK2}h` zpo@+Teo0kKSwQF}wsy2~MXABNvzBr@zeB8q2GJ7B!jOO0Gd-aFIvh}-{ z2e&TA5RJd*F1Mih!UYEHnc?;IT%H>HJ@3#B74~?@1RjFqDoIK3GJzJhcbZ%l>7sfY zvL4S8kf?%?&QpQ*8GJcX^s(nfQHt?bVO6&Dg^CV6)wwvPyN_0^9gVgQemhPv)yAOmq?uETviEl7MM{fdMdB_t%o0H;Q0x;-qEus+wbzyJwNzeM%{3fepjK0R+|p;rW|ltTice14ef#Fd!h#a z0UCLbNi?Lx0xipLf(I~m0?;!3iPqmDSgG-S5_frB`dp> zPNr-lMai_kRMb4XCy$z$zn)sMPOS{33SOaKh)jVIG;4@4Of2BT7xH2ACDwSE01ZW+ z=W6}dQ#_umzj3byare@14*Xt2Ei!ilX$fPRhV2JJlu!tzUreSSsghSQalWGFOu7%+ zf=q&|t+i%>2UtNc42Hmhe6tGMgc_G34SWK8m2GkH5y6oWu8!Yr02GL)lppctr-*+G zg6_}m=6V0kZ#}aZr2VRZGDFV)-Y&nau9|>`04r?xoAGIU23J%wvA~WcS6yT|Z4|cZkSd6l@fdNLu!RPr#Npo=Ud!*m_!!PT=$NXo(UavDW3N);%4g-!Mev;$o#94 z3|T6<_DF*EmoYPq4r=_P!LBBoa-BP;@2jg9S#dvEI#JCWfKBjoG)Bq~+lSBYyFHU| z$K66(+y&_?$e8LELqn-q*nx`59xs)x@~>R*U#FBMavtZGHg|J1hc0$U;E(e_KUZF-PzBTm5s|xawI;3=fI6m1i_AVm_DNx^Eeo)!Tu^lce@RN+5!1 zYGY3;4;dVE2yoJBohxaGxO}Y3osT#r-oWW zm;2<_X498(>di5!ua)mAKsr^Wb7X;Q5+kKPHXfhftp>ELAzMx^&R@CmDYJ=c5|d~l z=q2XC#)Bgxfe$0jqfx#xrOrkR`s(L$j{qZgP1bOK4%y;%&Rz!vJ&qeyNMQT%=*4=M4;4T3EWDdIj8>zIXAGUnumlh9QM8u&v4}{)lznQik-ICD^$Pn3@`YR<<2(vR2#ShfBbb$fn<*UPx3fUP4_Lj$+w1bL+nM zQTW$Zx6p0CQ-N5!Og7;tAUE0V-IL`odabtMuIv)M;{7#+4o&CxwQW>q{gD`q*5aes ztror`E;E|Un8GhLD!Sl5fCjwO3Lm7Qb>V_eew%2kyHscQ(9tzN-R3Wr%^LcuT(~#q zcjA_moJxm>b5PiHUI;8`l6MZi2Pv#oiqEY?_q3O%M8Z23MR{dJ{aC7WI*zNHTpI$B zXSd%g{d)?p@1#82(0l6@^jp_lozHEXoVpd+*s;Ah$)R3ekNc#opTr)o_$%Wy!PZH)HHyz5+FKTKg;I1mO zCvupNFr~@`ta9*ki>v3}5m9}xcuZ~nKwtcUD*smIEm9js52<_Q5&1TDKLlfA%SLZM9 zPy~SCA{F*T>Fg0O#qatkn#cJVQBYDP$PEiV9UQLr*ef(drqzRl#dk^4_dQUx0#_kn zsW+qJQOALhf$uUQcz<*w;}!CTuv-?0SZ zIK(AixwnJLk$-CY()OvKokmJRd(txt0E$6c_s``9aE)h+6|;OP!*68RZ5Gc`_S?yL zdi_q3F-IdzqM?z-5R_WN2T4&Mhl%;@MMLN_&z+$ zkh3}%Fplav081AT@y3Y9QKglYORLGqcl^!smZ;NJxEHF)8R+s?0LX1g+V{>j9IuC4 zJ{E*!c;&2GovQ$x-r$p*VoHw!mcp0s>-Oi>ztJ9i_bHJWK(62QI{ub*P}+DHg7!AS z{LfFhX98(9Q>&6$%A$CQzz}`!nf^l#Pd#7l62+mFOPW5m2iJ7!EI(H(N5v|-hJ3a@ z32dXqEF9-lTWCAGx1ybsc@@6QL%2$tBRO(02762+*{UBP(1UcAgH8;|oTc6{-Z?W{ z@A@3=SecyL!M8bFS3D?<`9FUJl0*3*BK^D;pFk$Od$$-X+rYg*L7u|0#ujBgW`f|XB{KG~q2rxec1vHz2M0_a-lh2Vyn%ym<8!f<+R`gRt|z+;r+#KpEqP0^ucvq%06Gg;P2KFDB-UC)+G!vK`^QXRMHzg`A}-w*e>&EzM}YuUKjF$G3I3%aVmc7 zSGyq^%!h|Z(HlE+Pp@VID{=dEDuR6=V4#WdY?3EFhwhDjW{e}kMc==M3J zOP$lsox5vDSX!4C0<*CXIe5j00Z5cM~I| zHFEQQVSTmhwismvQW5y=@jgze1{XJAj2}ZNW^_pFf%zu z?^N||n@v@#uu&pM=P2t(Og3gY$+yS(p|B3~w%`?|#@pjF9x;QGOO1XJG4&#}ALmgF z#v`s7uCSA16@9JU_J@Z~+LkZd7k$^tzzWP9JT@hfeo<~j>b{=|ec zOr&z>kZ^@YH`D~(!OJHIeDw*^`zRTIzaB-1O`|h=BVRk_9jfD&Sb`u>s{3?G~KDu-#f|Nnz%z_u97+x z{O2Px2AXI(H!04dyC^4wAOk=^b0LXUT6AOXL@D&=cQK~jso`O~GP9VB=!eyIQ^)?U zuBV^i0%DBqew|N*C6*$eTrCe``1r0t!Z3`7)1ET}im>AylL@k-h?EUS#zWtx>|fS$F<=<5gOo$O|Oh zry*96NrTm4ySVMPdQb7T2NuyHhPY#oLv!7*h8UE<^cj0p8X>?f zX1ZLpn9bT4%N6BSZ~)H~$bF$4uI=(Z095D$55V^LJ)LK4Wdnxywc2JGnwWiR`Kh^&Z$D6a{$y!Iuqyf>Ga9;A{p9Ud zCAPSlzedty_Zm&rEAmXShi(us+0}j>06_qU{;9rvn`1xBEK(m*&tv69Kl`XPO&YbL z69n7>UGApJS%8VMy?LUozRp|{&kQ`ez`1~h<_cAwVizacLS*!rI^`)3DffzA1_+C}`?yAX zRG7f}bn~(EfO?w!Z!kQwkfI+R|LXRME_5v0J%|`Eqvy9`rA0qKF@1MmBRA7R>$xf7 z@bdzzbb2muQHYqm=0%Cqq@bGFACpRHh(Z;o0@AyeS}AD7F7dR+!$CJ%$myANZGnPk z$#?A)t};*8FyNjv`X1kv*`%xUMn6V38YBHC#435Dh<;r62s`TY!v_u+Uwun;rm(zU zgfz$;9pNU~l3LBpyPnXWKg(F>siacnWZ8aCFlW2k+&Zph(M$)$9G?3^r|ZwJQBEcE zVva(M^*&ryA7feo2PpKcV2eY+mv*TKI)Fo-?XFWAus`2mt?a#)yJp+S``YQ%u1u8w zC5c{?nJ|W`=H*kMwkl`OOBRbKK0gHgK&|0n^qu-kWdLs>wg}_o1zf3FT6>VlNcr5b z4m4)3<0X*BRW)Qc)u{h!lC1PkO`y&%x$`tZ`v^99c4ZD&w@~{tiYA0-!E5RfGACSEu~2KbWKYlo+C?rXY!P~5;}ezjyD-&g>Db!e=W zmAMEW*}p&yn@Whku=muVg=OF6%e$K-OEYeQ-2?bpNns8)v2I**zo);K%Vn*8aB&?W z;iRSN$UYUc#&yjk43G58b$Nk>ZPuVUm>;$-?3Z#^NV@oI0Wm{3q9lT;c_*7wVX|YW z!rw~#$;oUeTM`Wb3^Fk74bk=h^vJhVbfK+ZMS|+y(^_!b#WSL^k}@j1#^Xz@NG5mP z=4TPjm456xO`GLek0$AQ4&En(aXJ;s&9$}m2*~i@j&Dzs;9uNzR^oO{Cu8U|im>WZ zp5hi`cOZqz6EOG**5#kNcQM3qiw)lwpV@*jP%cOOL^uo&?->vBiaUb2_u*;T-8rMU zQmj$D&Ak?mNXW{X7joJ>0j=By9oX>*svAIr(OO}{(gm;DV=vq=Xv3%B(VZn%4vC31 z1&SWwk&vIGi|{siv80WuszaY1}P-iAr^$T?@q{xU!46SLJ)hq)`q5s>9Roe?|B^Vcr89rIETdA)GqSU(kBQyPjz`ES z>w?3z>A_t`Aq5%I*bCg}GgIYuoVg%w{k=VH2T42m>dl@Sr8@lBTTmF@S19s&VtK}t zt>%8IhRY+snYaK)w3zj{qX z`W7L7PVBQWnDozOw>ngBPx74&ndRSQX#8>Viin?1W|{ZF&56^%?nydX%#(rjm2O~1f8jT^*f>e?#C z2ArCfNTCAIBl@gi(#LIZ$&W$kBgg|%Ezkp!)f2{>V)>`8;5(}< zeh2l$E3hs|!MM_X8>Y~_K;e!#*N_gBAw4%GzesC2IOt354ZETKw{J9Jt7w4wLy_}9 zabRJ$x9S;;{G0O#l0$uPBKTH8Z{9SaD(wFg|5QZJur2a+WxXi--wVn_$`0{Av_~$BUed6^f{3qXSF&fH&16wj52!gcV z|Gc?*qHocwc{BQ#s=li#8He)|7B7%{$&kOjXjPe#N#Q=Kd^!t~Lt4mFBEpiXZ9y=n zt&UhbamCPZN0(I}E{Sl$DAXTe#0hn z@q75Lt1z$(CN21)PNIJ3*p!tT zl#*6u^y3ic0*-pW5mQ~;vpu1&f>u2^u)kl%`~jZKLmOIl1{tue2KQh<6zCcB7!;{Y zNDS+Z?1vbSO68C3#Ez6US&uWV9TRPCEY?OFi#i~#5y1@;!}V_s%-!rrkkccf_vW(D zW)>P|CKJnu5U6rh`z|R50T#Z2D|CwK0*1suzo9a!(pz`E*SD4O2yzk!+&7C!ey%e6 zctGvWJFptI)M3gBQipAJ|~v*>xJ+sCh1w} z4BO!XGu0EIi2#Wdu+e~n&|CQOL7XmNS1@0s0qFz~=AiNBy?^s#YID4MP;EkE^oue( z^-o)?g-1_psT^<45s6cI%+D7)1voW(#lY`l=f$-no&ldmGgDSHkspX+1sL>>8ds}O zuSRi=b&UdVVaV{hh7Ypq5kQ1@7x&em(aA?W&4r$(b4k>BBVPLr8Klyrl1;ILiFR7d z-1ppfcslW4mnw^!0W)L}GRv-%$3I;On8!kx*7j@siMt$EIkF~mO5VovZHX&O-*k4V zK@D6NJ?7Y8PAH7Gk(E+Z&ob;^ED}Np(A+f@sz&_OjE(*7m(D0FAKTudZ(2JZciJ@d zjSbEA;m+yOW9T)A+u8yJ#0_jjhTDm?`o!H42N^k($drOOLk{3{ft&WAxcCZPQ z^;l~Aq*Wu&T13_jAr->324$$~BuWE8Bj$Hk<%;U%JZkR=2OG=Bg`c-GG;ZFvi2U0< zH)poWKcE-iKrJx#(s_d&pwpWy&pB>@Rt>BZAZ7<$g3j7Iy4T7eXh$6Pr)6A!29y4g zD&IBvLB06MbG^sLMP`#nN@|zv>K6n#vLZKc1D!Uj`Hm$);^eP;#_2Rc4JvZ^>6Vq6_JLa(Urk^6Zxvk%~?EU8o-@f&&_V#wx zR{br8aKoSQhQ5Wr>?pmf%l7Pix^1hip6DAE?ejle;gh!Yvy;-CF8?#kR`tVkIX$~% zf(gE|I{3N|l;DZ?aIg)Ax8T=Du?D#?oj4f$!1Xa))xIV_WEhsf%Jqnxo7>Q;pHB*4 zvNQMAdqE4x!f8mDgjaiSJhCshA7=;Oi5Hyw_JI9E5^)S)CjiuUO~1`XYrTC}6|cS? z|7r90+-9<=EX9-EAKKuj{&7X#SdCvPC&w$a>9OqLkB;<`P=Yfa$-uh9f#=|gXLBgp yZ&T9XGyi)X-&P0OcBSLH#2}Rhr|AE^X-m71bl+7&F!VbIJdDqq>zC>}NBDmSM!G>7?(x6w zx@+AJipw>;@0oqh*?T{+!&Q`|G0=(8k&uuuWMw4Oz|STmq$j~>DBxex^2wgy2cNT~ zw)00jsI!}qqZyK-k+Z$EowGH}n9|kE(FtZ}%gMsa!o^H!;p}Yh#LvoV^Z!1;V&`bi zN|KATNYaPKay&ujp%||i>O*x2eZf`x#$E2?l z46pH0hW@0K-=9!CI^asKqWZ3&+K!GbWuYNXvQ}OiUWuUv#mC1BK0YLrd(#eXoxK@7 zvqF^VuO@SvYc4)!-t}h&iG1%j?a(Z7NgrMt?!7_xduG2q`o?!d+Be9uT8=w)Gs5tW zs=VnGefjPW&-G5`0}M$iQ)uX|@U^UEweE0FP9>5B+9=J*lnyX>(tGJK2=`b{J zI_V*4x>}1sx|>wK$3?{?)vg%Y5`OeJtluI>^1Vm+ks(~X4)<g&?R^z~JQI#?eGJdM3eT7?EdCvRKNI~#g(d0wZ*A+MQ=_ua?niof$N4!IDi-1pFzVm!%`X|X9YA1M}w02^5N5@kn5^ig4r}>r^A&z7S zQWA^4u1lk`-^~OPsi5b#{{DWf9hoC?@H;LNUU2r*Ap;jL*ztv@&y>yI!^MFboB1yn z8V`Y=7gx%unFrvl$}~7yi%VRJNV=udDf6X`?YfH#zrH>Hl9v@vMX&^e978` z?e{qOQMt5!q}=zSq|NcTAnpbp@OxReKkcX#O_uCdWK0#FrCwxK9W^$jM&B~FUR?=+ zZChEZclyurz4!9la{(3HhndJ;Y>i~l#w+Dm62ps)XSoy2PNePa4|nWVR3QsyPOf9s0ZU%sgmFW-bu^%`DJ=W4zO@GNYV5j zcy>r=C=nUq%HyTEpA_0vTg}1zb;i*(Ik(N6bA0)DDF&_HTg`ItX$Sozxx9|SN!&$j+s90LuLcW*B>B_nAWsFBQ6)v6sNnw2!+AVVeh9Mjxt&)S z88#+FX>>c>Frm1oUw#Z%X5;6Vs~TIm>W|l}cYHqLu)Viu;_RKK&e4Cy+T2BPzmv(q z#@0sg(B0aG_0)Pk-=Lh6lQYmv2Nxu_m3GwGdMkotg%DGY@O&80EyofEh!;6pC-y+) zFXjl{QmIn)Y&}L%LYy0+5STF?PGK<|y|5uFzqrE43jVYhUQF-a5`Dm1mqE}>E|WsH z<4mlfs?D7ALN7_3e`s?ciO=_(-anfStYBt_F!0$k5KOeYR^Oc@-t*xP-fMRE?}RSn zg~N|-Pm;E72U(ff1m6dn=~&OVq(`Rm#1Cxs6QG}8T*MA+s^D(s8_cIhx+LXeM6Hin zR)d?yRjg5*hqLLJ3@wpFqk#mfbG(QO-0}eLpwuJS$qqs?A|$EJrr!qZg3$RbHk;%PUtXFJ_6#*m@?f|%x68LS zX_lz6Bos2gQ!SaI3d9ueprkZQ`JOL3&IKxw?yLr$q-ypQ59CF_m$u6nL93`nGL(8L zY-q;;NXwTFg3;ZY5tI;^4!)C<6W6Yb<1F*#!MwCklK4jr?-B6{E}U>=c=qv}Rr%_* z(6wGvFS!@9ZwftWO>Z!?o-FarpX>EQuK9_|^TTeo#(5u3bqQR3Lhg~q-sUD)FvjejjuvL z;LYZFGo-7g#3r~fDFlCqgufv7J6BC9#gBx(*4I$&8X^co?4*P|-Ct@Z;f!55s9lEI zTZAc+@Qhn<6;AI>GUEM&#_N{$jE-W1D7!_jE++_imrSjJ49d*HGH%HwLg>kuOp`7b z%QaLOtE(zQg9EBegP`HanXy*SnSl35r|aVOCDrXX=JR7gEcrUcw@MjZH8xK_Pjn&o zo8nN%hAq6-pvC6-El|&3s*%JYk5bB&r%(km#2K-mzj*WHJf1=TvTD zKYxywe%XeN|7U|MnWe|#bT`B9crAb>bVYgLNfsQ2`E!TAUmebdHu^p?$VjDhN(C=i zx0yVg*Ng)0hAhqyzAXxvL<;L~*>7V*A_h!vns+J>U^Coa#2GfV(-^TP7SP?h4;{+Ln zQ6T3|z_{&}2J_^TX6lTd`C^Z%Y`MvE-00jl*u#WVB z%;p$mtt#`8@t^9WU;H0@rKF|DaD#sgprZWh+CB6n4=MXtrq2Ih8}?JSgDVFGVq|KB zjWi}l@wCQl4BN)DID3T`GZc%=*wp>|+YEQ(S-e-Xq{-t7`D#I5OyM&nCw|hqKNM1h~Id~gWLxi*djQCwY0ej??zjlU@h+qd}sdx){qfM8t%j zP2G9pS}i_>=VdjP$>-_jEm?fl!Doya*`&vhpqYR<>r4A%nj{q$$jv92&2t66%&{Ww z7JH&U;eI`(1)7g&feT#dC-GY6V9)E`%3lcsP-?`$Wzm%7347=l)=Dw3{)*UF96MYg z#cFn3bpr3J7lfJg=z<2mDdiDTP;BkbR-N4T7f8QJqE7Aqj6N6ilOL?3RCjYGOMJ3q z>gX?Z!%m$EWT}#QI729M-WsQYr86+lRHB{!TT4y$m+X}WmQA@}%jT%9TZcs2g#MV3 zt#x%{9x-8JoJ%c!a==$+V|Y=p$b#`gAXiBFRab&Wk;U4zvEvWu-}e)$88RjNt7 z{d?=JLcAV}v`}U*wr``^yee&j?q>7H0&Uz5wOXb_w4@%e>U6<~Wy>rE^m=b{eFQa6 z$R^(GnZWK4T~th`ibevcFGSH6Ke#=SEgZP>-cdq2VmzCp)*G-xOuKf`j+eZS*aZcL z{GXxH|GgN?Xgzs;FY*T6VslrX5T|AgS6woE4YjlF(nq%@G8;w{tjZ+863bL6vg4d$ z${`CjQ?qoffkg`n?b~uZug3c(B_+k?oL*GK;Ci?~ggSUCph1<4t&h;r*6WJBc(yF9 zs_{Lo%ZXH~r&l;g`LJib#&9*S!mAWNrI_;0Fh#0^YyC$hLnUd;R#q|NjygO* z=Kh+aZy!e<-v9YmcCikgR33J}gNzAl(!jrLcrahf$<2-5s@bx1=7ZK5rq2Ko7@kHJ zC1vg7D#+iG%M>pu6%ESV+r-H3=oSV(7btBz5sr*4iP`$ zkh1l97Onh(bzT#1>#uovw0bAG@yTS#f^o`3`lGMoig1hbU*RnN0xvl;A699^@VS|v zTPeuTKPJY2NE#V?lPXRaM@1ADbEPUWPBCU|Wig`9T5}g$qH8^+diM7@swA;(xdvI= zMbkFJo8qisZy}abBvK*AAZS&8PP9-1RV2afkqtxt6n1Ml+Z7um$5mK^_V|9re!f=2 zOI?z4mN|!-`g?!_-v=J)A~hptYlwzMaz=8vE#V0{)0HqBXY3vBb4lc8$9bu${(h5Q z+eVSUHSe#$7uk)72oh~O9##48=?ijsY~;z^iztm|75dL`f$HL7`i_;gw0arg5J63s zdVO#yu$2RvD2-+H8l1z=wnm&D1F_0R;V`#I)3!M#+S#a?-nVj0#l^&V{CLmjE3;>w z@Gry}_}AziI3+_u@>Pq}=`|Ql$6<+yiEHaGkL(u%m$K#@G!ntJAh8Uu zcGe~=EZY$Mr<>TlusML-qHLHY!k8ZAZKx4BZgIg6r4r=;ZCrnh0*&U+IY#XNG~_kf zmZ6)Dqu z7rYZWeV0kSh4fshL+*Eq^jC+c44Nef(4D21IL=!xVrpmr4Bp12nE2a_be=9&u7bwX zEU#iP$kF8xYK6aa$dcRD^9^5(+~EWv%2`$JwXW(=ZbYY3L!uSFi~$=`XjD$=Z`7N zZZ3U<1Fz!-T5)lu&3p|e1xc9Wsss_avO34+M;WNK!0h9kOIn5nq3YatM5WlS2YHQI ztU{g&?sJWaQT6w`6?hf0wGnYcPGV38Ww_~aI8y_D&Ep6K|1!4t!xgJPz(0zBuW@>Cf@5;0r;GSot+eOFqb^Dni zZ2{((B2{DDoR5RDj9pzBi57>325owOm)dltx3IAA2;f_8{~qa3;vq*AG`bw+cA!f=%(nZKYzRk zNX>_R&+p$J#g6n$cZ!eK%SbWycK+s#)i306mvJPm$SR6`@>Swz4vZM2M9*e&qWjg( zeV>&lD0W6Ut)-BqBF&;CIo_5Ldq3fD393_sRkeHY{@z{=I3yeN^M^4%4?`f@w2QS< z)@wIHSy%d1vt4IC>Wb6}a#=-;4f)+AFv5^DKCeX3^tm3+jKwRFoathR@E0$Z0EZCoa3jp=+WQ+7E}pog z#=5TxXL9b8_4t23x5wu3C~w4Me~ekElxV7QVd!hDQ>jqau{V^(E6_3EqYGl3&QzH2 z)(kzv68OdM)-;saGX3R!NO6yPh%HULEGeS%WKU%f-XQIt?u3DmDgzTLYXZKg(g(4E3@_EK$^Cvmd9@}HmcCuNB`Hq!m zh;A5H_NgZ}8wcALYBWP5!fY6^$C$+Gtx%CEj@DKEg;bz5H%aML)a&=sXq^%I5XDXz z8Y;%pvI$G>oE6n22|=~6YR~iu^Wk4!mxu1^LmDIExisYo9)zgB1fRk*RAuti*sDb? zH~xFnpK@_-P*e(!jYR6S#ZwdtqSdTyPfY~X>>5Y+xfC9@M zhq)fjxhQVEg5wcP54XGJG!{-`PO$yTGpf-g<1uJ-4qJ%M<(D_D(qY`>0MHa*x;(XT zd^`l8rPe(S6vkx2E*<9ZzvA^WGR{P@F{Pp1=)xuTiuQeEojep-t|9pcxp~-d9*i+wAkM?c*2;AzHTIn5n-HM zLC!8+R}(%FvSEXF^7XX`x%Y~H1~Oat-}4`X?lPT?_+3hI?i}Z0x~4EvL?lyBOCOR8 zS6~}Dqv$x718FGWhPM0Aa&mHLUcb;S#jkq#vQEvX-6bakH!*cgOAx9NiA(OB9$e4I zVo>*sO3{A=C|#}lE+zMkx2!mV0Y3tuxVkgLiT~<; ztVf6?(2WPVjJYP^5_2uaa1a9?!W{5-v9Yf{n=LhN)q8)L(r;q;=@=-(=pZ&pv^xZq ze(>%t+ju~ZD^gz=M^owB0#8)^tb{vRFaZ;jY{z>SGNj4mh!L#9%xV(apn=1Ph@yxO&16yd^PY< z^%rTVTK(5|wuy(n1`@j5=}OXq-33beE*z_o9i{7fF6~xaYa9(*9{({%hzU_#PuG*S z?2TJg+gpFgo)TMtBQjKDt76a_l$yuF3d^!ZXshtl&Se_y_dJT`s1w^>SDcF zYWF|Mo7i!BYG{1W6l#@jV~ot}L_qnNsHbq$MT7Q4KFF)70%8uJ3;8#zVIna2j%(iR~lnxKm0A`ES6h4eoI@|Iyq|; zL5PAx5Jj+h!F9zmf%R@1M#|AOc|QPn_NUQ(x2^59RD z?BFtiiFgFk#mnj~o4b0ZJorBe2??<+zUzIrHI6L$g|#HvNTx`=!$DuIpQfSgV+kTh zBR#Bj$&fj20QzCvbhO8PU)N>42)A484Wn-Gn@CSVMs=6|KQ5hTK1%8Q-G7EslX~UK zRvX>Q`yAv>1AiOnb<3zbte3!Xt~X0aQ-88g2F-liSjzoa6ec_8>aB(@@evn4F_CJz z2yN-TVuYqo?4zABzPrtXAY6<)y~j!a4;0FuAHNJ)@I*P{eN_(+WBL36GvmkvzTin1 zLKu$hGd>y|rsgIkahOBEl`K2@AHCMQ--lD4>2lR@Go1>5xiqgMLFRerhz8w$si#34 z{@s(t$8s}8F2&c96NyaOHb8xVRuRejAd6yaMZ`Or9r`Lu8rgrQ^wbS{RSz*whh+~#4rIm4dfYT^8Po-j%NU^ zV!S5yD2~aIV63intG|XKH7q4pt>`;V4e>@$oJVYanxWoT$I~@Z)7Oerv0)OQ-!a8K z{<0B3(3+)ehxo_JfQZV!e3>gLwhCQI)tTAT_^Ub-!f*>b>gA)X$o7fB*;G zG%STVL5`W3S%opF-gyV7IQw`lg4H$md^{N<`$i%K$XZgCu&<66RW_;6s_^_hvY%a! z^@Hbw5Ud41;cgbpmlB?QfM?X7000zPg7(R0 z=<>23#?jsCS|aY#NuCxZG{m0Ne8_tI zqOH{AI4W?_y7E^YVfZZx3QY1%Q=(eapo!aN=X_B;wi!-Jq}0ZEnCNHuJRA&B4K_%i zzyA~0qotuXKpGjx0)olELN7|1+#~nkpu;Sw*TqDO29iUhVt|OG6Fv@_v?qwc4VTIp zJ0m4SbXV9sebc;XurVf~tEw59rzU=vVSJIK{^wtC5)-xc^frK&9qSli&oJD4Ne+}3 zn)#_&ZG-E1yCCB%ky3+Ryd2L4*ua5``g`0l9mV0mBfFr zw1NZ!pDBS}Mm~>WFrK|3a7Y zgA4HA-{fgCyifb_Zr?+m>0fo>v>Z3mMoXf&0!)BTmp^VhW5ZL(=+1v&<7-5SLx}Q% z9a(XykG(v!kgYm!E$l&J8FC%e*zL`rOC=~h+JJ}LesxzKw`CVvjynHSt zEk#H|lA}WJe7+`U(V$eJ(w3YWVMVi}@zlfP9frR2kf{Z{Cw=s?i1}Tt49zcQtD%fw zERx!w_76jJ7nXQhkQ?IdqXNC674cB#o?`88LpS{-rX*I*_wT#+_nB+<;)YCTT5L$x z*VildMu(mxxgRa?jn7&SChJ_+q#uD?C$GCkqImDr$Yf1 zfkDDOidbHLwUCl8%b47CBJg|4Qkrt%wT*{Yzm~3^o~gYl;1E3Ah?-arUFA)2PpN7T z(S4WvfSY3bg+t#?16@;~Ba z^AGdi-~KJt&p+Z#+x&e9Ul!lm^?kSPKwbM0OLJa|$|%L5L1R2;YirBnpc>I<%CX@0 zc;9rKegrgQaO3}p_dkv}d4xv*A)HjMw>s!`q}sPNTjRn+!eaxs)s}n{Kk!PuBuG@G zUJcZqA6x7|K9c%o6zA*Htl3#%gHJ#}L`)3-HfyvoHw16%w7UXxH`Y08a=i< z6`r|)$?oq8lr|d=8s0f#5Kd z%2V!p*Gw2L_*Kw)Aj6yT=Sf5LUkgH%V!~-aoCCRo6sUizt48Er`|P_H{QgI7g}8+& zJ=@1@;7cvE`UwL?OhHM>@v84t6#0jq9t;vf0?s1z;HTBP7y~sqQmIn`+GZYeSzI@o zCEfeyT*(S31C^RC5kl4r>Vf5my&$R|^5I6t4z*36Id)5kny$Vu&;OY$`q*^2hWR~G7>tmm3MhV)LVzuS=>H)D}| zd&8TTq{DkYyCVOwqD+<qQ3$) zB*08ZkJm2)@H(6xt51Pe2xtd(AWHyIfbr>!#vV<8s2pL>qB_89-NDaKukX_B0KM_C zTwTPuYk&dw09I2CYN+{e+A3gufv@B5!93utt#VZ-P-dr5e-4TdBzzplmeAb(ohJ`G z8Gmi&mk@jx#oE7}u0?{1H1voW1gTt`{;+TlAY*aZMyRTKLN8pmpfXB}we!;C**0)p#C zBIR7F?mf@Y%H9Qk@rpN15M4bLaS?0))7cPt4^jG(g_(BS7bpFg$8JYLREjG`IFn)1#|$^yBE+ zoznv9M3G)p$#nD6ODqze?iIn29G&u%eQjf+R)dzr`CQMovmqs!*gqaptpgz#;2a<@foExs-Hrdg}W2 zSWcRd3w$>De@+~wbduO?4NAtra7ht_3+R00<>fcdu0J4FQitf^*q4ZIntFE^yYg@7 zT*Melo@a`G2=HerJvhA%n|bo{HTPiE*KCbc53@MfaW?NhUAT9q;)tRXKN|1!Ba&DB~-7pbpJX&H8px@36#A*!6U z&ds1hv*nl~*=o}o5G!JYuW-AhC0@k|wg7_)&<%&v1P8h!2(G7VTe_Ps7dpY-np~FT zwC5cVo2oJ3%hML$->YiPyVzpaGoaYbbECy2Q4zmvV9FlaQang6nGqGg=(r`&t-lM`9aH*3Vd8WE{2Q|M|0(oSY0a zw<@1r%)d)+%W%4ASLfU6$`@3Nf6nn#;nGf58cXC_Lv~^+$FPx}zN^DL6*keR9IA_hRg?!DlY@Nr-+Ipl^^~Z@1 zSQ(7H(;{ELCiU4OYk5HU4f$Ly_STSnSUbQ=L@j+KWjUys;~)-s2;uoMV=T}x=<^mr zjj2xi2WrkI%qLr_X<~05Y)6%JY$i|S)hCFl{fbc?lb?Bxj)rd>s;_g zN<7t~C;1+ZTqd0pHYQI>X^<#_AR|wYG&0hK0np;b!|JzKx z3N%`r7l0haV6VUPRC;V#MPUuTaG{OMupJ4`e6L>wU}ACd^Z)MalOaXD>QKh$jG5F3GfzSL7RY7_97%v855y9xyQ!#6 z?}U@c?x+jJ3)eFF`NUY!UM`l5PFhyGpX4Q3Ozx5L+J6~~jm=0f2oJ*6IqgE)q=b~$ zujIf}5q2Lk4YqP&x|2~1OVkMpAZ))Ul!b>%%3FS)u{O0yXLxg@SkrTGS1MM`TKu$N zy#D3zF<`pQp^Yu^Str{@--n~)rP-?erK(V`qx#T+B-V9C^p+!_{gTkp&9Je*a^iuS zL%%1dZvxK;$`2KKHeN1?EbXt*$do@CB>9`z0c?EELjE{3BIE*IVSy#9jiK1Q0CaQXOWtC96fwp9G?4P5f?{%qg@@8Hld$3OE#y_2@sfRD9l zP{qlKMb8+cwSX+^ao`uGiHWaKQLa#>vL^=}Qj1{`<`gmF6DM63oeTTS<;@TLMW%7l z0uNVnQu7a{Xw){I2p1TdY`c{stjpIlUPh+iCP3k%oLet;MDhVISIUrf$cOa)<3Y}m zmDU&G1ok5?AzuWh}zG4Q(3$nf|(YY|jXEERcy5MjEu zwO{vf=bMw%U`Uc{x|sg-Pqx+n;O1&w03)XVT`X5k7VY8iY^F^9O{O_$lYwK+Oec1a zlc$$R^(pXfenndyja@b3QZzAwy};cJ48LM3iJp8h4_Bfm1nq5|A&x zcl*WsYuAgsWjpKOf(xx9MjRE(ap%q8@QS6yHvf=Rpg%e3-|DZ1n(k&i zNe%Fd&dLCPb=PgoD5qy^t4@Gxj&* z=4BJLYc(|!XUInB{#^Yp( zkr!}e0tajoXp$&XhvNF7fvC+&F{d<1Z+lMBO_ynp!I%_zW*fk ziHX6%VaK~gH;=8Eib8BU_j#ZD`-TkUs)WIPZ5J~y@`9Rs!y$3j+i0DoFzy)NP!*G?9A85lnV@!;XO`(?~tL5CrrVwR!f1}Q6G7-j+~)U9%_rlJZeHD zECSVECvw)zX?Za4@PZ;kmuhypz~^ch!Exs1PjWb}S7+}pCNwhr?o;8Ehn+YSg(SueAwu}gBw zq&uT;Z-7pRigckHNu+x2d3og!Man0}m~5)8LLP#Gx}I=;kJBrrY9r*jPe{_!J6mCe zn3E)2Z5>E0{`5+8IQ7Dt!jP-GF+;ju?M-^W3V~ywmIm1u-ba?}GY&k4`V;p1`j_aj zV*?`>h^mE)Y3C0c?UKOc%9Rr)J|ab7s$Xpy}d+)r2Dc8X9Ce$hCT_i^?abLy#cmaoZBX=d;wY` zo5=IeUdLs{mRyWWXTSpW7M3!J?3d@m9^;gQ6Y^^LXNC&YfXRi4)5H?-Q8PcBtT+6b zH=p_}8^l?$(}DEn=H`2Py1vUJ1&VE9`^ey6j0{a*gjyA&R1!}RZy{s1VmIoy7$FbB zvSJn5#pJ)zc~lEzJCC({v3r0u>f=FJR@2|pYrZccUT7}=8%2|cdaHUmads_m?VSM% zBw*mTSoJ=GzK=<(%>Hnp{`)cAOG6yH)_d+6o3qJyWsZgS^fvDl)A0TaVbimH%yDzI zFmiY$sk(i%7vb%@{8pVR*+#h#Q+|04ComnOGi*y_$41uQ;AM<61D-}?0hU~jYxj1x z>kiIr+UuY<-7P{u5RuFotNSxsdqlu98Jd}%0o}@1JPD=WX_s~IPmM%jbe3@f5=M>9 zghjO`p?Bk9y|Z}-j~-npPhnC15ND2_dzTsyE32PnOf=}v}A+j zfEieg8JGVlY}OJ+h$0)iR;|xN9ye`S{YyV7h>(2DSHEl;m9jQATLqZOfXqcG75|{_ zU;=n4LqiH9Z2N~hk3)dtHHKFjJ2CWEt*YnH4fR#C!^cIjC7hCoF)HizxU%E=4q)8G zs=hVy5{5$1O$=il&GSM?fQ3X}aU7ST0(*Kk8Mt^z6{b~9ua-uf;TaEAgRW?S8r>Li zthj(I_-AsSui*pi#9O7zA3N`5u4E0|AFjXe3UKffqlTlQJI$Qn4+!_;H(6nPB>>DA z0R{_4Fk_X#iT$$)8lx02MV`^z_zQw9i@z&H2nhjjZ_-Z`)LxinXPPvVxR`6RS*w1|e| zMB`Iz9zpI{fphdM@yCa)GY?=XP9~)2B_%hA-|{W(S+eGay-y{BH>Z@XN4))1>&Fsk z0BW#j_(~7Z_i-9p7+>OTt7yi&e>QUYq9d$=p6(e=lM@ ztY!#UcQ~u60NMK@YYpQ*9F5;*-pfbYJ7OYJF4)&=)hVs> zhE&STP0B$;Yj9A`z~Qw63| zpk=ZC^T6kJ)n&%eXE<7u2t#tN%Xhf4D4+G{^4}EbW}7@XQ+aGU&U_N_38;Iv z1|bA2dLpX0C|wvF{2VwZPF;I|-vpihn9nW0;~AV@a+%mMe zHv97(dpmZb%Rb25nN1w=_vvxrZ89XcTf6I^t3bl+PX&CJYi z82vNz_W(boTdKM7CyZgP-a1j8F_;xy(kjabFHuUpNR#?~r7dR5XJQmlYzAi^p0m)7 z7{_|j=v?o=v*tNHW=|w_Wb?EiT=`=5X36O@3GMzuJ-L1jm$F`+WYIDM*}o7St_-kRnyZ&?j|_^SF6k$)=l$9FJAOWZww z9QC#|q$NIOYyI^lS)md(kzZoCj1@-G(4nlLVE-`5fS;5|XnVwB>9y}FF67IZ45_xn z8*rei)W-f?vpI$ETo(B%o8(olQQ~k?LQ)}y(15hu$}|R+0wZk{si2%;R@+Bq!Rn5w z?O`pKg~Nl}hLGOIY#%H!l=>Zq-Q>{&-Q%aq* zv~&gVb|)v#tcWL`RX5)q0Bycv9});4E1-f8=9>rqQG6+zO6D2n&` z(aCAp_4dm*)3w0(any3lA{|W*oP2DIj4d9kH&<~jPaMoNIG7vXFwI8UtiOQf7sJl6 zAQCN&eZ#=M;I68M2mFR;-6FjD-XYk6X22+!an&d7seg!t!85sn(fJvSmz@!?*pD<{ z_Sgk-6~boJwrNYR?j6kX@h=t zqe9n7qI?}A;0tvqmJ=wvU=Xth*ekTO{v2>@{0MC?&v*T`wlm&yzw?~$`5i#sG#?r8 zgTAhUHg#(_9gIJrcT)k!mGx2+-|u`GcBXz+9G?G3$LTy|9eKq$lDiaWjBi9sX1~6T zDVW%q*>+KkC>+d?{!CaAa59;|1e~$9MTUOq_Tm`eN`QG(Bg~fLr$8<+LmV!Wbrcm$~s zZ;BU1^aa4AraREdzNe;dW`&X)i`efY);gSj_#`CypIeHaS(Ys`f}8QrRml#TXnN|L zoPDeu?hepg1B#f>=?|npDgB=|&coIwVz_*|Aw1Ig>f5vA(<$|YTO}_z&y^laFVMvKJa%ybMY-d?Fp#k1qHitw zLaCPMgTzoPkkInA{egEB*c|fl+yjuN)e@ykYf)>|zF52qR7NwLbXknraU-+fYyjfc zKzWl`&e%#(L58t~JFjo%)X?!R%TO^>Q=zWgQK|WZ;MWvAPctE0$u~&@U`mgWj4Y3~ zY!!_Eo;f+`HMqwDE_0l7LW6e+W80A*I&OLaC~J% zc%5oQ7^!1u=Au}j2F7_(s2=Bs@8rWNr_Y*Z5D;&Q`5G|K3h1O*r2=Xr^ zBf?7a5ppo;7cKn2>vvP&_j}&1wHd1S^!N-6h+nmg0HN@@_wkCNyg~m106itea3ex+ zlM+imB?Hd48eyQ&~ZqUdwo^s0M>hfldjiyU^t&4K`wZrK)IZ_ z3yfDAZtfXA@*^4Ej3<@VLmfMVzbj1S+Rh`ljDRVStLfU-A*S-C4$ct)@qtPaRZmRH z_?V%7q6#@JM!eJdg<_bj&MGG)@V`FHz7x3r{`I*4^LE{n+&?q{J8u^&*dTnqcf3a# zyzNmydu{de3svn>_+3)R#pHcuKkK49v7+^9RcB{y{ojhywYI3xh)tK??!M*|47!(=;&>}G6_4j`)V0#^2H){su=v^!9;^C-0 zwQ@vG{=s77ESnHHCu=59x~>G5yw8R*P>vc{9``fvIgwhnyjns>eE(Kikz0MRt!oE% zZ!lY(aTKpq;32mQX?ftkT=cT*4NI9)^Yg`y>4&bXov)4Ku#LBuN6{pWjmtTm)!I{eJ2%a_jP$?faD1$O zar!v?RBK;Z*q~vEl?=Zy2+ERwhIq~}cm`Z-QvZoGMWZ_rh5$t-mD|P`Ts?QOO(Q6j zPR+g1n<(rC69pB8O)=iGd3aMkiI9lQ>@q`;%+euR;8bSetJCp{sPDP7pL4g@Lyz4Z zN`Z2wlq#<80mAnnB^u8*pq<1Ev?kt?DY@@Z0v&x}SBgbzQ$pN7wN6`J&j+ihPiHXi4GG>G9Cq zST_twLE{u#f4I#FT^bE`O-wnl%R!la_ulY&MF0@oTwgU_olH@QdcEj0;^yW)D7`su zL7(sT+wS&S&kQNq(MN-e%MmWkko-P3R!0>v?YsC}7lIgEANr81{NA%-LHO1n;IZ_f?jdr1VqtH3MfwxlIFahkoYv%kY=T5!P7DBR5iJHGG zAB-fhABjbSiGud|r*N$V@A-QYaB9EEm9%cZwqGf|RJiM;y3GR$E`s3y z9O&Q{pZB7fs&O=WfW~3^o{{;%Y&TJpsn}imH1}vrzTQi?64Zj)?>xNf<8)8&*mr7XD-^@%Q+f}GYQ%46> zFi=8h=1Q}qnbNDUn;Ve4i~T-QIB^#s3w2%_1kT{t1EI;q$xa0Eiz(*gSFMD}3YTE;#Fqqez<%sh?y#tdM?C zHpTjD%@r^LJec~Mtu=|?93MT=Q@-o>sEvn-t`9X$*!zRftk+wRXYI|m<65l0lJ#vu z|Em5FFYu=DMKbK%wOd;|;Rmz!+uAEtVsWR}Do90?kKD=y?thYq&SGT8#K4;h*k%aa!TNrHjcJ)tJTR;`(`f^i#{rwO_T) z^FM{=Q0MKU8p}roY;}SM4~{ zhoBWKoUbi)#h$gV^A&L@k;+g4<+1JByRm$g<5(X;VtDd(Y;ev#ppjdO%+<;D0}iE7iQ=eoh7s`vuCGMi3ntZ< z-h~SnHjdk95}3m7n?!SGT|(gA5ItXx!@lkDwNQTP0gg#@gqyFJ+a@h(g)1(NXy}?Z z0u{Sk_JFjmO$^q)ELjV8q6Cf) zdPcWOJ26Zn9}}+4&#nE&^WFgg1GJ}x?CK}?~KI%H5esnh8EiV5g^e4M)hJBA~p8#{pQ3L%<3e>g-&Nn+Pk+y6tC-yBT&7^NV zrupAuD6SpSQR2L^q(!FxbvUgc(Fd-Ar5_U&jb~}QvW#}GK9}mhXLmC1SzKHUZ^1Ah zZ~YU8LIE!NQHO)HU7rvTIKdSxh$=}Pr$g#@`D0ucAlzR52csfoTb@(k;FiSi(_d*3 z1=P>D7kuclIo zyM;!;UT?1HRNhU~mP+~e$iqhuppaqHV<(z&ACr5a*kDG9yrLNf>>)HA9d8(|zj9q6 zl*aq*P8C=r;KfnI?^NmR8c*EZuPMe~GDT#|W#+DFLQ{C@H+cLcV(CycOW%M1$UR3luj0m0PZ8B~ht% zdq@S(V*7>(q8v+kI-Fqr16^O4*RzfYKzRVV<+aCd)Osny9y>|I$383Y>3r29#2U+; z!h3FQ?R9lL20#Z<@A>bA4`20G?W5lJ`FYY(GVOiet#rPuwV$|oYJO}yu_LHgiQnXT z_WZX}bcHAVS|8K@c7&%^g_Id3bWT(}_Xb($CEe5h)t?S?&0-0-@7D7^Fx0|yUpbdx zgbWEC9YaqigpCLbRCFPPtWS{kUP_$4w6C`v3r}_0Lm24XT0vq3o-qZ&mqIYYws{d# zR>ljeeAo~!#_O48(phc`I!!BbXGGV{9NxLZE1-K~uiWVQmui>lVcYsT8%%uHb*`+n zdIqXG-URE6_I}PD{7uPWlHw6NMBELhAD9#@0~ycZ8y4kRnR{d2GFQ~JLE@tQKyY6$ zJWuZU4Y!4JwIM?FT0>QH>tIdJR zgnoK)4Xgth-R>qHZjm?J!5@bP-#r@-UosT`yiOOdSZ(RykpMR=kAPTY$rg0nQ{h04 zmuD1v?}n~Vrj#gPE6uUeX^Mbfr+=|b>;+VOrd|tZNI<0V+mK1!_8h^Xq0?hizaPIR zcAp|DroWioHK%8~@~bRX%T+IHMh>7Z{!TxHH%5CHA#2a=^G#_pv#(5fY*?i&*CHSf z+umh(Q=rHDN=}0(2&?4d2U9}(uX{5%bc1Qc#_5(_} zUV&hUxniC6;^p}v$REk4s=@LHKIUkU{&)^%#tXI?k)iTxaKV$Z@`pf0-{d#Be0SF$ zZPv3+vr9Q7gfL)D{It%#iAb-L%X}|PHc*>e;ic{ExzjQuuJ<}Vk95LP%2D10REs%9 zbTZ(I9pRns&JDyD+(RssK@p@2ZD_7R$murJV6J7oOBJf)#$3XD|APt>L$U0DQS7R5 zK$USyNedch>E6r%iP-4mdA<`S51VE=r#(5l`s!VuH5-L(Oyut5_f>KofuH|Z~<>%pm1g`9l9$Y>N zPl0IybZ0VjdA_h@W%Jw35ex>tCd@8!8ZShn{STe5aYnSX01343?02m9h&w#1&><=5 zsf|~X+4Ul+fw3_YvzyVs2sr?4e9vy3JaHBvz2U~zQnVFeUoAv|a%Azj0vpIo#Q}HWZK2y~eG}q%D zvI^fodY7D%lBHX;51g~0`+obtUi&d{i9H~C_@i*_^eu?(y+YYb)0dvcE63uFJIHfN zMGlPE_?!JT-Z>Jm%DR-aC*6(A-C4@UuMft!e5;5&2vr&7a--7qXy z=k!oVx!%LQc@Z>qFm4gu!v*(Gj^&zLo>F?$)E5+jBt*S*>|T67lWN7=h`(XdDg5ZRpLRH^^Syt6 zS(wktn%^?zUkq81Kc>TGlujy?KSt58s_salRUJVvmD=0eiSD3HbN`B6^9JD*2sUkh z+x<>eEtFRL!w)Au1R;KZ+ujbHRGW0WqAGSdeO+bWfe5n9#YdZo%dT}%Tj$k-9YU&cTt?Mei+fw#>Fgm#`_R4L&dfhb$ZzIn|M=%z+ z)iVmPG`NeO_o^KUo$(YPS43-H!t8jMo1=@p9DcMgS?}vV--^i1tPpulQN6 zCaeVp`uYG4NeT!Eu)(U?0*^`$G^e49(R(_ZZ9Bzg{#)IYljPp=q2ITef_tU|0i+qrBTbV(d8fKt3OpKeV#!^UGwy=!~|io{N;J3(H!pK zg&t>Vnj@F73N#D$aMV9k)DB7guh&G6e`~>ZFXrZ-+4UVHH5%dXb5{-ip58ZkVfUv| z#txH`Q!U)QgwtI_1Vtw4pTq72SS^5K(=6!No~C-v%DPXDVfJwm>d<7B532b}VfWj4 zvd(p$tt4tcQzfeuz4kyguVlE8Hti_q^jTmzZ;l4uj#07KxPJCfsC+vcmO>O2J$AcS zj0|_81)T4r1g;!Zv*xMqQ}_+{_++Z&zZEN8c`sD-XS#y5oZ>fL@V;PpmU^-7e&8G9 zvYz?D!IW+n#utytMP-u{KxNXVjb-+YhB6X8MO_q0g#V}iUPZ==kpH0&Ld|{Ze{*V4 zvw~pwJcl>H-F9Urg0qtT!9AYC!^5FZqk`GH!L})|SemD>fbPcSaT=G`WrCwtfwqkS zN%~ef*eJPVgC_O*-n=<~5gV+@O7v^b? z`V;IIT?Jp^6?mw2vms$ZpGM#LPe8}Y%O>=p?NLR=5Kln$&dL#1-6p&8Zwi}mU&Wf_m8PDV}p+{?>rv~o4FL)GeW2|8H1*ACgrXH?D-V7kL@ z#-YsA#F>JbPE1Y_Doob0cc%rfY9Cz8%Y@P&V&&h(zHT1ao;G%1`l%aXS4@I?sGP3} zBgJ&BDhrxA&JxK_Z+}@<#N_3dd4lbx==sAvAKSlHKi(^Gr$*lELt=gMi4OHIKBExx zx4N`k$VLImPJ@=(w?O>`K%n1+b;Fx-Ia6f7=UC^@khB@C>V7E=gQ3ow=76DP^UF zvb=05Z%kKYBBP-QPr>)e*x0aDUUA))poEUT=KH4YbC-L{RPPL=S?YZozQ%U`F1aR4 zMBl9;_Zi~+@cWUOk^RWa4Hi=+QsgX^0ZD&`qOW#@9d}aW#3BNiDQ|MogJa zhE3<+TbGFbbAfJA*^3w}10QJ9?uBI?Flvq`ixp zHtP(R%ISwgfs9q;b15`Be^KpsP`EbPKQB>ne4*Dk2Nkg*OB|H=O-rXzc!PL$c0iP% z@@(hnv8os%!qv%TMxOioLxZl{Jsj!LpD~S(UWHjlLlqMa7~UmKWW;CU(BcNBqDX2a z^N|zr^e}oU8`c#H%JRQ|i=x%{a~7Z_c(c-Stp`j2@En?5uHAeJq4gtsC`BGZb|@Z+J^)LNyS!JOIsZ%7hM-qX(RztuBY$!&ezHeV4& zl`(w~7Uh`t?(6X^Opyb(dEV!UNoT#$qIm7|qfnV8j-JbyPr))^aslI(xzQlU)j3!_ zNn738L2@Y{@y3gyM~6Bg13BJ~_$SYJ)$;)iO_JL5+FTsdEN9Dijf3pJ`Ek14&k?&| zUPiY8|9>wtEMSY_vx?zIN8@z4=6~{>!!rjqK0$XMMoUhMB7wIMT9cW!6cM=uAleY? zwNy6JP?84sNn3{V?dGWIJR6epqiVHc@2GwbAGeCj@6~E?e-icN#}0*k*44j$H5 z|0&P-XJWvTPptR3W}pm36V(xw83wPXlK7Ah`DJyOp4IS1ROS!9_Rip?d|X@u+9}qH&8S9o1(XY=n6mvSm&ZCh4OFPR#$bkc`UlDNj2M&kj;^HYC3S8 zZa9^SPqR%ZUb9_WMPg@69{5sEAxM4$r{3R+Q!1 zYg56*(w`{n%=U#>QY58N7du)Fg%jmljI)EpmLK;oi~QwsH5Xb#XcnD)wk-gq0kgXy z2Vjl?#|$xOfuR|~ZUC&b>=SYGGjgf$4-Xe(Y(}@P)kik?0bilvB#sI5)LhL1*?$p^ zQ|{4^$2x!Gt7_O(8B*VxdG6_x@UdA_EqBI$VBNO4)Y1L)okP$3Ji@tgD`DhqvpQRx z)bfQCdwlpvXn8p35VBHbbU=KY)1dIW`h0Wrl~|S^UX{dTlnh^*wWY(?_Lch47gJ=H zW6dW5*9#JtA)E>QIpK1Ci>!Wuz~~T+3rqHmcTJYhZtZS9eVt9Gsd1Jq@sIJTfjk3i z%45(NWjp=jF+Lu$Cqswf{l3bWYc4^Zut}iGjQC5#Crxf|XFx=ODU%IJAqf|lrmXre) z2$qo2p2YpM6serKW%}ye3S_@?vrS)8NM?8#9+VlnSD`A5NNbcy}QjGP6zbJwxcjXM{ELofJ4ZqAx+(m&ycWjs++I|Ro)um5)A*8%xdh)~ zH|i1oYRjgGs zns8++XKrcv4jO8r0}=95mBjgr){)isLtW3no|U6@k6$%gw}6My^@M=W9v^eFq-0B@ z@7n~^o>e_>Kd!^Yj{|!olUja%`>k#Z3uk@`g!2o8*<~^m4f+!rAKAp%W_S!Z?X>j% zzUi3-V@4m6@%rpWjRD2fOImI2mYPTWV{w+FKfG ziONOYWk>m;rL?iT8_oO(?kmRG=-uuvZnOKg7+4y5xaK*^dj-WA(t26MX8(3S?@jDT zAjuMsjG6gU17meafu@z1@!`sLkq`Hnl82Va%KkGkZ+vG|S^inWs&HnJXl>>XzhcxR zB|_JG`9?I0N3(>b$m-2gU=jCHoX{+I=QyR}Fx``eQt)x1x+F2b z2@%?uJJdbc*x2fvM2ckcL^h*#;9LS;uVVhl$ApBE$?i#RDkhwJ@lPIrpa#t^Tsqfq zr7ia{XMDelsbRgmt1A#SUDRy3V^_Z0ng9!B@UKQ5LScjjY-Rec9o_GnSgCTbqh&_E{&5nSPgDC!9Vu4Q4a;FvsLyLI4 zG5|wu!@4j>_|ND5-aKUKUrXj17|PgOd-+-d(60yz z2|d>*Lv2z~cA?wpNLhIzjfeVibyYtl6(#HQlfoz^#%gNNfOY|-R2Y;Y&|A%J zX_5G_N79xaCW~C95EuN;Sjm?+-Sj}eaMaGhGHNLXm>y(QOtFd`k(6{S5%v^NyR=+) z33(mGDv;5TXPOr615W~sYF&5F!D&~q8LH|{Ret!z$l=f6ap)G~G|9tS13Pg!>kLYbgV>w@Gc7ViW)EbIKaPIjj8ldM@Q+DjZKL$@gj~> z_4b4gbNnll?#xjccY`RZzR-XUO&h_x^K#5JhDGM!TdQ_LFv4SFV~v8Z&iq^y$QwJp z_h4pbsi&uAGZyz^Gq)?l7-hS26(-Du$sGlcv=2OxiLeh`G5O-Q(3 zn=wW1nbV2_06To-c(5%zlZ)THH7wb!pztvDr|aqu^7K~+O2Zp&{8dI|4QuuL)69D7 zgB^q-s5_F%H?|B-`Iv!#s+T6Fz6O5wxgV$I@@tygCfyz;(({0%2j+US?}elWgKa&} z`*b45NkNwrx#i*9TQVO>6L~T5XhYap&Nc#-Kg;{)4B0$=^yIf7+j#s=KoM(?rA&MK z_IOh&bk3$cbey}X?f1fg6fR7*zeY+5b$bq|xAJiVEJc1IU=1=J>9RMZaymM3VFg|dH@lao1y~!mRwESi!iSj@EWOI-33Av zNqOW#Un-aUeRk}rM0}EF9(f)R!j6WTiMJq})7^g2_T4wm%}J8N^JcXwLuP=L6lnhz zF0UlIbFTmZ*W2}{rqxb!v#F0?rY-^pmj>?F%uLwqf7WFma^QbqBJ_;7ke%Y2?Fh@S z=2IGkDQrOeQ00gyridw4Jd5ZcQFYoiy@<#jM>N{GWe@qj-`b&N zmcvKX-5;NTrnrKs^T*^f!3bLUrmXa>XW^9K*~=O=7^&TzeSO{~)Y99k9OQpiH(<^Z z#~VN9GV|+Abt=!F(Ftw#_%DC#z_(ICy;7tjXKrKpuIb`5uHolQqG@e54h;j!*6uE( zNGLyktY1Y@Wfx!B;{*5L-?^3y#Aq|SJIZCw_q4MRlaILId-<0SFU)|X2KCWswf5)A zO4&^H&n+#qWA53X4K(x#Mijx%2jvtX#W}RJECGV-GzkqY%G+Tg`2^($TNkn0>7SXV zE1u)R%MgJ2;|;s6l0PIj3u0KJM(yu7h-C&D054dZ-K&}Q{O=+~?gu46(-?XFwcIAL zpFHDn>85Oyl|Oo#pb}?YMPX&Z9|=Q!_jLA3rU#wqq4L zS0m&E9VT2K6SjzBPYa;q;$OIcFe1fP^D)alK+%4(V0{CbO@cD>lg0~fCHivq!yi&) z+*)s@0;TVnWriPRTsCkVEp1g%(C>jFjUbqQZ6IT9u`^;n{H_N6<9dC~B3>&pCJgi! zR^K^lFHWal;vzg?13x-U@fpr7$0UfKuR*{eU8cyLXhd&@)6eu^gYUDft4F+@ z0QYpy^%!Wd3$*et;$#WZmOw>;S*~Dimof6jckKLBp!w?%Di~F? ziq(+NS{BDpUh6Oa>hp6c2gAE(}}{~FxzXP%izE=)FJ*fubeei|Sjv)=+reUFPi ziF)%5C(}~2k=(Lu<4oRdZ{DWtVBCY@?r9FW(e&nXp|5(oQ$hh+V?Y`Pmtr8CyyMuTTgwluCCrkMOWDN zCp=>BJd=9inc+*yRA%qy@SgUfH)A<{jY9`YZnA5 z;VzA6PwSZ3+H}wzn?hxgcm{~wxUCdro!$C+?H4{~%_>6Z>flBsr&9o&mo_~;0WQsJ z2D`49fE?M=Q%yA%<{SlwDQjqjX2#<8%B5Aj_vccbhUCijmHZM3trM0wkgnkfBA3vA=2O1 zdr~ab4q*?3dHc&EQCT`wnVYYVO9{ijpSVcz>UUR}BeHIYVyiz|xG?1`W5^Pa?bh7- zcOMdEki0(R$AP?jy?0_3kd$Oik1%oT(b}yVN2bfZhmje|tj*muU)n zI1N#|I@{uO8xe1bU*dd!3~?hc3SY_qKgr@QBq;Uo!bf;I+??KA&zZTKnVt9PA)OuN zOI&5rEX^RoWp17A%w0P+U#{Fgy`1X5-|_=~PVYC2Vqe4L2@pM)`kv3l+5X^M%d}NI z`|uR*P^Vpby;Eo$u8jDrZ^1 zTChLA;_kWn7IJc&2`^X7uB|u;IA-$Q8~wjt?A6?EJ}!3FU?W0&FJB`&ky&>A(}gh? zJ@c7dgKm=`_qS&M$A4`JsC}`3oN;rx2G<4`l3uQ_{Savfek*!@LDm&@tM>kv-H5QF zvjEz&07|z?PqsF9AGWhL(q=s5h2>?-ffoN24zt^b=RTN6my=cYdS0tPl66jRSp5%J z>G7=jlE01GndDd09+ow?%^@McO0?&(w3&v*z$rdoByH(Ih+l?af&?uWB50OyDp4r1U=XByl>S_RN1;OnePazqJpt2jRL0%GiqyWg|R{k3#&jNG|#AN_vw83U5UF+>r8^j6p55QJdq z@VdizV|H_F*6lu%e(?b%tmWTmDM1OY+5b|aRjK%y4?GMvFNXR1g&roD4sc*7PL8>$?7N{}uv=f zI8LF{#VZ%rrMcNRAExa>jF-gOt=XXe{sUufQva5ORE8lN{x?Mp5(uGpc-Fi()V1fU zo}MwD9)w6_>MSBh(9A=Qi2)QkT5 z8e9m5FEh-pHuYe{zqf2 z^KWrYtCFgs;`N*UG)37n5+`%3(CHF22gdP(KCVRpsgx4wHx?Jxz=TIbjj zS8)=(jJRU&tfu~(#QI;4mV$wag{7GA$}rDpD)Y@tZz9Q2e%Ni?&saSS3(eGBzw`e6YsB;!5=b(jgy^VnOfcjEtjC0QI5a$3zDZV0SiX9d5O*mDK`4&k>L)iC(6VMr} z*#lyvIx279sB5Srsp=@Dus}~h;<`d&DSphX+SexrVET~K0G$|T zyz)m9QUiU%aI>3VAV58K_KkqdfQ%cn8$HgcF7ST|rJhNBPuQ9A-ejaT2MUjB*5u54 zSbI^V@SaWy0x&O`L+?w1a;!gfFp~=5gV^tb?%3^;Iyyv>8lztxGGe=k;r3U98|NRg zW*#JiNNZ&8!3NTNLQtMTN-%8|R9Byby$QPAL0E%0pRED6kmnPd&*Tu1Tc_8NEv?bl zJ<&h_-Io3dmF9y-5nJ`ZZ8_Mpi00)HhV}!PTg(yhP9JNq|0D)*Lo68dln`(fU0aC$ zA|bI6xf`%+!9oD4bM{z!izz`YJa#Nehoi#0%)VV>w7F9ar2gtM>JV@qxAAka z9j9mJ4YQ!G!5&O_+CfqPjvTyw`@1cNcZ+o+x@mnsUN?&)yI7n{ffWe+9u5n`EB&8Z zUIZjIUpadGomCagV2%5!$wmS+d%DE_%utIaN?3vK2uH~v#ODs0CWcv>+#_Gcz&`Pr zZ9PSvJFQER>Dk-c0pAZLH5Q4f%-VYkt`10$+McYy zfW``Rv&s$1>!?srP@r0wi+38B@$54B=9miiRssphmygQ7(Q?Q5u|Zs$@g#dwgglm+ z*Ns|rgdvd$dx$@h4*T}oH*}Z~#q^H`)0cMO@EbJ-EB0-l3?57yeG;zzXJy*Y{9N#H z$S7%_LzGitUMF|Vk}yBl9UTp?iynN?%JpbPOGMG4f;TU#(55hac$M!KHtyYnq30PZ zD|)62%VC5FISDkKA;`|IPNh!!89>}XF#}9ae$@tp#GBwH2yle|>3;+-P_#8WTC9sG z#iGl8T?9A*KhK-2!u`Gyq;#HHyv4cKkcj0Cc}|dx<#_Hkce*bYoxpQ)9)y;cpSMR8 z)GQqU$#IaX1z^^AiOI9$ajg zE-A9c0R=XDf(aYBd}2GCSiR)CA2_4Mp@)NIp+_euxna!~PJmVwE{*j?m!0$1PjCw; z zf$wQji?*VS7K)`b6G@q_pX=BUbjVv93Ppv=($-G=I64|xN10Zcl<1`QO_zbtipYh_ zY?VR`y@Juv6`A6O#HXeix?R|~xXcAo!O)6TN2N4k9CfE7lJrbG>P4FIK)a_2^8UYP zncv6HgcV?C=q94t^1}RJg7aQ1ds@NhmyiAM#6V+1oo%}8`YO#^7jch*L{ptBvGr65 z;0(>;=okM)hCy)xu%4{x`ogZFG!?bUYU+#L03JbTH5lJ6%Tlh9r0-k&O%b`?rA~zK zX26^a9ebT*j+jvVu4TzRS1W>x&_NoDqH{GIW%yD{XrL@Y>|}TS016S$9{K za_Rc_`nVU}l$Ve=h5#QrRt*Ng8VBzgh9$hBa#=joN{3WB?A{#B@#@H>dJdbW+wJh) z&)j--`Hv3s*;|};o|92xIVmk2MC2&&EY(E!Q2}}ClCQ}Y1wm3n+VO@JVLQSQE(gK@ z!T{SU-F6ofP^UsR3Y^bO^-x_O^LYXYiYsIfHpdGuDMB#6YG(aX!Me|q8p)>_E-gK# zl&|?NJkY}6hl=XZm$9-GRr#*2Me(UeXr5mY;Y_f(NKQ^+aHARyL!}gQ2-V%;VZsc& zYk><{gw>2@)9!l9g*d8=<|#~*!yo+cWVwU(vhht6Bjp+SBoW?|7hoktC>pat`h9jL zT(TyohFRvEyfTE1;F<$%6hFWjVikcT^d!HGGXnCNwuFJb4lq6Tcm^}Jr`4nhlg3=$ zUyX#ESC2MERMb?35wm#lR{AR&lQs_4H zR}=fKxXqeXtX%L#qpzg{_V-=*O%!lsd=hY^O1?#b-m3E5l5mckT0x#IlVxUs0=kUG z#}%K3T64pnESP5EX}vF24y>M}3Ae(O9$YIgiMGR8BxUEdCPJxy*B+ULE!{iwAwmWW53c6vhAkVr|_!ZGbVkETAZm^ zR_#EkIs#1a+;i`gV-dh@X0nOYIC)OHcz*$HF1N}PO*3Oz44}>>B_(~w>$=(-K07mR~;n(7Oy_U!^+4Xy9-PfK;~v95yVtqs-X8)qeZFAQLiP z_L8;1b0^%CGh9t_;5!etjLHbCdYNok#kw3$NQvZh8?SM3apaC~=|FfDkAQ$&v1xRK zMy40?`QqA7qv{w%76c{Zo%u&J<@^moVv`vj9`G0(dr~>{FG8k?idnAQzDFyy)!v;u zcZ{38@LNV1%*o#0#o_%u7oEAaZ!t?6kiP2;*(>aAzAubP+j*W{haC+xMC|PlA%`C9 zAHNdwhy@ld?1o$mI<`t%enFbd#pzDO;XkYn-hk>pEfhK~EE6^?sKf>iv-%1ZgZ?$E zF~mN#u?cN$Z52-CZ>j7!+TK1;9rl2Q{F~LGHKJ7C4i1}RRgIJ8R)981nlc1tR4)xW zR6*nbi0qaQ&JU?e8>n5n$qd=4auLh1Mh;aGG-1%K_ z+0I`-{fU*I#l|E@w}mFP+|b~(oyAs2u`87JI6B?|Kd47q5=3R3#)gpvZb0#pIg65=^e=*+y2=!>Y_k~VDVJwmEZ~A zJ$FcGjH!dco(nS{>Si%Xm7Tz_KYo#6nR@6nwd#^RX>-@1UbD>4Vi&J#9{)A}OEy*# zHTmGX)J07@^<`!KjnyoC5(tDvc-D(~$lDD3z$S|(^=8W(5~SFaWrbqS-S$_`{j_s& zWIp7DDR*?*(ngHQU<6^U^4$QU#;7vXD4`Sc7APjH3?Rm7gYb`hEOGi-g^-rA!1nxeD@g8 z^zk^QA=^ppBraZy`ht7P%I_rgCP_kc-)z5qC4RV^bF+#9nD;!`PzV+37Y_iG6sYN7 zA;h#!#nbu}i+|l@KAvPJyPz-zT&D)EsuI&a$T3VwH}O5 zJjRbBGq&$b+h3lPp1wMKeyArAVuW2&-1<7bJNFK$x=)5N3!(d+Fog@?}j z@4zdq*>vg0j;xm75N9dq%}RLTh}ax_{6fK5(3$kuL**w#C?(=nE1>h zx|73io3g*lDRwhX<+0wh!w0JkZ_~y!m3s^`)R4vqkFr#%#9Uc9hw^~MeIhJuTwDe2 zsNDx*5^B2Yq)(GsG9^`9;|8HL9LZAt>ImBmkPxp^wZ|ZQIh!+{5`)jZ9=tFjNeAeg zOQDX>9MBOtof7Y~$JDd^WF@!_YcC@Yj#6-}#O&wR zF>b%e?8m!%H(p1i6Dc!&!14wV$ zLQ%hM`5Hx{N9|fPaNnDfC*~-#n!-n8z~qtrn$`PNHCl&)q4^h>2|?$jUmcmQ_zl4L zGd_+kG8f0OLMivW9+jx%Z;JfK&VFH%SiqsT7x?DlIY}mO;0xZh>Zub zlLq35qV?xa3#vEDQuCC!<2KIM^LIQ0^n-9ry47`0e62eraBwg}n3VV|ZAQ8LHqLL} z?oM6acGWWYhk>y{OV#mmhB%nADVYG{>xWYAE3XNx@n4;{H0}|1uZ2A+u+dZQ$l*-1 zC`6SNDrSFgMm#~UqqBr$P%j*B7jG=skFZLpsq%{R5!|Ps9#ht~n`$WVnTy7<4wr^l zB9c#;69xA$k^fG$`0wEEu`E^doqa#luk|6HJ7qkNXci}m^(=w3llbx(lcBL5_X`Hx z;&2ji)gfM9UY@}rr8pMqJj`2^sWEs>J0I#Y`)M<7v}hL0{jBHK6e9}1@>l-Fa_lc3 z)FyrqOBdHG+l6XbK9TMNzxzC4Cl^T%$W1PQ&_Z(@hhU8i^;YH@K2o~=hSfk3d(y|0 zlI$&!AfI#yy992mOs*!x?*(IE=uwq!54d+8-)+N#VV*rUUNEFzeLQgFPfAW_K|Psm zllPw@^O?W+y}DM$bw>i5oSFEkbiUl?Yrzo2Il%m<0fCw-PCr%a`2%C`u4$HpewaFv|ypV-Zf z|JyQU0`-!q$QV-j8`Sx2pxgZuC?ccTArI;gXn@Th*^y1?CE;MsBU6ROhQn7zk zD4k84x`<8F2kd-LG-JOmTtFZ5%aZaS+cVpkGxdZD?vy-Gl0p?{U7-Xgua6&?l;2&c zR{!H!LFi9jA<=<15&qh^tdL5G(TGQLUTp#7UF8E%G+AXq~x36Cdrdo}3MH0C_lzu8Tn2Xa6>A-LyszW`Q&WmLpX6|@tD4RtFCqW%?y~xh6!?7XQ`61jmj*&Yp%SVI{z;2Wvb9k z9cag{YF+kx-uk`tnMhJcJCG+-*GtZP$mDZ*8ATD=<0Io^RB@Z{SR6Ac9yk=_{I8nT zKu^rkTePDvT6sp1lI0@G(tQsr*^Q#VTBEZpPqV;EH`j&;_brl)D81za@9w(rU-t%1 z4L+qV0X5BGu52kmU9`bU&#Pq=d5(4Osy4vzUnC^LL%$9e88%L^nN6_5$4YS$Ny}4H zH;$A=h_$(phu$ zo`j1J>uOntCY4)B4!vx#zaz(`oegVjkU5zKljV@I&$*-a^HA4gYlZ;&gTEe>bzey* zmjXXx@qZQ=Le-+$cTWt3RVdSIKN}}mNxh|1rGda$yUkl3R2r4H<8G! zLgSQAmM$(XKbPt?YMF81HWBR)@m{m@6zf?_^Xc5-ecBuUa(baw ziSdiLp|T)x5WhHc?UC*tC&f*6zKuP%Gx#1$POL$WPwQ!xafrR_ z%^86%Yv2pD&!}aTvsg-r`L7`O)KZ>64cGCpdQd))loLUX9m)9u2BbCC|{T51CttL9X^Y z-3Y)6m}TNA`7jaC4QByPXZ>zM(2nr_bNWns3Z;>p%G#dG%S+Y7gXR@oFX*vxaU@g} zCG>k`y`DQ31$WiQQvvLQI^zyhqPDD^^-kP?b(Egl;omqXrWVTpnxwn43f)lAr*m`W zUc~urv}xx{#8bh6LLCR`f&v*9nZLTZ{wC7ZeN)E=K##`yR_y1P#N#KuOdxZ-)jgEMuTI_MI^O76NQ zB`J;iwGfdj4&A#lwYk~9=x)o+dT+TkUxF}(C0=@jAG&3RMH&UVwzoYM7D4aeFyOFM zQ1`z0Xm6z%qN+xtv0!yRNx2Z z6JaQVj81TTc0Nw@T5rXe7-iTJ zWjpn3$1wHT@BHNnI+dZzG%JvM30;o5vM7PmoLUr#2%J2(4kTKNm zbC&ER$>9djX4m#YOrkVTJuYOw6-?M?z$uXg;g$LOA7mn5=daah#AeLp-Wd zQGC~QIp^%FEv}QlQwpGza>hDuSrXP?L?|C1&49GIomo2ADx) zAFAuPExfF`7}$AMswV>u_1QLLxT%z@l*Kc4Hv}OoSv)oO-m)BYFP-^&az>JRnE;&f zs+c6=@r=zhA0p{8GxP{N=|OC9gAugUv-3#pn&kCWjmZ4G1dYNk~b+ z1Y7$I?USf~x|_()ilFDU!v5s688LXc(LrU*e#-&0QF@IY)j32qALQBSuO>jx7T&oS zZc!D)0m-f#DlCFNYB_dGO3Xi5fI|p#+U*}I#?E`4gkMYbEkCzpK(qYcBs#s@9VwHY zjd4A;jw4Wp;O7f8&=+6^n-3CkYc~zir74@U5O8vHf~MPICyg=;ynHfak(!pdn#&Rx zQp?Su&3#4mHVrSrv+%0-`=^HRE_C@L-yuwK2FChN5uE7GPOp^#>k4elrbOsfiT@jl zh9;f`>B?o<9iNNgJ8W!ZWQ}51g1e4MmYibc4#Er#i?!S(OEEDAe$TApjp?SU8HJD* z8(&Ya)2GPfOiDF8a{;0#a=$cv-gO_Pm!DIVYZb-HSdq??+uk^G8f@X$bKxqkiD;=7sE% z)29dDpQ0yGK45uBQpJ&y^QSt&Fs$J&wSCBrzVc$%a9L)I#ZOEvkHLmN_-;IGc3j?E zagY1jiAxuLJmtn_Gk);)0=+)qZ%Ol3$=Ak{=*z3}io&A$fQLvwR9Zr#&)_h}yG%C(j4Fqc|9C|FizCcig-bX?hQ8GraAGOQKR9f+26?9s#t9J*IKntREzLU zVp7ujI#r5q(13nR$H|E!&9an-8cx8zA-R~eBq%i3>(N8+uANpI{NE1pN|-A6q)xUlNw&i=CewEdrW&tCa)f5!citmXws_ z{YrY0Kl3Q}`*>wd5*iFmHNJh9G5TXC0Fo$kzjRqXr8?v0B8}_j7iSse{%TNS3lSU_$Eq%m)dL`>|LjAfLUAt7y%GHpNNYO19$BA z?(Qq_U>_LPr#HAqLq6IaY|OixdshE0{(iOMo)`KUgaV>_zf$RHBM*!*gVm!$qi>rBvL!am>Ch_5~{R zpGHr?C;my{KB)=sDqf(L8$=H~&lNtR;i19vDN@fU$rbfZ0-lD)&ZH#po?)|L9fU&Q z<=WT`V$&ySFU?(&s;LDU#Q9|bumlePtk}G7-Fq_AOFCY-h!cvTK!LrxT!(iHQP(IW zKD^)Lo?h%d(NuN%a|yrezJ$OAP83FnL#)19^Hi{HWl>(G<4fywW`W+`29LjNFrk(% zR0n!sXMaC-qV-SB^3>l!_x70@?WiIXD~%eZxN}ZepJrwhuwK<~-%z)Co>yg*4x2wB zh$`H#_!8JVzbob*q3q=;uW){M`}&V5_M^pDS}LwNZ90Vzg9qFm9?0f~ck4SSal!TL z(D*gziKM!=#&6zIx6Dz%?ZNbItM)ZAP$OH|Jqpx6KEA#-j*cv_@`;(^5Pz)IiokKK8+ys(jr^-9x5oX*Eebo$idwh(S+MZfV;C- zB`b4%nv9+lPRCRma&ICO{kS^>Ld*_FpjLlW{Jvuixh{tl^_yE;%gMPHq`s#+Hd{M&_RY5l7@7n!-8zN+gt++m zd;eR!j~evE6muZuhA95E?HkUxYhgj95o*r))zE5+`LV^mA2aOtieB^T;~%C+*k{3k z+5*vM-FI#yVNjO8^ShgP5xGol?J4e_o=4rus)zrz`I9O!AyFpht{adKV&mg5@3`>f zfw@zW7W+J(+LV~{nPO3}dWHFfE#0Sa!@28=#(Np*h=W5V&Vzbjg8ur|%OY`b8!(Y_ z<`|+V5N-_&edsl(r^zN5e(ho)He zHDf`)mx>Rb9Fs`VJ0D*kmRvRZopXctJ|9%TEbqO7)wuKo-ebM^X}eosVkT9lzn^%a z6;;N~%iCS@-Zu_F3u^2sUjO#ZfJvh*LCUbmptk2!Lm(l-<2r#Uy&Ku3TdvJJrF9_Z zDWRdZo>({3=(^zrnx@ZoS%Cg@d2tg^m9Z?=z61fhvJ_n7I+IR~>h6A~!$Z|i7)Cdv zvb1l6eEKxBu18O9h+F8H!tK1na*YB}_hr1S6dbTpv*j4rwyz)4>Wiv+n5{WyX0Gfb z30zx{mJ0_3Jk2}HZ@V{hmtOm&JW46{6kouyn?5@t{MEkzd-kP{xn`JYu0ohz%kd$C zU4C~E6D3Pxu&+QJ1_)~!zbo@t_aeKto8lgq-O7v?FW^`fCIHey8fZ3vB~}ek)A#-- zQ)G`&1Io47CL7$ZbW-RV6W@hANL}IL7jH9nbNt&zu&;J%LbvJnRJoxM_r$UCIw4BC zqP!5XM0nah=pyIfWP5W|oySACYo;Uwo6>r?^8M3l}nExzW-1XHIcHZ><-i!NBt08ggj=JX@oTlH%B{Y=2 zj_N-iTg~yDKX8b}BBZkblw5u5fva6s=Ev`!c+U$X*<#=JJ-7Pu)9v3d&HP4oRKdQ4 z{f+rtF5*=NMW3nPM997W%)4gy^=b{)#&u21;O6QBfM+5m31eh(nq4o-nud*gcR@{d zq8>qzK(W+qdM@Hf*{Re0F1xv!P}hx-qh%$|@!Q<}E5Xf9&pPgpyG-5s>!08;L2EMM zPC7+LL3!FVoNtf(xT^k`u%!rkFQb=?WSe;ev~euJs_0Q-)D+3#%%BC9CY`IFU$%v? zN|qXNBkhrEgUGj&ID64wmyylJ`DQySux^8xQZ|GnPPV3bT(0k#T#Mh*He$*y!ilq(JV9TH#K$ho~eg0=n*M zdlT=qlqUR&+*=ZqcpBhGiy%D?`P#g@57CKP#R%JS)=I87XYjAX-leXXg_eP^zuQO| zuQ$LR<%`CQT3teQ32B$Z0Wfj(XS5I!GbRSw&mM_t8}~V9Yb#llrN67em|y)hl!dn- z=~kum$d9#;)8U3MzCu~1=+(C0#N^iH znCL+6E9Nn(XZOV&txm|cSQ@Bgeo#H;SiDngqfw~^yF^j{{rmRz_AQX$HcNBw)Z|f) zI4NF}SDCr9(5=o(yVDN@jzA^XW?GEi)i&PPr*>3hC-+{CWD(tp2Zl9^E1P=iwW}x#m=lNWCo7?3?nami%nPxag zs4K&DgHpdf4vSi(v*zogJ;vpQs4}0mfncYzasCRWaJRyix9kFnCtfK`qeuO>F;by( zRgO6WY*)M@^gu#aC6aCCuzv#_x6=AYmBP)=(J&+!VEM@bFw z4m?+RA}l=3En#n2!5r$dBIf6_x_3DJSD@v5A~&|ZpVRSL^g*e6y}RAWl7IYEYR|z+ z-`#faWJsv_Y_rl!hHBAvN9J(&W0c6*@_m{%RGaAwB8Q6-Rz=#A{(SNA#J_)GnOtgQ z0)g{5GoCy5NeNspj%^?x^V#+<@2b()wS?KJd%GenjL&f}A-Q0M<#_@pxzO41nER-# zxiucb;2fc5MAkGs{9Gy#8~6@_b)b>C5061;G=-4s345aa+xPG3e0+U2w|*bICDGDm zN*j5Z$=s^)?sPudKVW6!{Cx6>VjZ=Lz1{WI&dt!?y|V?!JrsQ6w&HC73A_cN@QK7B zQaAWFDxls>qqXopWsily#?rq2T^GA)etw5g#JzFq$8^zfBmCz+M;mZ3N6c?OE1$2n z2!$1~Dx>v?1q?p?eQNH#n{yA>?STx8EC{M{a`nrWJJ~bUxjQQT*3|jVO7umND@Gqw zgHWLiT>RaxejKg;WQhmTk^jD)XgU4}A4^>wKfs`{!@EB0<_WLlpbd@Pd*jC1^W_>mi!$i~6 zU-XZ5*OJTPpusM}d$W(6{PVwa zq>xs*b``rWvDUqDTe4@f%SeVGLaUiu6wG3dsdvQf+iaT0UHM7T}T{WpcBK13xPca&QK4_JZEz`@jOYVQB<)rB)$oY z2v6488;)&Y%G_2tt?ksUF{oH~sl*obFZXc}rL%%Y1;pa0fS!RCbhG*;STUCb7Nj+` zg`1mNW+g_^>(~?`?8dseR2-}M2=t+%`AqtL`-X9W`ttSO!E4+JZ{ID_5PHvi>agk^ z*FpMS5Gz(1w<-b_7~npX#R}rNa_Ytv`iQ#LQdZRgN3tVyV)G}C664=n{zdLcM^`KT z;m;pVlt&+uTbt7(#*t�Ux0*0WE`wn2Mt#r)712>;a0|UgTu&$lWW+an{IT_3 zlFCnr{IIhj(>2pYtEQ&mFUaJ#hr^ifpc`A?OV3^hW(3n*MH4dRU(0ePF4nDn>Bi$K=mvp zHUwS~I6ln4?>x^3JYqZQG5w^ZWAWrNj>jk}4~VeYMe5C~H}MAzQ)TkTYf}2Ir8rwzl|R#p6V7F2E3QJ3WRTT;$z&1-OWh$awt*2=yjK`;KRxcX!|viKhnjPo)w?t*nc zBRg|>`tLSat9*S$kmtI)d*e#Pn>#p-#JbYr4?ERJkEyDy-;LN``tBw~eC7$|X-N^e z-SCX+8owEE^w8Hrjw2U0cjtSt-Q#zkLS~kQz}k)7(#}p{u)Gj}`>{-Jg%}&XMMRpN z+*P0YYGPqyF)2wk(PDhUSIR) z=B@qW%~v{Q+9zUHT#Hg(S;5UTY1K~!@Z5||*Y^WrYE8-;lST5?#<=rO-B}flf7aV& z+3_R#FaAROJ2=Vb66EEqSaOVwtutkdj9xi-q-IR%bC@=DgApAD8Sv+hj*rU}7rvZI z&&yq2*6i9%=pR~sytj9AKJ9r%n)}f=){K%y%;z1vD6~z_LPC`6y%Ou>uL@`mQ*$S( z=B=jqQ}fPv?5W3C?(hl-Y$!}qhDmCfsAk|?OkdBhkzA5gVRDWMR5utFB}l3~8|Ss7 zFJ8QNl1d{1r!b5!D~;QScd_o-`DC9Wc75Kq^F8ULVQ;eS6!kIY4<+9-JH&5DoDtD5Hl0n1Wy~@Zp#+ayV4oVRRWAVl4uuMuc1*YWV zh?*iZN^oZ-=VY2gAqXdIo( zXtcbCT~Y-FfcF_!k4EIbcu^^KI#VGQiY&!*Z>E`y8zpxdtH^~Pyie@2V1>q>m}gL` zc1Jt$b6%rEN^yGXngXQhZXHY`POaCD<5q}nhq4-yYa5@^nCz;5qvc-!TwlF3;o9i0 z+%vHmV^^;}XCs|?myEU?5p~i~c}6J(Ef%z3J?zxBZwZtQzhq1{Wat;1@e_4zm+Kyz zE}Yd)#jV7V;p8y9fs070BM(umT~UA;^0l^>FBJFeF(n>YLV)Nb(d@CuoQ43ILx&bW z0?Z!H(l)%0Dce>P29y7(er~kqNh9alo!+#p!oY>{qcKcgL$$JKpSSSQ_z9%!G zR59_tXL8a}`?*j)&K7+x3Y+IjmwG2@C3ZR?_A%@xp2vuxg`O3};^3hJ^L^~LJNHQ< z8;p|0cQl8%J~N#rq=(BhlYo%3_KJNkd`>$&H#7YkW)pfQCrzZ6lu?mJlq#YKv6JUa{MD;jE;r{&8sXN zl5TGA;IoIQ3jkg!KUa2I>BUC|qg7G9y&hM&5o-_JA#8a@`jAUR1Oe77h3*y6lgXFT z1?p9|#|D=iv9vdfShz<#jBs4Woj13)A=gB4t;SH7;-mVrj};$-A?-Y}#^_OqBI1a| zyIo>SsrUt==HuNkL;pKt*6Q>Lc0vSyGVq|Tt*@mIsQ1vN6$fRjB4f+3Ob1!tWAbPY ze3McwUFu(2y4s@*%*M zy%ODJB0^@{&nhcUZ@vsPs2H?xTEXhBUL z>rgzPNQr2Q&6da^$`T~J$Jw?6+mQWzF1Qw+RgI@-W}3gSeG{umU9B9=|3HS3{MCyW z-!Yv8ObD5u7)jN|STFQ8F_Pf(kgO{my9VjIiuux(_@1Fc5Y!{j9PN zhzV`kv>({@l`6fqz!zp^P%AR>P;y!JUUF)9&i>8u=*t(@sO1BOLC%}!A{9Tj!npUx zxBN#1NO7Ksitc!%#y2Kd81t#|#R9B1f3Y*i7o*fh+UVBa8GAnYKj*(5nkb;a%gQ>+ z^siBUAw*DYN&IdZ(|lNvhM<{IsWJOhJk&h#GxmKAL5HG9cBKR(j9|$$TSIm&Rjm$Z zweDqL9H`y@Tt>3wTir~xl=Uiy!2shKy?NZDd-|nXT*_k)MnUM;RRc15_lNPHMBhEe zRq{cUEabz$76SP z;2@dBdo@umLYe`11U1RYMlDXLV>Q^JQf{7}NE?BtXT4|mAz>tMG1nve2G>TKRQs_d zYPGa3pq}zQCdA?$s%Va8i^JcP+7f4%Ue@7O$YR~=jX3Uo8R$ymSbXNOtF|}3Th>*7 z!TKX|^>L*hE6j#SA0r+NPpBjpj4avr<+GB9TU10vV8+FW#@hZ2$jZtpEH6h~wzK_U z=;E5iulaU(pGrKysuGbA$`@RbX*LBkUB?TQ7uP*RkKkAadUHPh!~llXDa59DP1t^cYWo}Wa;2Qpkh~3G*I*U(SNBA*(^F<{5N!@GPYL! z)xQ1{>tyd$+@1u5@r2lSH7?S_Hv#jFmu)N$(@!L)jorQU-k+Y!wKAHBWGFUL>mv%( zSc&k$Z)0!N$pkc~k2FV(MoICK(38jhQdj(>6`$6)n)=vqi;fTz?Y&nJqnSbJ>c)-X zOWNu7Mhs*~5e#mia7Xeoy%-%5Hdm1e=A>vbo_aJHC|AgK#W>&3<9 z&ZhPAk|l}a6)qm0XNHC|B#h}ylywi$DX7}-b#3e~&J&YFb|=xq|FNwN^Lw|Dq&Zd| zCses?DoR(PQNbaZnZp!Az>Xj6m*Ao6>h+k?E;E-e_#JTb0hPm^@)_^eGc7}Qb)9GG zT(*2w^gp8a?j86X{%%iH2gND(+WY)HNg`!%3gE%ux7yzP=s6!% zkQX&OMWTig$hI-b&sR-E_4`aJ`1%7on-CxU1<@Uiza~yK_VE;^W$E%*^|V;p*;y?* zVKy9v(tZ+uDur5#ZQR`4pNNRe9PhY|qr9{avGqXVE!78{CkRyCOc3Bu@__wyYd3Y3HpaC1f%z(UgdAdU*$7G!M zC$lfbvlmuWh{Wp=ns`~`pgNbkW4sv|8P30Ty9?s_R!o}i;Gwr{N9);LV}M@&O|cEU zW!H6;qs`S&?15d&2z~~rwmx*I+nc&}J3{sO^!`(h+`c+{2;QRo^G7LbNMx0)o;F-6 z|0#Ed9fuJOwikYS3Qa(d7S<`hKiDvsSy=AQH334re&HnSdtkj`Yyl_8KOqPEm*eCc zCK?B}EaXtAwp0q_jf%d4Yem3n^~Jw+=U6em24Z%k0}1>>^?^aFHqi?e z^WJwqArtiVRG08Xo zUPHEsVD$DQdUX0~)$*;Tl4XY1yJZDL|MBAWIkQX!OIGcv^Wfq1EMsL3f18{CYD;A( zE7$0}f(e)FgB0ao_E%R$VoF3u@>cP<>Qz$ti%+aWyUb|NCt51+kOqH)!;eXxj7elX z4Wa7}(ZB|>UMdBsJul?SXS{jXl{nH?_LsU?zqQHH9kgwV@afkz|LN%+q~3%iKT;Vp zIC9au_hlgwo-GSJv`LyJ&rvznYM`FxKkaKC}?2u{4mEQ`>7ZxgiJ&+x}7t2mz=+YpFeSQ{Vz-Pm8#xE|kSiRi& zUoUvY|pkv3GuteIFk7xi#>abP2Im!_r9>-?Np? zoTv;b%dzx7KfbJ{jP#;;L{((O(Y*Gg%Sq&O1BEy#LG$?o2TfdUd$DgZ+xyzaC9f!@ z4W*yABaH7{$U#Sp#MHy-AQ@NIN*zwop4H?V9p_#i_3mNVw|d8g`NMy~`9$!@SO^P8 z$P@wxE@9|ZM%Mqfd#DK!$kiUQ0h}7IjpLg7wS4*XjP(Iu15-usua@Gnc_*i8twS1+D#NG_ zM#$aE&Z@yC6pd!jH@|VPbCAUM=vW-3tntiHgl1-}2qF#N$tOiITG(zJ z5MF1lIJVVdC@L-_1QFnPyk=qhSr!@`sfu8ywDJ^y728r|-#x3DP1XbHU|5tPd(+&1 zJ67&j?}wV2esnHzNut(sq#+#6^|h=Z(gx%!V5k#;DPpQT7b|ni|5h&}6pL_}&;K{r z{;&SVV|=5_IBuW&)Z+~;5UHkLS2+Wf%L8YSZ>C065CM@Pes8BS-(1q;o>&}Z~CL8vx5MUZo~0z{|nUynWZ=7)fs z6ttEw=SjBY|9Se<7CF7J;8xKOrma?e@;KV1NUF%Fn7KQFPtuYux^E7XcGt>KPtWO* z#1wm9JZ%^1^z`&5Y$D2=vpj;ljtv>9df3TZU8;hc6|~u-d8~&2o1Y(s6*O^&`F`u3 ze>}JrKjB1O{zz+kYpHKH+mIM|0UT$0<9N7ZqLzQWoB*rPZ(cBoE$3*KK$rH3`tCu~ zXM_7s8^-^uo9qsI+y4iu$AA9*D!JttXx(V2=GE!psDPOHT3_p3BM;@8o) z=&IW6sj`11j3>O2Q65MFu~S|pNn!uH6)|Zq&LVxLltaS@sdDc(z@yVF{WNjyspINM zcy8jY#bO&01x9P7k~9o7jQ+3n$u^EwaAv{U#g2b_U{a|+gvNDe_cuMG*YA~TN~Y0l zc=WoQ8{C%A;#Qns1L$ad1BHj*p6|kgGz5|{06^mDxbmL zCo=lrYccL}7icpLHh0dYf?#4y6f4_`Z_Z9-@16CvXBdeKWGDU4J*Oa7raV*uyT*nR z_>{||ALXe3OrHEeBYNqMs&Z5u2MRMoXLW6urG+neb*-2?zB5jvUM0g4)Tt)Z%+#hb z`2o2Mes*|$bv7dwfZd&MllQ2l-A|_r?#QF?fADD5_#gT0aAYXq+&)*aJBt^HU@a0D?fQBqm5o_tDdiTkrE6U!nlpMnu149>V zuL}Dv-X}dM5ie(cqT6XtxZ4&hu#@DgvF;Cx>=EIGdhHza%?;H!74)8->~EK+koz}~ zOC0NYJPq<;A)~eFb8eBeHT+qN-=Xm$iJ^B7SO-Z~-jw|+ayh(Ge)7jssQhS4 zz(f;NvfZFAEHqTKe4@IKAJA{1(oMDJrkVI9-sy{X z1+HdmUAv0^yHi4)k7Zlt_Ha{#NdjYw+@4xx;;&`P0e8-AbTpz!FWhf6?7=}OLe-ST zHTuIj5~_x5J#jfAFoAEe7$8Amf9Up!b@%hv&L2jVZ>fAY)nvX$MlHA$#yzl>v!gct z5w}?UAnsf9oIw^YK@$9EZR$JwAt*qLoij@W!-`-t`AcWvf&!?Mq8>OfTV-i?dm zBdS;q)OnilsVV(pW)|e#T(?4`%6ylG<~R!1-u#fADz?V=)BzdjGFm8?*184;#T$rq zQ9?mx-^GHFbbh`Or1y3+=pEfhWC_?kVG{!woO@_xD1jJj=6AGcb!+tD?zfl| z*7Y*S`0^O>G7vjVs-91BJSw#-tN(DxMN5W$Y<@TekydS&rDaGBiZByT19j37_`beI z{*{J~t+janom{rxTtch{Nqpb=mTr5~&OhBRAQNGdIrvNtLUn?0@8fT%&;TJ|tZo5e zCzXnCKkF#hLcoefb%b^WWGKkjJAN!2Wo&k0r18kHPT?H?%Fbcb@C{TCJI?Ve~XEl})$`awBr*^!}no|69n?Q*-49t%lX+nqVS*y4hzp704hQCBLmliY} z;aw}vAmb*JCC=}F!`x~(+w63A4h7PbQjstL6u)zXY4MHmH~!s>uGby+<0wf}zm(=X zr9;A&D_l48;_icMxqgd5K9dy@!PnS7Va8?elL>n;whX)57eAy4lJkYZXc3TW~UQ^iz1iUvA zAAyk5R?@+hV;jBIRGTLJ`?D$^EoaKxQm;6?=Sh!B~vxR_UO)2i9bB3uCo1^FT;trXj$5;kHVN-lGBIkhQzf&Fu?qSB~UQIx#U5M}jB3{_iwt1>rcSJG6%oG;vTXsV-v zBuB(E4w(q+#M)hmMc{Qj)$tTXMSr=;#?k2vR<^!&BpQhAaEU8=iR*)S)HC>=`OHjf z#d@gH(9Mb(jPg=QGh*Ujjk*G-*ecf>^UX8BV8PdOZAcdl@gq@L4vSvJmF37Ex7!g0 zxK3x+{Tr%spzHNI{}0HMivY4IE-#OckjG`r7_)t%V{_)uvMyx!MPy)*6Ma@j$a$N5 zTfk25;0&k1Z6VlQKZ$AJ>hk$epaTyNPs`bIG{_Z$Dh%rn&sO4nU3-I`qM$2fKjy!* zS%|6l3g3)d4sRirWZ^t#0daqpH`_``0w?{C90#nLpYB+_4UC1=F3+}^_7c;hVc4$|<9 z9xMr!lzx0H{%mHu)=lzw4y=dW+V78LLJM%PcRkmRR4}6W{o6JTRHfbYP3lro`k(24r{LUO_)yr!F*M~%Ik+mx3nFBMawa?;2~Mpo7Xwx=(zUk)zR zvE~jK9d3=6BU2;6YVBS7!Un|3IN_!55Sz7`6D)e8ne2-*H98N6Y`trjU0RGlApope zZIO6BW6wtq(XtrTV;;5YmXFx|FQT=@e~T0(7>n=4fXA1|8YNd+0!`W6JvD8|pVjp} zy_&*)(3CwgJ;y<5ze2Qshc9RK@`l0CZfV!+OxgQ%;pU^!Xcda)P!=MEEl4fi#rL}= z{(rSGv9P9^ETdff)3g^U#5-z zY(qd!bQ%Y2mp6a^hOO+q;}`TASCspc-$_-D3Vaz!^1sMv+rx^}Wbk20Y1>I{)!a#A zZH@01B(j8ZJnpGWc;p_5)I5)3l zwrZyjDsgPGmAjZfk1{^xyx&N>CWLU4E#2^Q{4_{eJOIOoMz`N2+QwEOV~4N$#1N&R zIq#iWd}mftm!1S#ER}*+{v97jp-KhPe71-u!JEL7k?W~TZhZF+rmroA1rx~op?RH9$)bkT{p+D`&L?jjdNgN z0KQUT$ZSyl1Z$(O_20w*Q)mY+2N_XDM4Wj-uxK>mDFt*ox z_gW4w0bM%Y>;+kE{O+y;9K>?Ex)e9drdQEqxxURFBeZmR6R!^Fx+&t8RR3MtHiEk;;aSc^g_>}cobO$5?Nv!($cdkazHwN+Zu z649VxPbdAGgR-0Cp`=|3YhX!aEEaCDcu`}{3KC&t&Dgn*^L$k>4uMw8D&4tM{EmK} zjDn1MtR|i4>%x>Bxs0~H1b1iZP?lJ~^Gm9-?IxDI`&eF#Ps)v2GKPoA!dK(z#Ngm= zLHl;^s^eZl07X*4&<<#*y+ofsA@5>M8||^PMMN+Q=;Bkxf#UVz@&Xu=FM!^>JyF?M zvr$d?CnHApninqw=wQT=(q4xHEZdnPwuOz_cdM5}i^4ebi=GLsr*)v1lL)PILqOO3@) z(H8sO*lq4bkk1P0YEUnIdD%x$TwKx^@Q3P7y~7ia6-;ZYs5c1l>$8>l*`iaI{kNzF z`dpN5EPM9Utp>(IX^!jrZ4RY&4O78?5y_!;UOCc?bv0lYC&I?m{q9`UQoJJQz*%r0 z#vXk>rSG8focoE8Lah;VBFyN^7ealPp4JYSb(IWW-SruB-Z&71;H2l@Z*TkZ2`g z)Wph=rlqZGe<=agNKAa}=-3RRDUldr;#|LcLB^lXzkBYfn}%hWI+T{e;Ll6aK{{O) z+t{+gF6myhmD66mW}4UIauJ$;D|yHezCe$;+u3w`+N z7493VxD^|rB|#`dAsC7$XNX%wWE-tEShA_PS-(A?weJCE)$2l(;F~yW{nT>i<%V0r z+{THhADCH1ROxm@^=0Q$$J!@g zj9E(s8T=4H=qm+EnQgvZqjV7k`oS8TJCV`_ zyBF8M$y}@Xx(4xDjW0i4{+aY&*++d66>hJI*q94img=A;+INfr*33=NtrovcBDnF9 zZxu4})xGhbDFFSPcFvqp+V(>^_kn=myt*M#qQwEOfvFa69>Se@l|~H+ z&~c7S(W2h%Cj93g?2sF&vaYUkwNNUFsz(wb-B*OuZzzJ#g~h`zQp14qFOW=ogk{=hMpWAM=owZa&SQlY#f! z%_nlpa1zoUQ3MiVV`BD^IMa>OfW1?l$N$=>n;mKBz)cM18|+?lJv7c-PEufR%{yT% z4k!d%Py_@y`fnS;cvNF3Mv@KN=JvCT5p^WtAYjLdG-mJ20(vAFKdy&ZVcI zJe4IbMZO3?T6hG6F#qth(l-2#$E!iY&!esGL@J4}njw|3IA!Cu6slXG zH?N+o$q1GBHzu*BdULGmxJ}in+gwFsGR6yYH;g_>K0J1H9uDkK2`9%w4N3En`PSp> zO*v(i=ZF9H0(1NB1!e__q>i)3dWTu8b=I;jqW)wF1b>mc|VLkMVP(i}I5Ye~t6}MBr z@r_P&>heH4x*fI}T7IbJ7b zRt0)2eA`FdoaFW6BZ0fFR|ofQo^NK{%v~f8YE0QicIyR z4>ax=a$(796VKEMxvt|a^828flXB+Se zi)b~NCggT@`A%LkseCfhuN?`O1XYx><}tN*I0watDn3?ityH}Sk9!)G`mxOP%*?_> z6ao&n;UzMe{ECWL{jqL>(9dPs6mPZ4^Re}n?mh-xHj?)Yahux{RlY@^AO^PWxQO#{ z`O#o(l4T}rq__nHcL!ac*gj_#+6kem4bfMwbgG!5wY34?8}>IVXZ-ngbsm zeX*g0dAjZ-eTJRE`d8ZU&~tASzu!#A`0AtqM#}@LyBPm8H3G77a$sc|2eCum<4oGx zw=qJ{pV1#SW(x>V6Zzr~G){R{(3%ct%I@{j%o7SFNTSTh_Wa5JnNuRj9JOq#s87EA zR(2dqrO;EvV`Q=8QASxAuvK{@m+vH&lx;ikeRCGw5=GPqvN|0tnsc?_$M*{qDbRIi z63zeF+`OMCpU1`_;N7O?bczqbEH8TTaTIsGZVAMG1sMZD3Tu=|^mMm@dyM7RF?98Z z>|I-g#neqIA#O2mCmQ;1(jw_kPFBSy1C^=9i}t!LrR0?Lq`{vq?^;` zg}){x+dg7nCr+6LMe7(pAC{HrNW)Lx!$k@PowH56&b}P zy#6KY?)v_&l|yzQMhb<+``&czjw1*cv={%bjIx3|iPjr0TvGcnj81-(eHU|3Q>_m1QE{&74#JCh;L=9mxp{)7#45s{E;Ek zzN;WZk5LOr@e5Ed46Gf|5o>}LA4}q_yj71k(SddS~(-y546U0Uxb9w?YhXC{eU zt8kRD+4^2asi;HNGnP@|J7w>uQ~sn=AQEC9T-J|mE-o&%KCqxxoe*-==1g4c8V#pO zv#+l&)Rh<1d|xUes8Fdof>>v#F7Q^{8Bhqwzfm(`&>G zpK#AnW0mHmau;H<&-$HlH-=dwt|B4YB|=I^E06Bhm+3SPS~+0@o^T0J_>LP46%HrA z%4D{b45lK$%<}knD+s03;zxNS;-^|B6aT2j?O9@^OsCQ-Xqn(cIQ+I+{qYH(-XXN2 zWS}S*sN<)bZ9Z*Nu>3H0NGX)Q45x0$6B6q|o+kr_!->Fu6Z)V$$i2MU znAJepXz2^f1>TQtTY*TOZ%+xpzX%8CWnN0sY|X24lnbDla=aZY_b%vPqzP9=k? zI$X_xWtvaE7rr=%deplzGCbrAG)a%$Ny%BcN7fm|S-Q~#c4LQy{pFS~<#D9tTZ9`t zDTQ>|1^yJ7k78s+x>RTD9kOvR^JJvTRBO3tiw;^A90(Q~*8c#N+ab@wqf0eG(WioR zC9Ta_Fd>1I-#xTqG}QOr>vw%FFCga&Y?=rA58|Q20_dA)Ctxx(~_v^8d~F7tOh;`uVdQ#wC=l@7nwQh)eXTt zZSDB_NH40x_!Gv`PEAq!v|j#J;mv1hpNOhMM$0hU0y&s5N8C<#U-6!*Qzm$69uR`Y6j_i=w%AD@b=z;u+9%tUpM zva|j>bNfEYQQm^;bYFbEwihbZ3#GR+31vio35bIGZ?U;}^epesv$g$&i(mC;eWn*A znqR&kxzO#Gxb2Jf97;tbYp@CD9)LMjo-LIloe*#m8?Xjy?Xo_6jOJW-F{z||t#%i6 z;$ahdf-+zOib#^D?EIr1Xb|2!($1L1mjCp72Fr^KKQ-Hc;UTTxkL@=3riO-oSfEbv z3vZ2Y;CDHV;iqC}ZDq>TC^tw^kr9A0h4Gc-i(tkk9vYlPBCgw1;<@(vT7#BRp~1NS zw6)PX?n8OQA(=ckCdIWI@R=~S>t;V(VzoZ-vK|J3TF|0y3Iv2eTPK|3G4-a)3?`c( z+XJPwk4oNNz-hA*@m&ElFg}6eKrCqX#Y?_ktKV*!AiPJ*3}cel-dNvAE4#x`dm!+- zbLsQULo(bR7o%X7fyHg-rHJd`*)yAEzQaBbnz$T6h&eGoN_~uCqKP2hc-%8jg=MZY z&Eu6FSEdNpnX@zTz};k`@Afs$Oz~FHLZP62sL(mm3wyA{b#4?FSIOaXd3m={Rr9XR zsc}hdivPt}?g={HHzs1X$LvJd=$pG+=0IOotlb*;g~X}TQ{s4s;9hegeGSk0s|Kmo1?Rg{ZS*Il?$eXRCXsq7-3U#m zuCd*_`0?c_m%Q|w8PFixY;We(x95UVW}#Z`c&_g9az}@YkLdpV{B!33y2nILnuMr9 zvC<42+H&yw>oYGq$3JT;sZV>PTcuH{^Lu|SGhnuHr9m{Ntg3T#d#kQ{m=M9|V<>&Fb?0rP5kBQRoSh9-i4S9)EK-vVUZZ-K~Io_SCxAj7vm9wWi|F zvz48FdJiwB9P!ivwalys?5|Yt#~7(1iK2U;Tcl%_rJy|UVwbg&!^$k<20nx?Zieek z*hqP_2nUm~sw&|Zv~W$fw1>LoUyH`(W6F2XE>rjvQ*abe@m^o(qd!Vp5nLsw@ZPSd zr!=XLbKm}@PRgn%qmGSB{A%j0rawMIx3_TIio-{l+qx6(W#$o7`;)zl?y|K8GQ{bb zFkGv_J+uAe5(LT9Ok00o{`297%>^drWP|gHz0&aP>q|8e(FRl5n)2ww&fqLrN=&$q zrS`u7yix$4_(H1D?>$I-xigT8_))UAPGk#??OZ_&PJ#zs*^N{BZeteASxiKDNs1+) zVwgm!Q<3Mb!5jOa#pcb0={Uv~pf!rYhZiCccIb=xzF7n1^-XajrB^j2ZV`zX zsE;7E(41Ux(i-HY)XcM_aA;y;-E+bxdn~J9yAmRYfh~viW1#vIa&Nx?C|k zA`|=zY0m`k9P`A8@JPrfeWvnUoTxQn1xDJ3%tZnNj&8?__hruI=s>~1!{x&nBgK|*I4IJbc1>$Q>N3DuIzz&k%1bzUlCV!2A)@^|j7 zak-iuYom#=Tr)Kv2bYKsXoSMcajd@vs(Tk{%H(Ts@bHKzv85DzsZWD|EbXbGUENE0 zAoA1cMm=@CJi**{Q-wX-hIcx=PK3CW6a-?<^zZge21{qo#UW%>-!Td z8En4!AkXH#K{#V{66L#-6Aulv@$#Fe5Vo=SH41I5T#=17&-VUl`_t9J%gxd)S@UWD+t O- zHA6Wv7lp2P+U&ndLuYh<0wU6qU%veL_7=iTMmT_r(gN0YAd!>-$qvv19NIYf8#N|s z*)Y|#WF(0RIPc!F;FDGS`LQgD3L5~~*q9-pZ)?o_7}n9bT!283;Q46E)8q8*p_H8sm&v-%|+3n)vMt!_JKKJO-}CnkWVVzl=Bn z@M<;q{U)L2cQ`)unsMfOYg9z9=$g6$3+N_2?4)~g>e}_b8(kB?6)0BQkHfW5%HWyk zM&o*nxT6OTI%Wtcc--8)THi)Bh)9Z6#k!fODEni`*fNdXjqj4Z?oaFwyOwIx>*iIF zVz8{C4Y#dT%-8Gwq$9Z_S+_gg1Gjs)?aQX5hr_;09@j*A;Er~96=smXxOR}VHSIy; zFyAsT0*`o_*d*5XBnlaI(uw@;r?n3$f}UDt7XNl2VtR!IXD3^%!H{;-XZzyN7khBO z^hlw?F@|#zvOD}76B8@4&-|@aJ`|8v#C30rCNC%m&CcZ;m!kQU44)7@6bCr|c%iPsRDWOh$~50}!C zQQ#(zCMJLB4Wh;4lVc}vX>rrie#Jc}lUPYDX0`6fE9u8_m@^c>(Kf-Y(PL6mszRVI~Q|p3Uim{J}pv^6y?82aAK4aB$c`~J!Zoz)4{D$7Wa&cl973r zzsCIV+wR=eexJlT2*<8CZ?1AVZ;Q_G8{Co~;xT=oI7|%TMyo&H33zb`90ySDZ^qFc z-~JUApXt9!ODF9EQ%Q41sV8ZLMo57$N4qi?QXtR|{#ECzGiN&AV|7Q(^$k6ntBO)K zb>djsK1qzh6dYIyD>H{!>H~qCbT)q*5C&RyQV$Zb!5Q#CpI{bMfda$O*q&57c{z>2&wR#8%0Pjm{wM{qt84|ImN%PH)S8l*jivq!2A2Vy^&QR=1kSl!Go6b3payszYdO}wm5giyaQky9%ieEyJ{NNxQ>;H)1InTFuzGjA8|#tQ8h^&C%exzpF5;b2|Bc zm&3HB-*rR`D=Y{{<@Iq?|HdtIb`63Lpb~=tMr7oB>5;zf(IWp(G$sZx5^rQkR+u=z z#VG4xfR%in7KiJ}EHYvh7B1Z@&J0rhda|Ah1{V6M&53+?yxL3;vCS<1h!SB#FJ3b8 z-V!cd$OJioEQD$`r#-x+cLUBgawN-s%3bhM%>}pz4RXU@9T&vg{#ph0f>arp%=py& z>~}(rvOdsp>ay+Tg_R{eFWUUQU07bS@p5hRhj=Ohr;1c$^1uhBXX+I$d969g5IE=Y zPZ(IE^rPa0xKlJQ9##;K&gXi(4VLs|BuLN9UWI&A_;iuhxIoi;D7Z&Q_xVfTN18=h zFa&YzOVrtGvXYAC=|WiKN*KOTqf2NqFyleiM(DIIfT$7uU|nR;!>eK*i5`L$Lw=1S zuPDKOQtjbo6ZPgkya}6|d4bjug-~+S!2XS#f&y}7OF;R)=1=POBk7-V>MgSS^$ig= znMQ(v?}4HM>yCdRA$C(=OP}k=v8i1i{QLZ~5kFiCenVB}FB+u{a|=)3i20s4{oT@z zyC*ShC2`}ummas`W%F(|W8yVm(r@0J)>fe0E_mXhop%1BX^T`4-c1A}`pVx4A^&U9 z$m%DU80w`osS(nJo8xTYfU@I{zSVNwOAR{0$|4Ehdi7k;cB zt*Y{pKOn+u`fOE=N=Hk}1hi|;5B}VL{?KWL*kn3{e6NwW;*L4~n`rwQ1m|-Uyq>2a z6+%}yzsAP8HpFkdT^eZsAF(u>!2?&P)_$fqDyj&K>Z~(+VHz;mW}h{&KCypQ?|o5`b( z6?3gl%+lSyb#+m@+D)EaElpc|)K^VAI`i~&&yo@WPn8&rrpF1|T)>r_z#G8r?cWz& zdtn7^@EPPuZQikCN6wyrrafC67<46ExLZBk7OMnl&awr3ySUo`Rk{6Xzz&b3s1X$jyV@A~h7L+UzRytx4ZT`^M9&Y>dL`ui?jyubfQ zjl!$vz4k_1f$N`ae!tl)!fO8nxFh=~@DiuO{`H62k6)AdS8En|DCf-Fr%J$Mg@Hqh z#h;JB2umN5k_dUkx+2J(#Jd^*&uc*lW(Eoc$|L$YspC4|{I$VF^4e-`d;Birm z*?j-=a?U=qPf@!(6PQ}>grAa<7mGgq@O{(Xf4^SG?5nx?`#XRekc}(ZxS@CxFJeetx$9|9M$`_2XW1o0YzqYh~(y zqinzhrcBu{&+Oi6+Fn2Z&4Yu@3|l${5Aq)Zjw(w@eR@)R?ajG2%JxV825$1NeHFat z!y)cJlj}eEgDwtVTwQA=?-hM}OPz<#{PWd^PJ_(ZZrc8T!j1mAFUmZiD;z3cUY>P# z=h~+q@D=owW-ChGzD+jhle0S~mAj1twD>w0!%|eA#!O8Kd_JD+VC&boFyt=akR{ E0H!%?!~g&Q diff --git a/pr-2491/_images/examples_python_visualization_13_0.png b/pr-2491/_images/examples_python_visualization_13_0.png index 439ffc19bd245078d1df462bf48842bb983acb2e..a1b9fe7838971a2bb1bbdf8c7f3505811a82de0d 100644 GIT binary patch literal 111245 zcmX_obyQUE_ce$j-6Gv0Ak9!iNi%eJI5Y?%NT-T)58cwzB_NF;jnvR7B`w|cKA+#a z*7pyF1#6gl?|Dw{y$@mPs`9v46j&%ID7Y{M8BG)v)B*4ngn zI!uDc7iY&y?;4;EvTq~Ctou0zlc@02Y#}S|eT4TGkUR`w=83VKt@k3GJI|2LYri@0+^?Iy zY|Oq9_CFB}hz~f8xhJF}y{o*Nt2`5vE7o4!47lG!y=+~+X|3E_`0p7jpMqyR`q`l_ zZk{3LlSKP)*^6?!`EV65{I;^SexJYn_*HwSmYUd;j>?DYO5(?o%NBR35+^n&mv_q# zehAd3Z$F~8)sgK{#ym$4J|-SNwSHa zuKLxk+pN94(~?cSG0E~Z(8>PHNB(R(@`S%(q2;MCZhX`+mM71n@}YM+Q^?tT-sf7f zKm#4yAKY5&|8A|*%|usE4|S%&X}O}3nuexOn+=s)M5K9b_kJ(?t`^0(#WOB7HI-{y z`Tx%T$$xg~0(OzIWS!q|x%yP8hut=5zkit)|5D9my^rwCA8I`Ajt0X2z3)dw`n_24 zpxEJAy(8Kmq2Y>3%Kv|>5#UxY|GQQC<1625kL3&6OYe~r6c!S!<~G#=4gb?T+Umx} zt8TUT|Jh>iKU+xrXA7AEP1r-5k)ce^;yW~a)rOYifmgO^a%922mn$I>i!g9`l$dAe zH$7`1pK^S^^lhF*Mn^y578GpQeJdy+F#e=H;NjlH>}FWxAeITU(KuSq)N5lK$aEBD3?nYZPOcm|6OVs z59d6p7aL9bD)i`Yy3->DvEwm$+WpHW+WW(h?d4_9wJ4LAtDE+Rn+{!PV0-jScQ|lX zQ{b%fkrEf1_r}*3%lG@s|8CNRqOUd|ZnM$2A&_4eZ5OT7F&9U@v>y(Z#NJf>c?wQ9 z{C}rw>VIXmXlx_8#46&f?&}kQAqoGeJGU=-$9NB zM15Q8rRWWMD2y?!aNn~9d=wJCN$vHK3%C7#w|$t>spZp}&~35AS<$7_!_xAa$nq6l z^xC0F`-#Xca{1mdyqlp&HFLG{cB6f0e3gMXK7Q-kT|(~cHEYSme=)c()9$ynf8ZMu zy?e|Ru<3DG9&oKT28r6t4#;Z1O};0>J~^2P4*sTFIv>qHBj^tWhxz<9g6Xm3YqH?& z2N)F}6gn{8`N*4!Sf0?Cj7XmFiOJ@4z?t4vNc(lEE0p>^Wcd=;e=XpaRtx|Aa+@EO zho9H)d2f>3adIdYGpJYb{;mhN?c#i%1nUWc<&jBm z4ZBNW7@UlqgX75Qe!qRA>txfw#Hb6RQdm^zc@ib)xqCLvny9$W9--TenIKK zsQb#xu$+|E=N9MrneNou9Y*{TUGBq2R2n{D@!HvZ zjmkB5sArb^A1~t;*RZ$Kl_#wY%Z2(Z1id^k1n{9oV>~3pz{Fr>`F1{FurWq_XHIa* zbDzKMXp%W9GdEEOOa%!*|*uh;ZiIgTDamv6J<>diOMm=#ZAdfxA=GOM;}Sm8yOv?Q9gN@ z4T2%1@k2=V&9KL%#9dJP$IY7`Ss}Yk4rP^EP7szP#SHIr1J!I{>2lq!nzBzTR3Ou% z!VshOb^4};xz*L5c7x@!5u`OU@v z`E7dlvE)Zb15h)mrZ=XBa3Zj=zZ-Hm%v-zIhcDmmFO%N%c(f0iT}1@MapNHUy6hSZ zObzHUq|d2^Iu#iTO1s~NdHuvHNPQ0aMf_>if5{j1gvk06lcp*Cd0!HN8 z^;MrGw!sn70Z~y#$_T0`o2b1EEj=xJ{#dG619|A1%^lA2JYqZ7sbL-%FLPwAnUgl) zmM3CxP`{DNr>IEy{UM$3VD6fbaie!4H;&i+5IHzD_ngGsuAc*07|;zXl<1T5)Y)_2QouW^2B zj2d$`saXCYNfz94+KHVIF1yN<1Dp;P;&1PrHo0L%N=gbU@tp~t#L;8{Vu-qkaaC=slI>H<+4qUte1VE?RVYobhTr8QMOmGuXs%1?m9d6 z$C%;lqFD#?O_!FVol@ZCE1w3mqblrV;^V2rT|+lEti-QQwZyLvrL#ocBQ+b9bBqf$ z%XvjbhqktCle5R<7lyqfv-`5`Nt1P;#YT#m8_E=Ybg#2Pc9< z$jQlbbW87)q4N?a!Mx!N&`i8c)sWv&xI4SM;Pwdbo}dQ9-%y|zxCoojH5C%R#H?0M zXL81I;P72dk)cprzHl~4mO+k7`Lol~Aih}F_Jhpo45dClSRVNq_>{*rGkO=nr*d4c zGF&5cF(xmg@r$yuRjyk5vvQAUv_-B^4+MvOzEG2sPgoq3+?KAhx6?vrd$q0@&Tp)bVijk-B|GMJ*g!PST#3F^%QUyN4W+{gTTRKZ z(qK(S`mNRJndTU>h55n$Q76F(zR=sIasLf^AE742lAKlGc+!~RiNHc;|PtGCXpqUXY2GU_vu}7Ha zyoOC(<1_}))v5%uBSE62GdO`!5u?Eg2;>N}c2@`d7%?8Lvg9%fEb)}xK0e!*N zICnvBsD(MXEE~wKw2zBFY1_^0?MKBwE?O*H^IB;3Nsjuh0>&6$^UommREeCh>N6?I zrE*@=XRGB+PMmzH_{JO8Gs}&`KB!1L#Eo;+C2=ba#tNslE9RyOkSEUM03Uu?> zaQ_}29*+2OfPuvQ^KKI;x795z>{M?@y6V{-=9!)5^^;@?g279pc5duQpu;T6QDktc zYteP;u9pm4flM}cC@_?PzcB!mu7ev_s*vB_nez=!#EQowAXu$Z_iL1ijS4+gke1&J zpQsQQ8+j=+&2sOO^unZwdQ*}TlfrSj{!H!9`yL*?wFHZZr_@N9YM)vhFhsjRY+Peeqi)ii`fDuy9ALN?f*AFG?eYrY5nk>S38 zGgT3G)pHFJ%)k_b1&tB3*qSNJ3G$biZ3pqSj_;NmrAx>D^sRIaEi`uBZ`&!SqVuR| zu`4Y1p7=pbigZggI7y%IaYoA;GDl->c>OAI(xMpLYa}b|FSg0v2*elvGgtRk)azEL zse(@w0-A8R2_n(B_op+JeH}$tSJ(26tV9P&_ESj$&}#Q0n9c};XM%r@UJ7lvq?+e^ zgp)ziRM@x6NRO`^$tk*7)o+5siPnTvGwr)W1$li!XdjcM$x+EJG=B(j$?1s8lfPO= zs-;rUs!@9(Az}GEe9G~f)qOL4p?yNIP4UPz$YV^psZZwz&J63LsQ>7&ew7FCh# z*(OagMaY%zWYf-3H|v81xTP&d7bNH?aja~~L5gY(#^t_PLsl}$lB_tB^g@$gY-TexXc z>vh8n{JP5r+7?j^;HjBJG(Ypz)@6=DJzv+~&pIn{R z<_R&M`aObC**DB53|axd+B3%EgH<^;iy)u%dS->t2HSCHSD$B#`e)z|XKl0scPL0U zWpJ7&D}*%~GuzBVC~-*-mW$fjqT8Klb@~x^^^;uflfjxCry?HzVjrWTt8*li(^7X2 zZ;ox4>qgAEnGiL;pZtEv9WL{sO0h^Pt)~yx_3fIqwwMUEpbu*$N! z->@tvh_mA|@WaX=VZh3;T-Q*LY_2&OR1f2;dzNSe10xI2H_^}T zcZOYfS^R)uzl#b>=G$)f%xv>oW0v;GOXfi9odn4ip4VIXu#r_oy2Zb@?;AAUwjS%@elp75Bv{&NU(yw%gPiu zYJ1B~yAc`)q;H$ElVW|fo3Q6+n=JW;3rT+rS16setTin%X48nXq~pbhlTuW9c&Dx8 z(EmMHwgHnc!y-dvBXS#K^;2OECAv2Pm?N!zm`cd={TueDm%3dSe*czQ2Uj~EU5dY$ z|J%{#M{?{n#Uti?;ce@BiAg6+fn;%`TSoA1U_384-Yk&8j_2dnXzRN{p_Lxt_G4xFh;C>(C z4GW}Tyh}*;X9}1KY+pThwu`(rGd(bTvkl9GcW-1gz8u_Kwq--NuY74n+)_c_cdzaL zBppIVPVM)2c}g$BX>xe;M!dGRwyeDDPlF+ei}3luqEdmeYLo_-7KuvNndsEiG-lxI zQx=9VkIIarGpx?k#1!*#Q@+JTGBA?M&Vla2Hw$E|0)xtv^LZyN&g5?M|Scfu=rFP_rm`TQ$zO!db7PtUhP8wCPeyQsTLHJ|KMj5 zduuuWq>1yF46pK7!Wd1jgTuRVhq_UImC!GJHfG!35!*(Ok3@G6#(A(6)M+>8{JfG~ zXt!pVduexLt<5Z-*zXTTYDIgqwjr&IFe1=qv-bx9yAMKG2k+RE2YCc|JJrjXAvTn_ zqRTdLuhbStJ^|4T3M03ysyYv4Rb_67=n#NnJx_iM_HUj@VX09JFu}N8se7HPETih$ zs(((pr@xG*ws0BAl0R2W_&RnO|bg3jC-V zCdJg+V=7k;t%s8(D80bZsf^tw#hrasyh{=x%iPmTPEOsOwAonS*nih83yo%k*c5yq zc=dwd&B0PDNcteL;lV!V*a6qoxJb~j<4h)wXhZ&tA3L}nzK=J0I6LwNk zQVM{z&#$3Lg*^Pi{Y%?+lE?8r@@&kX3COlxq5mC#tpE)1#k^Xf*x1_EHdHF7D$#HI z#T|W?#iaZ!!cL>$sY$u+kywmJz%j9XS69pFxRO-aYu-5>lDTFN7RCzuBwLD1cabRd z#QN`Wvf?)&b^IK6`?+IcY-!~u_TovwL+u7xhUYO%S5J3lW(Gy(x`BN+tH7L435(sc zjf+Cb}8MZlLlHv=ie&qISP3F zw3aL~t!JexBsD!tE?!Bi#nN82}WPi=Vd7KlE6$fb%S!CEV5uL!`hw z&ZSZL&rQq8u*gjP@7>DQDV=}naw7@9epZb1ksWImf3YKzV$`i~dJ%f3Ru@Aa{9j1= zobQ2)={KpCPOjc}KH66;y7_TDQY_|Eb>j7Jp)ua{d8i++)BHql)*3)kGg>C)o$4ie9WqH<8*?gKofJ2+g1ec;$Zpt96}7B?X)licYD>StPFxS zi(+VHW##+R!3#eyod4F1Xcly;X{kD_G8;od6HU_B*MH;XpY`j6Wkw*ct1H3MNS`4a z+X~FZT|Ix9sYi(UrI1WE^9d2MSmQa1b_XbNFwJ(ow91@?K>JCyASqN8r02t)!79_r znc&jQlzDZ0Ag+T7lhoeRCymKL@V>$f-f>y;gvvVhi2i;Ue9LOU)yplhd&BCMM&5AR z?fl>3;N6v1HU8Nib<-Xx84X3QF(+E?)9;JhqyJp>O-weXCQFNv4=SC4bLxe1HOQZ% zZlHf;N9MD)bO4+eAkEuuY-klYMa+4VV{vf_lce1|ptnBr&g{Oq zFi6R~L$vjSM$f()Ortxi4AlofGzN(xOGj22nSA zl+IM~$3N%5tcCH@3t-pMdVrFQbXL`_7(du)tdgEWhHr4E5i%1aS zg~-U7q_fkPmscVk1X3H_af=r38O-LVgPqE9TuqXV1m6)rqsc6x!mJDsm9Bb6o-yfZ z=g+T6Dgs~kb-`lfi|rn_sXdxkV7nVHqr))*EzjuzQ;sobkyhuL(BHsXn`#%~;S6CU zzldtQ#v8I=sf^cCWC@ZZ6ay9h%3qes*kT(*GAj&A(;%_3^w~D{E{Gh(CrSe|9PI2E z)}_C)#C-HkO;vRy$9I#kB@p=L^w~uz0QX4j>wh}uMn&>PeSod9psMl&=r zQp*svJ~OJW=*c?co@O5P$-0(R!7Yr;T)kZTTmQHs3nRqjoX$GV_Rd`Cy;uxD=_22Z z>#;p^ZNx7tD|>%7$Dif(mt0O>?&G_^tO^V%5<<$1a9FNEl)Q(OX^Q&;ivV?02 z7nweznaNVb>{5puE1qSPFx|2k|K|%)xPX`0xDS5Llk%+o`PvP=QHc7udR&^*>}H(- z8mQ}aIrQhss^&^h;tD2prUV2)|FtdVgRz!UH#s>$t{#s&{vm0pghT!WV38upN?}g` z*3;bJgpBRJ10&!r15 z10BXw5u@l&{~)DOM$s#e`Ziq>1~(>to{7cO+Kli5LLk03+O3r<-Ad7?&VvvIhO9hR z(^91yhd3I^u}$XehjH#3s~*w>2UkI&UX|)yZ7e^Gc>eP+Tj9F@BVlcBj|d71ay%HJ z5gBH|ODznuG5|mc)4>4%b{Z`@P zb65F}yP4}!l8#qnTw}?xMy7PJ=l6SZ5|~;G&q^1*1XGxWsrQlW$}b!Gi%;xY_ma4` zCXaiV=*?J8e=8KPoho%dB2j#DpMNBM-(d8BVDO4|PPmGa_5aljp@@P=Cq8pN2vU4N zFslzau!r&Z*R3=PeWPaKax}@h9z#3ban}1$Y6K~wVn{_SO2^^;-&~PUV zS(h4^6%a12&!PG2f3O==u?xshUS3{+MuXYwc9nsVkrDK&MU`6J_e;(ubQE9tRg|kqyKo(WcwXs?!JB7Y>Grd^ECn9I@|2Q^Z8?o6;Ih*-Masur>K--8kXgnvuTnM zk?Y!aQV4^x$l8U2*};+x;Bnd%TI2=kpqf?v=!@WLoAF5T-gz_V*X0}PC!L)4ed2~+ zg}BFH+G9w8Ri0j~@^|{Jng40PMnK~k*NCTFNE zzcB5qooAcca1B6DQe2iz4GmYvuTEmbD9of|ECs-25WVyy+mn6=9oBy9(nLHu z4n@*eY?R7h%kK_7Ak9nsqzI8`*6n@R-$PH<%UA8GePS^*{ z9sR`4LU*I&y!~e{zJ1f3q+}|1vctyd~|7?U*7hioso?{MZac=SdLqE>loYHFq-pnZ$>pi!PD zA00Wo0VoXCI8A5SgfD;PT8D#T#8+qeY-o&l&YU81aJpi!B=FVCqQ zRCaV!P|{9sV5Jy6kc{=b6~BNs*xdUyfomOtg+m{O3**;oJCo<*A6!IZm>Kt$c558d zi~C_<3M|$xm7$aK19)Ef`Pg8I&XNN`@HRR;jajyF>yGYEZNzgJf@z4eL_O5tEKbqf`wY#6;Zo`q8W_!0R`E_8rLsk9W5u0mfs8|bhAl1rKDWPe$pc^e?u{tz>+^c-NcDLG4O#;g-=Xk`Q&mBsfI+~04)}DMFem6 ziEtkC`!VN{-9m5PMJER^Sa zlEZ~TmuJi=Pxkco#%FmG|DS($N(zr7iNsM@SXd|q1_AvO*Y{*JlsyL+jiZTm{5^7V zEN9ACu!HQ1c$TPz$oQQ8lc8Awh3dfINcL=>m7v~Xeev^P-e`+kxxlF&bbk^aaZ&cP z!%rZm2y~NzDHi$b!q0eQ{=C~Nj_$*Kld39Gvx_W<{u5P6$>VU`t}Tk^c?<$wkVdy% zQaH)c?T3+qvI+lia;%bJbvDv!M-iRls)VZ7`0RrWu`2zOiUqqV8dQL*{sIjxL;Iz{ zq}dMpTuAYmFs_W(#hxjJz9Q(q3Cn9 zD*N$MHPxTD(o~Nf*xCPFi8mGUh>J%D_k}_VPBY+SkOQz9$JJ>FE|Pl`7fk}^zZ-vwN3-7X3GMCzSK-VmkA>l-@FO1#}q6_eUB;MR8VA%CBF) zRxoWK&mvnL9>Q@Zsb&*qe8$Qf8V=miOdAMTu;UXjs~|AgR(P8YDwL$sYNGeUEAHOR(yT)&;q9>QNC zCmiZ9)+eY51$gUFJTP+9 zMd2ctwq3R)@q*k<0Mnz*@^MJ+%rxQ!8bY;5x_0bOt(wHff0-tBu86*@urO@}`q+GikM_kfN~*B!W1PvWf$gW%1}*Kb zM-2Ztg%STRw~xJ)Fa$yUe5ZmOVIf?-Lfh5@YKJwE)EZd=Z`Wk2p0y>o6wh+~{%NBB z^z+BQ3(PhBeEw(B3*4IY(LW{?pD0Y!&O}U3>ima~ei#vJ@bTv9qFJ;v?|Y}9#O$Zw zhY}=}72vfN(A7aFk4Jmt+xu&KdGga|mJVfhc4cMuV_lm0?_*X*S%tfgD+X5wu>1+Q zp`sc7?#)R0I2nb(n)k+fLbD}~GJcU25vb?g3?Mz#P3pWeZ6DSscz4dfR?VN_OhPz7 zs2R8SvwvRT%v&t8SC=E1$I>1RX3W|@XGZY2th~|!_AKhVyylW?7kA%ttO@%%2>(jo z&)?vID(;wz)_ z*O_9IxB#eJXvHH6N#Nbu{awhNR&z%`$gi$|_<~IvFtpW&0cfy=qubiMg~Ka8jUD6d z4|rHjaDpvVTZ)bRA#_RyOm`_M#6N?kLSiOVdelGM;-b+(snK&K15Hl7&iV#Md4SgA z70p0Ab2BN@XUV^iQDNz)=t$tUH7L##^SIy)(hLK2+ke03xOy)yaxLZCBtzT|7o0?+ zT>F;-rNRxP&Ska=9}E9I7&}`{ivZbyUNJBg4ir>B*!hZ0qTJiBSNwQSE>>OORHPw=($e(ATkXg>$e+JXcQi6n-0F-6}JqzXT?$AQp zU6d_5&7btBzKby9WZlvi7&bKyxx5S;ns$QgBz~Pef2RPw^GXl(?vc04xtI&?>XghrG(Ax^Wms$I*H$8n{P94 z7=L{&C6(~&i!)2M4(^NEue+Z|ZETtAIR`}9f{e;_gDn4!5)>AW?YQde8r@`OR=JTEG2kHt33d7^$y6jlg4=r(gOyUx3(xuZ6H!E#kuo0}|Uf_3(566iM!6-!{E0c-W=SC?@c;ze3k4SV8F0V%W8W!hM z?w%eMg$vD$R*#9Z>tu@7TKOa;o-NS-GL`}+fBwckw%*7xhgZR$;Ba>1zl@e(SYCe< zbV{{`Et_yG)V#0mbl?{eaQOEja8pjzqMHNTwAJ#$*{3lUUbfCbmRwUgMI1|5jH zT$cQLlhK$Z8CD~tm|DMFSL-Z9;asxZ@f{Ymv|S{KF-E{jY);hE!!%(cUk5wvLb-UN zEqKsek`2?=n*JmFkBDEgd}~Y;%bHik=DW^~Xx;q5v$(CDNTcB$-L|>EQ(mz7>fjRv z$KQdV6uR79&0?9Qde%9CV0b7dCc>Hq*2^SfjiWOEPe@@iSDPjF7f-{xg|D+Vd(&Vp zBoCc)gfkg&mm#LvOs&;PvY9|#o zRP)Wr0f?f?EBP7E^e0(B^MV-Quh7mv@|7rm0wfl$DqYD~g7%+YYJ7pGfzA$+S7a<_#nPktL}~)Tka62 zd*WwxY@r+fNv&f4tUhh~%F9N!>r&b65c;gm0!@QEprTKM1Jx;%L4lv4Ia->D^*DZQ zZQ@1qk1=~5aVXnkBFg|>g5d8PBxfy-9tGc!Bjav3DtWOZYkgr{BN@;$eU0{~mwy>u zO=3qLMxP*a9R5rD{JoYRt-uM6pLfSXoJ6;L4(Yl-(v7O zSmhjF{bSe0HwJ3Oaw94ccV%UP0r6dOi{j7_EIUfde7~`Q(2_`fsIvkMqlm1GRigLH z$E=o&UAt%L>wWOAMPl)H>h)~fSr(fo=G-3;e+KA((`kq9`DVE{tK?0ZvnS{2majfV ztymk4^HIo~B>M6zlFfh%E9eoNghxWK_YkB%v-sG43o91l5ha)~buZzuvgXSw-C_)< z>cyT9CU8jX(8!Q-14$a0qZI{uonlZuq%2Dr^9!8i+oB77(%^;(G8a_Oc|N`jsF#c0 z2;q$34=EMnc{`t>z+63(X(U8GZ#JLV?j(3G z45AWm%-MT9pt$oX1`pqY6pJZrbW(@L-bgMH>(jOTW@9g8Q4C|x>_p3RlK_?#$2xc{N;K&x_EOFDUQ<4b6ZXtsM%*UmLm zi*pJ@t^DBJJ+`4EVbyl_n-~4Tv_0-P35jy4X3?*4*|IA_!W}KpMlQNrdY{S& z0dZXS@P?4@YoRJ1a zj2J=%M8flhZH=(JMeqkWv)?PN$KA>MaePd{N=MEsj`Zs;x;Ks%(hAG6aWmgNoXx3w zSL!2~CuvT+F4MOOg1GvwwH+CnR~k4Uv<$z?oJK{JZ(O#w-v+D+wqHmboi8;snciGy z3CdXhyXoAHbu;baW=T|B%^H}-!^efs3j`Nd*VHrbAZngf>azngB8y+Z2}a-5X+}SB z5S|UL(CXW?12VRjmW-*4c12MELaSAw;^*3x(?K%vg&L*0b{^2rjp3tu>?9H9t0BsP zuGB?>X@ea#?7{5VCP@9|83GO#@|8Ct$-9&s0_iIMmKwWii_|2z)3i57&kmH|-9=C+ z%0j(Ib4NB$zLZZzYgi#Lyk3o*Xik+dP-(Lzwrzrs4z=gsi9$b=6%4_2h6_pzj389`4b~8?kh~N|P?`-y@Swi)RO1IpW0(9sZY| z8;@w&GoR2g$jEPw&|LBaBt#qo%P2%o0$31G$ciuV~_g^rGG@HjM)AJU0ed)5y(KZsT;Cmyzr^?tHZ2V(^XK zFNlLNCMYK|H?;3!tUysUZ;ZgL(iqR|T?;q|w&dpP$F+3|GshSnCx;)k`T#ywoj0SuBK|MUmZ2IuIX9{cd&24*?fYmMSDIvnyOyPsq$qHO1Gq|PIzM_+Zm_>t2Jr^q>-T? zqJ|7fO#{Fo+}b+WCd+IGTvy6MK zUx*^0%72Rebhg$bjRgm3tD3w)PLyN+9XShVQJ@=p_3G7Qc;C)-Q|K@;y`x@iCMFo9 zxN)|BRBV~Qr}|7sKv<$o`&{V-pl3K(_YQT!Q$$IFdEFNi!e-;bDJnL3Kptjo^cANz zY$4W+IYh-~i)1h^?$$5Y27Dhwf)?~qsw&1tryvg6$jJ|%0~(v*jO~H!(zMqE!9OY@ zcAGk9nm9p9|MG~u?nzCelvhYxhG;Iv6N%du{Gh5I+DCd!k2f&%3t`2^JxNW`?&4f? z`b=S8FVaq~L_ZxAF%>HCo{`k7qBa5P&{E-3_%~hRivc$S5G#2NOjhDA_^j+jsHa~< z=emwPw{%S%*(_EntYJ)y1sgjj4AE<@2NYJs@myC#i+@- zD17}zDvyfnfQ@kYnk(mCOu#AQ*hx9$8!noO>h7o|i3wXGVB+f|!zY)H?rxSh-<`bk zR;8y8xb6#(QEixASol>_201HzV?ZiAPby6=>SRK zQ?G9E{L#Ji&oz_~+ki)01)1-V#?)=zG?O?qKUu1$CAnIvSGlT?`?_>iIpTJwb}}0% zd(eN^I|7-EP;|F>;y$VU-mncIvA0I)T^ch8Aj#wJ?S;x-juh3lWQc3OHoTlh;Y-fb zW(oaS)t!5I3gIa4{cD9al`xi9V!>wHbg$lR4+5H;#@fp2N$-U-b;#T(LAAqTzZ8eJ z+i*@si8|u0+-u%?``!;Ls8g@$&(q6uI%kugw+W8s>1TlA&|*uhax@Z}ZnlI$WSS?t z%0xHl*v2#LkNT9lh=bu!30*sl<;={DKR*K(8hxHmy8+<_fE^5fTbB?eEQ;WC5p2V^ zfBkhZl6gCRrA_=1r|au~TMjNkfI)WMr?y|lSf6RuE$zMr40*9vDZ>`s(dF~&b`lx- zt7UN?+TQXtfD?^P=>RFXbdsTWR63EiXUdJuya4E=%gW2axWn@I#P12ogjk)j*4`v< z6UafIhm`q&^sbz=Ky&*Q<2g7UO&*g#?tH*#38|*tQ<0N<9ip=#UzV^8;c43v@GX9( zQ|PsJd}}rOMe_mRPjBD81&b)PHEnnuA+-J&v2qQQIrKd*Um~GKIqC$h+BN8DVh2Fx z_UC5a-X%Rf-Pe5s>nR@98(Ul3`Kz9q2VxmWGD;gnGGJ$Snu$_NGIVKaY0p=$zBorBx7FE5+>KA4u&ORQ zFD9@WB{+07B@FJmLKECad%!x3f9RS%w+Vlgcb=q?wVG?!8&A*696@!HI-`A}X9YM; zmUemgYCtTOp&A01@2MBtOwktB*48LT3nbyPKY@uw8OK&WpUB>31v^teS02P2pUAbOJb! zoPxsK(lwzvj!;fc9!c?$c|>sg!^3#nuu#vy2H1|uB{vEmIq0L9g0K(fmhFD02B<#p zdpjp1zYkgt6n^#!XgF2G2%xI@?ivmMZ2PR%lIg1BV(_8XFH%H!F52OhMqDP5q8ZTN zIl3i+^8xOG98#>)?ZSV={PLx+`zgzn6upWC+Z}R`k5pcx#6&YX8h%+!blUB-N9sFuactKFgpXvOaMw`qg< znXkxqwKYv_k*&%;(b19l!F;XB2+J8K^_HgT0o2M#d)M{G$#j)qcMVp}`VMX!Ll-m0 zx_O}DnnSoPylbHK_C~4&R!*w-z!j*1i{l_FT96WVs8rkoJhz|576X&%2-PT}jS-oj zbx_+@-_v<3njRILB4I-Yh}%7p_aCdrG{*4YWVg*==h1Vuj}Y&Skb8IvUz?gcoMG&g zo!pb~HOYz+qwT9t@)xYQsQcLnsA^6tG6Tu z+5?KH;P)8oXUi?lj4CTTO~bdR5TI7Qn>X@~v?(yQmgWr+1g5=SQ&sQm16y#OG!;y$ zbriTgJ-zKUPb4}T&|m~W95bVD1}NO{@Py}&&B+eY@JDS9Mj;4gEeQYQf4e$iIhduTEr+)!^E(G&OdX&yCv1gMtdT3Dwut;?cZC5fcgxG zf(nq^K#T$84$(AX1E;4Dkb%g=df=EPv2;2J9!f9oZ&$-S`u6*H_Y9cuyWX2Tg0Yn7mTH$yCbZ7KYxr;Hgp!g{ z#(C)GpgratS!4`QH`ps~3H(FQ09~6_r)KT!f=-vFv}b6LFO3QE(D=DTba!LF-L6^p zXWBpMF+$PKAcbz2Y9!Q^s5VEz)9@RD-4%#SzHz{ad`H&Khj6eXB0A}Md4%V!!5Ugo zwtrgK(UEJci?{xtsVK_5#pVVsmq?wfa5&ho9#O6Q#j9Uj&@Wc4Am_H(yzbKj$U*ZxL1Bj;oaXyc(ER( z{in2!(k+#(Gu*$q=fXBi&rwEv`FjoJ=mi-Y2x!2j(pVdcMCLC8L{&{qC)g%9IXQ97 zXJ48)g%qh}7qSU@^51&S&l4&>_!Jg-lxLn1g_7Lx@izs>)#rY-o41|_;`P&HC%N|4 z(V)V%PBlK=;iDlJq#959Tq;_w4(b$Y+6#z_&g)}uIV?FF;)*Cqd(^aFexR4Ji zBnrf8VNua6Sir8&l9yhR=ykTOpJ%1?2#E)Rb7u)A;S$D(v$v(C%KNkN^|gRYd3QMP z2n6JCk~l6BGO);od{?w~>E4Z&MGF*EnVDApa7jqRQ&dp*{#$?pNH5W#ZmDA9!kH*5 zI~Nx+mRQPNG^nj8(N%2o^*};{m5`3W4% zg0ac7?LeVIZO$S_qg5d}pV7}FobHZF=lvI=|8WtSspM&hXZ&?G_;rR+Kt8KMAWw!l zed6vA27(KqshjJ?TFs_i^_4F^aBde5C>#`B5!D_{KpcIjt&&5Q>&p_{O5{-a(^dZa zX9}xAfB#$NK4^bvi(O?)^jzK2h^7(->!u6Y**0+htPxI=)$sx)<%8KSAp9iP+cqGl zFA@I@Na(QY>P#_jg8kL7%_U*;<%rO3!=JVRM@Pr6R-{OWqJ`vkTmOD5TZGlnG* zdugcKQs)LLL_k20l9~z!>$wOaYX{$qmoc=@?G%KQxL`ySnyL0LL(cyGP6s@OiTt7C zD@P{S^4-dy`pE#z8NT(y$JA@(>4S&s_y?XBZ~q@hXBie%yGCJyPecg=r9-+)IwhrB zq!FZslx|QdY3Y!VE&&1Qly0P?Ljh@q?l{k!|6T$!?|%0aYu(G^``3-yHygc`JSKD{ z`VBo#x<|>#$W}ncrp8rL8ibK5X+P{^RL@-?xC)2x~{CWoUMS|&=qh79R(cfAY z?+3rExLueUR+FT@Sz{D~&st1tBqc4yWd5h`Nn=yt+_q9kNxO1olEO!4qQPS|nuI8^ zTam$@6YY^*tGfeR(|!Gex4+vW^;12r+)z98!E$xFEd4N9!z0R~_nMn<_~2I16A}0# z^=f6fZl-DH6R}|IxT344R4{iNl$;4>V1ab z=HW&;u`S1o?M{219LX!#?fiPSS2mliQBP)!ia=Xz}UD8vJ z4)S(liF(*D5#t+v#d3=DT3zkMXYWG;H8<^|-o5m`2^uf^n!axMvCThy*ZQ6LNhrD{ zdVdR!xqh=|5Dt2-)aW1!)fxTo9YP zoi4`@DLl8<-;S3Wc1oecgm#cN)%7E7II*F%S4v_c0gFMSy!|Q1;^Lwp&`dC~aLO4x zvY_9e|F1;Ti(lt<<$eEKrBo)Np<#b`2fn^Ce&1-${e?=^Ef<(2;TbV(<9LZ?S(6ra z@bk83>s}If$}1^3oK2b$kdY~+4D_RXj52{4jOGEQue4Qsdfv|0dVzAG^UCX7c;0_& zVbz;nu~M+p$8OOlo0PLwD&lf0_xfo-5w2EoHowd!!+jdLq*LV?^j zWBSaeWC4a?pGF;p{y}KWpc0K>x;%q#!n8byra>f|GqbTzUC%7n|C#M@!=x5y%mHLz zIyj0uD0EB=YIHp*)=2r%7>N;&+tJ2f?BqDZU`o3h@bl{OoXnNE;h~90)?!8Dr`HqZ z6IH^lD|gGtolj6$7 zcUwJAKojn3GM&t8_whD5j!j{MK=Bv;i3XKme)qVv&*tD$XNM2x@yqaoE&6R2On-00 zO!1J1h=2O%`_rRa*Jre_OK%dxar)XUHQ*FcWV*a=~u}LRRa;`F; zhY;jHf`cB$Q$q&%=?7k9xnsBHf&PH0H?O_feUuogMb$jB$@IEd7i_+zVD}l<_lhlx zsoC&ftZf@^-PGGe*wqcL^Z`HM=WX;e4(%!-KODpFjWM6f23ymF(o(u^l2cSg45qEX zTTIaIfG!Z5bdw*C%gTxNFtd?M1ufJ0`lqk__GIf+&%JTmIb$2|)ZJ2cn%vy>o!@hk zg@R&!W~tJ&Eo_+gDiz9y-n@P53mO`98}8c|R-l^w+8wH<7`$bf*rh0R`!Y0mgIBk~ zIV^Fy3LYf2Tt$q3E@|V!T|c*v`w-1wJhH>L&oir47P*~zKwO?ypviPBA^GvV>Pu_~88-FLs!FN`HUHvRo^yEY@_OYCkI?aHTX z>+1|8oohr2Mu-tXN4yp~A#THul|hUI_HIzz9VoZ$70gPvmWp2Q;W+`7xF z`*W2D7})x!hharN!+&$b&v&bG+PslQ()A9FuQb;=m zYvaMAPNn39a=Cca&3?YWFX*<355u#yfg_WM{EhtRq7B$KMFLsicfl(f8X8iJ&OeOL zV;Ye_r8p5bWf>%IOu^ z)ibkHk8r3QbB>t?tS~2$iie&>y$2i3%Gh6l3-Ze(sJZL2Wu+Y^`Q`E6@FTKRk%$#H zlnuHwoMbv>)fe|+w?y>i*WR1Av^XMG&Y754_BO@KmdZPnVkuO+%(SsMln1+73FVxa zvfK8jP|vX+&#@q_{+!}uTiO@H~Y5vSQ% z3{DQhZKtv^vqEiKuqTd<>n~ni2%?BsBO!QNx|$3Acm^|5@sFOheC8)i6w246`~IU| zzHl;Y$owGo;2g0VOCUSA|BJ&wmQca;sRzHU$_Us=78WB!!0$OAcrA#IL+nZ?Q%4uP zvure9G}iq2kxGwp062{|tqiiS(Vwlc`)Lm%)z#y!JT~Hu7D_qY^^pBp8Re<^X9P*V zxsv%qU~fL>ffQmISpt`?q7$n_4RIr`twzm-VlE|qUY!DB-tecHW&FKLYlqDVb{Kpl z!s$5{IeG7OezZHYHnL=2qj&xS#HodrmI$Ba_m}+d2|vKACWn~j&9PMUXZ~0_Vu!26 zh#H4;?zfL0d#)5!ogEQa{9Vwq9JeD@DK7m+G8rGto)#vxvOOQjYno<%SA@3qh|A=K zNev}6>2SYR*EZ4g5w@E(lGUqu_P3tnA(6tOt?(reU9aPB-Jo4+AZtM~wIjV&mAQScXCz8Ax}R{p5o;C_SIAgQCmTN9^PC?)nTkv?f7xk}~0 zld|@V`W9V8jd7|Qu2C*iH+%JuNR}Fz^UOl`5^4d=8izv$n9<8CDA@h$OVkUgYv_EZ z_xe|xwa566_fvkaEF2Mb4@K^h2DfGYD$FRq9E~c9`Rs1}`}wF}WkJUP;vVUaz=V6= zR{@i~^}-Top`AEH#%)95TtsyEV%BpeGS{L+k6EtJ+Rka__}(8n%;7@2Xhr$-Ho8p% zWEVflb~e{WbcV9)S(qu?Y-A@}K=+k9a@s=!YoQa0ySE$6Jx|h;Emy;7JieTlD^KQbo;87{CR$C+z`{dJghC1LTtg~bV2ea?VW(;E zLZ^&o{mnA@^`D;x5^_IS${u{WvA8)|4rm2Csku6)Z@P+k=BM5kbTG~a(}Q!<0|F{z zk`T_vWBaOlBYEl!5;9`h8gC74!ciUtSTevhRDOA7dW#u)|H$)>%;wjB%R23tG6d&4 zKZkvr6svE64&2l8&n-~V!$v#wwZ6BT3+3eg70^?%U+mcAOOU4w6mhRj!gXj-!J5TW zs}>sbwCwpqlkxK?<4%3W(~k$2)1RrIbT!S_yG5hwbFk;^0L07YIC%Nv@GD>LtPv5? zPpOt&!p04VXYfmE6q?s6)~NpRm_H}2_+toNZ5)os#k=XyI;+cPW=W1yTQ4hN)@_>3 z^Vr0s%LmvP_wiWXEp}jG>aA43!~0GttdNys<9GBeDvPX9MQIYNn#rmuYiO5*<9$;u zH%X4MC2!3+)@%b9L1|`Oc@TEB-F2*n>bJPD?+C{Up7-?Xz1f*J~xZn z>CR2FhXT%;K3aci>H8%4U1_SfR^vZ5u$7&LQY>iUjiFH&wsHPZ`)a*#rp_f|pUfw8 zk+=SAy>QLN*f^sn+2qfU=^xWugI~Og~{YT`(`qfEuk{y(12E z@xFKqh1Q725gQj*`|1R~DcMV|ezfj`V!}sFM8l1u2)2KwW`L^^N{hEnw6ay|rAToo zG|922>u~MpV(?9A$Z0>K@Zmh~T=%`yU3|;+sbQ%os1|8T0vc#lfEfmev z!ne=M%2f=4P}@vicey|+y`9i~Y9>pV<@%D4$+?HE_I)nI9PZzop1X-Pjq*` zFE1=?HUgLn*?3F}yB%7^xQ z+>|OX@}ZE3IGFV~PME868Rt-XdMWL8`Prm5_w_exvZxu`;s1+>GpNK~MrRR3Hy!r* z#CcbqIk+K$fOi+6TGI!uG|OFip#YwcWRr(oK{V^9Gt3GNTY}3K9Wr8l14H)d%FR~X z7(x-@i||ppZXJ%Fo?N&IU#wEX`eKn*F>B3?I^#`O;@8v_ujg3QpZ+VM06_t>ETBqa&j|YQl2>4ju?aQ28@#(ot;Bi z;+_G;BBM(W``J`!#%3qAXlQ89-J=my6DxB4Qh{{@wXCwTGHOu*Omu^GCqn|rUl!bM zmxtppE8G0iv$b_uwp7h3a`)Yob#R)vj0CeQ7qeHcrJ8$jZE=W-WU*Y0x{;$*Xw|&; z7nC#E`^1-Q=ghK1g^2KxRSTW0<%<+i3BDVjB_i>;#>Kw_`s89M#bw9$ebv1C{lQ~I z#q?LiX5_$+VN*R_Z6kzTq>}I{K-%&&806&@Ir#XxVZzvRQCUu%t_QPSzh^L81!jxl zRgq+I1jgeZcC|?+$WXqn0#0_N=NkNOZ|Ry+Jg>u+lI@d;@ip|WH)-tc03L4J_`KP znyrM3E3PFK)6jBbJ(Z5;9jIs~t?t=}Z?YGvGk6}?%`eX$&n*T*!)n`b_!L@jy#SYH zPm&wtQNFWWtq+JS0W?>2`Ul77lSvZlpJ(ebl$Mp zJjwQC4Ig0AfQUC55CEgkKkw3}bVcwv%5*e!+c*_EmQV7nJvv!Dekr28@DEfWT$dz% zdGRlMUOoaxxw7YCjP}}M+zwvleP;2j4m%5?sUF)kTWQa*-g4{Y4z!msWk{?p{M$br z%q9fN)K3%CRqjVN+}4`qW80N|RDpQ1 zD}da&I!Er$BE5OSUT`V&6{-__yy@-yu**)BuUBk@^CS5}gUdX%S(4{U-Mj)pf<BJXZ6#xGtT&#&xd%OwjsF(@oc zsT@d`sTdF>qDvg4TV}l68v*71$?jr)BwD4|u7v#UiP+DScugt2VE0f2sRf%t3;7!a zA}BkXTKH_0@`hAEV3jI!YwMbC)&~EVjSU#U4&uE!Om0;?L8z5nhI<_kkf4Y=(7d^> zEyvdhucW6VGPopi3K+)L<5V=rF5inw*tgWM(B>Tv_dmgGB~Ke%U9L5Edaf{{hBUFly22zDUEaHjun3oHqvMQapJ^8T` zE72b3laqeo7|Iks;&B|siaVjH^VZHz1yiTmo20ia;j?i|cXv1Eq2(%nWkH| z`jBeI`3I2S42uYNK6Dm-hg80}Q^}!nnQZ9~EQs>4mgvQkGEn}(fF#AEYrdC$bYl9{4EpFX&q0*-xJ+Ej{YSxD&x!b~M6KtovlHH*Q& zbrdzoGhszBO)7ds=&buh=x&_J5TXhmg^w~5`-zkL+d}TdoeB1I6~k|4uz)B5vx@g) z_B9)SKrU8)v|f0z`cmX?W`xMUrS9mj2nkVO*@`TF%D5{xj`3h)Z#Xxt>_>GMk!@p5 z*f&GM0OcQU%2Uky^(bpq;t$Xa0k@;^^1Pk51WXvnlbsp98vy~JS4uMS^h^eefzcbW z9KEKy&P;2bAAW2gXHMd+T#5dA4I5wjXZnze^B}6U>(96APEu*rYdbpHo}d4BM6K|+ zVIE3;)i|#y+I!pa>9T({r43}CZrTi1Q*(Lgjl-(Y>g^J#*Ix_}CnjI7Qo@jxaPr)s z`KIfG#z*4$-R`f5JL~ti>tK_n@4lAZcwf|isiDDH;90L`FX3-qnXXB0a46yKFaJ$A z?E9P6;G!hY7(pR8_}0N;Uyf)b16K@$7_@#a6~0~n{dFfLN0*Tk6Ya4d`Ef7>*FcN^ z{l3|z!R~0-k8e(dOKlp01|Rg`M)?v2z*mORG$Y@_gmSR2h7-k zs*<>pw$kdb0>I)>=~Mo3JJPk#nwzAyXpOAI9IbDho#QrmZ1@QUlR4?( zi7_W0=W%97PYRgwn4Y@uT;uF5N&X1S)0!=T5@d@Dmz`Ha>`8ktt;me0#$LuEaNYF%0 z0+vi^lbk(Y`{k{9JTG?~X{`X2nBUFJ-6!(SpUMD19pBneTiFo-Z3MUwGQr{cR?p1U zRdba4cyn^-j|R3Qt|X#g|59FN_`|y^z40g61ti6kU7IA=(?vf1DNElUp2tdt8%*qz zvAJ9eKd-V;$yeufI^(n>zCWu=@Fc)6;fTyT^~N(2bLMFo=V^!9TWD)&R2&W`Y+WEa zMX@NuH*BIQN3nc?N9~XFxjqN=ZtvA?^mk+*G`lHzVi=NS|0a0AxN~RWr=Eu{yiD&n zx~U30i&W7GC4L-hjMnC282WK_Y*#lvCD&`S+p5`LN(uosdI-c2S&nj+pKG z*r?M`GIQ9zBF-1&dB%L6>caqgo(Rp9_~eU69lO4{-N#?mnE7v zpIt;`5SYWmpFG~DDWFCD*Hr(*j|`1i#M`qIYqrnoBz!|ynVn|GtJF5nxgt=0->gC( z9GCwwWIsY-ITerWv{ z`(D4PnsJcv#&~gSnTg(`#0Isj+(53rT2Pk8PFQiaDIW{Z7p4q4oOC@z{VJoQ>I?xp zCVwM|ddTnodJpqY^V$J8dAl6$9~uCHMBneigJSregCR1%zD52aagk2w*W>#xdhub0 zPT?YlxJjJBAecbyB7i*z1npi%MiiHKb_7DNLw<~mSCn^K8;|L_dC~GblBhDUsW6^u|68g1$)*5!zw!NdLbhMh)l(0l*{gN~ znwYoF~mO4$6_zo1aREc9i$AW2tK{|eNxzG=i*R_ z7as>`33bLN;EDM4r*%{0-TUTaEiElWC_2U}xVC5NXqSjBQ7&725+Wd48sgu{G5n;R z!ntiR|I3L4Xjeiw0`b$k{Ch_gIy5-)=dm)RsIk)If6KNQ4p+L<4a z=UzG;AK8qNjb11d478fg>Ud{}omhz&=zw9nqC_kZfB^1#^l*cR;dG_4PtYO>B~EPN z>zdUR)vU?YA{Qb9eQk=HFt!9BFRT)nu_W}&092g6hIm#vWB$FevSYpH9>^&0YX>Gy zctIre(QcYHHlbi|=d@e!c;z38DggHMWPYdMGR_}KhE|VP`XwJmhTd63>ER#lc8`8P zt3#gW^)(c4d@C-_pj6F}!F6&AsLM`o=_BSHVY~ah{S=)*P9UxGQ1B1hq51k9(HF#> zo6}VhFoHy__VPz^MaI2|7N&16f1a&zKvx*y^<4V&3vU(?+_1U({7t94pLSZoojj8= z{sv2zFSirelK|0zA_n}#9;e1^tKZu<3J}wSGSTNa7xd>g&myH-ZFX z;&V;e&!Pwtqk{=A+iu~O{kKGpnb_cyW?#dk`azUjohB=iTj9Ba2hdExkvtVTW5KOf z>I){mM^X>rN{szY6d!UO!Zsd7g<7wmwnAPW$My#krNwtE28n9hFx4e2of{;qc!Slm zNI!uvLbWE8mh6BooIbu+2WJ~QEnm~WKseu$u(XmZ?9EHxL@LBn(R?#wtn!s}^2A;x zVxgWf#@DbQo{o6lJctIbvb(po=bHw>mId2ZILEr<)U;_MEYhlqO;+l*rV>KP9Fri0 zTH3vC3W54(;KA*u0W~`4Vtf~QsqB*DG=^8@uAn`J2IRe~jfTm2H(V&Fv;vt&K#f&p zwrrn~A4#vXI#67-*SP+^VMaMchdy=g_NN^$fAe$u`p404ueOXDq=O_?sAL80n24bc z)1-s`)PFO}&=IG0)tBlavk$uv1$7TWP-gnpEd$;c@>p%bnuT(#4T}!|Ag`4d0l&f){fniO6ba7yLRPJj!^Zpi1TPJO zPdj8rtQfd z7PrKvvFq~(upDfUfyozw`<(+!Ws;-GOl*z2S)yNbbhK`Rd+hl!a=%56RcQ1Q z9w&b`Of4;an&7ub$my2@Wo!y+#(C}*uPl~VtOTrIt9rRyW)MqetnrLC;6?UypxrdY zFRQN)rO_&7U|@b4A|_)R?*-Ngbu?-|r(n47A=+dA{(aQZf@Fyp5P~c%QGr~`qM~-g z?Gl<~f$-l7+HP__DQO;y9-5WRImMf%bS`$-xQ=?X@xAF{vAiEcTQ8Q6>MkrNJQF|J#T&R0^hWi?TjP-{;6P!Vs6L~VW%B~sln$F1!(9J>U?}U zV|MV`p^^x5C&?X=IS(tl-#BX%qU)l>K0C1dYm(4wgf;nf=#W+0q$QgXL7YcfK<f|==x{I>37Wu!~j_Tk!#(p1!J52PGo2lr}T5; z%ha?NQmhPT>Y$E+LJ~e8kRylbAL?bKTaV`;TK=%a^X;`gZlTxIGm)t*o~`xLiE-)Z zn4qNndJyL_Py#AGWNXJW@6(m5JK%bLSt{%jlsBsXohW9cuuKv(U|J<_r@5maKZe=F zl&S?s-Si?m+cZDLQ{VBE!xQVxslb5T64&3)m6^ zu8Plb_1EpSj(F;#29SC!l_r^bQy-sx!Vtdojs;0pz}#8zJD7}(u?b6IpXzy zWA6w9o)xcP460ly#{cmcDAUx{7Q0PDOQVXUjdR@H#G8!Bi{kofv70Adsa>QRE4B@~ zB&cM7=ZJzf_kZE3^P9=#c_a-f@45)1$GpzKFvOi5l$l5;IR!qANi@Pj+*Ij;* z|Kkk$9@sMoMDaij3g9d?;^O(D9^NixlEc5%36Ryc+RdPQ*3(ao6NHP{LE1%(1U~iy`&m6M|+6y+$Hm#6!Ar2)^`(k}K(6@UmuTc8(Udetn zZp{Y5A_i!>k|Ug8Yy>iKp|mjTS%;Sa8eLS#8yPbJoiugjW8-Nw+-37Grt#+Rg|#)p z(ih>OluQ+~fBNHqTfGnftW~yi7p4R~5XuqIyKGZK-})6r8|B>bz0q%nRww6859TEQ z!1Ke|{2zs>GIbwa?`o$g#`6av@Ij~U93c3kv@tbD?){Iv2DR!&1*(+P+Luv|%mWho zi$J(W*`1Z?e&vlzdKn>tU`_DJ@q_1Qp~1&33k7Cut@ynx|InVzeI+gbam+9|CsGjV zDFTKD&`%BnGZZs}4Fvn(ax|N6vuCp;Pc$vw$e}MZ8az(#z&;c|5`~bcLzwG)owG8M z<*&6+l8HiNmO=SEoNdC}+a-?#&4bTw%=1HXL{iaH;5zDwRPCQST03hqAIN4G{>w&V z0I+?gS4Zce!}n<39Lm_tGDQ4iBAD>OWqVtw)c$M=f4(eC(b6jfV|0k%$F4I4Mr*OCS^ z`O{v+$IL0BJ$>T;%95*~g0M4!taD!wIHm)!8?Vg+nK$#AaeQ`sN8ctVC&^}C#JJYQ zQBA8#XbmFw-&i}na`oSv57>+kZh5dIl}QA*jHqjHPe?SAcE1z5aZEl^8E>xkKOJm; z76R8e#IQ3!rm0^usC4r|XsAc0lLGpF%2TP5!3lb|JBAM`PnGIl^Mg zrY?zy@9kYa4|Mbl0a-=oa0%-SJO3zp%N`9p*zNW#OC*i%!~I)CBoHnxoTk*vSDUj% z_cPygzQBvscKX|YH@)$rs;r+iCDyD2_h}VrXc_2vZARV;d7pMR*EWtmY+%+uyLxLimxqpA+S}8QX-Wgm9hLNl>Ny{0>g^Y z(Aa?JL^w^qUb=4f-$A~bCqOlmJ&!SebRQbWV z^1sAw6oW;|UCMSVDXi!BB}e^DC+ojxmFN!+PW6CR3+smVW3M^){r&@DSPQ!Co!Ch~ z;^yHQ!QFz^pxS-;9(W|=dobu)VR5v@B6Czfv2A>OBLXQ3)4W_y05Mvg;_&~Z_h?x=tNWj{am;p;Kt**Jf89b@AOD>r_xo?$P z6LF>s5uOMu@O`RLX8L=WWkAvi!a`AEwHT{hP9^42o&EEqgL~!rkvSM!qOWq*ZyS|| z8J+vuVNPDK3J z0Zj0HwcaZ>CZp}jzfqYIJ|Pn%Vl0JuXxNCg^E@DBV(zYQel<2j+2)UF2^9%ZY+UT; zYvX9<5V1q@^1F!%v+`J<%eml#jdvgly*(L3aA2HS7Jl%XsEQ=FFgtiVuQY9<86Fo@ zehT08zb&M9JSd6(b#zpEaB&JU(Ijt9ij%9Q%Juf5`kJk?!_hyf_+)0D_NtC}#%gI( z&W3SJzcpT0VO7mB6aDv~$106tk*-Ej2|Em@EoU*g|9^p2QPr-i^sDk~Z-JN;M z9VOIj-FR#|z}-ZZAy4}5uf;yo>p~FcWYA?ynt$rhQ!wX|ic(g!<&^%L0L(I!tFX9u ztrj157JXx5L+`fM7@u}d;*s1IKYIDf6nQJ@#=eKb2&9Igs%n(**KPSp&hfTn-Ta1( z&G`-XEO%o+p^*{6%f9E;#f+xbEKKhfr?^-QYW-3MpTl~0VgmoM07i`&>3e`{f=RGS zuL*(gmz01x>~UzAb5v+?KZ(X~)gjIwa;Q>iC(0}wfiCM@j?JlAv;C?N--#kQMGsF<;2>nhImtp3kXzlM0y2^VQ9(rqQCfvWE%bOiWZNP_>@?Nl(|qno_J;Kdj(_&wWeQ zzxk=2F1v+@i(CtK1!|NIz;?-=C0KmLAdlkWw^=JgYG@({SNL3a$N_W&l^5{9{bYab zaXhcG_02)K8rznrpoOQf==<&L`#yH;m12tEB$ui*82l{cMAA*OWh@U7RKGbD*lsh2 z0HP?F>W2WykobSqQ7owvD40$WBiM+Ugk%NMl+;u$n13WGV75+lxDzj!-KM0Zgruv6 zq1C!O?&U&IsoUVg;S%njlrH083@E3hglG@nQ^v?B2D01?Z&{Jd;O8Y|lnAM{@F9^=J-POmh4 z*>s$Gs%iH|IGGQLN3+&V3&EQY`nn+XAo-f@I}J*+Ye%n(93LB$s)J2j?xi?Z&h!uQo$TVDREi&^*AV|eH~AsxVTugK)o_$ihu$_1&`vlgrm(aJ-N0Q0-j72Nngd>C zcd^s$Y%Q0JKP4}`>aD-XL%(kEKx{j3cW2NUN%GCe$pKN37IUNP)92+F?Bl->-}v~k zj{8L7@FyF5bJZoGkQYLO7LR0_&YzK3D~zl<@>i$6Y?#FL8ViWz_&l~kP{#CBCRcka zqURl9PWM^I9oB}cGx6Dyz;?<$h(KZem+GOvzE%^amw`N$ znTvm*cUrmyE@aefJzUcG&cv9VB7*D7d|T2)12$eud$Ek6*f{%BmL=A5K^B{&DyBio zIKD=uT@X3p=lWwbRyWG)i>xL;tq0W@MXwEh4}hy2HI5nBgli0{dV4% zp!&ge+o5vy75~H&p>QKiPGcfj5lB}I|ArJXfBLWTQ`ySA_k(x4BTB#{SO`^LI}?<) zybwqcS3w&uH8B6Mi z$D0M|4$sI)HTKi>gQ&br<2oAs;W8eg0}`4G=zeGgm(Z*yrjmLV1A-?|HP)w?Fv&=s(N-x-B9B zZ{f>h+*VHD7B9hisKO!^wW);h-qZNFYWwAT@ho~7nhYrI3E=3G?5G6!9CffhYKY_D z!v0-S{?X}a93mgWN6a@yC9`zHqAdw927@s9ZFJ;VfC*)Q;k)%w zdSUk!5?Dk`SIvFCjG76JWLnz)xcc+=5(cM&gok~!b)~i#IbWKRNBZb^`fWp+_6hL$ zh0+*Wc4SzP&mn#u>u8ET*a2}m>RU{FZiY`v8pk@9-Z63RJNL0MnC={ZBjxFl4ctI& zY?v?s{AHrOF-Zj(N7+Vwp#FP&a3=Nv{GFH);i?R=ZNGlYTT=vQsLSECwIaH_IkOux zsqV-vmwnxmOR9SG^R@V!R~C$MIH5TkC=@)UlHgD_j$rfP(^2DdupXgoXD|UBrM55T zj4N;G?~yKWGF#=3wRrM+9Ru7*D?nX-kx0UErb)9_@7%d5XP!*QdF?In&B+g8ENHg556m)xFh zki+dn9KT0p!Z9aX4~E-u3{U(W2CR2*_8li2b~OSqL21}q}6 z&U(NP0EcN9&)kV>u}}z9uf!xICSbrqDO8%TE@wBH73A*ESSV6|`Vtjp#1MNAoHdPRTi+C6_~Ec$fkm%g`r|}vZcYv~tY1}&a>Ucy5qBGAlhsw^ zCgwu&@%NzMM!y+=u*rYlEuS?!slXWqaU&4;bS77#)bbiv8`S7Z@nAk8h+5e{<@~F@Xw!m%ml2P*chOxHO3qtV@SeQ?VxCBY zy*Wh_rKbw3c9(fCJcaSoZI?#zY>f?@fZ3b;0*oqxY+l1FW`vurjj0=Du;qmN(M6E# zf#mV-t{rTczFU7;j(wt`@p@AC|6Y`!$3wo{f*dW7eF&AsG*#0hy?J-du?h<#Qv*3} zKNqYm#Wu%7y6~V6MB~M!w)2hFVY9a{Hh+GWU-yMVW$Vldn?!hKtA3qdoA`bvZCcHo zcJ-N7rhYDECr4tOWP6#aFQi{K;vzMe@7CzDFb{F+Fw0M#R}nGwf?Qy}bLPY1SJhgX zC={Pjx5+sSp1+@fSZ{BmBA^p2__VigngQ!1K=x2Fi2p`U$^rf-xZ%TvPpQHeVP4#G zw$1=cT+o(+DjBv%Fm~wfE(+B-nmNPYNH)o)I4NGVGO02?$d}lTkBfu0^P+|I>hDT@ zOJFNyE-r&op)wOl`wWZqYs#!|@s$O{Qe}LonE$BGX(Ya0XS#70_~Gf=VGuU;^dn4H zw|GZ4oM5Ggq8H#ur{(RBWjoIK4%30C_+lqe1b2(fwy7aD)91#+mlrlGi>5Do58AQ& zCj=V2ZEUcyNHrHU)?UpY=kt77P3o8v@^IbmBbakt#8MRA#{}d;9IOspj+m~m=C3{G zt`}~Dxj2xLY{#3F@sql?XwFc1ltIu1PxDNJM|El^fHpzA0PAEN6w9r)-f>N}_BSd? zeCtCA*}`t1i59u#m<+MQ^4{`+i-j6inO2@WmSD(7^=;J(`>}G%1R6+t0=efdq1Nly zj~SpL1Ksf`4-ftJBL#+~rHl5IBdk|Xp)H1&w%sLUd3YUZr3!fQGnX2le`&fa%vyER znY~A*Wpk4WN(me)5&D%Zz))1P`0Iwh?F@$$-jcl*5Yoek3pV!kSjPYB(Q&SKaB5uF z9)W~HLg=tpKksQdnrbYm@lGZ$Hi%N+fErjHIeRXB6!wx-r64`Y8-K4Yk`iSvz!5%q z&ol2zsc^eC^(C>SIZOv}fVkbaf*=U^g=t+?r(cNBo^p7M7b0fzl0$Rsje5l=;?9R7 z)h^_R;B;r#u!uj{=^PI>5J0xT7K~7rhG3Fq6&KM1DnQioI2(c?a^jeX6~-acw~ch@@UGdZ`g zPT35Tsn^xzj4MjyKRpzQkwQ% zoIPi6%o9V8o@~^*0K0OORsZQD#&Ask_fdeccG63pEzeH-0uLJbt<9;_}$Zc zVj-NEBmCM-DLycQ#gWIwBI z>EX4qxo(ZU2J4GYANaId9Lxqjx7qQVGO{+*dIPGvm9yRWJryc;t{ztu>CeLT63}9i znA2Wbw?~}xBt(iCaS@o5TuBy&j9T3D$1?Z)izVZ!FrX1!f?+7?GZZ}EEY~scGukQm zWFPO5fe^}nU74$YK2SBioN!6%3wjaA$6{^VY5BbyOG^{>w&0LXXbZ)yvyYL@CfVSC z=^ZG|?f$l5fQUkdWx$2U)2UayjQdAncTh@g(qbWWy1`HaDG zGLS0J=^{rBiHgN5K}<1-?WCt+iwQ=hpO9{l0F*g2!Cr3M;|0R3d!{*5m%uvp%zv86 zhn>V?`bRq_2%)vsnC)KbH9v1kr_)b^tl!7>e&CqzXfoy|YBHnh%9Y`>lwaMdXok`9PpjLjPWx5Cj9bDqM`BlsvmB|^o`Ka(5&YI z<&qAPfjmohB88VYf<5u!8Al~sgAE_jPGT##9$K@oa0u|A-+ks{!r2>p5Bzpn`2x?M z!~C3)wTbE9&7Sj1xTA8?cK-yD9qH{r#W{b$bB%Qam3V)0-{%jj;3yx?&WX55P)y}Y z2y{6S-UpO(9>;of-sjeW-L))BF0WfvHoVMT6F?;()i5V{GKnF3F~2VeDO$n)VoB+; z8FyKOcf1VpLi4%rc6UTP|GP<^QJz+R&cfIG7v)6DPBmkE!sK?B)`QkK`%qYEy@Kp7 zoe^y8*47Y_yCI7|NGL5wK}Z^zd6D`eriE0BmB_DEkBAVpdWTm)y*gfyJ$RYb0{3B=&GSE&v zy~is9l?(JWEBlp;I$$~g7hg+UGKzSE9p0CtKNwxyXGhl`4)qwz|wBioA(+jo~|PMivh zWY>#67s@LF%{=Ip){9(U{2G-Sb^oD!xDnSU5vScANV|VED-!$$#b3M!^(eZH2tR2& z?EHD?1?a6hSquTuF{1kbCX*po?_j&z>Ub@UoB8}9W%}rI^A&qkx)oU0;Q?lCxUi3p z$^972Fp}Pj^NDT*K@d!kcFOae>t_Cn{((Ta#oX(?l!C+7eLI?K5Wl&zJ-*SX@Kf7I07{)!nekms@ptv#a?n&@Y%^tU& zKBAoD0dX~k{ZEfn{2hdrpu-*&n77ir_b`A2q^PCLKaJ;^Y=!mmw~3rMY#I&)xz`T^ zEd~ysN2Y&7;OlYP#HuQ1=G2puhf)BE6i?*Tk1gD7y9U(IAy&UP5aQNT9@OWxw-Pf% zM^uM{J2d?0&VE!f?o*YqN~Z*>p4|}LftH$uv=^Nr&PNG?<{$Uq2j7L40BC(7UzELlj#%eh?Bq;Yu&9tz{T45s)YAX^9WppKPEM;0P8=-$=yD zhVXT~`C|x5Tm+^vaJ}s>PV6AR9YTT517-x&1%l7&=e)$dOf7IHr<8_;TjZ%iigOVv zTqe{}=aRSb>x~~t(wX`hT@+xBz(lSR#p7?`#B}WDo~5V5@HCJZli52p?KW-Xd18*w zF`MdCEyS1mx_?@J>9DYIgf|>yg+`hOloLFS9OA&l+y#IQ8&yPg7ra$a!iRTYnhyGq z361D+!?fTt87_T2Etw6hIt3c^XU57bvCb*)txeZsB;CTnKMT4fjOj|ZQ-8cJnVU<} z;U_8?+xf3^5w1Y@bX&@b|6PHd)Kmq%e@rF1zD_^?r$IiWW_eqSDnOk(H- zJZ6{h&eTU`GlN>)0mdYNL88b|N+h@+jrLblLM_o;wcd( z!=QFAtkz4>FVkc*?RL$OP+<%BtthC)De|pk)q7=usXJd)F0i8aQd-37c~bE6vCfy) z8VA9^q7Qq26@*$Ko_bvZuCrTf>g-`YX1Xvss_+2w0dK4cd9L*X5aznkyu5po6T~Op z_iI}y(wd**Y?s(y0@$^HP=M9{FGW6EJ*0&7WT6J2c%Hy3_irtU%Xl^YEH2<`>)feN zK$Nut5&1j{r`jXm8?puoh+)U`u#80RX22P904M-cLMoSiG;J!48@~_la0i!;t-Jp2 z#*-D5ROa>`){JHcJ?7~5kL>+JdmB|le>Vy=AUGDLWRrr~n&$PIq}cJkX`iVK>|RYD zG~ahIVEV5Vd-7JYm-fhuTlG>Wtf#%&6 z`u`{tkNzG+l(A?2bo=6)YcKtN2L@Ir|EysYg1OYj9QNQ+Gx=nh)UJfk7v~iVUuytc zZH=by`UggZ*J5R5M%D=ARgB_LDTx!tGvDL7q8w#)?qxwGR9tAT{K0o&B^oXT@TAQvjTIi;0#ioX8T2FD~^4$lpbV6-u+3 zlJ|Va$&mo-X$D|u66cVfamhtIZy6c%&_$eNL9dS8K9-49)&^nCTKK--7 z=N^PTJS*|oc3&!M=vVcJy>Zbe+k1(>1%TThn>Bqi0svBw_h{s~aINKh#zpMkPRCnS z0STL_4OhKH*#d(HTl+v~&;2&wTS1GRj2qb7StG@E8aE_bVhrD?ZA9?zr?ZjU0&!a4sMI2~-68e%bn>-kHA@{h)x3TFH)hTf+=WH8y z1Gl)@lKQe6BDt)mv#kaC>H;qPpBzt`^>eZBlsNi*1fjwJ7w?Wm%KNJ@@zX%+>gn~? z7?gb|oGog$(syW!#@R`L`$rJ)Duaz%i!Gq|C)AjswLb>4JaUCN8F(-ge(rjV=q|Q$rVssjJ}< z+nvWEhWT}3F>Zd^!{P}1D=>_V_X~yr?zJ~%{`*B|>**J){~^x$5WXFtHLPWRHr5$~ zFoRBM*{}5N2s2HToGRKxHW~ukZd+FSQw_76E_-{) z4?IM6_6D9H*1V=pcr|+a43X}3CILusCF$XwNb=M5ub<3atB^fch3DPYY&~|foP=cCx`bpbT`zCgMq%yQM7cDR5E(F>Ku+js7c?fIJ zL|}usEO*}o1ZE0HsDOpBjJ0`U?}~EOg*=THHc5;Lne5rw(4`oiPDQ|e*~R$goK+<8 zwcc^I0J=qu^2cY>||4oed|ZTlTMLHao6#kI7u3M?6_;0%47Yh77c89R%GUQnuk z7OlmY^ObL&E{@;A-4a|AK16Vt!$J^_>?xWblth&{uRAD)u2 zNx0}s^7KqlntUf$(x@OjN5Qj#x(rk*e?ycshVY*LX!&S>@ zKfZBym>|dyxz3Xv%^Lj%*WA_6c6x-$A z5hQka_sTAVxuBN?1b1tK{!4;FZhy%ByWB`Wuc94fS+3gzLUFLGSeS|MQ7V|$gK&ud z7Ca9C310hQT0j~UfWm#8f}+ghHjmPDnvDH{&xZMjCG>aGc-BJ5`OUDOMg?h zCJdA({6+&o?9kI00qkTgJs=GO2Bj5hwWMN4If1I_+qC_iJ9jJWeF!)84f!74$Tv>p zKLRD$w%@kTZ%A5s{&xeX zHaYEPQICJD^d)%#n*rXch510NqDl`mH!rW05MK~&FknmgY8)C>Qy5L{q#|Dy_(;t% z17KnvPytk8uiyA=H+v{Eb;qlFRFFNW+iI$1SYUau(I|7r{E}p7{LRA`Wu(|wP7k)4 zx0Zq=r$*Ej>>eK944P;?#Qb~00Si~*&=)%ieXd%fjpvun9X3o-l^E7s^x3P~Xzm;7 zzR`39@r)Wc^9x44&N*1|DF%^K)o>&!`u>eeU;Yb0Kt7v~EZ0^i1LpsOaInFj`ed3x zNaCyTB_t=_$N7_@`>iI@!EbZ=k&*v869_=l&pMd}4DPmalKl>fRu0RgjGU|y6`&l9 z_tn=wxaaUj2s9yld_ikoln4F}*N65hf90E@l9wQr7t$mh78o^T7(HPv2LB{Rd7uAT z_?j9~OO}Kz^uSL35-{}4p@gCb3R-!l(Thsf?-wDSUQ;ms?;h0=79GreM!5V z)_HGQa&8k)Wx%%Prj)>`JXUT;Sv%K7d{q%iS$}eqw^x#~w#D8hEBQ~o%NjW?W#iUU z08Z+@*(As(zK8nurAB|{Hue?FtO)`H=oLvZaA2U*RV9WqcTKQYqttIPTX^ z7@~rk0f8Hk7L-Fv5!z-I@pU^?zsQh|9ydq%SVQ4)(87;1}^B%(3I$JQyRo^%6PwWoii^0JrP6-9dhmX>ZnD_@XIP z`amoS!Y~69EaT*9{ajHuvAQaE3|@qI&HPU5rDfn#y8eT40u{N*CIPO-IGDE5B=|LN zLPTgcPom`QwD6;+&3zgH-)PXqB8jc#o zZ;@-q_r9oy#&Eb3Ad=jda)lHPkxqqL-bzaU43kE`rXUP5Drsu|ulXaQ73mzeMRwlx zJzxhU?#fQgeTcyAmkRtbOajal=#J*|?HSPO`~1pYdjo=Ar<=9HuXpHxEH&h2J5gf+ z&=?bv=zODJ0(HOkYo=*3SCs_FF|n{2A84izoLF&9JPo^Iy%TNcX8xRwYR9~c z&BfHs8hOvhYy=?Ldu6wa*2>k+j_|Q~sF^`MYiHs|r^iEmtJ$u~1c6b;Ry#i6T!)UB zS3uxLz~$WKq2N)(@=V|>uEE}^^j!Txon=x^;qb~$hy1N#qnBbR!CmDw+$A``7ys?S7q@t zgV`BVQBpg@lKPu=$n>Td+ZHG&gd(dRw9XPFPuQn8%>2uqwhB>HTWzY=N){oBJouN) z2g3>)WhBO>{DFwNm-NB@)1f_?+lq0$Pg5S8G%GNij9d5qbX%pHd)VltLB-TMJW1Yc z8P|FUZeP;^#@)VGaamvzmw zUmg3~8YJ{hjcm8~VcBbCA}m@lPgR*nePge>2`kq^ zP6V||x|l+NPQUiF-L<*B%8Pc(hPcJ^ibC;+N^~~b=-!pS&pvC^)3cng{qx-@$g3p8 zqA=$(vQ8OAAIh$>6r8b|PrWfAhke!Zzkf9im0XCk|5I50LmYiX)JewEb;;x8TB{cz z*UO5Bw-03<4Utuf{ob#z{1C8QdUD+JeAG@r818X#&z0LClIsCu^klW|T{yt|2L?wy z3={9%1-w3kLag08dlRRaZN$!1@TDJVJO>;01onG<$sUjECQo@3N-41~xvx#y%S)FA z`6GtDD<##TOB-vd1FcgmeXQ)erVN^u{E>>>hOBWpt>CG{YzP)}lz_MhXk=l}d5IsV zs_dpZ`tN%WLVJz4aE067+B;791RqW~%<#)wqXe`I-p#Gg_xvqVV~Ms?|MMTOq0EXe z0r+Dxq&Gk)g{hGSMYmrck1~BWjRD%X<-4@wYMaePXpvCHWx6gY8oz&PBAWtmf-jWZV)ooS zaso~mW|0rBlnvKTiAI92T*fW^55T0-|*T^c-aPpMoXnQm6DS6KsB(p&VZ> zQCSG!d~b{*c%J@5xvg>%@PCO>3O7gYt54X7UUy8%1$Odl=uAotniVnA4ML|&zrzX_ zWGQ;fm%tpG&~&eT{3k|04)#qMszA6cxU_PZ^uwJrM`5-b;UzvbenXpMkLVpuR= zqsOTBZrh8D-L}u@b1phNb>=y^1951*LjZ1{Uc^fx=6@!XVxR!6zrl3zp^T0XwH7OKe|=OWqy1{U zE+t7YZm;h*?&|33wndAwL_OL054=2-$^VK~9%Nf94!I#UGbH+X3VFm0d%aYiDckov z^eX%RW2WOx$yaYfyTXVSG{!o4sWOr_EnHem-TTda%6;B9K};Zs5sAa-6(VTx=}mid z{C+Qd5TsVoN|ne&$G@cR>bcYKYdA0o;afc=Jw87$nJp7Tq9n#i`skRO;JvRg8Q$&4 zE3A1X^9QGx4QAt3iw_EG!N=&}Nm%MXMNoplTpJ2IUQxcdo~txa1R6Ga+z^=m?~(r= zF^2$cK52v*%2bF4@mxYR_<87V}fh)6zb8XhKjo-neli zb0sEsW4ihy;7%OJ2FNK;RU#%@^$)@`H-k1LSsG(Srx&E z>|q&dITwK9E8vC`=`woX@I|G3|@&?Oi%zx>s#pBUI47*eju2Ie?xs;Z{S_OmlF z@BsoEGA5T*rJ@_ED)}fH3p-z5`*)3;SudJ#_b)TpKLmESj@Ly@N98e=#qwLMr9Fn| zheuO;m@T*iOPuf7677(O@@n^2>lD>Lp=M|9lw;h#_fMyEI!=y_m63QsZ!VEs7Yy(~ z0j==Y7R%jC^{A6u*?;>mARQQ!m1f>4LGqDc5UlguWq`pYCgcGlZ-L{ChGx)ie4mQx zDTk&PEz$L)wPnE+3IsU9kDwUTjA2y)}VzEKEO*W;0` zSkQa#L#k%R&u#wbMt9pBQYc#Eao(OEq8w&4trg2qh8%4~G9MaB zvvN!qcAlTTN3?EVqy}`rCIPd0^n~soX)dgg^7rz1?n3a_6Q4VVV@ES&M|iXLA|ONtQog1cRHyuD#dpSZ(#<*Bi+sFA60E34~1 zf3foO*_zhJ-5p%Kk&)0xBYk|Xk2Olv!#Ls1s6^H{taO2)N)TVOWja=bwuDmZ& zl$`XZi%>*}u%bX(+Povz+A<+e5*3qc8emV=MG|a!o{($NH$CUIMjgw)0++wO|4_@e z6_FUeH0DS?o1rRkryPyf%W8|H7X3s{o2OT@_<>%;uH}tXi+^GW0rqSfx->F6K{44h z3I9R7jzVnihPZ2pbA3~8*Rek;BJ~f8$!6el-*o=Sb=St9g<8>eH5=vRa&mnaW8%lR z5)%`TMw41PVSdw+i+$pFF@RWr5#xVv5Px4>;72_v*aOwyEKuC zNjG4x(^4jhlb)V}!im1kiHe77SxBmq^)|z1j6p{Z?}U!X7j6P!p96MQKyxO@n!TcE zc1VKU(5i7$3+qtJyddWL(#l8(zrkn{-!fX?kxm z^P|66y+d>iV>%+o=QzY5%M^$YyZnwgx_kB!zD@t`vG}E|tAzcorM{4T3ZUHc`o9;tY)rja}fKB%hhtmyS2zbXEzQj|EFV`;if%`{rb!* z=9C_vP1PnN^dJf=resWN40pwU+Mx``nvIuX9hT|rvNg}*-eSlFd^q*@c;)h!LhdAz z;v}WY#4_G=zaKU+8AT=;2G9@;%(mG~euCm^1)#+6y`~Wc3sI z#=h)?bvQ7=XB}Rc^9MC!k1@s??>s;M`F!_1mv7+r_t(-+Cu%)UG}5J%G%k*wU%b0K zO24@EU%*9Iz-RG8GjTcNgYTMUrj`zo1)+HK7ma2(qKw}s5B*X$1xhUAw5xhXM@iSX z47wS<#zNrOTAss`E+=wKKv9XM{&fi|xtv>#*6A-FqqX+w>0D?a1?JNO@050lfAO6> zen<Q#|s8rEVln|EZe&Gg90!8+7|5+S&7~F@s2Ao-x!TID0IJ*u9B1D6#mb!VR zW;PV$*V*h;@gKoVv&s?iy+;x1_0Q_nZ|d&-X4%&x)F-`< zlnx57Mo^=Tu3i5_QTj~iWvfCZML5%mSxSBG z@cjr!5}#DKNy@91=b-U|1Pb4ksLM}aNBNt>6_AWURVRV?I^fXplH)(jTa5Kj*`W`1C0U9@N1Ul$v(m@tInAOr@3*J4x0&~5NcmFCvRhQh9R}Tx8%QqXi{{a zb5SX}sHp#X>BrnqQf-o#qC}uGnVHaC>vp<7%wO@_2l52*uetWP{O&%8pg&z~Fi^fN ze>2^8gXiL?$QU!+7C%|M>va~&?CEu*@k+ZpcwoS_4U=SDw5gpdf1jtT@~yro+ehy7 zRO)11QtMV;$quzjkV-$cPQuQ$bn@gW57v0BQl8l^{E zXRO|xV7uvt(o|{&<%x;gMe1X2PcDy#_7G=Wmp9-lIy=}tBbqzk@=zFyhZ;B)u~#LY zde7Fa4ulVIRl{K|HfIHq4Uo{IY~}QpJA1o9Mv{)msh|_mMv&o}o~3=Ge|cNhGOVQ@ zWo|dPic)*eavFMhN=<#hjiodDVl-wIx-VolZGd?5EAr= laVUu z?1@D&D#MDy^w&_0$(zsyz<<;t`?9HK{b_6G^2WArHFD0nr?M!7bf^k7G4>Q%KdpQo z%SaWlH?UDnIM%5;sAW8>4=p>!c>Dah2K$|Q*IkAI?T^m`PR4YJpYx1kVP>0ci0C+M zq}c)SpI45_ShhvHL1D9hluEW^3Gg)q9v>aG9XzSCk^<1991} z4DIe<Q zW{QbYO&i)|2DkWD{o${O zWMj7L?j!t)l>|kMb(+UaXz5BPj~O}?=V`5*`1avxavVgP1MKQ;NMNdrp`bD;RB}Ae z;(FGt!PiprMPndlX%?uru&^!v*}#14=oCAgC_`rUmEu||D#Emag*Q2HufW?fD7=59 zg6EmxkQ}4t>)B0r*$JF@i}CDo&X+H^8P}g8`A@c{1^TsBRD!~b%@rEW0HsV2LTEQ8 zAPi>&Fw+Hf?RA}nC(772}`PzlYhR1UnH}^JCa8K~tj2C_qj7PW{A_X6} zP6ZRIf&v>6;+hH}=2?Fr#`a4e2SVWE8R9Fi7=U(ZXF z7RN35!QL~I-3rC%#2#;BzEW_1s4-F~4q0k6JK?~xNL+lq-EZm^w#SinPu7Og z^O*S*x@ur-b&vLCxiNw!vdNvQOSjB{M36$I6zMfy^ZFYfA0M_t&(_(Kbs-~h zF!Uu&vU!w>+B)?1tfa0d;H zx)QuX_op`9LoN7q*pglpETDgQN(jwBnU**E!<}lY?sThZIc3RDHbeELuQx?UrS?$i z#tN&pdo6Mamb(FRjkCX|9bOelUxam!TGt|*5(_6}OhO=)g@eOHKXLfEk+HYAOP*ji zVlrB*uxo}cRL+oCAgSbI+&e*wH_gA+8Dlw$>3M&)^(zY!u&wY$+C4s&j2_@GMf{jQ zB{%=xSo*MA-a1T|MU^#)hu}V?mWJ6wd@$6Nf0H4Xg?7=Ui`rx6AKOokb(TlUW}dF` zVWVc$#X)`DYjbCV+rtLBZQKMGjh9=9C6MM|&!dem8(y}RG}Bdke=$NJrkSI6a-LSK z2$9*RwjL%M8_cNZ+E)doQhUnOzw{H{L)0ym865JZ>dM`-nrkx_`4^zS_sIw`r0>}L z9eNjm;=^4(@wjR>VHNF6qdkgTg=)R;@y>5%jT}4HG-GuetSy;t%^j{QbQKo8QZ4P2 zRP-e@k`*3TslCxK7%2T=viiI8IF;}(B~UgW4SxAFTK6{VcO5MMP^0c_^C?%k|A>fu|KHSE z7Mr2N{u!*#M$r3p+byRPXFe&p|Gb;SpKAQdwtt_yK=yHJ@&)5HTmc_i-8T{C<1lfS zm}Wvb$s{=JoL~`Y<7NG8Fg$6d*_R87DnaM`VxNhPRL|gfqM}9E@v!Cv*=`P(U#Mk~ zEEwZx&w>J4F}Dp2I&hp-en(xDUD|e3|EboKd!((pQA+kH<+Hh|FI5Nk&f}=$`ug!J z7gy{&<_SAUY_lh*GtaC2#GdRQ)ufN>tg)m|?~;l37Bx<&&repE!Bd&_m}_3Ghnvcx z@UNdvYJq9~A(szUuxp~Cf_$@_i0Tuyy%=5bN>!4fM+6muWFu7rX-W8my+&os6ZqGz zG#+d$z-q8tUeek3CCj8hmWDn#Ncq!!`oYRdn!Mc^M4Ke;IMCoG(|9W<`~^o3(4J0DD!>4w>Aj& z-}LhhE4~Ss%=rkN%m>Lh^$WHfE5qf3G$_(8$y^tq_L?^no{r9D1@*KL5lplz;C>Ny zaZ|<*A~qG(epO*`htyrY)`=uwKl1W(Ndr;CJRG6HfElM@LnlnlU^r-a ze-_|x=SJXD>fBfru(hhJEkxf7;z~$W)l8Pz=g`t7?-?=?RdJWjvu+69`D*#3v6-gD zpk&;`5aPXrUhlkof*-qt^+Ah`hh0{7n7`$0h0A5(%nMvaL;kCLPyohdv--GiufpPy zL4mYoH^PxyT(EXQ4}7jhwW;^qnb3(0GQ^Nv2YC-R)nOUdfMQr(T@`qhXJg%9E!!J^ zbz3BppegzFk#;w)u$H^w;S8hlaa)BMjM|83pL{-VbdFV{%F1E2D7b8*N%?lO_lkZE z#{+Cv>KB|Z<#}hcPIHi(Vd_PN5(=X#3_ggUZSKVT_Fo)c6eFDtVVL&#^uV5uYWCU8 zXe6nOLWT&hREg1A>fF(FF2rAa6Y{?R8pW_`QwDNbs2TCnFFyvTg)=eYAr4Ow2$A@x z{$RzNel>3Zd%SLFk()HY%SBZVRg{-YxP0BntVsOLi#x{MDW#!XO2uxwRkXR%v(7AV z9?q5;t|?Hzhv%;CZYh4~n=WV+@CBAurSv;TE$J}?&xEb&ujtR1gNd{Y-SG8IpKytg z!p`#V52RlCnniCPAbPA+EH3jN5;x?cu_Yy%M_#UN%|0`Qw(=4$jORs3b+o+~a^4cVnaS>q?(3}82 zo4g@%?X}uyw{n zJt}>M(kSsy#93zkMv}IEV{bVE`6}YFL%ehIu>R7Fb_ur7cjX%9y5d~C!4isDdcpkR z(AYB&1fHQ>#x!R(C2%`EP>5w;LfOU3$cEh3&9r-z+TWwTLDyz6Y|TcNlPP;uS6FkQ z?APv#N%kTGrR9;MN?b_GnejfSO8h@OjgG8kk znZ>0*{7NdVte9V4uwFNdC39@k^5drxslfk7TNZo~ovL@SGIAbp(%5wb^W5*pgmw9fPdI3-f zRoeI!7C$A|3s1-5^6R{xD*t4N{7z0`%J)>LZsz4IT>yUOeoU#&H-}v2*>!heuRmm% zopy+8ufmVm+XjjEc7q3)r++BZ2C*nH-+6DM&AFew6Gng9kcyurt^M7`Lqx_oC($|u ztSOV7*tg>1YM=FJE!32o8lV4pahxiCTGiyehz-ee3uTwp2szzIG4j}$)dtR4hosAm zt^lzt@5>9?v%tF6)<9zj%h(fJ)a-tooLg_*nQKh}E6HS1-~kwcSfSHNd=)y1wNk^41bi`J z=NWe2{UYO)?TcAN-^a4%A8F^O$LN41M<^)(EG0G41>NK+P(;$t`>kZIXIY;uATAH@ zU13(%pwD70QVJ|4E9h$f;hYDE6&01mNr8r3jJv&m!*1fon=7Rqtu7p_eg&2fae{oA zyz(Y@=aMpo+=F@b=QX*SD+YE277;2#_;H;~PU>LoR zD?&}rnve?)FAM2TxIQ312xFm9WlJb$w;kwB?g1QmnpjW!qNxBge;uz4ADoC(T>y#3 z6UT)WWX9|!FRxfr?hB!O8M9tO1}8RG=Ar~e?aRv{;!BIP#sm9N*J^fK%X=36#!s43 zln+k)jNt$BDJ{(s3d`*19UaA(vCT)@Bpwb7R6UF+-8r`|q*>&@R0edzim7cosP4o4D$;+cm+r zD26PmcN&~#T5OD!cHI2@@%z(?E6xwFsw*p{ipF~3@jjWVoFCxsPcT#RUbwS1<(I;l3>ljknhyvkQV zvmzZwTv^MIS-=?Swf-FxhN4;Jjisp(Z;Cx)7gq$gS@V(FH!GQMb9tXXQHu?!e%TPY zDU^B1T{oQQb}!pCHqjnfE3BeKAa9_<{q(E)BMdT+1)A+o80*<9gwaCepmFeHkKVx>x4w^-8TGme`oF)hwXxvn5Z zj_uikXh{5^bq59e1qCWAIl34ddK2<6%4hA)RFZoW??lug;bc$D9irq*XB$B}b+FSd+{H7qBH+|aY%yt z`)Q(P*mu(hh6xG^3Kcu0j7^{g0m%ov1~C~OpN)jS>@&-U-KWam#+hII{?VZ6bzl~; zm_&|2?(Dj`pjv?r*-1>LZwgV9;5hk<4+hf1WgXm%(JNXcM1ba0OG%6|h2-sEcs92^ ze|ltu67I^@OFbOt_Z>3xvbZ+DJy~HzEb6{x?(2K@_>6F^d-s>LpfX!W$3J}zJJgT3 z%(u3Q^?VjqI?}3X|ZsB|Ao)vk?lFD3pF0?IHA?=+X1vis`Jo}lKD{irQ7LBReZAM zeRyS$jQ6I8#rDs&FmpLdg2}5Zbhm5oYfrhREcQ+HN`B{(=FEJ-SHe1MUkz?=f~W`{ z0UoD5QH8n)YNj`aoMvSBuhhLcV;hm6Nr~;)y=eWf3A+AT)iDg_Fv9!s={0+w9g_(E zqUn*W82c%R4N}u_rpA%efH&QK4HAKtL}raxOY!UL$4=hEgTjgNIr-m?Zy5_O+f(+Lny~0cEiukGGN_ zMBPE{FAsV7?HDo&a^E2*vV{-yY9z&KD7H_z`I9}fEfU(J;NGQTzNI(fO06^)T!^3G zeFoYzNUv`85zI0(104!F(IfVCs;DAK*8TBaC)1bK{zk&D#WlNH7H9Uq7+_GGW2jH=qqNg7IT$=@u)dI3ek{DRXpa_N(Hkt~^P@_%8uur_3(KU+BUOo@)wh}1OD znasivDHhtVZ6PlGdD0&6bygZ&VWDX_m@Vik$hd4PycN9>qWZ<_k-SiuNU5MPBv_G=V>IFUhEccD76Zczz>RdSdqc6 z88|u;f@>ntBB2Fs*&Jw7l1P0d!)6LW8&n;Zu?lt_0NrglY~H^4fnHwxpyJtiE{jLM zeK4a!X9l5kj2dyGm@5Ql@me~N$xhMK?Tap7)lIwSz@OhUE>g&z)q;Q+EgOLmf}k&_ z2Ry(FgJ_c{%*jhNa&0xq(}?us8+Uh3{q$@;to*lB&3+mWsuR$1RYJH=cXtTM>W&}8 z!jPQ3rdr@v)`(X_HYZZxsWn|SjP-+o?-zGbl=JA8D=;5oVs5g1XZWs;_hRtl{Vzvf zYyMOhy?~4*^2Wmr6Hjw&lH2*}6?II)a@TrVmN^Joy515L5_ZrjleV*vGW~J8QkQq2 zJuLvD+JF$d+3c#fFs8g_FPwko(&P7%A3z&h85)XM&vxitSwWwC)1 z#Y8b0jfhb-tP0N0Gw~#yA5FwQz{4;Y)(=mq{N}IRRQ@B9pl&U_&X73rd3vJs zYxWw!SbzRnpzBw3Mo(-xtB30y_8WZ41#HZ$H1WdS@S%R6##0jJF6S#Y8wCsn1VH^y z0Kfm-gRPb6?;np~BPZ-%Bln7mUZoNksz%@^$neo)3-!<4Sb1NW4vHT@QI;38>x}2j zz8O!;`C~UcPf=h34QrUoP;iDyAlNfA!{Dj4nlgdVe+dXD25azEs2W>UWIs9ozffU#*|P zVffB&Y^Jb(V)ONB^Ah@{oiCO0*eee9;qCq5M})K7m1&>D-asZo7x0rH0dyqhCO!4a z=@hOU92pB9D|-YA94{j5sMVqbT@9Ol{I_7~>Z;i-%E}wTZqIV!IpW02d~kqr9NTpF zf_vvXk;2s7XN>v+iTVS#6l!`Xb`{<}FxD5|5>l7)EK()XOwe-cXpLrCh4~(sK=@i) zqsudUT>*;CI#~ZKx79N%r++1``$yK-usKE?nxh9z#tYh^-X&R zs3uThW9&vhZ6C!r_0%YlW52ymSM^B8P}HK=hdbt({_SBlR0diE(hI#nqNh$VCh$Ljda$a~8y?ME@@15`F=R-vG5*n7;M^OvXYnTZ!$nY4I*EzYywp>|~ z6v@mjLtQN!VFI;L@A6s1FC|L+j60ZWjYTAqyd^1FpYB?8me7Mx2Ge_w ziEjFo-e^$K#iy-H`+(a1Sj?@U6Qd}^DrNJhwJm5WJS(<`!azK$QhtnoWTkCf*~P6` zR^KquhC=R68wFO3-H+}#02cmRDo_~KZa3J1G z@VsEH$g+;P_SIzM{TjES0Ui*Yfc}&yOM-3d5C%So zL;npkf}R$bR?uF9wtn%fshfT26RheE8hcOkQRrPTHmesQy*6&8PnIt~ZbU6N=k+=$8x37`s#Jcs8Ny#C47P|+=CtllIY>28vZ=HO z0`Kx;f80gJq$S6i2nu0UNzfpM@ji>%)MmYH@1TwC`hka zt3N)Xf*OJnyf93NapOxjNVXyd!RTu{(Oa4$vDjP$wT7Sndwcoyj+TcAH7u`pmfL;g z!vtQv(O_3ELkc?|&hk4f@uDq{Ue}#+d}YkGLs@!x-FvQH!GXH7oMIY-^W=ah?R3in zvoSrK^`NaW;1sFjG1E9m3IDvvLOOC!3VYUx3YJf~8@DDSrE5{QNwtF|d$`N9!;K)1 z50slTPRk*`&4M#NImV7yvLrbDm+P^GN#8n3>pE&49cJk1(g8?(CQ3urjbZsRkE?uXF53XsFo7{unH$GGq>mLX~Rk_CEI1 zkXwa)YL>n*>Z&)RBSqiM!so++xKyJ4=WM7) zufzpzG-N?EmSF{=R^7zgCJb2h_^_PIb>Etyi#jxEmv2{VFJ$osN-+{Wf_B9{@dI^T zBXm$;RtBpOSfgQwEqg0~j+cUQqP6gr)=DJ5GM~vxE)`W|JBc#VYc<&lBYk&F7w!O2 z?kO?Vy!b`eWj^O;*7JYfkK0*5oCDSIzTEwXxAL6&L09T|ypj~U^l8Zdpz2=FtBz5v z{p3d+E9ZgvHg<7oG)U1Fx%yw|^>#`4{j1=}J{|0#(V)r^GAO{>JiX|XV%ciWXJejF3>_z3{xx=%C3;Ldi3o7p>$#)KtC6-gf<7E^`=VFf3z_yH z`410|@MBS8g27GFum!h1XVUl41$WBYF-bmxt(H><$bAe%dx0Y|By$M{uoJ}#8a2}P zch!r%rN>xa6k$t77i^NNudIRU(V*Tn6sWUl{wLOFbgkS3i;VP%E7~L$i;C5X#`s~b zK98Tx<$-1&EkZ2zkL2=iZ9ppY0la*oeXwr+k9Xq2Qgy=s?4SE$zC&Ou{v$1okxUEl zNLsYs3z*!Eaf!#zwH|%N4+&?PpBKI2(QZcmyR!e!0QQ1N$FUK9cGO^vTXEOdVNZOa z8s%oAuFXS?Q7}0@-3pd$nE8q>(G_{;3l{v2N0e9il{=iM`laYKMxY+YmZbaa(>&PX zcj~z|BMchqAK(a+nUdQoRC<(gj{kNX-Gf!?-gaAw3ATTe)gD~c2HbS=ksgG~gM@cJ z%AUz#0YEV_T(wa97_!P;76$}{J%5w<6;SJ!7e8uzh?AUcv#ccD@1)Ik+tqLl%)U*> ztEnJ1JeQBE4A?f}H?%S_xq_DDGfof5#c`{|K#UL<>OuE)p+BOCk?_?3}|>@P`#WTuuC)tAlhzV z)Enc?_$#rQqK`Aiov+DO#HT4qXTIwC1s-K9nCU(D0ig#X==E{to{JBE9FNlE>DDB` z?fDq`*T;`Rv*4*QFbST=CQ$dSst*vqT)=Q7h5SELW6=A`7FFSjqPh{51YSritF$Mj(&+A9?5Dj&=L~ z@roo_A=zZ_?Cia{vt?&*%FY&%k?kfcnPq2h3fUtebZ5`9LP*x{yuZKkPyC+ac#h*4 z9uJ@U`drs_p6C1hdc%g~WL@qKnzlKaaRK1=on&5427ivZ-`)qP!S3+VN9k`~n+F7l z4?_3Ov8WZU?vSxXf4%*%{D~H1Sc4@I0-A^o^MBnd@l_WYSX2qWA1+v0RZz~BstOfX z`!4uHd}h7wK0f_71*A-q=4XkyiMMf0?}lzv|0?K{u%}=E>j46xRgPxW&}R7d(UQ_` zYjoh@QwgI1*{`#+SN%t&Mk!e|Y`dwcdDq|L$=f(mf3wOtV}w2VihfNC4=%sm&!&pM zhJS-4xW%MMmp!W5J^$Xf z=luvw5%-m6!HdH98WM*j@e)U5=*#r|*5B9eKKAF*nd2?c#E$e2u<<3wYup?WYXVKj ziw{>Vk=Z4TA`voqe{nMuS&@O?#MBaEUKf_Ly)UPAd!@q(Bc37XOjow;VG&SCuuuQd zHqy9H!V0&ML7NCAC6LjA3nacZOt-HieA66om>qvlMj?Izh6dng21x-tE#Wx188=oV zQVS9{nB3!z7tHV4@p=4`zEOR$rrx($Ktt?4Lx_vu;p&7duo zAlb5pDwlz;DjDEfvI%^F-a>zPy z=<0gb9#5{2&RtVY`LL>y!u+L0y@)mcdvnRCWp!5RnYb>cxZh_!9fMH~b4#NaO;SoS z!`_3#td4@Y-?LJz?lk4M%8*5T0+$oaSEspV>HPtxPae!dtj%m^OZSe*j_yoNqwj24q*|A3n2;|ip zVoGtwBpGeTNZw6j!tfSpTFVh_e6% zj>!Y#IG*Whl>%z5b4>xf7K4@NN;HcN7o(TS#CD_mgB?ds;Kc}Lj1rN;byqrJkY@W; zDw5~K&;LqY9qr>_GwOCz_wW_b>E!jIR!=U}zhyeLmmewHl;uJ{rd#t^=o0z9X@KZf z_%*OGfl)G{hz$+o7(Gju^6==0gk9zb&xEC~@qp&Y&D~BLWBkEA9xSyYiAT?iTfr|i+TT8d9rjQv%@+sC$IGa zCNbWEMGgbg(+2h4J@qbV^@!Nr`*{u&O0+?*vs--Z2B=iA)I|D*`94<$ZaWn?MB5mm zhxN28N<)bZz5cHlRbXV<#kb6;LPkpqu}z+)b|Ay_xXTR=aDt$-y#!jr!<$p71 zP$PD4*~_Q%N!jHWKn!*d-+^FvQXMzST6_=#?M_|M6q+rvA;IKgmV} z9|6u4jdZO%X(-1(13m}3ZI_Uy0mZ@xh6c(8d{_@OivV83dOK#{`lK>9uM@Ul;LeX7 zZ+oFP&rfvlRX1uqONX;XTtx!b_;VJW9-mSK@9v&UT%1T&{~7~3H~_>J~Y_l;BR_` z`lxNtU%1j&1^>JM`>+0ged+3rNOW4_fz;&zx`;;a$S+^|{#|@|Qup{&@Zb4G{ph(< z@OCBSqevaVc$V_bv5sW=&nTGY z#~bE@{0BEL7iljna0<{7Jf_Ei|487G|D{Vr#iB5L6;H0BC3a^+qi49V3;@J)|NQIy zy|&%Jcr-?-1wu1x_?Be@gAeU+zh*5$F8H%=tI*?(gvY86xQLQScqYmlrt~B!izsS$+`61X+3y& z%(Q(J#gNvS`c(~MG z?t|UqD#QW@9AwV__~Qn&*t6>b2rEdp1q{)NL~tcMrA9$`_u)Ow56Ib@1&=NvQ^F0} zfTx4K5{DByGxIsY7bgf>ehG=;E&?gs6`K?)5y>I=V9LXPXtj?D14#J_)ZN_z!(6mJ zpigyvHe#!3lY-t=_7)XfAGmU@#O(*ZSoZ~e@wE?VTqdoUfPj3H3DyE!dW|J_(3{0o zvQQ!9+7Ho9Qu7c9OQ}zCtpSpI##1~ ze<1#d8L(S!YOsYg(7~y12R8+hI85INd@ur4`{rG2)mQo+M<d_H7AYl zO5*X_Fl-OYsjwxvN}wM~kEze>^^Y?(c2RlugT2|JUhJnW+Nf!q$7f4-uReov_?vtV zdKEuKFFR87{|GGuyCLtpazpCxr_^{T`PQpDq@d-DGCLT2e8KnOd)6pyIWN(BZXNoU zCeJzj0bg=i8hltO6sVrWc(xgQUU?NV6VL!NW3yd&E6`-lK7s(~AL{?#LP9&A*P$JE zWuYNxv*Fod_+26KHS|gzDAsugSJ<;3qvuqB!tj;QlN9m$v*GnJ5&cB`mlU^q`jc6z zI5|)P)yQpFCGipEb&2SMcyU6&Ww;|8vc(n7_N7i(&i-ngVZK@4TL+QP$&-uC%M3KM zZ1mvo{-gHJ-SbbhJTN#yyKzT@wt9vA|NT$56tZw@G~d##7f;}(~c**Vrs(zY0!P%@_xqQ8 z9Y>TMGT`~Yb@}V@UifqO0XR*kTkHsePoG>M{I-Q=ZIe&Z$xDzp_7tE=aBUbI+TuiG ziD1@txLbSVL{$AoABY261h>veb$zH0Ar|}vVzbl*A_&_6vLmuJRW(B zkt~V9^cp+gwc>Z(AD<>AM6*B*NQDBVYWn4-+T*3qX=au|Znwt;W_SfZk84Qw>u5-- zqlyeT^PDn1@H-3)fLtdDmZg>U$ zvcNqY-G`MrE!NoMmpTVyEBnQj_I2I|;3Dt51}q7yV^_(Gy?A~;QB^~;DV|rEr#5rf z`qU~nLAwg=qut}5btumagweK;3Q1xCn|^MH6$%p7k&luY?WdWrc8Rl z6a70ZgjEIdMh$>ei8g6L61xC`jRYqvV3P|pd{GYQWH&TRX`?Tawd2UI6%Ga<3H`<( z;1L%9>ocUwQuXQ%*g)kBU7U5uYY@N8-sSN>WCs%uv zs6w6^TJr(p=qC3)`oUYbe)vwA>TY^D9*RO9N@8N-rs_)I>qIeCeSW3MTU&KTwS{3@ zYPpMG_hw5|`ARZ%JVy9X5TT=u2xGjb-+v;V^hVXrF@xD5BMF4=4n%(?;hiAr<*Y1w zdQ_MOL<;E5yadhLILz0&CIxVc`VV^JVB+-B3MIY=^tlf%0tg7hChBvog&qr)h-V~i z>p%A0ED1HRmBhzZRo8aQ7RokhTR@{5emcR7Bsg}S9c!lNZ#Mri;>zIQ_#;ZK|J_Av zPelhT`9(I1Hz18(HUkHB)zIHIcKb{1Py~rO@i0$h9(ETG%vZFl0Lvz?)m=E4hPFIH z<0+p&;)M$eWJT;b{#(<$;Ie$`ocWH%A2(mKPmy{_z|^YrXy-@&(3v=z+{6+`yAH4~ zPh+lBRi?G|wfFF;5)cG4hHb~!=Bp>YfN^^%c>8_RAJ(W;&XUI6xb3AEtpKVIV^QWi zdkz_?A~Je>QA@7{5H+m4i8E#;7c>elEc&9?Z!6w@!|C5xp_Xs7+J3r|Z^E8?HKHQ_ zXLF;2KijYL-z&@Ux87wk+Bb6#@H?mqNZ-1jsw#feui=jF;RUYYraDvu+OD~r zbXGs++W^jihX+L0gE>?3YocWwl@u-{y`r{(ohj?&5arquyWYGJAw$wD9Dc32LdTs7 zcf1>90$qg1r9;d}Q-ezu1>uFQ%lt?l1V}Z&EnVgSqcOC|C&~(1Ze4J$fGI=!V~QS^ z>G-qNx+(P8z1Odi=S1Og?7Ir$8v*3r9?m*VJSW{ z`kH-Z*#~fC!{-Yr<&b3=|ElXu`G_@{F_$5V4>sJ|OoXxy)nF$#$rn!vC-*4`lV0VE zuy{)u@iak2HiZ$_`|PU#6Y?c@v{fDtiPmGPw*s3 zq;`~JlRAVhB1dZNQ8N_TTXieJg7U>vU%b9}DHGuorMGE>@I!ZDZEsn8e7gqkI~@NV&niw|vVY(z|n%d4ULL&*wZZK zt*DoTNncW`d{30<6OOKSChA7Kz4z}n8==B&FwuFK0%%NyL_wa9zSc!723zNZ%503W{i_oI#z5tW=JQ0{Q_Rq=;*99&bjX9aC?seYzMkBaK7dZ$GM!wp#@KbP`Z;dLg! z8IK89h%fd6-OL99!)EtW@Jopd~u^WX4TY19I%1;htEsxZl&-<6}Xx(3%7=(DB7C^-u zHJQv!s6<$>X64mVNBc$(?F%6C&B@TvhgD6isW=IOIw<;< z{PvBqc?wXQ04V|;(u7UVyPY*nER;%y?WeYN-)^_8^SxCo0w8!m)D(GQ&3Ay#upwE$ z3vp!Q$JEq#qFe&z-FtVZLQQ+ODIJUn;|gGpMgN!*RVjV-pw83AYl6 zhA5if&Hv1M{Y9AbgkvZqjs*6dW(gFUXE-UlyHOEiUTxovNh%roA*~y$POeK?)D&@> za==jOv$NFRTBg7w{l9;kUSAZ?A{9b6h+LpzfjIM$?$MaCx66E?Pv`EWF=wTgAR+*rxJ4 z$-3vIMda?Op$c(#peqRuK;s<9WSd0Yc~cgNdYTWiK(@nA`O8r*?1I zu^4kA9g(gL90v6nJ&=nssjBctq$`0A*TJU+Xu+T|07l7Rb+^;t%oBq+%_YE_S(p0> z2i77m*3ffvMr>Al3K-`UXjR&+Mjb+S%^yf?4Ye6_uG1eZj+Ap%v5aMZ$KGANRyi0p z>thPt0fTBt?IZ4uN6*{gnP>10Yhx-HQ%`FbzbJBOY>(e;mUnvv1J(DF@87XONC-eZ zNP0Or@7FX|%eEN}S3ky6W}@`@ZOg6P>$^Ma<8iVNiBqItSdp_XmHFWJn=6JU-j(coHwC4{nE2XF0OdmM;vXT_^ zg(O7{I`@8DkcyPF@0ht`(r60!OMX1Tqql=JoT4LEVc9`Gbxb05)Zzu{yb8FqT?v2*5&zca7V zSwi*r@i<&5RO7<%Uubo&#@xMb@w68o92-2tsQKX^7dhtC;-kxFCkLF|oYI7vT%p6^D z-zZ#xTann-?_S(Z`K0v|jAb;$FN9+i85phHaFwM^X%t=Bt8269vlt_X zYA2nSz;<;m31?N~Hvb?2GT+3=XlcJtEpLJX4R)-u>c!WxMRr}_L?==x+|D+O2W4>v zBT4DxB=(p3M^ECs=&#vRL{!9R-JbsQ)*qxe!1RSS0FB>Y3*NgT9|MdviuEh?*pYlU z=6p=qql38Een72Z1g=1o4b=C-xZzkX4TDef6Av{!`}$-`h62FLiJo5|IUY?zqXD8* z3)tFqFEn#1cbiGnlNsY+Rb@fwAO5^AOMcUDzc>PNNWOxZFj~6x-Gyq<($77~ukDRU z-(h{2z~_TNaA;$95`ym9y}-t>GqJqVM5Xt=Q^xBCbsd-tPHjdJl@BdM7ZS0|`#~Xk ze}7Mj#;|5f8tHy`xJ*{O1!c%I#E0mlTliIoZYH2@ z{V1bn=SSWL7!c39Fi@z5nT?-X#4E`AX<{NJ(i*ErkOTzefGpbagnnN_5!9FHQLS#N zQ})Ug-E>{6L%0tB1EZEJ1|BF?ulQx#F1X4AmWXo_Al|iR{le$|q0txPyVK(G|iP{cJtkXQQHw(7Q!|0uMwyi8fCMu&kHO9in%A zL9hpWq~|MyuW<3k-cN;BRHrmh$wxOndA=oyUuZAGsa6QB2lu9-lY@1Uz<&a0QCQ2$ zPT!|7BGciA1k!C9;{u;wV=df}DdJ?NDX__kQY=r6iY4*PhPKsYdipD_%mFtd!tGo} z1Uio@aM+#qz*MF@z4$=z|2Jie$X`w20pQSAm^R7M z_p=dOS*0In7ABMt5cYP;)T1z~(_q}Ss?FvkSsEse?e*nGFe%GT=*)wc6gSMVP*y=` zEa!6WSULGcFO5HEOo48c;2hY|0&)fne`%k+1>}dSR264OLJ?U6G;gf@+_i-tb-mqf zhMTJwo`wAfyC$DqGq_I-+j=a7f95bwW$KY*zXQD6&VF>>5NtTen7d8Ck5Jv!L(nDO zjz&M??S`A8)b#Uqp4Kn!`5qyY)phROf2U%KRt9S%{ju!ldor;p?5=J-xIl4_zc^^e z_YF4al?SV#IE79D2)tJht$Kw6HVDCtYSh*z9pYkU*EnBY<{Xx|>)Y6#(>AX=?CV5v z-GM_%QSk$#hqr}8)Xd3=Ag1Eso6<>kkT#gKy4xV0+>!ra>Q3c2$zJEEH(f3~QlAdh z_Z+CM*Y@{Y{^HGwHg2m`LQypIxCP7o+xt94F2-#`=$-_x3sy1Y+xQT zV*OCt$|>{?Sd7+J@8VqV*>_G!muBl8#_(hW*r*r9GcPHQ&3ENDy^)xT7S6Hc04ypuI7t(CyPS+ z)QjJ`zD)DuE2~7ZS`^rW*39o{vA`Qdcb_z-)`$yKXEKCOU0mb*3S~`Gt?qcMYaBqN zh_yEzb>kaHB|VNi04QymAvt8yO^=^>@o*+(#*`vxnYkTLK9*v?5XV;8>uup)^;UuP$a68-FWt$U zGayAY9Fb>H=>*vcK>X3&t5RwLnm944_)*+v8b|}I^40>o8da{VwfH#U|l1Tf;({- z=dP*YMHnrTN=H@&Ng0E|s39&+>!qL2X-5O&PlFWyY2_HtHda};-*L&zTQ)b= z*T>m8@&l&7iMYSerVR`-N*SW*N3z9~zHH_?QHZgy)YLqg@m37*kcdxp9(`X{s#R$< zc&Zs2@>=`1iACvxsEW>aK4YDL$fb_~`%%O!FmMy!--~~ud1zreXsd%&Y~7BpA0dr7 z;+O)8l1krb=Hs9Eo%Nh(n=B0tseFg9El?6&8*W817L3{Rh>5jisNe_md|K!L2ObY1 z+Pw-h@;q(UEWY&a{W*P`Y1CJ(qtig!O0#et>&7v2>u180O#n=0bOUOR0Lmp#STXHJ zThVlW^&>(BEm8^mujLk-Nh%sNLcP@>+M1D3OL~!J7H}Ko_HBcn{e2%7$GkJYae9c=NxrL)E{YVYwP|XNxtg+Vv+c>vzJf0=wB%9bwhG!gw7?PCw#9q7b?;wQF~TULEdPg2#me z)mRu?<)NF(1E_Ed>1PH4sn+6=`~fl~PERbA_aXM=IA@xw<%|=_q94tN zy`mpwkF-lC(drI9TwpiZy5dhAlarJ84^+;azQDtOl-#CmI(3r?&qU#y8@l23eJ}0F?_%A7MDIVEB$u;=fE)Lm1(M4?qdTxnx4u&Th~$fFPc(mKMf zjd6VPj}$-hqlL5cD>!Lorhx7`G%^a!F=j>e6)fV(@yQ3pu7;^hLELIHOrO`%YVuhg z`^VN#^tB<~P$C0Pk19geEzmgckB%wpH?9urs}VY5RVyP8ZEokDT`GS&Ky(?%fz7F~ z7Q;GrR|XV>`(VfM*k!(*8%p$0U)v*t^CfPaYnkB+-_xfxlA#uwiKpxmBK1|Dnw}&X zhW075urSNBDUKT$8GiE4+WKJk2@9ib^!YI`>JkQG=q=flL3Ucbwf}3fG)p)rVA~Fc zN2Jf!eTN=5$r348rpOGlGmHcQuws0>qMx4HP{r`^qL$@VR@paUi~_N zpzl}w(p4ZRda3S2sFm|$eC9hGlua+vFQ`OhHwFnm#^KO z^M8EIV|#AiThoa@TWkj?-I>`Geswgv3QeGXdWV1SD7&=V)e#jdyz7)<`)ye_@i9p+ zRNR2D>lvZ!wk5B&$bfDoFgP9RP*BTnp4PUQ4rFpZ`Q{agOtRBKJ(#FO%M@+ZX{I6EelZv@OqOT7DLn**F> z@R3we;;?(DCu0t}={F=Qn;KC+osf|FEsj_H`7jJ-E(WQem%b7O5t^r|!m6x!a(N-h zWPmW!*rSrRMix`Ks4=R|S8qG7FvnS;1+4y%3YBQA`(>rxEd@|j;M#nlC2#6TQu0{w z9g0bhk-SdMJrh^!o)-Bk>ACFa@lUT7dC0o(+^-|5i(^KJc>E%fA#;b65|gH0_k^$6 zeU~@L?=atNW}o8uC~RX+qLAvCEO2Lq(zmh39f$C5yZM-EMt#wyWmD}BI`cklt)g1q z5WjrzaaT(YhTpmivTCUj(tLo`+Kgxi;$NTTVWj|z-Lfx@+O1oyC;v8o1kMN2{c+uPfsy3wxjZi?8@A_*|3#-b|M5#y2LBuSW7(sY4@sJzobd&cqGe^JZ~LE z5+7LquKcb96z@U*X`WY{*k-g_qyT8>=`{o}hJNuE=Q<#_*;(`Nd5}jkI%E__voTlw zYx-Wh(#+ky3yHN;jq6slEliUguD6uZU);Nu#%)7U0L{uyl^$L$k;o@Tq<2nk#pSW0 z?l;{5f5}7nsTxi$m2q{lw%z8LgbphdV^LITYQ=z)rx6!7#5MrI3=U?Z8?FlpctV4M zB5KzCOk)bt+}?$DYIZ|xS9q9z1bTZ!^@P#vJ=uHaV5n`w?_VJ$}k4|89Lr^ZL`t? z*7y1dUoS$z$02HG04IowUx<%BRJEVxQHdZFBdFmNld8Z{DP5gN$cZ?B4-WEl*$;s{LHFbepD2pa#KGj8(JLQ=K{yXGs5eT1nG(^C%qlMDfY;6?`KxeIc7Hvt z3{7B-yvM+;7djyrOWV4S6RQ~3veWD|{!g-urV%&EqJ`W70&u0SSDhJFbQp$d-z?Sq zND!(X`cR=X`VIA5&|q17Z=MPJJDrM zFrvI9e%d~r4*tzDa1U0wj5Srrf6y{Xx?8zJ|K4C6VN7!4T%*4ez;ZLgWLGbZaX`8P zBlEF|b%3X5Sj`0CxkafaAqU3ly4JZiay50p#&Tv(hpFgZ!Nn!3B3#r~I08Tsf z10o0&L^opPa5{7ocF3)v6?tDr&5rY z3E38wO>&62UV!e?+t`FdvYnq3%T1>|7QLGJR~Gf;eAhmao{w8ry%zZ^tkPZfwK-Ef z6<_D@K_1W08pBOF_Cg{x4vzHck6UNrP*tZC+GFhV|GDuG(spjrPkgk~*`2C)sTC*$ zB;m-Y$If=cOz?*04yQ-J+sHuLhH(h+$YZo{d}e@qrl!vUaETr_swLKedMA)N;2i#o z@Yfa5nm>kyOLs{@pCeYrun8c8l3cUHu32E11#b%ipAou&Q>nYbJRe84dRjJ4?Wn>L z&MzIvfGOC%zIf7ZVBT?Yc)Pq90i2tVIra%N}0wj2+b+5TuFEvK78z+p3XQX z$NcomK)q0wwNj*!&`j<<9&*s8%9b-u#O+L&KyqK1nZ~2W%}Hz^h_-U7>sTD1#MbbR z^>^2AtH-h^2u!JcriVlF&8BT(C>?e;k?o{h3jS@xmbS-Ak1Im^tsrDNxj)PNbR0Mr zaDX`4o^5fFXEk%ID=Wo6i%n%{pvPe)Ykml&%4T!puY-z~PkJOy0}A8Cuc)jHExD0{ zCfVuW0{H6MuqPfr2%Z#CarHJ3xD2bO%TIa1bd;-Dwf5p8he4biJO82D-TT^{Y3Uhn zMzU?<2ryNsh>uU95Tz$K&n!|=i*tDEFu{&2+j{M2dDoeBYWUDkVqmp;V-M&(bt>QS zKBqh~mQ`o7c{h-Qd>)PkmsPZR`S97=GHu7=sYR)a97^_kT)FT@-0}j9-ANXG=P33t z47|+1ZB2^PovOfVs<#teC;_q+VBdj+hHL)aZnJt^tc{B5VL%PFQ;Rzly( z=nz0x}$0Q+*|<{SU| zOTsX%#gLMo7I!j?92frS`dF5Hq0xhHDF{6&>!&>=egBYwwq(+dg{s zmFUeYQsVS-{emC*GVHVpDxFv!ba?ShY>R=T%h~*Ptg2%tK#h615Ob=`C{ z^or6xGrM-D2be>7aGONM)Y^>To?~HW?Q3kR!Gsro6FCZ`f-oPlsGF;_G16T)O+S3GS3J;F(rYwF(+Rm)BkY{QR&AL#PivG^9 zu2IlpjJ%1_T$NsSN4DPa%N`1&=dDrk2aqdJ$jMC?^)K!74VII_=K8L98gt=vrqcn5 zw99!^b+qE&Q1~Z%_cTi)P;~RwYTsVaJvY;@!XwrF?p2Yyz6B~tcxMEnDxV1t#Wh}e z_g}|^F`OHJ@kc@EOPI3%veyo|(j8c?uOm{QeKYgD7LnZ1pDzNCjOyh)xCCibKQ83T zJY1#Jf9lPqp`z5jrz(7^{$g{;l2}=1JE-j41hMA|=}1^}i@EneIit|;1~<_3lM_xW z#FBw-;mWSGTf;5a531C>drRjfHWt>wKNL)p3OXUq@G!&Mj zb8S=SoMF9=Et5u5{_X#=HgmD!ZWW~;;*#8QX>r1zds^?3>}b?8G#)axXrWq26lZh$ zWv=;O@(6=WhQZd7j!z*BW|t)n8PN*$;n&KMcSf=$G6M%d(YFuO;L~>s1@oJ zn9q1{od-J)0>L*>Y`x&!VhUk0W=4kJGs_bb$))JHxwfX zkRqP&TG4kAl$+Q+HZ(KLMeW+X?62npF(F*~;CouXs&xJ#XKOs8Sth>47D`p4_vETM zSQrWmnLv*EhO?9645O5jTac%W@RCRCUg<;An`H0z5`<0lmX*JH#u^+P3i;t4Ng`{J z+B7)%kuW>7{uixK;@%a_Py-Zj>ZUhLALmEsQ(2eJl5TD$oMFw-Xa;+lvZQv>ya~u^uGAw<)yu`QZFtay zCfI7WjX+0d$~vn=KI3|382@Bh$((iJgwOL&PBz|*)S6e-K1a|&FxOnjI0`2tV_9C< zaFzAW;(cs67zI4#jM1)&q{X!44YRR%Xu$Tq_-#;4h)ir_3d|^QeNQKfGmR3P3#n|V zA{eXLcA6?!PgJ67Yz!^uR7w`nU8eyr!6MO>Sgci5CSn4}gf*(mINT0p&6{yvIyz0) z+CB2?F8=bubpDH3JTd&RAPluyUN**OD9w~U*Lq1uEJzcH^FUd%Un;EbY)dhTU1Y|o z+}}lRs%k~Ff>Po)-5RYIqRYz^#xXp6Nn;HVJQQt0(^gv@%6uvYL)i^$dTOVRob5Fe z0_5P1$kX$!HwPwZZ#FGe6gcXz?&HdR-}bJrl~BO^2GP5I`S(J5 zo}cEy&AhD&NVA^it4HxX(ckoQ>u-kKB_%}*GF)cgu$^QBpg<2F2^RIj z+gY+Re*3VAoZ$uGhl;w|uNKPRRylS7vgsfYbPEipopj$##&vXFYu|i7{xkAhno0Qk zpUtdpr;@;7nO;6bGCLfA;nzD?`rYgrq_jUMr}uIaQB|236Nr6dUGY6GjLl2IpD*lB z;A45J2pKRQ>z9^`tfV(Kw7QPD$;-24Bc{BdyW#0CLC+@sv@P=Y_aR*H#|){Pt$R4H zeId!U{T*RM%Y;v}MoAtpQo&G}`;Q?p>!5k(z|(ZAJlR7p_f?z=YD6gi6)r(cQ?-DN zn}bTENME&bllG?xudj^vu&?cjB}*(F0^lrZ8So{I-m3!{)IK8aXRMK33G#2=(P3}& z8!EmtAUPKN;@kiOwLClK(Px?!kh}Z?Tv6DpJF#>rB zIGSKL%DnCS4TWcb*FEX+P3p-9mzq1dH%|CX$1&YhN}Nmy23*s_ueoL5-2BM+>C2(> z3K)`L{?D5rqgWbV0Obu33?02?gpWC)%^O||F@%(^M((T7etj}W~f)=8RTPZsFv|R%&Hr_Tnew$p> zdbpMe+Cg4#2DuNLL5X1<(>`4$l-;qy2)U`xsqvJ3?D?#n+vtLOrst1rE+882FzFvQ zL)av~`-9m$le&D}NRV2ft{3pf<}1Hi|8qK%`zXEM24zsx4;ws89ZqNlsdjH#vVAST zT5d}`fAFF3qx1s$Vg=gU=dYeY637GLoZ(QNNm2WWO~YI7QQKd4j>9)TdQHDZOUAgl z%KMq;5m)sbzO-`?Er^y)JvTd*+jDjH9W70KT@G$BkYGV8B_zc87Tj^7t%*5En4W(X zz%_FBB2S1dy%VF5E60Ixq->k>>yTeIu}t}-eROMR2vMv&D;lRQ`bhxczROpn281HGkDKX+w0jV#8v9eaf%(Zp~qo^|L?t zdA%p8>APzKzc)~aPE!Y01>IA_-s`g)YF5{x;q2+#kxOK1aWg5aBkEVCycE=Mr6u+C z3P@LpeiAfe`l}6T^?=q>?X4LhHd`|fiK1Yf%GVV4s@JhHtnVf4l-==v7}TycyRMPJ z?)tkhwC(=pb~6bT=n~Ys7AE?WA(pP<_T6dj^G7R`QrMCC%GQ-h_HVm~l7&Z7Q%6Qe zmtoiBsd6P-iZ5Dh;*KEEns*H`kV&&52YI=#St?hFTlx^0y{z-6YR<92CVWuD0?=1Y zO$`K=#&MA^FmC8ieHOY69p7DFay23BF6Z&)A_o%cm*FSAzu2os56wN!5|pil(wT39 zo?dx`1O{5##k@upx_tVLvPDti3t1I*VtK;Mar9f3iDS9<(1K16s`1@px7DJY&{}F( zfG{TaU5a86Qr2<3Avjm$ZCG-$7iSS!d_{%lnuS=(0Wa2;66>z7;BnKc6aJ9VclRH1 zHpnoPB37wXbD4==iJp-0zgC)9Khx=JqgHOd=^(6(-s%|OY%|Yzy;}WR`nUKJAcTKv zrfhzic=+Qjh-Mt3V6c-v);Pk^;nT=OWwYeFu}=t<9q22yNNmU-2Aa}Z5SCo6a6Fj` zV?hcDyr9a=2#oF|1i4!>V?WjKk1ft&?@WJ)gJg~7QP)x4@Di2f*OnYP2+SRT3FdiF z>TvOpSKy2Sbp_0VgUq| zMEK#WqZZ_YO_tZWP<9CbF`!$8zDK1~lV`nw><@e1t5u=YyyXu(VuN3PKh?({gv1XzZ_@+@ zE$aRUn%%8_ZSD7Bs9sR$^_BH_jkK+w=5aBorQk%rT@sG#>+U2R^=k4w;e$s2nPh0R zT)FBK{H=^yE;U_qYccz0&kQiz-H!~W4xNL`iBvWDhdIhgM}y8c#rL|20ZX@}>r9}X zx8^w0`dt_>vq-AQN_&IP%`Q4k1(dW_Hi)vDLm;9UebBx^(a} z-Onv@K<{(>VrrZU6cP2<35cdLnVTc>e9CNTs(F8?G0Ql)Y?j4oFYI%d9+rfBe#@SHrc}NCtK06a9E@(b?tB0KJElpc(*Rz(r)}=- z)s$hDHw1G@qISj0PYUl!Uc4^)nbFRKZF4C- zB8`kufc^($PJ-$O)JWX}+?eFhH;Qc8X-$SM4p?W<9!&mnxyg5t)*AeYBdUk^LRRkH zt67?iYR$jeyluQu+s9)Qu@XGQ$O1NrIwpk+aZ1wEFNFzDi*+qkaRfMQU0TL-*$hM4 zf^tCWS7Fj53oO~{bzwffP?p$N%~}njzr*rw%Ed;!&c?lVo7#2!{uco}RP`6a^F?f} z(CR`Vy;kZps&l+a%6s&soczVqnuz! zvt$hSGu^OruXGZGBY^D%^J;2Jf|^CF%hxOU(6Hg~fj~)je-)~l4~?LZV~VEN&p>cL zZte!T;uS4D3To=%Q2#pJpf99$j|=}XT$(bG12EE|;lbm7;#YKlf$&~^-ph@XW7!mn zY%o982VD4v!zVRP_wiUfwJ@0zIhe;bzd8GQ><4|=gg~rrDzOYz7AT6K;vLqHIhis1 zKFba1-LN(wmJ!CzxPyFe2cA9-UdE$&_WP4y`qW#KEQZa0B|mb799j7^K%V%Nn3bjA zA8y|zv$2hPM(QE87nA*42g7AEo3EK78))&d0!&0ePMUV;{zzZHdgug{VVFs||G;R@ zFDNm*(%qeb>(l0e^}#t44%3?1qRF3{6}t6|*B$!iHl#(^RESLGSyFae#($dl5Ua&e z;kc1~H9=>BB^Kl2Rkc>jQbnLrO{UC~X~@flxlQNa%>(4MRo&kv98mS(`p{(M5#{Ur zB==GtsVGVrVpZ7|u`Rsyy-lp8{$3g_Dis+OS}HZ*+Wpmn`KwuX()!z)Z>}K|hPM8w z+%0(-?g)KV@n+|9`;2-vf8F7C9NJ$$h28kGxs5V!>a2p?;>EM4x#psl^mCiY7L_(B`eIj6C)kmrY1d-%#-?SR25}cP~CFnkRM- zQXQ{u^MEG%GaA$Wi&$54ZZ4%bVcehfMqsc5EROv%GE-ur==w(ycfx3gF6F9AhU>s;n>VCwD{FV@Z z?I)|6wyk#C6FOpiP!ab94QM-5t9)yI6Zy^@C6xQ4qxcy;gw#PIMKuUC%>obgV1v1` zyu6I|NYw1MhFOrom=$eR{oCDLG@n@Epz9>4U!ZCYJB^7o-vU)Z>iud^~N zci%_=CxiH}WVYE8wZuhDnj`${q|56-|6^@Vq`m51XnBSE-kEO_qs3)=pmF<%t-|7P zACF@>lC5_Fi`QPvRiN?5tFneWH?@(LlUs-8>4&F)|AnS78Z!lUAvC6Id0L2Lm>E16 zi!k^%X?%8DZYmw3r03fMUumdYb3Q`gAXC(sk^~ATU9ARZ-x#<1oKVkbi;jDlih>>2 z^+9P$n=$paPgv#>D};b@9aEPKf4e?D6cIL73vxP)4(G!`f`G?V`v>dLGSDs2LmTgZ z9f~%;nue$^Vb*HgL}#~glU7gY{muk0d~Eq=lIi+a(-LF%m#R~4`Du%gratLqW7PxL z1xR>2B}#un$$$XqOc%B#= z*V`&5Cui&KH_d1I_y?Z_br?UW;VY#eyMkfcVk{E!*Uxjn{P+TFW*E|l{J%J0Ulwb`&=SYpfk?v9a=Cd8j_@lR8Vr-dUFh@Dgt zL0Qi)f=ouiI~aBGPCkNdPF|wfo*r?2rP1S52-bF)`|Ro}N4Ux>UDje%iW(;_{)N%t|O#uO|#N;*1>I>kJ%pL{Q>Gp?B_ zXl~{7({_(D*e(+nc|_*lsj3SoFEFzIXbH}7FP3LcUMxO8ovHTXh>}Og47s2zb?K{V zyrNQfQ>;gozrD80@wJ^DHS1#i#x!=WOi@p1(4g(a67zYP3<@M)v`J>?hX`&L7||Xx zXAZmX&b1My&j%e9t4CzFcvpF>KLjaolh38(1J@r5C5%tl@bSh_Q%b>4?$>yD++$OF zL{e6i%aC+q{-Bew#jF&KxaYm3lNS$-+N1c_t5DS%}ezM6l_`DWb_ zTy%$v)o(|-9G6;pNA()#TP)Chu8(`Id7R(P*)~iM$mZ{q68f!I6Z%t&0hkw9-F9?z zKoEi;2UZ23D8&teOJo=nqA|vrMP;-}8ggs)x}a@zSOUd^w2TZt5CsPZ2d{nJ_9lnO z$<1XkhwnNyr{r~IFElz%&&@TOblQz7RVd_=+{eV?($Bnq+aV!w{g8Ev1DF#EG~c~W zzc78Qh#TJlQ8!7RmKJh6vwiiygr_I2RK}``Dr3$3{9q?#NeRR8a%=wvI>A8xH0%-6 zXO(GI%VE}(&dLud^)9Rcp6(9{9V$N?8*lK;?(Q`ZEpU)DBYEZr_bR`gv6y#L((N(WYd`(|xawy6V2Z|g zkB*I;j?|8a?M!p?`zKU4%APuYs`8??y|G`Dk-1MIS*!)QA>OB76exT}1B@ufg>Li} z>K)&z-Cl<*f9sv^Fng)j=&-exCj;nAu^!9*8T!KG;8rDy^q{XB{nlV0s@<%9l#vXW zxdr0whR;2^yxBHC%V%tIw#^mQsEBN;Wqt${#nsd`4ZH-)WL{nwM`diI`>9kwCnJm3 zrwmD-(Kq)=nM6R0{eHx!I6iXv=joA*pm~V=gD_mSsMf8Cdo)XS@BZNw5C{TJ4H!LU zd0p$MeJzzY49@*~fLvm9@`@WX*nXh__5#wLtn7>(EeLvFM*NpUg?q;LXux4Bf-@yN zNv+*~L zkwXJ61%CGDp}MzB6DRdMvb8HgAg?$f@gY(0qi*$mdf&c$w}A^O)sW7PX3*`N9Z1M1yDPet$oc3!*+Sr z>`$KNl2s9Id=>KKxnP2-jlqeZr@>g=)O34?oz!uH{*|F0o~Y?>Xo8>B9svT-i2=Qp z=k4yRQ2iKnI%N(Hj;R`SFeHefkv_g8qNJcjrTeHvVthaO7DQl}n&xhB7auxb<<-YI zQ8Lynx1lX}3&QS_yzBacOQN zqUU9)^KOq>^SV819o)U3$z~&4vt>1G>go>1CL$u+>LoBbM8l0tR~teRsIyHX+SdUV zXs~Voi+e0GflJ9bJP4`gc-1>E$@}P^(E&Pla(e{1&y6dw>{OTtzIR!t?PLiy7AY3a zAoUGwMT>wI&&o=6@goGU+*~dGMaYTvxFZ~yN3ws$is&>w7S{Rii}BA7%RO6Nz8 z0T}?&3Oo&Cnk#rvzTNnTgt(?8fGyl|(YeeJv3$@#EWk%a%M6M?dDu;-^jAZkZU@%vc+b)rJieF;&PxQ-+4+?mgqy4-*wfE)Xle0dQ&l>$YDLURuQ)Q*gUE zd_{eGZh6*8dbRu4%zD8@hVxI1P$%W;dV#`XyHBbRm?5lo1)hF9^CVqpa3-T$l;fp& zGwXdLpBbP~BLCtHYfg~TWI1%%5C*Bd_UP!&34RI6hJ*CaGk@{_fi~W4kh?k3e~Ak) zSL`xGj|~;OwOcdHxt)ZvvbKYT;;-Z6 zVoHH6R2v?Gx8dzi=~iKU!&1Sj$~8q++7MG@1D>okm7#(9ux&e z-Jcc=d6fE05neDoLi_E((Tt(bn{SBz(&{bm@P**W$85w!^uO>h z1_r{DD?yx}+HX8hPpQC}_m0eDE#jCFa}VjD9;kJX z)Mqjl>c$J94NGdJQ63CsENm>!&ubDk$!K^0)gk1qk+eFCST30*_mOtK%74nLm@MOx z#2*KSW4yh+4VP$WO#ZgO!rbovXEH9jqV*S>0Pt7vyw?HZqe{#8m>eU=o3Zt|IXE02`VP7CWxEb>jT7XkyGj*H9_U^OCbu9__u#zzHJ zfpvpDI!>%_-?|zao6U?%nqH$L$ODrrP|KgP29aely@L8y-k#4TqFfcP^KN{f zBYkC}eh`(-Em~iIFC6^*-E?VY@||JOV)vx5z+^77hRf$eMNLNSyh2ER>s1V<`UMo+7m6MCB$LRJv71mO% z_-tST{(f_nF3yr>pV|A;Y-3c5Xt+XRGVPSB zYD910WKkj{vG1t#_A(Zbh3(5U&hjLAL6-1;nA7I2uCIq{z=>(*?VS$#Ea!`Dh-o#U zgv%MWlm;t;TonXI@D-s<>>)k4?kF8VV}|)FfGqwXQcb7C(yK{jVThBW-WONM&=p>W zA_AI51bA5r0*PyXO4Re!OX@451+7|`eI7d4zTX~P(Xly8-(z;XUO1i|M*U((EAdMU z&rfykUA*imj5`i6U4U0T44{#K#1`JeZ2GGq(NYhO~FizMwvEd$*o&aPtoaf)l>h=cY7! zQea%S&-8t{CElE~_+EAN{IG5XB%O^3X~}YURGXP}rDX1a1`ieBqhx7tfAIUH%o+Mb zv$da!?;iZIl#E;maPUZ?Bz(rCHbZgYz1YrhT<61L>%65NG*5swH&>}<$ZI`Wv`h3~N%^G*1C)ZdU_OBeprX9Jy?6KaOjefL!T0dFwiZ?eK0iIOuaT3IVyGS$n%K=( zs1}kSr~hbnCksF03C(fv&%>jy%n0q+cu=hQ(7xhKx(t9<03hIb-MphaCh}ECWv6^> zh70l^35(1lhCzUf7Za+YT0)2zj;mq~qGag%j6r}hvC`J!tAvWMcMY?3j_d&zaQ%sY zDx1)=U}#oWm0HQ5=$(oDv9e9}a?F%7yJ_`lA2@no%QoO*1K>h5sA5>5WSKz11-A`Y z%dCK|+=$}k^$B>1EVs8|;OE(+h4~mT(*#!HP}2MZzsRt~nvaZcKywYg9>ax~|Aa|? zuV9zFukyzJOXLvr#TLA^NB3@E+|ma?oO93LPy`4hy=tj?e>_soL$$yB%?mTS1`!E95 z{O#@S2g1q%rkUeoBXOf!1C|^t9UGBZH>^j579{mNv$a<-dSzO$vkz=j2n;<<%qBOi z3NRuvK%AZGubGgQTbvHaG?%`PgVwvlQ?pI4G8+RyayrZO+nCz@4>YBykQ}TE|Op3p*R6!eE_i*9QE(T{jY5rTFS7 zA0fqQjte!R_IeE}BA{yz$JWu;{#jS^`@_x{0HFG{w~MPgdw%!LsdA^4n+5_afX+vL zi7Y%-|Ema-$hWg#4huW##H;OL*+&rqao$}O1MNrkaq#3ImqGs@H{yC?q(Bv8@NyNZOLDH+>HC`9Td5^KerZB2nb*Vt!mF7AHgjB zZM9KaVWh)?#?TgiC%p3Z2k{V}*Mzd4MA8S%oy-$52hD%`#LLp&O#xW&U)xIO>k%SD z|2qpRX_l3_TclIWZ26y;?;fHO*s44@WR~9hNtPnLf(W;;yZ;;YS6XcCo|k1V1}F-=gsuEC2d1zk8~ zcnt`MVCFF0K(uV-YfrXNY*9n~)x=QDI8;(Z(EF`iviR1^+$&L(}P>xO;<8ySU> zh1P#cHTxRvbZR#arLq6|JG5w!s*YG@GAGNcrtDhieYK*GqQiyJZD7YbK(?MOM&hki zzm6R0w+4T6E=tnVcDDoko0FxD+i7KwO$6|fF|(S+4!yG`a-+V5C>(LFTxe_S zV-P%VZqfjP-pYz{hl;TmusmEJJq*k>EVJ5SBKC&Y?IPyM(~epu5*Yc$3u|)RMf@i@ z%4AssjR~q29WGbDR2Lk_dkk|!F#j{P$2FsiDT5~4NF$owH?1r(O0x1m{%I_0YqLas zom1aqY3aVu?`+h~V7*XIU3dcwN~rLoV4vOg{%LaRpaoy9ie>nBYJm=*qf-$63^4xk z_!0{MU%qE%z=*hdypAqM`zob`0 z6+W&~0-8XsR@r+dcrlNY#X!o{>&y>a%uzrnjU3gB&8-j_;`LC&oBMR>o9&(ViWOP! zxGk6d&sU^!kb!)*D#IxY!MOC!l4;h5Nho{PojWdnqi@zgopNk(18+=5lT`Kof@ zpt9NTV|n@!g=Hf_RIjXjXqSXFP`AF65Sg7!s=-z{HAVw0e<1$T#(&yFH|BmTigEvgz8c*CeBSr$Q%n#`* zAeD_Oaj*)k`+)cIzYmU`qZ?2iaQ?ztY`~-4P4DYkrR=WxlMr1s>636Uap5O8*Lx-S z!?O0ELcXM;wL)Ry#oCMV6xM~94L&UNsHjD-KJXQ$aFNq0ojK+1@a=*a5MZZNm=X4c zMX`$(H)CL6Ra7G2@XK6vCT!ocqe=;6_SG;Gr$`B>>P`E|6->isyB;e(u>kjDTrJzK z6|DTF(Ro^!0z{h@ny54|lY@2_T)z@3GOfLMkyRc~G?(FD`&6sNLVfcMe8b7*nr;9| zaIW*oONV{#dyl~XZc;AD769S}z5jg&*dr&v#wi~++tXwT14%Pr$r;W|iKW!DK~;Swz3pwN z{V6uhGAdWL?r!-k3LB}cPo;X`n(V{w!BK(MudldAhs+edr|<-92Gp5Ku%pDthyo1i zSm?){!Uy&#D=Q8_K6?L#Rl2kmPi~%XReE9Q5OtcX?jdeul8|3EtjNDv76Q!i?kq*u zIkd8`D@Oq8fISW9XA&5;GRL4Q@4oPJfgbkhc()F3fBUl!Sa`sgrdZDT-~0K@yECDf7azlf5p-e-PQi>=gWN zfk>V%AgY6}vfWXtfie$D2Hl0eu(a^mIbLc7_9JCwY(GTA%d6`I`69h65zXXCG_GCT zygnz_vEC&m|8 zqzQ0lRMoUGA4B`?vORygZWZ?fvI70)1qKF&v4?XKl9;x*y}(!t^edz4tt?GSX{!P{ z0jM`k!P3`62Nc}^LJ3*u`_@ZHPGn;2gwyY)W2kHD>>LlEW#ozwz^C=|^Lrg7^;JS5 zhgz(z?dQmaU%CrCt$D+O1KMQC@CzctjFZo2!PrecC*-gJJCK3cx;p~qswa62sjpUA z>B@Bg7fN~yImZtmqKAu14y@TSEHhr3Eq)mv%7~@c&HmeeOS+J%#y|O}A>jEdoXOnv zQ5!Hz0>|gZ5wv#AnfEBlHtRr5SH}dDG>9*;R=F}fOEmhSOK@jDbQ+@V7r;>%(~kk? zOQE+;{I}Vx^_7pLy`_6fmUy5fb>Q1~2j_Q!d#>q`zw}DxY(T6@ZBtcO=0amLL&-8Y z5(t^`iAV`S?Kk0A_kavJj=+tSoO{(+d=haV24;G&ctA=N&tvGP4=xsEWDe@`$9Gwc z0xKv@9oVC^rG)_b7KZTy6u&iXimcf(5(Ag@Nb*~pz5&rEnjNz6L4U?v@_3Xu(lBJE z(qn21FM$f^HRwD}PIkaL55rNE^g{Izj2D0$7U(4T-USjjSiFku{}?%0P=Z^Ub6_R* zWyY=|?F^k-sf{5%K2p1!skkuIOr`A=S2O@~VRTcb$*WdqRWFFrhMBMna{LAxjW83H z%DJ@c3^QP@B$=!HeDs$aT)PrABU39YEB9~#lAGxpd_O*T#DJMI&{_2F?pn$GMu30- z5k&PTR`26|F`%M2YIg2M&^zFqOZTtNN?!$ux(b*YDRNUAA`V0MJK56ER(W&X_Za@nGzBr)N z+NPnmvayjL3Awr9WM}U>J#~sYrk3m*5;muBc5qLrb?k)DCaPd(gjvZf0;o#St z9lrU7C0zP9kH&C^0s9Ov_aV86KXX#CFk_kO%LfgFEl_`g4h0AjVJJd7lCnwd)>VrV zt`u40LENusNt0@M;=L^i(k$e$l}47y_({aQ>m%04v#Y5#XAV^P$N0WQ-t$bUJCP$k-w(tl<*U7epgS(LB~ojM!{lhqlId_EBW1~IS0dEqXTxg5|_`rdIjUl^s=QJ z3mhuaWiJ{q5^RLsjg4VTWZyZd0JYhlbXA~@V+AieAY{WO>~Xo*%Bi#7dxpQrj_5D3 z1#ej(hUHQB4O)*`pXpj^UVXArFBPKL9BpKmCPkG#Ypq{D7DvsjL;AMO>TI1GqCPXe z8Gvo9#lMR2CLd;E0>c`ZnG3A1P=dbr3M+$aAh?&h8EZA!oe2<~??;H>488W=x!egB zxaj;C!;>|(zx)|4q%i$j=lGlhY{1`U$r|%!c%G9(8_0y|&$R6@FJcZ_Zp$r0myio* zdp1~vynkO!)$D--xUw#x z2fPkdeh=<3SV=AZ)2o-ProLpdNo1k`i+4mz76%7HEp4p`%EL`k`Y zVHJt81yuksIK!yR(^`0z6_=Jn&2(J%LA5rKC6MR5_qHayWYai_s3qoI=PD3Kf%)Qa zMeC3VAq$<2E)$gBUdNDfI}jLa-%^6`-`d0N zWZqSU|8z$eJ`y}w;eo3_{5ej(AS69vCz5DY(Gqh{Mv%PU{fCNJ?qjpcqo?^4a(Rh( zGpaGs=3sf?_L*Aawv zPT;hT7dIy`{_=~bOOV5@Ve|gv{K^0ez04Vn`}*fl;G|byT&~=a9XAVeGgA4r@Ee&m zaJwNQA_7$R(^c|w@N?6t{rB+6W>qER@fyIV1!SwBP~;{s4g}0xL69<17U$x2Oosni zdoC5dq@eDPq5tve1W;l|8vmIiNU`1s{7wfb6d#YT4d&kHWE_OioOh+yxN6XrEordH z>VVzWH(A&HEAM#`NYQl8awgmO5h$nU8y>3_w(b6YS`i$F5i87ICAAe=n{$Aqh_9=m z4qQmT->;7V$rGVUBl9^KPQnmd&w{&Pdf{Z1J=M``o#8@jG!+PQSOv@w8V*NvRW1$x z+4c+ndbq87y=0cbm2k2XcI>y1$9cfs18cix*9+X(Xlsr;j7olrt!5ky9kWj;Q?mrkd)YFFodf|KhtLZ zo+ECGI-R#^555XBzBgE@GiMw(jfx0wOnpc54ZV{S8IRM7F1#;?@zTzwycc= zZ{RUo;$YpO%G`rw{cbY3f#P)l%W$slFI;6BS-C6Z7qk;VO1o_6u+rQO($8AWq5jkU zo_7BJ&2fFAnC|0SxozU4w1N0fcqL=yh_n#qGt` z+^yUV9k?UbCvXNeO5agk`3AW46C$w$@-GH9))#At8jS<5jMlFywzQF?=TpJhE`szp zxo)s6Uj;@n9fkX5um>+Z$X_V6CP_A$;V%=m_%-=cKEJ?IVu%d){RHS6? z0rSl7b=IBj7<3e>(=6N0WJdCLO+xARiUc^M-JhDOoU0aNOCpB!4!EOcPy-q+$#NzU$F zrIK#B$`sYVaMF|i6j`L_JkItyP;7LA9f?E5=nsqv?DjKoj=KM4a$_eb)LblNH_em;tVHVp?~ z8Fy-1!cH9KKo9V#BdC`C>TidKqh@ zdySqKXVw*L21T*{UXPh`{_+ZEdE-wgV3o;Y=y@iEu!1cn2E;jVCXSz7T{Tc@W#Z0Q zBpJwtelNA{tgoBy8~`G;PP7eguP;FOOEio2yE&I?;#SY6^Uv=3MW&~B^0*qPI7o|% zWiDSls$9C&C=08I^Jx=vUpX$Z4{W)BHek^*v6T6!cis8@&tor^t&buoz=ZmTCF;jw zU@4pU3&DWQ%ryYALJ~u#YNc{)VcH4*?Gm;BcAyjQZrbr#?Qh3CC5n@8AE&SV zKK9*3+Q~Vu`?K5ARINx%N!rNB$m#8wSxQQZ=jH8tV(LV7_H%tNl`BX(u;D%{bao1b*wF?%;Q7vo zdc)%P!}J1})C7nqlkt7A(1Gbs0R+flrF}R$gIBI+14BXhuW2>?7=OZL4+ek`Z3YoLk zAr5Ob1XAD`NC_GLSf-g!qVYW~oT%;uJ>CjB3_6{SL24D>tz0>H1GjGfd!}Rn|!@puh(< zG#her?g_-mPRz+^(G4fIJ?;9m311<5DBQHP$+xYf`oFcvpHEzrs^%ClntvqVb3X+L zb*ABAvXx9(8bTs+OLNcf`mFuu=Pva8e0Qtx#1qpC!*QGWqi&S%w7V^7OO8`gQ;D*_ zTit1DM<1v~yHJ0gYhg`Su@qp5>xBX4v`1-U4ie-GW^WA_8mtFOb8-&Mr>*0i8eeQ* zH%#s@ssy3vX0@g$aG@1wDG4Ty=IY^V& z{iw8l_}lpW?*9lEz>@X0PihRP*O8Ht2?+_o^g0*>4Ov=#O7s8s9X71F3dRQOcp$wq zZRF>pPnhMVE8yhilvsVhcoSt3suJzItHv>W^T<73mhR!mHeA{ay!o$%CA6^AOOm>> zZaZ$r%;92sP4g25aT=$&Uls2H3Ce9>-7J@{2d^rAV^o)G8t6sYlmv}0PFC}<+Lks zb~(f@$yWE1kVvo2g8dm$&0IMzv35=QRJq1)457HKMGXNmLm-}LYGCnv_eM?o>Kj+| zR_F_iY4co`;H5eWED|E39ESyFW>&Q%&iNrO6uAz~E)LgBAd+s^!aLBM2F)UvUcBG) zG&|!fku+U$&U08z0p>~gx+*V*sD4wfd}<)mU)1k_eO;SAvCHNyv-0Va_C<-YJD&cV zuZxhCt2yiO5So1VZ~-|3tmS>tZykixS#p&Aq?Nd)9|3i)+c3VM(LfkXk9<1$Hr~lr zSGH^}%V~UMByP-nU?9u!j|X9m@_`(8!m0k|ID$6kdXZxEAuxka_LaEAEwLsBxK@1uj~JW!7R!nfGe1&(QC*N}Fb9wH zA_Zn@YZWaJ!}dTON*@rqadLcbS73LlhFw`;qxtG8nw zURi$NWI^xPINQojvr936GJkMCL}6$sv?$pEo}nDU3BYc0uVv7d`b&z9GbYz?WA(en z7N@)n_owkaNIPOou1bfT`r!`JKou?DKp7!a(Lz!KN=&hbi@y=T5lW^Yk#XJIXwD&5 zp#pZ!IU6U4D|B&hURk7<%cqUf`WH|$sx*uO%`?!txOVUESG|2{{YWZl%$hoE`&u-K zsPMlfXzLG<8aYQ`XjUP-a&@ZeIFYftrI0s%@q71z^jIV$C+d@_gMZdA2RPucpq7&ww9w=(EqTU$0wS56yDIeiH@s*X#lUf6wA<5I1EK3~^8! zi1&0VGYbv`(iFo0ZmI-KAmS>}Es`3Dd_pI%Ur+IHAY$iA8kT5e+1)%+9pbUI$Hc~d zzK`YwWJO2RB$7~UZshpktzu0^J~7c|HPi>QKIy=OnP%xXuArnv68ofP(GxRx(T0g= zQAA0U`O<|f95|_J+G-*yg>+(ZS7o0~o}Q|WOxd|*rKaX4?E~Eg6fvh?qx*OgB8VB5 z=LdiZ8R_vpKq3tR`2*tPqe-lE2_aJY#N~AUrm{Nj2l~;LtK-NGJ^+u$n3iPH9C@Kv`1wQyDq5ONAY-`NTTQ?>;Q=Qx zr&r4N`Sa&C5GMoV9)`YWz1+-(B+$gF^STUqcK74Iy<-Ngr}`d{-(*Pez$^%p6s+as zIDJA55lC5cvkJJES}7K~!V<`0V{ruG(KAZY{)t>a zuiQnF1-yVHLUoXK{|x5(;qJnTPH?$2lQ!$e7_@qraTCKbSMycqVPd)C#SSvdWHh-l z1-Ou%2WoYRQ&Z%LHv$w$;?X(Q3#J`%0`-Tv(^#4Nxkos9Zv}_ zu^lkEZDcfB8_9BF1W!(?7CNi|O(2@;34DB}!pjvC1!)q6J4(%oOr!Y^G zONBPRYib{~*1bL&zmsJlR{bVXuxaa$C3~0N0exI)Oo8W*@ciHU#DaXGBC^wy3GlRQ-{T-Yu&$PVFf z&VWX)aN~3=@1pH`6?4ci)KT&A)pPdFGu5DWLcU~&O}sP0R;q?n*&a8)h+mdS`O~Y! z#-ietVvm1zFN@x(#8~uuS|7eJB=ieh5^DYZ`I@F#tkv)Izn6P=drNqQ?BM*6^>Zv^xvHow9skTh)T@wa)VxhARYNx<$`tgE|(!SFsR;Oy;E z>(wD1c2by$)9I>M2d~g5h(Ywa-z(}>QfB>e%?46RDv<~El`gT~NhsDE_G2UDxR4=n zy=zaOwlgJ`mMQ$c3uj-T2CdowSP!^$KBYNPs8SMEF4PZ@Fu)RZJd-bQgKr+)*6l3! zdc*7)7184XnhyPYALagYqTd)4c;@DuhSOZ4fk5THDjB)Bv)%N(3S?#+6D!J& zMidepoCLCl@VZqr&TuaO=+YE%WBc_y*-SKDXA&N%Ayat7VN~*52@5lB1`}MQ{cFJQ z(RRMY7LfnVd%A_a|X3o!c#^3HKkUSAO=sXLc)!!SmcTy!kZQXZg{R zK;~ua>F==}Xx7Ry|Ifx3a^p8JR|a8}2By8J!=s9GE6X zf`30v6R#8=gt3M!mNI5rughmx$ituGOB^DMx_X@X;WoVwovrP3&2bU=x&&!Ro4F4N zNz>YVQo-^#Uh|Ix&TQ?BXiGx4s+gLNaH^TLwH!v{fk24{+W19CZu4RXuffNGvjGFh z2-o|d8M!`?L6X9vH!HN_$&8g;!NoXT)-^jRXxxIq_OV+#x#RV#nu~(_H*l z1#Eszwu^OaKZwHqs}S;`2T?*-`W)am=~&~3lOZ^OcHQ+l)y9aJ!5 zJD<9ZdL4uS+9WwQ2MO&(~2I)`4&hSScnPz)*m)SKY*$N3^$diVy1g}%d$ewdRT&wl8NIG12H zsV!^I)f>}^hUy_6WX=7Wku6XI5i7bb@wzo!2VPkNuir6<36f)bL`F-Sb(2{z<0B3# zt=Q+k8{+v4e3}l+ZG+%l;rBfK30EvzM1f@MLvKXP-^)h+_yR2w0hnya#!b4P%)_%w z%=4xZYuefX+XP(`yCseFKVGO^%5sM=@c2L$3N=cq0PJ!z_~l}UPwIDT4nDqt-2s%| zwKY1^2{{_voO$hsNiCucH^9q^*b0#dcIe<47(;D0P+XIB?8c6aB&|KW<~<4(o& zWOJ$-$JsP%z?ULa z@0Ki*)zuQ69NPac?!yewbuw&TNS%y`BO(6yrX8iCDw8oyK!J-

9WBJ&z9HugGe6%R^^eu~+#_cHbD4od;g49rlWDdI51%cGPZkpdoulW@0; zln7E`@R+Z7$~+5(#|(%NVeWw|arl8jIVql=&|j(CtW^3@2IAxdk`Boms>=*SGA|^i zxoI{=L=g{f@M3ZQ(2viy`F?eEelu9NyOeq!Q$XXfX>j)%|(QcgD1XN-;bS|x=b;e}QOZN1x`DzWNG zC*6Yh(Woxc5XrtH*gUaJei>RmquRcvw6^2<$^9?im%LA?{JJeVZB@h~E$36OEe&aV z&Vb7$evLnLF57t!8#?AhA7Za7S9 zr5IAjDLsagR5VYX(U00{;Q2n-ZNl7Tcy;WTR=x7cg_d#+zH-?G+~AYv6hM59*Dfh+WMPzqo5^PMKFIBFL+Vq+^lQmS%Me1W59CbeYugV(6*GR z{H-{tvbc!TVI$qGS}%gFN#mkp8U5_$zk1<^V|5*26Bi9h63^XQ*AFdLnsT;pHYX1K z%zXZ<^Q>R}*Y*H4J7L~vI{^X213E=JEKD$>(OJFcsWD(pj?>*%U+eUf@h!fL z^$Wdt(!RLy$3r92uz5S5JQ_sVUxc?O#i=oGCG`!F=}TQt0hiuiXE!0u4`kVfKSh15 zaBHH*)(5+N0Y@WbtRvj-;DC(zJeA}+*Eo_i@Z$2!B%Q>)Aa-jS7q#t<-__O*Mg6xqC;jF`&|D0JQqr?uS<>y$9ND{ zNLuc==o$UIM7u>ZS84uC$bFO0^rA=C**GB=+_Ye8$uf|Rzcxgdq$a&l_NqROIAc|V zw_76~n_NG~!Gs(Jxrn~M0k$Wwct0=T@Cyw+IEWv#NoD}~Y2BI{bAs+4a5XuQz0rEC zaYz3C;$PF(8}u4^goC|(gumrVf-e5FhZXt=n1_>Se51c zw~H)__S8$B$R+3PbC<@`$`Z3qbKh+XDhm+U`o#XA-_qG?p#9fTL|3LowgMIPb?5Cl zl@Jho{=5AvasA%ugSq-cDkD%AebiGrr&e6`a@&KZvdFM%zkmL^fBDec#BYTt^5;Rw zstoTVz>6v|a4DBt$@WBP{d_L;;yZr&-W9p`5)PE}&5#r`b+r(9sg)p4_vEYIo~+`6 ziLTeNSP7}Np;c2)`>X5GZxRYNWu=)%l?NpUrh_+g`6b#>@;&sQrH4~H^fOr}R_Dpk zfNbS^(QCR2ZU6RUX`s{PWG4_??$d&1wTm-;syjr|MuySo@9ea|T=|o`pZeEYIFAM8 z2*bt;iEkLi5AK3W4%*#`n_g@9tIBH0tE{+0L|E7}bJnzOH@OIE6-)tQBmMr~(8N54 zB180}1~bySLC_$2o(0dhFWQEVDVBJuk7NA$#G+fwDJtswv^}(L3Bx*{{JTyurG3M= z9my9eRHJ&22#$aimOnqeWBsnqUAl z5T59`l6!TY_cY*L&5)PDza^G{zO|A7vz0Asy^9bUv>QhS+Tm|ZMW-M5#5KXk5Fs$P z5SL)e5G}u7>U7EAu|0_tlCh$+bl}x$ONrC7dRfly`c|e(;bn#U1BaR1O8X zF}D+_inffg=n8^3+w^LB0$KvIt13sFr~7aa+PV7Mg6!n&2icEQs6mHO`KC04zg7`* zncmfY@UP{r6qy2to7Q&(hm$-`=mqITxzoIOs-@T0Tzwa~Y1iuw;>DF2VikORUK@&^y+uJk zzO!D(4xZe!tJ<{st+Vlt_YWaT>mu}Skx;UHw%a?BhJR2ZLnvh9KmSMyk&fV_HAH_i z1KT8oZpLSz%n>F!2!ty@7TlP#uk;JTXy z`)AtuIAynLHgnsH!uUpCO^?aC!glgyB^~UKSBa zdPs$yhiy@$zQ>Ofn2|vPiecDqAYMxn6R)@b-Xg(sq-m?i3EbU%$-u|}mPGh>G`iMg zTW8N6B7a&#m{UK)=)2r=Z;oi{IbjGnyGPdAN~(3fft816pxW2Mhs0l5@#Z%!;IsvB z+XT+eSUNYKVdU5Kv%;QYIT^N~I9A<>qZ*$TOcD;0tW`m5TpX8$=C^23g8<}F?0v+y z2xB8^?9$KSN_3&Nav5p}D8SE~)0zLS!vhXDCSiq?oK_GKb&s|8mrC|N`Fpz}IffKt zm9j_wLNH-qYAoVe2Eu|4r}M0%Y?BOiO? z+EMD6!Ryuv1(qs<_ikS9xMejX{$0l(vHSUoqhh-ho1-rp0>yH*SYuKK53Bia zRIjTI1Abha{Cblnae#Hb-4ZZZ6Y-w_FF{w%S)~HSSx) zFce1+qJ)L>`?;TJ)mQv|EzBmPlT}q1GefQyoN@hf=i#1rx)MX|ozH>no_~*_6;1_VDNx8tFM1Be2VUIcrNj4fQW+N zj+LEt|GXs-HfFQYZTPBm&gAHwF5tr`uvXt}Xo?jN^mmAzm`i~N=-2f zyB_rn`F4uJe=%>qy|aXWXmhLpCQx@Lj!1z)0Wv?!6^87~0y9#LJS|>*#yFMmf5o3$ z%d&a8_v_s48z(>*f>0tt$#QW(b$h_KH`DPH*VxbRkAV>(?Mh^M;nDP>0i;*-mIWP- z1mc#xnqWuJU@zb&a{h}9!%%A&tAkt)ysLI6!kRoh$0w)7&tvCc5A>}wa%gt8AKKv& zT8e^}k91Rfo%$oQS(0iil=o#~rbBY;!#hoCyrN~eyBW`X@g<1%-zWT2yDg>^yzYxm z`@8n_T%tQzh%;!tepYHywg6og-=5C|6k4qpM{5w%3ajZKw;Au_Q7kR@_C=%ex#v_E zO4-7*?X;u%$U-DNo%WK8vOO)JK|rB@@>CV~74Tigw*)I6bZaS|F{Wfx;DHO8QyIK% zopsT8FQcMfK}MvB--$L9*x(U*l=6S2o#kJY>-)6@0g)0>>FyX(z@P=`?(UY5k_KrN z1!)QCkd}~ALOP|Tq)WOR;djpdzIgtCXMfypK!;&w?(05dtz&f=6Jx;i1wf|O$tmDI zEG%t!w{sx~q^5JUD#C}@1K6zzIX#-G?kay?pzzn#WHQZu_e=$8WQ;6hTl%hTKUJvd zT~drLiOig6Np;O`(O4~jPxryb54zV@E(Lyv@usR`y>HG^KrwbAXMdRczB+EA0PEa9 zNa)3{w-isDgA)wBZof`D&rh>ep0m!v{dfhXsoyu*Z@LeiG--=!x01L9LD(tHzM2?pyii8@UU`Ctfv>;K$beta>uMIX5cfcaF@C2U&*nJ zYP!olu%$*Y(L%=s2TOoW(&d)DfAZQoFXtaGv01A@gQe?>_UoUK zn`b8Fud3Ym*m_cL*GiDD8GL=tn>)yXqH7eu+y3R!NAyKje^zhL`A=?YShvZTCB+1 zHHCnC2}`pf1feZ|yiRIfHR*)=4buJxZ#h_!;J}|anG1rQk#z!5$d}F7jk+XLm~pvs zmGp?&4)X$qKj7z2K0XWoB`H6&*U<4D)X!ejyPslAo-#vQ?QCFxh=^SLy#Wn43^M~v zoB3yr*5f4o?N1fB}4MeV;L;xIIKHVuTQSMJgg zv3&3TLS=>K^X@8p(6KixD!ZfzFixCceRG^<)4KwL{&;*FqfRRCYyYZ~i$s?d50@2% zy%g>Hg$(}_-3eco>TYwd3%J?xIVb^A4f z+-H(+DD9Fa_QbU)6nnMbti$xh?}a!IXX4O6<$+7mhJG;XSHq}LNLaBL(xLmx;m~(_ z+Ha{fjhUIo)UB?@z%tAgY>|lg{_6O!sCL}{;E{g}k&(|`{CC$cj$9{Ct?3fw7tAY0 z*dCZVf0!yPB8nTqa8{5kbrB#mgB|w!5Ls<;-`r+bej3pNDk4~^$OSR~uphrn4)crkcRB5-sd9}Y zZ_ZwD-XmzdJTBeMy6{IE*1w7VaD*^a$&~B zH^q2Z$@aSeBIiN9?DA^v4~|inHP1e2V@?g$V9a-wED!U%>JJAJha_wxXJQEkvLk}5Mn%=7ifn8ldPZ!r!HM^uo?IH`8nLq=?n}Ea5v}v zcB%Mktsg;}lzzUoWfE&)0j|u4x1e5vjVc*IhHOqVNHkao!+nk`(w1khFZ}NSjdAv5 z4@&5gb9d{k53WxYo+P%$9qYyRJR4Ft?#g5$ZsE=U&T)Owe~A+l6NAL!VK<(Jd+jKT zF@KgVGg*|pn!9r)8f&=d#BVn)s^tF2vEhjDk;6=OX>|e|d9bhyc6ew?rB>x#oX(qO zU_(3WQ=pE~S+b!Tx1)jHyt0?DQlCXkl2Bo%w?h$6b7-Vc8!3UbUf$q$ocXcu{cZSi ziS9bW|DyX^vX}!?Q11Q{LC;S>GbX$2`_=gK5ZDrGYKR93HMT~pPt9Bp2~YDbuDFFJ zETTNw1M;r)wi(u|k~X<->Y6CjtF2jD0_l~rpX_e@sAc;>`4Z=_gul@b2U7sBUd)81cgO76cmD(+r6AvC{sc3JSMe}uayjlL+4M+(PrBE|`QPnr z#)Q6-E^TN8YH|n^izW5nG1in6Zq$-;A{9>92QaBp#GvORYsE zYI0RVBL{{M1OQ5syOAAwvj3Jh1+RU^L{<}&{_zZ7;h;3XI5;p%vs&N3e@hMYK5I+T zE6hZzob%_DTJI9h{7bHAuI>6yHda-HiEVE5*?&&D6ov^U49a!UFt&FZ z_8M--R@sNEN#ZLT=>~FTt0Qd9W|>V|c>yRR_#e0vE_30FiT?j?W``X9J12gTP&J|K z8q6LU2%fdxBlr8~)*XlS3egU?EYFuah9LDq(sq^LEIxOGSv)5i#)1=8NZ=K`_tXh} zwv1mabinQjp|9l=o6cNlPUq2^U)5Pd2;{XS=>O4C!Mqv%W|O`yj2>096jb4Vt7l7)&f2W2w_ne)dCTHNz>=7XxGNe$VN*7Y=l~{Rxq4 z7o_wnbfe632g#f~{gZb6B-8{xY!j>b>O_1LsZ z7jB`D{VsLHHwFF*(&<|BwF%hOplcKQMJY^mO^bpuq>_+z%$+*EhnALnianDAS;U`* z#2?Rn>k_|=xpl>@nJp+sFIq5GIJS{AU!YLNFdwa~8*wI_x>I3s@d`?D@jzdZlMg2f z>A}nBRC0NHIY!H>WzsYW!$y?p#RUyVdJQ47S6j1|Ab>7~^z44Y3j~0r&p3SouCKKG z(VL7eemgGvU$!#cph*&Z!WUvg3=Zc(kjDU#;oo284JoPHEgzk8nirZ;!^6YjmvBB< zQTSz4bK?zq6095;W1b$AfzERg>CtA4p|PCG#L+1>EhJbnz{39`S;abNO(mp5s7WN+ z2ht*0eJIjz{FE1hB_>!>+f-$w-MUu0R}Rcwo=9dtSCGmWh@QmF?C{8Qw(t*z5CQAFDHG{*<8i9FG=E5faSLO7x*{2O8^iDD z&-LhTU8B!>Lfd%gNYCKgGQ9=aJyt#J9+$Oug>yY81%c+$^wQ1yHp5)ntZ|q=X>dz2 zVH%G$p6&Nt^nJk0-UIX>RUC2ov9^SV{%y`WvAp<39`YRN|3I+SMAXm(T3!G1JVmSAnu#f?xutnh{d~~q@W&wiONcls)UNg< zm|&=+_JS4BX=UY0mt+NL0UvIVIV)JZn<6^iPVw)Vt9p0pRDEFow>aPFkP2Yod-yD>sgB5;+M4L!4}}_NIO1-Um_stYf@R~DBL3LxRZm23 z|3fw|FPe(XFX;=Q@(ZaTr}NJoroP{mYAohrVz|0D2S5NsP&(C@jf+?+T)AqI)d46=K|qvLxQl3Y{1ox;F@NawH*C zG}5XqXNCfJFvW!=&2$K1BaucAsMVFQzdYqQ*&rFaF<$BE(t~#4w*YUc7{X)BEgwC= zI7F6KI$xcDL2>jXM(R|_e_iczz4VF|>^E@SUE-BCunPWuwe_d##CPX}Kg9t?8>u_P z&>sKUM8w%@;5-07qq&LKe-Y-}br9e;l!!w{aQp7-Z0YmOKjd-FB>gA1mwhbq)iV)N z2FwXMlfSXbiARaVx!RUzglZ>hfNcf!cyUji^x^aMlf%Qm=4XA6X3Z~tecqg8 zu&dH1k&k=y_2~z9>CEWnJbpic)s_Ce^ChwmvqFp}(m{)zdKFA(5q)VG17ZZNr_#LA ztTe=Osr0z5soJcB`C}VJvz0OlrL%HBc2IN9Z}vf*AQ)j(Xwr%J#hd^*o^#g~Z^}C& zmt3%VtbMhWl#3A=5wRa6avH?8a;WY*bs`AfK(I3B=;w0@3CQ7xo{x|QXZ*HQC-c{@ z3t?Naq7H(YSQC!|xc)iOC&2hntKVLZ*ss;^af+eF0Wawy8|ROvhy8-$90^&pR9T7! z>%n91L4{#yW#tJ}_4o?z;rrN}lvXxQcXR$a_88i-ChA8;o!Fb%Y{9w8n3`<{rN zp;2alZ6oz`u<~yoAOAEXfRwu2xoo;qG%jG5Uj%!AHFzs+ZLvz9e=YjXp&=uxqMHLl z*lK}TR0Y8(>e)dt*@z1BtUX3|@c};2I>ACPALV?O?FQwo+nFQ+c#975-zt6#+ z2a3kPgKLl|)We#v>Z$GQuOb5X(XTbqjL8-r9-n^w`sJM}b1k_j-yJauwB?-?Rn^XwA7YRQmI&gAXW!Hc7sF)y3J1H zm(6aSWHdnA9@iF}2K5H?*! zpeX69?c$$2m86N2jpDq|wdnNoeu9jBnRcs-!8GNr#kch{LT@SEEsCgB1$u(XJCCBI zLHx>e{x-D(j0J9EIjY6)G=nye@`i0d%(n*9R%7I|2>#7i^6Q4+|&d1C#ID8!@__+?_mL&IYopoW?u()e;>k&brvHPU;r zY`V|jDSr;4OTUte_i7g4P~Rut#Amf-i-@M4xLl^y0?i~2dlqX59)8X;~P(p^#E z1Ukqmz5Ad=TjS+phT8&e{rB)lcIFQFU+|Swje}dCzD3v_DH#^Z!aTMYKT#s;+mLr($>U7)jbEK&U{bA_<8N zZkG(TC#{$3%<*VW;W0zq(NHCua=aqBt#sbz_=X`PU)YE{P3F3j^!2C z!Y)n)5hvkH5gF6J9B)b4&SZ zuCH8+YAD57_A^~SL2@D}YI_k$j2(GOyF^6S(f5lz@dyb`Foi#qUi|Kr@#)V}XSJCf zaAnL|UBvAnpnJ(Wh=)|6BTw3WPj<~~zorX* zL$kA__z*qI$EtcO>lNP}^9kx;DdUW^|j{cd0av3rzcH+>N_}#9q#@$gk zIbIs932oA9Wu5+)IYy>7#q~kU#)&m0aNjUrD$^z>pI; zux3EyE+ME$j3%$3v{*&lY|z&wo=C+O%F4?zE`W}0A47Ljy-?H>4Dv7&2LYTz&GZ2j ztvs-kE6`&hov2a}P8cTo%4))P8m(_GGfLSu`QjJGVwbsiJEa~wm8?H$g?y~y!<}G$A@F0UUX?aT0gRRX!~ZHY~3x%Jt=AN z<@%BgXi&HCQw+BE1UNxk|E8Gf6o+lj8krGxo|*bHoDabZw$XE@ak)3gbF z`|j7q`OT=r zA_6onixr&@`iJYLDy`W-bgfml?Znv9E}~)6{Q2j=S9X~PPE+mtkKN|uWxfJH^eFUO z;h(Ib`b$hqt;dXsnr<;)!;yB@YXw*YnmEM+rRy#clf}Qxvsd{_w;S8M>VePDzltu# zPJqTXS}-S|O-T00jyk#Dj1&Vzaq|7Wl_Qc7zk=B4>0@TN-Y@@?{3eEDrl6or!94aw zqW)|pnK-v=CU@8z_=Ro;&D7vwDxJi>jCZ@HyMEa}%alNHp_s($B+=I0)FjcX=AKSB|11*KVScDo;od^b-G*$Uk3m)<~u2OATLYc)waGG$yR;SEm~z%dLELe7w6Kg zi^v(=gJ*M9eFyy_{Y`V!z&ILo+weFn>i{5D>5pAhSah(ZGI7c=QMs$*0_x>u(T~){R*twq?oXt79o{=VDFJ8%k=kNhteaqw{FZlOSv z>j{!+AnGEYKa2};QP}TB#>mpUMi*Psv~Z2sC&A$Ys5tQA;x=luiLx6xcPWF8BPfk&BQ2t2^V-~-x3P7wm=Ku5drbHqUSsS#`1cI!V@`utQXFS7Vckp_dn<6S`nOZ>-Q=ES5V zp0fnk!pZ^r)&3XNXL(Ss%lG!~4v62`6Y=Y*{%cpF&!LvD-nr^5=(kIqYvBa7DTF=I zcsXRee9+ZZ+m62W9xt$c+UF^F4Gmd7I*=d*k$YWT?W#p4ygZZm*!=7_i_{8jFp6uu z7k}Wt2_fseGA=B7X<`xp(6FyA9e6@UYjq{e;pK?gQEGy8ZSxng-uHmYLVx3aj%Bg4 z00_j)bI7R_(l~d03*xYHOjWSSr^<*SW??1(<^19Tl&MDlBF81kc2N9I8n3jj`Wi3X zW4kSmw`Ti0M6R6dDXME~q=69xVF{oS?{85)yRy=#PK_0ul*$%)LARo zkSvsycdXZz7`NvQ7xwd)R=E>nz(U?9v+2>1|NFF=gBYK&(8j)%OUp|xMSpqX&?Q(q-@5)w z6&1D60>mS8TDVX%^f?Y7+G=h7TI6a`#84Q87FI%WranIUXxuFWC>akx_9G-DG#($q zX_ZS#SdaKAd4UPdEptHUjg7Dj<?oi2{fOkfGw`pDUBEzHof%A$|ibe)Xf+!vit;7QTGyr4SQw3&b1E z@@5MoDRvPX;`gx4QZQp@Q7&V_wwTd;-8`NkyaSZ#*&zHcwE*f z(yzzv12nSav^-XW8u4K4Ft4IibS!a9RLhl>%1uMsr~&%qFNMf6!sxuPabfW0t;+Ty z`zbH6R4{MCMi-gq1aD!)qH?~vGHT~w%vVl6tDVDD9PxSTbj9y*jX}4^69<*Tx@w_A z-Gwk;$KWCj^$K&G^#wE^Az+M_lpO!zdC(n|#6RhgmZ8b2l3o zL`~hWPV9vUBf95(LSqb{y9N^bH`Iz(y+KinMe!=2FOgkW9=(>S1BuF%0FsUMKQBn8 z@t?hSE&TO+lFgL)QvsH~K9h+m<|tV&C!WM?%|e^5>`w@W++`m%NLxuL)z45Z9Hdyw z$!{xYfB3AW={=XEx3||}raO5U(8GDwDh&_c)fe2~hrluu{5k2w0?Sf9T+ht+7+pZ= zaDlDuvB)7ll!jCLl~~c||KP4rE^?+5%b&gBsq2K9En+0dQE8atQRhY34^GbZJY%WW zQK2ylprY#oi&R`3pfF_=^i!vz)QNrXf>jvH-)-5-HcECl0i6Ma+jqH^*Vv$08Xau| z(+;dZJ}fJfAmXl^M)dfhy_Kd1x%mK7A*gxx>2JH7I0g9 z#POk;J@Tm8{W_3!tWV6~(S}Z=pAbVLE@>!@VqRA^ zp^>t$f(F)a!zk7kTvV`YX_j)vMBy*b19eH}7zZc+OgAR>IB$&9$Kuj|+?1%=)*V2jrCDxt!=H21AMZNBUV*%7nM}plv0`Cjf*i0jBh$pu$2OtXzHbCHJ0uBhCE|`UDGNruk)@hL@s_gaSj_1D@_a0YS+`c1A(i*eWZP#hY)Mv*=SXy)#d^=ymne z+uafZQPNyok2_)8A_w&xgPus7ESxtqE7;58YHPe;>aHu2ZhNpNnR@)JmWjoo<=cy~ z8en$c5jw<&rxzW2UWt&SuiL*0y>B!SA-aATZanC9^wh2Y1*TV3>{NK0>8DT{Kh6h3 z1qzls@%G{OJOoRWrl16aO)U(Pvy%Cdyw!n$fk)esXB>++shGuBw_V-Mml70t_(ee&h53*T z=(IrTphwEVn>Ej$_=i+XG$Sjh2GPOl-@blY^NP8ADW5$~e*IpFL!>le$)tdMi?NAc zDufzyK@<&K^N*eF*eD}8V-9F{I-;56MyZbUiL^AAGOaYHs${xvgd7w!;wG9hR9oL%(byaRe)tBSh8U|oDgVQ%xIY` zAA{G`%N{4|ar86}^E*3hsXG*8kb@bVqM7ZJESvLNeZbw8k2PXAUEJmd_nMulw0m?C zk8k{mlf`fA&}LHv>H8zha1-TX^-rmZkg_pMN92{j`vrzycb>{m<+>Q(5CPSHBD9Pq zOU|tfQB0JP!=t0m#m?!EUEQ2smUvL5i z$d@O0a@g1->u#*yNC6xKDh}4qjCUh9ZUDloOP1xaTXAwO%nav8#|$B-wA}N+^51vY zr}bXnI=FUyjZT%HDh8$0+9b8+?D@RrdZO%-g#`o>E{F;khP{WqQ7*yZ0M~BN>$4Da z+fmjaIyxX#H4Gi!j2D@^bK4?z^n%a-@_-|KUdiG zcGunD2BMk|6~@<`I0dlpU&~flE_0QvUlh>4nBa#)bSWpki0)x&Z6XO&-V^enK(?dP zF{|68aavn=&SBKh3o7Bio0}s$6*|$sV!Yx~cNV*2vY2oUHD1|tofPP!B$*InfWd6q zO-4Gc+m2&Qx#9UQXLfe>`6m&~-;R&U{QjNCSD3*XOf1xd_z({_z@m(cFK6oE9_Gd< zj{+1x0`6N2$4m4O!wq3cZ~4RMze8znH`QKczjfzD*9+C!E#h?cT+zQ0Oc&>HH!uwXvSxw)|xWKT8^R@tt0RZY;_koOroIJa+@%pA-!1(|= z*cu%@S}@u>+Q0NP<#iX>X0)4fBLi&u^s1RT*vp(2B?tRsm#F#=T#cUf$&m6W7hsE( z=_!B|s>~jQ0T5vXi~DyWEXm`+G*v%#?~jrin>t66nVBIQ$ocvCW!1vNpaUT#wH|Su zS1J}UqCEEE1A*-gKJNnqwCA|b8o)ia>kD-`6ybOb`W&2pk`|FWjn&7*RegX_s@uB~ zGx%#?>GTLFA9R@F@k?DiOsi!O$HvuZSy4nrxdI@B&57?s7P3W>OzI>RSd(u%q9uf< zs`zaBMfEE{4C!=@(rTk~jhS{ix=1ESdz zx7Q;JjQd8f>vqCVm>#_S!>EGR!h6(UGR2>3gXCZnhXR9z;H^Xu=Cd;G`z|vLN~{TH z)8|JJ{_Q^}Tikc5j3JBvv)tc2cx|dWU-ph26ket2)6qcU*)9~tqNvg6ocXL=SLS(2?r6qFg6EJ zOUa%W#h9Cuffjvnv;e;BKXV-M_x@k@i{xA5PG#mUvf)(TtJyZfD3QZQ>t#paS0hZ~ z!l)OwCcnuwhHiMmq8+uz5?gj$VoRaQg1tXXlB785b%|f*1(~!|hBIjMnD1jH9Vka{ zQ?2uP!|MH;cXdgG@4#LLfDUXAr*GcuRa8<-FekHbMLf&|CG7!3V!ABvTU1H^bn4;a zijg5eBoO%Ml<%tV9{PS{Qc`+{V=b4$)f#tFVV4ZbzoZm%;O#?|CEJ#XFCoqNJS{UX zOr2k@&*@FiPb<+A@Q^M*Oq)&wxlnhB!S~Y+=uY3FBRF}-PLAIGj>g+w-y2MnMTaeQ zzIyYKVDuWVi;K$$xm9hf9Wm0UaFP)=nN)1=vt*paC{$k`Ec(1$4Jypr`7gzZRsU{g zH?fuu91vivdgUCD1s$Q%$djk<#9d-$O=&y7L*(bXjbO03FX zMeJ?(U=XDE{MjSADUbL}r8-^YdeiEO*CsKH`5YwI8mn@<_ns>(yv?nN2wH_%+v4Y4=OAE1UjZ4Lfd5&c^?*M@)GX3Jv^1tTo1ao#^1Hf8Bev&F}t(@-lNgL^+f`GF(dHTq%;9~ByIrk)=yEiDlC0qQXiWIP{8+t?lEJPhdql%8qy>(^SHs^%2JfzK4z zPvE@C0bOL5rB0(0oe-7j!{A7XbhId%S8i^g-qU&Ck)P0WUyea+Ly>U;RyJXV{+~fA zSm8Fs|C8T-NYS1U>k-aPwerDAugD*1EFnR@v#V2$TT?I}%xJ7mDAX!NW`ILM?%G&Z zS{kWZTV&Kxg(zmsP6ayu@%98#2#h?V$t0!t7WrhSG!NuhJ*1SH9^~_z-ngk+$df7! zy91DUW@ZWP4@#1;rT-B{%1vTrA3KL~CCZmWJ~+Ido)>?fKzJp10h`Um-lBFoTL-D9 z(C>^#r{A+k3K}sh89R%2JR|&XQAq+LFl1&i(561n@L4|s(Ogl=y-?j8km=6XaRlr@ z9Kx~S?hUO{!{z%m2Vl&l@W8&fA=K1T+ zZDAhhgm3i7xW6yA6CTT1l;%jY0;(G*qn{@~%F_^0qb)E+aSphJ5|1U%ldM(&`Sldd zACY0AA#MNRs&7zwZ*n&r56LY&$+mF?7rQ=3_}r?ed4&$7*rVHYy1`@{(zBgFrHKU9 zAT4??4dkt#nAvpt<8Evd}@|NnT!t#X`dUmMP=eYs6OdtN-tDnHSJpXn2d z8S9psFD>;3OIMIG51H~*1#-^}e`{;EEEIz2yaw;FmqNFJ2tFI6IEgc*pRLeSZ6_QCMFp}nb zo^;E8W5tPAh zDXP%n3r4!~_q@5Uqs04`7*a9GPN0wx zeG5?u^f59fVj3JS^8iR(T|t_)VAu^`1V(Pc@?Uc|IfJu35AvQWIN57T!WSRcq)I*8 zCQIgbSlW+c`{B8OrdMS*SWNdVEF=^qdRQ6i^3jcv0uA}$Y)9kQACeyp509N>n3m6A z3l9aT{`{!w4uO(&-$`_q&&V;eXh-hZ|4A!I+Z>~zMErmDdl@sNajYkc@j6fI_)Ec#Rx^29@a_yN)EbCD-f zoc0h$++f>{T*|wB84KMD0|Q)O57J6MzzsB%hH>Po|^wo2v{O3=9n6eL^p)Eu}^* z`QfD|u(XcXL}?j$h77O%ilQJhGk>WZYns#L#1q$?Kgt}}1N%k-)Y2d4tOnE5$P7xD zT-(zY2mcnDC0ZWh8mS1!TK8KAHyb!gnuX;Fg21XI2EIdw|2#ur?D<9!vFiDZ_~!|W zt6Q1L%a1-%x6XX7=(Jb?Vt#=OcJtMP%jumnO2t&cF0ge0Kd=L+8X4d7q^7Qyv-M#c zYXKJ_7mg<=m>BLx4o^+>fXfuz$pe3aYh34F=KTA-QP*SHkEpO670k8Q0ikG$*XKHN z@rl|OL`LWP2|C*POJK!2JUqlSd61}lOH6d`Lc5IE7v6I`oR2-ruC*sw5wFtqA%Ec? zauIF`BsFBh>v7^kuoKA-1bwekAB8v~?fAAU@QFe;SbU70uKq{?$?g0~6vPQ}60gyy zz3pD%dp=Cm^`oc2ngSPInL5H5W(CM`ZG z^A0N197;Y5_ux+&xIh3>42j>_`W)DC*AjsuS1lq-hlvlH#Y?nDR8?e43N(vNX*q6) z-s;uFT+ScBMlIed;3Y%hcbM)bx?V4R{A!;*?L6(;%DyP2%e<0tQL0{j2-akL;PC~^ zquo^12QH9N6v`_pJ>=tK5TsROxti_w39VL4HTUo!9y`$1)g5ZbZlFKU=jIj-PpS@7 zMa80@V2Zs6rKNzDCsEGm468#ab!n<$QGm=8uH2!i zDQv{|*JD0u4-+_|wze5zIG!=hMbCv}8%^`*(W5Yvq!Dtdk0|&=!_Cdlf_glNLv?@r zDYq}u#$lsmN|24}1Fl8w>glM_wHt?iU2ExeyQ7cw;r%J=#TKl#PX?T~-PVKuVxU-Y z8ZpjJ$pLT6u<)%YQ-@S+7)L10`%gIr=>Z>O!mDi6y*tY7|G}lu3M@^jTS_1nzh0~M z3&&32JSYUYHP~nx$BcSzVQh(>xjm~5y9rm<(C{!_xj4f+1o|Km{UDR&RBVq0N5lsc zQVcTp&2(>TX@S^*XP?HSY1@HDK2>!#-XWZe{w5Nv)3ABmJ2^!TrunzgyH^Q*uE6RroIMJ$rgSfc(an{VupzVTbM+Ijca1 zoc)OY_q}bEnOn$T0gSma*C)Nb@2{>CI1Cot{Z`#cx35pGW@hz{YLP||)ZH#6zkRZE zO5_8d5KV$f?ADg3C)F-e=ykchbLG%8TYtV@_yhjOtuC&bLki>|4fOS^v+NK2!kgB> zm7}V>x%>#TU+9GV^(z+tN9pCw;QB1{zrJ$ca+`#Qy$FI|vF#=y*@2EWQKK`ML%JNw>3I4A1XK1>QKo!sFE%@V^8 zx`k$R+DrtL3?Jdr9zJ+ICCOf7)I0i^4Q#9UiS9OIb1F06KV4!H@$8osM!wuq_qKc& z$%0-*mcu;>`5F2x`u%Vce%gQkG@XJO`J2Oc%y27jTKw;;_C*1&((V5HYSsrnc%lFM zyY`i37?T12?@=Ia3Vt~9N03_I>i*wjPio)X5}o+}fAFSjs#(RqQXw%a={Mj%ndgcU JCC`il{|}pTV%z`# diff --git a/pr-2491/_images/examples_python_visualization_17_0.png b/pr-2491/_images/examples_python_visualization_17_0.png index 681fb55f27cb988def0b3a590ce6b12e8d96cc43..eebcb0d337238a8fc0542102159fa4b699b36b8f 100644 GIT binary patch literal 125147 zcmbrmWmHt(`v*Go&;txG^w25NB0V%nmw+@P-Hmh(-Ju{UjdUX+tw@WcG=kF7eGlK? zf8BN8-xn+vGiT21v-f_U=M&E+T0>0%ABPeL1OnkJDavYrK&V)cKVVGY72JXcQQ+5e z4>^4gZRa;0-sWyrAXRe@7YAn#2U`ocmzA5lt+Nw9_j7JOF1U?{hl{(&)2ELA?*-h> zZq`rf)zIdFn_#;r8n}Z%gyxSwC}onRwjdM`NJ$o<3mNL&YN`(YzVpc|&8_$r7x#p5{qy$C^5GrW zGLBv@2FkAWQ877GrhQ&CiQ#{L&KW9xMf~3z3?XUM!2AEbL;U~u<&cx@@r@$7J2nD3 zi8z0W#N%UEYH>ek_w7hG-n2kR;CWQwPLve*OH0sA%SwKyYBIyXo8XTG(d=5EJ&#T# zA5JbKOfNCMkB*v;=ZfzxKcq@tk@&Bo(MffhINw}_VG*w5nqHz3Pzz6--;Dw2Cdc4!+eBPab*!514&qc>dd}7e;#-;be!3qi(ySL`{TTP>}f<)fXGylG4 zAdtkv)%Z$nfI9HBHpwYrz=EvKTjveD?7r3o^(5Z!B(6^?&>6RUSCG8cq<-#(4mzq! z48Y6XZZe*23EXW#1#3fXfAY!2ydq(L4y+Ug@QHi2>zgpTTeC$gCZ%4&`&B|zP{j<# z{ok7VihZ}kfWx;4@R#0R)C3w)p??97)BKx}84K75J+ocsf*^ClRY&KyuZFgkug1LP zgCvjpNgOlhy8=WLXvJ~hs!u*Dx>hp$@A}=EZUT_7%PI&e_osDftuJaepoB)&j{fo8 zrT72s7iZVG=J?`bW>C-A2hk30Q6Zs7e+fcRtIx3o@C_GT7bqZ;z$+_YRpV{cwSjvV zB|T2U@;Wk;nG7c)cLdjM!a+!s+kMv9+kB-f05r7&tX~U*mRl0Tz$@xzM};8!_dngQ zR9MhJwOp0EZnk#7wthwaI2r3t5?W&mcH6}>y{WN4NuzH%xLLJuf!!4pYu6-lOHcw_ z68Ybwe;&}}A}i|dD8@m@>jO=QVjLg!5r#ofS1yj1+{YaqSRY3w^WX9;uTOZ=kdTmo zf?s5Edm4LrdI~aNb$IRnZQpyGKAypRTT0r%%eBcphsXT}ejKPA&XVg84Jer3daUQ- zE@7nec#vvxrT0l4$^B*G0}OOj?cK>q^Z{7Dfu9Qh?WmBJ?z??ZZ`zmRjUiF)i)TS6 z&n8zACGUM^J@3Ef-C_p|np-^Hp625w9N34K&CWN?JBR9l|56<@3)0pv0uL`hpmb%7 zL%-P$k?O<#Xp&Z!HPqn8Xm;iNztxi=6c6|Qya9|$-G80L=WluG&nG9G-Tyd~IoH)6 zPSs^}XA*Wv*duNZySq#4w1BT`rWLvQ_&94%A`%1kEPZZ|hs+JgmQQjoR;`21t&f4n zz|F8)o6frzkhniiL<14fiXjsNPm7FanLp#pKDT@v@{|7!8PscVPj~x;4hY~&(BCtW zz;o*$uU~vvgtYzST}KhssC}{IPuGEggQn7?ffeWY--?4xAI?k(;Xm*i``)hHn0!8+ zdT}{7BoX=4e+{?Q;}5ZbYF`K%*3pNRs}GmudDrZlZf(_z5X~^-4zIQQn?t&-gHmAp zm?1oabEC`AK(u}KJ<7fKjAeQ~m3ahYl+??bhqLbGy6TF09(9EL=2cS z3wwr{|4%NR#`!Pv0+|*4za0Y14Ddnte{uC+!u`LOlY39ZF1r$S#?lxDKE*Z~KIUv} z4P}yUiej@g)bL;kDuWUngk(ab{QONG$6Hlh-P`O40@0(_a~0`u0C|rpkoxfvXl@GahyJ)ggn|NCRhZZeazCQjGcvX-z2GdraNwd@DW;9l`6zs1l-k3~vkE5G|Y)Pegzu z6Y6@)_NR!e0laQPWHIc)VQ9;67~K+2;FfXWsXRN9DTEhO3GYXE{uf5f6s7_lE@|DL z_2~#mzF|!mZ=?}-R8@6Lyo!f39E?t{p)1IQSAmmG5(%UfX2Dm=$rhXcWwK|GG_A`n z!j+3PeKM|TJVuaF4{PsHJrg2htKV8w4h?3RpBBo8DQ|n~ecKeQ6@m$E+Ea_{!+^Yk=7XA${%)XBv48L4HjDU6ydzDkWTr?bJwE{VLBJ3rH2qjs+oZt zMnd<6c~nSZO3d9Bg}ytiBv^21Jr?3GNjSvXA7Q*~#o$ml14`FnpC|QP2F9$bl<~8I z-{gHS1xB1@P?@BA5t+N#{Wpz*F>nv`qWebk;ClYTOeiX^<49%6uM+ z@Sj|osRt|auno)a9ttnW5l{~y`gnl!=JuR=*wPkEe6w;AptI`+v}s;_#{sgE&HEYz({tp8aq!$9_b``RMRg&J!nom7Ad|1tq>+_Mj1 zm{Bn7Ca}x8+ABe80A|}~`$sYoGR1bGP9f7%i3gJ13XkDp%>D{b{aW=x&Z9T~SpesA zv$z7oO8R_gn*&+foJvjzNnD1)h+R`muoe^-_v zul8TIr3V78$WYGHmm#!;<2BUQ2_e+7~Pf9^^=uB}E0J*t&m?wC$~T zd@X=KAWiS*7#K(kjNHYTd}Cu{uEYDO*WMfoGm8WCPfBZKs9Pv0IwI7?GfWl?mBSuy zC`snDb{LKi)) zmk_nA0>?nJCp5n^I03@uf0T$zQ1n9@Z_?~(c(`#7ENnz6boXXmPBC2SkpDdo+jFD> z{=Y)h5a*WEd?K(mZj&DkUa+M>R$g{r(}0{!Oz5u;Z_DxJ&VY!Efwt(E+OpemrR>C; zArGpeIWM9WysJ$*W8AmLzVP6E9~)aA6Fuw)wuelYzHGHd@DFPp7P**bX#b6r9M~0$ zJgfR-ac@Y@{Ajpm(KVF&+}g>|=t4CJ^Vx88?mO~af?mrqQR9fhh&`8P;lUfi_LJyc zU3gEgrrTvn{2ZCp2pksWrv>PhhzGxIX}s#m+$F2Dp~N(KyMb@i=1&oFXz6Bw`u6-_ zV2nl-&Ut5F6yWrG^F~5!CDEVOj}}dR1fACzsn^>B>-+W%2N*fdhyX7DyJWBkEp8HM z*q}JWnImi&BLSt(K*iGi57Zb+1<*Cy_BsifXS4hrWwAT+(=nG~V$Vr;*MhL3aA41L!Z+4$+G(-k@i!$Nuzg-f<`?70fa$UPbE4T~M0+(p>D9TMaR8GB zZ1A_|dtXkQ9fyCr!KkSE=6*n9%9D5pvZ0STA9W4BwjlJ~k4Ct5ECa^oHbv&lAs<6*=Tn$B9DFXqSgPH z0Z1-h`wJ0&{`^5g-?%@IQ&%ywu*12MM&Y<{d4v;>kneNx+Pu);8IJc&l+;7mSfmm? zSwK=h$sgte5*5dmo6WxlgvMZDNDZm0tGOi7X@&M9LY72jBu4t^ePMpmIBPcR@ye%N zqVumAj(v?>Wig?|Pn8^)v2wT9(qEbmEVa4A=;(&-E>;qi9U?nFx8uy7^x|L*uEv6u zvOSej&;_e!G@xvS0wjt%1Pe6$@xE|8+`$*Brhb2zbF#Dh_P*nJ9V|5I3HD+Xw;2%> z*YU=wsz}YA?XU`3DE|*pF1rCCf0mw}1kwN59-^-aZLN+C<{b`y9Gvo5q@2$5%2ozR zAUJt~AV3~FNkH|lP6QCCRt7u{qJ||&qbwaP&FnJJO`s?$E-rIbhSrDk``P4k4x5?|<)@NM$^h3}H{$;q^Y>Gx&Ve zi<|X3RBqODExJTcjG2Cf4`+aZV`GCYF}^^94W2ntOcViafdWyx{sd*^VzO*T!_+v! z3KsoEJ%!1p0!MWknESt@Z(d95aF7*P^U=(5?j?zv)b9*^BM+Oi#}i{3Tcmlx+fX=M zizKAg8nG`_t!I)Tzxjj7qDAajh|_ggWcxljL0T8Od2+?ZH`OjCqgY|LG+f4@g#*x* zjbd_>p5h3M?`rBBT{j0Z+?ioR@gJyje}X_GuB*PZK#@`&u#iQM{9xX4{vJ|}1+u>< zHi{FDd48MD`SNJ5VZ6|&e05TRHsm8)fouBqm$T2c2t7!Tr}1z_%)dF<;NTGNV036j z1>;;S0GJ+&*Kr9(F|^sSsJR`dNH6TLee!KZq13d1&3iII9Gp0sMC=n0_xX zi=%s0HT`M9zvvvPC|j7xYVz{(hDM%t<0+-M9Clt75XVIT@TF^&-(<2SNWP(=xv+)G7j3HTUUVPgUmgKx0$|dec(4evps=Ea}{JUo3L!s_)29a}0ipCU4( zM*JAvf4r|KQ9QD)uFiA!BtY^n``Vn)XSkI7tY)>2#@b}KMO{`2wU)zk00sZV=@N>&6=Yph{;XK?d zY4#YFcoO8#&d~~L53PfXLiOQ4PAgfy$Q0`+ zi_klP!gg@jEWti$C5*zy_N2;#l54^Qxjz4te%J|$ogVekjPMV5zg`f+>jSE%h7ReK z1yQjw1^_pJ9H*{Lz}}4a7}gmPid0!8*wZ|#@7`pIm~rXExKo*@dY|(9kmLdQ42)_b zRBB7 z$vwmf21rEGc%P>+kfRryj~DD~3QQ`^x2uikI-E^EYHL85`HW)P6}_Z7Cxdr=**qXZ z1Yw9mEUAl%WD}$!nzU)0bplNvAi*4T97^o{>S(biSNR4rT5kNtr>X&JlSTm^$kNg> zD=SMXWbs9*qHDvWDAGdhzd}g04a4+bjI>?^`_pk8a!Lg^?SK;DvJ8^6zsIc_l9;ej zUS?Vg;LjU5^@R!+@WM`;V=7>>rlAt5^Eu*ik3;Opi;z z_)0b_%?eL&pNM*=xa9!8_3sAAxbWNGcn4h_hd47!Y{ZC@J!N^|94Ui~u>qdpLZG`Z*y z%38HAgEW9Yl15)AZK(xge<8Olo7p|`r>p0R(#4k9BbU)SQ}ZP$G2cs22%s7~!;}tY zl}(a9Wy8x0uTAa`6wR^uq*IwC>CFvQ;fvgFXc#8N0l*f=to!SRdCw=Y-%>*1J!&q57NT;pwtm)mEY2S&Me_zKkX>p0- zccuD$L(9dJP*5c&Cyyi5*0C!zMlNl{Ds5ydjp<{n`6C~Gg8M&OwkMZU7;UDz1IOX$hqSw>V7qAvLCM_RpkuF4;9P^H;MrZqBbLLL0x56 z86L`aE`Z1z&L-zUjU}aTYWm6~(tdHxL06aYSMV6=Sxm(_>CbatVXC-K4FqJ6ri0@l zubL3GENXn5pJVYFAL%axk;BrjYx_sjuOpb=Ove!4|8Ce5ZY$*SQ1fUVGcz|wVO9Uo zJGQ^*x_Z87p2fl>t-%d|jRs9^Hc4Uv>5q0jYt$zt_|<`1fDQ09l<4&IGF5+`M&7xrnCVYnd_nW z#p=~|-q7i(K(q5ou8*Xe^m-R8*_`A-v~*Xav_zw3cCt$E3tPkxr{?=n765?!qp4m4 zutN+GpmTh+j#Q&>NUC>3wPNIpLf$k)_cRwMYO$G&ywT*yT;yDO3qg}-e;v3A6PCwE|6JYMr$A)VL^EgdwNg<35t|Rxwr#Q64wzp~)0Y)i?0$-jsg|4Ky zs8|YPek>~`eHQ^gd^U>UV2#QdfKD(e(_cvl(AIOu9-SmTpDi(mgHaWk_A)1waUvsN z!R=e21HsfY-*Fik?hWBwSy$>EX~A4dYi7l4No{Ld42i#n&ie*hMJ?i>;L$-U=g%P{ zFRNDpNZ1#0chkp)D~%<8JTF#r%A-m`kVpyW1JKxkvgfJhuv%eFKpz5jND32u=BRup z2UIC^sEF)Sb;>?h-Xi^RmvDFeXR`R!FtJpoGMceOMO~y*T(8J0e{v#&)hBJF2d+fj zfj@~brH^_Rmm{CvZJDlL)>-=8h%QfVC_;QS!6^ufpYsF$v=tS-WiwLl&w<)UVJw)f znpHwkOrxbL9i#auS2|I`EP3$I0HvjR*TU12wAoQc8_L#27!66|Acg+BvT>obU`*~A zI}zgn4M>}B5>7O?ZDiDczLdD~=W%O$kP`iq*h@teoi{9+udYS1b@%msC8HHrg&IVY zr0&CZ?puP&%1WQpWQE!QFCi5wACuOn$0zDw4_XW!AM9KgHE43E5qFDTz0G@IgH#3b zs0y?hH*k$;-fVd$XM0U1NF?|=lBceB`!Lbx5}3s?bHLa27DB7Aw-r}T3QvewaeK*& zJhLfO`(zXn*DFo$IMhB!!~ot4a)}2+bJ&J5O&KH7e05=K#N55Kj`wxFfrhds zu=WOI-?rTBO42O)9us0V>Z~X5>V%B|gI1ER?oPOrIbQnl@o-I`1`{TwQt0@82nA$J zUtx2Ybz(X(Zx=&sJoXf|kVR4r2OS&IpbgLXx0Cw4QJ!s`Ih8>R-ptO4OHR1{=Y<*LynJ+WhLmO7IV4>Z=MNcs{(4SUqiG-0YqNFhr*gWTTUVygESc@H}J?e z52vqQVIuZ3w1-y>1=nq$r67*VnBAIYeY>75KP#ssN=&|DbIfW3xhLZ z`FC%;{<6N^PGc}9Bp4wRMX=TcaL49ycAde&loe|_3mpU$*1Mz0n-^uV$n)1zVAu1t z`*VlvcOiwg0Qr0I;>GaxiKcTBlsyt*_$g^UQrZT)+PEXqt_f$PK1o~GCI#v@b}~_> z@1@bG2jwwo2FMhdLg-x2;@`$0Hr0<{|DaAhweNZu^vE~4PnbQz#FiGHd(XR6K%y>&qN{myxsk}4b45KHVf!AadkDztqj9%M?dPIXYm zhI#2jh`hX?Z;mf9H?y_E=sIM~9A#KdECg_XTV0mT_R>M?CFVj29qRou98x%5R@E>f zf^Gm=ao@E}bE$`4JNTbfnnoP@K00|H;z9=)DDFOLuDgg6lCc_^ae3(H1GxHA8cqz<0}nh=P9MZ_8)(&5DljdDW2^x65LB zMxwX@vGc_r-P+1BLkN1>Jt<76Zv30fdM<@0;S@fx=7YhAwC%b8TkqTI-N-e6BKFk) zM%kwk5%#l3-}%S$jX2iohG=6yGG- zPPYEsCPv&|D`L>2Wow;C({~IM5Hv!uT6s)MqGZLEiAa^EutK)sHw}O+ny}kzBVa~> ziBn9>2W+_r)Qrr`GiGa3(UX6<_#h!{N)diP$IHr2WMldMZv5}S$1FxsDrYk0uReinZ{;qX<`7Oy1 z`TX-C>8%d}l<4{m%)f`UhPTa?wS-%~*46L2!?&%hs*$>l0t$=6F=+ zgET+Jk2?{Mz~fOy0>*6tXxIHG09xj0aHRT{u6$``mnxztFt$eTHAVcF=JgH3hY9!Q z9|<1)&E)7PMo!bzE7sAR!-C6u*i>n`x3XRy2{KCC}!eEe0r%#JAQVg!8n#5`>%cn#ok~W9ZuQ^A;RFq$lvbITNA=w zoSXoX)t3`7z;;V8%F13JjX3?Q$m<4lHLQLAGwq^E!WUfr$JQb5ozmv;?EJD@J>=Ow zh1VN=xXu<@v_Zq1+Os<;|L4ggj-xHsmt0RxxLGhWy-H;Er6!I2S$@vM!g#`m>3H)QEEOmRe32sJLB-?Fk<+MzVv z1pqO73vDFZ0O$iS4iU({KlK@50}ZP~&?uux^ltf<^KoAPFO~?nPEKiwd47*LF;osw zWEe5;(A&)Q-DxE^hE&_*vGXDhuj|kfup3_1m|!$G?o`AWi+WY*f{(DQ?fZk>Hptl} zYMtOO_Xg~y8F{J34;f9gSLDC5c%YlaMoQ^IU-MCv9ZxvpF$66i?lmkOy1X;?kABo@&1ED?8I4@Pg4}m-feJ zJT%EG8dlOhg5IY=Tb!*PSA2lR8o{N0ciBZ(QYHJf^02S5N-=xlpaa<-2aYHxSSByMiB{u&6N*(|7St z614qt_)G%TmE+EoNiBti6G(rrkQ)<2nxYwxCCY-o6%zxzPGws5lS$OBZ^1jg&IF(p zh}XR4Np%zV4eKdr_nIoMwpUd1P72JCj?=8FzVV}6+Z;VA)goP?h^^SXMROJdKa?kQ zOBfKTez4dqTqB8BoTFR7FQFJ${6#rEg{I!} z417v_%qbB6l_5Yyb=m)`I~R`$_-j9YKucIydPAN^h9`;{xbIPIF@7aPZC%3V%^vkq zQ3V{QE!!|3MFR%&4(lh?49?FZod`9RQl#Dr$k{Oye)yRIYqh*_%=&G}98wrg7*Mb0 zL_P#8!SOfFn$-l+gPvURw}oee?irl0;zE2Eb#$#Lj^*^Wje0G|Dfmktjx){Jq z0%d(;p<31oj}+dord~~U)_%NU#z`Q{XAEFJHgP2M$L@bf{@tC(2V^o zypn^XSZh&BZ!)-i`ZzqOzblG}IO6M9B^4Ew)y;D4tlW17qCd&{i?A8m0S6Ll0GWKU zriY!oOdS3)skX!%K-h}mvgJbJsUciS0Izz?_xTc@eix$o~^j$Gg06b^YG1_CaA%^LSj zrZ`c^Is>)*!dd(Ky4;Hci*jg_JlQsDat)SxkXb;MWEb;sZb?N}P7Ypt8UV)IXg3zt z88Tk#0a9xbPE;^2x>4oiY+VFatKOf9+0yo^LwXg?xQRI)7 z)@Q57e1ldn@36i;5DQeIYFmaPwlWp9LVdPI=b|{C%wN|$j-T-9(38QjQ8^e6%g>~? z8iJ+;80+EiZ-fz|ri*7SkwZ~gyu{M*uWmMuBM;;y3SU4&du`l!({XPu42%ig&y9Zq z-2=y)B6Gx)TBe+CJ$4`i~~MFaURkQE}GwB2-x(xObZ-MHAMltz2*OJHR%=u=EQ7MHF1BU@EC zAq;qSz}SdOjDJ)KHtPgEA)}kGlufZMn9R}2F{Qze^#_3VGMy$0fFjS`GvXxbD6?b9 z_YTjW+sLC0If;X+F)bUZK*hAI9>z;{_B~0~4hz|CEA(DfL%Ggn3&&x)|NK{nCM^}! zHB5V{U2%q$-LF?b^%45T;^GExz)LIGGDn838rJ$)v+>Da+jpI>b$_tdyCX=!PBwn= z5l+x2U=G9Ns(udoDP5B8M$smL`LmhnjiW+j3|tWeH5pl{nM^pmDZt4qC3=+WWu64B zyXQu+=K2$-X^GumZph5k#wrfgVm`lPyJJ?8F3>A1O=z!3@D2Ku&>^?U3-3Dpv%*x0ICZlZ(-4+t`g!|p~UJRkXkyiFFky6$>sAe1LzrqQ31jF(-d~dZabjWJtBU;eL(@cCW%Cjfov4O zb(|zi(|YXLUHfOnGlWo^u64gTw;^MW(t?e0yN=noV+(!Ju5iG$$I7Cz zEQv_YE`XjkQ*NjYag~1vz z{@hW~$H(W(==zdo@l!|43 zO`7%Y-4~d;AbQ&R-?QD;uErm{Gdw)uxu|Pb_-q(*e7zrs`GEH7V4#m%p|~{+J|$cA zHcZwpTdNL+Z4mK^&k`@qJ5fb|SVoa6+-!2yaU7do-@vGUK9zONAy~G!Rq(M~U;~;J z03gk0?UL9A&fig_DKlq%7Ntc2sPMuyN|n3hUhpNnQ%!w>l^xVec~Di&ShTCr#*P;| zI@M2TdqqLI{wFN(XSOiEn1Z9LHkFI3ez}g}EO`OdSnl&M?NYV1+_#4V)wFlS#5Ro7 zQ1gJvLo-I$=JflL2sCobTF18^w5?3d@KB16FxZi%QR3BKE$U!;K%2M*Gj_Ap+P_{@ zJF!lF97wn(V=pH}mP6Wx{QO`Mi$O^kXiHh;Bxe`)kT?u~*`5|NFnklNg_HP}1y<5_ zpzq#Bt)mNgq@!~;362|k0G67!!RxAFccOS~z(Pmh<@nL$LmT+{0TdT<7!@DDggszU zx4$}5Gp82*3ZwlGc5p2YP)Q5*Y81jED{O&`$wn4C8O-wL`6qPCwAb)JJQ>>`8y}H% zwcEkl2nO^4X%uFYpR+Zn_y4v=e2xdmU5{1~)WR-i`Np>1CXr{)c90T@VTx0RuN+N6 z|2F$*c`T!|Vx-A0zS@qSNW_%ZWMJtOBf z+Uc;g9y*J4gfscMA}i48U1oGhyA&s9c6Y~&B{IW$UsVo`%RtbxL_KjvVq>WmW}*Kz zUZVt;607A!j?h6uVaNp=&GR3+C@YpcW^p0WE`D?$dyu7sFx-g9Ew@v%qBME@3>`Is z1;e!j2v>;;oqQEIoWI$x2xa^N0U0xrd%#pmkzV{myKU|2N;CwxrUyV@-Y@T8f;(_2~JP`AKCUdrPMHzqt)S{2em{gOGtKv?V`E@3g=KA4iYis)~E-wGPfG>Hj_~g>U=$}gk1(In-;94ff76Ke9 zmSMITX@kGjpI_QsB#6o%EEx(&T-Df)k6Hu1xrKgc~q$e3yh^vWt?>Xb2v>1|;0 zFnT8Rid}}v-Q=~DiVA?z z!MVY4_5?&E2y+u!!Ide6EcCb<3sA<_F36;4*va4-B78o|t!rY;dLGZz1OQEkD2ZaX zM?LXwB7da&xpZZp%0~oBUw`@qJNdl8ln)i8H3xXTgUw7BOmKGXj5s@&0-PtQ*EJt`c z#rUYoeb$~{JY$(ED|cc+xM;!f=-Ff^PC;Im#9m+rG>r4UF;9I zp^q(8uXQ|S_^;KFNPHnR5r@UdNr%voY<|+%-FCfmRFtFJlkqT~$RXMw>X^x^QMyRN?vi}WTm^~sD=KwwNym!&CdSW$Fs zo3AYhay@w(Wf%qfJZ&0&CD~2x;puc2)3{6&MI-8EX64ybI!4byl@LuO>NOGycj0rp_S$6a|tM$Loyh1!ui$DFmFBkWEAA2(N@;4C(~9{*r(Eoqa-<9jDN zH^rw40=iQc$6b6E%zusS5Z!MQ3iS!pee2kXradjTsN-Y@Kcf=TE{sEDd`yn~GH~BO zl#CiV(OG8;Gy7bnlJ$TW1017xv`z^nF3qye>6JKF`tQ+#%a)MXXClQOk$?K<2n|Ol z2k!f4t_$TF*$}VAwo5)~oko6&H zaI>wR=VHyCtX@fojlX~d5Q*c3f~)~s_uJG|&rP0%J-sTV6L2&_`tZHql$J6ga)Nh- zlbh_SWn_wd7LCkQUrxkB!Hi@?%%GntFB=2je?A%qPo~v|(qOFf7ih{dz~1& ztJ=4@$yCk7Wd@wI(hN7#K*nHA%2u8su_1vM;Y`iRfa$w!iy;ZtV1oiWDA!^_e_o_{ zux8A0U0suXLQ+#gO5EDitr(M%w3WaAYJhs(W9e^!$#Q&YaD*uJp3l!W@%6w|XhpvN z^;EF*@;OOrmplc9nJ1k1P{LOQ z52Sz|?4A=bpIody0Zk6FsQZNQz%YV&e1QZ2Wbli}4}Pr)zTfYT-2CAe7+H6}S72>z zef)3aDbS4=o;R#; z!a>h2oXDzB9O0mH!p7w_0n|=S~L}7z6@} zS0{yq%C%K=@(EntVmK>*|)IZ&lAnQx!(Ctuc*S~PPGU4I!OV!yo6 z2oueXGHjyUiffqX0(!-pCu2Mpkx^G0?1af$8fo|!G9dX^Ye3Wh2TVfY!CWKe%X+#| z)jq8*_hMstl8IOc-I5N-1{9C$>cT)A#wsnFD5o{oHP4B$dj;49L|VG$Aqz3}uRc8J zcKpq8_ro5Z-ph`|AZhdN5KF5cQCAT`c-!TPC=Q^$LWwCHDg94?AOO(SZ|xU_v@Caf z)|n?yz88gNC28i+05o6kCz#R0WY3>Ox=?RlnsI71bfEwGsvc;zzW@Gia$d6(=z5vP zaYo51i9XpLqp#%}u8*6apRcBOs)^Ok)kv>7xpUU!)*dv2$)8R@RJ~-CEGC?@+J4=) zIeomQBg;nM0ahiDxfz(afhKwC@W`BEz+rl9Zf*JHMdh`>+*$Wwx1LZ_*__1w$J=Ps zB5#qs(u&8{d;Mm7pc$MzmIn{x@V4V-(jn5erbZ%ph(Bn0KG4UQBix=F^UiDOr6lgd z(o4)+C?*5(VvF<8JAUiJgPc#0?bw17!KIor{;l`WWG{Fe0ua7EX#icfkt@yO558Om z&>35AR7Q=CqB0$Rc%z9m=~Ik!ToexajdxBfCOpMA56zA}&Gt*}6HxvBK|HocfSwb_ z>tJq@zyHZFqOv8}r6d-KsQii-wa8+qVSCJB^Gw5o-<}BUQv{Q@4MH6hS_H{w%Y%CV zRkN^SzAq`z=c*o6i-KbbfFCVPc=qUe*W1Hi6J2M-jo6ch;~7&_vMndS)RN|K#IqwR z*dEVHv>Y)?cJVV{f?W37V=8AwNOBT9?|*r<<7c&rt+EQ+JTz?YFShiZ1aLiVS;;`c z71tzpFNiw3FTC=I?$}|$TrJ6DPx3Ir|G?aPD|M5) z{u?+J=WGG6lPmXa$efoVUbFMzb5Q>orUg&pdx|Cr2SZxrG+qHbM!ZUXGVF|h{zA!@ zY=$~}b@MNtAt9xO6#?E)ps-F7)EY$|ysXcA{FS@r{cw}6XW^Io=`T$X0JoovqFwNq zZ7W-wVo44AIo0;_0_4H0B^?BU+?qZ-eDFEAI!pNQ^s}&;AecU&cxZhh!JkUe)vIY7-x{^a2g z1V_PMzRKnrA$dM734Dfd4&weWp3D*Y*)JA;kVkFHdMxM5FYlFj<>LCaGtaOx36PMf zyHs#OIJZ;55`GHThIUXbRo>mkpXS3npSn(im!>zf*7Nx~3kmBN0c7tK9_W!Kf8O3@ z*qYh;wmG(Te{kK}JKv{&zB9BGqd>Htj$ag9QK8Atv*;=v8r76$x#ZTN&nBBpGc91A z_4|Ep$jZtrIa%#{Kll=GBKb=;^hInePlYazGOxJ!uZyY)=V(eradZuuA`By`pV-N) z(sYxdHm{E5Uj(Ftl~I}p@1KTA38=dn2lGO4Bbw7`!T?=Q>|(DW>)nTe`+yty+R|V2 zS~w|8zq0&Y2;C-tBgGA*7l#hI2<|*@*_q_K{P^FZa1M^oMKeksi}Y&{1Ov95Q}M8m^>Ovu?7?NmR5O7 zfO{U==vVF1TAw=+S`j}Fwz{qB(R01^n`g?-J&54ukEN;DDLq%X9D#du4pAFkL9geV z!&6J!8%Ynh{ivkER-fibx%`>$xBs^09HC=kYFrq9I0$scL6!Pmc8Mhf{Zk)uy|)Pd zNEw;G3{KQcu~Jc2zxYYh4^d~8MK=#)LikWa%znYuBgo3P-jd9SD07XP4Nl>4fq8|{?(!iQ89npIWLZdE*9@MnOZOnZ&Msq^FC@N>uk5J;!% zhr6gFHCXNniXWOwSQlJbmQEW$-tQ%^hIh$@{HIk@rc;M?U4S_x=5^lH(U}v`~j0?8mYu*gJ1%q1AqU* z*zjwL0c6+VZ0AOt`PB44e+s4`pwU8IBb;mQkcAQqL(*kdFh)|R$}9im!@Z*<>Lv^~YKh{4 zKE`4+BDDOA;LUdK+<;k7=-`ISH->~BsQn;@iaMZapaND|r*^W~AcDuzx_Kb32jm3nt;_dX?T|XUT4qHgp4}6|2YPYxJ|_{hY$<^MM02Z(4dtc2+LQAg?|8 z=Ti@`n79%+q=Jo&6o;qPAm#GIq$kfHkN35}TnHL0FAL_=t>r+VHTvZVfinB;8oxdh{kk6n!zljoRO1F@&lr8(};$h$|&s5P#?$0yiDT@~8r$9>N%TTEadCkEiy%sf{NUmw zF+Hj5JGbF*Hx{8q?wJx}SPlv8K+a=Qny59}rT+h2dIri+A>LGls11xrQ_@Wgf1SLc9>>xl24tYZz;8eoZsB1oKBB_^@$w~bKvry!r_*t<-5?((7Si-ihV>AY{{JEA zETf`&-!43aF!azM-62v^(p>@q(j9_yNq2Wk{G>w=>F(|ZrE>@gMM^*#-iQCY7E3=e zb2#TYckF#_X;%@PIlY(V_OgqC-_+R?=;Nl*kn^Es6cSd%5AmY}sH-Ynd9nH5t-uUQ zz8x4(KP&>pFh|D~?Y~2K0;q}->^j5)UPO8+D z+?-+r;V@Zc-<@0y-MJeY3>y`U|0MsSzS6jzy?{WX{3lo00rSr@>h_Et&WY;!Pug5; zO*~nO&L2S^s80|~(wr6sT2BM`kWLX|hg37ik@!N{ILo@dvNQ(zy)?$M1|4Q}By~NY zB~-^Ibv5Z)L?dEC_1Qm~sj?Eu=^X)yPmbR%DNv;YJc9_GK1ZNi#U~*NOxD9mk9u~l z+im!vthBu$ZdcI#}mCm()69WwH5HEjbX|i*?JL>I&{F~ zBlm1~k5?dmCXLOJ;OML?P8y$q7xi!*hdwPzn;bJ(QetrYoF`37+f<(@Oj+7tO?yW9aF7aem#8jF6*_w)orQ)Wo@_&5KV$1#TAH1UYiz)-ErasH%YoTthiTSW@I! zg>lgB4Hc8o%+Z5`{F35ULm^JuWWpBx*wcp03^5SzfHExBH1G z5er{@3i+yJo&=<83E4Ad7MSxnpq#IGQ-_xrGamBlI>oy$gn6E00VD}C`XDQzXD7~- zTmE~YmG9W+vRZ=4pt%6@ids>1TDkN{{iB9cc; zZYQ%#77j)bx{CVWwlkJ;ZBd7cC-0~-(NcDvF17r(HuSi6jGEGW<|hvUp2c(j^UrBk zfu1GAF)|v8MbfSke>8=Ez+_(byF?ZVnH>+=o>}N(YhGrxM?z5%XfJNxP5s2*+t7bp zr}e-2%D#0?9PN4JiFQU@+k6%ob?pD>^tK_bo@@jbX zQR*O#4*4nxhwpUKWASRvm}6^h;r7J<8^Juvo=Xv;@U99cHVkbGc|~oPmPvQOf#i(rG&4RY{&QK=P*gJT=|H?cQTgO%`z}1 z6reNnvUrwr95IJ*q;L{?v{fg1$b+x-8F;HTtrF6!>Qh7eiT*#jV&J8d>%DSNa(Vy;29*xgIgijT4 zVvj}OBD(&tkG_7oSh}c-928niif1s|!LrrjXnMtPhGM?u(L{j5OSIYf7ZknVosPgF zwsiXH7U$~fva3DX_=?{`_}=c=RlerGtdSD%$isCRisLSe|hfwr1;j_#9PZu)FcN&GZr z*V8&XGCnclYv0ZaKj(uDs*~J#n4$#&zQT%xo?$Pz>NfV9>l^A3$N_?`Jp7>E^lm+OC=UQ6He`m{|P_R%PXVBhgJDJR0yLSpcA?>6(082#YbLLr$`lrQ`mgBWm6 zv_Q`}SP(g73Fg#|4`^FUpG+|m>6}LPw|5{09C>Rk zAEky;3Ie|TG>M^8!Gz?kTZQr!gNwD&c!Cm-rE9qH>p=nJkQIWA3!cl(S8sLGXkv7& z{`h$QDoO`^7G?9}Lr{jPJ<82DjppzBZiXTkcC~CL|L(Di8LypBf<$uIr+KiRHpxZP zJTFVDE<+$e$5ll>X5Xk(0g(c^6Nf{E{Lk}~t*`hi+Snb$!*7||C6+h0sW^Ji7UEUX zNRFEO2F9w&sZ?L=5EYDEez5Z;|EiKJ3s_m(tvVHR06kF@!}WuC+S@J`Llyyu&t&4G zkUk-m%TR42BV^C<6uw9VnpfX}Dz2ejfAH}(5zeQ?Qy!@?hn>5E(8 zrX@Qb7_!8yuA20_g8RrKJ3XoI!BAJhJu|rN9P5*%Pw2S)W4)!El%yy5>K}(#arNQI zw61N>)-ZD6n`)qZ#iIf0cC}EYcXRTE5(E}&eF-$hxYl#g?Wd%$fWuZu(gxK7* zhXTNAflTAv<$ldgV!qho<7Zw*PzcP;jm&yc2!X0CkE;u7y(lJ9rFsEr~s5$jDZh=f!J^Mud8F@Y$KT1~$S zK)e}|fYq&Fjvbvdc2^>?37?}qP*OAj2^AZ&Jzk=5?$|}GY_|gT+6q^tG2{SoN<@t0 zHKci`>Y(>R_`k+DNm017E}}G?-wcW3G2VI=S{b=dc z`9Jk@KyPZK4rOr3A^|v`LVzJ6X&ku26hy<-2Ot_izaSwtPhC#gAIRJU_>gx50(bd( z%k&5uFZ3dsN{XDwIuJJ9$12p2aS0Fd8a#j4YsF7$R-WPQFALr zi$v5bp=>NCAxkuS6V{d%(+(&DNp&MNVxK$=2_?_yiBIFrSVxq0^oc|u9{=+KFtD4| zEPfmuCXwPx57Dpc`)DW-|H{e88CLK93;(1ATKDdasU*}2CXEwtY7#%s6p4g$kB*Q- zhzx`b(;9?f%Jia@+Z#pc#)I~Nwqg@n@!x`JV9L~l)yyhR!M)=vC$S49ZX2ho#JJO% zhgAeZU0J?QK|2D~Y#0Lw@tIzXtN2~%2Ji>RP~lFo<-K_;B&6zQ=@YqtlyWnHYIy&4 zLPf7L+J=ByhIo=iqK<3n%%x7HMs;&N!M!mn5e;r|stsY9y*cmzecIm6l!O7>npdmx zOnu3V!rn`5jX!qucntCSHn@^D87QjgD{h53*t(Sx;IlLL7nHEbMpRt5$_I7VcAM?; zKs?xals!|-)TOa*2v9T92%`>plrhLq-Kg=^GA%nDWB`oB(lmn+xQk0mGyiQ^%V9zs zGRa?<6I5jS|&=l8O%THzBiDmq9^ z;yNyG=+OXF0oXia#>T*5OLFaJBc$?QdDQ-yxW+;T{f_%+`3ezmO1_NuIFQX&~L3XvpPKl4x`7bSp9=b0(r zkubF)F!h?{J?rvdpgbM5tTPGCGpaDN^A%psX|B>vOW$l}e{y@Q{QNl#1-hy4AL+jy zj9mO3Wpu_YjAS2tQ&jjOsD?S!bl^@NV)8IfN-p5**|(yc^z>*!L8pI>Db`AJr379} z;c7@Ug1>RO!2IjGU1ciy&Y8%Yy)6}wQ#brjoLs#^1VAqFq~s=Z#foiQ@|WAdsL8Wn zu)O~MfSVkNUQ)Z7W)kW2l^GSk;;W|2lB?PO11)umf;)UJ9c~&?dM5r1E)r6p)ZugN zJ7qOoLQOrddU}QtV7nu{${2okFU$6LH##5WOk``NOm_Dp+WZ;wx~m?&qmDnwd)Dek zQ$6IX)^!JlCTbbB z%*D%9vq{Qpju~!^$Yz%|`}_8S`zdiXImOvM*TCug9`r=#6 zRwP(WybSK?(8U+{};+octGKH^@>N;m+62;-+H$}b_~kjfIqC6q zO)mUkNg)o(%?>E?5qNW7bCk76R-G3mT7(T8gY5Xo1OfZPU@FG4u)-t=b??fN$>@`Z zD6+-B&dP(wE#i*?J`VQTp%Af?dlc3kNJ`jV=gI~3ImT8zVT&)dJe2^=Hl zpfzSIs2&+qbz}h5AqI6d8|Q-Zcq{^a0Sdl>?evXKRGl6CQq7Tv)@RY35bdzL+i$Lo zI(?#ddr-XC+WjTk!3Up|AF4ZlTGbBg1OJNyc)l=?h}B5`K+_D9*a{g;KCfyZ7_92N zVf}Zw5^<``&P7HLTf>_W@{;H^OzV4vwpkg8^K^b}8kJ9aV@6UI3vo!vmg93q!1-!*GS={Al>}=; z_)SN!M1MkP7N9H`EbO_2-3WCYiNkm!Vj;aLxh>NiyP8*Png2oUSriL=i z^Y^@LQ$>8!y7bC|TG-hQTY^9T`W3XS{c6xehe-NWqtRt+0rN@o#>c{MVQz>Pr*;JP z!>{phkym61yRYj$)I3h-=Qm}WVS#ouDlesXTRB0`v546QXz#MJ{&?5vHe!WT$!ThW zl~$+Zv6?{ZPS7e^sXWIbA26uFerN`Wo8z!AoE11VF6Q)(fc={N8JuT+-i-u^A;vhn zVR)HWv9!P0h9G-`r%WEwI-15Ix|n+Efbi?R1!y9CKZ5QNy9Z;lcYC>GUEoI$}fDKoO0 zCkQ(vIr8~?&)GZ*l0eIHujHH&>Zweo3rXQHu394L*l1%HQ@+Cb$m&q9wXfEYn-~Xd7UE+FZx=87q2s#m3)vS%e?EejzNYnrp1)d za%D6Peb3`g7a^`Hie&HRn|Cb!f8>52@W;jBhAJ`QhkakE(AOjY057)QW4)>OPJYg~ z@q4Du)@a+Q=se0uNncKkezL@P;)E5OhK2~!sI?s!!PpBBit_m+HT!r*1BVt4%Q+>f zo%MeS=hDbvvid zB&&B@<%5Dgh=GyKz#Z$?`B}E7i^)c^KAi`j1#}}a1I5HP5c*H!o@DmRxiEc4dl+M zM*qrPUJjLHe&I4|fW0ns=|>B;))lz80h5=9+jsXpDAf%=M;&oh;W%SNLc-)W?UFQw z))Zj@j8zv5km&0>@qX&{EbIR=wfAwvp+KGvR8gT8!R;UOf$e$Mg*jdE$=k5wl0$`TUAz{Opwbac#;!vp8x2?upa{2SZ8z(HeV*wscU%?|5iGrqh+< z487;+PTVz_>l!vOlVWIhBO5TAz5aLFU;ATGl==2iMIHr)XRT&5OcG*`@4NMB--~+8NCQ*8(ZXi9VM9`m{r+VV?QkH-7CMiKYSq!dXd7> z8JMmim8XfO=VNMfs*6z2FXm~74pPb_Wb=~B@(rNl$*kUK!d7>23c7v>PV z)(sK%pv9Qd7g~t!bvh4<`xGL;oq+-nkC6X9JQDRZq~jmk;yjR$4C{FerhR-s&1EsM zX8BxjT|-qyQ|R{S01ZE|&HwmSyiLj`AOF4X;B3FN!2TF_>4hLkFC`Z6(Xpled~cAp zGj0B5DRjHl&v>Y`AP~{^-wyc?2y(umag@6Wgn)7(&`b`0zNp{C;&A6LwE_A>JH8%Rcr5=9hDv;SyGC}&F$@fhrxiOOjn)?R z{ioI>W>*vbhWvZecva@t90jAt%T)`ST)4m{o~iW%PVJK2V&iQ;Q!gv+&qjT*V^#xalO1c`Y0srL|~Ms9X&otd}Lo}c~5z!nBj5a8dZX~;}| z;uy`Rkx+b+?;W$3rp^_r;X;Y-!B!tA7bv8UFTk9SVe($~hS`j7?Cw<(fDm<``DML! zdqNhrXasO_Hm>7uDPzJLB}A&W16k^yrlV~0UTWQE_tlD!e9muh1Hr(5{do+I3)Vh> z-oe={j}|L2#{+x{8lIzh8mwX2M-ZOoPqa%`uknja{ne6hymdI)#W6`jimivST^z!L zBAH>q+Qwebp5T!H``2o)uO&HKtSc?v$Sf`Dm-2wJMm@&;GgVunvLn&c&}TzV{L5s> zrsD%}^mVyYT10IQi5XBa$M9M)#8)0r*9=Q^Bi>!7c6Gz=N1L|xAH9YAe=i06xVWJU zeR6;R=p;9d4(Nj$^j@-FOjy)`)fI4M~M@p#t;@WkqCKi8X3k@j+nopjW~J)GkuPh{@DRXBeI!7y8()Y#o~6Lee%)t*Q8R z=cQ1eeTL;Mp#vR?a>y1KB$n`JdY`(5@Fw4wsI@j!s?bRKi;6$Q;qn+0 zWmk1G#{C~A1F*FZZNJ|Je7rBaI{uj3i*t1QFu6j93`EI90hDu@%0Dr}ekvI!OL9Cj z#94dOB8G;Ah@AFpthNA8k(WqW^*t&3v@_?CUIiE1w_W@s=|V>3kmFmhfCk;=e?TSQ zMD=SOpH2pdqni-`&d2`0Hq4Y1{%3#vs8;m!Zc$PS2BU%snDg%)$M*CO`cN5AD))Mv z$(t)PJq>5-IW?yN|6+Cm+>)oli;Y-QXJE1wKI#~A=OBjk*+Lhsu#k-Rg=Oq!!-7#C zP`}_MQP%jOLF^Tz?81MkcbznOlbT}=IP3-ir~M4z;Rg~>E;g?&hMiLm+tm@APxm@z^_=oRuwRO?+(Xyatt zZkw`^3Sd6in3O%{_E1T_Oc@iByp*lcoiX6|H(ePY-&paC0h%;^2!f-*546z4>P7+R zybKnzIlzgjk!`v6=Mmlurd+SmOx7GWaMGA3dU1p(Wim@t*%P5ZD={F(MMkh`c>Wi> z!W^QzGvMMJE>BwB8O*qN^f0oFvs|$N;Fj(#Ob}iEcR%mgo?71Uy!D*SlqAhaIw?dy zkX-n}mHVYDT!g50X;MxlsUAY?ofv;9VfXL1aC*6_$qk9qiN27-!CCIq_TQbKZvUjj z78esK3sz!Ve`}q}5kDY5etf9=kAL#gVByxiA;FV#&_qw`r&s|iI&h=|K{-GLnR~f4 zl+D%BD{OwG`4p8=h}QIO#Tj^dc{Jk+{5y}UY-b5595ZdcnNAt?dW*=ypbMW!xb7v` zbKl-_oJXaQ+j0A@pd6^X(>vge)rzwykBgIfmIhs_ail6z40vr7?|^Ik%Ath$kZ}?`Vi+jMizcqc+VoLc%U$g?&C)m*=Wl8(@$8$m}?dAEY1|qiX;DDnS zQ45O{aI7KJWkcl`FYrV!e!U+(-Z*6MJSF4XU51u3L7B9Sx~azRX&&xI(>K(cZX;eR z+TdQst~DIF!7oiuU6g~ra4lXfk`Se*ZTz)Veznqg(Jo7%8=gD?%onC_+!mf;1eXM5 zOs%}VWHa3z64IEZ?tETP(sp{mQcJ#UA%v|o)BhP5^$ov0N*K#eO*7I$5mn3jr0Dp{ zPW`CZiLaqA5s(Uakf0LZa!-5{G=le@5Gv*DFn*i_JgW>o4S~*75-1q>xzs>Etz-zs zBf-yr68Of3kc}3Vf{s|~IYk`$+1VK<7E*%PKb;|qaEkuzhi8Z59{uBN(ZUcv&2T8z zNSf{3IL)MH2hH}}!l(E&94h<91zpU|3s}TQ;Uy`A&v?W6T~wOz`bl50YatmO_rDo; zs8ruPe)EaIwonuv|Lqv}e%*aA*>DpUyoS=(Hon3P?8`<9QjN_R+rj(B@L8MUCHu=B zuv=&60LJtJ4m^eaFTwg@ZL7#5HTEQF&uA5$<%}G#%a~?VVEg9C#Y&?mSF9d%# z=q+wTOcgX*G|<<62(C8Y7tAoB(Eu(RSd~$4EJt}$q|LO=z8R+%6v^YWbFD`J#KNb_ zug&9_vN_AH&x8#~CjU_C1TJzhHAs=| zP@y#e&Z?M>VSpG^Yi~3A!ECExyn{--n3G5gx!&MwRY&FKSU_s5mG3s3%Xwe*Fi3a>=%qC06#YYdRSuyzNQ-IYfE^f6SfRHxFg-$BzwquzdIrnoLwPWQ>CtJ4H52VJO>g%<4CB?5X)%b8Ot8*Svyf$i z9{hCwV(~>*PRhi=0ULPjPB#12h*yz&f8a#fHc59+7156+X-j2kxE4Y&+v`(er1eoR zuHaEq{r=Ot9%Df=0ir%^q>TX^q8OjY_rtO#Pv1h=+_6f%tS!qdkPs3=HdCj)K~YJ+Z1Hw);3TP)&;!qfXT3hCC)IM$o^uQ%=MNXP2kjyzq;R; z442gVU&~MGyW#I~4OR}QdR>UeKXVz4##Zmw63@BmCG*a#GDwCWw%)wXdY#!$+;!|j zMnbk?f?vW%G8VgOymmH)@~|5J$9??0<+K%_>EBz$v>m75?|Xj9z{|m&oe`N!4}hqd?p2^EKkqe{A@ z)Z0Q<8cC?DA(Dw9 zoZ1>i7D+%=x*l%Qc-dCa7nk2g>k~+z))l&An-*Kpm|(V67LNF^TV>2^wU?Sig(^8wJKM#(qWDccBvupqUH?U%h#)tPrS3p`V@ykr z8HFD_b>9X4Vn4lZPa+N$?Rst>8_zON^b_u%6a0XOQ!=li26HOv0Dsc{P~u8u${5%P z4u_g}xw)A{NH}MIPa6)TM$&_a0&nO5@&T-5e{pr(*{Ki zYsWi_-fFP(0W~AwC*tK=@L(Y|cvE!lF+}!&uOGdA{`nQux2vk8$C7$|!BlmX6)QcS z;%!=(=vClcUDWry>VyD1s9BPTg2ZkRm0ptpI9Yl%v5fsB!z!zAQ-&yOPP^~#Wl;DL z2T3|Tcix=n1|Xf$y~6?K0@M2#|eZGhM6^py{+tE*D{! za`~9h_>TF6`c*ts><9iyf&2~DH_*wci5_xVx4&B5^Zx3qW_c;J`+2-pfO1dw3U`xz zK4B#3*bCHkC37|>TN%NM4ABJrE8Gc)g^VbOp|JO_NHs=xnB%t2ad3Q!HI1vDw|y3MK#i=S8CLuR>-+d&im`m_ zUFiS*wwUA2lDZ#(fOs7VL_1iMBnh?>b3ub47nb;Q-V`~)}1nC zFt=cvor*1(ab#bCVFEnOPqS{8j!juP=cn(AU@qW!vZ1^rTFr&pVpNo`kMQCJ;O8nA z+fr`c6UfTA9^!YQUe$2((bAnYQdzhCS;(1o-U`EmkS6!%9q_F`QlMBC^9N90_ZEru zadh2K;a9Op_hc6dEweuk&-P{3QXMFgm(6vGGF8^iN7E1LXuPJI&Tya(m8Q>Mvg-cz zu8UzF&f5XIHJ*A8`ov1(w(z2&B8`CQ;ELNX%>&>yU$H+M73*wkx^R{_X4%$C#SKZb zF9a@BH*!vh4YB%kEz*HQnyEt&8DW1q0~$CmWGHE>n}cHPb@POyoeIGk=m`^vbo(#t zT&)!s%YmywS)~o2<_PPMkAn`3GG<*a_3Z0 zyMV^PlUPtB9ixmZV?uRvbwbsm|4CB^0fbt|E}9kFh`4<$hg8Kd&_~+XQ~GxIGQZHw zP8WT)JBaELJRTx8@4htU%a<@PaPm-VPZ2wEb$e_ZocKMOPT#rMpGfTDTr6Df6a5v_ zr62O~(gP*InathRia#Y>x)XuB_uj|zFO9J1TxZu%38z(5A;Akj!f($|&Uw3;pqv*kvy+K`!s%m`r^$S9YaII1<#|3*jZ68VKM-Vm!vMghjmhqYs*0x3jWwT@2q;%E zL1_l@n~fIHIhhdxv~YV4y=y7*r%dYqmd6#6{kHUY+~c(Qo@Z=xHPExK@jy zZE?5xVOu)PawP_HrQ7*VPs^a^YU~ew&K3NSw?&%v{gt33y?+y zX}}@jl36U0b6luZ7G^2`WCV-VWF^Dv9T-ErCAD<0d5GfzG+r6S{*BzR9ZoHFx%CrF zz*h%CMeri0IiNcA&lPlga>mS-AaJ&?Lv&`y>~<8x4q~_`Cm5=Z1zvZfJZt>-A{U{q zENX!p$G_yTw(BAaPuS63Ke_*;P|PeMz93fSsHhOJh~P~egYQ*TZg;R7@9BD*<$9E{ z=gD3&(Vl?;|2L(L%F%2fe}!VIZ!x!HBP!An_nQI@J^HopzSHnP?1Y2+xSs*j;W=uY z9#-W6_RhhHW&gaN-YP9vblFzUMv-tTg5|sK!ZUib=u%m*s`Tu6UQC+y_f(dCz*lsZ zF4n}7O>(9K<$;Vw{0|C<5pn5Fo!XgiIg#;^nX$ z>haCV$-a|8nq+@&{QB@ovR_iP+t7oa>W7pZmM`kRk6qcG%1dV|!|x8>sDmZR#<#DZ z=y&uxm%uAt;wKq(fi_v#o);LkznCMuJDz%clVz8s(jG9iXn2Jq7l6iXjr%;LX{{3t z**_6aE??*b)Sw3|C#{VY)G_)uxRUK`)L~1E(!lQSB5hbOj`shEd{oaXkB!VL}wOxxu+MhN{ zd|)#09E4kxb7MZ0owWske2COXIXPUNbWB&Ou~@K15_Iu0gUWmQ`R9?uv)_B&<3+$0 zQAlOfl(mP@bxJlOZ}d(2H0T%u6+>CGZy%vZYOh%4;HP&7b{{7|ulxU+4d|YEF~yj+ zk_wM9_Bj`$E35ZFNHsS-C5!WaLvA72J6TUht&WIC%=STsAV{4g9AT_B`O-^Fx|ZR2 z>UTFbqb}?Px0yjDd0td9aKj*UF^5HXd?o73IjBtidE%0zm=D7WkGGH5lvI!uO~=q5 z;BI7@@S(3nbQl2NTAbu{z63-e?N+5wJ~`B`ys3R#0F0n=_QL93&4iXRtJ!}Pdu27l z!^O`ZA#~hq?r9u`E7H#2N<@Qrpn+9Kc;brj+Os~+;xA__5|L+h?wdvnEq4(_i+}5G z@Tt8=o`g5)pWqibkE%#vy%{e`Di1h4#Zvq$83svw{a@a6c1?1fT(aMbKD^(=h?>%< zNB2LgF&>b%EO2u}TOD_Nmm*+fY!ItR&NMi*KxD$^JLvSWPEEp(<2Mtt>6pA_^R5R!!F{S~iQ*oU6Eid#`Ad3hz2GMCKT z02VsLa3*nLr@(2|5{4uJ5yTD6^m@^pL!4@}Tf5YgkXx43pyTKTxS^;L@3w^hI?*fS(Qfn-OgjoH=>h3;BK3!5P63%2y}1vPGJihWSbz^}PpC>aIf>IB2|fBrI`Q7I&YNA|q}Iy@bKm`*e36;$b2 z?#LfIn#;|Pe1CKmP`oCQ_1Ne$hEs@b}HG`7v4=`u1LI#3pLR(c?77QRyh6 zxU|}WH0QX_Ijiwrgv1<|^hB7WhC))Fr`peSbLzD0t60vJo$Tnw0_FA8;=AUG1Lvsw zbb9MAA;;7})rh~ntz%>qZc36A9?caV_+$Sy-)|r~?gdf|wKLwa#=`mvl0^#@`Wr*0 z?V)<#dqEJJ0)QE`hqqe5oD_~+M8Lyn@JpvLvf2?+#Dn?lZ-hg)vM7mp;(O8oU;nt% z^*pD1X(%&%eWF|m>Ou2IWC|7?!gnK%+p$x(WGB$v!tOg2vUdyQs-jiyi58?8rLs77 z5TH_jN}e*jT&<(wA2dw>)(tSqjJOq&Ho|G7xNmOEw$mCATe+bajKKPw*dSq$24coA ze})DQbAusJLFx1r+)P)kf#&aovl&PmGFZo#N<=fhqoAYB?l&KLyNb5)uwPW}u=!_c z%5>A^DscfUDn4U!w_<}3J=^Etf5U~g$#qgJ6N=jj;DGycuj)=|c)8~L*CV>R{HM47 zU7wr0y#u=8!X_Dt-H@*Bv68hk$N+r1+9#b{Fq~SzOdYy0a`1M0PvuVXuSVbooa(;I z`LVylK7k2aHyJOfGn0X8@-NUd%7OTk#rQft znv?sJoBdbOFd3XHks1&opgiN<*y8^Rz_X-+(FR-+NIQo(bR?mGB}_y_1p3ybu{{tH z5|3l@{TVYQYo?n-qi`MrwJY07R>cKYUv2MFICL#zclaO6U-bny(Au1GemTAcbu0+R zskH~5ePzwl-?mi}WACdSkJsbu1+@4SLm=4Nl1wOGL%RGYL$*Cg>vJko?+bdW4OnSj z@e&Hk{uTr|Wgm`DNn7Y8vnW)UGY*LAy zy*lt_yc_d*VCi(ehG?-}GcZKZyL>2j@ zU2@WjJ+*L^J6qn0$2YQU2K-Mr!|~W58-(J~rQ65Fn)53j`~j z)|#BQeYY|JTk?2|t)LgV^1hAv_Cv3#_>(?Az5r*MWKE=GXXN8e8Tj*zS+a;;^&Jo% z_`^b3$l(zOw_uK$VqAwu1@$Q^tJGUK*<=d93wNY9dfY@33#3|oytfyd!B%H`NsF>+ zy5g092-@1T?a<5VQNSlvk(HH4rWsko4Q`IZ>d&PDf{1f9IjKkUwxR-)2&H{j*}d^!kUzGhz;g z3lto&MacAn1p5p0zbyt+X-h{-9DTw8BG+4MVv&aCZKf+gMiTVqDULP9hm$|uU}2%_ z?1>?1vf>4F11AqVhVKgRsgY|-gHK#d-;#ZVU{wV@mAuWCOqU18N1iwjONL@I7j+d@ zZXyhjMF`4=LS&gM1JWuDr~4bXtJRTu16ClT=Parp=?|+NT>YbX(~&MD7eVyRy}!C1p2 z5rD}a%xh)88OTO`LhPL|=G%HpeTT)De75@gf0bWwmEuz0Au1arTdJj_m4|z9L->{~ zYT?W2{o?i2Wr$NBwJghTtPPLHA-+x(beU7Gj*95}+nl}^9Q?E$;cR0-3ke|kAcYSs z7@1SYNXj&5rM?*LEfi5ce1AnX@ayJt|AAv>Gga4lV}MX~60Y?(L?G*zyd@gRd=^gc z1uBFc7g7*b0;n11IsyT&WIlbrn3jz1zqHI?1c5itQO@leKb-LaI4yHnajA}>E?B04 zUzoYu+xnFChae%s(GF>|LIOJ79F!DwX6Wb6VxUv<=#bwYUqAvA0BF97 zWg`^{`5+Bp!~UY2BT7+c->O}k1bk|LW_`_4^ljT3j%x(Ydfx9 zjgFE5SuEGx>X}%=SE5{nKQrsSly^;XqT#W^&FKok!$U@N{G1)r4&59C==p*3jWv1| z1qN)0i@rm1B?(e7{?RZH9)TLO!oDJ$oaYg>$`yJUQ(DTIp{%5$`~+ibN0^wbh)f~J zjAXW%{*^yPf;odpSXYUW?Gw0%@vNMUBLs0oVh82beLvg~g;H|3xR`Y77jnM%+dnIe zc0lB5=H*5DVr)!D*AR$}Fr{+DQ|cymU7GEuC_$qK#9Hy2W@=rO_fEY2!h|$GFbh)N zeqjKw_*q(Y+Zf!e5TK3d(Zw-8$i}7e&0Bw!E!`g>lqJ^2U?Z+5w0V3dC@^8k9Qqzp zn;l>HR0E~8GmWYW4H~XI}%n1EZ6<|FZ^kgcu`UZfY>*oAdiHms2)zHw; zY0K{3=}`IuPfh&DI5MbDAH$>hRs*F3VPD+8n9k;jYa?xGNV_Y2)&2|1WSiw(P;!3qRZ+&N8fHO;~00$XCW3jc2! zy;mTw>3BKJ>>J21i`1(Kf5Ls@h@8U)w=LNzsDIBr`wkN9p}~>N$i6U1rO$9yMS2iG zw*|XIhs@u0;h+!doae1ZqsS9;d~2>vjO`@%(?53a7WX`oUJe@=4Y`k*qHX@`Yo_bH zfVy!-pk~U1BzoIIOU@KRt-9gG+Wr2n8#T?_hBRtlKiT~lF|xxLRF#dughq=nSa?sCUD4#w}Fm4LoX3 zEUDe$?~E!=2XSpil%hzkFKf)#92Ng5_`RXq`1rX4(<-_`a-y2%;%aOu@L?eh!wqg( zA3V8!`OAx+WIr@*-@V&&HtY(I09YX+H^oEIjuZE;p9hxE%9obQ);$^G{8O>w@_NlQas;-q+1bnWXg#Rf}{ z7TD&b;cG}x_QUCADWyxL*3HzAxQ4~9U4Iy!1l`(J+hOD!GaRM6M^2fcc@B;2@Wa^1 z->{{N+!PL{uzr7xmpakUl@I^>l@ZBz;Wkr>Dj{t|y69uU&`{aj!pW z>j7boD-Y|O83S~B+U&;v%keX@v%>^I3r``R{Z|6B*jukZV;BjUYRq9M-C@?`C>9}t zzTEREvLKp&m?O{7n+BVPlSlbuMRJhPOWBPnuPE4J8sY0vzUOiIOt2;ZAem+Yv~|V& zxcR_m2x)2Qg)vrUE_k2Q!WDXDd0C5E&~X05MF-0QWBbCLN4d&I@LT8bJ8E$^H@Cx} z)^_p=fW|giIp>Kde;o`Wp*huGQ9r4%V=K*X{~h*`|4>bA!Ol!GDDt@=_e1XCyqelCR0YNQ*y_9E*q24T4Z-51f5DNDKTuhLmo0gX5 zbo58J{b7&{Vh$94;Bo4vPvHFN8J#STXO->{T3BLa@)Ew32ZTJJe3ou;alv zzDjDQo~%GDQk%oodp%kaMPGy4=~7wblfo)hC~Q_syT%9JS<-54R^aol{3(BVnyF;F zJmxuoCW1$|kB4T28wBUB$g)A+zJTyE88@J@#75F%CfaZ|7iQ5a9Q;5lw%8m^eetBf zy8!&kYf-QjE@otMUa@a71?izX>efF8<$=t>1oF>embC?o@3-^xVLtrrM8gyE?KdNS zz{bFbP_7@a++R(dRVN2pfbIzxhZ;0Fh|w8|1CK;QG>Sq9cT2=Wc(<+gqkTOqq;_&) zKL$*zFN7ogn)JPyVI8sKYw%RhL;ip=C=fq>1%uKgoH^Ov8BO4@6~3!We_+_nIE%WZ z%<+XjcHKT+h+BLE+X(Ojic}PsETy)VR&{M{FbK*e2@j%%p6mrY>^-53{w?V$DJxgd zrAjAv2S3ykY~50R(?+BLN(HqHy9TYkS*+(eX!EPaLT+dDp#Z`qyK7mHERpc`gd}9i zPI5=3sCTgKUCQP}a0>Z3h&a)C1D!e({-3D^D+>0rSwfKsD7Hs+Na9;{UvEs%qHWQv zS=<*?u##YW2!nvk3j;%)?$oen8fBU=NlsqgFgm&TJRR124OSX4>5M#M)j=l^1`05< zAKy8gn_Ak7dzf)fdwa6d{1CB&6s&pD*RE0Py+cnBelOc3(9!F-sMjvavDdl(D2&HXx8hx}O?d)7jXK z<_aW(fg0bCYCrh(2M5=m)c#Vj)D_ccYx0N|AYvgRR2)i7 zvPP@t068ENlWDhG3rHI?oYevNp^;=gC7m?5?r@t)hggKSRQhkR!$pobZD6FHS29qQdcuQ8)h=6uuU0@XbSbLl{m-S+vf8PA0oOh5zvZ>a_er0DG^ z&pNy(9E<}3k{if&9U~;El{b%|@_-fu1Y@}XU1!o?L86=vnr2c$T*><3goR7Lal_`o zFp#qV&IxL0B3MNT3B>@A2`CKA);0)>*!a92r?Nz1PNUFb; zUH*;hV!e4Ya=Y_AVj^gYmvk#4|Hmd z1ipGdQwqnaNgsA(n6`nK7_k!FPhSimSTP#S{n?mBZ^SGR6}(6DC~K${s8kv(JS>i) zKWxNT%CZl`NI%W+0WJWD^eQanU$NH0!XFgQRs6ILs#}&F?$*IgRA#<-o5YDAg=RGW z%i5XJLQ<-#IG?U#?-vA3x7yGfG7FR~K(8u{LYzHm{PF$<>`h|>M{W_UOoy#Z2@o3? z15vJ@QMu`jaU^6Mk+yArIQKEXb}iJ&+sV<4O?WifHo{oL>g53TPXQjyIeBExAIM@K zm6d3(@0V1fOECA|9+O;YLH6ZeJ6xVdAN#TWX+UYRCaNiZF&_mE4*cv+Om?+{&d}&&#UlhVpqg@-qS8Gi-s+)n2%$?{>(*RC$OD#A` zV9BubXY2*AAPYnbc0;w75gq_GIGO2G?e^?|dhhF~d^!~

xi5MDv!#% z;uJSqkS!Y27j4vCzndO?YxY&6B6@|z3FqJTD_oDyXV*V0q z@4av5p%9^3?$rpo2&|czd5x_XUeklVYT3MEadq`Cz}8+UiQFbVt!M21e5u~~ut=Z^ zm@REK=Bx^}`x}ObzoE4gf0>HmPWV`0!&S6XG}FeqZpOFKA4wTEQ*pXdhrZ)y-VC|) z1f-7FhYgHQ$%NF_5=3M3wBNe ziWQ5!&PAuT-#%PO;nL-hIO}{^ketvtV07xg?Uu0NmX|k7e?x?|s_gQ6@&}NOi^rE( zcq0Tei2#GQ`aMy;^uot!WKPbETCIj;P%f1pxLRYH#~a_ntM6;yHZlaPoEz{)IrM}; zu3fCu>#dvo9s%re0BHs;1l=g(J-p&bEq}@31Bl5W|JJYoX^akg(R_w@5@HzofP*Mg z=PjDs`C6EO_XDu;ZR63iauU(QqF&O~>PO&*lCxl8cqZY(k1-we9h>SmaoH*0IVOz4 z2w1EJxvvFywG(nK-Mn#`iWYHgqDG;NxdP#1suN`7&~cKDMZyQ3|Mags>w8<&$I}BC zU)XL%<0Roe8_Vq;s43#Eu`~LMrW<)#`&H-}voB7%*a4T4T$(=xf8Je!yq*_Y9>zZV+&!58JdfDa4YBNG%=-zX|}+ zbpe1AO0~_mf9lgV?7#{P{$PNq)+s5UJ#@id4n)c&*%qZ_;$|pdb~@3!_ohG8!$s7y zYgjkU5YLix(DlHt+vb7l?Cktcy$tY{0HiX+_h-ux?dh-yHBS@xQ`rKrT%QjhX& zyq8W2l(BJPWyL$ zlz^Ac@3}tj5?Pkl*WlC!?qM6eQuuh1SWdT*H4=1!mi$G9rBfb`Kv z&~B5@6YB*K+&d)FjQ-mkK5oBqJh>%T?>1*#bx;v~OuqpzGsPPToO_)NA5iEGL?8$M1~# zEx&=u3-|>>i>_;aFXv6?4Xd#PIa=`f7!9F#upu>I#IIZVp*^sPFW>;g49vZpjXo^F z!Vg}F(uox~JRWaRh*tIFCGxQl0gRhm&R>_P;E~i}xtVrv{Np371YTo< zU^W{L)L6&nZ^LFggEj>pj{B@B>O(hu&NONm_~!4~aODuv4VoE&jiy!aZdX12x7%6Z zll9n(lk`#tvMXu$MyMD>gJNC3R<;OFngL_15&m}%6pbo_!L?@RT+RSV^!xMm)pUo( z=44YX2~!(HnbA>Z283lSgoHfHDB#aI*J-e{5`GXIhfz zobSgJ{Hi00BD_`-SK@3kEEwi$4ACOA)3y0zW`tFnJ>*i(<{&HwRvg$27AcHEy(-OG z!zwU{rT9A1pRK~(%Va~>S%)pwBK!U>&Vlti=lTH~SkLi~wpa4Issg>>k=A=p|EJvT z8j!n{#D^RB-Wo3%tSo|@Yx97#Lgs;$Bo4qbn*VN21&Cg_^cdvh4LNC6_(koENg&Oo z?IsmWW1B<{P(g-fX3$BNKY?6CK)pQ(*dPwjVVZ?h@0?)ZWUA_Tq$f?(CmWwV2Xm!QZbZ9EB=Gca(yjTB$O@Xw{I=-Gh zUXtspJhXosnIi#0X@;p-J+}KzeqUVrw}vgB_bxJgZ+*mne*%3Nub+PMB@y`v$oH>p zMV40{265ax0QEmGs~{L9OBq!4@myu^y$Qzv_Ce*f{_s{g5APdkddFj6>MucLA@Mnuka4zJdw@7bnF(ax`-IsW6englD{mCf>Y zw3n*TIvw;Qb8k2EmEl5y|eR~@5qwfX#`P0KSSrcQT6|h9AC*I-O4NTbW6Hw%K;ByEh8>G*e0?( z#oY%?jw6y5FcjJX$tXXl;CeiLk2`T6&`xp=4XvB}d0*ciB%U@p6E{=9MEkE_P&tv; zn}~@Yf=MM?1bm%HPz;-{-`I;dj^-M?h;Nl9Qam!kvXHhz&_LMt-a-zc{ZhvlxmSE#a5qMT~+QQn@ZoL6KLhfref3y`{_#vK*34Hk__$o`dSVgt? zkxOJNw79A(=)1(l0s=R1R~8NY35rc|Ly!o1 zfF(y>`D)g*;7=PhTh-IMtlvLX4TT-OlrK$v{?C2p z3Ll-1k6iCwi(3CowUqujW1R6^^Wtm;M@@VWoa6{}f4GIfn;5#*T~A_=`VpdB?bq zLkWUmbPFOoclIg1*zfc0A3j?lokf<+a_ChZAm~cn=D^Q<@u4^}hy-x3%^Qidgk)Ga zI&2BP^hJ<(FZ_ z_4bGHWn1rV%gOCWv+1)`ZTST)c5^bfn=Tra8}Bh3WW11Jz@Negy?ee-= zG;kA=0vI$jKvX`cXXo^HR7!pEwt4?ykRc6sJkm^pEq>?fdkmqpyB&}7W%FU%q0Yu7 z2%YL*NrkDhn%c4|c3nNmN2bi8AmvZy9p>RZL=betKCy3W5z6v?exmL5++Xe@J@BrW z_dx}I5<|;xaDfxvn{1kM400B5-&@WvEzbp0YJENLl;6+e{Uy-gx%SISM>g8Md7Lls z5wID4b_YV`pM+2-q|@cU4A+t~YBt4MS2hQyrQregdc#B?w^Z_(yc}oWhmc^tS79q* z924OTIW6qORmf=0jQkP85MNDOn_Z8xJ89LWek|MnVqA!chXX9mgDr?<*>K=YcT$Dp zQn8NH-YX%gsI2gi#lZq_*Ir*3I=3!k5~G2_+ixyMF_@l@jS(R84h1*eFNJ|4RB5@w1 z>%fa2{Fe-a6d#F9T6wr$YXHHY0!D}$LqrjST)M~d2RXJ4hm`W&=x-;tBn$e1T+tA2 zw_ECX`Z@>D&x5fn+e6_htF{zZIqM}KJ8PxGPS**BraHvP@H`w51&aUhzT88ytc*k! zudWJXr1H92og9x_laIC@e5=ugb)uQpqE@4jKxp_f14#n&a^DK~=VpqFIS$RG)LN{; zPjKJ4#0V}rH9431Du_s(oPbJEDffE8J4n3#rWMA2D2U2GyS8FQYdnVWg)u=dfsHVs z_L@UwznsC>*VksF4OanW598?^^PtwDf^ zste*r&8)6R4esK)a!iB;F7opzs{J+e7er#7xn$PA2rP$QhISPfwz3~|e`L<;_`X+X zPJ%Dd`egQB)VB!x|CT*>!yrSDiHgpTlpqb?1EIz;`M8YVZx*W_sWu*pksWgmg@lux zLgg>?uZqgEb<`n}N7ZJ)%2e+#<+FJE6ZwBk!&`PTEKxqQRzd#od=JBlO{uhJwzrF1 zNkhEu$GvcEJGY$6%BN}dTx`P@M)A01VWN^p63`I-)!4}(B`&`0d+%6***wYpm^Yjq>+D?km*O!6BI1B%w zWwAB8c<@rHX*dI|$;|q?oV7JwI+wlK%-%4){(qq>E7~HtC~$IQIPgkZq@Fvsb8=wH zz>-h+5!4TBK76DCkBn+dflx70;JjgjL&LzJa(oS;-%T`ShmYh4mDt{s{%t&nBA@XK z_!&(k$?bRGV`CZGxwM$C~PmiPDwQxPmHZaA+XzL|Rc2xV-vOA}F3CBAlG6s+d0r zSQx(1x6-TdE*V2+qUrdF#PbyxI7Rlc74XKvYI-KC$jS}U91PrM2GR!ELrj-471>j) zT-|qzA-Kc$2^;zPCre}I22aW(oL~X|t$W#8`t4&`vhhK>&Yzvk*+zT%z<>m!G;P+N z1Gf#2Y0RJsyQc~UR27r^y`mCM;e{~eo@k}Dl~vR0^(c@3JO7K0jwg_!S5j7Cx^T7( z8`x#Y9J+Z(7ePUicHM2AhEI+L*V9cb zucr_eK0a!7^|DFkeSAP{4Cq%u6f>gza6 zi6+w?h+#Gjc38<~(CHD;FIneqmku}>%G_{SGU zOYMHXq_)iLvlq*a!OX8&+Xf9EbRVnF2per%c6J%Q5dW4~D@~=jST*4KpM_kvRK59T zi{$9Cc_}O}LJZWsZ!E4`?I$DD5!e({cV~14bef7BRj!QqTkGi?3R2P(beAbFoEMqS3LBfK$`Moy zIt}#JE9Je%)70kDL{ya(=D`P-z zG#oLUovutabTtGbox{3c5mmin3);U?xN~%d-N_{@?U&I;Jgwl#!cX%^Nw{lZ=NiTy zn)JUJlYqkQx-6expwzDs1t3WRs)eL8LA=kl<-#0}k3rrzkdg z$3uH~qT}lM!qcid&QI|c8nXm^-84Tty;&St#B29-K_T;7pAimyt~=g$KaeECb2P{! zV?3Q}c5_qkCx|?xHvlCpRuLl~S~>tye(_ETHKL6;9JW+DehK1b1AB!CDxgHAh`F#N z3<3t(2}p2$zwSYhO=tZBOrcl;pcN1)StMP5lLqis-FKMsedpJ&N`7`q&S7NJZ)YH) z0A4h)YM70qrky#ZrD$9ly=47(77rK=wNk-erxnaSzwyGvmf9@QR}K79hv(;Yz0d1) zYpv#wLc!GEJBQ2{{nES?d>7srOLZn*Po8iE5hQ~6r=G3fK~D-dFT0&oiPVg|{Mda; z+DP*Cjk_R^e*|QI>qTPAyA8vt$Rn!BCEKuRCs?Ova2oe=?PHO^LT%pkM>uQp;0|BY zJr69oV32sH*vE(hyf5HcJ!^UQlxr@uX4=tlNR1phCPEtgGRPooX%;oLoLN46KpH52 zUN7|=9AXc%yrUhc`!JIYzW-DcSHg%RKoXO#Ww8H4j2D%6;wAi7IYPMPdD22A1R<~s zknm}?n81yXkGo_EPG)EMr6o`)V9DuU`xS><)GeM;;3Kkfb4wW*7;HzS3#H(Y0luF~ z7-%&(d6m2JUc>ZY2oF-~5PFg?RUaa6T`=L+LiS8Om3p}2>bwpoz~^y$J9~S7U+cEc zyHKt#_h(bkW^+1cL~S^k=>@!&dCh~I_zI*(v>&qQmu#;O`kJ)BDE+h+flR=ieY6+i z?LU@I=*cFy{K5wPGpKh$jb2RYzrRQb6fZ=g|$Kr&h*DPic+=u%P_hY zZ&>w&<%ecp&#OVE&>k@sdT{?YlUc6n&Y;Q!?#6Vnm!w4BwXzL4?vuSi!JBk5t6lSz z{~#MTzwcq;NPiQZb^YFYBV%*!#bf$n^FjaaJ?_61e?19)ba8Re-1*usrPg-+gK}Ss ze(2bN_}6&{J*1IyB(3F&110(0pi=i)c0Nz?=yBifo$}^XS9k;yQ2xSz;KXX+bsdgI zFmfO-CE@i9tQth^=27pswH}`y8#z?F>~4D)zDmYA3XPFN*Y+B1exVq)iq+T`7Z!Rs z(NGe+D+#P(`q=!~ZaKiqDAOSGzbk`%xeq9*toNLy1jt5t6&3VFUFWD8G@8P4%b8}Z z1^T@px(z{_?5NpFL$iHZ6i9V0y&ivqJA>E70e^GTw|7 za>q)L#(y--ak8OB7hrmXi<6z3FLCM}{#_^B0p*fNptz`4Ar@->_^-g)cmPstmK6ii zfS|J9-Qfe``?Hsd^o#d~Kqwmxr+tC&o8W_gx}>~dQfN)V)1E8q!CaybuDU|**{&z$ZmX?kdg=MD-i$Q;E#r5>) z^pa^QT(O#>7B+CpiQ7i0phne%fkVF)`0vVduRz={uV)`#fq>0)zHNv21obzZl$HA z`j~g~G6EhJMG_t4;WT{#>}YYXjTBpd;~X@zDTcLH^W>xjdmF&g8w=!9BCsV&N`J@@ zd}~1+sLJXkj}}a>jq%>+vk*MoMMf@enPY4wA32c;UQ`(3%n)=qYxKEPEJdu-xW0OG z-84(Hw@S(n-UVipwl?3-x1TW(_6KE-q=|MONQ_}404qt#ZPIMB3{QhoaYwvd!S*9> z+kyMat35QnZ>#G|R8*9%^W8j@)@SBA-LFVY69FkwL8M}I@mbhEBH~&hl<@k_U|}tl z=n?&~uItf{^DJbSt^$INasMIZzwHVJ7LoYgq>DF>dR~)9C}f#{dXe+rUJw5@Zbo~p z+8#L{V);%)N@Yhv1}IcKNgl|j^$rK9tTCT@nW>GBcvz6*6*kwV#u!|q^3EaoO?wed zW_vm=`LS>e*dqxHiQ4*a4FDS(2T<;_NA~nhC3)n+q(*I1o=Cxt;@e}XZ1nWR-%Q#R zky6#tZDfD_>Z@QXuC#M5Azfii5co*1)pJnjslSzb-5T{%H9g`RM#_BXppq$<36{Ds zpA?wHcJt#fO(&OneWCd1*^z#_!_-?`Zg!@k0{#x*T}qGh$1k{do0u>LT?1nc>NZG< zTh}jH1g%fWgz-pPtOldKrZz87id;lj%~oswFP#Rf>xt^;DE(Px_eYahj1R^l7gaba zwuD5%M8UoK?x`|W;>pRSNih)7kU|XV|D@{V$FK1`G28czeJOwe4fGe5VjpWY*h9nj0CE!Mqu;ng;D@%T<2yCEFvP( zN(}^=HmZv#lAypkx53^WV`1hZ&FF7Y5|P}oG{P$Awu2#I%489KLP@|3bcS8ykVUS1 z`TOkm7p=J%Klan@lT7zKp9|+(!4H0>kC)C_uXR_k(>im+FQF9`+#T<(Yu1Z9Ezeea z_Pz+)d&3!ndm=Se7VKD}v+O2X@?H_Tu###tzL<<^AOZeT+;4XY$ z?H@-D{CC7YKy8&Ysr}{fVLaUP8}hb#>nVv|<1oz^?mQXd=;FMdgYw9rK1G9A@=O`^ zXhWW*7w7oP@U3zoO%Eo)SEW)HJGrQyb$4?jmxNAF?<4k0zvDNtIn{(4?}PRTE{;x; zs!OymvB%My$=TJ_Q6NY{MwB0_8&(zrl5c^A=r~zKL0LpJi&YonRQ+afta_ zbozR{$M!moez|kQakKTX0|4>1&P>!}qX08?d2Cbm;~1bs6+h{@&{P zJnmy+OkX-{&K@ZhWp@t*GkH3Lz(>#jA?}NlQnE z3K?KX&2F<(Uk(e@MVrlzOl*A*qZG_sMcBw!f|<#aSkoz2V5~N%cZ8{;aRNADkOc{GI}@4Q9gpH`*and|1K;BOt{}MG?e^|513X9rN=rlYxPQtH zVEChFH|-hoJKQjN_O|gkNcX}eM^8APPu?^tw1+6PU*T%EvSJ6tm%9w`4+rQ4u#~)> z{+8egM6GDMc66fyI{9+Fgw-}Y|9z?)s?ptO=~qyCB&;n7y?X zcgDRO9GS$VTvB72Es)pwaHF7TOHS{x$$Y6=xmN2!18GJzE1tx3lCHh=vpa@3sul+B z(IpkuH$wIot1jzs{Jyc79>9}W>-n6rEFp8^jG#F57W;hEfD)8Cne*f$hWG7hRN!H1 zbQznb$y7WjR;WDF}H za4fkT+h8ZY(t`Omn=R3Lt30=AC)$2Y`LB$P(OQpe^0FX>!pylD!^x=DoAt8wNTAKL zd!657&;50CdlOX_(Lmhpa;f`1nt;AaXJ8ep^N-rsvdCXzN|0*e^Xz;0Oy(b5U)tN- z$FjMqwm734k*>fVa|WF_G3{6NE3B<2C~a zL{?!xg#%5X7S*V~=*NV_&PuZr7W+HIrjdiu%FUj+cON@cTg}rJ$)yiW=(Rr1X2189 zs+CEo){gydW5Z_N5Y|e9OBD_)Elq0U)@uf()!~Oq(?ll82%|t2*pxVlS6%>pr%t1d z@VqNN5{!U=0RP*d;PsjFq~lf>n3uQLHB%Frv_-Ok{Lbck)X_$JpWmBxVq+VW?@U2? z2y9FA?Tie!;FI*4O!7|KjeLQ@E4UL%MC2wJo;XAX`;{!5WXj%Lgh{b>n3f3Y3mJj~;|TF)-TV!YP)*LGe(HtOIB3)04^-IF_3}YURr9i-Vl{98B^=?=8LyKEXaSp+|@~wadC1w0Suaoj?QQjgATX4$-M^21+P{Ts(4&S zM~6nC^)`nw4m5&+Z%nT2fSpu@i z;XR7{dM*SpC9!yNXgQ}X0%Z3o>Z>#omxdDa8(wBJcavR(5BNEV(_UuiwLx8jC?&HUS+;}8#N?S3YFj5 z>a9!19R1sj~4uKidLTL{~GMfJlFHA;^X6+%pQ#Y3-8(2 z(Cse3|J{r~)TnGsj!*aiCqez|XeB9#wV@ao2`t!u@DozuBgJSkD_}q-G3o>lo|N|+e%FzL^k?wKwNYs4URmJ@cZ=_|4nRICqdJ?3t+R;6! z?cbe#xH<01R#h`gv8s@nR*i{6QZglTeZoKZMW-cwdf*UIv~QvzbN$<;_vDwK4K+F_+?*bPo!+3gzPUND$NUJvzH>Hvf>I)* zcy<{yZQz_uWSfsJRCw?cGIqXR*I?qX8mU>$xnzow1|;tLB82qrqDQ7g+SDlH8mbM^ zn;%5>Zg=gvvEd-0vog@}teU)M@wqbsg+IB`o(e0X2GAqTlg2ru zSg?l|S?*?utHSED?R^oF_3}uH898>rGNB!T)hn*3h!XI=XZC$|VbpJ)G5f$G8!rqz z0BC~wHCce(Oe>w4pB3F&$yJoif)T+_YT_+<8&D)bHNVN&cYM zDbY|sv=U3twX z{SL9yrafCF==@(%X{Jf=U)emdWKW;W3y#lu)<#HpFS%**lY7{0Kp6TKlO{ttuZ zRj9b~x7%rr(oqjzx+q6{2AK55B6)pmhL|l7qJQhHN9fXoL4ggzg5K!mg+WrSZErBF zOp?h%zq@#==OMynF4snK?VDWP#U2F0CY!AM%Dcg$rMpK19*Uz{h8v>fmZsEn{ zI&)-OTida8u9$wy@ASj};YX6kS-H|E#s8}+%kOBwN@AqIfuEjUmL^8YsjvU*`*Od1 z=V4)CQvlqI=a!Z=rl7?Lw^4>Z`(~&>;R3-oI8bg#?E9TmZr@?BwqpGBCKQS(L`wN+y&)1JYGJZ# z9N6q&^Il#JMccmA_Yo`(Jf~T$ve2DO*6?F&jqa#)-r5pIBINFhJTOz&bwSOeHmg4% z7c6s9Tdt$!C@soxqGWR?$G~fp{bRB>>ztscyH8xkEBdy6?6Tv)J%tX}69@a3=azaV zTVKwWLBnRLt0-B2r`bGvzgC8+kQN!761?|FDY(N(V9)`J>r!mMIs{)c6LYrk7fa|! zZN{=ytYnC~+FzhoO$D$4hiP$a7Qn#L=tU|olp2=0c}TbjY|tdvFB|!zTx%?q13_Hv z_~e9iYFe21e}c)-qKLej+<@SLfn3#L*{c_&%O;5ZXgz*l$!D;uK^#?{oUf(=h)n0f>^37}9p(oIqp5fpVHZ7rFZbSK^ zzv$cSN8McPHSjd91{3M0$MeW>=>qZhh)?N~%!=YE!Ulq& z@xI|1F0(=h2?M1EoPYq>%g6?V;yX7lQJQ~(p{-6&YONt2->BU;!ki8>r#53=_Y%0@ zuV6kKp`pA5%HJZ~ejncWogV^T;!t6yRg%r;oQZUmzm(QSbz>>QBJdc0N{^$h{FHp! z?|xa@T(|PKJ8DF@?SFon-XOZ^%H6yQPU34azBpIqc0ws+w^$x~-7UvegtcM2;I8*v zbz@57bg?Z~G48+Kwku!ifSK-Hr&;y;kE8y~(>S4rpwYa6_o!t;!_7Cdc=8><=2b5- z-Vd)YcinN8(USJNT8QApjevKri@ST>NxY1N9vMmVi6MOXivh9LkXp&~3^z_pN+^JX zcjKtk-EyeSMvkSTY1fnw3!u|DwyuZfg_f3z8P`N&VWCdd{~JE4f`ert8~t+bG>3 zM7L}}9_KVs7t&KG6a{a@qEih|_B7sRCwR``EPCK1r9-m)YEd#Nw$>g#c&FaRBI|O&_ z)i@EsGhC;I%(&A(7uD+oIzOTIVn)-}J6+LSlyso;#z3ljpOGo4kXf%PkP5e!sRn0L-;Xs-rIC}9wX_m}0pJ-pNN`AS zu=}%(aXY=@o=dJ!5tRgC3szmOg9mi4w^O)vPpbLwz}LrJZbDB;%UR0b^qay*mxE7T z5Zpu_Un*Mg_6NRw&2u;|R0O9n9+j;;=4GwUyC7Ac)9ZVid`mO;%FbnA(VZgC6KndI zf_SYwe^}#xq1@oUjGFVZ8iS6h;>f{2)*C(v-8JQrTIAA97iQ)0+d@9-78+^z@O&at zemAJ69XXj#jhN?mI&ti%Iowok;1P!r)cn{StH@xp@fSupIzBc6zDLb zrKsUE%@mD+=HtKmdfXa#S62yWG0~uk7OW_VX_hgUmQ}eOTYEB4LnDcc8=lxUvcJ$u zi)#vX^qa4@x8sI8(ZtJzXjzGH^D!k_<9cw5*;kC_a1;tSk~kq1wN={Of3#WpRQ{bu z=tr(sqYEz{$7e-GgA(&N$b?S>{@nMlT%4WJtq1L4(3?Z=eNMT$o}1drvf~~(jS4$m zxogkREk!8n?}9X|E9j@(Q|%M)21%|PHy2~Vp*nm92MMd+Ic#1!%inp+PSs7hdpyh= z0enWyl;U)uq7I=l3L$>&>oDDf$tV!MA`z*aR>*=MhQs(LZ0~?oTE1v0TDg$Ls>Ke& zVPw}EP~oiEaZOt!0zAH&nwldvCgj0*cFf@J_Fv%4<3-ha-JKXY2UC2t_5FxU{egu# z=lcBe{Qd)p5|3R@lv%6g=K(5J8ETQsIewoZAW&nMOYH$L2qz5(*}#7NJA9>~{b13g zR9;hfm10?8nCF)l9zgI7Xw!`W_kyDqc~dn^U^)Ns)vuJ6E~MZ1=^f5W7#edb^=%8l_u;I6DJAHN0-l@X z7=NChy#Q$R>AKKhPjl1pLhzO@%lc!KnI+?Q+7>c!1E+UmoYy0*o6Wn|W$z9dks`4n*Ouy8KrW1q`aQOG`r(W$Gk9l=bPRY9y}rXh&IL!GWEdlNLQ< zMxZH#3zppz;-I>j)~qRi3=~oEYu9J0u}E}a{~<2k|8FDYn9XeK-eal76d_&TE9?$n z&3#_wwaZPdi`5eHKGc#X9@B_nl4QDn?&gu3X0NgFZ*>QN0qbBA0O?w$QN>7&r_1i^ z3=3YGSKv~aCol>1FYzlMMvAJMIAGGlaB~nBI(U3^R*;_`lt3kq64np2!R(wI(-s4C z1qcyGQBi%HcZ@riUf4aUY@g-kDNZuhz?0(CwSPiBL+}Z1BKsAxq9m+uoGTwdAx=jA zl2rzmgDKCl^Z8OcT;LN{Emoc*F?-L@e{VgQZL^)$d7AHr@pztNv+z1G$+4nU$nc1# zQuy9KKU=jkj&NaSwm;Tm_Y<|c!>Cz#dmtVE6ZO?a9oUy$aGMIXdoddMPSuND*J&Q~ z_E8`Ww{cq}EG46J9+`2N$Svyn;`-YsT{##O3JpthwJmVkgbDrD8O%~>1{dF; zIgcQ*)$A!R6=P99@1slUhT^uTteeM~font3zE*t?Ci7l^Suwk3^swD|E0qSv@go9z%P$e@}cDZGP@mFCS%J70H(v2?K zt4|?CpZNgc@1AW8C&e>QAf2cAaVKKA!x-l8-@pI;_g{ezBRL$YsTbaY2QJ=N+bXP{dn-uaKR!HJnQ%t z*IXdbU!wgAgw38R(@&$R*pI-sCYLF}!$fB~6bC|Gh9kyM!9R5o z%{@bYdKkTRG|83P({Dg^bOH2+-vu#sdnPJR&p&hy{xqM}fyQ+Yxyl_UGWOpL zNHk_jYm5BQeUU3*m)o~sx58G?Zgi{A(nOLlW{?V*JTzv;5mUn00X_axUSN>TW(f)i00WloB~49D!;wU4 ziIo{YH=)JI;y@LpT3__h_rA#08T=Q?2xT28XT06|aF$zE7BR}$YNL8UGwedQBrH*w zWX>=XZitY2#OqiWEplyg>C}4uQz@+om@ll&h5l=7B!dN?PoTsVj*^p;sG+vr-&~V@ z?Iogo-$o{Ds3*}8+urIvI|nkJ9^5;EUidbJZS5!>Pb-3JcYFRw=!`c-2@(JLGB>|? zcqee$=IZ0n|I%!}4IuiDA0B&0WMXqi)o+~H>thFX>00yE@!r@SsfG122rb!Uxw^H( z3(ZD8kg*L#T3_1;qY5KJZoej?Pv&PS_+B6ryx`n3(;l_G*%DYv^YCVGf=siJ+ftm? z5IEYsT=SUWN_gb!+fXC~A6==)c?GarY6VfyK0_IM`f=B}$n5LV^e^CbOK*?26R} z$NhmQRZSBH%WNBMnuT^as31Tiiw@ON8B~ggUPrulA4DOyL={bRcr=}_+x8R6HGeED zX$*D`gQUO-QCU3xw6ckB}lLCm|l>Xov!)mkOb>qb#Hf(^+D<9zW4BYaU}X1y?6G!!Trq8dk`sUo^gNUkNx(} zGiH9)R0UkAu4V8p&9DDVb*$ibOaB__oQN#ClInD3Uq3A?BCPV-)qnV}-x-;Wvlh0E z-+#EDK0J+sK4f_8YRl5Hb>AVZ)=KKXPq@3)nx3k+5h5o81JBitSbj}q6cDgRnM+L_ zE&{MLj3H!yn#=>$pitvkiAUDt5%P$0PFmy;i5oHL#HaotP7VO^p3xFA+E-F2kc?V& z!G~GCN#i;V)sDTvxhwoy&zfFX(_34_9Q$)i)Fg~PPKNSBNyl_$o-CH$8XBMLkv}KS zmdAiec+M6@oP{E@=8VavmV!J6n+Y!>7lN>n?{XNBlrq;fr>2_KP?tfvnoCOlsG*La z*DNC}EQH!e&n5^m4EW#!p?oxdtkMiNkz)($e(0I0 zu@~D2y6!+$ovlgh*)o(Rgi{rgC0xym0XH`kghyZYXCB$v zgjQ2M!>M8L+-W=3bSDfl*MYmS+y@Mpaa>OqKmeNr0(NlgE@ouTFVigTYOsFi;ksk_ zVGdIpTGgha;~xOjnTv~?Q%?Qgb^t{Hc_1Di0+8~_X;kRh zAA~SQU8!3@R<+XUPc5-MS5m&{M99-qN+!7l8dSn!Aa$FS69cd{TeEFk7{B6dpiKN( zY;4PtjQ&1ik1QxCC51*E&*<8S7j(f^$B&U2r8&faT(*4lE*x8oUz zkGy(l{L|yaLK&UKhMCxL_!~Kd_A><8ef!^u{=RMcIVX)FrT2ZAy~Tshy}uqWRN<2r z{VlQ>kcz`Se&X0!>wXUOGGboQtBLID_CFM#U1hOY@GSH`&=6~t)%A+7*1S2$X5KUF z2JgI$a)_g8 zFRq>@7KH^KGAc_Ox-FZ7TmMg|Q`(mT?pVDht0J&Bhv^7N#{B%euG=u7RB9hTDo6zW zrxv<;CS%wL<2j01T=RbCQju4fcf_yEhRL;HY<1IeG01FeYPE*~*y%|FKF9w0FYS4EF71jL>;J3ol5fk$GvwYlMsxp#S?%wIf>}hO>Wlqa{e7d`212v z^?H6HWxD1bdr75h=+#(9%d7hmsbY0auiFOW3W#KKF+&RMZklWwggY_fY}mzRjc&W< zmtr(a5{NYni}HNFf17K0774LP6C=T`h^<748~vNfw5YxF(GR?_Lk0i&S5|#xJ7TlI zH^-3@<1uXI-__Cf3pLqpb4i=wp44rCR-UuYR85=LYOD<_Zvcb^Fh&r4aANYq$wy4- zK$4{!yRUdpt%sqh#CfFnhrf2Vn|J?Hs;!jCg7;URF!-<{bdnGV5^cnz|NJi=1GsXi zzaAeQ{VtAGW$ldmV=WSUJ;n$M75syeL<%^l{we3a20*)je;fRAOvTb^6Gf*uYW!z} zx~rpP56vkj5Gz>lfi}qV4%6-!po8 zlN6lFsQGw!c)Fhg6+???IfY9P4@S(%r%o_*MklQB@&z|0Ig2e+mXi4mw6M4Uhz9(9 zj3k0|i6VFCMMMc|O8>O~cAT=u$igk2pG# zx~=m*@8Hc|0`AjQT!g)ZE#HVLdK2E-p3hF+B>KpJ3QI#8@3!)IGrzdFzd56$CrW{z zG4(}na@v@p(D%dgS^c3G-K~>e18WKuK}`8hz-FNE`z_heHdLY8cbQ&;EC>e80epRZ zVyzA_%f8e-N%Gx)PC|;Udh%RB?No=HwW6eN z`q@YsR(+CRMgDm3yYdqMx!?s)cMKD615+}Y`0nJ$V+4ST@2gM1M>1 zVJA7#o<~CWW3vJL-WU!Z3XW{i@CPd&@lN9C|hUBIQM zGa&B|t9B(O**uw#S*zp)h_FxAbFAMCp?i8pd|9Yy4Nj;rti0jd*PPgY$_ymRv`AV6 z^O*XVz0ArSuILu~rGzQiTLuX_>>p=$C3NzOig9k_LObNv4xt?gO+Vp=C7daVo`v84 zN5gmi6hNIg?%KIw(CI`H{4j0|BA(#?nH^0Ah-`8qnB)ek^F8xj=+bTsun_S+@Uh|C zRA)i!rJ&gU^vMIm*73dVbi=N5FchOu;_RAt;U$(dV>fG9{`_^cAc{ynM46KmN}V!V zqcw!tTu}Q0z^-BC^cprf9Izhwrv;=1fv0?VjT5iX@HRp&pT@@I!SKQ+OQbNz^BBGN z5{EeV!F} zVhbKaHe@uV#0KgSl&S72*A!8s)z&|?FG*mVh4W!hXNv0gU>$yjd?sE@Jgd> zY7rd7zu5jctPOKTD~^*c`I9pw#i$K7GyrlWLG)8@93Zp)4%mWyE_`9SxH*pA2;jUpu9cX^grPxzvM1DO z>fFNgD%czhgg>=jdf4c{C5n4@*;~{5yG`ab@neqjega>c#vYS!ffSFS*=Vnp5+!jo zdaSe@FL7(3`|_^wwHE5YByYa1pz;6}(&4rY9`mv3`Cl>KOUbd@3gs6PjD`DO&b|tt zWVr?cWk|RE;nn3n%Uqu4YrVCF(5;VTz`b7$5YE=Zo{Nh<4R%FEh(`5bLD1+6GJFwbNo{_Z%;O-0ahFD zQ`>w{mOIT(jHVJLWyWGKvkRf&gcsq_Bc&#pW{E9jy7~Gd{VR|>L`h1NrwI~9jS4q5 zK0q|Phz=-O-d7n`Q`yxw}OjOE}nluq!YtAM|FdM*n;AH_Qsz+Ai z6zByIzn99T#u1_yzH%+RU8}Sk`#>(0ByI;h+72*T35lt>2;C9a9u!D;^F|rFhKpf? z4pAtqP91bswZ?seH;l_mEs4gY?S+{Ft?$-Y^AOxOi=G|~*Us8)7bn;G?$GSkC2He# z5jS5yF2yV6Qc)y1)+-I{(CrTt?GqqV;2WFRNIAYTXDt?8Pr!fE&Hn51+k=-kaHwy^ zy)q+=`x_j_?F*(*C8m|+#g*ohKZI_N;K(3jsNm)Urm_8t)mQ@sg|X2+-@e}gIuhK< z=Bm86HxI~(us)iv1Tq|v8E5&ZKDN};*{rlOP)#+b1-|s%pvaF0cuV ze6nNmjXRis6R(RP1h0I*Vtpot_`nyX$Fk>EiirdTLKFAFfV%9z|MDM)q}P6?|GEzVZxd3Y)xE1bGfOQ{ix+Xy@!SyAzvbHbdBef3!<7|p#1XNU1u(_w0PETiq zB{TMLu7VSMKU_*Bb#0lSvKdx-Hgp$MfS7v`_P%s$uCN>oQCviB@ux)I2*_i#WTFOL z0L)ZdQ6TQ!6>aQ^Gn?y76SSaZ((}AH7Tg+)TiA22L0lM^7nvwHHig!oQuGBanT4c4 z-~a;lP7GdcaI_$8{{XC66RV@3Z`H{TETw@LU!ebLPwqReqiuI0(f?UhJG(Hl$?S_4q6b;P z`%1-{zowYS%RtDV^YS$NeMgYcCy%khakt>Xo4wyStCKP=ur;){f3evojC))l>LifO za;?ewmvnG<$dO$-(JAlbX7@R1r+KAqMcZ_D`n%@t$SXs`ziVB1z0<>;3as2e?-UV2 zKat5%mJc0T8U2?bP36(lX)3PO7e}_l6@N|2H7hF-94rDRa?%181WHTeg)K>3zBn8# zV0q^!J);dOyA-NqS*oFQ4{DVkPHk%=_;a4y7wwLgj5yWKhi?4YKj%S^1#Q;S&(Qv6 zLR!i)giV-1SOqjLB~B;{#kmYA2mlGlpuM*miX&(@WTCL~8`nMO%^VNs;*|}^Q$hy6m}U9i`X9o~#jT3LQtU z8!6ZVaZx@)^lwmfzcVU=nhJ!~{cFzWhwH+QfU&)9-&ezl+MN8mJHlhP$%<8yJmgY+ zI&GgfyvIl;)|ma@vsmw8e%GA+*)9_dERysGM4? z#KAa-(Q8N_Y*)PgQXK^wEdbJ7dw9BDjHN@|y35l94T4U@&fXr-l$N7E%V5I9rV0dP ztjWH=-ggY(9Q-^+ZfrV85d9B}H4 zzJI*2X`H||2L6oul5XE$LeIA&VS=uga@+bqiqq;}Yoa-Co`Xvr{I~vYTo0792aBc22)(x)KGabcE;Qy&JTrJKY$g%>(I*l4 zZ`6fn?4jnnPGQ@Cm;K9g97hesHi;ThFU2AITAd6Z3Ct5}7VU7%)aB{>3eskaZF7`r zkwoH6XJ;m*B4NeQ(V0`e97|A{qA(*K9`-MW))R+pg_5CjPXkpLQ59R1mwKSP&x0P7CU?POV)!cF7Hbe&ZT;HW`Cj;O^_sXJ4J zqk1ywBU6a6yYGoaWKaLyMJv;j8AAugLSLY7%C8$pRIT7daZ>M`lwe|tmql`F*DS;| zv>qQH|D2qZb#>)xXjD-2T*PyA?=ds+2V_-#Y};OGMI|4%lO@Lg{_;Dl{e1v>O;ybD z%@P&>1|KP<4#x@o`k|R|Duwh6ZGN#YZ4=dDfov*phOB8zhi#8%{0OaVT zfIL^BG_E^ZhdmN07$3t$g(0nn4btc3GENZx!$(0wD-JU}GDxAKgchAsRW!{nPAau7 zqE0@Zy(Y0Unz=lEM4PK8nCb{x1HI$l+mDw`%~PfnV+7C5+f@vnXb0YJPi=VTyd z2I42KDi$%Q`s+c_&o#6N4G$DwTn)t86E}>+K~>F#bFp-OOkPKBmK?RF21!5}>wj=d zlAC~=5S5JcX!iIPp7cRC4woQW90MT10KVRmUa@z-?j}F*1CVpDVK<&mrua+WAOATdlzUX7yCu>Pwf>?B`6SGy~&ZK5kO z_9&x5kdpbZ(_9SABe0!gd+^n`{JEF@9FCu|$)*8Xw}u zj4mDtae{Ts_=HYHsWHq03^@L2d{V{|j9qQM2NT)^A+b8kFZX|4<$Pa94@w%9;q zOU0ZX|FKvGMQ_OA2W?%LZ=_dwHcw%0*Vw;tLG#`H8B?gDX*~P z^5d*1x@Tl_nqoqJ`>iFPJJGlJI=Urs`}A`E67+AdTSb?5c2rD>ZZcddCnypu+_UCv zeK=b(vDy$e7WmW{^uD1DZ?i5q{%omNx~7u+vJt^|A;=&P9%$2InVOvkvV|7#ouFEPqI;-_m z!o;<0>tZQfMIOo4#&hVfFilO((r$sqj(R#tW>;M#GlECiA1E$UlEu|b71tLtuXTC0 zyGgV0Tc9YR#T?kVh_f9XBrA}`UuExf`e+FoHx@6mw#w^v&la1>L;#jwfLb5kP)oxM z?Y6CT`@%0<$X+|9a_!I!BYqI1F6naRU{VWJ9a|q><3iGN^Wn=Os&G#hLRqxwraef7 z|A-QIHhvGf-l1kQT`$$*hfuw8!zWs3TlBdR(FRD%6sC7Lu~4C5VbW5geD2GwX0WHf zjBo*ByS~wt?eRzT_R7P1r}s?w`EDap-&ke$@!0o3iRa?cKIlhDMZs<#<(rIgxAU@V z&42Ls>-(%T>fD+C4)!B{iQ&NN?)Eifxyg5RH~HpP3#LzRjwEd}`zHtMop(vUh(x;1 zQzh@hU3v4pE=n6zw-jxq2%g$;!b}F0bg8sj9?K3Rz%@0HnvhIA+N!S?*wx#Xx!SyK z(#S+9dYd*>iXZBR1@)9dLoT1lBO5`7K#yBHkA;sr<;J84GlFk$c;SPP9V)BM95oAU z^a3+$J8r1)j8-mxe@MmtOAqI?n)q%hJlCs_HiUu5`2(C>etv$u{`)9E{TZ!KAp2*F z0!pUYES+*DBV#Tr!U_|-GA$5_Un^%B3Ra-|5b8fCrZi#yRI|Zpoi(E>p20u>&Er?) zZ{B1`P|=d1vVfnjA~5EPMd4-QP^AfO?JW-Nz`>btv;~3uV9bcA+Yl;K+lh2BL9qXK zrN8?>|LlOjx{L0z`T6(37s$`O_pl4`@!d}mL_Rw=?|0s5S>G$Iz0Kl~77HL)_V2Tnk&@UFL;{jjdow^35TiNy>qVUjj#G3f|L3T zJpO1Ehd&fpPc_i~XxDGx_hW9#(I8jJ88Ksivn6y@f_Cq2WD*VQBWtp%u&UP8hM!cN zRQ#Y(@dpE+mN50qW{^mCfDTK#^Dg6?%p8}$AQPh6h&T)hT4dm)4+XoOx0@g-yrB#x zjDQev#84XnrgfKO8gMAHJFYgzJ@FHxSwx0?CP4np zSW;c~pB;BuT5S3Z@o0Dwn!>$JX-v{inO#OS-M`ov(Eox|j2dXyIZ2`fNih3ByKIJ2 zmPxTRsU{z9G-Q(J(U^tGG#uh2AsKi_Vs=|=II-52n4?kASV)Qf{cWyr`|VK0cY40E zd(U&}Vj^ZVKxR`>rrCY@)jHJr{xIZi?;S1aegDe zlgV1=bh68J>EEl)(It*I2juv}c>%Z)Uh8a5=AVyOKKtv)p`RQQxFK{K*fJP@ z7=*mbf$g`@vvP5np}_~f3IXB)EX0qNp53$rn|5F!`!DB~ z*2bF;=Lm?2xt??6PEsrh)X-hJ41E6k#g5fDh8Iev3J4~k+qfT0QZ{%o=kov~nfn0( zz`x^8)@)arB3IoH8Ve+Z-6P~gUg@17obrY9p);Ac{hPXcg47HDBTlN#K+sk9|=UlFzaxAeV%)PwEC&|I+v}qlm%!Yd#NI-+>qcg3wB?L^N4Ofo(?FJePu{FTDEF_9TzGySY ziQnj`PbKegX3p7`awRmP8*ve~7&08f(03dx%r8>NVQy?}aLq5Rv7AN6A!iWNm1jGB z&(j6=AotU=Buh$FYEoLl=-+pV;{7h4r~Z2ICx7|f9_FBjK-tGI%_OHjR>h1p#5su& zCkDzEcaWM6Vxf1u)^H##<$jprzPff8NS4gz?N1;=UKxScx?DN?M_M_}{N6Z0`wp5{ zp@59f63bCxa6w0xx5gabI)_Q$?60Xt_|*qeHn#slhBN$pOp3-<;8+osTafrENCNEd z+B)85Ub-vyl)-oh+NqLDk5?v6Bj<&Tx zx4^i=H>_V`3Z((tFT*T{a($zw_YcuaZ!lp;wm+{uzob8@LPv!1VlOa{EC$n^m( zeJRjdYDu38YFUUI1t*;I(MU?ZDpHX0Q0QSrW9Y2tv5U{7jvq>LjiVhPD-gD3vEVcr zAo*rZ5AmNupo~X&ZZgNJc&ofiVbV}j3mHG;LeO%%U{a#Aswp1g&96hZ=*-N}0%bfB zE)&`7#X%IImParx07s$K!kKE2#Pkv6>o>)f1f7UG>hpj->WjEGD_PtlTPuaMNu}C^^LSVqZ!){U< zxF(wl+^a`JJZqxskCY=9%BN~s%Js*h$`$&izO$P9_q;U5RNP!saAk{cZt(ySjk-UsDopzine zKW&_Cx8Cq*@L|%ojfnLzk6{t~%54~Hc#k-G*18bfzr~j9vW#ZXltjEvhXB>5Iucc3 zGO~)BI2`|Cu@dD-S7c^RQ@UhBfLM~O*4m6AFZb6#nHF53x=h+Gd3qGdY-W;NsMZN6 zJm3E7tmW(|hr5{}@9gTjNT&;L%xgCpg~Z297uwh`@R*g7c)zbM*N-jD!HEbm9)3Y- z5H*#t(NOB4(BsBhQp2}CZqOOQ2`KbUe4B!o%Ds^OR9w{>PA0UWnqirT7MXvvvbH%5 zqM{lL#xc_xnlG6f*(NH45-iA%g(eo@Vf*NCJ$K?=cH%u`O7g(M6hRe1vAI}Q_1U%D zo8^ZP-YaOKfcr{PG)33T-AkkbgVO_#_^^-xG7*t`WKxGGlD6rdaDn}GWspa4G4{E& zg!ISOJR}#_n_5pkVPVwg0eHr@gsu)^FPd_o$rDj09+@=)8GTY1gwM zePST~kUN$3K(H-+F@4-RE0xJ&rDC1V;%3LK%hk}I*}$JUuuA^-AfBt>Gn*%C_a|0( zHC>+%Q$LzE0{%uj-72|X47iD?FyFb?@(;X3zW?nl^L~3@kH__3eTj1=|4A6yVJ&$K z$`0=}=FN_I)p_AQFazAz52CG+&T7D#BcL+V4H&vkHaTaqCaz7en5hGnsol^ z|LQCF@}igc(T#s7Wsd!ItHH@@(&b_vynFil2VysGKKIL%>ugt^-3@!nNB?>1O<%Zi z@O`x}drR<6mhBR9uK6!A(fL`{6n3yW$f*3w&p3#${S_JEw(y>F9WXK9vF; zy9FC2hRdw4dF{JSnusA+D2t8~4rclzH3hogOOHHwlO!?3c#yo>4Qo@L9%`_^haUGL zhifU%O*Vx^5H~3uG2^`!H}YnhIxKsjxEu}Y=$cz{gu`8( zrkGZaXPp#==ZStZh#yne%3EvQ^0_w+2!6y$AeP+P#!_Pu#@N$%=iLyPkxQHTmZQSt z9~z5m)W30cY9>AC0ipk{6Q4M(j}O7Q2a%>MhPS4$J0W=OKE7C8zNIvziFl-$t^V?W zv!_l@8{+sa&Y~FQWxYsdc;`XJaA#1B@maCgoMU0{I1LTKTcCGst z4==9_$njn^ixtk8~NZP`-6WCA?Rm!pFxqIqmlK<(eHqZmVL+P@v#@$)SJC z?Tt)^8xP2_-P5PAP~1wR+CE;yFm6kj(dh}bAIDu!6pDDNtVn{7#Pfhc_tXt!8apyq z6TX`9ZJp#B*BB30`Lk-@;kd9_Z##~J&gHX{`^8pgtU-YR@8Tu?EuISZV7OJO)*SyX znRHjcfkO`2jD!)`1b19I&i9HM%mzuYb1-S6C|EL)E9Pt&6ZB6bKNl}Az>t(r_|w>w z{}Lzfi#l|q`(RIg%$Hh?pbvSFK{bkS%5_75YeE5q7(?>R^!pHTmsbZ< z1yWiIy(wW05w*v8XMdaBcaeoYQ2&v_zIX@#o~y4_^1RqT4z5sxU1M|+fy^WxD$0vV zpcYxAN~LIKk{-v5y`s3S&DE?`Jr?Rv9?~hjH4I~ZQ`#TZ7llh~6+R?c!1&dToXB>h z>^!4V-GW?}#)5!+d|wdJvz!!%k?ofRyyutNV>^Ow}rs{(D9O#+hi!9>l*30tABmTv(9O&{yk-{v56FQ5sTdju&uYsaJU> zOuD|!hrrYY0=_;qG@{B-^xx8JmTN&v-0Gl5Jp56B9FNpaTY!jYFx8p^xpmh!ci=Kt zXAsoZ(p1&bixwERqcpw-%8Up96&giL)U?eu+E~PHH0uLA2b`sCx!gQbiXxh_(rbf? zb4}7^#{n9A1GqSzhIkMhR>be_dR6XQ*Jj+-t@Xmj--Y`gm!F03Xr)!E=M1RuJSXJ{ za*(+7J)%+G5*>Htiev=TJH6KEy?yLTP1ANr4lO-a_I z(KNNFiP1`qBcLo62Zs@s97)db;bSii zuwD{`8~Y`Vdkti`kl)tW|hdG?Y+o9bqGy0sY5nIX3v{`k*y&#?rDGF@}}; zsRK8Rjw1%Yo(H8Vrw#eL-dD!iaTW=8s{~YE|7-8=7CuqSHVir)%Eha>_)T+dDfh?B z)?iwd-P;%0)oHuLj8>H~l~%dU?nugw=?i&tCOGhszUD|zB4i_tf^@eAgeCD0x-5|~ zF-YBVXJE-D@FRlH4aB<7#b4C&6v!X+_daFJ!(S~(x?~r7be6BQ;BvXM!$^BYt({Ey zRHN}3Qt4wpw5(E$bAWh^{rlOHhoBnQKG;L;fA1L-{$(>Ph0f=W{=)(AjAQh;>=aMs za2BOQg+yr`ulxihOVq@-T(r5ri<{DWBkmT4@uk_zdFYnc*(Y8!1`VB_;`2Ad~2QE5;s|UTx8s zc;5eD4>7%5h%|vFH~cM<5T6BB4m(@(lfPO9l^L7exEPJ@Dq>C*rUI4hfZ5Pz0wjzC z$vBhWYV(EkA8Azdi4&}>LiY#@VKwT=?BJ~VNzl5E7}=^<%{Zisc^98dIzpI$-anTu zK@mvtJCq7OhmRdifqT?ld_3#b;>Vub3X)!t33}hzdxpN8<2)2vI0&P{#GW4EwU(qh zY+Dwpl%H`(`2#gtp~ZBq^ot-@nu|~>gNmyu zpmo~g#VVX`|F1RJu5hw~u-nS32xE}6`~4KgwtP4siTRX_fHZNqHWnQz5)hVrlvhm{ z(BHk7>2jp$uoS=1sr#ZV|+g(|?6ZsH|5V z`)@MVGVru2dB4Fz%8^Dzi9jLL_;@ZZE(`8Kw7~HByLoN67U5~Py!4nXMGExbL6M%Np%*ggkUX5&8-SHVW5O1y+-s=1^82sVLqiB1IHI+IkutZgD(DlfZDENSQa;Zl2&RJArGDW z8SwYRL{B=gi_KZa-r4n)d=!n! z?pT>p&6_NQo_6)WVqUMm^qcVn140B4E`)*bFZv8ZI(jwY(T|XbsIoxNx1GQ2p=;)D z-YwUH5`$h3QSQu*BN=_fk(^ioxcAK(bk*3^QyR8;}3sESsJaF+TT5$&X$$F)O77~;&C^bhc8 zs+Cp$LXQmR(IZIDrUI=z41`MkzIjkrH}p{4=M@)_Kh&S`*g#Vq^CUG~ia$!7{raLl ziUx0#NNeeaI}z~G@Mi)ja`Ow8ndg&m3O}?ow9?q|shY?;ls}!^skGsj4MXjMRMmW; z*nr)UB&pxa?2>cM0=jBq^Lye9Y*|{~{A&9XVt}{yoFY!kz)d6IL^yjw?W^eJbqLg7Dw=%=gE#{I`M5#}-95ZT8B}9Jzn6Q~f6&CTSUKTF?p;iv;C?{R}%E zyeP5a;7vnCjc{=6$wq>upw?m!{2}Z2p4s@?C-pN3+5&-&0)adP;3}#NiGi|I-czE& zamSRxsG#p7jvWTL^4CsfI!v*IVN{_{7&J@jDPaNA>CyOqXgV4U(TlV2`Y`YxgcehV zK4WKvDq#`eQSr$p^O6kmNfWZcsFfBMhxVDEQzw&QqZIoJMqG1HeneqP``KbbpBY`8 zH49&P9KoPZMc87DJ*sFqwqJ)g{DpFO+Z8y*vP6P|)P@1lvCzC5hsei98<>k=qaUN^ zUpf(O>aC%cq*ACH|BlxSgg27RX-|LVSad^J4g00sRyr=dim>#1 zRb$pP-(@}9nr&RR85%H*50Ty?)sD!%1Z<;4c;S9Me?pxL;F9OX6jRe$ck&j46fbjQ zrh=y|r*x`fr-2{!5h_R?43nHiUuLCbx+oD3!(axpU{w>0@_;Y7V%dwk$-)ShIJ^|Y zRpM$%$^`?i_iUH5CAW!5kv;xn+!L>s$GopmH>fG2V)AgID@KXK zVQYJ1&PhbjbM^plWXZJ864&dY%f?r~v`EG!N^-7iM1Y03;Qbkm1$=$7G70#&Ay~BN zDe983A=+wU0kag_lamOX)|j@oVvY_>yfZA_PdqSh*Bz#7ftf-0o1J%SZ^$WYBVn!|iw5hP*f=jUJF-ptNzOjh1{!I%J2 zD;^biFc)@|aTHMy$$OE!-Gp(J&X1X1Z2k=|A{aFFLcTGkhpaHFf8eHgM~fY$D~*E-U@N z9QsXZ4yA275>(d(w-Coc%l9qD9J*)^zY7TU^LrUdX&DQV>`_LR0}hdz9VyA2qc%G%hC`kjM)rNLzga6!eF3vYt^mXITp6G%8i zVG@bO?Cd23J;!w8?eu54j~6=m!yu@VA(>-GeX|hMA^)shFq%yVC3}R!oUPvNbY1ro zB=Vi*_0QjnoyuyS%g96-UaG!5Zc_H{mLKxe2VDN_Ui(tj*iUW%HaCIrK+Zu++v(?n8T!GEiUUWwM!@ibZS?B!PYEIcDnR9 zw-0nNW-!zm?G}wpH9CC`=0 z!q%cbh{}g=n4m{}UD6!7=(B-SLWUhA`P2Dw`N>rO+t;u4+@rw069$A1S_~UVJ1VA=dNKs(ogz@xW7x9SQrv$?_`;OBAsFw>ocOjjH=ul$DHk+Ncayc6|!CxK@#kNt96*yYawTH|p0D z)B!2T9hK}POj5IFv`MhNUrR_>xN_kea5(Xa7}> zSz>X>zI*C(`#E*XFO=-}-BUc0_5ZjnkjfY;u4nXl7W`sO*zl?FkqE*iB{2$@KB^Cj zHYhr@bydI@i5@O1$|eZNdSPMzv?}V|jC#k$3Afw&VZi+W$zC>s>;p(|o9}Q}`=}qc z>AsI|_j$0>E=4H~7Ny$S_?iA^Mlh)|iuM~x&&~VsKo&94tXABY5%Y<8;%7$(%uV;Z zmG|$DM1CZqy?lPh6rf_{NKchMdwd0A#T)>=>WEDb^21EvK9Gt85v!qp{r0U1HtRCR zkl-5`dsC7cKekp`MO)@zEMDT#bq0P4Lku;Z#81zS4Au9JU%r9^htEdug8_EYz6ssu;S&}c_S9)v zY)s1fcguSo6tNV2 zst8(Y_y}+pPXPpzU&1?aK^Sh4>;N165kH_xj;g9I+2%MJHfjq<36GAE`G+!ATY_@e zNYLQ*Da0s}@pI5UNE*H&kH(>b=Vqp&62XZ#11Be*%Wh65{G|-m^VUJLqRGNmU#~7d z;1#1Fw%nFD=%`Ec?CsXYtp3RP!tmnm;V!c(J1Tu{22Poh@;qCX`Rp3LUXv74KXm%^ zp5o5=*;tbNuC$PeP>V|uIY0Q+V1FV%wu;Wf%fp2Q{rBH&PGU!Ui4@BtJNtN#(V-#D zZ{iJN(bV5NL?P;?BYTU@{`k@i%HxP*JFu5x4wKMb@bagXE$8%aiKb8iI1Dg(vRv~2 z=5`pDWN{r#U0%OUDU#XG*>rMEMyQh>eo)>KaE~%%C@X46cG9qcVd!tKE;XERA3kNyP1PN88QOmleSWYE#vXvHewD3ml43KgOG^JrYKsiqzb9?lS+cYw8 z@5D=&0BjY=-)T#)USy^jA9yVYUM2{LX;rp`1O4c9>wAMWPnvhbne9Juc(WW;>m}Ki zX?%w;bZGX{-fQ6k7x>frrw{RtBKXoMf{dFX&i%B=N37tu$O+_2HtdBmDcawjv?J+F z<39=X@;KXlE$Q9=)p55gsKe*>om#Klbqt#@Cr5ON0H2sElu&?w8ALO7d7l&)H~vJh zb8z4~@`;O#)>#69T%d<7U4Kiv8#nm9ya4N-r!0>t!JxI;u%|vVDxy%N3L@I340zUJAd*RT#ykY`_oTh%^u4%zJ;j(z&On2~iTpFIM!vcBuX zxs@JUEbyA|I6ILpba0^l(tfoosw>RG{)(SCjF<}<3wp1?Ns|uT&@C5fH*^&$u-W1k z24q6cfP@+*?c1^FG9%lY>+4UooP073WxD}e&F|2s3#0_yU>-&=23kKnJ32;%g_YQ) zo_ZALn2Fmd#EQXKO?(oBm(7P#Tpav0EjS{^g=uGp28|FY*RtE(-3b^C${O@09Z z@W4Qr$DG$LLMYv80}`n9DB(~ukwCQtu9BgM2;xZN2skeD89;)!x%V;9XRG;A$-n=)n&L70>)B+QX=Qg_we+b6_j^lV@l*3uHrVn4-f{6D+r^}6Neo&a>nD*KxV;sgoguBNc~VF5g1TP5`uxNE~vzO zp*H$3pNTJjJcxRCojgK$#eKg%RCRckz$k54J{I+Io7r5FIo8-T_j-DxNV222F?jy) zOeCV!T`sx6RXXaf>Yo7hTY9(YmsU6JZPtG(vWQm?Iz1C$SE19;acS19f+E^AQ{x`6 z8-h&}|F&`blMbHv{BM~Krv5)53m_qmT3LePh)1(v{|#G|T)}B`njeV-QT$(+D^mG# z{1hu(8A4`xoG4yQ7_oZlRbci7+9dF*iL0qfkP8wt)=0X0I*TR&!4wj-ddqCv2nE2SzxcH2}{@ z2$lF3I@tr9${4vTB9O?j@3XJ`?!2m3JsV%9H*bN zGTeLd!G*jY`!+Tm=O^wp)e#ychX$dYCor0S<-F6E8eHG@LVXUE*eo(t!|6om)y-X> zDW(0P&>aa1NN&Y;KdC^9nTjATXEhQDNgkVmD#$rI0x7Ma0Bo106Ej2r;Xl%kmKdo% zV@(PaI>mH^X0ka$Hu(_dTk5jXZqbfF8`s64z~~PoMB8!Wk7r`K>eA0<(XPqLA|NWt z{dqG*MLi@=KF$%U2W7+<`uC%GgAMNIrZ2ez#Z4v9av5)+--S-0Vh7(T+Ucqk7^tK> z)AF5?S#p1by6Oay&i%{4wrg>6l;Otgp4*mNm*Z0C+#ZEPZ4$F|-rvL~^*c#5rrcIP z4tYzVnUIiEryL55QknNHO>hI|!_v&G)!Lf)KYt+OtwM(BYiO*zjKgkbQaq`CU{3t! z2(z1eVfxeV%*)>XXY#)8(Lhf7s8%l%%lDx|;v^dW;ePkqy~40UUZU5^T5soZA!vB% zQw=MfN>X4bGoY*l@>uZZ%2ljauMfW*gKb&h2QA?B7b4C~tt?7Q6(_v*>OimCV)Scn z;WJB2C`7StfS&^<_SFj(Y>|Z?Qb$q{t)<@3*%bzNO$B?CQ_RwFOATKJvKXh-FmYqt z+A;H(eo~O5eV^6@Rx1}~BStTfYrvt5f>DPU2i~}m#)&j~jpYVk&isREPWPcWwft!$ z)rKZAx*Dilu*&Mt1!PD^4Vy`tvxjvsA|;!k>tz7Iy`tX~=B)H!=76qM6Bk<{#*7_2 zs3ZXL@Vdbqo|`)H`(c}=g=K3S##`w@O>7D&)5g?lXsM}TV%hhM$kd5gzEQ~Svq4fB zT5t9QdYnB%BlDk0%xHvB2#s&Xy&bWpIdI^<+>G4Bs`1~gt*xI3+&@bdZb^I;wsJm> zzq@SN*!*p*^Y(u{on=s!;o5~ajkI)kNq0$yfHcxA-6h@K4N?Nq-6$a4ASu$)-6bvc zJ)Cpqo8h01BYVGbKkHuWTA%*l(X+%lQDfVN{&W!u$um{~7&1!S*xx{Rk(NdP@!RdS z?qI-v*Zq)}*WssSxqaPlLa#2FBm2Q5jsT_D(KAeIK3rW&*win)2XT0po&{rBPCdji!;ZB>1VeV z4IPaQEI^He2tOj3UuJ0b4LTJ(sF_&r+_|7JEPA`Emne>gS<>kAXhyd4=Z)q?NyEha z;&o;_h;;?!q-`zGKOo#O&_U)u^WLw*1UI9J#2RTXSy zs20BPEo1ii*l#iK>_-$FnOB)O(f*f)wDp?e z0gX(#BR$yI_#={4AbHgE^sMR!-H{C%xrmTna83Pwjpzu9J#}<-oqjBHrPm={U0szy z`L-y6>_l<#s5WsyAbpgZr>p){*sCft6zkD|kbLs=T_WVPpisTOaScIkx>c}v{{H&C zf)|afIJOj5#qXl4hf$ubmdvEWD85Slpsu@%-9$6b%fP=T0pMcmQeNuLNi(FyM%f?> z^&kArNQOL#B&7mo7eIqQI6S}z1dKyX;Q5GzHTa6IiTS1JTMu0Qee?UMC%;8za$*5f zQ`9V>w+BGt}evT2r)n7 zq|{pH{e#N;tY3&M;dR5RGSbCsPGjXemKv$9eA#@<_Wz+QQchYLY`hB<=b0kFqUEoZ z>6WqYO58vNxZRgWDwe?}gvHVM*YtGX4k!@1*o~$|$P`vYW{Tu5NMLhh=CzV#Vk zr~vUIN9v%7T`JIbxU|nzPbfL*_=e3n`^uR7@|u!Vz_bqm3@DDbY{t@qLkK$oEQpp< zB?XP&0M#>Zd3Q6v^(4sW+Zl2IeUyy3qlWlTeZTL8_*63uIV%PLYA9v*K>um{$(D~@ z>%ohm`q_FRA`osj3-!$wxsw-ymu&(7lm<#G3XP{;EFMkxEnG9&XZTSuTC*@jLoiWf zOYnk>hqMPSWH7(Gy1sDLP4`uM0HemduJnZy;{WW|E6<8ZZ+`VlRrj7+7Boq7sgIS7 zgjaM%@by-KJv*0RKppP|?@d6$FkY z=%wc=6U))3xf}od8Q!u(9LKe!Wgf;c_$RTA>3G(2{Dlnl@1*SiZIbkHQNgK8?|xVm znINn7{54)c|Aw1B2p>O|zN$72u4ZDea-kuE+q*F_@7MAec#eWsZIx~lWmG;uD`6Y` zy?ZRkSp!{3KAgBN7lVY0n2{lNp(z9N66=EC!J158>*rhX zO#956 z_ksx^Nlj^9osNh@I#Phy4(d`;k+4y(`4$3P2zB~9t}N6FxqYe*bgUvGHqd_Zsb z>-Q=aqN$VSWAzPiTyh3{;hmlSM!A)N{EFehmQ3bfWJh9+ndLmm@(zgwTq0&?HOxI* zGMvxudn3E^7fYL;Y!El*Z=>MS&d$v$t$e{v*OR7AcjU@~ls0gwb}bNId|-~0Ji3v}VH6K*2l z`o!6$O_49^%lZ!WJK@N=mO0VHmKzfM>*d#+q&L!HXBva%=%dn_RjkRPO(Z*`1jG30Z}GnW;CJx+__7IO!fk*{7>3eL zJyuW2FE=67Q%C%}FPm9hXEVq05&%nT;ZtAigtIQEPqA6AQfoW;Iv9gLKbPG=@tHVl zF&Otm>{4-ugxO)U?wW34bLh36K(JdfFK_?+g&4cl9EZF_RxnYf*7Z>1rNLvy<@KDL;fN@T zecsDVsI09LNH-QsD~kzum%u#$ARFCV#wy-7_1-u3FKi!B2UJ#6ep3paK-g=d^m7xbj3@sL!V#*LxN%?vl|$_=tRQcEnF@7sb?3l|e!B~h>6+#Pvw z0zvER+}m=9-H071270C5pTVfm?TM@jpnnIz>wP5i} zc~km^3?xt~Ay1gQUM0O?kmr@-^B&IntyKz9J?PH3|3FP_4jAH~CXgljFx27+D#dbG zxEhW(mI%DqP4VIgY$C~gXIF4Vt_4r}o1khfe?zZupB_J~{fa-HxVdWj`{nw1vt4e5 zd*_%0Z|@z>zKD%qP_{Wsl!$0bX(GYn;;jZnhOL$> zlH}BP@?BXp;AwpwU(lV9o1CCSQLpAI0hImJt&=HkRN2(?X1$?$!OEj=^dPxk8U-|< zQ#xWK0^ATse21`1lu*%BGw@h`?ViA5nbPP`jX4H6E>S8dWdLAo#ug!ySdeF-#-r5k z^b=wgzQQg6ZT8^yq9Xlblg~)crZTsl7ry4+DYroU*Gtxt5E#eo?8o&p)l}9-2?Ph@ zH$}X#AA!CztFiR>Xi17*KN!qOIw-;yffoT>LV~1fse-N4v|btJksbkQG0skf3E2%ja1QW4q{E00^+7NY+~bQfn2R zE2}L3Z`sB>Yg(muDbyj7J&w#<{QLu>Gp$Ur8JbJ7r%mcdWy*l-ovz)`r4zt!N}&0h zI_Lb=&Yhl=SQnspz6uBS&su^)EhaG#KyKc*{<*}o+*rF+PgvSA9yqI!`Q=M&zF`ff zUhNj7_NSPyuh54Q1rvW8MsTT(SlJJk5bYH8;G*>0bRc+N7iPWPx+zG{p20(0v$P@* zpiK<8cH{FSR?K4a`?J_>`rEH0xt0m*vsqhE0Ie)IRGAhnLRMs8m8iu>k7;caLs|ra zI4w4^__21g_#-ZM3wS|q9Cp=d+JtC=o;tH3upy~x4*-`|YC<%Pw7#PMYUyZ=Ro{jl zdDn<;ld6jLPa4i_NzywAeHjjYzqaNF&x_7jFjXX!=!LA6OU9%2H}u7e#9Q2bfjG+9 zKUr<3d5jpY*!z>tfa=iCtmnyBBKW>Xfo2N~9OU1YtcC+cAq(rdw85Dc9iY-|xSRoW zo5f&GpYwqQ?F;-Ebd;l!3CA2cDg%n+Orfmjh`?cs;u4cy3g;}j>}Srq=fv@BW$cZ* zbQSi=r5)fs7Rc_U{UCSP<%Jn!g*t|pU&ckmV>1IhaZ991CvaN0pk*cZ(6irRi(%4d zqwke?H#rfHEqycUX5=}U`Y>WNEPYf@{r1S+X0nnqC>GR7qTAw%;p*Duh9Z6ozxprr zwM7DKG(ISoW5t(TX+X%Iq~LJe8BO4mhv(aLqO|8NUsM>~7H`m_lO44D{(X;`S%#U} z0|elBY;Zr;;7O@Reqn(x841-@Z{V;7eik>xyR@k>YNI4%7#J9?&$5WLBxu@=-{W@cF zgbA2&t!VbXCh}aHcR03Vb+g^b`+)vwaCGtA0_39_Zh$kwJ9vP}I6RcI{^87*EuYO3 zTlW7jB~W~Y49hq7=l$W+qXbPU5n<`LYLGyp3_i^y9EHfMYidmio*>|s1S_;=?ZfWh zh>kz>__D{da3vD+>I(6Dm=S}jIBfPQ5U~yDD8C8_q&k}vV~!a$E2EL{b$uh?Oy{xF z5t}1(kdH|$0^2aYsw}R^ogH&f#UuLZ)2D&BBzNA?Z43V$g4=%9qnVD-h(Qx97=Jd) z%IhXuc0Z(mw}dns7q8L6^NQhJcjUo87@^G$Ju~y>{%rt541>+=2-1wfS_u`z}GqNUE zWyyg4L%G*C`jjPH5H@-TaszlZS}MhiMsx0^)z#(zdH_lpK_J~2pp*XxM9M-NRIV!x zgI_GikZUBw{%fyw@=oQOY*4Wk&zoQP^@2KuS&N2Zwn-2!8y?7%G&#RMVu=R0j#r zU*+Y>(h;MdNzfRG(Xgf1WrE%mrbG-T(!5Gr6gs#p@`+x79qSr(E@r3gRkWIRohHUj zRx!c0hf`NysCQ+25r`M+%|_4Ae&4LMPGXfU(2oDm+-zMpd?mGk#e%AAuNSjcC54V2 zY0)1q9B(nBd;H8ujN{|>^Lev(QRJh;Vf4+#XMMw6k+~77{wyv+r3-p;fVu`X4ULVP`)H1K-J3B=I2F$O;i%I( z7o@0zvi$U^Bmw6sl%QOz%)DR>w9SjVzg`Ziw0E!ng(k^}hKcrR366sgErZhn?I|ki zmCg6ju$TUndT5=U@oj+b0bouG7dX!(gk+P!HNz)3jzZM(e3|(eTDN{>Zs(Ko7o789uOLKO~{K*&{j)l0;rRaBz#nAXW zN&GIiY%SFdMo$l~8zyNfX=mxRjSG`u0#Z|PV2c2tf93SB z5)^=-!cu}&GNPWq6Cmm*a0U1YAfU3L!64O>2FVAg*9$;DEW=&99gK>CpyOk4jyABdiis+Z+~(9UNuSsXRsafVui1YfRF?NJ1EyT zQws|}!3qTe(9v~r%9`qGh1cASL%%A~Kh6jzm=b)=h)Y-aM$d}qnG(VZ$*14A@<0sj zeOIKRP3m-1w;WGpTC83DUN%V;mjsYJK_Y;|VMVaF=&zu zXz~|fW@dKF@m(R|pE}?}W=HgFFHH)`wYsg3d|joB;J%u@`dvZBoaEEbXQ?J#hWcr7;C-cyRD7*^96mw`X+Ztf!m#x=d}?$|Bl+|xOavVu zd?4o^t5Me4Wu-CI9ssblg(v!s6F(9Dg>oJXx{`w)m*q)8-&@CkuY4 z4E4|SQRFfbqmJo)tZ4cuk0pCrb#;}G|HxeRrDefhv=_{nlb|w`3wI<#$8=wGt4GxT zIlTqD%QCHZTChnzw@5PYad*1xLmTLmkO$aNR3e_WJ(2el4o~nxJn8jcKh5H(Enlzl zu+#78n1IpOajb>XO!ue{dGC*MRxHk?*I>+IbETjDa7U-WHBn>ss==OAw9OHI?&GBu z2x!h&1@>%*S@tiOMmqd<&Gum8Ve*{>dLpnN+00e07k_auUv6>b;^Fx{vpjaKX|TR; zk@N9BjwDOaHOhnO#i>zElaMu|3>lX40x=ad?RN-0>yEQ+z=F>bq6E-k6F9>TaGpKL?R|z^y zkR-4RpZze6j!gZLLqEAO@c-%+q7U?yc>V$dGM+wW+jwU(W%fBQ?uI%p&pqb?VyvWU zt1N!sOmO$6YWgt3NKR4bR6#!U__)J~;q%nlWC9;N4KdRC3sJ?J=Y{!dGgoc)^l%46 zsmy6rtV}R6Fck5f%GChdgp`ZCVt$lE3h_XY*H*rOtF&AysJ) zo&Y;j{9te8&Q9K82hz`OxMK}SF!R9Jw2&N`F2r2%>v&>s_(G=xSz48$;R9TyqSO7c z{TR}RBx*r(9)Kz88nU;+Qd}^f6ve<=%e-3{F?}x_VrWhLRhb^f& zSL1UJSsUgU>|=X8rGo=w(EmP~&K@ke3)SNP$h$ZBl;TUm$y#*KINArH|D*Rd)p7if zD0K#LmdESUmYV=_RGa5Tot2(~W2M>>_XwHiy61>AT&iUjKb0u&GqNq548kNYK2abgqQYSn_g8OW ziq#*8%g8!U5!O09`vIp$29IxxzB~MrHGg^nKp#isTe7up4e9Hbl$Awh{!CtIb!R2A zv5BtUFjGJQQoMPxn{d_CtC2J!5u;MtlVxNCbV9gT`yWN6VjyM>8#5XzJT)o;ws2-M z2A1u?J`_JW473LhukzE6-r865sc{OaVoRBFrn76Sx`0L*T&Xsz&-(*NiX~H86raU7r8h?M-$}Uyn7XlrMIMuMMphT@*T zKLd_i3g_F`CDpL_^=wc{rn#pu?$Z830W@Ro$}%Zbz)b2I((ErW*cxS-+WK&sn=!dA-K?;s}rC-A_LImfRG8+ zKLG$WhTorWngLp%s9^Ft{Q7P>v&xE$nxUCyrol#LbytGJY&M)Q@s3pMAb!@9DNE>6 z*hw`DOZ!p%bp3eH89?YnB94TUMoP+1V>bR6dpYiUUQhU&gT^zxHfOWRyT|vGA3Gfl z8VbxL6;N%LEFZ96jj5qaV3(Da0*9kyql4Cq!i?>9f;#FzKNAC25A=K%| z=vB!3-Hvls^)ZYrSMCP_=3Aq3YGzjSz9{&ue{l5K2*-AHCKH>P&UNRWI;&X#*NMrynww@jmF0~3Z1)>|1Xpajrcntn> z6)b*UK6d#NU8)MyuuMWC)H{cm>1{w521y~{wW{YJ9IzKoW9t-Z5bY+AV7K$3$Rk5Kz{Ai})5Xz@=HO z*WCbW$JIC@-=4Nj$-yWP4_<1nzG_OrM_CRWZ+gIrATC?Xx%QG_gcw*;$e>kTOo*~) zAXfGm-O2H`0#VU;ENfelSRe)oCW5`g z!``*EwWQFsSLc~rW}o;c)+gDb;>VWBmtsBmVf0RC&5nsYv7SVie0<`i#`b~p%X4gy2@Dj2fyppYtbY6;&! z*w(e3xos-ytKvELDAsixo z%DUmM=lqcEL>P#&6x`SOf9wfeyi+73WPVR3b1rx0Z-^HM04lxK*wXT6oNPvJtuj4% z@|dxk{kToMZ6@$r>uwL%qc9UnagcU0RA_4_)%q-O*e=(@Ie1NdsRgqB3(TwK<62iB zjK^9a!r2g2{MvSJI6F7@Ok1L=jN>FXlu@Snuc zN6<}^GsyvJfTrx0sOb-`=qt=L&*0Yv7wATh|E`8iIXtcxEM8VWg{o!4ZyA4RmmU6V z|3#HKn<8gWkXt!I&Z!$&w!>`mhyr_T^+^V;v|)o+aZ*$}J%59$qgtoUckvPOIbGn2gyR*_ z_hDgdEV!up8k}28Y>W8$`YM+n0-^Zx%JWP^D-Hd2v652>;;UQk_0e{JA;x{>49(|! zy7O-FTJflNZrl$>g#Ry=*=Z-PZ146++IsUzzT0|1rBa05;u9Im#^#P>5WToD#jywF zdIl+bO}tINcw0dM3`ur&^Zo$Q$8_3(fkAd2fvASv@%5p}0)qznS^9FYb5zk-FVDYS zrW(mdpzjzADwdYSIO{=XHDbsf5V~37tSO+EmDa0C47S-s(}pfBKX^4sTr$KS1N*cB z7?RgV3&ACzWWL68%trjNRM46{GJj4hxXc$1Ysn*+Esv%M`==!If;@bf8HEsM@JV&G zlu&r>S`X*@va|}Ago8a%X$H7KC!+-(+mWDt?CG%0E-nS7UsQ+*3)a#}g{hdNQmG%i zbeX@I=9&gyeY(Hd9Nr#jwwt0|s`cWAbma(y?)&@WE%`VhJ9yq{yhAaTTI`Lgt9EsU zcw`d>Z*{f*rHsg^&~CZ^LbMVe&MFeb7^>pG_?7fQZi%-R%QtaF>g}Ayn=Mwo=78$) z@zf~$VAFtS5<$)PWzTJnBp5~5pUz+-LlUBjrROl!q`H4a;ouw8LB|~$M}3Bii;LUn z>5qoAaj`YIo*eC2j&X{%Yy7?whbp!bS5ap*)8$w>TVV>=&2T>0lFfSSjjP*aFXirj z6_-E9$luJ9nkEN%f+64*{|WX{}*07`&n@jvhegz#`;lqRL2`@`^&9sXR zW$Ul!s2Ru5j`J_=Mb|Wi+j=I6XvqW_>b6}v!mH5^k2eKPoLa^EtPIsbN9=-UT`=>V{vs>}ZF@C)M8bk^b4DpY zV+UBJ5IH)LA$CQFDJsgZ0dtrZXzvJnPwc#mIkJ6NrOr86LF?RgG1_LwT0={(03%8D zdg+G=0_kc40&B-DW#eqA5#l>k)2FW2(7&N;Zgd=pON=v&xp0Fse|F8d%9l)aeEj(x zT4GKN$`U7?i)_zS8=mrY=ORHo1D|dG79W}szCkjbfmgrA``AiKQ*+isHqPW){XK?{ z_V#E>f_Kz(y^wF}>)`YJn~~tAyhFNY zf*_q`*zy$@cOfY>$ixM?3>upgEZYvGsAOkX_}jkw`PTdgnJ=7Ajq&Zbbn}zmZpSOQ8@bFn)=a48nIUk3AGC(I{iXO=_VivV`yNTSSjWMg$k>dF#Z=f zAi^U0ahU>&mez$>E9U52Jsy8nHyB~L}P>}M(?@lOI##E<|%AB2d)z&|SoIMbo7 zPj7|}{VR8NTV_~%ET<687bpCFt@2bWtxcdm;yjri4(j;jAh+j)`jBp7Va==lM#@n| z8g%s)Kdk4F@b@t)48Yv5O2dDh@Lo_m6Y4drk|tG@vd*5_FQl{a@R=@M#W`JDDazNN z3>K+Eqbf-5O))K9duh)+K0tQwCP(`1%%;mwm!C9nd38@vFmT1A3^4+D3Gk zY5b)bLIn@?g?V|yx74{vHptJo5UMbD&wd)9CWKNt6&&{DVK;6DG-*>py5Nmeuqh%a z^>(NnbT#;YRzR-^?t><%ZqVFZ3kt^lbL*yd+ako?u;b5b@fu^mQq0^B@v2oR$C^%4 zlHs^>u8whzIz0w{#lX-G7Hosr*&lqEtKw9Gb{&F(JnX&P_Pd?2LIp~KLmUGZ$aZ3LSDu(%zhSyvs5%Y%L^E@7Omnfb5-`L{)5lw_jrQmM zIAnCrd3+7>!ax*ra9{=KsX8!#Y+ZQ9)IXt18+yWpqm#Yk!aSFZeS8EwZsyD_xdMc& z-1){>EIK7)f$V|yo0Vu8nz}bip|Blu+&E=c7&Q#eYZV?D!G1rnvB8!)g-Bwng@^(dn9G0J5Esc>+OW-65*?W*!2yhdAJ)gm?_A zNX&hNdp~b2h3)~@OBF8|^isc=<9+gqjN3AikA2=cgE8*V6GDykYO7v*uQ<|0K)+$y zyvzuHAjyh62vvoz8Cp<=Sa0sC)r~M}qsFbhGeRUHIv;V)wGMa)3#Y8W^M*u1K2cF0 z@A^n;;*RZuZ9dIajr82&6HbsuKW~AUV?6S8X!Sy|L{UPj1H8&cuKDb0@mDY6MBP<^ z=VFG9Z`+e%53>V?gM)@yH5zMn}hu zd&5wlwkCcC&?CyN)DxWLe>6(0vyqKx#t_0iO`bZkxc~R>*XnA#u66_ciu&K}G{b>B z;M$7r2YoSXt-602V>2=cvV?sJc`FU{H8LozTQIn0ibYQ-9_r%ZlE*|VH=O2nZ=*$w)xLeuu*=YkcHh$T)?H> z|4jojQR-Awb1~fs)rXL&13k`-8Tf(T_ZFja&0pe%;PcVXJ&3^%?~)^+16~&(X|fm& z0Nt1TJtnAI6-T_Q;se=k zt7`RX3P(eu(c8~n`}p2;ilKSDIn(He=-z!m8m9Gr{{~#{jh`P-A;orhsF%~Oy9JOK z6h~Ez%h%05`uc+|X&hnzz6xF@3 zbprB_>sMPU5d%KHsPE-*tE^;0;QbFE4IGxldVgF7HANGiOcIp+cnaN;f?WUR5q> zAQeKxiUrWia-)8MOzax7B$xfD*Hf*vi1m)rqOp(CL{?DPQ?G76Y%wc}$h*ebcnrai z2ebA@C~^cH<{lBgXyrSJR%?^~XbllsoUKTT?^VPkk(5xUemr?1(2A5|KQHlrBwSH;3g;&yRSt~tk{s{cjBiTj7huB8uJ9n}Sj(w~zXPzanJ24YREJAG6 zDLxyHKd3?>@*D!I@r03WaNlw)FsW+heVa5&1zTQEU{z3)Iv*xgz$(vQTg#K+bNx#_ zTdf<8dN_yoNUCU#jrDvzc4jp{Uv8oHCWw5Y3r+y5YmYvv7IwUEywdaxg|wH0o*6G4H55 za>0jMX5@*J)%Zz9O~(=Drrd@Kna^z!!ZYqL(yJfZ-{IN z#)Ou1lH=-lwuk+*pWxNy)ciLqtl1?;i7QzlWh4#cCI7sGLj^&jAaakQ*nKW@b90RN zcVC=!brDf|A&74jH}xbYVYE{N#i4+1b(SZAPeRmNJobgX-da6zer!DE<6lM*REr(G z$=&`FZr4aCHj%s8=#{g`8S`;lK?lY3){<5Hu+X123cruKy0dw+QipJm46J45d~alh z1H+-O^mZ(L5aVWHlE`j)?jb{=?HB@@6Ii&oR-4zIK4uf07y6MT9&?vUo5&@dN2gDr zmry=74`OY;TXaPK42sqYzfb4?p?g!UYq}sPBou2a96u&EpYsFPBP0$3T0J#7f)u^q z5QmA9zl=9dndP!7P&_Z-MblZZ#RV}oQGnGFn*#?kSaGAbXbe9mDvEeinHAqGISrEB z4)Asa;u(14<)cwWtUipbhHUaRuZIzxRdoKVP$0WdmqiP>OM2HDLaY`|s>Kw-2p1xg zPrV-Z_M{6~TAbF3(!lYjcE544yjty`Ds}lcR67!%tQBnc?}3bk1sYa6E)0|x zI#Hw%qZs>L(X5nTCpO35p7x3Q`%e}gnhvtx&3p|^7S?@OI3W@=#;{rD-mbV;4g4}n zC>5C>A(k{e3`St_T+IL*AW` znBuzBgDH2hA0PM*-{BVa$iq@JXIRpX0h==Gq*BSNQ9NaJwA_jZ+vR(+jG&#mtINq4 zWeBZ*KCd3Puwd+5Ych!Dvq`ktb#%lOMzUF%C)+JGzt-h(7y#XB=a*ATnx_#%8j_zeG%S8y zn!ZOA5O_=R3fg>kC-cO3mdQo`hKfaui-|!8R{1?U=i6xC`|EBl1>1!doX0GDHok>d z^1j;^Yw};;{HvUHg%R*OK*lisehXny_K`}ye+XVpX-*YCc`p9oU>X;%?+5;&yN8 ziD-SQJ-@*;@&P=h2)E;(NM9ssQxs1~1E+t~@3~%F=A6AX34RoMbYC9~_y4w6B>j%8 z*PTUZ`qGofxt-OZ1$K(7&TEE2WSa3TWe8KLZ`$>-x}>}qM=Aa2u7z+r2H7pb&M2#b zOIs6bSM|LU@R$lVxU+iw`&WC>aqn}ZYqWBm?p*+(k0({*Z}JdaabDcATWq}BJzx4X zq3$!W`gFXy0k+uWA!{GL{+kYpzbmIf2*K#n)|xHF6k0pGf)^dr^99Z#x6>8W#YTW4 zjn~KtSb$)L=t^5)NEQ^u6oFNEfDGc_P;po22E<l{9ITl~>;X)F%D<#?|*c@6&{gYt!$hk#_xsdO95zB#UB} zG%s76uC0{mLf8rJkNJd~ft*%_dnovHyY`jBZj|XLL}CrF1Hcl7k>S(D6bB6sbu?=A zej;q1yaY|{g;vZv$E(_34y%Yi^XUyN)rd6p-aEZCR|~ix+RRn;f~ORSg0V4=97>2G za;aZsvB9XMlk=Byo6{Vs*Kh~QPzUKcwBv}HIkRzdhsOIqY(fIQJ}!Li2mR)_KBJn< z{Ez@kK{QHPM{V~`@*s3>L#e2wt>q(b`*~B2$mLcy3fx#@&@J2SvafpgrCEo#-*deP z!fJ;N2Q{^SnN&rKqF?i8AT`&mCL%P*(8NCNNOb~#7dZZ2R8b8y^q0qA2=$1cOK&}s z)`IMdpj%s_h<&Vdq!*dv?n7YQGh)ZOpFlL^YpAq#L-3sadFE}jLCFAd8xwPL_^GKWt#&WhW8V7JXlZQRV40S)^C90X2$AV}o1f%UcY@;vOkoEBV9mX+-AhHo^W=ZLVcj7y=^ zryNg(Zj69q(_;s;aURXr{U!Qb_La!|f`;M19AMd?WU)VH(C%<#z#Y92yd<=Oi_<{U zFQN$+!`y0N$?<>kBo^|*CYr4o1aIO;oN)T6oCp8v7t1}?^V!8X&R4G4%Fx0CPIhbrKm*{%2e(z8wVr@`v}LU8RpFG5%W94 ze!UyDfI!G@yAWzC6}5e}+RA@IK_s=TyBm+A9&zc1e~RG)KJD>h)8@;H5WH5;ACOtG z6_jBW_D}*+YyHJAz&eW}iqhP|q5_#-7qMNrbfL5yXFy0#pDYF~#ejK)>wGI&X#YXnq@h1e!U zV5|?hZ$4Nl(}t{3eGv{xS6hNQr9yZrEloC|5Ao<=8UX_{UahrhVVO5iy0P{i<>!HyXSSYQCW4eHZaQ&&PWRS)f?(|h<$W?9NK8yF5hEDBOp?;2Ww0@>StM*ln`zac8isU z0;40BH?s$9*dby$s+`aEi$)8MZASf3IA*6#f2~G+j+b+%=%O2=%P3qrH%Bm%X)1kQ zX_#~$I=8<=d$7+B6jL|wWyPR3EYyJ72_1fK`z)m1h%Wi>{4J4RyX9ih!!~8bHXGt6 z{RzWn$Y5i%M$TA}O~%7FiQr$Z%Vb~5W0idBTmGnv$%W>=N|$@{G8YVz`4a;f82ADH zem5r;z;YfAw6RPp>~01qQaV1iOg6IS{Np9g62^X#lt}5%=66L34i3K3ZR8Eeb@kTr4KP_`W3Dith8UTvYGr=w znQ1(}4h;$+&sN-=lqT&4SALz>mGzSMgpl(4YAlCb(1Ec!Wma8i{EENS9aUGqM=R>> zNi$3U9)GRfqPxgaqaD%8-MFLB`<{FSG{{iqj{C%Kxo-$H=WcoH=TDdlGGE1973FQ5*^lJy=u)iw#U}QVoQx;DDjk+(EW5?G(Dq?+7 z(M2NVr)Sn>#-Yu`%L%qIWjv86y{JT#>>{&!lA!PLA;>_+Bl9{hU|XIo94{^|X8ZEf z=n9qho2mbdsJJAiOD_aU_k6b29xduC9+sT8s~YN(`ejit!ug{#DHL3-&5gb7eDkCn z0(Pfohl`4Ow1K;p15!t9{Ij2b3KE#qe&PP8BT-_0c>(%g@cIWANVkWMmIz;!rD8Sk z@IypR7c5qat#Ipl-xmeLjtNVb$kqk|8v%{|9 zOGpfl#h~w|<3>oY&84g^urrjY4v2E~)ZO*RQtZ+k+LHMMCK!gMT2e+@SD&h*K_+|y z9O|3T2Z-vxj2&7hAA0L1Hl~;M8NMPSEVDW8Z%D<uTk z#0D9*lFOcHw$&dg8GY{(X|-g$?{6WK$f@~=KYw%7;9-4g0N&Sa*H8C#Zp$s@r|u*c z9WIHH7{QKO1O-ZH%FlmXS;X)L!0pxR54K=I<>j~0oww0a{2E_~*$@K>Z@h|S#wgP{ zX+n%lO<`-imk)m}FUNx4Ykj}nTcy-Q{+lvZ;d@{{(%08dfP?y!f#S@}BfY^d^rJ7U zh_LyZ+)`tD?>uLr3B5$=>wvk&h~B=JXWyEB?K^Z_J3K6yy~ln3;MvwcM8x!0GozZw zPs<)8)@VVUhBQIN)g4WH&$HWUYq;jtCndP1VgulAq7V8GNwrx=H+aC;)A1(zUVZSR z!9onNd-yY>O`FYm*D2Iu{aWqp?~kgkT@N00mRm-N*Sf5B(r@|~I4#bWLD%gaamY<7{9s#Tj~2bJAdWy7fPKzw2TX8y z_mx9;lkMAYYPh5^?61RX3%zkYn>0pM;1$W`%wp?Wx5ts8fe@UGIG>7dg;@`F0i3FHWp*qYu-eM zngZOF?QS?lcnhqBwi9kSZaFs`^TR3x#_!!_RwFi z+zC`jRi@|net)~Zy4rk2eK%D=x#vgaVTh@jCM{d{{*q?habdqup0(=0p~vM!r$Tq* zi3!A~aixzDPoR5pczlT?#bl_zO8T88<`V+5`QKUFHzlpD!eUnoR)FSkz2Z%McmKkB z&m$3=3I4EWktXyP<6PqM@v>X`&~V4)jm|UV)ex;Z-X$$N2(kZ8bIjQoX@%E|RDPCM z-cTpr*BtEMAdqhN8Tf!}WlQQ`GwNGD&b=D#2i0%)o&k>7kpV#?Z!n9eaQZzEpvaOG zuMfBT5TIUT9jhBHoPb{)7fl^RdK*CHy%s3gKc(HTog@3?}MF;Hf*x;w1malRDH=O=Rlc&LA{@%Hov3)1pU~aybsgsaUI%Mia z;rY4S)667}-D&d>31M2#pW)C!d;75>n`ga&RTe zq>vHZi_gDq`^Oi=JmSC3tm;9NI75K+04CUEd5X7U^p8UlJbCbDyumIa*#g*bY= z-@o6*`v)iA9n9_xm)$SMg@TSrsdlZCLlKe|-i_@-)i#AhO_(Ol3Mj_~?!un+k{i56f@cDzn1v#GxMw zdf|8Zs24~cRkaoM0WV^-j$LhYd@Ua()lBy&JH6MdUaT26I!!JR-2{_RSKej*q~H1L zn~<1fI#-H-!fQv53<~?=d291jjA#Eb82QTJ+%>R6)2ug&k5d*1JsF0YmJ2 zR^nOM`oQP(@`}n}8ODW5EopPVLcje#r)D3uXZ9qn|97<^9k>bkZ zo=k^^d*r@!|93g|y;XDu>7GQvwS@WAU`al;ej;_T(1%IMZU)^Uz`x2Wk)}Z=A|k@# z3}#ErnhNQ3>pU8M9`Nmf%J13B73wq-8Y8~;GenXCgf8wnY#h=czEtLS1aY!rN&kV#_IS477U*((-mOU( zcez`;txV|qNkio_N@6b&SBS#@`w6RW!WTh?dumX9d~ZT>e|G_l7mCufKHi); zb?Y^9IF+2ozWS%q1JDKVt5#A_;dUxJ@f*)`{KYKurbGz2-bVkoDqkl%K$AW0r(+B% zBJjOnHzzgFZB!izYG9<<^)<4iM`*K~VE0+uMZcV3h+1bBZErWSH=r0u?}k}dnzR!? ziJufC?=ps z>;Gzk#YIF#&PG${efHbe1_6lpB7WNtO!B8z=1?;EZAM8j)lTE}>>}!ftE0^StFz1U z`5VjZ3d-9j09e1-*<>!D$zhl0mijc*H@^k#PK-yN{P2b?UQuJHY$4BK#FaAr<*$mN zbTmPk7*7yjWjyV%!{@oWscVd`77Lu#+Rh+U)PeP|@lXeUFg7P`OG@#p$|NC(ltD26 zq{BaL!tWaRS)H9kq>igMQ1JgDOCbBF>bn^Lk!LBY{iKUr^OtnoH%~`Z$0*KNr_KS^k;CwLgb)JRM+|VBW z)NrS_MH$*nE-bOr@3ug4UaLd;&&0&%yaz$-W<6ZUZBtf71y2~Pj4PqX%7UTa+w`O14n|E>QvSd6HC3fy%hVceiY za9wh0-cWN1pa;-tTox-o;$hn`31-e$={&NkU-!O;x>Z(-X@EoMPEdjJxIz8c>tOix zNXYM!MdI;1nd=~MfeGyyO&J@FlIdj#zJ7vInhedi3(bF~Sm8f)za!GdC=@QVS!1o9 z-OXFMy5dLUQuc-8NyGp>V3YBusgY$Ollj57ZSF};WC28l_^D(TPe_?~rSDH5K7!#| zr>+x(n}ujv4!)2TdCt>PH_BWQjz`>kZ=vM(0(l+paunZL?Dqg|7)Ay@uQXrj5h zJK+;Ck1BAR;O*{it@V*^$0LqQ&+y@#+%>lJR(w@h^*!;(v~A;w$JT;?v95^@S6^+0 zX1D`_le-2Aox^vAI64-MR#t);l-Z6A!)@z{U>4Jv;}%X}f7|5vJ4~=+14qBk66L8& zr1Duuc*@RQ*5_f#FVKU0tvJ(P2^h7qzGf8y@l>EoBm4s(^lXkW=SaQG8~`(cXs`|P zU+3&ko`2uq2wTfDa!V*xNaCkAgxg)&@7qTYwwyv)+s5w!bbdIp2g|niVDc5<>}}n@8AyS44B< zuTa9!tEvY|(IARRiF@`m4zr~8)7GyghS`Q9Ox;(K=AVU*2{=?vQ&YB!}rL-^XtO%w6imny?12U2C_PeB}kAK*9>osW6(i34RY+6+djYV!z$ z9prlxxkKftFGv(-_0XD}`pqj=6&ZehTx-{!V*9MiH!Bmb$co~60J`|U!}LCfBg`8j zxL{@6I!pmsW%gtOjte1zT?c9)pi)kJ z5syC=yP+`+*g)C#n7b&qm`YKWwlYkxUm*`%3;XD>t+n`BI{v6l$aNiJ3NV|aUse5A zPD^p4@uNvD6{C!=b%R5m&R!cc2HtI z%Xuy#!GUt?#yS`oPjY_NkN4zRfGVj5WlPX{Y#5Y z!cbj129K&f41+TKh=o>6%OTfkfrf2w6P6(7anZW2!VLDHs|9%UmIw2?R-DyPlEv@1 zXEE$rnT8x0Q5)ha9mmxuXN8G#hyO@MG=|(vzKHu1uleuOK6$}sm280eq<`W+(dngm zJ-DfJZ9uwK9AF%g*VsLi{ZcgQwQfBMsQaw6Z^i7{l?c_x-$;(%iNZ1ve92{D_>FS_rnRtZr6c;cfi3 z$sJTBT1ENDURc;b1Xgs5^CFqdKiEoh6c)+PU;>JIvgA4P6UA~@sX{lko3(Z`zbUlL z1*T>2n_QEKiidQW^lrf-ubd5?*45EpI+a~5v}T}&C~QhqaY2OxibXWupdQ**^Gy~-n|=Gj7q7m=)K4Lw3zWgwL_?Dzk5%dEPh3* z+TSxlHvS1B|J@Pk&DxFi{#PoFpmAo@<|q+odVJ*G)82f&+67Zp4P!~`1gRd%x?ZK% zl&nl>+PRT|JH=`LkwBK0-H28juJ%AL{aGSnvJ>Wujg8H2pJ~YNn)m^5Z%klWp=BGK-={O^I88Q{29Gi;LTFN%*t{xb6NFxQB_79jZ*v)^UuHBq`9PWKDliCNO(6 z_%>jjN`$0|U+Xv+_p8Xa8tLgg(8C~%#NjHefU%B3goUD;P#n&0GBEd_OZ=j&K?+S= zPUg=e(`Yc-qs<=QoK~P7d}S&DJl@y9Hmy}jy$Cp)slE~xo?g?*f7B7K6FJ7Y|l z^#{K=y_4Mo=JJkq-;UD~vw`xPQBdp&bjQz*z8y=}!ArC5eP>VY8LySXB z7K;Kbqk}O54OPU92WVXZJTZD`D26njZJ~&?c@a`+3}7}OBY~&%vBTKD$KeYELe$KT ziYz0=5*fccLoAEW%_o+SpHFMt74ZCt8umtA97Sh_TZ}JaBlSg!GE;@b7erdH5MyBA zMhLsVXZDiM&pravF7>;LG}xw$iiS%eWfm-X0tP2-$6rL4n7Ym-ps&S@VJn}7{8q1O zG}2wFZ*L<3eV3&ibIc7m)oh;M6i}V|$)*fR6A3$6|Ld$}PQHgXPn@E71!2fKuEZHW z(}7LzCa;^Q!>(_)@Uh@Wu(d5}H2C|GpMqUq5oQ`24UzD#jBZkpl*RFq$p+S%oQ&H7 zp6^ZO4&B@c#n70)onxysYJcBrh+`;6qVcEmR%$JRTO?8I^jSZjxJ4^NYNB|O6H-JT z@EY8i{^Ic5$sHdtj6pg{HgC_pOE}7D2}nl(YTb1bvSuGI{N;wzruyhBPu59;6#7#( zwjN8f03*Vu?D^Yc&lNU+QKZERnwsx%`T3hV*u}2KBm`=&z(O6SuO%PG-_a^*&812d zHy)0rXvOt&bte!FC0hXuuzBUZkqMnNB^J@z%`<3{q&Cd!^TJ1bq@DNSA!29RLJ-^piBNun}6sfV{3A5@q(9D zM*?ql2VJ&?q8^P@l67#}EN+5mu>SFt#^G;8;JZpQKxokA>|Uj7J;@9DZZBGV4hS8W z^GcFh%aX5$#jA1P(6%WhX3b{%h{Pl@+~laBQFyl97p*N02^?49O~& znfC(3bj5mOiL&z#6iyu`9^&W)=HDkT$d`?QBb3PWS-W@|StT4Mm*xZ~6}p86oznQDhyMYlYTFG( zX(pPcp^>HS53(DAYqcA?+wyLwiLCzIZdm$FJV)^2Pb-vOah#SHYXz|@hcMK~0g46P zDKFy=R|H@-)DH+f!0RLK*$Zwlv4kWbF8gZSXa7kk3?~&B-BA2p#1M1pdz_>XrYT}~ zGUpMWo;u?;bpjR92e8t~k`I$PJJNbdgAXUo>0Z!wu!IF+&P8SX!vgh?*8}ww9zv6= z`)BLtKq}D(FzXaBpiHTv03`+*2jTfY4B!ZmgZpZphleLL^f71{VbG;)7l<%755DF` zS!cC)@4fb%-%nXT?f=GeYj&#exF0UJ6iXq!wgg96Jo{s6U_I6qC=^qGo~eL`jZ{}$ z9=~@`?6C0qx651yq_3#5gXp#sj;^8meLtg?^ElkS|3vpoK{BX{Hj=jAt1^_F|2KAV zP=0FsNEKvzn_XKGY?G)ihzG(d$q2C@nf9wHf?+QT{3kjYr&(8m$KHg6r6pnnKKAAH zR+^FXd1A1kbMcRXx#Ih(-wh?bK-+~Fm!0nB5P%6@#;seN9Vf+*G#~LRbr%;avqLn9 zllv5eu8y?+R?KlJs(>ZNmaHCVZ2Cif=m%?fuQ#j6Ibej*#7RXG%5X+GGD@%S%Af0F z3$FOkJ9nJRtLM6&JRMv#NWb){$`(Gh=;b9~rs*b+f5Wy|JS*6n`Q^(1uusmnCj&0P z&y^snWDW|e^8l@S#hQ^FA|jk$3>S3q6n zdsCH_-Ew;CqBzU2y_0QWvV7Y84vasGx54nz3UGp#nq7vR#Iw&X2Y53Yc471Io2gt2 zhk0U#?O$=PDNAaZ&y-KAqttlU)fxecCltJa$jL(~4T7wI%VLD}Sh~OUGKFKGBBwSA~PY5Ip2lws( z7jYfPAD`GLKnUgvY85Y|0>lK;fD6G7l7GiHPg(8u@5?4%8MPLota(}hMKqXpHL~wV zO$Ruvph_F6A{*fZhq=7_i50+Q{nmy+xR#R|GPfty`0Fz{mFRoyI(_W1bS^Ynf|k#q(_$kpRLnx+dd)JjyqT=_|j*E>hT!4im25`;LT0sibg-Fyz-8K z=lxSV1)z^|g&uuq?KD&hG*h(N)lGTjzck8-**c{jh_e_j)ql`$?aqpyiWfJ*U=`j((l0t4F zZivSWlX06ThRsCIU}l4j+ugG8<-aS-mBnwhlxXjm!oeq*+uEXMH#?sDG0cjh&G*hW z2Vvc&tHg%Jtu_ZzEtb1mkkKN`#On!KtSjJoQi7ml%HPYcimE(a2{4fD{3QfU1RpDg z!yd6~FnM2VoO&bs&KWnI%k29uV7T1xDCog}>+5E?kDq1N%60IUdy&<~W1NLwD`dSD zrYtx4uwuGTAzzQX0qquOs-k}^Q@s6uK`R-Ryp4^G5Ert~WLE{u^RRTM(*HrO>6>sT88-n#NRPO6|x%*^k|? zZ>&iW-h-`NuJ)L^+)ak4!pQe`;YEEyicST0z5O##7q|inT7uf^&GRAZ>(N38yIB`S z^QxbNkL4LWh`hBQ-fSzHqJ8-|yGLN)r3}b?-!bT?3Nn+QBU9Na7HI*47SlzxA_sI3foK32v^rQ9=YM54kuf9`A?Q9)&FWw7NB#~_VIh&Q}d74=D%1##WzLox2~ApmgW z{?Q*fP*b+GwT%vkDPRYowZ2+oS*gz{U)t)IY^avUdHXk^e&Ho+F<)izVAZuYK()?)AW_s;uvVF*> zU5=dpy^cjJ7()Y?+Xq-mu|~dPjnb`_WheI6DS?Iv2-}i|(SSj{)kKq~xr{88`0!%W znozMlOPt!VCjzZ-*H82d4a|T%+!qUWDGgR^nGx1YG@lEAD*7XX#Zeju_>`fA8==>^ z5{UqK1jhT9FAJuYmg2Qvh90=UIo+eXOgmm_%B`sf5vR;uM@gXNh#IpE$02HdlyV|R zC1U0jV2dNn)O=P9t={r+YBceFbeaEGE~1P&o)^~+HGU3UyN5sWsneAQM8*F>*1U{p zi;%)c<~r2*ds?s;lGY4Eh1d=1;tONipLa1qcQcvuoo>#_^u7uJOF7h7oo#67f0OFT z9XM;PFnru`iYv3b^fzWba>W_)Y+Vbt5~*<) zMO;Bg`G4w5+j$r_(?}4YMc2_u9=9j^8wrR!*Qf(z2_Ce!u0XHK{`u%nYy^j!V^2LF zcAJRkh7j&s19^e;3l)03Dnk@yR=^sDJ)0Pd#_e^ZT;_iC@+`h4K2_A7y8Z-@7{oRyy z9y=jTd_itCf$Ve*5!biY9k{#ke7hj)zhfIDbV4lCJ|^@q8=MK%&L@Qm`XjHbEXvpUH(sQ_(H9$h?Xa~rrD4D<1MpM?5C=nVtHMNx&0Af*j0RS4B zN(WN#!;-WyDa)Wl9E+s)HEU5uGT6p+w9U6j9~!^yf2-WAFUP0R*LQ9tW{c{6hC;>{d(FC(es9NJ=w+a*7FPug%dZ<8?p+acz zd=`0KP5vW|)JJREa?I{;f}-9-UVAeVVtoi9^}B-Rr|HNDh({K5*lQ@r!=d6{gcHlw zF(coN_H%^X5J4gSZ&>lSL+^_^fmYO0gA3$4&tEs0sqRQ5_;!K>p+Q+)obFD6xQE>nMP=X%jU6-}pXh61-)}P& z6>Nfp(cmMJoKb)AE4BML8v)^AXOMov)Aw(L0J=1=%>Wik$Dy(+oBR;Jv}hT6thnh9 zi}+E3w@ygeH{IzkjV^7YM{;+6H#I*WJ%Q;Lsk~m1&B%Ih#ad#_iPq1ZCx9>RY5?Xx zPD0g3pTcMy<szEgl?>I zoF27RNGWSi#=mP#p<9+lqqSY432tsRBAdxCy*LiPpqXAe{cwG7j;EvjLjQ?xx!m7d z!DHrekH2eFb~SuGY6A`UDx!=IZKTkjw2Yc?4v`4Ag)5~iV=+S5NXh~Nf z+_@#|_vS^t8!1EzA)St*`K%wy1ivK(B9h{BZHLQhUkN(TPx zIzd5uGEPzFuQrcx`jwr_`JlekXzdpX4ph~( z6R~(o`x&qtQ1tT5qfeE2nRzMG!Vc$TuN4sGLk}GtHS+2Q<>_P3a|Wa|Cz5PkP0ZL7 zh$d8=Czpj7XTRgSKda(|ObFagY6u052Zqcpovl47ZhLig^(%$} zdaPqSNxZQpx5G<2Kn3HwTy{Kc!*MbD_vvQzH+;**|NWsbY%dbtXA~9OakvN4Mo zFYS>gr?>BHctl0xGh2m!6wTy&B8`Vs{By{}{D#dqhxNHW$^i#o&omXdx(uMkhKAsm zVQu>6xw`kfK?`Fk@HU4)7B!Kg1cdcz2xE}}6suXw&XR@N=RBd$cj#rrtM<0RV1Oug z(OTu07T5ocJBrVNJuiF9NAJ2=1PI(;r9J_~Ox}hD0G0Fv{GGI*fGMA6qhPE^J~qcx z`UlQEp!~xWtTw?K@&cwok+I-Jzs`W+Ei(JBGBsT&fDDR0Dgi5RniN$!&C_OE1U_Q% zT5P0D$6xR&Wi+l(HOsDt_e7t{YDT-{Q5*BF@(JAWzvCJnwm+AtByo1`TPsPB#IycA zUQ0QY+;ip`F<33kj0MX6NT((JH!tiptix`Am18 zYh=f2;N=~D+raHb31Fiqqn7dU(E2sD9K}4|RLo*>TWC-t_Qj{&f;C!4>SmOmdo){42!+VBCOtC7RAQ5tK_^g5;!55cSwpA2r_a$*F44NfDdSiJZr z#X^UFuPLcznX0}u!R38c!_(25J&$qo51mF>Kev-D^|utWhVJ|inD z%sC54IP)Cml#vlYD+*jBfa^~ZK}2~)KWc^mEph?FZT>8GUwOeKl8Qj)S#8^(@y75) zFqT#dX#m+Y`C7~R7J&@@G@q>gksa=k8w?=;7%UtwQ-HB+hoQ|Tzo`;W!3Wi17=oCp zNz0KCx6@LM?uK=6hyuE7Nt5&29*2F=LM6c;av?6+%Pi*@zLIS8gWEmhN&U|yG0WiZ zAgia77#ZIuhTJG90A?=KlnDAObI~NY=t%vs@OC6V|LT&r;HuD>Ux1Bgm&evM!25Fp zFDBi1J28-f`|B&QlpcUM5uOWyJ&yR(jm20xpEj??mY3O7bw*{R38wfXi~}^3Q(i#h zVx$+)4U2OytkL%qF;%gUncP2vC8XiuUHK~&b8M}IPiF?S;x0X(8`uYA31;0oph&ba zLtEgQ19z89)$e0=-^>SrXkGEscF&H*{`y)xGLK#PG(SJX{jW0zQ=|qBVYVbP` zqKW@dK-4Q|fB%l1n0Q_Jb`g}Jz;uPg!aQPQbb&M}S7-yTx z`xaw8&{eRE#js%Vsa+_S$ds4%7kCPF=*A#SwdH_8(ECIw)v6F)|LL`NIls3)g=>LP zNk6yi)ummfK?7=MXD2rY7GT*#etpHQHdEo9&R|Bp-Bzv6v3f8=whsG9 zx+j?$2c$5u`b=ze6=sn2HgqZit|#Bm=8=N7k&fY$5&)xp9-dk9C<0nsDz291CAtg~ z5_rAiJ0D_(UPuZB7@>#Kxez#|e{P>clIy`pp|&Ex2xA|E6xZfH@V%^o`JczjLQWo$ zibR{Fti~(T5T*NbpOkofalKNXfuaJi9$*+2z!(ac<((^m%mKLG8vHnH4n5BjU8e+a0mgL!iyvd zVML{mwazOdHHWXD`K*}rtrXxrfq$`0qMfsb_uPknjDs=L9qp~YSdundB)M*le0d=f zk9blt)vZ-9+)gwxnCbyBsQbd(;!uR8bf`)%C4>mNLQe>$p;2Klag>T%(f)4i+uE)aNs}3KR$!z>1qBO z=*kDT_5ovukNAZ$*Mrc5W8-P_Xh<2%cNK{~d% zfm#0YS|Og=@Bu04s};0-EesasvERnHAQL)Ko6)z4?KFJgSi zZwpMA2f>0e8XgXmbvs;769wsc&EdU=SS2nfkiLHy+k3b~lms!Cj2>T8Eu1)(rti@< zYZsoauB>9YIg7|wE^IrH7pDc>W;FA7rnZ$ow0b-`kbsfU7vYoE?iX>rS*@8dt)N8BhT zFJn>_uDFbLC9eUcy=HM&`5R~$Iph@-qSsnEt+Ha$u|JfT`w_)j0OqdLTjGX}8B2mb zSv&@eq@zAuXL&ksEuYi${#O;W>E_BHtEm9q5=7ik-GQ3slJAFJk-Q3M~ zE{E@^NU_S@O-l|P&jg$O#gx8IhCSOPUp)>)`xRgZ$WJIHLkkO}pd(5v`ooi3q|*B* zxwQu3WrD9M8xcu;YvZG=fG-EOgVsQ++S?t2o3?0p1wj)8ocsiPdH!lld4Zu1FnW>U zf(GPMB%`vH9}=Lbh10}QjU>p&ixJ3bUiRIDX}Gns#C74E7wrC*IYtW!#`iY(2Z8th zNA2r^p1#uEdwph)6rI9pGB2)W!s3%}uUsc{+G}{7a9WfxO!4Y;*a$xs2WY8*Tie@u zgN~a%tOd8d|41n)u>VmaZwfzWD?eO8`@$lGdu)tL$16ZSb$9L{*ohZ>^_Tf!()1_S zR=nOLPWSKgM=}Llj>DAOLAq3lvI?HMG_WctAZ&m}$a&83Gc=4;`#vBol}P1d1XxnO z*4k89SZLAts{#dFdP`R(5n9LkddkBg(R3F|JX^ zpv0{@Lozq}q;W{0zUK)zh&LM;7(mYP*~BLRFbpi{%~@JAGhTo;1>s7 zR+c6TnC+xSTHRKpKoa!M)QFn*Gb0B| z{H~as)zztiJSZJ~AQ^ppiFL1=N%F#hNKn9;!g){e>H7K)S~#zn$i=e`x8Fx@D&_T3 z^*W^`JS>s9y0)~emlqFSS0l;Kp>X%VMzN&YT&g7gDkLwWP$nwj8DPZ6sBqd>~$gqd>f@815*#%v{?MreL>A6jbZ;&Ek9q zDxSm{1h5~^#$AGl03Fjs^Kw1j3`Tc#x`ro%9<=-4=>X+Yv*6{5@K66oGG6t^(*h?b zvN-(Drq>9-;x+CMtE5=SH^T86KhFCwhAOIZo;m)n~6B-)a( z&qVwY;&$Lm`Dp$7+M7$x?;R=x)O0kcy1Sg&r4J*SYEyC*ZdbwSRf{VhQ~g|@xsXMz zZS}aBkVYZQd+~@1W5j-Y*a?O{2ERM_^D+?!kL2P~kMUX|)XM_OIKst<9V{nmj<<~H ze`y^Y?|bLQ(k}{u*i3xsH5Q1U=kvkS%X<5CPsk#_&!{G_KS!bL7Q2x=uV^@p9uyI5 zb3LC94^H4(d#L$9e!NUd+%>HcbNyGTSttL3Tc+pdb$j&@5mJv4O{%GJ$(Eg^d$Z)q};&g7t^kxuEqDv-6E_W!oQShag>Gcy@JZZf`$&^p%@G($ps*m}kA- zxN(9HHk`w80398Fw?RLR|(hd16%s$PXJ5fuSm> zit_W0T%Y?MDHa3gE#h%g105awUCGHpXky+;jccl0Jd6t4eQq#Pg#y-mw+79A z3nNiWj~G5WEdWn_fAuEfA#xt|n?^`c;i2z&;|F{|r@e`7_RD`58Bv0bb;GbEE;1)W zwBn4MyPls0p8AiCNX4M>JPdqIS-sG+Uh)sRnWU+_*VGUFS?9NoOiPvg3W}`yTHT8C z6UM_W@cTpq`Z7?dIyNE318a%~ceeacgqG=zk2PW#v_Xvpb(9ff=cXJt{Qp#BagjMt zd~Zt%oFa*mHwQ*O={LW3dLwL2wn;|pxsrW`{+)i=joowd8+(*{Qe48n$l8;bk#`jPO^+hHuITHEO*nE)T-gF|Uu~UaIG= ze~0sNWSf5@-@OwsZPFk?EGjeW+#YFKXMg#6j8c(t49n#S&=D-yJY?(!tAi=5jWBvo zR@xunC0eYoiBs6?hg9NZLu7$*v47W!l6QO7E`NMya%o!s{RintN&p732H&pD5X4tj zOqu0mxWND(An_Z4pG)u=4CG&?l%Dufzt?bl7e+tOJrPyiZ^y6~l(?rv&Ld@?%9>p7 zjz%;7Ni?)gf6a-nQ>M}@l4Ir)!$fw5CcWkG;ZUtR!8*lSZb>2#cIwI*Sbff-xgK!% z3qCJZ+bm;+=FAzX$pX!5Krdw&>+03aa33?ra5?bh^W$7jY5Lks0+J4Bn{fgk=aK+8 zMmJo4-1>(#&SuMicA&Z*#<;#ST8SxaCmDzDqaiCDLZg%?CAT8Yn6e0}yRP#@mm9cX z0xIeos&5ePi%Ut%yA(+df0b);IQoc_M$f9Quiq~uLv52{K^I0 zMh@Y7_f+qBg>M)2PUOH93Tk@!RqInuDYTb*_3mD7$^A7|u-ow)V7Z;IoHRCJ6H1U) zB5Br7QTcbtWZOeH*zpbMX^bNi=rCAlQ3rTGIPAhWW(Kew5<9^Hm?k7kBGA+^$}$j2 zfBAi$w%B}k8Y`dAg2_^xv*thI4`Y$}K*OzRIX5da(w{o=_KYO>aS!|`iR@oqlpu#U zlif))Ou~pty5Y>$OYLiCZbeP-fN24_H0hAIA{O>1Pc7hz@IPZ5Zj)%5v)36>c71Lp zz@F>v%ikFXO5&Q@H{z+G3V5nxnBsOfHd;149b{!FRQxm+iD`xlFO8{MYxdz+`xZj2 zWodub+$h$9^wNs5aC5x>o%AGE-?+#vE4Om}Ndl(Sl z0;Df1r}{=>rk-0=6f65VGUMj??&2=tX4!lNjusYaN2@}JRE*7^MH%D7{MwYyG8GPN zMLS08A7~B=YbPXre++!nM8|aYqtf!&v^sLFbw_Zj*z=jwz1i1CVvpCTQPo@PH?$o` z2k<0s@dxLQf3e={9?bC8{myZ1M(wb%lVBOe7HxG!k3t&N8ClT2o5*gR`^X`ha`5;4 zgRT$ltaWA{q7O-fdh6Da_#=(^*srR5!|G;D@NQZ#_o+xjh+}=?ymmXy4At;Kspu`$ z&;5bR7cZE)82Vb{GpXy?);iqVge3Rz^6Qhd6`(R^_j6{0fJ${vBzaC``YpnG1OB)d z{7W4EJ21EZ@)h-qrPY6JlCp9O(^Ml;6&Z-%rHnRG&Y2paw4Kt}X#pyhsajGAB}6av zH(;s06c5O|h3!cu193VcWc4EF+I*|384&^qHnmRK=?#I7lT-=G$$H|~zilLw%T9wD z9sTEzBodND*NiUwnf2#Kb!jqH@BWPfQ)qBGpRhqkVicyoZ=fg`x|ppR+B4Mbo^eFT zz07d{dpPMKz4D3ppz+_4VQdr~8pov-_?#!Qgnn0{Z9A_o;>2=l)b(EOb9&T{Vpl$5 z2SwT2yWab{itd(=o1rh(21z&rMwk&PghiuS1KX?#kZ|YS#IVjp_EuPUN{hH+qHHz) zd_qdwML*OgOVmfUFdzo(6|f~iLk9Sk*ZPj7m0Zn5MT7gK{DBY0kUfg@T8Mi*?o)R` zd5$I_ukh&GhG%lo%jCIQnBp{VxA9=XL0jZcS{leYhf5Ie`xADm#-}p)Uf`=4d~u#F z=i=A{9#(b=v-o{geJ>f2BpN(@ubwE)l&MNLLsx?c0jTr-$zd1^`tY_ppwM^dS<16o zPM4}z8e$++dDF~h@DLXBHS+wN`zBJJP>ZT4hPTQ_0ccW9N0xI})Tq-R=QMw-+Kg>c*XaW=OjvD=K1L!y1-_?c+L%oiG`H1jCIqyHAFnHBbJ5)0I%c zG=ATUnq5eHE}^V@+M9bi~m_NU1U9H@x-- zPC9t=)-RtA6lktdL(Y)J>wK2|S@grn=iTrvc7e}gX&mBLjSxFhU}>H$;MAAieaYCZ zTI#tjz}X!!f+m4HKU(Oq=dy0reFkpGUJjg)iTb9q-s5!n0l{h9H6&}L|r8r}UaxM&5OIDpLoL96%8r_Zy&SP}Yo%gaS@iLD=7 zG4HD|zp0;CL$t47mPRWD5=vgoPHrh%H0DnxW`C;X!18^^-=U#hu6=d^OFSO(dIBy{ z;tR?XiwRi%{d~vBN))#nkq-DeTu?EicRmr}f?i|>on%O3X>)fzD zsQMfr^(E34f1FrD0PQIiNA*@FzhE*HpuVFoo~si54oPmM8>5NPhBlu^FS=3elbA*D zd$sNV8*vH7_qgv4X(j278*vHDJHGhu`hiKr`_a$C>@z;Yn=%wZ4K{kz*a&zh7z=>P zN{f;bA48fmy&tg0Dv1v%0`NEG@C{qW6d5*Szp+$_N%IM{a_V%->?=nS6O@Cb7p4`b z*1V#7WoTeeD~f8fsXzYETInQm>Q2`5wvO=b+wSNd)3{Q1fUxb%GP_T47)ubra({0;bxclY76{YCnK?HF@AY%A4U?ll?aB zuAc;2c{v?bytMg5%+u^~>xTlKJUuSX>%>du#9dgls1U&BW)5=u z0}oLot8gZr8Okp$zh1^d#GZ-hf+%Rtd&O5ykcU_?-kj8nbq)v4cp3{{yXNiEa6VVm^ISHYR& z0WH6?O{Fy&cZ`I@t25+ako~)?%Z_$E9gGemMrf!T!`U^hg#V47@UtrDunpNoNOyys z0ui{mtYx8xPtA=$uv=emZ$xgnr#UzVTE5yd#S2K$&_;rW%iFr;Sib5BEnzGYC@t?TQ zCJfkrm1`C_b=PIlx5tX?jDuRVy}xKzyzrqikD=jF8?0Khwr|7l8e6*KM0>pMWGb|0 zEB{r4q*Ur+j3&j6R%uD!9%(Hj88d^g8uvcfhVPR!nv^& z{y90PT{OrZ(AHgk!T!E-6#*QO_RnB2JgHx~8A*{h8p$&P^h4m*ogwQ-kiph<)q%e2 z@kESmJ|$kx@ALy*Y^K?%#xbA7lk6oFHklB$lL?iN`HK;}LtI1un3rE9V%Q!j;_CYB z{kH4CfkZ;1Hj34t1gO1W1(7Rm9y_PV3JNDtvr1|=lIX((e6&atM6Dmp6&OYTYQVBS z`&;VzCogam+k(K}1o#JlrVQTjy_^@j;MJnQxy1E!ZQZhz^8&HSJJ(gI{32>0r^>&g z`s6V>T@M3Ni`x7*46sfLDGNk3SH`i_a!At#OMZ?~Q)up0({j2vzNIU5k8-35%hIu& zqWeAhc-q&-`#&%#1lFr9j`tG9oY4C~Zm5y~i3n#)WF|XoKa1!ktoxp=NE!gV*eWed z`#g07k{jz0NQ#cK>=WEHmbTJ7K zB_*e(@EX6+3Hk%!Xq4A1k@djSeZzuQnj9dS@>rCiy zJHe8v+7Bv~R}S0jcsKA=IR~_`W`!Lb7ag zM6Y)_4=YzwQxugij!AhcQuJZx|>AUJs$wx)ga(sqo$L>IAo_;)>-m78Hgr0bubdC%@Y`95Fh zcm#=+wO1o2gM7_96>j+pMHtLBPB_TJ%i&;_-_Ddt|Nbf#+x+`2M|3g0?cRaYfJ?Du z-FZ)5+taB}qKz6#gTTa~AMw|9NwCs?6AF_@UkBYC+s*+aV`&$2SCb2+ciuqjsFt(A zqIxX=6?x2c5n82067ZiT=t(t-o*xF7OuRKc{oMJ+OW3F~L$rP5nibH>Lhq9ezumv+ z>zlyu!p1gk@^gLkrhdrb*}OC0hRbRoUltYCiZ8w6`BZ4XXNwNlvSk93bqb}S#HjD7 zB#%L8Q(37M%@BiQDm_dt|I7w2q*NAS)x99|36Z7BmM#@WpXzGFm$qU-wDYJVOMa?3 zhXmK`g#h;mAT*trvGWp!N=Xqq@0)oMErjLrS$Y9m<8s@JKjIl2Vxj_9fy-27jQ<%A z2{KF%5RS^Efgf3IMK$azlldmb_Y@yk4MaQ&MBU)Pkz+hg1ocKUT9unR=i|LMz0|OLF&WH% z9CDTqrl7VH{z6D43C=JrToxRNg-u-sH>)LMZjyqXlQMPO`=Tn}i zZqp}AOtD!t)`X{7vzZK}kWb8{qoPv+#Y0|GS(vt&0(JV}#|MJb{7b%)nmmX!>xH}} zR?*1sOpAVxkM7-Vl&KJEm9s}PAbUkqTfxA9C`a77wIKkMjN2F)mGax0vQ~brLeA_E zU`d^WpfEm$KjY{X(EMaA2*k}QIVFy?Klnohk3AFKGBuvI#4jE#!c4AAp?JD3+j$Ja9Z#trDmfg-B^+rveAC*Nkxj3)y6vQ&`jw=URr(IC z;~5&9h2hIMAj%5pL-~Hc$bY>Z6Yv0f_`RnD-y3s0O1aPIJiip~Y*Not<@Aqb(AR3F zRfXW!g<9iIdP48jwzNt$MWX@Yqm^b&)OeKY8y_pcS>}cs3rZ#f=a4pYSS}#pdN9Z( zD9d5eczb6*aA{3(CiS6G0%XTBod}+hLbu{$?e{j1BSqSMK4fSWgH=A*b&cV|I*5Z4Dw_4pJC|{@nOu9lD=<}xcBo3_A;J9 zp&v%){Yk#0;HMF zc7sPA!p#W5iHjDpw}Kv*scE>BF(fuH;UF28{buQE#DA$r<~;acGgce@Y4*Q9Ny$9- zIR;#S@YT^vCAK(E0~kektwK_9|CUl`Fpg3{vJx-DLDs#uXM&kLy40Tgd=7@CWS~3d zs~rprkbZnxy&Z=+=v(4wYMykMIH;JAyTMbZu{pfj~b&zoz)i_<< zH^TwNf-jVp@yu{~#%10h8x-f4g}{cLq{*KycS6hh6tVX!So` zRo<%GdSRfAsTDEBpIMKoE6E{ZaB`4pid+&W`Sa&brz+M2oFfq{#UzufaVMLk@eg+= z=HplOwa-dmUP_De6JTBlCJle<2skjNTLDFjep;!T~M$6inEZHF6v&-vL4b| zH;DgW6=z6e>sITHL@X#Ze*5otm7p+imj&o7VVEneXY%?i0%{+%hgX4_ z@x@TG1K+cbD4uPK>1J7>fG+v)7^IIPDG&qW022hOM%wdwN>ajINoc)Ra&m|v;w7(hmB#Ok( ztYR9J?r{mA88NB`p&8*C-)mC-05aP2f29lzFGar<$vOjbK=4%nu$P7S6ws81p$68E zmQanLbW?@YE3&oKw~xI`0(%rBMV3!&F^>imXnINJ(tho_+)Fm-=ElEvJc-bPf>)0k zaLkH_ggB6BDJ8AA=vY|mO7}R8T=9Y7a0bs+ReuPm(EZ&8rW}#3jkYFeYgtvc%wO$R z3Y)>ugS|X6vF(oSgwn;1G+5Lo!+tDkdC)n`LbbkG-jVjLK~yIfJmzbKv3lPRzV0VX zo%X##L^eYAU*)W)3+cv`Is&<`g~(W|oOxTAx`0i8Q_wqQf{bJe9rcYaZ6|o{=ySHr zzNIl3+Qg!-&&zpBEQiX~>i|2#!M;KT_Uceg)MLGoM-5CRT3uPvRe>NeHytD^fHp2P zyW25;p?Ff!{lW?RS~gq;%0xqV60*yQENr5y)D~CTOAcW*NZ^4raiROU~66I6yh1J1r!W+lty z0)n-$u(g3qSSG^Hm44cF-dzvxL=_W+X#b%oMZH5igZfd8fEkU;j1Z98hUkuVrFejv z=>bepk5jesZ(!v#%`b@DK}`Ht_<$$Bo4 zt-`O>BYL+%ukk!eaia0B-yXNrg1n`Xx3bFtst9Pz%8Y6)uUcK>bK<$9IlA~CkI1JY z$$%7*hpOuQ4U{R~C6K!L+dfCQ=BtMgQ-b#;;bD;*gY50BrbN@eB~2UkFgT7b)yyhy zSI1tz-B}?*ZGE~Vdn@{Jxdf+W&%LzHNz@<*a*Pn?@#t4ej|(rJr>#T^3JSdcjfzo$ zf#EqO=!Y#Ja=J_6T2sG;t&loqMlds1Ll%4hM3f@rtfY6!9WNzf#}JWsyig_Vsij^F z5PjRFCQ$#^(Qf6aj3A;Y3aX`F!$w$HX>DoQ>+WGoiwll}72i~6KU+o^`7CAFV5vIZ zX+A>j)~Tj=TZuu!nX$4%__#0aiTWDtxG*|h>tKZc`FzSl>tYLzyj;b`;QC&X2fu^b zEG}GaCLVnefyz&F-TBT&IjAcgT!+c>_wJ9YvliBF10M~WSK^~MiK>|4Bp1FL<5)>E z&feP5rJ?)>3;fJDsZTN~V0`+>Y`TYs-oixKAcp`KoLP5EaNuIrQ0(ne*5Y8qeT@O2 zHpLI9mj(Gz&rLj_kvfrGga?X#agITT)p5%w8us@Zc}8B^-p{d>oA&+n)inhM_}|wD zNGlqkY!j*qfIe~GpS}<-F$xctA$cI33~*&o2S)tJiB-ILX=fSX#esugJr?yx{Tm~2 zS&*9&d911RQGlo}{Ygp0-ghky%KV{8EOybBIIo^Ho`WtC&FJTIXep%`NkTy9Eut#| zKl(*aWQLG(47*iONrZh-D3z3ylyUe7uhqSshcqlvO9pdUKKoU%zfzw;(wPOc!yd>x z!4jr#mamg)U=O?^tt@5u3Iw+Me9dXf@iS-Qu&XcfOJxnS8uy1%D$J&1cg4e+So3Ze zYYw>UXJ~p8ihJ61vP!Q;+=b#I@YGVa9rM_LQfd65c>HZ7CXh5XuAk1i@(`g<5L`JJ zYV!$y62)G{`d6H98 znbXyovLF9sI6t=;VZkv=-uU6AQ0c_#KJEbW?S4)?pdbiCl~CpT3alZWfQa3IZ41SB zDs{yJWoie8+d5Y6g+Etx^DOaX!gfDi+l{-*ByF}9@p}8XY)U|SShUsj^I+R=(zj94 z<9~`MaQd1?a@H#s)c~0k!zCaeZqWj~mBeUqk%idyGFMcWg6(KWR+$LkXVOs1XH!wJEOgSS5x=;K5%G-MJ)ezdM7~7l;A<$> zMUXUy0W-c>0eyP{nR|~@J{yJ7A@A#LfR*<3$t7EKL}mB)7h}XIxmA-*%3*NOP9|ZE zycY4WqW?>dTS!=_UIEHR{%2+!#UHAwthr4YP5lBkJ0P7VdNUVBL+Rvl2SJ85P4&N) zEJjZ|@)fM5^#47CI=kN-fh`AWY%rxfE;aPEd`i`L(fN$~L7H;X9zQb_<`mNqT7QMg zQk~>xA=0`;j=#Iee3ka2gYpLs(t`m{BG^tG&~Pdpb>wMZ;%7jtO%|kS9NnpES9_az zjLS_XJKvLWE(PWOxEgz(p3n5@pJCqXLS-ZEdtm=LlSexP`Nsh^fm{Y`|F68C)0aAH z4+eYb#NIE(rPY`jRy06S^Q^_&(`?LyUzH49v6?7#_};o}k=gvjZ(N8F6%da{8{FrP z2CoMu>DcPv-|DuXxW{73h?DB{jy%9q%83lUsFMDlDicguKxkQ~;aFK2ddv(CYCHv* zSeP|4CjluQmzX+}I+=BP{Qf3Kf_3OKfMmDT-Q&FftG~LNANaFmvTIqceojI6Mpt3x z(}bid^nj2fQ_r{@Ul#^{IOaruz|041z?!R>S4%73M)WWWSR9?LzsU-ByA7Uk z29TY%;_lz01i26WD=kT<{Qt0t(2KRJB>g7Nm1aS~luQYDihx%Ce@;UD`=hX9-#Q94 z03ZV?kAP;6%P?~C!7&H2o@a#ms{!3PU|Ta0V1Z4H#>St0T;H|PRVRz)m<>)z$n9Z# zEfCdlS2`xt$)*Oba4>K#(UBD^Q0mq}^QB7jsZ7OxN1>qMxzm^z(IdQWJayU)~LXPmhEulOdl6B+Ot*iu-|DZnGx~oDQy=atS z%dvA&t4PbO)F@6r$jPph^|54{$Vg8J@$Pgv=7yYlnMon=?Gg9UXzJ zJ*%>oi5twGrH=A7lRNJ|%7O(@)QqmIREkdNeH`_es&H)_H$l{#lNG;_rwlyx%*;$0 zdYS{gDofQK5t&XJXqbw$Ra_pM>Tso?_%AX!S>QPXXc9k!g*{y9o|mCjM4aW4bw1aL zgPeidHTaxl3B6X#Ex_Ec1y$2{7x#p)In~vRQam-<{&Y9G+!46NYJ6Kg{P%~qwrt$N z1n=VyZ!X?{Yit&h=K8tDq6ar>DGpDN`_`KhUyG3*kd0;2XVY|Arj2@2%;H2>uVSpX%p3z~;ylRr0r^i;k9~p4hJJ$D zmZF-Z)NS$QOatVDqFhde)PH&+$w*J z5u+mC8k-}lIbPa!{OLIOp_n+kHg(2zC%cJaiS!f^&mS(&=X8!B^iK^v#0O@Cx14PGd zRCw2uY6Fp9g6e52Pq%(Vr1*GDJ@b-kmle$X2DWW{)RGcc0BsEMwL=6AhJj1wcF5U; z{pbn^1p9x_zqc~!5OxY`i@-8B8VmiTEp~`5k5MIbowhc9D553`z%g5eRyfruQ&-~adz5)q^WHz0To_+D8Mu)Gp`iQq`4n7sNHviMSB ze-+nU5q4dfJ_9Tq;vys0N5-cnqO-Y;eo_v$db$F`G7DSu<@H_bRb}GG9hY$@BV7Yy zmzFXP^%F{^HwHp4h73dV%P$=93cW>%vEyo4a!2G03;^B;)HIJZHLb*}HD<~1sUt58 z-bY;YHTuZE&;GFSa|~iJGQUvB2wb9oetI(&3t$HX7m}q7G#Lqs2BEl2pQy9++;SNt z?S>DP%FjUI>MqI${U?E`o}_3ad-!%ljWl-SUf*t|t0ATWq^|&DhM;TKU%O%=V5=7s z$hd*ekb^}T>3Ko!GeGj$BGjLH=tmGMp{PryBon2B51>|-UPMe`?|P~91drY}c>rfq z@mL!h4HMMK?QdxCNUPMg167MK?+7^o-Z2kW5*J4!Js0s>-K_%roR81#H3)4*jL^{D z2ZL4&Ts*uv#~8Fa{(vi%EJgmMEyWKy) z+80W^C-gX`5vJuIxAtKVvnEbm=5 z7G;@g#Pp0eV9x{B1i)B%%3WBrDsG{o<=FVeV@em|rGvPb@*T(jUQ^I0V@jl$W%!;>~y<8Fqm`bwjl8j&;hO zJAzhMGR)6|Oc=CTMuLD>TwQ^8`J4W02xANkyc&x;9GTyOw1S!N z2rM?t>)N8f>=djv&=B>@^5sTb(SVR$4-oX6_oM=SoH-z{c**cv{w}G2{)7L%8pidQ zAJW}|A5rs;3*B!6#e%(Er*pHm%WjnjTb)=J0CmDQZs9>{%9R2&r11gF_z58QC&nGRu!p^1l_J(41} z7e(CPz>)NEhX*n+XmV>sW0agOJ z5;$h!F;-aG3mE#03h$Xly19{**Rm9RV=e$Il5~OSduEGU#r*58N>eOk<(pkoH>(?x z-oxB_NxYlex=Za~le-R`%sN z%zEW&qO^qvax=1lh`j5r149n~A2EohW|8S+6~;0FYLWaMuMOB4FXn6TS>!TnN?$pn|5_-0GoEt@WP?w$hr- z>`u?%<*SKC0s9nHgpf8F5%!GPcNY8vNU4h+|AZvuw)R*vkkc{pKEiWl3JMw@jzkOf zlFwZpm&cBsUdJ3i7rh99BK*r~`sl{S2~Pe`o$#1gc^h4iTY%H$nNz>ck@Hj8z@44L!<|16O?d}-YSSL45VL`1`RFya68OAwfe zn0Ix7V2eTY9wFjpb6d>^;-cndH1LG_P+~76D@I701a!k6(Y{jW*g7nT$hx;3?KOr0 z<}e7_WfbHS2uh2^X%;*To+7`HB&eQAwau?L7B{eIS?OE>aimO}W^Kl^G0a7f)4Qcs zfgF^aN5;$14PaKWy(KJk-)7?vhWxdTSBv-iw+bL6G^+)RuU=ozxXQwE0p|(PTMBjd z=_Fux2N-c~gqEdf3RZ{9vDoIc=o~-Qhr4#yk2NN$GGI=S)?bId3ocSh zhbB(lPDzgpW86In(gb%YV&o+&eg>jXgeXE!wbZzP#-oAbQAJ!|LTEASQ!5X^lYw=m zZGZo!m19in`|*2JvpsfnO6X0YPmocGwIu>zSI{3FeRM$%v&YA=;8S{aA&XK$zsN}Y zF;CduVOs!NTs(13A%E^M zWg&ry^F%mBQLuEJqjdZo|M`kE2AHKPQlwW-MmEIZDgrefy9S#i>$robuOcy-{UZ|n zfdBk@);*SjQ&Ll{L1HQmBje|qwuQeve}w9ACPYI2)tEY#E&=TeQR3q?EQsJQ@|cHG zjZ_>w$M^z&M8&7R&rkFJYR#?XP?I{;C%hw1*888OfMv&CXMt6XH~#e_k*K#352$73 zrqc`aqi9pCXAT5#b9og2Q2G4IZ51U8UJqT;#B#a6yEsi#h`gDB4b=XIFiy56mNiG+EEL7wV0=(W2J?j|v-}&{J z@cx#rfTuU2e$-ekB)^iW*RqNE#$TC;EE*J~ zJE513K%BOEI_Hi@3K36T)$Z+d)N65&yU*!>K`BEj{&3pY3h(2oq-}2~9eBzqk$?X} zhdQa{YJ}IR*2V6go2=84DmMrEz^mi69}>~ztmkqCRVe*c=5`9_UCCv|?a5sg52N!^ z%V}_NfZlxFt$(9@-lu#u?OMhLKtx|Ztf+`#ZlmiT{Q=Cnzti1I5KJDDN;wT)Q(S24 zJ+x)(->E9+Fy$#6jL*yI7h$nTO;rZw*5!hnRO|cgg(Lz;6&g4I2Dk} z99{b$onrJ3>O**FK>`?%pn(3MJ=fdQ>B0_ z8pwtL6{^RlCI5-VOByg>lf0OG0+cKM^S;#aaC9h6xhjUDp}F3OYty*%li8(8{jVE2 zwPVXS>`w`Cw)C0O&CA;UL$>NSVGQSA&juk|WJnUiAA? z4npST7F9W*Ct>DpO#!YHbFFSl?(X|h-@8(_34sP&*}>sZJO{+$9OVfYdPx`5?6p$E z@gW?hT|cqiS-PBTAXle*14xbBdh3BiW-EOfNJ7-Nphw2#TZCJn2)LAie3?>|hc{+> zz7&9d^%JLYT;f*mPF%k-PR>x%l1R+ww^}$gff${xvT-Wjwh_+8 zQ;Lbm#+1Nhw)7_4${3ALh8)OD?MW4>X1&zTMdHvKrhd88zj6gn36<3ttYG=c3#`}< z>OY>JqEjN8b?HXYT?A1pIv57%RK`hPfDsthm_$E)=R3orNm3k3e_UGifey`f0N48UbW{=1qwxbZtaMdfl36Qm*?s-@ z513mYPZR|xi5)y*<(4Ty@RCjnim2OsEZ+PTwIqsquOkRh6_h?DLspRd4;LzwRj*Ar z(BXoY5SB6^8II}xqOeU#j4)Sk?NwN$Hh$k!13VEJLu*T&P&}UaBz5+CHR19Xm%ep+ zQ6oMpNRA}K;$tNGi^G*3X{j$;Er)v^c%Y}Pg`yARKNyltz_x~AUDdEE-B~_u+dfQY$9iIp0;*a|6&+gBUUSn-Y>)oNs9F@HjrEz zIUvCTeeP{#{cP`!Kjo*8`!+3SiH{LtLPAkDS7$)cPk$2{YPXwvdzty%qQ0RuQ1 ze*C>FF0NLOU8R@`w|XU0uR=sWjl<~}t1)A*D0i?h$mXR>@l=@>vbQrx3#Z)8)x-iJ zI|J77f*Lzu7l(lJ!xL?Y@oj@i*#09;mEjUCWY9PL9!!QYh}!tUi;AK!S^$}YESJ#k zHBH#{jR&)F+mz^soCU|=#X;&r!Edr#j1WDuKkSfNZoIU{b4SKgIus_>rUc0mNG$Km zs9=HET_O@n>x>*(znmH_=g*|B8vRi;5pJ4 RB5LrU54Ek-S&NybYcBu-EiXm+B! z#KSAN)p9kv1HFz|J{CLF2v}h`=F6%TY?zXZVE*AX7A*4OVDMo{hXR{m&=~<$aYN!- z#Qr^5-HGD3ComV$q1}LX4TfjBv#rDrUq19Vsm+`IoY@=3A-Qba;>}tLO^3l+SJtdN zKDHX5sBEv6>vF3FZiZVGJNVSefFcfrK}Q0w5*NM~^3wa+?{JioK|Iqyuc{)z?|7*G z4QI$gPj}~DfVmX!)7Ai_&%qb+GVpTJmNE+#Taa_@F%H)W8=V5ZRMj8BYLH1=9nU7qN1#4W;rERZA7PN1P6 zdKS1#C}~p+m6BjdlCctCslr2bxw;8MB1`ulAm}3%1t;9n@M<|jP zn$3gSuVsM?)#nsCKn$1cdyWv=PlvtUF+oHSf^mZRKUC8`ACA`G-bF#V3c~5} zb#^ar(M1dLQ`2s(;m=uheGST(1iALCpmF*UdEh)iHR&1f=xncnz!5uDNU!$?-fIe2 z0CJ>ix<;YYHS#wuhCKD0M|aAD06?2K)W|KiZ^DplVq|PQQ@DjbgdL4SxEX+l7dnBO zIY)JA@6o>5ScjoRTC60-)G;A0xpWTWix+J-u9)92!exqJ{|UbHnFn<-QxORC1~-c> zA|kV@xPv@uPW@9>4lvyP#yqH)93#r%#ekPz&XhU41mbVyI0r6Iw#VltunlzKsu^dX zcq!E(4b)etpo>){w!z21 zgho(Qig?<0e13k{h%@FsswyK&{|gJw4obB#x#i(Jq(-mpyO>3`g9^#4u>gqRI|6>k zVHZMP!omyc`noV%?hIu)0U1XuSp@9>2p;m>93llqLSy%tgLIr1DbtLO_Uj!JoGx)< zFL(~7c-O7m^*$6>>4yFGTsk^dv@BiUaL6y;Fy%OYzeH?DP)cOA1cbp*6M(|dZf1GSs!V9NPJAddkVgvYvjK5`WZ^NTud~) z_>T^!vC}+6{&g^a9ME-qO1RX{2RvUb=fpt3+1b-zcD)nfILFIxUqE(Toj0ou(li^_{vK5s?%%0+0%Kh`{}cp;`@4%(118mZcv%8tf_S# z|Ila$A`R5Afv{{uw}VI9xD_1 z;Qdn7-;C*~bfVi?dA3`fcMZ?>?sQJKrf4if|QW z5gWnrT|0pC7}s`ruQxdA7M~*Gn_*$O?eeejGEh(VgWEy`- z{K&d0dy&8MbaFb00bH@!EG#;-$LbENQ_;Y3`MK^Aim$w)T;S1v_=5tH)BVQPf7Asy zW~)SGpI}@S1(Vo=fDd4j@*K>w`57p%sz$4%4n1C>;ly9+6dZ-gBaBiYMdgGiE4nJ= zG~b>1lQj5EmVSv@AGS~b2m81Fy6^cf7h+DN#c?DlPK~mrG%Ez_>brsN@`o(4d$)7B^P;bPaQ8UB#Lu+| z9OIPf$o+UrhYM^)KzP7P0tA?8(i?s^9`gm#w4S0yAw7!~8e(OrI?xp45EGYFsIP0& zxq6^)?xaKjth{d!r0JlCBEuL$q#*8JmIT1>z!{Qk9yQVCoVuFBb5%GRiDBOxCYr?=Rd8*Rd}Il1d2~6 zFS*VY5K%xE5Aq8^j*$S7wlk)?{2!{W#M1M09PmskR}1?!bn1@AjMSmxE^}y9>+uK> ze}H1b0x>Akr3wnbZF!gyzeKO9+_xhm^>h$Fb1&&7Zx;)7*%*x94F`zA-)PT&aVu)6>S) zX2ma0RzzUz5pS})zDN%-7r10x1MBe$Y@2aREQHA*{!5!>zd7hmv+W2uCujNd88X`> zClg_l>cf;a>ivbmGxh3~;!@nJD@+_u*f6uk%GKWm@6q9~*Dz;uLjU57&LZQ&tp_$r zAvqF34v(~I2Nl~+%6SsSwaTvoEoeVIHXlq`xBWUg`rOBdVlm*-5sFwv`Hsks`%c(z zr`VBO!7%dUtV=MSO5w`Gv$*fQ(ZVZ~T*>crb`|~P`Pyb{&eLtS^p_gekfvRyYa_Q( zXxRE^`K2H0Bk!i14x%xT)`DAam=t0h^EoI8E{ZMy-LJP0@4+V;dzLXO0s1jl(m_F| z7Ft91-w}&0VA4U6I8dk*On0$1q3sDwn;P5c{;tSyG zC@k|Fvv|s-+?UeLf4ci?UA92tm}6U}z>h5i^&gjh#wmB%)9m_5Gsp-ku;-e}mQG+- zBt4V}wNUX{{DoD#Y$3s6G{#AgR9*t^M)o!hY@0^Z;lS`o|K@6zcGSiyVo0rCMSlU`|V_=SHVE~Plkx3f`;X*8Fl2HmTNRW}% zwzjM$8MXRHzBsC3hOQk!m_vLC11qy!O65Y*+|VeW#m?10HIFZnP2UUOjWyfAa`Fo- zX_d)n*G8UhS-%SAX&sYvWWh473LJ{ToJxF}LNdD0ct<6IVMX7+?=$AqMjFectgIp^ zAr=?4?N;@q%rU<`+=*b-jJMd;TD*9Uk4S-spTEqcuHRjx*qPRBFtR2N!!_dpB;aJq z2&lLL`{cEu!v@=hZQ9WLj}JTA7Dj?p_F6R_RUy*Z~HANGR%H%UE{vrUQf%S*sF z-bt=Ft(v;xod6no&{cGAET2ExUjjuE+U<05Qvb4{g#KI2@Byivy{hFd^WK$oehpQ` z+AqfrGm9RY#=*0_;nL3nP%mLhRMEUYwG>ukL8(jKYle|(WrY1BwaPzFDVfgvTo^3_ky!=#(fAalbC-|?f`@~TIlg48dwFu@;{A}Vm<~^Mp<8k(S=H>5=X-9ibd=Q# zFTbj(tz}MR&eA~oEM@Xns8o{Uw@R|UyfLxp31e{Yxe){BuP}%T(tGbSv0oAP;fE6yu$HIuXLU|Z!|yUx|w)^^_b_pQ-qx7E)Z!q`9W!N<4}rQ5q) zS?_j9D6#Z0HmSX&Mir{2h0Cd3rrsR-jeL99dpUwhHCCeFIBueLTGo>} zX%eo)>rIF;^!V*>BGSPvC4Qp*mUV}Y4eLgXi9|Fu{emAz03XH2XH0JWLSqW3d*s+c+m* zzAsU??eCyNfj34nc|Q2GcqkidR*neIXIgLSyk&cOS+pR+>`UAF{fj+Ubn?m)*wB`M z>4VN|gP$P{C~x37hiwWN+o@EB%kVt{l8)5GBmJoTE5|-Yp*b2)dKLnO_E@aA%jDTE zporD_I?4i7KnKi&u$%D3B9#yGS~)1&O$@OIBtJ%(f*Ck)remAl_;uykpTB=R?%3K7 z7varQ8(-ZBox7s5fylk2f0ETgM*GuAPkr5MG>{1^qQsHIsH#2OE2AXBjW7-ywf(+p zXT8d3S(J8bV4`)mnag~4mk*@0TwDaAm-%41fB3ekQ-`80(8UW5h{BsE&oqg(zv!tf zg_ztFT6`AeHD?guCG?~zopI`W86DVIlP9XF@L~RQ0y(?K;fm64kVpS2FK=r`fO9(E zW9S8+$-#pBVS1M;IUK||9WntDGL|J3Xd*%mRHHU5% z=|)BZ&gT7fd8iI2pJ>ZL)1NAFP$WHixLY?Gnid?3J!AJ@V(IVnZkLiWFvhWg4^edh z55lRbse)8t0w#~W-~WZQ*JCJ5cm&wt2A}Q>6F*122PB|~S{4$8Nh2f7j+h#3HI@pO zT}3w4<4%X9melydjgomMWL=d(46h79-oEyH_=#7~0*=4aRPQ~kX44uQQS9N>cZ}QO zsk%8Ssd`6((;~#{>NsbbT0#_K41FH5XK%GCqGykUW~-_;n@zXYx& z!?Yz2A?ipyA-L*oMmKpCw3~>dp;I8n^K~~#;1N@($==k{R^kznt39P@L&FRy=Rk;? zuP-Gan74bb;xhhjyZ0=7r=i<^;e$ey(}>HAUr-_-2AeZJ6py<e5lR~?LPv%6Dr7g{%~akS3c^S~yB1JUf)Rz*hZNPH#aSckK0!$9IkC9G&jJ#H z>HFepJ_UmGV^aJ?Sd+F-ki`>ftzOIPA2Y2n4)s6>?qp%fs6Zc9)G!^7O)QiYMS zMIL5f$e^s7_1$>L@VmV<6jiH`%WyZ@(EiP7avS;)mb$vsG%DQ>=5D%N*#eJ*o8FTI z&XY4w<;a)lN3kdjlz+qwa_6_PEz-n}Ksw2bUGF$Q!`{>#OedD`T9=1DMFCSOMtRVdrsf+cwJ4|Fdtnp#4G))k`K(wiRq4WK-0>hixx@C#`etA^drbgkLO54LsOC-cj)oof{#q(-Yx{b)lTF8Mh^qG z$Ll3)j4HcQ<<+XVRwL3giF)ruLZ3t(QK5M$_wuJCXjZ2^iyciReo9bb0oNaJ=8;XM zr$74fD#@V=-0|Ejsn2=BE;(;E)^m0FC_K)GNOv-VkGl6On3z(ZZ=wp#is?6U_;t4D z({^twoW*Fx{XwC9b?qJShJ^7~6P^mmgSd^r_*I&0uRx6x0+X&*iiq9V=o3S>OZ+lu zjUg!Kkk2MSp5#&1XTQ@G|5BJB9YKW6+@R+?f?`u5WbwuHmh6OYR+Yg{L7}p3^!q$T ze>(6~zjTD%NZg(e%9Q%;((chc7zFlN$-sbc^N2ba9RGYvo|f0U^B~V=^)USG*5MzRGjBvGAaX+Q zbuB`e6pzGzfg#RTuvgjDzbclJ=wkWEjVs3_$2m`(mpCub?aw|CTcWFd5uvE@@$p9s zC7BM7(2J*bf*El2OOPk@_CIBSwH%bZ5Rj509%+O@>L=n+P(iU z@5EXKDGH4P=iB(WE@&8^kFFuU)*`pSU-*3h|1BeZ*c?+9!@0jOXcF?jp;&GXI-2VB zQ?pMq1AwGVjL|E+c+D1eT=u{;cobiZNByLAh%0pus&0E+9Et15w6e2N}d?mmcGvIZ>VW_1bh+fk17%wWjvA4) zRT^;UPiz6BOYzi9NtWM#_`{`ymBrapJwbjq`gcc;c`}dV_P-<6by@`4N z5zzFWzf4}^JH4CPiUY_q#H9z0 zLa!(QRnSXWo_k2*`Q@CdZnq@iI+cxpkaTl>na+1aX&nhLm{BqVecw5A*3AB`1FFzs2LvC$Ve$yg;Fw`F^eL z-M#NVQjZs7TGUeSE>G(En_bTfU&P*%`IOG0;x$jvrZCa`_I{RY1-0ulX%eRa#g-pG zZFM*O{t_wDvp=QvN{uz$0zUeJ^PvE(0{f3;w2S&5)C33pC7hNAN1Cmqceup2bcjL#nA+WaWs_ook@ZnPBihjmEm%VZRmRn zXi!s>u|eSsx_o0-k)>cp(AO^vt33v92Vk4?&iiXlSmxW2S%y4NE~)>X`|J*jVL%Yv zCE)rhAgQS|tZENB;R?HKDq=0_86C9mc{=EM@N2p|j+|X-4 z*Tre(y6Cc&bAGDx`_94}Kj9A+lVAB}Os!C^@wE)z_ z3Auq3CWPbhC>{AeP&JbD(bT|}r&rnxun^KwzYW!#SZa3@x;3p;esyFw+(BPiXxS8- zu6V{Ahh54jqN#x*W|V}&--jaDY1r;wQ5gQf+xPRX3 z3xE+A-r24OmK-ulzNB94&Aql(nOab_fLD_vl{C)kGP!jT=fBj|KE1MXbU z&8~YxV`J0+h)x8T4My}mXd;slImTNR-Ko>WOJO2~b2$v{pFFZ|2CrI)+su?3j1@cd zBDw9QXq*P*TAFj*g*7uzAjjFg9Xs4UM_}Xs>Fv^A4&GjPJ8WpTY3V@aEURcKFRwqP;q0S zX$aZC-{MVuJJn4_op)`;F}%jsv4uME1Vr#&p~p!{qwRMk+lU#?3Qr_*@S%EO&6I$( z3+UN??HCJ3lg`iyrnTa9j%md}yxk-D3X9Ohw50)kQ9zey$|&1@;!m3nG;p*63zj=yVK$?Nk>UxBE~HF?3YBWCc#Pb@RQ zvj)c}xKX?_gv*P3smk$PLP$^uFdNS2L0y%B*pGjz-&Que6R(}NC4)!O|B1|16EkQ% zdTQyQ(IJNwTOhgQYgXxL1#r`Q{hi>DjId)s+PjDlsoHSfUzx0IUC^P;JI#;UXqdO8 zP-*5YYfHxuaa1w9|4^8W1*KU>DJJL>y2;@+cnbAoWeS9i&q6&bx=1(|2(SfCnuSi9 zYHn-2MB_V4#`}QqSgH8n<*wmX&KYwC?GH~=&a$_DMbRr2Y7px;#>zUD+NlQcgLl(Y z#t{l+pAsRft9Wsii|bfdsh!Axk^|}Kpr~E8>xr13MV$ijE~!XtN;ZHJ@*4Tr{OI|b zUn6gFvG|u~MJf{F(}$ETFT?f4i>`YHdhN=5{#+I1O(>N^DTsjuGP2$;6%MqQ+K3nS z^cVIehw=pCAfk+EUI3h!0`lGD@dC0$fD5Z zW@I0zY>HuAbKc_cu5H1%(Cp(jJBFT!zxDC=y|rTeRi0{B-^k{+z=;U6>Qcb$tw{DM zNjM@V0D&l!KXot#R1Jyy0%g<+$6@z_us4VCo3=Y4I$&4eqgq@I3y6EXbC3apW{5d+ z9^2G(RyhV#UubC<$oe|#Ojx+{46(({WKo+TWfY?xY?Jwevtu*ieS3=0_48$AAOa)? zHpsN;QavepR#u3Cdc_uLX}Et>DDtp|6fwm~LX)kz*JfbtXbKu9YwfR&E50b|mPGre z_N+62k-A=E5EU|yj4vAf6uo)MQ9bht)O}rC=pkH+O9FE>2!)CQOdI$pMFsf?KjLs|Ji192+|9Y$<8qBmK50RyVUx?7 zysHH7;XWKCPg_}Y^ko<>M|Yb-tn!mTfr_fuLLr6K4bceKbcXuNp-QC?FT>=8qAs{LsDj+E!pn!CV zzX{agS<51y%Kp=c2MOiHn2#odcg<=9% zaLevRfPaL&<@CLuyV-jCS$NujR4u&So!z{h9V`*PHlAJ%Zmv(bgt$$hz!E?3 zgE2V!ph@7#!Aj!0=`$gvC!Q3IOx8!>Y>ez%i|oLhKyLD(wqZpm_G1Y&L$a`$CUd_q z(g}JdChJtx+!LyL%8%`bO`Ts&1Wc}Cz5dX7sA*eQPQS0qD~`Ji_+49vB4TA=-0a=C zSv|akD6`4M!`ZYd71J0nBCezf5&!q&@rJZA!GD*53#y8fQvY{XIX0UxaPNP2q3D^h z{`aU{JWJ))|M$_^$V}>o@gDBUPfd^bzv1Obv^-P)_h6;{|I35tyZ>1h{&&KC&qqKl z6l%;BbA0Tv9I#V#HHak+nnS(qzhn*BU`0T|tAD?}ahWlrwxr^(8`yXU_Bm1q8`=&2Q>IxT`Y?3-w++}w2XMkc;M*m}3y|<+fRCptUIRpQGCQ*j~(~^(FT~o;UgZC=UEH>6o-J1-1jHko9janpisi#U6~`% z=7Y}Ff7^oS(C2W6Z+vp`P9*;s1%~)}t-9RH`z`f5>!tbF@>sh2V>&F5Halt1dA*s- zO^;yTFI5->&CAQnf4_BHUi=$i8VwTv_nS`()*!HI4A+6%i{$1&-~pQ3+Zh?cj^K~k zkB!`Siu}Ne&vDtbjO+hrjP7T=lDF0kbCJ*v4cV24!}G&zRNxsuYcZ1 zrwg$BU{I&a(zo*tD=VvspPrylTyie&pcSLl6Ee`?>uK?X*LKs%_LaaYEFk~0;vC@( zo4D(s{+&HxVS5x6jhWYGlAz^$lL_eaF5n0A3=cCNo1*S?QFvKj_xF)b|_~Lr52mfF1?YrAXXeeaFlLoCaU+e=j66@1vrk0s?WF_AZ=vaBy%C z2`}^q2hPujJS<-oysmEJ=*LI}rSpT;LjJca1T;?}AR(XM@SwHBs~)TIWVx4KZ${Ow z&R$92gZz(%unNjafS30_X8g~c2X8Oe2oWljqQ|2oG-j6%dq2B&x#DLw?-FwHx&)(z zT}34gc*}_Y8Qa|3+qJm zzZw1M+2iUx$!dmxg3c=F#?lxS3{6jm2t#;0<^ENf{bfeRfA$Czt#aRMd~<=)RR(@r z0%1|G7T}e~ZNo9*XY|W{Yr%lMyZMhiI%@Lk!zC2ILU2wEo86zAZ8FkbLqX1($&@t{9mC41~V zz3xB2#V>xdfgF_S0plk9&!lW3v1t84k~Ng}F%M?!zny1yR7MyKExB3VaX;RWtEr0@ z3%ppr0bKtWci;$j!uGYv?Zb*~$kzS;MQl}$|L4&B@gcy=V~+5w z2hhrDMlvbQpzzxYS8cT_yS}A{I6bfQrwoOGH*TQeph%d;#YhP{Ncq=q!k38y(Go22 zFc5HE3J*Pn;bw&gZ=n;vWrscGI z6Cw+$K_HHTQxPC$2ov;MJ2#H^iu?$Vxd;IWQL$H=IZOz?>L*l!YqFEkD-+8qg)=Du zgTh0RQ>o0@ZRL?Kr}(Vp!qRo00Od$J*gO@~C;xB@OuTLYj zpiUGDf}R?JctVL3TVBGu`D96bhV}FaNPb;;>NF#jOOD5L5G*p435f$&HM%XTeh3G! z|E!iAmZ=4i0!{n;SP&Q-xfNw!zd2Zi42Qf~qOC$Pk?spt!O_&2TXxU{uuoCoH7-UX zrcRglvI(jcr_%B%I)|AwN9I9Rk7nO_m!K{Ld<6hqM6HcG5>yuG0MLR9I(_o>X z!%A7Iqv=dimgV9~>7W)-34Ij3z_phc=w71LYxI?#v|>A5dtT;ST7|B#>aPP96i{ST zlLHWgn|AmQ9)*LTVCwO(odARsEIsV1k{hZjOMhK}17^~M*xWdwsCcOGQNZW7&li03 zrcFe_6ulX;6eSSd8i%c-s%l~Bhy%n_4Y*CIm1^3?&*X>XHWn+z7UivOGy8F^1K;!V!4SnJZ3W6l$UvOolke_ zz16sC5Rv>JoHw?ub}x)zk;ukDH_GhIK^{CPNO{asDD8FdxDvDq&heEUN-8cV(cZKTaSk40rJlIWQUD6||2+%Z9pgWNjR;K%QDD7VNb3V=eyzV zwoZ{`2^0l|qgz`{zJHeE8jap0ug|HaZB)fQgg0IW4P}dbmb$O()N_$eOGhSxg)@|B zFj?Mw7=~0V%LD?Ne}={cg&nO$MmnI8nZOnZL+!^Jov8SF2;?;Liw}jqStN6lWtC=@ zYc(<;Ad4!Pi~5Qs>L(uVCgDvE6FZ)&OZ1V0jF22|li}_~15VDzXdos{S(XAhu7arI zNy&L1>nD`fZHt|0ptuYcGM{5n!fY2HP3R}0fQ|W*=kIB|B(Qw>UeEGywNGqXFCNY< z_@B}84_^j0W8mz!6N63 zYAWv#MEzzZfYr6<+Sa~jb!QRC*i}jYtv3XistZL8CwGNzV>kru9|BYckLQ%JtSqI0 z2pmtjC`x)t?~F1aDqT9zs^CpKL!B;N#=R2^q&?MAbM1<+XRssEBmBQ0ay~MQuzuls zimA+|%T5YYPMg|k?QM^IZTD&Y_dii>xuNrUvy>tczj6(vHzg=ZQJVN4wMQF_C`PR$ z3?Z4#q+PF5DC~uqaC$mHiX-HIgdkY)XNkT|ss48p}?QJJYh(Y!8F9&|r0LHsn*H&A>69a$xO~ zsqS`=s}Ypfgdr^(v>iWFc_-)qCh%i_pR?)1$DvEn#FP}Polivzojx3uXzxi(w)fTp zO(~Loxrg|VhPAY-4$77tFyKd9tiNBT&d$yT0HW{V_o%*`i!xDx=%BLDpjt>P)}%79 zy#HbHS&T^7LK0@f3mW-~uqIxbeaG@m-$h=%I-M&im>m9h2fU4O@ALPhg<^qZInBml z$oK`(ClNAO1f|AYm!bqEs@s|!So5}{T5LfQGy%+Me3(ul7Ca4x-)6$jB|smlh~FeEJ8@W{UG4;KSBX{*lk}`zw2*A%61S@Odwf z)?j2X9lW}vUs(?M3s!AX~{@^t|#FvOvPUVIp zVi}a9q%&$#VQqD<%$X3ed0b;}IB=wEKEmWCM2Sa|8)=m6h4rx827_sgrz19nfE7EJ zN6*>W=8=#{ab}4S3%r!JDe({}8Q=N>XQ_UbX0tJ&J(Igp75!lHLqI%ttSbx0MCXaBz1HWQvDt%Q+a*yeccWQuxFfwe%|_79%#=<#T;> ze;$(XR=dO1iQBZC5?e3f%=b2l>S{o3v&#ygBpLvl9JgUq!IL*jO>0XvYX>_Us=2WDu6;kroLAZ~%*UrV$bKhb!VToP z3S7SHeX$FRd-BuOf$~q;V8|O7np$s9aqFFVE(>kQl?6p~n33CC{5%zw&tmR7N}A~! zNHR^TM=}Azr1K$sjDQ z*a5<8w8QYZsD?8AGh)wfW9ypCFGLVEV6W~BHC}yh50>Jt`1jl_`Uk}S_atj;OIPfk z-~J$nYcEky2*-Q<*-dW@$agzh;r@ zpFa&6kHd@7mJ6$^)6gL$F7U?R?o_}I15)Sj7eZ*GEVqcem#_vy^zmhAMU7+wgnM-f zk>B8-Td2p@aw%I{FEEjYrZsGaaf750agU(r;~3t(|9PjV=DaVe zJUIStj$3-a3+WebouWWC*Lol;uepC5QjS8S_dl6r^#E%7W%m*Mg*R?y?Pd~C0Kpp1 zN7*a^ei)8GWK5Nz#FK$~KXb~)`tuzjTN4qGAjh7OEx%jf!9&&QbY){~1OSML>iNO= zn03=(#jL%#LjYy94LuaB*oK$Y{C8oL+fwI>JPm}|UzcOxYHaBekMT_cB`QBpx`&$Wi(!@`MPa-~R^Bama^O(g-mw_Jt@?K!6n#HBz zAhlfIX(_-aW%adu+pe6bPaS+0Ao}tQ>HB9PtiY|iDry}jz23zIpdJSUpmsE5iIA?1 zJXxS%VPVnOC5i%)K$JYyp7L>e#7;mN-OE0LDb$Z8UkbETn=PEEiS8KyFFeA}&BhpM zTmLRVJ&kTr=4diE%oV|jnvU`y#yvfC_doM*P$I@6A3vWOGGd3PPmj0b9IuI1{qUz1 zoljb(5L=7c>#-nL$TnQp#GthRDu}2c+Wb8LZ$Y6_9i}k=;IVzpLw94ZUjto9{E@+pERGt^#}+?+>%gaM5|ffFf`WS4 zhBJU762swP=fRP%+-mFu{=H)rlK#Eu4AHlmxZyBjw9axbYSu#30?wz-1EiJ)S5~PV zpQ`S=h;RmPE$S`YZ&RiLsRvz6kM3IB-;6_LGW!P|w?dsB15Tr^sQpp0k$FbF7yanq zj|iu8#J}77M?J-1?YTRKA zhn1X^q=PJ#^Af?{RzOp6W4VtiZj?)dXk+Shimc=|A&fVcPW?+ksd|`crd`S};`AQ@ z#VLNl5{@PNJzS#Od=qAqbHrhXBNw9Zk{f8-&RuJ>hxO`_I5KeH)#+7>VVq|DJY&q5 z@A#wy-JJp2M=Jb3^Mm6w?Q8@4k;w0S;YMaaeJVpJ2GN;2T1O{rPo41XDAFD%h9;#e6*_YRU3;fxdr9f8y3<^dQU`;yg+z6M zbf!k%%PH$pBn~H;Dk#*ltYuqE4y4IC*0l~(RB??P5II-ZCmbD1q22qqE~I7+-snj}w1xhoSY!hzLV`ILH7F6svssm`Oz7q=JRf zPP=>-WGMABM!dwW(X|+`sr~6?O*NWnKSdm^0Y%aMcIO9_t<(qnV)!@g*-O!dwQKkL zQ4mO1O{O>yvT@$*NQGO{5U>RTY0Je$CU_Qj(Ym#a@{<+~PJ;C->6H-qD0F?&jQ1ZR zv3CcqwMBq1w|o_^x1MKLJXHP5K}B6%FzGQiy*%98B&OQoNR%*PYD&N71*!NP8$3Y{ z_*nl}pf9*rrbWQ#A)?a>3>cET!*7Dl*^Q^dky94hp{fM=)lp9)R4{w$qB*(+N+U}R z>xT%z0Q8WSxITms*~eITelOHGd!f3_6F16o9lH1wt5rERgqn=;5TX>%q6(DGkBh=D z{UpF>5e|q^)#kyil)J-htqCT_BuwLZe3wEIAsl(xXg`BQpPH>cBEwJWkDzgiGXD-k zwMLthtz}=iX~esU|Knlj;P78@GQ;JUl14)%JlcGxx_=l7L#dDepefIptlN?Z$mKmv zj3v{rnCQo%A1DFSFF+nhl1J~P!P!umleMwIP^%!yroaKCa&;Q3*ph?F0 zkULA$$s(}hd8l}iPdokODcG?%Jn+I1D1(#R{&PGnXa2|UMoxRZ)!{O9vHHPxClYt; zXQ%h5BM(sM?K&O8YsCbJP7}LNnKTnw44Z<1u%GQBGmqNx>MmYVp=BeSo}(~W-(g+d z?$J9(ZzlMW)MhOg2dO&_K9`{YK##=B>nUW8a@XZ*U?6SAL}U^upW#u{Ub$|wOe&K# z4u1K^{W9vLKF;z+FJ4E@|L9Z$|2w5HHu7_}*ch(yH^*nlW?@Slw-S7|Vdn+Nx9 z3TfU$R`HIkr}Y)Xo)e-s&kjnpp9Y$8UJhjC7Y zE3&QMq(acToynpsdCw3OU?~`2lVLF8uO}%ux7x_jk;&uBvB^-n_U*sjxaHKRda)wB zzA{_!6Iu5k5bxU#>_yX&8@sa=xo?9g->4a-4qTUnN};eo2)opqp@HZMwUM?1cLrMr zGAVf4S08{d0-#s4g=9KYVwQ67Wz_DAME%DOiEo+1<4BiOD}k!2=~1;-ki?m(q9lB* z1^*3GM-u1gB{#_b@6y`4Ur+2F!egmEJHCq0W*YY#%Hq4g$ryuYl=K&3Y7ksbs@vH0 zL?56BwI50ya(v@?xhkzNmnD4zgD@Kd4I4@ZqaUPzv*Jd5T|Pj>HqJP8Pz9~UAeE40 zIE-S^S2zQ45TmMji=(Q3Xxx8^6K=+SC(54|Wo8(m&_Tb;v)?3GE zWvaA>O#D`&9zS_<#7?d$b_$I>WH_QRzPixkeSZD!_gxlsrBMhNAr67r=YjbG%?JY= z%__@)YOUHPN{9J_W&Y77As8SgoR@mLU4GenTUjzE+y-qdzb!ks9(266VoHWbB1zGF zL%5W@xi{pbvMZw*>Q7jL>+BS?TBc_F9x z0G4L{^7u$_0DJz_eXZ}((%G3af4RQH@a&FN;#OhdRc??p0oM>8yR|(Wl7k zpc>wFj;jTV1`16en0CmcM@E~_do6O}T#KG8IxkH#-PQUPSZ~fo^h>gV<)PohTGAB; z)Z0p1)Y3a%(3o8VsV4ZwciD5VakhUWt)Tyvr-1yphdJ+oDp$$)!WI);o|s8Vx>j3x zN$wQ|r53=;lEbrYew_TA(l;~=w=tMu!j`jD(dHyeoBCOvWi>F0V8`FeV7obJC8el> zUmLp~jD|X4Z1kXMCXPlNqohP0hciuS=pSO_-6o%b8cZbu@D65bozoTYj0I|8x;;o< ztkl+&Tb9|4Mmn)y8oGfZ0Sb(^eA z`RrkeM-iJnux3*LYNyH(HEo)&cD6DpA;}XS)9@4|bA>d-Ia#h}5j+!V-{phpzILzR z%!>NM*tQ-(Z(y#8^@j+pAw5bahTun@UC9`bsXjQbd^c1R9;A?~mV?Rhp8c$uxA?LL z&@ag3B&liZmfqe(6_$t%==XSlNPj5PprX?wKx=_lLV|GKhn^%He0s&*cG6g5O(+&C z zy;^TOhKTYF;gzDk1vw-y-ez@Oc7CHRTgQ3Han6xJyk`RDNeeLIGo9B4*fu! zqiK4bIj=AhPnrxs=REwvapT4Q;7dC`V9ffzp}r*sIZnosSJz=$Tb|u5ZKEDDHS++C zcjipy$U$p*YZp^PZkU((N-)d`QsNf~D??M4$ zg0JR~aSHFP$~V>LsZ1Ku8qM0NkKyIpR#yK+vKYofA3`X8gpGla#|EU1gClfDN>4{c zP2DQUnbUJJA!aS0V5M5rB@ueYF~|@(=t&I&MTzS^_b8ujB3QW$7HT+qEZ(Y^4l$WS z@HEQKSx>NJy4pmEr6G_9t2RplcvJBVIRBB2_6)%5i{FbT(~3l|y!HLDZRG0kUCsI@ z^{J-D!h5kiUD&AYFuIhacuoX8RCCHw8rs%NuNm~=gBzOu?FRt4$5GzrHe8181@Pc8 zCdymCrr1lDAIYb}3O`{Z!1@Ja=)1v58sI*Djk!|yA zjHr&;0)hg*}xU^ExaKvwl_de8;3rb&HQ5q(u@~y_vI{~@5xr!nZ)f5y!$=^z! zTT(J!`~20q5g8Ncd4Yh%>Dk%u$}vU=p0Pfe-m;($8(!&$P8zIIIPnyQpR6Tu+#&sY zj<>EPVMGvmL+le$!`?Kam#VDb8FJp(SE^5eme2_5$F(>FRL99!FvZXIi!Jn3aS-u? z!Nfmu8(j^)`TiFRC5LZGl#)FW#?)Ngys(o#^;1``qZ416?F3tk#k|9so9%=I1MND9 z7Wh=#l<77r*yI4ocHSp3Yihy=@dBJMF?!3GUh??fsnLW-j;S06`!*a2UFdKkS1S|> z>z>LvjxTTxA2D185(wolif0FH_g-N$bIl-vo=Cc+_t&@vc{b^zruy zv85GjX0TFKn}kGmu{Ji>T~abwWdGTI>ciYPBw}{xpekG1TC@2|m4ZBDfHmz6^L(@? zElh|y-Mj)ijS;Vbp+AZI8T6SqnfEDJ{>iIW9a*_8nOfe;oFY5#6B`bzrliKoMzpJ_ z0cB8Aq6ng368H>ym;hvSuF4#*-#I&6Zb-j-S?dSF`)TuW4Q_(+wbV=pmb?Uvm?=_k z;z(1mJT^G+a^oSQ;>Qq_=_3J2gHXc|DLn+B3p-tqZFo9!rSB@Rk6VFOR6J3@Hy@fv zt*&JBITXG1Yk>Fx09Cci=EgoJK(a3R?kg@yzuJBDU^uP-ZU3&@YiFiL8vzSHwj?s@ zbdG!942rZdRKW$6TG0mU3nh~@ZHL;18DnW=Kk>Cp4xoR&G#5PQ7|K^cpd%9O)wUQiM&c5z@=9@#Ta-={2Wjl?TWy9qAh>5Q$pTFvk?hB`M zG;CXaHF(VyrrJ4s!8SJbEa&I|Xs!3(-n0T8n9fl|$Oowpv#Bple~hj~Q!|ZLw7vvI zW<0eBeuOsyRf;HY_)B-BJJtIcQT$CQ$P^5c)8XY6Pu8l9H0(>3ubAx|mP-HGM1-w8 z!Cs5)M`jXH(H0VyVx|M%Uwn7mp4%)gfu*TrYH9Y*|H|6U5NL^FLeSEg=yN`H(y)R!xi}wy?uZZ2<be$^CF5`+*2{rbxn+)h$Lsr76VL4=P9;qPLh;61=T3d&Zd$PkaU zWYjdpe9B8k7u?RWFw}ki6c@^mKbscI;Mq-$d`;UdNCjZ_R3^5%WPl~n<1&-)(;c~! ziAkkvm9dY{A$YJMCcuVrxXs?ZKjHh}ND8i6Kncfb)qd$*eQJ*RM5!uBYla`1Z%BnJ z{Y9URB!TKEwR=@du$YMuAi zg13aw>jUo*wx*-tH9_8~%L$|Tp&vDCJ_Mx-P@V3JssaRgzo6}=FCw|F-S2|lV#`V{ zgtaK?5fQvN5AGx6(cUv6LqwX8do4Q8zsH?xJNg(yE6tTNBIdWYA{JRFblCd>k+=7U zRCpKj54RK*{#7Ajv|Op^Q^SIcNb0hMZN{rv?cFTyW?0DEscd=$Ccwl zJPWVw2-S+7M!il%j6Q>heS1hwTbz>}*iAbCy$sNhQ*F{-kH5j=2Uts{fXo-Oip3c| zXyikFay^4Ja_OUFG{cX>RT zjR<_-8(8EFR+(utqq$4hb;#Q+c;^$k-5C_Zb0_inN&=dou9_2mr(XO zn-eGT7^C5NM6q3keNXbTp3$I2QbR0rpltBlWt%aqO9 zuRk=Ii%YPmu?$obV#AvD>gD;pzjoEszX(dLK{InXjuSf;pZ2j>^xbM7j{__e&;akoqajl7!KCF(z{&}@Fl-nQz+ky9^Z zEByl=_*P7C3R$7J4~|*|S{%$dznGv1&EOg?_=*TpHo0a0IKYT%dMe&>+`V_Fr>mz0 zlo4eVpzjM5GJs9tk3GqHF{c^=x&B#wd}2ahxE{&1i3Mvq`|Xqa;an}-CbMS&Yy9$h zVKc?bCV=vC)z6Hg^Dt}+$U79 zdQk?PTkJsb_1mCu-1ezO%OM>iurJos#8)E%Ze-QAR6*hd@3{Cd$j zllxEq^LV@BV6q%8lVOt>LMuzl@=Kv5S)OqHD(R`NG;c*`RlT!70-Nj`G6)(V53(dN z;Fh&%UYQ_$mIR4IWi{00V<8T zR~7HG;M@|G`4RA7fW3a`*xPpCq`?4^7@$mJuC2%}xX5to%T6h}ur*oRw+@LIF~p=N zi}!}x8+KW?pAw*SlJ@;JZ|oP>Vkac$#9v^OhgG-7LS)}P%eIMn_beRN2)%L1_uBZv z_F!;tR$g#)Ixl{{%+1)DKSanwzC($lK3VOts#YR#PP(b7ZIhfu)Qs%LJ2x?P>qRX| zydV&O zoo;KZX39xsg2!L9d%t8>g`adAYyYKypgAu^PrNXgL4-OOAm6cjdaI(_^y5U^NWlTI zQKDfLc&e?%>e6+$_WWdu0O$+JsbBS{yndxVVmoRMND;P9ukHCZM@x&ccz#LYUG3%1 zC{zw!ihgnI;9;Hag=nir6i-H$_o-BG)~UwcCW4POUZ`7!3Y_1dyq|h6#;eVrBlVUE zxs1C)4@GY{3222vi{AR;qb`It&hHO`NHB?*F6!xKQTX{yG0{4$UNeMOc8WyXOScI7 z&s^Sn4)l|J)hw*M{9^b?2Bh3g4eKXa9FIvKJ4roCtEXDcEYhIRZ2nxc-tmM>$Q|NH>#( z_1%@VsInI5OpX35{P4ztAA|k}exEi@lx475litqG@fC@>`FJvokoWEk2;I$O(Tlen zzL!g(AQCg$!B9tSF`qIdTiG}0^)Cb#3K^2jj}ijMDqgj~g3R&&p;z6dRwl#WN7-=xB1nQ)hi*8;)}w@@ur~-HC@sj0GNjS9%@7 zM2$u-NMK1X1rv3(9b{F#w_7yxiy0GAC&5I^ixM2i3dDlxLBs+2&}C`J4P zDxj*q33RUymbRdh8OOv5nOeK+oeNFJpACm3{B$&>!x2!P-0%G~NcdM2oNQI_`0~iD)Xyzng>@^4!V%^UA+&bt#m)||i#DoafQsHeY_CVi zYXj0NkFE`Cu{qtY$tVZO(ktXOUl8x=7Qt9Cs1ID%M3+q)b$^U1N(oEhl=D8ZM6^zN zf3cJi_l?)kYsq#o$|mj9CySg2EZf=oG=VlvC*i#Xg&Vxd)FM$Ba;4QroYnqNv)ry*QDj#y0# zm^1A?2?O8%Ygua7eO26_z&HDz1}2#Isi+xBV2es!R_mLEPLfv5_|ORJMuM1_MzUD@nlRktujaJI=s2c6RJhwYDDLD!yZhj9v|;kl~}*WI4w zU;YTMI%EbS+&=^PJd@8kp4R+4kR9aCiTf&rHflB|Py2taOf-a2EtK#8H`xHvGv}o? zjQnc;mG$n{`0_f9?+yCchNL&Ms#PmY6S~YET7zFVJhWz9d_EMgg?*lY+J4dJSVUw- zb37SGLjr(#FE{;HG*E~BIQuo%b-i7n$w{`j9{Kg@l|Us2-+@Dg<4&vs{?oLq>~`sr z@KGU$AEZRRJ)wFEuqI6+{X^)ss)dp6vxtTe`cf}=r5Vs4QU&-lOG_~Ovw#oWTpREI zi7pdG0jEh8!(RZ1xDAs`7bkp11^yjYHZj6@+->_LZ&z4#jzI!;x2WHVztqVX^J(Hu zWFIROTqx`T?ohTlicmW)R{(VXASfdyxmr=U(-MrCO@*1qgL5{5*=I0tx z-un_3S$!plRA`R{DlOdqZz%_xxkT}foX>eg^uk-$z{c-j%o5m_u2f>lFoRVBoH?GO zQ6Na~b-FCHS}BarW5;=nv&Kx|2SB36VpVUY_X971I%024{|8nxQ|GW%I?&EP7(DTgA%af|r2xW)|RLOwyt%WaKd!+hf0lgCO zHkTQJ+k^}b$Mw!5LG$=x^zuyf7(iYwjO|5T6HmOz>$MVRk*{B?{ZzgJSta!Hf|GNE z!tn!}X)i$J;^bDxEoQL(SQKC~cn27c#*#PNmax3eoFR(^?eE0n5dr|G^+MQ? zXGCo4n1W!~*LNI@u~eui^_arcjibEM&vvBP*SQfZlA8>W6tO!YxB+b!pM?)2iuff? z>$s%D^Q}@FhV}b5XS#~1=v;*f_aL!zxF)6P#<2{(*eAmn36i;{52e23M){bf zc#1R^7UIia;q{u>gV-8LPT`4!veeW=#(sC;;EWtE#GyeB&!{tl0|hxxYsfs_9oa;V?Ng zlldf37NA#ErU7u==m41AD_^y5*LFF=2t5qQ6$|dM!gh>z0%~@D$`QbA#RG`ZSTT({ zCI3j`A*(d6wX~cDM?RsHpx>7p{M!d@OfkAuSn$4HIC3nPp#W{2yCq3vCsk|+tV)81 zN(&U}kT2gyFdRgVa~+hy{u0K?$+^BTThaAnhF&Exg;1-gkj@2yF4E!!Q4C5o zUmUymBqX#;qVw`7L$!>%J*$3phcM7BGq;g%%tAu?rs9bm6Ch~SHvA^6J=OHnkn&6| zifT$5^U8s0^lUPtG#OnkyVYeXyQ$unmLDeDIu@J? zk+SzoltqgBJ|}=miP1hbFT(7GvTJ3t!uaKX^K>6&CDtKjR<0@($DvwKYD^9t$il}g zq6mw3J5LE{1NV6!IvT(k7bhycS6&ny4u94YDf$MIw#}K=9ij+I9u(XLMjHTCdO_2B zoB%Z4PgB;7H$_8kmXGKy>n&)NS zycL)YXG+hoZ+7>FL5_kY&IBn^sT1=ljuiLemEb^_r z(bQJdi#p%kX?1cUx=NVJQVFyY=x!^hHyAgXgM0ggD= zDwy#|%Wkcqf5XyiB$vQBIY7s_eY0x;b9nLhsB@P*O@u)@9HdOIq(z}x4wr&SYQo`p z0yQT2VJ}O#%(_Bfd~f)bFRx5sYTNbVoW0Nxp8;SS`M>5IaJjLm5H)diXSuz}a^^Ek zbs>4Y+um$i85+@S2$%b1XH>YfLy57Tad=;-Luc#B$0dyaiHZlEFuIh8n2OB?3`ovNM! zIk)HT@>}+#Oa#7#MdG(1vFmTP>BjGGcbk2K?o@)wI6f)w1Ya%yr!5%!#FeXvt6#k; zd(Wo`TR-_)UvoJ->R@Y&3HVsB`qi?YG(0j5MlF|3-{ze#P0hjV>)N}pHC=%6dG^FT zgXsw~be`!UGlU)9?&M$u`Hebwruky6@Xc z^}eARyrd0xF~W1h$LuP=ayJ<85bKDsMAs)DC&s#1n8Nh1~*Rl$g;D0swr)4 zZP#DWvIln&oDgIMeJMv0IFA)U{GLT3P+2uJG zGQdIL9PDjdJ0c+hCVJ&Ebg&8(`W4n*T2KF)A(FXEr;10DSsJeI{2R{ z51-z)XcJkWsx**iaJ-AxR1XL9Z0+nkP8;6<2R9O}8%%s2iB`>w2?&2DAWq7WpJ}6% z^j`g5RAggEdH>h!?lHS-)sAnm;a}gK;4@)|j2(J^F35Lx@^WH*+v_+e=wEcIcE;Sonv4^!<&AQ<0<0%&{_SO(-kDxU!p0rKL6VrDv*ZmaCD~hYWk5qGnViA z`m2FEFQIv%wfWAsX%YRr!+Z(^tD_D8bymk2quEP|DDPUhA%`suZBWMGNJwxO zCEWb!Ir``2nb}^h82PH?-ChY>*L^>z`K3$f%^&R2z4kbGdnQGjd$j|Fg@{dLhPQam z-ZS@wX?%V2RrI3jxl%$;Py;$I6#PX$QdTFkKMrld!w*akNfG~xM5&HEezW{pkD_;n zYxeD3(H{QaUlKD~?}aL-rP?A}OxPI9Aouf(_uR$$L3M`*;(cd$P-a-vw>Xc|*ON`t znmD(iEeW;d$OjF~K~Jukv23fxpnmO_%+HjM=nj<$y51-X%04a#)UNXe4j=&@z{TO` zx-#@zcw;^n3AMICFpPo~-2`4z} z-Km<;dLP zVtM+U2!?oolPIgVTCFj6F))PkwFup&e%w@zpy%Ns3C?A3GctKFHJ3+X9;RA<~G?tF7G)Py$uQ(QAY@s)!&*do ziWCe+97kwlKyZ+XrN83mW!?)U6*X#!fU$$Pe9;3fqn=Ln>{M)n6;r4C7Dsy7zR70EJxoax`fV3%|wUM5+5Gj~Oqc&h` zJfn!@kV52U?0YI~Ai{08B0@*n^fb1h4(7as-ol)IkyxhCIrWY;+0SLdyVv&JXTx)nlLHX)Z!fgX< zb@uJ#RE_RQAwuJu4%ez_?x9^~AJNA8Xy_YbfNmbiBKNJ4dAYr4CxslN@mrqtJ^2yd zyel{*sPM5V*HhG>Z2^VGq}RXyGRNm>CR44`DK7jn)sj(1lGn35#C>m;|p zv8zuXKW&f-u0)2yD5@7xKgKJV4_FLB_Gdo|$%C(Os6R~db+=)GW>1025haH`HE&52 zYG1N1W-$=EJ*hOym#Xc<{~0zHI66McNH+QZA?dv1sc!!;esFN?V{Z;l_RikNCNe_E zUS*H$?7df3WJj{e-ZM%W_B0hE(-_XnCC9SMnfvr6=#2>m+T~v}sdE6d#0=C7vEdS;QXS=Z~n1^pJh| zrx5smL7=<*n?t!CCwN%utl=9O6Vn`v!q3U5kYm6_q58=>2zQ|wkDqy{Mi#B|hP=H- zAsq=!^5D6jKA-SAoK3>d3`6IdO_(CNL{IO zhp_Pg7q_8*`3rd^SdN-3o)~N}nFm}W4V^cGA-}o69dHRt?~R6@r4lrMKNxUi0q?GGFAgTm!6 z_4AfbD5Qo_B3beBizZ@h0{8iDo~&~u$}k=1f9brBte;FCnKb8&8#C$t>2+5906ksT8ds`x}rS~dJ`XlSO$Y6 zV0CES-0Qge(fyha&-2<3{?Y`??#Cp&xe!l&BizVWRbZU;v&k0z7Y%S z%(YO6^RcI?XdF5;fvj;s^hqoZNOYtX>vO^@j+AsFoagTdFsFOp!+D-GCj?wwzkcca zqqsIkwLuq+>XVFk($kzXaFTkQbOxG<1}loT@6;8ZqtZ_a;SJMS-26x`%hq&}pfeU|i}L-)Xd8 zy$M&HLp{(ipD5mYfg{k{Jk^#OT!IkLnr-EKae+nQPa~?>Cm?f~m|03=V5)MQfY5OM z(fENyz1{#^%W0HegEP&iPqqicZ zyj~LnW`D~CnNn>lVg&CWWJCxQE#Nd)mKBQj3?4BVbuLZLgSGF+fIkqT1!S)ujmGa8NF%+z zGIXAz_3(L2Jc~IW56&J6K9{9|^yl)LqnyYDAO>T}=MJLO)W3b6fEd+N+5CO5T!-DW z4+w#NLHtiu8SRatq6Hl2NSJr7FjJq!wqJXRyA%83%R1rRn3->cJ?efnq8o5gGBeqN zD|6S0vsftUi{y}jM?Rj5We7y&HprYh4TD&w^OU?vHd`z+Vl<|b*H>Q^&O(%G7XgQc zLEz|r{4@>L(zq4UkRxei)vcGPPUgtuYCT?H`Ad&e(lfFbWP*}z8(s`6m8X9l8IO30 zG1*)a_4L|X-nqpTEryw|q9P34&58D50>VVXhp><=cZQ`QvzYJhE2DsvN%;QOph6!S zac4*zg<4(N4JZ`mxn1s}fiH`4$(iO3?UJ5cnA%mr?Qlj6ofA?3Vra}{88ofOw#2)n z1q+x_{BU+X!iJU}B>|z}^)jVw06wkp=*lrdosgoW&_ITzpbHRG(zFDEwBzD0;}mY} z-PmUPNaCL|P^N|pg0m@gqBM?3+7E=qZ@kS>TyZ2yaE(#iE{=(wN5$+gxNX}8)_2|? z@WH{d>0@wAr1O@JE2bjGd`Ooz`{=Dh1PGQKZ;qGf0W%p?uR@=y3`ZRXJkm2i>)(?? z5e}_L#EB&Ev(S8Zr#n|j!RR)vQGnOee4o}MM?jmmMMxu#EwvKU5uN<1ANz!(dij~H zeo&~HUFE(!z+@Ze8Eln#9h|deHmQnPA|N;mI4fwKY@m1)MnZTQ>g?qW5x z7mhG=;B(7vCTQqP_;`5e#RL-)>_SgB#6@M=iq*{9{FNeW9T8EE5wa_{yT<~f}PaSFt3d35;G+nwG zt^k)}DUcvG0?sKgm;lndW%jQ>e?K)F@n)f+VlLq8$9_O_Rv?2KCWS|qmU{iW`OY1P zh+}RLpwz3GU2adXWI_f#2a3WUZo|0o2Immn*OFeG6%MNP?ss1y^i{tieIA3ykAeLI zoTlINTc0Bn6I>;LB}30q_#6d6ksbbd{BEx6`QOo?HKs7x^FZ2vQf|kZXp6TU6rMat ztbq5)QfWijw-$66#yXVqS5zq5zU=IY z9R11&(k|Z|$ic9d8N8mO%2#D%0|P{x z2QL^QL2I+l>w=C%--{PoU-5tXD+SJ}z>sH@$uz89i_Dx#^yt`Sm9mrm3@$n}z&_AV z{=kL6PNvK4_t$$SZT{qEi_f)g#c$C1#+)wH4BS>|$I;FrMZy$eC6bvBbHZ)ZSIDhJ z3(HR#{Z>pB922qVW+RcKn&fyT%5QHlI~|MI<0gc7)Kvz%1Y3EdNYD#(&mq7g3j98G zrIR65?AnHZ9*`*kdRhOml!>WfZ`r$d!f&bAOH&h@D=JbgM9ka)_$<5T`1-W^^`+8I zyW^2UAsNj)U#->hQ;)q>rO%zc#(7zQx#vcJ;7?$GOc-I#I(|3o{Z(Iosv(6o-#lr7 zRM1IhuOftO2p)W4w0}=yVZJ)=f^*P)_TxOm{M(Ay7<9#Fk!87MaaSRAHdAGDSjDiS z_gKm|e^&P$2yJ_sCc{wXnkm`WJo}_TW01>cdeC_`SiXXdmVa^DQg3@~_qpo1y+O}Y zS(l(`QSoO}sqX3RI5*U+A6HT<$E*fBE;Tp?nMMVHQPX)IgttA4>RjZ1AO$w%^=?c^ zex7iewXI^K$e2d$-apH>Q>6<7AUCk;M&iQi>jkRnYLXuR+7yr$|K7}5Vm`-R%@o5d z=={~O^J>Dbc(4iKQZ!cij-3>CoKGm{JHAR2(e@xKg^Nu0x(|ypK1M@!cah>za+K0B^zIfBslK{}`HF!{q97j?ImXP#|?`JHIlP zSSr=fo)n&WW+$ zEFKDF-CX1$nT=um{pslQ7B>9@hv%!04y@^^ZBZZcUbYZ4`RTv`I1gkPG)5f+OKHg2 z<%6MSGwiHMPpP)r38Vdl0bUWLVz%I4|&h=d`c8 zPyg`(1NEw!XwgpIdGI2b%xX;;MQtl2E{&>gCd~(2ExvHR`qbgsy7yzgN_t-c z4kUP~fz(FQv-lFU0d{jrEh&pY}J2 z^ITK-ayk<1<+azS+|YS^b_J822@Nc?`-ddp$fVU1uz~wQy_EfL8K=5R4>6;fwQgiS znbC|8U~H3k-GgcgJlH}b8YRMe2xC4jA$+;cpZI=tLYM#@ zzOj(ooT#mpI(ZisY6a=E{+i6gK4D0 zT!P&57ZW@<&M0q27>5g!>n3b z1Yp=?>ARX7%xPs`e31<3-1jlY>6Z;Q8tMpE>Hq3+PlGbs?&WTM{>MT??qU;OmV!}~ zetN#BHpzAY|1)C%nPlpoM+Fg*!WgfSnmx%0x+ahaeY~~xd2YC|Dpd9fgK69gmnt?PQ*82x z?oa&WN`0BHsL77~);*=k1WC|2VW|&+VMfnE7?3@H=_jQe4;^Gwm%JC#*u$c+)Zh{K zUO7s9B2+!mh$V$iHMphy_S3B*0#heuj6*4C^MZFnf+N8P$@5BV5c#iF@w?QmpPSL- z$8ll%d^W$IxL+d~c;!MHcJQs%?hu=ilLZm;sTTOr!Qe}Sn zTELi6$T8c{y6~Y)P7N%Cb?5zxnwN-|+6~-Ii zHadt@^MP2HVWT`T`A-?YZPnAF`Yp11(1*!tqUzMhVkpM055Xjci;l|~M{zn5=OrmA z6OI8H*n6gD`GYZItlnsq3)6si$6SD8h$GWidYHW81@^bcCsNU2kjB_m`wAK(Q9!Z+ zjvK3xt}?1S1&_EWuK-0S<&ZM@x4Bd~B9@4w@-1(cdSKvhKh?%ZiQb~;s1RD$@)gsb z2AI*qI5NERkpgFB-X|e7+WmHpKIefG`UFa?Y42tn$_*+(0=#9>YV~ojEpfxwE2W#ad=9=# zm-^aY+t7;{p*w-$Z^(*y1_)m*tcjQ>|UcT`Yb*45(C4Ht!hi6Kkzv6vN@AFS-59L&Zn?3bsy zlHy>L3oG#it2=}I|EL;SSfL{g@X6}fr7DGKEA)=W{@a#7Wp1!5k&E*GVI!FRLesV8 z7+HsAa5UHI_Vq0AbH4b?KSVQV;A2kh71e}~Z;R>7Itat%3tM7ov>|_$Sx8{y$Nz33 zyy#tm=yBrqODw5U>r%4lIpe~>EP57%b@s2yzRAP850nV@{R(htQi=vDr938FOMw-Z zp8$hQ4oG>OguAI|inecx*;iMG;(@;WVXS4b-DM-yeS(R#&H^T2)%xCm^oU6UROEZ7W+S= zvck1-N1Jut8R%4g>!-zh@We)tI^8G(h!WsxdbUWq>=QKQqAmc1p1U?e`n~I?h11BmP`gacVWS`4X97B_v1;foePeA0ETA3`Q>}0@SLn>T1rD!llu5!Gu zoCRAzs`(rWGrd<{QNG&z@ySf%*j9U)ec?HyTDRXvpv|*QsCq%45|WmCtC3Pa;J#GyeW%Uk)BoNAHhLmPg5GO2~|4 z#*wFO@vYJ01n;~-@b$+_K*0JNh6qLR(Jb40iNcz7Fs2%c1>Xk95H&@g^Y3v@5ajQd zEIzXU_>eMtri+g{aT?N0Qr&YF~a-rtq4}ZVX6$+QS z&9C!Jl=c~iKY~EHHG5;wYzHBR_w*&UC8+977il9=(0~DD!jL+Tvc+eJtWl<{k9RuJ zx9z%)ss{2I$2W%T5!LBR#Lz0fc*}@=pV#cd-`*h`7sxYB0#4%JSmdyf&N6-;E4>IO zzOzd3$Jl$5XAs++ZDXUhqNu`m#p(>-exSo6WhK59JhYR{1I$iaBc1e+=-)tX1Hd8x zKLAr7^Ltun3)^cgi_R#WoSuo>lOejrGc@Yv`*Vq64&Q!S>pq~NPyBk@vo;6oo3tLT zbKW*c_y5;D{Catn9DeBbe2F*;jfGgMfDk|b(rmv`p6(+U9jH^WR6`76<$6I%{)^VC zKOB>Z+j+gZLljq|_A8O6DWg~eia2VX;MXqTsM(3QDuZw}5(b9Ce}22M$1!`_HRX?Q zAh^`oa|qD^m}ja1b zefE}*J$Hm>6debUZGNts{o)U0hHSmkc$46YjaEsH)Wbg7sEiUh(nUjhcUGDw)52V)udpS(=Vh+ zm!L#|g|fK_(=W0 z9Cr+JIRZqq=fT?jCZTM0?lp#4Fu;8C5Jgrp-l-OBF)!wRvh}Pw&%Eqz4MZSda_#HH z|JE&XSkcvUW6&tE&{q;m9`6RRoi&Sb)H%_Ttx)phjseI)k_&q{vsumgr^|q=nP3MM zIPUp??3Y5_%Cn8<w!<|;F-HNc+b zMMsb=t|OBb-$@d3a49VyfM%3Q3`GOJ6f6hAp;5;8NOXYV(9^^y725H1$N|V2)2aK8 z7dvT4esB893YwyG0Bch=~5v3n(=FA5TygMuq2z5oURC8a9$!lw$1 zB1IqGp(J$?>Lg&uss8z8;M@(S=5X&p#bw~tFV{wr2)?UF#KA{zmB6{`S;o{2+~D~K z=f|CnLK4P!UtUY&fdl2%av#AwTkjXw{`<^d?<0H1{o(O+$b#e`iPU(Cf^hz(=|+#_ z>xuIUhB0W_!ZBSkuk_-{?e5DK`7G=yT6_$i#im0g3h8Cj$MZ()&)v9e_Abgtjw;@w z(Bru8!enXiAF8$ZMp*0*NWiJCH6{fa0zdCwN(D@WnVA-(jtIU`yyX4Q5;?kY$D3c2 zIA+NP?k3$3^d*&v6)duG>G=dIw|nk#FaTkav)}Tc(K7eXSGTYk5E`S<)gIZ@;mx>c z*4mAF*dFz`=j(9CZ3(81Q$D`TZ6veI(NpVk(S*8OlU#j#B1SxC7sB3{grq0{2@wn0 zp{nV*x$ttmro%2J3s;r+_Z_iA$2!F$f5k?e7<2la)dT)GZ)#A>qcbKo#-(z2m}K3; z<_1f;cRmbH{+WK~;=M%o6G7Flp7a2AX|pLfSv1@z0w%M-vaK$m2M8DEV#tVZ55E~Z zm)9SYWmHrYh3M$Wr@^88VrmE1G0Vxu7-UO!Cc(@8X2xB0%0R@%g#6ZS&aMh==EjTA zwJ|ztHLj+}AU;*XpF0J#vR4x+wB3Vhs9H0O>*B2C!_db~Y_Qw&NamZX5^FaTB60&k z@^Q^0aurFdx_o7oF1KGN_H#+$7}$hPb26d7IAc(~1H;!;h{x_Oes9>vAktoJ@8S1PjymrXS?;07$Rzg9ACc!duR z&Ne!V{~^c1lV5Gzgd6%juh$OY94$;h3W3lc4qZt3XCL-P(j3++qShOSy(8NyZa$)p zw^`D<9(8>%DWW&yb@$FhM(hN^ecSTE9NJGJoOm*zQ`B7|FddD!y!4{k4wfqeJ1=LS z;Ph|Gm=6x$%tP4;D)~7x)TtH<$RV?sA z2tZ_Rt}jJBdwSulf`(04SW)+|x6MDD&wVA;yj>FTqt&w??ElIzTMj-%K@^xlH;8%=)I9 zQNFm$S$Hg%+;4xVIf>y9Bz;!H3RrSvI60)Q$i1I{CUgNwWiv`!|k3Kb@h4PQV?@))oA>kixyk?xOCgE4YFG(+-AgPPv*-1V#x(h@@VR_?1o;V zD-r=X>DRhpz>kXOR6{C9z5l+W`d3&dwxk%}WOc*~`{OLBe9oS;ds?Ae+VUkpusCtf zmQFshil#4!d&^~G6!k@l*={^vvx^7|lu3xdroB1@7sX6|1#F2CHfofWTr$Cx$wBf! zgQDyu630&&xAj6I_Tk2(fvU6_37(!CVVR&VP3VfNY|)C=jh>3~IKrG$=^Y%T4qIDc zQw@aR+|uG*svY`?yfawnr|9!z~JzP4WY&g;rXGa@V3yV;Skk2W5=H zn&I4P**zYZ4<0-KCtXNY0k%UN3=9p`E~j{tBEK0E06g7PSdww%M`4lLhyNQ``m?ae;{+C+SZ@*B~ zNvJ3eIiMl95F39D*a28z&f(8+N3p*g+43JJa}b4bAE8IwU;{Ei#%Na2w!drqF&PBx zk4%V~d5=eb6!8Hs58&0bV64L*e$ZU_b~CmY3e3tW>8Fm{VegZV_lI5^(6}X}QMq-l zcrmbJE*^JCtUkFl4=!OkI6g08Y=EE3=$S@W*aI&DnBahpf+)0?8*%^QT%`ej^uQUT@YdFyvl-u}k;fao4UiShzU089uOLO|6kefKBFU=01jJXKlIiryuC>90Rg1bWY9w_VslOK?{BW{2rR zBRicMN93*;aQ;N3XpcG1Ym;HNmnB|dxvieNLwXmxUSPjigRwPRj{B2|Q;86~bm~MV z?#;Llb;f=FaIsB*6=#+LG0X3e4Ch(p(($~jR=kJ>Gb);}W(moI{6GSXmW zW@a(fe+u`Gc^Tf6prcPV5((tru;DLl`1K(KiCe@5(lLQagUCcOUhFL>f;{ygD)VXr+}FTIF7n z;|B-_gISx!h0G4I5>bH2@55;{cv^tIPPr)sE>e)SGewP1M60|R8K6ZLXE;Gn&lBk;iG$M(sykqkKTmwWs@f0lre@Y+v1_J~<|k#WgB{8t?VwQW)P? z6Ck-lb-8(Xi$&g;o{ZwyuUpWgNR7iE+QxToqTNFZ9s|Fl{$HoXtiRy#5sc55=owD*aM{%rVLephK7ks-}G$#!0ohU^Ad!HA~tINydL&$8(bXn z(-^#w_1=MgG5?1I^I>Eh+?JZ;_DLFWC<2ZJQf<=uDmYb|6(j?%l}z|~MRvDSf&kP> z4kYHk3J7}eD{jOvkEYmA%XCCZXtJZ=y|x@YY31KHDMsRo@yQQK6^YSVqG>frd}G%@ z>_u-?Oh5z+fy6*&s#9g~GJBZXU}^s|;q9C;6(wW7l<_p(pWn?emjw#U!<6G=Fmkax7lOdm_D9;7hMyXZM&|*foZ}G{LVm*yA zZTpU;Yz)bYHczQgKy{4A!=oz53A3#i{7uFKbc8!7T>sI_)DqJUPkFeavmv?B2l=~7 zmOIhU%g`|=WkxL}-6Zw!Py~lVlqv`wk@+@#^+nHYI5*#_)=guZ|60$rEfwngka3$& z9s?BOFhhPcG8&k+zKbVR2m8WWl8= zc1y&R7Fnn%TN=Ca2i2<=C-MuMW}p9iaI8}}^t@7wIUwzx9fdaQj=)9#wBb?tRHBF4 zX+nukNzx1f-rD}3xNsFwz1!xGqq(`xONc~ivjcY4K)YMLR3NSnyxB)vSg2|Gh z!KUaOOai_?->mc5Hv=x*u5MFkXv=u@?48veIC(9@UnyhoI;IT}7aSb_lL9oT+{c4E zu11+9u_0Rc0~RR;V|k)!aAZ>NW{7T_%CDYpCvyvrd?L#vofCZ6M_n

b*@UMYL*> zBN2Dpe0v zS)(>|!v0=-8N}&BkSmuccWa02iXDK7Tn4U)mX?CeWT`jBr;-o|L?Ep9QItu%oFQ2# z{Odw6^7K1!?rfCa14&4rSP<-2`SXC$9SatdP1C*SSw~!ZQ045@)B#;Q>kW@Neq@pt zD;7@+m3ppmiLScB_9g){Uh|rw=m`KvC_U~z>(CrY14f&HU*Go4ug>rh=(49Q;iOPP zwX_sV4mz{&po?h^kn?@@>Xj;>glhNL8UavpnPuS&u$~0{68l(f$@aFa?)fY)Pz)O# zHpXhP`e{bbbL4vz!dM?rt1Lfv>uZe}{be#`?ep;G;y(g`t`LOUir+2^k`9V`*`G#F!^=x1{7Y|a)tlJ67^?>#iAay zn!pc!iHaAJo!{Q-gdqaBG0=J?XXW5xicF1m-2wjuf%wS(;?zm3sLr5mMH>nx1i(lQ zJbg?Bz<9@7V#wXRE_WS7`^mG{c-&u+aAq|&RR~2B3erF7mL~KAdjZKOWAGeW@VG}e zz#nY}+JQ`-%8LvH46sjis=tAti$xt_A*dlprNG>I|Ai74lsbV09+8rmrwuJC{bR#2 zg_r)7{p^lC@Zm#UYaN*BTGV;!lWi1}ef8JVyLX~}CGZgIycnSV{d+x`2X?M2iVF>@ zL9`T9g9OOP9toI_f>juU@|%Xx_aCMA^C#2|emPG0XjfFu32Mf6{rD0DR2W6G6LD?9 zP=ho5-a93=&*Q(IEbfG8FB9FizCr|?SX0B$hmvpHZvSop<~Zo*1MW2-L+VI`(6)2) z@Dyot7aMY0jb`$IdHYB`0|jt1buW3oU%mITm|Z@$6ai)MU$D?tFHy67hJh>;uI3LL z=}T2qUpYOTZ%-27Y@r9hJ1NkKHV&%If{;1T5a!E-&=d{OQ}HQ45Pu*>SLyMuUlu>S zZA@zbO?Lgb(mqZe&H6K~Mf$VHpV(uVw`gLY@*OnH_zIIk{!?W_{7XXBn|}PHa*^IA zrmxThRvdOU@YP1^Pj?o{buLg}1KJuOa?||vpWCz?%;T-SyHrFVA|lLZcyWVA8-U;d zhPWP8?{t;#T96>>xk|#cRrg^&-~DVqaPiJ?jV(9m3TVd#h|KG?XAM4CA|VMuqRx+d zM&!vt7;lOU!a$l9Sdue=@u{&fqI6?pWKMa?i|oh`6df*K0Kj4_DcjxGVIi96%!D2b z1z9>PiH+vpkkL|t|9Zp(vwYfBb|iD^!=^~ir;zWsSm8Ie{$_~D-8m;*+jW9Yy!H82 zbN;Me?Ki>Mrw0`=A^H!XPGJ~Knk&9&A%m)Pw@#~@99iSm4h|LejGz_?SO+rgqkc*K zm7t)YbO&{wsX7=7U6k`hW6hiOMX@F&w%c{JImZVeJG!d;}X;dZ@38Uf{d3gDA$^Q*CEWTVD;vdcD>EYxW7>@zIXtF;8)~-iX z-iJUscdP&EGuJgnWMpKNSN{cbnY#)z@M|U{CP$mnQ~#0(ob-Qh`kga? z_n%h2{+oU0C<7buSoF8D=YQoa6JhpHVHL!S!HX#RA_R6X`;B|LOMKY z|9nc3$7)r^BHUJTzk7>*=)9%Y7>x_~{sj6epum~o#rByv0t)&S!2nTqe6?*ef5^Ed z0EB&p&)1PIKikQ{FSwG}Hrgf)^gsYE(ZK)y`W`c0!WL$IESHPWIyP!Oi27W{7=4gi zcR>Hpg#61b<=oN&>nl~KmKj>J2Cg-lkA2|w^9c9R1zF9w8KwB1&R%ZsZPN9rRBa_y za>2_t;-m!@vl6LsX;4iai~FGtoeyOS#sPE78k_4Fqz#zgJ{TQs_54l3&Xi&!9tRpW zH6lcYOm*WHm|4T%r>0ax3&oFUib(Y|73vM|1Y!W!A()(@We$Pt?&EaIhTBKxnP^TW zs2j1=T{ez z@>|j^w>*m6ulSCwOuqTp(eJL0+e}6&yBEe-Vdy|R2IIB<%&~aiW&Nr1AG7;T{$mO% zgloVo>O24Ba(r}#mf+6c-m(;QsXAmAV5Oz3$bKL9Xl*^zr)7;*zDpz@L3HJcf-ldB zTp>a}kH9GB4zB>nD0_kqX6nzSh-G|u``tQ1^Jb~jDCyX~x5CJXN0-8f>-`2$Edm zb|noTiU`KdcDI)#C?4>;rD46wBrg?B z`<*a{$YE`1E!nJK%A8gFp)nk8T3f4}?0fPqnVqbZY{?jCYxPe?Ta;&+#!FR@Dr8LP zlS^`{_{x*BmWFPL=q=Lw#^#LS>~WJIX6`GT&2|UYr=Xy4162=lFvovvY-|Exq&6j# z`$7mg!85&xclfNY4(RG&?7uAVs5q7YZZMqus$rY=`+Cx2!tc%W`hx3L{;WY=!Vbb3 zE7O>5cY~ytuu+D_?-x%;oCVOY z<@D^3YD}mt(lTcj7E;O1D z{rl_K+l$m+yH{DV1j4YT+vYuJ-(TSFkdE(qan`-;r}B`-KZDWZE1Zo;3aP~rIl{?? zG%_1|!X~?|Sl+dpk)p~4hXrzMuWrw5;hhasl!mX7Ys1NIgj zAn?iDAODj@*NCB|WDL$9CXZPSo9G*% zx`On${v1*2G8__U`FnLN85tciomxHqHoyA-4%THhe4dh1l7)NsytHSX+Xar2{6KIr z-4+<`{eQIlBk`!Gfj8_EB-22)6-fNIhS9kw&V(&EH?7SYgT{Pw}bKW+{cD@ef zPg#UKduNcM-(`(kPMLOt<)gLqjm~r{v?)MAqMA4QMY@qycPP6mcN;D(b z)8^W}xbAuu&X>c1*BM|S?#f5T0Uhwp0|;!aPTw0a@87>~xn4TpXEI(M4=L1RF9eOP zVUTbB^wzXYduzYhQCsRHzUEj1LMWV2%bcPQv8Ak_8lx_7^Go?`>~=d}!v5!YU}B>} zTm7IS^Jv&(CF7HSvJXk?fjXuRT*LtS9xcwQu#2Iuf%~;20LSr~4GJFnfVSp4PAvdC zfJC{m$8vbmzv$pzEOsu(gq7r*2UIBE?I$@n{og7dTY{J%pp{_Bd@!Rj=+dljj!hYi z`JVIGjitf>k-j_`Y3JcKezFqUa(@RY`=`=OU*C}19}evs`Kkl507SA^{6K%kAd(7s z^j1s7hWq8myBqu+#~mDmz>jzTcVzoo%#UQ8Q93T6CYpH!IE4TlIxq`n`l3`>6b9oG z2hmE0zY;WwSc0?@6yoakrzn5ldkW!yNBDWT{=7qFKe1zd849R?v)dpzzSTCC#R-&u zWjHG<85C{s4E+9DxoXWzo*!f6A4Va=LiNA z36&=~CF5xL-IsodWL6na0R_C+A9wVN`jqvVlLTF0^L5fuxvuRscJSE>M_^VO?155`jBLAtf zq7vzFpqtgHW!PGRP8Zgh*Y?tVk?*ffNPiO4n^i`>(;UXBq=Insa9fPuT=Q$*_pGO9 zTIrYp`j>E+3IRxDiY1!9mcmW>xX~V^4hk*=X_W{?$~DqR!ZtQGRAoW!tLlz&6JX`6 z$1ANj7=Z$sMcTD>i=0II^=|9;BwilxDi*U@gaqcDJdEMwjhWmSH$%Lh{sWD zYUFR9zMfM8V~R4(?8QbLQBb@JLJ@BEE`)bWMmm@wjor%M0rx)lHUANL;7)6NDGA*S zdYIug^WeJZ}cpPgYZA zi9jHo#F$~Q>|X7?J_*0GzWlC{SyGnvkGk@18-Mgan|3FRK7S50&YUt!fNrU6{bvV) z`{7VD5L$(mf(v%4SVbi%?JOVuE3UvzqWMDTdHn6&9&(~$6oWo=>Z}DMI49HEqamg* zwG%387JMl>rDP#9i?|BPglU-{b<{1hNje#3H9KZ&v3+S>|6F2Z2(upM?FV49Y2^>r zn0B}wkBN#(Z(ark>)?1Vz#-OaYwU@MD-%Tuz-XVrT%4GG2ymhSc(J7yL3j?F21k>8EzRl4<~5b$($8TETarNzm*A644cQL}1; z=B>5(E#fUsk|#{5NRXlh89fzx!$*KfZUG<1FywQW`RK@PKGbpQg;{DzZT)r4qHAL1 zSL@7^GTWT&yu2aMS_`)4BJJM0Ze5U$wFq#kvR9e}?1}jGY(f^7%&9%QaZCkA>doZq zXF%UG3`1P?G5!L61fkAdXUUFJF+u!$~V`z=!xtGq=uq^PyAzE2HDT{b%pq2i*f{r3_;p z6YlCq#%t5Rxr0{Ux<;&dnkBsBM7`T8(mT@O_SGgspGvEf{oreh($e3>n-ay)jiu1Rn7u7-A6L6BdbpNxv+kmSrI0;{-vYXD%=UgJItys>wvVZtjpU3+A zKc}(2kp-Wu235k2Jmp-l}Hc9l8X87Pyq|#2cX#rblFeIO-7t|L%|MgX^93Za3`NtJ;=Vf z*v6W!Lb`d$U?4QG=aa(Y-@k8lnXLhAQYt#YufGHO6;*NyX(|BPDqNYM-MFKHmQ0JI z>cxmdwWy-HK=5DAFW^u+%B^1K40^u3HuH+co-v974k&Py*x3KTb05AhV3#U^d$pcy z1i_TKc}$&RIQaql7J-d|ES^i3+=KPwrRYLtBt7`?#h=a4B1^Es<*D2n%w4flQJ-kC zGBXcGSd!(YggP(2)$YAYK9eFUMhg4n?L6HUneYKwr+Lr0(7`uAdSDBGN{0Eq4^ z@a~qF+v1W)5l|x3_TLDL3Es*}lYxsaQvbBU2&BsBgtxFxOHZ@yP^RM&%Rw&r^xV1h z^LM=?KwIRdi3*jkkI8ju$C+<&-T#5ASvW0$;T=otQ|c%%p5(^2)2KmOp=gF9w!G z5`%OcC{mkid(Ku?_V!6)Q%KU%81N0p3!^Hksw_OLtln%S#>pRMijJ*WGcua!y&k!wBXwlz#E+>>3yf} zMStj-GOc-zA`>vbz+GO>ogleek$7 zDg627xb^AhS9R{{MIgb^Njz)rvtXeUCSqO3g9qS$(N$>4S*k;~*ime_Z?*Em${f$n zdJrWkEr+r<{uzzhxShA*;&PDgO9DqWSa_8oOULh~IARt1km)2kSU4E?b3~d(=4F4; zXz6sBs3&|QIR`O^f;cG`ZuzEghOn;s;mMSiwYN6~HW9;MCGMmjWF~lM1LbMnOow=TdUqdiLS_-|m|FC>V%?xAIHIo4z<>w#Z=T zW0Twf&kG_C+cD-LK^&3oi?IToT&s7}B#Xy$dx0?UFkdP*K8rV0H_rJ<%WCGl z%fR~Jpy~(P_jFZAHHF7EuwtrzbjVpu=UDkxJKz5JjSMA+ayIgt6&zD*Df^%d1lV$I(>= z()IUoHq+gvYr4C~bpA2j(@fXZozrHT>1os5-5nEGHy2mub38A++-&EZ-|rir;!{Zn z@~KW6!LdLJ5IT(Bwi@y~e3q>c*1sZ#o3)yDGyhEo)4;(3I5=TWYS&v@5U?fK1|0pH z&SM-X0Lyq_uzb^iO)-e3PVV*;xdO)g6=B1aq;e`b!y7m`tI_^XJv6AMP0-6qBY{96 z`?5OUSbzH>lQ&+!si|o-Gt--gcD`x}Oo*ht?&rJy>)_vw3%^IrcuFg+f{lS5`%S<= zz~)Cp=ZKASFZZ1s9Hw(Y(joe&6ki*19gc|k-#ZDUck-VZU}3x6?oaO$zKBI<&MXUu zVq*(}RijX$Y~=74jPN}Z{ws?W9l1=Z{Cq+v5)43wbGK1!&IAcKx2Ip`a$~_UW@!qvz4O(tkL~H{+F|)jElL(Mf|PT zw4C&Qk4}@0ZKyEv_hsHn!;WaR5;%Zt&Wvvq|9Fi8glb(y0(`EI@B!5qNS%>9QfPt( z+*y}V)SM;OYmWPD{uPFU)A=$^7h6)obRuzV53i^&sTG;MILUN^9aW?jw)^MVS}*Q{ z`z$N)lyEi7RcTI8c;)ByB|)qY5{Sw<0>P&%4Lk_~;xI3#Dxp{*o%bsMXQ=~Yhw^ve zVnrauRg7x0hI4zjEER%nndaTZr3?Gh-jrR98s&q2xGYoK5?1C-FOOz__0* zP2;L+Xy5^{P+@P`Ww$hd0W$Z~b20DcY)%#+!W0t!$7#CVa{OKR(yDpecKvEV;OUrL z2n?;pl|o|qZ9o8^L~kZ%$1TSYIVhF5JogwtM0MHOR zYpab}#y+nVvkS!Da1i_Z;EDb2=?vjAV5;lbu(bougk3Ww%od9XwJ-64240bMUQ107 zAd^p{ZYKeHNl^fL`raE5#BS47Ro0OQ??iKAm|y9cPlFoC-U2XqfcgyhMdn(4G<1TF z0}c@gW~zOgM{E2o0AI{tjnmC#aG!Z4R+vOOp?I5Vqkesc)vzt%Tkcc?7V4|;%UUNI zHR9_d1RHMi*%MLXeUCq@*Y=|*T(oi%bNQ@9Xp$WeEjzmFIGE+}?G@Oi zzuW`K3BWW1q}T9+&MAQDA0E)D+M1Jz0Jd8SqsXGq%ho=Zv$LtKGrrwCqI+8`4(Wp{ z>&|#wTxBi4FPzA$JdKHrp7w`}79nf1U67|ejv?pQ#i(+6fJ=i9tyjf0H~VDH=3cP# z8v`)bh~Pf)rx@i#ECfvAEjXTR=w9=;+bD^AIiT~^j7uB@f$UO7ptbD|4q5+= z)Vu1sIDKDDYDFA0dHZ@&JGliwNpI_^8weN!$foyNPZy-{YBPZT`9!lv%6W7ETh$R2 zSMwkJ#`$LNTVK|kFLSZf*b%x-r@RpsjKCovf;P*&`2b7iC)v9%+WFq-Ipv~(>4o3E zwLZ$D?V6Fy=b96@@R{SO>vobSA^6Z5f!ya6O22~yKXURPvcW7sdjn{`z&e3s!53N> z3tVczQLRRMFNhKcRrm|}BmN|C(|GuiUp=GWG$p&MWJHHK3&_eF@XRck=t2Mf)V1EY z*?!wjoX5TqlQl1yBkYMyr;_y!=47Q20~lHDGOBQ4e9pTu0H4ouh-1gP5CXxV2-mIg z`soFKK0b_fa& zA_n?r%!h7zK@Mk0KtnCdggWDTxH3A~gIr!Th^_)&zHF&ar>NMssbnFN1+G8gi$0w3 z@ubxI6qTX$^xL}*F=w`);%l^zu;%L@Pb-@*mk7^VZw&$H`u`(yuS_gO(pofEZPft5 zt0xd|a>B|!1~h185S^|SuoqsdyRLx|ig?#}mDR@U({1ftjz3p$+BmP@^{YVWAp@UR zhXWRq5Si33liC9Sngrs!uzq~}!$>pGAhH;f2fucy5~uHl8)x8)?baDsJMY48AP~$o zucObq*K!8^qVh^0Tz#5+cSc$T@y_(a+<3c#-L~MKD7vymyx$luRw5D)0s=q49j|M5 z%WN+sC%^suFDvd@s(n#fRx_Edf?+DRVSZLJOr}e^Zj;y8alvGEg0M_+aE8#PvTq3d zCfhd{))KTmV^VJ8x8Mwv$pK<{lp)B1zO$ zu;y&`^}!Vtb)XpCsUaCX|3lTUdVD_YdVycRSSY)zTx6q4I)t=N^3aQ2esKXf$4zq* z2k-*+ej+yMVL%Q9bq-MDzclOn4Hx69IZpw7aCg0()lUga9MTWzYnVd%6k>PHIbC!r zz7_|*Rs2l8?W~AFQ|ng;szB-spa|IN>hOKfv0_k|b=P_JgmIT8v%YfcE$Va$IiK9` zj3!^YMfU-(H%ijR2-^Tmby){1s)bL&wWJ6@V%>mJ<0|L5xBtbyVgO9elOjmDH%`CH zdp#wX9=6KQybMD^O=U*K(C2FzSQcxtXV4bBac&(dvrlgO(Af_TFpWu?`@JYVYRO?X zR|LdWZBoksd}_n%5v{z;shU4EsNrtZg|l+aE@?zB zZZpnTp=;w&+{qhgReF6ZV0Sz|lJBUQN|CzS`Mw2~8{6h!YJ=J8n!1qhya4S{I)&3W z0l*mjA5G`2(y3a|ExKc}`!G^&pT3VM@5Sh)%#$9uRjd8hDVR zlM3^%+8AJ-KO7r{TM~2zt6+S#VpRS>?s+qL(HZ-Uw*D7l2O6#93vMynQGE}Sn~Kw0 zj0gDr!7(B(HMkxB2YKx`Vi$+?IpT6c3km@Hsi5~%!B)v*hPZb?3r5jgf0|sVq8KE7 zl6@}1%k1jMQ5g3MZsn_ABt|`T=>mt{@cH@~GPsbD6#cBm0f1Y_ogplMv!Nw=XS{+x zSi}4UTM8tOS%eTKTkBcbD%$ZveI*j%KuuO5=wUbr_I1V)eQai!J6fyC7><-$b)Lm) z+pH&W8q8`{C7Cfyd(53exj$y>U($FDY3*T9RB{{WB_fNlg3L^cCL#k)!r4NNM? zxnDkf5XI-DuS3ptEx2y)u^R-z&^^|1K+@TWG6VpLB#OrK~yde0J=v(P+~SYd_d(n-1OD_B&@CNH0-D&QZosJ%U~Ta_thf0s+_Jp`itKy9NR9*! zP-1PQSaj;X|1S!ob5Cr$xbq5y@RQYTtO$7V#z_M4O`!wqBPosOHv$pJ`?OQY&Yy!+ zq@w<8HJ&}H+#UKq=*+cytt`H5v53VDR*42uyToyeRDKRUzQ21qAvpIS5RK$J^`!Q* zdc`p26k2u{3J$80ey|qFknClD;LP%#fnkj;++KLMPuxXUP?G}zt>+QuK z@isbGf1_64a=f?5R_LS{xYiRpytEY11$68O{wG+C-p8(_2t0{jlpbLepFajxa2Dc1 zQ9g>^-rL=+5;T}N{S`vW$#y7|7BsZ=31siqp4yIMJ6UqfO$J4kVZ%YJ_+15YWrJ zdcb6_aH4KUvv=!R;9zor^Dj%8Ml0hnTvsNV{sgT00W@+;J)z%h``Dg?kmTWfZd}UX zI1u5U79cwpXRk|LzPAn7A=%Rb=nUb%Je;`bf7=_f;obqJmT;egU~puk1fmj|PX*f=7LTuWFLfKt zM{8=#9IoJ(nFPvd)PANWr6NhgQDFrR2`Js}q)iwcKL2OZ;w?CF1w#>;PtKE?eN=i> zS-LMU2}~au5_PCPCo2-F^ELVKy!HqBqg)=(iQYMn`cla-GVpPiSr{+BAU@}f%-=I7 zTf%J9h_VJ&A9Tv~8e`%0uDHeDZ;r@mLHqBGHY^{>hrON^P&y8T>0OBTFSBer`!900 zg==m(+_Tps!<2)tGFIz~&c_n=K`%=`Rt0@Uj8b0(isrtqJCK$S1!gG}a6$kmQ<=l_ za)&W}sEhnn6*%<-epyPG9oASO^JUJ6J#Z0NPbYpWR zq3RW6jl_Wbj*83@1WH}lv#2y`j0NpbBxwc zG~3t$L&2_sF~)>LL>Nwjc9kz{_8#{g@Le%k$DpGLndaO3N%LK!(SDidN79TfraCEM z$0xEg9LP86wJRhZ|NDwj|D@jcGD{?!TK=OeRo|`)lJgrfRE4s{+MY1@xpq<6GW`-# zCfhiVGPw=5`%T#{W-d~i|3cwAnl_+{RT-+&_Yp)m-hcNLnh6OBjrp-nF1GsdNUH!O zx8sT2^Z@?pp%5$Rcj-HS=qUyG$?K;^8eHy>i0OX@DP!^C}R9Tv(CMW7h$sX(MuMDg9e8XRn3w!1yR?`D6 zBT37mIQt^QU|VnDJ-3E64ZZUdTwCtAn(i(UF;)roiijW1K_jiK_1zT1lJ97HH9cQ~ zKDfHN@~ej2L-#m5&Q?`b;dbO}#J!FIWZPvK)O7|{3~QZX`* zH{Z9hL6O00FPUh*P+_3p7>(=&q@vOy87!(YTCFEVWPD6PqC>#7KO~9!@$|6!DH~Lp z{3ZMcN{+8#%;f67(f7BZX+m^{t}8x{&H8Zf163PFuF=r+{d>_!gdGEbJ)_InssNC8 zvL}g!swkpX=<#2FGD@m7l@4yCG*#dBMbs50Io;Rg#@lTS4UK6HJUPsGX6N7ZQOkFd ziJ6O+J;=WMy${xWmv^LMy)1a>43!x*Vfzlxcpg0K((T&%S#9m!bVe&zO018|Y6~Ks z#ILrCV$Qs}tNJDMmzj+;@~iBpfL^|ns4A1r)rydYCBv+>d8WV^!N2Bd^l2+L=b~%% z@qFjL4IbVh%P$=4w|jf{!{as4w>^}Y-@GULWQ0X#7A+VEfZ;M9`H7SPf`fgTO)*_{ zSKvLYrAEwXOf_@fTHwf6y;hTES)}~y>h&pwr2IR>hQsFu7#ICNmptg95^awYLU&Jo z3$ek3OV#ucxaaKYcT%CPbyuS)<-2%Jo*oP3tsMjF5#rf1&@JIBBVT zq~P2fG5D=-+w?V)K!`OVn1tW!eadL_@=R2aNxLSddHIWdmLFFf*f5o%yu_gYJe$(5 z_5R0+pCeb*DipQT``%&Zh^gb~nW8PLs^isd@97HJ-s?fxuWmo*ASzTLdlHlYI5#PM z`B|XKl&k5_Lhj??-2(7De<{PNRat@Q_)3a*s8Yir9-2a&}CUayh~8_Op@Aw~hbTZa$Jm*N-IraWIZ)3!QFrO=~Cs1P`4 z2P$7gbgJ;U#YX!0>27VLEdizUTW*cDovrD3I*-O--+s*iuEyf%1Y{5g$!CAMR7+LT z(5o;K{IGT}e047+{9;D@7v%SC%lQy^Z)~quagTS4Ip24)TPHBfiC){8<*>VrF;y`m zB&qVVJ%pmzy(dUS9}cJu{kPG=!omlAgabLVlQSO&Pn{DKX(9%<2^tO;;Uw5aOLD$P z9~=WtbJ8Uj_vc>1gk4h`6zL}asjI8wsjmDOG~CN2==_Q2PJneUcKVuD2>r$Bzus29 z{ikKbd!P5BZ_^TVvxIU*`=~(n<+Jg4!Tc)UBkNh3Cql)`7TlNG5Wi$&5QwnfhEZLf zo#!XXR%EZr#ZGQ<1Y_u ztlxol4f=h2?(s_7#Z+akLc^NU-T3lpq^9s*sw92>ruE~LYu08iC1yzJ&*pcMjW1jY zXw+wE&ightkVm=hQ!rBdV5jfChfD*3nfrR}u+#JykP;=Cr%Izr;vv#mdHliP;`?iO z9y{vI$=WfuimvPZu11V(-!~4mLvFIhR%U`(Ae9h9E>ZihbKQDzI={=pIF3sF`Iw6m zDk?5rZ4w=A^Xod}HbiOK(=CKdephc)6hF@D-qfeLaf)rPF`A#o_CmSmC zfdArHhFDIs%U&u~FNdOSasjPc3GQ=n@K~lu#ytwY57i345fuUvJ8CfCU%-@ARM~(p zhbzZ~{8t+l_7B5Py%BXaO=J~v&@V9P+T*`+jb%5Uvitt5S9w!YYWL$spU1Cr+zvUu zaddH_gD!)HW)wWym)dz0HTIYFz^k!8OTQpW_st)5sEfw46!=dg8F+TCy}xriI!>xB zxk-0RdQ||~F&&XSp2Z_d`X03ZLudDq98*>#SF$2@On*F0WV*2vil&B!=Vm`anusMj zbd*`34BnOW<)#x3#DgJzx5pROY@_2YyIlPxPa{3xs|GDLu$X^$Jx_(8=cl-HN-o&h zT2z(0m+jBo^b9_Gse0-S#Ja4mvqn-`y|cP-iIq;Eu^y`g@uGg7{PJ#u5}?Dp4Sg*w zE!u4$4lc_HlEvno;5>TCZ725V8qwpjst$QQJ>nECo&QiQ;^IBPRofSIx*&gbmN3;j zGF+)(+bW`+?#C9LdgqAMP@6ItB|6`HSu`!t&djx8~n^6cUTc6au7AB78+dX z#DBcoo4#jz=LOaBWVjSmx21yyUxV}hc1%CzYfSLil=7nLC;rF~tlBS{IKC%ee2(Xv zZ0l8*$=dIsXz!u@9ovpw4pYWs`6~1Jl6SRq;x)Elmrbn5yR#uAqko&Dii|N0@E29 z_wV3|N-DXzvvc!$4UU( zNlr>gMk2|F8l)l55J05s1EA-T{ojh-XBP!hOf5})_VyOCBPE@iU%;n9ypNwzYx8?x z$rgSBdO%RK)xmn0f~(W^oZG6{F{>!ov!>1J?%GCJB^N(`MA7lw!a^)lbgEiXo8t+s zpVJ0M%eKge#tcKg7&iSI&&qOxAlbwC`^OC41ldo`ey9I9a#r51r{GSs%ZH5Rf|*m^ zy9K^59UCmT{GJFUh5|K)tqcB|Q4QgiL~992GCuK@V3-KIryNP}tM|S`zZfMoZ=YBrra5Y zp@A=cy!QV92`+QXle45wQF}$qfAo_4B<|%p?V{v%6%}>$jkDiGaQinBgjYqM@$GZ` zP>^`K%Zk@`hN&knk8!H7wV+Hkcm|uhNmUn@!;6kT?Cp=*vL7wh#_eVo)VEoMWs7I5 zT}Nqb+U}*|PIh0KZ=LtcS3Gy`%7klP2|V?5a|i{8Z$WbhXW71NRCNM}qJyJvrcmBQZ-Y}Y;lvL$ZN)rY zGMR>y$e*pQ5GMa48>Otyisj2=@VcE&Ul;8Nvt3J~Pj5v6lnV-$7=R=z^6+lbFA6p{ zHl~bc@NGlywQDWLJsF5xM>(xWp}zscvyj3Na+MupeyWQn6eXaxa}BECzJBKsPZok4 zYvPGIDZf=@(KG0+l}i9^YDjWAR0|pI?#VOw5wm-)-A0Bt`zGMWEO4 zJ-4zWJ6X#}si`#sn7md_Ee4{A#!@)|M`EBMpe8}aLJk-3yewc~wYB=4pC5d4<8EVP z6NR2Cx;(hX<*aqaywMio(p!dwO7PW z{tG5iAqXtc=8gVw9_F%~462N4es5a80i+PL2}DuMU7R|gyYz2iC4Ad6GgRiL%z@^T zu2*OpeQ+rjD2!IyG@<4ztS-2S3QA@~M@B@1J_`{vn{{#gWb8%18#|o+zS5EP>lZ*8 z|CLNVj{lgbq`M)5#|xF??15*+Nk12N>Q21=!hyeNuqO7SSa4O z%Tv}`kE9wC0*F~0u(e=!SzyLzGdw|EO`H$Yp65nhI}7|Apu=Us?lOSNtx;IqnDQUL zB0cWbT_jFKo~(-t*D1aZ{jXZImLOsNeM7QL7q;F*L^d-2G`d*f(c@yiXlJfEEG-;i zw=02c!3Pp?t$>VA29tJ44x4+2e98v_j8WKp%B|VQLW?yQC($r6}0| z35UG6*Y;y_&`uW{$Z_I%b!ZY04>hED!F`fPeahaC+KX=Pes`3` z%9+N%ZegtTgws;$z%@h|gOfRBRHH`SRG5rUAw&8 zfIv1Yg&zJ?R7`{v*`#x6Y7*Z-aS`DoX|ZY47;NN`1h^`V6ckY2zz$+QyR8bq-1WMC z@s}2sI=xqXeI!wW+^11U2GpsCRy^;6lqo0D=_c3gCvn0_mJ8^%(1QnyHEEIn>~u33!Sc!qz|ZtuD&-VR7( z{q*W;wEn<*q12CCK*#kqxGXu|kj||petU|AJ9X0=bPY4`&*TS&5^_*N))M|S@5!Bu`+6XBPxuxbCzd;~w6pg}rprTMwXVO)jD zf*t%_B51Xub0|>JF!J?i&F3$D$o-x(`aE7%@7LN7YT@jk2L7BHiambnynP{${Z7|% zf4btM4%D5`DZKhtfXqvt9Si$6p7zp&vb@HsQ}NXFV+=|aaHZ3Q#;YGiV)l8?4O7bXv-&tvjWJ?bA5M|(dsPP&3?|KTW1DPZnVK2o zQe7|336TbvIk@1tvF!1a8k3}Z*1Q$o@7bNIG>M_w2<88S<{BPLS zQEq;64LPW5o|H-ZtA~Klq~B02UACzU7$LvmM=3`Gq27Ir)(hJ0L`w$HGt0CW`za2( zN-TVk{anaoAcueVLyQ#u%f{NRFnXtAAza5xj9>?}g0fOuSTyKAHxEhaVm#z!y8R;D z%I~^riG-;Lf9#3$JKBNGN3EwC=WzX^zPgulwL0cKqPYG35JzH|TGq$y3;w{*?p_qQ z&KG^NEW*!#DJfy9d0MVx zsv~{hnL+E4IU(?h-s;Etw79x@((DW$j?%hx2lp$~$NFXeQ0eM&^}+}`mtg5xWsBow z?;(ov<&e_P@0{c9=c6#%s=zkyS%w>*?WYQ9)_ge?T3|x-j7jVi`J)&8y4(jMQ|Fejz`u9JX=e|YqSJl`gm zryZ9~QRfm8VU|0(3Yg`7Egk>~D+4!j3wj3c;$;~y6z;bRy0&W*CerdGDGR5xDEBD|4+X}6m0;1(1#P9l!E$t= zf?1v>m8;lsn~y^#KCKFQfD&QaN@^e2vli9`g}QPMJ8Gq7GKj<1HEUr&`p>)78be zxKbwk*s#67*PY9S`9Y~U5dV6HSJfg78 zxs5VLpW{~Xb#Q8X&5ak@|DU;mp@2BBTrsizpl+n4RX@plcU+bDbYQ*jF7Ta7iL)*_Jn{=fGNc5Y$pcIMZl%u&XaGBY1LPY9Aka4_b0Lio%X&G{-yK@tZ@$B&}sUMf3 zO!>0%*?;-5e_%yQT79?Qdmy%_ciV}>V@-IEatO-YbmTt{tgL7Lsjybf>*ejeT<1hB z+L>dkS;eXogc~D$czP<8X#Pnlo%;xaXOzx48XFcChNz?aHrJs3Zm5iHSkTnf)w8zw zPNIR#$Il&7N)PuA_Msj&Tj+*Lh155eWwXLFF6jraKal*D^}kBJyk33!!#V(d`0SVouer;g z!x$yup@NZKIs2licvJ71yr$uPFBWn+OC87GX*Amql~eg#Tyq17f8W{3m`xQ{ zS!;W1k4`Q+mMP%U^mI8odbZ=aZcIoKMW|V4X|=SGbz2Mt?kxeIg1fvP$YRqrSCP*2 zs=&RkLaBeteQ4ycSq*dJVBTX<&7P@Yy6>n4|wfejogyQ)}UcS~Cmu8yOG3w6q5B4F@2~!91xSsRFi|I#G`(p~2y8 zPge=LhF;V*r<;`b;z&*kwc+(&K zb|5(Uhd%p@MS?PomC)+l++vNZfOxw!+4H>&2W&+6w?=RD6TETQ^hBn>7hTm<4m({P zfsq>a*xOPfMS*1b>G}D7K*r7fUfArTOWlto(~OZc=-mh8qyJ18uY)-^7xF|w3luxecC9rK3;_`I`MGwt+FoC zCqIJN&*vZsf)7Q|R!BPAw!zD*K<6#(qt1oCd-K{hpYX`c9cPlC<*f{m+YzbFm=@@r~jSr@Xq z`p)$c*GFVcLaGk_2?$nlL~FEE;-H65bH@NH&~o<+Q%VGwwOmYMK8L-UW*40%N0S9l z{8>`qqlT|Is{{0|7B{QSc;t`Y`e~g5JZr7Le7U;1$tzHs zwer@N2aaW=98uqNGr{pW26bsorTOyW%JWMbGcnW)P^Ki6Nfb9;{~TjTFDe=urM7jL zd)d3Z$^gW(^9?MnJjWByn`?6VV_}PhiH&s~59hb5X^9`~L%|YW0}{4Z4zlO->m-*_ z1-&%yYu8y})mlulHcfVziN%q71rfw{e3oGPuJ5d|!r8(83T3vh^mBmM(7=Dw>AnXz{WZj6*+BrnxUNQ@ z!j+7O1dNskW4(E|8ULG)M`^wGn2Lgn`Otu=&4;R~H=cAN?AalADzPzV&DZIZ7g?Nb zXXaRaxBuOmY%5)(^?qBdG&k39oH3`(IH!+&Y=rTVh)?<>>jzt#5naONeM7mAl;l7G zjgZW5(q~Q2kk*}wOD2IK5%oz0JQSR-FL!mw2>WFf8M7<^v`AwyjmPDa7PEn1k*QI1 z)7KG13oS`$F9uvxJBuP*)L=l(!_F@}*5Y{6*KfV|MPSgjpch5JbgZ7=i-|@ei?}MR6?k^%P$CfUWib?ciwyDR6;V0Nr*=P3L zy}v8k+Yc;lFL^H?fB2__?~C@$0y`I={9tNH6EoPMI9Td|gnpzGTmUQ(V{6;%6E{+@ ze=nhi`lfsDVkhrdV~5@#0(tZf>$X#1=be{`*d6fN_V7L-;+SNiMjutg>y4xyJ2+}U zYic54&3}#UF<-l#7m{ZSEwS*SG;w<#$SVE4qNRp{caR_R@FEE z#L4`sQ*v|ZQn^dA!n}U`wqPaXWTc!pE*@d9b%hJjj0;p7x?&}SKzD8*BL}_};D*-a zMQg9dZ3|AOiDcwPN1AIbv7{1) z)r-tLVGeGB)3DS8eGV{z!Q7-j3UAwa06A0wKx%Z;GnDEb1a^Ozil?P48}H<*6sk$) z14AJ5zX8of?uUoR@rlIT`217{8yn}^W@-Fck3l@``qMI2bQC8%hbl1^ch%l+TiDO^Wxu)Q z`N#>wCcP+mEU5#x;pTzt@!iNF*1L_?m#TBa3(x)A zYqquS=^>8&+bY%vkRgolr5)kP*^a@9R-qJ%;Lds6t8M4_rJ(Ry|Sb2NMMkA$>Nexfo? z+#nWhq;UfG0!R(9e`;}2hAOS^7&;xVn#Gl!Z&f-X1nE!^Ox^<2YaVU5$RbrGuIaKg zL8aCJP~p7&aJ|j{&>yO>12eVd^iw+;fD9?*TwAc-oI&&|vIpO%)^+D{2e+~%FMoi`vrO7;Bl`Hu0ASX}?N5Ei3Q;M3-!v*!6x zQ;*ybKZP%NdiWSo9GmuSKz(|)5FNIwt!1>yVZneqvvhaFS^+@joR;@fBb(9zM*JkS zFPDx`77c&Z-hGYv?TXSDx=-gw`DW9SO{>Tp@)fz`{#3BRZZcc@9c(bf-y_~LCFT=i zgPSu2CjBb&chm##E0dqKD_P)YKA-oKTa)jmvJOn?|d%|O~2FLKvgZ9An3m)r~i_T{d0g#t}A2c*WYU0 z_#{W$ij=q#RA~jBRTy6|t!%BGLL#@@7l5TnBky+#LPW>YbROz|1?0hr&%1q*+uPonY{*yKM>;l<6J8YcQQSamGL{zg$G$Qwp97GpUcF1eo zaG$jix_@e$bb0<+k4G$Y*m5R`A)l>+6?7g9L33VS{T{?_wtHr4V>5D8qRRT<_W~oo z$hz)>jR4 zN8^A~A$Lb$R~WOF(ao5g86Oc;nNI|Np^d7c;p8oxf0A>mwiYQ(PXg=)ZES56b0Qc| zJ$`rQc&z)TOq8hWw78a(m=952g_&SRO3M|_A_fI4Zf`~vDp-$OTHSK=6=#zG>}IS; z%pZf1Qu&0RyC9R;H2=0Zq*RyA7xWOjfZ9?zvt;4u82{2O?juTGF+RS}7p}cAQx+!9 zjZK**zj+NBDD-JmrwKC&sKkjGRH~4mm-KL83oF{hfU|OND6Xi80pJD8&vR&5c56bQ zhb0$b?-Qw(t=yW}<~mQLx1q4L2t2W~VdYYyCTnYLD02U?lmCt|SG#G$Jt;WpZ4tKCMY{u|7!orF)AEka4l*Z*0D`%Sln_A}PEo6)Fbo0dE=%K(; z>%J`~fWku)1#|&>V_BooIyidRz8#K{B)~s|d7v6kf)Dk53bT63W=FA(U_cBp-wb$h z5U_Xa9UTo6P&7J}eQQi9vR1DBN-il7m)cP4F&f3&6$-fb@LSHFr0- zBl-AXZSIi)r3_iRq;mcGs3K0mW9xLy`5|#C%JZ#JG~pW%4*4k)ndps|n|-HUz@*61 zV9$rb@u);ig)LG*&FtK&F?V))Jch=DjU= zc^CWuLq+FTNyU`)WHk>C?`Y-567a&}3pEaoPk9syPVnbQNxAjH=+Y}MCem*2=ey}V zFLp*Hqi2*<;NU9l^(NN1&Ne0vb8_bw)ox0xTLxAv!JE_XJ2&p8B7;_VJTvZ2%rTrE zqgT#H?t4eWOyV_vMkU{u;QDN5xScEsq*FYdBLt77W~XBwn+0V1ci>ex6x7h1r@cmb zpH+lxnN)giK9t+#wBIAKI?x-1=a(=hSmBCeDvm3`qF&wBTF-tm)3LbbS^TLq;imMZ z;++7$*H|wbxx-f4K5?YvkMIY}3E9iH!r?0;R$srX@~gBIJF*|Nf7+PF;VTH;Q;7zL z1v?=U@o2c!QStEb5Y&CG>+H+{_9~0pxgEK=rH{O*!N7)na%u|mc%h<~9Fc$9j2ZvS zv>S~$VBiFRe7POjcx75z*CedCqSrg06=rTpS?o8x6+UXTPaKon{@wK>anqH9#?Otx@P zAHEGBYF`4`BA8)2v#fC)dz!J&h{sCJg^+it60$t_=dX)WsNy$&tp1E%=g2W z7YiB&Hd?`l`SorvfBR^J@UNbBEb0PrCLn=AFJ!kT8KAu#m#5)hV&noCS}ZGPew|dL zVWp+YQi_yRUS}sd4R&kt2EHPIvt#)mfuzdgTQ)c>P^^5V)Bj!4dcSi7(;2~;GX<6%MG6+t5rKB z(eqSiB14+h+?&r^)_}g1Cgn#<`o{+Z1kdLfzSM=~VNQiqHKjkLBY^p_Y?0bnrfB>3 z`Ws1cRb2S+Fm~59v(4uAW3G+(Ao+Z_0yTnwNT+!I|VM%R!Gz3HhQJm_n#d%=xCImG#H~t@BaQpW@)jp zbHknI?BiL6FUIXeNBGCa`C?O&B)n9(&8kk-(ePGhDnuSZqt}1d785g3?(axZyj~#J zR$r*Cle-LF5pKuap6(Yqw=T9-1ggN?hwv{K|6VnwJMg3c@-U?wHjlu*9U;6-9GUs; z*_vXSaGLq(FM)-n-EYj`+h$gRPOq9sx*Yq0#;T^uKl#+-Uv94fZS8X%cieN!KYq6d zZarRyy?;EmRyK@rb((k$ytz~0ibLT3h*$iCCH2=VxEUIFc4j|QDo=s=r_`+}X6T&V zq5b+7wWO9tGH8Zd4eBMVGhU0&sw>$W+T^Y=K}RXKFZVz>|*)& zzQgnypSHMZ;CY&F0i0qQb%uXJf{ctrnTPIV}Al_vV>> zgU@*&^|{N+cwRX&;xx;}O|ysR-W^Jt>ybvD{NY?M^H6z~E6ZDP5St?v5&uhG{IbAN5MZu&IT^Dp@P*ZT8DWxPoU zf7yTHYT1r&jb5yMSk$Y+cpX(DoW?RKdgOY=DS>{p_k32K=$jO*^0%ATx}V7ee>U!$ zlEn{|nc>@oyeW^!7jUMFSy4o(vH(eo#ChjQ;C>`cKvD(5KgPol6oFR%wd(4!E;5 zRO8L=pX$3=gRHnm{_DG9EV1~C^c{FaRQ;T`O%eIxX-YlA`vfJjcS7iYij>T7-i$O;MC(GL#~%v^CO zfq{Xrb3RIr<&iyDBnGl}a2Dtf^?d8b!-=$aKBDjl@Q9%jS9;@lKs{H~+i&3Yaf4kK zy=9%u1_f#SNvR5%})h`ev z9>u*_56I-dv%eZ*=E_Q*)_mT1T6m$rO`z}#2|gGxFQU@gr^%K8n4p*q>mt&)EMo=o zEVMPGL#M!O7dy2v0Pgx}B9ldQn1}n%s=taD#u|8Vjv>_BH5vgxjf#OvK&$ZU>&_#) zDm$uaK{VTTTH~V$sC^w}1$iZ?@;Ic&ZiKki|i}f3a9(yHI`Y1+!IB46EGEG1Uqo4<#tzwVFIv)~6L1abh+TgQs_ZGuLU_Qq914_K z2HC5xcb26`$y_=f*If&9?^EhNv*;vsJkN3{jDT2fRh5e1{O6IUVE)Mult(4gGb9b zBy$xNv$x;7gnH}89rfC0}bhPKp%*6?=@GvSEnLdJ5 zIzHopxrg-paj?CiNp>t3_f6*^$|k!u#e`Y(ahdg=(0p{@%=C z*51P_!{!xdOUXfLY5uMCiCCRd3{=BrLv((8Vq$8-hz)2PX!vBtngPJ-{NA>T-C;ul z6uV215GI|ow1uL{5kWKc_Q^ZBQk$KkUo_{|=|;0U^WZ3KT#=~RJPj1&Lw{|S8#X`^ znKZdg{(5&PX)U)me$2KC=&h4nb^ zvfP7G6g&LEYcZWj)NIw4wZe6U@Cd#BDO7dN(b;jIK};glNA;R?JB#zw)RGb>SygQfEWqy4_VQeBsmPWBrQiE^ZH&!;N)+p!znyS@Clq^Yy&pDvxeNo3wt zIs4NyL}Iks?~JIJenoa=9pO z&>Cn2nfyCu3?D68cD-GxsR*FaXC#cKtsb*DSeh*9 zIyqBTxPOqZ33;2oWoM1#C{(j5FifNc6)>Im5BJ)p&SKN$NzNz#(S%b*DJXF9aMu`j zzltBEHu-+P0T5#P2Mr-o^q0=#m(B5c&mi<^57+Y%rgpa-mMM4dyyO{Gu;-#NYbJn!8fDno2_J!z9?$~SB{e|IANOr$|h)L0?{b^yZ4;#&8 z(VuOM)GJ==*;=QzG97+QyE~PKgFWkT_;44|73lTAiP#f6kmFMk*Y&VLK3yDDm#8%E z-9;hu>0~kfYH4Wh4-*ZzN4rdyjA8MC%)@|(7g=dZ@Ld}(oBduVX&+4EK6{*#_R<&{ zOkz;e)Rbep%EtG3VmM*E{_?=K;wSd6kajmmY@tWxcP=YDGUT7VZLjld@Y9P_jErK) z5vjcKv4zid*YsMpL$6(!hB*AGDO8$oe%u8PZ}%L3O;82+C7<)#WRnzs;l7b{;fzY< z(7IwJtE3DH2uNuT}HI_50IlJYE8=MU$dz zVkO@rl=(&g81@+jt84X^=y9@k&8n(1MyuE10_*@({yy>_f-+Xx=J@5v`7Y9cx4pGd zzg@z-qun8-AGLILzOPH?*5P(!WZCU*Yq;Ib9TpjxkkGyF#hb)CET!jNo#hmvh|i)` znhtN>(P{54=k1bF;O&^pGT-OV=BgxwSa%0G^OsGc_+;X2P?48?r#1SfA=RyKXJc>1 zoSnby{eS^4y-ug;uaXBP3^+L1JoRhg1W9Uagm)df{qMYIe^v_rLh4+uaNN8S7W(Xv zN)xdu6CX+~iy!P{sP!{W1`c+bK~)2XYdGJ8QuBw{uYw=JmW4L@wMPp>%dLSZZ^f%c z{no(ZshE)NOJ8p7C0*739z6OXF~lZw_yWI-aeI zTaKjqjc-yUf$;#Yv_+~Eo4HPHtAOlM-AyB2p!f+slrYUJC*>GUh0F^SNZ5Qbfo*Lz zB~|^0SMhSi3iI6@1LCxjvUx2nX*)ZXtVZ>ru0kh!IAf&3?<;WEd4I$ zzIR!!HaPoiY_7X2g6)ncB$^FXTaGEhBkjS%L-#_YF?~5Ni#pHOrvi&jKGZnEeDoJq zJ|Z-$Vw>Hg79Zl{GXvRFTIPCZ+k245!MnQJ2~5%SjT|<$C7_mtddp4yj1BJY7GGh-11L}6 z+o#mnv*sjH{9$u@ZM2+L6TV%Vg;HTb0VfL0u{rh*!*{4}ato%hFIH(PaIYOL$9Gm1 z>xe zbmyyp?9?mvgPEb1?aaJ-y(SiRx8wQ?R4%uVNP*2M%P|+D&T`~Gv1AK%4U#6Q%C%Fg zrFt9rY@swK0R=#CtqKeOy}Fvjbl67efqm@T8m~3t8z@@9ZM;4edp7}~Qc2f~pPWK& ze+Uj%ojom=SXP8L6*Zfx3P#t4e6%lK3kltbXY*Zfy(9MVQzxzHEt;_83F2|oIOG7Y z#BOuDjY-(Mz8~P7nB#r8JM6MCUF(cH&Ij!$#T=1;5LwHolNEMsSdAdwHROwbjKa;+AC*@sT+QCcZ2!)J8cg}2l*YG{ z^A;*NQsxo#1GSk+$;3>Qafsl2jF@`kJe0m(2Gi?4#+eUiM!}~j zNAW(N#@L%ohmb}^s7iC_nvX^ni!}wMH=I;Gfw-g$qI+~G;M~vv#NQeDA7VJB2_t?G zYr(TUxPj^}nUVPpt%WRQoXlt7z1SJcj+);TcWhB+#!ZK|3_(%K*VlEr+*j-+Wz#>a znA(rS!qn1gY4usvONDLf&{)hhTe(v&RB41i`@tlthXdrtIB>?s3_tX!x}uDJ$0fEV zX6fD?a(I}=>B3rS9uFWCckl_C5DXdqtK(U-O@ZbfUCZB@WcMVQRG4c7wjvvUfRX|Fa3%?aie_Co!16T78 zkzFv=3jf?RQk7k@TSIq%6ck?EqpOQU+TIic*wEq*7CHrLL`6yRCeJ2vn+fNsRy57D z0&+xJomh*yYlC>k&aRN)VC%**PIH~F*$VIH`=v9XQwX!#oihGUgh*3ZJPd zZWchkSW2agG^j!CE%<$8<5LA)SpU(}>$&eo>N8k$A}BQGMXwVM`=1{B;b+~erI_Sh zjbFT}WlcfX+_x0|?ADW-g_o^~X68FWWae4M^5z$)?!Hs&0pqr*DM6cDchcqECm8(( z(vx<{ZlTiJ*HfUc(tljk4Vf~lGOXv&)c%?}H>b5V{3bm4xtC^mCwzjE>=>6|QavgA zw;@0roj2TZA(yVz*Y;>`(KXx+Sq8lxD5PDY+&{+AU;J~(p5XzwCBk`ydy;ug(8+ho z>uP-cB;v&0ODb)uNuG^Bw0Ekh*skcXH)su$s z1A3&;pQk4(%)nB$A+U%s1gT*;72nqy>MiPempU*LT5R@36{s;(c3kVOkdDj9w4&l8 zd|El$oiyS(TO#7N);+(e=oA>*6u;6|h| zd@vw$Y`c@EPezcOcNP*MLwv=mV|ikcQsb~D0-&lu-f4ylY;w6raDw!Z0R2O7+&Ral z``7D+_KB@uxylr)f&wOER-YaVZ*^wI2OKy6`!GbDYeoC1Jhs z{I2rd+ps_5#s(FAPd8{6Eg=Z0zio>4xjMp|YBby#hB*M)7zlD{U`9vX3HL1Soo=CB znxuIAcKP_H2+TtceM}1wmv#9V2TPT|<(OxD_$Csy!|zR7J^LD8!n{et&~6e^OkqZC zMrM@D2oJMDvOT`*>Pb2Lba@&lzx!YM{%8`j?w+8r!`UM^_uR8m+Sd?iIg{~h;oEjY z%aIYyFci>GIdnd-TD9l>0~dCzZ_jJWAMLkZ z)OX0ugeT3Rjm^ofBj`ejdOe@N-}+ur!}eF{jy0aS3RgZ#?Fh)y;v;Yqpp~-f(1z*A za)onQ2`%s1MwRJq29k%n!7usKr?*_cs(xZAW7!#btBLIIySyo`L_13BzDfOh-)Tuc z!JPTqCk`;>`f_*F>?T{-Nik!mfE^^FWB88-#JLE!LAA@$EJcX71N@^RtqOOPItTxW zG*u9(Wz2Haz^wvTrg(m2H=9Kvj(G}`gW)tTdsY=zp{XPVF=2{Ex#X z*oZTa?7G+X1N>IztZoCvFb7Ej?IgPmRGXl4C`s51F)8F5K@!TWbHl!n;^GJUA%%{@o0$onM?G z@J+!EG&smL4=bcR(oNNB%cD9S-`7RP`o_;UVP9T}S$$?q;TT@)80`m;-*MGsG;Q2pp^wQ%dc1id7K zwy$4~ZqFY_6F72U#n;a;d1Iby{fcwGQ(-Yw{>>KV{IyF)3O2tXC8dKtCuy*MgT9_& zOR+~ZFHyJy1%i6gzyyY$acrW-7;|VIKa$>^J2+9d|4>*YW;ca-+j%UbGghDab}-F% z#-c%v&<;wWOBf)(aFa-nD1Ugg1-|1Y`&_l-A>Itov-2RkTQIGqqobp~zTO;Z2f6`m z0h$JSZ0)7JuPtCCVmF&i(eztx^g$eoBtg_Ah!;$_rfKGBZGrw?u(&`{UR!Ypz{pH% zFg3aW;QHvTCb$k&kZGHPh<$BK6LRB7pi{EkpDJ7t{*3pp=qXy4&;(Gykk*K5b^#9K zP4&NA#d(%Lb64l(#Lmq22uV$-M=gvo6a()b3|cO+e(+i%)P5`qf=U*q18 zIwXG<)l4p%zuY_=aAC_(`?#-0g46z4ZsS@S8X{m^e9s0O2s_bmatw83dJ!RnQ&w*r zOJ}=zbLchV`V{HccHd`&-1YPZls7XPs`jS7?dcrQg!&hI#R%M6R?6cf`NP5D3sK z*gHWnHvWturD0=Z)4hAS(U6DyRY5pdoFk1(?M+_jr#NKUc;)e9G2v@8Q@htE{D+v2 z*wdc}3?&zel;PQfPkA}Rm1}qk1{yb6Y~*(kWgTN^%p*GttMFpxKRP&^(m>C?geagP zynYRnsjotTnEGjE^J{`!u`D%~8P=PfWVW52O(-TFoa!KTqV<}-{cfAY=Q5lj49e^n zKaFYUX|?=kuy{7_PxAAd0K3IZ%8*KBE9tOAc9Xw3i@c+C{3pB)l zyLb19lbqD|iYL)HyYs{s6H4Q%$c3*H*AvK+#utHg@Iq&vADhXh`#h>2VznV0>a14g zJ{I)&21=1iW;_x{XfTgSQ+gz0!A@zC!d29-JY`+%;bhQnBw=QWl0!s9xOcM8Zqx>n zm7UcNWu2WOueyx~iGH9hdvq9Dac2-mU^V`Hzj^Miuquv3q0oujne>CTgRx0Y9OD-f z(r8(0bi7<#<8UVjaFp7oprkC1?oSsZ=^iUzfyy*Yaj01IBexk+n=gH?(5dOkI zg{w`cySkPYI#(C&y44W28pDmj;^HY2a#|xt7v&n5VYu_qjU>PuSmI4Vjm(U`I|U)` zgTup1O>rcDV;)ORRDHvDK(@n(9A0MnmrP=y{&G$uk*X@6*p0;P0C@%FM9Mxx6p~{m zPT>>ai2QLw|dB!=8R(NVng=*2hs`JZFel-vlkU*1VG0&#KmBQ!ldozG(j zbx`t;YC}&y$tzlZ`nTNGO;Q*bG)PrI{S-%z8IvKA&zSt*5_X1NYuw?ua5k3&ZKBiC zAX&Ht^Kh9Ca?!rPzIu4#6#*yMXplx=n1_ozczD=AAdJmQi`)L{W#3jm*>A0TCcp<= zG?1sAxp%D8o>|)KxN@c!osWgx{Nu{oXKz@a+)eUgXQrvIyjzpJ+w=Mds~yI3iszHPA!OmAX82GRH-Qez5RAzPg^`x6|!@ zl8uK0?V&PPSQv0fG3+JZKUWPEDJ>Qi6MlkG9Tr+aIhD$8B^Jle2wkcsnjw%DXE&uS zJ7->u$T3w3RMq0BD_~EPPnJSM?Iq8a;iI(rAgSxCZK^jYys?1A^cA1Tg?-cVNdAt=epwMaAJ@;svBy8W_((2g$$AE*ToU57#!Qu*&~KYT z$F`yew=E5aG+>VQ{J8Egm@<|}B#<#?zj6Lv>0J6o57jyVel2B2jrs~_RgO$#@_mK= z`wG&nmdX#Gt2~mHw4ReTDtW9PPR?Y)b0_7Pw!$&Bbdv{zO{!1xWB6S6FgPtojORv} z+>Xu>NZrb_dq0HRTE2pbT6Q?zs6+o-yA{s(FoB0Z@V)f~wbrD#MlQ}z|DTejRQ<~z zCRs%D`7v<*IAWAX`(!QrTBiNVD{yJh758_5?T#*7X{{9)1trNQXqJqb-o!0BORq*; zh0!_{-)GLTUx59}+easx=b9fB1pzp=w}0G$!+*=yTb)?=A4^(X043~KOZ?&8n|$zD z2Eh*L($Z1}gWuXay??&8$!c55_=$Zx@ao|<_@I#(9vK5CE>?U2GslKHeKmOzR{ifu z{*Kl@1Ix$9=38{gg-0MpGmJWDAFoz|+lB#seW7o3yV6}rSRju7A*+c#RG-u0?Yz9s zuOAcSWPd;HZgWE0?J%;x%^e%xcg+Q%_*KMylJ*b;}>yJO5(y%5|>j}-Rsh~Fv^ z3RIgV;-5q6+@`LNGesN`a$X2YeeRL7eQKgz^KKohjSb`fJ+=24t#Ln_ozWG=%+o^>K0nkxEqQ4eoa{}g>3=x<$Q%j8^p_uZ%`!@>Sfg^S=q!;SqlNy$6+X#1wI7Hogyv1q|I~kzOwMeHss-gfB!MyYFc^JCx7`x(dttIk58G+ zM8$CfR|&FH&L%QTaP2vp+>VGd{0vTTk#91s&8;kx4ObyqiU?XA9d{V?(QfAVd$`j( zQ48Q{yi?(yR3Vz}EaF)#Npwoon@ZKhnJUF;tpwEi2L~AP@mV z?~(ITKmn9ZiSi8;L`T=IB{2D7O2&ziivbo-Lj%|${KUv#0#v%+9M_D*9wk?7a_A4i z(iJL~rq-g0rqtoy#1O^=FR|>ymM#hNWHM;D=>4R7Z|R zS`!ado*Ay-%5TL9RM>Tusn~VNv{~T+$p{)!^J+TS{Bv;j3#XG)_y+@UN`2-=EGA|Z zS8BpKo`SM+RQMdT2Uo=(T0>FM!6$z-7z$tMw;D7h6oNbeQwSem=JymC_V%bvT{a(5 z_}Q6hG@UnHcikOjoy#6iGA?z6-jAJIU#NromtF=D1hB9Yp^ zn>=pA1axa-WwttCJ|?kQ_MAkQ9JZDUmY6Q9fQT5259|%T#Oa-gp9wz5mT(%SU@AHe z*7Dy*_BJ*XcWdsP`(8?*T~IVt{(fd@D(7(YSRUmt8fyhR@OO@3Da=Fq^Iurzo%M%r zv^*1TBr;q#W~$uwXTD3$So@*pVxPK(xb_P=Ror4DcvNj2WG)xjPO~`KX=|QkQp@fJ z&l(7M_ETuGh(s9|u)9xF_sY#N3S>p*Gs#Z*2M3>&rytv)I-5^@rM-`w=O_*tIo1Aw zf7c5C;IQ*9y-3yKs@u)4go(U$GLTW~=Sl;9D*xBE&GO|<0;&H#`M?U=X-%@z4hW5= z#SRmz32QoJdeTIt7h%TqkJg7#Z&!#geQm-I-e8846c>xNI3ObAbKH>+$~pMcTbxV` z5^e}EY9_i!7h$W^vXmHz7!5zA^2j4kx|C_ztD7$FJpo{<&8(>bHI9He9{c>3VwbZd zeWw7813uV3reB^!T|ZNVu*NmhoI_{Mx%N2T`TM@YuN((|a^QK;-#RZHsL1>LJLjA; zLDIa{6qgFuesC1<3eeuI22Y<~O|HdStW$SFSIK8ZO%jv)>O7)-56|* zPlmro_53ML4F7&S(fNyC!ELe^ymtt%H0TF;NP}ZczkG?z#{17|JS)GnQ>0DF z0||%7*8oIex=r<&LR_7F|Zq%;19!J~W={NNV3x@X!2 zx%)^jbF|L@^iW7}ST7pn1^cRY=WDxc(JNa+!An{smJQ-hxvx0YUFU7j7Q2%G*0gZd z=kkq75K^6YDSV=LfoN;l>Br2NR-FB1$KTnIf9(V9Av^XnUjvDS!hO=JEjGlN9Fg1& z!yHe>zK&50YVr7&TxMr2b_EqpiXf6ERm2v}-`YOq%5W0Cw%@%9MHQipV*TcIoRHyP z8QycPm)fK01iE*>9Jle}2(A7jH-Y%7D^S^mopUKrWy_G$CN!_u_e(i5k55S|M8?w# z2+-=4Xv_bXT2(N~s>9{9dX%+!8MW_ud^r#)4XO#B|1PkDqxiAginu6iGoSQ0if^|c zjAebj`j~x0Br9o5zbyPuGxj>2kYSCvEn~JGiEid@Od6#3(;(eOqmVunw5n#x?B4fvGJh|HsjP%NmNXwlxHOwi_8Vfxsg~OU?co2!&fBPnHrSeK)>y`UVhWWqE*KU0$pM*Lrk_ySJIf*EkmY*`k+7g zwgP5cs%WkIm#^y0qU-ygU&E4O2^a=67IsBzRF<2kk>*HOM#8=Hy4lXIx>xYT6bba7 z?_bC#=epk?SJir`a7J+|ZN#C>L`T$ehgr(EUWaSf(;6>EK@iECV>@7|7wr^&?085H zz5(eaT@E_yZtv0b0r)}KG01Wd`HM14{!mPHUkkdkHAZmvGMk%@=u_vBq%z)Bc}g^GZJ z6}S>Ae&TI9Ne>pqBE|yTqxb@-9>MoAh&1xi5Ulu*-K#&sN`10rWgKi=KLG>X3# zIKjMVWs}EBkGyqClmSmnWEL>L6%-1{wTMlBA_u^w!Wd^?bwDcJ~1JOmOVGOMas<5 zebk8Wd-2gesYuWT=Q5}Yy_IXRl&O4Nt6Hz~k~~ z*=Y6=V)~(;?v`>Cc)#RGXk>e6h6_NPrUoDQY>g^Y#6?0)#baRc!-ykWeMI|oVTp2d zq5o;RmQ7{S6gt}YlY{dzaHD|E5f|1VkvJQh)@9K3Zo^EkT#_n^Vh1#=#Ls@4g!4hr zRfzOaB*$#UQAC&T1|8KHUs@_pMFl5o#@`(?7S<}YmhL9=t;g?!7*9b)oa+&JCUtlF zVDbCC49T^7m?h({EC$Cmh{1JD^A!)$C&&4fAG({&;S)wk*!lQm=!t2GkpVk^_8&Nh z+t}I_c64L~_w`MRV4Cr{2nxh2g=~B>TgxC=Yf@-s#r4xRG9rtoS2fCO(FLL>2@EMN zDe-wONtgd@rm*TA$gAP$ziG`ZaU)=lWamFw8| zUdF`Adq!ytIB~XNTzJ2w^z<^<+y%+PrR^O&SdrN+V`hKaqnkwST)pl5nNuVB@;6*?F`eB5_>Wr-9&riHTm+$o}8D{mLH`p!Z} zx`B{CN(x7SbW3qA*d#Jld%MM|Z@PdMJ4w+UGA>R@)ENSWOz(*jvf0>Pe@vf`NLS(B z^w@qo^)Y$jb#Z5|-+eFw5XyZJNTMW0!#+9L0W)Zbg`5xp;%=))bo@_d)ewc~2cK)* zc2+~Vb|XBe{zvj#Rh0vd2_w8X+cFI}`4!oO#s~TwYpF!HBLzp>_BkVV-j`(>Emf*k zGbh+hWi_rSI`@*>Z=YSJBUofQHmqQw6yiYRoU>TE?K#qZR;$YSlP5|+P%pnp&c9~@lEZDzpW_O?qanOa?( zjim>sd%IuwCAusp-_#@595D*qJ(h6;R^T-)RY%sC59`|;h&PW96pCww#08i#1gQ+r zV@Lnmv@Q!b<{reZfbOa;g{e+^Syp90G_4Jofg!8!wiEgqeX{l`>er@aKHadw zH~EqViX0<%<&1xpDuxt0lc;6FtNvH&IOh*fG-+3oF3p^%0iY^nIhLt&?y-%^SpY%3 z(0O2soP<>mW3yt9bdecE&c$0+{FtzC&Z(vqJLcevb1qNQapuze9P*NW)yiRuYw&Wi z#=edI{NLh`3re`ZOE1Eon-#Uc&HljmI3sDMhK+*DN}VK!i5A2+|Gxx0zxN|wo6B(? zh+$nvqv`7D_GwxQLVv`Ye;mQSBfLWM5d8`_;O%x~wL?xA1qdakDWZi~miIMbI4h83 z!+y5N_6S&UjFCkDVT=1rZH9Jh<{kBS3X-WESXBIMYK_37g!yJ}W+wIPNithoL3M57 zZ}RDY_XGAlSF+!bbKIe9xayg0IB*}{W`y?3>L~idbak2Y$ze!=EZGpB8j76a40+wF zZvJQuKjkqi$CW4AQ1%b`Dxkpei&n!Ji&!>Zo>xYrVqo|cGslmCK(2x{i3)YlImqnrYua{a+)=i7Q=WQ8~(SCc?T7 z*$biVs+Js4ag9hPUPf=TM>{f$BQ8w>N9v0?bHmuB>10#n+Z;J)teZ-|Ck&H$4Z_Y3 z`fy4R>!Zn{&9i~??~c#o?;8KWj76XY>7FA({PCGOUc+zw%KhA}A&%DDT?z#>; zsi%WcwMZ~cZMr}G*)IPp>0<7@dhrdrRiqP>*cxU*j%<<|Ex>Aw<&6gW0fV&|T-q$CVjQ{Eegchh43T5qP>InWZ> z!Gt9OJ4?PBwF_xB)Ouo3__n9dAX%k?12#v7Ip_|4vOevlLFxj>i5l)5zuVs;n)!2= zD*o&RjWDH6{GLi4j?vho$2>Izmrm_xS4uSt$^>G3NcwGb4%XVE5Ap%>Ry57t#~0y@ zXz4Rop>n;3a51*fSQ+Jqd@>8W4Bf`aEfD_g$ASx2fl>Y`;Y7IekQv4tf&J zykuoF35}QhXv@S>QNjEQ)MIj$Lji;O?DeqF=JL)vCkF6dOUuhPHugNHyC@z0!xShj z;~zNEsBxpFxDX^P-p5l*n*2m9O_$MQfVUwYoziF3(zFP$#0P0geb)KZN6aBNL(rzi zjmg-@HQ;qt5O=AZsjk8#A+LqFx1d)m#op(cw)Y@S*wAGijy?zBqeWzC6> zt3(Zo8`R~GscWa>4xx#0x+QQR_w1KT;h1Eip``wuM+XCL`cKPH_G=p{6Oe~ZtFw%9 zBWs*YFqm?s=$W)gi2b6@yr2>TRwbGCo194mrR`P4@_lmG)to7!c7MC&rsS%+fL)#x0A!iiH3|U?qFdo$I^d| z=+prVEy#QVrV8A%&HflF#Ea2=m@%y(TIX-i9)n#ifxL=?>yeH=9c$s>I@|6%u zDH#S4h(f#Vvk9@+;sNBnIfv{JB(1!R(L1Lqk6wZS#d5hEAXwVe8cf3+iBx;cy-MA* zuc2sht)Li;pAVtfqU4P=P}4*99xi0UjEGY#1lM6q?i=gqXjO#!XOQ|C>%=krSHWAU zF9J9`GxJ(&_2#cg13|zA6<=+OoKp&PlF}>l^~s^i_N`(#fs=|M77~ZTp^bN4xlVTD zU4BPYpRZ2;7+q%&i+HEUG}>Dn%#<=4w9b_3Vp3v4ydO8qn`q|BDH=TQ_BLnd6LdR? zPj@g$0$!4|Xfuh;CE}@mi^73jnVD*>M^hu*vS6Gj?00e$`-a37xa@Q)ZHQndgs-U~O{08mm zoD5IsEA;7}8M-dugm`!RWd`}+8fDv-Dfq1)%2@VjIj|E>{YwUpKnLrr_}#Y<0b?1 z!?B~3X!tRt;=tC}F-SKTgB|YkX3H?>)9Lfd}UN;7*S;u zQ){i#?I^>d7d$r;I5WT7zT`MAtefm){s*nxrei47Hm_tj?b(ds;I z?7w>5QgAmkaB=fa|DKZu(*$N|=T-luXwqaRl8e=hibB~hZzKS*W&x++JQCZ7(#zI2 zKh}XNQ!D@DlvnGa6eqkaPdfkh@!8)@tuqlMq!eAW!3YyemABUKsCA@g>U&CqIHo+K zb2Gh8&GqvEI7_YbtnFeRsKmez9E3n|_QmtXJ3jftt#+)E3tM(4tZA?^JHXz-eyn&J zgmkENSkrZtHD)7)wEM5!J8r#1ipkpO!?AhzHJ33;ySjW5?2IkRIevIcoD?PZo z@q2fpKU@Ls-q$w%i?o9E=iwPwmVG5ufKR$V{3mYXLt5YCGgI7znG;u#Y z)!~Toe8uwMjdWNmydUT~-{0S}r|BEW->L)q+}N1n^~r*`65q(o*jV^Sg3E3Sglq3U zJ`;pjFy<){1;3)HdV9fPx?NNc#5YW*`iOF_WRq{!-t%9IKff`5=l9)*>_ww1$k-XwkBQAU zixd!lEFD(n^TdqS;G-g5 zH&V`9g;K~6ASLDjniQi*d(rHpLVG6lki7kpi?2L&ez_DR6*m)_1!3 zo4REji8p1L-NJpmX&}2yx&u5SPK*{`CF-E&SQt%Emr2(ZivLJcP<+T^8wl&(J7BX6 zeAk3fV1<1<6aXzqMhy%=6jC5sia7fZv7+Q+^&~2FnI0fN6AcP0ZQXrG`Z9Lhtocac z7acbg4IZI6bP;lV)LO{ZfqzB9q4!^^pX!h;Pv8L+z0a>5)3SA-YcQA9?1EpjtxA$Y zs}^4*2+?qF4jy7TJ z&M(c7WZZ42HnZV=-g%Xvi*b@@i%4y{6lYTVle`xvD~~5+(2p8an3}MWL;8hn%-tbc z*#4l4_;B95su=yImpn-^zl3oko3ww6%GfT&*$~IRQQbLm9%B%T2MrC4Qf$%mr)sRl zB5IdzK=)mlZZ%8luv9W{TRLUu(+lR>MSf4K|KP{-$~#WgZUP)`U-qlOmW6+m?mw9AWh@IgXkMAAvn@C6OA;O~nEsL%4Qwuamnvj~ z_0J7Jlx5v$QA-}Vc2)w{r+O6^qb`-N^5`d~LDU4i9DqWspvMb(vZufg7C$)qF1hwh zaX*pPz8u<+fMj?B7P_`koY-HR(I&${*T?U9%f@Ln`cJ1XMOW4Oa@B>w5owItl(8Xt z8xTIm+W@7}Rd}OH{RezEj=4>Z?p4pnZG4i$qcw?>!hItY-ucr{O)SW~H>0}5V8gaDylw20r#(NsGu-QjBAI@K;oF!G##~#Pqt|DW}s>m z%<(B&B}@=KX?FcEgcQso_xM8<`WmXfvi-+%uHL=faH=f4f0F_?N?=>8tc-Gdu$XBs z+*slYfnZ>C^=%+`>@JgEq$H(=Pc=yS*hsNI$jX0PXU0zYjR(0A3I2VHHk4N3_QKly zcw6->{5b4AJ^6NFtpTKn&$?fOY0b$}5qO+Hla<#WA4A;zvf`*yCDnBXUoSU1ONu^7 zWKVu}R5$jqbKZ#VI_RBP+}jf2W=+mQwm1U`VL+Kq7ftfp5e8RIJ2ZVm3*q-VzyXzz ziHY@FMsSZT3K`xQ&=I3)d2ur!ztS#+AHZOZS9wwnZXT0m&^K0yt~@Mhl)FLVBKgTmY1EAgwa=ZmblnSQ_(&db5rl%KswXG5rDW@CyWqE${IM{h}`8#-pWx zm?|C!_*GrIxh+*SswVkt9y4Y z1>y`s0BFh88(hcaGUno&>(E*x`3vkOi?g9*?UrCkKXjySeqqddmMp+oS5rj$4`>GX zre}Xa8MPFNB4;R+%&k~^*+PGrjztk5!VwRTnKN1hk4)PnIuYiqIi&l2e*PIsK$m{A za(q3;gB(XcdO)IbJm4pMwx6tLTFGNZseGWwHiJ`R_afmm9mAF=(dusjSM~By|2Sp$ z$%C5E;^F!j7+{@k=MraMEnH20xHWR4@eqBvUdxNAi3#GdBiwhp{7lBT{%@N$o4551 zf*?bHKU}BvM&k4m=&`&6z!)$x8{D^O*q~HqA@vp@%kd3UAkTD(O_6@$-q)%f20I9e)|H)uc_q(f5^!zT7BUPjR04tt<#pV#;K9tu5 zS+sjX(^SFtT|P&ogK^h2_q>$ue+$w>sTv4OtE3dKe8;&E+0&p#0$Qd90X}5^bqrXY zWCB7$i8<#we{nG8D11LER&L|mmH6Y_r8F9|pN{3TR!IDT5fN~;^s>=X8|{wK+X#_u zeZv5-l-r&KrNa|OMQWw-vDW!WN5i`0)bjH1jzR{wh;rSAGG^2NlyBCa_2y1>4M^hF z?kk2wB+;-A=dI#k$LA_Sy}b6|58C_9vh-OJr=6=*&AB6VK`xP5nvdA>^mm7K>sW?E zXV|zs?(CfON87{ZY=y!5XD)+x!&|nA-SI_njd&Qlal{K>CjmcSKRXQ5%f^yqz)B~~ zfcOd=>H{?@j8km20?7Fae}CN~SHmbjj27d>Zq*=ob$5jTurB!w_I%3sMG*v`iD5jy z)Y#ONAXAJK()%_pV5G#aLv(kC@%@4-nv($?VU$4s;3s<1mr68Lz$B${xN+<|rGuXV z2$e#DmEXd5t@%6?jqbTm&WKY;GMg+*#=;hF47oAdjJRASO&A8RJ+khbw)!V^Ie=P5 z4=fmeQM}mcC3tmp#jM{PD@Lw7$KTRq*LyQ22v#BQT^F{#JFnuoa`Bh*7|e=py$NSe zhj#I!+>i@YaEau z$1mR#1ooOi-5}f6Xno7pk>{V`6|GGpJ!7vwMZIUnb^PgNpTaaO&9Bx(jp%RYWseP~ zSHefSuvubRNJt|)C zaCC@;gy(UATNTEKt;41yB~e`zoV#IinH$zmLNwK^F&o4~r&WpjAdNBf6!+ ztc&{GAQ6%lYeArbq5K9`LxZk9n`nR#q>y;Q5@m~N;OFZw`2<(>#3Avma8CrCRA`{n z>tXNc$b8HqC07r#5ISb1KJ%?5Z4a+Y`}ZzGqis&imh-$tAyYe;Nd@)`7fV#j0Y2P= z-P+l$=YKUA@HRf|A`Im4`X_9WWr9_@8{1K$6;rn7n;=9U7+=m4Nat4L{c?6vw3qQB4g7m|IQsf-6SoIV#rMV62 zkQ5hIZc$@n>uxek%4(sC3aCop{|5uHIIN&rs~u0o)gYl=%SCY z33Q5V4$q!D;~7@cN%ZerPTgL-+V$$FaC^I69`H3F5{ddewEl| zsrI29lWP?s8nJ^K2Z;PeruznPbHmv}QY{+3oz$SFg6tQ_DuD_auA^FvtRE{o`{zrOrene-N&8vqr4vV4Gv28H)3;G|>G$-@|U+JIQFTiQ0@y8%2 zNFGqO6okV+t>4$VQ{x9O`g36*fZ ziv;Q|q0G14Q*Re6Melk(C7rlgySmETr4I)UAJbYa)+}B)KE7BGj320!TFeHm{C3mlS=|opzq$Pk*I?bKbHFX7yb()W5T0zHt2) zZ;5tEPOZ(fkGuoLFB=VK%2zD|k)+nRasHEWup0CH-auPp!6b){I%_wM>08|wW&iNQYklgqhrD-|JoZ$+4 zkeXqbhyp8$QuhB?y2_}mvbIe(5>nD7Al=>F4bmwfAT1@`9g1{=Al=<1A>G|A-3{Mn z-fyk>GizK7KF>LO-}jZ62Iaur%F^9W;8G3PhNx&|p8+K&|lUeCB;=fEicsOsxszTRSmzLEO{FeqbMBKx>rY6O7kpc{ zWY?zJny|PniUqTA)?j&UZdpd#_*-1Wz9bpB^Ep+&E2-ID{sR*H8$zRzrACqm#>hs% zeljz8Du_XYDzA+(U^Gr)$;}$JGd_ZY8R%>(YTb#ktu) z-ga%l#RteMkVu6&@N1Gp;JY-ix5{tZk3g74pbio#(_MKd^~(mygNGff`Bx>OW{`odoYj?8i(UIs%Z|sD#)j((&qS>JYaBdb?J&})j@91kvh`n;j!$BMj3YzQSyLcelt zS+Ol1_-!9;UC)q0X+5c{=r?a36qsNJnX*j?9vz4N!enRNjb{hIk8?!jZCVyMf8W65 z=|Hh0@b557)b9;@OFiea1|gR~|E|_+pa7D)_SwbmQWc3|EB`n_=kDxJvtVm}avEBE76p`x{Na9gwj zza^4d;1eEP7&H@W%{u&Nv7oQ8Y7F|F4A|d`fNj6ZdX|y5WJl)xg9+9`eU9?YjZfy4 z>bDhs%=%@`nZ`(1zzJ6O`+07_oC6nHqCVWG-=alzj_n8oBK$ZM;EDuAcvOdYjPp5daFmel=j!aDHD|;^B{XyMC;&yq0pKZSnmd`UjurT~74=ZnMp)+e@L%X+-hnaa zC1Nzbk(V6``uuK1{~0Cz8zBsJg=(jy`G|eV`>6f0 zWt6t(qpl_>SKqZFA<~M&Rh%oj{vcz#!{##kKAeofm_{6X0w zNCKd;|MK~^6KxWcSu11W!a$-o#ULxlMB^)~`Wu0rY2^sPO=qew87uK!yV}AD1Tp~P zHm3MvN&i9}dB6`=&0&{KO5YA{T`XjOVQ|^~>wxI~jsTPu*lcczgJ!|Y3_oJ)WP>M? zvEN|3*wWR1Gvx-;j;u|JT<5l9RN=4jDeTAeJi2~(zYc6PjF#)cP`{n<5t&K$I@`rw zkcX`edP=Kh*_Hmb)Snx~sE04SJhfLF>Qn`8H92Fae*|R_KMufox383*2;NkM%X%Mz z?vwJizD@~RNtB>&kR+6zXfCPvM^qAckItBDtK$mO(?R$fC$^{OA1k-sQRuc{L4YV_@~=v{~o@vnOy~ z1Hne=mPgffriC(^;5|*1S%<0V-k_l%({MB<*NXJou8?aAU)TU;#?1;vqxX~a)*3&1 zJ8e+dJryWp0~m!jhOrX|Sva}BMo=6Yz?SBgBKvkt7p4lqHn%p0zP!#Hf=2Q>bhv>) z(xaoA+ByL5=MGomGB-^>beIafj6Bmx=bESEPCLcHR{v6&Wv|wb%M+pz7iF6SaJTJm z5X(OlE_t}zjGH;y7r8&#$qdZcO605(VgA^T86Yp__2+}_@wM0?#8?xCPAcB+M+IM$ z-@s|{HUf=yu#DJugmJCNYe(wENIjF8=aM4C%u%U{BJCOWs6dS)(goCZ=s>`KL{Z3_tIhb`L>Dn2g05;Rh_Tuk|UZwD1W12qdd|k1Q6|5he!cJSxxOwvDlRn~j$uJ^r_jjZ&0rWDb-Ad%_f!TBlhvKi_ zX;#1zfy5#7^kJey7+kG}ce2SA8bp+KZ9EZ#4QPbIyzZFYb{`%b5e<^N%5`C%>Kkse_EVRxhv1t82%@9>f|7DKI2_)xrpx zQ3cVHU#)mPa#i!0){=&k3zjD~nEjv}I4}5j@3*!24-ZUY4 z!8SCZ;UO+qNr0!K+jRdcKD|g5DT4WIO#;rf_a#Q@(UB>^(D{MVxB7;UFNpSQSss3mT*KM-nWC3&=aqs4n9~YIYGH2XG0O%DfsM2#Dl3qwZpl}01)g{ z)^`7|#MAt}265v@MMA<~JJdo0-xwUaQQgy#s4)w-2gmUVzTZEj&w7@({RMIWy9|r? z38YQut73B@EM_$%0P+si!X)iNyUbVE1hW^R%sbKz(Hp93U~8yI>yE=Xi9wfR(`NEn zyg`8S^70B4BLfkW)X^kT=z%5XD!B-)3MhZ2aplz`JV1-2)Z~yLN*IhInGk%cGWMJj zZ=ACB<}6Uz?~&lGrC67-T;XPp6}+y#um?OOj7#!(XuF8t_s zr(uP4uWLY~v5er?1exJN=%nA}Q?Aod4~1`Reb`J| zEnhrhq`p2aH9iI+mO!w8zeLb0F1;f7Ox~#pn z2upep4Cy{mV>#Jy{+CW_6@Gim7&&m)+WY*i_@LQj?-j| zlT^DdXtbnh{^^DpT;r*%;$mct$)s-?0@v?lMAfHT=o~zTAmgw=SCSfTcj#g<7)X*`}I0VE_~MFGbm02WP8K)wf17;CG`fr$BTdmSc21VHXx%+Ii!oVm^1 zsz$pf+2Tc04Mg(;8@iOo&BVfjthHQ3vN?04l6=ID-fK#gz`%QYI>p^_W)ysUf>)%9 z#Oo3x?zjAhQLbj`P+H@Cl$N)1WGdCVS>O2gI@V4rEGttSyn`jYi(pl-6h>jnXAd`x zTn*JU*s8K<%=K$2*Q-KBcYbjahADdxt08d$izUd`pTA%qhA*OY}Hhj~hI3NK*+z1q5JxuB%IqOzKyoS^a9S|HQW3?EpAg zg8WwK);GJjyiAeD47=ycbTnZasC5axzxR*&L4{OD!;(n&IYFc8hb&pM-i}4>u~H)a zCYbbzBcQy6s?A3}%?u@*R~M`pgwPWTc@v6Yy_U8Ovl=16LG3t?@ch0I*#~RV?hPNq zN!$RXcP5h^Eye29NBTsiW+$eOfw$D45rw|KXzuXRkOlc)3>(OOhOqA!c@2AZu|Pcp zs>ZG9kA|G&yvDog2%@Xr8|7Ze0yT6ms{$NT1{WbP ziBG9jPe@3XYH2$%t*v^_(;8o0TyO--S*hqOA|g$vpSy)fsU&lVgDF`arF_(9+?8Nz zWa6Y53?f0c_-<_qDgj>8{XgW@?+#G0ig}=+3qXsfEhLN4g8L~uw-|HSDj<*%1-d@3 z!S$ms0uuODf1_Xm@g-)}1lnuH2M8F3@fUg3L0Mbp<~7dqNO`EH@9_!OsMc3%4Nb|) zsA|SbWcQaIkt0%UM}YQ+!fzw*N}(xI@-YhAhl9GnNnal?xbx>g zTyewfdA62H(-7veI&Bb5`0dkk6@FtBHt5TnueJc}&=>Xp8fF2X0sj3}n3A(hUsM_e zy62n-Ye2cT4CdjEW7ww&7U{pZkRxAuK=EqsAD}`8e6>O}qH;fAbd#arI@GTkc+1TlS@boM9(5 zRa`d>0|tBwq1kU5GH zVvgVkBLX7#^l()0=(NF}dn+}{db)!)My?OkBUZmB>?aM^Q+4ypvQWM{JA-nX(kboX zI9hGvpNlPW5L=sli2P4qXAZ_kz24YN{0bj&6`9?nH! z5}ie3JlL4~{rB)9^KHf9`si3#pr^u_mrY-md9hxl^m4Iyo;;gcYy9Vmfh!nTobUbE z)6vu>6-{h5dc6EqKBecpxU47*FF}^!llU8}m**1UDMkepY{#4Od87B*VpvC z10v&SQD%EC?juy6{t0;}c;!Gh%zy^@r{FTaxAQctMiLx0UG$4E!at$E#E4j>iKB$v)oT>4+hEw~H&h%}f{x)1A(Btp~@i1@WI zc$snibN0mD&9rv_pp+)y6pa1RPyrllJ8!Bd$P#7W39Z{VFC%ECS8S#vn(lx!_F~Pl zPu;q9l@6PdGiACTzj9bhp@Q7)YN2$*8k^dl&}1FGSDDy>gd8QP#&CrZ$3+JDB4sF> zzlKz4J&e>#GPOUEeP?#^*F*x&8tu0gyq?jWs6v!=H_4CiIO6_tf>KWl<*}H<6Qe(K zA{UWYAzV&YhQCutC9zq&Ni_7n3k-C!`LWOQHMApw3Dhp#=P_j`PH?126|k9S4W&mM zjFIhfoD`QwM-b|L5x@qajS7G_OFALxW+udpZ7irDXq(s9v=JqhnJB1eFlw&)$7`v; z_9Wr>#fJ%J4mqi}SJKMbI+@Fk*is^!kB|xr08%}OAd53_ahuf{X~xHN;3VP)$aMzc zOcrOxQfR&yA#;%hW}tlX;pWH`bXLp%CG(8-!^|)HXY%M>?5DKz8z1`cNAE8)Hd+}~ zgL)>A23w?2{94*D52_JC!@v;Vt%cxPMx?a(2fFn$ptJZo2+#jE3KjJi{c3<4zrh^d zKEFu6J(XO(D(u7GMd)nY3%+W2#Xp$(@0yO?q!5zU1?QEej~;z`1aI5%tXNOHTPHtG zf;W28mhDfTtsH%_;%}DT@2S)5Q4G3u_Qy*+Wm;8%+8{pMQiyp1D_?nTu`MLUF@TeyzOB^3+naLiJqCJmFLTUZ8^pKWe99McK!9G`+{tPj?5x8qBEk^^tV>WZw8jr`_m< z-=FUYI;cNJA|&>U;DBJ`0XISkjY=l>Hr?{JvgmC(%?beY0s?;!KnjvJY_wLfmF;0V zCv(NtAE+Z~n)Lu@gNIL??_&f}KI_p*usXM+T==P~q#`X{HMUe$8K|c!iY2hH-bXdP zNCb1e2uRYWxso_`e^vX)yqjMlB9UN5DI$yugC#LQ>q?6Y7*|jZ!^+Iv55CT#jpCC) z{)-L>PmgPK&xfOuS&H_jMLgUr);z2qv-(n})IuUPDN%?i!6#8%p#rySN!K40`~_AT zMnH@^kX=TT+r*-F|Jyc3MkxK!J=7kN^I5WkUNm+Tt`YCcIS9GTKTE;ZZl+OQ`-Yve zBq5RoQn!17i)l0yv}ON#73pygjps_u`>grS)Bm0LP*YdCt&lmVIl$?d3!l8jS4soW z-`9*0KzYa|G7fuqCnNVp1bZq#0O$Z^jvj~*OHz3Z8x=rsaRd&735eMPcQUir{nuSP z_gpy6l06X~n@Bo8+fs2-pC?=JQ!2G0zw&x@$`Y`Fm*7X?R1z_B^HBf$!B7iVbdRgl zU!z`0KBlhdqZ;iY9%s8_O9q%>fgh%-{-%Io^yn;$3iH?Ge)vEq&_twi+K5iF&y?xw zww}~U?=3N-EcjgJmdw`lN|FPyj&roW8J@RLrABeVd_|}G@Wa329{Ro>Ij{GFx$APo!^P z0zeD=Cv8cv)R#;b&<~D4C!&EQEWiU*0lOWP9|QwK{;cRy~&gd6w`-#CF>;QzT(4wBewYwFA;lv#7(UEVo^>bTq(L2}}#D!}Zutfqf= zdg;!q>H3XC91~JwmY4Q{eE?Sg-IuPc!T&R57ck~EKHnbzZ5>U5NyAzc1(xlu-iNQI zzlw8geAPo^!D9)^Zb8Edu7qVSDZ;Ob{ct(I%dctc3NIa}J3jO!bV&{js9at|uEmx_ zUv}NnUrHvJ#b#O9QM+Y7d`^H2?*nNc5`FA{o|&9DjJcGoEG=Ja0vq(o=r!&dR6>*R z;TU*ypleH`3Z|z%U+%nnd*gP@WBuNIwZ8Gju26v5e3+ca49S4b2gRI?%IwT!w>rVe z%@Ezm8=@A6zzi zqRUMU2P;cy>IfIztL`jT#kszFQ5g0OYLMH75%qCZnaG8`|BfXgOW9yTh8PP`i8eF; zdv@XA@wvdss>q|Lx!9u#9zy%%VhCDZ$=OEVYs91NPVgFM;FjXRq%#gsIa3oD2;_l9!-~QzZwb}AqU7fi18)t;B9pzTmo1&twHTRc@ zk$*a={3TGMo7r9ur;it-o7-X`_Cnb2Ys2v?vTYbHv#8X=;?*U(v6=d&e}Yt~WCGsM z3PBVHIX{FmWuE6mE$`#iE(WeKY?Ln|FPkq=3(>VZ+{gEIf6aIAevLw3Q{=#lw1!oCd+hE(1Tm2*sC+snT3dU#=}x_P1DCVTGar}EfI zhqw(SOC6q(BoK}J19EQdpB6a2EZ3o?a@mMxEBgv7Xds}MV7mX?N3WTR3Nvz6Jeal? zR2UU|=JKgF_porpj92nzy?(ZX(F(IU6C>$5&3tiR+v%U@oZ8I{dFFbS9KII$OMaQ= zk=Q3X`p7m~`5ZBAZuXHi!dc2Cx~s#u=OuO@eFz`^dN*5#$J-nen9x zMG*}Z72ii-=RKc;k()ij0tu)5cHO1Jp+>9L0)HNqp8uGahXdlqPJ$4$O;9?1d;0uT zDhJ0`GJQQqsufb8=%uoEauASxP=Fu2I&ujY&xs$rUVO|^YRr?Y*5IFK_oAz=4l2J++;z1m~MM^?*FYgo#wjEmI-N#qw$Sm%wlHP-1vAA z{;GKu_4$|ACc#+yjfZJ@T`pB*7S`~^n%_5QH)1_eVLe<%4~C6aMzYh-yrJ&U73vTV zK0l*(&*SNoH8{rbm!*?x(h_&w5x$b^GBt12`m=vFO#tq>s|hrkZ=0OOvu;c>(d zgw93*g1hehFEe)2U+ipFqyOD_+s&4>e>D2Ql(Cs5bfu2U6U(UQ>vqqc7MgOtMm*u8 z4MY9dgqv|GcJtGc!Ad-iAB}j5IdsKhhl&#8pxAUBkJc=wESsm>r~=`-6|s-Qo+N%Z!RoK2|(Y=#xOamx21ad@>}- zS6jIwlS8uscHiO@Y8HV2((u^19_;&OTyjMEaw6|21^cXGy_g>e*F0?J+^4nWB2D($ zJ9D$%=hQ0Mw%^w;)+;c*(dfDY+Gn3oJN|lfEwV!*Z^A=Klms4Y|MIo5;ET=#VOLl# z$1v@dZv%s1(Ro?;z;Sur(<5u;i~d3!1ow?|zIk0HlQ?Fx!N>&d_t&oP?<8U7oMBhZ zM4@bCmiGQUKJue$u+8bi3$5frR3~{9x}7Av%3vOkxZ19gUR&{s)byiU#3aI|=BE=qxU83wLacT(oO0 zUGM02Xd_cDhF^>_D(5h=48nPUe2o9hnAknBv4Kiw!;S*|gAz6%$$c9kA>&y?Yj!1a zDdVG4|H%u_r;~>Vn|-7OKT?EP2^M<;Jsq8{gYx!hPr(?_SylR3M)WNr0XIKyb}6r2 zG&FuqI4VU8uQ{cE10&%mGzxSs5RY*zCb}H=OgukvEaUNs_N)<7AwnqA#zT;P{)wG& z8*n6Ad~<5_*MU%eG1v?boe~jh)O5cC^7G4qPbq(~RCLE(54Et?ujp9Pr6DTMx++{h zqpDp|m@NIA23agZa*Y!9hH*hA;Lg*8t~2O#(#QKrNK^E${&Vj_;E1&-b>ReFCV>>) zyOfjsN=rNlbvo>puY2fUyE}j<4WMq!LPBUN38}nhGeYo$V;W=|VrT+^<(}Jg+>Tq) zgQ24qLJ!&vWf3-ub?YQgxjs|1PNAZrZ}5f3*Eo<<04DZG_4B zMPr}-ek3()H@LX3^|?j+F8ezmY(A!$RLeaC)_HyG+bNR=T571+Y!95twIGhnnV#!= zArj&qJZ+P=^jFbFDky!^^>=O~j5&aN*`gb}Px_-B*!SRl@?#sNRSP^CyvjW>#rF70-Jwd+c41vF5+gpbm zC~?7W^=!mD@6y%sJ@^@3-0zZYs*}1?cUSr@{PYI zPhSBqGy~mMX5{89*z^${7V;#WH)vljvBLD>x`ViRmWYGEuUzx{%LcBs0o}S?4qLb!^|XKx7~DQ10R7oanGH1 z^a6LECYLY6@z_Og*(`E;lIOLx>Y@e)2Al;Fzqyqm$GKp9n#MdNoP7|4+|x25vYQ>g z(YK2u?7hsBdyUoxUatzf)iz%|w~UXI)j1i2fqY9dnR0?lc@9xPJ#TpW!nNW?@q=)# zF3RUz=@}7X4IGWPTfFMj%j7bJS0P13zN8(wW{SgW+={U`k>M!v3W_FxTc^Q_a64|? z^+&fsO+l&pk~f2eN{grCw><)rqHBnTJ}P!L_Y(4WAr$a+-%8Z(Ppm6%j5CpX0N5n=bRdSXV==G`B_b9x>?^o-xY|xql_UIHhdN`EbOPypM~rPy=OhqR z_3t?9AN9OC{NNuv1jG}%Z;w`=ZCY+tJl4417~Xc_Hn|*{OZSUFpYq43Q$hP)S z*$yH~pyIpZqM)L#R|dd$Uhua)9od<>xVTJns)(t}r9(;#V=NLL-ap)vo_Z=T%*pNH z8vfaSxpWwM-X0aH(2T<{7|wkeFzgJ@d^A^r3AsWzfCcHd7o$Qkjq}=v9(!c+U*;eN z**9-G_d3`5u_OAu_vJXsHEvF%%x-L(I!jf`aMbAnRbghJ(K?C;m#vh9mhDOCCB|)P zsz+sO!{-lX15(^@Ms_OO0tyefE4~mAE30XAtFj(sXle~wOpdV0Yr3Y}{CevK+Ai(S zmt7rp(_QZse!3CYnRPl7+Mo7WLzUd7GOJkaX{qcTm`p*O;(oqSMn0o)tf;8)HGHTw zgob$Bi+QF2_|W3?CKov0Qb^;5q5RRmsvuK5a`Rq&2!ccNpo;4RyK4CJvvUzHeha*7_>WEZQR; z#a`e^FUxE*lTj-9s}9_0u#j%AFGjoB6$srfRlX!8`3et!a*_JdF=X<%rvM>eWtyp$ zy36Fz3TT%nw^k^Re5*$&ag2K@A)V^<`y)GOmJ`?dv61kbuDc6#OY8L%FC&SFo?L;h zaYU4E2zWyXhTxodF3Qr1nLU}*lhRq-DZ^q*JW%)47Et`LY^@WXq(_k!jyeOE{t`>$ zii0xn){Ak^e>7@ha*C+A9G+Y~L5JJraE=!F+VC#ku=D(!6&RicZyHCPpXQ>#azcd; z1IfyPV6rWWLjMhYhCrG{RDso5ZK=hbExP3lZpHhc6hC2fJkv$2;LD;Sb%CcKnhMrB z_nYuPCQ=Wf{uY`Qr=>m-`>TS!=V6~av+Isj*ekp@)Ea9=4AEo#F4ko31aQSdMYrr@U&| z;kFT$vU(>9`43Rmw~WC)O}Aev%F1DimnG((^k-|j z@XJe&Xyee|70$L`MM!u)-0iBAsoR5o7VzyLJeyBw&OnWdeK%Xh=ljVEtrG_=p`sbj z>Ixl62&Oq;KqPm20>^PDZsE#aqW6AcMRr)LQ~meY0GzSC03+=Lk_|M!040>Ua56k* z9ZzkyjK1ULW{1(%n~m1V-)G?Wgd2x9@2^_%C)Zq{IpnIeNk6mH6^)9@%c(!qccN8C>cJ_?x2CP z?+tN@_PR$Ias=b4x(4dXph^`w_={^`EMt)eW8l0GRzq$-MQ(@abEt6G>=lk}FaSpp z^5+ydKhB!Uq3O42%UQD7*x)|9K3Y6G1)GJrIUE!J3x7gl;>YKed_NhzgDvxZb5=j5 z2fcKNGNRii|C7!`!zccwb1NIz@@q1$)6DhdqZh1wB9gEr_+pzA82W#hF0_#gJFi~} z0k|F&)YRO78u#P7YIK3jqZ=;T3=d$F$c!2K(9R1O@RO2XG1vi6QOOpKsoQLS5fd&3OW{(g#7hkA6|M*uecbD1;cY}CKH}-R z;O7^$Ki`sRxtx##p7Net_&37E)qxh8MiT%!j32oy9ZPcVNAMWJrfw`;F7J!5+QoA5y4x_3!qUo7n48 zr6D6^x9y6d+T%<<`KTBd3jOSMlWwO$O7GQ6%s$eJK`SIR>C2ds z(WHd|lji3&YI5{r)WgeMpKJGJBN;?r7fPqs{E(flcL!Xk{osgMb(~ zk1oVi33D|+c9a>#?KE?c2EM0)Zzqbj)dn{`jXHG*7YFCG)Xod}1cZ?Q^f@f#=15oK zJh_wyUO3k>iPQ^XRa+Gu<|U(Y&jk8%;__d12r<-})EmM+#3i(o_80HR{+LJU(db2l z*AIvz4w4ChH1L*+f{eRn`b0-o7Yq-l-(x&sTn`t5;!avaEHd2T*x1;J;$=#mZ-1J- zyK55+_4fs7)fzexG;ZeakVl^llb(;HRBVkt{akp)kbfF-!h0q*{D@wsXdBqTacOL9 zTx?%tqYcDpxDM|rHLYAwW_FUH$tk3qsVC0$HieTiB<}|e%iK%P1B4KEsVe>*!5FJ$ zOVc1l_7NAm%Xsa)BUMB^;az`hbW&EYJ>XegTN%qVAC0xq?))`V@}3PB!|{Z-NqTC5 z%8L+wklo>MjzuV{Gt-nV}rHS^HqCrc{9XQW9-O2ruYWm6a4Jkv@WNAPhS&6L@E6AMt| zW$H#+I9LntbQeOsw2aI0X5FF#wG9+ z@Cjz?nNQU|a1ghCB)5>Bx7{Si`wj$TWbiB<7yMK5y`#GB#D~gsySCuP{>1w3^$+ys z$t9l7=-RE{*IG9m95+{jV0eAGSx~27Y|sq1=uiP7V64cenOgks>>lZoW@Dt`!rH+h0xsB535;Q7Bww$qtK0QZ}b()=ZZY|NN0?c|0GCr9_MYy8^4tR@8eLB+=-) zO<`NC_y4+Js4@hjre>{jnYKypFx+x;y>FUMS!`=-MB@;L=bNyvqlsb_Gv63Yw%rZ; z5?&H22sQ&Q2aG>oj#WVppXHd3c04o%VuBg0`De$7>m`93-aS^9(1+6T;{QIVj{wh{ z+oJ)5YHJQdXu&ag2ClduwnizLOWDCa`T3Z28Yz2}=2cTnFW3*UV$~PxvT2Y6U+zXh zTEH-v1d`Sy#_QENQIhht#olN|Gd+4#q(p_?OLBm04ZL?me-`c9qrkKdJvli!S8buB z8@HeX)*`?!ypCX^l?V*+qOy}lObVvY$v#nk`Ci!Wqgp~Ap@o9|qp6lr&Mt=AyxX6qTLvYH}@)~XqP+Rx=JuX4G7LrBBjPW|93j7>~5F6*9KP$pr>dYEL& zA4Zxp;4xilP~!?ich%7Y%Q$tzMFlhaj)15OyjQpor^%z9y(g;<0kNOonE1z0($v5N zPrsYZ%4n?Pv6l*4R+s36zFCa{{l~egr5ni>nXf88ijOd@cnBb$0{kN`(y=s+oaAwD zxVd3R@>v>1m5;b@O34Sgd-cLvAq)~dlOJ{&5fO3fkAnz8CkW;^`%71D^u?2qWTm}* zGZgKDzk&Zk&O_M5DLqY+_IE3%|y7A+M&-3W) zc2ZQV_!|?^SjvWM*qq;?VurQSEuOLhXEV~dUB?PGl#%(UKT3(1*+j4R-4`I;7HT4J4r?QpG~Q8YzenG!cLrR3b+QL#CgI^ zR@ra=#a?m5QW1Jm_~x$%Y8qLX*THW*NQfLOqOBi;4&emHErS;;SH(w~dK zWx2U5&ptmkl(OrH=oh+0^VIj7nH^^#N5r`L@cCEZ8+oM^aWs_f4q)3?W=uTmr-(7C ziJ%kI)bHeV4h}N5#^*#7d0u^aNJ(5;H~#5!8w{2}IQEY*}^mJt#x;ew@9vK^q>os348(PzW(z%#fB4otvd8QI&T zKM;H4HGbi&Ye$&e3Vfgz$C&7V2-`G?&x(nRfgeu(7R2PWFX#4rw+neogqJ$+RE~@3 zI0gqJ;!8aU9uKp{=t~F$&jnM#u_Gj0o@nUNi@7>4zFw{`9k2dzvGNvwFa&^s&1_ms zo*%b|rE{=!xmGVXFz@71NXvU$$gcsoj2i~fM7+1E@mh|uwF0~-+%j+jle^O~l4YAQ zxNq0@3m|i~=wFRzq=9SWQY1&;w4xE;I#bCWP55Se@A4_XApvvI?W7PYCJWh;6?wKx z4%~Av;U%!>T;KQzxycB8Mfh`1Bb%sFZVi3{n2?f^lJ;cGRO#GmWY8(#qK-)*A!hQE z^VXY)RQ_?Wkivj_#O>gye!Y5@~+9bh+qbAq8=0hgC6oDa`Tgc;t$v zRaaNLT}^)k8E&Vi6fu|b+9R}@gnfPoO_dLp>@Z}-HE_WHN%L|9%Agr8S9L!)Dz8Fk zy#phq*iOs~_vyDadgKLUrmXwc)x|g`7|qqe`FU-1TI{8IgS?;4W2n$safyVvTZs^z z+!NEgIUy?0P)4>cI43O+jOOMRES1L4$KW*}#qKcXu(XC-tTWceaf?R2rxx!#RLm< z2f=Ce_G3j^W+*pi$M1WV+c_pOpVb)Ox8kSUtgkFuO$&;`B=7Tv+s{_lA_j!t;Kw!i zn)XE-e{#b^1HEOm4^y`Ofad!FGg#$mOin>Ygvo!j|C=ncp!Ft5$p`;)ola{IJG{XV zYcI33A<2-}Lsr|Z$!W^<R|R2#kk(m8Wu)Cq~ej#AW$+IMo(FqsXDi?Y_sj8 zfcaRi*9lUuD)nfLKHHVv@J%E^;~()BU}P!&L*{(wFOItjtoq@dgSg+hugvG#rgd70fr@BEmXC#Ko1E+=WOLkR;N*1KTs{e1_BOYu`X znHAbgl6SLR=6;ssw=^lvzV)HjlXJ>xuopl}%>RA1Qm96gFbF=DPCsaPX7RqLd#6pY zhzxFK6p9LI#Yx9e$yqu6(U`yXOIE|m=?{Cox;2S1^{-D4*=PJueUN<@;N%OoBv<1q zaDvc!nCcHJMmB8g(De)dakwp~<$eG1rQvDG@CBLu{@(yaz44xDd-!GDjz3<;F6f^3 zy=&z8`Pb}o(ZWO{i#!TM6Yaizyj=>Ff%`T#JtKqhYMYn7UGQ7@aQfVTP0R|_Y>r0S z{VyRe$`2FZ9Q65DIM>{OO^CUi1SehGaWR(ZmXmK&d!2rgb-5|@W+H%)IY0_wBvUA+ zaA1H#qK?;3Z158zSzC-`y`W)=dFXOzp&T!CpR>bR7i^2`Jv(hYQg2_M!|Kyb`87&G zL~yOsr&P&P2;saQh|lyo=F1xH8HVrKQSH(}_$5j8&EE%XM4mnLoScqA^;p?FK(8qm zs%Kg1l%5ua4cpW^x)Yk-62e3IpR>J~Xz*s6KZKTN#Nu~!NO>dPwF(g~mJ3g^f2z_3 zkRLrgqo~Ty{Dp{nzry5wHMXCFW`y7F%(U{uz+i3)uH#=a9yA)I7TFIG1EhIqdj<9bEt7q5I? zYds5s-Dh>!`d~Z55mbKsD%&%cUVhPyhlGB1tD5=hf5gr0b4&1+i1SX5)6PP1es-QS5%YK0FnG4oXY zY!=6yiITzpow3K@;7^!-`p}+tRQ)sI_4ceudz7z~^S@0zpMRM-b|%(~aSA?$hGW(y z-o}udWFi>8MibHGq6YAmL3cs0E$3iA{qznvVfDf^1M%5Pak(=>N@$oB-hyXtI@msv z4Q0#c#?{(@?dCYhA?_!$GqOQwO|4u8Lmy=rZZBcRre`Z8S#ge+ZD>zEJF3`J?`=S2AYln4zdnO?QMgqtKKm!6 z-75b+ft={3RQm+RoX6$W(AL)2cYc=w?GbXb&S_p(cyMq`>(`667u2^6hN{usz*_(= zdQd^7WndslVxx%p3j;rExu$D-F!Ai3zz$@elK|sO@%~LwCXFmnZG<9YP8T>iliExAGJ6p8#&I@E@EiJ8A zHg@UCiwpXK9pcf#sx(I@VdTs0jiNIGsu3O>CY6*TDlclKx#)Sb75@h&O>AO^HbxttY8`GcXa<7#mwHY&Av(pM@$d!0N_<3 zZI88OPw8|vwQAR)3KXsS@0QBGwclo~GJG@{w(boPgt^EL*&sUSIy4%_a8$ZFH2V0+r%p>@5x5|X@n%&uGIdWkZGBqNrT zl5zm!t;1ReBu!EHtbrG{lF$VT7(>wIdVUUXXBE)`^m^!!o^a9jju@>J);VK$9o!$> z4v*Zg2q%!v2>rnGJwA}siY_YpmsqVc^S6~8rt#&JgxO)$3(qu%mzUY>WiN)5o@w?l z7u+uOZPcxbr@STV1%5PTvJ{_JpE=Pt-&w=UMMNYer~k3xb9HfUF9jkh!am5e7VOc; zT7L;R6PpEZ_224@o2Nk8w8PaN2AExY@a1iqDhULE>fBldl*hMGLO8t9&;h)YRt&NN z^BN8{KK{nq5Pc$rlTL1d9eLQ~Zwa`{n$fS!B^+^Q5HfbNe@$|jOXJke#8VbhwMh?v{wuO6gteTq_-C^{c%-y-{G@ zc?);{Kv1R$fB#^dLPfvWyY$E}DJ7X=Xo@V7WAlF;U3Wax{~te`bN1PrGm^cs31<@- z+1VsJGb4NNnO$aNukf|ERLG8u&>Zt1lIwNoWA}akf->x#o74CR^8e} zhHO0C{J5l~k*ztQvEDuFH;s|cqYCpEa(TkQZTXpQMg?uBC{NT55y?_;pM3G0=d%#~ zqO$&6D%nu)SUt=vf!6fqLog)8;N_!49f_me5PE@slbt~odj0=~;C z+l$qG{+;%dMj}Me&cDH=2KFq*F@XcW?~Bi%H@$f6&JN-BUNgG=0FscH^dm)vR*W0; zrPwiPP#yg>>bw4Qr~SZ`D$1&wbOdS<&L^VkuKvKuzo)(Euu>#%%zDnu$7-(DEIY4Y z7*JXu4j|I!haV2`2;5x-v9Y)@jr8j~0CE-VsSi;v1r^%FoZRtpIoU6dq7V=R8j9rx z_9|U>4`@(jZrr8Xys<(#NhvZ*9b}p)MsXNJx}pS5#xw~HgmK=&|7;f|Z~woz1&j~; z!w0vHLM~aqZF1e*s0wc$3r~6+cC*iALOJ=uAi#tW{*))0^$k#WWOsYvX7QVaIT!=I z-~bpu+YdZM9aGOkeDj$!9nn&bx$N|F*f=ZUNTOJDML2KKKF%#2l-Hs--9;-7$xAsHQ*A^AWP#>AdkphumXI~R7G>Go`=t^COOfq!%?C*V`myx zooz3-@vVhO^h}FNYOp|5eLNailM(=!b|*>)FKqz4u_St_r~v@T1vnEtNl&MyV^WcP z8-*4(;v=uuOWWh=GxzL@iRFePqc3SKssR{W>EYfuPau79? z+H>inbN1)CmCTvtB~F(T3wU3oI|YPCsVZ_e=wPT}#aZxu=)#Bb;;Yk}AGu!}bSqZB z{2IB##pj0n>5LAASIZw+{O7sk{_(ZHpf!*N0rXtp;lo6aHUcG`dIz8{&drr?NtH$6 zAgk3m$^X8+iL<+QRSnLIu{LfS9=t~rl_$&@) zPoIHF_Q0TFZEcMS1{eMXA6EEbB8Y#&Zsf56Hveq!dD!17x9Rl*J)0uR$SgWxVd3;> zbNq5FU0LODBAmFkZ9lBnJydGNU#>X3(`M1FKWv6lJBhvzkW%n}fOf*~Ii%ZdzGrv5 zEyk>7`P0;ra29XvniKDz3X{@y-L0gr=BpFq*TGxSKWS7%dMlp12Wlta^Y3&mtp{+B z=CuFhVRF&rY<-!_OI4Nn)>gO1HxGPuL#?l`p15p zyW8$xiA#?wSozT~LUJw$1-zt2A4?Ng7F%AnxXgFE(5e3tDtrH45PV%nn_p3nN(I0% z1a9N+Z4wE|iL>Gyq~rLslnk=&nD19!5rZSLuj};3;#+Iv`XzxB8hb2oj$bWRuRmhq@#vO#(7N#Nhlv>wROaRrH&1RFoP7~YoD?zH+I zvg|E2=egI0l5JSqH*dS4R{D4F#2 zi|lC$%s{CZWS&a|?V|k>&gY!}AJ?-<&2;3r8E?p_ozT4Z=G)ezuTp}tvP=;i@87=% zax+0tAes3rk%;38HU3@LsYBl_`%6Fv0cBtjH;Rq82ZTFkiZDTtIj(7`X`&Y(I-QM&JFSHoi znJg>5_YXJlJ_WdfJYI9VKB%a!{t9)rs~U4>m&Jk&2jCqB#61VIFBXKf`q1I#Xa6me zz)__pL*NK;i`|BU^O^VQf7Xs3q~BX>Vtz+-*o94ONw^&NYbumxOJa4)kUkpLOV5ml z*(Q);0nW;v78V^vdlGq$ygNY@xiaK|B=3=nK?Vv9z z1nrk<(QbKfVl84Sj(SF6-S199=H*3hSZmt%XNf*DGxK1ZyAJS#Kvwx@zKsloKA5$g za8&yohw+T8E_P~t`})@C>hv~9GXr0YPEth9@tE^B4iWMaCm51c<|;lHd9vhL9`HBa zg<+E*QO0?hayheevEE@=DH&nw|N5~T1J2zwlatd2+C^;+a=@9fi#qoPo-Rj+_Vs;j zQu){M-65j#yN{G(auqGtP0>H|OqXzkZiyH&qPNk-xnoxp_^I-`dCru9jL-}^ ze)P#!h(nUdD_4CL8zZi`S6~d;g*ZnxQcTm{7o^Ow|M*YpytwY3SIsA(j~_pRKdBrQ z4eXufLFdm@(;~p!8ElyF04wX=#ygnMo{Kcup$ys-S9Ku(Gh=V8$b-(aq?{Bqrd3fF z@2Cnz4*vMXy?XPQ6{qIp@stBK(~UsWi$HF0{%z3c$sESclL#)hxS#wn25{7~QVcEP z0z%~oj2<6(F-g8D2AekR-amhM?4Cad`;K_ro4JY$=+N#eBQSm(Os=3y_b=u?EhBre z?B_QVmJdPvo~PN-j$wzlxLi7L<)7|LJe#iL z=c$B0+CTN0# zL-KO^K!Mha0X(dyvHb@Ez_|6zpi558P%C;E(GdUOUq@h|(bdwXWx&4@Cs|=yt;)e8 zpmQF_zb#lM&YfZ@TEVKj)c)FT$`{_t?`IPpxH_nUi$`_QQ@aynCOI7XzF#eWoA``f z5}J&spN9(m84J!v^ES-$w?3A;3lwPAz88q~_W6duR|h6_21!u4jP{E|mzeEhA7y}f z2#86=1EJ;U*jQg94?HYnt%&)qc)hcs2(*}B54)SO!u}i`TbJG2c|=L)3jXY7d$}H0 z_hc#(Nii@ULL(s}`MgX_+g4&eNqf4bfsig`%r3ngg$0ne5g;S{?o2sSOXuaV?#Bq& zt5RLu7MB5`v5!^JBFeaCPkd#zhS65eJDoSh-KbhW#4Cs0Kjv^uOvi|IRd|vspB$N<`dYgm6oSj{TWBJ5Ba z;I|Lg4@u~ODcApJufMJEWkR*oUdRJMjKeP(t0KEO&#hCjhTYvZ{y6~g183&Q50gGc z?+64~eR<>g4%Bz0=h7$v0Lpbr({FlvAuX=UaiH}5cX~P(z{E3Rk~6Bd$(vn*crR%; z`{7%FO$ge6BwV~A%We>IP|(~9q|dE@ID0a4(zdyf{FEA8I~bU6LpQ;#(}RK&rv8o! zb!?6^6gu{pRJmFg)BfK|?09Q;3$VsWIAXv^mEiU_tPV1Didf^sn@I-MgYi|CtuiR^<~(W(3gsbI7my!NVXZ zgaNx;Quxh!`lp*UCfL3{z`ceFuGCWC12qDmTZW7@ve5B};A#5cExKdM-g-$gJkr|~ zC!*Zg6ciJS22Bn*9(D-A_Q)?GIoT#cX)5;}JDmB(hi=(t(z&_Nk^-xtgd%}DqB<4r zD0D`diaXq5r4x*0m!knkb@wn;c+s|*^2O2$qvVPFAxY?zkzaQO)U!VSG2N*B(~P2bHtj4hUFT*MM(22pOMq( z5{%l-KF{S|Ny-DmsHB|>W}9k_D`~LHt6Z6t;XP#afi053%4fxc=8T%|2zf_VhWyR{ zzLu8yCZT(W@DA6uDs|WW#F;J-LbvC#;Uzk>Uxkah4lpa3ZhfbZ{DEd%KtkgC5d|wV z)V~=|USWaozUTN+!S6PS(XXSH0L2?TDzv8sO?G|YFi`>lVKc=qWCSE1r&|T@%5E0l zg#=3-!9D9Z;RHrV53|5VF&b#T%yPk*LF%wjBE6gNTcnz<7Ge1hVo)(81AxQU_=MM+ z0VkISY;G_e72u`Wnb<`pk>Bi7w(G+{*m?+hLC9;(;Y^TV!)*@Ve9V)6Dun}%8rUBJIxa8p0FLVwc0c=@7Og8y@4h>*e z23lNVieuLLP{5D(5O`&k+0%c=%#cv-?&us7KU7`M?n`2#s@?Q{Oz`thhbc^)$U*WW zDTMChaQMs%QW5*42>O2raHN7uUH})j7^iwpuEFTvQM7O|0=G6W{#lE)ZMf4+oHU+@ z#R(%R7AyxZ0-6-=U~FVRIV6Zz%wg^9OkgAI^MV?-v9Tc_B^C`75o(z8r)6g}ze8;R@#N!_c)bDJ{NR4LdemA?*b7jQ65T&5CxP;*pl}@KTlZd4q zlmojOuA~!S!!{j(8-fjcrWBf~UR1eL{(1x);2WfhGI&x4f)EJ<=McQ&e$pTOqaiyL2ekeJ< zJf-}!DCz6pnNDvH2gwBTefv+NILIyY*wy6_e05Z}4WBh$ztdMlQp*1vpd%!WqaReN z(jzA0`UYqkX-psA){n+Qw^v8mi=8xJKR+OV)8pun3wmBle#yXN+$^;rf<6$>G@`a`{|NCThKiPe_!{^a*I{F7*t9l}YNjv?G zJb>o0_3L)xGb`rkFJ^Wu9s8U#k@BkUJ+)ez z$%dQ%=S&y*>lxVeJ)Y}Rq-Ff(1i8Wvxly1Wlvya{%^G3O`|M?Ff)*!o9s!t0_ju$p z>~IRL`@G-k9cs$N#jrRn-71I*-+n@=coXfdYL-FO?{;T!bW1Evq z>YD3E=bwn&8Se#@Jp(2!ggU0U$qU{%7G1$z%csSA#;wK|JibN$Ply4K=ug0=P|c7zg%sVXjG-mJ~Dl)b2@HV*_&T%S@ZYAOT= z%bLz9=>wQoDn2zeHJ>CxK>RG-NHp&lCrLXQXIeNMu8^us!)M+}O${%7Qh{tQobb?B zBWLDT7XTU6P|ghSx#|g6-JD*@hAR>MObc(;OZH`Dtv}g|^f+?^Wd7&_0mfiy-#snB zFL5r|Ej7B#XJX@YYrbeOiF7b_qsPhcpaE6ukTpr9ywyG0LWix9Ujl9JtbYRoKW%#4 ztTVOCq)P%d{YwXz|LVVp$L0I*k0TGXVoF)=S!CBx$wk>YP6y&A` z_=DU)WfFSuM!wqm_8}Ym&l~5(C}kR%X(o{4mjmz>0wR{>NOA>k;oLXmN)@p}kQ=07 z@%b;H6a@x4G*Bu8B|T`8Rnh_1@>B)6ux5B=Wl)!h%V@^#eYWgaa%jr<`0*`r-Sq2X`6r#yPB-=I}dnFhg^;v_Qo_Q<4lYy0$|NomsGQ{jDo1G2(}xqo)s_fF5>vYM5Xj`OKxgEZkeX#G)<{eE9PmsWOdu#JDYYvM z1Uu?OtO~hlBMf2~(l)R155QGgp#h_-IGZeW4FN~pJ2FIG%mx)Dn1!|Cd%uZW4N<7` z7fh_v(>%Hz57H_v{NnK{HHtd3xeFRkd-fh6o=tw;L@uKPdv!nNq62>mud8E^5?%ZS z!!phNRzod|rTzZ032Q2Ffpu8t}ZK zU1tGFIqNvP+*pF1^jIj@s!BaYJrqvvfITcYnBU~XecWv#)w$;tp7y;c!xGQyNJkpa>?+K@UC9Q@XJ@3&Yhung%@HTkkUuEWXzE*Q? zW8{omMW38TNUn!s)`es%iEIJ~T@(h8sLXozJP$`#x5|3t*Q z?Bxiq29$jn6%k-OvURFqcjO+YBk{9sC!`u_lLqYkCI})YQ;@ve%h`tq&a))&MSy}t z26Z5vorI-C9zOeyLv2EMj0vGh)`>g|f`rvyJepGXksC{KuAFymX)fkC>jo~7tIq{j zxS--XSl$n!0(^M&LrUhe<&|@WH!_|u>EX5a!5hyd*f8jiAU5rC)(&3KSE zulDKF=i)#{xOcB72MIX%_(Xj1syh_8mwW%ZANxPd}0aj(E8b zJAEKawnW;dC%-W-sBtycLlaM3k8A##4UjfjC&~>xBXj+FTsNmWI$`6>!kRs{X$aft z-$|8BlBf?GdLp?+e8n_^mc#h{SO28B+8OokK?fl<)2f;b=5z?(pMIf-uPZA-%u+~F`Fk32>Q~LaP!z*aD&BWlpN7bT}AYuqr{s zCz3>x7dZp(Lnq57)dgSg+!5!7Js0}G5!u7;e{lcySI_FFRMwEqwP+AIe>j0fT)iu! zy?^Cq!b||5hCvoMkdkF)%1INSi<}_`F*@Q!$5`_+Da5(rfP`%tsob=j#66m}wQjR0 z>Sbn;Aq2c?mBn)U2(PP)}TJ%gd-uE(^&N+M+ zvd+1dHIlHqZH7>a@rG%JAzRaG(n1tjL520j=orIc(bNI4mEuvXRdc z#`&^O_}re157E`em>{qwiZ+zTk?IxH3rS210Q}8)n&8W?Z>+XsEU>XXwG@LbgQl3@ zZ>*ia{9}g(-B(wJPBU90oaZ0`;h$xZ*n~fx78!slvIK-#{nmgr@|*^A`pN>lQw#zI zg=LKt8S(VH(H|s{yN`L-V;-pB~@;Av`I^jG8`n+byD1p21S?_l*GNOS%2u*5LeA_&>~ zM`z^_4;y!>+H6xSfr0rD0oIsdNUtI9zu^g|KAN+d2|z!mIStWKG@c8*--XbvAZODd zSelcjOu9$%mh?MS;hy(Nsq=;pB4`*WwJ^DV)&=c4feyE>`-1D{PtUa&Ii5i z-%oKpht}>A&%OS(L8YY>zo&aKO=?E}SxWzfcWR$=tH7I{7wmrNmdKB;W)F@Dkl3X(3SyIaO0`@R~7A(w~+(YJSMh=|^I_l+d9J+pH8pC~@Vdf?;mErRn6 zHvnpacW{Cr5YV+Jg8_}Q{Zu_?N(gzkO$MLUCj}RJV}h+Bq)@vedYr(fZqs!?@;D`) zmmuQ3CDFP8{x-7(g!2T5#ybyIzJF?Ic9M+~tYR;0rHw-ShwHmQ4wpze9$V>AfOOHB z&e#4Y#)VJG#F)#s+xZ!R&`V4JVvYdxvwB5DWv$P$|C^HG#NaqH4x2x{8YABH1#A*T zP+(2Zh+~^MzI2)Y*_P;Oxz6);%-YhPgW8a+nh;l_HPmvl>PqwLr>Y;qg0ENW&-&} zp8qtsBPQqOsAA3ldA`AF!ulUpmOmw^|L48rHQ!HzQW=ADmE^_jH`j{$<3}i!A-O|F zD&9Q_st-%ei*S#ALBqGpj|1nE!VOhaoXp8KHjq8%c7`WRwXZ?#2nvh8->dnx$)P>neqSFxlm@#C%nQ?Ien%Ho*R?g+{f4FXVTGAfOm!1Vo>JOfO zwcJc%5XcW`+<5WDsV?-X`JV4e%QNf^$=piilNrzvfoKd)eZubKS&z2eazxeczW86c z60zMM%a4z-*}M4TDq%2{F)jX|S6kQHg9J{1cX$MU`Df|79!FkbAlv#XJIGy@FY95F z4sk4Pj6(_#LwhZT^tOfZfT{UBT)1k{)jCS=_C~iNV*IuvI2!yH#koHB*6 zt83YSJK#&sohjqkFv1{_HS3+tGkE94HSeu> zOJdIz({0Ieyh9uA2yv!*>B$KL5I%gIm_R7fqRO=dfxpdz>wPpFvh60S^K zT|XkS|0cb-W?$NByk=V$qKWwzq{o%5wZWE_DM zc2jLSB-UC!G#c6Tug8eq^g|?tKV^DYXz>*ce3k8e`l1UPau!=~hPxCv{ty!K`Lo(m z@a;7uWYfYI16VN*`B>=9og0ls(=l)gTVWoMGtQi%HLDnD;%Nba2M@545#SmFr{Aey z;qcQBw}FbEIYKg`9x{ZLCO9wdiKpojQ(BwzL!TwoObMH@@!rwIQ$Jbux-a)~KY#tv zjQ{n_cdW(aft9tdby+HVa_xo`GmJn(o97X!_(gz$19U`I&xZvjS6+ubE_M%R*Pq(= zHHTneXf+4#G4@&)&R}#(l42%73%byxqR@!%5~lZC_+;vk6Lku%@H~Vr7dG%wa;0O~ zM--Y;F(aUT<5|Mgclhm3s~>Q@6L0M z1rmzcm^JQhROK&ZRc7~Ul86V7$}Q^VL#d|PnyU4T2B0KSJAUFfCyN06ANur3b(cwk zXjamy_+si25DINb-GhSilgNqx&EvY|xa@D&@AW7O8E|v%%ZahT2=aF@^=uc<^jcdw zsR48p*=~+`kQdU7*vG6gLp-$m@s0U&qXwB|V&{AruCY$N=jPXUFXV~;|2hDaUEEU5 z1Kpb!{o+l6X^yy3OP1smT3qq})O1{pZm;LXXJmFWrQ+{A!0eWv#s&kmdhg4ef7aiB z`{vCcR#S36H!w#5M7=ri;TS9p+>6#!pD`*|ty5qE|tC zEzU>N3a@r6pU;nxPokBSd8(Xve5zF*bYVPVZAyP!|2rEk7>HsgbC_F({}Fe(9wi(I zaitC#hnYoJSAKf-q4hdR>RZzabnNb#$*sA5i4~@@$^LgA4on5VbSv!S)_i5`h2-I= zW|Kr7Z(9kMZ`g-pVk?8eS6a8YAPyrRSOvAN2DOBxv$TT#rmy~vLyz2E_xQX-RVTIW z{c;vv6am{Ho%~UoK*z6UBl7>`$K*OcqEgU)7RQN{rHRfHX48}H@dh=yH0`s9PXYvQ z0#42Dyd~dZ%aUrrvZFXm)qXWPj-kDEn2pYK$afz{3iA*gMN~?Y`wH3>gN{{HCvuR8okVS<3i1L2xD zIz{PTg8iq>#sR9PQ#hN!sT>*z%fNH3k|DQA>}ol1d`Z! zg$nG?e(Qayvn?zgd0SmeQ_MvX*4UR_aLW}KTGlL#gC)Xm{VY~z5%@m)J5C_! z`O|bcK`9-A2Fmk>j@n@5updCYA|}D689vGap^w&(WFRotH&e+t5qzHFP{BHWp7|L} zYNBqXP{I)Bo2ty(l||xqy<907-ccS3tKAXsVgO9&;A+QAc|a4R0arB4tkB~smn;9~#~hOu zp&^PND(Y-4iJh}eWI7z{j2@L=?^VyQpJPM4ekY>OLmh=-HWx^Yr5R4DQ<*(x2arDk z5VO48Q%x2NQ`{ z4%9HX2b^O>xdojUl}k;dRN%HcitHJGxuv)$LN*(~pvtI=H0ZJlxT`ThAAYX@hacXT zrKv;S!%TLSIj{!D(B=;K3qO=1UI4=qYDw5dB^j}b?x~`NyBLuL<0X1r%@6&uGk?t` zh=IEjP0r%y z>u_da)qv?6s$vKHmIW3mGM3f@?3ec=&K}qB_R@;$|Mq^AM!r=F6kw2~BX3xq*l>3X z)amXiNe-lmGf1H@wanDdc72|2UPS3}p@>UqjLuVe)KC?yPe_LyxS!gXPbs7UX@WKn zWuT7jXkbSzUG`^yvyLpOk}Cl<%tdJ;eYAB$OioTt?G8e`ko#2iHJfT9K|Wd=_dV6O z@8|Uto!Oj`&2O4_#l`*qae&*oo^w5dn(8WRx_3EQH<^-`C`BRv%)apHs51 zuqb}eiUIsYyiinH;Y>3dg%SynS8zNN)|kH4oy=fYnMQDpF)bvKA;Rsf|C1Zl6NAsB zMDQ`2HcWg9t!LCXi{5ERK$%-MAFf)=fi4SXKg~WM-0@xkj@#>-zpw6D^tuc?TsBW& zp~3(@F+i?JFZk1Bf9McB3@Fda@<>b7ayt5K z_98mP&|f4YrBh$rbH%wE(=;Fq(cuqr2=2-v9ftnq92(itC8Z`ZT!$87QOoV9H8H#G zRsY52Q5PKdFVu4$Q~+Cd2LcD6#;Wo(3*k|a^{wA1?angC%v0|`y_6{2l?It@YGEvD zpvKjAydv}CIWeBX?JOF`h*Wum_1%_Wfu4(DPhDNLkTXW|afkhS#Ai6(jx_g3Bh%Wu zcCPUwkU9bd6Eqgz`dGWU)$iKeHU` z_=N0mWc%a9{=Y)6=PdS#1hO#86#eGq{z5C5HG5h>WXky=r+K!5E{-45xlVleS~+tfKGWE z{aK7QomQkXXzQeRI<)yNml+-sr}40^%;6|yuIWboFi7+cM}-Zjiwl)|#7G#$6~_Si z(XMx|I?wNJFaO#wWOY|8>6P}`r!5YTHhO5jN`qei(vqp6H#{KPYC}Lb7dD~%G-1NK zaoBYlSD7G`nh}R#^{vlJq$@SBf4&&Lw5-WWJapId`BQ%Ww9@!NSvEWdMKx5;!(x|X zXSqp_2ycHL8@RG9!c@&uuikU{28n$88JG`O7TMSY5-=SU$*l{!pYZGu53mF^a=^ar zui4al^?#bD2HLaScVwa)QoeBq&pxD3L69o3lprdYh%NlhIZg**B79&rq5?wUI0$ z=?6N>ZNwLsEky2evZb~8fFcXG`ULBMKtfVG-OHyw6P3C})7zADM{er}R{u_qt$?YI z;VoS}wZO6_``f7IVA;-;NfH3L0@do7S?5c_-#u54-U0hjugK*e8@%Upn40?Gf0d_& z=@^qG^8QK_&)oqYmRtU-PgB0yg-5CF8gcquylbz;A3qB7ic-SGo2FE4?2LQopC1kM zr1m))0pV59hf1U$+J>0F2+efMP{+p;;t&JU`;Kg1!5(Q`ofide84y6rh6~j20tB}p zX*Tg?q%(HesH;c{v?lK%G2@lKns3UNUmoSUBQxdNEUd6FWRpJn2VXXkRgf!Dl!J9p z5M$=EBK`u4qc5!=Ws3&_-|2E1mHmECmFuf7485*y7pZBk)LShV@#zo;Bj(!7SJwVkG+5`mUW+NX0x)Yf(VrL|9;?^8=40*#NS?6s4#^n zv-ra#W2-9T;%WyPcY8}p82Kn*QZ2huk(hn2?y0k*89&g?4Gt#rF!UdF%H|7i8Ls&; zZftG>ZSTkX>>zJ`!^lP}><3FMeJ3$+MZE6r{#2GBSw}%{b5~SdF}p0Pq%KA}$gR2-0z&`P0XF5_O7sEExd+G2mL5H=AG< zrttX)89xFb5b9sAi|5Z@;_?Bw$$sSMZX1h+dwm-L~2mBnIjA&Zro?N20b@d zhfH%wDThpk@ltbb+?L|19Nxk{mVDb9HP$Y47*ytq)=X~u=xO&mL1@+o+|nBCWbYs) zC*$gre)+>upVjW3*2YCGY>!oqyE7T-lxuOL$Dv3}q`?ibC}aaxx#3WKjzS~A7xAUB zaoUII*67`7l4jbfndSL>-)Tm6v#C+j()Ks+%r*FpWabjRD0Aq)2dylw#*4-ojt_iy zl2Y_mfC|uw#(+tp(y1{J6c<2z|MuV8-!e(qF6)=}pIX%o?E$mRZg>pW5{^jALXI*S zx>5SOI-Wd&)7!lt$&bHK6MmDITqNrY1eV%H<{xd6AAUQ5f(EW`bW=QLhBRkap%t72 z{J}J!i^rEKyDZEa!FU~U{F;2?a&C({jt57FC7L$aIP;eneTg}|vJyt2?%r1<^{!Vy zQ(V{)1rM#R42q~zQgrtN#+zX))_XAE7AO5jge&1&fO=dCij`5_io>k*$3H>jO<|90 zJ&UOQh|Pd-k@g{C$MeOaD2UM1oEwO;WDDiYv>~dtL8Hape@5(QD_^Q2#*c86=OPt% z8cU+`a$~u_P5uo3jQ}JC_|cdi%y62UC>Uo2f&aA{i#ooZrq7|FwKEjznV_TfX04Vc zytzKm_SqjGdr7q##YK^8a(}KSg6_J@h-+;bCV&lX_U3DG0a~_HWdh8#KR;Pu z!F!v%JO1I*@n4%?0TTrO6Vu3c-Q}2ctl^`Sd${cPpb*ScMfrfsgNqrpM+n{Ngi5mr zH4H3%IOXn-Q2S~MVF`A1Ra}0m7<>twx8n{FuD&&>h1VsZP%OU)OC zw3k>CfwSC8-Hmr)UXP10soBF(s_GCgo<&kI`!(^UX2in)ugbBb~7n zj<}i<*sfv|%c?LE`@6F!0zq1MPmm*19i$PEJ$aJ-CbxfLVuJQ77m6Q1SEqtarbHe< z)s+k`F-(>6o_)Je zF_uL(2b7)v;TMYMAB=%&oKG>R+(s$vrR<#UYYLp4n_u&XfO`#01q@yNfcERIa8Gy01;7D4qzyw50s&k-517)4 zBqTpd{5rGCE`cnH(%{)vHlU>!)a~u<_5}FDmJx>}1 zN2rFhUpZQg|i%U0=x9 zysKRfmt-pJB9 zV_DB&rGXU_6&(%S6>uE{xWsD5zgoMyyK7$4u-tbU58r7IePC?_;TUP;|F$mvx@uPc zTXQ1uw|gGix8Ea_Vt9eZ*=>DG$KrL1pXWb`sacQ2F+MZRR|k2iA}p{zFtu5L@^-eT zQcw;vcgL!oLSi+f@RfBoT#@U{j7nb_kEf~(k2z}umG*8m=OsPP;8AW`_~QcqVRvoL zELOEpWi^ZrQMu5sX3m$_v>*n~v5umaGWlp?FXL6P(`V79m%A!ngO35PD^ ztibcylO_`QKY#`R4g9%GOj=9CFGv8lFsyNR`O&PUm7F~xATJ8%oA2nSR# zDR^7xteNQO@SWq0jhYuN2SkS5QTR)ix^{85@Tmzr;86mNE9w|@s6(?mb2fPteqIO9 ztNtqYcOqFxFP^r(9&N1FFOx{!67WaNv-@Q0ihG{$)S7lD03RoDj+fUu zA#bddCNaqhXeHChAvY1IRtl_YI{^Z$_(zYZY3K&P!CY2W*8bxSH)=m6K$i&+EXn^? zk=eRPXk&Y#S63~k;XK^>vfHE#QP$$VRvdKIxJ== zAg^R3wyYKnG9S3Cy)KUi2*?;}D7hrvKSd zP`;zy9+!H}hkGZ?X?kUoaiK8ShO=wU>yiuddEKtg+?`h%u;{EKvRxLHD@2dyN31@G1_9c!`F;A@eR8bYCQA!2a z71*5c@b}*~lh9B*t=<084BjE#&tj7C3V8F!k*b^>X!C~>EYM5`Ybz@Z1sfZX#5oLx zeUVwa#WSBb$ymb4pfGj=TL}#y){y2S#BZt0$^sF-rbIvm-pHen_O8%fU4IViMTB+3 zR{STEln5`$L{Pw_rGG2)h`X71ArKJ^!6Wa@+xF(i@T3#;q8-~w_PH;_sovXXs9A(){) zl&}%<>#5n$fIN&a1|E~J2`pRrokt*S3Bbsiu`^UMcF0%CR zjq>wYx_Oa zi2s{X2|4G9FwAKSV5}^&0_}gxv%7ym4+2~}H`lSLFDqz56gKDVb=BYNa!kf0SJna% zvDlK&V!xuiOS+B<5lepT1-kQQ!3har3^?d3V@p7gⅈC3^h82*G3R%tZw_87Z%nr z6BG$U7L)J8jc)!tU*p8n9hduk)Yt2tlvN^8RO$*REpKJ7tON+k}L76xJ;S#Nt` zj-w0PgCIDt-D;Y8y)M_6Bs$JhsDk|6V(|8Q6hM&jeagaGu+05X<(sU4J3IONjf ztg~}CI+;aO@qOD0&-~nhr+kn{=n&XiU2J=T5>hGBa$#_mA>M3|%5gDz=mwgP=77MI((iQQ>R6mf8E4UHv zb)Nv)-v}MWwdsP|hZP9sB!w~-wNSR%fMk;}bnn1_eRe(R+QHZr7!trn44$iTH@7?$ z85g9dm1dxBwL`3yjHM_`Y(-)%?qU6u66hjX?~?IW2PQK;?U%+y)H@fI!96n!I;tjWLaAIUty=x37bRlS0krm`8+~^zd>t*pav( zssqSg;*XBN3H7uK?X4;TX=V%6EPSVgjVg)FM2oNg^|P-a2e|0kgx4bg>qM35LKmK3 z$`LX%JBy6g{Hw8aAQaU}mz3|v$JDLdJ{_AlUi}awFVzrEySQ$NGxixksfLF?UhS{l zMQ=A`&HAw&$Af@A(&=bDoZKI&;n(?z!i4f0pZdzh7_g&;)bjY%}D# zT~N~euw0IWFb9oW%!zaf8o$SKxAbs)$h8L?MWJXGG_m%BM!IlmY`wVSaTJIC|rw%{Nlqba9dmBv!gtdK!H{cCSq6O-$rPp-uv>Q>Lb4_tM~VfD|o^O6YW z&9W!tZuVEO!6_k1r3;gThg8&xVcoRJZ71D8W3hJ{ZRS-mIl zT6B3g%O)rsTXudG#+M10UTG@Lq%_RUp)5DMJW(OT&@KJZEp$Ef?Y%V-J*#4a(l}wc za|+qRWKci_HM3hW9#GQL_24Fejb_q2$9-M>@EDPn83_Q+W+fFcKB}HqhhUr6j&A2Q zr1mdI6mWE%EesG@c`l`{i(aq`X0JZvAD-BQT_)P$+>)T!&a z7Sg2A>=gVmO1+qLo2D_gh(LqQZ2R+g25peEU?s2_(A%8gu_vlq9cN!Q9`GrT|8B}1 z%ZH%^7C?u=Loq+T>E-9wSanm+%NOLhG;Wv*@t%AEGnXt#rxPoujnih*FJ=Kv#R^vP zd)|pyLD)4w$qOQM;Z9uOTSt}m<#Yrwli~uD&otw92HJ&byY5}lVwrkA{3bHEXw(&c zK$QUQSx^-Mh~Kmr?=Bi{Bii5w9lkJzsrb}?hcP}RX9`E0m#a{2OEuoa7O$jjvqRZ0 zN+2$c6oQFPiDd4JJWmptyivg@%?zA$dr=zFf7zA%u;^oDQA!ft%T1IvXXTX-?^L?^ z##tZri}|cKCU~O{>}j!={a(q?o0Xeer7!SY%a3ow?(Fz&8qcu+oa{hkX*d0i6Ptku zJtLDtkRuAn;84r2OL#*308U+&N~G}^y>l6=!8B~Z8)!68+$TEr$zdJ zw@qzwvj-2DcdF+x#jY)PH^qH+@1n)c6mtK_> zn|6e;tp;8vHQ7Ytg=Lb_h7a;Z&;Q&k)dOu1*xI1SY*j*I!e*)CU~g!Vvq-TybXUv= ztwkw)tu2~_fV@8gzMzeYL(eQxsE^1a$HkSZt!|kYl}~J`yeuy|lb{A)o|ijM`uun_ z9ofre^;9R_f~nU1G!``DsSX6hY+n{W*UYCBvE2GAj@dQ#f_bWyD|sYll}gV2($#HB zwb)mcqpD0m^a8yG9E(X*g>T;+leL3#1$WI@HGydA0`{#e=R~qx3|riJEVUMT?!t3< z)t}jre+G4OP&nk9{a2a+Glh%XO44p!=vZ^3#r za$kDr@WzbXMGwJv;|0kCB!LGAy(aeK(Rje?eS6K*WL}7>Z<4n2NBPcqXsWWvQ5c*t%gD%QLER75j_-E-V`Sv*ZZwPGVZ16cW^&8KbiMS*(yr_k0~vu?cX3;rAvptb#%MBm6ckG zJdCwq>t#1_(A2ks;$76WVA4WI%HgzVe`#7pxmW_8Ah$`rh|np2f#vQ=8n%_8a}vMk zjJGECi3y&OLls(qDXx>72wKi_m9J%0^3Ei8 z-s@csO9l8sEZ!(vasEr-Ot0$p=WtkEW^z6@+i_F64_dp*u?f;*hp6<~mN)8t2F>b6 zwJg|pcWw=mdDR6saVfrodjr#t?8l$9dR|u{&#|k~qezb7ks0mX5OzHwtXRK5ihjOf z+Anr}^sDo%Hmq}fKHGv-W~J9hGW11A0Z9Xn4M9OO9a%03u33j?G=_wDx{rBPfnnD)vZ0N86*q=% z<_ce|r765;$|6F;1Jsm{4L7|1y*>8%&RRQo%TAhT>W}SDYmsBqsK(ADQ%>)@fJc$$~OJK2idfkf0&8O zO3X04_?cB=mcJMieq7bdWsT{J3^y%Z#6QmzhWBU6$t;3+whTXw|7kf?(Za63Ru|*G z#FP#5sJ6^$dh4|MlB`%1x* z;`vek`)S&iF31C#!o$bso-}e-5ntW0fAwDbtk<|l_Ru0MuOvVuX!`q`>so3%0+#w%)5gw%4bdn-siyC3vzlc0Im4v0RaJHp#Ps{uFzaQO(JC_OrR2@oBJ zi>bw4yZJA#q@V0X-*5+?=z8HjK46EQ9u<=p8;e)D&~v0Zv|*sF(O({=PIF3#+?((q z()CsSD#pXY_innNYiou%=SU*kQe;^1g40xb#4L#)kYMlTR{s5w{(2X9##tH}uxv?u z{FFib28~TV5!^eq6N_28xE(7wRhiRgV>URYDNzEnc2w%wt-Ysp&RQ(qI?EWe!%Q=@ zVLQQRfF^{>tmk)~yL)(zz5u=R?%7DSGH<(W!rk};*qp+X!giTaR0Zw?#92T=$Mw6? zF+o*%0sr^6%u>PL=#0v@(ati@m(!E1-Rrg(gzii)=XFwr=`Ruca*hxzUaJTC4wtOv zSc1Pkt(%~#KQn$k_DK>xYukrcGbc)Huqq|XJ74R&x0Npc#ndIuY3y;m*2Hg+CD*%84~?*} z7+P1ad_Ys?EDEfvpjt;+anFfFUgjrwm#66=6L(Br$a={A_ELH1E)^wkSvxFUwRIfx z)Jg(!IbpSRDQ``FL%l1zK3>pbQ`YIkOz>;{aYL9ImskP|QPj12$Dkv80C7oUac%kR{3HhRk!$DDFZB&5@1J`Rd3IViq9 z!SnZr-UKOB_ntETDqa7sW*9T2vOp!0b0$QJad~6fMpvkl4hbUmq_q`|H0#q>(kaGd zY`H0wu%`5ViStS&!rDu2E zmArbQxN_-?_b($e0)~2e%;jQgUFyI9;-G9-B`j+w_u$>8%1fOvr>^{@Fzth5N;|l# zTOS*8J!!4^f<1uETkM+jBhz{9#5>(Er+h21PC5Fcvzsb^ndpg!A$!UC1QdeBCozvs zcfp5ix{+p5>e}BEoZLB{at}_Yog+g!WIBiQ51PNIj$@dg4_X6O&X;CMnRyzY!PD=} zOSbACh}FhWCN#Xco}Pu$J?-Ko-r-6>TKrZ_3;6H3K+u z7W65Sg$15m*lVXlb**Wj^-sfD0jdbau1yvG!8S1^j$ec38Qu=Po1Kk19$6_?I=VFj zr}#AeiGVD}J=b~bk7wpgu(<|nw+~`-!|$(=%MLpxi-umeUT*a|1}Zb9R4zH?Tp2Rk zkwQ;qGUU#X&sA|9Mf#cASnYGEq9VEZDGcIg(BW*M^WX)BXJl^c>WgGH93JsHB{A=m zu2TcoOg)9=&=Wcd@39|#W7~v6n$B3fn%i)i)3Fj)d$%!BoAv+(OR4L9-}>U^!>{ig zdB-4e$eP;B%A_xzAwg=7mEp)e8+h7*Mu7b-3D z@I#6)V(no^Q!7_V%L!o_r2R-(=^d$Y9m-ez1!V|roa!g1ak?brSUo!8pB&4KnD{sa zD)-Bq7^?dY=1M?gGI*M=5W|i7moCc9K32cKwKATRd^Xt`S|`Sawr(pQs*|3e)|lWh zi=9l=e_Ce;@c9>BWa&=O9&>TuJVyR*lu;r$ambm(B;CI7A+YB$vh=LS+=oaxuhZh zk{Uybk>9qY*+@Z;y?7KUVj9vo%t_99}Gtxnx%482V-Hn%%^S zsc*cO)1ov_xfT2~f+pl%JO2YVu2%j;J#!NAO9S+Ga2xLW_(*1?5kr6&CcH%QrE4pC zyn6c=WN(C(R=CzvqUVgv*6HP4sg(1)AFrLbrO%>p>k~nd@pvB)%e1qtTI%zYn7eJne@mL$D$-Vu6wh%cYejMlx^kbS$He0IHaC=~0KP^t{s701vT+TbRw;O~bWvdt(8#^q% zf5OGXLyoxaWySf&`6MTVG}d>u-tV?exiV!Ib7O>El&x43^LWn1`dycxoB&>A`2N-U zPirF!hP{yk;Kc!Oscy4U%H&HWc_x)l)e8Y=_aYgC{1$|{zS59XJaSFR2 z68yxUUP#QN0lU7l^!3Q%6(TW(^25^8F%=b^>9us&{{8!O6G~}RTWf1Oyx{}5{yXc; z7K07Cz1)PM`M3KQwzXp6wzPB686C?Vmv7_>!rzvo%y6ml^Jm= z!1l#TE6LwkA|_^8L6SKlY~9@6+-lLVY<$3byL!dAE#C}rrI+d`vigjQH~hD;%b=^? z5TmwlEo8+I%vs4UzkP?H+f8e-uB{O@xdEtw#FBQoxlE@=|H%Lgtr^a5gtF--=k}pd z?qBN2pLcX544v-UJFW+V-xzv7GS5ADoU3iHPPdOiEjL+79$fu=(;b?1haBIza;yloKT}NX>b#&Ws=y+riAbTBGhV^%#MD_Tob4 z`?QF3RgSaNDG#y~6S=dO%x@xbdE&J0*iculVJLBI`|-Y=Rsd>&I^tWy<(KWv)f#B6 zrAX#Bwa4#?=&XI$!V)h{Otf=i+BHUrKV4CxyR`~J!|s)Ky+faz16!la*WzMrE5o?J zy(7DNue{W4IIzGZwP&L(??tg^R_J`_@SO^hz0e&!AwWM-*Y z_cqiw*;8c*6uz_fyY1g;Lm|P72CF}YiJdEdt+rHc8F=C6%s(+LC58eX$~VO<)z@D{ z_AWRfI-vvd=Q*#i9=<^Aq8WRZ#2)K&FF`XWQpTN$J8DNHDvB5;VD{;3{RpMtwCA&SNxlH6!M zP{6eP{SA9&F$*ek+xo@uW}#)csDYpQei%|f zn6FZGr!3-vC};ENjny3TQFY6g>uq^|FPfNN*S#FLDp8N-x>T2nYZ(p8LY~gg)#2mx zm?qJi!73CE{Rel2l^1_s%Q{}Z_EB+2!-CDF(Nw_3hm-$W)~36a^pxDDuMoAm>T;ne z%y@KA0I=Z<*}WS-16<^LexWQ#?b6Kth>~&=W5TGSy`P{y=vaGu<%6(wVjkpRV7gkn z{I5#99V%?BMPvkI8WfwxTYhml-*qk_Jn(A>Cn@5EzvbwjVWiol;ajdsvloHKJi-uR z9QmTE%x}t~j+`dgH?0Y}&$MtC<>{>=$$*0DX1#i6>i074aC6UAvnzlXT6C69Em8@P z!46;6=Vsp%3J~R+uxNLz@6D#yXK^D6-)u)=Y+?FKdFrdzmHx00-gi&VEbVL5coW7g ziZtB^-w)STnjIpsC0dZ%~N}8bj77XpHzrK4ETM@?CqFYPY>G=9Z8V<{XrdB<&D2z*|0y%`)prph zK{KR!pC>h3@7%sh`QRYz4oD^>rq-Kh$Q+cL&DaXM`T7DN7y1 z_Fy#5`5>v4{j*Ab1hO_(W(AB8E*hh>In0`Fh-%oOakh$e8oxey*Rs^PTDZN2yc19d z{Hu;gZ^EUzX6d9m<)Vwm&<>wZ05YM&TS&XF|Am)4&G`WUCgFJ~L1*07_5etDZ}lna z#c&42ZlbG75Zd&rH;x2wC+UMe-<$UEnC_%p2$_|ADfMborA0uasCqTyA1fRTAOje2 zDu0(+M3q%nmWkHF9CL~m)PLS2^(CYV%yctpBrW8{Bo~M!;=a8DvTFH6=aB7$TRN0} zsOh_@4MQZxY(x^+Rw^G}KIc$I7axb;>nTvY+Hr)Hi~D|5NHh_2j(T#u?DnN%Ylfdy z4Id@gK0U-0GvfoQ)lvrSd^Vib+EX!I+)1gjqAhlC7yQ6k$KN<864sXttyM4*7$9`Lz+sdD9(Q?`3vy~0Y-9qO7@>%k+n$p-=Re#?YkebV9dtW;Ykztl+dVVu z)%wy>R<$%1FOv-4V>U9~$L}{+n{BZ9xWR$ zf4oxOCVl01Z#0*tfAWKK4;qrSLbp!3Y&I2^JtRKPF8x6lfdqWCRK}I2QTh~Qz!T`a zpbXQoDoi>F{Jr25{M9lK<6&>LYqPEtrNju*F1wdB78X<(^ds%$+USkItCMSZuKH5O zR>{%%iI)|9x-m^UC0AvS#n_rqA&;Kh9&pUzLoDQxxL~8%iTgVz)^Bz$>!Ut+K4RvE z$fDsTBheHrK+>jBQ1PN?WUzC$N18q^F{EK>41=9pi>o@x`KAS!UlXbBato}Aw95fc zKTrNeG2)dW)u=isGZx}2x%WPb_A_Q|PfU$he^uJK1(FHT0LO(Wzx(cU4r_5Kxt;`& zn@3%ceOotN=V8^ny4{kuD00yhW8(k9DT^c%scmT_v_o)#o15E0D{*gcWkMXF4$4oi zO+?5VHcAZQimfS#&kQa+9g}Zl)__vvv&w0O1VU4>&QX65KV4?aFD+kVm_gkDofAB!Uf_u?ta&+e z%jB_s)s^^=#0{Nj71#)Nu9_ZZ%j>adF}GpH(MXG}K0yll1ydSnK4laXIM!xKs-hOR zm#`g5@StjEU4D%Vf7;6ytMbdC29N#9uQYN5Q}$L{?hgbgMu)k+(bNzWQY=ODFYQJ^j%{O z3~K%Pdc5(kFC-TYbUj7{?G6io`;r*8w-zO=2T$=2!xE1=2gNS7p9p-`erX3?-S*;b z=mbN%06J|T63BODOIkcIuaKz8Y9yh1mMdy-CTuEy281fE-1Oxo-Ucu}0+(3)BR1Hl zv-;#+9aXotJ<-M>0iP=MtNS{bM`yd8O6bXzXbNrhy=tr>%5mAQCqs+Px=H>7A(RtE z8hd{B1(8G%-C+aL@+?UPdZ#k8S{1c59TvzQ8lvJut(*uMll%R)VF+k`q;#nculRXb zGI%U*FyV+FLcUDVexkcfjJ!&3@~qy88(DI9k;t=@8A+yPo;0|C8T4_?{M78x1{iXs zJKyOeb+p%qHJIcdlf3uO&C1L0(SlSX8G08>B=gDC3s&=ZN{(5qVg4;d&pf)#a?Ue# zU8Zu|>J}Qe&xUvXmnPWEm)K+@HJO=r(L)!oL)s@qlXbCpe^R;qvnk2Mq)%b6u^}_) z1Usy-dCaL;wUd#edEj^_1zW@Z9uh320Uf^5dg}cHMUa%dPdOulzgXkO^s>KR!YZBJ zy}OxJYvcrVI)xrMofa)4-jETYi$_Y(bMGhl33{46rUg&jOc$3a9k`h8RJ63LAa&Mu z(($5$Fr{;ijgSRBlbV2!CQ-*yrPZi{V-PDH8$J8BP*vgsPqRm%{v~_H30;r_!M6UL zGtWPcbv!Wz&%lG%y$GWxo-}$yx-1;ye0_%vM6L&EQ=`ghZ#4aBwIdd1T*JF&wHzJp zO!cadP9L1Y74wIbPjv$Xlk| zocGR#kxhFr`#g^V5t`3hS;{A?v)nbF@4yr>>3?7`UC;YBpp?_?!wTc_tTJQyc=Ds+ z*CqzV`;2jXUtb2-28_g;8pfAP1XJMlIi@%y-#I4HMS`R7v|Qol9t2;B|BB6 zlZOjiudNNIiAJT-JpMt&J+Z}^o-xZjSEH-N41qNJyBkXP=1{`e&h{69dk4(cl^tgj z!dGsKvD0E{9EKCiy7ki0P&$Aeb#1++6}ukQo&%w$7&+vuF%|rjEpw54r4%@aHf~Se zZQQ-s+m)lp*b$|9G>oQXxF9+^m~S9LOBU}6Mipj`NUT)vCZ;R zt{jtJcR5z=F^%0gnX^dla6=n4D&V{iWTy-{w#>V&y)XQlQ9}LbYjQbE$l@ z>e<&+JtMnB>-asZ0)CDHu>ehKuHZCNYHrIB z&-74Z_sp}Lr)K|BcTMdm!8uXAx~4{`ARW^c4-#CKySCm7qayp8mM>{@(4;^W5T?R( z7-_dt6&c38=iI>%H*G`6M8Bhojiw)x`T5JU%Q+#}sb!ai0sXzCF zfB~$n7T-oD0i9X$BjbP>8N?riUB7cv*HlOI>GVPz?B~;S*T~RQ zClhS$t2MiSL{>#~ncz{1XW$e>B!|G12S>ltYKWhT4Y;_uIz7$>*p8JLA%=aEhduvx zDj3Z0E^#C;vm@POXrkfdK!3OrPiy58{sf<|V4KKBKDCL)wc^$+#= z%`)Srww$Bwxa&P}(jCzxWv1GZuNr47Jqz!d9oKQ{m`}JUjqRQdOtgKa3r?|slHX(9 z5wdrN$aM^u+07#`)Yun445gy>i5O`3j{cBqWVDt#q3d-)E&FdS0yAPk(<$`f&e=FhW7}3L(f&VT-$=Vt(94L<)g=vP)*E#P_g}jh7f* zQ{(&32GPe$E<`MP;tKaau(R$mD3Q*nG z4V%v^GDQdRx7vlG@$Tmz!smhyCHu(G{?=n+NE9r6y69KnwLO3M`{6vXD?I36bMklJ z&6?Tvh8vJoPkZj!EuHhZQBKpflBWjJfW(+o?dGHxyCvm<%$djA?CsCZm5Y&*TwaLl zqoFTNLg#8ZMoI;7v)%7bvk>0tz*wK zTJG~bIP}2d^TOL)hhFBHfzg;-0Zp@0mn^+n7G@CbDj&^RpPoQB>2LR_c32dUqWDApnvnKvK^yNBfBzW-3~B`3l#DDM z;2dVk3|c0bk=HTvN|45}#7h-Z%*Xw0KynZV&%<*Y?J_fx(kkrmf{L_7Dux#JOl(?H zew!7p*6YtKaI zpE112O+vi7f(iGB87*GyRUV}l?8+m2jxkP1BSK4DVcsE$M?g0VRI;e9uC9cQ5B1<1 zpfco|a`ACK;Nic&@BPi^xqQZ#RfrLSWR>m_AsuyyHV+rmXz+ER+8jYmd+!h7EB%}r zyT9xF+>w)=Ypq_piM7bOT2>xwCQ5E@9`cZG*4NxdJM|MOEqd_k7j3S+ijSRmsyCgq*|V2RPd!p6Xe zxyw|%x1|38Jq!EF?HsE9W`W@)t%ig8_c5^reolX;;f@@xGaaFUg`^a?RXIaeZ_tBz zfXPyS;Za{=0qm2mGwOlkz54?_WRO?C~YG;l|J$RA8o>J+63pzO}zCIcdf8@T0;RPQ6cUZ%V$E zs%3{uX=-H9FLbz~WI&q%sOh73`ewZIP+pT=1B#nN>7;N&jBX&Z44p zNm&>8I80q<%B+R)NZF#cTF$yk=gJDv;jo!sQF>pxE zb^4hB`qi{73&o7xNIt4R|EeUrk%lN-#5|Efl z8MA!DLn(1JN{@%-Hy)8QkEvZ(XtH&lJ72wpICXRa1@sVex@Hf>p9-&Wza$pF8hwV~ zp`AbXkJei5{$O!l{4OJ_(&p3pm#R`<$nV!|a=(nfZKMgf6r4_y_mky&Jex41-Sy)Z zkEfQA#f+31;!!l8z^=_AY;}VgPgMMtZxr;(gaU4GTCLOW2t~JglPMgX!v0)?{^)4u zMh7z2pO=1NQ$!DM#|3%^G)31;!i7HmRSu9kVG%EF9#$=_Ok)()TgXgg9*qs3C#&@a z2QdSagR?Vb6w~p({_|UPy7R@Qa15rHhZn9DgsQ8 ze{Swwmg{P^%NB*mgM&j=Ceqw+N^*6>hBILWN}Xf~*rff4I6OR5f0$S5cJaMsN_C#5 zAck$$1y>s4ooR;tB$?davG?`P@6}uPc{ru6^+3XznHJ6ajQQIy9f|=cBCKoXD-bQH z#4V5{LIdvpFQ;A2FnY|wy0z#38@SI9Ty_W}Ed;e3g?lgGrUMrxGz&tWgs(ujxe}q1 z9CMOZLZ4--=T}7VF%Z{5NsmkpSJ&3|^LVBf+9iTwkIX2f_Q=@dBXZFD;s<}5Cr^4| zFbfPX(_4siT3?wwlKG+u1H_Y_H05_m(&l{FRYV$?0JEjQOng_Ni$MHx=7x*{BmlmC z9m+L+ga{2>p#7@sPpdNI;I7yB2Bu1?A$4#lTXyPmSn>xQCIMnTPqUeFkYse9h4jmcKW62!qT(S2w z_a3)_fkDu6*;Byee0mb650}>pOd1*(#}pQPU8opBx^8oLO~~p^MCjUH$J)xjT@jdd zp6NPvz9>gCYT5Y>^I?|1scrH6;5&U?rA>W<%Rsj0cQSpk3T=x}Xq`K+jJqHV~3 zs|gDN(ebxfdiLSb&O@Q2tx*H%Svd2S->zal+v4|w1+Ih^qjwU;?s`~Xit+iF8#%Wr)%F_H;${w4XF5in zrog1am`Ke6?--VcWB?V2J3u6-;_#?vvj45x`0Ck}>qp7}hmp#lGv$I?(XyH7^52J- zSK0pT3+l?9L-+)FBbP|uyQ**&EQj!y;RY}yH^T4v??oOZ>9)b&f|uj}yX*hG zDLjYI@B6;j^XGGUAqq2R&e{8pb+5H{wAK?P5+Zsc5C}w~qAafi0$~%}eSz_TpAZ+^ zN&w%)+!YMnb)8JfHW-Jo$a06?O$2KJ#AdwUO72F;1}Z;=7rn3yF0sy3kW#; z|6joGVpkhvGe(NksGX$9=zr zE3j28t6U_6PS|=NF+|SiCqd%>{wr!SFo62sFA8wz#0LKN3wJm>!GEs?UPo%Z3jg1m zM?zv5flK`NX7R+Nu>ZRvs~mx_>;LbH8#0Qdz{iY)Fo-xVYTm4BI^SITP{k;G8y;Rc zoiy(cx=y$yZ*U;<-^{KCm7TBu@OsDkK-#PjLHp;l}v7Ip}P^ zrmZbrx9rL8)$Q$t^esWqiBeGbi;vUC|JHxxberF-nJ@25e|&s{+i~|7tk;s< z*w|Q5!!0u^54cktS(>}Y!T~LgYfAS@|0}zt`u>8lM2GP9X5rSai$+XEI*5AM?N&Cal|W04{6GMDrPA!rf! zgxi4U{kg#XZLc1r}+5YeCx7T^Mx;NJXH@)o}7xW6+2g5hh(m0@>+aA}u3pWnK zlm9wduCc(ZQ?s)@N-P1$Q>*WZtlc|F|83%;LHi|juqfZbRz>ySfH|_DbGeJ->Y#ty zxz*2%jk~w2+ezVSeAWZbdjEU+YM$G>%3RM2Vt)A}8!J(POxRi!^IyOwh?z{LNi#$Woty&O16maQ z(J^WBJ_14)&wm$+-B$6%F$Mcqa_0L!%piE)FqwajGT-$wZM#gX8OtpQh&AWM|6OQs zt?t@Kt6Zj|ju+Ie3w3I{-~_XRyP@s>cAdB+27nM}MEu`1Nym}3H8mj6mw>Ck9g}-| zd#bL^%RSK{)&C}{1M&J`knWBwr#7*iu)CEF`M(V6_&6*@4Eo}G%F`vdbJY|>D=?TB zVQeXVU447n4gyKv941HN4U)+gK0jYcxN6(mzuDVg9o}y_{?XxZ zlXrU@1ll2_yt{q(|4Y9`mYeP%M9_`E?OOYZKS>D{aM>FJkWA&%?u4N0mA09ylW|R# z<3AdpyX0O%{4ZJ76NEN2Y1)(yV`GW-+vhN_hk^LDf#Vr!Y!<+>TE7onY-m^ z@V;DJ8j#S==OYVT4}m(6Kz(yPe9H*j5-DSU=l<=@{)*=9iRR%7%PlN^WwHI==iA73 zAo@X|YzZ&Ypd+pzVQ1s68JW}vFMu1c{VznULD1@>+bbXo&Wofk*^yZq*PD4an{AW- zz2zc3NKEUw_x3M7|I5uXP+h8QBt(h&zxx;JN(ek*2i3mFr@dJuy8)T|AL9LYJ3+vk zqGvukbqhl7!t!=C@0#*DE9lrs3qggyCnrzxBwIAZz|6V(YAl9KhKm@3h03}2E_F@>zn)@!ug#WMJyNnhUrLDDo(PJLHhu~c96dnt0mNl}6cmy?$JBIIWZH2w!DX;+&p@I-{JS>HVK z?S#!-(H*Y-fZ_N;2qB=j!g+~5#Rb!^S;2Bp*?a^Mj1>;j)9+ngW^?ZjE-%+Yl9U(9 zj3P$_!^^ivNQ%O2foED8{V&KE$wv^fFkEyf$O77NCRu}!?P*U=Y4ZM1cIr*WMv$t5 zoN)-xhUux^v(3a;<^J6e2M6cBqAy<)2D7^Q#R?_%cv9&{l)uvQV9G2-J%DUPVzH-( zm2Mxk0-Kic_`j57#V(;L*bj@eP{-{#gHI73$500np$&v?=G&^b*(hU$M$QR*Ok#DQ z3RqSUOvXDxRE!dYN&!`35?QrtbH4~7+d7SF1&NTw@)_Tud%F>(3Rh-TIgyuutPc0T?t&?xw^$n=#c4OA9C1;gAr~1i>b+KQX}K!{rVteSbuw6q8e$q% zh;X?KDT6C7`w7d!*&zQqKwsiCDvNl*E){bRI57jO9VwEdXKI7Vjl+mW>SEPhprxSbe-WCU`I#m zefZUTwt5@>G(-r0@)$roRb0=nVZoxWK?m+3^maWN8XSroo;}y*NYJ#87Q|PW)aFmuew)|dwaiA7{-);37j#4f-fDBg z9Y|mrU;`S0I$_&>(VSzq3uAa2OHc&syZwF(pPrPeWHbalQ7@nzzRwQE#+qMcQ-M)s{9*LVfrB}P zyZ)2`1wOp(W0+?}#KH`&NO0%w?K+eUzG#SbVJZ zRGZ1gk)f`k)C$@JOZ2!AP}@uz^OqVp;Lh)HBqnX{gz@W3=h2kjyKy21tDEBkHt(Y# z2}1u>TGjA2vSF8z^2t$q+RF&f z)Y#dUw5IwK-|g2bl1mQH#Bd($u6cjW6M|<7+6$<-E;jN1ZXi+67Br~r`;C3mgsR0f z*eqqm(7K%cV3M~$_eS7liwDs6=Xqn7zcFKAa(z$+6!q|e6Cao_sU#oey%yFcLL4iI zgoMNwuYG35nZDUs##}KkQaeq_5S{nomh~9d`b_bF6xMF-|AKl0n?&wQ1Ig#PNV^%^ zh8bIAR$W&xLbZiwy%?^7>;43H?9E6tCd`qo1BSCkIsb0WJ67l%1)B8mQ>0WM-`P|Y zwS_Auhl#h-u)T(lQMSVCaVM)+I)Bjsz2fLd_(_g<#6((J$U2IW(r2KZjrlF>MtK)h zc7QzU0lCeF0&MG4{L%hg7_erBh{d1pbq%FFAs4b(K-6a#8_9}M3comy|F5aQb2R%Xx?*urU#`>bUMqO{H=AY62>#1g+2DxR|ltc&*0? z;Nsuxtmr~;)ppluz_Wk(&``^QU=w~WuHV*lYi-Bm7lBeqzqUO<9VV6d`r4PJ6b%gx z2Vc4J^5*1rv@dJ<*hgW@c}S1 zjzrsr?urWII@!{z_FBF?=D2C~ljxF~b}^lb$1xq(TDliKw+aVi`=6dp8ny>A9UmWi zucaAiseP#V?B%sYfHGO?fXR}xZr1WCXy%3SEpnKuY?}zj0?1# zV^2;_);86Ju5dls(T{URy(-X>v2i4IBPJHq&<(UvRHut)19Eh!Hf;aOc5kOAyu;bJgdf!~EyZrg~)?0d(d-OP9=jS%K2#jYo z%?jrM%l9e@)V>%#?hCf#kjLoK|EV%tQyf;yF2xOjU z6iZdTM@1CDTbQ_{dn1zLP){3AOt6~yl~o4jj~X+5%M5? zyV=wtit!-1S5UhRcJHRILvFcct~OclesZLO|B+VH4d-u;`^y2*)u`ue_eR;vp^>b= z8~8k^no0`{c?SoS&$j6-btV=S6(1()ECTS%-2X3~qm!ehhYy`V`?W9-yV#C9tB0TP zL87@)0G{Nf(dJISM-KCfn47bcEoKJoT&OtLmOtBa@@R{oltgnp8FO?$Z$$It@s))m8 zC}P?drlva5%>xO6(R55rz{0~rpCS~2`D;Q)7-9i~hj)0GzRQd>DiJ=Hqgv0aiGOnW z0NV2&ZwZU_A=RuM>#G3{GbJp9Wfq}(OCY$x%k$vIZyz=80SrbG2$~qs@`l!cO6ah} z%gdHH&o;xJ>n`j+G&EWj6Ny7>b*XZZaxuWre*UBLxMd2j+AL~a^e~*bW5gq)l$+re zbV&5ulM!jmxAQ0q916;(Qsn>4)xeHRG$Qm>WyZp+6^{Fw=eFt{4|1MXCbjjeqH^Jr zyfRqN8DbO}9esOxPB)dclfr>Bbw9{D7PUT_$aqUJO3vz9jOOY=V65$I`d~U)h2RUEQT3^ZhGTX3S2ieF z`W8PJll62`$721k6Twlt&8Z9$2WQ$mJD;cyiW3AM{5@+=Xl!f@m?7@g`kQ)SLW`ne zeVO_0*XwtOwz7>TKXgdxNSXc%fDiz=ijw}Wq{)6t9I_p%O{70=eUV#^$WQI^WHfAv zPFVNJ*Tzj(qDJb+nctVaioX7=HDD(TONS16gb76^#xRV_Aa=&po%Nu^J>sCg40m;^ z0tf9QE;9j1GCln`F1tNH_y7(o2d91mU-ya6xIAkf0V{4GY>+3ys2*cCS+xW(36ZZd zMT3^GdD2v)^0n5(W#oy1e;|8*?C~S4-s$t?JV8@Fr!vK|fsiMRo#1f=&dGjVm5?0n zu3qpXi&MmLYPoo^aHM`nH(ff*?5e;gl3p_wI%WB#mQJm+_69ae_531?*O(h=(CC&+BJw4Qc!rl-jgp-s_-h^|}TJiOOd~gaOJ&5rEW; zbhs$EF#zfbK2KoWuKkm}9+Ne!^rRRW3|WpNlh*I~z2J{RU}}cCSAlQ}LSnH5dM{$EfY2QBOtykpo2+NI6l@9T=w9Qjy~S zIHRQzV6gdQR4IC|1D5@Qvdtz0yEZ0gJ;ZrZlALv5&2?bib-<0QgS3;@3V>YTE@*jq zpFW`#BduK7R?ZQp`pOiO=9Q587D+fr6Ah2p(1uA7TCl75pNWqCem`03^3Rty!x~~& zQGrNR)zYUHpLAP2z6jvUxMEIu$Cyv0VMg<;QqR}yqjoka-ZMA``=K^|CNIG*fp$ER z!gP#$EVOlV{@23IHNY!^q%RH=Y+hqHvN`-5AJ(?RF*VH}ab`TUbMlmc&RK7yP;c~I zSvC?!?rz77&f5|^n@J`;us}~MB66b0$j{qMgfJr?3$_Q2H-L`7fN*uQXLz#`EEH)} zFP=R5WT8(%GU)M9H?pr>pAp5u!z4drdD9H#CjDK7W>zM{<8QN$WnH|7mS}E1|C8mU z#h(tq@mF{JkM~XEdj5MJm}MNQ$C6gobW)p_N{ffaBC~Y%25w&ly@%n67sPNhCh=wZ z72_u3>!=_wY%|Y?HsqFH{;ubH#;@}Cw`SSDRG{t!{uK!dTj@_&Ni#6p^x?&B-Q!B~ ztu>_uCNE&3DtS%4=1LbK%lbfn&>5Z)uP!PV$t|18=9^0Zuc~&kck1?<^R6%7))9H` zs?b`x{l4orE7{Ai+JIl3*oD6yi`kQ9ZG?XvefPX|7OX%Y$`XaM3O2mcXc0hBfG4rf357?h`ORP7msidSBF|0V z&+r#bE)-SeW}J*zX*yg0cLGz@6o3pKtp8Ygd%SL8{6>A6iU<$Z$Y?T*1CuMz>R9f= zX6#RzfTWIPAdp#FR0@hzN70Unkl?~{8Q7jj9;5SH-+u|tEQDfWN2xMBBuPDuoL}Yo zhY641s+w|>cqX)PTzbtMa2;GtSQi=zXbDU6t$ybKEh;1;&BCB|DkEHydNR7m1vVWQ zG_NRdn5oIqfXd2nD->vfNz1Etn@91+Efa*NO}Op5tV3lLGj6+ z87Q3le9N|*se>wzQ&F6$ZE)hP$g0bPxprF0zIk}ug+|}uA`1}!gHUG>QHlV2|16x*uS;KZ6L7yaH!;_ri%~pK$>k(%I;?u9HWMQ_N5bClc!p zep=C4$2;5Z#^tz&6p1pCB2(q2kHcr|M*-FFTdJ^nEPyn;Ie_N}ph@LZwdBy2s%{Qk zdaHNeht=9IwMT_U5k#_%WZ#0ld&Tc5Nre;yUYiI&aYKF*qcg8LxS<>}AD)EB53=8T zyBV*=p~k6DEVH9KfdptO6l{62{pKNneD+(e_yJ@iadZLl{c}w+-(E21$PSSM=+jiS z64AoWAyJ_BV=g4$q4f?<nYD?}(9)Ejq{%5<|#r_pxePiQ~;Rg{g zeJEa}sIMMBO+h37hZmH)FDQZey#MLbd^&vph5lc^XfVBnJ0!`h-J*94H6tSY&En0! zt9O&zfIfx?U?)WFx+GZ~W-=bLhr#X}qUn~OUe-&@@NUle3oBvb4i%gg2&1gfM}b!d zKURc0rgpYY-lqdC99yGV{7d);$-Dp^>vFO^vg#E8W4y$(FMtW#VFqY=+EjPa99`g9 zzqDfI)09=kFY1G-Bwl({l>T)D@<->u$TL${Q~xnc5TZS>PJUSM&WOLrh~Mjz+n$G+ zKf&X1GV4!^SV8$a=cty~jj`EK zhZ4Sh%Em1$3(pxBYtnY%7aXCr;r)RLmtLx`c0>_9VF3fdrQ5C^?}7Mb{nlX&d4L~V zD5=S)R(*UHAWga+ql~rB!0O9wKi{4}CUp*)P{mugy*Vo}2+1gx2b)fQ3V76=JOGcE zNgY}f4TUNINeN6vOaav4KVj#~3L11&WBwgOG~5CJL-Fb-f{1n><34(m07>?fu3_ zo=OB%x$VEiST`P7B#Q@!!vyL_gi#pZPBJ-w%)HM?C7ZaOQad$y*@rK6u}b-&vT`YI z(tJNdRDMcgalLrk*CeOr7W=E4HWgl)E1g3X%GQ{MD7JI8;@93!v~4Z#Ut{j{T0s$7 zuL1iyvkh!z;7n znkzFgwAz(VYg_8rvdq5P<;BA81@0?RQB~2hmJ(`=0|b7TpnSzNZXx(-D=B-P5>kX< z`1npQ(&Lwlw76@qZ-vgXUd z_eGnS_eqA-Lji7pj*u`zyx*Gb4kqx>*ancq2~LqMp}5HS)niC)XUd8XJor=GBg*1n ztn*7Ck2lBeWe03=x15iuF|Bj$W>Xd%1=5pX?@Uu1yKz&;)KK5copoS9V#GO%Nt4qM zGckyWNJC1Uf%T<}zz+(}jOV#g->=RJw#EOvewd0619@y~ET>rd?Zx5&8Oi|YnxhR$Z|zigP$j1%8SR0>IvdI0n8FqC|m zp!z<1;Mn=Bk7PAQ!MiGk!f7wnhus<$2^7@~LZGaasHN95w~|oc0zlbN%o8$U#K)ZB zTTCiWzkUFf*d#iQuM0|g0&6nbQV^%OiYWw3eSYYmhh=%of8rRtfw{%y@6L3<`W(|kn2~rUI3i}ht97`+ z;mdUcXD`HB%)b^2=(sE6Ne$$Xg?0y%t#<@0OYYPYG`Ua)PteByyJmOBLyL~wY4Dt zEg#azuWs5840lr%&_$e=UOmCCE425-YM&(DC#9(0)cMwTe5L&B=Na@PAroq(gmvU0 z2_WnF3ZG;J59F1Z29Sz3f8tIBXqw!&2l{2U3Ue-IAgSAHx7k)V0;izcD?`&~n;%zN zCp; zWdg+`ihI=-;2D?VM+K8FS$kvA5e0=jWdNL_&;^!%wNwky;bJ;FJrxYl%3sIJBzW|M zt)X{yiqxt`wmgTd|BFH<*XjvxY1^iF*@EClnnGZva6|o=Y@gH? z0(=ve2&mqD>eL~dsfIYkkA%`-%LkP&C;=7Dt;@`K)($6La|7$|sYr%pgqPAO4lB?Z zL>pRShtdW5$r+zuJecDOQ~Tx=16YulW$>GIlUlPkaU@_b`oyP3 z(t7qlBk@`SA0|qJ+De0=9rH@69!T3EF3#eM%fzYVqn7 zp&BvqVNbS9RD$HR+fLS>L@Gsc|Gn^x;q|LhPBzu0<4-8z;tz>m<~}CrC3)p^=cDwr zsYX~elA6BCwO4wm&ql8_*!xu{%Zx9h@^;c@?zyb=k@%lZ7j)w!JTP8#Y;OS=?P~fEd{z+xDIW#H1@wkuFpmbOkA*MVuD?|kI zV>2#{hHvo3k=hj##ky9~f~pcX?E>XUg=F|=O)$UYG2~{Cw!I_l>deL7r*VZ@pX%P8 z;Ok63Y(vKmD%Z~{a+4OTu4ALxGHWFTpy#&qmYVTM^$Dm zckK6rm%}e)dm$76t`~d+%!7^#ZE?T$_^~Gy8V!5Ky0CfHj-=|_7{due&Jz&E*{O^i z3NH&=KmL#q@ofLGe!p&StlN5{VG@^%b3>0D*OC6``g0Wb97DJtdMerCaus*)kO)*u z&rd^y1+08*Z1zo>6Jt5i8&9begzMmi#$A;ZlCAf^)o=?3U^RTSz)9~PJxC8L zN7UFecsb3tH0j_MX4=V|enBkVe5UGf%1VX^h+8W7mtZ z4X(x>i+x)PlAgoqnelWzI^>(_+cMj}s%Ymfcv z6-k9p!PPfNQ`A;hciK5U#@+K8YTeHiQvlZ^j zr&U-p?6|`~sLTiLKel&rva+x!U|0Papozd>1G2_XPUqSWyP|-G7Fosq5(X5<&?9Ki z=0i?45lQNM$|Y6Xb+~l^i}n#=QcGd-la?Gnf_Fv)vZ2YV3`x_Kr*G)^`Z(0n5NjtNAVcgb_(~`^}}+$9Jo5k}EcA z8BZfu&lM_`;1G-Y8N~5dqfeT9H|l+a$J?2a7Z*Ny75YdczE4Jc&z5RFHpjR&wkTCm zr`L=!xrbrUZqr_LxU-@H0 zc+5ABWM!}rBkjQZAagC2u6B>xvGscQGXQq8y^mCEi_XKW&!60BNID@pm^+DhDU2W= z1){*MJ9Vtpno@%FyslmViAVFaOkUYib)E)t z$Jn-wWvF4vFBd}1l|^wHw%!Er`+*TA{86750{u3&o23boNXbo!lp+i_&v00A70hB- zTq>+xGzd(y;>WsEC$;qTzfHbA9Q-n;_;D_B-DhfgPT}K3*YzwT(M1bK!rXhD#^imT zfP2b`;eOJ!5HuO*hXPMl{pl0w6!h*;!mk zGCWfyfHq{!OCZSemkMN^Ij&C#+HJ2>l~D0S?=-RDsQ^Y3fWmkFj#Wb|T&Z7yD9$kS zOU`J;p}QZN4;u023olrGl^5@O zIG|E=VnBsgqN75=wWK1nbIHlIrk&42q`D>?&&O{W=tvq_3T)67Ahg_cM?Ge+!Xj)X zI78)|2v8gf@Dy^$BHwyz8Zk--GWO~a(h8Vv{R{1R@Nnb9!zavk6FflGbZ35eASpm& z=WCYjIJCZkq=(N@^**>KNdaa(Vs3HSrFX2XKHH&9UTTg5+RO$ZwCydlC)`gL=ys^j zmnWy8rLpE~{o%IY3S#$@!uvYmDsnkd=hedbY(g-Y3Q!*b_*A*;aNZ_xpQJpE2;fSb zAEPE+Jgk0BDe7G0`B%#h9Hfa_0S27P7rK#CLnX<28D!WtkoJoMIm0&*EZ2(!h+=~imO7~Fd)O9&udWuXnQ6rYsvws z_(+z5ukux>WH7X*xYQa+F3;aq&_O)j==lplhN8eB#%;~9z{d^dBw8v&>dz zBvd|J%HKsqbLy(dXRm&#x_{i6rfTy}&Z5OFQd9Z{W(@4=?&k%7q1N#D);i0mu$pf` zXJv%;zZOLMDX-ku&$`krR`4?D-m}U#ai3yJ(t1cje0&V3@sV$bQ0%w>apSc=w~dyJ zBPu8&PZLWO(h6j39aP7A^7w+owKV#^K~?d*ffBM{xcqB?(LJJwp)ucysS20RBp z5}!}3 zW4?n!RR4ZRGM!ZTI4$2(1VlSwuceT_CLZW~3mEYLhiA**%WXp=BUP_&k2&veJ`5&g zC+Jw*LgOMev6h>zv5RcV62eV{NuW! zB$%ZoD{c&pliw3?=a25FFP@teEriN?kwtfo@eRPFX4vjY;#h$^1^I(jXD5HL3nN8Jfd{N`=3wC28qT#+Yg8!}`|`QYuCK!TL#sa_0`*1{EkV$*&R7(#VywX=}MBQI%6AJT9_|LLi#xT3`U-X|R=7P`_(BHd{ z=)ad{Bi*}YfNI%j@`f_gaLt`E_EmDos#t7^wq`P0-*PSv3KRhatRQ;c&&-YRu5%>3 z4ldU7R%RRBME(BmC`XNLH^pu{jnHxrham>dj2+BEx4e9GP8RUE@KOi=?H>v=5OqD?}tO1h+qW2Mk1(Mb@S<5E;B z;7C$aBt*>F?Z(LyudEgnOIiaqZT}tEpV#%G6VS-1mLL|g&!5ZEUqkzUDo{K%FtBL{ zlRtws>*+vCr1C-z9zpqX=z^a%$K}k;{h-2O^}EDbSSS(Iq5_Xd*%FkLvKpq~rSur9;5Rd;Y$|pgYjKB5_Lp@mgCK^ccu9d_Rkp>) zRLKu7EPIg-11CMW9=owRjjBblUtfni=E&EX2)xarDb)sS#ry5IQh;0U&U#;(8&1H? zFg%W<%R!*L{*v{+2`q&l6A10$$C%8p6+TR*3@i8@zX$#Xz5!zjfh@{5L_Gg&1`we~ zc2!U16x``@D8duZrp74THM;-&DLs+gh#xqepgobGb)T1;8}VRrtEZ=u9jW^uDys~3 zUr?GymMj5NJRtu8VyOwwZet2XXe9yJVk7^PT&c%NiNNjxrzgC>0pd@Uc~f}J1U5Ua z=7*}mDxYxZd$@>eV_QleTpEWJoU$1vg@asUdq1a$6TcoJj1S0keCbvbfe8UuC=mKx zXGX<^1xzAh1Sj|IXhrV?GbU7(%yNXJi=B@sfd`Ni&2P305b3Jk+uuc$98 zXY&=}D<<6Z^0MMRdYyvSL3)SZ!xVlgn1EWsKS$3`z=~uhkN^-~27+49XFqh;mkFrl zSt{kI2_!K2L9(*40?fHih_2kJyBiWZeZybZ)2DmU<73YYH%&Np*YN@d+T8(#`R<%txFG1xi+rL(oM&eK@OZ?iF=Guj9#sYI5%I zz0SAp z*ivn`CI|)P`5zI2tu%cY6j<;)Cz=_f2v=r_NqN2!oD7zSlYI9P#@W5(Jc(Fe?)+&-HyzMObN3 z+mu^4yIk9=76-F>I@uf3zy$77{*f+P-kPYmJ8WWC-AYpypj?*b)PIN*{BBkme0o{p z-nZG4fj?&xx9pw#I$)H|C>1W8>&orQLX!8HkJ;p#j_UMmV_1KlNxrHy+8Ed3 zo_<8Tp~`xK&6=N0wX?I=<&sURqgCW@L8mghG@N<|nW)aH&Q8$@6+yW^CR?nq z5L$}ET<-C=op0R-><{*{%by97Ny2-Ivmw)7l#$jwtQjNMh-sr|uW`=91yn%Q$FysH z%MZVVHu|odW9vEF#wPo_av&kx5@e0hVbv&hRa8Cw0Zmbi{CyoVD934^6*1dmF4!595+;>DIq=p(3JEf+!NQ(`kFG{O2E!Bp+vfBF3z6$gA2%YeFFcJW@ z*{H(8!$<7NLj=+9Hxb{ze~-qE0i46Y+|n6FaP?P&NFJB#!cS@ZT|Dgr6*!6M!plnD zY?_KRBGnQK&|M=Dkqhl{cTBce`Cb1_;}8vyo(Y72+2}IuKG=j7Q@D8kJClmVQw|NC zke5E^XfikqTg1bnKW&0E{yFyfHu2i8R3QNFw#KHHJC&f$ZTq|DA2fLLsVFWmY*a)b z0Ke?(?9UUYwFWIBPO}|x3?c`u24>L=%j&^_d1*Ukg1tNuX0T63)Mf;&zh=9>L_sP1 z{*@t>w-lqg0x|35+u}gSx)Z?U#yeo$f5Hf??8q^_Y~>R?kM`&1&ZOxSlxuTPlg1fJ z(eKD=&KMEp^q=b#d6gj)lUYzU<9gyaBb2Obj3ex~no zq5{oGP+o57;NXzIC;(eb<@fHLDx-TX~`1T#NB+U`03dkrz!o9N>l2B<4Lxp*mNg}C_eeUOq;k%LGAo&&AgSL z9!#7fm^ufBQCPuMz~Db_KTE)S@PSu=J#Sb}m&$&BZ@Kf=FGHGdfNNr^#jASXuh)gF z>Eqa5x@#evT{#vtiCpy&z|Shf!b1W_Rmun43WTj74G#UU^7so`!EYg6{1oxA<-&^EC$x60qH|)trMHD)nG+(sq;k~Kxb>Y9#f-anyE3V&#;YZ zNX>=f#Kl||Qzr`^`)v5zNX6geJLTM>XXtSC$7@R30 zN}8YFy9h$%rk$q;+-mB|{@#8pD>?{TZB%~t$)5&VY84L6D5bM|r98VV_Vz_$H5V>m zNdFPXz|N!@sRURn{i6VD#G@*6rPU@OAwy#ZaV(Bgd`sch|4D;zqEkm$pt4ZBPWM=JxS<nR1%7X!gKBrx)zA(>$(+scm>M8-9mbtHcuXtxDEURN^T1Ug8^(?*XHs z9OABJ?2r*DP3~Bp14^8AWEm()oE*mj@JSaW^qwH@9Qajctr%J}Z>)MFhvi)oY>n`g zmz8308FSh6Pg=~l3i>5C9WIP?Yng+GamM5$1cimHPMKQNcw}ClHTA7I;w^1W4KyiX zRQ()<;3M%T+~L*7t{Q!YCdos2&yrl#jT`}Lif(#3{l((&S=e`tofphtC2Tse^Z2_8 zYIx`D0mj`YtvrzCLi|A}mfnIb7E8w!3j9VHV;eGSP&cZh>I$zQSDezMmoN085YXpM zSABe6LNQ`R^n5pp#nQ%uS~ExNK?FM!BuPh$%BH;GYk*KVV{u5*Q0KrJa4d{>h+Y+; z7?P~BlTOn`TcE@9^>w5l8FPmw>a{$3X>E9%Zfy9ft5`4;Ft?|-=n$nfyG0T*yj0NE zQk5k5HwN)?oR|MNn(_P4CIjFW517IoW~Q3l2#^qf`Bp5irnT@howNy%9FYhTd;Lj9 z#$JWhnq%UN?WbZMRUWSPXK2!p44H>n8sXZwU0EmU-A*Cem;|Xyu)KcRZ>?9*4J>^g zNSNsOC(3{Vt>8g}PoAoNHrnIT=L(Vu(i&X_h>WbPlnICh%+k$Gx3uum;*|?|Q`O2I zxWIc<#*V%!5xc2WWsIYbfDX^neql9FL}L^C_x%9DO%g=IT%P0`Q#r_XD=? zJqLT>Tpe&?hUU*7omS1C^2D-kGM(SN5Ab3h^leus+-sO^pIOo<>IxfUaCV>J9%?TeVRUbA>!`ou zVp#Xxozzb=U)e!}Ge!VZ$lkAp-gk1a@bmiYL?olF5B!L1l8Ga6_6-M^GB@Tx6yDLM zV%B8h8Q>_c`M@?B8J45`pa#*^mv-NFXYYx-J>83_yIhvx?(H`I40SH}Ra;V0u&?4< z!zDNLY5O5|KoOo?*R={k7YBGOYfRomp^{{?S@0to%N$SJY)hXzT{mKRT-|GCX6DYs z=X}$J$6Iq~DGhlP5|KA$Gk7yv?hi&?ww18r81*Aq>z zkQs9DZs~L=U3(bZRUofO+Qy!rT6nsM^*au~MX+bNt84L(LUdk9zc|G`8$ts4zO*5x zQEUYjYCh#XI{@v~oP^po^msR~v|YV*-EERlezh~*@fb2#qO+AcP_uFvz`_!E&PwxV z-DT?fW^AW0&xd==wvpbsPV!IHr6>A1%8;5Wty*LOk zmpYpiFz<8x6}2=1@XHHWTB=JT^i$KnLun&{Aqn9YGw#SiAU>)RhZvmi7=5Vxpl{h0 zRWwS+_wFeWV!p-XmljhU_nt;z3Qsr)KE6|gqA7Z07?NNhIZnyGyK^mYu-qMAr0ce) zHr^$+8Se$R?7?js)=dr*YS90-ZsljAYC-aKB>|FTnN^67%GcwuxR?@ZQnLZ@$UHLFpBrU$I9e|8bgcxb*RMtCKchae^`zx zp~Y`J|6WLsl1aT!B(bU;9kQV}MFt#6aasTC&~n+juTcWgVe939S96Pe@<~mszqC^C zlGoN+JS*P6!f9rY_sbpsWc-BfCCpIeb8d(a_~=dBE@*|Mfe*)>WFsbr?T1CkF4${;Pln_ z?@YDn=VwS_4b=4n&g03VHwdt{;v%Vh-*Ok>Sq61%RCtFPhEK%6Pl$qsgnP-)QfN|z z09^ubB1DL2W&R;*9<^PJ8J6yUTbA4P`}gmk4aCJ+)(Uhhs8TB2rXm%l%94IKxT&gp z)wBJLO`J`&B;=#A5a_VD5l9T9O8lI32xpea#GgNx$vEQhoDnjnSCQn^^=Mb`+{vV; z8}n`F&Cai5DeffzE%m)&>MQ)AhLy1=X1z6Y6V5!{MJPqmcm%G{0TaRLoawm*y3vT_ z1^?&$dL|;5Bvn|AtFostNS%(cvzcnBO&23phnWXpS_%Dz_-RsVEUl{oQL25jdL%#^clQ(d#xEUaY5*cIf- z!!@IU_y5=3dL7Dl5anKeBw`FW&1D- z^#71_-tkoSe;7YT$UHbW_OWLo6he-yL`FsmnMqm4$d+;J5h0S0kySPwLiWtcEPF*H z84<1D$Mbt$p68Exy?Q$Lx$p1&8Q1l`Y}!awt_gF}7j>*}!i#hvlEjmc&n#r?*xPf13Ro*teC@j*v#p5DXeenwl zlW{?I!%HSZ7ytY3^rug4;L|MBrVj2{%M&iHp^|TJacPpc$}qZx_dK}1xRNSNsWUfQ zX>V4AHRj3gejQJv-&N7rps*`%pUwf#uWF6~zG9XvmjXP@Afk-oeI?S-KH_;{!ORG~@r)YBty)kCC zs7ul#v}uNv8Y0Snf7;%y=a@*~)~x>cHS;?oV-=|_PFCa5?j?0&+vic}faKD>GRlM% zZRK1P7OhI8FOs(UZ`Hpcm&iu{Y+64ovN=ai;f#8{)rqy;luu zE9z=;6ok)qQ%!;tBs|{HNQR@5Fy++^LZ!8A)T12-6U^=rA=BR5 zHZImgN33d>5oK4G4nO9gL&YstXj6;pp8L2yMp8buLX*YBb=qb`Jzm+v32Am!DB9~@ zi&%uJmmd2V4Qr{b=bR_5Y&ujdNhdap>@3(FmJX`fE*$IxaAQkPO&%s~U#7kDMI@1w zho3o3>bwWbrGA`U{heYX?fG{hRAs^iRruK5=qo;I6p93x!g49L#GY+Jy?fxwx3eN> z(z4|6_pPYOK=kCklmBz~ii1GzhL_mU8l$zR{4{nMBkb2eYn79t?VxlegMpqAr<8n? z;`=r}@uwdHv9a-@4;S&AuKrpR0?}g>AslOLWE{jT+bO+eNj(cP0TWXbeTh`7H`6}f z7l=NueLj97sz;e*gCwn*RAL4xq=jbBwg>%lZK{G;3<6hN1;&MEf*g}uQJ9%}U&a)v zSIRpbYHLrdW$acKC@@#3(YDYcJ@Nf`bad3r*j7P4QRV!xP${jylhQ^tzv$|##)k2) z)q_Xg+p+2fPHpEdvs~)-THL*FAkOUniN#y*Fa5s_+8x1DAvOy}6j-!6!F`qTiK)p6 z8fA>}uQ(=vk4wEkm7KIy=cVM&+Uq`c{4}K2$dwR7%5Ws1ELM`*dR>7+h!vT{p^6mb zJEvIn0gLvDxx6Jb!+v?^k|=ELV9|TtWe#5=JXJgiG6ec;Gpun+*5A`MUwfsjVSxTt;LlLZtsfI*sAe6NbAO2?DLiN-!pulYGDy*5 zZ;ueLO6gwDp*Y_y@y4jkxb*tG1H z)fmX0BBh91>Oc*Ow@bp;i#*{+Q2$)vj~o$Ewx^JlqDlT zbRcNQmzGQy#FKrgLPqrvH>`#>%lJ_-H(;qT8`R_RY|Dho0M$Df!<)hTh%c$?OBM$y z{kr!+XXS+rFY_iprXi)n8P9=)F8p^QpRrkV$e+JNqZu|#s)<8u_W1Y1Ud1Drj5^ov zwpw@98fth`3^CN?8thSo3k-*yghbu=pKC_1$Maw2f_S-gpch?`e)XfdGe^(c3@S+y z1H)G*J^+ePl{!Oiu`GpumjzCS(y_ech*k| zF+)#A5=5oDd<;~uMS@1(t}K46h{4~<-MIoCI7N0WQkf#Uy@IzE8BvLL+i>{E-rI{M z{B(>yeFKSkQsKZEkyuW4`7e_?J=|OuJ45{UHyikGHsvCgsSiRM1CKvC2s6c=tfzXW z(e}3;ZwuX$<&NmVrn$LifRr*|K9ZXhbSDB_Je$7gmbv^n*^$%LFR&wIh{WcQI4ln- zP(M~bCDdF?x$-((rT7NEtOVrbKHvxvPNRex%iAq0ax$s(i(>v;Rcrjk4u#V2;C$mPk-FriSF2eTo zrLZ8?4xn=c-+4>Z)p;Y8OTdrU8PP#k`oi)1&zzf2lMp5Bv!lg z8(7=J{fO5}{&L)7AQX-icFd)TyRyqFMaD*|g6#3vTV?Lp_5ZLV%~SK0jE6M!9+U2z z?Teem!N^ch^!L|cMLOGNW^^vWN2L$v0T~@XM(}jj_TiSOJY~MMp$*45XtM8X!lT{f zukWSAC^CqIry3t6UK)m$L=2oDCnP=Un<_lDZ5Dj9WXea3!1Cm~9+M;$5%2=>?xWhm zukVVkD~(ISS`5kjsuFEqCk@k)#BA#B-&shiXRud_EvfBx3XyEhk(cr`D?57f-sQ!jyY(C#Lt)Eu!g@Q6{_5;_Av}R4yes4! z^L@@-itma~1&588`01Z-9Lk&AmsOnk^!S}=pFPke3N0g-8>T*eY+d^OTZaO?;^+0= zutxB(3p@VyQSTh&PZGw>X{RASNKywI5~7<~eao=IY5l?ixkaomBim&a>{M3dtWJBd z1z%+Obe>qdQaG1Pq%)*$877m~Xxws+vYl$3irH^lV2zW?4E8uGl9 zr&GjBTBakfdhRp@PgV72@tS`x9owjg)eJ}{y&SYX)#Y;thaFi(TFyKE7jjWV1s~$H z8{b@Pz+}~fJ@&`_NjpXvL>1HS!QhFnw0+ANS|go5@?J`3uW5=>Qkv)SchMUguU5-B zW{7@?Ow>tceR&!QqrCi`TXQm%L9hyM{JEs2VbAKv_ck|@LWTl~dm!?NE5)vp zIt|GiEQ_(F#tt@IiCh=pHt@rASUEV5PhL3xy|4eQca$=>EUj$;apK+mb0p)Jcu3(| zf|{djv+tLk33ABAaJWR664f4@(B!H1cwHltA~u@&_eW!&4zcW^F#6CtO$qf!zV&B! z%(uZ_w-=~5^{K70v$L2UFC4QXXDB%^xV76Sh@&0FSo9h?`U*)3UT3}5_J|Y#Gvm&W zduu{-t`XPZ2v3Bqy#D?LmWL~1vk%^KYSQ4>?`n0xFPgkA2hR{+FlQ_fd*{E^#DMwtvD-I01YIJKmX3=SfKY88bbTNEPrkOI&2xM&aHX z-t`4~BA)FCq6*)C%5mnj8D*CzWrQ2uRm{vgm=9Iz0X*`AnOV@%K)MTD0xe5-uFU?0 z9o@H<9Ys=GH17}9A$2+y9`*>L2*U3h40u1z!|k~Nb5tRCjyM?9>drJ#2R9|oHWv|* zl{VxF$4pc2>HF6kv3=q=g~+vgjbo9~4Rg$J<0P-M$CjH2(O&URDcfNX8F{b1!hWiL zL)xjb2B(eBceFn_d2=g?eku(_$eVx`Ymrb%=zoMGG= z1eld1pkt#Wu4j8Lpk_~_9H@bxX>C;h?$Q|JvG zkl<*Ec)N-A{v@PI1t%1>5>K*u(urMp!WqGn@%l+k~p#^xFY)NfNK?te(zKD0MH8$|Huwz%7-1XrlrSI zc1>ksUW2O?c%@!am&#|%)zE$Tf`#_MaRC2m z*t;Q?_S=qFEPM9Jud6;_;+DFL#CT?A6%#LhyR+dpqu|@}Kym(&7y}_xPFI~ccuY(- zR8DEc={z`RJT3H?k`jMmbu8gkJ4^nyuNI{q-QL{5^=4Cmlz9@ZbIyk<`#~td#QZ7+ zd-BnO<5K_Gccca=#lsno>+=WsNPG9T4@Z*Nl`js?noghH-7HM61%-=jVmks;jb>s6 z&A>EDt2!tHOck9`e6&(`8;0UQ)c>dG!#5*{y}+4fe-^R+e!klBJ8`Y<98q_i+OxcL zN0Dx=Yx%|DfyDMw=XV8li8<*>C)GJy;_pv>ACn%6Yucvvhh~D0v;alq>NoaB7#KV# zYj86xw0|Z@h&OYBMnEFfFnrElPGL3pRqTG~=821xhvWyjjFj6E7SsOG<{_I9383iS zKO9xNHHm|MfTN%IvX0YZG0Kl-3D3$aM7$>be}3n2nQI82yzNf|hMKC@_Rw}VS%jpK z-No8jOai|43{}=9Z+D(ivMRp$*MS0&--AgGkmT4ncze4(Q=~iVzGIE%r6!i_7^eX- zSk|`f@@HK*dBI%Rf_86ivs9u4_L-f62hvkFto=~W=S^2-_DkiV7oH*N*{HBh8vr$> zh^D?8*h9gZM>DFYE<`!`aTME%&sYu%I`~1Z@8hTaFM6H{(OfK)Cl>7^^8{)~}iREE5yh)ES;oN7~v zg95-IJ1`==Q$14-<3DNegY3idg5+b81r=U$3_tVUmj+aG!mV&Vk3}c9XSVhCbu^If z^_kRpho9=o96{ad+mT)Sw12U+J@R`fg6>Tn7+zZ?VM-94t)5k-b)bLumWg67Bk!~Y zU6>nvyl{LieFImafrjEctZ6tsae){w$=6AY`CE5^32u%=+_X1P`FzyC5B&bn|JsU7 zjNR?M@zvGlX|Taba0^q0tKM$aztCX8phJ~pBIhJ> z3gJ&1P0qi7Y9eZrjC)2NpDxIb5?CjfKTXv=NN=4Xs3_6Ke&Awk3>_HmgUpWAeX4|I ztHO_J1%}u`$reRAj72l85gS8x^E*hOaAyBH5Ju&*{1Qewh8ysaGn;xaN({33B0nGbq(0R1 zn5lC<@sjO;F*z?lKf#%gz)Q(t;;n|U4))OhwYa1PonV4=B7dyATHmSXp7>_2rUN}A zuUCg_I?@vU*VI-cu*Sw5x6IXwjZ|A@7V9O9xRk88V4h!s`@b%oRgV+iD)nUX`lKRW)gO;3 z`gCC=UQQ+4fV98Pz*S~RQR&~?HDAEw0I33ocsoPWuSJL?8 z?9-fmoav=Ya_Zn~zkCWkg=%>-LsJXlu3}#rzE?Lx*mkPXgPd-A_GQ#l8i}eAk5X&N&>+gteTfF&#!yB_jJ~F6Sd@=FgRTyjt3_9`!qE0`v z|I76S?`Q`02-CB-H7bo%c}BV8;@U5$!iu&*;x2NZ(+xiX9r$|zg|n3ZLH97sf&~Kw zBdE$j0LzL0|P@E<~S-O zUl(-jyLsl%a2Q@n{K95=a~sgUCMG5hR#oX3?VjDCCz8)c8*5657<~i0#v!ScQq+B! zdjbiL85mnN+LgZ)t!=**L11m9TH(9R#TFkS{^JZF@t9(ZQu-^SObzTlf!8??I4VCH zo5cbwCSPEWpA6Wgxpq{Ni~{*0AMn#e}Q3U zJL&MfH}>)Sgd9cAr1QUL>zqF_xiEyiG{EgmoB`jp;=kW}xLdc?qrE8CYu-OU-&J21 zDSr=dT<;t=>%=*BT^X31tnMRSFMNRx?{Q21|_N275gfis>6Qh zJd`{~>q@ESdXog&tjXO}{oFW2iG?ElPx9#d1^`Hv_YMgVJeIHFIg7%H3MBEKOS&{QDGb+1u~U*AQkRyvp1kYHwZ(!xdhI zCYpG~$|&l?^&NqIrobO^N?A0lN>RCCkGS^bUs@tH?DAA)45~QEsdw_<)m4Qu=t+Ti zgqHf9SWGBLthMXo+>23#HpsJVRyp(+s+Z+ppZOTcD)rrnWINAt@kI-E`pWfZ+@wS>E`#TF zajFhQ1e#`}5@Vy%ai1KW`lYny)4vY^$Y@xsvf8BzX3A%J3y$*Q}!zDbk9X{N`n5iRo#)7rf`DvOp zLR2Zpb|YS$Os zf1p!&%0^E!2GAXQv-WJ?a}AT)Lj#^p?%Nl1jSHM>oTmwXJ2o#bX+`HrX>%Ar&)j#F z_K-&^I?@_OQ33cTDl6aGB}pl;0=hmyTA~1?1?LL<5CUY&9oay91bW{<=61(nU20O; zFV~tsvDO~igF%t~UH|n5>U6ReH(rG+$T)LxBQnp zG&>Aj4 zW0VXV?h#3cfWf%7z=Ny(tAcD+znYQ(WT^b;R?qv0PqwjQ6pIcjor#W55L7{_ z|2$Yy&s6kvUvaOBZoOQmQs_8bu}{iGgR5}BBtJ2Vd*BmY*B^a$V%fht?fd)n7(~yW zLe7xsT{@Ux@GW9_vd7*68%? z>`2O%dvAd8)U6O?Yz+Q)Xf}1)qr&S`4g^lawD%W|mzuy8ldHvIHh+lwv%7lb@Zh;7 ze37IZ4NBY{-zqM}^ZFHc(2O!S73&OKzzck^f?7Kykv~q4tVz!yf%_#9H@h zu4fqgOG9gm=#bF|)yxz|+IdHUoOnNu3wBo~Z)u)gG6kR%Rb0x@6`pLkg5fVqs?2ej zwx)!Cu#pt@nEq_Z&r`30!S@tR-B>qfP0|{@n;|$V0_HB83nR1V+Jo#?tjGZ1EVCMO znSx#xP^}+5F3IRRu1KK*kf+;_Ak}!yFCrO7YbZ$*x15cES+;?0{*{w6&N4C?jZdy$ z&ByGt#3%SIfC=V%;6tA=#3I)s)4GAn_u~!3i=vpXcAi^ z7j_G-$^~wqDER`EM^#0ieN~pbmr4mA#ytng5ZS?Py^mOTPPEGqq`(LnM;>CK79&ku zjo@vQq`fyT`rcf^INJ7X)UUV)>SUx>VC@9_Z9_^}t~u4(mDqi4<_=WO%YUFgCB~>a z>?GsnVQbqMs6-~`$JfcDx#Fvo`lgA?PyJtF!Mkroj$lsku@|3>ZwyEY(pF#kpkFDplp}MRKAv zX|#;6N$KHB;M)Jd9c5(uc05MNn5#g>6I|?OG24Ql&hpr%%27uBdS%*|m`LEukK#w{ z{Q2VkcwyJ2+Lpsp^iW;hV5vx)hfvu}>mN7PyBzG4pUx{>5OsW)#;?`O0&l+0Khyak zog;jvFlXd0M(Z9W!7)ix&Ea~cN+BHD6g)tAC^9ZR7tgSpMN9h#rKp|97lNTUK}lo= zZ4_roxRZxOe=U-?Rw_vfD=we8?)1oQE2J%uj>~Kxql`xED8b?!Wt_^%D9d$43`KeU zPk@jJ?kkf#(kd=wcTDr#ETV%-up0;RXk^?ly6PvN|$$AwsFP{F*q0;oom%}3s!d&*Rb4t6M`ASYidGuT5@G@D? z9j)fI&WS=2E$k%GSN|JbzNECGQRSkP@b2tWR9zrQm=A?*%H=$2nP85(Ds&c{Y}F2f zT5oE@x+-WhNamlRbEMrRkApk{+IG3H`zrY9Tdz$xt}MH}R5MV>pc-J{6i86qx|yh^ zH-T!9l4m}Ro7DZBKuJuab<41fFuD1X8Nh*zO98_NKb2x%5C&y!S8ua=zd@O76P*j`wE8m?L$*6RQ@1VC-&2j(JIyk}nnS}+04sn{O=Za1+^g^kKY~A-6 zgPB7P=nUd`-wzG^kde3f?Nx{2ocZpM8E~i^n&__Yi|SBODN5HJ?XW2zwwU}6986w- zs#^v*C>rKAbc4iTLxHpNWbH*~XSg2OjdhiLe?R0vs*}z8wqtqGFxQkd#pIsCr&K-0 zxJtt2i#4xTkD)1gZeUNYs{VAU)XoUF3wQ&3oxQcc1G%W{<_uj-E@o*3YiKR zZQ7iywbnhw^_hi^;UC2rJLb&+tTDNYABu=1o97TyqwE}Cw8KTHoHWB8zuLvmwy(xM?gsjDIx?;@a3J-V zorCp= zm(wgH0t6p1<1_D`!XgVf2*$6p#iCt$ZHSw|Xv?7LD*1qQnLe6Bi@N8E z-hEXLFR|YBknYl0!KN%M#3THn<&1BuB@L_7YngVr#JkpYR4)&^uuyJND5JwuZM*%r zN{2y>A;;93-%1n5L9f0r6r`M;?ehyl1Pt)ATU$QZ$4Ri%)uG(@Rm^R;7_oke2sG(~ zx+cL>*QTJG4U$Xie~~z(_fW+&E9JUpUVs zL%>_KOWJq{SC-3sxh`=HWotPov-7=`WbE_WqTC=K&PquKo+eU|-MMG_7HoF#8n{S?{=4-BZKx!KkC<*M3GSG-9|1)azC}UlvpQ0x-{YQEcFrDbZT8dWCnhI%W~zr0-ii9EmCm?C{q}lyFFh~Rag$bK?$R6n zIv)kGfu;_0G9E+S9+(i)VExtXIKfYm@13n5QXqkjOF2a#0nEhyXRUCh&eks!&qO8U z!W4H@#*ugJmvX42+MJAL!tNDLa-Ly|)`N*Baa@XhMiY5JJrzVO8-(S{It)$Xh&YkA z$YbaBffYS>w_{Zqq0_EniGKP%3Qa*g{0O7irwJPuvl2LSnhw26>Z*jG;`Ws3N}?H28x1tPdGrIC8{zjEQ-?Il-A zy+V-^wtu?D%YDF@MXS37zI&*bB(g!nkyE-q+4j%eQk%IDY{(W#e3ZkEOQ!2Wql|%0GGp6F zj*>8oKF(7ekOZpZMk>gklx){6|GL;TN_qVBI#*CJB1i_ zc~e>0oUnE~0GDh2nc#pSz0Gy#ooGp?XtC5F5iq&sWYRf5{fAYskR~;;=}M+vPfU8x zX(9vTyCrOewm*lKYIE;hzOf+~t=`iA?Xev%>XJ~D)=;n9(R+SgQ$GpvE^?vDj*1o0RbyY+(CeFM-mz_GSud}n|ZYs;D zMwT}YZY^?6a=Dno}7arHOxF0{pRLEG1SYy`0PI~#0^rdYH!DQ#C`|QSKyJTs{&3gF1f(f*B1{x7eSoevO*(FmTESeXhBj#+>u~k z{qfel8wrf%=hfCH>Ixs|e7HI*Q=r$p{R;w+3{b7nyx=;CZS~~5{cw*4R+xan&vNRH zZWMyPrg>hf^=%nd_I-iJ53fF{RBtSO{wn92v^k;`~NuqGUqpz&Y z0trCU0?#k*>y#8alQcT!)S{Q9Zq&qZ+$BEVf(5w*&l}XC2;WhTtiP>XSP0c{QVNJV zDiFBw-ncA2^;okjG76w!vr=2h8+YlZ z!DYbYV!)?utz;u%lCSPF6Qe22seaGQ%;CHGYt)WyXL>t-C>F&KZy}@TnN)M`-kisF zQxUIFg%i59vWes=FHeHLuubrmMbJ#%*mFqcb7^L{NMkiRAHpRDS17ziKRF2(0q&UqRC814j!4OrVC5uZ&rp zhwu`ON$z;IYafvbvAV17fQ0@OQ?G>-n{^Z zG@36@OaK0qeg3F*dOCslG`3B#c$6g(tbHymiMC4QS}iuC~G z24Elj@pLIdl_V}jZ`Z&QGj*tyCFX1^u|8F@Z-Hjup3U@xSi$)gL1%u+9l_~EE4`4 z5PNg!o#op9Az)#Qz$1m%XL)^1tk(I<8=z%;eL``o9uIv=u{LBVBeESS;m)so;n`t+ z#TlwQ%9m<SzCzxE$q3(#iHD|ePSazw{U`IK~NiCy_rV)r{ewpuV_v+O#JwR+vxX znz0d6s&;{`R}Vtu7?L{b>|uFeySdmtlUMcQS`1{-Ag&t4rFQ(=52INRq34LocnV0}glVJcJy< z%fsNgO0@?H&Rcq(JhDGzfgs^{@GAXBVEPP6;|)=3fJLF!Ipk>5zj*&vv_cBv-^&an z>IhMs^6Rb~uzCl#40vRwKF)Ok_x{t?1CCu%yTS9fg%^6S7Xtbk*5bzzvFd*selOko zZ6~Ul&#ESpt#$QoV}R>=$EEQ5nBG?Un?I=YE|Y4h7nzxk<9|Qh+GeKse&_bm)zO@N zdP~YJeV~LiS!(8uw7kCc=A?ywnu`?u3wR`8Kv*T1`sz^S(_uH%*YT3SB z3J_M0iLmC-l08Lq;CL1<2-RZyst7jw&_RShd?65tQ+h0XKhyaB*Y>FHHJw7zMdx8x zD=dNY- zc))`Kud3(fAMJur_$y^9;)qwZPr*|T`}cQ2+e(c)UF_+48TI=iMW!qy%C^)7s4Kb1 zohua4y~Vduv`7sWI(WV?K_Snv!~ zr{gk5^7+_=ST+_G7OV)2NK=yIou}`5EDhh4Ik_$Ydjl6hm=8BS4rjm+5fIZ`ynS>i z#lpb2BHs3M7OW5YzV`122Wem7-}Pg2(hgMbY5ROEwwGsruD#8op$MyS51 zDCg0Cm+=P+Tbk*M7pLYvwGAGef3WFgrYw8uLgZ+n-bs$q9u<|+TdSbokV*CLIx@@> zNpi&<8RxU*|3->_)qqSxB-D~b(KMT?TSwg>pN-30_xT-OMw1zStXu+vTC(Jm^sfab zD(SMg&|$h?ap^wAYc=kB&<7T7y4AB9zc!h^5CS`ECue7C5O*DZn{6L2H6^n2ds9J( zI(3b?Wc=R7kfXk7msvi`RMZ^}$V)5RWWRqW08b$s6|w>cD~SFo+M8`JU3*qIgEAC{!^j`wINWDAKPdm#p`SWyDXB@OF>i z%@u51Zhw1?#X;BmH-C@!9aoczkAfo`M1Pqnq-|T*-&*=o45)C>e$7A1GgHjM4 z8QF^r@S!V&m`>^P4J5ug+P?L?hWUyV*xqmU!8dmH-v6Ai-76z!N9~d}Q&h$S{3J1y; zWV(?w20euT`45fDPx=nx6ZWq>q`iF88OsI^+4OK?#YuJ85Vl^_8)WO<2oG9*U1aB` zE@LY1`fkJL9~z9Smm`&Z}|SoB@6j4X0OT_)CxCiKfM`n zKu7!%W1^*$*0R=mEU8-3x|HCak^7Zh#ksq6_N{j%2o=cbxWEbsTMzLw5)f&YeG;5g zlG-;Gp9Hk#7DQ&&m}ot@;14;p%z9yQJ&eVb^=4NdlUTZ|r(Sj(^nd zZ9Lf%+PgLaQyveuCI?^*7NC4~U_ebE?5X*J6xrL^C-GJIc<*<@?cS&0`VeW0+%Tm$ z3uzqF&V(|ma3qR=)xLzsBKmG{B={N0FPJ5fN@>weHQz0z>{>GB2?l!W;rR_87^4{SE%r}GS&I^O?b^_x2thjNtGuW~HDPYOPV`p?`2mbkHTz zK9`#%!dj~v^yh_K%I`p&bs~Vyl*17}v45d2zSNm!*%o`YIZC7YL;>S8*Az>4>6n6& z=LB8y=@T2km#j1H4E0v>g-eF1$3~&PG$cShs!_^R$f8s2Fg`4<5`iQk0$rd{id@?j zk(N_05s0peKi_#wfNcXB?KRyo+A7NB9H_fcRsrLrDkZo0v;j^;c@!{%acGH`NS%!S z{xxL5z(|c^g!j@s%;JOg1kZ2Jw1Ol*S6CIgtPQxaCMGK2AJ^T-BC)L8|Hki6N)FN7 zyA!JE_UEEE_x8V@noQ0ezaP@XY|YO;21vkb(g9uN^`pKz#``=dw z|7oGhNY&b#oe+X-JzW>q6Zp52o2dv|ky?rxR4#Raa+Z*!fWoBV;y1<#e9(ht;0-0i(u1-CY~ zvG@0G!V1gh=K|53&)&etExXX(`yZ+c8*_=|6efC?XPz(TyWH`0V2z+(%MX0Wo6H9} zQU7tb0O0>~?yxyhC_CWXUw`DjMIxLNnZ6q$C;x(5;@9E!@(E72&AAmO*q=5;P2}aX zkN&jUT$j!juJm7;U=GEo^jGCK?Y@_4Q_9`+bMo450E^?ddnJwt+o^_!+_JH$zQm=M+*n5K?e&{=?CRWtCToa9u>pAyqiKV9wS=fS`>aTCAC#6}_T#o$Uqk&wF&CUE;q4LsRFw>}`mc8)(wt;O*9;c?a zWPj9Hk$rp^1T4<^Z!5uh<2~m~4m#!Chgf8OjOs>1!bv;~&^a*qMj9xW`T8)i$+Fhr zA2)^xRiUi28zA?DZQoxHWL$*7UVM~BHS07a~6^^?!g~vma?{&yW;v-E=qpR zSB&p9KQNNB=|Hr6J@r<4Yz~o}DoY9Cd0#=Rg~eTSxD82 zs)iWb{{EJ$XJ1&BcPoSs=*~3yGM3~n06)xRV#00d=g!l3(*hfMi3^PoH-vM-?Wp9k zkRm=rNgsKGT5XlgzHa%%X0=)ncNCxum96w$WN&52qBOgiah8LCYdd9=}EVbahzB!su> zKYP|5?vNesZ1z|<00MS??#7;l4}?33%>>2bGUJ5HZBznu!O$N=lwiCGl?VCAj=mb5 zVRL5U)Y7M_E!t4GwJw@W{{u4^)eu_es5=THiRPQ6GkDXt!!!(DWoqhB=WD*PR$28e zvWCfGd$Y+vbxZIvtH1t=L1=tD&B?`-i8;B*4%z;+{oM&6`{}`o^O~rLU7}671hqf@ zRawn%C4!h&g3m>iLN*!*aiq_xv#qTcdJWomjcr!Te?`l_#@zcjx`g>e{^-^O0f^`S z1sjTqon)5yf35~W3?ZVJSp7K4p?()yk;C!K}{f4nr`;pMhYVt}e0(*BQt& zX#FDX;08%^Nu#t&!VTqwzCi0bU+=L1i3=XMY>Yadu`fvLubu%)L_aQaIb>*B6<6m}PUdWt$(2O7-HM@TO6>aHBEuBgQ^NeVZ}?1lm- z&$1i{I{(oLy*5zqvAjB6HnA36`U_-ye=w%!c3(T`B?`B_D1PK4_ie6;s=Mw42mg{V zK8JRwm3_UZ6q6KIS@_jplr)CnV%8vXIYl-Ih}tKf$rIsznx$Xy_GTysL6OAxL;2aV z^`XV2^d!xw%+C9xJ)h4r@-q*=BQ`fTe}1hVI!Ty6Q8>vBsLjr{!>plxk?}4-JhPlT}VM>=-LdYoKuvZpvq+T2~x6Y`g0B;N!<8pO0 zm_d=3#zn`9r=+y6PE}%D_OT?F`-o~R%WeN0d!5jb4bV2eUQDjH3BjwYt43l5lY1wb zK*qYdxeY>w#B(_g+7T+mrsbBMZEbBKHI|$o>mE=VQxfy$2jt6;lcz?=2mgsPoItBX z;Kol|z&nzkZTucuqyLS3@u{kjmlM?&%aJgyvu(S5C-%_=1zM1;wR9aTOk6lGXzARnh^Ycx9#a@VI<=>uAwT3JRcaazVFXow~Wc| zA9y8yo!m?)knK7Rfh)o~*pTuPh1K+V7Z;}m2pFy;e82&0My}=4Y-;=+I7=XI9Q+4{ z8Z-=aDlKMzbzCz~_sv7x4{V8WdtEeuJWCxnZv1mFU7SZcdt#9-&^PwV&1_bsD4Ke> z+bDSBhsE0zPOZqgJE zWw!1tcWW}NKYbYugUttTl}117^p?;dl=9f<3rM!#nM;uOq1%Mp03sv#u7*^16bcGa zsOcXa830Gj;=2=jmNVoz+Eh{)gJ#WOy9i4e_030G?CI6yYwN102twem^Ke5|z@!Gm zi-lQ!l!Y+&kE)f{223E@mXWVMGJ=eV0=v>t#+=19 zp)GRV0a`<&lGLP)>|-NA3;q!}M;R zk|*jXI$2{o`IQy$)ec}md+Co%uJG|-t@~gPmL=1VGp^&cLAYZQIB+7=XpVJ0IK78b z^JM;W^3cLD4N=v;_NQE%j|5FjObgFhE0nQEUX*oS(ndJq$Nn644CNuiq3lDnz(_z) zp)5%<;j>i?7dd7{tAI(cm>2E%_@WB$i#^(8Yn$DZi+A$uz8@M|e*I={BTDp~)m_dY zBq^?RQ$%j>%IaVKNi~CthPsIHT3NX#;qaz#njwU2PL|u2nY8zPVgqC~tun1T_O(en z08p)`&w~suM7O3yt31E)Aq5W@eZi!`u{AZTUTXrjO29mowK>-!ahhr`y7ZW2(Yy^r zNU{9F_!{DN4U+kwJsPNDNMoA}BdKz1pC6tp3_<5XXq&x3P7t!f$)sK2zQS?k7XWZL;-sbq z1cPq`@VVEzWE6#{lt1Hrk)Q;lmNNmrw%!oDew_yui>3dT>?@_64jq%^gykOnHJPdE zeFgMlNUCWzf5s&uP!nI93EV;Sv2=IJ+~0om3cW+0p)tS!DWG-E0f9Tb@GgpV$nqtF z(jNU3MS;gkj%PNiYMIwdb^>UJ(gfnR#Y#&F{}za#H~tQAvc-+@Qn`nJ6#*4(r>CS- zYZ$WG@Er!Co8R`do}S8|?~BR~2SgU#Wm1qy&RW1N(SG=6TSsgyj>8RX19#D?i#puF z@A-&C0%(pYh*|$-C_Ll9sMa{K&jA&M+GE+{8v_+S*CZSD zebrQE?Towc5l9uwXFuX;#Kk3YOAd#s+0uRW&`$F<@U_VW3b^ZS8;R$L~4qtamPKklT8)gkT}$cSU3 z9@rMq9%_w_xx-zZp4d?LMUGYi(k9>rTCe9g$q7BVAK9|`U+PgE99$(@kC2*mTZ zZnAnS!KLgIY}$ONRBsW?c)pDI5;eA^*pGu_qz8MCFQY4b;?=@Wc6s z++d#ZKih-{8hr<;Y)o!(>5+qaSx0&vrtG&L+^r|2!OsKGv`^3fWloc@fCGyK;0w5; zEcXK9|HLn#Ho|2T#48P6Cuob};}kX68n`s&#i?MxWIRq{5&Ry8mefN&Ht<59Q8`nB(4PoKS$6;0 zen$t9$$8v=D5!V#81Rc~CL66Oqm&4Z10^jQOSW{5f1<1B<^uL~$Gp9F2Hwms<ZlX7==y|w1ss>^QAja>3@A2Lk>8ENI~=B%_gv~ zS-0Bi(L$U2b|jd#W7Ru~`&$y2rpbO3$F%<(*d!-9L2W~&8iMfo{M$EE$^XHIvne@N z4NmnLBl1^{KTHX@J;4dXnp^>k`BQdLL0w`YjxPU-C>d}nlYYGXPBG-O&kiAJHj+Ca z7`AedY`_jmUl=7XIR^^~kXQeYq^pdIs%zUrhje$tLn$EL-HmifOLup7mk3HqOAFGC zfQTSS4&5DsbbNc>Z!Lf7l3~u-`@XNVeO5z_E3tdCWYg&7%Wv=Daq|SqjR9K#1L=LA zAFnk*ueHa7Si;bdEZE&bwE)+b#j=3!BmW+CQW80~I5f$&rshycdo^af1SNSB*qJ(j ztQRRtYcCgBdRl_3c(#z-)fsoV!> zB-ZYGzp@hGX$)2c!@C0+xn|uQEdHzE+iy`#w4zP({9Xn@fzXlP+FbipS)UIl1%8;O z<11=y38BJ9Pq63)=lw~C zFEB86Kkbk|9O(7*Pi@et6$m0op#la{X=p=*&U~3@if$(7&UEWHGWUCF&}eKx1X|bZ zn-`0y=%>~im{5Rz$oZQ&=PYd?DT_TP;r;f_4_1r# zb%#7X=A5z*?QG<67bi)pk7z#y}fqazxOqv9O;2W5Je z>d1qUBDA!W@nO#=7;p-!DbtwLL6M6OA^-*|pPg-sIQpjymx3p{wp)5WWDR=B0moZ= zs20@cIqCalRI+IyQpzsI1Ynq(@|cKt*g4u}>b?GU1m;0Ol&i*_Ae_hT0I(rH0V}`yQSDk7_WF=T4X!sUv4CDT)oVj!30(4v}cbEqmm?uP0Eyb@L3(mY6yuASX%Oc zf;#^2{=M5f5B#?w{|H}!>-9vp+IRhS7ZlEL{ys-FiNc}15{c9-L3wBf&o*eY2gulO zTks@S^k0bhCL=^>3AS-TYBwPYxV(FtvCO}{Jd(JVxFFx0R|fUohG2qaXk!o!cJ!7i zO2tp>lX4;hfy^H>qICzZoW#8Bg_Xtd8Rt#JIxPX)*a@S3bIxhX{QRA}r$QdQY2-Y! z=9LD@G(!oxs%c7=9QUe;>!8l(r+d&>DxLQq5c+Khp!Rc~NWP{EvrJT#Vb_w>lqj|p zDu`*lDp^U1T#IYw{ZdoA0epzC!2gG3j*vJ&!TPR85r5D3Ej6_o5#?0#m(|hP@}z`f zQx|J6ug!lk(wHDgc`0bimp56AYV+zpYM}L4yO=qftdPvj6ZMNox^V?Me^?SLKvWy9 z2JwBbKKX!f9=S!i3F-c=c;|_0T;#Az(gLJRP+7na8hFGChBx5az9fZPWlCnZ$3HXn zZ&+C1hp0!C7=F)@>ES*mO8?i+Ewdf-5z*htBfhfPyE^K6C4^d&WW#4Ah`5hm7sQl2cW@c zj0CFUC}Z>C1ZyXU)a zi;aTddI+kYu7-#~a;HnzBOiz$((1aF=*{tzW>;w#tRM$k6?fhPbT$i&Z!W9fGf)=f zi?E}2dcuOPHUEA)sY(i3!8WwzxLmu_?gpcC6_8v_B>(3$-nhC6ro zoUCo8h<`tZemn0v4RYCHmLj7UI5$o{$SVSoS<^DW16rfYMvo$onZGM(j*(ldY_!RV z%d0Ts=N6eKdOVPpNCd0A>AdNG5uiKx<_DbGU2jJ|Xyx9L=48WJUzD?>fTu8T>;TPL zps{om|34e=Ks&CZH|qC_45!pnw<*7l&$GDq;|&#YO{e_QpV^sAvmXk4YdHVySFN9l zodmJnp5&g3Ro4fFtGNYRmYGd$qbx>jRcnqyZHn7>LOv_sq@@o?jK1T`T9Fz@FH{C z3uw6KJ3CG_mCw;cy0=2L_RwZe{HRFeCdod_PMMXgDo@fIrv5ZigXUNnb28?H-BN^=Xp-Mv;E(5|TPN9pbZJl3JcDK_6s9C9hLbGC zQ#XKqGZTP72*Yu(jp&{Qh~J`h-~1i>qlx%^Ug7GTUKSeI-?KedYJ3D+L906L3>*6rIm20XMKlUBJ;jteifsIL7rM zLOqO$X-gZFU_RlAd&Cd5ipdl}>mr*845Z;jcu-2=ygkHblt zAEWc`pxXEF_#5yJ|L}v zp*xO}ehOuce?9N+8y=^#&emq7?``(gOqZm|Fiex|Uc7$(Y>!6DdLuUpZ?O}&1&f*c z5X57bLLbNxSq`2?Di!LyUO|s4@DEKerq2&*)vt z#4O(nv#(W>e4igVI8c<3*`nDVum&^vQcnnTWUL)$g1Ub82_>()s|1wX3(2@{?);+X z(MU!!lKSy1=FQ8b886Dn4#qOk+6Xl^)I=|FH{3%WqZl^O3k^#$YOy}f^OYqq2gr8M zDSH&fVE%-l2c-DJI<{u6)&(`3>a=$?UwHHF_OiPx}=$!PiT$) z`4!K}yz(hz(~2r5j9lL5Ty+4Y|@nkKBz*!7F1`ps4@!Rqp|mrr(UC zP_NDZeZ3NNz5JncO2(d6A3lVB85aU$lCAJtDY_k8EQd1&v zaC62B{j_T`-i39~nay`ikaUCTG4Sbj*Y}{Z{A`EZMWw4!AFq9q^5$tWeHnpU;vgce zCSU%zniC!{ddA*rBi(y&rP_Gb(sQtPcKs!;EO=M}Z7nz}CXb7QF9nhsMdqTc4PxaS z5rRn0^wSX<8VOjCq)`6^dkt8s{mI{5j{s;Qt|j1}g@uK04tws{9*!qMl3jWpi8_RZ z-#E2$vjKSldhf_KmEw!FucAaUDBrgSwwOkLUvTF$!EHf-s$TOAdYt9Hm$r(GOM7A} zvNPTui`-#AkGin?q>B_8r>3lCB(~TC4lF!J8SJ3M?d`0;;EUgsOj2Ql5749RlsN8j z_Xi0p$$xj#sMM824LcNgUAHcb8{;6?8A?o=_z!>QL`$Ng`h5wPh@k=)x1&3`FmcaaY!M%#G(BdkHi`Mk%0VjnD%J&8?n_Fi6 zCCXZtSYw$FH&;VuUlQN=^F`8pZst%cCjNAIE!JSKmX6(^MNi^1!*_ObXG}bCaR#Q4 zk{QR18vfP6ACj4b9-oi@*a~B*On z0=~-~BbW6tj_%%f1tD0&E$2rb6G<|ra&6e)Evl-rb#vG7CD<=SJDX2M_@Fh(a|<_? z*Q;eZQms*qYFU)n5EQ=KkTE1Z(r&e$v*>ASkRqCf5xz_>pcy#L~i$Xsw4 zg?ZLH!Ri(whc@1)DP2d!ps1cInbCE|tB@Y6X}_2;o&kFY06s^4%J5xgQ7tLiN&GLG zO)9S!KTv>157Rql1;NV6rC%-+N}T~d9Pkcn)f_#M)=*zSW5_E}rtx&6#7=WoRTVEg zze|f40J;E4NX0S>68QXfT__F>tjckqa&ir}$-~AT|9dBr_T=^|c;G{jX0ZoV%3uM8 z_1=IEsF+OwSi<~?v-8I5Z#KND_+w*Z05E7tx(F%A)INJ8avHeAOsJHq?<%Ch04nl)s1qS3Q-ONSFyt;P>lbzq+W z5cRbgX0(7+x!iYTZ~L!K_rGItGjOa#hm=X{@;_K_C)UCOG!0uY6XbP~sqmkJuZ|1= zryY0+T?Km&EDNKOSRzQZr9IycIBA*DDWK7Z?S+|Cm8`|X(G-x-^qVu8PBif_@zfR23aYbFY4!E> zQ#Fx_{!o&$j7Z`jf>yb$&@tkUBD@uz3T(kxl7SlOKVc2;8DC3+7)`(5255LGxo~)) zUH5MB!z;^ytSguq_Z?n`M8WsaRSP#eG?$*+vP;2zg*gfwney*u66JDZZuS1Xnn|V# zP3|_CzeH+i^1lUwuG@mp0Zxh|z7M`wb3mjZKC*oVBQV6DZzs-wVF#zG9gXTQDHq+7 zc_vjW(oNd)P3O-R^;ybdSzQZ4ifB+Coj-q#K(M?4yQeFFBR&fIU`=>!*K0TYr7YIX zvQeyxw^UXZXlX_5Jc9??<9lqXwUw@b|K&5l>Jd^WV9+)A&IMY&W-j{c&|s3f`;i=DqT^~tzmoF|cI0*k!|J2XM(L<4! z`H%MJsAaDAZKXsmc&x2O8GSO-=fona+AC@q|$u__kSoN%h#T&nBn8;WD^fIU8Jaw=+f8fV?JO!y5+?dh*8 z_}1~{LI9M!1clRJZi6Ao9|b*ZRvoluLBc@4@3mA za!(2<+Js>M=<1rFsRQ=ux3%o{+^~h4ViQWJyp-VPEmt2S<-R#DOO@*8DWb?BUoyqv zV|h2RYK#6zi!e}ar@UWdbS?4Op=b>70qhZvCG+U!>ttJeYfW81G`w8nbZ_3H5I z;|4L%S@46s>*IldP|F`nXgGzwd_CN>CD>DbW%jp%;r6uanhH?hus8e5KTUqNDzZ9M zl&9JLV_1a1o5(9 z9C^_LXbLOVZF@qd|G3h|B<-6M9PvrlkE^X^No|vSNKnPz%fw7YM@@WX@ASXLJEag` zx%T_0YyLE6TjUkpcArcVab~+_hZL+b-RQc$A^WAKX8q?d_4RSw`l%3!09S~l-f)IB zDL~`v*$3e_(*h`tqM3?GQE5*;E^gd6e((y+6!h+H<)>%lnvEQ7ak6b+;pwM?xEdPQ zktO`^I!O_K2tDO6?v*cB_fgR~sX(`Pcg#1fy}gs@e04LE8o~Sqea4<}HRM?oT#oPG z28K28nS29v0l96ye!KQQ-F$bUo~%)q>jMITH=OKafMktVCNk~n-;__GL4^mP8&i21 zC$C@}1Jvs)ey8T}!bwRzN-i<3so1svDCZ166%M#PApAll#5u)u9gy?lfW~|D>C>M> z2LFw-_Z)I)PhGmzIGBk}5PD7KXP-t9JJZt%krkQ@W|E^#iRLQjdy_l$&IrQEAUiZ_T!)GB+g$x;7vjijV zNvvI{o9Ig_EX8zAZqcL<`*s=-Ff{^^FZk1A+>?BmN%u*qO~%}Rk&#FBS2f5<9u8xU zAGk2tgHXLhRg>X(+dX)5<2#I%C|nHR(b+^LDU4BWv$)Wm2;pyYcy3nPC z*4kCrkxlJ;zMU9YdU}i<+PqnxVl=*a3i$ZEk?`r_n@iK|fsm|Z=&``O|M(Bm5W=m{ zasmNzVwr}28!KBcUcFbkIUlCx5*1BqdN<)+icGBUj1}42@+G=&#$!iN=CW|x2rdzP zB%3Ay_e*BrtaS4u1roW5d@)%NCpGfAtgM`C=n}nyQg#jh^QM65t%kWB+PO^s;c@p| zU!AK))dPPtg^U~fa35gc&(40+Q;51Fo>Gagc;Z46)-VGo212b#a0rmXX$rM!EIhG& zDG(*=n|KymoHQd0X*;m9y==P))vJyq4n-^ zF5)YvGBYJ~ivhv`bzhisK7AVc`4a=+lnu?zQHC|qpi<5F_Vyj5cW;lG>A(ND1O?-M z|NdRXE@5gP%2LeIGD=xWP=}7BqN>^jnzK?QUuvu*-|%)&Q_;nP*7>M0@yEzgDY$Y_ zPL6_28GcO8Ux#3&=#H6|Q(XlzF*22E&$6ANve?jyN*2@w^Z2dHBK|eZZvQA6RE5{a zlFhmfG$>tEKAxTgu=12wAWcApDS}=;ndc$@1|uyuh&-_S3v#>siPr<`2wbz1fa`zB zWm3XDW+Ts*!+qc+hfMRhJ>|Ky^O0|?#p{F!T3StOQ)?okhF_biPD5JDXkP5|xNabN zs!A8>%K(RZiF}Id^@#~{<54`>hZ>L1K_``UhXr*i@vA;iHwjQXqXlGwLjnJ(%lVv0 zmV78Nj9lAVYfhr5@42T%$u096&-fK|S2-sV_mxXvF(K88G_vjS{M=a(t5HQ^p-|5( z58bIfo6snxOoU!KS>{;%AC7C^G>%4aEI6P;Yn93F8Of2Ws-0e`GXS%8Y@4K67OrdjB?PW>O?Brpqp` z{hz2S|#r!KoPSZ>m zWe!u^DuXdVMkE<1VrtZJ8s#Hd_Xgg3t6xEo8ji8wBda@+=0F)W$pznKq>0N@b{#U&>%k;bAEFpuoCe6sPIbC!W1Rh z3EKq)pZ(au-4tH$v)uzMoXkK`1Cb6IXXK<{k?OEDjYg3^hAeeTcDSS$f)$8oL8&CL>QHU-6O8fEM7($9PDQ1 z=5WcIt>eYn*&6Ib=a>6$a5M)82N9Vr{JtT1vCg>Z4fiB$XAyqJk6UkBl8u!Nx=wa6 z?#fO>xbo4rmvAE23w|P*OO?=LSKd@0fJ^%YCZ4Jx#&1@Lq%8*D0LP)k?? z%a00#Z*QZIxo}g40Z45oh;`{tsT9e$&=yDqYZ4A_b3<70Ts$6_v`TJff00@0$bwT_ zb4k^=($g;{`Qblt2s8V;cZRx~uRdt?y14?Chjz72;J<%!qNl}ql2#p%=|=CKhY@1g zddlHrZb_Cu!BiBc){~JRE}pRbn5e#JS2Gi#Gyf&}!|zO!reYD_T=;9-UDb=$Sf(BD z-C&~VdV5HY+9Th4*oxzypo3~*NrwFD@eE;hZuZQLcsyeyv|1J!&LCU!tq}s8zt6ox z#7H%jzU}h4AiWkw0fB35ajdUMvVB)_e3?1BMNc-c<62Z}_fP26(PgPw1_pMnH@UyC zlZqv-+?n~$d{OF@Z^hRg0=;s7tSatpWY;fSxFJ(=yZ=QA+d%;BEzP%a)l*!T>84@- z&$PEDozdVVZuHLNXFpw*3Z2&;4i=>lBD4j@)zjhgi3MMdsA{UHv|5?lqbtsKgrmX( z>hB;oI*^)nc6qRnjqvJ6>j4?{+G07r+Hg(Ttp`*$>gCGpI^9@;r^vJsI+p@!s7}pAD&JJ*0%!jP?uGqaL zhmSbQ9*Hx|sej0qiHSO$8GGOQFs(k4oVW%~xML2atK1^P8oDf{zQ!-vStJos^&3Ss zd|^)gz6)!nf1wJD8S`daG+8QgwPTtVT!G#v6y5hH!Z3LVb;tu3M9&4NC>b;(f4x;< zv1cdyI(Kf9fv{6C%!`uF+&=p`8g7~ggdYZXdt+9rAeSTLFK9|N5W zNNE2hjzmd%>-xLi7R&WiDu07)E>Z3XFr9~LeW|J21ZtQUvgxjezbKcwJy1TVAiv4T z$oZJte>1PIm+Uxztj>b*I(*VjYG<`>)%8aKnSD0XhWIX4ZZs@bp5x(2lw0iY=Cj~= z(ueF)rs?LSUNKs2iItU=lqO^`m_4;od{6!4 z^dKZYlpJ?Sd4HOO?YFlhd2TH|7X-gpg)ag2FW(2>zyaBOK0j8S_L=y7owDF2_);s> zU3%G&tqi=!NMF8yErE-7Lfrt!nlvE_h@u2EJK+<~5Mz57X6IDM|&qPgRHdni!9?!&$R%J+A_kMYj%o!kosV zZ9yOQr=WbOnGoeNr^Y*(B0XR0A;+Kl?I&^<1VfLM(1qphAaeBrv7t12dDp*NqoPgo z7{Hhdnkqg|*$HHx80zVX3*ges=l>_*%bQITk8_o3-3;bc20U=eR?OHV(4s&%xw#_% z;0e=?JltN?=ChpzX77xR)Mu8l>yAj;4ij$T`!~N`9rK{ zATl_GhyJ_#7$hLP&ivoEc=nEQwHuDxfr*2x>v%sE&EUaV&B>72TU_U9n`u@y zjvjl7(NN`(Aaw>G7{)ZL+WL|vI%>@ji-+1Ge!qY=F8RCKxLX?$IWKo70S6MS4E_G< zcwlxm+ktODYBrq4_xbAir@A}&30G+l+OanRuq6@nDlj3y^AomKZ}sYB5wMGICr}Nw zeE+dRzXb`E$MVeAqLN{ur3GUNVmILJz$hB~@F$aaA3eFtzU?8K;)pfSI`Jt+DVu>^ zEF>8OF912XRsB`fQR|Y;bPGGkRqp2A3Na(ZcJ{|PC|Fz&obYk z_ySZ<;lG_oX>GL&>=Svh!(CU4l1UNbKUc@FK4vWXvPUCU)1V=UyRAK+o|a4Yp?1`E zED{g*0pl02o}TrgP@4q?E(LT+R~{Not$&QnK%tIX+uaopp{#FiMuKx5F|3|jX02u> z|KtVtW5oV!;o7LkL$bKH_-g=TvxNSjzK#ya#Q+RL{nX^|-s=lM>>mcb^Mq^fwb)aON=s#4lcY14lT5GLDG#m1+3f z3<%G}V_q?;d^Y%6YK^-w&|yTy<&UnL{y#XX>(5x94Q>v}g$f(*PwKD#-m{>?%Miiu z%6M=TX|vLP8kI=1eow(E{iz5|Jtz$x;>3?6VlT0F*B**H+m&j#HkYcxPCb+;QOmrvw_D0&JJUz`>v?3Y_#n9&c~ zvBo($=c~47>-F(j(fPySJ&EoA#o)#eN`f^fl>u#Yb8`i27K?Tg4-w9CbCZOedKf6< zi|le8dbQa%;2elbtE%1ygF=RUOE&sfDjKLURd24CSM=RMA`M%rdC^NX2*4#H?ynm{o`VOq3B7bzUSm*|SFsMdlYV~{ zmC4-Fg~_1!mk2-q-AVNL9rcamY6sZRZ$}kf8j<}2S}hvpy_=Ya0Z-fh?(pH^)&ob1 zlaFsFEy`2q7%w!HAvA?MO?9XE)IZG00+-ix*Lxgt_IF!(sV#_n6CWQY`VB}9K67J7 zhbMb|ktt=pnr98IHyHh739X;^Ie2dRPXVD6B!W9PV;R%Ad|>)1nTDVSoGSzM^{p$R zyYp>@A7uNA9Y>ciA9Ua&aVi=}j{GU_AR};V=?v42z;6leZPPWd(K%-bg!mJ=(4%xD z+xSNSG{3KiU|9WQXpx<>K}j)&Od;OG9ign7Y+N+gpEH`d7Xq-T5j`5xkD>RICP($A zNt{(6c6?S(?|faJ8ZPu&^fvA-2dIVsV^~g3PVeaTigc+~Uv()XJ1`UkT)%>qL*x{j zB{o-5QIcQ$T8>Bj8V_-m;;Ja!^72ynoVoGq7z*p1x3RG~Td#Z*p_qX9m3TbgD?ffO zibtUsRgpk6?~)lXx4_=HJNtv2%Rtkx{{Aa<@+ME_CvP7T{$k06vWN&A_^=E_rEiM; zIKy`JfdJG&p~d(wQo?drl`#VbC{u|A#!91LJB!~NN8agBiXqfv8xLv<~MGV79Oir=%cgK4( zJw5Vy+Jpm9B!qmMZl#bSBxxjUAostQfKNP2qtD6v77Vj#2`{gqu0R;IAV?9)&%Nv8r0O!bm9fN8|EkG*FDh9BNwpi?86-Mm@yYmODMHh z-VXE7*BNqR43M+gizEZ^XKi%4yw&6SRdUw_R%kD>eadDM6N<4*?-+>-Fe!kYG*XcE zyEe$t9B6dnM6BhEgv$ z61lxaP1R%9ryYgE{_lQN;%vpW2~RPdCXP-{UfykQk`_lwqf)!xm>vAiHhuxqDzFUT zowvR_6iFLv{$%x#@aE5p*3Em0x)*|+m*N>8vB$*H9ww27Gfrk5^BfM|`)|cx~aYcG3|F zEDQ)_LBotlz#YM9&>0*9Q9H<$CQ2yMt(KhTVUEW$xhxz){9IM#V8|U>ugj^06WN!T zl4(<9M8rysSaQAk+c{Z{5(WHrE-o%G#oy$pnUWrF6y`jZcwl^|&x59#qz>!b)iko1-|g#uUn@ zF(;A-`G}TV8BdrcDSAn`KJ>Pc#%<`R_1#Y1_eg?;Saq5tzPOiDl_VO@Q!^Wi6>ZnP z!j0$>qmT8C5JH(usNY2gT4?+yprB3JD(>b4w47YnFy&+>s7#bvGYo2+}oUu{CifF#FTG5J8|&AM$oS0q-I{@R$tu4 zV&CzM==J^u&R@s^-`kMG4w(cLn{QjK>`(_d&2Cocbz3Ux>S@VT4HYbo4jsa!qr zqkpfzzXwPBkL@uMQqsQi-Cur;C4D<$5s+<*4%&#k)0SOF4ctIgd*5Xv2-V^-ARso2@4AgWp!EB zr0MJfR)(Ql5T}=2CTvYwCo@t_Z_sH`odf?=(r-Dp-vE}{z!)U$3~9VoQ?|VTf7OyUkGZ>4hXa3Wgpxhg=$SYqP1D00>w`G63D1e^I}i_ zy_QpAftgpx`CTl$y@}q5-BlDx&i1msgx~bzf5Q=pqu^Kz2XTFgp$;Gx-!^Udwd8X5 zwj*4SaYQ@%8e{s>Sl1^YZJj0AJD1#fXnEi8@pnYa@928lH|}4)Te#}`f1`HqT~@E$ zr1>Rtva)}B3!xD8Czz{!JFHt7sn31|Zk9YwK|vZswjsJ?3gKCAi`d~!z=44^QD>%` zjLVB`3Zx=ghUb`$ND7yC*{snq!Sl?K->iMhU4DtvnpQBLg!%K=I4Jn*@Kas&QcMRo z2N*`;WGvbs<3z%>LY*&T1c zmOBuDIlZaG{lYEfQ#Nkm@P%tVCbNjT{v2Urc54&sBk(}oU^iGSv>!}YwjfYunryK< zV58qeZgRDduzhCn%#>vLu8xPIWc*ZH)=io0-Z8S=F893_8Xm**2ss$And9}1j0UX4 zPD?wlUxQJ~tbx-c?j`$eVE6H%wW50zYcyPqsXXgUOpJL<9~dcR3LTaut63w}){Z~O zY97tc`tpw@LVUD9kqt-z05PLf34WAtjGB=@$(}2!&{d}wqq(mU=eshkN$+iJVDu<9 zfNj9C1pYQNK>|!{1t>F{rdqh^OP=p?^3p-C-le1?j5VHt7qM8MedBU}8Yok2@7m2X z^18g5xEF8ro+Ho1;(ZGg*FcWVA$U-F2@EQ@xeJG1*?u# zSI-ZB!ZlFptL`;7B;OFIXbOG-udH|WXQ2M1)Y|S`-KG&Okonh-m3EG?hw}eeC;#xDeDu?Bb@>Cz-W{uP~I(jU*U9Ei< z(M!2y&koDXtec~~wy?mnn9|gq8L#Bpb{D3U__i2ML!o5O6@tLHg}|AZ>ycO8l9y?t zSR89u8XkA#}8_wP4fgA=%VMk+?m{H>Rvne38vfFoyWNM#;njgpbuwTG& z%UNV0dZ|hmkBPWet0=)Pg!Po@$%HXgG*uQ3Cq&b()WFH;VS}k=2sk>zc+_r zvo?Y3xhHy@417P;K69%v`^FTuIFD2QAM}pm4>eD74Tv1f+kje%U)*05sSIT5 za$(TDugooPLIBX;ppOCgTmWvo@Ty%N1gI47W*Q$ZWBDUs!9&7f_n=bq!S>esD9g?3;9+Yhx<>-h~_h0};q+AKUYpjQ0aW0GY3ue431gl;DCOmL-fv>gcvHMv88 zqv`C-t9SF+>|cGy3xAKF$b*(G0apkL7KLk`tdk=Q^nZU2wyjVctJkC|>Z<0e-9g|) z=#V1F7YmB7)~mC4T`)ZSZX)_5jWf|cYB{vv&o_Dm$uEs2*234?ngq*H>7wed>0fXi zko9~hLmT5+*FewE;e$BGOYOgL9AD?4#WEt@`scj2DU7xKG{1O*cQtbV}j~`0I7e`2)=UX(SDKS{ z(4cl5VjF_$3DkKOr7dZ8bc;3cKgwdYw>>d?q5!r2wAZ)a_~NhhBSY;_4Ws(!=4K^W zhW7Ssp&sB0jBjptO>~eW>O6d5D|Ba4Uu>G)`mTTQMnDa|!hsC-k!P|9MFMYdfDBWb zo#NJ2safcR)@U472w(h+(oX~@aR zNACY2)2(qFvo;INjPA8c`zkOf{#;%72O~Xl8(eF)O zjRU^SDc*5>BKQ+Tyo4bs=$pElI{J)p@1>x>lp6e7G_lbQ>&n76Juh60JwIfVcsdJ% zOT{^D;OAA@Nt(1b{TnOAzEgJTx!iPHGk2J8 z-AOk_S)CJJFMUJKBb~X*okHR3Uvm65GJn8#CIh$lb3?72vpA+w8b-GIH^G9{4%&jT zuzn}zZ*#C;%C9rlEc9e*@s$fVi}Tj%&-|*ui2Zqb|Ei4FguN=BU77$9=Ya1hw$gsf zFW3}*-s{j4KJo7W+Bebpne?HDI8t;{?Vt8+{O%1ET zL#hm}7F`$#_c2$_a$W7=q}Q_Qd8PdxSKmq#Lr zU4RZ%Lx(WF*f+UEmheufb}3LchPMh@`0 z(OlW{3Msa4Psuo-cFUcX|p zgBcadd)cz=W!U?cY=555Qx_eW(ht~CIN0KMM>k^LeOR*0N`#nc=sa}=mRD8vn~{Gi zw5+iasg5*>T zx%FCElVGqNRo=TFT;T+=XfNrucaK4C73bOgT%>~kRlOL`LtdY03PTQLHSDR^ zJd%H04}KC}aZm%*#&;0Z1~Zjt)a`0==l!$MxT}x=88U#jf4ONR zY+Dz=099p+-zYuz^_ep*xRsQP>paaWy_3>;Sy81owFiXn;FvA^;}z=IcDn~^%(%GV zq)@?+1Q-Gg^6KhpP7HeO6K52|z~9Bp;8AI>5%Z#ir|t4vzYx!qvhoufa|2D8Mr2Qy z@TM0_+@Q`J-I`O%jFX-bVyYf7BBXy;-_j7)aDG0CANwwPP-y8mi_>IagAj4r6LHvJ zpxTerIOCfK-uexq&(j6&)oJuu+iBoalqQa>UJR#T9Bh2gQW{EP1;abgjn}^IIWdfD zvfKq~ij$^^+*9paUPPUHxb+K2MmgQ%V#9o-AOs}mcDfzP7PnGm&9fIfb@Pl$`;mzGvz)E+QNNFut-2?7b{q6W9AwiDYIp&_Ar3qdUpU zUD`y6(rym!Uf_rY>t$~ZmfehM7JTUD*F-7-vA<)(4GfATQLxt9Gv&kSMbzx$suf*Uf6+jU+s&Cd&_r%a!GVzG?*JDAuz6==xbpi~=JxJ* z8Pn5Ll0<>S7r*dDzJ(k$6}Y|0E8DCbJ4mH5rM6!yBLK2b1>${KMS>y(VT_?-$h8^} z%eLF~|MBwa`=YA}xD{q8YL?P4oxg~l0$A0E4*cTy8+U}Zj`W{L8t48I_9iSJQF{*D7X7a{E zfG99z03bAxr`hc8M`F9lAV?Ok(e)U(bX<=W@|r|1bteT?!0ew_LIE;UcYJJ0i$eL^ znyhN!{?RTr^YHoe$0vFcFMP0fqjUvRe()p% zuxif7kAr}%HA;zCYd$+%ExItTI}U)eYvQKN|H(iGr1Go#8w5p-ZLvDqOaCX-&HrlsZP4wr8<4$lz?fT72O>trbSQiLE$dhGA?J|D z@4J6IkhgnW&c$je&oW}8uWyMWvafAobx=P^7z{c-has4BrQmGj(&EC8xzS*AmVU>K zAjmc)AfersduPu+t0Uuvaf{xoHqvE+n@B(P1Qo9zH^v|WBd$E zE6Mr9%{U$HGIZ+(*V$v+*;J?miJ~oS*%fbIFhT#t(4u5+&pxOnf%rz;6lpW-@Bxcf z5Jm$=a}#-H5luSF`+%YeiGdrm?C-Y&&rjdJ-uN88;arv&Ebtkd6R|tE0o7agJ{YL*dED2aw?b!=)VEuUoM?ucrqv(w|I@U#DlZ2fmPK=RW8 zWU6nwoAjg@wF;@UiS8*j5JRJ(fkBxzVFyFshXuy<#Et|a@3-2IZQ-AsK{>pY(SGv*yKdt1y zC9Af*WhOLm>=$N6zgqnVPRws0zcdu?{omYf8#UvP%ww-XK}PLiJy2+x##oWmQcJ`P z@hZ9FTqvT;J&r37dYM|`NV`lhYIE|W#msmQV&Gf6G*OZXmol{ zaP}&}JQFn0B@eYf&#@7xl!No2_q z0{t`?G}^!2pAd$P1`YqW*@KN2AFDX9xM=8NJ!h5&k#qLvl16_4or`K9ja%OiZY-9V z;~`n{YS0Q}9dm9obNwjyRp74Lqumetnrp3qEkn)H!-1`FO5?f_IpdBTdBxU!lDJ(n z13z4b4i0R~4@G5whWU&aH;Kqt^(TDj0rO$2un0cPgo9rcjdv82_OiXD1zAVOM<6pw z*2+d9EM2^ZkLIWXJsX8D;yv~$f+i}S-^FJb7r7O1x<0Z#fH_CV&gA&28WUSbr{Vek zXgcelD%ZA)Z#o2|q#L9}N|2N;2?+^7x|9wn=>|bk1O!P1ln&``5K$D7Zl$}M@7ibH zZ-yEFIU~otpXa`>SnIdiP&Oo;5r+o&;HerLo9co(ER%;j7y-*=PnFvR`SF96-VN$z zrTk-IRjV$d8I7;VWre_A`p>n#XwOIzn=!tQGSTYLD*QJANOs&l1rlSRz(6F*L3Y$V zH5p@Cz$|qs_A91w$Hcbpw2Dr&S(;;n{929iBNpNR$JnA6M&uPNURl2KT&l6k8(q6;$TL9lW8EhEU-2`tJ3!rHyE1V zT|1KbVV}o>)ikjiC1Nn4O3q9%O|tX5<(F=nA_1~I0!{iz=yh|rY0Pat_8~$JH|(`HXUnn z1YU9ss1C}*oe{o9t&REq6SR7qw~*3KP}Kvf_<6>69M=%K?<2SZ@o_P|i>W40+5mw~ zW6kz0UH*a35ngEgrnTmqH*m<@?fs{5Y>ASEv!$_Wq>}#965i_yuO_xy9fC)%vCP8J z>!=B~zK*Nh23@A>A-3w5zB|+lz7lK8ln9yDEUmSCKYh>cCtOQ;+NV|Q6|Abs4j(pO z(*{4OxxMYALg|U6c@Vj+>?uXvyeH49U94Ng`%Z(8EROk)8LATNo3SNbZ*_^m}| zZ*W76rRI)8DA48Ep%$$y&fG7hNn~jkP^-luIoA(qc8=tACB-HwjYXZ|u2xy7scDFc zPT_`_K;KLE^QDLFeL=DxqUow9t#0H-8cM{$&oSb6p$^!*K!t;p1At6cj-O7^-}b8m znIIouQt5lMa^_n z({hZc@}>pdca1}%n!SNI_T@)1b|fVVAeK5h(~gO+E#UA4Pg%}0U{cNT2u{7b|0HOhjdb_Z``Y5Jm= z$tXT=rRcKYgMp8C_1Z+7D1lbLrAm%D&u3_)H9wCuVKI=!S+Kl$<%`9~u2*(gE%@5H z>cMePwzKCt@jZuy+cC{_PES^zx&3nNN6D)TxRyY6z~l8Iz6bLWIa;diwqfk^4uwNet?0q?EAh#A~>s+-~@uifnOdaa)Ch>eBwq z184ijf|n`_)=ESvd)__fD`h_u=~0Uk6K~_dw?UQ%(zwW8b0Y`qj&E|JRdOB(rQkp> zEHO)oM-w>doxWm8zrz3g5sTfuUs5hMH)xnUM(Os8Hq;iUkUbt91u}aehDG}`=xgrd zhj^qLz)3mcJ&n(y6$O*opY|TS-`u3^J>C6i-+*Ufd$-u*barF8lB<(X4Rkbie@)pr zFs|#?cbcJJS_i+(>Tm(l?lx7^mZRd1wj8rFEN_1OjmhmZbSW!4W@FH$m=mdlp&B>) zzEZqNFO$RqI{7Kr{?DI#KFLV_OqZz8W(VCeXo-a=3=U;T#qWKLbjM0I3q(b;sbL-9 zm(!Gk2`L~3?Wk0T-Kwz}u`L?=O4-B(2J<^QJx0;(3((WD>h@DB{4^`(#DAOqs*Zrc zSqO{|0SH2&Fne08yZuk>cex_j?fzlLv2U&-2})8pUU(;uZ&ce>TRnRip@kfFnfy0F za`tP-qNt2Y+XaOb0O5f=9pT-~#$xY+U&&H`IFcN8^!*A=j{LYlui8Upxf;PW+;tPY z4Um)Md-79JcqlKRm5}`p6}m`dC8l8#i|XJvQ&(@QY|=c}aXabD0iM=5FbOI><1hW> zV*7P-v4Wb>SQ*$dupJ!Vp}j9|Vjr^TPHz7~_~)~5Qk`)=bqUvubiOmg`}i9#?AB28@p>rPiNEf7jyhp@fnw6`0Ha zZjhIQNcZ=JuSu`%{g?Y^BaZZv?QGftcxZyGPgJ`W@og|O4L<$0RqGEjL&ovUpe982 z0*!vHL1O3oE6wdM09!>-=KGUBp4e(!M`EduIYwYvYwyC*fUSS*Eh!t1+%Ey}FV3Jj z_J`y(O+ELAdxNp`w?v+^N7MfHl*8tKhX+5gbPv`9qd7@&k>q*cph}^)4|A%jJ@O#M zR}6zg#h^OsbASK+l-at@zdwhp<#O8b`dye{-0WDi(xRO66cl+66U86riWYH3R(!E1 zEKvYe*^mH!&0?UZ&c@ONM$NEi>gwYv&+wNm51OUlydbI5;oJ^5FdDGCm}( zQO=`XQVa=vMovRiqkNmavPo9z4?ZJu)DRik7Sw1*mo`Z!%k!~fbRSXDkK&Xmhwwf8 zm(nLUG&B$}(-(UW;X>wM_O#`L{_j8FUG)wF^Mzrf_pKx?SUB<&^8U%eaF+xLKQ|xF z!!fEecl+z1l1HY;8c-<_*v0MGnizIjc_ig6_%jaG%h;} z=j;fYsN8<@z+ERv?q`fd8moC>!{gcEhYLt!V|QP9}e za1mDUVp2+bSfVS&(T3!#J8I`V>3aMp7|M;m`g;BS{SQC+P4zP1cIQ6zAMa$E*~vKX zd&_`bN}0HrJ~JiGIttG2EbeM$fUgOzioS zCMN8%=-fy*PK;^Z?2&b2Pgo}9^q3plN^9!;UUT;_NFh4kcWH7{CkzdGS#(aMa}bC+ zHZdW?n!Y*q=@T_Pl`;CY1k^^eDRjLWcX;BEn%IfM_0+Vqj$ZlznxNM1z+bqUkwhQr z2@#G}pWvE+RX$3RxrIgNFeh?X892$siCYrvp#Q{3za3bw=Pkb1RqTYQ*fK0X61#IT zQ5h3-IKIg4JW@^!)#k^Ekym&BBXm1K$?GRgri?R9?=4zoV)IvW>OX_$>QBRqQk+tK zSiUg%Lw}e0KGQ?3>4+DGG7JxiK}+ZSZ$X}`taz^N>e7!k?uK>~C$?OXlHM(hC@$cG zgC_fV!xq2ifK0Pi5X(dOC_yW|kkR(>?<op0|FV5%M%mN=7>aoMgQE(-}60UbI-WO8N{Wz zNXZODYd+yZuH%1x0NlWTYfAB3tox_59Sa_?z3i;mtnm&pW~ihs8~nwIzGAa{<3tNr zHj)bQ{OkdCv3iJE+R&OiKo6AjPytd^Q7(C1L$d2-Ir>$8dhm68$4C5^e;I`7Uo3yC zj=_Kbz>_=Cj+O;EopQ%kVJWX{ni3MpP71~xh+^WFW$bde%HfQfoKKJ^frMR{<%4U} z{4OiQn{n2gc{&w76%WEXn-vteeEVL6hL{dPVQ1zYYX&3tTWqHfQ0)ggAW#~q+iW_% zItN{$v*q%*ehDFduA|W4&&@iP6~j`{i5OS0uL(afF*(k~jsB4Zp)sIK{-I~alI}pQ z18=|5M=gg84xgabUYViwJnFl6?lcrlL6h-)C@2OB7U0P4Ql?u^3)ia0(@$npNu;*I zpOoTek+WX4ufl&#{)&O|j6*ndL=jc z4mgyFiFbw9(lF(9a;ST1;(`kA`?b{8tMyCgcC@`$lNv=@8B>YsEul@2QqF0FfJsk-0^u&u_GPlmRb0RiS_-OE zTT6Y6*Wfr~d4&;3jWHL!1j_^4L(#;37J$;?$-5L$p|_JvyRTJAU}Fy!lCg({e9tjJ zu!9tkKq-kC8&!_=JAcX1rXF*5yx|XEjw54rJ{3mse9wv#mm93Gct-ESVevNsjqK4j zW^;U1elL-{>R;E?K3E$zA8QopYFZBFB29u%!G&SwEn`}-m7}S6E~klJ!3DJbFAs4v z>Tb}g7kNoO`*9=B&C44te9jl7?gDBrmW_LZSO!YBQ5Zp4ap*n0fA3+}V#4=;L>B4V z;?1vU*HlAGe!6dn6$o%^(wi-VF_Q6DBf|luAV}i%$5D&l;_7P}Q+!^5KqCcm{ z^k#}TiXw(+I+xS0x4@?^>~pjs#l+JRZFkbzCxE3EH^b)5fVm|vXSdOvpu}3?yu$#3 zIk!8ckk0|(bx`kuyBY;-i+4Z0LwU^qcFiYf@!xB+J7ivNaX%dLZM-#=T>3O=ulirg zwOQwdPRVN~vN)B_=e8S^ED7o=yRD=T;j`#tnypS{kWctFc^TXkh@;W|YDE$LbKgL~ z9=Y=j5V==X<+Zza`+M&BtLMFPKd|JxNM4n$f2z`w50l3bmOC;Xi$&|?NbCO(X>K_kjQm;V|8? zF$MjFBl8W~*WKy=p$cTnOW;N(hF1L4gsh~SK=wTKrNhugK_Z=|PX3XD@0#Zle&1md zE9tw(=94oBl#|B<#w@OVnrLme1;A2NYJ-@9%$XZQa&c`Rikfb{fP9$Thk|-Ma|@2f z-&Z7s)O*o?nAZ+dx2bWkS5O=sbHvk=&G@?V-V0FyuIZQRkxF&gm<+P|C_lIt&7RGt z?$TCL{Yao+-s+c)_MKbc$bffJm32{G+XGx6U-fHziky1PAG6Re}2M_r`5=Ywroa*}%sSL-?g9?nz+DcJ1x)v**G4 zDkGlImZOauK|mYqF!{s`Qxzn7;RSfSAa><+Ci(^ASsLEm(JSPl?lViPS*2gzx^!FPx!>`Dnmp*u|)6rJ} zk!@)E`<>|@&bz4934qKmu=IHbUt~^1M6#~-rMAx-s(nF(VQ-giAz0OjqI=E8@5Anz zm6bKSkP}^|sZtRdSnd?YsNBitmIzK`1UJXd(^(Jw(I1-DpA)62gFrSOQQwT8Mspy_ zjXiXq#j$efVG#@!)6>%tn16Z4oE_R1x2J8xj4?VpbJ^e@30suiK%F}FsMNGfv#SzixTk_faT9jcU2B+Fzu z;&ZwD{@p~ zatb3tU6l?iEpGJgH1JZ@70M)jq;)930GCTHCpK#0XHwgdLTc$xBk|9Fy~&}5uWeYs zXj*z`h<#_m<8B%XQkU|iCI$@rN4^g_dq8G*5u=1m;b=YGzNY<=C3$nCvSwO_JdC%( z;ImhKvs@c){Vh;cSUwE4(jVh|3%;ZVhnn^#qJ?j+`or#HH8Hj&;oi-$sf7*yBp!rM zhzh3fea&r1T^V?byHLDf9zQ3B7^uWF`8B54@cEs&KSYs{^B5u+(ZPbRBYP9~`W*9> zw42odtG7(a~(8{$Y|71cQ-(DH%ZHH^PQLWXO1kOyPT@G+TM}yxN zU~CFx4hL#S+QZRcdRd$(fQsnLQI2LS64HwkExFeumqM8QHA`%P6=4pi2U` zvz?O2&$)BVNa+(Aye`Bm#TswYP=W^4dJT4|L@Ri4j(zcDu=&Ti_~BOuPwV--f7K~G^>pU(RA&l;ob!ZC)hjHjHjk6edda^(e2Jw%;iY;8X8&d;8 z8p1j3{&v6)%2jW`xs%t$2_JZSf9*ZUU_J3CLp;L6W;C{WBm`UA_?jA1N=)UqQ7QWq zeEr11sfA4W?7XTZ?rI@c`XJR3ePR4J<40PM)>_){_?=C+bjs8(5SrF;5ct|Oc#epC zSm3yrqR(mI>}1!%u+^V-7&>w5yk9|4IQ357mTxxWq0krPg`#mM2x&u1sk${ z?2CA@u9jqb8N~lUHuJJHqHfsR)z3437cwt0NGVl4YwG#W@}RDSx@Ywv^)^53xJlWWuE)gF0kVocKut}Knu zttv?GCrC$;hC8xKCCrCi^BglU z0&d;Xb>XY6Mhz1*Jvm8#!M}l@I6;SEBpz@@gA5ILMZ)IM)UqCam(j#7jnz%Jlw$j_ ze7bT0+(9|%`J*{p-vU!CDQ)z_t@ODcnkp#gn@JJNf2w#g`%lGe`0iU}3e zFC`B9NxJuD+Vo=HlQk}@5%fs@5i&y}VnRTD0dnwC%ibwW-G0(c|AJ60<;-{tYb61U zL#PN==Bp0Y84J|4%;Q|civj7?7iTW=xNrbBB$&G);3ZKZ| z#sn6_dOJ*q@3&yd=M>eVW7JKd7{kXXri#i-GneO(-IHO_E2{fpQ+}gFpWhrX=m;7S zS9Enc$({@`Pv?doye1UtM+Vin%AcPWl4x=mv1asup}BT{+lrbkii!9YItVF@MyGMH z24o-+u-Q1GkX=K&`i>JK*!lRQHaByAp&v<}Bg4506_&umV`6)rl!2404h$%wd0H=s znVFe$zN4A4bDmq9&H1m-U?u9V9H%igyr%7Sr$O42Z`R9~Eql%hV@tH#a)n>+@26&@ zgQJ@4zRK;S+8X3p3YI7|L{D#TGuiKPw+5GDmjuT3o9#aIaO<+%QM9)*AjSPyo4iv3 zG&yLDVMj9gStn8S`vc>%3Rx>Eb)Bf(vGP?U(G86I$O&e?HcXP5F&+`nJexew(Io{m z2p;h9JHX!FBziuCRv*1%QElM9Ci)r10n|ML~b^~gj@oJ7Du{qyLaR+Qm z$I_OTR$2OQ8>#Y8w|jg}pZ->xEOuYApE7^EQ^cZB_OQ>z*3L6Gz?l10zMUJR6K z*m>XR@*7R}?;Qx)D9-5R&{NYe`?7o;di%k8q zKX!t(`oH%oN4Yr3qRm`giRxOT0t6lXB{Q!~cREMxF3&sg350tP^77 zSb3+!h4B*Mg?N@HeGIRjKgtk`w;CsDZH=MX;ByX&?EGCBc-~Df?uH#l_n-rE$94fZ zf$-KgttDbTQ8g&-t^0OexEnZ>XY6;z00g8J)oY&Pi_s9qGO*P~f^MIzoVubdxfxCN1x=5vsBmKC z<#(Aq2&lmIWGm&(9r|Y7FoN0>V<;-pjgMNH+g4s26dzKa?bi76R}dPO^Vxw--1D$Z zV$WuS9LbG-+b|R^rQa^dDs&?qLgY?$NwB$CW(rZ>*ig)bvwv!z|Iuud7Rg2|?6t$N zL{0{vUeM;3x737#cyhk|@*KDe;3P3Dveq;_rSBonDNv`TtMH=H%|ngQdVc6F`$h~Q zR#r9WzW*sm2&-~*1}P5qqJiw~$z?yF-O*{+ko<9<-tT2a5PTa%{)Kh!`>X(DX*niA z$Gn+WS}QbH*)Pqf&|3q~283mUCxs6rHD~SUX$m()rA=)Yk$amOGgx5es||s_!lt46 zXB6t&gj+K+4I^keMY?7p-!-};X@T8k@TnOjip_;(WG*$ zmU**(T(7b`prg&Il)%M~7AX#+PpM(|Z<{iHjqFi?!AoUj5Y`R;7ahCUW=V}me|HN7 z9BeEDkpujd@9=;VgeZ-*gNXv1w&2E7&lE=?LjU_hq*mM2wy@%{eII*p?KqW&fRZW4 z4ClIi(Ym*6-)!qR^F~8@jAyTl_&qTm+d1JUMo(oS;`Uvf#GW!g4kK8seTWJR8}b4g zV!ucpaAPCU4alAUKXal}3D@AO4A-|fgc#Ce{mRUti^8B0hAQt1SJGFj*O;=0Nk>zU zM4*i%dNzUwbdYB@Sm~!9*BiEyHTZHF&b-Uc;o?QXYnj)&M`*n#!x834k#J zSVXfu?Uh^_lOEUQgRcjl#lW@_LnN-F-mpjM{$#n`cFnBx6FA&MSr`+P+RQg5fz6-(RuMON&X$xkkFi9n zRGR@mRk%7Nmwk(X!`yX<0LY)v%LL}zAY;Rzl{RR(|Lvpjx4xhumXe_#A2(mpxXrhW z<0RF;+`0|-5;!`|!Gpv2_Wf39o9j}|qL&d32W(_HjnloDuxC7(UNKpkpqEnv+J{EM zmja3?sD5DKq0t6(ooQ>$#85--WnHPi`?Oit(#grFj+}vw`G3~j!EjUi&WJZ}2z}}@ zfj(jpSUFFg8g&DYduHsTpuFw2#9hwOUoyBT=cpQxe3Wx7nq}^#@!M0e!pM% zwOXakprx3iIcPYaY^e}JJFHo%4fQ(bH+SdM=m?gFj*Dy!n>miDtXz}fHj_iC_ul0e zYFJUiw6~w}9lc-()4(UB0MK;Y!_wjX)4QqQ#;Eh!WkT146db=15p!au_oAv1UDhO) zl5dWr&N$_qi$7((UDyMQJ#86$i!C@Bo$V*r7gAMOse5jZI-qAM4x|*$ zd&dC7ZvfmFw%$}PlfCDm*->A$>sW|k!$OF=WBj`j<5V)%;eL&P4|C+vdA4ly}qv0 zvslh$r}r%qo3WIUSS4BsO(0+2z@Q@zxQkqNnWXw6!-T`Q33dc^Qd@%WxfoK-;OB#4EG+H7w(tQ0Y`VdkDe<2* zb6`2)$1;F2AABJcXLNj%54NZ%UiaqRsi{l8otA7uO(8raoA#9#&9m?C#~taqGvAC> zye2xim4McEsr8vlDCv`iaz%h60ko`;0(C=c)y*fOfmKy&Sm4JBd-1uhWO?00I#Gt3 zXbd1rfLHEX-*o5HSMuW4O%JAdkx%-NR+$&9eLq^OeuK|RKapWzPwK;6fA(U=w>D{Q zfh}bba4Yoiw3>QbW721dkepQ|5Z>74WyVrdX+Ddj#ba?T?=^i&2Dj-BjL!%*-zUj; za1FTnDL*MP8{nNo7<;QHTlE!2X){&aY1G$GEO)ZT1kWa-uB7-zH+Y1$x8D!JV0Bs(Hs(3-;`;MUCCxee zTW!!ysUSkjdz7``p1&BzkK0Vhc*lTEr&$i+a#oD}9q*D(E7J3Ew8}zwGlIDu##`3k zdAj15&HGd@T`gZzj`!qKc9Qqt8v=TXjr;0r)~+|+=b0REGYc0m)Dq>ydBwvwGUWw}?*td;_nKkVVTI!x6ec630>@y-BcnxORbZCzbm85*5+G@G^(#B#Bo(^&WqGc#eIfE2v~RQLPKKb+RtQCA~D zmiB-^N5_aU%|S>woM?6yzOaz(mU9ARDmwi|JALSx*2~|}f7MoCK0YTPp7IJg!OP@d z72qsp9PU|S?dk2o^u{-94||rRC8USNAjTh@VE^YHONA;4>tl`e8vIUPL+LmMFHMYx ziA=Y}!Fhx=^;?FN zPdZ4wp~1}SCev&)Ox(K6>0ZuRwwveaHaN&Wvy>*3=P6{kcYS1>^NG`KIMggHQc+_h zXI+%rur3hjT`!iuo7vhHE?c-8e7u-Fog*rdHBSQR|0?~sUu1TT@u)izxCjKSmRMPi zL)+E6l9Y2Tw~Gx85?LY>(I1jF3w*$O)WseKg<8J3x;qx$)Qd;2<)x8LER?jnTaDW? z!vcCmfXYBFOaa)TEx(JGy7%VI1DocPQ%n8uF;;J&){L4yBt!=#(HvaH$jKxhIlGDn zyTi(}-G*x0B_w`1%$@45gU@L$y(${Zg3J5!gU1)}mm@*+vx@4Ptg>yu{USe zn`!MQ9S!nRl~{9<2b=})L6Mbd)^8kCYLksHS4$Nj$NgG~*R?n|{oPBu-CB%wvIfOy zmi5MKb|s@kjCa*8HRI@0HxoGDDxX}=Uf|PA_UJLDvsKGS$ioUO#QNB+>^Wo{XA=>B zWdFLHY}}0MP6Jr9(LjeI3|YP>Dd)GB zMp&I*K7pR^{Mh39>e87VxO(i!*Jn98ngLv(E|pMHhn1c4?*B6Cb4odRaNi3%sSnttFhoh&s~0`T-$1#Pb#xgf>I zAgr*)?4W<7At1R8(PYmyD9P0=yD85wj?*+7oNr_Nm*Ja_*CAT@rjm8#gk=N~D9Li# zGc@F~jC0<;jHWNl4Xpe%VBC+~RdO3OphNO1rCsK49?`p=ov&%+N<;!lTuj0qgu{CR zyR;md-KIVSGde*uo^aqZvaS!P;xa>b(U<(6^Oc1((+KX!GIXg#pf76yKqf8@2#hok z2`bfW?3qCoEkD&5Ko6b}1un8q(qWFjPrqc7q36txwXdKYv(8c9+G08#j+10cP?`fb zyrV5Geb-ah9V#iv&wPsu*SNozU#^_w(GMhSV6i8L8Z?%v)@uf_`I=}1G7Q<#kK&91 z8`E>bUcJs`hk;;ukq%^wGym))ux21cheXF$t5^*IjfgP!2=vs{p_*y`oB6Ao4O|1L z0)w|%iucpH48O@~+V?SYMxn-3H|MLejN@Mb=J&k_i31f|dC~Z;*oJYn45>}nG(VxNJHT>fX`HAKaEWl0|nyDri zv}A|H8zxpAu|L8#D_HJ)9V#r(?J0|;vBwFvyYPbHWpVu-ixyYe$>oAxQX8x3D7PuIA2bEAYR_-Ha<)U!*uzu*p^S4?9jPmgf@oG zRY_CQ>HGKY@YKUSgFvmQM$c_z$X9AsRxhL(GsTe-{c5PP(i_1oQBn}w`{{N2Zduu- z&1cWn)9dr6mkN0zV=7*|3mE9qQW9C8-Ce{ zne6Xyow$ilxcztt2bB>l2JnMyT!FEsVR}iwHB%pgWFr&BHRkq!jM%k4Twa3W!5n&b zC6~C@2_d}j$Pf%dCo;yrp9yD|CmtuHaqku}VP!_8;LK2+#aS#1C?VdTt}vGc&!;=J zKvc};2h5rD4>5E*Se^54?5JHCl!+_Hx$Z;CU`2J9HfJ@P2VTfV_{z)oRXFhlH1@qN zFY4?Q!x!7KNxKA$9#eD%=B&dY`JMLHyVra2l)=#q?lc$Q(%3QpK&<%A=1)0!p=ryP z?r5rO$HQ~F@3c$%u4Vq)*DsX;*Wz2}dADV6!AP3?Mpf<3S|o_vy)TaatnpS#AKP$WQ%zAZNREOigh z-roMp-D*lQHzWEq%#K;Yu#l9H(^ny*$p)i2ca%FFQwSH-79dK^g~qVOml7)Tlas}` z=9*zM4*|^}AH(vSziS&>NYaiQw>S4OyCcO|&&U=8j_E%JwTZ>vOUlGel3(XC5zS`2 z-B#LYTn2jn8*J*C2V?<{Fy*AjZpFaJ6A}G-^ERWoq+Hr@|LS2gtasnMdE=EO7`kdz^Kaolu&ie3%Knh=$H@jCQ+tQcS2@ zv;2-Ik<88uw^RNZ5%1rE>o_F*YgOX5ijqg=<^skObq!H>lMTi;e<_q0&yGao<@hEt zW+(%*Z6zG#-9PV_R_N6Zso!3f8ka4?jRv3#WaAT0O9@#&FVw8Yx_G_}1%2s=)oqaA zqq+#dnpwOS4^c>xz`E*_UOD!<&c?sqcBet7!lw1o{xIOv`Pd`e$|2fFUoLxo_^eN2 z^h;!LUb7TJ>#{W8GAYk+l>6RdaO>eNpr z*LmW7hzoPCVD^WR-R7Vu>FMclzUX?D9C0fx4+W=vjBYIHFshj^DguJ*q~(e37oFeo zZS3-R?O_k_btqT-Pv)^w!-L{}yvK2u_+^_yih7qmFupg6jkq+dV$syWZ`z@(A$myv z(s}G+zC63IP>*UY&VDCj0TRFbTU;@6*%v;)?1P>*#Xw3432V)oAIzhdKAu@NPp;P8UjLffP4r|!Em@}|^ z1-05?^iI&*N#z#pKn85W+n+ypRcdqQXmi(2>l57C&|l1C@-^JP?`<&jbjqjK#UqI+ zTvRu5ltc!pwIz>^R>~XhQ&(dg&(AR`sy}guD7ID^S43Sy2*&cbp;HB@%FYuI4?NSNy!dW$r zqI1rxYd^qh%0+T_>vjit#)QO>VA#H4Ui3q}sft89ij$76fUUcx8=j_R)$@7F%aoLl8PnV&8uYD{t3#pxjz(l4J#vC9 z=1Uli-S{-$c_2=76R+`QpMrt{n2!Op3XfQ2qsGLibN<3 za-93w8G($Gc$6vpbMJho%w9u-kWjCUV--JI_}U(udr#t0uG;wcb+LevlUJ6c z+|9P>!53i-+sgWA-GqX_{&9(T1eg%9l`i2bSl=_uUa|tfU8N;i9%P zsC2l$-QRsk#wcXZG>MRmnj<13vswHXJF~E@USIx$uzD-_&7W-fYDF!Yg7(UnkSg`o z0KY*0-&e;F#T7U~tm=bSb~P?aO#}aa92S@1kT1~BhsyyZ8!&@I5;GH&STsfjJ^@yV z5F`@Td;7YdW9+*)!T^1X9&nlx@CuBg^`8kk;{p!iu86=~4`=$$&8v3FmDBgF%B~3e z6afPi*C9^twsc1&3C2YBhsbP3=Y2S(8vVgjMhTSg?0=8)h8@RkDo)VbA1Vv&q}+FO zbii-^qWMfrKHzj2-pOEZEuC33XKa$bA+)+L18U6yE0jV zC3|=^>tl9K&`LssdV`GSh#rGMDVXico+1_YgyJ202yR_>h!_X-R~k)d?LtCYc~Zx6VNkvAmjOpU*$<6E>f=dOm-x%m#@(g7vou% z`X;QZtp=`y(cK#4=rBWqAqsC`8V>eLf4$^?08Tuf@wo|maJ@2P`4WTfadinBK) zBraB%Rb9;qw-6!qm3;#+I7hto6*$ zsN8O=ao}q4eRYXNQ0JH~yJPemYnpdz4OfOL(;-OlrpK$lM{j>&b1>KkME()mM8@h| zEXILj?_{Iu2h^v9Bb*4&_Xf!rV4hfd+Pew)ijOuYFF~A z7ZHfuN(QVuU6!~L3FL44vvJjx8nV4*!U0zC!eo6k*-#8K)(J`%dD@xw?e6to#{bv$a z6#bUJqDjL#5aglLrH{z_zHjHJ*kW8iYTX_>Vvzl9)O6H6kOEUOtmWlq45c}a1V)~& z-!4t11-7PDXdbPeAKq6uMT~K0mRRfDE@66{q$TdPgGk{v?vj&;<7qwn`l1!!AaV6V zxPcizL&!#xmGhWt)g)dlz4oM)ygYb3JbG~+aJ}tvedR|ev$Gstokf|f9`V{lai%d z5n9OH48!^ z4ro3NIj|2zi|v9_)Se#X9I<@UXPfW$vNE>K@Y zFOpkGAP-y>OjWy=^IL`JDg5)7s1z`@JNh2q01@OQQTGY?^@0iVmw+oK;H)5ks{hn~ z<{fY@f zojx0GEh^3DR6o4qEGOcQp@MnI(g)287#=*gXSyMd+IUc$^r^ws+sKf#VI7m}|aD_9WV67sLoArX}C4L^&eY zsy$&L)D52B~k5bG0~DVNv&TpSASj;zcK_{7}euL}cjYjo?6gRxkiU@KZIj zEk8EwPA3&~G&it0YV77-x-odws&=-`UJTC8{ToODg)vtwomkCcllW!(+gS&`6{F%Z zQioc?FB)4Mu7sKfW^=0rguOy)Bmm5UJ@$&tx3kAwmygjb}U)U?d@8=nV7ix&5PMOHsdu*Zg)|D=HPsu{>PYYCyZ?xrR z`)lS(R`2u%T=c^H8_JDL20q-2wf>;uLXELpoo8mZ31$Y;w+R{#)!0Ij0ick1g_rrj zCw#l*k_=G0h$$Qy!fqpy_j$uMdIGW>K-IwX=2qqq=zRW8cW&j-cn2GAl;}%Z^2vAP zR0$CNNcr8FsDAP^PGCJzjpXT^r^VHIC3Ql`+_?7|Nk`+Wt=&H9)FPjjI_$|xDv!+O zV7qrsUu08;1P0U74F=VHD<<5TKQgwPlq_mQ0cv#7v-O;oxF61-Gdp#=o*X{Lf{n%q zT?YJ~B2pM(`p{$9yz_-s{15kCcs&t;*JmczcdjNu?1l)Gyd0L4X9~>-cmn@q6hzm% z>^}2gQb`zDu}}Y@Mi}v6BUz@8>%!y$sb3ibAQH{jSDJjfQH#Suo!r%<*@tYAI zSEk)EJP9G}=&zD~wQu{&CUrk}d4N4UJe={g#uKI0-RFs4po2a{@j3iPm|AO5JTfq= zJ!Ht#h$n=B!CYCAELgb@w?)5jD-gU@9 zWkVX79scwmKLMSnz|ej?VFJ3^sC1i0lS6U(<-)SGd8&?LNt=;;+4bIyt23ci6pS5Y z;{dpT`k!q*8srPx%n4>{t$ zn=C<+y48S$MKY2L6iA;^S@Alh#OaPh9}g;HiQL#e8UWRCne$Fk2uw$a>@q$$am2}@jcve$hhEc;}UO+8*Y zFMj`DF&0JuOVGNFFxNnE_XkYc%sXYBY?yXA;@IXxcjwu;?#{1O+YJfgBV$Wp4>jd_ zuYfw-Q!+S#oLd3h8D+cr>2|Ls`0FW!MW9Bw-pIPVhiIFHhn^ZFQE?ZBPW>ojGKA66 z<{n=g@)@_D;-wLk(CMeia)9;$c^8ZOosl9hPY|;nOP(NLZP!6BB$F%*i3azF`P5+S zYhiBARB3@WS$J*yTKeR}n1fQ1XzZl;Dg^RDwnc9o{dU^7Zc>c=INq&^%(r!y7#Cg7 z>%>-iy1R0w!;Yv+eQKL7nFI6Jy-pV}9=#VA`MtmA!)BV!;w5IRe?(U9L0E1i$VZ45 zRTnOvU%FoBaVcutpdeVLUUd;#Y{H$=+|Krj;S@fl9xN zSvB8AMn?x(z>Z6OKTM|K#V+oduH=GLh$kc}|NPru`Cq+{erMqcg5o-{adjGUU89$>5*sZS;2(CXjlYz7ourF zv+e@|W>tTFnQ6JV9r^O{y7Fc(df0Bsb95su2?H_I2u9)kpNgPrn(SN@?67z>_?Q%7?ty$^A(#t+xSE%|hz=Xc+R zMDN5tY`7sXj0*xrBwpfVV@kvx;+k8p@noZ?gW+lkuE z7c5vDSwm@<`p)_6;v4s{hTQ#nAN@4ZAKLt&z!5f_-#&D3AmB0^DCAWoKe#Hp z4g=qnV6q;8s|y1y>C_ zMEDI7oT)29X}r6~KepnIH*dbk-5zF4SoS-w*K541;CpbwSINwrP`j{+2}wGpZzWw! zGT#TwTZOB&cm&!17ng**j-aLu0lI0xd8eek3ZAeR=`UV9Kqm#oCv#95f0jZ=ajiOK z+o_k=?6Slz_{P4&7O=;L2n3$u!uDlztI*Jk=G#~j*oC+!m@#y`@~AcX&xKZMBz(+$ zX#!3n0wNc;TcXc_eG;%+sW|&l{8O)%CaI;O0s{^zXds(gmM+_JzS#7|6cC6`r$5RX znH66J)4e_68wHfNd1R{A6%&DG3IrEwR^c!HznJr8J z6D8XMJl=N0+6>Z0%ke~pxiO>%$%719>F(`-Yab-_2J2{>{v;dHA;9elc4VN=nR?q6 zmc4pFA(#`3_La5#k!KjfQSy)#JyC^nKTWoZ%!L}tluDs9 z)*@AG!c^Pp$(UL2?|->-f<|l43PifX*uCCD0!kSB!&JNZPa=2}4O{=(7c-QD_1$j- z(xU!R+FFQz)&8qUug?2Y6zHFj<s3+A1)+-|8pX+mX8 zr5vh*xrf)`+AUBxU#*p0;a;DaT-(9*bA28_Z{l}2BK3W>_o*vkV0Iy)8!e#uhTK=e ze~RmUC9fqUF;;(RE+fS*FZ#9v83jVFU?03W%nNiCbeXhdZt!@0=_D9t!Mqkz?CoW)<~mwLPEDGa-JOp%^e;}cu1}@D zlf!(;7Hz;QvOhC^&_%UQ;st-05r4)Sa1N_ZU0904^e=MDKR8`ye_75Q( z`cRU>0g)1r6eOe(5Rev>?oO4GPDx3L3jz`%(%s!4C`t%Ohe{hXzVm#4?--6d?qB!1 z&)#dTx#oPH&*O0-xI5n-w+YgZttv|~wf_*xXlW^}9Obe#UB5ee+sd zxZ@zjoVM}F0V@pFFx8zI0FI@YMR{}$l}HeE&X7s;^mW`|B|~AX#D_l{gcMl9+p(r? z&k2ktD;r6%DRK-43&?U_4sk4*Absd`*Y~sx^IlqjehuW zdo*&Pv!3UOsr#wi_U~=_B7(?I_2tQoXB!*Mt(p56846Y-L-NUq&v|yoFR%RvmqXGo zB%Qw!x(>-wM!h2hPtWwE@GJE1LDDzgv0^&$eHIvV@CGSkXX&e3?ti|D%tJsJh&Fq= z!ovr>Zojai05^$Fi5ZYQ&x(p$?&3EH?L4%8U@+zm5x(Y$sJ(wWE&buNCSHMiBZNN5h)=w?HCX!gFGZWp!0)77 zcJLXOyL5q|6?f&s_pVM$;F!P+bU?|<{Cpp49)qPo_ z6+Z$3098OifMLU6w4U(4iUe5d(zk^cvFB?@a2HUOh}i%(y}3wMRQxu?zPub0w_?C|HBq&29|C*K zA@dL7$9~~YNC_Z}$T=F6fqZpsC*66(V?^#so@JQ%ORdnhAb89xy#~Z)Pj~Q){61VO z4_2d@NQ?7gF>=Dk3c~R^Qe2)oWlvUl4y6MCr ze0=C2^F7sDQg@YAgBbBD?#K~!xY9?28Ek@k@A!Co)_Cab{`)SHTU;?!8*1`>Ia_5Y zCjW=r+Yt>o5{r`q33(8);@D0!VKB>TzjCq2d%nmbZ6o?9%%x@E8TJ(jFmQ)hMj#`x zW(_T^*4S3L+7z*LuSr`rWI_H$E2j)A(^33f5?b?zz7PsqF>Nk>7NQ`lu)NIXok2vz zi!R|Fb)bgN0gg`iqt8D1GLqGe#tEVRnCon=@-K;!0_BFX^!ohd1r)zx{A(mwNGU7x-juF!+Mf2opFB zVtsjg={aJ++k!1HqKemvexq*xtT84t)CKoNKyee(gS*e=6p(mAXC@THL6;|^E-r|f!9w-Ip_IGFbx)<;9+D#7^l92Z}SOb*Sz)%^b?Ut2qQ}6 z?YFFocw$$I1V8;ZzmPA)^NtaZ7a#0dtPfZ2r!m$BGbUVjnR{tXmj>CiWvs~>qNLjO zcA^Y!W7|o3+wQ#~Gc~^Mvu?h2&E8 zr)y>+Gd&9YWfSVFh0|KDG6+diqcH2tmKEntDH7ydmlA7$vmlwzuSqmFJvO8$Ln96I z(g6i)9wKrtb8!9Zhs1f;+{f9nZTdJ%w~GjsG_(A*`O-ITfA2bS^FUV#4)XWkuaE#c z$8D4@b%DOTB-6d{@FWpM`?o?a$muJWfheN%!Pq-rrADLkmlnJh`x1L14}h{K`FtOd zV0dS$%5uP$@?q6sKk!`ONz2O0@EXJd=~<9J#Efr#QJ?I^=te>3S}c8z!YJflVapI3 z@=}O27W+d8%=gpI;q*trgdthO^z0$YUNoBxXYX}qNLuV7|7XPphqrT9E(u{odCNG( zt(F*sNo|#0TL77O7(b*l13?0lya(ht4B-@1Bm7La*%qx&_zJ0j%_(FOBl04Xf@zjG z)^Rt8JBl?0!BQgzHu=%f52R%Y-7YJ@eK)r6+EIRl5F*RG6%*Dl_TvJ0SFUJz6qFfjI$quhY{NQFld1D7zDqX zdQcL~5H1u^19AY9bPq;DNPQ+w9y1WXHBK*A+>Qn;Z_&>ju1}f_2m9H_AgGmNeo+;1uBevK+<~6DPD_C--EDZ` zq^MPQQ1~gP<=r9eOy^qkKf}-HXnN5h<(Yz->2yicw>zOzAde(vhD#lGj&xwW9~AGR z(EGu-py8f1sdvXrJUgPu-Ywm4Wo^ys-s^Ce!7j)*1}z{0dugPiy<0g;JJ00vh?Wcr z7e-NFste-);Wr=e-*x#p4l16cCAoOyz~P7#Ot&r6X{0G2I|JIj917ZjhS>s@u$3Ak(u z{WrE)ikD-nK@5!F(e3SBpZ|#II^rM9;sanfNe$MsT$;5ef7MHK@28bxVNsoC&%BI0 zJFnrj_=JJb8#sHUjAH+bg@Z!!c*iv`29h^HzT7DB8#OI?_b#cWJwaxXIjm`*gUyZq z2xC)$`>*un@pUjQ!zjBZ{&p4a{&03g9ANd*L>^7;X0no8@kdg;snlR%HR0uj5&9}5 zu*gd{*k{53lr%{9vyv#A(F0o7n(IikvE;+2>OGSj5BB$$<sJu1(zSgUS}QCkR6IOO+V>d}n1~&^C}v!SW%pWaSdr;-9n6>jRgdGdy^cuw81sMgFntq)zU^cZ zCo;?onp`(WMnE$N5iIF;$?^rYKC3sR|37_{1&r?iz$a;&xm}~rgxB~u8wB;jWt%Gd zPi5T9$?lWVOOpDcTu9F(*0n<6w)&AJ!|`N%jNxXVu82pTqk+SQ;tA)@*0Q91%aZY7X@R%9BR z9r3hP2kV!0 z3lkSi+Na#4HYg(K;m_q9o*4dlPFc1i2B8CT(zsnxoS-BT5EPHb3@m{p>V0{B2Lo1x zYRn8wahNXe@83`4+uQ{+!oVbtN$T5Rw^DKV@o1}3d>swj&i^Ps5D4*nPYN8Mjm7v` zh?W(9G%{o^cZ5IJ{;S(HhDcRXdh)-w??FALHs9e#18`nwSQy*;o`zc+@~0Qe@-Q*a zdoi$f*RLLJ&n_644y?q`VE!f$YW=B%3UivmAoiYqRZZwx(OQo4upUngm;EX2L|={K~I9T913@Pu7M1Gf_r?gAdCb|4KN7+ z&=-s_Q8(-dK15b?Mlv^-uR@yi%=}E}Y>lnJTt$g84W()djAg#zQpfZ~&`8mCHaf%w zy;gi>A3iPXS_$UGFLfdq$i4gxlljS@mO~P?mQTwcj%FPpg?kB-ra& zt|s`MhJ8#Ve;Ao(k7;Q^11K~^`t2P!Qybluv0*+#V;V5~P{NKh#5v}>IY`6?C4DDG zE&Mc>z8A76mYyRe`djtKdTvMmz`_KpuqSu@{!Eo$@z<3^e%d%N7%4^aC~tvyZRR$T zrP7I^!lbRc#&*22x*A&!S;Wraetzsee$3&Z-C4@oOlP}rTXzLjnO(jV;sW0|)?iYt z)B}OBaOXKt*`{yh7msFzK>bbBo2;ViAYzbqB|L*gkDHpdnKYv+pkp@(J4aPaH3S{S zYL+SCaNa~Ks2b8a7NXvu=tk5}qL4&+thl+F0NlJT%tL6JPy35l4BoNou?;Ri_PcE)R7#{x8W$j8J)XaDXMR>)W;`5}g}@5g4` z9OLhJlA~{6HI@t>hy9`A*Uy|@oHolOu?;5S_6QqK_pd|REojq5jUvo z74;Ubw#QEfm`AzYTe-tuPoaL2Pu&(05>7wYszikgwkdO82g3dm9gGktN76r<128BD zHMWDB9%8<0NU(Eh@madNlf!W)cCj2uLh?Qzmjzd@wyius>Dc_`Ny0FGZ1&Oiez3b)jYTPCfYleXi)^hMt!+_13~Xn<9D z?_Q4&OQ-+eox4bEYv;tdoZ_LXIT2k4A3jxxe=6>w)fb zNjQA=m%4DMAWODo@!~@b#{wYxU^ssfOpX)3@Ydwz%#n*=%ub%#vHa=tHapTrdCtm) zp{@nLBlu7&1EWHOLY?_I3t`!Ws&i;YmzDAI0CMqRI5zx;C9ic66kXq{+XDfP)L9eU ziT`Z$0cegS^-&(30Ak)p?x@ag!xJy~KK-Xzp8o!U$j9Nek#NL3dBNs+zm}H>W(rzV zUgk^L42~jJj|{_=bi2^}0*{LEYo;qb8+y@EkW)5T9s7Mu9UPnUZJzi+KMnuE)iyRh z4pMzEMFaSugI`{8X_MGrpFEO+Kw^VbLeTs={qFSI4Y;oGpP6@AeH*jR-cj@$nPBY5 zi>az>25EItO3&BpT0hr!AxcL2Yz;QQYzeM@i3iDtS?)(5)RbEJ=sR2-Puk?H!u%pSQ47;nsDJn6t2w zt8YFS2e8I|nezbE8j^hl`Msd)xiKP_O+fDRJJ-U{WHlu%kF&n=XwoZqPqQm=@Af{}2=en1g=vGG2G$j(*I{5{qU7#F2au%xg%&TE@_WQ`u6f)6o>pQZj`yyc z0mRhhvjso8`h;DBQ8+W2B14P1kSgA}$GpXR&vn4PR2)0G$h2?g-hb>bW%0I+-JUR{ zsuu3}HO^>2Y{=XDNL*RBHzvV>qR$s&3y5)!_7*~WxjpFl(c1TxDJT%?_XGUGt!Xis zw8LRSOhP6&V^uMy|H;K!BKYpq*nyfZp>&;Xbs^wko0GxY)m-f|U+msAlGKpRA8!7i zi$yhczcBO^S)2PV-sOxwRFZi8tQ%G>PU{vH0_ux*??!Aa1)wEsm${)4);Xv4A zL<+UEDc()o-8TB7OEgR*0XnYpB{+M!-r1m@1nkgRML*Xzt|M}gY4=Lct?Tw*Ouqg3 zhRo?0Fd;- zO@?>G4x?nbuWVFzIy*Y}8D6?XVLc$YeH~BB@V+BYAvE?0CD;q84y-7^!w2d%c`xII z`%s_y0woCI3qdYE!9zr-^97tA$s(&IQx3{ElFOLW@8U*>p}gc8cHFv|p0(Grt2i~# zJ=N=jDim~`8&mr7FRruT0_+0135-%6xb>iob|$&WQ@wvaD-?tRlP&O)p~4!x!rsb{ z-nu3Fm2`|N9+FkRlJ|e+{lpP198DC5owxS;MG&+KgYT zKcnH$zXt<5U2bZFc$@`ca?3(x_=(}F$uk*NWWVES>5qamP_dw+r6+QalM9$|qs&VN_cejN#RE-jSNH95XWN)C-qe)ad2LzVw$BtwUpJ#iYnPV|Q558-n! zp%gcf`vQ8UdZ7NSi`fd6=i;$>Zw;;+!t+X6mVy-DxQ@ocI*5+pKqUGXyfmh}U<*wa z)YE!YG$WSb=KU`8Vy@bGy8h~ZbMB-4LVnJtlhh%IM7n9WZaO?*yF(8_?8))I=2vG3 z$phM*3tE?2JIWL9DNaODFbb3L$mn-u3>JGU`J$!sHbT65%A(o}p{c?T!^^!vf7Foo ziR}hYCaQUEWp?-Vq-d|D2hUYVIUt}ElnT8^1|)-A9l~%DRhMBfK5JUunU2S!mqJoq znIieLmo#&bxj?jdfFKjU$qeAM$5(M1^ID<53NY%g?e`L`;l|O`o8w1)~Bwzh9p zbni_Q=p}aTqdddEmo6o^AZ9dl_AU88nf)3h5Gu^$iFFnuH8U(%jzdBJL4}G%VBP1Y zBqZ}ub>{U%N(96QEKk$Hv7~JazHNQ|hf;DAYNCLS{FdA}Ie9Jb-uR1`cK1n}y?0@| zdQ|2@8EPf?q!+qMSG3B$NIq29ZAelpPP}$4oJ}QeY$Ko$mftBNfeAiIN<`o`wVvW= zy%qo(%XHBNlVx5+YPnH-G<+{Ic41zSnxXj;y`NMg%a`#kACY1K9ck$3ycN8VE#-?J zd#TL!Y>OIjo(2cssV&|`9~`*D(2YN7j5T?vk;N!2kmmIL7%7QdZuOx)^g1}BMcq$_ zg1+mV|GHvg!3M%RFE5^G5=!xk117wogS#3No9JFY@7_1Bk$4<)0gBQI!fyGX{sgH5 z&a~rVHIG;(USjfKrGik1Vr7|?>W@l*2Sml!HH(5#?#J9~f zT9%pluigDqSD~@+l+L)j;-T2piJO=?0wl!o8y4R-)B>tV;+Pd=3xzyk4}DU+$BNx+ z@VoQ#Q@EY(wGe8UJRkTu>v~j~?)z?AR^6_vx|)=-()4VC}*4R6n1uiN`K62{DPLM_O8JFA_e)N1J-S;|B`jGoz0%uUJfe?pv8A@%onyMMV( zAx}pfJwL1?e^v+~a`t0$8$mRg z*YLa__3;zOR`SI|(i{+nUn*3&e#|kgKr~Y375#+2WG^HjV@fcZ7!ksJTgpT)iHT9a_x~Qvh>c<{!g}M7W}q&rInUq zvz2>HT5!jU6YN~*lMXnMhhDaGJe>#F3{>JSoOm1M6Z6-Tp09ez_s^KM{ zNLEAlYLzdU&VWR!0q^g_B4SC8&aOcN(M1jpJR_=W57^|Im|b2AG72D;(w4P<{E?-j zW4_0eh$yVByEj&Wf>H<<&NB$C3$>w*;z-VQnpXY4a6J#Y`qkWCq}<4YIgMHt3R^3w zRnwsXII_fJ<_VEsPFwX7dxCG9=M0Vp|CLLbVutoY73Ge|?DpJF%p!C1bz&bad+@i4bncik9l! zgR>lGkA_~3{DUnHB7tX8_0Fq+=z+j^Xf;Ko+(BLwtM-3jCLEbs! ztlb<_V@n2m3a0<{U6(LfM+dI(Jw$rR{eMU1=ilk*sZ!T z53g5eO-7pyfXZ4qVXbr7-0t5ZPKY!ZVOoafd&3&|X`&U?)_>vbJ!g+*gTM8DUB~l|Yw7_S9kHfF57$U==clQA5PZ&)A$PuQtYCS&>d$UZCZ}c`|sicr}^G%BH zdJ`_sSNhYiF+X-;3H*+D)h6QZPXu5Q{C6(Nla}evAYzA^`;x;s3|z?hOTr;Gwz-H- zRs0gpX52i;u{DGU2jybzF=ocg8kj(RWBpp)@>Ax)vZvhICM{Zaskd+c`}O}BJO@Ch zLEO`+T^03xXeh5v=?}vt8wCOUQ9H{ghKdcT?PR8^4&fs7d>6mP!kWX3W5fY*k=NeogXboEWpUX~BioH}< zARz+SZ17K*NeU4|3`xrU8@K2Ysvr!4mFvE>Bnz8A{F_v89&_u-)$kS^CUya|%w%iJ z^fgZy6`DOt(aWp->DvA4Uw{Rg5c~a0a(s#i+T%;-t>*h*mmIp41_oHT!2WdjsmHY{ zu3-($3YR7|_E5llsFp>j@!$oASG-+?V}p&704SlNG{$ADA5wm+lds5bh+JN!Gz<6t zJ(tR$xRZ<5Xl@UEUXMblP_}3$*$Fz?^wIUxDYOEXN)o^L?FcZ{Aa zCDEIXVtHL?i#^@Yhd84MXd#(fSYSUaH=yb?FEfCI_AkC0r#XOpgQl;r&WV zfT@%ydc`>4?zl;CpiM0=pJh8ud7U)+Z7qdPLrM2aZ|5N;jux>9sazpNWirphcY26& z1B19e{+#iiYM!Y4DDo+rOWyi}G)9FeUG6KB!Z5nmDxXf&(rZYGBC&#_#*9o6I!5WV z6S*0j9xJ{0FJf}*Ip7;AjyP@FM1HReq0VDq+x=$wl9@>&9f=*&yD@V8s6Qi zRj~;YoaUmgJeSb47e=I@^Fs^pURiP=6;_vr2dntf8m>}0tyKnP!XV>E^4e;AP#k-GIgPoI?D+3L@Y)+PkN*V*HW>4hXM_0S^w-5R}$ zmavT5;`baf@nlgiRf-pegA}k242T7u?fJCN!q_ttFSKx*bKb3%ZA4SA?z^WF*B`Z~ zjT_c)?S85K(w#=<)3&naQyzKFV-uX{s}9d(>LOH_ALAVI)|@w*xIyi z27oknyrA>lWHza8g5O%G{m>3K0?3a`p{dQqb@v7*K}^HUx5 z_923CANhZ-NhF@gCaNZUt}`?U-Q1vOmKH#s8q`YYb68CLxS-b8;8CIIXJ?n({F<1U znAd349uMUvE1qpW)B(G_Hgi!gEaZ22bCf&HC2}3=qIJbdqVgG9ot02uCHaBqElT`A zcarqoyOn>Jf#=M}|1OLFg+Z_I{1UXb)24w7$E>OcG=T>+n5i<7zkW+_pv>xsnV&d)`Uz~ zDoXVnNv0csEXP-2{P$GK;5`GE=_s$uziqK{EL5S%@Ar9ew-?v1$c;mah?Rm8&@G(~ zn6F)1FgczrH;wCi#1~7|35_;^#F21zJlUw&-+i=(!fKTDtBt)HleyJX^UdWg;-TKp z?OG=E=|j=2wQ^x$eIrL+V(ikzrspF=u0j?Q4n@CMnXhT*t1pghmvRN^3ce7~Km1R% z@S87vZP#NDeuSIeIk;Ay=+~j~pKZNR=>8=GRya6aa%0i8?^|31kEMhPUgq~opNC3! z{@d%geE7bsY`Fr2S^Ir7roswj@JXLOXncMmi20q*KQb>TCrI!9sA&jc9U-~%%?7qL zXi>mT@@>jX==g-WXjSK9SOhS*Dr zKJ&`#R7sVY-^aEZm!!R#OVfih5`;yzu@Iq@Q&sjc)EZfDHB%|+P&eR^Fy|qCNt?@wbTB)m>!X}tDthjNM*`n9 zM(ntfk?Dc{No=3^5i{6ad*2zK@jaPfRiRCnzp80GV6H^PBGy{X+A*!Tc&m?TSWFD9 zW+K$l)<(iXtfiimqY|+{^J+o{MNQ1*8vc0e?#<(nC@ekV-#tl1No;_F^#(ENfnUdw zUt_?9_~m&x&Hk4Pe-gz00_aBf7u%1d5S^wMrGeCe>px9xUH=Pt{7G27h(;P)YooEM zs_T@?$;pg7U0J1ym>@yXPqG-j?sFy7V&p9Nkdc!7rf4*-_i)kyv8G%)KH}nnps4F8 z@Obgy;LC$Gka!%j1^n&x46h&wLBy}hh{kFk@ldNc>OduTzQ!Tl_4UV(;~^XQ)~8_& zHVwQ)IeV6Vw)jibTyl8_xnD%FVhf$bdB=k}^%##PQ;SN7Utu|!TM-Y=aUO3@6zpjG zQ#Bi-)jvAa8Pwc19)K~wI?2WSi?=+nI0cW&1fAV_f*5f9Oa0`ye*9@x*3$TGZ{*`Tu1s(!%>=QWxx~9CQX{h)o6k^7+iCzuH|dY#6h2d>i)0}VgHte0dmi!>T?oeI z=~l%0U0UKa8e*a*Ry*B| zpYJb6Hg2vBy|5Uzf8n_0%apZ`#6+jqWU3oTawyta9k)wAz4d{u?90*I6MO9*^a{&l zx@qx`D3q~jVK-vWUQp?~WAUVH3L6-LtSxMWghcyle)-7I;p4|DYkpRzoDfc<)j`p} zJ=isqMRl&;(8B&G&C+0QFB3Ju}Wh7RXTgF8=+&s&(_P5j7_|FN7}v34R!4J0Z#{^*mi zKW)F&Qol>{vDYq1BCCjNu%Iy3N^roHaHlC%>*CONTFt^?kV7x!35w8ws2baAw}IWwnY<#K<6#8p=NQ}ZOmDDc#3~3ytNe{BxdST};_0W$?qqLW zXtkH#sx?{HhlvIAgZm^rPQ^SE$EtZi`2!pgz@ zpuXYmko4N$tXA!u^o6<2@l>3n5}c~qExv!a+b?!pM>_l$Z%L;URwy<-#4)QoMX;MF zg2gKDi-T-&O5O8sU%CIZ3#)(Jd1il`CaWjxgw5R5 zV>#n9V*Em`{yh6rsdj$JvSQYE>%r2K77wQyr>u3O)ZeUHYs5I+xNGcpF8Ps_V~;Ht z{l}$LvD~p!+}$Wkbh+Pp-uc%0y!5$x9pR*KViDJ*-*}snFL^Z{_5)Q$+DC)_O<#9z zUnVS`tJlss+pGKKMD9J`l(5Vm7sCs&r$x);Y3ZhAWYE=Ss&A!O*m}`qT_?upObL?vTs|tpm8p>bi z*ol!)^q(3XzxlgpOG~x>I29ddX|y;alUZZ{c%0MI=67o82y4c9D=>qaiDm&(wRxdi z5BSHar4-9aJk>chCb-!T+7*-4{${uDt-d~=a$SaOEDX3{pZQY$zq|hQi2aMbz>eS1 zMw(MHpd~@DY>9u^q9HT4v5EL{tP>5JFO(5i+xd|4+uPgd6>Ql!U;pa*rm)KGKeC~p z@8Y@Uk;@PyerlPt$dqTf(bm(89`6!k3AgtnNfPdBYFO-tZxF7=Ma?@Y6;TA~>3VU2 zX(Oz1BAeZQi%SfP>Bvx;9`j{la|Eu0})L86VJ^s0Anm`(DY;jwX1dvU|7x*xrz=bQ1pYx<{ z^p>Vv|7~Kn6$$4#M4{lQCKcYiYrJfln0a`y_1=)!Yq~_!CGmKpTwU0WHQyf9+yeli^uyn!i4!a)gvjR@G84j>_uK13ogYH!oiPp=RNY47DL;M;aS zPv+Jdn^-cwSu9&KoAPIP!G#8b-S06D*m;S&`6Ruz&$Qdu9=s6b{Abpo!&s?y3j_Yb$@x}yr_~= zWSyr~G2%CA-%zN1CnCbl?#gjo;8Me7++c(Z+Qu0hH-h6RjIrN7u84L+;ZNBbl zT$3wWc`@j!!{*wgqd%S1pEm4Es-Utl$o-Ow-pP2NE0Q@N3Y?&}z9QRUBHD*NmG?%> zGEu6K4`T3?f(5`|q!nT5?5wxA7Vkc0=ZrrwOg_2dK6*&xP*=si%oZ;zqV7xl*U`?e zbz36ZQY;>4vKr&sY|+S>pMFLSPg@9Zyq{skKeY+?RVXkYbg!KHq`|h)bRzLvs|k`& zXPj0me)WTmEY}sUf9o9zP;;#7s;m5oN&7|^^Zae*PFZ#lV1)USZsFYTg!-LPRS!Ur*o`f9H;a^#8`n<%M zM<&2KexGoutl=BPxQO{2ElkeZWU{X9)CODdhT2>F@{mS_a1s|kn#v4O?^ntEOIyq3 z{hpa~r~iS@RH(uR&6fDcE!s)D;Z0h#9~>%^RPn3mCGHe+l#D1b2$&<8d=!SRKfo%y z?nA^9*6DD2`9Q-jPD#G`CmdAp?R~~a%s4eCyJAASLpbO$3=|jfkBROuvdpL-^xaOH?rDM!5nLK?#X>ixWYTKFnRBPi4uaXdP z`g82-DfwOZa})$qUO&c)af#3W@b%Y4j+N5#3elUl9D%aW}lZeQB?OiBnTJt>=4L0%N~u$cWrH-72IkjD%%YR#dSCgPO%H^Ip@bio`HO1) z5F(~0@i76}ue&)`Sq7b5Snk};3fPa4#p#=9meJ+AV+i>|ZS$c=_KzfGWA8L+tj?S& zyd+eM|CCCob2^$W<#*LSbEWDYbM`QFog|m>`>Bke){zcti!w<9r0?m>s zGM*8#Y5Jv@ln}cVR$_UeQmii>qKfXkhIok5anHu)WVTsnnCKSW7&EZk*mZ z&m8>kEk$0I@G38-oY5DmRsV=LoN})mU)f2L3&yg37die!`QYt00v#nf{04IUn%QJM zp4uS-170t!5!(fRs~hs8H|aPFxA%los~YcmZzqP3u!@c-+uhD`W3+9xk^c{N>46{= z>tkawDCW$3d@{oAlW@U5n4S4SE=^F1wjXW)CI5+Ww({@1?B_pKrHk<(9rh+Ia*ONc z?9Q_NU}kSm0R6hNZ}4{AnvK7oyj7PS$wksBak?+6jaWG3v>tMD8h*>XaixVrB`H?V zo+T_yL2R;?NB7?Edt0TFw5guhR6pv7S(oy3g2GKfZH;7^`T7knkIHMolPv!I`;>1v z`HZlI#^t7T=VW|WVHHxRj8no%xk+0O`zZGnt)X07ZaSow57|#^bSqVgw!UR{5k8X( zJfciy{-n#^P(fNRwTkjQKj*3(L>7Z^*UtwzH>WcuKdA8^Rr=Qg-fkil#v@-z_H?u2 zHoOlE__JSD_{Y11<5vfyF9qN+Efb{b_nZmBJE8(N9P1vL4lN3!R;*U%C1%6aC#^U> z3Oqxa-RgMzo-=jRXRCJZP{Jl*@Ydif*7!-H{L!Pk%jUS`CPHeIB7C)M1s`oUHxDM{ z$x^=-TS!8opOyDr9CG0|iAvnFA#e}HLBKd5%fXSZAgJPFpUE1<3JnB)q$&vy>zRqF zAoI(_i534F3g57}=!i&qP&u0{R5L=@S=^)^ zILNDsckOc2@~dvjgi%F^7}2l0@b%RFoIb#?NAe<>l6J;86jQpx&7;`Vp<2)V^`S`T zda1Wq*PjO77!ln!wYqyG=ukVJro$c8U~UH6N_7j9&_-&4^| zMN}%}5L8vlG4}kq@NiMNw7!w?x?5RU!Q&$pyVL@|W|^+9FHdY{V-j29>E9x2bxB&Q zU#JjtXKLxgqwL6+(jM5mk6w4z393;>*oSC;eVyV<*+b|b_sZk!YX7FD`&<7ADqvnR zxV8p^!4QxGdybF0`J?ic-`QuLeQy(pGE)CHgJQigl`O_IJ0@_pkeW&;zpK(sLvPGf zj=A3erMCcYNS-ykThVeun7D=A&{Y;&UqriN+S)}Wi4DHg2y?^6e|eF*H#cw;U=4EV zm*Fkc`*kRX!NgoRQ=Kc7rxj_a*QZ(+&CR@@&)+*WHDw@hxoyR3QD~op&I!q_L5t`ZuD<;-)R>!Y@B%dZ2(W>2bBze+T!$Tw_Bm}wH<|s2qPs+OwDQ~K~OpyB!5IlI2`B~F$>SyQ( zo#)MLG;+qBA6lO&5?HBVCcQ2qAPjpb8{oJ|$u2&Eb>5oui3|0;p*-0~nt zcR36Pvt0_LXwMkwRU${KtynGU^{Nbp=!#y) z;DH0v?-%IxzjuelX2xd+R6;~e03+{`n`5FvT)C?hUgH zomH7O7Bczvk$+%;cF`amMd@xzN5$m#!FC=H0(@YQp$;d(qf4QDZJhacO~pDvC5m3} zCbck;cuBNd_jWfn*sc00vZ(Q+1xZ~zg^lkOexVmTh&IBlB8>Mi34^aNlNQlw(Xg{% zY*Y9uqc*H1a6*Qqo7BFU<{533@kjjzsr&)ZB1OGHrhLNDDW&v5f<&1R4mjUB-NT1z zTA}O0NmQj49?BG9^EdADB{Rvs#?`i2%r9kf<2MiYTJ)#M*1#{;c%3tImMB8}NqFbv z?r(u1e~O4MtOyrKACf_Mc5t{$3ZDoqZ>n;oa!2O;6x3qNS>n;(2saPS!xx(MAKaB+ zyNYxT{?K;CCfMjHtg@MTFjR<1Dk`e=xxt=^4~Y%i85v!sCUONdUBblQ6;V5hB3Y4)(V#N??5rpW|1NZ8h1I zJ0k(9b8m}=ss+b?sV+3MJHPy>o)|q8PF>w$OV6kNINJrf&KO3@Zp**R7Z0Pm`BC5E z`uTehl(d@i#GCe(NHPi7zpwXW!HZj4jfH zk1TI(P3EYn88EvM<)J9-&7c+yo9~pe!~gZXRfTb^5%e~G!ltP7CfIMc$#(k)$FGed zOxuhuwWG?@!{yT&x8#$0du;n?eqwwk$I-U?Os<`HmE3tsZ$3_%dlcji-WMoV9Hl0) z9%8Fdpq+B?b95vkC=_e1j{tojCv|UD6g(FiEU@}-1iTTerdA`>n&aN&Nn#Ou&B#!M z7FE|uw`zCHk`L1}qOS^MZ?C;d~dPvMq3ty$xPOE?`ViOwf?(2 zo0XT>46Z zNz1;Uii_bHQ~au#=qfJ+t@iXtAi(xSUd$B_RQ%(ERqpX6c4$XR5SKm*H>{wsxv+sP zvhI;OceIwe{Iq*zO-l@$O8TojeM{BQ%!n{Q^5{&-^`R-91fk=YO8LwpJ7Idr+cOLG zatYL;`opGo)p-+b+%#r`fphU6KW*~(!|meaMEqnu!IMpJ$g^Aa;iNF#tEU4m^U~a{ zwQ~BIRhl`{ll|E;?gdOesC-z$+D+KKrGiy3@1`t-EwlQcbIT;am)c_hVqgIqd#smW z*Z_Jx*^#a%=-Trk#{a4-7Vr&at8>Q1S+*~Ky_8KuBMt5*?v2ub79)k(k~!^rb>Y`;&ld+=TBP)++FzP8*`~U0O|TrdCzS2%w0#;>QxjY_ z36;ee47iC@#`p-bc=dtf|}?3RS-pIQrVF z!YVHbBIaOh@`BO5ZnIA{$rUp$8%%#_6H`d%Z3&nDOq<^OQt$rH|A<7YoYkWIF9&g& zZ=1d@p`zm6;7-nI3Zv8S<3d|-jgIYo_Oh8u32>N&0_Zm^1UmQJI@Lk zJ?pe(>$HQ5?B#Ff)i*RO<736|Gln)bHE}T}S{Uit3|xyI>mibDkeJyS#ut)9J}SEk zQ;^+VKBMU?H{O4#0nJR4aEU$b`zJ3&P02~jh8v%*JG8GM#5*bxll+*l=O%7tEH*9N z#a~ePIb7G5ob6giM>wfZR#sLbrk_?dHND`Bci%aE3fHaCu@Ad9B}_GhSDRg$w9Gv% z`H1C@&5=UaFS4lAKKN6b1}KV?X6%ea+*h1t{bx8>(M%No9j+SPaH0nMy=ltzVdMz?exVjccyouBPV4F&QY~7+aYc58 zk}P($Nh`drsI#g$m!4men8Z35<^m)ny<3ZmUDk(m*Nl6NJyzAa5v|3Z)%?XFuU}-c zZ}{Vp|Mu=K0LKlla;= zUx{}Q!Q@%YV=Zd*?K4LFSA3>QkzUbRV)mtBX$t=ydn@0Y1W_0T0?rs&s-1AGVJF+s zZ&Zf8nYXX9gv+K9T51%{Nl17D0n>fj*egzoOQF?>ER5g$wEzhYBD{Y%*pH|>`B&wI zRku`k&xRPOQO-j^L(@wtaH`@&Cb8*|j8pp%^2{loOXSx5XOHYj~AM{li>OEP`)|6w}>l?F@nY9qvQ<6nlC#ctW@)J${4a zBBLQKwCbtRA{Hdfoaa>5nYtSA*%(IA^>faQCdPe0zH~p{U*=-WwvdJu?2SsESk zx;PgFAG_6-_==bkl_KnC+BbL|*>GhibZn?_u^3X=2VXJ^ciy_i3!?1OhvkSF9V4pH z^GfISKUAk5d{;6rmmx41OyO_7ILQ@LL1X{0@P3a7gOb2-XeUQBTYTbSdUfuHnh8b9 z>`!VF*al3b9bboPV?%}e94p!)I*$(4i*vrtnY`$o<|i&R&wcPifK##n=L0V);+~6i z$v&~!co5~{$g>ubNH6xnux$~Qm1%a3r0)yK9CJ+R}oe|D9Q+BAemfiuBMN zw=wkuNFoe<%aN-xwHbZh`LY&zsp^e5q%J}5UTth(UV{vRX`0b&!g;l__NYe4^L*4$ zm|O+xndEZSQv|Zx&1$p#{8F{8wxR*MrTin>x>um$44?UV&`kh)zPRO2pclZ`H}Db6 zM%^f5CRG5})ID;x2zAp|`Qe^8@ap8!Dp}zq=J-AZJ8f;tNG6~Ao7`b3zx=|6!826# zp!jt6;Ep%<0CPBt_|9LmH$jWc%P?z@{v;f}**r7fkV=(-V8xbC=VJd*u-v4jpS^4J zoo$k=i7z#RE@V(cck(u1F1rs8tDW4akMHssw~vYss8961U@kbPqn;nwemXSO9`hwr zBEr{Vw)CUv!;cL5gA5+4YeMsl0oPn#OGNtZw$Y5dF&dh0q zumc%3`QrE*QPlWb{s=$QoX%g8wLTsu*uQD7toU)3x9ndHYxR&#;rr|4_xkk((;IYr zB>fcyws$rpIgA!gv!J^^OuTL&{+t%1KWE}feNSNivI!3Qcb=XT>N@3OG420R@eIXl zMsr5{(l;Ucl;oDqpkiq*uPG>2L*`2;wfWyQcZa42Y>wBk?&cEzl$9p!F3d1a?fY)> zaHySnF6<1Z1Y*yR`JG0vuQ=ZH142y+05Ifg9cKQpWlR$~G4Zi><{Xc2Wv7Z4wYsBM zm;PUSU)dJb_qILs&^2`TfJm!!qjXExkkTL_-Q6i65>hG+f^;`Z{$NC;l|eyLN)YZf z{}1uJdOY;d7l1Q+)?WKsXNIr@P5bDc2L;t9v;5nAf=*wGCY9FxB}0}NP>iR@%fC|m zMMyQ1Fi^|R?{yuFe3Ml%D9Z&elM~+p0rUFlHQDvtF%_g$7bj(7>oHEPk>mEU*bm=M zW;`MoCo7kS=2X&oZn6%t_V4U)lQ7AqRQ_;46PLeER+9desnf|hfnM!bB~LC!iHG%K z#2r2xKl301Q3#9bIF@6PsKDC);KoVMXmNqcfi~_)np6+Q_B~M-T#@{6MvkLUaO$68 zpBk2mjYMPK>XlLVjOzh~#jdu1l?qtGPE^Z1aZE_gxyjVFrg$6z4H*6QX8_wYbchTs zek@;9tXXE1I7*x_3LsDxvC2Bv_(H-LSYuQJm>T}Oem{qH1g*m)D(O9y^1H$+XUbeP zZnY@mus<9iRroulPEKL|X($C>ZqlEKMAt|4nHiq!4@Mb+)kPQf?@rc=$zQ2wVfP+# zKrtl>TysP^+}2WCz~?OnAve*^cxzVLQIy)GW>D2%aIC17UhaGz5I2kxbG=Ns&h9Io z-`l=!Z|X>lt>j_^Pb|P!iV%4y<#-=S#ONn|{l+Ny>XmB1`E$kmocF$m(TkIK0IMO| z>=bbI%1J~fE4&+5CDWhE(Kl76!;btds&?$jDbx z)4asEm`I6xgjk|Mb_PR8cfC{-lO9qe^@0SLrOgdwP9KJba}#Vvi3x>J(#O z>p_tH5%c5|AyDqsxb+eLZ(GGAJP$}>^UY2A!3{Mj)SimIkznul-h%3%mL|3u+AQ(4 zQ}!c~w|t%v->+r)r?P7NdDkafe@0qy3|xf9AihwV)ASK?DELM(KCrnDt_h$uOZUWU zr4J$RiIOsc$>;lUu)_S=RWYdLrnyZW+qjHFJJXbslXv~QzO1b|)|EDZ#WUCc=~D_L zk&2bF-nWijlOJ;qd=F2ab*7nt!qMOuUoD3FB~n{K7ZSJ`2S4J!tfGE$lz?ZRWGf=e@v?V$;G7YA;K_ctC}jEd9w zt7MDEp{}7K6E%fZ13Sf0%@xwvG!?vqtPziSi3B1HgBaAJgowyv5b0iX^5yc^b~OXND|~c**TUN)1iR1UWNvsZ9zT)8rI~paO1$! z&&scK+Ee1TIu7w4R26Ob?R`J`ff|T=1YDSxCHi!pwr2|lj;AXEuf_9adiO(Vb3|>- zsNaYK3FNM18f=WN{anS7t1NT^bmsnF~Ve({1PZEtJ#M1-1zNk49Y zDWX%V#0Pi@W@d)=d^Zjc4jfL#gyAy*^@e;$fn$&5pf*$wr1)szV(MkfzykD(&J9k3 zPtYE$AHd)X5D@*Jq7*;?zg4Ex?!ApmA}BaDz_&MlNVh?nurHB>-||UJ;d#yIzKsSP zE#G1sLxgg^ff_ehL^`ZIJLYV8^N;3$=b{insSjK|pRz$)ETYZ>&rOcOEFqiL(?TwK zYE?s3|KZQ>zJCfcdveSFV0UNRat_Scq5~EV)HBRsxPEp4Qmf)=$0zq1K+t@Vte?x< zF-69Y&pukz8C41`MP%>ZJB6`Zv0I4EH}bj0R24ina7e|RQOd}L75Br*2r6U}Q-50B z#tYk;t01r!J^=D#nv4F(#%9DtOh zL<>Uwdq`HrHr?EtsHo0+hjTJ|zAGagTCeSDm+;xqh@ zM33yV>%fKDu4{2}xUve93G%@t?g(|n+on(pmdVyhb7>`5X>M%oNqzmAsXYyA%ulb$ z9T2d~vQjMry*|_aLyWCvTrrI|(f$nNGf@ph-V(`F=Xas!FOGVW*BOH9X;x^COIGe! z^eevf<3cv%!f#5BSFEp`Snc~uORCWE(2QdP#^DF3xH!o{A>}+24Rre{ZO;5F>_35C zNk(-!#@|y`6h4q`K80rvRqOB_rPMwJS>0pkYI z5N#0u8?mN_W{y4va^@)ujxq1Xo}SdDeSYA306`OydU;wSbwEXB&FZ_L9O_MeFioPk z_F1PkO>1Fa2NaE1OK>e;O2z9FfV|ZL?k!G*jcXwH_J*-Rl>pzX$ZIhZ?QYt5j|z11 zpwo^%KUxP!FEzcxbz9zeQVH&0v_e1bwt@#L^Io`?Qp+MJGk3s^+8aET4(u`iyt4+e zZd9N0H~93@_I!AvWsS7B6mGWTk|UxM3ynUCw2o2V;v5aX+wV*7W|m}m$iA=j5cNV} zqh(sB=_{PNN#gE!4BattG)$>eI_EZ-$SGCEY4ans_)xTgdZvV|vPA~@1~o`>==E+- z@(p|53;$rO1Lub&rJC(*)AiG$4Uhboj3(5XA^beh{dls`Q<3cW0j2f9Xp4uL+gy2VD| zZEtPnbAH6@P5#9^SAU=QZ#6UNak+Jc`b1@M)l`98E75={d=88rG-p8~_omFb2 zisYf$LXRTU5<{YtInQtublPMw2n!r2L*oaDqui!HzilBcPf&Z}(_l#!$FC=zJ)_uR zJRp`**1;1TFZ_5-<@`k$6F`zc(Yg^5*#x@f!AhwS8e{@sS#N3nBHvp?|LRv;ED^Rw zAdC2_z?w~|p|QWi$8a)}*odY_xiWi6XHLm*fxJinutY6${kg74kTe~qoR@r&-ea;K ziQ*o&e#|NOT=|_X(4l!f^UkEhmy#0U{SS~aHH)+0w&kHBr_mm6I-*)BotWE^VAF$5 z++dmgF;hJH+*Ld#7kv8h`eCjg&EBkne1?tZgIi?!-2)S|@OO?I*8x9rjlqvN8s|ud zFn}75P4y3OvWqc^`Wn=-SP7J{3!1G!X64DL?DPfR zE-6C_I}|gfH(hsOb~~%R-Tu&aQF{05=?%EC0cJU*q>h7^)WGzQj|3SvMT;6DXmi}YqP#O0*wOF) z`_&aBq=Lj~`?4}hY>cn3(=6U012v9CQeG)#=Z zu?MDiprasZsI_r$CkDxPhTzedb^>mK$Le0z(%WW=BxV_Q9a_9QY^dIFw7l@VyHN9KQPQ^bBTs0S9^{9#Ar*kZb z+BkDAVr21lwc!p+h4bTar|~vrRepk@;v=le9EYnsU*yzO26g5J^FWtC-?jI!=VHgKaCLlF*zmDz-q z%$VmC5%F5%>~bo!Sl$9|7(%29^kd)^w|w5&wePFVEWR_v^?;2ZG37O{tt}6H+hV8A zdkHdxq8yj)ZAaYGMMz*2V8y*EiAQ>1y(XDABL)**o(2f{$5M}5UYIGs^f%zK~g-zDz^6ds=^QMKf9bqeJywQ zINrTdp~VMCx|37<52p_+yZZ;2F{QG#J;xD@WK+!*2E+#C8k{ni<81ndwo*?peN#Ub~lqaXikzpQ8^1y-G-c_qqPct(tw{ z-j3)e&ep@7XgpP2fN>gFQpB=>9e_-QJgv44f$$~=sYeEH9+!yzw`%wY7)o2ws8IhB z^%e-#@AR@Tt{01a72>9&s32i>y9(BTYfTM0_K7)Qm+d8>xXYGZ*wWbBi}A+%$p6YN ztdJ`Cc3D>Kk4}vMyw!s?)+#o{V{olZ>q(+;m&=Tf{POH4ajO*Ib8>0rqwI|#iP-LB zEsQhjSrfF%p1_zmoT@j>&*IXN=2~>|^uuNgI2boRia)%=v)H%T4{XSscqH^L5#?hQ z4Nl)1tw^gOVCZ2E{7xRIr7||a3az+YY828t58EFT+9j8nq)k{ZW_|NhuYG1%(HUYV zi03rhRPD?sgQce(XTkV!nizBp1b4%n3*YQ@LbL64K6`y>vJVr~T7r{Z<7@;mw>^Al z^R!01xh-z!Ng5g$?RLL+0L}3(g%5vl-vtG_AxHj9ctAjuqyKK0`@cPIwfC61yIMk; zlt3#Y9=?e=9sY+Lq?5~D6;s0>Nxjj9RvabfPk+wZM(nE7heyCa0+Hv)yC5bvpius%`iQ7cxS|?I$(wZ|M{7j zmiB+nSrJhio@>`Nm!Fa0_gZAKju~SvN00BwPtS`&Zb3b5z}1hurVrgIAhmzOhbRgH z`1e!TsuW@Bqpi)S+|5+qFgP$3hn%R9sgsX26-B5l zR4A-P$(Gv?5v*rkS#YUE!MEFJ*rH>?{dp_(X`k6MV=OPQ)B0B^zLBO#7uug8-;8TJ zBFWL(It^h7qn*@O@i(!r_-K3SOm6xzU#3Ak&4J z!?ym;?Uf#d3ef<8LFRRM~;5@Lej&tUci;wSM?uRnUJp((X2Ms9bxi)KPxt`3Pxy=i{bGj)<-U>&o z*$;z9pX84Fl3vq-$2Ks@Dfi6vFIeA-0BE&lJ5WSnVMj*%uPhChhD~yPu2(3ET!u?o z#5!{{rrsG+S@|5=Eb>*p52Jt+Uqd#P9T0EgY6L#?&_)_QxLpE_wHwzPFsN7b%fV6t zLn%?()zSXd(eN}xA@|Z@FT)dKqa5rL8f*tfxVqkUlysilKNtd5w%`Gt`sZCwt8F-G z<03(qNr(c=1ocs=}Du< z8(3TL)3Y-?Z*x|4{2ypuO)^3XKXd;|#g+X15Ij*S3r?g1>ZiUwN4mU4oe(tN`)t;l z1pGkaYCsF*@RN@Xdxl>wRl=1T*~1|77q{;@QVpcM-8(Ujjy=j)-PGu=rD$e^s zOiz}O-aiL%UP`S0Br;l=qQ%GFHSI}L{E#UNQay~rE|qTnRLg;Y$;mI6PfV5AwtAQb zS>@a06pA=yez?%H&9)~$auw1QkSaP8OQ5PW8A)n6)vq4QKYJ>Dr&9Vn?qh2 zH}t%MEmKsMl9@UoP~v?6QRl}T{iVvB@Q3h6{1-||R=J%SFSLlGA|9O3w-_rtlz{ci zm$PaaRH$L5>N5gMk@U&sw))2nLZ}*P=cV~^$B>VuMW+`Ax#tjnR@P&!+vWU|w^TYs zoX-vqwic0AO0;p8=%o6=-#RCopGQmWdNHxjv6Cr!MPQT-qj+J3=2vqTCW@K_%kAe1 zp&bA{`Q3Wowe+!kRuzBdhlNPg^~qg~K2ZLH!`zpU6YYWeWZjYfpbGcxF8}RJ^~IK0 zgyF@%*SK6Sxn8#+rv!%Ha15m1v8ddsXmAI$Gr^EprNAiXcNuKc2KhPc`=Zw!3Z=xt zxR(rHCJXWexGjw3WwWsH4^4Hke_WWMM&;Ksz6nMLF@RCc&C`-?o0@Vs)X7>RPR?94xRyj1}@PVqt)6hggm>iVKa_sH3-yDxYqafq0 zfy@sTC~b72sDjzzZ%WPI84AfgiU+sdi}hg7Qg2quW|8R4FKp0Wdf0Pm#Y%ylnnie0 zhW*wKe)@ytuK`)h+615*XxAjMN`V7Ara?TGq3Gz2$}+k4cLK`io}$F^jtKGr+Q>-+ zyh0nD0^kg6F^1rBS>_xyOMNQr#qkE5QjBWU>=G%WjI9E3Kq{!X-!Is`O00W2wMKk0 z64!F{8##VkX_w>K|Utz((RpHn!}^;CweB935p;H0u6itr=K4+b@Zfm6cl8REj}`J zOsnKKC8v+fpWV__Rh-g{c%C&G$Q;y7C%t@s)N4D@gXRqq1{OlsyIfbmBz; z<*vkCZ4;Ziyh^O1Y+~j!dca##s6-(8kEMr0-h_gd>&DjBSm11+tuspIk~ZQCrpI5N zunNFb&X4o7+x0`C>YZ#au;q&;FjS)==qQx9Z`s8>5)xfsQE;!wysh;sOwd)hEzUcp z=X9Q=csxXw>+&=%N`xVgjj5x7G4wG8DGRhbA|h9yq#ea9mV@1l$yZyNk6Db`{Hha9 z(6E5fKO7Xp+2DIs-d$szFqNR-;pBuT*n7$Dl8Rd#`uArjlk1%KK8jEX9zK9dOuzaE zy=c2BG5P6Wab&9qi&H?zUMQZ2ci2yYbN_GO*&k{tF^}Lt zu-@hlm~Avv2|RMZIIF-fz~3*TrEBSgf{nRh&d@`aHSaW=xqn<&=S;3w(s21$1`(Bz z59L5t6Wr(b*KOq_2D`~W>QopF{ns|WD@g(>F#xp&()Jv36${FOOZ8@5gv%qWX}}rZ+3Of@t)p-a&Cj_XsnIrJaz<-+HH@eZH~!Z z;iEx+^TA*tx0TrIsee`v`9Xo}MAs?)mU!HRANBCBhg2S(vfjjRcx0K!RFwnRMdy<2 zh@v8Rjp*aLjcgTvpXS?hyO}nWJhGZMY}-2z7zdkzMNb$LvcdWZfsIEPGkql>NG)de zy5gFnIJU25p@=eA*qY3*_=0V|d0fcs_I+Nd<8;LUaqd9t^Z_pT-*s3*Hnvn(7eFo+ z%~Drg{aLZrxA7v~jHq!VyQftiW6Z-^9Vy2SdxHbg2}fv1z$j4_RppFML-Z(*WXKb2 zq5i1Hx%l@l?q}gFJP^eTO3Y+0kCeL4mdpdrmz^qOPCwAXlExWG zTE-7?)o4vcITV8A6x@cd8D$xt?0IFVY@fak7TB90oB8duB{-7to8Vu3Z`Y$w5LyaU zNe--k>HOg!E2Int%uwxov3c9TSwC}{f1w^D3rvGAK^25f(3bb22;E;cQ zAOOJiAy8|SO8|Kpk$)Dk8#f?ne{w$crl^spf_3^QgnQmQahq0wk%j^CF-Y}$oK@E< zdV?Mm9|Z}gd^caQf>Uc_;^jXWP@B9Q=?pTe*>B0@($e#6^>Pbk+Q~P=PZA^nn-L>a zEz8Eo4oeEyWX?mYf=p_NE%6<*&y#R>Vg0TRy-9>6VM*1+0hoY3YWB@=G%EQRv_%eL z+)oHE)nU7@Q?7f1Vj?PdvvsHIPp*9Ql@t0JfQlrI9h@ANB*=n)6fK96L_;8zs@cl^ zJTMvZu#j{98=+x9uO)yCLU7p1JV;_ty`Mzd_}ZMlFfrX`3fr+8fs= zXU>J{zX?{_OvOF>&;IjedSYbUBvg9xq>K!{E$x!v<3*%C z#p=b#UAM?7kzohy6gUC%9l`qgf{x8r`8tcRj*;}+hWu@D0Gj2x_?0?Uk!^Z!mJ!N9 zH?Dh$bUwUz;e9?P7gx3y0HUZXyS;km5QdTZ1i-<3EgQ1#)IlwuuH4{U zINxGpx^(~Pw`3LkU-y~+p5R8JJxZYaS%DUGEUC9nN=qp8OEbkl)G*&Wf0F7?jVk-m z;G8tN&%d;UeCiST28RCV#1XW%+oQz3A3u`gVfe_boSS6(FV!>xNf-+-tD69KH1H)X zS%1w9wJw}Y++`J+h|fGKymfXQb^^NBDhJ}HQJ4^*q@E?+A!}oGy|8 z3N{Jpe?J5{a9ojE#8^*PUe=s}IUP=f0f1FQo21~3s)TkF;2{?D5izeCKvfx@X*A3$}Fy+BZgZBEN||ltDe7dgXlZ=O@6511d@5 z0v8z+gmJ<9`3B44901_1Kaf)Tb^!zwTxpy6HTc@y2G;+!jg8)GlYQT!MKU&#ZtslI zsBv=Dh{%G=Ymm_`zAE5b?8QA!kF~rX6v2Q~j5l*}5%bEIsm)>YCYJDWqQl3;(tHSH zL(4x%eOio-0fPODJ4SgS)hoGyR1d9t4ti`nO%k_gf!Nq?`1H$g5!F6<5SE4UAXz9m zQ90;P*J;Mo#M3J5!RtUNGoau}WGC-4Scw2wXsVOKsgNC?j8?!!j^F1Eh47mB_?Sq9 zSp*Wo?8;NHMzlt}8QnbG`VW0Gp6lhg(b<^lL;hD2UW2UP1Vsh;1qBFvb7@&i$)8&G zl`J;AW|J~dgX{OlJ}KL@Knanf|G})T%u}shZ{svAN7aBf4r8hrBv7C~C>_~B@34cg;^s~&mQ=EaL!|S@YtT7J; zDMBfIwd@{a-Gwqz4HX9q#|6y8^=$w!X-5R*^_Y{Cz8(*whDN~E$O4!dkt&QTpe1nV z8`xgjWHR;3>-WUF+v0G3+}G6v`~>XLYj_fRo&XUKr3)Bb*li92-|7E3;180mU$0$& zP9^5hKY9gas|)Qs=IlHa>j7?|WGY-Qve_poF&<*1P@$%og4cG{vax~igEgjf(S_J> zl=9f+xVvl*q>RQPSdT)xZzk`dQ}f>$R0A6V_d3Jz(zh4}7IK;Z%peVkXjXZoH^ioa zMQQGg$?HH?$0cR3vAS9@%&$Zz2)n(IJIWs#O>J$s05xq`e04t%KPsZT}q>ky18ZqwHDT>UQ|gK!Bk{= zXop*~1Bq{Be|9^mw7ouWJRLt|3F&$h@_|PgYy2QJT9z<}K>(LDo0i?zmX`G!eAldT?UMJ~%p|sXIRPAG*Rg0Jv+ftZ*h6^9FBv(@zr0W=Lno4|g6fYM844z;#06f&+w)^T_0Ko#nVu^P^%cEW0V!W!`kY2C3 zJa)tpWRY;$b0f9z)zm6HtS-ha|FX@;!*@$q+ zOtiDa3FGHz#QN|-$ZZ<6naH9>KNlWl1s_CMdCto_8)op-O^8}D8 z#pKh{a(S|#bJ0e~#+m@#%mROBe zaHOZ(9H8hR+h+fdC|gX0Hf}bc{M}>jCSTe~gHrKl=!^dwoS?u~@Vo9l_G-QF)0MW* zh10O^>OJvGkY<$*T!!C(vqI!&?daLAC)b-LYu0bycp>(Z`Y*wYmH4Tm_W_l*Qy-qW zYGn@tJ}w{B^yUp{<@)_axJc5^#Rk7@{1KpJC$gC|y0+)cC&1lGxx;H-&|DG%Iry8t z0COHy%CK!nIW|hNuXIkT-)1Gkq^ly+swzw!9q(nx0gJ`4(f1GhJ^J;^qhGH(IUvIs z7>>FuK`Dcl6-NmvLkRe61Fmw78v$_AbCAz?_h9n{|SYL?$Vz zn-6U01Vv>a*_0Fvv{SMX7-Sw)L-K8re`vu}cS+5QLIoq1X2b#!*jVdOj_`Tnqd zDYDddrI9;x?{n=DS3$)>?I0@@A;XJnarmm-h zKlA&HR;GH7Be$wb!B*{_p5WkV*+yx;+Ba>)L?y`*hjA@MO8u z#5a37&Bpc3*v0^Qh-Ctf-54uOOHpTO`RPTp%%!ISDw9z z;Pr#-bUM(Rb}2tl!R+ivUH8(8`SNCnTc!=tTl@bFV>bGy{N}nvuHln zTgSJwES!d?>OYgd?doWaMXLru_C>(2chwnH&gnE|`gP0}AN$zGiit!>+CM#K9FyS+ zT~>agghY5nv%dOHJtpk`;>9((ka7ex;vJoL_{>5F%G2f2fam&L%!v1m zQW-yVD_z zk}2CJ=O*Kh(@tyH>b!8{8%hUnho2u-pykk)4x8KQa_AP&c(b}VgLFA7bvD6uHvJeF zUn@PohhdHgiI8}A23J=hE=1{jOv<;vYqAj-fsCd~@xcP~Vm0MoOH@nO1!{70V37dSh6hP%BbAnu<|&6pt|d#bMN4zqd7+doKXE zp#T7L&~st+EqFbY@~kdlJ3z1^gV?~P^B>#r_;yTofKJ|NM?{Ve>55dQ zo7!=0tYzxR-O>W9BHAKNRA;ukYX8-Vh$F;wG(24MR!_*Rg<&b5F<<`BkoGTDf17tXu6-1%b)P@3)TW!EQm^34UAnV`rJzDGV z2{>y-3dzZ(R~H9?uC=M9L48I%n^0!WmXA-cl3M?@WS7pKROgTsdBt&Yzl`geKtD-7 zu7@#rGj7*+9Snj_IAKvy12Y{~7HvrWmTgvzKBVeUVmzzr-9C&rZLFD}dj1P)*s?-b z;=b*gy9iXN;1twS0dX;#a$BqRJPgoDApb3DX@CDd`Hnt(6pdC25~*cv+~Bcn^o3q@ zy*1_w_|r7zl`!@_nlw^SO)y71LOSb*D#lG$D<^#h!7___JtIf&)<9w{cJFoEU8^1ng3Qm8%K} zkz#omgNpHhVsPal7~`K!PXj6B!OMHTe6Vcv1A>O44C`np&uVZ)M|QxiB{5j17%d9= zpYr*W>P9YJjy}jjPi`Q&(4aH^xF`Ne(hiH5` zA%Vq;b6zMzJdTgnm&o=6ke7s>)1gHe>C+`osuwUI($}9vFVC#+&N9bt1j8;~9B(BH zZh=$7WoqBW#re5l8jpd3&}2)-u<#A5e1B!!081yLzpXZtnPP6kMXtg*DPijAb@y*S zFkHe_F@T&(C`q>t2{fkhX62D)b^aPpC8(1AiI_$iB>>cZl3`G_vf*{Vv2jolxQ0G&GA$Zi2024!! zpfqsQ3_j{TCJy=SYCTi~unwekDAi%uC0klu{nq!1Y|yv^xQi12^?`>^jn~FR@-}w? zxnlkaYl)D|*Z>beMt~|~$j|cA2Qzds2~Y`|sdK6>h%L<~<{6MkF)O|++J``-*~pwH zm4oMDr>CdrLRK^a5}X*|^Y~2nmN57=BTL{VVz(->|HAv=_s8QecIjttd9^XwViFY! zs){~fg|WnpDXTgg6vHIdiWLeu`6~vlO`tk>Y}nkMf2jZ=aI^N&(P^&el~SFN(*3;t zce>wxfH3{)8lz;4l7jRc+NVTqs}OKfQnygsR@K2?n#Q; zL_y3d^&79Z@Fle=KoUVi*jY`p^V6Ee!7~sbzz}|S*z%h+F#O!@{?wonzooTIW<>6E@&Ia*I+uIiq)pR^AWqPO@N?ru)%aFh(Q)Um%_ZnPg}#ePv~3|Dx_bTIT|+ zgE+6C4+LWD&8dO;($UEYJ=Qpq0a=kDU-0TxW8Y;v$Wm&r2fQkoN~Xme$*YWP&dhrU ziC=kXyng-1d$Sk*ub~NuTTg-Z4LynX{~^YX9PPn}*z>-JHYAh){{~d)QrZba+OX^u zHy}Y5U8ul-_VDnm6hA#W$(&mR`mu4jo*Pz*7M1WpFkI93Ju&7F za$Pu>V{|o%!6I#MAAb)V?907}Q%^Pmq3ti_t5e81nL-kQTF?9|23~A9AbkZQ`5Bh8y)6AA<*E0j(;Ss_BU=Xv4eV0#I7K zo%z(ibH)DBp~;G#4o5RqaSkn!O2Se^`T=MQOle|TKa#AZ6_K%rfxw8Ms^T>2M)A7p z_k(D@BYv2cM`3-mE^x4s$8F9M1(g_cKP!CbS5~}Gt+Q<&{^!Z%{+0>=0xkLUChbsT zC798v`IvRMnY0C7O00=?F?z#cItC_fsX;ZdE_H2rc!R{4T;{d9IbcI07}1I#Yvvgv zqK?`<=DU<-w^F2eE)y%JcD}XNNs{`=``6E_jNcR!t&~JV5i{ApeTU#~YWE9qFytN7 zJ8(^njE%gWIpZVitwzvc80b|#g*tgnhF{5AAdtu&nBf(z`k^aro7NjPLHz|+hoW}T z1>iE=7eop1CnRuKHW++kx2OTA_kNKN{5II6{1I>iU{6Uf#!E51jAX&qf0m%nmx`mv z>-t$U!EMfs9@pSEAtu0L0kV(ve`od@IEM+LJgOQIM8jo3sq%9Gu6)qQ`sZjd0cyBiceqWOAv^M{HQ zm2q1<^Et5wzOV7=eoBflQ`6L;&a-TC<)lD? z$PDtA2j{gbGD#qA`Yl4JsnUbS5*@DuiFjO&v3^0$g%1c{uAs~< zjNLj1^Blnl3NomYcS3jd+0lTTISGWcqNWj>vuuo}raw)uP%Of10f#q%z@@dZoo?q4 z+A}6JE;lSYynXk#`VJ=76GA6l?~9|?haq@+uuX>b%h3S5I`BOblj+sE@T%zoQKuu&Q;iw%zY9QyUJgm` zPSHW@m=NjP%WW`Xc8okJ*9EgN;CTpeAR9oDGYptf_+78}cHGTB-~<{zyt_TT=)U#* zSJ(Hz%RKyq2YmD8i1p3LJLYo5vUUmdUZ@L!gdJXlk%k}Ph3j5^(*SWdc~(L1P~p)j z(aAJ|Tb~Ln7_lGu=haE+;Ky=w~z+(g)KL}!N zT|zFp)&Z6TVva;&%5>oe(uUKK;Ctx9&z-{K0PPN5xpmA00}n4)6QsF5;2OgSV&C9V z8U61cigVH6ViCkDmg)WhgD?7TI85e$?-6{R3Mn{$p}+qBe;N4D|KD7YqdTl?+VD^z S86#l`_@$xQbJQU-gb3%@vR9HVD|_#CY%)_uGDFDTdyi5^Dm$Bs5ZUW{ zd4Il-?_a;afA=GgddRt5_jSM4b6l}n8cL)@3`7tJgj7XYUIzlfCb;>6;)CxH=U+>L zza%^r3_W#SY&?A|+^r$%7M`w-E}o9|mTcbE?jH6o&cgiS{35(;cAlQD9`^+Voc`Yr z@VmI%3b1ld6b@S_V%UHbA(D3bE1p~^Zf?o zgh^|8**8zk{N~c#xCV*)AS;9#g1t zM@Ibb!VTYVCSYU#@A~@`m5M|7-xYgH+5P{1cLG<14Dr7!i|s?$|2`&9g^)=8-(`nE z5K#W_Qcqr!MgMmd5T-II|L+p{|K+9=5t2STOPbgJG~KQ){NO}*pFVwB`Yg8CA96x| zjg`3Sc{vwyG)kZC4Z8tm5VC z%dYEane#fCzB!k!gxu?k&6AO?i-#BIA=kTDZ*iB$t}n*sSPHd}OS>0ux^N&TX4hLG z%+u50sRxPwd!c*3N^)1kx=u+UOJ*1GAz@96!2yd7SN}Ax;k5k55Xi-V*#%y&pku)M zuIuA#=}-{`_PSS;l+jfGz1gLZi==Dz&g;$Vi`=H5gaYJA$@RZnY)IKRp5ViBvxcAr z)~jV!3=GrIAR2fyV{64)4mM_u{U(5LgU{y{v6UyWWiFPRHOfkN8`>wdWh@BCwjZA?|;2E$8r~s#r|~b65lL@N#iC^|32?K zkaBc(#)c#^OMX9Wn4FvhuLKeraJ=IcxWIZj!HNaxygYg`-x(C3#`!WiSseMlk8wVE zWynht(3$fhT(NNCuc$!BKT3@^_wi&E$q@)L&YK|j9bERyIr$;@Jf})boeHwl>O3{| z;VUMhe>w6d@W;e!`J+&TFpybS62rKJwM*{3HmcS zn#e{ll*GDwHoJIr)RdRjD@f9Q`2EQ${d=&bVY2_*qjp~ki0kSgsl4{rzg~|jjVTsA zn))?Pa<30Uup!bXOX0;oLF)FuAphUX-)Y;$R@TKg3;e4vGbA_O%9PdB z?)7CC);1y4&4S4POY?4-6M}2m!0VfvIiF`CRQAlSMnbS4YU=9C;pEakecP)#&xm|> zf8gB|h<=NR|0=@CL{e}>?$y5%NGJ%6D=O)$lhvTA(*v1nkL9?Nn@}G2>RA2jtGe7U zWx8em9>LE3cP+n8vkWX#II`;`zN=d^c%Q1dGG68+T&6qsawhlYw}o!Co>W~QcC83p z?}PN&9DUQ5d-W^V`vJ}Iy`}Z%AeW>6iwtFmvd`%?$Y-(to4^cL+hbRbiw>i2B%`~| z%DaB^2)6s|vUHyPz5}^i#K!Js_`mlQal9D9DqBWx7cFzqC(|#s7#RNFV$3eTnJr&k zo(q!Tfc)=~xf;5ryFN3!c33+&t=wGF4qqKgS_O~7xVd+;bF~d$Wc-&X{nL9PS7X;G zx+rA&2uCC+(rzbgqBqsns!t%~^r0RP^~D71rM4L}3;2yWYRaGgUwM9Ng!=!e#LsTZ z(jfj^BSjQDTp_Hi3{;w|TP5^_v3>Zbr7x3x@skmRsYo=_ka8+++T|)J9IC&5$Xp3u zFQ@1)0tTXmhAB~`isP$OBHX0Dv>?Y1=}70IHbJ^%TZieyArmPSDD)IiMaEGDWmxE3U?7^SOk*P0VtWk2r8-1^=Vq~iOVLbyVRzxY?lA_fVC)$Oi=#VY(f{JY+z ziNvF~U|JYPEi^6*TWayb%`=PX&Ydfw#8u20@Kpym`t91Dzs82JbE}Md{VZ-d)-UD; zuL<|RlvC7Fr5F%UX`T2jUXd9_Ipf9oktNF~A2wTpyA?TAAvVnxcX4(Zd8_z$Aq76RU_ zF42ex3W|b7sc+)5L)iC%SS{!{Vpr2hp3(-PvtrO&k5r+03Ru>g4k8TIjHDtAq$0n) zzB)06?Q)tS^9*_N?>*qD`fFbk-q<6c2|4j?+dvvY#rv%)We=WO=4G0AI3 zbRWPJDOT8E3|M5?kO*0Q{c!|}P61j76-lIUqwJ;$?i_iPF|Mf(x68tRKxH!)oI%|v zx!LBa!H;COCl!9ud`j0E#1#=!kDYthcrn^(jt#=I?%tYQ=V7Y?ErLt7wShn!2xN&X zyJtcriA1)sR_^vWiuWgsjeWLob|$;6nbSW}s5G?a{7_ly%}pp-s)1_i#EQD>z2xvJHnnz`0GGHnz-^|wHnm`I{%lrN-CQg<$G!0P{})YeCr$VAX?OTErBc` zUJUpNMrxDC){{pz=M=H^G_nl8a*@b2=Mc;_F5mq!ZYQE;yYgY(YH068?iJj2Ea#73 z7f5r_o7N@7QGi5O7%6xKFotb$ByzwM!tCj^;0oJUg~(afBNwbk2e!IIQe}BC4j#w~ z0>v~0!a!)QNLSV3_kFd=h#qCM*q%cBA|cyDGO0zSzQ%kQ=2t1V8$bUo1mC18Eb862 zt#eZsNiyff&IGXVy>Q5Z<0Ba{8S+VyfsH@JR=Dck6W6#S2j2I?#~WKtd+dm^9Y@v zS@$D9m9LQ;#-o96*GiV!uE z=z)(|Z35>5)gJMv8-+X9#3_MQcGO}H8${(TVlp%7v!(nfhZ0#L@5}mG zb_X&S2&xqdG4GHki6eNOsD!oc+LXhc<_yiA^nL$Mqc++9OSi=JXkJ21U9%7*s$r?@ zFH|jviT}p+2|Sh5ZU>R2?^__NxAn@anU&=6^wg+^mtm_?;9^NFY8Dc12O7UN&$KyrtNAKFv|8&>xwFF&XGI}uS0XfQIyrcD|0WK; z9eROsU$ky*EEU3{tE>B~l4q$lQ`X)RBU4^Jo}VRLpC63hc3i>c-B* ziqGocL+eFc+0sD_;57+*cx1fJRq8a{zV8g;0_!F&>O*zny4|!E7a~o{d&seIEix2| zG6cuRz2NZ!X>_i(UF@IzYJ+iSghWbD!-@y0o#Mi-rF41d?wVj?Zb8`6IC950hdz=Y z+moMQK6dJCl*`Vn7?*#8pannsOlAtDelld4?@Ds%yk@C%ibtYq^su$zda6aYv@KE* z0schZIpS8WX%8yV%4MIm;C51!eU%l=D$_nyM#I?0UeI1x=PoA{`zs^q`^t*t<-X|Q zO?PpRBVLjtmd$vDPoF`Vw7~Mam6(Q6j4dI(c^<)&%J|t)vTY;MoXtOfRA1m8D&j=I z=%T_hf7!3`IjrI3Gjk7LRc*SQ`{QK?EM#_ABsK$rYjdd2aPk;V2%8lv&qWq0pS z-wR!%<%hhM{aHLslv)fORk>ZkKvdOr#o(~DCEnWpoOU#KNF<&TEY7zx_dd(BSr!WA z)cW?+M;=ehghXB?PUuq;O?o72Xp<>YTJDqxVq*mR3zd@gPB(LL;xNLtV?@VFromYP zaIMU&-cR#Pyd#v?pe;&*!OzzQ#T~hO{_at^onHB#ag#l2xf4>kTN3}G*rLpMhkI|! z&vcuRl=}&^ZiJ4!ggjeg`Z)ZE)oJR$TryGok#xEo|3hyh^|)#!vIsL&esU}O{#4!6 z`}gmc=3F|%%Itmr5Xf{-a4JE(JK8Ptf7r=RiNNuvnw!Hk&K41eEv9BsCr=YMpJA8gdt!$q0 zaA7}(lhjSRJQ_gFT&_<t6N%PS+Dk@#r^-;Ju@88p}4pt3x{Oc z7l?>Pf`XwYT)=jYQf9gb+Q45mwnQrs4-0RYn-A}EEYe1yqbmCZN$8@mUh?_g^O!4C z!8VynX?pL8HOzbFc69C5ZcCc&#tGLBQzJBOYzi}c@0*eRh`YLrA}`?Ha4)2Ez{YS= zBqIuIQm|k2&!vRZeR7$q-Sb~wwIYg%^rY4e(7^YH{>(YMedAtfaSCqlx2CFAzZ5+j zUU&EX(=a6{Ec{|)r?2`0Bg&$G#GC0|Ty2uMr@YO!lxp|T;G_V;!z4`-Rhvs3|Lc=m zgf{%#PewaSTxD-P-E0Mn<-UIhXx(<^CER|1nJ|hS!xp;b2gN`lU~5Eppr?SlhnJRe zuRXmch?TIuA3cTuujs%2?PMc+)Y=hB2x>-;p zcoEt6gBVIQa%qY%D_4TTNU)JRe$l7sG*zyQ3XNzd9fpqa8Xb0=VDh$1EjP=O`iJFD zV+PhArn~;yx6YPw!>+noA~=U?q#{7eO8Z9efUR-q)I9XdQ0ntPN#es=!cfc^YsiO7YZJRNR;^Yge=%9MXeVQOz9 zl<1nZbzr!5;u;LgdG^9ZfzsrWZ%JR4wY9NDm9s(AOV&Jjh>VBf^G3 zURe|Nyjg9no=F@%4uYZOd3p|{D7Z7q^vu`Y)eQ#2F&thxOlvsbM@;>aS8-9vS60hA z$rSi0o!zEup$>c`CQALoVa4_kcI4WDeJ=J?q|;op=Pydfxxt(C?LQccXRgkP)!5tb z^5`Mq9h%#1uS>uCbEyJ`iv>!|Tw@9Z z36DpnslL5yZ6>`H6Yl&4m5lYJ5UjS-`@j zyTs4doSm4*_GT@53@v&Tp+DbdP%~lk#XlK2esgwP4g2w5t6_iPlTHD(&3>-cQ6Ht--q{&r|=-+4Gh^v>KPY%i7`a%<8ZvVG7j4;L3(z< zmRR)--^A5WY-F`aZ?~Pv$+=edi+hVn4)jaw@#ufUy+1GRG+7tZ6I(j(y{*%T(WWb~ zn6sC#t%&*+$YPOd-l`K;jC5rp0D#NovAyK_tMe>oVzc*tYY+&D32m=J#pefO_Y7CE z;xv|?V)1?%S7mD+PY!qB6tU^W{kIrc##~%ny!T~9VD+_2XU|G6HVq9;*5G%dRCc0Q z);%KX5f(9@|2R21IYQr{TZ|RKAL-n51nNH?sy|Y8n zqgOPFHGd4scr^*lmUCeXOE7IX`;GFa^feQyzU!$Y6GON{EF z|E*RlhjzpfLD+CDV4+AN3|seQn~#vBXym45b~i1khXXAwX|mcx`ct|UN`+X9$J)c2 z+DLe^?QzYMF+BB27%uAB>U@v37L5Lfwa{dK>apU|asG=*1Z0`2hm&+>m&&~A4ELP# z{^iPcrtq}y2`o3{O5!RcWOKLM{Fv>W7wTpel^phFOoW7&k2h~w{N3(0+sC)Tyd&ru z!!+>7vVceFr%GUh0x$)pD@eB+lb(UU=Lqy!dp(?lY>w+^WBw#ZqQ1`oHy zujW0(JPS>wgjm}8e?{lgVxniC(57xzimFgHC*n*U4>T;cdJ+5V%=bhdY`SgCONckV z*=Z!CD5XzNX$a(xKAm|y{a&^IuwBn}Q~aG6gBBd`6oB+V7C*&#qW-}{FP zVq`ORLSHoL6B`NKnzX4YO2@|G`WEW4*^F(|sF zMI!Ca%bbW8k`LlosGd*jt8$4ahR+_|i(9W1@2cDavICF{08(RqK!ZRihJnVTNrGVm z(@Nx~-}KB(*j6h@1pm}ft+@TK@Q+1bf~~TGlV|eh-sfV9?T0rHtU982C5BT&zYj>x zMYEf~#H!G``&8Ce@u7NeYcLeczR^tsxe%XKZT0hgSC4IO&`s54?Yg{|$SV;46EAe* ziw4@f#uL?dLpXx$h>OJ5Q~a^tlFi1JxK*sr^{IE(+av`a;3*_E(fLCqmEt+hJCC<* zQ>gEKoJoT{`Bb-_WXx2GBm#hXw1AwjC}!q7m5aD@w{LTo_%`u&hrPO7`^EkU5MTOB zz;DkD*$ZPc_|t0Ah?9hby-lH4pVYzVmlt(HKZ$ccHQ|gO;85N6U}qQNAJ$Qf9ZE!~ zfZVL^=ty|;hIzU%p}kU07j9RURo0mKcr-8R&hgkL)$OKwb>x6v(OnwiCvkdT@i!3D z&Z&uhRxC91%6FfJI>7a4Mrq>7MjD7E7qJ4#Pnv5N&v|vack{viJ*L4RdzHE_`2gn9 z{NYCcs5B0l&L`!uUDxXZ!C_#vSfG;k_kMn;O7$bN+E7gtpMK6-8edEf-YY0yF(Hed ztV{+}2Ozcv0z3Z%qy|m3@zvruNFxta8>tN-un z(BJSWQ>x9CU5hSxc1gv>V}<)ATD+G2&SdxFb4ttNREs#~6dpb&y$b+@;c_d#!J|ht z4GnlxUKV9MA3tThGv)`nQOp~wu724x{QZHnAksc9UsgDAU{*e zUAaG8-X8Nq`#iJDT4ic`eo(1TYVpuaR6F&%WyfvQra(*$R3?ixBu21{OO^?+(h^7k z9j2}gAQp>1OQRmO?)rWwS%&(fDNEaVk@tx{r8pVW9=ZHDyz4#BYkhyKBu5IWeZZ!Y zbx(qtC-E8sRb(;noR5ZA*tih6auP87GbRPL~>JTOjg9*T+@iMt9g#zfb*>Z96Vg$xZ2mLhw0mG^C8& z*L}7(O~XS1FkugZ!2iD=5gvW0f#L@DHhR2rZufNyOaTVcINtGdh(Y+cMZV|bbOm(GH1jcbk>1Hq zpZyVXVekI#9P7L62rlf*kU!6TPb7|lg=Bx{F>CkaETzUXP@}&nhuO!Sdj?qJnFXJ6 zfl{%mBy*-csqupK^&@4wR!kIs!80Q-oU7~RIq0fhx)2V{PVrZ-w*FPl^ zsG8j+UFXc5=T`yk|Gqpd9SjrwH%r^{TiZ=8nNo;BVOY42KiX>&QAU)70Hnuox@y7c zw8*uZiZTiGX2vC{+*+A!aF|}0!Rm#*vM_hHz!ILE?Bx<*4Bm9|e!X8$&oN#FiNEuc z3Q{EPt^2qDbrg&YW>ugFEVdcr=PfJiy{ir@erab!GK2Y2@xJ=D5mdFUYhQ}IaVstc zW1S_auFESA@4mr;ryr@arM-x5u%P-7g~2F2D_)0OE+OU>4-Wc9+MwbvqPeZ|<*T1| zd)6r*Bw)7%4dq$Ct6D_K^gVzLDmUHuMv-&hPwjZP+;+ES{E6pd&vOlZ>%`2UE=t+@ zhK;FYE@CcKx8)1Jz{}5KuFM22fznQ78?6P}`i)M$4jQb-W=RdJY9;0a93d0uv{RSWBr0KcWZg@wz+3I#SkKko?7 z&g(KbzLre@pr+1hj9r!Lc{yf;W7^$e+a4XOlBiC(k$ZPns(#5s&N%RA>Qx9_UBU$8 zWFd4}QGxm6dWD);frsnqH+*S2pl5Bz-Z*Trj>ARmVtwlw8QWlg8@kJAn1(3uRR(Bu z6sv9d=6UvYp{N=|`5MEB)mA`Z7i@oNbTWJu38-!Oeb@ujnowR9J3p6GpF-~*y>Uu? zy9ohg#M0MN-DdAU3^$E@|4vo6Enh<)fWc9KPOl$#o?W-SbMNj{9t;~vw1Nn;&&o?9 zs<~~kCO_r%wOoHX0Y7l8Z{^Du(VTdw9C6(tN*4h)FZ03JBGj4nS#|Bg!(wQDrVcUzyveril<72(EM~^by z+gWfqpxD!ioZdZ=YT`2SyPfA`O}q0wuU*>1Hgf_hw}ku%t*RK#9EbXOc}Fm4=R*jU}OYp$)v9CIS-R^$$3^nYxO%l_>f6} z`9GX5Xmm46coJG4o-G+bb5k`upDcTB^r~NTS1op%L0=8k?Wa%dVmohU@cx@F3oIIW+7%cC zq0L8YCJA@>G&3yak@^f8i0qKmS@m9!%))1^&)6+wdAzpUwrZ~8p6XPVgU%@sY>4Cj zj#s6(%&G|@fIZ({@|g@&R@o>LWJ1J(Ao)3!s@vs;x^ag;HPE4XasqZ*5{d6FdPQ5r zAXL6s)hNU?NsOANPZx2@Sx#3j2&%88oT-ZE5ELK<`5rd2Qz~F_As*c7@?qY|w5K!7 z$klwvwsoV2siZC~Z`jNcMQ=CHhH-Eu_Rji263}AxM1rRU!7FPj#x4HTQTc?-AXYhD~&23;NBa@Y`2{#96jR5!(U8k)NM{rg88mP-7hfQp!z zUG#=P_t3K%8{G)L#+8$_m8)=qlgmeD%k#tnOP?}@onlc(SytaWQmQLo$!`8sINHsk zu{!For&Bgu1Y)u7m%OcjD}wfKcdJC~*jXOKAgvbW-ZuCzRk{AijN8>$xN3=3ILKpc z7(`?1aqM@PBzS69#XOmBRPyyZk6f=JY0YbqM7vS;bofAuN>(xP>m(mL&bMdybnk6i zo6-KxO9_JtSao7nk)@F6*~b`K7oa1}?(mPc@AVo=Nh5Mh0oN&HpjWOh<+~^A`KlZq zpYi&QLW|z)?Z&v7#2mFyx;+!UUhkDZ_xW$BaB$$x=sZBjWIR8XIL;5D$S*6im+n|_ z5biv?V2Md>f93IaYdOASwRP_SIh(vVWh3Klh@-TB#F+Fs$=HKyDbwIzMU|`62BW-1 z-F;V=1(QJ^*4@!{768N;`f;!$5?J<*Civ{5zALnrzSYv!D%I2CPM?g@%p{8b^NiZs zfYQO!cX9QeQFzeGq)-ZO;$(^DDrg(cep@uAz;1y$6W3Evk&HDm_?`Xh9D3K3K5^?_ zQC+CsBwMAtwiXgDn|bKlF(KQchbb#7xZm68^uDUHz_ffhGM-kO_vN5}0;T4SErX62 zSVw;U=J9T9THfBlXvGb*Na*prY&`rfB%EQd|FMav6(6Ph&Nakui0%C-&q)w%%_cev`C5Vre?<2#0im!kV`D)e?;l?n?jp z^@K!H5k27qAPNH`)aU+C&BiysKhONdC$q9Gr@tGr)#_aK+d%*8 z@5ADHtSJh*;u*c)O}o=3gQ5bjY9ZFynb3OZ%88ku9 z{`ON0y@aPhK?Z^lo8~fZRh+BS0=nV{SSk(ft1xDAz?AGeti|GgycAQY(8KDTn~TiJIVw?Po(#Yxnsht9|tIkdX6=}EB6mf zeuuT_^f$6&eHS=Dw)}eSlc;be1pzJ*(l2F8A8FviPh)mjG&CCgvD@2yt%}OhrLkC( z_U`N4%r~fthbq@-DF>iETQot#c#$LnxLM!h1)qR>EB0IxZiD)6l%xJ}1$o0+!UNg} z+`@Wd2?*nA9#`}$YYS%^`~zZQ`?m_(OZUlG-dBLz9bW`!DEodePemvX_g>m zfBRw0F0GyK^M*Bbk(IbK3AUq@KW=p76F)<5|7QR)ScD*RO259obt<%${(5jkGtx7R z(`1mGZQ<9qE!T{#H^uhvJZs2Da}MgpWQInM?)^CZp!uabh`c@#{gX86IYWKhj={UK zICM?MGa|!;Yc`+k-L(LA70QTDIex&RK}<}H&S=uFu=EOIX4!HVho02+-eI9Us*5lQ zsH&kR#*^~75U(_8`<`OBcdQ_P=YG4!BoGb#^yq{L*gigB9-`RfjCflLH4wsnizrMU z!$COJuAfT(ZeVaW?tK3H=t%Zhe&ts<;6Z{oRVe2Hh4qAyF?2IOdt`ZfqOf2qudEFC zGz-qy7|V7Vmb~|IVH|RuTRUhXZy%o;lL{geREu6O(D`1l)f`T%M?HKh#X`(+7J5X1 zZ;B~?8*X=I0>cGkCz>}C&~Tm2=PKNtr$PeGOI2F4d#Mzx*MW zu--|?4()^SKN&ug2%a0(z@MK-I;-eDeib<|prH10WL%$`LRfcpeiki)(Y0*6NKvA* z+#u}vfZm!6+KHrH3Sik;Xq!66&HVYKq!*@-HtM$Q-+GaeqB^NV>WhW*432DQM>tl$Zt6WoF zx~p91{>17~5@Tb=V zu0bn}JK})l?l@g%bxi%9=*v^dULDi`8kHtJ=teSjkXLO=Ba*n>%>OYnjtLl|GOI9u zS^*82Rh(~7(d%WBEgr=1s@^nsgAJIP9)PjSd9j@^i6R_072xp-H5qP}MJ1 zp(kgio($1t_BWvYq8D4uM!&tKF8tf!VGuQ6VIFtf;6Gx*bK`6Y5Bvlp($}wFhck=F zQ7VsIONgk;0i+!E_~C68j!*B<#fQTj=_9c*a-3EJ%xBWhCM_7FihKRv9x~a0Icfp` z=;e*Wtvv_PPzs!pTGwC#Uw)51*t^r3j3vaPNaXDx8eswL{e4-&L!JNS zyJyFTSfMt$q!(~Vhc2`Orl4)4o`U!lVOshYT_a69l@Lw-_mtLbsXvyg+4t`X1ZT0U zZqrg;bW+Ie3+yH5_GwLKOg*h{qD-6>Z~-RUu*YXxTiCl%=oY0ai@vX{vT_IrSSwb; zX4b(LuB#hfKWM&QLh*Pq>1=&5Qb>ukphKps0zwV`-S^WChwro81SKav4SaU{^I3{( zzY0cjs>*6>xi5e4wwpK@q~(=dEn(lb09LbvWX)1~yvX&=U;54;|3>zFm>uVj3cztd zl`9}-bIEtCk0E;^3R{IFDU)~@cm4$Y3g}>n#C#s2j{^mE&0rwe6MN$bscNY@tDwHsAgf*S^#R&!b;ODi7D(uNn=Xwm0}T70g9 zE1&>jF%lnNPzFe9-|EIF#X_O4LUS0IP5SEy&XEzrCnnVP7)OPESv~eA)b+dd++qCb zs^~OE1qzm$VB!luLPhl#Zn=G?8B*zE)h- z{@G%Dy)8=eUm4EWPIKGKcaho={!wr?Iik4C@qknWC^zuZ>)^=(q3NPy+|Oz|a$&HO z&Lsa1G9uYYFTfIQbW&}5q1&g?c}#PIE;1LeA{|1Pj>GS=l9%2LDp&=n5NWEDR zi}f~MHOOA$DPWmv`X$=luA3YwT}Z@%o+$P-)P}ElNPHR_CF+XsF9e!K&Z{&XB9kdy zcV+w8-%J4$P&BlWMY{jb*3@ys%q!os8@w%ziwb=*RmtusB1_nlQp7c(k^b?+4@3oS!%Hj8)2!MmUpE@wlJ^z( zXFN|Yv2?mhE^|fKTD<(m=LfxS$)f#s-|Q_Pw2XB^dlxprSc;Ncwh?GmX zF)i7;Z)0ntHM~iokOJca62QX1BxNo%Ip@lX!r6$^z1rL8Ym} znmB|Le_ln)!s{2uv+-hEY+92BoJWp0cC!oCX3YQTmOz$AZx552&8A={vO(p)E~%)p z*Rz!TuzR}}rvr!(>~a(T4mJP>pxv!HeV6!=Kqi}m0O0!#(?PJ zC3&^)+uRa+7)?&`oVz~w-!R2jFv(U*R#&IOzNo=xVeHGx6Z@ST9uj{gCq*Jzp&>5D zW8s^Az4^K)ud2IZSLvE6P2?(!m@f*ra(qGk#bQgKn{RW&3EM7kmE5WW+ZTpHq?8#`Ah zWnDWnJke=2UZAsk!fMEMr9U>Yij!}3l%K4ZC_`Y{yeM>=W&a&Y7lHlx@T~Vy-si28 znmVq4Y+R^S-YZWWR+oD#Z|mOhxd=0nm#+~VIY>mw=4*BD@89JqqV!ZiEu9;hJn0*y z(;``uY}blpE)Qo+i^m9t*L5!~x!uR4ham zH3yvEGoE94_K8xHAH3wyRdK_XVCMWy)He}c0lpr)$)e;0N+)x26v}!Ik-kge?8+0Y%sm|DZ z*J77VFGfaX!#1y;+r8R_-TZp<)VcGg$GQ36B;w85>(Cs3BJHTD{R3nE+k>mmt4}<2 z{*n_ZXy2Gi28y_V=EuN3T`^VD+SxfKW)8EzeA5iy7?k9G) zj!EsTBEm-1?4w9M%)sFn(Cd82-UgBj7#_j-r|zd^*M|wD+x2=(Bp6PmL~{p+hw>ZEuUFW(bDWJ>Sz7G5 zIwN2dcqABEUo|k40|wnP9|FS&LbY5(j`W@ONM+$shAn<|R)l5!%V2086J#3d`Mfnn z;bG~z2CXOS57puMm~Pa7FSV`qgb?-mL!1&Z_J+RJ@cI`mr>e$YW>u;_q$=$_^z1XX zvoPflbE&rw#3w(z8MEo0kz>?x&d^~dF0F1}qj7Yc0S;@YYSorzT=fStO zw$6j6G}pr0*r%WW17+?xBo6;HmZqIz4ztRe{(Mbe;PRIIC zFNQS^WInG;nBDWQ7H-Ru^m0?tStkl_tw^|W$zH$Y!FF`F?l;f)i`SWSLoIm_6N>}A zTzU1kC%MAw4IEEJM{LbIp1$NaZtPjggH7AKzNTykW75XZuT+)*3*8v+32$=n$rDEL zj~0(4nl0Ys1!vK|Ls=4+fCbKGRuC~+fV0gF#Co>@?Bg; z$$Xg(3nupt@BF;`%S~uS%kSb-%Mg}n*)VMsINhXICN6lH2R92mT~7##9jXJS`!&Vwr#`?%@V>HgB|+>5-7mwAPcgL*s96Zk*foLQZi1-S z)$wx*T!Eeu1&+u(JUBoC{*@YU?i&w_wEx%R-XL&Jt>5i=bkILRSXPd7JKtHPtCGAb zOqLrE!G$Vm9EnyxTNCe2;x{}L-W!|z-4XC^#6~@u0aOR8>FMcEvvO2EJpSMyC^E(G zp+%gh&xeY@wm(mw6ylxUo4{yn{#GCoKdDrhI_w;)8K{-Z^Yr-7D~Ofc+G zxqjgJpQanj$*Whd6j`jA9M+9eRpxH__-jV8)eLcz*=Hd;>YUnKF0lkww{Sa85^#9R zrNF=oo}qHn!Yiml;C$V(CdR#Gev&UGoQ+F;l|u~D@3D0*jox_OEk@pc994h>CS>MG z5(q@qZTCB0vz5s6RB=OP_dSyQ2|M$EAZC$7Au&nf!ZD+BWE|v{`CSsZWQ@0DfyM+T zFxn1_Kp=<-vH98O*PpW6_up8}Lo@w!nTE9VMH}XsIR;V`m=sR7CpEQs(*FV@QgZg!I+HUqE zksTAD26kJvys&cfkdS%`jz$f|K6zr_;n%xsPZ&wOu$$)8&%QD~9~no+11MefO}^C9 zIznfFxAW?97cg@_0uMf?;9)w@qi)5eW2hJk$=0U@K5L=ZLHSyt1!Xa-bd_620V_EI z^p8q8qX%YDo4mw4?9=l<1`8`HD($1z*R27`_l&hNyj_lqwV?pX+4jV}Ngnn^&wy~l zDkaDiQm-lel!pbZHsQ{rrRQ~RMK@laa9do5J9lD&Sb0=lcX-N`!;&`(UVlu#yO>1D zH=Nb!`cJsWn)+zLeZ4>co4Mk#&YfPQ>O<-jMP1b*9nBtdnYJEq9@4_v8n3GJh(WdJ zi{ap`ep8Pw5mmMN4(&zfVcV`g91qXn$4@^~vwMS=rgP1^5KZB<$5glH8rzHnG&R*x z7G>9_Kfj7uem$NT_sSPqnh4)^Yr)|h>J$mzjTZ?=>jZ3WJ*s@(blK3~&;FrDmrRwr zac41l%8u>16)!)p=lp`r!QUCee0_Bd;YIQazTxb0YAMV(snp{9h-u5Dgd)~1PERbV zW^6;HV>rxd?qq*N;P3q3Ro|A=RM z{dui!R+yM$8<VM5s{`w7W+`{iPTjB(K2Ct>WN%?tLw|B4 zZFC$>{acFr`H%Sg=LsZalRQYmk%`(?Q;t9V7yBV;-lR^qRWOT}J3gRx$ei?$M;%SM z+~@MAqO267Q@Rcdp78HF`` z=#*CiNg;AU+i;RVQ;7r0_o#;73N+bXf) zpigUZry@{a?Up8H84ARK>XMO@obrT|bl~7cCvA%9$d96j=~@d514%yusb*s^gS`F;yKXOq8l?la zqj4y3(a`-!O!e+z8yz_*)gwA3nJ5EL_aY^1P&8g z&J7+FDsdl_z=3&Ly(&NRjia~wj-KN1XB{v~{l-xw4qZlH;Qmo?Pg|FxQhg2mkhf+9 z>sR6EkIpJC@*c+7=5Lb_bar%H0&Zo%PAI4)nJ2ZAKcK-4W)1t0E@U%t_FOcjo1LZx z{oT}0%_&VHjeYRzK}H;A2AqTY^htJ7MBZZhYrFlkXGDaY1r>Hv%B8f>D9(_XpC~bc zLEhMv6kN!;+6&_$6imTBZuz(V_D6#;O%XC@MWB$oTAEKidpETOU7-V>4D>|qWpcc+ zfF|d^=~6LA##3XmvSN1I$EEAf1a!KUhpUP2-G);Cp*wFY?+t{f83LEwP!?N7i*kM$iL z-Rni7!8l!G2(Pk#^X|zZ-k+sr{&_V&og%&8nOg*dO)oZa!)hztXO4O=q*k{RlJRci zx39Yc8*$}Yl^pY#7+}~UblU$8GCI++@}E$eJ??xg(q{Sb@AuS!V!S;4-R>*aYK`c! zGVcn7lIg9$Uv-4Ri|hFc<5{OHcDIypWie^pdz<{_Pp3rq{v32e?;Ll5!NZ%!QMWdI zY#o?^SHuCKUog4UEDJ?pD3lcmzIR^-V}Maib=OgEB_9ZwQI(YJVPaNVER=NFBI1yR5<{6VRFi2tV2 ziD{{W66`bR)T9qdLT_1i)1E0Mu`G{%Br*+Nr|t))ZMQ6%3&;Am3mhX=CTfH9lx*Hh zfnn>5whagiC_rw%{f#ySF5s=qwC3`0CCHjhGceP_^%Xiyqc{ERWe7%k0j+}q z&c;vM+t5c`Le4jl5*klVp#T{5y+Br>B12QdpYP8~>JN6Og|-r+e(su9>MgZa3bOpx zdnW#jA)iqk6=P_Gnymjoh2wo$WLe`9&T0C&2hUK5c*N#lKtyHl+msowd|KIf-#e^T zdX2{l<7VYLf5{i6YGeD^j98>3>3+TjR8L)wJ(u=$T|+RlqS7L3xS`aS9zPow%ihlz zK7?Fz*Ah|ZRhHsO-P>&;Brp1<(P=&Lybub`*!~M*H-HyNy^Sv@C|fD-)ny1mFB31~ zmeGG)zYEUpZEW09jl|xO@eN&AFo6?A*5ne0x}vugDL|1PJS)Yum~J}14I2M0CGGyk z{;6I_cSIr(#Xcr5=BZ$2Xq?jeS3z-)W&#IF%cjD_HOir7`X|~EEt&LmQSASRsI!cV zvirXN&<#Tf2t(IU0t!fXBS<&WDUF1HbazWghk&$nC=CLVN`rK#bb0^J{GJz&AARl2 zHP<<3pS{=mE>CON<1Ws+0BONHXs|{drtz$-z9tm4c7cOAg%Mq4N0EqDky$7EHPYNu zbFKYEIYqrHFWBH-4~=Z3P-wsgoTv>G8Vu?KP~5E^(fmgqZWc-9bP)W9eQVn8;qf7i zJ6Wjf`2cgRO_)jZFs4ZjTBN*oOEtYRBX%Wnp!nyk(xb5U6x925qG;r_#8mEDX6eEJ zh4yhwx_i7iI-HnXIk)PW^~Fy>9+A0UJmz)yw;r;T_t_-zrAJN>D& zj+78)Ul$-&xw%?&E;tYZMjq~|40*}qvzO#vuY=6E#|VKXEH6p$&oz*jPq%$gDzKrK zF#44VP8|WczHfi?k_6D>Hh32jJLN+qwpgjJVD^Xi>O;r@=_!msnIqlLRT$M#wbj+C zeuGQko|4t>hF8eko`o|V!3*Qp9x5S6ZNTir>|T0!-Lm)cryY7vyfQ0LDAQM^f8{_7 ztrU|@fk?*aBMT2I`1+v=>jJ;YYq7*|dmF+WlUIk<*Wdi~kt3NIahQ7h4 zr~)-ORO#!PC&|Dwu!OGn#+KOqf7kgq%3QXCH)aEIOFyd#3Fov7odwpC0lm$>53!(t zf;ptN0ojpX+`b~k`QyoJBALo4TrRJTN%UdnTUyL1SR=4Aa+J3J#8(e2s1E9+`TpPC zTaMB3joms61{!yghV&3IerPg(zkP~1Ia*tF3??v`mA^#0W1+#OQ{#2~gF63g0cz7% z%8RSnEO#Zs7EK?C%z|GvuKC$M6j=6_I(^B&cMgSu!40SlY?Do`eSFOO;vt1=L`X6* z4#u-<_hN-~LrCJ!X6fK_F%DVbNQ_t=w6@HcUMI+bjF<_4Cj@)m*Tfl#Bx_H3AcSAY z*gf?t)tjn>7th^OkkpFr!7l=c{;y{vnqOIpG(rbmm7qRlOY)L4{YfFZYz^)g8;o?Z z^kBAwuokYZ^o@A=DtL`%0mZlW8jka>(BIn!Q^DV2l9=6%Uv$kD`B(gRa-udXF!Xg~ zH&r)jXwe-@}ygG+>K`G;^ zWv^7afga5tifQo~sDk2m=;l`jmPSWqFp*2j_nsi-+h|~Bm39*ZPa4Bphxnxz}UZ8tF|{_pzR$!Bzl z(5~T?UY;Vb(GRDw3tac$SiJ4;AV4{6%S&zO5sOtft*F2L$Y*I}~sX(#%u6|V0a>TbKZP4cIBQt7lyt*$6s9S_fAc@l-A{(fp>g*U2mrLmC=hDj27vcW56>!TD)E?ae0`j~V0g=+$E8yGq0 zPTfvKXB-WiTaWdn?dV@iKI{1PwP1-q-UkBZu0qEI!#)eI-y`b>HQ&S2M%Er~&xwTx zX$5w5ej4*gN*3FZuj^lmIGb-0%$c;wlc2Q~MvjwOF~6pZu}7L?4~w%v&D=O03NEbx zTW+_=m;bmn&uJk|&CNicPVMAm4$u+~sC4E`lM?$vKV%2#eex?J6UXQnIA{FCe%x`u zmG1sQrx-O*1Ji)A<#@e+ZJY%mofSX@mmWf595<-cl|0^a9B+B9|7ayTCl#d6E24qF zt!^(~?b%nC4?1>6aFSZXFLb!UTHPYdI^Ug_UXecur2{54aQ1lpmpR3rMu?QO=-9lf zzOac&CPzqdDFmOQQVz1?V-CU~pf>$rfpXIEc-80jFt0P$*~P#ng7Ls;x|9X(?&qyA z`#AIm+Q14ss;JYJF^og9@W0hz(S=>SDoOD}K2|QqxGF?4sq|8Jf{RNFJxOvXV9D5& zbIGbBY|7lYb!WSTq&qwE%$TVfW<`$V;m}cQc6?qHx`b^d@gPIBj*Y6glP_wO0Vs{D322$O4RuO z=L^#}==mF}{PnK$UjMv^B^-7-oPh;11lHzKtnqVT0cy~&GnZP>G0#2Hm^=QobiroW zO4MIB!3ow9FN}o=ztTBW3X|7(@Zy5kvqD>@(r&tEX-T1+c>Ed+W+Dq4Ji0fxBB+U( z;)5&0_-jfFU(t^G3PEg@cq&D`1EtCtFEKDeSvc0~uI`%;9)&wk8F{(fmR~2X1QItZW*8vt zeXW27GscJQjTLt>Jm(qtNr0`Q-GBaugOreGnnzn*M$rn23UDpycG#|`14Z)ETnn!J zITQV8>Ndwosgyx@QKg^xq@j@FaR|dPu-a0AeZR$hBiuzhHG{))a}`SttXLzjKgZ8- zk=NeV4#_Crr=!1FkY}afD8|k&U#g?Lky&>9K?ecOAD{q3MJXkNYy6ZMQo`J*{Q2UG z9JdEmn^|OscN$iEc)XfgbhsnVY_mpr>WpDRw@f(|c*m>MjK3bGF)OJJ+Tf%zRSWcDnD7C+F&}IX4z33nh z_YU`S<}oojlsX$U(6%iAtF^%KrN@trGMqT3=@SoeH(!#Z;F*`6dih zw0QFd>1g8~leI^@G7EGKKa|^~O6er5>Cxzb(Mo8pl_ls^xWX84krBGV{Rnuxrqo2KSQeDtQ)bDwgp!E4jZ)702|5z6 z44|nw%$g<1nrP+T!+4TifR6;=+15Xwe8bV!&OS_`d6_%(T<&Tm;VYkOyZfe_pv>rX zptx6Wp!`fd{jBG>GfR;9cL2~qwfo`tB{vXK$otYpAM~U3{>%lEq0Uw4Xa<{-+fjri zdFJpntqZ#^x=!U1h310`Q)m93P~=WYp3Sk3z_TMIotsaDY)wR=VDO>z*c}QE8RAH= zB16p<35@vd6HlOMksEr@kT*}T^exd6jy|Ca2c7gC#G&{6&m?D-RY)xaK5+r%z=~7p zxI1I!#DDpAVFHR1rhQ%YmAPyOl}#b_Xr_rTz;(&_+buexz<=oJ>HE723xVZmw2=vV z2Tx&(NbxHMG1g3g`O~uzvyT`gEKQ~O%y`rF62K5$^DDLbK%l-O_Gc9*=p~?kIaJS_ zB*Q}vef7P#d_NbburNPk{MvD+iVYhytKFl1>CFz*eRt2?MVfd8h0XR~j(j}(dr+hN zUkKJ3)`E}%WOTgid_gr?zpDEcM!=2+3(#l@ z@aR+ElE8geZN^;|`FcrSDz|J%vdPG4YKJ?sC4m{s&zf=ti{7eBiSX-y!G}CA)Tv(1 z;Z8Bx)QSpoCr^H+?zZ@F$Io|JQgp^LPXMwef5kR`#uk`&%im8!#*t^KfQz4(doi?% z=At7a6yo@x_^PQ6qOo`bL>_o9I#H6Ro1^$dj*qzYfVuX`s*#gVDTC^{)#WeEG$j)n zA8Jw&p4aUCd`-TEL1 zqKw(XzEgHW7vPC58b1b8@J-6#03+XrC74?*sv}QtvC*>#jk=6d7VjUlUpzq%qwK|+ zo4Ca#d|0ABi3QFXwVEW}pM*=GHFn@v>XYCHABUZNp2Ti?jMru4uE~TUo;#Cx zC{3@Ls!!pS7tJP6DZo)!7o^@i*|xUP{9-lUJ2MtvD-yp>o^D6~k`FBm zdQ-`fj6<^=OInr^Qd(-q8f4z7ih4$0Y!h9O!{;+No7{k;lgygE+4BS4UD3GJ1E<7I zf1h9=mc=35+mldGRXzs^0yNtIG4Ms@S0FO*3QN&yJtGx1K!5q4*}Y=z^yU*#(ll`v zq5|XB-_KxbRStXy)JaZ6w^iE6LIS&^V|aH1xCS{y?&R*KJ}mJsCT_}qz#EHSq@TH>Q!|NJbuw0 z&tXxO%*51L-Fo+i=csF?6^~0^iq&Xb8r&dNfqt=X#Y zxuZx`W+Hi-xt+sIHQWE}Em;l|az{gb&KVIMqhrJha`aes!ZWfYq9jtO>_+cuoiE@l zu^wvZv5d#Op7|Q}PRWJfw0wiicX}ntNIpw?=NJ-VtL!zzXfsPS~@DDjHdLImmlZwA(Ql<|W zo)T@4ziDJaf5i%UZTr-M-TVC#W<KgF*TF~=zgA!U#wZEJR6eK0MJr#=TjP$NP~B!X;(B4b>~|4U zX)2^#?+(x^@Y&fJwF)hli<>jLG1|#!7VmIx{zL)QSuC-F@?~d|!HnE2`@5W-dl&uB z1IReUP4w*&msu`$$z2}CgiNb_651r7!W?}C=v^FFqCtP1oPZ6#<$1VzDs^^a?lD=R zwtIqX)$iS1S|1GX0Y`MJSAj0M>|)qAS(K&40ZoQ~X~`?pOwC;4+V5W;+^dg&_u6=a zkrt_4Oh0%x79yqb(|z zI-(33g_Z;v0SdU=LS|DSKSwOzfzHcV_ZN}P@`xX^8fxM(a$D#aR+~JoEyC~)n!u69 zFB8-8(nhSbN=v7bE08?1gZIAvxAW=+=NGNihKj<;z@xSgT%q$s9jZ_{`BZunI81N% z0d%o}+9Zt5aQN?a*k?LaJ6qPEBF^?z$!=NW=)%|~#{IN*A%NZt1NgeTUh4a-Y;Vw#ZwpeuO}5qz3O4*S}Wa!9yeUo22zo&%gr;`A`a`Z(=`uGlyC?6AZs^nz3k-Eh<9Q_w5 z%RZf4*Ah-SORTUJ`**z6q*I-=h3JF8V#yY_lRs~Zd__w5MvB!3da8ipOZ8g&9VPqe zCO}P*-oy?)w_XSom`>6v#ugzi?dxs?D+e855;ZWpYP;4GUDYolUS%SbT~dtXnm_&tA* zV&U=AEglIDTAktI^751RPgfr$`g>+Q2ZakKC*ds~Km#`0-;d&iDjnE4VZUwTs7QNH zVMC8m^_}cL^riX6XNU7>VumV7#!HKj-#jXZj7B7j!$%!v2Us|Ky4tJnjE9h#r96$u zNXiK$%TZcq`S9FdyimiEgrd&PFH_kc0uEQk_~&d)ZM0-?K6rqFMNw{Mu3=1h{uVel zu>K2a_d1SD{nF%9>`@zxl2wxs`0@eU+<~P?TGvqchQPgo zWKKRxBKdm#w1crHYN>5J*n1rF3X8-K7eyF@=);lail{Rs4EZt&`Zth3+@?gP)Q}clEs}n1LN%8 z(C}xA`j(2_Ege5Fv@_mTL}R4j@Y3wo*HFB_XHakSY zTvB)jUBOz?07CnuTWpT8V3Vl0nbnRv6pU0QB)|z-ye|MF+SDSHqgyuGshm+Gu)&Ka}P5 zr`?=|r!T@kCYa_9 zmAz4z`x$vI+l{Q=LtFI?S zgQaKIpY#mF;zXzn*hn<~d!j@bRzQo@+qC1<{HwW?!;ND>&JJHjU28ykv& zlz4`@WBU@RtvWk=zt-lpfs?Da1Dc7Nm#5d7ckZbM*Ar~J;=nB};V8Tav$-m!n4+Eu z53OMnvHYhNUkd zzo<^n^*K6E1qv~`{^3WY+Qqhfh9vr{DwQPbp~@rCS=RLN#AC3zqS7wm82%SdAE$Hn zP8xU)Uot;UUUi|olAN$|cu+mvMZ@ei*0JZ{A)Y5@NM?;)R-n##rD3-ABSz`lQ;F6b3vsNU;OOMvR9g3aAY>96dntrq_T2- zyz^jm^;l49;KM|QD9`D3ar^E$Kpke7g>ws<}Yspg6;|Ms@mAopasXFR}b3!?O<+7;B_ zLUvB`o7maW>5r3Rcmn-O^d@aDEc}dm52H6-;4iODI_%wB>;bRKD#il!nro`6J(<4- z(+Q<^QkvQ#Mka$ZGwHu*a07e!G+`Q`SZVqFFEwI)QDn2dkpf7d?Xr6Mil30!VVN}Q zNRtfahej$$vS=jAE>i76gin+1k#QkuP;m1HtbQ3Y_=3T?aT*P(1>Uk(@8!X45(H=^ zjs65oS0nwbB{zs2THeHeDroBw1$+8IjHT49_$ZB4l>1M}|BRCMmp%sNsf>YzUBg?< za+n4@ucCktx{wW9A#buJ;eJVmXs+|>gGnT5d%^5v_60^OY#rWnx6fuTo$eqOlNk3A zAEKDu|0N~Ol|&YpJR*}(-KVD=@jd|gl<`Ey+k7W-AT>p~-*U&9l4QrjPbQCaCkhsb zHq|2qP9QsSP_3%N80sAbICMw7{89pGP+R;r(8oRrrBO`7xNn>s%AU)S3X=a`+IKZ2 z(#CoGG|j8h;)?s{`r3nviVR+YsqbEN7+eM*HzUDgZCOOJPn9BtaQ}i&se}d|CGg>x z*)vJ zwe3kt)$smC0A_uRiWS>eBET{HWqd3t1fiXQ1b(#{$M;6sFq{kTJfH_nqnAcL$-&=B zt9x~|`_w~eG4HMjb}h%J+EnkZ& z;3`LjSaiTX^ZGXU6bB zD}3?Ul)fbWOKA#HVERlPXTX$hsazj!a@?&nYPDdf=g+tOcbHik1q}X$fU`}DIbi+o zszE9_1S?nUM*j;i5^}hG;{~;}pIA08UJ^>>m$UVt9Nu<~3%?MJlh4iu z50~KO%esczTIaJJhR=cUJnGAiaKz*cR0*`0(7*6tt0P%d3|NrX9j)?Ye4v*FH4kjJ&SK1j`|8rLYzbtrNWtf$Yzr0?Ah7Ky?0v*J- zlEi(hrz)*mtC3RET8M0=vdEwKdpJAKq33ud;r+EqwMe z*1_muo(B&ln}EjL+LJVQM>IXUs2A~Sh62=BgAV*%V6P9>jU+^6S|TaDE`(NrGa)l+ zl2MjdKcdc)rfETN1!Ex8VMrGCCA7UV3>c!7;w;itlYa_Py zG>E*&JTsb096Fvrp3w}xPLC{vKM7^RS{G0?4E}m@Tg_+I`u5vyOikwO-xEVHmmpF) zTm18{X-}Uv8d+OC-rldNswcb4a?|Y9wfKlA|(mq)*D2<}UoxUEcmnpVz z*fhmld}BNfSWfg;xE=;->jH9J8U~8WKgF6QW;{NW81 z{?kr1njTWC_vHly_c4LdQm|rfbMG+@DIL*7lK%569@C^v~3F?cVJS~xW35a`s;{bQE?z`x! zamI8nI`K(!tH4HTXvMs;VnQ$Tscf6XUKaW?cRqBgL4iF}*6+_a2^z>+nI0GGWe0X4 zqi4-|THHJaJqp+?#EP&O{-LVk(4DgPA=GvG^=O|0pU&%%f^E9{f+5{1Do?)@Yr5Vv zYrAil_x%a7ux4u)SuecE)y{w%3m`@9+LWi|2pV4~pM_K!3ze5G2&ht&^bY1F4T&ZO;JlD_)k+hdO}}beHOGcL}YxcL1Er4P$Qoky{cxK3YX0 z#!4y48>|LpmcBaM-io&r)O-}R#$@O2?uESu)4{xSk{So`u?fwJ3h%oj^?tsDhh>h$ zInEA6Nm2U}`$EI_@UvC^Hf+$oIjBjU%`9Vze~`*o#iRom?M*I5FK>H#u}AON7(T?*$&(b&<)o>KD1*5} zmu(|+3dc_fS(LwV?H>!eB2UOL-gFZ66@*EgDokQ~PcFZ|nH6Agu|O|`I4>Ianm82UpqT%DxAX>sV1Sk`nrssi3a z9u*KzJu7m}hI&g54j{rnnhq6wqI=QlTT2%Sg1Sgg5oUq-6rbS( zp9Q9xM%X*t30^#)31wz=@EYkP2I9l2H-p1D!UDcm93tbyHO^#`t4Hn!jTB(?1TudX zOiL#vy0SK1EXf`~=drc5b(@Ok{tftnpr^o-iaS+tTNk{wq1;ce_Uz=I&+68ZmTATx z+O@HlM*18OLqLN)czi|E-;ZK&0uKdDp_pcNzi6=)Xgy=di<{tK1V#aRFtW_}{Rb$9 z5vKTO8RY5mSj?B1KZt@Q*1%yEFH>5Dd<+M#8E2tE`t1Vzn#zG)B|DodEm zxOXg`{N5S2x9bWF-APGT1;&EBbVP9zH%&(sk}YeP+&}(h|8q_FHwUBSRNvmr$DYlR zJh?wKs{0#j_*CgkS?biUyW7B_;GKJODKOclZ+rgZ>z9gXnDW{w#YOf@C!l@h;Nrr` zk?N9qtUl=RfC)6k85AXj-|1^I9^df;dT+{S)$ZY~zUs7>-zhK|($Dz9{0Uw>_dzPG z*!ytAzz7?3)$}PHz+3`iPryZ*mdTASAp*)$>{}6zE0N8=@5^E_;aTVuvTB%;1!_=K zrztg(k|-FQyym8c#>I`Fk1uV^#FgU$L(08Nv)tkvi%3>xTm}LnAjZW;(eg*J##&3{ z(t1~jpGNFc*~C3JcrSQD>Sa~R{w<2QU@5c6RL02D85?Z3NhgRhhcFx&U$(2deOCw6Mlum53gW9CtyWgaQ4!!smQpZmk_$ z7!;R_YNaT0od>}%k#4Kl4<;MXEJ|%{05%2m7H&S#I3OB}{L}9mE7uvnY=GBjfX9CT zx!YZnE|5j?t%(6&9-xw@Ws(^&+Vi3HHT#>i(>SRbN%y)WXu$I`=XZe#p0o8H8{t+V z$vz`ng~5f|gUu)0Qx(}{#&V2TEYC;(txS0Q^7H~*zQdwiogVBygWv_DAo&a1QqtC= zzHUDpzd!P@a6}Uv56tU(ae44Q(2k(1MZJ}#c{cDCBg-iJcm|DYd0@OD<-Gy@r&<_MKfb`{rTy({JzW zWRD^Ci3*)HA$%}&?0hp=^iu^KY=*YdY-!lQK#icD&(F_aZ5yLV*lA)(aL@0fIobch z+HwNShZvFG!^&pF*L&<>#WAM49kDgc;y1+EddnUU0uCc5wVa1*RK6X&%dJWHY(gmUIN;HyY?j7IWOb z7%7$068`-7`&*@&_U{kEO_JR#*Pog5hVy>MDiU)QZI-0vNUO7zk&X=u5 z_$6>DAa*F%b8yRX;H5x7J;9bSGdt@Fa;*Z3s|IasY*dk-|m$*7Z#!SyA8Dz|WW|k)nOElapgJ0Kfz7eL^2ZY&3+{e5jV0!WKLmq8P z-dEtty%cI{YC_=5z&#t_Tp`~SPA0t95yPg&dC3Xo%7-L zR-23Xzc%=pd4nvxFI7>-1`w!&s1@@VQK&+J9Y}t(gSwK}?P}bo zjtcICtY0A6pPzV|e3%VO8wctzFcE&`_YeUBI%2WtOD5#tB(j9yn?t!V`dY)nN~_<} zxz`XMUgb|?y=zg8QLzgrWCr)DwHJ*6b!v0hLC!DdfkO_wo=hm&*>ejks+vR)pnl9S z(dz=pU>@O@vq=sO(w&oCcXvYmH@!6R9?d_=u4W=Jt>h%tDW&OLhzs6e0EOs-uN0== zIOrfukUw2R7S8>ir$uRQ%0-p>K`c4FKkqHbFNrv41CzE$F<+`YN5CZ45&Yr~am~LrTEijk|XU`L*on#uYuraK;o) zZz_HI$kxT}7OAh*Oa(DuY%(U^C`hfzx@m%^LVQyx% zKhEu4;olO#^_8Dfc4!5Cm5%nKx zL%W$b=QCx$xtm)exq)?VmgnbTL7o-Zo0(6E1`d1o-cuVbh99(nDlDzMyy?il7cLdt z&|p1vHRQ;H{ul^ZC@P!$8j$DdL9_x z(Q@y86ti^wH{QFNd3Fir$e0BAh321LcQ}!&=`S!_8Wg&AaRanErj&gE#dl-XdHi}y==wkq8isTX@`F7@;RObj^iyikn z(aQ$sbGl7)K3c0k7}R_aW@#dyT|#dmpydSxkSmx}R94k6;7S8*2uGcwv!|!d1-dPn z$5S#QCD)B@6_~K6!(sG6!B2ZRKa+YKzXN3MGN6sq{m^xsfl`!bpQ(Lf!2@!Sp5}*qVvVd4c^Rwz2K%s(uCM6}Mp0RO% zEg0N7uYabmw7Z)|u`H3O;|7A&e(igJ6L1qhpR-=U?n=_fn@Kw4 zatLfl7rzuT46T7+aYF!1Y``{>vpbh(3Ep;kB4%dBP}(T^N&RQ>79fyEMZ5i2=DmLU zm4F8JywPbWOPo(t`0wA^OD4ws;PfYgXl^}6fJhMmmce{mq>GrfIedHQgCAv`?zJG1slbm2RWw=hxy;95KJzZM4C0w9201i6~(B#lSR zJxtfBzIGCWax(<37wv-!6r1wjZd1WM@9v zC9m35`{!aEhwIh+p88dK@>v@f(nKxVlS%dl@GZ(?j>xh8m;sLtL$EwvGNWRz-Qn7% zdZ1Ck1fLcKk6WTJ+|5P8Dw$UiR1cgNC?EuJn7IOxq@ni=7?O*O*e=D$SultVaP2RJ zK;6Sa#79oL(W2p0dD$R~2YK~r0w1}TS2kiueeu6)kfH?S%meFFLb~*8$~H7apoTyKYvocWj<$L&w|Ih8xFtr0e*#R(P&^q>6l9y?J`Cr&5sw8b+)Hpr3U=U(ywg@%F2`Em5GXRz& zvUC;3!R9gsOV;2~7>`Ol_+sDcg1|BX^b8O?m{A%9j@^!j{Vxc#7||dYj3~fmfwgMA ztXkE<=sS0T(caJOmu3c}@v0Smu95f3;T%|_^n$Ng!_1UUeMDX!y%EPc>q`z$r@QV^$0v7yl0iin}iMnvP(=5k2u$0a>6PWxwnU zJ$gjh=1%^GA*<#IhD_Ux(Vl*AsI1ulNSrEfZGHqyw_>ci~F?vGNp_LH|Q_Zl$kG_>$nuZw8trvQulN z3Mj_))LO+!LRV8>i%Eh|rG$V7i?!mpXipriw~FgxP~@~*h^1KubG-O}B8Y!rlGAyA z?RtOZ==b+*u=ekJM1&HH>L+p|@yYG?oFA3SmFbkZMqlf#%HPqVSAGAfuVeqbA2oVz zAsA#Is1S>}A9Gx${PPVe&x%EwQE=l5_n2sCTr_w(aI$@a8yFwCDwuc5W6<*>g#|2g0X1Ga-)B8pFGPJVFu$FE zqWu-`t2__ILm70#fU%+ueg@3klZ}7F*txUb`B`7JE3A1`|O^+P36fd_pmhxAZIx zAzIJzI&&-3BqexRC9WwQdrcN=ew&wrMflz1QBU1 zpZ*b%P&vxQarkluS;(Isq*EBppq96N4QZX9j}rN~bQ1$bmSQF171vzO<}kcvyiXn1vyRhp&*N`xC}c36s+Zu8pL+;qC$33X0+E_eAtaZ#nX`Cf#~+E||sv)8PGS{}i4|KoQ<2YdmlxdK6m zN}Kt=S6=VOq6$r|?XfAdv+dj&7Uisv3w(~fx(16HWC(mpm_1aa&Gmuk(l9$a!&on{ z`T(SxY+)HRi${UGyadQ=qW^9IrepqVtC1Y=P zDv8rnVnPG}c>inNL60G7cp9?PmY+&5Zi(mJB*S(eVCr3nfTMy7GlP5rzDTYl&rrPf zoJsw1pzJYH*)$`TL8tPJRDf9-py% ziIHmd3m%pp#bUDh@zA+fmTW>k-MqM9#?FoF>THGfc`R3UlubRCN!UseA6)`O#o6=G zNo>Zn?X*D_Wbp0;R?3c&g$u_OO?`bSXKPFbA2A3dSo`aW7rAq29n&9jvmV zLR!}nSln-Wb(GhdWC{k64wyN>D2+#iWi>q7G@hZ_$C$ZzZARz&sy zxaVe#ARrO|=1+OSEh?4F-R(`^o)g#(N@ai$<4`nbSXd$noaGr8dI**9_jg z&OZ<6KxQZ(59@Xx7mZLo>ozY)k@xDRi{1O5Q+AZSaLe*V1H zRt-?CN0VhbL5ze>1`>DOaqBJ3Gx;OtmjcYEAXo&Ubltxba!Utr>}RXD#4H1Mr_+o; z-~lNa;`#5dSz?vB!rY_teOssat`f;{WhHF^3D5wM+lz#l(-!6Ord~0mGF>kqvdZ_?<403yJ zMBHy}5Z~>c8{yXK=Z$$CnYfw%8uUxLnvja)Uf(dzknrtZOuQRrR~;@c9f|m^Q?v1R zYXo6S1)X!mo~&nJKmlK$hN`Xt^IuCkmfFa(lG8FJXoa>|P!3}e5 z)pqObrpp}ayBCr%SW`ryLk%~}Z)=Zn21Y5UY`5>p_XP6-ZY_BkYC-Y{ens`vUxrqn z#=(yWVp{9;`i_63wD|7ee|!ArYxLcpYG*ueFp8KZYn!Z>dukXm3l!Ki!h*Xp2C+a^}GCk(Ll2<(p(ap^f;MIsrSmsIe(@mJLO#dm z9Qbcd!py2an0^nz3ekwpIdb&7?I+`Q7wkB{TBKqpy92*uKDlUBR{?x@PEfkZzi4Af+jS@ToIl}cDU&aI7#p>^p|P{GPpA-c zeZON<{Um@?)mUgg>LU8uTOgJ}yW6X)NYxIU8o<|Ozldo~e=-Ommrs+r(t|J)5oV$G zc}LtV4z3jNFfbRVu3sH3-aMWJBmgKKz~SRC$U7Ipk-Kj~M=Yf%pQuZf!GUMUd*kQJ zv!2^?L~^0ne-G{msT(5hq|Rb6f3K}pXL~Y4kw`yDgS?i+VA`WB3;pBm!fx9?87DSo zBt`r?i7K5Csp)?hS*3IZS~7S(={r{E%bWxyLoeg+r6n;tXuE)t&EH7N^cCQCy1H6Jidkq_$7rD zkXB*|(KMkrN}t}|et*0&TxxMeK_mp=aCJZyJqSbB6j&=0o8MB;2KRMH4^WA&{??sW z2ZFnf%NfJ69W*Ek@)Hx!-Qn|fOr=*%-rli?60)~b8&9v+?Sh~# zkV<4(hz^2X>yEeq*fam_zw(G7`%lK_g#sXg4)n+u_`oFbh0WM1_$J&0Ef>tu7NB%j z6Pghz%(#)aUG%&D_ugkgm|yM(pq9t zB)~4Epr|)D8wnsMdvQr53c4E}6v{_Ukq!%GcyN^G4#{_wBS@w`r-FcWzHW2!EhY~1 z4R5EI5bG}^E30QJi2>wkmc@44!YQ$UH{S)#@TL94ojdhD#pDic{Kl`9i@#RD+Ct3odi|l*9ffDnwe*Si zuP*MNb*i@5a+IHU?)5;YfE{3#^adDS*$ZhGHgI@8ZuSp0-m5&n{oP9>NbW%-{VR0j>tkkk4uQIm2xgun=c9#2>$&*yv_%c;>44D|$Y!>8*W+nFT#sctN^ZZXG7fA=R0Cj*Q)b&#-M!3S)FiGyGCjar=QClWVdNo8t5sgBC zYyD%=8VuCYtFr<3&4?sv95ODzF6n%JEp0bzie=jOMqTKiKh0d@)9@gWEC^?xgDTY{rvE49Ozdtn%tG27nZA&U1p^5h(#SIQ1SF2Gs(Ej8@tHC zSUi(07}2j!mV3!e{G$Mg>EWiTS%{K^5ZQQIBQKRs_+DjdHo#~Bh434VhMLdarXrA= z0$zP6XdhMnyENGdBYV?zd%lB_OJg@O+w>VV%OTA-F5xXJ5S&np`h~n0tB{*h>r=qX7UC zOb)*dddz`!Mk%A7DuUJEZ@??Zs05^(l|sAYgQ zfXD9-O+ePO7#>>!_!ms_t@mtcN&xl~bh5FzH;w3{e7jl4dHAdQz2}zfje;n{9c{22{0mU6|(32RL+xbW4|XNlSN2N{5tmw@6AiNFyNKAtEi^C@3u; zAmO{t{r-IS|5f)sd#yFsoMSxW4wO3%T>kztF`@7qEziT2YUPk39m>`xIqV-)Zr3NK zl;Adf9)-Y6tKfX+?~{C!1hqF$%YJxMvHrs6rM%(WhVn?tV-k1jovHVQtZT^`rw&-W zqY;dgm}4{yizOjwG5}E{x@`O4T+ls?{p@}=*3YuQ z3#JX36aC(lpakalGPxaoy*c_0oU|bQ3y>-QB+zSOw}xu|U7)s!si+v~S0w(kicI%_lU#i1|G=W)NeVh8J}?3hxDRqaZUFrNfxPzpBM;9^{=U7!H!DI^uv zz)f^zf*B_eMvf3Nqo$dT|L)3@I#lrU6+7@ik@Vifaie!Mfgyl(+-`0mSU%R@led9z z7KY#slg_r74+%H_N4vKLK2_ivzPPw}ORi^rAZnT@g2Z_L6gU3I7Dini9N>OcAN(#D zcQXJFOt)mI6tzIyBR~NUnatt=)ABH43Ub0hEN|2pVv2$RxSGObG=agpSsZ9O@PZ#b z;qNq)%X|d>j*m`GPV%UiTz%%zA!v&~DyuQow5BT;w}rokyc8D~W^5kqr;DQp*qe9I z$^^;?FjJNUNvh4Qq_mFHMpbLOmSeO7JOA>zWsTjrdZB9{pt06U~6fQ zjw#3|)esO#$q6ThbcX_0I449FSjD_2h;Xg#(#M~^P;o#0>m7Lga19*TRjq|@$;Jqa z1%N8lol;h70r{s+Ig1J#{jax_@F=*t{p}miDK#Gp2CMgKpvVf5B^22rb+;sY>Gk7V ztuef>&;Z)8LK}Y89R5UkldM{4fR)svqDHlt=O@P%ZyAI)Vn|m~?YQ#zNl&)hOoM%d zZ}huX1pG4qOLufV;98q=prHqHAR92v*GtiX3*x|qzsl8i(g2pYJ)#EdK{i_?ONr1y z3?fa^(W@$Oa{?#RD7a9h(YFegW-#E|B}WjJwvb#!0-a#vv2O3r_O539|`ukP2kkNXcd>s z4<_~^{iX?ZsU6c11oO+-t*fftx;ba^C4;OkkHfWvA@-aITq z!Vylpuc_fNRV|)Y71p?gPNWdz;KE`SnIU?%Z-_xWI(8BBcz~MoKn6$jNTr=h%fhZ+2MQLuaYbFTgJ;TkNgH(+ujxF&*5 z+F4z#siT_`UI9p5HXsY#o>G=hF5>=%qCR=qu-ZEI`0b%C?v+lN}7=x-{gSs+N6Pqv2uj+Aspe64U4 zXy-eoh5Pl_}@grnbB&nN_^(!$TVSQg$W9Yp)XbjF51w zTmQ2yw3Nw-j^Tx&sT%Rqxw)IIaJ;j%Si+m%HT7;ke}4~U@HBlUlx^+q0q`fztJF?Y zNzAC)o+*eV3~}i)(9$BlA8y}>kumXoTif6@vaGId*Zu5sO@17}+BPsZ9~~KqYOwq0 z@u|ggd6obOmqs_Hf@si|IB%pwBC_SwO6gS5&mi&x#I@?%8dKNsvRNP8wfjZ{IYd{G zu6bvE2V*ZU+Nu@%t0zc6kQ&-53Cv<;$9fk3T+FxRih>I5=$i53pL7OAU7o{3uDbOa zXsa+61crghWWnQQ1-dq$y*)Y7=IL_PjIGK|coHRobE=JmsK4~lP5@~K4)Uv-BY$eg zkL2J+)xkAXUA^;><{km0=WYi5lK>qhFfEhJS2CI~sdpfU&{ZCvfc`|N=r%Q&!S?}$ zo6KgkGLTm>Ov}ayBYa!@cGkK1fcvhB6<%{ToS)H!(S}%(3cvo%sGct#E1U!Zb0ZV4 zyg#@)Z+*=ZL!bkQ)e*qW2RPlH|V~tS?hjyR|@I z<#|!cD?8URpUM;0;o~UIgItPx(B@&e#$;Bz)%rPqzu$Ac=f`gI{#PKyJo`>!-ghAm zzc~lF*gz1fS$^)f5OMlkRTl%v95}fKu7f}&uLm-BPX=^|*y!lX5WILL$!Q(k?!Ivb zJ}l@PNczKEyUwF{qm)FN+sZYYEsZ4y15T*1O|}%gUG)q&bMWCAVz`8fquQgroEl zJ&{Xgb&Le!xMe#JWDozb)`w5YNz{R`rio0hZP3s=TXCwVa%Ls3F^YLx>Qtey=q?3$ z?L5^e^VeyNKdA?E9Yn~1X~v|?jl?)2Lo^r@N81|0b6U1s-&|1K?;W>UUP-sWT9Um4 z@B?_Xii`W|7Uh}eD*#Z;rqG5sAYXe-P>l>TeFq4l+daNxs^>{2>YKfmS6wp+q8a8D zl{kr%L9Eco9|9vQd_{a}mseJRrvyjDbvGe_5CIU3_e6mh935`EM}$46$V!nh$tA6s zmuI4WYgDAHD-|d#4cy*O?Z>)k66O+q6w+#A?2>y<1pOeMe$Nu*%St@UOV?# z+%Z&^-#l$*r@gyhRw!syokjF!YEj02@>ts{sE}!dta@+%l~mE150XuP{SPd_^X7sF zYI0e#c2G>vvCn(zGt5&xOYMB zoEjl5Ui`IH-o2K-0M2vpyBV3F1l`*5JBz731DjeWIA`HpRhh;ZkR$-WjQ~f_#TkEu zjJY&0`#lHv50nYZ#w5zuRk^Xg17;++YjS8*4|B>g6Cik*?M0oZk;0QQ$Y;~bPy`Ka}PTOX1X9bSW>Vfpce$Jbb z9bw?%4Op<#z+e;^lTs#-(n>*y$>wXdhSZ?*#w^LT09}3XWeLspO{4XlSxHli%(EwI zwfjs6Dj*pgv`)ag0mmkg5Dtv|75xSVueG^CMJ$* zbL8ysVF>+kpWoiWOk=5$+?c-gP zOrJ>P>BIyd*(NL#)H932@`mMRG0BdcU3WoPB1CQOte@1M(Tf2&BC_P}wJXkG$Y?e3 zN*M_5CF_`(TS~!4Y(u@E+SWBK3CkR9W!L|@e*s`A03DpakHdj5?@a}NaX0tz+-IG@ zr7=+#4=iXtf!(w8W6qgqu)V?=QhN@#O3}@RdZaMZ)PuxIvwq=hJDLUwVI$z*L)|Us z20QI9Iox&%s|w}jNZJ@0hFZM3^a;Q1BSRFe2*5ysKQ?@d3}mLD4;Oh07~Gte?hY8Q z^|Tja6K0vV{!l7F&$Epxz#fCl(NH_$HQb8vr0hXBJE%0-LAm2gosbh_LpMxdb#$4|5VBDhehYu;G2G-(uGGn78YEgdGzH=kG61fF15rD52|;uqXdGf zHqV#fd;Z>7YAem9PtVU};})SmQJiGFJG(ut(mYjMX+o}ReW$&*Xz&pa{ItdIH&JXM za8chemaOQgV@RNn(3+RS6`w*z#oa)tqB0;aTR$2o$={u(xO_pT#Q_6tcJWQcdG)NN zWOFP!zw@$8Ky*C6bL|P;?|2Ycbi4@seNbb)Dlr-i`WcAGmV2}b^arXO^XH+i&AH}5 zX9xwsf5-r)=B}jU~fMNJFT2B;LFuCA`$TsBX+*}Nuu76^I_hAqX_v=I>FX|w%o6jjsF zbC3mezr?GFkh>P*5JY7je2$7xsKZsFU1b3>6JEUgY;77Cfv=rbs-UDw*wosC8wmv? zE~*&)f0_q_sctaJ5fxO6uGDZqdb)jCVCn5m^vv%{_q}M)UnvzrbTnhHn~M)Dm|zCt zKnesxfGZ*{iCn4&Z87(Ii%*Yk7}QUD3Qs~XuZ^pY)XKm9&Y*ZUSMUg<3BI9&s|Mji z@>eS3tPx(E)+Aqx5PX0T@H%@|9C%hj7?e{q*{Wfpf3)pi$4D#=Gt<0D`1$i^Xbd6( zK0!%(IZcXll1JaRP@?PDcnU&Res(_~^nEpNN7w`vXKPd^P!T+K2efo-T1nnAfP_%)PD*oTI)Gt+Q{&t~g)vb>;C1U&H?WTfUnk6=@O>gNiTum=9WC#L!xA6PTo_^1aPgX3Bn- z{Uxv(ZN9H11Tg8)8SH~0ESBUc{I%NeP<}=$AnAm2VX#PRY7~Wp(H1`O`gib}TnF)q zbp5aHFV*^tPv72Un1tK7c_vE?2(6ypHw18gkqG4V6}pC`xg&(xM093G2bMts$W|$uK9-+OR`<)7ys4ZoDcOd%xTKvr;Wds!4j?b)WZwLj=AF8{xD1*3J zqzaRV{+NgO2`vil)5>m|rmiT2PAYmbX;z^(?@hBru z{`EvmG6|@u&I>2~dMg)e zWFQFB9sM4(c0T3vegtXkm1gdt^VRRITh_?_&m`83r0JoE*vSc7H+QFCvCvNC$V>R$ zKz-lbV>m>9Q8^rmDx7ZhVRS@MtMB@u;>zW1XMe7J z9yW>!nONYzodG1Splhm~MpDVUqh__pXT6IOv{qVSLT5!u$fNE6O7TrdkcXObs{i-6 z)Dt=LXS!;JCH3#DB+!iL4os(yndqsLOAOfh8#n-&-NAix_&U(uhZxAL+C8q=(yCy5 z*$HoI)n2?fYEIwa)7s$@K|olH-0c8HxG-90HC7aKGzw76NDhH0zOU~^!oT!MjaFo| zv!tGq8@=QHL)za=Uj8%oQOdXsNckEjvaQqE;lEsh&`klD9JyuM`JrLFE&YlB~c#5J<$N zs&r)XZ`sy5ec^f_=>&oJ9V39F6Qnv=dC%X@`|hyAjSBv(0X|0PBMJxGT;Dd|bxS)$ zZuxHFiWH{rfL`Ox`6x}Js~uW}$Fm|aYcHj!Vi<66CS0R9(C9c8eSb@IqIqnWt zZ}o@#iiAOJ{fOAohhS1yM4xfQEqPpFWV`BZP6>>q5MZXhdF(vp;pGjrKJ8w-s*+bm zvfM}c%O5LXSa`$W+#DMR)m~irNJbEgf=ekJf{c#a=S^8}2zxFq{`xmcgg`vG^|!B8 zHcgx|awz@RW#*=)@}IQ(Zre3F#P^9onJj#J7 zBYU|6^a)0WONmJpZMKr!ZxOKQ;7|SR?&8@f7-OE#DAKs-aiXv%A>|9Ny(u$bIZ6v} zL#;bR;#g!J=VK8+mVOr%f&-aoa@*dK2i2N}GG2Y;E!wS?S_IJ$t}=2K@T)1(0e8i7!5o zus1PW*Wf2$Z<53;Y}wTwX4A5i8p~E?OcD2k0^D!Ju5fU3r3u%*Ks*8X+7tY2ECahN zcgd7tKxhkwlug#wVx1AZ5E=j966k8d8;sIcV(%~kABu#_ETZc0=Kf-em$LXYL<;g= zXfOCIZ3INfm3B_^E}$}FeladuT?=fu&8Cer8wyM5ITQom6|k{^(HVXt#?0jx?Elr4I< z*WRYkU>9!f4ibA$p4L}_*2K}azMk@1nZ@AuJVG&xl~v%HQ@tw4ctrA0t$~XXrYVF{ z_Bbn@gZyprsXVGlctX9ex*RcHK#HC3qcz+zx_8n#j36j1IS(Ig8D@OsP zcy7VyAUd8KkohIZJA2T1WXg>$KTb1SKStFJmbH{YQwK?in|f~>S0sGd@)X$eMv7#k zEewe>h)Dqc`0V!ryLj+DDR_7z=$WH+?U6nLv6QsFo z$@<*pJHPRsSx8QzIYkaX$ri31`>XYuP)Y3Uj>hM;FX?RsCnd^V zs14uGRAf`dCbQm1E-6TV_S2VV@#gnP;6oVF-=7Mwa#XSGHnl}m#^S=@vW{HWo_@S%_i%2>-+}^TbL8CX1|1fu*I4|TuIF!w3BGJ1oMm+m zwV>3w47&fP+zCfU2JK`W4JL08v;mzWFc4B3YW;Lr9iP9$YGZqL&}$nm6BU+?o9 zbyj)#MMOUwJFh>k1B0`ny|=x$x;kYdzskhP<#NEE@NF{Jk6$R7AsTOY>3r8!r=#=* zFk8e-`gdNE3(TOH_l=Dv9EK50b!1uW>x>NTx*J3yeg5vTw})`{cOuZ^FF%)AJGiTx z|Me$1c|j-#B0aabMEshyoN~X&-luU4wz`N1{lNy5E#ZG)S7~8%K{3=SG$!^MTq4^G znXUdkTv$`UExa-kYorHb+;Im3fA9vOjRx@l#jLr~X%WFsU}txCmz0KLaBF%xDSN2n zlWV$v9*fgIA5#({y;Dx**>V@2U+tRc+k*lcBh)}1gMQMl=uHVm;A#CN7&CY0v zfNLv1w+7$EKH?pZPuQ}Hp_RIyUHY0hHkTqQU^nVvzUnpFqOR7l23!Tv9Ll6)Hict+ zBcr1ac3QWA8y7lRxq}aP*F|GZFAv4Rso~t({oZ@NvgAiy+kqHI!B4c{Z_Y(+hNaK3 z=QD+57G4$n6C*{fe4yG|o%`H$bnF<8kM68M2aOTbkO< zC7?x^-}re+WiWOHUtyMckQL;KExynf!<4e53!LK*@JMRl;hgZ4vl*f_h$3AJ)n$F( z7E22#O*YMj^*WqeTvgR;jJHRM5!#2|F^040=YUquV90w_mX)k}BQQv>c4*hz1+5Foca5AXA4~AQ_-eh~5 zMoWp`S%8!Mc10jW`@Lik`MBIbr{WPv)AM)eBi`S+W>oTMcmI}@#Hbku98U>fzxqGu zan$tgg}g=lbE?qW=Dhlxs`1YGdJM4&nEvEJu^S@47PUTB1 zI6U>4!XAvd?^+E7FU4Z6)c}U_Cba}1U;K60`MLYhT_L$1nMi}`oNHGT6_487D$ZCF z37x%GGv#~e-%kNN*vRY?6E|li$q0R$!}IEzVYC+Zex$O4gK+JOm+7@Q{C;FJS*)Xb zb@vRsIu_HGLfkZjQTMJlV(RbE5%EYCH|n=+C`>L7A3jjG8=EqJuXvDZI1M^8CXfS6 zhaydmoxdNQl!kVNua{rOpzepYyM zvtQoC_Vr1bjm7Z;Pv(Gs1scJsMX$qh>oYQMtFx9evySMuMv|Gxs64!qCsm!x#cL|#AbrQ~&+*`wo*+;~ zv)9y&bq6N`Nj^|9LS=aP`S-3v?B~Nou`w!9EsNY(8=#SfmxETF6XT+2WqwzG1*q3L zqn!ogfw9Gz>`ep|swGz=))Fbl(@U`0y4}zcKhY~zA^O-rs3cpYiGZ3iZe!7$vDdnL znRN6~8B@4D#5jZTnc9e2YHPgBxdvDu7CB4_)N+=nf5-%Mhr#9nVmu?l(eY%k6ZF+} zHqp9P_YiUuGBf)DnF&q{{`dG0Q^kfo2+|z8@fp#mRphlad9g`@n9#)|4k&0?RdgX8 zro=~YBdFC0ZX;2_EqI!L@{n>|uIxDd6Gm}NYASw0Lc-PqAv0K(616g1(cn+r1-kcX z9inAt;*#YL%#MtVFbpVa|0;enY81C%PY4goQ3B*qc!PCd0t&7dkKyQ9xw(V$^DxQV zo83ATKVv17vXm#|8rvb?KbtE2qWoie0-J3Bj8FLt{Pgh*3lT!neckuL<2) zuj=E^=Bbl$UC^~`_viU>49uf#b0j|biaJ@o0hh>nv!0>wXgv3$rAE&B)vpjY9Y0XO zyzIY^@A|ieXrkhN*?lc8OE4kx#A@>uO(?pu7A!`JQRR$htF+J7(I#G>6~%bNM+*1; z`uD|rx{No4T47zh{wGS@lTEz77tdE)P1hHikippm;`1zkga~+T;B!O+lObSP%l|qh zON)Y>jU5#o#UsuaCP$B`3_DBUpZs<&U!LEbTT@zi;v;O5M2V{F zzT6bTKjjyJ{9t;bC0C~1584dwem=xG)dQ)v1__bmO=~{B1H{brf9tDRpmL4-#Y5Hk z=x1miZtm}p3sU0=I+vfII<19MW8A+ywzBmm%CNL>4y5d3s`3=git$_e*2-aiJeB&@ zCgrP*+rgP7X-Cq+J0cEF?%khnnf>l>cnQwi_1Q!ulTv49G~Ys*QM+TRx|DHaGaPny z%AOmT8ukPGPmOb92?|a^clkjCe><1zBC0_wvn4BoR+@Nky6DwuZ3B>q;F~?;R(@<= zc2~AmTcO32`8=+2>{q|8G%cl5yeM+B;#mXu;Z5|(1HW}5IVOM;AR3S64_h&qdmz3_ z85NXmJ?uG;Kg`yOBYA){IZU&k2< znIx_$=tCH8M>ctX#w$TNrPItEa4MbL?sYOioI$S4iPEmxE2A_OBG_@@#fbq-0c+kV z7WFi@n=yR2i6P+6QI()szzYE>#ICu$5N;OGT?6~{_*{js`%c7Z8Uz7+AN<(DNyvlz zHO3;o;W_;bP$a_)OP&!5B9Y2O*gSH*c4fd<>hDkrJ<%3gOwe1f-rdc`$wEpEUy1Fr zWb9)`_LfA)!}8>tcBIFDGM-HOzSNAQmGY47H88lXb$Mff1Mymyl#1+}d3I~LGjR+> zYa!Jgy@E(DGt(X1he6F--}6WwYePVBc!=Py;YhFcy>{w-okjy(2QK z-11*2vTi+H1b_(j2J301=YJe}M}!(yCo6Hr`ZYj!xkADnGIf86T|& zTjWbd9wAz$t^(>utTbA`8C2zgzboWYtlEf#{Dx_TgEfpRGC9aoKD~b`1#_8WXy=LS z38l|Gj&ZicxD>?Iog&{wKv}9W^%pHk6&CkEY!0^?!IG3aA7dQ-hL}H0$aQ_-@=HR& z$kG#ZS7E=sLNE^kl2kM6Own*NEnTG!+*Nmr1Ako{A7=YY9ci21Y_iWw2yw$su4u;}sAAQ=-SEdTh*cSs#y~ z62h1;1TC%m^RZDj4HuC*EI<}`y1lmZo6o9|lyddYP%vUDJ2SC%-rYBiGvZ+n;uRD2W-FynjtIbg(kDLC9$2uzZ4DGtgZ)+f(uN(acang?J8BuMrl!Vk5<9ETv=a?bsL{~Gk;`K-uyJssHq`Dm?{HUwR$CL{ z=DgcLY5;p1c$E4?qF7IIS`Gb!yE=|v&YNaSR(EI>6hze=jeBcn&!wSkKAFE7WwvDR?SgannpK5x$ch()Zp`sp);PYzbBsrq(pzX1<&VOr6bxIYFYD73U>O#(Nl;}t(Q5PzN{EJ@e!{HDqGeU>9e)FZ6g87n53BRS8lOd`5M8wb&Kb( za*uU<*V+*pI$F^tT6sl9;|w^^66J~f)FfCU>kiGTL0gYkduD2kbW_glMP<~%mVcO5 zMC(U7HM3P0j2G2K{ced#m7z;&>y8E4aXEiVx2>u;!qv!|T)c!#9FksvP{F$8hYqK|s7IX&j z-#v-sm+6Pr9O7ko?yFfanV6Y*MMQoo68+{th0Dtj`nI+T%@KLC#&y)D#aKNW8e5}) zas&yX=kM?5rH11U5|=IaO+T^%Emtwl!)c3{BP@W-znIpqQ$t6Q2&`k4kfyqTjOih# zX}g^AYf@GyLMcXqfk9 z!^1)Kb{X9I9CyRyO!^}bamw*6dmx-ObeB6kzS29D!&u!Z(h``QqiTW9dd*I9L(Ke% zT2(?JG8!_?AX9)3JFDx69RUQsjPcpX_XE6mswxwO4@x@Yc)gfD%+@o_sQCp+165R1)ETvtbe?tb$f&0$TnY=5KljF5cK%kN)Mo72kTSJ93&cm+O3n`XI(Xd) zl=Je*pFNC=GO(S^lCDpIY{7;vyJM4vZpi720;`Q0a4j@&ViB{m@@L1hBRX{qle@|X zX;9o!%!f-Ujdn}=4Yu*%N9g@UGn+looC>G^5KCp7N{*S_F2q122bIb;|9W=DW7gw` z*sZ->tLHZ-y_FiSr-l4z1VxgD6%AW~5Yo!@iTr7n0RpL>2KTu{Be9KFvk+;6@}K*7 zk!VOIw8b2#o+c#amVFilyb$mn_++54pgImtOFzH%ZQdt_XxJr1>(0kE%dSmQGlom% zAUy;W&j7bocldX*_%{|7XzX70A%GXt;5$X#JNUBq{PO1uxVGKe+FCg1uUF*{(+4JW z3C@?;g+yePLC3#m2>=>_oLU1WF9qFN5p0n|YT}SB$?vSOHEb}%a#M#P)E7(Xr6=W7 zx_naDC`_7-vI6?>8^PNj6^0<_Mu?2VVcuH;2F4x5CRI1|FU{pvLJZJ2tD>W#r4d0= z`H3ET*Z6;s2tYmn9p5N_Jeo_8YiL`p^xXAyMirk1H!z#6VHXFgQp`Mm=%|i~^ve4e%hLfZYpn_;7jEF6Qu-om=-eh|;y!x;@e1 z3RrN3J>N#BiBNaFoY)Ovn7wE?t^0h%heB2Fg#Lf9y$Y z23+UjZ_bgJH{Q^It^T9;y^Aut7exK6eH5W;S@~OeE-#{GFiKAFJ>z#&^RW3d!y-IS0O56 zDB#A>TJYx%19P3P0J%MR+85sz{xiE0CI*&?&2^<(R=xTw{K|eh|>U}(;MUCNp%zl_#y`l99%a+-xR>O?lq<(cqLU{9S%1I zP$XXAR%5w4My&`~y!0Hu`4)i4aNF#qb~LP@yb6XfiIR8yVCf%M=qzP$RxWWc1deG? zo6NP;);p!>6-vGP@e+(3lWCs)q2%6l>uTQX`{?rFL#^f1klexbJf=kqEp4h2xK9kU zx`4{w;uhXQUAw3u<5q=jz??47w%1oBlbN<{$YAztKo}C7#Ap6igPW`{ZpF8EV;uIk60U(iX*zj1)ehrUg66hKE z%WxCL-^62)SY$K7r;gYHu?H>fZl|YaUN+7tdS@hoDnU&&^Wi!Yn?W)5z&$3U#_Fb2 z49WFde;i*bqTl}X{A*e`FmRD}oU|z&!@^kT zvsH^58n>&W*xz*^H|SzmL%YQ2@h}vYedfzxf)_%XqLA*zJCt;7((<3*50SRvRl6g3 zI@kQ1C5mzX1>ymgNM-a&$KPtyiVdq_opr{u9G}w{x^rb{r$q8Ib96kbKdq|v@c$bQ zuJwcQaf-zxIB`ZneX!z2XJBqTc)Z#MG=M#Sf3Y)m@Z`nmc=izo$W$#xu#g5TT*-X@ zSC^R+4dqcK1k|Kpk|jH6wy{;#Ny$~;9B$pNU#E@T$!-Ou&9Y~3?d`^=UPO)6kKtz7 z6}MO(Vdkw^1H5&3RM3Mg<`!=Ns z@J%cR3F2+&LzlzRc>~U9K@QKrPBBi+-!1F43%Bg6>8`FycmMGjoOw-8$-{p6;WNi z@oI%%2qWC~){Ki_wa|@kRvEKe|GKjk%b{lM{bw&VA2sEY!wwdGw#R{uY5NZt81ANv zn~<|p#@xxB?=|{C=TSeO_>3HV!tuNPMHKZkyHzD9N3E}^m{y$?Kup;>a6=_*j>DoS zcg}@B4;Sm}$vW5w91(MS|0-1ptx9>F-iLW)B_|y+B9jF)1@&+hq#CMmZstBlvx!}C z%ZoAT(V~SM)JE!9H$zk`{D|swG{1D_ERRZtI+z^(?w82(a6CyV(0bx37zMp>V*q^_ zNu*F>dMl|#Mn%^DX-aanSofTr?^ndHwsyiM)B^oY&H0pKh4|pJzE4GkIeW_MX5KOherIlZ;K8#K-mI2keP&zf2R;P@(7&xg8|Kd4{S;~O)7p}~Q z5q1los-rx?)G_eLWfk39xy#qeF9p^~L#LjQNrQQLZX) zq7Hwl*|$dhyBpe!Fl=-KfC%`|TD^=%k~b8H58y{_ZP{ki-OH5_|9m{%DKeaNyr@2P z!~0yoMu5{q!1%9dlOb-W{G@OqU0ni7`~b4X1=(kq5Vkr%a_6+)Pj`x`!1?qgoP=vy zqfcxj{5U|G&ZFk($+c^SrY5OTqw%Y$k@XuSeRIubfN8_fqmQ{%y=O@8Q>mZ$NhTE$ zeB?GBg;FGFr5W%ZG}g2~C2T{qvAP&pod=0mTf3DI>&0nNc-6wcG4C?2wl;S3BxMKP z$@E5_R+@}f9rAoC(R@kZQ2O2#7Ubs0JQza{>v}yqG0Sekq`$3=E;@5g^5Y4R?*20e z!<0ofaqG!qM&$tm!Fb*uHPasqVVdha)p{+Palw(+WG=A6Hrx|Lpq z^XBR^XE7Srgc#bL7~mZEar~gTzATBn`25S!zMnXn782~(zk#?{$kt*;h+Agg0Qn}S zS<>*bWIB+<0FPgT{Fxx)+Q$8Q{BKW$e7nfDLNrkK7|U`MC<5v3LXAEmLbmD%=-pA0 zulypM>Hp|SprsML-5ZrW+4t}R7#ko%fagbtiNwd5Q-cbegE6#ymOZG)e(5b(i|$>X zN(8gxz%3j4iqy?y(N|L6{dCQ7j22Gn-as?&*I`I1=U3WL5{9wa+$12KdmU-l5# z=mtM7IO+D*uOg@WaaKMJ4>!Yd96ZC$A|^iD8z)?QbA}Mdad%t+Ohkf_eG!+Xxi;N* z>ke#TZ*h*7J z;Bs)_1=hMArzZca&d+zM>Fh*rWZp4iocndTr_LwPzh$!S2A zK@&rB70Q0&JJ&h?J?OFqm)_tKJ{|;Rt#zO?cE!~Ds=M{*PulXjyuck=_0vI9rLm)F zhl0n{?rJkz6)ikGoRo}Ankg^o)yylO-er+rslPdY=22%9xt}J1X>!|x*(Ub5yG$;f zH&T2+5lX~J1a#`RNd{n>fw9vuSltsTax)AV-jL@ydxeH7mRJThaRcnpKpYeyFivRj z$&>w9uI9Vs(xF|aSn(gE&b`9H>&QHD6uUcPw#;q?jW24v#PN|i(ANuLwxp(I#C|H$ z(1>a(bY|2Z)Jj@f>f|F=N{$yU-{?B)4dl zwTvxd<6N5M)#fKKE~4H7(|X{7D(xjCP*P+2FnRhO8dkJz2?|iSQ~?Y|Z%uIP&3Z@f zFZTU@?_s>!Xx}E|QB$QA6J0UPKK_AWoW@zCzUMR{<|qd&9$FlTz@QrC&{`(6wUsg2 z4O%&Q%j%c zmbUEO(pyGh7nY0kyHsJm`IKH^t)7_?H`PljpRmJ4Fqn4EGqzdiA>d1B=uqV}5YP&@ zKn;6CtrrUY(R_OnEMfHp{%^4KvYBLuAc1-68m&v`aqGvPGtRSrNwJ#ACG6`R*uQ@$ zgQSVRJ7)E*=_6;g1*t@~u89bc6b6?d4-KLGAJSe>P%y>XCbaJ<6UEECC+NiqY;F-I zHowU9<$2G!xw*p;NU^uqwXn<@w|pF;=CO&LJ~NGbcs_ZSn+wxpvR@WdU5zs2(9;!^ zb5DFl=%QCL)o092D0ANNQ)Fu1d2!*T~yF{jd3tqy{1nPGpsN$ zGeudaHhK0z9U&WAju~BG=5wwd>j8E z+=7fjk%M})=i#mqsAt=g!U6Eoyyom^`6*OJFjqb?@wKU_)8V@8d$HMc1D7~@C4Q{} zQZ7zTI?4NY*!`d(A5iPv^(*Ilwql=jQ2mBx|;g=)arj4CCdk_t&O#Cw5Q9w zNasw|G|UJ>n!|pt$}h`scPb=d)z|nOw?kZgB21{=D7q zCjqef>6;6<=Ic<1xH<4Y`S9p1WWWQ8etW_A8E0Z z3@$X>eckEnCSX(a=XTngs>}+1P%+sj5K{|Am$H#Xm(5W|>odclmhrv%Gg`EE`e)Dw zUrT)^leND9u$iB2xz~3(@?TX)t)Wb`8^^v2Pbx|5n}ZlDP5C7E$DFCBA=4l}eP?z< zg>cq+;v(@e6P;b34fw){GHBvQcdu|#k*Xqnz$j90ak1MJttLOFS}+^BV<@h8^xDFR z7$8C2wzm3{lKT_${giioB1&Z6rf{(l1D4RMC=zb7Ex^_ywVQlv6#K9E8|BTY!`t~G zLJUe_AgDBGt}H8i(rY*m$oI6+u$dVx(B|@=EY88t4?a0^92)>F7ZU^q1_r7_5=ZW2VReT*1`{?Q!zp=qC62zO$>N8d%e}xjQtl9Mzi7QaEAu$fW-r|cP2Vz%!AkL-j;49fAv0wqjBVzRZ3U%P+f z(n#L=p$RT>6|BX;`Dt~Z%HhBU#;Yhf7cuRppe}rvRMnZnst-<6C5+S_e;Ub7T;yQH z=$Yz}GtEvUoGt^CAIiN{Mp)XnnzC(H1Bh9*=Va?4S8cQqUF%=RF%(^cdm%_YSGE=A zc5~OQyognCNXk$kYT8;76pWK+B#d?3EdtMP;H-j+Jt0%2Q#~tUU%W&p^b}+z%Nchx z168DaM)#`_y6MUsAa2Sk2O-W-C+Twk&<2LW-SN`$^lE$%M4AW$#-L*g03R^mA~f^U zZj<+fPR^55n|hKqKukP*h|yoZtZ~jW?+%O|O{SJkX9VB%4Qq@+1n2ZBQW+RNW##8s zWtz>2ynXoajt?}2w4hsZ&QUNJy#k0ChM_vhXjSXg~mD9b4wzMo{k6PFGp!Qz?Xsp{I?h+ll4rKemNO#ZL?htOxH;HO=6(8f?#IU~ zrrIs;82mTP#f+9#R!D?|ga~CzEHH5`YsutX0LurADW$SGQfe|F4kwL@jt=<6PdWrj z^-C30Yj4pjRQZJde?s(_#f+g#J~nnr>9Z#*pQ1xpl!1n6_ZBk`u{}PCIlntO$AwU^*cy9zr{c(Zw{bmUxP!Z^bpih1#o{T}dO7=jE2OwIZ zYXIqi=mq2y<;n|v{gMihG3Dp@wOBJPbHE8NET`<4W7OcX8ZX}9>68-%s`qPa5|pBs z@z(QEN?^+~{*o+;Ply?YpbYDdooc;1MW*>rGl_w664F$1>tkXn}W=&~y7Wemsptv0wprtML{KpZkl98zuM zs7ixsYSTaFoKNk7AwX1%J?QyAmd-mK%lB{Nw|(0)WUn$ZD|^dcnIT(b&$9Q-$j;7= zj54zcSxJQu*+mlBdq1E1`+Ht5e||@~uIoHM<2c@j#v5Vp1|OGjzi^%+7dhB-u%-?^ zwf1O8MID3SdCKeGs5Gd}9Dd~B*IGQ-LMbJ%IPll4Tb+$8$@;q3qk+hHLco#mP|l=0 zEI@Fnk05wV&tL0KTQ37`=*TDEAO-)6;DZa_J(lhs2xk zJ0T~<-*=At`xyr9EMJPxsAf8W(`qw9`LUm$8L(!`B zJOb$M@jTRO0`wXvw`RTzG?8GXFHmB33*U=H7m5@5R5#n^CSn|o%M3b`L2I(ss-Ab; znWcZ@uC++9W$FN%TWtL=ycmDXMBtu%3mcM9jDuJ81BlIRWHHJWOx7xLktBTi)5Uc|igwTVJxc=1Pt-x5 zA&r^M-r$fsd)`{qX|7Lyz3JA(JtWBY;U}Tyu{QqyBnY1#Y7Nyr=U(R$6%xX3h&!`e z6-zgGu)U+i=;`_8Jt9r;p2vrWXu`lI(R#P#JVJyN8YEndpMmWov{w#qfkQ=2erp$7 zx3%hQ636H7giDof%BzaG&h^&I^NED{g87#YG}y5vI!b|eyl9|@2j5VC{{Y}%+sy8U z~f*G9L&;Aj_p@WE}WA_PXt|y<-GK;% z_0=^sEIl0X#yvYI$3cS+8-@R^ByR|ah)hw|8W|cQ5YOY|BZKabt=l&CV$N$C{0n<| z7HANX*CbLc{ME(?QViZ>J&E-6hb)mO%Mdd3wN|aH#)26E)_T#xPZ&20$>?-kN!kt0 z>G9*@NN$uD=kbdZf)Z=0&6_W%-HQ;u&={g?p93-vzZpJ@yA~dVv?=AAYO^KQDc74* zWG8A;zxm3)rgf%v|GbOku89^}4+W+EI@HPg9sRE+|GmP$ReEX$SmU*^4_i^7Y;*&s(2jjXHX^FX7SHN968({6@qU8og( z-mPPOz0}6{g3XUZ1ixs`o%FHQv57+kwrq2T(DJ{be*~kGK(h_r1BF3ggHsj zYsS$@NO)PaE=c4|{=BAWG)i3p#t1JNrg1dqf&VvoTtJcW%=G#3d`A- zXXks$)t+tJnyDE2`lM<%Ym<<^xi~vHfuA5xxjOC-d$?tFs7)b}3pJYlxMkYm z@Un`O;HL|f*aS5$dX$nPN_Duj)wv}Y_s|e!u13{Ifc^pzm_Vui$H(kC2^Ehf7rwg@J*j&354KISLM^~$IO8?>$aWX5jr@EO=y0+166>t?^2S9JPs_ca$ zKFMdr$(E9cS1ui*hC*gfR_?#|lyP`QragQtlgQ`n+poaabQ1SzUtw}JlwUy9?bOZ(n3O7z)$ zTRIU8w**hMHuaBW6O-7qRJE2R5)1i*&_lgcEM$w~_n%*^!PzO2;PP~GqtohcG! zc5!E3d4{I1nS8gfShL%u9HXMAK+Z9$;n5 zHov)zSyn9!9K+tvmlw|0Z*N$`MlWP?Iw3K!*eV<9MCasifRZr|Gn&vZC$4vUnu59E zN}@Z8<^1Y!jSIG)H;*ejj*FrAPWm%rB^9a>nJ9z*bX>10i$&W9Wig z$^9GgxdCUE3c17i(kMC{Xr0~8kKN(kBKk^snC+mE)T(s1hd;w_RB{(mMo|BJQCTEk6u3$*5&ZBc$f00epUECrupqy^2<8w+}H?fu1K(xZ5486 z1k!%HUFiV*4I*G+$4rT&8J9xAmOL1Qn&X3#Q+?3Kgpy3X_|UkK_x%aRs@g&+QQPa@P)*;w+IoWhM>8yFmsIt&> zfg=L@J9+KikE+t zuT#dGIoGbJfVv#z4ioso<#?LhM%8GdfA{ZgrVl#(MEOl-N<=0D-LRp%_l!s|Fqb2i zIv*@Vy%Dbk@Py)k!wzamP>;)bIT4UAE$M$Linw_V|4UbKY(>%W!o3$^4$xA6x5EP! zp1L;VXsRj}KIh&uKKLlJCDAzEm>AHPBU-`1Zc?L|p^9?FwDKYXxdmrnbLsJ z(1(6JUiAqW&w6?5_ibL2=0(B#r{_XjDZ`H1$=S?! zw($$0Gh>!NrGcMkM2u0+P|TUg!wWM+#n(fq%g@?lBzA-ty&4(AR%Y?3*G;4SBy@tRc+%yDw_%kN906= z;m)VX$9~~0EuyQf3Fa3Q=FaQq;`D9H2!>k{PY$^+XBaP;86*OtQHJJiN#2L*4)mIO zr8b2oTxi?a&fp$J-_ z)*?Y;e&1_ynZpCSzLtzrVE!8L^k3svM22$57H~JzEa~+LKC*RoCZyss31LDWubrRp zaArIZ{4r|s?JJ+nzx`N09@W6yAzA&2go*+YHlu#f*3{SzGr&bQHMRYX7|zzygLOm+ z>_k6W-_CrQ*Z*;ZL^*Em)+9}I(bNkj9OtSYL%b)(-ZlFnz3tX(Sv3>$Cte2+LH)^u z`P<{i9sft!m0tZXWTIWa%p%Xd+aqedmh22E!7B3X-ZSFP9aCyY81pR#?v!`S(t*Pl zl?DSjP_)x8ql~tv2@S*=H^?!J(q|szS7u|UrL8$r;3?N9L`5X=yvY|9kFlqD+9RVd zd2zX#rizta;rHohHf~fLVUK3nhM)9)oenb+1nN5}{S3+BF6sBByx`1v*$>r%z}G zsE?%lu~pI~F-mI%V0`47HNa6)V>q;=b)!SpO6wV$p}MtQ{nkVYMIAS56~~ubOf1dp z&_XjL`kNs?^A$SNp7TGpiMV@L+RyDu3cgyUxx3@jg>a~B%T2!^p%eAMyq_=Cmk6Mb z9%AX)-P3e!jIQc~KOLjS(1}`6^@gx!smclyI8oq54=fefjb`L#)!S9z_0+W=jwFP~ zS_1Wjqarr5^n??aSI7xx;~zGRR;;z<-wYh~*Kvo}VDojT5__f&-Hbqq+fh>Cn}&O@ z(gOwj9=@$Pu$`N2vfyH?^Y6qMlx@+IgEJit;pzG(AieKMO;xtNEz&D@0+UqmNy5_4 zXU-N@Ui?x*QP4|tikHhMpUq>p>(PeTWSjj)tJEy2!dK8QX`gRw_3K`!KEqQy7e0raQriSJm7gAK5deTIi~W@*zb5ANfLCwS zvn&=}V@zyqc%*7Tw(eOP9$oiK%VAX-@t3O{CC$EjHyNY?qMuEepJP`Uc$!4--n1*2?Pq`xD+@cHIk^~7es1M+W9n_l;TtH#e zzx@%3je}EbYgM$dHzJmX6Y{63tjyuhf_=uaCWV4sEj1Vbp7w-r#Qq#=yjQAz>>Jj6 zwghD(t`ZUBX2lzi*S~Ua;vmj*YnMclFwtOEhw|;rLaaxAo~Z7@bR&VP+`nw!B{qce z(;r2dBw>17SpJ^Zz&Hy3*O|xLb=>}z-il=E4{lpy-=drTH%r;*_ox_*Lq$Sg-ZBk& z+*hL!&sqbu3vmYD(!@{(3in6UXqQJpXDs>l0h94S5|!xcKc8fOx_?>%R-pM9*>*F} zzJ78IKXkUGs3J2vuYY|1ZrQq(rwtaLd8Z=aC@N9Rf!XfGkt8tm2(27A+HdDJSFIa} zyC3PICsLGsuIMmL>ROl+x78CbNWXQB%~;R(WRir$VDg^+qlzw*S~CudpdbdoRfP0z z_RK_?Li2C-wsJ|v%6Av?%TRGZB6r2tGrlWGUVzg2-Xt1R9c3TN076Uqp30Zqxy+X@ zO7AwV(pWnlPS5u4ejf|yT|RtD{-8+yaN|zPhy!J`D9cdJuX1`w`*j1{1`2EV zujL8YDI8DoDsbNpOX2X^4Q!-ee3WI(HgAxt-pmH0&c{DHX5^MnUclHgLjUJD1}P>% z{BxQ3KK?s`SObul_dWsWizxgEsPB+zO$7{$1BOEQDindvLqRXZ;`(ZW7oHyO1{y=^QR+6yKT?m-Z zmcA|pqjL=m?|zru_$(QS_h*z9nr&Q4?T?KPlzrdIE#J>sc=wkvA%Olw*-NF{>1pUzUlvcRgE3EOy3w zlSy1^{)hDg+r_k@-(QI0=p!zS!5su1ogZ~t7HRmN-4Ur@{;4|3B6oE0Ug+erWk#Xp zL^2Mg;jyXgz8G?1VX+YGBTO*npg_p3KJ*?Xg08fuG`dxer8i7aS~{^304UbhnE64c z_WDxwxm<~6v?P;`xxc++iH@yE^dA<^AXQ&nXd(DYwoeZn>7+c^>K-+s^UszBaOrDMmf7j!(r9D<_q0}6u~fX+}fGezhL#!btuiV7f;c~|xK z)zWRs5|$1u%k-E8cb_aqRCK$4W-7GWn;bHzuBmH{H9tu+-`S^fwI4^oO(~TMHvIG@ z8O-y@y^E!Roj711oY&jFw{cb*m!Oc9WuQ7jv$Kzz<%GIXA{okqj?)Fd(eRKg?bqTW za!B|KKfE`vlymqw{r4Zvq3zA;A`Xqn;7GadHb%*LESy6ACZPd$iy5z18s*vc+#GXG zd3PbC8sa0J>2WM~YqYnzXj!J0_OO^!w)}7u3C%i#2xr{+Cu|b~VHr5(HJ2-r{{)dp z0qfZ60NNazawvvUe)Ih8{8L9TOh5)4PMPQ}hq&|YgY znGIxx?(^w=_+ZFz#@&(7ZSyEG>PqLpn64r=Zd^%xgaaG4++VR78&uz1Shyl~Wc z9aDB&f*icPOI>Z%KN_iwYPhSb9#SyhDIzf$7sA7Ob(X2K2;U6FcBKHzz3{X3R$j2; zM1dUrC+HzWJdWKagU}@J-x?PUGRVewZzwPOoRy?rfnL<-@>~@APF7TWiXRrQ>YE!l zMD?mo1Q;pY{`qO~_l;8EI$EvGj~;N}?n0xJaO-lUYc&$z~6qpg$j`;83<;n=&?7k@vpD4jkG!k zQJ)PWpN={TO+&ll=Ha7(#HG%QrmH9vVjFPI8~6L2b~)XPSyk5TgJK~KuLKr9Fl_|A znST1G7pA(^Fn_ixiq0(Uu63s7-hinSfvV*C1GrXL@W8uX^FE{kOFtsTzZYv|8U;0?P-}4rt)b>_1*iuxUCni2}av~^Z zWxW*KRcM%Gm9Z$F0W+t4iF|Fvry}j;^fqPmoZoRUaBB8lrv!jOvZdG5`Ssa&y7s@ojJ8Cz{L@ox|k1wAwCaIQ)aozuADIupk>`n3V8ap}e@b?!jHy^iddv8$` zu`z#@&uDb^fBOJL-b-C>rdtbdJc_AK;~p%=ThOWc+eTvoZ*S>WBtC4y^Mfx%6%`e; zJ1uGV8jSgFw0=Yz9z`Eb3g_6AeStq-Iaw{s*#~SBQU*Z@ZpEkJH(H}CWk@i4mv*$` zXT=miUiI%EH+YmSXM`v-(vyaP3-en|B4{6p?n)^r6jkf=JqO2#p)-RmR5+t@wbeCA zj}M*BsrRvXLUmut4cykMCBWV&-z3ZV+7fE}6r_)RkV_+cRqIS!#}-;+Dul%^DjFkK z7y?-!OlhhO6ZJEV&iRoyQwQ^&g|@V&BhhurDG0_;yFQ&5c}LoL2DubAw(Hv4k<2S4q&vxD=HZFyy!X`_|P@165by%z)X(!Y8wN*3D{Yp zI=A3(x;nlnd+lws;GV33gjWX|%gXijiRp0XFq!DB-puH}cFKte85ps-*~uW~k)doV zN!PVkv5ergr;7FZcGz$oPQLi9;A1q5H@-UJ;?HX?t~cIGn6jUFEG%Q!+A-WtYBtkfwhPvGi}=|TeC!$^A*f= zq@E(vomqz^uH{JwC!kgmu&k~v`*3{hbN^cvkkmeYs%}C2U}t+{C5s5yBJX0wfq{Sj z=`_vz<6X6dJKgNpoFp9ElEa&5D=L6e>L*8WX@le7g&UG6b&7`d8c5H%Qt8PRP)iVY73eZJ@YnozL3%BO=bh;{&%lI#VnlN^)$c>hE#RUD`?^ zj8gbpy!j3{=kT>+(`fku7Z-51wGyXDyCsO=@GQmQT8dDm;r1L1b-{ zIZk3>b|>ztrbGZUYw>p+mB`-T*VJ@$1PnD?^mWFcj??dHQ;<$jrR0B)7?#pYJNL3S`*2Cn-@9o)@cO6{(%bLnZ1~d6;K5|%Uy-~{<@k*) zO|*qB0zyK-C@w)z3_lM({(pO`JgLCgGhzmrWSjf1yDp!mEKq^a+q1B|qVuGT%Y22X zHni;bhhHo~?fz6-5REJ;7%?oY752JvI_5|iuRS-v0%JQxG55#w*doKp4YjemFU7ry zf)61K8#ueD9ZPGf={A}HMsoCn2Os8OXJoR1!O%Oh$V9N>58`QBTGj(xwng<)TE(9C zy8$fYi*t9R+#jkxRWO~rk4xh7Q_3ji{H5a*eFe+Vd&#>SEW+!s$~fB;M?FkNh>0X( z5E&VD5BXBcAOB%~!?4RMoI@jNR*E#+tBdDrTT3Y@mmz~U;Czt1aDkj|ILMl*;7QR7 zIV*f|b}T~ir?-*Zrb}9QL;NzFbE01Z2|vOO;114jJK!GdAquOeq@M%U~xa|PP5NXbX1-yIlHD4sOHLK7kxUWx3=dR49OK= zSYIF1!-JWop^<51sr}6Saa7K|>#Yo2+ylCJWVf)u5@uG8y-Ec!~jP!qNT0(jdjQK()8U*37@RFGaN-rDXT+G~=yk#?c`A+TyW}9)v z?yo+4;Ah6%bWY;5>5ym+NlK%`4(8+cxOH1jYZ$xbx`;1Gv{|jV>l#@{7S9~sHRDHE z*twB_?b8ReG9az`PxbHz)p4KuY~@XI$Nr@NmYnAp`z%*hv5+4L+hnN?3|>%nL<|fJ zaPuV6JXqh(-=yB1zyOFJLInSvbDIPIOV?#dVG<6I7zN#f;Fc@z9*3aa#FC+Xsfq~!bF`F8h)fBDy+;zO05MfT&FWeYf+K-vX3Jjmk=czV>RvMTX>$oOss3BBm50oN;M zOs}xqMeyRoEI0%v+ATL3gWKsPyxA}pm5`Wn0W4jD7;_;<1|x(RvD}^RZPSmlxi!Y1 zdWrx0*B;&(=}#*vt|5+wq74uorfq#O8##@-BX z>DxX5g-aN4nDR#0Hu%rkR4y?Lh{218qW!E*R4TKPfk_+-G5i$MxEQ+wJ>SR2@J(Kb z5(y^3t1);%`c6+z8#9E^=a@c z9+M!up}7TBkUMOq;O1Q3^MxOj>KlNI@M6DL8M6~Iz9x&SNbGaH!JZn$=l#^j@-<)D z{AhlMLfK8jhkVohHMA~*Kw`dGuS0~Vv8F(b3?Y^}M!+fr{u&=9&4UT`wJikt+9Z1tc}kw2Pun+V%2%68HNE8H_wr#2NlaxQ&XY}IV;i%ddQ*WN;j^Sb0?n)ZiYQ6; zM^EI3etyq6VTaLQ%jy;#)YEU*V*h8<1XwLjh7LC$&riWUeV@aB*O9E`-H)|(x+bwB z7Dtx`AlCE4-}_SbQyRJ!MY~L=Ke($FP`?&f)wVME5Q|kiI^Q-_knMU6w-E|$*N0EF zjZ1!`A(m#l{B2HoE0_{e)$%7}|1r)&iO0Wry zW#N9Hxq|QUVwY#^}IDG6(Y=iY(*pvY;qI*|R#8nQ_UA z2|6~Po!uJ=bW+b_ZkCkIQYR+rYf}g$4ZaJEcg2I_mXJaL?V5r}>EFl}pW~K6UQK<9 zfWsfQ$0x(V3BaNKxjdNqmTHc-7)P`INH8lC|(+_gWOqTB59N!mp;8SlAE$=YgTp>I(JZi!UP8vF+|BHH?+DIZs2_$>vk=tC42vcABF(5 zQ?GLhFY=12Rthdu#0{-zK|uGK8+~b(@Z4p{a|f$b0W&fKd$-PflO2eTV3s+xK0lw; zQ@0pJXd-}=s?D3WJ^GB%rHwy6;{<(mzLJ$CB5%gQYyem8^?UwqUqOaM6ozW5Ggumw zi)42T9kXjNJ{>&p z9n`xW15G(np3m|(VYuG&rD4q@-S)<7guhJR4>9Tb(4v7!n zoJEZ&pjfVB>$cW($gX(sn@eM?7iE;Ks|zE(p9|)l^_Z`jRo#RuA27&q(Qe&&Brj_% zuBNH393p>wRDi{~Vb1x8{;8Z@_@l-l$Eqfa;}W|ne5%j1U7kO+@YY1!j)&LUCkrWf z)o^yWsPga@ud0;n%-RERHO2zoj(UAS>a9jQG0$xN;pDcf6ks5Q27H>wwq8V*6NPOD z5&%X&U{(%2f?-iz^qr3iL1#@Z7E282RLxp#yiy%gbeQRKT+IRUhB>513>+ z2!u=%=1&YAoOa@$@b7%9rh98EWG;bwNT%eM=i^7Y(>{A_Dk<9#2jya)*Ly%v#3s9fZ?Jge62i9K z?zL?j5Q;JLyY;#J_SO&fM3W;KB;Fe=5zAjqi-AiKVb2!AW8JQf1UoUb(n=Sr%N@g( z)#%C?y>NtLD)WgJrC;amy|m9Jkten*ES6fhHBV@=hk#z*Aq~pRjm**nXj~DcjDO$z? zy2S0Cry!F`V3a1x2t3lMFO!WoKu`2ioUm~8@F3$ef8Pr?NIXgkqG9e2x{v@UU7@AB zIyJv?JnwfsS7e*iA_f-?k+l&vse)Fi8S$wbMwxh$s3@4sDoTG2@xAX#t296b-V_4F zXEm9XkexwJ;$Fc6jG6Ktv&yb9Je~v$AMw$rV(}AcY0kHtA-bZD+x5_Q0q9cN6otwu zTkXxz6axky4GJU?;7OIHv(+SR#}uowQ3G#xq(I+^qKzM<-5^z`nH}FKavW*Y=4XG)DgBWGICv1OYn>1==05pucn2m zdiKIil6Y2nhL9yv|pFn)G<16t~K+e z;;nDTfEuY7ewE|px(8H9Ii|bFx9;yu5MqXUx`S-cjz2XWSet&RU)IjZ??8}*92uJ@ zw`9JBr#{mU&VudLZj67qFMEO7-)@xLwdFZ3I*QF!r20rs^0j1+0?n`4&8)bMV^1uv z?QZ3$PIx_{b|Xc$v(95Ob+(jvu{=9ogsnFlQ)z0ZAEOVov-(f~94opGWaNcq4*GYC zx%^0@9gtJ%^?GxOE`wSa$JT|Kco6^^MnW2w4=|+;w-!2i^l@dWqkgU%TC40%6W(E7 zZ!FN2RISW-$KmeOP{zy0w*;v|z`Hijl_u6s0T&7Lr`v2o@55+i6BGxYr%=E$nNs@V z@BLcX_M_U+kIAf_=0{4w`%1?@hJ&yX$GHn9xd|^#X1aMr?NG6q_~`0GyT+dA2UNUx zJ|%846N@Yni&M3aluLC`sj^TnLmHLAk(#sE_Gob~0{4XwC7yDLP9Tr-U4r7ZfQbFZ zBY8vRqG%jo9HJ=R*|`TBwN2}-72h0o$VWu=~y#Ox0 z2sVEo&;p7SZv3ll#>;z%t_;Y2?L0NOa_2X^VtRd%xK*>_-vATUWG}1pWoPfEP|(cYP?49_OTB--bg|t->}kHYbvf6G zk|Y9@dFyg>OVMldG3rx->;2at8;4Nj6S{^L9&r*u}Mr?(TRu0zwxLDokVDYTHHvP=}?MS3@!fTEqMezadv?0Tfzt6LM7`{@DEDVm< zI%lS1QI+{c9q)}Dy^|AO&=7x=>9QdmGC8#3G_gPLI&^fU1A{?T`%5tM#2<|pA?q>Mx?%N;WI~3v2M`DW`a{Jg9vms#y^Ve8e zXY!zxdF8=}BA0HBC?AF&?xt_5tCwJmgVDpk{rhBZs@|JVUh$Bdveh{DqFt+lwaz517L2|AP*dGyYUnNIqX7Fuwr-wox6)ykA5;iLMsh;OLn%Jd8= z$oW~rec^pzv){>Wn4%f=?Y78N&XI5hJHN&shn5*MsLnH>UR_n zg^0?L@H8wKj2$1&xE6lAjlx-2XObD|>xYo6LP~lk3(f_>b*0g?QSSguzj^Zl@`xM7 z2_Rt_d!3n;=kn0^mvmgWG-(3i{6U&kWgAClXQ0NdrzbzAt8U{aB|rQ!)DKCFJ70uh zOK`j!$5&&!Wp?F_?P$Y;hpwlv!xh-PcjHXTI2okAO)qXMp=lBUp8*QGrK@w0x*T6D zTm>S!Tra-6THYu3|5H}Gmp4uyMNNw=wfAGbL?9)sy1WT4BSwE&l47Eva%41vw$V@` zA+?3TKT3=w9K~zw|9kAl=0~{qt1arVn#vKk!*D0ar~OCK=H-N&r@lgx9_&l08E8Jh znPPN9O5dnC`F40Q|DUyMYZ?zOrotx)DVt6@Fb6z@LFcmau4i@#sOk`j`Ond+e&!f+ zw1nY&&Na7AE6?w*!9(U)J0qn9F138jfd{bYhi?f(J7xR8z+8W0+jJmwP{=2{^knPC zbME8i0tJ2f7jnH!VMVzmF1@D_Ub*ER!0e4PE+7qv4A zbS*n3Q5!SVr1vxA;^c}q^&umXVfW4U#TEjkYn{7~{Z3|ySa4*Hw8NdX7jgKHmT_S> zk+fDrZcb5-GgG%%N2nrc^(8*ff$)`IB*)j$!9X{oVNzKVK<>ei`6nM3Wq``?d=E}# z!}uE#O%7ljg{4&xOTv=ie#$GJ{2n9D6=kpUoBC=eg@tO~y^Fv&J5urx3&M#MiVOflN~AFF zx`JicX6B438Q3CB*v&s@WMu5T4nBR|?0>{d#3=O~#=tJjC$ryQBBE=*MCVI|{NWxn zRc!fT$h!Y+e+_CPEC}dunmL>!mOfb~KmXEsBJA%quL#FCbHR<&pd6$6n^#Wt4?5>w zG=hEQe3@Ok+aLbO^WiwCD?chgYC$_ouW9Uc5eIM%nPONVbF0aYr$}x@tcCQ$_Ys`P z$hRNL0R)Sp%$s5Ns($&}JtIM0;Idq{BKOeDabQZ3*?gmDK4zt0-hG};A}c4n!an&= zz=eO$Gr2_59`xEzta3D=^=k?+Ng1g1gi|>ShZ#-l3@P##{rgS(_u@&c)lZr z{=p}5v|;(@Bv)4;#t-{qo zlBk4LZ~zX?%=vwhUa*mAM3*S|s!wAQ6PKnN9FO-P1^3RKJFw@K=V0e%P))QVDH*fx zbX)>5@S(c8{N|VowPKp52kX0OG|Ac z=}wdm$9H9`9sEnE^>3ipOVo)qs5bivIzHgT!Gg6nG#rQa{k%nlD$}c2t(NBq%&lUC z58<~{y$^=?nndbjz0xP_SD1+HNoXDhAPjbXY)=R-DkLD<;TfCFfAX}%dMK)dJLw68 zyPcCi`AcwFp{D#EAQuECH2)pRxyiXD7@0kvtcEBIc*ghmUReT|XZ3~Lh(WIKK)FuW zvt~ZIG) zgY2I(7FEu>9R!EM)gFs%-FGz>2sG@!u_0H(CuMtkng01yycj|Smzn+cKmq)pF$Oi4 z^OWh%!7M&8pd$N$!aur!9r@+Zd{S-9Y&#;qIi)3dtq=0uhw5NI9`wgM==JMAPM}00 zAq!*kP5;zN)Wcr^JIx)es|A;5-P4MKV`F0<6XJh@xD&5z{%Nr>hT$ohJ zqMk*eu6j^`gU6wlbxjW2huAjr+kM3QC0YefBNIc^$Uh_axV!$ovxWKG{<+g+;kp>K zHs4moSKXIGp31})b$x#)=f4=IH!wLv>~0#qm7o&~YSQN#>U#Qh`xqwe$O4CC$Lr1* ze%`}={QbshzO7Yp@LU&R_y)zet!93IUWb2^ysKlinlOQuYDda`w(Y#TsTP^rJHnK5 zu_ZlDNl?W4>2g}qa6Cjh&pEf_J?{WH2C`!#vppfJ6qQIzyM zd7FJj>=?w=qAETZvPqw%N_SuQAFXX7{RBwCO$5U;#RQ(YV!7)UF zPVnOF3C=U}g`enljx4WV2oa(s*wp{`-*jK?LPJR@;Cu{@O-oB_t&aB-78MaeDx^az zkWTZmp0(L!==`m5y_(C!t_bpf=v9~b)<{;R1eDgmG_pZqrCSrZlQZWeYCE9hN__De zY0Uo1OQ!A3gH@$~SEKCN{^!&&K6H@0C1uk00O-o8$>D}z?`*d_q~AWf_FJS-X8CW# zV`$}3LOWFX4>o;(OD;iMNr)BNu*Z;}f6b^$+_kw%$sHW`9LStGb=m^Pw=KcPKXC%i zHkuG2!I#5VqA(co3;OzaO5@f$G?pO%wF9WJ@ePk)?OU;Df^wB!#UYcN+r2U5sMQZ@ z5by=YjL<#!Tphbty9oOblFGrPo{$jmLTK>(vA%cI8aKaqz!@37%H~ND;XHGEdA5}d zo)q{NKFU3*sQ6Il3=&C0dP}QecFoJV!%?a0h>z)#@;SZUIBl#RdZhl?J$H9t*Wd2_ zZ_3Mrj3dOO1fAs954I<|ygn!H=)<$Gf8JsI$=f;B@|GNxr445*%&kN`_Bj&Xm2v!9 zWKp>@A`L`NibT5OUNDE<0m{P9(NRq)RpaBg3#UAYF2J`WqQbAYPEH=e<9>%GJH|wf z&1MAhZ+-EPJQ&=|y{@gYSc&X!j-V0kYgRL|(a!Z2w=c{N$eLt@CcibF}v- zE3^nRoPMvOR~@LH0s~^d^(pKsVvB4h4iMXc)Axv0y&~fxNMJ_>68+4ndK@qXbVaIV zK&C+glnF;pB(~Vt-~;3WGH=NZ_2==P*Gj!jCyDRih_ia6d9lJ4^RFK{aE4L4ID{%E zEH@Z^4HNLmZ<)N9UcxPAXaqrfWKYA+d{r^_g~w@SYEKZLkvsg44qx3azh?5CEt))B z@hA};;X0;XF1#gAue}zY{usocz>tPv4QiprFL`H)?{MRDVr!Mb!TmCv0r#$)*@lM^ zSaLPq4i#?`$+3TXT(36kkb}q<#>=0KzsxU(f^iYY;=zBm7SB)ilJl#{VQMJE>_Edd z7QvwsG&4S}P-GTe$G}lymVZXXxB~fls73ehp^WCB4Vv8+xp&{h2eHh3O__p_C@*d>jH2QEds|Il{4zngF#4*eV z<5{>{qM@SqV8w>&PT8f8yY6F=ykl2v;Knbtmt*SP%GV-pTt|NsTX^W_AaGY~dc5qd z?)mGh{rtvPM5yj-;bLwf{@f(j3SMno*%X9ISZM_ZP*%pAnvIG3{KT2CXIavONvFj{ zV_+;H?!CDPh7HuF9B?>`z_?E)asn^6$lVCoErZ{gnKI5ZARwdmNYgvAd;bGq6j5Fr zYb7Q3mCso`hvnLE0DPYP2*?XP0xDyq~Yng(TIZ-2W7og^r5J@Q2|H5SUO))PJ+0C=Goc?S=yIwq#3m z&=y6Rg>o>sdl00U(eXNXFRe+#1{vfD5sR=vM6`eDe;;_ZEqvL((B*o$;(FL&(s&)l z<2Xr=1hj^BvUxW5JwxEsDG{TR@ce&^dJe66n5fSfvN%dAHqg;?t*x8d|Cs3Yrt|`tc3# zU{W@@cwI_-p}JMBR=g;lnh4no`_m zm!8R;`qDes+5AWHt|NlBj)I6gkNi6)Qy(csntF_&VWP&l0Q5qyDOo_rVSZ&lT`&{F z_wk?arCACaopcZ#D2V%Kmj--}S4kO$zgRAOCV)DhPNk%KWSjpp)Mtj2VCLqh(IFW0 zX9`Jk@mgwd6(_1PX$gZYllH62GiY_R7Q9}=sJApt{f^0o?~Bzv-hj$`R`A?S(*<@n z{V#gqU6GY1)s>tU6bg5tE_n0VV7-RZ$ZhgVXItaoEoPoCF&{p-n@Z&84}_l`)oOFI z0N-$kud^4KBkWMEfpqfw0Jen%7E#hfVV(mZ{VCWWe^gwraA(YY`O;~LYhDVzY9i)- zD=jBlc@hxhf$5_z>Nh#U;#W&6z5ymNV?Gi|e#5;mkNdy-0hM?G91IDcZNzY%RNwMA z1*)}Cr*bieBpWw7BzUPfDB^$Du^5-LkG3E7}M1?RcI6o{qo70vm{!0Fsq3${V{Sb znv*3rbVJ1FaGw*^!|RksKvEG(ykRVf;ZS6`@$!cisRUw#S^z;4m+tGW5BiJMy0B`^ z-X-eiQ@1ZQdU!=wNm434@TQR@4uHv5iz|&JuCF4}K*PzU81EkW*KJ?qsQY;?&f*Uy z#+SK$@O}z_au@V3i+`Y0frWq9Xt9#`*YbWV0kFqGsv9I;VpUWKO_+^qs^4`wc}xi7 zXXqf2WBl8FROYbUr+%m6zhV|D{L6z5r_tG)PG}1m_?^y4K-OU?_l0lhzx{;g=W8gT ztLY@G;}<$giX0Ysqjc8MFC*E(Oau%feAuoB4~g<37HiP*B7cD<%4shYGQ8cdPer z38I)^F(C!WkWRZvRyh|O`$%wPo3#3n))g&QR==Nq{s5Ea&H=tWNkJJZ1;>RtTIto_ zsTdLme2$*{p{a#u4``hTu@d|l~Z6qt9{5DJ? z@vR_w2j!YqN@VD+bN;Lj*3F+iZ;NB6#H1V1Jx%Z1B4pBE@qAeIdy>#Kr@=W#w($g= zO^6}RGU5ky=MePGrZN_7zcWh<_S&MRlX+Kk_fGM@2nz-~UMJ8cKYYRJYq7z>8x#2?@a~uWy~-mBV zR605a`4+$7;PKwI#EOBnqYuQ{x-9g=7cX_X%Bt)cO+0D5UvHh@?SF>{|JvC8Ztn$R zVb0lr^ARn!xeV3Y>@#&p^l5trh>z!!@?C!Mc=gJZhIhHh-nDu^ukj>zzm+!RbG(QK zXgr{xyDxU3L0V6gOW&qB*L2(~npUDX!O%Eif#_Xa^c<>YA&4B|@go~(?1&DluyV30 zdb=KMjG|aYeEbxzrvP0Kga`rGQ(hzAU8;LGreTi%AvN+1rzJtN(1 z>oPFlYR6S&mJJ6xQMpA{${WDlpZQ?s26}O+VGU&$>>9^KXofA_hD=gS}o9~ z>_lz-bg?Z|FdzkjGYS%P_b1mUIpew{D?+r=S0h1xi)}Cf#|4 zoEcju#WYk2Tdw2X1qXOAd*P7YaSCEcVf*=Uv{=MvQKqLg>{?M@U)n$7QI!n0 za>kPp)(9af6Z9j>&=FC8-Qev}wSzUsp6?x?nj!fseQp^eo6c02;&=uT{% zn3dmg<1c`I6*TiN;mQ76XsZ5w@MQgW(55huTDgbZG{(jl_D6ePxvIHP*+e5`yqf0` z+eO$wV(~xR+?WyNED1W2(H~ITDx-TTqt(4uQ8An7Cj~yTBpJT0hNCg+@%mf&YY!g<>yBO^8;l}Z_yWWNoEA?T8XqN06S+g5DIIS-rJXtNK$y3Fg86&D8fAN43_F}(gj}yqUsH(q|7*% zFV0XCML0VJ?nuT%6CkHUA#E-UlT|o~fu#>VV0DZM?_$jtPy(TvCu9iUaK7vDr6Loc zgU>i0?`b4w*1Rzv4G-dZ)L{ME^ouMzdfP~@Dr*}=X^D(G)U z9GB>7YlfiTvRVG~>vPMxDK#@l+xj4y2Zau5hc04oZ?DWq=hr zEI%5ZA2|oogU&jMt-PW=wRnCxA4p4}ie*h!|5ZOMwch^f77KZX7s*V*YPZk{T{E*r zQot8koaF-Z-U2@^fClBH#F3ffgUNp@YaZjGP`12Z$$kYsC7O7@o+R?AHX8I+|7Y@Ny8?t%aPt>w6r zWqduaH7+snsw7$eP~&?sq&!i%=d2YsOL)AzqC_+`Y#$L<0-wRlm%Z~H{*VT;4cbdo zZP%xk0rqiJtOuwF0k3UU7y@iL<)Y>WqW@#*tfQjb-nUOP^Z)}4k^?9;QX<`rfW!eL zmF|`hM7p~r6zP=T*I7%^XP(*nj_dkdl#{jl;G8;4XO50u z9)D)pwAV~eveJBfiq4a*mF8x7Onnx^w2e;>DnKu0|6I0KE(Fm5RPUTbhukGd45JV?H;HG-^s_5u8?2 zRF?{;y^U61vJ9~fK-2FDYx!rqKQR$QTR7(r=6l3IV5JUgXd(mz+VbeHcZU4*kK?jhbl8FD$3dikb00X~=atqi#0qX!jP&>gK4M3l{xy4?u zXDOsvisi$A#;UU$o2b(F-pBi(6Z@A)9&wUQEuPA_nhQ1Hxa0irYQ27(R~+lD3AHID zlZp#8np9|3_w#u=25ijW)_Vw?0+3w0I<*s$wnEf=E%$bH#_6Q8vl|dDbmWTBNR2`d zN@y@)0yK=Ga-N83;XDUe_28i`6at?c(iMC)t(Hizrl4O&fNS0UEE}F5W^&Fb^JMBz! z11QNQ;yXCSz?g51g52q*_1v3TGBfrLm`M(fdhtF9IHLiFZhT0h;N{k<3&VJGO`QsY zMA9zWT)GWaedV~Wq9t^%z`C~oENbUtYq|iO2yoE|gNlN}(O{YUDCbOn(=MV(10}Y6 zKqLWR@f?D8Dm5h-EO&u7v}0|}O!^HP+LMFm03&{Q;jo-WWwwS0xvk)nhKBL`KRcUk z3lb@}(b%f3voV39rl$7qpS9qD+KO08OAG#O$L-<7X6du0sJrwsjto!L{Em!nC4c zM#OkRzXZ$m&B=R)GOQ9g;*Hf};hKi%e!oDzVNBH08aCY$@X5YA*&=?h89fYSMtU$T zEG$5{;qSJu*c@3N4YZapcBy%$1L026Zi z&yE5#7=r*8;kpH7(%nWo5nA~wouFB)N2z&dJ1Jh|@t>8P&X4l`XxRMc5_C#TM9Cx=s`zoKr6ZjlZ zmO45EKL~#572;@0VwlNw1)^m@JbrKngT*h9eGsZAJY>0e-yHS>Xy2al=7hPmYqe$b z0&zXBCT^9}l&H`gep(9V3+v5D!Sm+NT-? zIa8p$2Dx(KB20_*3wX+A+8iIVt6x)zX1vpRG^qOJ1T9G_3j+fK4MS~I?P-Q^H1$a! zH9(E_$I?BB6f+3kc?s|d5M#A0;HbMAm|^$LUOni=D?w5dIN=&%&}GNDQU{H|-F|(x zAIcQ*VP6=nW3iE+=KlHAIuD)~u7t^3%cB3X#Uv|{LrVYQ1b8gYTmk{L0$-#V&&)UO ziRK7!9&v*(3m|c!o;qc~OvjSdGUicNPRpn8vIy#VYco86I+{7nk|nYa18+&1KPrfl z0a4Jv>wo)Ia%k-68-M5eG03VzN97U_*dh)FAkU~M*H^6_3a?ZP`%$X?(>>`Rkcsp1 zvf+KLS-jn4zW9aehQFN-nJ4Ld)*2MHKv+HxsMc8PSX{3F34!mG0>3! zDQ$qj2y!tW^1aP4z@wDs%Qy|HTIYcv;)&7kZkrI}3AK+S3Eog#)Nc!b-`gZ z#=Hxnu9TunKwB6D{cR&q;)4moFYV^!K!Pd)1DvbhkftDH-SOPumzyI+O+%O^xT8T9 zD2C*NbNRt?NJS<6B=IlH$EO|RCMRY*MXV!Znq*`aL6cm1u+Bzl`*K5xK%q%t7Y zK|#9$YG#zdQm6&yTD1)^AmO&45R`8OFId5?M@|7=_lB^CoL8`S2UqgUFLks2zPMqF zc>J_yOhG3qzFBM$oD$V`&HtXcqkT-P1-aT0V$eWO4>gq#N-oi3x+y}ZQWY5~wN9tYcQKqQ%`>iWOS3P# zr@S0t1*aC2350$DYGzmtTrqqbjGh1@6R4CwnS0!=;JzJ7O9{k>782CjZMS;~`4c1#dQET6m%Jno};lafcVl9RINNmfi=%&*NthW*h z`XL->GqZ#7!hcQ!Uf~7N$1CTw)L`^GKfHfcRaGh9-Tk2;Tf+FA6$HRZa6xQCP0iY0 zGIEMTz~Tq-%W*INXP2Epg3#_#85M62>RLgKR_h4)25p6S~}Px@j%M^n#rzp2%5yqJemK}r4NDN&X@dZt8-5=8`%8Y=>X)G6B! z_Vewo8vFa>hy)D91o|q7bnfOlm>U8+tb7c0@x5S%Psu^nfn6GFZlUf!udJ$CUMJF($>vbFCLi+dA7Gxc5N@F_ zp*^D|K_?8x36hZl8>JL|SLd(TiV0j|VlmDIufX3FoX!A()B|>j&i9?@P${UX$-qg6 z-?@iSw5HJf`(t`?(NVWnHm@a+KHiT574(tKVYx!MNx~4}CX+qZGw!NykF~y-Dmeyk zoDVP0!{-#yFgmX-#*k4W_bs;#r;6MmBCXMbCzxB^BUoJw;5iC3RO2r4=X5k6Z<1W4a> z0TCKikodT#1d`r0tZHkx=83@t-3jP^#28P^wx7cu1~U(JJkV!=>z7Hl&xm4Jl~?5< zo4TN&K%&?Zt-7u*kYcQ<=lj=5=Z}gA__>dV`kOle!_(o^v02K!gpi_VBsmaexHzlU#WkZr|uiAbsr+6`uakq1YO+7jz=;tRnmbI16zGy*ylgKA!F^z%ZxvmcGD>lKBN8b`GcnL{rS$rIs^Pv zp_jxp=m9Dk8};A!x&<#UyD}q5(L;y1v%@7z-yXP_zYs-K+6O{cUWF;|%;QOgec79r zwFTP++Q4QeZ8kDZ0}33zu*Nq6ZiYH_(V&3^u9-ItJ#-Oq&-)UX{Gl3T<%H2jfAz2T z2?=D?y_e@ZI{aR(=pap;tq0j}chu9;7>0bVtvmFS0DGcJrw7!DeA9XNVBZTuITnq% zpL6+jO4yhf8D%+y3Vb9M>*fVQ0v1NpphNb* zS%?@)te`>|6AmOU7zja<*vP1b-G4ZGYqEYsu;RiB7K_d)Bl8pLFP^P50i`wWF%o!4 zz-#hX84Hm6;BfeXY(h|68#G{PlkiIV;&FcK9?!s7rV0A3Sn-D zeii`5@UI7;SXRds$jLjvhK}X3t7Pd00%~vcY=DZAr_j_cXHy~pLM>(+-4sOs>Zl2K zDwrMAwkj6Uh?dD=#!?48#%?X4U0%HdBhXX}`#zPS0Q2<9<$OB6@8<9VoVhv>m+)}@ zR#o|*o}La{NgzX%g`$fG74gk@;0lGUz2XO#_#1vN{73U^)r}*aVaXcBJR87$o2SLKe>ine0pklKmgyjK)QaiL zN}#DM;olBC0MD-5y>ig(Tbnk$874XcBZuj-ajKH2hx}|&I-sLs@EfuR-o1Gh2!_Hp zD-7SdyA@>OOssxb8PXJt=s!PT-vD?MvkJs+DxLs@h0Zl^QYtik3X18M`~P>gEm$GAxtK05{YJDYj&=!~v%aX1BzP z6oeloaX16mwMGP^fr7lzKu#pyPhsG9xR@DcAd4cseH=RO1n2%Lsbmk6zdRxE0Qf$E zpvlS0JxHlQWK;0Ec@$c_6;u!5s*w3kboswx7!Zm-NxS%E?BG|o+F^tTeG>*M6)=lx z=@a&s9?S`YGZKMRC-O+o`;Gh9{%qD4@8d(DDYd&MU~#$1qelDufa5Wfpw+RL{qNM! z#W#13z$sR&AsOt}yVhTjv;qcO;PHay0vM3MqB^YKWOUj=BY|n;JtD3v5tg6t(B)>h zNUN)z)V5K*Z5{Ydvy@`~Y2#y;R>#u#bIGUNVCDk8LGEEs9MD8!Bjvtyl_9za-!ftP z$sj|1jK*LiSfA2gpZIAw?TXdmcr9 zK%*CkBVqE>^JQ458bAKcZTtN>D24n1i|nS<_q3wq=a3;xWvJ`^y55(Hh)y&BsdyoO zzeTs)3KoG)bbmCaP3(0A8?<;(Ko$j(<0)XtX~t&c*6;?IwDP!iABfV^Lx5LiQMYau z=dj!p$Smqs{dnrT!FvhdDquLE={oO0yv7l%ClUkLa*>qA=01lyKa?yn3@|)BbKy=D zJMPSLF&iC@4HHHT1sy3aGQwMy(2MSHo;MdmQIP4n*1vZO#g*3+>>k78tGv{begGwTRWcCr7{EqP*e zx*1RNX(}F_8z&$cLF5X}Er$BZ4T_BOw)EHwkB%R4$bxByGaD_f!&i6T-*o!k#NHEw z8tLL#{Qj-?>Ex@)%^cYMm-|!SUf|CGSsC~J_b1|R%J?XbA2DCtX6{Nl1xR2#1pX+o zvu7oFrHqTphz4|cFk)332XA{3xRT(o_-Eo6U#Wr_1;FKjfz-by1tNUAnKX?Tt^cs< z;8)G2XXilL_5xr^rjwxJ-?~dxE-vVk0x(2K|J}x?ev}$55V#Od-0c%^0npc!{i|fu z77rAD7arX&*xyAUc5)bYb0OXMncmxb9WST&-*;`Sjr_+`rGpRB^6u^h)yH^;skWc% z80vS|0)Q?+8-y@mdHa7fqf9_{8@H+}kDt_VPtDw>r z{csY5Few6ZIp?w)5NMT>c?NMwI0nd1alQXmyUcf$-fAwXSb3VJUzaosqO^JX^yt-)=Z z95@$&Ky#{-c!?94UUD_bZ18|xmr(@qRX&Xd;!?jwOh$JyFRX)$T!{=eVJrCtj#A5R zIcqXp#PnEq+m9ryDle|{vO3=@{b17tQanNeM7*+;dQ#>Hh2t~#!A?Gjao)UfYq0H? zsJDmI?S7m^$;1v=Z31Tq*c!6(SqmjeNeq`~4H5#FD<_4+oXVhoH+kEe>)JQnbU;M* z;HUo|^5TkF92Mo}qxhZaP5qZ!e3S#d zfk_mE615CTWrrAFOoCQlQi&-&{dY|we{8SG0%1mQ)f`_pBJ(%{sp!`0qMnT9a&yV) z8~$pjV)-dQ2J?cr|Gm$m@0;^lz+|a22b|3MAMMxbfdl0e-47!~AYvZ@7;G=>r(p~= zIzOI0Go{fooazOf7nT<7wcAljj1Tzfi0=cE&5HyG3@AoYgzO?(O9~w2blfqi@adzd zIqlWPjvOp*m2R-D00#!i)Sw5YqqfSVeh{$e0i=lnNklU4pGWo*BDA4M#kTA8q3)`h zmxVHSC=)lI#FK_^2m|&njsSj-eMS5xS3F=<;9{?N|DgSz?j9Ru3CKe)+V5iTbA5k0 ze58|AH{w~=c?M*Xp8tF#527P;u<~JG^aPe%pzTY70*WRtyS{CsUp+TYxQL+))`mUEiS}(|UA0%4`KO@=Yea5hr z>Ey;>qId|IN^|669ZDaN+HHQM0NBKq(1cPxj!v9CD)alLv8>3nm&?Ms95U?O-h zs-gSbpZn4!X;8o47rnWvxc8bARQQPDug?-H88Z1%DZmd1p1;Z{K$VBO9(n<$aNQ=t zJPn1(nNu0e1@qYV2OdFkcp-Bo*OJYUS7jZge11-QVXf2S!^6W5c!-|seR*G}7wYAj zB8N^QF+WD380tYvtS^Gmz9+v}`@I_Ung8aooLV2e&V?BTknYVo<_{gHs{#aho4$!Yj0F3e4O@?h95W;`i_P%C$_e6x)yY3}5 z=j~;-^ss-$XY18QK9%vgKMmz?Qs!C4$ZvQ*!6ytP^sTwaxmxynzg6CM_z#Eea5VLC z2u@oZ{7Egcu2dPXw_Jx#cgyLlOEzwtqm<-A{2>5=oP!Lk3!~NahkDLRXJhQhWo|Ry4!fbPZO`pzF03R66p9P!-IkZPDO-L_ z)+PTYqpNX)S%}Tc-E19$ua?x&9T0!;TX+yJ9;9sm4-Hsn@w5~N-#-ux9ew7$T#?5> zJ$y$EsBRU|lC7q~)~%klPl&I5S>%SNT1z9&1LrRO7QxR2S7Tz=kgn=dB&LbMxFhiG0bg-1*>F%bFK%3{PL#BekM9NnS8Z>n>S%{e3^ocMe zgLHWF_~Ngs@4x#+t|+yD#+OeRWmAOHCC2~qf=FLrH3Y3b*xE^lz6B84psXgs&`Tx2 zo$8t4Xe0Jwuw}sD)~0%6&B(O-MyV&#cANBQoKJxrV?c7-RPMdJ(mD?JOEmXnUxG>JZEQUrnDG6v%}n^gwLIvTQ-+FKfVTAh=E`R2Lewhp6n*-75TrJ~FA z$wo2vb|LO=J^eSK(yW9uVt*=|EGa$%k@60-XVsYr8ykTF!fW**Xy+0rEr!a)a=9JL z4dwib$4$FWEEH<@IbpaLpYPXwB|$oGLK@-UrWo<7TyflU#Ox;{nC{uq~r)^ zxBB3bxma$4M^VHzlus&hKF4t{y8OZh5W4VJoFJ@>I^!#BqFT* z8fVrw3N>@(Y4W(Ug1M%18Sy|fZd#t$`S$lILs7I1bVRHzaYV_G0#sFg+a^vG?d4Dan_$UbX zFws1IuJc;AbLbi+EmY}G$hc$D#=+Xho6ruW*0FZ2s38R)T4 z=BVinP6}v9I*oNx3OSvq-;iqU3);v)FE4Lu6tTZdxlw;DEAu@5LccW8Pgnnjuq84D z)JnpTASk}7vV^(eE!+B03dFyp#3!QD#6HG$h#qx+`EBZdnH@-_z(mqs3;48~;mw@y zwIerhxPi)N@w(ZU0tm`4Y<+htJU6S5H}`kPz7FTzHQqQQMC7=^XE8JYwAL{&0AV7R zEK=bHCbVcNRImqjHtgXYrtqvIAQvqh`JR{uwHl|0Z90SpQs1l;XE2S00@3`B)HC!>`d-ir4fQi$m$D zhPLxK{%0t<;R6nY?-X;;%#=sFp9u-iciL`wg8%M(7WB1Hpy~T?%|*GD*A%%02JG%| z8O5%S0f>nmzx5$R(r6`4ca_e+arH1|q;`okh8~g?)KMHwTN!%1cz^Btkluxca(A|P zHz(kH#DrpGV}tv}`v~XZG;iXK?8BF5+B^VDTa!$7V4g(-;AlJo-v1TabZWp9Hd z3n$j#hZ)wJ^DB7evD@d^^8a{njjD}RLzh??hrS8L|wfYBx&O&icI2^^ljXYp9iMnRn zc!?*c=M*!dq;7%&BX*CJ?u9Ukt_zqlxfBOQoBVo~^@8buIOB^uu_!3!2!p6&8OdWA zGnLVhQfgnrpqENyHB#A?`QgN&OhYL7lg;FOl((B-?qG{P*H2NFD(+@00LG#H ztJi+T?QF$m=HL6p`{R4N{lH4aqF*)4iXmG{TTTy$wQT%@0VqA-m{x%pVLk8`nfT!WumCd;0qY^qoxkj9p=Z?wZN(S zCBqwEqaCFC)k62t^bMhg4hz2#gFFQ2WaOSz_~<~e4J2>PA4t9acg%ytAv24i@6txEIv(RM%Ho$ zhz5ylFq6>NI+#QK^WQpqp03lxK8MOO9{oRtdRi`2QwhbDRfYT9=YH)%h8*-`tb}*! z%S|nQz&S_w@ZSF0NT#VE%S_cD$hP*|u5l?TfFN zzVcv3I4Be`JV>ta#%w<+b9B4i+t_#_*1yTpa`mqiEO)M^r=D%e@$mD9_Tl%S#?5Ka z0jZQCb?&^w>fTR6P1$$`o8K@G?`p`ha2)~5rAU;M+^<00Pp@9FTEsd8n{cmWnf@G` zTl${Ne&9`~DtbEcgLeG;d_1}l_4js%CW_DHFUsaroesuh> zt*>?&vnuR+)1PPN)IAZY%Gm%O)|Wj?I11&6I9{nZCk1>4+) zzc1ZtxPRIPIRqQ$rmve0E97BH`q8ytb3E`fX7LN$c-9Oh)Tz;{-g4G5eu}?hoFJBggZiF*rs{+&nh8CQGKSz~9Ka z(TvRv=HKW}%PYO!@u|P|xY@iY1%CdT**^+y`qy;1_{=3XkABO3!HI>cs;3t{PAo15 zIC9VMbxdCMbgzaOuO&}pGUEkd)B#2~rX)-@-xI&7e5jXy#WV~xQ~Z?{mqV2|r+aSi zT-26MDxcTVr4Ox_8M0!^$qVy9({&Q?}eohkm@Kzu9Kc1wz={f733JFY$OpP3RW#m~b zKHTX0!W4NHjSw97n z<%MeL>%$8TChFR2TJZ&>5V`lF{L(deZlSSL!$jFe*4C```oDRDB>nX39aQXEc*AtP z=(m~(#~-YrEw2gRp9__7Ngb{$pntTW&+2070xFXS5PWoWbTOSOK7K&XT5e-(*T*m1 zS^Z83SuHS-%#*N+wn~|ZG+DDqfXG;Wkj&SkK_*<(;@8-c)8LYV?%6thO0$u}dqg_D z0Bq$(eE%w~Sv$qjJ3G-CX_t=5BA|=9P37#u&=x{YAVO3to6I`&SIK$Vx#os#op3_E zij-RGFwQ(Ek_~Wx|L2CpkVIKLe@lek??0KVRi$0J4EQPF&$Uip`Mo=5b)Kru{j}Ou z-PKP2r{UIIt5fVwVzVvb_x@yIdHk2`KUP{#e(O8>n^R^AdN};+|NagC>7CdpugasS z;ZLZ>?g%I^0{SG1KFkYUWxOvv7KPriVyB1`&MOd(puo%_sOB_vH|cSXaxV>z0+aff zlI@MpG`oCRB?2CIH_HE%!hSvcyFl^&wNbDr{mK0_a_BoY4}wn6APS1I-c=Y?<$YvC z-OW3!VQkXAiUW6)Odvgv@dH~A-i+ZYide3Qqs&9pE(rh_01J4RKvvn#`Ca>+-F;Qh z4fBWSeFGk?aebOBAAYpR6oBSa!jpJ@abE61(kpF1^=z zCtMSOZ?V;mVzkyz`ZDm*{bk)|G!0q8XIxVmf-zp%=E;Ow@(}BsvHo_679XAu^brKu zB4VaU4;z{Q_|n?pHXpw9Z>8PcUDSw#Daubm&yQ+}$E8<*zEVqT+JGK{KQ2?N9azHB zNU2ec(;jC5-IXse9?+IoR}}fKGn3#sNE{L5)fyw08&4q{b1`k5{^A+sP@Oyv|Ck#M zJ3G6lZEjB1FRKS@@3RVNHNP|w`6lBIE|sE)0C(`yvP4r{;W4Fhpw1z;^UL~4_^#Rf%=cURS0USDN}LzcG1-K zw`6We_f2fXJ}+5jNTuf;*Gm#sd@Qo&L6d@*3<*W1A7Li_QsUTMFGUvR!JEx%Z#MFt zzP-G+R~C7cts)8kSq{jMCF1ePR!H)io6cO|Ed@h`DQdU9(nmk;xmHZTSg46HUWcx!{mmlq% zZn?a7#9#@FADI!_y~_?=$m6N8oV!+bv_CB+FC3Bzg81z=b!2DZUD z&1sN8%31oky3d7zUa(xAwScNE*VJ%S+Yc6OVK0MH@5`tP!qd54N@r)H3^3BQayosr z-4gtk_MRndN>U4^S*q1guKz;uITb-(l=14C;-@F#fw2T6*ypV7t%SAmMJnsTcHq+~ zNo^jrSs$mV#t*SJaqyu{v1VAu{qU7`TZ|tEGjv&DW}RzgSYygflP!7SHFi#Kf_Tcv zh}L+`-%u6=Q83*bUCGwhp#>#Yycs~!zNfqmoxth-Aq$Gyi>#-JttXy6iawU3c9;l! ze_|2BCrk4CZFu4k0Q$HLr<0C)O&)1gtC9Au<}GI)SE@00Nm!VyG0X0!e6Fo`oZ;>D zKhueRk#8Nge~=wlE7o2Xc)4eWOQvFzZ)t~^)K~F z*Js8$>EE9HQj4o4YytEV)cuz-b(D3VStA01gM&3_y5ygoNvHni(^1!I_*2ZWvRc@0 zxMjKCtES8j!{!)fc%flt=|S;;DkY5-kFlv0`eho1nLrcFCC~+lDc`PCCM_xGJij%7 z!(w!qR7hsr5I>pmyS*C{!ye7nMWw(Py#w!JCQ*x9{b4~QLp&Fm*s98nYZ(+D9bXGo zm^wNV9S;pn0~s+G4kS{4P9{A`mGDyj|tAms|2xgosr)NE!D(D3&Oli*cq2g8Qk` z&jCn)QO@6x#0eVw^fIom{~3?%rGR3#Z@a?O*oT%#^kj6porqcvUuHg_53Rl>3~QpD;of#C#( z+2JwX-M_Aau-~>zM@B-;WDynfl`n%88J~#X9mf8$sdc)Wv1BIU9lMO!*X?$WS z9HU8OS;X#&!mfh8a*bqbm-_pAAWwkA%gh=#a$iUWIB`aGLr3lSoPp`S=UI_7T<4D< z8XyOhX_}qT)4Yw>fSLcxyvu2U>qQB422{7V#{#Q1QLNZm>Zew2LhFRA8Jof5k~8kJ zG>pq88siBGy);IC43Y(GXQJg#+#v!HqYkyuqofQgRal56Bh54MgNaSrU_|1m zP{vnZRav3P@gN|7yRhZQ`TW%OYrlNRg7jOnLz-A4F4_3ksLE@_y_?)`a-+Cge3sGv zoeI%Y11KuWv;qY`^*Wov%**hTAHI&49WDwab-y`qb-wzO9H1g;T9$ za;bp>ZfZqMy|lEHWeMxFtv}92cDomw{9>oJ)x_`a06H_VCbv?}0hWkTjXnUmf2H7( zf*$LI_y<+)_CquB@Sv!7SlrWZ5&YT6LaH4Y=~Nxif-3@76VT_CbiTJ9NMIZhU-zR3WpqKt*G?ATd_{FRNu2O zeWR#vd+-HAKwyyXd;%|~v;)n872k2E!N43{skhB`(T|mqJeDQQVNh+>J>3?@GMu`* z6XTKX#G=4TlnD>Z4ZM<}_lTd$p01 zV|takyqZ2<{H5NOCfw@tpDNP5^IN&6ZV9;T!3R1NGkZeQ#t#?M#iV^51q}sBkz;xE30f+NtQE$^rLDIg zn5-kB6PcZlCRl-RM8%t<=a)o$AU3pFFIcN|UARk9d|++_SXsb7L|7h+02K%N$3E{R_0 z>*NPwiIVha`^ldebVM6sXR$PLlQ<69*3Kz>!)J}f$m`Dh;%p<++@ZX9~^PYq6yb+wF{u>Dk#X@Sn`4 z6!lXkLRz&Q8#3*D274`RK-)nM1sKCYOXQG`mRtw}Enw*+_#fZM5izE`R0NdP@ML5D zok#7Rz?Z1x^K@gSgH4l@J($X)@T1f#GvhvCv2L!1P$JCNklKFfS9{=I7+jIw$i^)xHQ3`=ox^m5;Z&$R!IM+u64M76 z$ujLk%piO?8~&r=C*F(weZR^1>g#}7MxJ?UWYD2$s%{&&2JAZok=3X9)A9az}xk@j@s%O2csMJ0p??+|0;Q9``|Fc5qaTbS2do1c&)=!#yg`+ z-goqE70*`SUFaxcEj~1_INtODyiznM`!8pUTXxG9fs`+-<2)OMs}PC>vZq~*#=@`# zy}gOu*nhu6$!}Lb^)Gbcn5+#hx^w6ai!Y}Il%dwZ2VwQtBF_Akl5=FjuKpb?gRh&B1a8z*lN z0}>;EIA<$8gjdmN`zOuL-rmdSU$QsRKAJ0xYYH)v4}hWT`4`&;?0Z>9R& zAE92!>?*ccLLX^<=^fGNkCzL;P81{|8wd_pI2to7gu2m)l zVMHr$I5~ikNbMaA5ydc_^4!I@7HwcKc%|-JOAEf?xD#LqfBG|v#`W3Kmm3q|U{sQm z6fs(0&5q&sA|DNCuAA#aL6@)HOfYg@)zFYSA_G7Fba@G}T}jfvC#NX?Y3&I-go^*^ z8t9d2hjO^)76dgZ$6f4Oe87*BQ^8?!j(YXx16ld@Ms8|oE0*^r4VM2W7Mr;<9mZy* zsm|UG0R8GgoTz1VZ865X< zf3m|o|Mj~1Lvc>^o^rlkbw7$ijo15d|7ia5jgoQU;5?<&!8|Kg> zmzzi8Q?2Sh51xn2&Xo5FE6cruwm2`Np)K|wzq#mAKz9fC@cY+$&7E_C%w$--H2a!i zdj3+H5-^~oZl_;0DOazg{Ov|F`2w>x=68=tr_(1Ui4;lxC=H75$_$t{x3laTC~J`+ z0n(iWCoyW^Yu#~P1H4&;rAx6sWTe~SEp zOBhKSNbk4lSu|`J8J^t&_1h^u(UOZhZ)7$C!_AV7kT@ZsNZ%Tf#8z^`#6ky;La_601 zVD&!p(+C)-89kDFRqmr1q(0uTB5_0G+NRob-h(E#<2=qQ3&#k7|>6FP=EX5_b zDq8V8PkQUE;faM(?`#+#-3flX6s#yN#`JphV$TN42f6X9?Gy}r_jTPxAIIS#Gn5>n( z8yN+>`?IjeQMn%@^&DG8X}<{`Y>fB_FEju(Shks^l2@yDY=xmD8Q0z2gP0ko&cl85 zOay?fI<}le$BK$fr=DWyZfgAZ;vH4l9hz(G=oVB#5#9W`)_I~2`T~uKr5%Mi;z~e+-$@))t!iX0r;)^6t zNHDP|)^cT3HC3cPF@dj3Nx?ctp=rVsoE3qeo6lhjj_9(I*(ulpFhvyAr#bX7-|*F8 z#+H`YL#3rUy87K9yGa55$1+afBIy?^)bA!F-zNPlsv2eBwt&@pTC~NHc~opyI6w}J z^AgJv=diGaV~m`e4}A%Hp_B6bKn{FtY86vet*z0Q!NGs^$K{Mt6<9QI3(5b%Wr8Hv zQh{<2R2zh6=fAA@h%dy%aM6%IMmC8lFa7LlVu-SmNd9_c*4Z;I<0&-H%a!TTh@e}0j&#Hw_Leab%CT(W1)zxEbP`oIG=wpK@pf4n3E;kv^y9)m&e7fTn%>q6Y8W1? z*}ff{SzyB>!Yf8Wpd@$Gv5C8LUTllL$OEY*LB=}iu}1%dzH&21*?1qBq!e5_7*bcOnXFbnK}KbkZIl`uFN^zImiDZ7_?cv$qjL$<7#B=;dEOaJm=LSNpJ&TqBh04O=^5tDelHBI=g+qtcIuGG`MJ%VOX8o%>!+nm0Ss!6X?$hT; zVI=`!kGjqGImZGOw+Ep{C}Q`QBSf$dQQV-jrEIFR(|0#Jkw&G{|789xQ-avo=WdaK z071*lj@)5vAHf|F?OxJMgv>Gj7ZI?+@Yx9=7;&hcz;v|V5as}{e5dci>8~E4ZT0kRcRjXHY{#`M)Qt5NZ%lJ{- z^NIV9$>o^+yeePIzh=!?E%}KTPB|{f^g8FEuP;}yA35i#N?Q)2-v8PE1k;l3b^B#i z>k^npA7|S5{!YaAtN6QpqCK zh4+o#zo&ZOGGk{db>ZpvUJsRN8bL^rhe9xq-C!0!r!7+Z=9LeI-kCypEb=+@VelAKINf_2W#L@2hNT8=l&yS%%Lh+gexK{Hir^z|(ksOn%*sxIGd zv`$!E<41~>B9_oP&p&`~B(NWqY3D0||bC-Yc z7e7|Wa>D&s2o67gxf>kal#y<0$QMu!zPSy(_j~hxXR6YS^X%qxtiwXjL(-ba5pZp7K5-K++0_ zn6k4!ByAF?d!f)fOGu2LiVTn1F|5#@N-=?*d)&UCjI#-+SyA1{aGg#D@I2?RBqZM; zR3$+N0Fw9g%CJC@4=6&r^Yd*RDo0hQx=6Q)1WD8*oIrS`4*uY>ZF!2)s@1CTqL2kiw>NIXcQ|WX@xaXnb1Aiv&1i0{ zk@NV2bh2Ttylb;V19{oyk!otf$w<_$ES3YT-(L>Ah>4pxe+L2ML$fMJ`zAN`&NL?R zIX~AsywyDGz%ggk%S_rJs0MEP22$mrIABt&Y^x1k2PXfcwZV8?_Hb3P6E+f*cj?9s zgiYq1i;E+lakR)DUZq?A-tb;E0Y88Kg`YKGC2Unc=Yncmr&noDg$InZfd1M=KcHWC zHL8^tnoEXb=!QcRA0*jNjwgfypqBm4OSN+Xpk0G}9B+p>O>Y7+=kZsto6`T<{qBzv#S_ZILhpSW-cA`ysQbafcg!yOHl~bi zf-fmqpA-ce@y0>V%E1d+Cmso~D?>`1$mn{+XZe?K`h<+?xuw4O_j)rpgVw-;RhyHa0ev?}PJZ@%*?qqMkKI@9Pv<@uRcj zmismcyNvQxI2d=v^>8yRJksl#a03^T^i*hDecl&{6WkhpAl$_u7;gF(_V3!~b=1Ir zu47!*6PsCadnUOzFF*)DJ`-`NXtpTUw93z!mqYQP4_c z*a)pr!iv|$f7C8VyEOYP{ZD!s&Z|mX=Wec}MvU@Ei~k$_ylW#04ShD3`H|BB?3?S3 zGir=a40YCig5kX)wCII{tReC>wYh8E#k@^E+LYU|Yj-E=7;mpnuD?Yo*w%#DRy=S=F`R?&6Lf>$+kdXq$s=>vz6%q61FY)u~ znVC+o#0DcmYrD@Px>vNO_?er7B9|<=DcCqe>d<4}h%(Ro@7FP=y@~-$5icxcQP!?s z@<+vwVdcE5xbQk{iiz?-fNqXS(F=D_AO`3l{v97*?nGr{Th24s;H%Srpx41!YR7D5WBxbPYv7L_$GhW!AHCSC=U&wjnM2m<~-~T$2+ivw*iz$=uE4_3BJlB<15+=jzAwCj)eG48~*5c{kM60$?S9E;HoxG`a*qWuceS zICpR9OQ|F>4yv0%VOcmMOJx8 z{&$W^cL<$7gwFNPZOVca2K;iUV@jq1mQJ5gcXviUpr;cEYh<0;(+eHn##a_b{zs_o z84qaAc(DGLgyi;ay3#z)rPIDC#YP{Omf&LWI6$cId;pQYBiC`02O>}bjb0Nv5`ts3 zA5OV?ruP2wp&*FMs3+QY?b!6A&9IF>~Kp+A}eR8yBz+`h5XmiHnuS!apBX z4iKf<3*kRU>G5u>%v#ShuR$-zIzPnd*FmlO3c1(cKeiJJDyXb=Z$TpE>BW}1HRrk0 zO^WTV=<+7mNtn!S?5{60=nKmj{|CogNy2yUU3(pt;LFj^3@d+I5H`IZ z*>1F;g1Hw3|D{ScMAWo%CMHCsbq_~g^0|AkIx{2SF)jtzL2-JeG2$5w?_SaV(GuEr zJwWF3snn96_#3$90d{yo-^*kad~>10=eHBdRQA{kQv%Yj;vB8xk&%nVPT54(9++I) z77rZT^{9R8v~@0HKQdPS<4rM&f5UB+x~landsp(*(RwV(-zE87L(~i9zLX4VCSMTw z?;iBL?%Ry9g;|^2%$FwY#NWCLu@=cOI5z$`d0ja1+-*zc$Sy0F>rBaX8Z7lq9hpk0 zK3;B&L`%#1#zu=!Q|>}e+Cr87QuZKbK&w;R{@m8ZJ(QDeB+NvZoaRX-l77Y98!~Q< z+OCGPw4s$D{WCHqN*_|xkI{xjqL~KQZ4#>%tp6*#Tj@@Coy}yXeC)+gj5=J>_v&Ey zFv>nZFu9Jdt|)e_1DfcTxzoPs`T2sY!U9F20ut;cm2h)%P1v}H#T%YCb~4v=5x@_A zRPbO!=lJ|lhwz~+q;sw*je#|CsW;8K?gbPAjGm3;+Tz7CsN)Eyk18h3m9f_GcYC52 zlpI98%yDL^TXzYXyn(CQ@Q0CBxT5D$cgF-At*agivNK{uvV29poeeFbY{dtAXLw2o zU~!Hw9*fuCRzb)Mk}sa4*9AU&x4@;`P*;JE@IQGyU7(PX@l$hiRH z2a!x_X}Va2!UI#G0GKvvFzbxrZ2sHoYIA4K-$nd6X1XVu>yecKxO1^+mTs8zAjoYK zir6rGsvJ;F_S6dx1r5g)Yych#V$~)ZJwuKN?D4fEZB3I%={30iR|VVL1bGfOayPS8 z9jW-$P5n1l__VtiVST4=;E~?fI#3Ya7~IgWDFrmXFRq6rJ~+O1kDk|&oTG$koh?yCO`x`oFdrF4uMJI)1p9P=eO(7Nb90I*%S;59srhQ@>&Ji9qpW?}pVb zY+WI8{EN6?0N3UIkC~Yz4i!~+gCFqpsWY1+S0(765VNT=yHl~~ImIWt%fBtk+}U&{ zanAri{EZ{4U%ux~C>{x*jfFo=v;AvF>h08f-UB{$A7wH_hO?`T4eo!g|1W01FsQ(; z!+%_vkG%qIaR2APx6?gn?RQ{?L#X5NbWiS@DwjE9H0_ao)o z?U`0TMw{HOpX{HM(Dd@-|Bl?`Pi0OR>=AkoS z6ZimIg@0u?fMDJ8&yFKoDO$K=SWq(Nps{Y;!+LtEb0QD;A*uAnLEr1T+-S~Wn*eew zec|wEbSiM?6=>fVNYHX;#{E*adX5L)a2g@&YBb*cx@%hB<#;PMg&&aKTCw1jkR z%-uDazV6ehyKJ+Xi9P?AAPx^Uf3|EevJN0BhchGTw7)3^T_Xp{evoqYaX{3rh#HOc z2ujNRx1}cM%@yEqZC4+_i@onS0M?r;Zk8qYVZHV60%+z^B?^K?5lpRfpWgh*4k{pp zybl&~3NH&6_aO(QCP%}pMd`A{Q>2x7GZkK}=#+`*jy@aiiwAaLG%M};& zWs6{hgENvkRJcn}l!&h>E-IW$f#+*5JT|KZ2kJT zgfIcX!19n|M5!>m#0*U{si-5eT?^RXIa%mh=@z3AbQ_0a8^0n7li6(f75q9w=iw*KwZ@NQ@7KB ztwxFZEB1==t#DIcyW9Kfe|P=@7Jc=&lvH?bKl+9ZIMu#-h)`7bz$S1;wvZDl=0Emu zm8xrKP%rUtslzXU-w2>Ac6Id+ z-W`uG@xP|5ZWPqgZ5#}T0+H60F;zkwPd|3;q7z_cz>n=_n-%;VT<_O^W2xv zsp+5P>hBxhoh*n}pjn!Z!I+@o>U>Inv>hLeNHBmD@qd7mh+c!SK`0`!17g!op40__d}4s_TjhG z(r>?q@pyLa|`QB}{g=zL%Tb=ThXk+Naupgn5^=GH2 zAB-0Dm7lg&ONG6XjuU2J33vK;51@` zzcSEoMD7b=E%R$q4gpx7JHG^o@Zc=>b@4wrQlKGs_GeCaiN75B2>M>zAoA64RwdsV z8~a`pr}VJgl9=_#Y&U>#gHcWHZF0gx!AV(B_Ro(mm%)2Cdmm#Mc@iS|gY456kXE(! zT|lUZ10CG+alc3Ew0MG~%$jO>8KXcc>x6%Cq(2Gwl)QeUQ$l`|7hsV5yL#o|P69Ki z>@rDk09}rxcPA{3LS=!Vn@0$daU1l0QyEtyGx+1K){wsBorlYy`eS>cz9Zl$QkkB< zwYG{{Jh@~)`KM#0e~uB%qYsw92T@CdX8XtmVL`fdH)fse!0#@lc3ORNKnzH- zl1i#UmN_L9UjDp7yV;m6d(LNYmM3B5te)fb<<{WC!{H8!VnTzT{^iU<-kV5WoK?*4 zHtpp8;TSW`HN*dr%6vJR%)1U|?0*=O_9<}?99*ma8#1n91;puOtaOvKYff5NG<26T zGAPJ`qc@Drm7~Uz{aw%+%B!hZ>asewPyFlX;8H&CI6RV+vmPZ(yN-by0q)e?nx#kf zQ__F^rxzoc^{JJ7i6TJR;BF(vMf~;J&4h%6I&BrBS>hna2NQOb9x%x~Ami=$kkKAB zfJN}hqtWjs)*@lyt-%9vF8@vLZzW^8EGHc%@wR+kN2AYW)*Z7pvfuCUNZPVB^0p1H z0Lwj=QWlPoHWP3q1gq4;jFk}#wF`Fxk{)t>n44Hp3R&XtnpP*UiwOmT-bI)lk8}wN zJN4s8{j+$?V3201dF$xf+WLYpFs+ETdp2hz*DC*d(lK3O?J3mvS~5oS92V-L;j$JB zQnITXZD$Lw23u)UpSsAhr80)btS{WV_#?V@WtYS**ZD>|xPUpww4GtYzyPr0x#Oe? z2Us;teslE57oI_4%Y8@FeN7oe_`LQ9t|X?)_rtjAbqc=v`XC$lzj#O*e1czyEDiwhhX2bp1cVv;wv3$d@z%L)a$R1DrsS%#3O9b%CBrEXe_cz^aM zS;5Pc-}kcb!WD%|K$7a!hWIF;PE;$2z62x*y4j>|nrnT1>+3HLW=ep+=@J3JP)o~- zx9YKI?QD9|Ngy$rnx2lEy(9Kl6>Y=x0MU5wKN@Ev3b@szi4Ov6 z?cAbFZD$NKLQf%N(ja~pd+||$s@ozXA)1PZU0qNB6ty|7e{<)<#x$E)SolM45S(oi zFUs0?(mYM3Tr=lK^@VdLB}#bA;DGqH{ZtXE`DPrNg{@G-T4!#Wj$sO8t?R3D$N2WB z%2Cg+mx=d_ZA#{8>n2yx>m0Si;>z{PmF^nx!8Sal){fGIKi5IO=d-xXyo6yur!_bF z#G^4446z#+t4h$;wvPS3`M)px^*8HW(W8oz5uAKUP7#H9*i_eG*q8z?EWr%r2p&%99@ z6EAnJyFot1RoD0FNb?-I+!yCe`TZBoLH+%_&Lzm3i#$?DoS2xH4-nbe*-_&HA{Fyz z1L)Y+vhGGbT>Kj{bbxr;N-F36ZGW=A0$aKQf215+;$zdXhyL*15DK|rs#wH>L-%s! zteG4Y*)8aorBZIa)i=&t2%;p4PchM4=U4pfn}gRY+*1L~XLbibiXfc2`{2O(7d_UZ zp}93ZXM5Xx8m;w_*1?;6n!Y70fZB)v4BxAh_^*L$Cp4ms9?30``qF}bKdY4Q zsL#qo2YwHmaFz21w=45qeU8ukiyeJg;@~|!Yz<+_Z!U66!d?@MTMs^*H6S5JqNr(L zboo1U1}rKV*sR8z_?mePF~B5PzqLNlvUoVNTD{pQwJUjL<*Zpc2ClP<)ejt^fc4fb+ia^4b!dz5;ud2(D+REOAzFum5do+BDFbiSe+K6qy&$JTOEx!&=ah06-y&W1A)9tAPFoA}b4O-cBqym6* zH`f89!9Rhg!ltKL>|{Vhy)n+&*0LSV$5)j9-J$hhV-R?WnQ9zjK%q;hNE%KT)`1s4 zmH_srpKQh*5AuP75H|aOpXv_^U^0v(#j;Yng@-bL%OxzKY0vJ5fk_LJ;lt{fEx2#R(S zX7H1eQgrt_w(ALPpjTA258pJNX$?6ETx5d({i?*xo1{9V-4;R2dSS9E+|@m%F^gVF z!`ef`Z{tkBbx)MZ<98AeoE(ynHrYK05bekA7%6P8yi}4x4(dDWw<=!MmAxh#T0QO& zbUmr5d{{=-B}W%ZWsL^AXm(*=oii}-lLsbigB57bjj@jDf0z2wrlx0!=SNiI0FARZ zJTkhglx3%yuef<26*u@9m9n!h5nlOh&IgLvrauhb=lZ*ot&qEJ5FiMqoFLnPIKAFV zuQNv3YVqF-j~998jm3fHh``MJG6BbVo#2!0mJTS0Ku{6%H+NYyZ;l#|G7O0!7uij< znMksXFe~7$T3D3LDBD?BeC-qY;mzj9l>#i`q-EtEpi$}yVBv+3;96MTza=P8^xaF8 zEw+cd*CsJ2YD+BqE}2tEIgIbrsZ$}t1+!IW!;`|{@&)Gx;&GhoX(PMRaY7vs^yMFP z7fZgHJ|F*(^tV|y7S)+>@ki&{4y1GT0riRm`4kW^ z>KkXKJvRHASArgvZ+?V}OK+O*_mxgEeO4`XFJG5h{Pg-W_o|T*S6_G5?Y+G)zYGQi zPH;~!=PGfGew$62^blFnQ_(p5W$L?lxI=S7OA-z>;1n>2pKhuRcYQQ=qRA090bU7WBTS3qMFMKwM9MT;4=Rft`Ir=XiimIC* z&#T$NReoJL0UBO#99NoWZ_4WNFn6c;4N#SXCVMLU`Q9h$vVEw$O38%(OjP1E<1@5}Rm-iTRoc(!@(&x=M^Se^3WZS8Q6)Y6>B1O?6=R%JTcS2}H$%%`A5b^{ei%J(& zJ(_Y2-p$t6d&##}HpYvaPe)D(^251&YQdELTz%n9=^N{M7zoQiGU+C$k;{NIQNuW;wDco@dRkeu3~wJ zEVeTCZGMb(tq144h+T-nD51BtKuko&Uh$V6-J1W1q}~3Olasi@!a{>8?p`7*?V}CeTbZQJw(mPs zrOyK|DUgJ%1EdPEC}Bm8hpSJ<6{PPZiP){5k&M62p`xPF?6=59ix^pcEBhVw3WKe& z{o}2QVaPW3QSp%P=Vtz#8rti6t{;|&|M8cI%yKhRlqsyiBTusC+ce36*Y&dne20Q> zrn^ncpAai_;%4~7LBE~A_*6aOzhPLMSnRGiIE#0$jd?UuoQ}6lsiWH~){geQH-#c; zZp94IVhGj+JuZ@b?>P9>M>%J2DLw&nR@#q)|BiPf+@exHWZX8rw*5n{9CC&460+}! zW)^hdzPPC(CF3M_|3w*gORh>{duG~K>fOI!h1Vr{uB@Gxm$4ymW(dhA{>c}lCDk=k z=aZb%@xbXDBsKImxDwyK#Ga%&l9Wje`Gvy-D>x9_o;^XL>+>#Y4tO!Cg79B2a70{x`S`Pts-#Ip=MH{>2*A)6aiKGW^DE#1JyA8gBvSd zCvXsGKdd`e3=9gQm2sr)i?h8d>+NZ;Doy5rAD>>0C1^U57m&X9flLahcM`hGMj0%| zLOGp(^PUa{DGCh%8{(_#mTz5d=Kn?8!qa{QwQmX@ye~XpJz9@CUibA1Y1um8v2EAE zh_#q+v`y~!(UIO*-P_zHMjhxMY}$DnKA&?5!~c5vPr8Jysqf8heP#0c@GEJZxe&^z z1_5=zb;hP>5i^L^h7--Q5ZWGKz#LHgOzHpyaph=ix%5#+rr7*hk!{WWHU(;@7AYFV z1`O6o*0hQ=@FN(&X<$*Jq`UX)F@C?7H#_Mt9WrRKH?-4n9AUpVNB;sOL;-vhVAMcD(uI(~;sC3O!poRwptAKoTOSmUuTnt$ z2pAope5XH}l^)bf<=Fy8=m3y^ydEh?%$_|pu^`L#QOUloargOBq`S9LFpS77wUzL@Nnf#qGA}o;pjqIs`ci4Dq;F3fD z1{V*_rL-$#yJ3a`Vhef}kTS*~LPfF~7ie|e-5AG11;;%an+_GURGq=`oeTxsY#LHS zYahba+mfOpS7gGQU&SruoHbZbatd#Lg75PM8H--TnAv10PHJs*CpeHa;Y@$+p7tFi79M^r#I`vWzWuY7w@LP; zlCbu{3n%KG_7(Zvkasy3KJgnTKM;?SnVP@W-+U`lJYz&m3^bzce5*cFIUri~xy96* z{4jf;I`(|_w#()Br@gKkiBctFdZAkB(bd(#s|`e2uLm7K@euye z5*PTKu}l*1Fx-(^I4B3JHXUw_0{L}&WK37uHn_xih@XPDTs|$NzE8<@ z8@f(ai8@k^+zE<8?C8@oCwIeqVW_P` zRlm;7sk~a9i$K?Av+7rQNls_dzq9}yt5S9-m$4AuA7AqEMb#akMx`0kfv8$)|0(Y| zP`Pf*#P@ArCZ`O~cs)r-6Bl;m_4j>kR@VbK@z#7mNQy`Lv?#&SGy;$?U49;B2499- zG?HQ_{ao9I@6#Ph68;AhB9TRn>-H?OXH&5!LEvQ>rG?F}g~a}=iv6*hjo-|sd>vE) zIe;0;OZ-@PDN5*(oKydbcWaDy)c*9w%IAy_`xvtW8FE<%>#H6DvL* zic@c7Jb9&MIay+nfZG$RdxX`!`y=r=6uftJX!rfQX zrFwmzuE&?6Gi4c|t$~1tFz_J^Oi2yms+V|oT}aL%b>2v(SegLhlcLP=rFP`aaNFzC zo1M|E4yLQiDn!&yu~M{w?2_v15eO~qXpopO4_q07fsGy*QihjSQqAiysXj{55tORv zlIoCoXW+=4u|cOjhABrCm1xC276M-hRlya>#L=S(^jo}JE>^-=ZqC4<(Qn^}5P^>N z5)3gPl2jzY>fnl!lj)Cbf#~72ZI#7ya|jrb*L_dyN~1^*-WR(E9q6;&Jq^(`zbgoD ziHJP%b6>yZs|t4S(eJt=HX63oezaZpC{h;qRGeGgH5kLJqnAfR-KQ>CUc4~p7X_ti zxkRIGaDne>mqDbJP4~GF1bD5I+YUtuFk*5K%<%rt$YYyCOvYwkPSamE_f&D?`7j{} zii0lC(c0QNYnvta_F!PU`P*1_R!MZ~XnglBsiev|+_r4@UrS|S|4#dkTDZ@)6i_RJ z6kt^+ti@(ZP9pTXyfcNsZai5`VM%dE%3nEOnDM@p?x83uIgB2BmS!$kEL4>jsyP8q z77VJ(1W$IyyC;*E$|Ok`Y&Y^8B+*TT1e6!6HuzjX2n0ZcYNr?+Jgj>$ScaG&>trs< zm!#dDiC<&M_Zehni9;$ul#hFxpMrxDmw8~NH7Xjq-x;)E!d#%XAgN;)BaRMXlBq!1 z1-wOO&OBCV4g1Ao31oB)Es_aZWM;^9Fzc$>`4LxLJr%kv^5V`Nx@v+xH=A~mI1IA4 zZsi!lsBt()53+aVI(9`tcKBtmsL7@PNM<2Hv1Mq0FK)6x$iS}_ELo=?ajsmn`{ys9 zA%aB9XEa2TbRR*GuiqW7bR2oE{`oV%;&iMGJWX!+;~2DNPJ-RbFq*KO0b@)_Z!*Z} zaXRR8fLkdEc_`yac zxvHOvMfE3qW@FHTKxq6d`?q%uk9Pk4eRHr=ZuE!}2I7Rv3y;U04#(Rwx4*APA|R9@ z?@0d&vH`5OjdtR~AknjX`LkW?$4Bcs2R~@t>?5bhmaWD}(%ir8|Hb!#KydK>Y_tsp zr_}*;n$N=U6UkLwfDj2jNS>Gqrxr{ys!-XewLI>ejo|`5N zRlc*ON#5mWVRx*0`Nh~tbijqr>5XZ2>#KGX)47?mvXO+`XSf>gr-JE_bOXh<=oyu^ zPk2&hpBNV&#~pD$TQfd4GmS}CN=birPt8_PD96wGKf7n0m#2I_EP^b8sijIW@jIbe zdbWKr?ppcBe^tzWj3H{AR!YhMP^T=icAxdjX1elHkVv z#^?ry3FHuD&G7om$15)ah@gClcy6?Wvatp-g~`gyj{Cl4tfYl z*5FX2AH2-1vjk7Ss1#^mzi z?(>hg0g$eu>)|4Qs~s8ej#A=q%wTg&h|me;X7hwh??m8lAxKyK?VtLs!^LJ}v$Ox% zEbv+kvhEdh?nMTbAGG>=J#i}qS=YY(sV$FZT8#rg(X%p_EHs7Zhg2bgeyRqs-TZz2 z@%M9vXRITFf!j|5aUnXdpPX(n-M-s8xY>X9_f;|*!NZ3S-??n`Sjo+4n!~=c|6&*H>FfvfnRqP2a!Vn0xvR7yaOz7~M6K_6FX00#kL9vIkpa1gjb9f$>S`L(Yr1}+%YSE@aJymc z&+E0&N(a-V!5M$M@%+Un@z(z=^4;>^V?E~c=+`9^*8YB3>oAg2POhWK7Wf$wfK*p?l&+yO>&cI1+4lY*vyga91#atwJpOnq12KAw6O4vI6cGIao9Mpt)d1=p;E319 zx4TRmvVYg{4NQ!{TZ*}?LjpJIZ}hLdg05b$W~f`(`qG9Y9;8CmQqh7Ev3lINYMIKp zFB}~Sfh~L#o=W`la4j|`Rr>A&7zTwB%!z>5x zS_%snhcZK<5LCGH@542Ls~3pSNE=k56;~77Fq2G$%-T=|RTRZNa=~;nzSiBQEz^B_ zniWJ7bR6{enMF2-uxZqPTp)fk=aq*rYWWv9avx+?rO+)rkWh5EjUk99?RBhhMTA1KR)u{er0aI?Z6MLkc+p_c z*~rKE+vVHeALWHK|162AbW8=;9dKo+ON-;<_`4&m@j8{6!@E394KgFpaPV4R4xRFV zdx96!rJvcAO$5%SryNq}V62ij;0pIxD86Jl4`3=hR?K88*Puvd^De|MLOe*oE9L6x zxH=b*l8R@=C*2$jI;D2O(6w%LdD6Sw6Xbw4l@^N$hi{&sRa8_?R@^6uVT!;zh*7aD z2AR0?p5WCKCc<{wPo$IZh%C4;DwN6)h+%4R4L2|li(1|R%`BB#IHr*)9KoD8g%Kem z!+tzpQo{{HH89{~xf5dM`~QNc3krtfT>ajdxH+6KH>Sc2%J=;wvZTr`7o>q_s3RE} z`Y$fTw2EZDup~%ziG~3;=7XT1iCgAnCMwNlQ3qlt^ijS)Q=!VK%shk%9}Lw=c$+v~ z;j)Qfd3yR0H3w)-irQKQY!PaqAg0?`IsnhFC4Tm{7N5+>y%9>Ap;o>8bnj{`C9R@z!LCV%UG( zAmtLndJ(^T8Rim*7sfbD2IbeUqBoIEym9eN!DIiiG&7*8DK`Gdz)hnZkZ2EvCf*lI zBx)d7IyI#llKHbhb9e;luI~?d!b{Y7te9%k zh`y8QoMufETPkM}6ef=2@A^j`GJmEd-bI8B2_7B_h8B{-C zGoJh-$rl`?jyRiKp$9%EhUHqYkmD;f94FF3?nydd5yPMW??`B!!%+DQ*hq5w^y4;u zTU$F_{;bm(QrU2)W$&%Ir>AkUw`XtIHm*)W<)Q`-r4I{of-ZOv`ZLuX_u7p^U?G(bLzOc+div#91gL7gSJ6F)Jw3u2 zJ;Ff5`hEtF_sKdIvl^0)u6K5|gNv9L70=SA`=%}AAvtV|t*s6nT%01Qx zo_sfxOpl@!XF+2y4AG4bVSdm{=1yp`rb@5Ovar4=o5BEDzm(Zez+;0b_Ok$-xWCWM zA9RYFn}8>{$U87N*cfyhIMk#ej_0(k?#vU-hDv0ySoS7hjb*tgjGCL%=dJ&bnFAU{ z!q8J#bC>cVJ8(#FC?8bK7^|1zNJ)THFb^+$@?0dZ!SVh@V%X&QRD+X}1xzh9dBoO& z7SA*rBM*(g?j;BUhYxT0+Hhanwk9a%Z{itV4?29u$HnBS7$iq8*7qtkoHA?``z>+mlro&sR$6cbs6`lSKq>}?!Z?Xg=0WV(#C*+{V-Bg$X zpBx2zF-JpX_K;OYjHD-7;viK?2oLl6$JjI5--@YhLm;GNmh4F|tHHpAAH-rpYPndl zlOeNtnnoOG_-=0GtEcsrFJDrz_V$W-U!X&|uwnB2X(bh!5c5R>eO-_?`JSOwBkY9I z@{*yB5B=AoY?j}>{Kfrbe!kJ`*epIFL0(tCT!`jtRHTk|tJQmfPdJz)5Z>;0p9d_o zCfGI;Of;=8iug~2jnRi?S6n`>Bv8)8Y9;s-LtDU1@FPs{Ug3-J&A5lN*!ubrbq?Td zVoSU1Nbn)mP4OBWIQL-Y&HSN~Z(mqB*x;72vWmI=fnis}E z?E9vETprRJF;@3&>A#*knNnqv&t#Lj?IF^!rU^vIJ<+#z69;E8U7a0HO4^H#AG~k^ zPVI%`O5f{gy3k7e$}DO}?1TY7ai_c0Nvu#+D6p1LalU`)8#^RL8Qz=OqRvJju*KZ6 zOzf=fp;@NYUKhvv>|tgXxM>Kc@4n2Ay6@Uy!eIBuq%FhcctrheA$psJxYDCb( zG^(!FzM-|G#8NjOKZ(PruI=b_gG~KLBRSr~RC7ZrnLoR%7oADXb`val!^IBE4H!CT zaE>}EZKR}&N|cl9Up)X%a{Ars)axXo`$}(JjAV>tK!8QTzJ^2?#~z8tCWnZ-T*@Su z$KAm_xliNn*ZrCE){AnG#gtTTfwIs6av+h+PSCn#?(9r5=Xl4etW3=JD-5iwmJ0+> zU1SfDVs?9?h6FK$g)Rk3N^caX0#mT%6n~ed2 zzz?Xr+!5Zgb(>jm$-$6q^N=7*LFzg#WR{9;ki`9cmr(5Rca{_Z^9r1#MR?R+=0&^# za!}x!S#GAOp|vr@tpZy!72RS-3W8>eT2;yOTrpBvn7JegrJ)Lco>SWsXCZ5`L>$#FEeE!V*ex8AuVfT+ugb;IYYiOHEBA!re=o^Qg2NlVJa3x)(iZOPA zOA{??u6GclDN!UPW8>a|0X+JVP)cPqaahyYVyUK(+OvtXNqZ6b zP2{BlmQhlaV7!$P`Geqwu~pJgs{1`u@`%}N=P7v7UC1jsm$n@V=kyR>HMnsMzA5>*GCbV zRMM;Zh)9-ZW;1*_D>`0n>L0?=25LQLQd~{(>SZBxqRz$16I)-;CVE{>hf>2W8y`@= zK)|fXp;$f4!8=y~hyU`RwPI!E`syaU`INHSDKD^ZIdj41EaF&buFrZTdB+C=QPxix zws!eCM7HwIhoWq23lvU#N7}Ka=Kh#?+xy&i#4;oN8>7+i6s;;rS zSl)(?XP!SrZl3MfJlfDB(9f6l;Q4d0fPG5A8pYR-r@$sq8g^`kqPG zGUlt`#|a2PwidY@wF!9K&!0EsX+q^86K7xx9I|F1d?4Wk08;`k$lS?^m2md%?{Kvl|6b<_HvN3Wfe$#vIUcl*3e-|XBl0OW06slwRulb=?o+7U?crYTCcDLO=I|R1sOLUN)ADTAJd^8zWhK`ZgRt9dp@-5Z1gVb&*GWJ0 zAwO`l(!^GOBwq3E(+#h*iFwJatbb~5i#K!rePd{2t2by^8Cj&Inps)PA_B@rfp9wu_SBpW$4`5SUp~NAE>*wQ(w&l122r&I@dS@jA{|6&rQrGQ_dz+iMlZZ6n4So#=8j@WAJ8uUyAs zIeR~s0upLqW*Sjh%k}k)g{a5#ahDkJ@BuZ0#(zp(L5$(3Qf4_sB=G5lw_f+YuXMzf zJR;chpp|%@FzZeC1^~w~g~yb$d_);7_d)WH*VY1X|FjbeZ(L6MqEnmNy$yaBo-!@0 z@qIB2BSMt32RXr=?VNqLfWS)Ds&b&5*#Cpd`ex0@A5~kMEr6{L+Z>Gxi>xl&;$=}2p_cYz<#94=fTKsv%uzPP~iDFiDdPsc|XA z6udW>dt{OlS1|&+_Ll^uvi$2uAzv`1I@~B2c6@w1TEF;|m4y*@Nk62omnrYY=i3C&E)kE4Vb*r+^ch4Lm?7vuJ?WY@O zva6F_uZ$N-;+xK&cH=WKr)kZ|RfH8h25H8GL~}#|5os?%JG6aPYNc-1WBJRs!0}a| zz-OL27`<0ugWmicYKjlNfMcBQeGPg@4%fs%YKQa*0KO(6Bje8K#Ms8J`@~coY=Yu- zVs52;s*T0g{usw5SI?*3sOlFOz%<3jC!p3;_5-N|8uCpWIy)2h-g|8#X%gPq+ z3!r{tmx_Hy*0{4#zi~hsOZku(rtT_^81&_1(pLT~&$WqNSdx&(iKl68{VtGv7j!FQ z=6h*FFXjTVL=#9dsb%)txlF7GYd(k#1^9pMEPM!IM^`oNU_I^diM4v(p{?7s!QK!6 z$V>k~q3vN7YOQamqfg<(2g$p${bduSw7qS^3`?FCKFrHi;4WA-nODOv4kLDDh^iC+EKbps zD&J)@KqIXGW#z=6M$3ccl#4E};zN1I4=Ga3Why#mucH7 zL8mZVh-QZ+kJ&oJpx{&XBA~i%!3vktr_5Cz+i|$^Y>q+0b!+BzZ43uYM0lFwdwkTy z@C&+*3_hVxR;J3{`TpY8DwHCKA;^i)4No>@nxH~PhG6I)Td?WSbqLFng4EsSCmNaa z`BQUjh|pvt8ZICz8r2^~O6JF?q1ik8{R;riv(2_dmhV*uJWT~~8@j3F$XN>JGO^PQ zI3eeW1R|3;Zjgl`j?oSiZPc7Tv&Po9Y-3`e!TTs7d`h zAfHfCXl}BVMkBb2$D=HeNE!xZB((bT0bo|K9^&j{%Er;X*m6TDO{9n3_3x5DZ74>e zrKJ-n29sC|CVEK~y)mB^++3e)ctoJ1LPo0jM@PGA=UvxNHoD(5V|BXfz0w~YA201} z#L7VcS^?CSS?gUVGJl-OxHv~5@_m?;t3NyPv5P6|R-+9{-xh^=;hdOL8AfH<0vFE|9k`)&|0IX!0cjj85R*asxPo5w3NQ zBC+PrYZ#tV>W$cljdA4H+&#?6^|fUP4G~I~YccBYjUv_M$wJ{`MgH(P%+05Ck|8&S zny8Br@P9{PfdHd961sB*GTi3IW}#Hp`4Mg>!CQMoaO=qe1_#gHAtY$v#}7e%(+|<0 zo4Dy+s-N^Q;K#g|dhh9Ox49vl@$w+|v!z~mU~r{{hd0uKa!Q!_;hnm=*YY)b=#@Hx zu7X5H##>-|m-FwYD<8c`Cm19-;u()M*5j7#h-ivQ2#ba)xd=r*&s!K$B^HQ)Oxw)+3nG3xJEt5%%h;GeX^2D|dHv0dBfM9^3It@_fF}cr;Kf+p4M!11b{P^A(}Ril3NvIj86?q`SMj zH(E08+W;P=0$M~cRQkQwOgeS_sm0mGj{Rw;;q$TmC0Z$wUDX-k@<(?miEsg7vK!g> znzbwDo=Hw}kV+Rvq^l}(fjVk1dw?#3Q0DJfio>NAB7m-*ay27wn1I{~1lSRV^2cuBAC#UGlmqdZp* z7h8w`E#z^;@$H-fT|Fg?e{?R&sTx*KWh&Mx%R{9038dF%$Fx8XMk4t90;3r(BaVbwbq?-m7esC`Lgb=ik>}T=EvQps6pU zziQ!)WJY4xB$+7RHoXadmBruPc%-%V`Ei2XDh=3`=H}+=y4NUsVRJ{?0TopN6Yi-H zhOW=JQA!-aPM;GGN*}!{S;erJr*yg0ge%Bs6TI}N_@46JaZkOga`5$#Aic=X>HvX< zssES_ccy@F%bM_~W&!%UX)|F{?qBmNmilSzpCUDca&#NEIQ7YtTSLX=$d=QIBCz%E zTjQt$PQ15*eU>iav!53EpWV>~7rPC>K%RsJCqB{&ULzfk<7#lmQ`RkhPRo8@Bu}B3 zE!Jw~y&tt#{j;@4&q1$tFa$jKYG&qymN>jMA*BQb&r$~n;Z6BGRe$VM$2C62RAk?C zcHeUsMXmjuIeel@_2x0z@`apzyGbp2Be z?DN!{`}_N!nJf?a^M!x=J)v=JtV;>{vKH+Na>-%$p6by=z)obrc{IwZ>`*V8)Z$w(`%VY6BN z))Muz;t%ahXJ)ca-jxL*Vu=EPgs`o^CXXz&;m^|Q71lgGVMhsKHNktP_cDx#Tb<(Y z?-!_-=yA*233hgUV>t@vOS?(k88X82xqb0TI7O4!cEa-%@Q~fYnjd_AV~Fx(a_+2? z`G~d#T(zmCzM) zOp%)y-p=pdMz61IGx%OsC=3ARt)F`{*}1un0YW?kD$7u^O?vYA+9rDwY<6x50%wXK zzNbt|J^Yn34jNiorO6YDX*PhSi5eNQ3(LDMuD_y!gtINDd(M*q zV6wZF7Y|@1QjscQFL{DLDNjs{Z*HuZ?6mGxAtwG4LJSIg*VgW>(+lP*btu;(jICwK z(3&C6B|Vq3>~6%LbfwpGyl>FTXB%lJNb`xneAKJB*~6YZG-G+A1r!NQ!N-c&$yQ&b zB52aNVoy#7nZgjEZ&w4~Z>96!NI*6NzD(Xo0w64?$*oO02zVk(4(y`J0sMqFV58%c zl4e3QVnflehBr;2zuat(v~K7j65tJxmtUsD2jCG{?d=_CNj`>?9<*TkSd>uEfZ1w$c$xmNJR1OG}3 z<^rvmAN0*k1&8wF9r=*p(@a|8?&G^BKWO7dK>>TxU-1xdq0#ozTA@rr!}s?i+3I5y zXM}Yl|FvxoV(&)#|6!S+WLx7I5sbWWX;Ru--0;Kl8Jx8`{=@$6|i_%RkfR3U|ei zWO~1Cu=4)63SU+}^($IfQ{&#j8|KTN?_V`232_e#vy1O)D~D{0ft@ zRbp_>0U&tE%fg9GspX+^N0D4J{in7ZUFY%;WXzlU$GHy66I6KY%?UvOW@ZEa2Mu=+ z?{eh|liq-4V_L=PHDA0fCRi4J-!VX{2+mQsE>yX6=Hn9e7Qj)i$E(u$G6A&xmaa21 z1GZj}hMZK^V5Au(PH1x4fAfRk%xrnh69mlDS)d^Ghr3txb7A$AI7XG$A{iL^cNdWG z&lF=1@e2|w1Xl-sY+4R#L>jEG1UKlFfd-|uAc!s?ElK2+K6y2#bmZn>f%OU}$~;(A z?)8)2mA_Zaouo6ujn6F=X5T0yQleGZTkkF7sI@lR)xTZMvTwiM}kRh7fTZ;xZ`YFp57#nF}b_;05m zFoumhtqL6*QmUfB49Z~?MnLkv)v=tT>k=}uPNf}3oZa?f<9H?NcZK-NO^7gO=Ndi7 zhqSA$ye1#K$=;tIc8B2Lw{|#>k3L;`5MTax&EDoJ)~~B>SQsu=N3`5j{PoOO^j7J> zf)g}32QI|eH3W_#Dk|9HNl0I$K)>7%?7oi1aiF4po(OUc6GW|^(Qc%Oad`|oxA79cPVF0R=21k@P6 zB1p8O+*2sXI)^9`p&A@vzGWd|v7m{=zV8`4N}uvlRW;K_;)E+rzU5KKjt?koPNYZy zNp0ZyeYC&2&#)F$Z@*5;CMF z04nlzAI7G5IPIVSyPiN}TEwE^0zu^&1jj?M!wi&6`~?F*!(siI1g4{!Q#EKKXN}{S zfXDLLXlQV!7V{U9M;0hpwm_m=c_=SOLZdxkw-{l<+{>OV&egdT>Kvdb*0oT;2wZnNy-M0X}66tI?bOkPN1 zXKrJI>)b&ip4iBPG8{SBYbw<#z&v^0grU2yqO?`>$0YOv=k)VK)YhJY>5P%JY(x)J zyCgQ>o;1W^rhK}SL1ZpZ^o39nX5FwtvA&2Mgvfln|lwXFgm$cW#}(t!>Co{Dt@pQ%0tEIK${CD0(xLTv*jg zm6nN3!tcVdhhjr1iGm@HTXbU_wHbtr<72<1#=XcU!i9j8RM*T5FNP&vFqK9XsjMJk zfQ?X^%EZW(7*MMF=hLj*Jh)_V41_`?K8O%tFV&AmQP~L6l(%b483DR$%=oR#kFRO~ zDt}2@w2=2AhwtIJb`D4MN(U;FnaMD{UHQ=|!aDn!YA8q)=$anYK=t*>E@Y^(viduU z^7H%lKYjYl3t56|!V-wm$_GZk$GPc#&6ah z4zSZFp87ZY$;_8cPZ+|!QuYO=tavX^u;v(Ic1Yj+XQQ^yC`J}~`*R)tf=Tv<@A}=1 z)dRuqXo>K<8W#6{D};uBD2%FeU@(Rg6y2Ta=Ws0`$Ihie71MJRRwR_d5^O2rh={Zc z6i;R)aV(IQ4uOo(EY>p)Uk&Kgnm$iZzp^o8XvVreAExU1o$iT@oUK_WgIt;3t1pB! zEWl3__d5Fg{_QOA(@z zl5skvOGd+2Uk9ox3u|kopH`gpNuI}3XYxwWyhY<7+mlkqrNY9yhMZ8w^?^`>-U zP#jG6(kDWx%5c$fL2R{t-9jw5|Fh&cV8}xstxVWyXOCIQY9Qo+87Hh<4kd6xV)d0Y!M^ z;p1qKuzPY`>G9p0o8L5lz1#ix7%r7xfa_|?l^WhSH8u9E!8es<1XdQ!9o#4!AV>%C zs5>8tx&7wEo606{v$ywq-Ye9`@Ps^3?kR@=>f(A+8L&mKq^0~4zwXF@1Ik!F*8Aeh zGnb4`jlNgw4c$v)bGIzbyk0asJ}GgUO3APiiW=ywW2f?@A2eQ0lNc@+?4g2{glaB~ znz-mv%Ivooz1{>hybFGh5)Rq`xYEc7EDTa%>FQ2y+d~6+W&G3-GIf`3vPLP}gmqZZ zOmKZSB3ZdgfJfK5d9hBUwvTb<=HpRKxt#}Y{PTQQX2!j+bti)+%XQD z(mamoMa;v1`uWXt8yW#r9v%Pj_R-b~?;uEz5PR#DR~5TAqws&avu}&dlb)vKR6c&% zkG`cp^!%X}V${LE@R7t_k9Mr`LXzh1TLk{%x3T4PAn~g_m?f~pV*wSxR0T!>Swu6L zVDPR$vACLBMOEcrxOx4AY(T)nbkMggzNW(u*UxXHB*k2uGqCPJ!rU;Lg6|Q;T>~i} zofO%^OY{slFSVI3fo+!H7-RzIl=_y!@L^%WsgZ{BF-WdH31c8fJMhsH=E^7~vCTVM z8Kye$9Guj<(}rn%g~O;y#_#`|#_du{D_`oa5w5Z^^K)?y zClP3P*I9sAB7l6%P(Z0KC8(6$chg>YaPyWa(uDzE9{H#P>*ZJ~?_*<2B+yN0E(1O4 zvG13I?|6adBe(c6rZ<$2k{0G7!+b`q6bk#wMX(_*3-^(gcbj6=*hWe$zhmv5mmNst zwrb+8Eq%XNgme&kozr%89>Uer&1e#Tj9qAC*Hx>hV}pICLP5UTg1z507bAd!=#eQs zvZGTC4jWm;E~xVL#4dutbP^%jNoiu0^pRpz>OqNH>mxi*(EtZ{%uqTdGl!G#ZRD{o zpNOAj-*a3248{0fp$_gO!uG21vR5X1xfJM?U8L*FsE@B?q$a|gmWOuS6dW{DY=&Z| zC2WYl%=}UNdgim+p6J#VkKqWLbEBE_Wmt3)ai}Bc9-)%D!_|1GT{T~&kv1Oa0@Owc z_xMeF_Oi^DruW6VngQHu_`QzB(12_1;h`rs@84uj8CflwXL)ow&Qu)qzMEkoI*WR_ z>Zd2bACR^)>Q zx=_Z^aTYw63&}%-RK~d6B*xOol}w&;>JP)&VH(^^Ybni!X3>K-wUimAD9^ZOC-3fp zMbwhyk-OC{+)u5H&NeFC@nI+f(tX#1&wLLcB#csAzQOE3!l014^5ogpRA86NO>J$g z6dhwv87*X}sU}K}rC{*p+oqBQ0w@CPbMYeR3YFMOs=3+LRFRSPMpOl1g&yb&@h03l zE<)*B66;zvjhQ|`-!by@S$yxtNguIE7Ngo(CX&MG7Dq`f#cX*$jv+>jT7Hke&r8&5 zv+)TO-vQs?(-`OhaG^~ug#ep~#Ek@&_=NcAN2rEHJcAb^^4ZlHOPR_mF<;gzaC4HK z4t@y4jY@N9I$H~-*Y}Ft{+?fIO?W>ulfBeI=TNEjiNPx3@7NKZ7uQ#%OoaK?RI}l( z23Nd0R@0vFk44PEq{tsqvheEBm}K^tRh;7ExCt$B3-w zNj(S)N{hgkRMA%ST8T-wBpWsEcnTv5o&l!i>w^niy1_o1|E&&`t(b6xF~^!OibzeA zr9r$-e1LA0Bh;Z?i~6zUV^YKLi8B8>YG*-t`n5A7&*sI*yF!}ZK~?kNVlxiZ$iAs& z7j18vLx7sEooFCyO&n(Qyt7);;S03P9ICKOJhL zmqL=~-DHkh0y4)%7p!$|ga~GxF(QWKsRqiMGw<+LxFg%XrlLA3g}w^JBILs#4* zqL?U_=(_dC6DT6LK%;9}#z0Lv?5jZVIP`sB_p*b8d@37PDzqPsP)XU%(yE%-lzOL2 zAy|xQWR0y(LqHYoCp5oodt5vusQzC>suCHcscObp8lZlqCycSz+xgk#ev0BdjmwQ3 z*wEn7S?ss-(=QKXW!>8v<*Dyli42kM@}dJfj}dYB2o#!`Z0Sq+FP2*^nmyi*|GXhU z0Z}%|W3IXPQpQIJb}^32*G*W)^2i=iYzY`IT$yjV)d^|=i&5SNO3Z|!<)p8)LGRv0 z1BJ$in?DD6eS-xnqzau)N6ay@1zZBD$FIyJaM2 z<2np#;>A)5!Mc;@mCvjM6MbpXCp^hbOuVtN$)cyP45|}D>>VZ>~RDrI6Q9Af;FL8d6U(gr8Rskxm{SZ$% z6X@-M04ni7!NyvVAYJwJt=6@uchIrlMHt;JwCJ@-@u2PP;}V4^k~`d%`wU+h(hs`$zRB)))i}8M zB_YCnhZ|?#r<8=FG2LCFK&8>3yu}v+#Mm=ctbi18UilEC7)4T|!~5HdLV{On<4aJ6 z$DLPgFI4|LW+SL{P{_1-mpD@^J-OFVoD$sK#MXwPTGWV4be;3uNTE=u=J0u~GV?c< zMQ`=9sE7okWTI8cH~U-;P0w2HXtrM%n^f|(XWRvNF;<}MyVCB{ywd_d`J(()EILQS zb4V$iFan#sRIsOT_s_63pw61^$_>n{ld$%AVq=Yv7*TPz(1O8_+{`(_>bNACdtcpv zz61!Wmq_Tbz=Y$K2=G6mdmkp}ZC6%9aOA9oylOS4Nmi-eF=+G_`FAn+^w^LE@7JvZs?u6pT{H+Pi}3P`L`Di0;VD%g&^VjEp*3 ze17*sHba#q;eP40I^5LYr9}@3z9sS(Up~b6F3VNC5b8Y3!BT)J3>>}|r4{C39qX4X1JSv5kvLMm!WP)eomO|%a5O?>sKtMoH9(pZrgN5f}w1#@f@s! zyYcZeg`bYYd7joQ=S}!EYj=DNJ6?6Ae^Qn-Y}x9jp>HVho{k{EX(sanLtPVQAb0SjwfXuT_YoJ7*bN8?4Os020vl{eE%yTD2~II^F;jT z%7tWI+?CgN=ColCrW3&~FG7$`tZC#%n(WooGId9H_7)jxOTa@hv*A@ z$l$)f8zUie{NJY?H&`g7w$!}CB$5fp!VE)>+e0ZR!%_dn+YUAhN8*D=m+${NqGx;A zk)ubLxz*L^^lzNtUcUHQMp#ol-P)d@{MV~!Q|eTiY?x&~UL!frWNuv;m0A(~!JOK;YVt&Bt-TT8W1QOlCaPN3{bq)8U8cL3V z0iY8icsviL(zxfiL3-j9F^zw#^W*H>fYj#Mf~3FJ)qS^9vKe6jLY$v{lu70bR7V(6 zbvd2^*Oo_?8gK<8LTR_kt78>dN6T5eR@cn%;5g$+HfrQYZ6Ct%A!kHH2ByZnaRHh5z8kI!Bq)V9VeV=|Ha+Or zzW=DO*Jrl1PcQeC`vjQDXvo>F=c8_E0}mo@$!>T5-cpZi<=;8qxR?}>dRpEmZJ2p? zZO9W0Ld=B?Z8vy15`x}jd!+2vS+UH&5-?p?CSTH zN(aK}gafgF=KuDV-^P;DV1!6=NT8~TUzUIU@)UNW1K}*k!|08ZQKqup*g?B}3d>5b zUB?7H!}F@c_X5JiWO1LJzq|{Xxz{PiOc@wOwkTqmDeu@MVx_DLlqFol*%c@5CQ3vE zs?4YUV9avje51W?L25b&ZZaQH>!3Hpn|JgMuT5yGX+yBdl2SSOj`9hGM2OuCr2TWf z|0Vm&gouyISE|LRWrjle z_OpF{L-W421R}yw-&Z^0Sffa1UecMz*~$<4g^b4?xxTp*T7=_!MxS~Ps$lDE4*KQD z1E2Ja0nd))!yc7NA-M6x;@)<57p zf6vu5MQq^DJ~ybFH@mvS0!$|$Yy3b_ooqv)Mqf4_9oDZPpZ<&O32kzYzgL_kQ^~%6 z;z6rN2Shk}sJS?VBJ=q#2|w9)(<=LiMQMuE%(Ki zv)1AQE<222`FIDvcRkF2^}uY;q%c&T*#jm8ifiRJ(o!%vHUf~Ur-XHX-`R-`VtIqKVAy>upkh&fdHs*WkV^XVE;^7IF`GG&bH0k#^+<$|;sazgAx? zQStdfDzq03#NWE+)BQlwpEgFgK_&|Wn{RATac!}#@o3x_v?FUPQO#jDKi_*Dvm{#4 zOZ)0Y8=m0iT;pI&%fF~Ic0IL&a&{-gJ-AE@uQi~<@0t`Iie-u4(V7gDji^- zN?XnonwyCWhQVoR75*Pd=N*o9|Gsf6BYR|TvLebz_TEGyds9{@dy~CK_A0Up*?aF0 zq3lf$viFSNb$@@y@%;C6ohu(hJbLomNLjm(~n#!Vv2dsg8t^`i^ z7Ta{0UQu!81hm_m2p=>MCupj*CGh^#CRHU0)>jIda#pIR;a4S2;LMwwYj11(7s?gt zQ|6Agx99t9tFLyp=>P@&L`#j1v3#6Pts4DQn?zAsrHQ1 zB?d)2^w$|C3@OBnFSFM_X@84+C0EU&L^PjSPoHM}=0QYacZ=5<_?NSl6VMa4D!8g9 zX?3cZln7$$KKv-Bz^R_X^IR@H?6#*8SES7w_h4zqK>pW^H$#@1rlRHPja(J`z|)p(xx**y z6ItqD2L}IO*`7zj`EU}Jnb>h)ej9c2%qkk~L*fCt(75n`{ZlD_F*^`Bl5`;pY>C3^ z4cwt%jXIY^>T{7*4d>yP{uW(Wo_Kr>ifRcYY9ErGFQ293iY&*BHIlxa`YxV26=sq8 z96EH^Zsgg;2bEbnYTY9wW}H#kKkO4wJ#^-e&9@*`K#DjVk6@`L*GvEP^{Zfh<+w^WU-C3WOZ)LBUPaz z;5|9o-i|L>pYm*-{!y)(f7#2FgAS1q;(3|$FLyf`k)m+$&0Xxlp=su0j%v=t6u4As zOS$tV&azt)iKnLjBSflq|Skd1_xwJ%LJh7Y> zNUz0BB~w<*MrWF9T{Cn^ul7~Q+_2$6WA`ipo|w^d?x z&*hW)$9!bP&Y8>0WTN0)HkgON)Qr8CH9QxyY_+}8o`e3k@3X|Sc!JNm%=Pu<{xfb0 zFV=L?_k>nx3^W0wEaMN=T!e$Zl>j!a( zEkB3(b=b6we-de45&wgq+>L@KBD_DhDCz!GxhjR-u)5u_OR;~R*8Ti(kkWT&>f5Og zPFj-t3)MXHoHX9vCx2A*LsN3u$gL=e1NQRfw9!9I`?HFDdTyylB1r(!*v?%R!K8DX zq@xTws-t)B78{3F+y*HeGn0S0lgPfVto`WB!sL0uHQOs!qZI1l{}j2$%r-+kbhXaw zG|S|#P=sAqyaZFs+x$SGud)TM^`917eW((cm;0ByO4~Nf51b=M+wfW?+FlzUQ&P#G zky`JdJz~0r$4Q7Oz=e3NQuoX8?;evRrTd?3YFjHtJCEX~U+|SZ7}4!UqS5Xe57Q^< zBO=VtWmBk}Z#pE@+#6M|j{ab@}& z**>0jox+OXWCBlY+z2)@=bJ(>^5AXb379ONIj!#+Qj0im#A8~|&&&zAJ{3Vf&JXFo zx$)j%eE7{U<#7u&$-x$T>?suizBiWESbyGL==ac_4-2Bk?`e+FGvxNU zn)?{C4Mc;ZC)JyijxBdn=rA~t09SEhp!Rd`l_Q#g#%-t@$wKLzA*$oFLr1X@#OZ1uIIP@Yr(2rEqLtZy{*pwt zNc$^hp2DvnuGs>9AJTmAFf1P*MSrB48H{N8SV`K8qdB))rNKE{z!4_-^CkQ4aF%cw zi1A1-rX8X_1GMC~M&GMnoUg4TLrC$t1iiVLGoFlbSd05U>#Q}hV_zoOP`Tu9C>MSjTTsSi#lGk;o=a;&tU(^g zTqP3pQM;586Cq3hz5++&up}mqp?th0ie9hvQG!;+xI88@Z3p3TCqV)50|v1~1N?s| zfM%y!t9H;ybfoLJ#Y^z*hWaFXX3NhXmCQTeSBE)VZ76nwZh5ZgD&k(>uQpjG!@m*v ztnk-U9Owr2vr>X#N5nW?1eHU=?3$qNg8yKx9IX_rCT^KU5yyOPzv;6}0$RvN<^i_% zomZ6Dpbp{)R%*b>c*Wg%=Uj~dbCv$12DOAHzXsZDC6F9W24J}nfy}rwY0tFQ@<-pd zwd);YPe1Y*N`T6TqQtWo6}f*d5-A9_K6=P%4fR zZIhTo75s^uVd%E3{P<=5b68iZPt`9aA9O^FIUOZUb+u|jEBUjs$hpci?2|fT_l3gX zEF~Vaz}>|oLn@KfNcH{=EI7OJiNF%y&kFFV+Gbe~ zM}ak5M^_Ilu7&7p`VXI8mM~ZmZ@6o>o5~4AFm5#Bh5o=>9_RA1+>pt5+x#^8#kDua z{!|GH5=d`zrGq2q_a*gXRwcAPsA8F)+RZokP!ahv$;XIv(n!9X?U4UQEM-#V)C|lW ztJPkrp*MErV;PKtaauJ!zWvvGcyvwkK3}|Ct|Mn}zx;W1g?;7ZI!X1SeaK~VpFyg- z=$r>f_;2@X75UH8uhlbZy6hAy)IX|)Y(1A+-e9v(45X9&*+i{unWj8>v{YYKpJP2f z_t-12j#B%H006Mmx83OHC&TuFcnK=*;3ApS2s~l9{PftBJLjZ@#(f~JZa`G2+P10e zCokFGppqojNf#mK_q>z3Epz6F-RT9(|3y>5cZlH?K1m>?6B_xSdl~lRQMcc_3zgV; z>{d1*(J$X^aq=)9G1NP6KDWL5RWl@r%ejlED2&*vTy^~OkWH7rHTesZ?|e-YlrE}y zN=Bw(o-Jx#x3ic}?vCG?O!d?sv@UO5&+;`cupZm^_FOV=8qL2o^RAXw{Gi2B{X+w* z=Jz}@5yc;nkHu^o@#;n;YMx(AaQ;PRTcJn7l9mivegE1{U|681U?wd+gd{_+kw!2t zyN-GHmuq)WyIG+1_sz_^OttxGo`oYJxd>CyQ}ny~yyN5J?z>YJyR|V{IU@r1W2Z6S z2;0pT%s<<1^Dt~_A*L^;N)WjnOyPFm%5W~HN%$gVc}ZPh-TBMqwf$))9}anm^s4dP zMapaRAIV)e{~fgjfE>=V<>Aal!sFHBxB03y?X~SnW;DpLjCVu~I2iQw->+YRVOm}& zk#L-|DIg`zMJu@HJ=SC}C7QzhD%Bu*%XA%GBf0FF+Pxt68TrHL3*R{L4d7R0PGpvQf;c+FnHWwUiBJKUQ@9_gdz z3v;P^%EDg~E01eCgbcyXKk{K8=upsmT4OLSn-m`29&VDOzM2|nO_8geUbR%xmSn1Y^RmXP>fEq%H4F_ z;wKr76BA31_|<(|h!~0n_^*qP_j)b{;tnoz4Mpnt5KyARcBB)|XkPx)|iQyAby`}mU3}XO?CI2*9R6c%MIARq1B?h}?UCdSus;k@;o)noN&p zX$ZUzV9dQ4vG@OW$BCR#EsCmcI%E?#9I^o%gX9#n3yjal@iFPoC66)wiOP#5PTgUE zFKSlIuX(q$h~uxM|KSWJDJf~(V^xEC#{eRO>E3S5U(*J7()kJH6mxIF#tc$iEs)H{ z|Kv}&?nfJbkoEE>V4OOi!y{C`VpdEbf4NNu3=MCQ-SgJ&y58hnXK$sjz8;z zdCqCS4;%h|;#B0qX4LKTrZy8?i6LOrsRrM}bJR!_X0ZJ$jlO46WV;BC23%*#3;_=C2)?r z%E|`xD2S^L5+!~gD+r(IML!HisiZl^M?bfc)KSDskhzEU;NDF7fRYBfE$%}2jzZa; zYBv`9BM~BPT6+KfgkY>!_pxT3)Qybg8w`4ZV1e*Y5WHpOd&%}QS>Zne*1XlQAIhIn zSb^do%H#nH8p9y1Oy>Z}KkjUqkWU zYFp~HSPfMzZqxtV;_%mR58*H)MHHCUzv$fG=YiS5BR;-r%lR6d^aQ;m)jDCnH+?wc zG6E^m>R&&N+MTM-kkD`rr7iQm0a<@FD%r zsoq`1GdC*J`~%g&hrE7$##SR#gIVEyW`E}b&ZJ94MMc2l+4HY8>957vlavIVHwXZ6 z%8_)p%(yLP&u71bbT0#Y355Q>c;Mdj(Yhw|HKLIOt7lEy~;`<@~ zoWpdl)d$7{P~WXkWBETY_6-L>s*6gOVoA*BFCbSjsSKVqip8Fm8)(9)4^u;HUyU;P zXj%S@Xl|;$tjQjY>fJy4Q}rXepmYl&UeZSnEr0LTC?}xJ^AJ>2&%j1t+gpl&tT;jewRXBaExm5Xv&iU0cL}WZowt62f!x7&d$!n!-E1UuMd8ow&*|dQa>(K>)?sX4hVA8p2@~d zOTsR(A{MiKy8EOm6{q(+3MIvbs#`EsqTTXweUW2qMPUeU)e5(vZf)c!iFTZZZ)_$xjehQ80sZbw)bNCRa5-{uF%gy?bs%GwNhm%N53{UmKHs^*v zoP*%HX?Filg|4vP!?4*Ul)IhT*k69%%#mnSGc~F|<#^`egl#D8xmJ=~qkRzDqoE)| zJZLN;QY;d3W;bb1HAW^~Xz-W_!{a}GjK2co05F$&Ucp-5pvg5_&P^kz?ff7X3}`C5 zGr@+4A53Ab>cWDf{scC6^>${4rK9cYZAM}O`VTA%*!nCLJh*;VaDs)3j}n264U$NW zFSWC4e`Wqne%gHo*f~81OqS@iOjMC*X~n2 zRBqBwr;bX6d-Gj@;SIT>PdngDhP7gp$dk!oG6G_G-OUm6VWgDVH#z;2qi>kYGF~xU z`1L)?noU@Hcz=8kw=KZWcip%)^XgM4gSW%TnUHY`vm`H$45xnDuejwIq^q+%42ddo zY;5d$*Bwd)YIERv9UUFPrQW+%W=Kv)C(l9{N2rayqov0W>^eJA(g(WaoJboOMD%(y zxQ2jWD!0$Ln>j5&^KK}Rug|Gly~cqEey{%LVg`Mm(#JG{>>jfAzmX(=BZMj}#HJi@ zcJSONuj~nBsRGL;2PxPN`sTUiy>H_JiO#uB6`& zy*Lz~D?2oem4H`5Ku?~w&kr0IVPqOfJitT+e{Z?!oAi(<}?PA5Ys&*Hyqk$t~37fQ;#Jham| z+DtasS_ZU9wpLIS^WXZ1peX`!OAuEwAV7szotXy${)rqB6?L^%Rt6$~N8tTru;rSq zu_a?+Wd(NMilAI;>~10$bAUeCd^qsnUzS7Nk=<1q=im!`2@M45$1s$6(9mA09<_4 zHk_OYC(Dd_lDOMs1TuQMyU}`CSs!&*M$a-Nsxj^R^d|%<+1!KOx6fJHUl)+~# z0RfimBaX!K-9p7vQ2hgo0~}(TM>1}^pCi{j`u66~Y3#DlOv)a``iURW>G|Fam(@AF zJ-^5fO}rZqeISNsL@pRi^QP@OU)>)A z{;l`o-sXn4;kmXDD*T@MD#7mL-1RXLi8v(7tH>u2W0p)lw1+5|0qSZVUg1dCa)+3j zOzzI7lGB9_;K;Z7{L}~}siFZo2)^Ouqu=X+yZ`Yx&jN&)>3qu-ow?Xtm}PT(R6{GN zR{!zi=Z_yd@KFl7?NS4jN_emNJ#Kv{ z|E>-sJxHBtBEx{?*x28`5uTipJiV{Lih=eL=WLpYO_?ZH=C}vrg>G#$TTDfDeV8-= zONraOd(iJO&-*5CkqD>P?!S%*F&4gA zJU#K9=RpgvFkJsLQL10>al`^2G?vWRn-HH)jD(s{tvT6(g1E`m)a)%0+_+$!QjUy7 z5cK|~QGn|l0ngC%I&*cV)RL8C$SE|amCKV2DuEHvG9ZP%-e1cXnL3i0zJOcbE54b*6Vxuj#U4&hCkKnJ7j3 z5@5bEfseXAk|Qsa)tlka$}V!tgBi5z*3`uS=$&yv_YDF(S|PMaCmvzp$mwZa1e>c! zryJalJpBB>6B3eiMc=g;6g;jmy!=|{Uwz7X)Oy6HeDJh38cxb>kUqEW;n$-s68ufN zi!uumT&XZ+G{T@S9*i+`$^?Y+gtTJbVH9#`zi?6E?&!OLs`7^wVb3F*q`PJl9%y#8 z=?AKk1pZ!29YZ+qFo6#JQh2>AWy~vTKTqkwnIOHWQK+#`t0y6u_QUGy?G(HlMwYQv zpF7$dwp_6kBOMkfswp72hpPeLG2wZ3{=_K{)V|2wZMr{tIuJjq5mi362iUaTk)fqX z?zV1#;~^M{r*tA=z{G5hMS{_LuBB(5Ue8p2e=Rck?QUYHbr8WuiNzWQax$%$%)=Zy zLDV1upxR21R}Ar~!bDJZ9F2h$N7_mHN-eLtLOPEvSJyv{;)5>f66~~qB`z^&MG*3d z0BiHbBq`42+JUgh5dPHm-}j+-CqCSbTm!z%UN>>#q;~Svc31z@NND(3{_Aq-MKH}a z$L<4h5deZl?+2Pa{O{gp|1$IRsJ$%ZnJu3tJGHPcbzim@-r$1=sSSQ~DG!Z%lfJ&J z09gw$F>&X21Yf~U8z*d&*?MO4NFprtTb#;O{+P93%=^Q?91+seFMOPqaJ+Xwu<)iu zt&Oa=#6gikxq3$cy)^+{CU3Nza}Wg_xTB*Q&6hK_Q#H0P2h-nC%RAH7_+>LImS(9N zGG3$-r~p0)(D(9`n&1FN#x@p?^>RK)9$_H7IXGE#h`&eoIAniN{?^l&%a1ywj46uo zycJ(I`QSTij)}QB>bKTQj??n(2PpwBo2GH?-gZs-nb>(#o3F0Ir^0uaI9NiC2u3;G zn+;w088_t?5+NJ(^($s>kpp8Ty>HdXpGmv&3lcDsnflURo$kr^%hmd6o@+lvt+huD z_drDwP;|8am+Rx;8Xi4^k22Tr4#N#tDPFX_y?qBWTi?vzzO7t60K6v-rbeu*Gh=VH zh%+abyMresoaWQ<&&~R38yseuo@L9YP|oCOU|uk6a)z?SIQ{Fz9hz&4^#KHUFq!e^ zV)qID4jKs;DyG&y-f$!&CZ?ul2AR*MW@YsN*uv4zl{DA@Pd=8q1CYdPX+oy$HvYn! z50UipgjKZ&s}ec}4j%)q{;uH%dJK0F`k;>*rDH^TxuP$%ekW_2wTfL<(%4gt>or7C zO@1?n@lLv_$>KuGl;4s>-v$?ap(^ikXVae%Z86)`P$88!R|Z0n{qpKQ-f5@6n!Kqn zZ5{8=)4AKeY4JXTceD!isJA-@#*#{^<0b{qLjCI~1njADd@k7yCV}1G7QMW@Ov)8Z zkLl@9lsPqd+5n8=2J=1ykV!|^um{@D*5s?<=_!#!B%EN?TkpxrOG_U13vU(Ah z5CAQQ#N7SU(kQ%Lmr-`-+n#MTU5E@&QTcHF{X9NuojA#l+xjK9H%dmB)y%&Sd$6)d zf`WcKP^T(}xBJm-(F;d-07}YA=u<{klU^G409@Ux>`}@cLeCU>6r^^NXRB&k zkx2vvg@qc_lrt4pK7~<+US!XOSNiOP69Vn1qdx}Rj+FW>95zY^OP|AhV?5_ z66Q44#`hjwY&xH3RjXEyo}_Mzw(dn9FC2}C$BH(&xm{C>?Oj!T9@2>}2LeAlg1~WJ z?aKLwV-DIwC~x_?rd&0!%a9fgW@J?ASsL`ee$xJGiomquc&mcu=7%Q@#~@N~iGBHa z)tK9{a#7jM52`1KTERdda#9!FsVUu6*}9_7ZGq8o0=aC<%-+RCnc#qJTAU$wVpTLY z!+q}io9n?@zc5erLh)C$Ck|q_RB@L1e?$#q)9PPF;?u2kuIDf%{#bz!j(%sXZSYOB za#pL-cbJl+;YTB?g|!uz9#q{@?U4S;b&+njIa8}E!9mHRD< ziMUtyb*e{w|&_gHO_36e?wmi43^2yFk6kvbl4jB-UjVejl1&rnQudMV%-dlW;* z>k*ejC%hcfwy3>OwbQYFYd*R1Nj)pcPpfspyc zL>&X8-sr8#gFk?|(cv&Pn|!$DIaEuwCV5(zNSO=RZ5&jnD4<{D8Y@B-5!Wj{JQc+&+4;rVJMjm&(PPYR%?YW=gAmM4U^H2MKdb6~)`lc@< zCkMmALs{7Liucz-7QOF8$j(3{;`iWdi2Wnnn|}4pp(Kj}k(pI3vmLlfj_boTb4`A901OG-%v53i zKseix_0R|5FMsssv%IxNCaHMg!;F!+YY|sf6}zjUx>;OW>xe^Xy7gNZg4o%?*KL0P@FiH8 z)i)|*Zg;}hmXfjN3fmo%X{T)xSE@S%qTr1iOnGPun1aM6x7D4xg}-Gq^Gq!}7h=Hf zYFYL9>>7M*6}tL^i_;`bb=ixAd3=8kYvoU{1*O{Yf*(y9a&oxj)vK{Y!o%Ea;-;r^ z)c>DsgaQc!3+}79gg#s8a!K_<1il9UWm5PQ%y{8FQX> zJPQ)y+=a9xlmu|wx+6pNy2pmwJpZLKEwdy|$$l&D2sdBTrf~s0X~j!VCur-4!?&2Fyb{fI-Fnrx4vXIn-lAMxq zuoB6=f@E9si!VAMYWh0(G@)#@5u^i~TbcKDLw=ds*BKDkF0dv(jRkmky|5^}tqx`o zp~2m9JeHj97d2t3k>&m>j@jZld&wKSk5hJ?l_l~E(yoE5yEu@elBW3bEsDX&C5M-L zg7qns_y#R+@4)@Jt?zK6GL9rFA|WNCtll_+EKr$?WY#; zzfYTATOx7jq+%0LCsV9wrqW3sS1ZodW-DB4Vtyn(<+*ps&j7yN*w4LIr#Ylam_*;e9XX<}DnYVdzw11Zdw)O($>lM(acfi$G$8X$WQA%u zAqQb6x;dgv8@yozc`m|&sDQ(R-SsLlajf&hEc#s;*3hs;GFQ6IL82{IiVu!Wl8aM^ z!ks%L^wj2ooA+^weqff-SE-`-i7i2|(~?xf&JoRVm+ou~am+Xy zH*~uu@g0H?*JMAUpjYUPCCgAScLyP0;Q)I(A2q(dqed+r(fk zrWPMn^s7M%g*U?n>bVcjSy&ahru`8G<*&_gpZtWTjuRh9rO-{jV)16*Hkjc>h4Um( zf#`I5;a~syxSGH;p0~L}n&v~rQtW7X-0v8T@}f27Bv~SJ6NwwnX6J_k_vYIC=%764 z`JTvH*DPa6Owc7LM-ajl`23U!XLqBvDERVatm@O0ADy-K0B`IBQ|Vm2le7gE9<|Uf zr(CL^48jEC9y{J~qZ0lb2apgH)QXSlyviW4)v{B$d4O#2j*|*Zaflu9ci$%qYPzyg zXv>1X9SAy%h!eFBA0hw2hG4VxisS3ERsX{w ztfWAOtO{nfxXazG2M_8!cPJ6|`!Qv1hQuGPBfjO2Uml7$tG>6_E$94tdvtr(J$D$1 z!D77W6>VWfbcwmjVi@2~5r9T`ARJmxCJO56aXSjh+=Ybf-~1lfLl1xYaEGcJ8b}!8 z(&Y&J6PQfe9{nezhwbJ14WxhVg3f6xPl|5#b zHERxR8JB)ky)t#JKu-T6mCPKZ@k@%FM0bJ40^NTh08MmycY-P7$C&n{U~d2rOl#b@ zANt-ry*a}73tI)YG|2I27DvL56oJOBREiF;70k15#KwE0b&>>V5Pwv(AYbG@_wSDB@+=wWtJblAQx5|JAoQG;w=;C^FWv_zJA2u zD1y)3ypOWry~PEld%BzbQ0TvQ&Re_$4(jQM+n0ZcxcW4t$Bgb4cJpKHQ=n+-rDg0T&k@AkZ>QO!T2EBom6)p3$w#x{THL%{k9_MR@6wHM3=*-~Y}Y4F1Op z&-^Ym0h$eo3U&Fzlemz6V@aqPr}L|Jb=zCgEubIAZk4Bo+h+0Xk=zfDLOYJrPn{k1S2vq|3~ z_Rps}1alGgcA?}Y@|X}-1aU&enuYrdO?zRGi4L3s(%Hy5h!cW|pYn{Dy~V@I;yb1Dk@T=GFs38x|=5CRs^Zx))d#(8)I#A2LI z3)iLN=*eZBa2AhfttAKT7etXk7>~NW&~o)4_9Mw4TLseU8fx0qPbTdr_Ivs}YXr=i zp)I7<?_i3wx~fO5b_??gp0df=6cK^+II7d3x?pUk2%|l z99eSjJ^m!yGvy3I5>MvScjzF4fLVUxK283JYgVb8}QA;I(uU)Y(WMiHXI8hhu$E%HJI| z&d6K#$WE0kA3s^hrT|G2kiw^~?(s%&nRp{fo^Sbwx!}}%_$@RQ=US1uwl{O|ZTA|i zac|ysFyprQUOUvWNxWHR?RkWN3te1XB%4bA^M4l;$VQaO)K^=);}N7%98`LrbkwCn zwH$`Mu)Tvm9L_QT1IJlXEQ0 zHFe}-PQys<%3+*!HY2R9?SJy`dtXk!f?ciP(U@`(&o>*$+ELk=j}(m2D1L!xCV&62 zt`2fiPZWjX@F1Fznb1$SwK2Tzi( zIi7y1y1*q2$aW==q9+XG!7*jKTSG!ta_#r1wPpDXrecCr5TNl4T1EEUu<-h{~gXYd-h1+g= z+)F^qig$UszM(M~dF}q4^pC}VbvY9|2)@YL3VE`9q<~u&-@&f%-qQFp@ty`a6qUJK zf}p&q@qW0Miu$_tS1sqKHjv+bcO@=oS51%!jqLwUgxods?+X5L+z3>Qk;k8V-A++9 zH5@NCHwN!Rmeb#-S%S!YE)|uH5paR4JbShZWBH#hG%)NWf2CR6EhCcr*84*V(ybk> zPp?K$!-WS>B}Yd`%l4M3UKegu`gJqfn-(1;C|Pwa2_o@F>euH7+=iNQMjvbkR4=N2%BjyMdTM%>U75Kj~r6VSC8QB-;*qwt4FS$_&5D-&5L$8OFR}L zV4e(T_mq8CEJ+#kXSP2*ts)x!^^2t7bX!sd6U>&-1XMJ_YbjEMcqJbNz$-}-8qzKA zA?Y7hBP%{2cw(Xb2vZu?Q%h6f#4X%Z|EBS7W_(LJR;e9H`v`saX7(bV#SrEdksTn0 zuYHpUWN=~PlmEkXBCT&k6{D6R>nc&*oUTp9|S!r783rlaU?=y$3c|T)qffFh;zKnoiN6JJdHEcFGRIa(~6g~H9RJebqj|8 zNUGhbBgvsD1O{zRs1R}52|fs?zrWZA4%Y~+sWl&y$6^w#efnT+2K=R|HaBiYDRuUg z3Yb~~&H=7aNtD-mj%FzNpBNPE);9BOB;GxH6k#r6pwqr9>ZQlHo_vHV{^N$s$aqIm zgm+&s3;Fb{Hit&`{Q78Qlk-5c(6JiZJeeknwn@I!a1tVv{OK{-uoMznpW7IUFa?E0 zf6TCweESIXmkEf`LFSNb@36^0M@!M+wbvT?Zhd&UQ2YXGLBxwRxO@BE%|!xd*HJU+ z!)~NlJfaYK4Q3Q9lrXP1kdt+DZVowFZi^lm_iF>bMo8IXVlyY~1u%n^8aQv{w3MCS zSNoP5A11$i3F5yoq8Cw7F=l3FfmW!@oAK*v`z2=7vN}daa^$l5dhx>FGtX>=FR>UE z%({H2(*neEu8^&$s`>+7J;A)0sAvnWo@jX13SDJhtXN82}C+cfj{X)zYc&e z!_CJ;7N^v2Ge&q*qvg!EFvP4xG+xo;Nz0fjWCg74(<^rF2)j7~peNJnZ7j7JUOh7? zw;BWLxMPCee?)?Iv;*#sY;g~w+ATA%CMXXM*86OcqD(|Q786sux6#|{x=qp_f$~4| zFz0MMd%JZ}BShi7fX0Hwj377^)+c%5R!Zpi7p_q;OFa9lYp zA^S^PCLGSFYIc-A7|4i7Go+6h%DH!5Xp`s}nV_wenVfd1pxt}KFl8c%h%x++RzyMt z6O=^o`gN?WF&_$3Yn7I(ax$VtDl7Ms-R03N?lTj<^hxPwTlxA5z2qZ%0ns7a?F(1# zo429bQvP^Um)D&LdO&kFTh$Jxy$A;I`zoIY*v}fLxevkH#Im7nWaoy4l)myT|9Lqz zM)Ioqo!_Uc0Lyygi=`9_DG6uD~nDCqzy` zXz(7Oln2-wpDpTupe~#2CeZs)MKO%TB>>`F1vK)e)}H3c8Ga-UMcqZm-zdN zX!rV_Wwy_Nwv&tufM*CJ4I=)i!1{U9Be9s#ii$G($hm_*BQo%+z}*I`Lb}Dv9qn9O z@svIt#`7-WTXg<5rPx00t#8@q_Z}tjT%;L9JC9_G3cmYKWl?g(bxElJqzGsqPc!^> z^QhzUck=}0qDqG)yjUt|fR>9$jWz5x#cV)jwYS+b3WCU&Zw8W|)Z1JCT}{g?GkUFg z81*%9#S%aJMG+=7AfRRyf7+`*IaB)rF zdQ*eYMY}2-PPCGek|o$nAjC0a#UF~uVxpq#3Ydvq-V8Gu>Fah(ou9`jhPC{3Xj)rk zK}K#FL<1o(PRo;s+?dTX(rUtkgs?nJ5K#ceMbPP55Nc&$&p{vxCpY&h1Y>YXB0_E7UR<+; zvX}~kss;EH>y4@IQHNdsa*ac-U3KgpuEg%$R-8LvwHGgs3-Vuk4{j+?BewkYZnt9D z!k#3oYT0O}*8lpDjqa{kpLjomD*#XpnOx$+$|OFg1v?gceg}r}9c*(!9*P76L0O$V4_benOP_-%^eU z6z1{P*#J6LC*D;-xuq*41~VizaJGK3BZax86iEmot!(V@G4NF#VG#oKDX8J%`Ik<( zz$YET0N3xZ9aBja@iA{e?5dOJdHDM=^V)ys%bh5QE*KW4&QkL?w#6xnmC@2?Z8xus3r056Y1QH;)(hnikouY;3E@VnG;sD$4A7ey}6eIa68Ow!Mw2$K*2&8uIt^>Ud^44;cDT6|RBoO^#b zQG5Im06PJDT~5>%I`Yq1oA*1hA!YA;E%Dj@4FvC4rZYy~>wAPU;$>l^FYazOEU|Xg zsTqs#fSey!jS!rRE!-@ec@{vXZy*iBGD&?IHqW6(;Yh;0JLa78ZkN9hrvAafK}1Kz zU)#<*U9x}u0E7Tip00!!72Fc&dU3Rj5TF9LMlv&%CVuZh4(i|s=!-dKQ8)Jpy z^{^NKv5yD`N1VBA5s2g;s6FXNtSw?X_N&VY&Qb+)Ed0)omY#Z_JeU$!=~9b% zlY@*(4(M0FtA*?pIFW&mDXOuH;F-ekhHmylajVEnG1o+j2fNJoZFRrhKciT15*()m<&u{ZnBHA{Q%pDc>{lccUiK@D`;fX{S-*nCtIbD(| zcQD|o`eBtgTzd8|`*|%w!vG5@GMK74G+(fQ8-sBWRdJ=ypA9ppR-$UO{o>uaI!BV@ z-{Z~fy~O+<3`UX!+Xf_2EwTR#KF-ErOrVlAGh~ZkL_voM5XfR&aCFoOLm4^+Lm1)N zGV0yv?>A@XJ>B{*L6B6VteooFvp(;~O;$B%RjQo5qQvVjpM8?Lmyb_A-1+~4eu!`p#qQMp%IEr zqv;Z0J-VO4t!Pm1PRJTdhrtjegc^ea5E2vq-;jU;OH)rPbnZ-{;P~Zb z`^B%k=m&X^tE2_q>VOil@gb=rH=_d4moErnK8*O07>f8Q&qwk7Fd+>F>Htuc;x-uI zLE{5zt-k$z$Hi5**^Vb}QejiaOsy3aIl-o3ptB~e-D$7+WjGo9n`vjQ;o&vC|El1* zw3x0B2R{YQwNw*Nw%OVl z7i88Jtfu&KvhO({{Gta|a$B^h>I`mnnOL1S?Qgj|vLroQH@&TGG5yhir~)4a+*s0J z9~$It0a5i*V;T7`=GB8*X;kMUR~n3IQLiG(WxPqfgyTVedgh7Z{UQZke$A0H{SbB+ zaQXE`LP+=#HW`3lQLKb;6%$%rO9NQfadcmQJ=>KIRh5HALLa~fj$Fot<0Rq?Dw-d(qgCYT4LVNi?c&f18#8_>h1=E zXMIvIAQFV^Jg5Y0YLsj{gMP*Yftpw$41%LwB2We^%VEQ-S@_IBc;|!kq)UGclU4jS zS`fjbPzi^e;C;-I#4leU%>9nlHS))1IO&q^A&Q4b3~&+WN&`>%^D1RnZrF|DR4hH_ zB}d-fGD6J>8I0Kuj5o#GRUX#AvFxr7hH~g-(8B*Yy!0enNOec8wKTW)p#g0u+~f!( zwjRrtMV?y!G>HE1lex8QV) zp;1&+fjkGuTyqLNFhOenmtGa|4E}fx!PjYU>&(=$w=!GklA`fW9@TO^sO~!Q>2^|S z(H|>Fnol;`#ektYY?(b+1iT;dRX2`X*)-8q6XQ6xrH+cAj2R; zuG7{*eu%%TV%n;6Jo9^77f%r9;7|V22m1V2*}Ka5;~4`wH071eQTk6DU^D2p;E4@F z(jnvZO<7vY{ddtT^)3&eydSXn&pZAIv-AO`WQ%r}(Zrj3Aq>a9nE@7_#8WCKkJdGR z^KlRl2w}V49p@=3S0wM;kz`&Yr=^jF2NX&Iu$bJZ!+n8CM}h3+dQZ0(6owGmq_XQD zJc5dKMwp45!;Yt%ON@MnfMhB%z3`Gol+jox>p7zJ%H6qKdHx1E(r?#_7XGO zP_bs(Tb;)Pt_Ea43s7g1FvEK$%v=BGs808@DLEs$GV%MTFSoB|6ko_=2D~B1OcQb9 zeg$taj9K1e;4Oh>rVm2KdRbX6-;mLmJP>?VH1XO5q+QSueaz?=D1PZ*<|jQVoAxos zv(lZLVP8jX^k;RMK{i(wm*}>fhdFBNp1GZ!%IA}(e5!dnLx>dZZSpTkcVUDKToI>e z)xjalDgd;qQ&LD;zg8$=3a+s^yLu7ndrD*SU9XpJ{%SQjr{&QNx>}0b>Jg04%ggCM zm|tn|ocPe0l4#(D3l{kN3l~>pl|+di(;|IQEsRm4r>cU76NqG5cjKK+*rQ#Bf#Kls zf;eV8k0Aekug^-iTh5PX8|aH?8l0q$0Amk1UvNmQZ90R2tQjgL$k@&FIZ{nO#SgUq zKa$Qn9?SlHfh(}^gP#neXjF!oX7D#sBc~4!;?fme(~#W+BSeY%rW&zuy0HaZ0PWNfL%sUVB_@z zi((QDidYjIG(KjI7nCEzBOrvKsi2y;^eik#puG$wz-y$5$M7X4&uU>Tc4xKPJ)gGe zg&I=Fnu1On7mpVczoZ-n-o3A-fmB^K4L+!q(FLNY@N~QO8YhmLMGhxQUBXub<6S!|4*>QV2H(JOyu~6$4X%89}B^UzM)k{?0*qDtO-HP1zSEo*lgb! zNEHt*W696PCPShD_Diu8o0UwfGf0a&fQ&*~GjMZrK}eqgmL4VcsZGVZ=8tt5E+1=# zSa*JR*lVzC&a*+ChuHurvx|K$?j-b|GJ(wu4fHUe`r{CsyEp4=P`~w42&L3Me8WTT z??PBw6Vs6=+v7;`Hx5OPbTjKoTJrt1+8d4`>33lD`01F=Im+XMm`@l6Q+|NTMGTR!!7`U)nnT>=}_$_p4#W=YHwp_jck~AZ- zhLY!#@Arnf(_u^h+4JF>4#30VmJo@6oDs@^3RbG8-oNe)k&hFK(G$VIrSMWi_=yTK zI{2n@{@m3W_KaIfx~nh)X`oe_NEz8eMg`-`p1~QF@O>LFV>lV*kqwF|mKQq({oarC zdz8)f=jT!k2>Gn`1=k>*!7WtyVl{k}P7Bg@ii$Yq6(k{8Ms5r$?S6-BC|}!;^DWP_ zQBtuVCv^m^1KOmgWrbKHUADr1vXDP$8dNN*=Tkpyt~To<9oFo z&@;Z?nK!_v$~&(Ue%*6(U;8p|ywG=@h=XyEBf>V8rBC=vJq*#SdLk8$?&Z6?#|j6N`~QAt z7TV46b5RY;6R!RvkqxWcZE$(Ff3$Q@!qEbMZ8yo+000B<@0mJ%_Nc)x zPAQsV6#1~fow}sntAU<(=B40elc2l#(TfB?jLskv@j&Jdu;*dww={`YJ{6Bs;sY6 z^@^MpVvX+m7JK=*iVP!)2aYhqLHrC6re7K5Sr(Pe!Fd{aXU2TO zwE3o7;B+V{yAr!%Vuswxzb}dPrr)5_;ccA~Hzo*Txa%~fz=`6gRU>sVicVehHZ?bV z<3lJpX70KnI+pgS(fcm$4viK^zG~tNr4pfKhS&nXp7BpNiL}WJb2Q80a`4&c0rOAn zlUQz57JkU;zA|v$ArdFVNZJL49q^ffsg_<@y(49d>L!N~dg*hD%7=QH-6bSX`P?cGui4aX+Da4^3Xj1wb5V+!uatB*(Y<^>+9EeNtv@Jh63X8cN#mW>PCSEATfGwwnFfW)mAz zlb`C)Jh&xN-ne^_?X@0gG5(zu4Om(KgY&mrodDAnT4~r%+jzXW0fSGL9uwmU_X5ef zyFZ6#$bK~yDbD*qb+nbUGd|o9Wi(vf{#(0$t~fp!XN$X17{pxPeUxh)nk;oMcx15C z_D@!@k$*5Fq#iPI&%3@mkg1V&@&$I9R6} zXy5Sf5VqIxMLhrGV&mk93$);+uc`G>+?ljMFM|gs(EN5lcU&* z^JRqi$m>EX&SxLgP=f>vfv67Si&eDG^YflDiNW_?&(bi{lRNdfMNNPP|9HMmVcw_n z`s(6lQ_szuv=FLWp~3Y-TDZ6mX&x?ooUsq}>M+B$P8E}8ukS381t15CTVulOrMkf99!NI(~f*UYGL+BEXigeiT#++dtkxEB+kY*J4Ozg zlbhYU=KjeNO_4?+LGx8YG1>>mpfO|mjh#u!%TIVO2L|$kgn4QSE{QqO!-;7*=w@qSx`)+L9jv(*dfb^&Ne;+z z!H5lVQ%Psz;kCoQoDIj_+26Vcx369vq^5o|u=k(0d;9Kf)fcV2Vm~L2Bj@M{#7_@S zj|Y6~_(csgni)oa6?7xM<1682{F)n*;>iI;(RF$RB2x#^3Et3k?ql;7Ic9>4qLa>u0UVutNwt<-+y2z^45ta%I5{A zOE*cnJ|!8UysG} zI7AUSLv9#J)2CGUSo~kz3qO2oTjM8Gs;RAe^s2N3H)ZQas(K5}?Oh)bXB9;#f13c) z(8(lf^GUCAxDwU}sd?PnLg$&0LJ*&U?`g2IZYE@6KdFcPm^B&+f6n{ZK>0>pmKO0G z>BP*2ny7AgK|D>R>0qs;1_e~AqJI@?u*|&8cm$UNl!AGFWJeP{%~h8%`^2@-lOq_@ zGI)*e>uHqvb&7^^3wnP&r~VD){~S6Um~GlNiu7wAofgQ{?!F3)fNr1P1i8^dxavNs zT!F;3t2|AFDzhwj=!NoeOAoNa)k-sl^V!4scOA}n#5buh(Y${wNmk?(D9IM8;jaFv zeJH7_@w}iVn76NYW`<16@TXBJ23BSzZvso0Q!YqENEK4e1kndPl6R4qV%aS&Bwl9J zUBeN^e7#~H#5t8sGBuFMEKmvQIf6i)0cekI=g-yP{ zYhdOS6vTjlg!^+2(fc~@{77S!BXE?USk1OZ)c#e>uBf-Itn~!}TG7LCRyu^V>Jnfh z+Eh*vj6aK;N2lF&Q|)+~wCrEpa0oz>vGR^LSuH))5#}8pmE_^DlETTi(=wkOeO_!= zT*(uZ!KbmKRC+2d<=>5WV=^TB`p!meZy!rRo;OFi)+kcvVPY3@ zDYr}keTspFVMy&#$`o?~eR9JlT$;VCu-?hk#iztnVBoj3#X0(Vb=-jIL!)~Vp-%;@ zcd5T_F)ex|Do4cgsWf6&KYlD-38}=hv}=5-p~nk%-cny5e42l!!{w5wNN~KudV8!+ zljjc3pKhTakE3cIKhFTBRg`t!zSSjX!kaJ*G?ml}x+-32Q@tbUWDaU?j^*+^ub2DO zSZGQ_xXt3iru6SPG<0u#tG##f0R63mO88I22|Y_USNgq;?^`!%0Q->rVaw*$TFw9z z*;*q3#3;7w!*Rb-JccPkT3wY5ZOLcaMJxatgVl8N&BvntMprTI^vMzemQ?!qsQ?pX zG`yy$1mM!-;?{4A6Pt*?QqSP_|tzJT;*lBs*%hQ{APOF1EcEo+R8Xy^EMWu@+B9}t#QCEZTt7~#d)A!Owm$;=6kz9CEHGbuj*|Mzl<(bB<4NcesyK7@d!mV)$~|Q-~S+9$(SfZz zpMuE$zP0tn&$oNQsL}v=7NUdBkG-n-TEAj$7hFY&0gSQ4dwPf}4(@Re*F1Io)2SOC zPIekQh^puoPFpozv@{<0LM!?&I}o{KYQmE8JgEEUR%BJ2lF3M!VC*A)6Yb|zM&;=X zT1XYJ;KOB=Pz?(WE;GLS%YBIu@0nbR5AK)c;KeiR@*}$M9hBOtj8$}VX-h$aM8D8c z=*lxZ3I;{pTeWvNk~AhRgy%N44eraw4l>}AIb@@KrgHnesboZ%(*t}75ESf|Dh#Vf zr!q6|HL^|bM`F2@@UUe~rhh)>wk@O!(`8^gnk9<-?J{4<@fuz!B%;^OPJ7nn#fa2I zIghOZ@+`X$nA+lbwI5U{z;oqErsQHjr}<3zG@q9LYYVy*!A1Kzm1}RdMb7Q1*3=WW z87MYG{fChJa9>LZAbwlEv9ERQ8fEmHfLd_<@)?1;p2qjFSUg*=4)FuCPg1E(3LFGU z<3(>CQX6|1E=WHx26joJLV060g1~7F7Fw*_|nkgdK@+**gUr}E4_EMX$ zDNl|(m|0Eu-@*fneIq3RNR6Y9CzJmBt&|DYCMBqGK`e5=KNztO? zDrAe)U(Ys}Q-g1u^DiIjc5ori@j335%_Lgjx9MMZN(>1Kyp^vnX*4k9dE?lhDb9EI z2R(5xY@AirSf6D`+UUj5hz9QRm?t!dlgzx8kC5Td!Q~7br(~I_3$J>SAH6l2Vir7=>snE!g3PxTy+!@h0L|O4TS`Z zJ@jRo`utSI^r{c=^0A&ISSiys2=%9Uz^?;JNN?YWRbdY`gbnvk7J@tIB7e?dm32qD z><#kv+8=Sv|D+Z!-nc#%f1Y&f$4fgCE;NO%kKD2)H$@QYTx5>obiog?YRdUy*`Sln z$z)j#ur`>lyT0NZ?x{8|h!gc`g}khKG%~z`{VIt7bNlgF{Xkpj2(1l!KG>&$JaEt@ zckKma5XCUBV;+EC6uP{Ho3?;idzdm?c&Z{=Gt^IIXFEPtdWyxZw?c)NTUyWjT^6iL zAN28X*d+<=$!dQPvM&$H#&c5eGP3@OL=eqJY0U}H&X4u_EI0n4?P{`FTCVptWMmr- ziup9{e8#bNp8&fgPvuhysjNI(i2+xn)QeD;PtH?hc-{UOGz+{3G&hA9IUkid(Gi+& zk?b0|c{_QLcW7}@nf0f(IxRkvm@aRc&89T|0W1M zicj9*e2BRWDlaP+z9mBx#acDT%Ovd=27O8V79A1Q59(Ob@BJR_5fYgx$QdzYFWI8M zeeD>A^!+&Wh!jNn#>r@YjRVIhxr&7MVxwqBGP~%hoo)OCA?n}#8R>qC3Y=Pere$fG zejrE4s(+MT_c#_?E0t=XO{Tl?YNvtrRY{e4nLe}<0BP>like8ye{%|7h5V{}n`#6? z&{d!9b_mc>FyN=8)mqd1OehjYvw3NP>e~rd@NV`EkYiiDZ4- zw~+E@tOED_H-XB$4)#na)c#pdiU|`B{1F)I1a26pYBgZR@0%gZvbCoi5g+<|uW&db zBdO5m7o}%+shI%G@Ci>1D8kpO<0jglCYE_lWNSOk%B-k$O^5N0%g|asEdR#HFPVff z+teOVvoJlpbJ-m+Dmqg4FTJVIPYC&eEb#V7dtP=)upE5U^SFXmxaDu^F)Z*x0S&<4 z(qb`f^`ZcTOQT9HYDM8EI{GI>7dN5jY7%*3yg**HO<)S-M}!9}xz{6ZyH(J2|w^TO8U!?YlVr<*D%@De`N@%;CB&dS=eZ1 zYX-=aA_aNsRo~IiI-XwSxC7z`R-bG&*2zir)l@$OkCBHwl?ql{y*S&Rpp`Z@?H5%` zvf3|@QNps~uM|qt*el&?Z+jaDJRsC!eJiZ)Rmp|zdh)CU#NyaE^pwTR^vA2>LTHF< zc%xy`8MBVJ(xgzKp&;m2Rb?E`phx@XWBO@6h869WXdOK?E@-~C%HM zP{ymUKTLB)sUwoRb3O51=v|rzzQ30HI=r@^o+B2*A;tC14{D~h?@o(N*fwY9E< zH=pF_@SyDB2r!rlYhXmCrluB)thV<)_VOY}?GC)f+MaOSCBq!VG%?Rop;@Kd1!Nh;-l z<*pj?1G6vz_<9g*^SvXs_E?)BRisw8x zcubdwUFc}ljydmhE=$@a{>|c5J&viu!B(9}ucmdR#fX5cX_+A<7MUx(Uw5);ZL~7m z^c=6pPK_`-ktP?JYtWU9>+{jTW@F5LB>VJerhSLPtHSMR9?Ag}#7GHZdWz7B|VYs8+VhN983P)Jdzhkx+)_oDr&uFcm3evDt z0Oh54+hgc=(PPtUeznx;OuNHF0~Ni|Vfp<;4h`JWAC8QZ$iUB>CaUU&qH<0`Q(M!< zcCX!iZa&#x^i>PtXUWkd9oCwO?aGdBCwp4pjMXo>Sc$PZ6pcTA3WL(lkVN>~k4jGH7!x zd>eY0er%RTfjOB(I^&EbkI^xTd;63=4Kvolfq#C89CfC#=wo-aw%*cjip{%LwcUtY zq~X+1gx0Ro#V8&2;6J(c%^KS-PC1geO0Uw#KJT3(HcTEC&S#F>MMwxGP_b~4kz%}( z-U(pRo1iO6U}_Cn2&*epd&x*nA8@d$;NoBJ6=IWJQ@mmeMJU;Mc>@sM?oUBh*34A( z!K94{i|5nU(n`^*k}Z4#fr;4XdpAau5U%v~g1ETSB-@mPQw5fCR>Yzj6sekA(?w~6 z0*p5_Iml8tV&70?yWHTTR@KhrIO?XM8m@?Hcch!O%4}MmPIL?9|I;A|!{@)j;B+~UGtvau@ zg+N*Ibz4#GF!=F^)pj@~t1B~;Cl0o*QD(zptYI1LbY&VTgOwECQv18Ec7r-d7Ipo} zN(enb3mhDvf8EOBN)VY?S@!A7)Y6}Se?4XZP(=)L$a834y#B9i z@a5_8UmB9Xu=2oNBc)XDfYe=`MHjqJrn$Qt8&P#xrp=4Wt)@d)?J+X?RDeNEc~$T} zl%I|yteCNq1)0ikl8LvatZu8TP;HEcn>$~GrdZzSjKD}xWfY;lQ~Wa$&~+0ZKMu$5 zxIDDHPl44jJ>C7ol~4jqgNm9vUz}>*E{JK9Nyf4HU;Xfz(9%h-O0_=Ndusgpo#ce# zr`)o!7ZNz<#9UqPURV{)XBbUdgdd)uIi>( zr~gt*7>FX(_4!6_REs;%V7QZDL}BtmF%9=22>)B$6;4N$m>3YyZ7`z-@3l-MS`@2; z>#hTc;d+M95r8Syw8Z~HmxscN2D?T-mR%yIwLL^UumT+!b)`;7C+Q4T(qx!X5r|2j zH!Z!7zG7BOd%JD3(t5u0TSJ$g+} zVpxznhHbqP5)x=(&D?)PV%M=F96wW=%NyjR9Zr%wMh^}K838cg@VJoCkOf-QD%+=F zyF<(;tZF$&`;}Tk;_$E6BvG)%(q|EkG$9$8#LaiU7s)?~rysoF0M1Ta%7pF{-q|)3 zA?%LKhw~fjyje1dZJ|>0nB!ODn<5DGl3fSF$s^A*>@Nv!5sci=po;eTDtP&=4*?{F z{jNH;+BgpBAMZ&HxReR6q_f1)+@KIrOvhhplI;2msX=&U)H!mvx&8Gaj`GDwFQJ)d zL=FC`kE$fyUX@7J2(xr5oI8PSqtF(#R7_0n`{7*(J` zB&N_GJa^=ey~WSJv_5WsvWZV)GWB;Ddw66x;Ll#kUdXhU6I}h+bhD{K2WWExGF7|hCcgMx&V&&TGS;a8 zu9ySH?k&&HZ;_Y`X0`LN0Ss-K$_SP`t5>%uWFiB)K8_Fl)5^4);VMEjSs!wC)rsGW zgmD*TYD;F4>AwoT@HjhIt;8+m8+2?asamOgMjq~Hu``62Cy*nE(dy@6_fYNR}|Gb z$cz^{$O-QF_Lsx%R97JC^jk1>1P_=+tkPonUeDf~K&0c_E8b%~i>N)m%=Rx(!?k1M zeYE3EhmJ@mGXM)8rpg`PT;=gVCcaaZ{}L9v;IF>>_%WE5?gV)3x<3ph-|<>|#tK}V z^~iAbDcMmNbkw{jwY06lV`a#jGORMgRGL4_7hXB%tbS6YpOnjjj9U(yStpJ+*&b4v z!E*F5?>zk$X#CJ}1PtCbu>nl;(RDn3&Tjvv_uSvt;+?Q3rxvgn9Kazt*q&ww2qLT_ zWZ%LmB=p{viLk*27oDNXkgd z2da+f!>3AkiNwsgi;_c9nRg}78%gYHjWEKBBhk=SIoJlYD35I%{_B&cS%(a4d(gQE zNM-}=Tb${Pk_}C+xw6nJtQH8U0)-c?G5rL@hIl{L!`EDFp{h)q*=Jj28PM!Rc zQsSyqt^4c;|JwFvii`Ayv1$G|i8dZ8#h?!($%t{4W^s*gtbYP$=~_qmx?;Ww341(V zWY|IBY$m$p)N!CCjCB2V=E;+HdR*bSde$h+UthDD!>;ya%#kgWIpf7#Mmw4g5SvOxYXAXj{Sp>tU@~%znRAX%)RMEnYN*$}J_v)$?oZzql>*EN z09kR09M8<$Y;b$QnEJu3sUIVQGGdUD0Ekcu{rmQjTjnvUuOI(o2}@N+vXP{a6}g&3 znP|@2&~~43h54lx1k_?{qy;?D@Xgh#j5VKUbQ^3~VIxz)EQmoRtG<1Ghw@I_+dIVc z8zDSjg!^s0?p9!4;3Mz*e1HeYBFOSNRTXwWK6U$lj2v(q^JnwFL4^Xycyb~UE&?$- z0MNQ2%SNd5YtYAVvq)8eg7hq;IszGO_BO+ix?kwOS=RhX`qEZcUB-CGyD5t-QX)sw z20O3~3|;AI(`;#9KcTIrr$6J9JM~gp$#UHl*GOxC_^_Fb7j`utAAh-Lq#~eNP1!1YBccCf~Jz#2JxT5 zOFE?-c^dg~Qt=ru%XSEc&u*AzygqEK#W`r6g#xzWzf#1EvV?kR&)a9tB$F6!N5J0_ z?wjy)Ie67CMEIYos!-abjoRRKVBL6+oQhui{`RsjICr(fBM^t_X*^Gk-tkn@43Ofo zXjFrIG^wneX(uAiRLP{KkPSsSfXD>3yl}-z9*HRp3Xz*-M?~wK;m5hJD&?`iw4u|C z3Adu^%bc2qgGfU~+sVQL%`^!vdbXIpjjbrYA-4eqr+9oqAd7SB7hOX%dsoscAvEPe z6}V)5^WS0wVDLuAR^bS^TdOkIjx_|FuH;Efr(`?`AGV?*nfJ83OIhxc#uth_4Ck$6nxGjgXwKFv zJc!fwXks!?42i^K^JS>zZ&dDY;)jP;`V3v)Tyn6D2xs%Pu{zTyhO` zTmew7jw+MGV8bj}BM-j??t6;sYox&~yueSW*J!dx=jVggos;0FU@E19jEQZ+M@=);c`8Bje#ZwC)??sMj*v>dXWvI$*yPQpIF-x3>3`v`7`crpx zRU;s`6g%lU(#lCGPSi)uwV zZ}~9#!o>TGgs74qgYpk4S48&TY!+P5gcs89*|?1mf2uOf;G={ruC%GeFr)(|$^3Kw z5R%7YrbfL^aAS4E=8l^(cwy@|ZF79PTUqTnBr2q<^cSd>@oq+N6mceT#bazk5N zbm70n!mnKPf3t_lW7*XXrtj=qIXU6o`TqTpMAk>EZ)L$|2=j16Gt^I*b|slM$4)DT z-|<$Ox1Rn}x_9C=HrW}djjyT8fN5=6hmD-F>_!+(%xg{)TeTSGIMAM}>z4-3=*JoHJnTOLkqVV4N z{o)o1KZXxm%_VrZh?!**nExHbpne`X9UW)$r6)xax!OWybrz$V!{SC&25%iz?Mzgq zUa%RYm1!_U?E)XZz)t&Az8tj@uI)$+o@EOI*9GZc*OG9W0HhA1~xm-qA*;F!A2oZwX7zXsLgshdk zC_^Qv%YlD>(q9d`JgjLndf2Vo3+AXgXwJ>qar%fiHEv9XNU`t|Tu!m3kv4J4wSWAZ z3fJa!T~!0m%~qZ8@-{n#3=RRi35uUnq=dM=nWI4v^cWJEv98%zBpN_w)tmL5Jf3fW z)1SfrJ8idyJ7?@d9MKZjw%VS!fgNP*AR=6e#{MjyOM{GTj6)S4Yj3HC8PF22Bjj;) zdz7Oo5}y{88pOo@3>}}H9T*B#CGxL1l)6;e24wf50U1zEPLODy{`jZ2Yz$NWQ&_d- zK^>6M1J57FPBbkc z9vD41yb9cB&A+z+G2Hbq@~eQ5_yQLDRc@NEg20z{3F;L5=TNSZru_YxliZvS14p`s z1zih2!Rrs&E)?;`#V*f9e%^qF2&+d=(zfxv+c2ZsV}R08I*Av5w1_>#Q68+BMTpp~ zuI70$?)P)^$bv`vVRYh zr2P&MD8dk!!QMrAg>hTbTJbqor2dy|4Ran`HQ<8zFrbhpE{O0pA^Mp@n3+Hfp3BEZ8YdL7^)xcx|&_wKit-xd*>p+pMl`pS`GDw-PA&y!AN`t%EZ2}0)GLyUTb zY`&-b@5moQuCBp@C&H+$gjf~%Pi3l;+NC#*zWd*PQ4^pG?qb-AxvrMrD{V)Iv*1FN zp@vXz)2}28_kN)iA%I_v=#@a6t;yB6?E@b+yiB+Q#%0wZWmUX|N<>7Z*Ie}e6>clt ziNCidZNPH`EV@Ie?u_Bbl`j(`T!vq&ys6TsRTPWR$QsK z`nBL?yGH^y6F_;NvsD>YW7>7TMHR}RBSaQmvf5`F?(^sCg}@6xe|It#EkRjtaIX4+ zFoa$Ex3|T2SILD`^l){@f2XK(3CqbPL+?4TirW&W({d0+_ny7~Ye-&NHY?(R#Ng5n3Q~CrtM*VrP^ZgV6b{tikmJ2|5Q+WJCO-I4uEvO3v8v_*ytx z;$Msvwb|bd-Hm;({TSz;_4^ItWGgq1Aj3BNgGI@ojDf`ZHi{mI4d5eGcHt2rAE(x| z?ITPWw6T~?cd*Ky+!NL4b(!k&KUhWM&|4_>g8QFB9-G@|>SmgymROa+(f2O&a`zcpK>bmx^RR4i`d zMug4I1ho9y?ht@mvQ|R!KokEjhiGBLS*v#f4D-*Xx!di-eSs+nOG~18pTi&3^<+OR zp31F%yTFVL=fS_yz#uQB!bW34flC(`i<8N*(fa;M5-%n=X}|%q{q`Or++bbW8Q!4Vohbkb;g!%5$Z!`2j#*VhW6Agy!?s`T_*q+|xI>!#wg{-ti@#y?>u(x5)LH z<0rgK6e_IrueP8q77BMM<}|S&S15o2>&f!sB3DV|Ra>GNcL;XOLPb*LXPX*2I${SA zp5*ok$4bTjtW^1}bGRsYWyW3!sA#a&zb5FMAE>P44VvXhs|b!jn>;;S!(m>9R60r+ zho*_y3%WPPW&1AV$8p^;&g6uoT_jDg64Sb;ed3eAZ)$%XV^AMq_uZOCab672OT}!C zkfi#59Q8fYcZzefs8Bzs^+5t7v3H-yP)Q~q-RSAkX=a=BVRfQ|^C$++rM3Sm?~l$T zc)Sxiu+^IPxrhDYUitsXdV&A|M12BBl9{*c{-q>E#P&{c28g@m7WEY9^~)@MqPl$R>rZ|kcsxL_?pH;6dyRI#`g z4UZ20d*x#Mr%xf|@f2-sZ9N<`6DPgdjW%%bq~j#FW&KmvwQ{607?79EqW>Wag_ZCJ z1%FD~eL^+&?)29hNHZxMmD+)?=K~%XQZiwP-=C>wA%uwoE)R>M4k_v!C})1-#`D6A z;HoM6r>O;7Xc4Fsmr@1?(<1t+1YU3Ngsihm5P$v{(zasvNVu~$TYhAcrqE9$HB6P$ zP3a3WtVY3s0V%*aQz9-(j@VqqF@7_tSvrR{*NqstOI9NzBagqwJ7@ANW&3J6-r3bo z7Y_t!E39Lcu$gKnFREYQ!-Dp^)bWgo{Tzfbs*ONqvl7pP*U2L!67!kVX55sM>K{q^ zT0~0PYG0(^Mxw;QgV3uj&-Fn(j{7&3yL|}UyU)3<_U^3op_E*B@)lPPT;n43XAPb# z5dVPrFi*m5b+uSYx?0zumB8TEUC}(j(DQMO$rHG;OD|l`U;njqKR1=r8NS4xjbR2i zW%HzL{L&k@H85XY`cUQn%yg;@p|NQif!5CadrD*~8Sgj4Gd_6^e<7=B0;b7r;;_`> zTTXe^1_IE5l0rJ1WaC8fW>92AG7t`rkh4-|*1WOR)(4h9@iCh6ccOdWknI-#xUQj(6;CHuocfZDQ?fa_maoTfTIo* z-kX_tK{6)XqPvZU=|}X1rgjLH__rDo&WY%O79l&Fm#a8(y*T?l$<#W9(TpZj2_#n8 zYGdU!p*OUZ0FqZ}rdp}5!22Sg^H4w`Y~!su4Ys8t{}0>O^5Vk1DdR5AiexIXGJWqA z@@pQoniB1I{uAe4aueM5$yddkXc@w~>8(Y6%zI2iz7}e>y$Vh?TN72;!mWUn@U1?F zF72>4Y_=xR%6x(%SR|&XjW`-^|H%AV*~qL9<2x#<1{*hGSn;-WXejG{{_GLzgoi!_ zUcB*5@P_;-z)6-R05SUThoP2^wl#AeQ<2rDdv_p2*?m&$zBZ8~ig8G3dHr`DLKY~4 zv*ksr<%Qq;1+9c01)jMe)~~UqgnR-582u%EucY;N#D-PX{K<-Ur6#+vYbm)z*nuZi zNwKJFM!l(t#V+&tKbB_KJT0)ZQRqk@VPsz5%7OA zk_OWayKhH|J4g4uWX?V#_O zEXd)gzAV1_&VD`<)}d~dpQr~NAcUAoyhF%3vwi-l@;-{z;JG%#`Elc;NRKsDtB#ZP zqN5cTtiCK_HYIuVR0c+bm&8&Nl}lY3RqIQ=!UL^wvqG#P3M!_Z4c2oh?QeqPJXxA3 za7-~hwngZ_lQt@imyOf(-4zQ1Qx0Y^UG=*TjQg9XMl5^5gvRqHQ$(a+n@|6yj?R~h z^`B;C3Q0-f^OfL)rBo<36*znU-WMzUW~s_>yzqJY7p_y!eav=_-*CKJ=W_;7Cw(a!Otwm+uOy`2*%s*y{I{NDiw0cP=Y0 zL57PC^f2)_6$4(%S3qlF3$bRP=0~%-iEfgKW{zW1{T~g+q>?(fKBg&=qrP@V*wM;( z8m0mT>Po%*&X)wzSA)=R6|-L~=Vll7H~gM9@_Ra_!YaZNVZK)}fbgL`qd`z3@goor zivfad-7e@+{hqdZLbjiLkIBk6;xbw^f45V05&sfJtCMT88A+;p^=M~+#9to;RP*M- z$okP-Q&+cs)@Y;bllf>9)B7Sx=RImr0*-*LPrkBm0Zyzy3;ZubeSNopH;1sY-un2N zjUuW$K9_VH(Xyr8vj+n-r07IUQpQ|N=7`}WXtpK4Ma2--Dz`m6(t?LbsYHJt!Gn(u zYKEteCuxTZm0B{R5=}H98<01;?7TfSN)}{|XuiI(k$)D+uRLO_sQ&3)|7b+A%^bS= zZ9|0X2qv2KzD;QPwSAPFE4wxVN*SO~2~|*)`VBUlV=Fno{8q@zt@4B}7YN?|4ms5M zflCIxzy1BFYbM;N))dNTs$e=}_kJbjaXa{kV^OO=1(O;flFE{{2oLUjMeg!oU_s^Q zTY;-Jxyu+t7%&$pE&u&^z$?vm|biCT_|I1~}c2~9cnBPFIO&|SMrtLN0`(HsJZlnOqG zhLWmYwU|@0x)P`+Uwin|s)}g53TKy9qSMd$?88u3e$>bp$2g2$!gI5c2iH~OnX8F$ zv2i55ggaZ&g#}GCM_6_t_kQU-TkNCx<1gHs60&nvsH0m!?Iun6JA@T@1W>LRki|%& zSd$oK-b?(kh|k4B_mpvu{PXu8OYisZ_WaN6V5>m zLGCYZncW(|ct*cJvHkZ(w&>32>yXIW`|0={w~uL-9U6Qlf^M?m$-ly6e!5&QM0l?L zdjGSC&CUM(uKj`1pH`_{3N;^0%`8U%0rY0#L{TSG7hP`6neEyy zB-_sw!|156@PG1W1WWH?v%}%RG`l>X(^sP48Ak>MD8KCpDkuuf(-zbAx*Mjv)HarNE=;HuKnr!nqwS2ERH{h|U1wJg%JMPT zDj|cu4Mf?looK<|2Za7>d5?~e5GYDAVbYx1yzO13u#IkG z`owbr;hEe|3Qdo$g7MG+4!nw`uyP|JWcbX6=J$$_$b94Hfvtx32!D+Q9}?Pa2A0@4 zFjINJ{+D8SSV%;qzj}p@CetIOeXCPE>yR3QFLjM=wu( zk2C8-$)aPg=gXV%FHG8q5}#P&D)Al-nN*q$!@b3dgY0aEuU>vu%p%i>63aUIz0$*r zq({C$rsKv#QtZ&tWAF2E4ZFT-N$+J@J9HxaC=w!f4~1c z{2@=m^VjliFd&2T$m8x$VLc=w+M&c%X5Mr4evh!hMFciJ`txqZ@|EXp#4|ZslYycw zE6>jq(O&&%0B5B`VPMi50jZIbzqC4Rm}pgHePSO*j;y=Va9O&44D!bFYk&eb2onQGk!v3c^%M8-6yn^sKKviL*e~0KMgvh=C#W z*L251DA*|Z?Yt6c^Qtm9HuIh-Z?cw3&HS5ab7h&~qQRyd7k>+4vI*~+;MKYyDB~#5 zD6HL9^>2S25iTBCxu6|0Qu@Y)yA!Gxk8T-Yvc=%NpYC!^2)vZbZBnYIzg+k#55+O2 zBzl{2&XQR?R$2JEh+UKQK3EfEU|FK9vZ(0M*?~2n=(8g4aK^(f?VKNz*zCcVfAXKxpB7DKdH!*KY$;VN2MF75h1 zlC1(&7RS9C)^PuiR3A&(LB4-TKJ*UFG0$wbMW^3gnzAnp5GaoJkC&eEy~X)rkPj1J zHEbgq4?RT!zyUO${VmRJ#);Tyd10C1hfJoOLR?rF=5ffj38L2?660BiS?*m}140LX zAJ?}I3LuDQ*qPrB>7Qm=eE9hGx7iXkCO7*|b5V@U-QtbF4k*0A)cbFvf^CclNvI zjG(5jek9bYXG@8tG`fkWM8C4PWTGN+qOC@ps-s}i<&`pX6e}3gP5n^Em1_Gr+_^q`bF9 z&cwV_IrZG+Gs#4~&?u6Z1T0)nfht~8SL^!IDk2PaB27GGW$#Q~S0B2J$1(CHpsN}$ zrk>1UD)d6tC8`zD>d_-~R2SDZq4q37A&im;yRAtcYwfV)f@y0q;Q@9*ZwWE`2thyc z4a8lR_x5^CT#e`w3vRNzrQTR0M0~4eXcIYTXMbL|yACZ|C`|)_*1HQx_1H0ukLne? z_;_Ycb}a8@7u^*^QI~uK*;-&h4C-CLk=GsQxg77gG~T*Y5jM#z)+=|o&xro#_dR-M z=8>$PONj6Ro*{^wIrz+)x|*ZeLMILk5JH3yoM=5c37@o351i9mA>Ax25@Z|0z_^-z zd_J8V@@Ytwmk-}b;hFVChkKu|a%5`qtxWnxYu>nrl@Y3z=g^-7l=x@n@1g@p>Zx>> z!(C03UDLQoT}mGDQ4SSYt~qViXllh+LMRMfCuut0TjcA`UO#K}Y@0xeVhd5Pqd zue4Lo;U`Rtsw%}YsoxWar|&aV^iTzn2b+a|Z-B$~@@zzI7>7Bi*O2Jq#ouhFw;wCx zB;r(n3?(a2nllHpH z$x5Q~MU*^GO;K1a`0j5NhBBeNS*P6>=F;tzoVjj@`$v1zS&oX{pd7rs$NodT9KF_^AbdQn z(-C|juBxWCWV?-1K%)Mlzl@S1CxZX{w#bU`f47OeMoPw#Hzc6}fd5<2Z*6$$02jjm zj-&JaTXR17LUq^*cT+RF<V-Abtm!2;^~!WVR)?CK73BYaL&qM-(M~V*5Mf<}Xr6=9Gl>-gJGC%Jj`ca6iNx=|oOAdm6Z`*S++{oxO1K^k?B| zQ<+mlW4ww({hJ@3+K!xO#Zb>y8mh@QY;64g+_hxmvCmEQFBn680ceocWmkhmIN=><)w>6z%&dagB%BM*KM?`4TT@`=s^x@co#<6hv@qEbJn za%YIsUn?UZe-c<7c(KK?9kH`77+XS4M801rAY_uCV2`0b@lRUm?h_jujD6L?=ylDm z+_KbZd8t{!p+w5l=I8qX`qq8Df7VlYg07zYb$D$G{TqX0)D{azx6ivt{*R>dj;H#6 z-}teQm1Bl%C)tkivB$A@*<}^kD-n{t_m-W#$sS4BGLl_c6{SKHMMc){KHuNt(ZA@N z^FFWFJ+A9{#qwl#+j1aP6<;FddquV#UWF)YI#sgdR;{Wh~C^kKW(F?FDSW z6bO_FrpN5UD8CxOj7fLC&k2=Bs-BgQr1R$3k}PVtu1MnaCnf^)FgWUNl5eW2Yv!Z* z=hgbQLHM(B)5c%A9>d>5d(WQqKp63C|MItQc9Y}J9*&_w3+~)U7ZKKMXW!D~F+dHf zI#@}qeR`1?#<2!DU{;J#)>IQ?Ci;=Q+V*}-o42u-*fSQt!OTs5&)51Qv~C5fCtqiB zo_K_%PnPwz;Ej6uU*Z!^k82dSUciwGU>*4pn!Ljw_xlnR0{_?qxVqYec`y<~o*#b) za{}}M5<;D)FQ&qiuf+-uaQ3+qaKW}0H{S$a2{7YKrv37@MqOD)!@o#tF>6e3)!tb7 zG$Nm*KCyCb@J4p<#vc#o?%pph`KUFr^n|+3YquyYPm@BftKI+!2d)JL{V;F<{r?<# zUBwco>93@ssS!kW^PSXk+2ERB=PC`J3t6uvBZkRA_ElIsNp~izaSeQtBT=yLuKF1r z{Ph*n^Wz`Sa-pvU-Sj^iqVa@?AjQ@-^ zOHCciaLuQUKBiQN=L+WGI=Qk1)AdHH0njP3ML)B*81_RdIIPXdsJrwO8sC|j1AcBq@D+5mhR;+*^weV4?SHM93`T>yvyfE ztnpS~%CWAlbkHV>^T}3QCrk&y0PC@`$je|SknwzZ1f!Tf8U2JQ5`l}?`XX>0MjilV z4fb1WYpCUCS&6Y*!T1DkGbvhMyjDl~U(J8d-pr^Xm_+)3WD6NQJq|WyLt&e?iN&_`t>-gk9$n!LzqLEuE!#L6G1!Pz@*e2cn>UKkk%)F5&Wbr^v`rm$Z97wh=DEm ziA?zK@+yOB$m$iDv&i)Q{Kve~8tS(jt@~1_6b})Ju<1A-h=ejNaTP-d+S+p9bHaue z@=L5eFjt?yS(gFEnA7y5f%k!b?{3a;?ywuVYZ=mk9HE$p#_}VpjpDlYTjIrgtH$g$ ziFQGpVel~nJ&D}%-C6|4S|(eJtso{r$x!p0@-87qvk>deNP*v#A}$ds^X%|YH7%r_ws8Yc1-2y=qP=heCUP^ShvR^ANimfvstL*!oSI4X+Ggqyq zm1%in1~+>95U?$T==VH*>&aO#dExYfhnu-r@#w#DO?&ZXj|%!q)9mWJ2YtzAC_ zFX>%1^P;o`QSoE}5Ls5lXmZ1UG0yNz$+i{n`jubjSTjEQyuHv^Y6cOqxACVH{<0J= zQQl^_$4J<4RxbF2hj}nfuNi`@HApB+FtXj1Osmj`uOhH$|ML&4$APMSo-51x8ED2W z31*nE`%sEE1|n2V--E@F7dht8CVl!T5fTn@(D11unaKLY#KkA~Mc|@c8VSv)YM3lp z8V2Eh70;EYeV^Wd<9_KLHs4Un39YO*1`XI*Bdm{OxYlE1a|O)mLnDNM+T*+)^riAH7P2J0kXdqa&-;<9jv}YqWV2@F_s~0RjYug)`Ld#k}2;DVc)FPw>lX zSmonjs=Yq=A`$l~{h28V>xdw0Z*^V*h@~V(hp2w>D{3-V_lwwvkYf+6GGMU>CKD9K z^66{pqtqGmV|et@okr>QyP-68F@~7GnROCYJ^zFHu3M%hIWlsO@NxX!FBhdH^7^Yp z2mu*h-~ajI^j1)j?0pq24#nDL7=mlG54r}xuzstx0ig}>Wy zoqE;)0)h6H@$a0x=qr|ordmcNs-p<8besk>RBuOVE|bdL|2_yY^K3ITKjHPqLx4+r z#r+*nCvcm0yWI8-W;Ldzjk>k`_vl8!dbj`X`}-}1f__;h6D{b}Yw|Vd2)1%R zX1i|^F)EdfCjrmdz$Y{qc28Cp?ApJGC3XBh_6e@ZR^KReq$f~9;)Xzhe|PPUX1NJD zXDN2y@Y4{6zdF@;)hgIUhxaJ%54+3pOFtH%s+$^u=r|*ff-JZl3A%eWg@7pVW_pGm zuN>x_|GI^b2>E?Il)kCw&vL)p`_3~*G>w5Tt64b&#DG|0YnBWjMUDRE&?7kp8K$`Q zg@lTw|Mw-SyPzVodK$!(X>5!;&msB~2EGv>ZhC!*a!zr~@u>>?@hhl7aa^D=dof%t z%u2-j(XDm2?hBb$(H@u6{WB!TJl#9+TR;K>ey~UWXGcOk)2$wZ5{$8;-!ORZKcsbB zz(yv(z0?(Yt_V<07>~5rjlx!CH9FCzVTbp++O#W|+;y{~hv<~*xT`|G%ec>~V<0SD zZ*b06+NbEP7t1dqa{PtXU8gb*)c91_YCMm1C19XoM8A3 zR~e82ZWSb~tN^szjfCB?2piY9I4j}Sc!vSt^aTlvIAOJYM@g#I`K6&GoC zr!@O3X(F`tr!P;6c-mFDmJ~#Cbh@q$lta8!&iL9)scLRv!S+(<=T-C1MFB;lGHbt6 z^k9!89KuD0Z?7G(-3@4jXr7U(+1jRmI`*X3ska#+QZ>g z%0mKkPW%<2yMo6&8QLsLAuO@5aGi@J!M#C{m1aF=V&Ktk5QfHCaH6z`eNJwmaNt)f z=}q4JI+8ilswF+nAmI9H>8VVkj!T77aL^+PuUYVLFx1U>&BfU&h-TNUx)=6B zpBD4#f7eX;F&w>|nd3ID-rk$;qh2hBjfrWU?!7qWl>Zq z_36{6;r;o}8Vr{+#F&)h>N@e#7p>b_N#J9725pDN=;*Oxj?>g5JZ%3ha&q!RTz~(G z{j@x^-68FD=Wj`c^soi@!SaGg7jv~Y_u`y#TjtdX*1Mc;y^(;j_7V&qG$67MuF;l* zHM}1mo`U5X)UdXe46U_v9LO%Obz)pe3Y`w_F4@XcZ%gtOsMnXG$jyH7o9T1$-TL?^ zDz_V5>Kh_~fSL8hLH=2E9b%M`Gsd_iXO>bPiSPcnY5i=D1`<9&91CQVwP@Na7@7ax zJo!D>NupjvU0_BVp5h9UeupF`!%PS1-qfw7CCSr-tH;`h$<>mKV6SOyBxux4%gs<* zCi3y340wJcYMT02AuTB@4-)^Yqm!tV9K?2y4MOl7E`A6qn+H(^(;LrT2DTK(9=<9o z-U7kgl@x*@OpNdX)q8YYkDqslAfq#ZmAbpYY;di~;J0u5xbUyijg#P2&CEN!vX}Rn z>>&vKVLax=%x_dv;+PFX2s$ljXP|Z`; zZSL5X?nV%Yt)9MLeX)D?WB0=IPLIGKV^jKwGHjKKt*`?R9k)=?%{=Za3@Z_@@4yBI zo=~sNJ$Sy{ag##-!!^8YHpQr_I%E(#ZtV-au%{zfr4@d^uyhoWL^`9!l)QIysyuoT$?w?9A_pWIo+&07$Fvt0+D+%WVD5T}{GJ@fmH zQhbAuL|*m?^t=w{mMRr62uzDd6X9*B+njS#%-+rCEkSTZk(5!G*T2Clh}*uA{emx) z$;Pu;kNXN6Xd8x&(40QIOoGyFL2KOs>hn@ z7bFvB)V{`2B=9Dn22pqx%Iw7yn?a)bs9aJ6D2+rVWfPnrX8z3!^>^LDmu{l4IPH)Z zL6$2{-~$-a?|BCDSD#@4jg;9FEy=yI6SS&{C8(~U`naHX{`k!{0$Ep-EJ4n3y2F9= z|8S^2mh;L>@8S!c-e=o%V*XV}zt4FUy~ddObN~hFc|(0U@h9kg<60}@VfA= z5s>hf*75_c8gq4pa(1?VwBZ6od8~AjZr{9el)k&a^aqSP1u2bV8LxRJnH&~x=NTa8 z_>t5q2;(1R1Cbk?2fy+K-r)Xo-_Q%W`A|2^EFv-0N#>KsjfXEi!J$$KAA`-B+Xl2da{W4AY?^L~%8Ro^C^b!FY*%)H8IyV0ipKA%5rf zr_i$zsk_kK^0p?0o}`|OUSN~P?G8wXusus^{DmVQdIC8o#3U2dai0y;hE&6y*15XE_!GKbhUj^<77QntTva@f{)6PqfzSzKAy36=$x0Lc=C{&*x zUl4`K7?<1-EbA#W0AGQ@+SIONN6q4PpSSkv`CR&6_lEnKZ$R(wXJ_92mfkIiqZi~qLg z8juq4OTth*)xf`Hr;M1sLO&M9BU-|OF#IU0oegF#oS+$oGpaN%8h?JcO0GN>iZF7e zibPDLve_2$TmTs_QWaYHo!o+<#bH7)zXYu}nef}|IFGqMD!ga)Z0T>X1XnmVLciBA zk!|3&yka;U)>T#2>3TfH3FuF?7l;wvHQT=aw#Y1v?Z%DLn@yP{Vn&0>A$YB5ya?=9 zDPz8qL6I}Avw3(f;CvmzMW{cAKu(X#I~){0ch8@kQ^L|IiWhlUe0H`vIzT{jxSKf+ zd{kLN1i*E3^B)awZt}vA-wSDPY*(-d7wnz)-9%v}>i3oeAz(vnNf1!|VtIN&5;~EW z%(H?0V9@ktnN5&^a7>~b_U*lb+4cPK5~^Tel@NP4~*~dRcy|7cND8J3fCnBmF}55JnC$4 z0C^`=Z1ekTM0lW*SaJv91C}t(Dj-#oZNfrfIrbg%-d;y#dmdu<+nBAJFjWRHskcr%l?p(+G?)#65gvxR@To9&FgxvwXJ~^LVIAHfI0#ZJ30LcOQJeq8 zrmICTkrPI6guP}$Mm==r|CRJ++ZT%h_~qC8KL8nZP2Ci6NC6%4Fh^{NSElGDesnJ_TEAmW3UpN1Bry~OvT z<#E_)C=As>mI}xn_}w=<;Ti;;BmWzI{wy+hduoZp2qm{n$iNM~*b^vqKj4(h;Y?w^ zZl>81GcOaDeSauTuMYej1}G5YcjJer6etH&XAr8>wKNAx*_(f$>9t!45v$sk{a8|@yGZ3$PtJ2O6U8BOT|ZdjrR;p=!-UN-F@ib=-9iB zAJKX5tuJF{riYGW(Jr9T_G6#HC=1G9HHYLs2bB7e8g2K?vmc-`^msVQ-ghsY1c(wo zQQp~ANhv^dYDv@4h}KrQl-&@#?dwY)t%8S3OIA;x1kkSLYp9fA)cyXMpRyFi;CkaW zcsMOpxWr9_38X2X<=*&8SDDbEmno;Ay70{W1&S2u+zEFzuy6LC-B&eySnaCpY5B}S zj0u?Ji$x@=8EX?_R;!u~7V44(9^C1-w<8_81)*WdJ5GUH;^d2^=f`A`P$rlw;)MUf z!LbOHOM-JHPt58|Z}4*xrX@4!GZ5iDwQAJgi%Zr79u{15CiOUPc-m)tdsWBvCP9P| z9Z|LeXYs@UCh3sl-0p*=pL@xQXLB94$(Q<2kp;&T>)5)P+xV}zB+aWO5?5h`EyoTm7zlx?C}o`u5c6C zWa{N|aSDQX6EZQ@@Y_)eh`b?INtCnQzd?qmEG`d*64O7a#Q5=SUlum64W^aMMRJ5y zZReJvHCAW|uQj>kkA#nPu4AvEQ8O;-Ivok_JoCR#e9Y)CYk%s+WhEZ|DLx^+8T`GY zG&r`5_bzMf_AQ7Q0zfJ6CTqu#n-g7inQ zsERw`f0i-(FB#1jgJ+llVlu$>_1%0c{LntnCY;xtcAwonyIB8>u>H5~iX_@_*s=Dt zE2lU1y1Y=1&LoPB$G2-XiA6Jo!PPK>kEf*d38 z0BkqC0n;ziQQuN+8Xx^ghZRBtUS!bcwBVnuf-oRDeEl)8Ebi97%3Fhdr%%oqph`PD zT|E!Ri6H>9vKYDs!@J$no}yW?ZH1?FGm^>#_zU~ZV3myj`Lpwvx5z!~i@x8I5QvB{ zcb*|rn)1u;P{s=7*vec$8@hXpJQU6|)r`OpIui}=pGu~2HW5d0$`3?~93kJyECeun!y z16?7W_wnepok5Q+L=<}lUb-#Dp&SOXJtF)BL0SokKQOejo0p+mMz&}{Shr;8_ z9)bS^Gsn}MM34ab%NR$)(FcuQgBf=g>)REFc(sbUv6 z^GAO2!r%@d(9kb}J%#g&Fq6G4qqiU;@CUv60DylT9iF*lK(^VpapTVAp;Ut?oM-3ObuS@eJbU!D4D^^p7qo9Nwj4PV>0#(}NTuky zdnPZxI(qH&^|g)$J04q4xeM1t97>e3eh>}asSrds7c>v9y+jZ&Jt@4{fNaKc9=C>- zjDGz(Z-|}VUo$4NG@UQ0zx=|Y&G-pV~P>1T<01Ar!gjTBQ? zPDoM6l9W1HOmkalc2V-JiGI)2+^qh7{Y%eSrrvy%X5qbvY}27Jr|1SMXL3alY;Go# z6D6gj05AP>ZNknIp%0M20(x561|QLeOpTro_}ur~17zzH5CQ*EaE()=I?#% zjnwuwF8(+l#=92`W|p9XSxxDX6KN=r(T1PDmF4*`*VScs+1X0pOpQ%tD>Z?jq@0`I zEHv@^+d>Od{MtyVlu4qL*5xV)GQ%V5sdyp|8r7j+M<)5zbL9ooR^68h1?7Lu>J^VoJo)xG=9H zKt(0#noJCg6q@r0Er-EQj|gfl9=N$UwP@T|G?GI+y+*V%WkXZ&vcef-hY?C1;fT|l z52_-~P_sv8Mo%e}VMZbqt5VwBfH`CmGo;gA(V1VHHxDE}^tQ@*5}NC4MvwQ){osH# zVurS_s$)^p6PvgaJ~c1JEu-Ok3wwA$8wHZDsx)W2+yAI$#?S~ zUPbt0xkYt#_9l{9xKwQ|#Z<^(74FZP-Y{fj`Z!NX?4iVaP((?fPBDne5w;#YJoKMN za|N(J$MJJG3a)}p1x6bhpFbS5c71LHW{XY#)ixn=eX_I6%eCrv)hrRS)87uv-4kGY zY2)pkQE#H?@h6X*7}1*6Zcl?3rqPq4#-;3NY|fPP=P6zpde+T8$2@C@FzJZW=Z zNuj6M3VMFSZ{}%@sp*U1VM2*~>&C~8zrqHn@L%8HE7my3^U1IIDcW!MxisFgEXa@? zU(bSTr*+fmVBEy+V`Tbcu5P4six&Gm1uERy-ZrFH>Rjpckw)A2f6wN(B#gOMNvBzknRg4@Kz1VOOoJB^9WIys@7Nv`5)FmFQP3Jipk z``I3u?ip-Kwv3>LJ@NOL4odZX8SwpacmFlfU-_M#mOIr4oxG*yukTYB3q6A{a%NRD z_2V*r#EfZHl2i4(0X-=anmr$Frx+8b+Gx92Nb2H6{=E2kn`nqLLbD zbB0&h2^XQxK~Lnav=FQlwCgJBAL|hl0EY#8d9DK{3Qw)km0ML30%Z4tKB{>otxDfK(VP|NYq{A+R2I|6mn z^sAL6v(ewBFDwu;N=Pz_A&fLJ{lLteeyn98GA?FROGl!OCp0>%iQv0x%tFLS$r}BEs)FUloPX(?&ls_p zrZm1oSg!QVKT--bas7W=Ky9_+n|_H27dBK(=3RR8&q2`=BGZ9seSSV|YZHtg=s{G* zuq8xZ?uAM*Q=a_sJeLH42ADw4#+8n)_!sfpfe><4v)1IBqE^Mhm3bMXw{D3F?98aH zlt?gJd-*;0;V0^#GPtuwz|~GD4b)h6qTh(`13)}NJz304!JC;9#f%9_O0bZ>@j=4 zxtdQOFUc|W<#p(>!arRDY5?evhssS8O{n~2&CKaO1!0Fx^w;O{cMd(W!a09j7fHM% z!18q;l;_m=(ms1O(+g4U`HT^NHp~ThZo`LGsN)q7P`?!AkWUav-M9bT<+5nNkD`tA zasE{jHR^GbgzE$=ydMJFSr*%MAikllPTKpx`C8UW^$W!|U^%eGv~0PIJ&t|t4&%3) zcKcOl$&XKkLAenMWepMdL)T(C&jy-KnITNzr*7W?#9H8i6!`pPUFk$t4 zzg;qxq}ej7H;sCj=bA>D@X}O2QZ3Ni{YuOv(^z8uixnXkML5)RjkO*l(-~@2=XJ$Iq0jEyPpJ@bPfzEDql#@nWK#=L2e2 zbG|-+wpl{|EcIerJdSs6NEU1I7sn!gJ(5is8nsfGhBF>$4*(wNJ3sDAb%Wr}h~~?y z162>^+B0UR@1uFU759P{v!gZIWEMSr%1#3rJ)>_hc)t1F+CWIs!a_iBf`fhu<*Oag zpzSIjj2HuoI`DQqp`jXoI){5=8L}YZ`R~@WBB>!_pNKO=1eJ4hm_fG8mgP1LQQ0kJ z0gA$}0c;?S1sgp`u&1n_0m1V9-(GpjKY1{U%lMw0l&V^J%Pcabp@p~6CI4_;>C6si zP3~@7-#vTZmpG)E0)kAO^bjPBh%l+u0CH%R6;g-#<=$8{Y`6)o#CWVksf%QWm%6}4 z6?VpqIt4ZyxoN_#qh8C+ACiu1G2tUgaTOID1K!^ZSQG1eQtb`0;gf!;%_)wBgRb=bO*|aqg@qJt2*G z%o~HiAs~Pzu(Oq^Cc(X!91@P*F2RSuoe2C^4;_DozzgoJ6vOv@@MA7bI?5?>%)PY_ zi7+Mp6qLCw4F?*AkH;a%n`W9t;h)J9lH6e7ITnRXEzvZOV8VG_Vde0Ff{oX%;J z!2j24zUN>G5W4!4qyN@93^G2(vU4HvPuN2bH2*j7+} zwo!;(em;wr|3+nT%KME=l1*GP^Y2gp**NSbUdq|~^KzwG;Sv_9v~xl0%;u*Ow@}qb za>by_{o>I>hfA#QDUxQl3&Q{MLk6cmBT=%$5jH>|5Ew?^KRk$b8k9Q zJBtO+Nc%G>#qpHf5B)0*PxUjEqoPE`a;Dew$~B8$iVjL2Tfs1*#HkHg%PqwxGYS^7 zy+Wm9anL~GU`MaVGn)ky3Bm{wIQ+toryIDm`nC699=~-QeQT31JAKlT6N&$=gZcGX z(o?8R_h@4b_(Z7!d+O>yBKlGKf|=R%<8QeHJ)_IHOfkwDbih0IxIey!KP+nX?s-J$ zuc>o#TRjA-gZ$FPQdP~&v%irfN@43OhcBXU#f6?mlf$wW)B&ld3hS#3goD{*HD$*Z zqg=F?N%?R#X_$|Z^QsuULTqp2KT3=LP0plDv-^GyQPPGU2G{}qWycBFMu{D)jU{qVPhp9~jp`TXS9 z#9m}rPr&6n6uzB#def-$Q2%Era1-1BuAb~mW@twrad?YNe$I!F zPv_my&39cG3<`lDwKqI;{!Jr7FEZNe=ip1P3kqSl=iISF{h=kN(v7U=j66CteK{8@ zJsdA96#t<)y1`YrPRXZVo351>h(>xClUU!6{~#q<^m%4YC&M8EAxziY?6%++xOVSO zoh??kTE_Jp2rh?Bt7npE?Lj!%_l!foH1&6SJk-6+CNH-4;d9Ddmk4UfO?qXfM=`q(D+z1bHskjaNf7j>WW8V z^A;B*+|=;e`8aH|ap+{bBv2s-{T>{5Z96HGxM?S}catjjzkWplMt((FTq{`bqY2Mh z9>t(HlgRTu{303eD30;1NZ51AuWD9WX=IRDL;g3g2~Voe5801~UThf5Ds~R>5R~;O zt#m$EYFPMM%}WL-EYOU>Aj7cEWUWh>%%`Ge!kMc1`UJMh)gIWQosVzaIUzVA5Zz6B z>LfY<=id*a?FVc)-6NpL7c*p543>B%k=6k*+!6h4zi;vgkV%+E>%T|?cVWRz+44+> zsZ`RAyDV6WmruSw+FIl;z`J;vl+;?Y!y>xMCAX;XR1Xo_`F*{h=qmS~Jem+s;+~Ygf z5^-Gyl!Lk{BpiQyzy{JH$Wdtb+%m6tB;e&Hkgio?(ct}Ma52m#&Piglx_=NT|8v-`pwQV>0b7B84BJG3Shn`=NII-Oz=uk&UPY=$Bnt&C*Nsi%O_vcUGG_c>22(P zRgtWsy{JKk2G90uxs#5TH8#vP2sHEeg;kpWDXqsG+tLW}CLP-Z=5`<5`c9!yHZsZ^ zexvzSTlr`V5=j_$K)vUTNt^dRWdC{=+j#xvb05-_jgL<^injk1YRx}aK=9kewu>|8OUyQJE`ODi*P#_gs$BoC zW&62LA*x`O(gU;|Uvw`2Icx|WQ93T;{e_OB7Ews?jUWj$CDNM!8RkV%DX9fhF(-f0 z*iP-F6vfj~(Qs22B0L7`^~X)q%c-SU-jBxP=mGE9&!z0P)SC~f3;b;2Q|oxa>Bq># z3jOi0Q=LNp&b^Bih_HMutZpT8*~&1j@{5vsHfJK2;rcymVbyU4NlR=QZzpv?vrRuB z%#8V9LB&C_GOWP(d!r;)x?u7)$iiCD1NW@ut!`>m-m?{_jVcl%P^K$wOD~Q46R_QY zA9B<$@>k(vo*5DH1)0ol(~o~-KDDezeUL(ov!?8os#?!BZg<;LRCA*?T`YMENFxyN z^G0)*c@nKkUr%urGHdf>%CFlP28%c`8U$&Y#L8#saKh7P)-dR0tv5Ys3p&A-@8Kf3 z@nuNv;#dyts1v?F<~U_|NLBepZJ}X1v;Ne7SS9XKp8Va8DU;&>U1LFbpq}7S*vG z`SCL8x}97qEe+)(@cAaD___J8SkMu|cArB|EMk1iW#`?~eepMJHh-4n);aZcD@(*& zv@I^fgKTwwxpV-LNs%J#j7xBOVw#%UWgjVTByIzG6b@|QRZHXZa1R0R3&U4`L z&PRVY*wZ^!j(&S+u<;*1S+%93oxd{UAeAaSqE6(acR5xI7FDaPxv0=-V>L`CZ=#F2 zM=N-Pfx!fDPsUOT3qyFYlQjrRu_hmGxN*E)oPL7(dGBF!+1`@p2$Cm(OKeNx)+YU(!5_w*gld%1J^2~=N%tWtzyJdY;r$NWpM zS}pR^>t~S)#v$lD8!Pr%r;MYNtd9T6N}N~rTrdcVg?cCHi1c*o5BoRG&6R7derUH3 zyP?mAB)X>Ep^rA@{Lg8ZoGawUN0XIpHuksMVyPJ*seYyyzvTltv6OZG|(YfouSP zy_^a4@E}LO1>{0XCf4RL312%gZ=d$SAkq{|SZ4D&PkrD;|11AIzlnU+&EIgLu?RIgpl~JYoFf%D9~?P+r+`=4FLFoAzwg4 z49=f@=gtLj>UWfGl$c2(v)i8M{sB}^@D;1@t}_zCg1yA9j3N~^V`x8wi5oK@%psz< zfY0a@U$s4Eu;shD-)tzzm8WIn>c;@bM9??;_$RlEx4{rWlSg51y-_Kmoeh-5^s?7! zt>~XO@6Ahq^4&xri$S`Adl}*mK}HKk8)EFpVOa%K?wvPIW14+r-*+?vm-HEf-+?@$ zeHN)%&w5pJY431TR9^g--cC#T+Q7s7ky|TA3(Fy)$5X7h$RtRuy~e}m{Mys_!u_yz zTiK)Ttx4xo8TbFN9Gjt%Ka3mR%#;wKThYpy4r36SnX#-E^GQ$`31KIBdR6-W+OHDy zZ^4D|YAS>$FnHz9XZ?o`Xibgf);SZg@#qniw1liG7pwWO%d`{|gGmj^wd2}Rwqv9T zH)`49)+k~QSd-448}MSY(T64)!T0WoOXjT&tNCy{b(4rS2uf~BTzwtj@xm}9TzbTK zdVg=~*)Bk}<&SsTJl@O&ln-1EHLf-B{E%f!i*!skyE7!AU74dJEzqjhtl6%^Wo-KP zCas2-a@ZY4HPIYbHCUp4`pR>lhCeUohr@mZYmO+9|9MJ9jNnM0P%bsR%a}1sZwje9 zDpKMaM#Ew|unP2k`ie+3msEn0*D#`7+DA~pR5LP?W4!4N}QPhJosxuJDfyRS&F< zAlNkE&V_k#@s&)1mA8%=g4~9@dmXO`z16fM)ar@yt2mYalL8&qPgWrN(LG}Ephr7n zS~@#59N(|M953uGPhCYIRaapTl=0B29yE%xzr^y}nXOtY|D+PG8a%C41o1dX+IpX zCv!x_8OLgI5oH%z}h6HbG zU$no%7Ud&8CQVQ9LG3-{J$v4+H27D|i|PH*Apd_4a8teFdEGS`*d#&Y0 zHo&Jp8d%sB=y18^k62oOxz^R224~WT!ZViZG(Ls5^@BVYy>6KOCWzBuJW^{Cv3m?E z3{4!8Yx3bunQqDQtPy*zaMzxxp9Jo9>jgoY29QTihx*w$wc6tPiCpA)fAj;;_qgQS zsM(Xg6daRW7}M^+r(YIJ>bzOLW>e+PY@qRiSK*l+Uh(5^@T2(CkrxTI)H0FFH+`*g z^n6?T_322XyBqHrNoj=sc)%tpB?SPtDo3Xl(7sQw9fWXv5w{RZ~;xl%ezX+Q%>ld!7Juw)BaO7IQ(|Rf_1A8kBZZZP4JAC-`;om!~pE zL7zi<^!Eoh%+15$)N~MgSBrSx(+@%g=E5Y%y@Lg<9HzJP+^uWRPk=GbjOc9ieP3Kf z#^;Uwv*TTEB>p2=Uo!WpZrl7QJ*^B-_aN!T-rJ}vuf2)ejA1vR;c$e5(=dlv8L{AN zd!HDu-FxWfgigBqpWF_l6+dQPQkxTLz;`jwk~AZtFKBfXs1z6^MqDX1K0f|C)@J2j z{^L5Wl$1fiEU>oFJZ#K8B8`4|d%Jsz&&9lK;3T%urD8!zA$eQs4wMg^Inx9Pl4q1+ z#A^1+9+qiX+6aIrL%Av8yi)eTohwTVG-#*@jz6{(hZkwgcPnh~`l;k~d?Yp@&b`Y# zF}G3|fA3yJhO;^3wniS&P#-83zvjA#7a;mPVD_ymr{~(jb|4!VU1`maTLm-M`ixDG z_7BA?nn;6+2@xstW)C1phwS~uu29DX3Vw&1{G0_7wm!G<;qLkD-dRj?tU^S9m=#Sk zrBC)|ifM$f4n@O$NelQYb&dRe`W9~<-Mr-wb?N}@fFJO56V>Sc9ZVJEHAJD1_<2uF zO+gG1^vEIaR~2j+8k74U;U9}bk8PB@7$=JW%ji;a8*&IiqejS4IeqT6 zA@a-E{CNPqTYbI%QPy<`ClZ|CIwUGp=NZ=0FS9d&bc7F{A?E2=Y)Kdg0|FGvQmtv~ zeyimJSJC1C;eF+3EOEcX!s8x8h9EpxVoTJSUeO$OX%K;=RW;98oIiMQa3Fc(?n;c9 zd3L%WosDVz-5M)dU7F86fd18b_+O@Bj5sBA4lyCXtpUBAfd=7^iZ#ntHC3iTSWnEI zoktwWw)tx5*J*(9;GYr+_kn9qik?`!kL;u`HjE)Wr>xE(h&{!l{DV6Uk>RqX(|S}% zC>8G|=hsx=%f7!Fd~qp=O*4f>dF|MKaC{#{hEJh`j7ga+CXy~J@$eHgqo=^@jhB0v zQkbXmpQS$vYZ<;npJX9l5_V1L(|rII#zzWjx6EH`+%D6rrsjd!p-%jQB2`0pP4LGE zJVcr=>sE`X#DoKyg#`3Zx-lBFE$~)UBUGpNk^N~I_Gk)%@ZEJdIu@0esy+qSM50;> z_uFRA3OKX@uBL^~tT8YscQD8BZQGD9llN9jBq>P7Blc zD2`~cFqDYiBdp5R2*b;_fNBQFhCu+xv9A;K*K?hI4R+A}HYk9J{W2St__KLGP*2x8 zi8HA@V(Gm7p_4hoH;FNAqYI>lbfq&0Y(6IX?!zQ4*IZK?OMY+@ikpturoXR6EA`{QZoCf1~cd-QTh#lmu&wh!{JL9G#Gj zW5o}F=fVC(v6&*z5vjkPG#?LW2XFS-HEGg4-CdU^*E#t7RM=hiB~wp`dUmO3s}wV0 zuM=Nuub(Ei%0(s1fekq(@xZ1x9ZyhB2A*9Nh^Pc3$>>xeRKvsY>^Ws<+N1?@M&gAf ze54~wGok-66x+-jpinU0&fr+l)Wl2Hnh@c`|Kd2ZuFBTegECJK1p0Y#>zlH8yhg9L znn$#C)u>CTdaj9km>OavWywZ64I9k>%?yFKI&JY7bQv2`71>S&oU+~M|D4Iyve7KB zSo{5Nvj`;9j~Q^N3@=vsIJ0`|O@o->uU~m~WABTRwz^wao44rlCEo*#r=(=F#wZ?auh=$C@5$HoLfR=gm%UlfgWiRnCGgt zpT85Cqh>1!l}W?fj=&72>ZdljGJ|?t%fO&EjYd&Oome?6NOAgji*$&i(wB@^uhJ+@ zjrx4M{+#&ySK&F+n`Gt?msJs4v}lAzc{uy&A^ar**x+1dCOBBs>#|F0SrEsjI;?n* znwGs2_i!)-?i-F3%NMIJD{W zw0m3|Rx{VQ<4Tt1KzIH6c#Q`mjaV_;ba@#s^xv>#3rE|ks)9h?B%pX5{Z~Oj-q}ueBBtJ7MbB5`W0`p&Mfo$&i z5_Jm1$qd_}peRFQQ{H@HZIlJKuowBG zJ9Q1AogwTI#6;`s&F+^VDF~xa3tI9{4-m?vRn!Foj*^l;#;BT>*yVC^6Z>K4r^&t( z-JS8B2nX}SkEtPq=5)BfV&$(2aXlLUm9TuBH)5IiYX0#1-2Qd@yo1j*4|xladwf}K z*8(3D{>_=hP9zL6kpGaN7SwHnSk@)#R_~CzuVhLX(us_D7X7Q)|zAq zgzaCIx{FUjl^{1;MqRX6g4tl!hUvLxFmeX}pL%`lW1_K)ORIm6&I^^nJoU~Kyw66p z!`0+BXy(31ZT2a=tg&c#0~5_VLS%c)TuX?BtYyt*_r55?x&1@Sj)7eGX0Id+a2P7OKWhHxsU;?N@Q zICJy1`5OmQ&X3j^xM>A4(D6xEN$uw#`-(K$g=*PEvDT8We9wKgWVdANRSR87jG7nvKL#?~m-~{wUk4yZL3=$u$j1?{*LVN&_C_9)u zKt|Ku$o)ctXUm6>gmrEk8v2o={f!p8kRrYHC{BCza9hR}3v#?K(l&V5M^K(B7fRqV=mAPDsE+Msn&Na^W$ zL(ZPT1J8iD2>y~07?VctpY}7;o zF~ufd6rs!+^Dm)SR;?PK>3u%Ak_OlAwE>y_vGwZ_GUk=7`F3RXdH)Tsc!qgrVvBkt z5H_OIxk^<0k(s?qV#)f9;!e(YBP76}4jjP`5Kns-pb0K41A<%VizB;joM&*=xQ>ui z@E1(IP*OefPR4=t6f2FM6e>x$HkG!3JP_ez5xux3}@dH|83g z5vVhCx&R=QrQ89N0~~RmxtI_5UFfVi5h!|cKl#(ELNv~^ubjA7ywM^z2V}JSr^wYy zZN-W`iVd``Up-1mI0kZNJ|xuJxB)XBHP2sO3P<(W9EOt;?934Dz6j2<*D$tr8d9k8 zz53Y9%(ADiZ|dtZu{P)cop8xgjZv8Dv)?5N;em|e)xeyR2cOC(s}Z3N*Z_mM&j*w) zcIrpHwPesmF_!4V8iyAaBd7Jal)VnsK z$-r!NB$aO0m7>+T?L>&yEsjU{)#FQBIrTZw*9rw2UIws+WL!Kg6~rmXkrjjQd<9hh zbKKL);fR<#yK$V*Xtl>UTY#YIH3Bbvdzw8bXJ&?`Czj!IX@qq_m=jV@4DnpWFj*Lm z`U$Yf)p{PFVPSnI;PX39?Yc3uo+!m20|%?D^ObAf^LZ<;#NnY!p_e?AEENA9 z!;WN>-+(mM+qVJU1#ZHR@o~&wWoWlzZ%&uAb1|r+<^1p;OnMa`n6Xbrp2E8-pI&%R z9mNy5t>RcrBP#L;9EL&*@~suxkv&@W$lp%MMeH}{W-A^Z9WLvKV)rb7(F@Q{gnFPC z8}zWt@@ll+3!ZdF2r9{+yAVqvGW`A75TIN+7+mp*oMPfPO9JAn$1O54M;52(SpEna ziPV?NHX0qXU<+DSy6zqoCV)tp8!sq{5s_??I!(JKg!JQK=ubalR`1A5KQgs=dW9js zlS3PKMf@sCdO*>Bs1L=@g2k=rOaI%RKOm1{Et%WHKH(Al;0)LMauYLlCvan}tk}l| zw6uI6+Ez!3upSealM}z=j@N(J!O$j9H*01JkqrTS)etudD@9aP6qxkfOlV|nqn|hC z>I=k0sU#I#Hgfb#BSQD8Q7XCtCr%I@%V60HGX zi=*PB1Ut!5247I_m8WKPbt)X^FmZR-Xt2bW?s?)4aOl9% zFVV0f^hfk5TL_RDVV5atp|1(pf4ytR6XsTBm5F{_3mhKt6)yzqR;y#gn)E_VMdg|_ z%HJ$2;Bq#rm<8@lv*#Cx(}I`*f^ zRU`1c}iH;e|7Z1MhCMgrR3(n=)fAMm-;1~md!0@wu* zde0IU7bk!-T8j~-*pm%ILGEH|Y$40tnqq>tmP>2@VusC$=k6^^U8bYvCv6J$8RF_g zc}*@^%AUy9Q@>5O2lL|)8?PmCi^W6yzL9yJ3R%U1G#_pMWQ1Lb{CVx>oJ`U+zwSEh%^u}!i zj-7hJN#+dIOX_(`HV_lo$V)l4(i#4X!wLOOc+fYpHR(P5eRZ=aFH72mb@&%j#_q%+Uy zc{2!)1h7!u-n6{Z#FXmN2yf?lAirvSv(?6rjx6JIOV)2_$JasIKb9mhI0opDtI!An zc$^0GGZ*VX4opH39`=^+(;||2;fzC)MW;z@Ryk+vw5jc1BxRa5HauLdR@^nC=7IPuE(xCDX(yKK_L(D(1Y3U)+Qxvwtrre~ko zk1Vc8#ja5IFL4Q+T+ccBa03h~b3imU64KIfCtGRcnRqF>dkIsa`ku z(7SPUwB{1P`Wou*uYz#QVWEWr=AVcc)_yDLw^ojJ>VrA57xOTktnXNJ#n*7ZN%CzH z{}rHE){PX)^tl6CZ7*qZDw@cZ)8O zR4k;0o=KDHb}Ac3_3H`S4KG#{ec^bbs1mS)0-PzxLqRzVr*QI8Zk*O98*$;aW?eER zJl$1xBu!OMS4bXi{q5m=;(t=A{SJ?Ps^}1v#0qb+9gd@4H<}BDMcp+jN;0;8kikf; z)!5Do8MwFy0lInv_(|!Y6$%K3++S{52WAxITD*wWOD|WTrV5GX z??D)|I{Wp!7_=dO`lEV(UL3A#bq1wG0@kEniwYi+!eAiODECG1It7au)Ke{p~HZR2AS_;d$?ViZ9C*{CR@ z-|BHV>(N@sX0Q}!^~n(NJCa>n1NP4>%-)cM*~#1IdCvQ@2d{Djhr->rajUzD-i(<> zHToazh|jL@qqzsA5=h^KjXr|nYXNo5*efA8l*}?Y?(#|6$K+;~1=|KAK1N0+j!rPG zX8FP~MhFi*0};!Oe_^C>`iVyVfO@`psAEROZG~4=aZ{ZMlcjHel7tGYkY$p@kQ%nO zGv~eEb*73LVIDCR6D+^z%S&B0cM1{h%k@g{gA6Ie)D)23u%Z9`o1izldlXbZ zg!+iayc~p^^hy9fbQ5Tr6I3CN>fC8&PhAGFKq_u$W@VBd+|Oxxk6Qaj_*j zJ~gs5OTxU&HFc1^J|ZKd@OU3m@fJpzq2y97tTay1ryW`Ju`m?z^M>Hs>b_sCKpLLU zPbAg8N=5A6ZR#=cT$?hAnE6ZZZsf$=@sp=Z)Y;Ac%Qh<=bGgxfQ}T{k*$T&v02XMH zKp<)hxS@j<-v-52hg2FtxT89I^goU)j;(M6G`vzMnfTgCp#Xr#RHgeI783GVK3x0+ zm5LJ5pDWY#CYHf08UI=m`Xyb;YrD$=uuI&BT*_QZOaVB-z)lPfYa?O@1Z0-nWCIF~ zCO~z{e$?BKDSjy$GDTX)i3~ZjPp14KZY%HDkDAZX0gc$WeVCqN)0$zfF9+zY|H0@l ziJ6e@6VPw*+gUjUWPXok=RsqaH`_=v;bCp`pT*j<&!PQpKhd0f5!)DUsYUTmEeug5 zF328@KIM=`_wc&Vg=}LPMt9mz0Bu`DcZi9-4G%f<%@?(TG_tfL9ga`Bn&pk<7kyqu zgtAG$4}svrsb3#rNzP~4bb86B2ANJC@=_DAk8$?_?4@q#g7_AqgdlZuI4@O3-5x1# z+x{;wj%4ut)&V?!k%seM6{9xRG=%P@>->v**6ev5QhVuRV`G)PX6b`wt^_^40LhFr zbvb-OFK~f1lwZ076jQYnc-*_8DF(t*M+-v`e^h(eX-skzP_mNtcNq zyj#c{hebJ>sb(u*@S(emz4V-f^(-0$eO(Y_7YlCUIB3$}M z1ync&tD;`vT*;xhPS=u5Z=c?fr=6O5t`kHg+$8?oItD@py=vR-A$Fe5mi7c*zs0@r z&d(6bat`{P17>OR#g=BRg)ZLvV2cID9A;1`-6qYDJ9SES# z+asFMfyJ<-!pH%Z4F3u}J34BkS}2@cZHadPo@5}`gRyHOwUIO_r!Bc5BwpU&Ij z-gI8V+e{|PhJ-b!nkOGkv@t=B9U~w55e0OD z4{2;^X=G$P=@GDed*=^;*K6M}kTbGAEcMXGX_14s@XIO5pOjkuzj1cYC639Se%4+4a8L2h&-cd=ALs6o0t}Nq zmkrVNOd(VB{#GgYxMMN;RdEXouHS=K09=~Yw$qMW<&F7LOzVA_D{m0GzL8&wss}W{ znfOt*<7HveN!}0B)6>M8Jm3lZ-gKV{l&jDzEChHEB)#JFMBnw235HT4bKl@4!rpqBRpZHA zn3OdUF~z_7Tf%F77Ehdj)4}9u!=&vER*Aq6oyyA54e8 zDq{e(Vh+l+R5I7y)sI8ls-%+DK>Ir}l zMjquTB8c8dn%RY%L)WXHMU9fW3dI>JIrXKKe=~8-)GqF=*l@s&%D=8Oi-XESvoyImFnF#(Mb;yZ&yJrx^oEcz7=1=$N9bxSNNaCpF};A zBI<}{MNHLc6^~U#vEfIlI*evb&De4hlw?f%KF*7?7O|TbS(F&95#Tv|lUeAh6!=db zldT;6`bzn)theJG5BUR;7YCF2eV}ZIQFw$3kpK#vKNs93Jyb!BO*)sJu(ADT^*{&@ zBx&JNegc2Gm_SaJVMD`yo4r&isi|gU%=aKxfs{Dav}g98Fqf5~CnJ2|An$=JR;JN<|{~0%8fuHMr5_HP+E~ z%jZT3R;ANV_GM>irWUg#Oy64$RBtG5@UO%BHpAJ6}2g!2q zSZa!#Jg$h)x$K8!%eU+~Sr zj>I)-zwL@=o4>{<2f`1Jx#h_S`XxDgSeiH}msEs}iD)i-@qMJPTp|IwN2fOl>RI!zyqdygzw{vcySaY6 zn90WMj|<1CsD^Gx77Z@A++E!t`Jt6uWSii z#xD=3a_~Y*SR%Lhv(5Fa3->aOOM?%JyB!@rAzk^J2Ur_y%+`Vte%WH>7Rifs{}#vO z8mz9Gdb;R|QBx0(xD_=vmJ#NPe!9FGS^h-8KKN1Ac<0VK?M#{qm6#goRkKQrUZz`*o6;P5>< zE5Tr{*AUgmil}F{Czf&o^ z0Bj%XRbK?prJ)2r0s4tdw>KGZTNPOirK-3;l(0kk6(A$UyPDqL_4eLK8fOTp#rw8X zt59?f!4BKH-YMeh1NdC9C$F!tiR0TLK zU`J4Ip%IPzZqx+BO@c`YnILS!Wl(@Del5LL_i+1Ek!M7&n2X$g#i*0mr04?5{L`|9lfA9LlQq+ywubhG zl<=2E$5#6JM(IAsuT!@II-mJ3Zrx4Ojg$GiU6ce~)(Rqz{qxXFLBGGMfS03-!ULlJ z|HrQb3W*&;UB=-NgAi3!Oz2FdIV`YWad6Cl@o64!h`bN{n z!vmoudo3J%*%U&TVdrx_Z*kdRfz1L7*>%6J9NTue1S<)^37S7j4n6f;TD7jWg&t@8bocyd?f2h5y9`OUoFT`YNQlO}$#0GOT07kT?qrNMX#T6p ze}A(=@sL!!W?g*O6MO|Gm8_{l%bk}8Hpt3FA6HE_`R{V)WVJ zpXv~XG3hhG!K;%eQS)G~`6|Xpk)l0tr5Q7DCl=&?G&z zbd?iA4morPId#Yn+W0B+*DwDoSQX#DRmHdmpX3~0RtN1rakVHy5d{Bv6hZ;f=FL2s zds5vH^keMyYAhTPmYz=0cKPe$vum^e*=Rhl(TCt6OJUBBl0t|u#XoZckB1Vg19plt z*U#MBj+E!8_vV{O{yj2GaBFpv45RmN*MZ*n4xvNH>Tvph5KNIulKkX{#A-?ZBtUkJj%;KAnezoe;>YtgP;Z zg#~ko$$vrkSboV@Y5_zQ3H55FOqRO+^mIIqdG)kp$L8lOA+f-7eoRO75{N?Xzm01v z%1bnUUCUyLSBv~F%q`rrIUrq)`&HGu?=Hbdbu0hxN0G%wTrHlonOhvR@Wcm>goc z{cQ2lmU9*ygoUTu^NG=PK@Q7U3alwzCR;IEk3)Hyk^ai{JhQGqNHf7_PIpa+Y?#5Vr0KHX=@c*>JSFOYBAZw za7G1AP0))>i(nc^`8J>-H zyOP6t*%P7j0gFpoVR`<5eOfdZQYo|$MNLB!YLyLPIZs+T$AwJEc%SagjvYDwJ7OPk ztR%f!=%uF9Mc7`jD#~G~a{Y0uJO6Uu3@lwr2W|x{^$rgc5KZ2YIy`#u~?}n8x~ob(|koj6`D2W4Itt=EAgg86ur0!VtBBT?te%ycdyO z!jdzDHb7ow-d^RcaUQgVcb+ueirkEWN2PBNxpi6NLU(6GUL8euWB9*#tZ#r+Pk4_~ImJfpdl%Kob_IE;XmYaEhCg8HF2?$HQ=~qYMMzVyVpb3SpbciTSVb?dG?ID;s)APbgo< zZ!%>S71=RUkgZ5~P{r>J%V*{m6pIYQe>iq+k$x;gY3oyz6{4qwx22L18<1gFC{B)2 zGCvVJ8UCv%tU{FFdjwtm`6G4FZ~7FoE{66*aT|j4)BO_@WH(n}Ip3WrN^QxKr2nEO zc7)X@6-}Bd- zPEq41Xf)O)*4n*Ggw4T8BvBPV-{iiwc_k$^&>bx#l%KZRzm+#Yl^2j$Oy7$L-C}vc z3bTSM=~!lSNIF#M$aJ_fO-)aEtj*mI4BR02^y$;#Ik}eQZ7BBOrWd~kd0AQTU(sez zAJH*9U7LR;L<}DpH}b}zkvRChXu+JwLX?KDg3fo2k8U`J2$RLagf+q$m-_Hi8l+P0K$u5x zpt-v}n|EWonbTDVm5^Sz{Kd!?7s~7^n_xF$At52KqTZq+YDSvw!9h5Ap=13y z91{7CLa9{#kP@2P;$cSh-^hrOv2kc&nV9F5*l~C`*fkVD0(oQLc>HOjnSQ{A{_9vjny$g z+Uj!IN5ipDN?^86*V*>-^cV!ie%btp=)C#Q-_+mYo#|@4ju|3ChH4p-q=6fkByCe zjalW*KOhQJ17Db7SMb%btAVF^f#xtA(zsh_WvmSkt#VR*O7duGvri6gRbhci@jG9Q zl?b#=VaC%TP%^OEmVnDrX-wwtNW6@N^`JnKH0lVV6W!Xhe8r)eD;3)viiOejlf$6m zk~NF92R9nq-EVHXL_D=$$Ht&Rbw@@jK?JIQoCURAPnpilEc8)z9O4iW5%<)&p37kr zxg)(f!d-ZyK>;EnCO)0*50XmDPXoEcC<7;cK2f=0c;YNK`gu_(e_TE{0a?!xUZbeq zjXU)&2N^;R2gf3(_BLrIC;V8jxWs9qVBCixs){W|HUFz)zG1nQuP-G4A(tE+9_!mW z+u68kaF>y=s$FVYYR8HHuw+Fqg44qKMzvm7*Mx`7!yx7V{pWYdDJv(E+HI30n+Oi5 zBr(!Ji5r}VR5>e4h=PIwXf5*Q98U5<*R^2RTowPkow)q5N~MWXrGD6kSiTM{{N23N zG!6?a%4#sXV`})$@_io-1G{e;;!Mnoxa{yq;ke~UmcTKa>XlLKjfS9kpOxo~@M2WP z$jsafz@%c$A+p5uQt)s-zg~WTGiWn#3=C4%^ggNbkQaFAvL%S)L0RRU@YJ|?U&|(4 zMB+#VpYjlEY4tX`extnu_UsFP@{oPXuq{99Ff!;}eo{0<2U)vk)lU5JE86Y}VS_V; z9JQcn!R}!olMb~!3#?S1pu|bd4HMIWL&dphz%JrrF+=Poiz?2)x|Lpv-twOqg}8*D z_97@bg+As+H~jHYCQ@hrhai#1{$NXc`7O64oc~Dl@GDBBTbtY!AoE`E{eUaHD)r1o zB@G%E=GF3|Y0(c`(coy~(PNN}Dt3qKmZMofp#R6VenQQ}q!M+K`FEQEAWzcxuL9%paB}ptIB2v@Zf{zGG>6Qbjh9z@|IY(2dkVWg>)K4FX)Q{-`UKKxF z=8i!FO%!ze<^a`?#}pjX(jwk=Jp3Ou3W@GkP5$$o;rnw2W*9ceo$FrIbaVfQn!2| zquz_I3;z{^B87Xh-ZT99wu?CI1IEtS?@z-tzcy;{L2O}htx0)zo$FgcnsovkaDuG; z{HTX)k2Phpqlv+ml7o{3_S41HwLqVzr-A2H8NsA*fm622$wPKB4{^OmI>>eFowF$w z3upWf7-)sXt5g@opqhpk%r7u8L}p9T2mVHnjk{M@Sto|rof{LdQ&Uw>{z@mXW|gXP zrm9oJKGSIX`vTPKB=t5~Cubnq%RxDr*+;|XzVu3)BI)CR{reGCsP@1}Ny>a=`tvsp z!uIupR0M-)qC^@B4Uh4P(~g3zi?Oi2 zG9aR?OoK?jCem*K{4wJaV3J4`#X>(8?rPlpe4o~AK#p2TtR_U3Y=|9P*{AmxU@rhs zm|=;#@>@N2tL+|k7!VFb8>Qw%*~Y=OqA9y$06)Q*cX9}JNjy; zyHJeXe9b*VB$_ubddg0Z+&Hwvn<43Rt%m_(`$pp~jKG1E&{})>(xWA}DQqpWK_~`b!S z#?L9NQA`+MukXUt*&OXx*LcLsv6Q6~eoJ1|N`vbspvDh+O=#yi&J0`=4S0Hh?*UJL zrtwas1L0&T5|por(zMSJUs3WcCQ3-9iXhQ9i&+}$2+d|RQt2>=35$=3pztw$L~2Zb zCoA`v9|VASne%0ANLLD*3jfn1)=}weVSrZl#assIKc z!>lZtw-ZiM{-+gt$iX$L;RE&lsVm zp$p&g|2(Vq?($x&>v&U103cqv{_IZclY6>mTDj zuS#0hnvtK2D0AL9av`;mb~&~v-CwKjHjkfC!yJt=)cYf?VzT0?bSm`^7oLt;IXc2A zIdRG40anm0MbaijnSCp=vB}qo_+m}^-8o%}t|RIDAD?XiAZ3zV;(Nnq8lXILnm0VjoJ8 zw3t`t1zp27N4aZtWzG9n{qjo0yT`9bUBGXJZItx@jQ z?RU(^hTZ4UQPyKARGM|ZcGuxD^UI;Pwqv56kn^*|-QlHodR#mGkG zt_eBOMsn(952{DGHl|V+|H6zI0MG1_&|`gOSpmq5oT2XhJNO1Te!t0av96fAiY(5d z!H2y})}EfElPZZ_p622X-OGs)PShZ9w5#+1g+RHr2`U7HWTThzfN05Fyxmia3qSl^*l!nkZ(doE3q%|) z0S;&>-(+I>xmQ6{K3)0`)0UwsS0#@?FcLm%8JR|azx}gS@)*iO7jx8%cTU&?AHH8-)LN$co zmiG2|K)ad`!vd9(cyB4`t<&%n{oRgaQ_2r(V)+oz<{{+~%A|D6tj>Oj5aspoibKYw z5~RsP?#GHGNBu;#9z@u(&#!%8Rxz26pT~Zo!LuEbGe~pQfbws#<%|>5Qle0y?VU0u`K(eb?&@7`K&4``68EINso>hht~G>o5S zW@bb#MB*f5>RA=2b>d);NdEZaqT#Xl@H+Dze%pZ*#a-GLK?fe~=Rrxrp1ng5}B(Ej+vTi zePavokZ8LKH~)gBxBGnyNSCof*Cxq?mN`BnIiYT~NG# zX9-n&SoJ?VcYHQdXGz{u$KIOAZda7amTTP7UW0kwo>;oG)2P@NeJ98v{|-10AO|;! zh*&-036Tp!HPv39f8eXZYycOz>M=S|cDZl^ZfP9q%O#7U`PVU;RB|{FzV&;U=pBes;z*U_ zNDZ}{f3IJzD^O`z$(o{O#h({F`as&tijYx>j-4D|ok=2McGj3)+E=~N=I;U*B7VNn zb;|cG>d;RaH=^rIis$oaPuaBRRf@`AVmYQfIsoo7GBUJ(%t7&?MC)F!UcbUvQOBSn z)nfFaE|I8f94q*MC+H7#huE)PB_KA0%%__uq>XUJY48ntK8jxwb2(k(E^N-Jht&lPrDkB zy)J2LGpKa_S0gN6E>tH>KD9h>_4qv_V3zl$|I4hgl-KcFBIP!KRvvx`i@&S(AjQQQU`Mr~_)ul*dwt z>H+-+cQM(X$sKM?cM2&8TZL(1MIBgedSk{_wjbd5zkJa!O2mGHM=1XcJ^9C8E_bTo zZr41FtLDe_7zMHP7`9lq=o?K10|TSR1g6d-T!1=r15RgMQ;Lk92w@sEeWmQdqtY!M zuj45}&m7OiFgfIFqgnD)08R$|02R!Lk21wk*jJTiAe`Vq-FoN4f9k|L&!@hWfaQ%G zmaKSL78l`E_v`L2qCTZreR%|e1Mk3}vC6Cs{^U6=UP%e#oYz{f|91v$9?DvNQM@J- zrR~;#Sr$}tL9>^l#916`w|o;9jjl!drTIMp;i*IHUV&;Bf>~+m{+14N7W9u8Q$u3s zf{MPP-^3@u8!O&(E;a`Fqi^55OT@Nv8M8~`UIf;IzlWDrje0~M}KG16G zsrdRinp2>>z57j4gcT$r|8e=sYBZCzjZeeA&*|5J9{`y(`=4-do0=Xv-)FyrUBt#l z%}8%cQ)hUSbQKlEIR|~xK>M`pV!ex=YJS+ZUft1=>Se_sG;?h|o(v|FHAQbI3Zs zUWj?_IqV3?{H$eSj|H!AaRaUqH{BbGRjer#;oyE#P}=6g5&l>&uM zTraqTMxKi5YWF3Q8wpP>qF>0jx?I#i@-P7EO58>r{e_DpaRw!oXFzc9z~Ge3-{u^^ z>ebiRJEo1~cO=nIuMgS@R%9$5U)@i+6ytmUX{h-z0zf_^E9}moqi2UBOV<=vzb@fx+xvlI=@;93|4l;1dn8#Bi#|egzM<^6&qb@8bzu^$kb# z2o|*U8M_PnZYL|I^=!?t!72(zw@oi!TmTR1Vip)~ATI@F}1;&lvG$_3fb-= zWo4|rOg}kr?xCMIYiMHZSmIcL(9kRVj~-Dgesv=v!Ds9Fxmkrtg<9$TcW2Ok5m-2~ zwyVIqr#3kj0}iCsH8fVf3OQsa{U@^j>e^9toj>Vi@%h z%_mkp0ER#l$^q(AT7H@1j7Uai=0;n%=D|JtG`@THhE^U*nxP)oslF-^ZnNH0ctbAS z%Ws=EGDS)0wlGsLH>1Mz3|kIi>E=tRSq!}!$KN%31T@bqb+`Cyj~MT!!EfK4@6*)A zQ98~4kEpiSuVLVfO)_%YcredRU87MDbF>!0<>&7By)B}ZddL^eMzf6y?I91rJO4Yaw!pXBEk z5s513mg8Vo6VPSQ?FN89xA6L-i?si%?khyoWvQ z$^YzH0#s@Vixcda=tY`;IBvMoG(VRU&mDoDDs+i5c&qj4$$er7Ahj zdpDdJu3c%k63qfA(nh7Bku#~b%f$d{dip+cEg7yP3ioR#lktVnZ9m=_U*-r=caH}f zF+!oel+sV-5YEz7WlliD?FLDSu2>x|^6)NCb(M$%jY(pI`)x1}AD{cu$qXXBWRKvP zBIx>*&jb8kYdeAN`;P?Og-JOGp6}5jf2IfCfmQGaTuUrCQwYcLiwLsrUT{@$%3qko z;voRh$&#yv!^_!_B?Tc(xyWdUOm?ZRk2lRc1Ye@p*8Vp!@YYQe0ugq}iH-H-RDg-} z(6oS@mXVp^@oPbx=+2${mDkN*Qq78Zv#?goVou1m?6W!8D7?ZvKb~&;c0Z6v?LMEO z_L}AKRtnu}1w@%#sqW6J9Xcka=&~{+W0ScKm3;PFFkN$lO-U8D9OI?~K9^fa_DiLUhpxgvwJDeDi4%u2gfy*iyg za6xa(E7v8X=9{jdQ(Py;X`;;K`5C{e->T`=Ua`>7!d#l0J82Y^?yY&e&MO@ew)l zAJ!Q-I7$ro^dwS#(THd7ty3Lww6{rJM$poLVJW+V#6nwe`+uHwNixqPJz!VQ8IWD; z=gpsA#EOWtw0t_hpW#|G{LvjneNoxvb7FAw8H#bD&A%sJ`_i;08z#W?sL_7 z^|(RR9TO0&yC;qpSa;mpoLI3;losGb2nG;D75(%t@MuUXg=!ibqtc7-D&|Iqnh}FSri+bMy&>4( z{YpDo!;|Je{Llc&Q9JYo!j(-r?>Fy1*@O0;M>9+-RT?V5G8RYd>m_X!9UL5L+uB}m z<^|U6EArOX;4^P!jp#G|n4(J7f!sPzNW}Oc-nP(}ZC!epJsY^}r|GEFM&ew^W0Bj~ zsFvu~aWuDfbo8Q$j!+?Xc6OJ!{lR<>6t7wpCA5j233xMbX$lerTF`##I;rtHvCmT& zAK(l_u$-K~-v=EId+LLh6i#)$)8qL2q_|jWQkZ;8(t2-bU+d-%fi&Iqmo1G48eIK( zW|!nw)tzUZ{bqK-0|#uwt*;_bIudUdt>}7~yCh{V@C9di7!#cE`@Rkfk@b#28m)xw z5Y{1+ntmF9Wh)ud*KF|}N<1T%S8@f~B~WDf#l!|n*p*2Qr>1pW^(L2^+?g8Vl+JUf zPyI-n+^v~)kx_un;hMDF;)2C>&GkI_BT>lTH#bZWmy_c;N zfsY$kVsR=@P)6TA1db`Rn4}-)mpEBlT0-nuSz>uskElwW+cgX^P)wosUK5_t?{P=r zS6}&w9(;;bcz&vqXlZR-xbL}2c)v=ZhHg#*yDfla=z9;(i1Tqx=ssSowp>lQapaF2baqr`SrE=H27*J z>_z$eeUUmiOse0aCHD6Fvs=;gr0GtsBvM6E?(bzEtSav+g_6izAu{ZST&(|F{UI|! zv#rylV9&AkL)p^UP;UH5rm@SKx&*N1jtD#i$wX^qP*A+4Y5_q$F%ho5cR3 zRjBel6ewi2BPEUj$a^oXs0%-}=st{(Cy^>WEO?3wRLqG=Q#8Vo`JbyK`N|vt%ZCVS zW*4Q2+_O(dtk)UaUQp}cB$qm$-g`Ktl2+%NPQ8x3)J>WX`I!*qvi9(9>fi^O9yX~< z7vAZw^+}x;)a9A`#xFRhWZ?Yr1tq)8X2Bnd9`-VXX)++Q)NyT!iYAOItE!8T{}HOI ztLK|k7JhXUX5b6v-Dlq9fh0Q_2`qJO367Y8oY&z~o>_iSl*Ca{Rn=3apRXG?bmTd! z!Z#ciS6CxrIUKc{R&KzRW=D%l5D8VcqH?UC%S9q4eH@*IjFY$`xHU=@`Hl}iQr+a8 zZ^;4|z|Wlb2IZfXJ)zZ$t1gg=UB}>H#w6*RbIl%0qSe=LXSAz**)npIo>U=}cCw9M z;E`xZ5Zu$gf5(Q6t-|zyj^(^BIUZMvs-=fVvS*^nc=k|?f)4W2^fEDMk98?BbO}c4 zK-krItSRf|{0WbW9;N~D&_qdz4rF@J+qK+IzLj3>d>T7 zUiHLQ?#8`oD*t)=;{A3`W~s|}dBLqV&i59t5&e|j)xCk)Qh~znb|%{tYg<(ZE{Ju0toK`2o(FaUD{;G3WP&3WHHz9;71vnh$$WrMsxrEUD6 z(m@uu83SnB)v5xFLn^?(g`A$kpsXVde!&N0^mOt)duqRD-&yXn70`cyfKJqP6F78@ z`#2KRGlbPoy8h^BI+nR9Ke&1N*~JV9)q_Wx?+uL-a7XiGld$oKExAQ_+vuJ<{r5t_ zu`uQ!)OEhr)V}tQ*pFmBB)_1<@G!1b%tpigZ{j=d*4EJ7Cr>2BvCTKp5FR=n`_HP2 zMiL3^oIcNUqrHm5b{|!B{rdLHFK?~D3m2%~r1xnd#nfwbno>dRjJ9&jPG4|i`ic5r zp^8r!mHOCA{vd>L4tmtp<9-(-^>-|pHF_;!9Gbzb zdwnwtxV*fpt-O?gbP^MtK9Sy8TTw#5j9PpM*@;p#-sMa){xBr@9Tbv7hZw`9j#_V3 z{fM;(XNO%FJn~jd(_q`724txocL zqB_)tCe;rM;!9l6Bi57%m_ojIW#h*_ghJ6*OByUSfT?{yu*LN|-KX`ty*|rw2w6r? z9u%SEyHud@rS_{Mb*_FLNnK|fmTWooS>|KmYhoT|k2)Uzp2vMnLr-wAG*dX`W6sTF zlF=YtRG`_;1k0+BBPNlI>Tk>_z>7wI;M)?U*^UER z3sxq1bL9Ta*OxCwyCYDh%2#c6Tq-)r4~pNu&oZc93qM;_Si@RFNFnR-r3Sh;C&;dt z(H!aW8BaFj@xl(@e;B=w4PnmwGTa*SuAhf_kke|!yZQ&?W|V91#-Dn1j!8ucWKNqU z_3iqPX9Yhc5}9O2|5_@UYQ6qSSaO{(Ge(a>OmR8WFaDxcR&9< z_fuSWyuRXZz!j2%-e_Hr#y?5*p*PvV;C2M;?6>H{yTH_?GzknPzEnicy;_K2cWb$k zOl|^U4F!oeQTt->aEu*ZAzVfC_4bVn@LS9nnS?Dlb`>Enl~p#L^2{Hil#0G4`*@^k zO(98xn#c+UdE!2N=rR7&IwvE9LOg@9k`=^pdm9X_u_a+Ik18Q*bk>T=svft;*>Gy2 zMTzvwzwb9%ca*G2aIdyqF$4Vp*i63c=f8Tr?Z@cdkwTb5+Qd*e%6O<@;FyjAbf7g^ zkz+UIe!K?bIPU_R=NK+7F2EPSWEzGFbE7s|TIlNtx|HxG!H;Ia@crLQ3ntZv&$K% zo}McyR>;6V5>nt>ypq0%$TAKVUO)i#VU!M_ zoW-+*9b@kk0itf=Sde}`N{j0>AxTsmD@}JQnlXOVd@Qw4M59RfS?IQ+_WcBnyDnHb zBlJKxi*hX*4KPw7siLx(`J|VugIocV1Jrr1y88Me^!LebhocSrT54aYP)B(wjPH5`PkVp_9>%I)c&|g4$^s-fpg5%px~%~(IoXV z6#=GjdA0cAdoSs*uPZBwPbo0_dkV0rMJMVgo@adrv0`|LFnw;EYD4TEL=zPyx(Gg? znY)+eI6Dwd*!g&1bC}?YUvWZMXK*9iMWu^Eya)vaCOHBeaTcw$@aNAP8D4ku=DJt* z(`e_Tw{9u4G0HwDW>rqTbJKwk(xikyIp5EaWX*%)VFKsx+_?e2#My10&_pDtxKH4s z2}K9%@(~keCMQzj;cs((AkGHQf&ktZ>Bz!UBb`w$-<9Z6`YvBpL#srJfW<&yt8Lb| zWav3UjY;3+LZ#hfYms=+&7-`m>I19V-LN4;Tx6r>eUgI0y_hY3jT2gUF{TilS$3>% z=ZgYQSD>1*H)8dsX9A2y4$K75^Y7fL*F;bvPu3(O;3NVf)CkfXBoQZSU|E7+6l#8A zjBv}hq^ln9;D}?TXo23`b#}-F#%Q*hDN#?&>@qi%iK|e~h~=wDLV%OBUQ5r{_M!{> zA+aVmxuyggD~)<@A`tH*T*j!jKzqwwHarp9O3apObze012cie9Q{f9J;r9m$&9bc0 z@0@6n!M78oNC3?LnLeUGW?1;nV#zr&CwV^?r=aaid3rp{>u49C54020Mm2wtBubP$ z9%T4YEyG9zOTaDbFWgh5VPJ6ef=P|pj1lqS+Y8a0FNk|cYn^^SgOaji5Zh*rrqNL_ zvI#70v4;P`iI8Q`{P#tP1JR7VspML!IR$+#fU0R0kc1^7ig#KWCre>T) zRq?IpFg7uEN*Z$l_cm7%Ob4uaO^d?e_H6xGgTf(N0$T^k;wTLGHN;;T;l%*Le6Dt? z2o^NFZs)`A$K)lk%7`vs`cv(_y7&ELUglI_^S9Gv2Ma|wb)A4c@hs?7$&fc}mB7|j zn>$k=U=3F@PrUvk8$|f~Kqxg`vr6wb0%MXr-FmhN=5+NsqWCq{By$6Ud^>E)(vjrU z4Cv$Ow^HP5hgoYqrNdMNHU1YIaD@t27fV~m_vN4KcUvnGR1JWL8mL*ZC(J3oayLB6 zm5o4w=SOR#B5P>)Io4kYMQS+51$=#}Dj?{hIgPc%h`!&az0xN)t@T6&n;gQ@rU6`K#Eb5F2+If?6 z{rNKyoJDL>u&rX!|AV}*(T~!7#3-6--ij7iYC4j{*FtZI9jP&2%cbKYiO)LERo4Wz z@-WC~VX7>Sb^1BzO?}KWyrN7@hH@6e>k6L2DuU)#>Iqhh!^DvC`A=wd7g&I)AQQA_ zS~8a|18y||3?#Oqa*oFNau|~a0=~FpDneSGHx{LacFtAFBi+IpEk{{q*)NZCe`_LK z{wNoP>b88|q<~KlX=yykjshkxb&+^)!J)T&dR!nit)E<&xBnvHHA9PJ&I@ET&x_yx z5&f|yKj1+YU18N=Bw9jlo9~}Jlsgg_B!NRhU*ev00ET9e8J?`pp;JDcHEfFL0s^Y5 zi#NSDGOB>*;w>A-RxCb|RU*&Xeyv>+fO;zyK1*3BWp{Q;`+{ZKEu zGwk+f%Plsy8V)hNVhlo=1)N8wJ+T`g9RuC+a63!LoWUV>ia9JbHFWVi-aJ#IPfw2~ zd&^bzmOsNmmQhhul~6$T5Od}Tm61rBe*xZq)UM_ zWc$*G_yYppv;YBBm`qmVFy>zqdv&oK&hSR-jF7SUGuqNPCXfj@7vvE9=2vFKFwC0& zd(Ssm30hc4x;j5a1gP&XgrJ2Se5+gM!fdaC(Jc`g6_So%s!ok2L65#vy_;Hh zxjLc3v=aMt%l2MjV!%UOTx+LIWA2o1X|K z$2?uAjYOtYCAS+GG;pUQ!{&y7w ztX^if5r^N}RhOc5BD}f#{fy(n2$;l~DympBM_eDKpO7UuWqVcbwvLXLnx--BcJO;M zsB&1%iWp{QBx}C&+?M(8z6`%z7#LwPp+v{9n=Jfs%_xbs7dTv#F(j`^F8uMz|Q-fRz;2mX- zP<10+q50IzhKA&8%o$G$pPCtRqcYS4zgIj>hzEI6o_D}`UFx};&y2$3lDC#Q#ne3p zszl3~Oc!<-ZAHt#w@rqNpFVE_Uu43_qpIbZuSEf@bw0zW;Fn~fVs3o@sj$F6_OWwk za4_v7nkPo9HVq7=&TuRYt$-OI5GE3Q-xCuOtpUG*--}^_p&oGq4Zm17_72;z6s6c< z10yGMwChyJ$K8oL3dG{sd2d{GwcD8vyTq_rw2pxHGChfgcl`t&hMu}0Yg_zQ^@Yfi z7&!P)=_Bu_ceTawH4F^EBw3a^aPhN!ne?xVOv)rweJES8+v-*27nStg6?#j@vaSG^ zt2OFd=z)TQei9plddBvh>MSrIw5P~R9{xo1MM|*ah`d`c-GoR$iYoi7&=_&b))FhQ zXrMms=o1t>QzUNHk`Y;KrvoG2Sz9^8GAnfIk{NDRInASntEf}c+V*1px?7oqM}A4g z(U>`+rUJ7i#{!EqOB9D*wG0h>lPhLJH*O3`KhEY!SM%_Hm~Av47LfeKK1KLTNsOtB zhsGF3vE#Sh7*-J-z8~_8Hy;N&zD$4kiDJ7@VaUj3W`W(3g-f%*os^ETn3gu{ugG^2SR*ZOhY#^;}tVCLXrdnMVN?9u?O^ zUzRaVNr3Zd`z|ce4lp|PFOtewdqi3$R|U%o^Rf_7S{sRHFXa=G1mCm=Uw51wU(PUC zQP(kt@pqT0RYqZS*N^>Y%p|cRK+$|aW1&L}IZ$(+5mDO^{O{qhS0PAWcJ;3onvy&T z;d1vy9)lq?TX&n?4_rB~G!KlZ9^8u!`8_BLfglhl#s2hFinf+35yqh3I?BPj_aWPc zkFO%KLUR`x=LxFuClyt*1${~ecBgV5hz-p@T`9%bR z{pAn?o0jxg_;*L<)FEc8Y%m82G@qAW-;CJK=!-9w-TlT;>?_q-qG<;AWN5AG6()jp zB$ZR~{o+kn7zm1taoC606N1?lRAlMyyx__LE}~A_hM7Pi1IH1c5y<+ynF=y_4%{VC zp=P`T^!jQ#mD3vtw$NlrD(;ZeXJ0tHuC7w@dX1i|-^k+hYaJ4wGR^Qkbg#6Suclb~ zu=MureluaH;v}wGQ@VQb^>RHnEOlv}AW@#WazJ#}vkE+izSu#iyo5v{5=Z8#G7GFh z8T-L6cKGNc7={cw?*lBluWY*Ch|CHu;`Xqp9)BMHJ4`@HMS1EqA|twRI||V{3Ke<~ zIZjfHTrSOZ;i#8ZiWhX<2O~|&?Yw%{VR*^pl~J{KGJ%zfNLG_N3fPlsTDlQj{wqJG z#o5de6VLmLA7+B#BYqiyuUCXC@WU8IztYOTTTo9=;+|sVe%!_160Mctr7S%B8&T`}_jL4X-S4hd3Hh3ca^1?Z3V}6Y3!?o>{L{C@T}W=l15|yH=nr z>qN@c)GH#w{YuD6@C^*W%qM70J_W69oPA{|*b4nrsKs)p>PfaYECN9T;ZoDv0_yXQ z`yIw?XTVt#W+yp)Wu%4?8D5z9yRE7wgyQH_dNd)I_-8_v$h0( zhlbGzH|oT@L?iInW-_=+Ttzy48x?RlYo{^O3z2V%Yxz7iJ=vSd`EaZEagJ>8YniP= z0+%xFnB?LAoB^K(3XYDoi%oD=oNm-55&}iykxS!jHCshs?qb6P#vsIZwZ&Qwm*`0xdS1e z|CCkzN%nso%}zPhQ)~N?3`8!|myzrqV~$71}2++NzTVUV0pb>3Lid=*vftL9QsL#Z8V6nm^4l6)XBBl1%ROZa=vG z{q9{bL9~}%e!hz#7G|mQ+@DL+Rz+4J%Ff;^A}eHOhHQtdh~M*ke&6fXU)Sw+4afVu z-p|+L`FPwPMwt}8h{&JzOp|lRX5C!Ril#9?yWXr68)L>Mvetkq~0uuA_HL#eiIj=KeV+S)!?OjI&v3OQjp9DTewR+=05{Wj%_!NJ^ zUc@-=)z-%CIIKx;UA_$1KpDSzMb!-D|kf4hpLUX)Ov~w7&}p zXRCfi3McZfNi^sg8j_HbDX?jfw~Xs8(ACgS2z$hi zxp3nC)ZKkpr6ehUIBd%WpCXQ3)la%?;6`VIf;|{pCbzf`G(vUW4tRDjv?vmmjY-|# zN74!sO+wP^si;KR?U+=afIhBUN*xP#PYok=Z~XgH@I~nIaL#h~Z{6FffX~E}zmZLA zCkQ2sSqA?;)!TbJrBeaV^Ry?_qP!#Av=q2f9Eijq5kh>+Z?5#* zXQDvlU>f&NF)jHEN9D)vp3bD;PB`)U-^cr5U2r%(pbGX179Tr^vDQ#_Lb<8=dd0a$ z<-)ewQ*LkMvk7CX!+aV4Tbr&^7>^{13ZF|2TtMHgq%wYq2IyWcqeG(ZPl=0cO~SOp z>ra9oNMJKIX_DFU$N8_buh#W$htmG!{j;FF`QM3nV*GfXFj9hG;OvsJG+UfdIS zZqh3cM!ua!#J{a@a#ksW8JEI4)7?h)S!S;WALa5mF;?;3^_1Ae3$HL(aGuik^-iACvE-*5?A4K@;|j-ouX`P1O)w?^E=RlCs%ue! z+0HYOkYf4hAL#xG*E|)`?Vc|X*%dQX<3aVS0Q=ry@#l{N190L7G-eM|o)icphKXWh zo_#calyWFS8WqS~wqEH)cJ%`CaRWH}sr)1U9X_5o%Q^(|uv-wzwA=Bt?&CUk*9zNe zyjyc>)*49H)z#(E?6IxXcxm2b%3LvMjq%L(;3TevnJ4?8I>30`npUjlBs9YVgR3!r z@1?_it`r!eVdhFR)hzsXkGG%vteuKYK1;LcwfoITo?cOU4{PzCCThvQh6caPn5I;Z z_Wq0bV5j+AKnXrSmgv4mLNEm_)T5>HqSRvC4w|JK8@zA!{o8x zYbA%L#CF+sjWq6-QrM}JzoNoUf>ucbU>a34 z8!SQ~q-?`!HToEin-T-7X`kMn7I1Iq6@=>-Y3*#>UG@Ha_Syh({@x@k9d~>z-{p*9 zx@wGV^=1`@ck2uAlX6p8-#-{P8{Q-Rp+1*-?8!*L6cPKKDJQ~>=zH@vmHRcRhKinQ zxmVFj{UW+N*GCr>ID_W?i_O0$h2806;3#@#_PCy;0r8>#{n$4``?r2ydog+|X;fJ+ z#jUB?zBVEBo_C9l))=MeBcuz``ORAs^1?6!&wgc~{!FE4ww;qdxFQg3`*GGH{o=`9 z++Qn(Z68b1a-AiIpzl$Uj0avprAD@P*Jb~WE@pb))-GW%Fzf-G1pM5flq193@UUb* zDp-*F5_y<~uxAhc!413X<6KweUGp{Wj6ntN{f4sJ_{IRBP}VhWG?}z3K^+vR(=ssi z?Ckdr1nJI+W0ffE0Cljs z@DSPc<#unR-?2xCl8@XRcBLEEF5_wQTXi|`qL}4h3#AU6AtpML!E)gii&suSCJ2yW z-NdYkDBJ2g7%jJn%NkbKayL{ooXqk7Vl0fw-_ldo{yYH zs#D0lAKNGkI(BZ52#{f!bw@<987L=@QADs>MIh^CToE`G?WWn@F492K*xbAYw21v> zV*XH!)1oJrg!ASBmds7e<0w^@D}MCfK_O2HQaj199*g_&w^WdO&x_q@Wa;EqpvECM z6H&paKSuTP&L9)b9z+fUjHvgo@hV%=hwhICrI=gc1#Bs~(HpB$Yy9M@?>Ojw!|c7uh10z=U_)n#<4} z!B%#MPXhP;SmZE`Z##=cB@d+naD<*iz9eHf+qqSx!YEy>rr&r7$sry%TWi8!wIZO) zvfJG)jp)wTBMd8Xa7vCdS&!??!czkWc&OfeBz}R}9ka1kua zK%hs&{K;#~Y|fFh&mxtWK)*<>trhS};@gz_lTZx$e(B<_`RVpU5s*U?{NN z^I@TOT3g|Lb@`T5ijkNm>}X!iJtp}6SSZc0fALo2U@&USJN5RpLMDV|Th;(b=3eFt zOSwF8SlfbK*0g{Xz}NjXc0;*>+t2td7MuBG@=8Y}!HsZ%x$MwBX%TQP&CI}8#9)>$ zb(rcTO&Fm}p#Tvav4umhqv(7zz}U^Rt2SAi*j?hH+8?*fNX%yf>cx8Fr-?+>!9jek z19{w&FK{PXKL_x}m!mDnfK5%!bT01z^hCY3GcqdxGS8}o4*jIQz)sYhD{#GOp+|UqC~rii%k0H*IICQPSu_g{MDGC+!;%l^z@1B00A-DGK_#xmO=@3fyQ5XBvi_|kxt_4$b?J?Jha zB`&v(cij(l2x!XV^6ySF4pbq+?B2|1o>G@O-=Cjgav z*$QWd-lwW4so==i0SEu_E|$Sd!Aq6DxSvX!tWAU%bjv3yzB;S6i~h&m&ec{p1|sk$jlQ?oiR9NP z#T3`ah?;^d;wm--W8Txee|aCLff4TRwJj;ERg{dRpH`#tGK$?I)oJ&x8mtNflGoInx`LH}*Ti!sb=hYnf?eG&!$(l9MBK zs`D|P=IN)FjfSz{OwG(FR2nN4=vn8hCgRz*AZ;oMG!2u7AX;7kj=fme1CuP=Bkg*T z-T0{Ppl597*{&BC=F)qbs5*T5LZ04AqE!KRa&B#YJb8>>xH^%NI*QQ4G(1(-hRs?M zXT}u)oEU|?P+&F`e*a;uOB{|=AYlLA^g|LiMW2bA8qSQb-3rvW8_eP^hPsevfB(t8 zuNtQ_`Ti@e{sKyw?9vTGyQ-vN{NxIzIIPSRgP`nZMk1vMWFJP(EOdYm={;RcN@d54(42~ zgrs@ijcAcoj_lWu*&D{uqx76#-D?-nlzhk*H_dA;4zt+Sc?AP0Tznvd1-7PYrp(NP zEcSgi&%nO1_C;1W0va>I{Oh9o7XJ{b@qFJ9;hk0a)d*k@$VN3uVPiEG%4-%`A6j*~ zGb-ucsE&sT-`$g{_*Jzh|Kg}ig;Cb_z>bZ(c z<=!#`$>T%nfY3kxa^6kZHxy^GTN=95er55crFV)Ej&HcU#!|(s_+wr9^~(G*G;b!b zzrJ>lD@CtD<1*V<95@4C`K=#TH88%EY4Qf>2BVZ$>`^QBcP$cA#ro4V&Qq^h=6|Sf z;`=pYZS%bD%+)lJR~If6Nj>lX%UfM4anv6{xX)6=xX{91ka7(D=2l{M?-QUrKnoI; z<+lp9#(ePKB`wC55Ir;V7gk@gs_AW{i=g%GfUmr2F;Tv>pGwQSmik}3X3qCRF(MS+ zhv)SP#BJw0(0(wyRTXfn1wU;@o9ZM{7=ik6m#88^?p?=YEx6%G>)|ng^ZokPZG67Be$_Cu*fv5F&=43PAeJ z6%asv%U^E_ib>5JH)HM6p0*BiUAaf!T1`0Bn!k(dsnm_7BT=XD>>~0W`wP2SJxz*y zKCaevExCv~V+TPzZ?nuyjH*Izl~Bi$#x4p$66|6x`Wgj!t<;2kf>jR_`W6OA;T^0F zAUyIE6%}97@@#sS3V)mZ+4P~OV*SwHhbcP-7eV*$)`(o_LmBog) z0Q@tjAK#etSSfJv#d@P2N2kV(+%2hFX=>Vv-KL{_ik#A^+&i=y#)0W!g%0S%8eBg! z2GB0T{3|uw)T>~4C#WVd_biSeqVez`{)I-qb%~%L`XVNL*|0P4Sm^Zo63zaT>JZGd ztCQWo0jC=gmK~ShF5i*`l92H~r;BF0X4>OTArOFhSzfp`d(h>M$>Aa{GYmSSfP}Si zGaqx_?PesOQ~V;gh~&iFs8*34@O$7&@md2II}YOD27(PEaMT#^AWJMDBXVQl+CjBE zjh@&~$r9sL=S|XCl?cz8XY>-i^Exl_u4N|@wM#rMR>CUDZ+8@VB>B5+Q)-TFmjTYw zH(oV*$x_4Eii)4aQ|t17qCU)vy7h`B?NcIiPGFQ%J z4o6Zh#fN3=-_+jG?Qb(+HteQx6+bR3bodr~Dr+_gPNEmn7-8`AKz_c8A|xKK&G~K|U?iL5+Lk^Y(IyDE+-RTqS8ldK)6ZV1ciHS?|SX_XP=T3hjyUGt$Ae!@k0? z52!%}@r1klzbzaCh5q5USMu`CHAek^^3({of^1H2M+AQI@VcOsRO3_95ppcvZ^JA5 zOI-n4y@W%dB_+8`)MVyb_6F3rph98z`0Xn&OC$q|OUw1Cm{rqmjIjYm?uPYFEov7p zr4HY}bs^m^!3qcphSkkKi>ITmAQ`CHnsh(wzXtF8grr1k8xP8eh=`UJ{yl+8 zUgA|X+(PR=H)xo&uP8gId70*?A>##vCGeRaL}AefzO-REA+txYE-E?#+|GgaQ;wP8 zl0P%tBW%bW^C+8Me1CMKU)ThQB(E%u+hH_}|73U#au9yM#(99HW!0=1U2%>0@GzF! zncj7t%wIUE&GV1z3VGS(!?Ws~PggjTw^&xjtpe^+sqql7RA()l@W1B#<)bKpL0I;k zTNrr}9J~E)1kcU@Gk410h` zK<9sS2s+wF5a8~zg-z3Q*rL(-PK$$%YG!d#Zg2}u_1_y=J&}q!Vk5U;y!rNGr%}f* zcM_zz+gs~dO!fR(VcZ0-qMPl&dGV;8otA)#F^*f=gP-^rIk|1AQCI(gkdcv5MP@q|e+`;E({0Rv|gd?!Ul?+94SWALFnzy#zmpS=G`v zl2xnEd|ZjvHXaUcTHYFHzJ=uCj>wH=c9|2dj(_r_42m?r13LCMXtG&yJPD!a;4qJeCkLFeu2CL zo6^`Pw1Kma*&o%Cz9pv@CQ*DmDz`D;k0ZEjC9Y&03nZmaWuL6Tk4!p%1s>(Z#3fWO z%ac`k1@P$vn2J*rylU~M!av^ID-Kxw*xMTCI)8Ef)_kqrT3hR%^V1!g;E&FDhN)QH z-J?Dy-OpzenRlGGq`e0|Y~zgyAlwGSe9ZMQ(BCk#1`k{~zW_Me9fpnXcG^b)drycv z@bceT>WpDo24_~^`r#BrH;y$mz|Y|OZL>Ho96Y>@c6lzd8dZ(>ofQQAO6kh0(>;zY zXe!pBOS+N}VXwRF$x!%tCtXGTXK;6b(hO@BAhOxr(u*4!_Y@b_d%6nPg~6Ei(M zVI&RDF9F(9@4F{MfMR6p;f(eDfZVD2z!M7ZH7k#+%WUStA^gn?SsUy&2F?_%632Y~ zyd&Oc{;CSE6pZ_DQ%n>dA`iFmi8Lc(xN|%m>jlW8i;J@O=zPbDsLT2{%Z5r z;vdvB2MN}=Iw#N7t*Kdzr^Lwi{JQM_%9+J>OiQEB8YFpn`8qw#9|_TE>@FmMA;(K& z^hId(-v-jSr%|7~Ko@|NNOtgMakiFd0p~us_Jz>pg7B5vrPE_iyuGrP_$Ob6YuaQk zUA2Yp$>PJ-GL2ZYrc79k2W_nH=~2#-@+LyRVJ|wvNyy+JAk);g-5g;%&5l`3yY`8f zf56F>EvNU-QkR6=VmsNiC)SXE96Q{aJPJA^SDsCK`XShyiWdotkECSODr*{^f5pa! zEW-lb6e-fK17I9}*#=8-0a2Jw8Wu*wT}&cnctOJCilB&eiqizOG*6ly|Dq{ zZzMu4Wq@Jn4!Jq|H+TytbYBJ2%WyEbiQr|e1G5}QkyeMJNJT|O=-HY7T(dt_1UB}o z?CdX>|IYIq-!xk`7IyTl0yIRYc;ZpckqhXZQ_C`iFYj|nDf6VeEPNTyQxwA5SvkZl zpiUdqjHF;NdAt1mhfOI_ll#rmzS7uE#K7&_uQD^cfCMSh)edY|NP)6t4peUVAhGXU z*NxYpTH>s82^Yg~v-Pm1p$f1^; zf`$ouSBsTx^w}q^)ih@H+Gq!MC$>Xe`A|6EiGeGJMu{HpE%4h7M(xDftYVl?axR3b zQ2h8YDF`k<@O8C=q%gpxp}l7>K4@3%F|XNR+T)g#qx_U6^$Qc$th>(KoD#Av>9^Zi zvzxXwC#VtlxMvbGEx!bn6HG{Hw`n$|9kFz{N~Y&p`ic6B9{k3!f{-kS&em zDQfa8z_Urf%TAq{VbH&Pqwy#6dZxH*{)=JT50fz;2C=3!cQkl^YtJ?nHH~XD!BqGP zPha`)^fCYUfEY5S&XuJ9`1VTI{dJ`7QN};x#J!Cv6KOS8QxGrAUR*HNp*nF8J!01CkfJ#y;RBr9uaFklynj1VBO z;-b_sxK?0uiUL5d{AQesl0S)!*hq@uMaB*$wYhk-GkewrH5@@!*ul~Ezeozf|)F3_dUk8 zdOS64Ou2lqcdFuYa8PmzebjBJFAU%{;&0v$zrhjD$7?v|<3$selA}29A|)$}M4{Xz zY7^l>{5Cvn>*7Kd5rqXWjC3+un6b!6(0ga(${!`A>td>2^3RLzO?vZi)dZf4k+Iw* zf>Uo2`95HV?n9~?MmdVen#JU!<8$hhOd_@|R)OKWq09!4KW*|NT5=P=b&(qb*d z4Bs8}Sr&TfHTid>hvZ(VMK2(T(ctfFy7isf8S|%UzQV#Ic^Vi3s;gT4I1p9tYaq(t zH}5QcSm*Zlj{~E$PlBXFmfx7@&U|6WD{dk#uA72_l7t^e+vhH1uCJ}T!$S>OLVPkt zIb?h~%#myWy5c3CHh28jX+_M0?_R3l{b}Cb%GnMk8kNltC#W+BhD+4Y-=po9ea7>z zfAT{G)7@!Od9gLJE5PcY&HP6-qVUR#z$do>Q0KImR<7-AZ2R_urq5NhxwyISc3!=G z`+qU-mIa*PQutliU5p;NTIJQUh8(%_U13_xoyd5Jrax{|lswk@ozCez!0=nJ9#W5m zWnCy47#tP>gbnLS{+2(KLa!6PRmHN|{M0)uT?dWO{UBM@?Vy|RQ(39??wV#Z94{mg z-kYKYcyAnN58$LUE&Vc1NcB7$i%@~UUSj|=H1$F4rgy3urxDhkG`2LL%dmQ_ZLisO z-)XQ~{xohO_TbWV_{4qZuQ%Fs1#w|f(I_zSK586C-kHT)-CG#)i%rZIbu6kpY!s9x z9uu*<{q1f3PcFuoUnGHecHuuP9B1C8V9RYX1n!Tj!tdX2v$#k=Qu6ta;^fvnU&E8F zV5bVBn<=g?Eeu#GD+iUjxD12(gI}{jsl}7^J&wsw{a*`xI7Jdi_3$Jo%67G zG20ujWa1We_Ln?eoHXr%m$3y-0mbfT^5{4IB6JA=cuF;iu|xMV&*z_X86g=wV7VGc zHJ4de40>_1buLSb;|62YAI(X1GZ%axDk!ia>YH#nkwZoU!vS>MH<0Mi(%xHND@iiu z{{pV3q@*}ovf#+C;|>n9l{HQsbHb+EQxa^6b6J^PnXb)YVIA@syR$J$w`$Jwk=1>( zWSZ ztoUG9z<0U|UgFj*cKJHPyf;-?a$_eynHL2}1OpDaWG_!`ak67Jx?W!-W~h()yauLK+f%J zYXy;B^|D-vA3Ra6i~X+!rFn7i+!Cw88GrA_`3Tv8qf~Nk0AaKZS$!XEu!wL38V@8J zNQ+-oD21ds4$2`^+j%Vg>;(^!J1XBn;@LJWJoC|8GSz`w$Ic1J#14UkUFZIbISz`s z+N|nVo2DNp0PS)<6pB$mU1LgWN*n&+mOVn`3GTA@8K0=L8qXS>(ntMh6hHdy{p)K= zfa8YeU2@Evm=R44d+{fWKT03MAnyF!?)|DI>l&@wyNOh_?W$1OJA18Tqsv2~8hgF{ zw4FLVd;Re8m=8KJhlq*H`F6F&%xi5Ar!5k%(=(*!w4JW1Zg)aq309;PkVYVh3s{1V z9`y`2_;15|VF?n59Fx|9wT~@K?Iq!Vs`5!0&us+1 z!}CuznJa*;R?pzGwsxlg%>g)TH^>+zDvF#kU+lt?!(4yQ!@17ihao)*jwqRlg10(T z&$+sPyqCDNeV4TIHTfp$^2_;wT}a@+kd9%^E0QXePnv&SAQV~^r_`L}M|v|>9Wz&~ zU_^if1;h&*(Abh7fkMV46{%K$m6K%Y>TMIwYNfZ)^nNarAnPr^iptTO!X+@oNO=4r zC^KtK=y_O&&hK}{kgxoDPURdSpg_QJ`@psak1`Sgiw7rXC&2avyJWo!7@`B&KX0$A z+vojk>NR_lk+SL5 z$Dqp%$sW@d78d30R_^YgSh1RLC@^y4)@uhVq5T8bP#5%x(IZ-CtujfbLGju0x0l|{ zhcivh#4)*R6DZZm*07LgYfptbTepUv@ab?bT9~{FxQr&>;D%}N^sXC z*PNtq_o$ok$Z_tq{>gDy!i|VcdX2K1P5O>auaG8HQqJA@WR&~2;lZWNny1Dl7GLzW z@7BDV<9?KlJM$Qy1RE|O*JR&24(FVix8GeSfyHqe|Lk`SW<2C@|ics zLW~4V`Rvh6?_J->)ciQymjT^LiQUI!r1LQ8G(X;zeL!6u;Hw1A%|E)RN7=U` zYWJh^-%#Vk{VT0E>JPbTT<4sDaV4F6o#xx6kGE#rj)zL`suGXv#cvMuZKOAerFUbj zXtlgs}HMpr>Wo0P=2m1EMkM&*~lPbqUw;i zHt%1q3W?)GwH&p&V^a_Gqia_K1b4ht1vttcW@Vh3#|+jReOww8Ur?fs_Cu*#I&S_G z_cBknHO0o8tqmB)@*N=Se*0Q1XZ82KfE-V>ib{omc+3OK0MeV?e zNCbKgIB7k(JMJjjyx&PIaelhuyG9V2cD;-B#k)b@h;JmHrxMi~5*$mTv3=>4x)GLp zZNZxl@~ou2ca@nh*FRnbOMCtp@_Di2 >$fFDr#(4XSsRg<-+E%tw>9pv!!vj|>I zV`7(c=j{D~=}>ET#HfVvR+!yATc=6*hc{F4BT6_zlY*B(THU5CGi!;PvVhmvY8?yV034c@!LlZ7o@3=kovZ0jCAF@=-D`(ynKJNH~QSmP+eiBuFz?OZY(7vWve7tkQkT z4<_(OfBJY;KLJ(Y6vg0b1rS-dA?T?F(R2wIvvzpn;?Sqptba0Vs$m>v^{%?pU`9s7 z24c59JdLXv77Db{r}I!X_3=U3=Ru>FVi)|HV{-WfK$;2FQZ_7y+%OwK2vIz7@y$2k(xn737C>;He?p*z6 z!6GY@EI$4C#VR6xX8oPsFi2H27J(FHdn-_QCF?RYc;rPCUDj2*Gd$Q8G9|}j$I;!; zr5d*5Q%zj;Yp`=}XkKdgKB$Pl6Zhn{>E3DD?Fajp=X}MvMlws+Q+lyrCT7`c!g5^T) zv1I0gfR91;=!D3QC-DtbZj888y6*qUF5B{3UCr>lwu({9(NHgJwGigJu#xqi+knP)vhl+|*7lJ_ z*4Bene)Lbr61a~EuaPMYJOy>GXra4aSZkkZRd|Euf=*kLVh4z^UliO#1wAd^L3<+7 z)IJ&Qo%`+m^!?wt^1VQPYHp@+1vSSWE8zcm2I?DKw%s z7oAHv3$pm!ey;z5=1TZQXK}1=cb{YtOgi2k*}ZDokA1&m5By;E=Bvx|`e#SCv~pw< ztDg+-Zf5<4u9N4HBQFM2_4lTIKCjpw(OTIF(Q&ymMuV)v8o3CAj^Ej81}sQ|_h+8M zW>z}s=gSr$5^S-Yk#m!kY<2_$l+yllQ__9YbHhfw)a=$$qWD5&Nr}Ya?{_1l*bN$Z zKsg6kNSE|pD=}_6thfQjDF}e1u&}V>WN+f+6|L(c?ZViCLvl4nip2(<&sTa+e5g!W zuNzW(zVsQRn;Jdn9sPVN<+qBuN-_?B?h=Z(3dpm`=EL97%L^m->E9hebUWR^*`>y8)L$A6@2=4%WrM^ z$@HnC)9ljelY%X&%`DgPlbYy$9CPc&>%9QVrSfyMAAEe~4<_s*stk`K( zN$?-RFQsz*BpIyPS^&5q!M9@87R>aZ%q$F&UG7P6@A!pOxv+LN9SIOwEPWjY$}!-x zD^aNVGV?6;_&V<3AL@jxtr&Ymril*3-3_tDW*L0uoxKmrmq-4HFo;Du+r0DAky0{` z%a_wP1WVq+;d_K?lWuoYxQKeP?giQ+~^=p%X$ze}0d?1GlH&-oKM239{^< zV-vctFXh^_e*A?N)4fIbm12P|(s09Mw5DB#p0=*t!XdCf)X~daPr?hd`uQ{^7{b_|G^c4NE;DSf5gV;V&45aPdGs8ifMhU^QEhD zRGS@@xp#rjG~O)B+URo1JCu;#OQ8zrUg%kAMR)IO_g*EvwSbuH4G zVDj+BOXnR7%bTj%zClFWc|nzJ_<-UxJp%7+K+59njRIQekcxqz3O#*4EeE z*G5&{FMf~id{fLMiNbN%t%Ok`7}0(R(Qd+~(W#Vs24i{Cnf=2`sVP$C@uwQx1+a|a zm2RI+U#2TT_e$KmvHxS%btUG%3pO-k^M)i!=e;(eabce~7x*#UxQn#W0d4{y=oO+@y=noAl$0e9JyO;3? zg6*2_*UzTd%sO9ICWOCAROpaYjSFXu zTg1n78nC&u5zsf%JkRJ<~f1})c8XJ2^PziIJn#{!S468(>CcVf%f>ELfQQh9IXplFqiTt*m-D<;0y;GORtCkj`rQ-KjPIF!cHPhKiDd^V2~tM_oRarf=p z5SD=OzDxV)4*16 ztqSdSiit^vx|qR7Gn>Em@T>5?Uip?DUSZ3$5XpDs8F&vamvAb5cl8(a#lxAmtC@`yWQlj@s zfBuNT4^dMSwOYUl7|E5j!A#b;@Z=?H$rY*0!Q#bmPhUJO$FX-3#9I? z?LRwRNG?=h3%n3W1ruBkjiu6(*3+y`VJ@6EC2$^%ml$rBY_$?cR=t|yma=o0q5Eba z1sH4Se9L$8QLW|79Dv!=@=KCM2$O5;KQRmcGrPjr=*N22Md{tLyUYXy1Ty4r3I$i_ zJijdjpF6|sk#QFL5K}jrx}(>{rCfm^`v03+BI026!dw1n@oyr-zMrWdY|&R%R$#-q zBlE23XiDZC9S$aJz}@VhJ$vAMl`ZF!JdL|A9CL|xx%t;u$Gap}LjCs%|3A!Z<{-!@ zR+Fr_-1(ZSH@8To)O(ZbSmZ~`7)oS_iZC1l_T_fe(ssH&VcdsN)_rP;G9Rb@WZUyC z5dCf>Q=EiaBJhUG^%GY;26H935>EBl}F_Qaw&vpE(qIS~w`E{_r81ot?{o*Lu-^8;aMO z$bvR;p#p^zD|Nsw6!EA5ljcdq&1`Xg#YhTaPt75Wg4mI~K+HntT*o)R$Udi3Yu%vq z+l6&8Io!4On$P+E2Y!CZHEbNjT+tN2;9S=5E{90F7m;3!~X+!OUo0=DH8{W-TSF6&`W?ei9?Wvcb0l0H}FcaO+rj;#) zORt<$kNZI1@W+-m59sD8ylW?CTFx16zR?!nO{G1vM|5NR%sb+ z?}?{L9#|ES68rH>siExrbsgt|@KET~H-~S;o=yztvz+KGuvd&Kjlnz*cmCQPlkn33 z{MIC3Q3S25z7VJhanHYX@qF zJ{EK3ug{!Wek*fPFk6SZ4A{#P5D0w&b%A&}QhwrKCv)nRFEF)p4i4lBqUw6RovN{e z6IFLk@I>>aazK3%Tz*C8*T#yyQolZO+ubNat-&j)e{}%uSm_H>N$vc{*saJcrj+%b zCsn+IV;I(RGXKW)olVX<1rz+}945WTtZlu`G7|fk85G}0GeQi+TdcHP9QWEgTU*`_ zw9GCN{s>%9g-^HAtgJXdp}El9SMj_{@JVR?YktV2~?hi!Rm)C!t^ zJ#=j&RpZI_Uwe%dWiT9jrCR@h|JE9+2^m3c;WbJ`G~VP|AVt*nB`K^tkKWp z@=-%&c$?{|Sg_0ACwsqx!X9TXPKnJ2ZrvH*@(x5btiNgev>Og>$9C5k67dK|EM^~- zBjppWsMeWx@RW4{1P#tvEALS?w#da|&-ML?NsBJ{j1$rC%E#prZC^_!!?ZudHqgw$ z*Wtq%fK6caxAC15)A5!3~tv3R>8LIqib3EVTITHN>TbkROebbTX?ydWmP|20%S z^?=e24Gu!c_I&|JGlR|Oxwg(0GGd?9sV+u`Z23$?2>XIj_F`WVtu4XL$$j(B#+qki zyjCm_48-Xrrm)xZ%^CCq!{TMF)qIeQ^G7lU*Y3}kJeu`+VDjsoDl!+03_ri3Kpit(iC}Vc^{Nd4_PxepNtW|!JyKz)ew)J|gw?a<# zWG}ClipVahDL0u-&hFTSgX=?l;TbV?J6gQZZ`!vI&iR?U)o8FgE1Hj##Cw~Hcqj1a zr}doAHs|73;AMC&Rk?6H_cqTc_~N?|M3V%vb30*tP7Tpg%L++7Up$d0DLfAKlK&-n zGU)}n+rRmur|J8f#IKcHEp}WCAzYKGCx3?=%%&jaS=n;&DAyQufr|}#e|5_y5O|oa z=Rfy^D3_;b!NR;tAA&K({G1MD%241mSG9f~YolhSiIXwaWm!6bQK36r#l=-7Y-C#v zL5BXpZ{Muo3`qL#*m#x>+gF$cN@P0)<~(o8ryO<$hlXb4?263vKN6~tNY<%{m<>nB zxF3IF%n1VH$_F!XC`g>sjZtH10*ta!GZS6pV&~Z*bm(RW|J^V@6IM`|BgdM%uiCio zk71p1YvnlqA-!bER}uVc&ywfSsrFH>oOks6XVfS#&eEi;RW~DjM(U19d>4au$<{5KwRcG{9x(@O3qmiQ+B;U`!y95H`ufz|W?_3;)+W~p zrhYHSk|%7^1+opuT9;i5xk*fKHJp*>0PfRTXJ1}(3@1;2s77o4yZI5lKj7Am`cX20 zZU<#sEX{;N{;4Nbfd?JBid*|maG`a(2V;HN?dK&e>?DfEPN)-P-B+yNUxT5Z6jVKp zgrqJ<5xIUl4G)E7=(~>m-9?@}`1pj{fS`#@=#wltLaOvofMn^ACtlT46*blVuHI~B zh%C@`DZtNqIsV>O<$A^!Q}UqMRc|i(~(vw9WDuw?bd}eZ<|p@$>?H9!QP$*3SCe=n<5XMgG&*ua^{$ z>BwW_j$==w{_i&Wyt2QVnVXB8uwSg~W!~D@^D=)zu7hZQUMzcr)lZ|L!~@A8UEA4@ zlZ~~FM4Dr6ZjMAynG$WCt5+;Qxx9Ic44;Rew-!hDp!?CP<*hWHM3`4H?F= z`|MU`J7cMQ*Yo@9!>^@KW18k&$4X%Jrz$!A@cIy=>f*Tu-H^a;{RDT)*Y?|KKHhj3 z0?c2#aa@Lm)t}@JGo1cGcpT)GIiP=B(4MmG0=>IJiRMNlC58_XVQB=v{$d#$xhM6; z_ziq0 z)P%le&#dc(r@#beoQLrj-yf~*^NcJ&sx2S!6?)IHRa~2 z_m|ZPif96xX=(r9PQk^Y4vQ>Uv7sNB>xiSqd1VZ?M*NDF$D)SLA0uapp~FeU&~65w zN$TaYgwG#tXox{q^(c;w zKDn_Wd-2>iNGRN1S|F6=22{B7y)?(5uv&UD{b{k$$Cn1H_#L}yHmTquhb#LF25wD5 zlk_FBdTa%fp7qynT!!CoHA=|bO@t0I-aB`!9UV*lYuMM19A=t@>oB~kWzNR+g_M6@ zOYIaPK`4i{^?qV6peA$u=lI0+-nMs(lM3`~IC1~j7vRWNp@0zEuU|K~Zr+3fP3Uei z@{8#NDMgM)85&nXvc-#uneNuCENl2IUcZ<)Wp+Q4`@!c5C~O=PLG|_BmucFgYi_-0 z3>?gvzu*d9`aP^@_{x0aF@$=$p#rzExhkCMrWRT;9mKr8_nD&WyMo%1f3}zXvSsO+ zW}5a9)$zNZH4tUd5F1cqmC>KMUinQ0%-pObCWsF8`z`ijpTiO1ID4NDWXOLnlYlIw ztXtu_Aj`|ki}t5B2`#$t*Wb*-T*ADw&`LV#?Y`ShsG|T{rbm;K4J!_qn%Fh8Xqz

j2z*0ZqaNHV6Y!urwO6u#$*Ku(n18IxUygWAWh?Y2;L=X(Wy=p5dnZqY_@U%036LAhacE&YU_*C;Ng_DUQwg?o+Q#a&*PD1j*94C$=b zWbq;dSkR3&CL-v)&-!ru{P^f?m^KCG@U}T<9N?wlepIdZz42jjXm|##|M>c|`Le@% z-G}VimRLrP7&oVCZB)}M6$!1u6axt;*&J0wG(jgKa+VCGL1Ea_`t|;HW)?V0xv#|o zDAL%(yr*-S9SmFq{K`mejdl@D6QSSFFr!M!lRqk2Yoj6GfC6iGmjFpZ zLV}f-7d0gInO3EI8A!h0<}RoY+@O?g^&v(3G5`GW8YZ_HYof$TtFFmp7wMnz3}=0T z)Ei%BWQ_yH5m>R<2=B|&Dy-0B2AITlHqpF(dAgtPci(=}mNHz49dr0(snKQDD<}54 zJdcKXZ?S$+h1a>*_3JdKzKyZFIi4&55CBK_H-pCUXJc&SOvZ1ZDz`T>SPD31^%tHy zzeqk0P44?`+^6aqABot(sD0>FM^1tW2T=k%FZbzoeYQOnj9FR=9Y(555|Bu>m|CcE zN%ZB;YIDPc`!fIxIG~oCj!r&L=XX8wofujF<+mG`@x?h`LM%>ipH*MUTxFbYRF-=+ z%jT(UHt?YfMfEnkT*K}U6lxGSFbwLeQGChbpfK}q9w!!H_=F~}a#oX~+Gu{cp=6n~ z@28rLXfUV#Qm`PJ9?Z*~Vjk4uiCRB*zG(_if-X9n*flnWUL&(*8wP&J3S%XxsI0|< z*&n=w=+2&Gxt~>5vtkLx=6qzMA+Gykd^stIhwK)BxwJ>WK8uL(@#|E0z937Tyj9n}ic)ZqY|{P8~H9xUr#`@4F`=47n9iATf! zBKBk7*|6pWNT0e+&jgwLbT5#kEI^f#{XR)ZJ=Jv|2 zywVG3Gj(5V$NU=NZkC~m+_Db*>_BU8Y&84H<|7sBqJK6C`!3Eh4{<)hgc|O{0!l8w zZhm(EDA%}7%-^Z$HzWI=mjZqZcM>$tR^-GgxaHpVz;T+l)i^E!7dL03TaVN|2CA>f zwJ)&)_kMibXTNS0MS$w{T!8ZUS$DFY(mTyP6Zb5GSFe5TZp(E15Q+HFNjD&i#~#r6 zH4FHR(2Uo*mER$qhjUYbJNy{yweGLgYpBc8pK6gI-k<&EOyKgPR6Cg6d;N(V4h41S zSG&`qq9Q@CGp??#4vT#B)0V)7e}OTdZLZFXe`hM}m=o?$q{!IoP%hg3A0tKBUx=x? z-|%c2v$?)UD2Ein8_~7nmQ-L9x_7=EWjy%2@e|c1{ z!~g_H`e>0)0JnF-(8z1wy;D%(?+b?x^ovLt|71PIYOnQO*j4Lhr|HgPdNP~@>2Cc( z5=Fl|Ja+wK->A*%<5)cH{b*qo4jZ5PqJZzJu0SJ4I>UhK7X8FhiAJr(B4(vA;l@;t zyx8gbYV9MG)HGT0GqeLfAu&zx>UlRjNK#l@|RD z%-q~wUe0yJ9lALaN@TDSPjv?eN5WHO0x%mXMnu{cZ2c{pd%;TZXiZh_o20|tm=Ed# zY}rg>0`P^J6MMb&gB8o__5Wk(EW@gNpRT>>Zj?q!Km?>gO1eW3_>s~n-3Ur|qqMZ5 zq%=r(2$IqbA{`16BKpq$Kksq)O+UEzzVEr_npx{yBd`gxsJ_g^B)tgZXJA?{DYPbkD{1NZ*%f{+FCUs6)1j-|9$kc-crPko~ z#JB)ePSV`NUg6x_PSb2979KdL2tm{z$AsLjK;Z@J8l25R?6~fqXu*vHe{c4R@V7G{ z=aBRE_0tk(w54jh_e?Wa0>^P58IHoE#&HP`)88<= zike5`_%1wriOZkywzqf=<;5^rF^;P5U4>DC_;P~5`Fm#Pzw3l!DFfv-9sRy zO4tn2jzRZPK>_OuCMFL+gEwoI?xM6TyTYpoB?QtP2M3j=#=NG&y4rSN@1Z7ipSgQx zpdWr)Zp}}g{#A0v6_bWjnBH=YBy7~8TzCe$x|Gd?Jv>#-&A6yMsk|qCdzHfx`T2e* zjgn{Ri(3hFxz-2U8$P9lW>!|{Fz*ua_>K?%_rrI0%gZY_z8`Qp8+UNW$134@TYS|6 z(rBwMNrd?tjNH=}_BvPI1m`k{&~W9c?q4IpmG^Abr}V!Svnv%(N%ekDy?!IWieEnZ zDDu*)Aq^W{Dg7Y)kK+cO*ty}WGLrrQ(par`0x{r?Z%7==LC(V7ZEcBtvV3s>zb-hy z0BD%)D^KpYX9cvOJCJg$$3Mn=o{1aLdzPsBA+&c*-1qNC z&7%DDoA#oE@&~6qA01Z{Zw1-DVI*x|Xx!!T=0*OkAvx5@;^M537}(%Cx_|mcH2S}6 z7S4Mh^Zv73WZHMf_(s+*Ztx+{H#t`?5Uo>U9b9aIYN%B-z10Q&qBT|d{+`VnqB z&*t|1k8Ce*T73TsX?@xo+ z?KQDpdZM=ZE@rJo(KwuMp3 zzdhzib+vJKzxK*veYSomf>RM3?rZw#>28CDQe*x75ZoRfq|NR_ObAF~k=p0I>Hi4^ z0dSLmuW2duApcuB3WDmbo0|>hmOF-~_zyWF!O5rm;bFuNn;VC`^VP}QRb6Z9>-!ve z5(@=as)=1ArREOV@vSpi3w09i3478-*b8BhR2)w?=#0BdOzK6Nzmheh#tg_c06&h} zaw-=7kX6k+rGnQ$N`TG|Y%ZH4vRnA&ljJ<9=7R~F@Bq@oL93^LlmuO;`=s-pkTKudb4>IvgAy~NOsyRffnbSRa?`kT!9d~DgRKrwLvWV|b=23n8`=TR-r+n|`iTpXz) zCh_G+mFcO0V}<B?RM?sSrH z^Qlwr+8F<&|6FQly19Rv$)vpB>`0WB>nhQ~g*^f68G&y&!mDr8v$sI~xA}U?*T@em zrgSaNAG2P?YoMxNF5WDGXI!U!kz{b(N!zE4xoR`(dFRZG-V@>icHF2^)K&>CbeEV? zrY<`E)zdZimi4RlKTKf^%L%j#mYM0=F;PjZwn}xBqLs1Fix_df+b65XNn7PdMn>`q z3pc*MK2bjTB!>1{8#Z9H*>4>8m9;-dyZ~#WkaU7A_GG5oD|X^{}ZPlA zo3TWW=*OV`bGtk-5BuLfA13!C@{$H_PA}+?N*7jN7kAMaLh>J$o(HM7?Mx_rq?pK& z^byfi2U2&fPdkcp!AeD?9Pr?iw)PErnD~m{rFKH|=MnL?REi0+3F$DL}#=)7bN1w8~p8jTZ~3DJ_1+3<*>WU!E3AT%o1^-py0|ZLa9OfHFX~GgJHl!vuxNI4%QfkBDzc2<38? z+ZOxI2!j0Cy`zO1_p$3uBhfO^vSw{++Jxa_p;Va)!*GL-r}Fc0>`!#^N#5HV5TsN` zm?vpVVbKgeFM-tLiD`1J!J5{RS+5qe-SZC@_;PR1e_yk2*6EVN2;aum=45#(pMTu~)^4%|VrWC)KQ)_w_b(!tp>+~$pC|{q`Ip!w|2iD#b zqV`lFF;xs$WF?B4*RUhWLJ4Tmscp z(+;;{Pfs&)GK1w*lVL`;vwyr=Wi(f%=qT`!SVFJ2GHew~*ghT;+@CfEDQg1Ow>CS4 zUi7)Gi4x9oeaK?95_OHTy*;kPksxoSi5D8=NiktsU1KAe{_HD{nTz#U3WN9zPF>Dg zv@7OZceFp`LmL{TMaw>}=yo%?1Oh@tmoT=;ly6R>Zb=ZoynJ$F4i8AuUYiRy(T$2TiZZs$PGx-^G`n z5`9BcV)Sl|`NDTe@3y_N%mK^vlCsd*z|}EZ3}aD2sW;hpV13{*(=XE?O7Y~5HvvA0 z@j;npWS1VZ8}y2KVxjJdusg2ThPmiC6BRo=dTmb?+w{<~X85FNEz)vuOC%Ah+k7cm zrS<`b-tI?zFpcQPw|oMx1dsC;epOV;a%e<>+z7V-2H6*H=HIn8FoWFy^(G}PW#^HE z|4BcMOaA-!SYkd$=!AC^-WhJu;odQ6A5kTgkdUCfL&N-Sus9)?=clc#8JW+EInifO z78zAZ|8umS<0zZMhh*vx9A`SXDN+mS603^!ddyT(9L}@n*90`v1Q=Npg6g#eBjZVK z#PUIss+=dJVnb5mHUZy95wfqT76_rrzxq;WSkYbUq!Vxl2KA)6Xp5yfYt7tyY4Q%A z&+w9OVchGny9^P{F>M3QSY>6U`UDP5c^5iwp%aHA%0RMBmgyAELh_A@XPO8ij+Pch za^Z6M#jCp3p_(`lA>b1bp+OYbr#P{Tqk^WIko)NmkZvo$LI*TyYx?*+`zSb?9P^cT z{z@p%-p%V)xo`(n4NF(ig?pLPQUO;upE@uSWDI4v@Lp1qh6^u#H^FtYtE`P+WTdWs z>Nzt?c`4c1geo972r5x!y)`mfF&iI&GVI?Mo~&rWxS5&7pLkh~h(T=$!>*Ycole#t z)gO{yvg4aXjtWH+j>dMC&jQ_df@~d+XRrppz(kLi<=}V3>wx>)v_EnPCuaK=GI@HZ z%l>ma{jQFT?!DU1+a|+ez7q%HN=Kn#MZPg;U*H(hH+XjK-r*VdVSn}9e*@V-ltqF5J~BkJuW%XDr=Jl*%!(6_O+zi z6iaZ3)Z1g>`OzI8io;&J4Z48I%aNR5joTWhXbh^PlbQGmwLMCN5e zoqgdL0ViEpunNE2NN*1t-cN57d|uB@cZ`!XBU=c zuEaNJXao_p(@gdnXhLG>WqnNK^3gfCgQ}u*zL(rNtnU?d?h5LL%M1$%=?ZwNli|{h z)~=`g{#sPdTk?8Q#AMsC~lwh4XVRP2W4J2>=r45`0osE_Aoc08|8s8JBem@CzR zi6Z=Isu&lH51c8s^mZLB$p`rEl5(RENcXX3erx(*M83E(7UbUGE#&pOYJU%YjL!p1LUNy3 zwB&&5ulNfgzPdd*tpMMkZ=$42T->OmN&DlV+SZX&{!LU28!^dPhK*=9OhfLS;#J<1 z1eTaVn_9?tcBPFJ!E9fx(J?c)4e+!8(IJlPFAZORzh|r43b8y?a>Ju$i0x@`nyYLn z@p8G}>vwTDS@1`YT)a(KBnp-Sy^ZztpClV{N|JZ&v2o@-f{QU8z(}13I|&#tJR(uB zk5XTXZkVOKx(3^Bb4v@2{vZ6-A~QVgTQrW{d(B#qU1Ty_P|A_~u-M~)_?Rq*%s2bL z;!^@wcKY8%781~sZ6Fts)zSBkR2&W&v+~I$$u0lg69Q~mzKX}U<#p_Nv?}#LOD_!6 zmmyV*m&C-1`PwK5$}EMwwpH6~J2xkST{W9m1h_p(E{1TwiDv9@^2=2J=bXBbz)U3C z5YK#^C z+P<`|F5bQEwe z;#O{&z0>bKjU;;26Gg+Eg(kZ2q|n~)`$*qQ4J+x!pXKseavZ54fNaw%>z(_rY)K2d zCyAX-lu!!`&F}V{l68=XA0zb@gEXakJHlu@P7c>>c$=&1ykK%hd$GoXU!^mmhd9D2 zh1EanE;TV&g?t5CK)jyJT1+V3on*H(h4Z|*65=Escd2 zrSv4Gd%(>tqeV`yBquha|F}w5kJpgNj-n0#kbf*F zi8Y+eZ~e7SlTjV~5j8$@3AMj2&j+H$mZ;3ye#G9tPv?~3miVc7pZG2g>)`{U5Jc{N z;WrWSQgm$I$X_?kIOfm#N`7hMWC8ZIZm!+SAPpxtJSDM#S+q8X#jLLJA0*##P5FP} z)hT|DKb#*9)5{4cjMylPl^laL5EpG;;KkCxG(Q{&VT?l1CJmP#c(FX(hlLq%I_l4>fyhHRSP1K@!_o~Wo$BMl84(qX=GSk2A zp(67Q32pMl>3>PXE4d+I0iwK!8aB=B-I70in2fH-j<{dngar?wRS5I5iD$oG==^TH zB~C4e9a8mfvo8ckn%sP1{vl@uc1VyXbvWaHEKaQVhrcHDKFc`CEnN(2s*T0!&HRvOo-SNRwB<@bO~IQ7OqFU5Dw?KrW$ zUe_k5?Pct#{bNZoq2l+4^KCRj!_=JI8#9NCmzSG~5PAIDUZtv|BhSALJ{Sb}g^k?u z7&TY2l4OkGI<8j~c0tfJS}NC>OgA`X{1SzGNx)cWsl8lBCy#{~(dEUUA!QNYVBOnJ zNl2*1xbggK6*7PaoYF7b)yA9_rm?eOA)T2E6(AWX_`tDOmkOgP0*JOL>gloC$zUT)tY(&b1gOhvmMdI1^rYV)>kI9bo`>AtLEV%tP7seEG{hiTG zW$`yug4}mrUNQ!ZJH2;62E2sqYwLr#>Y^f#=d`{|Z%}%8l7_ab z>RRI@T7<`j3CEiyimB=yQX4LLL^qEb5n_|7cB^9)OT@Np)vmB`hvk;-Web#KtOwOv=YAG%)&J{+h}j@u6^qj_KFA&f@bQQ=sl8?;kOdKoYv_H z*jxs`MAPfy(P*4|_(+)qowbhJ9kMfu!;ee!7;6o1obowv#rIsj_wehQ zKik-XfYSI=0F}qZvE}w?PT0p&N>Nk&PoAog;z!p}ewqRwu_Uy4~V1C;$XKl4gsDe)Oo}P44^pHHsii%2it6K%|%1ZAnLhpsA zQA&tTq&wkmG2JbM3rzTaZ6tO}anE#2n{#}K9KRNz?ge}I{wEc%{P9!U z2@st`{Er|TSR73JUuQ@dwpYzF^Ls|5RJR>tHSn2JyT5%UXMJCM@}vG)6H<@X-(OW% z7uMo)Bt#qeM0!-2=Y3K?6FPR{GHTT`PSmGaO z6_mWu4;-F9%CLma*FuQ^bQT89Fq!Qy-uljdFZSN{O8c5SRmmvMvpr)WF-WshN5H<(&fab?OAPX( zRhqQnn#}s`GvRRnE7o8|Y3RRvu2`XG@<$9&*i0$gaZgyHnI=Ec?sESWpLADKw0%Fh zt1k3uLQRE=o zQ)0dILo=hp7`d`C!ERkvC+GFQ;O=K*Ym7sXiBo5!DQX5jvN>Mq%Wd-)u3MRSX=x5~ zK~^txa)a-L_0E(m`?4*s^o6zGX)^|pmWniGMxy;Z(8^V%t!^^rW^R-xMsXxgLR;YrU))HAOE~&d#pHm&3QM!qV<#$N>m| z!bRoF#7`t7Fo|RuhFauh_)nDzvt)hBV6(wmdP0CNB(2z0U-X_Kg~LlFj#S(s9?#CR zRBI|?bQzu9-k#Ns3yKF%dvnBmkh-LUg?c=}se>r9x`+J4i3t>E7dVRzTE-@Q6U>U2 zW5CBO_CDw&r>m^1sR@zKy4}hzhW7}6Vrn@altg^8!J`~R(r-|Xu;p^^9DPxIYiPh4 z^y@~U!&I6$i4Xs)v`}obHA={M5@Qle^lMqBe#yP%u?L(;25#V{%ik}WXY`W$Nh~-> zWZgT^=WHLD9OU24B(~GY3s{nF~+m8!=|1f=QCHKi%V+;JD9*&0bOACOG*Y*o_NWevot|qG@f7DsIvA zxzTJ?frD6A%a=Nb=)b+=fdbh`$cb*Gfy+9E3+Jzf8L~-30!u`^eCo+BxMwMntc^cCzxCqg zX0FBOn0dKJv5#yMAJMr^@wBs#-_~_|l#Wk@Ec<#%UZ8j-qx=H{HcQUZnb~%Y0eH;3 zO115FMDcrq6ywFSc@On(v&b{j2R`}CeuPq?!$D__5kx?Ahf#}psitx{h8H|x$88tz zaiWR_5+Ic=1cdF|4a?EEw};>KKIG2H9fpf&&sbpjEcWSm8HR3y=z!lvdJ zE_dGa2t4JyT1>bjx&Q^{AK;_f>NpfyQ_>9=u zv`-WS$nGM=on33=|2H0ih;83)3$_gvXnytEnF86@mlU4Z% zTWrBTi@GULV#*30rOJHfF&i&Qz3qkTP*1&w3~nmee;#^c{;ht;W_?b`cwqi*(JF3C zAxJ|eE#{OXO2QBI;iBMgJL)Q^E!2>?oIMb%VU)7?QX%rAQAXZCXQ$Ng=3DKO`26lu z*NYViNm+Am8_Yt6{IW7U6PV4>(P3PlV^G)eO7q!lvlv7a*k_BXY(ym$vNOHX@W{>5 z{U|JM$|U7TxS3Zy6dw}wu1_8=3~L|%{_6N!Vr5h0Tlgk8pdhHa8p0~P3BYqoY@w4; z7@PIZ88JyuF3c^Esv)ay6pGNsv&l{`XCKrK(O4ERUlc+$yz^R)q_kA#9bbc6viv7) z>4qK*0^;K-%xHxMcg&63VfI%<5|Hv+xv_wQ>O(?w;8>Ro3{uFvQ>z84`3b-4mF z>$0s)RY3vVjT2+bn9v|)51SjO05S|mcdDwjDas#?d_O-p`H$9NSoyYiZYoqpQd2Vh z-I-nX8Y?}f*y?SC*T0BbawD_sNq;a(&ov33y^!3OBbFBrI6Y1)jXa*)J`n!YD}E?BQt&v+{I{ zO_6)9sGF+F9BCe<@=gZx+7nw|*Sv*0k$$n@Va&Z$6{Lq1U8^^}OZ z@nm|6>b);`#eHj;XYIc-f~S(#oHn=_zZtuUXMs}=LI%o}{?p{OiOx4DUwEoK1_+m$ z{K&{&y~@6Ir-$Hfx1A8La|V@c3BweIQdsZ1u{3Bk9wg7Wv)I(j^$ivgy%ae* zeuMozM@-c(VD|!qIana^&o0njmp6jLGrUiJ>61T2A$uW=x{&H(dTOQwDZIrA!W0&1 zVf;dUyG1Db;veJ8RB-l2poiy%gr~L3YD=TQu{=aBwk-&ZQV8*6?P5aco;(3K?ypOE zbr*|zLkuaUM@Gsk)DbAKoSLkADw?zMn%V|c0L12BGwdBkFT^w2i3*-ZvJXGDrjm5J z*!|jq)mfyydLfK6UDpE|QAyu_FRW?}0(MnRLrO~ta!0u#6f`54yA9t}dsN=ID^Bq2a`p zY#w|+6F0bteRZONFX%ui=3&6~p4~V-3dxs=4+4BN5nKNBc|q(!bNA$@9^XqBo=$3PRZx-grnMbb z53y#1z$;MCpR9GE!J;T5YF0qLCMS|4hw)&X%5FQrXXDM-moM;`2O4cCajN#PYSyG} zK+N+|B{#@_0W1#w2TK@oO>Qt{&i$TH1j;{UAsw#C^0M4NM)$Tu;=762zeKgX13U~~^M)!(`qUlSp zci-Pd4~`p!(L6_bGGAPSqh3Q(rb63hvnw4|?tZriZFyxS6E^CH(&mczoK##8+g;N) zQ0hN-0U8Uyl2%`@JQF$A(8%AFcZ;ojLi%_SBfcVY>Eio$n5c?*e~>9X-(C<>%j$BY zjjZy$8=ZLDx~)4?Ekg5^@q<+COglFcXk^e4FnAeNgju)|^)}{%RktQX14@JOEq5wm z=cUe3la?gq_pkiW^HAq#aUWnq>wA8*91AMFqK=NhC*MbjPyu!ubUxq9?n$lWTc>6v z5Pv@*q(qN8qALd_(uO+I5-j)%{pC++#-n>GN;%Xx(%Y;{81SJItcZDFLZq3<)kbWq zSeaj6f4y4Zqn)>ECpYxN<WY0@gV>n&Ati}yPb4?_3bP?W2jT|Q zY|r#z8!dM7qyny3*270cvV}5DpwxsQ9%cE8PI_8BW(U7^^C;-Y*EafM=c+BSkfP=j zR{=-k#X)=l7vJi-Pdk3~*CSl57v8p;pSS@Rx>!mWA>C$g8eeHAVedFOZ)0?uu z`mOyuUF?v~V~CKStM?aGc6Jc{1NX_m%e zG6kJ^n%Hu#O1iob-~rRG*PpGKG?)5WAy=zOwQ%laNifvDqV?DJY|w9ucW8D6@%PLiv3icZ6D1NfaWcadR9lG=l1v2Grgp7`eGs7X7kpJwDW zoR+}NN5UyhFYy9VK7ynE{AeC+vB7P9L;lZh-rsxer#Z)KaA|_Yll_nv@eY44ChJu@ z5hMO5y)GyvJpa~EG~S4i(8vWCdT&M#;qwqZLdFW5=zV7_y<~7cS(AkH6sg|*CuVxJCRP7{YZ(w(J5*nme4;Tz0F1JhsQs5Y4#Z z{h9m8`vRVH^mGEGmy)Q&y9k1cb)DTw(I~dHU$z zDaeRm-`YENvoz+kPn{o?=?4vKeqKVd(C>GNbhiFV|V`~ zl&(>OJ_Is(wJRFlos4_F!n+F90`h(KTCeGb4W(Z><{A*jhCwy6RX+TvOfP&z>~8qF!WYr)n&~sjB(I;dtDR^bQ#szh^w$K|oZ^^IIVMJiEg|H&RR8HkLvzxQ~U_mT7wp9<8 z3j@wDzO1Y)$XcK6@9V$iC*KH(sgwy$8nid){3V`|7ES}xjP-SMSa)DaSr*5xPu0+9 z=JG!-Nh**$i$DshLFaMY@lO)o=dSJ1*uuH-vUyy|MLQ|_B%tI2p$7_))zq%j0|yiq zuJS3GFFNC}MXlUt>HhV?_bV@4^BF5BaCG`0#s&>5T z3Xy+|__FK=RPjj0#kasmK1ap}h2AC<|JLsOK|^%j|JWMx@x|e@#4YMaV`g5fNu(E6 z1`3~fPToCufrF$8jKUUUxy1)9q;u*Qm$g6hnhZ~&((5e;LH&mKU)s^Ha2laXDpR0( zk@hL!@mFardP^iGTG&1!vm@S^EU;DJke`WSM>c4)A58~#cG#baxU)3$Wd++VHoQ0| zPhOL?yL1~Y(ra)QOMRRm`_-nZLsL^z_B9K5n)TEA#@Kol6vCbUemPIv#R_td6HVqy zlxG<<56;ETZz;oDHZhsgRE~;ORfQp6=g66WB+zatJuRO3XcA=_!4&y?lnzvKNSgMd zG0L1y_wTxcezI+R^g`@aud5^?E#i}KGPaZDOCZ)56cZJQn2E0#^`T1Xell{v52hp%!qmBU0j&b>^6((_!bRq&kp0vR=SCCXn*px z$*BS7=os_Ki?fT1Q-ZwcD^KlnHwhx9@eF%Ed^;Q7*pQ&yT>7)Kv$ap#xuFIhEu(D+ zoLAc8gGAj?f+SjeKtYhynn=ANqD7^E`b(V1b}Y9~^X99j)AKJbf4{qI02GB79i`*% ze#hUr%HvZ)^(nKNeOIQi6%dAjEuz!^xD891ygKmT%fBOzeTLhmugwRI4DrHIk@jrp z7r$&7YScSoz+4zxMs<;dOCFVG;ntr(_0a9+Dq1W)E*d0Yn`j$&AP=KU=)}xs90s+7OfllhYn@L3!t{S$hU!y1l0p$bs(GQ5z`h$2Ts)WxrN(GN zf`H~JjNX9yVzlrQ`TK6+E2W^zPZ5u&N$P>Jl?tT4eVG8OLN@5{(w}bR`jyEqS1B{4 z;Kp+9xxWi>6l!srX|!G(^bt|#*rPq!e{Idg$cc^gcO#9%0J#Z`BqaG>v)}!U6-VKp zdJYRr_J!3i>uN*B1fqNoThAY0W49srtk6$Lq{7Ha;~mqUq9GP*qSW3qfc`RGD=%4o zI08fdSk#CdVbDr%a^ToiLl9_hjUn;k#f~33Tih% z03Wv>pSmZo4^!r3Fg%Fi-pSyd1Qk5Mi<(^5QAcwnT6Ql$bNKI1-aijS=h&Z-u{FE0 zhle;q(o+JEXlZrJE62qXu6uJZV@1*q8L(adT)J%#j|-Asyr`|?kIkPy1+$8PNu=pV zOD``kqZdb=5&YvNZT8;22KV2}zKebYy8HWmOoRukiCuqRUglyY&d2Ck32B89M;P;AmY9ku0b?V+%66_! z?$-&|C-WHxk>A~TZzWu^0ny8}MJVn*fM2tfDpNXI{Wp@ z?GQJ);Xa5D9G_hMMi%VX{D{Xys{-rVwn1DD25CRSfyMA^L9q2^#t34J(9MhRkD>#T+b1zf9P;J_~YM=0@IpIsCqQIztZ~SOvn&u&tZg`#VAK7Noq_vq% zM6nZl$)qXB5;KsagH5)aJXYj(rhFBhei}xwC~9KXOZ@Ij#>e>LG0{UARXUqk#~q39 zwygQYOCASx7k-IKj`qMrr2K4wpOxFBxvu2=TJzuTqdqu2CwB#2{`xQQS90aCfxPEv zm}bu7Adw`PY(W6ye;=QM1G*y~c@~d*Nu+s@zxckX76?s(<8X+<#~y(%X?x*rW@E=i z3xqT0#*Lh_?(Y+S?_y$$V%lbtuQb2s_Aj4>}SiHb{b({j*m*R*cDoF2~1b zS*+`Qa?v9UpM!|Q)Heqnb`!tsb%qTT1qKS!;#&+R$pKm+R==0e%u%w6y~L*&ar?JH z(b5+HQbeU7REsL-_Und7GN{o0&6|2hgz254r#jt2lbg>T!5821=yjPA*nnyuyq?;Sjx0%E^u?@ua6Mb`2G2Zry4p zky&86RVH!8PVq2P*v_-e?G@ZO&b}Jz5C&vtO^j}C^f?|scb_SLFaArn>Z0^gPW&|s zBOl|dhuAh15k6yYq?ZMLEOmv-S<2{Mb&{Nm!!$Du^BR%&7=YyNc2Y2_v7t!}uV5U*IDOEU+@|^*+@{Pak( z{^V2={}8)<`v*fv^-|F+ef;IsSa$6zPcmBr5bj=yJe{c>n<1#Zr6o2snz=n6s&wyc zWr5=d`=(EHHNGX^#Yy4Zy!^2VDubryht#F@)IhSwjphprZ8E$q z#BVcS2(ugL2W3C=h#G#4Yx>DPDuvw%0NIPb*ZPKr-H=oSQjW|N((l$ZzZR1Hq2gL#P&y5yekr+g28&AMfYqO+L>B;&Uf2o+s@ za-MF;9^2L`n_hFQy+72zxgvDiOGpfa%E$?LCciBbo&^&jb;51EG$nHMpcF!s&S?Rq zLM8NhQN*Ggf96Q>xe6Nu2qBs;Qu4Ob2x35j?(ZFwH@2G{@clHo~X@oisyEaNOs`w#h!F^l$s z#d&g`Q%36>Dv#ROBbC4Nje(DlX)iEf-2|_7gnVZ6;{2P_D{(fP*Ppi%RxB5V3Y{#C z-j&G)iQR)P*rol~Z7`>uOsYOGw{uPUdexwGJiw&#Ir>k_q0z?Z$N5)>Z~wa_fpso= zt=?uW_M8@m;dgr@@cCAWa+1DB2)At-21UtU>H3X-Bf zF5!h}I9n`4ikCw;beToj&;P+n91ZcmdBfkuz-t#okm=2|>9XG5!!ArulgRv1Z2KEg z6$YCGC$JZleQb{b@j~nMs92MP#FyC}*1D>@uqwzKmQG=TF8!~gGe)fFJ*n&MoIAO> z>37iKU&SNwHOQQTAAJ-BB@RZx<=#=1hXcjDQpeL5(|U6oZ)}R+Pb@D3+-`LZ9ovYO zh~a{k;hn+E!-k3xDH_H6Wq&|@gD?qZ%0Tu;k{2wuD^33R;Oge#GcA>QiY{y8?@v|H zXujb`Bw^fFB1K)@F82)by_mpq09nv`jT{i#_vPJOR(mdgJp>?2==Q87h+Uscn)^}`)&X*AF=NM5d?y#ef%Y)_Bx?pC_6&Wv4H zpUS-np}K%rojW~nokt-iT0Is2)BWHNDx#bEFAP0)o$_o^QDHy$Wt#*S6$AkZi1_is zvD!lR%MFT-C^|8pjULtXlToqbB=1$dJet#5M^0y^bY6!&Sn{UHd}_HBN)vhuk4Gfe}y0&vi!_)a%QHDnODm9E zemg`SFFnoaW(yM{yIbf^Iv=2OI$n-6rl^5wmyr_one^bK3@{UzqYfa5o zXt%Os^7-o>R+=y9RTwo8T-6ACB{AFGtM57>$EMBtT%m94C=Vb3SKe%HsNOrA_)&B z5S#>0Fp_vF^5@TK>v?4<=#j&^{-LkEqIMR7B{8UdNVV?AqcLaIa#~WN)7)KFB9?yI zO5k7B_bfY97+@Sg)m(48SXC@2!!y15{NMQO?7*0O8cU&ovXR7#nQq+tXCUK!)j*?3 zYa7J)YPieLh&jeMPJ$|;8l6;E*X>|OD=t1^qq{Hm^1QJl9+_`4mMcLwo!Z>e9K~0# zZvn?!n-jXc@$42l6{dF_!;&#sc4lT*B=FFXA(fBZ3cGlC!#NW**8N|12`w&sx8O&k zF|#?T_Prnh<-bhQ+lE?fi?LX~x3Z3$cJ3jELj|iupSSps7!BB>4n>1c+B1siZ4Gk( z3B*NXqq3+hSj{;|qtV1JxY7RE4E&Rbf_QZG>QQvM>C3BX)3I7ifc(6ls#3WNDoe)B zsgP_wP(*xu`Kzo6g6p{fBKirY6=#Da8s8jjEp&C|+aGsAua+z#9M{10Q6p~e1MxC3 z(-_GUX0D2l1Et9|zZ*A27PT$kVI7{O=4|q&QOwr^5)ziq76BH8mTaNRXk({MZv=>z z>=Y&fF_hRc_H6Gi>JfKewnB|A~0c zfHx}=W&4p<#2{#&YpCz!T4aq?N>QrtYAN~RWQ76Cka!wl*Uf$c$`bOYl3p>5yy0iY zGLJK#$TRjR*x~7%(R=&k=ehp;rmUgiX+i<{9{Z;Mp4-m8HdB53(@%ek&-UGL^6f2l zna`E!)>QD$_d^iWXr5T)F__T2kC&n+s;l*Xx{-e}PVl+Q_27Y}ovZ6`_29vrR6t1? zEUrd&k>o_Ev@u>hx8#FahEI0wEaM$&JYx=B<3&-@d0pHN7w;OPb>3hR0kXUJW`!#Rf>+=G&t_Lb0mxgIuETcO@}z3}f3;rBB*dWe#xh2|#tGqSy*_+H za~*aSNn~!IH=Jd9ze-6Q8$qOkDo+5q>z!1uL6s(3AXyA=kw}$>IjTK+?L1LiWcy7hqCh%W|rr zlj^aVo1PAz4P3)=Jz0}h8ynpK>kt?+R(?L*+uaS8W5cZ!R9A`XejkiZ#9-GZ*1Q0a z(vuk@7w}vJT-DDm*kt*ZtdT^8O>CdL1*PL`I4VY(pyMBq0j~%tm^l-YkH}zV`1~`% z>S28cU5>l z25e^1V*B*NdG$IHZha&{pGyme`DH%fOre2iDJc{p-a(gJL=r=^OTIEcM9*1DuXx%; z;TijM>##uvrSohA|9Nvu@?!tv55!@PedrN|RN=&S<^Sq^JBTlC1lnxO%~6CaO_6bL z?%}9U|NTr)c2b$fXeSyLh%Rm|l}TZd4B|j{lceK77i^8^Qwj`xgq&Hy4R<~7&#S=6 zAJ?Rw5jq7y3s6iNoPI3zON@b<_&8SrNhkhPYx`pY5Xu{#BsdV zWF>(C+Pk`Um1Io5~)ha?LwM5750SI}~XGT>&&Xz$`hRNb&Tr8dF$MEgXz4 z%H2lMNls;aHRLHC`~6iNjbS`#+|W)yJg(3|wi1B3ezVYD#i*_ujql2W2BhaF z_sK2DqdX}h z|Ht{sCfwQb%K{|&w_yhj0SBFlBxW8Q2k?3$f#=Wt{oQ`{QCz_hAvNm->4F>UF4DeM zQIa8asW=;`f9-67etmYC@EXT)Tg402{)G*ufLZx^LwWAJZ9-4BggSO*YLL4OCgh z(J&U44x0bmlIYDae$J$vQsptrt#&vU>@Q&WXVj-1shS7Kq@|T7d0ShX@8t<2e8G^^ zhFL2sKq`(%*~7xHTNEaavs6GB zz(gD@eX8BOs4_T22^!H;;L5sH7?{ZMyrQzw0z@n$%N;}mZajQ^Arz(oZciNIhX@r3 zq}Q%LJQ;gBRTt4WW>XmJiOY;QBOq)zcn!8dqC1ju@3gywJFe9KeE#?c7qNEycex|> zKhqcWoBprNt|9JvH-H|phUXGwfB(r;b7LDtRBS2c^chPgZn9~Z!P>LQZxfT-^ixRU z|E+HN{~t}~9Zz-t|Nmnj``DXfgj{w)$lf7@keR&-Av=5TJ+fC6*+pe%gb-y_c2+V& z6yN9h{BFPN*6sSE+jZ;e9Pjt*^&F4K{V~u#K0hB1z?9z*b08$7#7G}fw~Y+!WKXns z{uvWn3LBefQW4j?KfaE88`Kys=WLy2)dVIp?che6W*Xe<{w?!0udsi0)%Mo)j@LF* zn<-q8l)vZR(K_3F%x}2HJBv$n>jEj*vOC|bOQd2uWOb0`MoV571Kg&U&xSkV(KE+SLZk>!Q+{EmoI z^2;STSIy0!C1Ok8)!Y@r)@TD+^5^>OKE18%&-rYnG#>rOlczm}6L7)#@^;mvq~{Uu z@y=IXP@sr^RsE5{)D) zACb@Xw-(4RdpLU6|DOCRNZ^`0iHmq_@37P+=(9UJxgWqh|6?n7N0c++*(`}15~B=& zPGuQpQ$WeKd?=K}B9}BVG4W+5tvNp-=(fjf--Zi|)Qwa-Y65(MdmlYc`G5A`0XSwU z@=B(nl}UM>&bAGVG83BfTEe*E_FnN`!GQ6A`;+8m14E(5zrJ>Z&zD+70s6~KO}s{~ zeXoVh#|!Ua(+@!oHi3aM7jIwXvglsDS75$U7K3V0+dg{orhUPO?g%Cy&~3nRDIJ`w zlF6;25!UhETkU0!H#253{CM|UuX6)36_BKzd)P}j%~$pI#9wasO>Or%QR9}{(>ZnD z_g}#le|rv^$JV?>;L;%Endg9w{r7X{+1>s4&eQmUsz+3TmhhBm^5H!RM40_R>iec2xL;l1A*%Q+HHEOA@h7PQlF{O084DOQ-ihshh}_y^S=W>H(i-`mU& z1b}Qy|LUDUH}2>2)k;ux!IJ3i^Hhp#7EgkZ+G|`0bn6m{a4+Y3JMz}lHPC)w_;-DM zxFk}lKL5S0d(-{aE)UxcMyjyJX#fu-I0a7?LM|?XndO3+VF;yMtm*htfi*kM+m$J4 z8@r49;68He+Z`2U6+@^t{m;+mrQACI&37g)Ty$jjTR3?|r!EtfhRyVeX5HA8hrT^v9mCCn8baDX2$`niFktlR^$%eZ>pX67ne_eb z!3Oa&7zv>XfD4`~tp@4oAq$5urDMTaN`qdK2C4Is|bnsQ0VWKWnOR6IF%)9LGzQxvSS zfkPQpw*tD9XSv*G=jS%(ab*L)#8|4HV*=-~$HKSUS*m7d`)TxjTo%un4hD~wS_KG9 zY$-S*KyI!$H7Z4I$-SeI1o7e!6sN2^G~$*eZSUX!YVBj6oFBwth)Sn4$9vN@q_!L9 z#ue9R*50d7-@UtZCfk@xa?Bdq% z_~YmqSo;U}gu!NriAg3PXQP~8SCD^aG4OkP8e@wE7nPviyt`|N%k*PaGHw$8NwHTf z>f^+VBfcL~99qNY$W?!}@W;FMOtqS1;bDdR@_Rcnc;|p+E=d^a{_lr2oGEB%NW?;h z8uuuaW4)nA5U;kYiww zj_yA$+%&}13F_Yd|cF5|olWb82>1Y2VN zXx2&U#nq<0ttS*@70b0N+ji2Xn`Ouu#UhZ4lNz{%>s_IV?RMQ&@wtac`73-^H`6Z1 zG7y+GK4y^%`gVXVaX{EhJCjU+$@iJ@UR0(hL;Uctv4v^R!GS0g>ZQD(!+zfpbe=MV zkrTEih1{q0IeZM9Bsp?JJw|4&tDbDR6I3b`d~Sqstrgt9qVO{Xa09zPD?DZLe)1sS zeCX(5m2cWCK2p}bL7X2J6J;|w^$7aS?-1>U6CMt3Jm^X=(@HK4MN3OI_;x3txmT23 z(9N6EX@kJ2Qt!occeBSzK|*0@lC}tsZ;kL!YBWVN?aZyFF|w2kll^;F4wo~e!O)rFcGb{;^S>Y z4Cp!X$1vhO0Bz)&k(oy--g3D5annXY;cyK63dw0o_gWMQtOp4+BN3_t1F1u{Qe;Q6 z0#N25>KmRZEktje??E_-A_#Cwazn!#!(RV6)@aHYw?CsXiP}AnaJx+)5!#9t=^Lsja8+5fQ>%_#u@hN+^f8P0m3t@e??`K{JGTw{1q| z(Io7;EFtd!-mFIs0O%v1$Cy!TpYA6-v*({%GqUX$-XKbgx^@F558;k-o}$pDj?B2q zv77A4H{#DCi!e+R7QX=+wpN4KTYIx0f`tGHgCI7J&qN+>Os)J>11~{-^C2EFyAiw( z0wUP4fMjI_rgu`aAsbSw6jlk}FitBNIuxr@+M4vkUeA5`)B|*z7@D-7)BnsUYr+wA zPG3d9^t)VehXs#{Kjqo9^*!1NHLTP}k8dWE?_#NMzuflgo5;3H(}zyz{1bP}KV17UhtwE)&J4kE}&=B0i*)@5n{}Q6Vq~OLw=zD(6m7ZI`$;%y|{$ ztIhg}NSR?k5{3?WKo9?505RhW(*%%bi;KmVq1B$r^1uhV%!~yqET3zcIuC8B81xD{ z3U5!);I0zmQE!}_l`mC$;=>~jWU<5tQE6ycTxPgjUwxKM?t1KOCnYy`5(JWszvOaf zWv3^dCjsz){x2frf6j9Uwg~p%?I-68?hqsm_2K3D4*hIDZ5rR!N2vg6uFWG zjaA_*WxPz_ZA8hM=@XAJA($sZW2LWq?;%Zi?T06^>u!?RjarqRDrM}hl4d;-l!XpLf}_ixi$ z)xjY*4l$E7tI1G)__%0vqH!KYsh#iBm&gI_T!5Uu4#(8f~U-1ReR{T#U=lZ;|AWf6b(5EL_TEvs4hhQ955 zzwh#y50IYV^Z>_0u~{{$3eCkR`tRL4Nv~63kne)7Q+$@7a;d)HK;zKr>hX#HJF;kd z&4d_EL`XJ`!pj!tJWv|8TU%wMaTfKVm*GJ{q_JSW0)8ce#Q;{bc~x!HpgeK^UP7QB zm@SGo8zA{QlkF4>WW|38F?+1vqYsxM$JE&vd3mvL8Sqs42`ggnj@<7%l77p$mj$Vs z9<6N{q3}JW$I4OS1v-zg@6$&?Z@~+?Gy_36qO4)KR;ZJ%Owks|3a*?#fvf;mtEt?N zS!m_QEp~F6yU9K*N^Qa|;6d^GzY3>}2QtfV2un>;H-fAfNlSUL^-2;`)Svr{&AHzs zKO|@Cc`?2J_0d>~S#8>l-KwTo@%;Og zqpwTn^OxmM!G-G{$1gdCx!%*6oK8rUB8s)fqzgvxyZh2t8#vG3p{EM;!StP8j5K)% z(_*CF|I>9CQA>0TS6=5D7G<7}+&w4tS;=4c%ME*j8f%r7CMLwtDa2QSJni+{1c0Pn zyuAe)6}+GzUoz#CXU!c+aO`@w2mko>eeEwESk0?iq0(kA&`~N~RsvOwDE4WvdR zV~xcGV>qCM;-BYsixs=J#~U+AZ^b}kfKM1(zMjAY1em zki}qwGZmzI)7FusU)_g;4-u&!ZG~mTnysZDwFyZ0vF^F`K5#!*?`Foz_91{vIgKIq zEsrOs`f>U%>GbB$XBwm&g;FluaU5U-1^GSm^p#xf$yKK{N&P6^xWKPGhxakJ%kXKz z!XK!>1(s@GeeZF3*_i}S3D1+Ws?#Re8X~$Z&*Gm@$o*B4o7yu;Acluh_qmZCpbMke z{qI-C6NZJDiN~9X6IaTzg!#^ZpS!lOcz<_~iRL6mE&z zF=ux=VHOK0bW3-YO490~P=SyNr8-G{&HE-QV~1creINmvS4GEJbH3bga{D|0x>lc7;RmpT5D=h@&Oul4B%IR9|RmO?{40_ zSNH~z_Tf%IfZoPdn4O8)_f{i#ENgozEZ!NuEHiyxVjzf_n`9IJU`Cin*Es1`W1+6Z zmLu$P)Bp7$H^=&aNS#BA9cP^yvx$qfN<3;%VWhao!&iz;89%dj6NKOAQn;IEOJj?=sl^qBbGfn_8Ppmr zO&q^B;EPl&Nf|`SMZ)~k1;~CNhkjP`Vb~m6`agleoIMp}3XhCZXA@zKwLkhWnCj)* z10ra1qAyR`E^yFDfgODLA4uQAXlN4QMd+?1>z03VnKj3V@Nj(8#tg5|nSa2I{O=y- zkm=Ne<8BTfT+??t_>lqv6rV?se^PIdXh~S!p_Zp+*E1aD)iW+NQHPsn;z8K^3XE|C z+UY!}o=4^#tfj|2RSXD;WyId7=vT*uJAg{`Vg#3R1-52QCA;>pPg<$G9<`2F22F*H zT1e3Di)&%~F>|5mc(XwSi{Xwb^`GQxGz?-`IJc0JULhIl=QAx1a9#x8Z^G`nvjy6N z5TNIQEj0z}S|Ne?BqT;u<9u=y+d`=u-1}Z;S;-rB8v8Pc^zv-sFBAM{i;th2Jl_BH zW|xBmn_1Ew@#JLpZ^2A-l!keGQaE%)F{Lq|A$#K)!OY}jQw8(0-E-k>?-_$R@$zb+ zFO{@Aqb+Vs-bRl;iOnSS(is6sui9XlQ!8jbYQ+!fWM1@nJFvY$It<71fZ`NOF=ZwA zbRv3?$mEwKZyIi>V6e!2%;W{UC<+jPG<{?CSE9ssOo;@0zwW4Q+c>jUw_fttM$2zv zKzYGr%L(|6vXHT;h`M^HTCAK0hjT(Umv6GzFj7ns8$E}^zujyzEf`ErDN_JL6Syeg zG|F=7(KU=vK*%8>CU($EY0eYbepS7Zq$rCBYQ)=r`))5s2y|$1B(Rv%q}< zAHPCBRD&SQBuVK*ZEE7v=`$y*F7bVkzJdZJnBJaK`GX~8H5I$+(>O1w#P8oN9!P_( z$eJD#COLZV)!y0mO9@*qoUO%rEG;+@O$9j-6nE#gWJQ#B@ZUUnYxw%}P5i5VV)LQ? z>73{x&)&xnV5sD0Wx~xKJ9^ z?;4Fy&ogbKaK%P#XT^6{3=J~}cRxj!wP1!5Y2lx*sSZUdbaV*HQgR( zfHxBeX_-=MPQ4*cd8-be`SdrBROh6*a2!fa-qYPK>|;wzmY7T2_kfP-QihP$^aYcO zo_Yq^0mjy&+9)`&bTVA_UHQ3LM{Ccs>1 zL!oH#tubcwE60X&N1@L(>Y45L+-fk_N+YdUxTiT?qPv9ltYKon3jUVy!UDK0{}J`` zaF2if{JSrUfWFX7q5=n4o4~2n!?Y?q)B96`zrC;;PmTTKf>N#N)AHCrNP56Gz@Cqz2Y4Yr7Ir!Cg7hm z|NEn+{?}gmgRz9l4(SrA+HB3&k9S#*cjoCjtJP@hS0uq%Jy<#Ub@8({Rg0-WYqEcO zm)fKQ_Wm@Z0Ac-@^%bs=EyM8x<>q?`k)(`uKcHj5n+aC`5BHd;Wd4C4hpXvI92^}N zT6@~r6%9`I=sZJQl#9e`&Tkpk_jL_3PgZgIxB*DWsS+Lv^ST@{nlaRP`?c-Ygjmqt zD7Gd_V*h-tCp_e%O79x&bNjjrr@hNlZ($YAm7Tiy=XYN!I?*UAe<@bFVQ{rqUNC=+ zit)cS(cN#mN2aZ5+O&Bc5(_7wmK0~k>Rl}0k)e{8xcspj5ER5xxP2c6@}S8p3Tghk zGH_>y1QB7FKf2Cd!*^TZS_xPmHJ$HzS^xK9H%o8}U}}LYObd%ecJn@EC$xv-^@aZ2 zMZ;hnZBx>HIo;6wc7z7u(!vNMI}b%%4&4l$s+H}J9s{=VdBNgOoJRgR(v1#uu*TS} zKQ46({_{WQ7G@{39KvO1|4B4jdA=O9bk(W)_ zHD`~9!oDk|Xlz@KKE8+=BgTf?3QRU6B&01Y#%YV2IR9Pe+Z0O{pS6E5FRqta_DyPp z+gI%Q>xyq(KN9iK$I<)Y^vZK8pfOdRv+J5Ozd5GVX7;1n6H*R`?f>+D8af=T8!BPE zl1ha;zH#*MvC?{3Jj^)aUvz;g0JECB>NJ8fGv5ON}nB8n( zp!hD&&oRCGsbN}cTp)eOy%4*|YmS4;WnLUO!X;Icu#0fMk+7lByWZ1o*JMH;iG8;@ zowLvdPR-kRLOD56>+SI5>1cIJSzp|a6!x5T<-{>`G?1q<<>%^n#!}^>cc=bw%e{|bD2X1)nVehW zQySxB@c{a>u;}j&C$LGRbh-QD^Y-4xvW7^cV5oZ4kBuHxbzB*G1$D`aZ%_OqQz`kBE)w$sXeX{DmK4jVGjXUGH3oMI5Zm9 zw&CzgEPSaW&57{535k(cH7QR5*$f$v8n&J6aB^ie!{5ctVBrrpsuO$BrzKTsMP(%B z1|!mgliMD{0>r}_3p)h#Os!PfMPh-1Pq7qGsk`^yf!O=I!@Xv?ud^2G#yj`#EM4`~y$+w)b`ZH1RcLYjME&nXs7H)PZ-U zlV|LTm()9_lvs7T*2)?b7oiT-4L-6LnXzN{5#l$n6C@}_U&GiA>t}2-q0*1*YE%KIDvUFOh0;k%vayEyPxhYRn=^7JOWa-*p7s- zd_=Uoj2KqA4qcS3Y36o2%wI3}g8|kAZ?Ift%EG!LLq7<(M)SrAZNXkHvUO$cc$V@iR>|--S@0ye z$BTCR5aEqfUVpJ8o{K+rxHqB3Rswnsm;pDugzi%sTc2v;6+Men?cU1kZSG>|sN3PQ$Z&?ycYcoK8ZG zU9-Jszy3PCm43pQw2MaK;4b|j-CMA@SV&dCFWl%!zsbCHBcf>LPxizIeh^ofz4IY` z%PSGdt?@6-Z@ApAiA-&tprSfq;1d2cWRLzE)JhujDZe> z7;##3alFvKv<_Koxb!>Y4-mHhel*TvG;j3BNp6@aN2X4%n05~24SG*3%+I$TM!Bul zw%#|NT-3!D&7VVBP4<7;XU4U<gSD;h@5C+7C0=*7RgpCPOQzUR|4&z0--Ln^yvbc-Fo!Z=3 zu!kS<;V|9au)`C)g?E?cZ>28T802^5dfF-uPcMW2zB%n5 zVSCRijf-&?!Q612j5#ID&fBFBjgs$ZrVsbp^B7iB>n`W@USNe9-J*fOUX~2RH*QorE`| zn9YCR5@Aa9Ce2i3T;9Q?UpUQt#ie0%KOQo5L4#K)?T$8jm##9cB`W#tKDN~=DU(}Q zScn$idug6!^~l0qPU;BNI*KbG9U@Twq`Izf?S{zxH|BG3TN4NlAj81A9mEZ{ugsoq zO0SR=GvX&GV&%GKQ4x;4Jz>QtE@4%=PR80dBov(bpEFiD{!M@b!0x^GB| zq6d&`PpMu{$r*5*OK*fqvlbs=5P|fi@bGcR>PLP~u_wO=?#GLD@(=4?C*^Rvo-mAX zHT1Ny+D=oMI|^I2WWs&zejx)EH4sa?OzxTtWU5t_GNz{XHCUDZ+St!gl9yPDI*6-h z=NW0FPg+6gq2~$*PqFgbGwxq}#ECIYlx9iVE(ISmIM|%-&H1M7w?WgGc6^5v2VRcJ zYu7Muj196h1|k}lo?HIo3qyB7+v8+jk{^Xe{%?kW?Tx;e+`SC`83qxXvszKUr$^nk zngQ%A788GU*AD$aSPJhJj6k7mmc@I)@S?NBFiJj+YvYLCo7-wCLg{Ah_8-zBniZ0_ zI}x1H5l z#95&$H`N&R0~ukBozKo+5yOonCVKE#!-iPo#`Vk$fdoVwp36N>Ic(S_OOkytx+~!;9~Oe~p(}TblI&xyDMBH#U~)}FKaDat!))TT*tK_V)0auI0VneK4B>*5hJ4(i%D3=(}CABKdar z37C5>FHVAAmR!mdlarq0;bFBYT9+NuQCjDBos=-B4oBzuoqr zhpowXt{Wt-<&t_r9>a(p0G=32%)RFwizFB$DS4JT_}=u@KAznO3gSvLq6VQm=JGd~0WCt#?#w zIIQXQ>sU3^8i}yO8@~d=X4>5u@vS=IGVQiv7D+#0Q;ryuLl|#jkeQ%;=p6dkFpK{} zDdq-tttNfJ9uRNC9?;kG6KA<8RW{jzVq!;fZ==to|IU50irS>^m_)KsE|?xEOC9fuDvQ-ev@bEC{LDnd_&5NqrE+GgJ-BD*VaD`T#{PQ|L zR|--{qd^b+eg5Wx2tu@Sb0Knad6@$w>W#5|ee`2k>NNs2zh3>xkY48_PQVg~t7jp= zN-Wlr!ofx}`Bld9QyWqza1`%oj!>l7GPG&oH*&#XsC4{WB9K@yTAsipLfKATQXFUT zTd#%MlUxPiez4k*qSjQmf20VK=U7*hc*}HJ1TpW-;60Nx$pwh8fS=~Q){-^P8$FyT z6$rZh6B(&p@nOT`Uaf?QUa>PH*PQvd>qFB_BHwC3eP@^KkK{e5bs-C7@%;CNHv<@- zs9nRxN}Op*O^|<1+R1s}M&16kFwgr(=AW+E=GC)AlX#XL%kkkX{5oVFP{_qkLIoHlb%_0x`_Y9l4>SN6@VIh2Qe_rYJ#%#(i7$6ebBD5iHJ6*pY-K7)^UUL(V7a zONl|H+~IY-YuZyahWhhl*p3u>`98242vq|R0U*-H=zP99^xeSaujSPjWxpds(u-1{ zUv}RuXt;as|F#J9UjC1C(|fpee+hCv;DNNdBb{Pr@^%VY+n~|4o1S;_DDqQ!}WXF@tEHazZ-ZY}K#sDqFsTZ$5&k*XQTB$7=;ksXH2eXa!t< zDbnldOB{DiJ{-Vgrjft5kzcX@kvVj~7SYK>_pZZS6!yTFk+e6nPQp2HhCqY7w8PXpR)zgDf1=MPMHvxk|8 z^93t^L`sb>kZVxyFD@y;z&zwbr1;5Bs}cnGg7tt0*%0}SPn&ifCA^#Elyfc?(9IlP z^nG4Rx@$0;b#On}bNaR-MMl)4PB0PxKo7t|OyBQSIZ4ufcFp7J7r)?ks9`CkEJ{Fc zz82gvNI)VIyz*{8PLLvFm!?&jBDCUS*Q1W5Zma{e1vui>9h&GF8MDQohUera0tZ03LJr2uUmUA9AJnqxiu$DQGV3`l!dx_4iOiDK!;)dLJtOO=m z7&vX9?CmKX76M>S*tFcv*>RR7P)L*1n`q`Yt|OL1zTUCQ)je3Qyw1GI6(hR)$3@`- z4jYt)AeE5F_!c44`~9c(D|l(?nVFR#^~ZRomYVFnqg#@osiEGW z*`t~@miOI->wAj3#0^F7MR8bVyj;GWmh8V2|9f$k$b?~>#8UD2js*{jUNw-K8ULMS zj2 z>X}ndD^5Q0tLw$z=B$t7y_ujU2d=`15Wnk3N@W~IPc)K!bIpMwpw{#oSKsFk&MLQX zJ+P9uLD3yft~i#4393m@jds*VgThfGRjuW2pvTPIK^%-$46;QCITp`S> zNt?w^MU*aGM6ol^KXAv!&C>vPxy&|D34mc1^^9syY>4z>qyrxh-*Y~FbMt4lb!i>? ze9=r{GN*Z!3TbwI@Al~t2wpl3Wd#Gt*3rmE@Ue1xYqtX@8j(TnRtUDBBMO;?=Sdz-_*iM14KFJIhDSua%h@SFSj31_u_MFY1%mIcWgg@^7T-{ z-D&Mp0~_H?RxB`gX--x*j+xA5-k!b-7yI`XDT>y%JaR_kGwm0wby7 zi2o{=Y2A2myRJOV^~{^&NF4JIDvQ#s+)0FE=R^hv@}en7phvbS6V9=<{Cbu|!JGtR4Fh*+Wm`2>AbC{QKJ@8f!w>O4?C z|J7URCD$YrS88Qtg@832+_~;f!rk~`DwBuo>izsRrBzOhTpAp1?Ufq+%xaSt0)t*@ zT-Ou)e(Vw|J-zvu3^KXF{9)Tft|aOba^RiAiMso8mn*~yi*~rYzWSN?r~x(?agI0% zXvjsccj5D}pP48ivYqpk30j?Mh_t6Anzea117Y$O-fVm3w?cRGS}qp8iD9ZBweM=( zq_{Zk1h8}=027`)QM-{=J=6a=r{bPJUkxoI--d{IY{c{D&q+NyJYw=22R?>Y9OXJ& zLl%It#xgNXjtd+ZX14QVJ&El4iLfU`WBmUR1Qhm8bd-?}WTO>ALQw3Dretzr$Kih; z16|KS?i2wzJ0S69L%5q5$@+<;$9_|0VlJ#y8PzXQuoY?Yl&{cVY8=H@9~H_TO`APP zQ+CewDwMf=iw@B?`3B5-Y3w*aG7Pz6QT&j^6Jt!bV*uj-sA&D21Hz~R&(t43R{A2= zNUQL}4T(;zuiM5X&w_AeyisvftO3a0nVB@-8E_y6#N8bQA}tQlFa195A1TdmVLjhe zb0dg39vUAn|OLO3QsLz!0zRiXP192^F~$1QXF^3GJPzG-1oN9r6?parHoa z3Gk9xxlH=u$U`u~G&}uB_zw32gD^1?CLU5%H5>^^+|&*B7~fSrEIPx<*Mc%{WaVaZ z40w^)JQjWvUeDx@NW~1VXxb)d@gn8rx!>2;)^TKxmOgPrg7W$H&2x$FDss*u9u~pR zeAa8v`G&A_xIg8ReDad2)B$?U<*hZ*Pu0}m562|pUXy;K@SS*`I8o&WGUkO}hf^4t z^wzE#`1oNYFTe#yH>v!$iAMU%O#^3};(V_C(Q9*cgI$fm@Iw9VxRF02L#2Ah z@Dn?=A32>x>2wcvc@zm&lhD!ij@@2Q=I?2QC?5GqZ&~}CelOP}vrKqR)Z(6>f}!eY46jC=)ew`ktnL-pRs)cqbW_W2~7@sRdhF} z0<{Wwg9mHk!0K@`E$-NiF0M4?ON#-~)!vX>Yi+RcF@rsdzCxr9C$$O%#)`+x>^c)M zheu6HrZjc6_>vaOmUkrxtmc`{G&KGrBv%&r8nt|Jr+(pDt2fh#CC2#WayK^rWRKy< zwfa!HpF(1}vL@@#2kf?U2xIEF2>vq?K9)IupUH z0gRm&W>VN)*M5>9Y^@#q{jCf^^pUcM%S)JC(S@ggUhVZ_1X;#^y1A8v(}%^IQq0ru zf%Zm1PMUgVHD&WXOrHML>oTi@_6ko1!#pCPy1LTR8j!ar|4zt6!D@v8pY8os4N8N# zwY@uUF4dlzOA=6Em!|~&79tO#h?A$?1YyVnumcVf3!#g~%6g1D5n|@+W#$qE(%#gi z@4oP}Foe~Fwh1y%yB!TGh+=&ujNxBR`NF_5tfNzrZ2PdUA5#XWX7 z*kUWn<-&vHnxy?#WKXTQwOHi0dlO0;7+K<^ z!58kF@L%Hy-Qz0OPSk!*kmi@oUt5Y`>T5IO)`U4Xte(_M2MNP}O2*YFR@o{}im`us z|600}m~)e2#Bd$06on*wVz+C#qP0p)CusHbcvN*hLx0mt%{9OzYpKBmTLFU@c=*6F z^zh+s)^rM5p$cWkunFtx8luO+tgUWk`qijq)&N>gr$3e#vmVB6t# z;;^IV`taFXv`Ai0-1Ju~l9wJ=0UdPQF(%>GD-63$>+Wn#uAGva2mCFp_*nAS@4{*N z;WOV|0W5A15V!(&tKf(3Hwg(bGIzJalwS(-$b6(`$GfpZiPTxId zf{6=!z2cfsexy~>9aKs}=yqBoV$Ex6%Nr~uVmpfZd129#+TmR%4UnSVZfETdmb{># zoSYnA?)F4VhY&?0!=t1m%96OxhH$O`J2v7Whtq%ffL$3|1MwMjCONqU?^jp3us=wF z!$1<>U?;v|?n=AUL%h0RWZD5)I70OIF=&uJOgTY%Fq|KicBzf{L5|+$>#UwYriyCS zy~w{CjB~k7aLM*!gl>PD{O|SEDKS7$d=EM?Up<7lsZO@frioPfGm>KhV|0sD9NSrV zRn_k_vh1G0%K$2E|t`PnZn8Tdm6HLrcN5l18 z&Y!YKh4mj3$p_INyWhgMC5V&JKxX_Y(y2K8 zO5S9lCY3qYES{_V+JBAc*Y|g~rZfy`lH3j(Evw9>MmkJ?1Dng4mnjC_noD@IA%NbO z^=oApJ6T?332?1yD&6)3IA#fygYD-BZb(4&#O zFY7>li@x=S$e7sb8nsIIY9H>e?``4E6=B~3j*Bf`_LhncWV!V=x?u(gMWy5|{KMr& zD%*ymeA0m8jQHFCtiqxipV9@{opO}ZkT;>781UhrutvqWqT!Jdv6>{LW@iG~> zbeq16c*WY0SaO60(fjV(LozROOt!?}luBpP_awkALB5MI$xj7utifKrToJ4QZuy5ZSEq=yn#jE;h7j_kGg8{G~B z0tNl!Q`D>tx&#yXNL#dI|fq% zTQ}KJ&5%tkd`=sioVG^<=f^vkse)iO=QSM1EFi7UG$&i2Vq{yXJ@DzVbkgiRUvMkl zq8@n-D`8N@z*O70qQ@a~J}LaVUIZYt@o}yTWAla7;{pnU6%Ci57Z zFYdjY2WtI=!JA|8<{4pV`SP2C*lQFsS)UI~VOlssVxAtO(PA38?WgOQ(f0;NoJ`f8 z%-}hk-^d`CP88<#0K%-jz1=i;fRIw=0XVZuSfuy%KC*oJq*k_t2vK%Z6MF`SXBkxU zxrO~e62+_y^sA`@Kls0Lq)T7-d;9#VGbfi`1g}QQRVTgjE4@Ynp?YsJb*e zmHmHKqjf7xBWr3P&THHtbGue~a*KWNZ5rre?hkw{fNP$6S_ubPGW5s(EjBAjA0Bp? z{1L4(MJYdLad{^ic4^a1#hO`6eep75oD5Ou5Cyd%iFa+?g!NifCFtUZj>xi=75Gzv zxj+2x-JyrRJG6uy{tb4YnoP}b+&VQD?AEK>?MXxX9wXo0#pgn7Ou)1tppXpp)Fl+T zd#loKj8Gj1omwNaD2@tjtn&U3Pm3LGCj)nLk3%#Jzvi{{;e|SuP3KU_7v#H^goKaDC4c|^ zor@`D@meU%Mhc(y^#+_Q=5Q-3z;HWoRJi~PPU<0BVR6}{+*uP$a345C2N%Y@f6)tb z6tG1h9dCTJ7kK4`lgUL0-i-JShI&u7SL{Ax~y8m z*`>&_(Y@er+O<_W9{sIUE~%Z5%rcU7URU!RYQ? zP-v%qur2;@fZvqWp@YKMNgz~t2{c_ZZI5_jaqGKt>{di4(G;y}oUTR=C!6-$(d=f! zVRX3V$+DE%F&TdUDKk?jr0Kr=j4Ug%rzeWUb{$@h@9|*9?MMbq=(D&m&6YS+$eN_2 z?;?Wzm!4XM;=PknY_!%94m$NM*KoN+HYK7gK2;>WtXhk<+m+HnQR`niYm@39R6+zU zW3F(UV-_K5ulf#y#+>q8Y3W;1FeAlgDS`aQo5bM%l!KB zi69_B8nSgxY_>VJ==YHM4_aT?f5eT<319rQq&C7`Pu)h}z`{S{&JsQ7T{StVn}|Cs zX8mQ`RvhVqa|{;!J4Jzi?T`o)*NHj%Z~Nv zi4iAeM*T}_esy@vi3b|$1mk@Sgn1BXx12FH>8zCaR7o5+U}Bx&mX;x2--{-OFo&C6WNYBjJ10qyNjM0cft91DyT(8}=&CUL1 zEccGio6;;hLG?jgAItQW@W5x+md|CKQPR@!;S9eT!@)H-Afz1J|1*x>Ll+?DR8HCtIxZ5Qh|MNdzCbWt=f6d%-%d6u zHuTJTo|{2=i^QoWt|XP>r?fl5nL~{X?SbDK!KJaWyBl4%Z7f8)q#N03!1ozleU%6s zAD=)(R4f8AippM9MNhvdBX{Xt;Cx|ZlEpqK%Kk=|w%&Tayt7p!E=L+UC1TZnkzh+* zJ0Oy4qco{oW2Bc`#N)rk&frcR#qOGyJAR$Cz0xBz<=G>Yz-?ugsHo$o!e5QYQyC04@}kV8AKwSP6^8W;z&nY)R~s(4#nvk}Pc*|2sc{b)iu{_tcW4~Q z9GryM(;9CoRxy_dBV(-Y(o+TnPe-mu`Wip)Zs3QvPEnSeVsTB!aN2tOS7-(>qqtbj zkX@=K>HFOEsWhwGg_PMt@7++5_w2}+f|bW!fm$D&D$sySknjr%QJoL|Do|gI0>Co& z$Y=?D`BYC`}tfmxWkS0ru?NAd?0|5ooAl$eLb8>go$8?X-v4QQ@~LhE3af3 z$Wt4M*gwm^cO(u01PQ#uru8$d4rT%0#ZH6`LBY3h(+z0Ak8``AnjuUI1vN*% zet>5Dkwx#HPa2^G=3A*`Ust-Jl9?91znJL`vk5*rpv z)nf*|9A}P>#C|PwCPT>wOm~XeM<1@HDW{fy<-DSjs2O+7r;|$~Kf3mMcS({8&*Dyc z#_gp$ZAWXFG{&u@+J=7uk(J+4O0T28&8nk0lnt znEb28o_0ey1%VqW*OpAUM)hsv0|wBzzC*<Rkp6O)solSRytAJe&t3Q+XcbOCL`q)h_Mq)J27fs!h}y}ixuK3o4h|Xgt^tK z!!@G6&14cOPOoj{k1S#M+#jEIgJ7cLv_h!lRTWQ`)x6oq`0(390dAvj(8UIP>_U`tt+OvmG zjvZcm{^o-bzk;h8l>-{czQPeZes44L*c1K^RTBHx5l2%{Z*B+i-T2ie2w4K)<^{z@ zl=WUhG?xZFGmG|zSho~N&mh!Di;0P>DSc7nu0{3PIWwRb#>fCW!O(U`^Cd8WAKjs$ z_2kcX+-f!xq}q~ zCP2D2a}`vsaKy4=L1Y+4)}={dA5eikAO;K581(fnrD!tP6)&F+u)$yIsRQcU$ZRS8 zziTmn^BpL|LdcKg=?_ZST_@QXTHg zxE&`SrE@B3DmT?{h_;vdcGp#(M_OsGP)bE(r@>Kx)51tdtACZXJk;Vb#7yExMTsX0>7bJP7*1uu(SPtq z#*+H8GmWNdxATM*1B(oYuOZRr`5D9bGxU!;9H{valih~fF85t|iClW~ zi;4#Nrloia#H&E@^O~wbaIA_6%OnJHFlQ`2!Vh&O zr;ozo$>zj~(7cjnSI%+^=qvrT_g(>=&u4cIPt7p)Bg1F0Xuy)PHW#3f^A0i1W< z%^1jG*^X2yY;Rqk#1N9}0r14;`_EhE$*C}#@-hJy?uP@?JnAlZbxL_*aRNHcr)cn$ z03%+A`9|0+;DN@|2|d^#96vJiD)jeaTrzU!h$=IB4hjbD@IcvQ#oOfmph+8DXZv%m zp0enK#T1wYk{#IGT3ANg9*x_p5v{gDj(HjMoN{HMXu`in6ld23_aWYnviQM z)Z+=48?H<;37eP{$;&dbZ|?v z@AbxEk59GtSG!HTHki5ROLZ+%<5V9XyGLj7Ts<6RuzdhC#Og=!5u5Z z!$1G4p^Xz&nxJv^Zou!DNeZRgcLv>$zxc=Thi?UxvTq(4849sbjWJ#5pPO4ALF`D* z??)31-XxtZyZ|4OH{I7fb?nx-DsWSP-$9mpK-AWTS%gn*5sOZhK;vqDi##Fap6S_W zAE9?r;M?D0Y?hWtMm2r>Org?GNN@ui# z-}TQ*s_PP4pJZ^x3UnFt1wnJzG%qc;j>d~`4()xveESC=KhmT@48~#rK1u-}am)St zXw@A@*w4iB@acKT-BC$-xOjhS%C3_%S!rBw>cjp62F=q9B6~zc9rF$q-LC<` z&ZmBl!od(G?;V*3O1CnCHX~}kt#%5FiIB|A`F=fg!@WSwU#DDh+_atc$nv|cau93q z5U?g+7IQ%DISX*X;wqhm z=Xq+87%f4Zo#oGaSuWD&@^k4wkm74E9|WjK(CAia-asa|RQNszGCPB?05YPTgi8CB zPfZB|8shSxr_cRL>1p+_r4xn?F~taMEP-Y z`GI`G$w?y2mEY*&KdD^crCmaqm*+2`LUw^)KZ(Kqs85YSQIFUA%gnWYutot=&mhGT za=D?B;mhR0ylCHSL+=hx?T&AL%h?f8v}*_tkPcaWhq!}boI#>7Q71g+E+TAH;_;{! z%9O9uCz>byH~6_(_rpOctHFD9>qt+9!>pcy*g&6$zD!j370#q+s&x&551xbS5k%ex zq0t#>7g5*tcrH{+^Vp$LH1G7)vkMtuRcy1BBu`|4USLwlX8v|F0_!Bobn0M@8WjZX1jBx}U zC@aJ*`{1qZZ3PW<*Rzpsmn-$PvuT}V{p$8>)*YYlQ?Eq*0WD-`q9cYddwSnS*aDB=S=P7B;I)OvexIa(7ZD*-g+exU`uER4&H|n@bJ0=QP{~Y|L^T4jJ&kXV!8Zpc zQ|;j4;sVTv+>1Lc$QFthvKtW3I&`8gJdDCzByW!)UjkTW?J4V)hmUqeQ!NxZz)aUgRNsVp zMHmuc`gTuyYiH3Ao)qP2rImss#+Ua56uwOHU9W-0N9;m?B4@IQ^d=%aPn!zfhdhD2W8$1>=IHVelp=x^_ zW_5eKOG<@ac!^>T;45tptrs4By;Xdk0Cnj?C0{|_`NXT1{N968#gXu?`MT&`DM)kt zqNSC#>%7NPczRzxc(ZzX)AouVs zoIhTz%ffy;Fz~RI$EQ%)=(N!)4$9-lPBxNT4%yL;Ut@dsn%0LerDbP9;MsTmgH=+I z%{&(d@B2?P)+g9Zmf6Z*- zHCG(Jsw^83%xmvhlRp;z3Td{{|4>=k>;o(NnG{PwO>5Zt6=PX$%13+jg`K*R(vk}i zk=kMNZ%pd#oV1zW*cprE3X_hsQo)V`$A_+pMIQzD>$89)0MxZo4Wv9~g{(=a;K_+zEPcVp5=EO7V+2@GCmz>gD^ta2Il z2dwaJ?o#k@uLf+rz09s#&!J5q_6Gt}$0#1V)fS%uJvQfy`f5DDBk8VIA>FK;AhF#n z(e|=w=jL`})5ZoPqiHK6XMG6|+gJkW>d9Nzs+^d6^fj1QLT-PqGw|=uUSRsc`*y&j53fiY%JFR?KmU&A%D#>7)BX7m#*A24P5*Zx-12{~)SQDm sgtP!%7BQOT`L|_szdFYG|F7x2poz@su#H|!BMN>@49@C5JLN$AFI|M^GXMYp diff --git a/pr-2491/_sources/examples/python/visualization.ipynb.txt b/pr-2491/_sources/examples/python/visualization.ipynb.txt index 76347fe487..213d889f97 100644 --- a/pr-2491/_sources/examples/python/visualization.ipynb.txt +++ b/pr-2491/_sources/examples/python/visualization.ipynb.txt @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": { "scrolled": true }, @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -92,14 +92,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "rng = np.random.default_rng(seed=11)\n", "blochSphereList = []\n", "for _ in range(4):\n", - " angleList = rng.random(3) * 2 * np.pi\n", + " angleList = rng.random(4) * 2 * np.pi\n", " sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList))\n", " blochSphereList.append(sph)\n" ] @@ -113,12 +113,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zHTq1KNFduquq1XRP9/R0T8909/CP5YFYLgmC4GVBgiB4IoE97G1P5IEXEntYgKcFCAI8kReCAgsS/O2I3ZkW03palBZZKkVVisiIcC3sf3AzS4/I0CKrssoeUMiszEh3cw8Ps2ff9773EUophYSEhISEhIQEg/K4ByAhISEhISHxZEGSAwkJCQkJCYkmSHIgISEhISEh0QRJDiQkJCQkJCSaIMmBhISEhISERBMkOZCQkJCQkJBogiQHEhISEhISEk2Q5EBCQkJCQkKiCZIcSEhISEhISDRBkgMJCQkJCQmJJkhyICEhISEhIdEESQ4kJCQkJCQkmiDJgYSEhISEhEQTJDmQkJCQkJCQaIIkBxISEhISEhJNkORAQkJCQkJCogmSHEhISEhISEg0QZIDCQkJCQkJiSZIciAhIdGEO3fu4E//9E9x/vx5FAoFzMzM4M0338R/+A//AY7jdP3bf/bP/hkIIfiH//AfHtBoJSQkJgFCKaWPexASEhIHg3/zb/4N/u2//be4ffs2Tpw4se/3//t//2/88R//MWq1Wtu/P3fuHP7qr/4KZ86cafv7//7f/zv+0T/6RygUCtjc3IRlWeMcvoSExAFBRg4kJCQAAF999RX+yT/5J6jVaigWi/h3/+7f4aOPPsIvfvEL/Mt/+S8BANeuXcPf+3t/D/V6ve0x/u7f/bswTRO2beMXv/jFQQ5fQkJijJDkQEJCAgDwJ3/yJ3BdF5qm4f/9v/+HP/uzP8Pbb7+Nn//85/jLv/xL/Pt//+8BpAThz//8z9seo1Ao4O/8nb8DAPhf/+t/HdjYJSQkxgtJDiQkJPDpp5/iN7/5DQDgX/yLf4G3335732v+9E//FBcuXAAA/MVf/AXCMGx7rL//9/8+gDRFIbOWEhKHE5IcSEhI4H/8j/8hvv/n//yft32Noij4p//0nwIAqtUqfvWrX7V93R/+4R+CEIK1tTV89tlnYx+rhITE5CHJgYSEBH77298CSNMCP/zhDzu+7r333hPff/jhh21fc+TIEbz55psAZGpBQuKwQpIDCQkJXL58GQBw5swZaJrW8XXnz5/f9zftwFMLkhxISBxOSHIgIfGMw/M8bG5uAgCOHTvW9bXT09MoFAoAgHv37nV83R/90R8BAL799lvcvn17TCOVkJA4KEhyICHxjCNbllgsFnu+npODRqPR8TUvvfQSTp06BUBGDyQkDiMkOZCQeMbheZ743jCMnq83TRMA4Lpu19fJ1IKExOGFJAcSEs84si6GQRD0fL3v+wCAXC7X9XU8tfC3f/u3qFarww9QQkLiwCHJgYTEM45SqSS+75Yq4LBtG0DvFMRbb70FQgiiKMLnn38+2iAlJCQOFJIcSEg847AsC7OzswCA+/fvd33tzs6OIAfHjx/v+trf/va3oJTCMAy89dZb4xmshITEgUCSAwkJCVy8eBEAcOPGDURR1PF1V65cEd9zt8RO+J//838CAD744IOm6ISEhMSTD0kOJCQk8O677wJIUwZffPFFx9f9zd/8jfj+Jz/5Sddj/u///b8B7AkTJSQkDg8kOZCQkMA/+Af/QHz/n//zf277miRJ8F/+y38BAExNTeGDDz7oeLyvvvoKd+/eBSDJgYTEYYQkBxISEvjRj36En/70pwCA//Sf/hM+/vjjfa/58z//c+GK+Cd/8ifQdb3j8XhK4bXXXutprCQhIfHkobNPqoSExDOFv/iLv8BPfvITuK6LP/iDP8Cf/dmf4YMPPoDruviv//W/4i//8i8BAOfOncOf/umfdj0W9zbg5YwSEhKHC5IcSEhIAEh3+f/tv/03/PEf/zFqtRr+7M/+bN9rzp07h7/6q7/qKjC8d+8evvrqKwAypSAhcVghyYGExDOE999/H0CqGWiHP/zDP8Q333yDv/iLv8Bf/dVf4f79+zAMA2fOnME//sf/GP/6X/9r5PP5rufgUYPjx4/jtddeG+fwJSQkDgiEUkof9yAkJCSeHvzBH/wB/r//7//Dv/pX/wr/8T/+x8c9HAkJiSEgBYkSEhJjQ61Ww69//WsAMqUgIXGYIcmBhITE2PB//s//QRiGKJfLIoUhISFx+CA1BxISEmPDL3/5S1QqFfzRH/1RXx0eJSQknkxIzYGEhISEhIREE2RaQUJCQkJCQqIJkhxISEhISEhINEFqDiQkJMYG27YRhiEURYGqqjBNE5ompxkJicMG+amVkHgGkCQJkihCHMdIkgSU/eO/AwBK6d4//jP+Gv4zRQEBQAgBUdLAo8K+NmwbnucB7PdQFCiKgvm5OVj5vCQJEhKHCFKQKCFxSJEkCaIwRByG6aIfRYIAUEIQRxGSOAZNEiRxPNK5KND1GA3bhuf7AICcZYFSiiiOEUURVEVBpVyGoqpQVBWqqkJRFFAAiqZBU1Voup5+r2nQdB26rHSQkHiskORAQuIJBt/xR2GIKAgQs+/jKEIcRej18eW/TygFGWEc3chB3bbhM2JQLBRgmaYY+26thjhJYBoGSsUixGi7jJsCACEpSdB16Ka591WmKSQkDgSSHEhIPEZQShHHMcIggO95AA/386hAFLX7IyTsa7vjUUpTUsG+UkoR81QC+z3AFmGeRuDHZSQiyRybsp+jJa0AAGEYwnZdEACFfB6mYQDsd4QQRFEE27ZBAeTzeeQtCwpLSSiEQFEUcaym68icuxUKizTohrH3zzRh5XL93XQJCYmekBRcQmLCoJQiYuH+KIoQhiF814XveQg8D4Hvg8ZxuqiyhVhVVahM1KeqKgCW5weLJmQWf64H4P9vOTmyy2uSJOI8aLMod72O9ABNu3/bthFTCss0QQhBEIZN5wYhACHwfR9hGCKJ45QMZBd9QpqIQutXSghURQFl52s0GrAbDTQaDTTqddRtG4HvI18ooFgqoTI9jenZWczPz2N2fh7T09PQdX2ga5WQeNYhIwcSEmMGpRSe58FxHERRhMDzEEYR4iAQGgEOAgCEQFVV0CRBGEUIowg0jhFxEsAWfr7LV5jQT1UUaJoGPRNmz36YFbY757t0Ti4oIWkNM1u4+Ri6fSWEiLQCnzJc34dt2yAAKuVyupCzc2dJCKUUO7u7SJIExXweiqo2XRM7KCi7H67vw240YLsuXMeB4ziwM6kLANB1HcV8HsVSCaViEYZpwnMcNBxHkIc4SZAgFVXmikWUy2VMz81hbm4OJ0+exNGjR8fwbktIPJ2Q5EBCYkyglMJxHOzu7sJ3HASehygI0gWdEQCiKGJBJISIBTKO4yZ9QBLHiPnXJEnTAiy6QNg/AGLHbZkmcpYFXdebft9xrMNcXyYqQSlFdXcXcZIgn8shnwnp80U+C65LsEwTxUKh6ThJkiBMEqw+eIA7Kyt4tLUFAFAVBbl8HoV8HlYuB8uykM/lkMvn20YCVE6aWNQlDEO4ngfbtuEy0tBoNFBn4snlY8fwk5/+FGfPnu15vyQknjVIciAhMSKiKEKtWkV1exuB6yKOIhBFgWkYUBRF7P6jKNof9m8BV/NnUwo8qqAQIioA4iRBHMfwfR8x26VTSmHqOkzThMFIQjfwRbzfCSBLDjzfR8O2oRCC6akpcS4uJiQt00oQhqjV6/tebzsObt++jTsrK/CDAPNsVz83Pw/TNMX4uG4izlx7wr7GcdzzGjRVTSsh2P18+PAhrl69iu3tbVRmZvD6m2/ilVdfhWlZfd4NCYmnG5IcSEgMgTiK4Nk2qtvbqO3uIoljRHGMhFLomgaVkYJ2IGzh19qQgNYFnROLOEnaVhtQShGEITzPQ8DFiyxSYZkmTNMUmoVOGJQcZKMGhXweOb6gdtExUEqxU60ioRSFYhHbW1u4fesWNh4+hKHreP7553Hy5EmUSqUuA6CCJLSC3yNOFgRx6PQeEAJNVbG7u4tbt25h8+FDFEolXLhwARdfegnl6WlY+bzwcJCQeNYgyYGERJ+IggCe48Ct11GtVmHbttjJU2Bvx575G0VVobP6fV3TRI1/N4iKAyY07PcjGscxPN+H5/t7ZkYATF2HxcoBu0UTep2FkwMRNVAUTFcqTVqDbrGKR1tbuL2ygvW1NURhiJmZGZw8eRLHjh6FOkB5YsB8HaIwTKMxHe4PjzgkLG0TM1Fou0iDbdtYX1vD1tYWTNPE6VOncPbcOUxNT6NYKqFYqUDpQbIkJJ4mSHIgIdEFSZLAazTg1uuwGw3sVKuwHUdEBVRNE7l+BRC1+ZwMtCUCHT5yCS8ZZIs6ZbthZdCqAkoRBAE830+jCex8XJtgmWb7cbHURMfjsmuu7u4iimMRNWinMche08b6Om7fvo3V9XUoioKl5WVcPH8eU1NTPa8jYou5qPbg2oxMKoWfp8NB9kUzuM6BE4aIm0QRAs/zsLa+jq3NTSiKguWlJZw+fRqFYhEzc3OYm59HvljsOm4JiacBkhxISLSAUorAcVDf3YVdq8EPAgRhmEYKmDDQ0HUUi8WUGHBnvyHNebJ+BNkxNKn5gabFsG2Kgf88UyoYMl2CiCYAIJQin88jx8oP92kP+ILKvlLmq0DZ4lyr1QBCMM1305kxksxYHty/j2++/x6ubYsoQbFUAlEUVEqlJlFhkiR7egp2njhjupQ9rkJIqs1QFGg8EsOurR1J2HevWsgC93UIwhC+7yMIAtQbDayureHhw4fI53I4c/YsDPYe54tFzM3PY3ZhAXkmjpSCRomnDZIcSEgw+K6L2s4O7FoNnuft7UqTBPVGA4QQGIaBmelp5C1r5AWhHSnI/q7rRzOzcPPXE0o7jolSCj8I4HkewjgGKIWmaSgWCtCy4XJ2zNajcIdEx3Xheh50XUe5WGxKKXC4rouvv/4aa+vrOLq8jBfOn8c0ixLUGw14vp86HmraHhFIkrS8kldzZKoxNJaO0VUVCtNzkE5RDkYSYu6nMAKCMMSjR4/w+eefA4qCM2fPCvdHXn6aLxRQmZrCzNwcLMsS/yQkDjskOZB4ZkEphe/7qFeraFSr8Fy3aUHhvgCu76eLk6ZhqlzuKfDreV7sCQ0pWwizyxgPpw+cTtj3g/YfbdfzYDuOOFc+l0MuS3ZaTYqwRw6EX0GhkLoh8tez16ysrODbb76Bqml47Qc/wNEjRwB2vbxiod5oQNc0FPL5pnOJPgtMnKl1S8twDwX2dR8R4MSrnxvXA7bj4KOPPoJt23jt9deRy+WE7oE7TyqqilK5jMr0NKamp1EqlZDL5aSgUeLQQpIDiWcOQRCgXquhXq3Cs+2mhVDTNBi6DtMwEEYR6rYNyioQKqVS18melyuGUSRC5BH7Pg7DNCUBpItZxpiImxrxnXP257z7ocpsi8Vr+1x0OPngOXqOOI5hOw6CMASlFJqqolAoCEOlVh0BBRD4PnbrdQDA9NRU0xgajQa++vJLPNrcxPMnTuDll16CoeupGyRLy4A5RTZcF7quY2ZqKiUCjBQMs9NvV8VB2f3l0YVsembYWEIQhvjkk0+wubmJH/7whzh69GhqWMVSEfz9DoMAmmmiNDWFmZkZTDOiIPtBSBw2SHIg8UwgjmO4rovdnR249Toi3xeGQoauwzAMGIYBlS14NnPbo0kCXdeRt6x0Acgs+nH2/3G8Zw2ccSMUUYFMCV62t4FYrHiYnFcpsL8RoHs2yMIAqcVmWNM0mIYB0zDENe39OW06Dz+v7/vpdbI0Ro4ZDWW1CHys9Xodnu/D0HWUikVxrOvXr+PSpUvI5XJ47bXXMDMzk+buw7DJG0FhxMt2HKiKso9gdERm7DxKwMfG0y8kc12UO0GynwuL6cxxhFEU+3k/UZo4SfDll1/izp07ePHFF3Hu3Dlx3iiOEYYhgiCA63kIggCEEOQKBVRmZjAzM4OpqSnkZP8HiUMCSQ4knlpwG2PbttHY3UXgukjCEIQQmEy1nxWTBVGERqOBre1tOK6LOI6hahoMvutjC7+CPeGfIAEMfFevsdy4ytoUE9Y/AEBzLwRKQVlpXcJC1FyRny1l5N/z6wLalx7yUDqlaX8GI2OKZDIClN2hc1JgOw68IAAohaooqRbBMISZEQWwtb2NJElSu2LDQLVaxZdffYXdnR2cOn0ap06fFqWC4v4wMyjTMMTueYf5QpRKJZitTodtUhq90LFSIQN+D7uZUHFip7RLq2SIxeVLl3Dp8mWcPHECr/7gB/sITpIk8IMAjuPAcV1EUQQzl0OpUsHU9DRmZ2dR6hGFkpB43JDkQOKpQxiGqR9/vQ7XcRB5XhoB0DRYliWcC6MoguO6cFwXtusi8Dz4YYiEhapN00zz6iw0z4VxKgvz83C4+HmmSRIHF8f1+zHbV6HQ+vuMViH7lac0/DBEGAR7boyKkhKR9I+BTKSERxi4UVIQBGg4ThrhoGkzpXw+D4WkDZWqu7sghKBUKuHa1au4euUKCuUyLly4gEI+v1cpQYggIrqmNXVxBFJRoh8E+2yXh0U/5CB7/zoZIzWBa0FarahZdOLO3bv44osvMDc/j7feeqtjY6coiuC6LhrMslnTdRRKJZSnpjA9PY2ZmZmmCI+ExJMCSQ4kngokSQLHceCyZj2h4yAKAhAAlmUJwZ3jurDZjs73fRBCRCrB8zwRKZiqVGDlck1WxoOCInVSHOQD1steeZDjBEGQ/mPh7pARBpG+wF7kgGstDF1HxMiBpmkAISjk82mfAteFbdu4dOkSbNvG8ydO4MTzz4sdsJ6JTvDywnbggkjDMFAek2fAIAQhZk6Ww4Iw/cfDjQ387ne/Qz6fx9vvvLOXMujgrRAEAeq2Ddu2kQAoFIsolEqoVCqYmZlBpVIZekwSEuOGJAcShxpxHIuGOhFrgZxEUboz1nXElArS4HleWifPc/VsF22ZZipsY+VppWJxLAKyaICIQfZ6RG+CPgV6Is+e0SW0hud5Pj6IItE+OQgChMxlkL+SpyXiKIIXhlCQagVcx8HDhw+xvbWFSqWCcy+8gEIuJ3QOhq53DJO36gCiOE77LDCHxXbXyd8f/l4B2KeByF5v3Kb8shNEtGUMU1+tVsOHH34IwzTxwfvv7yOR7XpXJEkC27axW6/DDwLkWHfJYrmMo0ePolAoSN8EiccOSQ4kDiUipg9wXTe1NW40oCLd1YXMHdBxXSE244uNqqp73f1yOei6nu6IWWlfuVQauVQRgOikmBUcAi2LW8v3nfonTAJZ8WPIejP4vi9MgPwgSEWcvo/q7i7ura2BAliYncXRI0dQKpVQzOdF1GXQc/Oqh3Kx2DP3zttT846L2f9z8kC51oKTpMz9bhV38v9HUdQ3AeuGarWKX/3ylzh15gxeeemltPNm9v3OlKtyPQhf/D3Pw26tBttxkM+kG+bm5pBjwlAJiccBWV8jcagQRRHq9Tpc1wUAOLUanFpNmPzwjogKIdAUBYqqImeaMBkhMLmJTeZ4juOAAiiwNMLAaF34+1DAkzbfj2sZ4OWLQvTIwuj8K7dlphkLYm7wpLNOiFEYomHbaTlnrYbpfB5hkmC6UoGmKHAcB4HvI29ZaTvllvuaHQtfrHnkAAAMXRfCRa3NPc82WOKaik7gZAEs0tBKILjQkINrIzRmwgT033yqHaampvDSyy/jm2++weLCAhYWFprG1gqSIQqWZcE0TYRhiM3tbWxtbAidQrlcRrlcRj6flyRB4sAhyYHEoUAYhiJSAKQufNsbGwhcF4qmpVEBQqAZRlqJYFnI5XKwDCPdybUBTRI0Gg1QALqm7SMObdFCBNphGN1APwG8VsOkJLPIx8zWOc5UQvTjsEiAvYoKACAEYRCAKAqCIMD9u3cxOzWF50+cwBdffYXFubmUQFEKVddTrUejAd/3UcjnUSgUkGf3sVvPBU3TEARBauPcwVFQEBneZTHToZL3RuD3oZPTJADhE8EjDdnvE2Cv+gT7Izr94uyZM9h4+BCff/45/n9/5+/AYPcg+ywIcWOGkIGdzzQMLC0soOE4qO/sIMqkfizLQrFYlCRB4kAhyYHEE40gCNBoNOB5HgDAcRxUd3bgNxowNA2GacLUdeSYy98grnS26yJiu9diobD/BX0QgVZ08vfv+XedFjakoXJk2hGHzGeh34ygmtlNK9nwPC/dU5Q0hcDr8xUF6w8e4Mb16zj+3HM4c/o06o0GVEJQLpVgWdaeNiGO4XkeEkrRaDRQq9WgKIogCjnLgqooYqHl2geejkh42WO7cRMCMMfE1ivl4XmaIQu8H0O2zTXYa6IOhI1Xh/BGWZqui7ENRBgIwRs//CH++he/wOdffIF33nln30toC2FTmLCRH1dRFJSLRViGgVq9jka1ijiOkc/nRcSsWCxKTYLEgUCSA4knElEUYXd3F77vI2E7fC461ADkDAM5y0KlUklV4gPWx/u+L/on8GZAwOih/UGjBsLBEHv5cf5VOCwy18V2UAkBUVXxNduUiIfaWxeS7K41SRK4jgPX98W137p1C3fu3MGF8+dx5tw5OLad7rYJEakZl5G1fC6H+dlZ2KxKxPW8VHDnOKg3GlAUBfl8HsV8HnlG3CjSVtYgJI10cHOjLvep9XeCNGXKR7nFczaFwIlCu8hDEscglKZdGVllBwDhU9FKFrLjaKcZsSwLb/zwh/joww9x8+ZNnD59ussV7T0rlL2PvAzUMAxMTU2hYdtwazWoioIkSZDP51Gr1dBoNCRJkJg4JDmQeKJA2Q600WgIguC6LhRKQaIIlqqikM+jVC7vefunf9j3Obh1MADkLAtGhxr1YcffC2JCzyzSEaUiIsAdF9v9He/+yP0Vsk6MvcaVNW7iBlGu54lwt6oouHz5MtZWV/H6a6/h1MmT4j6prHqDMIJAmO6Ak7dSoYBSoZCSDd+HY9twPQ9xksCxbTQaDRBFQd6yUCwUUvMppKkdBRACwsyAe9/Hdj9jCzm/XoURJqqqMNrcoyRJ4AUBQlbqGbNyz6CFLOi6nt5zRhbaaUYApC2ez5zBt999h7m5OZQrlZ6Ekzs9ih4TjNhVSiU4joPa9jaK5bI4v67rqNVqcF0XU1NTHT0WJCRGgSQHEk8MgiBAtVqF53nY2dmB67owNA16koBQivLUFMql0n5jmn6Q2aHbrJ+CpmnI5/NjvYYsOciSgNbFO9uHIWCVAa1QMmRAZ0ZLTcK6fggBabZxTijdi5qwY+isv8Fnn32GarWKH7/9No4sL4voBYDm0k5CYLF0QcO2EYYh6o0GioUCVEbe8rmcICCO66ZVJczC2nZdkQbI53IoFQr7S0dJptsjK1nsZ5EVNsrZlBBbzLPlj1wcqSgKTF2HzqIPCaWI2fuSJQu+78Pn7wsnC+y9aU1DvPzyy9jc3MSnn32Gn3/wgSBW7bpdtgOPKBCkkRlN01KCVaulvgjMOClkXSOLxSJK7HMhITEuyFJGiceOJElQq9Wwvb2NnZ0d2LaNvK5DUxRoqpqqtplZzqCPK/fP5xMnt7RNKMVUpTIWC1uKVNQG5iTYbpKOeWMeFhlIMmSAaxRUFs4Wiw7LtQs73wF8D/i4st/7LFLA76GmachZFoIowke//S2CMMRP3nkH09PTIj++W6uJv//lL36Bn3/wAaampsTCzUtKE96ZsFhMNQYZ22U+BjdDFMIwRK3RQELTrpCFfB6lYhHFfL7te5J917stsgNrPihFzAhBOySs5DHKkIVWZMmCzjpJ1up1/PKXv8Tx48fxg9deE+fi72G/RCE7Rt/3RTqnUCxiem4OOoueqaqKSqUi20VLjA0yciDxWOG6LlZXV7G1tQXXdWGqKsrMmKhcLqNQKIidY7/EQJQG8sWUfQ3DUHgfFAuF0YkB351mdQOKArBdcVYz0E6LoGoadFYpoLGvYtfL6vVbr6EdOpVN8t1ywBaVhJUuqowUmIaBnWoVH334ITRNwwfvv5/eb6T3LgjDdJyquj+ywd4TTdNQKhbRsG3EcZyK5rKRAF5WSdOmTjnLAqan4QcBlI0NuJ4HTVEQ+D4eeh62VBVT5fK+DphNV9diZ9w0rI53qQOY2HOfLgMs5cGMsnjqSZCFMEzJAhNAco8IYI8sXLx4Ed98+y0WFxawfPTo/nLKAcaoMC2Coihp9KVeh12vp1bM09Owcjlsb28jl8uhPIa24hISkhxIPBaEYYi7d+/i4cOHCIIAWpKgZJooFYtCES9K9tCDGGQW1GyUIIskSdCwbVBAdGAcCoTsn9jZ4ucHgdgVtxtvVuSmqSoI22FzvwF+7H4IAbCXNujkpxCw8cQ8MsEMoEzWfGmN2f9WymW88847QsPBd/sRIwd6xg9g75L3BKCqpqFUKqU6EUYQCoVCc5Mn9np+bNMwMD01hVIUQdd1RGGIOiMYWzs72KlWUWEkoTXl0EoUWishktbX9EC796pJn5G+CAAGIguzs7OYn5vDZ198gXdzOZRKpT19QLv3rMszzktOQSkKhUJaWeL7aNTrCFwXVj4Pg6VyfN8X/ggSEsNCkgOJA8fdu3dx7949xEEAkiTIGwZmZmcxMz0tJkCOpsUzi2zNf1aD0GGhdFmXRUKI2B33AqVU+Oh38ssPM3bEwJ5lMiEkJQKZf+2MePg59n4xQOqgHVHBnuCSixoVQtJIgWmK+3R7ZQVffvkljiwv40c/+lHTTpMfm1dIaLoO+H7rafYqRFg5ZLlUQsO2RflpvlAQ5kitokmaJFBVFVEUiehDZWoK9Xod9UYDYRhip1bDTrWKUqmE6XK5I6HLRop4ioenRfrJw3csI22tImHHz6YEepGFFy5cwKe/+x2++/57vPTSS6nGgTX02he56lFxQ5ASMRpFyDPDLod10ySqCpokqFeryJdKovnYNP9MSUgMCEkOJA4Mruvi2rVr2N3ZAcIQlmFgbmEBM9PTwiUvG37nbXab8rQZItCvAIsr6BMApT52U1miQfZ+KH4fRRF8pmbPLiyqqsIyTRCmlWhaDNmC0q2ssCdaCEq7v/I8D7brioiCZZowTVMsRBTA5UuXcPnKFZw+dQqv/uAHTccRVs4ZHwW9Q58JgpYqA0JQLBRgEyJaFidJ0tR5Ubya+S0Ae++5Qggq5TJKpRIc1nsgCEPYtp1GI/J5TPfIq2fvsdBbdFl0+05VZY6Zfb8SQLS15teQJQslSnHh/Hl8/c03cB0HuXw+bQ7muqJRVbZteGvKpDVywSMIcRyLjqFcxwEAlmnCazSwu72N8tQUwjDE7Oys7PwoMTAkOZA4EDx8+BA3btxA5LpQAcwvLmJpYWFv0eIRAgYuLMsq7puqFAZQZnu+nzr6sVxwR7QsItkziLxyEOxzveM7Qb5DyzYy4q/pRAD6IgbZtEkHcG+BMIpAABiahnyh0FSjTwF89eWXuL2ygpdfeglnz51r6x/QFDVoiXi0Gxu7EPG1wKoWHMcRBknFFlJGsGct3CryUwhBsVhEsViE47qo1eui7NK2bViWhempKRQ6ED1esYAsSWh5b/l3o3bBVNASVWjRLyiE4NSpU7h27RrWVlfx8iuvwGcttcMwRBiGUBRFtNBu2uVnKzYy16AQAigK4iSBaZqglAqxJ2HkRNd11KtV2I0GfM/D4tLSXtdICYk+IMmBxEQRBAHu3LmDjbU10CCApet47vhxFLOteluJAScFwF5Yf0gkSZIq9AHkW3ecHfQD2XHwevdWEyI+mXOvgezfKKq6V43Qz8La9leZcrweBCIIAtiOI3bBhUw4P4vvvvsOt+/cwZtvvIHnnnuu6zF5CWOvGvpsx8QsLMuCQkiaZvB9uITsW5xUVd3bGXdAPpdDPpeDHwTY3d2FwzQdaxsb0HUd01NT+yocSKf7mo26sKhUFMdde2D0A9JCQrgeg49CVRScO3sW33z7LV68eBHlUglxHMNnDa6SJIHnefA8Dzpz/TSy0YTs2DlBUBRBni3LQkIpAt+H4zgg+TwMw0Ahn4fjebi/sgK7VsOxEydkW2iJviHJgcTEsL29jTt37qBRrYIkCWbKZRw5ckSUXwFIy7SYFgBAxzz6sPB9P93NAc0CuQ6gLGfsZ0xwOHRNE2LGbpEAAgBs8u51rnY/410keyGhaTtqPwhASFqFUCwUhN0wD/sTSnH95k1cvXoVr776Kp577rmOCzLfdYdhiCRJ0mOxRYi3Oc5el9ilI0Ni2K7dME3kkfpKOJ4HoigwLUu4IRJFASUkPSa/dx3umWkYWJifT0sg63XUbRtJkuDh5mbbCofsuNqBIiWOwtp5AI1CN7QKMPmifuLkSVy5ehXXrl/Hqz/4AVRVTTuDWhbCMITP2mdzfwWH+S8Yprm/MRU7pqqqqa6ElYOCiWJtx0k1L7qOfC4H1/OwvbUF23Hw3PPPY3F5eeTrlHj6IcmBxNgRRRHu37+PRw8fwqvXYWgaFhYXMTs9ndrmctC0854o3WM/jgepAe8CHm6lSHeg3SZEsZPz/X3+9yZr5jRI6aOiKE1eBm3H1zLW1soDHq4GpXutiNnvQuYvwMdqsWZThC224viU4v6DB/j9V1/h3Asv4MyZM22JQfaaY9a9kbCulkDn6EX275oWY/a9aRhIWN8G27ZT0qDre/4HvNUyrzRoIR5ZEAC6YWB2ZgaVSiXtP9BotK1wUDWta0SCZho1ibQDae4cOSqy4zd0HWfOnMHlK1dw/oUXYLIoCu+GaRgG4iRBkEldeb4Pz/ehaRrMNqSUu1ry7pU5Vq0QsI6apWIxNfrKiBdvXr2K2u4uzrzwwlg8PiSeXkhyIDFWVKtVPHjwQHSWqxSLmJudRblU2ie2itmOnkyAGPBdVMJ24u06LiZJIiIE2VI9QoiYjPc596F/EaGqqmk+vd1rM776/B6IkryWc/Hr4Yu947rwPQ8gRDgSthsnAGw+eoTPPvsMzz3/PF5+6aWu4xVWziylwMP+/aLTfcnlckKzYTcaUFh5IiEkjR7w9tEtaYbWRbqppFBRUKlUUCmX04ZPmQqH7WoVZVYSa3R43+M2WoN94tMxkQSO06dP49q1a7h56xZefPFFQfo4VEVJO4laVuqc6fsIMl4Zjus2pbOAVNMgrkRRUCgUQJn1eL3RQLlUgqqqojrCtm2sr66iXqvhhYsXUSyVxnqNEk8PJDmQGAuiKMLq6ip2trfh7O6CUIrFuTlUKpW29dYxM5hpVcq3CroGQVNLY0JEY6VcJmrAQ+a+7+/TEei6DtM0obfoCLLja1dx0Am89EwQD17nTwgoD3u3LBDdlqMoimDbtmguZDFToU7jqdVq+OjjjzE3N4cf/vCHfYs4eQnkoCVw3e5LPp/ft6vlnSFjsBA/j1LsHTCNYHQ6H3tNqVRKxYuOg916HWEQoGHb2KlWUSgWUSmV0m6dhCBmBlWtzpn7jsuODTSTklFgGgZOnz6NWzdv4twLL+w9Z5mIUHravYoHTmD9IEASx8JsSVVVmKYpjJESRrS5IJSLUxu2LWyt9Yxhld1o4Jsvv8Tpc+ewuLw88rVJPH2Q5EBiZNRqNdy/fx+h48B3HOSZu2G5WExzzBnwBVFtt/gOmfNt8iNgf+/7vlgETNNEGIYI2CSbhcZ0BGYvPUKXfDj/fbsFhCBt/tOkq0gHvfd3vS8wVeu7buopwKIF3cSCjuvitx9+iEKhgLd//OPuIeSW+86rB/blukcA95dIGg1EnCBkokmd7qzSQzvQenxuEFSr1US1hO04aQfPclncs2xEplVQ2OnnrR4Hw+DMmTO4ceMGbjOCkC1RBPbfB0VRhLMk1yYEYYg4juE4DlzXTc21WFMm/jfFQgG1ej31PmARBN6qu1Qspj4YUYRrly+jsbuL46dOyXJHiSZIciAxNJIkwYMHD7C9uQlEEWgUYapSgWkYKBQKzcSAT7ad6s3Z8QYOY2erGTJ/67puqupWVdTq9aa0AdcRGKbZVOq379hdxpLtGcD+oONrFQBQ1bT/APtZvwV0cRTB4YZGLD+dz+e7KuyDMMRHv/0tFELw7rvvikWj47VkIjiUKfgBdExVDAtCUh+Eer2OmLXh5uftVlLYznyoG/hi6noedut1uLYN13VRZ7vo6Uql6dqyfSCaSlkzkSge8clGoIYhCTnLwonnn8eNGzdw+syZfdEZIaTMiBk5dFaimCQJAhb9iuM4Jb5hCOJ5yOVyIiJRKhZRbzSQxDEato1CPp9Gaxh5qDO9xsbGBlzXxZHjxzEzNzfEVUk8jZCKFImh0Gg0cPXqVWw/fAj4PvKmKYiBZVl7RjV0z7ioq3p8kKgB323xhb3l78IggOt5wmmPEwPTMFAqFjFVqSCXy7UlBpQdb99YWsbe78LA/0pBmlMWYeQ+dsO+56FWr4sISLFQSHtCdLlPSZLgk48/hud5ePfdd3s24mklOXHGVXESznqKoqDImjPFUSQEo7QLOQAb46Alh5ZlYW5mBvMLC2mkRVHgOg4erK2hVq/3/HtOSHjJYJIkSLg+Aimp4q8ZBGfPnUMQhlhZWWlz0kxrbfb/ViiKAss0USmXUS6VUrEs0veu0WiIPheKooj0TZIkcBxnj2QRgkI+D6IoafOseh33V1awcv06gnZumBLPHCQ5kBgIPFpw88YN+I0G1CTB4sJC6gzIyqe4OQ0hpMnkaJS8Lc3mZRWlYzg+DAJsPHoEh4VbeVh2emoKhUJhfyieqdSbJvkx5JebxstPhXSBI13GDyDd6dXrcJjrnaZpqHSxD86e87PPP8fO9jbe+clP0rB9D7SOQugNhowatLvuVqiqikKxmGoKWI3/IHec7+R7IUkShMyeeW5uDgsLC0KYt1WtYnV9HR7rcjgI+LPCKx4S9rOEXXuvsRULBTx3/DiuXbvWkVjw90VEKzq8TtM0FPJ5VBgxByDKPR3HEecjhKSpCFYxAqQko5DPAyRtsuX5Puq1Gm5cvozq9vZA90Ti6YMkBxJ9I0kS3Lp1C1sbG4DnoZzL4djRo6LroKqqKBaLovogG6ruteB28gQQIkO+6+5CCnZ3d7FdrQpdQblUwvTUVJMgsfXYTYZLZDweCyL6gPYRBl6CpqSDaPpdEASo1etCLJnP50W+uPtJKb759ls8ePAAP3rrLczOzvYeZ5sIRpypVBgG/d5DjeW+CSEIwxAuW8j6OX7byE4G3NwobklTWZaFxcVFTJXL0FUVETNT2tzaQjSCU2K2/JFHGGLmCcHJQuvTfe6FF+B7Hu7du9f7BJnoW6er5qmCcqa5k8+epSAMUcjnQRkJ4A21QNL+HzkWXfI8T1Tu3Lt9G3du3hSVKxLPHqTmQKIvRFGE27dvw9ndhZIkWFhYQLFYTPPHLOxdLpX2QucZcBOiTtiXv0eGFPQIJYdBAMd1xSQW+D5MwxD2u9lz7DvfmMhA0zl6CReBprSICgjjJdd1U+MlQsSOsN9F+tqNG7h54wZef+01HDlypO8xt97faExixH7SRLquo1gowGfWyJ7vt3V2bAcC7FV5ZBbmmGbcNtvk7nkJZLFQwHa1CtdxYLsuHNdNu0RmnTuHRFPvhWzJKiFiN1Yul7F85AiuXL2K48eP95dS489NNjWV+TvCUkHFQkGUPsZxDM/zoLBeFjSO4bguypmKHMs0QZmvgu26UBQFmqahVq3CdV2cOH0alrRefuYgIwcSPRFFEW7fvAmPEYPlpSUUi0WxmHFi0M5KOOlBDPjrmtBHpCAKQ9RqtTQnz7wEDNOElculor1cruOujWT+jQPZUHpPYoA29fs0dToM2I7OsiyRK+4H9+7dw3fffosL58/j5KlTA409i2z9/6hixH71I6ZpwrSs1LAqcw/6Ogf2UgxxHKcdMVv6XnQah6ppmJ+bw/zCAkxmVby5s4PV9fV9FS2joCmKxvQLCftcnDlzBo1aDZubm4MdNEMSSMv/OTRNQ7lUQoFZSydJIsyoQqb1yCKXy4mIQyNjxR36Pm5duYJarTbE1UscZkhyINEVURTh5vXr8Gs1gBEDy7JAkwSu64omOe3y4f3Wh/PwK7qQATEeRgp2azWEYQjC6v2nKhWh0tZ0vcmJMbsYj5MUAL1TCL0QRVFaTZEk6YReqaRCsT4X142HD/H5F1/gxIkTuHjx4gAD37+z52JENdMxcdIQlSPs+bGZiLQXeI4/imMkcTyQZiGLnGVhaXERU6WSSDWsrq9ja3t75KZMAh1SAjOzs8jl87j/4EEqdBxS69JaRZGFYRgol0rIWRYU1njMcRxUd3fhtwgPC/l8aifN+pFwxEmCO9evY+vhw6HGJ3E4IcmBREdwYhDV66CUCmIAmtoSc5OfdqHg1i6LnUD7yCED7UmBaZqoVCqiCyBvoWy0iA5bNRDjAI9IDHNcvuhEYYh6vY4kjqEqCsrFomi4oyiK6LHQacmoVqv43SefYHFhAa+99lrfJkcAmlstM4iUwphLGLuBv++GrqcEgRDYTG3fDpSmzppRFKVmUBmfgGHNsxRFQWVqCsuLi6KqoWHbeLC2hkajMdQx24I/5xn/hCPLy1hbXRVpgmxFxEBUIVsVtO+0KYEul0pClBtFER6xfgv8eSSECP1Ba/dRAHhw9y5W+9FISDwVkORAoi2CIMDNa9dSYkAIji4vi7I4Smlq34u0Z0E79KoDz+64u5WohVGEeoYUIEMKipnQe5IkCMMQFKn/ftOiMdil9wTNTO5DgRD4vo96vQ4KQNN1lEql5r4T7HVCvNhCoBzbxm8//BClUglvvfXWQDv9dhoPIBM5eAzkgJC0a6OmaaCUotFoiN10wghBGMeIWeqgrdCTH68lD98vdF3H/Pw85ubmYBgGKKV4tL2NtY2NfU24RgEfJwWwfOQIXNdFdXe36TW8vFOQhT6jCiJC0aZ0WFEU5HM5zM/OCr+EeqOBWr2elpRSCl3XU3JIadrqHHvRCEIIth4+xO3r1/e12ZZ4+iDJgcQ+BEGAW9euIWw0QAnBkaUl0UmRACLkqPHdXgu6VSdkSQFHu+mbh9t3d3fhZ0jBVAspEGNmxEBli+m4xYZ87BSprmCUY7uum7ZYJkR4L/Rc3Bk54PnjDz/+GLqm4Z133hl4p99p7MPaJndCP2WNvL8CB8+RR3GcWiGzCAFNkr70HATppDbK+5PP57G8uJg6KioKwjDEg/V1bO3sjC/VgJQUz8/NQTcMrK2tdX1t31EFXnnDIgntXqfrOmZnZlDI5xFFkRAt1up1+EEgIoE+q1xoLaWs12q4cfXqvrSExNMFSQ4kmuB5HlauXkXkOAAjBtxJUGF16SJq0KZnAhddtQNXbANo2t1lXx1FEer1Oqq7u0LsyA1f2pECjiAIRNTgSUohtB6n3mik5IpSWJaFAqtBHwTfffstXNvGO++8I9I8tOVfxzF0+H0cx2LhG5dtcj9ljdl20GEUgVKaPleEIGK190Ofm5CuRLUbFEXB9NQUlpeXkTPNNNXQaODB2hrsPssu+zqPqmJ5aQmrq6t9/002qhBn9Bat7ysnSu1+xzuNcg8ETjodxxEpw6boAfY+pwSA77q4efky7D7MpCQOJyQ5kBBwHAd3r11D4LogioJjR47ANM2mCZ4bq+iGAb3NjjXBfsW+mFTaLYJsV5IlBVwtniUF3XbHvJkSKBVGMOPGqGQjoTTdmfk+QCkKhULHlEw3PHjwADdv3sSrr76KcrnMBkf26uDbkC5h2tNG1c6RjRoMm7vvhCxp4RURvLqAV0ckXKNCWO8I5k3hue6+Bln9gmD0KIiu61hcXMTs7CwMlvJ4uLmJ9YcPEYwptH70yBHU63W4rjuwsJIQ0kwU2hAh4eHR8r7mcznxO9M0hR8If29cz4PnecKhU/iWsL+J4xi3rl1DrVod/KIlnnhIciABII0Y3LtxA4HnQVHVNJXAxHF8UomiSORe2y1slFLRipj/n7aIsFoRxzHqtt1ECrLpg66kgP0Lw1DU1Y9LTEcxBm0BQ5QkqHEhJYASs7wdFI5t44svvsDRY8dw4sSJjq8jLePOLg7CCpgv2GClgOwe8qhBUyQCzfX6wlegzev4sbMle5wECGOglnQDH2824qSznS1vMxwPq+QH9ms5hkChUMDy8jIqpRJ0RUHg+1hdW8POGFINi0tLUFUVa6ur6YQ8JDnj72/WgEn8DhApBw5VVWFxEub7MHRd2DFz3YntONipVjtGoyiluHv7NlzbHmrMEk8uJDmQgOM4WLl+HaHnQdU0LC8twWjTpZDnGA3T3LcI81Bn9v+9wsqe72N3dxdhCyko9REp4AY3BBC18foYogZN4dMhF6QsIiaojFhFQjHjYDfQuJIEn33+OXRNG7gyYe8gVIg/SeZnoLQpcrBvIWD/5/luvuhz+2Dxjwvnsv+AnnoKUYbX8vNcLifG44yw+HRS8Q8KRVEwPT2NxaUl5CwLGiHYrdexur6+zzdgEGiahvn5eayurTVpZdpVlPSLJqfGFvLCBYtAml5QVVVUIHHRYrlYRKlQAJBqZHYzzctaR5XEMVZu3hSfY4mnA5IcPONwHCf9YLsuVFXF0aUlUU7XCh7ebS0VBPaIgRAcdosWJAlq9Toato2EUmi63hcpyB4/W/4Y8hLGEclBNqc6jsC6zzzu4ySBzkxphg1zX758GZubm3jzrbeGvs5uiyMP70+i2VJ68s5nF4tha86cEKHJiMJwqD4IwB7JG7RxUyeYhoHFxUXMzMzAZKr/9Y0N7LRUHAyCI0eOYGtrS0TmuJviICmeblofHrlpJb6EEBEFDIJAeEyoqopSqYRioQAQgjAIUG809lVt8A1AFIZYuXmzYwmqxOGDJAfPMBzHwc3r1xFzYnDkCLQOxIBSKsqXWrUGPOxMWwlBm8mKRwsC5lVQyOXSUG2vtsIdShPDKEoXNkLaaiD6gUh/YDykAEjTNI16HQnzXSgVi02q/EHw6NEjXLl8GS9evIjZmZmhx9QpNJxkdpeTMD/q5UEgftdmfKqqIs9MoRyW/x4U2R34ONUUxWIRS4uLKObz0FUV1VoN6w8fDtWnYXl5GaAU6+vr+37XT+SDu0T2QjaawJ93TddTbREhcFy36TmxTBNFJhCllMJ2nLS7Y+Y1nLC7to37t2/3e8kSTzgkOXhG0Wg0cPP6dVDfh65pOHbkSNddO48aEEXZ5z6YxHFqd4yWUHxmUo6TBPVstIB1GuQiKKEsb4FojNRhceE7GUPXh5r4RaRjDCkEDpuVKgJscmXEYJjxBb6Pzz77DHMLCzh37txI4+p0D0Wb5gN0RmwCTyt0eA9M04TB2hLz52egw7eca1wNtoDUE2Jubg7T09PQCUHg+1hbWxs4ymFZFqZnZrpWLXSLfAzU8hx70YSIGUnlLAuEVSxkUyQqcx3lrdiBtMSx3mjspRmYqJgQgmq1irX79/seh8STC0kOnkEEQYDbN28iCQIYhpFGDHrsunknt+wOP+F5/+xk22aC8ljHRL8lWpAtmWvdXTb1K+gy6XEx4lB5/My5xwFeqsgXhlwu11SqODD9oBRffPkl4jjGG2+8MXTkIT1U57NPPKWA/iIH3caYz+WgqCooK7cbw4A6EtJhUCqVsLi4CN0wkFCKtYcPsTtgP4KjR4/i4cOHXSMAnfpFDCuKJKw8mVKKHBPJer6/r6w1TpKU6BYKIIqSCok7pBk2Nzaw9ejRUOOReHIgycEzhiRJcOfOHdAggKVpOLa83NeiEGZSCsJuFb3z2PV6PXW7axMtaEXrItorHB3HMaIoSv0NBiQH4yYGvFQxCAKAUhSLReRG7GR38+ZNrK6u4o033hjpWL3MiLI9FR4H+iFPRFEE0QrCcGzNkRRFGRtBME0TS/PzKOZy0BUF29UqHj561PfCfeTIEcRxjId99DAQmp4+vC36hXBHREoQQClUVU2jSZQijmPouo4y0wa1SzPwz9PqvXuoy2ZNhxqSHDxj2NjYgF+rQaEUi/PzfYWReUthinR3ya18u+1kW6MF+TbRgk7n6kUKOPiuRdf1vsVm4xYdAqlHQNbeuVQqtRcNDjCBV6tVfPvttzhz+jSWlpZGHmO3a+VakknbJnd6T4UgscciqmmaKL2zbbtv/QEv4+sEvviNAyqrPKhUKtAVBa7nYXV9vS/75WKxiHK53NMtkYMgJU3jIjcAxHPr+z5C5pvANw+894aiKCgWCh3TDAAASnHv1i24YzSMkjhYSHLwDKHRaGB7fR00jjE3Owujz1r7KIoAJmAyDEOQgnY7ok7RgnyHaAEHL30cJOfNd+ntqic6nWPcCJl5UxzHUFU1tdwdIsWRRRxF+OzTT1Eql/HSyy+PaaRdzjdmZ8RO6PTuD5Irt0xTdN90HKfv97TXOYiijPX5qFQqWFhYgKFpSOIYqxsbqPfRxGl5eRlra2t9L/jcV0IhZCwER9c0KCzdEjHHSpXdmzCz+PMmTd3SDNwkaSxpIIkDhyQHzwiiKMLaygpoHKOQz++563UBn6AoALQRIrZORsNEC3jIm+/kWxsMdQK320361BuMy9AoiyAMUa/VRKliZYRSxSy+/v3v4TgO3nzzzZEFgr1CznGmqc9BiBE7umSid+SA/32hUICiqojjGK7r9nvini8ZV6kjh8XaQecsCyoh2NzexqOtra5phuXlZQRhiGofroO8QyUftaIoI7tbcrdEENJUVgnmY5F9XgC0TzNkKh6iKMKNK1fgjLO7pcSBQJKDZwRrKyuIfR8qSZu9dEOrEJDnopvKlzLfjxItyJq+cPQzwWUV9t1y5aIvAh2tWVIrwihKSxWRRlNKpVJPwWA/u8F79+5hZWUFr772Gkql0ljG2lW3wVMKE7BN7hf8vvW771UUBQVW3uh5Xl82xv1e27jvAE8zlFkTJ9u2u1ovT09NQWGq/17o1Ddi1PfR0HWhMeDRg+xxuQMjx740g++LNINCUnvn61eujLf9tcTEIcnBUw5KKbbu34fXaCCMYywuLHTc3Wbz8dkJoVVNTjPfD60tyJyrFTyC0A0839zLXrnTOUYB7wPBiUGxz+ZJvciBbdv48ssv8dzx43j++PExjbY7OMmadEqBo9P7DQyW9tF1HRavzR/BXnn/YMbfzZM3cZqbm4OhaWkUr0MDJ0VVUSoWe5ID7lLZCh6BG6WyRVEUmMwh1WcNzYA9wyO+4PNmXbyMslOagTdsu3n5MhqyUdOhgSQHTzGSJIGzs4OdzU34YYiZqSnB7rPIWgYDezXTwqO/tcSQhReHiha0pBE6oVctetwHOUCPcwyDKI5RY9ds6HrfxACUdg1tJ0mC3/3udzBNEz/4wQ+G9tdvOiV6ExKuNxhH/4F+0Xq/+illbAcrl4OuaaBI+050rXYYbIATiaLk83ksLi7CYgvvw83Ntm2gp2dmupID7i3SDYTpEIa9Ct77I2Btm/efYK8UVJhosRRfuzSDoiiIkwQ3r1xBfQQnSYmDgyQHTymSJEHUaODR2hqiOIZpGJienm56TXYy5ou16ImQmRyzuegkSYTL4VDRggEmrG67H6Gcbjlnkz9Cn+fpFxEjRAnTGBSLxb4XkV7L3qVLl1Dd3cWP3nwT2oiCxix6je9xlTG2PnvshwMRBEII8oWCsO/1uxgPDRNXGEc/hlbouo6FhQWUCgXoioJ6vZ66KmbSDJVKBbVarWuzo37RzWCsG1RVTVNNiiLKRrPPEv+O3yOuf0iSBISQfWmGRqORujNGEW5evYqaJAhPPCQ5eAqRJAli28b2o0cp86cUC/PzTa+hmZ1sdnLuVEbIzVJq9TrqA0YLgOFC/ATtRXKU5UMTSpsIyaDkYxDESSLEh5qmpXbIA+wuuzkwbmxs4NrVq3jx4kVMj2CPvA89FgR+H4HJlzFm0fqMNZHAIRaxQtZeeUxtlDmUIcbU85iKgtnZWczMzEDTNERh2NS8aWpqCgkjoq1o10ipFwiGI3/Z6EE3B8YsieKRBAD7TJNcx0EQRWmK4epV7MpWz080Dm5GkDgQcGJg12qo1+sI4hgLs7NC0Z/9kItcL08j9NipN2wb+VwOqqYhZ1mp5WovUsBIyLALNicI2QmR961XCNkTS3IL1yHP0w0JpWm5Iqv5HqZPQqflJfB9fP7ZZ1hYWMC5s2dHHqvQhSQJkr0f7kVUMrvzKIrSHhdInSYDJnBrqlJhf+O4LijSDn16pmMnAfbe3zapqCwREM8K/8qfjRZDn0HfQ8M0EUYRAt9Hw3FQLpX2aVaGfi74zpv17xgnisUidMNIGy6FIdYfPsRUpYKpSgWEEOxWq01VRTHrhDksBk3fiLLGJEEURV19KlqjE8JhUdNQLhZhOw6iKILv+4iTBDnTxK1r13Dy7FlMtUQ0JZ4MSHLwFCFJEsSNBkLPw/b2NsIoQrlYRLFYFK9pnahb9QXt4Lgu3Ex5UqVU6pnrB8a3k+cEgbKuctn2wvw84+yNkAUnBrzlcrlUGq7kr0Md+jfffouEUrzxxhttFx8u+BJfWb5ZNLtiyvHWksWmBaBV78D+H7BOh6qqdq1Fp9jrfOmzCX7f5aFF0Jr5HmgmRwRAgpTA8Ocuq2TXNC3t88AIK/e/IIqSdipsU7KXz+UQRRHiOIbneaLT4LhACEGCEUhGB5iGgaXFRWxtb8N1HFRrNfi+j5xlobq7Cy5LTUYkBkBm7CwK2NP7gaQ9Feq2LRql9fiDJjEzkBIaXl3i+z5c34fveSBIIwucIIw1YiYxFkhy8JSAE4MkDEXrV03TMDMzIwSAraBA14ZAlFLYtg3P99MJW1VhWVb/xKDDeYcBAQBFAVjeEkj1Bp2ubRzgvRKiKIKiKCgNSwyAJmLAF/pHjx7hzsoKXn7lFcRJAttxmhb8bLSk3SLLr11MxhkSIHbgfIHl32e1JGEIVVVh6npavpaJAIhzsr/hhMDSdZiWtXc92UhDRu+RHROPWLS+hi9SYLvOmBnv9IMsUeBEQlEUuL6PgL1fuq6npIJfSw9RaPcTpi2U+1lUB4WiKJifm0OtVkO1WoXv+9BzOWzv7ABo7po5DvA0Qz8NrFTWz4Jm/BS6HRdgRIqnKLHnX2FZFhRVRb1eh+d5aT8Hy8Lt69dBz5zBzOzsCFclMW5IcvAUgIsPEUWo1evwfB8xpVheWOis+qe08+/YMeuNhujvXq5U4LquMB7qVGo4ahqhGzhBiFhaQdO0yRMDdv2lYrFvgyNezcEFWDELy2bzxTRJ8NXXX6NULmNmdjb1skebBR8QKR8l+5UthkpmZ81fCzSnjzqhTghUTUMhnxf55U4wma2uYZrItal4GQacBAFpeVwUxyjkclA0TSxIPCqS8O+5CQ+l6U6+ZdGMowhhGCL0fSFWFKI8pIuioqriq8JTGn1C4QvfBKoZyuUyTNPE5uYmSoUC7j94gN3dXRQKhbGfC4BwQuxGEaI4hsb6qQRh2Lf7J08zZO8SF/Lm8vlUf8CEjjnLwsqNG6BJgtkWbZTE44MkB4ccSZIgqteBOE6rCKpV+FGEuZkZGIYhdmYc/egL4jgWoXQQglKxCF3XRVlTEASw2iwmkyQGTedJEiBJJlabTwHYGWJU6pBGSVitdxzH6cIfRYg6hH/jKBK6CBCCe/fuodFo4O0f/xiGYYgdbuuC3yvl02n8/fyFMJI6wDLGJrBnhV+3yghfrwWIR1W4riJLJAqsAoA/p5qm7YW7kwT74hKKApWQlDCwJkOif0i7zwghom5/EgTBNE0sLS6iVqth5c4drG5sYHF+HuUxGWK1gm8Q4g7XE4Zh2myNUoRBgMSy+oqetdMhAOkcYRoGaJKkBlYZgnDn1i1QSjG3sDCOS5MYEZIcHGJkiUGcJNje2kIYxyjmcqhUKiI6wEEp7ZpGAFKRWo2V6yksx65pGmJWDum4bltyMMlKgSxi1gBK4R3kJqA1sG0bfhgClIpyxSAIRBQgZqSg7bm5jwMh0FRV7FKBvRC453m4ffs2zp45gyNHjox9/P3ck2zaYpKtmrtBPJtZrUQff6ewxRwdxm0aBhzHSUvqmN4mYe9bFEVI4hgx9wqIY8SEIE6SlAxmIzbsvdsXbWD6BzohgkAUBcePHcM333wDz3Wxs7sLSikqfVieD4t23SkjNq9wDUicJOlnf5DIURsdAgBoug4TgOe6CFjULGdZuMsIwvzi4ohXJDEqJDk4pMgSAwDY2dmBFwQgJLVH5qIvjn6Ige/7qNs2wEoES6xXAP9gG4wcZFMLk/IUaAeK5iZBfELrZCM7CPii32g04DgOkiiClct1tHzlERhu36xmiEA7K+I4E0349ttvoes6Lly4MNKYR0GS8TcYd0+BYTDOEZiGAZ+ROd/3kc/n07p9SqFnIkBc1JkkCZI4RsS+8p+ROAaN4zTakL1HhEDlKR72HGrs+1HIAn+WkySBmcvBMk0kUQRVUVCt1ZBQiulKZejjd4PY6WNvIQ8zXU91TYPtuvCDACZzpuz3uOk3zWkGwo5LKYXneSKtlrMs3Lt9G0mSYHF5eVyXJzEEJDk4hEjiONUYsAk+DMO0hW2S4Mji4l7NekYU1stx0PU82LYNIP3QlopFET7kk4WmqmldNpt0+Q7ioIgBsGd+xHe7rZGRfo8VRxEi9i9ktde+78Njtea5XE6Qj9YogNoSERgE6+vruH//Pn705psjd29sh37vAY8aHESzpW4QJJZrJcZxTEKQtyzUmZjWMIy2aSEuzFMVBdA0ZGNhvCokzpAHoRlJEsSEAEkCGoZNVuOqpkFVVfFZ6ff+ZitS+NgqU1PwPA+Vchm7rDQ5SRLMTrD0j4tQKaUIWFqNkwPF80TDs347obY7LgFE5MUwDFAAvucJ0WvOsvDgzh2AUixOIrIm0RckOThkEOLDjKVpdXcXcZIgn8shn88D2JtseAi0E7jFKV8ULdNEIWMJ3FoiZ+p6Ezk4SGIAsLQCbTY/aqqTb5fvTxJErIkML3fj0QbKJvkgCNIctaqiUCymu80OUYChroG9H7//+msszM/j6LFjIx9zFLSWgz42EJI2xWqTYhgFuq6LCILjuqk3BfonHwohUDRt3wTZLtoQZ8SmNAxTt0b2PCqKIogCJw6tz1OnaoSpqSncvXsXlXIZhBBUd3dhOw5okmBmenpixI4AouESAUSLbF3X4fs+oiHIAT8u1yEo2ItsmoYBJAm8IGgmCHfvAoAkCI8JkhwcMsS2LYgBRWob6zoOoiTB0tSUeB2lNA1zdjkWZTX8fIeQz+f314e3TGQ8tRDHcUoQeqjcR0HWxZGDVyq0c/TjJCGMIkRhiCiOEYbh3sTLd3tId8yarkNTVeELb+g68vn8YDnVPkEIwbWrV2HbNt5+552J5KoHWVZF5OBxkwO0RH/GeFwrl0MYhoijCEEQQGcVF6OgU7SBAqKLYRxFKRlNElCWpuCfsWx0gZPPTqhMTcG9ehV+EAhjp+1qFY7nIdnextzMzEQIAqWp6RUBoGdSCJqmwQ+C0V0oucg2Q4hMZqjmtkYQ7t1DrlBAeULpFInOkOTgECF2XVA2yXBFeq1eR5QkyFvW3qJGe7vM7atIKBTalrNld+KccOTzeTisoYrBasnHjXbEgJezARkDJBbm5FGBKI4FAciGaVVVha5p0Ng//ve+76cGQITAyt7DMaPRaODKlSs498ILY2vFvA8D7LqflLTCPoxRYKqy99RxXbie15c/x7DgpEExDICREJoke5GFOEbE9QxBgAB77wHvYyBSEYzUT01NAYSgtruL+fn5VByrKKlhku/j0dYW5mdnx/4eeix9oCgK8mzRphm9BtdlDHteHsFpjeQYGQ1CliDcuXEDL7z8MowxkDuJ/iHJwSFBEoaIXRfA3gcqDEPYjUYaNeB5SF5O2KaMiCNbkUBYRYLeYeLMGtxw5bFlWQjYDqLhOChnHBjHAV750IqY7cpiZs7EledZ90EuvNSzodw2jnoAEDCtBgiBaZpjd9XL4uuvv4aVy+H8+fMTO8cgOOhWzV0xQUGkaRjiWfU8b2LkD9hfukcUBbqiiM8WZSZPIYtqAdgrhY1jBJnj8MiCpqrY2dnBPKv/L+TzIAC2t7fhBwEebm5iYW5ubAQhYiXRQOo6yUXHInqgqoiQziEjLdZ8Psn6LChK+v4Q0iRSBICVGzdw7uLF4c8nMTAkOTgESJIEERMLchBC9kcNMgt4Ry//IEC90UhD86qKcrHYsemOUC6zcH1WaVwoFLBbqyEMglTBPCZWv2/cTBgVhCHq9Tocx0l3/5nSK5URAZHbbbfgUdrkCBdGERr1OijSHUuBaTUmgQcPHmB9YwPvvP32xHL82VbYvcAjKjwH/CRg3JqD7HHzuRxqjQb8IICqaR2J8LjOB+wXhvKuhYqiwDRNkY7IemVwXQxNEkSUIkL6Odvc2sKRRgOarkNnqS9FUbC5uYkwDLHx6BEW5+dHJgiUUmGjbRiGEMxmKw40TUvTdaOSg8xz10SqKIXJzssJAr+Ta/fvY/kxa3WeJUhycAgQ27YIlQPphykMguaoQR8GRJ7nodGhIqEjSMZKNwNNVZHL5eA6DmzHSa1qR1xo+PUlTCAYhiHCMNxXqWAYhrBx1lhb2Z4gqf0t7xPQYJ0lTcNo6j0xbkRxjK9+/3scWVrC8oRLs/q9+1nzoyeGHPDKmAkcW9M0mKYJz/Pgui60UmliQtpWYp7tUtjunNz0Klu5EsWx0C3k83k0HCclDqxvhEIINF3H9PQ0dqpVRKxp08Lc3EipE8/3EccxiKK0dcHk5YceEyWOgqyFNq+mokwgzHs6AGhKMaw9eIBCqST1BweEJyzhKNGK2HWRBIH40PDJvClqYJr7iUHLzqVh24IYmKbZVwOhbpMakOYDufe63RLZGBRhFMFxHOzWatipVmE7DgJWJqawsH8hn0e5VEK5VEIul4Ou64N1R2QTkeO6SCiFoWkTJQYAcOXyZQRBgFdefXWi5xkkNC9y3U+Q3oATt0mYWgHps6oQgiSOhenOpMAjMjHLzQ8KTVXF814sFhEx0zFVUURJZRAECKMIlmkKcfDGo0dDL9pxNp3QxQVRZ+6RlBuBDYmmpzVDEACkzwAj7pZlCR2C47q4c+OGcFWUmCxk5OAJRhKGiFx33+4uDALha7DIREv7lgZe2kcpGiykCqCp3LEb+ETdbckhAIqFAnbrdQQDphcoUs1EyEoI46zNM6tGMHUdumGIvHiVCbuGjlBQioZtC9e3UqmU1luPwUSpHer1Oq5fv47z589PzB9fYIDxc0OmJ6FSQYDs9T+YBBRCkGOmVo7rQtP1sZMjnobjIXKFEMR9iIO7wbIs+MyrwTCMPd0Cq8hRNA3lchk71Srq7NqWFhbS1ur99gKhFLbrApRC1/Wu6QLu+RGycYwtTZaJUPKNELdaBliKgXVzvHPzJs4+RgOxZwWSHDyhSJIEoW03dcnjqDHv+LxlIZfLdW2eVKvXxW6iVCikHfV6oF8jHSAN2VqWBc910bDtNETaIbTJS7pCpiFAZiIFITA0DTrLdbabuCkrORwoWpCB63lp61mgKaUi8sSA6CY3Dnz51VcoFAo4d/bsmI44HvAd35MUOQAmb6ZlGgY8XUfIWlWPS2fCScG+fgs8lTUC8bQsS1TiaBm/AV3XQXO5tNFUFIEQIuzTV9fXMV2piNSboesd/Tq4z0nMjtGPKFdnRmhRHMOgwzWh6nlPOGFvSTG4rouHGxsolkpSfzBhSHLwhCK27bTjXIeoQZgkWJie7jihxlGEXUYiCCFpRUIfxiXDTGT5XA5xHCMMAtTq9abqhyiOU0LQpj6aECJ2RNxopRsSJrobRngVBgFcxwEFUGzXYZFFX1Se+xwxknDv3j1sbm7ip+++C1VVm+yTHzeeyDJG9t6PszVxu3PkcjlEzPeAP3fDgEfWsiLXds9vJ4Fiv7BMEwRpyW2rnoAAojQ3Z1koFgpY39iAFwTYqlZTgmAYaRqFkXadNbbiO3PbcdKeEoSgwISOvaDpOojnpZ9n7no4Lu1KVvicESq2EoTbN29K/cGEIcnBE4jYdZGEYdsPXDZqkO8QBYjjWBCDXhUJWWQFj+2cBjuB78TrjQbCIEC1WoVhmqIeOgtVVaEbxt5ups9zJJnQ/6BphThJ0GDEwLKsnirrrLaDsgVgkDOGYYhvvvkGx48dw/zCwsTy6ByDHJ1Suhc5eILSCjxCNkmBJK/QsUwTLsthlwcUJ7amDiYN07JAWWlfr9SUrus4sryMza0t+L6PBqvsUZnRFw0ChEy/pKnqnguioqCYz/dt560qCqAoAHOJ1FjXxrG/c5noAdBMEBzXxfXLl/Hy669L/4MJ4QnaOkgAzM/A89pOklmtwUwHf/U4SbBbr6d5e1VFpVzujxiwDyI/bzLE5GfoOjwWPdja2hLCIV5+NVWpoFKpCCHjIJOJEEcqymB18ZTCbjSQJAk0XUdhQC8DQtImO8oAC9f333+PKIrw8iuvDHSuYTCoiE/cR0KeqMhBtlxu0ucwmbiPJgl8ZhveCSJlwEoRs8ZafZ93BNLDLcq9PkWUqqpibnY2JcG6joZtp/qaQiFdRBUFSZKg3mig1mig4TipedMAzwLXHRBCRDQw24StH/S8h4QAbfxJTLaxAFLb+FvXrg1wVolB8OTMDhJt/Qyy4FGDnGW1LTVKmB0yZfXUU5VKXx96HhYcJgQaxTFsx0krDGwbJmulzLs5lkollEolWJYFJdPhcdCpkmZsjweB7TgiJ1ssFIZbfLjPA1tQFT5ptTnWTrWKm7du4eKLLwrDnYnuMgc8Nk9vPElRgyZM8F4RropXFKHVcT1vX8onSwi4K+eo7yF/dgY9js4cSHuRmCxUVcX83BxyjARtMcOkXC6HUrGYpid4ySCrdqjV66gz4XI/Y9Q1DQRplRFH302m0H/6iL9nWVismoJSivX1dTy4d6+vY0kMBplWeIIQ23bHHvE8ahAnCRbbRA0oUnU8r1Mul8t9s/lBdzUUaQ7Ub6l3JooCyzAwVanAdhxEUYR6o4FyqQRN0/YqIIZYoLnqe5CUQrbLYl+eDgMg2+WSZtIwX3/9NabKZZw5fXps5+oxkMEiB0+oGHGSEYN259ENA1oYIgoCuK4rQvaTThkorPS3XxBCYOVy4jke5O/mZmdTq2XPw9bOjrA8juIYlmkiNzUFhRD4rCySCx/djBaok4OmpmkpgWK9TgTxIqRniqGdNXrH15K0AVaSKZvkwskGc0lduXULpXJZ6g/GjCdshnh2ETlOR50BANRqNSRJAqtN1IACqDcaQiBULhY7WgY3/2H7SbDT5BVGERq2LaIEURSJ8qdisYipSiXtZsjKBDVNAyhFrV5Pe8N3ID79gEcO+q1UiKIIjm2DAsjl89Am0B4ZgBBQKYqC+/fvY2t7G6++9tqBLHbDLGTxkyhGxOQrFfZOtFcua5mmILqe7w+VMhj49Nkx9AnLsgYmB+lpCGZnZtKyRgCr6+uo7u6CIG2yZrLKoGKhgEqpBNM0QRQFMaXwfR/1eh21eh2+7++7L6qqimeoVWjci8APeof5fEQyY1BVVcyDruvi+pUr0v9gzHiyZohnFHEXnQHAlPauiyiO22oNbNtOF19gb1Fm6Pgx7cDeuQ0vR0IpXM9DdXcXtVotnSjYDiSXy2FqagqlUgmGYTSNnxAixkIpRa3R6Dtv2g68c2I/kQOaJGjYdmp0ZBhtUzDjBqUUly9dwrEjRzA/N5dqFICm9MMkFp5BF9UnUYzYiol0rOTPNU3beieUQlUU8dwOErYfFYMKai3THPqzQwjB9NRUmgpDmpoEsK/lssL6GpRLJRQZmeadJh3XxS5rF50lAry0sp3xEiEkbYfeAorOm48uF5ESkRZCm7V4rlarUn8wZsi0wmNGHMdp2WKHCYMAontiu6iB47rCXrRYLMLoIT4UIcAeE1TIGtVk2TilNPWFN82+lM2EEBSLRdiNBoIoguO6CMMQhUJh4LB20m/kgBsdxTEUVU11BgeAO3fuoG7beOvHPxY/ayVLIn/K0j20R/i1JwZMKQBPaBljK3h53AiHoGgj1mTEANgjVdxkKGbtvftV7I+KQQySLMvC5tbWUOcJwxAOS5skSYKI6QusXA5WB5U/91HgviRBEAhL8yAMBanin+EwitBO5itcLzNo3Xz0i6xgOkuyc5YlnCjX19ZQqlRw9PjxIc4g0YoneIZ4NpA4TtcJPqGp3W8Ux5iemmr6nef7cFmnxgILE7Yiu0D1mnBpksB1XREl4MRAVRTk83nMTE+jWCz2PYHybm6lUkm4MoZRlB6btZ7uF6JVc49FrdXo6CB6ByRJgstXruDY0aOo9Mp7kj0nuGwFRDbc3HeEYVBiQPd8/p8od8Q26Pdd4yQgAbs+VlXQ0fWy5XlQCEm9BBRlqND90GAVMP3AsqyBIxsUabjddhxQSqGpKpaXllAsFKASgq2trZ5Wy4qiwGJW68VCARojDFEcw3XdtBW268Jn5KH9ZbZsRIaNnhEiNgZZkWLWuCmKY6zcvIlatTrcOSSaIMnBY0TkOKCdPqBsIXddV9QSZ93LfCZQBJDuArqEzgm6RwxoksCxbWzv7IhdN5CWDZXLZVSmptKSqgF2m4Lps//nTDMtq1SUtKqi0YDtun0vhNkSvE4QRkeUIl8oHFjo/M7KChzHwYUhW8ry94WnIQRpaCmBoy274EHBRV2KoozcJGvsaB1Py/959QDXWSQt/8/ej0EJocnKBeM4PtC8db8ljqZppum8Po8bx3GTZbplmiiwKoWZ6enUXTFJ8HBzs++qAU3TUGDlyDk2F1BCkCQJPM9DtVZLzZTaXSe7Vu5AOiyyf0kURbznTfoDz8O1y5dHbgwlIcnBY0Mcx0i65BH54uA4DmJKm4gBFwYC6cTRq3a/k4NZlhS4ngeK9IOWz+cxPTUlJpRB0alcUWO+C1kzk916vS/3QG6d3Ckc3mp0NK4W0r0gogbHjqFcKo3noNloAvYWEV5CKXoQ8EgDex1PVXQbK/DkpRSaFviMyDJm2oA405FUpAvGiKbowYSbMg0D3nyon4ZRAes4GscxFEVBsVAQXglA+vmenZ2FpmmI4xiPtrYGcqXk5Y/lUgmlYhGGaYJSmnY6dZzUCK1LVHCk966VBGae46zb5W6thvsrK6OcSQKSHDw2UJYOaAceYuYmLXEci1KrKIpSURGrEujZ0IctqNmFuh0pUJiTYoV5sg/bv6DpGtr9nPkNFAsFsVvb3d0Vu5z2l0DFwtd2xzui0dEouHX7NlzXxcUDbgRDgL3QauZnbUkg+xpnIgetvxf/BtzZtS7s2QU+W02RXdzb/b51rMhcy0Gkhsxs18YnLHrAu676XcgBt0J2XBcUqQ9BqQO51zUNczMzUAlBEATY2d0dauyaqqKYz6ebCFUFkgRRFHUkCTRJRtbYtM5L2fkgl8sJ/4O7d+6IlKvEcJDk4DEgjiLEHSagbO7ZY8SAK4njJEGt0QAo3esq2OtkPJXAyIbjOPtIQYmVIY5DjNWvkIynLFRVBUXaUrreaLSNIvDwMWkzOQBjMjoaAnEc4+qVK3j++ecn3vo5C0opBtF787uRsHvYmm4h2X8t0YjsOff9y7xXtOVf698iQyL6pR8HQQo4eFtwQlKr4oOyRwZ6GySZlgVQ2nGxC8JQLMYEqUivUCh0vX+GYWBmZgYq0mqn3VptqLHzFJVhGCiXSjB1PSUJzByt3mggZDbNXIM0TmSPmdUfBGEoqxdGhCQHjwFJh7LF1hpo13WRUCrEfLVaTZQR9kUM2PGSJIHDhIYu21lkScG4vMkHVZhrqooKc08E0g90lZVMZXOTfMfRjhgIoyNKUSoUDjRkfuvmTXi+j/Pnzx/YOYFmA6ZBwMPH/VSKtB5faXfOJ0230Ae6jdg0TSjMXrhbaHxS6CQStSwrLbdsiRxwkzHHcZAkCVRFQbFYhGmafZ0vn8uhUqlAUxTs1mqwHWfwMbPcf5wpby6XSjA0DZSRhEajgd1arclqeegnp53QtMX/gM8na6ur2NneHvZMzzwkOThgxGGIpM+wJfc2yOdyqNfraUvYjPthLyQsUrBTrcLrgxSMslfqqA7vAUIICrkcKhl/Bs/3Ua1W0+gGpYjZcVuv+cCMjtogiiJcvXoVJ0+c6J3aGTOGfZ+SDmmFJwHtnubWsrVxoNvxuPZAeQzRA6CzQZKqqjAMQ1RTxHEM27aFeJgQAsuyUCyVBhbhlkolUVq8tb0Nb8CUCn+WaMZASlEU5DMkIc6QBO5q2M4WuR/QdtHDlsoP0zCERfS1K1cO/H18WvDkzRJPOWLX3R81aFNJwFMKAOu50OJ+2A2CFOzupjlISlNSUChgempqnwHKqOAfvVFChpqmocJETqqigCL1cKjWavBZCiQ7KTwOo6Msbt68iTAM8cILLxzoeYEhTGSAJqX4k0gOOmHsqYUexzNNE4R1MXws0YMO4zNZJ0nXdUWonrCfl0sl0dp5GExVKrBMs+8Sx6bxZpxYW4WNPB1aKhRS/xVKEYWhIAnDtudut9S3pixyLNpS393FXSlOHAqHZ5Z4ChAHAZDxCOdoNwG6rpuG6rBnT1pucT9sBV9Qd3Z34Xie8FIvFQpppIDlVDuJDYdh2K0li6PC0HVUymXk8/lUIMZIQKPR2PNXf0xGRxxRGOLq1as4cfKkSPl0xRh3LkObyGQm4ieaHLTcq4PUHfDzWSy98DiiB8D+DoeUaYy4pwCQfk5KpZJYBEcBIWSvxDGOBypxBCDcC1v/hiKNVvF0Q6lUSjcmGZLgcBv2QdBlbPxO8OgFCMFdVmosMRie4Fni6UKSJIjbCIo6hRJdx4HreaLdcrFYFKU6raBI63u3d3ZS0xNOCnj6oM8c5KAYtsNiLxBCkDPNvZpqStPabSZarDvOgRsdZXH9+nUkcXzgWgNgeL3Bk9pT4aDRl6+AYQjtwaBmXWMBC5NTmvY4qNVqopJEZWQ4n8+P9b0UJY66PnCJI9cdtL4+SZKmuS1LEnROEqIItm2nTeXabJw6nLDjr7LpCk3TYDGPiJXbt6X3wYB4tmeKAwRljYf6QcCcD33fh5nLdXQ/BNKowu7uLhwWplNVVTRB4urrVnQqnxpmlzTJZZmrj4uVikiFuK6Lzc1NOK4LwzQPvEdAEAS4dv06Tp4+3dV4alIYdif7JOsNuoEbeB3oOVnlAm+VfNDn51bFjUYjFRCzEl6V6YWG8R7pB8OWOPI0Z5YcdGsKxnf1rSShUa/3Ha3pRPJa04+maUJTVTxcX8fW1pbUHwyAwzVTHFIkSYK41f6Uh+LbPOS7tRpcz4NpmsLEpBUUaQlftVZDFMeghIhIQSdSkEXbHegAO/CR+wIMAJUQ5HI5FAoFRGEo2lrzXZUfBGMN3XfD9evXkQA4d+5c33/TrgHNsBhajMjd5A4ZOWh1iRwZfT4npmGk7ZUpPTDfgziO4TgOavV6WqmUJICiwMrlJkYIWjFMiaOiKKIqCkif0biP+9xEEti99n1fiBa7odfRm/QHuRziKML66ipqQ5ZsPouQjZcOAEmbxauTlXEURahWq4iSBHPT020NfcIoSl3QmGugbhgo5vMD++VzC9JBKw0OkhiIcxKCOIpgWBYM04RpGAjDEFEcI7JtOCxXzHd8k4AfBLh+4wbOnDqVGtMcMPhubKgyRhY5GNXc6nFgElUL/ZzTNE24cQzf9/d1HR0XKKUIWXOj7IKoKApMy4LOupoSRRlKiDoM8rkc4koFu7Uadms1YZ3cCfzzxntaxAPOJ6qioFAoQA/DtIyZpRoMwxBlnKOApzO2Hz3C/OIi8vn8gTXYOsyQ5OAAQFudzSjt2OOgtruLKIqgKAoW5uaafp9QCsdxREkTYR8q0zBGqjkn6H9HKojEAeb5ubAp8H2YpinCkZRSeL4P3/eRJEmq5vY86LoOq8/OkYPg2tWrAICzZ88OeAHjW9iGvesicvCEN1x6koK+pq7DV1XEUYQgCPr2D+gHosthS9MiXddhmGaTvojStL30sOr+YVAqldLyQ9vG1vY2VFZ50A5ZcjDKGA1dh1Yqpd1b2T2Pogi5DpGTXqRRIUQ897qmIVQUVLe3YVkWZmZmhh7nswJJDiaM2PeRsFpkAGk6ocPujXc6o0mCSrnc9IEIwhAN2xa7B9M0kc/lRu6uJ3z6+1jAxlGyOAy4s6OqKE3togkhyFkWcqYpWkyHUYQwDBGGIVRVhWkYfaVZesHzPNy8eRNnz54deJEYhHx1wyjHENbJh9S4iLs7jn6w/uvreeWCE0XwxhQ9iNiiF4Thnv21osDQ9e5Rr8xCd1CYqlQQsc/V1s4OFufn2y7SWUEiN0MaFoqioJDPIwhDuKziyrZt6KxcuWMjsjagaP7smaaJRw8fojI9jSAIxmb+9rRCkoMJglcoZB/oTpNLGATwgwC+50EzDFGel1AK27YRBIHwKyjyuuExgRCS2vF2iQhMqjKhH7i+jziORVOofSBE9KCPWRjYD4I0h8vayhqmCVPXhTnKoLh27RoURRk8avAEINsz4UmPHLTFuHUHA8DQdXiahjiK4Pv+UCLUJEnSnTB7jjlUVRVkt9v1EUKgqSrCA+z5wM87Mz2NR5ubCMIQDzc3sbSwsG/x5yOngCifHvW8hq5DU1V4vo8gCBDyKIJl7UUEBzRSUlUVJAiwtbkJ0zQx1xKZlWiGJAcTBG3RGnQSIPKdMWXd5wghKBaLaVtm/nNKYVkW8vn8RCZK7qtP2xCEx0kMojiGz0pA+7l2TiByuVxKttiE7LP0A594RBe3Pu6l67q4dfMmXjh/fqhUxViiBiPoDbK56n6eHcr+Jk4SJHGc7t5YnbjPJmtVVVMb3HFpGPoQ0I5FdzDgMXh0ym40hPagn8WPmygFjKRmDiiev0FEhq3eBwcFXuL4aHMTYRTh0dYW5mdn9+4BpSKqwyM84wJRlJQMaFrqlsrmSV3XYVmWaCjX9YxsXPzZMQ0Dmw8fYmZ2Fp7nPZaKo8MCSQ4mhCRJkLRWKHSAw3oJ+EEATdNAkYaxgyBILY+ZkdEkRTRZh7F2H7bHQQwoMztKAGi6PpCzIw8JW6aJKAzhs4masvvsBwEIWI7XMLru3q5cvQpV03DmzJnxXNiQyO7QAtZTgveWiKIoFYQlCeI4TluCs+/5rjVhuWu+6Iuvmdfy71sRxzESSvHb3/626VkgigJVUaBoGlT+vaqm5EFRoKqq+Bn/v8J+pqqq+HsgFdpapokgDNP3zrJEpGNs5GAI215d06BqGiL2DHVaUOI4RsBSWklLzT63QNZ1faidNVEUEEYOD5ok8BLHh48eiRLH2elpACkZyEYLxqWLEK6LzACqWCikz3oQpELkKIJlWX3PCfz5UVQ1dYJ8+BAme8Yk2kOSgwmB+n7Tbq9TdULg+6mhD/ud7/tQVRU+W8jyuRxyuVyTZmGSYkBBENgE+jgqEzg830/FmWCd6Ya8bk3XRSvnKIoQhCGCMBQmN9xQiROQbG7ZcRzcvn0bL168OHw5WT/vGaVCN+F5HnzPgx8E4nvbcVLxJfs90JxT5aFnQsjeYqyq0FiZGUW6QOmaBt0woBDStEgrmUV8388UBbZt49PPPsMrr76KXC63n1QwMVrCSAonE0kcizbIraSE56h5gx6xoLIFnIAZ2VgWTMuCwfQjlmWJn1mmCdOyYJrmxMo0ee8CO1O5wBfDKKNxaVoYCYGmaWm6S9NGD7UzS/GDrFrIgpc4bm9twW40oDHPBX7NreWM4wABBJnl74Gu60KX5bouwjBEjkUReh6PEQTTNLH56BFm5ufhui5yB9ji/TBBkoMJIEkSJKxCQfgJtEsnxLFow6prGh41GrBdF/Nzc6LDWtOCNCFBUuuOjI+3SUh5wIhYzTcohZnLjW3XyIlCHnsTexCG6Q6bTfK246SLqK7j0qVLMHQdp06dGuqUvCOm2OWz73mVBScDHhNfZRd8LsC0TBOGaWJ6ampvYWSLpMkWR62LlsBxXfieB8M0u5akdcPOzg4AYG52FlNTU0MdoxuCMITdaIidos/vESdLvi/q7jlxAtBEJPi9EsShhUDwSNIwDboMXYenquL5UBUFURTtIwT8udHGQAiyIEifJW5g9jjMfLIljjvValMFAxe6TqKiQskQIu4QyVOGURShbtvI9RNFYM+JqijCGIl/jh7XPPckQ5KDCYC2phM6PHi8NbGiKHBsG4HvQyEEU1NT+z3T+WRwQA+xiHY8JjiOk3rK63raJa+1HHQM0DQNmqalJilsd8u9E8IoQq1ex8qdOzh79iw8zxOvbxdB4O1z67Ua6vU6arVa2mCm0UDAmuRwZBf8YrGIubm55h0x+17TNLEQ8IVhGAzSqvmxguXjS8UiUC7v+zVl+W0gJdZ+EMDj6ZUWMmE3Gtja2oLP3lN+fBrH0A0D5XIZJdboq1QqoVQuI5+N0DEklCKOIkRxjJjV3ydJgkKxmGoumBiWRwkm9ZnJEoJBKozGjWKpBM/3EcYxtqtVIVDsZKE8DhAAyBAEnjLkWoSERRGSJOnuP5J5bwzDwPbWFuYWFuA4zoF3Vj0MkORgzEiSZK8lc5fyK9/3EfKdB6XwWWphemoqbRiSxYSJwb4phtKm1qiU0tT6+YDIguf7YkIv5PMiujLJs6uqihxL4fAa9Js3bkDTNCwvLwudQsBC/a7rwnUcOLaNWqORhvpZUyTu+jY3P4+Tp07ByuXErpU3vxoII5bxNYV+DzMyegGiqul97SMkHMdxU3qmxgjc9vY27ty500SeiqUSisUiCvk8LPY85PJ5qIwIKJoGGkVQCEGhUBAEbtJQFKWJHCgYr/ivH3ByNjU1lc5fcSz0B0JzwFOpY74nPJqZjZioqopCPi8qGrjfSa9mVDz1Zug6Nh8+nKjQ+zBDkoMxg7JFTaj+2zxwCUsnRKzWWdF10CSBYVntJ7uD9hVoOR8hBJTtDCYNbvSUICUGTeHyA7oPCkmtmVdXVzEzPY2V27fTBYW1yk2HwiydczkszM+jWCyiMjWFcrm8Lwca9dtQpgNGveuCHDzBZYx9X+MQmhtVVVEoFFAoFDA1PY0jR46I38VxjEa9jt1aDbVaDTbrAPro4UOhRQF7r4ulEor5PAzTRJIkB7ugELKv6uQg0wuUUpH7VxQF09PT2Hz0CK7rwmbpKhHlohTqJCqqWvRQ/GecDPBNRZIkqQdMJzLM/t7QddR2dxHHMWzbRrFYHPuYDzMkORgzaKYWue3EwXwLfN9HHIbI5fPQDQOarsMLw8djzNFno5ODCGXatp3mnVV1n5J4EtNwo9HAzs4OGvU66o2GSAdwsdzW1hZK5TLK5TKOHDmCYqmEQqEAwzCQJAmiKGqarHjJpKIo0DMpCMJDrwcMSqlYVJ5oA6Q+ymVFue1Qh0/vQxRFCKMIcRQJ0SQAlNl7DKRkQtU0UOaTYdu2SBWtr63B8TxhXW7lcigVi3tpilIJ06z98TjRrpSRKAroiMSzF3hZa7aaCQAsy0KxVEK90UB1d7e5Mdwk54gO1SamaUJRVbiOgxhpyjafz7dPpfGoaJJAVRQ06vW0z8OYO10edkhyMEYkSZJ+WLso/F3XRaPRQBRFKLCmSjnLQrVaBShtFtUcsM4gPWXnnRmvuJhUmiFgpWKgFMV8vql0bxxIkgQ7OzvY3trC1tYWtra34TMtg2lZKBWLmJ2dxfPPP49r165hanoaP37rrZ67wziOEUWRWHgSptznqYiE+VQQknbWayrvY993gqh4GfJe81bNj4ucDIwR/Q64PoNXRcSsCiJmCxySpCkcTwCojMTx9yZ7nwrFIubn55vOYTca2KpW4ToOwiBAvV7Ho81N3L59W2hDKpUK5ubmMDMzg9nZ2fbmXQNAaVMJQDDZ6gVuatQJ5XI5JcNhiJ1qNXUOnfDmoVV/IH7OxKBKoQDHdZGwaEC+k/UyIAh8o15HsVRCo9EQBFFCkoOxgmYV1G0QhiF2dnYQhaHoMmiapijtArA/cnAQxICxcdrn+SaRZuBOkBTo3IVuwHvhB8EeEdjaws7OjmhrPTM9jZMnT2JmZgbTMzMwM6RsbX0druvizR/9qK9FmS8q3FY5juO0IRTbnXKrXEqpIBHNl9W+rFBV1X07tkHBJ/enJp/Kn9WMSRMvo+SllZ2eSgIAqgqDkzRGCAa9N7lcDqUoQiGfR6lYbHKdbDQa2NzcxPb2NtbX13Hjxg2ApK3HZ2dnMTs7i5mZGVQqlYHIGsloDrJQCEEygfRCNo3QCYqiYHpqCg8fPYLPhLy5A/ANIGCpzzbXzHUIDmt1bdt2+0ZLmb8PMq8tFAqH00V0ApDkYIyg3C+9g85g89EjRGEIXdcxlQk9hmGYNldp2bUcWMSAE4MBMO40g+O6wpd9nyCTn7PHMer1Ora2trC9vY3NzU00Gg0AQM6yMDM3h5eOHsXs7Gw6MXe5tzdv3sT01BRmh2zOIsgCI3pxZuHKGg1FcSzcL+Mowr4AMYvUcFU8V4Xz/xP2fbdFRojtnvQJjz9HLGdNuW8C/z7zNQzDrmI8fk9azZn4AjvqQqqoKkxdh8cEqtk6+WKxiGKxiBMnTgAAgiAQ5HRrexsPHjwATRKomiaiCrOzs5iZnobeJaXYLWJCSNp3YRyzRac0QicYpolyuYzdWg12oyEaok0aCoAY7ecE3p/BcV3EUQTHcUQpqwCbpxV2X33XhZXPo9FooFKpTHz8hwGSHIwJIqXQRigURRG2trYQMAfEuYWFpq5rIXOvE+z2oNMJdLhOi01phhEmhDAM4TO1f7FQ2PeBbzfZxHGMnWo1JQObm9ja3k5TEgAqU1OYX1jAhfPnMTs315FstEO90cD6+jp++MMfjnW3zRf21ogIZUZBURtDIXAToV4HbyEP/HtCCHzPQxTH0BgZ4QI7nr+fVBtiYC8dlH0+kpbFn2sBPN+H67pQVVWIPnsdnxs5aS2mT90snccVgjeYkyPvt9DpPhqGgeXlZSwvLwPIpLa2t7G5tYVbN2/i8pUrAKWYqlQww8gCT0Xw4/YiB8qY0gvDlCKWy+X0/fM81Ot1lA6iLJAv7Hy8rV4tLFrTsZKBv1/s73zPg5XPi7LGoQ3PniLIOzAmUN9vu8CGvo/dWg2e60LVNMzNzTURAyC1jaVZcgA8MTqDftAkEhtQi0ApRcNxQJGKilrvDUcQBKjXatjd3RUpAh5tmZmZwalTpzA7N5fuwEb4YN+4eROmaeLYsWNDH2MQEELS8HYb0hBHEUKmYRG5dPaV7+4oIxE8DNwafXBcV6Q3WtMZmUE0LW5ZR09OJnhvBYc9x00EgC3+/PthaGLMiIIgLlmSoyhQAPE9gPH2dRgCXKPAbc+71tdnoCiKWPx5E68G82TY3t7Go0ePcOvWLYCktfxzc3OYnZ2F4zjNPRpa0C3U3gvZaMGwmJ6aQq1WQ8hMiWYPQFidvWbKnrvWJne8csjzPFHJUMjomfjz1qjVMLe4iDAMUa/XMc3soZ9lSHIwJvASxuzD6XkeXNuG67rQNA2Vqam27X7DKEKCtLRm0vbIbTEG/YAoM1LVlCD0CcfzEMcxFEL2ibZ2qlWsra3h7t27qNZqIJQin89jbnYWx597Ls3dlstjU+EHUYSV27dx9uzZxx6G56ShV/khJw1Z8pDdlSusckLVtL28det73RJqb/ck8IWpnWai63Ug85nIpElEhIMt8noYQmP9B0o9Ssp6CeUOCqZhIGLmWf2Sg3bgqYjnn38eQEqEt7e3RTriu+++S7UVlOLjTz7B0SNHsLS01KRPGsb7gGLv+Rk1gqTrOkqlEqrVKuqNBkqsomfSUAhBTPcaP7W7epPZXXPH1YZto9ASTYxYBQuQisaLxeJEe9kcBkhyMAYkcSxSChye48Bl7m2ariOfz6PYQbEchWHqc3DQZYwTyA0KNXEfqYYoiuC5LkAp8mxBePjoEVZXV7G2ugrbdWHoOqZnZnD02DEsLy9jaoJq4jsrK0iSBCeHtEoeN/p5d3gFRCdwXUOpVGoKlWZz7zS728/+LPM9T9nkLAsFnvrJpCfA/8/D4Jnx9QOaJAgPoKJinE+8bhhQWdomZFqiccAwDCwtLWFpaQlRFOHTTz/FxsYGFELgOA4++/xzKIRgbm4Oy8vLOHLkiEhB9ON9wCM8nEiMK7WUZ2F5CmC7WsXC3NyBVMj0k1LRWfMm23GQxDHqrJKBj09RFNSrVcwtLcF1XdTrdcwMqTl6WiDJwRhAg6BpYuQd86IogqJpMHQ99bRv8yHkYjUgZd8HHjUAJkMSeugReDohjCLUdndx6+ZNrK2vIwxD5HM5LLFJb3Z2VvQGaBd1GRcSSnHj5k0cO3Zs7Irroc1qRnxfsgt86wIwqN6AE1d9wO6YA6OfaplRDo/xEQRCCAzTRMx6P4x7p+l5Hj766CPYto2jR49ip1rFBx98ANd1sba2hrXVVXzz7bf45ptvUKlUcOTIESwvL6eRlw73cZJRFwKgUiqhYduI4xi79TqmD0Lcx9NRhHQlCbwvg+04oEnahrxYKKSfA0qxs7OD4ydPil4nQRA8Ht+ZJwSSHIwBWeOjiKljufDKYL3HOwlceKWCQsjBimAOQFEMtNcjuK6LO3fv4sH9+9hm/g5TU1M4c+YMlpeXUalU9uXAJz3mjY0N2I0G3njjjbEfe1j1NsVoC2GSIWaHwuNgAAy7yI/7CTIMAy6LHsRxPLZ01O7uLj766CMoioL3338fN27eFFqaXC6HU6dO4dSpUwjDEBsbG1hdXcW169dx6fJl5CwrFUEeOYK52VnxWUro6JUa3UCQVnKUy2XU6nU0Gg3kDqAtskhp9kF6eCVDg/XIcFxX9NRImFtmLpeD4zio1+uYnZ2d6NifZEhyMCISJiYkhCCJItFZLo5jGLoOTVW77kR5WZb2OFIK2VzwhCeNeq2G1dVV3F9dxfb2NhIAU+UyXrx4EcePH+/a+ER8+Cc2wlSIODU9PXT5YjcMEzkYR6tsETVg+f0nGfzu9DvKx9WZsBWKonQsaxwWDx8+xO9+9zsUi0W8/fbbsCwLURS17Sap6zqOHTuGY8eOIUkSbD56hLX1ddy/fx83bt6EpqppimJ5GQuLiyOJdfuFZVlpkyrXxU61ikXWnGmS4Gmufp4J7oZYr9XS1Kbvp1UMALYePcKZF16A4zipi+0YCd9hgyQHI4JHDZIkScNp7OHkUYBcodA1VBoxcpA7KHJwQGWSNEmwvb0t9AMN24bKJqqjR4+iWC6jkM+jXCr1PhgnBxNaDGr1OjbW1ycSNRgW47hSbqz1tEUNAEyc0A4CwzRFh8hR2/+urKzg66+/xuLSEn705ptiYQqDoOfCrigKFhYXsbC4iFdeegmbW1t4sLaGtbU1rNy9C1VRsDA/j2WWfhj7jj5z3eVKBT5rgc6bM00ahBCQJNnXG6YdVEVBLpeD67rwgyBtxGQYqFWroJTCMAwEQSDEic8iJDkYEQlTuDq2jThJ0oYjhCBmAkOtB+vk3QcnmsfthTFNsjRJsL6xgbXVVayurSHwfZimieXlZbz86qtYWFhAEseo1WpIKEUhnxfiqK5ObFy/MKFc6c2bN2FaFo5OqnxxiPtLhiwJzCI5TCmFYUrwejw37V4/CfA23jSKBiprbMV3332H69ev49SpU3j11VebfhdFUX9RCfbcJACmZ2ZQmZ7GxYsX4dg21tbWsLq6iq+++gpfffUVZqansby8jOPHjyM/Bm+CrN25qqqYqlSwubWVdi81zZEtpPsag6r2NU9wXxluc+56XupDoqrY3tpCoVgUHVglOZAYGEkYAqyXOF/kTZav4l37uoLStIyx1eNgUugwOY46ZbqOg5WVFaysrMB1XZRKJTz//PM4cuQIZqanm3YUjUYjtUjO6DCyZjntJnsuGJrE1B5EEVZWVnD23LmuPQ5GwhC73LFEDg5DwyWGgR06kaZLBrmvk7wLo5Q1JkmCzz//HA8ePMArr7yC06dP73tNGIYodajUaVt1wj0q2O/yhQJOnzmD02fOIPB9bKyv48HaGq5cuYLvL13C0uIiTpw8iaXl5dGfF3ZOi/UrqTcaqNZq6WZpwmkNAmYp3eu5YL/n9vVRFAmB4tajR5idm8Pu7i6CIEhTOs+gKdKzd8VjBA0CBL4P3/NAkdYre54HgNXW9viQUSCtraV0okr89GTjXVppkmDj4UPcvn0b62trUBQFzz33HE6cPImpqam2fxMGgSBRWR1GKyFoJQnC0WwCO787rFnOqZMnx37sUTBKsyUOQQ4OQ+SAYZArHlSUOEmNwrBljUEQ4JNPPkG1WsWPf/xj4aTYinYLVGtJ4j4QApX5AGRhmCaOP/88jj//POIowr3793H79m188vHHsPJ5nDxxAidOnBhcP9HmeS2XSqlLIUsvzE9Y4Ef6IAatv81ZVmoyxQSK2NqC67owTRM+c+4s9ZP+fMogycGQoFGE0HXhui4oIOqMoygCISTN5/VY0IIgAEU6eR8W0YvneSJKYNs2pioVvPrqqzh+/HhbwVQWDiNRlmW1NfdptYoV7nsZtfU4kVCKG7du4fjx45NVVA+4yI+DGAB76u0nXYzYhAHGOnDFwgR1CsOUNTYaDXz88ceIogg/+9nPOpJqII0cCM0BTx3040aqKCBx3PE+qZqGE4wMVKtVrNy6hWvXruHylStYXlrCyZMnsbC4OFA0IXsuwpozPXr0CL7vo9FoTDRMn3VJ7EQGW3/Oo7w2Iwie7+P+ygqeO3VKkgOJwRE6DmzbRkIpLMOAaZqo1+sA0qhBV2tX9nDylMLEQ1ajToiU4uHGBm7fvo1VFiU4duwYfvTmm6nNaB8Thx8EiMJQWJr2QtbxTMlYpI4T6xsbaDQaeHPCQkTyGFIKwOGMHAwCMuBiP2mKNEhZ49bWFj755BOYpon33nuvZz4+DEMoqtrcdbLPBVtRFNG6uxumpqbwg9dfx0svv4z79+7h9soKPvzwQxQKBUEgupLoDhE+wzBQLpWwW6+n6QXLgjHp9EIHnZKwHG8Bb/hm2zaiKML6+jqWjh4VG75xmlwdFkhyMATiIECjWkXMFvZcPo8wDJujBt3APtQh0ywYk9y19jN5drBs9j0Pd+7cwcrt22jYNkrlMl555RUcP368awe5dscXERbmdd4vREMhQtIGRGPc/d28eRPT09MTd0J7XJr6wyRIHLSUcahzTLi6IVvW6AdBx4Zf9+/fxxdffIGZmRn8+Mc/7rno8BbgGmvhPTD6dE7k0HQdJ06dwomTJ1Hd2cGt27dx5coVXL58GUeWl3Hy5EnMLyzsN9YCOn42i8UiXNYEqbqzg7nZ2Yk8l9z4ixACQikSND9T3Z4vVVWRy+fhOg78IMCtGzdw4vTp1AbfdSU5kOgOSinqW1uIoih13GJuZEJrYJrNUYMui1nEeiocRO1xV2Q/5JTi0eYmVm7dwv3VVRAAx44dww/ffHOfuLBfeEGAOIqgKMpQ4XvRBIjV/tOW8Q4DXr745ptvDvX3g2DQsP44PA54V0fgcJCDYd/HgfwOFAXo0rxoHOBljT6vnW95769du4bvv/8ezz33HF5//fWOzwbve0ApRcB0Or3Sdt3AexAMBEIwNTOD12dm8Morr+Du3bu4vbKC33z4IYqFAk6eOIHnn38eJv9Md3nOiaJgZmoKG5ubaXMj20ZlAqF67nfAx6O0RA96pSZ1TUNiWfB9H1ubm5hdWICu63BdF+UJWrc/iZDkYEA4tRoi3wchBIViEYSQ5qjBAMJCnlefmN6gj8mAvyLwfdy5excrt26ljVNKJbz00kt4/rnnBosStBmD57qglCI/ZA14tkQq+39geKJw88YNGKaJI0ePDjyeQTHIjlXYTY8qRjxEBkhZDDrWgXQHB+CLoGkaNF0HDcOmskZKKb7++musrKzgwoULOH/+/L6x8Q6DSYYcEqReKABG27kOGD1ohabrOHX6NE6dOoXt7W3cunUL31+6hO8vXcLRI0dw8tQpsVHqdJ81XUelXE6bMzEnwkmkF7LPhNhMZCo6esE0DCRJgjAMcW9lBafOnkXMKlGeJTtlSQ4GQJIk8Go1IUDki7rnugDaRA36ON6o7ZI7os9JYHt7G9evX8f9Bw9AKcWxo0fxg9dfx9zs7FjG5bEcrKqqQ1dkEEUR+cNWS+G2RKHHAuuHIVbu3MG5F16YXPniCHgmxYgHsHAf1J0wDQNRFImyRt486eHDh/jhD3+I5557DgATz7HQN6VUaFNax8krfEbVJg0VPWgFIZiZncXM7CxeffVV3L17F7du3cK93/wGxUIBR44cwXPPPYdO8cFioZA2pQsC1Go1zE0gpdd6hU2ljX1eP3/fHNvGzs4Opqen4bquJAcS7dGoVoEkEW5aQPrBjeK4t9agy2L1OCbwnWoVly9dwur6OnKWhYsXLuD5EyfG+vDTJIHreQClyDH/8mGQrWJI2P1v+7q9P+hKFO6srCChFCdPnBhqPINiIKOeMZ0zPmRixEFFdgIDaFAOSvuh6zpURUEURajVavjss8/gOA7effddzM3NiZRB1ruj21XzFtmjpBXSk4wWPWiFbhipd8Lp09jc3MSNmzdx/cYN3F5Zwflz53Dy1Km2UdFypQLv0SO4rpu6So65jLtdNKlfUaY4BosCu56HjdVVVCoVeJ6Hcrl8eAj3iJDkoE/EcYzAtgGkjU/4JNYUNej00HTKK07KpKbLh79Wr+Py5cu4f/8+isUifvTmm1haWhoo4tEvXM9DkiTQNG1k0sEbOPU7sXUiCkmS4OatWzh+7NjEG8IMhXG5VXK9wSGZyMT7OkRa4UkDIQSGYaC6u4tvfv97EEXBe++/j2KhMFRHRB45GIc2SVGU1FtlnM8FIZibn0exWMTuyZO4e+cOvv3+e1y/fh3nz5/HiRMnmuYXwzDSygDXRa1eHzs56EQYB733uq6nFtBBgJ2dHczOziIIgsl70jwhkOSgT9R3d4EkgaaqgsH3HTUA0ge2n7rkCcF2HFy+fBl379yBlcvh9ddfx3PPPQeFEEQTEGklSZKaQ40YNeDgpY1DWRHvHQSPHj1Co9HAG2++OTY/gXGiNW0yLA5rX4Vhrn1gv4MJg1KKne1tfPnFFzBzObzz9tsdKxf6QRRFoBg9rcChKMrYPUOAVOdimiZefvllXLhwAZcvXcJXX3+Na9ev48KFCzh+/Lj4vJVLJTiuiyAIRGfEsaHDtfXlnNgCyzDgOA52d3YwNTUlzJGeBUhy0AeiKIJn29CRRg34BNZX1CCLFrtX0TVvnAtUSxjddV1cuXIFKysr0E0TL7/6Kk6cOAGttaJizHA9T3g4jCNVwXfAo05p9+/fR7lUatsIZiLvxwAYR5VC9lgAJhIRmgTEeIf428feoTEjJqSU4vbt2/j973+P+fl5vPDCCyNHb6IoAsH4hMtkQhsVUUKoKCgUCnjjzTfxwvnzuHTpEj7//HNcvXoVFy5cwLFjx6DpurBW5tGDSRJZkVIYsBRa03WomgaX+drouv5EbiomAUkO+kCtVoNC0/4HmqYhoVREDXqW52Xz3S0Ppcg3jvtDQQi8IMC1K1dw89YtqKqKCy++iNOnTrVtBDXunVecJPB5hcK4mq30cD3rBxGzij137lyHUzR/4LlD48hRjz5fN+73ADh8kYOhFqwJOh+2A21D8Pn5v/32W9y4cQNnzpzBCy+8ANt1EYThSCmskLdrHteCxLxDxh094NVX2VGWSiW89dZbqO7s4PvLl/HZp5/i6rVrePHCBcwtLMBxHIRxDMdxJuacKCqAMET0gFJYpgnbcbC7u4tcLgefdd982iHJQQ8EQQDPtmGx8Dh/rPqOGmR/14EkjI2Dspro69ev4/qNGwCAc+fO4ezZs93zlWOeXF3HSf0bDGNsxiH8Ho8yoa2trSGOIhw/fry/c6YnbvrZJHcN4+jEyCE0B4eEHIxqgjTJ96UtGWhBHMf44osvmpsnMfOviDX2GTYtEEXR2L1QBnWX7AeUeWu0e+ampqfxk3fewdbWFr6/dAkfffwxZmZmcOLkSWiahlqjgXw+P57nNXttlCJOkubnahARK7seXdPgseiB67qSHEhkogaGAZWx7TAIRNSga/6ph8hqnF3zojjG9evXcePaNURxjDNnzuDs2bMwD7j0JopjBL4PUDrWPKKY+Edo23z3/n1Mz86iMEJ7WuHbDhZxGWMqYpzEYGJi10lhhPtIgP46NPazIGQIGo8c9UIQBPj444+xu7vb3DyJEOiGgYQ1HhqWHIQj/G1HMIOgcUYPkh7zHQDMzs7iZ+++i41Hj3D50iV8+cUXmJqawtKRIyjk86iMwWgoGwnNekZwDHLd/Hk0TRO1eh12sYharYapqamnPrUgyUEXuK6LwPNgUgqLLXQUaHZD7Ddq0PpzHuoa0ecgjuPU3vTyZURRhBMnT+L8uXMDMdtxphV41MAwzbFOaApGG6fn+1hfXcUrP/jBWMYjTGo6VaK0LHb95MXHtftNMvnVwxI5GHUXO+izse+9GDJq06jX8dHHHyOOIvzspz/FVIuWxdA0+KwbKR3SBGxSLYO5xfBYPvuZ+9nzGgnB4sICFufnsba+ju+++w5Xr1zB6toafvDyyyPbmYsW1mjzPmOIOYR9jizTxM7WFvL5PFzXHV/K9AmFJAcdQClFvV6HGkWwcjmorJRuXFGDLIaZMJIkwcqdO7hy+TJcz8Nzzz2HixcuDLdbH1OIMWJlP+OOGgBIxZwYPq1w/8EDUEJw7AAcEYH97ylB89h7takeBY9bWDkMhvY54H+G9pM+v6+Ups6Dw5QSdsLW1hY+/vhjWJaFn37wQdsWx5qmQVUUhHGcpgeGSLOFQTAZX/8x+h5kj9F3tIoQLC8vY3lpCd9fuYK7d+7g13/7tzi6vIwLFy+iPKS9MvdDaddgCWDEXlE6/n4f2LUZhoFGtYpGvY6dnR1JDp5VOI6DKAhgECK8wweKGgDdJzpKh26Ms7u7i88/+wy7u7s4duwYzl+8iNIIofJxwWHNlSzTHLsltMJsgPv+QLfg3t27WFxcfHwOZ2wi3ge2c0syoqlRF/WYlTE+ie6PHTHCAiVEcNldcEYcJ3aSYyQG9+/dwxdffonZ2Vn8+K23OhsUEQJd01KflCE7+03S139c2gMRvh9SUHr65ElUymVsPHqE1dVVrP71X+OFF17A+fPnB54facvXtqcEmmyVe42PaynyuRwePXqEYqmEpaWlyVnfPwGQ5KADbNuGFsfI53Lgj+bAUYNuGDJacPXqVVy5cgXFUgnvf/ABprv0gO8X49hfhix0CqDtDmpU8N3IIC5nHA3bxtbWFt44gCZLA4P5N2Tfg2xZH22NQGRd9XqlNA4ROWi9puwnKLvAt/s7HjVozS+33p1xpc6uXr2KS5cu9WyexGEYBnzfRxSGSCgdWAdiOw4WlpZGGXJnEAKVjG6rLCoVhiS2lmXBsiwsLCzg6NGj2Hz4EFeuXcPa2hreeOMNVCqV/seC/gyP+o6aZMo+c5aFWqOBWrWKarWK2dnZvsd12CDJQRtEUZRGDZipB5A+cO4gvgY9fs8niX7DybXdXXz++eeo7u42M+rHWd+dgeN5adTAsqBMgE1zhj7M7u/evXtQVRVHuFDsMaDne9wh5bDvr7gZFNC2LwfhoXNKBTnYJ6zL7JgmkXpoGhf7nnT4OX+92N3T/W12e+0AxfcTLmmklOKrr77CnTt32jdP6gBVVaGqqiiBHkQkHMcxfN8ff5ouizFoDyirCBjleSqVSvB8H4Hv4+Tp0zhy5Ai++OIL/PJXv8L5F15IPSP6ILz9zhEE2PestX9h5vNICHKmiXqjAdu2JTl41uD7PhSaGvjwxyKMovFFDQDRRIirhjshSRJcu3YNly9fRqlYxPvvv49pLnp6QoiBHwSIwjD94EyoxEchBOC5RAzmHXD37l0cPXr08YYAJyBGbPt6do/4jhBoX5KZ/X+n3VN2Z0VZk7CmhRztF3Ee4s+coCncj5bvaQsxGnZ56SZKHPWTEoUhfvfpp3j06BHeeOONvsthOXRdRxTHA5MDviGZaH6bCe6Gicpx8MjBKNUxpmEgl8vBdRzUajUszM3hg/ffx5UrV3D5yhWsrq72jCJQDLaBUPrVHmSIp65paLCSxqcZhyfueIAIggCE0qY8YhAEANIQYc8KhQE+IEqnXDTSaMGvf/1rXPr+e5w7exbv//zne8SAn+txg9Vyi6jBhELZ2WjEIKKynZ0d1Or1gSfzsaPLezVKOLbt8QaMChD2DLb+a/od64zZ9Hetx2nzs0Exyt9PSoDpui7+5m//Fjs7O3j33XeHepb4vBGy1EK/cNgCNIlUXRO6zEP9gKd0Rn0PysViep+YrTJRFFy4eBHvv/cekiTBL3/1K1y5cqXtHEApTfU2E54XDcNAFMewbVukUp9GSHLQAkopfN8HSRLRa5xXKQCA0U1QlBGV9XMegTbK9StXruAXv/wl4jjG+x98gIsvvrhfYDamyMG+nd4A8IIAcRRBmWDUgINf/yDk4N69e7BME/Pz85MaVl/oOl2NOQIk/DMOi+bgCa6uqFar+PWvfpV+Dt97D3Nzc0MdR1EUaKoKRVHEXNIPXMcBxQGQA4zoiTGGyAGQRliKhQIUQlCr18WzPDU9jQ9+/nOcO3sWly5fxq9//Wvs7u7unR7Yb3bUBwgG1+aoqgpNUdCo1+E4zoBnPDw4JLPHwSGKIiRRBJUQqIwchGGYNj5RVfGzthggatBaqcDzpbVaTUQLzp49iw9aowUc404pDPOhphQes0keR3OlXlAGJAcJpbh37x6OHTv22Beeg0wAHbZSxlH6KjRhzNe7vr6O3/zt3yKXz+O9995DccjSOg4ePQgGIAeO40xMx7MPI0QPkjE+c8ViESrrHulkQvdKJooQxzF+9atf4crVq6JEdZQz9/x8tqS+VF2HY9tPNTmQmoMWCL2BrouHLQhDUEqhdcsVDmNmlMkzU0px7fp1fPf99ygWCqm2oJMZyBOiNQjCEHEcQ1HVA+lUpihKKiLqkxw8fPgQrufh+HPPTXZgI2KcTYOymoBDEzngGHFhGWd05tatW/jmm2+wvLyMN954Yyx6FZ3NKVGSIE6SvkpNHdedeEQui2F9D8ZZIaOqatr+uVZDvV5PK8Yyx+VRhCtXruD777/H3Xv3Ui3CsL4I6EN70DK/G7oOx3HgOM5ErbsfJyQ5aAFPKeiZKoUoozfoiAEfjuxuqVav44vPP8fOzg7Onj2LC+fPd5+MJqDK7ibm6gTh+dBLhzEmDBo5uH/vHkrF4ljKPSeJcU4uWQvbw0IOxhY5QJfFrd/7Sym+/e470Tzp5ZdeGltEghACXdeRBAHCIIDax6LvOs5kKxVaMOxzyJsbjWsWKBSLsFlTpnqjsc9WWVEUXLx4EYtLS/j8s8/wq1/+EucvXMC5s2eHSm30rFxoOaahaWgkCeq1GoIgeCrbOB+O2eOAQClFEARQAWFWwlMKKiGdF+xhmDbbPayuruIXf/3XCIMA7733Hl5+6aW0c2KnYw6gaxgIA36goihCxCIq1gF9MFRmhNQPOYiiCPcfPMCxxy1EZOh0d8fdapjvfg7lPmYMi/AoO9c4jvG7Tz/FzZs38eqrr+Lll18ee6rCMAwQRUHQp5DNcZwDd+IbZnHl1VfjIqQKISiVSiCUot5oIIqifa9JkgRTlQp+/vOf4/Tp07j0/ff49a9/jXqtNtw5Bxi7qqpQVFWQg6cRkhxkEAQBaBxDIUSE/Pgbr4/ZWa9h2/jiyy9x5+5dLCws4N2f/nTPU7xT7u8JSScAaYSF91A4kHwoAMJIUz8lV2tra4jC8PFXKfTAOBTeWQzruvk4cRBPdS8S5vs+fvOb3+DhxgZ+/NZbOHXq1ETGoWsaFKQLW7sFrxWO6yJ3wORgGL+IfpouDYpCPg9d16EQgnq93nw+VloLpM/6iy++iJ+99x6iKMJf//VfY2VlZeDzDeJ3wAWmjXpdRFCfNhyeGeQA4Ps+lCQRUYMEELvjruRgUMcz28bnn38OgpR0bKyv4//+3/+Lv/n1r3H1yhVUd3fb1/JPMHQ/yJFpkojOiwcVNQDS6A1IfxbKd+/fx9TsLIpPgK10N4x7YRSRg17kIDP5txsD1y4k7Gscx8LrIPt3/YyfP8vtSh+bxvyYnu9GvY6/+Zu/ges4+OnPfoalSZplkbRTo9JH9MAPAsTMpfVAMWhKij8TE8i9V8plEKQmayEjU1ldTRYz09P44IMP8NyJE/jyq69w6fLlgSNzXT83mWNxcuC6LmzbHmvPjicFUnOQARcjipRCEKShMuZw1hYDChF3trfx0ccfQ1VVvPzSS1A0DUuLi1hfX8fGxoawZrVyubRz2dIS5ufnx97PfR8G2C34QYCEmURNpCFMB/AIRcIWrU7hT8/3sba+jldefvnAxjYsOtoC9zHR8n4M2ddlTaJ6Tow9CAKwt6gSXolDyL7X9vPUtJs6acvX7Pck8/9BlhuunWn9m05j3NzcxCeffIJcLoef/vSnB1IyaGgaAt/v2anRZUr4g44cAGyRZD06ekHs4nsYug0Dbqvseh5qtRpmZma6LsSqquK1H/wAhXwe333/PRzbxuuvvz6eSFrLXK9pGgghqO3uIgiCgTrhHgZIcsCQJAlC34dJaVMJI9BDiDgA1tfW8Lvf/Q6VqSn8+K23sPHwIYIggGEYOHnyJE6ePIk4jrG1tYWN9XWsb2zgzp07ACGYnp7G8vIylpaW0lzcWEY0BCiF53kHqjXgIGxHw0uXOqUz7j94ACTJgXVg7BuENPm0t/O3aPd9x8O1OYYoKTtEaYV2pLQdYWiHVjIgDKX6sAO+f+8ePv/iC8zPz+OtH/2oc/OkMUPTtNSRMIq6dmo8MAOkDui3cmHcJl6t4LbKnufBc92+5uOz587ByuXw5RdfwPM8vPXWW31tZAgAqijp57QVLXb1qqJAVRTs7u7C931JDp5WxHGc7sJUFSohIqUAdDE+GiBqcPvWLXz91VdYPnoUb7zxhjBEASGIo0hEJlRVxcLCAhYWFvAy0hTE+sYGVldXcen77/Hdd98hn8thcXERi0tLWJifn0iv904Q5YuKAuMxKHQVtqNJkgToQA7u3b2LxaWlJ0ZBLBYvPuFkwrCtzYI4hlaNcwOkQ1RaNYovQ7voQ+v/Ka+Dz0Q9rly+jMuXLuH5Eyfw2muvHWwpGqtaiJOka6dG13FACHlsz7FC+mvINI6+Ct1gGgYsw4DNQvg9yQEjh8ePH4dlWfjdJ5/gb3/zG/zk7bdh9UG0FLSPdDURezBRoqLArtdFJ9SnCZIcZKBkFnueUsg2TRkKlOLSpUu4cuUKTp0+jVdeeUVM3Fx9H8UxOj3uhUIBp0+exKmTJxFHER5tbmJ9YwPr6+u4vbICRVEwNzeHJUYWSsXicOPsE77vA0iFiI+jtpf08Dp43B0YKdqnBCiwL3UzaMi8H4zTjOagIFIJ4xpzy33mFtCcJHz19de4u7KCCxcv4vwLL4gdYdZzZNLQdb1np0ZRqfCEv5dRHIu5ctzgn6dCsQjbdeH6PkpR1H1DlHn/5ufn8bOf/Qwfffwxfv3rX+Odd99FuR8/hE7Rg6aXpNG5p1WQKMlBB4gqhRGiBjRJ0oqEO3fwyssv48yZM00TIA+L92Kd/FFXNQ1LS0tYWlwEffllNGw7TT+sr+O777/HN99+i0KxiMXFRSwtLmJubi4ti+wDCtjC0uWa4jhOSROlyD2m3UwvC+V79+5BVRQsT6rFLUMnEgB0XuSG8ZIYFIfOOhnj9Tngx9kXSaBpR8RPfvc7bG1t4c0339wrc2XnbyIF7L2lJNMIqo9URb/QNK1np0bX8x6L3kCAp/F6LJL89/2YOg0Cmjm2YRgwdB1+FMH1vIE2QeVKBe+99x4++vBD/M2vf4233367pw122+hBy+eaf8biOIbjOHvVZk8JJDnIQEkSQFGQAIiZMrZjCKsHMYjYRLT56BF+9KMf4fixY/teo7K0Qj8lTa3nJgBKxSJKZ87gzJkziKIIDx89wsb6OtYePMCtmzehKArmFxYEoSj0mGiIonTdNXm+D4qDLV9shdLF64Ai7cB45OjRsaRaRMh6QBLQEa2RgwnsUA+lO+KYy+DaHcVxHHz00UdwPQ/v/uQnvXsk8BREO0JAWjpHDkkaenVqdBwHhcdcbUOAnhuhhKVkx/nMZYkBRz6fR7C7C9txupKDdu9FLpfDz957D5988gl++9vf4s033sDRNnNy63Fa3+fsfeAaKABoDOmt8CRDkgMGSmmaVkBLSkFR2n/wu3xgPNfFRx99BNu28e6773aciFRNS/N6XSIHHRcQvtCwr5qm4cjyMo4sL4MCqNVqWN/YwMb6Or75/e/xe0pRKhaxuLSEpeVlzM7Oipa+/YCXLz4OIWIW3VwSq9Uq6vV6al4zIPhC0O49nVSIfuxljNkSryc8FJ3FRNIKGexsb+O3H34ITdPwwRh6JHQjA4SFo/t5bw3DgMeqFtqlFhzHGbrR09iQEQG3BfMd4VVdo4KXx7YrV87n86jV64iTBJ7nDSwA1HUd7/7kJ/j8iy/wu88+w8uui7Nnz3Z8vdIiyGyXBhTkoNEYaCyHAZIccGQexqCXXXIXYlCv1fDhhx8CAN57//2u+S3eKyDqRA64G2KnSbOFIIgfI60PrpTLeOHsWQRRhIcbG1jf2MC9+/dx48YNaJqGhfl5LC4tYXFpCXlWUtWJjPhBkPrBq+qBli+2gos425GDu3fvwjRNLCws9HWspDUiMOEFNSuIAzB2U6vsBH4oBYljPCZ/ltfW1vDpp5+iWCzi7bffnri4j2ZEp9mKkXafK14rnyQJwhYL3oSmTc0ea1qBoZspUvZzOHJagZGuTnOQoijI5XKwbRs2a0g1KIii4M033kA+l8O3334Lx3XxyssvtyembebVfWNihKguycFTDPaQU0pFmJ8vgu3Ciu2wubmJjz/6CLl8Hj95552eJUiaqqbiug7kQIjYuiFbFtfhQ2VoGo4dPYpjR4+CAtjd3cU60yp8/dVXoEjzcosLC5hfWMDszMy+UjiPmx495nIdlYnHEjaRZEvYVldXceTIkbYf9Ha+6Y9btDf2hi0ZMeLjvrZBMKkukjdv3MDvv/kGR44cweuvvz4RwVxHtBJtTuJbPqe6riOMIoRR1EQOPM8DBQ7eAKkdWBql3ezCo57j0Bv0UxlRLBTgOA4830fUTpjYj18LIXjxpZeQz+fx+2++gee6/TXXavN88uirY9s9x37YIMkBA2HkIIwi6Ews1PGBb7ObX33wAJ9+9hnmZmf7rqlVVTUtZRyXu1YfHwwCYKpSwVSlgvMvvAA/DPGQpR/u3LmDK1euQNd1LCwupuWSi4tQVRVxFIEoymMvDyQscgCmPOfvUa1WQ9228QoTIrbehSdtqZxEJze+iztMxKAJYxo3TRJ88803uH79Os6ePYuXXnrp8TvY8WvLlLFCUdLUguftSy1wA6SD7qvQCaRD10I+d42SUqBISUY/z62u66kwMQxhO86+hkyDiH5PnjoFy7Lw2Wef4be//S3eeeedpnmbAKA95lROKHzfF541TwskOeBgD3kUhtA1rXtKoQXb29v49LPPcGR5GT98442+WbSiqiCECFvQXueZBExdx/Fjx3D82DFQAJvcgGl9HV9+8QUAoFQuo1KpYHl5GVOVymNdfIQRUpKkRkhME7K2vg6FEMzNzR2IV/9Q6MORcBQcxkoFYLyRgyiK8Plnn2F1dRU/ePVVnDp9+kBKEwcGW3T486woCqIogmkYoJTCdhxQPD4DpFYQtF94kxEiB1l9wSDvfaFQgF+tiqqFUZ735SNH8NOf/hQffvghPvv8c/z4xz9uSskphHQtYxfOoQB2q1XM95nSPAyQ5IAjSZBQKqoUOvZSaHmIPdfFJx9/jOnp6YGIAQAREqOUph+QbI5ywOE3jW/IyZAAmJ6ZwfT0NM5fuADf97G2toa79+7h/r17uHPnDkzDSEWNS0tYWFg40EhC1qKVItVqcDfLjfV1zM/Pi/8/kcg+O5OsVDhskYMxiSg9z8PHH3+Meq2Gt99+e2+ifsLvh6ZpCOMYURQJw7VGowHTMPbmiMc5QCBNLbTRJCVJklYqDBg5oNiz/x4UlmVBZUJuz/NGjq5Mz8zgR2++iY8++QSXL13Ciy++2DTO5oE3R40pUmKUUCrJwdMI/oBzYaCmaX0p+eM4xicffwxFUfDWW28NzJ5VRRETeRT//9n70xg5sjU7EDzXdl/DY/OIIGPhElySTDKTmUkmmZWZzHyqBtTAtICSBKEHI2h+CChhGpA0rVKVBOmHRgJUgy4JKEFQT6GAgiCgJXT/6HkaVAElQa/qvcyqVyQzk/uWXINkcHOPPcI32+/8sHstzD18MXc39wiScQCCZIS7mbn5tXvP/b7znc+BzN/f7cLRxSIUnAC4uC+VSkEURdiW5WkV8nk8f/4chBAMZjJeqeTEBAZ6EFXg10IB36FMFEUQ5tQIeDbXi4uLHVUp9BNckBgmXNkJ3kjrZEQjSORCYJdSfHn+PDKZDFxmztPKzGa7IUsSDMOoiiCur60hnU5XVZ8E9TXbAUJItUsgr1Roo4yRX3vYNEI9CIKAeDyOQrGIcqUSSeolOz6O48eP4/bt2xhIp30PjC3Pap1r5tGF0lsmStwlB4DfYIT3UmhqfAT4u/NrV69ibWMDX331Vcflfdzxz3acxgLIblCb62z18uD5KYXByhdjsRiUgQEMj4zg+Pvvo1KpIM+aRT14+BB3f/wRmqZ5OoVsFtmxsY7zbz4hqL1m9lnEGvOoxYUFOJRirMfGR1HA9/2n9W2Tu8GbaJ0MBEoZO3z/4sICLn33HeKxGD777LNNhT+/1z0gYlGCN/ChjgPHcSCKItY3NjAeHM/B8slAJURfP1VNWaOvlWI9Bloh6F3Q7SYiHo+jWCrBsCyYlrVpcd/F93xodhbra2u4cvUqkqkUMpmMf61NU1Pss5TeMlHiLjkAANeF47pwbBuCIGxNKQQHBhsIDx8+xPz8PM6cOYPMwEDHp5a4KJHvGlqVL/YYwbMapumJ/kRxy0Ifi8Wwb/9+7Nu/H67jYHllxessyYSNhBAMDw/7bo3pEFGFRvXNtRBZlQcnB7lcDqlEAskeW0dHhXr10lHgTbROBrrTHMw/fYqr165hdHQUZ2qEwJzohhlT2wpCIEkSHNeFZduglKJYKiFdI7YLvp7WzEn9iioEyxq5+VErlX83KYRGkGUZmqqiousolctQ2Bzc1RkIwalTp1AoFnHx4kV8/fXX0DStpciR6zEqrFHW24JdcgCAOg7guhAI2VTlBga8v/Ngk1c+n8etW7dw5OhRTLZw2WqFoAWnj15M7h2kGrgjotqifFEQRYyOjmJ0dBQnTpxAqVRCnvkq3Lt3D3fu3EGMNYviWgVJkjYd6NqcNLgxleu6cB0HuVwOe3ZaB8ZG6OEu1t+VvUFpheB33w45oJTi3r17+PHHH7FvZganPvwQpHaR4qI/7ICcfQvIsgzTsmBbFsqsUmEg7KYjGFUgpHHjoCgQKGt0mJCwUUqBCw7dLlIIzRBPJLxOjboON5WKRIgrShLOnj2Lb37xC3x36RI+/+ILv6qsnqeMw1JXhImk/X4YbwF2yQHgRQ44A2aq4S09CdiAKBaL+P677zAxMYFj773X9alFSQJh5wT6NIk1WaD4I2yziYoQUtfatRkSiQQOHDiAAwcOwHUcr1kUS0E8efIEhDWLGmPWzqlksi1CRATB96VfXV1FuVLB+NhYW9e4XSBA5028WoELEt8gclAvKtfyLY6DK1evYv75cxw/dgyHjxypb2/NXx/BZfYaPLVg2TbW19YASpHqxMmRUo8YsFLJXtwD3q3Rr1SoEzmgzIsE6F0kK6ZpECUJlm2jXKkgmUhE8jljsRjOnj2LP/vzP8f169fx0UcfbVYtBCuOAp443H+lWCjskoO3Ba7rAizXJ8kyKDztQZWGgA0Iy7Jw4eJFaJqGTz75JJJBL7IH2GGiyL6h2Q6WED9qoClKV4sNEQRkx8Ywms3ihOuiWC57WoVcDnfu3sXtW7cQTyQwPj6OsbExr+IghPJZFATYhOBVLgdREDA8PNzxNb4teFPTChxhrtsyTVz67jusLC/jzJkzzSN3wQl9h98TQRAgCQJcQcDa2hoSiUR3pk1cbxH4P8FmxU9XIASEiRFdSrfoDZyIUwjNEI/FfGFiMsI+FINDQzj14Ye4cvUqMpkMDh486P0iMG9y22iuxaCAJ0p8QzYqrfDOkwOuZHZsG6IogrJyxtq8MAXw/Q8/wNB1fP3115FZCIui6D1oXFndTzQSK7I+CqC041LFKlFhQMiZTCSQPHgQBw8ehOM4frOoXC7nNYsSRYyOjHhkYXy8YeMZSRRhWhby+TyyY2M7u4QxCEJ68j0HTX7eJEFiO5UKpWIRFy5ehKnr+PzzzzEcou+AQAicN+R+8JLG9Y0NpLvQMdUFJwrMW6Hb3Hyw+Zkgil7EgpC+6zsSiQQKxSJs24YRsQnR9MwM1tfXcePmTaRSKYyOjlbdN64T86PMb1nFwhsyo/YQTFTjOM5mxz9KYdk2FL7gUIrbt28jn8vhVz7/PFLhG08rOLa9fTucGpLAowayLLfd3ZDySShY8tQAoihiYnzca69MKQqFAnJMq3Dz1i3QGzeQ5C2oJyYwMjLiRzFESYJt21hdXcWpU6fa/MDbB757i7xSIRA1eJMiB2EbRa2urODixYuQJAnnv/469DP45twJQJJlwDRRLBaxf9++3pwkKGbsQsjIy7+5GK+f0YIgRFFETNNQrlRQLpUidyh8/8QJbGxs4Pvvv8dXX32FeGCzYrNNpCSKsNnm7m2yUX7nyQFllQqAFwJXZBmGYcC2LJ8cPJufx8MHD3Dy5EmMRWxyIXKXRMfZ/tAnY/6GrsOltKUQkcMXFrK/+bHaPXcqnUYqncahQ4dgWRaWFheRy+Xw8tUrPH78GKIoYnRsDOPZLEZGR7GyvAyXUoy9SWG8HoW5e9G8qB/wyxib3I9XL1/i8g8/YCCTwdmzZ0OPS3bg7i6wj5BEEY5lwTQMJPpReRNIO/D7H3Z5dxj5py0cBPuBZDLpkQNdR7Jev4UuQAjBmTNn8Itf/AIXLl7EV+fPe2JqSmG7LqjrQlJV3yPHNM23xkb5nScHXG8AeAu1LEkwdN03JFlZW8PlK1cwMzOzmXeKEDxf59j2FpfE7YDtOF4ekRAoTIPRaHr1SUGIKEG7kGUZE3v2YGLPHoBSrBcKyL9+7TWLunED1HUhSBJkWUahUICmqpG0jO01KHqjCXgTKxWA5mWMlFI8fvwYN2/exOTevfj444/fnPRRJyAEZVYO129RW200oeFyz17nC/F2APlSFAWKLMO0bd9SOUrIioJz587hm2++wQ8//ICzZ8/6n59bXwOb97BUKEB5CzRQb/GTFhLM3wDwmLvEtASubcNxXVy5cgWDAwM4depUTyZ1SZIgEM8SWDdNxLa566FpmgAhkFV1czcRmMD9SaRG7NRTEOK3oD585Ags00R+YQHfff89qOvil7/8JRTeLIpVQGg7xJO+X2jlFUBZyWgwuhMsJa1XVsp/TilFRdcBeA1mdPZvwsPSgb/5v/lVVKU56qU8GkSaqOvi1s2beDQ3hyOHD+PY8eNvVLqkU5TLZYjNerv0GjXRBF/AyMeM64ISz7qYYOdUxsTjcViFAsrlcuTkAPD6y3xy+jQuXriAly9f+noX7lMTRKFQwOAuOXizUWubzEP8kizDtm08ffYMa6urOP/115G0JG0EWVGgWxZ0w9gZ5IDSqvLFoKufLzjaxolaVhQk4nE4joMPP/wQsVgMa6urXrOoa9cAeDXi4+PjGB8bw+DQ0I6ZxLq5b5R6nShr/3ZdFxVW7y1J0qZtMOq4THYI7h5qmqZPDroBX+htNu5lZllOBAGu4+D6jRtYWFjABydP4sCBAx0TgzeNUBSLRSSTSU+gvM2RRE4oCdhcycgfAH+MRRnC7wbxeBwbhQJs9iz0Yh6dmJjA+Pg47ty9i3Nnz4JSCklVNyOr7FnjPhVvOnbGN7tdYKSAaw546ZDEDEnu37uHPXv3YnhwsHfXwBbicrkMQ9eBqFXKbcCyLN/YhKcU+E6Cd06rUjpvY4lYLp+HLEkYyGSgyDLGx8f9ZlH5fN7zVJibw/3796HIsmfrPD6OsWy2vZx11Kij5q636Dssn+kGftZsobdZpEsM1Jc3QtVun/87GAWo/R3g29PKsuztaoMRB2xGIRCINlRFl+p8ZsATsrlM92NaFkxdx41bt1CpVHDyxAkMj4xgfWMDgLdLJawfCTcsC/7Nf19zoqb3YqehsLGBVCIBQRA8UfR2RhCC3yUDF9TyngqSKO4IHwlBEBCPxVAslVAul3u2yXr//ffxJz/7GV68eoWJiQnPb4U90/w+lN+SioV3mxywXRdf+Hh0QJYkvH71CqVyGZ+dO9dTVzsKQGEhfNM0e3KOsDAty3NEZMQgWIYY3IFVKZy3iSDkcjlks1mvVC3gLqmqKqanpzE9PQ3Xdb2IQj6PXC6H55cvAwCGBgc9p8axMQwODvZ8d0mZYYzturBME5ZlhV7068FfEFl1DY+KCKKIuKZ5lq/B7ysQzu/0s/JogaZpHeXDg2Mp+Jl1XYdAPPtgy7Jw+do1gFKcPn0ayUTCu0fsGK7remnAFufi9yRIcrhx1o6OJFCKjY0NjM7Oev1WLKu/5ICTAfbvRr+3bNtLHbH7bPfIAbEdEEL8fgu6rntGdj2IagwMDGDP5CSezs1hz5491Wkzds8Mw4j8vNuBd5scYNO2WBQEf5GjAJ48eYLx8XHE+6AaVhk5sEzTb7yyHTBN09sNyLIXIWhRsxycEPq5ezAMAyvLy/jwo48AwN/F1E5QgiBgaHgYQ8PDOHbsGHRd9zwV8nk8ZM2iVFX1+z9ks1koXbSgDpIAx3G8fztOlQcBDxfX3q/gZBtc9Ov9rB64W10n5af9QLDvffBbEkQRkiShUCzi+rVrSMTjOPfZZ4gFNCM8neXyv4P/ZkSDEy3+ev5cu9xDhP2ORxhEUfT/3imkoVgqwXEcZDIZEEI80Vs/yDe7N2GrDvi9FSQJRBQhotpnY7vAo1qGZaFULmOgUW+KDsHnmIOzs3idy+Hl8+c4GnDJjTqVt93YebNIP+G6m3qDwIQ69/gxLMvC/v37YRrGZpe3iMGHkCgI3s7JtqEbBhLbYL9p2bY/GXVi8LSlXrqHk1o+lwMFMDE+7qm72aLcSsmuaRpm9u3DzL59cB0HK6uryL1+jVw+j/n5eRBCMDQ05PeAaNSCOgwJqAVhoXApsBCFWfTDYrvLyToGpXj1+jUe3LuHbDaL02fObBl/hBAQUUSrO7SFRDC/Etu24bC0i8u/O6c6/rATSEOhUAAFkMlkYLOW5Lbj9I7stUkKOLiAW5YkP03GTZG2i2TxTxCPxWCaJoweRGEF9hk1VcX4+DgePnqEgwcPQgyMV05U3wa82+QAm4yXl8GZpon79+9j//79iKkqDMOAoqq9ESQGHkpFUVAxDBh9Jgc8hOgbHylKVQi6XRbsk4QeThL5hQUMZjLQNM3rHMlEpe2UuQmiiJGREYyMjOD9EydQLpc9rUIuh/v37+Pu3bvQVBXZbBaj2awnaiQkFAkQBcHbEbMFhi82voAwKOyMCP443inCyxCglOL+gweYm5vD1NQUPvn4464EeFtIBKWQJclP4YDlyl1G6hz2Xe4U0rC2tgZFlhGLxVBhEY+ehMdZeqCTxZz3E3Ap9a+L8NQejw5tB1Fl59Q0DVhfh2WaPbl3Omthf2h2Fq9evsSDhw9x7NixLa/bzghwVHjnyQFnwfyLvP/gAVxKcfS99zxDEstCJWLfbh+BB0lRFIhAJErwMOCkwGVqZItXKQRb3nZADvz38vPUlEJ1G02grotXuRwO7t8PwFNL27Zd3dWyA8TjcczMzGDv3r0wTRNLi4tYWFzE4tISns7PQyAEA5kMhoeGMDwygkQiAUkU65KAhtfO/m5aR94puDbkDSEHLmue9Pz5c8zOzuLI4cM9u/aguJIv7lXRiVrSwLp9NiUNguB/75IkVaUlO0WhUEAqlQKBN64NtsBFAb/qICgu7OB6/ZRCQKPFSxqrNEq8u22fwOcp/t1SFj2IkhzYtg3LskBdFwPpNGZnZ/H48WMcYHMRAN8XhjpOVWffNxHvNDkI5iYlUUSlUsHjx49xeHYWmqrCkWVYjIUastx2d8IWJ6/6r6ooEESx56LEqp4H8AZycHGVA5+RixK72SUFa9yDHgn8Z+1iZXUVlmFgbHwcwCapczqYiHjY1rYsX+3Pkc5kkM5kcOjwYRi6jtWVFSwtL+Ppkyd4/PgxEvG4Vyo5Po6R0dFQkxAnBb2IqbxJDomWaeLipUtYXVnByZMnq2yxowQNjL2m6IQ0uC5M1wVYiSdhKSNRkjy/lDr1762wvr6OEV4/L0n+s9lxSWNN2iAKQsrJSu14r91I0EBUotc5+Npzq4oCy7Iij8LyVIUsyxBFEYcPH/Yqoh48wAFukMc2Q7brvvGL65t+/V3BZg+2wMKE9378EaIo4tChQwA8LYAai0GvVKDrOhQm1IsCtCb8pqiqn9Pqhf1mM7EMr1KQaz4fz4VH9XDXJQreRYWeSHO5HFRFwWAmA6DaYbIVeJiW56HrpQcEpv+QJcnbETLyMc7IiGPbWFxa8oWNc0+eQCAEI6OjGGdahWSDVrs0wkm69rhB45qdjFKxiAsXLsA0DHz++edQVHUzJB01goSpk3B3E9Jgc2LJiDVl+gburEqATaLA/m72GR3XRaFQ8BcZPg5d14VlWeGFsnXKD6ME7yFQm8JrpM3hv2tYAdEDqJqGUqnkpRxdNxLiaTENiOu6UGMxzyhOknD4yBHcvXsXe/bsqTZee1M1QAG80+SALyiCIKBQLOLJ06c4ceKE75IIAJqqwjQMOI4DwzSrWzl3g5rBIxACWZZhMMYbFTmojRTUA69SqHvOHuUQG1Y6tCAKuVwOY+Pjmw2YApGD2onAYSTAJwN1PgcPC3My0GoiESXJjxicpF4XthzrKnn79m3cvHULyUTC91UYHRnxJ9Lg2buNyARR1ZFxB6cVVpeXceHiRciKgq++/hqJZBIb6+sAek9qIk3lsNJLSZIAVfUjDLZtw3YcOGys2Vzky0rbgkRBlKSqz8zFiAMBYinJsj92W5GDehUwUYPrDWhAb8DBq23qzTN1HVYjvq4gVKabopTCtKyu52zKNFkupX4Le37OgwcO4PHjx5ibm8Ox48c3/Tu6THPuBLzT5MAOpBRu3bqFmKZh/4EDVa8hhEDTNL9+VlGUnrXElRUFgq5DNwykGuw+20GtXW49cGFW0Oim3whLFCqVClbX1jA7O+v/jCv+HRZxAeBPyvXIgBTczYUgA62uO5lKYTaVwuyhQ7BtG4sLC8jl83j1+jUez81BEASMZbMYGxvD6Ogo4olEdW10BOCfcie3an754gWuXL6MTCaDs+fO+YtdT9MhNfn1noW3AxEGvgw5zJadEwaXVUYFtQuSIHjRBUnC+toaQClSARM0WZKgw6sk2kKaA892v/aoNpsniCDUFWgTQfBy7Q3gOy5GPE5rhZWEECiqClfXYRhG1+TANE0vTRLYQHEyJIoi3jt6FDdv3cL0zIyfxtglB284eOSgWCzi+fPnXmOXOoNeUVVIug7bcWDoelUNdido9DCrigIB3Zto+JNGiMnQYCkFSZbr5jW5iKlf4epmRCGfzwN0swujy3ZrhmGgrOte+LXG9pk30+JkoJefQ5Ikv1kUpZ6hTT6XQ35hATdu3IDtOEin0z5RGBoejqQKZidYWjcCpRSPHj7Erdu3MTU5iY8//tivDAqmQ3ZyxKMTiIIAUVH88cjHKk9tOa4L23VhM+Hc4vIyYrEYHNv2xH4BkSsnFlKd+9ZP8BbFcgN9DQkx3wR1CFGkLBsRbU1Voet61yWNruvCYBUKsTrmYpRSTM/M4MGjR3gyN4cs69r7NngdvNPkwGZOX69fvYKmaZienvZ+UcPSCYBYPI5CoeBFD7otbWwwcBRVBREETwPQgQiJD0hegRAGFhv4DaMGEe9y20EtUcjn8xjIZOBSikKx6CmHA2VqrutCluUqvcB2XvvAwAAGBgZw+MgRmIax6dT4/Dnu378PURSRZY2ixsbGOiadQYOfnQTqurhx4wbmnjyp3zwp+Bz04NqrbH+3+d4IglBFXHmInnswFNbXkUgmYbByZiII3iLM8vWWaULY5r4rvhixgQqfO1KGWRarIjk9SF1GVdLIyYXANAZB+H4lhGBmehr3HzyAbZqQYjHflOxNxjtLDrjhDyEES0tLGB0drRLM1UKWZciyDKuHpY2KLEMUBBBK2+7QGBQhhZ0GuVqfAE0rMfpdllQLl1KYhoGFxUWMZrMolUr+7wRBQCIe97QDstyTjmxRQFIU7N27F3v37gWlFKurq3jNDJiuXbsGSikGBgY8A6aJCQwNDobeTfvf+w7afdu2je+//x75fB6nTp3C/kC5F0evF++qEPYO28kRpjGSZRmu62J9fR2zhw75ZmguT0lYFnTThClJfgpiO0BZxQZF82ZLPMXX7rE7jSI0ekcUJY2O48BiPiqJOsQ9KPIeHBwEKMXKygr27N37VhghvdvkAF7YaHVtDft5KUoTxGIxWJYF0zRhq2pnD2qLB0BW1bY6NIYRHDaC2SKlwFHVbKlPcJhK2zRNWLYNg3UdHEinPQEhKy3ljU8sFrLl+cft3iluQc1CmBkcxMDAAI4ePQrTNLGwsIBcLoenT5/iwYMHkBUFY9kssszaWWsyFtw2SWGvoVcquHDhAoqlEj47d84vO61FqzbT3WBLbpvtVHfcuACwurYGy7YxOjqKWCwGjUUVeE09KIWu616qQRAgMVLRz8gY30RwU6iG6OB6glGEtrUhTV7bbUmjXiMkrT0XCcy9mqZB1TQsLS3tkoM3HZwcrK2tAYCfK2oEAo+NqooCwzRRqVQ6Eg3WljDWQpVllAkJ1aGxVee7VvCrFEIIEfsxsTqsMZHBfAeCKBQKAKWYmpzc0vhHYCFYi+VzFUXZIsTcaYtCMPyqKAomJycxOTnpRxXyLAVx9coVAMDg4KBfATGYyVRN0DspcrCxtoYLFy8CAL768kukWclpPfS0/LLmmHxh2wnxgyChJ4RgeWkJoiB4u09URxVisRgogLKue5bQxGvQZpqm9zpJgqQoVbbcvUAjf4NadFw2yuC6LgRRDB2pbEYkeEmj2UFJI0/3uK6LeIt0HyfnQ4ODWFhc9H62Sw7eXPBBtby8jEQy2XIA8LC9pmn+blbvRAnb4qFRNc3THbQQ0nTSzS8IXnoVtkqBCEJPQrO268IyDJi87CsASZKgyDJkRcHz58+RTCYbdgSUJMmvO1cUZXOSYqi6V4T0fZcd9rvi/R2GhobwHmtBnWOixsdzc7h37x4URfF1Ctls1p9It1tzsJDP49J33yGZSGxpnlQPvYwc1EWPynJboZYMbF6O9++l5WVkMpm63x8hxGvMRilkTYMoCLAtCxYrKTSZiysBa7rFGm9FfU8b+RvUg0BIx70+eMO3MBGEVvoGXtLoUM+DIqyJHWWRGgqPuDcjFUQQQJlfzvDwMF6+eAG9UtmtVnjTQeCRg1ZRA/5aEAJBFKHFYqhUKqiUy57QKMISQL6wcdONWjvebtIIQVim6ecPhQYCoyCiLAVzXBemYcBgnzEISZKgMkIQFH2uLC1heHi44TElWQYMo6HdbO1k2W+yQNFZ2F9VVczMzGBmZgau6/rNovILC36zqPTAAIaGhrB3zx6/w2e/8fTpU1y7dg1jY2M4ffp0qOZd/SYHPS1nDKAVGah97fLSEqZnZhoeTxRFQBDg2ja0RAKyLEOjnrurZVmwWQtwThQAr6JAVpSOmqhtuUbeoI7ShmLEIKL4Nvnmp1kUodU3GSxp1HU9FDmglKJcqfgiZ19E2oBYBi2ph4aHQQEsLi7uViu8yaCUwjAMlEoljI6OhnoPH/SapsFlpkjlYhFCOh3qoQkzXERB8ISPtg1d15EICB+7jRYEYTClfz/7xdss2mIyYgLA95FX2ERWrwrEdhysra9jkleT1AEPd9rMra7VgtOQLHDFdYQLF/e133L+2tr1FhAEASPDwxgZHsb78Hwf8vk8Xrx4gWfPnmFubg4xTfPTD9lstufeFZRS3L1zB/cfPMD+/fvx4QcfhE5v9MvjgCPS87Dvrsr1MgQZqEWpVIJhGM2JryiCoLp2ngSMmKimbSEK3K2RV0koLXRFzWDbNgTAa2oV4hhc8xNFmWK3Quh2Sxp1XffTCYl4PFQ0jl9jTFWRTqWwuLS0Gzl4k0GZshQARoORgyYTdjCMFYvHvYfQslAsFpFKpVqXN4Z8WBRFQYWZISUSicj7hDuuC5uFIsMuHoQQuGh/gqWUeq6PzCeCQ5IkqKwOvNUDuLa6Csd1MdJkAhWZGRJvktOoFrsRaifyWl/42skuCtJAuqzzjsVi2LdvHwaHhjwnPdPE0tIScrkcnj17BkEQMDQ05Kcg0ul0pLt013Fw5coVPH/xAifefx+zhw61dfxtSSt0CE7wuMcAqdlJ1qaxwmJ5eRmUUgwPDTV8TdAFtF6Jc5AoIBaDzVT2Fsu162znrLDnrd1ugTyl0M4zFXWUpp4vQpjjt1PSqBsGLMvydQZV96kBSQlGDoggYDSbxevXr3c1B28yKKVYW1lBOp2uDjc1ecCDYkJCCBLxOIrFImzHQalUQjKZjCTvqygKREI88w0AiNga1WIsWmRdBcNCaOOBd5h5iMFsRwHvQVIUBVqblR4rKysQBaGlAFRmXvS2bbdNDhqh0U6QMhIZjDLUvqbqtT0EpdQTtI2OYnx8HO+//z5KpZLXgjqfx48//ojbt28jFo9jjPkqZLPZrsriTMPApUuXsLa6ik/PnMHeycmOrhvoETnosCwu+H3WRqAoEHkKanl5Gal0umn4nxACMTi2W0T7JFGEFItB0zRf4Os6ji9k5JG6sNoEbn4UJjoavOYowclGu6QjbEmjaVkwDQOu60LTtK2va5BWoECV5md0dBSPHz/2HC/fcLyz5MC1baysrWHPxETo99QKYIggIJFIoFAswrZtlEslJJg97ha0MaBVZobEW7ZG4aIXhJ9SaFdMGULQZbEyTJ77BFgDK0WBqmkdkafllRUMDQ+H6nuACNvcNkM90lDVACnw736QA3Yh/s8SiQQOHDiAAwcOwHEcP6KQX1jA06dPvRTFyIjnqzA+jmQyGXpCLxWL+IsLF2CZJj7/4gsMNYnotLhw7+9edGRskFbwF3xKfbIf1INUPd99iGgsLy83TSlwSKIIm3jd/sIminjOXVFV2LYN0zD8Xg02c2JUVLVpyoF3oQTQVsSBoLVgsBPwZ0xo49itShptlsJ1WZq1bjS1wTNMAPAYAREEjI6MgAB4/uIFPvjoo5BXuDPxzpKD1dVVGLrut0jtFIIoIplMorCx4amGK5W6A7BVCWMQvDsiDwlG2XbUpRQ28zdQOgi91/sElFIYpunl6wLhNFmSoGoalC7U02EEW8HzAegLOaiH2rr6qgWn3mLFVN0k8Jp271NV06UG7xVF0dMhMNvpYqnkEYVcDnfu3MGtW7eQYM2ixsfHMTo62nAhWF9bw+3bt6EoCr766iskujCdilRzwBZ7QqnXhCgYfkb1QuX/rpeahxAwTBMbGxt+F9hmEJlbYpjuo/XA0w6u43i7ZGbu46ccZNlzfq353rm/AU/btYNemaf5C3LIOVVlvXHqlTQ6joNyueylTUSxbvVZs/FBKfU3AgIhIJKEzOAgXrx40ean2nl4Z8nBixcvQIC2dz31xG6iKCKRSKDIxEUCIVvLuEISA/4qLRaDadsolUqRkgMuBuSd4dpCzWewHcdPHQQFhoqqeqmDNnOb9VAql6HreqjviZvCuKzpTdufr0cgYOSwFnSrT0VtFYX//sDfQRIRXGDDEotkIoHZgwcxe/AgHMfBwuKi14I6l8Pc3BwEUcToyIjffTIoir127RqGhoZw9uzZ9iNPNeDppqbRpMCiD6BqnAXFgCQQBYAgAEHxXs3fOwUrTG8QZmxLoggB4QW3jSCIIjRRhKqq3m7aNDcJg2X5Xi4S26BwMtJJCqpX97u2C2mryJzKdE12TUmj67ooVyr+wt7QaKwJCXFd198I8O8km83i5atXffGG6SV2xuy5DXj56hWGM5m2Sn2aTcCyoiBOKcrlMiq6DoE9ZO2Ch83i8TjKxaJXVkNpZDXsFi916qRKgamQeZTACuxiREGAxkKYUdbbrywvgwJNBVubl+cJs1xmorRTyEHHodWaBbEeiXBZBQsRhKqUBniUJ5hyqCOuFEQR48yF8YMPPkChUEAun8dCPo9bt27hxo0bSCaTPlEZHRnBuc8+26JV8Ssy6oTqt7gTsgWfV99Q1JCiRot+8Hz8XKizCDVZLPpVzhgGy8vLUDWtoXdHEIIggIgiiOvCcd2uiTchxBco2o7jpRxYaXG5UoGg65AVxXdR7eRZ6tXCKAqCTyy5ULGZALBeSSMvWaSu6/XOicU6ul6f4AaiEaOjo3g8N4d8Po/xBu6gbwJ2xuy5DVhbXcX+0dH22W0TFqmqqp8KKJdKXrMOWQ61OFBsslDAK8ERRBHUcaDrekuTprDgPSU6EewZhoFypVIVtld46qBHJXMrKytIJpOhSy4lSYLFTGK629dGiDZLFts7dEDUxwkDPycCC2etyjsQeQheWYK1oD40OwvLtrGQy+HO3btYWVmBSykWFhdx6dIljI+NYWxiwo+QCYHj+eepPXdwkad0U6hae28aLfph0eRe7zRyMDw8HPpzSqIIhzn3RRGVCx5XisdBXReGZcFiIuJKpYJSuQxRkqqiR+2g1cLdCWpTtC6r4GiWwlBZSSN3ha1woyJKm5Ys+pG6RtfCyEVwDA9mMqCUYmFhYZccvImgHU7YrUQ2sVgMruvCNE2vgiFEiSMFY6BBkZsgVKUWoiAHjuv6D2o7YULLslAul/3GKwReHk9VVUg9tuwNK9jiCPod7AS0GmdVO+xOwL5PEowU1Crs619Y3dfU6iSePnuGb0p/huvqTWi2hv/7xN+EWbFw/cYN0Bs3kE6lMD4xgbGxMQwPDTWtpd+y+2fagHqeD1XPGQ2UD4bATln8m8F2HKysrODY8eOh3yOK4qbuoMuUTj0QFv1TFQU2K9EmAOC6KJZK0HjpcRvPfNSU2A2M9yBauSrGNA3r6+swTXNzLuNeBk0+T6tP6rKxKdYIlN/cZMIm3llywCekTr7EVrmkeDzulx0Vi0Ukk8mGBKE2YlB7nFKxiFK5jOEIUgu8JClswxbbtr1IAa88IAQxTYPWJ+Mk27axur6OmX37Qr+H76hcx6nrMLmjUGcSaaScbxR9cGonw4giFLx50svSK1wmV+FSBzrR8RfmJfyLL/9fsEzT1yo8Y82iJEnCWDaLMear0KxZFFDdMKpWtNlI+Mr1G0EdQUPNxg7G2toaHNdti/iKdcyQegFCCGRFgaQo0AJznc5KIRVGILYjnx5MKdSiWamjKIqQJQlmpYJSqQRFURCr9TKoB0Fo6HEAbEYOtpSEv8FaA453lhwALDzV5pcYRvhFCEEykUChUIDjOCgWCnUjCBTebr7R8TSmHrYiSi349cotogYuyzsG+zuoqop4LOYb9/SjhfPK6mpowRaHIAh+asHeAeSgKrReEw6laLAI1jtQo7Bno9B8F1gPNE8aPzYB3N783YvycwCeZoW3oAalWFtbQy6fRz6Xw9WrVwEAmUzG91UYHBra6hPRwbVzElFPh+G/ho/NwP3mpGunCMSWl5chCgIyLZqrBSGKIoggwGG+Be14lLQL13G8c0gS0skkHMeBbhhwXNd3OdVUta8Oq0Drqq9mBIEQ4pUtEoJ0KhWJFwonKlGXm+8EvNPkwBdQtf3G1iU0RBCQTCaxUSjAcV0UCgUkEgl/QPJUQrPJKurUQiu9AXVdz5lR1/2fyYqCuKZVCZL61cJ5ZXkZsiQh3Wb3S0mS/FruTkSh3aB2saaUbppY1Rkz3TSpCSKqRS+fy+H7779HMpnEuc8+w7XVa1W/r9sDlHgtqDODg14LasPwDJgWFvDkyRPcf/AAiiz77afHxsY2hcCE9KSbZL373WkqsRdYXl7eQphagRCvXTIhBE6PyYHJqxSYZTIn3SZzO3UpRZnl8OuaBgWuOSqdR6OUQi2qvmcmetV1HZRSv6V7GFJDvZM2jS7717RLDt4+dDKpttIdcAiiiFQqhRJzUSwWi4jFYlBUNfTDwlML3VYtUDRuu8r7TJQrFX9ClSQJ8Xi8cZQhZI1xN1hZWcHg4GDb35EsSdCBjmvCQyNQCVDbECv4d9O71OV99KsOIlj0njx5guvXr2N8bAynz5yp+92HuVJFVTE1PY2p6WlQSrG6suIbMF1m9d+ZTAaDg4MYGRlBJp2ObtFudr/ZOeqR8i3pnR6WoXHvjv3797f9Xt8MyXFCmyF1Aot7oQSExoQQz/JclmGYJgzDgO26KJbLkETRIwl1CEtU5KBZSmELWGSKwiuHdmwbhDXJE1i5cyvtRKvlPtjrZrs7ovYCu+Sgw/eFnTwEZvtbKpe9Rk/MTTEWi4WaEHnVgmUYXaUWeEpBEISqHQcnBb4FqCAgHo+3ZNa9Vn1TSrG0vIwDBw60/V5flMja2nY7ydeW4W2ZoFqEOZuh2ymlKoTe8UEobt+5g4cPHuDAgQM4efKkvxMSSE0qrM3vnBCCoeFhDA0P49jx4zAMA/lcDq9ev8b88+d48uQJbt644RkwTUwgOzraWZnt5glbki2hTuRryztqRJL891EsAcViEYZptqU34OCWx70U3DpMr0MprUsQCSFeSkGWPZ8TlsIrlkp+9VIvwuztGMkBXsq2XC77osFUKuXZuTNhdkthZSu9QeBagvNh1yLjHYJ3nhx0grZzl4T4qthKuQyDOQkm4vGW4SgiCIjFYrC6TC1YNVGDYAWCfx5WgRDms/nufj1izMViEYZhdGTNKwgCRFH03CBtu+22tb7wLfD/jolQj6Mr3boM8uZJL168wPsnTuDQ7GxN1UCNKrzLhJKqqpiemcHExASKpRKKxSI2NjaQY2SBwDMmG2edJQeijCpwhFxk6hlXRTHxLy8vgwAYDOHdUQteseB2aYbUDBZryibJcnMlP5ubFFYmaNk2TNuGWSxWVTZEcY1uE21Wo8/AWy8TQvy+N5IowmTzQje9RYDqFKIgCJtzKS/FfcOjCe8kOQh+qR1/gW2yWApvYhQEAeVSCZZpouA4SCSTLUVz8VgMpUKhq9QC1xsQABuFQlUFgqZpiGla2/cijDtZp1heXQUoxeDgYEfvlyQJjuOEIgfBSZaLLes6GnaAlotJl/fP39F2cL2mYeDipUtYW1vDp59+ij179255zZZ6ioi+b37Ph4aGMDU1hePHj6NSLvvNou7dv487d+9CYy2oJ8bGMDo21vWEHsm1V/2n/QV6aXkZ6XS6I0GcIAheeJ3t7ntxP3hKIez1iYKARDwOmwmnbcfZWtmAcCmpRgg71/AUqcHsoWVJghaL+b0eREkCWDvrZrU07egNejkPbie2/0nbBtT9ItsUK4UZ7EEPd/5vWZaRTKdRKhbhOA4KGxueULFJKFXTNAiS1FVqwbIsVCoV2I7j5wWDFQgdocamNkqsLC0hPTDQsbmSJIow0KTPQlDxXhsZiIoYcEV+s+MRUtWkqaNzoH1yUCwWcfHCBZimiS+++AJDjXaxtdygk4usg2AZI0csHse+/fuxb/9+uI6D5eVlX6vw7NkzEEI2m0WNjXldOmvr3UOcO9KUWG2KIkg0UZ8YLi0tITs62vEpRVGEZds9IQdOoNFSuxE3SRSRTCT85mu8ssEyTa/pWo9Fe9zcyLQsuJRCU5QtkVBZln0C0wycTDRDI/vvNz1iwLFLDro8TsuBQCkcWu2nwNsPl0olWJaFUrEILRaD1mDR7za1YJimX1apaVrdCoSOwBbVXjwMKysrjResEAiaIfH8ol8G1y+W301kKiQ6IQfLS0u4eOkSVFXFV181b55UGzlwaTQlrP51N1gwBFHEaDaL0WwWJwCUWbOoXD6PH+/exe3btxGPxTDG+j+Mjox443m7d3A1ZKH2+dB1HaViEcNHj3Z8ClEUIZDemCGZLKUgdtEsTZblqsoGh1KUymXIstyRP0KY59V1XZTKZS/d4rqebqqG3ATLuFuJlYOOo43A0whbSM92j8GI8E6SAx8BM5Ve+B0A8LvubT21lwcrVyowdB0Vlh+Lx+P1DZECqYV2oOs6VtfXvV0Gq56IqjaZEOJZPEfseWBaFtbW1nDg4MGOj8GNnnhJ43aEo0OTkC4qFuq1a26GFy9e4PLlyxhmzZNaif+i1hz4x2mT1MQTCRw4eBAHWLOopaUlv1nUkydPIBCC0dFRjI6Oes2imhGefu7sasjC0tISXAAjIyMd6xd4GrIXokTbNOECiHVph84rG2RJgq7rMFjLZNu2EY/F2ooitLJg5mZt/DXJJqlaiXW3bHnvQvgpcHIg1RCp3cjBG4zIQshNBhCvqW2FOHPpqpRKMA0DjuMgmUiA1AzuYGqhrOuIt3CfcxiTtizL71A4mMlEb1rSgwdhdXUVFOgochBMEUiSBMd1YW0TOQibLhAI2ep0GBKhS6koxYMHD3Dnzh1MTU3ho48+ClUnX1utEBW6MW8KtqA+efIkiqUS8rkcXudyuHX7Nm7evIlEMonx8XGMjY9jZHi4erHYxp3d61wOA6kUtFhsM6rASuvC3gluhkRtO1IzJNu2/c1MVM8Lr36STBOFUskzhSsWoWlaJHORaZrQKxU4lEIURcSb9EkA2Odiz2WzTYPruk1LGd2A9bcgCFVj6u2IG7zD5IACvvVlp19m0/e2MQGpigJJEFAsleDYNjaKRSQTiWrjoWBqoVhsSg4My0KpVKrSOWii2BM3M0IpXERburOyvAxFlr1ugCHQqJpAliSYpgnLshBrQaZ6gbAjoOPJpKaUqhFc18WN69fx9OlTHD16FO+99154UrdFcxDN1BeqXXMYsAhccnYWB2dnq2ydX718icePHkGUJIyOjPgpiFiELdDbAqXI5/OYnppil17TOZP9rJUynxACURDgRGyGFBQiRr37VRQFaUJQYg2PKroO27a9TU+zfhwNnm1ubGRYFiilkGU5lKjar1hgYuVGpZqkxfzNIw88Qhl8tes4fUkp9hrvJDkQBAGZwUFvh9qmELEW9XLuLY1v6kCUJF+H4Ng2CoUCYrEYVFX1r69VaoHCy83qzPZYEkXE4nEUNja8B6gXu2dCvLrxCHdjyysrGBoebvhw1RoNNYIsy14I0bY9IrhDXcy68drwj9HgXtmWhe+++w6Li4v46OOPMTMz0+a19Sat4C+IEX8noiRhYmICExMTAKXYKBQ8UWM+j5s3b+LG9etIpdMYHhnB+NgYhoeHe+o0GMTa2hr0SgVjdTr1BUWMwf83IgqiJIHYdmRmSJTS7tq5h4AoSUjE495u3zBg2TbsYhGxeLzh3FQvpeC6rt8dllLqNYtqQ3shShIEx2mcWgiR5vMN5fjYCXxHK6urECXpje7ICLyj5EAURezZswdPfvwROvMI7wT1dAfd9B0QAkJF0zRRKZdhmibi8ThESWqaWrBt24s8sHNrmoZ4LOb3YxcEoWeLY9SGSCsrK1vMjzoREwqCAEkUvYnPtvvvAx/2WsNUNbQ6fp336pUK/uIv/gLlSgW/8iu/gtFstq3jA3VMkKLSHPAysF7urghBOp1GOp3G4cOHYVkWFhYWkMvl8OL5czx6+BCSJCHLmkWNj401FAVHgVwuB0mWMdwiXUa4eNb/GFsjDFLETZhsx9lMKfSILPH5UlVVSJLkGxSVy2UoigKthcdKsEyRsv8nmrm4NoAsSTAMw3NNrDd3tXhug3qDLaJuQrCQzyOTyXRkcrWT8E6SAwCYnp7G7atXsZjPY2p6uqPJuRY+MeDH6XDBTCQSkGQZOmPHhY0NqKoKLRbbklqgACpM0Ah4k20ymfSZOGe4PYkacLDJK4pp3jBNGKaJVDodSXWBLMuwbRuWZfWdHIQGyzu3C78csM57efMkAuD8l18i3UaDn2aIigRy+hwlNQgTSeLNoj788EOsrq35osbr166BUoqBgQGvVHJ8HEMtWlC3i1wuh2w229YxtxAFlt8WBME3Q4oCNos2yrLcu3A4W4gJIRBFEclkErquw7QsmKbpixW5PiSYUrAsCzrr6eC6rudf0KLdciOIAVEipdS7x4ENnUtpU71B0OyIO0GSwLO4tLyME6dO7aYV3lRkMhlAlrGwuOiRgw6/SM48a2vau51EuYd5pVKBaRheJzSWIxMBlFnurlgu+wRAlWXEE4mq3RgPvfVakBdVaqFQKMB1XSQSiUiqIGRJQoUQL5/ao7LLRmiHMHWlfan5TLlcDj8Emie1ap3c/Lqiv19VHRm3K9VDCDKZDDKZDI6wZlELCwvI5fN4ylpQy7KMLOsqOTY2BrWL+2joOpZXVvDxRx91dc2+AJU1Q3LCWgE3AU8pULTvbdAOCDbJDeCN21gsBkmS/GqtYqmEGBMr8gZTuq771wd46dVurlOSpKrdv+u6/vzVjt6g3pxqGgaKpVJHfTN2Gt5ZciCKIsbGx5HL57teNIKe2lGCEIJ4PA5VUfwcGyiFYZqwbBv5xUXf5CPBXld1XWjcbClydGuIxISNa2trIEBoMWIrSJLkhV/ZZNCvqgVuwRwWnaRm6in+n8zN4fqNGxgfH8fp06e7/ry90BwE+0FEStbauH+191tRVUxOTWFyagrUdb0W1EyrcOXKFQDA4OCgXyUxODjYFrFZWFgAAIyNjYV+T9PrZ7bEBN5OV+yCnPt9V4CetzivN85lWYYoir4Fc4V1exRFEYZhgBIC6rpQmbag2zEjszmhygMlWBIcUm8QvFf8HQuLixAlqaOeMDsN7zQ52Lt3L368dg3lSgWJDhXMfJj20liHixWDfghlpi/Yu2cPUqlU3UYnDrdMJqR7w6MW6GTnW49UFYtFxBOJSBu3yLIMl1KYlrUj7HejQhU5oBS3b9/Gw4cPceDgQZw8cSKSXflWTU330Rz+fUcZM2hXBNxseSGCgMGhIQwODeG9Y8dg6Dry+TxyuRweP36Me/fuQVEUjLGIQjabbSmIe/36NTIDA11FH2ohiCKIZXnGP5LkLfB19Amt4AsRe5lSYBAIQb0tBC95NE0TxWIRJcPwCYGiKIilUpE5LHITKRfeQs/TjWGMj3haA6ivzVhYWMA4m5PfdLw9M2Wb4KLE7y9cwOLiIhJtqrg5+lnTqmoaTNuGqqooFYt+OZBt2xDr5NMttiPoqd4ggNrcXUOwibxeCWShUIj8wVJkGaZlef0keig4C6LdcRFmYtpyDnavXcfB999/j5cvX+LEyZOYnZ1t8+xNrmtL5KB78Mk1ypRCL7uEqpqG6ZkZTM/MgLouVngL6nwez+fnQQjB4OCg76uQGRioSlNS10U+n498NykQArDUAhAQLiJQ/RBCXOenFLZZk+O6LmwuEgRbiCn1e9JECUmS4FhWFTkIE0EOuiLWu6al5WWc+/zzSK91u/BOkwNVVRFLJrGQz2Nfh+SAox/57FKxCMe2Pb0EgGKphEKhAEIIDEVBIiDmAfqYUmCorfetBf8d7+ZY725tbGxgYs+eSK+L5yeDYcReo+1+CR0sbBSeCczt27dRKBRw9uzZyO9dvWqcrhEM4W4XOtUYCQKGR0YwPDKC4++/7zWLWlhAPpfDgwcPcPfuXaiahjGmVchms9jY2IBpWZGXtomsYqGeKLG22qFRSSRvwEZY/X+v0eium6bpCw4pIUgnk3Bd12+7HO+gKqEZJEmCwUpB/WsLEMxG17mlhJG/F958bJjmW5FSAN5xcgAA4xMTePH6NU6jfeU0xWYdci87c1FKUSqV/IGZSCR8y07dMLyQuWnCMk3E4nHPDAT9EyMGLrTutfP2zhyNSJTDekdEHTngE5/L3BJrtRm9QNsjgRCvd3wbi1ahWMSVK1fgOA6+/OKLjloAt7ysHmgOIjNACqCTZy8KQh+Lx7Fv3z7s27dvs1lUPo98Lod5FlXQNA0i22lGuYng/gxNnVh5JZEgbKb+AveKRw3UHgoRaxH0LnAcx28IRyn1Ozzye8W1VuVyGVos1nEjtlpIsgzCdVw1IILgPYt10LCEEV5KQZZl7Nu3L5Jr3G688+Rg7969uDI/j431dQx0UO5V90GPkCRQSlFkHRwJIT4xkCQJ6+vrkFzXq2AQBJiW5XkjGAZUVfUtWftGDpjALJj/dYGW6l+OQrEISmlP8nVKoKSxH+SgI7SxaCwtLeHSxYuQZRnnzp3rCTGoe0kRjO1urJOjAkG0ZZRATbOoEydQLpWQz+dx+/ZtOK6Ln//854jxZlFjYxjNZrt6NkV2/xzXDWXytcVgyXFg8g1EH8kBt4s2DAMm6+UASj1LZVn205OEEMRjMVRYtQIv146CIPil3jxyEIgaUNf1BZpBuKwyBKivN1hcXMTM/v1tGTLtZLyz5IDX2o6Pj6Nimsjn822Rg2DUgB/PH1wd5I/rwXVdFItF/zzBhiL8//bqKorFIib37oVpmiiXy7AdB+X1ddiWhXg83t9JmCmLm6UOGqFQKABAT8iB33ClTyWNnXz7YUWdz58/x5UrV5DJZHD8+HEkEokOzhb2mmpNkLpHT8hBJ89bjSd+1IgnEpiYmMDVa9fw8UcfQYvFvM6Sr1/j6ZMnEATBa0HNyEIimWzrnhBBgMh24Y7rQgqZLuOf2OKqe2YW1g9wjUOpVPLFfYosV9koB3VLhBDf+pwTBC5U7AZ8HnVYqlEUxaqxLdSZw2stk6s+FzxnxI8//bSr69pJeGfJAeB9yaIoYnBkBAsLCzh8+HBb768dIFGKohzXRbFQ8BeyZJ2KhGQqhfWNDe+hKZd9G9Iyq2owDQMAfN/xXkcQuAkURWcTf6FQ8NTJPdjFSJIEgRDYlMK27Z7WcwPoaNFpOX4oxf3793H37l1MT0/j0JEjcFlEqVeoPbaLCKoVAgK6qNBLMtYN8vk8AC99qSgKstms1yyqUPC0Cvk87ty+jVs3byKRSPgGTCOjo6HKCgVRBNgC1y4M0wQB+mIORlm1kMGay9muC5FFQoOC6XrfCY8g6ITAYNbLlEUaOgWvzKCuC7uODqme9sCpU8LIsb62Btd13xq9AbBLDgAAU1NTmH/8GI7rhiqhq40aVP0uAnLAO5dR5oSWTCbriuhEQUAikUBhYwPrGxuIxeMgLGdnmSZsx4EgCF74zjAgKwpimhb9wsh2AISlFQSgSmMQFsVCAal0OtprC0DmXRotq+fkoCPHyCYRJ9d1cf36dTx7+hRH33sP7x096kWV0GML4l6YILG/e3vdIRBRhK8ZXudyGBoc3LIAJ1MpJFMpHGQtqBeZAVMul8Pc3BxEUcTI6CjGGVmIN4gOCUxL0C45sFlHR0qpT8br2TR3C9d1PQdEpo3i4zXGShSDcyhl1QmNSKPGGivp3EKZEYROSaYkSX7XWjRowBS8F775UR1ykFtYgBaPY3JysqNr2YnYJQcADhw4gIe3b+Ppkyc4ePBgy/c1CksT4jUh6mRh5HBYjwRKvRakiUSiqbo+nUp5ZY2VCkzT3JyECEEyHkcsFoPjODBN0xctSpLkkYSah7MtMF0BN/upF2Zr98jrGxsdtWkOC1lRYDCb1p4j4JYZFo1ebbHmSUuLi/j4448xzSpr+pG7F7ZcVTTpMiDCUsYOn7deRw5cx8FCPo9Dhw41fZ0oihifmMD4xISnMQo2i7p1Czdu3EAqlUJ2bAwT4+NVzaKEJhULzcCjiqqi+N9DlIJqx3Vh1mgKBEFATFGgKArqtbQPM45VVQURBG++Y2LKMN0Y60GSJJi27UcEahGMHjiMSAFbIwe26+LJ3BzeP3Wq5yZS/cQuOQAwMDCAg7Oz+PHHHzEzM9My/N6rnLVt2ygWi961SRKSiUTL88iyjFgsBttxsL6+jtHRUQCbk4WiKBCZUr+i6zCYN0KhWIQoitA0rX3XMUrrht04CCEQ2S4hLFzXRaFQaLtrYDuQue4gAsvZZuh4fNSZnCvlMi5cuOA1T/r8c//75ecB0NOSwFrVSDfElyNyUtOHCEAnWFlZgWXbdbswNgIhBKl0Gql0GocOH4ZtWVhYXEQul8PLFy+8FtSi6DeLGhkeBgjxvQ7CwHUcmKyEUWmSuyeCAMraD4eF7TgeKWALN6UUkiBAYRFL3zSu5n3tEBMe6dArFc/AiVLEYrG2x5MkSRAohdWEWPHKhWZ6g7m5Oei6jl/91V9t6/w7HbvkAB4rPHP2LP7bH/4hHjx8iGPvvdfwPS5aTGodTlSmZaFcKgHwBm079sHpVAoVXUepWMRgJuN9LrZz5WkSgaUb4rEYdF2HrutwHAelUgnlSgUxTfO6ojVbMHkVQpjPx/J5YR/YcrkMx3V76ixGCIEsiqAstbDjVMU1Y2dtbQ0XL1yAIAj46vz5LSmXVjXZ0VzSzi9l7PSKei1KfZ3LQVXVjqqgOCRZxp49e7Bnzx5QSlHY2PDSD69f4/r16wClSCaTyGQymJyexsjQEEiL3SvXGoii2JQgB22uw1gKc1t3sPSAxLxk6pmw1d75dvVaiixDIATlctkze2Oaq3bGlECIb83cCPx3vISxduNoWBbu3buHQ4cPv/FdGGuxSw7gffGpwUEcPHgQDx48wMH9+xvanIZZ8NoNVzq27RMDWZbbVp+rmgaVleptFApIs46GhJAtrJ83O4lpGnTDQEXX/f7olUoFmqp6yuGaCYaLDcNOqO16P/SyUiEIWZZh8ZLGHpGDbpZPPnZe53L44bvvkEqnce7cubriq9rStF4gap8D6rr+QrPdaYVeI5fLYXxsLLLvhxCC9MAA0gMDXgtq08TCwgKev3iBl7kcnj57BkmWPQOmsTGMjY9vmccopbBYy+NQJb1BYlCHJFhMZGiz79WlFLIsI64ozSsgIrgnkiQhHo97XgjML6FtG/wwZmWENDQ/enD/PlzHwUfdNNTaodglB/BC2pQQHDlyBE+fPsWP9+7hww8/3PL6llEDwK/1573RW4FSimIXxIAjmUpBNwxsFAqIx+OgaNGXnZmzaKoKw7K89tCOg4phQNd1KKqKmKb5KQkuNmwH7ewGCoUCZFFErMf2xrIsg7AGL71KD3WTyyaE4PHjx7hx4wYmWPOkln0xelqtsPVn3dy3YCoksnu/A8lBuVRCYWMD7x092rNzyIqCvZOTSGcyOMRC+ctLS16zqKtXAXjdZ8fGxjA+NobBoSG/O6lASPveBrxUG4Blml7lAatOoq4LRVWhKkpHfVE61TtIkoREPO6bxBnM4yUM+Aao1blt2/bGK6r1BuVKBY8eP8ahQ4cwwFxr3ya80+SA+2NzcwtFVXHkyBHcvnMHs7OzVaF9/gC0nNBYOF8IaZ9bYuJDgVUedApuL2qbpmeOJEnhcuqEQFUUqIrilUTqOmxWLlTRdaiKAk3TOurP0K7HQbKHlQocwZxhz0oaO5zoKKW4efMmHj58iIMHD+JEs+ZJQcfJjs4WFvWO3lEtBoAeuCOGfM76jVwuBwBVGpFeQRIEWIKAdCqF0dFRHH3vPZiGgXw+j3w+jydzc7h//z4UWcbwyAgGBwexZ2Ki7fPQOpUHgOeuqKhq599pl+ROFEVosRgqlQp0w4AoiuHLtkOmTPh5grj744+QJAlHDh/uqqxyp+KdJgcA/J2x4ziQBAEHZ2fx+PFj3Ll7F5+eOVP12rYMSkLsmnnjJABIdNmimBCCVCoFe3UVG4UCBgcH22bwsix7YXdGEkxWMmQGKxza7NwWtnpjo1BAKqI2za0gy3JPSxo7meocx8EPly/j1cuXOHnyJA62aJ4UHFs9rVYgW8eQFzno7HiRexzsUDFiLp/H0PBwX5oZ+RULgdy5oqqYmp7G1PQ0qOtidWUFL1+/Rj6fx6tcDnfu3MHg0JBXKjk25vVrafCduK7rVztx91MCjxSozKq9XZDA3907Z1Q7oJYrFSRbVHn51xAQV9dDVWOqwFyxXihgfn4eJ06cgMTuw9uGXXIgil6tq+NAYnnyY8eO4fKVKzg0O+uX1kU9/ViWBUPXASCyFsWJZBIbGxu+F3knbah5L4ZUMglH07wKB8Pw8vTFIkRBgMLKkcJGE1rtM7nQaiybbft6O4Eiy5viqR0AwzBw8eJFrG9s4Oy5cxgbG2v5nqoJrc8+By5ox+2W/chBH5pftUKv7ppj21jI5/FeE2FzlBAEAYRV4dQDEQQMjYxAjcUwMzUFx3Wxtr6OhXweDx8+xI8//giVt6AeH8dYNgtJFH1tDt/AuNTrfaCy598/fhtp1KrrQnRusoBX0ug6jtesiekPGpHQYJq02dl5+lEQhKpoxO3btxGLxbB/3z6A0l1y8DYiKEokLOQ8NTWFhw8f4vbt2/jiyy99htkWWI6qHivlncYAj+FH5QgoMsOk9UIBxVIJ42EX20Ausep4rGoiFotBZzXLjuOgwqodBD5RqGpDfQM3RWrGzrnHer96oMuyDFAKh0WMtrM2uVAo4C8uXIDLmycNDoYqS+tVk69aNNIcdIqoyxh3XszAa8DjOE7kXRgbwddONSnJcx0HtmXBpRTpdBqZTAb7Zmbg8hbUrAKCN4saGBjA8PAwBoeG/H4uCVWtG66nHRADAH5FU1QghCAej6NYKsFxHOi6XlfD1E4JsGWaAJhWiZU1Li0vI5fL4ZNPPvH0QLvk4O0Ef7Bs2wa4U5gg4Pj77+PChQvIv36NMWZO0rYgD/UnrzI3OZIkxCMW4CWTSUiEoGiaMC2rtegoRM5WFEW/DNKyLC/EaFmwHQeOrqOi6xAlyc891kZBmrWMBVilAu1Nw6VGkGUZ1DRhmGbk30HYBWtpaQmXLl2Cpmk498UXfqQnjKCxH5UKQD0TpODZ20fkHgc7MKXw/PlzpJlXQT/g74Iphes4WyqNAK98EfDGfTBqIxCCzMAA4vE4pqemUKlUsLS8jOWlJcw9fQrn0SOomoYJFlHItmoWxdKpYb7dYHfGqCAIAmKahjIzSRIlacvmi1dRCbyaq8EYclgUAtjcUFAAt27d8kpHuRsiE3e/bXjnyQEPj5mmCTBBICHE65o2Oorbd+4gOz7e2WRWZ+CVy+XNDosdhP1bQRAEKKoK2bJQYJULdcGEk83sSmtBCPFTCpRSnySYhgGbhR/LlQokSfKUy2wiImA1xQ2OWygUAEHoWnfRDlRV9cOmiLpCIsSCNT8/j6tXr2JkZASffvppVT6znSqPXhsQ12ud5XZBDvhiEFVaodsISpT9UAAvpfD69WscPnIksmO2Ai8b5mZIW8qQmVthsHzRtm3YlgWTRRO8F1JoLFR++NAhgBAsLy8jn8shl8/j6ZMnIIRUNYvaQug5MQiRLuhV9EuWZaiO4/VhqFQgNfJz4ISqwXHMIKFi89fLV6+wsrqKX/mVX/H0F29p1ADYJQc+k3ZdF5bjQAT8hfP948fxi2++wfyzZ75lbUvUPBRBQR4X9wFoaYvcKVzXRTyRQEXXvfrfetGDgJlRpzs4QghUVfVaQ8fjm/bMluXnKcvw7q+iKE2Ff4VCwbsfPd4FB6EwtzbHcWDbdqRNqZppLCjdbJ40MzODU6dObR0HYfKwUe/AGyLa4/MFIZLvegdGDV6/fg3bcTDVZ499URQh2HbdnTifcwCPFFQqFa98G5tlqYosQ5LlLenB7OgosqOjOHHiBErlMnK5HBbyedy9exe3b91CPB73m0WNBptFUeq3Xt4OqKrqPduOg1K5XDW/hDEPcyn1NUk88uC6Lu7cvo1sNovs6KiXZqB055mpRYR3nhzwRa7CrDj9R4NSDA4NYXLvXty5cwd7JyfD5aabhKgqTGeg9bBDosNboKoqXABrGxuexWrg+iht3/e/GQRB8DwTNM3r48C7r9m2F1mwLK+uWhQhM6IQXNQ2CgWk+5hS4JBlGRTwqzEiQ4P767ourl27hmfPnuHY8eM4cvhw134BPU8r1Dl+V5oDvlhEQYwjELNFHTl4/vw5BjOZho2SegUuSqwlBw6zSrcMA5Ise5+VjU9ZkiDLcuixn4jHcfDAARw8cMBrFrW05JOFJ0+egAgCsqOjGGMGTMlEwvuea66pH5SOEIJYPO63vNd1HfFYrG4qo973bzF7ad65FwCePX2KQrGI06yKjaf/mllQv8l458kBAJ8cGIYBTVGqJvZjx4/jv/23/4YrV67g9OnT7U/GbPIpcaMjSeppfoq6LiilSKXTKBWLKJZKVZbKlF1TryCKImKiiJimwbFtGCzt4DgODEo961ZBgMIiCpIkobC+jr1TUz27pkZQFcUnL7GIDJEaaVP85klLS/jkk08wPT3d8BgkxGLlv2IbIgftdc2oRuQ+BzsIpmEgl8/j+PHjfT83jz65juP7EfCKKF3XAUqhMMW90gYhaARRFP0ySAAoFovIsfTDrdu3cfPmTSSSSYyPj2NsbAyjIyP+NfJFtdcjQGCp21Kp5GmlRLGqyqJR5Ja7SAKb5Yvr6+u4eesWpqenkWF22PwZ3I0cvMXgX65p26CKUpUzSyYSOP3JJ/j+hx+QSqU6Kk/iYTxCSM93FJwVJxMJz9aUuSZmuvB37xSiJCHORJe2bXutVg0DruPAcF3v36xyoxf6i1bgjWAcSntniASgVC7j4oUL0HUdn3/+OUZGRpq/YRvztVsvJbrIAc/RAtGQgyjuQZQL1KvXr0EpxeTevREeNTwsRnSDJbqGYUAQBMTj8VCN3DpFMpnE7OwsZmdnYds2FpeWkM/l8PLlSzx+9AgCbxY1NoaxbNabB1kev5ckgTeXq+i6b5BULwIcbMRmO46vxZIlCbqu4+LFi0gmEpvOuYFndJccvMUQRdE3/7FtG7IkgbBdNgUwOTmJQqGAu3fuIJVKtdWz27Ztn4Umk8meh4G5upYIAlKpFAzTxNraGlKJRGsb3h5CkiQkGVHwhYym6ZUduS5ACFbX1rzUA9vZ9Cr1EoSiKKBMK9ELcrC6uoqLFy9CEEWcP38+dEVGq3B3v9IKpJ4JUqcH65s3w/bgxfPnGBkehtZjC3DAW8xs1m7Ytm3YjGxbtg1JliFLkudJoKqe2LdJzX/UkCQJE+PjmBgfx4fw0oY8/XDjxg24rot0Ou1FFEZHMTQ83NNIkqIosJm2SNd134m2kftoUIjoui4uXroEx3XxxblzEEURFKjy+VD78H1vB3bJAYOqqh7zdhy/tS8CTWKOvvceisUiLv/wAxLxOAaZOVIrVCoV//j9qKd3Wd9xkU0I6+vrcBwHq+vr1dqDbYJAiO/EmIjFvBbVhECLxbxwaEAIRAiBJEmQGVHoBVlQFcUXinbS9rUZXr9+je9/+AEDrHlSOzuMsP0ZtkOO2GnbZjdAaLq9z7wRWNckI6LvW69UkF9YwKlTpyI5Xi0oIwN8kXMCngZcXCyIIhRBQDKRgCzLqJTLEJiV8HaaTqVTKaRTKRw+dAiWbSPPPBWeP3+Oe/fuQZQkjLGowvj4eE/SrpqqosjKr7kA2SckrGJBAHzvE8AjB5cvX8b62hq++PJL3zPBJxVsPGu7kYO3G6qqolgsekIU/mUHanYJgI8++gjFUgkXLlzAT37yE8RahMJtxuoJq4ONWvxUD36NMQvZZTIZLC0uYmNjA+l0OjLDpY7Byq5cNrE7jgMBniqaUuqXRFq2XZU79d66SRZkWY6EbPFJwgZgW1b3drfs+330+DFu3byJiT17cPqTT9q/1laphX5FDuqfvKNjRVnG6Lvr7RC8fPkSAiHYu2dPJMejrusvZFvIAItqcsIscQIgijAty5tn2LNDKd3+Zz4AWZIwuXcv9u7dC1CKldVVvHr1CgsLC7h27Zo/Z41lsxgfH8fg0FDXUQVKqddvgUWHjYAAmfASa9cFBMGP8kqShAcPHuDlixc48+mnGBwcDB6wKh2yW8r4lkNRFBBWJ+y75tWYeYiiiHNnz+IX33yDCxcu4PxXXzXdzfKogaIo/vFc9NC2lYkRg3KxWCwGVdPgVCpYWVnxBUQ7BYauQw4YJwVLqfjEaLG/q8hCpeLlBFkKQpakjsmCoihwdB1GBOSAArh58yYePXqEQ4cO4f333+/JAt6/aoU6C3mnBDfKa95hPRWeP3+O0Wy24/FDme7FCRACvnBRVnbISYDExnptWJxwV1bXhek4nr9Ije3vTgHfwAwNDSGdTuPo0aMwLQsL+TxyuRyePn2K+w8eQJFlT6fA/nSS3xdEEdR1oamqv/moKl/mDrGBqOXC4iJ+vHsX7x07hj01hM83UIKnq9qJ9zcKvJ2fqgPwkkad2YyKoljX7UvTNJw7dw5/9u23+OGHH3D27Nm6k13wAVcDkYhWVsLdgLouXOYDHsTQ4CAM5ntQLpcbGyP1CSTgTKYbRsO+8nwi1ODdMz5xWkx0RV3XTwkQeOE+WZL8nGvYHaoiy749NO0iN+s4Dr777ju8evUKH3z4IQ4eONDRcYDNpjCNwt7tWMB2gyhNkNw+EZp2wC3Ou7mmUrGIlZUVfPzJJ6HfExzPfmQgoHOilEJiCzsnBQ07dDIILF3jUArLMEAp3TnOfQ3IHL/3PMIxOTmJyclJuJRibW3NM2DK5fD8xQsAwGAm41VAjI9jMJNp+b1RSv1SSkEQtkQPePqOd+allKJQLOL6tWuYnJrC4cOHtxxTYP4GwNsrRgR2yUEVVFWFXi7Dsm3wr7ze0MsMDOD0mTO4eOECbt++jRMnTmx5zZaoQeB4vdrv8N21WBNGlGQZyVQK6xsbWFldhaZp2974hptDGboeKizHUwoSKwWllHphV0YUbNsGdRzojgPCyAKfDLhmodFnliQJIiFwCYFlWVXlTmFhGAYuXLiA1bU1nDt3LhJffT/kWQf92zPXK2Xc/rRClAS7W6ry4sULCIKAiSZtkCllvTy4gJCVHAZ/LzByKzJCUM8GuRk4ebBM0yNiLLK2I9Dg+2q0uAuEYGhwEEODg3jvvfeg6zoWFhaQy+fx+PFj/HjvntcsiukUsmNjddMn3CqZozZ6ECTXpmVBNwxcu3YNAwMD+OijjxpW6/Cf7hjy1QPskoMAOAu0bbtqMNcrt5kYH8eJEydw69YtpFIp7Nu3z/9d3agBB4sedCrqagSX7USA+pPvwMAASqUSTNPcttLGIHj0QDeMjh4wXmYkSxJi2AzL8qiCY9veZKzrMFi4FcyISWQTL/83IQSKqsKuVGCaZtvkYGNjAxcvXoTjODh//nx097ZJ6DyMy1s0lxAdOehXKqRtBHaCneD58+cYn5iAJEl+uSYff7wdPHckBOBHCARCfCLANQPdgPdX0A0Diiy/cbvaZposTdMwPT2N6elpuJRidWUFuVwO+YUFzD9/DgJgeHjYJwvpdLru8WqjBzzaYjkOLMvCzZs3IQoCzp49W3cerR27yi45eDcgSRJEWQZlC4wkSf4DVw+zhw6hUCzi6tWrSCQSGB0dBQDPdARbowa9Ap94eFisnoBHEAQMpNNYWV3F+vr6tpc2At7kqFcqSEbQU4HrD/hOiZd6WcGwLauGIJbl7xh4OoKAdYdkhM7/7ltgcXERly5dQjwexxdffBHphBwmytQq1OyjwzREvbQCwES6gchGbfqt3nVH5nEQVaUCQ6fRPNd1sba6io2NDRw8eBAF5saHABEI3h9BEDxCykhtt2SgFgIhHjF2HEBR3ghywEk7AfMaYPqAZhAIwfDwMIaHh3H8+HFUKhXk83nk83ncf/AAd+7ehaZpvknTaDZbFUEJRg94GbVpGLhz5w7KxSLOnz9f997xFEhwTXgT7nGn2CUHNVBVFSazUg4KTepFDwiADz74AMVCAZcuXcLXX38NVVFgMcVww4FDGrdzbhcu3dzH8bBtI0KSSqVQLJWgG8aOKG0khMAwzZ6UAgmC4DeJAjZzvP4fRh6o64I6DihLKTjMAEVVFIiC4Jum8D/B3QRvnjQ6OoozZ85AluUqVXnXaCa6q40ctNAnVL2uS/AxVzt+Wx2Zj88tpYz82mm4mESvXT63nC8wdngkgI+TJ8+eQZAkJNNp2KyqBoR440UQIAgCROY5EJrIdQjCxjB13Tdq0eLkTGC9GNqt6orFYti3bx/27dsHl1IsLy3hNfNVePbsGQgjE8FmUVLA1waE4NHjx1haWsLpTz5p2E1TYKLyIPrZLK7f2CUHNdA0DbogeA86r2ttMlhFQcCnZ8/im2++wcULF/AJEyW1ihrwqa2bqboqVIkQgi9CqkobU8nktk4ivA9DP0qBgpqFIFzX9XPBoBSlchmOZYGKIixWTuYL1tjuTxAEPH36FI8ePcL0zAxOffih/11H6fjWcAdFKVz2h/+/6u8adHM99Vo2d1yswDUHorj1eaolGjTQUhfwjWd8UtKEDLULvjhRSqvSAEFCUPuR+TXkcjmMZbOIxWI+meQdEvsNTgwANBT59hNhF/ng6/i/O23nLBCC0dFRZLNZUEpRLpc9X4VcDvd+/BF3bt9GPBbD6NiYl/4jBMsrK3jx8iWOHD6MiSalqNwYj49VURQxkMm0fY1vCnbJQQ0URQEVRTim6YW5ePi5yS5OVRR89tln+PnPf46r167h5MmTrRfdLqMHTrP3NZmYYrEYtFgMTrmM1dXVSIRzncI0TQjYXlEPX+y5dwLgEYZUKlUdbQgsFrfv3EHu9WscOHgQ+2ZmsL6+DpH5JVDA3yUKzNPBb6kbEr7NMKtXrxvYp5uh/Z6iruag/Uk7WGIbJq3gpywC49wN/G7LdfEFpkUEhZcG8rJf7idgWRZcx6n6ZPz83FRMYNEATgA21tdRLpXw0YcfbrswjZf5AujeqyMihJ7bal7HCUKnvjDBeTUej2P//v3Yv38/XNfFEmsWlcvnMf/0KQRJAoXns3KgSXURCQob2VqQGhjYdmF3L7FLDmogCAJkVYVrmrADyvVWeclUMolTp07h8pUruHrlCj7/4ovWJYMd1mq7fBKsQVjB12AmA71SQVnXvXam21TaqOs6KDzC0m05WRQQRRGyJMFkTmqaqlblKk3TxKVLl7CysoIPT53CWDbric6YrsEN5sIDEwkBKzNjREFkO0tOTEiARPj3oAUp7V8pYx10QmiDY7bLa663YPilaK4LF8wbwHXhUArqOHD4z+q816EULksH8SoXngrg/65HaF68fAlN03yt0XbCCFToiGwh2+7nKSxoqzEeEQRB8NotZ7M4QSnu3LmDx3NzIIKAmZmZppUd9eb/sC65byp2yUEdqKrqdfKy7dDKdZdSpFIpnP7kE9y6dQs//8Uv8Nm5cxhqMYDaDZ/Vy/X6vwv5MPHSxo2NDayuriK2TaWNhmEAlEJTVb83+nZDURRPuVyjhSiXy/iLCxdgGsaW5klVHgy2XVUzTbliHd7iRCiFxSfDOpM3YQtSMOrAJ/1gNKJfqGeC1Em1QrAbYzuLln8P2d88ghP8uRtc9APH5tGVKtGkIEAA0z2w+8ndREVRDH19lFI8f/HCa7K0zbtH6rowGNHm7YO3lRy0uenxw/VbDtN+5CDMe1xKceP6dTx58gQj2SwGBwehqmrD+8WNpWqf16EdYEffS+ySgzrQNA1FQfAEazUPWaOcss2ctVKpFH7y9de4cPEivv32W5w+fbplo6Z21NKu47TceYWZFAYGBlAul2FsY2kjr+rQNM1TK++A3Y4sy0Cl4nVmY53aePMkSZLw5ZdfbmmexPUMoiRB5gtX4PdugCTwvHbwZ3yBA9vluoxE8O/ZJ49c90AICqwFOGHit+B944SCh9+DinD/9zW/A1CVpuCvqWuC5EscqB92BzaJq58O4D+nnvOcaZoQRBEV1kJ4y3sDx+S6iuBEzxd7J7jos/MRQvyFPUiigpEZTgT4Z/SfZUp9bUnYqMbS0hJ0XW+rCVuvYBgGAEASBAiyDJMR1Dcm5N2ETPjfVQiSUFsxUw+8dfri4iKOHz8Ol333UrOoQY1XAo92RtVga3JyEi9fvsTXX3+Nn//8501fe/v2bXz44YdwHAf/+l//a/zGb/xGJNdQD7vkoA5kWQYRRVCmXg/6cAOoO5A5OZAlCaqm4csvvsCVq1fx3XffoVgs4uiRIw0nHkI8Q6BWA9upw16rwNMKLY4DeDvRdDqN1ZWVbStt1HUdsixv9nnfAdEDURShSJLvvLi6uooffvgBAwMDOHv27KaWJLCQ8ImjSiQYgEAI0KBVbBDB3TEnEdRxYPNweaBk1bFtUEJ8wVxXqDM587FuOiaGMQQHLigoCAiKhSLWrM0dqv/6wO49OJkSQmBYFkxdhyjLvlV2U1Dqh5v5gs939hLgL/YkQADaJZZbRMEBUsXvc6NjPn/+vK0GbL2C6zjQGTlQNc1r0YzuhM5doZNUaRgNCqtkaH6YxqZhAFAulfAXFy6gous4d+4cZFnG0tISJEVp6pRZOw4IEKkQ8dNPP8VPf/pTXL16tWXE5x/8g38Ax3Fw8OBB/N2/+3cju4Z62CUHDaDGYjANY0tJI1A/esBL2PgCK0oSTp8+jWQyidu3b6NYLOLUqVP1FwhCIDQIrXG0XAA6WFRTySSKxSJ0Xcfq2lpVqLwfMGoMkAjQ094TYSErCkzbxsNHj/DowQPsnZzExx9/vFmRwO911DnRBiSiSmNCPac9m0Ua4tzumYvt+HUFdvDBSIa/Uw+8hvKFOPCZ/ImYUu9HLgV1vZSC67hbF05OlvgCy7wjeBTDdhyIsgxFlqGoalU0oyp6EYhqCNhMs1Tdj27JUAP4ZKFOCoQy4kcIges4ePniBfbv378tVQlBGIbh61hkSfLaDTMh67agUz1Kq5e0KHFstaguLy/j0qVLECUJX50/D1GSUCwWIcoyJDa+ghtBjkbHjJIUnj17Fj/96U+xvr6OBw8e4MiRI3Vf90d/9Ef42c9+BgD4nd/5nY6cXNvBLjloAFVVoQsCTMvyW3UC9RcuCnilcEDV4CKE4NixY0imUrhy+TJKpRLOnTtX90ttOvDRo50ACZQ2FgpIpVJ9LW00DKPqfIT0tvdEWEiiiAf372P++XMcmp317bG367qq0k4sfM4bVKmKEv0CFQjnG46JNazBJRQu8QhwLKVhIDHALifkjr1chigI0DStK2V/r4hBIwS/cy5KzC8swLQsTE1N9fVaauE6DgzWRZDfU36N/b5PADoWWIc7dPNj19okBzH//DmuXrmCTCaDs2fP+sTAdd2qnhW15CDY4bb2WgaCXRq7xNmzZ/1/X758uS45sCwL//Af/kMAwJdffom/+lf/amTnb4Q3JCnVf2iaBogiXFbm1Ay2bft5z3qRgempKXzxxRdY39jAz3/+cxQKha0HaTLJciV1UwR3l22A585EllvvJ/SQfRX6BZ4bv/Tdd3jx4gWOHDmCA7Oz4d/fo+vq+96UheuJIEASRDhw4MBmfzsgBFX5/FAIGCB1ilotR2Ro85rmnjzB4OAg0gMD3mK8TaRR13UIgN+cCdiM2GzHFfWcPLNxWe88jX5298cfcfmHHzA5OYkvvvgCiqp6mhfAJ9kyIwR2zTwrsOZ7tUil05F2YvzkbXe3gQAAjCVJREFUk0/84/3www91X/Pv/t2/w4MHD0AIwe/+7u9Gdu5m2CUHDSAIAuLJJCg2hXMctbktOxA1CNbYBjEyMoKvv/oKgiDgF7/4BRYWFra8pt4U1VJnwFB1xjYnu8FMBqIg+KWN/YKu61vcEevWsPcQQb1ApVLBN998g8WFBZz99FPs3bMHpmGE74PRq8mx2f3o8b0idasV2odfrdCFSI6nKKJGO8cslctYyOX8mngezhbQ38nUsW2YlgUXqHqG+PPT97RCN99NO2OYbu0620gn8MPly7j34484duyY10RJEGCZJhzbBoE3X1Ng09+Ei1ID56qHTIRRA8DboJ08eRJAfXKwvLyMf/Ev/gUA4G/9rb+Fjz76KNLzN8IuOWiCZCoFiKLfRS2I4HC0a1MKDQZ7MpnE+fPnMTg4iF/+8pd48vRp9QtqogcdhQY7WCx4aaMkCFhZWelbSFLX9boh5lbCom7BTYZ4HtlxXayvr+MX33wDwzDw5fnz2LN3L0RG9iwWum2FnlVa1ExS/fI4AOovnJ00DfM7Mm5zjr4e2tnxPn3yBBJrLVx1DGxqkQT0Ptqj6zoIPAG0FIhWbktaodvoSZvvrdUX1H5WQ9fxZ3/2Z3j18iXOnDmDw0wMTl3X3+ipmuZpSCj1+lywOYdrxxo9y5RSZHogQuWphevXr2+xYP9n/+yfYW1tDYlEAr/9278d+bkbYZccNIEoilCYQRAvF+LgC1hQbyCHCDUpzE1x3759uHr5Mm7dvFnF8rlAq90QKn9tpwvUwMAAJEmCbdvY2Njo6BjtwHEcmKZZV+NA0LtFhKvQg5UFCwsL+Pbbb6HIMr766itkmBJZVVWAEOghyUG/Igf9DBlH0ZXRd3wEet5foBOEJaOO6+LJ06eYmZ5uWnniP4vBPxGODd71lWKruyi/v31NK3T52dquMgmQkVrNy8bGBn7xzTcolkr48osvsGfvXv93BmtlLQoCVEXxKn248yX7PluRA1VVt5QyRwFODsrlMu7cueP//O7du/j93/99AMBv/dZvYU8Te+eosfOe1B2GGBsIpml6If4ACDxiwHcM/oTR4mERBAEffvghTn7wAR48fIhL333nRx8QKKPqJ3hpoyQIWFtf9wlPr2CyBbepADKCCdUT2nvRAd5CN7jYzs/P48KFCxgeGsKXX35ZJT5VWbiRMoOjMOfqFepNVv3Yg9cNFrf5vQTHcjdphV7mtMPcy1cvX8IwDOxrYrPb+ATRpR783W+dslCeeulXWiGKaFlH3ypLnwTHVj6fxzfffANRkvD1V19V7fBdx4HJNniapvnvJYws+OSgRVVElELEIIKixGBq4Td+4zdg2zYmJyd9QWK/sEsOWiAWi0FUFIBSf3AFYTWoUmgFQghmZ2dx7tw55PN5fPvNN1hbW9v8fZuTaFjr5GZIJZO+L/vi0lLHxwkDwzDq7nw4eG17J+BRl6BTYb3X3L17F5cvX8bM9DTOnTu3xQiFCIJPXvQ6330/sW3B+Hr53A4iB0D3UYNtUeAHMPfkCUZGRpDqsBNfFKkH27Lgsg1JPWLNjZ5qDaR6hSjO0cl9cFnPEUEQ4FKKe/fu4S/+4i8wPDyM819+iViNJTy3apckCZIse34ijuM19JKkLZGDRhjsETk4dOiQ76Z7+fJlAMAf//Ef47/+1/8KAPjt3/7t1nb8EWOXHIRALJEA4C1owXwrIcQfTJ2qVycmJnD+/Hk4rouf/+mf4tbNm7CZYKYtRDEREK+1qSQIqOg61tbXuz9mA+jMJS/S0knqNffxLXUbvMx1XVy5cgX37t3D+8eP48NTpxouXLy7nWVZHeXae4EoiGA72BI96DBy0G2qqKeft8Wx1zc2sLS0hAP790dyOn4HhTaFfLquw4U3LutFYYLumNtdEhwWnVwnX8yXl5fxp3/6p7h79y4OHz6Mc2fPbiH53NacAIixzYifPoDnLMldRrnZWCP00vTq008/BeBFDmzb9t0PP/nkE/zNv/k3e3beRtglByGgJZN+m1mzJv9ss1a/3ZS2ZDIZ/OQnP8F7x4/j3oMH+NnPfoZ8Pt9RmVS306eiKBjIZCCJIlZXV7doLaJC0Dq5EcLW0AeFha3CqZZp4pe//CVeBsRKzc7B2zwToG7kqOZCWl5rx9hGIV/tot6J5qDecd4kPJmbg6ppked8/XvD/jQbQ5Zp+otas5bMpE7IPXJE+F22TfoIgWkYuH79updGEAT85Cc/wbHjx7f2uaDUn2sUVfXKEwHPRIwQ//+ARzgIs82vh2Qq1dOOlzy1cOvWLfybf/NvcO/ePQDA7/7u7/ZtIxDErglSCBBJgqooqFQqXm2+olR/WV2EwDlEUfT6iY+P49q1a/jzX/4SMzMzOHHiRCgnLB5Kj2IQpdNpv2vj4tIS9kxMRO7TbhhGlXVyI7TaAXFxYZgSSG6fapomPv/8cwyHbJyiaRqKpRJ004TK+kDUQ6PucpGDRw56fyaGGnJA21t03AjSCr3eBTcbZ5Zt49n8PGYPHuyZoDIYSQCwtSk2pX5qS1PVps+NwJpL9eyOsXu1HVSPUopXr17h+vXrsC0LJ0+exIGDBxu+3mCESiCkilC5jAAE76MAeA3S+lTCWAtODkzTxD/5J/8EAPDX//pfx+eff97T8zbCLjkIAUEQoCWTXt7KdWEFWjlHCdd1kUwm8fnnn+P58+e4efMmcq9f4/0TJzAzPd3X3ePw8DCM169h2TZWV1dDL6Rhoet66JRC0FedN8epUsCHuC8rKyu4ePEiZFnG+fPnkWwjbyzLsh9ytGwbSqMoUb8XsH6lFbqslvDTCjuwUsFHk+/u+fPncGwb+yJKKTS9DPY3r3LgJME0Td8MTWnSJAjog9dBxMQg7HiqlMu4fv06XuVyGB8bw4cffripLahT3UVd1498qppWRewcx/FE5IGfEVEEmmgOet1H49NPP/WfccuyoKoqfud3fqen52yGXXIQEoIkeZbKug7DMKrIAc/xBf/fbofB2kY109PTyI6N4datW7h8+TLm5+dx6tSptha1biBKEoaHhrC8vIz1jQ3E4nHEI+pCBngPZ5jSTwC+4xtFdVlcWLx69QqXf/jBs09tYF/d9Pxs16HrOkxdh9LoO+hx5IB0QIqiwNa0Qnvgi1TH19sPcV2D745Sirm5OYxNTFRVsvQDXLwIoGqRaxltA3p3z3owxluVebquiydPnuD27dsQJQlnTp/Gnr17t0Rva69LNwxQSr2S9Jpn3nFdUBJwtA2SqTrjVBTFSJst1cPAwACOHj2KH3/8EQDw9/7e3/P6d2wTdjCV31kgsuxZ/RLi1xlXoZa5tjkR1hO7aaqK0598gi+++AKlchk/+5M/wf179+ruCHoxEcQTCcQTCUiiiKWlpUjLG8OSJ787IaW+ujgsKKV49PAhLl26hPGJCXz+xRcdR3y454Fl21tKWgMn7OjYobFNArPab8ndGvRuim7dEWkfSFCjM6ysrmJ9fR0Ht3GSrug6KHMGbKY18NErl9FeiRybXOv6+jq+/fZbXLt2DZNTU/jvfvVXsXdycms0q2Y+4T4qAOqSOsdxQNg9pZR6C2GT6+h1SoEjm80CAEZHR/FP/+k/7cs5G2GXHISEKMsQAgyU+3MHhxPf4QJoayKnlDYNAY5ls/jvfvVXcejAAdy5cwd/+qd/ipWVlbqvjXo3OTg4CEWW4ToOlhqcsyO4bsv8rVuzS27V8jgI6rq4ceMGbt66hSNHjuD06dNdhbVF5sFOCPGb3Ww5Z8dHbw/9pwhbJ+J2QLusVuhHfKTRJ5p7/BiJeBzZsbE+XMVWOI4Dk5GDWCzm97xo9h3w+xXlOKFA5OmEZnAcB3fu3MHPf/5zmKaJ8+fP49SpUw0FgbXzHp+fFVmuO2+4rkdxRVGEKAib3UwboB+tuX/44Qd8++23AIB//s//OQYGBnp+zmbYTSu0ASLL0FQVpmHAtqwtNbGtOoc1Qqt2o4DXKfDEiROYnJrClatX8c3Pf44Ds7N4//hxr243eA0RQhAEDA0NYWFhAaVyGQXWvbFbuJRWKYWD6CR1EIRt2/j++++Rz+dx6tSpyEJzqqrCsm2YhoFYHWFizydO/t320T4ZAMiWPUSbxHcHuyNyVBF7BsM08fLlS7x37Nh2XBIogHKlAhDi2SRzUy54+XECz9yn4TMf4S6/07mtEywsLODatWsol8s4cvQojrSoKOLgIkkz0D+hUTUUjxz4xCCA2jOJgoDh0dFOPkpb+K3f+i0AwPvvv49f//Vf7/n5WmGXHLQBQdMgGAYkWYZtWVU7yC0DLOTEzcPmoV5PvBbLX3/1Febm5nDn7l28evUKpz74AMMjI218kvagahpS6TTW19extLwMTdP8ZiWdoi4hYj4FjZTQvulJkyiLruu4cOECisUiPvvsM4xFuOPj1RW8U2dQGNbP3XxQtNYP1Fbit0PconBH7Ee9fr17+ezZM1AAMzMzPT9/PZiG4Rse1QuNU3idA3vuhtgnYmCYJm7fuoWnT59ieHgYZ8+dQzqVCu0vwjU5wf4J9Qipb4BESKgS9OzERNfzXSv8wR/8Ab755hsAXgfGdqKkvcIuOWgDoijCVRRoqoqiZdX1APB92kMO6HaFi4QQCIKAg7OzmNizBzdu3MCFS5cwMT6OA/v392wQZwYGYOg6KoaBhaUlTIyNdRWmd13XDzMHOyNylXYjEHjh6XoTxsbGBi5cuABKKc6fPx95WI4LEytclNrjCaMetmPvvYXDtfHerqMG/XL6q5PDfjI3h7179/akMqkVXNYkiBODRvePAgBv00ypN+9EHVHqg5Zmfn4eN2/dgus4+OijjzA9M+Mv9u3Mj7quV/VPqAfHccCb3LVahAVCsHdqqq2PEwblchmvXr1CoVDAH/7hH+Jf/st/CQD4O3/n7+D8+fORn68T7JKDNiFqGiTThChJftvU2kWiXoiyHiilXp/7Dh/meDyOc2fP4uXLl7h+7RryuRz2HTiA9957L/oJjbknvn79GqZhYH19vSsrUf7QV4WdQ1/K1p3MwsICvvvuOyTicZz77LOeKct5xYpt23AcJ3Q/jSjR98hBTdvmTiIHtT0A2jh5X+5t7b1cWFhAqVTCx5980vNz10NF1wG2eCkhSn4p4M8jkY6LHt5/CmBxYQF3f/wR+YUF7N2zByc/+MBPBRC0J0a1LAumaUIgxO+fUA+26wKsiqH2emoxNDra1KitU/yn//SftqQOzpw5g9/93d+N/FydYpcctAlBkgBJgqaqKNk2TNNsuFsPxXo7IAbcIpU3Edo7OYlMJoM7d+7gydwcnj59igMHDuDQoUORDmxJljE4NISVlRWsrq0hFot1fHyXsfdOd4XB9MLTp09x/fp1ZEdHcebMmS32qVFCEATIsgzTNGGY5mZ5Zz8dzPquOag5fRvVCm63ZYx9Qu0onJubQzqd9v3u+wnLtmFblidCbNdPn1UqCBFUFvTKgpkCyL1+jXv372NleRkDAwP47Nw5jI2Pb54b7UWoXMdBpVIB4DkhNpsDLMMAEQSIjVIKnGQRgskeRA0A4OrVqwC8zca+ffvwN/7G38Bv/uZv9r1cthl2yUEHkGMxUMvyQn3MsKKWXQuEoHkLj+5zqcFWs4qq4tChQ9h/4AByuRzmHj/G48ePsW/fPhw5fLj9SaYBkskk9EoFxUoFi0tL2LtnT9vpBUopbNftynKah1F/vHsX9+7fx/79+/HhBx/0RfSmqipM04Rpml7IF/3JiwOoIgTbpzkI/17fAKnDHGq/4jHBT1iuVJDL5XDygw/6dPZNUEr9RU7VtMYLWDMEFrdudv48zRcVXErx6uVL3Lt3D2vr6xgZHsZnv/IryGazVeXBtE3ySylFuVLxPQ1alXsapgm4bsPX8bOmMxkke9CeGQB+7/d+D7/3e7/Xk2NHhV1y0AEEWQYRRaiqigKwpd8CByGkadqg24kvyOx5/l6SJBw/fhyHDx/G3OPHePjoER7PzWHfzAwOHz4cSaXB0PAwzNevYVgWlldWMBpSDMl7IICVbnbjtW87Dq5cuYL5+Xm8//77OHToUN92p7Isb6aVTDNc7XmU6PMufKtDYhvVCl2WMfLue/3E06dPQUQRUz3aNTaDbhigrMxX67ApWXDXzb+7tskrIS3NicLCcV08n5/Hg/v3sVEsIpvN4ssvv8QImzdqr00IbHrCQNd13yI5EY83LfWkrutFZQjZqhmqcR+dnJxs4yrePuySgw4hxmJQbBtEEOA4DnTDQLKG5RMAYOK5ugtXBA8fnwgIEyVxoZ4syzhy9ChmZ2fx9OlTPHjwAM+ePsXk1BQOHz6MTBduX4IgYHBoCEuLiygUi4hpWkvnxiAxALvOTnf5hmHg0qVLWFldxdmzZyNvhhMGqqKg7DgwDKP/5IChb10Zt5CD8GkFp0sDpH4TA5dSPHnyBNNTU11FtjqBzcpkKaWIN8mZtw2WZgjdiCkinYHtOHj29CkePHyIUqmEiYkJfPzJJ1s9A2qiYe2c2WIRPADQGDEAGouWeXdVQRC26LKCr07E4xiM2DL+TcMuOegQkqrCLpUQj8dRKBRQKpUQi8WqhVdNbG6jCkMTzvB5CNFx/J0H4NkgH5ydxf79+zE/P4/7Dx7g53/6pxifmMDRo0c7zqnGYjEkUylsbGxgeWUFqqo21V7UTkw0bPlmDYrFIi5cvAjTMPDFF19geHgYtEl75l6BN+JyHAe2bXccNu8IfdYcbDFBauOdlHmB7PSOjPzqXr9+DV3XI2vNHBYUmyJEWZYj0c3Qmn+3KgMGvPmk23SCZdt4MjeHhw8fQjcM7N27F+fOnUM6nW5woZtX2s7Ycmx7MwWjqlV27I2Oo7N7vIUYMAdWwKtK60WFwpuGXXLQBaRYDDFdR6lUgmVZqFQqSCYS/u9JgL3WihMjXcxqcoz1fAIEUcS+/fsxMzODFy9e4N79+/jFL36BbDaLo0ePeqmBNifwwUzG7zWxtLyMiYCgCIC/aNcjQm4HaYWl5WVcungRsqLgq6++2oxWBBoz9QtEEKCoKgzDgG4YiEek6diJEGoLKMOW6QZIW1/JUweg7Ll5+PAhhoeHke6zO51pGL5IN9atiJjUqkQ88AgjDUTwtrymC2JgmiYeP36MR48ewbJtzExP49Dhw62jitg6P7YCdV1PZwBAlqQtwuh6c47A3U0p3RLtcwIkNh6LYYTZGL/L2CUHXUBgu+WYpqFcLvsNmYK5LH+416mjjvRasBmhcF234WRMBAFT09OYmprCq1evcO/ePfzZn/0ZhoaHcfTIEW+BD/uQsvLGfC4HXdextrbmpyv8NEIDtJtWePHiBX64fBlDg4M4e/ZsVUdHgt4pq5tBU1UYug7LsjxHtj45AAbL1vqB2jOFjdMEGy51EiUKa34TFZaWl7G8vIxz58719bzc0wDwxlS344inMxv+vlMdQgPouo5HTNvkuC4O7N+PQ7Oz4UXQlLatM6hUKt48Jwh1Ff618wEhXk8cy7JAgS2RA5tHDSQJE5OTO7uDaJ+wSw66gCAIkBMJSIUCZEWB4zgol8uQ0unNXTHL323JpUU98bGaaJ5TC/P6PXv3Ys+ePcgvLOD+vXu4eOECBgYGcOToUUzu3RtqAVIUBZlMBqtra355o6woLXfyYQWJlFI8ePgQd27fxuTUFD766CNIdYgP11v0s2SOd3szLQsV0/TyxP0A391tVyljGwZfQBetmvtMDu7fu4eBgQGM10TAeo0Ks0gWWDQqErS6d4ywdRNxK5XLePjgAZ48eQJBFHHgwAHMzs6GbsXuXyrai6Qaug6LNYGLNzGI8gkCmxe4NkGUpC16Ese2vYiCqmJsYqKt639bsUsOuoTIyo1URYFl26Cui0qlgkRNn3E+wfKJtd0wWhgIrClLW5MqIRgbG8PY2BiWl5Zw7/59fP/dd7ibSuHw4cOYnp5uObmn0mlUdB2lchn5hQWMj421dB5z0VpQ57LmSU+ePMHhw4dx/Pjxhu/hbmehRVcRQdM0mKYJyzThKspbuePYaoIU7h67XVYq9BOrKyvILyzgzOnTfT2vZVmwbdsTIQZSkl2BRwZCvbT9KEKhWMSD+/fxbH4ekiThyNGjOHjgQMOmSC3Rxrlt24bOnGljLUo9g2JtCkA3TYAQqDV6DpdSOEyntXdysu9C1J2K3bvQJQRBgJpIVJkhmcxaV5blqvBWy+qFLkEEoUrn0C6GR0bwKyMjWFtdxb3793Hl8mXcvnULeycnMTMzg6HBwYa71aHBQRiGAdOysLi0hLFstvlnbCFItCwL3//wAxbyeZz66CPs37ev5fVz6+V+7jclSYIsy3BN09Me9NHEpG9LbhdliABAdrjeAPCiBslkEnv27u3bOSmlfvdAVdMi02X4UaUQ84D/ihavN00TL16+xPyzZ1hm/VWOHz+O/fv3d72Y0pCWz9R1USmXAXjdFltFWWo3Yiazo64lMbxJkyiKmNqmPho7EbvkIAJo6TQ2WDtjWVFgWxbKlQrSrMXvlmHfo3BpsFdBNzn4DMvrFwoFzD97hvn5eczNzSGZTGJ6ehrT09NIBHc5lEKQJIyMjCCfz0NnAsVm/gc8X1gP5UoFFy9eRKmD5kmENUbqZ3qBRw8MXYemaX3bKfetlLHDagXfOrmD6+ynfmRjYwOvcjmcPHmyr+NGZ2WLQheeBt2A8lw/tzCvIQiO4yCXz2N+fh6516/hUopsNotPTp/2zM+6IDNVkdOQ6cVyueyXIWohSDjF5jPi2DZsx/H0BjX32nYcuADGx8a2pY/GTsUuOYgAkixD0jTYug5RFOE4DlzHga7rW8Qy/mMQki23A+51EBSCdTPJplIpHH//fRw/fhyLS0teKeT9+7h79y6Gh4cxMz2NvXv3QlIUP183PDyMpeVllEolyLKMTAPVd6NOlGvr67hw4QIIgC/Pn2/4/kYg8Hz8+ylm802RmLCsX9GDfi1jtWSnXc1BJwK70J1KI8C9+/cRj8Uw3cfyNdu2YbCdbDyZjF4/QltbVQUtloNzxfLyMuafP8eL589hmCYGMxkcf/99TE5ORmLHTl3Xiya18YwahgHbcUDgeRCEGRsCS7FS9n4QAkUUIdWUm/P2zfv6XL6607FLDiKCkkjA1nXYloVYLIZyqQTdMCArCiRRrKodJoT4pVNRToACK2Xk5+LMuetdGCEYHR3F6OgoPvzwQ7x+/Rrz8/O4ev06rly7honxcUxPTWF8YgKJRAK2bWNtfR2r6+uQJKmqvJOj3uSfy+Xw/fffI5FM4rPPPuu8pCsiE5d2ENuO6ME2+Ry4IU2QfM1BB+SgX8SgVCrh5YsXeP/Eib5Wm1R0HYS59EWd4w5z72rFiMViEc+fP8f8/DyKxSJUVcXMvn2YmZ5GqpE/QQegvEopEPJvBSvQATcWi4WKWBDv4D5B4joFuSZqQCmF6zhIZzKRd3F907FLDiJCLJFAeXUVtuMgLkmQZNlLL5TLSNWr821Qi9wN+OTmRw7Yz2mEi6UoipicnMTevXtRqVTw4sULPJ+fx8VLl6AoCiYnJzE9PY1kIoFioYClpSVIori1DhnVte9PnjzxmieNjeHTM2e67rsgEuK78/UDMpvkbcuCUSdi1BPwevUeL6R1LLxavocyi2ygi2qFPuD+/fuQFQX79u3rWyrDNAy/aVovOv5xNPo0BB5xswI6gpWVFUiShD179uDURx9hZGSkJ/dji2C6lSg52FBJUUKJHv2NUeBnhmmCAlvEiLzqYe/U1I4ep9uBXXIQERRFAVEUuLoO13G8ro2s/l03DG8SqH3YIt7hCswtsXZfJwBtGN6GA3VdaKqK2YMHMXvwIArFIubn5zE/P48nc3OIxeMYGRnBwMAAFhYXMTE+XuWgSJlnPqUUt+/cwcMHD7B//3588MEH0TykEZRqtQtN01ByHBim6QnMer37JaSpj3xUEGqrFUKQg2DVSLtRgH4t0pVKBc+ePcOx48chiiJstlD0Er6nAaVVdr9RI9iUrfb8r1+98nQEuRwAIJvN4vTp05iYmKiuMorYO6RuFLPJ8WsbKoUlUrXEwLIs32CKawp46bNj24gnEn6fh11sYpccRARCCJR4HIZpwrIsaJoGNRaDXqlA13UvL8139j28BhACuO6WlEWUJkGus7XfZCqZxPFjx3Ds2DEsLS35Icr5+XnEEwnkFxZw/L33fCdBno/+/ocf8PLFC5w4cQKzs7ORhpM5+ehX+F2RZVRYrw2TE8Ieox/mT1tMkMKo4AN6g7a+U2a13Y+0wsOHDyFKEg6EqISJAhSeNwD3JOmZ+I0Tg0Dofnl5Gc/n5/HixQuYloXBTAYnTpzA5ORkQ18CAibwjYJgNxinzUZSsKFSPBZrOSa4uNP/3Oznvt5Alv2NB0+92o6DPWNjbXszvAvYJQcRQlVVGLLsdepTVSiKAss04TgOKuUyEsnk1nI7Hj2IYBELOtE5rltlFsTLm2iTLpFhUI8YVF0DgNGREYyOjODkBx/g1cuXePToEZ49fYqnT59iz8QEZmZmQF0Xj+fmoFcqOHPmTE86oBF4qQunX9ULxLO+LTG3TFVVe3Lenppp1UUH7oYdphQ6dVNsF4Zh4MmTJzh06BAkWe5L+avOooogpPd225SiVC7j+fPneM50BPFYDPsPHMD01FT47qxswe2aIDQapw1+XtVQKaTOQKiNxLI51WDloj4ZY8TAsiyosRiGR0Ya9oV5l7FLDiJEPB5HsViEw2w6FUVBLBZDsVj01MmGUb9kqaYEsRsIogjbdes+dP5OoMMFpRUxqIUkCJiemsLY2BhevnyJhcVFrK6u4rtLl+C6LsqlEg6xDpG9MIUC+l+9oCgKKmzHw0nim46tJkjh0wrtplb6pRJ59PgxAODAwYN9OZ/FOi66lCLZo3SCY9tYXl5GPp/H69evsb6+DlGSsHfPHnz88ccYGh7uTOfUZWl0s2e73hG3NFQKsXDXPTrbDJmWBUppld6AUgrTsnDwyBEkEom+lrC+KdglBxFCEAQkk0ls2DYqLJUgiCJUVYVuGH56oe5A5DumLhcxHploxvQ7edC7CV2rioLx8XGIkoTs6ChkWcbFixchyzLu37/vG9CMZrPIZrMYHRmJPCTft94LTGRWLpehs14bPZt4WBrJT5/0ApRCoAQEBAIEUNBQLZs7jRz0gxxYloXHjx9j//79mw14ejg2OBEGvN4JUXRcZAfG2vo6FhYWsLCwgKWlJbiOA0XTMJjJYHp6Gvv274ckin3vOwLA37k3Hf811+UyC3oKQGJzZ6hToT5BsCzLS1MJgnff2fksy8JINotkMtmyMdS7il1yEDESiQRKpRIc1/UiBZoGRVVhMlFMmaUXemaExHNqzcgB0J7YKKA87xTxWAyZgQGsra/DtG0oqor9rEHL0vKyN8Hl85ibmwMBMDg46BGF0VGMjIx0V73ASFdPp8cAsVNZ9MANRJB6emo0XlSp68Jl358b/De/HyylRQP/973u2edJ0zSGMeyXMFolG2tra5tOfIygkMC/K5WKV5dOiCeUFQTP3psQ/+96cJlQtZd4PDcHx3FwaHbW/1mvCBwFUGaufkIborr6B6MolUpYXFhAfmEBi4uLME0ToihidGQEx48fRzab9YSx5TIIIZERA/79uiHTkrUliw1fF/i36zgolUqe0ZEoIh7Cz4AbOTW6Zq43UBWlyiROkCSM79mDVCq1GzVogF1yEDEIIUilUlhzHL9LoyAIiMfjKBQKsCwLpmE03j10GT3g5CDMhBDWajiqfgUD6TRs20ahUAAhBJVKBbIsY2J83G/3XNF1bxe0uIhn8/O4/+ABBEHA8PAwsqOjGBsbQyaT6SiXLcDTYvRkMqgpz9JUFRVmhNUwWhTBuVzXhe04cFhfD4eJUX0iEAgJV0Wm+PUESJNf+srPwV7fyCGRAiCcXLD/8x2caVmgrgvbslAJeHz452IkoZY48B4ZvZqwbdvGo4cPMTMzE8plr1twUR2l1DPHavNzGbqOxaUlLObzyC8soMwW/aGhIRw4cADZbBaDg4NVz4NpmpuLOe28BXM9hKmO2TLWmr/Y82apIQZhUi/NiAHgjTXf3yCwubBsG9PM9vltbrXeLXbJQQ/g6wxcF4Zpeg1CWIisousol8tIp1JAs8HfoUAx2La56evg+R+QZjtq2rztcicYHByE7ThQZBmFQgGmZVW1uI5pGmampzEzPQ1KKQrFIhYXFrCwuIj79+/jzp07kBUF2dFRZMfGkM1mkQyZMySE9E1/oCqKL0CzbLvqM3YCl5m1OI6Diq57zZ5sG7IkeWkk9joaXIgDY0jkC3BwIQaqdv1+tQs2d4oAUBALWMISXLggIBBjQDqVqlok/KgDG088z6tpmh+lcl3Xq6Rhr3WZba3/GfnPKYUkCBAkCaIgQBRFiKIYSYnr06dPYZomjhw+vOV3jULTncKybd/PP5FIhBLV2baN5aUlLC4uIp/PY319HaAUqYEBTExMIMsjaU3GE6XUe7YRvYtmqw0FrxgIHa3gxCBgjRxWkyG0iEzYlgWT+Rtwy2RKKQYGBxFPJJBOp3ejBk2wSw56AEII0uk0VlZWYDgOVNZHgHvw25aFYqmEZCPFcGBX1y5B8C2UQ0YOmqUX+GQdJQRCPE2BqsKwLM8DoUEXR0II0qkU0qkUDh48CJdSrK6uYmFhAYsLC7h+/Tqo6yIejyM7NoYxloZoFboNGzHpBoT55VdYKWs75CAYDXBcF67j+NaxgLcztB3HCxljc+EXCIHAdt1iiBB+6M8SeD/vMdqs66bruv7nrSf2clmKg1JaHelwXa91LivFs20bDjaJD2G7SkkQIEoSBEYcwn4+13Xx4MEDTE1N9XzHSClFpVwGZSHthou563pjenERC/k8lpaXQV0XaiyGsWwWs4cOITsy0laUg1IKuC6EHinwm1UvtEUMGEEslct+r5VkIhGKGBD2/mYolsuglEJRFCgsckBYOkGW5b6UGr/J2CUHPYKmaVAUxbPUtW3EmDAtkUhgY2MDhmlCLJcRazRJdVjBIIoiQEhbhi4C2drJkTvc9YJXC4QgkUyivLQEx3GwsLiIsbGxlsp2gRAMDw1heGgI7x09Ctu2sbS05OkVFhfx5MkTEEIwkE5jbGwMo9kshgYHq0RNfHcctTlSvWmKR4oc294SIQnCpRS2bcNm7XuDRMA/NsvhiqIIVZYhM1tqjdV/BzUCUaN2/LVSb/jdGBsQE4GRGQDgd8TXPGCTPDgsUuI4DhyW63ZdF5brwrRt//OKkgRJkiCxCEOj5+XZs2fQdR1Hjhyp/zmbfqrwoPBsmSmw1bzHdVEoFLC4tISFfB6LS0uwLAuSJGF0eBgnT57E6OgokslkR6SO8mhfj6p/2Enqzhn8/GHhuG7nxCDMsYtFgBAk2BxLAeyZmPBTv7tRg+bYJQc9RCqVwvLyMgxK/egB7zWwsbHh5Q9ZRKEuSPsWy3zHyCfXZju8IKoe9h4SAw6FCYREQmCYJpZbdHGsB0mSMD4+jnGmV9B1HYuLi1hYXMTz589x/8EDEEIQY2LI9MCA93c6jVQ63XvzIBY90HW9KnrgkwH2xwkQOX5Foij6IXVBFCGJYtXEadl2T3PzVZ9jS2+F5vfN4d0Y20kDBHLUnDwERag8usDJAo8y8HSL6TiosEWLEwVJkvzxTynFwwcPsIeJ0HoJg5eyWhZc20Yul8PG+jrWVlexUSj4Jk9DQ0M4NDuLUaYb6Pa79DcSNfbpvUIwgtBuNRBlizcnBomQqQQe9Wv62QhBqVTyzKYC82tmeBixRAKKouxGDUJglxz0EKqqesZIhgEDAA8MKqqKWDyOcqWCUrEIkZAtDUF8tClQ5Aplk4Wmw5IDgBEEJmTrNRRFgWXbGBkZweLSEkqlEiRZxmAXzU80TcPU1BSmpqZAqWcCs7a2hvX1dayvr2P+2TPcZ/XTgiginUphgJGGAfYn6soClZEDyzBQAPxwea34jy9mkixvIQKhEBAfRo+aY7YSpAUiB+2codlRuVCxdjw7juOTLNg2XLD2vLYNV9chMrKQz+VQLJVw+syZ0NcUFpRSFItFrK+vY3V1FasrKygUi75NsiAI3hjLZDA9M4OBdBqZwcHIGy4JggDK0jQUvavA4KjSnLRJDIqlEqwAMWin/XMrYuA6DorlMsBFoAAUTcPQ8DAAIB1hI6m3GbvkoMdIpVIwDAO6bXt++2zi1GIx2Mwop1AsIiUIkbl0SZIEk4Wo1TYXO8pC7r3edciyDMs0EY/H/RLHtfV1P1zeLQghSCYSSCYSmNy71/+5aVlYX1vDxsaG1zlydRXzz575TZpisRgGBgaQYV3a0uk0UslkR6Y1tm3DMk0Ypun5XJimP1nxHS5v2NStKU4vFwJhS7VCi8gBM8tqJ3LQKR3lhEFVVU/DwPQZPCLDxZEPHj7E0PAwJFmGYZqeB0kH98yyLI9srq1hfWPDH0sOMx5TNQ2JRAJ79+zB0PAwBgYGOk4RtAOCTVLmt8ruwzn5+cKeixMDh80xoYlBq3PwcmVKPSGwbYMQ4leITOzdC0KIn+7dRWvskoMeg7skVioVVFwXCTaIuV84dV1Yto1ioYBUKlVfuMQfipA1xpIkgRBSFa4OjWDpW/vvDg1FUXzh3cDAgFfiWCxicWnJK/3sUZmZIst++2nAW5Rc10WxWMTa+jo22KT/7NkzlCsV32ExNTCAwUBqYmBgoG6HOJcRPsM04ToOKCMBhNVbS5KEeEg72JaoGQu9MnraojlocQ6+OIWtLqAhjhkGhKcUJAkIkIW5uTmUKhUcO3bMb3xUKZchKQoUpt+o9xmLpZK3+DPiur6+jgrzLCCCgIF0GulMBlNTUxgYGPBFkoSQvhCC4OcO+kP4JaW97jLI0p5iA/1BLajrosirEghBPGQFh3eq5sQgOH6KLKWgxWIQBAHZsTGILErT65TS24RdctAHpFIp6Kz8TIvHITJWSwQBiUQChWIRjuOgWCwilU57O656DwNPMbSYdCRJAgkowUOzemxO0lG4NTYDZ++WaUKKxTA4OAjHcVCuVLCwsIBsNtszghAEgbeIpVIpb+II9HgwDMOPMGywKMOzZ898A6FEPO5HF1RWripLEhRV9SdqWZYhx+PQYjGYuu67tb1JqB09rUYFjxyEJQe9qh7h4/7hw4eYZm3GTcuCZZqw4aUfNsplGKYJ27ZRKhZRKBSwsbGB9fX1zWhALIZMOo2pyUkMZDIYSKe9xT/w+QzmgEqB0KW1UWGLcRS77l5ege+hEHKeoEHxIbwW96HP1fxCqoiBaRhe+SIhSMRiUGMxDAwNwXEcxGKx3R4KbWCXHPQBkiQhkUigWCyiUKkgraoQmCiJsvB3oViEw3awyWSyvlYgZAUDIQSiJPm517APxBb230OCwK/JsizEGMPn+oNKpYL84iKyw8NIRJBiaIVGi5OqqlVRBsCb5Aosv7yysoLVtTXMzc15Oc7A8VRVhaZpSMTjiMVi0DTNq7dmjbkGBgb8CE+7aPqNdOiP0RRt9FagTCkPtBc5iBo8vHz37l1YloVEIoG7d+96UYNKxbO31nWvVJQtrpbrIplIYCCdxp49e5DJZJDOZFqm5mzb9ogBpf5Y7gdqIwYctKf6E/jVMf7xW8wTnBg4jBgkmF1xmGhDs09Qz7GxUCyCEAKV2VSP7dnjdXYUhF2tQZvYJQd9QiqVgmVZMAwDBcNASpYhgBkRiSKSySSKhQJs20a5XEY8kYBIyNaJPmQFgyhJIG2QAwrUL+/jE0HEJIFHDkzL8n8mCAJGR0awvLyMUrmMheVljAKRaBBaIXRInng94VOpFOLJJCaZ+NFhboC248BgCxBfiJaWl1GpVLzGO4FDyaKIGCMPMU2DFot5/+b/j8ehKUp7kYYQlrXtYqtDYuMyUB418C4lJDlo83pt1piH31/+b71SQalSQYV1xeTHppTi3r17iMViiMfj0DQNAwMDiMdi0NhuUpIkz3shkMKTFKWlbsJ1Xd8eWVaUvuaz62mDeFSrF90tuSVyvW+rkfdBLTGIJxIQBAF2iCZuAjyPi0afwq0hwg5zJAWARCyGzNCQL/ocHBxsS5y9i11y0DcQQjA4OIilpSUvhGmaSEiSr1YXRdGLLpRKME0TAsuZNYwg8B1agwlAYs55ToiHUDcM/P2///exsbGB0dFR/Kt/9a+qzstdFE3Lwv/7t38bDx89gixJ+Ef/6B/hvaNHO7of3FLYYm1ZObhVMgCUymUsLi2BUopUj5ujtDSEYr0ydMPwPSAgCFA1zd9ZttoJ8a555XIZtuOAMrfDSqWCQrGIhcVFVHTddxHkLoVaPI6YpvmLGWFlfvFYzEtnBFwEeXmjGHAX7HYn247mwG+41GAipsCWckQ76GcQ+MOJMl/4y4wI2La96f5IqWdoE4shHothIJ3G+NgYNE3D8+fPsb6+jq+//jpUBMpiIl6DuU867DkVZRmqotQl2ZVKxb+WfpXHkWY+HYHvJkpy4FIKsQEx8E5bx/OgDjEQRTEUeRVa6J7qHaHIfA1kWUYsmcTA4CAAYGBg4K3ojtpv7JKDPkIQBAwNDXkEwXVh2DZUSfL3YZIsIxaL+R39BFH0/ABEcetD0kp3wMyQLKbYbvZqVVXxV/7KX8F//I//EYuLi/jzP/9zfPXVV9XnohT/n//1f8XDR48gEIL/x//0P3VMDABvlwVK/Z7tQXCCQAQBxWIRSysroJR6ltM9RD2CwHcjBrNhhet6DXQSCSiBnglh+k+IkoTBoSEoigLqukgPDGzZmVJKveoGthj6u2P29/r6OkqVSrXYlBA/ssOrTfj4IJSCBDwT6v2RmJdC0KY4+DuT7cY4cvk87pbv+pUBvHcAN3IyWZ8HyjwIbEYEbNuGwwyefOvuwE7XN3vC5uTPUzKxWAyjo6P+/zlR0jTNG+s1WF1bw7Vr1/Dhhx+GIgZ8gZdkGZIsw2G9UUzT9LQwpZL3PKqq/70bhuGVTFKKVCLRUfVDJ2jWnKpKMxQhmhEDfj4/zM+uo1Sp+FUJPjFA6zRSU4fXBgSeuq5vPKVpGkZGRyGy5k39SE2+jdglB32GJEnIZDJYWVmB7roAK6viUFUV1HX9xUAgBDKbOIXaNEOTCIIoihAIgcOMY+pNoD4oxV/6S38J/+W//BcsLy/jD//wD/HFF19URQ/+4//2v+Hq1auA6+L/9rf+Fj49fbq7+8C884NphSAEQcAIjyAUi1heXQV1XQx04YMQBvwuWiyPbJim76goSRK0WAxSnUZKYYVZMlt8LMtCpVLZkjIhxGvapKkqMplM3WMUi0XopgmNRQ38nTjfcfMFOWDBXOs26Nh2lamQZRj+e93AaxzXRcEtwqEOXJeCgOJ1/jWeLD2pMmgSRdFLZQmCZxcsSVAUxScYYg0B4SSEezrU+7nIol/tggK4desWUqkU9u3b18ER4C8smqr61Sdcx2DoOkRJgmUYfrlcP0LWPGLQ7J74aYWodA9c5xTipVxvQuF1ouREMBEgBv7rGkBosPj7pKDBe0vMKlkQBAwODSGRTEJRlJ7PF28zdsnBNkDTNKTTaWxsbEC3bQi27ZfaAJ4HguO6ME0TpXIZKTZpOpRCQM2uoMkOQZIkLxdu203JgcMWvl/7tV/DH/zBH2BxcRF/9u23+PonPwEA/Jc//mP8t5/9DADwf/kf/gf85b/8lyPJaytskWyGkeFhCISgUChgZX0dFECmhw+8y0KhhmH41RuyJEFLJJqa1rSTN4/FYt4Om4Wx2zbDIZ7zmyxJdcVyUZUGcvz5L3+JV8uv4S03BCfeP4H/ft9/X/e1xVIJtmUhHo+3zL/7UYPIrtTD69evsbS0hM/Onet6By2IIrRYzDMzYx1VXdfF+toaKLxW5P3QGQR9DJohyshBu98NIQQQBJSKRd8CvJYYAPXTb5SnLRqM21bjucCiBjFNw8TevRBFMRLXyXcZb1ZN1VuEZDKJWCwGSBKKlQrcGm1APB6HLEm++5rLw7G0TqdE/gDU/Jw/lM38DoLv+PLLL30r4j/8oz+C4zj47rvv8L//H/8HAODcuXP4v/6P/6N/zm6XH0VRYDLhWDMMDQ156n5B8I2LogalFJVKBWvr67AsC5QQyIqCNCtba7mAtzEJiTxdRAjKzLGxo2uO4FrCoB3NQVvuiEKtvVL3cCnF7du3MTo6ijE2lqMAt8JOJZN+OSr/hEW2GPYS7TQzIuiecHUiaHRdF+VSCRZzAI3H46EiKtR16xMDNse0+uSVSgUuS1nN7NsHSZIwNDS0K0DsErvkYBuRyWQ8YZ4so1gqVT0cvEmTKIq+SY+/c2DmLlUPU53KBm7u0qwJUzBXTgjBX/vrfx0AsLS0hP/wH/4Dfv/3fx+UUhx77z38+q//etU5SJcEgVsoh0GG1ZdLgoD1jQ2sREgQTMvCxsaG1ySJWboOpFJI1dn1RAXeZY978HeERguG26r7QbsIV63AqzaAcO6IvdjTzc3NoVAs4sT770d/cEpRrlQ88XA8jszQEARRhEspSoUCypVK5NbjhJ03/CVGUMYYtnInAMe2PZJk2xAJQTwer0uoa4/bsMVzG9fAyVkilcLQyIg/r+6iO+ySg20Eb74iaRpceJ3cqn7POpUJguB1GQsQCF56VyWEq9UdMDMk3uWuFvXCz2fPnMH09DQA4JtvvoFlWZiamsL/83/+n+s+7N1MQoqitEwrBJHJZHwR38bGBpZWVjo+N+ClUwrFIorFIiy2oCYSCaRSKZ8UCAi3a2u31FMQBL+joq94D4sW95yELHcNf7pw9sl+TjjkrjNqN0fLtnHvxx8xMz2NgQZ6jW4QrJRIJBJedUQq5QkURdFrxV4oeCY8EXy2Thwv/fmhQ82Br51p47k2TdPb3LiuX5bdKNIW/DScGNRcQFtpMdMwvO/FsrD/wIHNiOwuusYuOdhm8NyYqGmwTdO3Z+UQ2MNGWOVBueb3AKqjCIEIAiEEoiyDtogeVIEQfP311/5/BwYG8Ju/+ZvNH7gOIwhyyLRCEJmBAe9+sdzm0vJy2+elbAe4vr7udc6jFKqiYCCd3prDZ/n9luiAJGmq6tWNswqFKBFlrnVrb4X64FEDbiHcDLwyIUrcu3cPtuvi+PHjkR4X8Mp9DcvynTH54kcEAfF4HMlEwq8Qqui6p73oxL6cIazGoBZd9VXgz3HI93KBZoU1OeIdZ8Vm2pzAZxKCIl42b7VLhgosWjEwOIg9e/bsGh1FiF1ysAOgKAoyw8MgigLdMLYsmKIo+pasZh0CURVFCD5s2PQ7CJsTzefz+OlPf+r/3zCMUIK5TiYjRZY7mkDT6TSGhoYgCAJKpRIWFhdDh3Nt2/aEoLoOh/lLpFMpxNkuvhF6ImsiBDFWG19pIyTtX0vEi2vrE/LTNkgrBMhB62NGe0dL5TIePXqEw4cORe43YJmmb64T07S6PTUkSUIymURc0/znsVwsth0V4rX9HUceWPSm3bvbqb7AYPdF1TTf4Kj55dW5Pna/OjHDWltfh0MpDh0+3LC6ZxedYZcc7BDE43EkBwchACiXSlsIAvdAALxdTKlGo8DhuK43SfO67SZmSLXvLxQK+J3/5X9BoVBAkpkO6bqOP/qjPwr3IdqcYBRZ9p3s2kUqlcLw0BBEQUBF17G4tNRycTUMAxuFAix2L5LxOFKNrKprEHWonoP7WIAQfwEKi6Z1591dVs2xQkYO2ujGGLXj5u3bt6GqKg4fOtTR+xtdjW3bKDHRqKoozc10CIGiqhhIpaDKMiCKsGwbpVIplA8GpbRxKV9ItNuumUcK2jmjY9ubkRFCEGOuk8Fz1vUiqI1qEM8+vpPPS10Xi4uLgOticHAQs4cO9c22+l3B7t3cQRgYHISSSACEoMSc4YJQVRXxeByAl+crBUWKDFwk6DCGLvPIATNDCiL4UBqGgX/9r/4VFhYXoWka/vE//sf4+OOPAQB/8id/Er5CoA2CEE8kYBhGW7qDIJLJJIaGhyGyvP1igwgCpRSlUslr/EI9R71UKtV2CVoUKvCtB/Xq5Am87yBUhKdBdcrWl0VztULtNNHgvH5IO8QkHSU1WF5ZwcuXL3HsvfeahrSbod6dchzH6/AHT9wbCxmRIIKAWDyOJHtWXUpbpxkiIAYA2xwgXPSmHRLBYVmWpy9wHF8TVe85akQQ+fn8tEkHn9d1HKytrXnznyDg1Mcft18OvIuW2CUHOwiEEAxPTEBlXf0q5fKWCIGqqn6KwWJtjmvLIAHv4XOYU57ALEuDkxPFZhjYdV3823/7bzH35AkEQcDf+7t/FzMzM/hrf+2veeexLPz//vN/bvfDtHwJzw8WCoX2jh1AMpHAyMgIJBZBqE0xOK6LjUIBhmnCcV3ENM0XebYNFj2o98m6WYa5Kx8JGT0Ie66oyEFt5KBRLYTbRuQgqpQIBXDz1i2k02lMz8x0dZyq/zMBMIHnNpqIx9uOjEmyjHQyCYndj1KpVDdSxqsLuiUGLkstUlZx0wydEANd11EulTb1BclkYzJWxyQsGKVw67wmDHj32tW1NRBRxL59+zAZ6KS6i+iwSw52GERJwsDICGJsN2nxCEFg4pBZ4x+BuePxls+14BOOIAighMCpjR6wh/Pf//t/j5s3bwIA/vbf/ts4cfIkAGBqagqffPIJAOCbb7/FwsJCuA8RDC82eVkqmQQBsNEFOQC8lMzI6CgkQYCh68jn83AphWlZWF9f9/oYsPN1nY+uUzIKYLNhT4fgKSPLsjqOpNSCh5i7xhbNQf2j+mWMrdI0EeoNXr58idWVFZw4caI7MhT8TCzS5LLdfCfEgIMLihVZBmHjs8wiWN6pookYAIG+FoLQlBy062HgMqLE9QWKqrbUFwSP7hMfSjsSWXJYto1yqYSNYtEzoEok8BGbn3YRPXbJwQ6EHI8jFo8jnkwCLEJQrIkQiKLo5ctZN7RCobCliRGHJMsApdW7FjYZ/eef/hTffvstAOCv/tqv4csvv6x676/92q/5nun/3//z/2zvg7BJqNG0J0kSEskkChsb7R23DuKxGLLZLERBgGlZmJ+fx/r6ujfBCwJSqVRktc8E2Oqj3+XkLjLffsLU7q3OD4TzqI9iGQ5TyugGdC4tKxW6WCCCcFwXt2/dwtjYGLLZbCTHBKUolcuweXvhRKJ7K2JW9x/XNIB1JOSeAFFEDDhcxwGYyLbxpZC2vBgcx0GJuV4C8JqAtRDvAltdEF1u3tYhyTINAxUWebEMA4qq4vDhw7t9E3qIXXKwAyGIImRmy8pD4LZloVgTIRBE0Vv0mJNiKdCqNgiFtZ61HQeWacKl///23uzJjuu+8/zmvtylVqA2VGEjKa4iCFISRYUkOqy2FG63NdZY7nl02BF+8UxEd8fMy8S8+E+YDj9MTzvGdtvR7QjLbluOaDvstmW3SYoSTQKkSVGUAJAACBBLrXfJPfPMQ55zKvPuW4EE+PsoSgXWcjPz3lt5vue3fH8MSZriH/7hH/CnPF3wla98Bb/0rW91/e7m5iY+x+covPrqq7h+/frY1zPoRjI3N4fGDMQBkNtSHz9+HEkco91u4+7ODlRFkSJq1hR3fLMI4Tu2DSj5PIxwRtGDWZxXVylmj26FYjHioGPO0tvgypUr8HwfTz311Mwe0/d9aczlVip9p0tOgskdFoWw9KZsd+xkUL2BSCOMk06I+T0nE/UF1WpPu+5+iONM+5oHQQA/CPKZDb4P07ZRr9Xw6GOPTfW4xGBIHHxC0V03H0BjGHluT9OQZhlazWbphqKoqhwywhiD53k9Wx1FTltMQXzzzTfx//7H/4g0y/DZp57Cr//6r/c9l29961tQ+Y7jO3/8x5NdkOhj7vhyrVabmTgA8kVKpFyE3fI0FsXDKN2Ip7wJKqqaV31jSGujuOlOdbQxzmuEboVho5rlY81IpAVBgB+/+y5Onz6N2gymdTLkXUBRHAOMlbwMZonGBb2u6/kcgnZ7pLHqo5Bxv5NexkIKxnu/FOsLtGH1BQVkLVNBOHeZtY0IYwy+5yEKQyjIowe6rkNVVTz2+ON5RJQ4MqjE8xOKqqqw5+fh7+3JG4qoeG61WvnAF95WJa2WeVFeEIbIGIPrulK9W5YlR9A6rotz587hD//gD+Qf86Cb9sbGBn7/P/2nmVyX3L3wG0e9XpfOc9PejD3e4aFrGjY3N9FoNBBGEe5ubyOq17FwBH3QCgqh2hns0m3LksN9fN/P8909jglgJDEyagpi4GN0pRW6Kea7BzGLyAEDcOHixXyRmNHuMSp6GTjO0dnv8oW66rr53zNyj4bKiHMIBiEiB8XRyCJtMWq0QLzvRBrBsCw4HW2KvRCvKsuyQ5fFKWBZBo9HcTQAqq4j5sOVTp46hZOnT0/1+MRwKHLwCUYzDFhiV8TD44Zh5JXUnicLhAS246DCBUEURaV5DLquy8U34mOIAZ4/V1UwbrF8L3ajxduM6FiYNnrg+X4eemQsr9dwXaysrOSObYqCxsEBbt+5M7NdWiczcyRUFLg8jzpNm2f5Iac7t+5uhQFphWEL3AzEwY0bN/DRzZt4+ty5wb4DI5IkCXzPgwLAHuZlMCligS6YlFVcN+9k4K3Lk+yuBb06FWTb4Iivf1d9geMMNQcDNy8SbYm9fnbceRNZmqLleUiSJN8kuS5arRagKJibm8O5Z54Z6/GIySBx8AnHcByYIgKgKKhWKvLm5fk+PD7HXGDyVkdVyS2Tm82mvHFblgUoSk+rXvH4UiQctfseP94sOhZ830fg+2BZBoeP180PoWBpaSm3W9Y0hEGAW7duTWy8NIhZeiDoug7TsqCqKrxeDnv3Oq0wQvHlSAOXZiCgwijCxYsXsba+jo2NjakfTwwMgqLko7mPwpefMaDHcCFFVVGpVKRAaI1oltSLYuRmkghEZ31BpVodLJL4tQy0axYdChMUQKZpmtdUuS58z0OaptB1Hc9/6UvkaXCPIHFwH2BWq9BFIRDfWbquKzsQvA4vBN0wUK3VoPGBTaJOweR1B2mS9BzjLELkwGGe8KhFgm4YU3UsBEEA3/dzDwPHgdWjVbFWq+HYsWPQdR1pmuLW7dto95hRMS2zdFF0bFvOXejbvXCP7JO7aw7Kx5U7RwxOK8zivfTWW2+BZRmeOXdu6sfKsgwt/j7QNE0ajM2cAWF2IRA0IRAmjCCIegNN08aajwAgb6/sqC8YNDiJIRcFog2zL2N2YsRxjHarhYwxmLqOquvmnR3tNqCqOHf+/EzqS4jRIHFwH6AoCqy5OaiaJv/YLMvKBzIhHzlcjBAA5cKnjLF88mAcwzTNUmFiv+MJGG9BkhP3joC5uTk0m82xF48wivKe8QHCQGDbNlZWVnKDKUXB3e1t7O3vT3nmZYriaurHUlVZbxCE4dRV7dOcV1daoeN1Eu87ZUCnAsP04uDWrVu4fv06nvrsZwe+1qMgevfBGFQhDGbovwBg5McTToMa//m2540dFZKdCmNEDdI0RbvVkrUWhmmi0se/QLx+Mn0gig0HPD5jLHdqHYIY4OTx6zYMQ9ZL7e3tAYqS1xmcOjXytRHTQ+LgPkFVVdhcIAgM00S1VoOqKLkZUrMJv5BmEO1HpmHIVkdRSTzKWNmSeckRioR6vY5Go5EXRY742GmaSjMZy7ZHMjfSdR0rKyt5a6OioNFo4Pbt2zOvQ1CAmTxHumHAME2oioJ2Mb0w60VsTDqvLBsxpTDNWcdJggsXLuD48eM4OYUTIgDZ1SPOu+K6g3fAkzBmUZ6IIIj22HHmbCiqKj1QRrJN5o8vO58UJa8vKBQwF364FBmS359R14mIDIRhCIZ801PhnVrNRgNJmmJ+fp7qDD4GSBzcR2iGAatjJKmu66jX67KVMQjD/I+K7zQVnoawef4wThIpDAYVu8lipo6bQEkkzIhix0I/B8JOPN9HmqbQNG1kz3sgv67FxUUs8qFNQRjOrg6hUACmqupMhgu5jiNv/mLBGKdbQTLFuajK4NkKoxQjTvtcvP3224iTBM9MuUiIiEHKDYOqlcphKH4WdBYejoGqaXAdJxfvI0SLGCBrGVL+Nzms3kB0O4liZmGDXKwvEBMSxd86MFnkaVByRKTL2rzOQVVVVF1XFkCGYYhmqwXLtnGOZid8LJA4uM8wLAtmpVJanMWuQxQiptwxURQrKooiK/gFfo/BTr2Qt4TOdjZekzALoSDyiK1m8/A4A5wVRUsmgInDwdVqFcePH4fB6xA+un07DzPPkHEiIYMeQ9ww/SDIBzNNcL3jWuaWfrer5qB82x+ljXGaZ+Hu9jbef/99PPHEE1PVBRSFAWMMlULv/izErgKMnWfvRDcMWIYBRdPgceOfnscSryVfwPt6HHAy3hooFmPw4VCV4lRSxmRNQa/jjEs/J0whUMTkWdM08wgnr6vKsgx7e3vQDQOfefxxLC0tjX1sYnpIHNyHWNUq9B67ZcM0UeNRBICPKG40ZGuSGNpk6no+kOjgYKQdsyi061eRzBjLc54TCoVarZZ3LHQUJfY6XsLTCYwx2LY9VW+4ZVlYXV2FbVlQkS9Ce3t7E1eM91p6ZzFG1jDNPL2gqvA8T96oj7yjhNPlc9Bx2GHigPX6pRFJkgSvv/46lpaWcObMmYkeAzgUBuJca4Wiu5kIgxnaINu2nac5ehSjMuSCseh0mIkBa31mKohOhJj/rRumiZowTkOhngDIIx+9L3Csa+g5spl7KIjXQVUUVKtVuK5bSkk1Gw2kjGHj5EmcJj+Djw0SB/cpdr0OtUeoTeWFbNVqFaqYu9Bq5dMdswyGaWJufh6WaSLlCn2sHus+NwkFh+FI2eUw4s1S13VUKpXeXgeixZI/ls/PVdO06YcoIQ+FH19ZQb1eh6aqaDSbuHv37kzrENQJw8xFXMcB+KAtIegmecRJfmfQbAUhDIERPA4m4Efvvgs/CHD+/PmJH0OMXhaLaLVSmXi0cy+kMJhhMaqIiEVhKO2cpTDoeC+Jv7fOmg/RFujxv31F01CpVuE4Tu5tUigw7AXrJxRGoHNSrJgPIyJ+pq5L6/fiMUQ64fjqKs6cOUPphI8REgf3KaJAsecNifds12s1mUuMoggNPpxJ0zQsLi3Btm3EcYwwCNDk3QzDEEcb6pgmwp0jtkPWecdC3+OqKoIgQBzH+US2GbadKYqChYWFUh3CRzP2Q5jWNlhRVbjcqS7i46fHXehn5cVQTCsUBy7NIkpSZGd3F5cuXcITjz+OarU60WOIBZIdhTA4wgiOruuwTBOqpsH3/VwYFI5ZJE0S2XUhzicMw3y4k4ga2raMlhQjfIP+jtUBqb2BFIQSyzL4ngdPTLnkmxeXb146r2Nvbw/zy8vYOHECi4uLkxydmBEkDu5jNF2HMz/fVyCIHUi1ML2x1W6j3W7D0HW4fMIaA3cl4xGGYVGEcZ3XGGN5nnfAgiY6FgY8CEJuC+1MmU7oR7EOIeN1CK0x6hAGPR9yYZ5iITEtS87ICIJgoumGk9QdDJqtMKxTYdLuljTL8Mbrr2Nhfh4PPfTQ2L8PHEYMRN2NKD6cCSMWzk6DY9uyvTEMw77HE86mqqoiTRK0220Evi99Cyq1mhyYNI6V8qTv1DRNkWWZTGdEXKCI2gLDNLtEapZl2N7ZgVOtzszgipgOEgf3Obppwp6fH3gDNngIzy5EEZrNJjRNg6ZpsExThujF9wb5IBQZ1fhHzFRgWSbrE4rU63V43DK1F0IYaJo2dY/7IDrrELa3t7E7RR1CEVEUOM2SItrN0jTt6XQ5FNZr4PJgOrsViq/dsE6FSSMmP/7xj9FqtXD+2WcnEjTS+ZAx2dLb7xwn2vnPaOx0X/gibvNJnVEc9z3PlBcGi8mtne2JwmBplGPOgizL4HmebDVWecF0hZ9LT2GwvQ3TtrG2sYFTp07Juini44PEwQOAYZqw5uf73+T4ouS4Lmq1GjRNQ8YY4iRB6PuIogiWZR1+jxdvjRJFKD7+qIj6hKwwz6FWq4GBdyz0IIoiZGkKi+86RGX4UdBZh9BsNnHn7l3EM6hDGFjcOQKqqsKtVGT0IB1zkVIUZeqe/qK8GFqMOMGCs7+/j/feew+PPvaYnL0xDmmSoNlqyfOq9jH2mQT5uh1h1EBamSM3BBLeB3EP4ZwxhjiK0G61EPKUm2hPFIZnIx0zP/DU5x6FIZrttjxXUQRt9RlklWUZtnd3oRkG1k6cwOnTp4/OqZIYCxIHDwimbcOemxsoEMAYdB5FcGwbuqYBioJ2u41mqyVdFR3eOieiCKPuUCe9wbAsk3bQu7u7XTuYhNs9M0BOogSm750fRGcdQhRFuHnjxsAZECNXrE8pECzThKZpUPhrNwmdLWusx0eG3kNzZPEdj2AwRZFeAUzkqcXnMV+jjDG8fuEC6vU6HnnkkbGvK0kStNrtXARpWl/Hv7G5hx0ipWMoyqGraUcNTMat0YWzoMbTiJNc87RXJdIZLV7foWoaqtWqTAH2enzRsqiqKtY3N3H69OmJa0uI2UPi4AHCdBzY9Xr/3b6oFQAvUKrV4LguGGNoHBzg4OCgZxTBa7fzoSzDdqli0Ssca1QMw8Dy8jI+unWrVMgoiqtSxmBbVldIcpYDj3oh6hBMw4ACYHd3F7du3+5bvDnOuSgTVoOLcLOCvAo8GFA4WTK0AZAW6z9E0WjhZ4ofYkFUO24TDIeueYmw0xWLUeciqii5m96Ioe2f/OQnONjfx7PPPjv2Aie8+Rny6I9w2hvKoAV/jBz9xAw5hmWaAH/dkjQFQ24d3mg288FcyNsfq3xq66jM4qqkKOAFzYwxmLYt6zsGXdf+/j4yRcEGFwaTRImIo4P6RB4wTNdFlmUIm83+xjd8EddUFYsLC9KKOOAjj4MwhMWLh8Sc+ziO0Wg0SlMP+yLy6qJiecTd1uraGt55553cMY3PkWBZlofP0xQG78vudbspfm3WeztRh9BoNNBoNBCGIW589BEW5uZQq9VKC5CorRgJRRnJo77X72mals+JQD6V0jAMaKI9DfnzkaHjuS8u2OMcrrMgkT9OWuhUGGid3LET7vf9RrOJd3/8Yzz88MOYn58f6xzjOJZRFJ1HDEZd1AdJ3lm3KfY4wGDjJC68TMNAGEXwfR8AZG0OY7l9+NipE8bAprimlIvSpCCSVU2TKa9hqau9/X0kaYqNkydx8tQpzM3NTXwuxNFAkYMHELtahVWr5TvCQT/I28/m5+dlKJKx3G3N933ZWigGOAlP+larNVaue9Sb9NraGrIsw93tbfm1kFs964Yhz08UYA0SHbO+lStKPkt+dXUVjmVBA7B/cIDbd+6UWh7HFiZcwI1dB6AouTESb8trtdtIsgwpjwSkw56fcWpEunwOckQkSR+14K3/AcAAvP5P/wTXcfDYo4+O9etRFElhYBjGWMIAQHfkoNiKN9aZjI6oK0BnN0fh30LoMd51EEUR9vf3EQuvANPM2x0VZbgfQGeUasLXqxgpEMLA4BuJCi+WHfZePuDma+ubm9ja2sLCwsJE50IcLSQOHlDsahVWpSJtVQeh6zosy4JhGNB1HW6lApWnFHzfR6vVgmEYshYhjmM0Gw0ZaRiVYTfsGr/B3L51S34t5uLAKlQvK4Ubd6eXQldkYcY7PsMwsLK6igVeixDHMW7duoW9/X1kWTZxCHqcFrPCL8HSdaS8WC3gu8pRjzdqPUDnWcnIAd+99jLjGpe33noLB40GPve5z+WtbiPWb4RhmLtGKkppmt9UiEX7KChGCnqIAulWyP87yzL4fCy56EJQFCWPWPGaIV3Xh0cNJvUs4CR9REGtVpMFhAwYKgwazSZ838fG1hY2t7awvLw8xVkRRwmJgwcYp16H6bo9WwclPHrg8PysaE2r12pdIiEMQximKaMIQjiM4iYovRHQXyQoioLV1VV8dOuWvEGKKMHAnRG/8XXWKgBHV7RYq9WwtrYGl7vNNRoNfHT7thxoMy4jdTHwBSVLU7A0RcYYFF3PRzvzdFAygpFV8Zgj/mD5NHggvq8z4hjCAwA+vH4dVy5fxtNPP43FxUX52qm87a3fWYZhiMD3oQAwpxAGYqGedGDSiAc5fHwRdSvWeAClv1HxN9dsNuXEQsMw4PAJpJqqIkmSPKo24G9jWmksREG7IArMgihQNQ1pmkJR1YHCgDGGFi9YXN/awsaJEzh+/PiUZ0ccJSQOHnDc+XlYjpMbk/S58Sl89+HwiXBi7LNlml0iIQrD3BedLwhJkqDZbI4eRRAioU+udW1tTe5QsizLK5+V0d33pJ8CDq19j2LMNJBHXI4dO4alpSXomoY0SXDrzh3s7u5ONZ+h5wKXZUjTVDojFgsATdPMizUVBS3P67Ku7X+wUdvcOsVBoeYAPQyQRMh8BJrNJt64cAEnNjdx+tSp3ueodPtDhHw3nSEfRjaNMFB4WuSoagsUQE5PLAqBnhX8aQpPiIIoKnUh1Ot1GIYh39NJkoBl2UBxMOm7PkkStFutnqLA4aJAXJsw9xr09+/5PhqNBtY3N7G+sYG1tbUJz4y4V1BB4qcAh3sgRL4P9BnOoiLvYIiiCHEcIwgCecO1TBOmYSDiXy8uPhljUHgUIYwi2JY1cn+1AsjJheK2sry8DF3TcPv2bZzc2gIwnWd/MQUhbmCqopSK0KZpKwSASqUC27axu7eHdquFVrsNz/exuLiYz0QY95z5+Qhr4pRb/xYXrs5pebbjIElTWVxarVaHLnSjpoS6TJD472Z9DJBGTQkkcYxXX30Vruvmo5iHvQZ85x0GgZwoatv2WCO7S9fBxcBM2xN5hIDJ/8xrQIa9v7I0RRCG0k0QyJ9Xm6f7gMMixDRNZdRAUdVDcdBx7ElIkgRhEJTMyEzThGVZUhAIFEU5fG8OEgaeh/2DA6xvbmJtbY3cD+8TKHLwKUBRFDjz8zBsu7ybLv+Q3KGIeerFdIEQCfVaLS9e5DcKlfe6R3GMNEngeR4aIhQ66k230FWh6zqOr6zg1q1bedsWGz6jfhyKN89OM6bOlr5x0DQNx5aXsXzsGHRNA8sy3L1zB9vb2zI3PyrFuRSJuPkO+FlxXaIgLOG7z5GYaLedyfeG2tmuxjtMRngQvHHhAgLfx/Nf+MJIA3YYY2h7Xu67wds5JxUGxR3vVIhagUJUQBQCjzK/IONirlGwGdZ1HdVKBbWO1sRiwXCcJECWQTeMUhfKTCIF/P3aK1IA5IuGgkPBDfSOUCiKgsD3sX9wgLWNDayuruLEiRMTniFxr6HIwacEVVXhLiygvbODNI6RZlme0y0szAoOixODIIDneajVanJ3JXa0pmnCMAzEcQw/CKCDh/DFYs4YvDRFEASweCRhnDar1dVVXLx4EVEhrDprxO26lN7oDPWKCu9CSHvYDtB1XRiGgf39/XwinufBDwIsLiygUqkMPa+MMTDeyy6O16tYUUZECoubaCVr8+l3uqaVTKN6MsLi2OuapW1yr5TCCFy6fBk3PvwQX/jCF1Ct1Yb+fJqmaHuenM9RqVRgGkZXrn5UhFHTuOJA/B10vk/E98QCPuxx0zRFGASICsJR13XYltVXKKmqCk1VkTImxbdpGJOnQnhqIgjDkoDtFykAcmEgWiDTNB1Y0xAEAXb39nB8bQ0rq6vY2tqa+XAu4uggcfApQlVVVJaWpEAQux0hEsDbkBzHQRhFeYgxiqRlcZFeIkEsZEmSIObiQ4wYHkUkiEVobXUVFxjDnTt38q6AIxzbKq+rx2ILFNIR8guHggGFRbsosDRVxdLiIqqVCnZ2dxEnCbZ3dtD2PCwsLMDocT3SqKhj1y0EWedSU0qXFDB0HbZt5+IuCKDp+tDIS9di10GnG76IPgGTpXx2dnbw9ttv46GHH8b6CCHmOI7R9ry8TY779GvFnDd/300kEjp/p7gLLyz6RYHUeRQR3heRqEH0EgUGF+SjRE9UTUOcJEiSBKqm5S6nY5ImCeI4zuc1FN5vA0VBoZYHOBRJAE8toiCOsgxRFGFnZwfLq6tYWVvDqVOnSBjcZ5A4+JTRKRCA/IalapqsAVAZg+s4aHseAt/P3QEHdBiYpgnTNBFFEaIoKokEz/dly5+ISliWNfBGUalUUK/Xsb29jfmFhelb00ZgmEgoUgqnFuoYRIRB5JhNy8La2hoO9vfRaDYR+D4+CgIszM/nERn5gGy0jg+glBLpd562bSPhC0i73UatWh08AGnYDrrj+c/AkPHFrSQORijoC4IAP/zBD7C4uIgnn3xy4M+CMfhBgDAM86JZ7nrY61qEuM3StOv90tneKgsPC6kAIQCVwx8qP3Yv+Os9SqQgSRKEYViaj2DqOqwxJ4xqfPJilqb5cKIR/zZYliGKY8Q8/ScvgRssmXw8dCeiw6Lz6ooiVil8Fl0JjUYDSysrWF1bw5kzZ0gY3IeQOPgUIgRC0Ggg4jsyEa5VecGiZVmyONH3/dIwFFnh3XFDFCIh4zuHMIqg6zpSXmyFIEAQhjANAzZvyep301hfW8OVK1egPPLIkdojdzKOSDj8UaVrgSn6LtTn5mA7Th5FiCLs7O6i3W5jaXExf35GyNGXbsCF8+u3KFVcF03e8eH5/sCURuc13vFu47Z3O7dJBnDXu1v6/l3vLt7afjtvMfU1LDtLODt3tud7ovM4r/3wh2AAPv/5zw8UfYwxtNttGbq2bFt2ZPRDAR9bnGWynkARYX7+3yINIR4nKyzsI7/PCs89w+BUkwjbJ1OKguIinXAhOYrxUZIk8u+4iG4YsHhbci+BUYpYdXy/+H4V3h5CJO/v7iKKY6xxDwOKGNy/kDj4lKKqKtz5eeimCb/RkOFFGUVQFLiuK+2CLcs6DOUWblS9bouqqsrFX6QmRPohjKLcuMb3YZkmXNeF7ThduevV1VW89957aLVaqPfKSY+wS52GTpHQa/fU/5eVrgXHNE2srqyg2WjggD+n12/eRMVxpAPl4a8r8nGkT0NnzQH/3O+cFFVFxXXRaLVyg6QgkGO5e/48f6w/eO8P8Uc/+aOBl/fP2/+MD7c/BAPDDnYAAC+e+Cr+j2f+94G/984772B7extf/vKXB55LwgtbxfvLrVRgCBMs8ToUd+2FKIBw6BNtu+J9XXyeOgsoR6IgiEfqxOglCgyj9Hc0FEWBioK9MxfxSZpC07Se6Smgf9pA03UYhpFHAvss2DJlht7vrWLUrFhIHEcRdvb2YNs2tjY3sbq2hpWVFRIG9zEkDj7lmK4LzTTh7e0hjePDKAJjULl/f6k4scAoS7Ou67lpkuPkNyw+qyHgAsH3fZimCcd1Ua1WpUhYWlqCruvY3d7G2upq9wPfg1QDUBYJYgFlQzoI+uXwFUVBfW4Ojuvi7vY2Em5F3Wq3UeWpFI3PlABQEiRM7IaVw7kVojJeCCXWIUhUTYNr2/ncDN+Xr0UvGIAoDfGdn/7J0OdEQ764pThMhfz9h/+AX3vs17BkL/b8nY9u3sRPfvITPPnkk1g+dqzvY4dhCC8I8op4UV+gqjKvfXjC5ToQoFD3IQTCCKmaUbwNpHfGEFHAGJMCuJgmMg0Ddp9cfo+D5UV/4jFR/jsTw410VS093rC0gWEYg2t3ehS99iLjxbKiS0lRFLRaLTQaDSweO4ZjKys4ceIEDVF6ACBxQEDT9TzN0Gwi4h71QiRYto2Q74BEcWIvZKi2z822WJvgui6iKJKV/CFPQTQbDbiui1qtBsMwsLS8jO3d3b7mTfKxAVksddSSQQHyCYMYsFgMyeFrmobjx47B930cNBqIwlC6x1VrNdSr1Z7eAQKZuii0YBaPVzyyYZowkgRRHKPZaslpefJawKvPswyaYsDUTIRRCAYGBQo/FkPGMvk6qFCRsgyhEiFBHvY3NRNVvVJKpygsH+7Tajbx2muvYW1tDQ899FDP540xBs/3kfCaFc0wpPtk8VxHReHPsxwO1YsBwqAo8AbWn/B6ERG6L9aEGKYJu08uv+cxB+zYBRH3NzB4C+OkaYPScQH5nh6EEFIKv+YsTbF/cIAkSbC+tYXlY8dw8uTJkQoriU8+9CoSAHiaYW4OumXB39/PnQlVFeACwff9gcWJxVA4gIE33s60g+d5aLfbcgFrtlqwbRsL8/O4efMmwiDIW7b60FWkh6MVCV11CR2RhEHHFgs6ADiOA8dx4LXbOGg0EEcRWs0m2q0WatVqHknps7DI51vkfAdEM1zukJkmCXxukFR8DRVx01cU/KtTv4D/8pM/kq6Ih/9/uHPXYUBRgBSJ7GT4xubXYWqF+Rf8+cnSFD/4wQ9gWRaeffbZvm2Rnuflz4uiyPfGSLDBxj+igK/Xc9Or60C0Ig5LHBQFQVG8qko+EMsasX133GLbJI7l6OZGszl22qATdcBz14kUoYzJNILjuljjrocrKytjXQvxyYYSQkQJ07ZRW16GxhdjVVXz4inu5d5sNkdrGRvxpqfrOur1OlZXV3H82DFpahMEQb4wKgquXb0qbZtHoVSZPtJvTIYiPkQr6BCKLYBF3EoFa2trWOLukFmW4YDPajgo1IMUEQuPuGEP60aoVCqAkjva+QPmP/zSmW+iort9vw8AekdawVAMfPuhX+55vRcuXEC71cIXnn++ZOgjiJNEWmWL8xxFGLA+kZJeDGuFFVGvUvFiD4SLYbPZRLPVQhhFMt1hGoZMDTkDCm0BXjipdJpSDz6/hD9PbT5aXViLK7x4uMrFpGVZQ4WBwlMXI7sp8hSCSDc2Wi3c3d3FwvIyNk+dwsOPPELC4AGEIgdEFypPM4TNJsJ2G7qioFKtotlsIoqiPDxdrY49ZriXmY9AURS5k47jGM1mE2mSwHUcfHjzJupzczJUajsOTD5Bchii6nqaiYmjHENcA5AXkPW61mHiplKpwHHd3DGPz7tvNBp5USa/+YsbvwxBF4b4iK/3WuBUVUW1UkGr1UIUhtB1vTsawxiqRhW/dPZ/wh++9597nqPK/wcACfLc9r/Y+hdYdrqn6129ehXXrl3Dc88+i7m5ua7vh2EI3/fzxYq3KY5arNcVqRr287z/vggrREz6iYIsy5DEMSLeGlrE1HXopglD14e+t6SfCHAYaRjwO8IiOYlj6RTq+35ejMhTdNIwadTnoJDuYqP8juhC4PUTWZZhb3cXaZZhY2sLx48fx+bmJqURHlDoVSV6oqoqnLk5aDzNYAK5QGg0coHQbKJWq6FzIM4gRC/6sApxwzDyuQSui2aziXd//GN4vg+HhzPbnpcvbroO07bzm7Rh9F1Y5M4QRxtJEKhKbkVdLF4cZXS2+N1qpQLXdfN0w8EB0jTFfqOBZquFWq2GaqVSyk+LHaRs3+uTZtB5C6koMFUrle4bu6LgF0//Iv7synfRiltd56cjFxQpUjAw6IqOX+kRNdjZ2cHFixdx+vRpbJ08WfoeYwye58k8+SijlgcJy1EQ8zSKrXmlyvuOY8VJgiSKSmZFAOT7TjeMkdIGoniv+Hr1uo6MdyEkcYwkSXoKyTiOoWsa6vPz+eyMoQdn3SJqDFEgfSBY7si4s7MDt1rF+toa1tfXaariAw6JA2Igpm1DX16Gt78PmzEwvvuMowi+58HiIdSRRUJx1zRksbQsC5ubm7h69Sr2dnaw+fTT8D1P7uLiKIIXBKUbtmEY+eceu7lSOxvyHf5R1SbIXRqv2xhWVNmJqiioVqtwKxW0ms08kpJl2D84QLPZzKvBRZcCOq5D9Pf3EAi2bSPJMiRRlBdAVqtllz3GUDEq+KWzv4Q/+PEfdJ2Xzm8ZMfKF/WubX8Nxt7xI7O/v45WXX8bS0hI++9nPlr5XtEEGjxbZAyyepbCbQdRH7ShQ7BRrxeK+4nc0VYVhmjB1feTiQtFVMuis0ySRboedUQngsNNH13VEUQRN02CZZj49dRCidmLc54yLAoUdOh6yLEOz2cRBo4FjKytY5tGCkcQJcV9D4oAYiqrrqC4vI2g0wHjNQZt3GiiqCss0kQGTiQTxn+i+kSqKAsuycPLUKbz77rv47Gc/i6XlZaRJgjCOEQYB4ig6HDRUEAqqpkHnBVqGrnflncXxip0Oo7ZzjYJ4XAVAiu7d4qhpDlVRUK/XUa3VDkVCmmJvbw9hHMN1HFRdF2pnF0m/glBFQdV10eJ57DYXCEWfCUVR8M3T/wp/duXP0IyapV83eOQgQQJN0btqDZrNJl566SVUazV88fnnS9GcMAzz9ww/j1qvyEXX6U73ehSnV8oOCv7fAOTQsJjXDwhURcmL+0xz/FRHH7IsQ8wjA2KqYhGVT1jUDQO6ph3WlXBTsTiOc8vyAc9Zp83xiCdeEgXAYVvm7u4uMgCbJ0/KNkVKI3w6oFeZGBm7XodumsDeHjLG4PMuA1VVYeh6XomPMUUCR5qvdNwwdcPA+vo6Ll++jJ9euoSnn34amq7D1XW4jpPv9uIYEW+3TLjhD0O+8yoKA4OLhWJImHUenzN1xwO/ll7zEgAcpgGA7h7+HhRFQpOnGLIgQKPRQJqmWFxcRMUtFxKK3V9XFEHJJzi2uAOh8FkQAoFlGVzdwS+f/RZ+993fLz3mYeQgwc9u/gzWKoceFJ7n4aWXXoJt23jhhRfyiYHg3Qi+jzRJ8jZFXUfFdXuG5adNH+SXp8jHKr6fFOTRA2Fl7AdBqUBUAUqCYJQ0R68BWMWfEe/JmFsed56nrmm5GBgwAyPmwkDhEYxOoVtMmfVyNOxLD1Eg8DwPu7u7cKtVHOdjlo8N8KcgHjxIHBBjods26seOQVVVZHyoUou33um6fth/jwlEQo8brMFvmlsnTuDy++/jsUcfLU0aFGFXKRT4jVS0e4VxDMYHEKW6nnvb+36+S+M7NI1/FOk850kXrb4OhoV/i8LOfjlwdPzs3NwcatUqbt+5g0ajgSSOsbuzg0ajgbl6vWR1LdIbiqLkYWZRuMgLFIXFsoggFPPjv3DqX+JPLv9XNKIGAECDXliEGH7loV+RxwnDEC+99BIURcGXvvQlWJYFxhiCMMxnI/BzsW07r6jvTPlMmT4oRgg63SkZY3k+ny/UostAiDYhGo0BM0S6jtPj31mWj7JOC8fqROOCVYiBUQoZgzBEFMcybVY6fsFXYmQGiAI/CLC3v484inBsZQXHVlawtbVVek8Rnw5IHBBjo+k6aseOAaqKve1tRFGULy61mtx9TiUSisfi6YGNzU28f/WqFAi9KDoAxtwtTjjKiT7/KEmgIo9IZFmGqONYGp90p2matJEGUDr/bAShIP3mR2y/BMrRC+HI1+8oqqahXq/DMk254CVxjJ2dHewfHKAiHCcLoqcUUuete9VqVbYStlstVEQXiqLA0R388kP/M/6/H/0uAMDgt4sECX7mxItYr6wBAKIowksvvYQkjvHVF1/MO064p4JYhHTDgOM4XSJsUlFQivR0mkAVduxCFJR+V1Ggqyp00xxeWKiUHQsFRSGQcSHaK3qg8PSEeG+OayccRVFerJgksG07FzAd5zcyA0RBGIZoNBp5sa+mYX1zExsnTmBtbY3SCJ9S6FUnJkJVVcwdOwZN17H90UeI4jiPINRqpRbHaUWCmFkfmyZOnDiBS5cu4ZGHHhrau24UdlkxzylHvDo+40ZEURznOVrG5KKVpmlJMKiqCk1V5ehjrZALlueI3imIQS1ywxA7bXmMPguPoqqo1etYNk0c8LbHlBvkNBoNWLaNaqUCx7YPUxkFh0cxArnVbiMVEYRKRV7PL5z6l/jP7/0XtJN2qRjxf3no2/L5euX734fvefjyV74Ch0/zjLnTIZR8RofZw1mzM5UzynNSSj3xz2LxFEKg14RLITJ1TZN+Bj2LREUxn/xPHnUQQiDLkCZJ3526qqpSYA7qoBmVUEQNuLAYp3VRMoIoCMIQLMtgGAYeffJJnDp1qudrRnx6IHFATEV1YQGqpuHWtWt5/poLhK7iQkBOfizuFEfZMVqWhTAMZefCB1ev4qGzZ0e2TBZCwQUQxXHeotZhNytu+vykSueVZVlp1K6iKLlQEIKBLwhdKKO7z41CZ35bKdQIqJqGhYUFzM3Pw+NWzFEUIQwChEEARdNQcRxUKhV50xcpAk3T8hQDL3Zse54cjWxrFr668RX8t6t/KYsR16tr2KidQJqm+P6rr+Jgfx9f/vKX4TgOms2mfGzTNEuTNztTM6M8N70iBDJsz6NBvYyldCEG+Efp9QRKr7/4XsqNhaIoQsIjA/3mMyjIC3XFay8+ZlnQmvBrC8IQruP0TMcM+n02SBREERoHBwiDIH+fZhkWFhfx3PPPUycCAQBQ2KRbG4Io4DWb+OjqVaRpCkPXUalWhy7aDJDGMMNuemEYot1u4+2338bu/j6+8Y1vyHCvzC2Pec6RqE1IktKwGoHISXeeW79z1ToWC6YoSJLkyNolwyhCu9WCYZqo9hjJHMUx2q0WPM/Ld9P8vA3DQKVSyWcXaJosXEy4uBM/4zoOFABhFuN//d7/hnbTQ0Wv4v/6yv+JNXcVr732Gj766CN88YtfRKVaRcIHd6mqCtd1y5MmMfrr0ymCsjRFzF+jJEm6dvwK8udeioEBi7TwhQiiCKkQAEmChAuDfudTFAAiejQrIcDArWo7CnKbrRba7TaSNIVl26h12F73OdmBdSudogAAHNvG+uYmHn3iCUohEBISB8TM8Npt3LxyBVmWweQL0DgoA4QCYwzNZhO7e3t49dVX8bnPfQ6bJ070faxJ3tTFYjLx717n0VmINtBdL03lQiJ2loqqQuWL6DRFeDFP5ei6jlqt1jWlUJ4HYwh8H612G0GHdbLDowmObYMh9+5v8eFbpmnC5T31d7a38b2//x6+8LnPY2NjA6+/8QauX72K888+i7n5ebn4O6LgMH9yRr8YUXHPmBQBIjrQ+fyK57IUGSh8X9hUCwOfjP87yzJkaYo0yxBGEXrRmUZS+0WFZoAyYCFPkgQHzSYaBwdwKhVU+qRmxOOIa+33XgqjKB+/zh0pgfy1r9VqWNvYwNaZMzMTO8SDAclEYma4lQrWz5zBRx98gCiKoKgqHL77HIVBaQdR6T5Xq2F5eRk/ee89nDhxou9ji8VKhFdlMd4AxK5Q3ISLhYxCNHTuLcXCJYr4Ct9AhsP6BgBdk/PkufIFCcgXp86PfgJC2jV3VOd3LsoqY3BdF67rIkvTwx0pLxr0PS9vD3VdVPhHu91GxLsMHMdBliRQkC/K77z9Nq5dvYonnngiFwa84NC27ZF3nuJ5yXgeX3ykfCRw53WKiIAQWCICkCSJLDoVjzGs60OkIUTRqc7FgHi+j4quV3DAOYouD4N31PSaS1EUBeK/OxGiIPB92YliOw7m5+ag6zrWNjawtrk5zWURDygkDoiZ4lYqWDl5ErevXUMYhkjTFK7rHprsDAl7ApA3vKL1rKLkfvKhYeDUyZP4p9dfx507d7AywMJV3CqVHmHokfLdYlEqLHid7Wop39l2jk1WlHw6n/AwKB5PXh9fyFiWIRnS1SCeA01V88gDfz7F8dM0lQWAndGX4iAeTdcxNz+Pubk5BGEIr9XKPQjSFM1GIy9itCyYlgXGW1UVVZU78Rs3buDatWt45JFHsLqaexy4rltqLwUgOwSyNM3bBjs+F5Fjngu7X1VEV0ShKBcC8v0j8ul9ni9VRGgKAkvjn9Mhu+xZUEoVFK5xFBL+vAdBkDtI2vbhuRbbF4ekD5rNJgLPy5/PgigweFHj1pkzWCLvAqIPlFYgjgTP83Dnww8R+T4U5KJBDPqZ1GBI4eN3m80mfvDDH8IwDHzly1+e+BxlZGHiR8gpVsuLSIMg6nDeEygAFE07dDLsaMXj/xh4bowxNBoNQFG6ikBLXSEdoqH0PVUFGIPn+/DabSRxLG130zSFqmlwLAstz8OFCxcAAFtbW/nAHb6jFeIoS9N84S2kAsQuXn4uXGdx4Zafi/n8PiJg0MJf/Fo/oj6zC6al9HxPcVtt+z729/aQZhmq1SoqfJbGKGZZYRii2Woh8Dz5mktRYBi554Wm4czDD6M+Pz/xORIPPhQ5II4E13WxefYsbt+4gfb+PlqtFmzb7plmGFUsiAFDhmni1KlTePPiRezs7WFpYWGic1Q6Pkt3ucJNeBQBoaoqTNNEMSMsUhG6rudGTHy+AuNhcwbIaXeTIM5VhJYzETkoiozSL7CSTXTXnoAx2JaFWNMQBgF8PhY4ShJsxzG2d3bAAMzVaqjVagh8H5quH45/FiKHo6Cw+Kuq9IwQEQEZzeDnJaMdfJcr0yoF4SBrNqbY8Yt6hEkfoev3ekUwphAGaZahxaefWrYt5070i5JkWSanW/phCCQJGH9uHcfBXK0mozqMMTiVCk6fPQubTI2IIVDkgDhSGGPY393F7u3bSOMYmqahUrDqnegxATQODvDSK6+AMYavfe1rMI6oaKx4zH7CYdAAJ8YYoo7itwy8voILhmLBXPGzSDsMot1qIWUMruNA1/WuxV9O1+s4J/G5M0pRTIP4QYBWs4lbH32E3f19AMDK6irm6nUYhgHLsmDZNhzTzBdyXYfGd/9iJy8EQ3HxL/679L17QMZYVxtrJ70EwDQL/iiIR9/b25PRoMWlJVg9ihCzLIMfBAh8X/oTFN+bdocoAGOAqmJ1YwOr6+tUeEiMBIkD4p4QhiFu37iBsNkEA/J++x5FVp2tif1uY2mW4ebNm3j11VdxYnMTz54/LyvklcKicy8o/gHJQkh+s86QpxYmWVzETl+Me5aige9+kWVotVpIkgSWbeeFlB3XLiIL0phKpBTE88SYNAUShX4Zd1yM4xhXrlzB7du3Ua/XUavVcpc+04RpmoePraowLUt2KliF+oPi7YWNOGzqKIl56ufjEACddEal2u02dnZ3kaQp5ufmSn4DaZrm0QEuCISgEh4Xjm3DdRzYjlN+jhmDU63i1JkzFC0gxoLEAXHPSNMUO9vbaO7sIOUT5lzX7b/rxuAFPkkS/Ojdd/Gjd9/F5557DpuFqmtRzCh3qrO7jLFggKxFKKUnCjn14mfRXdFZi9CzZZIxeEGAKAhg2zZsxyn/jjheR8i/8zGEUIiTBIHv510ZaSo9JT7zyCNYX1+HoqqIguDwehSlq6ZCuE0KkeBwy98ShesrRl5k6Lx4/f3Ov/A1hbFyR0qPnxVnGERRV4HqvUKIxs6BUEDuSXHn7l3EcQy3UsH83FzeTeL78IMAURRBxtoYg6brcBwHjuvC4kKtE1VVscKjBQQxLiQOiHsKYwytVgu7d+4gbLehKko+EXCEtIB4oxZvg2EY4pXvfx+7e3t48cUXURvg7lZqkZziGsYl5X4HR/GnFoYhfM+DaVkjD8fptGVO4hgBX/ShKAiDAP/81lvwwxBf+PznYVsWGIBqrYY0SdBqtXJnRVWF47pIkyQPc/MR2qLTRAgTXddhWhZs/tGrLe9ekPKRyfcSKVoKtRW9zuvOnTsIowgMeb1OGIZIeDuwEE06FwSu43R1h5QPyuDW6zh55gxs2z6aCyMeeEgcEB8LYRhid3sb3v4+0iSBy3dAo1K80e7u7+Mf/8f/gFup4EsvvDC0116MMe6cAXFUiDRAMkUBYj9i7oKo6zqqtVrfn1N4V0LxnGIuCooFeoHv44033oCu6/jiCy/Atix4ngeVT74E8khIu9WSEYMqn8gJQE7qDMMwnyYYRaVx0YxxTwQhFmz7yEyGijDGEA+wQ57ZcXAYsRnUailI0hS37tzJXQuj6FAo8zSPaZq5IKhUoI/wPKmqirUTJ3B8bW0GV0N8miFxQHxsZFmG/f19NPf2ELbbMHUdjuuWFu1RYIzhg6tX8cPXXsPDDz+MRz/zmbFtYGV7X7HNb4akWYa0YIg0s8fl/gSKqmJubg4ADkPzPSrpRYGk8KAQXQWmZWF7extvvP465ufn8fwXvwjLNOUQJcuyYBTEW5ZlaHue9DPo2s1yQcAYQxAE0tQnCsOu4ki9w/pYjDM2ZjC4SD5PInoz4+dfRrN4/r8XGRdicRwfOj9y86a250l761qtBovPo7B5hGCc66/W69g8dSpPLxHElFArI/GxoaoqFhcXYZom9vf2EDSbaDYasG0bprDgHQFFUXDy5EncvXsXly5fxly9jpXV1bzgkeevmaJAKexgOxFh32KOX5lhZEFBXgMhhuHMAtHfD0UpLVKSYmcFtwwOwxAZLwwUtQGmYeCnly7hnbffxubWFp49f16aD4nFvygMGCDHPXvtNqI4hud5yBg7DGMXRnc7jgOHL1hpmuZCIQgQhiHiOEbKfQfCMCycOuMPk7dBFoWD+DBGHIEsTI+mFQadxbLFNkwxpyGOY8RCAHAxIA2qOCKy4HkeAt+HwhiWl5awvLTUXVA4AqqqYn1rC8dWVqa6PoIoQpED4hNBFEXY29uD324j9jwoWQaTF7WNGklIkgR/+7d/iyTLcP78eVRctyvn2pX3FTu+ESIGvSZJjnobFy2LAHI3xGF/djz1Ic95QDX9wcEBsixDvV7v2mkWRYG4TlVVcwFmmmBZhjcuXMC1a9fw2GOP4dFHH5XXJ6ISUBTMzc31nDUBQLbVAZBFpj1FWI/zT9M0n4JYsKiW0xb58Tp/q2SkJMYj8ymZQkSIqAND/r4Qg6VGpTh0SxYQ8msq7v6LH9KvAd2dCGLcshA0URQh4NGbarWK+YWFsQWooihYWl7G6sYGjEE1CAQxASQOiE8MjDF4nodWq4Wg1ULkeWBZJkf/juKNcHBwgL/9u7/D6toazvKCrJL97IBjF9v7Sja13T8s/1kSDIOKHUX7IX88sfCJ3xslP92PZqOBhC8ywrEwiWNEcZzPuODnpXFRYPDq9igM8eqrr2J3bw/nz5/H1tbW4XUh9/f3PQ+GaaJSqcgogrykwrVGUYS25wHIxyVXKpWSbXPnczEKjDEZfi8KhphP05RzFMR58Oex2KEhagxESqffUC/xGMIdcpA7pVj0xdUVnwdd16EbBgxdh6brcly4eO+maYpWuw3f9xEGAUzbxsL8/FjpA0VVsbi8jJX19VLbKEHMEhIHxCcOkadut9toHxwg8n1kaQpT12HZdu4NP4BLly/j4sWLeOqppzC/sJCPKHbde9ZjL3P+KIgHdEcM0hnlv8WQJF3XoWpaSRCItjcRKRC0mk28/MorSOIYz3/xi1haWup63FarhSSO5eyETnFQas0EECcJ2ryTQVWU3Oyq87Uq+ClM6ytQjDQUQ/hFQSGjIEIcoNAqCkh/h+I1DUNOhOQiQOciYFidS8w7PZI4hh8EMC0LtUplcOdBAVVVsUCigLhHkDggPtFEUYRWq4XG3h5i3wdLErnYGYbR82bOAHz/lVdwd2cHn3vuORiGAVVVUalWxy52nCWigh2A7MnvNXdh5MfLMkRxjGazCc/zYJomLJ5G0VU137WaZteidffuXfzgBz+AZVl44YUXukdrKwqQZdg/OAAYQ42nKzrFgbim4jOacWMmIXyqlQr0fq2LnV4GM0A8p6xQ/ClSC+g413tpyCQiK0L4iojCsLHmjDGomoal5WWsbGz0HdtMELOGxAFxX5AkCdrtNva3t/NIQpJAU1U5QbBz0Q/DEH/z3/87HMfBk08+mReuKQpcx/nY+uzBGNKOPzexg84KFrhFF0N07GxFDYGofFeQG+iEQQDLtlGv12GaZs8wdRzH+NGPfoTLly7h2PHj+MIXvtB3sUmSBK1ms9QF0Usc9L5MhhYfCQ0ABh8H3TfN0P0Avb/c47+FeZI4bq/Cw2K9x72GMZanEMIw7xSJYynW6vV6f4HCa0MWFhexsrFBkQLinkPigLivyLIM7XYbe9vbCFstZFkGTVFgWla+KBYWoJ3dXbz88sswDANPP/00TNNEmqaHzowfQxShmCcXCIHQWdVe/J0oihBFkfwZ8XO6rucCIYpgGAbqc3NdoXIAuHnzJi5euIA4SfDE44/j7NmzPRdrkSoIeJGhaZpw+e52VHEgringxkgCYa9cKlYs3n4K4oghj65k/GeGjViWsyh63M4yPsPiXhPHMTyeEkt4jYSu60izDLVara9vgappuShYX5eRIIK415A4IO5LxI5s9+5d+M1mXnjGGDReFS565f0gwMsvv4wwDPHcc8/Btm0Z8nZdt+d8hyM9b6DvLpYBMhwuBIEovhMLI2MMpkgX8EK3NMvQODiAwrsKZIW9oiDwPFx8803cvHkTa+vrePrpp1HhTopdi20hF99sNJCmaT5q2zTlbIfOQs3OuoNO0iSBxy2ZGV8cHdfNJyxO+Px1IsZF90sx9euyOCoYy0dgR7w1U0QuVC56qtVqd2SHt6XOLS5ilUQB8QmAxAFx3+P7Pg52dtBqNJDyCYii6E1FXoz25sWL2NvfxzPPPIPFxUXEfH6AwaMI96oWobjIilHL0iCJ9/snfKep4HABF/UD/Xr7D/b3kTGW70h1HVmW4f3338fb77wDQ9Pw9Llz+XyEIbtvRVGQZhmaBweyhVEOZJpwkWWMIYwiBL4vd/aW6CKZ4PGEIEl5geegW9i9TikIzwcxUVNVVaTcOltVVdnFId5vCnIPiYXlZSwuL5MoID4xkDggHhiyLEPo+2gdHKDdbCIKgsMRxFmGd3/0I3x05w4eOnsWGxsbec6e36grfId8FDCeMsiEUQ7vi8/4LIMevwAoSt4CN6LZT6vVyof2uC6CIMCFN97A7t4eTp8+jSeffHJgnUVnyF6kFEQLI4CpxIEgzTL4nifnG6iaJkdNj4uYUNmZoijOMLiXUYOMt+HGcSyHT6mqKo2dRPGhnGSpaajPz2NxaQn1+fl7co4EMQ4kDogHljgM0drfh9dqIeZGOz/96U9x5f33sb6+jocfekgOHFIUJbeudZxyLrhHm1uXGVKHv0FRCKRZ1tOZT6Q2hFOhqqrQNA2aqkpXwGIlf5amAwv6fN+H53m4du0aPvjgA9RqNTzzzDM9WxQ76UwNNBoNZGkKp1KR8y5GEgfCiXLI8Tp318OmcxbJhkQKyqdT8JYQdQsj/eboCDtqz/elN4LDU1dRFCHLspLXhlOpYGFpCQtLSxOJIoK4V5A4IB54sixD6Hm5sVIQ4MqVK7h48SKWlpbw+OOPI0mSfCIeL1wzDKOruFFSdCrs51rY4+tFASCsiTVVlTbDQxGFen2iDTdu3sSbFy4gjCI8/thjePiRR0ayFu6k0xVR1jpg+shBkYy39IVBIH0RbMfpO3xrHFEgSNO0p7tisRMEKNRO8AmKPV9jYcONQzEV8eFSaZYBWZYPlLJthEGAiEeGXNeFywXB4vIynBEnZxLExw2JA+JTRRLHCFotXL1yBa+8/DJsx8EXn38euq6j3W7nYWHkC4thGLBME5quHy5Mhba54uciKt/9CyEg5h8UYYxNXkHP7Xwzvmt96623cP3aNcwvLOAzjz6K9dXV0dsGO+iVUgBmLw4ECS9YTLn9sME9LHRdn0gQCI4qpSAHV/FplkAubIQ5l2jhzBjD6toaVtfXUZ+fn0ioEcTHCYkD4lPLjevX8d+++12ojOHcuXNYW1tDlmUIgiAfNQyU7JvVMSxuhyFb7yYphGQMOzs7uHLlCj788EPoui7dILM0Ra1a7W88NASRUnA7ajDGEQfSinrEYzLGEIZh3vbHGJBlUDUtn61hGBMJnVm3LzLGEEeRHHHNeGeMZdswDSOfXxEE0AwD9YUFnD59Gs4QgyOC+CRD4oD4VNNqtfBf//RP8dH161heXMRnHn4YJ0+eBIAjFwnjRg/iMMTV69fx/pUraDWbcCsVnD59GidPnoRlmmjx8cqObU9U9d4vpQBMFjkYxZtAkAHIkiRPNfCOExHGNy0LVg+nx76Pi9lFDQaJAkPXEYYhwiiC47qYX1xEfWEBi4uLMxs1TRAfFyQOCALAjRs38MpLL+HKpUuouy4efvhhPHT2LHRd7ykSTO4zMC1Zmg6OHjCG7Z0dvP/++7jx4YdgjGF9fR2nT5/GsWPHuroMfN+HYRioViqlVIaYyCjo5U9w584dXHn/fXz44Yd4/8oVXL5yBa1WCwDwpRdewG/8xm8MvZ7/5z/8B7z00kt49tln8W//zb8pXAaTx5Qf/QYhcVvoYuieZRk0XR8pmjCLqEHGBzyFYYgky6DwVkTLtqFpmhw3Xa3XMbe0hGq1ikqlAmeCkcsE8UmEymUJAsDGxga+/a//NXZ3d/Hqq6/i9TffxDvvvouzp07h4YcfRq1WQxAEiOMYcZIgiiKoqiqFwqTRBFXTeg5g6hUlePzxx7F18iTsPla6Ymed9ihaFIvpd77zHfzJn/wJ/u9//+9xbHm59DO/9Vu/BUVV4bVaiMZwQyzy7Pnz+Md//Ef881tvSavgYnth6Zz6LKIKt8W2+LCniO/OsyxD4Hnw0T+aIPwPJlmg5TTLKEIUx1CQF0JqigLLdaGpKvwgAGMMtbk5zC0toVKpoFqtkr0x8cBB4oAgCiwuLuLnf/7n8eKLL+K1117DP/3wh/jJ5cs4ubWFRx56CHNzc4jiGHEUyVx5EATQ+a7WNIze3gUDUBVF5tq3d3e7ogRPP/10V5SgF5qmQVEU2UbZGdoWQUJV07q6KaIogqKqcte+tLiItY0NvP3WW+KXDx9D1BOww7HGYvF/6qmnoPNw+ztvv41z58717+oYAeF26ThOKZoQRxGiIMijCaYJnXeDZAVr6VFJ0xRRGOath+I6efeBZZpQ+OusKArmFhcxt7gI13XliGyCeBAhcUAQPXBdF1/96lfxwgsv4M0338T3v/99XPngA6wfP465uTm4lQosy4LBFydFUeC12/AVBYZIO/TJkUdRhFaziVarhWaziWajgQP+3yzLRooS9EJRFOi6jpjvfh3Hkd8b1uMfBAF+5sUXsbW1hUceeQRzc3O4e/cu/u2/+3fiwUsdG51LvXhsy7Lw5BNP4OLFi3j9jTdw7tw52To4TQZzYDQhCADG8pHYyLtFhFhQVRWarkNVlFIqQqYuwhBJHCPjRlUApAV3mqaIPQ+mZWFpZQXVeh3VarW3/TFBPGCQOCCIARiGgeeeew7nz5/He++9h39+6y18uLOD5pUrSOM4X3y4m2HFceA4DmzHgW1ZqLguNF1HwA2KWs0mDlotJLx+AQAcx0GtWsXx48dx6tQpzM/PY2lpaeK8tWmaXeJAFAb2W5zF/Iaf/dmfRb1en7rt7pnz53Hx4kVceOMNsF/7NRllGHQO49AZTYiTJH8t2OFUxrhofiSOzyMjaZrmvhbscNiVbdtwq1XYtp17XHCvC50LvUqlkttsU0si8SmBxAFBjICqqnjsscfw2GOPAcgXnSAIsLe3h/39ffl5d3sbH965g3arBaQpNFWFaRioV6uo1mo4ffIk6nNzqPNdaNGNcZq+foHBi/WyLEMSx9B49GLQ44rJiZZlzWTxO3/+PH73d38X+/v7uHL5cj4BckbCoIiMJvBpm2KoVZpl+STEJMlrRHgaKBHFpJaFqutKQSDmUYhhXZqmlf5NUQLi0wiJA4KYAEVR4PBIwfr6etf30zTFzs4OoiiCpmmIwhBxECD0/TxywPPYma5DNww5hlnscqc5L0PXc6OeKII7pP0vjuN8xoSizKyobmF+HmfPnMHly5fxxhtv4OzZs/LchMXyNNfYSSZsm4WLJB9eFXNxtFCvw6lUYFgWNE2DYRhwuTgQiz91GBBEGRIHBHEEaJqG48ePA+C98nGc9/CHYd4GF4YIPQ9t3wdrt6FrmhyypPC5CnK54gvpqAuYZVly3PMwrwExGMg0zZmGzJ85fx6XL1/G62+8gW9/+9vy69KOeVyBUPxZIaKQOywmXOAkfKql5Tio1utwajXYti1rFSwuDgiCGA6JA4I4YhRFkS2PQB5VECIhDMO8Uj4IEPk+Qj6QSNU0qIoCTYS3uQWzKO5Tygc4/Ddj0HVddi3Ecdx32qQIuYuc+yx59tln8Z0//mN8eP067ty9i+PHjh2eLv+A6NIonHux5bEoHYRhVJqmSEXKIEnA+Nht23UxV6nA5hEBIQYMHpUhCGI8SBwQxD1G07R8IA8fwlOMKsRxnO+EoyiPLgQBvHYbiqLIyntN0/JIg6rmFfhi4mAhr28YBoIggOd50DUt/zm+GGd8WmTb88CAvF1P7Og7xyD3oTiASC7mPLTPAJw4cQLLx47h9u3beP311/GNb3yjp/FSrzSKcDgsffCogKKqeeFgpZK3jvICQtM0pSCgokGCmB4SBwTxMWMYBgzDQK1WkxX0YlcfRREOdnfR2t3NF3ZeXCcEgcqHOymKAk1RoIiIA/9amqZotFqoVatSAKiqCq/dhsGL8CzLkiONAcjFWvglAEBSdB0UuX1+/nJp72hxPH/+PP7qr/4Kb7z+Or7+9a+Xfi5jLHcy7PhI0zTvKOjRemnYNlY3NuByfwHxQWKAIGYPiQOC+AQhvApEqx4ALC8v5739IpoQx4jDEEmS5H7/WYY0jvPFlbf2ZWmKJE3hex4AIAwCmV5YWFiQ9QiWbct2vlK6ggsJKSiK0YTC+OKiqGB8WqT4+rmnn8b3vvc9fHD1Kra3t2FbljxfRVXziZWGAd0wYPCaC03XofAIiWkYMEwzn47JowKUIiCIewOJA4K4DxCCATwVAUDWFIgdd6+PIAiwv7ub1zmkKeI0RcIYMgCGZSHiIkEs7FlhlkGr1cL8/DzAIxT7+/v5gUUEgXdYiA/w1If499bp04iSBC3fx807d/DM+fPQeHeG6BIQo607P0TdBEEQHw8kDgjiPkXlff79ECmKpaUlNJvN3CaYMbx76RJWt7awsbkphUHnBwBkN27grffeg6qq2HroIaxubgKqmkcRCkKgJBAA+e9XXnkFP/3gA6iqii+/+CLm5uZKYoAgiE8uJA4I4gFFpCjm5+fzCADn6tWrWFhYwHLH4KUiwuTp1q1bAIAwjrF+4kSXABi0u//rv/5r7O3t4etf/zpWVlZmc1EEQdwTSBwQBNGF6I4QBYmMt0iOw1/8xV8AAH7xF39x5udHEMTRQmW+BEHMnAsXLuDatWsASBwQxP0IiQOCIGbOn//5nwMAnnnmGZw4ceJjPhuCIMaF0goEQQAAXnrpJVy6dEn+9/b2tvz3pUuX8Hu/93uln//VX/3Vvo/13e9+FwDwzW9+c6bnSBDEvYHEAUEQAIDf+Z3fwe///u/3/N7LL7+Ml19+ufS1fuLg+vXruHDhAgBKKRDE/QqJA4L4FPHiiy8CQKl7YdaIqMHm5iaeeeaZIzsOQRBHh8JmPWSdIIhPNT/3cz+Hv/mbv8Fv/uZv4rd/+7c/7tMhCGICqCCRIIiZ0Wg08Pd///cAKKVAEPczJA4IgpgZf/mXf4k4jlGv12UKgyCI+w+qOSAIYmb83d/9Hebm5vDNb35TDnoiCOL+g2oOCIIgCIIoQWkFgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKLE/w9l88NEAIl3NAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zFR46UlWKrqquqq6urmrd03p6emdmZ3/LA7FcEgTBy4IEQfBEAnvY257IAy8k9rAATwsQBHgiLwQFFuR/Z2d3dkT3dPe0VqUzS2aJFKFcu5v9D25m6REZwkNlZXb5AxKpIlyFu9mz73vf+whjjCFDhgwZMmTIkIFDedQHkCFDhgwZMmQ4XMjIQYYMGTJkyJChAxk5yJAhQ4YMGTJ0ICMHGTJkyJAhQ4YOZOQgQ4YMGTJkyNCBjBxkyJAhQ4YMGTqQkYMMGTJkyJAhQwcycpAhQ4YMGTJk6EBGDjJkyNCBGzdu4E/+5E9w/vx5FItFzM/P4/XXX8d//I//EbZtD3zvP//n/xyEEPyjf/SPDuhoM2TIMAuQzCExQ4bHB//23/5b/Lt/9++wvr6OU6dO7fv///k//wd/9Ed/hGaz2fP9586dw1/+5V/i7NmzPf//P/7H/8A//sf/GMViEVtbWzBNc5qHnyFDhgNCFjnIkCEDAODTTz/FP/2n/xTNZhOlUgn//t//e7z33nv42c9+hn/1r/4VAODy5cv4+3//76PVavXcxt/7e38PuVwOlmXhZz/72UEefoYMGaaIjBxkyJABAPDHf/zHcBwHmqbhr/7qr/Cnf/qnePvtt/G7v/u7+Iu/+Av8h//wHwDEBOHP/uzPem6jWCziJz/5CQDgf//v/31gx54hQ4bpIiMHGTJkwIcffohf/vKXAIB/+S//Jd5+++19r/mTP/kTXLhwAQDw53/+5wiCoOe2/sE/+AcA4hRFlrXMkOFoIiMHGTJkwP/8n/9T/vwv/sW/6PkaRVHwz/7ZPwMA1Ot1/O3f/m3P1/3BH/wBCCHY3NzERx99NPVjzZAhw+yRkYMMGTLgV7/6FYA4LfDqq6/2fd0Pf/hD+fOvf/3rnq9ZW1vD66+/DiBLLWTIcFSRkYMMGTLg22+/BQCcPXsWmqb1fd358+f3vacXRGohIwcZMhxNZOQgQ4bHHK7rYmtrCwBw/Pjxga+dm5tDsVgEANy6davv6/7wD/8QAPDll19ifX19SkeaIUOGg0JGDjJkeMyRLEsslUpDXy/IQbvd7vua559/HmfOnAGQRQ8yZDiKyMhBhgyPOVzXlT8bhjH09blcDgDgOM7A12WphQwZji4ycpAhw2OOpIuh7/tDX+95HgAgn88PfJ1ILfziF79AvV4f/wAzZMhw4MjIQYYMjznK5bL8eVCqQMCyLADDUxBvvvkmCCEIwxC//e1vJzvIDBkyHCgycpAhw2MO0zSxsLAAALh9+/bA1+7u7kpycOLEiYGv/dWvfgXGGAzDwJtvvjmdg82QIcOBICMHGTJkwLPPPgsAuHr1KsIw7Pu6ixcvyp+FW2I//K//9b8AAD/+8Y87ohMZMmQ4/MjIQYYMGfCDH/wAQJwy+Pjjj/u+7u/+7u/kz++8887Abf6f//N/AOwJEzNkyHB0kJGDDBky4B/+w38of/4v/+W/9HwNpRT/9b/+VwBArVbDj3/8477b+/TTT3Hz5k0AGTnIkOEoIiMHGTJkwBtvvIF3330XAPCf//N/xvvvv7/vNX/2Z38mXRH/+I//GLqu992eSCm88sorQ42VMmTIcPjQ3yc1Q4YMjxX+/M//HO+88w4cx8Hv//7v40//9E/x4x//GI7j4L/9t/+Gv/iLvwAAnDt3Dn/yJ38ycFvC20CUM2bIkOFoISMHGTJkABCv8v/7f//v+KM/+iM0m0386Z/+6b7XnDt3Dn/5l385UGB469YtfPrppwCylEKGDEcVGTnIkOExwo9+9CMAsWagF/7gD/4AX3zxBf78z/8cf/mXf4nbt2/DMAycPXsW/+Sf/BP8m3/zb1AoFAbuQ0QNTpw4gVdeeWWah58hQ4YDAmGMsUd9EBkyZPju4Pd///fx05/+FP/6X/9r/Kf/9J8e9eFkyJBhDGSCxAwZMkwNzWYTP//5zwFkKYUMGY4yMnKQIUOGqeH//t//iyAIUKlUZAojQ4YMRw+Z5iBDhgxTw9/8zd+gWq3iD//wD1N1eMyQIcPhRKY5yJAhQ4YMGTJ0IEsrZMiQIUOGDBk6kJGDDBkyZMiQIUMHMnKQIUOGDBkyZOhARg4yZMgwVQRBgDAMkcmZMmQ4usiqFTJkyNABSmnHd0YpGKUAISCEgCgKCACiKFCUvfUFYwy7u7twXRcAQAiBqqqoVCowTfPAzyNDhgzjI6tWyJDhO4IwDBEFARhjIIQgCkNElIKGIWgUgUYRojAEAwBKwRjb+xnx5M4YA3oMCQwAjaLeO+akodlqIQhDEEKgKAoYISAAVFXF4uIidMOAqqpQNA2qokDRNNAwhKrr0A2jg2hkyJDh0SIjBxkyHBHQKEIYBIiCAGEQwPc8sChCxL+Sk7p4rKf1eA8iB5RSNNtthJwYVEolaJoGSinato0gCKBpGqrlMgghcnuMMZDEdhRVhappUHUdmqZBMwzohgEjl4Om6/K9GTJkmD0ycpAhwyECpRSh74OGYUwExPcg2AvzixV+CohXMf7evq/rIhOMMdD4B3lcjFIQRQFjDIqYqAlBi0cMFEVBpVyGru1lK6MoQr3ZBGMMhUIBedPsGZnoh0gQCEKg63pMGHQdOicMuVwOWma2lCHD1JGRgwwZDhCUUoRhiDAM4TkOHNuOIwBcwCfC8KqiQFXVjvf2iwYwxkApBWUMjFL5c/JvEaUAY/Hvye0IEhD/AeizOhfph24EQQDLcUAIQalQgKaqchuKogCMydeARxUMXYeiKHH6gacgSOJ7MkIgIgz9wAC4jgPX82DZNjTDwOKxY1hZW0M5EanIkCHDaMgEiRkyTBmUUkRRJElAGIbwPQ+u48D3PFDf71Dzi+lLrvJ7kACFkHjS5XoC8X/aHUUQOoLk8STC9wNXAomJVKzWxffk/4RWgTEG1/MAADmuJ2D8GIA4agDwdIGqwg8CWLYNls937rdr8ieKAoULHxVCwAiB57pwbBs2J1Ttdhu2baNtWWBRJI9PbIkwBkXXUS6XUZmfx8LiIhaXlrC4uIiFhQXku48hQ4YMHcgiBxkyTAm+76PdbsNxHIS+H3+FIajvx2F5xJOukogMiNW1L0iE7yMIAgRhGFcJ8G1T8ZgmHldN0+JJWdPkJK6KiZWvxJMr8+RkTwApGBRko/t7Er0iB57noWVZAIBatRpP5Ik0BEn8HoQh6s0mAKBaLsvXiAgH4z8DgOM4uLu5iVarBce24bpuTIL4+ecLBRRME4ViEcViEaVSCeVSCaViEURV4do2rHYbrXYb7XZb/iy2EwEwcjnU5uZw4skn8dZbb6FarY7xiWfI8N1FRg4yZJgQnuehvrODdquF0PMQ+H48SasqNFWVq34CLuzjkYWI0r4iP/E6UCpz/5QxRLzKAIAsJ9RUFflcDrlcbl8qoh9Gfei7yQFjDPVGAxGlKOTzKCRW4gycYHQNLbv1OiJKUS6VkOvSCUSMYfPuXayvr+P+gwcwNA1zc3PIl0owczkUCwWY+Tz0XA5UVFz0QTcBE58FYyyONiRIw93NTTi+j2cuXMC7P/whlpaWRrwyGTJ8N5GRgwwZxgClFK16HfXtbTi2LUsE86YJwzDAKEUg0gpdlQTdIIqyN5EJQsEnNQbIVTXjq3EgLlv0fB+u50mBIgOQ03WYuRz0FOp+EclIMwB0kwPX89C2LCiEYK5W66hCACEgPc7Xsm04roucYaBcKsm/bWxsYH19Hb7vY35+HqdPn8YTTzwBLSFsFOmSpIaCcoIVRVEH4RoEhRBomhZfZ00DCMHNjQ1cvnQJjufh+IkTeO2NN/Dk6dPIZamHDI8xMnKQIUNKhL4Pz3HQqtfRbDTiKgJKEUYRdF2HqmlgUdRbQEcIND75JwWHMrWQgJzshZBwABhj8DlJ8MNQ/BEKITBTRhNGJQfJqEFRVCDw/fYTNAJxaqHRbIIB8BwHG+vruP/wIQxNw8mTJ3Hq9OlU4X1xbZLVFPKa8TRFB3ngP9M+11Lh0Z179+7h+vXrsCwLq6ureO6553DiySdRLJdRKJWgpIzKZMjwXUBGDjJkGIDQ8+BaFjzHgdVuo9lswueaAEppXE7XZeBDEOsBNE2Dzr+nCfdLIyLhUNjHkKjvsUYRPM/biybw7eV4yZ8xIJowbC9JcuC6Ltq2DUVRMFetxtoC/rpBsYq2ZeGbixdx984dRGGIxYUFnDp9GsefeAKqll4bHXIzpzAMEYSh9HkYeg48LRMlvCG6CQNjDDs7O7h37x4c28bc3ByeOXcOa088gVKphGK1inK1mjp9kyHDUUVGDjJk6AINQ7i2DbfdhmvbaLbbaDSbssKAKEq8KuekIEkEdE4E0pbQiYqDbiLAGAPlE96o5XiMMfhBANd1e0YTTNPs6UY4aCBIkoM6vxYiaiDSE70gtQTXr+PB1hZUVcXy8jJOnTqF1ZWVgedBExN5yL8iHpkh6KrCEELIEYczEWXoRRjq9To2792D1W6jWCjg1KlTWD52DPlCAXNzc5hbWkI5EzJm+I4iIwcZMiCeJHzXhd1swmo24fk+wiCA43mwXRcsiqCqKgqFAoqFQkwEdB26po1VSy9JQY9QtwiNi9LFjlA9jwik2iMhiKIIruvC9X1Z/aAQgmKhgFwuJyfaZBnlvvMR+X4+kdbrdQDAXK0GVVH6phK2trbwySefoN1qYWFxEWdOn8ax5WW0bRuEEMwntApRYvIPE9GA+DQ6fQ8UXpWhalpMzpLpmcSxjosgDOF5Hjzfh+f7eLi1hTu3bqHVbuPEiRNYXl6WpDBfKGB+YQELS0solkrQuYdDhgxHHRk5yPBYI3BdNOt1tBsNeJ4XTyp8grEdB34QQFNVlEsl1KrV2ORnQlDG5MTXjaS4MA3k4zuENIhogu04MgRvaBpKxWJn8yT+vXs7wj7ZcV3YjgNd01DhJYnd5CAIAnz19ddYv34d8/PzeOWVV1BLrLC3d3fhB0Fc4cAYQhEh6bEtRVGgJ7UamgZNlGYCHbqDXudMEx4I44LxUtMvvvgC19fXsbqyguMnTuxVjXBBaaFQQGVuDnMLCzBNU35lRkwZjiIycpDhsYPv+2ju7MSEwHH2TcSapsH3fUSMQSUEpWKxo1RvXMia/gGPnPBDkEI7pIwSoNM0qV8VAmMMjuPAcl35mlI+39k1sUcZoiAH9WYTURTFpYU9Oi1ubm7i008/RRiGeP7553HmzJl4P9wp0fN97NTrCKMIBV7ZISAqCETFRi+xZs/zxoBrJESKUxrmrl27hs8++wzLXLDo+z4C0dSKpyRUVUWpXEZtfh7VuTmUSiUUCoUsopDhSCEjBxkeC4RhiFajgebuLhzL6pj8FEWBoeswDAOaqqLZbksTokq5DDOX67tdYYcc8JLFMFG+GCX+xsBD4rzdsZIwK5KGRXzyULr+JtokK+J9ia9BYCIl0SOqEIYh2rYtdRS6pqFYLMrISPfrGWJS1eBGRjWRUuBwXRdffPYZbm9uYnV5GS+//DIKhQICbuzk8bQGADiehyAIUCwWUSmXJREYd4Xd3WtCpB4A7PlLcDHiNNbwd+/exYcffohqrYa333oLiqbFxlVBAD8I4gZZUQTf96HqOqpzc5ibn8ccJwq6rk/hKDJkmC0ycpDhOwtKKVzXRWN3F1ajgdD35f90TYNhGDAMQzYKiqII9UYDQRSBRZH05g+CQObDkz+HfMUoQBKTPbC3eu+VQmA9IgOMENAwBBLq/44VfCLdIPfBSYPK3RINw0Aul4PZVUHRQRS4rkDYH1u2LV9TyOfj0kThpijeD8Tuj64Lg9sSi7/f2NjAl19+CUVR8NJLL2F1dVUSgiiK9lwZCYFhGCCEwHVdqJqGWqUy+EMU55+wjk76MxDEqQXhASE1FNxrIWnIJF5HAShimwl0vH4Itnd28P5770HTdbzzzjsoFosA4uhQyEmCzztn+ryNdr5YxPzCAuYWFlCr1ZDL5bKUQ4ZDi4wcZPjOwfO82AWvXofnOPGEC8DQdZimKRv/APEK2nYcNFst7DabCIIAoBRGLrcntiMECtAxyUnbYV69IARqKv+uqCo03hdAlL3JRkiiTp+nGMT3KNE0iYn/9fgZ2JvskyQD2Ct/ZIxB59GQHP8S0REhcqSIJ8QoimRrZcYYNFVFsVjs6K7IEE+IlFKUikXkDANty8Knn36Khw8f4uTJkzh37hwYv6bJngwGL/cUxkyChAHAfK22R2J6pDPSQnZvTAEhrOyFJLHrJkgAOgiaZVn41a9/jTAI8Pb3v4+5ubl92wvDUPaU8FwXQRQhZ5qo1mqo8WhCuVzOUg4ZDh0ycpDhO4EwDOE4DtqtFpxWC4HrglEKVdNk+Z6qKKCUwnYcWLyJj+d5oFEEl0cVNFWNXytC+4n8t1DIa0IYlxDKdYMxhpCLG9NAKOzTTHBUEAvEOgDGmHRMFKFtUfInXi88D1RVjSdr7nsgyAMhJCZVti3D9HnTRCGfByEEfhjKKoVatYpr167h66+/hmmaOH/hAiqVSoegUOeEQEQKgM40xc7uLihjqFUqnU6IE2AUXQFlDBGP0vQFJ37dQsnkOzzPw6/few+NRgNvvPlm3/JM8RnZrgvLsuB5HjRdR7FcRqVWw/z8PObn57OUQ4ZDg4wcZDiyEGkD27ZhWxYC245TB4zFSnFuI2zzjn4Wb+Ijc/+EIOJlc4ZhwDRNVMpl6VUgGxqNCMYV+KO+Z5qPoiQLvg8vCBCIJlCUAoqy5zDISyZ1XYeh69B1PX4djyAoioJSsQjf92E7DlzXxTfffINmo4HjJ07g9JkzUqegaZo0XJJdJPug2WrBDwKU+ggbx8Eo0QNgcNXIMEjSgNgX44OPPsLm5iZefvllnD59emAXTMoYfN60yrFtUACFUgnFchlzc3NYWFhAidtLZ8jwqJCRgwxHDmEYxo1zLAuh6yJwXURhCJ33FSDAXnSARxCkyI+H+Qv5PBRFQcTV5TnDQL5QmFiwJjQGoz5WsopB9CVImYsW+fV45535eXlMCdMgGV1IRBnkvkVeHpACOyF89HwfD+/fx8MHD1AslXDumWdQLZU6tA7qgNB4sgskYywuiXRdmIaBEs/Xy2OXPxLZVVKeCzpbXAudgDjPUQczkcqZCPx6f/HFF7h29SpeeOklPH32rDiofe2ukzqDKIpgtdtoWBZ830e+UECpUkGxVMLKygqq3IEyQ4aDRkYOMhwZBEEgWyIHnge31Ypz/HySdz0PtuPEk1pXy2LTNJHnJXtmLocoirDLw+RmLof8lJrshNzHP6lH6J70901wiCeJg5oEkqI9Rmlsuey68FwXHicOvu8johS266LZbOLm3btgAI7Nz+OJJ55AtVxGPp/v9H0YQTMQBAEsx4GqKLIJUz+Iyg01UaUhyhzF3wSSrbGBhDCxi0BJMWNCzzExGMMXX36Jq1ev4sc//jHm5ufj4+/xuqTldPwnBs910Wg20XYcmPk8qnNzqNZqOHbsGIrFYkYSMhwoMnKQ4dAjCAK0Wq04JcAYnGYTvmWBArGLneeBcNc8ESHI5XLI53LIcyfADsEXY2g0mwjCEKqqxlUJYxwXQ6fqnfImTOPYHU/7MUzqDYQAT4gghehRGD4JYSNJfPc40dqp17Fx/XosmGQMa6urKJRKUFUVOtdz5PP5fS2Y+x6TqBygFE1eFlmtVHpes1GcDgVZIIoCNVEGmiwH7QdRjgpF2YtEjBC96d7W3/785wiCAD/58Y9laooknCR7bjWxvyCKsLuzA9t1UZ2fR6lcRrVaRbVazUhChgNDRg4yHFr4vo92uw3XdQEAVquFnYcPEfi+XDGK0LOh68jz6EAulxsocnNsG5bjgDGGWrU6ktFO38ZFPH898sM0xqpVHEEkKh1E22L+uxApDtquiB5IDwUuvmSMIeAliDu7u/jmm29QLpdx6vRpfPrpp3j+ueegqSoYYo1BxGIXQl3XUSwUUCoWYZqm3P4gbKcQJYoqjjCKJLmRLZp7pASSBlJJKIoi22DL6EPiZ9q1LVkuSfbaT6f9lNqtFn72N3+D48eP45VXXul5LAK97ieRerFdF7v1OvRcDqVqFeVyGYVCITNVynAgmI5MOEOGKUKUInqeByCur29sb8N33Xi1qutSN2ByRb2m66nC2iEPZ4OxfdbBAqLWPTlsD5vohMnRqGC93AhFGoIfh4gsSIMlbq6UFopYTWta/J2vspPkirLYOdHjOoPNzU1cunwZx9fWcPbpp2HZNhRCUC2XYebzsilUGEWyC2Sr3Uaj0YDKbZkLhQKK+XyHJgDYu5aqqoJxkWS/65usGNl37dhei2bZQIlHASgnLWLCF68JB+xHmEFpuh7vL0EM5Ouw95n1c6Eslct46cUX8cknn2B5eRlra2sd/0+SkKQvhjRs4j8XTBP60hKazSba9ToYpQh4JUq73UaxWESxzz2cIcOkyMhBhkMD13XRbrfh+z4opWi1Wmi324hcF5qixOK1fB6VarW3wn0IMWCUom1ZAACdi+jGIQK9MLaoTbwvQRII1wL4CTLQry5faitESJ1/EZ6X75h8OJKiOEopHNeF47rx3wjB+vXr2NjYwDPnzuGZ8+dhW5ZM2RQKBRi5HFzPAxhDoVDA4sICHMeR1QyU0pgoNJtQFEVGFPKJbpAMgKKqQBjudZ8ccJl6/Y9wHwk5OfKUQMQNkcS5JslDx88J8iBKT0PXBVwXIAQaT50IsiBLMlMQhlOnTuHevXv49NNPMTc/HxtL9UAypZT00eAnCF3TMF+roW3bsJtNEEJAKUWhUACltIMkZG2kM0wTGTnI8MgRhiEavPFRFEVoNBpwXRcKpVDCEAYPWVdF+HnMnGvbshBFERQS90voJgXjQkxAg3LBYkKWNfPCiIj/LRIWzPyrV0pAVZR4stI0qNxwqSOPnWL/8cu4O2KCFAjNxsWLF3Hn7l28/PLLOPvUU3GUBbEDo3hvkVd62LYNj0cNyqUSyuWybM5kWRYcThQs20ar3YaiKCjk87JXhaYoCHjUottVspflcy90/F9cX1Xdi0bwSZ4pCvQ+10ekKkQ3RmGdLT4LSRZ4S26Ne1wk7599hIEQfO/VV/HTv/5rfPzRR/jBu+8OORNILwpBMkjCOrtcLELXdViNBmihAF3XpdFVu92Gbdsy7ZBpEjJMAxk5yPDIwBiDZVlotVrwfR+7u7twXReGpkELQyiEoFKroVQsyslpjJ1IgV0QBGAAyqXS1AfQnrnjrrK85DGFfDLyuf9AL+mPxhsRiS/pHZCS1Mi8P9lzdaSMyeoEETUR+/ntb3+L3d1dvP3WW1hbXY3TBkEQH0vy+hMCk0cBLF6CJ5wTRaSgUCjslSzaNhzHiasfbBttbtesqqpsv7wvctMr2pHinPcOsVP8l4wkJNMBjLGOCoiklbYga8I5MgwCeT2SZEH4YnTvM2cYeOP11/HLX/4Sl69cwblz51KfCwOkG6YgCjnDgFarwbIs3L9zJ27uNDeHXD4PSikajQYcx0G1Ws3MlDJMjIwcZHgk8H0fjUYDrVZLkoK8rsMkBBpjqM3PS7/6UdEx0SgKQm4PzIB4xTolRz6BoX78XC8QBIHUC4ia/CQpECRArE6BRMojJZnpjlAkSyZFpEDsU9U0FEwTQRji17/+NTzPw++8+y7m5+c78vkAeub8Dd6/od1uIwxDNNttlEulOKLByzgL+TyK+TyoiFTw9EPI+1RYjoN6owHHdVEsFFAsFPbOPbGvjtK/IemjfloAsZ3ktpMVGkRRAC7wlM6XvOlWGEUxOeDHnSQLDr/WvcjCsaUlPPPMM/jm669xbGkJtbm5zs8zhRhVEAWGOHpULhahuS6sZhPtZhP5QgHHVlagGQZ838fW1haKxaLsDZIhwzjIqhUyHCiEluD+/fuo1+twHAcFXYehKLHnPA+NiteOiu6KAsbLFsNE2eJUkJh4u532GKUdKYIw3C+DE6tVQQjkyrOrhG6Uwb3XKxkA3/NkiB98pS7KD3frdfz617+Grml45513Opz5PN+HbdtQVRVRFOFnP/sZfvfHP0atVpPkRrhMypQNd1QUE3yyB0Ty+FzXRduysLWzgzAMUcjnEfGhqFouo1oud7Rz7nVefAc90w8R/98oEKJPWdY5YBuCLIjPuXsYJZwsiD4bv/zlLxEGAX73d3+3MwqWiGSkSaMk4QcBHE60wFjssLi4CJ1fN1VVZYOnDBlGRRY5yHBgsCwLt27dwu7uLnzPg6GqqHCHvGq5jJwQbaUt7xO56gFhdttxZA6/MmYkgrGEx36P+ndKaew4KMSDfciAputydamqqmwhzMBbDDMGjKI8TxxLr/P3fT8O54tIAe8bIXopbN6/jw8++ADVSgXf//73pVeBmKRECF3XtH02w5LIII5AlMvlOIIQRWi1WigWix19FYTOQmzbNE3pPxGEITRNi82twlCKGUvFImqVSk/xKdk7kK5LwvP1GL16RAoDu/QPsmIksV+NV1CII+tFFoTLJACcP38eH370ET7+5BN873vf2yODiYiI1C30IFO9oGka8vk8PM+D5/uwWi04loVSpYJcoYBiqYTt7W3k83lUKpVMsJhhJGTkIMPM4XkeNjY2sLW1hcj3oQCo5HKo1WqoVSqyzh7gxjcpwsYAN5YZgICvrNiAssWB++kqMRM/A5CDv8db8nZHBxSev9Y5Ieg2YZI6gIQYL7XQMkGKesEPQzi2LSscFEKQ55Ox2Nf6xgY++eQTrK2t4Y3XX++YOETYO+DnpOt6XJ2w/wLJc1EUBZVyGW2uQWhbFgqMweSr1u7UiGixLPZbKZexMDcXd8hsNqXbZbvdRr5QQK1SQZFHlPYdRvcx8b8xHimZBEkRZ3JLoqOlQJIsCM+LZPSokM/j3NNP49uLF1GtVrG8siKbXslrn4wYJX7vRxQUrhchpglN02DZNsIwRKvZBKIIVr0OI59HNDcHz/NQqVRkVC5DhmHIyEGGmeLmzZu4ceMGWBCAUIqiaWJxYQHVajWuc08az7D+ToHdOfQ0sLjwzeBli6mRWBXLfXMEQQCP2wvvvZx0CAd1TetNXLr0A6NoCTo30/s9DLHBk+N5IIC0jTYTpIAB+Prrr3Hp0iWcfeopvPjSSx3nJ+2cE6HyfhoNAuzZEvNzKRWLsBUlntxtGzSKOiakDpKVKNuLKIWGWBNSyOfh+X6sRXAc+J6Hzfv3oes65mo1lAYYAHXrTeKTYnvujAMwShpLQSKqgD2yA3TeD/HuY7JgmiZ2d3Zw5coVLC4uwuWNw3RNg8G7ZPYiioKY9Ho2FEWRhlTlUglty5L6j0qphMjzcPfGDeSLRXiuixJv7pR5I2QYhowcZJgJfN/HpUuXsLu9DRIEyOdyWDl2DNVaLR6YeqQOOhrn8BA76Qr1jrJ/kU4YulrqRToS+4uiCD63aU4es8IV5AZv9tTLi6DvRJ5yImKMyajKIIRhCMuyZI2/mct1+AoA8eT38aef4uaNG3jxxRdx9uzZfefdHTUYWjqaCIWL78K9z7ZtuPyaFbtK7MTPqqoiEN0iE8gZBpaXlhAEARqtFtqWBUopHmxtYVtVUatUUC2XB5IEkQ5IkhCR2uhugDSOhTXpInki1dK9lSRZePnll/H/+6u/wu7ODpZXV+PUAy9jtQmR91O3AFQYI3Vcb/6zeJ7A9R6tdhs0iqRAtFgowPc83N7YQHVuDkEQYHFxcerC3AzfLWR3R4apY2trC1evXIFv21ABLC0vY21lpSNHvs/2lpOFpGnPuCtrALEqH+hYNYv9DNIPJF8ncrnd+fYcX+Uly8XE5NLLdKgXKAaLz8S2hhEDhvhcHccBQTzZFgoFGF2lbJQxfPjRR7i3uYk333gDx48fH7jdMJFSGIRkRCIJ0zShEALLtmWUpdRD86GK1tl9yJKu61icn8dctYpms4kWFz5u7+5it15HlZOEXhNdT90BJ4Lyf4QAU+jM2K2tEPvpJhzlUgknjh/H9evXcfappxABe8STNw9zPS9uf80jXh33U9fP4jeFu00KQai4Tm3LQol7JGiahla9Drvdhus4WF1by8SKGfoiIwcZpoYwDLGxsYF79+6BuS5MXceJJ57YqxDgA2d3xIBy4xclObFOkCsOErXpUszG8/tI1tT3ELMJHUHQpSHQNQ25XA56MvSbgMifp119Djq7tCmUKIpknpnwVadoRd1xXgA+//xz3L1zB29///tYXVnps+O91XWYjBwMQb+QvcEFhy3uemkRsk83oKhqfJ7CqRC9r42qqpjjXQpbrRZa7TaCIMBus4ndeh3lchlzlUpn+qgrPdR9rmI/jJAOp8RJy/+6IyTd1Q/PnDuHn/3N3+D2nTs4fuIE8jz1E4ZhnLISJa9hCNtxpDah12chxYyIhaGiKqdULMoSU8u2ZeSmUCjAcV3c2diA1W7jydOnOypUMmQQyMhBhqmgXq/jxo0baOzsQKEUtUoFaysrexUIwF7uNzlg8wF8mvXYDnf1yxlGbNGbNAPq8fogCOBzUpCEqqrIGUaHkG8QVNHAZxhBSEEghu3NdV1YjgPRzrhQKMSrzH0bIrh08SKuX7uG7736KlY4MZCtjJFQ5fNJPuRNnEQkQnxmoh1yr9V4P2i6jkKhgDZPMQgdhFhVi5x5lLwHBlwfhRBUKxWUy2XYto1Gswk/CGIzrWYTxWIRc8JeW9xrA45P6AH29TeYYoV3R/UDIajVaji2vIzLly/HERxOinUejaKUxt1GfR80iuIIludBU9VYm2AY+yNK/LgV3iJc0zQUi0W0LUsKc0W6p5DPw3Yc7G5twW63cfLMGRw7dmyqz2CGo4+MHGSYCGEY4u7du7h/7x7cVguGpmFpaQlLCwvxxJxAh4882XPsm+aQFEYRfO6EmM/n+6YmIkrh87RBMqSskLjds5FUkXedw6BBVFEU0CFNkbrJQ7+tdUzcieO2bHuvkkDT4kGf7JXbJXHjxg189dVXePbZZ3Hq1Cm53WRuvGPCT9T693Kl7JebF9vsdW0Mw0CBUtiOA9u2QQiRK3yRpxedFpPaBSnySxAZAWGBXSoW4woH3tLbcRxYlgXTNFGr1aRTYz8wSjv+vy+qNEWSILdPCC488wz+7he/wIP793FsebnjHlUUJe4wapp7AlhuwBRyt0lD12HkctLRUUDlpaEAYGgaioUCLMuC5/uxHiSfB+ERHNfz4Ng2rl68iFajgTNnz2ZCxQwSGTnIMDaazSZu376N1u4uAtdFuVjE0sICKuXyPrW+HIQJgfiPKFuclBwkRWeivbPOOzd2v87nK7Lu0sNk6LbXBCcm6FQRBG4a1OdgQSndG4R7iNiSYfrkBO7xCgCxGi4WCgNzxvfv3cPHH3+MM6dP48L5831f150WkCmFEerie+b3EzBNM86p874LYqWcnIQ7Ugpszzypl8gvqdnI5/PImya8IECz0YDtugjCEPfu34eq66hVKj1LWUUDpn7nE/+Q+BymSBQWFxexsLCAS5cvY3llZe9cu5CMJojoVhRFMrIgolvCrRI8vSUIryBhbcuC53lQCJGpNjOXg6oosGwbd2/dQqvRwDPPPZeVO2YAkJGDDGOAUoo7d+5gZ3sbTrMJFkVYmp9HrVaLc8o9cvnS6Ce5nQmJQYftLeLyO8/3wRiTXfCE653LeyskMUxHICH0CilBsJdiYMnJj+25CnY7/HXvr+M8RbSAr/40XR/q27C7u4sPPvgAa6urePnllwdrOLrSLaPoDTo3M/jTFKt40ZK7XKnI1sji+nTk68HTH9gf5k/uSfzP0HUsLi7GRkrNJtpcj3H/4UNs7+ygVq3KCoeIMURcq5Hq3OIT3Kt0SPWuAdsjBM888wzef+89bG9vY2FhoSNK1H1PKIoCM5fr1CZwsaztOLBdF4auI2cY0DUNgvIQxOk1JiI3PBUlSKWu67IEstls4rOPPsLZZ57BsX66lAyPDTJykGEktNtt3Lp1C75tw7dt5DQNtcVFlEul3m2UEeeyuwfT7trwUSBFWDzkLODyvgE6X/3bti3JgoAoPxTufD233x0eH2PFSAiBoqqxtS3/XZgeRSOcc+D7sGxbru7zphnn7Adso91u471f/xrVWg2vv/76ULOo5JaSq+mxHPWG5PhFq+EgDGG12yjzyVq0T+7+TMYJ8+uahvn5eVSrVTRaLbRaLVnhsLO7i3K5vEeuEp91dwqq11mI6NE0SMLqygoq1SouXbqE73//+x37lGSkh5GTKIvM5/MIEpEwnxMGRVXj5mUJ8y3TNCEbYTkOwAWsQPw5l0slKW69/O23sFotnHjySWij+INk+E4hIwcZUoFSinv37uHhgwegQQASBLL1brFQ2EcMxGqv3wA6iSq81/toFMH1fYS8SqHRbHa8XoReB62GB6YOxsxBixCv2GIqW2i+H8u24XueDBUnmxL1g+e6+NWvfoVcLoe333576Ou7PweRDhFdCkeFWOn3AyEERV6LH3GrZHFNB12bjtLDlNdQVVXM12rxyrjdRrPdhud52NndRbPVwvzcHAr5vCSP3akDuZLvKn0lSJCECVINhBA8c+4cPvzoIzSbTVQqlc4X8LLbfvsQ+phcLoeQCxd9LmJ0ogjUtpHj0QaF99NgjMmeGYpI7QCym2ar3QalFJt378K1baydPInq3NzY55jh6CJTn2QYCtu2ceXKFTzc3AQ8DwVdR7VaRSGfjweffD5+IdvztY9/7b+ySjtJdojsuiIFSVi2Dcuy4HDNAbAXMq1VqyikmFh7kpi9AxkrgqAA0Hgtf1qjnTAMYxU+TyOYpolKn1r+jvcFAX793nuglOKdd94Zq4ZdRDrGNchJo/RXFAWlUkkSJ+FJMez6JiflUaAqCkrlMo4tLmJ+bg6GpoFSivsPH+L+w4c9G2MBCb0H90GgXC8S8S8qoiRCNJl4T1ocP34cxVIJFy9d6v2CxDM16Kw1Th5r1SqKhQJ0HjXwPC8Wa3penG7L5+M0GiDdFMUzJTwSCCHyHrxx7Rpura/37BeS4buNjBxk6AtKKe7fv48rly/DbbWgRBEWFxZkLb3Oc99yACN7PgXJ1XI3+tWyd7wmWdUwgBSEYYhms4mt7W34vi8rDaqVCsql0nA9QddxdWPU2EZS+Z98r0LI8JU4Y3BsG61mU4bYy6WSVJgPAmUMv/nwQ1iWhR/84AcopGgy1WsSj8YQI3YjbdlnqVSK8/+Uxg2ihlR5jLoPIP4sQkrjckW+z9WVlfjeUBR4rovbm5vYbTRGNkISLa1pgjyAELCkpmQIFEXB008/jbu3b8OyrKGvH0YShJ6gwlMnohTV4RUdQRDEESj+XIgIjoCqqnGrdELg+z5cz0N9ZweXv/kGrUYj5Vll+C4gIwcZeoJSivX1dWzeuQPmeSgYBo6vrclVlDBakbl0/iWdDgdse9DAuU9P0GcSiMIQ7XYbjUYjttZlDLlcDosLC3JQ3IfEoN1rYpxIHAlI8eGg7SiJJlNJRJzkuK4r88GVSmWoQ2G8c4ZPP/4YWw8f4u2330a1Wk11zL3cHEXkoFcZY1qIfPwwiHtI4ytVm/tTpEV3V8PuY6BcdNgdkVA1DQvz81heXoaZy0EjBI1GA3fv3euIPI0KoaMRlTmUMVB+HL3KTAVOPfkkcqaJK1eupN5XRzShz7XOGUZMLrm/AeXC1la7HVcq8M6QTtd11zQNBR4NdF03tiIPAqxfuYI7N29mUYTHBBk5yLAPYRji2rVraO/uQglDHFtYwOryMlxeRkUIQaVcloPLPnviYRPDkNxyGlJQbzTgeV48CVCKYqGAhfn53t4E2D9hTdPwRRKaIaRIis0IgUr2rJFd10Wz2UTEowWlUgnFYjFVTwUA+Orrr3Hz5k289vrrWFpaSnfMPSYr6TWACSMHwODqiAQ0TUOxVAIB4rr7UQkCeBVMYn+U+yZEUbSnU+iBXC6HlZUVzPFUQ0Qp7j14gAdbW31TDSND6CkQX9+IUlB0Rpg0VcXZs2dx48YNWYo7CqQmYt8/iNTbVMplKWQVtsqMMVDePbKjkRhiYiEEixZve04Iwc7Dh7h26RK8CUhUhqOBjBxk6EAYhli/dg1uowGFUqytrKBSqcDm3fEIgEql0tMPYJ/7YR8kJ+l9eoKUpACIa7jzpomcaULnpjAssUoTX6Tra1pIpg/SbLfjyvActcNNbcDFYZVKZV9fhEG4dvUqLl++jBdfegknhvRL6EAP4aAI64t+B5NglHcbhhFPXIzBdd19TpWpwBgiShEKUpC8D4fck+VyOa4cKBahKwpcx8GdzU00eHpnGiCIo0aEVyCIVITQLpw+cwZEUXDt2rXRNy5ScOh/3QmvdKmUy9L7gFKKgHsmWLa971wLhQJ0XQdjDO3E/z3XxbWLF9FutUY/1gxHBhk5yCAhiIHXbAKUYnVlBaZpIgrDuLGPoqBcLvecvNKK7US4VWCQngCIqxDa7TYazaacNHTDQLVaRblclhOaWOV0E4xpkoHkOYylUU+SIsbingNBAIUQlEslVHhZX1oF/J07d/D555/j3LlzOHv27EiH0uu6jOtv0Bcpz4Moyl5bbV6C6nd5UvTfBScFlMr97fNESKOB0DQsLCzg2LFjcZkrIdit17F5//5Yq/lB6BVt01QVJ44fx82bN1N37Oy7fbEPxEQvCVGVIASuhq4jFCm6ZnPftSsWCtB4a/XkdYiiCOuXL2P74cOJjjXD4UVGDjIA4KmEK1fg8wFCEANRGy3KngYq4IdMBowxMBFOT0EKrGT6gLFYaFityoGNUiobLOmcHPS0wp0iWEKZPo5YEYhXbM1WC0EYgiBeuYr+DYqixLbTQ67Pw4cP8dFHH+Hkk0/iheefH+s4ujFppcI+pIw+iPSJkQxl86ZBvcAYA0tGCSjda+2NRAvj5KGkPGTTNLF87BjmarU41RCG2Lx/Hw+3t6eXahDH1EUSVldXZb8IEVkYu1RSEKU+n4HwNhAtnRmAVruNnd3dzhQDIXv6A9/fpze4c+MG7t66Nd4xZjjUyHwOMiAMQ1y/cgVhqwUKSGIAkZPkg0V3Rz0BodoeJkKUArIhpMBxnLjnAVd/G7qOPC/PSiLgPRSSNflixTRtyPTEBHXtjFK5SqOMyWqEbp1EslwvmZsWplHNZhPvv/8+lpaW8Oqrr6aehAceG8/TA1MkB0jnZyErXBiTLop+EMQuilzbIqI1lBODodqO7gjMCP4IiqKgUqmgWChgt16Hbdvya65WQ0V0GZ0ShJD32NISdE3D5uam9Dzojsj11Rf0Oxd03kPd0HUdc7UaFELQsqw4QkgIdN9H3jSl4ZKu6wiCALbrolwq7bmTEoKtBw/guS5Onj49kZA1w+FCFjl4zOH7Pq5fuoSw1QIjBE+srsqueYQQqSA3crm+k8YgPwMhCJPpgz4DNOUiqd1GA47ngTIGXddRLZdj1X6PfftBAIiowZir+WEYO4XQA57vo9VqxdUeioJKD2LQDcIjLQqPKvi+j1/+6lcol0p46803R26U008XIlapInoxLaQJ6Xd3YyzyapOIUjR4hCWKorih1RBiILeJ3tUYo0DVNCwuLuLYsWMwee+C7Xodd+/dm0mqQdU0HDt2DJubm31fJ/QK+3QVw7aPwXqEarUal3caBgLeMrrVbsOyLERRJO3IRSvpbpvrdrOJq5cujacXyXAokZGDxxiu6+LG5csILQuUEKytrMRtf/mgGoQhQp77FaHFbvQzrxEphO7BmXQRBBpFsDkpkPbHuo5qpYLqgFI+xhgC30fEGHK6PtGKvh8kscHkpMN1XVjtNhi4OVO5vK9r5TAQAJ988gkIY/j+O+9A07SOSow0k0UyKpGECJmLCpRpIU1Zo2jbTHmqgHKzHkIIojBMVf/fC8nqkEnOyDRNLC8vo1apQFdVhEGAzfv3sbW9HWsdpognnngCO7u7Q8mHLBtOiBv7dstMvg+972WRPhC9GUS1ih8EsbOk70utkSj37G7Y5bkurnLr5QxHHxk5eEzhui5uXb4M37b3iEEu1xG2dGwbAJAzzd4rXJ522PdnDAl/8oHNsm3s8i56ogd9pVweSAri3cbNlChjUBVlqmFwcfxsSqSAIXZvbFsWGC8rE+Y/o+Lq1avY3NzEa6+9Fqd9SKeVb8fxA4Co3EgI9fqldMbpxJgG3WWN4niSan3RIlqUIDKecilyHw2fty0ed//9CNEoUBQF1WoVT6ysxA6EqgrLcXDnzh00pzgZrq6uQlNV3Lt3b+T3Jq9r8h7oC9Jp/2wYBnRdl5qXSrkcR+xY3CzLCwL4QYAgDBEEQQfRF9HDKIpw7fJl7GxtjXz8GQ4XMnLwGEIQA891wQjB6vKyVGiLIdT3PGmtWujTUCnZNhfoSiH0AiGgnBTs7O7CcZwOUlCrVmWZVV/wwUiIpoQV7DSQTCFMIxLBEDdBcj0P4KthMeGNivruLr746is8ffZs3OK3B5INhMSknAzZdxOGZMQhmND8KNlaWWoD+IQvSQCv8xfle+I1yeNMTlaiuZBCCCzLkoLJcSDu7Ul6IQDx9VlaWsLSsWPI6XpHqmFcApOEbhhYXFzEXZ5aGJfUCDOmiBOFbgj9THfqpZDPg4CnD6IIpVJJmooRvl3LstBstfb5hkjnU8Zwe2MD9Z2dsY49w+FARg4eM4hUgue6IIqCJ9bWZAg3CZuHDvOm2TP8zRgDEiFVKTjsA9HwpVGvj0UK5MTNBzOfixH1KXWNm2YKAYgnx2arFZMYxlAslWTedlSEQYAPP/wQtUoFz41YmQDsCUH3nVdi1Rfx1buqKHLiFqHqfTbBif4C4ksQATEpCRICvqIcNil36w4EclzrQgiJu1OOfPad+xilVHQQ8qaJleVl1MplmWq4e+8etnd2Jk41rK6uYuvhQykQTbqPjowEOevl2SAmcxEFUBQFJh8PbO5tIHqUFHiDNRH121f6KCpG+PHeWl/PUgxHGBk5eIwgiEEgiMHqak/PAkqpLFnq1YZZ2MSKnwdGCxBPlG3LilvnclJQHoEUCIg9iBI2ACMZBvXcPjqNkqaBMIrQaDbj0OsAb4i0+Ozzz2E7Dt4YQ4AoMCj3LyYNQohcIe4LxXdrR7q+hmHoCrhH5EC8r1gsQlFVWckyLsQx9Cp1HAeKoqBaq2F1eTlONSgK2paFzc3NiQSLq6uroJTiwYMH+/Y3CkQEJ/l7R9OojhczSSANXd9nrSycFquVCkqlEgDAcZy4N0OCxHRukmHj2rXMTfGIIiMHjwlc18X6lSsIXBeKouD42poUH3ZDiBDVRD/4JLpX8YPgBQEa9boMuebzeczVanumRX0gc+UiVJ7Yj0wpaNrE/RCA6VY4BGGIZquFKIqgqmqct9X1sVe8N2/cwI0bN/C9V16JG+JMgH6fleynMMUqhV4YtPIVXge91tzCuIcQEnv9pzRI6kaHwn6K56rrOpaWlrC4uAhD08AYw+aDB2NrEYrFIqrVKjbv3t33PxlFSLGdQddbmEeJqA+w9xwoqhq3skYsSAwS15sQIlu1C41IiwsWO7bPXxuFITauXp26R0SG2SMjB48BbNvG+tWriBwHqqpibW1toOAvGOCUJ1Tl+yaaroGIstgBUEQLVFVFtVJBkeeQh0E2c+p1fL4vVf/jYhbEwPN92VFR1zRUeY3+uKvUdruNTz/9FE8++SROnDw52cENOAYRJZpljfowUaD8T5/j1HUdJjeKsm0b0Rih+33K/Sl7YhQKBawsLyOfz0NTFGzv7uLB1tZYFsxra2vYvHev73vFcQ+6s9Lul3KiICNIjEHXNOR5LwabpwEFNFWFqqrIc6EyYwy2bcdpny6iIQjdjatXp2ZFneFgkJGD7zhs28b6tWuIbBuqpuH4E08MDXELctDtLSCc6eTknhzIkyv7HtGCWpdXQa+JYpBZi0DEG8UwSoeLF3sgSQqmOTE4rhubGyFWfZfL5b3V6RjkgEYRPvjgA+Tzebz80ksTHduwXLWYaIe2lJ4QA42L+qQVkjDzeeh8ZT6O/qBvnf+I2xkEVdOwvLQU3++KAsdxcPfevQ7XwTRYW1tDEIbY3t7u+X9BnpX4l33/T1NC2us9QjjKAOS5SFm0fBYQpmOEEJimGWtpSNziOZlmkK8nBLZl4c6NGyMdT4ZHi4wcfIcRhiE2rl9H5LoxMVhbGzoBJPUGYjKX6vbuwaZrUKKMocWVzN3Rgn1+B9gbvKQxDxvc1RCADHFqup66a6HA9J0QeEWCZcHmZZ9500S5VOosLRxDcf7VV1+h2Wzi9TfemLnrnGy4NGNy0F061/0/AAOJlNAfEEIQBcF0jIiEWHOK3g4AUK3VsHTsGAxNA40i3L1/H+12O/X7a7UaCqY50BAJQIfQNHmfTdKfgRASC08Zk5ojz/c7Vv6i5DUMQ5imiXKxCEVR+qcZGMPu9jbu90iVZDicyMjBdxi3b94EdV1ohKQiBsBevTvhHv9Jm9RBkNEC7pCWN8190YIkOnKnIwzQPk8pjCrwEwPnNKcAkToRA2GhUEChj8X0KLh37x6uXr2KF154AbVabeLtDQJNhJNnrTkgQF9Cl7RQHgRFVaX+wHEcGeWayvGNWxHQB6KiIW+aUBUFD3d2sLW9nTq8vrq2FpODFMckogjyOk4phK/zck3GWFySy59ZkXJMWm6XSyUZ2dmXZuDP94PNTexmHghHAhk5+I5i6+FDWPU6GKVYXl5OvSoMu6IGyhABVN9oAR/A+0EIlkiKaIHcV7LRUkpyIKsRRthPGkSieRIvVSyXSj0rO0aF4zj47YcfYmV1FU+dOTOFIx0MkVJQFGWqtsl9MYQcpIGRy8HI5aAoCizLGkooRoGSUuyXFsIXoVIqyWqGew8ewE9BakQjprGEjVOMhORyOYAQeJ4Xl7xSCpW7c4YJG2dFUVBKPAf90gx3bt5Es9GY2vFlmA0ycvAdhG3b2LpzBzQMUavVRqqvF2F7XddlfTzQO385arRAQGxJIWQk1bhotKQqSionv1mIDoGYQDWbTYRRBMKb9EzDb4FRio8++ghEVafaUGkQ6AFVKgyDONO0E32hUIDKV7R2SntlUdM/+EU8jz9NwqEomJubk9UMYRhic3NTpqL6YWlxEbqu4+4IoXjRQGsarpACuqZJ0iTGBxkFYmzf5J83TekC2ivNwBjDjevX0ajXp3J8GWaDjBx8xxCGIe5tbCAKQ5i5HBbm5lK9T9REC0KQDP92N+vpGS0ol4dHC3gJZFIMOMoAJkrYRhEizoQYtFqIKIWmKKhWKsPtm1NONJcuX8bDBw/wxuuvjyW23L/b4U2jwoPSG3B02ynLv6fQHHS/vsC1HUEQxCHvdG9M9ZppaxCAmNAsLy8jx0uI729tYXt3t28KQFFVLC8vD9cdJJDcliQIE56L8DggwL5JXrpcdn1uOk8zaIk0g51IM7AowsaVK2js7k50bBlmh4wcfIdAKcXDW7cQcKHWsaWloe9JerAnQ8u06zUCfaMFQ8L8SQfCJAjSm9JEXEWtDem7MLOIAV8FUV7qVSmXU4Xi00x329vb+Oabb3D+wgUspvjc0mLYNYgmtE0eBz2PKUW1Qjc0VUWeE1LbcVLZK6e+J2ZEEHRdx/KxYygXi9AVBa1WC/cePOjrA7C0uIhGo5FKQyAn6gR6GlqNAUFWI96VMbl9AIh4OWRy74qioFQsdogaRZqB8Kjh9cuXUc8IwqFERg6+I6CUovXgAdqNBrwwxOLCwuDmRYmfpcc6EiVlCQdExpXLHdECRUkVLUjua1Ap2bD0gmi2xHi74777mXLtukBIaezZwD0MyqVS6pTIsOPxfR8ffvghFubnceH8+ckPdgRIQdkBRQ6A3uH9NKWMvWDmctBzOSgALMsaSsRGnSQJpl/loigKFhYWMD8/D03TpPWy06P6olqrgQFoDdEdMNa7CRowHYKgKEo8niiKjB50iA3566Io6oxeECLTDCSRZvB9Xz731y9fxm7Wh+HQISMH3wFQSuE3GtjZ2oIXhiiXSihzi9NuJAc60UmNKMrewNE1SDPG4mhBo9EZLahWh0cLeqQR+mHYwCVWhYqi9CQHs6hGEIgSxEAbkRgAQyY8xvDJJ58gCEO89vrrU3PuS9PCOemOdyBixAS6z1OSgzG2VcznY3tlSmENyeOPDJFim6IGQaBUKmH52DG5Kr/34AF2u4R61WoVBEBjiIAvjVZD6ATGJQnC1TTw/X06g+T2he4heX/pmoZKIs1g8TQDEN+r61euYKePp0OGR4OMHBxxUEoRttvYevAAvutCVRQsLSzse50cOsQg0qdEMbmCo3xSFDn2kaMFI6zih6UXBrn4zaIaQUCUKwo75FGJgehU2A/X19dx5/ZtvPq9702lDFIixSQgryk3tHmUkLX6Y0zCRFFQ4Pek7/sDuyOOe57TtFtOImcYWEn0Zqg3m3Gaga++NU1DqVhEfYB4TzS8GgXjXAdN0+IIUyJ60HNb4t5jrKNUtleawbIs6XGycfUqth8+HPm4MswGGTk4wqCUImy10OTtjwPGsHzs2L5VoJg8AciyxH7eBUKI6AcB6o2GFHqZKaMFYn/A6Kt4gliE1Ysg9Ap/yzLFEfeTFpQxtFothGEIhTdQmuYKu9Fo4IvPP8eZp57C2tra1LYLpJtkRRnjQaYUBLqjSR2tpccgCLquw+R2v5ZljWWvPAyzSDEA8aS5tLiIWq0GnZcMJps31ebm+pIDOiCd0A8daYYRr7WIcnie15FW6N6++LtwaowSJY9500SpWJRpBsu249JOXsWw3dVwKsOjQUYOjigEMfAdB/XdXfhhiLlaDWYut++1HQpxkUoYsHJIdlsT0YJSmmjBCGmEfpAEoQthGMZljPx/sxIdCjAArXZbEoNKuTzVcr8oivDhBx+gVC7jxRdfnNp2gT2B6TCISaXX9ZbbEqs//tlO0ySoA8l7a8x9mKYZN+Mik7d37gmeYpjVNahUKlheXt7XvKlarcZpha79UkpHJgZJyGjdKB4T3JmUcpvlYWNC0iNFRBGET4lIMwCA57oxGWIMN9bX8fD+/THPKsO0cHAS5QxTgyAGLAyxtb2NMIqQy+Uw1+Wml1xVS6fDARNcFEVoWxY834eqqtANIxUpEPualhhQDFoiHMkYi81WKI0bvSReNwswxE2PRHfKcqk09VK/S5cuoW1Z+Mnv/u5Y0QgxyIrvghCICZwJ5XgyrZGc4BPpEkZp7DyZtLNOfAdjaDWbAGLCBEBOKB0RqMTnnyyjk+S06//gk4w4/5CvHoMggKZpnVqYFCCEoFgooNluIwoCeJ7XkyxPCoWQvbLfKSOXy2FleRlbu7twHScudQTghyFsx5Gpp2S4flKIzyIN6SGEwDCMuFuj7w/trirug+S2KaXysy0Vi3BdF67nwfE8UMZQyOdxa30dYAxLKyuTnVyGsZGRgyMGQQwQRdjZ3Y1zf4RgmZe/JSfOfcRgwGAWhSEaXBFNCEEul5Nd2YZhFpN1kiCICZAQAlVRZkYKgPhcrHZbeiqUy+XhPgZDtteNdruNy5cu4dzTT6Ncqci/d0/4yXOX3/nPezvge+ATb/fqXlw3kVoSKSUhNBXHGPHITOfBsz2BKhJRhOR+E/tKht3lvYf990XyfzShFXEcJ349b+wD/rO4FxQ+oRBFgcJX8eJnMdkovFugbdtwXRe6YUCd9iTO992zO+kUIJo3Nep1NJpNhPz+29rawsmTJ6dKDIDE56MoqbQLOcPAbr0uSxLT7YR09lPh5JUoCkze3bFlWbJBVSGfx62NDVDGsLy6OvI5ZZgcGTk4QqBRhLDdBqIItm2j3W4jiCKsLC115Gw7mv6gv75AwA8CtFotMMagaRrmajUEYYjA96Hl833fx/jkMavJWqifvYQYcdbCOcuy4AVBbIlcLk/UFhqIPzPRDpdSCkYpPv74Y2i5HNaOH0ez2eyc8BMTsgRjcTVGj/I/RVVjnYgYfJOr864KjuRKPqIUQRhCAVApl+X/5Xu6ogFiUC+Xy6hVKh3RBXFUyUiDjFqI1yGR7kj8P1mbr6pqrLrn5EVEOAi45mTYvSYIAyHwuKI+jCKUeFMg6chJKTCFFJEgr7O6J6u1GgzTxPbWFnKGgdt372JuYQH5GURDAK5L4vfZoBiCLF3kDpWptp14b5IQCpJgGAaKjMVjmoiS5PNxJ0fGsDxlTU6G4cjIwRFBkhiEYYjtnR0EYRhXDxSLA8VBgwYvz3XR4vazGjf28XwfQasF1/eR70MOZukpkAQhJBaXMTZzFz/LcWS5ZqlUSt+/gQuuKKWyhIvyiUl4RAg8uH8fDx48wIsvvRS/dm8j8eQmVsDiZ/67KlbNidf0bHudcrD2fR+6pkHTtFTnmSQNZJrRG04QBAGglEpnPUmaEhETcT2TWgjw74SQ+HoSAlVV4XgeAt5NUOe9AADIVIYoi1VUVX4fNcUz7V4M3cibJlZXVlAulWC323jw4AHm5+b6lipPCpFiEASy1z0WhCE0XUfI73MRnUoLpYsgAHGpsqHryJsmHNftiCDcuXkTlDGsPvHEROeWYTRk5OAIIEkMGGPY3t6Wedn5+fm+E8KwB9aybdmnPZfLxQpiQqSoS6y8utXss875d++LRVFswjJDFz/HdeHya1EsFnvaF3dP/hH/6g7xJgWBYuBUCEEYRbhy5QqWV1Zw/Pjx1BP+LCB8Ix5FpUIHBMFMpjD4tVN4ZCQNBGEQ5IFSCoUQuK6LMAxh6DoIJxkQkRxCECYjMjyy0kEYeIpD7SfcG0PxPyoURcH83Bw2bt6EqijYqdfBGJMRn1lBVZSe/gli7MkxBigKfN+PmzONgG67bIL4M9REWshxOgjC5q1bAGNYPX58onPKkB4ZOTjkSBIDAGi2WnA9DxFjWD12LH6AE5NTGn0BYywWHiZMjYrFYsf7dU2DHwTwE6mFWacR9h0n/x5y22TRDGraanHXdaUhSz6fh6qq8HlYOhkF6DUJCCJACIHGV56qqkIVq9DE5/DFF18gDEN875VXRmqGNQukqVQ4aExyX4nUSjJdYBgGms0mIkphGIasrw+jCFEY7qV7EqkfUIqIUkRhiKBr4heRhX7RhllUMTB+PHPz87h85QpyuRw838cut1SuVatT32cS3c6VjAtGAaBYKMAPAnjjkAPsRR+TBAH8uuYZg9sVQdi8fRuUMTxx4sQUzizDMGTk4BCDhmFMDPjkH4Zh3NcgDLG0sIBcLidzs8P8C+Q2eath4Y+eNCUB9iZkI5eTD34hnz+wNEL3cdBEGFma9bDezV5G3X7Ic5vtVgtRFMnOiiKaIo8jkbLpnhwEEeh3zcWxN+p1XL16Fc8999x0zY7GhPABeNTdGIH9/gHTmmIVQpDP52WEzNB1qdEgmrZv8GNIaES6tCKUUiAMB0YbiLg3EvfFuJBNjfjnVK3VpKaiWi6jwc3JGKWYS9lcbRzIu5oLMANRUqwoKOTzCIJAtlIfVZ/TsW2eZlAIQcQYNMOAwRhcz5NWy/l8Hvfv3AFjDMdPnpzWKWbog4wcHFJ0EwMAsXI5imDmcqgmVO5J4dmwioRmovFJuVTqCJ+LED4IicOwIrUQhrEYcOpn2RvJyUG4+GmJCVgQIJawZx2GkK8GQ/4VRRF83487xYF79Ou6JFq9ogDjDPaCvH362WcoFYs4e/bsyNsYZV9pXydbNR+GyEGXcHKayBkGfN+HHwSwXRclHiHreRjA3qTeNdEJs6FB0QYAkL6BjEEhBJqmQeXajrROlEmthUCpWISuqqjX63j66acBQtBoNtGyLFAgdffVcUEQEwKLr+RFFM8wDHj8+k4i3u1VHmrwaITreXD5fvP5PB7cvQtQiuOnTo29vwzDkZGDQwhhiZwkBmEYwmq3ETKGYwk/g35CxG4EQYBmuw3GxViVHiV6Im0AxA+roWnw+KBamZEAqhvd05tsKdxDb0C43XJ3FEFEBZJflNIOJXYYhnAcB6qmIW+a0stgFlbCN2/cwNb2Nn7n3Xdn1sMgGUFK9VokTHAOC0QIe8qbzefzcfWNSJPp+shRJ4UQKGmiDYxJ8hkxBhoEQBDIe0/lFsTye9LxMyG07AYhBJVqFU3eY6FaqYAQgnqjAcu2QSnFwtzcTD/PMAwRhSEIYjMkICYJnu/37So5CqRhUmIcMnI5gGtHOgjCvXtQdT0TKc4QGTk4hIgsq4MYMADNRgMRpTBzub2wdEpi4HmeNK/RVBXlcnnoipExhnyhAL/ZROD78Dxv5LziKEgSkyRCLsLs11KYEAIaRXLwFwOz3J4gDjz0KwR4ThShXC7D0HWUZkh8fM/DF19+iSdPnsTSFFsx78MIKZ9H0aY5DeTxTzl3r6kq8rkcHM+D4zgoT/G8e0UbhCeEuBeFxoEyFmsdogjwPJkm0FQVJBGd6vc5Vms1PNzakr9XymUohGCnXofjutja2cHi/PxMCAJjDDZPtxmGIRsoafx4RcXOJJEocd5KlxDSMAyAUriJvhl5rkEol8soJaKoGaaHwzU6ZEDkOGAJcxqAOxfaNgJKsSiiBinFgbbjSLGdYRhx46A+ZEK2aebb1lQVhXwetm3Dchzouj6zgaenEhzcNjlRxigG3ZCnO8IwlKkQUIqIn4eiKHGjGPHFIwJhGMbtb3nqZJbEAAC++uorUMbw/PPPz3Q/o0yoIgSuTDlCMgkIIbKz5iy0/6ZpwgsCRFEE13VnSnRFOaC498SeqEht8Xs3ohQBpdKMSry3O7ognrlatYr1a9dkEzQAshXy9s4OXNfFw+1tLC0sTP05dT0vTkcqCgpcoyTGEVVV5bM4aZoq6YeQTJMZpgkQAsdxpPFb3jSxfvUqLrz44kRGZRl6I7uihwg0CBBxdi6d5QiJFddRBNMwUCwUOohBv4GUMQbLsjoaJ43TTdE0Tfg8bGjZ9tTrq6Viudf/KEUYBHHVhOfBdRxpsStTBGzPOVHjKxqVi866SYfoJR9ReiDEYGdnB9c3NvDKyy93iD4fNQ5jpQKQaPQyA9U/IQSFfB7tdhuu68r7ZFYQz25S0KooChTDgI69dESS6EacCIuJFvzZVXjEK5/PgxGCZr2Oufl5uS/xXO9sb8PzfTzY2sKxxcWpEYQoiuQ4UjDNzu3yyiZxDtMgXclSaXknMCZTGU7CjwQANq5exdnz5yfeb4ZOZOTgkIBSilD0Nxd/5CvddrsdRw2E6GhIxIBSila7vVdyVCwOLZ1LOt0lt00QDz6NVituhxsEyE3oGij32ftAEAqxoON0rPLl8SVWZZqmQVfVngRDhDtFOZhoPa1r2syJAQB8+umnmKvVcPr06ZnvaxQ8ym6MAzFj/YOh6zAMI/bxd5yZ3wMEexOcdJEEOoS04h4Gn1SFd0Z3uaVPKXTDAAGwef8+jFwOmq5D1zQovHJAWVzEFvdAuf/wIZYWFiZeUTPGYNk2wOJmSd3+HwSx7sDxPARjGCL1Qs9FDxchG4YBhrj8WBKEeh33797NXBSnjIwcHBJEti29DIC9kN2+qAEGq7qjKIrbDPNQe7lUGtocBQCiZK1xFzRNg2macB0HtmVBr1YnDkl3lK7xEinRzEXkGwW50TQNuVxODqSjrIhEuFpEDITmYtZmQ9euXcNuvY7f+eEPZ76vUevrReRgUBOuRwEyhRLVYcjn87EDaBTBDwK5Gp0lRGUNRXztB90PQr8gnliRyxcrcz2Xi9uz8+iCzZh0udR1HUtLS9ja2kIYBDKCMAlB8EQ6gUdeekHjkTphDDYxIRE/JAyyhI4DgBzPRMMmBuDOrVsolssozdgY6nFCRg4OASLHAfP9jpUxgI6owQLXGnQPK0mWHYYhmq2WtIftVZHQCwzcV30ACvk8Am4MZNv2wJKwNPujlMYqZ9+XtdMCYjWiqio03h1yEm8Ay7bBGNuLGMx4snZdF19//TXOnDmD+RmXmI0Kxtiex8EhixwIq+hZ+g2qioJ8Pg/bsuA4Tkw2Z3g/MKDD7nlUopiMkiGXQ9E0QbnVcBCGcVQsikCjCF78BpRKJTQaDURhiPsPH2J5aWmsCTuZTsjn831JuTBNC3jUb1Jy0DddSvb6fCQJgue6AOL0wvkXXsj0B1NCdhUfMWgQIHScnqkC4e5m6nrcOnnAdjzfjysSuII4TUUCgNQrNYI4PdFsNuF5HnRdTxWRkPtBTF5834/dB7vKtRRFicO+uh636yUEFtcYTDJ4C592grhWXEsIG5P54Gniyy+/BFEUPPfcc1Pf9qQQZXLC0vkwQeTpZ21HbOZycF1XTn6FKetBxH2VVNyLJllpuh4OQs404fk+TNOEiT3HwiAI9ip7+Cp/t9EA833cvnsXK8vLI7WvZozBchyIZmzDnnVN0xBwweekqYV9AmUxNvImTQIdEQTXRR3AjWvX8NQzz4y97wx7yMjBIwSlFAFvetT9KMmoQRRhcXFx4MPmuC4svh1d11EulVKF3mU4OuWArIv0guuibVkAIQP1BzQxcPlBIMPZYn8aJwO6rvfMf9NEW9dxEAQBHMsCQ0xskisK2VmOm6+wKXXXe/jwIW7euoXXX3sNhmHIssHDgsMaNQAwVGQ7td0gjoS1LQue6yLHo1STQoS++/Y6AXp21xwFpmliZ3d3b5s8Dy9y8WEYIgwCMMTVDY1GA57vY+PmTSwtLKBQKMAYcr7CXj0KQxBCZDpzEHRNg8P3T3i3xrGfpj7PoXSBRZ8Ug+ti8+5dlCqVrM3zFJCRg0eIyLaBPpOSiBrkeNSgFxiAdqJ5kpnLocibJw1DMoUxymqmUCjEAinfR7vdBimVOvK2Ec/lClIg98dXE7quQzeM2Mp2WOUEd4kbR3VNKUWbEwPTNAeqqBVCAFWVYrFxQSnFZ599hoXFRZw4IHvXUfUG0uPgMJID4EAiByAkFvPpuhS+jluFI3PhbHCbY7lrTEYQcrmcDKP32rauadA1DXnEn7WZy+HBw4fwggAPt7YwX6vBMAwQRYmfRZ6ySPZQaFtWPMkTIttdD4NwEY0ojbURuh6nUUY8v0FXhRECpSsiA+zXIFy7ciXWHxyQcdt3FRk5eESIXBfM93tO5DSKZF/z1eXlvtuwLAsuHygKhUJfwVA3ul0Ve3Ve6weCuLa63W7D56mMQj4PxphsVpSEwgehZLogLYSF7Mjhbxb3haeUQtM0FFNeF4I910UKjLz6uXLlClqtFn7vzTdHO94xkXQ6TAuRVjhsKQUAew6JByTgFL0BwjCMmweNmCYbFCXoBzkJC8fOEWGaJjwuwhv2blVVUSwWcdI08WBrC47jYKfZRKVSQc4wwDwPPjdjEqLGpACx1BVtGwZN00B52bPOtRzTbkbFeNUCuq59kiDYjoPL336LF195JdMfTIDDJVd+TEDDMC5b7DM4NHiFQs4w+gr/bF7rSwCUi8WRiEGyOdM4D6/QH4AQtNtt3N3cjMsEeedCTdOQLxRQrVRQrVZRKBSkF/soEGmFUSMHFldzEy7OGnkQ5vl4lX9Pc9y2bePbixfx9NNPo3xQjm0juCIKHFZ3RCBhgHNQ++HiRIUQuI4zkCSLckTKBZ10hL4evfZPVHWs9+dMMy57TkTlhkFVVRxbXESpVELBNOG5LlQePWEkbnTkBwG2trdR52mIvGmOPLFqvP9K0kp5VgLTXtvN8YgkGEN9ZwfXr1yZwZ4fH2Tk4IAh+yb0+z8vRYwo7at0F3XaQCyyy40gqNo30Y04QIVRBMu2UW804jw9/7vneTAMA3Nzc6hUKsibZmyyM2buMSkYHIVUeL4P13EAxlKHRPuCEFlfrfBue4T/rRufff45coaB8xcudJzDTDHG9kXk4DB0YxyEWesOBHKGAVXTwBBrd7qPgfIwNp2QEHSDYLy+FiZ3CnT7pBb6QVVVLC0sxJO+qqLebIIh7tFQKhbjUklOxlVVjT1G2m14vp/6nHVNAwX27Ms5lBEIQq++Er3AAGg8ypeEyU2aKGPYvHMHD+/dS7nnDN04fMuH7zgiyxoofms0m6DccKRX1MDzfSk+NPN5mKbZYWDUF30sitM8tJSnDDzP61gVKKqKhYUFqVL2eV93XVHGmti79ymd5VJuIwxD2O02GOKQ8SRd4vqBJFbrIrS8ubmJzc1NvPXWW4c6jCm7/eGQNVzikJ+yuG9mRK46tk3its7tVgu+58HgOXgKTE2kOuw4RjlLM5cDWNzKuDxiTT8hBIsLC9je2YHjutje2UEURbKnQ6lQQC6XixcwontpGMLhWqEcdyDtB9HOPKk7kP9LkWIQJc5pI30UCZtl/h7phGlZCMIQVy9fRrFUQiHTH4yMwzdCfIcRui5oEPQdcITWIAxDzCU6LwoEYRhXCSAWJqXNpQPoTQyG5EzF/nZ3d2FxkRIYg24YKJVKqPGUQaVSiTvdAWhxJ0UyaTkTpXF+UVFSDRaMCxAjxmAYBvKjXJtxICIKhODrr77C8vIy1tbW9uVCDxNkm2YRATmkGFVHMSlU7qUhyvcEMT2IazRqJY5pmiBjRA7k/gjBwvw8ioUCVEKwee8eGo2GLPUt5PMoFYuolMuxiFdRZNqh3W6j2WrB9by+K3xd16EgHjt67XvQszyox8qAE9p3DVVVlY6wlm3j8rffTqVr5OOGjBwcEKIgALXtgQOOSCeIcsSO90cRmq2WtDEtJqIKfRspjeE2RxmD47qoNxrS0wCIVwX5QgFzc3Mol0qx4jnB1sulUpzDBNBqt2WN9LigPB2RNvzdtm3ZFW4Sg6ZRcfPWLTTbbTz//PNxW19FiXUK6LTMnTbGubaHOWoAoGNiSFoOTxMM8YoTlMYElItexaQb8e6eBwkiIm0pIAyRxiUHQPy8VisVqadptttxj4TkSl9RYJomKuWyFCZG3OTIcRw0mk1Ytr2PBIiS5H6TsfSy6IVxx4seRM4wDOg8yrG9s4P1TH8wMg5vDPQ7BEpp3IZ5ADGgvClQGIY41tXaN6IUDU4MNE2L7X+73t9dHy6V9imZuB8E8DwPPm+JKmAYRpwqGBKiF+pm27LgBQFc10UQBCiXSmPlt0V+N81E5jhOh9HRQa2KGWP45ptv8MQTT3REesT+FQC0Kw0x8zK9AQgPexljAvIznOB6yXf2CN13/64Qghw3R3JddyYpqX4Q+oO0ZbQmFxWOC9/34TgOiqUSKOL7otlswjSMng3CZHmkaSIIAnjcxEwYmimKEosBRStnQGo0ej2/vbwshL5jZHCCI4TWSdKcz+cRWRYopbh75w6qc3M4trIy+j4eUxzSJcR3CxFvXNIPhJC4tjiK9kUNKGNotVqyDXEvYtAN6VA2ZJIMowi262K3XpfpALC4PXKhUMBcrYZSqZRqoBT7LJVK8QSNONohTFhGBUu5yg2CAA63Ry6MWHo1KTZu3EDbsvBsQoSYRPcnTgBZKSI+H9K1Wk6DcadLGTk4AuRgVIjSU/El9BV99Tg9ng0ZPYiig48e9DmmXhBGZKNCNFGyHQcM8aS/trKCEk8xbO/uDgy/K4qCXC6HSrmMcqkUp2IQL15cz0O92YTN0zKEsYHbImR/FdC493WH9Xpim4TrSQBI/UG71RpzL48fMnIwY4SuCzZgoBE3s+M4oJSikhAZMfBUA++jXuGhwEHbSVObHwQBms0mdnd34di2FAHlcjlUqlVUq9V4oEy54pe+Cfz3nGGgUqlA5cZCbctCm0/gaRHxQX6QGHGf0dEIdeqTglKKixcv4sSJE6j0K10ccr6ypC6hX0g6N/aLgIwbFzn0aYUudJ9n0lsgWUUQ8dSASEUkDb5GgUIIzFwORFEmCtuPi7QEYRxyIB1XgwAEQN40USwWoaoq5ufmoOs6GKV4sLWVqmJAU1UU8nlUKxXk83mZGhEN1CzHgWVZw595MrrXSs/NdGxy7zdNVaVttG3buHrxYqY/SImjMUocUURRBMpLDvchMYmHYQifi3yElkDk7sMwBAhBJU14fkgqIQhDNJtNNJtNuHw1r2kaisUi5mq1fRbDadBNDAQ0VUW1XJZhSs/z0Gg2ZWh76HZFD4B+5zym0dG0sLGxAduycGFAH/lJ7GO7iUMy2iCG7qSmIQ3xEh4Hh65VM0fHGfDzoT2iAB2vS+lDkRY504TCowfdKbZZQ37GQz7LHDdCSgMGSLvziFKoioJSqdThGKryqiNN0xBFER5ub6cuKSSEIGcYKJdKqHC3VE1VEYUhLK5NcF13oKU0CAGb1Ga86x5I3hOioysA7Ozu4s6NG5Pt6zFBRg5mCDaIGCTC/o5tg7K405gQ0ViWhYAPTuWU3RX7DZKSFDQacY8DxCVR1UoldkvL5SYaYPu9kxCCYj6PcqkUpxkoRaPZhJNiYBMriX6r3ImNjiZAFEX49uJFnDx5cuRysonBQ7ZAp2nQsPQEFQ1xsGcgk5ZUjHZ4ibbLiS/W43vHl/DM6IoAyPM6oM9XaA8IIbIj4UEijUGSmculIgeMsdhFlb/W0HWUSqWemhNd07A4Pw+VEPi+j91GY+RjV1UVeR5NMPN5+Tk7nhdXOQwgCZgwmtVrq8lnIs9TRpRS3LhxQ/rEZOiPjBzMCFEYIuqz8ujWAziOgygRNRDuh0BsVWykXM0TRelYafciBblcDnPVKsrF4sQueWnthQ1dR7ValcTHtm1ZmdEPwjq5F2mZqtHRGFhfX4frODg/IGoAYCYTWhoS1+sVEb+WiqrK1EWSVAyiCAyQyv5ek3ry5473JL7Q43vXiSV2+GhLQXO5XGyk8wiiB8BwgyRpoTzgOvlBgFarJXskFAoFFAqFgfePYRiYn5+HCsBqt9FoNsc6flVVoes6Cvk8TMOIhbmU9iUJURTJ+3EiDLgeiqJIF1nf93H98uVJ9/adR0YOZgTquj0fxO6wP40ieDylUCgUOtwPC4VC+jx6YpuDSEGJ5xknzfGN2ndAVRRUymXZHtcPQ9QbDVg8arJv+32aLiWNjvIzMjoahDCKcPHSJZw6deqRNHYZW7Q1RG8w6LMk4MSz18SS/NuMyNBB+0ZI7QH3E3gUvhWDBMVmLgcC9IweBGGIVrsNmz9XqqrGC4yUz0khn0e1WoWmqrJccZxjV7j/gKZpKHPb5l4kIblAIITIqNhY6FUZkUjTaJom0ymbd+9iN9HdMsN+ZORgBoiCADTlikMIETVNAwjZcz80TWnkMRR8EAnCEK1WC60kKTCMDlIwDYzjnyCQz+dRTaRJXM9DvV6HkxiEk7nlpCDxwI2OeuDatWvwfX941ADTD9kDGLtrZHTExIhJPArDJiOXg6KqcVv1A65cEOgnxs2ZJhjpNEKKogiWZcGyLNk4yTTNOI0w4mdeLpdjsaKiYHtnZyxxpsLNyyh3mTS4LqGbJNQbDbiJKIhofDZNJO/5nGHE4yAhuPLtt4fWsOww4OiNFEcAUR+zo16rAdtxEHETljbvuWAYRqoe6gKhiBTU6/B9H4znTeeq1b45xrFXoOIhnmDA1jQNVV4OpXKVs+04qDebsoZa7COZJnlURkcCYRDg8qVLOH3qFAojfD7TQiqb7D44apUKSTwKcqAQEofEH2H0AOhtkGSaJgggJ1WH90EIwhAEkOWGIsIwDmrVKsxcLlWJYy+I+4x2RQYEScibJmgUgVIKz3XRbLVkqmTsvh99PqOkdkXYKxNC0Gw0cHNjY7x9PQY4eiPFIUfkeT2Vt70eUkYpXNeNV/m8o6HORUNpEIYhmq0WGpwUyPRBrRZPvFNWpferTBgXhq6jWqmgUChA4auMtmXFVQ1B0EEMHpXRURJXrl5FFIapogazQLKvw6g4Kg2XDhNyuRzII44e9NIfiFRju9WKJ1UepTR0HeVyWYrvJtovIWOVOAqI+6xXypCQuCOkiCQA8f3pcpLg8m6zYxx0KvdFRVHiqCwhuLG+DnuM1MnjgGykmCIopYj6aA16wXVdhFz0JNzF0pgchdynoNFoIEhqCrhpkSpEZ1OcQKdNDAQIIcjncqhVqzKNEvKeDg6PFDxKoyOBIAhw5coVnH7qqZ4ucgeBieyoOWE9qpGDqa/cU2yPcO2Bwn0PHln0ID4YAPE94IchFFWVHRM1HkkrFApT/XwnKXHsFTkQYIyB8tRHMt0AxAsmx3HQbLUQjNARUqDv+MR1EAK6rsMwDPi+j/Vr12SZb4Y9HL2R4hCDeR7Q/TAM8B5oWxZsy5Lq6GHEIIoiNNtt1JtNBGEIijgFkSQFSfRdaY74wM2KGCQhwn21ahWGroMQgjAMsVuvY2trCyGlB250lMSVK1cQMYZz5849kv0DkznIDSsNPeyYeqQo5fZyhhFbG7O4+dCjAkFMUFutFlzHkWWfxWIRpVJpZoR5X4ljvZ7qfeI+665IYozJyhmB7nQDIUSShHYiMpIGg/RQDJ1jmJnLQVVVPLh/H1tbW5n+oAtHc6Q4hBBRg270Ux0zbi3sBwEK+fxA90MGyGZIvufF1qcDSEHXAex7WMZ5BA4qiK8qCorFIso8QuC4LlzPg+s4oI/A1haISycvX7mCs2fOSLe1g8awDpoD35sYoDNyMPp+c3zC8h5B9ECE21utVhxJ426mRFE6mgvNEh0ljjztNwwKFxaKUleBQf1FepEEyhhcx4mFyGlW94QM9kzoMhjL5/OgUYS7t2+jlVkrdyBrvDQl9DI86utWyBh26/XYylRRsLS01DcXHIYhLNtGGIagjMHgHRnT6gkIf1jYCH3SOw91tJLFaYAh9v/XDAMKbxOdM00EYYig3Y47xuVyE5s3pcXlS5cAAE8//fTM99UPk5R5HeVKhcOAnK7D465/vu93uAvOCiHflx8EcjIlqoq8YcDQNCgHXOJZyOcRVatoNJtoNJuxK+kAUa7CS18Zd7cUVuqikmIQBEnQdR2+78P1PETc/jnHo4cTPfeExBFeQqBy/cHO1hbmFxdhmiaMRxSdPGzIyMEUQCnta3jUC47joN1uI4wizM/N9TQ5Yvx1tiAd3PBnnHz3PoKQclB5FMRAQKiYTdPEYqUCXdfheR483welFLbjwHEcGLmcDA/OAq7r4tq1a3j66acPZFLoh8dBbzDMa4H2McUad19pr6jQHthhCNfzOtqVTxOMsbjroed1rJJVVZWdUWUHQkWZ2KtkVJTLZYRRhLZlYXtnBypv69wPiqIg4uRAUVWEKYhBEoRXXem6DttxEIYhPN7ttZDP93/mU1wXJXH9dF1HEIbY3dlBsVjE4uJi6mP8LiMjB1MA7RHq7hc1CIIArufBc924pK9H054gDGW9sqxgKBYn6qYnCULKcrhHmn9jDI7rgvJzN3M5QLi85fNwfV8OoJ7nwfM86NzgxND1qZrxXL58GYqiPNKoATC+3gDY0xsc6UqFKQtsR4Wh63A1DVEYwvO8qYpSKaVxu/Qg2EsBEQJD15HrRXy5uO5RPKO1ahVhGMJ1XWzv7mJ5aamv3kFRFES8MRbhLojjQFEUlIpF+L4fd32MIrRbrTiK0Ct6mGIBJPQH4lVmLhf7wywvw+WLkscdGTmYEIyxfc2V+hEDRils20bo+4CiQOP5dfl/xNbCjuvGQkZFQblQgDGlG1W4hTHGBk6gByFAHASPh1MVRYlDl10ufCaPFoScaAVBEKccuFWsSDlMulJ2HAfXr13DM+fPH7gTYxJCbzB2GeMRiRxIDMhJT2tCHHUryeiBx6uLJr2eQRDA9/0OHY3CtQSDtk/A224/IufG+bk5PNzagh8EeLC1hZVjx3oeq9AdBGE4FcGkwQ2MHBFF4M9+Pp+fePuKogBRhN3t7XhBkpGDjBxMCur7qR9S4YboBQE0VYXOTVaA2E7YardlfjiXy6GQz09/QFeU/RUVCTxqYkAZi+uOGYMp3Mz6QNN1lHRdrrykKYzrwnVdaLoOg5csjbPqvHjpElRNw9mzZyc5palgks9DVioc0m6MRwWGrsPTNIR8Uh9nAgnDMCazQdBR5qfpOnK8nDnNvao+grSC3DcvcXy4tYUgDPFwextLCwv7xiqVkFQag1Gg8AWV7/txdJFSWJYFwzBicyixrzTpUy5OFGNezjTx8MED1Obn4TjOI3FgPUzIyMEEoJQicpx4Vcdvxn4thgPf3yvJ4eU8tVJJToae68bhQr5aNgwjvrlnEEpVuAq4G4+aGACIey1EERRVTT34KoqCfD6PvGnC5znbIDEIW7YNXdNkbXMawmXbNtbX1/Hcs8+Ovyp5RKvcboj8db9qmKOCaesORt4/tyS2eDorzb3EGJOEIAzDfY6BumHsWfqOejwjv2N6ECWODx4+lCWOC/Pzey9gcattYaE8LYiOorquQ9M0aSLn+z6CMETeNEeO8kkdByHQCMH21paMHjzKVNajRkYOJgDjUYOkNWfP13EBHRBbB4ve9Lqmod5oxOU+AEzDQF4YmcyIGAgC0I8gPMpHwQ8CWapZyOdHP3+ucjYMAxE3lwqCAGEUybSD7TgyamPoet9B+eLFizB0HWfOnJn8xGYEBiD0fYRRhIhb0UaUgvLfI0oR8X4boiU45QY0lNL4Pfx1lH9FURR3FE1sS0RmGIDffPBBrJbXNKgk7vKo8i9FUaAoClRFif+vKPLv4m8KT6cpqhr/TVXjyhRFQRhFcH2/f0+RKeoOxk1RGLoOV1UR8LB2r9WlEBYKUpDcDyFETmxCYDjJ8SuKMtXJdxQYhoGF+Xlsb2/DsiypoWKMIaJUjmPTjnAQQEZARfM1x3Vl2lZM7ConEmm3yfg5bT94gLn5edi23ZH2fdyQkYMxQSkFTfga9C1bRNw3gFIahwL5oBtxkw/GGBRVRblY3GO8BxQuVAgB5ft7lJUJ8SHEvecZYnHQpAOK6C2fz+fjyc33EXJtQhhFCHm1g6qqMHRdDtgA0G63sbG+judffHGiXOa4ZyAEXx73d5BeDzxd4roufNftbFbF39v9GSanDZWQvUmcT8iKmMgJAVFVaKoap2P4z+K1ompDWOomiUXAy+6SZCIUPyeISM/JOPnMJCJXei4Hk4eKzXw+1pGYJnTDgGkYyJmmLDs7aC2FaZoILQuu5+21d6Z0L2XAy2/lKSqKjFylTRsMg8rFxcBolRfTRp53cZQljiLix/Y6qjJgL7o6JYjxljIGTdNQKhbhet7egiAM4/sjZRQhWQWiKAp2Hj6EYRhD21x/l5GRgzHBRLvUISv8gN+whBAUSyVsbm6i1W6jUCyCMoYCn8DkDSgGlVndkF0DtALEjmWz2VtqWI4TrzZE6Na2p3ZM0kvdNKVPvu/7CMMQURTBiSI4rhuLwXQdX3/zDYxcDmdOn55sx4m8J40ieL7fMcG7rgufayWSf0uWsUW8q52Zy8nJsFqpILe0FDtGmiY0TYtX78kVuaJA1TTQKIqjJZqGWrU69qns7O7Kks5arTbWNkTUIkoQh7ArOmFbljT6ESTItm3s7u7KyhQRrhZRu5xhSAIhrkn3zzk+Uex7zsaAoevQVRVeFKHVbkNV1bgxUWKbiqJIzYuwM58q+MQoqpAopY/sGRYljq12Gw+3t3Hs2DEYnASJigXhdTBNiNbQjD8jIqXgOI50WAyCAHnTHJ7+wR5BMHM5bD18iPmlJViW9Uhasx8GZORgDFBKQZNtRoG+LoginWDmcvBcFy3ub1AqFlGrVjtXpjNKJQyDIsJvYxolTQpRvwzGUCyVpLp+JnoLRUGOVzOI8K9YbVBKsbO7i5u3buGZc+dkqFR8DRpgROSj1W7HDXGaTTSbzXjC56rqjtcjtuYVE1ehUMD83NzehMbLtET6Y9zJxfU8qIoC7RCIERVCoGha30HHCwLkC4W4x0ifATkKQ9iuC0+QKV4WLL63Wi083NqCx/uWAIjTEXxVmOfX19B1lMpllMtlVPj3YbnqMIriFE4Ywg9D2JYFyu9ZhU+Ew9JV00KylFFMwuO2854GqpUKHM+Ln6GdHRxbXJRGSAQxyZ3FNRFjr7gWos+Ex8udRZ+WYqGQav+CcOi6jgf37kHX9an3rDgqyMjBGGDJdALp3wnMsu047MVXFrZtg1GKnGFgcWGhc8A/oFRC915EWSMBwGbQS33o8TCGNk8nGNynwOGD+qxpinBiE+LPIAxx7epVGJqGlZUVqVMQECF5j69mLctCixOBdrsda0kQD1Dlchn5fB6VahU5sYrl3/OmCSOlu+Ok+eSj2Kp50FVRuTNfmpbZgnSKyIyXiM60LQu3b92CzfsUMMTpgnKphHKlglKphCJvZqRxA5/ks6ESAlXXQXi6cKiN+ZRBup5VAoCNYHA2TVDE12++VsODBw8QhiFa7TaqlQpURYlTSjMmLqSLLJm5HHRNg80rGtqWhUKhkNpuWtc01Hd2cGxlBe12G5UefjTfdWTkYAxI06MBK32hmAd3CKOUIgyCeGXRr7Ruxqv2bl9z1rVPoQRG1+tmCYev8AghA+1YZw5OkO7cvYtzTz+NYqGAeqOBRqOBVqsFq91G27bh8ggHEIuXSqUSarUaTp48iUq1igonBYQQRF2+8qNC+htMcF8cKXKQ8lqlFRNqmgatVEKxRxSCUQrKWCzYbLdlpKfZauHBgwfYWF+Xeg1VVVEsFGSTo0q5jEq1irlaDR5PLx709SVdVQCEECjo3SJ5VmDoJK+6rqNarWK3Xkez1YKZCOfPUjQp74cuciQ+N5v3pLAtC2Y+P7R5m6IoIJTC0HXs7uzEVtEjWNZ/V5CRgxFBhdf5AG0AjSLpaUAphYaY6RumGRuodIcvDyidsG8PPfYrJqKDSDOE/DqBxa2Y95XaHcA1sW0brVYLrVYLt27fRhQEuHr1Kr759lv5mmKxiFKxiONra8gXCjK/3R2GJryu23XdeCDh6vpxJ3eRB50ER4ocCAw75wlXyIyLKCMuTlVUFZVKpWN1yAAp+rRtG7Zlod1uY+vhw9hsC3yFWiggb5qoVquo8UZoaVIUk6KDyCf+Rg4wvdBrwi+VStJnZLdeR7VcBjB7x1XxnNAu/RQhsbOqw22XXR5JMAdE7hji50XXdVjtNhaXltBut1GdQLNzFJGRgxEhowb9Bn3GYNl2rJj1fZjcA7xYKmFnexsU6Bw4Dpjpd/w8YBAmhMw0zZBMJwgFesexzWC/7XYb29vb2Nnexs7uLtrtdhzyBGTONl8o4MlTp1Aul1EulfqGi0X9uvziavxkKkKkGUQpn0hLaLx8b+jEP4VrIMnBEVr1DKNDBEhFqFlX1YT8me3vFgjwZl/iS9Og9BFeCu1Qs9lEvV5Ho9HArVu3cOXKFZmiECr++fl5LCwsYI5XeUwLpA9B6kUapg0KDCQg87Ua7j98KEWKhmEcSDUFAfZpL4QmoZDPw+UpQZ/3ZykkheB9EHE9kihrnFVr7MOIx+dMpwThbdBvYHI9D45tw/O8+GbifREIIVL0tq/r1wGLAEdpODOrNIPLxUIE2J9OYCzOn04ASil2d3exs72N7e1tbO/syFr9SqWC+fl5nDxxAuVKBeVyGY1GA79+7z288cYbmE+aufSBqFcXAz5jDFEUSaIQ8UkIicmpW5RIBFHgxCHpFQDs+b+PC8YnQeCIGCCNcI8R0SeEn6P0ZeAeDZSnDfpB4aWbqqpC1TT5OaRBjosaFxcXQSlFo9mUk41t22hz4tBoNHDlyhV88803IISgWq1icXFREoZ8ismp7/n3MRcSE+QswvjdaYR+UHllzM7ODqyEv8tBoJf2QmpKeNmpY9sIASlU7PW5i8iQpmlwLAu6rqPdbo9dqXMUkZGDEdAdNeheeYRhiHq9Dt9149CzaUozHzF5ANgjB4+oOmGU/c4izRBxsxIwhkKhsK8hUL+a/UHwPA/bOzvY3trCzvY2dut1WT41PzeH06dPY35+HvMLCz27YH78ySfx/1MQg14QA0lyEIx47Xu3MRHlUQZGKYJeAzxXnwvHTEVRpBoeXE2dZiITVtwkQTiOEkSTMJaY7KVWQJg1cYLQD/uMmHip57Ry84qiIKfrcLkZVa1W2zeBtNttbG1tYWdnB/fu3cPVq1cBXnq3sLiIBU4WqtVq6s9pUFfGWaQX2IhmRoVCAa7rIuA6joPsVUBEmWfid3GPGLoOpViU3jN9KxkIAXh0ybVtVGo1GT14lH1WDhIZORgBUm/Qq2yRUmxvb8Pn3RbLlUqH01sYhh0tQh9J0xQ+2I4zwU8zzWBZFhhj0AY0OBlkKgUArVYLWzxFsL29jXa7DQDImybmFxfx/PHjewPukPNtNJt4cP8+Xn/jjXFPqS9ERABdA0qy1j8SzoSCNPCUxcA8LSeogjyIn0mCPIhUh3rIogbJSV6G+CmFw3P8vrAaHnD+yVUsAfYm/qTzIr8evUB4OmkaMHI5WTqX72G5W+LpqVOnTgEAfN+Po1k8onX3zh0wSqFqGubm5vaiC/Pz0PuI51QueO2HaVUvMPE1xnZqtRosy4IXBGi0Wn3LU6eNXumFJITA0LbtvUoG7rQowcd5hRC4jiMdZVut1tgLiKOGjBykBKU0Tin00BqwKMLW9ra8iRYWF5HL5TpeI2xUZSnNIxiwJxUFTSPNkKz571udwAWf4gqFUYT67u7egLq9LbdRq9VwbHkZFy5cwMLCQhypGRHXrl1DzjSxtrY2zimNBZWvZLtJgxCxBmHYsWIWfwd4vpeTiIhSRL12AMgJS9M0aaYkIOrPRZVGsiS319+FKt/z/dhkhm+HJcS5sh24WPHznyH+xga3CxciwW5r717kR5yLqqogA0hAP0yTmmuaBk3XwXhfj2GrZMMwsLq6itXVVQDxZ16v17Gzs4OtrS1cv3YN3168CDCGaqWC+YUFLPIIQ4GnKImigCbKbLsxjeoFluIzGwRFUVCr1eBsbsLlws40JahTQaJ6ode4p/I20LKSwbZluXEveK4LPZeLjbl4V87vOjJykBaizrlrEIqiCI16HbZtQ1EULPYgBkA8qDJK4/bLjyKd0KPUZxx0pBmAkVINoskURUwM+hnzBGGIhw8eoNVuo9FoyP4TmqZhYX4eZ8+excLiIuZrtYlzmV4QYGNjA+fPn9+X3pgU4/j3yzTCEMMl0Z+jI9wu/ib+n9hm9yA56l0gyYHnwZ3CwKiQ2NlP6Z70EXckLRWL8aSP/hUbg1bOwzBty+GcYSAMQ/hBMHIIXVEUmdISHUAty5KRha3tbayvrwO8fn9hfh71RkOWyvaNjvRJfw5DWm1BGuRyOZiFAjzXRb3ZhME7T84ayeqFfuOtqGRwRSUDd980c7mOe4MQgsbuLk6eOSOrmxYWFmZ+Do8aGTlICep5+6IGge+j3W7Dsm0oqopatdq3zWcYhvsrFQ4KM0hhSJIwQqrB4o5ymqLsG0Btx8Hdu3exubmJBw8eIAhDFAoFLC0u4sknn8T8wgKqlcrUjZE2NjbAAJye1Cq5Byb1OBg06KepudY0DT5P3eSSA15yRZggDcmVfvf/NX7fGrqOXC7XEVVIpoBkE7Lkz+I8RGknek/4Lo8YaCkdBsdtniTPdYrQdR2qosj+CpM+58ViEcViESdPngQQRx53dnaws7ODzc1NWJaFKIrw//7f/8PK6irWVlextLS0j1QSRQGL+sWWOiE+76l6JRCCcqkk02S7jQaWDmhiJdhzf+3XzZMQgnw+L83NRCWDmVzgMQa73ZaNsoSNd78ow3cFGTlIAUopWFcILwgCtNttuK4LhRAUuEFKP4RBAMpYHI56VDngWZEEMUgP2L5oqwrG4lUhgN16Hfc2N3F3cxP1eh2EECwtLeHChQso87rz4gx7qlPGcO3aNZw4fnwmD/q4k9e0mtQIz3mpe5gAot24FNnOEGnPfNqr/0kg3DYj3iNi2osAXdexvLyMMAxx+fJlaJqGSqWChYUFbG5uYv3aNeiGgWPHjmFtbQ0rKyvxZAakEieKKNS0xybCv6rlctya3vPQbrcPrF9BsnvloGdRNNCyHQdhGMKhdK9lMye19e1tlKpV6YyakYMMkhjIUBX3VReCr0KhgFKpNHBAF8w5d9CRg+QDMYW0Qj8MIgmUxX0HIkrh2DZu3bqFzc1N2LYNjVsVnzt3Lm7YYhhwHCcWLc7YzGVzcxO2ZeGpGQgRJ8G0PiERdj8qzm6HZaIfF4ZhSMfPMAynHj6/cuUKvvrqK5w4cQKWZaFQLOLFl17Ciy++iEazic3NTWzevYsPP/oICiFYXFzE2toaVldXYZpmz8mxI4Uwg0WLiBTpuo5KuYxGqxWnF0yzZ9XQLECGEAMBXddRVJQ4wkkpwAWmAADGsP3wIVaeeAK2bcPnTdQOsgrjoJGRgxRgfNUEQKpbI0rh+z4K+XzcIGfAjS6V14nw7IHgUVRECNEiP98wDLF+8yY279zB1vY2oihCoVDA6uoq1tbWsLCwsG/ykimLGR//1WvXMM8NamaCR3D9O3cf7//ItJwd8Xr1MwIavpvZfC6KoiBnGLJ18DTJwWeffYb19XWcP38eFy5cwF//7Gd72yexh0K1WsX58+dh27aMyH3+xRf4/PPPUalWsbK8jLW1NVS40x9L6FJmCUbixlelUgkOvzb13V0sLiwcSImtSHulstxWVRTyeViWBd/35WcKQuA4DjzPQ6lUQqvVQrvdzsjB4wxKKRj3/meMyYiBz1mlym+mQZCVCrr+aOvND2iycl03Hpzu3sXmvXuIogjFYhFPPfUUTpw4gWq1OnDCGtTMalqoN5t4+OAB3njzzdntZILJa9Kzp7yiATg61snj3J3jpG5meWcZhhHnpH1/IpMjgTAM8dFHH+H+/fv43ve+hyeffDL+exD0XZAUCgWceeopnHnqKQRBgPv37+Pu3bu4wm3BTdPE2uoqVjk5n/n9wWJTM6IosXvi1haCIEDLsqS98swxwj2i63psde+6cB0n7mqqaQBj2Lp/H0+cPIlWqwXf9xFF0ZGJzI2KjBwMAUt4GzjcFhmUxhEArnYdNpHJSoWDzFH1ehhmlVZgDE0e1ry7uYndnR2AECwtLuKZZ55BpVpFrVpFkZdhDUOH0nhGEOWLopzssECmZSacVMS1G6fM71FjlKMdR3cwy4jUqGWNg+C6Lt577z1YloV33nkHS0tL8n9BEKSKQuq6juPHj+P4E08gpFRGFG7fuYMr167B0PVY0LiygmMrK6m7FqaF/Cz5Ndd0HdVKBfV6Ha1WC/lc7kDKAglvppT2s8/punQ1tRwHJW6UtLu7i5OnT8MwDPi8rPeg9BMHjYwcDAELAhBC4pavvh975WsaQCl0XR8eOmQstk3GAVYqHESEgDHs7u7i9q1buMvV06qqYmVlBU+99hpWVlbAEJsVAXHpYjJdMDRygNkN4p7v48aMyhc7MOakPI3JXPZUOGLEAMDsBbsz1N4Ak5U1CjQaDbz33nsghOBHP/oRyl0r7DAMh07ksgqFV54QQrCyuopjy8vASy+hXq/HOoXNTdy8eROqouDY0hJW1tZw4vjxmY1XpWIRLje82qnXcWxx8UCiFwQA0ogz+XczlwPlBmW246BYKMDlpYz5fD4jB48zaBCAhSHCIIBj29Kf2+U13/k0ngWESJ/9fm5nB4VpTLZBEOD2rVu4fv066o0GzFwuVkevruLYsWN7DzljqDeb8TUzzZ6Nf/qRhFmTg1mWLyZBHqHm4Eh2YxwHhMiqjNRvmeHhAJOXNd6/fx8ffvghSqUS3n777X0EQzQL6xc5GFSSKASCjBDU5uZQm5vDhWefhW1Zkih89umn+PKLL3Di+HGcOn0ac3Nz4xPWbl8UjrlaDcGDBwijCI1WC3MH0fFQRA9SvpyQ2OLasu0OgnDnxg2ce/ZZNJvNuMHeDMSnhwHfvTOaIpjvg0ZRrJxHTAykR7dhQOV5qGEIebXDvlbNs8CA4xl7UORRgo2NDdy8eRM0irCyuopnn3sOy8eOgfSYgDzfRxSG8gHrOI5E/Xuynr67Ln4W5IAyhqvXruHEiRMzL0Ua5+indc5iddTrsznsGDWtIGrZ0+Ig2gePW9a4sbGBzz77DMsrK3jj9dd75rPDMAS4hqkD/FkaVpKoKMo+A6lCsYinzp7FU2fPwnVd3NjYwMbGBtZv3ECtUsHpM2dw4uTJkdMO4ii6r7jKfWG2eXfUfC43c3GfIEWEE8p+SP5PURQpUIyiCI7rAvU62q2W1Jc4jrMvsvNdQEYO+oCFISJuckT5g2gYBpo8TJ72Rha++RAeB7PGoEjGiOHUMAhw69YtrK+vo16vI5/P49y5czh16hTMQSJMxmKLXcZQ4AYj/SBXMvKtbE+QKMKhqY94OO7evQvHtnH2qaemuNXeGGe1Na3zPYqRg7Gn7FHTBIoSO57OEOOUNX711Ve4cuUKzpw5g5deeqnv64IgAAiRE/U+m+Nh913XM9cN0zTxzPnzeObcOdx/8ADr6+v47LPP8OWXX+LEiRM4zaMJkyJfKKDourAcB7v1OpaTkcdZQOhwgIF9J5JNm4CYyBQKBVhcc6YoCm7duIHTZ89m5OBxBHUctFstRJRCU1UUi0U4tg0gzimmVaj6PAUxSkvYsSBu9EEDQ8oBtF6vY/36ddy6dQtRGGJ5dRVvX7iA5eXlVCtR1/MQRREUVU1NoronUgLeoGdKhkACV69excLCwoG0Xh3ZtnYKVQoCIqR8pDQHB5WGOYD9jFLWGEURPv74Y9y5cwcvvPCCtFDuB+GZQlR1bAvpXtGDHi/C8soKlldW4DoONm7cwMb6OtY3NjBXq+HU6dM4ceLE4GiCuP/6XPNKtQrP8xBEEXYbDSzMqqwYnZUtCoBeZ9+PnGuahrxpwvU8uK6L3Z0drDoOCCFTc8U8bMjIQQ+wIIDVasUTHCEoFouglEqXuFxywuvFQBOr9zAMQSmFdggadQwaEqMwxK3bt7G+vo7dnR2Ypomnn34aTz75JPIjNEthlMIVUYMeHeqGQfjBy4jCFJT7Arv1Ora2tmZbvpjAqEc9zSnrKEYOJEa9ZzDatTsoupQzjLj51YCyRt/38Zvf/Ab1eh1vvfXW0OoZhjhlR/miZWwQsq/B1SCY+TzOnz+P8+fO4d6DB1i/fj3WJvBowpnTp4cT7h7PsqqqqM3NYWt7G7bjIJ/Lzaw5UwdZJ30aUw24HoZhgFIKPwhg2zZubmzg5OnTsbjScTJy8DjA2t2VjWZKpRIUVYVtWQBSRg0SD0DAWf5Mb5wJyt8ajQbW19dx88YNhEGAldVVvP3226mjBN1wPQ8RpVBVdaKcvkIIqNh/8rwmWPVdu35d1ngfBNion8cUV7TSAOkokYNE2HcUEEJGagB2UDJRVdOgaxoYYz3LGtvtNt5//30EQYB33323f6ie+wSIMlfRkXTSssOxTKQUBSsrK1hZWYFj29jY2MCNGzewvr6O+VoNp8+cwfHjx0cS6JmmiVKphHa7PdPmTMmqDQA9oxoRpQPvv1wuB8oYwijCwwcPML+0BE3T4DgOKpXK1I/5USIjB13wbBuebYMxhmKxCFXTEEVR76hBCojueDMrmUuTTuhCFIa4ffs21jc2sLO9jVwuh6eeegqnTp+eiLUzSuG6LhhjExvAkMSDm9wKG5MouJ6Hmzdu4MKFCwe2mn5UAX3GmBRVHam0gsA4x3xIz9MwDAS8r0iSHGxvb+M3v/kNcrkcfvSjH/V87oSWgP8i/x6G4cBqhdQg43VtFMgXCrjw7LO4cP48Nu/dw/r6Oj7+5BN88cUXOHnyJE6fOiXdGONT6J8irJbL8HgKptFqzSS90GvfCiGI+BiTRu+TrGCglOL2xgZOP/00oij6zrVyzshBF5x6HYzErVGFaZHnugCGRA36TNJszNXQLNBoNHD9+nXcvHkTvu9jeWUFb775JlZWV6cyYTquG4c7NW3iSgBphNT998TPoxCF9fV1AMCpU6cmOq6RMI7mYIoeByDkSKUVJqkiGGmSO0AiofMOk2Fi8rh9+zY+/vhjzM/P46233uqIKjJgaB1+EARxq+spOPNJ5f4k10RRsLq2htW1NTiWhY2NDWzcuIHr169jrlbDytoaji0uDj4ORUGtVsPDhw9h2zbKxeKBTbSqSK+kvH8IISjk82hbVhzt2N1FtVaD4zgZOfiuwm21EHFHRKHGTxU1GCK6ARArpKeNtALDRgPffvMNbt+5A90wcPrMGZw6dQrFYnFqh0ITWoN+batHQopyxo7hLFnO1vWeiDFcX1/HiZMnD7aT2ggD7jSFl0fVAEl8auNch5F0BwfoPyHLGnk74I2NDXz99dc4efIkXn75ZdktcBRiFIbh1NKUhNsaT6u8M18s4sJzz+H8hQu4t7mJ6xsb+Pbbb3FFVfHMM8/gzJkzfRdYOcNA3jThuC7qzeZQQjEtMED6ZaSFoigwNA1+GGLzzh1UqlW4rotKpXLkHEn7ISMHHIwx2M0mgFh8I3K1bpqogUCvmyKhjj1otFotfPvtt7h1+zaKxSJee+01rD3xxExWk47jyFDnNNiz9DoY4YGVV58kmj8BuHvnTtx98QDKF8fFNGvvj6wY8RGaRs0ShmHAtm18ffEi7t69i2eeeQYXLlwYmRQIhEEw1Zy8QkhcuTDFSY0oClafeAIrq6u4/+ABNjY28NVXX+Hq1as4f/48Tj35ZE89TLVSgeu68D0Pjuvu80iZBaTfyoifhZHLwQ9DBL6P3d1dzM/Pw/f970wr54wccNjtNmgYQuFMH4DMIwEpfA36CAIZ/5o6mxwgQrRsG99++y1u3rgBM5/HK6+8gpNPPglCyF7IeYqIogge1xoMa0KVFkqaaMwAEEBem/WNDSwsLqJWrU69NHLoMaR+8fQsfY+kGBGJyMEY7x23Q+NBIIoifPnll3iwtYVnn30W555+eiIyOPWyOZ5+mkUvExFJPH/hAp579ll8++23+PTTT3H58mVcuHABJ06c6HgeNV1HsVBA27bRaDanTg76RZiEtTJGjB7keIOmne1tzM3NwXGcjBx8l0AphdVsQkFMAsTNmowaDM3vKUrPwYmKZh+zmJC6tuk4Di5evIiNjQ3ouRxeeOklnDp1ChqfJKZPC/b2SwHohjHdcOeIzne9YLsuHj54gFe+9z25XYATNq4CPwxBwKl6HBzRyEFqE58+SK07mCGJEJ+jWBTYloX3338ftm3jey+9hOrc3MQENYqiqav5Z0WuxJijIK78ev311/HM+fP49ptv8Nvf/haXLl3ChQsXcPz4cfmecqUC23EQhiEs20ZxmqWNPc5TuEoqhIw8Rhq6Hkc5LAu2bUNV1QNdgMwSGTkAYFkWSBhCVVUY3CJ5rKjBgAdsljeL63m4dOkSrl+7BlXTcOG55/DUmTOT1UGnRBiGsdHTFKMGAOQEMelq5vatW4Ci4IknnujcPN9H0t41rWJ5FKTJhU+rE6OANEA6YuRAYNyrMKrfwTTQQUZ4qZz4S71ex/vvvw9FUfCjH/0IDPHzEoThRFbqwZTTCgBG9j1IDV4amBz/KuUy3nzzTdR3d/HNt9/iow8/xKXLl/HchQtYWV2Fqqool0potFpo8ujBtO7lbvLIWKIHhXgGR7gGBLGtvu262N3eRj6fn7gb52HBY08OoihCu9GADsTld4gf7pGiBikG9amKw/jN6wcBLl++jKvXroEAeOb8eZw9e3bqbVcHQUQNcrncVAesafVXuHHzJtZStKIlXd8FZIh+xiuBaW7/qAoScUDXeiIkbIoH3Zv379/Hhx98gHKlgrfffhu5XA6u6yLibYAnJQezaP9OCImjaVPcZrJ1eDdqc3P4/ve/j+3tbXzzzTd4//33UZufx3PPPovFxUVYloWAUrQtC5Up2RN3R5cI0EEGiKKAjWitres6VN+HzaMHjuNk5OC7gFarBYVS6JoGQ9NAMaLWoBtdzHMUQV0qMIYgDHH16lVcuXIFEaU4+9RTePrcOeSGDDjTHnLDIEDg+8C0KhQSUMSqfgJy0Gg2Ua/XceH8+bG30T1RCaHjYZ7AJDk4gMjRVDHpqpWk69A4yl6SE0lS5DoI6+vr+Pzzz7GysoLXE82TdF2Xdsr5fH5s8haGIQpTrDSSmND3oBfSkOuFhQW8++67ePjwIb7+5hv86le/wtLiIk6fOQNCCFrtNkrF4kwiYd0W0iLVmPpe5NEGM5dD27ZhWRby+TxqtdqhHiPS4LEmB0EQwG63YTDWIXwZKWowBNNceUZhiKvXruHy5csIgwBnnnoK586dgznKKmKK4WubVyiYppm610RayHD/BAPVrVu3oGta3L9+SkgKHYHOdERP0pBioJn2YCw7Mh6xwWlizQHSdWjsXh3vu/4TrJ6//PJLXL16FU899RRefOGFjnNRVRWaoiBSFARBgNyYVT1+EExugNQH09Ye7HMlHIClpSX86Hd+B/fu34/TDR99hNr8PFZXV6fW1rmD7PVLAY8SPeDnpfHFZWN3F/l8Hq7rTn3BdNB4rMlBs9mEQmmHXWcYhuNHDQQSD5hUYE/AemkUYX19Hd9cvIjA93HqySfxzIULKIx4fN0T2yTwfV/auM6k3EiIKMccqBiAm7du4fjx47Nzp0RXOqIHaQCGexhMU+eQNECa5XnPBFMg0oNWvkIsGCX2NS1ilmye9OKLL/Ytm9UNA0EUIfD9sclBGASzSx0SApW7Bk4DjGsOUkdJCIntmZeXcWdzE19/9RUufvMN7lareOH557GwsDDR8QhdhRAh9jyEUaMH/LW5XA71ZhOWZaHRaGTk4KjC8zx4jgODUjm5MQCu4wBIETXo44go0XVzjTPcMQC3bt7EV19/Dce2ceLECVy4cAGlSUKK01gZMAbHdWXUYBbhazGYjJuW2d7agtVu4wSvUjhoiM9b6WEw0x2enub6/qA0EtMGm2C13rEdkVpAIqrTHSmYcqrP9328//77aDQaQ5sn6boO4jgIwjDuQTIigWOMTUQsUkFRQKJoOp+HuPaj3o+E4Im1NaytruLbixdx48YN/N0vf4nja2t44YUXxp54pV5kyD0wTnpFVVXkdB3bDx+iUCjg2KxbUM8Yjy05aDab0KIIZi4nH9AoiuDz1fDQqEGamz15g434cDiOg08//RT3Njex9sQTePadd1AulUbaRs9DwuSKbs/3EQaB9BmfBZQJIwc3b91CPp/H4gG5rI2CZJRBlrqK/yXC4mJiE39Pg6NaxphEvzPtFpL1ujNE5YecBHptc4qptXarhffefx9RGOJ33n0XtSE9ARRFgabroIjTmuqIwkLXdRExNlKn1HGQqqVzCkzaOpwQgqeeegqVchn3Hz7E3Tt38NO//mu89OKLsXfLGNtMbXg0xkKqUCjg4dYWWq0W6vU65ufnxzjCw4HHkhyEYYjA82AwBjPxkDk8amBOGjXoeOloDwcDcOvGDXz2xRdQFQVvvf02VldWUr33QMCYdEMsTLHEqBuKokhyNeoKK2IMt2/fxpMH2UehD4bmv4F991Hyt+6qjX3eD133YnQEyQFDYoXZI4IgPCm6/9YLhNeq9yUY8YvGPtYktre38f7778M0Tbz74x+nXs0aur7XjGlEcmDzMWqqZcO9MC1xIp+IJ4lk5QwD+UIBx5aXsby8jLt37uDjjz/G7du38b3vfW/kKEIaIzjxXI7qm6EoCkzTRH1nB61WKyMHRw2e50FhDJquS1vjMBE1SNV5cYSbPe3DkYwWnHjySbz4wgt7VsRTygFO+sC7nocoiuRDMCsQ4dpGaRwCHGGyu3/vHjzPw8kTJ2Z2fGkx7FNP+0kk7x/S+Y/O7fGVM+mKWkkRXtJ5kv8sJl6W/J94rTD16arh7z7ufSv57prxPquwfYJOcX5jpl1kTX0/sdkI2xqE27du4eNPPsH8/DzefuutkQSCuq7H2gdKEUXRSGJex7bBgJlHDoC9joWTYFAp4yiolMuyFPTZ557DE088gU8//XTkKMLIkci00YPE85TTdTTbbdi8u+9RS/EJPL7kgFLoCdbueR4YRtAapEXSYKPfS9AjWpDMW07bmGRcMCabKxUSTpKzgoi2jPpA37p1C9Vq9Uj0V5/24EG5R76qKJ3b7XaC7PofkJg4e/0vQRx6kcuen1DydcMm6zHTb/222e+OmYYA8dKlS/jmm29w8uRJfO973xv58xPNmJJljWlhOw50TZtZtUIHJo0eJO6VSe9xXddRKBRg2TZazSZWVlbwez/5Cb748svUUQTG2Ej28SNFDxIOubphIKQUlmUd6V4LRyf2OCUwxuB5HghjUvHLEOf/wFg6c5G0N3oipaCoas8B0nEcvP/ee/jtb3+L1dVV/N7v/d5sicEE23NcFyGlsfDmAG54QdLoCKYkfhjizp07OHHy5KwOa2qYxapiXI3Lo8ZUW5sPOvcJrgtjDJ988gm++eYbXLhwAa+++urYn5+u61AIgR+GI02+jm3PPqWQwCRGWtL5E9P5XCvlcnzNogiWbUM3DLz66qt46+23UW808NO//mvcuHGjLzGMUnhgdCO1RivxGaqqClVVYfHowVHFYxc58H0fLIqgECLthUP+gCqKMthyeIKJVeEruWRYdmC0YFYYs1qBURr7P7DY8OggQmXimo0S2rx75w6iKMKJQ5BSGIZpiEO7wY6g5qAD04gcpPA6GBVhEOCDDz/Ew4cP8dprr018f+maFtfTh+FIvRJs2z7YErkJogeip4xM9UwIVVVRKpXQaDbRbLWkrfLQKALXLUl9z4jnoijK8AqXru0amgbbsmBZFuaGiFQPK47oCDI+ZEohEZbzfR+MsdjSdNiqY4SbfF84nL93aLRAYAbphHEfUdfzQCmFpmkHFiZTeahulNKzm7duYXFp6UBavabBoOs9i2TRUbVOnmYJ5rTP3HEc/N0vfoHd3V384Ac/mA7xJASGroMQIrVOaWA7DvKzcEccgHGJJk1qSKaEUqkEjU/WbcuSfx8UReiouphVirZrjDIMA47rwrbtmXTCPQg8duTA9/0OciBSCgzxDdYXiRBZWjBK5QSgKIr0LfjpT3+K3d1dvPX223jt1Vf3RIfd+zss4KkYxtjI6upJQETkIOXDZbsuHty/fyiEiGkwi09Ylu4dNXJwQNsbdQVcr9fx87/9W0RRhB/98IdTLY3VdR2EuyWmPa6DTisIjHU/cRHrNFuHK4SgUqmAEIK2Ze2beEUUYWVlBb/97W/xy1/+UlahiWMaFQTDz6F7q7qmAYyh1WpJU72jhseKHFBK4bsuFEAKegKeUlATaYaeGDFq0I1ktGBtbQ2/9//9f/3TCIeJGCC2axUVCrNo+NIPqihnTEkOZAfGRPvXQ40pf86U0j2dy2OcVog303s7o0xy9zY38ctf/AL5QgE//OEPUZpS8x8BTdNkiW4QhkNfH0URPN9/JORgnEgU7dGRcRrIFwpy8m20Wvv+rxsGXnvtNbz51lsyirAhtAiTaCgG/K/7HBVFgaYoaDYa8Dxv7H0+ShzREWQ8eLy1sKaqUPmHGXBWpxlG/xtnzEFc+NxvbW3hp3/913vRgtdei5sk9dvuIVv1eaLXRC53oCtShacVhN3pMNy8dStVB8bDgmn2VAD2UgqE54mPEqYqSBywnbRX/Pr16/jNBx/g2PIy3n333Zml0kRqIUiRWhDitoMoY9yHMe4nUfo67XtRIQTlchkEgGVZCHsQK8YYlpeX8RMeRfjkk0/w3nvvdUYRRgBBCsKdOE8hSrTb7bH3+ajx2JEDhbGYCCBRpYBYQNIXY97cnu/jk08+wfr6OiqlEt79nd/Zixb0G8DHSF+Mgu4a8mEIeYvZg04pAFyQKNwrh0QPGs0mdnd3j4QQEZjNoHlUrZNngb7XYNi9zxi+/PJLfP7553jqqafw5htvTL2pWBK60B34/tCS3QMzQOqDka2eR+2rMAIK+Xxcdk7IvugBpVQSZUPX8dprr+EtEUX46U+xubk51j5HERATQqBpGjzXhWVZiEZsA30Y8FiSA7GyFCkFQgjUfnXDY07Unufhg9/8BhFj0HUdOzs7+Ou/+iv87c9/jm+//Ra7OztTbbgzK3iuCwrAyOUeSQvgtD0WRAfG5cPkJsnR8zOeJgHk25KRg1FTColj6XVUTERvuoyQBm4S6ClG63u/Tzty0G9CGjBRRVGEDz78ENeuXcNLL72EF7q6Ks4ColOj0B4MgsMjB+ajbOgzwn07SkfGcVCpVkEIges4Mq/fzxp5ZWUFP/nJT7C4uIjf/OY3uH79+lj7HCVdp2kaFEVBvV4/kqmFoxF/nQLCMETk+8gBsmxIpBT0KRuKtFst/Pq99xD4Pp5/9lmomobl5WVsbW3h/v37uHr1Ki5++y0Mw8DyykpsC3rsWFwtcRBIa+VMKXyeijnoqIGAoqoAb1LT7+owHEwHxrExZvkoWNwdrm+IXESZ+PbFYKyMU3o2hCCktS9Oohed6/c+sWpOkg+xUiMYbdU28Pj6XBfP8/D++++j1WzirTffxMpBlBVzpO3UaDsOTNOcqsBvJAjX0pT31rTcEfshZxjImyZs10Wj2cTiwsLAygBD1/HmW2/hyy++wGeffw7HtvHsc8+NRF5GuQ8VRYGqqmhxclB4FOmgCfDYkAOZUtA0+QHLlMKgKoURWe/29jbef+89mLkc3v3JT7C9vQ3P86BpGp588kk8+eSTYJRie2cH9+7dw/3793Hr5k0AQG1uLm5XurKCarU6s6hC2hvc46FOTdOmTqDSQuWT46DIwfb29iPtwDgM++rE+6xuBCif9IUN8MDPKnF/RgnNwVFDrx4kSU+QQZO98DVIkohRatqTzZPe/Z3fQa1WG+8kxkTaTo2ObT/yCWaQNXU3ZORghscjbJV934dt20Mt3RVC8MKLLyJfKOCrL7+EZdt49dVXR0odkTS+B4jTMKqqot1uZ5GDw4wwDEEAqN0pBUWBqmm9B2uxKkuJO3fu4KMPP8T8/DzeevttGLqOuqoChCAMQylqIoqCxcVFLC4u4vnnn4fjOLh37x7ubm7iMrdmNU0Ty8vLWFlZwbFjx6YrskvzgDMG9xGUL3aD8Os3SHNw6+bNQ9uBEUg0ekmuzgdcfzmxjQg2blrhEGDsEswuY7Huqyp/58+ydKXkVTBbDx/iNx98gHw+j3ffffdgDYY4ZKdGxgZ2arRt+9GIEZMQZD3FSxmvnpll5Yyu68ibJlq2DYtHVgYeE/9+9uxZFPJ5fPTb38LzPLz11lupF0B9Tba6nmlVVaEoChzbhuu6oJQeqSqix4YcAICS+PBEjsowjMmd6hjD1atX8cUXX+DEiRP43quvSvYvGOkgQUo+n8fpU6dw6tQp0CjC1s4O7m1u4v69e7hx4wYIIVhYWJBRBaHUHRspyEEQBIjCEOSAyxe7oRLeNKgPOYgYw61D1IGxlyUyQScZEHnRWQkSj5oBEoC9+3GKx97dfCreDZP7u3XrFn77299icWkJb7/5pvQ56UjXHBBEp8ZgQKdGy3GwesBRjV5Is3JmlM48rSCet3yhgDafgMMwHOw2mXgO1554Aj/I5fCb3/wGP//5z/HOD36QTuzJWNxLofsadI2rSSLQajbTntahwWNFDmT3OQChIAf9bqS0gwNj+OKLL3D16lWcO3cOz3XlsFSx8h2iVpVmSaqKY0tLOLa4CLzwAtqWhfsPHuDevXv45ptv8NVXX6GQz2N5ZQXLy8s4trSU2npVIA0ZcnkY7KDLF7uhDIkcPIoOjIP6F/S6VkRRwLo+/1lc07EFiYcBB1lpwRi+vXgRF7/9FidPncIrL78cm5T1IczJY5p2+alAmk6NjmU9skqFJNJ8QskU1yzIKsPe/W4YBnRdBwsC2I6DygA/iu5Pb2FxEb/zwx/ivV//Gj//27/FO9//PqopCJiCHpqaHveG+BztdnvoNg8bHh9yIG5W8JQC4kFU07TeE2WKGzqKInz00Ue4e+cOXn75ZZw5c2bfa1RFgUIIwkHkoNeAw1loqVhE6fRpPHX6NMIowtbWFu7dv4979+5hfX0dCk9RrCwvY3llBeVSaehxDzuziIujHnVKAdhj3/2ERrdu3UKlVptJB0YG9CaJEw52sypUPcqRg1lNuh374CVun372GW5ubODCs8/i/DPP9P48UxACkZ6QupAJzmFYp0bXdUEZe+SaAwCxMJGQgcJEGkVxGeMMKpySxECgVCxid3cXtuOgVCz2DN/3e57L5TJ+9KMf4b3338ff/eIXePPNN7G8vJzqODq21GPbghxYR7AB02NHDoDOlMK48H0f7733HuqNBt56+22s9VE3K6oarwgGkIO+j1hXmEpTVawsL2NleRl48UW02v9/9v4sRo6rzQ5F144x56wpswZWkVUcJZKSSImiRImaus+5bxcHMAy/3Ibvm417APtcuO02YD/42oD7oW2g/WCgYcBvvn7thzbg66n/X/r/FklJpEiK8zwUycqsuXKMed+H2DsqMiqHyMzIrCLFJRCkqjIjIiN37L32961vfRUUCwUUikXcvHULv9y4gWQq5WoVJicxkctBarWLbBMZ4e2rZUUZaI13GAg+l0SH0oaFz7QsvHr5Eu8cP973eZxWYf7XaKF1hrn7jhiD8GjgaQV+TNOycOHiRaytreHMxx/37Ynh7zoYODF/QVfHk2UZhmHAsCzEAuORexzshiaiGQgh7pza4vuymXV8lDl2vrg3IyUx1oTJtm1out40wiIAcFpcrxqL4csvvsCPP/yA7y9cwEenT3dMVe6oCmpybJ5ervn6QLwu+NWQgyhTCtVqFd9//z0Mw8CXX3yBsTZdt0RGDpq5eHnnane+NvqAdCqF9OHDOHz4MCzLwvLKiksWXr3C40ePIAgC8vk8JqemMDU5iSTbdbQTvFHH2e6jsAeaFxFePuU4cGwbgu87e/nqFaweOjDSJvd7mAvqIHbJ/p3U6yR64vCXL0YJ/r1Wq1VcuHAB1VoN5z/7DBO5XMRn8sGna/CbnXX63tt1aqzXaqDA3ogcAB3LGvl4jGpzQbFdxdMMgiAgkUigXK2i1mP/CVGS8Olnn+H6tWu48vPPqNXreOedd9pacQerkILzCo+c6LruWdC/LvjVkAMeOeBNlgRRbJ2rb7NQbG5s4PsLFyBLEr7++mukOnRIk0QRYItbM9AO59txPS0eDkmSMDM9jZnpaVAA5XIZhUIBhUIBv1y/juuUIp1KuURhetolNE3Oq5smHMeBKIrD813oAB4tCE5EL1++xPj4eMcOjDuiAru8sx5EeZd/5/1aRg7Y31FfOyEE6+vruHDhAkRBwDcD6JHQ5uQAGkWQvEcL33nTwOsVWYZt2zBMs2F+qtVqkERx10qKm6FdWaNt227PmogWwzCdDROJBMqVCnTTbC5MDCHEJoTg1KlTSCQSuHXnDmq1Gk6fPt0yTdHwLLeJHDiUolwqYWx8vOPn2Cv41ZADHjkwTROiILR/yFrs5AtLS/jhxx+RzWZx7ty5toYlHDyt0FRz0MsOMswAh1v/m0mncfTIEZiWhWUmalx88QIPHz50tQq5nFsBMTnpua5pmgYK7ImoAYcgiiCmCce2Afa9WbaN5UKhaUohGBnYS4vloOq+HZ+m5rXEAKoVAPeZvfTDD8hmMjh37pzXcG1X4Es3+Hec/siCJEmuRikQaazV625KYQ+NZU5yghER6jiRlTE6lLoNnEJ8blmWEYvFoDHL4mw229tJCcHRY8cQj8fx888/Q9M0nD17dseaQdCYWmhaqcSJIKXY2tx8Sw72GhzHAWEs3WJ1xP5dccPQbkMMLl68iOmZGZw5c6Z9B0cfOHulbVTIg4YsSdg3M4N9MzOgALa2trC0tIRXS0u4dvUqKKXIZLPI5XJIplLIZjJ96TGiBp9gbF9qaHV1FaZlIZ/P77nIQBB+k55BwRMjvkZhSz8GoTl49PAhrl2/jqmpKXx85gwEUQy1Ax02/IurJEkAIXAcBzalXoO4OicHewzNyIHNFvN+olhcX9BtyW8ikYCuaahpGtLpdF/Pw9z+/YjF4/jh0iVc+P57nP/ii53zt2+z1uo6RUGA7TjYes3KGX8V5ICnFDgbF0Sx9eLe5Asul0r48ccfMT09jbNnz3alBhdYbg6EwLashsHVc+Y5RPSg5VsBjGSzyGazOHL0KEzDQHF5GcViEc+ePkVd16HIMqampzHF9Aq7HUXgE6TjOF75UGFpCfFEwuvtvtfBr3BQqvw3hhxEcSzHwY0bN/Dw0SMcPXIE7x4/3nQR24vgDXscw4BlGBAUBYIgoFKtYnQPeBwEQbCzNNq2bVD0rjfopC9ohxjrAWPZNuqa5umsekUul8Pn58/jd999h2vXruHDDz9smG8I3JJG//PdrH0zAFRes3LGXwc5YCF9yzQhdsrbBSIHhmHgwsWLSCQSOHPmTE9lYqIggLByRm8/3u9E1aMi2ns7e6+sKJidncXMzAzm5+extbWFWq2GleVlXPn5ZwDA6OgoJicnMTk5idHR0aEsQF5qgCmiKbbJHaUUrwoFTE1NvRbEwI9BLVDejvg1ux8eIoocWJaFyz/9hKVCAac++AAHDx2C7Rs3rwNkSXINkZirqu04qJRKrvCWbttFD9uoqSkI2WGK5PShN+ANvnqFIAhIMu1BtVZrIAe9Hnd0dBQffvghLl+5gkwmgyNHjjT8nvgMkZp9G3y+rAa6R+51/CrIAbVtOHAnjqZCO79gyP9jx8GPP/wA0zRx/ptvujYb4uCKVX85Y2TTVB9RBAiC915N0wC4piAL6TRw4gR0TUOhWESxWMSjR49w9+5dKLLsihqZrXOkfe6pr+ufr0yK33fbcUApRbVSQaVaxXsnT0Z37kGjmaNahODk4LWNHLC/+yEHmqZ5zZPOffqp1zyJtDE42ouQZBmEuf3x8W45DrJMSNmgV2B/7+an4xsN/rzavFVzF5GDfqIFQSSTSZQrFViWBcMwIkmRzu3fj1KphJs3byKTyTT4IPgNkdqlD23bhlav725XzS7wqyAHcBzvQWuaUuALbGBiuv7LL1hdXcXnn3/eV3hKZGkFT2TUqXyxW/QYRfCMTCiFwcoX/Yu9Got5zaIcx8HGxoZXAbG4uAhCCEZHRlxR4/S02yyqy8/kiXmC1+87jsCMpBym2ygUCiAAcvl8V+fabQzKNpkfG/j1GiCVSyV8//33cCjFl1991dA8iYe9aZu6/L0EURAgsgon07JQYrnqTBOBXVDYyMPcQwWPHrBrcXhaIQxRpRQO8zGJCqIout0a63VUazWPHPQ7yo6fOIHS1hZ++PFHfPP110hzsuZ7TSuvFH5vqpXKW3KwV0ApBWzbXZgJaZ8H8y3YT588waNHj/Dh6dPI9VkTLTIFcoMR0iAmqR5Jgm4YsB0HQpvyRUEQMD4+jvHxcZw4cQL1eh3LzKnx/oMHuH3nznazqMlJ5PL5lozdr+4NC1EUPWvZQqGAXA+20bsJvkANKg3yOhsgtSKFYbGyvIxLP/yARDyOzz77bGdzon6ia7sESZJgWhYsy8JWqQRVljtG6XgXRMBXATHg6+QQCIFNqUcMgPZRLL4ZiCpaEEQimURN0yJteEQIwceffIJvf/tbXLx0CV9/9dV2b54WYyxYRVQulzE+SI+NCPH6zK49gnva89BXywXJ9/PV1VVcu3YNhw4exMLCQt/XIAhCQznjwB9YfyQkxIOnMUfEeCwWenGJx+M4MD+PA6xZFG9BvVwsNjSL4mSB73p63SWKkgRiWdANAysrKzhx4kRPx9k1kBad3CICfY3TCs3K+sLi+dOn+PnqVeQmJnDW1zyp6TleI+IkSxJ0QtzIwdYW0l2W5TUtlYz0CgPgUQs+DttUKvAoziCvJ6aqkCUJhmmiWquFspUPA0mScO7cOfz222/x008/4dxnn3mftdncxjeEAtOd1V4jG+U3nhyA1dvykBsobSgRAvsZAIB9eZcuXcL4+Djee//9SC5BYl4Hjm0PbwcTLO1rcl4CV6RpmSYIEMq3oRkEUUQul3MjLO+9h1qthqWlJRSXl3Hn9m3cuHED8XjctX6emkIun+96188jPqvLy7AcB1NTUz1d627By8sOCIMoBRwWerl2Sinu3r2LO3fuYP7AAZw+dcpt7/2GQJIkd8GxbWxubYXy+m+FoMXvoHQKAivZI0CDk6l3HdhOrQ0DyUQC5tYW6rWamwKI6LzJVAqfnD2L77//Hjdv3sT7773XspmdZdsgPGJN6WvVgOnNJwe27XUIkyQJgiC4VQu+hZCyScmyLFy8cAGSJOHsJ59E5u7ldWYcMFtuCj7hNkk5EAB1FjWIsZKpfkEpdVtQLyxgYWEBjuO4zaKWllAsFvH06VMQUcTExAQm83m3BXUq1XFXx7+L5ZUVpBOJ4bncRYhBffeOb1y9lpED9ndYakBtG1d+/hnPFxdx4vhxHD12rC2xeB0JE1hJo2FZqFSrOBJVY7FmqYcIoyp8p+yfO/n5hu0xEY/HUSqVYDkO9HodSoQl2bl8Hu+//z5+uXED2XTa7cPQZI61LAuUpWwpEK6t9B7B3r/CPkGZJz8AKCxnZ1pW4y6ZUsBxcPnyZVSrVXz19dc976KbQWS7ANOydr/8yBdFsB3H7TNBKdR+HhxeZdCEmfP+DnkmHqxUqygWCijyFtQ3biCRTGKKtaDO5XJNdSFcRLqysoJ9MzO9X+sbCL9HwOu4EHqLVQhiYxoGLv3wA9bX1vBxF82TyICrRQYBWZZRX1sDAXp3+2uDyKseWGjd8TkjUgyfFHCIooh4PI5qvY6KpmEsYr+WgwcPYqtUws9XryKVTmN8fLzhs3ILaUKIF6nm1Sdh2kLvNt54cgDb9nL9qqLAsixYptn4Gkpx+84dvHr5EufOnUM24va/oq+UcVBq9V7ArZIlWe6JyfpdzMIilUwidegQDh06BNu2sbKygiITNj5+9MhNUUxMuGRhagpJ1ruCCALq9TrqmoZ8HyHW3cSgKxX2yrjqGiHHT7VSwYWLF2FoGj4/fx4TExORn2MvQZIkVFg3v1REOfNW8J5hlnbo9W5x7Ysoiq6j6S7f92QyiVq9Dq1eh5VKRbtjJwSnPvgAlXIZly5dwjfffONWIvDNl88MyvaRhrfkYA/AYXoDTg5kVXUVtY4Dy7a93eiLFy9w9+5dnDh5EtMtWi/3A5GV4oFFD3bdmpgtIrquuz3iu/Aq4CHIKEqPRFF0yyCnpvABa0FdYC2of7lxA/T6daRSKe8166urEAUBIwPYRQ0ag8yzvtaVCghHbjbW13Hx4kVIkoSvvvmm68Xydbw3giCgXqu5tsnDWmQDaYduzsorFbhnwV5IcCmKAlmWQQ0DtXodmYjTkUQQ8MnZs/jNt9/i4qVL+NJnsczXHUmWYes6APfeVF8T3cEbTQ64MyIP9UisE6NpGG7eRxSxubGBy5cvY25uDkcDzldRgjCCYO0FcgA3teJQ6ppCKUrnCZqnDgZVK04I0uk00uk0jhw5AtM0sbqygkKhgBcvX+Lhw4dwqNuY5vnz59h/4MDeaV8bAoPslsiJWpiw/J5Eh4Xv1cuXuPzTT8iOjODTTz/tLwX2mqFarSKVSsGyrJaVGINCsOKhrTaBbcJ42eBe8ttIJZPYYOQglUxGrstRYjF8du4cvvvuO1y5cgUff/wxAFdv4DgOJFGEzl9MKWosGrTX8WaTA+aoxzUHkii61qSGAdM0oaoqfr52DalMBqcDntlRQ5Zl1HUduq7viUXNNAwAgML0EECjkrjhZ8C2Y+GQHnpZljE9M4PpmRmAUqytr+O3334LRZJw684d3L5zB5lMBlOTk5icmsL42FhXjmzDBk8pDDKC0GlC5t+v33DKnxpqlibiP+cOmoauQ9c0L/zsPTM+8uP/OfGNmZalbS0MnCilePToEX755RfM7tuHjz76CGKPYeG9s1R1h1K5jKmpqR1dGocNv66FNv7CGyO2ZUGAGxHcS+nTGCvRdmwbmq4jMQATokw2i48++giXfvgBc3NznjcOr1TwP/uvSznjG00OqE9vwCsGZFl2yxktCy9fvsTa+jq++OKL0F0We4UiyxAJgc4W5d2GbhjbjohsR+ARAscBDaYOdllEqWkaqOPg1OnTEEURuq6jWCjg2fPnuP/gAWRJQn5y0quAeF1cyLoBZSkx/9+246BWr0PXNJiy7OU5dyz+fZ7bYDod3TBQZ0ShV3hlxWzM6bruRvMUxf0d29ndvn0bT58+xZEjR3Dy5Mk9s9gMC7quw9B1pNJpOJTuWldXPzgRINieJzh4NZYgihD2kGW1IAhIJBKoVKuo1WoDIQcAMDMzg3w+j5u3buH8+fOunivwfVH2PdZqtT2xSWyHN5ocgDnqAds+34IgQJAkWJaFm7duuXX33QibegBl1QBEEKDreuc3DBiWZcFh9beKLLvNTvgv+cPP6pX3inlMoVBAOpNBPB6H7TiYHhvD7OwsKKXY3NxEkdk6/3z1KgBgZGTEM2AaHRvb9RK/dhOlf8H3/k2pW2njIwKtjmEaBiy2cNghtSDe4uz9wBcJCEYFAK9ZmSTLUGS5wY3Pu65gBKLFuYPRC9uy3HpwZnJlWxZu3b6NtbU1HDt2DPv27cPW1pZrNsNC1oIgeP/2/8xPchvuMaV9Ce12A6VSCRTASCYDAjcVuKvkwFeVFCw/5YsexbbGyt4j5ACARw50nlIeRCkhIThx4gS+/e1vsbi4iPzUlBfpCo69arn8lhzsKnxljP6HSpYkLD5/jnKphE8++WSw9qrsuNxm07YsmKbZvjPkgGEYBijgWSVTZrbC4Z9aG9zVfIrmoYJSFAoFzM3NQRTFhl0UIQSjo6MYHR3FO+++C13Xsby8jEKhgCePH+PevXtusyiWfpjM54eas+aLvsHMpnjFip8IdDvyvAWRua7ZLM+biMe99tpBjYM/zN/LDpyT2ngshgSrIAkDP3Hg/+/vp0HBCLuuu9oXx8HVa9dQq9XwwQcfYHx83Hu9Q6nrW9LhnISTBx+J4OfnP38dsLW1BQFuyFqr190qqygbnXUByshq8Nn3W6FzQaLAorR7JbVAWMRYVVXouo5qtTqw0tDR0VFMz8zg4aNHGJ+YgMSjFGyN4c+61mf0bRh4s8kBSx8AjeEdQgiePHniNQsaZPiLH1kUBMiyDNOyoOv67pID0wSlFJIsu73IQyxQfKe5G3uBza0t1Ot1TE5OQhRFWJbVcoesqirm5uYwNzcHx3GwubGBAiuVXLx8GQAwNjrqdpVkLaijmMD4gm8z0y2bXaMX/mekoNVY44u2ENgNez/zLXZBOI4DSxA8ZfZegl+TADTP/ZuiCEeWYRgGrly+DArgqy+/9Mq9+MLUEE3h/w6kWfjrGzqgsvvusPfy+ykKAkQWAudEcy+hVCohnclAkWWXHDBDnaEJT32RAgBtNwU8akDg+rqAEda9kFrg15BMJKDrOmqahnQ6HXk0kafL3nnnHfz222/x8sULjARt3n1jdK/jzScHvrpbjqfPnsEwDBw8eBC2bQ8t5KwoCuq6Ds0wMNiq5dawWBMqCjeCAnQXavWHEYcVQSgUCpAkCePj494O1g4h0BIEAWPj4xgbH8fx48ehaZprwFQs4gFrFqWqqpd+yOfznlFWK3QiAa0g8TwsXKK4Y3fbx7183asVHEqxvrGBmzduIJVM4txnn7nlewyEEBBR7FgaR6lbV+8EiARl3Q1N2waYgtxxHARH0F4jDVtbW8hms+51SBIcSgdfteCP8HTxNsuyQMDaq7NnQRRFmKa5q6TL/0zGYjG3YoxSGIbhRdmiAv+UqqJgZnoaT58+xdEjRyCzqLEfDU349ijeWHLgOI4rkGGhLU4ADMPAg/v3sX//fsRUFXVW3jIMHqeqKsRyGcYuhZQotr0NJEnyFhOeZ+6Gzfof+EHfu6VCAfnJSW+yBnp7uGKx2HazKMfB+vq6Z+v8/PlzEEIwNjbmkYV0Ou0SgJAkgI8zkU3mou96gW1iETVe53bNAPDy5UvcuX0b4xMT+PTTT3uOfvBxLAoCGjLzlEJl35tl27BZyZ1j27DYd+r/sydIA6UolUputQ5cIm+ZJsxBkQNOCgIiw7CwuN6A59i5oJlFwaJsydwN/FUChBCosRjseh36AMgB4JIk07KwsLCAFy9e4P6DB26TOH96Fm8jB7uOZnqDe/fuwaEUx0+cgKFpblmjogxEoBL8+hVFcUWJhjHU8CDXCziUwtB1VyAZnID70F3ssF6NMKpgGAbWV1fx4UcfAYD3PfmJXy8QBAETExOYmJjAyffeQ6VSwaulJSwXCrh79y5u3rqFmKJgjLWpHh0b887digS0igBwQjGopeR1dUiklOLO7du4e+8eZmZm8OGpU4NJiwS0F82edZ6K6IU0SKIISRQ9m/QoUKlWYdu259bKGzFZUVqw+7QfjuM0lJ12dxg3okHZpoODEAKBkwRKt0nCEMdpsHyYbwgHIQwnhEBjx00lkzh8+DAePnyIQwcPbj/7XIT7NnKwu/Acqhg5qNdqePjoEY4dOYJEPA5CiGvJW68jmUpFv/MKLLayLLsRDEphBPs7DAD+HCzgkiXLtkGAnUZMEXx2v/I9KqJQLBZBAc8y2VuAmQCql7p3vhBYluX9cSj1yIJj29jc3MTGxgbW1tawtLQEgRCMjo9jenISU9PTyKTTXS8EPH8b5SLeoBx/jciBw5onLS4u4vCRI5ibnW3ayS8KhCFPfZEGX4pLEgRIkgRRkrwFvReUy2VQwGt1LoqiWwHgOLCYsU5P8FWKOL6x2M/Y4XMKYYTZD69qgWybKA3a76MdVN5fxzQjr1owDMMbK2o8jiNHjuDJ06e4c/cujr3zDoDABmqP440mB1xvwMsYb9+5A0mScIQ5IcZUFYauw7JtNwcVtRI4sBsXmGpWN01omjYwctDMzAZgQkS45WjBqAUJTBb9oilR6AGFQgHZbBZxXwiQVyxYIckBDyf7yUDw3nCzEkmSIIkiRkdHcejQIRBCUKlUsFwsolAs4s7du7h1+zYS8bhn6zyRy7WdZPyLU9QLuOP7HK8LOTANAxcvXcLG+jrOnj2LdCrlidkGjW4XpjCkwbJtL+1k8WZmzM9EZGRBkiQvuhQGW1tbUGS5ofpEkiT3HKbZEzmgPCUWASHwo5no20OTc/Ao2jCWx+B3LYoiFFmGbhjQdB2piMgBpRQaqwLjHW5VRcGxo0dx69YtzO3f727IeOTgNWgC9uaSA59iWRRFlEolPHv6FO998AEkFrokhCAWi6FWq0HTNCiKEl30oMUEpKqqa1ozgLBWMFIQhMGMj5RmoVsWKh8Eo/ff0W6OTh0HhUIB8/PzDT+XmE9Fq9AcD3OajAjwSoGGa2KTrfenTQ45lUohlUrh4KFDsC0LK6urrq9CsYjHT55AIAQTuRymJicxNTXVtp105LumARKPQaBaqeDChQswdB3nz5/H+MQENjc3AQyw3bSfQCGaRclPGjjF50JVy7Jc7wauVzEMz/xM4GSBpSFatYUvlctIp9MNz47ENhbduCXuKEEcwBgxmcC5GYniVU7B+dD7v0GWkQNN0xiKosAwTRiGAXRRltsOhmm63jGUelFZArdz46OHD/Hg/n2cOHly+3O/JQe7B2rbDZqDW7dvI55I4ODCQkOoW1FVaLoOy7Kga1qDSrqv87cY9JyARE0OOhnP2Cz8SYDWEYsBP6hAd0RhY3MTuq5jKtAMyxMlsgeMh3a9P01IgxAgA70KykRJ2m4WBaBSLnvNom7evIlfmOKe+ypMjI+3NOaJAn5b272OjbU1XLh4EbKieM2ThuHC2TDOBjjGuQaB6yY4SbX5uGRpCMMwYPjeI4miF7XiY3trYwMTzIKXQ5IkEKB1SaNPQzBoQuCdkhGioN7AD4GQhghX4wHcCOcgNiYEaCqujMfjqDJDJN4Loh84juMJveOq2lC+KwoC3j1+HNeuXcP+/fuhsu/0beRgF2Eyu1dRFLG+vo5XL1/i448/3jEQCIBEPI5yuQxd06Coaks23xVaRQ6YRSzPT/XreOZNBB3AjY/8VQpBdNuFrV90IgrFQgGKLGM00N5UIASmaaKuaXBYSWEQnAzInAwMKJ+dSqdxOJ3G4SNHYFkWVpaXUSgWsbS0hEePH7vCx/FxTDJCEbVCmlc/7PUyxpcvXuDK5csYGRnBp+fOeSWjweY+gwDlYrshg5vv+MkCd4PkJNZxHBiOA7D5ikeAypUKFg4ebDgejzo4rDTTH6Zu8CNwDzSUz8j1BpwYNUOne8+jaY7jePNhJEShBRGUZdk7p2GafaeTDcMAKIVIiFceDmzPb/v378eD+/ddY6TxcQBvqxV2FTwPJogi7t++jWw2i9nZ2aavlWUZkizDZFqA5ABtLb1dK7NS7tVCs1MKIQhufNSpI+RuuZo1Iwovl5aQn5qCIAhedMBgIdpavQ7qOJ7Ik0+csi8yMGxIkuQ1i6KsFK3w6hWWikX8cv06rl27hlQqhXw+7zaLGh/vm4ju9TJGSikePniAGzdvYnZ2Fmc++qihQdbAKy0C43k3Uy+EEEhsrgEAcC0MT0WwHXi5VALgjqdyuewRDFEUIckyDNP0XFZ3e5HhKY52mhtuxd3pWv3Rg7bRhrBoU3KsxmJwWHq3H3LA3U+p4yDORO7e6fn5ABw9ehTXrl/HVqmEWCz2NnKwmzA5OSAEK8Uijhw71nZiiMfjME0Thq5DVdW+GjF1GtKqqkJjgpheyEE7p71m4CImAjTXG/jgt5rdLRC4kZ/NjQ3Mzs2hXC67eU3fdUmSBIEQxFQViURi13snBEEIQTabRTqTweGjR2GaJpZXVlBYWsLi4iIePHgASZKQZ42iJicne0pp7eUyRuo4uH79Oh4/eYJjR4/i+IkTO65z0JUWvdTsDw2+VBdYAzTbcVAsFkGI28LccRxomgZN0xravnviwl1G0N+gFbrV2vBeGN36rzQco83vVEVxSxr7bISnaZqXUgkSJP/IG5+YgCiKWFtbw2Q+76W89zLeWHJgsTBdiS0s+Xy+7etlSXKFKoYBrV5HKtWHh2GHwawoCkSga91BqyqETuDtmUVR7NjWeDfLjAB3UjAMA0tLS6CUIh6LeR0BJVGEzBr/qKoKTdPahjP3BNi9lGUZ+2ZmMDM9jQ8++AClUglLS0soFIu4evUqKKXIZrOuAdP0NMZGR0N9LmePkgPLsvDjjz+iWCzi9OnTWFhYaPq6YZObvXWXAmAVM6XNTWSyWWSzWXfDwhprUduGTSl0TYPlOBBE0TVW2yUXR8oqNUBpx81UL9fHUyVCr3NSm/fEYjFga8ttWtZjSaNX+cRKF5vBP5+OjIxgdWUFePfdXd+AhcEbSw5sy4IIYH11FbIk7chbB0HhNpUxDcNVsppmx112S3QQPamKAoG1HQ4Lbg3by5DSeUohRPhs2LoDwI1s8PvOIz5r6+sQJQnpdBqqoriEyt88y3Gg813UHi7na3YveVQhm83inXfegWEYXrOop0+f4v79+5AVBZP5vEsWpqa8+uwdx9+DmgOtXseFCxdQqVbx2blzmJyaavna3Yh87DYBbgV+Tcurq9jHnRFZSsGrwGFaG+I4qLN+CwJLV/DUw7DupWVZEADX2rrD+CPorVKEYDvV6XShHen0HYtso0FZmrIXcqDrutfAjveTaHUdjuNgdHQUDx88cK3X30YOdgf+sHtxZQW5ycntQeWrVPCDwB3kaiwGTdNQr9ch92JiEmLSUVTVzakx5XI7HUC32oIgHEphMX8DJeQDMIyac5urtpuUZkmiiFqlgonxcYy06J7md0oEtheXoChr16lCkxLK4BhUFAWzs7NeC+qNjQ0Ui0UUi0VcuXIFADA6OupVQIyOjHiTMT/6XtEclDY3ceHiRQDA119+iUwnUj7oaosmz82wauw7wf9s8/Fbq9VQr9U84RqHX9xICEGlWnX1FNiOthmG4b5OklxtQ4SOjc0Q7NHSCf3YKHNvhCiJnaooME0Tuq53rTMzeYdVx4HSJh3Ir5dSirHxcdj37mFtbQ3JiEooB4k3lhwArkXl+toaTp06tf3LNg8LATNGYpUEdU1Doss8cKsSRj/8Zkg6a1Xb6nPwVEKv8KoUWF11GPQcxusAy7a9CEGw3FCSJCiy7JV6bmxt4dChQy2PxQ1luFe+39rYj90kCy3vYbsxSNz+DmNjY3iXtaAuFAooLi/j0ePHuHv3LhRF8XQKiUQCwh7pKLhcLOLSDz80bZ7UCruimRhCyW4zNCMD7uVs/3ttbQ0UwFiAHPjBhbeUEKSSSVfQaBieLodHPgngRRQGQRS43iCsPqvvs3cRPQgzf6mxGCrVKowuSxq5DoRS6kaB2+i0KLZTf8lEArFYDMViEfv27Qt1rt3EG00ONjY2XOvdDnoDDgIAgoBEPI5KterltLtSs4acdGRFgaBp0HQd6YBpTr/RAj8M0wRCVCk0IMLJk/dz0Bjh8kNmhEBWlAbVfqlchmkYGB8ba3tsXtbVLmfYliy0eM2g0c3uR1VVHDhwAAcOHHCbRW1suM2ilpfx/PlzgBBkMhlMT01h3759yGazu0IUnj59iqtXr2Iyn8fHZ8+G7pEwjGqF3YCf1LcjA0Gssl1lO/dUURTdhZI9TzIjCzHqGr+ZpgnLNOFQCpNVNgBuikLpU2zN4S8hDlsZ5PVu6OM7Cd7HVs9RKHLANiIWpTBD2tk7joNqrea2/iZke15tVRlBqRctEQhBPpfDyspKx/PsBbzx5CAZj4cO4fBdv6woiLOcXq1WgyAIvesPWkBVFAjYKUrkQywKYuBQCpNFDrq5/ih0B5ZtQ9N1t9ETPy5YhIBpCFqFwtfX1kApxejoaNtzSJLkirW6cIxrRha86wtoOvpdsKJelrhnwsT4OE4CqGsanj59itWVFTx8+BD37t1DLBbz0g/5fD7ycRsEpRS3b93Cvfv3sbCwgFMffNCd/oGP8wFpJpqSwehP4s0dzVJy3YyjtdVVTExMtH0Nb/rlNImaear5eHzbJdQwGoiCIIpQFcVLUfQC7m8gdikIjqREkYHv9oMuiGHTRoQQKKoKh1WDdCIHlFLUWQk1oRTxRKLB8Khd9ABw0yq5fB6Li4uo1WohrnB38UaSA8AdIBsbG8j79QYh3sO/yFgsBuo40HQdtUoFQjrdUbTSzZBXVBVEELwaWcJqfKMM53NiILHugaHR4zVQ6jaU0jXNExYC7gQSi8VC21Ovra8jk8123H3yHVA35CCIhrHhSzv4vwtvXHSZlhh0bjsei3lujalUCptMq1AoFPDs2TMIgoCxsTEvBZHJZCLdoTu2jStXrmDxxQucPHkSR44c6fr4g9Qc8O9wxzX1cQ+85zOoXYrgcxiGgc1SCQcD5kfNIIoiTOaN0Gpe8ohCLOam9HTds/mt1+ueZbwiyx2rmIKwQ/gbNEOU3zOPHHh6o+1fhJ7DeNWTEaKksa5pbj8NSpEMlk+3OZ/fuyGfy4HCbSi31/FGkgPO8CqVCo4fP97zcWLxuKukN01UqlWk0+n2pjVdLKqKLEMUBBDqNuyIqWrkeX5eAth1/3fSXec0h5VX6YbRYO6hyDJiqtp1G9611dUdgqxm4HlUmzW+idIFMbig+EmD/2ftSEOr+xeVqMrx3WtJFJHL5ZDL5XDy5ElUq1VP1Hjnzh3cvHkT8UTC6/+Q69AsqhMMXcelS5ewubGBT86exb4WBmMdP4Nv4hwEmpEVXj/f9Hn1RQH4/zclEwO43vX1dRDHCTX2RUmCwKJmrSpZ/JBEEVIigRgz7TGY3a+u69B13U3xqWroMcHFiN0+c4NIH3kljz1ssOKxGLa2trwIZKvPr+m6m6pxHCTi8a7MyzwCzJoxpVMpLC8vR2LdPEi8seSA53VyIfUGzUAIQTKRQKVSgWXbqFQqSKfTkU1kMjNDqtVqkXdodJgwKYwrYlOEYN+WZbmpAxahANxJXlVVt/66h4FvmCZKpRIOHz0a4hLdunBKw3do7BehSQMPnzbbuUaEdiWcyWQSBw8exMGDB2HbNlZXVz1h45MnT9wUxcSEVyqZSqVCX2e1UsH3Fy7ANAyc/+KLtuK5jp+hxfUPEkGR747FJCBiHRbW1tYgqyqSITxWuO6g25I4IghQVRWKoniOozz9YFqW101QZjbvzeAwv4VuxIjBa+i1aqHlMX1RBKeLY4ui6Io7mZ9EM3JgGIZHpmKx2M7XdJgrHZ/mAHDbzy+9egXbtt+Sg2GDUoqV5WWvRr7b9zaIXgQByWQS5UoFtm2jVq0imUzufHB62AmqioIqIajV6x19GLqFyYgBbxnbLVqFxLkamjer4pBYGajaRx4TcHdPFOgoRuSQWYdGM+QOalBoRRraObw16xTZDcKWMYqi6OoQJicBAJVq1SUKhQJu3bqFGzduIMmaRfGoQiuR2dbmJm7evAlFUfD111+HWsjafwj2KaJahP15/4CGhAbI2l7zOlhbW8PY2Fio0LsoCNs19LbddVrAXxrp2DZ0VgrpOA7qLAcvK4rnyeKHZ5ncY5WMAGBQVf69fKeqqsJgG52gY61lWduVCcyALYiOd8AXOQCAfC6HR48eYXV1FdOBpnJ7CW8kOXAcBysrK3inTSlcM/A62iAEUUQqlUK5VHJLhOr1HXWxYUoYG64RQCKRwObGhpejD1svHAY8h9ZT1ADYZsPsftis8xjvPga490tRFMS6CEd2wvraGhRFCS0i5eftR3cwMPD714RIevawPjT8jL2HoDWJ8HZfXU7QqWQShw8dwuFDh2DbNpZXVtwW1IUCHj9+DEEUkc/lPLLg/y6uXr2KsbExfPrpp6FMtTqBBnwqWr+wUexH/eF+/jvfMSjYM+nbRXrpBERbLx8FbNvG2toa3n333VCv51Ezm/VmUPqoQBBEEfF43C3jZjtor3sk200riuKl8Xh3116f+UFGibzvlaX6QlUtqKpX0uiHbduo1Wqg1HWAbLn56DJyMDExAUIIHj9+/JYcDBurq6swDCNU7m4HWnzRoigimUy6rT51HQIhvXnh8z+UQmR5PstxUK1WWxr+9AJe89wzOYBrCmUwQmAwIyUAXk+DyDpY+rC2sYGx8fHQE4hnhsQ63O2VMF3D4hUE03QEx1nDq3kZXJO3cxLh+AR3/vMR9u+G8LnvfP6FURBFV4cwOYkPPvgAlUrFjSoUi7hx4wauX7/uWomzY+cmJnDus8+a71T5NQRV+wHhmD+vz1Mv3j0LHK/Zou99Hv/9bHKfdquMsRdsbW3BdhyMd6hU8EMURQg9pBZagaccVFWFaVkwWHSQ/xEEAYqiwLQsOOgtpeA/V9SpBWBbw8LHVphW0CozpbMdB7phQFUUOI6DWr0OwK0OadVNlQKA47SMHjg+8svHsSRJGBsbw5NHj/D55593+xGHhjeSHKysrIAAyPaw2LZTmMuKgjilrouZprmLu6/DWidwUuB/ZSIeh6ZpqNZqkZED7txFEL4GOQiDdT7kNdKAO6hjqgqlz9RBKziUYm11FUdD6A04BEGAJIqgcKMH/ZChKNFpNPRTyRDUOXjfBBtbflLg/x387/OF1v3fZCKVwqHDh3H48GGYloXlQgG3bt/Gxvo6HEqxvLKCS5cuYWpyEpPT0x5BFnzH884TPLd/7LOfcVObpuOpy+qQIF4fauCmFERBwEgX6UVJFKEDOwzFogD3TnBsG7ppwtR1d8GsVlGr190oQh8ppYFV8gR0OA6rBGs3PxPi+hVobCOkyLLX9RXAjm6LfnTaivDngaeBOEZHR7G8uhryQ+0O3khy4LCFcUepScgFrWn5E4Oqqp5DVrVSAUmltluwtjsmdhIDAEgkk9jc3Iw0tWD6yoy6XcQty0KtVnPD9GzhiDp10AqlchmmaWIspN6AQ5Ikr+3tXiEHHdFlGqrZ+/1phVZHanmGZos4fMSDvebps2f4tvodriq/IG7H8f+c/iMYdRPXrl8HvX4dmXQaU9PTmJycxPjYWFuPg+C18OvfofNhr+17AWmzMx2ezDAcVtfWMDIy0pXYWZIkV5TImv8Mor+GIIqIiyJiqgrTMFCuVAC4RL5SqbiRhjbixVYYxOaiWaqIR+g6pZHUWAyarkPTNEiiCIe1z04mEu2/E0FoO868yEHguyHAQCInUeKNJAfeIAiEHsOgle7Aj3g87uXkqrUaUqlU2/B6K2IAYCCpBZuVGXWzmNuWhXqg3jcWi3l9IIaB9dVVEEI6mh8FIckyEBBI7jo6LPzBha8hnx74d6vjD9JdkDdPell9hcvkKmxqQyc6vjcu4V99+f9xW1AvL6NYKOAZaxYlSZLbLIr5KrQKxW5/hMbn1HMG5b9v8T6uHfCTiIb3+RaDlvdmiFUInUBZxGz/gQNdvY8Q4pohEQLLcSAPMKXGDYMUll4UGCHlRmdqLNZVRHEQd7+duRIvdWxVycCF67VazTWHAnZ6GfRxTWJQsLzHNC/N8EaSA46eF7UQu7pEIuFZ95bL5ZYeCBSMPba5lqhTCybb9YchB5Tl1vxOjYqiIBGPQ2BlgsNiuOsbG8hms11HKDxRImP7e6HPQMP4CZbG+cP//re0+HfrUzDdQMSfd8vXPGnq+DRwc/t3L2qLAFgL6n37XI94SrG5uYlCsYhioYCff/4ZgNuidjKfx9TUFEbHxnZ8L2GrLYLgUY1WJKKhKsH3LPuJBBer7YWxwnVMvWikREmCyZwSoxQ0NwPvJiiKIjLptFfK7FDqbix0HbFYLLSvSeQLZIdj8RRDs/mMV23Ytg1d0zA6MtIxJdtJbwCgZdfUvTDuOuGNJAd8EPT6BYQJZxLiNj0pl8suQSiVkEgmG0pdKBhz7HAdUaYWHEo9gVK741BK3e6TmuY9VJIsIxGPNyzOhLj1+sMYzGtra8jlcl2/j1u4Oky5PehJshX8O3kv7x+MGAW1ABGcL8pdcLFQwI8//ohUKoVzn32GqxtXG8/Z7MkgBCOjoxgZHXVbUOs6isvLKBaLePLkCe7dvw9Flt2IAmtDrbD0nPv2aMdWQ6liE5GjJ9xkuejdJgmrq6uglIYu3/VDFEW3NNCygAGX8pq+Zk5cnCjLMnTDgK7rsClFtV6HZBiuH0CHxTVKchD2WM2IAWXkxktBCEIogkPQ+Tl2fHNCA0IIJXcbbyQ5aLA47eMYnSYMIghIp9MoVyqwTBPVSgVOPO5aL6NzxIAjytQCdy4TBKFpDpJS1xWtrmnegyKyUqZW+fowit9+oRsGyqUSjh071tP7ZUmCzSI5QyEHPiU930H4w9qdjFiiuJtOhEQDAJ48eYJr165hanISH5892zSCE+a6FVXF3Nwc5ubmQCnF5sYGllgFxOKiG3kYHR1FLpdDJpOJ3OOjHWiz6AX7DoP3cVikYW1tDelMpmsnUYBVDDDdwaBhspSCHNg8cJGyYRjQDcM1jKtW3WZQsVjLlGukVt5dzk98A+g4jquxsm2XFPAui2GOESLC7JUxNtMcvCUHw4e3g+tRqR9Gd7D9YoJ0KuWG5jUNtXodlm0jFot1JRCKKrXgFyMGYTA3Rr9IJhGPdzYPEgRgAIpoP7j5UbdiRA5JkkC6bMIUBlzNzxeP4CTU0uAIHRZtvquNYILsW4hGKW7euoUHrHnSB77mSQIRAi/tchImBKNjYxgdG8Px48eh67rnqfDo8WPYlgWVRRWmpqeRz+W6t/vuFYHJfccn478PEoqIScPa2lpvZddgmwBGbnoxQwoL29eFsRmJ4eV+sqJA1zQY3HWxUoEqy265YHCcRrQ4+qtzunkP9zHgnyuTTmNzayuy0lD3sgaT+hsG3mhy0Be6UZMTgkQiAVEU3fyhpsGybaQSidAEJarUgsX8DfzkoKECgV0vNz0JNckNIfS6trYGVVV3OJSFRWRmSIGSP782IOyoCpYHNoOXD+8DUQgSefOkFy9e4OR77+HI4cMN1xUsJmwuqw0PVVWx/8AB7D9wAPVaDcvLy9jY3MT62hqeLy6CABgbH3dLJaemkM1kerpPYa4y2IWz6XE6nbuJF0M30HUd5XK5q/JdPwghkLgZkmX1ZYbUDgZPKXSogBIFAYlEAoptQ9d1mJYF3TRhmOaOygZewtrvfN1LVYthmm6HReq2Xk4kEu51MHIQxjPFobRtKWND87Ym0de3kYNdQBRsrZcBxwd+tVqFZZooVypIplKhvAaiSC1QbC+OsiTBtizUNA1moAIh3mVUgxDiihMHKExcX1/HeBfmR0GIzMrVcZzumjCxnaFXTTLEB7bfUr3Q7oItYOg6Ll66hM3NTXzyySeY2bevyTUGjh3l/SEE2ZER5CcnEY/HUa/XUWTph7v37uHW7dteC+rpyUnkJifDi1VDjNUwYeFW1019/24WfQj7jaytr7t6gy7Mj4IQRREEiHTHG4RlGHDQPGrQDLzRE7cftliH22BlQxR+B928n2utDNbGWpZldz70ERYuNG9XFk0Icc3G2sCvNxAIge33YOjimncLbyw5EAjpO9za7W7ZZjv2VDqNKuvFUC6VkEwmQ4VK432mFmyfNwE39ODwVyD0hAFGDRxKsba2hnfeeafnY/Be9o5pwupEDnhEIAJtStPDh3xdv7umftodVyoVXLxwAYZh4Isvvmidzglygx7O1Qo0kI+Nx+OYX1jA/MICHGYnzJtFPXv2DISQ7WZRk5NIp9Mtx+VQ92QBnwnuUOldS5t5ZG1tDbF4vCe3VQ5OjAdhhgS4Gw7uytlLJVEqlXL1CEy0yCsb4nw+6ucZAEK/n1Lqpn1Zd8VYLOalVPmzKLEmTJZto+2MHYJYtiXvb0sZdwdR9IjvSndAG73yRSZUrFarMJlQMRaPI9ZhAkgmk9jqI7XAbU4Nv6thkwqEXkDg9oMYBEUobW3Bsqye864ckiTBNE23CRP7WYO9cIgwchQIE66OAt4utUvitra6iouXLkFVVXz9dfvmScHIgUOjix6122ULoohcPo9cPo/3ANSqVRSKRRQKBdy5fRs3b95EMh5HfmrKbRY1MTGUrpxhsCMV0YYsrK2uuuZRfZxv0GZIfiFir1EqXtlgmCZ0TYNNKSq1mvvzPo4bNvLgOA6qtZrnHhtPJBory9h3wueQjgLPEAu73UKM6D/nXsbeeJoiRmTlMWg/8LwFp8n5CCFIpVJuh7N6HfV6HbZtu01sWjwI/aQWKIBypYJKtQpVVd1ukolEpI6BwoDY7tr6OkiX1rHN4Ncd+NMEw34IQ5+t17A20PC+bibWFy9e4PLlyxhnzZM6RbSi1hz40U0pYyLQgnqNtaAuFApuC2pCkMvlPAOmUNqVYYnEBKHpXbNsG+sbGzhx4kRfh+dmSLYgRG6GRCn1LNT7FYoSQtx20JLkphhYkyceRejF6j3Ms21ZFqqsgRIA17SuybkopZAlCXV0tqQOoyviaR5+roamUK+BQPHNJQdRfAFhQkdovxjEYzEIgoB6terajzoOUslkS6FiL6kF27ZRqdW8ByAWj2Mkk4l8BzEoV6/1tTWMZrM994GgcHfrEjNt4iWNvR5vWOhndNJuyQGluH//Pm7duoXZuTl89OGHoVJMwWqFKOEXa3UDURSRn5xEfnIS77//PirVqlcBcfPGDVy/dg2JZBJTU1OYnJrCxPh407Gwa9MzS0OsrqzAsW1M5vPePXBsu6d5S+JmSBGX8nrGYuiv0ZIfAquSkiUJ9XodFqWoVKuIx2JdbWbCzEQ6s0R2AEiCgHgHO2Q+TtoJm8N8O5TShtbWO47xNq2wO+DNXKLYGXTSHYRqCaookAQBlWoVtmWhVKkglUw2DYN2m1rQdR3Vet0NKVKKRDyO0Wx2MMx0QGx3dX0dk/l8V+/xrHb53+znsizDMU2Yprlr5GAoKQX/uOvwvTiOg+vXruHp06d455133LbAoUt1A+eN8NNFYv/MInSpw4dx6PBh2JaF5WIRS4UCXr18iUcPH0KUJOQmJtxyyampxqhCP9GbPrFUKCCRTCKVTjcYWvVCFDwzpIh1B5ZhgAIDabYmyzJEUUStVoNumqhrGkzTdLUIIQhju8iuJzw0zabCw3bXBGynBJqfuPOYsX1RseA81GDStYfxRpKDWCwG27JgGEbf+axW7+U71LBHFiXJ0yHYzHI5kUhACXgM+FMLtWq1ZWdJh1JUq1VPX0AIQTKRcH3BBxiyiprxapqGSqWC48ePh3q9JyRscQ2yJLn11ZaF9s7+A0QX96dXtXZL57UALNPEDz/8gJWVFXz40Uc40KV/vxAo1hoEOYiyBlyUJEzNzGByehqgFKVy2WtB/csvv+D6tWtIZzKuqHFqyu3jsRshXkpRKBQwOTnZ8B02PF9sg+N1F2xzONFnhhRV2TFPKVCEr1LoFoIgIJlMQtA0t6rBtlFhGi2lwzlbeoxQt3Mub1vfTURCZOuFw3b+TbVaIVMZQOtoi85SKXsZbyQ5mJubw+ULF7C6soLU/Hxfx2o2efP61W4fP8EnVDQMAzUmWEzE4w1pBp5aqNRqTcmBYZqoVqveApGIx+HYNuq6PvDOiVHvtNbX1wFKMdam2ZK/XrgTZFkG2A5kt2xxKboIWfd6P0OQA61ex/fff49avY7PP/8cuS6jM82OHxU5aCiLHdR3RAgymQwymQyOHj3qNYsqFApYXFzEwwcPQATB0ypMTU52FA1HhXKlglq1iqnJyTaX37jD5NHQZkShwQzJcSKJmnluq+i+SqFbyLIMSZI8U6I6qyqIsbRsEK1GoWma0DQNtuOAd1Xs5toFttN3mOlTs3eGeb49vUGTcxO4VSrvf/hh6OvaDbyR5CCbzYIoClZXVzHfJznYUcfcZtcaFslkEqIoQqvXYRiGF0pTVRUgpGVqgcLtGqaxEkVREJBKJiFJErZKpR3mR4OAZxccEbZKJSiyvENA1g0h8EMURYiEwIG7ax6a2x5DL6Sx1/MArckBb55EAHz15ZfIRNDQy3/eyI4zAHEWbWFbvqNZ1NYWXr16haWlJVy7ehWUUmSzWS+qMNahBXU/KBYKLjEJSdga+nVs/9CtTmD3UGRmSA5rjtQvohIidgIhxLNoTyaT0HUdumHAtCzY1SriTaqtBLa753A4ofA1X0slkz11VZRE0Y0+miZiqrpT39NJh0a3+9v4Iwd8o6npOirVKhYWFrq+tmHijSQHIiuDWl5ZicZkI7AD7aa2thV49zJed1ur1WAYhuu02CS1YNk2qpUKLLbjijE3Qf75uLp2GH0FWnU26wWVchnpTAZA74QgCFlRYFPqEqshk4Nu0Wuaph05KBQK+MnXPKlT6+S21zcgqsMn9oHYyoY5JiEYGRlBdmQER48dg6HrblShWMRT1oJalmXkWVfJyclJqH3cxyAKxaJbftnDIt7wnfvIlSAIrhmS46DfJMAwUgp++Ftsx2IxN4pQr7vp01oNqqK4VVjss/JKF94rRmfaCMqs6xWfE2O3kCQJhLWAd3og+3wuFlhDOA7KiMVysQhRkt6Sg92AKIrYt28f7l67hlq93ldux687aFi8Igivi6KIdCoF3TCg1eted0dVVaHGYl5qQVFV1Op1dlqXEfvzcbx0TxCEgXmr+xFV9IAC2NraQiab7dioqBvIsgyNWbcOG13flx7HUCsvjyePH+Pa9euYmprCxx9/HIG/xYDSClGIEaO5EABus6jZuTnMzs0BlGJjY8PTKly5cgWA2ywqCq2CbVlYXVnBiZMn+758/7MoEAIIQiTPksWiBgIhkVUptEPwTkqShFQyCY1FT3XWNyWRSHjRHJ5CcBzHFR1KEmKJRE/RguC5+Yarl2+YeyS0In6rq6uYnJ52Tbz2MN5IciBJEmZmZnDl4kUsr6zgwP79fR2PC1S8KghEq0hXFQWKLKNer8PQdWi67jJ3y0K9UoEkSZAkCYosu+KdwKTkiV+GZQITwe6edy4slUpNbXv7gSxJIAAsx/H6zw8L3Rog9Wrhu8MAiVLcvHkTDx48wMFDh/D+e+9FEhLfoTmIygSpxzLGzoft8l62cK/jzaLePX4cuqahWCyiWCzi0aNHuHv3LhRF8TwVJvP5HcLidiguL8Ox7bZ6g14gsh2vzdIqBOhp5wv4UgpDiBoAaPo9CKxPg2Ga0Op12I6DSqUCVVVhsbA//7YT8Xhk18pF3c2MkMKkDXnkIDgfc+fMtY0NnD13LpJrHSTeSHLgdQhLJLCyvNw3OaCUggbLiiIuQyHEbf6hKorb4ZFFE3RdR7VSwczMDGItJiCT2SYPpVWxe7E9hcO9RkYsfMhzhINg0JIkwWF6jmGSg2EVJ/k9AmzLwpUrV/Dy5Uu89/77OHz4cGTn2VmtEA2ibjfN0e24JOhcrqzGYl6zKOo4WF9f96IKi8+fgxCC0dFRz1dhJJttG1UoFgpIpFJtnSl7gb/HQtDrpRstDHUcGLyB25DIAQFaRmMVWYbESh7rmoZSuQxZliFLkhtlDdtALiREZulssw2MF4kgIfopOI4XuWkWcanX66hr2p5PKQBvKDng4pzJqSm8KhT6V60PMfQpShIS8TjqmgZFVaEbxraPgao2fcC5qnhokQMgdFol6EPgvtX9FOVyGaB0IORAlmWYrBtcPzn3vQqu+TAMAz/+8AM2t7bw6aefYnpmJtoTBX0OIiLFg9Ic9KKF6eYKiCBgfGIC4xMTOHHyJOq1GorLyygWCrh//z5u374NNRbDJNMq5PP5Rt0LpSgUi5ienu76OjtBEASvvTp1nB1Ga01FjU1gWhYIO94wUgoc7Yid53jKFl/TsrzeCFGnpkRRhCAIcHinS/79sWtodzbL54q447oIwcrKCiRJ6l8oPwS8keQA2NYd/PLTT6hWKkj1sQBxv/JhmFZYloVqtQpFlpHP5SAAqGkaVtfXkTFNJJJJqD42z73CCVrnuAYBwioCWj4otLHdcTOUy2UIouhaSkcMRZZRI2T7/gxIdR5ELyMkqLwOdR7mc3Hjxg04to0vv/gCo62aJ/WBgdkn80V8SN9LW/SxuMQTCczPz2N+fh6ObXtRhUKhgOcsqjA+Pu5pFSilqNdqmJqaivADbENg5Y624zTojxp0Qh1SDsOqUgiimXjc4d0cWWdZWVGgxGKwbRu2baOuaaHMjbqFxMoZTUYOOCnolAbspDdYXlnB7Nzcnvc4AN5wcjA9PY2LmobllZWeyYFDtxv3DLpu3mT+BYAbBeCL5traGmr1OpLJJCrlMgxFcasaBMET3XXqsz4ICM2qFiiFg86hWgAolctIDkiUIwgCRCbOMq327VcjxZBcz9Y3NnDt2jWoqoovzp+PPETNsWNnH3EpY+SRAxZO7wa9kLOmxxFFTORymMjlcPK991CrVlFkzaLu3r2LW7duuWF6QmCx7qFRR/tEUQSxLDi2DbRJCVC4Cx1Pq3g/Z88LpXR4egOG4HxhGAY0TXPnXseBJMuu7wEhME0T9Xrd8zNJxOORzn+SJEG3rO3KA/8a0OZ9VpMSRg4Kt4/MF++/H9l1DhJvLDmQJAmyLCOVyWBldRUHDx7s6Th8keM9uQc19RumiRojBrIkeZN9OpNBqVxuCGfphuGVPdq7kVJg4LuRdqmDdqiUy8gOULEryzIsH/sfBnoikF2KEhcXF3H5yhWMZLM4e/bsQCIvvotr+L/INAdNj94neiAG7kVEa+zFkUgmsXDwIBYOHnQrFNbWcOXKFdiWhR9++AGCILgtqJkBUzKV6nuB4+WMYSsWeHSPz22maXpRSHHIUR3+yXlEwGalhNxFUZIkb67hosFareY1Vkp06JvQDSRZBmHp3J0X2ny8eFoPNI8cVMplGIbR81o0bLyx5IB/OTOzs3jx8iXOovuJaMdEzwdFxBOJruuos1JFhUUFOET2YNiOA8MwMJHLuc6KloVarYZave6V/QwdLHXQayvnrVJpoMIchZc0+lpYDxK9RpZCv4NS3Lt3D7dv38bU9DSOHTsGdQgGNX44iKZawet1H+UCNKBFPgqIkoSx0VFomoYP3n8f+XweBVYBcevmTdz45Rckk0kv/TCRy/WUJhSZU2Lb3gAB+FMOXiRyyFEDwCU0uq6jrmkA3DHCPQvQRI/Ao6u8FXOtWkWiSTVXL+Dibl7O6D83T8cEz2K30xvATSkosRj29ymQHxbefHIwM4NLDx+itLXVsk9BKzjNJntKPTOLKKAxT3HArbVONMlFZdJpVCsV1Ot1OLaNTCbjVjGw3gqarnuLxDDD594E38PbDV2HruueAdIgILGSRsdxYNn2UMVV3SDMSHIcB9euXcOzp0/xzrvvYmZ62n3fgFNJgzJB2jM+B0PE8vIyKKWYmppCPJHAoVQKhw4dgm3bWGEGTIVCAY8fP4bIUhRTjCwkQpJ/rjNwemjAZFmWa/wDDJx0+uGwjY9uGLBse9uzIJn0ohe8nDwIURSRTCRcguA4qFYqbrl3n6STrx82u56G/hdorj1oVcLIsbq6igPz88Obo/vEG08OcrkcNOap3g054Dk5P7i3eVR7kxrzNQBcx8RWqnpZlhGLx2HZNkqlEiYmJqCqKgRCvLJH27ZRLpchiqLbaGQAKl4ALinwW992WdfPUWapkkEbgUiSBIe5vQ2aHPQ6LgjQNiRusuZJq77mSZubmwAG5DDYcG3B4+/daoVeBcPDoieFQgGZdBrxgFW4KIqYmp7G1PQ0KKWo+JtF3biB69evI51OIz85iempKYyPj7c0O+M9FhxG3ruJzHDRn8r1S5QOVIhts0gBP69DKURBQExVG/QOjs+3oRlEUUQqmfT6zVSqVSQTib4E2jxtQR0Hpm1DCSz4DqXu2OUpVdq+RTOFqxM6/fHHPV/TsPHGkwNBEDA5M4PHT5/i8OHDoRZMfx59BwjZ6XnQA7hdMoDtvgptkE6nvQ6Go6OjEEURFEA8FvPer2sabNtGpVqFoGku4YiKJNDm1sbNRE1hUC6XQQCkBiSk41BkGQZr4RwfcEljr0TJfXPz76heq+HChQtu86Tz55HL5Xb46w8SwSk5CuGevz/JryZyQN0ujHNzc21fRghBOpNBOpPBkaNHYZkmVlZWUCgU8PLFC7cFtSgin897WgU/2eB9CgSWWpBCkgPqODANAw6wbehEGjtERtU3xLJt6L50H3UciJKEuKpCkqQdbacFUexYoioIApKpFGrVqhtBqNWQaNKToRtIkgTTNF3dQdDQKPDadi2aAWDxxQtYto2jR4/2fD3DxhtLDvyNSM6fP4+/+e//Hc+fPw/VsrbdQheFMLFaqXi5vUTACrkV4rEYZEmCZVnYKpUwNjq6bbbBvBHizHJZ03XYto1qrYZ6vY6YqrrlPj2G2jo1m/LKorqY6MuVCuKs4mKQ4DsAy7IGX9LYR7qpmWJ+c3MTFy9cACEEX3/1VUMPCv/7BolBdGX0JnpCov0+eiUuQyAom5ub0DSt6xJGSZYxPTOD6ZkZUEpRLpXc9MPSEq5duwZQikw2i6nJSUxOTWF8bAyCKIKYpptaCLk46myjIoli8x237/nmzZ66hWlZ0FnPAr4BkyUJqm8Rb/oNhvxeBUKQSCZRr9Vg2TZqTKTYK0GQJAkGS7U0vyzqRVjaRQ1sSnHn9m3Mz8+7Tb9eE7yx5ACARw7y+Tz2zc7i1u3bmJ2dbRtuCjMM+2mWU61WvYGUTCa7KhfKpNMwDAOlUgmj2azblhTbURJCCOKcJLAyIK781ep1qCyS0KyNaLNrBcJNBP6uamFRKpeRGaDegIMbuXA76kHm+/oKvwaIxVKhgJ9++AHpTAbnzp1rSDnR4PsGiEH4HAzEAIlHtnoUhA66TLlQKECSZYyPj/d8DEIIMtksMtms24LaMLC8vIxisYhnz57h/v37kGQZExMTyI6MhLZ1ppTCYI2L2moNeLSHE7qQJmimZcHQdbdjIvuZIstQFGXHYsq9Dvg3QQjpqleEQFyn2RrrVVOr1RCLx0NtwIIQBQGE0lD6jXYtmp8+fYpqpYKvvvqq62vYTbzx5ABwhTbvf/AB/sd/+294/Pgxjhw50vI9nSb4fhYATgwIIV5pTjdIJJOQtrZgGQZKlYqX89oxyRKCmKoipigwTBN1TYNlWdB0HTpzXuSdz5qBUuqa1JDw7XSbGZi0Q6lUwvSAjGCC4BEX0zT3rBjIb8v6+PFjXL9+HdOsedKOCWeIivxmX3+/C+lAxIhMD9T72wdLsgqFAvL5fKSREllRsG92FvtmZ0EpxebmJoqFApYKBSzdvo3bt25tt6CenMRoixbUpmkCjgOBkHAW7L5UQ6uxSCmFYZowWK8H7hGgqioURWkbMRSwPZf0Mt8SQjyXWe6HQNB9n4gwfXS4c2OzFs2Am0K5d+cOZvfvx+zsbFfn3238KsiBbdvIjIxgfn4ed+/cwfz8fNOBEnoY9pBn5ws0IQSpVKrnVq2pVArW5iZKpRIyTMzX8liEQFEUKIoCi5EE0zShGwZ0XYesKG66wncv/CHfbq8tbM7dZu2nh9WVTJZl1FmOc5A7xL6WbEIAx8GNGzfw8OFDHDp0CO+1aJ7UqiPjIEBIs0m8k4lse/Ax1q+iPEp0S267ga7rWFtfx4enTw/oDPD6O4yOjuLwkSPY2NjAyuoqSltbePL4Me7duwdFlrebRU1OelEF3R816ObZ4OlGQfBIguM4HilwsB155KQgTLTIawnfh4aHEOJpjEw293Fb5HAfbTsK1ekaODEItmgGgIcPH6Ku6zj+7rtQXwNXRD9+NeSAqCreffddPH/+HPfv38eJEyd2vL7rhi0hX2uaJnRWrhjvU0WbSqdRLpehm6bXoSzMgJdkGWlZhmVZLklgRkqmYUASRaixWN/lS2HTLZVKBQAGWsboh1fSSCls2x6cYVQfO3rbtnHphx+wtLSE999/H4faNE/iZxmGmK+ZRtwlWL0fcxBNl/pe2AfokbBcLAIAJiPuwtgKoiBAlmXk83k3SkopNtbXPV+FxcVFAMDY2BhyuRwymQxSqVRPoXd+3zgp0Fj1Fdf3cJ+Cnr5rQdi22e4BnCA4rDtrrVZDMpkM9dw0zKkdxoVlmkATIaJuGLh//z4OHTqEVDq9Z6OWrfCrIQcQBMTjcRw5fBgPHjzAoUOH+mvIE3IysR0HtVoNgNvdracH0AduimRsbqJcrUKNxboS9UmShHQq5WkRdE1zmb5locbKIFVF6W3hCXlPyuUyKB1Mw6VWkGV5u6RxF9wk20HXdVy8eBEbm5tu86ROTXmGqvTfeQ4HFP3s+f0dJSNDnwv7ICMHxWIRI9ksYkPaORK2gyW2Dce2XQOmiQmMTUzg+IkTbgvqQgGFYhGPHj+GaVlQJcmNKkxNYTKfDx2CdwLliJQ5GsZYC+VeRqgXlY2ArPEUQ4VVMdQ1ramXTKv3Au03jVxTAWBHSube/fuglOKdY8c6VqPtReytWTJiBMkBABw5cgRPHj/GnTt3cLrPMF8YT/ZatQpKqVuqE1EpXSadxtbWlrfz72UbJ4oiEokEYqoKXdfdCgfLQqVaRb1eh6ooUFS1K28AgnD3pFQuI6aqfROlbiD7SxoHNEn3Emwvl8v4/sIF2JaFL7/8EiMjI6HOA2AoKvtmYeB+694Hklbo95oiuowdx3UcFAoFzA+5Ra/nd+A4CD7BaiyG/fPzmJ2bw9bWFjZLJZS3trC8vIznz58DAMbHx70W1Nl0unGscZEh6w/Bex+IkoQkK0dsZVoUCqS3lvCtIAgCEvE4qrWa26lVkjrOPV76sUNlGk9ViqLYsOmo1et49OgRjh496qZU3pKDvQVODhxn2/RVVhQcPXYMN2/dwpEjR7w6+9ADuYvwY7VadVMahCAZMD7pByLrYy4S4kUlugKlXumhRxJiMeiswsGybdia5ubpJMklCh1ERI2Hb5/Xr/TZJbMXKLKMKlyBUEOP9gjR7VK9urqKS5cuIRaL4YsvvkAikQilzB6mu2DzM/Q3aUfeV6EffwmGKBcjP9bX16EbBqaGlFLg8Nsot1oGDdOEKAjIjY9jnln61ms1t1nU8rLXLCoWi2FychK5iQmMjI564kJ/OaIS8BTwl/l1C378KCFJEmKqCk3XodXrEAWhZXqXj4UwEQyDd7CUpIa14fadO5Bl2RO/v40c7DFwgYjD1LKA+8UfPHQIjx49wq3bt/HJ2bMAelRgtxEm+k0+UhHYeQaRTCaxsbHhLuamGd4LnT3Uwc8qCALirNTRYHoEwzC87nG1Wg0SIyWKLLf8PGF8IEpbW6F2yFGCEAJZFD2r1r5SSk3Q7WT2/Plz/Pzzz5iYmMAnn3wCWZZDL3DDaB3O0Uxz4PS5FEfeV2GAeoF+sfjiBWKxGEZHR4d6XkGSQHS9ZRkepRSGru8oX4wnEphfWMD8wgJsx8HK8jKWlpawsrqKZyyqkM1mMTEx4VZAMEO2Fidx/+7y+xkU6VVVFTZrxFar1ZBMpdpGxghrYtXqyi3L8si8Pw2zVS7j+fPneO+999yfUwp1wAZsg8AbTQ4AZmRhGG4ZG1PBiqKId48fx5UrV3DkyBGMjY6GH5CBQd5s8NiW5TVSisdioXwFuoUky+7AEwRslkqY6FQ/7YsWtANXFquq2uh5zkLylmWhCncnrjCi0MxmutUCxo1cOjnFDQKyosCwrIGQg7CgdLt50oEDB3D69GmPaIWeEne9WqE/7MlqhQEsSNRx8PLFC+ybnR2s+VYTCCwk3qoBk2kY3oYoqMHhz71pmognEjh48CDmFxagaRo2NjawvraGR48e4cH9+0gkEl6zqFyrZlFc+R/GF6GnTxsesXgcVqUCh1Jo9XpDkzsAO6+zzXXzqIE3B7LX3rx5E/F4HAvz89vnfUsO9h5UthPWdd3zxyYADszN4cH9+7h18yY+P3++9xMEBg+lrrc34LLJQTFGx7aRTCZRq9VQqVYxOjLS+sEEmkYLOkFgauNYLAbbtmGYJnSmTdBNE7ppurXRigKVkRXe3rrVA1WrVmE5zlDFiByqorjmKANILYSZ1BzHwdWrV/Hs2TMcP34cx44d62lRGm61QpPz97lL58tVVCZIkSwoA4g8LK+sQNN1zO1CfbsoigAhcJgmIDhWguWLjuPAZBsAm5kVAQAohSTLiMsyspkMJvN5AK6Oa2V1FcViEcVCAU+ePAERBORzObdUcmqqsVNsyCiCt9kaUDRIYCneKutsq+t6Q8jfv9kj7LqbjXfHcTwzOy9q4DhYXVtDoVDAmY8+8koyCSFvIwd7EaqquqV/uo60P/QuCDhx4gQuXrqE5WIR+T5ygv6dcpUJEAVB2MlKI4TjOFBVFaZlwbQslMpljAZD9ZT23E45CFEUEWfVDLZlQWdpB5v5pOu67pZQMaIg+nqv+1EulwEMvuFSMxBm8kIphW4YkfZa6KR295onra7izJkzLdu2hlLN+yfagaNJ2LWPts28ft09dETXv0dTCi8WF5FMJDAy5JQCsC1IBHGbBxHfxsGyLFDbdv+wzYzNLI15hFGRZciK0tIUSRRFt2Pk5CTw/vuoVCoosAqIGzdv4pdffkEylcIU6/8wPjHhapYYUeFtj4PwE99Bpc9EUUQsHke9Xoem69tiwoB2pZ0JEk8Ziz67aQfAzVu3kMlkMDs3B953BngbOdiTkFl+3HEcWH7lLqWYnp7G+NgYbty4ga8nJnr2H+ATusaMjgCErqftFY7jgMCtXNjc3ES5XMZINtuwa++230FYiJKEhCQhkUjAYuzbYDsOm5VHCoLgahQUpSGtUq5UIA2YOLWDoijuDilictAO1VoNFy9cgKZpOH/+PCYmJlq+NsykOMzIgdAkrdDPpO15HHThvtkJlLl57iXYloVXL19i4dChIZWc7oTAcua243hdHCmlqFQqXpt4IgjedyKJImRfBLAbpFIpHD58GIcPH4ZlWW5UoVDAy5cv3WZRkoRcLudWQOTzHZ//QZaWAm4qgLum1up1pJJJt5ldMKXQBNz9kR+H49XLl1hbXcVnn3/e2NaZkLfVCnsRPIder9dhmqYXbuN4/4MP8Nvf/AbXrl7Fhx991HN9v2Wa3gOXYANtUHD47ksQkE6nUa5UYBkGKsx1cJiLhyRJbuMnuu2hbpgmLNuGadvQmDOZoqpQZRnlchnJIZkfNYMiy6gRAstxYNl2ZG2cWy2YGxsbuHjxIgRRxFdffdU5YhIinDpMh8RmE2Q/k/ZA+ipEcKyon5Xi8jIM09yVlAKHKAgwCfEc/EyWFqxUqwCliMfjIIQgpijeJioKSJKE6akpTE9N4RTc0uVCoYDlYhHXr13zPE4m2WtGx8Z2VEINY+6Kx2JwbNvr4phMJhvGJddtBJ9Hy5eq4XqNUqmEy1euYGp6GnmWeuFQFGVP6WvC4o0nBwA8cqBbFmKBxWB0ZAQfnTmDn376CRnWJrVbUJ/RkTKE+n3KGi4JhEAQRddSeWMDW+XywFsgtwIhxBUpyjJ4IxfdMLw20vVaDXUAG+vrSMbjsCxrV8yICCGuIRJLi0gDNKZZWlrCjz/9hCxrnhRZOdMQ0wqRaw64QO41nCy7weLz58hms0NzAQ2CMldAXdehaZo7JxHiRvUAKPE4spnMUBatTDqNTDqNo0eOwLQsLC8vo1Ao4MXiIh4+eABJkpDL55HP5zE9PT20EDwhbpOmSrXqijB1vfHc3P0x8L6gEFE3DFy4cAGJeBxnzpzZbh7FnpPXsYwR+BWRA8D9UqksN5SoUEqxf24OpVIJv/zyC1LpdHuHuiZMUtM0z+gorPtWP7C42psRnXQ6jc2tLRi6jnK5vCv5fD/8FQ92IuE5qFmmiVKlglQ2i1K57DFvWZIgy/JAoy1+KKwhlWmawIC+r4ePHuHGL79gemYGH585E/qzkRAL7zAjB01LvfqIHQwkcrDHYFsWlpaW8M677w7tnJRFwizLcn1KWKthyzDgAF56T5ZlyKqKVCKxK7tZWZKwb2YG+2ZmALitrAvFIgrFIq5du4arV69iZGQE+VwOuXweo2NjAx0rXHSt1eswDAOKqnrna3ZW27a9SAx3Xf3h4kVYloXzX3zhbXj816y8hnoD4FdCDkSWSzNZL3GZNxjhNf8ATpw4gXK5jB9//BFff/01stls84MFJm/qOF4v9Hgs1mdLmnCgzLeBD0CBEGQzGbfMaHPTDY/tkZ2ZIAgeUbAsC7ZlIcnCmZT5sZumCVKvgzCdgixJkGS5K1vobqAwW1ebTaZRRDD4qKCUes2TDh8+7DZP6mZyC5NW8F46jMhBk3NEoDmIrFJhD4oRX716BdtxBtqFj1LqjV/+h+tV+KZHEEVILKSdSqdd0yNRbFq+uFsYGRnByOgo3jl2DLphoLi8jGKhgKfPnuH23btusyjWKGpycnIgu3BVUbzukTuiB2gcY37TIyII+Pnnn7G2sYHz589v6ygC6Yi3kYM9DlVVXSGabTc4hhHf3x+fOYPvvvsOFy5cwB/8wR+E+lJ51EASRbexBlP7DhLceIP4DJ4y6TQqrCHTxuYmxsfGBnoNYcGFZ5RSN1cHIDsygpFs1jMksUwTJlNQ67YNwzBcQY8geFEFSZIiJTyKLEMH3NRCFBMlm6x/unwZS69e4YNTp3Do4MGeDhVWjLVrjZf6UR3s4bRCVAr5xcVFjI2ORiq69ZMB/rf/Wiml3vPCdUCUUpTgChIJIU1Nj/YSVEXB3Ows9s/OwnYcrLGywEKhgMUXLwC4aWBu6zw6MhLNM0DdVtK1QPQgON/w3iyA65ny6OFDPHv6FB999BHG2/jMvCUHexyqqqJSqUA3zZahf0mScO6zz/Cb3/4WFy9exBdffNE2HOyPGgyzVMXxRQ68CYIQjIyMYHVtzWvn3G3/8kGBT7q6YXgPIt+9SJIExGIeeeBkwWKlVrptQ2dkQRBFL6ogM//2XqGoKnTThGGaiEdQ1aHrOi5cuIBSuYxz585hamqq52N1WqT83/ngEa1DYpSRA+7pH9l9iKC2Xtd1FJeXcfLkyb6OQyn1auktPxngviWsXFqSJIiSBEkUvTSjB07EKIVpGN6mYk91Bwzcc06MRUHA2NgYRkdH8e6770LTNFerUCzi0aNHuHP3LlRF8QyY8pOTPWm9+PlkWYbYJnrgOI7XYEkQBKyurOCXX37BkaNHMRcoS3Yobehn8bq1aub41ZADhXUa5G17+aIfTAMk4nGc+/RT/O6773D16lV81KaCwR81kPkDRwgI7d/rvR1s225apphIJqGWy3A0DesbG55hyV6BrmmgAGJNmDQXCsqyDMTj4N3OeFTBZjsm27YBXd8mC4woSF2SBZm1cbbZBNwPkSqVSvj93/wNHNvGVyGbJ7VFh0VqmJqDZvd0r2gOCCGgERKkKMrnll69AnUczO7b1/V7+QLE9QJceOxPI0m+yMAOMhAA4V4HgFdJNcxmZ6HQZJwTsDJsQQBl+f1YLIb9+/dj//79cChrQV0ooLi8jOeLiyBwm0VxspDJZDrOB5Q7NzIEowdBV0seNdB1HT/8+CMmp6Zw/PjxHccVA+d9HT0OgF8ROeAiOcM0YfGSRvhqUX0YHxvbrmBIp3H02LEdx2sXNRikgQeFu6CB5RSDGB0bg1EooFqtolavD0Ug2Qm834KmaV7kIMx7ePUDsO1IZrLaZIcRBdu2ocGdUESfXqGVeYsfqqKAstLLXsnBysoKLl26BEVV8RlrntQvOi13w4wcRK05gBNxX4U9hsXFRUzkcqEc8bzIACMEDosMOIBnFsSjAjxC0C0E5n5oMa+DvRw18EMgxEuHBOdSgRCMj49jfHwcJ06cQL1ed50ai0Xcu38ft27fRiwWwxTTKeRbtKAWBKHh2MHoAfcm4BsV7iL5048/IpFI4OOPP25qHR/EW3LwGkBVVRiVCgzT3H54faJEP/bPzaFcLuPGjRtIp9OYZupajqZRAw5CIKCLTo9dgLuboYWJjKIoSCSTsKtVrK+vI9HDDmYgEATomgaJ6Qe6f7sAhXWHBJiY0Lbdfg+m6e26LMsCNM0lJKzzmsRczERRbMgjKooCjbW9pkwk2Q38zZPOnDkTbRonsKvZ8TvsXrVCFGmF3TIGaod+r6heq2F5ZQUfBlrBU0phO45HaB1WZujND4wUUEJc7ZIvVdAvASSC4OpqRLFtw7TdAO982Aq85XSnzVY8Hsf8/Dzm5+fhUIq11VU3qlAs4umzZx6ZmGRujel0uuUxg9EDfh26rsNxHNy8cQOWbeMLX2XCjs+F7bEkK8rQqrCixq+OHGwJgmsVynKV7foAHD9+HOVyGT/8+CO++eYbr4JhN7QGFO7EyrustVPyj2SzqLHe5aVSCZldNB3iIHD93KMS5/DFXvWRhQZxo+PAphSWbcPwXQPYBCyyHK3DfOQt09xJ8lqAUoq7d+/izp07mJ+fx6lTpyKPFBHSurNlV9UKrUhGO/LReCUtr6/9aal3v/n/+1v9RqU52Et48eIFBEFAPp+HpmnbJIClB/zpRn7toi9NEAUZCIITEiIITdN5uwaWfm3/ku0NEO9T0AkCIcjlcsjlcnjvvfdQq9VQYP0f7t65g5s3byIRj7uixslJ5HK5hkU+GD3gBMWyLDx4+BDrGxv44osvEG8WIeSpEN/n2lORmi7xqyIHnoqXCd4a+o9j5zRIAJz56COvguGbb76Bqqrtowbem6ONHvAHw+GTaxtyIEoSstksNjY3sbG1hVQqtSd2DIPshuh5nLMJkKccbMdxc7hskobjwKAUxDRdUxjDgKHr0HQdmVTKLf/yRRmCiyB1HPzMmiedOHECR5lp1rAXqmC+tMWLGv9u9fsezh3m83Kvfu//eUqBkIZ8uHctvvLiXUEXC7O38Ns2LBYVePbsGcZHR72Ng58IiIIAwUdKRRbVGnRqyDBNELgam70wBwA9Svgj9wAAnEFJREFUpl1ZmqXb9yUSCRxcWMDBhQU4joNVFlUosGZRgiBgYmLC0yokk8mG6AGlFJZp4uXqKl69fIkPT5/GWItKMCFovwxXB/a64ldFDgBXOaprGkxfCVu76IFXwfCb3+DixYs4f/58+KhBROJEvvPg/wbaRw4A15WsWqlAMwxsbGy0LbUZFnRdH5oGwt8QhYOXg/mJg9eWWtehK0rDbpcQ4k3ioijCcRxcvnwZGxsb+Pjjj72202F2NFGBe1ywD9S3ur4Tmve77+3zBsWIOyb6FuI09x+kgcA7jjOUngqURessXzqgISXArrter2NzawsnT570Fn9OBkRB2BWNhWWaAIuM7SUhYj9EmvfJ6fW9+Xwek5OTeJ81i+JdJW/duoUbN24gmUxiamrKc7e0LAubm5t4/PgxDh08uKMywY9mn2s3mm5FhV8fOVBV1AXBa5AUBol4HJ999hm+++47/HT5Mt45etQ16wkTMuqzPGpHP/awYjRe2ri6ii2WWtjt0katXt/Vh6WhfJIhnUpBFEXohgGZ5Xp5ZQS1bZjMea5er+OXX36BYRh4/4MPkB0ZQa1Wc01l2MQvtNCBtMKOVro+MRr8fwfe4/88g0aUPgf+yEHo93j/oA3/73UcBBoIHXhUo8t7w1N2hmVti11ZRKDh0/rIPte0iIKAly9fQhRFzC8s7BmDIU3TAKbVGU7Zawh0MR+2su4WWNVZr+fnz1AqlUIqlcKhQ4dgWZYXVVh69QqPHj2CKEmIxWKoaRrGxsZw/MSJlocVmqUBCcHYHtiU9Yq9MYqHCFVVQUURNqv7FXy7xHaMdmx0FB999BF++OEHmIaBj8+cCXU+0mqXFAItH4CQx4onEq6FseNgbX3dba+6i9BZ/XDY/OGwoKqqVxrqj2zwneL6+jp+vnIFoijio48+Qjwed4WQrPbcyylju1Uu3y3y/hc8fyoIAkRCPL/2puOizQTqL2PcNXLQ47zsRQ6i2EXz57bJRXHi4P7YNSWjbLHn35dDXY8E/98AYFhWw0RPHWc7CsDIACcFxEdIXr18iampqT1DDEzWTh2s6qfX3Xbk6HLw7CDQYCngXivC2kSIp6amMDU1BUopypUK7t69i8LSEiilOHHyZNtx6z8qj0Sn0mlIeyhi0y32xkgeIgghUBQFtmHANM0Gt7BOAy6fy+GDU6dw6+ZNXLh4EZ+dO9dcmBI8J9xe391M5U6LvK63OIRcGEZGR6HrOmq12q6WNlJKoem6a4CE/uvJo4Qiy6hrmitk9E1GgiCgWCzip59+QjabxaeffgpVUVwdgy89YbBqCS6CBIC2cSlGEgSWexcZoRB8fwuC0JQkUN8xhoIIqxX4AhUFOeALusNC/DsWfb7gB9N6rCqAsOgCtW3XK4GV20q+VIAgCBAlqaN4slQqoVQut91ZDhXsWeOeInxc7zZ6WtBb3HvHcXaUIoY6VojXE0KwurKCF4uLSKXTyE9NIdmmoV2rufh1TikAv0JyALi6gypT8/vJAVdSt5oKLMvC+Pg4PvvsM1y5fBm/+e1v8fnnn3c2vWHixLADmXbx2k5QFAXJVAp2pYL19XXEpqd3RZjES4F4Celeih5wpbjB9Ae8ouLhw4e48csv2Dc7i48++sjTMAT1DNyxkmsY+MLEf+4tYOx3YK+14U4sZpsweJA0UFZrLfpTY4Q0RBL8Ku9+0fwo0aQVgo5/fgEfFzMGd/d+EuZ/f6ur4mFogRAQUfRSP35yRhgRIIBn8d0NFhcXIUvSnjEdMwwDjm2DYG+RA4e2L11shlavFwSh+1EYRkRLt3ujzO7bh3gyCVGWdxgbBa+x2ZFbCRdfF/wqyUEsFkOFkIa+3EB7YSLgThwE7pf+9Tff4OLFi/j222/xydmzO3wQggi7W6Zwy4867Qy7echGRkZQrVZhGgbKlQqyu1DaqOs6gG0R516LHqiK4pY9GgZURcEvN27g0cOHOHL0KE6eONHy+/DC1mwcNRNCBl8f3OX6w93+xRBgqQ3L8s5v2TZq9fq2yK3JmPXGs/s/jT9ji2PD75r83jufYyIGFRZsUFAQEFfAKekNizj/bAgu8j79RLVe94ysNF1veJ8/RA/A3c1zhbrv5wB7Rlj9O1/gBUGAADQSAFF0f9YNGWZRBX7ejosqpXjx4gX27dsHshfq2Sn1njU1FvNIz66TgxCli10fkh03zGcLo1OwTBM/Xr6MwtISjh8/jtGxMayurUFWlAZX3SCaHVWSZaRbNe/rAbOzs3j58iW++eYb/OY3v2n72ps3b+LUqVOwbRv/9t/+W/zxH/9xT+f8VZIDSZJAZNkVnFnWDiVvs+iBzYRJfAGQJAlfffklfrp8Gd9fuIBTp07h8KFDrRd1NiF3GsidFNi9POSCILiljRsb2NzcRCqR6MltrR/oug4Q0pjG2UPRA1mWgXodmq7j5o0bKBSLOHX6NBbm5xvFbk3e28034tcetANfWC3mzMbz5oS5e3qNYViYvN0izU7sP3jotIRFbSRoEjZ1AOomFPSahjpq3gIeCtR1maOWBaoonl+HP4rgERYWaePljt7i70+5sM8Qte6Ck9agRbVHUhynwbJ5fX0dlVoNp1nlym6DR+gIIVBluYHo8VD8rmCA5KTTPEIpRadZpl6v48KFC6hUKvj000+RSCRQ1zSoigKBEFi2jWby81apjWzEKYVPPvkEf/mXf4mff/65qQ7Dj3/0j/4RbNvGoUOH8A/+wT/o+Zy/SnIAbJc0WgFy0Cp6wJtuSD4hkihJ+OSTT3Dz5k1cu34d5XIZpz74oOVOpdNu2Wmx+ATBSUo38Jc2bm5tDb20UWc7RX/5516KHojMEOna1auo1Wpu86TJyR271mGB7+6DAjfZNEEphSiKSKfTO9/o260HQ/X+33th+w6/ExwCCxYc9h8FIEiCJ7TyRxoI2kcrbEZa0ul0QxlxLwv8wAR2LZ5/v2W1P8qx+Pw5YrEYJvaAKp2bs3GtgaedYd+NQyn2htNBFwhBQGkHF8VO42tjYwMXL14EAfDVV19BluXt1syKAl4C3fTcLc45GjE5+PTTT/GXf/mX2Nrawv3793GsiaU/APyX//Jf8D//5/8EAPzZn/1ZXyZMv1pyEIvFUBcEGLqOeCzWMICaCQh5fleW5R2piPfeew+pVApXr15FrVrF2U8+aV42SAiEFiw2rM6g52WKEIyMjmJ1ZQVbpRLSmcxQa581TfMiLn4IguA6uA1LYNcElFJslUr44YcfYNs2PvzoI0xyYhDuAIO5sECo3f1nB0Gqb/GK4o46jo0tbHnkAACUuIpkl+Yu3AgIQN/tt3edULLvwLZtLL58if0HDrhum0PwXWgH3TDc6gpCGp5tgUcPdonk9pXSCCkgbH+I1jvtV0tLuPzjj0imUvjss88gShKq1SoAd5xalgWw6EAwtdC0fJFhNGKy+Omnn3r/vnz5clNyYJom/vE//scAgC+//BJ/62/9rb7O+doRyaigqioEttBzUyMPTQaSxZikJElNf7+wsIDPP/8cK6ur+Pbbb1Gr1ZqfuJX6tgUzbYkeJqF4PA41FoMoilhfX+/6/f1A17SW1sm71YSHwt1NFYpFfPvtt1AUBWc+/hjJZNKLFIXCABeE3a5OF8jO76aXagX/Tr/v0PYgQ9RdvPbFy5cwDAMH5+e9BUjgKZEhL8TUcbyup2pgswN2v3ejnLFvh9gunq1mVSWtIlOUUjx48ACXLl7ERD6PL7/6ynO/BbZtj7k3CoCd0YMW15ZKpSK3TT5z5ox3HT/99FPT1/z7f//vcf/+fRBC8Od//ud9n/NXSw4IIUixsKyu6zvYrf9r9/QGQNtc/eTkJL755htYloXf/Pa3zRdgNoH40c2Oo9tSxiBGRkYgEoJavd6awAwAmmG09HYfZBfLIHiEhlcVPHv2DBcuXMD42Bi++vJLZNJptw8EE3WFO+jwFquh7/2ajbMePq83biMgBnulZv/x48fI5/MNZW5eWoY0VpAMGlzTIwnCjoigwK5jEI3gOqHfT98NyaJoHF+t5hWHUly7dg03btzAkaNH8eknn0AURRim6UUxY6rqOmH6ojB+ctBuzsr027K9CeLxON5//30AzcnB2toa/tW/+lcAgL/7d/8uPvzww77P+aslBwCQSKVAJAkO6+7nh/+h5rtIUZLcwd5mwGYyGXzz9ddIJhL47rvv8PLly50v4mpxNOaFhwFe2igKAtY3NoY20eqa1rKNLUFExjgtwO+xV2rIKgxu376Ny5cv48D+/Th37hwkWfaiG6Zpep4FHY8/sCtvdrLt3PduoZcRG5XHQZRlmv1gc3MT6+vrOHjwYPsXsu+LRxQGQSQd2/Y2OM2eMV6xsBtphb7R5XfN9Qfu/zTRjpkmLnz/PZ4+fYpTp0/jBKtE4pEXgOk1mE0zodRLEVt+ctDmGkYGVMLIUwvXrl3bEcX4F//iX2BzcxPJZBJ/+qd/Gsn5ftXkgBCCGMudttspcr1BQy+GNlBjMXxx/jxmZmZw6dIl3Lt3b+dAZfmqrtl8QEXdC0ZGRiCJIkzDQKlc7uNI4aG1SStwRDl1BUsG/STIcRxcuXIFd+/exckTJ3Dq9GlvxyGKIiRZBgFghIgedGo7GzX4PRrmOYORrl6iPFxN3m83xoEvbyGv7/GTJ4jHYpiamup8SGwTVK/8EgAiIuZ87pJEEXKzyCZPKwyTHERE4Lq9Yk9Q3kQPUKtW8e1332F9YwOff/455ufnvd/pug6HCX0VRXFLjFnEWFYUL1JgM5+SVs+AxJreDQKcHNRqNdy6dcv7+e3bt/Ef/sN/AAD8yZ/8CWY6lNWHxa+aHABAnKUWLMtq2m+BYic5CANRkvDxxx/j2LFjuHnzJq78/HPDAkXQg84AiIT9C4KAbCYDURSxtbW1I2oyCGj1ettGVVHsCCm2a+B5dCB4t0zDwN/8zd/g5cuXOHv2LI4eO7bjvDz9wZXfbTHoXayvFG23ELRQ7ilyEFFaYeDppxDHN00Ti4uLmF9Y6GnM+lMs/U7Ajm03VCg0gwB4u+OhIaLvqZeRT7EzHbG+vo7ffvstLMvC1199hYlczvudzfxNAObDQoi3MyeEuWaycWtbFoQ23TSz2ezAoqB+UaI/tfDHf/zHsCwLs7OzniAxCvzqyYGsqlDYolVnYSUO3sub7w679U0nhODEiRM4c+YMnj17hu++/RZbW1sA3AlCEMVdE5yl02lXNEMpVtfWBnouSik0w2iZVuDo9V7wCAzXEbSalvjOoVwu4/z585idnW36OlmW3QmAuRG2P/ngd2P++7IbkYPg2XrqE8K7ie7xyEGYq3u+uAjbshp2nr2Ca5m8tEOX0DTNm5tazU98sdp1I6QhwV+t41CK+/fv43e/+x0SySS++fprT2vGoTEhp+y7h1YgDcarFGzbbnsfB2mZfOTIEc918fLlywCA//pf/yv+23/7bwCAP/3TP0UihJ1/WPzqyQEAxJmgyGKCFD8sywIo3dYbAF0vCPv378eXX34J07Lw13/917h58yYMFo3o5MoYBJ9M+gYhyE1MQBQEaJqGzc3NKI7aFAYrsWq1s9m+pO53yX6b4nbgOwdKKb766qu2Pg/cQAaEdCdMHBCCnRvZD4d2/mDFQi+RgygEiZTSwe9+Q5TFPXn0CNPT051btncBv3V7WH2AbVkwTLNt1ABgZlIYTlpht/UgnlCQEGxsbOC3v/kNbt68iYMHD+KL8+ehBO4Tb6BGgIbv02GupGKAHHS6h1GXMAbxySefAHAjB5Zlee6HZ86cwR/90R9Feq635ACAHIt5pi5aYDHglQQN1pk9PADj4+P4g2++wTvvvIO7d+7gr//X/8LK8nKjqUpI9GKC1AySLGNkdBSSKGJ9Y2NgC6EnlupADoDwxkgOy/+F2Q29evUKf/P73yOdSuHrr79Gqk0TFQ41FgOo61C4o222D3QYk2GTzzjMKTj4EXtZYnjkoB9y0G1L7EFgbW0NW+UyDh46NNDzkBCRBE3XQcB2vG2sm/3i50FimFVHrcBdRa//8gv++je/AQXw9Tff4OR777nRwMYXb5cuqmrD723Wm4L/jM//Xn+UJkgkEogNuLEdTy3cuHED/+7f/TvcvXsXAPDnf/7nkT8bv1oTJD+ILCOmqqiYJgzDQDwe94RTzUoHOQvv9ssQJQnvvPMOJqemcPXqVfzu97/HwoEDOPnee665UohjRP3opdNpaJoGp1bDyuoqZgbQmIk/gGF2WnxSDE4yzVz/OoFSikcPH+KXGzcwOzuLM2fOhP5sgiBAVhSYhgFd11t3sxzWZMh2Q7tiZBO8lF4iBzxM28d17IWg+OMnT5BKpZDz5awHBX8kgetpOCzLgsWjBh2eK6/DJwZroTwIYtAt4SgsLeHqtWvQNQ3vvfceDh8+3HIzpxuGdz+CkRcuRuSRA6/xWZtridoyuRk4OTAMA//sn/0zAMDf/tt/G+fPn4/8XG/JAdhCEItBYnbKuqYh7lsMmg6tHlmaQymymQy++vJLPH36FDdu3MBSoYD3P/gA+2Zmwh83QpY4NjrqNtMxTayvr2NiYiKyYwPbqv9ejEH4o9htSJQ6jts86dEjHDt2DMePH++azMUUBaaPMO7anpW4/QX8xGi4O+jGxcSh3YX2G657t7z9I4Cm63j54gVOnDw51PPyeydgmyR4O15Z9hawdhCwXTUxEAyKuIY8pq7ruHb9Ol68eIHcxATOnz+PZCrVMg3l2PZ26SITIfphszJGjxyg870bHUIXxk8++cQjTKZpQlVV/Nmf/dlAzvWWHDAIrMbdsizouo5YE0vlfsFzplyZv7CwgKmpKfzyyy/44YcfMDU1hdOnTiHeRlTSrwlSM4iShLGxMayurKBULiOeSCAZobCF5/SaWko3gdcRj1Ud9HK+n376CYVCAadPn8bCwkLXxwDctIvI7J15t8bdgncXdkFzEKxW6HYPH5U74jA8Odrd1WdPn4IQggMHDgz8OpqB33XLNGGz1tJhUnXA9nwxMHIwoON2au5FKcWzp0/xy40bACE489FHmJ2b2xYlthBjaroOClfI2Wxesm0b1J9O7vC8CYIwUDEiRzabxTvvvIM7d+4AAP7hP/yHPc9vnfD60viIQWTZU6n7LZWDi/COSboLNNMKxONxfPLJJ/js3DlsbW7iv/+P/4FHDx+2rIEe1MMdj8eRTKUgiSJW19bcNsERwWEh8VCExicw7IUYaJqG3/3ud1hZWcFnn33W14NDCHGjHYR4pU47Lrfno3eH3XxQd5CDrq05oiljHAZaaUgcSvH4yRPMzs2FJrmDAKUUdU3zXPzatQdvwB4wjuoF7a66Ui7jd7//Pa78/DOmp6fxf/vf/3fM7d+/c84OzCOWZXlVSK1SMrzMnHcD7YTMAEsYg8jn8wCAXC6Hf/7P//nAzvM2csAgyjJsUYSqqqjXatB1fcdO0V9Z0O2jRimF06bB0PT0NHITE7hx6xauXbuG58+f48OPPmppqDGIsPLY6Ch0XYem61hZW8PU5GQkxw1jFMRDz/y13DWxm6ZMpVIJFy5c8CoSojAj4X7rlmU17+k+LA0AG3u7IfjaYffdY+QgTPh7t9FqpC0Xi6jXagPbpYWFputu9FEQvHA4L7lu95QQ4LUlCEHYjoMH9+/j7p07UONxfP7558i3mat4h1OH0gYRoqooTckVdRxX7AxAkKRQo31QrohB/PTTT/juu+8AAP/yX/7LgRkuAW8jBw0gsgyVuWE5tt2y+Q4Furf1DCFglGQZp0+dwtfffOOWPf6v/4Vbt241llcOcnEgBOPj45AEAfV6HVulUiSH5ZNZy9+DsfsAiSBA6J3R8vIyvvvuOyiyjK+//jqyh4YLEwnc/hBBDC33z+6P9+0Pc6Lv0yGR5337uVe7LUZ89PgxsiMjkbfi7QaWZcFglT9xX56cgkVlhk2+doFsrK2v47e/+Q1u376Ng4cO4X/7wz9sSww4eBTSMAzYtg2BkJYpGV6pQAQBcrP5J/C5RVHEZAinzCjwJ3/yJwCAkydP4u/9vb830HO9JQc+CKoK+AaNHjBFArZZaDfotj57Ynwcf/iHf4jj776L+/fu4X/xskffpDyox1JRFGRHRiAJAtbX172+5v3AobRpyI2nDjrdm06f1d886csvv2wQk0YBlaUWTGax2oBhRg78TWWGc9am5+q2WoHfs77CrkOMmATPVK3VUCwUdjVqQMFM2giBrChe6fUOsMqEZgQu0jEz5MoZ0zRx/do1fPvb3wKE4Kuvv8Z7773XthGeH5yY8lJ1lfVPaAaLVSoIghDqM+YmJ4eSavqP//E/4ttvvwXgdmAMnVLqEW/TCj6IkgRHUaA4DjRdb2qnDDDBXLedFLtk2ZIg4Ni772JmdhZXr17F73//e+w/cAAH9u8f+KDIpNPQ6nXU6nWsrKxgemqqr4k9GDWhjgPKJrBOd4UAbj/1JgSCUoo7t2/j7r17WFhYwKkPPhhIXluWZYiiCNuyYBpGw45jmDvaYFRlWNhhgtTlouA1XepnpznEhSh4lU+fPoUoSZhr4ag5DBi67uXB451Kgll1C4AdAtZI7uKQicHSq1e4ev06DF3Hyffew+FDh9yywi6Po9XroHS7f0Ir2LYNMNtk7761+LwCIZgZ0Lio1Wp49eoVyuUy/uqv/gr/+l//awDA3//7fx9fffXVQM7px1tyEICgqhB0HYqiwNB16IbRPFfKF7cQE15PeWJCQChFOpXCl198gadMkbu0tISFhQVXADOosB5LL+hLSzAMAxubmxjvI6fm75TmlbWFIAbe5WBnvTNvnrS4uIiTJ0/iyJEjAw3xq6qKmm27NtAhFeJRg1dx7Da6jhxEYIC0W5/boRRPnj51SXmX9umRXYPjNHiFhLqPXK1PBtBTYUjEoFKp4MbNm3i+uIh8LofTX3yBRDIZ2ijND9MwYJgmBEKali764bC0ww7TJAb/O0fHxyO1LPbjP//n/7wjdXD27Fn8+Z//+UDOF8RbchCAKMuwZBkxx4Gh6zANA2jCMgVCQrX07UdARnxsf35hAVPT07hy+TLu3L6N58+e4eixYzhw4MBAIgmiJGF8bMx1hNvaQjweb20E1AG8SqOfUjS/8ZRhGLh08SI2NjfxySefYN++fT0fNyxUWUYNALVtWJbVdZ+NyLAbpYw7zvXmChIBNOyMX718CV3TsNCpNfMAUa/XAWbCE7T/7QSuj/KIZb8L+xCiBptbW7h39y5evnwJUZZx5swZzM7ONsyH3cC2LPcewnVC7PTsGqYJh9K2rpMc++bmurya8Pj5558BuBuT+fl5/J2/83fwT/7JP4k8bdoKb8lBE4iqCpimm9fTNJcg9MgOo3iMOFOOxWI4cfIk5g4cwKuXL3H12jXcvn0bx44dw8GFhch3NolkEnVNg1OpYHV1Ffump7s+B7cz7VdlT1jNcblcxoULF2AYBr744guvEcmgQQQBqqp61Rwpfh+GXD3gmQkN8ZxBI99uqhV462zg9ShlDOLxkycYn5hAOtCsZ1jg3v+UUiRYe/muQch2KXE/pDJkKrBXrG9s4O7du1h69QrxeBwffPAB5vbvb7jmbqMG1HFQq9ddTwNWjdbp9bzMsZOvSXZkBJkBVgv8xV/8Bf7iL/5iYMfvhLfkoAkkVYWtaa6lcqUC0zCa1twL3KynTXohikXRfxyBEKQSCXz04Yc4ceIE7t27hxs3buDe3bs4fOQIDh06FKk4ZnR0FLqmQTdNrG5sYLIL21jKPAt6sZpuhrW1NVy8cAESq0hI9jpZ9ghVUaDrOky2sxAI6WjSEjU8c5fdNEHq4vNGYYA07PJNnsLaKpexsrKCjz/+eKjn5+CeBoDb66NVmLtbCKLYdbt4CoAMiBisrq7izt27WC4WkUql8OFHH2Fubg6CIHjzB9A9MQBcESe3SE4kEh3tmG3LcstCBaFjhGGQUYO9gLfkoAXEWAxgde0GXHvOHa6BTBfQlo13IVxsBwGAA3f3ReHW+iaTSXz44Yd45513vLrfe/fu4fDhwzhy+HDXIcim5xUEjI+PY3l5GdVqFZV4PFTjIk4MAJeN92sQ8uLFC1y+fBmjo6P4+OzZXcn7S6zBDS8pi7HmTEPFnuitEB59VyrshrcDO9/Tx4+hqqpra74L0FjZImni/d8t/N8hP2Y3WoRuu8d2AgVQLBZx9+5drK2uIpvJ4OOzZ7FvZqYhwuQ/Y7ebDF3TvChAIh73jtuSIFDqVjMQAkWW247ZZDKJsQF3YNxtvCUHLSCpKsxqFfF4HPV6HfV6HVYm05CHInAXbABNWyn727D2DUZEBF5K6RvciUQCH5w65ZKEhw/x8MEDPHjwAIcOHsThI0f6zlGpsRjSmQy2trawsroKVVVbRid4GNn/8IUVbrY63v0HD3Dr5k3Mzs3hww8/hCgIQ2k/2wyqqsKybeiGsS1sGua18Pu4i5qDbgSJfqe5Hk8+fEJECCzTxLPnz3FwYWFX0iG8xwsFXDIewfcdFLQK/DkKc38j+g4o3C6pd+/exebGBkZHR/Hpp59ianq6+RzB3FKJIHQ1h1iW5ZUtxmOxhnRoqwiEIAjee4LVDNxrhlvfT+9i5cqw8JYctIEcjyNu25BlGZZpolqtIpNONw5Stmg3G3DN7JL7AeElSoQ0bSOsxmI4efIkjh49ikePHuHhw4d4+PAh5ufncezYsd5zlgBGslnomoa6rmNldRVTk5M7JnzP8jgwkTiU9mTQ4jgOrl+/jidPnuDo0aM4ceJEdMKqHqEoipvDdBxX/TzgstIdYDXYw0QwrdBN46XXUW9AADxfXIRlmrvibcA9DQjbwUYifm0yD3nz0yAqGgJwKMXLly9x9+5dbG1tYYI1R5rI5drOkdxvoFudQb1WA+A2pgpGUJt9Ui6Y5jbpwfdwciCxMsgwxkuvO96SgzYQVBWkVkM8HkeFhZI1RWmoM24I1wX+fxALmMiMOdo9zIqi4N1338WRw4fx6PFjPHzwAI9ZOdaxY8d6E1ex8salpSXomoatra0Gtzh/GiEI6jhdK9VN08SPP/2E5WIRpz/8EAvz89uXAkAMWS0SNbinfV3ToOn6wMqYWoEKgpvKGiaCk3cX57f7rFTYDbtoh1Lcu3cPM7OzbZugDQqGrrvPEi+7iwBetLFVvX4POoQwsB0Hi8+f4969eyhXKpicnMSpU6cwHjYk32X5LqUUtVrNM16LNYmaEh7ZDIxr7oAqiCKUACGzODmQJMzMzg6tj8Ju4i05aANBECDFYpBrNSisY6OmaW6bVL5j9KUOCBpD6IOY1gRRDF3vLskyjh07hsOHD+Ppkye4f/8+nj97htm5ORw9ehQjIyNdnVuSZYyMjmJjYwMbm5uIx+NQVdXroNgK3aYVavU6Ll68iGqlgs8++wyTzVg6L88aQqe+IFRVhabrninSUBvx8J34ENMKQh+JsX6sk3kkatgmvYuLi6jVajj36adDPrPP04BSxBKJaCMu7Xbo/Bn1P1N9pHQs28azp09x7/591Go1zMzM4MzHH3dlP90LMdR1HRazP04yAeIO8LnDJ/KmAAwm/pQDKQVKqRc5UBQFU7ukQRk23pKDDhDjcUiSBEWWoTkOwJgp3337B5m/uYm/PXOUENjAbpZWaPkZRBGHDh/GwsICnj9/jnv37+M3f/3XmJqexjvvvNNVOWA6nYamaXCYe+Lk5GRHn4VuyMHm1hYuXLgAAuDLr77CSJtSoV7Uy1FAEASoigJN16Fp2lDJQWQali4Q/O660Xt47og9LHKEC36HCEop7t29i6mpqYGWqbUCr8cXJamti18v4JVVLeEzduO6oW7HmmlZePL4MR48eABN1zE7O4vPP/sM6Uymu2vt4Xs3TRM61xnE421Tfv65g//N36sGnmdODERBwMzs7O55nAwZv45P2QcEQYCSTKJarUKWZVAwsZBheHWwzYSIwGB2d1xzwB0Gu3mEBFHE/MICDhw4gBcvXuDuvXv47W9/i3w+j6NHjrg79BDXPD4+DmNpCZqmYWV1FZP5fNvP6oQkSYVCAT/++COSqRQ+++yzjjaxBPDKnYaNWCzmljVa1u6aIg0FfQgSo7BOHiJeLS2hVC7j9OnTQz+3aZqwTBMOgFTURjckXE8Yb7MjCCBdPFd1TcPTJ0/w8OFDmJaFA/v348jRo6Eqm5pB6FJ07Nj2ttGRouzY/bcCn5dsy4LB7PKDpMyybYBSiJL0xpcv+vEmz2iRQUkkvJp2WZJgWRbqtRokSXJzqb7wG48eDGrBEthuykHvu2YiCJjbvx9zc3Oecvj777+HGoth/9wc9h84gGwm05IoCIRgZHQUK8vL0HUda+vrmGiTQ6S0eeMlP548eYJr164hPzmJT86eDb3YNrNWHga4W51p29A0redJ8HVAcGEPSw4aPA56EG4O+zvlUYNcLofRIZlr+c/NGyvFVDVyoWtYauZF+Sjt6OFhWRZevnqF58+fY3l5GUQQsDA/j6NHjvSt1eBdWsO+tubrmxBGpxEsi9QNw91sSNKOuce2LIAQTE5NRR7N2ct4Sw5CQJAkyPE4tGrVM8ewLMtNL6RSDboDYLBhX8/ljPVvJ4T0XtZHCGb27cPMzAw2Nzfx7PlzPH32DPcfPEA2m8WB/fsxOzfXWApJKWzHQTwWw/j4OFbX1lCpVCBJUssUAGUlmK1+d/PWLTy4fx8LCwv44IMPug5Be/3sh7w7jcdiqFarME0TNvPEGBaGuRMP7jlpU733Tvj1Bj1pDrp+R38oLi9jc3MT586dG/KZmacB8wPp19OgJULME0IwTRrwQ3AoxcrKChafP8eLly9hWRYmJiZw+vRp7JuZCb1jbwU/0Q/7/Wua5rVhTsTjPY01XddBCdnhiuj4KrDmd9FCezfwlhyERCyTgVatwjQMpNNplCsVWKYJwzCgKMrQyuv8E63tOJBEEUI/BME9KEZGRzEyOor33nsPy8vLeP78OW7euoUbN25gcnIS+/fvx/T0dEO9cTKZhGVZ2NzcxMbmJmRJaupa6LA65SAs28aVK1fw8sULnHzvPRw5fLinB5sAu+J9IAiC26DLMKBp2nAdG4dKDhoR9jZHYYA0TNy/excjo6PI5/NdaXr6hWVZMJinQSweH9x3GyLCtuP37NndWF/H4osXeP78Oer1OtKpFI4ePYr9+/dHVrGzg+SH+P5Nw/DKD2OJRKiIixfJpLRRb0DpTnJgWaCOg9Hx8V2z0N4tvCUHIRFLJABB8CaNmKpC0zTUajVIsrxzUeMhuU4Oij1AEEVYTBy5fbru2ki3PLYgYGpqClNTUzBNEy9fvsTz58/xw48/QhAE7Nu3D/v370cul4MgCMhms7AsC5VyGSurqxAlacfOh7Iohx+6ruPipUvY3NjA2bNnMduvqUgXE0qUiMdi3gQVi8WGFz0YwLhqjYCfRZdphddBb7C6uorVtTV8+umnQyVe3NOAu/INTLvS4TN5C7PvZ3VNw4vFRTx79gxbW1uQZRmzs7PYv38/RkZHI4/UdRv98zdUUlUVcsh7J/C0Cft/HvkDITvSBibTIczt3x/6ut4UvCUHISEIAsREAnalAtOyoMRiMC3LG6BNOxb6KhciNUNif2zH8b5ALwQY4eIoyzLm5+dx4MABlMtlvGA7h2fPniEWj3v6hNGREVeHoWlYWVnB1ORkg4I/qDkoVyq4cOECTMPAF19+2Vc7aA6CbYvpYUIURcg8etDMYntQ4OmlIUWr/Ag7xrxWzcM2iuoB9+7dQyaTwfTUFKKv9m8NQ9ddf4EIPQ1aod0M5Ng2CCGwbBuvXr3Cs2fPsLKyAkIIpiYncfz4cc/4J2pSwKsiuhln3TZU4hCwna7ggm5d10EByJK0PU8xzYVt20gkk5jooqfMm4K35KALxJNJVGo1WJYFhZkhVSoVGLoOmbF+v+6AAp5KOEqCIIgiYJo7avy5GDJKgsDNjVLJJN45dgzHjh1z9QnPnuHZs2e4f/8+stks9s/NQY3FQCnFMiMIfBftUOqZ4KyuruLixYtQYzF8/fXXkQr5CHH7Bw47vRCLxWCaJgxdRzwWG4pBCuHjauBn2qk5CHtWr1VzD+N+mN/hxsYGisWi22BpSIQLcEvk6vU6CNzSu91ykaSOg5WVFTxfXMRLpiMYHx/H6VOnMLNvHxR/aR9bMKOay7y5qoWDYys0a6gUBg62SVJDSsGvN2BROWrbcBwH+V+ZEJHjLTnoAqqqoiLLXjMPfxtfLk5s+oCHLCMKCx6mbTaBBgd+P6DAjlAjATA6MoLRkZFtfcLiIm7dvg3qOMiMjGCMmSvNML90nlZYZM2TxsfG8Mmnn3Zsifq6QJIkyJIEwzRd18Qh9VsfVpWGEDRIDEsO+rFOHiI5uHfvHpLJJPbt2ze0c1K4Zl9EELzo0yDhEUnffd3a2sLzZ8+wuLiIuqYhlUzi6NGjmJubax0BY1HAqATA7brZttpQtWqo1A7NRNEE2LZMptSLPvCmVLZtQ43FkG9iFf9rwFty0AUURYEgy3B8QkRFVd0Wvo7TfmGIcEfiOTC2Ek35ohW9goKFGtu8RhQETE9NYXpqCsapU3j58iWePH2KJ0+f4vGzZ8jncjh65Ags24ZRLmNxcRFzc3M4/eGHDQ2sogQhBELEu5sw8KIHmoZYLDa4PPuu9JTozQSpHwOkYaFcKuHVq1c4ffp0V0K4fqHV614of1hkEnCV/S9evMDTZ89QLpUgKwrmZmcxt38/RkdHw3khwH327T4IAmVtkduep8mx2zVUankuSiGSna6yFPDmbn+LZj6v6oaB/QsLu9IBdi/gLTnoAoQQJFMplFltu8yEiLFYDLVaDbquD1ZUxCAIQtvF3/9I9TTNsVRCN4+9IstYmJ/Hwvw8VtfW8ODBAxRXV/G73/3Osyfdt28f3n///YERA47dqF6Q2PduMovtoUz4Q/p8vWgOuEMosLfJwd179xCLxbB/iIIzg20uKKVIJJODTSdQiq2tLSy9eoVXhQJW19Y8HcEJpiPote+FKIo9+7kIotj15sWx7bYNlVqhGTEA3HlC97Vo5nMGgUsa0tksxsbHh1uFtIfwlhx0iSRzS7QtC6ZpQlEUd2HgnRtrNWRaWYVGVMEgMDFapwez17Bzt8QgiInxcciyjOnNTZTKZdy9cweA61n/4sULjI6NIZ/LIT85ibGxsYGQBW69O/Dl0/c9xmIxWJUKdF0fbPTAd+5+I0ScYHittr0fU+/3iqNAgQKH/daxHViWtT1GfOW1vNS2wQCpy8VnWOZH1VoNL1gZ7bAIjMM7BlIKNRYbyEaiXqtheXnZ/bOyAl3TIBCCbDaLE8eP4+DBg9E8c74UQzcIMy/tIKSOg2qHhkrNILQ5F4XrLwFKoSiKRwwopbApxdyBA0gmk3ua3A4Sb8lBlxAEAalUCiXLQp0JEXn0oGJZXuOUlqEotrD303eB7zTCPJQCn6jDCnYiqu/OZjIwLQuEUoyMjECSJHz04YdYXl5GcXkZjx8/xt27dyGKInKMKORyOYxks5GlA3jucFiQFQWiJIFaFnQmThw0mooSmVEVpRSObcNhu3jvb8dxqzoCk6Zfxe1HnCaQQQbsXXB0G5VKpe17uNhOEEVXqEsIBEFwo16Bfzd834ykDAP3792DxCpyGjAgUkfhEhIATUt+e4VlGFheWcHyygpWlpdRLpcBSjEyOor5/fuRy+eRTCah67o7RiMk491+V71sWKjjoFKtegLElg2VgufqcH3UpzdQVNUbw6ZlYXrfPiiK8kY7n3bCW3LQA7zoAQDDMKCqqstmYzHU6nVomuZOiG0YZz8LoMDa9nIL5U5HImFLHLuwLA2DsdFR2LYNWZZRYb0p5ufnMT8/D0optkolb4dz68YN2MyEZHJqCrlcDpP5fF8GKwTuvRqm/iCmqqgwchBT1YGd17ZtWLYN27Zhm6br5OYjAJ4Ilker/GW18InTqOujD2xXu7h/bf9tExsGDFBQt3KBuGkbr5GPb8zwf9mOG2cglLr2sz74G97wEjZBEFxrcGbqJQgCREEYWMi9Xq/j2bNneOfddwee5uLQmMIehLjjusex4dg21tfXvWdnY33dTVGkUsjncjj+7ruYyOcbqgxqzA+gl2ZK7cC/vzAbkG6IAU8JNiMGUVlLayylQAQBCjsmpRTxZBKjY2NIp9NDd13dS3hLDnoAIQTpdBqbm5vQLAsKU9UqigKTNeOp1mpIJZOtH5g+BIqEEHdCt+1wwh52vrYmSWy3GXVVxfj4OFRFwebWVkOJIyEEI9ksRrJZHD1yBLbjYG1tDSsssvD82TOAEKRSKUzm88jn88gFJrwwIOgvN9oOzSY6RVEgMjtXnl7oBw7b/du2DZuFVm3b3u6e517IdgkrrxBgO3K+6ApsofX+HUgDtJsENbGOEkpe5IDESNPUGU9NAO5iJAkCJFlGTFXB2y877Nptx9lO+/AIBwBqWds/oxSSIEBgPUxEUYQoipGEeR88eABBEHBwYWHH7waxHJimCZ21BE52qzOgFCX2/CwXi1hdXfXKqXOTkzhw4ADyuRwSbXLjlJmmDSrVJYR4xnqKGNRqPRGDMJ9S0zRQX5UC4BLWmdlZiKIYmfPj64q35KBHxONxVCoVWI4D3TQRY6VI8WQS5tYWLNOEpmntc2N9EASBEDiA9+B0QluTpB4EiGEhCQIymQwKy8uwbBsrq6vI5/M7JilREFwdQi6HEydOwDBNrLDJsFAs4tGjRyCEYHRszCMLoyH1Cnx3M5RwNUsxVatV6LoOtYvogUMpLGasZTuORwr8sBghpJR6jb+4pbXASBcnAJF9pJBdGf0kg5MyVVFaptg4mXB4qoP927Jt17YW8LqgWvClMCh10xWCAJEZ13DCGQaGYeDpkyc4dPjwUNptO46DWq3mbiBUFVKIcwZ1A4amgRCCifFxHHv3XeRzOWRDpuD8vQoGthOmtP0z1qXOyuHEgPVMCEsMaMj50LIsL5rCxcOUUuSYgduvPWoAvCUHPYNHDzY2NqBTCoUNSm7KUa5UUGM5144GGj0IFAXWDdLvktjxmt0L3/EADzorH4vHYVsWBLihvLW1NeQmJtq+R5Fl7JuZwb6ZGQBAjU2WxeVlPHr0CHfu3IEoScjncsjl8x31ClHZS4eBqiheMxiedmoGTgb4n6bhdybA4rvmuGlCEASMZLPeZBmsX48aO+5piHOF6avgj24A2E5T8GMw0mDzyAkzpaEsjG04DmBZrkiNEEiSBEkUITHleSs8fPgQFMChw4c7fo5+4dcZCKLYUmdgGQZWVlc9QtBMNzA+Pt6TuNPTHaFHz4mQaEsOunjuqOOgWq1uE4NkMnTEQAxZBVGt1TxXRO63kkynkR0dhSRJjc3mfqV4Sw76AI8emKYJEwB/7BVVRcy2UatWUa1UIKTTrXcLTKCILhcuiZnuWJbVlZlQkCDwkrNBLpmqogCUYnR0FBubm6gy/UGrLo7NkEgkdugVisvLWPHpFWKqivHxcWRHRjCSzSKTybghXJZ/F/qszQ4NQqCy8lZN16Eoijdx+smA6VP88wVeYiRAFEV3dyyKDRM6r/EeBsnxPk7Q5yDEe3jEo58IBifbfkU/jzRwomDbNizLggPXa9+yLDiaBpGTBfaHX4dpWXj0+DEWFhaGYsKlaZoXBUmwpkqWZaG8tYWtrS1slkrY3NgIpRvoBVyt385UKDIEqhcoZQ3XuiCuvCrBtCyIXRIDASFSF8T1QOHkgKcOBFFEbmoKAN5GDRjekoM+kU6nsb6+jrppQonFQNjgTCYSbrc1w0ClUkEqnW5ftsQe4rCDkivAg7vNsOBK3kETAwDe55YYIdjc2sLG1hYkSXJ1GV3Cr1c4FtArrG9s4MGDBzBZpzZZUZDNZpHNZDAyMoJ0JoN0p+8iAsRY9MDUdZQrFe+7Ck5efMfr2W/3sJh6quxBTWjBsrIOE7Bf+9ANOWhaebHjUohHnvzn4wJNHoHh6QiT3XNOFp48fQrLsnC4XdQgoiiMaZrY2txEuVKBoWkoVyrYKpVQLZVA2T1NpdMYzWZD6Qa6hRctw/Z3NvAlj81hnoNiD8TAsm2ITLQZWmNAiFeK2OZFoJSixnQMkq899vS+fa5TpSy/jRowvCUHfSIWi3lte3UAfvlZMpkEdRyYloVyuYxsJtN6sJPuLJYlSXKV4Cz/3A3TJYAXmh0GeFrFMAyMsC6O5UoFq6urkESxb9GeX68AuBOhpuvY2tzEVqmEra0tLBeLePT4sSd0S2cyGMlkkM1mkWFEI9ZjL/ggHJZOMAzDtcj1tXMWfDtaWZIiU16jyx1aNwirOeDw6yS6IQe9jkbiu6dg4kceUTAty40ywN3FP37yBFNTU3AohWmaHskOHLDra7BtGyU21ra2tryxZ5omKKWQZRnZTAaT+TyyR4644y6TGVgNPbcG9lemDDxywMHIWDffJycGXBQdTyRCuR9unzIcMQDgluFS6vVBGRkfRyyRAKW0tUfNrxBvyUEESKfTWFtbg2YYiCeToGzXSgQByWQS5XIZtuOgxAhCy91hF0ybEAJRkrxQarfCKgIMzWGPh9X5bn50dBSWbaNWr6O4soLpqam+w6d+EEIQj8UQZ62nOfwT+PrGBrZKJRSKRbfWmbiNV7KMKGSyWW8CD1MX7tg2DMvyqlW4SyPgEgKRqa27mfC6+szo0Q0zBILiUUrbT/uebXK3xCei8egnCzF2PbZt4/adO7AtCwvz87Bs2/ueZFl2HfJCihrrmoatzU2UWFpga2MDlUrFK81MJJNIpdOY278f6VQKk1NTiMdiwwtVk8b2y9zcqlNVShSg8OkaQm4+KKWo1usNxCBsBK1Zz4Qd8OmN6kwLBCZylGQZk9PTnqHdr9UquRnekoMIoKqq14CpappIiiKobbspBlaOV65UYNs2yuWym9OKYMcgShJIj+TA4WFo/98Dgj9yALi7ydzEhLcwF4pFTOXzA+98JooiRkdHMTo6igNMu0ApRb1edyMMjDAsFYu4/+CBN5mm0mmMMLLAiUOMdaA0dN2zw+W6AkopRFlGXFEQi8XckqmQKuqwCE6Hg6R53S4ne62ngiAI0HUdTx8/xuHDh5HL5WCYJkzDgANXh2AYhlvvLkmePshxHI9Mlra2sMmiAtz6mEcDcvk8Dh85gmwmg0w2u22P7DhIp9PDvw/BVKHv2R4kOWiohuCppQ7no5R65bkELNoa+oTNeyY0Owe/jkq5DMLSCYIgYP/8PCyWmn0bNWjEW3IQETKZDFZWVtz+CskkJNuGwEoHqSi6BKFchmlZqFSrSKdSzR8c/rMQAkXeItqyu+tAT+FzQuTnGCBB4MTF8OkjBEFAPp/H8vIyDMPAUrGI6cnJobVG9Rv+JBIJJBIJTPuiDJZloVwqeQvC1tYWlpaWPBKgKAoSiQTUWAwqa8CVSCSQSiaRyWTcz8HIgmmasG0bmq4PLJ85yMjBDs1BhzN5rZr3CDkAgNu3b0OSJBw9etSt+hBFxBQFlWoVlUoFlWoVuqZBMwzUqlWUSyUvGgBKkUylkM1mcejgQWRHRpDNZj2BoR+8+RaFuwMeJjEgQNO8u9cdc5BRg2BalFWhtOtvwvP/fmIgCgKskBEHEoYY+P5t6LpL2uBqwkbHxyEpCizL8tLDb7GNt+QgIsiyjEwmg1KphEqthkwsBoGFr6jjQBRFJBMJVKpVNxddrSLOlPRNEeJB5jX+FhNghX3025UbRe2gBrhhaVmSYHKlPYMkih5B0BlBmMzl+tYgRAFJkjA6NobRsTEA7j3TdR0bm5solUool8soVyrY3NyEruteyoQQAkoIJEFAPJFAPB73HDQVRcHY6CgSiQRiiQRiihJtadmACJ6Axmt0QpKDsAujv6dDVLAsC3XmVrq2toZnz55hYmICV65cQV3TUGM+FP5rEAQBaizmRgRGRjCzbx+SqRTGRkaQSCY7ppccx3Fr5wnxUhVDQ5tn1xMjDoqotBJTt6nC4sTA8hMDUQw1DkKlErCTLFeqVQCuWFiNxTCez8OyLIiiiBHWZv4ttvGWHESIVCoF0zRRr9dRrteRUVW3lIgNZFlRkGAPRV3XQZgYrylB4BN9m9Acd4uzbRu2ZYVS4DdEDZqADIggyEy0GQQnCCsrK9B0HcWVFeRzuaH1JfDysy3useM40A0DuqbBoW6DlolcDvtmZiAxLQXgag40TUNd01Cv1byFSavXUa1WUa3VvPQCPzchBDFGIBKxGGLxOOLsTywW8/7NF6Vh9RwIYodUtsN1dKs56MagilIKwzC8+1uv192SUU2Dpmnus1Wvu4SZNjpHapoGQRCQSafdyoBEAvFYDDF273m+2bJt6JoGg6XsKNxwtCTLUFW16XNGKfVMdbjmZaho80zzVNcgohi8IqIV8WjmnBgkBolEYnuMd4oadCIGbN4MjiabaZzAyiMnZ2a8535sbGzPpMD2Et6Sg4gxMjLiqqRNE2XDQCowQaqq6i4kuo56vQ6RWczyTosNCBM9kCTYjtslrxM50HQd/+//6//CVqmEXC6Hf/Nv/k3T3ZBpmvjTP/1TPHj4ELIk4Z/+03+Kd995p/OHbwNVUWC2KLuUWPOl1dVV1DUNxWIR+Xx+KG2P+SIdBLc/5r4C1HFARBFxFn7k7+EpHUEUkUgm3VK08fEdx7NsG+VSCbquQxJFd4Fj5KHOFrnNrS1o9bonlOPRIEVVXaIQi0EQRZdkJhINngiiKLphfEFo+nNRFD0b4n7Dy+32+dyHANgWMjqsesAzMmJ/894QDhu//tfwagObkS7/wu/4SiUBNBCpXC7nkatEPI5ypYKrP/+MT8+dw/T0dKjPJxDXyVBRVXcccKJg27CqVYjM2Iw3XQPc1r+2aYIyjdEw6+Q7kflBkUqP1LVZWIPn5hofPzEI+li0O1YnYtDq/RVWTixJEsYmJjzn2pGRkaG4ZL6OeEsOIgZnoqurq+7EZtuIiWJD7i2eSMBhO6BqtYpUOg2Iohu8bUYQ2jwwkiRBNwxPVNMOqqri//5//B/4//6n/4SVlRX8/ve/x9dff934IkrxF3/xF3j48CEIIfh//Z//Z9/EAABkVW0aOeCQRBH5XA4rKyuoaxqWl5eHRhAEViMNuOFojecm2SIkiCLiyWTDYuAhpL+AxBYUXsUw0YRAcJjMervGSINWr6PO/myVSu53zZ0DKQW17cZWy36hKbtGnp/l5+cGSwJzFRSYFbHkM1/ir6tVaw3Xt/jiBS6vXfb6PVisGylfzC1u/+w4rgEQpV70rKGNNt/lBULPoihCZERGEkWobPEfHR3dXvjZrl+NxVoujBTA1atXMZHLhSYGQYiM9MUYWTRME7bjuMRO06Cy1ty6rrs6g3h8aLvQVhqDILy0QoSExcv3dzgmP6df/MvJbzNi0Gqm8yIfHVKiTd/L7KspgFQyiTFW8pxKpd56GrTBW3IwAHBV/NraGnRWtSAHduiJRMLzQKhUKkinUqCMILSsu24y+D0zpJCixD/8gz/A/++//lesra3hr/7qr/DFF180RA/+03/6T7h8+TIIIfh//NEf4ZOPP+7qs7eCIssNOd5mEAQBuVwOK6urqLMyx/z4uOcRMEhw/3udERjeuyDGctAt0cWEG4/FYBoGLNuGYZotc9KyLHv+7kFsbG4CADLZLETfztxhC7W3OLMFumE3zp0F2a7dCezU/bt4Q9e9Hgd1rQ7LcUBtB4QA5UoZZbviRSYU1gZYZJbeDtPY8HAxT3/9/9t7sxjJrvS+83/OXWPPtTKrKjOrssjivlY1ySapptQtQO2xPa1hSwJkzzwYFqAXwwPLgAEP5t2GRp6xrdGDZQi2ZNiwPGq1x2qP23I35KZEqsnmUmQ1q7lXkSx27blGxN2XeThL3rhxI+JGZGQt5PkBgVwi4q4R53znW/5fkfoj5V0YNV2XpYTTmsIuXLiA3U4HXxvzM1w0yVBNQ6VahS3CTPyz7DoOuq4LU9dRrVZvWp6BFBoq8Vox6U7LaCmTCJh/fZIk0jAA2AIp7+kcdi500CJJGJhDFlBdx2FGFCE4vLIiv9dF3y/FHso4OCBMXjO/vb0NJwxRTZKeSYbw2JfQQBAVDClvhVvoPiv4gogBVQz0w5KmkiSBrut4/vnn8Xu/93u4fv06/vyFF/DVr30NAPDd//Jf8N++9z0AwF/9q38Vf+XrX2dvnIJb0jRNphc/AlHmuLGxwfopbGxgEZhISbEMCY9FezynIOV5BYNiy/uB8hwTESs3igR4ypLxDFBCmAcA/f0JpsH3f/jf8fHVT+Sx3nPyJH72xHOFrw2CAI7jQDeMUvcsFUlrUyaKIvzkJz/B2urq+MlmQ7x1hLdmty0Lnu9je2cH4BUpQqHxoNU3AYylbDotz4EoVRz305WmqQyXAWxhZAzI2yj459Ck7VJ9FLpdIE3RarVYszZdx8zMzE0N/dyJqCyMA6RarTJtcMOAGwR9q3tCKer1ukwq7Ha70pUt2vL2kftAE0KgaxrSEd6D7KTx3HPPSXGgP/nOdxDHMV555RX8+z/8QwDA008/jb/xq7/au899fpEMw0AQhqVeSynF/Pw8W3kSgus3bqDd6exr/0UEQYDd3V24noeEG28zrRZqtdqBDfCWZYFw/Xl/SJhlECPvwi2uVhCfwdJljAcUD3/3vfcQRhEefPDBsd9LSh5THMewLQu2ZUnZ4263C0fkRRwAk3QXnYax2KNhMAYJb6Ikwp7VSqXQMAAKFDKHGQYod14iOTWKYxxbXwelVCUglkRdoQNG1rwbBjqdDpLcBE65BgIhBGEUweEd3MQgkPA+7D1k4nhAOb2D7BeJEIJf+uVfBgDcuHEDv//7v4/f/d3fRZqmeOD++/Hrv/7r/cbAPgcY0zT7ShmHIQyEer0OjVLc2NzEbgnPQxniOMZuu41Ot4uIr8Bq9TrqvJyKjjEAjztcipUnIUR6K8bbQLkY7zQZp1pB1tTfQuPAcV188OGHuOfkyYliymmJa+h6HpvwCMHMzAxmmk1YPCdFaGT4vj91L84krdX323RpUsMg4iHTmF+n6ogQXV+lwgDvaTJG6Wun00GUJJidnWViZjMzN8Wz83lAGQcHjEhQ1E0T0DSWGFMQGqjx7mBBEMDjJVEC0T8ht2FpQIjQwtCkxNz7v/zkk1hbWwMA/OAHP0AYhlhdXcXf+43fKP7y7NN7YBqGbIJTFsoT9+r1OnRCsLG1hZ19GAgJLzfb5pr3Sco6OTabzb5YsVb2XCe4JpZpyjI/z/PGfj8wfNU0bQNhnN4KyRieg4PKoj937hxMLng0CaOOy/d9+EJMp1KRDbMq1Spr6sU7afq+L7u27hfRxGiSO5umKcikpYxkMsllPwjQ7XSYMihfABlDpImzyY1ib3lRpYF6CgMIeEVYFIZYv/tuNJvN20JD5U5BGQc3AenKsm3EXJwljyhPA9iqJJu8N9CLQAgIzzInaVrY9U/Q919C8NWvflX+2Wq18A/+wT8YvdISXovhr+pDNwykQOnQQpaF+Xk26BKCza0tFucdk3wIQTcMNBuNwZr3ZQfFSSY4QuR19j0P8Tgx91sRJ83tc5i3YxwBpIMQ5dna3sbFixfxwIMPTrxCHHaFwyCQBl3FtmHkVPU0PhFWeRVDCsBxHNYJcEJjiKBE/f8Qsr0VxtvxZCEM13XhcQ+obhhS4KhMuWW2hDd/HOMei1CkXVhcxOLiIur1+ljv/6KjjIObhGEYTG3PNJmMZ4GL3eLxS4DFysKCmLT0ImS+KBqloLqOFCjMOyhKUrt69Sq+/e1vy7993y8/mAqvRblXA2C1+gAmXkXNzc2h1WpBp5S1fN7aKvW+NE3R7XZZCIHXVjcyIYRhEAxIDM2+ZsLJ2jAM6IYBQmmhsbgfpm0+9EWYBtz57ABexjiYtt8gBXD27Fk0Gg0cO3ZsX9spIooidF0XKZj3Z1iTHtOy0Gg0YHFNjCiOmYt7ghbr+/WwTPz+IeJgxS9P4HS7cmyzbJvlXJX0IlHkDAPCBOQmOf4wCLDNW2Pffc89SgFxApRxcBOpVCqocznevHyrfE21CtM0kaYp03vPvUZ6EbIGAk9KHBhayH252u02/o/f/E20221pTXueh+985ztjnc84BoJpGCBAoVFUlpmZGbSaTeiUYmd3F5sjDATRCdMPAsRJAtu20Ww2xxM9GZUUVX5LfQjvQRCGpScNeSQjBsyp1rSXzDkQXgNSVmhpylUKly5dwsbGBh5++OGph1biOJbyu4aul1JAJJSiUqkwrxefILsDvveF7wf2nZOR8m2M446XrxvDsxPz/AKRh1Gt1fpc+KP232cYFOVblSCNY1zf2ECaplhcWMD6+rqqTJgAZRzcZGZmZmA3mwAhcLrdwlVjtVqVqxLhkiyynrNeBJ1PvkWTTPadvu/jn/zWb+Ha9euwbRv/8B/+Q5w+fRoA8P3vf7/0ilxQ1kCoVqsAIeg6zugXD2FmZobV+FOK3d1dbGxuFr4uCEPs7Owg4gJBjXp9sra5hLDs9UGD1D4Gb6ERQAmR0rvTYppDISW9w8Qgz8E4IYVpew2SNMW5t9/G4uIilpaWprrtlK+ICZiYVY1/lssiQg0m9xT5XO1xWJhhkqqEIhL++SeElAv1lBQ3yhIEATrdrlQRrdfrhQb4oNCIyKeA2K8490mqI+IYW9vbcDod6JTi1OnTpVquK/pRxsEtYH55GXalwjLWufZ+vpqgWq1KdUDf9+HkXiNel6Yp4mxSYkYtTyD+TpIEv/3bv43zFy6AUor/9e/+XRw7dgy/9Eu/xKolwhD/73/8j2OfT5kJ1zJNVGwb7d3dsbefZ6bVwuzsLDRK0el0cGNjQz4nNO47nQ4SnoTVaDT2J5HKczsGPbcfhIxrzIWRyhwLMNpVfBDNjOS2B/xfljGWGIynvZI7f/48Ot0uHn744f1vLHtt01SK6FBCxjYMJOI7bdsApTLMUBQG3G+OQZY4YYWnZe/JOJ8ZkV/gOo5coAwL1xV5lETnWrnNouTrksT8mu5sb4NoGk7ccw8OTdlQ/CKhjINbAKUUrcVFVCsV5mrnMsr5L4Vl26hVqyCEIAhDtNvtvlJIIJPdy11x+deIgeZf/at/hbNnzwIAfu3Xfg0PP/IIAGB1dRVf+tKXAAA/eOEFXLt2bfyTKlHN0OBdK6dBs9mU9crdbhfXrl9HHMdodzpweZKfaZpo8FLI/TIo/2C/UxylVBqKruuOHBjL7o8QUqpzXaltlaxWGMtzMMVKhSAM8e477+DYsWNotVr73p48Mm4YiJbC1Vpt30mUpmWhUa/Le9Npt6VRKFz/07w2SRwzCfARxz2uYVCUX1At0aJaGgeZcxXnO67HIksYhnAcB7vtNlJC0Gg08PipUxNtS8FQxsEtQrdt2LUaakLjIAgKJ3/TsphQEhc5ag9YbQht/DRN4WUSGcUX/j9++9t44YUXAADffP55PPdcr8Ld888/L2VO//hb35r8xIYMMs1ms5RKYlkajQbm5+agUYp2t4uPP/2UlZilKWrVqjSspgnF9EvwbC6MlKZpaWGkg/IKFJG/hmlavKotK4Ak4uDT4r333kOUJHjggQems0F+bLK7I1CqZXNZNE1Do15nJZCaBs9x4LjuVD0GAlHhNPDYhRt/jG3GUcQSfHl+QaVaHdxdtoBsF8c0TaV3Y1IC34fnuqxBVhDANE088OCDTF9GMTHKOLhFUEphVKswTJNN/po2cPLXdR31RgMaV9brtNuIClzQpmEAlCLgK+cEbHB44YUX8G0eLnjuuefw/De/2ffe1dVVPME16F9++WVcvHhx4nMbNEi0mk127CX7QJShXq+j1Woh8n10XRebW1uoZtrvTh1CpuKJyG9TJG+5U1bXm8aWynoOREnmyCqQKRpsXcfBhx9+iHvvuWd6NeyENVLyw7BHy2CaEEpRr9VYdRIhiIIADq+EmCYiLynfPlsmKI75WZP5BXHM8gtqtbEm4SSOQTVNegz2a2h7vOw7imM4jgPTsjA7O4u7Tp7c13YVyji4pRiVCuuEp+tSCTBJErTb7b7EQk3TWOxc15EMqGTQDYNtA7xkME3x5ptv4nf/5b9EmqZ45OGH8Wu/9msDj+eb3/ym7FD4rT/6o/2dXEGYodFoIAVTLZsWURwjSVM0Wy1Yug5D03Dtxo2JxYXKMm2PhBRG4uGFgfsdY5sE0/mC9xkHBeO51OAooQ8xLc9LCuCtt96CZVk4effd09lmmiLk7bSBYi2DaWLzcj8QgigMp1rWmoJNxkma9hi0KXisHyjtxk9T1oNE5hfoOssvGNNoyucYTOonSdMUjuMg4CqUYRBANwzomoaHHnlEySNPAaUjeQshhMBqNuHxTnuNRkO669rtNmrVqtQHANhqo1avsy8Fb3CTxDEqXDyJEALLNBG7LgLfh2maeOyxx/Dv/u2/lWVCwwbuo0eP4g/+zb+Z9klC9JtvtloAIWi325iZQmw4m9RVrVYxOzuLGzduIIoiXL16FbNzc2geUOc1cS3TCVZfxRtkCWuddpu5RnlnxqLXAeU9AtOOYQPFvRWyIYWRpZ9TOp7PPvsMV65cwVNPPTX2JDUIoWUAjNYymBYGFwrqdruIwhAOYVLD+6WoUkHG+cfZTpLAdRy5YDEta7wwQpqysFkuZJJisjBKmiRwXJfJMoMZHKKp0/qJE1g+cmTsbSr6UebVLUYzDJh8AiOUosFLnkQylJ9bAYtujqLO2vP9nmRG4eILo6gnf0F8jZN9ZANPihhELMNAxbaxO4HCYZ6sqIzGG1iZpomlpSVUqlVQrqZ4Y2NDJspNnSlfR13XWWMmQpjYTsH2y+ocyJdN4bjypYxF+y6bjDgtj4vn+3jrrbdw5MgRHJnSZDCJlsGk5F36hmHISogoDKXnYj/ISgXubRRJh+Pcg6L8ggpPoB1JmsrJv8gImGQcSuIYHcdBHEUgYLow3W4XIARzCwt45PHHx96mohhlHNwGGLYNk3d1SwHUajVYfGByXLdQ58CuVFAVlQxBgE5Gx9zkDWCKktvEl3pg18eDhBA0W619N1DqMwwaDXlemqZhcWEBrZkZaISg2+3i6rVrCKeY5yAhzOE+zQBDpVJhyVppWjxBjDm5TuPY+kSQCkyO0pUKU/rMnT17Fmma4rFHH53K9hLeNl10OZ24ZHEUIjO/oI7fME1ZvpyVaZ4UUamgaRo0EUYYgzAM9/ILeI5E2fwC6Z0Y5kUa02gXnWsTcTz1OrrdrqxMevLLX1bhhCmiruRtglWvQ+erRlkTPULnwLIs1Gs1UK6M2G63EcfxnvdgSOa7KKUqbOp0EPD9tfZZzhjHMbo8lEBzhkGWVquFxcVFaJQiDENcuXLl4PIQpjmJiFp6sNXxIOXEce7Yflfr+fcXJUyW0ThIMZ18g8tXruCzzz7Do48+Ko3o/SAktsElfA/MMABGqg6alsW+95TCDwJ4+1AUTZJkIqlzgCX6OfyayJyoEqGbNOMtKEJc1RTjfYajKEKXa5doPBEyjCLpNfjSE0+o3glTRhkHtxFWs9mTVSy0yQlYLXdRy2fdMGQlQ8wrGSil7O80lbG4PnjskYINIjfLSGg2m3AcZ7xmQ5w0TaXHgBAiW10PolKpYHl5mYVpkgRXr16dms5CljI9GMZBNwypnDgovDDtkMYw+koZi3IOyngOpnCNwijCm2fOYGlpCaurq/veXpqmcLpd6fmoTUHLoAgZRihx30zLYmqevPIoKFnemiUFuydJkoxVaSGEhEQ407QsVEf0R+irPBiVcwIU6rUMIuChU4CFX+q1Gggh2NreBqEUd91zD46srJTenqIcyji4jaCUwp6Z6UkiM00TjUYDlCsYttvtvioFUcmgZyoZCHd5D+tlILwUlFJWY52mBx5uaDabQJqi027vyaSWxBVJSNwwKONCNAwDy8vLe3kI29tTzUPITpwUmNqkLcILSRz3ejwmmGCnvQbOGwfZ1eIwz8E0juPHP/4xwijCY489tu9tCYW/iH/ma7VaX8nfNBDiZOPcO9mETdNkJ9ExdghgL7+orCiV53notNvyO2aPyC/IlyKO0wuizPc+4WEEEV4zTBM1LrQkpNFn5+fx0EMPldqnYjyUcXCboek6rFar5wupcZ0DwzAQJwkcx0EnJ5hEMkl5aZoiiCIEQYAwCEoNLCL7XkoyH5CR0OJ9JUTeASkZCw3DEJ7nIRGD+BirO0JIcR7ChB0is/QcOyEyX2C/EEqZgiYhcD1PakNMOsHuJ7QwSudAhBSGNVwa5W4uw7Xr1/Hxxx/joYceku3NJ0WUwoVhiCRNUa3VoPPOplMjq3g4wfW3LYs1VKO0VO8NEeMX7d1FlcCo70rEmyYJb4FuGKjX67CG5Bf0jA28GqlsaWRS4noEvi+9hJRXbwhRM8/z0Ol2UalUcOr06alrUCgYyji4DTEsC2YufiZU1WrVKgiYe3U350UQlQy2ZbGwQhzD9f1ybkn+ZSWZn8JISERy0RQmPd0wUK1UenosjJq4kiSR+vamZU08GGTzEIIgwJWrV/edh5A/cgLuWp/CtTJME4ZpglLan5R6E8MKfY2XcvsWxudQcah9hhSiKMIbb7yB+fl5rK+v72tbwjCIokiqaZr76b0xiFxN/9gQIiXWkzge2c0x+92VlQpD7knCFxpdHq4klKJSraJWpAbJQyKFwkVj5jQMuyZZb0ECVjVSr9dlbkmSJNja3oZhWbj/oYdUK+YDRBkHtylWrQbdtnu/SITAsm00mk0plSy8CFlVxUq1iiof8KIwxNbW1lgx/uxkLWKlaZIgnoKiGQC0Zmb6Y/9CNKlg+67rygREkaQ5KSIPweIeloPKQ5iWgSCS0+I47klOG3vLB2hMjNNwaVJ+8s47cD0Pp/eply9yDIRhUM1n4E/zOk1hW1TTWEkl9yAVeQGLjGvZU2HAPREVTiJpWSi1Zq+F7HnAFwc9Z8O9BZMwaAzxM94CAqZMmTdUdnZ2kKQpVtfWsLa2NuERKMqgjIPbGKvRgFawotE0Dc1GQ5YyhrxSwfc8+cWzLAszMzPQNA1hEGBrcxM+VxMrTW7QEXkJCU90mtRQaNbrg8sZcyudIAjYcSeJbPu8X0QeQjWTh3D9xo2J8hCGeT2mUdNPKEWVC8542clhzGs/zbBCkuutUKqMcR8T5cbmJj788EM8+MADqO0jI11UJYSZHIO8x2AqobQpG2KmZUE3jD0PktgNsFeJkLu/gzwHohzQdRxZ+lyr1/uaJg2TNxZhkknOsqjSJeH6Ep7nSV2GRrMpNT8EIpywuLyMu0+eVOGEA0YZB7cxlFLYXFWwCMuyZCJitlWxWMkZponZmRkYpikVFTudTikvgkhoHDal9IQdSmZiA6w7Y6fTkQpnBTsHCGs05fBeA5ZtT3UwyOchOI6Dy1evTiUPIbsPSgjIPicLMTmI/INJ2zFPah70iSDl9j7KONjP2cdJgjdefx2zMzO4ex8SyUmSsJr4OAZJU9Tr9aEKlGOTjaMfQBlkrVIBCJM2931/pFKmyBkSq+6Uv6/T6ci+LJZto84bQBWFDQYZlBOfXZr25Ellj0mIGlUrFTQLOqmKcMLswgKOHTvGEpsVB4oyDm5zNF1HpdUaOPGKXASxCo5yXoRKtYqaGADAYrft3V1mpZeZtIS7f9BAIcIOaboXdhixXdFWtz2ix0IQBIijCJTSA1OrE3kIuqYhCkNcuXq1VPJXllGD5TSSFKtickgShNwlPi6THkGfBFJm36KrHnAwYYV3330XnU4Hp06fntj7kTUM0jTt+T70Mcl9EobBAYZuCKXMQABzvydxPDT5M+HnSimVKoee6zJRJJ7gLFbmhWGDoQcz2X3I7kPkFghvgc69BWaBXHWSJNjY3IRlWTg8RUVMxXCUcXAHoFsW7JmZwV9eQqQXwTQM6UUQ7ZENTYNhGLBtW1YzuPz5ovbPfZsXjxGlhzLswB+DXtvgwkXtYbF+vqpIgX1npo8in4dw/do17ExB4jnLfpXbqKbJsjLP80rdt75tkNFNkYrJhRWyv2caLk1bnW57Zwfvvfce7rv//olXisIwEN6NxjDDABMYUEMM52ljCA8SF0gahDhXQohcmSeiPJHH8UUDpJupkipCkZ7vy+6zBKy5VYN7C/JXMkkSbG1uglCKw6urWFtbU+GEm4QyDu4QDNuGzbsaDoLyxkzCixDHMdrttoxJhmGIWq0mRU3E8+4goZ0B+yiF8CZkww4cXddRq1aHJgKK/Ahd02Do+p4b9YAGM13X9/IQKMXWzg6uX79eLg+h5ORA97m6tCwLhq6DEALngLtOZukTQcqcw6hKhUmrXJI0xetvvIFGo4F77rln7PcDe70ShFJgGZW/sXNybtLkKjx0tmkCaYowDAcea8y9Sx5vwAawKqFGo9HTYXKkochLMadFzBUNZckkr0QY1mp7a2sLCaU4uraGEydOKBXEm4gyDu4gzGoVVqMxeADjX2TLslDPeBGSOIbvugiDAFEUweLCSsKL4HkedgvaRA+j7KDRE3bgK4c0TdEa1mOBew2SNJVd8YT3YppKhEXHuriwwBI5+QR8+fLlqcou71d9r8oVM6MogjeBch5QvDpOc48s/fd6LyEtimOkhEDTtMLtTjq5vP/++9jZ3sbp06cn8kiIxDshPlQvKs/LcdsZBmJyzhjXuq5LQ6woPyZJmYqo53lSd6PKq5dEHlFpxhQpG3YejuNgN+MtqFYqw8M7ADY3NxGnKY6urOD48eMqz+Amo4yDOwyrWoVZrxdm/WbRNA21Wk0qilFNQ9dxsLO7iyRJmJehVmNKg5qGhHsRipo85cnWU48z+IuwQ5qmaDQa2NjYYIN3bn9RFPUkVRZt5yBduc1mE4uLizD4dbly9SpubGwMdOWPcyQyyXPCQVfTNBmXdceQoZZxZVGexh9JuieYk30kmUd+1k+wV6kiwgrC6EkBpNxwSDMCQOOcbbvTwTvvvouTJ09idnZ2jHcyhMcg5ZNrGcOAHXzJHJyyr90HWUGyns86Iez+85BBliAIWD6R78tmRPV6HfqYGg7T/GZFYYi2MFbAdAsajQZMyxq6n63tbURxjKNrazh2/LjSM7gFKOPgDsSu12HVaqVc3qZlodlssj4EALqdDra2t+E4DpIkgWEYrE00n3B838duuz1W1r6QYR5nlXHo0CH4vo+t7e290shMTDLlXoNBA8h+KwBGIfIQqrUaNF5CdvnKFTiOs+9ti4F/0ui/aZosPksI3ILkSTnJg03+MffaxEkiQzxltfCBAhGkzO/CYNKzk6/YbuYe9RiRlA7cZwrg9ddfR9W2cf999w09riJirvYnDJZ6vV4+UXLYdcis4m8GwypSRPllkiSIokh2lOzy73SSJCyOP6Ap2SDEK6dxhhHvBdPtdqUcc7VSQbVSgaZpQyuhtre34QcBjvAcg7m5uSkckWJcVGbHHYrNwwtBtzvY7coHM0IIWq0W4jjG7u4uXNcFJazVs2masLk0qWkYrHSQN18RDWDKuHXlar7kADq/sADTMHDlyhW5KkgBJFEE3/MQJwlqI1Y82cHlIIZsTdOwsLAA13WxubmJKI5x7fp11Go1zM3O7is7X04047puuVFhc2MuDEP4YQgzI/2bFEzOfRNffkU6Dpnty4ZLRdci/1nIr7oLjumjjz7CxuYmfvYrXynVBTCLNAx4cuS4MtujwnUHnbw3KuFXQilMw4Dnedje3d3L9yCs3bQQCivtLRlRFjkOURgyz0UmRKmbJkzTZAbBiPux227D8zwcPXYMK6urWFhYmMJRKSZBeQ7uYCrNJoxKZbggUSabutVqocY108XK0fd97O7uwnEcWRYp4vwBzyou60Xo0UYYuRolWFpexpXLl3v+L7KwDS76Ile7KI6Hy32XOsLJqFQqOHLkiMyodhwHly5fRod3ips4aauElkT/W3hIR9Ng2zYSAJ1OB0EU7YUBymxnzN4UWcSaNhYhhUGVCmNOpts7O3j77bdx1113jT0pRLxcD4QwYZ8xDQMAhcbKgXsLspPzsP1kwj3Cw+Y4DlyeV6HrOho8RChKA4eSJFMNzxV5CizbRr3RgM0XGLSgGiFLl7//yNoajq6sYGlpaSrHppgMZRzc4VRnZmDY9l7/gyFQQlCpVKAbBjRdR000m8kYCZ7nweYuSZGLIL70pRUExaQ3YuBZXl7G5tZWT+w04pOckHElmYFTqjMOOFeSeUx7QCeEYG5uDocOHZKJnjc2NlgDpwnKCnu2jfEMhBRslawbhlwdOo4z1jmPc3XyQ7qYxKYpmxyGIV750Y/QbDbx8EMPlf4MAewz0+10mLqepsk8m7HJh0GmlZA3AEIIC7EU7SPtFSUS+SKh76PdbiMIQ2aUaRpM20a9VmOdW6MIKQ8XDqVkw7NRDDIKmtwoSFPWFn7UXew6DrbbbRxeXcWRo0dx+PDhKRydYj8o4+BzQHV2lhkIIzopEi4mZOg64jhGFEVoNBpSJS1rJARB0FNmFAQBG5QmyJAfNMAvLy2BEIKrV64A2FNcFIP8sG3l9RT6znrimv7h2LaNw4cPo9VsQqcUvu/j8qVLwzUbRjHKg8AniiSOkfKYsqDOs9BFE53STNACWB4Ov9rJtIyDNMVrr72GwPfx5aee2tteicTXMAylYaBP6jEoPKQDzi0QhkduP6nwDGDPgBPfy3a7DYd3JqWE7DVJ4tcmTpLp3ZMRjDIKCCFSqGnUlXRdFzs7OziyuoojR47g6NGjB3rsinIo4+BzQqXVgm5ZslxwEJRSVCoVUJ7tHMcxS0osMBLau7sQGvSapklBmXG8CHJQz2ZfcyzLwvz8PK4I40C0mcV4okFiVZVNuAMOboAnhGBmZkZ6EQiAza0tXNmP/LJIUsxOgnyiEMmEQq8i+zzhsXUACMJwZOe+/P5KvbSvtwK7rtEgZcQxr/sHH3yAK5cv44kvfQlVfi7Fx9H7uQjCEF0eSjAMA7VabWKDcFJJ6nGRx5f5/mSTRPmL+EsSJhi0u8uaLnGjoMo9e6Klt8j7ELLIOtfCyO14KscfhSE67fZgo4DfH+F5GXY/0jSF57rY3N7G4aNHceTIEayurk7lOBX7RxkHnxMopcyDYJpSeKgIwkuhRF5BdrU5yEhwHAearrPyI57IKPIUShsJ4mcuU/3w8jKuXrvGJsHMqmeSQV56FQAZgshOVNM2FizLwvLysmxwFfg+Ll2+zDrHTdDEiR+k/BkV3MfsdcnWvovVmjuGemLZq9FfV9EbVsgbcuPkM9y4fh1vnzuHe+69F8ujXMncuBSfQZfnfOi6Luv4J4UQwspqDwIR38/kC4jPqDCGe1+ewPM8tHlyXgL0GAXieyiuu/AWhLxyQZQu9mx7n5/9HqMgjocaBUQkqmYNnhxibNnc2sLykSNYOnwYKysr+zpGxXRRxsHnCEopqnNz0E1TrjiLvpwULMmOUIooinoauQDFRkLg+wiDALqus6SnTAiiO0a9fT5hcWlpCVEYMh0BPqAM60E/DsKlmV2VxeleV8m+FduE+2i1Wjh8+DBsywIFayt79do1qU43DkK0atj1JJnXCmweLiLAnvjP6J2VOqa8cSDj4Hwfes5zUPZ6eq6LH/3oR1hYWMCDDzxQ6j0QiXieB0IpLNue2DBIkQt5TWN1na0UEeEgQnqSageRJAlcYRRw6XDKu3JmjQKBEJ6KkwRRHMveEQa/H2TE/sqQNwrIEKNACJSlGW/hIMIgwObmJg4dPoyl5WUcO3Zs6vLbiv2hShk/Z1BKUZufR/fGDcRRhDhlzVdobhDUdR3VSgVdx4HneazUKFeKaBgGDMNAGIbwPA9RFCHkiVC6rrOYfxwj8H0Evi/LIsvEO4WBMDs7i0qlgitXrqBarSJJ0wONl1JAuuezKzgCAJT2WMvjTDiGYWBpaQntdhvbOzsIwxBXrlxBo9VCq9kcOfCJyVZ4CkQyXpL2S9gOKnmrVqtodzos/8B1ZbhhGGXK54qqFUSpmqZpE5VJJkmCV370IxBC8OQTT5SamPN9EiqVivSAiWs3rpGQbyI1xht7SjPT7P/y3p4Rm0qSBL7vIwgCOZlrlDK5bN6NswhKKTQAEVhOkKhaoLmcjbFJU6bAmfFCSY+jafZ4hsTnNGv4iPuTv57S6+P7uLG5iYWlJRxaXsb6+royDG5DlHHwOYRSitrcHDqbm0h49nJCmJSqdO+D1coHQYAwDOG6LmtwlInXi0GpyEgQUsuUUllKGQSB1E6wLKtUgxRCCA4fPowrly/j2NoaWy0dcGMVkl/ZZAb1nvW2MBpEYhxGGwwiFryxtcVWgVxXYn5uTk5kvbvYk5Yu2jItSOiSkrr5/1PKelZ0Okxbn1eeDEMmxQ05rz7PATBQ36BMAhoAnDt3Dpubm3juuedglei4GYUhOo4ja+Xr1WrP54tQClrGC8Q/13lDYlQZYXbSl4ZAnkyMPSkIF+RJ4hge/84INO4NMUuqGlJdBwlDtg1utE9KEscIwhBhEPQ0byoyCkS+S/5zONTjRVh/lxubm5hbWMDykSPKMLiNUcbB5xSq66jPzaGzsSGrGJI43vMi8DKoKm+A5Ps+LMuSq3Yp38q16YFeI8H3fYRh2BNbF78LI0F0ghw1YC0fPozzFy6g6zisPO8AqgyKkHsR0r8FA352IkgBFj/OJllmtiVXfbqOQ4uL6Ha72N7eZq2gr1xBo9HAzMyMHAxFXkRR3LnoWOXRZSo28mi6jlqlAod7hHRNGy2fO+J69zkGkO7lh+QG9jKr70uXLuHDDz7Aww8/jPn5+ZGv9zwPnueBENbDoV6rFeY1kIyxN+gohMt7oJFXZAiI//fubO8t4EZcxjgZdkWTOIbn+wgyyauapsHmnoKypDwEF6QpwiCARikMLoBUehtJgjAMEYRhj3DRQKNAPJ8RXpLbYgclj02+lj/nui62trcxMzcnDQPVYfH2Rd2ZzzFU11FfXISztYXI99mXNOdF0HUdlmXB8zw4joNGoyHfn9V1L/IkxEmCMAjgB4EsW0rSVA56acq6x4mEuUED36HFRWiUYnNzE8vLy3slXGwjB1KSmKVn60MmXvF8dsJIM6/tcS2DNUmybRubW1twXRedTgeO62Jubg5V2y6dOJg9vux9GJQzYFoWojhGEAToOo4Uxxm4/ZGhhXzOQVIsm1yCTruN1197DUeOHsXdd9899LVC6CcMQxAAlmnC5hn6A49UhMaAnlK6bGKerPrInLOQ7y4KCww7PipWzyXeE8cxCx9kjAJd12GX9LJloYTI3hWJqGShtLSqZBRF0muYPV/dMGDy73eR0VjkyRKIpko9pEy+e3d3F47r4tDyMhYOHVKGwR2AujufcyilqM/Pw+t04O/u7mXyxzEoz3iuVCrwecdGPwhgFTU7KhgoNEqh2TYsy+oZbCgXCQq4e1J4G3RdR6VS6TMSDMPA4qFDuHHjBg4vL8vBKuvS7xngD4jsOYoJs8w0QXKrxuxgSyjF/Pw8HMdhfSSiCFevXIFl22jxJLOi/RfuJ/eaYRNSpVJBzJPUHMdhrW4HbD8bWoiTGG9cP4PL3UtIUjbpvL/9Qc/rP9n9FP/14z9lHgQzwVxlFs8efgZ1Y3g73TiO8fIrr8C2bZw+dWqox0Ict2i3XK1WpTDWgJPoK/MUIl4iXDTSsCprhKaZRlNljQLPQ5CVFJ7AKBAKpD2Jjele/ocxYltFYQOAhYZMw2B5RwNc/DSTVFm47Yz3K3tNwijC1tYWiK5j9fhxLC0v4+jRoyqUcAegjIMvCHa9Dt004WxtsRUV9r7ElJC95ETXZbX7Y6zWCSHSm5DwXvKB78tJMwgC+L4PXdcRhqEMN2STrQ4vL+Ots2dl+V5+PXpzAg25fWYH4xJJez2TT45qtQrbsrC1vY2dnR24jgPHdVGxbbSaTdk+O7PBvnPOdsMctVolhLD8g3YbEc+CrwxxOYsV9v999nfwvYvfG3quF9sX8Z/b/x9SpNjABgDgP3/8n/HbX/lnIGTAoJ+mOHPmDBzHwVd/7ueGhjrCMESX5xcI41UYlNKbBPR5cIpWrZRX5IzbQbQQ4VUokcQJQFYChRmjwOCeunGNAkF+rwnfj6ZpxZ457skLgqAvbGCYJgzDGHosojSxr7IjvxsRHstcI8dxsL29jdbsLBaWlrC6ujpRl03FrUEZB18gdNNEfXER7s4OQt7NT6yOTdPsT04cBF85Jdn4O4dSCss0YZkm4iRB4PvQdB1xFCEIQziOA0IpXM+DbVmwKxWYhoHDhw/jzTffxNbWFhpl+7aXyIqfBsKDQcAG40Fu55Erf01Ds9VCpVplBoLrwvM8eb1bzebeAF+wSst2U8yWYvbEybPeD56gKFrmapQyT4UIg/CBX4RK4iTGf//sv4+8HjofNiLsTTbndy7gs85PsdooFrE5//HH+OSTT/DEE0+g0WzKiSQ7oSRg5Y2e7zOvFs+fEKWzPdei58IO73Cp6zqiIpd3dnsD7mk2n6BMuCHOrs4zrzd1HVbJSh4ALCcIwKiCVFGRpKG3n0IURQiDgIUwsmEDXYfJjYLRuSa50sRBx8DDGoRSWTWys70Nz/exfPQo5hYWcOzYsZHJsYrbC2UcfMGglKI2O4vAsuDu7PSsdk3LQshXO6ZpDl5RjFglCzS+6rNtW4YdRMw18H34nodutwvLslCr1VCt1bCxsYG1sippNylxEdhblVLsDZb5CWVY7F5IQxOwlruLCwsIfB/bu7vwXBeu68J1HFRrNTQbjYH5GbKenBCkQi47u8/c/jWe7+G5LluNU7qXJ5BmSvDAeigsV5fxSfvTPruLJU6Cr9opYsTwSYCYT181vYrFymLh+W9tbeGtN9/E+vo6VldX93I0Mj9F+WUcRSy/wLKksFMpRhiKuqZJD0IRfZMwN4BJiXyCRCT1BUFPtj4BC5llE32Hwg2CbM7NqLMPo4hJR3OvXRCGLFE4k89CuVfBNIyhuSd7hzFG3kX2d34dNjc3oRsGVtfXsby8jMOHD6swwh2IMg6+oJjVKqhhwN3aYgMyIbBMk03aQSCTE0tL7OYqG/LPibBDpVJhJZG+D8/zEAYBOt0uHMdBs9HAlWvXECUJhkSXi/ePvVjsgecmyF9GJC9yRKliHtOycGhxkRkJOzsyKdTpdlGr1dBqtQonFREXTsSx8BXboMnR5jkhURTJ/ANa9FpC8M27nsc/e/O3+zaVdRfr0EFAkGBvNf7Xj/81WFp/qWbg+3jllVfQarXwyCOPFB5fHMesoyK/jtVarTDvZSglPqearvdMmllS7gWTngIMv69JkiAKQwSZsl6Boevy8z7O9wfoDxuMIggChL6PUNPQzn7GCGGJhcOM/Oz++w9o5HtEfxPwR7fbxc7ODmbm53FoeRkrKytotVrjnZDitkGZc19gdMNAbWEBJg8hEEJQrdWgUYowDNHudErFVoG9yoZRgyHl4i6tZhML8/Msc59noNcbDcRRhAsffYQbN27AGaOHgzhKkvv7ICHZxxDX9iiXtGlZOHToEA4tLclJses4uHTpEra2tvqqGqQSnbg2YtU86Nrz/ANCKZI4hsNDSgUHiq8d/SoO14bLGOfDCrZm4/kT/1PB5lK8+tpriKIITz75ZKGhEwQB2p2OXKnXeUvxMoybQ5BP6JTHCS4BLXJMhnh/wjCE0+3KJkjCMNA1DVWuHFir1fZExUYcP50gF0IkOO7u7kqJZbENTddR4SGqSk4LYtAxyMTfYZ+hApI0BbgS6+bmJtrtNg6vrGBlbQ0nT55UhsEdjvIcfMGhlKI6MwPdNOHu7EDXNNTrdey22wh8H7sAK4UrOWgMUkUrQuM6C8KboBsGLpw/j2vXr6PRbMr8BIsrL1ZLDHYCkvmZoGBlNEWyiYIE6MkXkD0eSmBbFuylJdalbncXgeeh0+mg0+2iXquh2Wz29J3oqyXPJ+plj5HnH3Q6HURczKooBqxTHX/znl/F/3nmnxYeI4UmWzgL4+CvH/9raFn9E8G777yDq1ev4tlnnulTa0zTFK7nycRV0R9hrIZbJQ3XnuOnVOYfpGlGyGfItkRILArDnvADpZRl+Zd018v3ZcJPZc4gSRLp+REtmQGg67pIwUIX1VptrOPoCR2MY5xwD2HKDgx+GGJjYwO2bWP1xAkcPnwYS0tLKozwOUAZBwoALMyg8WoGM01Rr9fRbrcRBgG63S6qlQoopeNnfIv4eDpY6IcQAtM0cWhxEesnTuCdd95hRgAhciLzPA87OzvQDQMV22atp01ztCwx9laMB9WlMXseIsEPYIN6WS2DLJVKBZVKZc9I8H10ul1mJDQaqPJJvS/nIfOz6ExFKanLBZKE4ZXnZ4/+LP7w/f8HP+3+tO85AywXQhgGlmbjm3c93/e68+fP451338WDDzyApeXlnudEe2mZX2DbsHN9Aw4SjVI5uQ0yDOI4lnkE2cRCSgh0w4BlmqWTC6UeAvYSgIdNyCI/RRgDcS5sATAPQRrH0A0Ds83m6GS/rJGe/1kGbhTI8B2Xst7e2cHc4iIWl5awsrKCZtlkYsVtjzIOFBJN11Gbn4fXbgOdDtJaDZ1OB77ngRIiB6BxjASxkpauyyETNKUUx9bWcP78eVy7ehWPPf44q55wHLiuK7PAwyBAu91myXaZiodhXoWsct1B5Sb06CTwv7P/KyOpm0UYCY7jYGdnh+VntNvo7O4ChKA+rL3xgBwQy7KQ8lbAruMwwyyX/KgTDX/z3r+B33rjn/RtV4QUQm4c/LVj/wNmrJme13x28SLefPNN3HXXXbjn3nt7ngujCA7vplhWv6CsJPMoeu5FgdEmEwvDsMeoI+B5BDx+X+qzz71IBL3Z/oPeK4wB8cgbLJRS6IYBQ9eh6zpr6pWm0DVtuGHADZNRBsmw80jTFCRTXRKFIba2thBFEY6srWFhcRHHjh1TokafM9TdVPRAKUW11YJuWcDWFuIkgeu6cFxXrjSFm3xsT0JBOVr+3ZVKBWurq7hw4QIeeOghllTVaqHZaiGOIrieB8d1Efo+09sPQ3S7XabsxsvFTMOAbhiFXoV8bsLeoU1HiTG7as9PQNnQzDhejGq1imq1KhO+hA6A47ogmoZWvd4vXpPJAcnvy65UmJIlTzwl1WpvdQQheO7IV/CH7/8HXOxc7Hmvkck3MKmJ53NegytXruC1117D2toaHnnkEXlNRcfBIAik+NawMFH2fuzHMOgRPcoYiNmeIKLpUbjPxEJpAGMvB2fQsadpKj0DUU6GXBy3zg0BXdd7vBRpmqLrugiTZE/NcNixZH4vTdYoEPsF4HoetjY2YFWrOLK2hsNHjmBpaWm8bSvuCJRxoCjEtG3oi4sgfPB2HQfdbheUUqnEJtTrJkmqAlDoTTBME6urqzh/4QLOf/QR7rvvPvmcpuuo1+uo1+tSilZ4FERdt+O6coUlBnbx90jZXQx2yZc/KSJr9odtJzvxlemtAAC1Wg2VahWO48C/dAlRFGFnexvdTgdNfl3yHfOQWfFlqVYqSMFa53YdB/VaTU7UaZKAguBv3vur+M3XfyuzPZLxHIT4xvH/EfP2nHz+xo0bePnll7G0vIzTp07JcwyCAK7ryvMU3TsLjTd+vH0u8JL0VJIMSAQVE7PneQjDkBkFIqGPqwUaA4zLnu0AA3Nxij5rcSZvIF/hALDPt5ExBgZ9XkPuQQOAim33alvwfcuzHvf6Ed6UKveZjKKIJUB2u1g4dAgLi4tYW1tjypuKzyXKOFAMhOo6mgsLrD3z1avwfR+dTgeNen1vxSfKmSY1EvLuU0JgVyo4euQIPvzwQ5w8ebIwtiuSGavVKhNYiiJ4rouQy0C7YQjX86BnB1z+u6Zp0DRtqGdBILPXy54Xn5TSMfom9KyQh5QkAuz61Gs12dgpjmMkSYLt3V20Ox3U6nXUa7Xea5YNqWQqG2qVCjq8JK/T7aJer0MXkxIh+Mrhr+DfN/4DPm1/CgDQuG5lghQ6ofiljNdge3sbP/zLv8T8/DyefPJJEEoRx7GcgEXTpEHegj6jYAwK35H5XCVJgijjthchg4R/dimlUhhoZB4B2dMiGHakQqI8Eo8w7M8R4Ya28A6UTeLzfB9+GMpSRXZYZKS3YvhpEVmWmD2vOI5lG3LdMHBkdRVLXO1QhRE+36i7qxgKIQS12VmAUty4fBm+76PLE+N6OvLt10jI7M80DBw7fhyfffYZPvnkE5w4cWLoezRdR0XXUbFtxFEEX+QmcI+C53lMKEbXYfJ+92Ii0jQNGjcY9AKDYdJY7STJjyI+XVSNkEe45WvVKjzfR7vdRpwk2N3Zwe7ODuxKBfVqlQkJZVt151aV9VoNnW4XURSx+1qvs/vKk8/+l3v/Z/yj1/4xgN5kxK8f/zrmbdZRsdNu48UXX0S90cDTX/4yKKXMq+N5MkHT5j04+j4XJUtgi66VcH3nET0lRDJfkcaErmkApaVyCLIy2kC/AZkkCUs+jSJEcYw4SQpzGgiwFyooY4gUILwGcRTB4vka2Xs7LsOMgk6ng3angyiOYZom1u++G0dXVpQE8hcEZRwoSlHjgjyXP/0UYRSh026j0Wz2u1WnYCQYhoFqpYKl5WW8/8EHWF9flwleo9B0HVVdByoVaShEQSBXcEEUIfV9dnyUghYYBdJYoFQaD4PIryCzCY+TkG/+lN1PdjVM+cocAJrNJuqNBjrtNrrdLhOZ8jx4rsvactdqqOfyCrIrzVq1ik63izhJ0Ol2ZekqIQTPLD+NOWsW170bPfoGv3LXLwMAHMfBiy+9BNu28cwzz4BQik6nw6S1AWi8umSY2ua41ybf4CqfzJfkV+hg91TXddbCmhsEKZi7vM94yHgH8iWHcWbyj6MIkejmOOB4hZdKeCX2m9cS+D48rmBaRkthEKOMgk63yzwrUYRWq4VHT5/G4uLivo5dcWehjANFaex6HUfW13HpwgWWOd/pDFbbyxgJBOhZvY5CtJE+vr6OV374Q/z0pz/FysrK2AJHWUMh4r0dwiBAtj9BnCQ95WoaIdC4izdrMFAuO5z1NIgVpVjFim0cRMmkMDp6mi9hT/aXEoJms4lmsylLHx3XRRLH6LTbaLfbsEwTNe5tgLgfhACUol6rod3psNeL+5qmoITgl+7+ZfyLt/+F9BycaK1jobIA3/fx0ksvAQCeeeYZJEmC3XZbfh4qlQqsTNfJSSoPegwCXgYYZwyBSEhI596jcSNAPAZ99qQhkTM+Ex4WiHk5qngMureUUtallH82KDcs90OKXpW6kHdNDYKANfIas1dBNjkUwECjIE1TpEkCjVIcv/tuPPL440q34AsISQ+6+FvxucNzXVy6cAERb8MskpJGTf7ZmPKoFU+cJGjv7uLV115DGIb4+Z//+cLtT/LhzcagY74CBPYEixK+MhQTr8YHfppb+dFcWEJMCtm49kF9uRzHYe21LWugRkCSpiyRtNOB5/vy/4RSVCsVVGs12HzyTsGui1DF1AhBLWP4/ebLv4WfXH4Hh6pL+N+f+99gERN/8Rd/Add18TM/8zN7uRZpCsM0pS7GJOQ9BFmvQNEELTP7uUGgDTEG+BvYypmXLiZcV0A+kgQJ71lQBOX3WufGQN6Q3C+Deht0ul1sb28jBVCv14c3R9vbGIDBSa89RgHXfTA0DfVmE+snT2L12LH9nYzijkUZB4qJ8FwXP71wATFPjKpUq1KTfpSRIORqh0kOA2wCvHT5Ml577TU8++yzWDp0aOD2ZD15OqB97wiEkRBlJglB1mCQcMMgX84pVsYJX3mBEGiUgvCV5Ljej0GIbo6maaJaq/Vut+ArHUUROp0OnG4XkTBcCIHBlQlrvFohiiI5UQi1TAC4dv06fvDCC3jqySexvLyMF198Ebu7u3jiySeZcQJudPCEQ2EIjmx1zS4aOx6+Yo1FEh/PGchvgZLeMj+aua4C4WWRYR5xD3MGoON5AxUsRTiCaho07jnKG4jToMzWojjG1tYW2p0OqpUKWjMzww2SAQaGIO8pQJLA0HU0Wi1UKhWsHj+OpcPDZbQVn29UWEExEXalgiPr67j88ccIggDItXkeNkETYE+CFXshh/ygW6lUMD83h1arhXffe2+gcSATsjKD4dghCL4aFHI8QqUu5qvVKIqQZOLmCY81i9p4ktlOCpY4NuhYiaZBIwSErziFG5zw/xVdi77tiOdzK0I52eYy1zVdx8zMDGZmZuC6LjrdLlzHYSVq2STGWo1VMXAjotPpoFarSWOJEoJXXnkFW1tbOHXqFCulAytPrFYqPTkEhYZByppQCfVIcZ1Fdn/R/dJ44qCe8dDIzSHj8clO/PwxTL46yTxHCJGTv5Z5TJt8qKDs59P3fbi+D13XYQ+QmRbG2LDSWNHkqiP6pgijYHYWtWoVVNNw7MQJzM7Pj3lmis8byjhQTEylUsHS2hquXryIwPcRxzFqvHGToJQnQfSDz4UdCGEKeuvr63jzzTexub2NuZmZkcfVN1lmjqUsWREagZjQ4kxIQstMgHKSynkeerwZPNktxnDjiWoaSwrkXgcKZkRplIJkEijzyXeZE+g5/6yxIUpARYVCPomRaBos20YSRYBhwPE8xHyiff+DD7C1tYWHH34YrVaLJTxWKnsaCdnJXngCRJiGb2Podefnrmdi9wRAnMkBSIKAGRJDJv4iNG6IiWubEibbPaisdZqIUEH+npfxGiRpyhJGwxCValWGgjIblyEdua8cfUYBDx8Io4CAlS6fuOceNJQEsgIqrKCYAp7n4dpPfwqv0wHAxHqEJK90+aO8q1+Iy4hBbmdnBy+++CJqjQaeffrpfR1r0XHs5wswKH/B54mP+f0I97b8n1jpZVzwYkIUhkFhrDhJ4DoONE1DvdHoMwKEcZUVd0L2f7lkyjAM0e100OVJjIQ3KEriGLZto91u462zZ5GmKR588EEsLizAMk1QXWfnFMdsAs8aANlM/0yyJuX7p5TK36UXJXNdegyfEcOUCN2IbdLs32I/OcK8EbdPpFbD1LbI6DoONjY3kSQJ5ufnZZVCmaF7oFHQajGjgF8X3TBw8r77YJfJY1B8IVCeA8W+sW0bR48fx7VLl9Dd3mYrUdNEla9IxoVgb9IEgEq1iuPHjuHHP/kJtra3MVvCezBs24X7y/1eNixBKYXJu/MJ4jiGyXUWxOo2FW5vPnENoic+HsdIRHgiM9GKYwyCgClWGoa8VmJC7fOYZCZsWa+fN17SVLbr9njIIYoiXL1+HdevX0cKYG5+Hhql6LouXM/ru4aygiPj+dAIYaEUft496oeZ4yrSBgDQ4y0pO/GPQng4Jnlfj8ElKPrfFIiTBDu7u4iiCNVajd1rdiAD3+MHgWxWFgaBvM5FRgHSFLVmE8fvvnt4jwvFFw5lHCimgqZpWF5ZwW6jgRuXL7MWt1Ek1fr6Bs0xkgd1TcPK6io++PBDvPXWW3j22WelhPO0GBSKyBsOQO8EXYTGm+FoA4yAbJw8/1O44sXPotVhCsjVvXifXEnmVus9tfoZw0BIC4u/hS4BCJFtiIUi5s7WFgLXhUYITF2HwyWrTcuCZZqwLAsGr9qQoZDMZCk9FWJVnXsu68kQz+1n4i/FkO0K/Ye+uzfMABgS55+UFMDW9jbCIAChFM1ms7gqhZfjuq4Lz/OY90qEMQiBYRio1+t9RgHVdRxdXcWC6o2gKECFFRRTx/d9XL9yBe7ODtI0RTVf755B1u6PMBRSAB9//DFeffVV3H3yJB588MGe0MMBTSEjGWQ4JGmKIAxHusPLbD+brBfHsdSQ2N3ZQZwkrNJA0/YmvIJ8gz53d+Y1Wf2EFEDEV55BGOK9d9/F9u4uDi8vwzAM2JUKAJaAmPWA6IbBOmTy9suinLAnpCDO6QAm0nGJ4xhBHBcbALd6SOSGXrvdxtbWFsI4xsL8PCr82gN7jayEh0C0UxZYlsW6elar7LORJU1Rb7VwbH0d5phaCYovDso4UBwISZJgc2MDOzduIPZ9pnpYqw1dCWaT9ooG6BTAa6++iguffoqnnngCy8vLsnSQZlaft3riEQRRxPIL+EoU6J2M+756hICkKZNQzq7y+XNSRIi/r91uI44i1Op11jkQe+Wc2X0OgwAApUiTRHYnFD0Rfnz2LPwwxMMPPoiZ2VnohgGfl/6FUQSNUgS+jzBXbpimKfM+cEPBtqyBmf8pIaD8nAdScC55w0Pc+75PjTA6M5+plBtut8PQl/VCZY0mz/dx/fp1RHGMeqOBVrOJOI7h8nBO4Pvy9WmaSu0K27ZZOG/A9dR0HUdWV7EwoPJHoRAo40BxoHS7XWxcvQq/2wVJU1lPP4rshzI7zIVRhD/7sz9DEAR45pln0Gg0Ct/f009g4qPfHzFPVjyor5jjOAh8H5VqdaBnphDhceGhCz8I4Pu+DE+0d3dx9sc/hqHrePrpp6W8cL3RQJokaLfbMrehXquBUgrXdeH7PnzfZ7kWQI9Er2ma0rNgWdYtVdyLRQnqLR768gaBIIoiXLt+HUEYglKKSrXKPDlBwDwdhABJAqppzDvAjYKh5a9pisbsLNbW11VugaIUyjhQHDhhGGLjxg10t7cRBwFzPdv2WJN21quwubmJH/zgB1hYXMRjjz3WX9qVfV+ayonoIDLJh5Hwmv5pZsRnEaWHpmUNVcsTMf3sZJgmCevu5/vSENMpxebWFs6cOYO5uTk8/eUvIwVr100NA1Xblqv1TreLKAwBQlCtVGCKe5CmiLjnwfM8+LzElT215w2xLIu5vi2rL0RxkKRAj4LlTSPrKRoy5CZpiitXr2JnZwdBGKJWrTLtDG5E6LqOSqXSe81HoGkajh47hnnVG0ExBso4UNwUkiTBzs4Odjc3EXS70DUNlWp1YNLeKN7/4AO89dZbeOC++1jsdJzVECEyvHGQxoLIEUiAgZn4+yEIAjjdLnSecCbIGgPZ7HqAGwWeB8/394SbdB22ZeH8hQv4yblzWF1bw+lTp0A1jVWeBAFsy4KeucYpAKfblXkVNl+97r1gb1iJ4hie6zJjxPPYxJwV7BF6A1xXwhB9EQyjP16+T7ICTAdNmr0HuedEG+coihDyqpAgDNFut1lPjCRBk4eLTNNkBoHILSl9AClac3NYOX5ceQsUY6OMA8VNxXEcbG5swO90kHJRl2wZYFlSAH/5l3+Jq9eu4fTp05iZmWEJWzw+XTrpTWSlH2ApWso9CFP7qvFzjOMY7XYblFK0Wq2hb0m4UeDzjpRIUxiGAcuyoGsazpw5g08+/RT3338/7rvvPmlQbG9vM5d0o9GbVwB2rVzuvQC4SmK1uuelyGTGZwnDUMbNPd9nhlNmZZ2tqCCENcISfRN0TWNGA/99HBXDnnsxhnjSKFJgL+chYwwIKW7ROjz7yH4WCIAoSRB4HhzXRRxFmJ2bw9z8PCq2PZFSo67rOLy2hgXlLVBMiDIOFDedKIqwtbWFbruNoNMBJQS2ZcHkGv1lCcIQ3/ve92AYBh599FGZod3TuCdbIicS33hsfRBFJXeTIsoTATYBjBXnzh173uhJkwTbOzsghKDVag1UxhPxavG8oeuwbBuGYSDwfbz8yivY3NzEqVOnsLa2Jt8b8dbchBsfERd4AnpLOYMgQNdxAGCvH0PR9R1w7j5PaozCsKenQn51n096BLiaIpdXzrZlFi2Ss0qSQnwqjOMeqe1xEcYA+Dbl5M8NAdE1Mq/emNfO0DSNleRyEaqAh3hqtRpm5+Ym/tzNzM/j6Nqa8hYo9oUyDhS3hDRN0el00G63ETgOAscBBWDyGHTZcMONGzfwgxdewPHjx7G2tgZN11Gv1Ub2JhhUGVFUTin+Ryhlk8oYRkN2UpKliBlECEBO+mOW0m1vbyNNUyZlzK9ZmiTSTR34vtRDME0Ttm3LhNBOp4O/fOklBGGIL3/5y1hYWMgeGAsFZJo7ZY2DPGEUodvpIAUTLarVaqCDVrwlzy9N094Vd6Y5VhRFPb0YxLWTeQ38Pum8Z0W2nfaw88jvH3y7ony0J0QDyO6Ngz4LlBsuBg+TGCJ0Yhgg3CjodLuyUsSybbSazbG9BYQQtGZnsXz0KCpK5VAxBZRxoLilpGkKx3HQbrfhdToIHWdvIhtSApflJ++8g5+cO4dTp0+j3miwySnTbnhfxzfkuGX5ZCbRsc+w4G7sLDGvEphGd7/d3V3EcYx6rSYbPgVBwI6FT2omrxLIXsuNjQ388Ic/hGmaePbZZ1Gr1fq2LUolq9UqTMsaOakmSYJOp7NX3VCvj65M2cfwI3pciPi9/DvT2llef36tk7RYiTFvCAwyEpH7vzBKRLhDGAHCABhm5Pq+D8dxEMUxfM+DaVnFvROGII2CI0dQKbiHCsWkKONAcVuQpil838fu7i6cnR0ErsuMBF1n3oQheQlJmuLP//zP0el08OSTT8oJW6gz3mx6+hugOJyQNxgmIU0SbG9vw/U8OSmJSVDnssqWZfWt4C9evIjXX38dc7Oz+PLTT/e5n0XsfHtnB0hTNJtNUE0rteJORSUDf23prPoDGIYCbiilGeNAGg053YNBZhoZ4cESuRDjItQMkzRFGIbQeKOpRiaxdBjKU6A4aJRxoLjtCIIA7XYb7a0tBN2udFXbts2azhS8p+s4+P73v4/FxUXcd999MumsxvXobyWi1l8g3NwpAGQ6UpYhTRI56UVRtOeO5q5/kd1eZBSFYYhz587h/EcfYe3YMZw6dWpgCaHIN6CUosmTHUu749FbyWAYBhPmKVuZsp98AO76j9MUacZDkGKvjPFWimSlaYqu4yAMAhmmEE2mmo3GyL4blBC0ZmawdPQoqspToDhAlHGguG0R2fg7Gxvwu12Au/JNXiOfDxt89tlnePmVV7C+vo677roLIY9Liyz6abjxJyEFClsLC+MgyRkOPYqKvCohCAKZsIdMGCNJEsRRBLtSQXNIq91Lly7hzTNnEEYRHnroIZw4cWLo9XBdl7m6udEBlDcO5Da41oGgYtuwJpHrzazwJZmk06zCIAhhPSkGXO+brm+QIQxDVqbIcyUI9nJSavX6wH4hKQCNENRbLRxeWVFGgeKmoIwDxW2PiGVvXb8Ov9ORk6dpmjIrXcR2z1+4gDNnzmBxcRGPPvooiz/ziaI6YdnkVM4hTTHoqyaaJ2URJXABz36X0zgh0jugGwaSKELXcaDxxjxZaWZCCFzXxZtvvolLly5heXkZjz/++EDBpB5pZp7LUK3VZNhhmHEwKCkvjmM4rssEk7An4tPn2ci6+dFbDZHNARg2WIl8gkEmz1TLSccgTVPWrIpXI0jDjt/3yqDeI9wIbLRaWD56FLWSIQeFYhoo40BxxyCSF7euX4ezs9Pzf41SaDz+u7m1hR/96EeoVqt46qmnkKZpjxehUq0eXLe/IceeDDIOuMxyHMc9JX3ZREdD12FwgyCb5BbHMXZ3d/vKGdM0xYULF/D2uXPQCMGjjz+Oo0eP9jRj6hNISlOAUiRRhPbuLsBd2BRgQk7Z3ImMITFw0k73FBF934frOPJv4UUY+y5kzk8cv/h9mHbBrfIaBGEIx3GYNwPsPop7nSQJ6lzoSMLvOSEE9UYDyysryihQ3BKUcaC4I/E8DztbW3B3d+E5juw8KMrYut0uzp49iyiK8MQTT6BWq7EGQXyQvhVehIAbKAmfGKIkkX+DVz7I33ms3jBNGLo+NBa9s73NYta8BG53dxdvvPEGNjc3cez4cTz80ENDa97zRoKQZTZMU1YxpCih8jiiDDNOEriOw3IRwOr8q5XKRAl94phSAKkoaRyy76TAO3OQJGkKN+Mt0DQNpmnCc13EPAelXq/L7pUC0zQxMz+PucXFXsVJheImo4wDxR1PFIZoc1Gl0PNYKCFNEQYBzv74x2jv7uKBBx7AwsKCLPMDANu2p1byKBAegiSzOozjWPZYyGbOZ94ESikoV/wTZXFl6bTbCKMIlmXh448/xnvvvYdarYZTjz9eSiEv3yFShBQqtRosblSUMg4wOLyQJbuaBgBD5ISM3PrePoABeRxZQ4d7LtI0valeg/z5Wbwpkuu6LKmQUtmwCgBACJqtFuYWF9EcIGalUNxslHGg+Fzhuy68TodpJkQRgiDAW2+9hcuXL+PEiRNYXVtDFIbwfF8O3rZtS3XGwoE58z9ZptjzNJF5A6JUroisMp7GjQGh8IdhWeojVryu6+LKlSt477334Lou7r33Xtx7330T9a2I43gvpJANU2C6/SHEytrnPR4IpahUKkO9OcOMgqH7AljeRvbeilAEpieZHUURXG6cpmkKXddRrVYRhqH0GJi6jioX6bIrFeYlmJ+HodQMFbcZyjhQfC5JkoQZCd0uQt/HT86dw7vvvouV1VXcd//9iKMI7U4HMR/IRfOfqUjOErJnAPBcCMr/ToCBxsNQMqWPWWMl4N6RTz/+GDMzM/jSE08MrVro3WTaZwwVhRSAMY2DMVQeI55QKVb2pmEU5oQMS+gcRZxRUuwjUxkyKXEUSYnqlBCQNJWtqV3RmTJJYFsWarUaMwgWFlQugeK2RhkHis89YRDA63Tw3rlzePW11zA/P4+nnnoKhq7L1sJSHAdgfR5Ms7dHA4q1/bOToNDyp5QOnHCGJSaWhrvJL168iLfffhtxHOOuu+7CkcOHMTMzU1pPIB9OAJjiYpKrUgCm7znIkqap7BQpjseyLBbS2OfEXaRQOS1i3m0yCEOZ82BZFmzLAiFEtrVO0hQLi4s4vLKC1uzsLRHmUijGRRkHii8MSZLg/Acf4L9997uoVyp49LHHcIjH5IMgkEZCkiSglLIJyrL2PUEVHcekX7pup4MLFy7g408+ge95OHL0KB579FH4vo8kSdCo18fKV8gyKKQATGYcFHkmhhHFMRzHQeD7cp+GYcDiVRqTxOIPIhExaxQALOxj2TYzCihFEATwPQ+EUtRbLRxfX0djRNdMheJ2QxkHii8cGxsb+OM//mPs3LiB5YUF3HPPPVhZWQHlA7vrumwCTxIQSmHZ9lRWsYJxvQdpHOPylSu4cP48rl27Bt0wcGxtDcfX12UIocPDJ0Kbf+jWB7jSB4UUgIPxHGQ9MtlhKAxD1qmRT75IU3YfTBOmZQ2t3MhvX5SETgNhFPhBICWmTctChSccep4HPwhg2zZac3Nozs5ibm7ulit0KhSToIwDxRcSoQPww5dewsVPPsFss4l7T57E+vo6DMNAGIbMSOCVB5RSmKYJi68O90sZV7frOMxL8PHH8DwPc3NzWF9fx9GVFeg517TneXBdF4ZhsJbJOQMgBfaaPQ3ICbh06RI+vXgRn332GS6cP4+Pzp9Hp9MBADz7zDP49V//9ZHH/C9+93fx4osv4vTp0/iNv/f39vYvjidTQTDKs5DEMfwgQMClhsEfumHAtqyRHhLR4Go/pGmKiMtV+7ztdZok0ihIAfiehzCKUK3XMTM3h1qjgVqtdktVORWK/TJZgbFCcYdDCMGJEydw4sQJXLt2DS+//DJeOXMGZ8+dw93Hj+PkPfeg0WzKTPMkSeD7PjzPg67rsCyLrQgnHPxppo1wD0mCK1ev4sL587hy9So0TcPa2hrW19fRGuKaFloBsmQvd1yiIuBb3/oWvv3tb+Of/fN/jsXFRWlExFGEf/SP/zGQptjZ2Rk77CEm+lOnTuEvXngBZ8+eRRCG0HW9MD+DHeLwa0c1DZVKBbZtIwpD+EGAMAwRRRHaYSi1A0zT7PMmCGNoUpI4lt6LWIg/ccOkWqkg5j0SkiRhCoZzc6jW66jX68yAVEaB4g5HGQeKLzyHDh3CN77xDXzta1/Dq6++itdffRXvfvghjq2u4uTJk5ibm0MYhvKRJAm63S6rcODJi+MmmRFCmPIgnzA9x8Enn36K8+fPw3VdzLRaeOyxx7C6ulpKJEjTNNbQiZdTDjseQqmc7AAAPCEQacpEe9IU8/PzOHzkCH589ix7iXhzRvVQ/gt7nRwfefhh6KaJwPdx7u238dhjj/WoKU4CIYSJQZmmnLQDfh+Ex0RIaVOeFDpJnkGaJCykwftYCE8HIQQmb/oVRRE6/N63ZmfRnJtDrVZDLZfAqVDc6SjjQKHg1Ot1fPWrX8XP/MzP4K233sLLL7+M89//Po4cOoRDS0uoVauwbRu6YcDQNCSEIPB9+J4HTddZ2GFYbgJXbmy32+h0Otjd3cXOzg52Ox0Evg9N07C6soL1EycwOzs71rETQqDrOjNgggBapVKw++IJOk4SBEGAr371q7JpVavVwvXr1/Ebf//vs+0PeX/2bC3LwkMPPog333wTr7/xBh577DH2/D4NBAHVNJZXwUWufN6dUpw3wFpkU0J6hKVEWWm+fTXAyikDbnCkSYI4SZAkCXRKQXUdOm9XHfg+DMvC/NISGq2WNAomVXhUKG5n1KdaochhGAa+9KUv4fTp03j//ffxo5dfxo/few++57FJhxBohLC4cqUC2zRh8eY5lm2z1rtcEa/d6aDT6aC9u4t2pyNXtJqmodFooFGv49DiIhqtFg4tLu5LDEfkSgRBADtnHAybmEXnxL/y9a9Ppfb+8VOn8Oabb+LMG28g/dt/m4U0gKkZCGxT3GtjWaxrpe/LngXgDZZi/ncASI8HJUQaCEkcw/N91lCKv54QAsu2Wftr7o3Q+cPgfTlEPkHZxEiF4k5EGQcKxQAIIUxt8N57AbAs+p2dHezs7GB7exvb29vs960tfHbxIlzXBQWbCDUuhGRbFhqNBmZnZ3Hs+HFmEDQaqFQqe935sL/4uMA0TbiuizhJEEWRXNEOm5CTJJEr7onaKRdw6tQp/Ot//a+xvb2N8x99hLvuugvA9A0Egca9CQBkKaoIr4ifURQhCEP4PGcBPFShmybseh3VahX1RgM27/WgCY+DkLTm/9N1XeUTKL4QKONAoSiJYRhYWFjAwsJC4fNxHGNzcxPXrl1DHMeo1+tI4xiB5yF0XRAAOs9PSJMEoBQEAAUQj6EqOAjC2zkHQQDf93uTAQfgeR5S3uRpWu7x2ZkZ3HXiBD766CO88cYb0jgADs5AQEbPgFIKQikIITI3IQVQrdVgV6swbJvlJ1CKKvcEZA0C5RFQKJRxoFBMDU3TsLi4yKoAwGLZvu/LR+B5CLiWQKfdBuXZ9oZhQNc0xGna01J5EizTRBAErEW1KF0cQMJzDQCWKzBNHj91Ch999BFef+MN/Mqv/ErPc1M1EHi1RQJIj4kfBIijCFTTYFcqqM/MwOb5IpZlsV4aGQVMhULRjzIOFIoDQtd16LqOWq2GNE3lil48QteF73nodrtIRWfGbBKdpu01gyrwLBRNbpqug1CKJI4RhuHQDHqfVyZomjZ1oZ7Tp0/jW3/0R/js4kVcu35dKlHKY+fHnwKDjZgCrQaRGJlwQyCJY4RRxH5PU1i2jXqrhWqttpcHwg0CJVusUJRHGQcKxU2AELInxwwWgujxKvg+Il5CF3I9hTRJ9uLeug6NN3Hq6fmQ7RLJtRMMw4DPk+10wyhsSS2aBQFAZUq5BllWV1ZwaGkJ165exRtvvIG/8vWvy+fynRAJpSCZLokieZBwg0i0u47jGHEUyRbYBk8SrNVqsGwbJvcMiIfyDigUk6OMA4XiFqBpGqrVKqrVKlPhE+V4/OH7PjpbW3A7HZaBHwRSaIhSKo0FQilrzUyIbNFsGgZT7QsCdLtdVCsVOUkmSQICoOs4MPgkqhnGnos/46FIuTqkeJ8IBYjpVnQg7AsOcKPlsUcfxXf/9E/x2muv4eu/8Au9jav63pLKEsJsImHMwyPSg0AIdMPA/OIiGs0mMxAyD5UvoFBMB2UcKBS3GJFImHftR0tL6LTb6OzsMGXAMEQSxxB1DWmSIApDeEnCJvGM8QBgTywojpmULzci6rxc0dR15jXITvCZ0EXWMwEusAQMF0TKvBmnv/Ql/Nc//VO89957aLfbsG1bNkISpYbiJ9KUhVN0nQkZ6To0HhKhlMoQjcV1BqwxeiwoFIrxUcaBQnGbous6ZmZnMZMRRIp5LoGQEZbu9qzbPYqQRBGoYTCxpW4XXcdBHEUAgEajAd/3ESUJOp0OCCEyLAFC5N+B78O2LGl0iByFrFEgeiSI/wN7jZQOHTqEmZkZAMB777+Pe++/H7qmgRoGKws0DGh80qe58kFhDAijSYUHFIqbizIOFIo7CDF52rk8AZGklzcWtre30eHiS0mSoBtF+PDiRcwuLWFmcRGpaB+dJMwjkSRIeMMiYhjocuGnKI4BnjBJhAEhvBSUgor/8dU8oRRn3ngD71+4gJQQPPmVr6DRaPQYAJTnUKgSQoXi9kMZBwrF5wDCRZfyGfnNZlMmHorV99vnzmHh0CEcWVnpWfnnHzEheO/8eRBC8ODjj2Nlfb3HMMg/xD7E4//6p/8UP718GT//8z/fo3WgUChuf5RxoFB8jiGEoJKTUg7DEIZhjNQ2qNVq2NnZAcA0G8bt9/Cd73wHURThG9/4xngHrVAobjnKj6dQKKbOmTNn8OmnnwKAMg4UijsQZRwoFIqp85/+038CADz++ONYWVm5xUejUCjGRYUVFAoFAODFF1/Ehx9+KP++ceOG/P3DDz/E7//+7/e8/m/9rb81cFt/8id/AgD4xV/8xakeo0KhuDko40ChUAAAfu/3fg9/8Ad/UPjcSy+9hJdeeqnnf4OMg4sXL+LMmTMAVEhBobhTUcaBQvEF4ud+7ucAQOoPHATCa7C6uorHH3/8wPajUCgODpJOvXeqQqH4IvMLv/AL+N73voe/83f+Dn7nd37nVh+OQqGYAJWQqFAopsbu7i5+8IMfAFAhBYXiTkYZBwqFYmp897vfRRiGaDabMoShUCjuPFTOgUKhmBp/9md/hlarhV/8xV+EyRsnKRSKOw+Vc6BQKBQKhaIHFVZQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9PD/A/sYf30wPVYxAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -140,12 +140,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZBcZ3oeCj7fWXPPrL0KBaBQ2AmATYILSDbJJtkt2ddaLNltW5YtS2ovMTMxMaG5o7n3ejo81zMxce8PaRQxuhMz4asZX1myr8fSbVntlmSpN7Kb3VyaC0CysBFAoRag9qrc8+znfPPjW+pkVmZWFgiSWPJhVKBYlXXynJPne793ed7nJZRSij766KOPPvro46GF8nmfQB999NFHH3308fmi7wz00UcfffTRx0OOvjPQRx999NFHHw85+s5AH3300UcffTzk6DsDffTRRx999PGQo+8M9NFHH3300cdDjr4z8IBjYWEBv/mbv4mTJ08inU5jcHAQTz/9NH77t38blmV1/dtf+7VfAyEEf+tv/a3P6Gz76KOPewV92/GQgfZx3+Jf/st/SQHQubm5tr//1re+RXO5HAXQ9uv48eP0+vXrHY//J3/yJxQATafT1LbtT+kq+uijj88afdvRRyv6mYEHFBcuXMAv/dIvoVqtIpPJ4L/77/47vPnmm/j+97+Pf/bP/hkA4Nq1a/jZn/1Z1Gq1tsf463/9r8M0TTQaDXz/+9//LE+/jz76+JzQtx0PJ/rOwAOK3/iN34Bt29A0Dd/5znfw9a9/Hc899xy+/OUv4/d+7/fwW7/1WwDYov6d3/mdtsdIp9P4yle+AgD41re+9Zmdex999PH5oW87Hk70nYEHEO+88w5+9KMfAQD+yT/5J3juued2vOY3f/M38cgjjwAAfvd3fxe+77c91t/8m38TAPBnf/ZnoH3l6j76eKDRtx0PL/rOwAOIb37zm/L7r33ta21foygKfvVXfxUAUC6X8dprr7V93c///M+DEIKVlRW8++67d/1c++ijj3sHfdvx8KLvDDyA+PGPfwyApeqefPLJjq976aWX5PdvvPFG29fs27cPTz/9NIB+uq+PPh509G3Hw4u+M/AA4sqVKwCAo0ePQtO0jq87efLkjr9pB5Hu6y/oPvp4sNG3HQ8v+s7AAwbHcbC5uQkA2L9/f9fXDgwMIJ1OAwBu3brV8XW/8Au/AACYmZnB3NzcXTrTPvro415C33Y83Og7Aw8Y4q0+mUxm19eLBV2v1zu+5syZMzh8+DCAvoffRx8PKvq24+FG3xl4wOA4jvzeMIxdX2+aJgDAtu2ur+un+/ro48FG33Y83Og7Aw8YEomE/N7zvF1f77ouACCZTHZ9nUj3vf766yiXy3d+gn300cc9ib7teLjRdwYeMGSzWfl9t/SdQKPRALB7WvCZZ54BIQRBEOC99977ZCfZRx993HPo246HG31n4AFDIpHA0NAQAOD27dtdX1sqleSCPnDgQNfX/vjHPwalFIZh4Jlnnrk7J9tHH33cM+jbjocbfWfgAcSpU6cAADdu3EAQBB1fd/XqVfm9UBTrhP/0n/4TAOCVV15piiD66KOPBwd92/Hwou8MPIB44YUXALA03vvvv9/xdT/84Q/l988//3zXY/7Zn/0ZgG0yUB999PHgoW87Hl70nYEHEL/4i78ov//93//9tq+Jogh/+Id/CAAoFAp45ZVXOh7vwoULWFxcBNBf0H308SCjbzseXvSdgQcQ586dw4svvggA+Nf/+l/jrbfe2vGa3/md35HKYb/xG78BXdc7Hk+k+c6ePburGEkfffRx/6JvOx5edNab7OO+xu/+7u/i+eefh23b+Gt/7a/h61//Ol555RXYto3/8B/+A37v934PAHD8+HH85m/+Ztdjif5g0SLURx99PLjo246HE31n4AHF2bNn8Ud/9Ef4lV/5FVSrVXz961/f8Zrjx4/jL/7iL2AYBorFIhRFQSqVahIcuXXrFi5cuACgn+bro4+HAb3ajj//8z8HpRTFYhG6riOTyYAQIl/Ttx33F/rOwH2Ml19+GQCr2wVBgND3EUURwiAAjSK8+Oyz+NGrr+Jf/d7v4Tvf/z5WlpdhmCamp6bwsz/zM/jHX/saNEIwe+0aQCkURYGiKBgZGYFhmgAh+I/f+AYA1j509uzZz/Fq++ijj7sFYTtyuRw815U2I4wiREGAF555Bq+/+ir+x9/7PXzne9/DysoKDNPEoakp/NzP/Ay+9uu/jigIcHt+HoQQEEVBMpnE4NAQVEUBURT86X/8jwD6tuN+AaGU0s/7JPrYiSiKEIYh2+T5v77rsnYf/rvI9xGGIVvIlCKKIkSUIowi0DAEpRQUgPiIKQACIKKUvT4MUWs0AEqh6zoopQjDEJqmIZvJQFUU/Jf//J/jJ++8g7/zt/82/s9f/zpUVYXn+7BsGw3LQjafx9DQEAYHB5sUzProo4/PB612IwgCeK4LhCGzG8Jm8H+jmO2IoghRFDHbwb/Ao30CIIwigFI4jgPH80AIQcI0mRohIUinUkgYBhRFwf/+v/6v8fY77+DvffWr+G//xb8ABeC4LuqNBiJKMTQ8jMHBQRQKBShKn772eaOfGbjHEAQB6vU6Go0GPMeB6zjwXBe+68IXkT9fkBQAjSIAgKZpMA0DqqqCECIdgVZQ/gVK4bguKKXQNA2pRAIRgGq9Ds/34bouXN/Hx9euIZvNYmxkBH/+Z3/WpENOxPGiCCEAwzRRKBRw7ORJnDt3DqlU6lO+W3300QfAHH7btlGv19nate0m2xGFIYIoAo2ibRsQhoCiwNR16IYBVVGkbYB4TZv/p5TC5XLF6UQCGg8kHNeFbVlQFQV128bH168jl8thcGAAf/KNbzTpFhBKEYEHJoQgm8theHQUTz/9NI4ePdpUbujjs0HfGbhH4Loutra2UNnagm3bcCwLNJa6VxWF1fK59x6GIfPkufdOAPjcy08mEkgmEmxxEwJCKQj3vAkhoABC3wcoRcI0kc/loKkqKABd0+A4DiqVCv7iL/8SlUoFyUQCx48eRS6TgWGaMBMJJEwTmmEg8H1pBGzHgWNZ+MmPfoS3f/xjHDtxAi++9BJGR0c/z1vbRx8PLCilqFar2NrcRKNWg91owOcRu6ooUFQVqqJA1zToPJAQ5QDKbQIFm0WQMAwkEgmYhgGiKDKoEBuz+FdMN9RUFdlsVmYMiuUyHNfF0tIS/vwv/xLVahWpZBKPPfoo0uk0TNNEIpGAwTMHjuvCsW04tg3btlFaW8Mf//t/j3w+j6effRZPPvUUNK2/RX1W6N/pzxG+76NWqWD59m3UKxUEYShT9ulkEpqmQVFVaKoKlX8RQqC0eM1BGMJ1XTiui4hSBEGAar0OU9eRSiahtllQDk/rJQwDJicMOq6L27dv4+b8PDzHwYczM6CU4sXnn8cXn3uOpRzDEIHnIYwiBGEIRVFgmiY7Z65RPr5vH9bX1nDj2jV8fOUKxsbG8PgTT2D/gQPI5nIwTROqqn76N7iPPh5AiCzA5vo6NlZXWbYuikAUBQnDQDKbhaIoTXZDUdUmu0H4cTzfh+M48HjU7rguPN9HwjSRTCRAVJVlH/nfhmEIjzsb6XRaBhFbxSKuffwx1tfXoSgK5hcWoCgKXnz+eTz5xBMIwxC+77OAJQwRRhHLSKbTSCSTyEURRicmUKvVsLqygu9/+9v48Q9/iKNHj+ILZ89iYHCQvZ+m9bMGnxL6nIHPEFEUwfM8WJaFeqmEeq2GaqWCkFIgimCaJrLpNBKJBDRNgx7fxAmRtTyRDQAgywUCnuvC5iUFcM8+mUgglUjIRRRyBjClFLlsFpquY35uDjMzMwjDEMOjoxgeGcHIyAgTomiz+AgAhacVRalC8BYCnrlwXBcry8tYWVmBoqo4cfw48oODyOZyKAwMIJ/PI5fL9b3/PvrYBUEQwHEcNKpV1KtVVMtlWLYN8KxfJp1GOpmEYRgsiCCEEfsIkVwAsT7jEGWBiFLYrgvHcWSJUVUUZFIpZocIAShF3bLQsCxomoZCLgfbcfDBhQtYWVlBKp1mdmN0FLlMpolvIEAAmaUEL1mwU6DSboRBgFK5jKWlJRRLJYyNjWF6ehqpTAb5gQHkcjkMDAwglUr1HYO7iL4z8CmDUrrtAFSrcC0LAY/iq7UaKHi6LZ2GoigIOMkn4OQfsfmDp+sUnuZXFAUKIVB4Oo8oCjRFYWl8wwAhBLbjyNqeyg2GrmlwPA/VahUKIVBVFRcuXMDm5ib27d+P6elpeJ6HIAyRMk2W0tM0aLEMhaaqgKKwDgRCQLnTIQxNfHmGUYRSuYyfvPMOHMfB0aNHkclkoGoaEuk0stksBgYHMTQ01OcY9NFHDGEYwrZtNBoN2LUaXNtG6Puo1etw+LpOmiZSySQjDscIg4JXFPI1qsT4AKqqMmeeZwsURWGcI9OErmkIggC2bTMHghCYhoF0MglFUVCqVOD7PpKpFFaXlzEzM8Mc/RMnUCgUULcsEAD5bBZEUZi90DRpN5RYuVI4GGEYAoSgdVv3PA/XbtzA5cuXURgYwOHDh0EIgZlIIJnNIp/PY3BwEAMDA/2A4i6g7wx8SgiCAJZlodFowLUsuNwZ8IMAtuuiYVlQCIGuaUhzD1fW5sRBCGGsX4CRePjiiTp8ZJEgB1EKRVVh6DoIPxdN06DpOpKJBMIogm3bWL59Gzfn5mCYJk6ePInBgQGAUnhBgCiKkE6lUMjltr1v/v7ANnFQnImIQMIgABSFRQAxr933fbz91lvY2NzEF77wBQwMDsKybfhBgEQqhXQmg2wuh8HBQQwODvbZxX08lKCUwnVdWJYFi9uORrXK0veeh3qjgTCKoCoKEsLxB7Y3U/5vGOsmEhBBBQVfm7H/j9ibg/IypaZp0qHQdR2GriORSKDRaKBWq2F2dhbFYhH7JiZw5OhR6JoGSghsy4Ku6xgaGGjSKwE/N/l+lILEzk+cr7CDgtsEAKsrK3j7Jz9BNpPBY48/jiCKYDsOFFVFKp1GOpNBYWAAQ0NDSKfTn9pn86Cj7wzcZbiui3q9DqteR61aRa1UguU4oFEEg6fbPNcFIQSGYciavtbKDeA1dU1VZdRNOR8g3gYkCIU0iuCFIXzPY6/hzgPltX3bdeF6HgilKJbL2NrYQBAEOLh/Pw4cPAiDL3jDMBCGIRqWBVVVkeNTxkgsE6FyUiONOQcCIkJpB0opLpw/j/mFBTx+9iwOT0/Dtm3UGg1YlgXNMJDJZpHKZDAiyhR9p6CPhwBRFLHsYb0Ou9FAZWsLtWoVQRgyW6Hr8HwfURhCIQSpVAqmaUpugIi+BRcn3lUkNnVf2A5uPyiloPz/Pd+H53nSzgBsg/bDEBYnM7ueh7X1dUYMTCRw/PhxFPJ56JoGwzBg6Dpq9TrCMEQ6lWJaJTESdNx2tAY04jx3bEeUAoqCcrmMt954A0RV8eVXXoGiqqzryrLghyGSqRQrI+TzGB8fR4bzl/roHX1n4C7BdV1UKhUUi0UUNzZQr1ah8rYdwZ5VFAVBEMDQNORyOWRzuR2pMeE9B8JTjv2q1aOWHIAw3F7kUQQ/COB5HhzPY61Fvg/f92E7DjY2NrC6uQkQgpHBQYyNjSGXySCbTjOiIU8t1up1ADzd16EuR3gGIL7IVU4oAtD+7yjFBx9+iLm5ObzyyisYKBRAwUiQ9Xod1XodIAQDg4PI5HIYGxtDNpvtEw77eCARRREajQZKpRK2NjdR3tqC53kwdR2mYTSl1ikAQ9cxMjS0Yx6A0BChUcQ4SLGfAdt8HmB7XQqtkTBmO4Td8D0Pjusi8H24noeGZWHx1i04rotkIoHJ/fuRzWSQzWSQTCTYORICy7Lg+T5Mw0Cyg+6IKBEIcSItVuqkwA6CtIBlWXj1tdcwUCjISYmipbFaq8GybaQyGeQKBQwODmJ4eBjJZPJOP5qHDn1n4BPCdV0Ui0VsbW2hVCzCtSyYqgrTNKFpmmzzSyQScDlTV1EU5GLp99ZHX2oJtIACrF+Yk2xEfbC1jCCMgIgMXN+H73lYXlnB4uIi0skkaraNA5OTSPP6PY0imalIJ5NMGATMGVB5diKMImk8pJBRm8eHcmdGkCB1TWM1PeG8RBFee+01hGEovXyFOxagFJV6nbU0ZrPIFwrIZrMo8H/7mYI+HgREUYR6vS5tR6VcBjiLX+f1e2E3DE1DtV4HpZTxfmKlAQHRHRCGYVt9EdGOHOcVBGHYbHtajheGIRzPg21ZuHrtGlzHQRhFOLB/PxLJJAxNQ8RT+slEAulkEiAEjutC58Jl4r3l+wuyMbAjqwhsC6JpmgZd16GrKrNP/LWrq6t484038IXHHsPhw4cBQJIlvSBAqVSC6/soDA8jwzMF+Xy+7xT0gL4zcIcIwxCbm5tYXV1FtVpF5PvQACQMA/l8HulUSvbrAoBl27AtCxRALp+H1mVTE1mBpnQdj/bjwh0AZJ1NJQQKZxELYlDg+3C5nsCNmzdx+/ZtTB04gJHRUbzzzjt44uxZqKqKIIpYtoEQFlWEIdwggKnrGB0eRjab3bFwQ+6wCLIjjSJZnoh4aYK2ODSapkHVNBiaJr38/QcO4IkWqdJ433IYRcjk88jmcshy0lCfaNjH/QzHcXD79m0Ui0XYtg2FZwvTqRSy2SzSqZTMhNEoQrlaRRRFrH03nd6ZTeQQTrhAFEXwfR8BLx8Kol4chJOIxb8iKvd4AOG6Lj744AMAwJEjRzBz8SLOPf00NE2D7TiMo0AIojBEBEgbkEmnMTk+zsqJsQynCCoCLpseDzBEEBS22DjCdRJUTYOh65i5eBGzN27glVdeQT6f33EfbNtGqVZDkvMJ8vk8MpkMCoVCP8PYBX0K5h1ga2sLi4uLqFarQBDA1DSWnspmkctktltnhBhQGMKxbVBCmH5AF0dAEIji0T+wTdgTi1nXdRh8gcR7byml8H0fjm1LgZGrH3+MjfV1nP3CFzA0PIwK7yQQUUa8Bci1bZYmDAI0bBu3l5cZ4z+f3ybn8Dqgqiigmta2/idqkB43QhF3FoIggMtfd+LECVy+cgUjQ0M4cPDg9t+DlR4GBwZg2TZq5TJrqcrnJdM5n8/3GcR93FfwfR+Li4tYW1tD4HlQoggpXUd2cBD5XK5JzltsnnXbBo0i1tefSrV1BChvLxQpfbHOolgULta4qiiSIKhzHROxWUecmOd6HgiAeq2GmZkZpNJpPHn2rOwUyIpuoEQClHcnBL4Py3HgEYJ6o4FiqQTP85DPZpHLZpvIhIIfFWjajjIoKIXlOAi4DQr4zATP8wDPgw0262BtdRU/eecdvPzyyzB1vSkbkkwmoRsGavU6iuvrqJbLGBkbg+d5zNlKp/stiW3Qt6Z7QKPRwPXr11GpVECCABohyOdyGCwUkBTRKl90JLbBNnj93dB1mKa547gUzKMWm6doKRRQFGWbZChS7uJvY153GARoWJZMxYVhiJmLF1GtVPDcc89haGgIFicGEkJgmCZSqRQajYZc1KNjY6BRhM1iEdVqlUUbvo/V9XXomoZCPo9si8OD2LUCLNrQVBVKrM0xDAJ4sdJGFEUYGxvDxsYGzn/4IRLJJNKZDOuTVlWAECiA7HOu1GoobWygUixi34ED8DwPuVyuzx7u477A0tIS5ubmEPk+SBQhqWkoDA+jEHdqhe3gHQGu68LjQmK5lomAwHYGTTjefhDsiKpVvuEb3HYoLZGxOKLjurBsWzL5i8UiZj76CCPDw3j2uefQsCz5N4qiIJvNMsl0TjrMZDIYGh6GbVlY29iA47pQCUGtXkelWkUmnUaBOzzCsimc4Bw/FwrA4NlD4cQEQYCACxYFQQAC4JHTp/Heu+/igw8+wMlHHmEcCz5cDZRCU1XkcznUGg3YloWF2VnkBwYwvm8fbNvutyO2Qf9u9Ijl5WXMzs4i8jwolGKgUMDw4CCSyaRkzzdxAPj3juvK36dTKenFE7BygMdTcfHNX+U1dF3ToInNsaWlUJQHhO6A4zhyMYsa2nsXLsD3fbz80ksoFApyQYtFQABJbqzX6wijCLV6HVmeWhMM5ZCT+8IowkaxiK1SCflcDvlsFpqmgfJUID8xANhBVlI1DQlVBXj0EwYB/CDAo1/4An7wwx9icXER00eOwHFdOWfB4I6EaRgYLBRQrlQQBAEW5+aQzWQwum8fBoeGkM/n+55+H/ckPM/Dxx9/jNLWFojvI2EYGB4dxUA+zwhzwpmPtRYL2I4DAEhyETLw11FK4fPAwY/r/YPJiau6zurtPPIOW4jIcYScwCi6FnRVxdr6Oj766CMcPHAATz75pOxKioPwzKLFZYUt20ZEKVKpFAYKBQRhCJ2XA8Xv6/U6krxdOZ1KQQFraRRdSfHSqLge0Umh6zqSYNlRPwiQSCRw5PBhXL9xAwenphAYBizHgWEYMHUdmq5DAZBLp6EqCizLQq1SgVWtYnBkBL7nYXhkZGf740OMvjOwCzzPw+zsLNbX1qAEAdLJJA7s34+kacrWHCW+kFsWtOM4oAASiQQUQhBGERsgImp4EH9G5IOs8B7fphRaSypeRA/xxQyxcAwDP3r9dQRhiJdeeonNGQdkyUFVlG1NAjDnI5vLoVavIwoC1Op1eb4EwMDAAAq5nGT7B2GIUrWKcrWKHHccZC2OEFmbbO2GiBs74WiIRT138yaOHD0q645BEMCybXZPuEOUz2ZRqdWgKAoaloWlhQXUazVMTE5iaGioTy7s457C5uYmrl+/Dt+yoAIYGR7G2NjYNvk2ijo+syJDGFGKBFcP9XkGQAiJCQiyXcIwZMeRROsajH3vcL0TkQ1IpVLY2NjAhx98gKPHj+OxL3wBFIDveYyUzIXG5NH534j1aLsua0FWFKaoahjIZrNwHQeVWg22bcNzXaysrcHg3KpUMsl4Ctw2BJwA2eq8iP8nfEaLYRg4deoU5ubmsLK8jOkjRxBxWXbXdaFyEreh64xjFAtSSsUirEYDjm1jfN++PgeJo+8MdMHW1hbmbt6EVa1CAzA4NITJiQlZ22pl9LbC5Up+QqmvVq83efIAq/0L5a/4Zkm4GqHoCIiwc4HYPBsgkOYKg2+88QZs28ZLX/qS7LcNYkxeTZCThOgIP79MKsUyAFwwSbQxEgBUUZDN5ZDJ5dCo11Gt1eDzGQilSgXpdBoDhQIMXUfIz1tcT9QhMhG/P3H8OG7OzmJ9dRVHjx2Dy2ufrYvbMAyk02nUGw1onKtQ2tyEVa/D2r8f+w8c6BOE+vjcEQQBFhYWsLK8jMh1kdB1HOCteEIwSKytdqC8bk7BMndiDcQ3eYUQZjdE5pBDtBfSKAIUZTuijwv+RBHrz/d9ACwYyKTTKG5t4d133sHBqSk89uijTdcjyoji/OLdRCYPjCzbhtVoyDJpxN9PNwyMDA+zmSm1Guo8eNnY2ICiKMjncsjlctJOSP4Tv5Z25RGAlV2PHT2K6zdu4PSZM6y04nnw+Gh3y7JgE8KyJLqOJGWjlyOeWbm9sIB6vY6p6em2RMSHDX1noA08z8PS0hK2NjZgV6tI6jrGx8dZOhrb6at27X9x2LYNx3F21NS1mEhHp8hATB0LeTkg7pFHYcjU+/hi1jQNmXQaCiF49733sFUs4sUXXkCOP+Ci5QhgWYF2KT+AGYV0JoNarSZnC6R4S450fChFJpNBJpOBZduoVKtSMa1WrSKRSmEwn4fOST1yYQseRRskEwlMHzqE2dlZHD12TLZj+twpEIvbtm3WdqQo8HhGBoTA9zwszM7Cqtdx/JFH+g5BH58bSqUSlpaWUN3aAgkCDORymJyYgGEYiCiFSohUAmyFKP0FYQjHcWA7DlLJJPyYjRDlM13XtxVBW8S/FEIQxmxGvI3P55oBYjNPJZNIJBKoVqt48623MDw8LEsDABs1HMRsxw7w1yW4sqnrOHBsG7qub2/uvByiaRoGBwaQz+WYU1CvIwgCbJRK2CiVMJjLIc35SNJaxrlJbXD02DFcn53FzdlZPHLypAxGvCCAy0u0goslSrSKaF9UVZS3tmDVajhy4gRGHvLpqn1noAWVSgW3b9+GW6/DrdeRz+UwygVwENtEWx/N+KhPSimqtRqK5TKiKEI2k2n25LlAR7eeTpGW04CmckK7xWyaJgghmJmZwe1bt/DMM89geHi46XiiRKBpGvyWNGMcGo8SqrUaG0/MjZcUAokZnlQyiVQyCcu2USyVYPGMgmVZGCgUkMtmd3AJwDdwyssg4p4dO34cN+fmMD8/jyNHjgCAdJgESUp0WYjWS8/zoHPDGIQhNtbWYFsWHjl1Csm+AlkfnyGiKMLi4iIqpRLsWg0qgMGREYwMD0PXNERRBLGVtpb8mnhEQYDNzU1YjgOdBwtCd0DT9WZBnta1JcDbBCmw3dfPFQ49zwM4wTedTkNVVVi2jR+/8QYymQyee/bZbZGjWGszgLZOdjxmTyWTUqnQsiymQNjy2ogfZ6BQQCGfR7laRalUghcEWC8WkWg0dkgZx4MKSbLkv0uYJqanp3FzdhbHjx6FyjuskqqKhGmy7iXuDMRF2VRCEBAmB+95Hq5cvAhrehoHpqYe2nLjw3nVHVAsFrEwNwe3WkXouhgZHsbw4CAyXJI3Dpkm4/8v0vm2baNUqaDCe4OTySRyfEpfMpmUTHlgZ9pfHFcek3+J2n2j0UCdi48ItqyoJ964fh3Xr1/HFx57DJP79zcdT0QbADoyaOPmRNd1mWnwPI+NSI2dk9jQxfENw8Dw8DBGx8aQ4ITErXIZy6urLDMSew/BswBYtkCIjKTTaRzYvx/Xrl3b4UCofGHncznk+EAnMau9wZ2PhGEAhKBeq+Hihx9iY3W17XX20cfdRhRFuHnzJipbW/BqNSQNA6MjIxgeHGQZslb+j/yGfSfaAmu1GnOq+eTAHBfbymSzTGhoF5KsyAKQ2JfKOTyVahUen2SaSCSkqqfn+3jzxz+GQgief/55aC3KhvGZAbtl3ET7o8haNOr1ZiJxC0kyohSpdJplXXM56IoC3/extLqKrVKpacKiKE0IGyJkkymA40ePwvd9zM3PN99XQM5+EcJDwrlyfR+2bTNFWF0HKMXi/Dw+vngRbsxmPUzoOwMcW1tbuLWwgMjzoKsqRoaGkE4mkeNyvK2pdRp74CilsB0HpUoFDduWSlsJ02SRga63VeprBQWk1xtf9kKy1Pd9EEVBMraYAeD27dv46KOPcPz4cRw9erTpmHHJYqCzMyDaegRM00QimQQBYPMWotjFS/EQn9cTCViqcGxsDIVcDjrvPV5ZW8Pm1haCdiWVmEMVUYrDR4/Ctiysr69v3w/+OnFPDO4UpFIpGIYBVVXhuC6K5bIc+Ww7DpYWF3F7fn7HyNY++ribCIIAs7OzaJTLoL6PHNfkyGUyrJbe8vw1kfs4L6jGybheEMD3fVhhA7998Xfwy9/9Ffzu+f9Brq+OYkNAUwCB2Pd+EMjWZlVV2eyPZJIJBUUR3n7zTTiOgxdeeKFJ56A1K6B1cQTidoMQwjKhvMRZbzR26JBElMLn2iMErFVxoFDA2Pg4kqYJXVFQq9WwtLLS1NLYBJ5ZjSiFmUhg3759mBfOQOtLwUocKW7PTdOUWYNqvS5VYWkUoVQqYfbqVdRrtY7X+6Ci7wyAsX6XFhcBz0OabzaqqiLDH+omBS1AerhNToBlIYoiaKoKwzSRzWSQSqWY/jY6L2RxzLhHH0cYRajVavB9HwpfaCK9RwjB1uYm3nvvPUxNTeHRM2eajys27Zh33y0F1vreiUQChmGAEiYk4vk+Uw8LQ0SCGMkZxiJToCgK8vk8JsfHWZSgqmjYNpaXl+W8g07vLWaULy0tyeFLO1woXrJImKY0vGLmQ50TNMMwZJ/L1hYWbtzYodrYRx93A0EQYG52Fk6lAiWKMMDZ8bquI5lMbov9cIh0t8jU1Wo1GbGLFlozkcC/uvL/wcf1j1H1a/jm7Lfwv3v1N1Byym3PoTWLGIftOKjzMemGriOfy8HUddmJ9O6776JUKuGLzz/PVEbjEOcpOpC69eTT5umIqqoyhwOshbheq0m10pCLCCnifGP8CdMwMDY2hqHBQSYkRCnWNzexur4Or8MaFqXGyclJVCoV1hHFywFNtiOW3UilUijERNSEQ+BxLQPXcTB3/Tq2NjY6X/MDiIfeGdjY2MDKrVugnicHbxBA1qJp7GEVi1kwZ8stToDQwhaLo3WYSDvQLiWDIAhQrVbhhyEUVUW2RcnL9zy8+957GBwcxBNPPimPFW/9aVrQ3IHoeC7YdiCEN29wSeWIM4HDFj1zQRBqPa6qaRgZGcHw8DAbpUwINkslLK+uNmcZWo61b/9+LC8vb9/z2BCVpuwKd0QSySRG+Ht4nFBp2TZq9Tob+VqrYfbq1Yc29dfHp4MgCDB7/TrcahU0ijA2MiLr+SmuJ0L5WokHEEEYMiGeSgUuJ7WZPAARkfmWtYWQbK+zi1uX8LVv/1O8vfqOfP9uTgAANGybiYlxJ0MENsIZuXnzJpaXlnDu3DkMDQ01rf24zZNcoy6ZAeFciPMS52aaJiMVcoJxu/bodsFJOpPB+NgYctksdEWB57pYXllBqVLpmOkbHx+HqqpYWVravkftbAcP7DRVxWChgGwmA01V4fPupUajwYalAVhaWMDK4mLH637Q8FA7A+vr61i9fRsRl80cGRqSDP1UMimFfpoWs++jXKnA4nK/aswJSJgmIsoU+0QtvRNkNoC2b7vzfJ+R+MIQqqIgl8k0p/gpxfvnzyMMQ5w7d2570A+2Sxc0YqNKfd9negI8yxGJ64pt/OL/RYlDLKCIUsYD4MOMrDZpu26Zj1QqhYmxMRSyWVk6aFcTFJicmIDH7/GOe8ZrhULeWCzspGmyDod0WrKWfd/HVqkkZzrcvH69K3Gyjz56hXAE/HodFMDk+LjMjIk2Nrm5xvg1lm2jyrtvKBj5rcB181X+zAKAaRqgLTmxklvCf/P6/wm/e+H/BTfs/BxTAPV6HY5tA5SyAUIt8ruVSgUzMzM4cvQo9k1OAtiOsEmM2CxnjFAqbUcYsxtiPYo1KbJywm4CTGiNECLr860QKfxWR0HlnQdjY2NMdIkQVCqVHTwkAU3TMDY2htXVValx0nRfKJVD3gQUzrtKpVLQdF0ORKo3GqhUqwCAjfV1rMUcjAcZD60zsLa2hpWlJUSeh4FcDqMjI1IDQEj+CuUu0RrTsCyUecpLVRQmscmdACmaEdt423nTwkB020Ad10WtVkMElt7LZrM7ZERnZ2exvLyMJ598su1ELrGwCSDnmctUH93WF5BRAP9q0jqIdRCkuRyq5/twXHfH+8UZvq1QFAX5QgETY2NIplKyJri6vr7DQAzxKH9lZWX7nsV+L0lE/LpEOlAMdzF0HSlOMgx8XxrGwPOwePNmn0PQxyeCECHz+KjtyYkJJJNJuZEnTFP28os1EQYBSjyAoGARs3QCxLrm3TGUUuSSubbvTSnFn1z7E/yvv/e/xVxlfsfvI8q6mIQoUTqd3mEbwiDAOz/5CTLZLB6NaQnE0cozEsPPALZhNGUQYn/TTnhN13UYpslUTrl2yY73E0JFbWCaJsbGxjA4OMimJEYRVtbXUW1T09+3bx+2ikX4ntf2eBG3b2IgUhSG0FQVKdNk5ykEisDawmv1OqIwxNrKCoqbm23P70HCQ+kMFItFrC4tAZ6HwXxetuGJBa3zKFjUtHzPQ7lalfKgpmliYGAAZiIhiSzi8Repar1NVoACgKJ07LcHWPTQaDSY0TAMScaJQ3r2R45gYmKi7XHiCzWuMbAb2joDvHshydXCLMtq8rCB7QeJdHEKdF3H2MgIBgcHoWkaAt/H8uqqvK/i7/ft24eVlRVpYBT2CwBoa0zEBm/yex4FAVLJJFSu5Gg7Dur1Ouq1Gm51IBn10cduiKIICwsLcPigr/3j4ywbyDcWAFB5f70oGTRsGxVeXlMIQZYP7tG49n782IKMq6jtNrIIBDzFX7mJ/9V3/zf4j9e/KY8RRBEq1aq0Ya0lRYEPPvwQlmXJbGIr4t0+0hnoUbdDZibj3UZgWVZB0GuXWWzqyOpw7Ewmg4nxcdaRpSjYKpWwvrnZ5NyPj48DYGOOxfHiAkbtAoEwimTLpmh7FC2SYRiixrlSS4uLDzyp8KFzBhzHwdKtW0AQYCCfx9DQkPxdEASgADROmqOUNi1mlRDksllk+RhRBZCpavYtS8lHlLJ2lRjkA9/BEaAA6o2GbONLJZPItBnCIzz7bC7X0bOPv18Yq5ftWYwn1j4IMEKhpusgXH60o0vDHYJOHRSZTAZjo6PSWK2ur6MUKwtMTEygWq2i0Wg0HS9+Lu0g5iwAkGlYMd/A5zLLW+vrWL51q5er76OPJqyursKuVKBSisnxcdlHL8qCiqKwNmDKhuuUq1UplGUaBgqFAkxhF2iz2p4UENN1aGozWY8phCpNqUQv8vC7F/6f+Oc/+jo26puoVavMRnECr97ibACs62h+fh6PPf74TsJgDOKcpNhQr3Yjlp6Pa64QRemaWYwHD006Ci1QNQ1jIyOsW0lRYNt2EwcpkUhgcHCQcY5a0JrJiENRFMbX4A6AoihSFZZSCsuy0Gg0sHDjRlOb9YOGh8oZiKIItxYWQHwfScPA4MBA8+/5AlV5v2trNiDP5XYlh6CFOBfwWrZCSPNkQf5vt9ager3eNb0nIDz7p59+umNqLd79EMUWdK/DfJo8fDSn6dO8Q0KoIDb9Xfz4nBzUaQGahoHxsTHWcaAoKFerrGwQRRgdHYWiKFhbW2v6m6jF0Ow4b8LmO4DrIwCMKJTl3RdRFKFuWbi1sMC6R/roo0dUq1UU19aAKGKEVe4IyIhTUaBxwrHVmg3gxGQxVIwQAtKywQpnwNB1aAqzHYKz023dvrfyPv6r7/5zzGxchK5pyPFOqFZYjQbOnz+PAwcOYCo2LrwbemkrjENooojvgW3bsVtmsfU43ZAvFDAyOsrKBmGI5bU11Dnpb2JiAutrazs5A13mQAAsGyxmzEjeWDqNJCd1ep6HcqWC61euwO7U7nif46FyBlaXlxE1GgClGOMbTjx9JB5kQSBpzQaIxQzEBIFEax0gx4dqfFrYboxf8Nc0eCoKlCLL+2DbQXr2Z8929ezj6KYe1gnC+LRTTFMUBSlOCnIdR5ZF4n8XRzeHQFEUjAwPo1AoQCcErutiZWUFQRAgn8+jXC7L14r0pRRU6WAgTcNgBCZOfiLsxNjcBi4u4rouFubmsDg31/M96ePhRRAEWLl1CyQMkU2nm9ce3VYP9H1/mxsQzwYYhuS6SLsB7AgkBPlVV3RElE0j6RYpa9CQRx4Vr4L/xwf/Azajrfa18ijCT955B7qu4+zjjzfV9ONobYWM7sB2tAqqxXUWmjKLvBTa6Ri7OQTJRALjnFyoKgo2ikVsbm2hkM8jjCLpHACxCapA81C5prck8nMSthhg5d4MJ2CGYYhyqYSLH33Uttxxv+OhcQYqpRLqm5vwggAjQ0PMi+e/Ey03URiiWq9LoYumbEDLYhYQBEOgOa22u8QQQ6PRYBkBSpHNZHa0I4rFaTUaeP/995lnf+BA0++jKELARwKLqWbiy7JteL6PwPflYCObs5ldz4PjOHBcV75e9NsGnBkcCvnf2KLWdV0qH1qWtT2joVPE3sUhAIBcLodR7ulTSrG6sYFkMokKLx3EZyvIY2JbmbHp52JRg0dbMSJlMpGQGRc/CHBzdhaz1693PK8++gCA23NzgG0z55WXFePpcEIIHMeRAUS7bEC7DU4O8uJsfFFqUIkChSidlhMAQIWKPPKgEUWIEMWoiItbM21fe+XyZZTKZTxz7lyTwqDoBAi42JHveXIeiO04cLg98LlanyPshusyu+E4bIhSi+3wfR+h6Ezi1yWQEZnFKJKZxbaWoQeHQLQv5zIZ6IqCeqMBlxO4he3Y0ZKMzsGEKFtG/LxlKUdRkEmlpKiZVa/jg/feQ+MB4xA8FLMJPMfB5tIS/CBAJpVClmvmiweC8Ki0zjUDACCXzcq6f6fFLCDIJ2HLdK/dHuaGbcPl9bNMJtNEOhSbvGAY/+Tdd6HqOo4fP876YEVbT5zRC6b9jdjPGpYltQHEgBTR3+y4LgzOcBZ/H182Pp81oKgqcwYIi1RE9BEEARMhiiLkMhl5j0hLdBLvyOiEBPf0N0slOLYNRdNQqlR2Fwxqw08Qym9iQcuXKgo0TUM6nYbtOAiDgGUHoghHTpzo/j59PJTYWFqC32jAoxT7Rkflcyzb8ChFo9GQdXCTT9YUEX23EqHILIq0tMJZ9braPjMoEHcEIhKhiip0VcfjI48D4M5FELBR46USrl69imMnTkA3DFSr1e22Yr6m4zoq4rz8IIDjOFAIgc3toJic6HgedL6RC5sRtx2izh7wTVVolSjYtg1iEqNowRbti00e0C7cI3HPBgYGYJomisUigiiCbhhY39zEvn37OnYPCYcgLv+uiA4wLmIm34MQUFVFIpmE4rrMSXIcfHD+PL7wxBM9Z2nvdTzwzkAUBFhbWEDgulAJwcjICAA0OQK2baNhWexBoGx+eJMjgN03dtGyQqMIKi8TdIPNp3tFUYREMomILyDZ58/nekdRhLW1NWxubODs2bMIogiE/y4Okd1oTegRsLJFIpFgvAEABudBiDno8QVBgSbBETkxUfQVA1BEWYUPOXH4xqrpOmgYArHZAWrs+90GgAiCUKVcZqpllGJ2bg7TXYaHyPtMyLZxwzajOQhDSNPKWd5EUZBOJtnglijCwvw8IgDH+g5BHzHUi0VUNjbgBQEGBwbY/AtsZwNCriIY8TG7QuZWEUS6HqJbAkjNDE3XmeCZ0tksK1CQQw6EEoAANmw8VvgCvnbm11BAAcVSSfb5R2GICx98gHQmg3379sHjRMfW9xfl0ni9P+BCapquy4hZ8KV0TdvmTsVth3AqROkkZsPAbQeJbc6u58EvFpHi+iCgVNoJaT9UVa7ZbkjxmQibW1vIZjJY39hApVpFdreBZZzwKe28ICDzrImwOwQAOLFQURSWcXVdzLz/Ph49exbZB2AE8gPtDERBgNLyMhzbhk8p9o2PNzkBlFLWhx6Lzl3Pk6I2TaM0d4HoRFA1jU0lbAEFyxwEQYCGbaPOe1hFD64XY9jGU5BRFOHatWsYn5jAxMSEVO0S/8qHVXi5sYxHGIZyQ8/FvFch2pFMJJBq07EgkEgk5HvkslkWUfBshPgeALu/vs/GlrI3ZvKjQQC/JR0nz1tVofHF3lqTzBcKgKLg4qVLqHI9gtHh4Y5zFYDt7EME1t5pGIYsd8TviTgHEIJUKgWvVgPCELcXFkCjCMdOnuyZaNnHgwu/Xsfmygr8METSNFHI5ZpsR8AVOaMoAlFVFAoFOSFP44N6erYdnMEunm+txRlQoEDn/xVQgEZ1KCBIJ1P4W8d/EY+NfEF2zACQTu/yygpq1Sqee+45JGNrGYSNR2/SBkALN8iyoBDSXFrzPDmDpJvdEPfI930kk0k2vpkHShHYRqvrOsBF1UKusBpFERAEiAAE4rxi/xJA2gtN03aQokXr8mI2i8qtWyhyYbN8rr1uAwDJKRLOXcQ7MjTDgOd5TfMaCKWAokA3DCQB1PjeMXPhAk4//jizW/cxHlhnIAoC+NUqk/0MAgxxIo9YAFEUoVavyxRdOp2GaRgolssI+aJOxh6EbqBgG6/QviaKIhW5Av4lamee67J2I7DWN3FOmqpuR9L8gSeE4PyFC4iiCE+cPduxw0CixQCJWv6eWwrl4bZTnYQQqIRszxfnSJgmKqrK0oG6DiOTYTU3nt0QwkBRrHYYhCGo70O4PyI9p2kaFH7/0qkUUskkXMdBGIZY39zc1SFgJ8vaOzWeBaG8zauViyGch2wmg1q9DhqGuM07DI4/8sgd3a8+HgwEjQaqxaLsSBkdHW1yBDzPY88MLwlmMxn43DlwPU/21fcCESSAEOhctluHhgQS0gFQOLUrgwwUqgKgqKOOx4cew5MTT0ibocRsh+04uDE7i+npaezbt2/382jJGNwJ8TiO+CYtRYtajqVpGmtRjiJkeATfajPE9+DiYpI71MY5ECqs+yYmMD83hygMUeZlkYHdIndKWZkXrNSj8ImOidY9gPMIdF1HMpWCZVmwuUPw6Nmz97VD8EA6A1EUIWg0UKvVEPo+NN57C6ApvReEIUAIsum09F4TpolGEMB2HPZQ7LKoxRJyXRee67LolD/IojYnUmlhGML3fZimyXQE4gpkbVAqlzF74wZOnzmzuyMANNXHgRgbuEfD1ApZD+xSsyOEIJVMsgyL40iPXVVVoGUDFqnLkJOWAl7XpDwT4/CZ48KpyhcKsHn5JghDrG1sYGRoqKvMs+u6rI1IVaHrOnxOrOw0J0LhJYOGbSMKQyzduoVEIoGD09N3csv6uM8Rui4Cx0GtWkUQRXIQltjcHMdBnetf6LrOZpmI7hsurGPbthyC0w0ULEp2PQ+e57EghVKkwhTSSCPu2ieRBKEENiyUUIIHD/9p+Vv46qO/iH3pnZv9zMwMCCE40zK8rNN5tEJ2WN2p7RDOQBfbYRoGPNeFD3ZfU8kkFE3bsSlRbDsJItspsrdRFCHwfVjc1qqKItd6FIbQdV2WcoZaWsmb3oOyoXMErH3a4bMK4qWCOBRCoGsaUtwh8DwPlz78EE8++2zHbrB7HQ9kN0FoWaBBgFq1Ci+KkBcLGiydX6lWZWqukMvBNE258ZlcmpLynvROEGz1RqOBUrnM5hUI0gxPTWuahmQigUw2i3QyyaQvUynkslnk8/ldve4PLlxANpfbMZa42zk13Ye7sKB7SZkboq7IhUA6QegvmIaBdCqFbC6HQj6PVDotPXuAGcggCJBMJlGr15nKWxDAc12sbWx0HHQUhqEs+aQTCSQMQ37mHa8RLLoQcsZhFGH2xg1sPQTyo300IwoCBFxgxg8CEEDaDoC1HAtHwORTMxXu/IN3EABMTtzv8sxFUQSbS45vbm2hwYdqRdwxPjZ4DJESwSY2KrQCTdXwU4e/gv/quf8DKkoFDhxEiBBGIX7/0h/sOP7m5iYWFhbw6JkzXR1nidYggpOTgd7VB9sftnXCwk4kufyv53kd75lYo4auM3uaySCXyyGbzTLtAs4rEF1HKuc6WCKQ4APfNra2OhIKLc7fUhUFyWSSdQ60EAlboRACQ9OQSiZZMOM4mPnggx2dT/cLHrjMQGBZiHwftXodQRAwXfxcDgSA43mocZ0BjU8BFBuyeEQU3pNeqVbhex5c15Wenhj64/EWHGEEALbxqpqGdDLJ+ml5uhtgi7/CFfsMXe8papibn8dmsYgvvfhiz5t567b9SVN98phdvHuBZDLJCEFhyGr2PUxsFEQnVVGgxtJxwvvP8PRrBCCXz6NULqNh25i7dQtjIyPIpFKybCBmR4BSpjPOMz2EH6+Thw9AzpJIJZOy++LSRx/hiXPnZPqyjwcbIpuIiI8MD0MM5POyDa4WEwVLJZNSwz7ecqxrGkzTZJ1J9TpzJLh9CIIAXhCw9r3YBhNwbpLBo0xN0/Di4POoKVX8ePlNHM8cxSvjryCtpZDJZPBzR38Gf3ztG/Lvv7/4Gv7+iV/CkcJheT4fXLiAgYEBHJya6u3iYx0FwHZGUSgq3glkP/8utkNTVSRMExZve85lsz1xLSj/EnNkAF4S5MFYIpGAbdtI8M+pVq9jc2sLtm1jZHi4KesrbDrAsgIKL9uKrGInh0qUVnQ+D8WyLFTKZVy9cgWnTp++77hHD5QzEPo+IscBKEWtVoMXhhgaGICqKHAcBzUuRCHSezISjQnaANtqWbZlMZIIf1ACzi+IE/x0w5CtMTQMkeIRpgQnKQqJYkHka20BjMP1PFycmcGhgweb5JK7oV37zSdN9QlHp5fRPqqiIJVIoGFZsG2bRfptFoMQNpH3EDszGqLMkM9mQaIIhqZJqeGtYhGe72NlZYUxvLnjJcSPRNlCXLfQfAg6LOp4F4Wqqsik06g3GvBcFxc/+ghPnTu3O0+hj/seYaMBykfY+r4PAqBQKCCilAUGfAPPptNsJgnQtmMglUrJQKFUKsEwDARBINeiUBQUka6QvVVVtSm9/DOH/wZ+ev9X5MCyTCYD0zDwDx/5+/jzm38OK2AkYAqKf33x9/Hfv/B/AwDcuHEDlVoNL7/0Uk+bUdyZERDneqflRQDMdvS4GSYSCbieh4C3M3biasWnrAoiclz/hPDUvUjfh1GEdCrFeFmKggofOR+sriKXy21LlfMSjWmacq3rus7OqVuUH+u+MHQdSCZh2TZWl5aQTqdx6D4rNT4wZYIoihBaFkCIJAaqqop8Pg/XddGwLMaEjaX3gM49rCpPEVWrVWxubkoJSqFjnc/lMFAoML5BTHGwdQNs2DZLORLCoky+SBT+RdosmksXLwIAznSZPbDr/bgLqb4407Zbr6+AmUgwTQKuYSBAY+fTKkJCuhzfTCRAOWFLzHw/sH8/cuk0NF3HVqmEeqOBcq2GGheLapVOFWqQQZt2zFYIomQ6lYKqaahXKvj4ypWerr2P+xeh4yDiqnNVnhXIFwoghEhuEeEZxrgjQACgTdpZ1zT2XFYqKJZKMtWsc42LQj6PQi7HauQ8em512ENepqRgm6UYwlVIDOCXH/llgFBEYHykt1bexszmRdi2jctXruDY0aN7IrJ1yih+khKBOG4vK0chBMlkkmVvHWdbxAzbDkBIt8fJk9gm3MnhSCYS8FwXOi/Vjo2OYmJiAgnDgB8EKFcqcGwbpVKJDSPyPBY48LUeJyCHbdZ/u+vSDUMOOZqfnW1SUL0f8MA4AyFP8dEoQpWPGS7k8wiCQNb5Erze1K7NDGAOheU4KJXLqNfrUDkJTVVVRJQimUwin88jzdN5soWPlwtISz+s67pyrniGj9VtAv8bIeRDCEGxWMTcwgJOnznziYgodyPVF/d8e4HCo3JCCGs3jJF+aMtCbn4b0jZ7kUgkmIGIORa6pmFiYgKFXA7pVAqlahWO57ESDF/olWqVRfe8qwBgmYHW+yAIXK3XLEoGRFGwuryM2/3BRg8sQt9HaFkghLCsgOdBIQSFXI45Avy5ycfUQaUjQLblyT1emiyVSnB5S5pY24J7kM1mkTTNpohbbHBNzyalaNTriCI2US/dQh7+u8e/isHEEDRFBVEVgFD8jzP/X3z44YfQVBWPnDrVU2kP/Bp23JO7mBno1ZE2dB2aYTCRIz7qOIy1MXe6nk62zUwkpKCbQJZPPkwnkwCl2CyV2HpXVeiGAcuyUK3VYAv+gKpCAXtGWu/Tjuvin7Wh60iYJoIgwOWPPtpxDvcyHghnILBt5tkDsoNAaOiL0oDBNaYlYgIZruOgWq+jVC6zB5Fv7olEAmPj42yWNiekWJa140GgXFQj7ggEQQCL628nk8mObPY4CCG4fOUKCrkcpg8d2j7+HdyTT1wiaD3eLos6AmSrlcpTbSKb0ku6sl2GRNd1KIrCHKqW1xYKBcboJQSOZaGQz7OMj6oiwja50+IyqqKfmRACGmM6d5JCjY8ynb1+/b7z8vvYHWEYsiCCMMGqSq2GgFLk8nnYXDsDhCCXy0kZX1EaAO9Katg2SuUyK0vycqKqqshls5jct49xCwhBNTZeOA4qZG9j67Qpm5hO71gXSS2Jf/TIPwAAEBAoRMWV4hW8ufw2Hn30UUZ+6zUA6FZe/ISZgZ7eHtsKrwnTREiZQmq7e9UJ8ZkxAolEArbj7Pi5mUggl83KsnAQhhgeHGSBFyEIeVdTtVaD67qMT8DLRnE71o6IKIIdUW6wLOu+yize985A6PsIbVuSVaxGAyFlA3/qgiyo680ZAb4JOK6LUrnMUoNiyh1P5Q0UCmy4Df9/8bA4rsuMRqyWFKG5RECjCHV+HoZh9NYWCGBjYwMbGxs4ffr09jhUQpqGmsRTY3HFrx335S6QByViXQVi8YraXdxzF2eRME2IcaV7Yda2evmEECSSyR0jTz3Pg9VoIJPJIGGaSKdSqFSrktGdy2TYVDneqiXUHaV2PL+mTlwIcR26rsM0DAS+j6sXL+4ujdzHfYWIZ+0AZgvCIAAohanr2zLh3AYQsj1jIApDlgVoCR5M00Qul0M+n2cqpoaBXC7HHFRKUa3X5RAjgZA7Fyp/9nfNJnL8/JGfw1h6TP4/BcVP8A72H9gvS2+tX9uvFd+036Sk7bgLgUTTBkq3lUyl/eCzAwST3+QKjkIYrcc32XGuCdNExInIAkI6OqIUBT5zRiEEtUYDSe4kCM5XBIASAtt1UalUmGPBnTbZMt4GwiFI8szQ+soKFhcW9nLLPjfc/84AT/GBM0mF0A+lFOCpnmwmsz1FizJt7VK5jEa9LlNiggeQE62GsQ2XgBmFDD9OGIaoVquwucEQKXnh3dc5I10Q0nrFpUuXUCgUMD4x0fwL4QjwiER4qa365wJxcQ7CpUbFBt70Orqtg9D6Rdt8Lxbubi1DmqpKwt+eFjV2evmJRAIuP0YURWhYFjOoYKnF/fv3M8IRpdjkrUOqqjYtbp1Lp7qeJwdRhUGws0QQg3imEqYJVVVRr9cxe+PGfePl99EdoeeBxqJPIQ2ua5p0BIQQGQApSlPnToDQ6W8NHppGl1PWtZTP5WR3jc2zkCKYiGcVm7KJ/LntBF3R8bVTv7p9PTTCerSB127/sOPfCKdABBk0tlGLbIcQByPYlimmbTa/drZDBiex14DX3IWdpbEvcU5xJLgTLwav7QXxYwmxIGF/fN+XZR9CCPL5PCbGx6Hx8lClWgXhaf5MOo18NosU39AjsOejWqvB5VoEHTMv/OciswhCMD872zRF8V7Ffe0MBI4jCTyE15qEYpV4mLPZrNxgHNdFtVpl7H4ubpNOpTAwMMA8whbWeJzxDgCmriOfz0PTNFAAlmWhXK2yYUL8/WzbZgIigBx92QvW1tawWSzi1KlTO2aBd0SHmr4gvhBCoHMiTGuaK764aZuv1uPthR0MbNf7hSRwz2jx8hOGAdtxYPNuEMH0TiYSSKfTUFUVw0ND0Pls8/XNze2RpXxxZzOZbbJWFMH3fVRrNVi23TFzIZniMR7E6tISSqVS79fSxz2LUJSe+MYnpvKJZzyZTLKNCcyxrvO1LhwFQ9fbBg8CklcAyCmGad7mJrRO6lyXRKzFOo9aDcPoSf30p6d+CodyU6CgbFYBgN+/+G/gh72ttyYxsdjGTQhTDCSxwENkRlqDilabEXcQhN1oHdfc9lzEJnqn2QG0cQYIQcOyUOcBQMTLmJlMBoauI8U5YJqioFKtymm1ALPlyWQSWd7FIfYVy7ZR5m3nHQMDfh467xbxfR9zs7P3fGbxvnUGwjBEGH9Y+AffaDRYipjr6SuKAtd1US6X0Wg0WJqYE8QGCgUk2yzkOFp/oyoKcnxzkVmCWo0Jh7gubM4pSLVECbvh8pUrGBocxNjY2O4vjqGTwxDGNsRWiEW+FwgHY/cTYq9RFQWGaULlpZW9QnQY6KYJ27LkhDONL+Y4uVJVVQwNDkIhTA+91FLfFy2GCdNElqs+hmHIlMvqdVZaanUKxD3i/IFkIgHf93FrcXHPRqqPewuB624HEYoiR3g7rsskwrlCaBhFqNfrKPJMgFCdy3PBG71DCa7TOknwjhgxCte2bdRrNTiuK4eUKXvIJipEwd89+FWEUST99KXGMv7z3F/u+redsnu0C9fojrvm9xBEANsbechHK+/trdh7iaFP1UqFdYNwTkImk2kKNrLZLAsqeNuy0yJopvIsZzqVQjKRYCWNMITNlSjdNk5B/GpFZnFzbQ3r6+v3dGbxvnUGqOcxz5Z7slEYol6rwQsC5vFlMqCUolKpoFavM2NP2HCaQZ4JiLOBdxw/5tm3QtSECoWC3JR838dmsYg6l+Q1e1H+4lhZWUFxawunY1mBT4K4935XOAMcu00OYy+Keeci5bfH7IAY3Sz030XqP81LNe2uyTAMDA0OQgVY2o/PMwe2a59CeCgZcwoiMBJRvVaDw+uC7a7F4HoSxfV1bGxs3LcqYw87oihiXAFsG+1GowHbspgjkEgwiVnHQalUgu26EP3rgg8gOlTabqYt2cRWaJxcmM1koClsHLIsPXgeMqlUz9lEAEitp3BAn2z62R9e+Xdwgu4Oa6f3+KSqpR3ebE8vVzj/gtxBdiCKItiOA4u3mYdhCNMwkMtmZbayFYV8nm3ahGBra6t5fHGsBV2UEMRxojCEw4fOtXIT5KUDSPOptKvLy6hWq3u6ns8S96UzEM8KiId6q1hkk/M0DYV8Hq7nsXQO/5CSqRTLBPCUL9B5wXZzBOJQCEEmlUI2m2Xtc2HIJvZxToHruj21+Fy+fBnDw8NyvHLsRLr+XbtaHrDNYQB6Y/L3ir0eKZ7ys3tY1GEYNrX3gJdyACa6ou+SaUkmk8gXCtBUFZVaTab9SCzKD/nAEyFBnE2nmXEnhCnHNRpyYTfdWUqR5M7Nxtpak7PRx/2DqGVN0jBEqVSCH4bIZDJIJhKMD8TbkYVQWI5H9HEy3g6uzi6OQByGriOXz7N2WN6CSwjTSGnEnsFuWF9fx+bWFv7xI7/e9PMtZwvfvPmtrn/bybLc7S4k4M4yCqI1U8xz6QZKqQweapwMLs7f5ATurtlfQjA4MCBl6OOlRnGcMIqYWiQhMA0DWf6siKF3jUaDDaCLlRf5wVlmMZlEaWsLZZ5luhdxXzoDlNfkhYH3fR+1ahU+H1dpWRbbfLg3NzAwIOu+AoKM13ZB7zGVE4YhNE1DKp1mYiVg0WbDslCqVGDZdsfFvby8jFKlglOnTu3pPeV1tPmZVBD7pFmBlgXU06Ju+RvZstMh5SeyAHW+kD3PAygTYUny1FzP7w3WS9yU9nMcCB2DiNIdn4NwCtK87BNxFTq5sMWzQJiGRMo0USkW0eBCJX3cP4iiSDoDwnZUajX5XGa4DLkQqMqk08wJaJ14yccAx7EXRyD+N2EUIcm7EFKJxDbRtVaTUxA7pZYvXb6MoYEBfPnkl/H02JNNv/sPV/8INb/W+b07kGfvivpgG+x2X1qvUOFpfdKFhBzydH2tVmNlFj790eCbdStPqhtUVcXQ0BA0TUMYhnKOgXAGAj6rQl4PdwpyXH8ins30BYE9dm2mrkPXNGyur6NW6/y5fJ6473RWoyhiksMclNf1XM9DGARyfDBRlO2WwA4QEaPw5joxXLueD29bo7wVKJfNQijwua4rB1g4jgNFUVi6WddlqvHypUsYGx3F8PDwjmPv5pJEUQTXdeE6jpTOjMIQruvCdhw5GEho84uxwiJivnbtGpKpFDRFYcM++L+qokDl31uOw8Yrx4R49nJ/RHZA3AOxcALuHPi8nUtA13UYXKIVgBR82gsK+TwCbig2i0WMjowwDgInAbWDruvI8tGvYoqcz0tOcVVDVdeh+j421taQTCbbfm593JuIxERLbuA910W9VkPg+9D4hEsRQKTT6a599m25OHs8H9txEIQhVEWR0xGDIGCDjrg8bxAEsMBannVuOxRFwerqKra2tvDiCy+AAPinZ/4J3l17Xx67HtTxRx//L/inZ/7xjvellMIPAmY3eC+9sA913jYtuh/CKEIUBAj5NEYAuPbxxyzajo1cV4TN4APHojBEEIZM619RoPOhYR3vJ3baO5PLFIdhCM/zpLSz7/vbs2E4pG2NzRwQ3KBeoWsahgcHsc6HoZUqFRSy2aZM647zJgTpZBKGpqFh26BRBKvRgK5pSJimfIYo70yqFItojIywtugeSKKfJe47Z4AKz55H9jYnDTqOA4XX6k3TRIo/hL1AjB0G9r6gG7yDIa4tLjgFSdOEzxd3wB9esSkSQrC5uYlytYqXz55tvkawVpZKtcpYzo4jN3zbtlkvsuMwUR/uxMQ7EMSiUgmBqmlskYpZ54rCnAZKUSyVgFJJjgelXC1wx4YpyircaUokEuzLNJFIJmHy700um5rJZJrIk6ZpwrJtuI7TdnEqfOyoaZo7PjOFkK4jlNuBECIXtet52NjcRIYzuTs5A+I8UqkUNF1nmQGeJdD5tDSxASQSCZS2tjB0jy7qPnZCZAVEO65wiuuNBhzfxyDXIcmkUjB6+DwppVAIkT3ne7UbQRjCsSwgimAmk/K51zQNGU1DlEyysehcq0MMzRGOwczMDIaGhjDMS4snBo/j5f0v4Qex1sL/eP1P8Sg9g0RowOE2w3VdlqlsydLF7YYCbG/w3GYofMYHjSI5pVUw7MWo37bZT0Kks6/rOpNWNk0kk0mY3GYI0mYylWrK4CqEzX7x63WUKxWmHRBfv5zLoes6dF3f4aApigLsMcNhGAYGBwdR5NMkRbAoeFidAiFd15HjwYQIJIIw3J6AyDs0dF3H2toakqlU2y6UzxP3lTMQRRFCx5FENt/z0Gg0UKtUAO6hZbNZ5tXu4SYT8NRfl42iHTzfh+e6rNWNR83NBybyQQX3xj3Pg+f7oJTixvXrKBQK2NjawuLt23AsS7bChJx7QMFIR6Zpyg13cGAAJhc1ERuzYRhQNQ2aqjL1tCBAKpWS7VFxFItFfOe738Uz586h0EbDXJD2giBAuVyGHwTQdR2+68JyHDi8Dcu2bdQ3N2UWRPwdwCa7pdNppNJpqcCoqioCw5DCHuLedCtnCJ0E0jKUZDcQQjA0OIjV9XV4vo9qo4FUItHVGQDYs2DqOlTeheJ5HnzPQxRFrD2RO1a6rmN9dZXd474zcM+DxrkCnLRnNRpwbBuqqm4rWO5x81AIF6+Koj3ZHMuyEIFlmtpN+BStbUne1SAmpQZBgLXVVZQrFRw/fhyXL1+GY9uwbRvHa0fxOn6EiMtpedTDH83+Mf5G+q8jwTskBgcGYHCnXWzM8Wi63miAEIKBNnahXC7jr77zHZzrYjfEGGHbcWDxVkkFrK27YVkyG1Gv1bDJbUfANT8owCa/ptPIpFKsTMidA40PFRI2Q+fTCrt9Xoqw6TGHpBekkkkEuRxK5TIq1SqSySTLUPKgr9v7pbitE5LGVqPBAiZOKE8kEigXi2iMjiKTycjpl/cC7itngPJ6MggBDUOUSyWWuuLp8MGBgd5G57YeFzxNJRZzDw+OULOiAGuhU5Su0YEfBNja2kKxWESlUmGiR40GaL2OYrEITVWRzmSQTKUwODiIdCaDDN9IDcOQnrpkt/LF0+167nQmAeGkF4W3BxqmKcexCuUwcQ8oTy8GQQDHtlGLDQ1qNBrY2NjYrr8DIKqKXCaDfD6PQqGAwcFBptLWYVELgo5CCCLSu9Y5BZNTHSgUsLm5ycRCFAXpHjduVVGQTCSkrGjIswTCkUmYJsqlEjyerelVZbKPzweRsB2KApuTVH2eelY0re3m1hUxgR1CCKii9LzhODw1D0p70hOwGg1scvJZjQ9OA6X4+No1JoyVTCKdSuHI8BF8Rf8y3i2/h5D/dz26gf/y3G9gMjspo9BODrHQ8LjTaFWKGvFSbZhIwDBNOVshitksYTeiMITr+7AbDVRrNdQbDViNBrMdm5vynCLwIXN8yNPA4CCGhoa6l4F5t4bI4PQKSinS6TQs20bkuqjV68jncrs6AwK6pkFNp2HzYMJxHERRJLOLCdNEcXMTqZizcy/g/nIGfB9CGW6zWIRl21B4H6iK7Va2vR+4mQFKgV09/YZtI+SbVIILS8RR55v81uYmNre2UKvVGJGE9xoL4Zwnn3qqufedp5fYKUSybiggNmoxFKl10JESK3l8Um1xIRcaUQqfZzNoFMELAtAwRNjazaAoyGSzSPPx0BofRUz4fIFN7ghZloVSqYSF+XlQSqFqGoaGhuTXAGf2iuuNX3vUY0o24q2kCS5OFFQqqFWrSPToLIr31TUN2UwGdS5aUm802KAqVYWp66iUyzL9ea8s6j6aEfk+60xRFHiui62tLakQapomdNOUNmAviG8vUq54l00njCKZFUgmk1KwTP6edzdsbW3JL2Fbsrkckjy7deToURw6dIj1vgPSTgxaQ7j45iX4dNse/fHMN/C107/eLHEesxeE//xuEY/FpD+h5eGqalPQEHHbEYduGBgYGMDAwIDMcKpcSKxWq2FjYwM1Pi9gfmEBVz/+GADrMhoeHsYgdw6y2eyObjFhK3vJLEqHhXcYrK2vw+HKkJkeonjxHBBCpIKhyDCK7KJpGKhVKrJ7Kr0HldpPE/eNMxDx1j0KsIxAo8FmjufzKJVKiHyfiQ3tAVJ4o5U1Twioqm5LbbYg4OQbUIp0JoOGZaFSqWB1dRWVchlFzmIH2AIeHhrC8ePHMTg0hEw6jXq9jm9/+9t44sknMTY62va8Au4Y+L7PJv9xhirljPhO3j0Fc0TEAlA4t0J6/IRIIpBl21JNEaIuJr7nTkCDt1hpMQZ1XJubALKmKEaAaqq6wxExDAOpdBq1QkFOlIyiCOVyWRq9Gzdu4PLlyxByoUNDQ5IYKep1rTPM2927qMWw5/N5dh2eh0qthnwu1/Hv20FRFKRTKRYp8DYikbGpVSooDAzcU4u6j2ZEfOCQ57pSI8JMJKDrOiqVSk9DxFrRLkMlO5Qo7RhMWHyWgaZpSCQSqNfrKJfLuLWwwKL/SgWU/35wYABHjx7F4NAQhgYGoGkaLly4AMM08eijjzYz/rnty2Yy+NLhF/Bns38Blf/37vp7+OmDX8H+zP6dDnwMDi+JGYYhFVrFdREwewH+r6br2/LDcQEjbjc8z4PrujA4YVi8Lh6hK7yOLmyL4Cg0OdXc0U6nUnA8D4auI5lMwrZtaTeKxSIWFhYASqEbBgaHhjA8NCTLFfKzQRdSNt05qljlbeoN20aDc7V6GjjH3lCSBhWejQrAOGapRAKqosBqNGQ56K7qOtwh7htngPKadLVSkTrPA0NDrDeUt6Ld8ajeNpAfKNDcl8yjQz8IUKtWcXN2FkvLy3BdF6qqYnBwEFNTUxgaGsLg0BCMNr3xszdvwjAMHNi/v/17c2KMqKsLRJywEwQBwiCQm3J84IcYFwzwVFyb4/s889CT/jfPPGiati1Ryr9UHlXEF2839q6macyI+D5c10UikZDZAIF6vY7NzU0Ui0Wsra0x6WhK8b3vfQ/79+/HxMQEMtnsjuxAq6GJQ1EUDPAN2+W1y3SPXn78GOlUCrZtIwhDWLbNmN08o1Ov15Hao2BMH58+KKWgfJMrFosIggCGYWB4eBilYpFxcvbIMRKtiZ02Flk2AJqcApdzjBqWhUathtXVVWxsbiLiaenhoSEc5LYjx2XU43B9H/MLCzh+4kTH1j9VVfHLp34Jf77wn1ELtlvY/mjxG/hvz/0LhEHASMLC4eeRsPyeb+ztGPSCdCiClF3vUYw0JwITOdmU247tl9OOAQ7ASrFezG4kk0ns378f+7kNDcOQZWK5g3D16lUEQYC5mzfhOg727duHsbGxHaqw4to7fZapdJpNU4wilCqVnonpQkGVgGlKKOm07OKqNRpImiaqlQpS6TQajQay2eyux/y0cd84AxFP1dT5Dc3m88im06jxzUI3jD0v6F5qfDL9B8CxLCzcuoWlpSUUSyXQKEI+n8fBgweRz+cxOjq6aw3QDwIszM/j8OHDe07HCc6AqqqgHRQOXU5oVBQFmUwGAHZ48EIeOJFIIJVOb2s2YLvuh1hUAKDpYe228e4Gk7cHeb7flniXyWSQyWQwMTGBt956ixkUsAzLtevXcfnKFaSSSYyPjWFichKDg4O9vS/vMLEsC+VKBaZh9CQXHU//EsIULB3e2eG4LpKJBOq1GvKFAhp8kmIf9w5oECDgQ2oc14VpGKyfXFXheR7CKEJiD2qhEruQ0mQkyjNZm5ubmF9YwNraGousVRVjY2N45NQpDAwMYLxNhrAVC/PziChtGm/eDnkzj79z9G/jD67+W/mzn6z/BNcqH+PUYHs9E0opCB+znOJZL5kl5HZDOAAJrtIoM478fojso9AGcF1XSjsLdJv41w0aD44iykYctxKjVVXFyMgIRkZGcOvWLWxsbAAABgYG0LAsvPvee1AIwcDQEPaNj2NiYgKJZJJlGXfZN/L5PFxe969UKhgYGOjpnMWEQ1A20CqTycjMkO26UHig12g0WCvr55wduC+cgSgImIa8ZSHwPGS4IhgIExyKKEVyLwt6Dw9jrVbDyvIyVlZWsLG5iTAMkS8UcOrkSew/cACZTAa1ep2VDXpwRhYWFuD7PqYPH+79fFtPf5ffq4oCTXQxtIFgthq6DrNL2qvjhk9Yz3674Sy7QedMfRFdtDvHer2ON954A1EU4eDBg1hbX8e5c+cQRRE2NzawsrqK24uL+Pj6dei6jomJCUxMTLT1/ONIpdPwuEErlssY3YNGQLytKMHrtI7jwHZd2PU68oUCLMvqOwP3GHzbZiJktg2dDxozDENm0UDp3soEMeJgN0RhiLX1dayurGBlZQUNywJRFIyNjeHxxx9n5UFCUCqXe1o3EaWYvXkTB/bv76l75avHvopv3vwWKt62Uua/vvT7+O0XfqttBlWUAsTE0Xb3xInbjR7tbes7dcuo7AbTMBBwzYF2XVIAcPXqVVy5cgVTU1NYXFzEgQMHcPjIEdi2jZWVFSwvLeHChx/i/IULyOfz2LdvH/ZNTCCXz3fM6qmKglwuh7ploW7bTLK6B8KwCMpElkXl2cVqvY4gimDzbpZEMgnHcT73zoL7whmwuLSv53lIp9NIp1IyTeYFAWP072EokEQH7z4MQyzfvo2bc3PY2tqCoqoYHx/Ho2fOIJvLIcUliHeoju2yqCmAGzduYHL//p4eps4H6vw+YgO/GyWTTqpqolOh9Sx6eUdCmEJYyAWTWo3O5uYm3nrrLaRSKXzxi1/E9evXpeiPoigYHR3F8MgIzpw+ja1iESvc2C4sLkLTNEwdPIjpQ4eQb8MOVwhBLpuVvcC1Wq2n9BwBI2PGuQpiGlkYhihubWGID5jq5OD08dkjDALUSyUp/yrY2wBrC47AoreeP68eNu1arYb5uTksLC7Cc11kMhlM7t+PbC6HdEzRkICz+rkNimuFtMPq6irq9Tqefuqpnk41pSXwD0/8Mv7fM/9K/mxmcwbvrr2LZ8bPtb88/m9PM0g+B+iGAZULNbWuM0opzp8/j8XFRZw6dQpHjx7F/MKCDA6SiQQOTU9j6tAh+J6H5ZUVrCwvy2xjIZ/H9OHDOHDgwA7ZcwLOeYoieL6PcqXChON62XN4ECFsqeAIWPU6PEqxtbmJyQMHYNt23xnYDY5lwa5UEHieVOGKe4UBZ7nf0YJuWdy1ahXzc3OYX1yE73kYGR3FuWeewfj4OCiAarmMiNIdtWGZEtzFWIgF/cSTT3Z9XezA7S8BnQ3Hp6Et3u484g94/Lx6gcHHEguSpFhUi4uLOH/+PEZHR3Hu3Dlomgbf9xnJMZauBAAoCgaHhlAYGMAjp07BajSwsLCA+fl53Lx5E4MDA5iensb+/fuhapq8X7qmwcjlUK5UUKnVZJ/1blAIQdjiPKaSSSY6RSmWbt/G1KFDMgLt4/MFpRSVzU2EERtZneLS1mKtCrtxJ63IrYjCEMsrK5ibm8Pm+jo0w8ChqSlMTU0hm8ux6XaOAy0WUYtME+Elt26CNgBwY3YWg4ODPZfFKICfnf4Z/MmNP8WavcbOk1D8T5f+DZ4eewoKabYPERcdA+5OICHReqxO5ZUeS7aGaSJsIfMFQYC33noLxWIRTz/9NPbv3y9lzYXtiGLlAF3XJd+ARhHW1tcxPzeHDy5cwMzMDMsmTE/vaDfNZbNy3k25WsVwj59FaxeUxh0C23FQ3NxEjr+P6HD5vHBPOwNBEKBWLMoatWGacrwlwG5exFN93fpNJVofOEIQBQGWlpcxPzeHjY0NGKaJQ4cO4dChQ00p31qthggsIhSbl1TK4iS63R7nmzdvopDPY6jXh6jNAtlN7Uws6E/bu6e71Ey7QVEUmAZTRfP4Zi/Se4cOHcLjjz8u763neVA6SBKLeiUFKwE8cuoUTp48idWVFdycn8d758/jo5kZTB08iANTU/K12UyGCSd5niwX7Oo80eZ+ZcG2TiWTqDcaqJbLKJVK0Ph0uz4+X1TLZYSOgzAIYCYSUFQVpkivU8rKRVHUewdS6/PHO23m5uawMD8P13UxPDyMp55+GvsmJ7c17cMQHp+GGc8Gxom40rHusAlXqlWsr63h6XPtI/p2IAAM1cCvPfIr+K3zv8PPGbhZvYkf3H4dXz7wctPrxXNNYlomdwPtsoqfBPFAQsgUv/HGG3AcBy+88IIkI4suLFXTdnQXgZOfQ95uOj4+jvHxcTi2jfn5eczPz2Nubg6DhQKmDx+WDhhRFAwODGBjYwOO4/RERBY2R3RBiadI13UpJrV8+zYOHz0Kx3E+146ke9oZqJRKAK/xCmEfWatqiRT36lE5rotr167h5twcPNfF8MgInj53Dvv27duxGALfh889zXbiMpJ01/rQxQxIrV7HysoKnnzyyZ4Z5+222l1rlXczM9ChTAAwR+VOygQChmHIuQqXL13CrVu3cPr0aRw7dow5aZx40zXt3qZ/mCgKJiYnMTE5CavRwNz8PBbm53Fjdhb5QgEHDhxAjouWrK2tIQwCNCwL2V1q/cJgCx0Hca1CdazeaGBtZQWZTEbqqPfx+cD3fTi1GkgYyj56Kf3K16iwHT3ZDUE25g7/2vo6rl69ivW1Nei6joMHD2J6ehrZNk6gY9uIwOxXu7SyGKAFoKPtmJ2dhZlIYN++fb3fBH6tXz7wZfzR9W9gobYgf/VvLv8BXtz3PHQ1lma/Qzn2TuiWJW3LG+gxuFAUBaauw/E8bGxs4MKFC1BVFS+99BIymYzMsoghYt1S+a3nkUgmcfKRR3DyxAmsrq1h7uZNvH/+PAxdx9jYGI4ePYpCoYBMNotarcbUCROJngIJQghoTMsBgJRXtup1lEolVgLvOwM74bouAsdhYxVjxC25YOKs1F42V/5az/dx7fp13LhxAzSKMDU1henpaWS61I4t2wbl79/OeIiNojVqp7HzujE7C9M0ZSvMnaLdJhyH5Ax8BmWC1l5q2qOTA0DqG3zw0UeolEp46qmnMDk5idapkb7vd1X36/aOqXQap0+fxqlHHsHS0hKu37iBmZkZLC4s4NTp08jxckGtXpcDVTqBdvheXEvCNFG3LFSrVQwMDPSdgc8R1XIZKqVSK0ThzgAA+WyJlrqeW0EJwcbWFi5fuoTNzU3kcjk8+eSTmNy/v6NDEQQBPC6DnOpA+ouXGNvZDtfzMD8/j5MnT97RJEFVUfG1U7+O/8tP/q8AJQABVqwV/NXCt/Hzh39Ovu5uCZW1ou1ApzYlxr3AME0sLS9jZmYG2VwOX/ziF2WLOcBsghBq0/YQSEgoCsYnJjA+MQG70cD1GzewcOsWbi8t4fD0NI4dOwZN0+DxLpV8Pt/1fIUSohiWFr8jQrBua32dBSkDA59bqeCedQaq1SoUnsahUQSVT6WSiKVse6lx+UGAGzdu4Pr16wijCEePHMFR/qF2/TuuCQ6gY9ugTPW1/pz/G1KK27du4eDUVNMUq10NUZvfd1tCQiEQuLsEwo7OVsvPexkoJI5pNRp47513YDkOHj97FpOTk21fHwRB5wXNzyGuutj2JXxxZ3M5VMpl3Jybw5tvvIGBwUFM7tuHRCq1+6KOs8jbXKdhGFAcB5VSCaVcDrlcrq858DnAdV14jgM99hk1qUO2yAbv+hlRilKphEuXL2NtbQ35QgFffO45DPfQCmhbFgsiTBNqBzvTSQxHnNXy0hKiKMIh3k4oN7w9PFtfnHgWJwrHcaV4Vf7s31399/jpqZ9GQjXv+Lhd0c0WtMsC9OIc8EBobm4OH83MYGhwEGefeKIt70PY7FYyYPNpkF27G5LpNI4ePYoD+/djeWUFN2/exNzcHKYOHkRhcBA13hbYbR8RxxfSyHFHSJRMa7aNRqMBy7I+N82Be9IZsCwLvusiQbdVoZqyAkDT990e4DAMMXvzJj7++GMEnofpw4dx4sQJJEwTFEwetOu5OI7MCnTymncjEK6trsJ1XUwdPNjUzw9skwHbkQI7cgY6XK/cEPkG+Umx2/Js9fDbljXotkCLeG25VMJbb70FRVVx7qmnoJtmE5EwDr/Dz1vPY9eWJf7eAwMDeGn/fqytr+Py5cu4ePEiCgMDGJ+Y6Lqo49kf/oMmAybLBfU6G6nNxVH6+GxRrVah8jUi5tEbsdIiAFkmANB1ql21UsGlK1ewvLSEbCaDc+fOYXJyEgToquQHsM1IDCTrOrdiF9uxuLiIsfFx+SztaOfl19XNBhJC8E9OfQ3/xx//N/JnRbeIP73xTfzyiV8CsG0H7yT70A7yajqRoHsJhmIOuMgYfjQzg9nZWRw+fBgHp6Y6jhf2fZ8JSu1mO3qQKY4ohaJpOHrsGI4dO4brPLN86/ZtjI6NwTCM7m3K/NwjEdy2nLOY6lqr1VAsFvvOgAClFLVaDVoYgqgqaBA0ZwXidfkuNW1KKebm53H1yhXYto1Dhw7h5MmTe2rpcz0PAZ+H0E1MaDdn4NatW8jn822JZaTlXyDmGHCj1ZRK7LKAPi3vvtPR4s6ATO/HyhjCUMXvysrKCt59910UCgU8++yzTNqZT3Js6wx0+PmOc9llUUdRxIymqgKEYGxsDGOjo1heWcHFS5dw9coVrK2t4ezjjyPXYTG2Zl5aSY2maaJWr6NSqWBra6tjtqOPTwe2bcN3HJixZ64pKxAvaYmsYpvjWJaFS5cuYWFxEelUCk8++SQOHDiwp2ybkO5NJJNdU+9ybbd5dhuWhc3NTTzVpZ1Q2IkmxNakOP5jo4/jyZEn8f7G+/Jlf3z9f8HPTf8MskasTfpuOQNdsopEvI94DSeISwGgNqXQMAzx7rvvYnV1FY8//jgOHTqESqUCn49fb3VigiBgUum7pNybCJydL0ZG9Zqm4dSpUzhy5AiuXL6MxVu3sLa2hsOHD+PkiRNtgzBCCCMr8mO1BhKEEKTSaWxtbCCbzX5unKN7zhmwbRuh78PEdqTblBVoWdC05WcAE615//33sbm5iQP79+ORU6eQ2Ssxg1I2bQ/YlSSidFnQXhBgaWkJp061V/5qh7iDEN/Yd2yuMadIRELA3eMLiPeRwzdiP2NvyxZwvLOgmzLh7OwsPvroI0xOTuKpp56SEtJiPCttGfYjhq/0EmHvlh0Qz0mTo0QI9u3bh4HBQVy/dg23l5bw6quv4pGTJ3Hs+PEm40+x8/PdYUQoRTqVQnFzE4VCARMTE5+7qtjDhFqtBi2KoKgqfN+XKVgATVkBgVbOAAUwd/MmZmZmoGkazj72GKamp6Huse7t8SACuwQRAKCK57bNsW7dugVVUTAxMdH1GG1OrjkdzTfbr53+dbzz2ru8C4eg5tXxR9e+gX965msywr7rz2ssg9K0PoXtED8Xdq3NfXBdF2+99RZq1Sqee+45jHFND03XEXFyt9pyn23HYd0jPThwCiE75hLEITstYscyTROPnz2LkfFxzM/N4eq1a1hZXsZTTz21o9woZJ4F2mYHDAO1ahUVPqRqz5/5XcA95ww4jgOVL+igXVYAaEqtNUXUlOLG7CwuXbyIRCKBL734Ioa7pG+aPLXW8/A8hEHARCJ2WdDC84/4ootvIstLSwjDEPsPHNj12tui9fy48Wi+ELbwhaKaFASK/a24Vsp/J1i3bZcA/zuRFhfM/nZ1TYrtckbH5UQpPvzoI9y8eRPHjx/H6dOn5a/ETPKQb/zxzgExUKnX8cAKbxdqewqCLd3ms04mEpicnERhYAArq6u4dOkSlvjCFlmCtvrligLEFjUhBAnDQKVaRaPRuCdUxR4WBEGAwPNgAMzQUtq1tNgauVqWhffPn8f62hqmp6dx5syZrvXmjqBUEo57YZqLTFXrc0sBLC4sYGLfvt7EbbqdEtgaPTFwDK9MvoTXl38kf/ens3+Kv3Xkb0KN1M62I7ZR09hXU4a25Xsx7XRHMCOuW5yX+F2HzbhWq+HNN99EFIZ48Utfaur9N3RdlmNaAwbbtnvPAnfLDsSdmTaf5ejwMEAphkZGsDA3h1dfew0nT5zACZ4liJdH5dtxO9yaHUgmk6hx2/F54J4KW0RLiBLzGs3WrEA7L11V0ajX8aPXX8dHH36IQ4cO4Stf+UpXR2D7j9t4jpTCsW1W7+thNG18JGgrkW3x1i0Mj4z0NLd81/Pr4r1KAqM4F2xHy2T7RfL/SXzxtn7Ff47uZMROi10gDEO89fbbmJubw9mzZ5scAXFOuq5DURQpFSwgUq09b6g8ImoH4Th2+n0ul4OqqpiYmMBzzz2HwPfx6quv4uOPP5ZO3o63a+NIKpoGQ9Ng85nsfXw2cF0XJIqggDm6pF0Q0QaEENycm8P3vvc91Go1vPDCCzj7+ON35giAlRbDIJCjzXeDzAy02I1KuYxqrYYDdxpExBBf779+6lehYDt17kUe/uer/347c9bOdpDteSVNT3sHe7FbeRH8mLthc2MDP/jBD6BpGl5+5ZUdIkBxJcfWAWm2ZfUcRACdMyJxnlC7M9Z1HalkEulUCo9+4Qs4fuwYrly9itdeew3lcrkjsXmHYxFFMHSdyZvz6aifNe4pZ8D3fURBIFW5QOn2oow/bBwidbu6soLvfu97aFgWXnzxRTz22GNSwvZO4HoewjBkQiU9ipKIhyn+IVqOg/W1NRw8ePCOz6WVS9ANd71M0MOiblJibPmd4zh4/fXXsbm5iS9+8YuSEd0KsagDPmdCwOZDqfbiSHUkV3YoKcXPIZVMMiOoqnjly1/G4cOHMXPxIl79/vdRq1Z7fj/dMGBZVt8Z+AzheV5TGlrX9R0loThoFMF1HLz/3ns4f/489k9O4qe+8hWM9tAl0A22IBz3OJZWZBVbMwO3bt2CrusY5SnxT4K43TiQPYD/4tBfa/r9X85/GxsWG+xzV9UH0d12dLNni4uL+PEbb2BoaAgvvfRSR30XwzBYIMF1BQQalrXnrFy7tRzPIHWyLblcDgohCIIAU4cO4eWXXkIYhvje97+Pq1eutM1Wkjb8L03TQKII9XodDh+9/FninnIGXNeFwkkkBGxoRhP5puXmVatVvHf+PG7evImJ8XF85ad+CiMiG9DjQ93uA3ZcV7YE9UrGU1R1W2+c4/atW4CifDIimSiJYBdPG58CgbDlHNr+qs37Ayy998Mf/hCO4+BLX/pSVyMrJpKBkKbRqJZts/TfXpybDouW9pDlEIva56NSz5w+jRdefBGu7+P73/8+bs7N9XQKhq7Dtu3PzcN/2EApZSPEucNHge12sw5ZgStXrmBmZgalSgXPnDuHs088wUpU3YhkMbR7igLfRxgEIIT0PMinXRARUYrFW7ewf4+kxU7n15qm/pUT/wCGsn1+FBR/PvcXkkx3V7CLLYpnK1rv+JUrV/D+++9jamoKzz33XNcyiQgkvCBous69ZgaA9rZBlDq6WSBVVZFJp6EQgmq9jlw+j5dfeQXHjh3D5StX8IMf/EBmOZvfMHZUntHVNO1zCyTuKWdAlgj4l9EiFBJHo9HAhfPnWZ1LUbC8vIzvfPvbeOfdd7G4uAin3c3vAYHvsw4CoOesALD9IMUX9eKtW9g3Pn7HKcc4eurhF4Qc/pBJpj//XvAEBHM3zvoXX4j/rCUz0K4k0G6xb/D0nq7reOXll3cV5QC2I7m4M2DfgXff6ZykKFQXY9e6qP0gwNDgIL7y5S9jamoKH3zwAS5dvNhMBkJLJoYyPXQC5qy2Rix93H34vo+IywsDkKUn8X1rqe3G9esolUqsVu/7eO/dd/Hqq6/i0qVL2NzauuPx3CKIMHm02gsURZH8HPG+G5ubsGz7E2UU24I7SyOpEfzC4Z/fPgcoeG/9fdyqLzXbBGErxPecCNdqK9Du/7vwiKTtaPk3iiK8//77uHr1Kk6fPo2zZ8/u6pzomiY7iYTQkMtHU+/ZdrTjY/UYYGUyGSZxHIaoNxoghODUqVN4+eWX4ToOfvDaa6iUyzuP3ZK9MgwDNp/Q+1njniIQ+r4PlT9wRFGaxSRiN61cKuGNN9+Eqqo48+ij0A0DuUwGq6urWFtbwzvvvgsFwMDgIMbHxzE2NoaBgYH2kXULkeNOFjTAMwMxzkC1VkOpVMKJ48f3dhNaIBZVFHOSdtMZ2NHyx9G0+Dp45fH/j1p+3hphRLFzE+zlhYUFXLhwoWnYUC8w+KwCMZJaIQQNy0LyTpwBtDCXEbs3u3ym2VwODcuC57qSAKiqKh4/exapTAYXZ2Zg2TaefPLJ5ucj9hypqgpFUdDo6w18JgiCQPKMFEVhznd8Xcf4MTMffYTrN25g//79GBweRobPqVhbW8PNuTlcvXoVhmGw1lP+1bH2HzPmURRJtcFeuAIChPNcIkIQhSEUTcOtW7eQTqUwODBwx/ckvlYjSrf5LXwz/3vH/h7+Yv6vYAUNKFBAQfGnN7+JM5OndhD9Om2IXW1HLJBo6ygIJ43bNN/38bYYNvTUU70TrgmBoetsTgEnIMvy4h3YjlYSspAe381uqKqKbDaLIlc0FeTRQqGAV155BW+8+SZ++PrreObZZ9n4amzb4fhnpes66pxv1JMWw13EPeUMUD7FTtU0NmmuRS0MYJP/fvKTnyCfy+Gpp57CVrEIPwjkRK9TjzwC27axur6OtdVVXL9+HVeuXIFpmnJxj46NweSORvxhbVrQezTgrZmBxcVF6JqGsfHx3q5dnEuLtyh+1ksJIL4A7wpajWkLxLmIqVyXLl3Cx1ev4tD0NBs2hG1io3RQOkRdiqJAU1VEUQTf86QQR7tRxLuCNEuNxoVJdku7EkLYeOIggNUyVvTo0aNIJhJ47/334TgOnn32WRmBxq9PGHgvpl7Zx6cHsTZ8bjuasgIcYRjivffew9Lt23j88ceRLxRQrlSgEIIDBw7gwIEDiMIQpVIJK6urWF9bw/u3bwNgQlVjY2MYHx+XQQVpOb7DuQK6rndUG+wEhXelRJQiCEPcvn0bR48c6f362U1oOh/xM1lebHnu82YOf/foV/EHV/8QCk8Qf7j1IS5uXcSZoTN7Ov8d59PCkm9FnLxMwbK8P/rxj+G6Ll548UU2yK0NWbFTvkbnswoC3p4sujk6SUDvBUK2erfAUPJEKhWEYQjX8yTXyTRNfOnFF/GTn/wEb77xBp548klMdcj6CL2Ehz4zoFAKly9oo82Cnp+bw/kLF7BvYgJPPf00FEXBVrEIytmkqqrKD+XQ1BQOHTyIiFIUt7awuraG1bU1LC4uggAYHBpiC3xsjM0lIAQuX9Bar7OqYxA1b/HwLN66xcbntnmIRJTd1tNu+Vm7ntR2iJcn7jqBcJcNVKT35ufncebRR3H86NHtzEObDIUEae6x1nUdfhDA832Ypgm70diTSFTTodmbys9ElJM6XYv4TCilSKfTLDvA25biGarJ/fuRSCTw1ttv44c//CGef/55JDnxUKRPCVimyHUcmbrs49NFxNX+CGJ69Pzz9zwPb731FkqlEp597jnsm5hAuVyGEIMRryWEYHBoCINDQzh9+jQcEVSsreHGjRsyayCyjSMjI+y9KIXnuqCUbk9G3AMUVQXxfURhiPX1dfi+3zYybrfpS7TaDbL7FNW/ffQX8Z9ufguexxzWECH+p0v/Br/z4m9/sog0vta7HYcQFDc38eabb0LVNLz88svbk2Lbbf6xjIKYjULBOUeKgiCK4AcBbMtiLel7yNDEzykuKCaVGbsQ0im2p5gmUykW2VtWE/FZ1TQ899xzOH/+PN577z04to3jx4/LLg1hA8X7NOr1hzwzEEUIufHUWwg4H1+9ikuXLuHw4cP4wmOPyQhP1NxCrknQBE78GB4exvDwMM6cPg3LcbC2soK1tTVcu3YNly5fhsFZu9lsFrl8/o4mRyk85RVRinK5jEajgcnHH++4IHv+kHsoD7CXbW/cn4m+OIfveXjjzTextbmJc+fO7W0Qk1jwvCxkivGkPCqPKL3zPn2RHaCUqX8R0lkJTtxj/r+6riNhmrD5mFKjhfMwNDyMl770Jbzx5pv4wQ9+gBdfeEE6lILboRICx/Pguu6dnX8fe4LI/miGwZ5//jk4joMfvf46XM/DiyLqBDO6hNLmlrSWdZNIJnHo4MHtoKJYxOrqqgwqoijCwOAghoeHkclmkc1k2urk7wZhy0JKsby8jHwuh2wm037z38PaJuguApbUkvgHJ/4+/u3M/wyAEQkvFi/hnfV38cxY7+OSu55Dl/NdWV7G22+/jXw+j3PPPLM7RyueUWjJPohSge/7sER58U7tYOz5CcMQlNKOMs3CERBIp1JoNBps0B6XUpccCUXBk08+iVQ6jYuXLsGxbXzhscea9EpEICcCic9SifCecgbC2NhJNTba89biIi5euoRTjzyCkydPNj1gKo/2gjBE29vWQh5KJRKYnp7G9PQ0QkqxtbWF5aUlLC8v4+bNmyCKgpHhYTnjOpvN9ra5ijIBpVhdWYGiqnK29idCLBXfDXG+wN3Cbgz8Rr2ON998E47j4MUXX0ThTmucwjMmBJqqIghD1KpV7KrrvguEspjYKDpladoZzFQ6Dcdx4DgOomx2R7Ylm8vh5Zdfxo9efx1vvv02Xnn5ZaaIhmZSYaeWxD7uHgilCDwPmqYx4xlzzN9++234vo+X+YhbAVGGFMHHbm6vQgiGh4YwPDQkg4rVlRUsr6zg+o0b8HhaeGJiAuPj4xgdHe08erv12DyjGQQBVlZWcGh6eldt/55AdpHZBfAzh/4G/ur6d1B1qog4S+j3L/0Bnh59Cgq5swzjbi3JlFLc4BNExycm9jTWvdPxNM4TCYIAtXqdZRQ7ZVF2gSjzhWHISo08q9j0nmgu3wroug5D1+F6HhqWhXyrBD0heOSRR5BMJHDhgw+QSqdx7NgxaTcA5qh63Jl4aJ2BgDsDce+6XCrh/fPnMTU1tcMRAGJ9utyD28uHrxKC0eFhDA4N4eDUFCrVKurVKoqlEq7wITapZJKlBcfHWVowVj6Qnjv/Uni0sbq6irHR0bs2DrQXbrPUGLibzoD4ps0xS1tbePOtt6AbBr78yitIJJO7Dn3qBZqmQQ0ClMtlgBBkuQEXZ7AnnjcvQ4QRM3NNzgCliNChfAGmbaBqmuQOtJOzTiQSeO6LX8QPXnsN77z7Lp579tltkibPWH0etb+HDZ7jyOdf1zTp3F24cAHlUglfanEEAJ4Z4EFE1wxYLBqNQwQV+/btQ6lcRqVSQaPRwPraGhYWFqAQgqHhYclTik+xlHaKbmveA0CpWITreRi/C9oC8tx3cQYM1cAvTv8C/vDKv5XOwM3qTfxw6XW8sv/lO3rbbnMJaBTho48+wuzNmzhx/DhOnjoFGkWfuAVXU1XW608pqtUqkyzm9/lObYfIKLZmW1uzAa1Ip9PwPA+WbSObybQlHx6anka90cDFixeRy+UwOjbW5ES5rvuZtyXfM86A2MxpzAtzbBtvvfUWCvl8xzYTlRtdoQXeFS1Zgvh7B76PZCKBfePjUFQVYRBgc3NTpgVvzs2x6GB4GGO8ZphJp7ePSQhUVYVlWSgWi3ji7NlPfE+AZjZvL7ib2uKdPPyl27fx/nvvoTAwgGeffRYGnzp4N6DrOmzHQaVaZW1+fCZ9E8OZ7JRM7QSFt/sIZ02SRXu4p6lkEjXe5tOpdJTJZHDu6afx5ttv48rly3jk1CnIgUaUwv0cxEMeNkScpCmUN8Ejz/n5eTz91FNtWfnCMYx4GWnXddNhY3Vcl43IHhtDmjscjUaDdTatrzcFFaNjYyyoGB5uCipEnXhjcxO6rmOAlzI+KQQfZ7eo+5mxp/Hdhe+hbJXlz/7gyh/ixX0vQFP2vkXItHjL+wZBIIcNnT17FtPT06CUItiDfesIQqBrGnzfR73RwLFcrql7QrymXXdD+8MxZ4CimS8gurq6QUy4DcIQdhdJ8tOnT6NWqeCdd97Byy+/jHQ6LR0ASiksy9rhxH6auHecAc9jKWJKpbzkW2+/DUopnnnmmY41G1XTmEe4Vy8q5vG7joMIjPUponmVdwKMjY/jC5SiVq9jlXMNZi5exEcffoh0JiNZxiMjI1AVBeVSCVEUYbzHLoLdQIEdOtbtEH4KZQKJWERz4/p1zFy8iAP797P2On6/7tb7qqoKlbfldRrl2a5dstPdaSJWEtJ+xkAHpNNp1Op1uag7KSGOjo/jzJkzuDgzg2wuh8nJSZmN8Ps6A586FEB2roSUYn1tDTMzMzh+7FjHXn3x3AqektJLOrYlSxDvPooTB9PpNI4cOYIjR44gDAJsbG5iZWUFa6urmLt5E0RVMcKzBuPj48hkMlAUBRsbGxgdHb2rBODe1iXBzx/+OVy6eFn+ZLmxgr9a+DZ+bvpn7+h9gWab4Ng23nzrLdTrdXzxueeauqzugisAgGUVG40GCNBe22SvjkGM/xPnHu0GRVGQSqVQq9VgddFKIYTgqXPn8IPXXsNbb7+Nl770JWavOL/JqteBT6iIuRfcM86AqPlFUQTP93Hp0iVUymV8qYMUpYCIBu40MqWcCYwo2tFOKEllUYRMOo2jR4/i6NGjCIIAGxsbWF1dxcrKCm7OzjKOwPAwrEYDmUwGiU9Q646D8A1st4dQDuL5NDID/Bw+/PBD3Jybw4njx3Hq9Onmc7qLToiqaag3GjjYA+eiXRtTfIGLPmFKdo4c3vU8VBVJ3qpk23ZXWeSjR46gXC7j/PnzMBMJSWTriw59+ojCkAUFioJyuYy33nkHo2NjOH2mc4ucQogMMMIowp5of/w5cz2vbfeRbOvjxNjR0VGmwPnYY6jX61IP5eKlS5j56COkMxlkcznUazUcnp7e8/Xvdp7dIJzlLww9ihOFY7hSvip/9+8+/v/hpw7+FBLqHln5LWWCarmMN996CxTAS1/6UlO78F4zn92g67pU7ts1oo45Bp2UEKMwZN1h3HbsJeDJpNOoc+GybiOJdV2XpcZ3330Xjz72GMAJi5+1CuG94wy4LosKNQ1rq6u4OT+Pcx1SfHFomsZSTXfoDHi+D0qI1DYQM7WbUkEtD4GmaZiYmGBjJilFtVbD2toaVpaXUa7VEAYBvvvd7zIS4tgYhoaG7hp/ANgeiRnxWhulbNyy5/uIYkpcTQSX2MNfrdUAsFHPsiYmrjNWY7MsS7bKzczMYGNzE48/9ljbGQN3Mx8RhSHCMNxzJ0GT88J+gICXn+402spkMrA4kVCwg9uCEDxx9qwcn33u3DmoXDeh0WjcUYdKH7sjDENEvB0ZhODC+fNIGAaefvrpXfkzQkLcDwLcSUe653kAYZMq4/aiWxo5k8k0BxWbm1hbXcWtxUVQQnDx4kWsb2xgnJcU7uZzE1cRFP8GQSCng/7K4X+I3zr/fwcAEBBQJ8I3L30Lf2Pqr4Fi227UhN0AZGsc+yP2M9/34TgOdF1HtVzG++fPI51K4Zlnn0W6ZU3frawA+LnYto1kKrVrKr/pHFoCChEECjvara2wE1RVRSKRYB1Jtt2VCChKjW+88QYKAwMYGh6GpqqwHlZnIPR9EM4mv3HjBsZGR3uS4zQMgwm8+D6LoPdo9D3PAyiFYRhNA5J6jnQJQS6XQy6Xw9DQEFa//30cOXwYYRDg1q1buH79OjRNw+jIiOxP3k0ZS4wjDrkIk8flNSkfC9oODh+upGlaz45R0zjSNvCDAL7rYuajj+A4Dh577DEMDg5KoyBY8yQ2qlNTFChcge9OYVkWCNjo4ogPjOoZfCHLPmGuFX8nCxpgz5ehaXB9H7ZtdyxdAGxzeeLsWbz66qtYWV7GKE+F1qrVvjPwKSHgrZu6rmNrcxOlchnPP/98Ty1+pmHAchy4riuJqr0iDEP2bPH3jrfJAujJfmiahonxcUyMj8NqNEDKZUxyQuJHH32E6MMPkc1m9xRUCLshMqw+DxA6rfMwDOHzKYtHc0fx2MCjuFzazg58b+F7eGHii0jrseeXxlpx2xzT5+PI1zc2MDc7i4HBQZw+fRpBEKDCu2sUwlp/FV6bVxQFiqJIYuedol6vI5NOI/D9O2Li0yhCyK9JED3v1JalUynYjgPHttt2JMUxOj6O/VNTuDk3h8GhISiKIpUUPyvcM86AaP/a3NyE1Wjgscce6+nvdF1nD1AQwImpPvUCyhdMRCl0Xd9RY9ur17q2ugpN03BwagqZdBqGYaBSqTAS4uoqLnzwASilyOdyGOOti7lcbnvz5/XL+IYfj/7jEBG9wheUp+vQVBWpVIrpdcdaEuPfA5DtVOlUSvYzxzsjKL83pVIJV69cAQjBuXPnkE6nmxwSCs5ViCJ27rGebQJG0lJ4+nYvTkK1WpV1tyAIYPSykYvzFs4cR+D7TBnOMO641SiTycArlXZ1BgAwHsnEBG7Oz0tnoM8b+PQQcvKgrmm4OTeHgYGBnmV8dcOACtzRhDjP8xCBlQjk+gJYVnGPx4qiCOsbG5icnMT+Awdw5tFH4fs+1rmK6u2WoEJ0NhmGITOBEV+DcTshnIJWyI2Yf5mGAU3TkEom8dVTX8Xbb/xzMNUBinJYxnfWvotfe+QfyVKksBvAdosd+5/t7oj5+XncvnULBw4cwMmTJ+V1xuXVEYYIYtk7eX7CMeDOwV6chFqthonxcRYQ9breRQAhugewvWY1VW2rhNsLEokENFVl2gcdOpLiOHb0KJaWlrCyvIxD09OfuXrpPeEMiE6CiFLMzs5idGICiUSie1pWgFLopgnH9+G4bs/OAKUUju8z5UJFgW4YO5T+mshpPTxYK6urGBkdlQMrCCEoFAooFAo4efIkXMfBysqK7E64+vHH0DUNg4ODGBoawuDgoFTNUjiJROHCOTIK5w5AO6ZuRKl8ALtBbMgKL8u0w+rqKmZmZpBMJvHC88/vyGaIdqCIf++LKCQMEXCSXhBFQMtGKKJ0TdOgqSo715ZrqVarklTlB8HuSmKUts2YRGGIkBsoTVVZluEOuANCDMXnmZpuz6Trujg8PY3l5WUsLS1hamqqP7nwU4TPHdu1tTXU63U8+dRTMkXdFZTCNAwQRYG/x6wipRQOb/1qZ29I7HW9bEZbW1tsKNbwMCOeRhF0Xcfk5CQmJycRRRFKxSJWeIfC+QsXQClFNpPB0OAgBoeH2cRNsa65tDe44I3YXEmbKFe0sGmaBtM08cjISTy77xm8vvy6fM2f3vwmfuHoz0NVmF3pZjeiMMTly5exvLKCEydO4NSpU80BFu+0EcPSQkrheZ50aOJfrflNlU/1E/aj3bV4rotMNstKIDxT2haxzEa77ocgDFkQwUtJvWg2tIIQggTvtPI8D+jiDIRhCEVRsG/fPiwsLGBy//67MuBuL7gnnAHhAS3fvg3XdXHuxAlQQmDZNnK7RGIgBKauwyJMThi7TMiLk3s81wUI2TWd1PQwxJn9cbas46BULDICCCAj5SAI4Ps+Au6l5woF5AoFHDt+HLVqFcViEcViEVeuXAEAFAoFjPPUYY4LVojF0Q13cy7B/Pw8Lly4gKGhIZw6daptWYMIz53/v6qq2waYUin2I6IT6STwOqUoZRAwwqBwDDRNQ6VSQS6f3yaGthrVeHTRBQFP44qOkyjmCJA9LG6FMIUzlzucmQ6LNAgCBGEI0zQxdfAgW9T79vWdgU8RAc/sXbt2DZOTkyhks1LSulupgIKXGHnU53rervNIxPMinl8CVmoAJ9i2YkeWsUMJYW1tDQnTRD6fRxCGCMIQhNsO8UwRVcW+yUnsm5yE73koFYsolstYWV3FwuIiDF3HCC9Fjk9MwDRNWTLoiQEfe82vn/pV/Hj5DURgwZEbufj3V/8D/tGhf9j1GJ7r4u2330axVMKZ06dxYGpqx3sTQkBUVY7L1QA5k4TdIipthsiWCvsXRpEUpgO2nR6N872q1SooWCeBoihtHXeROdyNECjsk3A6RMAqgrNekUwmmSKh5yHq0sIqlEqP8uzAwsICTp482fVv7jbuGWcgCALMzc9jenoaQ4ODqFSrCHwfrud1ng3OPxQzkdiVuS02crFoKTh5UPAFsHtZQD488Y2E/7u2toaIUgwODaHRaEhpzFYIr1bXNAwUCpKM5zoOVtfWsL62hrmbN/Hxxx/DMAyMjIxgdHQUw8PDHeU6dxsM0isopbh86RI+vnYNhw4dwvT0dM8PYtO7EgKVs7WbIjTK2nOCIJCOUtTiHCCKUK3VMD4xIQlJQRhC4xoBe1mIwrsXmZL48KJ4SWjXYxKCRCIBz/fhum7bdJ+IFkEpTF3HqVOnsHT7NhYWF/HI6dM9n3Mfe0MYhli+fRuO4+D06dPQ+Tx4y7Kgx4R+OsEwDLj8c+3kDLTO1/B46UkTw9TQg+0Atlt0tw8MEILVlRWMjo1JGe527HNCWB+9pmnQslmMjo5Kh7ZUKmGNdyicv3ABuHABhXweI6OjGBkZQaFQ6LiOozYOyv7MJP6LqZ/Gf174K/mz/zz/l/jpsa90vD6hRuq5Ls49/TRS6XRvgUnLpkwIaRvNU0oRxpwjEVx5vNQLMBusEIJUKiWzDfG/F+Rw8T4dT0mUXNBMHpTkQl4K2c2hoNgezU4phef7bSdaCvsXUYpcJoPD09OYm5vDIZ5VfKicgSAIsLG2Bs/3cfLECRBFQTKRQN2yYNs2jFhdLg7Rf2/wNi6fk+hayWKSPBMz+sIRUHjqCdhbtBhvR/E8D7eXlpDJZBBxJ4DyKFjntXyNL+ROH6yZSGBqakqmlUvFIlbX1qSXSCllI5l5b3I+n5fncDeGFEVhiPfffx+3bt/Go2fO4ND0NBqNRm+Khvye7ZqC5yWC+OcjeBJikdfqdURhCMM04TgOW9RRhGwms2cSYBjz7sX5xQtBcZErUS/cecrsmTBNE6hWWa24zQIVJRJQCsM0QQjBvslJLC0tNU1N7OPuQUSQt5eXceDAAcl/cVyXTY7rYXy0aRhoWFbbrGKrEyDgeZ4MIu4E4ikLogjVSgVbpRImeMQvInmFb4rCAeiUlieEyImtj5w6BddxsLa+jtXlZdycncXly5eh67rUNBgdHW0KKmRLcsuz/w9P/gN879ar8CIWYIUI8cdz38BxHNtxDsWtLbzF1UhffuUVycS/m2qohBDWwhnLPgYie8LJnLV6Hel0Gr7rosE7oQQnQiiC9gKZUeTlFfH+rd1KhH91tHjcWTATCUS2zZ7HFmdABBEUgMll+KenpzE/P4/l5eXPNKt4TzgDvuuiWC5joFCQ/flGIgHVcRBGERzHaa81wD8cEYH6QQDHcSRzu9NiFu8JQI4yBtBRZawVEffyfD6iloJJiQ5xZbFUIgEQwkiEprnn1L2iKBjiMsknTpyA4zhYXlnB6soKrl27hsuXLyORSDCp0/FxOQPhThefSO+VSyU8c+4cJvfv3ya99XLMWMZkr0QbVVGgGoY0rOtra2wATKHA7i2lsHl3gaIo0HRdOljdIPgCwLZ33+5KxCIXxKEdZ8+PYRgGU6YMQ3gtKWXK08wUXLiKH3NoeBi3bt3CVrG4p3vSR2/wfR+ObcNqNHCGZ19EF0q9Xofjuowk2MVBNvjn5bZk8TrZDpHZIsAdDSUKeAlDdAitb2xA4dwiQ9dBFQWGprFe/F0iz3YwEwkcPHgQBw4cQBAEKG5tMduxtoZbt26BEIKBgQE5e0Vsrq22YyQ5gr95+OfxjRt/In/2xvqbGESz9kc7NdJavQ6gxywl50PtGdxZEo5+RCmzwSMjjGtFCHzfl0ODhGOl6/qu3JAgCGTmR0DMOWk9h6hLMCGeHdMwYNs23DaZ69YgAmCZzEKhgGKx+JkGEveEMyAi4ampKfkzuagbDTiOwz7MLovP4G1Cjusy1nsXR4AC8IKARe4x7363sZ8iTSwcAAE/CGA7DsbHx1HI59HQNBmdkNg5xDeensBfm0gkMHXwIA5NTSGMIhS3trC2tobV1VUsLCyAKApyuRxGRkYwdfBgkw76bmjU63jjzTfh86luA9yxaKci1vk074yvIO6FiNAJISiWSsgXCsjncpIvIDZaofjmuS4UQqAbxrbX3wKfG2ylhYXcLXshFnY8nRj3yxOmCUt4+NwZEBoPQtxIbBAhpcjn81BVFctLS3u8M330Akop1tfXAQAjMaU20zDgcDlYIQLWqUvI5FkcL5ZV7FaO8oXQkKY1tfl1yypGlMJ1Xbiu2zS/gwBo1GpIplIY4+dfKpdlG3HcXuxlPYp7I4IK0dpnOw7W1tawtrqK69ev4/LlyzAMA4NDQ5jYtw+T+/Y1OTi/dOzv4T/P/xWsoMHvG8V7yvv4u/g76KZG2okb0ek8d7t/bf4IlLAJoaL86zoOLMvCqZEROVyu0WjIz1qk4m2+lxi8g6Ld/ZT6Am34Bu04EO2Cifj1JBIJoFKBz0sXwskIwxCO44BSigR3SgFmcwYGBjB74wbjstwlAbvdcE84A1ulEjzPw8jISNPPddOEwb3oRqOBTDYrI8LWx8bgbUIuT7l0e7BE763SWtMGdkS3EScaOi0LWVVVGLoOwzCwuroKAjCVMfB56q7LhqCgeQG3PvQE2+WOHZ5l7Ofid6qiYGRkBCMjIzhz5gwsy8LtpSWsrK7i5uwsbly/Lo2LSAt2YtRWymVcvHgRhmHg5ZdfltrqwN6cgZ4gOBstn0vr+2xubkopZ03TWOSmKEim00DE5pX7nDQmDKzOP4f4dbaWCARIl+yF/GziCzv2WpOrEcbHEotRpTSKkEylto/PnYNsLoel5eU7uWN97AJKKTY3NpDNZpt4RRRs6mS9VoMfBGhYVjPPI/aZCoa6HwSwXXd72l0HuL7POpja1PRbn+0gCOC4LisriNcB8nnVdR21eh3Dw8MyHS24Ma0T61qHHMWDjPjv4/egFclEAoemppqCisXFRWxyueQPzp/H0NCQLCnkcjn83aNfxR9c/UN5jNvkNvzAx4cffNBRjbRT6aEVO+xg5xdKWyg3ZMq7APh7bG1tgQIyS2qYJgsIFAWpREKSSqMYMVMhBIZpsjK0mFURhnL+gNbi7O1GHmwXTADb5GrqeXBjSruWbTNeQus+FLHR2GEU4dbiIvKPPtr1Pt4t3BPOwMrSEgghO0b+EgCpVEr20ta5Xr3apu/TNE0QRYHLPfxuKXNBNGyX5hOLOuA1R+FciPMxTROmaTY9KKViEclkUrYZiQ0o4NmHdt5k63W2bpTxLEVrdBBHKpXC1MGDcjaCbdtySMr8/DwURWHDlWI66AIXLlzA4OAgnnvuuR3GLe7h7gq+MOPnK68nfv27eP42T/nGnwOND42KOEtf52pvge/D9X2E3DnwfR+KqsLkRjYIAtYHfoftORHlg41iaTqx4YgWwzCKJIcgyVs6RRuoIBcNDQ1hYWGhtzbZPvaEKIqwsbGBR44ebfq5yAil0mk06nV4ngdbUVipsc0zaBgGbMeBbdusxNfp/fhzR9FSXuSIEwwd7iQKaKrKbAfnNwGs5FAqlXBmcnL7dZoma+HtOAmtgYV4X7le6bZOSLe1K4IKwzBw+MgRqIqCzc1NrK2v4+rVq7h06RKSqRSODE9jQC+g5JcBABmkcXFmBuVyBU888URbNdJeM4WEEDm6t8l2oE0UvktwsrW1xWwwj6I13rEQcIdA2O0oDGWZJqJUjik3dB2GaTYFEa3v1bZU0HI90laHYZNDYBoGfJ5ZTiWTTN2VBwzJZLIpSKGUIp1KwTAMzM/P48xD5QysrGCcp1RbQXjtvVarIeTSrtlMZkcEr+s6q91wec1W2cs44l0ErfB9H5Zlyf5lgC2chGnK+mIrtjhfIP56RVFAOeu1137RHU4C7+MHIYxIwjdZALLWRsFS0oL5Ojo2JjMUDctijsHqKi5dvoyZmRmkUinpBY8MD+O5L35xh6qZZN6Keh4/fjunBZQP8OC/j3dZxBnUvUB494OxqW0q1yEIgwDgNTXCSwS6YbAavutKr9+2bTQaDQS+D61NvVh4+LsRcwghTalacS6ixbDOyZURZeRC4dmLqxV/Ozw0hNnZWdy+fbut4ezjzlEsFuE6DgbbzLAQEXgqlULDsmA7DhT++bUikUigVqsxxbcugkUiwtdUte2acVwXjuM0tfkavJTVrsRZLpcRhWHT8y6zinuQV2+yG8Iu8mBCkqfjv49BRMGpVArT09OYnp5GFEXMMVhbw+raGv66+9N4W3kHiqrgjHsGtUp1x7Ch2I1gjjDQVL7bEcjQbVJ3qyOw45p6wNbWVlMQoSgKiKoCvD1RBG+KqiLBHTPf8+Byu+H5vvwihCDdjhzaY5mXUoqIkCZnSLQYOq6LeqMhCeZpkU2MQWSgh4eHMTc3t6f78EnwuTsDlFKUy2Ucm5xs60lSyoZ9ZDIZNkGOZwjSmUyTKBClFMlkEl4QMC34Ds5AEIbSI4tHakEQwLKs7b5ewnrLTZ5G6oQwilAsFnGmZSiKSAUFQXDH4hHx5SNr3fEShnwhj8Djiw9sBO/hw4dx+PBhhGGI9fV1XLp4EUU+WXFtfR1vvPkmJnhvcjrWDhTxY3TslRZoXRh3QCIU2NraQjqVahJyUbnoR9iBSKOqKpKpFBK8xchzXXg8JRhQioTrbveT7wE7sjQ89WcmEnBcF7VaDblsFoamyYxB3LsXmYFCoQACYGNjo+8M3GVsbm6CKAryXI8jDuHEGaYpSchWowGSyTStxwh85CzPKnZrZRYbdHxjF07A/7+9Pw2S40zPQ9En98zae9837AABkNgGnCFBDqkZSbZ1JHkkb0eyrAifa8c9vnLElSzZYUcch30lXXl8fKWwdaTwOYq48pXtYzmORtKMLVkac4bkkABJrCQWYutuAA2g1+ru2rJyz/vjWzqrOqu6GgOSAJEPgwGgu6pyqfze712e93nr9ToX0xEFgUei7ciLxWIRoig2TNjjWUXa1/5IZbqYDKMQ8zt2/kDjxi2IIm9LPHToECrVKo7PHsetW7dgBw6cwMP5CxcwODSEoYEB9NFJi3ydoDHSj70OWvpkmbfvpxjpeR7W1tcxOjbW8HNJkuCLInzP20Q4FliJgIkCMbtBMwZcGC3yrHAHZyv7FuEzsNezFkPHtmHV61AUBelUitulhowi/YyuQgH3PsUS4xPhDADUkMakz9lDJEoS0qwO6LqoUYcAoL2yggAjlUKtWoVZr/NF2YwoU1SgEadpWQ2SsYZhkFJABxvIeqmEwPfR1RRRyLK8qdd1u2Dp9qj3DEScBPr7KOO0VRQQBgFmZ2bw3eqbuKBegu7p+FvDP4PQCvHR5cv48KOPkMlkeOuibhg8/dhMuGuI+JtqeG1rf1ugWCxuivIkKgfqUw++lTY7SwWqqgqPOmGyKMJyHDiOA03XeYtqRyIskexBGIYArQXKksRbgQRq9DdOIuIM0D5lURCAT6lP+FnFVo6eYRgIgwC246BWqSCVyTTMExBppOh5Hqqm2d4ZCEM+HM2xbZiWxTdASZKQYjXoDp6x1dVVdHV3N5w/yyoG28wqRsGddnYO0RR05HdRoaTYdUsdCbNWw+zsLDLZLJzVVRw+fBjVahWL8/OYnZmBREuRg4OD6Ovv37Bb2LBHbDSvED1WxK6E3wc3aY0GN81lZlmS4DRlFePANn3FceA6DtctqJomZDpwiGcW0EgqjkVkTwuDgHQX0V+xsmY+l2vUMGBvZc+SIDzWCbSd4IlwBtjCiXscomlaWZaJQ1CtwnFd+JUKUobBNwhd03idt1WpgDNFRZG3nTCoqoqUYTSI02yFVRqdFCJjOQHwRex34Aw0k+hY+iwIQwiRlOOmM2pacK2Wk1Wv4/Tp03hYm8c54SKCMEBZqOB71jv41Zd/heg8LC1hYXER9x88wO3paUiShK6uLgwNDWFkeLhBhXDTQm4qG8Rd31bGkXn3zcOpWFpfEATCBdmipZCl53WaYXBsG34Yom5ZcGybOwXbRkjEkVzH4cdQIvVfgBg8kb+cfHePjYCZYBP4c9fiHkefO4Nyj2zHQbVSgW4Y0CIZKCOVQr1eR71WA5rWMkAcYpadCqk+AEvnMpKaqml87XZy7sWVFYzGDGNTZJm3MG7lDLCIkt2DhqFEzC40BRPNdiP6s2bMzs7i0qVLGBwYwO49e/DGG2+gp6cHO3fuBA4fRqVa5R0KH12+zEsOPT09GB8bI+TIpo6eMPJnQ2ATd33YOmtQLBYhSxJXbGXYKqvYDM/zoKgq9FQKkkDaTT3fR7VWIxlAKm7X9vsNG9UNBZrRNU2zoczQkHEQRYA+SyzwEjvJQDxmfObOAEOUGdoOiqoik82iWq3Cs21UfB+ZdBoSVQPbqlTgui7qlkVqyvQLkRUFKcNo+II6nV+9uraGrq6uTdEJG6zBBDGibSpsAceRZppf0wnakf1KdJY4AIwcHAE+2vjdfZO0vMmyjKHhYQwNDwNhiHK5jDv37qG4soIrly/j8uXLyGWzfLhST3d3a681zpGK1DHZ+TafaXF1Faw3vxmyJMGj93KrbdyhLYUyTd+rikJaQi0LfhgShTfb5l0KcWius4YhIRqxXnTWzhj4PsC4AjQ1yMAzA0lW4BNDO2Z3NKsI+vd0JgOBCpmZprkxJlsQkE6lsL621rJUwCbxsaiRfigMXYfONokOzovBrNdRr9fRE+ELMMiyDKFdVjEk7PqGlHwr5xzxnQ7R18XamTDE1atXcfPmTUxNTeH555/nEwcjH4xsNotsNstHMs/Pz+Phw4dYWl7G3Nwc4TH19xMCc/PE1phyxiYEQUNmLS6wWFlZQXdPz6br6DSryD6XtYzrtDOJCZ+5ngfH8+BWq1Cp8FGrvUEQRQgR++f7PkzTJIGCQKTvN9nO6HcX7cRo4h180vjMnYFOFk7zAyBLEtKZDMxajShPVSpIpVJQNa1tqcChIzQ9z4OWzZK0XioVS+7pRIM6DEOsrKxgdHR00++Y98fkdiU6NIQRZ7a86qaHjXv6MQ9hqzbAxYUFfPDBB8hkMvjil76Ey+uXtzoqIAjI5fOYHB/H+NgYdF1HsVjE4sIC7t29y6enDfT3Y2BwEP0DAw2Gs9UiaU4DNjsEq8UiFEWJnQrISzodePgunSanR1QlNVWFQss2NlU0dE0TCh3Osok13FQiME0Tru8j9H3ouk6evXq90Vg3lQi2uh8JHh9aGuaYTdCgmb96rUayRjSY2KpUUK3VUK3VuK3QNY1/1qZjdnDOqzFkWYZoN1LzJr9VJL0dtAoimBrp/fv3cfDQIezetaujQE2WZQwODCBLW8CDICAE5sVFfHjpEi4BDUHFJpnkuKhbFNvez4BytnY2dZSw6+o0q8jKxyI2RMokUUQ6lYJH9QA83+fS1UYqFUt4jz5vjIzObF2+UICzvMyVM+MCBWY7Posg4olxBlou6KbfMZKOJIrIZrOo1WpwHIc4Br7fslRgWRZK5TJ8Oskqm8221PqnJ7TlgmPtSHELGiCLw7Zt2K67qXVvK8R59+3Sofw1FDy9NziIEydOxLe1tbk+tp2pkelpCAnZc4GmBS9cuIAwCJDP5zEwOIiBgYFN3Im21xj5+9LSErq7uxtY/Ay8o2ALUhUbbMLqulGIoghd16GqKpE5pnMvPM9DKkLkaf480zT5aFjmONqOA5FmKjYuJmx4H0CMCRMjSfD4ERV76fANCEMyrVAWRVRpMFGuVpFJpzdKBabJSwV+EBBHoFIBABiaRuq932ebaHFtDelMZpMNCsOQb1qB78OJIb9teZlN/26V2o4jDzq2jTPvvYf19XV8gaqRbgdB5DNz2Sxy+Tz27N0L13VJKZIGFTdv3tyUNVA0raMgKfqa9fV12I6Dvt7e2Ixjp1lFNkdGiYn6ZUlCJp3eyCqDOIfNraJRsqRlWWQ4EbVFhmGQ0dGCwInlTEY/+t0wmyKyaYmfIj5zZwAgF+5GavfNYB5+XESdTqchSxKRe6Tem6qqvFSg6zpqpsknB0qyjEIu194RABp6xVthtVhEGIbcGYhG/sDGLGyPtjJuJ0rcVOdDa/W8htppGOLK1au4dfMmduzYgcOHD/PFvikCaLH0GuqN0fcIAgpdXSh0dWHfvn1wbBsLCwtYWFjAzMwMbly/DllROJmov7+/oS7bCq7jYKVYxPOHD5PDiBsjmgM62lOiaXnmzMV+TmRBt/KsRVFEKpWC5LqoVqvE2Fer3FEIw5AoHToOUQcDeRbYSGWAOHkhGvkgQRhyvgBb0IxECmDL5y3B9qHS1lLbsmIzSsCGwxCGZJIme5olGhDUajV4NLuoqiqRJqYOPMKQaNzTCXq6rqNQKGzpCHTCOVpdWUFvVO2TkXAj/KiApq636wx0mjVoDiKq1SrOnD4Nh6qRtgpytvOZDIqi8KmLLKh4OD+PhYUFXLxwAQCQzWbRPzCAgYEBEhh0EB0vLi5CURQeSEQ7zFhQsFVWMVoiaBe0KYoCie41luMQwTHX5cEEm5TIM4lBAE1VG7KPsiwjpHtR85ECansAsnfYjrP1+PbHiM/cGWC98YsrKx1tmHGPuabrECUJJu0vD4IAnuui5Dg8qgQIMYf1/W4JYWvFqfVSCZquQ9e02L51WZYJgYWSj7YjOrOdJGC0t//s2bMt03vNMVSra+OGbAtGq6ppGBsbw+jYGMKQTE9bWFzEg/v3ce7cOQBo0EEvFAqx2Y2lpSWEYdjQtxx1cARRhCTLGzrerZwBuvFuOcseRDRGzGZJO6nvE4+fCgPZNH3c7NUzyLIMhCHcyHjYKF+Ajz+VJDyYn4ckyw1S2wkeD0ZHR1GzLKysrKC3Sb0UIE4cc6DjODhiU3bRsW14ARmXu7K8vCEDSzkFUpuBQdtBEIZYL5UwPDKyiezHoNJZK67rNrTadoJY0l1MiTHqsKwWizh95gw0TcOrX/5ygzjZto69RaaX/hKFri7k8nns27cPtuNgaXGRqKjSia2bhiu1uAcLCwtkgiNr0Wv6fVT6txU8GkQIgrCl48WCCUEUYdHZOSyYCIKAdBqFIVckbSYry9SOxZ0PCy6YY1EsFrF7//625/M48Zk7A6IoYnR0FB+dPYtypRLbMwyg5aJhUBQF2VwO9XodCEPY9TpqlkVGBXd1IZ1KoVSpIAiCzjdlUQRivjTmyZdLJWSz2baT+hRF4YONvl8Futh0H/236zh459IllEolnDx5knjgce+PvrVVZoC9fovzaVA+Ezamp+3ZvRs2yxosLuLW7dv4+OOPoWka+mlKsL+/n3u9CwsLyGYyhMwVc85hSGQ+IYot77VHN28AHbdjSbRd1bZtmPU6KtUqfM+DqmlEv8AwYjsP+PfIWhijMsi0pMA+f2VlBf10ymSCxwtd15HN57FcLGJfi9eEgsCZ2q2QTqehqCrqtJVsbW0NlVoNo8PDZOiZIMAMw+2Jh7Ug7YFxUDwP2Wy2pUOuKApAeSlhEHTcZtaSeBzHNaJ/Li4u4vLly+ju6opVI90Owk5r3pHr1lSVBxXeCy/woGJpcbEhqGDOQVdXFyCQeQTF1VUcO3o0/hjMUads/VZ1epYViFOVbAUmf87kyavF4gY/SVGgp9Oxx2rggzR9Jw0ZRddFqVwmXRufEj5zZwAgHv7pt9/G4uJivIAIOiMaiqKIdDrNDbQAoFKtcp1n0MxDp949a+fjXxlj8dK/lyuV2IgkCsZm91wX2MbAibirjf0ZNS4ffvghfM9rm97rtEzB21selfwmEHGeiclJTExOIvB9ssBpSWHu3j3uPAwMDGB+YQFjTYIhzRBFkciB+j7v34+yqHlWoMXwkfanS17v0TKE4LpIp9MtWxBFGkE4dFx13EwE1k2ysryMky+/vK3zSdAZJEnC0MgIHs7Pt94wOyHrgqxTMZ2GSSdkMjXBTCbD1Ui35cw3Oe7sb0EYolQqAUDL0gYAXhoLwxBuC2ni7SBORyAMQ9y9exfT09MYGxvDsaNHt2zd3QodBxItAhtBFNHd04Punh4coCOZGQnx9vQ0rl+/DlVVMTA4yL+PgYGBlsdhJEIIAlFKpXaEl3TpvJMQ2BiPvAWiWiWCICDwPN7SqanqhrxwDBqcAXoODF7EdiwtL0OUZezYsaOjc3oceCKcAcMwkMnlsLS8jD27N8/LDtC6PaYZtWqVt6gJoog6JRfWajUEYYjMNidAsXG0ITuPCGO8Uq1iaosvi6WsvTYM0ljEXGvc47VSLOL8+fNQFAWvvfZaw7Chze/vLDPAI6ktzrXVd9LMbRAlCT29vejp7cVzBw+ibppc6vT69evwPA/37t6F67okLdjXt2lhclIVkwjeOAkAG9PkOikR8MukPcQsZZeOCC1Z9TqXtI0DG27DMhIiNW5R775qmqjbNqampjo+pwSdQ5IkjIyM4N7t21hbW9skWBWisYTWDj7lGBmGge7ublRNEyb9v2aapKVsG6lz1l8uNK0FQRBQqVYhs1kJbaAqCjzqcHbqDLS6ymZnIAwCXLl8GXP372Pnzp2Er/MYOl9YuXRLhzzu+4h5TzSoCGnnAAsqSqUSwjDE+++/TzoUBgaQy+c3HVuSJAh0w2a2I6S22GVk3w5KBBunHhLSOu0UkGQZGVXlwkqmacJIpWKDKYWWGD060ZY5jUEkoyhLEhYXFtDb17dJv+aTxBPhDMiyjMHhYTyYn4/lDfDaVpsFHYYhJwMBQKFQIN5euQzbtiFKEmzbJj3oisK7DtoiDHm9EWjcjGtUX7qddw9s1KEC6oF2xFdAfN2vub3w/v37OHvuHAr5PA4dOtTWESDn32GZoMPMQEvnbItODCOVwuTUFCanpvDxtWu4ceMGxsbGsLS0hLt37kAQRfRGpqdlsllI9Fz4eNeIo+K6Ls/gxLX7NMP1PD5tkMlTM/VCgAxMcumMixDxA60YMYkvano/mGMhSxLmHz6EoqqJDPEnBFmW0dfXB8t1STdKszMQsSUB+UHs57C59wAx7INDQ1hcWEDNNOHQIVgO1R4w6ACZtqBrtMEZiaBaqSDTohwahaIoEGybRK4dEpDjiMcAiGNP7ajnuvjggw+wuLSE/fv3E2f1MbXAxnUoxL6uabIfsJEBbtfDz4KKAwcO4L9861vo6umBJIq4ceMGrl29Cl3XeesiCypEUSRZ3kjJV6AtizZrRe4giAgikueMUySJItK5HOku8jzSckxHZ6fS6U02lOnhMNKiJMsNnUkso7i6uoqjJ09ueU6PE0+EMyBJEsbHx/H+7Cwezs9jZHiY/45lBQDEC9qAPECsTUgQBNJhQNnClmURz5pOsgtBWgKtep2T/+LKBowE0mpSVYUKcGQ7iBbYsV3X7cgZaFX34+2FYYibN2/i6tWrGB0dxc6dOztKYW5yssL4WipvD3pMBqIdFhcXMTAwgMPPPw+ASJ8uUjLRxx9/jCtXriCVSmFgcBD5XA7pTIYMHmlqhxIAzgaPc0ZYutWho6WZoVaouAhz2ACSqQJ9bhgHpXkDYB0FzPlkXQi83U0UMXv3LsYnJ7eMABM8GpiWR09/P2bv3sWevXs3tN7RfmNhcFwXJnUEFFnmDrVuGCTrQ7uTWDdSpVIhfBKqOLiZhwPy7FGeSxyxuFwuI7dFEAFsEJAD2s3QyRpvmRmg64GpkdZME8eOHUMul3usLWwdEQjJC1r8uLOzWV1dheN52L9vH7q6uxHS4Uqs7ZkFFT09Pejr7UWG2o4ofM8jZT2a3m+V6WTKlWxuAcIQEEXoETJ6SMnGaToYiw3VSze1LbMSIxOxai4byJKElWIRVdPErhjthE8ST4wz0N/fj67eXly9cgXDQ0MbvZvRnvMwjI2Yq9UqqfUKAjKZDI8ODV2HIsvwPA91Wv9LGQap4dNZ47ZlQdE0MoKWpnBYOilaF2p+SCqVCskwdMD0lWUZEARCVOnEw9/i9xcvXsSdO3ewb98+7Nq1CzXT7IhgtDkzEI+OF/T3Cdu2UVxdxdEjR/jPUuk0pnbswBQdrrSysoJFmha8MzsLPwzR092NoaEhMkOBzioPQZwB7ghEnh/uzUekWlkmgPX9Rr9fQRCQMgzUQTaLumUBgtCQIZAkiZRDIsY+6t3PLyxgdXUVf+Nv/s1P9B4+65AkCUePHsWl06dx5+5d7KAlmRBoWL9xEbMbdQQUhZAFKbLZLCw6ATOfzxOSoaIQJUtaXhItC7quQ6eqcpsIzk2ZPPIjovDZtwXXiIERkJu5KS3RKisnCCitrXE10ldfeQWiJPERv48DUeXOR+UbxXEb4rC4uAhVUXganQ9X6u/HoUOHYJomtxs3b96E7/tQVBWDQ0MYHBhAb18fXMchQYSi8O+PkZXDIIAfhrCpJgkAngnQ6L7CprVGy0AS1SSo1moImEOQyTTcDzEyTZF9LtcXkGVcuXoVff392Lt37yPdw0fFE+MMAMDhF17AxTNncOfOHTJKE5v73EU0pt6YrKggCCSd3PRg57JZOLaNdapSaOg6DMOAR408mzHtWBYkRSEef1PKKO4BrVQqHWUFgA0PHyFRI9yyrt2KMe95eO+997C4uIijx45hYmKCE+ce57bdiQoWy5zEOS6dnsvS0hKA1gQgSZIwQPuODx0+jGKxiIcPH6K4uoorly/jo48+QjqVQldPD/r7+hq+j5COJbVpqylzKjVVbRhFzQx43B1nRCDbcWDV65BEcaMMIQibHFNGNBMlCVevXMHg0NCnSgB6FiFJEnp6ejAyOopr165hfGyMZG2ahKua17AfBEQvHnQmSVMni6HrJE1fr6NSq6E/lULKMGDQqZUWdQpqtRrqpglVVaHreoP9YeS16Gbh2DZcx9mko98KiqLAcRzSYthJhqmF7VhYXMR7Z85wNVI2tpndm8eBTluS235Gh69bmJ/HwMBAy+OkUqmNoMLzcPfePT5DYXZmBqIgoKurC109PRgdHQX79gUatDFBMmbnJFmGoWmbOkriiJCiKCKTTnOemlWvNzxfIkBsDuOfscmNgoClxUWsrKzgr/71v/6pZGajeKKcgXyhgLGxMVy7dg1jY2MQYlSYoouapW4A0h4UNy40lU5DWFuDAFILZpuXrCjIUoJO3TRh2zYCWh+URBGqqkKlMrZxkUW5UkG2wwUNEO/TBolGtnIG4haEaZo4feYMzFoNL730Evr6+xtf20k9seluBi3KBJ1494IgtJ401uFDvLiwgHwut9HP3QaCICCby2FckjA5OQlV07C8uIh79+9jeXkZc/fu4dKlS6Sm2NODQj5PPpel9Gib4CYeBjvfFkaU9Q+7noeaaRLxIUHYuDf0fT7rRBBFPHzwAJVqFV9+/fWO7kOCRwezHfsPHMD33nwTt2/fxt59+zYb0qbv2KzVEIYhJFmObWkFSCBRrlR4hwH5GDKPwNA0PrrYpzoVFm1lVunkQlarjjqN5UoFYRhuyTViUBUFNVpT7oSAHPcUMzXSvv7+RjXSx5wBZMfeyg1ot+G3ElaLwqrXsVYqYWcM2TwOkiyjr7cXhUIBqXQaVr2O+w8eYGlxEdO3b+PWzZtIpdPo6+1Fd3c3cvk815hRZBlqOh07wZZlFWOvg+oR1Go1zlHiwmNNEssOzRiLkoSr166hr78fuz/lrADwhDgD0VnY+/fvxxtvvIHbt29jT5sb4tNNHMBGij8GgkAEQ8qlEmr09VFIoohMJgPDMLiEZHRxi5JEekdVlUsjh2GISqVCBvt0CEVVYbsujx7boTmKKZVKOH36NARRxJe//OWG2lcnHRYMotD8QLcnED4uUlEcfDrUZDuRM+MD+FQrorunB6l0msi2ui4WFxexUizi+rVr8AFk0mn09/VhaHgYmXQ6Vqehky4V3TDgV6sNXj77LGYKmPohwhDXP/4YIyMjGN7G85Hg0cCcAc0wsHPHDty4eRMTk5ObFR/DDSXCaDYxbpgZQ4oFGEGAejS6o4GBpmnQNI1kjujwM4eu8RrAA4qobapUKkTEqMOsIiMgs3KXvpUiXeRZDsONYUM7du7EoUOHml76eNc57yTYhsbApl91cJwHDx5AFAQMtmkpbAZLzQe+j3Qmg5HhYQz09wOUrLe8vIyFxUXcuXsXoiiiu7sbg4ODGB4aIo5AC9vRDpIkQTcMolho25AkiTyvjGBKCerMdiwtLqJSqeD4sWNbf8+fAJ4IZ0AQBJIOC0NoioIdU1P4+Pr1+EVNb2K1WgVASD9bSd4ahgFJkuDStF46nd6UGmYCNKlUitSYaWrO9zyYvg+hXocoy1BlGT5t9+nUuwfAo1Lf9zcJ1bTDwuIiPnj/fWSzWXzpS1+CqqoNnvN26vudcgY+jWEZi4uLcBwHo1voC0QhUzXJgI4SLpfLcKhkJ1NDHJ+YgACiWb64tISHDx9iZmYGsixzHfSBwcFtqbqJgrDJy4/emzAMeV1x7t491G0bBw8e7EiKOcH3B0bs9DwPe/ftw507d3D944/x/AsvNL6QZvcs227IJrZ7xgVBgEGNebVWQw/tVmjQHgERzdGoNDIbhuV7Hp+AKIDYKUXTUCmXN9WQt7xGSkB2HGfLTYJlIXzfx7lz5/DgwQMcPnyYiNc0RbKdhxGdIezQGWjnfHfinM/NzaGvv39b4kgsS8MmT7KW4nQqhe6uLhQKBRzYvx+2bWOlWMTS4iKZ2PrRR8hksxiiHQpd3d1E/yFyve0QJY+b9TpRdoxkFZkjEIYhrl+/jpHhYXR1dX0mtuOJcAYA4mU7tE6zb/9+zN69iw/efx8vvfTSRgsg9c7qpsmJHqkI6aclBIGMzqzXUSqXkTKMtmxWtriZRr3junAdB57rwnMcrK6uIggCqKq6rY2dlQocx2n7HrYYWHpvaGgIx48f35TeazjvTk6g6UVxi65TElDbBY2tmdz35uaQz+c7dqhCqvbn2jZMmsFxHIeweCWJjxZlvcKZTIZPk1wvlQiZaHERFy9eBADk8nnOR8jl81sa5wYv33G4WlkYWdDlchk3btzAzl27kEmnk3kEnwLYHAovCCBJEvbu3YvLly+jv79/U+bODwJY9TqA9tnEKHQaSHi0TGQ0jSuOgqlWGobBnQGHZhqZY7C6tkbGrFMb0InDraoqTCqXvWWpIAxhuy7eO3MG6+vrOPnii7w7q3nFxrVMfz/opEzw/R7LrNVQXF3F8WPHOn4PC8Asy4JH+UOsO0OSJCiKwgcUpdNprqLqeR6WlpawsLiIubk53Lp1CxINKgYHBtDX39+R/oOh62SuCuWpsOfHD0Ouj3Lt449h2TaeO3gQkix/32q1j4InZtg6Y+U7tJXniydPYml5GR9+9FGDcAjzsgDi2XcSEYe+jxRd1PV6HTVqELYCm3SXy2ZRKBSQoS2LJu0/D0OiQri2vo5KtcpJRa3AHhxWI2p5vmGIK1eu4OLFi9ixYwdOnjzZ8HA0bFzbyAw0b3ixtLnoebX7zC2893Zn47kuFubn26oOhkHAW/sqlQpK5TIZOEV1AWyadstls8jlctB1vaVoSCGfx969e/HqK6/gL/3Ij+DEiRPI53K4c+cO3n77bfzJn/wJPjh7Fvfu3YPdZmCWSo0GwpBHlwDtOKjXcenDD9HV3Y2DBw4goNoFUYyOjkIQBLzeAZfgypUrXMvgX/2rf7Xl659VCILA77Pruti1ezeGR0bw/gcfYH19veG1dbru5Q6yiQBxHlhWSJJlrK6udlyWY1yEQqHAn08IRHBIVVVUazWUSiWUymUiT9zGJoiiSLhLotjw3DWDaa289eabqFSrOHXqVEObdqs1+bg4A52UCba6f1udy9z9+5BEsW2JlgVxpmmiXC6jWqmQTC/dO8IwJMONurqI0mhk8mAUsixjeHgYR48cwV/4C38Br73+Ovbu2QPbtnHh4kX86Z/+Kb7zne/g6tWrWFlZacl1EOgzxAYm+b4PIQy5VsGdO3cw/+ABTpw4ERtEfFp244nJDDAPPwDZLPr6+nDkyBFcvHAB2WyW91yyBa11IhpE4QcBRElCJpOBaZpYXV2FoevbSoOzeo+maRBFkdcLmXY4EydBvc7LHrIsQ6HeJ7tGgZ5Pq64C3/fxwQcf4P79+zh8+HBsr2m09v39lAniNvSoxkC7z+ST1lodS2g91/3hw4fwg4BH7uzzPM/jXrxHNSNYpiIEKRMoqsqZuLKqNrSDdQJVUTA6OorR0VEiDbu+jrkHD7C4sIBz588DALoKhcaZ65HrNHQdHh00Evg+AhDp2o8++giyJOHFF1/kUxe1JmLkyZMn8Y1vfIOMft4ic/LzP//z8H0fO3fuxM/93M9t6xqfNWiahjoVHFNVFcePHcPbb7+NM6dP48uvvcYjddd1AUHoLJsIwvIOQbJM5UoFruOgUq22nJ/SCizyZM9OOp2GJEmkz51uDhbVymBRoUL/ZM+Iqihc/KhVO/NKsYjTp09D0zSiRtqGDxFd+4+NQNiJ+mAbsm4nuH/vHgaHhhqCIzYS2KO6AUwLgAtNUXusqSpC20Y6lYL8CNF3IZ8ngQWb2Lq4iIcPH+LOnTu4cfMmVEVpmL0S/Z5EUYSmqrBoNwlA9rnV1VXMTE9j/4EDGB4eRhiGmyYVflp244lxBgBwMo7reZAkCVOTk6hUKvjoo4+QyWTQ09PDNwnDMDruSfVpNNlVKPCaXrlSQeFRhscIAhzbhpFKIZvJgKnOsYyFS50DliIUQDxlTh4BSCrPcTY5A7Zt47333kOxWMSLL77YEQFteySgpm6CmLvX8VyCTn7fYtHfm5tDd1cXRElC3TTJpDjfb+BxhCHRKWdGUaaRkWSaWGMiQzGzx7cD1l6Uy+dxYN8+WLZN2o8WFzFDddA1VeXlBLbAFUXhHQZBGGL69m1YloVXXnkFqqpyTflmo/3iiy/iG9/4BkqlEm7evNmyj/hb3/oWvv3tbwMAvv71r3/fuvSfd2iaBogiPJrVkWUZL37xi/jud7+LM2fO4NVXX+VBhKqqkNsMvIoioA6frCjI5/NYW1vD+vo6MjRTsF0EYYjA95HLZpHP5fgmxiLWIOIIWyCrVaR2g0nnMj5As9Lm/fv3cfbsWXR1deHkyZMtnxlmM5t1NR4HWAX9UcuL9AUtf1WmmZRdu3fziYGB522IwkXahKMOlSxJnNfj1+vwgwCp72dNhUSEbGxsDENDQwjDEGvr61ikMxTigoquQoGQyGlZwPU8mJaFGx9/jOHhYezZswdAY6aL4dOyG0+eM1CpkKE+9IYcPHgQ1WoV77//Pk6cOMHnzoui2NCr2Qo+22hAHpBcLoe11VWUSiVk0+ltL2oBJC2s0xvNVNBkWYau6yTC9X141DHwPA8hrRcJVMWsVqsBdEKeRDMHddPE2bNn4XseXnnlFTKZqwPEXn2LqF1o6iYIEeNlUs/zcZAHmaPk07Yo3/dhWRaWl5exa9cuIuYT5SjQzV+iCzgu88PGU0u0y+NxQBAEIkmq6xgfH8f4+DiCMMQa1UFfXFrCvbk5CAB6mKZBLgfP8zC/uIi1tTWc/MIXOP8hDEMo7BmN4MUXX+R/P3fuXOyidl0X/+Af/AMAwCuvvIKvfe1rj+UaP89gdd+QEvdkWUbKMPClL30Jb731Fs6dPYvdu3cDgsDT9S1leyPgQjCiSJTlajVYto31UomTCbcD27ZJFwJ1EsVICzOwUdt2PY+PYmc/E2gQ4tKhZ0YqRdaIKGJmZgbXr1/H6OgoXjhyJLbFmoFn27Z99hSR4ENo+HHIo1a2bjuVUI5D1Gawv09PT0OUJKQzGViWxc8nxEZGhW3+zfaP6QeAcow6kS2PRSTIYYGeCKC7qwvdXV3YT0mIi0tLWFxYwMz0ND7++GMYdGJrd08PmVtSrWL2zh1kMhkcO3aM21wB2FTC+rTsxhPnDASiCN91+ZAPURDwhRMn8N3vfhfnz5/HsaNHNwQ7tljUQbihFS/Q9pBsJoMqre+vra+jt7d32+fpWFZLVq8gCIQ5LMswAO4csJSg7PuwqH61ZdtQggBra2u4cvkyVE3DETo5rFqtkgeN/c8eFrZRR9pTYoexdJiKa3amopK6cdcGbKQDA+poBfRnQbghyevSlF3zWSzOzyPwffT39/MNn4n5dFL2cT0PItCYaXkMaGYxi4KAnp4e9PT04LnnnoNZr2OJZg1u3r6NgDpyAYA9u3djYHCQvI8a4jhRGUYC9TwPZ8+exU/91E9tes1v/uZv4ubNmxAEAb/+67/+2K7v8w5N02DW63AihN6uQgEnTpzAe++9B0EUsX//fv7MbMVa56qUYchbWguFAlaWl1Eql5HN5VpOtWwF27YhCEJL2xEtRQIb2hX8f02D57qwHAcyLRvcuHEDD+fnMTU5iakdO2DWag12gk3pE6liJr/isEnNtRN7EQ0yYuxu6PsNtqP5zxAg8xHCkARp1GZEpbxZp1ZDxxR938OFBfTReQMStRuiJMVu/s1g9hfAo2fa4toLseH0MOVaTdMwPjaG8bExBGGI9fV1LMzPcyKiQM8bgoATx483BLYCfc6i+LTsxhPlDEiSBEXTENCWPlYflmUZR44exZn33sO5c+fwpZde4p55q0XdsEkikgqLLOpypYJsNrtt1rdl28h3OE0q6hzw65RlIiEsCFhbXcVHH32EfD6Pg4cOEeay68JrJglG/02dJEEQUDdN+LSzgs80iHjtvPYvCAi9ADJkBPARQIQUEo1sll4DANuyiEynIMCyrI1Rn5FFy4YFRe86WxQAWbweXexswbINf2llBT19feh5BCeM1wQFYduGeOPWbX5e2slOM6RTKUxOTmJychK+7/NyjijLGJ2YIC+KLuiYMdKGYeDw4cO4cOECzp49u+n3xWIR//yf/3MAwM/8zM/gaKs57Qk2QdM0VEWRZBV1nW90g4OD2L17N27evIkgCHD8+HHiENA1Evd9s7Qzi6DZ82EYBjRdh1+vY3V1dVt97sCGM9CpvWl2eFkrpEOliT+8eBErxSIO7N+Pwf5++J4Hj9mKVmQ2UYQQhlwzQxBF1CnPidmYqA1hP2flCWAjg8FsA+jn2Y7DybXRtcSkfRmLP1raZNwiphgZBAE83yf2TRR5wFApl2HWajj6wgukPW+bsG0bIuUOPHLWcwuHSYrMN2EQsJE1OHDgAJaWl/H+++8jCEP09fVx7QqRtitKsoxsU/n607IbT5QzAFAP3zThUmeALWpZlvGF48dx9do1vP3WWzh+4gRhowtEorjZk2TjJKMpHQbDMIiQTK2GtbU1DNKorlPUqSb5I1+jqsKyLMzMzmJ2Zgbj4+M4dvQoBIFMvrIp74B5y0E06maeNcgCsimZTaJM1Xaw6w7yYQ5+SKN/iHzkMwMTT2GCGHELwKc/Z5kblr1g0YgoEHVClkZDECAUBNTrdawUizgWmUWwHViWBYE6Ao+afgzC+CFQDDyKicmYsFTjB++/j6XlZTI8qVCAwqLNiJGJcwYAkvK7cOECLl26tKn2+0//6T/F+vo60uk0fvVXf/WRru9ZRXTOhE+dUIA4kGNjY9B1HVevXsXbb7+NL37xi9B1PZZzFH3m40x/d1cXbMuCWa/DNM2W6oVxYM/vo9oO1vZctyy8f+YMLNvGyy+/jL6+PlITdxyuVBjQzTdqQ8LIbA6Ptj6KokjKdY0Hil33VSqva5om4cVEicwgyoAQhE3jxznCEH7Ebgh0wxcFASLbpAUiPsccNiZ5fmthAZqmdTzTIQrG5wrDkLeMfxLgI5KjGUY2swJEcfX9Dz6AommcnMzA3tEqyPw07MYT6QxURZEwLilJkHmTqqbhlVOncOHiRXzw/vuoVirYv3//ps+Iaua3ivS6CgVY9TpMy0K1VkOmQ4Yxi0512m+8HQVABkEUcf3GDdy/fx979uzBc889R84VZFCFugUBh0fongefjUbWNKLJHjaS8OhfENJ0ZwiyGRKetN/AD2B/l2SZEK3opssihOhrmefeCowsxbIagiDg/v37EARhW8qNDJ7rIqDqjc3CS9tB3J2N+yQhMiGTOQhmrYZ3z5xB3TTx3MGDRGNCVfnAEfY8pFKplgb/xRdfxG/91m/BNE1cvXoVhw8fBgBcu3YN//bf/lsAwC/90i8l6oXbBOvecBwHruNAotkB5iCPDA+jp6cHZ06fxpvf/S6+9NJLyOVyDYFEM7Eu8uH8r7KiIJPNolQuY3VtDfo2upKYJG2raYadwKzXcf7cOUAQ8MqrryKXzfJzlmW5bamNOQi+5/EggrHco9cejfj5z5uzk3QTZ1mEwPf5OF7Ws8/WDbMVUTvTzpnn2YNIKfTe3BxGR0bIKOZtwrYsUovXNHKuj2g74hDdA+L2A/bv6elpfPjhh+jt68PIyAgs24ZKicgKnYAKtA8iPmm78cQ5A2wTCinrX1NVTuSRJQmSLOP48ePIZjK4eu0aqrUajh49CokyhIO4WhY2M2bZoi6Xy1hbW0PKMDpa1Iy48ijOQAjAdRy89/77WFpawoEDBzA8MtK4QW3xeXxTphuzSutnhmG09sgpDKyhiFUE9D9gc22blQDSmUzL1ptODFnzUg+DADMzMxgbHSVRHCLGt4Mo37JtBCAL2nVdeI/Ruxdi7nkY8fLDMMTq6irOnDkDUZJw4gtfAECmZUqSRIxq5FnItyF/RslAZ8+e5Yv6F37hF+B5HkZHRzkRKMH2YBgG7HIZtm3zyJ+PhlUUdKfTeO3113GaOgQnX3yRDLuhNqP5uW7VtpvP51Gr1eBssyvJtizeNhZ1NjtBGIZYWFzEmTNnkEqncfDgwU0O51aWSBQEgJIOAcDVNEiiSATZOgDbRDOZzKb2SiYAxpRcW11DJ/ayobwL4OH8PGzLwuTUFBfGCdFZJ5lHJ9SGYciF7TrlU22cROuyS2zJke5DzOn76KOPMD09jakdOzA5MYG19XVCMJYkeL7fUEJuRRz/NOzGEyM6xCAIAtLZLEJR5AIwTM8/Sv7Zt38/Tp48ifv37+Ptt9+GRZm629mc8/k8J2aUyuWO3mPbNqJtY1ulq0OAOynVahVvvvUW1tbW8NJLL2FocJDU+bZI78ciSsqJ/LvtW+LOr9mT7aRX+BGwtLQEs1bjswjYUQVa5ml3NJeyxAHS58+udVvRVbvrifkdW9RhGGJubg5vv/020uk0Xn75ZdI1EgRQqTENw5BnBwCSdWqF3bt3o5t6/+fOnQMA/Mmf/An+23/7bwCAX/3VX91W6jnBBnRdh6CqCGn9OkogZo5tKpXCq6++iu6eHrz7zju4PT3N1+gmtLAloigin8tBkiSUSiX+bG4FizopQPvnnR+enpcfBLg9PY13330XAwMDePHFF6GpaluBrHaIru3HpjFA79X31VbY4pxmpqfR3d2NfD7f4AQIWxwPIPccIKVZ1jm2rcxAG0eg3XsEQYDjODh9+jSmp6fxwvPPY+euXfx3ClWfDCLcq3Q63VIM69OwG0+cMwCQBStIEgLf56x0gHj30QdqdHQUp06dQq1axZ/9+Z/jzuwsYat2CFEUkcvlIEsS1tbWOlpc7DWMBNRqMUXT+WEYYm1tDW+++SY82jrYT6UshchnAmg9CTAG213IcQsnmkeJbq6Pey7BzMwMcrkcf6Abz4FAoP83d0WwBa3TFCtLT3a8qB9lQQOo2zY++OADnD17FkPDw3jp5Zc3VNZohMVKKdE2tHyLVB/DyZMnARAP3/M8/MIv/AIAwhr+6Z/+6W2fZwICQRCQzecRCgJs2yaOAI3Qos+zoij44he/iB07d+LDS5fwzjvvkHbfVp8b87NsNguVOh7LxWJH51e3rIaZGHHrl5X5ONs+CHD58mVcunQJO3fswMkvfIGLCUUZ8ttCNEJ/TM4AFyt7HHYjck7VahVLy8vYMTUV+1JGmo47qkeJ6CwrwLpCHidnIO7uBUGAhw8f4tvf/jaKxSK+9KUvYWR0lHdXSVRMShRFImzVQUYR+OTtxhPpDAiCAJ32bNuWxaPVuFaynp4efOWrX8Xg4CDOnz+Pd959lw8xAlqn+hiy2SwfZLS8srLlg8JJbJH2lOgmG80EsAWysLCAt996C4Zh4MuvvspT8yxl6NAohp5w2+NHEd04O3MM4oxPZHAJ2+jafN6jLCSzXsfCwgKmOpxQyLIFAL03rCWIlkHYou7oXj2CIxCGIWZnZvDtP/9zLC8v4/jx4zhx/HiDNrxEe4JlSeLENQB8/Gk7sJTf5cuX8Ru/8Ru4fv06AODXf/3XH3tG5llDNJCwLQsQhFi7IYoinn/+eXzxi19EqVTCf//2t3Hrxo3G1H2750YgracyZeN3klm0LauhkyD6XTMngBGFgQ010lu3buHw4cM4/PzzvPauqiogCITB/wTgkxpuNjM7C1VVMRJRK40DI5qzLGMYBBsl3UgQQV68DXuwxWubgzfTNPHee+/hvfffR6GrC1/5ylfQ19fHz0WWJKI0SVs9fdbCCqBriyDik7YbTxxngCGTy8FaWyOKXIw9GYaxBBJVVXHs6FGMjY7iwsWL+Pa3v40D+/djz549HdWVuru6iDKh62J1bQ29bQRFXNflBBkGdowg3FwTm5mZwYcffojhoSEcP3GiwTAxhSyPTuF7lME229rmYjMDG2Bm8LF49xHMzs5CkKS2swhiz4sypENsLGhygu3Jod8PyuUyLly4gGKxiMmJCRw8dIgPpLIjfBHLshAIAiRK2mTYakEDG4vacRz843/8jwEAP/mTP4mXX375sV/PswZBEKCn07BKJdiOsyHA04KbMjAwgK9+9au4du0aLl+9irn793H0yBFO5GpnYlVVRb5QwPr6OpE4N4y2La9OjOqoEN0QIs8RUyMtra/HqpGy+rfjONtSY6UH7fSVneMxlhfZtfi+j7t372J8YqJjJ4PdA8/zuJw0D9xoRtF/jHaDnWsQBJidncWVK1cgShJOfuELGBoaAgTSoh2EISTaKgkQZUkhYs9EUdyyXf2TthtPrDMgSRLUVApOrQbXdclNpNFYM9hX29/fj6985Sv4+No1XL1yBXNzczhEjXm7h1SSZXR3dxPtgXIZhmG01PUOm6aGRbXzWWsJ+/nly5dx+/Zt7Nq1C4cOHozdZDVN4wJE23YGhNb6/3GIu3vRjSx8nN49q+uHZBDH+NjYtrXALdsmi0iSSK11u6nNbWQFfN/HjRs3cOPGDRipFF4+dYq3MYX0XEJQmVNFIcNGaAtU9B52d6CfcPLkSU5OdF0Xmqbh61//emfXlGBLpPJ5WOUyZ6XLkRblKELKrpdlGYcPH8bY2BjOnzuH77z5Jnbv3InRsbFY8nEUuVyOdyUtLy9jaHBwy7HI7NhAfKmrUqngzOnT8DwPp06dinUwFUWBJMvw6WhjjWqydIrtcI06AZcxb3Ht2yVaA8D9Bw/gOA52TE5u61zCMOTy04ZhQJRlIGKbHydCAKVSiQcQUzt24OBzz/HxyqHvw2FlTl0nBEZB2KQS2dXdvaXd/aTtxhNZJmAwKEvXc10i54sYwhtd0AyyJOHQoUN4/StfgShJePedd3Djxo22074A8tCkMxnIkoSVYrElKYgpI0b5AAAxNOwLZuk9Rhw5fPhwy2ibRRJM6/5RfdaOigQxiyGIlAmCLbz77Zwb+4T5hw9hWVbLml8rsEg8CAIYbOQ0VVTjvc1bpHE7Yi4DWFpcxBtvvIEbN25gz549+IHXX2/oZ47yVhh50Pd9PpCIXW9Xdzc51y2Qz+exb98+/u+///f/Pqa2eX8StIaiKFDo9+C6LieabbIdQMNm2NXVhdd/4Adw8OBBTM/O4vTp01haXt7yOerp6YFEJwquNU1KjMKngQQPIGi9O7raVlZW8NZbb0EQRXz5tdfaZpp4qeARiITR5/ZxgJcJ4mxHh10EDOwTZmZm0N/fj/Q2RYaYIyDK8oZkObW/HZ1Fh06D47q4evky3njjDbiuiy+/+iqOHDnCHQEAqNEJt7IsQ2ZBRBg2tIAKAAZHRrY83idtN57YzABAZolXdR2gE8MQdq513VUo4LXXXsON69dx7do1zM/PY8eOHdi1e3dLg93d1QXbtmHZNpaLxViFMVa/jhWvEQTYloUzZ86gXCrhxRdfJKmiNhDoBETbsmDbNlKp1CM5BJ3cl61ewRd0i17l7bZCAcD0zAx6uruR28ZQqBCEbMUEhqIZhRBorP+1eL8Q9/00vWZhYQE3rl/HysoKcoUCXv/yl5FtStUFvg/LNImmvKpCkiQ+gCoEcT4dKgQ1vI0ySH9/Pz7++GP09fXhn/yTf9Lx+xJ0hlShgNr6OpG2bfHcxj3Poihi7549GB4exrmzZ/HRhx/i3t272Ld/P+lzj3nuJFlGT3c3isUiSqUSDMNAKsbGMLJYXDuaAODevXu4cOECenp6cPLkydipplHoqgqrXieKgI9CJHxMiF5TbNCzXd6OIPDSS7SlrhO4NFMCNHYekY8lLdlticcdnKvtOLh9+zamp6fhOA720ZJ0c2TPRtpLosiJo57nAVSRlSGTyXQ8i+aTtBtPtDMAAKlcDuvLy3xRy4rSsBG38zhFAFM7dqDQ1YUHDx5g9s4dTE9PY2JiAnv37t08ypSSghYXFjgpKNpPy1rI4lKOAFCtVPDOO+/A832c2sawIU1ViQxwJAPSKbZTKxRiE0ExZYIW3v12IAgCypUKJ+BtB45tcwXJlmptjEQY96s2nx2EIR4+eIDr16+TgTPd3fjSl76Enr6+Ru12kO/brNd5zzA7F8dxyERFReGvz2SzHX/fZ8+exVtvvQUA+Gf/7J8h/yjTMxO0hW4YEDUNsG3Yto1cNtugI88j81bE4kwGR48dw/LSEubu38cH77+Pa9ks9u7di/Hx8U3vS6XTqFsWgmoVKysrGBkaahiCxtoc41LBYRjixvXruHrtGsbHx3H0yJGOeDsCJRLa9BpVTevYdkQzmt8vWIAkIL5M8CjBzczsLHRd35Y6bAiigsgI3rFD6Oh3HqsRs4UjULcs3Lp1CzMzMwgB7JicxI5du2LL0K7n8YyNrus8wLIdB0EQkJHUVAp+pMMg4pO2G0++M5DNQlAUBK6LWq2GQqHARUK2FP0RBMh0Et6OqSkcfO45TM/M4PatW5i9cwfj4+PYu3cvnzYHREhBa2sNpKCopGfcZrm8vIz33nsPuq7j1KlTHQt5AODTtjzPg7MN7sB2CXRCzNKPThhgxJrHxQieZUzgDlJg/HwoCzgMQxip1JaRxibxlhYL2g8CzN27h5s3b6JcqaCvrw+nTp1Cb28vbw1sfhfz7AVBQJqeSxiGfPqcGpE27STNx/BLv/RLAMhEzr/zd/5Ox+9LsD2kcjnUSiUyGIwOlopiq2yaKJA5JsPDw6jVarhx8ybOnT2Lj69dw569ezExMdFACO7q6oJj27AcByurqxjo7weX9Wb95E3H9IMAFy9exL27d/HcgQPYvWfPtmrbqqbBtm1OTuyU/MvP5THU0Xlb4WMaHOY6Dubm5rB79+5t3QuLlhVbST7zGS3kH7y1j6OFPa3Warh16xbuzM5CkiTs3rULO6kTwKSfo2DZRIDYCIW2oLrUERAEMunW9Txouo6+DmdcfNJ244l3BgAg29WF0tIS6vU6Uuk06e2O1t3aPDCsFScIQ8iKgr1792LXrl24MzuLmzdv4u7duxgdHcXePXtQoJFdLptF3TQRWBaWlpYwODDAjxFgcyrs3r17OH/+PHp7e3HyxRf5vPvtQNd1VKtV4uFvQXhkiD6CHZUJ4gL+aGaA9cpv0XXQCWzbxuzsLHbv3r0t54LV+2QqiRyH5rNrIGU1LUzP93H3zh3cvHULtVoNg4ODOHbsWEMtNu67cl13I91oGIT9S1/L1NZURSEqmZq2ZesTw+/8zu/gzTffBEAmjT3OyYsJGpHv7sba4iJ810W1WkUun+cOdCeOtChJCGlauau7Gy+++CLKdKb8xUuXcO3aNezdswdTU1OQqbZ+d3c3lpaWUDNNlCsVTkQOyEEb1pbjunj//fexsryMY8eOYWJiYsN56BDRjiTbtjvirNAbsImv8Khoyxegv9/OcaZv30YYBJjaBnHQ9304dLBaKpXqyMkJae0+8P3YIKJcqeDmjRu4e+8eVFXF/gMHMDU11VC+af6motlETnymsCl5UI3sD0Ojox3Z7k/Dbjw1zkCNthmapolsNrtBgNnKu492IND2IkmSsHPXLkzt2IF7NFr8zne+g+6eHkyMj2NkdBS9vb14+PAhbNvGysrKBrM80k0QhiGuX7+Ojz/+GOMTEzgSmSW+ZW2qCZwd7DhcTrVjdOg9x5UJOKs5ooQVF11s1xmYnp4GAOzcubPj97BZ7QGAzFZGLZoVon+PKnqtrq5i7t49zN2/D8dxMDIyghdffHFTao3JDkcNQeD7qFPPXtO0hsXPZqKLdAojAPQNDrbslDBNEw8fPkSlUsE3v/lN/Mqv/AoA4O/+3b+LV199teN7k2D7EEUR6Xwe5ZUV2I5D+vyZTHEnzgCt5UedxVw+j+MnTmD/gQO4eeMGLl+5go+vX8fo6CjGx8bQ29uLbC6H9bU1LC8vQxoYgK7rCHy/IY1eq9Vw+vRpWJbFhw0xbFfm3NB1VKpV4pjq+paqfI8b7QSHWpVUW8H1PNyansbk5GRLNb64Y9TpkCSFEvXavRZoLBdFZ0W4nocH9+/j3twclpeWoOs6Dh8+jMnJydgNuPl7imYTU4bRsE+xrgKVSuxLktQya/pZ2I2nwhnQNA1qOo16qQTP82DV6zAo0W7LzABjoTPBmMgXKooiJicnMTE+jofz87h79y4uXLqES5cuYXBoCH20jlwzTcilErryebJ5iGJDem///v3Yt29fw3k0bzBbQRDInHOHOgOapnWcIut0sbVSPAMaBYeaI/m4iLsdXNfF7elpTE1NdTw7PAxDPj0tWmOLRcx1iIKAaq2Ge/fu4d6dO6hUq9B1HRPj45icmoode9oQGUR+VqOEQTkyWx4g0R1rMdQUhaSe2yxoAPgP/+E/bErpfeELX3jkmeMJtodUPg+rUiF2w7YhqypkOklzKyeaTdQDe/4jr0+n0zhy9Cj27d+P2dlZ3Lt3D7Ozs0inUhgZGUE6k4EoilheWWkkIgsC1tbWcPrMGUiiiFcjImTk1zQDuY1WOKZzD9rGtp1A4nFodbD109wuB2yP0wQAd2Zn4bkudu/Z0/F7HNvm6n7tMiOMqNkMPwiwuLCAu3fv4uH8PHzfR19vL44dP47R0dHW7ZK0m4x9T3HZxOhrHTo5kWUUBwYHW85x+CzsxlPhDIiiCCWVQmBZpK5O62OyoiCMtJq1giSK8LcoJYyMjGBkZASObWNubg537tzB3NwcFEVBoasLlUoFsiTxdN/pd9/FSrGI48ePY3x8PP68t5kdUClbnV3jo4gQtUfr9H+7ut92F/TMzAx838fu3bs7fo9FlSZFSYK+xXVHr8J1HNy/fx93793DarEIkW7Oz7/wAuEDtClR8Dav6HnU68RpFASiZhdpwWJ64wI2vPu+/v62muAXLlwAQBzayclJ/NW/+lfxi7/4i52ncxN8X9A0DUoqBatcBsIQddMkjmEHDoHERuoCvNTYDMMwcODAARzYvx/F1VXcvXMHt6en4bouZ4l7nofBgQHSk76+jgvnzyOXy/FRys0QQHRWtlNqNHQdrutyvZJOZqYArTuHtoOtVF47RRAEuHXrFsbHxzteH4xjBEGAoesdcSZYeXl9bQ335uYwNzcH27aRz2RwYP9+jI6Odsb5EjamL7bLJooALBqMsnZkURQxMDTUMqP4WdiNp8IZAEi06Ok6fNq3adbryHYoYsOJI8yLCzdPNmRQVBVTU1OYmppCpVrF3bt3cffOHSwtLmJmZgaqLMO0LEiShJdfeqntfG0mq9upQyAIAjRdh1erkRGXHXIHgK0zJAAgtuEMMMMjxWUPtpHl8H0ft27fxsTEBAw6RnYruK67wbxlmgJt4HkelpaXsTg/j6WlJfhBgP7+fhw/fhxDw8NEoEpor0Eel4p1bBuO6wLAJvJiCOrdU0VERVXhOA56+/vbOm2//du/jd/+7d/e4g4k+KSgKAoEWYaq65y9bds26QTZwiHgXJSmEdUtXoyu7m50FQo4ePgwjzTn5uZw59495HM5hGGImzdvYmhoCCdOnNhahGsb606hnAXf97cXSDyGkgIb0hXnWGwnGLp75w4sy8KevXs7en0Ikk5nx1a3uOYwDGGaJuYfPsT8wgJqtRo0TcPY2Bgmxsc32p/b7A9hGHKtk2hHG9MTkJqyiew8nQhfwPd9dHV3x2YrGT4Lu/HUOAOpVArVchkiTc/KkoR6vd5RXYmlh/wggEJ+EL+oaccA+5KzmQwOPvcc9u/fj5npadx/+BCLS0sIfB+GruPOnTuomSb6+/tj+4qjx+40HaerKur1OgLPg+u6HafZ2cYVUnZr4Psb8sj04bYtB1lkESKEDx8hQtTNOhRfJu1JjgNBEOB6HkRQycxtljtmZ2fh2Db2dpjmC4IApmmSaFvXYw1k6PtYpTXY5cVFFFdX4fo+spkM9h84gPHx8c3ZhEhNcNO9avp5COKQ1CNa5uw8WE0R4cbAJEmS4LsuhoaHkc1mH7see4LHB0EQYKTTMH0fQb2OAKS+LDE52GiQEPNehCHvshHID2OfqZB2DACALIoYGR7GyPAwKtUqrt+4gQcPHxLRIUFAvV7H9evX0T8wgO7ubi5R23BsgGvXd0YOJgx60zS3HUjQC+DMeM6QZ7aD2g9G7rUsi2zC1LZZlgUBgO55vMzIU/Id2o4wCHD95k2MjIwgk8l0NIDJsiwu5dzK/tpUGXJpaQmLi4tcGnh4aAjPP/88+vr7N3EsWgU/0WASAH8WzFoNAR1jno5kE4GNLKZtWUAYQpFlhACGRkaeuOmkT40zIMsyUpkMzCCAQPvQHcuCrCh8bkErsgr3WCNfsMgix8gXFyskBJIu3LlrF9LZLHzfx3qphPGJCSwvL+Pu3buAICCbzaK/vx8D/f3o7etr0CjfDiGIcQfqNP0V5wywNkfXdWHRQT5CpE2mue2S17Q8Dxo0hAjg00kEnufAgY26ZcGni5nzCEAlKinpkv/PlACbEAQBbt68ibGxMaRSKSKE0ua6Gzx7Wd7Y0MMQlXIZi8vLWF5awvLyMjzPg6Io6Ovtxb59+5DJZlEoFLaOgGIWdvN34ToOPw9VURocTClyH5nRE0URKm0JiralJngykc1mUa/XIXoeAs+DQHlAmUyGb2hxYJtatDbMo8HoC5uCiIZj09RzT3c33j97FgODg1AUBTMzM7h+/TokSUJfXx/6+vvR39+PQj7fUJraTrlAU1WideD7cFx3Q30vgiAMuYRx3bLgeh5Js4cb7drkkhodpDAM+Sh5NkuFZd9cWiev0/XB7DBLiTNNfpFO+oxzUubu30fdNLH3xRc74kC5ntfQPcBsvOd5KK6sYGlpCUuLi2SAVBgim89jeHgYmXQamVwOXYVCS2cpzuljQUHzz+qmCY+SQ1u1QgdhyAdKhQBGx8eRyWQ6DvQ+LTw1zgCwsahD34fo+/CCALVqFblslpAEY4g+wIaD4AcBLNvGL/z8z6NUKqGntxf/8l/+S8hs2Ezki7ZdF//vX/1V3Lp9G4os4x/+w3+I3bt24V46jXK5jL6+Phw8eBCe63LPc35hAdO3b0MQBHT19GCALvJ8Pg9VVTnLdCtoqko8WLqoFVmG7/uEbU8HN4G2IDHCChvKAYDXpKIeuiAI0KDCRA0+AgQIIECArCjQVA0udQRURYEUYdcGAIQwJAaApllDEGeK6SPIdDb33bt3YVkW9naY5mPM2yAMIVAdgMXlZSxRD14QRfR2d2PPnj3EUNIFXKvVtpSXZt+7AKKfwO970/Phui5q1BFQFIWUKSLvj3IqzHodPgBVkjA2OQnDMLZUiUvw2UOSJKTTaVR9HyLVCnFtG7YsE8evRSTIyosA2eh+8R/8A5RKJfT39+PrX/862YDoOuQRYIzd2L9vH3p6eqBIEmRZxoEDB3Di+HGUymUsLS1heWkJV69cweUwhK5p3DHo7urinVMdBRMskKjXYVsW0UcBkXN3PY8P7wFI66/recTRl2WSSYvUs5laHyL2g7PhFYXIclO7oMgyYfJLEslkUBsR0s4en9oxdg0SvQ8y/RMArt+4gcHBQeQj7Z+twDZhCAIkQUCpXMYKDRyKxSKCIIBuGBgYGMDuPXvQ39cHTdcRBAEqlEy6lR1udgjiHAGzVuN2M5VOb2QTGVGdvp5P0RUE5AsFFOj3+qThqXIGJElCKpVCjW6GkiDAdRyUazXkqJcPbPZqZTo/2vd9pFMp/A8/+qP497/3eyiurOCdd97Bq1/+coNnH4Qhfut/+99w6/ZtiIKA//v//D9jP9WEzuVyuP/gAWzHwcrKCvr7+jj5ECAtQ0tLS1haXsbt27fx8fXrQBgilUohl88jn8uRP/N5ZNLpWE9SEEWoioKybcMqFvnCY2Cet0QFlSRRRIY+XFILzxsAHNGBiTp1Bchmr2oKDN2A7ThQZBmZTIY/1Cxd6Pk+At+Hz/6ni5w5COx+36ALul0tzHVdlEslrK6vo1gsolapoFqtcgcnXyhgbGwM/f39RPO9KYUa7RPvNA3asJCjjoDnbTgCskymv0WjIWw4kmatRhY5gJHRURiG8UQu6ATxyGQyME0TgapCpnX1Wq1GyMltIjRZkmDTgVTMbiwtLeF73/sesRsAN/rt7EY+lyM8hTDEysoK5IEBFPJ5FPJ57Nm9G34QYLVYxNLyMpaWl3H//HlOXMzncsjmcshTu8GCizjomoZqrcb5L5Io8ueYkwZppk8NQ6R0nTDaqRPQDmwMr6ZpnPho2zZ834dMbQe5HaS0wOyG5/sI6DyPEBtaHTa9b8ViEdVyGUdeeIG8v8Xxa9Uq1tfXsVIsolKpoFypEKcgJBoy/b29OHT4MPr6+pDJZDbZB6bhsJ3ySfNgKfb3er0Oh2ZKjIgjAICXFUGvtWqaCMMQumFglJIjn8Qg4qlyBgCSHTBNE4EsQwfgex5c20ZNEMhAC8bwjHx5kiRBoOmxMAzxlR/4Afzpn/wJisUivvXNb+Lll15qWAj//t//e5w7fx4A8FM/9VM4eeIE/52RSnG2uWmaWF1bQ3dEhjadTnMCYhiGqFSrKK2vo1Quo1QqYfbOHZ5Ok0QRuXwehUIB+XweuWwWqqbxiN+2LASgaWnaPSHLMhRZJi1xEfUrpWmUbjziuwmiWZHofWAaDaIoAlGhjZBIq3o02nA9D/MPH8Ks1/Hcc8+hXK2SOe+WhVq1ilKphPVSCaVSCWatxj4cmXQauVwOY2NjyBUKKLQxcvycIsTATtXW4tJ+nudx9q8iyyTFF1n40TqiAKBMzzudzWJweBipVGrbUxgTfHYQRRHpdBoVmvLXNA11y0K1VkNWFDe+y6Y1JMsyHNeF7/sNduOb3/wmXj51qmFFtbMbAMn4CYIAQRSxuLyMoYEB/rxLokjKBX19eA5EkKi0vo5yuYx1un7m7t7l/AXDMJCntiOXyyGdTkOi4kOe68JxXbiui1Q6zYWJWDQuiCLq9Tos2yZtiTQz8CiI0xhgGRVZEABZRnRFB8xu+D4814UXhpiZnkZXTw9kWUa1UkEIoFKroVouE7u5vo5SqcQDBlVVkc5kMDw0tGE7c7ktN3ke8G3DbnD7SMEcAZd2B6RSKZIZibwnciNI9pPuO5O01fpJDSKeOmsmiiIymQwqlQoc1yWZAtPkaeU4UoYoinzcJ/Ni//Jf/sv4nd/5HSwtLeGtt97Ca6+/jjAM8Sd/+qf4sz//cwDAX/qLfxE//EM/1PBZjAuQyWRQq1ZRLpcRhiF6YqaLCYKAXDaLXDYLpj4dgnjY5XIZ6/QhXy0WMXvnDklfeh5EykjVVJWnrrsKBaQMA7phwDCM+Pa7Lch+8cqCYQNZp2E8M+KJj77vo16vE4NiWahWq7h16xZ0VcWNGzdgWxYsx+F1RVVVkc/lMDIyglwux+vykiyT7EiHnjrjM3SiPBl37cyQMvEqxv7Vdb2lIwBaXw48D34QYPfevRAEoW32I8GTCZYd8IMAou9DoZKwlXIZuVxuQ644UkpiWUXP85AyDG43lpeX8eabb+K1114DwhD/dQu7AQCarhPtCtqJMr+42OAQRKEqCncOGIIwRJlukOX1dayXSpidnSXE15DMTZFlmbS2qSo0TUM2k0E2m0WK2Q3DIJt0FI+wnvg5tdAYiGtHDsMQjutu2I56HfPz86hUq8jncnj/gw9gWxZxvjyPBAyZDLryeQwODfGspaqqMFKpBl5WOzTMo0DnLZD8dRHeiEUdgZBme6MRfpQvwYKPaq2GMAyRy+fR3dv7RAcRT+ZZbYFMJkP0uGm6Sdd18oCZ5sZAmebsgCxDoJGsLMt45ZVX8F/+63/FgwcP8M1vfQuvvPoqzp47h//0f/6fAIAvffGL+Bt/429sOraqqhBAe0llGevr66hWqwjDEL09PVueuwCSylN7e1Ho6oJlWVzetlaroVqtwqVevVWvo1qroVQu497cHJcL5hwAXYeqaVCpARAliaQAZZmT/cQI6c/G5jr73NwcimGRiOkEAeQHD0gdPwh45M9SfGwRe3Qx8HsrSfA9D4VCAalUihsjCAKymQxZMIIAjWp5u56HMAg2MW+3QrOU7JbvjDDFmRFwXZc7AjJtR4qegyRsHlZUrVbh0fbFVCqFQqGQyAg/hRAEMmugWCzC9X2oqsrLXZVKBfl8fiPCpQ5Bc1aR2Y35hw/xzW9+E6+88grOnTuH//gf/gMgCC3tBkDmCHieh/7+fiwtLcGmDsFAf/+W2hoAcWhzuRwymQz6ens5m95xXVTKZcIDcF04to1avU4GhS0tEdXMCPmROQxMN19TFEAUIVFVzShRWKJZSFmSYNFugsWlJZTKZQRBgJppwnNdvh6i9sKnGQA34gDwzTLcaN9TFAXpdBq6rkOlAkqqpiFNy3aSokBRFE50lBWlY0eAfe+sM4LxiNqBkwXZfQfgg2iQsNJAqklUiB0j6gg4dICU5/vYtWcPZFl+YrMCwFPqDAiCgK6uLqysrJABM54HXdNg2TapA9JoNOoQSFRb3qNfpiiK+ImvfQ3/+t/8G6ysrOB3f/d38e677yIMAhw4cAB/9+/8ndiHhklduo6D7u5uiKKI1bU11KgH2NPTs6UcqO/7MOt12FTaNqSpL9amFu3NtW0bdVZz0jTYjsMXVr1eR6lU4iNMfduG43kIaV2f1et8urE7ggNf8hH4AUKQ43740YfIClnuOCiSBIEufjFiHBRFQSaTgUEjDEPXOdnujTfewO49e3Dw4MGG62SKXLZtww+Jsl/dNKGoKgr5fMctec0dDh1FMmxxRl7j+36DI5BKpXiPNMsINDgCINoDLOu0Y9cufg8SPJ3QNA25XA7lchmWacJQVYRBAD8IUK5UyHRD2nIIuilIsgyflgpkWcZP/MRP4F//63/dYDcEQcD+/ftb2g2ARPtlKl7W39+P5eVlWLaNxaUl9Pf18TG3rRCGRCPBpMJYwEb2sbe7G0Hji1GmGzaLRK16HXXLQr1eR6VSgUkHglmOQ8qtkY2c1/ppYMA28SAIcPnyZX4YZiNEyl8SqRMhRpyKdDqN3t5ebjt0XYdhGJiensbNW7fw+uuvN2R0A+rgsAFMvu+jWi4jABFX2uo+MUTtBrt/vFW41T0GKXk024F6kyMgyXLDdxBGHQHapVapVuF6HoZHR5HJZPh+8aTiqXQGALK5d3V1oVgswnMcUlen6TdWB2QsV4QhWRAC6aFnD/YXTp7E+B//Me7du8eHQIxPTOD/+fM/Hz/+EuDtOkycJpvNAoKA1dVVskhXVtDX2xvrEAQ0zWTZNu/jVVWVyO/Sh6S5jUijI0oZ+YaRjtjnlUolgP6cRcCxfdAAanYV/78/+z1AFBH4pJvgh37oh5ATslwCObrRdcJgPnf+PCRJiu8gEASSuVBVWLaNtVqN1OtC0rMvCEJHRJpNCxpUv6FVa5AgbCIKOY7DOQLMEeCvR1NKMHK8SrUK23WxY+dO5HK5J9qzT9AZMpkMPM9DlTrlacOAaZrkZ9UqUun0Rto7JANnolnFF0+exB+NjzfajfFx/PzP/zwJFlqsG0VRSJQO8gz29fVtOASLi231Slh6nWXtRFEkmUFF4c9uQLsDAACCACOVQq1ahes4yFHCMgPjDGiahpRhtLQbALhuydraGr773e/i5VOnyMYmCNz+5CMtkcxhbwezXset27exe9euzaVdmpFJpVLQNY0EPBFCXt2yiM3cIuhqvp52MxTY68UmRyAIApINpd9bStehUOEgcqobGQF+3ZSsXqlWISsKxicm0NXV9cSWBxieXDelA6iqikKhAFHXYVsWJ9fx1C71dAGy+Fh6in2RYRiSmh9FPp/HL/7iLzYMmGgGS3mzRQ2QXuKenh5IlDCyvLKySXnLdhyUSiVYdGNXFQX5XA7pVKq9tyjQgRegzN0teo7b9c5KUtzDGPLPjKa+O6ETrZdKuHfvHvbt2xe/qUcWsOM4SKXTyKbT3ODVTRO1Wi22j3qTwEfTZwLx1xotCbDPYSUkgOpV0PJEtFsAMY6U53lYL5WQSqUwMjrKWxsTPP3I5/MksyWKMOt1/kzwTZelsWlmIJpVBBBrN7gj3ZRhYlBVlffkA8QmDfT3I0WDgaWlJZg0Fc8Q0Loz67gJAaRTKUK2jTgC7LhRMMl2Rhhsh3ZPNWsjZmucdTBFI+PtrourV69CaRVERNagQzlUKcNALpvlExor5TLv3e/0WraSTRaavjff91Gr1TYcAcPgnSc8E0A3/+bve319HZ7rYnBoCAMDA5+AtPzjx1PtDACEVZvN5yGqKk9BM6GOSrVKald0YSus75Yu6oWFBXzjG9/gn2XbdqP3FvPQsJ56Jp/LkEmnuUNQr9extLzMFQBrtRpqtRpxQgQiUJROp+PrznHHZIuafjZ/acz9aBfNx74eiGXnd6Jtfvmjj5DJZDA1NdXigCRlZtIyh0TbpHK5HKmRUg+6Wqs1OFcsPRvGOAlBiwUd5Qbw1wYBTNpmBRACVzpCWGSkIPb+hs8LAiwtLSEMQwwMDbUdWJLg6QMrNSrpNI822WZu2zZRlaPdOswmeDSruKXdwOaNBSD2h/GDGETaRWAYBkTaZcDaXT3PQ7lc5qlyRVGQy2b5xtLJ88iuyaEaJZETBNDo9G93Q+eji5vPY4uswNr6Oubm5rD/wIG20bLrOGRmCUiXFsvMsY4ImyohNgdeXD2xGRHeQCwi1+/SsddM0C2TyXCeAp902iITa9s21tbXoafTmJyaajmM6EnD58K6ZbNZGIUCV7STI55rpVKBTwUvmJiG57pYL5XwL7/+dVQqFc4MtywL3/rWtxo/nH7p/J8A0oaBGhOSiCCdTqO3rw8yfVDnFxZQoh6sT4UwctlsIwNVaFRAE1osJL6oHadxUVOwd7VbzoIQN8I42JhL0NRJ0A6LCwtYXl7GwYMHY40Sa1es1evw6OJJMYUugUin5ujCRkgEPBhBSGjhCAB01DJN3fKfxaT3fM9DtVYj94qmTHU6vpbcC2qsY4x2GAQorq3BrNWQyWaxb9++Jz7Fl2D7kCQJPb29kDQNPlXiYxut4zioVauEtMsMfxhifX0dv/Zrv7a13cBmhyCdyXDHIwpRFNHX20tq0YKApZUVFNfWUK5UeNYul89vyiIKaOoQirEdkiQRUp4gNGQdhDbv6RRxMwlCtLcdIYDLly8jm81icnKy5es8z0ONnq9OOyMAcj2ZTAYpShL3fB9VGvSx62llA5k+SoO9itgBBsuySAt0GJKOp0yGlI2ZfgCTfo+5d45tY3FhAQKA0bGxthNNnzR8LpwBQRDQ3d2NdD4PhCFsy4JE+2pZewfz3kNKZPsXX/86lpaXoes6/tE/+kc4duwYAOC///f/jrW1tcYDRMlrAPKFAsrlcuy5pAwDvbQdqFQuY2FpCa7nIZvJkKlaLVLbzQzbZvBFTdOa7H2t7kfsz2N+5gU+T3U1LJI25Qi2oHv7+jA0NNTydaZpconjdDq9aZCJSBe2pqoQJAlOEzkqDqyVic9iADY5Aow3EjKvPp3m7VucCNXCCPq+j3KlgnKpBFGW8dyhQ+jt7W15PgmebiiKgr6REUiKQspZtg2ddpi4nodKtQoEARRZhmXb+I3f+I3O7QYoiY2uxyx1HioxtkMURfT29iKdSiFwXTycnydkQ8pAj5tfwI9BP7/VumdEX6YE2BJt7E8c4jIDzcFNM+bn57GysoJDBw+2PF+PZgsFAKosN6iCMqiahkw6zZ2haq3W9tpYBpQFDuxco0TkIAhQq9XIHAEAiqYRuxXhj7Dx9XH3ybIsrK6vw3Zd5Lu6cPjw4aeq6+hz4QwANO03MECEh0A8NAGkTheGZFqV67oQBAH/8T/+R9ybm0MQBPi5n/s5TExM4Cd+4id469kf/eEfNn84ac2hXmQ2m0WlUml5LqqqEjU72pJUM80tB28wMZJ2izG6qK2mMkVHiziO1OjTbotoVmCLdOHt27dRrlZx6NChlq+pWxbpbACpcbZcFDRqT+k6IIpwPY+3IMWBLUQ2Xrb5TC3L2lAli3r12OgYCMIwNvPgeh5q1SppFQVRGtyxY0fbe5Hg6YeqqugZHCTBAgi/R6OONyOCQRDwn37/97G0tIQgDPH/+Ht/b2u7AWw8o4LAhYHKLWyHKIow6FoRaFCzVa0fwJbtcqIoQqc8KLNeJ45wizLBdgoFzKY1rO02mQbP8/DRRx+hr68PA4ODsa8JgoA7AlIT0bcZsiyT1mWqBVFnmcAY8PkS2BjAFuUWNfMDdMNo4I6xLEBcCYLtL/VaDbVqFZph4PALLzw15QGGz1XuUxRFFAYHISwuEhat5/GI2nEcWLaNP/qjP8LtW7dgaBr+2t/6Wzh48CDCMMTY2BiOHz+Os2fP4s233sJf+pEfQX9//6ZjCIKAfD7P9QGaBUNY2kqWZfT395Po2PexuLiIru5uMkehBVjaz2+xoJixqJsm6vV6I2kvssDZw/ru/Gm8O38aju8gCAME4eYN8N9e/t+RQQae6MKTPRzqOYSf2PmX0cosVKtVXL12Dbt27kShUIh9jW3bvE6f0nXejtnyugWBZz1Yar9er8cyq32qLc+7PSJefZT1q1LJ1IbBK9jICDQPqXIdByYVFHFsG909PThy7FhSHnhGoGcy6OrrQ2l5GY7rcqa9R4XK/vN//s+4MzsLAPif/vbfxuHnn0cQBBjt0G4AZP3mstnYzABAGPaObSOXyyGVTsM0TZimCcd10d/b27bzhm3krbZiXdPgUAIym9oIYNPG1vEcBGBTeXGrLoJrH3+MumXhpZdeavl5NZqeF0UR6VQqNoCJQpQkpFMpVE0THs36ptPpTZkUPwjI50YcAQamPcIifyYMFDKb2tTNFEUYBDCp9kq1VoOqqti5ezfGxsbwtOFzkxlgkBQFmZ4eZDIZsrFS2UtVUfDd73wHFy9cQCqVwg9+9as4depUg2f44z/+4zyd9Af/1//V8hi5XA4QhE0efhAEvItBEkUUCgUMDg7CSKUgCgJW19awQgdptIIoCG1bZjQ6XlcQBNTp6N9mCIKA88sX8MtnfwXfvf9dvDv/Ls4snMH7i+9veu3t9WlcX7+OD1c/wrml8/j/fvy7+MbMH8UeOwRw4eJF6JqG5w4ciH0NY2OHoOJKW7BoufERyNCkNI0EPNpn3Hz8MKbux8g+HhVXMVIpzrFgvcXs/ZEDk58FAeqmCZOes1mrIZPLYd+BA8iz+eYJnglo2SyyXV18aqVN21+/+53v4Pz581BkGT/w+us4TmWG2bP7Yz/+4yQFvYXdAEjnQVyJ0bZtWLREZhgGent70dfXB1mS4LkuFhYXN3UaNGMr3Y1UOs27klpF0EBnWcYwkl3ja7HN8Yurq7h9+zaeO3AgVr2TRddMMjjdYgJg5A0bbcCCgEwqxTsn4kiFnu8jFIRGrhElN2/iB0jSRudBMzkxYrtd2orq0QAiFAQMjIxg//79TyXZ+Ok74w6gGgaMQgGZbJYTCc+89x7eeOMNhGGI5w4exMkvfpEragGkBj06Oorjx4/D932cPnMGc3NzsZ+fzWYhCsLGNCoK1gcs0sFBAn34+np7kS8UIAlk4t7i0hLcNmWDrQR1jFQKCMlIUcbCb/ZYr6/e2PI+AYAMsjh8bJzPdGk69rWzs7NYWVnB0aNHY3UYHMfhswcUOtmsJaKLOQJFVUlGQBB4GyYAztoNgwCCKPIUbq1W40OEBCpwwgbCxJKJwo1WSuZE2K4LUSBDrxRNw/jkJMbHx9vctQSfR4iiCKNQQDqTIWRXAO+//z6+893vAgAOPPccTpw4gWqE2CcAGB8dxRe+8AV4vo93T59uaTcAEkiwEiN79pkYVhCSYTbMGTEMA4ODg9BoqXN5aYn39cdiizS/LMtQNQ0ibTWMywBsVXJgYOuSRdr0guJfGwS4cP48ugoF7Nq1a9PvWceVR6eiGpGRxLFgpO7o8ZhDQDfhhvKKsCEnzLIYjuMQUSDansj4AZu6lGL+zgOIWo07HY7rorurC3v27Glb2niS8bl0BgCS9lMNA7lcDtMzM/jjP/5jCKKIXbt24atf/SqCIMDa2hppXaGbhiAI+ImvfQ0CdSD+0+//fuyCEUUR2UyGePj0wWRKeyEdXtH8UOXzefT19UESRbiui4WFBT4FrBmsv75VhkCSJOj0GHUmYNSEQz2t6/kNnxXjDLzQ+/ym15n1Oq5cuYLJyckGvXQG27ZJqk0gQkKtxFMYYjUEKFRNg8K8/HqdD2vi3j1t7eTZAPqebCYTzxRuPDBJ7dVq3ADLsgxZUeC5LoaGhzE5NZWUB55RiJIEvVCApmmYvXMH3/iDPwDCELt37cL/8CM/AkmS4DgO1lZXN3hAgoCvfe1rRMEyDPGffv/3CS8F2PSM53I5eJ5HRLcoO52RZiVJ2iRLLMsyBgcHeSfBWqmE5eXlltlFPnq4BQxdJ/YNZM3GrcFOWgybyYPRYWfNuH79OqrVKo4eO7bps1lpwGNE48jU1Fi0sRssKwiQbiKHzkbh2jL0fbVajfCKaGCRpuRudh2trj8MQx5AOK4LEST76dO5FaOTkxgYGGh97k84PtcWT8vlUF9bw/Hjx3HkyBH+0IVhCMuyeOuh4zi87390dBT//vd+r6H/PKAPDfeaBQG5QmGj9hcSYZvA96EZRsuHmXn6KysrcF2X8Ai6ukjZoQnsgWSEt2bomgaXKi9aloV8Exfh+d6DONh9EFdWr7S8PwL9DwB8KmbaZ/ThtZHXGl4XArh48SJkWd4kOQxspDgFkIyAYRhb1h23SkWmDIO0hQYBuU5N42OUPc8jWvEgMyd0OgAGQGOUErOoLctCjeoeAICu65BEESvFInr6+zE0PNySC5Hg2YCsKNByObzwwgv4rd/6LVj0+Q4BLtlrWRYqlQp0XYemaRgdHcXv/d7vQRDoVE1angpAIi72XLK1Xi6VoOs6mUPiOAgBElG26Dbq7e3lw81My4KzuLiJRxDlDDBnu3mdCbQW79g26q4Lo025oB04eTBaIohZ8+vr67hx4wb279+/yc6x2QasQ4g5Aq1KGJ3wGSRJgm4YsCwLlm1DprNk/CCA7Tjw6MRZxlNiXKWtjsGIjQ7NJEiyDEPXYVIxqNHJSYyNjT2V5QGGp/fMO4AkSTAKBQhUPzuXzSJFPex0Ok1qxJT8UalUeJYAoIScaOsJXdw+/ZNnBkDSzQEln2ylW68oSiOPYH0dy8vLDfKWzQ9jrKdPa4AAMVDNalyCIOCn9/10+/tDfUGSFSDH/Ku7/goUsdGZmZubw+LiIo4cObKJxMQYzwFIqi2q7rf5lDvnKguMAS2KsB0HAY2gTDoDAiAbeaaJLBRVFIwioO1KzBGQZBm5TAayJKFYLKLQ3Y3B4WGMjo52fI4JPr9QDQNqNku4L7qObC4HWZJg6DoUSkhmc0LKlQqJbFmLX5MWAAso2MhbWZI438imjoCu61u2oeVyOcIjEEV4rov5hYVNpcrocVutN1lRoGoaJNpd0GxvWpUKeKkuUmprl84PwhDnL15ENpvFnj17Gn9HMwIBjdizkYxAqw2/I2JjSGa4MCfFc13SJWSasB2HDHKj9j8qA9/u8xzHQZkGjQB9HtJpomxqWRgeG8PY2NhTP8n0c+0MAMSDS3V1EaEIgYrd5HIwDIPMLqCbjO04ME0TFbqwGZjSFP83yEOZy+dRM03UqlVS2w4CaBFRm3YQBKGBR2DW63g4P88XdtxnxDkELK0oUjIhUzwMwxBBGOJw76G25QK5wRkAevVefHXiKw3pdcu28eGlSxgdHcVgUzuQZVm81KHreuvSQCTLsiUidX5VUSCAMP3X1tZ4Z4aqqshElNgAtNRpCGg9tlKpwKPiUwZdzACwUiwiWyhgcHgYU0l5IEEEejoNNZPhIldZyvJXFQWyLMOyLELGc11UKhVeh48KWzUjDEPkCwUsLS3BdRw49JnkglhbOMwsu6hrGhCGWFldxeLiYqOCZwSt2gVZ25xPsxzAxmYfhCEPD4KII8PZ9YLApZFFNtQp5txv3ryJ0vo6jh8/3rDpsiibdfQ0t/82fM42AggAXBBIVVWEApmdsL6+Dp+SunVdJ1yyrfr/qRNQqVaJbQ0CiJKEHC0p1Go1VGs1DI2NYXRsrGUHydOEz70zAAAidQjYRiFJEnJUFpd5tkyhq25ZKJfLGwubLqbmhTrQ3w9JFPHg4UM4to2AyoU29+22Qz6fR39/PycIsYXdKk0W5xAw75ZpmPs0e8Ecg5/e2zo7wMiDHsjxfnLXT0IRlIZzv3DhAgRRxOHDhxveW6dpOBbVbJokxjb+JmeqHaISn4wg6bgu6lSMCACMdJpPd4w6DiE7FkXUCWAkIVEUiRSyriPwfawUi0hnsxgaGcHOnTtj58oneLahZzJQ02nuyGqahv6+PjKwjGYDHdqWapomypUK1zMB4iP0wcFBLC0toU5LlRJtYwuxmb0eB1mWMTAwgHw+T9ROHQcP5+djtU+Y7Wo+B0GSOFHRtCxYrgs/CLjtYJlQ8uKmNRzpJIgy7/lrQcoDH1+/jt27dzeU3Xzaeh1QZccM1V7YBPaZnQQQ0eujjosXBKiWy7BsG7bjEJufzzfOCIizS81OAOUp6aqKXDYLSZZRq9VQrlYxPDaGkdHRtsJrTxOeCWcA2MgQMO9XEMhsc5aeEgQyECigDPVypcIXNgDO1GUpcFmW0dffj4WFBQAbMwt4ZN7sTbeArusYHBxEPpdrWNitFA7FaG2OLlpVUchcc6rlHcXBnufwQu8LsZ/FMgMePHRr3fih8a82/P76jRtYXFjAiRMneM9+yDIpVDrY0PWWXQPtSIINr6PXwhi/bDEy8REGnY4/bZgw2PRZvufBrNUanABZUZDOZIjhoeTQYrEILZXCyNgYduzYkTgCCVpCz2Yh6zrn7siKgu7ubmQyGYRBAE3ToCoK6vU6qtUqSqUSqYVHtCxYMBGGIQYGBuB7HorFItj4cmAjKg8p56Dd2mH2i3UbCIKAtbU1zC8sbM4SRAMaciAIIenlZxF7rVrdJMTVympFSwRxAY/runj/gw9QyOdx4MABzrdic0iYCmAmZj4Ld+o7CSAi9yeko5dZMOfYNiRFgSiKkCUJmqqS2QKRAKLh/oYhHNtucAIEmknIZjI862uaJkrlMoaoE/A0yQ1vhWcqJyqrKlJdXaitrpK+UiqHG4I8+JqmQZJlxL3xGAAAKBdJREFUOLbNhXPq9TqZw63rfNGyCH1wYAAfffQRPN+H3lRLjy4Srn7VtHkx54It7HQ6jWKxCN/3sb62hppporenZ7PYSKRmx0h0Km21s+j0xmi6+3/c8zdwaeXSpvsR7ST4K7t/Eqq0sSEuLS3h42vXsH//fs6QZb3AbGBLyjA2TeOKqvzFgt0HVjqghCum4hZtJwTAJZyZcpraIo3Pen2jhlCm7Y2yLMP3PAQg38VKsQhF1zE8OorJycn2LZAJEgBIFQqora7CcxwIIGQ/23EgShJRwKO8JMdxeH26rqpIpVLQKElVAOETFPJ5GIaBpeVlpGIEcqJObkj77sOmdD+zL4qiYGBgAJVKBevr63BpMMEGgkXT8yFIxiyqoqdpGiRJIm26pknGHEfT/i3IdJIkNYx55u8JQ5w9dw6e6+LUqVNksw9DMmuA8nWYIxBXr+8kgGABFsuksKmoNs1UAiQLmDYM2I5DMjXABich+llBAJdqmkQHtmmqCk3XN7RNKOl8fX0dg7Rk+nnjFz0zmQEGWVWRLhR45K7TNjYW0eeyWeRyOWQyGTJlzLZRWl/HysoKiqur5IGjD+vQ4CACAKurqw1yvnGIm7LHzoGl9JlqYVdXF0RJ4gt7fX2dZxnY65uJcgplxgoC0TKIevkHe57D0b6jDceXIEGAgBAhsloOPzT2g/x39XodZz/4AP0DA9i3bx8AcFlWPnkxk4ndRBscnqZFzVKhQWQxs3JApVLhss0CSM0vl82S2fKSRGqXdJ48/7wggE1Z3bVqlTsCiqIgk8lwARHmOAU0GpNlGUOjo5iamnpqe4ITfPpId3dD1jSyFkHmbQggkbCu68gXCsjmcsjQskLNNLG6uoqVlRXeGQOQzWZwcBDF5WUiMtbGdnDOEl1LAavpR20HiPbJ0NAQ5xCVy2UsLC5yJdAgCEjKG43lRpYRBcAja4ZWHJ9NMsSRz2PZxOMnTvC1ZVkWqhH9kTzVf4keh3VC8GNGeEZMX4SXUhihm6opVioVXrKURBEpwyD2yTAQBAH8IOCjhxk8z0OdlnXqtLWTZQIYp4y1IQdhiDr9LvuHhjA4NITx8fGnunMgDs9UZoBB1nVkentRW11FEARIp1IoUe9Q0zSS9lNVGKkU0bqv1+E6DqrVKsxaDZqmIZPJkNRzKoVisYjxiQmeYWiHhk2cPmxAo7eayWahqirWVldhOw5JO9IJemn6kG58DPl7GBKxDp9u2FEvn3AHfgoXli/w90WzAj+58yegySTCD4IA7733HiRZxokTJwAasddMk/QwUyZuVII0DBsnDUZHAzc4BJHoIYh45FEBF1XTuC48uz4/2JhUKAgCJ1550XSoQPQNNFUlSmSMTCgIQEAmxa2triKVzaJ/aAhTU1NPPfs3wacPI58nHS7VKmHlqyrJApgm0pkM0nQ6pk7JtdH/S+Uy0qkUstksBgYGMDM7u0HeC9sLjUU5CIiseb5pgg476u9HrVrF2vo6PBpMpNJpUu+OpPVZSZOv6VRqY6CbJPHNM9quyMCyfpIkNfy+OZvYPBNGU1XSIRR5DxdeotfCAqSGDAGzL/Q1vu/DchzekgkQJ0DTdT5mmP3M8zwEngdFURDQQU2u4zToNIhUsp6VW9j9ZM7W+vo66vU6BkZG0D8wgImJic+dIwA8o84AQDIE2f5+mGtrCC0LqqrCosI52WyWlA1onSmTTpP+dLpY6paFumVBkWUUCgUsLC0RAQvEL544bHIKIpsm69fvHxhAtVrF6urqhkFhETPzXOnxWDoxZRik1cl1YVJ9/xDA3q69ONZ/DGcXz8ELfGjQECCALCv4i5M/zI99+cMPsV4q4dVXXoGiKEQv3bIAQeCDQ9hApSjBMprab0jDhZHxwnQh244Dj7ZjsutlDljUCWDGwHMceL4Pn853j94rSZahKgoUWh9kmQk2bCnwPJQqFVSrVfQODKC3vx8TExNJRiDBI0EURaTyeciqinqpBD2SivZcF4qikNa1VAopw4BL5blrtRpcz0O5UkGFTiMURRErKysYHBxs2ITaBRQNDkPUKaD/FgFkKON9dW0NlWoVFXrMDCXfKrJMeATU7gRhSLQVNI2IeZkmsrTsIYgimWDKovGQDF/j5T56KnXTxPvvvYe+/n7s2buXlwUYUTBlGFAoUZp9ligICNA4QTSMXiN1Alh5z3UcOJ7XQLBmHVW8lErvQUDPk2mTWLZNzjtyHxVVhaIokCVp0+TTEKQtcWVlBZKiYHxqCgODgxgeHv5cOgLAM+wMAGRhZ3p6YFWrCMOQ8AQoCY+lwAVBIOTDdBqpVIorUJmmCdfzoOk6HNfFvbk5DA8Nkfpg1GPegkAYt7ijYPK6pXIZVZoKL66uoqKqyOdyRPWMlRDo4kkZBh/FKUkSVNrl8FO7/0ecXTgHEQKkkHz1Lw99EYpAFunc3Bxuz8zgyAsvIJ/Po8JYvwA0XeejXTedO3UUor3WLB0ZgqqBuS4c1230yEEyAdwJiCzkkNYZHddFuVqF7TgwNI07Fwp11Fg3SJzIiksXcygIGJ2YQF9/P0ZHR5P2wQTfN1TDgKwoqK2twaCBQq1WQzaXgxSJuhWaPchmsySlXa0SO+O6yKTTePjwIcbGxkirs6Jw53o7AQUfwRvh40iyjO7ubui6jhIl1FUpKTeTTiOXy/HBXSwS1+lgJs/zyLVkMiRrJwgk0xb9n2YUQurgn3nvPciKguPHj5PBP1SEjGUSY+v19NyjWUUWAAiUd+TSDIBLeUoMsixDo5t5gwMBMofA8zysl0rkPASBOwKyLEOl72PEyk3nFYao1GpYX11FvrsbfQMDGBsb+9yLkSVWEaR9SFZVeEGAUqmEaq2GENhol2M1elGEqqro7u5GoVAgNXTPgyJJePDgAVRVhUQ3KoNqjCuyzBd3px6/EPGYfUrW6e7qQi6bRblcJkpYto2llRVIosgJg+w4iqpCp2RC0zQh0sW4O78LI+kRzFXnIEOGCAl/Ze9f40zkCxcuYJz2zUbblFLpdEdse1mW4bFZAkEAmzoAXiRrIABQZBmKqpJzFkWI9Lx9z4NNjRHz/m2aFRBAOi90OqiJRTZNN5Efo1avEw2BbBZ9g4MYGRlBb2/vlteQIEGnEGUZ6Z4eSKoKd34etm2jUqkQ4h57FiNp+VQqhXQ6DdtxUCmXkc/ncffePSwsLiJlGCTK1XUyn0BRNlrutggoGARBIH32vs83bcMwYBgGYcGXSiSYoT3yLLUeBgFANVfSqRTK1SpXB0wzafUm/oDEsnBhiEuXLqFUKuGVU6cQBAEf8CTLMhd5azhH8peN+ygI8KgjE2AjePAcB9H+BlGgqoEsCGCOUxCQjIHrkrIA5XTU6nX4QYA07UJSmoKHOE2DwPextrqKumVhcHQUvX19mJiYeCa6jRJngEJWVfSOjhKhitVVVKtViKJIhG8iaSsGURSRz+WQMgysFIuYmZ3F5OQkAso6tSyLOAZU7Yux2iW6aW8Frn4IkvIOgwAy9fZzuRzK1GlxXBeVahWmZZGyBn1odV3nHnK1VkOGtlD+m1d+A//rB/8frMwX8dcP/DXk1DTK5TLeffdd5PN57Nu/H9VajROb2DjPLc8X4BMi65YFp6m9SZZlqHQGAEvnB0EAh05QYzLRzfeApV7TlNTJfh7HOBZA2p7K5TIqlQr6BgfR29eH8fHxpCyQ4BMBKxsMyjLm792D6zhYX19HgXILGtY6tSOqqqK3txeSJGF+YQErS0uYmJwka7VaRa1W4+UvnXYxyYrCM22t7Ec06PBotM/IxqlUCqlUCmathlK5TDhQlkWyf0GA3u5uCJT5n06l+NwPs15HOpXatDaZTbh65Qru3r1L1ElVFY5t87Jfp106zL5a9TpMy2ooG4ggtpkJPbF7GHge3KbAIQ6apqGnpweqpm3wLSLZB0R+Zts2JxiP7diBwcFBDA4Ofm7LAs1InIEIRFHEwNgYIAgor66iUqkgS7sKWAtgMxRFweTEBO7euYNqpYLde/agXq/DojLHlm3Dsm3UqlVSn6IPtSzLpFZF61XND5xAiW8AeEsSgyTL6O7pQS6fx+rqKhzLgmvbWFhchK5pZOqaYSCTTpNFTaU/s5kMdFnH/23X/4S3Hr6NofQgzHod77zzDnRdx6FDh8jURYGME04ZRvuFEIbwfB+u68L3PK5Kxlj9Es2ksHqe3/za5s0f4EODZFnmUwklSUKKjqRuEEKJvM8PyPjocrUKURAwQoeGjI6OPjOLOcFnBy2dxtDUFB7OzPBSopFKcdIe4xMB4JF+Kp3GxMQEbt++jaPHj3N2vO04ZJIh5RtIskyyaTRbIEsSae2jn90QeaMxCxntHAjCkJQ702k+PdWiffm24yBtGEil04QgnU6jWqvBdRyYkY4DBkmScOPGDdy8dQv79+9HV1cX11VIpVLcZrZCEARwPQ8+i+bDEC5te4xmD3knURCQ9mLKAWiGKIqQFQUKta3lcpmUPlS10RFo/pM6AZVKBWa1ikJvL/oHBzE2NhY7M+bzjMQZiEH/yAhCUUR5ZQW1ahUZWgdkbT7NSoDpTAYjY2OYuXMH+/btQz6fRy6XIzMDaJbA9TzYtI9eEIg+thRxBhgBTpJlcqwmQksUzLgoioKenh4IoohqpcJnlduOgzVRhKHrZAYDNS6VWg25TAYB9aT9IMD3vvc9iKKIw4cOcc/boMNXmhEEAd/IPc+LXZSCIECkPcgC5RHYltXyWiRJgswMXZOISbVahet5UGiUxLsDNg5GZg5Uq6jUagh9n4wgnprCyMgIurq6Wn7HCRI8bmi6jqEdO/Dwzh3S0kej6gCARG1HNKhQZBmjo6OYmZ7GzPQ0Djz3HFKpFHzKerdoF5PnebyrKWojJFGEKEmQKWlRpCXDVi2BUbuVTqcx0N+PUqlEeuypIFClWoWqqkin09BUleutRNPqIci8kqtXr2LHzp0YHh4m10MDCKHJ+Wa8Ah4MxAUCgkD0FkQRoiwjoKS/IMbG8NezoEqWG8SLPM8jGYYggEFHyTe9ucEJsEwToSCgb2gIo+PjGB4efibKAs1InIEYCIKAgaEhCIKA8vIyqpVKgwSuRx0Ctinruo7J8XHM3b2LmTt3sHvXLgiCAFVRSDdCJsOnkznME/Z9+GEIl4pdMNESmS5wUNKLQBc5iwBEutmKggCBbrqKLKPQ1YW0YcCkzGXf82CaJkzThCzLCMIQhqaRGd60pnbt6lX4vo9jx4+TthxNQ4oqrXmeR1r6mLyn7xPBEtpuw9qA2LlJ9JyZsInv+xAipQIBpMbKnKBoZNN875n2gElV3Jq1xAWBaKPXmBNAnZtsoYCDzz+P3t7eJBuQ4DOBrusYnpzEw3v34JgmREGAYRh8zUSdAVEUkclkMDY+jpnZWezbtw+yJPHI39B17hgwIp0fhghoOc5mLbd0A5UkCZIgwIvoGbByH7ch1HYwpyKVTiOfz0MAUDVN7oCsuy7hH1F1VgC8DXJ1dRUz09MYHR3F1MQEIBBZYVmWecDANvxoCZDppLC/N9gOULsRBEBT2p85ChLtwGC2gyE6DwIgw+ds2ybt4ZGMhgAgAJl1UimXyRhjGrTs3LMHO3bseKbLiYkz0AKCIKCP9spWV1dRLpeRymSgyvIGs5a+ThAE5AsFDA0N4fbt29i5cyeJBLDBmGXjMtMgEbZHI2xWZ/fpZuuHIVzLghcEpI8+Ek2IlHkrRBwRQZJQr9UIo59mGAqFAmzL4ovCcRwEvo/VtTWoioJKtYoQgOU4OHjgACHuUUelQlv3ogIgTPQDIJG8JMukN5cSAKOLkTGTo6lMFsFsEl5CTP2THrNG+RCMhAQamTC5aJYJEOg5Te3cif2HDiVOQILPHLquY3B0FEsPH8KqVuEHAVLpNCHKRmyHKJDBaRPj47h39y6mp6exl073Y+si6hjwCJtutqxmzgSFmIPg0uFHzCawFLkYsR0s2HAdh8h1p9PIUI0EyzRh1utkNghrA/Z9OHRTn56eRl9fH4aHh2HZNkRZxuraGo/iG1oFI5LsMs0CsrbKZjCZ4miwINHMaRwaUv8ULEgIgoALx7GuLot2VDAnACBtmM8fO5aQi5E4A20hiiL6BgYgSBKqq6uo0vnlBhXOADaEP1RVxfj4OB7Mz2N6ehp7du0CsHmzY+IgmqpCjbBhWeQddRLqlsUVsNiMdJ9G56yVEGFIVMNo/Z6JAfHam6KgTqeruY6DtdVVrCwtQQDQ090N1/Mg07ad6OJibUEi9ZxFuphZVCHQNKUQ+TdvNWrSOGcSxRwtCIAMjuuiTBXbcrkccQCqVUJMdBwumymJIvKFAvYeOID+pomKCRJ8lkilUugbGkJxaQl2tYpKqdTQYidgw9nO5fMYHBrCzVu3MDk5SYYgRcB4AGwzV2SZl91YP70XdRJcl4xGborEHdclg3yoM+L7Pmk/lmU4VLKXnZPEUvV0VLNjWSiurQEg5ZB8oUBU/8IQIh1DTE52I4MpiCIk2scvRH7G7IoYcVBEUYQTaU1uvv6NfzTZjqasABs1LEsSUroO0zTJqGHbJhlE6gxpqoqhkRHsO3AAaiJHDiBxBraEJEno7++HrutYLxbhUIW/VCrVIKkpCgIGBgcxMjSEK5cvo7enh9esow9rw98jrFZZliHIMiG7UBawYdukv7ZJipg7CNQxYLr+jGQUrccxmWND01CqVlGZnyd66iEZcBSGIWyamdA1DbqmcYGQqHMQLU9EHYaG9pww3FjQkXPYtMDZdUd/RP8MggAry8uwLQt+GBKnwHV5BkIEIRmm02kMjYxgcseOZDEneCKRTqehjo6iuLICc30dlWqV8HGaRp1rmoZdO3dicWEB58+fx8mTJzfEt+hrBKBh42N/SoIAkYpusZ95tN6+SfI88veAZhZY6UKnHKEwCIhgVxgSfX7XheM4eFirwbEsqIqCQj4PEeDlTlXXYdDugZRhQJQkHlwIwEZZk/EmsJEV5OueEpfJxW0QhVtlDht+RM+3VquhtL6OumVBNwwsLi8T+8junUjkhguFAiZ37ED/52Ta4OOCELZimyTYBMuysFosol4qIXBdPtsc2Hi4y5UK3n77bYiyjFdOnSKtiUBDX3wnrYUA8fqbW/Q2IQy5jCjLWrBjeNTz96jy2eXLlyEKAvbs3UsEk1QVnudxT52pGYI6ECqdxsZSe0qL9F7D+dJJgZ0gpO/xXJdwKjwPK8UiqlS/IZ/Pc4eL1f/YPR8ZG0Nvkg1I8BQgoPol5bU1ONUqiVrT6YZWwRDA9Y8/xuWrV3Ho4EHs2LGjgazMyoKdwm3Bum8+rzUa7efz+Y2x4KJIiMh0aNj09DTu37+PwcFBdHV1EdlzyimSRJGk3CMlRY1KijN2vyRJm4etNcGhjkUn4O2TlE/hU7n05ZUVWLYNTVX5fAim3ZCiJZBsLoexHTuS4WQxSJyBbcL3faytraFaLsOlC5uJCzHcv38fp8+cwcTEBJ47eJAz4VkkzVJjQHvHIAR4yaAdbNtG3TSh0YfedV0Ui0XcuXMHDx48wMzMDO7evYtqtYpsJoMXXngBP/U3/yYs6iiEVNiIaSQ4joMwCPDn3/42rly9iqmpKfz4j/0YAOLls9of6wSQKR/Ao+ShuOtgTobreaRWSeudfkRZzKSlAM/3kc/lkM1moRsGF2QBgGw+j/HJySQbkOCpg0mH3diVCkLX5eqbzOH1PA9nzpzB4tISvvilL6G3pyeWYNtczouDT8l7bc27IKBUKiH0feTyeYiCANtxUCwWMTc3h7m5Ody4cQMPHjyA67pIGQYOHDyIn/3Zn0W1WiWfEYYQ6bRG27K4rfpvf/ZnuHL1Knbs2EFsRxNnIGpDwjCE7Xm8lZohjPzJpgt6rguHERTp630qOe65LkRJQk93N4xUCoZh8IyHJEkYHB1NyoltkJQJtglJkoiIhaqirKpwTBPVapV7oIqiYGR0FHv27MHNmzfR1d2NwYGBBnlj9nDzVjmaqhPZv7GRYmP1tOaJXQDwjT/4A/zhH/0Rvv4v/gUUVUWtVuMtf/+vX/5liIIAx3FQr9d5uSDa1iRnMjApUS8IQ+iahkKhQPqdLQsH9u/HtatXsfDwIVn0VDbUDUM+fCQqUerR7oM4AxQlC0bTg+xnjm3D830oioLBwUH09vbycw3DEKlMBoMjI8h/ziVBE3x+wfrv1zUN9WoVrmnConNRmCjZsePH8cYbb+DKlSs4cuQI72LiBF1WKghDBAC3GcxWADQ1Dzqoh6XJm8Bsxy//8i8jZRioVCqcCPxrv/ZrCKgNcNnI5nQaAHiHQTaTQa1WIwqBYYiuQgGSLJMx5PU6Dhw4gBvXr2N5cZFE6JSwyBQKGcIwhE95D+zf7BqiVqRZP4GVJ4MggE05ArqmYWR0lDsAoPekZ2AAA4ODUGPapRNsIHEGHgGCICCXyyGVShFme6UCxzRRM02IIDXAQ4cOoVgs4vrHHyNlGJxnEN3M2aIG/TOI/JtnEoKAD/RAGPKhIWzRGIZBFi2t1TO9As9xSJ9uECCfy2F8YgK3bt2ih9o4fjqdhhiZrOb5PlKGgVQqhePHj+N//z/+D6Lzvb6OQ4cO8VYh9r/LZg6EIQTaIsk3/RgyEBNQYRECBAG2ZaFKWyRT2SxvdYIgIJ1OY3BkBLnECUjwOYCiKOjt7YVFN1OT2o5SuQxVlqHpOr5w4gS+9847mKWqpulIOTK6onjBrqn7h/8Y4A482zyZTQEIk96s13m5gon8mKZJdBIEAd1dXRgZGcHc/fvkQ+l7ZVlGNpslAYjvo1KpEAl2TYOSy+ELJ07gd5jtWFvDocOHSXuk68KnnVKu68J2XYhhiLCZI9GcEaH2QaITFWVJIp0DtRoJFlIpHqSBXndPfz8GhoY2jS9OEI/EGfg+IMsy8vk8XxTVahV1Oh/bsiwcOnQI77/3Hi5cuICDhw7xjXar+hnQqCDmUyIQ24BZ77FPa2JsKAprw5ufn8fE1BS6u7rw6quvYv+BA1heWsI//V/+Fz7vgCEEcSgkUeSZhVKpBCOVgqaqOPjcc7h46RLOnT+P5194AQpV+mIZjoAyiRk7uVOEYUhYvrSNKQgCGHTUqgAi5DQwPIx8IhyU4HMGgWoPGIYBJ5cjA4RKJZJlpB1Lu3fvxq1bt+C6Lnbv2gVHVYnOf4yD3Q5hEJD2Zdpt4FAFUJ9mJgUAoButqqq4cuUKJicnMTU1hR/8oR9Cf38/Fufn8cu/8iu8e4lfBx1CxMYU1+t1OI4DwzCgqioOPPccLn34Ic5duIAXjhyBqGlkFgI9L57mb5FNbAWmQVKnQkyqqiKbyfCBZ4kT8GhInIHHAFEUkc1mkclkUM/nUS6XYVUqgG3j+IkTuHjpEi5dvIidO3eiUChAo0Q/SRRb1v5YC6HP+nsjU73YVD8BZMymQevqNdPEmTNnsLK8jB94/XU8f/gwH0TiBwEEyvINmhTAwjCEoijI5nKomyacIIBpmrBtGy8cOYJLH36IixcvbugJ0PRcdJ56dBrhVnAihqNWq5GMQCaDfD6PQk8Penp7kc3nH/n7SJDgaQEbfJbL5VCr1VBeX4djmhgbH4coirhx/TrqtRp27NyJSrmMDN30GDMfaOrKYVoEEbXQ6NjgkHYfCYIAx7bJuGPDwPzCAm7fvg1BFPEzP/MzGBsbA5NEd5lcsONw28NBs3c2LUcysrKmaTh69Cg+/PBDXKK2g2U0WaYijJxzJ2ABhG1ZqNs2XNeFruvIZDIodHWhi9qOxAl4NCTOwGOEIAh8IIjX20vq9bUa0vk8zr73Hm7euIHxyUl09/SgUqlAVZSNNqMteu8BcPEeiUXnIGpboiTh7r17mJmZgaZpeOnllzEwMLBxXgCvybUb6iFRRTTHdYn6n+9j9549ZJJZuYyZmRlM7diBwPcbxEtY37IgCAgZwSlsHCcMEOUvRlpkgiYpOk51fHIS3X19yXjhBM8kWJYxl8sRMp5tI9fTg1Q2i0vnz+Pj69exa9cuUg4EKUXKkU6lVraDZQ2ZeE+U2W/bNizLwvXr11EqlTA+Po5Dhw836BwElB8EILZTiDkibJxwvV6HQzsR9uzZA1VVsb62hpnbtzG5Ywd904Zomk+7FyInTP6gn82GtFlUKyUMAph0CFwmm8XQyAiGR0eRyWYf+d4nIEgs7ycEVhNPpVLo6evD2I4d+NP/+l9x++ZNjJgmBgcHAUWBaZp82iDrzwXAtcYlKtjB0nlReL4PURTx9ptvQpIkjE1MYM+ePchHBmwwkp9LnQC3TesfMxyqokDO5VCv15EDMD45ibl793D27FmMDA9DbipzNJOX6IH5313HQd2ySKRC1Q4VRcHg8DAGh4e59HOCBM86BEEgrXmahlwuh6HRUQxPTOCbf/iHuPbxxxgbGUFPTw8vF2pspDd7P7Ah20vFwJpV+kAzfwKA02fOoLenB0deeAHjExONst8gNgY0A+i2CSQAUtJMp1JQFQVmvY5MJoMdO3fi/twczp4/j7Gmz2flgqYbwI8dBgGsep1oJlCioO/7yBUKKHR3Y2JiAik6yTTB94/EGfiUoKoqfvTHfxwXLlzAO9/7Hu7ev48ROh0rnUohoO19zMNuXsBMcTD0fcwvLGB2dha3bt1CEAQYGBzE4UOHADQScLhqIX0fsDFRsBWiKTvdMCDLMvbv24cH9+/j+vXrqH3lKxCogqKiqhBEkfAGms438H04jkPkTGm60rYsGIaB0clJFGhqNJt49AkStMX4xAT+1t/+2/j2n/0ZLl27hnwmg/HRUYyOjhJnPwi43LkY2WwZGEeobpq4e+cOZu/cwd179xAKAg4eOICdu3bx+SPMsWDiQywb0M5uRCeJhmEIkYqCWbaNA/v348GDB7h+/TrK5TLhJmgaacWOCQDCiO6I7TikW8CyEIYhCt3d6BsYQDqXQ1dXV0fcqwSdI3EGPkUIgoBjx47hhRdewNWrV3H69GnMnT2LnkKBiHkwFa9Uivf91ut1MpWvWkVpfR2ra2uwbRtdXV0YHhrC9evX8dyBAygUCiiVy1xxLDoEyK7XyWhhurjimMdRRLXFZVnG8ePH8Y1vfAO2ZWG9VEKhq4tMUaOzx9kURuaA2NQJ4IpnQYB0NoupPXuQ7+pCKpVCOp1uiBISJEjQGtlsFl/7yZ/E+vo63nvvPXx48SJuz8xgZHCQsPip+l8mk0E6k4Fj26jRtudKuYxSqYTVtTWSQRwdxY6pKdy4fh3j4+PQVJXoe7guwJQIQRwCh8oaR+WNyQsay4DNUb4gkOmnx44dwzf/+I/x8OFDlNbWUOjpgWua3DawCYwA+HRG3/M4aVoSRXT39aFvcBDpTAaZTAYaVWlN8HiROAOfASRJwuHDh3Ho0CHMzs7i3AcfYH5lBZVyGaAEH9YnzBZKKpVCNpPBxPg4RsfHUcjnsba6yj9ToONLXSofynQNArqgAcB2nFhvvBl8XCnF6Ogoent7sby0hBs3buAHXn+db/h+pM3Qp4tbUVVoug6dzk7PZLOc6GMYRjJMKEGCR0ShUMAP//AP49VXX8W5c+dw88YNPFhZgVWv83KdJIpEphikXTBD1+H4xATGRkchKwpmZ2f5Z8qqClAuD9vsBdryG1JRIY/JjDfZBgbGXWj+3djYGApdXcR23LqFV0dGyJwU14Xr++TvtPwgqyqZpJhKIZ3NIpVOw6AcLEacTPDJIXEGPkMIgoAdO3YQ6VGQaL1arWJpaQnLy8ukf9YwoCsKfDrGlM0IsCxr09Q/VVVJeo1KEwOEJBRd0B2dFzm5hoV99OhR/Nmf/RkuffghXn31VR4lyIqCVC4HVVWhaBpESYJhGMhms0Rdrc244gQJEjwaDMPAqVOncOrUKQAkqi4Wi1haWkKpVIKmaUgbBoQwhOc4ZMKnIBDZ36aonk1G9OnmrOs6z/AB6HgT5nYDaCA0Hj16FN/+8z/HpQ8/xKlTp4hdEUWkNA2qrkPVdUiKApW2T6ZSKc65aje1MMHjReIMPEEQBAHZbBbZbBY7d+4kxD+6uTM2rWvbRFDINBEEAbK5HMqVChlwJIqwbJuPNlaogAgoKZCl8VgyjzH/G1p9IkqCfDZ5EGD//v04c+YM5u7dg+W6yHd1oYfqfTPCk6ZpSeo/QYLPALIsY2BggHcRsY2d/e/QqaWuZaEWsR3VWg2arhNOD43YBVqe9H2fOAqyzAf+MBvSUCIIN6YjsrIga230fR/79u3DmdOnMT09DR9Az8AA9FSqwW7wdskEnxkSZ+AJhiAInBiUzWZ5yt+lBJu67+P23bswcjno2SwC34cehqhVKlhfX0dIe4xVOsY4n8/z2Qhr6+sbkX+EACRJEkRZJrU8TYOWSgGShOfzecz+838Os17H8toaDr7wAhQ2LS1ZxAkSPFGQJIlH2QC4zWDiQMx2qKkUtHQaEhUkslwX9aUlvvmnUilUymUUqO2QZBmrdLhR1G4INGMp0cFmGnUiRFHECz09mP5n/wylSgWLxSKee/55njVM8OQgcQaeIoh0BCcrAfhhiNuzs+ju68PwyAgXKSqXy6hUKrz1KJ1OY35+Hldu3oQoipjYswd9o6NkWiH5YJ6KY+2Mzf+/9dZbmJ6dhaqqePXVV5GmWuUJEiR48sEcd4BMKPTDELN376K7vx9DIyPwfR+9g4NYXV2F4zg8SylJEjA/jyu3b0MURYzv3o3BsTFiMyiHgA1eY7ai2Ya89dZbmL17F6qq4pVXXuGTVRM8WUicgaccAW0rim7OhUJhk8Kg4zh4uLBAiEGOg5GRES4cFP2/Ff7Lf/kvAIDXXnstaQdMkOBzAM/zoGkaMpFe/b6+Pq43wgaQOY6Dhw8fEs6B62Jom7bjW9/6FoDEdjzpSJyBzymii5NNPmSzA5j88HbAFvSP/uiPPr6TTJAgwRMHLiDG0v+J7XgmkNA0E2yJixcv4t69ewCSBZ0gQYLOkdiOpweJM5BgS/zxH/8xAODIkSMYHR39jM8mQYIETwsS2/H0ICkTfE7xzjvv4Pbt2/zfKysr/O+3b9/G7/7u7za8/md/9mdbftY3v/lNAMCP/diPPdZzTJAgwZOHxHY8m0icgc8pfud3fgf/7t/9u9jfvfvuu3j33XcbftZqQc/NzeHixYsAkjRfggTPAhLb8WwicQaeYnz5y18GQLoHPikwz35sbAxHjhz5xI6TIEGCTw+J7UjQDCFsN7EmwTOPH/zBH8S3v/1t/L2/9/fwm7/5m5/16SRIkOApQWI7ni4kBMIELVEul/Hmm28CSNJ8CRIk6ByJ7Xj6kDgDCVriT//0T+G6LnK5HE8rJkiQIMFWSGzH04eEM5CgJb7zne8gn8/jx37sx5LxoQkSJOgYie14+pBwBhIkSJAgQYJnHEmZIEGCBAkSJHjGkTgDCRIkSJAgwTOOxBlIkCBBggQJnnEkzkCCBAkSJEjwjCNxBhIkSJAgQYJnHIkzkCBBggQJEjzjSJyBBAkSJEiQ4BlH4gwkSJAgQYIEzzgSZyBBggQJEiR4xpE4AwkSJEiQIMEzjsQZSJAgQYIECZ5xJM5AggQJEiRI8IwjcQYSJEiQIEGCZxyJM5AgQYIECRI840icgQQJEiRIkOAZR+IMJEiQIEGCBM84EmcgQYIECRIkeMaROAMJEiRIkCDBM47EGUiQIEGCBAmecSTOQIIECRIkSPCMI3EGEiRIkCBBgmcc/3/cnOCF980SvQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aYxc55oeCD5nP7FHRu4kkzspLiIlaqd23VttN8ZwLW20XZi2q7pcXdXT86PLjZpfBUy70YAbGBvGoGYw00a5ygY8Xsoe2FOL7Spf31v3Xl2JlESRlLgvSWYyM5l7ZKxnX7758S15IjIiMpKiRImM54KXVGbEiXNOnO/93uV5n1cihBAMMMAAAwwwwADPLOQnfQIDDDDAAAMMMMCTxcAZGGCAAQYYYIBnHANn4CnHgwcP8Nu//ds4duwYMpkMSqUSXn31VfyDf/APYNt2z/f+6q/+KiRJwi/90i99Q2c7wAADfFswsB3PGMgA31n83b/7dwkAMjMz0/H3f/Inf0Ly+TwB0PHP0aNHyd27d7se/9/+239LAJBMJkMcx/marmKAAQb4pjGwHQO0Y5AZeEpx+fJl/I2/8TdQr9eRzWbx9/7e38O5c+fwox/9CL/xG78BALhz5w7+yl/5K2g0Gh2P8Zf/8l+GYRiwLAs/+tGPvsnTH2CAAZ4QBrbj2cTAGXhK8Vu/9VtwHAeqquIHP/gBfud3fgdnz57F9773Pfze7/0e/v7f//sA6KL+h//wH3Y8RiaTwfe//30AwJ/8yZ98Y+c+wAADPDkMbMeziYEz8BTis88+w89+9jMAwK//+q/j7NmzW17z27/92zh+/DgA4Hd/93cRBEHHY/38z/88AOBP//RPQQZdqAMM8FRjYDueXQycgacQf/RHfyT+/Wu/9msdXyPLMn7lV34FAFCtVvHjH/+44+v+6l/9q5AkCUtLS7hw4cJjP9cBBhjg24OB7Xh2MXAGnkJ89NFHAGiq7uWXX+76uvfee0/8++OPP+74ml27duHVV18FMEj3DTDA046B7Xh2MXAGnkLcvHkTAHD48GGoqtr1dceOHdvynk7g6b7Bgh5ggKcbA9vx7GLgDDxlcF0X6+vrAIA9e/b0fO3Q0BAymQwAYH5+vuvrfuEXfgEAcPXqVczMzDymMx1ggAG+TRjYjmcbA2fgKUOy1SebzW77er6gm81m19c8//zzOHjwIICBhz/AAE8rBrbj2cbAGXjK4Lqu+Leu69u+3jAMAIDjOD1fN0j3DTDA042B7Xi2MXAGnjKYpin+7fv+tq/3PA8AkEqler6Op/s+/PBDVKvVRz/BAQYY4FuJge14tjFwBp4y5HI58e9e6TsOy7IAbJ8WfP311yFJEsIwxOeff/7VTnKAAQb41mFgO55tDJyBpwymaWJ4eBgAsLCw0PO1lUpFLOipqamer/3oo49ACIGu63j99dcfz8kOMMAA3xoMbMezjYEz8BTixIkTAIDp6WmEYdj1dbdu3RL/5opi3fDHf/zHAIAPPvigJYIYYIABnh4MbMezi4Ez8BTi7bffBkDTeBcvXuz6up/+9Kfi32+99VbPY/7pn/4pgE0y0AADDPD0YWA7nl0MnIGnEL/4i78o/v1P/+k/7fiaOI7xz/7ZPwMAFItFfPDBB12Pd/nyZczNzQEYLOgBBniaMbAdzy4GzsBTiNdeew3vvPMOAOAP/uAPcP78+S2v+Yf/8B8K5bDf+q3fgqZpXY/H03xnzpzZVoxkgAEG+O5iYDueXXTXmxzgO43f/d3fxVtvvQXHcfCX/tJfwu/8zu/ggw8+gOM4+MM//EP83u/9HgDg6NGj+O3f/u2ex+L9wbxFaIABBnh6MbAdzyYGzsBTijNnzuBf/+t/jb/5N/8m6vU6fud3fmfLa44ePYr/8B/+A9LptFAfMwyjRXBkfn4ely9fBjBI8w0wwLOAndgOTdNQq9WgqirS6TQkSRKvGdiO7xYGzsB3GO+//z4AWrcDgDAIAEIQxTHiMMT33n0X5372M/zv/+gf4T/94AdYXFqCpmk4cOAAfuGv/lX8d3/7byOVSmFmehqEEEiSBEmSMDI6ilQqBUmWRZpvamoKZ86ceUJXOsAAAzxOJG1HHMeIgwAxgDiKEEUR3u9mO/bvxy/8/M/jN3/910EkCXMzM8JuGKkURoaHoWgaZGBgO75jkAgh5EmfxACdEccxwjAUf+I4hsS+LhJFIHGMwPfhex7CIEAcx4iiCIQ5BCAEBAAhhG727N8x+28QgoZlIY5jKLIMWZYRRhFkWUYhn4cqy/gf/s7fwblPPsH/8Zd/GX/vf/1fYZgmNF2HrChwHAeu76NYLCKbzbZEBQMMMMCTASEEURQhDEPxN+IYBADiGBKA0PcRBAF810XIbEmc+ANAvD7ePDC1KwCCMIRlWZAkCbquIwxDEEKQTqVohgDA/+m3fgvnzp/Hf/PLv4z/2//2v0EzTfraOEa90YCu6yiVSj05BwN8cxhkBr5FIITAdV1YloUwDOF7Ht3sbZv+7fuIoghRHNPoP44hSRJURYGuaVtGjsZxDHTYoPki930fnu9DliSkTBOQJHieB58QSI0GoijCvfv3MTw8jCMHD+LHf/EXcGwbtuPAdRxwLzImBLKioDg0hOLwMEZGRvDcc88NCEMDDPANIYoiWJYF13URBAFCz4PnuvA9jwYLYShsRhRFAABZkqCpKjRdhyJJm+sZ1BZJhGyxH4QQII7RbDYREQJT16GpKgghsB0HAXMKbNfF/fv3MTIyggP79uHP/uzPYFsWbMdBxPQLYhaYpDIZDJVKGB4dxfj4OE6fPt0ijTzAN4OBM/AtACEEjuNgo1xGs16H6zjwHId69JIERZIgKwqNvFlKDiyyJ3EMP44RBAFUVYWp6zBNE6qqQgI2FzN/H//MKEIliqgnb5owDQMxAFVRYNs2AOAnP/0pbMdByjShKAqqtRrSqRRGR0eRTqXo5+g6XMeBY9twXBe1lRU8nJnB+Y8+wq7du/Hu++/j0KFDg6zBAAN8DQjDEPV6HdWNDdjNJlzHQeD7iOIYsiyLjB+Azawisx0hqBPh+j4MXYdpGDB0HbIsb9oOSRL/5plF13VhmCZkAIVCAQCQAWjGIYoQBAH+/M//HI7rImWayGQy8D0PmWxWlCBTpomIEGo3bBuO42B+ehrXL13CX/zgB3jx5ZfxzrvvismIA3z9GDgDTxBBEGB1eRkba2twLAu+70OSZbEwFZZuk2QZiqJAYX+DOQN8cfpBANfzRDnACwIAgMnIgASgzgPbkAkAx7ahKgoUTUM+n4fMfhdFEZaWlvBwaQl/9p/+E2zbxitnzuC/YmxgPwxpRsHzaKYijmGmUtANA4XEtVUqFSwtLeHf/It/gWwuhxOnTuH5U6dEWnDgHAwwwKOBEIJmvY6V5WXUKhV4jkNLfapK13wmA4Vt5LIs03Uuy5D4Jg9qA+Iogut58FmkTgiB7/swDAOGYUBWlC2fHccxLMuCrmnIpNMwTRMSaJTvuS5mZmdRLpfx0w8/hG3beOPVV/GLP//ztCTh+/CCQJQ1JUKQyWaRTmz4QRBgZXkZX168iC8+/xy7p6bw4pkz2HfgADKZDLV/A3wtGHAGvkHwxWY1GqhtbGB9bQ2+74PEMSRZhmkYyKTT0DQNmqrSRcwyAgRAxOp9cRyDf20E2HQKfB+u78NnzgAIgaZpyKbTUFRVpAEJIahUq4jCEOlUCqlUCn4Q4OqVK3jw4AEgSRgbG8PU3r0oDQ0hjCLEUbS5gUsSCOMkxKCGgLBzEmUM9netWsXi4iIazSaKxSKOnziBYrGI4dFRZHM5pLlBGTgHAwzQFVEUwXEcNGo1VNbWUK1UqPMPQFNVpEwTKZYRVBO2A9hMx4MQwQcAIEjDEXMKXN9HHEUi2ODZP5EdAOD5PuqNBiQAQ8UiJEnC6uoqLn/xBZqNBjLZLMbHx7F//37Iskw5Bm3lSm4riCQhjiJh23gJI4oi+J6H1dVVLK+sICYEhw4dwp6pKRRLJQyVSshkMkin01tKowM8OgbOwNcMnlZrNpuwajX4joPQ99GwbURhCEmSkMtmYRoGXZhsQQSM/MMJf4qiQAbb/FnqT2apf4n9jvMGwjCE53lwXFc4AJlUinr7koQgilCpVEAADBUKWFpawpdXriAMAhw5cgS5YhGB70PXNKTTaZFVkGVZGBtFUcQ58EcoYhyGxMUjYOfy8OFDXL95E6Zp4vCRI9B0HYZpIpfPo1AsolQqoVAoiJTmAAM86wjDkDoAjQacRgOB68JzXTQdBxIhMHQdmUxG1OwjRjgOwpA665JEMwZsrfLNX2b2Q5IkyJIERZah6TogSQh8H67rimyBqigimJAA1JtNWiYwDOiahqtXr2J2dhYjw8M4ePgwgigCCEEuk6GlTQBg2QlVUaCqKi1fMEeFZzOTm5AEakt834dl27h29SpW19exd+9ejI2NQVFVpDMZ5IeGUGS2Y7sxygNsj4Ez8DXB933Yto1mswnPsuDZNnzPg80cg5il+VOmCUWWAbYJyokanSAJ8oMyL55vzuKLS9QCVVWFrmkwdB2KosBnDgcAqLKMTCYDLwhgsy6CO7dvY2llBaMjIzhy9ChMw0AQBLBdF6ZhoFQotCxgnokAaMTR8vnsHFoeqMTjVa3V8NFHH0GWJDz/wgtQZBl+EEBWVWRyOWRzOZRKJQwPD8MwjMf4bQwwwHcDcRzDdV3Ytg2rXofnOPAdB47nwbZtOJ5HM36qCkPXxdrmJQCRRQzDlrVKJAkx4yC12w1uT3RNo066rossX0uWwDCwUa0iimPU63XcuHYNQRji8OHD2L1rFwCgaVmALCOfySCdyUBTFOEUiCwmaKaDOyj0AiTayZQIJqSEnbty5Qpu37mDffv3Y2rPHgRhiDCKkEqnkcpmabZxeBhFlq0YYOcYOAOPEXEcw7ZtumhtG1a1imajAY+n30BbcgC66adTKeoISJLw3lVVpQ4Bi7oBIGJpeBBCWwy5Nx3H4t+8DZEkzoWwdH7IUm88fRiEIdbLZTycm4Oiqjh69ChGhochyzJ0XYeuqmiwtqGhYlGcB48mWq657fHhEUrysRIGS5JgWRY++ugj+L6Ps2fPIpvJoGnbsGwbBICZSiGTy6HAFjcnKA0wwNMMj232tm3DbTZRq1TgOA7NDsYxIkJoqQ40A2gYBiRAEIv52pYSQQXnBfA1GXN7wdYn/3cUxyJdD0DYFJ5pAOs6kCUJtuNgbm4O1WoVY6OjOHrkCHRdh6ooMAwDURjCC0OYuo5MOg0AIhuRBA8cWn5GCEJmJzm4k0MIwb3paVz58kvs2rMHZ86cgR8EaLBMhW4YSGWzyOZyGBoawsjISIt42gDbY+AMPAZEUYRms4l6vY5KuYw6W8iyLMPQNOiMMOe6LlRNg2kYKObz0DQNCl/EiU02ZAs4CU7SadlkwbxtlqqPooiWB1hbkef7CHwfIXMIHMdBrdnE4sOHCAlBKZ/Hvr17UcjnYeo61ASxr95oICYE2UwGaoK0I7POBs5S5gRHOVG6IIRQB6bLo+X7Ps5/8gnq1Sq+/3M/h0wmQx0px0G90YDneTBME9liEcViEZOTk1QEaeDxD/CUwXVd1Ot11CoV1CsV1Ot1BEFA7QbbZLlegKHryGazyDIinZLgBQDUFiTHDnO7wDOKye4ikTFgpQOP2QyH6Zb4jFgYxzH8IEDTsrC2sYFypQJNkjC1Zw/Gx8eRSaeha5o4Dz8IYDsOFFlGLpttuVZuM2QW+IhOKUZulFlZg2sZbAEhWFxawqeffYZ9e/fipZdegiRJ9PwaDTQsC5AkpLNZ5AoFjI2NYXh4eMAr6BMDZ+ArIGTCG+vr6yiXy6iVy5AlCSZbyLIswzAMpE0TIYvsuaBPcmNLLtKYp+c6IEn+4WIiPFMQM8KeaDtkCwugDF3LslBvNDAzM4OAvWdyYgLZXI6ep67DZG2GiqLAsiwEQYCUacIwjI6ePEd7FiCZFtRUlToZ9IXiOoMgwA9/9COYpol3331XZEikOIYXRWjU62g0m8gNDSFfKKBYLGJoaGjgFAzwVMBxHNTrdWo7WDeRoWnUKVcUaKoK0zShGwZ834csyzAZSbAFic2d1+vbQRKOOWHZxSiKRMaQZxaltvdEcQzX82A1m1heWcHyygoAYHhkBLlcjgYzioK0acJIpZAyDERRRKXNJQn5XE5kKLgAWvt5JcEdBUII1UDQdWoX2jA7M4NLly7htddfx57duwGePYhjWI6Daq2GGEBxeBi5XA4jIyPI5/MDp2AbDJyBR0Acx6jValhbW8PGxgYcy4IURTANg7Lz2aJNM0lfz/PQaDZB4hj5QgFaj4cyjGNaEkiAsM3eD4IWNcIWQRC20XLHQmGLKowihL6PpmXhxrVrUFQVBw8dwtVr13Di2DEoCTJgxARFDNMU3no2k0GWtThydbIwwfzlBiVuKw0ANMPBjZPCyEMq65SQJQlr6+v48MMPcfzYMTx37Jh4H08pBkGA9Y0NQJZRGBpCLp9HJpNBsVgciJIM8J2E53lYX1/H+vo6qtUqYt+HLknUEWe2w2QOOAhBrV5HEIZQFAX5fB4A0MkVbs8KiJ+z1uMgCBAx20EPIonfSwmHgm/I3N5EUYQHDx5gfmEBE2NjeLiygheffx6yoiCMIuiaJsoRsqIglUohCEMYuo5SsQiV2SEe8UdttoOrH7afMw+IRAlEVaExgjSJY3xy/jzWymV87/vfb3GQZFkGAdCs11FtNpHN55HN55HL5ZDL5ZDP5wftiV0wcJV2CMuyMD8/j42NDQSeBw1ARtNQYGz4FuIbe6gtywIAwfzthZYWPd5VEIYisyBeB0BjGyxPF/I0PVhJwvM8KLKMSqOBGzduoJDP4+Tzz8NxXciShGKxSBdvEAhjEgQBwiCA5/twXBf1dBpjIyMo5HI04lcUqG2bfsTblth584XvM9XEZMuQ53kAAEVVkclkcOTIEdy4eROj4+MolUot7U+KomB8bIxmNSoVOJaFfLGIMAyRTqdRKBQGC3uA7wTiOMbq6ipts200IEURDEmCmc2iUCjQKDoZBRMC27YRspbeXDbb0QnYfDmL/OMYQRQhYl0FEcsCCrCAQWUbK9cukUDXJO9giFl0fnt6Gutrazh96hQyqRRWVlcxPDQERdOEfZJAyx0xoeJpdcuinURBgKGhIaRZcCETgmQVn4C1PbIAKOkoOFwmmR0nCAI4jgNJkqBpGk6eOoUPP/wQFy9cwNts5DK/zwCQyWZhmiaqjQYqa2uwm00EQQDP85DP52mX1AAtGDgDfcLzPMzMzGBtbQ0kDKEQgpxpIp/LIZfJQGdOQHLgDyFEOAI87dcO/npCCN2AmfJgp4SNqijUO9Y0qMyDbz+Gz1sK2fuXlpZw+9Yt7N6zBy++8AIc14XreZAlCZl0GmpCFzyfy0GRZTQdB1azSTf2MMRGpYJKtYp8Nosh1l2Q1CzgDGa5jShk6LqIBkKW1Qj4DAVmqHbt3o3llRV8+umnePvtt5FOp+kGn2A6Z1g/cb3RwMriIjbKZezeswe+7yPHtAoGpYMBvq1YXV3F3Nwc1fIPQxiqSqPUQgHZNoU9ntkLmJAYCBXm6dVyG4YhHNelkXyH7IAEQNN12mmkqlASAQln+HPekx8EtMU5CHD12jU0m028+eabyGYyqFSrADtWOpuF1WyKTEKpVKIdVExu2A8CWLYN13FgmCaG2LUmOxkI+3yZdVMl3Xpul6K2jCjXUwGAY8eP4/IXX+Da9es4woiMya4FRVUxVCigadtwGg3M1esolEqIogi2baNYLA5KBwkM7kQfmJ+fx+zsLEgQQI5jpFMplIaGUCwUWmphvLWHb0yu74uafr5dVpPV9rkyF+8y4A+8xBi8KiMZiqi/Ddx4xFGEpmWJdiBFVfFgZgbT9+7hyNGjOHXqFBzHAQCxACRJQjabpXKgnif6h4cKBRRyOZi6Dtf3IUkSgjBEvdlErV5HjjkFOutNBrrwCVj7pCrLUA0DhDlMURzTQSlsgZ88cQKfXriA6zdu4OjRo1BZ25SeIDQauo6hYhG1eh2+5+He7dsojYzQ+mWhgKGhoYFGwQDfKriui9u3b6NSqUCOIuiShHyxiFJbmYuvaimxlnh3jc76+VvA+EC+59FOpfaZA4pCs4aaJoYAdXOWeVRvs6hbkiREYYgvvvgCQRjivffeQ7FQQJU5Ahy6qkLOZoXNsW0bmUwGmUwGKcNAvdmkJcUoQhgEWF5dhaaqKOTzIgvCdVPAOA3J6xcdTKxEwH8ehCGiIEAQhiiVSti3dy/u3L2LoVIJ6XQaOmuN1HgbtCwjn81CUxTULQuVtTXUKhWMT07Cc13xvgEGzkBP+L5PF3O5DCkMkdI0TO7Zg2w2C5npAPAF1L7UuNgQAZBOp2kUz+r6IZfmZB4uh6qqlEHMUv9iAbMUfCcQtC5mWZaRSqVw88YN3J+ZwenTp3Hk8GEAmzXFZKlCApBKpyHJMmzbhud5IKAiRYqmIa2qKObzcD0PtXodHhMCaTQaSGcyKBYKSLUrCPKSQZsIEf+XKstQTBMGe202l8Nzhw/j5u3b2L9/vzhXW6IT0QzDgCrL0BQFQ4UCqvU6FEVBrVKB3WyiUCohCAKMjIwMPP0BvhVYW1vDnTt3ELkuVADDQ0MYHRmBrmlCDVDIirdt1B4bSCYBSKdSIrUfsxkkHgsykuBKgbqmUaeY9+jzaYVo3WQB6pRbliVKEfzczp87B13X8cEHHyCTTtNApYOdUxQF+VwOTctCEIZoNhrI5fOiY0pnwmL1ep1qq8Qx1isVbFSrKOTztPTIsoyC+AxsbS/kf0sSDE0DGE+BxDFOnz6NlZUVzM/N4ehzz9GuCM8TrY6apkGSZWHj6s0m4ijCysOHqG9swHUcjIyNId9G6n4WMbCcXbC+vo7pu3fh2zYUACOjo9g1MSH0AqI47hipcyQXtGkYWzx5DlmS6EPLWMScbJPc+tvVuTj4Yg4SizmTTuP2nTu4f/8+Xnr5ZRw4cABiMAk7H0mWxWdwz9w0TUiKgmajAd/zhMgQZxun0mlk0mnKI6jXabnBcbBoWTBME/l8fjPlySIXTuYh7cqEyeuQ6NTFo889h+n797G6soIjR4/C8zzEcdxxcedzOdTrdQC05lhjJE7HcTA5OTkgFw7wxBCGIe7fv4/l5WUgCJDSNOybmkIqnd5c10kHoIMNcR2HrjnWOROykkHAZcYZNFXd3PBYqU50IvEoG5ulvKS98jwPTdsWG3w6kwEIwU9/8hNoqor33n1XlD6546EwkSBhN5iDkM1maYkhDNFoNmEaBrUBhEBVFJpFzedp+3WziTAMUanXUWVZxlw2K7KMwnlJOAedwO1YyjDw3NGjuHr1Kk6ePAmJCZmFUYSQXR/PFhiGgWwcU2EkUBu9ND8Py7IwuXs3hpnWyrOKgTPQhjAMMTc3h8WHDxF7HkxNw9Tu3chms9SzZgtiu0fGdV0xBbDBFkASIp3VlgKUWCcA944JNkcRi7QaNrMBHOl0GoZh4MGDB7h+/TpOnDiB/fv3i7YiUX6QZaiJdBxf3BIh0FUVmXQaFhNN4iSiiBAooM6HYRgYGR1FGASo1utwHAcBSwPqbKPOMMMCQMiRsg/seK+4kMrhQ4cwPT2NE8ePI53Pww9DeGzWQnJxa0x0hTCHgcuoLszMwKrXceDw4cG0swG+cVSrVczOzqK+sQGZEAwVCti9a5fgwPA++m4RKCfLhZx5H0Wo1motJThFUagwWKK3n4N3A/Bgg7+Pf14MgEQRLDbZkHcdZTMZkDjGTz/6CH4Q4IP33xeOQMxS83xMOT9ue1kwnU4jajYRhSEs224hAvPNPZfPI8syCQ1G6Gs0m6hUq8hmsygyQnAyUBDv7+EYHDxwALdv38aDmRmcOn1a8Ax4QMYDCoVxrlKGAdf3qR1XFFTLZTjNJpypKeyZmnpmHYKBM5BAtVrFw4cPUSuXIQUBhvJ57JqcFG0+ElsEXEo4CS7uIQFwPQ9Ny4Ln+8hmMuLh4p48l/ftBb4Jt2gQgLbw2GwDBmhpgX/G8vIyLl28iIMHD+J4olWPS33y13dKw/HowWBZDB7565rWYlSEfoCmYXR4GGEU0TQgSxWurq1BqVQw3K4JwJ2OHh7/4UOHcPfuXdy/dw/PHTsmjB7vTOCL22cLGaAOCp/IpigKNtbXYVkWjp04gUKx2PMeDzDA40AYhlhcXMT62hqsSgW6qmJ8bAwjw8M0CxeG1BHoVupjTroEoNFsomlZmxNKAbEuDd53355VSByXjzknyY2YIWAlPm6r+CCimBB8+umnaDYaeO+995BhYkFijfHMQIcSHCfrybJMMwSNBp2i6rrCIedRPLcxPBtgM60Fx3HQbDZRqdWQz+VQKhY35xpsXtjmvWo7B03TcOjQIdy5e1fYjZSiwDRNBGFIBZRYmyTvdhKcLdYGGQQBZqen4VgWDj/33DPZpfRsukBtiOMYc3NzeDA7i+bGBhRCMDYygj27d9OUF6/xYfPh52jxvllrzeraGjw26EfTNKRSKRQLBWRzOeiGsa0jwIkvXJmQf0bAJoZxRyCdSiHHmMYblQo+/eQT7Nq1Cy++8EIrsS/Rt9vtIU9GK6lUiuqey3KL48ENTfK1PA04MTEh1AqjMMTSygpW19dFa2FSNhmgWuki3chgmiYO7N+Pe/fubc5gAE1PmqaJAusXNhhrOGbtlo7rbvIhNA2e4+Dq5ctYfviw530eYICvimaziTt37qC8sgKHddzs2bULoyMjdO0m9PY7ugISlR4PgwAblQqq9TrCIKCOsK4jxyLmNBsWBLm1/bC93RgSHTzU0jEQx7CaTTSbTRCWui/k87ScRgguX7qElbU1vPHGGygmHWiWyYgT63DL6SeuS2EOgcrKizbLLnZ7fTqVwsT4OEZHR2m5Q5bRbDaxsLiIRr0uiJH8Dx++BElCu0bhoUOHAAD37t9v+SydtTAX+D3kTgbLloZsJDsfFLeytISrly7Bse1O39ZTjWfeGYjjGLOzs6iurSFoNGBqGsZGRzFcKtGBHcDWBYdEJoBt1o7rolKrod5sImCRwHCphEI+Twl2fBPuke5q6UrApsetyDIcNvSofTFLkoRms4lzH32EYqmEV159VeiT04PRc+SbpdrFGWhXGEwzmVGw4ydVEUW2gjlAEduUC4UCVTVkA0ps28bDpSXUG43We04S+ujM2HBn4fCRI/CDgI5SToDfD86LKLBuBkVRoGsaJTU2m0KgJIpj3Lt7F3evX99Sax1ggMeBZrOJ+9PT8BoNhLaNkaEhDJdKKBYKtKTXFsWK0b38B2xdNup11Op10YaczWZRGhqi48y5vj7f+HvYD4CW+yRQw85V+Wr1Oh1rLkkwTRO5XE4EBddv3MCDBw/w6iuvYHx8fPNc28h8LYTm9s9M/FtRFORyOWFz+DXRy20NJgghCKIImq7TTMrICHQ2gXFtYwNLKyuijRCA4B/xICBpOwxdx4H9+3H/3r0t7ZUSqKOSMgwU8nlKAJdlmnVkmVbLtgVZs16v49oXX6C8utrzXj9teKadgTiOMTMzg2alAhKGomUul07DNE3x8CUhMgGyDMLS6ZVaDbZtiwc1nUqhVCpBZzK+wOYi7YQtk/6S58haBnn/b8o0kU0sZs918dFHH8E0Tbx59mwLmz6ZFeAReTe2ffu5SZK0Gemzc2jx8tli9FnqjS9wRVUxMjKCsbExmEySuVytYnF5Ga7rbv3chIEhoIOKJicmcD/h4bfdLEE6TKfTyGWzYpxqEARYL5dFG2bERjVP37r1THr6A3x9qNfruD89DRIEUCUJwyMjSGcyKOTztG4PuuY5ROcRG/YVMtneWq0GLwjo2mKp++LQEHXou3QbJJHMrrW/KghDKg0Mui5zuRxVRWXHuz8zg9u3b+P06dOYmppqfTMrCUbbBBHiHBLXqrJoXAIlKjoJbhN/LVcfRMIuptNpTE5OopDPQ5NlBEGAh8vLKFcqLaTr5Dkmj3vgwAF4rovFpaUOJ7mZwdV1HflcDimm+EgIoTyGRoN2K4DKRc/PzuLh3FzntumnEM+sMxDHMe5PT8OuVIAoommkVAqKqiKVTtMNmg/3QGLBsQfQcRxUajVYti1mhmcyGcoJYMx3oLN0aBKCldvhtVEc07KA70MCkGPkPIUZlCiK8PHHH4MQgrfefrvjlC7+OgDifd3Q/jtZlpEyTSpPGsdo1OtiJgKfpsYHjbTDNE2Mj4/TgUyKgjAIsLSygvVymaopdoEsSdi9ezdqtZrISHQa2sSvR9U0ZDMZlIaGoKkq4piOV+XqaJ7vw3dd3Lt9G/W2XukBBngU1Ot1PLh/H/B9GCxLp7H1z8d8I/GMC2EdnglgToDPSHymYSCdTtPyHLMfnexBEr2cAIDxlhoNwe8p8PIai8yXlpbwxaVLOHrkiGg9ToIfM8k16oYkr4lD0zRRhnAcB67riimIfPoizxQk3yvLMob4cLJE6eDh0hIlJvZALpdDsVTCwsOHQh5dZHL5ixiRU5JlOjCOqT8CQNNxYLuuEEZzPQ/l1VXM3r3bUer5acMz6QxwR8Ct1UDiGOOjo1DYA5lhnnPyISKJ1JbjOKhUq8IJUBUFWSYpKpi8EtXT7mcxd1v0nJgXsLnfuVxObPZ8QV9PKIRxB4Yfu+VY3Lvvpwc/QZLkMDRNTC/rtCD5wu7kTBQKBeyemKApT0WB5ThYXFzcUjpIYnJyErKiYGl5WZRhWmqH/FTjmGZc2OjlkZERmIaBgHVOcMJUw7JACMGDe/ewtry8/T0YYIAuqNfrmGOOgKnrGBoaEqOEDV0XQQRA7YYo08XxZibA90EAGIm0Ne/24Sp6vdBeTmyHzQh5RJJgMN4Bd9glSYLjOLh08SJ27dmDU6dOiWOK7iJuRxJco+1sRzJo4hlJRVUhqypiQgTXSWp7j8zOqd3h1zQN4+PjGC6VROlgdX0dy6ur8HtszLsnJ7GysiLGqPNsbXJEM2FkcIBmeAv5PIpsZoznupBlWZQd+eCle7duwUtkOJ5GPHPOQBiGuHf3LnUECMGu8XFK8CGEiv7wCX1s0+EM+jAMaTnAcSiDPeEEmGy2OK9Nb7egCds0u73GD0PU63WEUQRFotO/2hfjw4cPce/ePZw+fRrFYnHT08ZmdwCwmZIjgBheFAOCkJOs18eEICSbs88JINKXmUwGfAxzp8UoAcKhaoeiqhgdHcXo2BgM1hPNSwedjqUy3sby4mLHTIZY4NyAsFSjrmnIZDLIZbOI4xg6m6JWq9VE7XJpYQGrA4dggEdArVbD3P37IL4P0zSxa2JC1LRFEJGIRiW2KdqOg3q12uIEFAsFZLNZuiaZXDcI2dJqnMR2TgAB0GR6G1w7hK9b8Zo4xucXLkBVVbz80ksiMk869DE2HQGenuct1THL1HF7wWcLxHwmApueSti9MFn3lCRJQlWxHXLi+O3IZLO0dJDLQZNl+J6HxaUlVGq11msnBDcqtxAV6DmX19dbMg4S67CIE7ZDwmb5Np/LIcMyMxIrQ/q+j3KlQjuYPA/3p6dpS+ZTimeqtTAMQ8zcuwe30QAIHeGbTqVQZQ8Wn36VFMkhbDE7rN7Nme38oRERvkTnagPouqBbjEQXuJ4H27IQg25uqVRqSxretixcvHgRu/fswYEDB7a9bs7MV9pIjKT932hl+4p7wK7JNAw4rgvbsqDk81s3/0TrYSekTBPG+DglTDHthaWlJYwOD2+RBN01OYkvvvwSQRBQxUSptUebG6QoUQuUWc2VRzO8TdLzPFiWBRLHSKfTWHn4kEZlQ0Pb3rsBBgBo2/Hc7CyI7yPLSmCi5i3LIoiIsbluwjBEIyERbug6UqnUprwuADC7kewg6gTSoyUXoE57k5GXASoi1KlsePPWLaytr+O9997r+Psk6TFJHuQQDk+Hc5ETEb7IFBCCTCaDeqOBOIrgOA4l6nWAzByRdkdHlmU68CiTQbVSged5qNbr8DwPIyMjWHVW8Dd/9mt4aC8CAN5RzuLA0n6Mj493vG9xm+3gHKNUKoXYcYRzUGGlnGaziRQ755npaRw6erRjm+V3Hc9MZoCTBZ1GAxIh2D05iXQqJYbmAJuRM0cQhlRYhzkChmGgWCxuTiZknr8EbPawdvHue9X3OGzHgcUcAcMwWtJ74jhxjAuffw5NVXHmzJkttbpO152cArgd2jMM9DLp2ZupFDSWsrMtq3urVI9zkmUZhWIRk+Pjooa5sr6+hSQ0uWsXCCFUyY2fT+JetBsjwrsaQJ0OWZLgeR6yjAwaxzElVDGxk4XZWdgJpvMAA3RDvV4XjkAuncb4+Dhk1g4IUEeZp8dlQGQDao0GItZayMfnqmz9AJsRfjKj2A5RpuxBQA4ZT8Zn2YVcLtc6PZVhfW0Nt27cwIkTJzA8PNz5YNKm5HDSLvYLfm1ywmmXZRkZNkzMZQOVtn4szVDIPZweQ9cpD6lYhMaO9W+//CP80g/+hnAEAOBc9BmWl5ZayInJIKKdjMinrGpsABwIAZHoIDdFlkWbpGXbcG0b8zMzfd+P7xKeGWdgZWUFbr0OOY6xKyFZy+vpsqJQnWxWa7JsGzVGROOp+lyCvCfSa+wh4+lCXdNaZD+Fwh+6OwIt6T0AadOk0r4dNtWbN29ifX0dr77+ekfj0Y6kvsBOtbdbBIMYq5mnHUMmLNLrvZ1qgRyapmF8bAy5TAaaLKPRaGBlbU18HynWkZFkBicdlajLcQFa35SYFHIcx3TwkWFAYUTIpm3Dtm3M3rsHr8c1DDBAGIZYmJsDggC5VApjo6PCQefcFE1VRWAQsgDCZpLChq7TAIIFCMmBPPy/uYhW+3ruJ5PIWxPDKILCODqapm3ZUH3Pw2cXLmBkbAzPHT3a9XjJ9cqd616dBEkk1ycStgPYzCxKkgTbtsWxk+8V/97GTuXzeSh5Ff9u5t/hP8/9AHvJFIaRdG4IHM8Tw5VEcCNJokTbDVyEKQwCyIqCFAuAAGrjG80mqpUKHs7N9TzOdxHPhDNQr9dRXl4GiSKMMpIZRxhFQjZYAhBE0ZZsQKFYFEp8nBnc/kj5HWp+BAA6vDYJAtqvzIcWZTIZpLpM0VpbW8PNW7dw8uRJDJdK3Y/ZYUF3EgzpBnG+yYXDPX5FEV4+H7fc8r42I9StFsh/Nzw8jFKpBFVVEfg+FpeXxb2fnJzE6srK1iwA2gxPB/DIyA8CIVaS5alTQnUhatUqpm/f7unUDPBsY/7BAxDXhaYoGBsbE44Ar6lLrKOFlxNbsgFMaU9m5UQ+SCyJMAxbSMft6GU7gjBEvdFAxBzefD4voviWNUMILl66hCiK8Morr7TqkCD5slYdg+QUxH6R3HjbzyOZWWznD7SsZUnqHjgRgv/04Af4Hz/+Lfy4/mNIMsGIOoQpTGEv9kKChLyeh65pHVsMCZ8p08UmcZ0SApoZIaAcJp6ljaIIjWYTiwsLT51D8NQ7A2EYYml+HogiZNNp5FgbSbLWzxerZVkdswH898kWwPaUdRiG1KngEQD7XS+vngCw2Azxjum9xHt9z8Nnn32G0bExHD1ypPsxSatmwaMsaCCx2XZY1LphCCXFZrvKWIcNupdDAFCRlfHRUREZLa+uolKrYWRkRPRjJ6+PD4Di59jp2JqqihokZ2oT0IwDl0kOggDlchm3r10bOAQDbMHaygo8poQ3zjICScVRngEMfF+Qi1uyAex5TpYI5baNjtflNdZ91EJA7HFuvEUxJoTOBEmWFBnpl+PevXtYXFzEK6+8Imrf3SDmGCTLizvV6k98fvuGzzOL0TaZxU7lxjVnHf/zp/8L/u9f/C6s0EaEGA+xiIZUx5g2hHFpFEdwBJP6JEZGRlBpayXm4mgAC+i6BBP8e/N9nwYShM4wyGWzwplxHAdzs7O0s+QpwVPvDDycnQVxXSiShLHR0c1fsHqSIssIo4gqgLE0fTIbAHSu98uJ/+ZtLJIkQWXp6fbXd4JlWfASjkBXJjEh+PziRZA4xqs9PHuO5Oc+St2PHqTNw2/7dZoRG0kcw060G3ZbYHKXTZvDMAyMj47SFkRZpgQhxr6uJRZ1HMdb25M6yaQywhYIoYJN2MxccFEUPuq1Wq3i6uXLcAfCRAMwWM0mqsvLCIMApWJxcxJmwhkAq1tXWQDRKRvQqUSYXCPJMl4y4OiFkEWnMStRZLPZrjahWq3i6tWrOHzoECYmJvq+fp5RlGV5R4N7uIPO39G+5ntlFrsdD4TgBw/+M/6HH/+fcWHl8y2v2UAFS1hCQc1iVBnGQRyEmUqhVqmI13DV0y3H72CvNFbqjQkR4535955mHCSAcj1mZ2dx/969ntfwXcHTR4lMYH1xEX6ziSCKsGtiomVYBv/jeR6azSZlopsm0tlsS32v1+KUZRkxIZsbLu/l7ePcLMeB53kAaGTcq6Xo/swMlpaW8ObZs9B1XaQWeXtPUuaUS3XyToFavS7Yvw5zVBrNpvg7Gf23EAfZ5s3blFRVhabr1AliBiKdTtPRpWxCGJ8Z0I1YuJ1DoKgqRkdGUK/XUa1WEcYxdF3HermMqb17BXt7y6GRYDknfq7rOmBZiBMtUgBzTBhBiI+GtSwLX166hBdeeglmlzLNAM8GwjDE2oMHCIOAkoZZ14kYKMQ6WyzLgut5VDQolaIOZpvz3MkW8KxCzER4CCGCnb6d7YiYXkEUx9BUFblstqsDHkcRLnz2GXL5PE6cPClaBUVbIGs5Jm02BITA8304jrNZuiAE9Xqd2o1GozVyT9hI/rcfhnAdB0EYUr0Bds2SLFNbYhgIfB9N20Yhn+963evuBn73y/8HPl3+FFKP2NWGg3nMY0KexKQ2AgBw2DUYpimyiUkky6Fi7gHo96PrOpq2TQXf2u4vnxhpM62Zufv3gSjCwR5cjO8CnlpnwKpUUGUCFaVCQahhJcVxmmwxAxDCPqLtZxtHgIPL3gKdp3p1Ap8ICFCOAE+PkzimHIY4Fkp/juPgyytXMLlrF3TTFG2QIIQOLeGbI9vwOfOYL3Le1gRsevsh6xWOCOmoBpjc0MMoQhxFcD2voxfv+z48z4Nt28jnckJpTZFlyIrSOmUN3dP6SeTzeei6jnK5jGwmg9VyGdV6HdltNmmuCcHLFjwVKLHsT6fXp0yTzn5wXdi2jS8uXcLpl17a0uo4wLOBOIqw9uABHbAFYHR0VDjXfLJgFIaoN5ti7fHOH6B/u8Ed2IiXF9un9HUAVySNCJ1PkmMZAc6Q5x1NEZP6vX/vHqqNBl5/7TUh8sVLEVvS+AmiMyc1xlEEqKqwbzHr2IkSnTv8mPxY/N9BEMAPQ8iEQOsk1kMILMehSqG+j1QqRTsPFAUKsxvrbhl/52f/EzbcCmRJZtoA3e9SiAgLWMAJ85goB9+fncXBAwcECbATeNk3ZucF0A0/ZpyBLdZKoqOfeTDh+j4ezM4iBnD4O+wQPJXOQNBsYm1xEUEU0fod8+yTDHdO2pNlGdl0GpKiIAhDQR7pZ0FzcAELtY90muO6NMUXRTCYWp7neR2j3jAMcevWLUgADh48KHqAJbbRckKS3FZf49F+wEb+qqqKPBsewqMaAMiyqYdAIp3H/ubiRGEQIIwiaJoGhRueRCShqCok30cYhmhaFp2DnnQw+DmyBa4oCj3/DmSqJEzTxMT4OB4uLWHuwQOUy2WQOBbn2ws8A8E5ITzaieN4U4kNEMxi7ow1LAu2ZeHKpUs4feYM0mwE6wDPBuIoQn1lhY7hjSKMjYyIUiGw2QZYbzZBmKiV2pZF3Ind4KUFmZBt6/Ixi8w9Jk1uZDKUr8M2//bX2raNu9PTmNq9G2mmTsodY4X9ze0GdyjkRJYQYOPRs1noTCiMcwGy6TTy2Wzr0Db6DxGEqMyJkCWJtl6SzcFC3HaomoaADzNiQUwywPnw4YeIXYIccogQIZBCBHEAIsWds48MSkbB7slJXLt6FdVqFWvr6xgbGdlWRVEGtQncsVI1DWGH+8vvEJdrj8IQYRRhfnYWiGMcTo6P/w7hqXMGQstCdX1dpODH2ChRgHnirN7Go9xcJoMgimDZNjzPo5MAd/B5BEDEJoJpuk4XU2JTD1mEz6N8rhduMkEc3/NadbPZhikzTe6lpSW8+OKLGC6VepJe+Lm0s4FVVYWh6y0LgacyZUXZdoF4ug4lipAyzRbDSD+KOgaZdBo1JirCCTZCApRFEnEcI+QGMxGFKKoKRVWhsogg6SBIsozx0VHMsJHGG9UqYkJQYF5/T7Coiwu5qJoGPwhaOkmSaUJN12Eyx0yUDM6cQboP52OA7z7iMETQaKBSLiOIIuQzGSGOw9ec57poMG0KlaXoK9UqojiG7/vQmRJpP+BsdcgydD6qPJGqjllWj4/YFTNKWETqe95mOZA5IDwbJ8kyrl+9CkPXcfr0aaqI2oGQ13I+7bV9ls432GRQ/jMJ1G5slwVVZBk+C7YyHbJsXLmwqWnUwSEEumkijiKEcQwSRSjpJajsf+I8ZYI4JoilCCFCBOL/NzfslJqCmUohn8/D9zxEUYSVtTWMj472JassKwp82xbKib7n0cmzbfeP39NMNosaI5rOs8FGh48d23Er95PGU+UMhLaNyHXRaDQQxjFGhoeF585TcrVGg5LQZBn5bJZ+4WEIy7YRhiGCINiy6XUDr9HzOFiRZXGMgEXUnLQSBAGdbAiIwSSyokBlG6DCNkOOOI5x4/p1DA8P4+DBg9s+WEk9g+QxgM4Eu37B22k6QZIkKJIExTAQRpHol06n0+I8uFETMqBssSOKqJMQBEI1jbN2uVOgyDJKrIWSRBEUXUeVzZMoFgo9z1sC4LouJED0NwdtzkDL62UZBhth6rouHNvGl5cv48wrr8DchoE9wHcbcRwjbDZpv34QQJYklNqcb9u2YbN0t870/gkh0A0DDlMo1bs8W+0QJTgm+a2yAVtBGMIPAjoILAxFLdu2bQRhCIlF5bqui42f24/kGn+4uIjllRW8/vrrm8THndwPQr6y7SCJP50gSxJl6OdyILUaYlASpVCBBfB27m3M+wv403v/HhIkKOx/siwBRIEBFZt3nCBECDd2YcQ00CoNDeHh4iJUVUUYhlhZW8Po8PC2+iwR+w40FqQAtI2z274gyzIymQwVjItjLMzPQ1KU71zJ4KlxBiLfR+S6dGJdGNK52glyjR8EaDQaNLWtKMhns1BYFCtLElKGAZdFhWqh0CIc1Ak8CnccB7bjCOKeiHw5e5WlrKMwRCqVEmN3t8P09DTqjQa+98EHfXuY7a/aKZeh1zF7V/lpy17IFpHPyIQAW/QdPp+ApmUDljUJw1A4B8kZ5hKo8fU8D6XhYViWhXqjARLHGOohJ+yx0oXMPPdms9nS9bHlOtlzYGgaJDDjb9u4fuUKzrz66ldyqAb4diOyLJAoQqNeRxDHGCoW6Zph67hpWSLTaHJBMFAnImUY8Fj06bgu0ttsvtxuRHEM27LoRq/rLW12EZsbIisKfGbLTKZ+ul1kG0YRvvzyS4yPj2PXrl19XX97VqDfKae90F667AZFlmGmUnBcF47rQmVkQwmUR/G3Tvw3eH/ve/iDG/8En61coMdm/1OhQocOFSpiEkOKJaSQQpqkUa3VoBsG5TJlMmhYFoIwxCorGXRzCLhehARAY4Robkt6BYkKcwhs20bESgbZTAYTu3c/wt17MngqLFwcRQgtCyAEjWYTfhTRBc0MuMecBF7LKuTzYoMUc8RZq1kcx3B6tJjFcUzr/vU6NioVKgPqeaIOJrGUczqdRrFYpLV6AIZpItOnI+A4Dm7cvIlDhw6hUCz2dxM6LDzh3X+VdBWruW9H+lMkCaZpQpZluI7Tqj3Q6bCgkYDBsiS5bBbZTIaOcdV14ZETQqgmea1G0/2KIlTe1jc2Oh47jmOh5miaJk11qiqIJPVsZZIS318qnQaJY1SrVdy6ebPntQzw3UXkOIiZTHXIRIQKhQIlojLCnuj6yWQ2HQGyKUDG0+AOI8R1AgHLDloWKrUaqrUampbVMqiLjz4v5HIolUowdB3aDhwBALhz+zYc28YLL7zQ12bc3oEDQGQzd6pN0g7eFrgdTMOgfKQ4FoTuJKaye/C/vPY/47XxVwEAMWKEUghHclAmG1iOVrARV9BEEx48GKopMpQEQKVahcGGlvm+j6WVla4aBy5z7CRZRto0xT3frgWSgNrZdDot2hJv3byJettApW8zvvOZAUIIQsbsrTcaNCsgy2JGtWXbYmMwdJ325CaYtMnBHNlsFvV6Ha7nQdU0Ed3y9F3g+yJdJz4fNHLlG1oygiRxjCYjx+iMjNOeyu+EK1evQlVVHD9+fCc3ouU/k6m+HWsMtCHZZ9sLhq7DY6RFx3E61gqT4PefDw7h6U4tQcqK2HChJuur5m1/9WYTa+vrcGwbIyMjMHRdiMJYti3Ijfw75FyGIAx7DpIijNBlaBrAIpalhQVkczns3bu3/5s2wLcecRAgcl0Q1q4XhCGGSqUW7RHejZPLZjdFhDiRlx3H0HV4uo6AydXm83mxIQQs0xUEgVAaBKijoTDOTpFLCCfsiud58DwPkkTnGqgdJIbb0Wg2cfv2bRw7dgzZfrkunLiXQJjIDDwqhI3t0K3U6bXpVAphGMJzXRisdS+J2cYDfL56kR4TBDGJQcjmdxEhRIQQLlw6TTafpwEF+w4kSUIhn0e1WoXrupidn8fY6Chy2Szt5GBlRO6MpFlgw7sQeJmzZ4ZQos2P2WwWTctCGEW4+uWXePm11x6pXPNN4zvvDESOQ+eHsw4BP4owWipBliTaOsgcgRQb58nBpTeTG7OmqjBNkwqJ1Gqbm1Kid18CrfHprO/ecRy4nic2oySaLGWksNpY+8S9TlhZWcHCwgJee+21ntoDLehwrJgrD36FVB+w2a7X72vTponA9ymhSte3tPSILANpVVqTJAlR2/fBR4lm0mlUKhXk83mEYUg3allGvVajvcDLy7QdkZEEJdbayMfKAvS79X1/iyZ6J/A59Nz4O66L+3fuIJPJdB/wMsB3CnEcI2QZQMuyaElJllHM5+nYay4kxAKLZMuxIPslkE2nUWPlrrX1dRi6LrIESdVCTddpnzpj88dxTInHCYRhKAaBtUwfZA5GcqpqEl9cvox0JoOjzz3X/43oZDseR2aAraHtZgFwaJoGTdcRex5sx2nJoBIA//ja7yMiISISA0SCIev4YOp9/HD+LxDEfksdc9gsiTo+76zK53IIggCqomC9XIYfBFheWYHvuoITFIQhVEWBruvinsuMgMzbNfXtHCR2vZlUCpbjwLFt3Lh2DS+cOfOVg7KvG9/pMkHk+4hdF5Ik0Wl0vk/7b/P5VlGfTGaLI9BpMXHPz2NjKytsXCYAqLqOTDaLoaEhFHI5OopUUVp62pNwHAc+awPKts0UFy2ByaFHoLW6L774AuNjY9i9k1pTjxLBV/HugQRnoI/MAAAxFIgrjAkiEdmcfd4pNcm1CTrBNAx4jAyoqSpSqRQmxsYwOTkJU9cRBAEq1SrqjQYsNl2Mt1Dy8+bGPOLz2Dt8Tvs1cvER0zQRhiFuX78+kC1+ShBZFsBq8/V6HUEYolgogBCCGuOkqIpCI8ykI8De314Gi5jtaDQaaDabqNVqwp6YpolCPo+hYhG5TEY4mQC2rF2eTYwJHVyUaosoZUkS7bm8hAcA8wsLWF1bw4t9lgd64XHYDiFCtINzSTNlwjCKxKwWAuDT5U/x+epFxDEgERkSJPzXh/8afuuF/xH/6P3/F85OnBX34fjQMTxXpMQ9WZYp38h1Icsy1YPI5bB3agr5XA66pmGjVkOt0UC90RCBXbL9GkjYDtb90Y5OdoPrEMiyjI1yGTP37vVtQ58UvrOZgSiKENm2YNw2Gg2EhGBkaAi+54mMQDab3TLOs6VMAFrL8zxPENcMXReqghKYnn2XNA8nDiYf+iAI4LDOgQzrWOiGZOR9e3oalm3jzTff3NEi6vSQdZpF/sho6z/e7rWmaQrSjes4fbOs6du3ihIZbDMOmQ4ER47d2/X1dTRtG/VmE5l0WrRtWpZFZ83rumiRItzDZ73PHB1rp+y7MTQNEYvWbt24gdMvvjggFH6HEdk2YpZBarI2Y0VRkM/lKMmYpfBzXEQLCUcg8XzGcQzP9+G6rtg80pkMXNeFqmlUyCyb7bgGuTPRsuEysmIURZAVRfATOoFn0wC61q98+SV279qFsfFxoSz4yPfnUSXMu5xnt+CrHTKzHZy8KysKIhLi9679AZLF1WFzGH/t0F8DAOzO7sbffe3/igf1Oaw7azhROgFF3jxvM5Xa4sArioKJ8XGUNzZQbzRQq9eF3eBkZc/zoGkadMZf8kAzB2lChd1aMiod7C/PIqdTKTQtC3MPHqBQLGJ0bGwHd++bxXfSGSCEUM+efQmNZlNwBQxdh8XSf6lUCqZhbAqC8L9BnQmbZQ+SXiAntRULBdi2Dc/3YTMN7aTcqDgXPsiCLeqYefYEm+S1fhCEIe7evYsjhw/Tdhtgi2ZBx3uBzovtcbQVgp8DevMckvc3ZudkmCYc24breZSV229HRAdngGs/eL6/xbHipR3HdYVW+1CxCI+VKhDHcF0XrusK5cXA94WQSgwIxcZu1y9xcZE4xvrqKh7MzuLAwYN9Xc8A3y5EQYCQZRNJHKPOiIPFQkGU9SRWGpCZfHeLYh+h6nyO67Z0vQA0iMizoIETlmv1OjIJiXNxHqytMLk+HdcVczR6yQy3QJIwc/8+giDA6dOnhcOSVCHtdpxOQUTMzivpbHwl9NESzR0sQujUV0VREAYBfM/Dny/+Jzy0Hra859eO/ypMtTU425ffi335vVsInAbr9uh0XqlUCrZtw9A0BEEgdAg830cYRbQ9PAhAJAmu50HRNFH2FeeMrVkifnxJlqEy2+G4Lm5dv45cPv+t5Q98J8ObyHGAxJduN5sI4xjpTEY4AgbTC0+m4SFtig5VqlU4jkNr65IEwzCQz+dRYNLFsqIgk80K4RE/CFCr11tYpfxh4ExSzluI4xiqpiGzg/70u3fvIo5jHD16VIhZ8AWZ/ANsXaTdSh7AV2cEJ8GNi0j5k4SqWBsHwNA0yIoijOdO0H49hmGASBK8hIdPQHUEmpYFTdNQGhpC2jCoQlyjgXQqhUI+TwcqKQp1UggbXcwY4oQQsQC2637gs80BYHZ6GpXEEJQBvhuI4xihZYnny/M8KkwlSVBUFSETD8vzaF6SWpxyz/NQZWll/kwrioJ0Oo2hoSGRBVQUhY4TZmqmzWYTTUZq5SBtznrg+zSbSAgymUzfUXkYhrh9+zb279+/WSNnGyyfgcBtYDvxuROSU06/kjPQVhZNEoVbSobYdEq4HTVNE5Iso9zcwL+6/Ycth32ueATv736v68e227tUKrXFGYjiGM1mE0EQIJ/PI5fNIpVKYaNaFWTRfDYLndkdLqLm2DZqjYbIunaah9J6C+g9MAwDmqbB8zzcvHq1Jfj8NuE75wxEYYg48eWGYYiACf1wVqym6y0cAQAtToDneYhZm2Emm8VQsYhMJtMSdfK0YCqVouNBWR2p1miIUaV8A+GSnhYbzCFJEk3x9bmYfN/H3bt3cfDgwS3T0dqRdAi2sPwTn5fsFSZtvxMEPk5kTPwhHf4WQ0wSzk/yM1uMRuKemEyRzW3LvmyHpGw0sJkZ4Om+KIpgNZuC+WvoOoaHh1EaHobC+CN8CBMXiMmzBQ8wgpbjtLSN9crA8OvTVRWmYSCKY9y5eRNBEPR9TQM8ecSOI2yEBMrr4Qz/kH2XyfkkEgAwldBqrUa1KtjAm/bgIUkOBmibYCGXEyJXnuehVq+LZ0a0JkoS3Zy4IJlpbiuKk8S9e/cQBAGeS5IGk+uxLbPXHli0I0oQj7eUzbAZDLTYDnrhrfLEbRs/SR6j03kmwAcB/ccH/xFx2Go3fvPkb0CWum9bPDPCYRqGsBsEEIPpuFRyJpPB5MQETDbhdL1cFmWjlGkin8shnU5TSWX2/kazKco5vexG8jcp1p1QLpfx8OHDru95kvjOlQliPvSCpb8cltrjBB4uE8ofh5CJgfD2QoA+bKZhdBTDATbrPRyapqFQKMCyLPhBAMd1RU2JMDVDr42nsJP0/J07d0AAHH0UxaqkQ5CoZdJfUZWv9n7f9nGnnRZ98m/Ba+ijbJGErmlwVRUREyLaSXqMkywJI1LJjJBoM2Imf006lRJdF9lMhg6RaTRQqVahqqrgenBCj8/KB4QpR9quC5vxGrj8aDuSkYtpmnSEbL2Ohfl57D9w4PGkUwf4WhGFISJGDgMA8OfJ80QGL5vJQE+QBfnkvpANrOFRq65pHUcGk4SjQT+CTsbUNE2IXtWbTeiqSqW52eutR8wmhkGA27dv48DBg49tsBYvK3QanNSpdEDom/ibW2xJ8j7EXTog2o/P378WrOPc0nmYSMGBgxgE7+1+F8dL27db87ZOgK5Xl/HBPM8T3USaqgrCIgCMDA9jdW0NQRhifWMDYyMjguCtaxrtbpBlxEEAMLXIoNGArCgwdR3SNpkcWZY3+QMzMyiVSlsC1ieN71RmIAoC+mUAIvVl2Taatg2TEcRyTOQniiLUm01UWSZABtvU8/kW778dLd5uAnxWOecNxISgYVloWhYC3xetQCm2+PuF53mYnp7G4cOHtxAdt0WXc02KDT3ObWqnD4sk0amAErCFm9Hv+3mGQDdN1BPpWb5A2+91oVCgpQFJwtr6+pYShaIo0A0DmXQaKcYniaIIruPAsm0qINV+T5P3kRCkWSS4uLCA2ndIVORZBu864u3EPiOJcd35dDpNy1GgImXVWg0Wi/4kZsiHikVaeuzh6HdabzoLJjh/yA9D1Gs1KmP8iNlEgJUWo6g1K9Avujj1PDPQ6xof5bN2Soj+J3f+KUIppNlZpKDLGn7t2K/2fQyZlXhUTaNjn5kzxjflTFuHl6IoGGYaE4Hvo9xWBpTZgCc+oVJlWhRBEKDRbMLuJjiV+AyV85tsG/Nzc9+6zOJ3yxlwnJbUeBRFaLK2oHQmI3r5LdvGRrVKh3mAOQHFYmubUIfjt3v2nWDqOopsw5FAI45ypYI6q0Wmdrih3759G5Ik4cjhw62/6GPxdIvRvw6+QL9oX/QaG0QEFmntBDEj/9WbTTojgXUT5LJZqvTVxWCVSiWhara+sdHC85DZVDSuK89ZxAAdVsPTiFsUxxIRpaIoSLNFvby42JJ1GuDbhygIECeySZAk1Fm5jytgpkwTQRiiVquhwVPAkoRUOi2cgF5rMtl22AmKLCObyaCQzwsBLG6nHNelDuwONmDf93Hn7l0cPHTokQhp3drcOnY5PAb0pYbI/v587SIur12GBQuyJMOEib926K9hLN0/Ez8IQzhs3gxYzd9krYXdyjC6rqPEHALXcTbHxQNiNDsXi0ql08hlMlAVBQQ0S9NkTkHLvW0L2Ew2NG5laQnlcvlbxR/4zjgDke9T0iAhosd2Y31dKMqNlEqImHwsHyii6TryhYIQDUnWyrakxvtwBDh4xFtgrP+Y9SsTQlBhHn8/X7LjOLh/7x6OHj26ozrhduCpsMfR/tZyPx4hHS4lCEF+n9kBPta0Xq9TFTYwz1xVke2DXCVJEoZLJaoDEUVY39ho7Z1mddqY1Q25t8+dAsLaErcsbAYCajgMw8DK8rLoKR/g2wkeRPBSVxRFqFarCKNI1IQt26Y1fRalp9Jp4fTzjaAb2suKvaCyFsYMU9zjs1Es26YqiEHQVynuzp07iAEc6VRa3EEprx1JzsCTQEhC/ONrvw8ACBAgkiIU9CL+yu7/w7bvjeMYnuehXq9vCklJtLMinUr1NZE2ZZooFgpQZBn1RoMqyKL1fvDZEbz0yJ0CsE6lBiMnAtjals32jjAIsL66ikajsaP783XiO+MMxIwEkmQCNy0LISEoFYt0XkCthjiKhBxxPpfbooAHbF24O3EEkggZ+SiTTqM0NCRq3I7rosa0x8Mei/vW7dtQVBWH27MC6O659/Oax9ZW2AGPUnbghCBOwOmEloWcWEyqqiKTTkNhA0z6haIoGBkZoWm/IBBpP35PwrZebCnhFOhM+jW5sDs5j6auI2Yp32/Toh5gE1EYgiSzPISgVq0iCALIioJisYgqi85BCAxdR5FlAlrGafOSVZvTRwgBHsER9MIQpmkil8sJPYGAzUio1uu0VbbLcT3Pw/S9ezhy6FDXKZy90M2yJO3J484qdmoZ7oT/MPsfsZBoJbRg4RcP/jykSOp6P8IwhG3bQjiI8xMMwxCyzDspU2SzWWSzWSiShI1KhU4/ZZ0ZkCT4bel97hRkMxkxY4FrJXTiSiiKgnQqhUq5DJtnL74F+E4QCOMgoFEcQFM1UQTbsuD5PvXKJYm2igEi7ddtI+S95Vt+vsNzIoTAtm2AEJipFHK5HEAIfKZvzaf3+b4vSChCnleSYDsOZmZmcPLEib4GkHQ4ga0/Ao1qk58bhaEYIcz/rrD0V6VSQRTHUNi44JbxwYrScfOV2MO+U5imidCyqHSzYYihUEEQwA8CIXRCP4TeL8MwRBZAlbobg27QVBXDpRLWy2W4joNKtYosG0DUeZwMy/owUiKfRmnbNjRNa51pzoyDaRhYWVpCLp+nBuRbLjn6rCFmE+h4VsBhRjqKIui6DofNDuHTLXtl6ESbcrw5jVT8fAfw2KwCACjk86JDhYvd8EFbjuNAVZRNCWP2bN25fRsSgCNHjjzCHUFX28FHrxNCYLNxvFEUIWbjxhvMbmyw0psiy5BVtcV+yPzvDh+73X2qe3X8i9v/quVn+wv7cXbXG1TAzHXp8CFCxKj4MAw76sRoTEek2WhQm7XDbEmxUKBOhutSQuHoKGRJgh9F0LscS2WZS9fz4LiuuJ9p09wye4K3GlY3NpBKpVDsdyDd14jvhDMQsQUNAGC1Njch+qEydi+f9b0deMqQt8o9SrRru67QMxfqhKyVTdd1OnSDM9dZvdxj8sSapuHmjRvQVBUHe4nXEDpYh4vmeK4L1/PEf3P5TI/dC74oOj2qyWsMowgxIbh06VJrCqtThoQtdMMwqIgTe7BN06TMasOAaRhUYMk0u9YadU2jSl5hiHq9Tnv/2wg3CtMF15h6W8tpsL7nnX5fpmnS6K9SQaPZBIC+nApVVZHLZOC4LlxmvIMwRIqplAH0Pmu6DrfRQLVS+dYs6gEo4iAACUNBhuODaGw2zjbFptqZmoYUm1q6HTijnrck7tR2xITAYoJpyemcCiO2pZl6p8+GooVRhJA5BgpbM9PT03ju2LHuto6dn882JY/ZCG47bNum3U/sv3ldvb0TIKkbkjz/y5cvby2bdLAdkqpCZfocpmnC1HVobfbCNAwYrEPjX9z5l2gGzZbD/ubzv4FUKoV6vS7a+ZIy4/RypU21wLbASmIdAY8iBTxcKiFaW4Pn+1hfX0c6kxHTLLuBl5B1VYXFgwnXhRoESCWzTYQgZZpYWV5GnrW274R4/nXgW+8MRL5PFzTzyrkTUGMKXwaTCk6xunQ/4IM+CLBlYlc/4DK7AFp6jJNQVZWmuFlt0GcRMB+L+mB+HocOH0aj2aSjO9kitSwLDaaVbVlWi8NCALEx65oGkzGcTdOEpuvUQ1cUOI4j5ExVPhRFUejfsox6vY6ffvghzp49i3Qmg5gtMB4J8Hp6FEXifsdMxtd1XVRqNfjMuAAQLYcSNmvp+VwOWVaPTafTMEyTKrfZNmJCkGHtlzzy0VS1pzHm91h+hMxENpMRY49r9TpM5rRsN4VMkmWk02momkYlZwmhY2oZGYmfUyqVwsrSEgrFIrLbyE8P8M0hZql/sPS+bdtwHQeO5yEGkMlkaCmxLWrrBZ6JfBRHAKBTVGNCFUs7qpOy9LbBOl1834fPlPCiKMLdu3cBWcbI6CiqtRpdU44Dm3U2Ner1lq6b5HnzlmpN12Eyx9VgLbXcOQ/CELquU119ZjMURYGsKGg2m/jpT3+Ks2fPIpPNUnvBbUXCZkTMjli8TAqaDak3m3DW1uAxNVB+vRIhqMo1/Kn078X5ypDx+tDrmJQmhPPCJz+aLLOoqio0TevaEgy0lUoT5PN+IEkSRoaHsbKyAjcIEDUaSKVSfQUTnN/Ena6QUKnpdCpF7YMk0b9dF5VyGalUCqVSqe9z+zrwrbdaxPMECSOKIjSbTThMZRCShOGhIaESuFNIAMBTSHHcl0EghAiBEJ6K6vk+SYKqaVA1DcSyUK3VRJpvdWUFszMzCBIpcs5SHR0bw5RpIp1K0dkIzLtWWIQcxXFHYxRFEer1OiBJKBYKHRcJZ/WnmEpfL3DJZpM5XAA2lcRYatP1PJqlYDoAjUYD9WaTTgVj8qqcOGOkUlTuuVjEyPAwMqnUlqltnW8jbeeUgK3a4NuBEORyORElNZpNSv7s8xh8yhzP7nAiJFe45ETFeq2GVCqFoaGh/s9tgK8FcRgiTowbt9mG6bouVEWBKssYGR7eIlLTDwgg+EH0B/09Rz6T2AUhSKVS2z5/vO6tqCrqQYDy2hoWFhaQMk1cuHCBElzZxsRT1NlcDkOlkrAZ3G6I0lyXdmQAYtPlpdZ28I1dlEV7gBAi2PjcDhFQ+yRJkhhX7LguHNvG//PO/xumZUKFCg0aFKJg/+o+/HjtJ6ImbxgGzFQKo6OjKHKl2H4DQEbU3E5ptOU9oAFBsVjE2tqa4DspfeoD8O9PVVXYjANiWVaLiFHKNLG+tobSyIiY9Pqk8K12BuI4plkBACCEEn0sCwqT/DRTqW1bfjqCp43Y+yRJAmEtZ9uB8wE449hNljASiKIIlUoF5Y0NbKyvY71c3iSiEQKNtShOTkwgk8nQ6N4wRJ2ejyrl58ujdJnV8rnqoSxJLQsiWcd8HGI44o4QIli0URzTUgOLAiRJgplK0WiDtfGI+8DKHI7r0qxHvY7KxgZV4WLnWsjnURoexghTEWzvAebXw/uVZWwvH8zBZU8lScJQsYjV1VVRC0yOSd0OkizTdkVFgcVIP03LEpPJ0qaJ2sYG8oUCsh30Dwb4ZkFYSQ6SRBUEKxXamspKUQZrDd6J7UiuBbR3Jm3zPBJWHiCAyJKFCWclCdtxUF5fR7lcxsbGBmq1msgQcic0VyjQlkjmXCej44jNS6GXJyEIQ0RxLEoSXEynfby5mMD6GHgvybsRs2ArJgQhyx5w26GqKuaDBSxZS8hgc5P9uanv47+Y/D61G7YNu9lErV5HuVzG7MwMJACKpmG4VMLw8DCGh4cxNDS0Zd21DJqSWpVNtzt/bscM00Q2l0NQq6HRbPZN2hQdLMyZ4TNubMeBwTIcfHiaw4KoJzki/VvtDBDfF4u1UqnAajQASUI2m6XEszDc0US8zQNvfRi459prUYdRJEiDnMjC3gzXdbGxsYEy2/irtZpoPymVSjh06BBKpRIqlQquX7+O733wwRbvmwvg8Al9fhjSCWRkU8sbjODT8kBLmzrkYRjC9TzqjXLyVIL0JgGCvOSzaY38ugkSanvs83hmwPd96MwzTnr4SSiSJFQdFUWBytKL7dfYqNfhsZSfbVkob2xgvVzGzMwMwEh5YpGPjKBYLG7Wadn19ENk5BkMfp5CSdJx0LQsDCV0J7YDL9PomgZkMoIpzB0ChXn/hBDU6/UnuqgHgBAnC8MQa2triJitUBQFASMP7hi8rt7BUd3OdlisvCRLklDClEBLlpVGg2785TLK5bLQrchksxgeHsaB/fuRLxbx2aefolQq4dVXX91y/IiV8SJWkgyjSLQ7R2GICECArfVuSZZF627TtoE4piUD5kAnHSZeeuB2g14yabUfAMCChaZliUFu/Bhxm+2K4gj/7v7/DyFCRIgQIkTWyOKXTv4i0lqrffQ9D5bjiMxctVpFuVzG3bt3cePGDUiShEKhgJGREZSY/WhvJe/XGeAzazjy+Tzlqnke6o0GioXCtsdgH0jvL4BMKgXH8xAwNcQ4jpFi/IkaIxLyzMyTwLfbGWALulqtolGrgQAoDQ0JA66wyHhnB+2eJuMp/24qhBYvDzC1w7m5OTxcXESVtZ8ANM0/Uiph7759KJVKKOTz4hwJgCtffoldu3Z1TMNJrI6kqipiQmCyhdtejwvZRsq7B7iITgTA44xgoGWwTxLc2Liuu20EG3P9bfZQ82yEmmQSMxYxb73qFbVLkgTdMBCxtN3I8DD27t0LgDopGxsb2NjYwPr6Oq7fuEG7SJhxkmUZlUpFOAcdhaOS593h2cgyPYHYcVCp1fpONfKoImYRVpYNxSKsFshJQ/V6XXS3PKlF/awjZu28URRhjWWCNE3DyMgINjY26BpmddvHhZbnsa3kyFPiYFyZer2O2ZkZrK+vo95oIGYqh0PFIvbs2UPnbDDhLI6l5WU0LQuvdHAEAOp8K4oC6Dp0Vo8nhIgIXDgLSQIeyz7yKDhgZGeVdW+1g9u4fuwGLyOym0NtoCxDYfeK8xH+bO7PcN2+0fLe//7Yb2xxBABmd9l46Ewmg7HEOOBms4n19XVsbGxgeXkZ09PTlH+h6yCgMxwyp07BMIyegYRwVtqeDZmVC6xmEz5rOe43s5gMxviMApd1G8RRRCWT2b2t1+sYHR3t67iPG99aZyCOIhA2kKbJergLxSJyuRwa9TodV6vrj7agt6k5tyxs9jrH89BoNFBeX0etWsX6+jqdlJhOY3RsDJMTExgeHt7sLOiA1dVV1Ot1vHjmTB+nuHldvHWHL8AkX4BH8GJwEuNTmIzIl/Ta+fUozJlSVZVGum2EKDHMhBEOwzBEipdkkp/b6R72Uc/XdR0OIxGJkaCgkfv4+DjGx8fFZ1SrVVy7do1Gd1GEv/jxj5EyTUzu2oVdExMYHhlpTXUmDFA3FHI5uGxiXa3RwFC/Xj42WytlpijHZUh5LdCxLBQKBTQajYEz8IRAmJGtbGzAZ2OvR9l42iAIEMXxI2UGtiMbiyhUUYT2ACEEjWYTGxsbtGy4vg7LtiFJEvKFAp577jlaAy8WofZwSqfv3cPQ0BCG+yCZ8SyWJNFpjDw3184XEBNHWenPY84Al9tun8jX0W4krptnIfl/xzGd25LkLiXT7w2/gX9+51+2nPuhwiF8b8/3Ol+XJEEzDEQsW5nUkOHaAPv37wdAsxgLCwu4du0aSBxjbm4O8/PzGBkexuSuXRgfH0cmEZARVgbtVVo1dB2ZbBYWK1kYLADoBxIgWtoNXYcsy7Btmwqc2TYdc8yCNMdxxFC1bxLfWmeA+D5cx6Ga0lGEbC4nyG5BGG46Azs6KEuB9/FSXqOuNxqYX1jA3NwcavU6ZFnG+OgoTp0+jdLwMK1DahpyfZBKpu/dQ6FY7CuF3C2V1S57KklSS2+7z6KDVEJmtx1cNINrdPdCyFoW21sGd0ziS0CWZRiaBpcR8roRQOM4xu3bt1Eul5HJZFBiWYSlxUUsLS1h5t49yIoinLHxiYm+avWKqiKfzcJxXTSbTZGq6xfJ+mM6laL68mxR8+mWXOvhSRKCnlWEjCTquC5UVUWpVKKELZYtACE743QkyoH9PPMSqMO+srKCBw8eYHF5GSFrLdu1axcmJyeh6TriOEa+j+6TeqOBleVlvPLKK/2db7fzbPuZLMtUD0BRIEURDF2HJMtdbUK4A7sRsRJpS5kSra2H/+L2v0TDbxXr+s0Tv95zKqHBOntCpp/STdejXq/jxo0bVN8kDPHOO++g0WhgcXER165exZUvv0Q2m8XExATGJycxxLKN2yGTTiPwfciShEqlgtHh4f5IjJIEhXG/AJqZymYyol3S8314to1UKgXLsgbOQBJuswnbthF4Hh0jnM+LL8tnzkC/XhmAHW1ctVoNc7OzWFxagmVZkGQZ+WIRp/btw4F9+2CwjYMz0/s5dqPZxNLiIl56+eWvROzb7pO+TvXBJKS2qEH8vM/364ZBFwAbFNN+TzzPw/nz59FoNPDGG2/g6tWr0DUNo6OjGB0dxenTp1Gr1TC/sICHDx9ibn4esiRhdHQUu3fvxp6pqY7qkxx88/eDAJVqFeNjY333mcuKItKMXKQoZKUcy3HgWBYyuRwcxxk4A98wIs+DxTuOJAnZXE5k6/wgQAya3XkUgud2ay+KIiwuLGDh4UOsrK4iCkOkMhnsmpzEvn37MDY2Jp7zKpOw7qdJ9t69ezBME7v37OnzRHfupIvnecfv3AYdbJ0EYK4xj38/8x9afv7Orrdxcvj5noeTFUUEEr7vd9w05+fncfHiRYyOjmL//v349NNPKf9iZAT7DxxAGARYWVnB/MICpu/fx41bt2i2cXIS+/buxVCp1NFG85/kcjmqMxMEaFgWCtt0VgiwIIIHeoqiIJ1Oo9lswmcl0uLwMHzf7+nofF34VjoDbrMJx7LgeR50w6CTABOGnXuofZMH2xdHh8UShSEWFhYwMzuLjXIZhmFg1+7dmBgfh8oMR7590FGCFLMd7t+/D13XMdXngu7mMHTbhDkEI/jrdgYkqWM7JunT0VFVlbZbMjJSMjJvNBo4d+4c4jjGO++8g2KxiMuXL9PXs+uLCUE2n8fxEydw7PhxWM0mlpaWsLi0hMuXL+PKlSuY2rsXB/bv39Lqx88wn8+jWqshCAJUajUM99kSKEsSokT0xQdUWbaNKI6xtLiIQ0ePwnXdFid2gK8fjUoFISPQZZjGBX9GeU1cf5SsQK/PrNcxMzODB3NzCHwfw8PDOHniBArFolDzLBQKLWQ7kTbf5vh+GGJ2dhZHjh7tf3hQl8xAkkzbjm9yuJkkSfjH1/8AEdnkJWiKhl87/t/29X7dMASJsV3n5datW7h58yb279+PF198EQ8fPhQcEU68lmQZE7t2YWJyElEUYX19HUuLi1hcWsL9mRkU8nkcPHAAU3v3dnQaVUVBIZ+nXLZGo0WIrBd46Ya3SPNjmYYhxLA2ymWUhofhOI6QUv6m8K1zBsIwRHNjQ0wN0w0D6cRGwdtSsNNF3QX1Wg0zMzOYYwt5fGICb7zxBiYmJiDJMprNJlzPg6ZpLQ+GhM0Rwdst6IAt6AMHDvTt7XUtE2zzHu7h75hY2e2Y/B+djvcVP8NgSo1+EAhnYH19HefPn0c6ncabb74pPP8wCITud7vDIQFIp9M4eOgQDh46BNdxMDs7i9nZWczMzGCoWMSBAwcwNTXVkpKVWT1zvVymMrVd+qu3gLT2LPO+8zRL8Tm2jaXFRezavRu+7w+4A98Q6pUKAtuG7/tCiEsEEYSqeSKOH0sQEUcRHj58iBlGBNQNA/v378f+/fuRzWYRxTFqlQpi1nkEbLaa8U1BEIB74MHMDOI4xsEDB/o7566X0nuM8KNKK/c4ID1eh199vnoRF1YutPzslw7+IibS430FViprLY8Zz8FkAk2XLl3C3NwcTp48iaNsgBOXK06qRgq7JdH2ypHRUYyw0u/q6iruz8zgiy+/xNVr1zC1Zw/2HzyIoWJRvI8AyGUyomV6o1rF2MjItgEY/+6TwmmEEOisZOQHAZYePkQunx84A4QQVNbWQBixzDRN6LoORdMEIScMQ3FD+06jtLFDoyiiWYCZGZRZFuDAwYM4cOBAy2YQhqEQCelU1xYM+uTxOzzMD9js6oOHDvV9L7otyn68e/6QPxZsR7Rs+/1OFB01JubDdcaXlpZw6dIljI2N4bXXXoPKvHmACiUpqto588Cul09rNFMpHDt+HMeeew7LKyuYuX8fly5fxpWrV7F3agoTExPCyTBNE7lsVgyI6SRp2unzQIiYr5BM+6XSaTiOg/LqKopDQ1R9ceAMfO1wXRduvU6/F8asb0khS7TtNga+kgZEo9HALMsC+J6H0dFRvPraa9i1a1fLmnMcR3QetX+eJEmtnVBdIvmYEEzfv4+pqalHGlOcxHYBC187j3t08ZbPIRH+8fXfb5EVHzKG8MtH/3pfLX8chq4jjCL4vg9FlvHJJ59gY2MDr776Kvaw7CuXgVe72Q1scsPYf2BsfBxj4+NwXRcPeEDx4AGKhQL279uH4tCQ2HeGikWEq6sIoqhvIrIgfrPP5ddssPkUYRhiYX4e+/bvR8hGtn9T+FY5A7ZtA4l5AwA2SXBt/aJ9b3aJjdoPAty5cwd3p6fhex7Gxsfx2uuvY3JysuPxHMdBDAhRj3Z0Isa0PHQsLXhvehq79+zZkVJix7a5b9q7T55Hlxrao1EI+SHpLIcojnH9xg3M3L+Pffv24YUXX6SpeNY1wR1AdRsjvuV8ZBkTk5OYmJyEY9uYnZ3FgwcPcH92FoVcDkePHMGeqSnkmTphwGqAO+kuAFqjO01VEbOSwcryMtLpNApdlCAHeDwghKBRrdISWqI9V1XVllZivj76sh1tG9NauYwb169jdWUFmmFg39692H/gQMfoLYwi+ExzotuaTxLrJGy1GwCwvLKCZrOJV/slDvbCNuRHYTsetzPQ9tz/x9k/x1xzHki4A//t8V9BSk3TYKZPh4C3GTZtG599+ilc18Vbb7+N4eHhFi2FIAh6b6ic2Nf2uaZp4rljx/Dc0aNYWV3FzMwMvrxyBYqiYHJyEs8//zxM00ShUEC5UoFlWXSUcZ+bt9z2mZyM3LQsVMtljI6NwXGcbZUeHye+Nc5AHMdo1mqQEyQLXddFO4tY0H20jgmw9wRhiOnpady9exdRHGPfvn040GUhc4RBgMD3AUK6Mju5IEfL0Izkx0sSVldWUKvXcaaPdsKWY3eq+W3znq9lFnmPdF/Hl+/w8Kqq4uaNG1h4+BDHjx3Dc8eOidIL/0wuktSLENieHWhHKp3G8RMncPzYMcw+eICZmRl8duEC7t2/T+u7+TzKGxt9Leqk09Fpk9c1Db6qosaMRDsnYoDHC8uyqEAZIOyCWLOJ74e3w+7EMduoVHD9xg2srqwgl8/jlVdfxa7du3uuMZcFEXqXIAIAwBRP407ri5UQpqenURwa2rFmfaeMXXsXUjvix2w7koJsHI2ggf/PrX/e8rpDhUP4uanv05duw4dKQpIkWLaNzy9cgCTLeOedd5DL5baUXfqKriWp+2fLMsZZp5JlWbh79y7m5+bw8OFDHDp0CEePHoWp63DYvJx+Wj8F2rOqEhVc88MQq6uryOVyz6Yz0Gw2ASbPyT27ltY4Vush2D5CBgAQKn15/9493L5zByFL0x89ehSarm+bkrJZmo/PA+gE7kVzI9Nep5cALMzPo5DPb2kn3PYaHiGS3FHk0+8x+el0+J20TbTR9ZjsPb7vi/Te888/jz27d3f8HD7v+7GkzFiNsDg0hGaziTu3b+PDn/0MY2Nj2LVrFzTD2HZRC64A31zaREy4Jrlbq6FWq2FoaGjgDHxNiOMYzXodKssAxqxtsNOz0nf0S6iu/s0bN7C4tIRcNovXWQZxu5p2S2mxx3feInDWAa7rYm11dUsQ8SjZPyGi1uM9j5t43Mlu/Mvbf4h6UKc/Zx71bz7/G5BlpeU9XY+ZuFeLDx/iwuefI5PN4sSJE8h0CeyCINi+LLRNIMFhGAYOHjiAvVNTWFpawr3paczMzODA/v3IFQqwHQe5bdqJk44aAVrKJQAtYRm6DqteR71ex8jIyDcmbf6tcAaiKIJVr0MjhOrOA61ZAWAzzcUUs3oR5OIowszsLG7dugXP87B/3z48d/y4WJztKaF2BIl5471EhESar503wBCGIeYXFnD06NEtizcpwsHTm0mWcVc2cI/zjh8zeZCfHzvhjr/fVt6z7cHn/23bNs6dOwfP8/DGG2/AYB6x2cFJ4oOc+l3U200V4+c7PjaG3ZOTWFxexo3r1/HlF1+gWCphYtcu5HrMthfkQfankxqirmkwDAP1Wg0bGxst0qgDPD7wIEIGEPIgIrlm+brskr1rR6Nex42bN7GwsIB0Oo1XXnkFe/bsgSxtLzkMAA5TKTXZgKFu4OTjbsebn58HZHlLO2H7M9TenSB+1obtyouPm3jcfl0LzYf40/t/mjgfGW9OnsXpkVNdz4m9sKW2DtBWyytXrmD37t147tgxRFGEoAtRt++6u9TH3AKWPdA0DSdOnMChQ4dw584d3Lt/H7KiYILpnEwklBHbwZ0uXgKVO3ymaZqoVCqw2QTbb2qa4bfCGajX65CYqhuPAjsuaEkSfbmdHm4CYP7BA1y7cQOOZWHvvn04duwYsn1OmeKwXVdkBbZrtZHZOXV6iJaWlhCFIaamprq+n5ca+N/i59JWFcS+vfuvoT2o26eKlDlJaJSzTbLbsqpWKjh//jwUVcV7772HbCaDWqMBwoRE2hdvX2UCfj4JxnY3iJ5qWQYkCbsmJ7FrYgILDx/i2vXruHX9OlaWl/HymTMdxVV4dipOfC+dDEkmk0G5XIY1NIRGo4H8NhMiB9gZoiiC1WjQrIAsA3G8NSuQ3CQT2hDtcF0X169dw8yDB0iZJs6cOYO9+/ZB2cHmGLAx5aRHaVGcFj+nLpvP3Pw8dk1MbPvMt9sNHmmK8kMf5/91EI/by2i/f/0PQCckUOiyjv/u+N/ezHRgUyGx5Y4k7w8huHL1Ku7du4cjR47g+eefh+/7sFgHSSdnIPD9viPr7exGzDZwnlkyDAOnTp3CkSNHcPPmTczPz2NpeRmHDh3Cc0ePdnSsOBcKbc5OEqpEZZQ3ymWkM5lnxxmIogiOZUGPY0jswdeZ9r9A+03tED3ato3Lly5hZWUFk7t34+233uquHd0jve35PsIgoL3jfaR2hfRmh+PNLSxgiE3hexQk0/DcCeLlhWQaTvTefx2ZAZaJQftn0pMR8qL8E7s5RhxLS0u4cOECisUi3njjDRF965pGlbg6EH5c5pwZfabaew4xShiblmdIkrBnzx6MjY/j5s2bmFtYwA9/+EM8//zzOHjoUKszlOggaPnMNj13RZah6To21tcxVCoNnIHHjGazCSmKoCY7Sbo9I5LU0ZEmAObn5vDll18CkoQXXngB+/fv7ygNvN2qspmcrJlKbeuQ8w2lU2q63migUqngOdYetxOI4CJxraKlDmi1e9x29XCSHhXcYSaE4OLqJZxb/gTAZsDwXx/5rzCemRDZzu3sRhRFuHDhApaXl/Hiiy/iAGu11DSNkozZ/IX2kq7juhgZGenrnCVZhtRhbbdcE7beJ5M5j5OTk7g7PY2bN29idXkZL7300paaf4zWYVGdeGeQJGRSKaxubKDYbMKyrEfeQ3aCJ+4MeJ4HmUlXcgJcz/oqe3iSafbZ2VlcvXIFqqri7Ftv9UzTAD08QEJES1C6zwE2sqIAbLogEpuY63lYXlzE6Rdf3PYYXZHwHqW2rEDycUxqgbdEqUliTMIYkLY/Lb9rO7ZgY/M/2Hrv+jUh09PTuHr1Knbv3o1XXnml5f5qTFUsDAKQNiERx7ZhGkbfGY9eo0qTP+vkNOmahn379qFYLGJhcRFffPklHj58iJdfflksSCJJW52NDuloSBIdbdxoUB3yHZLXBugNz/Mgs6wAaecKdMqiJco6AHUyL1++jMXFRezduxenTp+G8Yj1WZ89u+gziBCjdTs4A3Nzc9BUFeMTE490Lp0g7kQnh4jfF3Yf6csS6ycZlHC7Qd/Y8jvC7RQgHGOCGP/42u9T2WN2FkVjCL989Jdbgp1eq0KokdbrOHv2rJhdws9T03XEngc/CJBqdwZsuz/tEIZ2ln8ShGcGuqzh0dFRxIRgeGQEs7Oz+NFf/AVOHD+Ow0eObA6r6/B9d7JViqpCU1U0G41nyxlIbs5cUKIr+CYnSS3ZgH379uHU6dN9pZK7wfV9RGEIWZb7Jnwp7FzaMwMLDx+CSBL27N79yOfTTjbZDnxjb5lTLkmtC41HDckHukc9tWMUnTzc1pPodGL48soV3L9/H0ePHsXJkye3vERlExDDOEYQhi2CUvYjDO7otqiF+lePTTmXzcK2beyZmsLuyUncuHFDZAkOHDrUcaIb0CE7ENN57XyQ0UCA6PEhDEOEvg8DdOMhQOu97bLp8QFccywbIMsyzp49i8l+N95OWUVCBOE41W8QwV4Tk1byMQHlC+zZs+ex9Pz344DyzAG3ZRztmTMgsd6TpUv+kg7r7cPFn2G2Mdvys189/itIq+lNHhG627cWNdJ330WxWNzyGl3T4LMSTdIR84MAARuy1je2CSQIumdeFUVBNptFTAieP3UK6ysruHrtGpaWlvDSSy8hk812z36wMlfyPHRNg21ZsCyr//P/CniizgAhZNO7Zx6nsY2sY0zfiOXlZXz66afQVBVvvvXWpre4DcGnF3g6Om1u1crvBok5Lu0bxNzcHMbHxx+fNv0215Xs0f06Wgt7djf0KLtEUYTPPvsMKysrOPPii9jfQ0mNlwqCIGh1BixrRxoN/Jy6tVhtyX60gS/qeqMB6Dq+98EHuHHzJi5/8QUezM21ZAlaPpKQlgFOhB1LVRSxqAfOwOOB7/uQWKRGQO+91taG3OmZDYIAFz//HMsrK9g7NYUXXniBrtGvYDeCIEDEOqG6DQdrhyzLNC1N6NRRnvUql8toNpt46aWXHvl8pLZ/b3dlX5fGgBM6+Hf3/qjlZwfyB/GX9v4XW17baT2ur63h/CefIJPJ4M2zZ2F2sQGaqkKWJIRR1EIYFFneHWQGgN6BBD3Z7tYjm83SVtc4xoFDhzC1dy8ufv45/vMPf4jjx4/jyOHDHd/PifNJGLqOSq0G27bFCPevE1/v0bdBEASIgwAyIeJGCLJHIi2dRK1axeeXLuHu3buYnJjAz/3czz0WRyC5oHeygSss8k5mBppMY7oXcbAftDCEt7m2ZErvcaWik557L3RjMruuiw8//BDr6+s4e/ZsT0cAYPU/SYLv+y33095hqo+jkwdP2khA3ZDNZqn8MSFwPA8vvPAC3nzrLdi2jR/+8IeYnZ3t+L4tkZUkQWMevs3GSw/w1eF5HmRsPqN6cpx5F37AzVu38OWXX2KjXMYbr7+OV199dcfOeqeV5XoeAJqZ2InBVhLZAY75uTmkUqm+69zboZ/1+3UMNyOE4M/nfoBG0DqV8L9//jdbphJ2ywzMzc3ho48/xvDwMN59992ujgAAscYkSRITWQFaIpBANUZ2hPZsKj/HbTIDYL/L53KQQPeBfD6PD773Pezfvx9Xr13DTz/8UHBLOn1u4sOociIoN8bnOhpfI56oM8CzAjxSUxRl00h3WNCWZeHK1atiNsHDhQV89LOf4fr16yiXy33pWgOdF7THFzSbNd0v5A6Zgfn5eSiKgl2Tk30fpxc6kVbaWbed+o9bfp/4m2cR+nWd2utkW8hzbecF0PTeT3/6U7iui3fffbelztcNiqJAZRFTkFjUtuPsfEF3gcgMbOMwtS9q3/cxOjKCn/v+9zE1NYVLly/j+rVrne9F26LWNQ2O4wgPf4CvhmRGkTPQxTjzTkEEIZi+exe1ahUE1PG/fOkSPv30U8zMznY3zp3Q9tzwtjZCSN9ZAXEoWaaBBLMdESGYX1jA1N69OzpOL/RdXsTWEkCnNH7yee917CVrGR8+/LDlVW9OvokXEq2E3ervN2/exMWLF7Fv3z6cPXu2r9ZAXVWF3eDnaDsOJGDH3wvQOVgQ3IptbIcYrEcIGs0mJEnCqVOn8N6778K2bfz0Jz9BrVrd8j65zW7IsgxVltFknKOvG0+0TBCwrACvdRvJBQ20LLxqpYKPz52DLEk4ffo0dF2HLElYXlnB7MwMbt68CdMwMDY+jnH2p+dDkCAYRXEM3/MeaUHLbd49AfDgwQPs3r37K4+gFMsosQDj5AOZ2NAjVjdt71vt5BAkU4e9FrQYptH+WsaR4G18aHMU1tbW8Ekf6b1O0HQdAe8b1nV4bJznjssE7LzadQc4Z6Cf7EkqnUaDeeWWbSOfy0FRVZw5cwbZXA7Xrl6F7Th46aWXWr7r5BAjEbUQgka9jiAIBqWCr4goimhGMYogKwpktLWdthnVK1euYHp6Grt278bIyAhMJiy1vLyMi59/DlmSUCgWMT4+jomJCZRKpe7RX5uj4XmemEGw0/XenhlYWV6G53nY+xUzii1gfABB+OuAiHUMtZTVOtiQdrGc5O/a8a/u/CEiEm5ywSQNv378b7coQG7hJ8UxLl66hPn5+ZZhQ/2Ac46CKBKcI8e2qe15hEyphK0lFtF1sU2wKEsScrkcyhsbaDabyGYykGUZpVIJH3zwAT4+dw4//fBDvP7GGxhvI7vz74B/H5qmwbVt2Lb9tbcYPnHOAHhLiCy3as8nvsDlpSV8+tlnKOTzOPPSS6gwr2pqzx5M7d2LOI5RqVSwuLSE1eVlLCwsAACGhobEAh8aGhIPX/sG5jGugNYudNQHZNarzvvOq9UqGs0mXnjhhZ3fEGCrXCpJsP47nPvmyx4/X6BXaSLZzZHsuZ+dncUXX3yB0dFRvP766y09vgToOPY4CV3X4TgOgihCFMd0Lj0eIdXHz5NeyGYbFXOa+iFnSZKEdDoN3/dhO45Y1BKAw4cPI2Wa+PziRbiuizfeeENcKzeW/Co5obP5DRGBnnYQQiARgjAMYSgKtRsdeCu8HW3x4UO8+OKLyLCBVOlMBpO7duHYsWPwPA8rKytYWlrC7MwM7ty5A03TREDRHlS0kHrjmDoDhDySwiR/LnhmYH5hAfliccctqMnNut12xOhM7Gt5/2MuE3yxdhmX1y7DhMmbCfGLB38Bk9nWTGnSofBcF+c/+QTljQ28+sormJqaot0JiWvpeRWSBJ2RdTnn6FHLi/x4yRblZOa3n9btVCpFO+TiGJZtizZ3wzTx7jvv4NNPP8W5jz/GSy+9hH379rV8Lu+YA2i21LYsob/zdeLJdhOwKU2SRIeLyMkSAcPM/fv44osvMLlrF1555RXEcYxqtSpU6ejLJZRKJeo5nTgBx3WxsrqK5eVlTE9P49atW9B1HRMTExhnU6nERDyWcnyUrAD/bB59xlGEufl5mIaB0dHRru/hG2in6LR9+BF/7Xb4WnqFO5QeOoFnCK7duIFbN25g/4EDePHFF7uycnkbE7DVQZAkCaqmIWazIXgKd6fdBImTo98POw8+ZXA7w8fLKalUCvV6nWog+D5lK7MFu3vPHpimifOffIKf/OQneOvtt5FOpaiyWMKQ8M/yHEe0zw7wFUGo3LgBtNb92XPkex7OnT+Paq2GN86exa7JSayXy4Akbfb2sxLO1NQUpvbsQUwIKtUqlpeXsbq8jIs8qCgWMT4xgYmJCRSHhsRHeUGAiLVFP8o49WRWMQhDLC4s4NiJE70vG/3ZDv7afqzB4xxwFscRfu/a74tPjhGjqBfxy0f/esfXS5KEZqOBj86dg+s4eIcNG+KZjC3WI5FVaLctmq7D9TyEQYCYEFiO8+jOAFoDCV5abenU6gD+/RBCkEmnEdRqcBLOAAiBoqo4++abuHzpEj6/eBGObdOZLJx/hk2nU2YzLL6JjoIn6wwQgjAIxJjPloeXEFy/cQO3bt3C4cOHcerUKcry5BFpHFMyGI8IEuShlGli/9692L93LyJCUCmXsbyyguWVFczNzUECaFpwYgKloSFIbOTpo2pAc08ximM8XFjA7j17WiLnlvMDP83+F15f7UE8M/A4nQH297afHUX4/PPP6SzxU6dwtAtjlh2MHrtHrV3XdQRBgCAIKAlIkr5Sal08I4SIjaCbZkFyMQPUYKfSaTQtC5Ztb+khHx4ZwXvvvotz587hpz/5Cd48exaFxOxz/vmSLMPzvBYuxACPDhKGIFEkAgkCiHtuWRY+/vhj+L6Pd995ByW2gauKQm0ICySS74EkQZYkDJdKGB4awsnjx+G6LpZXV7GystISVIyMjmJiYoJmAyTpkedO8KxiHEVYXl5GGEVbWpE7yZz3azv6CSJIYsN9HJmBP5/7AWYbs8iBZzcI/taxv4W01rlPvlKp4KOPPoKiKHj//fd7Do9jJ8yOuvnfEtswFdaWHrOskWPbGE44bztGIpCI2F7TS+tE8LEYeCARxjFc14Vpmi029aWXXkImk8H1W7dg2TbOvPQSZPYccpvPM5iNRmPrBz5mPFFnIA5DRGFInYHk8CBJwu07d3Dr1i2cZnKPHGIOuCQhCEO6gbcvjoSDoAAYGRnByMgInj95ErbrYmVpCUvLy7h96xYC1ooyPj5OFejGxnbsFMiKAgQBKtUqLNvGxMREq0f7FTbofhZ08nVfR5mgl/EJfB/nP/kE6+vrePX11x+NNNlW01QVBZJE589btk35Al/FyZFoh0XIo/LEImsBM4xbZIXTaTF9MOTPXAK5fB7vv/8+zp0/j48+/hgffO97m5kMdixl4Aw8VkSJeRWStCkC5QcBPvroIwCgm0uiBVRWFFpeYATkrmD2w0wEFTEh2GBBxeLiIuYePEBMCPL5PKb27MHk5CTyOxxVrbBNLCIEi0tLyBcKMFOpx2I7+n2XyCjiq2cGrKApphLyBP9Udi/+codWQoAOG/r8wgVkczm8niiz7QhtPAdVVRGyUoFt21+ZeMwDCV4m6FZebHcEAJriT6VSsBwHluNQBdW2wPW5Y8eQTqdx8dIlqKpKy8ucD5bIYDqW1VdQ+FXwRJ2BkDH4NU2jM6XZz5cWF3H92jUcP3asxRHgkNlmEUVR9weoy01LmyYOHDiA/QcOwHZdzM3NoVwuo1at4uHDhzQ6GBkRXINcLtfxC+ikZLe8sgJFlnc2xnI7SP21Cn4dZYLtWjWtZhPnzp2D73l4lwmCPA62PGfRRrKMWrWKNDPo/Mr6c49aIWqzhHRc0C2zBtqgaRp0TYPHiISFQmHLawzTxFtnz+IvfvITnD9/Hu+/9x5kRWlhIBOW7ntcbWPPKuIoQhQEkNBaIiCE4LNPP0Xg+3j/gw+2zCTh3UqPUqqRJUkEFcdPnMDa2hoWFxdRrVZx5+5d3Lh5E6ZpUrsxPo7RsbGubYvc8eXPRBxFWFpawv79+x/f+u1Woms/l8dYIvjDO/8GNb9Kj8dW66+e+BUxlTD5mVyNdM+ePThz5kzfQc924EqmtVoNBKD2m3/uoxyQpe6jOEaMrc5AeyaxHZlMBrbjwHVdxGEIuQMnbWrvXoRhiC+vXEGhUMC+/fvZR0sie+R5Xse5LY8TT9QZiELKNlUVRSyQeqOBC59/jl27d+P48eMd38e/kCAMsW2CrgOxiMP3PAwNDWFyfByZbBZWs4nllRWsrKzg5o0buHbtGtKplKgXjoyMbKYkE3VuziJeW1nB2Pj4jkmIvdBvu+TjJgEBvcsElXIZ586fh6breP+DD5DJZDYj78cAVdMQRBHqjQb2TE211g8fwXDxFq5Oqb6Ibdi9kMlkBJEwn81SxbA26KaJs2+8gQ8//BCfX7yI1159dctx7QGJ8Csj9DzErFafLBFcuXIFa2trePvttzsOJ1NYvTeKoo7p9xa0EfGSiKMIsiRh165dOHH8OCRJwnq5jJWVFSwvL+PBgwctQcX4+Dhy+fwmhyZhO1RVRbVahee6mHiM8sP9ol+G/HZYbC7ij+//sfhvCcCp4dM4Nfx8y+tIHOPKlSu4d/8+njt6FCdOngRhaf3HAV4K4mn1fC7XslGLuvx2338CMntmQIiwHXy/2s4+66wEHvs+LMfZMquA48DBg6jVarj8xRfI5XIYKpVEdkACI7k/JoepG56YM0AIHVec/Dp838f58+fp6NCXX+7qrSqKAiTTvtuBHydxM+M4RuD7ACFiAE4mm8WhbBaHDh1CFIZYX1/H0vIylpeWcP/ePUiyjNHRUZE14PUtRVEQhiEq1SrObCOssxP0M4GP43F6+ImD0mO2/fjhwgIufv45ikNDdNgQq+c/zodVVVUEYQjPdVFoX0DJz5Gk/jx/aXPipaIodCFLHWYMdAGfYBlGEWzX7UpMKhSLeOXll/HpZ5/hVj6P5557jnYwMOKi57p9fd4APUCofC+P8mVZxszMDKanp3HmxRe7knd5VBVG0c4cyraAoqWdkB1zbGwMY2NjOHXqlAgqlpeXcf36dVy9cgWpdFrYjdHRUXEusqKgvLEBTdcfe+tYP2nlx1Ve/IMb/wQh2dzQVUnDLxz8hZbPD8NQDBs6c+aMGDbE+TxfqRTIIUnQVBU2U/vU27hGnCMhpKmxvX1Nbvh8lPVOMqDZTAaB78NxHGRYR1InvPDCC2g0m/jkk0/w/gcfIGWaIosVxzECz3tkXls/eGLOQOT7wlOPowgxIfj0s88Q+D7e/t73eqZDkmWCHSHhFLiuCzDyUafPkhUFYyzdd/rUKTQtC8vLy1heWcE1tsAz2azw/CuVCmJCenYRPAr6dQT6JfvtBO1jUAmh4i1Xr13D1J49ePnll1ui7K7dA48AVVHobHhJQqYXqagtY9BJ1pMjZm2skiz3lQ1IQpZlpNNpNBoNymPoUYuc3L0bx44fx42bN5HP5yk7WpYhKwq8nQjcDNARke9DURTqnIUh6o0GvvziCxw6eBAHDx7s+j4R1XWZcNcTiTquy7qPOpFaCSFIZzI4cOAADhw4gCiKsL6+juXlZawsL2N2ZgaSomBkZAQT4+MYGhpCuVzGyPDwY5eb7au82MXh3wm+XP8S55fPt/zsgz3vYyw1Io7rOg7OnT+PZrOJN8+ebR3CxDhgjwuqqsKyrJ6j65M6Lbw2380acClg4UjssBRqsnkVURTB9byumimSLOP1117Dj3/8Y5w/dw7vvvuuCHgVRUHTspDejmD5FfDEnIEgsaBjQvDl5ctYX1/HO++8g8w2pA8e2YWPSsaSqGxlTAjSiQXNvcW4faOQJGSzWRw+fBiHDx9GGIZYW1vD8vIyFhcXcf/ePVHuWFxcxO7dux/blKm+PFc+dpMZK+4kJWtZyX9zacuAte8l2/r4kuSkLJ5OJXGML7/8EvdnZkR6r93YPFZqiyTBsW3IO2Frk01Za4mTEvmvWPdJLHWWGu0H2UwGzWaTzq33/Z5Stseeew71Wg0XPvsMb7z5JhRFgSLLA0nix4AoCIS2QLPRwPlz51AqlXDq9Ome75OlzSFeQRDsXBSMvY/EMSRZhp4MIpIbRWJdKIoiAga88AKazSZ1DFhQEYchwjiGIstYXl7G6MjIYykz9uvmkjgWUa6wG/x6uKPN/p20G77vs3R7jD+4+k+hQhWfmdNy+Mt7/pKwp/VaDefOnQMB8N6779Jum5aTeLzpb03TYDkOhopF8V31QnsQI/6bfY8RC1Y7tTP2AxFIMEnyXgJqumHgzTffxE9+8hNcuHgRJ48fByGEOgONBsb6UHJ9VDy5zAAjD+qGgaZlYXpmBi+cOoWR4eFt36szBvGjMrNDNnJYlmUYui4WcC8iSBKqqmJychKTk5MAIag1GvjRD38ITdNw/do1XLt2DblcDhMTE5gYH8fw8HDf43fbwTd3QojY9CO+sbGfhWGIpmWJFrbtwLXUXdeF1SPt5Lku/CCA4zj4fHoa5XIZJ0+exN6pKSoHyz6PG9nHLbRr2zYymcwjkRJblNQkiY5GjmMonJTzCFAUBaZpwmHs4J669pKEl19+GT/60Y9w6+ZNnDh5EoqiwA8ChL4P9XENsHrGwAl3PCC4c/cuCIDX33ijLyEpVVXB5188Skugx5xnk81CEDaDbx7bRLjtQcW169dx584dNJtNfPzxx1AUBWNjY5hgeijbttp1ASe9CbuRsBfJn1m2jSAM6Qa/jT1N2g2erj63fB7VRgVFFMXr/sa+v47IjdBEE5VKBdeuXUMqlcLLL70E3TDguq4Y1CTj8bZDA3Tzdh0H2T17qBrhDtdakvTLNSAk1qnwqEgzNVPP91uGKXVCLp/Hi2fO4PMLF7BrYgJmOg1Jkr52rYEn5wwwwoih67h+7Roy6TT290jxJWEYBmS2oHec7gONjAmoUyHqR/yXfBPp9wGVJNoiGUU4deoUikNDaDabWFlexvz8PO7evQtVVTHGepPHx8c7trvEzEOPwhARS2MGjDW9HUlFDBrpEOGLmjrrSpCwWTtVFYVGIYnsQTJ1RkAzODenp+F6Hk6fPo3h4WFqEDsgiiIquKMokGVZZH6UR0wDNhoNZLNZRNx528n33BapcclVPnzoUcspmUwGruPAdRzEuVxPx0JRVZw4cQKfX7yIarVKa8KE0I6EgTPwSIjCkDp1igLLsrCwsIBTp09vO+2UQ9d1yI4jZpHsBIQQMYdAb5+F8AjPk6qq8D0PBWb8AaC8vo7llRVcuXIFMSHI5XKiQ2FkZKTjGoiiiP5J2I8gCPoqowquEVPWRAfbwQduqeyzeWnVCWz88cyfIEQEif1vV3oX3ph4A7ZlY219HXOzsxgqlXDy5ElaJutw33mAI8syFG432N+Psk7r9ToIu3dhEOzMGeB2AwD4zAieqv8KzoCmaTBME57rwrKsjh1JSUzt2YPpu3dxh/FgAMD9mrOKT8wZ4LUQq9nE2tratim+JGRZFgQz1/O2LSu0w/N9xHFMvVvSppXdll7uB8srK9A0DXkmNrNnzx7s2bMHhBDUajUsLy1heWUFl7/4AnEco5DPY2R0FCMjI8jl88Jrb0fMNcOx2WbC05zJv8MwhCzL0DWtK1s1CZ7uS6XTm8pYHbCyvIxbN28CkoR33noL2VxOzF/n6UUeZfBzjeK4dS43g8pq5nyR8witKwhBvVbDXtZuFYYh9H6cgWR6E9hM9THnU9U0KhPKOgt2CtMwqLBJGMLtQSTkGB4dRS6fx8zMDEqlEiUfDVQIHxkBe3YVWcb9mRmkUilM7oCFzwMJ9xGcAZ8pDkpMOp2w77HbcLDtQOIYy8vLVKRMlpE2TZSOHsWRo0cRBAFWV1exwuTVp6enoSiKsBvDpRI0Xd8sEbYfm/0tsSBAZhk8iW24yZ9FcYxsJrPtpsnXUCqVQjabxb+58f/FfDDX8pr/ywv/E4YKRTyYfYDZ2Vns37cPp06dEqQ7wm1H0oYAoqOgvaeA27ykk6AyAnk31Ot1SKCOexiG/Tlr7B6222HOLyGgG3q/2eNOyKRS8FwXjuehtytAz+PQ4cO4cOECNjY2MDo29rUPOXsizgAhBHEYQgJw6/ZtFPJ5jI6MwLXtvhWodF2H43nwduAMENASAS8v6Kzu2E4IEez05EPU44FaXl7G2Pg4HVDDHni+CAuFArLZLPYdOADHtrG6uor1chlz8/OYvncPmqqiVCpheHgYwyMjSKdSkNn0PnDpyz4yAzzt9riwurKCTz/7DKlUCq+/9hry23iyhJUrgiBAyBZ5zKIUAiDs4CQozKlTmXJYMsp2XBdBGKJQKEBiDk87M7jl87dZpGEYIgZLE4M5V+z72klURwiBbhgImTxxL2cgiiKEQYCDBw7g888/x/raGsYnJvpuFx1gKzhPqNZoYHVlBcdPnKCbyDapV4Cuf0PXRZmgn3qyeC8h8FhG0dC0rlyeLZ0tPexGeWMDvu9jbGxMpPU5NE2j7cyjozh67BiqlQrW1tZQLpdxjU3LzGWzGC6VUBoZQWloSKwjhbVq9/tUi372HWDJWsYf3fvjlp+9Mf4GTpdO4/OLF7GwsCCUY/tRMPV9H2EUUQ2JOKZ9/Yk/SSdBAo3SVRZUtDsHtVpNTA4MggBht/58nhHFVq4HB295VBOO06MQpSXGfeLEd5/NT+gG3/dRLBYxPDyMe/fuYWRk5Ol0BvhmvL6+jo2NDZx9802a9g+CbRc1/wp0XYcC9JXuS5LoPM8TXQRSDwYp0MPjTyxwz/OwUS7jpVdeoQ9JFIlZBwErHySVFcfGxzE+MQFFltFsNlFeX8fq2hpu3rwJSZI2hyuNj9NMA9m+l7VliNFjwOzsLC5fvozhkRGcOH68v7kAzHMnkgQ1eb7s/OMoEk6CKIXEMSLfF2UHnvFRFQWVSgWEECpkxCaRoc05I8m/eyCOIto9AAjDQTjZkDltO1ncKdOEbdtdyyUc/DkYHR3FyPAw7t+/j7GxsUFm4CuAG+e7d+6gUChg79QUXM+D06OHW4DVfXn62ekjs8Ofi5gR6FpKBD2QTLV3e7KWV1ag6zqGSyVYtg2fkaoD5twkjX86k8G+TAYHDh4EiWNsbGygXC5TXYO5OeiahjFmN8bGx6H3yBq0XJ84zZ1Zj39y458gJJscA1VS8StH/xY++vhjbGxs4PmTJzExMdHXcfk8kvYSCOdL8bkvIY/SeRYhDAFm/5OOQa1WQ7FQgMoGF7XsKUkHoI0k3gkhC1p5iUCWZcHF4B0G/YJPIYx8H57ndXUGIuYcEULw/IkT+MnPfoalpSUU24mXjxlPxBkIwxCEEGEcJycmYDsOHPan56JmkbKh611rUBz8a0p+YbzmZ+ywX7ObY7CyvIyYbVqWZYmINmkw5EQLY9IY5fN57Nq1CwAl6y2vrGB1ZQX3793DrVu3KBN5bAyjrIe5mz6/aA/6ipkBQghuXL+O23fu4MCBAzh48GBrdqT3m+k5oM1xYhG4LMstDxtf0BFb1NxR8H0fPqijyO+XyzaAIAyhsQFTO/HLxYJO1CCTC5lzRvo9pmEYmx5+l66CMGHQ06kUnn/+efzso4+wuLT0yGnGAWggUSmXsbGxgbfefhupVAqB7wsCXNdoK3HPDcOAywxyN2dAbBbsfUEQiAwc31iSU+16Ibl6kt/88tISxsbH4fs+Gs0m3fTang0+zZVvdJwfNTQ0hEOHDoEQgkqlghXWoXDx0iUQQmWSx1lr9FCx2DHyT2bTduIM3KjexMdLH7f87L/c81/i7oU78D0Pb549C90w+s+6dPl8PneiHZwjEYYhzSbEMcIoEjLTtXode9jgqZgQBEFA5wI8Qoo/jCKaUeSOSoKXxY/Xj1PAf28aBjz27HUr0XoJByc3MoJdExOYnZ3FoUOHdnTuO8UTyww0Gw00m01BnEkxckUQhn0tap3V/vgG0m6Qk20xHBF7YJIyphLYlKgdnL/E0kWB72NhcRFpVpsSxDRCp6FpfPPvg3himCb27duHffv2IWae/+LiIpaXlzH74IHIGkwwNcRCQgddqA9+BVZuHEW4ePEi5hcWcOr553H4yBE06vWuC7XDTRH3pp8Fx71kMfaXEOoYsEVeq9eRzeXgs1IQZ+Fmczkxu6BfiFRf4ntoP08RIcmyUCrsdM78O9bZhDTP8zo6A7wmrWsaFFlGsVDAUKmE5eXllnTwAP2DR4orKysoFAoYGx2l6ddUChab+a4xpb8t7038m8ufd+INJB3EJIJkiSDBMdqxW8ec4GaziY1KBROTk/CZ7SCEiinpui4c4e3S95K0ObH1+IkT8FwXi8vLWFlawvT0NG7cuAFd14XgUTKoaG+n6+v0QfDP7/3zlp9l1SwmFsZADOD9Dz6AruuwbLvv8ttON2heCuHrjndUhVGEZrOJ0PeFYqhlWcKJ4wFkv4iZowFChBPGeWVIOFGkw7+7XaNpmqg3Gi3OZRIiiCAEGcOARAgOHDyIpfPn6dTNrxFPLDOwsbEBWVEwzFoJJUmiQx22WdQcMttMvCBoMcjdFjNACUAElESW9FrlPj38kDkAvJwBANVqFUOsXpfNZqG5LlRdRzaT6X8jbb82Wcbw8DCKxSJOnjyJpmVhZXkZy8vLuHPnDm7cuCF00McnJoSmwaMy5H3PwyeffIJqpYLXX3sNu/fsAbDD8sNXjHZ5qlDVNJA4RrVSwe7du6FpGnUQfR+u51FuBKhB5xHTdte9xbtH93slJmF24mq0RZfcSWnPY/lBIOYgcMMbE4LhUgn37t2D/wjktQEgyGAbGxstOv6GacJ1XURxDM/zOrcMJr5Pk0Wt7VnFbmUnAjquGIS0KMD1+8TzkqHPMhgxIVhfWwMAFItFej4sik2lUpuByiOsZ8M0sW/vXuydmkIcx0LwaHllBfPz8wCAUqmEcaaEmCQl94M70l3MWrMtP3vRfxEjQyNCjZQ/3/3aja9a3pRlGbquQycEa2trCOIYoyMjgiwZRxFsVoaR2XRaXVW3dQw4yV1t4zPJktSxdEsI6RhMJJ1GjZVDojDcHImeeL/L1C0NTROfmUqnYRgG1lZXH+0G9YknRiAsb2xgpFRq6Q02DAOO6yKOY1iWhUwm05Opq+k6ZNeF63nI5XLb1pBFza8969BjIRBC4AcBnZPdpp9N4hh2s4njx46hkM9veqjMsxPpI0mClDivfhcef106lcL+/fuxf/9+RHGMjTYddDCi4uTEBHbv3o38No5UElaziY/PnUPg+3jnnXcwlNB54Oe7E3LRoxiwZEujJElosgmBY+PjSKVSouvDY0InBHTD9dmwGk3Xu3r9vMbIywTiPLGNJ59QHePnGJPNzhPTMFAHfaaSHj7vcSa8lMWzN4RgqFRCdPcuFhcXse8xylY/K+DdOb7vUxEfBgk04rJsG47jdB5HnvieeVYxYNPttmOJh6ydkWezxOcyp7Hr+5hz4ntey+YhAWhaFkzTxMT4uGD1O66LMAxbI/e2KHQnkCWJEpOHh3Hy5Ek4rkvtxtIS7rKgQtd1jIyMYGpqCmNjYz1JbW7k4VP5QsvPimQI3598H6++8ppYf486Tn3HxLxk9pd9Vnl9HblsVpSa+b3mZxJHEbwoggfaAm1oGjRGKm1H1CGjyI/Z9ZTYc9JyLW2BhanrsBm3LOkMuK4rgoj2bGNpaAhr6+vb3ZGvhCeWGahWqzh54kTrLyQJmUwGzUYDfhBAdt1Wtaa2B8XQdcjYJGr1epAitlFL7H0tH4utjgaPMry2haypqhg+sbq6CkiSmELH2+Z4OrPF45YkoWAlnII2x6WfFiWFzUcYHR3F888/D8uyMPvgAdbX13GHjX1OpdMYHxsTacFuhMxatYpr165B13W8//77LbK/LZmSfhY1f32vxUwICFsYW9jO0mZ/c7lcBmGRNEAXIx9VzScYBkGAkEVZvu/D932o7LtJZgu4A9epZ1mSZdEe1o729F87NE2DysheXGI0jmPYjiP0DHTD2GxZimNkmIc/NzeHs2+91f0+DdARhBAsLy9DliSU2sTJdNMU0bdlWaKc1Amcw8OdfDEorQv8DiUCgQ4ZJD8IqGBXIniQJQmarovy4dVGg+oGMCdSzE1IvCdpO/j1i98BYi21n5NwYNuuI2Wa2L9vH/bv24cojrG6soKHDx+ivLHx/2fvP2MkS9PzUPA5/pzwkZHeVGZ512W6u7qq2kyboXhpJPJqhoIA7XAlcFcr4gqgsBhKlFb6QVCC5gpDCJTu1RUhgMASK1EC7/IOr4bLoTQz5HRzZtp3eZPlTVZV2sjwcfw5++MzcSLihMnq6unq7nwbjarKjIhj4nzv95rnfR68/957EGjwwFoKnUnF9cp1WIKJKIfn35j+JZw8cTrWdw0TvIQ9MujIxbQCLvZn5zVH/r6xscGrzQCd71dVMrppGIR1lSVsvg+TUgQrqkqy8cgzE51AitpQNM8dyUTUdF1Hs4PrgsmbM4yRSOWt2fXmR0bw6OFD1Gq1ocbHH8c+lWDg0aNHCIOgi8efZW/JZBL1RoMzVekRpxo1NVLu8zyvL/kQW9BsiqCXua4Lm24uPDMWBOhU9CJaySgWi9A0rQ2ExBCsbozuPYCuhzg6xhgtyzMq4EGPXTKZxMzMDKanp5FMJFAqlTjd6d27dyGKIkYjkszR0c2zZ89iZGQEL774IpQYzEXsOfcwHjp0RveRqJ3/G/2j62KxiHQm03b/JFpaC3wfqqaRBWoYhD3NtvkC9zyP9F01DaqikKwO3QsaIMHYMNZrYauaBi9S7ms2myQzAJnFbgOO0fcWCgUs3W+fzd624SwMQ6ytrmKko6IIkOcpkUi0GDnrdaTTaUIyFfNZmqahaVmE5XLARIFDBc061wg5MPmWgzCEY9uwbLt9RFCWoek61EiA6tNWx4GIKmtURCmul0wO1RHM0uNHM1CBnosYqVrErV9JFDEyMgLdMLBfljkd8uraGhYXF3H58mUYhtEmrpTTcm2fcSR9BF994Svd94Rd/5BJRLQCwq8lUilE5Ge8Zx9jtuOgUq1i9549reuke4LneQDzC5qGMAhIdZEmew6t4CiyDEXTIAkCn0CK21cGgUejlMadI4Es62f4KDblFgQBdOrbOKiZnkM+n0cI4PatWzhGSYietH0qwcDS0hI0Ve1WowMFlqkqjCCAaZpoNpsQRRFKjDNXKDhLEAQ0mLRsD3NcF73GglgrwDTNNiVEWZZJEBCXEQDY3NxEoVBo+50syzw42YrFLfRQEHgG7dNNhr649RqAz8pLVFxpfHwcANBoNIgkM1NPu3gRiUSCB0Njo6NkrDNmpIfrM3RkPmH7CwGgW8shGgA8RtugWCy2RfcAHe2hs8jRb1CRZSiyTGaVKWd6EBIhKsuyYNt2TzEqxsg4KCRgOgedZUxd08iIoWWhqSh8lCtJ6UOj9y6g5cOxsTFcuXKFcJRvkSzri24eVRLdu2NH7O8FQUAqmUStVoNPW429ENuapkEC0BwgHMVH/DpaBMwCz+NjgTwjpp+vaVpsdaJaLsPzPF75AuKrisNaW1ZON392LmHrF93nHtlwjUSCiytFsQara2s8qUin0/iS/woWxWvYO7oX//DU17tPJmyNQgv03yE5ya5KKDsH9r4w6muErWuIlDY3IYRhm+9g/CWMt4ADAUWRqBqqKjxaUfI8jyQXdCTcp5tznO8XBQFDDQizNjFaG7skSVAp3q1O9VcCujdFge0A9RsgviaTTuPm5y0YKJVKmM3nYzXhmcPVdR1hEMCybTTrdSRTqTaHHoI8SEYiAdt10Ww0egYDIVrlt86gwrFtNE2Tz6ILIJEbi9B6WRCGKBaLOHDgQNvP2efzXvVjgvo6F03bp7ANBmiLpKMVjxAkU9pFldwYCvvK5cvYLJUQBAFW19bw47ffxtTkJCanpghGgx+CLFxR6MPISK9NRAdz12NeM0Ci+2q1ir1797b9nJX5e1GsipIEXZKgaRqv7ri09Oa4Lqki6Xp3RjkkeJS9RhAETlDCSERMy4JCR0aTiQR35EEQgB2NPQsj+TzCkACd5ufnt3h3vthWqVQQ+H5PAiwG4EqlUqjV6/A8D416HYkO7FEAqiQny3Btm0hS99ApcGllSekAqoa0JWRHKgGSKELXdUJ53GcNbJZKEEQR+Xy+7eeDqopDWcemL4liLFlNiBZWp5PYTBBFjI2PY2xsDEcFAbV6HXfv3MGNGzewz9uLfcI+JCoJXL14DVN0fJG1RAWgLdvnQUkPUp9oMP5xgYQbGxtQNa1LJI5JzPsx1ePoVFNAicQcChJnmAHWFm7z5UNWFZm/6EwmdF2HZduoVavI0JaWTrEi0e+DBWyiKCKXz5PW9CdknxqAUBwi8tMNg/Ns16kkpSzLPBAAwGVlTdNslcc6zKcoZEEQ+Jif67poNputzUUUYSgKcRJDbGbVSoVE950ZLN20AjoL+7jiFm3AmF6ZOdC1kfUi0giDAHfv3MEP6m/hjHoOuqfj70z/bYRWiAsXL+L8hQtIUUnmyYkJZHO5NvBc1DqRskEkC47LoLdimxQv0NkTZhmW7/t9mePY2J+qqqgDvG/reh68eh0a/d2WMi+07nsn70JAMznbtjFaKLQyD5oJsfewYEAUxb6gs23rbTyziksi0HouRdZqpNijkApeAa1NUKDtR9d1ScDQIxjgY6mREViTVp3YumTPVD/wXdQ2i0Xks9muZ1B5zKpi1LjfANqes66KHgtq0aNXz94PoNlo4M6dO0il07BdF0ePHiX6K8vLuHP7NiTWiqRjzwF73tHuO6JVC550RP/8GEkEQCqKI4VC177CfHJnVbHTREni0xyO48ADSYaalgXJcaBrGg/SukCCPSyaJEXbjbKiwLEs+PSajR7PH2s7CnTq45O0Ty0Y6IvIDFt0vslEAvVaDS6dIdUNg4wG0puo0lKcS5X74qoD0eje9zw0TbNN8VDXdfJlRBbIICtubkIQxVhWKEWWEYThUBSp/HqBtsUbhCHZTOj/vR65Ycb/LNPE22+/jeXGMj4UziAIA1SFKn5o/RDfeOVfEknmtTWsUEDRrVu3IEkS8vk8xsbHMT831yauFDefH61QsJ8LHb8bpkpSLBahG0ZXCZ0FcoxgRBmwMMKQcJ/rug5NVTkpiUUjf1XTODXtIAs7AjL2+c1mkzs8prcQOeH2NkrkOtj7t21rNoiONeqcZVkmAUG9zic+oi0yAEgmEmg2Gn1bBaynK4kiLMuCaVncR0iShASlvd0KVexGsdg2DcFMfpyqYsfG3wakjgsE6GvJr8O2f8cZYyOdnJjAvn378L0//3MUCgVCgHP0KGr1Op9sunjxIi5cuIBEIoGRQgGz09OYmJhoa0N2BSdR3xYJmqOvH+Y++L6PzVIJByM4DGYSreoMI9zEPoslFCodIfaDAA3ThEzVLhnXycB13LH2Gb2yY9vcr3RVHSLGfIfU0Wr4JOxTCwaim0XUohE+QCKiVCaDOpV/bNRq0BIJvnkDGNgq8BgtMB0lYqZpGgxd5w/rVm50aXMTuUwmFlzCkMo9I/zogggjKlmRTLIN3Naj38Y/A7032kq5jLffeQcAMP3MDHCh9bsHzYf8fKempzE1PQ2EIarVKh48eICVtTUsXrmCq1euIJNO88i/MDLSnpnHVSOi5xs5/2iAEHfOxWIRIyMjsc+GLEnwaIQ/qIzKNMgB8j3rApG8tiwLfkjmeR0a7TMu917WGSCy0Vc/DCFS8pOua4kGTJEWw7Y9vrH+6bAZpKKqSKZSaDQacB0HNd9HMpnk1UHdMHirwLKsLn4CRoXruS4aFBwKkJKtYRjtjKAxAWOcWZaFeqOBQ3QCKWqsv+31qCp2Jg1dQF30qOL1OK+23n6nhSEuU3nlnTt34tixY6hUq+2vEQSk02mk02kuyby+toalpSWsr63hwdISl2RmFcc2xdZOn8aClI6fde4Vcb6jXC7D932MdlQUgeGrisy4do2mccyYTWnTPd9HvdGAKss9GWFbp94dLDiOA9OyuHqs2NHG6fy+gsgzx679k7KfeDAQzRJ7Oce4m5iifT/LsmCbJnzfJ0AtURzYKmiaJur1OpKJBGRRhKIoSBhGFzNgFHgzyNaLRUxQoF6nRceE2h7ccLDOwJaN3c+YB3x1ZQXvv/8+UqkUXnzpJVwsXxz8eYKATDaLnZqG6ZkZiLRnuLK8jPv37nFJ5onxcUxQSeZBiwIAHyGKlgWFjr6i7/vY3NzEocOHYz9jKxE+U7eLRt0KJSlio19BGKJpWWRaRNeHKsO5rkvGB+l9z2UyWKdiKG3XG6l+RRc0+/t2ZeDxTOzDPsmQ9NHfK7KMZCqFZqMBz/NQq9WQTCbJbHmkVVCr17uCAZcGAVzhVBCQoEFAF+B3yNZPcXMTCMM28GDUZEniExFSR0bNfckTfnY6fUfg+/jozBk8WFrCM0eOYO+ePUMFYCypMJJJ7KPnuLa6itXVVZw/dw7ngK6kovtk4o/TN1gHSSIkUUQ2plLLqop+GA6sKoZBQCrJYYtgShRFGBQLwkZGHcaUGwH9dVrU14chATUzrhtFUZBKpWCaJscmxJ5P1L9/wsnEp9cmYH3mIY2xc0myjGa9DtdxUPd9JFOpnq2CIAxRq9XQaDTAJgmSyWTfrHKYRW3ZNur1Og7FlKSA9h7VoJHHOOvVv4tzAr1K8Hfu3MG5c+cwOTmJF154oa9qV6zRTUvRNMxks5iZmQHCEOVymU8onDlzBgCQTqcxSQODkZGRoTLguMBrc3MTvu9jbHQ0tnIkSxIExARZXZdFGN8CoKuPKwgC6fGyaJ+WAOv1eovgqP0N/D7Ztg3TsgCQvjXLchgamLWFOs+K66GLIpFOxnYw8DgWRHrcvawT8BqC3PcUDQgcihHQDAOGYfRsFbieh2KpBMdxSGWJthL7YVU6A5E42ywWYdBjx5ksy7DoVExn+Xiollbnv/s8Z3G+g7GRlsplnIywkQ5rDJQIANlsFrlcDvv272+TZGZJhSRJGBsb41UD3TCGC6o6fUdIALn5kZGeeC9ZkuC5LvwBVUWXEplJktSFTZFo4qn6PizLguf7nCgqNpmIVGsajQafaGC4BNd1+T4RvTbeXqSvB1pB8OeuMsBKYYNexy4+WqZVFQUSbRt4vo9arYZEItHVKnDprDEjDUomEm18/j1tiMh7s1gEwhAj0ciWZrlBpJ/o0Shzq8FAXEtAFFpzr1HrqjSEIS5dvowb169j165dOHr0KHdgndce9Im3Y1nEBAG5fB65fB4HDhyAY9tYXV3Fo0ePcPv2bVxbXISiqhinSOTx8XFoPYAxcba2ugpN05DJZlsMgWhl2aIoQpAkgI799CKVYcGCiPgZYXYvGCCo2WzCoehwxfOga1qrLEeR0ZZl8fFURVHIxkDvjSRJCKPqaB3PEHvWJVlGSFUzP2kw0OfRWGWlb3Utcu/Zd0d+LCCZShHGUtOERSeIOlsFGuWLYIyjkigin8sNNQY6jGBNcXOzzW9woB1a2BMRJBh5LNtCm6CzfVWv1/HO22/DoWykIz2qF30PH+EYaKvQKApmZmbakopHKytYWV7GWZpUZHM57jdGOluRfcz3faytrRG8AO2td+K/WFVx0L7jdgBG40yWJKSSSTLpZpocnBxNJtjexVuT9FySFATPjhHSagVAA7nICDn3G5IEiV5nLNfFE7KfeDAgUga9tbU1UrKJm/9GZOOK2RglSUI6nUaj2YRPI332mmazSehsaZk4CEOkk8nW7PcA41lbn9eWy2WCNzCMFiAmEhEDpDzpeh5RzBqijB61ftiArp9HnB0TG3rw4EFsea9zfmOYrKHfZIWqaZibm8PM7CzCkBCprNKqwb179wCAiytNTEyQUao+n7e8vIyJiOwpx0MAbRuvLwgIPA/oFQzQnl8/YA4zSRSRSibRoJLELh0pSiQSkCSJtxSYbCkrF0ZNliTyvhgWxqiEtSRJKBaLkBUFU1NTfc9r27qtUCjA8TxsFouYnZnp+1qeRHR8/4auQ5IkNCmw0HVdAs4SBFSqVei2DS8IENKZ9IRhDL9+ByQSbI0cPHiwzW9E38HZM2mlaasjhnEVtV7TAlHw8WaxiHfeeQeqpuG1119vIyfb6vEBoO82TpOKbD6PA/v3w3Yc0k5YWcGdO3ewuLgIRVGI9gr9v19SsbGxAT8IMDk52ToH6sNZYMCSgr4l+ZgWQT9jeKM6FUNqmiZUWiXwgwCWZXGBK1EQkIiMHQOtMXS26XfeMz8SDABAuVTC8/v3Dzyvx7VPpU0wNzeHd27fRrlU6mIhZMaQl72WliiKSKdShFzGNCGAlLgapkmQxKkUdDrv621lxE8QIEhSz6mCMAxRrdWQSqX6bqaKogCWBZdmkx8XPNbz3fQcXNfFhx9+iHK5jFOnTmE6xll2nkM/IeBhkMb89/T6GA/6oUOHCOERFUi5cfMmrl69Ck3TWprr4+OErpdas9lEtVrF/riHPVIWFEURkKSeyn8sGg+AoR2pIBCRLFmWCedESGRQQatYAQia16ABQqexagADjEYdMhc7oe2D9fV1zM7OxovpbFtfUxQFudHRvuptDDcQhiFCSunaaay62DRNEjiKInn+6nXMTE+TqpFh8Ox2WKW7OMxC1JqmyZU3B/kOJr27lWCg15RWz2CA/vloeRkfffQRRvL5WDbSrVgQSU4GGn2tpqqYm5vDXFRciQYHDx48AECSCsaG2JlUrKyswNB1pGJI7FhgIIoiqTQEAXzfj13HTOtEooyMw1i0SuBQkGGT7keMw4QRUHXeE1atCMOwVemMVhRZlUKSCFumZWHnJ6hp8qkEA9PT07BcF+vr6z2DAYQhZ23rZ7quQ1FV1Gs1BDSy2yyVUCgUYBgGrFKJIzeHtbh+NnuoAhCE/kgMGjhqkiRBEgSEggDPdbe0wGLdBKs8dG7oIRlxu3jhAjzP61ve20pAMuw4YC+npuk65hcWML+wgMD3OU3y8soKlu7fhyAQ6VW2wDc3NwGAsyf2MoniBoJo1hddQFSZkvHPD2sCfX0qmUSlUkGz2UQQhpBlGdlMpu8YIjsOKzFGX9UZ3Rc3N/H6c88NfV7b1jJJkjA9PY3lu3f7j+0O0VeVJAnpVIqQzFByKtO2UavVMDs9zfkp4iqXPY22fzrXBMv+y+UyAAKi62cMz/Jx+AbajG6CHSeFMAxx//593Lp1C3Nzc3j+uee2JPEba+w4w2ymMd+TIIoYKRQwQpMK27I4vfrNW7ewuLhIJJknJ3lSsbK62lZRjLMox0cQhpBiqjhupKI4rDEgvEH5aUqlEp9kSiYSSKVSPVuVIq1YBL4P13EgR3AkfqTFJUkS1h89gqwon79gQFVVZPJ5rFMZzzhjDn0o9D19ALPZLCHtCENUajXYTFFOkh77IW+b+6d9qFq9PpTqnKIo8CmYbUvRdtw19wBcbm5u4szZs9BixIa6PqKzTbBVzEDsh8aXRqNgF1GSUBgdRWF0FIefeQbNZhNrdDb52rVruHLlChhZ0PrGBsbHxnr27KLsftFzYAGCS4OBYQlg+EeAOAPTsiBQSVTP86BSmuF+xtoRvARJ70lIS70Aie6rlC/jk1zQn2eTJAkzMzO4ceUKNksljMckEiHQeiaH8B2+53HWuhAEHFyt14l6HLaWRAAgm2CkNRQ9g3q9zsvF/UyWZdImoACyYfElva42ToPD931cu3YNjx49wv59+3D48OEnglYf2m/EtH/Zz6PWK6lYoUkFeUuIfC6HSrlM8EY9ji1JEkRGL82MPisB5SEJscUAkB7fpJMCrKqjDgn4Y8B31/ehR9o2zJcwMPr6+jqmZmY+UQrzTyUYkCQJU1NTeLi0FPuw89s3BJiPiZIAQCqdhiiKKFUqqNdqnM44lUwONV8aNUEQ2krR7AFjo0bDKEcpigLLcbYMBorr+wHd5b4HDx7ggw8/RDaTwcmTJ/sGAuT9wwUDUfzDwGpCj++n30JIJBJY2LkTCzt3wqd88+9QLoT33n0XgiiiUChgkokrpdMtzACTCmZCTh34gq30/Jh5nkcIZSIqYul0GgIAkxJUhWGIBEU7d5pEy3seK/dF5IzZvZAkCetra9A0DTt6cOtvW38T6XPhhSFWV1big4FI0D7IGo0GR3TPTE1hbX0dVSqQxkXSHqOd0yuBqdVqSPWgUo6aIBCK3IDS4g6LWejFRdIFaHVdvPfee1hbX8fBgwdjiXoe14auKPb4OfMbce/vTCrMZhMXLl7EwwcP8OjRIywtLUHXdT662JlUMMpkHgywYwgCHKpoK22B6S+gYkc2nSwIgwCariOTyRC8gOeh2WxCN4yeyYksyxBsu81XIAIqZIy7xWIRL7/22lDn9bj2qQQDsixjZmYGd65dQ7FY7GoVDDs+4dDpAfaZqVQKqizDdhyuDc3UqUqlEjRdJ6CPfpEf6zcCsQ9lrVYDgKGDAQHgJCLDTBX0Y2fkwUAY4vr167h8+TImp6awf9++nrOube/vajH0cJgRvMDAAKoH5/iwxrkDggCvv/IKZFnmWIOrV6/i0qVLSCQSvCw4OjZGFrXvI/D9tu/SoaBRxgYY9mkzsfFDhwLGEBIOCEPTCFgp4tSazSbhuafiQp1ZDyOLCYOA8J/TlgJf0PR7X11dxcKuXY/PO79tkGUZhbExLK+s4JkjR9rJaCJ/H5SV1al2AQAkkkmoioK0ZSFE6zliztylrHNqD9GatuMHQc+KZq1a7SumFjVFlonc7haCgZ5XGzkXxkbaaDRw7NixLjr1j2vDBgP9vp9hvYmRSMB1XYyOjeGlF19EsVjkWIN7d+92JRUMhMiqPtFzZrwkmqoOTEKDIGhTtvV9HxAEPikQhmQMnmHGTNMEwniRPEVR2rRzGJ9EtKJYq9fhuO4nXlH81CoDo6Oj0BMJXF1cxOjYWBdXNdDqx8Q9NLbjwGw2AZAbyrjHNV2HRqVr/SCAkUgQIg+QEqBtWYRZStdjGb74JoB4kZ56rQZJknpySXeaTKmJXdcdbsSw3yISRQSeh3PnzuHe3bs4cOAAZmZnh8JWAHGVgXjjpb5BH9grE8HW8Amrq6vQdR1pqp++a/du7Nq9G77vY2N9ndOd3rl9G6IoIj8ygmwuh+mpKeQpPiIMQ+7EdVXloEZBFBH4fquCEIZcupRVF8Iw5NMhnc8bo7VtUB2LZqOBRDLZFRDIksS5BlRVbRsZkmQZpXIZqxsb+Cs/93ND35dt6zZJkrBv3z5cPXMGqysrHEEOdCQRLMPseH8Yhqg3GrwMm4oIoKVTKTRNE6ZpIplMIgD4GHS90YBoWTB0PRYMxtkR+1i1VsPOXhipDmMA5EGcGkOZQBhAyxE20pdffrkvgdPjWpSl8bGtB/Cz03zPw8b6Og4dPgxRkoi40vg4jhw5gmajgdXVVSyvrPCkwjAM5EZGMJLPY0fE/3uuy78/RVG47+jcd/wggE2BggDxk5IocvK7KKkYwxEIIEmraVncz0RNlmUyNh6pHkdBmJIk4erVq0in05/fYEAQBDxz9ChuX7mCtdVVztXdRaeJ7k3L8zweCKiq2tVHSWcysKi29djYGNEPCAKYNFJjZDMKVSdUFCU2i4x7IGq12lBVAWZtEf4wAUSfReC5Lt555x2sr6/jueefx/z8PKqUIvRJLmn+QA9a0D1wDFu15eVlTE5MdKNtJYmwHE5O4sjRo2jU61ihvAa3bt7E9evXkUwkMDkxgcLoKN+ko5k3aw+FLJqnvBNsfFSj/OMsm4vDBzA1wkazCT8IYNIKQfR8JUkCKF4BIM8x+yxZknDx0iXkczkcO3bsY9+vL7JJkoTZ2Vk8unMHly9dIsAxxAe2YszPmzQQEAQidxytLLFEwrIsNE0To4UCUmxiiZZyG5SgSKdU5syiT27cbL9j27Bte2jfIUkST0YeZ8Sw01ZXV/Hee+9xNlJJktBoNJ54MMBWz6BP7Ve16fV9dtra2hp838dkjM5DIpnEzl27sJMqtm5sbGBleRnLKyt4sLSEixcuEE6DyUlk0mlomgZF07g/Y4mhIIpwPQ+2bZN2b0hGViVZhqFpUGgZPzpCzK+DTikJgkCq1bZN8EiR75LvMZHvgYGgZUlCuVzGgwcP8It//a9/4hXFTyUYYL2b2dlZlJeXceniRYzHfKEAeFTLbjPjhQfiAwEAZEyMbmSNRoNw6UsS0rRiYNL5T8e24VgWZKpWqFCu6Nahuxd1tVpFJpMZ+loVVSUR/pC82L0WQbPZxNvvvIN6vY6XX34ZYxR1P/QIILorA8GANsFWMBaPa416HfV6nQCY+pggCEil09iTTmNuxw7UqlWUKxWUSiU8Wl7G7Tt3OBJ5mvYME4kEkYSljG4haAYnitBUlWR40WP0Ob5ER4jqjQY8qlLYFtwJLYIkoCWOJYki1jc2sLa2hp/92Z/dJhv6mMYTiSNH8NE772BpaQk75uZiN5fOYN6mfVwAXYEAs3Qmg1q9jlqzidFCgTt0Q9dh0faj7/toNpswm02oVAirE3TW2Sqo1WoIMVx7kZmqKDApKHaYjaCX77hz5w7OnDmDiQgbKSuLP9lQoFUZGOg7hmwF97PV1VUkk8mBWClJkjhfwc5qFVX6/8b6Oi5fvIgAhH9iYnISU5OTGB0dhUSDACeC+QrCEIosQ6NjyMx4VbvHNTE/YTsOLNOETNuKUYu+16X4BVmW8dGZM0in03juJzCB9KkEA6z8EYYhDh8+jB/98Id4sLSEmbm5+Nej9aA3mk0wpq5eyErGNlaqVLpoRmVZRjqVIlSSpkkchOvC9TyeVTI5UkEQ2hZ1GBIRn2hpcpBJosg1xV1aQu57b2JK75VKBW+//TYEUcTrr72GdDQYibQ1BpkodC7Q+Id32DbBx1/OZEZYEITeI6YxxsYGC4UCFhYW4HkeVldWUCwWUS6VcOHCBZy/cAHJZBIjIyMYKRSQzWahRCRKezmjfhkL4yhvmiZsxyEiRZRFDAAvTQNUGyEMIakqLl++jJFCAXv27Rv+xmxbrLFWW75QwPT0NK5cvoyZ6WnOCdDLWBIAkF5zL9yQYRg8WWmaZmvzFghjpa6qsCgttU+Bp7ZlQZQkLmXMFO3QEQwIwJbIfBRFgcUy0mGs49kNwxCXr1zB9WvXsGv3bhx55hm+SW8lidiKDdsm6EfsNlRlIAyxvLKCqQEjhZ0mSRISySRGCgXs278ftWoVq2trKG1uYplKMouShJF8HiOFAgojI9B0HaqiQKUkQ71GIsM+7IaapsGnEwuNZpNr7XQ+hx6ddhAEAZulEtZWV3Hq9GkYtA3+SdqnEgwAlK7X85DP5zE1PY3LV65gamoqfgSQOlkm6iAIAhIDbo6RSECmYMJ6o4F0ZBGGQcCZ5wxd5+Vj3/e5OpVIR91UVSUIdkEgpSLX3VJ0D5AI3/d9LmzRzzrlcldWV/H+e+8hnU7jpZde4oAT/np+i54gZuAnGN0vLS1hbHy8L/1np0mSROaFaT/VdRwkk0leGrQsC6XNTWwUi1ihbIgy7SlOTkxgYnKS6Ap0tgSGuIeKokCjzwmL8tkGxSSnfUqXDADrq6solct47dVXe/LRb9vwxvu8vo/Dhw/j+9//Pu7cuYNdu3d3v5hWFf2OaqLWZw0KAhEjajSbPPGIbuwhwElkGPbEoayVTZpgSLIMTVUhKwrHllRrNRKEbKEyxEdWo1TXfSw6heQHAT768EM8ePAAR48exe7du7uEc4AnXxlgK2qokeSPYcViEc1mE9PT01t6nyiKfAw5DAL4QYBcLoeJiQns833U6nVsbGygWCzi+rVrCMIQqVQKU7RdOTIy0hUQMFB3PxMEQlpWr9cR0JZ1wjDafBCbTgDIc37lyhXk8nnMzc1tfcT1MexTCwY0qhPtRBb1rdu3sXfv3u4XCwIv6wNkNG3gogpD6IaBIAhQqVZJMMCy7o5eb8IwkDAMeJ7HUaKB78OybVi2zSsGlUoFCMNYpqt+pqoqn0MNDaP/Jht5qG7fvo3z589jamoKJ06c4EjV2Ox1mMXV8ZJeWfDQkruD+n4DgE+Neh3FzU2cOHGi/3E6jGVuIQg6ulKtwnVdTg8tSRImJyf5IqpWqwRlvLqKs2fPAgAy2WyXuNKwUyydUX46lSLXS8+JAYxEUcTVq1cxMT6OwujoNuvgEzBFUQhQy/OQSCYxPz+PK1evYnZ2to3RkpkAoE6FyvpVE6Om0zJwEAQkkaAcBJ2mKgrnoWCtKMdx4DH58jAkgYGioFarbam9GD2GDfJMDdwQaLZtOw7efecdwkZ6+jSpnDBwdMco7pPEDIR0Kod+8ON/0AA0PwAsPXgAXddRGED+1mmMtMylI4EmVSBlAOBkMol8LoeDBw4AILiEldVVLC0tccXWtqSCggSHuV6RBprNZpM8L7Lc9p0ytUp23FKphC+98spPzG98qsEAQJCW+UwGO3fuxMWLF5HP5zEa/YLpyBcDDGq6PlT/zA8CJA2DsIvZNhkLG5CZyfTL4YEBjfoD30fT87C+scGleB3XhcJ4xAeYRLPHEIDjeX0zE3LJIS5duoQbN25g9+7dRGwoMhPLF0pkwQyMxGNe05NnYJjP7DNJwGzQvXnw4AEkUdwSTz/LkmzbhmWaaDYanBBKkWXe5okeO5fLIZfL4cD+/XAchyzwlRXcvXsX169dg6wofIEXCoWBiy8a5YeUk5xlHH4QABQvcOniRTSbTZw6fRoIQ2jblYEnYpqmwaS6HwcPHcKDBw/w3nvvcYQ8AL5OTFrxE4eoJkbNMAy4nodKtTpQ10QURV4tCIKA09J6tP3ouS42SyVMjI/DsizuZ4YxVdNguy4c14XRJ7hmgXe9Xsfbb78N13Xx6quvEupedj/i3vsEg4EoCv5JAxOjFgYBHj54gJnZ2aGPEwYBwfo4DtmMaUnf933ouk4AgVTiPGrT09O8+lCuVLBKx57Pnj2LEEAmk+F4hGwuN9APy7IMXddhUi4LvifRKSeAcJucO3cO01NTGOugbf8k7VMLBhRFIRuk58HzPBw9ehTVSgXvvvsu3njjDT4qCBDgD0BGtIYd6QvpXH8ykUDTsrC5uYnEAHETZoz0Q6H9YEYsYZkmFCo9yaQuRUkir6ULvNfDqakqfNMkkqh9ggHP9/HhBx/g4cOHOHr0KPbs2dP7GrdYpu9sE/SKvodqEwwRvQ+ypaUlTE5N9XWMLFpm/4dUr4Jl5mEYQtc0pFKpoSJoVVUxOzuL2dlZThG7QtXTPvroI3i+j3wux4lLcj0WOI/yKb+9T7Miz3UhaRru3buHR48e4eSpU8jSjHC7MvBkTNd1TgaVTqfx4osv4i9/+EOcv3ABx48f52X9kI6CicDQJXo2bpqgwZ5D5cqHbQ0yoiJd10nbkSrbNZtNKKrKMUyM/poFsL3GjhWqaeHTddAvESoWi3jn3XehaRpef+MNJDuqIG2gxsjG/aRsWPbBQX5r0Bmtra/Dsm3M9cCYsWN4nseTB4+2l/1IUGBoGlTDQD6XG+o+5LJZ5LJZ7N+/H47rchbVu/fu4dq1a5AkqU17pdd6V1UVHgM2U9KrIAxhOw58z8PZM2eQSCTw/IkTseOIn5R9qtBmdpGe5wGCgFOnT0OUJB7ZAuA3CcDAzD5qbHwsnckQZKjr8jG8rZhAx88Yn3gykYBGJW5D2h+2LAu1eh3lchnVWg0mFSSJmkLJLFw60xpntm3jhz/8IVZWVnD69On4QCCm70dPdJiraftXLxmoYYlDBh6tz/urlQqq1SrmOvTSWWbVbDZRq1ZRq9VgNptwHIdwfoMEhTrlitBpRvY4G60AkJLgwYN444038Fd//udx4sQJJFMp3L51C2+++Sb+7DvfwYcffoilpSVe/mcmyzKv+LBxIM/zsLa2hps3buDgoUM8q1BUtQtUNUszmy9/+csDz/XSpUs82PzX//pfb/laP0/G/AbThx8dHcWzzz6L27du4fatW/x1Fp3tlmmpfhhjsseKLCOdTkMSRZTK5YGU1HHG2hKsspBJpzkOgJGhNWmbq1Quo95okBHGjmNpFLfEMsc4e/DgAX74ox8hm8ngtVdf7QoEOo1n8Vu+qn4fOqQuwcdMIh4sLSGZSJCRcf6RIWcSrdfrqFaraFI2Sc/zePVQU1UiNSzLUFV1aDXbTlMVBbOzs3j+xAn81Z//eXz5y1/G7t270Ww08OFHH+E7f/Zn+MEPfoArV69is1TqIqHSaULo0spzQAWULl26BM/38dKLLxIeCKBLsfGT8hufWmUAIIu6STdqjQJ7Xn7pJfzgBz/AB++/jxdPn4YdWdCMD2CYR8mnrH8pTUM2m0WpXEapUkEqlXq88S5BgOO6SBgGX2gs6mSlQDYxwJDLbGpCEkU+PcHKQZ2sYrVaDe+8/TYs224v73WdRgTMtMUFLXRME/Qq9A8T4X9c6ODS0hJkWUY+n+d634HnwWe9TYC3ImRZhkQrLzIFD1qWhXqjAQjCx9f4psfTdR27FhawY24OQRiitLlJRFLW1nB/aQkC0CaulMvloGsa6p4Hjz4LpmVh8epVTE9NYR+bHqBg1E47deoUvvWtb+HMmTMD8RVf//rX4fs+du/ejV/7tV/7eNf7GTdRFAldLwXuybKMnQsLqNVqOHf+PFLpNMZGR3kSoes6z74GrRUmMiNLEnKpFNlQXBflSgUjPdbkILNtm0wSpNNIU7VT3/e533BpxYvhlQSQqly0vejTDaOTEjsMQ9y4fh0XLl7E3Nwcnn3uuZ4VkLZr/wSmCYbyG0O0F/udk+95ePToEeYXFkgLl5LLcWGfiG8URREK8x0RfRrGCBiG8ayAwxrzxYIgIJ/PI5PJ4ODBg7Btm0i5r67iNhVX0lQV4+PjHKekqioURYHrusR3+D6W7t9HuVzGK6+8witZIcW+Re2T8hufejAA0I07DCHS6PnUqVN4++23ceHSJc7jzjK/YRa1T2lh2WhgJp1Go16H5TgoUUXDxzHbNJGNRKNssUavo3OBe2EIl35hruPANE2YloVMOk3eL8sol0p4//33oRsGXn/99bYWSZyx0Ru+qNjD0Gdch72v62cd7+X3ViDsfQxY1/XQDRHds/f6kcjXpzTC95eWMDo6CiuiB4CQqEKynmp08+80n95fRhz02NbR7ghpv1MEuCTz4cOHYZomX+DXb9wgksy6jsmJCeTyeSiKgnq9jrt37yKZTOLECy/w5w+IbxGcPn0a3/rWt1CpVHD9+vV4+WYAf/Inf4Lvfe97AIBvfvObH8uBfV5M13U0TBNuBGX/zDPPoFar4b1338Xp06chKwpkSeLBojjERuT5PkA3EggCcrkcNopFVCoVpFOpxyJ+YRwXLAFgLQJZlgFdB2Or5BgDz0NIJ1IEWg1oUk2UgPLfy5IEQRRx6eJF3Lt3DwcOHsSB/fuH76E/bmWA+oFOTRDmkwRB4ABfAF3sqMMAdRn4GAAXEAqCAIHvY2VlBa7rIj8ywnFkUTBk1Hf0EqfjipS0SvO4Fr0O7jMBrj+yY8eOrqRi6cMPeVIxPj6OdCYDl+qzrK6u4vixY0R1lmLlBHT7jk/Kb3yqwYAoilB1nUR3ngeJLrTJiQkcPXoU58+dgwBgYefO1iIUhL6LmhHLALTnTb/sXC6HjY0NMlmQyWxZ1Q4gi7qzZBM1FhyAtT/oxse0CQCQqQLKgigKAlZXV3F1cRG5bBZHjx1DGIZoNJsQKb1ldHFJotg+VhjdpGNAhYMsRMdkQkjUu8LIgo9j1QJIOVUAbccEAWHvY3+n/2aEP20jTQBqlQoa9Tr27t0Lkd4zSRTJ35nueN8Tp2CbMPzYC7rzfvFP6ggSDMPAwsICFhYWEAQB4UGn0qr37t0jdKQ0cDl98iTZTMKQBBcAMpEgktnp06f53z/88MPYRe26Lv7hP/yHAIBXX30VX/3qVx//Wj9Hpmka6rTtxpylKAg4efIkfvCDH+D9Dz7Ac889h9FI4D9oI/LpuBloYgIQJjutVkNgWRwEuFUbJHrEwa+yDAPgwYFPe96+70NRVS6mJYgiTN/HpYsXUSqVcPDgQUzPzBC/wfyFKJK/SxLpBTNfyDJnoAs/MNBowhA30RQCbb6jq9VI1wFneg1Dns0zfxFG/rRdFyFtC0aP/3B5GUYySaSBIz5DGlKZ1nUcrqfysSuKHcYCoigtsSgIbUmFbVlYoViDGzdvIqD7XhiGJICYnyfvo9ciiWLX9Non5Tc+1WAAIIu6QUctGKe7AGDXrl3Y3NzE9evXEYQhjh09yjf2XouaBQJxPW+D9vr9IMDm5mYshWU/C8MQlm1vaVZcliRAkhB95CRJgmnbkCUJ9+/fx40bNzA1NYX9+/e34SP4wo1uSnShM0cVUICSLMuwbZsvuDY0b/RnodAOIgxbPVJ2Nx1a8pZoJYNdO3MebIEGtA8XsghWaH1yAECgVRGmCyCIImfeuruxAUXTsDA/P5zueYc5kQW9FX6CYSyaMTHAURxN8tjYGMbGxnDkyBGsr6/jvfffhx8EGBsbIxwGIE6B3deRmGoUGxf1PA8ffPABvva1r3W95t/9u3+H69evQxAE/M7v/M4TvdbPsimKAkGSENKeq0RlfxVZxokTJ/D2j3+Mjz78EC+/8gryzOkLQk9lP+a848rY+ZEROCsraNAe9FbxKTZd78NOEESDA2aJRAKlSoVgU4IAZz/6CKZl4fjx48jmcmT9tz6gO8ilfoOtU5MKuTn0GNxnsHXMfC0iCUCkBB923K8wDPlIpe/7cB2n7XfRTd+nbKzs96wtwu+978Oj7WCRJkGszVpcX8e+/fu3zPVCT5ZQAj/haiL/eH6YeG0DVvKfn5/H/Pw8giDA2bNn8fDRI0AQOEaMtzsEAdkYcOMn5TeeimCgJorwaKbHLtv3fezZsweapuHGjRswTZPfhF6LmoN8ekS6uXyeoHubTTRNc0uARNu2yZf5MRHhmqrCcRxcuXoVK48ecQnRgC4mhzJQRTNs9ncWTftoLT7LtiF5HokkO6872gIAYDYsFFBAQP8TIKBcqbRVFlzPg0WJU9g4EtND5w872h2DSMvqQkc1gx0/itEIaXQ/NzPzWIEAwpD0YOmC3upEBbceC7qtHwuy8UfBY53H21hfx7vvvQdJkjA9M4OxyFgse6VuGF19P4BUG44ePYozZ87ggw8+6Pp9sVjEP//n/xwA8Lf/9t/+iVCSflZMEARohkHoYl0XEuWIF0DAXSdeeAEXL13CW2+9hZMnT3IgZ6yTRjcGJvocqKqKRDIJv9FAcXOTzO1vwWwaQAiCMLSoWKexyYN6vY6LFy5AlCS88cYbSKdSRECHBkV+xHewDZhtvAF95sMw5LTKAgA3LqCOWR9MKp79SV7Wel2j2eSKgI7jtOOb6OtDgOO+WBuN+Qsx0prUQbJi/n0JApaWluAFQd8pgn7G+GMY898wMtex1sPnsMoAeUnYdQ8Z6BwgidW5c+dw//59FMbGMDIywqvfIg18BBCmzU77pPzGpx4MMBKRMDI6w5ChgiBg165dGB0dxfvvv4+/fOstvPjSS7HqcnFo384lp6oqkqkU/Hodm5ub0KemhgYTRoMBURTJQnqc8rQg4PyFC9gsFvHs8eNY2LmTf/GyovQskXdF154HWxTh+j4kUSRBEo0o+WbN/h5dlGEIP/RJ4InWz9qyAQZeomNNvB/W0Q+MLuBe58zaI8zWNzZgNZuY7ZgiGNZs2+b6AoqqEmxGuHVVN37NMT/vel3kWYsu6Pv37+Ojjz5CPp/H7OwsbM/jv4+2dHIxLQJmp0+fxpkzZ3Du3Lkumevf/M3fRLlcRjKZxDe+8Y0tXd8XwTRNgyUIcD0PLNRiEx2qquJLr7yCs2fP4p133sHRI0cIoRkrV0fL5VSClv0bQBdOJZfNotlowHGcLYuVWbYNjXJfCEMq8sVZqVzG2TNnYCQS+NIrr0DTNF6WVhUFYY/KQ1v7jmJ3XNeFJwiQKX0y0OEzaIuL/oL8wZKTaNuPrT2BeBNWAWS+A0BXRTOaNPRat7xlQ98vgKy3Qj6/Jb6IyIny6gnjg3isb6FHEtH9Mlq9jakSOK6Ld999F8WNDezbt48EJ9HEJuKrc1SVtdM+Cb/xqQcDgiDASCZhUra/Tn1nRZYxPT2N119/HW//+Md48wc/wIsvvYRcLscXdWdpL1p+6rRcLodGowHXcVCr1/kM+CBjZXhWXtrqog7DEE3TxI9//GM0Gg08e/w4xjo0DvpluUJkMwaAkC62IAggKwpSQyyQslBGEUWECBEgQIgQ2Wy2bUGapklGsaikby97nFErgLAqZrNZjIyOclU5HkUPMDY3HgJIUOIOttC2Ggz0enXc50QDAnbdV69cweK1a5ibm8PuPXtQrlSg0B6tTwM0Zrk+gNXTp0/j3//7f49ms4nLly/j6NGjAIArV67gP/yH/wAA+I3f+I0t065+EUzXdVQkCT6lCZdlmfStQb5HVVVx6tQpXL58GRcuXkS9Xsex48e5GiDHFw3x7EiyjGwuh1KphE3qaLeSSLDKkAjA38LzytbGzZs3ce7cORQKBRw8eHBL7TFREACGZ6JtPddx4FO/MVT7ggYKAoi+QqffiLYO0plMz3sztN+I+EIBpOqwtrqKZ597jrcuOsf1+hlPIgQBqqbBNM3H8mG9kgggvurEKossSWg0Gnj77bdhWRaee/556LqOaq0GgUplR+9psg93yifhN54KCbVkMomQtgqYBjzTd2YPai6Xwxtf/jJUVcVbb76J5eXlVo+610MRs+BEUUQ2m4VE5SGjOtL9zLZtINImGAYVyza6IAyxWSrhL/7iL+B5Hl555RXkRkbgUjndxzGhx9/7GclWQ94mCOl/UYsCX3pZ5xx075Ns/wzLsrD86BEWdu5sK6nxNgPQN8CymfiPIHDgICu9Dm2PUc1hC5QFX++//z4WFxdx+PBh7N27l4M7JYqJ8CNZhyiKAysDzKIlv1//9V+H53mYnZ3lQKBtazdRFJFIpxEKAu8FM34ShYoFCYKAZ555Bs89+yxu373LOUyi1YGo9ePYyKTTJAMPApTK5aHP0zTNFnFMn0pa9BxYQuMHAc6fP49z585hz+7deO7ZZ1sYoce1mBbrQKPZP/lrd0YfXYNPRJmz4/Pv3L4Nmc72A61NWcAQgmp0bBMgVQGJVYG2GgwIQl9f2+t5Yj6qWCziB2++CT8I8NJLLyGTyZDpEMpbE8W7AWibXOu0T8JvPBXBgCzL0Ghma9t2K7oH2lSdDMPAq6+9hrHxcTJ6eOEC15jeimXSaQ5W3NjcHOo9lmVBioCABPR+6FkAwGaWl5eX8ZdvvQXDMPD6a6+1xC4ADtIjH7rFUveWXs3OuvNc2xcEJyPps6CHPUuh43u5e/cuBFHk46L8HNC6Ft5H7CzXBwFsy0KA1tw4owDe0n34GMHXZqmEH9BA9OSpU5ibm+NZKEdviyLvmwJEA6EXuxwA7N27l4wSgSCDAeA73/kO/tt/+28AgG984xtD8el/US2ZTCIUBJ5IsGRCjqpJgkwkvfLyyygWi/jzv/gLrK6vx39gv+dDIKOGsiiiUqnAosyog8y2rDYWuZ7PbKREH4QhXNfFB++/jxs3buDo0aM4euwYSUYEgY8r8rcOdSZoBSOPi7XpYeEQfmMrFvUxfhDg7r17mN+xI3Ytsb1CRLxvsh0HYRAQ8blIK3bLd2DAPevX8lhcXMRf/uVfIpVM4rXXXuP7mizLXIVVEAT+/AIE49bLPgm/8VQEAwCQymQQ0oecRfdx5StZlnHq1CkcPnwYN27exPe+9z2srq1t7WCCgJF8HrIoEqa7Wm3gW2zLih0rjAJGWNmR9dUEQcDt27fxzjvvYGJiAq+++ir/DE3TAEGAFQ0GtrJABeHxovse58+MVwaewKIOI8cLwhC379zB3OzswFltVhqNni0jbpEp4QwA3qsctjLwuCOIruvi3Llz+MEPfgABwOuvv46JyUnOSKgqCglcaWUgyj7Zb0EzO3XqFAAS4Xueh1//9V8HQFDDv/zLv/xY5/xFMVmWoVGnZ1MdAvbzThsfH8eXv/xlGIaBt958Ex99+GEXqySzXk+KkUjAMAxIkoS19fWBz15Ie9VR3xHln6AvIskDA/7Ra/nRj37UxUYqKwppQYVh+7lvwXdEg5GPNZYbsWEqilupgkZf+fDhQ9i2jYVdu4Z6D68WUNyBbVlEbZImEWyiYisVxaHOPOb6isUi/vzP/xzXFhexd+9evPLKK7wCIEkSaVlFggGWSIiiONB3PGm/8dQEA6qqQqY688zx98qURVHEvn378OWf+imkkkn8+Mc/xgcffMBVDfuV+phpus6pijeKRR6A9DLLcTiFJDMOEgF50KOglDAMceHCBZw7dw67d+/GyZMn26JaRo8aUuY64PEj1WGXsxhbGejOwIEn4ySin7CysgLTNLFzwIKO/QyKFQjQTs3JHM+w5b7HacksP3qE733/+7hz9y6OHD2KN954A5lsllDdgmBa+NQEXdzR57YXAChqrOR38eJF/Jt/82+wuLgIAPid3/mdJ+asP89mUNyPQzNAoBUodloqlcLLr7yC559/Ho8ePcL3vvtdPLh/v+XIh3hGRgoFqFTVcKNY7PtaxrPRyTgqAJybw2PlYXq+tVoNb735Jhr1Or70pS+19X0ZFgKC0BpDJr8YeN6P9dohjQNse302xRwMa9FPuX37NkZHR9tk6AeeD0iVwqYVFJmCLPk5Mt8x5DkNc8eiyY/jODh79izefPNNSJKE1994A4cOHWpTNdV1nTCuBkFLkZa+P5PLDUzInrTf+NQBhFEzMhnU19fhUDBQP3BYCCCdSuHll1/G0tISzl24gJX//t9x9NgxTHUA83pZLpslMpa2jbWNDUxNTPT+AoKgjdQi+sV1bka+7+PDDz/Eo0ePcPzYsVitdYEqndkUOJmigMAtbVeRHt5wL+9+XRBpEwzT93vcUb7bt28jn8/37Z/3sqZpgrGLRWevt+rUtvJq0zRx4cIFPHj4EONjY3j2S18iKGaakXmex9nBTMsChG5SKI0KKA0ytqgdx8E//af/FADwN/7G38Arr7yyhTP+4pphGGgoCnwq/KJSEHJPVxqGWFhYwOTkJC5cuID3P/gA9+7fx7PPPgtg8HMiiiLyIyPYWF9HvdFAwjB6fs8sC+wcr432kqPrcmNjA+9GxIbiSr2appHRQDrTL8WNFfeziO96UmHBwPbikCh8/nL6Z6VaRbFYxMkXXtjyOfm+D4cmlrphIAhDPsoIPL4v62XMfz989Ajnzp6F53k4duwYdu7cSUYmAdQpa6JKFRIDqsvT2f7oRUcftSftN56qYEBPJtHc3ERIVQE7pWiZRZGrgiBgx44dGJ+YwIXz5/HhBx9gbGwMu/fsGawfLhB2qOWVFTi23Zd/PAhD/qAHkSiXYQfYRmrbNt555x1UKxWcPn26rzyvpqqwKRL6cbLWrS7kQa/n9xS9UfXD8Lu3vQdAs9HA2urqY83Ju5TIJAhDpGi/FIKAsGNksa9twRGFYYg7d+7g4sWLgCDgxIkTXBiEXQ/LyFRNgyhJZHYZ6GJAGx+S2OrUqVM88HVdF5qm4Zvf/ObQl7dtgJHNor6xAcdxeBspLpGIrjNd13Hy5EnMzc3h7Nmz+O53v4s9e/ZgempqYIBtGAbS6TQqtRqKm5vQNC22/cXOgY1PhyzBIb9sAyIvLS3hzJkzKBQKOHXqVM92mkjHah3HgeU4SBpGz+mpWNvixjyMRcvbT8JYln3n9m1our7laZoQ4AqRiqq2T18MW/2MfldDWLPZxNmzZ/FoeRkTExN49vhxTkAGkE3bjyQRAAVj07YRO5YkSRgfIqF90n7jqQoGJEmClk7Dsiw4to1EIsHlOwc9ZLqm8YV95swZvPvuu5ifn8ehQ4f6EgXJioJ8Po/S5ibK5TIShhH7evZFRQMBZmzzrFarePvtt+H7Pr7UR2yIH5ty73ueB8e2t8w532smupcJsblS61p4dN8D8CbEAPsGHlMQcOfOHciKgpktcguEYUhERUAWT3SzFYahLSYnMJTjC0FaGVeuXMHGxgZ27NiBo8eOdTlki44kiaLIS79sJEim58MW9NSQ15vNZnHgwAFcvXoVAPAP/sE/wM6dO4d677YR01MpNEslgDrGngFtTEtpamoKY6OjuHT5Mq5fv477S0s4fOgQIbfps7ZyuRxMy4Jt29goFmMrkrzaxjA+kc2FtxmDANevXcPlK1cwPz+P5559duCzrakqHNuGY9swdH3rGT5dF0+qDTWoNbvV0EMAGS+/d/8+9uzevWVgosOA6GHYJXvPsnR23j3vwZCBgO04uEUFiURJwskXXsD09HTbOQe+D9OyCIhR0yBQrho22irR0UIAGJ+cHEoD40n7jacqGACAZC6Hyvo6Z+TjRB0R65dFT01O4rXXX8fVq1exdP8+7t+/j/n5eRzYv78tSotaKpWCZZrwm02sra9jdmamK/joVMXqtOLGBt5+5x3ouo4vfelLQyM5NU3j+tqKpm293LeFyDVuMCZKvcEcl/SEHARAFsHdu3cxPz/fF1UfZ0yCNrrxcmN9+kHnOsT458OHD7G4uIhKuYx8LodXXnkFYzEc9I5tcxlZwzD4ObisLynLfOxyYnJyS8Hd+Pg4rl69irGxMfyzf/bPhn7fthGTJAlaKgVUKnAoQZggCFzMCmgvz3earCg4RkVirl2/jg8++ACLV69i/8GDmJubi98wBAFjo6NYXl6GZZool8tdbTBOvNXjOQyCAGfPnMHde/dw6NAh7B9SbEhRFEiyDJ8mElvhHWA+40nWBthz31MfYItjfCGA+0tL8D0PC1vc4IIg4JMehmF07R/RkeZerYJhRsdNy8LNmzdx69YthCATK/v27uVkUPx4YYiGaXLQIOOqcR2npSMhigBNKqZmZoa+1ifpN566YECSJKjJJCzLam0Gnb21AeM/mqpi186d2LFjBzbW13Hj5k3cvnMHC/Pz2LdvXyx72EihAMdxYLsuNopFjI+N0UOR0njg+z2rE4yJrlAo4GSf8l6cqaqKpmkiDAK4jjM0fzm71l5AqR4v77IwrjLwhEp9AEUCO86WFzSrloQg/b5B1yjQMmz7D3tXBYIwxNLSEq5du4ZqtYqx0VG88sorGB0bi2Un86k8MUCqUAqlv/WZqhpIOdKnREiTW1jQH3zwAd566y0AwG/91m8hm80O/d5ta1kyn8f6o0dkM7BtpBWlVZanmXm/jVYQBOTyeTx7/Dhsx8Gd27fxwQcf4MqVK9i/bx/mFxa6fICsKMjl84SMqFSCYRh8jDAEOJNq3HEd18V7772HjfV1nDhxomvkdpBpmoam58FyHKQeU6PjiVUGBkwTPA44+vbt25iYmtqSHgwAvk5FSYLamURQY89DrwSlXzu00WzixvXruHPnDkRJwp49e7B7924SkIXdHA6WaZL9QxAIBT69R4w3RYmwD+YKhaETySftN566YAAAMoUCqhThb1oWKYNFIrVBjHNMrVCWZew/cAB79uzB3bt3cf36ddy7exezc3PYv39/282LAwUlk8k2AZPOY4ZhiMXFRVy9ehU75udxPMJuNqwxjn0W/AwDOIucwJZAdHFtgijPwKC+31ZxDWEY4vrNmxgfG9syEpiB8hjQJs46s5sodqNXIOBT+eTr166hVq9jcmICzz33HJ/ZDWIWcxgErf6jLLcmGsKQTLAIAlRGBw2gMDq6pRnf3/iN3wBAJHj/3t/7e0O/b9vaTZIkGOk0GpUKGnQNM657AENV3SRRRCgIyGWzOP3ii6hUKrh27RrOnjmDq4uL2Ld3L3bu3NnGf5Kmrc2g2cT6xgamJie5v+LViI411Ww28eO334Zlmm1B6FZMUxQ06Tia67pDJyHRiacnYU+ccAhE86NSqeCZZ57Z0vuYhHxceyDOQrTOOZpMxHnVer2Oa9eu4d79+3xv2b1rF1c/ZNMhUWurJiYSXHcAoJw61P+zFsFWAsIn7TeeymDASCSgJ5OwGg00Gg2oqsq5rIMBgQBAFrQIWroKQ0iyjN179mDnzp24d+8erl2/jj///vcxNT2Nffv2oTAyAggCDMNAKp1GtVrFRrFI0Ot0gQW0xMPMp4pT9+/dw8GDB3HgwAHuALYqRqLrOgESUi3zYasDWwINoRcoMPp3Oh7Ua0Fv0Xmsrq2hUi7j5Zdf3tL7bMtC4HkQxN6yr7GnB3D1s85zdVwX9+/dw/Xr19E0TczMzODkyZNdLF8igE6XbEZwAp1ZCitHKnRBCwDmFhaGPuff+73fw5tvvgmAKI1ttZWybe2WGR2FWa/D8zw0m02kUqkW1/4Q7xeZ76DOOZvN4uTJk6gdPIjr16/jwsWLuHbtGvbQoIC1ggq0smjZNjY2NjBKBavY5hDNmEvlMt5++21IoojXXnuNA52HKU1HTRBFGJqGJk0ktlKRZO9/EmOGUTD3k6o0XL12DblcDuNbkIxmGCPGKSD186MxEwVx9z8EUCmXce36dTx48ACapuHw4cPYuXNnl5/umirrqCay14uCQCqKnkfai4oCz/OQSqdRiAid9bNPwm88lcEAACRyOXi2zRd1MpkkD9oQi0UQBEAUIVASD9bHEiUJO3ftwvzCAh7QEvGbb76JVCpFtKR37EA+lyNZumlidX0dUxMThF/a9/lYm+O6eO/dd7FRLHaV9zhyeAuLWhRFqJpGFAPpmOGWbOgFGD+iyYz3/Z5QdH99cRG5XA5jtOUyjLX1+3R9qJZF551mFQM/CLC2uop79+9j+dEjBCHRDO/VKhIEgcz9RsyyLLgUAZyI9h9p+8p2HARhCFVR4LkukpkMCn20CJrNJh49eoRarYZvf/vb+Jf/8l8CAH71V38Vr7322sBr3bb+ZiQSUHUdVqMBx3VhOw7p0QoCEBEk6mW9Nsh0Oo3nn38eBw8cwPUbN3DlyhVcuXwZk1NT2LFjB6ampjAyMoKV1VXUGw3SPshmuUIf+8zllRW8/957yGQyePHFF9uC3cfp42u6DpNOJG0lkXiSNshvbLUCsbm5ifX1dZx4/vktvc+ybcI0GIcx6jAB3d6QtQ5Ag4r7S0u4f/8+qpUKDMPAsWPHsDA/34WLYK3sKFdEz2oiO1dW+ZQkjqeITi112k/Cbzy1wYCRTMLSdTh0ntZxHPIFCwLXsu9noiAQyc6434kidszPY8eOHVjf2MD9+/dx7do1XLlyBSMjI5iZmYFCwTlr6+uYnJjgFYmo0MQrL78cu9EJQNuDMYzpmsYFlHxdHy7S2+IiEwdgBp4k4dDGxgYJlrY4H8w4BSRJ4uW3nia0QyLZPS+XSrhPwaOWbSOXyeDQoUOYnZvr2X/k31nknnqexzng9Y5MQxAELn4iCgJkSYLrupicmOjrkP/gD/6gq6R38uTJoTXHt62/SZIENZVCQMe4LNOELEnEgQ9BwyvSZyqkf+8s+yaSSRw/fhyHDh7E0oMHuH//Pt59913IVFBttFCAJIooVSqESAZ0/FgQcOv2bVw4fx6Tk5N44YUXup4Txky4lXaBKIrQaGZpWtaW2nFPCiYc9gkGHqdSuri4iHQqhekt4G44xigMkWAjyFswQRDg2DYeLS/j/r17WFldhShJmJ6cxOHDhzExPh6bmETxKNFj9qomssDBon5F0TT4vg/dMDDWZxT5J+E3ntpgQFVVCKoKkWZelmlCkWVSBhYGK9VFXxe3qMmLBIyNjWFsbAzHjx/HA7q4z58/DwGESjaXz0OgvWjXdfHmW29BEkW8/vrrPWVMBYGo121lUUuS1CIhsiwkH0emc4DFTRMwzMCgvt9Wo/tr164hk8lganJy6GzHcRz4rouQtmwGmQDwBdhoNPBgaQn37t9HvVaDpmnYMT+Pubm5gcCaaEYWJZIyGUGIqrYBkdhdtB0HEAQuu20YBkbHx/s+l2fOnAFAwF8LCwv4m3/zb+If/aN/tGWQ1Lb1Nj2RgNdswqObg2lZRNVziGeYsdNFA+O4Z1/VNOzevRu7d+9GrVrF3bt3sfTgAe7euQPdMJDP52FbFrKpFCAIuHHjBu7fv489e/bgmWee6ZlFs4x1K6tNNwyYlsX1GeSfcKuJt0JirmmrrYNKpYKV5WU8u4WqAMcYIYZToJfRDTwIAmysr+P+0hIePnwI3/cxWijghRMnMDk11bf10rYHRZ4Rm1YTgY5qIsAxZYwZUZNlOL6P6dnZNv2KTvtJ+I2nNhiQZRmyrgOuS5CYkkTaBXRxDXq8WITPEfKdEwkdJggC5mZnMTc7C8uyyMK+exe3bt3Cndu3eYSbz+e7ynuxn4f4zKKf6bpOACeOA8Mwhi7XD90kiL12cn4sGGgDXEVsK9F9qVTC6uoqXnjhhaHn/H3fR5Nuvjol8xlkpmni4YMHeLS8jM1iEZIsY2ZmBkePHMHY+HhLqnaI8cLWPwjgq9FscpxI53fNsj1WNVAUBY7jYG5hoe+CBoDf/d3fxe/+7u8OvLZte3xTVRWCokCmQmEuZSYUIy2eXpkjJxbbgtRuMpnE4cOHcejwYWxsbODuvXt4+OABlh4+hKaqCHwf9+/fx9GjR7nGQD/bKnaAkRAFNJEYRs48crCPTUA0jC7BsHZtcRFGMom52dmhfadlWQT8LAjDgQZ9H+VSCY+Wl7G8vAzbtpFJp3Fg/37Mzc1x8G8ItI2mdloULM7+ZK1egLQ5o9VE1kpwPa8F1pYkaJKEfKHQN/D4SfiNpzYYAIBEIoGq40C0rDYBD4X1APs8LFyZKsKq16uX30kkpOs69u7Zg7179mB5ZQW3bt/G0tISAKBcLuODDz/E+Pg4xsfHkevQ9W4/ia0tNJmWxh3HgWVZW0Kke56HkIkkBQHnRWD/IwzRcJoooAAghAeiDFmr1QGbiOtYlsUpfxlgU6RqfFspu127dg3JZBIzMzNDyR2HoO0BKgMcJwgFAJ7jYG19HWvr61hfW0OtVkMAIJfJ4PkTJzAzM9OVFbHqwbDONQhDmM0mfDrzmzAM/v2yKhN7nes4/GfpTAaF0dHtDP8pMF3XIdHyq0BVTZuNBpKp1EAMiiiKEMIQAVpBH58M6HwxTRCYCQDGRkcxNjqKZ48dw9XFRdy6fRteEEAMQ9y4cQOVahXj4+MYGx3tmVA8TrtA13VCk72FNiPb7HzfR0ADp6gP4ddM/6zV6wAIqp6NNAsg/ewgCHjyJQoCn53fCv6oXq/jwcOHZCqrQ/2zl7muC5tWBZKJRPz3G4aoVatYXV/H+uoq1tfXCUBUkjA7M4P5+XnkcrluDAEAoUeFNy5g8zwPZqMBgNANd1YT2eutyKSU4zjYtXcvUqnUEwNfPq491cFAMplEo9GA73mQ6ENrmibRLRi0qCNOm1ncxsCojXt9DVOTk9A0DfV6HZ7vY3ZmBuVyGVcuX8bFixehqSrGJyYwTtsN0dHAx60OuK4L27YJ614n+ZHv89n2RrMJm46uyJLUJs0ZZdhimVAA0ioIEUIAU+6iwYPnIfR9hKLYLqsMgq4PwxAS3ayZOl/0mMxq1SoePXqEZ599lpcIB23EbA6Xbb78uL6Pzc1NrK2tYW1tDaXNTYRhiGQ6jfGxMezduxeJZBKqqiLZJ3ASAN7qYcZBP5HXhWGIZrPJdQcSdBSIWTTzcShYCaIISZYxOz+PVCr1xMCX2/b4JggC0uk0yq5L1jbd4EzTJPoSNEiPazUy8DHoBsk31ZjAvt+6lmUZBw8cgKppOHv2LOYXFiCLItbX13H79m3ehpygSUWhUGjDELBndlgRLkmSoCgKXNeFZdtd6yEIQ/iehyAI4DgOGmzNIYJvon/yPnjYmrXnWTIiPoUGCR4lVfKCAKDcIAJafkOkbdNO/9F5769fv87be+EQG2MQBGg2mxAEwuoXbQ9Ypom11VWsbWxgbXUVFuX/GC0UsP/AASQSCeiGgXQq1T9wCsMuHxYbCPg+mo0GmQ6QJMKN0sMYQFoQRYyMjSGTzW5tpPwTsqc6GOCL2vMQUrYm3/dRr9dJv549wDFlP0Y5Gfg+LNvGr3/966hUKhgbH8dvf/ObxMl3BAK26+J//sY3cOPmTSiyjH/8j/8xDh44gJF8HgnDQL3ZRCqdxt69eyHLMjaLRaytrWF1fR0Plpb4RjU5Po7RsTHyvkSiff59gLHM3KGLWqdTBp7rwqXZP1tsLuXsD8OQK+YJNJPnzFaRCB4OUEIJAQL4INdtJAyk9RSazSYpNyoKNE3jVJ5BGBIdALoAPM8j/TDqCCRRJC0d+v/itWvQdX3oeVnHdYnaXBhC0zRUymVsbGxgbW0NGxsb8DwPmqZhbHwc8/PzGB8f5xUT0zQJxecwG3AY8u+hDfTDf00qAiwQMJLJNucsor2dUK/XEVDg4PTMDHRd/0RwHtv2eGYYBuqqCi8IIPs+ec4oUx9T/eu13UjUz4Rh2O47xsbwzd/+bUiSxDNmZr18x/jYGCS6rqanpnD8+HGYloW1tTWsr63hLh11FiUJo4UCxsfGMDo2hlw2y0vMw6YSuq7DdRwOtg6CgK9X9lyz7J2xIrJxXClSCWR+g/f7WWJFM/VkIsE3L3aMMAy5RgJfY0EAzycVyIAmMaAcAFHhMUmW4VgW7t27h8OHD0MSxa7x3k4LQch/AFJqD4MAy48eYZ0mDtVaDQhD5PJ57Jibw9jEBAojI3zjr1QqZEpoyGycnXNcu9n3fTQigUCCTb5Rix7B9Tw+gaTrOqamp5FMJp+KJOKpDgYAuqjrdXhhCJVG667noV6vkwcyUsKNfgGyJAGCQOY3Uyn8wi/+Iv7Tf/yPWF9bww9/+EO8/sYbbSXsIAzx7/+3/w03bt6EKAj4n/7+38fBAwf475PJJGr1OgQAa2trmJqcxOjoKEZHR3EIZFNjm9jq6ipu3boFgKBFc9ksMuk0MtksstksMplMfDRKgxtZllGt1VCv1doeLBYEyDS6DsMQviwjmUySSHRABi4HEnz4COh/ACDKZFGKoghFlmHoelvfmy/uIIAXBHxR+7SsGIQh39CbpokHDx/iwIEDA9sKpmWhXCphfW0N9UYD9Xod9VqNo7hHR0dx4OBBjI+PI5PJdC1aTuaC4acfWAbU+Wo2n8zJQZLJNnXETkCX67qEHVMQMDIygnyh8FSU+batZYIgIJPJYNPz4AUBNE2D2Wyi2WhABIhceo82HstaPc+Drust37G+jh/98Id49bXXeFkc6O870sxHBQEadOQwn81ifscOzO/YgTAMUavXsb62htW1NSwuLsK7dAkAkEqnkc1kkM5kkMvlkM1mCb1uj+eMqWY2TROWZXXLJgtkSkcGYGgaRFFELpvti6Fo+3zqsyRJ4oEyH2eMAf0y38HaEFH/EYLM4bNZ+xvXrkFSFKIH0ceCIECtVsP6+jrK5TJq9ToatRpn8zOSSUyMj+PAgQMYGx+PpQTfqu8Q6DWHkUSCGQsEgiCA1BkIhJRsKvKM1et1QBAgCQLmd+6EoihPRVUA+AwEA6w6UCqV4AUBEskkatUqbMeBQPkHmIOPflGSJPEozvd9/JWf+in82Xe+g2KxiG9/+9t45UtfatsU/tN/+k/48KOPAABf+9rXcKpjJI5ly7Isw/U8rKytYXJ8nC8QlUb+01Sl0LQslMtlVCsVlCsVrK6u4saNG+RcBQGpdBo5Ghzkslkk02kgDGE7Dnza8/dpZpKiWaqiKPy6AFK2c2h/cah7GTtNQB5UFhjFBSmCIECQJDITGynFsayA/X/n9m0oioLx8XFUKxVetmuaJmqVCirVKiqVCsrlMqkGgAQ26VQKo6Oj2L17N3d6/SJl/j3TqtCwWzDTOYiWd8OQTKq4nodQEJBIJLoCgY6bQXqnkgRFFLGwezdkWd4SvmPbfjKm6zopnQcBhDCElkjAajZRazSQoQE1gK7NUJZlLlMNoMt3vPTyy23PZz/fIdFAW1VVSJKEcqUCSRSRoZNIgiCQRCGdxu7duxGEIfcZFfr/2q1bvM+sqSqy1G+wxELXdTieR8aSfZ9ssmEIjfatFVq1Yy2vwPfh0GsTBIGU5B8TRMj1THpNR9AKAGQZbFtmeg2e78NzXdTrdTx69Ag7FhZg2TZs14VCR3XrjQa/D+VyGbVajfssTdeRy2YxvmsXsrkcctnsUOuwjWlwKwF8x33igQD1K8nOikDM6+uNBhCGmJyZQTqdRjqdfmqSiKc+GABa1QE3COD6PpLpNOr1OizLaqG9OzI+gZZwHVqq0lQVX/nKV/B7v/d7WF9fx5tvvok33ngDAPCn3/kO/vt3vwsA+Ks///P42Z/5ma5zUFQVnudhbHQUa2tr8GICgrZz1nUYk5NtSmae76NcLvOHu1Kp4NGjR0Rljfb0DU2DRrNzWZZ5EJJMJiEK3brX/HoxBLdB7O9CjpsAtkg4FBIxqaZpolgsYnV1FYVCAdeuXoVFkc31RoNH1EYyiXwuh927dkE3DMLjrutIp9NbQiIzVC4DOA27mFjmFKWKtUyTO0ZD17tZxRAJCGi2aDab8IMA87t3Q1GUp2pBb1u7ZTIZFItF2J4HQ5LgyzJc30etWkU2m20jkWLrg2W6LBiQZZn7jrW1NfzlW2/hjS9/GWEY4jt/9md9fYcAQhss0qC3VquhWCohBJCNGU0WBQG5XK5N8IiNR5bKZVTKZVSrVSyvrJDkAmRDZuOvLABSFAWWZSGfy8EwjPgg/2PeW3ZsoNtvsKpAr3UR+D4cy4JpWbh85QoEQYBjWbh44QJM24ZlmlyxVBJFZLJZFEZGsDA/D1lVkUomYVAfMqyxFskghcXuNwo86WBbux/FCIgiNEqZ33pLJBCgf280GsTPyTLmd+4klYSnKIn4TAQDAJEL3djYgAsAQYBEIoFms4lGvc5lITuBQTLtvXueB01V8eqrr+L/96d/iuVHj/Dtb38br776Kj788EP85z/4A0AQ8NKLL+Jv/a2/FXt8VVHgeh7PfNfW10lAsLqKScpSOMhkSUJhZAT5fJ5Tl3p0FKVaqaDZbJIxKMeBaZpoNhow6ay0CCAUiNQlWwQK5e3XNA0aLftJokjAOjH/24HTdU6VSgVokGw3oJErq6b4tN/I/u26LunT0/8dOkLD+BxA++5GIoFUOo0R2qMzDAOJVAoyHYFihD0AmcMdNhBoY/rCFoSVIm0WoFX2jwYCiR7l1+hPwpCg0oMggKbrmKEkRtsTBE+vaZrGgci240BPJBDQaZFKtYpsJtP1/HRWFSVJ4r7jwYMH+Paf/Alefe21oX2HoihwHYfrX9RqNWyWSgiDgJTpB5hAS/C6rmN8bAyWZZEKIsVP1ep12JZFhNZsG5VyGY1mkzNnAuQ5VjWNJCmGAVGSICsKkokEv17WLpRkmWCBKFkT8x9slp9N/gS09WHbNiRRxGap1GohRqqGvu+TNmKzyX0Ho4rn91yW0Wg0oOs6CokE1PFxSDTQ1qnkr6ZpcByHBBlbpCrnlWO09EeGYTftpMAXQFojzUYDAUigYiQSbYBCEZFxZpZ4BAHqjQY8z8OuXbsgyzLy+fxTlUR8ZoIBRVGQz+exubkJx3WhSRJ0TYNl2wRQKAh85JB98bIsQxAE+NThi6KIX/qlX8K//bf/FhsbG/j93/99/PjHP4Yoith/4AB+9e/9vZ7RMus9uRTQNkEDAtfzsLy6ionx8bbyci9zXRd16owAAIKAbCbDVRKjJWzf91Etl2E5DiRRbG3GlC6ZVUeCMARoBcTz/TaQIa8GhCE8wYUv+QgCnzBgCsAPf/wjpIVMbJmQAYskigRWVBUGJVSZnp7mDqpWq+HChQt46eWXMdHBosUcgUXLrrbjoNloQJIkpDOZ4fnUY1C9YRiPCG97G2IyIEGA2Wy2BQKKLBM0NHtJzOeEQUDwK0GA/Xv2QFGULsnabXv6LJPJkGcvCGCaJpLJJOr1OnzfR61WI5Ud1ttliUSkqsjQ77/01a/i3/4v/0uX7zgwwHcomsbxKCMjIxBFEZVqFeVKBSHlLhlkYRhyLAB77hVFwdTkJGZluWuyodlswmw2iUyuJLWCeMuC2WyiWquRygcr2Xse0daIyWijfw/CEO+8/TZfV3EtBgFkJE+SJMg0uNA0DYZhIJfLkYAkkYCu67hw/jw838dP/dRPta1jJmFvOw5XL2WgP5XuBcNupCwAaJuwwuDKAAMZt50XrQiwQCCZSLSSIXTIIkf+3qStSCOZxNTUFLLZ7JYkzn8S9pkJBgDSA0yn06hRdrhUMkkAbI5DAIXpNNmQaUAgSRKEMOQz94Ig4NSpU5ifn8f9+/e50MPc3Bx+/etfh0yZ5OIeEUVRCIKfcp2rqorxsTEeEKyygKDH5ubTUUDP8+BTCltV06CpKo9QO2fyJUmCRhmsRFHkAQOzOl3shmFApxrarAzGQDu+7xP8geeh6TTx/373/4MQIkSEQAicPn0aBbUA13GgahrS6TSvLgiCMHC0KQhDnD93DmNjY12BAECDMkVBio49lTY3+diQa9uwaT91qIXdGbCwRd3j5b3Ik0zThEedc4KWVcPIZ4WtD2gLPpqmSeiNCwWMjo5iZGTkqYrsty3eBEFAPp/HOq10Ma2TRr3eAiN3tHo6q4oAevqOr3/9630pqDVNaxvXZQFktVpFpVpFCGCkR0AQhiFs2yYy5yABqUwnfrivCbvV8gzKOyDSUnTUd/hBgGq1CgDI03PhvoNJclOf4dOAKPB9VCoVfPTRRzh+/Dgy2SwkUeTqopl0GqqqknFjYThej4ePHqFULuOll17qWkcCwLN/nY52swkPQRDQNE0YhjGQbbEzEGD3i01WxFlIgX+dV+C6LuFUQCsQEOjkSVuywiqRkXtQrdXgBQF2LCwgnU4/Ve0BZp/+PMMWLZ1OQ08kIKgqLyvJNDKuU7Uy9oWIoghRlhFG+n8CwLECAFEli9I6do6cMWM8+U5kUbOAQJVl+EGAldVVngEwYxF9uVqF67oIQkJbm81moQ8hxGNQPITv+wQxG7HOh5k94KIgEHEMTUMikUA6lUIul0Oh0K2IlclmkEwkSCnfMKAykCIw1IK+ffs2ao0Gjhw5Ev+CSGXCtm2CEUgmkUomIUgSbNtGjX5vccZJkzp/jgGVgRiHxAA/bYEA/V55poNWENH5/lK5DEGSMDs3h0KhsK0w+BkyURRJ20rT4NNZewb4clyXt3+YdVYVAfJs9PQdgtATr6MqSpdfyOVyfEOtVqsobm52vc/zPFRrNTRNk5eqM5kMMul0W9IRN5PPNlIBZAS37VnucZ4CyJieqqpkVDaVQiaTwUg+j9HRUS7Alc/nURgZ4dMNBm0/KPSeDQNFDMIQly5dwvj4eM8kInofvCCAkUggm05DUVWEYYhG5N70srjkrp/fYGDATrMtC00K/pMlqUVwRFsA0c/q9FlsiiWTyWBycpKrVD5t9pkLBgCykLRkEgGARr2ORCJBZlNZGZf2uQGiGCWgJUm6vLKCb33rW/yzbNuOFQzpfLxYdtC5qFVVxcTEBDSaXa6srvKAwQ8C1Fgpn0b0mXSaqPExwGPkoYlbonxRCwJMWiLssuhn9MlUY+GDkawiugg4sUgfcz0Pi1evYmF+vjf/P/2cRrPJNbvT6TTSmQySEcrlBr1PWzlvtnHHEsd0gCldiloOfB+CKCKVSrWRlERLh4ztMmqVahWmaSKbz2N+fn4g7fC2PX3G2jqipsG2LPi+z5MAy7Y5MDQEDQZohY09a8vLywN9R9xGy+iqOy2XzSKfz0MSRdTrdWwUi/x3lm2TbJIeP2EYyKTT/Hhtz3yPdcp67ay6wE8x8pq2tlvsp/S2KKFZ1HcMUy27fesWGkMkEayiKgDQVZWMZ6fTUBUFgiTBo5Ud3nZlbycnGPvR/bBGUkdFIKTAv6hUeSrCZBmEhIytE5fE3x8E2NjYgCTLmNuxA+MDtEs+TftMBgOiKCKfz0PWdfhBgHqtxrn82b95OZ62CjzPQ7Vaxb/6V/8KtVqNz3ZaloU/+ZM/6TpG5xemahpE2mvuNFmWMc5mWsMQK3R2nvW4QgCpVAqpZLItm2QkH4M2XbaoEYac9zpqQy/imIcwRNjiyY4ujiEe2MXFRXhBgEOHDvV+UUhm+Fnmn4zcA0VVkU6loNGF7TgO1wQYNDYYMgBSRzDAA7nIz6xIVC/JMlKpFAdJAS3H0UsAyzRNbG5scHGaQcJH2/b0mmEYyIyMQJBlNE2TBAQUiGbZNqfWDUDJbGhVsVqp4Le/+c2hfEfn2jEMA2azGRvIZzIZjiNoNBpYW18n1QB6HrIsI5PJQNO0rgCAgwN7rVWBcPULIKPO/TJoVlHcirENuHOscFBr0XFdXL16FQsLC72z5JD4pQalQJZkuVW9FUUkEgmk6IQVQOb3WaI2qE3Bppvarpf6kei7GECTVRJ1w0Aikej2Nz0SiMD3sb6xAdt1kRsZwe7du58KcqFe9vSe2QCTZRnj09OQ6ehdo9kkwhCSxFsGruPwfzcaDfz2b/82NtbXoes6/sk/+Sd4nipjff/730epVOo+SKT0J9M5UtZriz0fGhC4joO79+5xdrx0KgW1D1Bu4AMitAQ4LMuCHwX1AO3BRJ9FELfYmY4B0M4xMMgtNJpN3Lx5E/v27u2L6mVzwyGApGF0V2EoGpfJjvo00h/E2MgzOHrOfGQw8hqOdmZRPUWW8/tNHQBDF3feO8ZKWNzchB+GmJ6Zwe7duwfcmW172i2dTiMzOsrFpnzf506e4Y8QEPlZUBT4N7/5Taxt0XewpylNAYxmj8pXOp1GgeJPNkslrK6vw6NVi1QPdjpWWRTifEDEVE3j0wLs+G2VgSHuVy+LGysc5vMWFxcRAjh08GDP14S0mhiC9udZKyZisiwjnUpxenqr2YRlmgODEb/zvGklMXrunueRySrfB0QRyVSKVwPbKN57tBzYtEqtVoOqqjhy9GhPldunxT6zwQBAHoax6WnIrIfUbELTNKi0ZN9oNuG5LkRJwn/+L/8F95eW4Ich/sGv/Rrm5+fxS7/0SxAEAa7r4v/84z/ufSC6sLO5XM9gACAbUzYS6VarVYSUmWqQDYrKVU2DRHtybP42tq0QUzbnv4t5R9Ajw+63qEMAFy5cgKZp2Ld3b8/XOY7DHZAR6c/HmapphCecVkDqHT3cTmNZidCjRNeJD9ApJiJK2MRwB3EZE9MpqDcasJpNpNNpHH/22b5AsW377Fg2n0cqn4cA8pw6jsPHXD3PQ61Wg6woCMIQv//7v49rN28CgrAl38GmedK0ktDPdyQouj7wfdiWhUazOdhvdKL9exhvhVgWb9X1sq0EB7EcAwP8WLVWwy2aRPQSJGOlecZTkEwme2KrBFFEKpEgbIuiCJuKvPWykJ43wwZ0gv4Agg9osIBQljnpW+sSBaJfQSsMneZ6Hhr1OqrVKgRBwM5duzA9Pd33vjwN9pkOBgCS7Y2Mj0OlX1aDjq2xKK5pmvjjP/5j3Lh+Hbqu4+/+3b+Lw0eOIAhDzM3N4cSJEwCAN996C2traz2Pw8A71Vqt52ss24Zt24RFL5OBoWkoVSpY39gYSptgIJiQLmrHcdqwC52PY090fcxveFWgUzikT4Xh4cOHWH70CEePHm2T6IyaR1HbEAhr2jA9dplSK7MeXJ21DGKMleVkWeZIXmad+IDOqF5gi59mA50LOqQVBdfzUKvXYSSTOHL8+FML/Nm2x7Ps2BjSuRwEUYRHKaYZ/sgPAlimiT/5kz/B9evXYWga/m+/8it4hva4h/Id9BlL0ey11iMYYFgnNj6dTiYJ1/7KCpf17mWCQBlI+6xXWVGgqCokUez6vOi7+iHs44y3CYasKIYAPvroIyRTKezpk0Q0I9iNfoFA66ACdF1HggKybUp4FnsObLIMxHd0AoYbzWY7PiDS1mR+glUG4nyT6zhoNBowKSZlfHISzxw9+lS3B5h9LtIcPZNBxvdRLZU4R76u60gYBv70T/8UZ+gDePLUKbzy8sstTvEgwF//ylfw4YcfIggC/B9/9Ef4n/7+3+95nEwmA5sSfmgdWS6bn2cCFPl8nrMMMiW80QGa1ULYznLVaYxgiI0a9eI1YGXvixuX8PbK27A9G0AIP+wOSP5g8T8jLabhCz58JcAzhcP42R3dDIzR6zx//jympqcxMzMT+xrWawvpVMNAjXE2yhMSwaVkMkkqAzRDSKVSXU6G8ZuL0cpAGMKyLE6GJFGaYJExD9KgIQiCtvdEzfN9mI0GqQzU69AUBTt37cL8/Hz/a9i2z5yJooh0oQAxDFGt1eBTFTzDMGA7Dr733e/i0sWLUBQFv/ALv4DXX3+9DSn+lWF8By3nZ7JZQvDVYSwLdmkrbXR0FGEYYmNjAzaV7M5Tiu6+10JL1r0y84RhoEIJgNpwRx3vGXYsEOgutw8CHd+6eRObpRJe+9KXelY9GL4oCIIujFWcRc9XpePVpmXBtm1OAx01jyo1crEp9nPPg0mVHAFSSeQJDPvOO+5NJ625TZNBhIQxMpfP45mjR5/KMcI4+1wEAwCgZ7MIqSM3KTnH2TNn8J0/+zPouo7Dhw/j1MmTsCyLA4AEALOzs3juuefw/gcf4N1338Vf+4Vf6CmWkc1mIQgC6rUa1MiMue/7BPAThlApMQ97vaqq2CgW4TgOVlZX++qYA73H2pgZhkFGFIMAlm13yfACxDFc3LyCf/LO/wthTAAQtQsbF6FDR5P+94MHP4Dj2/jFhV+If/2FCwh8H8ePH4/9PePfFgTClsioovtaxyITJQkpFhAEASzLagsoQlDMAOvrApyQifULGUES793SAKCzJMgqNiEFZzq2DRHgDmliaTEF7QAANFdJREFUehp79+/fbg98Tk1SFOi5HEKKM/KDAI1mE2c++gjf/d73oCoKnn/+ebz88svwg4CD5UIA09PTeO755/HhML4jk4kNBizL4oFAKiKnOzExgWKxiGaziRIlHhsrFHpnmLRCEA10234tikjoOpo0841ey+NYlMKcnXO/QKLRbOLS5cvYvWsXCqPdI84A3cSp4FAikRi45uKOp2kaTwqY3L0Y+c7CMCQ8AUynIQiIDDwLkCh/ADt2lECo8/qZ+b5PRhx9H6IgoN5oIJFIYOeePbFjk0+rPf21iyFNFEXo2Sx0Kq9588YN/J//9b9C13Xs3r0bP/dzP4cwCFAulVrz+jRq5/0/z8Mf/uEf9oxu2UhJtVZrK12xiFISRSQ6qGkNw8DkxAQ0imtYXV2NdQpRYxWC+F8KPNJ0KSlK3Ple3LgwMBAAAAlkUfho9RIvFS/HvnZldRVLS0s4cvRobEDDwH+g/TiuHf8YJkoSv5cOpW1mJT2f9hL5WCKd4w0pTamRSJB7JAhtUwddd4neNzae5NDgSpJlggAuFLCwa9d2e+BzbqphQEunOWr/2rVr+K/f/jYkScLOXbvwU3/lr8C2bZRLJR48MvDeV7/6VQCA43n4w//9f+/pOzKZTKtNQDcxz/f52HHn5icIRLkzn8tBEkXYloXl1VW4HaPN/PX0z37TSaqmQVYUCIIAi9Kcx33OMCuW34dIezGO7wAgm/CZjz6Crml45vDh2Nc0TROOZQFhSJRT+zGTxmTpUdN1nVwnbYuw6SJBEPioKGN0ZeseIEqWaYoPCMJ2efu462dBB2tJirS6CUHA1MwMFhYWPhPtAWafq3RHUhTomQzCchkvvPACnjlyhCDJ6YPgOA4830elXEaSCl2IoojZ2Vn8p//4H/nDxedQ0T62wyYDor0/27Z52a3X5qcoCiYnJ7FRLMJsNlGqVOC4Lgp0pKjLaA+wV8tApmpktuPAtqxYbvwD+QMx74y5ZzHBwDOF7gXreR7OnjmDsbGx2JI521DZJs0IXXqGI4LAs/VeJisKNFWFTcWQ0plMm146o5Nlzo8JtXAcQAzKt+2c6dgjmwEXJQkJXUe1WoWmaZienf1MAH+27eObnk4j8DwkBAEvnDiBgwcPwqf0vJ7rEkEuCuozEgnCHCoImJudxX+M+A4/JDoiDDzILJPJkBaUacJIJCAAaDYa8Cn/SC9q2nQmA0VVUSwW4XkeHi0vY2x0tG/pWaScK3FrK5FIoFqtcuXC2IBgiFZBFGvErQcu6u7du1jf2MBLL70UizFqNpt8DRq0PN8T6BjB+/SzJG2LBGEI13G4JgrTTbBoOR8ABEptr6hqG6YgNoGg5rK2Ag0YFMq+uFEsYnx6GnM7dnxm2gPMPjthy5Amaxq0dJpn0Ol0mkdsTLvAoWJANaaDHTG+EMIWrW+0T5jNZluoYBpgACQa7dffEgQBY6OjyGazkAQBzWazK9LvnF/tDEaixscogViwzLOjx4YICASI9BHwaDCQ03L4H+b+h65XXrx0CY7n4bnnnuv6nUfRs4JAVBXZ+F5fgqQ+/c2o6boOiX4njNLVoy0Bx3HacAasWiEAXe2ATnNcF1UqpQwQUqk0bU14QYCp2VnMzc1ttwe+QKZnsxBlGZIsEwCwrhPGOTq6xsS6mo1G9/grfdbYsxfQ/9kaYNUl5js8ShMuCEJXNbHrvHSdEJvRDW1tfR3lSiX2+K1/xj/7oijyJIgRLz2OdYIHe1UFTMvCxYsXMTc311UyZ3gJh7ZJjI4+/ccxgVVpBQEWXeOsr8/aj6FAKOFTySTBctHkoR9hEeiUEZt2YImPqigoFosYGR3FxMTEZ6o9wOxzFwwAgJpIQEulCNpcUZCl5T9FliGLIlHjc10uQ8kWNltAoii2EXqwYMAPAiRTKZTLZSAM28Q9GPXnoIc4m81ibGwMsiTBc108XF5GpXNhMxOEni0DQRShs5GhiPZ6660CfvnAL/c9F5lWBQjFCjnvr+76CnSpHfm/sbGBO3fu4PChQ13Rruu6ZAynIxDoaVsomwmCAEEUoVLSJSaLXKHUziKdGkkmkzzjYFF9L2cYUHxHVIc8lUohkUigVq3CcV1Mz81hx44d2+2BL5iJoggjn4cgSYTbI5FAOpPhz5koy7Adh2SbrotqtcqZ/doIgCIBL0soNF2HKEmolMsAyORRGATQKA/AIJNlGRMTE0RlUBRRqVSwurbWxiwYNTZlIMT4IyaPLtCkpNN6TfCwilsoCARoJwj8Xglh2JVFhwDOnj0LSZJw7Nix9t/RTZW1OZOJRO+Jo2iFb5i2I329oih80sKyLNRqNZ44MUphxu7KjFdjO48TEg2caq0Gi452a3QcWhQEbGxsIDsygsnpaezcufMz1R5g9tk74yFNS6WgMmlJWiXIZrNcd9qhwQCTDI4ubABdc/cAeVBGR0dhOw42SyVYtEykUhGjXu/rNMMwMDk5CUPTIAEo04XtUPBM+0GF1vhQ5zUqCqdbZmN4QRjCD0N4QYBnC8dwIN+b2EOmXSIPJJDIqBn81YWfI8ekKH3P9/HRmTMYoQxaUXNcF41GA6FAVN5YayDW2M+3EPFzlLCi8NlvxggmiiIy6TRfzFE64bgjsCCgVquRikJAZIgzVNyqWq3CtCzMzM5ix44dGO0Bctq2z7eJoogEHTcEyCaczWTIeKBASLE8z+P+gz1TfiSZYFwf0WeS+Y6VtTWioGjb8GkwAAzXq2c4gpGREd7zXllZQalc7km0w9UYO8wwDCK85nlc+ZT5DjaNxH7WVuWgm6tHy+kSrQCG7PwjvmNpaQkrKys4fvx4u5ZCSKTAmY5MIpnsapN0aikMO+HAOADCSEBgOQ42y2XCwkivPUnHPfn72HE7P5AGAbV6ndBVex4gCEglk0gYBsIgwFqxiHQ2i6mZGS5P/Fm0z20wAJA+oBzRmpZlGWOjozDolwiQ8TPbtmHT+VC2sKMW3eBGR0ehyDJWVlZgUwyCoqotFjv0ngSImizLmJicRL5jYXeV/yKf2RkQCLTMFdIqRb1ebytNQhDwf93/td7n0BEMfHXXX4cuG61rCEOcPXsWlmXxmWpmDh2lFAQyPpiICQT4XRiix0cP2v4ZkYXoui4CkABE1XUkEok2BzKoElCr1XibQZJlJFMpMpcsCKjV62iYJqZ37MAs5Q/fti+uibKMRD7fkqYVBKRSKYwUClBUFa7rEslrCgB0HAe1apXLC7PAl5HaMJuamsLGxgYBtVGq4TCy+QLDgfdSqRSmpqZg6DpEKnS0vLbWc7Y+LkuVaMUtCALUqbxu1Hf09WFhi8K8rarBgIRhiHqthnPnzmFubg4zEdwNaw0wzQVWYm//eHoPtwI+pgFXGARAECCgY6IMjxDQUWTDMIjIUASXBQwOAhhniabryFDpdd/zsFEsIplIYGp2Fjt37nzqZIm3Yp/rYAAAEpkMZF3npS9JlpHP55Gi1JCyJPFec9M00TRNVCuVFjikI9oXBQGTk5NYXl4GQMb4oqQUYRi2WP2GsHQ63bWwV1ZXuxZ29DwAtNEIR6sdTkfZ8PjoMTwz8kzssaPgwZSaxl/b+dfafn/7zh08WFrC888/TyYpaNRvUw53gLRhOvm66c1o/TlsNUAg6H827lOt1dCgBCSyJEGTZciyDEWS2kSG4iwuCJAVBZlMpk36tE4DwOnZWczMzn4me33b9uRNlGUkR0bastJUMsmFxkKQipWmaVzTgCUTDMvCjK2NqclJhGHICYpYqR6I4AyG9B2M/rxQKECWJPhURn1zczM2meDERHQjZ7oHMq0sNug0TtR6bcVRfoE4xlPP8/DOu+/CMAw8++yzbdXSeqPBJX9TqVRv3pVhEwhmkVZuwzRJpZdKOCuyTLBHtEoiU1XWXhNGcUGAbhhEMZdqRARBgOLmJvREAtM7dmDXrl19R8Y/C/a5DwYAIJHLQaFRcBiS0RVVUcjGQjczRlLEMuxKtYpyucwFQ5gJNBgoUYKjOHQsK1VHg4Mg8mcUkAi0FvbIyAhkWYbXY2Gz2d6QgY/oz6Pz/M1OUJAg4Gv7/y+x9yVaGfjKrr8OQ24BmUqlEi6cP49du3djdnaWnQCaVMFLEATSr48LBOhxe4L4ooFCx31iksZN0+TXqGsaafFoGpeB7qX1wJgPO4OAdDqNFJ32YA+92WyiUq1iem4O0zMz25MD29ZmkiwjUSjwtcwEckRJgkSrBZqmIUE1N5rNJvEdlQqqFJwcbRUkaDCxtrZGZt3jysmdvqOP3wAIQ9/U1BSSlFyrXq/j0fIymrSvzYz5Dsbsx9asTpOQMAy73tMrM+c0xJJENuFoEEGriaZp4vTp07xkztp8TO63s0zP3svBv3GBQIe/iP7d9zw0mk1UWTAGUrVIJhLIpFIAxTlIkgSJMg+2fXQQwKG+py0I0HVkMxnomsYpzIMgQLFYhKJpmJyZwc6dOz/zgQDwORst7GeJfB6NUgmuaZK+oGHwTDqdzSKjaXBsG5Isw3UcTkBjWRYnEtINA5IoYnJykoBGikXsYBtlH+PRP/03F7cAAFGESDfNZDIJTdMI2Yhpok43xZGRERiGQSJyughEoTW2F4aE9dD3PMKL3WggHZHZPDZ6FEcLR3GheIGfkwiR0xMbso5fWPir/HeO4+Ddd99FLp/H0aNHyTkHAenzMcCkYRB0M8g4FQPeRN1HGB1vYqVQ+qcoELUvFtGze87llEFGBVVV5c4qCAIy3UErBcwChv1wXV6+BEgQoNPZaoRUlZA61lq9zisCU9PTrYBn27YtYjKtEDRoYK6qKnRaDXAch0+xWJYFWZbhUFpjm0oia5rGW1qCIGBqchK379zB7t27hyL9iY4ost48IhVLgGToo4UCdF1HqVSC7/tYX19HMpEgks2UXjm6NqOVxmQigWq9zvEDbGPjm3xHUOAHARQQ8bbO37Fq4gsvvMCFeWzHgWmaYERkCcosyDbXyEm1AhXaMoy2XqPgYKZsGlBGxSg9u0wBn6zq4AcBAs+DFwRIRJMI2l51XJdMdbHATRQJhbquc1I3Rn/ueR42NzchKwqmZmexa9euz9wIYS/7wgQDAJDM52FJEqx6ncywU11zs9kkUb6uQ1VVOI7D/7SprK5pmryKkEwmkcvnsVksYseOHQC6N8I4a0OtRig8A/IX8m9BIJu/ZZGF7XlYWVmBpuvIZTLcqQDdvcBEIoEanYxomiaSySQ7ML62/2u48HYrGIhWBf7H3b+IpJLk5/P+++8jCAKcOnUKbM66YZqETEiSkEgkCBUy3WBFQeDViOiGH1ASIGZhGLZRlwZBANd1YXcGAbRyw17LSpFs9pi1CFwqMNM2SSEIUCkXe1sJkoK/fN/HZqmEMAgwMz+PiYmJ7UBg2/qarKpIjo7CLJXguS4SlK6Y+QmFymLrus4paVmiwfyHrmmk1z89jes3bqBWqyGXzwMAB7sNMgZEZEFtW5BAE4KJiQmUy2U0aNui3mwilUggk8kQgiD2YQz4FxJZ76RhcHZCmbXhBlQGmHAay9Lbqolzc6SSaFlwbZuD+RIR9D6f1CIXAXoxvHrR1mohb+DX63seHNuGE1n7siyT4L9TVAhklDOkrwl8nwQAjtNWeZUkCQrdF7h/ZtcMKmVeKiGby2F0YgI7d+7kbLafB/tCBQMA0TGQVRWNchmGrsN2HD5RwDZaTdMIuMb3udYB0ySw6XhJJpPB/fv3eSa6BahL98KPLChREBAIApm5VVVslkp8nGWZ8qZnMhmujcCcAvszkUiQUpnrQjJNrgz2zMghHCscx9mNswjDABJEBCClz/9x5y/yU1m8ehVrq6t4+ZVXYBgGLMsi+AWhRSbESE2iY1SSKHLeb35ZkUBAoIAgFgC4rgs3spBFdt+jwU4kMwiCgMxmUzR3tVptcxaSLENVVTLZEZNxhSBjkOvr60im0xifmsL09PQ2WHDbhjJZlpEsFGBVq3CoXDpLEuR0GghDSJQ1k1GGMw0RlwYEzWYTiqJAkiQUi0VCXRzppw+TUIC9hm7snCCNYZpEkVcSN4pFeI6DSrWKar2OTDKJdDrNdUCAFoGXoqpQfB+ObaPebBIFUdpbZ+OEoH8PKBto1A84to13330X2XweR44cQeD7ZMLJ8xAKAgxKCIaOzZ8FOJ2gbXYsVhUMAb6JO5SOnZlCNVt4EEBbgewVjFo8oIBPP+J3BEHgiYMsSbHTF67rokynESampzFKidc+D62BqH3hggEAkHUd6bExNMtlJBwH9UaDS4ZG0bGSLEOnAEPP8wjAkJJkJAwDge/j7t272EHZpuJ6YIMQsZ3zs9H+myBJyOZySCSTqFBQo2VZMCnrYI7OwTPgjEidQcIw0KQaDaIokgxZEPC1/X8LZ9fPAhAghTKAEC9MnEBCToJRJV+5ehWHDh3C2NgYH+MDwKsi/eZ9ZUnqwiswh+XRgIvxsPN7TEtyjCGMo4LZ/7SUZ1kW6jTISVIOCVEUodAAQKSOK260MASwWS6jUathdGICo+PjmJ+f/9yU97btJ2Ns7FCmgjiWZcGlfiHJniX6/Kp0g0kmk3AcB/V6nZez05kMVpaXsTE7yysKUW6TYYy9lk0YdXIDaJqGiYkJNBsNVCsVwrxaq6HWaCCTTvNJhmj/3dA0eK5L+u/1OgcNA+DYAIZjIJdKfuf7Pt57/314noeTL7wAj/K3sPvBSX3ov2OvRxS57+M4C0r05LkubDrKGb1+RZahMbI3GgDwtgJI8MASh6ZpQpVlHgjINHlgvpEBLDs5BizLQnFzE5IsY8fOnZiYnMT09PRnkkdgkH0hgwGAiuEUCpBUFe7Dh7Aoej2bybQWZqSvrygKsoqCdCrF+4OqpmF1bQ2ZTAblcpmI4+g6AShS1OmwxklLRBGgD71PM21VUTA2OgrHtlGuVmGZJizTxEqziTAkoh4IQwi0D6eqKu+FNWgLRJYkHMwdwHhiHCuNFchQIELE1w78LQBApVLB+++/j4mJCezZuxe1ep0sflql0IeQICa3qlV+9Fk/jhK18NfQaFylWVLnQmbZv0v/BIj+QBCGUGg/UFVVHnyJQCtzabuppMWxsb6OQBAwOz+PsfFxzM7OfmZngbft0zfVMCArCsIwxObmJu+HdzIJsmxdp1mxSymNc7kcNjY2sEbHAQVRhK5pMAyDMItGn80hEgqABgUUR8Qod0UKckwkk2jU66hWq/CDAOVKhY82ypFWXAgCSGSva5omEoYR68eY5HkYhrh06RLW1tbw8ssvQ5IkNBoNCCA+NplIEHzAgFaIKAiEA5Veg0sTh2j1EKCbuCxDjrQRWQXRp9VDj2q2sD6/SUHgCv0eVFXlmgosWekMAgQAtUYDm5ubyObzGJuYwNzcHHK53MDv4rNqX3iPaKTTmFxYwPK9e3AsC+VKBdlstj1Sj25kVAjHMAwsLCxg8epVBEEASZLIA0wJjGRJgqbrvNwv0hEeoH85kAHrgjDCj02Pr2oaxsfGSFBQqZASPi1FBkGAfD7P++kJwyCldQooTKVSkEQR/+ur/wb/8p3/GdWNGn5p3y9hJDGCRqOBH/34xzAMA0ePHiUaA/TYTLhjkLHXM0CPZdttC1kAqS6wTZyBCAGqHMY2f9ftQkwz3IKkKMhnMjyjF1nPMabtAhDu9+LmJlLpNMYmJzEzM7NNJrRtT8REWUZuagqQZRRXV8mobRgSMp8ez6OiKMhmszh08CCWHz0i9LUjI1w+1zRNwrgpyyQAp4I7UiT777ehCgJlAoyC70LCT5JOp5FMpVCv1cj4o+ehUq+jaVkQJAlJw4AgSYSRk9Jyu64LkwY5nWuSVVCvX7+Omzdv4siRI0gkk7BoYMQqidFz63fejKmRsYx2Vg9ZFs/Gm1ny4HsebJo0dLKwAmjxA6gqV32MUqVHJysAcCKmCk26JmdmeFvgs8whMIx94YMBgADWpnftwsPbt+FQ2sokRbxyruqIsWrBzp07cefOHRQ3N/Hs8eMwm02CL7BtEqE2Gmg0GnyEUVNVKJoGSRBaIy5xC5xuqq1/tn4fggYF4+OwbBurKyswTRP1RgO2bUNPJJCkqn2JRAINKoZSpxMGaSWNrx/4f+LNv/xL7MnsgmVZ+OGPfgRZFPHs8eNceEOWZTJGNaAc5tNSHMvmWZTt0vNXZJn05KiUKJsI8CmVs097eZ33l81Ay4rCGQcVWgVhmUBnNB8NAqq1GlzXRWF8HOM0qt9uC2zbkzRRFDEyMQFBllF8+BCNZpNs5qpKqIB7bICarmNhfh6Xr15FOpOBpihomiZMyyLshBSbJNRqUBgWhq4hif4fN70DoE0YrA10B0AIQ2QyGaTSaZTLZThrawg8D6ViEVVFQTKRQJLO/iep73BsGwIAo2PtyLKMW7du4fKlS9i3fz/Gxsc5RTGfNBpQ0WAZvEd9CNAC+kWrh6wFyJIb3/f5/51BiiiK3G9IoohSqcSnC1gS0uU36L89yqhardWgqCpmd+7E5OQkmR77HLYFOm07GKCmKApmdu3Cgzt34FJsQJIiRSXWy44+QBS9Ozc3h1u3buGZQ4eQTKWQTKW4KpZlmrBsm2yYkchfEkXIkgRRkgjfAS2XS/RnoH25uKUUXeC6rmN0dBQN2o+EIJBjNpsoSxISlDLTtCwC6KnXkUomW8j/MMSPfvQjBJ6HZ59/niOIWVmz01j0zmic4xYjEyuSJImMTglk0sBsNgmFaQ/aVEYOwolQIoClOg1otEhVofvGCDDZnLFtQ5AkTM/NYXZu7guzmLft07F8oUBaBsvLqDcayAgCqaYJLRrxqO+QRBGzc3O4cesWri0u4sSJE1A1DTkQsBrDBrFpGSamJYkiEVKibUtFUUhwQH2KJMu9aYnZOQgCJEFALpsFAN7b930f1VoNlWoVuq4jxUYm6XQEBx3S61heXsb58+exY36eTOOEIWRFgWEYsVoLAeU4YAFAnECSJEm8gipR/JHjOHw0MG7d88SB8sZEj82YZQOQYKaX32BBQI3KrxuJBHbs3ImZmZkvlD7JdjAQMUVRMD0/j+WlJTgUgGcYRosXoGNxq4qChfl53L17F9du3MDRI0dIr4yC+Fip3nEcsrjpBhr4PmzXRWjbaNLXs0UtiiJRIwwJ0p9lGKIkcYAgH80B2URVTUM6k4FESUcYYU+tWkW1WoWiaQAVS2k2mzz6vnz5MlzHwbPPP4+EYXBaYQCtmX46Asiy/+iCYtgAURQJEQs9N9/3YffQSwe7XhYwsCAoOnlAbjAQhnxGORQEpNLp9oCMvsY0TVIJiIwwHTxyBLNzc5/70t62PR02MjqKEEBpZQX1eh3pdJqv45BiYqJVxmQyiZ0LC7h+8yYOHz7MtQIUmhxkMhlSJaBTTJ7rwgsCwiUSBJz4S2JrrwP8zHyHSKubrDwe/b1ERboy6TQZRaTUvbZlwabtA0WWIQKwAK7wWqlUcPPmTUxOTmLPnj1ghEqqorQqf75PtA7oRt65+TNMg0B9gUgTB9u225RcoyYAPBiK+o7OMj+zeqMBz3WhKkpbcsPaEqyFWqvXARDw9ujEBJ45evRzjQ3oZdvBQIdpmoaJmRmsPXoEm87sJ5JJDihkZXCGKchkMpidncW9e/dw4MABaBHRIvY6Q9f5wxgtkbORxoCWy23P46Q4Pi25MWISIRIISCwwkCS4ngeXUhAnqMpaKpOBRdnQbNeFTTnTy7UadE1DtVJBGIYwLQtHnnkGMgX4uJ6HcrnczRkQ/R9oC1oYADAMAng0K/EjCGXmqGQa8HQ6JWbRMUXQ4wJArV4nqm+qSkRdWP+UjgnV6nUeBAiCgJHRURw/ceJzNf+7bZ8NGykUEIQhquvrqFSrSKVSZNQ1snZYhVFRVczPz+PW7du4fv06jlNVPw4kBs14Uykk0Zqq8X2frHnKr+GzAIFibXxK5839BWhgQP/OuAFkWYZNKc9tTYOmqgTkSBk8m40GXMchIGAaBDBGxZs3biA3MoJdu3bB933CvthooEanDRBZ/yyZYMmURMf3ZLaJR6qNAHi7oK3CGEkYOlumIr2nfBKAmkMrLH4YIhediqDHqNfrqDca5DyDAIqiYN+RI9izb98TfCI+W7YdDMSYYRgYm5pCcW0NVq2GWqWCZARIJwCcPUuSJCwsLODevXu4cf06Dh8+3Lago8YWoyxJYPlqEBIWrU4EfdOyWqM8tLwedDzwjKDDdRxIktSSI428ThQEDjT0XBfra2vYWF+HIAjIjYwQ1jEK9otm5KzEGQ1AOjN4oMVPzjZ5URThhyGgaTwr6bwHiByH9z1jqggmJYTyggAj6TTCsEWHzERhBOpkkqkUZufmsHv//u1JgW37VEwQBBQKBQBAfXMTjUYDrqK0RLwiG2UAIjg0NzuLe/fvY+/evXw8sdN/sMoCA+DqEY4A1m9nAQFjEWSJix+GCCmWp+1cQcbmgiCA7ThdbIiCIACU59+lrIolKr8sKwryIwR4HA3Qmf8QQMaimf9QVJVXDaPHF0WRVyhYMC/RNmHUzzAfEW2R8kkv+vfo/QKIEqzn+22THCbFZTiOw69PURRkR0dx8PBhjHzBwcXbXrOHJRIJKDMzKG5soEm5xg3DILrmUVAOgJF8HrMzM7h+/TomJiYwOjoaDzoEuL54dE5YpABDBvLxwxBJWhoM6Hwvi64ZSC+gfzp0Lph8aIuhjB1HkWVIySQUWUatXke9WiXlSFGERisLfr0ORVWh0+zbMAxyPnSjjRKaiKz8SMt6DMwnRFD9rusiZFSlUdRu9IbELGD+K5AKSnFzk4iNiCLHAjBK0jBssSHmR0awY+dOjG4TCG3bp2yiKGJ0dBS6rmNzYwNOrYZqtYoUBSQD4OtCkiTs2r0bS/fv48zZs3jx1CkODoxam8+IbIKiKEIVRWjUdwDgnBzMb/gRboCAVhJYKZ+ReIGW66NTCBIASddJBcG20Ww0YJsmVElCJp1GSFsVjufxMjzbeBnpF2+NsKQiuvGziie/SIFQJjO/Qa+17TWRn/WyECBy5BSjpSgKVlZX4bkuD0ZYYJVOpTA5PY0dCwtQP2cEQo9jQthXq3LbgiAgwiOlEpx6HbIkwUgkiI43Wg9qwzTx1ptvIgTwyssv8xGjaH9/K+bTsn3swx/ZYD06BoMw7O5zhSHnUDdNExfOn4fn+9izZw+CMISmqlwRkC1CBkBSFQWarnMUrkx7dYMspH3+xzGW6diWhfWNDdRozy+bzXJSEFGSyDy2YUDTdeRHRjC3c2dv9bNt27ZPyWzbJjwElQo820aCJhNRC0HG886fP4+DBw9i7759rWAbW/cbAJnkiQPotQ5KKhONep1MIEXamKwq6HkebAp+vn//Pu7euYORkRGMjIwgkUzyiiYD+zKCMFGSiJaLphFwtKq2dERowtDrmlwWnGzBOMlQ2FIbXKX8DYy7gR1PU1UyFp5IQFNVTM/NYXRbpZTbdjAwpDWbTWxubsKu1xE6DnTDIOQVkdesrKzghz/6EaZnZnD0yBFCPATKPU4zamaDFjnLjr1+ixoAwhBlWr7L5XIQJAm+65LSPxXfKJXLuHjpEgxNw9Fjx0h/kFINs+xAouxctm2Tvh0F2fDHg+IXZDraJNN2h8KQvAx3QAGS/YzhJXhbxHFa5c6A6JCzKYxcJgOd8jUkDAMqdaaSLGN2YQEjtCy7bdv2NFoQBCiXy6hXKrBqNSg0mI2C/YIwxLvvvIOHjx7h9IsvYnR0tC3w5tW5IY/pBwEZ7R3g2pmYkqrrSFK0PQMQ+kEABAGuLi5idXUVu3fvxo65OYiSxBUa2bEkSSI6DLZNaIIjk0Ds/Fl7lI8MMznyyMix0yv5idwnNzKO6NDqKcMceHQiIvA8yLKMdMR3GIypEEA6m92uBsTYdjCwBfM8D6VSCc16HU6jASEIuLIeW7yXLl/G1atXceToUUxOTMBIJLr75DQ44OM+7Ncdx/N9Hz6NwFn03cadTTfsWrUK3/OgahrZkCnT2dKDB1i8ehVXrlxBqVSC67rIpNM4duwY/s6v/AoAkh24ngcEAYmYKfWyZZr4wz/8Q1xdXMS+vXvxsz/7s23HBCJsf9FKRee4YQS/wGajEXEYQuRzgiCASXUgBJEosY2MjrYpFDKQ4NTc3HY1YNs+M9ZoNFAul2HX6/Asi/AH0OwZIBvzn//FXwCCgOefe45MI0RGbAHwtSSywKBH1ZHJHrNEgvsO9h66Pl1Kxc70WNi0U7PZxL27d/Hhhx9i6cED1Go1AKRaePCZZ/D/+Lt/F57rok7HErkSoSjykepvfetbWFxcxJ49e1q+A+0ModFEw6cTS20Awc6tKQgQCC0J8qi5jsPl5hVNw/TUVDt9Ogg4fHJ29guPDehl25iBLZgsy2Su3zDQSCRg1euwqdIXkzY9fPgwisUiFhcXkU6lEIQhkuyhjETKXCgk8sBHATigC1gUBAiyzMmAopHzt/7oj/CdP/sz/MZv/AaJgD2PsHQB+Bf/4l/ApiQmbEGwrJr33QEkUynCTWBZBH3r+0gkEkjRoOEvfvADlEol/O2/83cAoAVWokBHTgDCCIfo2CKzKKkSc0ihILSyBDofzABNEmV4zKTTXAKV3bP86CgmZ2a6Sq3btm1PuyWTSaiqijoj86GqgialIlY1DadOnsSbb72Fu3fvYmFhAUk6jRA1VmmMKp3y37G2JPUvsiRxAaAo2C4MQ/zxt76F733/+/i1X/s1pNNpvjYlScJv/uZvwqYTSux9WcpLAOqHFEVBJp1GnU771ClRG2s5HDl6FH/xF3+B4uYmvvbLvwxREAg+ifoK13X5JITnea0pBHaO9M+2NqsgQEKLV4CRMDHtApFWGwqFAlFVpfdK13VMTE9jZGxsIBHSF9m2g4EtmiAQvu9kMgkrk0Gj0UCjUoFjmrBrNaiyjOPHjuGtt97CxYsX8cwzz5ANloLy+Od0/MktshAAUobjin8063YdB67nIQCJdhmoSKR4hnq9jgaN2gVBQGF0FFNTU7h75w6AiNIZ/T3DN5imCcd14VWrMAwDR44cgaaqsC0LV69exfHjx4laYgTgwyhBPcqH7keykV4WnQ0Ow5CLL9m2TQKURIKPBgqiiHyhgMnpaa7AuG3b9lk0RVGQz+eRoX6jXqvBpLwglmUhkUxi//79WFxchKqqmJ6ehquqXRku0KPNGG3roUVfzDj62ZigR/lCJFplZJwpsizj9u3bbYFAYXQUU9PTeHD/frvUMMg6TqfTaDQa8Hwf9UaDcJUkEqRNqiiwLYuPTuoAr0wwUjXbdRFQTgKGV+rlOxgAkRkTj2OVTFVRkE6noVBiMl3XMTE1hfzo6Dbp2BC2HQw8prFNlEkK1+t1VEsleHS29dizz+LCuXP46KOPcODAATipFHTDQIqNGfUxNk7oU7lfn4pueDQLj0b5nu8T5i+KVr569SpuUa7wF198EUePHkUmk8H6+jp+67d+i7OAsUwgCAJAFIn6F50X9oMAtXqdlAUPHsS5c+dw5swZPgvNgoCAzTSDKBYGPTgEehmbaWZtDVGSoKsqUuk0yTzy+e0gYNs+dyZJEqEFTqVgmiZqlQoatRpM28b09DSsZhO3bt1CrVrFrt27Ydk20qnUUARajCXUZRThlO7b9zz4YdhS5wtD2LZNxNUMA/VaDefPn0e90cCLL72EUydPYs+ePchms3j48CG+8Y1vwGXTTWi19wRRJNVFOu7ruC6cchmGYeDAoUNtvoNVRAP6P4IAsigiFIk6IWKYC3tdIzueTTEObArKSCSg6zrGJye3g4At2nYw8ARMVVWMjIwgk8nANE0063WohoETL7yA8+fP4+LFi9i9ezcymQwqlUqbZG80LOCLhZF3UHR/QEtoANqAOABQr9XIGFOxiGvXr8P3PBw9ehRf+cpX2sZ3XNclvTnWNoj08kEjcplG+oyXwHFdHDt2DIuLizhz5gx+5Vd+hTuBIAgIup8eI6SRfbQF0st8NpZENRxsy4Km61AUBWNUSyA7MrLNF7Btn2sTRRHJZBKJRAL2yAgh+6nVsOfAAeiJBK5evQrLsrBz1y40qcaJFgHC8eoiTS78CN13VGqYvUah9OdMFbFJJc6vX7+ORw8fYmRkBF/+qZ9CllHw0qCB+Q7ODBi2850IAAy6fs1mk8s6Hz9+HJcuXuS+I4wkEQC4fwoZhmjQ2CA9F9OyiKiRaQKCACOZRCqZxOT0NArj45xGftu2Ztve9gmaLMtIs1731BQcx8HEjh146/vfx80bNzA3P4+x0VGYNKpVWVAQ81mcrUtVIdCZZEb72wkcunDhAur1OgqFAl544QUkKaUw/SAwOWEAXZKgccc1DAOKqsJsNrGPOibPdbG4uIi9e/bwRYzOCgc7rw6MANAKFkzLgmvbCEBYwsIgQDKdRmFsDAu7dnE65G3bti+KCYLAe+0jIyMIggDTCwsYGR/H2z/6Ea5fu4aFnTuh6zqcWo0rovYa9WXsoFzhjzKAgr0+UpL/4MMPoWkaDh46hAP797fWNvkgQkFOA/9eNMHMZElCKpUiFOLNJvbv38+Ti+vXrmE3pS7urIxyXFE0kYgkSqw1atEgwA8COLZNlBHTaczu2IGJqant5OFj2vbd+wRNVVVMTE3hb3zta/juf/tvuHDuHNbX1zE3N4exsTFeslM1jctzAuCUncyYNgIzz3GwtLSEO3fvAgDq9TqOHDmC8bGxtlJilKCH9fIZdXGsRaJzkfKWK4qCyclJPHzwAOfPn8fY2BhUTSP8A5Gynh8T1bPF7HkeHz1iPARhECCdy2FkdBSj4+PI5/Pb4J5t2zbQikEqhWMnTmB6fh7/3//yX3Dm/HnsmJ3F7MwMjEQCvu8T0iEq3gVEeuqRYJwpCTIrl8u4e/s2bt68CQDI53I4evQoknHtSzq7D4DjDHpZlKCMCYpJsozp6Wncf/AAZ8+dw/jEBPEditKqCnRWGaLTBEEAh9Kps9FB13GgyDLGp6aQGx3F5OTkNqD4Cdl2MPATMFEU8bM///M49MwzeOfHP8aH588jm0xifscOzExPkz6b4xCZY03rWpSiIMB2HFQqFdy/dw9LS0vwKZWmIAh47dVXkUgmuc4BIoEFBKG1oCmCt3NRs6ABaA88QgCKquLQwYO4desWFq9exU//9E/DtW04tg2Jlh0Zg1mUOzygXAKMt8D3fThUijhXKKAwOopkOo1UKrUtLbxt29bDxsbG8H//1V/F2bNn8f577+HO/fuYGh/H3NwcCoUCLMviQYEaBfeiBRBuNptYXVvDndu3USqVoBsGRgoFCIKAZ599FoqitIC/9L3MRzgUX2TZNgf+RUebo8a0Sdhxk8kkDhw8iNt37uDatWv46Z/+aVjNJkyQyaYoDbEYSSw86g8Z5bjr+/BcF7quY3rHDuQKBaLDkk5vVwOeoG3fyZ+g7dixAzt27MDm5ibeffddXDx/HovXryOVTMLQdRiU8Y9xE5iWhXqtRpQIm00EYQjDMLBv3z4sLCzgO9/5Dj744AMw4RHHceC4LnTD4McMgwCWaSJECzcAdM/wdiKFo3bixAn8H3/0R7hx4wYs20YmnYbjukSq2bKIE6DYBsZM5lBRE5+OODFQz8joKBKpFFKpVKxM8rZt27a1m6ZpOH36NE6ePImrV6/inbffxnsffQRD05DQdSQMA7quc4Y927bRNE3uO2wqbz4xMYEXX3wRkxMT+OM//mMAJNGQRJGU3l0Xmqq2AgGaXAgUaxStOJC/tPsLifIFRIME5juuX7+OZrOJTDrNM3yb+gqWgIQUMB3lKlEoOLqwYwdyIyNIJBJIRqmdt+2J2XYw8CnYyMgIfv7nfx5vvPEGrl69is3NTZRKJWxubqK+ugrLNKGIIrKZDOHPnppClqoRjuRy7X09aqqiwBQEXk5j/US2aQuRCkE/4xwHkYU+OzuLsfFxrK+t4cL58/iZn/kZJIKAMJhRLgOHso8pmgbVMGBkMjASCSRp5s/015PJ5DZZ0LZt22OYKIo4fPgwDh06hAcPHuD+/fsolUooFYt4sLGBJlNZ1TRkaMA9PjGBXCaDTD7PhZA6TVVVLuATbTOaVNWQ6aYMYyywYBXCqO+4dOkSfuZnfobrJ5imyeWZRUGAbBhIJBJQNQ2JZJLzFkg0mUgkEtvTAZ+gbQcDn6IZhoHnnnuu7WdhGBJSEsf5/7d3Pz9NpHEcxz+dTltsqyI/qkXKxXiQZA/1uGKCF4/yL3j3sJf14t/h0YP+CWqiMSJ4kGVvVU9iPKywgtklQunKdDr9sYeZZ3YgsMJmEYZ5v5ImpG1oL/320+f5zvP1Rxy7rn+GQdB4t76xITuYINgNuvm7wYmGdibjJ+5mU/l8PvzlLvnL/Xv9QEdPNzOhoFqtanp6WrXXrzUxMRGeLZC2bQ0MDytfKCgTmWOQz+eVy+V2nHQI4L9LpVKqVCqqVCpb7m+322o0Gv4kQtdVq9n0b47jb9d5Xjh9NLo1mM1m5QTTCbvdrizLkhusCliWte/wbgVzW8zKweVqVdMvXuh1raYfr1xRJ3idE8WiBgsF9eXzsjMZf9sxmw0nxEbPI8HBIwwcMeZQI8Psu7vBwCHzZb9Zr0u9ngrFohqNhr/vF3z5m4M4zF69ZVn+EZ7bzgeInvZlGnnMhERzzkG311PX83RpfFy/zs/r96UlOa6rs+WyssF8hlzQUJjL5fjiBw6Jbds6c+aMJIXnCERrR7vV0mYw0a8r6WRwqbOdyagZfPl77bZO9PXJaTbDSwbNjBJzM6cahr1F0ceCJf5OZELipfFx/TI/r98+fpQsS6WxMeWCpulcMOmQ1cLDRxg44szyerFYlBlh7Hme3FJJjSdP9ObdOxUGBtRfKqnT6WijXlfTcdTY3AwHBhXyeTmtlgrFor9HaNtar9f/GYASXNYTjhlNp/0Gn6AjOG3bGiiX9fOdO3KbTa1//arLY2PKBGkewNESvVxR8n8AeJ4nr1SS67r669kzvVlYUHFoSCcHB9XXaqm+vq6256neaKjX7cq2bXndrr5ubupksRj2JtWD2mHGmJs5K2nbVjq4ksCK1I7hkRH9dPu2Wp6nP7580Q9B0yK/+o8WwkCMpFKpMByYDvzl5WUNDQ+rfP68Op2OSufOaW1tLdweMPv1+vRJbxcW/CXGixc1euHCljAQvZmlxOhtdnZWKysrymazunr1Ks1/QIxYlhWu3pmVx+XlZQ0MDmpkdFSdTkdDZ89qbW1NnWA0sXleL5PR2/fvJelfa4fZEtxeO2ZmZvTn6qqy2awmJib2dJIivj/CwDGQTqe3XGsbHfBjOI6jz58/S/K7hMvl8r6S+aNHjyRJ165d2/H/A4iXXq8n27bDYF8oFDS4w0hwx3G0srIiya8dIyMj+3odakc8sMGbUPtdonv8+LEk6caNGwfxdgAcU9SOeCAM4JtqtZoWFxcl8YEGsHfUjvggDOCbHj58KMm/vHB0dPSQ3w2AuKB2xAc9A8fUq1evwvPHJWl1dTX8+8OHD7p///6W59+8eXPX/2X2/Kampv7X9wjg6KF2JBNh4Ji6d++eHjx4sONjc3Nzmpub23Lfbh/opaUl1Wo1SSzzAUlA7UgmwkCMTU5OSpL6+/sP7DVMsq9UKqpWqwf2OgC+H2oHtkv1tk+sASKuX7+u58+f69atW7p79+5hvx0AMUHtiBcaCLGrjY0NvXz5UhLLfAD2jtoRP4QB7Orp06fyPE+nTp0KlxUB4FuoHfFDzwB2NTMzo9OnT2tqaoojRAHsGbUjfugZAAAg4dgmAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4f4Gk4VU1boEKZcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -167,12 +167,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADX10lEQVR4nOz9eZQk53neC/5iy8g9s/at9x1Ad2NfGiAEgKZMmxRFitKV7COPZEkW5bGu5WvRkmfs4+HI91LnHso6snykke2rjbJlj62dHFOWuAHEjgbQ3ehu9IquXmuvyj0z9pg/4vuiMrOyqhsgeq+nT52uJTIyIvKNL97leZ9XCcMwZB3ruEug3uwDWMc6biTWDX4ddxXWDX4ddxXWDX4ddxXWDf4G4sKFC3z+859nz549ZDIZ+vv7efTRR/mVX/kVms3mmq/98R//cRRF4Qd+4Adu0NHeoQjX8aHgC1/4QgiEk5OTPf/+la98Jczn8yHQ82vXrl3hmTNnVt3/n/zJn4RAmMlkwlardZ3O4s7H+gp/A3Do0CF+5Ed+hGq1Sjab5Ytf/CKvvPIK3/zmN/npn/5pAE6fPs0nP/lJarVaz318/OMfxzRNGo0G3/zmN2/k4d9ZuNl33J2CtVb4p59+OgRCXdfDV155ZcXfv/SlL8Ur/Re+8IVV3+MTn/hECISf+9znPsQjv7uwvsJfZ7zxxhu8+OKLAPzUT/0UBw4cWLHN5z//ee655x4Afv3Xfx3XdXvu6/u///sB+OpXv0q4Xi/8QFg3+OuMP//zP4+//4mf+Ime26iqyo/92I8BUC6X+fa3v91zu0996lMoisL09DQHDx780I/1bsC6wV9nvPTSSwBkMhkefvjhVbd75pln4u9ffvnlntuMj4/z6KOPAvCVr3zlQzzKuwfrBn+dceLECQB27NiBruurbrdnz54Vr+kF6dasG/wHw7rBX0dYlsXCwgIAGzZsWHPbvr4+MpkMAJcuXVp1u09/+tMAHD16lMnJyQ/pSO8erBv8dUR7ijGbzV51e2nw9Xp91W327t3Ltm3bgPVV/oNg3eCvIyzLir9PJBJX3d40TQBardaa2627NR8c6wZ/HZFMJuPvHce56va2bQOQSqXW3E66Nd/5zncol8sf/ADvQqwb/HVELpeLv1/LTZFoNBrA1d2fxx9/HEVR8DyPN99887s7yLsM6wZ/HZFMJhkYGADg8uXLa25bKpVig9+4ceOa27700kuEYUgikeDxxx//cA72LsG6wV9n3HvvvQCcPXsWz/NW3e7kyZPx97Lquhr+4i/+AoDnnnuu4ymyjqtj3eCvMz7ykY8Akbvy1ltvrbrdCy+8EH//1FNPrbnPr371q8By8LqOa8e6wV9nfOYzn4m//73f+72e2wRBwB/8wR9gmiYjIyM8++yzq+7v0KFDXLx4EVg3+A+CdYO/znjsscfiVf53fud3+PY3v0mtXKZSKlFZXGRpYYH/43//35mdnWVgYIB/8FM/xdzMDK7j4Pv+iv1Jd+bBBx+8ajFrHSuxeq17HWvCtm0cYZSe5xH4Phs2bODiuXO0ajV83yf0PFAU/unP/iyXLl3CcRz+wec+xw9/9rPcv28ftuPw/Isv8p2XXmJiYoLhoSGefOwxTr37LufPniWTTqNqGoqqYtk2lmXxR3/0RxiGwf79+3nnnXfo7+9nYGDgqqnMdURYN/j3gTAMabValEol6tUqVrMZGb5l4VgWfX19LC0uRtRd3ycEFFVlbGyMf/7zP8+v/rt/R7PZ5Mt/+IeEYUgYhiiKQn9/P0NDQ/yjz32O/mKRRquF7TjUajWmrlxhcWmJMAyp1uuUSiWGh4cZHRjg//dnf0YI+MC27dv5nu/5HjZt2nSTr9KtDSVcJ1aviTAMcV2XSqXCzNQUjVoNz3UhCDASCTRVRVVVjp84wdFjx/jMpz5FOp0mDAI83wdFQQFQFMqlEv/tT/6Eb33720zPzmIYBrt37uRjH/0o3/+JTzA6Okqz0eD4yZNcuXIFz3Ho6+tjdHycVDLJ8y+9xB/96Z8yMDDAF/7Fv8APAmzbpl6vMzMzg2VZFPv7eeDBB9m5axeZTIZkMommaTf7Mt4yWDf4HgjDEMuysCyLWq1GrVSiXCpBGBL6PoZpYiYSqKqKCqi6jqaqsWFrigKqiqooeL6P7Ti4nhe9HkiaJul0GlVRWCyXCVyXVDrN5cuXOX70KIGiMDAwwNjYGIMDAyiKQgj8v37plzj0zjt84m/9LT73kz+J7/vxl+f7zC8sMD01hWVZbNu+nY2bN5PL58kXCvT19ZHL5VAU5aZe25uNdZemDY7j0Gq1aDQaNKpVqqUS5XKZZqtFCCQMg1QyCY6D53koikIgXBfpooQAYRgbt6Io6LqOpmn44vee6+I4DmYySeB5VGo13jp0iEq5zIaNG9mwYQOO66KLm0YzDCzL4jsvvUTLsnj6iSeiGyEMCcKQAFDCkInxcfbs2sWRI0d47+xZLMtibHSUpYUFZrNZ8vk8fX199Pf3YxjGzbzUNw13vcFLv7xWq1EulagsLVGr1SKDDkPCICBlmpimSdI0CcMwWtlVFUVRotU3DAmCgMD3CYThB2FIIFyaMAjwggDf93E9j8VWiyAMaVkWc3NzNOp1ctks9+3bRz6XQ1NVfM9D0zQSiQSKovDaa6/h+T75XI7HHnssfpooAEFAEIaoikImleLJAwc4efIkx48fx1BVtmzZQmVhgVq5TGlxkZlslr6+PsbGxu46w79rDV4a+tzcHHNzc1RKJULPI2EYpE0TxTTxPI9EIkEumyWbyaBpGqqqohsGge/jBwHtDoIXBCiKgu95eJ6H5/u4rovlOLiOQxAEqIChadQbDaYvX8ZyHFKpFCNjY5G7EYbouo5l2zieR7PVQtM0Dh89yoaJCR5/9FGarRaNZhNdVVHEzReI1+mahgLs3r0bM5Hg7bffZnBoiE0bN9JoNKjW69QqFaxmk1qtxtDQEH19fXeN4d+VPnyr1eLy5cssLi7SajRAGHoqmSSdSpE0zaiRWlFIJBJkMhm6PV/P82JXxvM8fM/Ddt3o9yL70g4F8D0PS7hNJ06exLZtAmDTxATJZBIjkYjcE1UlEDdbf18fSdPEDwIC8ZTwgyB6j7b9+0FAGAQgXCjDMNA0jUOHDjF15Qof/ehHyWazqKpKq9ViqVRC1XUK/f3k8nn6+/spFAqo6p1dmrmrDN7zPM6fP8/c3ByubaOGIQlVjYK6QgHTNFGAaq2G47qoqkohn+/YRxiGuJ6HZVl4vo/veZEbE/0x+lIUDF1H03VU4XbYwu9vNJscOXIETdPYsX07R44e5fFHHkHTdVq2HbspzWYTx/NIJhL09/fTVygsZ1vCEMf346dMGAQ4rotl29H7t8EPAt44eBBdVfmeZ54hIVbyIAioNxo0mk2MVIq+vj76+vvp6+u7o3P6d41LMzMzw+TkJI5lofg+KcOIVrVcLuo1Ff64bdu4rksYhmRFB1IIhEGA7TjRqhwEHUQwBSJ3Qqys0q2A6GnStG0URaFcLnP82DFy+TwPPvgg9XodhYgOrOk6yVSKMAjQNY2EYVCt1VAVhVq9Hok4ZTIUi0XMRAJDUQhVFcSTJBkEZNLp2I3yPA/XddFUlfvuvZc333yTY8ePs33bNsxkkoSuk8vlSCQSlCsVLl+4QLlUwtm4MQ5u78SMzh1v8J7ncfbsWWZnZ1Fcl6RhMDwyQrFQ6Az8BCzLilKHySSqquLYNlZXmV8Rro5hGLHfHHStrIHvU2808H0fRVGoVqscPXqU0dFRHn30URqNBvIViqqSy+VoNBo4wtcv5vOkksnIXfJ9LMeh2WpRr9dJpdMUC4UoiBb7kMenaxq6eBKEYYgfBKTTaTZv3sylS5fYuGEDfhDQVBQSuo6ZSDAwMECpVKJZr3P63XcZn5jA8zwGBgbuuBz+HW3w5XKZs2fP0qxU0ICB/n5GR0fRFIWgywcGsMTq7noehq5TrlQ6/m6IrEnCNKMGDGFkYRAA0UofArZl0RBteqqi4DgOhw8dYmR4mCeeeGLZFRHZHJnSTKZShIBj2zSaTRRFwUwmyeVy2JZFtVaj1WphWxbTzSZ6IkGxUCCTTkfvLzJGEoqixDfA3vvu49LFi8zNzbFh40Z838dx3ch10zSSyWRUtfV9pq5coVGvY7VajE9MrKm2cLvhzjmTNniex9TUFDPT01j1OglNY2JkhGJfH8AKY5cmUqvVqDca6LoeFYqIRJISiQSmaaJ1BXSKokS5dbEP3/dpNJuxu2MYBkoY8vLBgxQKBR4TnUq+uEG0NtdHEQWrTDodr8zNZjPi0gBmMsmgaeI6DtVaLX6f6ZkZ9ESCgf5+UolElAaFOJ6Qbkk6lWLrli1cvHCBPXv2EIYhtuNETxTfxyd6Kvm+H7lT1Sr22bM0Gw127dlzxwSzd5zBO47DuXPnqJVKuI0GhWyWsdFR0qnUckAnjVT8bztO5CfX65HvnkySMs2IOqDrHYYjEUJcafVEib/RJnmdSadRgOdfeAHDMHjywAF0XY+zOsCKGwgiw8+k0xH5DGg0mxSLxSj4Fa7U4MAAxUKBpXKZcrWK5zhMTU+Tz2bpKxaXjVO4awHR02fnrl1Mnj/PpYsX2bp1K4auE6bT2JaFLegSAM1WC8Mw8Hyfuelpmo0G9+3fHzeZ3864M25bAcdxeO/MGaxaDd+2GRoYYGR4OJK/aFuJpaG7rkulWqXeaGBZFiqQz+UoFosk02l0XUeBDmOXqqdK25dl2zSFC6NrGsVCAV3TePnVV3Fdl4889RRmW0O3dIV6+ceysJXLZiPXy/ep1WrxMYeAL7JCxUKBsZERMuk0hqpSbzS4PDW13D8rXCaEy5ROpRgfH+fs2bPx+8mnRyGXI5vJYArahKw6u65LrVrl2KFD1KvV7/Yjuum4YwzesizOnj6N22wSui7Dg4NkRMEolL62ooCi4Lou5UqFar2O5/txliWVyZDP5+NUYjdCYfjybyFRc3bLslAUhXQqRb5QQFNVDr75JtVqlY889RQZ0ZQtjVYGmGoPg5c3l6ZppNLpKHB2XeriWAPfB1HgCsMQwzAYGhpicHAwlgKZX1pienZ2hVKCoqps2LCBarVKrVYj6MrnJ0yTXC5HPp/HEH67ZdtRJbpa5b1Tp1gUwlK3K+4Il8ayLM6dPYvfaqEpCrl8Hl3XIzeG5RXZ8zzqzSaOkMNQVZVkMhkZj2igNnoEaHE2pS0gDMKQer2O47oQhmTE6gjw3nvvMT09zYEDByj29dGev/EF/UAhCmjl6ksYErbRFFRFieIHw8D3fVq2jaJpJIVRK0QukSuyQOl0mmQySaVapVat4rouV2ZmyOdy9LUVlEZGRjB0nampKXbu3BkHzPI8VSKZEF3XWVhcxJH1A99HUVWYnMRzHEbGxz+ET+7G47Zf4aWxe60WmqoyPDiIruuomkbCNOOgsimyHL7noaoq6VSKgkj9+TLI7BJLislgsKKqWRVGpRDJcUhjL5fLHD16lO3btzM2Nha/Vr7e830Iw4hdKQw8ztYEQRwvyDSnpuukkklURaHZaMTuULRjpcPdUlWVvmKRsbGxKAZRVWq1GjNzc3HcoOs6wyMjTE9Pxzn8+HyDIC5kGbpOf6FANpNB1zTCMKTZbFKr15m+cuW2Xelva4P3PI/JyUncVouEprFxYiL+myECxDAIqNRqEeMxDDENg2KxSDqdjrIkwsUJwzCuQoJY1YVro3S9Z7VajXgzIn8ueSi+53HwjTfI5fPs27ev5zHLm0u7hlSfNGYzkUA3DBRVpdFsdtyEMYGt7XWGYTAyMsJAfz+GruO5Llemp+M4Y3xsjKWlJVzxpJOZHZk9kk8ZXdATkqkUqqYREt2wtVqN82fOULsNffrb2uCnpqbwGg0MRWFifBxN02KOi6qqNJtNKtUqnuehKgrZbDaqagpXAiID9gUHRRpur1UdwPW86CkhqqGFfD4u8gAcPnKEZrPJo48+uiKNF/vvbSnJ1RC/rzD4MAyjdj9VJfD92HDbt1V7VEUz2SyjIyOYgnE5OzdHqVJhdGwMVVWZnpmJbhjxHiv4P4oS0S0UBUUEvXLbRrPJyWPHbrtA9rY1+KWlJeqLi4RBwPDQULQCCR5LEATU6vWOVb1QKGCKPLWqqijC4OKcuUg/hj1WdbldrVYjEE+CvCBiSVy6dInz589z/4MPrtCKaXeNZMDaKyXZjtjHJ0orqqoapToVBduyotgBOtySXoG2XO1zmQyGplGpVChVKmTSaZaWluLjCwTzs7t4lTAMVPE71/dJZzIkRIW31WrxzuHDt5Xc320ZtFqWxdzlywS+T1+hQCqdjnxfVY3SaPU6ZiJBMpkkncmQTCRWrNoqELRVS1XBS2kPTCU836dWr0fGrutks9l4NQzDkHqtxltvv83ExARjIyNYtt3RGCL98zAMI0VhsZrW6/U406PI95fHqCg0m814/E0o+O7yKVar1ykUCp2rcttq3Q5VVRkYGMA0TZbKZRzbJpFKsSR6ZaWxy+ujCbpxtMso9x8qCp7joAKJZBJNUeLK9JG33mLv/v0MDA19Nx/rDcFtZ/C+7zNz/jy4Loau01csxiX9RqMRC5KqmhbRXYV/2mv1U8XTIAxDNJFz74YXBNRqNVzfR1MUdMOg1WrFNF3XcThy5AiqqrJt27YOHxuIcuFEGR5PVDLlU0hmbDzZ/9p1nJ5oGFHa0ouyQup5HrZlkUylUBQFVdPQVDXqsRWxSbeLks1mMQyDhaUlMuk05xcWqAhSWq9rI59Mhq5DEOCL9yeMZP5UTcOyLFzX5eiRI+y7//5b3uhvK4MPgoD5y5dxWi38MGRiaCh2K+qCeKVrWsQmNIzoA18lpw7RTSK7ktp9cU9Ib7iuG1cyVVUlncnEUtayfD8/P8/CwgL79u/HSCSiHH57R5TYpyI4NWEYYug62VyOUKysmVRq2ejaqsCybpAQLEy5GieTSWr1OrbjoOo6uuiQcrsKZApRrKAJgpumaZimyejQEI16nXOTk1yemmJ8dJR8D8k+efye70dNL0EQ8YxErKNpGul0mnq9Hhn94cPsfeABBm9ho7+tDN6pVqmXSji+z3B/P4lEIvLXa7V4hezr66NWr0fkKNvukKzuhgxYJd231Wzi+j6h+F2z2cTzfVRNI5VKoakquqbFq2kYhpw5e5bR0VF27tjRk04b81oQhqPrmMlkxJcXPBlNGHQ3fN8n9H1M04xrChKpZDIOXpPJZJxSlK2G8skSCP6+PAZFVaPU5NAQmqLgWBalSoUwDFdw/6NDj3pwdV2PDN51QRyLdL0y2Wyc8j12ixv9bWPwfqtFeXERX+SIc/l8lCIUFUNFVeN+UDOZpNVs0rSs6NHbFSD6Qkmg0WhQq1ZRNA1dVeMiUCC4Mbquk0wmKRYKPQ3y2LFjOLbNAw88sDp3vM2fvtaANYaqxlSGbiSTSRzXxRM3aPeNLXtqPWGkvqAZh4IvD5BMpWg2m2RyORbLZfwgoL9Y7NiPZVn4vo9pGDHD0/P9+ImoQER6S6ViQtvxo0d56NFHb0mh19vC4APXxWk0ovJ6EDAyMIAjCF9hGKJpGnnRROH7PqlkElf4ufVGg2w2G634jhM1RwjDi10MTcNIJCIqra7Tajaj4FHeRD1SiLV6ndNnzrB79+54VM1Vz0OkJK+VeRgHsD0CaVVRSKVSMbVBauS0/13VdXTANAw8sfJLfr3n+6RSKTzPI2Wa1BsNZufmaDSbDA8MYAgXxhLxQzqdxnGcOH5odwGl4FQmnabZauE6DsffeYcHH3nkliOc3fIGHwQBXqNBtVrFDwIShkEikaAqCFWGYZATWROZnVCAbCbDYqlEq1qlWquRFPlkmX1IGAYkk2iCgiDb2lqWhSMUA3LZLJrwnbuN7tChQ6TSaXbv2nVN5xGKFRfWzsF3o7uo1A7TMLClYbZaHTdeu3SI3I+kOktks1kq5TJ9fX2oqkqlUokWFdclk07jel5M0UiI93HaFowVxyoq2I0wpF6tcvLdd7lv375bik9/y+fh/UaDQOTAPd8nm83GbEDTNMkLcSHpUARhJKJUbzQIhOti23a0Coqbo7+vj3wuR0L2nIqV0XVdWo0GYRiSSqej6ibEvBYZBF+6fJn5+XkefOCBngQwifb0oMx4SMO7FsROkngy9EJaZGkc140rxr7IAHU0g8AKKkHSNHEch1QyyejICKOjoyQTCVqtFrMLC7hSfcF1o4YUlpvRVz1mVY0UHnSdhbk5Ll64sCJNejNxSxu812wSilK+rG7Ki2eaZpzZkN1HtVotmqQhfElD1ykWi2TS6bjzX9O0uKDji0KVJtKEddF2lxQaNN2QMhrHjx9nYmKCkZERYGXeu+e5fIDVXbwprHKDSCpxQtQZ6s1mR/58xa7k/gSSqVTc0ghQyOcpFotRYE4U1KfTaUJFwRUths1WK3INhVAsLHd8tR1Y3IV1cXKS+fn593fO1xG3rMEHnodvWSDK2LHfGEb6K7lsNmZAVqtVKpVK1LVP5COn0ulIZauvL26K8H2farUa+6WSrIWi0KjXCYIATdfjD6sXzp8/T6vV4r777otz3bI5A5aNKmhzJ4DYnXlfnUOy0iqeDrHAkwisZUBrmmZUUxBxyuq7U+KbFqIbW6ofS7qAoijk83mSphlf72wmg2YYEctTUbAch1K5jC1ulu5+XkRaNp1ORz3Fp05ddTLhjcKt41x1wWs04jK653m0LItCPh/51rkcvuvSaLVwbDui1ULciteeUZGzkAq6Tr3RiKiuokAlsxVS9EgqCHQ/+iV83+fEyZNs3LiRfC637FtLY28zelVVO1Y+v0fAKo2lw9dmOSsj1RJUQYTrQDtLUlFImibNVgtLuG6rZY0UAE0j8P2IGg1Uq9W4G0sB+sRTsVKtUqnV0A2DTDpNOpWKegiEHHhLNLhruk6i6z0VJZIqSSYSNBsNLpw/z46dO2+6P39LGrxv21GTA0LmotkkYRgRVTaViopMQvoiUBSSiURccWxHHGwqCpqqks9maVlWFJg6DvV6HV+sYKqikBVpzdUwOTmJ1WpxT9uY+FXRZaCBaNpo37/Cykdst3N0VakMGYSbZqSuIApma82FlTekpmmEgkJcLBajQlIqFReoPKG8sLi0hCZ6B1LJZJzeVCBOeTqWRcI0Y2lAeYMmk0lc32d2epr+gQGGhoZuqvzHLefSBEGAL6uZYUipVMJxXVLJJLquU6vXo1WdiL/eXyySy2Y70mTQxnjsWnXSqRTFQiEqWoUhjXo9KlR1yeZ1w/N9Tp06xebNm5fHSq7hu3evyHFK8oPKXlzFSFRx46uKEvnlqxybrDHUhNiU5N6kU6mISdp2fFIKRFMUFpaWItapCN41TYtWfZH/b08WeG3+PYpCNp3Gc13mZmY6ppPfDNx6Bu84EbmKiC5gOw6e72OK3HoYhhiJBH3S0IWIUndGRO6jFzSZSdC0KFctyu7Vep1KtYplWbGBSpx77z0s22bPVSbsrXpekhb8Abv/r2VNNE0TRdOWK6Jt8DyPZrMZS30EQRBXi5NyZe5+T0VhcGAgelqEIXMLC/E2sggltTfTokkl8H0ajQattptOUVXSySSL8/OxUO3Nwi3l0gRBQGDbUeorCCiXy1iWFclNi6pjPpsl0ZVBUWQmQ3Dh4eoGYts2QRiSSiYZGR7G9Twc28YXfPNmq4Wh61EThKpy+tQptm7ZsnpAGy5L8LWEL22J+MPzfZrNZqQqJnzlIAjiDMnRo0dj4SdVEsDkdsLXzhcKJAwDM5nslAzpeoIlTZNWENASY+89kVpsv4FVTSNpmqRSqZgkthrkhJJ5kaacX1yMcvLiHGQTTSKRiERgLSuS/7BtPNclZZrohoGRSGA7DksLC6RFQuFm4JYy+FBIRUgabbVSwfF9BoULkslkVs1yKIIeHIoez7XgB0HEamxb3RKJBOlUKhphI6XqxNeF8+exXJexiQlm5+ZoNZvU63VqQh9GGrfMnEhCmiZ4K5J6rKlqx9QQmZv3fD9iYErJbSmvLWZHydXab3tyJQT92UwmSSaT0SqbTpNKpbBFTt627biLSxENLtIwAVzHuSZ/2tB1Bvv7mZufx7FtbMchk0rFBi8hMzOGrtMQ16PRamEGQXyDLczNUezvj5mbNxq3lMH7rRaKEmkp1qpVHFHpG+rvJ3M1Xkbb47P9515oNptRC5tgVkooikIymSRpmiyVSiwsLFAql7l06RKqovDiiy92pPTSmQxJIUSaTCbjRmppjHL1s22bZrOJpusdrMRyucz0zAwP3H8/xS4OC0R6Oc1mE13TMHSdZqsVBd3NJi3LwhJPksWlJS5durScCRKdSslkkr6+PorFIkNDQytEUuW1upaykJFIUCgWWVpcpGlZGOIpsdq2eV2PZD4EjTkIAlKCR19aWiKTydDf338N7/zh4pYx+EAEUK1mk/LSUuS3GwaaYZC6Bq5KqCgd8hW05ZvbYYvpGxBlEFAUPNdlqVRicWGBxcVFlkqleMKHaZoEQcCmzZspFIukxKqqiSJYt6+PWLkt244rtJJ/oqhqR0AnXysro7BckQ3DEFuspr7QgZdZKjOZpBif+PIxOI6DZVlRa2O5TK1e5+KFC5w5cwaIUq6Dg4Px5D9JRZAFrBXn0v75BAHpVIpWKoUl1M/W4hCpqhq5TI5DS3DmA7HSl0slBoeGcBxnzWzS9cCtY/COg91ssrC4GIn7GwZpRSG8llK8zGN35cPbqbkQZRKajUbk0ohBYEulEg1BVTAMg4GBAXbv3s3AwADFYpHnX3iBsVyORx55pO3twmWXx3VjVyQMoxlQXteNJj/whNRwF5AUiUaj0fMcHdfFsW0CIb3dXuTRRFpRVo2lUkP8nmL1l1TmxcVFlpaWWFxc5MKFC5FygnApzr33HoMDAyTb1dlYXvnbb4RioUCtXscVo3q6acvtUFQ1CqRVlVaziS+OKyS6OavVKoODg6u+/nrgljD4MAyxGw0WK5UoSEulIhnnUmlFgPp+0E688hyH85cuMXXlCguLi3iuS8I0KRaL7Nq1i8GBgah1r+31C4uLlEslnnzyyRX7NQwDXfjEEr7wuyWPRQZ2tuOgCiam0m7YbTeoKng67W1+YRgSGAYJMQRN3sgxr4eoMLWi0kmkdGDZdsSGzOXYsGFDPMjY931mZmY4cuQIbhiyVCrxV3/1V+QLBUZHRhgbG6NQKHT04kpouk6xUMCZm4trJOlVAnl5LQ1dR81kaIrGndD3qSwtkUgksCxrzZ6FDxu3hME7zSb1ahVXDPoa6O+nXKngQ4d0xqpYxV93XZcrly8zNTXF7OwstuuSzWTYvm0b4+PjsevQzQGXeO/cOdLZbMyZWfm2ne+rqSoInfh2+L6PKYhvHYGaeH0um6VQKKzYvyWKa4lEIo41uikLqCr0YC+qmkZC12MXLtVmVM1mk2PHjsU3zSOPPIKiKExNTXHq7FmOHT9OOp1mfGyMDRs20Nff3xHcmqZJKpnE8TzK1WpHINwTbXl7yVdaXFxkcGSEZrN5dxm8L+52S2QU8iK37gp+R7c4UgfkBy/8d7lilkslJicnuXjxIoHvMzA0xI6dOykWixQKBTKZDEEQsFQqRbthZRqzaVlcunSJ/fv2rV2m7zic5cruit9D5+p+LehxI7dTD1bbRiJhmnG6VdKj5+fnee2118hkMtx///288J3vYJomQ0NDjI+P86DvMzc/z9TUFJevXOHMe+9RyOfZtnUrGzdtim5YRSGTyxFUq4RBQLlSYXBgoOcxKIqCRpRhkn59vVbDsW0WFxcZGhqKlNZukDrxTTX4MAxZmp/HF0WKVDpNUigQeCIVZ15j6sr3fS5dusTk5CSlUolUKsWuXbvYsmULuq5TqVbjiqKk6CqqSiAotd1Gfe6999A1jc2bN69+/L0YiT2MPWzLnnwgrPG6tfZoGAaqGNbgOA4zMzMcOnSI4eFhHnvsMer1OoHvd6gUqJrG6PAwQ0ND3L9/P3Nzc0xOTnL4yBGOHjvGxg0bGBczqQqFArVaDcu2o0ab1YJYZXnaoTT6VqvF7PQ0mUwGy7JWdYs+bNxUg6/X64QioEuJYWJxt7xgMuqrGbz4gCzb5tSpU7z33nt4rsvo2BgHDhxgZGQkXlGrQiwomUzGgZ30m0OhqBVndcJIReDcuXNs2rx5zVzxtZhvHPC9Dx58fIq93keJxmB2BOZrIJlI0PB9Tpw4weTkJJu3bOGB++8HRcF2HEJA736KKpFcSagoDI+MMDwygmVZXDh/nvPnzzN54QL5XI5t27YxMDBAtVajKgLYVeskgkFKGMbdVLV6ncWFBfL5/J1v8L7vU69UQHTEyykU7Wm2tWA7DmfOnOHs2bMoisL27dvZunVrpFHTBtnWB6zMQ8uVU9IQRFboyqVLWJbF9m3b3tc59apYynP5QISpVVwaKT0idrzmLjRN49133+XylSvce8897Nm9O953rKnZ7X+Lm9Nv+xySySS79+xh965dXLp8mfcmJzl8+DA5ERCns1kqtRp9PWKRWImh7VemaWI7DqWlJfpEmvRGuDU3zeDr9Tqq4HwkhCa5IhqpacsOdF8Ez/M4ffo0Z8+exQ8Cdu7YwY6dO3s3VoRhPEU7JUr37VDizTo7gy5dvszw8HDchBxCvOK1m1e3gfeKBb4bDs1qNIkOdbDuYxA3r0z9vfbaaywtLbFv717G27Q3IQrqQ+gdcLa5IR1QVQaHhsgXCjREX++7775LLp9nbHycXCazcn8yxuraVzqVYqlcjqvWvQL3Dxs3xeA9z6NZr6OI+UKywtkRhLb/T/QBnjt7lndPnMB1XbZv386uXbviap8nA8Y22IIuq8r9d6FdPUyiZVnMzcxw/wMPLG8njmVNw6O3i/OBA9YexxnvU7hfscx19/9EmZiXX34Zx3E4cOAARiKB5ziEQh4cIq1MqV3T833p7TJJd7N/YIBnRkeZnZvj6NGjnD51itmZGR5++OFOnRuRolUgKsyJRUDXdRKJBEtLS+Tz+TvX4JvNJooQ99fFJLl4dW+vlAo0Gg3eevNN5hcW2LJ5M3vuvTempUr0yl60hLakHCzQDUVVo5EwbY/uy5cuEaoqEyJnvRYUlo0x6PHYJgxjt0ARFdiOCnCboba/Tp6LbAwJu/YrdXPat2tHqVTi1VdfxdB1nnnmGbLZbKSeJghuMtUb58BXy0KpKorgNnWclviSPb4jIyMUi0XOnD3LxYsX+da3vsW999zDjp07Y/ero8Gl7RpkUikWSyWq/f1RV9t1bhC5KQZv2zYIkpciGgu6K6LSmN47e5bjx4+TME2efvpphq6xMmcJ5qO6BudDuhnthZuLly4xNjJybfn/Nkjj6xVgQqTdonQ/udp98R4VznYjaf97x4rfZYxTU1O8+eabFItFnnjiibgwJmc2uY4Tn1trjaKRhKosD26L37JHXGKaJmNjY+Tzea5MT3P02DGmp6d58KGHVlAQ2p+MhqAlN5tNGo3GdV/lb7jBB0GAa9uEjhNpwXRXHwXm5ueZmZmhUa+zfccO9t5334omj3Z0+7WyCSLd9gjvhqxYyn7TWr1OaWmJxx5//NpPqMu9WHG+0mg/pKAV2p4sXU+Gs2fOcPTYMTZs2MDDDz/c8VQzROXVcV1SYSTM2mw2VwT5K99spS8vv+9Os+ZzOSzLYmJ8nI0TExx95x2+/td/zX333ce2HTvi7RWWB60RRmrMVqNxQwz+hjeA2GI8usx9JwwjDlQl5mZnOT85Sa1WY3BwkHwuF4ukXgsc141Wd8HlWA1q1wp/8eJFNMNgVEzuuBb0CnzbEa/wq3RkhYJS3C410r1Nz2xN1yp/+PBhjh47xq5du3rq02uqii5qDzJr1Wi1rmnMfLdhx0/Ert8bhkE6nY5Vjp/76EfZsm0bR44e5fXXXusY7txxMwqB2mbbFMTrhRu+wjuOg+K68QdsCM12icuXLvHGG2+QTCYZyOVQgoB33nkHz/MoFgqMjI4yOjpK/8BANNhAos0o5M0hBwivBslTl9LWFy9dYmJi4n1nVLorrDLfLHPP3S4KPX7uxYdpD3ilYkD32Xiex+uvvcbM7CwPPvggW7ZsWfU4jUQCVygbmIkErUZjTfJXjPbkQXsjSY9rm8/louHJQqVs/759jAwP8/rrr/Pid77DgSefXLEIJRIJavU6DTG5/HpO/77hBi+F9XUlkp5uz4WfOXOGo0ePsnHjRoaGh3Fdl82bN+P7PrNzc8zMzHDx4kXOnDkTCYIODzM6OsrIyEgcB/jCTw3DkNRViGeaCJSDMGRxaYl6rcaDDz64+rG3ncOKG0npVD6TP7crf32QayX33avQ1Gq1ePGll2jU6xw4cIDRkZGelV6JhBBZ8sQA5SAMr7ngo4qb1287n17npGla1I4p3iOVTDI6OsrTTz/Nq6++yvMvvMBHnnwymmwoMjayTbPZaKxoKvmwcVOC1sBxwDCWA8Mw5Mg77/De2bPs3rOHe++5h8uXL+MqCr7vYxgGGyYm2DAxEXM3ZmdmmJmd5e233wagUCgwODREoViMZo2a5lUbpuUQgjAMuXzpEslUqoMTsloVc4VRrXae7avhB0lLruI6AFQrFV566SU83+d7nnkm9n1XuFbiyaMQna9uGASuGzdTX4tLEx1ClEsPRCqz1/mEROecSadjKRRPyGsX+/p45plnePnll3n+hRc48OST9IsJh3JfUnf/enZC3XCD98Soc0UM6iIMeffddzl79iwPPvAA20R1U+bnuy+AokaT6vqKRfbs2YPtOMzNzjIzM8PkuXNYQst9bGSEsfHxaMbRKmw8SS/wg4Ar09OMjo52Zk6uAe3CRt2Ii2cfkEPT8cRow9zsLK+9/jqpZJKPPP742kbb/mQII21613VpCEnBa3JpxH5kk0hIp/qCTFNKd8cQi5ntODSazViGO53J8Mwzz/Dqq6/yyssv8+xzz5ESc6NURYmr4teTPXnDDV5OjtM0DUVVuXLpEidPnmTv3r2xscNyytD1PFacvjQyRcFMJNi4cSMbN27knkaDK9PTlEolqpUKb731FgD9fX2MCNenr69v2QgES6/VatGo1RhbZfLemlgrQ/Pd0AroXWk9f/48hw4dYmR4mIceeuh9y34YhoFiWVTLZRKmGacFu9+zFxSxOMDyqhyyHLO0I5PJ4Ah5vlw2G2fiEqbJk08+ybe//W1ee/VVnnn22WiEp6pGjfXXQCv5bnDjfXg52kVVKZdKvPXWW2zYsIFdO3d2bKdpGijKqkq1HY95cQPYrkshn2d8bIxkMollWZHrMzfHGVECTyQSjAjh0JHhYTRNY2FpCRTlg4n4K6uP1Anbik4fBO3+fxiGvHv8OKdOn2br1q08cP/9kU+92vVZBVIVodZskuuaEC7fC1YxfFFXCMMQXbAwV7vZJVHP831aXWxII5HgwIEDPP/887x58CCPPPwwhOHyGM3riBtu8DKzYlsWb771FtlslocefnjFKtju0qwJ8TrHdfFdN24rg6gYsmnzZjZu2kQYBCwuLTEzO8vszAyXLl4ERaFYLNJoNMgLGb/3C8ldWe1vsDxLqv13sCyw6nsevuih7fU0CMKQQwcPcunyZfbu3cvOnTujbT/gamjoOs1Gg4EeHPa1jF9WeGU3l7qKscOygoFUdugOjnP5PI88+iivvfoq72YyjIyOoqoqDTGs7Xrhhhp8EASoRBfj3Hvv4XkeBw4c6FlQ0jQNJYiGhl0LHNcF0eUDdGRIIFplBwcHGRwcZO9999FqtZiZmWFqaor5xUV83+cv//IvGRV02JHh4bWbT8R7BL6P47pxq11sEEFAq9nEEo3K8ZjJNsi8c7PVWjGoOAyj0fae7/P2W29Rq9V44P77GRsfx7btSOYj2vD9u0yKgtVqkb5Kc3xHlojoBpX++rUE4dlMJp7/1Kthe2xsjHvvvZd3T5wgm82SyWavey7+hhq867ooYYjrukzNzLB3795VA66kmBJ3LQWnMAyjGyMIogBX5r7XyHKkUim2bt2KmUhwZWqKe++5B9fzoqLXhQuoisLA4CAjw8MMj4zEU0Rkw7Yn9GN88X8vxCm8rt/LfHpceVylmmnZNmfOnMH3PB548EEKhULH9QgFN0ZqVmqaFrssmq6veiM0hUpwOpPpGF+z6vUVK7srlCVW0IlXgaZp8SyqRqvVU6Fg565dXLh4kQsXLrBv/35ad5TBiw/r0qVLpFKpqL1LlLm7IYtGUohorVSVVPdCUeIPI86FX+WYZmdnSaXTjI2Nkc1muX//fmq1GjPT08zMznL83Xd559ixqBAmeNt9/f2x+6MKApqkKUj1MJkBcoXybrIHxUEaeLarpzUMQxbm5zlx4gQJXeepp58mlU7HTw/5NPHF8LIQMXmwy/1TVTWWEdTFEDUgmp5C1EvbPb5GHED0H52rvOTP6+LG8q9B9CotmrdXW7hc12Xr1q0cO3YsmgPwPmOS94sbavCe51Eul5lfWGDfvn0oRIy9XqkxOW3OcV0s2+5p8HIVt4S4qmkYK2Sq18xAhCHTMzMMDQ7Gw341TcMXfbADQ0MEvk+5XGZxcZHFpSWmpqbQVDVa/UdGGBkZIZ3L9QzebNuOxkaKeORaMXXlCgfffJN8Ps/9+/dTWKXJPBRPS7/taSOfQHKinxMEINwpRYnGc5aWlkglkxiaFrVSmmZvI+96L8/zCCDuWEKQ/1YMRGiDVBOWM7baV3kpNzg4NEQmm2Xy3Dl2X4sy83eBG+7SXLhwgUI+z9YtW6jVatiW1amVKBGGmKaJZdvYth1nFKI/RSlJSZF1hACrIaWaV3n/dpMLwpCFhQXq9TqbNm+m2WqhC6EjEKujrkfDj/v62LFjBwD1Wo0ZUfR69/hxjhw5QiqZZFhQHoYGB+OV9P0Sx0JRbT527BgbxsfZsWvX2kUY4b/Lm6pbEUHOm/V8H180xbueR7lSIZ3JUBdyg1dVHYA4/y758zIVKbnxMf25CwqR0cvPsd3gbaHKYKgq9+zezcE332R2ZuaartUHxQ0z+DCM+OlLS0vs3bs31jm0HYdWs7ksQd0GM5FAJXoKxPthmbuiEOXp5WpztQqdbGZ2hBLYzOwsiqpGOiueh6ppZDKZ2A3ohWwux45cjh07d0b7mJ5manqamelpzr33HqqmMTw0xMjoaCy9dy1pyTAIOHzkCJOTk+zZvZsdO3bQFNKDa53Pak0aKAp6u2SIuAFc16VSLrNx06ZourbnUalUSAidHcMwehq/VPzVRWygtmfQRPyxoiFG/Jw0zVhFTbaF+OJYpKDtwNAQpmkyPT191Wv13eCGGvzs7CxhGDI8PAxEgaPjODiuS6uNuScvWUKoVkmZtl4tZ45oRO6eQNEOz/MiaqzYVqJarVLI5xkaGornvRriA+3+AFfjjYyNjzMyNkYgZkzJtOfRd97BF2X20dFRxsfHGRgc7ElM8zyPV199ldm5OR566CG2bNkS+7xrpjwlYW2N9GB78K6qajQq3vMYHx8naZrUBH+lfTGQc6MShhHfrJ5QZl4rdSszY2rXU1amiR3HiQN8OVTZMAx0TcNxHPr6+pidnV11/x8GbqjBz8zMkEgkyItSsypGlzeEOKgqxU3FB5SQPnkYrqpQJd2Z9kelItwd6f+365HrmkZCyDfXarUo/ShWNaka3L2v9o4kpQf7UfLT8/k8+XyeXTt3Yts25y9cYHFpiStXrnDu3LmY8CYLXxJvv/02tm3z1JNPMtw1KG0tTZwVtIYwXG7/o3d2aGFxEUVR6O/ri3x+3ydUIpltT6gOS9/aEoOdDcOI50DpbUmBXguQdCkVVY2nD0qjdsXoonbpEtmcE4Qhxb4+Tp06RaPRuObZt+8XN9SHn52eZuemTfGHKOnBSXGBm40GKnRIcxiJBLZt02i1Vhh8u+65dGfCIKAlVHaDNoNMJBLRoC7xgVmWRb1e514x4EDX9VhLvTt91mF0SueIzBXUX7GtpusMCX2XYrFItVKJff/Dhw8jWw8BHNvm6aefXlYQljWELmPqSFuKn1dUO1dJhUosLi5SLBQ6AmnZamkYBkmR4rVdNx6S1mq1sF2XhBge0X5drtYHILeRolDVapVMOk0YRpP+VHFjhEFAX18fYRBw/vx57rvvvlXO4LvDDV3ha7XaCl9dUaKJ0kEQRHOXGg2yuVw0opLI7Wk2GlF+tktEXz5m5Q1iWVb0qAyCaESlqpI0TUwxnaIdS0tLALFks7wR3s90ip7+s8x2CINVxQ2SLxTIFwrs3r0b27Y5ffo0J06foOk1SPhJXnj++ZjqPDI6GgeJCApz2PEWyz/JFrxrDYwXFxcZFw0uMoUqszzxcAPTJGGaeEK1zLHtaI4T0VSWZDKJrmlr6vIoEHP4IVrJy+UynvDZO4xd3LRJwe2Rn831wA01+PbVUUKuAGmRZ3Ych3qtRjKVwhBDCkpCctoWjQsSrjDOMAioVCodc5TymUzsj/fC0tJSNKRLxA2xwQsh1NVe1y6DIf3j7ibs+HyjE+w0VuDK1BSvnH2VvzK+QYkSjxYf5e8M/C/Mzc3zlqA75/N5+vr7mRgfxxweXpPnfq3G3mw2aTWbHYq9mq7jiydbt38ug17X86J6ieDG1BsNErq+KgsV6FBWkDUDz/cJwoixKblS7eS72E27jrihBt/rVOLmZ0WJStFE6apGvU4ylYq+ksnoQjebHQZv2zbVep20GHimqGqk3y78wrXywwuLiwy0iYTKqRxBEOD5/nI1sc2wupUJgh5aK+3nCytb8Y4dP86Z06c5kztLvRHJZb9ZfpMfufd/4dl7n8WxbWZnZ7l85QpXLl/mwvnzJAwjZnuODA/HisqxO9X+xkHQkRVqv3kXFxcJgf42Do2maSBW+V7wBZ3ATCbJZDLRuE/Pw/E8nHodQ0htrDBUce2DIJq2Evh+1PrXtgh1t0eqqoqyRgD+YeDGrvBXgaKqZNJpFFXFarXihoBkKhWtTo0GFIuR7kqjEWdWNE0jmUqRaq9mipWl14rhhyFLS0vce++9Hb83dB3fcfBcN5rFdDVyVo8UXPf5tvvJb731FpcvX2bvvn188/LzHbuabk5z38B9JEyTjZs2Uezri9KIts3CwgIzs7NcunQJiOjOQyMjjA4PUywW424kIOoiWuVwFxYWyGQyHYuGJlyT1cbJy0l/mvDf9XQaz/ej+VWCR+S4bjzuUl6XEKE/JAaoAWSyWRzXXUH5bpcy6UUD+TBxQ4NW2Zu58g+djz+pEtZqNCKOjPgQXTFNwnFdWm0zmvqKxZW8cFHm73WjVcplfN/vWOlCQNV1EPnitZq/21+zatqw7WZxbJtXX3uNcrnM448/zvjEBMqVbhel6/Xiidg/MMDwyAj33ndfRHeenWV2epozp05x4vhxzGSSQVH1He5FeJMuVRgyMzvLsJyTKjJZMgj1ReDYXTPwHIcASLUlEnRNI5vJ4LouzWYTLwioNxqkxLifkCiecmwbPwyj+a/pNKEgA8YUCHHS8maTBa3r6dbcMINXVZV0Lke5XF7xN4XlHK48WTORQFdV6jJPLFaVqZkZioVCtPInk+RzuVWbIOSQs25UxDEUCoUO4ldC12mKgkqvD78d3S7aihVe/N9qtXj1lVdwHIenn346DpK7P9LuKKCXS5RMJtm8eTObN23C832WFhcjxufMDBcuXEBRFAbEDTI6MhLxc8Tr6/U6zUaD0X37OnLziihQ+aIwZbSdsyd8d4XecnyGYZDN5eLZrC0xwRCWdewNw4ifvDKTFsixP+IY5A3Qajbxg4Cx96Ea8X5xwwxe0zQmJiaYvnJlZWf6KoGfpuvk83larVbk5ogp2rlsllQqhS8KRWuhfRWWRlSpViM1sm4OvmAaBkEQKXR9N/OHwpByuRyPpHz22WejxmUBRVlJpVj+djmQ69keKJ5eg0NDDA4Nce/evdTrdWZnZpidneXUyZO8e/w4qVQqzvrUarWIIt3W5CJvJlXTUNoq1vJYpJzHWsG/nHnbarWoVqtRXUSN5rKm0ukOQat4eqDvx766nJYCML+wgJlMsmnTpqtf3w+IG7rCT0xMcP7UKRaXlhhu7y5qe+x2Qz5+M5kMtWoVy3EislgQYLbl1dd630CMSZd7r1WrcfGrG7FC11UMvvtIu4Otqakpjhw9Sl+hwFNPPbXC1ejOV3Xc7u37uobHu6IopNNptm7bxtZt2/A9j4XFxfgGOH/+fFQ0MgzOT04yMjoajfeRBt8mOSgrpUEYxmKra/UFhGGI47rYjoNhGLiuuzytu+sJKdPHciyn1hYsa5rGwsICW7dtu3OauEdHR7F8n7mZmdjgQ5bztb387WazGbHsDIOR4WEqtRr1Wi3KEwu3JpVMrn6RgmBZ5UqgWq0y1qWkK5EwjKj83qNhox1K9xNJroxhyOnTpzl2/DgjIyM8+OCDPQ1mpfLBymzQah1QPRz+jh81XY+ZnBC5cN/61rdImibvvvsuR48eJZ3JMCoqvnnh+viSvgFxZVUyLLshK9mObeMJZqaqafQPDES+u8jOpFOpeFFSFQVV0wjFQDhdfIYQPWWWymWe+MhHel3uDw031OANw2B0fJzzFy5wz733xm7NagSohpgWBxGvOpfNRkN3PS8q6ggOhus4EdMxmexkTEoKa5tBeJ5Ho9lcdYWX5CjZ5LFac0Sv4w2CgCOHD3P+/Hm2bdvG5s2bV1fm7TLkoIfBr6Z2sOLp0sb96QU5BfzAgQMkUykWhIzhzOws586dQ9M0CsUifX19bN68OcqmSDEryVESN7Qc0iZ5SXI4QzKZxEwkYvpBq9mMJ5Cn0+nY6HVNi6jMnkdgGLGC8dSVK4RBwG6pX3+dcEMNXtM0Hn74YQ6+8AJnz55l1+7dHcKp7at8S5CcIOqAlyt4OpWiZVn4nsfgwEDUFSVGvNfq9YiPY5oxNx7omEFar9cJwzDWfu8FXdfjR/qq3UBdPBbP83jttdeYm53loYceYkBw7NfiwnSgfZWWgfRqQfNqrt8qmJ2dJZ3JxDHEyOgoI6Oj7A+jNsKZ6Wmmp6c5c+YMp06dIpPJ0DcwwEBf3/LkP8/DEZQDmfLVVJWkWMG9Nl9cFS6WHEzcbLXIiinqMnMWiGq4XFxOnTzJ7j17YmLh9cINN/hcLsemzZs5eeoUW7Zs6Xjcy5XedV1sQQlOtxk7RM2/pVKJpliBMuk06VQqphV4ggDWUpZHrbcHtlKAaC2DTwhf1HXdjul3HWgzularxcuvvEKj0eCpp55iaHg4fp/VzfDqLs2qK7yoWnfvrWf+PYyaXHplPhRFIZfLkcvlGB0dpSWu4fT0NPNzc1y6eJGjR4/SL7q8Bvr7o+yZYZDquq4rGm8EZSRsW+kzmUzc3ghiIEMYcvnKFSzb5unv+Z5Vr9aHhRsqpiof79u3bycMAk6ePNm5gcgNy0ZeM5lcIVttimYFVVGoi+0UIgpqX7FIOpOJMy2241Cr1ylXKjSbTVzXpVatYiaTa2Z35KQ62bfaC9K4KpUKzz//PJ7n8eyzzzIkV6heldY2qF2Xvr0+cTWD7xXIrlZsWlxcpNloMNbGzux5PLqObhgM9PezZcsWHnjgAR5++GG2bNmCY9ucOnmSl19+mYMHDzJ57lxUy2gvvPU8TIWUmC/rBwEty4qe4kok9+GKotV7773Htu3bGRkZYcOGDSiKwkc/+tE1jxfg2LFjsQv6q7/6q1fdHm7wCi+LOVoiwc6dOzlx4gTjExPLchFhGPmbYRiNWV9ldU2nUjSaTZoi/9vO/EuJINbzvNjXDHwf27ZptVosLi2RTqcjd2WVdJuqqhi6Tii67XsqYYlCzhuvv04ul4v842Qyrhp2sye7sWbyZQ2XZrWK9WpB/+XLl+Pi1GrwRWeUZVlURBeSXP37xODmUFGYn5tjdnZ2Wd/TMBgaGmJ0ZITB4eGOCq6Eqijx5yWfmgpRBddIJDh9+jRhGLJnzx5SqRSPP/44f/qnf8rbb7+9ZlwC8PM///P4vs/27dv5x//4H6+6XTtuqMGrqophGPiex5atW5mZneW1117juWefJS2UqmTVLbOGyKcpuDMA5UqFAVHMaYckPqVTqcj4RQW1Wq+Tz+ep1evLJXPRytd+A0i3ZjWDPzc5yZHDhxkdHeXRRx9dkR6N+fOrnMNaack1V/iu2GGt34dBwOXLl6NVs+3mCYIgpkJ7nkcoMi6uIOilTJNsJhO7IBJS3xOgXC4zIyQO33r7bYIgiCd5j46OUuzri49f1/Wo60l0mgW+jxuGXJmaYnZ6mkcee4xUMoluGDzxxBP86Z/+KZVKhdOnT68axH71q1/l61//OgBf+tKXrrlmcsOFmEzTpG7bBL7PgQMH+Na3v80rr7zCM888Q8uyQFF6DiCTkM3JGbFKVyoV8rncqmlJWeEzDIO0yA7I8YqB7Pn0PCzouAGk5iSC6SfdsTAMOX78OO+eOMGO7dvZv39/h1HETMqruDQrfPhw2XVa0+BXW+FZ6dbMz89j2TbjY2PxvCtfVE8l30XGA7quo+k6ZhiSyWR6tly2o1gsUiwWuWfPHizbZmZmhitXrjA5OcnJU6cwE4m42WVkZCTqaxCqzo7rUq/Xo6bt3bvZMD4eMy+feOKJ+D3efPPNngbvui7/7J/9MwC+53u+h89+9rNrHms7brjBJ5NJ6tUqnu+TTqd5SuoMvv469917b8eImtVSf34QkMlm41L04tISo6uMh2+Hoii4tk0+l4vpCZ7ICXui08cVNwBE6miuaIKWT5x3jh5lamqK+/fvjxu7u9+jw7VY1aXp+r2kKijK2hJ9a7AzfXGsUsHg3OQkKZFFifVehKFLA9cFKczzfRqNRrRAvI8KcxiGmIkEmzZtYsOGDXhC5WFmZiZSeLt8GYj6DgYHBjBNk2q9zuVLlxgZHWX3nj0danGPPPJI3Ixz8OBBfvRHf3TFe/7Gb/wGp0+fRlEUfu3Xfu2ajxVugsEbbVIavu+Tz+V4/LHHeOmVV9BUlQceeCAecNbLJ/VE3lZRFIp9fdi2TbPZpNlqXVUJV/aJShdFdvvLi+2LCqvvebFqsSM4IoHvc/ToUer1Onv37mVgYIBKtYrUomn/HyJ+iKxe9uJ5d7s0Acv8+vYAVtIMpMqZH4aEvo8nnj6yH9UX1zPeXxAwOz3N+MaNKJoW0Z+FPo0uuehd11VWWnv54j3R5UaFYYiuqvT39dHf18e999yDZVmRuvPsLJOTk1EqUghFPfzQQ/F1yYq6SCqVYv/+/bz99tscPHhwxVsuLi7yr//1vwbgx37sx3jooYeu7VgFbrjBK4pCIpmMpZFVTWNwcJD77rmHd0+cwPN9nnj88WiV6SJjtfPPFUUhkUiQyWbx63WWlpZIr1I9lbBtGxRl1cYFeQMgboBcLsfC0hLVapW3334b3/d5+OGHo/cUvqjk8tOWKvQ9j0ajER9nnIpTlnngKT9FH324OCiohFZItVLBF7nxuMtJnq84xva2wnaEYYgShqi6jqaqzC8s4Hge27dtWzMFK16MIyUz3scUvV49DiGddY9kMsnmLVvYtHkzU9PTHDx4EAWY2LChI2YqtnWzPfHEE7z99tscPnx4Be/qC1/4AuVymUwmwy//8i9f87FK3PAZTxD58aGixFU21/MYHRvj4UceYWlpieeff55Go9Hhw65oFhb/F4tFNEXBdZx4xPxqkAZ/rZroiqJgNZu8c/gwiqbx7HPPsWHDhqhZu1Agm8uREUS2hKjyapqG0rWCSqm6QIzq9IMAJVBQQgUCFSVQ8f2IX+J7XsTwFH5228FEK7RhYBoGSdMknUqRSafJZbMUxZzTXCZDOpViemqKgjjOq0H61rK975p6F5SV3Wvx+YbhiiD57JkzvPbKK+SyWTZv3Up/f3/8PpqmdRyn9OObzSbHjx+Pf//uu+/yH/7DfwDgF3/xFxkfH7/qcXbjpkwASSaTVDUNXygKyIrq6MgI/c89x8uvvMK3v/1tDhw4QH9fX0ejcjerUlVVCoUCpVKJUqVCJp1eIUwqYVkWhJHA06rZDoEwDLl46RJvvvkm+VyO+/btixVw2yX1esET1AcUhWI+3/PYHd2mRhVXEY0XZkg+m41cIUG8yuXzK/g0a9YFxN8s22Z6aop79+6NJDPk9euVvw+C2NWT1yUIgrXFUldJgXbvF6In0pHDh5mcnGTLtm0U+/qwHCfqWRb7KBSLHefYHrgePHiQ/fv3A/D5z38ez/PYsGFDHLS+X9yUFV7TNFLZLKGiYFlWxI8mCqRyuRzPPfssuVyOF77zHU6fObNCM7HbJ87nciQMgzAIWOrBt5ewbTtOV0oOfjvCMCQgygSdOHmSN954gw0bNvDgww9j6HpEfb0GrFA5EIL/qnCZNE0jVMHBxcHBxSVUg7j9TRU+bntMAKsbO3SyNS+cP4+iKGzZvLkjW9Qr62M7TsyHSYjhCFdf368ORVGo1+u89OKLnD9/nn3797N161YII468oihxcqDY1Zy/c+fOuG/gzTffBOBrX/sa//N//k8AfvmXf/maZ1N146YYPEQCoqGiROkyEdjJVcU0TZ566im2bd3KkSNHeOH55+PGkfjD6DKqYl8fuqpSq9epC/+5G1LWL3qJEj92Q5ZZm4Hn8fbbb3P8+HHuueceHn744agApijva3QmrEUr6NEAIk6s19Dfa4G8LkEYcm5ykg0bN65I1UqfWxX7D30/pnAkTXN5quH7aG3sBT8IOHXqFN/4xjdoNJs8+eSTDAl2rKpG4zMNXY+LdH09dOofF7NyDx48iOd5fP7znweiLM7f+3t/b+3jWwM3zeB1XSch7lLXcaKVsO1D1jSN/fv389xzzxEGAd/81rc4dvToqjIaqVQqkvdQVRYXF3vSex3X7aAqKET9rVKmwnVdXnn1VS5evMgjjzzCPffcg6JEY3UUliuSV1sBr8UHXo1LE+fg3+fUEHnt5mZnaTWb0Wq62vFFBxkRwYjSn+2N2Nd2/F3vL163uLTEt771LY4fO8b2HTv42Mc+Rk6IzSpEn2vIcso1JZr0uyHdmqNHj/Jv/+2/jWkov/Zrv/a+F4N23DSDB0jn8yAbDXpkHwIhzvPcRz/Kvvvu48zZs7z4ne9EI2p6oK9YjCpuYcji4uKKvwdh2MHWkwMaFEWh1Wzyne98h6WlJZ566qmOrpvYIADLcdZcuYE4w7LWB7Oa7EYsNfIBP9T3zp2Lqb5rwfM8bMsiRFS124PQD2Dwrudx5PBhnv/2t1GBZz/6Ufbu3RvTCGCZoyR17AEGV2FHSoN3HId/8S/+BQA/9EM/xEe+S778TQlaJVKpFFXTJBQ8i/aPuENsSFXZvXs34xMTvPXmmxw+dIiLFy5w3733RnRSaRxK1NM5OzNDy7IoVyoU23XXRTNIu18bAuVSiVdeeQVVVXnmmWd6cuUTQhDUdRyCqzV4K6s0brRvcpUVvrvodC2rbr3RYHZmhgfWmDUbvRcxkSthGHGQv6bo6ypBvuM4vPfee5w9ezYaRLx/P9u2bYtltNs1JIGOQRCqqjK6Sqbl8ccfj4t4rutimiZf+tKXrnIFro6bavAAqWKRytISjm2vMMRu5LJZHnvssXhixIsvvUR/fz97du+O6K8i8CoWi5TKZUqlUqxTEwrXpdsQZ2ZmeP3118lmszx54MCqOXrJtfEEL3zN9r+u3HkvdK/gscHLFb7b4NfYl8SFyUk0XWej4LCvBkdOy1OUnu7Eipu1h7FblsXZs2d579w5/CBgy+bNbN++PZYPhOimkiK4qWSSSqUS0xgABgYHV1WHKBQK7NmzhxMnTgDwcz/3c2u6adeKm27w2VyOUHTBNBoNMtlsRxNzNzRNY2hwkLGxMRqNBqdOneKVV16hIGTsNm7cSC6fj7nd8wsLMTVW9mtKvHfuHO8cOcLo6CiPPProVf1mU8jPtcSAhlXVyaCj0NQbK12adpHRFcdylRXe8zwmz59ny+bNq6ZlYXkIAWFIUmgALR+SEi82iqZF9YAuY2+2Wpw+dYrJ8+dRVJXt27axY8eO6Nq0ZdMc247jKKk1JOd1SdWxiY0b1zyn4eFhTpw4wdDQEP/yX/7LNbe9Vtx0g1dVlcLgINXZWZrNZqRbqOsgL3aP7RVRyZPEpMXFRU6dOsUbBw9y/PhxNm/ezNj4eNSh4zjMz88zNDQUl7XDMOTYsWOcOXOG7du3R9NI2qqDqyGRSETdVqJKfDWG3prmvoJKE35Xk7snz5/HdV12dI3/7IaU0dCEYtiK41o+oOgglUi2ZHZ2losXLjA1PY2u6+zevZvt27b15N1IyQ6I6NqarkcMSd8nIFI6KOTzy+KxPXDw4EFeeOEFAH7pl37pQ5vsd9MNHiBXKFAvlfA9LxqOkMutKnKkyNy0rEQKv/3JJ5+kXC5z7tw5Tp85w4kTJ8gJ+epCX1+sJKYoCq+//jpTU1Ps7yKAqVcxekVRMIUKrpSSXhNrrPDdDSDQprH4Po09CALOnD7Nhk2b1pzK7bpuRJIDslepNodhSLlU4vz581y6fBnbtikWCuzbt4/Nmzd30KGVNsJbGAQxUS1hGHHl1hJMWF3UGUbHxtZUJ/jFX/xFAPbu3cvnPve5a70UV8UtYfCJRIJULkdzaQnf97FbLYxVfDtViZqyA4SBtj1ui8UiDz30EPfv38+VqSkuXrzIhYsX4cIFcoUCnmgdDMOQJw4ciFV0Ja4lL5JMJCKtRM9bkeZcgbVcmq6/BSyv8N3yFj3V2tpw4cIFLMti965dq24ThtEEFpRIC3418apWq8XM7CxTU1PU63VSySRbtmxh48aNqza+h0LpOAyjBh6ZDUuKm0oT9RaIOqvS6TR9AwOruoS//du/zfPPPw9EzMgPMj93NdwSBm8YBkYyiZlKYQm+iyJZfV0lcUVRcDyPf/Nv/g3TU1P09fXxb371VzsuiqKqbJiYYGh4mF/+4hdZXFwkJXRb+otFBgYGqFWrlJJJCoVCh/vQodPYA4qqkkwkaAlfeC2DD0WjhWQ0hqLROQQSXoICBTyivL7iRJVJGRDLWayqcCtWjRfCkFOnTzMxMRHnu1dsAzQajYjY1Ua/hqgGMj83x9z8PLNzc9SqVRRVZWJ8nAceeIChoaGO6mvP2Eo8caXepILw25XlxnzbtmMe/tjEREew2mw2mZqaolar8ZWvfIUvfvGLAPzMz/wMzzzzzKrX94PgljB4iCqvnuNglUqRD9hsRiw/pVOCQhaCnnn6af7bf//vLC4u8tKLL/LMs88CnRTb/89v/iZn33sPVVH44R/+Yaq1GpZloRlGrM+SME2Gh4YYHh5meHiYTCYTN3+sZmTJZDJWTpAjNeMuIiEJWK/XI+31tpa/jsJaqGFgECcoAyWeQCLFZCGiDQdBgN5GN5AjKBVF4dKlSzQbDR5//PFVMzm2ZcUqwEnTZH5+nrm5Oebm5igvLRESJQ8GBwbYsnUrQ0ND5LomcLQ3tsSyIILGDVEwK6kXqXQ6foKEYTRgQdKXxzZvplAsdlAD/vAP/3CF2/LYY4+9b677teCWMfhUKkXDNAnzeVxBj202m6QzmRWuhqppPPb443zzW99idnaWr3zlKzz99NMomharjP3n//yfefOttwD40R/9UT7ykY/w8ssvE4YhW7du5fHHHqNWrTIrPvi3Dx2CMNKpL/b1Rb6/YBt2t7qpqoqZSFCv1ymVyyRNs4OL7olCmjQGaZztK7anedSo4eCiouDrXjTih+VG9SAMI0KYqkb1A1FltsSYH03TOHnyJMPDwxQLBdwuzpHneZRKJebm52nUatSbTapCSNY0TYaHh9m2dSuDw8OkU6lonmqrtSpFWFZKfc+LGKHi/FqtVuyypFOpjpw7LEujmKbJxMaN5HK5juv5ttDEN02TLVu28MM//MP8wi/8wprxyAfFLWPwsml4yXVREwkC34+LI6l0uiM1Jrt1PvnJT/K7v/u7zM/P850XX+R7nn4aBfgff/mX/NVf/zUAn/zEJ/hbH/84EK1ipVIJ3/dZWFhgZHiYgYGBaAq367KwuMjCwgKVSoXJ996jadsoYdRQXiwWKeTzZHO5uAxvt9EXZGOFJKfJwWDZXK5nSjHUQmxsXFwUFEI1iM5LVclms3FQGBBJbcezWEVHVqAoTE9PU6/X2bZ9O9PT07RaLeqNBtVKhXK1SqNWQ6oEZDIZ+opFNkxMMDw8vMLo5A26WrJAQsqTS7dPqjmHQRALYYVtbEtfqFB4nsfue+7BNM0Vhvxbv/Vb/NZv/da1msp3hVvG4CFyFRKJRDSypl6PK3WKqnb4nVLT/JFHHuFrf/mXzExP8xd//uc89dRTHDx4kP/6X/4LAE8eOMDf/bt/d3n/pokv3APX85iZm2N0eDiecTo2OtohZ2FZFqVymUqlwlKpxOzcHGcnJ/EdB1+U4nVdJ5lMkk2nSYkvwzCi+VVi5ZdUYk0YtDz+dgRhtCL7Ql7Esix84Sb5vo9j2zRbrXjYWKPRiEbDKApHjhwhDMN4kEMul2NkeJj0li2kBF++28DbEbspMkO1RrCtSf154bPLoXKpZDIa1BCG8TaKolCtVvGCgFyxyODQ0JrHcSNwSxk8RJmWhYUFwlQKX7AeG40GmlA8ADo0zX/ws5/lN3/zN5mdm+P3f//3Y7fl3vvu42c+97kOw0okEviuy9DwMPPz89Gc1Taj74ZpmvT19WGaJgNDQ3FLnS14/JZtU6lUaFkWnuuyuLSELUSF2lfKgID5cJGGUicUzvBx9TiBIuYbEfLGmTeonqqCEmCFNjlyDAfDaMqygalqNOEkJRrYfd9n165dFIvF5fmpoqhjiyqnkUh0CKf2guTMX1UtgeXgVapAQLRQaSLtqwqeuyTb1RsNAmDrtm1kMpnekic3ELecweti8vXS0hKB40R+q6JQq9XI5fPx0GA5jOvRRx9l0+bNTE5OxqmszZs380//6T9dIZ0hxfo1VWV4aIg5afSzs9Ewgbbt5fQKueoqStQaaIp9SOOwLCsKMBWFgli9LNumJAhuyWSSf3fiN3ll/pUV5yob/pQQppVpmloTD58yJQA+MvYR/u+7fwZN06K5qYLAZjsOf/1Xf8W2bdvYu3dvxzG7nke90cAVYqiaoEKYprnS6EUGLG5QEV8rhV6Xb16Z3pRVUymvIZ9k0n0LiHx3y7IYHR9neHh41bTmjcRNZUuuBtM0yefzKLLdTPiW9VotKl8rSiS9LJoInhUZGog4GL/wC78QtfF1cXLkE0KSkUaEkXu+z+zcXGwkzVaLaq0WD/NKp1IUCoWeU7VjHrksrkCcg85ks5Cmp7F3Q0OMq2c58Hxp7mXMjEkum40pygAnTpwgBO4RIzcl2s81LSQIE8kkjutSq9c7G2lkurc9vhA9wysazsXPkv7RbuyJRCJinQoXT6ZdA99nYWkJM5lkYsMGBtbIu99I3JIGD5GAaq5QQDUMQqLHYxCG1Gs1HMuKXJAw0k384z/+4/h1sqtJop2IJnO/sryeSCQYHhqKmhF8n+npaUrlcuw/G2IgQ1KMvez5cSlKHIRZQia6fbuskcXUrv4Ylwbvtxl80SyS1DtfW2vTc+kmXkkXAqJMz0B/fzQeUhhaQ+T5wx7GLlOO3SlgCc/zqNfrkVCWopDOZKInZrg81TAQ1yMMAuYXFiLB2+Fhtm7d+r6pEtcLt8ZRrIJ8Pk9GTNpTBacjCEPqIupv1Ov8x//4H6lWq7FwkGVZfPWrX+3Yj/zgZMBUrdfjvyUSCUZHRtA1LRISnZ3FsiwyQnmrveq5WuOyIdKIiqLEq3z8N9Xg+7Z+8qrn2svgP7P1+1e837Fjx0gmk2zfvr3j90EQ0BBqarqmxRx3wzDIZbPRFA9VpSUC3+7MUSDHdYoAO9bXUZR4qqL00bPZbAd5rr0YFfg+5UqFWq1GOpuNJfRuFdzSBq8oCv0DA+T6+uI8ti+k4er1Ov/lv/5XKuUy6VSKX/zn/5yHH34YgG984xuUSqXunUWGkMlQ71I3UJRIyUAVq16z1Yr10XsdU68shiyjy4AWll2MH97xg1dd5aXBe8Lgs4kcn9zyiY5tpoSs9d59+zqC7DCMpD1CooBTGnt8zKpKJpMhLVwyR2SB2uEHAWFb0Cv9+WarFRfBdMMgm81Gi4B4GshVHZafApVqFc0w2LVnzwdSFrieuKUNXqJvZIS80CrUNA3Hdflv/+2/MSN0z3/6c59jy+bNfOYHfiAebvznf/ZnK3ekKBQKhQ45j0DcPACDg4P09/WhaRqLpRILi4s9yWRKW1FJQtd1EsKfbwm+jtymaBb59LZPrXmOyyt8dLP8wLZPk9aXV0bX8zh86FCssCsRhiHNRiPW2c9kMj3JZ1KCQxq9HPQcXwcxd0k+0XwZ/LaJV2XS6Y6hzDKVKakDjUaDhhDD3bx1Kzuvwty8GbgtDB4gPzxMvlhEVVW+9j/+B5PnzqEqCt/7sY8xNjaG67ps2riRhx95BN/3+da3vsXc7OyK/RQKBapCux0if14Gwvl8npGREQr5PJqqRoPC5uZWVDBjxmYXUsKYAmEA7bfED27/LEmt96NdGnso/mWNDJ/a8n0d2xw5cgTP93mwrZtJGrscRpDOZFaSwroyMQnTjI9TzsGV/rckfbVaLer1ejxtL53JxKzH9nOSE7YbjUakPiFoFWMbNrBr166bnoLshdvG4FVVJTM4yNe//nVef+MNHMfhySefZMfOnbiex+LiIo7j8EM/+IMxh+W//9EfLWvaiA88n89jiXSjlIgOgyDi0IjVrVgsMjgwgK5puK7LzMxMhwugQBxXtK/08WBlUYVtpxsUzQKf2f79Pc+t23//zLZPk9GXuSazc3NcvHiRffv2xf5wGIY02ow90zZWpgPdmRii4N3QdVQRt8hslyt47NKdky5Mz/0K6kddZH8UovhpcHiYjRs3xioFtxpuG4MH+PKXv8wv/Kt/RaVS4cGHHuJvfOxjZLNZXNel0WxSbzQoFos88cQTKIrCq6++yqWLF6P2PmH4GUGKkjnikGjV6/5Q0+k0o6OjUW4+CJidnaVSqUT6i23bdY9L18XUEU1RaLVaHQHdZ3d8lpS+Uk+l3X/P6Gm+r21194RsyODgIFu2bAGW04O+UCiTQeT7QSqVitOIsorbarWim0NVSaXTpLtHe7b56tV6PaJ+ELU/2o5DMp1mZGysw+W61XDbGPzXvvY1/uE//IcslsukikV+4id+gnwuRzaTiZl9lXKZRqPBx773e6MgUlH4oz/6I2BZRiInmktmZ2ejbvowXPXRaxgGIyMj8UzXcqUSuThdgkzdPnNaTr0Qj3iZ8stqGT6zbeUqr4n6n4/H92//NLlELjau4+++i2XbPCRcmSCIpuPJ+aYZsQJ3rOFXyXfLimxCDBWbX1qKfXXTjPL+hnSNeqQmGyI9qaoqyWQSx7bRdJ3xjRvZunXrLenKSCjhBxEhuQXgNJtYQr23Ua9HVAFBbAqDIJoAnU6TzWQ6tN0BXnr5ZVzXZd/evaiaFt0wIjOxWnGkVqtRLpcjsSbfJ5PLUcjnO/LLsvoq89BymFc2k4lnlDbcBj/xjZ+k4UX5ctf36Qv70NFwNIf/+L3/npwRiZ9OT0/z6quvsn/fPrbv2BGv7DKQzmYycf9qEATLI2hW+0ilexOG2I5Do9mk1mjgWBaGYZDJZsn3EF6Vrp/fln3SdB3TNKNrAmzYuJGt27Z9aK141wu3zQrfjUQ6jZnLEQg3pa+/n7TohzVNE9d1qVYqzM/PU6vVlv1pRWFkZISlpSU8z4tG27QVp+JmjbYviHL4Y2NjpFMpNE2jVqkwI3L2EjJrEQjqrq7rUcqw2STwZboxyw9s+8zyawBduDR/a+vHY2NvNBq8+eabjI2NsUMau1jZUZQoPSjdMFksalNX7oDI4AS+T6vVolKtRqQ8RYl59mYiQaq9kBWGeGJwgVzRIXL/Mtks6VQqIob5PuMbNrB5y5Zb3tjhNjZ4ADOTwcxm4/K/kUhgJhLkcjny+Ty68C2XSiVmZmcpl8t4rsv42BhhGDK/uLiiw7+7uBSyPHVE1TQGBgfp7++PJTtmZ2cj3o/vx8YuXy9pBwpRVw9hpErwqa2fQleiFV/676Dw2e0/AEQV09dffx0zkeDRRx7BFSM55eyrfC7XSXZTOuXxYj15EW8ERDTeWrWKJTqPVCWSzpBPQD+I6Mky01Kt1aI4QRi6YZoUCoV4SNlSqYRt20xs3MimTZuuKvx0q+C2NniAZDZLqlBAFTRdFAXXdcnn8wwMDFAsFEgYRhRo1WrMzMzQarVIp9OUlpau2sfaLhwkDSmVTjMyOhoFfopCpVrlwqVLLJXLcV5aukZycogfBHFPaS6R5cBopKwlDX5X/w5yRlQtPnz4MPVajccefxxXDFIGMfYzm43pxSEsy3CHbSNsiG7cQLxnTTA6A3Eu6WSSbDZLMpmMXhcEhOIJUqvVor5fofBgCkPPpFJRJ5ZlMTszA8DGrVvZuGnTmgPTbjXccmzJD4JEOo0mmzJsG09M7UsKjnY2m8WyLGr1epyRyGQyLMzPUy6XyeXz0QRvVrbiSciVPyTy0XVNY3BggGYqxcLCAp7nUSmXqVWr5MVTByK/PpVKUa/XaYnGCNM0+d/u/zkmy+eZLc/Rn+rnc3s/RxiGTJ4/z/nz53nwwQejApFtQxhiplKkksllN0tRUCFKZApXSgbKckCZ37bqq0rUvG0kEjHT1LZtarUajWaTTCoVr+a6YWDIQhoQiutRq9UolUoUBwYYHh1ds7H7VsVtG7T2QhAElObmWJqbA6KgTqqOSSO2HYd6rcalS5c4eeoU27Zto7+/P5LwFsKeiUQCtUeThoRcSX0xnl7yWKrVamxkjuOQSiYZGBwkkUjEjRsgJotrGuVKhb/+xjd49JFHGB4ZoV6r8eKLL7Jx48YO+ZBMJrPqiE15HLLzqFts1tD1iOsj3BY5uFlqay4sLGB7HgN9fWQzmVh6r7vAtLS0hG1ZDE9MMDg4yKZNm655ct6thDtihZdQVZWB0VFQFJbm5qjVaihCmlnCTCQwBwZIJpNcmZpibm6OgYGBaHR9rUa9XkfT9SjLk0xGM6kkB1+yCFnmyShE/Ho5DaReq1Gr1QjCkIqgGPf39ZFKp6MZUq5Lo9EgJxTWEPuqV6u8/MorFItFtghJOVVVSfcoKEkjl/uTLE0J2VUllXpdx6HVQ3VZjhzKiIHEUmg2DuBFJbdaq2EYBhu2bmVsbIyRkZFbhv34fnFHGbzEwMgIoaJQnpujIlwMwzAiSoDYJplKsX3HDg6//TamaZLJZGg1m/F4R891aTWb0TAw0Zonx1/KG0BSgWXVNSSiLmSzWebn56lUKvieR7lSoVypxAQzXdepiSYNiAhn7xw+TDqdZt++fZF+umHE+Xwg7nDyhGS3zMaEIk3q+350nMJ3l/Lf7ZCKB7phRFoxth3HBYps3RM0hGazGWdh8oUCoxMT8bif2xl3pMEDDAwNEQKVhQXqYkWV6gHSQMdHRzmbzXLmzBmeevJJ0ul0NLVbGLvnuvHcJVfo0MQTOgTtQEr/aSK9pwiCWyqVQhUd/p7r4vl+LFLkex4JXcd2XULg5MmTGIbBvn37QFEiabowjJ4Ubdo2cfZF5NKlAUOUF5cxCBAfhyom+OmCSqBGf6TRaGA7TtQ2KNiV7YGrJ8hkQ8PD7Ni9m6Ghodt2VW/HHWvwiqIwMDgY8ecXF6lWq6TT6dinD4FkOs2mzZs5/u67sbS2pmmkdJ1UKhU1Rgtj9TwPV0yS9sVN4IgGayDOhccyHEKzRhPSIZevXGFeBMnlchlPVHgTpsnAwACbxsepNxqYphk3qLTjf3ztaxw6fJjdO3fyEz/+4x0kMamKLHVr4mmEsCzq2haq+b5PtVolCAJSqVTUOLK0FAspqYChaey69162bt/em0tzm+LOOZMeUFWVoaEhDMOgVirRbDRwXTdiFaoqGrBp0ybOvvceb771Fs8+80z0FJCrJJE+ohTyl03ccp6rFGsNPI9vv/ACL37nO/yjf/SPyOVysY8N8Nu/8zsdx5ROJslksyTFzNpiNosfRr2inutiihvBTCSi1VnTuO/ee/nGN7/JwUqFf/i5z2EmkzGV13HdzoC2mzDW1dlUKpWo1mrYth2zHeWrVUVhaGSEvfv3k7vN3ZdeuKMNHiID6+/vxzRNSktLWLUatWqVtMh8ZLNZ7t+/nzfeeIOjx45x3333xaoIMhWpwLKoknBfEoZBKpWK1bZUoLS0RKFQoL+/H9d1o6BZUVgS00gSpsng4CCZbJYrU1Nk02k2btrExo0bCYk6pxKy8uv7keyeoCTcs2cPZiJBs9nk2LvvckDMQOqpkCaO1WsLbD2hhVmr1ahUKni+H/nu4hqlkknSmQxbd+5k7BZr2vgwcccbvERG9GCWTJNmtRplYzSNZDLJxo0bWZif59x779FXLDI2Po7eJjakCr9fcsvj1ZBIBU1OIZSUAiORiKf+ea7L3/7bf5sJEfRVq1UOHzrE6VOn8ByHiU2b2LRpE7Zt4zgOmqriCwZjGATR/+K9n3jsMc6eO8c7R48yMT4exRGi0Vy+fztfJvA8wrb6gSPy7r7vk81kouyRSMXmi0U2bNlySxO/PgzcNQYPEftxcHCQmmlSSybxWi2azSYKsGfPHpZKJU68+y5JIbIq88xBGC5TgNuCQilfoYr0n/y7K/Tj67UaIfDss88ShiHnz5/n4sWL8YoOURFLulhSqzFlGCQHBnBlwCu4+/fccw8z09PMz8zEXUaeaNKQ2jXSZ5f/yyeSJxQZ0qJXd2RkJFJ7y+cZm5ggc7Vp3XcI7iqDh+VBxrlcjqYspdfrOK0W99xzD2+/9RZvv/UWe+65h0KxSC6XWyFfDcskM+kyoERydpVqNS7cyP7XcrnMqVOncByH+x94gLyg9Mp4QEFQilWVZquF63m4tRrJVCpuTg8VhccefZT/9J/+E75oS9y0eXNHk0nHeYog1hc8HN/3MQwDM5lkYGCAgkg13i2GLnHXGbyEKjQcM5lMxDep1UhkMjx24ABvvfkmR48eZdv27VH1MZFYFjKS/nIbmzIIApQwjPLbqhpzzQPf58SJE8zNzTEyOsqDDzxAJpNhZno6HvrVvg9TjK5vCVWGZrOJ4zgxQ7Ovr4/NmzZFo3reeYedu3dHbgsr9SBdz6PZaGDZNlarRagoFItFNm/bxvDY2B3vuqyGu9bgJRRFiUSL0mmCoSHcDRsY3rCBr331q5w8eTLSmR8awhYBZMI0l7uAFCUu+cvRlxkRCJ4+c4bJyUk0VeX+/fvZvmNHvJ0URHLaCkMyRpBiqrbjxIZfrlSiQDmZ5KGHH+bc5CRvv/02n/3BH4zdoPYClSXa9GzHwfd9Cv39jI6Ps2nLljsqxfhBcHeffRcksWt0bIwf+8mf5Jvf/CaHDh7kwuXLbJyYYGJiAt33MUwzXvVlwUaOtHz99dcjZbNkkh3btzMyMkJCPB0UIlfIE4YuDb69WCR+QULwX5qtFo7rRmzLRoN77r2XdCrFzMwM01NTjIyMEBJpwFuWhet5+K6LH4YUBwcZHR2l0NdHsVi8JZS/bjbWDX4V6LrOxz/+cZ5++mkOHjzIwddf59yFC2iqSjqVIpNOowlJjmajwXvnzhEIt+ahhx5ibHQURVWpVKuEwldXNS1S/iJqxpCBpET391JPJiWkR2zbZmR4mKGREcqlEm8fOsT9+/ZFQbUoNumGQV+xyPD4OLlc7gP1u97JWDf4qyCdTvPMM8/w5JNPcuHCBRYWFlhYWKBUKtFqtcj39zM2MUGtXufSxYvcd++9DPT3RzrqihKnJy3bJp1KxYxJexWhJwnJZwdiGoFkXe7ZvZs3Dh7kxOnTPPPRj6ILLlAmkyEt5Lp7kc7WsW7w1wzDMNixY0dM25UTom3bxrZt3jh8mPcuX0Y1TSzHwW+14g6opiChVQR5zXHdSMpaUJBbotEbof4lGzI80UUl+e9mKkXf0BCPPvkkv/2f/hOHjh/ni//n/xlXk9dxdawb/AeEoiixhHVOpPYuXr5Mn/CbZXXT930q5TIt2dcqmjmajoMKeMIdURUFxEgcVUwR0cRUEU3QG+TX6MQEc3NzhGHIu+++y8c+9rGbezFuI6wb/IcI27ZJp9P09/cDy7z14eHheEKfaZpMT09z+tw5AO578EEmtmyJMzgxy7GNBCbFTSW+/vWvE4rA9nFBMVjHtWHd4K8jFJG2lGNxJKTkB0QSGO+3Afov/uIvAHjuuefip8s6rg23P8H5LoSUA//+7+8t3beO1bFu8LcZDh06xMWLF4F1g/8gWDf42wzSnXnwwQdvaQ3HWxXrPvwNwEsvvcTZs2fjnxcWFuLvz549y+///u93bP/3//7fX3VfX/nKVwD49Kc//aEe492CdYO/Afjt3/5tvvzlL/f828svv8zLL7/c8bvVDP7SpUscOnQIWHdnPijWDf5DwrNikmCxWLxu7yFX940bN3YMRljHteOOEmK60/E3/+bf5Otf/zo/+7M/y2/8xm/c7MO5LbEetN4mqFar8eDldXfmg2Pd4G8T/OVf/mUsEivdp3W8f6z78LcJvvWtb1EoFPj0pz99W2o63ipY9+HXcVdh3aVZx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYO/gbhw4QKf//zn2bNnD5lMhv7+fh599FF+5Vd+hWazueZrf/zHfxxFUfiBH/iBG3S0dyjCdXwo+MIXvhAC4eTkZM+/f+UrXwnz+XwI9PzatWtXeObMmVX3/yd/8ichEGYymbDVal2ns7jzsb7C3wAcOnSIH/mRH6FarZLNZvniF7/IK6+8wje/+U1++qd/GoDTp0/zyU9+klqt1nMfH//4xzFNk0ajwTe/+c0befh3Fm72HXenYK0V/umnnw6BUNf18JVXXlnx9y996UvxSv+FL3xh1ff4xCc+EQLh5z73uQ/xyO8urK/w1xlvvPEGL774IgA/9VM/xYEDB1Zs8/nPf5577rkHgF//9V/Hdd2e+5IDib/61a8Srg9f/EBYN/jrjD//8z+Pv/+Jn/iJntuoqsqP/diPAVAul/n2t7/dc7tPfepTKIrC9PQ0Bw8e/NCP9W7AusFfZ7z00ksAZDIZHn744VW3e+aZZ+LvX3755Z7bjI+P8+ijjwLwla985UM8yrsH6wZ/nXHixAkAduzYga6vPvh8z549K17TC9KtWTf4D4Z1g7+OsCyLhYUFADZs2LDmtn19fWQyGQAuXbq06naf/vSnATh69CiTk5Mf0pHePVg3+OuI9hRjNpu96vbS4Ov1+qrb7N27l23btgHrq/wHwbrBX0dYlhV/n0gkrrq9aZoAtFqtNbdbd2s+ONYN/joimUzG3zuOc9XtbdsGIJVKrbmddGu+853vUC6XP/gB3oVYN/jriFwuF3+/lpsi0Wg0gKu7P48//jiKouB5Hm+++eZ3d5B3GdYN/joimUwyMDAAwOXLl9fctlQqxQa/cePGNbd96aWXCMOQRCLB448//uEc7F2CdYO/zrj33nsBOHv2LJ7nrbrdyZMn4+9l1XU1/MVf/AUAzz33XMdTZB1Xx7rBX2d85CMfASJ35a233lp1uxdeeCH+/qmnnlpzn1/96leB5eB1HdeOdYO/zvjMZz4Tf/97v/d7PbcJgoA/+IM/AKBYLPLcc8+tur9Dhw5x8eJFYN3gPwjWDf4647HHHuPpp58G4Hd+53d49dVXV2zzq7/6q5w+fZq+vj7+yT/5J/i+v+r+pDvz4IMPXrWYtY6VWL3WvY5rQhiGsW+eTCbxfT/6cl1s28ZzHH7pX/0rfujv/B1s2+Yzn/kMP/2TP8kjDz2EZdv81V//NX/+1a+yadMmJsbH+dizz3Li6FEGBgYwk0mMRIKEYWCm0xiGEefeZWpyHe8P6wb/AeC6LvV6Hdu2aTWbWJaFY1ls2rSJd48cYer8eRRA1TQMw6Avn+eXf+mX+JV/+29pNpv87pe/zO9++cvx/oaHh9m4YQOf+8mfxLNtllotqpUK2VSKlmUxv7BAs9lkenqaixcvUigUqFUq/PZ/+A/0DQ4yOjrK/v371wPYa4ASrhOrrxn1ep2lpSWqpRKtZhPbsgiDAFVROH32LKdOn+ajzz0XVUyDgFBRUABNVUmaJuVKhT/+sz/jlddeY3Z+Hl3X2bRhA889+ywfe/ZZBvr7QVEoVyoslUqUFhdZWFqKX//Ou+/y9W99i75ikZ//X/9XLNvGarWoN5v4QcCW7dt56iMfYWJiYk2i2t2MdYNfA0EQYNs2zWaTmStXqJZKkX8dhiRMEzORwNB1DMNAVVUUQFHVqDkjDHE9D8u2CcMw+gJSpkk6lUJRo/CpVqth2TZGIkE2nebs2bOcOHkSx3UpFgps2rSJwYEBAuCXvvhFjp84wff+jb/Bj/7Ij+AHQexCzc3NMTM7i+u6jI6O8vBjjzEwOEgmkyGXy2EYxs28lLcM1peBLoRhSKvVotVq0ahWadbrlBYWaDoOge9jJhKYiQQqkWtj2zYKECoKQGz0qqahyu8VBd/3UQDLtrEdh0w6TcIwsB0nes9mk1dfeYVarcbQyAh9fX0UCwUy6TQQ8WsOv/MOrVaLxx99lP6+PgJxY/lBwEBfH9u2bOHS5cucv3CBl779bXbu3k02nyeTzVIoFhkYGCCXy6GIY70bsb7CCziOQ7PZpNlsUl1aolIu06jXqdXroCjomkYuncZIJGKDCYHA80BR4hUcYYTyosbNqkEAwvBVRcEwDBKmiee6TE5OcuXKFfL5PPfs2UMymaRpWZiJBP3FIrqm8T+//nV+7p/9M3LZLAdfeomEYUTvH4YEYYgi3KcQmJ2d5bXXXiNhGOzaswdVVUmmUqSyWbK5HAMDA/T399+Vbs/dd8ZdsG2bpaUllhYWqJRK1AWl1zQMwjAkn06j6joZkSUxdB1N0yKXJAzRNI0gDAmDgCAI8IMg+h4IfR/P87AdBycMCXyfMAhoWBYty2KxVGJ+cRENGBsfZ9PEBKqmxS6Q4zg0LQtVUXj7yBE2btzIU48/jh8E2I6DoqpoqorS5jIBDA8O8tFnn+XlV17h5IkTPP3009iOQ2lhgWq5TLlUYi6fZ3h4mIGBATRNu1mX/4bjrl3hLctifn6eubk5KuUyvm1j6DpJkQZErOKmaTI0MICiqvHKrgCeMN4Q4t97nofnebieh+95eG35dN/38T2PljD2+YUFpqem8BSFvkKB/mKRRCJBMpkklUrhOA6KopDJZDB0fUXTtvw5DMPoWMMQTdfRNQ1d3JTNZpNvfOMbDA0N8cTjjxMArUaDcq1GqCgUBwbI5/MMDQ2Rz+dR1Tu/LHPXrfC+73PlyhVmZmZotVqEjkNC08gPDJDOZEgnkyiKQqPZJAwCstnsihVQrsB+EOD5Pp7r4gpjVyA2QOlmKIoSBbWKQgqoVioszs3R39dHpVZj88RE/NTQdR3XdWlZFrquk1VV8rkcClEQ7fs+fhDg+j6h+B4gABzbRpKQVbGvffv38/ZbbzF5/jxbtmyJzjGToVqvU15cxHMcHMehXq/T399PWsQMdyruKoO/cuUKly5digJN38dUVfL9/fQVixF3XbgF5UoFiApJ3Y0bnlilbcuKgkYB6UerqkpCZm40DVVRovShZaEbBhcvXuTihQts276docFBXn/jDYYGBkgkk9E+29wix3EoLS1hNZvk83kKuRxJ01yOC8SNF/g+jnCdXM/Dd10C8fpiocDY+DhH3nmHdDpNv3Bh8tksKZEqnanVqJTLOI5DoVCgUCjcsf79nXlWXbBtmxMnTlAtl8H3Sagqxb4+Bvv6OtJ1iqrSaDSi3LqqxqudTE/ath37yYEwNiORiFwJsaJKt0AhyuLUGo3oxlAUTp08ycz0NA888AAjIyOUSiUgurGSqVQU8BJ1R+WyWcrlMp7I85erVcqVCrlslmI+j5FIEIZhlOfXdUxVRRdPIvkkcDwP13HYtXMnpXKZEydOsO/++9E0DdM0SRgGA/39VGs16tUqp8tlRkdHscfGokqv6MC6k3DHG/zc3Bxnz57FbbXQgcGBAQYGBiLjEKuyRBAEtGybIAzJpFLYto3juitovQnDIJVKoet6/PogCGKDDcMw9tUVRUFTVU6fPs3s9DRPPPEE4+PjcadSKI7BTCbRVJVas4ntOKiKQq5QQBOBabVWw3FdGo0GtVqNdDpNoVCIVnxh4BKqqqKqKoZhEIquq3vvuYe33n6bRr1OJpuNMlKKQkLXSadShIqCY1nMTE3RqNexmk1GxsbiPts7BXeswTuOw8WLF5mZmiJ0HNKJBBs3bIhW7TAkCIIOYw/DEMu2I1/cdVfkqg1NI2GaJNrSkn4QRC6F8KMRXUiNRiMyQEUhkUhw/vx5Ll68yKOPPML4+Diu50VPCLFvmeXRDINMOk29VsMRgW86nSabzZJOp7Esi3K1ius4tCyLWr1OKpUiXyhgtheW2lwteaxbN2/m9OnTTE9Nsf/++3EcB8/3cVwXR5xvGIYkUykajQYXJydpNBps3rqVfD7/4X9ANwl3pMGXy2UuX75MZXERPI/+QoHx8XE0XUcNQ3yWDUGusI7rsrC0hOM4pEVPqaZpJGShqUcGQ1GU5Xy7uGFazSYIXz6dyXDl8mVOnTjB3n372LR5cxTsiidG+z7l8SQMg0wmQ61Wo+k4qJpGXmybSqdJpVLYjkO1WqVWr9NoNKjW6+RFccloyyaFihJTH1RVZdfOnRw+dIi9e/dSKBTwXBdLBK2hSLG2bBtN0/A8j6X5eZr1Orv37KEoOrdud9xxeajFxUUuTE5SX1xEB0aGhpiYmMAQxg7EOeuQKAit1mosLi3hui6aqpLNZMjncuRzOZLJ5Apjl69VFQVdVQmBWr0eqQ0oCgnDIF8osLiwwOFDh9ixcye7d+2KXiyKT0DPwDAMQ0zTJJVKoSgKrVYrbgCXGSDpew8PDUX1AVWl3mgwNTVFrV6Pi1GheAL54ufNW7aQSCY5ffo0hGGUBUqn6RMVXd0wME1zefV3HGzL4uiRI0xfpUXxdsEdZfALCwtcvngRv9UiYRiMDg0x1N+PoevxY94XgZ7vedRqNSrCfXBcF8MwYv6J9M+7i/DtFAKI8vH1ej12kTKZDJlMhnKpxOuvv87ExAT79+2L8/oKxDGBtspTAyAtCl0oCvV6Hc/zosqqSIX6vk8ikWBoaIjBwcE4mzS/tMT07OzyTdJ2DoqisGXzZi5durTshonfJ02TQi5HOpUinUrh+z6249BstfB9n8n33uPy+fMdr7sdcccY/NzcHNOXLoHjYCYSDPX3kxR88kAUiCAy0Fq9TqVajX3XhGGQFinIL739Jb7vzz7DP/n252m4y1M55KquiBsGlp8Ovu+jqirFQoFUMonnurz66qv09fXxyKOPxsYOxPl7YM0Kp6IoJEUg6wVB5Lu7buyiKKoa7zedTjM2MkJfPo+hqriuy5WZGRZLpU7DBiYmJnA9j7m5OQJRHZZFLFVRSKVS9Pf1kc1mY2WEeqNBvV5nZnqaydOn1+zNvdVxRxj87Owss1euEDgO+WyWvJC5SKfTcSUyBOqtFrVqNdJ/EatasVCI3B1N42sXvsbzV75Dza1xeP4wf+d//CgnFk9Ghg4dq73turGxy7y2JjI/b731FoqicOCJJ6KCkihEBUGA63lx3KAoSkQ3kPl08eX5flSlDUOSpolKxMVpH4vTfTyqqlIoFhkbGyOVSkVuTr3OlenpDkGoYrFINp1meno6/p0MvP0gAHFD9ReL5LLZKNMjmJ+LpRKVcplzp0/Hccjthtve4Ofm5piZmiJwHPpF0QRAN4x4FfRdl0qlEn3wIgVYECxCTdNiPfaTlVMd+y7bZX72m/+YPzzxX/HD5ZXSsizqtRpBGJIwDHLZLKpYrc+cPcv0zAyPPPIIZpsQU5yREf67XN1ldkRSiml7giiKEt2Y6XQcWFtCrAmiFbnb5TIMg5GhIQYGBkjoOkEYMj03R6VajbcZHx9npt3g5bERZYxk9iknKs9JkY/3XJd6o0G5VOLiuXPX9PncaritDb5erzNz5Qo4Dv2C/uq6bhSQiUxDQ3BH/CBAUxTyuRy5bBZN1+Nyveu6BGHIcG4k3ncQBqiKik/A/3X0t/n55/8Zs815Gq0WDbHSJk2TbDYbB7XlUomjx46xc+dORkZGVhyvoigxv6aX/97jBQDoIkOjKgrNVquDo4N4UnSnUTOZDKMjI2TFar9UqTA3P08QBIyPj9OybSrlclQdRgTyXf65puvohhEV1zQNQ9fxfR/LspienubS+fNXP4dbDLetwXuex6ULF1B8n1wmE3ULiUezDCxrtRot8Tg3TTNK24lmDbVtPyGRSzCYEfsIQ1Sl89Icnj/Cz/3V/8bL5yPt9lQqRSaTWfbnXZfXX3+dQqHAfffdt+pxywyNtkbpPiapyaKWcG0Mw0BVlKgaLLdtfx3LpDL5HkNDQxQKBQxFoWVZTM3MkMvlSBgGs3Nz8g1jN6s9hy+vm3S9EqYZ/+x5HpPnzjF59uyq53Er4rY1+MsXLxJaFhowNDgIEPvaskDTvqpnhVsgfV/54crV0tB1dEWL043dyJDBcRz+/Tv/kd8+9Xugh/F7EoYcPnyYlmXx+GOPxSt+7BvLxm6R6pNMS1fcbJJl6XlevJ1MKSLdHSCTTqOqKkGbP9+xsitKz2MvFAoMDw9HLo7vMz0/T1ZQF2CZJqFATHKT0DUNXdOiSqxtYyYSpFOp6BzDkIsXLnDq3Xc/0Gd4M3BbFp4W5udxqlV832d8bCxulwvDkLoozScSCUzTJCMMHbpWQ0VB1TR84b+rmoauGT27gdKkSYaRP96gwdcufo2jS+/w/3j0F9ma3crU1BQXLlxg3/79+EFApVqNOPHtFN4wJADqQk5PU1WazSZhGNJotdA0jbDrfVuNBo7vY7suKdtGFSuxZdsRBSIIMESsosmsTY9VGiK+zujICAuLi1i2jZ5IsLC4GN18bXFD+/WRN5opeDuuTKfqOplMBsuycF2XqStX8IKA+/buvdaP8KbhtjP4Zr1O6coVXM+jmM+TFI9Y3/eptumxm6ZJLpPp+ein7XeBWIUNXcdQVvZ9ZsU/DQ0HhyRJMmRo1S1+6fn/g+/b/AlyU1n6BwfpHxzEc90Vhhu9mRIHrJKvLv142QrYzsUBUSkVx+eJTqloV0rEpCyXY6oERDetKoxfFdkhVVXjAFm6OJVqlVw2y5WpKS5PTTE+MhIvGh3XSlRq27upfN+PCmaKQjqdxhacodmpKQgC7tu/f+0P8CbjtjL4wPNYuHwZ3/cj+Yu+PhSRd67VanGVst1d0dfIdfsiD62KFj5N0TExMTDQ0UmTJh2mCAEbm5AQve2SuaHLH5//Ux7hYX5m3+dIi6qsNLTuCm3LstBUFTORIJPJRMYEZLLZnnwVM5Gg2WpFjSGmGactjUQCarXIDRLnGAQBoecRAJ5Y6WXPqyqYlJquo+s6hXyesdFRzpw5Q6VSQdc0hgcHVxyv7M91xfUOwhDXdaNrDBCGmMlklPJtNJiZniYE9t7CRn/bGHzg+9Tm57EtCz8MGR0YQFVVbMuK3QRd18lls1RFUanVapFbRXo6JCKYSZ+6Vq+j2gpZomYLA4NUmMbHx8KiRo2AAA8PX/wD8EOfhfwC/X19qx67XLFlEej9dhbJxpB2GLoeVXjDMC4SBaIhJAiC+HtPxBBBGILrEkQHgmmaEVe/0cDJ5ZiZm2N4cHDF+/i+jyuKeZ5oWYwD3OjkME0T3/No2jZz09OcUFXuuUXdm9vC4MMwxGs0qFYq+EFANpMhmUxSbzQ6sjDZTIYgDEmn07i1WsQFcd2YSSgDRMe2sV0XS6gTqCLdZqgGoRLghT5GmKBCGRubGr2nY4eEKCg8u/2Znn+Xxy4RZ2iutYdU+uU9fPKEYUSqB+LGzmYyqLq+4gMNiTJIjujKCl13OQjOZrFdF8eysBWFK9PTjI2MxDQFGV8QhpiJBJoIqD3P6+wjABKi5tC0LKauXCGdzbJ5y5ZrO88biNvC4P1Wi1ajEa3uvk9/sUitXo+LMKlUikw6HWcbdF0nmUxGIkX1Or6QwHM9L/ajUZQoi6PrpJJJctks6VySmlKlqPRh+zYuLlWqrCzvREiFKX5s1/+NT237vp5/lyQ1+er3u8LH2aRVkEqncQTlwHHdqBe3B1RNI6GqsSHLTFBa9M4WikUqlQot22by4kWGBgZIpVJR1sjzUBSFdCoVSYyI7FK7wcvbMWGahILwdu7sWdKZDENDQ9d0rjcKt7zB+46Db1nUqlW8ICCXyWA7DrYgR+UymciPFJkGaR4Jw6AmPsRqpUI6k4kzGQnRqG3oOrbjRJwbw0BXDHLkCYMQRYUmDVTUuOyvCNNP6kke5SE+PvFxHt+3xkACRUGR7kwbb169xhVens9qffZSkazh+7RarajjStAoYmmQ+FCWsy6apqFpGplMhmazSX+xSMo0mV9YwHIc5hYWyGQyBEGApqoU8nkUEefYRDdMh1vTdr6muKlarRanT5wgmUzeUhKAt3Qe3vd9/GYz0nBstaJsiqCvKkA+l4uNHaIP2LIsKtUq1Wo14r+LKqTnuhExqliMbpK2XtV4xfUUtEADBapUY5dFVVR0VUNVFVAgrWR4UHmAh/Y/tPYJtPe8iieLKoSZrhltnPtekPRlWQGVPnx31VQ+LdpvnqRpYgn+ezabZdPGjRRyOUJgQdClDcPA8zwqlQq2iHck+a1DOaHteFOmSTKRoNVscvb06Zi6cSvgll7h/UYDwpBqtYovXBX5QeZyuVi+IggCWpZFU/ibQES8SibJ53IxxVX6+ymhTCDb8lSR5lP8yKDr1OOgFEBVVIIwiFZ4RWHRXaCysRqrBUv0XPUEPmjACivdmnYNGhk0er5Ps9WKK8mr7UfVtPgamqJxPCbHKQqZdBrLtlHFsaZSqWVWpWgUD4MAQzwhZDN5x7mKzinP91mcm+PC+fNs37HjllA8u2VXeL/VAt8n8P24gVr6jel0GjORwA8CGo0GpXKZlmURCppuOp2mT1BcjUSCfD5PQo6EtCyq9Tqe78e04TAMadTrbMhuINQCHGTDhcLHNn2UL3/8d9nVt7Pj+L628D9xfCfmscRSHHSupCFErX9tK/xqaCeRhWEYUSRk0Up8+W1UZ4hy9WYigSHy7nYbuawX2uOClAg0LcvCcRxq9Toh0Fcskkml0DWNeqNBNpMhm8mgC2qDH4bUGg1q9Tqu667Usxdp0XQ6jaKqXJqcZHFxcc3julG4JQ3e9308y4IwxLKsSPfFdTGFUFEikaDWaFApl2mJD9jQdfKFAkUhuRGLmhJRBXKZTKzT6Hke5UolXvkbjQY+kE9m+X8//a94euIpvm/bJ/i/vvff8y8f/3+yITfBP9j7k9GxhT6KojBvLfAX7/WYk9rFg5H5alnAkRka6We3dyZJ9HJh5N97rfYgXBslkgS5WpOG3IeZTIKiUFpaotlqxQF/sVBgZHQUTdQ4FksldKG+ViwUosqroBM3mk0azWbcJtgOVVXJpNP4QcDF8+c76M03C7ekSxMKgVJFUaK+zVaLVJtGzJKQt1BUFVPTSCWT6LqO3yO4azePpGmi63qk6S5y8M1mM44FMpkM+3L72De0b8V+Hh15mG3JrZxpno13+l9O/n/525v/Fmmjh3hRj8c8tNGCxZcKHQ0iPdGDDdl+fiERLVgXsn+Wbcd9uavB8/3Yt7Ydh2w2G0l3iKKSoesM9PdHVIRWi1KlQl+hEEl8JBIg0qIty4roDpaF7TjxZyGhaxpJ06S0uMj8/PxNl/K+5VZ43/fxLSuWs6uWy3iie9/1PFqtVpT3NQzyuVzEBBTCou3oxQ+B6APICYqwLNnb4rHcbLVW7eap1es8YN/fYXgVp8IfnfnjFduGgjfTfV7Qm5h2LbgW/zeZSqES6fD0WuWlvk61WqXZaMSLiiauSVxBlftLJikWi2iKQq1Wi4pzooe3vRdAvi4QT0v5tJB8ftM0UVWV2enpmz5I+ZYz+FBouYRhSKlUinLnQUBCBKyqqpLL5cjn87FP397uBnTkvleDLlJzZiJBJpVC0zQcx6Faq1GpVmkJd0fixIkTbM9s46mxzgl7f3z2TynZ5Y7fdffCtgd2MqPiiicMRBVfT6iFdUhsXNMVW0asVa8ocZdTLMrabFKt1eJsl6IomEL8yTB6k+YAskJfXlMUSuVyJOLa1iEl+2Fz2Wz8GbkiHpBPEEVRyKbT1Mpl6uIYbhZuKZcm8H0C20ZRFCzHoVqp0LSsaDK1yJ+nBUV2NVyrNmyj2SQQJfahwcFopXccHNuOMjoiq6NpGlarxcVLl3jowQfZ07+HV6ZfQeZJWl6L33n7d/nhiR/Ctiwsy6JpWVitVhR/SNqvKPd3wwdefPHFznY9XY8IYIKXkzBNMqkUhohhTNMkaZpRPCN+lkS0ZDKJ7TjUG404MG+/iVRVjWZH6XqkhamqPY+rHYVCIWqmabVYWFzsyHLFSmsiSDUE/ycUCQVDiFYpgkM0NzNDWlTKb0bW5pYyeF/IXPhBQK1Sice1Z7PZqGmhS+exHbK5eq3UoITjuvEKmEqlQFHQBbFKVh8d18UTrs7xEycwDINyuYw1Y/FI4iGOOEfx8AgI+Pr0NxicHqBP7yNlmuiJRFS9FZM3QiKVBEmrlcbcsizeeust9u7bRyqVim8K+b/jOFjiBvQ9j1K5HPnK0mURbEbCkLQIytOZDJpY6bPZbEQ5UFV04XO3+8/tYq9XQ39/P97CAq1Wi0q1Sj6f7+k2GbpOPpulKeRFXM/DbzTIpNOYySTVapV6rRaLS91o3DIGHwQBoYj0l8SFhSiT0IvUtBqkvjrCILoRhmE84j0hWtfa0Ww2WRKzlRYXFqhVq7hiBZw8f550Os2zhWe4OH8ZH5+QEA+PhbElfuSBH45XvHa2pBRokkYoIf3ZoaEhisXiimO1hSti6DrpTCY2fE+kauNJJc0mzUaDRqPB7MxMXG/wxROsr1hkoL+fgYEB+toGIXQLQV3t6dhXKMT0jmajEac1uyGpCIZh0BQuVL3RIJ1KYSYSLC4skMlmY+2dG4lbxuBD141SZKVS5D8HQeS+iL7KqyFou3CKohC28cvb0RD7VjSNhKJQrVZZXFhgcXGRxcXFeOXPZrMMCL2XxcVFPvrRj5JOp2MX5fyxC3z70gsoKBgYvD39Nu9tmGQsPbJsOCK74rguruOQkPJ+YmWVXCDbtiM3AOK8e9zoIZpDpNpBu2JxMpWKAstCIab+yht4fm6OcrUa5derVU4JeQ1FUSiK/t8+wfD0/SjVGqwS6EtpEU3X6SsWsW2bRqtF1rbjBu9uKIqCoetkMxn+/+29eZAc+XXf+cnMus/u6vtE426cM8BgBpgbMyY5FrUrmqTWtpZaibsOHWuH7VhK4sbSsaGQY80IU3bQu9YRdDAoai15LZNLysMVr+HMYC4MKFwzg/sGuoHurr7rrqy89o/8/bKzqqu6gTkAzEy/iI4GqquysrLe7+X7vfd9329RENSWxCIpieGdUqlUFwDuht03Dm/XauRyOYqFAgquwxVLpdvDnTSJ6H4aPPk30zQpFYvMCLWPSSECFggEyLS1MSQExDKZjAuHNU3+5kc/YsOGDR4eRDLv/soD/4C/ufVDaraBhkaAAH997a/5x7v+Z6/uLh3XqNUwTdPbGEurSYev1Qg1aRhJ9gBpqlD7CGhaXZ7fLI3r7OwkKohQU+LcC4WCt7AnJye5LOZR33r7bYqlEn19faTTac/p/QvMI4iKx4mEw9Qsi1yh4DI2tNpTKS5/TiIeX+p2i89ZLBS8JuHdFGK4Lxzetm2Ki4sURdmrLZ32Rs9WytvrrMmtUX5J5WqVWxMTjI2NMTs3B45DW3s7w0NDtGUyDA8NoTV5/dj4OEatxoYNG5b9rT3Szue2fI6/OP+XmJjo6ByafYXPWL/E9vZtHuRBdk8NgeUJiXE5h6UIHxYDHv7oj6IQFNR/EvosN4p19y1nidjJb8FQCK1axRAo0WAg4JZjk0lGRkYYGxvj+PHjOEAykeDa1atcuHDBZWzr66O3t5eurq6mzphOp907pcDYtLeYBVAATVGwwENb1mo1bNtmYX6eRDJJuVy+q1H+vnD4wsIC5XIZ27LcjVYyyezsrNtQWc3hfdgZv9ObhsH4+DjXb9xgYX4eR1FIJpNs3ryZTRs2EIlGWVxcxHacps7uAFcuX6avv78lZfQ/2PLf8fyV58kbS3j5b536M/7wyX9d11VVRfoUi8Xq9iIywksuyeUfzSU4rRusbsDHt8q6FUUhGA5jVSouLMP3vufOneP8+fMMDg0xPj7Oju3b6e7uZnZ2lvFbt5i4dYsrly8TCAYZ6O9n/fr1tGcy3jmogQDpZJJ8qUSxXHYF01rk8/JcwIUy2I5DTddZnJujb2DAxfJ/nBy+XC6ji1wzGo0SF9M7eq2G7Tj1NNDNzFliFlNwuWGuXbvG2NgYtmXR29fHww8/TFiUweLxOOFweFkrv9Hlp2dmyOVy7HrggZZvHQvG+JWt/4BvnP6mexzb5u25dzgxfZKHepaQlK1gAatai85x3aMrHDMcDHqlUZmnnzx5krGxMXbs2EFfXx/j4+NogQAOeHO5u3fuZDGXY2JykrEbN7g+NkY6lWLDhg0MDQ15Ax8x28YU1aPgCoUFSRcI7uK2DAPLtrk5Ps7wunWYpnnXuq/31OENwyA/N+cKigWDbo1ZULvZgmqupaCub2NomCY3xsa4dvUqCwsLRKNRtmzZwsjICJFo1FOrlumBH/AluWwaiZGuXLlCMp32KECamaIo/Lfr/xu+d/mvmanOYisOiqPwrbN/xt7uPXWITHh3SEn5Gev+7V8IK+BmVE1znb5Wo1Qq8fbbbzM/P8/DDz/M4OAg8/Pzbrm0gTFBUVVS6TSpdJrRrVuZnp7m6rVrvPXWW5w6dYr+/n56e3tpb28nXyhgmCa5fN7lBmpx/pJeBMchGo1SKpdZmJ+nPZMhnU7fNcz8PXX4fD6PalnUBJQ3HA6Dqrrap8JWGoczLYtrV69y/uJFKqUSvX19PProo/T4pvAdAR2WF9ofZf1MAX5HKhaLTExMsOfBB1eMyg4QDkT41dEv8PW3/k8v9F5cvMRrE6/z1MCTS5u+Br6X27FWZEt+a0ae5LdQOEwun+fkW29Rq9V4/PHHyWQyrgaUqIwFG6Or4vLbSKme7p4eunt6qFarXL9+nWtXrzI2Pk5HJsPW0VEUoFypEF+hauM/f0VViUWj5HI5Zqanvb3F3bB75vC6rlMrl3EEuU9AiA94VBXiec2iom1ZXLt+nQvnz1OtVlk3MsLGTZua5toVIRQWCASWaRZ5EABZjhMOOSZu80PDwyumI3Ka6bl1n+Q7l7/LjfyY97dvn/1zHut7bAkH/y7qza3q4v60ZsXKueOQy+U4dvQoqCqPPvpo3bC5ZF1rWvZVlGWVr0gkwujoKOuGh7l16xbXrl7l8Ouv09nZSW9/P/lCYVWHl6ZpGpFolMLiIrlcziWKut0CxXuwe4alyefzqKKKoYhUw7u4Lb5ox3GZrn7y059y8q236Orq4pOf+hR79+xp6uy2bbsDDiK6N5p0wjp8OTA2NsbQ4CABgTFfBsmV/xCPa2qAL47+OjhLzxsv3uSFsRfe0+DH0tssH6VrNFkN8piIbZtbExO89tprxBMJHn744WXpocS6NMufJb6/lXV3d/PEk0/y0L59FEslzpw+zflz55iZmWl6bt5v3zEjYnClVCzeNVDZPXH4SqWCUa1i12oerNVb3f76uR+ZmMvx8ksv8bdHj9LW1sYnP/EJ9u3bR2IF0a2KkJYMBIPNo4c4vr+ZMzc/T7FYZGhoqOVxvbPyve7xgcfZ3L6pbvX8x/N/gW66jSzlXTh8Y0ojMfQSQiFx9P7yp/y5fPkyR44coa+vjyeeeIJQMFg3ngdg1Gruol5hQqpZ8JH6VIqqMjQ0xKeee44tW7ZQLJV4/fBhTp06VT8UIuAiUO9wsg4/OzNz1wZE7onDV6tVNNlU8Ud3P1JQ5pG2zblz53jppZewbJuDBw9yYP9+r5niPb/hPSzbRhcw1VbYcLlRdXxfzs2xMSLR6IqbVf85esdSVP7R9v8RvCElh2x5hp9cfwHwRXhnSW4HlpxHIirr/i0dWTxPdmHlcZqa4/D2229z6tQptmzZwsMPP+zihMTon+FrfJUrlaZ3Pt8HbNr48w/WyN9btmzhwd276R8c5PKVK7z08sssSO7KBgCbP8rHolEqlQrlUumuoCjvicPruo4tqgOajz6iLuI6DpVKhZdfeolz586xZcsWnn322RUrAX6rVCrYuHX8VpUeuZGUgyOW4zA2Pr5idG/1vg7wUPdeHuh8QEy4uQv2b67+kIpVraujy+EP97/KckducGr/86V5ObzPkSzL4s0jR7h27Rp79uypYzEOBYMouMA5aZXVHL7J+8r3bOzuappGMpVisK+PXbt3g+Pw8qFDnD5zZtkIoNrw72AgQLFUuisTUXfd4Q3DwBY/Uku00Vkt0+Sdd97xbo0HDx5k+/btt73xc2ybmqjMrDT5o4kqjYTHTmez1HT9zhze55yKovA/bf9i3Z/LZpkXx19814Mf0GLD3PBYtVrl1VdeYXZ2lscee4yRBhIkiZOXbMYA5VJpdcSispyRWA6BN6ZCCSEwEYlG2ffww2zdsoVz58/z4ksv1QkyyOOCu3BDwSDVctkD9X2QdtcdXtd1FNkeFxj3us6hbXPq1Cmv7V4qlTh54gSnz5xhdn6+Lt/2m/8rkYrZEvLbymQHUx5zfHycZDpNm1ARuR3zc7g7wPaObTzW+9jSe6Dys7GXyRlLX7i/wuI0QgV85o/efgd3fP93HJfV4dChQ1R1naeeeoru7u6m5ykZDSSnT7lcJno7EF2/wztLjAmNi05VFFKpFIrjMpZt2LCBZw4exLFtXnnllboNrZ8DPxgMUimXqYgU9IO0u+7wpmlim6bLaqsorjCA+PCmafLG4cOM37zJhvXrefDBB3nooYdIpdNcvXKFVw8d4od/8zf87dGjjI2P18m/+Cs8VV3HcZxVS2SqmJSyBd7k1s2bDN9BdK9LK3woxy9u/zWPrUxFpWbrfOfid7xUAN9v/7Eaf/wtJX+uD0sLJTs1xSuHDhEKhXjmmWc8yZ9mJtMaQyA+b2f2FeonuBpF0hotLuATpmlSrlRIp9M8ffAgbW1tvPHGG9wcH/deK50+FAy6eKpicTkDwvts96QObxoGQVUl4IvuVV3n8BtvUCwWeeKJJzzqiIHBQYbXrcO2LOYXFpjKZpmemuLYsWMAtLe309PTQ09vL+lUipoY2lBV1aPmaGWS1N8Bbt26hWlZDA4ONn2u3Eg2LVE2PD6SWscnhv4OPxt/0Xvs/7v+Qz67+bP0xpdL4bQ0f1OsyblfvXqVo8eP09PdzSMPP7xUTxfn48iSqlgcgUDAHTE0TW+45naHMBRVdTnvBeNxq0aaI46pGwblSoWUUBt5/LHHOH78OD8/doxKtcqmTZu8QoXc0JfFFNoHaXfd4R3LcjupoZC3Wa1UKrzy6qvYlsVTTz9NWzrNzZs3kdIqqqqiqCodHR10ZDLs2LaNarXK1PQ02WyWy5cvc+78eRfmm8mQbmtzhRJWyZvlcbEsbk5M0J7JuMp/NHfuprk0LBvYBvgfRn+VV8dfcz8zDgYGf3H+L/ndh750+9eqRdPLcRzOnTnDmXPnGFm3jgcbO8KytCvvJOLfiqp65cmCcPjVNq1Lh3SjvIQsN0r2eJUl0fPICQWWSrVKTIz47du3j1gsxjunTlHTdbYLhmHJ56OLIfoPsgF11x1eao1KCmipaYrj8Mwzz3hfgKppLoZdkoT60YK4ww8jw8OMDA9jOw7zc3OM3bzJxMQE4zdvcu7sWTo6Oujt6aG3t5dUOt00OquKQs00yU5NMTo62jI/bWWtJoV64z18euTv8tr1N7z515+Nv8gvb/48I6l1t3Vsz+F9j9mWxfHjxxm/eZMdO3awaePGFQFkvhNF8s6oijv44iAcvgFp2voQbvqnKEod9sihPtWR9fVisUipXF5CUioK23fsIBQOc/r0aRKJBEPr1nmv0Wu1D5yW7+47vCROCgZxbJvjJ06QLxY5+PTTddFGYmgMy1r5y1BcFbrOzk5CkQj9AwM4tk2hUCA7NcWFixc5c/YskUiEnp4eent66Orp8YQSVFUll89jmia9TZT33ot9fuPn+fnYMUq2G01tbP787P/N7x/432/vAA0RvqbrHDlyhIWFBfY/8gh9fX31in63YVK9oyAYxWRa5+HwWRlybNo2Nm6Fyx/VGy0ei1EqldB13R1+8d0RNm3cSKFQ4ORbbxFPJGjPZEBR0H16sh+U3XWHV8XFsW2bCxcucHN8nEf2719WGdFEhF9xE+OL+pJzBcchnU7T2dnJ+vXrsS2LWTHhMzU1xfVr17z0qLe3l7a2Nubm5giHw6TuoDrjnQLN0x+AdCjFs0MHef7GD7zH3pg6zPn584xmRlc9tv9uUyoWOXz4MLVajSeffJJMR4dbXbrTTZ7iDqyXi8UlHLrIpf0d7mUwZPG4bIh56McWFvTx1xfLZdJ+hRNF4cEHHqCQz3PkyBGefOopgLqS6Qdld7VK4zgOGq6TLMzNcer0aUZHRxkcGFj2XE3kdber+CwnaeTEvow+KAqdnZ3s2rWLT37yk3zquefYvXs3AU3j7NmzvPbqq9y8eZNAIMDU5OQdy6rbLE9/LEnwVKvxdM9TLpsBUVdChzj/8dRfUvKJOVSrVa8sVxFUH9VqFUPc4mdmZnj55ZdxHIeDBw+S6egAlsBrd2oBTaNULLYcbJG5v5Tk8T6XgGzb/sWxgsXjca+B2Lg4FFVl//79qJrG3x49Co6DpqoUCs3FJ94vu6sR3hLCXIqmcenyZTo7Oti2bVvT5wZFCU33tcJXslqt5nKuCDx9q3puPB5nw4YNbNiwAcuyGBsb4+ixYxiGweE330RTVTq7urzcP9EEtipJiGzTxDBNb7E1DllXq1WwFJ7r/yTfG/tr7/FrC9d5e+oUgyF3oRuGsexzyiHu+YUFrl29SiqVYteuXRimST6fR1FdrVnLtr2pKE/JbxXzBBFiMW8/1cy8/YnsRIuxS+02oc6RSATNR+XdWBEKRyLs37+fVw4dIjs9TW9vL2Wxmf6g7K46vCFSjsWFBYrFIrt27Wp54UKhkIv98G1yW5ljL6lpB4JBD+7ruV6LTZkmxMBQFA4cOEAoGGRmZoapbJbTp0/zzqlTxGMxOru66Ojs9NIuv1PbYuqnWUVHjvk9Mfw4P8m+wJw+521gv3P9u/yvO38PcGdaPeiyWKyWZTE9Pc2NGzfo7elh27Zt3jWwbRtsG9NZkpL0PpOqLi0ATSMQCCw7t2Kx6A3KW5ZFoNW1lZFe/FcqFAZFULmdKlgsHidfKFCuVJqWQFOpFN09Pdy4cYO+vr6P1qbVEHRyY2NjdPf0EIlGPdL9RgsKh8dxPJWOZuYA1VoNy7ZdEd1AoA6DAnjK3M0cf2pqikx7O4Fg0K38rF/P4NAQ1WqVmZkZZmdnmZya4tr162iqSnt7Ox0dHXR1dbnjiIATCrkRV0Q+KcJQFPQasWiUz237e+6QiLAzhTO8lTsJuEMa/g27Y9ucPHmSGzduMDIywp497vSUrIPb4jm2baMIvL8sF1ri334LqKpH4xEIBLw7RCwWc1kb/Nff5+CSkk+aaZoe0aof3LfSXSUWi1EoFLzvvhFyrOs6GzZsYOrwYSZu3bozWMe7sLvq8KboZlaqVfY9/DDgQnibgrscl7FANwx0XV/m8H6MtV6ruZM7oVDTMqH3dShKXdS3bJtsNsvI+vWUSyWq1WrdkEhHZyedXV1omkalXGZudpaZ2VkuX7rEpUuXSCaTdHV10dXVRaajY9mYoJ/i4lPD7pDIzeIt7+//+dp3+BSfqHuNYRgcPXqUbDbL6OgoQ4ODS214kbZI/KIc8paf16/eZ9k2lqD4M20b0ycTNDc350naGIZBVF5PmQr62v7e5RL7Eq8GL9M3sbhbpZBBTUPVNGwhpuAf9pYcP5FIhIGBAa5dv87uBx9sepz3y+56hL81McHw4CBdnZ3kcjlMcSH8EjQyQodDIXfIu1oFXwXFn6Pbjsv74jjuwHcdH00Tk82TWq3GxOQkNdMkkUxiWhYabl0+4IuGmhgCSSWT9IiypWEYTE9Pk52aYnx8nAsXLqBpGt3d3fT29tLT00M0GvVAVm5+rfHFbb/O/3H0q965TFQmuKhc4u8Ip69UKrx5+DDFUon9jzxCLB5fOScXm0r5eSXbmf9LdRxnid/SNDFtm3w+TyyRoFqpUBNVkbCguW6VppiW5UnTa6rq8drL92jl9I7jEAmFKFsWVV33HF7uUcAdNt+ydSu3RA/l0daf+D3bXXN4x3FcVt5ymb6dO1EUhUgkQklUJwKCWAiWvsCQGLjWRV7nRSHfcQ2RV2riti1f3/i12Y7jjhUKnSKAhYUFQsGgy6ZVraIGg7S1tTWFC/gtGAwyMDBAf38/u3bvJpfLMTExwVQ2y8mTJ3FEaTQtGL7kkMqT/U+wuW0zlxYvecd6Rz0NQH5xkcNvvgnAwaeeIhKNUq5UVsyTJQCvJTaeJXBWUNTfq9Uqi/k8Q0NDrnK3cERLLB45LNMIujMty83fxePL4MrybiYgCL4TIBKJuFyTPuxTzTCwJfeQmIdIJhJMT021/Czvh91Vh5+amMAGugSaLxyJeEJcpVKJpKDokCYZBqSTNoPYSiYvfzta9UUbU1QIarVa3UKRwr5dXV1k2ttZWFz00gBJW+Fv7TddBAIH0tbWRiqVYnR0lFqtxvT0NFNTU0xOTHDjxg1OnTpFrxiE/tVN/z2/f+wPvEMUKTA7O8vZs2dJxOM89thjRKJRrwnTyuFvB1XopScyz3ZcCnLVcejr60PTNErlsltXF6hRQ6itqILtV6aJslwrg0rL8xJ5vz/qS6Zgy7KoGYZbfRPTaFEhkGw5Du2ZDNPT07e1IX63dlcdPpvNkkokvPRFwRXHLRaLLg1eqVRXG9ZUVzK9hgssahznc3AjRTOGMl0w7/rr6ppQo5DPXVxYYMuWLSgijbENw+sKLqu6gNd4wfdvP9RXwV14g4OD9Pf3s5jLeeID09PTnDh+HAeHB8MP8JbxNgA7nO2888479Pb28sgjj3iRdUWIg9y/+K6t9/8mi9KfFs3NzREMh4knEpiGQUDTcIQggunjrZdCcdVqlUAg4JV9ZYcaaNl88s5H4uYVlxnBEoAyGZBCgYAHD3csi0x7O2NjY0xPT3vp4/ttd9Xhp7NZhnxTOICnF1osFKgZBqpvCsfBvQtUajVKTRzeEM6uCVyO47isViWfmIGCCz8Nh8N1m+NFIeibERNUgUDAjW6myUoYy7qNnD+dEJs4Dx8vvux0Os3w8DDbtm1Dr9WYmppiYGqAjVMbsUyLNiNFJBZmYGDAu7vgLPHyyE6u/zoum5KS5+ae4Apn7zp8JpNx0xexuCzLwpFVrmjU5Y40DM/xy9UqerVKIBSq569ZKd0S+yyZ70ve+oKg2pYcnf7np9vaUBSFGzdufPgdHlwHbYzE8sLHBctsRcgoRiMRD2oqVSNsx6lLa2QNOigiUKVcdkty4nnhcLhOLMBv87OzKIri8SLKL/9OO63S6oYy8NXqfdE3FAoxPDzsdpaPuZBkXTVQNY1jx46h4MKdewWpaURcA+/4LKEW/XH1dlMAy7KYm5vzmn2yT2A5DqZlEZTiBmLOOBwOuyRLuZz3PoVikbAIIFI4bqWJLEuQXAWCQZdqWyxUT1TBcVDE4lBVlVAgsKoS4Xuxuxrhm2adIloFQyFijisfWalUMEzTI9HXNA3DsqiUy3Upj6w8lC0LTXYqFYVoLLYqRd/8wgKpVMpzdHmrlniOVgRQ/txUdle9v9U/EVhOz1HTdd48coTFxUV27tzJ8ZMneeSRR4hEImSzWbKTk1y8cAHTsgiFQnR3d9Pf3093d7d3h/IPiTSmMCttuHO5HJZt0+EbUJfDGpZlNS0PBzTNrbuLKo4N6ELqPixE4lYySZso78aI9MZjf3Mcb6b4du5Q79XuqsO3+ijSieQtrlgoYNRqFC3LI87XTZOiz+Ftx6EoFodkrYqIBo6MPI1q1H6bm5ujq6vL+78q0iLDMNwNssDyIBo+fmeuy5mFNYKtmmHZi8Uib/oAYP7FEIlEWLduHevWrcOxbW7eusV0NsvCwoI7GwB0dHS4iM/e3iWmLkWp31vIc2Z5JWVubg5NbLKlybJrK9CWKSpkwWDQzfNN0+WrtG23rCjYxvyO7z8XXdc9zFAwFPKAft65+74nKZj2QdpddXhYnvf5R70kXjuZSrkbWcuiUCgQDIcJCOe2RX67mM+7itGKQjQSIRaN1lFKrFSPl7nkli1b6h4PBgKeeIEkYVqp5Of/W2Md2r+5BZibneXNI0cIh8McPHiQeCLRknxIEU6ZTCaJx+OYtRpTovJz/sIFzpw9SzgUcie9+vro7OhoTqfhP6bjMDMzQ1tb2xIkmCUYtikEFxq/H8Pn8ODeERKJxJIcj+1qtYZ8lN+SU9Orjjmu4l88HqdSrS5Bmp0ljA4sDYJ8kHZXc3gtGGyanzWClDRNI5VKUSyVsAwDQ1RbLFFWQ1EwajWvIdSKbnlZTVjY/Pw8Dm7ElHV92bVUFJecNXYbt9aVcmf/Ar958ybHjh2jI5PhwIEDq1OAQ13Ui8bjrF+/3oM7z8zOMjExwXQ2y/Xr17GBjkzGbXr19pIUInB+MwU2Z+voqHfeiqKgitzZElAFfyrn2DY1sRAa6fhCgv6kLCo5NSH6EBNS9V5wsm2PF1+qmEgHtx0HVZybvFaGaS6jRHw/7a45vKZpdHR1MTs72/TvjQhHRTQiypWKS7mhKBRzOXRdd8lSFYVEPL7iiFqrKJ/L5VBVlUg0WgcEkwhNU6AJVyJy9W9S5Xv5I75cRNeuXePSxYsMDg3x0N69t6dowtKmtHE5qZpGT0+Pl46VikUmJieZnJzk9OnTnDp1ilgsRk9vL329vXR2dqIFAszNzWFaFr3i2sFSnV7VNNQmexdDYGcay5H+zxyPRl2BtnIZ0zSZmZlx6VfEoo7H4166EwwEvOuLWGz+BbC4sICmaaxfv/62rtG7sbvq8AMDA1w6dYpqpUKkwVFtX3PEb7FolEAgQC6fx7ZtCsUiHe3tS5vNO+QVtx2HQqFAMplsLlwcCHgNmJUcfsVUB/c2ff78eSYnJxndupXt27ff9obMf7dbjaIvnkiwafNm1m/YgCUcbiqbJTs1xbWrV1FVla6uLlfgLBQi6R/EQFRqVBWDJbCYDDxeOrPKHSkYCGCGQpRzOTdYCEBaMpmsq6r5K2GyQWX5ovvs3Bzp9nY6b4P17d3aXXN4RVEYGhri5NGjZKenWSdmGcH9glVFaToMbdk2lXKZVCpFtVKhYhgUSyUQJaxUwxe47H1VV4fU755SdrGZeXm8YbREaDYz/93JNAyOHzvG3Pw8u3bvZvOmTbd9HFhKZyQw6zbeHHC7oL19ffT29YEoIWanppiammJmZgbHtvnZCy/Q09tLb2+vl/vL+WG/nI7E4NhOa45+x3HhydVqFUNUbfxBotYA+pMNPQlEkwPl4C6GmZkZdq5CUf5e7a7m8KlUikAoxFQ2u8zhvRa4zyzLolgsevl1X38/8/PzFIpFQuEwNSCfyxEMh4mKslmdOQ7Ydl1DyHEcCvl8y/nVYCiEUq26+eYqOHy/yZSmWqlw+PBhSqUSDzzwAAP9/bd/geRpi9+t3nkZrKCZgyiKx7ve19fHT37yE7Zs2UKtVuPWzZtcuXzZA7x1dnURTyaXeHwUxSXMgjqMk//9a4bhijiL6yshBCGxT6vquqfiImvuqqIQ0DQMx3En2YJBr+9RMwwKxeIHms7A3d60ahpbRke5ceMG27ZtI5VM1m38/KU9SxDzSGePC1GvQqHgMWiFw2EcBNe8rhMUgsDBYNAlSBUlO9WXy1d1HcMwWkZ4TaIBxWBHq9t5MyxLLpfj8OHDKMC+Rx7xvug7NVm2u+3Fxsob6KmpKRRFYevWrQTE8EYhn2cqm2VqcpJTp04BLhOEnPSSDcKIGKhB3Cmlo0tMvqIohIXereyqyqZUpVLx0iJJ+KRpGjWhNSsXC8DFixeJx+MtJ+DeL7vrDr9t2zaOTE1x9vRpDjz6aF309efw5VIJib2WCnbgTumUSiWqlQrdXV2EwmEX5iowIDVdRxPiB2GxMPx5aaFQAMdpOronLRgMYkn1u9vkSJnKZjly5AiJeJxHH3sMU9Tz343Dt+JuXHrC8sW20rtMTU3R0dHhVVoURfEkbbZs2YJRq3H9xg2y09OMjY9z+fJlAoEA7ZkMA/39dHZ1EVBVdNE8sm0bVdPciB4KuWxmwoHl5w2J95JOXwsEXOYzMYYoUyZwWYzHxsb45HPPfaAVGrgHDq9pGlu3buXs6dPMzs56A8mwFOHL5bInwhWPxeqcJpFMMj09jSHUqGOxGIl4HCsapVwuu+Uxw3A7sLgXPhQOu/kjblMLVW09wIzr8FVdp2YYRFtETr/LXRP6R909Pezbt49AIEBBjqq9G4cXv5u6e4uOdauKlCmGwLdv397y/YKhEL19fWQ6OohFo8zMzJDNZpmbn+fkW28BkIjHyWQydHV10dnVtYzGUBF3U7+FBBVLVdepVireLKwiNuVyjuHypUvEYjH27dvX8hzfL7urrAVy89PT10dbOs3b77yzrEMoIzW4Ja3G1rymqt5wcLFU8hxAVVUSiQRtbW3E4nFPgl4XuWFO6MAuLC4Sj8VWZPOV5TPbF4WameM4nD59mpMnT7J+wwYeffTRJbSjv11+h7ZiStPqvFs8Pjk5iWXbDDRhhvCbZFIulkooikJndzd79+zhiccfZ9voKPFEglsTExw9epSf/exndfyezbq60sLhMEEBty6Xy275WVRnLNtmcXGR7PQ0O3fsIJZIMCgmvJ599tkVzxfg9OnT3tDKv/23/3bV58NdjvAy93aAHTt38tprr3HmzBl2Cso127I8Uvymm1BhsWiUQj6PXq1SqVbrKgGqqhKNRIhGIlhimko2RWq1GouLi0SjUQrFIkHfZFOjhUMhHIEBaValME2T48eOcevWLXbv3s3GjRuB5ZDddxXhfbDa92pjY2N0ZDJNWYIdsU8xLYtypUKlXKYmxJA1QWUei8fdBh3uZ1tYWHArP9ksx48dwwHa2tro7u6mq7ubdoF49FskGsUsFr1yr4K7SVUsizNnztDe3s7g4CARwWLwve99jxMnTqwKivvSl76EZVls3LiRf/pP/+ltXY+76vCK4tJj12o10uk0u3ft4p1Tp0gmEqwbGfG6sFogQLjV0LbYxIaEyO38wgL9fX1Nn6sFAsQCAWKxmIcBqVSrtLe1eaVHeV6BQICg4LTRhARPVSyWRvU/Xdd5/fXXyeVy7D9woK4So8iU4z1EeC+lWSWV8lsjlkee5/TMDLtEQJHlQG/kz4efkQPgpmkSSSRoS6eXBQIFyLS3k2lvZ9u2bVR1nWw268nYS8iDHHPs7ukhJHjp47EYJdGcsm0bw3G4dOECjuNwYP9+b2j/wIEDfO973yOXy3Hx4kW2bt3a9PP+4Ac/4IUXXHWVr33ta7fNR3nXmcfC4TDVchnDMNi4aRP5QoHjJ04QjUa9DWIsGm15m7TFzj6VSlEsFNB1naKfRauFSQiyaRikUyni0ahHG+3Y9tICEGN1AU3zpo4qlYpbcVFVisUih994w+Nib5RdlxvkFQc4VrEVU5pVGl7SLMtifGwMx7Zpz2QoFArevkh2tR3wmB6CwaAXfSMr3F39FgmHGRkZYd3wMKZtMyPIbbPZLDfGxpYB3mT6UalWmZiYoFgo8KQYZ5QOe+DAAe/4x44da+rwhmHwu7/7uwA89dRTfO5zn7utawL3yOHBTV9QFB588EGXRu7NN3n44YdJJpMe70mz0p+MEBJklsvlmF9YIBaLraqUJ6f0Y7EYkUiECHitbcM0McUAiGPb1ARsVdd1aqZJLBKhUCjwzjvvEAyFeOzxx93NsnCixvf28OurlRZ9uBY/9Fh2QIF6JxUdacdxvEFqW9S1DcFSYJsmNq78Zlt7OyjKEuOAqtalcvL8TDHtZTmr8+o3XlMFdw/QJVgeduzYQaVSYWpqimw2y/nz5zkr+D3T6TTFSoVSscgDDz7oCigoipeWyk2/aZocPXqUL3zhC8ve84/+6I+4ePEiiqLw9a9//bbPFe6BwwcCAQKhELaopAQDAR7Zv5+XXnyRE8ePc+DRR722v019lPcPVqiq6mJtSiWqhkEul1sWbRtN1/VlvPEynQkEAhCJeAvAsiyCgQA5sRimslnOnT9PWyrFjp07sW2bvGTJEgAsKXSsKO6wtMLSXK6EGnvoUEXMiYrfcqOOI2hHbBtd0o7gpiOOwLvY+OYLxEKQQC0ZJGrVKvPz8+zcuZOI6IBqKyj26bWa67jietyWyYqL7/9ySisajS4B3hyH2dlZpiYnuXHjBrbjEE8mGRwc9IoLbWLyLBqNsnv3bk6cOMHRo0eXveXc3Bz/8l/+SwB+7dd+jb17997euQq7J4II4XCYsuACl7e5vQ89xNtvv83rr7/uMuP296NSjz33q8FJB0ql05jz8yzmciQSidZS9QjqO1YWAfAvgHA4jGVZXLl6lStXrjA8OMiuXbuwxJ3C8jmZZVkesaktSqYAIalM1wQnVCqVcGybcqnktveFE1crFZAIxYbXyQUv7wKqAH8F5WITVB1XslkURWFk3TpXeGIFsy3LY38IhkK3NUHVipbDm8jy4XJURSHT3s6Vy5exbJtUWxvDQ0Ned1pRFM/hwU1rTpw4wVtvvbUM0Pb7v//7LC4uEo/H+epXv7rs/Veze+bwJUXxsBaWZREOh3n0wAHOnD3L4TffZPeuXa5KhLBWTLWJRIJSsYhVrbKwuEi3b6ij0SS7cCQcdp1olS/VtCwuXLjA2NgYGzZs4MEHHnDPxXHq7hIy3ZD7i5quu9QijosD908n+Z+v+FIWiQW3xfCJJ/jm/7s4X1VVXXYzP0e7D3XoOA7jY2Nu3nwbm7mqD0YQDASWwYSb2UqsCQ5LNIaqqlIulzny5pvkCwXWr1/vzrOKu6miuPMM/krbgQMH+JM/+RPK5TJnzpxh9+7dAJw9e5ZvfOMbAHz5y1+m/13ANu6Zw2vBII4YFJazqaFwmP3793PmzBnePnXK5Z984IF62K2Igv4I1NbWRm16mmKxSCqZbAn60hvSjFZfmoNL//HzI0eYnplh27Zt9Pb2evOZjeZhy8XfVFV1UxRFccmUWphcxPFEwtOd9Xh2BJyi7rxa7GsabX5+nlw+z86dO70UyuP0aVjklmm6DSDcTahl26u+R6s5g8ZzBbeMefjNN3Ech4f27fOKA6pvQaQbpEj9G9ejR496Dv87v/M7mKbJ4OCgt2m9U7snOq2KopBIpXBUlWql4slGyvRm586dPLR3L1evX+elF19kbn7ee22z6k04EiEajaIFAszMzra8G1Sr1SXOyobOpMSvW447V/vKK68wv7DAE088wdDwMMAHOlwszZOqb3L3aaVgCNTdra5cvUo8FqNbAOT8PQFVUequn4zuQV8/YjWHX83Zwa0SnTt3jpdffplwKMSjBw549NnBQABNWeK6aW9w+M2bN3tsElLL64c//CE//vGPAfjqV79629pUjXZPHB7cPFrRNBdEJAYN/NFzZGSEZ595BoBDL7/MW2+95c1XAsvSkUxHByFNcyfzfQvEb1Vd93D4/sjnT0cWFxZ4+dAhDMPg6aefpquri4hICySZ02oxVmn4fSfmOVuzO8nKLwTcRTlx6xbrN2xY8fgKuHTfgnVZkiXJ/PtOzX9uMzMzvPjii1y4cIGtW7fy+OOPe3PGgUAABEucLTb7ad+MrbT9+/cDboQ3TZPf+Z3fAdwqzq/+6q/e8flJu2cOrygKEXEbl2SojU6cSqd55pln2P3AA1y/fp2fvvACU5OTTY+nqirtmQwB1SXVLzYRufVTQ8tbvHR0cEFWr77yCtFolGcOHvQQlQHRjMJx3FRltQj4HppOkvl3tRJrK7sxNoYDdfDrZuYAZV+Kp4l9QeOdz2+rbWR1Xef4iRO8+uqrBIJBnn32WY+NDdyav1T/k9WdVDrddL8g05pTp07x7/7dv+P8+fMAfP3rX39PHeh7ksNLS6RSlObmvDKg32TNWVEUNm/axMDAACdOnOD4iRN0dHaybXR02XhfNBolkUySz+eZm5sjKkBj/mPK37Yon8lc8urVq7z99tv09fV5tWBpiqIQCoeplMvotZrXJ1jRmizg27JWKc1qebXicrxcvXqVgYGBVTuPNV13KykCmyRRjCu9V6vPbNk242NjvH3qFKZp8uCePYyMjKAoikeppyiKx90fUFVv1LG3xcZTOnytVuMrX/kKAL/8y7/ME088seLnWs3uqcNrmkYgHodi0YsCrUpisWiUxx57jGtXr3L6zBleffVVBgcH2bpli9tcEdbe1uZKxug6M7Oz9Pb2en+zbBtHNnbkgwIAdvHiRTZt3OiKNDSJrpFQiGql4jV4mm1elw55e93QZiY5Wpo1slaz6elpyqXSqqhDySjgOA7RWMxNN8TfVgLVNZppWdy4fp2Lly5RKpXo6enhwQcf9GAhUvwY8NjMFE3zonskEqGzRVVt//79Xsopp6m+9rWv3fa5tbJ76vAAqfZ25icnwcfrCM2dRlUU+vv7SaXTTE9Pc/36dV566SV6ensZHR11QU6KQkdHB9mpKSrVKou5HOlUyq3ji5KfNNM0OXbsGLcmJti9e3ddGbTRFFV1+eoF5n41fVOvwXSH5kjKCv9rReq12vGuCmmcTMMmsNEkQC8guR3lOct0RqnnfG+syhimybWrV7l06RJVXWegv5/9+/fXzRg4YjQT3A1xKBRyxZAdB02iZn3BqNHS6TSjo6OcO3cOgH/2z/7Z+zINdc8dPhKJEIjFcCoV8vm82y1dIY/UNA1VURgYGGDL5s3cvHWL8+fP88rLL9PZ3c3WLVvo6ekh3dbG4uIi8wsLRASvpGyCgFuxefPIEXKLizx64AB9/f2rbtZC4TC6rqPrOuFIpGU09HA0d3gt/DOl/ruMLHuuZIV8nsnJyVU7j4ZhYBoGNpBoXLQN79FIaFWtVrl27RqXL1/GME2Gh4fZsmULiUTCA5+BG6zK5bK3KY3GYu7+RwyQBESPYWAVtY/u7m7OnTtHV1cX/+Jf/IsVn3u7ds8dHqCts5P5W7cwajX0apWIEBNo9iVLORnLslBUlaGhIYYGB5mYnOT8+fO88cYbRKJRhoaGvEmpqWyW3t5eN5cUm9o33ngDy7J46qmnvIi4Um0eROkuGMQSKUFslSh/p4mNBwumPqW5neOcv3CBaCTC8ApO5DiOywKmKETC4aaUId4VFxUb07KYELTf2WwWRVVZPzLCls2bPchxYxqq67onoCAHeCQxq1y8mc7OFYfkjx49yiuvvALAH/zBH5B+F5Kizey+cPh4PE4xFsMol9HFbGrLiCY3Vw0Yjv7+fvr7+lhYWGBsbIzr1665suexGO2ZjFf+NAyDQ4cOEYlEePLJJ+uaO6s5PLg4fV0uzBWivDzenZgnkdPgiKs5fKlc5ubNm4z6hM+aWbVa9TRWVwSIOQ7T09OMj49z69YtarUamfZ2HnzgAQYHB5eNPfppsw0hUQRuEUEuqpphuH0AQWnY29e3Imbny1/+MgA7d+7kN3/zN1e5Ardv94XDh8NhQtEoVrWKZVmUy+WWjQVNVT3MucRieA6hKLRnMrS3t7Njxw6mpqe5fu0aE7duMXbjBmgaioDLPv74497cpfdy8IQBWlkwGHQn720bvVpdOZdv5vC+bqlsuNmC9cuThWx4nUQktrKLFy4QCAZXzHGlvKbjOG4vovE9LIv52VluTU4yMTlJtVwmkUiwadMm926ZSLRM+fyfR+4PQkJMQaaRerXqVWjaOztXHLH85je/yaFDhwAXGbkazOFO7L5weFVVicRi2IZBpVhEVVW3SdQkCkk6tq/9m3/D1OQkmUyGP/zDP1y6KCKXVFVXbfs/fOMbjI+N0dPby7qREVLJJHOzs7z04ovelE53V5cHW5bNl5UifTQSwRTaqo25vOMsQXWl6p2/seVfoMVyGQcolkqoqupJ8oRCIY8aXNatJStAYwSvVCrcuHGD0W3b6gTO/GYLgBqO42k54Tgs5nLMTE8znc0yOzvrArWCQbq7u1m/fr3HIy+va6MAgv+OaFmWqybiuAM6Ml2RAaQmKDvk/Kw/oJXLZSYmJigUCjz//PP8q3/1rwD4rd/6LZ5++umW38O7sfvC4cHlrKlWq2hCgVrSN8tZS39ECofDPP3kk/yX//JfmJ2Z4fXXXnMvjKJ4kGLbcfiTP/5jLl2+jKoo/OIv/qI7LFIus3nTJkqlEtNTU1y9ehWAtvZ2egRHS1tb24p17FAohCq6urpQyJAOLqksKtWqV2+WZ9449icXl9qwyBRFwZYwYJaAZw7LRdcuXbqEqqpsXL++aerjnyWtVKvMzc8zOzvLdDaLXquhqSodnZ1s376dVDpNIBQiGAjUqe15x2pYTF5kt13JIomNkXm7Kt6/UqngAKZtM7JpE4lEou76/uVf/uWytOWRRx65Y6z77dh94/ABMYqHbVPL592B4kLBGxDwb4xUVWX/gQO8fOgQU5OTPP/88zz55JN1uf1f/MVfcOz4cQC+8IUv8Phjj3Hk5z+nVC4TCAbZvHkzD+zeTblSYWZmhpnpaa7fuMH5Cxe8UcR0Ou39tLW1uRpUonKhaRrFYpF8oUBC6LXCknOqisuDLscDPYSj/0e8JimGz9V8HtM0iQp6Qdu2scQdw7IsT/LdkArgus71a9dYNzJSB0Wo6Tq5fN4djpmfJ5/LUSgWveicyWQY2bCB7q4uMpmMt0GuVCpUq9WW+xIJyfbQnorLIlYqlTCFsyficfeuxNLeo1gsYto2nZkM6XR6iepb2IkTJwA3kI2MjPD3//7f5/d+7/dWLf2+G7tvHB4gmUxSqVQIxmJYAi+fLxRIJ5PecAXgyUl++hd+gW9961vMzMzw6muv8dTTT+M4Dj/80Y/4yU9/CsAvfvrT/N3nngNcKHF2ehpVUZienqa7u5tYNMq64WHWDQ/jOA6lcpnc4iK5XI7FXI6bN29y4eJFwI28yUSCSCTibdw0TaOm67S1tRGPx10tI8uiVKkQkLf222xEyTJeMBj0JHwcADklJnL9qq5TKha5eOkSNm4l5cTx4xQLBXLFoquWJ46VSKVIJJMMDg+TaW93Z1VbzAw0UhI2M1VRcBRBy2fbFEVk9yoyaj3ldVWQZFmOw+bRUWKx2LKZhT/90z/lT//0T2/rGr1Xu68cXtM0EokEBcdBNQwsUTMuCIU/cG+jUkFiz9699P7oR0xNTvL973+fxx9/nKPHjvH//Kf/BMBjjz7Kr/zKr3jHD4VCWCKCVioVsjMzdHd2Ehf5pKK4jMSJeNyjtbBFTXl2dpaciJS5XA59fp6qaM/Lzq2qKESERlIgFHJFuwSliCoAUwFVSMNrmteFnJyaYn5hgVKp5KVytu0qCpqWhS02yOVKhYoIBP652YlbtwiGQgSCQfr7+ojH47QLwlm5gFaLlv4JqpbVJWVpXtdzdvH8hKBGkZFd3g1kdB8cHiYajS6L7nfb7iuHBzcKG4ZB1bY9Ya9areYNaisyLxa31c9/7nP88R//MTOzs3z729/mjTfeAGD7tm381m/+Zl20CQryzo6ODubn5ihXKkzPztLd0dG0amCaJiVBXRFPJIjF44wItQs5oTQ3P0+5VHJnRkV9vlgsUhIlVkolt9EjUhNbMAdIVRHbtjlz5gzgNnoCYhQvoGmgad4CCYVCdHV1EY1GiUajXL16lVKpxLPPPks4HPbgArIGXhZsbKFweEWWNUVEa28P4ThNS5veBlXsL8o+za2or+rjr57VajWXGlH0Rdrb29/Xisu7sfvO4RVFoa2tjVnTxA6FsKpVF4RUq6EIWUsZLS3T5KGHHmJoeJjr1697pazh4WG+9KUvLavzyo2SZZp0dnYyNzdHqVxmZm4O23G8u4jtOFQqFXRJMiRy+nA47FUqpOx6Op32OBVTyaQrs2kYlEolV9ghmWxa5rQdh4X5eV586SWeeuopkskkZfEaGQX9U1J+m52dZW5ujn379nnVJVVVCQWDBEMh8rmcNzcbEHsNybnZeK0dX8lTRu/GHN4POZBBANtGxe2h1J2nOCaK4mpKWRbrhEbVB02jdzt2z+DBK5mqqmQyGTSJ4hORp6rrbjXAcTzqPMuyOChw8+BiMLwNj8g3pUkexJoQ3u3o6CCRSKAqLjd5vlBw9w35PLpgxg0KSu54AzeNtEAg4A6VKIo7i9rEWnWMZbTTBFEpLEnQtHJ2Bxcy29bWxlBDV9UR52DjNn06Mxlv0VfKZcqVSl2lpXGQo9WMqnxUF3sHbBtF04gnEkvyOeJ58i6g6zoLi4sk02mGhoZWrLvfTbsvHR5cR8p0dKCK8pglNknS6WUpb3Jykv/3u9/1Xqfrej201/clyjy2JLDyqqrSKZxeU1WmpqeZmJryOMtTQmNJE93dxoaQd1yxMa2Zpqc0fafmdVl9c67NbHx8nIXFRXbv2rXsb3q1SlXg9ePRKJFo1B15DIdBVTHFnafZqKDte0wVdyzF58Tlctlb0IFgkGQi4UkEeY4uzKjVmJyaIqBp9A8MMDg4+C6uyAdj963Dg1um6uztRRVVGUlFIQW1CoUC3/zmN8nl8x4RU7Va5Qc/+MHSQaTjKIpXISjk83Xv09nR4ebBpsmi2JgmEonlrW9FaerMqhhKVhXF05mte9ltfFarMcI3ibamaXLm9Gn6+vrqpCcBr/YPLrWd1/5XXM6XRCzm5t+2q6KyzOGlELJobmkCMixr7IaAb0cikbpo3dh9reo6c/PzruhzZyfbd+x4TwMb77fd1w4P7gXuGhhw+Q41DQc88NZ//qu/IpfPk06l+PKXv8yePXsA+NnPfuaKn0nz1e8TySS5BofXdZ1QKEQ0GnU5JW2b6ZkZjCZSjq2Qi3KIQlZUoB4Ds9qXLh1HOlozhz9z9izVWs2jzpNmmiZlQYIaDgabdqgDgQCpZNKrucvUUJolNtFSCdwRxy0Wi654geIOpIcikbpUyI+QrJTLVIpFSqUSybY2Hty7975JZaTd9w4PEI7F6BwYcCsYqgq2zXe+8x1u3bpFMpHg13/911m3bh2f+/zn3e6nrvPX3/9+02O1pdMuR7ww0zS9TmRnZycD/f2u5pFhMDU15XHZ+E1xlmvOKqpKLBpFAU/OsS4HX6EW74fgygHzxuPPzs1x5coVdu7YQdxHK2iZpptXiw5s0/KjyKtlY0gKREi8Orh3GDlXLDftpWLRBZuJcrGcWPIqMuIzmZZFsVRyVTzKZaLxOKNbt9Ld3d3yM98r+1A4PEA4Hqe9u5twKMTzzz/vAqYCAZ555hl6+/ooFosMDw3x8COP4DgOL770ElPZ7LLjSE5KcPPWUqnkbk5FrToWi9Hb20swEADbJpvNkvctEMAbkGiM2kEBmFJU1ZsoWnpJa4y/x1QgcmKlYXFYts2JEydob2vzWIrBXawF4eyypb/aWKHqo/+wRHqIr/IkZYZqokcQDIWICZh143nZtk2lWqVULLqQCl1HUxSGR0ZYNzLyrudyP0i7/85oBYukUnz/+ed57bXXME2TRw8cYOvoKEatRi6fp1Ao8NnPfhZFVbEsi+9+5zveFymdT6pJV0Sd2jBNFJHfSwsGg/T09HiwgPmFBWbn5pZITiUWpkmkjwoZR8uy3OF0n7W62LZdP7jduDDOnTtHqVTioX37vPc2RWSXwLJmzu4tyIbHNU1zN9qKQkXXscVMcVmUYm3HQdE0orGYew1YvmBNsd+pCZoPRTzWNzzM4ODgu6bR+KDtQ+Xw3/rWt/jHX/oSU7Oz7N27l7/7C7/gbS5LpRLlcplUMsmjBw6gahpvHjnC+Pi4B8m1bJukqIsv5nJerh1rUBkB1ym6BJBMUxRKpRKT2Wx9iiNSD/8rVZnaCEis6dsHeBUNlpxaIikdfNLrvki6uLjIxYsX2TY66tXnDcNw0w2WCJvqmkWyTLhCGhUOhwkIJGZBYIIkujMcCpEQMAkaPp9tWVTKZYqFggv9VVUCwSClcpkuQZPd00Iw7n6wD43D//CHP+S3f/u3cRyHVFcX/+g3foN4PE46nXbZgMNhyuUypVKJgwcPek2g7373u0sRGTcCx6JRJicnPYHcYGM1xmfpdJrOzk4CmoYlSFXn5ueXqhMitfE3a8LhsNspFQvFclyCJ8ng63HhiP6C3Php4jXyx3Ycjp04QSqVYvOWLQBeU8sR5y3F3hoHYlbaM3icjqpKqVxmcXERyRmTEMxtsnElj2eLOYVCoUCtVvNYhiPhMPlcjo6uLnr7+xm5T1MZafddp7WVffrTn/YEDMAlESotLBAIBOju6mJ6eppKterJ1n/lK18hGAp5gwv+L6G3t5epbJbhoSGCQgkQkZ44TTaMsViMcDjM/MICFbGoiqUSmUzGG/Oro7rGnX+tFYsYYlMsG2F+FKE0j4tGUVyaDuFob7/9NqVikYMHD6JpGrquUy6XkYSv/juT7AivyhrmON7ElmlZ2EIgIRKNkhR3S/852pblKh/60rNAMEhEgNtmZ2dp6+igt7+f9evX37FQ9N22+/vsVjA1ECDe3k5xfh4tEHBTDwGBjUQiLlVHterJWSbicY9Dvqe3lytXr1KuVunw5Zp+3LnjuDyMqq/C0dXZSblcZmFhAV3XmZmZIR6L0d7WhibRjbbtqdlFxWyuXqsR0LTWioDC4QOBgOfsN27c4Pq1a+zZu5e0EGWu6npTZ/fOXzq7rKQ4S5NhtqD9lh1kcBdYOBTy+Gkk9MBxXG0rXQjESQv4QGimYTA7P0+yre1D4+zwIXZ4cJ0+lslQmpsjLGZNDdMkGokQi8UolkoeJkYXGPF4LEZnRweaqjI3M0NXC5lz/4bPq4s7LiVdT08PswKHUyqXKVertKXT3oyr7AL7lTVKlQpJAQxr+lkEK5fjOOQWF3nrrbcYXreOdevWURQoSkVRCAsRZtmEU30NIsR5Oo7jbqhFCVfXdapiiBrw2MYkdUa1WkURmJpqpeKyC/hq7XKBqaqKJert8wsLpNJp+gYG2Lhx421Lztxr+1A7PLhfRrKri/LCgptGGAZ6tUpC8LPUajU3DRH6Qrl8nnw+TzKZZGZmhtEVhHAV32+/MIEicDjxeJy52Vl002QmmyUQDJJKp4nH49gAtk1INLIM06RUKnkwBm/TKn5U0QU1DIM3f/5zEokEO3fuJF8oeM4Xi8cJBYNL2rbiNe6BluDCqqq6LL3VKmathu37HOFwmFAw6PH/1AwD3TAIOI7LGyOfK8BooVCIgKa5GHixGAulEj29vXR0dTEyMvKhcXb4CDg8iA5qRweBcNjlZhd4m6QYJQuHw6RSKSqVCoVCAb1WIx6PM37zJuPj46RFdI5EIm7EbIEJV9w380YIw+EwPb29LC4uUhBVjvm5OfL5vCstI5w9KlTs5NxnQmhYOQJLLyeoHMfh2NGjGLrO/ocfplypeJQdsVjMuzvIc9NU1euCympPTVCQ+7uoquJSBYYER6Ysy5qmST6XQzcMb6A9EAwSFth62aBycBtT2dlZFMdhaGSEnp4eV8HjPt6gNrOPhMNLiyQSdA8PM3njBoauU1QUt4qB6zTxeJx4PO7msabJrYkJpqamvHG9gKYREimDFDNeBpUVv1VV9bjU0+k0yUSCfKHgOr5hUKhWPRmcNlFJKhaLmLUaZX/d3wd7eOedd5icmnLJlHxpUTQaXRFHrlerlHW9jp9TweXRkY0w27KoyuER8Rw5h6sKaLR/UXmlU0WhUi4zMztLKpWis7eXoaGhVdnN7lf7SDk8QCQWo2/9em5dv+7xsCSSyboZ0nA4zKAgb8pOTbFx0ybMWg3LtimXy5TLZVfdLhh0x+2CQYJi6COgaZ5ahySLkhiU9vZ2UgKrowtt2PnZWSrlMol4nHA4jF6tUqvVllVULl+6xJUrVxgdHfW0qsLh8DKogFQdNC0LQ0RyU4j8SkoMTZyrI0qJjSaJTWuGQVjg5BPJ5DLKk4pggzN13U1hurtZt27digRK97t95BweXCDXwMgIk2Nj1IQDy3RFOn4wGGRk3Tpu3rpFIZ9n/fr1br4vNrlS17UqBlBURUERDi8ZA2Q1RkrUqKqKGgiQyWQIBoPMzc25mqiGwcLiosvLEgx6U0ayiTWVzTI+NsbGjRsZGBhYSmFU1VXWE0PchpiUkrOtspYvp6ck6ZElXiNNwV2QUvRA1TRsy2JxcRHLcWiTAC9xt6nqOrlcDlPXUQIB+tato39ggL6+vg9dCtNoH0mHB9fpewYHmZmYoCIw4LKKIjd8mY4Oent6uHzpEhs2bvTyeNtxMIRcpSFKc5bjYJsmulgIkh9HUVW3e+fD12iBAKZQ8I4LaUuZM9fEAjAtyxNYuHHjBoP9/XR0dHi9hIq4O0E9r410Xk1MfQVFaiXTGY/DRv7IkciG/kK+WMQ0TUIiZbIdh2q1SqFYxKxWQexBtu7axeDg4IdqY7qSKc574Xb+EFixWGRuZoZaoeDl8ZLq2nYcbt68yc9//nOXPdgHzJIXRVEU16HEQLUpF4FAZZqm6W4QJWYHwHFcKo1azVW6sG2mhWDv/MICxUIBRVEICvaD7s5OBgYHicdihEKhJSpu4aSapvG973+fo8eOsX37dn77N37DU+tTFQXDJ4Sm+XhwvI5rQ+dVr9XITk+j12pEYjE03KjupWiOQ09vL7v37r1vMTHv1j6yEV6axNrMh0JURUkyFosRFmN5fb299Pb0cOr0aTIdHbQL+RU/45amKGjBoKfIB27dWzcMVxDMtvmbH/2In/74x/xvX/kKqVSKmq5Txt2M/l///t+7x1QUgqEQoWCQcCRCOBRCA9rTaTRFwTJNqo5DMBgkJu42smLywO7d/PDHP+bw4cP8L//8ny8JPNs2WgNIzTNfI0rOEei6zuTUlDd4Ljf0fhjw6I4d9AnWho+afeQdHkR609vLYiRCMZejXChg1Gouv0wwyAMPPsgrhw5x/PhxHnv0UW9T5udYafytqSpREY0dx0EFypUKiUSCTCaDZVnk83kU3KHrUDhMVGxCI5EIU1NTzM/NsWnTJjZt2uS1+WVqZNk2xWKRIoCiMDg8zNDgIOVKhZ8fPcreBx5AExyXlq/yIs2xLExR1zfFj2GaLm5dcEym02mPLCoai9HZ3c269evrJDk/avaxcHhw04JMJkMoFCIXClErlSgUiwQCASKRCHv27OHNn/+cCxcusHnLFrc60jD72QioUhTFo9zzTynJjaxhGFiWxWf/3t+jf3CQnq4url27RlaIOch8vLu7u06TKiBwM7ooNUok5e5du1x+9kuXGBke9io0dXyPAhIhF6H/jlQulzGE4nZvT49LKRgOE43H6e3vrxMH/qjax8bhQTCHCTRgqVRyBx0EGCyZSrF+ZIRrV696QyAxX74PS/AC7/8Ato0mHUxRPC4WUzSAcByefvppFnM5T83ikUce4VXBfe6I4ZNkIuGN3ZmmSSKRoKOjw90cC3WUrVu2cPbMGS5fvMhzzz0HhoEKTWv0isjnA2IsUg6kxGIx2tvbiYmeRM/HxNGlfawcXlowGHS5IpNJ1/ELBarFIhs2bKBULnP23Dny+Tx9/f3E43EiQshYRndJWmRZlruRNQw0VSUpCGFl7TwQCKDrOqfPnmVmZoa+vj727NlDsVBw7wySlMlxaUcS4nxMw6BULruiC/G4R860b98+vvVnf8b8/DzFQoENGzYsE4Pzm6QeL1cq7qCGqpJOpejp66Orp+dj5ejSPpYOL01CiZPJpEtDUa1yoL2dk0ePMnb9OpVqlSHRPg8L2RxgKa0R0d6fdoSCQXckDpianOTCpUsEAgEOHDhAf18fAAvz8yA2qZ6JYYpkIoEu8D+2bVMoFDygVzqdZuOGDVy5coWTJ06wfsMGD3DmN8uyPKRopVrFNE1iiQSDAowW/gBISj8s9rF2eGmKgCDE43Ho6KB/aIijf/u3HHrpJRYXF+nv76erq8vlfRR00pL9TJYDFSC3uIhpmlw4f56xsTFqtRr9g4Ns2bSpTlZHKlD78f2w1LkNh0IEAgFPJrNSqbjd30CAPXv2cPXqVY4fP85nP/9575iO43hplOSZ12s1kuk0nb29DA8P33cMAvfC1hy+iUk67pH163nj9dc5ff48ibExBgVRqRyWiESj6NUqxVKJbDaLA7z+xhtkOjrYsGEDw8PD7ticskT3bUpNWsfxat/S5PPkTzQWIxAMurBnsQEeHR0lnU4zL6R9Mu3tHlODaZpug8yySGcyjPT1kWprI5VK3Rc0d/eDrTn8CtbT08PnPv95crkcR44c4dyZM5TLZVTwmj4BATsoVypomsaePXvYvm2b1+bP53IuO4BhEA6FPDiBjPJNZ099XdGgwPNIAqre3l46MhnyhQLvvPMOe/budenDQyHiiQTxeJxUOk0qnSaRSKw5eoOtOfxtWDqd5rnnnuO5557Dsizm5+fJZrOUSiVisRjRcJjv/tVfcfrMGaKxGIVCwaXGFjOqpmlSrVRQwRuVa8Z3I80RUdoU9IJS/0kukvWbN/Pjn/6U4++8w+f+4T/0BjTi8XidOsiaLbe1q3KHJtkMuoSCtEwnqpbFmcuXSXR0EEkkXCiC42ArClVdp1gsMj8/73LW6DrhcJgwbhqzuLi4bLxQgry0QAAtGEQLhUhGoyRSKZ44eJA//sY3uHj5Mt/4D//BQ1eu2eq25vDv0TRN8/Am2WzWZS8bGMAwDC/vrlQqLIoNbVBQilwaG0NVFNaPjtLR37/EfCDq540/MrUJBAI8++yzFAU/5PHjx/nEJz5xj6/Ch8fWHP59NlnCbMyd5SLQNI3r169z89YtJO/9wOBgHZOZZOVtZa+//jqO4xAKhdi/f/8H+nk+arbm8HfJ5EIAtyElS5LSce/E/ut//a8APPPMM/dcQubDZh9uNP/H1CQd+C/90i/d4zP58Nmaw3/I7OTJk4yNjQFrDv9ubM3hP2Qm05k9e/bcV8oaHxZby+Hvgr3++utcvnzZ+//s7Kz378uXL/Ptb3+77vlf/OIXWx7r+eefB+Azn/nM+3qOHxdbc/i7YN/85jf58z//86Z/e+ONNzypTWmtHH58fJyTJ08Ca+nMu7U1h3+f7ODBgwC0iRHBD8JkdB8aGvLkfdbszuwjP8T9UbJPfepTvPDCC/yTf/JP+KM/+qN7fTofSlvbtH5ILJ/Pe8LLa+nMu7c1h/+Q2I9+9CMMwyCVSnnp05rdua3l8B8Se+mll0in03zmM5/5yJAi3Qtby+HX7GNlaynNmn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPla25vBr9rGyNYdfs4+VrTn8mn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPlb2/wPTTb42AUvIOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhnUlEQVR4nOz9d5gcaXbeif7CZEb6zPKFgvfobnSj0d1otDekREpDcmiXI11SpCiJI+3KcKWRqOeR/pjLvSJ3lxQvSS0lrrQ0Ii+1ekQtKU4PjciZ4bj2DkADaNiGL+/Sh4+4f3zfF5WVlVVA9zRco955elBARYbLEyfOd8573qPFcRyzjnXcI9Bv9wncS7h8+TKf+9zn2LdvH/l8nv7+fg4dOsQv/MIv0G631/zsj//4j6NpGt///d9/i872E4p4HR8LPv/5z8dAfPHixZ6/f+mll+JSqRQDPf/bs2dPfO7cuVX3//u///sxEOfz+di27Zt0FZ98rHv4W4AjR47wmc98hnq9TqFQ4Gd/9md59dVX+cpXvsJP/uRPAnD27Fm+67u+i0aj0XMf3/md34llWbRaLb7yla/cytP/ZOF2P3GfFKzl4Z999tkYiE3TjF999dUVv//5n//5xNN//vOfX/UYn/rUp2Ig/uxnP/sxnvm9hXUPf5Px5ptv8s1vfhOAv/23/zZPPvnkim0+97nPcd999wHwK7/yK/i+33Nfn/70pwH44he/SLyea/hIWDf4m4w//MM/TH7+iZ/4iZ7b6LrOj/3YjwFQrVb56le/2nO77/me70HTNCYnJ3nrrbc+9nO9F7Bu8DcZL7/8MgD5fJ5HH3101e2ef/755OdXXnml5zZjY2McOnQIgJdeeuljPMt7B+sGf5Nx6tQpAHbt2oVpmqtut2/fvhWf6QUV1qwb/EfDusHfRDiOw9zcHACbNm1ac9u+vj7y+TwAV69eXXW77/3e7wXg+PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc/pdPq621uWBYBt22tutx7WfHSsG/xNRCaTSX72PO+627uuC0A2m11zOxXWfOMb36BarX70E7wHsW7wNxHFYjH5ea0wRaHVagHXD38OHz6MpmkEQcDbb7/9rZ3kPYZ1g7+JyGQyDAwMAHDt2rU1t11cXEwMfvPmzWtu+/LLLxPHMel0msOHD388J3uPYN3gbzLuv/9+AM6fP08QBKtud/r06eRnVXVdDV/4whcAePHFF5e9RdZxfawb/E3GM888A4hw5Z133ll1u69//evJz08//fSa+/ziF78ILC1e13HjWDf4m4zv+77vS37+rd/6rZ7bRFHE7/zO7wBQqVR48cUXV93fkSNHuHLlCrBu8B8F6wZ/k/H444/z7LPPAvAbv/EbvPbaayu2+cVf/EVOnTqFYRj81E/91JoVWRXOHDx48LrFrHWsxOp3dh0fG37lV36Fp59+Gtu2+Y7v+A7++U//NM899xy2bfN7v/d7/OZv/Ra5XI4HH3yQv/aZzzA9NcXwyAi6vtIfqdy7Sk2u48Nh3eA/AuI4xvd9giBI/oujiIGBAaYnJ9GjiCgMiYKAKAzJ6jq/8gu/wM/KVr7/41d/lV/9t/8WTdMAQTvYvWsXf+/v/B2mrl5l6upVLp47R6lYxDBNUqkUZjrN+Pg4x48fR9M0du3axYULFxgYGKBUKiX7Wsfa0OJ1YvUNI45jWq0WjUaDZr2O4zj4rovnurx/6hRnz53jxeefJ5vNEoch6DqpVIq0aWIYBtPT03zhj/+Yt999l7n5eUzTZGx0lGeefppnn3qKfD5POpWi2WqBppHPZpmenWVqYoJms8k7R4/ytZdfplgo8Ld+9EeJ4pgQ0A2DoeFhnnn2Wfbt27du/Gtg3eBvAL7vMzczw8LcHK1WC89x0DQNwzAwDANd09B1nTAMieOYKIoIwxAQXHc0jZRpks1kSKfTaJomjFLT8FyXeqMBmkalXEYDrl67xrXxcUE8iyIGBgcplcv8n7/xG1y8dIlve+45fugHfgDX83BcF8dxWFxYoFavk8vnefChhzhw8CDlcplUKrX+AHRgPaTpgTiOcV0X27apLS4yNz2N6zjEcYxuGOSyWTKWhQaYpolpmuimianrSSeSCntc3xecGk3D9TyCMKSQy4mFqabRarUwDAMrk8FzHI4cOcLUzAypdJqNY2Ns2bqVdCpF27Y5dfo0QRDwyMGD5PN5rGyWYhgSRhEjw8PU63Ump6Z487XXOHn8OAcefpj+wUHKlQqlUolSqYRhGLf35t5mrBt8B5SRN+t17FaL2uIii7UaQRCgxTHZbBYdsB0H27aJwpBY04gALY6FsWsahq4nXjUlHwgNCMOQKIqoNhpkLItMOo3neQRRxOSFC5w5exbLsrj/gQfIZDJouk46lQLgnXffpdFoYKXTPP3EE6TTaWJESjOOY3RNIxwZYfu2bczMzHDsvfd45+232bN7N/lCgWyhQLFUoq+vj4GBgWU8n3sJ97zBh2FIu92m3W5TXVyktrBAq9EQ3tj3MQwD0zDIFwqJd9Q1jSiOiWQWJY4iACJl9FFELA3e8zwcxyHWNMIwxPd9ojgWHj6OaTQajI+PY7fbbN68ma1bt2LoOm3HIW2aZCyLdCrFW++8QxiGPP3kk+TyeeiIRKMoIowiTMMgZVkUCwVGhoZ4+eWXOXvmDA8+9BDtep1WrUZtYYHpqSlK5TKDg4NUKpVbe8NvM+7ZGD4MQ+r1OlNTU9QWFmjU60RhiJVOkzZN/CBAA6xMhmKhIDy1YWBIb60ZBoY0eA1h7J7vQxyLxWQYEsiQxnMc8afrEsQxvufRareZmpmh2miQNk22btnCQH8/xWyWlGXRtm3CMCSXzQpqsfyadE1DMww0xPpA13UMXSdSv+uI113X5bXXXqPZbPLt3/7tEMfUm03ajkMmk6FQqVCpVBgdHSWXy90Tsf49Z/BhGLK4uMjk5CSLi4t4to0JwtDTabLZLFEYouk6VipFqVRClwaW7COKiKRXV/B9H8/3E0NX4U3n7Y3iGLvVou26XLl8mcVqlTiOGRoeJl8okJYLzKxlJcaXzWbJZjLJ2yOGpX127DuWD5lhGKRSKQz5gAZBwJe//GUKhQLPPPMMuq4TBAG1ep1Gq0WxXKYkDb+vr49cLneT7vydgXvG4OM4ZmFhgatXr1Kr1SAM0cOQXCZDpVwmm8uRsSw836fZahFFEaVikZSMoTuRGHYQEMg/VVZGQQM06X1BvgE8jzAMOX3mDAtzc2zeupWLly7x8EMPYRoGfhBgmiZxHGN7Hq7nUSoUGBkeppDLiSxQFBHIECYIw2RdEIUhgfx9JwzTpFar8cYbb/DA/fezZ+/e5OENwpCFxUViTaNQKlGuVCiXy/T19a1Z7b2b8cm8qi7U63UuXLggDD0ISGkauWyWvr4+ivk8mlxkhmFIW3Yb5bLZZcYeI72454ltOr0rQBxjplKYqRQp08TQdQxpxO1WS3jnOObkiRO0220eO3QIQ9e5eukS/ZUKhmmKh0i+XfRGA6II13GYnp5mIZWiUi5TyOexUiniKKLbUzm+jy/XHp7vE0cRYRBQyOfZunUrJ0+dolAoMDQ4iJlOYxgGgwMDtFotavPz1BYXGRgcxPd9isUihULhExfmfKINPooirl27xqVLl4h9HwMoFQoMDQxgZTLo8stUX6rjOMRRhGEYSddREIa4rouvwhSE946BtDRwlY/XZAijaRrEMXa7je26aDLffuTIEaIw5Pnnn0c3DGqyWymVSpEvFGg2m0lcXtm4kYWFBRz5+TCKmJ2fZ2FxkYpMMWpdIZOhaRjpNMgMThhFBPIh2Ll7N/MLC5w6fZrso4+iOQ7pVArLsigWi6TSaaqLi0xNTFBdWGDTli14/f309fX1pDjcrfjEGrzjOJw9e5bF+Xn0MKSYyzG2YQOZTIYoikTI0eG9wjDEcRyiOCaXyeA4Dq7nLYvVNU0jnU5TzOehI/WoUoMgFo5BENBqtwnCEDQNXdN479gxdE3jhW//djLZLLVqVaQVZVxumibFYpFms0kgM0epdJpUOk1J/nuj2SSMIuZrNRZqNQqFApVSCdM0k2tS5q8Bpq5jWhYZy6IAPLR/P6++9hr1Wo1SuYwrwybDMLAsi3K5TKPVwvc8Lpw/z/DwML7nMTg09IkJcT4ZV9GF2dlZLnzwAW6rRQoYHh5meGgITaYT9a7XdBzHtB0nic27X+PpVIq0ZZEyzeR3cRwTdhi6pmnEiAZs27aFoes6mXSa1954A8/zeOHFF8lms0lqUtM0YaQy3NF1XXj6RiMJr3LZLGga5XKZYqlEq9Wi3mjgBwHNRoNqrUYhn6coF72oc+9ammnAxrEx+ioVJsbH2bRpE67rJtfcbrdBZnl0w0CPY+bm5pKU7ZatWz8RRn/3X0EHPM/j6tWrzM/O4jWbZNNpNm/cSLFQSIyqO7OBpuG4LvMLCwS+L3LciIJRKp0mnUr1fqVL41CZk1B69VB6dSudJpvJ8Mabb9Ko1Xj++ecpFArEiDAJSBa0nTB0nUKhQKPZJIoibNumWCigSQpDoVCgkM/Ttm1q9Tp2u029XqdWr9NXqVAuFpOHT3l8LTlljX179/Lmm2/Sajap9PURRhGe6+LKBbWh63hhSBBFpFMpHNvm2qVLtFst9t53X89F/N2ET0xw5nkeH3zwAdXZWfxWi75ymW1bt1IsFpfK/Z0f0DR836dWq7G4uJik9ErFIuVymUKxSDqdXmHsysCBZGHqeR71ej15OxQKBfK5HEePHWNqaoonnniCSl+fOGwcE8pWv+4yv9q3YRgU8nkMGR6phbSGzLXrOrlcjuGhIfoHBrDkec5Xq4xPTdG2bcHpkQ95FMdEQARs3LiRfKHA2bNnIY4xNI1sJiPWBfItkU6nMXQdu93GlW+jhdlZjr79Nu0baEa/k/GJMHjHcTh/9ixus0nguowMDTE0OEgul1u2qIujSBC2fJ9qtUpdxsSe75NOpRgcHCSTyQhqAKwMfUB4dpa8pgphNE0jLfP26VSK90+d4tKlSzz26KOMjI6Kz0uDTjx8V4igQhwQMX0+n0djicoAIuaPZCo0jmNy2SwjIyNUSiXShkHg+0xOTzM3P0/QmaJUbzdNY/v27Vy7dg2/SzoklUpRLBYpygfWME3CIMC2bZFtarc5deJEsti+G3HXG7zjOFw4f57QtiEIkgxMXhl7HIsyv6YRhCG1Wk0s/sIQXddJpdPkczmsTEbwV3ocIwbiLkOPgWarlXjfbDZLqVQiZZpMTExw+tQp9u/fz+YtW5btK+ooWvUKaWCpsJROp7EyGQhDmu02bcXfkesQtZ7QdZ1yuczY6Cj5fJ6UYdCybcbHxwUTswubNm0ijmMmJieXLbjlwRPD7+vrE1XcKBLp2HabRrPJ5fPnmZmcvNGv6I7CXR3DJ8bebmMYBsVyGUPXyWUyYoEqMxdhGGK32ziumywWs9kslmXheh6erpMyzZ6LWbUI1Loqps1mE182fuTz+UQ1rN1q8e4777B5yxb27tkjPi8fuiiORXEIYeyxLCAtq54i0okqFWkYhnhg45h2u41RLC6jNOi6LnL3moZhmgwNDmI7DouLi/hBwHy1SrPVYnBwkLR8o2SzWQYGBpicmGDz5s1L65uO69YQtQitv596s4njukk/gLonYRCw4TqSInca7loP7zgOH5w7R2DbopFiZEQYgqZhWZZgMOo6tu9Tr9dxfT8x9L5KhVw2KwpDnkcMKxZjvcIXEMZYbzTE0II4plAoJMYeRRFvvPkmqXSagwcPLmVMNA1NeuUgCESRSsbvmqaJIpKiDsgHMsnnI/g8KVmBbbXby9YimswGdSKbyTA6MkKlWCQl6QWTk5PLBqdt2LCBmZkZ8bbpeNATPn8UEUcR2UyGXCZDMZ9PHhjHtqk3GkxNTjI7Pf0Rv8Hbg7vS4KMo4uKFC4SOQ9ow2DQ2RiQ9lOKZR5Ic1mo2E3ZiuVwWJCn5YIRhmHjp7qoqsCK8CYKAer2eVENLcmGrcOr991lYXOTxxx/v/QABkYrfb4CX3pkezefzwusrfn2PbTsfBF3XKVcqbBgZwZJNJ9Nzc8wvLhJFEWMbNhBEEfNzc8lDrcl7m5yzXPBakvufTqWw0umEt9NsNrl84QL1xcXrXsudgrvS4K9dvUrYbmNqGhvHxjCkFwMwDQPHtqnVanjSq+ezWcrFomjU6FgYqtEyZiolQgy5qOz26gB+EFBvNBIabrlUWrbonJmZ4fSZMzxw//309/evOGcVMoQqfl/D4DVI0p4gHhbdMMhLRqNt2z1FnbpDMhBvrpHhYYr5PCldp9FoMD07Sy6fp5DLMaFicfnA9CJWmaYprlXXCeOYbCaTcH7a7TanTp68azQu7zqDX5ifp7mwQBRFDA8NiRg3jkHXRWzdatFst5e8eqkkmh2koXcavMqWpExTfNEyO9ONIAhoNBpEcUzaNCkVCsvCCM91eeuttxgeHhZxexc6w5Sk9e86Hn7ZAlk+JGnLIm1Z6LouCG49eH+9zl/XdQYGBujv78c0TXzPY2Jqiv7+fhYWFpLt1Jqnm2YMQtlY07QkBMzncmTlfXVdl5PHjrEwP7/mNd0JuKsWrY7jMDc+ThgEVEolsjITo171jWYT0zTJZrPkZNYlWXR27EdTC0aZ2lPGp/UwoCAMRREojkmZJgVZ2AGSVN/bb79NFEU8+sgjCXU4iuMkNldhgi9TfIqioOLxtm2LEKiL2+NJsloYRWQ8D03XyWQyolIbRbTbbQr5PEQRqAewo3rbjUKhQCqVYn5hQZDLgFq9npxf52fUWyaSC+hkUa9pBPLNmEqnxTrJtgmDgONHj3Lf/v0Mj4x8+C/3FuGuMfggCJi6eJHI87BSKforleRLcVw3KbbEQLlUwjSMVWNxxaMJwpAI4eF7ecYwimh0hDHZXI7A9wmkUYdBwLXxcSYmJ3nowAFs18WWktcKnUbkeR5+EIhqpusSBIGgDQcBjuctfyhB/Lvrovv+shSm4toAuL4vGlN0XVACJCVZk2+87uuyLIvRkRHmFxYolkqEwMVLl9i8adOKxa/KAqlrUAttPwiSh9I0TXLZrMh2+T4njx8njuOk9nCn4a4w+CiKmBsfx3McQmBkYCDxyq12G8dxhHZLEJCVufTOknovhEGAjnh9d+fDQ5l3rtZqSedTNpOhUa9Dx75dz+PM6dMMDA3R39+f8GF0VbiSi2OFZBGYTpPL5Zb2nU6Ty2SWYugOfo4vH0ZleHEUoUuP6wYBzWZTpGE7ryGOBcVYEtwMwxBxuGR06rrO0OAguq5z8sQJFhYXyWSzDA0M9DT6ZEGswkJdxw+CxFGYppmcn+e6nHzvPeI4ZnTDhhv+jm8V7niDj6IIr16nubiIF4YM9fWJYgzQaDaTQQO5fB7DNEUPqeuSX6NzJ0bk5tF10jLf7XkeYRDgy6aOdrtNEAQYhrGsC0h5UMM0+eCDDwjCkEcefjjJonTHvsvy6zJ+z+dyWLJXVUOEBlaPpupUKoUvC2SlDpVgRVyr1ev4vo9mGKRMk0gqGERxjCabQWLkMAZprIrKbEh2Zi6bxbFtXM9jZm6OYfkgrLxpooagVBo8zyPVsWjXdJ1sNps0xbx//DjAHWf0d77B2zbV+XnCKCJlmhRLJSIZaqhFZ7FQEHovQCAN3rKs5BXciRi5CG23aTabGLLlTSkARHGcNGxkLCuhCugdPawg5qleuniR+x944IYlq1WsfKP88mTh2s181DRMw6AoOfRhFGHJhg4gWT+EUh8nDEMRs0tagsvSg1goFnFcVzSbeB7Ts7MMDQysYEa2bRuiiEwmQxzHK7JEGqKYls/lEmr0mZMnyWYylCWP6E7AHZ2lCV0X37ZpNhoEUcRAfz9hGFLryIWXSyUsyxINGek0acsCWRFUZhIjYt1ms8ni4qJgGbZahDJtiaaJJgxZls/lchSLRYaHhsjncqJHtMtIjx49SqFQYNeuXTd0LcrY4MZy8AprdRwpopemadgduXldhjHpVIpsJkMhn6evXBZFMlnEUmnYfD5Pq9Uin8vhOw7NZpNrk5PJ+B1Y6vQCKOXzCd2gu60RhKfP5fMiGxSGnDh+fFnB63bjjvXwURgSSOprGMekUykylkWtViOKY8FsLBQwZD4YuUDLy9jY933mFxZIpVJJU3XMkgEZhkEmm6VcLpNRw8RkA4hpGBSLxaWUZxcuXrrE/MICzzz99JreelkDtwwvelVGV0Mn9341ZOWCUTWRp7sLXh2MSV3XhVOQxbI4jlkoFvFcl5RlUa5UqEsJwUtXrzI0MEDKNPF8H13XsSxLrJUMA+JYLMC7GZ/yvPPZLM12G1sSzh58+OEbGux2s3FHevgoigibTWJZzQvCkFKxSL3RSLqDOgs/nWk4xUNpNBrUajVq1WqiQpCRkhv9lQqZTIaU7D8F4cVsGcrkpDKYJruVtI7Fp+t5nDh+XMhqyHE2N4IbKTitgHz7sIaX7+QO2baddFBFcUyoKMKwTN5vafdastZJmyYD/f2MjoxgpVJEUcT0zAyzi4s0JQ9J8ZPUPQslL0ihc8GNrlOQnn5xYYGLFy6sUHq4HbgzDV72lqoyfso0RZFF5sLLpZLwkvLmRlGE7ThUazXqUl8mm8st9ZrKzxRyucQDqi9HfYlNGQJlLCvhxgDLCla6pnHm9GniOGb/gw/2LPysek1rNH2sBq3jz7W8fNqy0A1DLLZte4kBeQOFKUvWKhzHER1X+TybNm2ikMsRxUIoKpb0AtdxqCmRKqmavOJR7Ho4c9ksuq5z7coVpu4AhuUdF9KErkvoOBBFwrsHgVDjlczBUqkkNpSZirZtCyZfh/dIp9Oi8SOKaDSbEMfUZA9oOpVaZqgaJN1Fpmmumd2xHYeLly6xb98+spmMWLh1hR2rpUPDD7lg7Ybar5L1U/+G9OAZyyIIAjzXTRpCeiEJkyRpTFGiHRmzK3WGfD6P5/tEsjHGSqfxgyB5mGypl5lKpZI2xBUeXDqJfDZLo9Xig3PnKJZKt3Uu1R3l4cMwJJSVSFdWGF3PE8Kluk6xWBSMwzCk0WqxWK3iui6x/FJyuRx9lQqFQgFTtuiVy2URiyMMu9lqJVkZTUraqUJKvlBYM3w4ffo0pmmya+dO8Q9d4UESAkkqcMcvEw/fSSlQmaFOpqSq3naKLqk/wyhKDDzu2DeIBWxKXqfbVfzqhupbjWVNAMCV96HZaOB5HrquMzI0RC6fJ4oi6s3mUu+szAhFUZT02Hqum1zjsmPJFG42k8GVDFfFYboduKM8fOy6yeKzbdui5C7Zj+ViUWgxtlq4jkMot0unUqSlgS+DpOSahkG5WKRl27iyd7Mlc+x6hyEWCoU1w41Wq8WFixd5cP/+6zYzKz55xz8kJfrOY2iwvGBEF3mrYz9rZWtUYSiTyRC0Wkla9npvE13XiTWNVDpNvdGgLMdmGjKnbpom6XSamdlZPM9jsVZjoK8PM5sllrwltSBuyUaYdDq9TKJbvfksyyLwfeZnZ5mZmWHDhg23Rf7jjvHwYRiKUEaiJr13LpejkM9jOw4L8t8AMuk0Zfl67DbAOI6X8WI0TaOQy4msjvRM7Xab+cVFXM8TqbrrNCefPn0aK51m+/bt172WFcUnSDz+zfySVQZFk4Su6yEMQ1rtNqlUCtdxhJamZSVvSBAG3N/fj4F46Guy2mwYBul0mlw2KyjDUv3McV2aql8Ali26VYP85LVrQhTrNuCO8fCxbSeFllqthiurg+VSiVa7LTItCN5LNpcTDMce6lsrvGsHUqkUlVQKXdNYWFxM5OmUcVjpdE/v3Wg0uHzpEg8dOHBDUhXdC8zO9cVHNfikg2sNTw/Sy8sOpV5ePtGtd90ky6JSpcVisef55bJZwnKZmlRHMOUYHhAPckY+aJ7UuYkkbTiVSpHJZJJ9qqxQbWGBhYUFstnsLZftviMMPgxDQhk3Jk0WQZDop0dxLKp4SntFQusgNgFLMfB1jEJVJqNUikI+jxqA4LqukJyW8hwqhXj69Gky2Szbtm27sQvqMvhvdcEKS5yW3odbOl5KqqHFslFENbIHsjbRqaCGpmGlUqSkFMla51csFgnCkGarxfzCAoMDAwndQGW7LMsinU7jyHup5mBlMpnkezMNg7RlsTg3R7FYTGjHtwp3hMFHcoQMsqzflB5qUEpsZGRT9lo3plMQaS0EYYgjK3+lYpG+SoVAshJ9OaEjkEoEhmHgui6Xr1zh4MGDy3LoKkPiBwGO4wilMtfFdRzato3rODjSi/odg89APAChFGCN4pivf/3rgoBlGJgdrEf1QKdMk3yhgJVOk8lkRMO5ZWFlMj0NJpPJ4HsezVZLOBO52FXoLCLpui4ml9zA91Qpl8W9chwWFhcFZVguftU5aJqQ/UiZJm3HIQpDoXrg+2Slt89kMtSqVdrtNrZt31LF4ttu8FEYEktqbLvdpt5oCEqs5GWUSyXMteJrGcJcjx2p0Gq3iRBdTipDYZomBdMkzuXwPE9M5ZAGefr0adLSqE6fPo1t27TbbZqNBg2pMtwtemRZVmKYlmWRSqeJpLCRZVliLpSu43keJ0+dYtu2baTTaUH86lAEDsNQ0G49j/bMTDLPCUiawzXATKfJZ7MUCgWyuZzQxZT0giiKyMjQxpTeXMX5Cpqu39BiTtM0+vv6mJ2dxfY8HNumXKkQyZRxJ0zTpJjPJ+ccBAFNSWEwDIOMZTE9Pi7kwLPZW+blb7vBq8yMHwTUajVs207Civ7+/uvfCBnC6LKjiK6m5E7Y8jWr6L7d2ykF4Wq1yvz8PIsLC8zKjqC3334bIHnblCoVhkZGkjg0m82KCq1cI3Sed1PqNXbHrNVqlZOnTrFly5aekzgiWT8A4V1jRHeVI3VqbMfBkdmslkzTjk9MJOpnOqKwVOoYddPX17finiYShJIjsxYMw6BSqeDOzhJEEXa7TV42xHdDad2bhkFbzshqtlrJkIeapDG0223yckF7s3HbDT6SylZzc3Mi/6tpWJkMuULhhjx2dwd/bBjC6LsQyi8HGSKprvzFxUXm5+dZWFhgfm4uIWHl5fENXefgwYMUC4XEWP0gSLxxJxzHIZLhkqbrCS2h1W4nhbPkTaRpCSHLk4vIpHglc+1hGIp0n+TARyoXD6Qsi5RlUSqXRW4+ijBk76nv+zjtNnPz88KobJuzZ87gB4FQJq5U6B8YYLC/n/6BgSStqcnz7daYV/c5RizAVX3DdhwarZbQ41ntLSyLUwVdpyU7o9rttnASMrSxLEvMz7oFacrbavBREBAFQWLspmliZTK02m0hCXEj3r0LGiTzlTq9fVuGH67nsTA/z+TEBNV6XTRUGAZ95TKbtmxhUPZ+GobBn/zJn7Bzxw62bd268tzlvlTooai4SO8aRxEhQBjiSWM2pQa8ggpPVAPLysuLiSQNtzOtqcZkGpKyrHVkQUC8vUrFIpVKhZbMfhWLRer1uniw5fWfP3cuCY10XWdibIzh4eHeadWuh6BYKLAoM12L1WoSn68GXdcF99518V0XRyYImvU6g0NDtFqtW1KBva0GHzoOtWoVx7bRDYPBoSFxE+NY0Hw/IpKih+TbTM/McOnSpUQNV0lY7Nq1i7GxMSqVCkbXl3zx0iU8z2Onqqp2Qdf1lVIcssCUaDrKVkDX84hjMQVQxfpAkuJUBZ7Oc1fbBbIlsFQsJoMbuo2vs2+2E6l0GsNx8OXCWY2uVNmmVqvFW2+9JbQ1o4jXX39dDDkeGmLD6CgjIyOk1mA4VkqlZGHeaDQol8urbqv4SFmpy+86Dl4UiXPzfUFRzudvupe/bQYfxzGNhQWati266vv7BV9DNhd/Syq1cczs7CzXrl1jYmKCtqQrjI6NceDAAUryi1JNFCs+Dpw/f54NY2NrxpbdC2WVrUgeHsNIUqBommi47oBqhs5lsz05PGEU4UqWooqRP8yEIk3TSFkWoawyd3Youa7Lm2++SbPZJJvLMTIyws6dO5mcnGTi2jXeePNN0DQGBwYYGxtj8+bNK3Lmhrx/tm3TaLWS7NEqJyNGa0ZRkllqt9tEUhtndMOGJI16M3HbDL46N4cj49N8oUBOtodFUYQm+e+roounov7uuS6XL1/m0sWLNJpN8vk8oxs2UC6XqfT1UZGN3658pa5mOnNzc1RrNfY/+OCa19CTKbhK0elbyUIsa+7WtJUL8zUeAiuVSrIkSiG50Wjw6quvEkURzz33HK+//noi3rpz1y527NiB67qMT0wwOTHByRMnOHHiBGMbNrB9+3aGVNgjPbbK81drtdVbBMXJo+RK0uk0nqwLzE5P0z8wcEtSlLfF4JuNBn6rhet5ZHM5CrmcWMQpYSTZFHwjiKU3v3ThAtcmJgDYtHEjDz/yCP39/dRrNYIwJJ/NLo24kaFBr8UZCO9eKpUYHhpa89id4Yk6l26z/rBtfV0X1/u42nKVsV4PmoJuGMLoZXqz2Wzy+uuvk8/neeqpp8hkMrieh24YS4Q3mTjYtm0bW7duJfB9Ll+5wqWLF/nmK69QyOfZvm0bg8PD6JpGpVSiWq3iyUxb3xotfeqeKYZnLMOa8atX2bp9O1EU3dSw5pYbfBAEtGo1AscR3TdyugaxaIGLZLZhVSgOfBxz6dIlzpw5Q6PRoFAosP+BB8Sodhl32u12IkjauSZIJmV3V2Vjod04MTHBgQMHruuVr2fs6jzh4+XQdM92WsvDg+DLe77P5cuXOX36NMNDQzz++OPopkkYRfhdDdkKuq4TBgFmKsXOnTvZuWMH8wsLXLx4kffff5/4/fcZGhpiz549VPr6mJufpylTjL26m5Q4rc5So042myVqt1lcWKB/cBDbtm9qivKWG3yj0UALAiJIKofdnPJuBmECuRi8cvUq7586RavVYsPoKA8//DCDg4PLjDeOIjGkTC0Wu41X7mtZDK5pXLh4Ed0w2HwDqrjdHr4XElrwRwhpOikAyw+8ukfvBdM0uXjxIufPn2fT5s08cvBg0kCjFtm9DB6E0Xd6/oGBAQYGBvAfeogPzp/n0pUrfPMb32DTpk1sGBvD0HWq9TrDg4Mr9tXp3aOOUC+byeB4HvNzc1QqlU+OwXueh91sgucljdHJlOl4SbK5l2nECE3JU6dOUW822Tg2xpNPPEGhY8JHJ5L+VNNc3sHEkvH1MplrV66wdcuWnhmYFQ/NDRjex+LhezwsnefT6ww6Wx6PvPsuV65cYeeuXWzbunXZuSSanKusmXquGRAZoM1btzKyYQPzs7OcPX+eaxMTDA0OMjI2RrFQEMW97uuQNQbNMIg7mtqzlkWjXmdxcZHh4eEP1wr5IXBLDb5er2NEEaHM+3Z694RG2sOwpqemOHHiBNVqlZHRUR47dIg+WZkMexhcFEU4Uoks22sR1PkmYOkBm5ubo23bPb17rzeE+CNeGWJ0nUvPz98AVnMAKsWX9JB2sUbV53zf5/XXX2dhYYFDjz1GoVhMhhorXn7QsW7qCZnz79XOqEShtmzbxrYdO7h08SKnz55ldm6OmelpHnn44WXORq2ZkomDHQ4jY1m0FhZExXhxUbyxbwJumcF7nofnOOB5Yihup3eHpbCGpS/Y8zzee+89rly5Qn9/P889/7xg6XWgl7G1bTtJbfbK9iSKYPKVrr78K1evkpPDAq4LTVvGYFTU3STM6fh3Vdi5UahYV3U69QqdVOOFavtbcQ/abV555RU8z+OZZ55hQA4gjjwP3/MwpPdVxa9V04nqGnsZvPTWSr1t586dbNq0iRMnT3JtYoIvffnLHHz4YTZu3JjcM2Xsar/qvA3DIJvJsCDDmrve4F3XRevIiiTevWPhmPC9NY3JyUmOHDlCEAQcfOQRtm7ZckNUgzAM8WTsvlaKS2mrKIMPoohrV6+yY8eOD31tcZdBd+fmlZdM/r70S9E4IY132Wc7QrzEk3dA07Se4q8Ai4uLvPbaa6RMM5keCKKZwwsCPN9PcuptKeiakYOYe0Lm0Lu9fNTlrEAQ53bv3k3/wAAXL13i9TfeYNOmTTx84ABpqS2/GjLZLHPz80l+/mZka26pwauyu4aIAXt5jSAIuHT6NLOzs4yOjnLw4MGVsWAnuvbhOA4RIjOxVrOGupkq5JiemsLz/RtarCp0V0VXnlqcnF8nfbZjByJFytpMz+s96HFHjD05Oclbb71FpVLhiSeeWJYtSZkmOhBEEUEQYJpmoly8JiOVlV5+WVNLV7hWKBRoNZvs3rmT5ugo586e5c///M956MCBJW8vr0vrIKypYRZqNmyhR1HwW8UtafGLokh4Xc/D0MUgseSL77hZVy9f5sjRo8zMzLB7924OP/742sbe9fk4EjNHieM1X9FAIniqbvbVq1eplMsfic+xms9Kyv1ab/ElJY66+o5XydJ0/Ftn+HT+/Hlef/11NmzYwDPPPLMyNaiJ/lVd15Oah2I7Xhdd17BMWrvr/HRNo1Qqoek6hWKRF198kXJfH2+8+SZvv/32CsUytScNoY/TbrVumlrZLfHwnueJ+aTy1Z8yzRWeeXJigg8uXEAHtFSKD86f58IHHzA0PMzo6Cijo6NCDqILnbfalUPLOlvQVoOK46MowgsCJiYnuf+++z7S9a32mu6McTvj8e7PdPa8dhpPZ5jTTWPQOv+MY4699x4XLlxgz549PPDAA6uea9o0E6WyOJOhbdtrhzOrQK0bVluMZ3M5mq0WjtT6fPKJJ7hy5QrvHjmCbds88cQTyXdkdHj5dCqF3WqJ4Wk3AbfE4MMwJJIeRZNeptNrXfjgA44ePcrwyAgbxsZIp9MUcjkmp6eZnJjg6NGjgOhQGpHG3z8wgNFZcYzjZNLc9bw7kMxijaKIiWvXCIPgQ4UzyoA7Y+1e162umXh5zr8XJ33FMbppCt0baGIix+uvv87U9DQHDx5k+44dS5/rcV6m1JX05azXdrvdc0RPLygZkiiOiWWP8Wpxtpoa7i4s0JbTxLds2UIul+O111/na1/7Gk8/8wy5bDbJzWuI9Gij1Urm0n7cuGUxfBiG6JBI2AEQx5w4eZIzZ86we9cudu7axezsLFEYUiqXKZZK7Nm9G8/3mZmeZmp6mitXr3Lu3DlM02R4eJiRkRGGhobQDSOZvXojTEtN6iOGUcTlq1cZHhnp2VCceOYeBtnprdcy2G9FfAlWT2m6ts03Xn6ZZqPBU089xcjISM8QqTtfn5I0ZU/KC+Y2bbrhc1IPbyjXDatdm+LLqLGatuNQyOcZGBzk+eef59VXXuHrX/saTz35JOVKRUiGhGGSMWvfzR4eEE3aUtpBeZ4jR45w4eJFDjz0ELt27cL1PNRkDlWMQhMTrjdt3MimjRvFmJZqlampKaampzl65IjgyhQKVCoVxsbGKJfL1817GzIb5LouszMzPPzwwwDJHNdOrNo8zdqv9RWZlw+LNWL4erXKy6+8QhBFPPv881TWoOYu8/iS1ux6Ho7j4AVB71rFalAZNenhe4mpKlEpXdfJ5XI0Go2l8TwIbv4LL7zAq6+9xte/8Q2effZZKv39yx6gm5WpuSUG70t1MAwjyQacP3eOCxcv8thjj7FVTqs2OjInKwyvIyNSqVSoVCrs27cP1/MYHx/nytWrTExMcOXKFdLpNCMjI4yMjAhx0C7PHcdiQkYMzM7NEYSh8I58uALR9agF3xJxjI7CU9c5zUxP88abb5LLZnn28OEVleRVIb2zaRjomiY6seJYNMir493A9Suar1KTSM6XlY0ihXw+GeLseV7y/VuZDM89+yzffPllXn/9dV544YXkjaBpgi+v3tgfJ27ZohWEN9Bljv29995j7969ibFDhwxdLOimay485ZdnpdMMDQ2Rl9LZge8zPT3N9PQ077zzDgD9fX0Mywegr68veXPouk51YYFyufzhvFzXOayGbzWk6bXvy5cuceTIEYaHhzn0+OPLjnPD0DSRkpRTtYul0oqq7vX2GEpdTV22LSZSgV0wDINMJoNt27Rsm3LHd2qYJk888QRf/epXeeP113n22WeTfaimmY8bt8Tg9Y4Tr9dqvPnmm4yOjvLA/fcv307Tkr7PMAzX7JNUf3Z2FOWyWVKlEgMDA9x///04ti1Cn6kpzp07x6n33ydtWcLzj46Sy+WYnZv7UIvVbsRrGP23yoVPHhhZkTz1/vucPnOG7du38/CBA2iSzdiLXnE9pFIp2rKhunNSSq90Y/feo0gMeVOMx+s1fudzORwpfVLsGvmZyWR48okn+MY3vsE7R46wf/9+0MRUxrvW4LV4qSP+5VdfJZvJcOjQoZ6GoF5pvaZL9ILn++LVZxjLHhDVJrhl61a2bN1KHEUsLC4mD8DVK1eI4jhRHqtWqzcU+98IVMud7/tC50aOx+z8fSyzSiAbUmSJX9ETVH9AKFvgjh49yrXxcfbv38/u3bvXJI7dCEzTFAoC+TyRvH+9riNBR1VcTT+Mb8DYQRi1aZp4QUDbtld0flX6+jj4yCO8/dZbZLNZ+iWtwLHtGw/XbhA33eDjOCaWVb1r4+PY7TZ/+S//5VW9t6q2uZ53QzRRz3WF0oEsW6/mFTRdT6itDzzwALZt88677zIxMcHk5CTj4+NkMhlGR0ZE+DM8vGo/ZyQJWFEQJMKukTTyznNoyhhZNVyvOHelWiAXkN2w220cz+PY0aM0mk32P/AAIyMjNJtNlDxe8hYwjGQhfiPQNI12q8XQ8DBBEJC+HjtRLUSl91VrgRtFLpfDr9eXLV47sXnzZhbm5/ngwgUKxSKFQoFmo0G5h3zJt4KbbvDKu8VRxJXLl9m6deuaJeN0Oo3B9SWfQYQMvu8nwkoq172Me7JaYSSbxXUchoeH2bdvH1EYMjU9zfTUFJcuX0bXNPoHBhgeGmJgaCjRqFdqYeIQYrJ2r4dMQ5axZVZEvbmSs9G0pBKakrOaFHVW7c/zfc6cPi34RAcPUi6Xk2MqdIc0ncplaiBErzWE53m4risYlEGwdipXnZdkugZRJOgbN6CzqZDP5ag3GoRy8dqrQWT33r1clX3I+/btS96AHyduusEr4aPxiQk0XWfz5s1CsXcV75lOp9GlxN1aiONYaMjHMaY0qiRmhoRtKDdeYfiO47C4sMDe++5Dk8Y9ODTEvn37qNfrTE9NMTM7y6nTpwnff59MJsNAf78QM+rvT2TmTDmrVHlcZdiwFG6UOqd3d94b6eEzmcwKotvC/DzHjx8nnUrx/LPPUiyXE6JZQjiLIjzDQJNa+jGCJ9Oty6Pruhg3KcdVGrpOrVYjRqQI/SDoeY86dXJQ9zSOxYJVVrS1jn9fC4ZpYkndScd1Vxi8CgO3bNnC+Q8+YOuWLWvTLj4ibomHt9ttrl29ys7duzFNE9u2xYzSHkZgWZao5kXRqp5AlexdaTCrhR6d3rT765iZniYG+gcGcD2ParW6pO+i64yOjTE6NpaM3pmfn2dudpaJiQkMXWdwaIjh4WGRIerxik6qrHz4Rev4tWu8/fbbFEslHnzwwWTcvWYYK8hP6TAklN45kuJQalJ4FATJz57n4cnP6LrO3NwcOiLUiKWKsiLbJRyfHuetRoXquo5pGARS0KozvFoNViaTCK3SxVnyfZ8oiti0aROXL1/m4sWLPHjgwIe6bzeCW+Lhr169Ssqy2LdvH205gcNxHKGB2AHFO0mlUrhSjavT4FWoorjgavaoGt3Yq2ik0FkV9YOAq+PjFAoF8YqV0iAZ+bCZpklKDuA1TJOBgYFEF77ZaCRFrxPHjxOEIdlsNqE8DA0OLpv+92GMPY5jzp07x4kTJ9i0cSO7du9e9sbo8YFlRS31hjGXbSI8slo8B7JvuFqrkS8UcJWiQRSJoRAqLl/lmKHqkJLb6ZpGJD28Wq/0NPx4adqI0u7sfMBczwOZadu5axenT52i0Wjc8L27UdwSDz+/sMDoyEii7d5oNHAdh7RlLZ+6IW9UKp1Gl+q7xY4Wvs4bqWSfDfm6BuGZe6UIlZF7kjQVxTHz8/MMDQ1hmqaY8doxLG0tIy0Ui+wqFtm1e7eYXj09zeTkJFOTk1z44AN0w2B4aIjBoSEK+fwNU1zjKOLosWNcvHiRfXv3itBKfeGrnU8H5XjVxbqmYXbQf9UaoFqtUqlUxCJUTh4HsfhNy+mGvTI3alxQcs+7jrWs9bDje4shmZoYy7mvah+u5xHLFGc6lWJkZITTp08zPj7Oo4cO3dD9u1HcdIOv12rY7TbDw8OAYMOZpinUC1otCoWC4FN3fGFWOo2OWLgmXr1rvyrD0fkG6P7iozjGdZxkXpSCLxdso6OjDA4MUKvXxdulo0lDYynHvtoDYBoGGzZsYHh4mAMHDtBoNJKF78mTJ4miiHwux9jYGKOjowwMDvYcqxMEAa+9/jrT09M88sgjbNu2bZlu5fV04deq+MYdv1fXFQQBrWaTfXv3JgthVcuIwhAnDHGQimiWlTR4x1FEIBfpycjQVThESlE4qWrL+29ZFl4QJNNdfN8X86GiiJxstk+ZJsVikYmbMPXvphv81WvXiIGhDo2XQj5PvdEQbD0psdaJtBxi5nqeyLF3L6ZgWTijoPRalN6753mJIegyK5JOpZiankYDRoaHEzKbkqnubBrptSDrfBCUN1NvFiVlt2f3bprNJuMTEywuLnLt2jXOnz+/jPA2Ojqa7PPIu+/iuC5PP/UUwyMj4ho/REjUXfxSHlU9rJ18c4D5hQXiOGZgcJBUKoWVyYgWu1xOZL6knr36Tw00VlkmXdeXz6rqIcCqQptuDR3Lsmi2WrhyWIItu9OUI1Thal9fH5MTE2tylT4KbrrBT01M0CfF/BV0w6BQKNCo1/F8H00pTskvLZ1KYcib2ytvq8IZvSOcAeH1m+12EmeC8MJWJoPVsUheXFggl8sl7Eg1B7YzruzECjIZXRmMOF7hbXXDYGh4mE2bNpHNZqnXakxNTTE9Pc3Ro0fpbDB3XVcQqFTOWe1PfdkygxIjinjKgFS2pvP4nee4Wig0Pz9PRuqyq3sUStU3y7JIWxaR1Kb3pWCs4zjCgcRxMqtJQdc0VisTdj64cRwnMnuB71NrNDBl+lSlReNYzOfq7+vj6rVrTE1NsWHDhlX2/uFxUw0+jmPq9TpbevSJGoZBPp8XT7vrCs12xY2OYzK5HI4Ke3oYPCzlgX3fp91uJzlyDRHqZFZp85tbWFjWqG3K8epBx4Ny3WuDZRSH1RZqyiuWymVK5TJ79+7FdV3Onj3LqbOnaAVNrDDL17/2tcTzj4yOLklrS5KbFq9s5lbhyofF/NwcAwMDyWcNwxDl/CAAaXi6YSR69r6c3RTIrI/mOEkTvr7KumnpFiw5Bl0WxlKmKVSNHYd0Pr+kPBzHSU2hVCpBHLOwsHB3GXyCHjneVDpNLo5pNZuJjozqvsnlcjSbTTFZWt0sCRVHarpOo3NiHJDLZIRq7iqErTCKqC4usqmjt1I9FDdi8Cte0yqF1+GFgWUxeLeRjk9M8Or51/iz1Jepsshj5cf4a4M/zMzMLO+8+y4A5VKJSn8/I8PD5FYZ9xNH0TLZQPXmWSsECMKQxcXFZV1RhmGgQU86h6ZpIrkgdedj18XU9US6z5Lzm1ZbOHcuZFXxKpKpzMD3V4hkqdBILZg/bj7NrTF4bflEjM7ctCX1BVvtNo5tC257LifiStmV1BnWxIhFpy350sqwrXQ6EdVfi4dTrVaJwnBZl4+K45XGe6dSb6dXXZZ1UIZO7xi2Jxc+Fg0v586e5WzhPM12E4C3a+/www/8MC/c/wKe6zI9Pc3ExATj165x+dIlkbmQ8tUjw8NLVVGVDlS7l8dQv1P/1nkOVSmN3fmGMwxDENHk5O1e2Rnf95NJ6Gkp0BrGYiK357qk5KSPFejKrLXa7WT/vTRE1X1ba2but4JbwqXp5W86PYJlWSC5Hb7n0ZANHdlcDrcrrLFtm3qzCVFETlZYc9nsMj3KtYog8/PzQh++o2FCyVGrOF6X3VCdxtTjwnr/3H2diuMfhrzzzjtcu3aN/Q8+yFeufW3ZdlPtSfYPPEDasti8ZQuDQ0OiKtlus7i4yNT0NFevXgUk3Xl0lJGhIaGI3OnR9ZUDyjq9/vz8PIZhrLj+TtJeT4P3PCIgo+ZEyTBQcYkC28aQ4lq9JEkcmS1T6cmMZSX8+WSBy0rhqrvSw8drvGKB5CYUSiVazaYQ2JfzQE1Nw3YcQrlwqsmpHel0mmKx2JOEpsl2sV5YWFigr79/xZeSMk1RjfT9G9KmX0Gj7fpiOhdrnuvy2uuvU61WOXz4MGMbN6KNd4d4Kw4gml36+9kwNsb9DzyA4ziC6z85ybkzZ3j/xAmsTIaRkREGBwcZXo3w1hFqzczMMDAwsOL6TcMgkEzI7qsPOtZGqY50pCWzXq7rivlZQUCgKMcq+xVF2LaNJ6cYWuk0lmWJ7xkRRlpSTBeWwsq7UmpP0zTyxSKNWq1nbKk6bOKO11ixWKTVauH7flIFDYKA6ZkZLMsilI0hfZXKmoa52oJuYX6esY0bl6XuQIY1up5kgD50KixezkVRIU6r1eKtN9/E8zyeffbZJJRamWpdbvGJJmXHdplMhq1bt7J161aiKGJudlZUfWdmuHjhAmhC7HRYdnqVy+Vl5xT4PrNzczy4f//S0WS4qViqYbSSv6I4P6nOfuTk45qg/6ZSNBoNMYa+3cZKp9EAR87ZjcOQbC63NK/VNImCAD8IREdavMQ2BVHRNgzjxlTgPgRuqsEbhsHGjRu5cuYMructUxNQcXz3YDBNE93ujpxQB9BoNvGCgNHRUZHW0leOm+mG3iOu9n2fZqvVU4BVEaHUzKbrTdxe8UD1qBVUq1WOHz9OJpPhhRdeIL+s6tr1QK3yhlhNdVjTNAZlRXc/YlLg5MQE09PTnDl9mvdPnhR0Z5n1GR4aYmZmhjgMl9UA1LF0Ocoy4dB0rFcCyUhd656bhkGxWKRt28kcVxDhqmkYZDtpCwgyWSwpDb28+9zcHPliccW5fqu46TH85s2bef/YMebm5pZlRmDt+CyTyQgZZzkGst1qEXgesaZhsob4ZxeSsAqoNxrEcUxpFbGlVCpFFIvR7Gvtv9e6pFuKbmpqivdPnWKgr48nn3xyRaihsbaH71zw3whyuRzbd+xg+44dhEHA3Pw80zLvf+nSpSTbkrYswazseoupGD4IQ6IgQJfXHwZBEs7cyD3XWMrERFEk1lg9RtorBxN0ZNgUMc00Tebm5ti5a9fd19Pa399PBMzOzCwz+OstRVy5+i+VSqIU3m5TrdcxTJNMOn39nldYZoBAQkZaTV0slUolfJtuYtsNI445c+YMJ99/n5GREQ4fPtzTUK4X0lyv0rqWszBMM2liB2g1m0xNTXH8+HHCKOLLX/oSuXyeUZn3HxwaSnjzuqYRsSRJ1zlza1V1hihKFrB+GKLpOsVCIZkX22tgmRLjUiFUFC/n+S/Warz4EXQ+r4ebbvCmaTI0Osq4nKqhyyxCkpvtseCzHQdXdgBZ8rU8OztLtV4no+uEsqBlmqYYc94p3cdS9bM7N9xsNMjIBVUvpGQcqxiFq2qu9Pg3TdOIw5CjR49y8dIltm3bxvbt21fvCuoynugGYvg1j9/7KICYOTs4OEgYhjz55JNompYwPi9cuIAhJyj29fVRKpVEBdo0hXShjN97tdqpfmJF4VBV30KhkKiJtVotojheNoUb5NtCZsWUoSubmJ6eRtP1jyRsez3cdIM3DIMHH3yQd15+mUuXL7ND0mwVuquHToexZ+X4dlhi2qGJMSnqZjWazaQz3rKsZeGGDgQdr+5Go7GmdqTieEdSbLQXF7/XOYPwhK+99hqzs7McPHhwac7RajF49z90PJjqgQV6TkNZiyy2GqampjAMg+HhYXTDYGR0lIfimGazybTs8z1z5gyhpDtvGB2lb2CAfD4vGkdUr4BMXSquEpDIdeTUHC3paHRdJ18o0G61CGWtRZEFDbkAjuOYCDGzV1WWT73/Pjt27lzGv/q4cEs8/MDAABvGxjj1/vts2bx5eZ5X0xJ+iOLJg6AZdHoVNVjXtm3G5OLVcRxRAJGG35bZgbQqgmja0uAAxECG/uvojqdSKQKZHVrN4Fe8kWybV159lWazydNPP01/fz+NZvM6Zf/VPXyy2O4q2K29u7W3m5qeZkga+9JHNIrFIkVJd7bbba6NjzM3N8e18XE+uHABTdcZHBgQoc/gIIbMv+tI9QLTJNvBqFT9vgq6ppHL5xOjb7fb5HO55MGQHxKdcZrG1OQkzXabb/u2b7ux6/6QuCUeHmDP3r28+eqrnP/gA/bs2bN8I5mtUQKaaZmr7UShUBAaKLJFTI0ut6Tmieu6BGFI6DjYjiNaylKpJNyJoohGs8nWrjdMN1KmiQ1rpic7zb1Wq/Hqq6+i6TovPPccxXJ5iaKwhhHqXb1L3bRmWD1Ds1pIs9r5uo7D/Pw8B67TQZSSGj+Dg4NYlsXM7Cyzc3NUFxZ47/hxoliINvX194tm9+HhFQMnYl1f2WKoaYIq0mqJt0Nn808slCNC2Sd77swZNm3axJYe088/Dtx0uWxVgMjmcmzfvp3Tp06t7FeVMV4cxxiG0XOQgcr3GpI/g3wraIjBvpVymWKhkIjuB75Py7ap1WrUGw0xbToMBSnpOuerpLQ7OTq9MDU9zde//nWRdnz+eUodbEd1zqthLYd8XT2bVXo9V9v+2rVraLBMm70XVNjieR61RgNd09i4YQMPHzzI008/zf4HHqBcqTAzNcVbb77Jn/3Zn/H6G29w+coVbKW6sMpiWtf1RPq8k6gXy7+DmK/luC77H3yQdDrNpk2b0DTthrz9iRMnElv7xV/8xVW3u+keXo1o94KAnTt2cOXKFd544w2eefrp5PXquK7QKpSvv14Io4hcJkPTMJJR5Z3bapqGZVlYlkWUy4mqqcy4BEHA7Nxc4jlt28ZUa4IeSKfTgg67Rlhz8eJFjh49yujoKIcOHUq43DFLHnhNg+9OS8ZRx89xcu96YbX4fbXY/tq1awwND696LWrNEgQBtm3Tlhr7GiI9nE6lyOVyDHTwj6od+p7vvvMOMYLhqMRt+/r7V7yhUqkUltQBUh1WsUwDt5pNzp09y85du+iX65/Dhw/zB3/wB7z77rvXLQb+k3/yTwjDkJ07d/IP/+E/XHW7WyLEZFkWnuNgGIZQmfrmNzl27BgPHzxIHEUJPTiTza5KGorCEMM0yWazBHHMQrVKRpLFuqEGpmUyGULJ6/ZkjKjruvBGjiMqjFLvUvWwAkm53PM84mx22cIxjmOOHz/O2bNn2blzJw899NDSF6EyTr2IY13QtK6QhpUhTa8veK199jL2drvN3Pw8jz366NL+pYGH0sgTmQ9Z7Qx8n0w6TT6fX3WR36nv6Xke0zMzTE1NceHSJd4/dSpp1VP/qRDVsqykh1b96dg2x48fZ2BwkP379yfkuCeeeII/+IM/oFarcfbsWfbu3dvzXL74xS/ypS99CYCf//mfX33txS0y+EwmQ0NOxO4fGOCRRx7h3XfeoVgqMTY2RhwLyYeMzLL0ghJYLVcqVKtVQTJrNilfJ0QxDENwOzQxD7SQz+P7Pr7kdnix6He1IXkADMMgkAUX1/OSRpEwDHnn7be5fOUKD0nF4164kaLRSg8fr/j5euuHFfvsQdG9euUKhq7T39+f9Ax05rsVvcKQD3wUx4no6Y2OgU+n02zevJnNmzYRRRGz8/NLCm/XrgGC8KaMv1AsYtt2khy4dPEipmly+PHHMXQ9ycw98cQTyTHefvvtngbv+z7/9J/+UwCee+45fuAHfmDNc70lBp9KpdBNk0jyY7Zt3UqjXufYsWOAKE5lMpk1021BGBJHESnLolIus7C4SLVapZDLrT25W8LxPDIy86O8TRCGBDLk6XwANNV+5rq4jkOhWCQMAo4ePUqj0eDQoUMJH6eb9kwcryh49UQ3swBEVoalSq5aS6jfrRYfq7a4MAzxZf+uUka7cvUq/QMD4vo6tjelgZtSW0c9nHa7nbTw3SiBq/NB03Wd/r4++vv6uP+++3Achxnp/c+fP8/p06ex0mn6BwdJmSZz1SqO6/Lcs88mnllRUB577LGk//mtt97iR37kR1Yc+1d/9Vc5e/YsmqbxS7/0S9c911umD29ZFq7rJqPMH9i/n2qtxnvHjnHgwIEkb62zskKqxIeIRSNIsVgU41Rcl8VabcUoy17wOjy1gmkYywpDqgiiKLKu1Ias1escP3aMIIp4+OGHyeZyVGs1QStWimLakvSd7/tiwatpyeKsswdA0zT0HtSCWJb81XlEsr8USFS/YslcjGLRcK3uTSyJX2rBG8cx7VaLeq3Ggw89lKifKTWyXvl9FeKoyuqNYkV7obbU9JHJZNiyZQtbtmwhiiIWFhaYlkoP7XabSNPYu3s3xWIxOaeytIVsNstDDz3Eu+++y1tvvbXiuPPz8/wv/8v/AsCP/diP8cgjj1z3XG+ZwWcyGdxGAz8IyCBuyv79+zl27BjvHjlCBOzaubPnZ1eEOZpGpVJhbnaWer2eNCWsBUdOoFiNRQkkXg8gJ89xZmaGEydOYFkWjz/6KOlUSjA5pdKXIr8pinCsCW1zx3VJS3GhTs+sjD7n5xlkAJ8ADY3YFinOOI5pttsgQzhVT1Bef7VBzIauY+o6SHqAbpqMX7uGbppi+vYNvAVd10WpBvTixPdErzeP1h2wCRiGweDgIMVCgemZGdB1Cvk8I7KFL5K07049ySeeeIJ3332Xo0ePLmvOAfj85z9PtVoln8/zcz/3czd0urfUw0eyq0aNSwF48MEHuXr1KseOHKHZaHBALgKVkYcdHitmyWCy2SxWJkNo2yxI3Zu14No2gwMDifT0jWB2dpZjx45RLpd56qmnRMoTEj1JZfDKyypSlu/7S7J7dPQDxEvN2TFLAqw6og6REN1Um5s0YBXe6JI4p0mdfU0T+uw6okKpvL7CtWvX2Lhhww0ZexAESRrWSqdvSBVYXdNa/9ZJqouiiEajwSuvvkoYhmzatAkrm02uL47jZY0pIAz+3/27f0e73ebkyZM89NBDALz//vv8+3//7wH46Z/+acbGxm7odG+Zweu6TqYjXajibsMwOHDgAMVikaNHj9JutTh06BCGaS6r2PUy0f6+PlzHoW3btGQFrxfiOMZ23RuSXlZGd/r0aU6cOMHI6Ch79u5dNqwBxIOnQW9jkp7ZsqyVJDRp9G7KocoiviZ5JNmIUsdgAqCnfPdahti55fTMDK1Wi8cee+yGhhwoOkc6nV5G2V0Ta6wrFGKWjHl6epo33niDjAxVmo0GKFqy3E+lKzztXLi+9dZbicF/7nOfIwgCNm3alCxabwS3ZE6rQj6fJ9Z1XNcVTQVxnOTCd+zYwVNPP83M7Cxf+9rXmJ+f772TDgMwUykKxSKmrjM/P79MnqMTQRAQhaFYGK9RrlcLv7ffeYcTJ09y3/3389CBAxg3IO6aIO6Q7Oh1HE1LYtWQiJCAiHBJCKojpbmiYebGzgCAixcuUC6VlvXuavI/XZ6ngsrBx3GcFIduZOG92puy+6qDIODkyZO88sor9PX18egjjwiRJ6mH0zmJvK9rouDu3buTa3j77bcB+JM/+RP++3//7wD83M/93A1nk+AWG7xlWRiynctxHNA0jI7Ye3RkhBdffBFN1/mLv/gLjh07lvClV7u55XJZ6MpEEXOy6aAbrhxn2UuxVrH8QskMfPW117hy5QqPPfYY9913n8gYyFRdJGP0NXHD/JfeXBrlv3stKm/I6yIKa5OTk2xfhW2oQkNdnoXiL1npdKJgcN2wb5U4Xf1OYXZ2lq985SucOXOGvXv3cvDgwaTZRI3QVI1AuXy+51v48OHDgPDwQRDwuc99DhBZnB/90R9d+zy7cEsNHiAvCxmJKljXjS2VSrzwwgs8dOAAly5d4stf+hJTHZJr3cak62LQganrtFotms3mimN6ngeyEtuJOF5qK7Pbbb7xjW+wsLDA008/zRY5eyqVSglmHyRvpeviBrbRuwpPSYdRZ/z+EfYLcPHSJTTDuO4onxhxb1Tcb1lWMrBZHG6V410nlFH7fffdd/nGN76BmUrx7S++yO49e5Ksk2oAURVqEJNAekGFNcePH+eXf/mXOX36NAC/9Eu/9KFbMW9ZDK+Qy+dpyosMfB8tl1uWz1aLut27djE2NsbRI0d45ZVX2DA6yo6dO+klTWplMhSLRWr1OrNzc1iWtSyt1smPV5xtIPniqtUqr776Krqu8/zzz6/g21iWRTsMcTxvVWnuZeisvK62yQoPLxshVuPRxGsoKHTuJ465ePEiWzZvvn6bonrTIu6hId+Unb/v1cOqOqB67hOYGB/nyNGjBL7PgQMHkjeNIgcqnfjOJATA4Cp0YGXwnufxL/7FvwDgh37oh3jmmWfWvL5euOUGr2kauUqFdr0uRtJ3x6lxnBhKPpfjqaee4urVqxw5epSp6Wl27NzJ3j17VoyirFQqonHE85idm2OsQ61K6cjIvyw7l4mJCd56802KpRJPPfnkiv0CWKkUbRA66lJr8Yaudc370PUP8rRWHXV5AwtENDEh0XGcFX0HveA4TrJ2ULIZao2z2pFWk12JEYoIp0+fZmp6mpGREQ7KmgWIMCuUs10ty6LZbov1hEwGKGW2Xjh8+HCysPV9H8uy+Pmf//nrXl8v3HKDBxHWzOo6kVSOTaVSSx1QXdtqmsaWLVsoFAqcO3+eCxcucOHCBXbs2MHu3buXsiCaxtDgIJOTk7iOw2K1Sp/M53aOqenEhQsXOHrkCKMbNiRVvV7QdF0UzmR+PXed9r8khbrGNisXpDcQ0lwHGnDhgw8Y6O9f1XgUgiDAk142UygseytprE5N7kYMTE5Ocvr0aRYXFujr6+PJJ55gtMPh+FIeG0gIf4FsHVSdTxvWYHKWy2X27dvHqVOnAPhH/+gfJXr9Hxa3xeB1XSdTLNKan6dt2+Ty+SUDWGXyhGVZ7Ni5kz27dzM+McH5c+f44Px5tm3bxp69e0VnTipFpa+PxcVFFhcXySj2pJSh69RiOXHiBOfOnWPnrl3s37//urGglU6Lnk3PI1Kx7hq43v5WY0uqwtJHMfhavc7M7CyPPfbYmtvFiDZKdD1R7V1+cksV4dUk9KI4Znx8nNNnzlCrVhkcHOSZZ55hcGhILO5V7j0MsSUz0rKsRLUsknrwuqSOD1+njjI8PMypU6cYGhriX/7Lf3mDd2QlbovBA/QNDdGqVvFcF8e2yeZy4nW+iqHoumiZMAyDffv2sXvXLi5cvMjZM2e4eOkSmzdvZtu2bQwNDoouqFaL6dlZxkZHl+JiXScIAt5++20mJiYSAlgsszRrGalpmkLVwPOu6+UT8/gw5DH1pxop0/XZUD60a+HMqVPkstkV6hDdcB0noWNnVqlNdHJ4VBZF0zQc1+Xa1atc+OAD6s0mIyMjPPz884l+jAZJ83YcC42aGJK6RMzSqCI1qHp0bGxN3s5bb73F17/+dQB+5md+ZkVx6sPgthm8ZVmkczncRgNHhjVGKkUUBL1psWoyh/ydYZrs3r2bHTt2cOnSJT744AOuXrlCJpsVFTy5cJ2ZmUkyMb7n8fprr1Gv13niySeTOL+TB7MWMpmMoBo7jpCUW9Og10avkCaKlhr9utOS19tfq9VifGKC+++/v3dKUyKKIlwZu2e7qM+rHSsMQyYmJrh06ZJosNY0NmzYwKOHDi317qrr6FiDObYtKsmatiQIG8cJHdzQdVLpNCPX0Z756Z/+aQD279/PZz/72evcibVx2wxehTWh44jupHabUqm0qpdVxpXE+tI4DcNg586d7Nyxg4XFRa5cucIHFy7gex75XI5Kfz9ZWXB65ZVXiKKI5557bsUXleSe1zDiVCqFaRh4UvZvVS+vUoxr3oGVefjOKYQfNqQ5c+YMqXR6zda4GMGPRzarr5VxiuOY2dlZJsbHuTY+ju/79Pf1ceChh9i0efOanHMQ83NVJ1M2l0seLJWyjBHf3dDw8JqSKL/+67/O1772NUAwI79VCb7bZvAgPExQKOA0GqRSKWzbTmTXuqHyw0oWmu7YUtPo7+ujXC7zwAMPMD09zcWLFxkfHxfUYplheezQoaXBA3R+XDAfg+uENplMBl8OXLshLy/jWcVkVAtaMzTJkcVHSNIRiKyJ7/uCVhEEaJKPc710pN1uc/nyZe5/4IE1DcKVGp1xFJHt0VkW+H7SwD01OZnQNXbt3MnmLVuEoK12nenbkiGqWv6URn8cReiGsWzieNqyGBgaWlYfabfbTExM0Gg0eOmll/jZn/1ZAP7u3/27PP/889e5E9fHbTX4fD5Pq9UirSZNxLIRoceXpozQdV3+/t//+9RqNQYGB/nX//pfJ1+yWpwaus7A4CD/4T/8B6ampqhUKmzeupXB/n5eefllMkqAdGgo0V+XBxF6KmuENul0OpGJc103KcUDCbVYSVgEYYihBhp0PBhxHJOO0+TIS7YkGIFG23FwXRcjDGl0bK9p2rIhw2YXvffc+fMYpsmObdtWnWToy6nhMUKlTDcM4jBkYXGRmZkZZmdmmJ+fJ46FRn9fXx8HDx5kaHh4heR35xtWyXGov/u+T1vm29U4HSBRZHYcR0gaxjGbtm6l2KVK9p/+039aEbY8/vjjN8R1vxHcVoNPpoCEIV69jh6L4QhJaNMRYui6jhaLxoXv/p7v4T/97u8yNzfHN7/5TV544YVlXieKY/7dv/23nDt/Hl3T+L7v+z5qjQZ79+4Vch+1GjMzM1y+fBk0wa8fHh5mcHCQSrm8al+tQsayaIUhtm0nizRfjozRWBrLmDJNYrnoSxo6FI9GC3Fw8PHR0Qk1EeuqqYTJolFeTyz5LhGIDiW5XRhFXLx4kd27d2PK3uFuqEpyGIbYjsPs3ByzMzPMzs4mCm5Dg4McePhhhoeGkhGXhUKhd849XtLN7zR2pRCnFqkqVFHfZRTHQkk4DBkZGaFSqaxoIXxXDoSwLItt27bxwz/8w/yzf/bPProSXBduq8GDkN9ot9ukcjki1yUOQxrNptB/lIKoSYOFnEX0wvPP89//9E+Zn5/npZde4plnnlkWWvzu7/4ub7/zDgA/8iM/whNPPMGXvvSlxDPt2b2b/Q88gOd5zM7OMjMzw6TsyNERDMhioUClUqFcLlOuVCiXSpipVKKZ2LZt0X3veZgyntUQD3FKvqXyuRxpmcLs9rqhGdCkiY+PhkaYioQKrxSVymQyIhRSg4bl2yMMQ0JpPL7vc/78eWJgw4YNSyoLmkar2aRer1Ot1Vicn6faaOC028JYpdbMnj17GB4eXq4xH8dUV1F7VlBaP52cGzX6MpZMUZVqVmEdiHAllA/rjl27yHUokSn82q/9Gr/2a7/2Ea3p+rjtBq/rOvl8nkYUYYQhoewWajabwsN0siNNk0Cmx77/+7+fX//1X2dudpavf+1rvPBt34YWx/zxn/4pf/bnfw7Ad33qU/yV7/xO2jJu1OUXMDk9zYaREdLpNBs3bkzkK1zXpVqvU6tWqVWrzM/Pc/HSpSTEyWUyZKQRG5IAlclkGBwYoFQsiumD8nyDMEx4OD0rpD0qzOotpYxA04RClx7H0EGViMKQtm2zMD/P1atX6atUuHjxIo7nUa/VaDWboqUvFsOA88UiQ4ODDA4MUOnrWxFGdKKzgXxV1QQVxsifQ6kppDy+ysiot4BaczUaDcIgYOuOHViWtaYK3M3CbTd4ELG8bdsEloUme1dd1xU3L59PFn6GaaK5LkEQ8Nxzz/FHf/zHTIyP89IXv8hzzz3Hm2+/zX/+v/9vAJ568kn++l//64BQIdAQi+R0Oo3neUxOTzMyPLwsD21ZFiNDQ4xITkcUi5EuC/Pz1Op1Go0GtWqVZrOJY9v4YZiEXVosZ1Zls6RkSjSTTgudG8NAl+2Ehq5jmCZO2152DxqNOteuXUukuhPvLtv9lISGbdu0bTvhBxFFzM/N0Ww2sTIZMtksg4OD5PN5SsUimjxmpzZ7L6i4ehnPqAeSMAYgFu2IbRnGKLWIxLOzZOztdjuZCbVp06Y1H7qbiTvC4HXZVT83N0ecTmPIRmTbtsVNlIOvVLtbIDMYP/iDP8i/+Tf/hrm5Of7jb/82L7/8MnEcc/8DD/B3P/vZZVPqdMMgDEOGh4eZnZ3FcV2mZ2YYGRpa0esKQhyobdsEsvk7k8uxZcuWZak8x7aZX1jAlZIfnufRtm2ajQatZpOmfFB9KYnhRV6SJZnQpwj1MCm2XZm8yrHxY6BraDpkjRxp3UCTFNpUKkU2m6W/v59sNksURRw/fpz79+9nz549KHU113VxPA/fdQV/xXHI5vNrE8m0jhZC2fxxvXAGxFvMtu0kxZjLZhNiWedCPY5j4d2jiC3btlEoFG54QvnHjTvC4EGEK5VKhfn5eSLPw5AG2pIkIyuTWRpaIL3f4cOH2bJlC1euXElytVu3buUf/8//84oBw+l0Gt/zMA2DoaGhxOgV0SlpfJCin57viy9e8misdDoZXqbK/5lslnK5TJDLYZpmMoeq0WwSBAG5fJ60afLnV77M77z//6PqVQUhWzo2HbmgjTXO6+eZ0+eIiFhggayW5Sfv/zt8x+ZvX3GvYuCb3/wmxUIhMXYQBmamUuQNg5rvJ91Yhq7TbDbJWNaK/LkGywZHKGNekW5Vxiv/6soKudp/PptdpgTd2drnui6NRoO+gQE2bNjQMy18q3Dr3ylrIJPJiAxNKiWEl+Qrr2XbYmIzossJlqZFvPjii8nny+Uy/+yf/TORZuz6wtJS+x1EBmFkeFgUpHSd6elp2raN7/vU5LBk1TBSKpWSkejAigYQlT1QmRnoKCnFMW7o8n+892+Fsa8BpTUZyhG/dmDzf57497iht2Lbqakp5mZn2f/ggz1pxC3bBk0jJ8Mb1VVm27ZQClBxOis7m3p1a8Vdv2/LiYsgHFU+nxfOoOPNoPYbRxEzMzMYpsno2BgjIyMfmsP+ceKOMngQKsH5SoVY15PXq7rJdrudLBaDIGBqaoo/+IM/SD7ruu7yV3fH6zeby9G2l+JmXdcZHhoSEs+6ztXxcWZmZxNOTalYFPlq+dCtNoDXMIxkQG+y/w5vGMYRfrS2RiWAgViohixPr3Y3ikSxUD4bGhrqOQ6mLSeRa4i1UdqyKBQKycMdBAGtZjMRtuo2vSgMl4UjnS2RSu9dzXzKZDLkVWJBhlSd9Ig4ipibn8dxXfr7+9m5c+dNG1Z2o7jjDB4Et73Q37/cwOQC0nVdoW+yuMjP/a//K41GI4kHHcfhi1/84rJ9qS+rVCpRr9WW/U7XdYYGB0Vfpe8zt7CA4ziUisWeX8xqiyw1TDmUAwI6zzmfyvHUhieve82GjC5DlvLoL4w9R0pfHnVeuHCBRrPJgw8+uGIfjuOIaXmwbPiA6vYqyCkcMdBsNlfMwAIS3pFyLJ059mazKfqGNaEBmvQOdKWPQTw4tXqdRr2Olcmw74EHbmsoo3BHGrymafQPDlJQfJcOw4+iiGarxe/+9m9TXVzEMAz++T//5zwqtRO//OUvs9jd26pplMplWu12MkdIwZXMx3QmQ9ay8FyXmbm5VcvnvagEycIaETZ0hwl/Y99KxaxumImHX9K5+eHd/8OybVrtNu+//z47tm9fpt2irsORjeY5OVVvxTFMk6JsekfTaLZaK65TSY3oppmwJV3XpSUfEN0wKBQKSQ8DUYQWx3TuRT0cjWYTdJ2du3dft93wVuGONHiFyvAwRVUUkQuiMAh46aWXqNZq5PN5/vE//sds2bKF7/u+7wNZjPnD//bfVuyrXCpBHAtpCAnX85Isw4bRUUaGh4VCgeMwOT3dUy5bozdzMSNz8zFLkhcKO0rbeWbD2u1oRpfBP7/xeTbml7RWYuDIkSOYprlsbDyIjJItw6mMHFy2GjRNI5/Pi/WRpiWVUXWMWIYkuqYl+fUkXk+lxGcNI5HsjrWlkfJxHOO4Lq1WKxGj3bx1K/v27bstKcheuDPOYhXouk55eJhCuZxMjPijP/ojLsq5RJ/+9KeTLMXWrVs5+OijBGHIX3z1q8zMzCzbV0lKuanBZqFMqUVxjGVZZDIZiqUSQ0NDmLKiOyEJVJ1YK4uRzecFtaBD1EjhR/f9v1iN5KuLfI04L0JA46/v+uFl21y5coWZmRkOHjy4rF/X8zzarRaaponcf48Uazc0qfilSzKeavVTGpUaS15aqUZYmUyi+xPHy9UbVM2g2WrhSkpw27YZ3bCBnbt23bYUZC/c0QYPgnRUHBigVC7z1b/4C956+2183+fQoUPs2buXarUqBmdFET/4Az8g0mFRxH/5vd9bKs4gvVMulxi84zgEQSCKMh1GoohllpwcMjs7S7Uj9tdYvqDrhGkYWJJBqdYaCttL23hu7Nme16i8e6C8+6Zn2VTYlPzecV3eO3aMTZs2LVuoduqsmzJPvwKrZEQ0XRfb6zqe6wr5ajmJw5EpR1XsKxSLieraCh6/XMg2m03RJKLreJ5HuVJh05YtbOho9bsTcMcbPICZTvOFP/1T/p/f/33sdpsDDz/MM888I252u40j87yjo6McPnyYOI55XerLKJGfOI4plkrU63UhUio9V68UpinHPhbkq79WrTItQ5zOhVyn8Stk5ZSSCJIwQ+FH9/0Ivbz88gWrxmd2fWbZ748ePYqm64nqFoiwyZbpx3Q6TT6X68lqXKvxO2WaogothabarRZtSRFA0ibyihPT48FRQ+VUQ0c6lSLwfcx0mg2bNrFp06Y7JpRRuLPOZhX8yZ/8CX/rs5/l3ZMn2bt3L3/zx3+cvEy1GZpGQw47azab/NVPfSpJTf7ef/2vYgfS4EulErNzc6IFMF6SjO7lBTVNjHHv6+sTcb3nMTE5Sb1eX/bla3SFNzKDoViTnmxWjuOYjfmNvLBxJae7c8H6zNjTbC1uSc5pfGKCiYkJHj5wIOGNO3KOFYhe2xXKW5LusFYHl1oXWZaF73niTSnJXVY6TaFQSI7Xbewq3Gk1m0JpWb4tXDk4epNst7yTQhkFLb5RZdE7BE6rhddooElG4Nz8fDJi0vd9wcG2LHK5HOl0Oilzx3HM/Pw8X/3a1zh06BDZXI58Po8lB+6udRN832d+fl58oVGEkUox0N+/QlJaZWcc2xYzpWIhXVeUA9kAxpvj/N2v/Y9J07YfBvTFfZiYNGjw/33hX7OtuA0QbXt/8ZWvMDQ8zBOHDxNDMrkwRrxNOmP2QKYMk/Hxq0Fu48thwjVZ9g98n0wmkzzknRRltX81NRH5Oz2VIptOU6vX8X2fjVu3sm3btmUSf3cS7goP34lMPk+6UBAT5QoF+vr6klg0l88ThCENOcSsVqvhytBFKZRZ6TSzMzOooQAxJCq+6k2Q/CmRkuNb+ioVDMPAc10mJiepVavL03qaaHaOooiULEaBbKuT+9tY3MS3bXxh2TWpGP6x0UfZVhAtelEY8uYbb2BZVpJytW07ST12G7s4vNa7TbEjBIvjGMe2qdfrIk0bRYLOrIvJG5Ya+cmSsS/z6NLY05ZFPp8nn8lQlxpDY5s3s2XLljvW2OEuNHgQOipWPi8GneVypCwLK5US3rRYxJJtePV6nfm5ORZkQUnTNEZGRpibncWQ8tMKnV4+lv+pymEUi7a8QrGY8G50TaNWrzM1PZ0sUKOO5gtN05LFcBBFS1Puooi/tvszqFhex0gyNJ/Z85nEWI8eO0a90eDxw4cxDINmsylkuGXIpIx92agc8Q/LeOpxJDTNIpmNqdfr2I4jqriINGa5XE54QinlBOR4yYYkwiWGnslQKpdFA7imUa3VcByHsc2b2bxlC4PXmYN7u3HHkMc+LDIyzWjXauQyGeGtgkBQArJZQaWVOjLNVot2u03asqj09XHl6lVczxNcEnonC5O+Wfn3zqbxoaEhGs0mi9UqgecxPjFBNptNBjMoz65JUlVTLuxU4/TG4ib29u3hzOKZJH4fyA6wsywk6S5fvszlS5c4+MgjFPJ56jKE03Qx7VpNJFdl/KQaGoaJ/r3ioYcydFFisCC8nJXJiJBP0g2iKEp075sdBi5ug0YqnU6a4dXQh4XFRTTDYOPWrWzctInh4eGP8Ru+ObhrDR7AyucxUik06cEDORJRjVrM5/OiSigLIY7jiH5QTWP82jUq5XLCHkwaFbqQ/FsHP0bTdQqFAhnLYn5hAV8+UK1Wi1wuRy6XI5LGZxoGaTnFsNlqUZSteT/10D/iH3z9H6BHOhExf2OfUMGtVqscefddNm3ZwujIiKhWItKzii6QeHLJw0/mK8lsShhFBHLB3FlZ1uUiVXF/1APRbrVEA3kQCM8ttzdMEyudTijRavHaarWYn5+n0tfH4MgImzdvXqECcafirlu09kIURVRnZpiXxaZCl+yykoZoy3zxiRMn8IKA+/btS4o12VxOqOdq2qrGr/YVA5EcuRhFEZ7rJq92ZIVS0zQKhQL9/f1J+lTx+FW6c2p+mt/76n/lLx/8y2zZIErvX/3a1zANg8cffzzhuqQsaxljsxthEBBrGrZkfPrB8r5W0zRJmyYpeX2hHOKmdOHrzSbNVgvTMOjv6yOVSiWKZJ1N4XEcs7iwQNu2Gd6wgcHhYTZv3nxDxa47BXe1h1fQdZ3+0VFiTWNxelp4RU0TOWbZfWOl01jpNKVymVqtxomTJ2m1WhQKBZrNJs1mMxmZqHpK1ZiZzkVgZ4+mMoaUZTE8PIzjutSrVWw5lUQ1eRdLJTF6vdkkimNarRbFQoGMYTHKKJYh5ABfffVVQt/n4MMPJ9XMbDa7qjqYmrfq+754w3UsoA1dJ51OJ5mkIAiw5UPX6eOiOMaTs536KxXRSyzz96rQpAFtx6FWraIZBpu2b2d0dJQNGzbccXn26+ETYfAKAyMjhEBdDjsrygphZ4HI0HW279jBhYsXWVxcZNu2bdi2jStDona7TbvdFotamadPp1Kij1VfmoLXqaKrFr/ZTIbM6Ci2bTMxPo7n+zRbLZqtlkiVZjJicSuJW8n49Sji9ddfp91uc/CRR0SbnK5TyOWSRSRIGRDlnWUrpIKiBBimmTSNe/JB6IbqHjNlj0AqncaMY9Fjqh7uDkOv1+v4rku+UmHD2BibNm36luTubic+UQYPCB0VTaM2O0u71RIT7aSeizL8jGWxY/t2jp88SRAEDA4MEEpPp1J/YRDgS70cNbTY0HW0jrmmapiYoeviGB0Ly8HBQdG0ohaNarK3jLmzmUxijOfOnaPZbPLIo48KDruMmyOZ3QnDkCAMk8Fnqvc0jiIh1tTxAIaBIigsQT0IhmGI8ZWGgSFDt2qtRiyzXUpCRJPhUa1eJ3BdYl2nb3iYHTt3MrzGCPu7AZ+IGL4bURQxOztLc2GBUErupaSnRy7sGo0GX/3a1xgYGODxQ4eWxeyRbE72paS0Lxd/kZzOHcex0G6ReufKo3bKcTi2DbqeEK5sx0m0YcIowpPyglevXkXXNHbu2kW5I8vTmX2J4yUZPtUUbppmskiNYaklUXpvXb6J1H+wlHlSIVmz3RazsaJIdCIhcv2tdlsYuibUfXfu3cuuPXvuakNX+MR5eJCNHUND6LpOa3GRVrtN2vdFyV95WKmye/7cOWa3b2e4I3+sS+ahUiHQEDLWQRAk2Y+Efy49rnpIkj5Oz0vy+L7nMT09zfT0NHNSYcA0DNE4YhhsHBsjCgLRNO77mHLRmDxIhsF/+b3f44033uChBx/kf/x7f2/pjaNpIJu8DalQsAzdfJqOho5atYrreclQOM/zlgozmkZfXx8PPvwwfTcw+PluwSfSwyuobvnqwgJus4mO6ARSZX7btvn6179OGEU8++yzSSbkeh2XMYIH7rquKOxEEV946SX+5I//mJ/5mZ+h0tdHs17H8TyymQz/6md/VvRu6zppqbWoaRr9/f0UikXuv//+hAphSEmRlGmSTqeThefRI0f4uf/9fyedTvP//Jf/sozzrlQRrgelKOb5PtNTU7TlVA6l9KYh3iDZXI5tO3awdceOu25Rej18Ij28gqZplEolLMsS1dZGg0ajQVoOSshlszzy8MN8/eWXOX78OA899BCWZSWxfkID7t4vJLJ/oRyBo7M03r6Qz2PqOo7jYGUyNJtNQXQzDHKyB3Z2ZoaGlP/bt3eviPNlJVVlUpIR9sDYpk3s3rMH13F49fXX2f/AA0kBSjWdd0NlcYIwJPB9MQkFkrx7GIZUymUycp5sLp8nn8+zZccOCrdBJOlW4BNt8AqWZTEyMsJiOi1UudptnFqNdCrFwOAg9993H6dOnaK/v5+NY2NLZXu1g45cdGcu3NA0YsNIGp8750glvHLH4dPf/d2MbdpEIZ/nwsWLxFHEH//RH4kQxDTpq1RotlqkpbBTNpsllro8qnikaxr3793LpUuXuHTxIjt27Ei6jDzZtN2JTgpzIosnawah75MyDMbGxhJ+UCqdZnh0lMGRkU+cV+/EPWHwsEQeKxQKtFotWo0GXrtNo9Fgy5YtzM7OcvbMGVKmSX9//wrdw84FJCw9DGrRGsdxIvldrdWEZ/V9NF3nxRdf5OKlS5w7e5aRkRF27NzJn/3Zn6kdJ5XbVquFLxXGUqkU5UolCb/iMGTP7t289dZbhGHIpz/96WQxraaar7hmTUseKqXcaxgG6UyGcqlEsVgUhi6LSJ9kQ1e4ZwxewZLhTKlUEo3G9Tpeq8X9DzzAsSNHOPbee+zYvp2BgQGyuRyZznlOyrvLljbFUwllp08umxUqwrLr30ilaNbrHDt6FD8I2L9/P7t27WJ6djahACRVUU1MyXBdF9tx8CT/JatozprGI48+ym/+5m9ybXyc2dlZdu7YscT0XAVK5NRxHFrtNrquUyoWGRwaYnBkhIGhodsunXErcc8ZvIJSOiuVSiL37jjky2XeeuMNzp8/j+04jAwP09CEcP9quoydhKyYJfah3W5z4sQJZmZmxAjHRx5JUpSB7wvJwO4OKtllZKZSSVU00WS0LErlMtu3b+eDCxc4cuQIO3buTNSAkZVZTe4rlOxI13HwPA9XPjyjGzawedu26075+6TinjV4BaVenM/nGRgYYPP27fzFl7/Me0eOUK1W2TA6Sl9/P1EYkkqnE7qCqmiqgQcAzUaDarUqZiFNTZFKp9m/fz9bt25N5K81TUsIXUoJrRumlMJQqgqe54nyv65z8JFHuHjpEu+++y4/9EM/tPQhmWUJgkAYuNSo8VyXTC7H1s2bGRsbo9Lff1uVv2437nmD74ZpmnzHX/kr7Ny9m5e/+U2OnDhBX7HIJrnozCjOvWQt1ut16pIXHyME/Tdv3syjjz3G4OCgoOVKkaIYOTNWVkw7KbsKiXpAFCW5dSV5EcUx991/P0WpvXPx0iWGpdKxJ6u5fhAQy4bsQqnE2LZt9EmJ7BWtgPcg1g1+FezcuZOdO3cyNTXFq6+8wnunTiULVB2RJ9c6uosUjffpp55ix86dwJK39X0/MXql8RJ4XuKVu1OKndwf1S+ayWQIfJ/Uxo0M9vczv7DA8ePHefjAAdG9lUqhmyZWPk8ulxPhWqUiaMySx76OdYO/LkZHR/mBH/xBwjCkXq+zsLDAzMwM9XpddPVnMmTTafwg4NLFiximSbvdTsr/Kkb3pCKymmynWvVWgy4XtXEUEcrmDKUVv3vPHia++U2OnzzJd373d2PKPt68NHY1U/aTQAX4uLFu8DcIwzDo6+ujr6+PnR0eXDWWNDyPE+fOYVgWQRQRy/SiWjjWG43kDRH4vjBKSTZTAwUUsSwRJY0ikKQ0XdPQDIO+wUEee/pp/sNv/zYnz57lX//yLyc0inVcH+sG/y1AyXzkpS78xOQkAyMjybwl5ZGrsiMrDEOh62iazNdq6LqOGwSk8vmEealGVRqyAUORv5TXTqVSjG7YwOzsLHEslIT/0l/6S7f3RtxFWDf4jxFBEJDJZJZxxeM4ZmhoSMxAkrJ+V65c4YPLl9E0jYOHDrFpy5aEyqBYl51jKrvxpS99KdGvP3z48K28xLse6wZ/k6FpWkICU8jKxm4QWZsPO9zrC1/4AgAvvvjibRkMdjdjPfC7C6E08D/96U/f5jO5+7Bu8HcZjhw5wpUrV4B1g/8oWDf4uwwqnDl48CCbNm26ztbr6MZ6DH8L8PLLL3P+/Pnk73Nzc8nP58+f5z/+x/+4bPu/+Tf/5qr7eumllwD43u/93o/1HO8VrBv8LcCv//qv89u//ds9f/fKK6/wyiuvLPu31Qz+6tWrHDlyBFgPZz4q1g3+Y8ILL7wAcFMHdynvvnnzZg4ePHjTjvNJxie6p/WThu/4ju/gS1/6En//7/99fvVXf/V2n85difVF612Cer2eTBtfD2c+OtYN/i7Bn/7pn+L7PqVSKQmf1vHhsR7D3yX4i7/4C8rlMt/7vd+7zoL8FrAew6/jnsJ6SLOOewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBn8LcfnyZT73uc+xb98+8vk8/f39HDp0iF/4hV+g3W6v+dkf//EfR9M0vv/7v/8Wne0nFPE6PhZ8/vOfj4H44sWLPX//0ksvxaVSKQZ6/rdnz5743Llzq+7/93//92MgzufzsW3bN+kqPvlY9/C3AEeOHOEzn/kM9XqdQqHAz/7sz/Lqq6/yla98hZ/8yZ8E4OzZs3zXd30XjUaj5z6+8zu/E8uyaLVafOUrX7mVp//Jwu1+4j4pWMvDP/vsszEQm6YZv/rqqyt+//M///OJp//85z+/6jE+9alPxUD82c9+9mM883sL6x7+JuPNN9/km9/8JgB/+2//bZ588skV23zuc5/jvvvuA+BXfuVX8H2/577UqJsvfvGLxOuy/h8J6wZ/k/GHf/iHyc8/8RM/0XMbXdf5sR/7MQCq1Spf/epXe273Pd/zPWiaxuTkJG+99dbHfq73AtYN/ibj5ZdfBiCfz/Poo4+uut3zzz+f/Nw9t1VhbGyMQ4cOAUsjLNfx4bBu8DcZp06dAmDXrl2Y5uojtfbt27fiM72gwpp1g/9oWDf4mwjHcZIx85s2bVpz276+PvL5PCAmbq8GNXL++PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc83MmrSsiwAbNtec7v1sOajY93gbyIymUzys+d5193edV0AstnsmtupsOYb3/gG1Wr1o5/gPYh1g7+JKBaLyc9rhSkKrVYLuH74c/jwYTRNIwgC3n777W/tJO8xrBv8TUQmk2FgYACAa9eurbnt4uJiYvCbN29ec9uXX36ZOI5Jp9McPnz44znZewTrBn+Tcf/99wNw/vx5giBYdbvTp08nP6uq62r4whe+AMCLL7647C2yjutj3eBvMp555hlAhCvvvPPOqtt9/etfT35++umn19znF7/4RWBp8bqOG8e6wd9kfN/3fV/y82/91m/13CaKIn7nd34HgEqlwosvvrjq/o4cOcKVK1eAdYP/KFg3+JuMxx9/nGeffRaA3/iN3+C1115bsc0v/uIvcvr0aYrFIj/1Uz9FFEWr7k+FMwcPHrxuMWsdK7F6rXsdNwxloJqmLfs33/MIg4Cf+1f/ik9993fjOA7f9alP8Q/+p/+Jw4cP4zgOX/yjP+K//Nf/yujoKNu2beOvfud3cv7MGYaHhrCyWVKpFGYqRUrm8VXuXaUm1/HhsG7wHwGO42DbNmEY4jgObruN7zjs2LGDU8ePM3PtGsQxuq6TMk2KlsUv/NzP8Qu//Mu0221+/bd+i1/vCG82btzItq1b+cm/9bdo1es0q1VmJicpFgqgabTbbZrNJpNTU3zwwQfk83k82+Y//+f/zPDwMIODg4yNjTE0NHQb78rdAS1eJ1bfEOI4ptVqsbCwQLNep91q4bsuge+jAWfPn+fs+fO8+PzzouAURcTig6TSaTKWxfzCAv/tpZd44803mZmbwzRNNm7YwAvPPcfzzz1HpVTCNE3qjQZ+ENBsNJiamqLZbBIDx0+e5Kvf+AZ9lQr/9Kd+CrvdpuU4uI5DBIxt3Mizzz/Prl27lr1t1rGEdYNfA3Ec43ke1WqVqWvXaLdahEGABqQtC9Mw0HUd0zQxDQM0jSgMRetSFOH7PmEUoetiqWQaBtlcjnQqlRyj1W7TbrfRDYNKuUyz0eDk++8zPjFBHIaMjo4ytnEjhUKB/8//9r9x+uxZvu2FF/jMD/5gEkqFUUS1WmViYoK2bVMslXj44EF27t5NsVgkm81imub6Q8B6SLMCURThOA7tdptWvU6jWqVWrxMFAVEck06lyFgWumEkYUsURXhxjA5ouo6maRipFCnLgijCDwJczyOIIuqNBulUikI+j65pOK5LHMekUilOvf8+p06dwrQsRkZHGRoaYnBgQIQ1rRbHjh8nCAIOPfII/X19RFFEGEWEYUghn2d0dJSZmRnGr13jlW9+k6nxccY2bSJfLFIql+nr66NSqSQP4L2IdYNnyZOrWLlVq1GXht6WRK6UaVLI54niGNt10RAPRxzHxJoGUUSoXpYdL81YPhSmaRLHMVEcY5kmnuuSyWaJwpCFxUXOv/kmrXabrVu3smXLFlrttnhwNI2UafLKkSNMT0+TsSyeffJJUpaFpmlEUUQEaPKYG0dG2Lt7N++8+y4fnD+PHwQMDw2xOD/PbKFAvlCgv7+fgYGBZVyfewX3tMFHUUS73aZWq7G4sECjWqVVrwsDAqIwpJDNkk6lsKSBGYaRhAfKmMMwhDgmCEPiOCaMIohj4YHlv0VRRBgE+L7PouPgBwGO4zA9M4Nt21SKRR566CHyuRwaYOg6mq6DpoGm8faRI1QqFZ575hnx8EQRmq6jaxpaHBN0pDKzuRxPP/UUJ0+c4MzZs6RNky1bttCs1WjWatQWF5mZnqZcqbBhw4brktU+SbgnY/goimjIBeHi/Dz1ahXimEw6jZVKoek6QRBgplKUSyWK+TyGYaAbhjD0KCKIIjoj4jiOiaOISBp+4PtEUUQQhjiui++6eEGQGHqj0eDa1as4cUwhk2FkwwaKuRzFfJ5cLoctH4qsZSW04eRY8k8NEUIZug66DlFEyjST8wQh/3Hi+HEOP/EEY2NjtGybZqOB43nkCgXKfX309/czODi44jifRNxTBh/HMY1Gg6tXr1KtVnEdBz0IyKTTZLJZ8tksmUwGR9J0U6mUSA12IQxDInnb4o4YPQyCxLuDMEwNkZ+PgSAI8DyPlm1z+tQpgiAgCEO2bt2KZVmkU6lEmUnTNHRdp1wsUi4UCOWbQ70pQvmAdS5EgygC+W+maZJKpdANg3feeovZuTm+7du/nVwmA5qG7/vMV6uEYUh5YICCDHUqlQqpjkX1Jw33jMG3Wi0uX77M/Pw8se9jyHRhX6VCpVjETKXQgEaziet5aEC5XF6R2QijSOTgpbcOpaePOuJ3Q9eFsZkmuqYRRhGe5xGFIbV6nfeOHSObzbJj506OHjnC4cOHMVMp0fgh3yCe79N2HHRdZ0AuNrOZDMRxcjw/DAmjiDgICNSD57rL1hAAfhjyxuuvU8jneeaZZzAMQ55qTNtxqDebGKaZePtyuUyxWPxEZnU+8TF8GIZcuHCByclJCAL0OCZvWfT391NSX6qmoQGe7+N5HnEcL/vCY8D3PDzPw5eG3mlUumGQNgxMw0i8KkiDarfFA6RpzM7McOr0aYaGhnjwwQep1+toiNY+0zRFujKOMUxTGO7iImEY4joOkxMTWJkMlXKZYj4vvDgi1Yn0yEEYkstmCcNQnKfvEwQBKcPg/vvv58jRo5x4/322b9uGlU6TSqfJZbOkTZNqvc70+DiLc3Ns3LwZx3Ho6+v7xHn7T7TBN5tNTp8+TbvRQA9Dcrkcw4OD5HI59A5DV1CtdRnLImWaeDIE6e5WShkGhgwZTNNEQ8qGSe8L4Ps+7XabKI6Fsc/OcvLUKbZv3crBgwepd/S76ppGoVBIHo4wDCkUChimKQpbmkbLtgl8n+mZGRZMk0q5TF5WYjUZ7sRxjK5p6KZJyjQhkyGWa4psNsv8/DyXL19m49gYQRiiOU6yIB/o76daq2E7DhfOnmVgaAjPcRgcHv5EZXM+kQYfRRETExNcunSJyPNIaRobN22iUi4n1c9uuK4rYuogIJVOU63VlsIUhFGm5QJShSkKYRiKmFvG6m3bxnGcJKvTaDQ4efw4O3bs4ODBgyIWj2NiELE4gKaRy+XQNA3bdbFtmyAMMVIpKqUS5TimUa/TbDYJwpDZhQXmFhcpF4vJ20gDYpk9Ug+eJtOaKdPkwQce4OrVq8zNzrJh40bx9vA8XM/DMAysdJooijANg4X5eVzbpm3bSeHrk4BPnME7jsPFixeZm50Fz6OYzbJ582bSloWuUoYdiKUHbrTbNNttDF3H6PDo6VQKK5MRr/aOB8A0DHzpVdV+/DCk1WolFVDLsnBsm7fefJOxsTEePnAAgMD3k5SmLj+LNPxsNksURbjS6HPZrChMGQZ9lQqlYpFms0m90SAIQxarVeZrNUrFIpVSCSB58DoNH0TotG3LFi5dusTevXsJogjPdfF8nzAMxWJcrgXSck0xee0azXqdnbt3U65UPu6v65bjE2Xw8/PzXL1yRYQwvk9/Xx8bN24U4Yss+iioDEoQBDRaLWq1GnEUkS0WSZkm6XSatGUtGUxXMQlNw9B1kaJEhEOO44DMruRzORzH4dVXXqG/v5/HDh0SeXUZYgDJ4lFBHSuXyyUPYtu2KRSLYltNE4vLcplSqUS92WRhYYHQ9wXHp9mkv1IRIYimCe63XASr8G3P3r1cuXKFa9eusWXLFtKmSRTHuK6LKx/0OI5p2zYp0yQKQxr1Oiffe489993H4F1OUPvE1JhnZ2e5duUKXqNBWtPYMDLChg0bRBm9I02oEAQBjUaDeqMheknjmEI+T19fH4Vicbmxd0CFHxpLN6/VbifGbqXTlEolwjDklVdfJZPN8uSTTyaqY7GmiUIVorjUC5qmkc/nkwVjs9kUawFIwpYojslls4wMD9NXqZCS8f7k9DSz8/MEMnUaSRJbJB/4QqHA6IYNnDlzJjmermlks1kqsuZgmibZTAbP87BtO1kAv//ee4zL5pO7FZ8Ig5+ZmWHi2jUiuQgbGRpKjCCW4YUy9iAMhaHX63hSpVfTNPK5HH19fei6nhhWJ2KEoXX+Lowi6vU6ge9jGAbFQoFCoUAURbzy6qvEUcTTTz+daNKo0CVcxcN3nqcyel0WwRqNRlK5DYMg2ZdhGJRKJcZGR8VDYhi0bZvx8fFlC+POmH7btm3U6/XlEh/SKaTTaZGWLBTIZDLEgGvb2I5DEIZcu3yZS+fOEa7Rn3sn464Paaanp5mZmADPI5NOU1ApvnR6maR0GIY0W60k4xIjsjGGaSZG1kv7UYUvsMRXAfmGaDbxgwBdGrsy4OPHjtFsNHjxxReTsr0qJgXSWDVNS9KXXQdErTJ0TcOyLHy5uKTVIp/NLj2MsrqqUplDg4PYjsPi4iJ+EDBfrdJstRjo78fqEIIaGR4mlUoxOTlJScb9KgWryayPlckwmEoxv7CAbdtEYYgts1apVArf99m6a9cNCUzdSbirPbwy9sjz6CuVKEipulwuByzNk7Edh1qjgef7xIjFpErrKSWBXl9cZ/jS6fE936feaBCGIYauU+ow9qtXrnDp8mUeeeSR5YUruWD2pcHrup7wbiKZtVF/xh2hiKZpZGVmyHWc5K2EPCe9qziUzWQYHRmhUiySMgwC32diaoparZZsoxsGIyMjTE1NLd0nedwwDMUaQxbQ+vv6yBcKIt+PcBzzi4s06nUunT27phLDnYi71sPPzMwwNT4Ovk9/pUKxWKRRrwtuiWkK44kiGjKNB2Cl02QyGQzlyeMYX2ZMug2+k6/SCcdxaLXbxJomqMLZbEK3bTabvHvkCFu3bGHLli3LPygXkSqcMQ0DT6Yz1bmo48Udn1HbpmTWpN1uYxSLSfyfpCM7DqXrOuVKhVw+T7VaxbZtFup15loL/PfFP2draTMPje3nrbfewnVdMpYlGJ8yU6RYmGr/WctCB3RZeAuCgGarhR8EXD5/nu179tw1lOO70uDb7fYyYx/o76fdbgvDTaWIwhDXdWk7TlKMyeZyZNLphOuiaRp+EIgvVnJPoIP/0uO4LdvGUcUpWaVUmZ8oinjzjTewMhkOyPRjJ1SKMInfTRNWkd/rjLfVOWUzGQK5eGy12xQLhaVz7CigdYZxqVSKoaEh6vU6b19+h98++7ssxDUucYkXx57jef1pJicn2b59e/LQ9GogtywLx3XFOeu6aHKRmZ2pqSkM02Tbrl09r+VOw93xWHYgCAIuX7yIFoYUczkG+vuTEEDTNJFTbzZp2XbyAJTLZTKWJdJ6hrGsGgoi197tJbvRarcTY89ms0LptyOcOHniBNVajcOHDmF2lePVAhME5RhWz9B0Qm2hYv58Loem64RBgC2FWrsfzO6/t/wWv3nht/g3F36VrJlh0OhnJzs5MvEeAwMDSViTnCfLm9HV3y3LQtd1fM/DsiysTAZNZpyuXrnC+Q4hqTsZd52Hn7h2DRwHAxgcHASWGImu52G7Lul0OvHqWctaEZ5oMn4OZDueaRjJK72XZ1eVUxDFm24a7fTUFOfOnePBBx+k0tfX87w1WZ1VhS9Ndkp1pgzVdcgPJJ9VhqgbBoVcjmaziSPz5CsW2irEiWPemXmXXz76K8zaQqP+KlcY1UcZ0QYoRDmsTIbZmZnkGFEH5TkJa+R5WOk0ruMIpmYQkC4USJkmjuMQhiHj4+O4vs/9+/ff0aSzu8rg52dncapVgjBkw8jIUlpPck1sx8E0DNL5vEjpyYpj9+3XNY0IGV5EkeCPr0IataVCAYjFsDJ2ZSDtdpu33n6bweFhNm7cmPBnkm4oSeONkfwa2xapT/kmIo7Fn53nKd9Uio9jmqZYA8j/QKRXa/U6lVJJXGPHG6Ptt/kPJ/4v/vTyny27lpCIcSYY0PrZmdtJOp3Gdl3qzSb5Hk0guq4nC1pdro3QdZGZ0jQ0XSebyeBK0t3s1BTHg4D9Bw7csTH9XWPwTrvN4sQEfhBQLpXIZrOJF2o0m8RqMag47CrNtsY+VcP1aqNoHNel1WwSRBGWZRHLY0WyDB/GMWdPn8bzfXbt3o0tefTJ4g9EilE+TGEQEEcRumz3S2ZVqp9VClSGQJHqZPJ9fKmOgPyM57oi6yPThJquYxgGpxbf5/96/zeZdqbR0YlYGZPPs8D23HbKMiV56dIlduzYQWaVFGNnd5e6DgXdMMgaBoau4zgO87OznDh2jAceeqhnneF2464w+Mj3mb1yJeF49Pf1CWMPQ2qyIGOm0xSk11HdSmsZexgEwtPKNjkQoYUikLVtOyn2ZCyLyDSx5UOl3gWNWo2rV6+KUfK5nODGyHNQBSwgWVs0Wy3Sstkkm8mIbYFSsUi5XE4eFOSbwQ8CkWfXdcGpUenLOCaH4Ph7noem63i+zRcuvsSrU0LZrEQJNAjjkIiIgAA/+f+QlJViy5YtHD12DLvVYmZmhuHBwRXMyM6cv0oAmKkUnozl1e9V3aPVbjM7M8OJY8fYf+DAHWf0d7zBR0FAY3YWx3GI4pihgQGxeJLVx1hWG4uFAs12O8nOlNfgcccgmjdkWrBt2/iel6Qv/SCg3WoRIxa02WwWQ3ox9WrXNY133n6bSqXC/fffv2rcuqK/RmaEei0Mu+nKMYgmEl1fVjgCQMp9uJ7HmeoZfu30v2fBWcDExOj8n2ZArGFholYeERGFMI/reRSLRRzXRdc0ZubmGBwYINcjvAl9X8TukhLt+/6ytYyGyOaEYYjtOMzNznLyvfd48OGH76iY/o42+CiKCFot6vU6YRRRyOexMhlcx6EhtdRN06RULILklnieR+D7OI6zwlvFkPDbq/U6rm2Tltuo/HMYBASeh5XJkMtkKJVKPb+wCxcusLi4yAsvvLC6sbOUYVHXAyuLRashWcSusr7IZrOcnjvDrx79d9Sp48n/dUJHx9AM9NgghYkeCo+b1bM4jkMhl2N+cTEpOk3NzDAyNEReFu9giUwGYh2jWhM7r02dr2VZaHFMy3WZm5nhwrlz7Ni9+44x+jvb4NttnFZLZAfCkIG+PtrtdnLzLctKqqsxItWXy2aFpoxtY0rv6HmeaOZQMbY0bFTxyLKE19V1Gs0mmq6TljSFXnBdlxMnTrB92zb6+/vXvAatI1xSBn+jr3mty+N3w9B1jlWPEWsx+TiPh0fclVyNiAgJCeKAOBJGaWCSstKkTJNcPs/45CTFYpF6vY7jOFwdH2ewv5+yVEJrS1lBXdcp5vPUZJU5CIKeHVHpTIZYvjmvXL5MNp9nw9jYHWH0d6zBh65L6HlCdi6KKBYKeL6fZEyymQz5fD7xMsqYspkMnuvSsm0mmk2sTEakHeVCUDcMUrLRIY4iiqWS6A6K4yRmT6VSlGTDQ7KY7MDxEyfQDYP79+9f+yI6Pqfy7ypDc8PouLZe2DO0hz+/9GW0WCNPniZLo3XCOEoKXjoGsR4RRTEhATlL1BLK5XISqvT19bGwsIDruszMz+N4HqZhEEVRIh6lGkoiqdywwtxjodOTTqchFj2zH5w9S1aS82437sjcURgEhK1W0gQRR5FQE5AU3IJMO6ovU5mVr0reMqvhBwFtmfLLZbOUKxX6KhUKuZzQfYEk89C2bTwpo1dQRSW52NTVIlTTmJub4/Lly+x/4IGVcXUXOh+TxLt/mHRdB6FrNTw79jQ/9uDfIG/mSZNGi3WCKCCIQoihkwmkoScKCtmUCFnUwjMGioUCW7ZsodLXh2WazC0ssFCrEUiVBNtxRLwvG1fUWzK5Xmns6twtyxJpS9fl/JkzydC224k7zuDDMCRsNkHTROweCxk6RVIq5HKC+6GMPY6x222qtRr1eh3XddF0nYKk6uYKhYQEpghQSX4ccQMU7xvJF18t5NA0jZPvv09/Xx9bt2277rV0mulalODrfV5dZzdU0eqvbv9Ofuap/zfPbniWfJwXhr1KMKRrOmiQN5cMPpbENHWswf5+coqK4fvoskE9CENs2xacHmn8dMTx3WcYx3EiP1JbXOTC+fPJfbhduOMMPpaGF0jBIs91E/HRTCYj6LYyL9xut1lYXKTZbic30kqnKRaL9Pf1MTgwICgFsJRmlAxF5b2jOKYl1XmzUo99NUxNTTE/P89+WU3s/g+kkcr9dhqAqrB+2IKMejhVIUulJUP57yCMfrA4wP+w64fYWdiOeZ1I1dAMctLgM5kMGkszZf0goNlsCvpENktRMkoz0ltrui4aUKIIx7ZZrFZFjUDTkt6DBPKtmMtm0Q2DiWvXllEZbgfuKIMPfZ/I9yGOcWxbvErDkFQqRTqdJp/LJdXNxcVFbMcRhSNdJ5fL0VepkC8USKVSSWxfKhaTNJsXBII92G4nX06z1SKUnJvsdbrzT77/PoODgwwND/f0n52pxaQ7SV2biuE7PLzy0MqoVcFJ/dxJN9Bk1TM5VtexDV3nePU4V5pXydN7sd2JfFpso2gYtm3TarVET65M9W4cGxOir7rO/OIimq5TKhYpFgqkJWXDDwKa7XbSG9AN9XYtyLbFyxcu3NAIz5uFO8vg5YJU0zRaMtNiZTKYqRS5XI6W9OiuVNzVDYNCoUCpVBKeSnrPhAQl95vNZChLSm0MNG2bRrNJs9UikAWowv+/vTcPkiu7zjt/b8l9qyUrqwpVBRTWBhpbo9ENoJvdTXSTsifksShSi8cjjSyFQlLMaCTZks1R2H84bIcVDoUccjg0ZsiirX2xPEGRbEmkRFK9sBeQQKOxdGPfqgqofcl9e9v8ce999TIra0ETQG84EQgAVZkv33t53rnnnvOd7wt0ZzvZ5NQU+Xxe1NzXuY5OjqnAbcEcvgU7wzJ+X/17o1tbTdNoOE3+4NofCuJWTEKY5KJZfmbvT5MKr2QcGIwPCDyP5xGORn1OelVaTCaTggSqp4eIHGCfX1gQTT3DIBGPC5y8nOttNpviO5N7qHbTdZ14NEq1UmHy9u0NCTXfD/vAOLzTbILjoCGiRiGfx7Zt0skkkVCIfLHoV2h0wyCTStGVyYgvowPQqt1ZTNMkk04LKgxEabFcLlMul9cnG/I8LrzzDrm+PvokYG2917f+t5W06b3Yes7/1ZtfZao2RQPBbBwnwU/v/Wk+u+0H+Z3n/yuf2foPCeki1fnM1n9IT7hHCCqUyxiG4ZcYk6mUSF3U52oa2d5ef6B7fnERV3Le67Iak5KrKp6HY9uiLFyttkoBaYLmJGyazExNsbS0tGb16X7ZB6YsqaK753nkFxdxHMdn4ypLrLthGCRiMcIBAFfQmVZzdmVqmMFJJlnK5/EQmPFms4nVbAremXB4BbZm4vZt8sUizz/++Hu6tuAX/14r0QrP0skWawv82dU/B6BChR69h13JnRzNHgEgHU7xc/t+lv9j149TaVSIEm1JK5Q0T7DZFDTDMMhms8zOzmI1mywsLdGVyQD47MixaFQgKiXPjW1ZlCyLWCzWUs2KxeOUymWWFhaIxWL+iOGDsg+EwzvNJp5MLerNpoAIWBaxeBxLTt8nYjEfMKZM0zSfm30jYDFlNQmtVYPbjUZDkBI1GjRk2S0cDos2umFw6eJFBgcGWppMa1Fyqk2mIlhtNBqUKxU0TfNBX64cJgcxvVWTKiCGrqNLpmJd06jXamLutq0EG7Q/uPSH1GwZMPBo0OBHdvwQjUYD0zT9wRHLtgl5IRwcv+kWDocJrwKeC1rINOnp6WFhYYF6rUZRliatQNVFl+jJcChEVQ5912o1mpZFLBoVpWBNIyZhyZnubhKSmflB2QfC4d16Hd0wcByHaqVCuVTCtm0Ssl6eSSZXRTSqConKkdezuozmGqJNHo1EiEYiAo7QaGBJmut6vS7426enyReL7D94ENu2Be+jpLsulcs05OvqjYYQO6vXqVWrfh6r8vJgiVH9HMSm9fz588ELaj1htXE1DAE8k8MX0UiEaDTKrDfP34x9Y/ntaDw19BT9kQFKpRIN2TxS5j/M4bBfMVIpx3oWk9yW+UKBskyFIqpEHHi/IXH7zWZTdGltm0qlQjQSIRwOEwqFqJfLLC0uEo/HBXDuAdn77vBus4knc/dSqUShWMR2HMxQiG5JKrSWI6ubvRFndz2PqsTghGXEUWaGQiRlHmrZNvVGg2KxyPXr14nH41y7do1zlQqVatUnU3U8D9MwiEejwgmjUZLJpI+IjEjIQlNG+mgsJh5iqQ1VKpX4xre+xXPPPUcqlRKRXzISK0qOQqkkaEB0XQDjJAfO4tIStWqVL9tfJayF5UY1RIQIu4u7uHXrFqFQiHgsRlbyaYZCoY7RVBFErZU2KUsmkzSbTQpy06+6ru3lVjUlZZgm1WpVRPt6HUeiT2PRKHPT03T39Phksg/C3n+Hl/IxpXKZkuR4CYVCJJJJUSZcz5EV9lzCV1cDWgF+yU0zDCJKXUNas9lkcXGRhYUFFhYWWFpawpa6TgohGY/F6OntJR6PE08kCCsHktUXBTf2u7PyQaxKItSYXFGUKeczTbOjGIHjOH4lRQHkmnIO17Vt3p49Q/1CgxQp/z1PJp8gpsdZmJ8X00hyhjeeSJDt6aE3mxXMyel0S4T3PE/cw3UaQ67nkUqn/RWtWC535NBXZspKWr3RoF6rCdpw1xXzwK5LpVwmGo0+MNjB++rwruviOQ6VapX84qIokYXD6Ibh08WtZ2o0D5aXZs/zWvJ6WKbCRu4H8vk8s7OzVMtl5hcWBNQY0Yjp7e7m0T17mLhzB6vZ5FOf+pRPq2FLIiRb5vyut0yupLgZ261creI5DrZMldS5luVqU65W0VTkDdTiXU9IZQJ+WqLq9rZr8eUbX/HBYQ4OmWiaf/L0TxALi75DsVTyhR8q1SqLCwvcvn1bFABkTt7b2+sTv2rIwLFK9STYPOvu6hK192aTcqVC9xq8k5omGNk0xP7JRvQ/IrIDG08kSKpKz32299XhvWaTRr3OonT2eCKB57oUK5WNXfwqEV3TNLwAxZ7reZTLZZaWlsgXCsxOT1Msl/E8j66uLrK9vTzyyCP0yOVVrThnz53j8cOHWyKhYuIF8XB4nicmoGQKooiWghwzasQPaGFCU4Ay13H8f3e4GDF0ITH4qkP84q1vcrl+pQUd+X/t+T99ZweBH3Jsm3g8LpgJ5F5naWnJX8muXbtG07IolUq8/vrrDG7axEB/f8uKo64jaOFIhFQiQb5YpFAqkUgmV938KsxSOBRC13WqtRqu61JrNLDk/SiVSusiT++Fva8O35AdU9dxiMZiZHt7mZqa8tF5a9o6uaYamp6ZmWFsbIypqSksyyIajdKXyzG6dSvZbHbVyHTjxg3C4TAjw8Prfo5hmhisLJMif6ZGCTMBbL1aLUA4ZlLSbrQMcav9Cfhpgwcs1hb5k2t/1uLse7r38OymZ1o+2zRNzFAIz7JoNJtCblPX6e3tpbe3l7m5Oebn50VTKBbDdhzOvP02nueRyWQYGBhgYHBwVTWQZDJJRXa780tLZOVwTsf7hHB6UxMUglVZp2/W65Rltcq27fuey79vDt+o1ykvLWFZFmGpyAH43b6NUritcHvPY25+nls3bjA5NSVwIPE4A4ODjG7ZQi6Xo9loUKpUWqoXQbNsm1u3brF169bvuWSmhIk1KYMTNLVSmIFVo/29wIrU7vcv/YFfhlT2M3t/uqNTRsJhX1squH8YHx/n9OnT5HI5KpUKuVyO/QcO0Gg0mJqa4vbEBBcvXeKdd98lkUwyunkzW0ZHW4dqNI1MKiVSG8uiVKmQSaVWnMPyy0W6aUgoiCrLzs3OkkylqNVqpNZ4/72w98XhHcehKPHWhmEIElAp86KwF2umNIEoqm5is9FgbGyMWzdvUiqXSaZS7Nmzh0wmIxQxQiHSqZSIwDLdcVdZJcbGx7Esi23bt9/VdXVENKqm010dqdWC771RuMnX29gIPjX8Aru6dnV8bygUwpBzvpYsCFy8eJFLly4xunUrjx08yNe//nWfrc00TUY2b2ZkZATLtpmbneX2nTtcvHSJCxcvsmlwkK1bt/p4IsMwSKVSVCoVSqUSMVl67HwhYnOvqjqxaJRqtSo0cfN5TNP8aDr80sICbqOBK2VoErGYj5BEArlWtWBnFUGTffPGDSHV7nkMDw3x2OOPk+3txXYcilLJQwHIFJ5FD2x28Tw/inrA9WvXGBoe7jjbGbT2RlAn/Is/1vdeVooO6dF/ffd3ZBNKfFLEiPBP9vyT1c9Rtv8d16VWr3Pu3DnGx8fZu3cvO3ftQvM8XwFEBRv5RkzTpH9ggP6BAQ4eOMDY+Di3bt7k26+/TjKRYGhoiFx/vyipyrLjYj5PLptdNbUJMjOYpkk0FqNWrXJnYoJoLOY/lPfLHrjD12o1HAn7jcVihMJhjFAIApu89YYkPASR6rvvvsv8wgKpZJJH9+xhy+hoS3Sp1Wq44NfDlQUbLX63FsDzmJmZoVQqcWgDMIIWZ/c6kzitxuZ1Vybfe2L6O5ydPyv+Kz/8R3f+KNloz6qrFYj0sFQqcfbcOQr5PE88+SRDQ0P+Ztq2rBVsadCK+DRDIbZv3872bdtYWFzk5o0bXL16lStXr7Jl82Z2PfKIGISXWJqOEjmBPYnq0IZDIdxIhFKlQj6f91UE75c9UIf3PI9SoSDU9GRe60NygxF3DeeYm5vjnQsXWFxYoKe3l2c/8Qn6crkV77EtC0uWIduVpv1uZzv2RtO4desWyXTap/ATP+58PsEIv5q7qTz8riad2s4PTaPpWvzOu1+U/xUl0r5YHz+047NrN4s8j1qtxltvvUWtXufwE08wtGmTf69t2xaYok6bRQVLDpYpNc3f9O7YtYuxW7cYHxtjfHyckZERenp7KZbLQjiu7Zr9s2w730gkQq1eJ7+4yFJ390fH4SuVio95D8kWsyHnSYMO38k1FhcWeOfCBWZnZ+nu6uITn/gEuVzOp6trt2qt5tfVV0jLrDKh07AspqaneXTPno5OrjhjOj4Aqzid/9C8F4cP/PurN15ksjoljqVpuLj89N6fImJE/JJm8AFWs7hLS0u8+eabmKbJE08+SUyWUtU1KAhER4dn7b2HaRiMjo6yfft2xm7d4vq1a9y5c4e+/n4i4TC9q5QZXU/w27iBgBKPRkXzsVTqyDhxr+yBObzrupTLZXTLAumA7QMXPktXwKHq9Tpnzpzh9p07ZFIpnjp2jMHBwZao3O5sVrPpf5Gdhjo02WVVxEaKNmPqzh1cx2FkZKTjNahppuWP1vzG0wpuSHVNgeHtuzZ5XeVmmT+98meBn8MjPbt5bvBZv0HVghqVf09NTXHy5Em6uro4evQoDXlfgmwDamijU0ojLxJdbjRXnp743Eg4zKOPPsr27dt598IFJiYmmJmZYe+ePWzdtq0FRxQ81yCUIRQOQ6VCXvYIhoaG7v5+bcAemMM3Gg1cy0KzbYxQaGV0B3/AWEWoifFxzp49i6ZpHHniCYZHRtavdnhiUl5F906bxeBYniu5JQHGJibouxtdUk2oZfhTTh2wKEFocFBNxG+aBZtSbYdXY4JfvvFlSs1SyzTV/7nv5/zjdFpbrl27xvnz5xkeHuawbJ4pfE4zsDH0WSDW2KB34qCHQAVKPsyRSITHDx0il8tx88YNzpw7x9TUFIcOHRJCbdCy1whCGXRdJ55IUFhaolgsfjQcXgt8uZ2cynVddE2QiJ54800mJycZGRnhwMGDYtCjg7V/EQ3L8sV81xrZM3R9GQogdZFmZ2c5fPjwhq8p2ETSAg9t0NS5raDnUBtnWSJdLQ+fLE/y7clvt5A3vTD8Ant6di93Z4Pv9TzOnjvHjRs32LVrF3v37vV/FQ6HhR6tZfkrW61aBTqvhEHTdb1V8jPwoLVfc7a3F4BMdzdjY2N881vfYv++fWzesmXFuQaDRCQcJp/PU5Vo0/tRrXmgDu/Ztk9Z5zd9AjfLcRyu37jBYj5PyDT99GVNa0tpGjK6x6LRNdMITdJ0qAg8cfs2hq6LDd09MlcCt2DjbGNB81yXL13/EsFdSsSI8pOPdi5DOo7Dd7/7XWZmZjh06BCjbcwKhmFgGAauJ5RPIuEw1VpNBJ/1Uq62KB8E6rVfWVQiR7u7u8lms9yemODU6dOM377Nocce8yWJoDXKG4YhiJ/kbG3XfdCFfSAjfrZtiyEPSfkQahvLA8DzOHf2LPMLC7i2TU9Pj+B7l2CrjX6OLYfAox3Qh0FTVRPl8ONjYwxu2nRXrW3/CjpFZ89rSWdWpeMLNKbaX3Nq7jRX8q14mR/Z8cP0RbPLG1P583q9zquvvML8/DxPP/30CmdXFgqFUFTcALVqtcUB17JgAFHp2WrXpuAItm2zd98+njp2jEKhwLe+9S0Wl5YCN6B1zxYKOPz9sAcS4ZvNJprj4EJH2IDjOJw8eZLFpSVy2SyxeJxKpcLbb72F63l0dXfT39/PgJw6Wi1a1hsNv+6+3iZRpRiu65IvFskXCux59NG7ui6VjyoCIo1A5JPH9lh9PE/9zKOVVhvAciz+6OIfy9+Ln2ejWX5ox+f816jjlkolXn/tNTzgueeeW7OsFw6HlwddPMH2G9ugw8NyCumuEt2VRcJhYrEY5UqFQrFIf38/n3rhBd544w2+/eqrHDlyxF+9g1FejXRWZap1r+2BOLwi6gSWifWlNRsN3njzTfKFAodls8cwTTZt2kS9Xmd2dpapqSlu3bzJlStXCIVC9Pf3+398gQIJRMLzNrTp1AMRfmJ8nLBp0t/fv/Z1BK7Hj2qekJnUgptH+Tu/y/oeKjR/eesvmanNkCDuf/JPPfqTRIxIy55lZnqaN0+cIJ5I8NRTTxFvG4NUpdTgdSv6PKvZpFqtbjx1kNFcAeI0Vu8gewgGt4pkkLNtm0gkwjPPPMOpU6c4ceIEBw8eZNu2beLeaWJU0zBNHMfxYdT32h5YDu9YFgaB8peMLq+99hqWZfHJZ58lGo0yMzvrb44ikQgjIyOMjIz4sNbpmRlmpqe5ffs2AN3d3fRls2S6uwnJAeyNpCW6LE06jsPE7dsMDQ+vWDncVWru7Q61WpTz3mP+XmwU+JMrf+bDBzxgd/dujg8db3nd2NgYp06doq+vjyMBbakVq0kg/QCR1li2LVLGu0hpAH/P5MjVa7WGmidxOeFQiIYUYutKpzFMkyNHj/LO+fOcOXuWaqXCXklsFTxeOSCqfC/twUV4y8KQQ8Mg0pxvf1tUH44fP04ykaApqytqhC5oiiOlt6eHvXv2UK/XmZ6dZWZmhqvXrtGQatiD/f0+xmMtxKWhC1HfUqlEqVTiwIEDK8pu3yvbbbCxcjf2R5f/mIpVJoGCBHv8zN6faakKXbxwgYuXLjE6OsqBAwfW/ozA+0CkDTU5FOJ63roVmtZDiQdHsRW0R3iPViXARCJBI5+nWquJqS35/v0HDhCPxzn3zjuYpsnuPXtwWV4NlXbUvR7wfiAO35D0eYoOwnYcTpw4gW3bvPDCCz5IS12cJ8W/VqQCqiKjaUSjUUY3b2Z082aq+/czcfs2C/PzFPJ5vnvyJJqm0dPdLTDdAwOkpUhwsF2PJshRDcPYGN9MB1uLW8V7DynNreIt/mrsa+IUZYR/euAp9vTsFp/nOLx1+jQTExPs37ePrdu2rQ0t6GCarmPqOrVKBTyPpEQodqq1d3y/tsxorCKy6uy2n0s0GsWQD0i9XicaqPdv37ED27Z599IlUuk0gwMD/gOlmCQ+lA7vym6emjs9c+YMi4uLPPvccy2IRIVi9BAVl44ROoDmA8DzaDabdGUyDPT3E4/HqdVqTE9PMzM9zeUrV3jn3XeJRiIi7x8YICel1w3DYGFxkWxvb8u+YqPmg9DWgxVsMMJ7nsfvvPtFPE9VbjRMLcT/tutHAbHfOXHiBEtLSxw9coSh4WF/wupuzQyFqFSr6LouJDjb6urBBmCHE215mFW3t5PpCvteLlOuVlscHuCRRx6hUChw6tQpnnvuOeKSudmS7HL32h6IwxvIPNfzuHr1Krdu3uTxw4c7Yi10qaO6UZZZ23FoNpt4gVJkLBZj6+goo6Ojgi1rYYHp6Wmmp6cZGxtDk1M/6UyGpXyeR3fvfs/XtlZUdNs6kevZyZmTvD33duDYGp8e+RTZWJZKucwbb7xBs9nk2WefpUc2d9ab/FrNVL07ERQ4Rh1yuXrUCXekxBHcNRw9aPF43FfubjabrYFM0zh8+DCvfvvbvHniBMeeekp8hhKNvsf2YCK84/h0DWfOnWPXjh2MbtnS8bWG3ExakrVqPWtKjplwOLxMOBrEa+g6fX199PX1sX//fiqVCjNy43vj+nXwPK5dv06tXmegv5++XO7uxswUJkex+8q/Hdf1lTM0TaMhI2GwaqImfsrlMh4uf3b+f9BFN6oQORga5Jns00zPzHDu7FlC4TCfeOYZUsmkiLASzch7oKA2DYNyuUwimRS0KKtcc/sq5bHMNrZRC0mVlVq9TrVWW7FyG6bJsaNHeenllzl/7hw7du5EN00qksX4Xtp9d3jFTGCYJleuXCEZj7N3DeUMUw76NjZIttm0LCE+JlXkfIzKKmlEIpFg27ZtbNu2je9+5ztMzszQJ2nkbt68ia5pZPv6GJB1/2RgAkcxEziu6zMXWM3mqlGu2Wz66ZnXIRcNljlfuf1t5mvziOlYYX9/+PtYWixw88YN0uk0+/fvB/B1XQFfPNhUjGW6kK9cL43yEOjVbF/fhmZJfU59z/MhxXcTGOLxuE9UlU6lVuxrYvE4+/fv563Tp8kVCvTlcoJDqK9vw5+xEbvvDq86ehVJh3FAfmmrWSQcRocNqUXYjiM6q5pgEwgiKIOTNR2d3/OYm5ujP5dj67Zt9HR3UymXReozM8M777zD2XPniMfj9Pb20tPTQ1dXVyvddTDvRURBpRYCctXRNJ9yOoi30TRtmbUg5PA/xv8HFar+RnVnegc5O8f1m9cYGBjgwIED/meqVQSkdpTj0E5Urc7DlGIGRptyYKVSwZFSQkpsYlVrS118DP1dYF2UEqIrSa46TZP15XIkUynGxsfpy+U6shB/r3bfHV6N7d28eZNMOk02m6WxygXjeX5q0rQsPNddNf/1PE8gMBGRRjeMlkEFfwleJdLlCwVq9Tp9fX3omuB8NEMhBgYHyfb1Ydk2S5KYaXZujvGJCQxdp6enh1wuR66/f1lQzfNWRCzHdWnKLywSiXSMuKoC8RcTX6FgF1p+91z0WW7evMmWLVs4ePDgimjqeR6e42A5DpZl+SuP2/Yn6MymrmOaJoZpks/nAcE8YEvBZP9eBzvIbefsKsCdJ8htVT6/nmkIag9bcm22f/+qEbZj61beevtt5ufmcHZ1ntP9XuyBRPi5uTkKhQJPyQ1Jo14nHA6vYA1QqYmh62ieR73ZXFEj9gJfRlPu5CNShLhTYhF0Mz9/1jSmpqYwDINoLEaxXKbRtpkyDIOBwUGGh4cxDIOqFNydmZ3l8qVLXLx4kXg8Tr/M+3t7e1ubMIHcd630Yoklvjn9rZaf7Q3vxZly2L17N5s2berYuNI0Dc0wMOXvgueuOtuu64pVUG4AbdfFbjah2WRufl4wp5mm6FJL3VU1I7DaOStqEVOCANXnqXNaLbdXgL5qtdoxXVWc/9lslt6eHm7cuMGRY8dWvW/v1R6Iw89MT9Pd3c3g4CCVctmnXVsx9yhTkFAkQl2SmyqHDy7hqopjy/Z2OBxeO32R5kmUoNVscufOHTKZjJ/3u65LSHZpTckaHPzSI5EI3d3dYnbTsgTkYXKSiYkJLl++jGma5HI5H/Ojlvv1CpJv6t/B9ZY3nSYmh5oHefqpp4jIa18VeCaPr0q5y7dR81cE9RgoLLxSGi8ViyQSCWzLotZoUG80SKfTq/JPKlOy8+r4QSdfz/HVSufIypp6SB25SrmeRzwaZfu2bZw8dYq52Vn2BODN98IeiMMvLi2xc8cOAKLxOI1mU1DfWVYrQ0EAF13VpNCWdMr2+VO1WTVDIX8p1trSGnFIQY7akIAp1SApFots3bZNEHlKWKr/AGpr87iHQiGGhoYYGBzkMcdhKZ9namqK6ZkZzpw5g+d5pNNpurq66MvlSHXYpAHcKN1kQr/TAlk9pD3G//rsPyCVTlMoFsXpbAC6u1550s/pJfX20tKSGHqPRFpovRVdeCgUEkxhbc5v2zYu+H2LTvdJ0XC0c/drmqBfcSWHvCo01CWkO2SaGIZBOpPBMAwmp6bWvu73YPfd4WdnZ3FsWwxaI8qOkViMeq1GpVxG68ApGIlE0HTdx7Z3ihaq9t7ywAQioStz/IbkY1dm6Dp1WS4cHh4mnUyyJBl7g7m4D39ty2Nboq0nCEgzmQyZTIbdu3fTbDaZnZ3lzuQkU1NTjI2Pc+7cOfpl3j/Q3++D2yYrd1quKakl+afHf4l0qsuPpGuuEOulEgqUJQOGOvdisUjTsujP5UinUoIevNHwc3LXdf17FzJNwpL1wXUcHPk5Kh1VKVvw84P/b/9dNBoVogmNBqlkUjAKO04LpFtDYKQm77Ten3th993hb9++jWGaLeywsVgMVy5rlWp1RQQMS+JNS76mfcDYkZsxDVZopdqyha1KgiBuYEQqVJiGwfWFBXTDoLuryy/jqXKbWmaDlHfK6fyVRiL7IIBJlw4VDocZHh4mm81SlRKPxUKBmZkZTr/1FiC+zP7+fnZEd5DwYtS0GgYmv3z4n9Gd6vGP23IeAVOUIGpT2dLSb0/rOnR7FxcXhVP19PjpT9jzfDoTW66+tm1jyT8KbAesSPfWYh1u5+2PRiIUEQGrWq36+wvFcuC5Lq48txs3b9JoNDoyK79Xu68O73keU1NTbO/vXyHmFZeKfLaUSVSlO1gm3rQsi3K5vIL/0ZLOrOTiQSy11VqtpZxpGIYQEJDlQWWLCwt0ZzL+55kSkroqnEGddxAlGYxiLGPENYUmlI7XlckwODjI7t27aTSbAvIwM8OVa9ewLYsfbn6OhdgiT+58ksd6DvoPjyo9em2pgf/5rIT+ypNc9fyVzS8skM5k/ChtGga2ZWFLxcRQOCzUyh1HpJ+S4lpF46ACurr+te6ZJ1dCzxUq56ZhUK/XKZfLhCVXvGkYfvlT8zx6uru5dv06ExMT7JDp8L2w+x7hnQ5OpGrWyUSCUqmEI50+IZXjXM8jFo/7iL52h/crBXKZrUrecXXscChEJBJZtU48v7DQgn1XNH/2KlGqkwVH3Ly2n2tI4Fgg2qoK1ObNmxkeGuLUqVPcuXOHiB5hh7mD2+/c5s47t+nu7mZgcJCenh5fKMw/JssbVAXVEBd9d2jMhfl5coHrVzX6djiHbhjEYjGikQgNy6IqtbYc26ZUKhGR8jZrVaH85lqwZKwai5rmC6KpQKFeF5VsdPdavfu+R3gCjtH+O6WYXSyVsKXmUSwW82Uq81Ki0rLtlrRGLYNWs9kyKBAOh4UC3RpfQL1ep1yp8GgAHakqDqplvur7pQOr6wpG+OBWObjvaD9Ws9HgzRMnyOfz7Nu3j9Nvv82RI0fELMDMDDNTU1y5fBnbcQiHw/RlswwND/uAN9UA8ukuVtmwrnYdSo+1V2FxkCkK+EC09vdpuo6hacTjcSzbxpTnUZOpYzQSEX2QDucRLBer3omaEEPTVqQr6vqMNkjzvbL77/DQMnygTP1fl2ScpXIZu9mkLJfMUDgsGhWO05LWuJ6Qmq/W66TkimCaJvF43HfcVbnWgYXFRfC8FuCakqCxJXTAb/KoHFn+m8DfLXQTHZyuk8OXy2XeDADAgvuWaDTKli1b2LJlC57rMj09zeTkJIuLi9yZnEQDent7/bJnKp32I7vix9kIKnNhYQFPHkuZrutCkEE2rzqxKqsKVyIeJyIrO6ogUKnVMDSNSIfB+WDJUimh6JpGSN7zwAvFfVWAO/kQ3mu77w6vInm7BXfvuiY4w2uIcmOlXCYSixGPxagH0hrX81gqFKjW6z62PhaPr0yZ2unhArYo5RLbQUmmYWDLBsxdj+StUiFR16Y+94033yQSiXD8+HESyaTf7Ww3Tdfp6u4mFo/zaCQCnicmvWZmuHT5Mu9euEA0GiXX10f/4CD9fX0rnb2tNu95gpZjfn6eeDS6oqFnGAaOpuFI4eGWS3FdLIWfkelHNBIhLCU/680mjiTaisZifuVMfb7rumLYRFaAUqkUDbkvsOWKoe6XPwr6YYzwIL48x16J1VBLnXoodE0TOXy9Tr1Wo16r+ehHq9GgUqvRlA0rEJFGDXWsOHbblx20hcXFVvlJeQ6GaaJJhb/1GA/U+9b8fSDC3759m1OnTtHb08OxY8cEy9Z67w8wHkRjMbZu3crWrVsF3Hl+nqnpaaanprh16xaarvuVn/6BASGe0GFF9YDpmRlyAwNiPxDgxDEMA9R31Xb9Cp5gaNoKRcBoNEooHKZaqfgylbYUnlAgwFq97t+PZDLpU7UoYJ3aawVnn1XK86EaADEMg75cjrmFhY5Kb4CfNiiLSS7IarkMMgIokqR0Oo3neSQSCVLJ5PpjbR3SjHw+z85du3yKPGWKOsR2nDUxPMHzXuuzVI599do1Ll28yPDICIcff3zDtNnqaO2wAt0wyPX3CwGD/fuplMtMzcwwNTnJu+++y/nz5wXkYWCAwYEBstms3yQql0pUymX27d27YvrLVBvXDiujwgStVgQw5F5Mr9UEI4Jt0yyV/L2NJ9OkWDzuX49hmtiNBrZEexJwdk3TWJqfxzDNVWkP36vdV4fXNI2hoSHOnTxJuVxeobrcCZwEospiZDI+K1ZTNkG6Mhli0Siu560LTe3UjFHVnJRUxAuaoes+Wb+1TnlSnfua1QnX5dKlS0xNTbFn92727NlzV9WU9eZh1dknkkl2JJNs27YNq9n0o//M9DQ3b9xAl/MA/f39NJpNMR8gm4BBU3X29nq6n8543pork2J603WdQqFAvdkE1yUSjZJMJJYrMdJUZcxRwDVacTqz8/P0S7mde2n3PaUZHh7mjVdfZXZursXh10sJVPktlUpRKZWwPI9iqeTnj+uN5Gks18WV85RKJfC8ztzliAjmOM66Dt/J2YNsuLZlcfbsWRaXljh06BBbt25d52o7mIq0q600HXJbIyBggOdRKpeZkZNe58+f91fZCxcuMDAwIDSZ5Iqj4MueJkWe5bhlUzb4lEr4WvfEsixqUjlcbzZBNag6FC0M0/RXVE0O1KsIb5gmS4uLPCnBhvfS7rvDx+Nx4qkUczMz7AhIyHjIKNxhCXVdV+C1HYdoJMLApk3k83lR+5X6nqVyWTQsVnN8TfP5YpSVSiU0w/Bhve0WDoV8kqK7Nrks12s1Xn/9dSrVKgcPHmTrKgxg65l6eFaj+PBLkurjO5xPKpUilUqxY+dO6rUaX//618lkMty5fZvr165hGEYL4E2X9IOO6xKSiiANNWCzSjrjeZ7ARTUaWBJ6oGkaPT09oksrHwI8ryWIKEyPivCwvGFVCt7vKVCsY/fd4ZVm0PidOxys1XwctKdazm35r6LVVi3pZDJJPB6nUa+LZoXroktS0GajQUjW3oP5pbqBRiDqgnD4ZCKxappgyiESR8JqVxM967Q6aUAhn+eNN98E4PHHHxcryV02haAVKrAqp02Hqsxals/ncRyHw4cPk0gmKRWLTM/MMD09zZmzZ+HMGZKplBiGl0wPjnJI8BtMPmpVVrSacibBk0S4ISlrD2LFrGtay8ZV1d3VwI4dwO6DWGlu3LxJRG7U77Xdd4c3DIN9+/bx7akpLl64wOHDh0XkDbSlgw5UkXKGmqaRTKVEbi07fmXJo5JJp8ETbAVNWVkxDaNj58/vSiIcfr2c0DRNn2x0NYdvB5QBTE9Pc+LECZLJJEeOHv3epnXaN8T3wKZnZkgkEmJoW9NIZzKkMxl27dqFFQS8zc5ya3wc0zTJ9vbS3dNDfy7nox8d18WS0G3VgNNktSYsFQODFpWNwLqEIGsSNqIUzDWJnbFtGzQxy3z9+nWOv/DCfRFFeCAOHwqF2LFzJ2M3brBjxw6SQd1PbZmTsVqr4dh2i7MrS6dSLC4uiiaHrhOLxQTXSaNBo14X0ca2MXSdsIwyIdPE8Dy/C1osFtm8efOa5xuWrFyWZa1OUNS2Kt28eZMzZ87Q19fHk0eOCOCbJJV6LxbcsHY8xt3Wpj2P6akpBiTvS7uFwmG/m1uWanyFQoGpqSmmLl7kwrvvks5kyPb20tXdLapliO82IpVc1FE7iSdEIhHRZW02qddqmLLp5Jem5b4J4Nr165imyVOf+MTdXeMG7YE4PMCW0VFmJie5cOECR9smWTRErtiUuIl4PL5igxSR+bquCcl2NSMZl1iPukx5lJpcXTanwpJ+z/W8DemAhkIhqNV8+EKnUmqwe/juu+9y5coVtm/fzr59+8RGbCPQ3jVs3fy9w89U0Ojk0EtLS1QqlXWpx3W5yUwmk3TLUcZmo0GhVGJhYYGx8XGu3bhByDTp6+tj0+AguYGBDV1nJBLxh3YqbaJnqgpUrdeZmJjgwP79Kyp698ruO122aZp+BeDRPXuYuH2bqTZgv+O6YkId4did6r2eJ6QnQ6ZJuVJZkffF43G6MhlSqZSADMsKQK1ep1gqMT09LY6xDo+i6uBquu4D0jqZ4mK/cuUKBw4c4ODBg8sOuk5JcV27Sz4bZat93sTEBJFIhOw67GoKQFapVllcXKRWq2GGw+RyOfbt3cunP/Upnn3mGbZv20a1WuXUqVP89V/+JS+//DIXL11qpcHucOxYPI5iLavXan6EV7MNVy5eJBqNsnPXLkzTZHh4GE3TeOGFF9a99nckZZ+mafzH//gfV33d/e+0SoBQzbbJ5XIMDg5y8rvf5fnnnxd4EJZlV0zTXDWNcB1HPAyGAa5LPp9vwdirz1LpjKdyfLlyFItFMeTseSxJEdxQKORP2QRNQZObzWbHPLJer/PmiRMU8nmOHjvmiyio8lqwofNebM0avEIUdvpdp2ab6zJx+7Zwng44FzXyZzsOjmQUqNXrYgNqmiLIBMb+otEo2d5e9uzZQ73R8Dl+rl27xoULFwTgTdb9c/39LdUdXdOIx2JUq1WaliWCltwX3Lp5k/n5eT7xzDP+PT969Chf+tKXOH369Lp9j1/+5V/GcRy2b9/OL/zCL6z6ugdCxBSJRKhVKtiWJVimXnmF1994gxeefx5N1/18dy3SHYUvT6RS1Ot18oUCyQ7TUsrUgxaJRHDjcSYnJwUWOzC0bFmWgCpLAJqaaQ12Xdv5DcvlMq+++iq2bfPcc8+teOhg7eGNjdhaKY0nDtz5mlmZ7szPz1Ov1xkZGfE5O5WTq0kjBZDzPM+nO4xEImTS6TWHL6KRCFs2b2bL5s148rOmp6aYlJNe7YC3dDothk3CYRrNpn9/p5aWGBsb4+DBg+QCGlvHjh3jS1/6EoVCgStXrvDII490PI8XX3yRb3zjGwD8+q//+po9lAfm8CBSl1goxNOf+AR/99JLnPjOdzh48KD/mpDMtTuZK29OMpEQX5xUfe7fAFGP2kjFYzG6Mhm/uWRblsgfHYeGnK4C4aiNeh1HsgsnEgkMw2BpaYkTJ05gmCbHn32WxCrp0bqAp0ANveNwxxopzVrMAMHPdyXycWxsTOx3TJNCsbgCrqtSOEUzXiqVaDSb6HK13KhpQF82SzabZc+jj1KtVv1hl8tXrvDuhQvEolHB7dnXRzwex3EcCoUCN2/eZHR0VCj+aRrhgMMrO3XqVEeHtyyLf/7P/zkgxCA+97nPrXhN0B4Mt6RhEIpE8Gwbx7KIx+M8dewYr776Ku+cP8+eRx8VD4W2coYUxBfk2DaaJ+iZu7q6aM7OCgaEVGpD5atms0lYTs37HPJSs1SNsqmpH9UjaEqZR9fzmJ2d5eLFi3R1dXFg/34fGKVpQspekTCJE17Gyavzx1se4vCHN9qWabVsB/cmPvRYvs6n9JOpjf93kJJDqq14rsvk5CSDmzYJrD8CQmGapj+43oLtkU0kYAUUYC0LolPVO+Lx+DLgzXWZX1hgRj4AY7duoes6sXiceqNBKpPh4IED6LJil5CNwSeeeEKMHNo2J0+e5Md+7MdWfPZv/dZvceXKFTRN4zd/8zfXPdcHJogQiUSo1mpCnS0cJtvby759+zh79iwegad5NSCW/LeG2NjGYjGcapWFpSWG1hM+Q+TdiQ4pk5qkD4VCIH+v8lnP82jaNrdu3uTmzZvk+vvZs2ePzxvpO2IgZ/cflGaTUGC00C8xBvoPqlZvWZY/2aOm+B3HwdB1n8hKObDjur5kvB+t5f2x5QCLh0iHlpaWaFgWIyMjJJJJ8WCusRFW5Fewhm5rB1vRLZf3RK1Guq4LKHMuJ6oxlQpXr15lbGICF9jzyCMt59Ul0ayxWIwDBw5w+vRpTp48ueJzFxYW+Lf/9t8C8BM/8RM8LhVk1rIH6vBlXccOjGzlcjn2HzjAxQsXePWVV3jq6af9aB3koQlOFynr7u6mJiHDG2koNep1ugNDD2uZoqeLJxJcP3eOyclJdu/ezc5du3BsWziG5/mbLlc6oXI8Sw5BA9TXcLBqvY4rHVxNdHmaJoTcXCH/YrSBuZzAyqBry9R+mqYRQT5YhoGhaVy5fJl0Mkl2I/yMnkejXhfHuRu5yA4BKjjM0U7XAWLE8uatW8QkqlM1wzyEkwdX7GPHjnH69GnOnDmzYj/1r//1vyafz5NIJPi1X/u1DZ3uA3P4cDgsLh7RVVM3ItfXR+6Tn+SNN97g5Zde4qmnnyaTTvvNohZuE5Y3goZpCu6WQoEledFrDW7U6nUGZMTdyFBB07I4/fbbzM/Osnv3bnbv2YOGlH7sgN9RcABXsgWrHDgajfoPbDAaq/QCGQFNCaYCOXJnGD76UAMIpEy6pnWM1GoFUOd/584d9sjzbsferLjeZtOHB+jh8KoDNJ2uu/2oauVR37cy13W5ePEily5dYmBwkK5MBj3ICcpydFd27Ngx/st/+S9Uq1Xeffddn2PzwoUL/PZv/zYAn//859m0QbnRByJbCcJR48kknuSbUc0ZU1J4PP/885imySsvv8z0zEyLhioEqg+BL60rkyFkmjiuy9Iq00PI46gS43oDxx5QrlR4+aWXyC8ucujxxxkcHFyuya/ysKgcXlV5wuEw0UhEaJbGYsTicQGkSyRIJBIkEwm/JxCPx0kkkyQSCT/CqbRN/VsNpRuGsXpaEri28bEx8DyfllzTllW8O0XkRqOBh1Qv11YfoFnxkZ3uYxuoTdX3T548yaWLF9m5axc7duwgFA5jtBUqutqqXsGNazCt+ZVf+RVs22Z4eNjftG7EHpjDg9yMyLy0LhX31FIej8f55PHj9GazvP7aa7z11ltY61FmaxpdXV2EFAZ7FeU3RTOhqkUr5i7BT00WFxd56aWXsGyb48ePM9DfDzIvV5+53jl1/PcGLTjp9F7Lmp7ncePGDQaHhgh3KCsq51eO32g0/I26ev26YgRrnJvW9kDNzM7yjW9+k8nJSQ4/8QTDw8PgeYIpWiE0JSlru8Pv3LnTn1A7deoUAH/913/N17/+dQB+7dd+7a5E2R6owxuGQUS2lJuSpiEYrUzT5KmnnuLgY48xMTHBN77xDaHWF8jh250gLqOiYRjMzs11HCes1+ugaT5XozwQsOzonucxMz3Nq6+8QiwW4/njx0nLOrQGft36Xs9Ytptfg7/budqAzc/PUyqX2b4O2lBVgBQLczQS8QUpWsidOtia90He20azycmTJ3nttdeIR6O88MILvkPrhoEum35qOiwd4AoK2tGjRwER4W3b5ld+5VcAUcX58R//8TWvsd0eqMMDJNNpPImK6xRFNE1jdOtWvu/7vo/ebJbvfOc7vPnmm/4sayfr6e0lbJq4rstCh/a2arD4G0Pp5IpeD+DGjRu88eab5Pr7efbZZ/2HQ9d1UW0BMcVzn80vSXaIoBuVgLl+4wbpVIreDQi1qZXWlCC/YFVpVdPW5t70PI+x8XH+9m//lqmpKR4/dIhnnntOkDupfYKk9QgFWMy6O0ggwXJac/78ef7Tf/pPXLp0CYDf/M3fvOtV8IE7fCgUwpTlP0vWsYM5nIKcxmIxjh09ylNPPcXi0hKvv/464xMTHbWfdF2nu6cHU9cpVyqUAwoZ6pjqtqhoriocnudx/vx5zpw5w/Zt2zh65MiKoRKFzbEk5mOj9l5SEh9W0B7pNvC5GsKBpyYnGd0Alty2bUE5jiA+0iRkV31Wx2vtVJUJWLFU4rXXX/f1Yz/9fd/HltFR0d2WASMajeLJzb1aDQxdp28VYWjl8M1mk3/5L/8lAD/8wz/MM888s+41ttsDq9IELZ7JUJyf91Fy7c2XoA1t2kSur4/Tb7/NlcuXmZiYYNeuXWzburWlWhKLxUilUhRKJeYXFlqYx1zX9UlAg+bIhsbtO3c4ePAg2wMTWUFTm0VHinKtq3zxPaQ9ilNnVcnOtT5W03wWg/Vg0B6icoXEp/sPuQwE2ircPp2qMiAGTC5dusSdO3cIhcM8/dRTYtRQvqciWctM0yQUDosehOf532HfwMCqnd2jR4/61TVL8tj/+q//+prXt5q9Pw4fj4Np4kni00g4vDzy1+FLDYVC7N27l02bNnH79m3Onz/P5UuX2LFzJzu2b/ebJF1dXdTqdRqNBvMLCwwODPjpS/uD5QPACgWOHTu2blkrEg5TdRzBqLuOwyu8y3vZcvqTTu8hh/c8jxs3bzIyPLzuOTbqdVzbFsMbnfAyq5Q+269pfmGBS5cuMTM9TTKR4NDjj7NpaKglJavXan4qk0gkfJiwxzLPzeDQ0KrnqpiZL168CMAv/uIvvudpqPfF4QFS2SxLt29Tq9VIJhJCicLzVjimMl0Ofezfv5+9e/dy9coVLl28yOXLl9m5Ywc7duwgHInQl80yNTVFvVZjMZ8nI+mgFUgMxOTT62+8gWPbfPK558h0da2bqkTCYV+Vz7KsNR3qe9nWqjp6u8NvRB7y9sQEtVqNbausVP6xXNevaMWi0ZWOHSwrKthAMNUB5mZnuXT5MnOzs6RSKZ548kmGh4YEGFBOL4FgnFBNOEXTUZOpjS6BamqoZC3L5XJcvHiRvr4+/tW/+lfr3ovV7H1z+EwmQ0FyxyvK7GBjqd1UDdl1HOKJBAcfe4zdu3dz9do1rl69ypWrV9m0aRMjIyOkMxkWl5ZYXFzEDFQBdE1jbn6eE2++STQa5dnjx30m3PUaM5quE5PwiHq9vm4EVc2iu7VgWbL1F+sDxq5cvkx/fz+ZTGbN11ZrNYEBkulFu6l77QX2E56EU0xMTDA+Pk6xUKCrq4tjx44xMDjYcr7q345ti7QJUQEyTVMMhjcaeNoyqdOmoaE19zsnT57klVdeAeDf/Jt/s+71rWXvm8OHQiHi6TTlhQUhdFWrEYnFVnU83VgpxRiJRtm3bx+7du1ibGyM8bEx3pyYwAyFyGazpNJp5ubm/Jr25OQkZ8+dI9vby9Fjx3ystiarButVQSLRKFXZNFtT6vE95vDBz7/blGZqaopiscjT62zkmpaFY1l4mrb6CGPAbMvi9p07jI+PMzszg2YYDA0Osn//fvraKP6CKal6QEAMbAflexqNhp+/J9PpZZHlVezzn/88APv27eNnf/Zn1z3ntex9c3hN04gmEtjVqmAB1nXMQOu/E+8LsqIT5IABAVvYuXMnO3fuJJ/PM3brFmNjY9y+c0d0LCMRXNflzJkzbN6yhUOHDq0YIfSj2hrnrOs6EcmbXpNkrutc5F3dk6By991UeDzP49KlS2Sz2RYawU7Hr1WroiojGX9Xe93CwgIXJZGU4zj0ZbM88cQTDG7atLaIsfxeaipvl6koiPtrS8VBldP353JrYu6/+MUv8vLLLwMCGfm9Uu+9bw4PojxVTySoLy3hOg6VSoVkMilyyrYoqfLMRqPBz//qr5LP58n29fEbv/Eb/k3wPI90KsX+/fvZuWsX/+7f/TuazSYNy2Lnrl1sGhjAMAxmpqfJ9vWt4FpZi4S15ZzrdR9KvBqzgesJ2DEBgJnreWIiSp5rWY41VspldClKUKvXMUMhQpKRVzm/vsZDMDs7Sz6f5xNrRHcPwQgBAofU4mSeR6lYZGZujrmZGebm56k3GiQTCXY/8ggjIyPL3UwJE1gtsoNwdksSOMVjsZY9gto7GIZBpquLLsWDL61arTI5OUmpVOKrX/0q//7f/3sAfu7nfo5PfvKTq17fRu19dfhYLEY5HCacSNCs1Qgjbki0A4xX1wRW3jRN/uEP/AB/9Id/yPzcHN/+9rc5fvw4gL85dT2PL3zhC9waGyMcCvGZz3yGWr0uSIgmJ7l+7Rq6ptHd2yvAa7kcPVJ2Utf1FV9oy3nIRpTbaFCv10kmEr5z27aNY9sUy2X/36qC1LJqKTShIg5FTO4rLL4nFb4t+T61BzF1XbB6KbFhmeZdvnyZrq4uctksTals2G51WZXxNM1nZZ6bnWVmbo7ZmRnq9TqarpPt6WHL6CiZdJr+gYGVD7QnpqJaeieBkcOgOEUsHl8hflaTCNGQaTKyZYsIcIF7/cd//Mcr0pYjR45sCOu+EXtfHV7TBDvWUrOJJimXa/W6GBgJh1uivKZpgnbOcTh+/Dhf++u/ZmFhga98+cs8++yzy8Ao4I/+6I84JfWU/tE/+kccPHiQ1197jVwuR18uRywSYW5ujpnZWa5dv87FixcxTJPe3l66JF9LOp0mnUp1rGBEo1FqtRrlUsmvJwdNQYXVsIUeiNBBXLziUoxFowIiW62iI/Y3EdmVVAMqriaY1DzbBtumLq+3VCoxPz/PkaNHV02hKuUyM3NzVMplarUahXyeoqQd7OruZmRkhJzSmjUMCoWC0HVaaxOvtZKxgojsDVmRUbOwXoD5wbJtf7Rv+86dxGKxFTiY06dPAwJOPjo6yo/+6I/yL/7Fv1hz/PNu7H11eJBRXnKgu9Uqrm2L1EbXfd0fNVhhGgYNmft99rOf5Ytf/CILCwu89NJLvPD88wD81de+xt/87d8C8A++//v5X/7+36dULgt8iOtSLpUwDIPR0VFGR0fxPI9CocDM3BxLCwvcvnOH6pUrgpdS10mnUnR1dZHJZEgmk4QjETyg3miIKO66vkaRGRgI9zyPZCLRAvttN19jSc7TGrqQi4zFYn7KodIfpbOqONVt28b1PK5duyYIluJxSqUSlUqFarVKoVikmM+zWCgI+hMJQ05nMvT09rJ79276crkVzR6/NMw6neK2h7xWq/kDJPFYzK/+KME4EOzFeB7JVIrBTZtIBfmJpH3hC1/gC1/4wtpO8z3Y++7wIAhTFy0LLRxGl9wy5VKJdDrdUq0wTVOoyzkOzz33HH/5V3/F1OQkL371qzz3yU9y6uRJ/vRP/gSAp596in/8j/8xsKxSHZFU3IV8Hs916enuRpOIy66uLti5ExADHIVikXw+TyGfZ3FpibGJCT/tUOwIoVCISDRKOpkkmUoRk1Bg13WXN1cd9iOrmV+Dbxck8ASVdE3y5tfqdWq1Ggvz8ywtLhKNxXjt9df9kUQ1FZZOpxnetIlYPE4mkyGbza5Z/WmHZK/m8B5yYy3TrZokwlJUesrZ9cAqoPhoLNvm0Z07/Qf7QdsHwuGj0SiJRIKKnBzSZeQslUqCVk82PVTOats2eizGD/3QD/Gf//N/Zn5hgd//vd/j1VdfxfM8Ht27l5/72Z/1Uxy1KTJDITKZDMVCgaIU/e3pwDoQCoXI9vaSTqepZLNslrl1rVYTFBNS7kVF0zvT0zTHxsTcLcuVHk3TfDkdlXMbhiGYeGWnGeDtM2fQJKBOAd0cOYRtqbG7thQiFAqJ0qhh+JWOcDiMJjl6zFDI3yCGTJPMKkhEZaruvhoq1X9dGwxERXaQ3P4yZ9cJDJ14Yqyv2WzSm8vR3d0tAsz7YB8IhwdIp9OCs9Bx8KQOkO04FEolkUtrkrTf8/x502NHj/KVzZsZGx/3S1cjmzfzT3/pl1pKZ7p8ryU55jUE9qNYLOJ6Htm2Up6SaGnKAW4klj4jFUdUJHZdl2KhgE/wpGnUajWWFhZEtUURhsqVwXVdHAkzVjKQrkw1otEo4UhEcLdI5jWlrqfSpaiU6olGo4yNjfH2mTM888lP+s7jD6RbFqVyWXQ8ZaBQShudHFnTllmc1WRWxyET9dDJv2uyWgX4hLa24ywPkGhyIN3zyBcKmJEIm7dsETMMdzNGeA/tA+PwmqbR3d3NvOOIiCErLrZtUy6VSKRS6LI76MhIaJgmx59/nt///d8HRPf2//n855d1RAPHD4fDfvVAOe5SPk+lXMZzXfoklLbeaAh5RsTmMyJ1RH38fFtzKCpVxWv1OplUikg6jSnb6/FEgkhAea/d8lKyfv++fSSSSSrlMoYUeYPlAe12s22bCxcusHlkZGWklPsd3TCIR6MCryJ1UZvNpi8A7L+c1iHs1UigtICzu65LtVr1Zw9ikkhV1daVqcpUsVik0WwyNDLCpk2b3pdURtkDhwevZYZh0NPTgxGN+pEBoCmd3pE7fl2mNdNTU3zpS1/y399oNPzI3v6FhSORFuq8dDpNT08Puq5TrVaZnZujWCpRlQzFuq6TTqdJtDlI+wY0GomI+r0nyEJbbJ30oOWld0Gvd/nKFSzbZu/evSt+p6jyQDhitqdHOJh01JKqLPmnuHLcL1jxUuevIrYSknYkXiYu1T2C8Aw1KgkCAj6/sEAsHmdoePh7ggXcC/tAOTyI/LknmxWDxKpz53lYUgwXRBRaXFzkP/yH/yA432XHs16v8+KLLy4fLOBoShozaKlkkl4pv764tMT07Cy2bROLRkmnUi1dvVWrFrJFryG7iwFoxN0ADHz1i6DDd4ju1VqNq9eusUuW9YKmmneAL+WJJljE0smkr1yu8ulOx1d0hLrEIPnOjggoakXUDcNnftN13VcqCT5AVrPJ9OwsnucxsGkT27Ztu4s7cn/sA+fwIPkLBwdXkAQ5rkuj0aBRq/Hff/d3mZqdJRIO86u/+qscPnwYgG9+85sstU89aULxWeXbQYvH40I3SkJ/K7Vax/a1cna9g5OEIxF/Q10LTmYFmzPrXHN7hcZbZVU4d+4cIcNg165dLT/3pSHl6pSQUV2ZLpVPwqEQmmFQr1Y7qly7ctOsJG5UWbQqK0QgNv+Kjc1bPoGWa6w3GuTzeRq1Gpnubvbv3/++5e1B+0A6PIgJnN5Nm1qdT5bBvvTlLzM7M0MyHucXfvEX2bx5M5/73Of8SseX/+Ivlt8jv/RMJuNXV5YP51EulzFl0ymdTILnMTk1RVWmBUFTEOP2IWUQXUUQUzntogAaayh5SAuyjalrbbc7k5NMTk5y8ODBlk2553kip5Y4o0Q8vuqmMx6PC/y7YVBvNFYwJKsHTzm7I1cNS963iKyotTMlu4FNb61apVatUi6XSaTT7D948H1PZZR9YB0eIJZM0jsw0NK8efGrX+Xa1avE43F+5Ed+hP3794PnMTw8zKHHH8fzPF5+5RVmZ2dbjpVOp9ENw0+LQOA2lMJ0T08Pg4ODRCSAbXZujnyh0PG8OmF9TIlP0TRNtPHvAjGp+GxAbDA7bVablsWZM2cYHBxkaHi45b3ValWkRK4rnLETvifwwEWjUX/voTD+gE8opVaJRr2+Il+PRiI+85mPjJR/VH7ftCyqlQrhaJTtO3cKloIPiH2gHR4gmk7Tlc0SCYf5u5de4tRbb6HpOkeOHGHXI4+wtLTk55qf+9zncD3Bj/jn//N/thwnJanmisUiaBrNgGyLEss1TZP+/n4SsixYyOeZmZvrOEfbKZ+PxWL+nKzqbvq2xgMQrH2vRs9x9uxZXMfhsccea3lfpVLBlmXauEwzOp5r2+dHo1FCEpdTrdWEep+3TBJVqVT8AW/DNEkmk8sPY9v5qaZYpVJpkbkc3ryZrVu3risx+iDtA+/wAJF0mjdOnODFF1/EcRz27d3Lk0eOYEu1t2KxSKPRYPPICEel5MyJN99kbHy8pVmTSqUEhgQxduZ5HmE5mKBM0zSy2Szd3d0YhkGjVmN6enpFvqvYxVrSG5kyaJpGw7JaUpu1KjW+3Lra+LUhNqdnZpiYmGD//v0tVIQVqX6NfGhDHRxrLaa1eCzmp4lNCZVQEkKO4wjckCSQ0ld5EC3LolAo0Gw2Reqm61jNJgPDw2waGrpvSh7v1T4UDv83f/M3/O8//dMsLi2xVQKK4vE44UiEWrVKvV6nIrWJfvAHf9Cnx/7//vzPfRyK67qk02mKhYLAZEviodVIfFKpFH19fZiS2WxqZoaC3PQGHag9vTEl65iuaVTkQxU0L/An+H9kj8Gn5JNm2zZvnz5NX18fW6QEpuu6lKWzawhxYjVNtHxiIqqvNbqoyT6CpmlUq1WKpZJwXE2IISSTyWWROK2Vjcx1HKrVKuVKRSA5DUPwh1Yq9PT1kevv3zD93YO0D85as4Z9//d/vyj52TaVpSVwXaKScdd1XYHAs21C4TCpVIrf+Z3fWabfBl8VsLunh7HxcYqlEq7XqhvaKRJGo1H6+/tZWFigIUUYytUqXV1dgrpDmt4Gl41JlQvHtqnUasTUJBf4YDhYJop1bBtPlveUioh6zbnz56k3mzwnmXGDGraw7OxBCzaJ1jNd06jJvYxidlBSobByKMaVQnKKFc7zPKISPDe/sEBXTw8Dg4Ns3779A5XKKPtQRHhlummS6O72p937czkxYKAJfVC1aSoUixRLJb/trUk2rcGBATzXZW5uDtdxfPImFQk7xUKV13f39GDoOo5lMTM1JfYOwa5rIE9W4DLFDNwMpEOdqifK0QzFtCsddXx8nLFbtzj02GMkEollZ5cPcKrd2dUmcrWo7i1TWKu+RqVa9aO3kqQJshioI6mIXiqVfGc3QiES8Thh02R+YYFUJuPX2z+Izg4fkggfNN00iff2Ul1Y8MUR9HJZaEDF437psdloUKvViEWjxONxMUObSJDOZJibmxNdVlk7D1ZFfFdpc+BUKkUsFmNpaYlSuUyxWKRWrdLT2yuIhVS0dhxcudELyxWmUquRksCxTs6oQGR6wEkKhQJvv/02m7dsYXTLFmw57K4YfhPBDWrAkVce3MOT+beHYBGoNxotG/GopBO0bNvfyKr32pKLJ9idNaUYNIiRvbmFBRKpFINDQ2zfvv2ulEMetH3oHB5kF7G7m8riotBxkgLFkUiEWCwmYLQysjYaDcqVCtFolGQySX9/P9dv3GD3I4+suZEMTvH4FNi6Tm9vL+FIhKWlJWzXZUYK/vpQZm2Z1joc4KWsto8vtn22gkyA2Ah+5zvfIZVK8dhjj/lK1pq8dlVnV3ghB4RySgDYBSJlUp3bhtqMKggDQp81Gg7jeEIy0nVdzFAIV+KZLElC69/3UIi4rEQp8NvS0hKxZJKhkRG2bdv2gXZ2+JA6PIgok8pmqRYKRJtNmrZNo14nlcnQFYkIEdx63c9Py+Uy1UqFaCQixvBKJTJdXSLHpxU7Aq1VFS3QcQRB4BoJh1lcWqJaqVAoFikUi6SSSdKp1DLy0HFIyMqQUg1JJBIt7XplemDz+9apUzQaDZ5++mmRL8uUKBSNisoK+A+N2rh6CAdX/9Y1Dc9xqMp82weFIYB0kUjEn8KyJRNDU+6LgjyeKl2MyterB7VUKpEvFunr76e3r4/R0dH7opx9r+1D6/AgUoBkby9mOOxLm1fKZV+rNRKJkEwkRJQvl2k0GmKDZZqMjY2RSCSIypxV1/WOjq+shWdGYkmy2SylSIRCsegrkZTKZaLxuBjVU1TgsZhoyMgKSFRuqF05v+rIRo/reVy9epU7k5McPXpUkL3KOdRYNOqLKyCrJhpg6rp4HcvibQ0pueMEorMGPmZepUKO42Bblg+aC8KEldpeSFac1ANq2zbzCwu4rsvIli309fczPDz8gc3Z2+3DcZbrWDSVom9khOmxMaxmk3Kl4qMcDSldE4/HaTSbVMplutJpFhYXKRaLlMtlH4+uJpZMw+gc9eXfumQ3sGybmMSoV6tVMQsqP6NRr5NIJIjLMT+VajXkzG5YybUbhlAWMU0mJyd599132b59O4lk0k+rUonEquwIasPZkA98O6whpPRow2E0z/P1pCzb9p27LBtGUflQhVU0D6AfQeBjZufnSSST5Pr7GRoaom8jcjofIPtIODxANB5nYOtWJm/dEsxWnkdKTcTL5TwSDhPp6WH3nj18+7XXKBQK9GWz2LICUa1Wfbn6SCTig8JMObWkTGMZc6JSn7hs0FQqFQr5PDXXpVQu401Pk4zHRWMoHMZqNsXnSMw+iBRkcWGBkydP0t/fz8jmzb68TiKR8HEt8gNFX8FxsBwHR448WnLGFfCprw2pSWvbNs1KpSN3vpp0CoVC5HK5VoCXvLZms0mhWKReq5Ht76cvl2Pz5s13JUTwQbGPjMODqJtvGh1lamKCZrVKpVr1dZJg2TmVWO7U1BT7DxzAkurTaoKnXq8L2grZTdWlzGMkHMaUTLuKOqOdTz2ZTAogmaZRltWjcqVCqVIRTqiJ6atyuezj5yuVCqcvX6aru5s9jz4q0h6VwiByc8uylp28zXEVO7KBWClc8De57abruuC9kdKdxUJBsESEQoJSJLB3UY7eqNUwQiE2bdnCwMAAw8PD35Ngw/tpmne/JS3eB6tWq8xOTtKU1ZmYnPwJtsfHJyY4ceIEhw4dYlR2MD1PyNXXazWRB0vRYuXcgF+t8R1eF8K+agRRwYTLpZLoF5im/wApa8pZ1Eajwdtnz2LoOqlkkv379hFuo/lWwg2qX6AInTRtWR/WNE0aUsc2aGqmNvgnWA2yHYepmRmazSY93d0+fr5Zr1Msl6nLGn0oFGLHnj0MDw9/KKN60D5SEV5ZPB6nt7+fxbk56sUitm2TiMfx9GUJxVwuR09PD1evXWNkeFg4KssVDEWApNiCLVn6dBwHV86oqtq0X9OQjqhLFCKyC6lLIbJ6vS5oql2XhmX5Qmy6rpPr76dcrRIO4m8QuHiFUVFOG5EP2PLHeuiIh0sRNRny9Wv1WgvFIq6cdTVDIfLFIo16XVSFZATv7unhsSee+MBhYt6rfSQjvLJqtcrC/DyNUgkk63AoFPIBU2O3bvHdU6fYI2UpjVXq8grroiErG1K5uyahtUoF27VtUR6UM5+2bROJRrEsi9npaWZmZ5mbnaVQKmHK/FwPhdgiZ1MVAVU4HCYiJS8NSeT0+3/wB7z+xhs89thj/Mo/+2e+PqtCZ9qKonoDX6cn783M1BQlCX0wApUfEPMIOx95hNHt2zc0ovhhsY9khFcWj8cJb9rE0tIS5UKBUqnkT/1rmsaW0VFmZma4fOUKXd3dDORyaIYhUoPAl6+B70iGrmNIh1SDywB/8aUv8Rdf/jK/8Ru/QV9fHxU5RheNRvmnv/RLaLoummRSPkeXe4LRrVsZHR3FcRwhCR8o79UbDcKui2maHDx4kDdOnOD8+fOiqywV8AAs1TXt4OyKBtCS6E3LsqjUaiwtLmI5DpFQCFMeJxIOE4vH6entZduuXcSlBPxHyT7SDg9imc9ms4TDYQrhMM1SiWahQFjWpA8dOkS+UODcuXNEjxwRHVNZj9Z0XYCN1Ma07dg+aCzQ2dRlzqsAY67r+gRQgI9OnJ+fx5Kp0/DQkA+AU6YgupZ00i2bN7N5eJimZfGdkycFOEseU+HPlQWrP45cddS5K7yR4rTJ9vaKKaholFA4TP/gIP2bNn2konrQPvIOD2LzlslkiEQiFKNRapUKTQkrDofDPP7447z22mtcvXqVXbt2kYjHRaT1PMHnGIQDy+Opyf4gsajaDDYaDaqVCiU5Pvh9n/40/QMDNOp1CsUiQ5s28d9/93dBHjsmoQK+ol4oRE939zISVEbnbaOjjI2NMXnnDjt37BAIR0nB51sbbEGdr2kY/uY3HA4Tj8fZNDQkNtyGQV8uR25w8AMxd3o/7WPh8MqiUtG6kU5TLpepFItY1SqhUIidO3dy+fJlPM9j6+goyWTST33aY51CViqFbzXpH4/HKZbLgjtHjcEBhw4d4sLFiziuy5NPPtkiuOZJ/h2lNVuR0bdQKIjafiyGJisje/bs4Y033qBcqfAjP/zDWAFSp06mKX5OBNtBpVLB1HUiySQ9XV1EIxF6czn61+B8/6jZx+MqAxascafTaTE4UiiwRQqrXb50iUq5zNatW8XmMRpt5ZGXG0NHzX+qtr4sD+IJSu+oadJoNLh65Qrz8/MMDQ1x8OBBYrEY09PToqwZYCRTQxepdFrgf+TGt95oiJFDwxAzu//tv7G4uMit8XG2b9/us7B1MtfzaMj+guoxRGIxsn19bBoepieb7Sh581G2j53DBy0sN56ZTAbLsugbGiKTzXLitde4fPkyW0dHBdJR132NonZTA+ZqeFvx2dy4cYOr165hmiZPPvmkLyOpuDFB5N7tM6yGppFMJgVCslrFdV3yxaLYF0SjbNu2jevXr/P26dNs37ZteX+hKjSyE6tq/7ac3TVNk8GhIbZs3UrvhwwOcC/tY+3wynRVQYlEeOLoUTZv3cqf/emf8ta5cwxkswwNDwuUpcx/w7JurWTaFY97s9Hg1FtvUa/VME2TLSMjjGzeTEJWO9R4oHL4ZgBj7puE94ZDIYxUyp+csppNrEaDQ4cOcWdykjNnzvDZz37Wf9g8z8O2LMHPqdCPzSZmOMzQ5s1k+/v9zfvH2R46fAfL5XL837/wC1y4cIE33niD754+TU86TUrm9Qp337QsMddZLHLp8mW/BHjo8GGGh4dxbNuvxyu0ZUOqeSukoicfFmX+rKtsYiUSCWLRKA3Z+Hr00Ud9sqkbN27Q1dUloAeqKSarRrFEgpFt2+jJZgV/fCLxoYUD3Et76PCrmK7r7Nu3j7179zIxMcHZs2dZmJ9ndnbWp5uLhkJkUilSySS5XI6rV69y5MgR+qWEuqFp1DTNF+LVVSUGRDdTNnuC5v8vMMihG4YvkhAOhejt6aFYKnHh4kUeP3yYSCRCPJ0mHIkQTyRIplI+BbliUXhowh46/DqmaRqbN29ukXJX1BQKe9Os17k+Po4tZ04Xl5YEH7xpCqps20aTyiOOTGPaiVc98KO9B34J0ZHc9LasyITCYUZ37ODFF1/kxFtv8WM/9VMCbhCJCF74AJ7noa20hw7/HiwkdWBhuTTZcBwuXr9OoqeHVCYjKjmeR9jzqBcKFMplPCm33mw2SUlsiq7rLCwuAstETLrkhjdMk7BUylaMBumuLj75qU/x//72b3NjfJxkMvm+iQt8GO2hw3+PpoZHAObn5+nL5RgeHvbVPBzHoVwuk8/nUcIJ+Xyecxcvouk6w9u3MzQ6CsqppdO3oxxDoZDP1Hv8+HHB8uV5nDp1ik9/+tPv7034ENlDh7/HpkloQbBj2dXVxVBAXv3mzZtMzcygaRrNZpNB+bvVaPba7bXXXhOVnHCYo0eP3rdr+SjaQ4d/QNYu5Bvsjt6tuvRXvvIVAJ5//nlfLeShbcwe1qk+hKZEH37gB37gfT6TD589dPgPmb399tuMj48DDx3+vdhDh/+QmUpnDh069IHiXf+w2MMc/gHYa6+9xrVr1/z/z8/P+/++du0av/d7v9fy+p/8yZ9c9Vhf/epXAfjMZz5zT8/x42IPHf4B2Be/+EVfWrPdXn/9dV5//fWWn63m8BMTE7z99tvAw3TmvdpDh79Hdvz4cYD72gRS0X1kZIRDhw7dt8/5KNtHeoj7o2Z/7+/9Pb7xjW/w8z//8/zWb/3W+306H0p7uGn9kFixWOTll18GHqYz34s9dPgPiX3ta1/DsizS6bSfPj20u7eHOfyHxP7u7/6OTCbDZz7zmY/9EMf3Yg9z+If2sbKHKc1D+1jZQ4d/aB8re+jwD+1jZQ8d/qF9rOyhwz+0j5U9dPiH9rGyhw7/0D5W9tDhH9rHyh46/EP7WNlDh39oHyt76PAP7WNl/z+nq4piOhV44QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -194,12 +194,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRcd3bfCX7eFntERkTuiX1fCIAASZAEySqSJY1lWS2rJC/q40W2JcvT3bbHp10e9xmddsttt3Vm5Ja3455z7BmvbY/lllWWVW3JlovFnQRJrMS+ZgIJ5L7F/vY3f7zf7+WLyMgEyCqAICu+ODhIREa8LX6/372/e7/3e5UgCAJ66KGHHnrooYeuUL/oC+ihhx566KGHJxk9Q9lDDz300EMPG6BnKHvooYceeuhhA/QMZQ899NBDDz1sgJ6hfIy4c+cO3/rWt9i/fz/ZbJZyuczx48f523/7b9NsNjf87J/6U38KRVH46Z/+6cd0tT300MOTgN668QQg6OEHgl/+5V8OgGB8fLzr73/7t387KBQKAdD17969e4MbN26se/zf/M3fDIAgm80GrVbrEd1FDz308DjRWze+HOjtKB8Dzp49y8/+7M9SrVbJ5XL8rb/1t/jggw944403+MVf/EUArl+/zk/8xE9Qq9W6HuPHfuzHSCaTNBoN3njjjcd5+T300MMXgN668eSgZygfA/7SX/pLtFotdF3n937v9/ilX/olTpw4wTe+8Q3+8T/+x/zqr/4qEA76X/u1X+t6jGw2y4/8yI8A8Nu//duP7dp76KGHLwa9dePJQc9QPmJ8/PHHvPvuuwD8wi/8AidOnFjznm9961scOHAAgL//9/8+juN0PdYf/IN/EIDvfOc7BD2diB56+Mqit248WegZykeM3/qt34p+/jN/5s90fY+qqvzcz/0cACsrK7z55ptd3/eTP/mTKIrC9PQ0n3zyyQ/8WnvooYcnA71148lCz1A+Yrz33ntAGAJ59tln133fq6++Gv38/vvvd33P2NgYx48fB3phlB56+Cqjt248WegZykeMK1euALB79250XV/3ffv371/zmW6QYZTegO+hh68ueuvGk4WeoXyEME2ThYUFADZv3rzhe0ulEtlsFoDJycl13/dTP/VTAFy4cIHx8fEf0JX20EMPTwp668aTh56hfISIU7ZzudwD3y8HfL1eX/c9hw4dYufOnUDPO+yhh68ieuvGk4eeoXyEME0z+jmRSDzw/clkEoBWq7Xh+3phlB56+Oqit248eegZykeIVCoV/Wzb9gPfb1kWAOl0esP3yTDKO++8w8rKyue/wB566OGJQ2/dePLQM5SPEPl8Pvp5o7CIRKPRAB4cbnnhhRdQFAXXdTl16tT3d5E99NDDE4XeuvHkoWcoHyFSqRT9/f0A3Lt3b8P3Li8vRwN+y5YtG773vffeIwgCEokEL7zwwg/mYnvooYcnAr1148lDz1A+Yhw8eBCAmzdv4rruuu+7evVq9LNU21gP/+E//AcAXn/99Tbvs4ceevhqoLduPFnoGcpHjFdeeQUIwyOnT59e931vv/129PPLL7+84TG/853vAKvJ+R566OGrhd668WShZygfMb75zW9GP/+zf/bPur7H933+5b/8lySTSYaHh3nttdfWPd7Zs2e5e/cu0BvwPfTwVcVnWTdUVWVkZCQyrt3QWze+P/QM5SPG888/Hw3gf/JP/glvvvEGtZUVKsvLVBYXWVpY4H/5m3+T2dlZ+vv7+bO/8AvMzczg2Dae5605ngyfHDt27IHFyD300MOXE93WjUa1Gq4di4ssz8/zt/7m3+T27dsMDw/zC3/mzzAzNcXy4iKu6+L7ftvxeuvG94f1tZF62BCWZWELY+a6Lr7nsXnzZu7evk2rVsPzPALXBUXhv//zf57JyUls2+bP/rk/xx/9mZ/h6cOHsWybt959l3fee49NmzYxNDjIS88/z7XLl5m4eZNsJoOqaSiqimlZmKbJb/zGb2AYBkeOHOHTTz+lXC7T39//QGp4Dz308MXD931M08R1XVzXJQgCNm/ezOTEBGathu95+MJB/tZf+AvcvXsXx3H4s7/4i/zRP/SHOHL4MLZt8/Z77/Gffu/32L17NyPDw5x44QXGb9xgQlUp5HJouo6m63iui2nbfPs3f5NkMsnBgwf58MMP6e/vp1wuUyqV0DTtC34qTz56hvIzIAgCWq0Wy8vL1KtVzGYzNJimiW2alEollhYXw1Y2nkcAKKrK6Ogo/8Nf/sv82j/4BzSbTf7Fv/7XBEFAEAQoikK5XGZwcJD/7s/9OcrFIo1WC8u2qdVqTN2/z+LSEkEQUK3XWV5eZmhoiJH+fv7Pf//vCQAP2LlrF1//+tfZunXrF/yUeuihh054nke1WmVleZlmvY7ZauFYFlazSalUYnF+HjwP3/ejVlj9AwP8D9/6Fn8ntm4A0dqRSqUYHhriz/38zzM0MECz2cR1Xar1OosLC0xNTWFZFtVajYXFRfr7+9m+aRPvvPEGrlifkqkUzz3/PC+++GLP2d4AStBrULYhgiDAcRwqlQozU1M0ajVcxwHfx0gk0FQVVVW5dOUKFy5e5Js/+ZNkMhkC38f1PFAUFABFYWV5mX/7m7/J9958k+nZWQzDYN+ePfzoN77BH/wDf4CRkRGajQaXrl7l/v37uLZNqVRiZGyMdCrFW++9x298+9v09/fzy7/0S3i+j2VZ1Ot1ZmZmME2TYrnM0WPH2LN3L9lsllQq1fMYe+jhC4DcPc7OzLA0P49lmviui6rr6JqGJtaNi5cv8zN/8A+SzmTCdIvv4/o+iqKgKAqLCwt8+7d/m+9+73tMz8xgGAbbt27lJ378x/mvfvzHKZdKJJNJJicnuXXrFgtLSyQ0jZFNmyiXSrz17rv8xr//9wwODPDX/8f/kQBwHAfTNFlcWGBxcRE0je3bt/P8iy/S399PJpPBMAwURfmiH+MTgZ6h7IIgCDBNE9M0qdVq1JaXWVlehiAg8DyMZJJkIoGqqqiAqutoqhoZRE1RQFVRFQXX87BsG8d1w88DqWSSTCaDqigsrqzgOw7pTIZ79+5x6cIFfEWhv7+f0dFRBvr7URSFAPif/uf/mbOffsof+P2/nz/38z+P53nRX9fzmF9YYHpqCtM02blrF1u2bSNfKFDo66NUKpHP53sDv4ceHiFc16XVatFsNqlXKqwsLmKaJoHvg6KQSqVIGAYKoOk6qqKgqqtUEUVV0RQFPwhwPQ/bsvDELlPVNHLZLAnDwLRtqpUKiqpi6Dpnz5xhbn6eTCbDwNAQW7duJWkYAPw1uW782I/x3/zZP4vreXi+H60drVaL6ZkZ5ubmyKTTHDx0iGK5TL5QoFgs0t/fjyGO9cOKXug1Btu2abVaNBoNGtUq1eVlVlZWaLZaBEDCMEinUmDbuK6Loij4IoQhwyEBQBBERlFRFHRdR9M0PPG66zjYtk0ylcJ3XSq1GqfPnqWyssLmLVvYvHkztuOgC2OrGQamafLOe+/RMk2+9uKLoQENAvwgwAeUIGDT2Bj79+7l/Pnz3Lp5E9M0GR0ZYWlhgdlcjkKhQKlUolwu/9AP/B56+EFB7hybzSatRoPKykq4dlQqeJ6HoiikhYG0TBPLtsP1IQgIhBH0IVw3IAq9KoqCIRxyz3FQdR3XcUinUnhi7t+/c4fbt2+TSCZ5+uhRjEQC3/dDQyy4De+fPEmr1eKVl16iVCqhEqZr4uvU9q1bWVhY4NSpU1w4f57du3dTyWZZzOWYmZqir1Siv7//h9bZ/qE3lDLvWKvVWFleprK0RK1WCw2hGMjpZJJkMkkqmQw9OxFulaGRIAjwfT9MxIsJ4AdBmJRXlDAMKzw4x3VZbLXwg4CWaTI3N0ejXiefy/HU4cMU8nk0VcVzXTRNI5FIoCgKJ0+exPU8Cvk8zz//fLR7VQB8Hz8IUBWFbDrNSydOcPXqVS5duoShqmzfvp3KwgK1lRWWFxeZyeUolUqMjo72DGYPPXxOeJ5HXfAGqktLVCsVms0mAL7rYug6qUSCTCz9oel6uG4AgVgbgiAIRQWEwfSkEx4E+K6LB7ieh1mvY9o2ShCwXKmwMD+P6zhs3rSJbdu2YRgGruuiKgq6pmEYBm+/+y6O45DP5XjhuedWo14QnkuwY3VdZ3RsjB/50R/l3Xff5caVKxx77jnsZpNGtUqlUmFpYYFMLsfIyAjFYvGHymD+0BpKaSDn5uaYm5ujsrxM4LokDINMMomSTOK6LolEgnwuRy6bRdM0VFVFNwx8Eb6IDxWZV/AEo831vDAXYNs4to3v+6iAoWnUGw2m793DtG3S6TTDo6PhwAsCdF3HtCxs16XZaqFpGucuXGDzpk28cPw4zVaLRrOJrqoowmj74nO6pqEA+/btI5lIcObMGQYGB9m6ZQuNRoNqvU6tUsFsNqnVagwODlIqlXoGs4ceHhKu67KyssLMzAzLi4s063U0RSGZSFDK57EdB0VVSSWTlPr6MAwjZKGK9cNx3dBQQvivcMh9wHUcPN/HcRxsy8IS//pBgC7Csgvz80wvLICiMDAwQKFYxHVd0skkSiJBq9mkaZooqsq5CxcYGx3lhePHaZlm+LqihKki4egrgGYYaEA6leL1117j3Xff5cKFC/zoj/4ovu9TbzRYmp+P1o58Xx8jIyNks9kfCoP5Q5mjbLVa3Lt3j8XFRVqNBggDmU6lyKTTpJJJHMcBRSGRSISDoeMYrutGIVfXdfFcF8txIsp35+BRIKJqt1otrly9imVZ+MDWTZtIpVJh2IQwT+ELI10ulUglk3i+jy/zCsILjZ/B8/0oD6Lrejg5NY2zZ88ydf8+3/jGN8jlcqiqSqvVYml5GVXX6RO5iHK5TF9fX1u+pIceeliF7/ssLi4yNTXFysoKnmWhAplUirT4qyhK5EAXCgV0vX0vEojcI0Dg+9iuiyNSOZ6IQEVpG4giVrZtY7suM9PTTNy5QzqVommabN20iXQ+j6ZpBL6PqqphFCyTYWhgIIx0+X64fngeHhCIcHB0PWIHq6oqhmGg6zqWafK9t95iZGSE4889F13/SqVCvdEgXyySEznMcrn8lWfM/lAZStd1mZiYYG5uDseyUIOAhKqGZJe+PpLJJApQrdWwHQdVVekrFNqOEQQBjuuGtVCeh+e6Ybg1/GX4V1EwRB2TKjw2S0yGRrPJ+fPn0TSN3bt2cf7CBV547jk0XadlWVE4tdlsYrsuqUQirHfq61tlrwYBtqi3kgbSdhxMy4ryHBKe7/PxJ5+gqypff/VVEmLnKL3ERrOJkU5TKpUoibqqr/qg76GHz4qlpSXu3r1LpVIB10UXxJxyqUQ+m0VTVVxRAuIFAdlMhpToEynh+z6mZeG4Lq7j4HoeCuDLOSvSOtLJlZ0+LNtGAW7fvs3du3fZvGULI8PDfPTJJzxz9CiarofHEimfWrOJ73mUSyWKxSK5TAZFVVGCANf3I0ECaUBboq6zczMwOzfHxYsXOXr0KNu3b0cVxtWybSqVCr6ikM3lKA8MUCqV6IuvUV8x/NCEXmdmZhgfH8c2TRTPI20Y4S4qnw+9PhGGsCwLx3EIgoCc6BweEHp/lm2Hu0Ax2CQUwhi/3MnJ8CeEu9emZaEoCisrK1y6eJF8ocCxY8eo1+sohO1xNF0nlU4T+D66ppEwDKq1GqqiUKvXqVar5LJZisUiyUQCQ1EIVDX0QIGU75PNZKJwr+u6OI6Dpqo8dfAgp06d4uKlS+zauZNkKkVC18nn8yQSCVYqFe7ducPK8jL2li0R6eeHIaTSQw8bwXEcrl+/zvz8PIrnoQUBhVyOcrlMJpOJwpcEQZSfTBpGZCTljs1ynEhtK66aownWqpzzimDPe75Po9EIc4hBwNVr15idneXI008zODBApVpFJVw7DMNYJQCpKr7nYYs1YH5+niVdp1goUMjnw3RNR5olmUhEO07HcbBFhGx4aIiFkREuXLhANpslm82STCRIJBIM9PdTq9epLC5SWVmhOTKCaZqUy+W2fppfFXzlDaXruty8eZPZ2VkUxyFlGAwND1Ps62snxAiYphmWcKRSqKqKbVmYHXJyigjJyjCFrmmrXqGA73nUG42I9VatVrlw4UIYyjh+nEajgfyEoqrk83kajQa2yGUWCwXSqVQUkjFtm2arRb1eJ53JUOzrC8lF4hjy+nRNQxdeXRAEeL5PJpNh27ZtTE5OsmXzZjzfp6koJHSdZCJBf38/y6IQ+vrly4xt2oTruvT3939lPcQeengQlpeXuX79Oma9jhYEFAsFBgcG2naK0pmUhskPArLZbFTjbNs28aCdrmmosbVD5iqjdE0QYFkWjVYryh9evXaNhfl5XnzhBQYHB6k3m1GkKmEYZLNZ6o0GQRCgqSqDg4NRCqhlmniex+LyMssrK/QVCuQFYTBQFAKxbmiqGhptwyAdIxUdOnSIN996i7uTk+zatSuMtGkayUSCfD6Pqmk06nXu3b1LZWUFe8sWBoaGHtgb88uGr7ShXFlZ4ebNmzQrFTSgv1xmZGQkqlPq3C+ZYjfpCMbaSqXS9ntDsFATyWQYFonlGoBo0FumSaPVAkBVFGzb5tzZswwPDfHiiy+uhkxFqCRS2kinCQDbsmg0myiKQjKVIp/PY5km1VqNVquFZZpMN5voiQTFvj6ymUx4fpHPkFAE+03XNA499RSTd+8yNzfH5i1b8ITXKQd+KpUKVX48j6n792kI9ZCxTZvW5Fl66OGrDNd1mZyc5N7kJIHjkNR1tm3aRCabDZnwXT7TNE08wTyv1etdHetkIoGu6yGbVawZ0pFWBAO23mjgxJze6zduMDc7y0svvRQJkgRBgCaOExAyafO5HJV6PdwROg6GYZDPZimVy9TrdWr1Oo7rslytsrSyEkan+vrCHayo05a8B0WwYjXDoFwssnf3bm7cuMGe3bsJCDcBrVaLlmmS0HWMRAJFVWnW64zfvEmjXmdsyxZKpdIj/qYeH76SK6DrukxNTTEzPY1Zr5PQNDYND1MUX1ynkZQDv1arUW800HU9FAgAVFUNB3kyidZBdFEUJayNFMfwPI+GkJECQmWLIOD9Tz6hr6+P50WHcUnJ1mIhWkUIFWQzmWgn2Gw2Q61XQqmpgWQSx7ap1mrReaZnZtATCfrLZdKJRFiOAlG+VHq8mXSaHdu3c/fOHfbv308QBFi2He5gRZLfFwXICcOgWq1i3bxJs9Fg7/79PZJPDz8UqFarTE5OsixCrX25HFs2bw7nahDgQbuDLeZRrVbDsm3ysZ2UYRgkk8l2hRthTOOS5QGhdrQM3QJkMxlu377NnYkJnnvuOUZGRoCQWQ9EUSMQa4euU8jlqIrSNt/zyKTTIQejUCCfy0Wsd9uyqNbrLFUqFPP5MLcoDGacSCSxZ/fuMCo3M8O+ffvCFJTgXNgiTSU3F57nMTczQ6NWY8fevQwODv4gvpYvHF85Q2nbNrdv36a2vIzTaNCXyzE6MkImnV4lunQU9lq2HeYB6/UwN5lKkU4mQ4k6XW8zOBIBRMo8rgizNDoGugK89fbbGIbBSydOoOv6as0UrDG8EA76rJCyCoBGs0mxWAxDLcIzHejvp9jXx9LKCivVKq5tMzU9TSGXo1Qsrho1EZ7xCQf+nr17GZ+YYPLuXXbs2IGh6wSZTFgELWT5AJqtVliT5XnMTU/TbDR46sgRkh3khB56+Cphfn6e+/fu0axW0YKAgYEBhoeHwx2fFPZArBtiBygZ5LZgqScSCRKGEUWdEJ9pW3MUJWKpOkFAs9HAse2IsZ7LZrl79y5Xrlzh0FNPsW3bNiB08OVOdU1KRJSH5bLZSNSgaZqkUqnw/KpKNpcjl8tRbzRYXFoC32elWqXebFIuFsmIyFQEcf3JVIod27dz69Yt9uzeTSqZJJVK4bhuWMJiWSQMg5ZpRoa21Wpx5dNPMXftYsv27Y/g23q8+EptE2zb5taNG5i1Gp5lMdjfz/DQENlsdnWgsmogHcehUq1SbzQwTRMVKOTzFItFUplMlEOIG8mA1fon+de0LJoi1KprGsW+PnRN4/0PP8RxHF55+WWSsQS3u95gF9emqir5XC4MEXsetVotuuYA8MRgLPb1MTo8TDaTwVBV6o0G96amqNfr8mBh7lSEdjPpNGNjY9y8eTM6n9yt9uXz5LJZkkKeT6oUOY5DrVrl4tmz1KvV7/cr6qGHJxKzs7NM3buHU6+TMgzGRkYYGhoKHdTY3EOkbZrNJiuVCk3TxHZdVFWNZCKTqVSUQ2yLXClK5LwqhCzYRqMRRq8UhXQ6TT6XY25ujrNnzrBz50727dsXnduLlZ51rh2BWKMSiQRp4aSbrRa2bYs3hPfgel7Y93ZoiHK5TNIw8H2f2YUFZufnIyc+rjbmBwG7du/Gsizu3b8fRawMTSObzdJXLEYlMr4oZWm1WgRBwPitW4xfv76m7deXDV8ZQ2maJjevX8dpNgkch6GBgdCDymajhLUcqI7jsFKpUK3XI4q2ruuks1kKhUI0yDsRxD1EwsFUr9dpiSLeTDpNQYQxPjl1imq1yisvv0xWhGOksZNeodrFUEqjrGka6UwmJBQ5DnVxrb4QTZb5SMMwGBwcZGBggEQiAcD80hLTs7Ork0QeW1XZvHkz1WqVWq0WdSqQ95NIJsnn8xQKBQyRlzQtK1Quqla5de0aiwsLn+Pb6aGHJxezs7PMTk0RWBbJRILBcplcLheGNyWHQDit9UaDSqWCaZphrjEIyKbT9BUK/O7k7/IvLv3vNN1m2/Ej0l5srrmuS1XMQelcZ9NpqrUaJz/8kLGxMY4+/XS0q1NieU2927rB6vqSTqVIChWxar2OZdsRqzV6v6KQy+UYGR4mn8thqCqWaXJveprlSqXNsClANpul3N/P/fv3I9lOeV2aokQEw0I+H96feFaWZTE7O8vta9fCXfOXFF+J0Ktpmty+eROv1UJTFPKi0Dcj6gHlDtB1XerNJrZlAWHoNCWKhINGAyAyEHHEB4WEHwTU63VsxwHBdJOhyVu3bjE9Pc2JEycolkptyX9PyNwphEQfORERk1HK4Umx5IRhhMLFloWiaaSEMZRajo4gA2QyGVKpFJVqlVq1iuM43J+ZoZDPU4oJCQwPD2PoOlNTU+zZsyfyGuV9qkA6nUbXdRYWF7Fl/afnoagqjI/j2jbDY2M/gG+uhx6+WExPT7MwM4Nv22SF2IiiqiQTiYjJHigKltCAlpwEwzDIpNNhvbPj8Nc/+hucWT4LwL+5+uv8vdd+jf3lfZGhi0M6vp7noYnokappeK7LqY8/ptDXx3PHj4OYs/I6HLGjVDVtVfAEonCnDyCcX90wQi6E71Or1ynk86sbAEVBEcIEmq7TXy6Ty2ZZXl7GFjWSjUaDgY5Sj81jY1y4dAlfrDnRuijWLU3WnQcB9WYTx3HChhDLy+iahnP1Kjv27CH1JazT/tLvKKWRdFstNFVlaGAAXddRNY1EMhkN7KZgjXoiTJIRXmA6lcKT5BthhCQikXPaQyie71MVxkiBMNwijOTKygoXLlxg165djI6ORp+NPEnPAzGo5ACL2K+iZkrqPELIaEuLUE6z0YjCtuGBlbawsKqqlIpFRkdHwxyrqlKr1ZiZm4tCKrquMzQ8zPT09JpJHIgC5MD3MXSdcl8fuWwWXdMIRLipVq8zff9+b2fZw5ce09PTzAsj2V8sRnXTGcE+h9W53hCNEXRdpyCiLnGD9enyhei4pmfy377xF/g31/4tAe3EQdmRyCd0ymWJBcC58+dpNps8//zzUdoHiMpEojks5mMg5qofc7Z934/CpslUClXkQuNEoSidFJv/yWSSkZERSqUSCV3H932m5+ZCgQWB0bExAt9nbn4eWN3BytypZPLn83mymUwkXBIEASsiijVx61aoevYlw5faULquy/j4OE6rRULT2LJpU/Q7QxBnAt+nUquFHUCCgKRhUBSJa6l+IQUGErFCXJmP6MwzuK5LtVoNdV1F/aPUSfVcl08+/ph8ocDhw4e7XrM0ytpDlFxII5hMJNBFMXKj2Wwz3hG1PPY5wzAYHh6mv1zGEB0H7k9PR3nUsdFRlpaWcMTOWjJlJRtX7mp1oRCSSqfDCUdo6Gu1GhM3blDr5Sx7+JJiaWmJuelpAttmoFSiXCpFRk8XBD6z1aJSreJ6XthwQHTgSRhG1AUoIEyThLzxEKGDHfCPPv3/8K23/u/Mt0KnsiE0mgFShkFWSEoC3Lt3j4mJCZ4+epS8CF+2HS8Wel1v7YivB/L/UovVFprTbe+FcO7HImX5fJ7RkRGy6TSGqrJUrYa5S98nJ+5/emYmlLwTxjYu2SmPlUom0XWdhKgX9TwP0zRZWlzkzs2bX7qc5ZfaUE5NTeE2GhiKwqaxMbSYh6eqKs1mMxzoQlE/J1hfmgh5Qmj4PKGRKg1et10khKGPaq2GJ/IKfYVCW75AeoTHjx9fU04R5SdjpSHrITpvbPBlRb7S97zI4MXfqyprQzxZkYNIig4ks3NzLFcqjIyOoqpqNOBlfmONPq2ihLJ+gtCQSaej9zaaTa5evNgj+PTwpYNpmty7exfF8yiLXq3xdQOgUquFu0jhQPf19UWRHRnJscXOKGEYJLUkBCFBJz6Pzsyd5ef/0y/yvZtvYYp5m06n28TEm40Gp0+fZsuWLWzburXtWtt2imKOdpvrEnFDKY1+Op3uHpGCKAUUN5aarjM4OEixWMRQFEzLYmZmBsu2GRsbY2Z6OpLqJBYJiyMhmtpruh6lkKQk3/TMDLevXWs755OOL62hXFpaor64SOD7DA0Ohjse8eX5Ii4f30X29fWRFHWGqqqiCEMV1TwKLzLosouU76vVavhi4hRi3iDA5ORk6BEeO9bdIxQ/R/TuB9QlRjlMwtyDqqphyYmiYJlmNEnj4ZNu00fuLvPZLIamUalUWK5UyGYyLC0tRdcne9h1ihYkDCOaSI7nkclmSQhFoFarxafnzrGysrLhvfTQw5MC3/eZvHMHzXVJGQalYjH8hbKqyby0shI519lsNszvifmqygbtEKnfGIaBoRr4BF3rjX3H5x+e/n/zLy7/K7SU3qal7Ps+H338MYlEgqNHj3bNacbFTaJ6x4dAtLtLpbpGpGInWGMsIRR1HxoaIqFp+J7H9Ows2WwW27ajnbFMEaldrkumo2zbRhMKQrIs5v7UFJfOn28TZniS8aUk85imydy9e/ieR6mvj3QmE+b2VDUsZ6jXSSYSpFIpMtksqURizS5RBfzYAFSFbqrSxctxPY9avR4aSV0nl8u1hRrqtRqnz5xh06ZNjA4PY1pWW0NnmX8MgoBarRblIev1esScVeT5WQ2JNEVCXJ5HFbRw13Wp1ev09fW1D87Y7jAOVVXp7+8nmUyytLKCbVkk0mmWlpbajKR8Pppo2xUeMqzdDBQF17ZRgUQqhSY8TcdxOH/6NIeOHKH/K1Jc3MNXFzNTU/hC3WZ4aCicd4Tjvt5o4LoueRFezWazYTcOOpxQwYD1PC8isSRUo+tOL0eORBByH373/u9ypnqav/biL7G3tJcgCLh86RJLy8u88vLL+EKgXK4VUngEwjXPsqxQ1xWoybWj0UCJC5cQGq9WqxU2VxCNnw1dx7YsHM+j0WiQEfnY+D2p4rPxNSWVSjEyPMzC4iKmZWGKdW1paSnM5XaEUOOOdiIWofNj3BDTsrAdh8WFBc6fPcvTx4498VKZXzpD6XkeMxMT4DgYuk6pWIyk4xqCjgxh6UVfX1/oKdF9t6WK3aeUhOr2Htf3qdVqOJ6HpijohkGr1YqS145tc/78eVRVZefOnWs9tkAUKgdhex3ZSke2zPIDoegvDHZbPlQ0elZiuQWpqOO6LpZpkkqnw3CMpkV6jarIvXZ6eFJAeWFpiWwmw8TCAhUhtt7t2cidsKHr4Pthix4RCkokEqiahmmaOI7DhfPnOfz00z1j2cMTi8ryMvWFBWzPi0h/ijB61VotnINK2BUkl8msm4KJyHbBahN3Q0t0no4MGZJBEhUNCxMdnZVahf/Hd/8af2j3z/Bi+QWuXr/Ojh070HU9lL2M12wSEuwUJZTB9Dwv5BwI/WfZsssTYWN5rUEQYItImSlK1yDcvTZbLeq1GjnRr1IT64aqaRFno3Pd0HSd4eFhKisrVKpVjESCe1NTDA4OtslbxlNG8rp14YhE3UlUlXQ6jaaqmJbFyuIi58+c4elnnnmijeWXylD6vs/8vXvYrRZeELBpcDAKddSFoLguBHsj2ah1aiKBSLcQRWnLNbqeF3XfkMo3qqqSyWZpiTyDpGXPz8+zsLDA4SNHMBKJkIItJo8SO7cc7EEQYOg6uXw+HExANp1eNVZyoogwMEooXi47BPi+TyqVoibqo1RdR1dVPNfFiQ1w6RxomoYmhNs1TQvZbYODNOp1bo+Pc29qirGRkaj+KY6Ibed5YbNq3w+lqoSnqGkamUyGutCYvHDuHIeOHmWgZyx7eMJgmyaL9+/juC65bDaMChHyDqSgh9RilY73RgFOz/NCIykMha7qKCjo6BgY5MiRC7IoqJiYBPgkEMY0gG/f+Pec1c/ySupltm3bFjrqIi2kxoyVXMM8z8MwDHK5XFgyJnZyWZHvDI8brHY6sqzQyTWMVcOlqiQcB9P3abRapFMpAt/HjXE2AAJxDZqqRk0fVE2jr1hEFzvtaq3G3MJC5HDEoRDWbPuI2nOREvM8LzKGSVGGU280WF5a4tzp0zz9zDNPrK70k3lV68CuVqkvL4ceYblMIpEI85HSGwRKpVIkSmxb1oYtXySRR7bNajWbOJ4XUq4Fpdr1PFRNi7wgOWg0VSUIAm7cvMnIyAh7du/umjuIdFcRBkfXSaZSYb9KETLRhCHshOd5BEJJI9NRe5ROpSJST0oMeHkvvihB8QlDKY7rRtegiME/NDiIpijYpslypUIQBGt6b4aXHrL7dEEZdxwHxLXIEHFWaEx6rsvFnrHs4QmD77osT03h2DaapjE4MIBC2HygJuqndV2nLATELcsiLSI13SDZ334QoAqjU6QPExOABAkyQVhiYmFhYuLF/ri4eHjMO/N88/BPUV5HPDyIOc2acL5TySSqiBzB+mtHIpmEIIjWLYlcLke1UsH1vJBwo2nRmiHXDzwv7B4iCUsi7aNqGoqqUi4WuXP3Lp7nMTs/z2B/fyR2Eodr26hK2JtX1/Ww7V9sQ2IkEmSDgGqtxsryMudPn+boc889kTvLL42h9FotVhYX8USNX75QaFO3UFSVgmgfk0ylaDWbNE0zDBF2JNg9z8OybRqNBrVqFUXTwhBBjIZtWRa6rpNKpSj29XUdjBcvXsS2LI4ePbp+gj3mqT0skSeCyI9044alUqmwtY8w7J0OgR8E+J6HK4ybJ8M1ouccQEoUTGfzeRZXVvB8n7IkNwiYok1PUnixMtwjd+AKhGLu6XQk1H7pwgWeOX58Damphx4eN3zfx6pUQmUr32ewvx9NUWi0WlF0KJlMhq2xXDcyHM1mc01KIgAc28Z2HJaXlrBtm3Qmg+55JNUUEKChowUaTVo0aFCjhs/aUgg/CJVjNw9u7nrdkt+gyPQQRDvOh4GqrNZix6EpoVRes9XCsW1SQoksfl5pNF3PCxtMu264gXCcyDF2HQez1ULXdWbm5hgZGmozljLfqhDqXnvBqsa1hCKIUNlslkazSWVlhauXLnHw8OGHJiw9LnwpDKXvONiNRjTYh/v7sYWQeRAEaJpGQTQ/9jyPdCqFI/J49UaDXC4X7jBtO2xqLAxWFArVNIxEImxJpeu0ms0ofFDI57t6OLV6nes3brBv377V0MeD7kOESx52sEfEni4DXhUDXkroGYKOHf+9quvohI1kXeE1yvyG63mk02lc1yWdTFJvNJidm6PRbDLU348hQq2y9iqTyWDHugbEQ9WBeFbZTCaagJc+/ZRjzz3XE1Lv4QuF12hQr9XwhHOXy+WitAWEkZlsNosnyIC5XC7snGNZJMSaYDtO2L5K9pYUZQ4ytJlMJPANl7paJ+vnsHwbV3WoU1/3ulRUfuHAzzOWG133PdJYPExJWTfEVbfikFrOthB1z8bE0KN0jaZhGAZeIrFqOEVD50w6jR+E6j8EAc1Wi/HJSYYHBsgKjexmq4Xv+2F6Jp2O2nx1K0MzDINcOk290WBmeppMLsf2HTueKGP5xBtK3/dxGw2q1Sqe74fK/IkEVZFXMAyDvGChRl2+gVw2y+LyMq1qlWqtFkpTxbyshGFAKoUmpO4kZbslRI41TQuFyWX38I4Bd/bsWdKZDPv27n2o+wjEDg8+24DvFBOII2kYWNKgtVptBjsuaiyPI1uGSeRyOSorK5RKJVRVpSI9b8chm8nguG4kBZgQ57FjjsaaaxWstkYQUK9WuXr5Mk8dPvzE5h16+GrDM01cywrJeK7LYH9/qD8qjGQumw3TFsGqeo6h6ySTSWq1GtMzM2GbLCFeAqGTqxtGGJpVVYqFQsicVSFPPpyrekCDumCTh38kVFR2s4s/deBP8vzB5x/qPuS68Vla3XUq73T+LpNOh/1obTvKzUrIPGfEfFdVdMnjEEICsnytVC6HUpeOw/TMDOVyOSJIJsTarItayoAwJ5zoEp0zhABDo9Fg4tYtMtksw8PDD32/jxpP/ArmNRr4IuHueh7lQiHqjpFMJqPwiEzA+0EQtn4RfRblpJA5uIQg+qiKEtZFSg1Twm4irUaDAMhks6HHxOqgkyzQyclJ5ufnefnll7sKm0vEvTn52c8SPomG+QYqFpl0OvQOHYeEzCUKAxn3yBRiiXWBVDLJvG2TFsr/aVEy0mq1qDebUW8913FoNJvoIqfqdYRQ2q5ZVclls9TqdRbm5rh75w47du58orzDHr768BwHt9mMHD/DMEBVcR0HRVHI53Jh2ZOcD2LHZIm1wxEhR8/zyOVyZDOZSGXGFdGp+NqRJUcYTQ2oU0NBRVdVAkQ6hwAlgG/mf4qnjH0cP3B83WuP1gp5L3JH+Rl7wiod8z0OmVZqtVo0Wq1ornc2fo+uSYiyQCgmoCoKnutSyOfJpNPMzc/TaLWYnp0lIzRz5c5Spr98kQON31uUhxWkxUCEhW9evUpWkK6eBDzRggNus0kgJOOkGo58sG1GUtRD1mo1lpeXo1yZoesUi0WymQypZBJPhAJkTN4TYRRN5AHqwkimkklSXUKGcuBdunSJTZs2RR7PwyhMbNRaa0MoSiSO3AnZkish6kTrzWZb/eOaQ8njCaTSaUzTjHasfYUCxWIxJCwRkp0ymQyBouDYNs1Wi6Zo3SNbAwFraqkIgiicc3d8nHmhDdlDD48DnufhNZsg6pZd3yeVSOCK3HxBOMySaGdZFivVKpVqFdOyIAjI5fPk8vmwllKMczl3ZZ2jNJIt08QIQpZ9lRp+LAakoKAqKrqioakaH9U/5uljxx6srhP7/+eKRLE+a1caYqm65TpOyJJdZx1TACW29iqKQlKsHRAa3eGhIVKJBKlkElOErTVNC6XrWi1apknLsmiZZrRRCFhNR4Ewlskk6USCljCWT4ou7BNrKH3XxRONQKXhk21vdF0Pw62saq9WKpVwkBOGKNKZDCWh4SibGXueR7VajfJukfSSotCoh6ESTdfbYvadmJiYoNVq8dRTT0U1R210bgjrJDvyA58nfCINkS9p30K8wA9i4seEA14V9WCdrbXaD6e0eZmpZDLMV4rcQaPZRFEUCoVC6BGK553LZtEMIypGNm2b5ZUVLGFk15AGBEMvk8ngui43r12LiBM99PCo4TebIAg5UhhARn5keYVMVyxXKtTq9ZBoEgQYiQQ50QB9oFwmnUqBotAyTar1esgMFeNdU5QoClVOlWnQwGU12rK3tIcf3/77o/8H+NwL7jPpTYIsH4v9lfA6HE/5/8+0drBqiGQKJr5+yHCzXDtM09zQ4Vc6zp9OJqOadcd1aQguSCqRIC/SNjK0LdcDx3GoCwKlK+pA14SHg4CU7F40P8+diYknQuruiTWUbqMRyrVZVli6YZokk8kwd5jP4wkFnmqlgu04+IQhgbxovJxOpcJWMqI4vq+vD13XI2GCSq0WiaGbloUtCmJzudy6sX3P87hy9SpbtmxprzvsqHmSg6rb4I8PNmlk4gOZ+P8JjXm8+L/znBDmCmQO9mEGvPQOZffzqsjjym4opWKRocFBdE2jUqth2TZZ0W8uncmEYRfR+qtaq2FKkkPb5YW08FQiQbPR4M7ExBrWWw89/KDh2TaBGGetVgtLlIRIxy2RSNAyTSorKzSazbClXcyxjodkZYhWOs6u64bNmpvNaD7KKNSP7/795NPhmrA1v4W/fuKv8Y9+5H/j/3bsz1NOheUfoQ4s/H8v/JOuIdG44x0JDginWEpvRlEcVne20ommwyBKQqJ0qIPYeeS/SSEcEpV+bYD4Tjcpw7bNJo1GIyT36DqbxsZIC8We+cVFDMOIuq0YgvxjiTZjtUZjbRpHXFtW5IDvT06yvLz8wO/9UeOJzFF6lhU2JyYc7M1mk4RhhC2nBDvKtqyQnKMo4Za/S91TRMIRxbOFXC4MAZgmtm2HPeHEjklVFHKivGQ9jI+PY7ZaHNi//8E30TERpFhy/PgKaz2VzunzwNyeJCclk5i2HQoPOE7Xuqa28wpVjkC04ioWixFDTQoTyOari0tLaGrYuzOdSkVlJgpEpSe2aZJIJkkIAfa4zqTjecxOT1Pu72dwcLCXr+zhkcET6jYBhIt4s8nAwEDkFC4tL0eRJFUJGw53ln7FSYGw2gmj3mjgiaYEpmVFzHND19lT2smv/8S/YtFcZDA1EC34KT3FnzzwJ/h7Z/4+crZfWrrCB9Mf8NLoS2uuv1MNKC6yrooSNqAtitWp5gNrNZvXg2x84Ps+pmmuCrWs934RmdMNIyRJCec6kUxGz7i/v5/5hQUc12VhcZGB/n50TSObyUT143INcYUjk0ylVglFihKx6OuNBvcnJ0M50g0ifY8aT9yO0vf9cLATDtjl5WVsxyEtHmStXseWqhOJBOViMWRWdcTvO70n+XMmnabY1xeKFQQBjXo9FCiI6Z12g+t5XLt2jW3btq0mmDcYiJ2DNCoN+bzFtA8wLqpwGB4URpE1orVaDVsM8iAIO4Pkcrm2PEixr49UMommKCwsLYVC0WKnrImBnxH1m34QYJpmpJcZXa+ikMtkcB2HuZmZUOu2hx4eASIHW1FoNBq0ms2omYAsFfN9H1XTyOZylEqlMBLT5Vidr+maRrFQCHOWhEo/jWaTZqMR7siCAFVRGUwPrpmrT6kHyAX5tpf/6cV/LmopO7DOuvEoivADcUFJQbYJgmDD1I3rumFPWqFX7Yuqg1w+H0bwxPsMXae/VEJTFCzbZln0tFSFVF4ikSCbzUY7TE/oz7Y61i1d10klkyzMzbEk1p8vCk+eobTtUDQcIiq363kkRW1kIPIIJWkgdT1ipErIneR6pkUTzExN08JaQ1E3VK3Xw4S+aa7pl3b71i1My2L/gQOf774+J3NN4mH2YMlkEmWdMIoc5NVajZascRKTIyV3gp3nVBQGpOpGEDC3sNDGxJNh7XwuR0a0IPK7DHpFVcmkUizOz4fkil4ItodHAMlp8H2fpcVFHM/DSCRwRJQlIOzPWOzrI5VKRU5f3DQFG6wbAKlEgnQ2G+bdFIVkKoVt22FpVaMREobi3ATf58bVG/xXgz/edpyJ2h3emHzjwfckHezPGYV5mE8p4j5kqivouH7btqnVatTrdWzbRoGoIiCbyXRd05LJJOVyGY0w1VWt1aIdses4aKKULJ/Ph1rShEpJdVFvKZESCkPLi4tfqJP9RIVefd/Ht6ywBMH3WVlZwTRNdF0PF3WgkMuF8kwxKJIZ2iEOvBEsy8IPAtKpFMNDQziui21ZUWil2WqF0kuGgaaqXL92jR3bt69P9AlCqTjTNGm1WpimiWmauK6L63lhXsP3wzypmMyScXrhwoVo4kp5KlW+z/NIpVIU+vrCvnepVJirlYOzY8ecSiZpCVUMCA2k67pthl/VNFLJZNSnbsOcpqJQLpejUMr84mJIhhD3IIWUE6IWyzRNLNvGtixcxyGdTKIbBkYiEbYwWlggI/JBPfTwg4JrWQRCf7VRq9FsNmk1m4yMjKAQRp9ymcyaiE5bCcQDjKR8T6vVwtA0MoUCfYUCpuBR2LYdGhJFieq979y5Q6vV4r9++Wf5+OQpblVuR8f6F5f/d17b/Bq6omOZJqZl0Ww2scQcks2OpeHQVTUSDmmJ5gsXLl4Moz4xaU1NiCSogpiXzmRIJhIkU6moL6S4mehakoaBpWl4Yg1TNS0UbRFymOJhhWtQMklaGLCNkEmn8fr6WKlWWalUyOVyaxjyMnes2zZNsUFpNBoYiQRpwbvIZDIszs1RLJejxg6PG0+UoQwcB2LtqKqVCrbnMSBCpbLtTTcogq4deN4Dc2Ce74ddPmK7qUQiQSadxhItYFzXDT1R1+XOxASm4zC6aROzc3O0RH1WrVaj0WxGRlEyUaXQuhQVlkl4TVUjBR0Z6pC6ka1WK2TUeV4osuD7eK6LH5Oc82I75YRoI5ZMpUilUuGuLpMhnU5jCSURy7Ki4l5FCRtTS4MGoRzXw+QLDV1noFxmbn4+qlHNptORoZSQg97QdRpy0LdaJH0/MswLX/CA7+GrB9/38U0TVVFwLIuVSgXTNNGEMEAul9tQIUpVlDVM0/UgDZfMocm1w3Xd0EEUUS9LlFNdvnKF0dFRXNfjZ8Z+mv+18neQtLyZ5iz/r+/8Kge9MEoVJ/EZhhHKaqph/0td1zF0HVUQkyQhz7VtGp4XqedIzefIQRa6rUEQoIhyspRYM4xEIhKIT2ez6JqGZZrU6vWwsbR8PpoWGX65/sq2gPGayG7I5/NRm8KVlRUy2SzdZr1clyR/xLHtSPhEkrEW5ubIZDL09/c/1Hf1g8QTZSi9VgtFUajV69SqVWyhDDNYLpN9kG5oLMwX/383NAXbTXYakVCUsMVOKplkaXmZhYUFlldWmJycRFUU3n333bbSikw2SyqdDnMdItmcSqUiIyZ3W5bwFDVdb2PLrqysMD0zw9Gnn6bYobEKYRPZpij0N0Txbss0aTWbtEwTU+xcF5eWmJycbAvTJEVyvVQqUSwWGRwcbGsYG39WD0O+NhIJ+opFlhYXaZomhtiVrvfegq7TarVwRDsw3/dJiz6Wy0tLZLNZyuXyQ5y5hx42hnSwfd9naWWFphAkyefzYWnYg0RBhAEJgiAU91jHeXRFtAnJGI857boQ/jZ0nbn5eZYXF5mZm8OyLKZmZrh3/z4BsJ99TDMTCaN/Glzkpw/9NOV8iUQiQTKZDEs2xLGr1Sqe55EVZS0Sy8vLTE9Pc/TYsa5rR0WIqaRTKVzXjRz6llhDLMFYnVxaiqJPEBosI5kkL0pk+vv7KRcKazYossxMVdW1ddQd6CsUouharVrt2nwBRHN6URpiir6c9UaDbCZDMpVicWGBoZERLMt67NKYT4yh9AWxpNVssrK0FOYlDSP0Ch9CSzVQlCiRH9XndDGWlpBtgpCRiSi4XVpeZnFhgcXFRZaWl8P+aTFG2NZt2+gTZSdJYQQj6nYcYsJJVpyqqpE+qqKqbUQX+VnP9yPB9DjdW6qEeKoa9o4TrN9kKkUxuvHVa7BtG9M0aQqB4Vq9zt07d7hx4wYQlr4MDAxQLpfp7++PJO+kcMGae4l/P75PJp2mlU5j2jbVWm1DjVtVDfvOqbZNS/Ss9MXOcmV5mYHBQWzb3pCd20MPD4NA8BoWFxexRAu+lChnemDtoaJEpBZFUQhizNJOyF6zulDogbDp+uLiIkuLiyyIPFoAJHQdV8yZbdu3k06nSaVSbG1u5X8983fQ5dLrw9n6OX5i8MejVlStVivcNYq1Q87xeM/azrUj3mnEhyiNJNM5cseWjSvdiJpQmQZqmSZ1USpWqVSYnpoiEFGjklgz+stlyv390TrbTfErDlm3WSqVsOfmaJpm2G2ls+l87PtIiqhbo9UiEKFYyS6urKxEzsTjxJNjKG0bq9lkYXExEtzNiEH8wMEuaxDj9YzQ1uIKwi+t2WiEodd6nZmZGZaWl2kID9QwDPr7+9m3bx/9/f0Ui0XeevttRvN5nnvuudjpgtXQrONEIdMgCELKc8egkYYiIUIjElKKr9FodL1H23GwLQtf19FEDWhU7CxyETLJr4uwTHROsduUeYvFxUWWlpZYXFzkzp07EARowkO9fesWA/39pNLptuclf4ob0GJfXyRwXKnV1rT/ikNR1ajvXKvZxBPXFRAa9Wq1ysDAwLqf76GHB8H3fTzRzaPZbKIqCtlMBst1QyfsAamFzt1QG7kntruUc9i2LJaWlpidnaVSqUQkoUKhwIBYO8rlMo1mk3feeYcTJ04wFGs5N+QNsu/eXs7NnUcTf747+QZf3/Q1MlqauIqyHwQ0m00gDH/GCT110R5svbXDsqwwaibKMaRoiXTeNWGIJYNdHsP3/VAQIAjIiqYLi4uLLC4uMjE+ztVr1yLRF9d1mZ2dZXCdlnrxrieGYdDX10ez0aDRbIYasxsYO03TyGUyNE0T13FotVpouk61UqFYKmGa5oYtFH/QeCIMZRAEWI0Gi5VKSF5Jp0kkEqwsL68h7nwWxAe9a9tMTE4ydf8+C4uLuI5DIpmkWCyyd+9eBvr7o2auEguLi6wsL/PSSy+tOa5hGOgibi/hibyi9PCkt2bZNqroTBIP18QNuyrECqRggSzb8A2DRDJJJpNpq6eKnIGYUkgcyUQiIhmk83k2b97M5s1hSx/P85iZmeH8+fM4QcDS8jL/+T//Zwp9fYwMDzM6OkpfX99akQPC/nfFvj7submoxnW9+qY4XVzNZmkKbz/wPCpLSyQSicc+4Hv4asG3LOrVamgkVZVSuczKygqB43QV327DOuSdaG5pGngelWqVW7dvMzc/T7VaRQHyhQJbt21jeGiIcn8/iQ7h/wsXLlAoFBjscAQ1TeNPH/k5fvG7/0302rK3zO/M/A5/at+fipR0ZI9cyQFYrzykTTtaip0oSrTjTafT6ILAo0Lb+tNt7VAFj8IX+tGlUolSqcTu3buBMG117fp1JsbH8YOAD95/H80wGBwcZGx0lOGREQxdD8vtOpyUXDZLIpnEN02WVlYYHhxcn3MiriWTTmOK9JUv6sQ9IVf6Q2co7WaTerWKY9skUyn6y2VWKhU8ePBgh3W3/Y7jcP/ePaamppidncVyHHLZLLt27mRsbCwKcXb2YJS4dfs2mVxuXRX7TraopqogchVxeJ5HUogrtxFYxOfzuRx9fX1rjm8KUYVEIhHlUjul8VBV6NLNQ9U0EroehZrTsUHVbDa5ePFiNJCfe+45FEVhamqKazdvcvHSJTKZDGOjo2zevJlSudw26JPJJOlUCtt1WalW2whCXRGru5RKJouLiwwMD9NsNnuGsofPjZpQ2AmCgIIo+5BpjIcK668TNlwR3ISZqSlWqlV8YGhwkL179lAsFnFdl2QqFdURx1FvNJiamlq3T+3u4i5+ZPPrvHHvzei1f3/7P/DNnT/FYGZ1d+Y4Dr6Q3+vM68mdcD6X65rzk02YJSNWvvYw955MJiNheKlcJHHnzh0mxscpFArYjsOJF19kenqaqakpTn78MUBoNEdG2LJlS9tGR1EUCrlc1IGoUqtR6rLuyWtTFAUE619RlLB1l+extLjI4NDQY03dfOGG0hO7C1MwNAuiNlL2LjM2ehAx2nI8TLKyvMz4+Dh3797F9zz6BwfZLQZ4X18f2Ww2TPwLaaRuzK2maTI5OcmRDZqIdr4aVwJa8zrt3txDocsgVugg32xAWkokk1HZi5S4m5+f5+TJk2SzWZ5++mnefucdkslkOLjHxjjmeczNzzM1NcW9+/e5cesWfYUCO3fsYMvWraGhVxSy+Tx+tUrg+6xUKgysw0RTFAWNkLEr85b1Wg3bslhcXGRwcHDNZOyhh4dBdWUFS9QupjMZ8vl8JEupx8KJXRHL6Ul4rsvkvXuMj4+zvLREMplkaGSELdu3R6Q4TdNoClGN9cqqxm/fRtN1tmzZsu7pf+7gz/HWvXfwRLDVcm3+1bX/H//9sb8Uveez9q/tdn8bv6X7ezRBHpRtuGQrsjNnznD37l2eeuopms0mi4uL5AsF8oUCu/fsodVsMjU1xf3paT69cIELFy+yadMmduzYQb/Ia8r2hbJmMi1Ih+tB5kITySS26+I6Dgvz85TKZVqiM8njwBdqKIMgYGl+Hk8Up6czGVKZTFSUCmF9z8PA8zwmJyfDQb68TDqdZu/evWzfvh1d16lUq5ECjQxXKKqKLyZWpzG8fesWuqaxbdu29a+/iwHtJqMnvb/PWzS8UZ5loyMahhGphti2zczMDGfPnmVoaIjnn3+eer2O73loqhqFYFRNY2RoiMHBQZ4+coS5uTnGx8c5d/48Fy5eZMvmzYxt2kQqlaKvr49arYZpWWGD7PXIPcI7DGLGstVqMTs9TTabxTTNL1SeqocvH1qtFs1KJXQC02ly6TSaotAQBfMP5WALVCuVyLF2bJvhkRFOnDjB8PBwJHqSTCSiwnhZwxx0ieS4rsvtiQl27NixYZRlU26MP7D99/Odif8IhFP8P935Pf7w7j/ElnyYIonm5OddNzrQKWu3xumOIZlMRiUvqqry0UcfsbS0xPHjx9m8eTOfnDoViZvIlFE6m2XHzp1s37kT27Ki3efdyUkKhQI7t2+nr1gMKwJUFdOyWF5ZYXhoqKszEDWtENeaTiZpCjH72ZmZUEe2UHgskphfqKGs1+sEIkmeFj3MIgFw8ZD09QyleICmZXHt2jVu3bqF6ziMjI5Gg1zu4KrVKhCyXCXhJRIf1rRwsMgwRBDg+j63b99m67ZtG9b6PczXExFhHoaU1HmL3c6jKASx+P+D/MZUIkHD87hy5Qrj4+Ns276do08/DUJeKgD0zkVFUVCCgEBRGBoeZmh4GNM0uTMxwcTEBON37lDI59m5cyf9/f1UazWqgtizbs5BEU2zg1D2yvd9avU6iwsLFAqFnqHs4aERBAHVlRUC20bRNIxEgqQglXmiQL5T0nLNMYDZ2VmuXLnC/Pw8iWSSnTt3sn3Hjmgsuo6DI1in8dIqSYKRBkJcFAB3JydxbJudO3Y88D7++IE/xu/d/S6WH3bh8AOPf37lX/LXnv+l8P/fx44yWhfigiS0rxcbCY0YhhGKN9TrfPzRR9i2zcsvv0x/f38kgymjS3Goqorn+ySSSfbs3cuePXuYn59nfHycTy9cQFVVhoaHObB/f/h8NwjBRk0mxJqsKArpVArf85ifm6OvWKRcLj8WBuwXZig9z6NeqYAQ2FU1LdyCdyu56ALLtrlx4wY3b95EURR27drFjh07SHcsuLaItQNr6whjg1wJXyBQFO5PTmKaJrt27vxM99Rt4Ml7+Vxezzqh13h3gQex+jRN4/Lly9y7f5+DBw6wf9++6NhSud/o9HyFUY/nNFKpFPv272ff3r1M3rvHrfFxzp07R14QhTK53Po5Bxnmir0k8yDLS0sR9bwXfu3hYVCv10GIgiRTKZJi/YiPs3XnWxAwv7DApcuXWVxYoFgs8vwLLzA6Orpm/DUFQ1vWREvE22Ipqy8SEPIaRkZHH8rx60/1881d3+TXr/86si/HO/ff4fryH2FvaU8UifrMKRtxn/Ja18UGZR0QluqdPn0aRVH42te+FirriPe7rtvdQAlCUXx9GhwaYnBoCMs0uXbtGncnJ5memmLzli309/fTaDTIZ7Pdd+CCUOgLLW4ZkVqqVFhZWfnqG8p6vY4qNEkTySTJRCIcEGLXIR905+B1XZfr169z8+ZNPN9nz+7d7N6zpzsrLAiiwZ4WEnFxKNHb2sMRk/fuMTQ0RF6IAwQQ7bDiw67TMHbLdX4/Gq/ryfG1hVA6r0HWNhE6CSdPnmRpaYnDhw4xtmlT23sltb3rAI2FS9ugqgwMDlLo66NRr3P9xg0uX75MvlBgdGys+4CXOeSOY2XSaZZWViKVo26Eph56iMPzPOq1GorjoOl6pFO6ZsHvYiCWlpa4dOkSs3NzFItFXnrpJYaGhrqyxp24g92ZQ5N10B2fq1SrVCsVDh482C6NB6EzHt/dibn1s3v/ML9967dpuI3od//00j/n//nK3/rcO8pubPXouuPX3HnfYo0jCLh//z6nTp0il8tx8ODBNZsMx3HaazJj6HSyJZLJJFu3bWNs82YWZme5cfMm9+/fZ2h4GF3XGRkaWveaVU2LQt1SLL22ssLS0lKU/3yU+EIMpeu6NOt1FMdBFeo1qfhglzfdMdhu37zJ5StXcByHXbt2sXfv3kgdxpVEmhgsQSdW5fE7EIUvY59rmSZzMzM8ffTo6vvEtWxosFhr0OLH/lxeYcd1RscUgydeZNz2LyGz9f3338e2bU6cOIGRSODaNoFgkEHYcFVhA+o53UO7Mixe7u/n1ZERZufmuHDhAtevXWN2ZoZnn322vV9nsNofj5iSh67rJBIJlpaWKBQKPUPZwwNRr9dRhDSbbhjtu0kZ3qe920Oz2eT8p59y/949Cvk8L77wAmNjY6vju4vBaAod5ni6RkLtsm4ATN69i2EYa1jycv2IHx9x7pyR42f3/VH+6aV/Fv369Pxpzs6fY0ciDN9+P5EWpeNnBaK56ItraXsGQcDNmze5cOECmzZt4sCBAyEh0HFIx56D4zjr52DXcbJlyzBd09i3fz87d+3i6tWrTExMMDs3x67t2zlw4MCanr1eLH0lrzObTrOwtEStVqNWq1FYR+3nB4UvxFA2m00UoU+o63r7blKJKesINBoNTp86xfzCAtu3bWP/wYNraNnd2KCtVisiCXUbbIrQUYyHeu9NThKoKptEzeFGUFg1Yn5s8MevwYuFT9YoBsUMXPxz8l7aGjjHDyuo3/H3xbG8vMyHH36Ioeu8+uqr5HK5sHdcEAq3y5KbqIZxPVavqqKIuq622yIW3lIUhoeHKRaL3Lh5k7t37/K9732PgwcOsHvPnihMHO/xF3QM+MXlZarlMq6QLOyhh24IgrAAX3EcFOFgd9tNyrEZEPaQvXjhApquc/y559i8ZcsDyTGW4+A6TpQT64T8fHzdCAgN5ebNmx9MvlFWa6UBvrnzp/j2zd9iyVxCzvR/cvGf8jee/uvIZsnrqY0FcUMn3uvLZxC7Nvk5yROI5mTHDvP8p59y+/Zt9uzZw6FDh0JBlUYjanUoYbZaXZ9N/Bl5Xb6X8PbDKzMMg8OHDzM4OMjt8XGu3bzJ7Owszz77bOQ0twnVx4yvJsrfVpaXWVlZ+WoaSsuyQIiXK0KkN/6FRd25FYVbN29y6dIlEskkX/va19YU8K4HU0o4baBJKsOh8RDK3clJRoeHH65+MwZptLoRbwC0WF4jvmOOzhy7hiB6adW4xH/ftsPsGIxTU1OcOnWKYrHIiy++GNGnDcPA9Twc247urbWBWIBE1wHfJe+aTCYZHR2lUChwf3qaCxcvMj09zbFnnlkjdRf3Ng3R3qspOqX3dpU9rAfbtglcF991w3SN3E12QOorv//ee8zOzrJ92zYOHzmyNhffDdLBhrB1XBcHW55TioqoisLCwgLNVostW7c+1L3EF/+UluTn9v8x/sH5/y36zY2VW5xfvMjRwSPtEZ8Yr2LN2hE3muuEWOXc69xJe57Hxx9/zOzsLMeOHmW7ICMZQiQlECLruq6HkTohz7f+Da7dVQbCue90zPv7+/F8n1J/P3fGx3nzzTfZf+AAe/bu3ZBwlEqlaNTrkXrRo8RjZ0/4vo9jWXi2jSaK86USffwBzs3Pc/XKFc6eO8eWbdv4kR/5kQ2NZKfxkM2L07FQYyekwo0vYt+1ep3lpaUN65+6nFicsvsXKo3wD4rMA+072fg7bt64wUcffcTo6CivvPJKW42RkUigKAq240TX1Gw215Cf1p5MWXPt8l47PedCPo+maWwaG+PFF1+k1WrxX37v97hx/XqbM9K2+w8CEoaB2WjQaDTooYf1YFkWSkzP2ejS6smxbe7cucPJkyepViq8/PLLPPPMMw9nJAllIzdK1wCr5WWKEu0q705Okkmn6X9Iof8g9q+iKPz49h9nLDsW/V5F4Tu3fpt1so0POHhHCqvj2jthmibvvPMOCwsLnDhxIjKS8hiyNZctcrYtYZgetHZ0rg/SQHe+bhgGmUyGfDbL4aefZveePVy8eJE33niDiqhYACIyT/S5RALbtmk0Gmv67/6g8dgNpWVZUX5N9m3r9IDmZmeZGB+nVqsxMDBAIZ8PP/eQsB0nEgTesL1Ox47y7t27aIbByOjoQ5+rGyEojmhH2eH5BrHfy8nSOYS77Taj83Y4BufOnePCxYvs3buX48ePr/GENVVFF7WjclA1Wq01Sfpu6BzY/joTUQ54VQkLi1//xjfYvnMn5y9c4KOTJyPFFOgY8IYRyeH10MN6sCwLRLMCVeS62ngMvs/Zs2eZnZ0FiOaxuwGLvjNaY4pOGkkh0LEe4tqoru9zb3LyoXeTbRDn1lWdnzvwJ1ePj8p0a4aPZj7u+jE/9tm1h1zfuCod/9ZqNd5++21M0+TrX/96VxUywzCidSOIESQ33FHCGic7zlPoRCGfD5tGeB7btm3ja1//Op7r8tYbbzA1Pd1+f+JfTdPQNI3WY9hVPnZDadt2mGMQhsGQwsXigd6bnOTjjz8mlUoxMjqKpqp8+umn/O7v/i7f/e53uXDxIvMLC2vCgfFBI41q4mEGu9hRBoRe4aZNmz4zQ7Uz1i81XmVoJh5KlX/jZJzoM6zm/9ryekIQoNvwd12XDz/8kPHxcY4dO8ZTTz217nUaiQSqokTdU1qNxoMHO6xZjCS65WIK+XzUMcWybY4cPszLL73E3Nwc777zTleHJ5FIYFsWjUajzZj20INEEARhJEqQSDoVWVzX5f0PPqDZalEulxkeHmZ2dpb33nuP//M73+GDDz/k9vg4jQ0WVFcov8g+tRtB1bSI3zA7M4PtOJ/dUMbCqACvbvo6OwuCwCOW5t8a/w9YrtW2dsRJe13/xlI2ct1o4ziIlM/8/DxvvfUWhmHw+muvrZv20HU9WhMd16XVbKKp6kPpcMfXiGhH2eV9mqaRy+VQg4BqtUq5VOIb3/gGwyMjfHTyJLdu3Vp9r+yJqSgkdJ1Gs/nIDeVjz1EGQYDjeeiKEon1il9w48YNLly4wJYtWxgcGsJxHLZt24bneczOzTEzM8Pdu3e5ceMGuq4zNDTEyMgIw8PDUZ7TE3m4IAjCLtwbQBMEIj8IWFxaol6rcezYsfWvPXYPawxwLB6vxP4fvfY5Qq+RIY15ZvEB32q1ePe992jU65w4cYKR4eF1w6QQGqRWq4XreTSaTfwgeOhCf1UwCr3Y/XS7J03TSKZSOOIc6VSKkZERvva1r/Hhhx/y1ttv88pLL4XUcsGA1XUdFIVmo7GmGXQPPYBYZEXTAUU0HZYwTZMP3n+fer3OsaNHQdTaDQ4MUK1UmJ6dZXZ6mvPnzoWdPvJ5hoaHGRkdjUoLAkTHDUIHe6MeltBO6JmcnKTY10d+nXKJ6B5YXTtk78uIEBQEaIrKnz74p/mfTv5yZCjnzXl+Z+J3+eaun3roZyVd2c45Go9QTUxMcPr0aQYHB3nh+efRBVdg9S3tbnlC18O11XFWUzafcU3zhRjEes82m05TqVTwRNuvVCrF8y+8wIVPP+X8p59itlocfOqpiNuhAKqut9XKPyp8IWQe37bBMFYJM4JtdevmTfbt38/BAwe4d+8ejhL2ZzMMg82bNrF506ZIW3R2ZoaZ2VnOnDkDQF9fHwODg/QVi6vNTx8w2KMu3UHAvclJUul0m2bpegGMNcZovfuM776+H73GLgOyWqnw3nvv4XoeX3/11TaW2JpjSJadqqIbBr7jUKvVgLUiDOtBUcJaSF+UlHSVnCK852wmQ6PRwBLdSwzDoFgq8eqrr/L+++/z1ttvc+KllyiXSqGHKY7VarWi77uHHjrhuW5InlHVKOxar1Z574MPCHyfr7/6KqqqsriwgOd5KEChr49CXx/79uzBdhzm5uaYmZ1l8t49bt68ia7rDAwMRI3NdcN44G4SiMrabNtmanqagwcOtP2+k7kv8SCH+YXh4xwqP8X40kR4z/j862v/ht+39f9CxnhI9aoN1o0gCLh85QpXLl9m27ZtPP300+H8WydiFTFUk0lMYZAazeZDrxuIfK4fcwo6147IgRDdQhqtFo1WK8oRHz5yhHQmw8ULF2i2Wjz77LMRm15TVRqW9dUzlK5t43seSiIRytMFAZcvX+bmzZscO3qUnUINRw7EzoVTUVVKxSKlYpH9+/dj2TZzs7PMzMwwfvs2ptAmHB0eZnRsjJHh4ZBC3gUy1+H5PvenpxkZGWlnoj4EZKfvbpCvfl6txrYdagxzs7Oc/Ogj0qkUr7zwwsaDNr4TDQIMXQ8He6OB1L59KMQGfABtTkgU8hETwRBOkGXbNJrNqLtBJpvl1Vdf5cMPP+SD99/ntddfJ51OR2pD0jPsdRPpoRs8kTKQspaWafLe+++jaxovf/3rpNNpGs0miqquDeErYReezZs3hw43UFlZYWZmhqnpac6eO4freRTyeTZv2sTIyAilcnldB1clnJ8L8/M4Qjoz6DjfRpCSjp3RKUVR+Pmn/jS//O7fACDAp2JX+Pat3+JP7P9jD/eg1oli+Z7H6TNnuHPnDocOHWL3rl0PvM6oHENVw6iSolBvNLp2LFkPsrzFE2vHGr6GeB0gK9rxmaYZthkTJKzdu3eTTqU4deoUuq5z9Ngx8LxobZU9hR8VHruhdESOStM0FFXl/uQkV69e5dChQ5GRBNpi4muWTWmclLAb9pYtW9iyZQsHGg3uT0+zvLxMtVLh9OnTAJRLJYZFiLZUKq0aD9G1otVq0ajVGD18+LPfUEeuMY7vS76OWN1R7LWJiQnOnj3L8NAQzzzzzAN3zZ0wDAPFNKmurJBIJqPyjM5zdoMinApY9QoDVmuz4shms9i2TbPVIp/LRYILiWSSl156iTfffJOTH37Iq6+9FjWRlc1me+ihG3zXRSVsvef7Pic/+gjX83j11VcjZ1ETbFRP8A66Qgn1Q4vFIsVikT379jE3N8fs3Bz1apWJiQmuXb+OYRhhiFb8TaRS0aKvCo3ouYUFCvk8uQeEXbtfRvf0xaH+QxztP8qVxSv4IpD6725+m5/c8RP0JR9cPtVtPXJsmw9PnmR5aYkXX3iBkdHRzzzXDMPAcV3qtRqbx8YgZuQ33FzIULNYs6PaakLjHX8GiUQi1IKWa0dMuGTT5s04rsvZs2cpFArs2LEjWoe+ejlK4ekpqsrK8jKnT59m8+bN7N2zp+19mgituOuRO+IDTBhOy3HoKxQYGx0llUphmmYYop2b44aQWkskEgwPD4e5zaEhNE1jYWkJFIWBdTp1b4hYvHzNvX4/Wo3EdpRioF2+dIlr16+zY8cOjj79dJgz/IzkF9ndvNZsRjmVNnWhjQa+EtaFyjZGa3pjxiAVTVzPo9XRHcRIJDhx4gRvvfUWpz75hOeefRYEWaOHHrrB8zxUVqMz586dY3lpia+JnaSEFKxYd92QiEWCHMdBVVXGRkcpHjhAEAQsLy8zOzvLzOwsp06dgiCgWCoxMjLCiBDYUAgJMZsfQpyk+yWs70D/zM5v8iuLVyND2XQb/PqN3+D/eujPPvC4nbyIRr3OBx98gG1ZvPLKK5T7+6PuTJ8Fhq6HzqznUeiS6tlo7ZCNHFRVjVI08c/EkctmcYShzGazbbv67du3U61U+PTTT8nn82GuNAjCBg/duCM/IDx2Q6mJG7FMk1OnT5PL5Xjm2WfX3GA89LohxOdsx8FzHJRYSYjUFtyydSuB77O4tMTM7CyzMzNM3r0LikKxWKTRaFAoFD4XiaRNOaLL70AQYcTAiA8sOZk91w1JCut4mH4QcPaTT5i8d49Dhw6xZ8+e8L2fc/dl6DrNRoP+Lj0kNxr4UhEoKrTegIauqiqZTIZarUaji7BBvlDguePHOfnhh1zOZhkeGYm6FfREB3rohGvbGJqGFwTcvHWLiYkJnnn22TV1i5EYgO/jed7Gc1o62KJkLSFqrhVFodzfT7lcZv/+/aHDPTvL7OwsN2/d4uqVKySSSXK5HJZlUX7I2slObFTGsSm3ieeGnuG/zL2BIv78x1v/kZ/a8ZMMpAZwRUMD3/PWrB1R7TawvLjIBx9+iJFI8Nrrr6/qs26QMloPuq7TbDZD6b0uO+g28iHtBlNWAuiyNdcGSAmhB8/zMC1rTXro8JEjVGs1Tn70Ec8dP05AOD4eJR6rofR9P/QKVZXbt27hui4nTpzo2hJH0zQU3w/b3DwEbMcBIWsEq6UYEoqqMjAwwMDAAIeeeopWqxXmJ6ammF9cxPM8fvd3f5cR0VZqeGho45524hy+52E7TmhE4mUhvk+r2cQUXbjtLh6cDBc0W60oFh8/dr1ex/U8zpw+Ta1W4+jTTzM6NoZlWZFnxufxohQFs9Uis17/yNg1yPcrhIZdhkwehpyUy2ap1+s4ogFsJ6V/dHSUgwcPcvnKFXK5HNlcrldL2UNXOJaFpuuYjQaXL11i565dbO/SK1bW8EqizYNIJ0EQ632bSKxZNyBcuLdt28a2bdsIRMP3mZkZxicmUIBPPvmE27dvhyHa0VH6+voeOCd938d13ag20ResXrmGVKtVXh/8BmfmzkXNnQng3134Tf74/j9Gs9UCoNFsrkm/WJaFbdvUajVuXL9OvlAI0zRiR6gqCq7vh5uWz7J2KAqtZhPDMNasVx0PdY1cnSPrXx9i3Yic7EaDZrO5xlAqisLzx4/zvTff5OqVK+zeuzcq6/lK7Cgdx0EJAhzHYWpmhkOHDq07kFOJBKqmPZTQQBAEoUH1/ZD4E3RINHV5eOl0mh07dpBMJLg/NcVBIf47NzvLxJ07qIpC/8AAw0NDDA0Pk8vl8DwPz/fxPQ/X8/CF17qeh+TFPLs4ZA2pDCNJb7BN7ikIMC2LGzdu4LkuR48do6+vr+15BEEQDUBNVdFEV3dNVaPOCt3QbDZRFIVMNovreQ/u3Sd2ko7jhLWvD6lyomka6VSKpmCxdetGvmfvXu7cvcudO3c4fORIpPrRQw9xuLaNruvcv38fTdc5ePDguu81DAPFsjBN84GG0nIcfEStoEgtxDkQnVBUlf7+fvr7+5mdnSWRTDI6MsLK8nLYSefKFVKpFMNDQwyPjDA4MICqaeHaEVs//CDAdd2uu0pZb1hKlXhp5ATvzrwXvk7AhzMn+dGtP0paDSM0yjq7t5mZGSYnJxkZHma/YORaQkwBQsMVBEFI0tG0NevHega03miQy+fDHe1G7GBZvymIOr7rPrSDDZDJZKjX61i23VUDOpFMcuDgQc6eOUO9ViObyWBZ1sOzcT8jHq+hFIv85ORkWOc0OBhpJXZCigX4onZno5IB13XDMKaiRIt4VMv4gGuanZ0lnckwOjpKLpfj6SNHqNVqzExPMzM7y6XLl/n04kVSqRT9om9iqVyOQjqqEFaXklaqqq7+rCg4hkE2kyHVRUpPTpJcLtcWbpRsuitXrpDQdV7+2tdIZzLRblV6nrJJbUC42+vMy0gavaZp4UIgrrlaqxEA+VwuHISdhjKIFTTHnA3Zv1IXE8rrSMR3Q0aw2NZzeBzHYceOHVy8eJFqtdoTHOihKzzPo9lqMTs7y+49e3Bj4v6dSCQSaErYmHwjBCLsGsnhKTF1LCXWnKGL0XREL9Vde/cyOjrK/v378T2Pufl5pqenmZubY1w43H3FIv2lEv0DA2Sy2WjOSIOkKqHmtRoPn/o+iqryR478YX5n9nexgtX58+/u/Tv+uz3/LSDWjmIx+p3veVy/cYN7k5Ps2LGDQ0891b5jFX89CP/6Pp7v0xnv0lU1XDOkzKi4rlq1Sl+hEBp5cY0dDzX8x/fD5gfimiQJUNf1dbsStZ1f1zEMA89xaJnmmhrVIAgol8vkcjkmJycZGhqK1qdHgcdqKF3XZWVlhfmFBQ4fPoxCWCzcrURBEV+U7TiYspt2B+Su0bQsAghFkmNtnICNGZ1BwPTMDIMDYcy/Vq+jCe+vf3CQ/sFBfM9jZWWFxcVFFpeWmJqaQlPVcLc5PMzw8DCZfL6rZ2hZViSz9FlCAlP37/PJqVMUCgWePnKkbSK0X364O/diu1vpsXpiQti+DyK0JFvcLC8tkU6lMDQtDDvFNDPbjGPHuVzXxSf02H3heSsdz7sTCaEx63nemvCrLwqLBwYHyeZyjN++zb79+x/6OfXwwwE5vsdv3SKdTrN50yYs0ySZTK5V0QqCqBvRes6ZHN+e74dC6+Iz3Uo1oGPdEEZzdm4OPwgol0q0Wq3IcUwkk2zbvp1t27djtlosLi6ytLTE+MQEt27fJpVOMzI8zOjwMOWBga47LNd1w92dotCXKfHN3T/Fv73xf0S/f2fqXX5s5Me6fk4Km+/ft49du3d3Tx+JUg3XdaOdbjw65gcBru+HeT/hbEhmer1eZ2zTJlRxPnn8NULrsefoynZ+uo6qaW1M1/XytLJZhuU4WJa1xlBatk3g++zes4fTp0+zsLDQtQfmDwqPPfR6584d+goFdmzfTq1W23jAJ5OYlrXmQUlPT7aasm07rBEUi/K6QgGxn/0gYGFhgXq9ztZt22i2Wui6Hm3dVWGoDV2nVCqxe/duAOq1GjNC7ODypUucP3+edCrF0MgIIyLUIndun1UQPQhCdaKLFy+yeWyM3Xv3blx8Lya2NMZt7w2CcJcpdtueCLU4rstKpUImm6XebBIEAYlE4oHtrWT9pEIYUo3a9YjelFEbsQ4ohMZSfo9xQ2lZFoqiYKgqB/bt45NTp5idmXmoZ9XDDw9c16VaqTA3P8+zzz1HMpHAtG1azeYaUkmAiEYRkuQ6o1Eyx45wMmXRuqbrEaO7E53qNq7rcv/ePTIiIuMJdSlJQJQRnHwux+joaOgoui7zCwshKWhmhomJCQgCSuVyyKQdGSErdpud68Yf3fOH+Y/jv0PdXa0V/De3f53jPBf932y1+OCDD6g3Ghw7dixk5a6z7sidnqIo6GLHGIc0mq7oGCJ3nXUhUJ5MJGiZJr7vk3+ITYDkNuhC9i98/BvvKRXC3HC1VsNxnJDfEtPXtcXmaFSU/E1MTETNLR4FHpuhDIKwfc3S0hKHDh0Ki9ITCax1BjyEX4jKqlAxxHY8gm3quG60u3mQoosfBNi2jS3i3jOzsyiqSrGvD9t1UTWNbDYbhSu7IZfPszufj8I/M9PTTE1PMzM9ze1bt1A1jaHBQYZHRsjIkOtDxOUD3+fc+fOMj4+zf98+du/eTbPV2nAQSpHh9Uo52iaBMJyO41BZWQl1KYUkWKVSIWEY6IaBYRhdjaZk2ckwjBpnJIswVWeeVf4/lUxiWRaWbSOroqQclh+EHV76BwdJJpNMdwgg99CD4zjMzsygahpbNm8O5eZsG9tx1qZlRL5e1vxZIholjWN8fErN48h524AJ6rouluPgiBZTC4uLoSCBMBS6SLHo63ADNF2PDCJPPx1K683McP/+fS5evMinn35KVrC/B/r7SaXT0TzMJ/L80b1/hH96+Z9Fx/t0+VO2KGFZSnVlhQ8+/BCA177+dRQRFVt37ZDrxjrkF5k+ks9VRpNmpqfxgWwuF2ozC0dDrjMJIZ7e7dnJ9ymwZs0KCPkancbTEG3UfNfFsu2o/6WMFGiqSsIwGB0d5crly9RqNUqfk4H8IDxWQzk7O0sQBAwNDQEhocYWA74V62QhH1cimYxU62V37M6Hadt26EXGdWM74LoupmCCxT9dFfH2wcFBqrUavu+H/de6LPzr6ZqOjo0xPDqK73lhblN4jBc+/RRPyLmNjIwwNjZG/8BAV8F1KWw+OzfHM888w/bt26PBsGHpSTyHst77wjcD4QQwTRPHdRkbGyOVTFIT+qpxJ0JVVRKJRNvAl4N9I7q9ZAzKgmIJWa5j23ZEfJKsPcMw0DUN27YplUpR54ceepAIRPSnP6aUI6NNjWaTfD6/Oq/EWE+IXY9p22QBYuovEM4LWzAlu5HM5Hkt245620rIGr/9w8P0l8uYpokudpHyGmRz8vXWpFw+z+5cjh07duDK3ebMDDPT09y6dQtNVSn397NpbIyRkRG+ueun+K3bv82SuRgd4z5TLC0ucvHSJXLZLCdeeol0Ok1V7PzWNZTi9c55ut4zgNDIVatVioUC5VKJ5eXlaFcpd56maWLoOolkMnoWniAuyUgUhOtQPEwaN9qR4Lv4N5VI0BRlIulUCkuod/miH6bv+/SXywSE3JetXZjQPwg8VkM5MzNDIpGIulGrmkYmk6HRbNIyTVRNI5lIrA52mXMMgkgktxMy7Bof7LJPnMxvyt0QhNv/hGFgJBLUarWwDETsomzHCUkCHceK4u+AEvs5LjGnKAqFQoFCocDePXuwLIuJO3dYXFri/v373L59OxJyl4IHEmfOnMGyLF5+6SWGRJubB4mpy3O2GcnYBO0mgqAoCguLi2GdWKkU5ScCRSGVTOIKD13mDk3TjJQyJENPTgB5/k7HRYa+FVWFmKSdrmlh5wHRJ1TmNaWuph+EBd3Xrl2j0Wisafbcww8vHMdhaXmZnbHuHOlMJkor1Ot18vl8GykwmUyiEjI9ZYomDpmb1ESKBVZl5TxB8rFMs00dS86F+WYTBRgZHg5LVkwTt2MHF5EJ4xEWWJ2fsdd1XWd0ZITRkZHIKbg/Pc3K8jIXLlzg/Pnz5PN5fjT3Df4P8zeiz/VT5tz584yMjHD8+PG2HWB0Dd0Q4yOsvhS0Keh0W3cWFhYYGR1F1/Ww1lHXo/kruRKO6+KI6FzSMPDFdajxEO16IeFgVdJPso9TgjVvCz1XyzTxRVpO0zQ8sV7nslnu3r3Ly+vd8/eJx5qjnJ2eZs/WrdEDUwhVWlJiYW42Gqisajkifm9ZVptIroQrw66wOkh8n1arFXo7sQGTSCRIxTwd0zSp1+uRmLGu65Fn1Olhtg2aGDOus4WW/D2EoZbBoSEGBwcpFotUK5Uot3nu3DmCIIgan9qWxde+9jWKkrQjJ1KHEWorHxH/X6OO84BJsri4SLGvr41g5HtexDJLBWGpjeU4YY2obdNqtbAch4SutzFkuxnK6DJiyhtBEJBIJnFcl2q1SjaTIQgCsplMuEPwfQLfp1QqEfg+ExMTG7YL6+GHC1NTUwS+T3+scbuiKGSzWWr1Op7n0ajXyeZy0bhPJpOgqpitFn4X4QGnM+xKuJ40Go22mmdNVUklk2FHETFfVpaXSafTpMWOBgSzs8t5Og3OGgPaxThlslm2bt3K3j170HWdeSHk7s66vOp/nXvqfbbrW9hqb2NkeJgTL74YcQQUWC1xgeg1WI0u+XQh34if5fV1oin6xQ6I70Cul0EQkEqlSCaTIWHPssLm8J5Hy/MwTRNFUdpSa9E51ssHxzgPkgzoiEYOqqaFu1axoZLPv1Quc2diYt1w8veLx7qjrNVqa3KRiqJEA8627ahORxdaiul0mmajEdbXlUptn41i38JImqYZhvRE8lkO8mQqtaYEZWlpCSBS1Yikrz4DxbhrfjAeOhBhSIVYF4N9+7Asi+vXr3Pl+hWaboOEl+Ltt96KWoYNj4xE5Bm6KPvHjZOqKHifYXAsLi4yJhraylyEZLtJ45kQC4PruuHAtyw818UmrKNKpVJtifn1no0fu65UMsnKygquyEm2GUlh7FNCe1Z+Nz30ALCyshLOoZjuJ4RRi1wuR71Ww3Fdmo1GJKKhC3KbbCnX+VnHdUMCoGHguS7NVisq/oewrVQylepagrKwuEhZqFpJ0p/jOLgPUgLqhBJqzkaN0DvWDlmzPDo2xujYGEEQ8PzScU6dPcvK8jKu53J/aorvfve7jIyOMjIyEnXkIQhAlK7B6joVAIgdtmyd9zBYXFwkYHW9lGtFPCStaRrpTIaUiObJ7kE+oJtmqJomDN+G5xZM+oioqKo0bBtN08hns6Sk0yKenRwbc/Pzj6xN32M1lG11SgJyx5ERdYK2bVOv1Uil0xiJBJl0muVYI+BkzAN0hFELfJ9KpbLaxkXTKGSzUb6xG5aWlkilUlFeNK4RuZFXEnltrHpoQYchi+43vME1uZH7U1N8cPND/rPxXZZZ5njxOP91/x9hbm6e06JtWKFQoFQus2lsjOTQ0Lo1mPIZPgyazSatmFcI4c7XEzvpzgEmk/SObG8ktFvrjUa0kKyHeIhJ1ny6Il9hyJrOjjBUFE7uoYdOKO3yjnKsaJpGJpulUathWRae75PJZFBET0pLNASPG0pZOuX7fqRiI5FKJjGSSfR1CHheELC0tNQW8YhHo5Lr5DsjxCNAsRQErBqzSMCkY+1wbJsLFy/SbDQ4cvgwZ8+f59DBg9RqNe5MTHD9+nU0XadcKjEwMBDt9DohHdg2Nu8DnO3FhYWwHlwcL76xWFNWI2REVcEvsV0XRdMinkgqmWyLGrZdW0ckyvM8fLEmu64bdhuKX3e8ScMjXDseq6HsdhvS6CiKEkqeEbKaGvU6qXQ6/JtKhQt0s9k2EC3Lolqvk0mlQkaVqpKODY6N6vsWFhfpL5fbin9lGynX81bVZ2IGSXpAbQN6vdBjtxxjEHDx0iVuXL/OjfxN6o2Q7n1q5RQ/e/CP8NrB17Ati9nZWe7dv8/9e/e4MzFBwjCi7ifDQ0NRZ/E2LzG6yPYi4PggjrzCmMarpmnQrS2RgOzCkEylyGazWJaF47rYrotdr0dhkDWTTIakfD9sEi1a4sQVgzqp4qqqojykh9vDDw860xoRhKNlGAaZXI5GvY5t23ieRzaXI5vJUKtUMEWfU+kIOoK74AjiGoRRqYxgmm5UZlBZWcHzvDZ9V0PXMaGt4D0+/ztl8eL/X8MzCN8AtLfnq9frfPjBB9i2zddeeSWaQ0PDw+zdtw+CgJWVFaamp5memuLKlStcuXKFYrEYciKGh0NGaMxAxh186fSvZywXFhbatKGjaJRwOLrt4hyhppTOZNBUFdOy8IOApmmi2nbItO9g2GuqGq2zllBXUgVRsxuj2I+PjUe4djzeHeUDoKgqWeENmq1W1Mg3lU6Hu6FGA4pFAqDZaERMVU3TSKXTpOPqN3Jb3uWLl15hpwyWoet4to3rOOiiruoBN7V67cpaCTr5OohecKdPc+/ePQ4dPswb995qO9R0c5qn+p8ikUyyZetWiqVSWM5hWSwsLITNZicngbBt2ODwMCNDQxSLxfYwhtSA7YKFhQWy2Wybs6GJEOp6qha2kK3TRH5Sz2RwRe7BFTq3tuOQSadXJ4uYgK4IaUkvMZvLhZT+jtZpkgGnPGKvsIcvL7pFG+KpD8MwyOZyNBoNPM+jVq2GpV6JBI5w1gr5PJ4QEGm1WiQTiXBHmsms6Xm73txfWlxEVdVVPgHtu6uoZCseRu1A2ytdFvjOtWNpcZEPP/yQRDLJq6+9Ri6XY7kzPaEoFEslsvk8Y2NjoZJRo8HM7Czjt29z7do1EqJt2JCQ5ewkLa65NvGMHVFCtmPHjrbfSTKN1yUaJWu2feHIyFC4ZdtRO716s0kqkSApVNggjEQFgrNii/KxpOCXyCiAbDQNHV1Ivgo7SggHYNe4dEeYLi3U41uNRph0F4u/Y9u0xANsiWL5VDJJqVhc25dRUSLGbCcirzDmIQWAqusg6v26hSw60Y1ZGv0uNtFsy+LDkydZWVnhhRdeYGzTJpT7naHUjs+LCVfu72doeJiDTz212sVgepob165x5dIlkqkUA0IlaKibkLsM3wQBM7OzDA0ORoNKqvlDaKy6SVK5to0PpGMLia5pYSscx6HZbOL6PvVGg3QqRSKRICDMF9uWhRcE0WIU+KHIfSS1J25aGmkpZNALv/bQCRmG6/a6dFI1TSOfz9NoNMLm5PV6xBFoNBokEwnqzSaWbaMoCvlCYU3uEthwwV1cWqJYKq2uLcqq/JxPKNP5oGYKa5jz4jgS8V3SvXv3OHXqFOVSiRdffDGKJq0Lse4kkkn6+/vDzklBwPLSUkgmnJnh7p07QEiAGejvZ2R0NDT8Xe47AObm5iAIGBwcXH1PEITC6GI+d96xGxNzkGuMItj1CcPANE0C34+0XGV3Id/3aYmmzYGwBYlEgnq9HknwaZoWEXkiLofIu37pRdFVVSWTz7OysrLmd9IDi4cJk4kEuqpSl3V+YhczNTNDsa8v3GmmUhTy+XWbFyuqGvW/jKMirqGvr69N0Dyh6zRFgrqrjmEMnaHkNTtK8W+r1VoNmXzta1HIpvPr7MxydgvdRl0Mtm7F9TyWFhfDDigzM9y5cwdFUegXhnVkeDjUjxWfr9frNBsNRg4fbmO7yZCGF4SCBEbsnuMecjcRAsMwyOXz1BsNXFH60RL1kZKNaxhGtNOXXrvvum2etDScrWYTz/cZFWSjHnoAGB4e5lPLYnlpicymTdHrUYlSTFFHMiybrRaWKDmzTJNqrRYpWEGokZrraP0WP25naYfE8soKQ4ODbcInELLzPZGWeGDXofi5uu2ExNy5dfMmly9fZvOWLTz7kE3aozRGPGeoiLZh/f0ceOopWmKnOTs3x42bN7ly9SrJZDIqW+t0uGdnZsiI7j7xY8p0VzcHJmqg0CUXKbuDaIZBo17H831qtVpUniPvQQo4AFH5nuO60THluqGpKkvLy4yMjT206PpnxWMzlJqmsWnTJqbv319Lo16HEKPpOoVCgVarFYZjTTMSyE2n03hCIGAjxHd98guoVKukM5k1TFipnO/7Pk6XMpHPBJEzuHDhAqlUitdee61joHUXE5bX2W3Axz6MqqoMDA4yMDjIwUOHqNfrzM7MMDs7y7WrV7l86RLpdDpi0dZqtbDVWKw5tTTCqqahxBSO5LU4gia/ESlKU1Vy2SytVotqtRoSI1SVTCpFOpNpYw3KQe94XpSL9ESiHmB+YYFkKsXWWL1cDz0MDw/jEu5sNsUMJcTybB0hzEw6jaHr0e6yZZosr6wwPDgYpXc2NDydIdEg1D+tVqvs3LFjTWjW0PUw7/k5hLk7GaC+73Pt+nWmpqbYv29fmCJ6yJ1SvCSuK4KAVDrN9u3b2b59O47jsCgc7pnZWe7evRsa1nKZYdGkenpmhrGxsfbDsEqg8QWPIVpnfR+7oyKhGxK6jpLLUa1WoxSNpmnkcrmQ2RozerquYwvClNykSAOt6TqLi4u88tprD/WMPg8e645y06ZNTFy7xuLSEkOxBTseHuyE9Liy2Sy1ahVTKGUEvk8yVhe50Xl9z2vLZ9Sq1Uj0oBOSUv4gQ7kmlt9x7VNTU5y/cIFSXx8vv/zyGi+zk//b5ibEj/UQE0RRFDKZDDt27mTHzp14rsvC4mJkOCdEfZFuGEyMjzM8MkIul1s1lIJGLruTyIkrtTA38pCDIAip4LYdyoaJbvGKoqxRIZKTxvf9sB9ezBvVNI2FhQV27Nz5QCnCHn64oOs65cFB5hcW2l5vm3Fd1g5Z5J7NZiPWfLPVwgfyDxC0kLsbBaK6w3qtBkHQde0wDCPq2fqghtEbsTUc2+bTTz9laXk5Uun6LIh21uvtrDqek6ZpkcN96PBhms0mc7OzzMzMRA637/vU63Wmp6YYHByM5rGc54hdvSL4DrYQQVdjYddu8EXNO4K9HH9unY65rusoIuolCVCylM8S6bidO3d+pmf1WfBYc5QjIyOYnsfczExkKANW6crdQh3NZjPsOmEYDA8NUanVqNdqYZ2fCL+mU6n1F1ffj9QhJKrVKqMdnqmEjJ87ztpGy3HE8wzhC8IDDQKuX7/OxUuXGB4e5tixY10NzZpyj9jR4qLIXXdy67DkJDRdjzqbQBhq/t73vkcqmeTy5ctcuHCBTDYbNpodGaEgQrSelAmknfbdbbBL5SPbsnBlkl3TKPf3h7lJQaDIxDQrVUVB1TQCod6hi+8QwkVtaWWFF195pdvj7uGHGJqmMTY2xsTVq2u0XRVFWSNPB+Fuo16vEwRhOyZVVak1GmGHIFVFZbVfajejIneq8riKooTt6YKAfLe8JuFiLh3MDWv5OuarXPjNVov333+fRrPJ00eOfGYjCbQJfXQ/dXs+dM1OPJNh+44dbN+xA891OX/+PBN37lCv1Th58mQYlervD2u+R0aiHLAn5n8AkWDDetE+1/Mi9rwUjckLxz1ae4OgrRRE1/VwjRLrkhcLt88vLGCItNSjwmM1lIZhMDI2xsSdOxw4eHDVe6C7l9Wo16NQRiabJZ/LhcLEolhYFRqhEQ05lWrvICJCifHdnuu6IQNunR2lpCDL5szreUTdrtf3fc6fO8fExAQ7d+5k27Zt606YNTTnLoaya9i1y7nj2rTd0Gw2CXyfEydOkEqnWZifj0Itt2/fRtM0+opFSqUS27Zti0SPIaahKyaULxLwUjdXFganUqmoVZGu67SaTVzPCzuUx3MNmhZ2J3BdfCFcrRC2Fgt8n3379nW9hx5+eKHrOlu3buXqhQvcvn2bffv2hQ62dOw6FnvPdak3GhHBJ5fLRYtqvdnE0HUCCLVgWy2SqRSpZDIkp7Cae+wMidZqNZKJxLqRJhlRcRynq9ymRCcJMCB0ZqWw+bFnnlnTVuphIa+269rRaSQfAE3XqdXrDA8Pc+LEiZBFKzsnCYc7nclEJSgyPOsJkQH5nOTa5IjIkxSKkRwGKVUK4VrWarXCxtJi7ZD5UMSOEohKeFRNY3x8nN27d39/qbIH4LEaSk3TePbZZ/nk7be5efMme/fti8IbcvckB3RLiHcDZLPZyIvMpNO0TBPPdRno74+S9bKfpKppJJPJqDclENVHApGXuZ5XCO2e4bqhg47J6bouJ0+eZG52lmeeeYZ+0eNyI63WNsS9TJn/eMjwSXg560+A2dlZMtlslCMdFt7gkSCgXq8zMz3N9PQ0N27c4Nq1a2SzWUr9/fSXSmzeHHYo8FwXW0jbydIbTVWjLgduLNeoilCwHPDNVotcNhvVXgXC4ModrO95XLt6lX3790eC+T30IKGJrj7bduzg6rVrbN+xo612N+5o+4KBLR022bqqkM9Tq9dDwloiQV+hEGk7m0LX1UgkSAo9126o1evkNlg3DMMARQnnwjpkwG715LOzs5z88ENyuRzHn39+w3XjQfA32lF2KUXZCLZlsbi4yNNPPw2Em5Wdu3axc9cuPM9jYX6e+/fvh6Vr9+6hnj5NeWCAcqnE0PBwVMbhiBKyyED6PglRFiKdkbgUqaIoNFstXM+jJfoVyzSOXGMcQQicmZ6mVqvx+37f7/tcz+th8dgNZT6fZ+u2beGA3769LSwpB7wUv4Xwy4kP3HyhwPLyMk2x48lmMmTS6Ui+zhVfSEuwLBOJRFsIoFarhcfZYMAnYp5hej3PMDbgWq0W73/wAY1Gg5dffpnBoaHoPOsP9weHXtfdUXbxDNfblROEzam7MUkVRSGfz5PP5xkZGaElnuH09DTzc3NM3r3LhQsXKPf3UyqX6S+XQzayYZDueK5rGmYroTRhENtZykVLXrmUDLt3/z6mZfG1r3993afVww8vFEFee+rgQU6/9x5Xr17l8OHD8TegEs6bpigbkztJCU0IeWuqSqPZZGxkhHQ6jSuIPqZp4omeqVLQOyH65Mr5WKtWQyb5OtA+BxlwfHycc+fOMTA4yPPPPw+EzvznNZQPzFF2YKOzzM3NEQQBIyKFE4emaQyPjFAul9mxcyfNVotqpcLU1FSbw13u76e/XKavWERVVZKiIUVk+GCNwIOu62TSaRrNZmhkdb2N7+DGQrbXr19n27Zta8hGP2g8Gi7tOpBhyF27dhH4PlevXm1/g6jtazabAF21FpOiybCqKNTF+xRCEeRSsUgmm40Gq2Xb1Op1VioVmuKh16pVkqnUhmzZuGcYLx+JQxqlSqXCW2+9heu6vPbaawzKHVGX8o441I5H38Z6e4ChXK/eqRsWFxdpNhqMxrqVdL0eXUc3DPrLZbZv387Ro0d59tln2b59O7Zlce3qVd5//30++eQTxm/fDmtRY9fc7UoVRSEtQieeqI+SobLA9yNP89atW+zctYvh4WE2b96Moih84xvf2PB6AS5evBiFyn/t137tge/v4csLXddJptPs2rOHmzdv0qjX29+gKFH9HRBpvsaRzWTQVTXSIJXHzeVyFIvFUIhD5MGapkmlUqFSrUYRrGq12rVvbhwJw0BVlDZh9W4IglCl6+zZs+zYuZOXTpyIwovh7XzOHeUGa0dX0ZcNznPv/n2KfX1R84ZukISpdCrF2NgYBw4c4Pjx4xw+coRCXx8zs7OcOXuWd955h0uXLjE1PR21ENwIeqwzidlqtV275I/cu38f0zR57vjxR75uPNYdpSzi1xIJ9uzZw5UrVxjbtGlVGinuEYqcYzdIb6Mp6vfinTDSgtzjimaftm3ji+Rxq9VicWmJTCYThlXXKXtQVTXMYzhOqE3Y7TqCsID/448+Ip/Ph/m/VCpSmVlXdosNXw6xQeh1PYWj9chQ9+7di0QJ1oPsZm6aJhXLisLg+XyeUrHI3r17CRSF+bk5ZgWF/MaNG+iGweDgICPDwwwMDXXVuVQVpc07lPVVtuNgJBJcv36dIAjYv38/6XSaF154gW9/+9ucOXNmw7wrwF/+y38Zz/PYtWsXf/Ev/sV139fDlx+JRALbttm6ZQvjExOcPXuWl19+OVJzcoTcmQKRs9wJQ0RDdM+jUqtRKpUiB08aTF86cLEG747rsiTSCEnRLGA9tr1hGKu9b9PpNTu7gJD4cvrUKe7du8eRI0fYtWsXQFsN4ecxk/G6zofdUa4Hx7aZmZ7mgOiu1PV8or7dtm2aon0eQdgpaCCbZUy05Gq2WszMzDA7M8P5c+c4T9iPc3RkhMHh4UhdrBOyI4lM30jipy2ETm7dvMmOnTsZGBh45OvGYzWUsmu257ps37GDmdlZTp48yeuvvUYmmw11GmVecgMvJim0XQFWKhX6u3S1loLemXQ6NJpCcadar1MoFKjV66vSbLqOIf6VD1iGX9czlLfHxzl/7lzUC65z4kRsuXXuYaPykA13lOvlGbq8Hvg+9+7dC72t2MSJN1t1XTesexLd2y3bJp1Mkstmo1CpxOZNm9gs2MIrKyvMCBr56TNn8H2fQl9fxKQtlkrR9UvvUCbyfc/DCQLuT00xOz3Nc88/TzqVQjcMXnzxRb797W9TqVS4fv36uuSe73znO/yX//JfAPjVX/3VR5rI7+GLRzKZjPgFzz/3HO++9x7nP/2Uo0ePgoxWECrSdOv4AWGILyP6WK6srJDP5dbkI1Uh6J0Ukmm2KEdrinZdqqZRFcXxct0wDCOKlum6HpZNrBN+tS2LDz74IFTpevFFNomQoSyPi2bw59hRRqmPLmz5IAja2m89CFNTU3i+H3EU5DFc140ca5lLdVwX23HQCL+nvkKhLWJXyOcp5PPs3bMHx3WZm5tjZmaGO3fvcu36dRRFYWhoKOqeFF9vU+k0rvjePdclUBQsy+L8+fNk0mkOHTpEMpV65OvGYzWUIAa8ZeF7HidOnOB7b77JBx98wKuvvkrLNEFs49dTWJAivFmxK6xUKhTy+XUT8FIRxjAMMoJtmUmno/rKqDs3tBlOVYQLCYK2+p4gCLh06RKXr1xh965dHDlypG1QylxhV1H09itr+18QrIZ4NzSU6+0oWRt+nZ+fx7QsxkZHsYQT4gm1HTkpZb5T13U0XScZBGSz2QeGmIrFIsVikQP792NaFjMzM9y/f5/x8XGuXrtGMpGImlQPDw+HfUVFs1zbcajX64wLBuPmsbGoE8mLL74YnePUqVNdB7zjOPyVv/JXAPj617/Oz/zMz2x4rT18+SHJOz6h9Nqxo0c5c/Ys+VyOzVu24HkeqmiKsB583ycpCDue77O0vMzwBuQxVVVJpVKkUimWl5aitl7S6NgiQkKrFa0zuqZF89ay7baFuF6v895772F1qHQB0bx+GE3sde9vg3UjYgd3vg5dd2CTk5P0l8vosjG1MJBxYy4JfYZhoFsWqVSKnOjatB4MXWfT2FjkICwvL4cO8+xsuBskXFuGheEslctRRMp1Xbwg4MaNG7iexyuvvBKRNx/1uvHYDWUqlaJereIK7+7ll17izTff5ORHH/HUwYOomhbFptcrwfB8n2wuF0meLS4tdU04d0IRIZpCPh/J4MnQius4URI+XsjqiC7qcof76YULTE1N8fSRI+zevbvrOdoG+7qh17WyVZF0VlwkvBPrTCTpccm8qud53B4fJy1YqS2Rz5UDXRpGXYidu55Ho9EIJ/xn2J0FQShavHXrVjZv3owrRKdlqGXy3j0g7GM30N9PMpmkWq9zb3KS4ZER9u3fH7XlAXjuueeitkWffPIJf/yP//E15/yH//Afcl14on/37/7dh77WHr68UBSFZDIZhkMdhx07dlCt1Th7/jwoCqVSKex6v56eNKst9ErlMstLSzQaDUzT3LCUQ8IWghrFvj6k7qxcNxwRlbFsGxtRw9loAOEuT9d1KpUKp0+fRtd1Xn/99TURM1lLuaarSPzfDkgDFwmKP6CGcj3Ed4qekAqdX1hgz549NOS6Id4n01KySYKqaQRCqFyyWR8K4r5KpRL5vj7279+PJTonSZGUa9evY+g6wyMjFItFPNdlem6OWrXKyydORBGvZDL5yNeNx24oDVG2EYjFvJDP88Lzz/PeBx+gqSpHjx4NDUQQdPWuXFF3pyihWr5lWTSbTZqtFhnRW3I9yCSynBhS+1Eu0nLwe2LQGIaBLTRMfc/jwoUL1Ot1Dh06RH9/P5VqNWLkxf+FcFJKtRt5vXF0hl59VsMv8Yku5eyCIAi7qAcBgefhit2u7/thv0fxPKPj+T6z09OMbdmCIpqfqpoWGcbOiSdZZNLwPRQ6wr1BEKCrKuVSiXKpxMEDBzBNM1T6mJ1lfHw8LAlRVTRd59lnnomeS07UtabTaY4cOcKZM2f45JNP1pxycXGRv/E3/gYAP/dzP8czzzzzcNfaw5ceyWQSu16PHNnDhw9TrVb59Px5nj52jO1S27jLuiHnj0LYczKTzeLV6ywuLUW7m43gxHrhyrCrruuQSoWGxvNwHSd0vlUVTdPC3FqzydLKStjyqq+Ppw4exLFtKq4blkspSqRMg0iJeL6PLtaByFXuTKuw6pTLdTIuVCKNZhAE4doi1gxflK744viB2BwE0WkCpqem8H2fgcFBVLF2aGLtWCP7JyJECqulHQ+F2P2ogjiZTCbZsmULW7ZswQ9CCdBZIeR+/949NF3HB/bu3Uu5v3+VS1EooBvGI103HruhVBSFRCoVCgU4DqqmMTAwwFMHDnD5yhVcz+PFF14IdzXxRZj2/o+KopBIJMjmcnj1OksdgsndYFkWKMq6DYcj0WRhOPP5PAtLS1SrVc6cOYPneTz77LPhOUWuTQ7YuNfnuS4N4VHKL1PuFiEMd6S9NCVKONgoqARmQLVSwRO1jVGIoyO57wdrNXHDtwUoQYAqqNTzCwvYrsuunTs3LIURH8YWJJ4HaeeuOWfna7TXraZSKbZt387WbduYmp7mk08+QQE2bd7clhMulkrRMV588UXOnDnDuXPn1siB/fIv/zIrKytks1l+5Vd+5aGvtYcvP5LJJBVVxRViF6qicPjQIT45dYqzp0+jKQpbt21rG3+wqv4lf1YUhWJfH81GA9u2qdVqD5wjpmWt64jLeROfO8lEgmq9zt07dxgfH2d0dJR9+/dHuzbkWhYzLH4QhHJsto0tOBJA+9oh/pWM/0ajEdUmSx6GYRhrGipHSkOS8BM3aGJ90jUNVVWZm59nYGBgQwKghO04Ue5zI13XzufV2UAiEhyQ/1cUyqVSRCY8efIkC4uLJBMJxkZHIwchl89H532U68ZjLQ+RSCaTBCIJrBAWj46MjvLsc8+xtLTEW2+9FQ6A2JfZubuUvykWi2iKgmPbVKvVDc8rDeWDdp7RORQFs9nk03PnUDSN115/nc2bN1MoFCj09ZHL58kKgfaEUAXSNA2lY8cm28P4olu35/sovoISKOCrKL6K54X6p57rhh1PYgw2cTHhjtAwSBpG6BWn02QzGfK5HMVCgb6+PvLZLJl0mumpKfrEdT4IMneoKAqJZPKh8iTxeshOBEGwhjx088YNTn7wAflcjm07dlAul6PzaJrWdp0y39BsNrl06VL0+uXLl/lH/+gfAfBX/+pffeS1Uz08WdB1HV20cZM6xADHjh1j85YtfHLqFJcvXVpNYwjIOr34qNZ0nb5iMew8sbKybhmYhGmapB5y3YBQ1/jG9evcHh9n7969vPjii5SKxXCOFgpks1ky2SypVIpEMhmycWOOYyB3i51rh/jriFSRJxTEPN/H8TwCsWOM98NUxNph6DrJZJJ0Ok02nSaXzVLI5+kTZJtsJoMvUllbt2x58E0K46woCsnPoM/cGRpv43jEjagg7rz9zjssLCwwMjrK1u3b0XQ9MoLxvqCPct147DtKCHcZVU3DE/VMUoFnZHiY8uuv8/4HH/Dmm29y4sQJyqVSG226s8uIqqr09fWxvLzMcqVCNpOJpKg6YZomBEEYal2PPSoQBAF3Jyc5deoUhXyepw4fjnqmyTDreoQjV0jsoSgUC4Wu127rFjWqOIroNpAMKORykeivpqrkC4W2HASwcV2n+J1pWUxPTXHw0CHUeHimW57D96OQtHwuUXPU9bBOKUrncSGcFOfPnWN8fJztO3dSLJUwbRtd06Jj9BWLbfcYT8x/8sknHDlyBIBvfetbuK7L5s2bo6R8Dz9cSKfT1JtNbMtCE31qpeJXvlDg8qVL1Ot1nnn22dVFt3Pci/8X8nnqtRqW47C8stKVPS9htlqUyuWQUCQUpbpB5vtOnjzJzNwcBw4cYFtMs1VRVTQZau0CTUTKksnkKlcjtm5EyjSOgyKc/nwuFxIRVRU3kSCTybQ1Q4b11w1oXzsmJibQdZ2xTZtCEYd1PxXmbQPPCzWcE4kHN7qHNZKi4qbarkX2pZWyfr7vc/jIESzbRtP1tnBzvKfwo1w3vpAdpaZppHM5AiUUwfVjxb/5fJ7XX3uNfD7P2++8w3XBcIqjM+dXyOdJGAaB77PUpd+lhGVZUW5Bsr3ikPF8z/e5cvUqH3/8MZs3b+bYs89i6HrYQuoh0DaJlLCxq2zrI8O7gQo2DjY2Dg6B6qMJj1IVObx4zhM2HuzxwXdnYgJFUdi+bVsbOaAbG86y7UivNZFIrK/w8xmhKErI8nv3XSYmJjh85EjYIT0IolyGzDXFw64Ae/bsiRiBp06dAuB3fud3+E//6T8B8Cu/8iuR09LDDxcymQxoWiQ9RxBEIcP9+/bxwgsvcH9qinfeeYdKpdI2ltcw0RUljEipKpVKZcNCeMuyIuOznpH0g4BGo8Gbb73F4tISL77wAqOjo9iW9XBzKmYQlXXWDbl+yXI0SchrWztideXw4PkcT+uMT0ywbetWdKGHq4i/aufGQuwmA8KNT6Sv/RD3+CD4nsfE7du8/fbb6LrO8ePHyYqWfZogD0n1pXwsEvUo140vxFBC2Dg1UJSwbEEQXuQuJplM8vLLL7Nzxw7Onz/P22+9FTV87lpnJIg9uqpSq9cjxlknLNOMiDtyIMpjyjyG77qcOXOGS5cuceDAAZ599tmQci7CAJ8FG6W11+T2xI19buaa+NcPAm6Pj7N5y5Y1JTMyp6iK4weeF0kFRv3fhMe88ck2Huye73Pt2jW++93v0mg2eemll8Lu6IjWO4I5J8UZSjGvUOKFF14AQs/QdV2+9a1vASEr9k/8iT+x8fX18JWFpmmkxGLXajaj0iaJTZs28dprr+E4Dm+88QaXLl6MSG7doiCZbJZ0Oo2macwvLHQd+77vYwpDCbRFaeS64fk+y8vLvPX22ziOw6uvvsro6Gikdxo52RvNnc8457tdp7y+tsM+4HPyiqbu38cyTXbu2LH2PWJnrorjWaLVoUzXSOLi50Lsemu1Gu+89x5nzp5lbGyMEy++iGEY+EEQpbZQwtK9TgcbHt268YUZSl3XSYgB79j2miJZTdM4cuQIr7/+OoHv88b3vsfFCxeiXUgn0ul0mNhVVRYXF7u2ybIdp60YWQE8QfWWihwffPghd+/e5bnnnuPAgQNh/F3stGQ5yYN8ooerheouOBDVQn1GZQ357OZmZ2k1m+Hubb3rCy8yFDgnDAfFRaY/Ty2X3KEvLi3xve99j0sXL7Jr925+9Ed/lHw+HxlpTbTikU5KOp3uSs+XYZQLFy7w9/7e34vkDv/u3/27n9mJ6OGrhVyhEHEcZLPx+JgtFot84xvfYP+BA9y4fp3vfve7zM/NRb/vHD/lUglD10MFnuXlNeeTxJioGwar410yxWdnZnjn7bdJpVK8/tprFETaRMriRYbyQWO3g7TzsIiHI7upAW14SvHv7fFx+gcGyK/TWSleIy53ySkhbP6g+9rwfsQafOX/z95/R0l2Zeed6O/68BHpXWVVlkFVwRQaBW8baMOhJIrsJilR0kgjieRjUxLnsWUWJS1q6WlRmtZoKPLNaIYUR5ymxCbFmUVSEpvdj90S27EJ17CFginvMstkpQ1vrn9/nHNuRtpCGwBVwP2wciErMuLGvRHnnn3O3t/+vhMn+NpXv0qn0+Hxxx/n3nvvTeZ7Q/a2m5K4BFDZIlX+Ts0b70mNUiFXKuHW6/i+j5PJbLKfiaKIgYEBPvLRj3L27FneOnGCy5cvc+DgQSa3EPkeqFTo9Xq4UvV+fIO+aRTHCUNM/ehApGl0Ox2ee/55Op2OEDbvM5ZWgcR1XXqeRy6b3XnwyZXmtlqtbB44CcV7m1Xh28X5CxcSy6ydEAQBbq9HDBRyuYT5ps7/24UfBBx/7TXOX7hApVzmqY9+NOl9SvzppIauIVNlAMPbNHyrAe95Hj//8z8PwF/4C3+Bx1O/yg88LMvCzOWg2xWL7A3pNHUv3X74MLumpnj11Vd5+umnmZiYYN/+/Zt2WIZpMjg4yPLSEo1Gg1w2uy5F1x+A4nitfUvtsi5cuMDx48eZmJhI+vkUHMdZ37B/A2yq371N9O/mNi6yb1Q71IBGs8nS0hIPPPDADd+rK+XkDNMU5L8bHf8GnIbl5WVefuUVWs0mhw4e5OChQxiy91u9j+owUO0puqYx3DdHK7xT88Z7Giiz2SwNxyGWOqD9A7j/g9V1nUOHDjE5NcUrL7/Ma8eOMTc7y5133CFsmfpqDkNDQyxcv06316NWr1Ppy2HHUZS4lYuni7x6rVrlueeeQ9d1nnzyyS29Km3HEWajnkckUzDbYoc6RvKUG+woN60K38YN1Gq3Wbh+nXuOHt3xeTEkAuW2ZSXkpx31IbchP3mex/nz5zl37hyu53H33Xezb98+MalEEZ1uFyBJAyf1DsT3Or4NA+2hhx5KbjDf93Ech1/8xV+8wSeQ4oOCXKlEa5vMkTKCB9Hi9eEPf5hLFy/y2uuvMz8/z/4DBzh4223r2sSy2Sz5QoGo2WRpZYVdtr3On1K1VSQtUbJ08/rrr3P27FkO7N/PkSNHNt1DSrbTk/KQlsxObYfvVOv123UNWfdaTePixYs4jnPDnlJf2u0BSUlK8R/U57TdJmAjlpeXOXX6NNfm56mUy3zsYx9LdrO+54n+TE0otXU7HZGRksceHR/fUo3tnZo33tNACZCtVKivroqt/IYAthHFQoEHH3yQ2bk5ZmdnefqZZxgcHOTwoUPCRkoSUiqVCtVajWq1SjaTEe0ocnu/8Uu8fv06L7zwAoVCgUcfeWTbHkulBRvIgbKTAsXbGewbd4xJoFQ7ym8zfQIwe/Eihmky3afPuBU8101SVlulPTcF+S2CZK/X49y5c5y/cIEwipjZs4f9+/evcxro9noJQzCbyVCv19fVlIaGh5O6z0aUpVrHyZMnAfjZn/3ZHdPJKT5YyOVyxNK4wO31yGYyawFyg6appmnM7N1LNp9ndnaW8+fPc/78efbu3cvBgwfJyraPQSlg0nNdllZWErUvVZrpP2YQBLzyyitclsLmW6l0KShFIdd1k6zKdlB8iW8X280bbwdBEDA7O8u+vXt3DLQxgv2riH9Jd4Hcae9EdOo/xsLCAqdOnWJleZlSqcSDDzzAZF8PfBgEdOUCW3lWqnYg07LQYNsF9js1b7zngbJQLBJL1/t2u01eaSluswoxDIOR4WEmJiZot9ucPn2a5557jnK5zKFDh5ienqZYKiXeikvLy4nFVBzH6wLU+QsXeP34ccbHx7n/gQduOMiUc0BXDvhtKeKsbxLeGptXXYlwMVsM+BvsKIMg4OKlS8zs2bNtewxIYoJsk8nkcutvDDnQY0AzDNHPuSFIdrpdzpw+zcVLl9B0nf379nHgwAHx2fSlljzXTVb7efk+vlyJqoL81A16tUZHRzl58iQjIyP8k3/yT3Z8booPHgqDg1SvXKHb61FQMmqy7LHxzlOLtf379nH77bdzWTrgnL9wgZk9ezh48CCFQmEtI9XtJrZaG4NQr9fj+W99i3qtxiOPPLKpxLMRlszaBNJkYbvFYf+5frvEnvi7KNnMzc4msoA7ode38N1uga3EAxTRJ2mNQwitnz59murqKpVKhYcffpjxiYlEIQhNS7JQMUIAIaN2k/Iz0XWdUrm8ZdZP4Z2YN97zQKnrOuXhYRoLC3Q6HTLKGURN0ls8X5PKG0pwe2VlhdOnT/PiSy/x1ltvsWfPHiYmJ5N0x9LSEiMjI4l8WhzHvPnmm5w9e5b9fSmTG7G2bNsW3nRSVehGuoY7hskNf1TEgP7r/HZw8dIlfN/nwG237fg8tVIzTHPL819Xp5SDMwxDYa81O8u1+XlM0+TQoUPs37dvS13YQMr+gUjPqBqDH4ZEiH6vcqm0rll4I1566SW++c1vAvALv/ALOxrmpvhgYmBggNriIoHv05GLbNieOKLrOrHMaBw6fJgDBw5w8eJFzpw5w6VLlxgfH2f37t0UikUa9TpLKysYhpGws3VNo9ls8uxzzxEGAR/+8IcT4Yzt9GUVMo5DS1rZ9RPntoJqyfh2oLxhN2Wi3ka/8+kzZ5jatWtH38kwDPEkpyEnOQ07QTcMQmnYfvnyZeZmZ2k0mwwPD/P4448zPDKCktrrF2xXWShd15M6sev7INtBAKamp7edH9+peeM9D5QAxXKZVrUqttydjthlsvVg0VRvoawZqLrko48+Sq1W48KFC5w5e5aTJ09SLJUolUqUBwZEX5D8Ul544QWuXbu2KWWyUfpq03trQoDX7xvwO2KHwbTRuBm2Z63dCFEUcfbMGXbt3p2kkbaC7/tC/B0o3EBlJI5jatUqly5d4vKVK7iuS6Vc5siRI+zZs2cdYWGdtmQUJQLstnSJj+NY7GI1DVOuCscnJrZ1fAGhoAFw11138alPfertfhQpPkAwTZN8uUxreRnPdbEtC0uOt60Cka7Lu07eZ4ZpcuC229i3bx9zc3Ncmp3lhW99S8hqDg1RqlRYgETert5o8K1vfYtMJsMTTz1Fvs8c+kaEFdu20btdEXB8/+3rKb9NxDKbsy6A7JCZU5i7fJlut8vDsq1iy2MjMkloQqpvS6m6vs/b9zyuXL3K5bk5FhYXMUyTyYkJjt5775r3MGsKXmrO7c9C5aSXp4Zo64s0DUvXyefz60QGNuKdmjduikBp2zbZYpHO6iphGOJ2u1jbpCd0TSg7RMjAtoEWfu+99/Khu+/m6rVrzM3NMTs3B7OzFMtlAlnPiOOYhx95ZBNz9u2s4jK2TbvTIZJszu2878QBdzjihr9FrO0oN5rO3mi1Ojs7S6/X49DBg9s+J45jsZvUNEHp3kYZpNvtcn1hgWvXrtFqtchmMszMzDA9Pb1tuiOOooQ23ul0EnaxkvwyNNEvC6CbJrlcjgEparwVPvvZz/Inf/IngFD8307FJEWKXKGA12ol5gWmaSamChuhTJ5VLVMFEd0wmNm7l5m9e2k1m1yanWV2dpb569cxpGNIFMe8fvw4wyMjPPTQQ+sCnRrHOyn2aPK+8yXb3P52BMTfBrZsK9uGgKcQxzGnT59mfHx825YQkJwG6byy3UI8jmOWl5c5efIk8/PzxHHM8PAwDzzwAOPbEG+S7ykWzkcbs1BAYoMYxTGGaTIyNrZt6vqdnDduikBpWRZWJoOTzQq1DU1DUy4XKgUooWkaXhDwS7/0S8xfu8bAwAC/9Mu/vO5D0XSdXVNTjIyO8i8/8xlWVlbI5nLs3bePwUqFoaEhmo0G1UyGcrm8bnDp8kbaDpquk7FturLWt1OgjKUbgHL4iOVgiwE7sClTJkD0ZWqeULJRRCHXdde5C+wkmXX6zBmmpqaSfsVNz0GIJyt6daZvoPmex9LiIotLSyxICxtN15manOSee+5hZGRknVrPlitUeUP2er3ENSWfyyXFfSXYrHwwJ6am1g32TqfDtWvXaDabfOELX+Azn/kMAD/90z/Nk08+ue3nmyJFJpPBLhTorq4ShaFwEerb6fVDl/2M/9O/+BcsLCwwNDzML/3SL615zQLZXI47br+d/fv385nPfIZer0e71+PQoUOMj46Sy2ZZXFhgZGRkXZ1O9QjvlJFyMhna0gB6p9JNjEilalLPNerr1wRxDyr7q063i2VZtDsdtFioXqmdmn4Dcs21a9doNZs7OmkEMnsWxzHZfk5DLEwcFpeWWFxYYHllhZ7rUiwWueOOO5ienk68QdUiuh/9CxWVogURC1TLiW4YYoGtCaGDQqHA4NBQ8rm9m/PGTREoQXwIgefRq1ZFjavTESkP+YGqL1w18T75xBP87u/9HisrKzzz9NM8+dRTwFozfRTH/Ntf/VXOnT+Prmn82I/9GI1mk16vh2FZnDhxgjfeeAPbcRgdGWF0dJTR0VHy+Xxi2rzdIMtkMqJWGQT4vi+UI2RQDKSfW6vVQtf1pL6xMR1kxAYWFkmjSKTh+b6wEdN1erKWGCFWqmafrJ0pRYE1TePy5ct02m0eeuihbdlybq9HKPuQMo7D0tISi4uLLC4uUltdFb2UxSLDQ0PM7N3LyMgIxQ2TTX+zsRrk/Sv3Tre7RhvP5ZIdaxzH+FJ9KQxDJvbsoVyprOtT+53f+Z1NaZIHH3ww9ZpMcUNkMhksxyEsFHA7HSGkYZpbpjY1XcexbT7+8Y/zO7/zOywvL/P000/z1FNPrWv9iOKYf/tv/y3nL1zAsW3+4l/8i9TrdcqVCqurq4LIpgkHktHRUUZGRxkZHk5EzbdLd2qaJhbZvR4918W27YSNr/osm61W4olrbiTlKaKSpiXEuUimcgOZslS/K8UgpRttyPnDlHNIHMecOnWKkdFRBgYHt+zxTLJQgGXbhEHA7LVrYu5YWsLt9UQ/4/Awe2ZmKJfLjI+NbdrJKWJjv9h50jcufXCjOEY3jCS4GlILutftit2kprF7714KhUIyj76b88ZNEyiz2SxtxyEulfClzVSn0yGXz29KieqGwYMPPcTXvv51FhYW+MIXvsATTzyBZhiJ59x//I//kZdfeQWAv/pX/yqPP/44zz77LHEcs3fvXh568EGajQYLMmC8euwYxDG5XI7KwICobUr3DWUQmry/vOFarRbVWo2M46wbaIHvJ31XQBLU+neIgRHQpImHj45GaAbYloWOsOgxTVPswKIIdF30f0qVip7nJcXtU6dOMTo6SqVcxt8w2IMgoFqtsri0RLvZpNXp0KjVCKX32+joKPv27mVYrpQ73a5Ie2/DmlWr5jAIhEOKvL5ut5ukVnPZ7LqeSRDO7nEsxOinpqcpFovrPs9XX30VEKzimZkZfuzHfoyf+7mf27HemiKFQrFYxPc8ApnR6Ha7GLqOqXZX8nmGvPceeugh/ut//a+srKzwh5//PE888UQiNQfr544f+7Ef4+GHH+aPv/pVKpUKe/fuJes4LC4tsbS0xOXLlzl95gy6YTBQLieMzHK5TLlc3pRydByHdqeDL0UIdG09MzSKonXMd6X3bMi0MYj7yuszMnBsG18uDBx5zWHfcSLpQOJKswZd06hWq9RrNR5/4oktP9NOu83C0hL1Wo1Wu02j0RDcgzimMjDAzO7djIyOMiRLKM1GA196bO6IvnRwFEW0VKnGMCjIHasOyQJCaYHv2b+fXC63ri78bs4bN02g1DSNYrHIqu+j2zZRGCZN8dlcbl2uXYkA/8AP/AD//t//e5aWlvjTp5/mw088gQb80Ze/zH/74z8G4Af+3J/jz3z/9wNi11StVgnDkOXlZcbkF33H7bfj+z7LKyssLy9Tr9e5eP48HddFk7nxSqVCuVSiUCwmrDW3r9lZGSKbfas227YpFItb1gliI8bFxcdHQyPWhRO6oesUCoVkNRlBYq8TSRuuIAiINI35+XlarRb79u9nfn6ebrcrBnW9Tq3RoN1sJoyyfD7PQKXCrqkpRkdHNwWrpKGanWu1URQl6v4gWGrKky4rrcaU4zkI3ddOp0MQBBy6/fbE5qcfv/Zrv8av/dqvvd2hkiLFOiirKkolgkaD0PdptVqUSqW1AKhpQjhc7rI++clP8hu/8RusrKzwzW9+kw8/+SQ6W88dyT0RRdTqdYyBAXZPT7N7epo4Fv6xi0tL1GTv9uylS8JYHVGCqFQqlEolctLZKAgCwjhG933xmGTiGqaZ7GwLhcKOZDf1N9uyhH2W1EFVgUQFXWXFldhzSQnOs+fOUa5UCMMw4SM0mk2a9Tr1RiPpW7RMk3KpxOTkJMNDQwyPjGwqN6n0MGzPONYQwgaKUKnaARXDVQVJTdWQgWa7LRbY2SzTe/ZsmrPezXnjpgmUIAe8bUMUEbZaSU+Npuvr6mqGYaAhhG6/9OUvc31+nj/8/Od57LHHeOmll/h//u//G4BHH3mEv/JX/sra8R1HuIfrOn4QcH1xkfHRUQzDwLIsJsbHk55LEH1D1VqNer3OarXKwuIi5y5eJPQ8Qk2anZommUyGQi5HVv5YsinWkjtNtTI0ZCBU59+PKCZxN3c9j16vRyjTuWEY4rkunW6XXq8n6ibtNqurq6BpHD9+nDgWLuuWdGAZGx0lNzNDVvpVbhxk/UjSqaq+skNdQ1kbqZqkJ3e3WTVZxXHyHE3TaDQaBFFEsVJheGRkx/NIkeI7RalUYtnzMLJZAskubTQalMvltVKBpmFYFqHv88ijj/JHX/pSMnc8/vjjvLjN3KFBomBlaBorUg+2JMdysVhcZ/wcxTHNZjMJnLVqlfPnz4tyjSS+KTutnFQESjSPNS3J2liOI3bGUvJRmbJvvH/CKCKQpZVOpyOCYhQRyFJOr9ej2+vR7XbpdDrU6/WkJvjc888nu89cLke5VGLf/v1kHId8oUC5VNqx71PTNOH3uQ3TuO+J6HGcOL+odKsGImMnGa4qAxDHMW1J0rrrzjsxTfM9zTDdVIESBHN1eXmZOJsllC4g7XYbQ0pBgWhEBTFAfvRHfoRf/dVfZWFxkd/8zd9M0qt33HknP/2pT60LSLZtE/o+I6OjLC0tEWwIlhvhOA4DAwM4jsPQyIiofUr/RmXzU6/X6fZ6BL7Pyuoq7tWr9KRgsHrviIileIW21iKWxb639LeItEiSe2JePPsijdMN0CJ6sUuRIqPRKIa2Fph0XSebyZDN5fB9nzAMOXjwIJVKJamP6LKZ35X9SJZtr8vrbwWV/kmYc1s9Vz6m9sbKTR3EAseQ7Te6rC1oiCJ9q90mAvbu20deGtWmSPG9hm3bFItFmlGE7vvEctHZaDQSgXJVrtBkBuRHf/RH+ZX/4/9geWWFz33uczz9zDPEUcQdd9215dxhmibFQoFWq8VKtUocRVv26emaRiGfFzulQoGpXbtEKjEIcD2PIAhotlq0Wy3cXo9up8NKtYrb7SYi4DGspSnVQhYS30nFF/j6178u5hCVlpVZocSHU/7ftm0ymQzZTAbP88jn8xw8eFC0rRiGSO32yU5aMjDdKEj267zuxPhV5xP21yQ1TYie9M0tigvRarfxfJ/y4CBDQ0MMDAy8pwvsmy5QmqbJwMAAq6urRJ4n6nKaaPQtlkqY0pdN13XCMOSBBx5g9549XLx4MaEG79mzh7/39/7epmK4Ld3RDV1ndGSERRUsFxYYHR1dV5sLgoCOHLiK2ONkMjjyGCqo9Ho9QbzRNMpyhdlzXaqrq4AIIv/7yV/luaXnNl2rqjhoMcxr83SMDgEhNcSK9fGJx/nbh34awzCwbTvxi3Q9jz/+b/+Nffv2cdddd607Zz8IaLXbIsUSxxhScm+jkSuQ3ET9NRK1E1z3NNaCvirw+316j6ZlJTvnpP6AqE32ej3GJycZHR3dUU0jRYrvFsViEd/36YSh4CrILEur1aJQLKJJIpwGBGHIww8/zB9+/vPMzs0lc8fumRn+3t/9u5vmDsu28T2PoaEhdF2n0WiwWq8TAQP9etJxTM916Xa7glcQRRiWRcZxMPus5YhjGo0GURSJckQmQxzHrNZqdLtd4Vik64Qyo6R2iaG8tmazyekzZ7jt4MFkA6ECm/KkVD+ZTCZpOTt95gyLCws8+pGPUJACDXEcJwv/Wr2O0km1bXtrUhEbeqfFA1v3vcsAjyb8ZzudDkohLZfLrc03KsDL19XqdTRNY2ZmhqGhoR3T0O8GbrpACWInVyqVqPo+kRRLjzWNVrNJoVgU7gGWlaQmn3rqKS5evAgIrb+f+7mfIye36f3FfPVh+7I2MDY6yuLSEn4QsLC4yNjoKKZhCFaaVKGI45hcNivSihL9q6iM4yTaqb1ej2w2m/QQGoZBaAdbBsmNMBA72og1Qs4zi8/yd+/9WbLm+l3YyZMniYHbb7993eP9ldBcLiduUtPE8308ec1qN07/ilMhirZMofT3iXU6HUK56s3KVHkgXc4VYxCZjlleXcXJZJjatSsp+qdI8U5iYGBAkEDU3BHHeL5Pq9kkXygkmSO1c3vqIx/hc5/7HCDmjn+o5o4N94Zj24kLjtrd1BsN6rUaSJcjlUFRfALDNMkVChjamvJMAk0TBMZ2W7SZOY5Ix5omuiStqFaPrVCt1Th95gy7pqbQJYkxXyiIxf6GnZ5Cz3U5ffo0e/ftS4IkrAW6KAzJOA6BTPGiabTbbSzbJivNmRUi6SEMcj5ULHj1mMyAJRkoz6Mn072GYZDNZpN65EYOR7PRoNftMjY5yeTk5E2RhXrP/ChvhHw+T7FcRrcs0VcUhkRxTKvZxOv1xICPY+avX+c//af/lLzOdd3NqjHyd5VGUJRn27YZHRkRJsJhyPz8PNVaLakPWqZJqVQik8kkgWAT5IAHMRDDvgEEULAKOMaNv2gVKMO+QFlxKmQ2BMlmq8XFCxc4dOjQprSIulFB3NhDg4Pkc7kkldqWfZrxFkFSLQo2tuIoBEFAq9USQVLTyOXzCb1dpUsi+XnEUcTS8jJhEDA8OsrevXu/I7HmFCm+XWiaxuDgIGY2m7R5RVGUBEuQTflRxLWrV/kv/+W/JK9N5o4tFnQZaZelUKlUKJfLGLpOvdFgYWGBeqOR1ApzuRylYhHTMNYLIPTdc5YUFtc0LWkH6y9xvB0pu37pS7Vr3C64njx5Eg04fPjwpr/1ej18eW9XymUq5TKOFEUIfF+UUFTLXN/mA8TiuD8TFUMSJFUGSgVJ07JEC55i8cZrBtggvoOl5WWcXI7de/bc0C7w3cJNPXuVSiXyg4MoG5ckWEoWZbvV4td//dcT8WIQX/gXv/jFdcfpt9zRNI1Gq5X8zbZtxsfGMA2DTrfL/MICvV6PfD5PPp9fp5KjbRMsLVm/0DRt3c0EYOkWf37vD9zwWrcKlJ/c+0Ob3u/NN98kk8mwf//+dY9HUUS71RIEI8MgL/UYLcuiKFeamq6LQStF0de9XoohaH2UdBVQXdelLclVumEkjLzkxug7VhSG1Op1ms0muUKBw4cPp20eKd5VGIbB8OgoutylKQaoLxd7aBqtTof/7//6v9JsNrefO2Q7ieozbjYa68Z6pVymUqkQRRFLKyusVKtoCJLPxkVsslDcEITVveF6XiLWAST3543kLJM2NE1b28FtESgbzSYXL17k0OHDm87Nc11cyavISa1tTdfJ5nKi1irngla7nfRr9iNSBKU+r0j1mXfa7bVWlkxmXZBUvd3qM+m5LovLy8RRxPjExKY57r3ETR0oNU1jcGiIokx16DJnH0cRrVaL//v/+X+o12rksln+4T/6R9x3330AfPWrX6W60alc00QAyedpNRqb3icnV6DEsWiel1/uVue05YpTDXhJ9IG1VOiPHfjRG+4qVaAMZKAs2EV+YObPrXvOtfl55ufnuevIkXXkI0VRjxGDVAXJ5JylRmIuk0HTdTzJqu1HGEXEfWQgVS/odLvJate0LAqFglg8yJWg2kXC2q6z3mhgWBYHDx9m8gb+dilSvBOwLIvRqSlM207IL6rW12m3+e3/+B9pNZsYhsE/usHcoWkapVIJ3/dxN8wLjuOI+r88fluyTrfCViQ50zSxbBtd00T9Tj6e/P8GRg3hht3kVuWNGDh27Bi5XI59+/at+5vn+8n7ZhxnXYkJ5A6wUMCUx293OpvUh0LJeu1XOArlXBD0ZaAysg6L6g9X5xfHdDsdmvU6brdLZXCQD33oQ+95XbIfN3WgVBgYG6M0MIAuqdOe7/O7v/u7XF9YIJfP81Of+hQze/bwyR/+YZFm8Tw+/wd/sPlAmka5XKbRFygjGXQBhoeHGRwYwDAMVqpVlldWtpSk0rbIq5vS7VvXdbpS8kk9p+JU+MS+H9zxGtd2lCLI/vC+T5Az13ZifhDw2rFjjI2NsavPbzKOYzpbUK03X7qG7ThJsHSls0ryOUjyg7rhQkUKkhNDJpMRsnSsJ/3EUlrLdV3a7TZtWazfs3cvt93AySRFincSlm0zMj2NJWtuuiY0h3/3936PRr2O7Th8+tOfZs+ePXzik59MSCxbzR2lUglku5OC63l0Oh2ymQwT4+NkMxl83+e6zEptha0yUllZE1UpYmBtR7nNwlxBBdL+ILURFy9eZGVlhXvvvXfdAjsIArpS2tKxrK1rgbKPPJ/Pi2CpaSIN20cAVC0vmlyQuL0erXZb9EzKzUl/vTVh5SLmnU6nQ891abXbFEol7vrQh246t6BbIlAClEZHKVUq6LrOl/7oj7h44QK6pvF9H/84ExMT+L7P7ulp7rv/fsIw5Otf/zqLCwubjlMul2nIWgWIemUgLb1KpRJjY2OUSyUMXafVarGwuLhJ8SZxMNmArAxCkQwc/YP2R/f/CBlj6xSkCpKx/K9g5fnBmT+/7jnHjx8nCEOOHj2aPKaCZCDTprl8frPY+QZmqy0ZdioNq9IfESRi5t1ul1arRdRfj5SuDP3XFMVxQvfu9XpEUkljYtcuDh48eFMU4VN8sGE5DkOTk4Ixrut8+Utf4vLcHGEY8uf+3J9jevduAGb27OG+++4jCEO+/o1vsLi4uO44xUIB0zBoNpuJaowyAHAyGSoDA4yPjQlWfByLmmW9vul8NDbvLHVdX0vBSn7Extdsh8QCrE+DtR/tToc33nyTmZkZRkZGksdVLyOatn2PogrSsiTTX4pSWab+VLTKbKnSjmlZSZvMxrppINvs1K6z2+2ScRz233bbuo3AzYJbJlDquk5+eJivfOUrvPDii3iex6OPPsqB227DDwJWVlbwPI+/8KM/mmis/t7v/74oNPft7kqlEj3Z9pEI/kbRWu4cUagfHhrCNAyxQrx+fd0KUYOkbto/MDVdT8TAXdnnqFBxynxy/w9teW0b65Of3PcJ8uaaFurC4iJzc3McOXIkGdBxHNPuC5L5XG5LGvcmZisiXWSZJrqsyyrqti8V/FXaWaVatzxuLCQGW61WUlvp9XoMj44yPT297qZMkeK9hJ3LURke5htf/zovvfQSPdflkYcf5sD+/bSaTeqNBmEU8SM/8iOJaszv/e7vrp/cNSEs0Gg20XRdsL+lSpXSJ7Usi/HxcXK5HLquU63XWVpeXp+V0tZrVys4joMp6/7b7Ua3gjpHwzAEs3YDQe/YsWPYprmujcz3fcE5kOnSjaUadZ5sDNjKI1LT8OV8EUiGrzpmGIag62RyuYTZuvFaVZBW16lqnJN79rB79+6t55v3GLdMoAT43Oc+x8/9039KvV7n6L338rGPf5xCoSC+pE6HVrudOGdrmsbzzz/P5bk5sQKUAVNJPKmVT4zYZW38cnK5nLCHMU2IomSFqL5UBV3XRSpWwrQsbNvG0DS63e66m+1HDvwIWXOzOWp/fTJv5vjzfbvJIAh49dVXGR4eZmZmBiCRf1K1gRvJXW2FbDabKGAo1Z9utytuNFnIz/UxZoF1tchGqyUkBhEyV67nkcnlGJuYuClXhCk+2Pid3/99/s2//be0mk3uuecePvKRj2DZdmJg0Gw0GB0d5eGHHiKOY55/4QXm5uYSGbgYschuNpvJIps43mRirGkaI8PDghEr647zCwtJbVMtstX/+5GTgSUMQ+GipI65w3WpxfjGeQhgbm6OxcVFjh49uq41rt1uE2vCW3KjjrW6hqR9bAMM6T6k6bpQ5nLdRKIy1rRkF7mljVgs1LyazeaaYplpiiyUbAXZycz9vcQtEyi/9KUv8bf+1t9ipVYjW6nw4z/+45SKRQr5fOJ0Ua/VaLfbfPz7vk+QazSN3//93wdIgkJRmkIvLCyIekAcb5sitCyLsbEx4YahadTqdZGK7avtwWZmWk7uKpWor8rJF4w8n9y3eVdpyHbWkIAf2v8JinYxGaRvnThBz3W5V6ZcoyhKCANxHItCu2mur03coF9RKfjYloUfBCytria1SMdxBEtWpXC3aBFpyzYRXdfJZDJ4rivMWaen2bt3b5pyTXFTQc0dx956i6ndu/nxH/9x8oUC+VxOmAG02yJYNpv8mT/zZ7BsG+KY35NzB4haYLFUYmVlha5KuUp91a1QLpcZGRnBNAxCmZWqVqvr7tONwVI3DDIyWKqSUH+5Q80jSfDuZ7z2369yV/r68eNMT08zJmU5Pc8T6VbE4jYng+TGuua2Zs9yJ+zYNrFsRavVaoRBIHpGs1nRjraRIxHHuL0ejWYzSS1bckPRajQYGR9nfHLypl5ga/GNLLBvUnidDr1GA03TaLdaQpJOpkJi+UUoenNS6JaX+syzz+L7PkfuugvdMESglQNmu6Z4pd0YxbFo7i0WKSvRZYmkwC37CDvdLoV8nkI+n7iCt/02P/7Vn6AdiAHrhyED8QAmBp7h8evf939StIRu5Pz8PM8//zx3HznC/gMH1gkJA+LalHh6FBFu0au1DmqlGMe4nke706HZbuP1eliS3Vbq06xUUCnqsI/Na5gmjuOIzwTYNT3N3n37broifIoU/YiiiM7qKpFkzy8uLdFqtRJbJ6UrXSgURBtFX69fs9nkj7/yFT50992UKhVRt5RtYdtBOfh0pV2UbhgMVCqbFpOJ0peUswMhqF4oFNbVChWq1Spf/cpXeOCBByhXKuu0ZuM45plnnqHRaPDxj3888bdVxu2WNE9X5636J7edN/qOG8ldoRJO91yXTDbL4MBAonrUz9j1JGmwn71rZzJowOLyMsOjo0xMTrJ///6butf65j2zG8DO5XCKRSKZTh0YHEx6gBzHwfd9GvU6S0tLyVYfAE1jbGyM1dVVgiDAMk2hai+Pm5gs9/2A6MGcmJggJxV3mvX6JnabYoFGMvdvmqYocHc6QjgYKNgFfnjfJ9deA5gy9fpn9n5/EiTb7TYvv/wyExMTHFBBUlHPNU20aah0sap5SIWMTZCM2EhaENUbDSE2r2mJz6Vj22T7qeFxLBqN+3aQINLU+UKBXDYrBM/DkMlduxI/uhQpbmbouk5ucBBN9goODQ4m0phZ2SLW7nRYXllhdXUVV97fmqZRLJXIZbMsr6wkhgjAurlCBRP1u2majIyMMCQ5D2EQsLCwICQ6NzLqo4gwihKpzTCKEnGUjU3+/VA2fgonT55keWmJhx58EKc/SCLE3fuDZNLHuHHeUKxb+U/f9+lIuy3P80RftqZhWxYZ207kP2NEgOz1ejRVeUs6hGRzOSElCCwvLzM0PMzY+PgtIUhyc5/dDeDk8ziFAlEsZOYs28aR4silUglT1s5Wq1WuLyxQq9UIfJ/JiQniOGZpZWUt2EhsFBVQAzaSzfZDw8NC+UPa5SSDPgyTIKlen5HtIhpC1Z84Jo4ifnDvD2JqYoep6pOg8SP7fxgQdYcXXngBx7Z54P778aWIciyp2qVicX3KRxIQknNWN6ysrUQIO6xmo0HPdRNB4mwmk+y4w0jYfCnmaqPZFHVQGSAtx6FcLguXc01jtVrFdV2mpqfZvXv3TaOgkSLFjaDrOvnBQZCelflsFkdaxA1UKkLCTjbYLy0tsbC4mNy/o2NjLC0vb5tyVVAN92rhncvlGJ+YSEiDrXaba/PzifapEvxQwgE52XPoyl0bsG1JRZdi5gDX5+c5feoUd951F0PDw7Q7HXq9XsKsVWRDFXjjKFoj7aiMWLwmrK5EGlrtNp6aC0yTkhQxiTVNWOvJhXVbBlNXBUjDIJfPUyyVMAwD13VZXl6mNDDAmBQVuBnJOxtx85/hDZApFNB1nU69TiaTodvr4fs+pVKJbDabWMt4vk+j2aTVapHJZMjlclRXV9E2NOBuhKoj9O8us7kcY5bFarVKt9MRmo+NBsVSiZJMlajX5HM5sROUq8NsLkfRLvDI+MM8Pf90EigPDh6gaAmFkNdee41Ws8mHn3wSXzoOAAlDTd0YSnQZtYqFdf1Xyp7Ld11UGNU1TQg0WxaG1LWNZUBt9+m4gqi92rK/SvVzdXs9VpaXsR2H6b172bVrF8PDw9+jbzNFincHuq5TGB6mW62KecN1icIQI5NhaHhYzBvttug3lso1prSwcy9epNvtJnyHjeFLW3uTRP9YlXUGBwdxHIfVapXQ95mfn8fJZCj3SWXGsrXCNk3cXo9Or5dY9Ik30Nb935QiIe12m5defpnxiQn27dsnFtcyCGZzuaR1Jal7RtHa7/JxlTr1PQ9P2nQp2KaJIwXWY0SGypfPaTSb69KrqjRjW1ZS1lJiJCNjYwyPjrJv375bIkjC+yBQgkjDGspM2XUJwhDXdRND10KhkKQCFMMzn8+zLM1Wi6USlnTm2Iq6DWs7TZVaMA2D4aEhOtksy8vLBEFAvVaj2WhQkrtcEDdJNpul1WrRlSkIx3H4ux/6WS7WLrFQW2QwO8in7voUcRxz8dIlLl26xNGjR4UwgOtCLMxLlcNAsvIE0VCirRmihmGI5/v4nreuH0sFSMu2E+cV13VpNpu0Ox3y2WwSJE1pBms7jnAbl59Hs9mkWq1SGRpidHyc6enp1BEkxS0LXdfJDw1htFp0JXuz2+1SNE1B9Mnl8DyPrmTUB0EgvCGB2dlZ8rlcYjG3FdQsoiTdQMwvmUyGibExVqtVsftyXRaXlnAch3wul2SDspaF32fLVSwURA+3chGRC2RN+us+//zzWKbJkSNHaDSbQp9almlUGQhEGjGCdeekaRpBGOJ7XmLarKACpDqGUiBqdToEsg1OQy6sbVuYVqj3k3PS0tISURwzvWcPI1I05VYJkvA+CZQgVjDF0VECYHVxkXanIxhaMv2ptFtdz6PVbFIpl7l+/TpXrl5lsNtNFO2VebS+hbkyyMGvRI7DENtxGJ+YoN1q0ZD9WDWZx89mMmSzWWzbJpvN0uv1EiNqx7D5V/d+hj/+6ld54Pb7KWaKrKyucvy119izZw+Dg4PJCi3f18u4MYiroOdtsQIEkSaxbFvUR2TtIAiCJC3UkyQD23HEtUuD2n6mXRTHSb1mYvduhoeH2b17tzDZTpHiFkemUGDEspifnaXX7QpLv2JRLGotC2dggFKpRLfbpSoX1ouLi4xKH1vl9ZiRlnNbtX6sC5q6ThjHVCoVcvk8zUaDdrst1K06HZAM22KxSC6XE+If0rlH9TyqUovqU3z15ZdpNps88sgj+L6PLoUENrV4iRehy8AYyFYU3/OSxb06T9u2kx1h4Pu4cu6IEQYLyiFFPc+0rGRHrM6t1+uxvLxMNp9ndGKCqampW7LH+n0TKEEEjaHxcdA0VhcXacrm4H6fSce2cYaGyGQyXL12jcXFRYaGhsSqTaZmDdMUrNlMBsuyhLGpYSQDrp/ZpSF0FgvFIvlCgVazSbPZJIpj6s0mfhAwODBANpcjlKmKdrtNsVBYJ+nUajR49rnnqFQqzOzdm1xPbgshAbWqU8dTriUKRp8fnUqjdDcEUBAFet0wyFsWQ4ODiYJGQmyKhfJPo9nEsix27d3LxMQEY2NjN33xPUWKbweW4zCxdy/XLl3C63RoNJuUpImCFsfJYjuXy9HtdHj51VdpNpuUy2XhSSvrgJbcfTmOI+5BXReLbjV3qMxUX6uFPTREsVSiXq/TabfpeB69lZWknU0FyyAIRPYnl0vud03Xef34ca5cucKRu+8mIwl5TiYj+h03BMlYEoaCIMB1XTzfTwKkIigpx5NAylhu1RjhhyGmZPAW8vn1GrVSkKAhFwDDY2MMj4ywZ88e0Xd6C+J9FSgVhsbGiDWN2uIidZkKtSxLpC3kczLZLPsPHOC1V18VKY98nm6ng+t5hEFA4Pt0Ox0x0GV9wLKsdYFTWWoplZ4Y0T9VKBRYWlqiXq8TBgG1ep1avZ4Ip5umSVOaK4MQUn/9tdfI5XIcOXIEU77XOgq3THEEYZg0OwMJESAMQ3GecrWp1DL6oUvjWtOyMGSa2jCMJKWjBnkcC9UdxWotlcuMT02xa9euNNWa4n0Ly7KYnJnh2uwsruytzOVyCXFH7d4mJyepnD/P8tISBw8doicJM57vJxrKmq6LuUPec5ZcfKvFayQDpfpxbJuRkRHcYpFr167Rc1160unHNAxsx0l2kV0pFxnHMVcuX+bq1ascOnyY0ZERwYjP5ZJ2tEgGxVDOG/1qYaGcI9S5qhTuxqwUkFyDIkgaug62Ta4vSIJoNWk2GrTl3Dm1ezejt2CqdSNu3TO/AYZGRoiB+vIyLbmDUzRqFdgmx8c5Vyhw9uxZHnv0UXK5HFEY4sogGfg+QRQRBgG+TFsqFxNDytvpcoAZss1C07QkjatLOnjg+wR92pBhEIhCvawFnDp1CsuyOHLkCGgahmkSyb4tNdBVg7GinyNXuWrwGaqHqS/tYRiGCOryebqsr6jCv+t5CW1b1TnbnY5QH5Ei6SOjoxw4dIiRkZF0F5nifQ/LspjYvZvrV67Qazah10tM4FXNz3Ec9u3bx7Fjx2g1GgwND1OK4yS705MaylEY4gcBniTj6TJwqtRp/1yi5iZd1ykWi4n8W7fbxZMBTdUlc9ksrXYbTdO4eu0a+/bvF0ESQezp9HrQ6RCEoRAs7xMoCOM4CeD9cxeI3aYmz1PNZ6rNrZ+j0axWCaOIrGyV0zQhgVmr1URpCVHXnDl4kN27d68zib5V8b4NlJqmMTQ8LPwrV1ZoNBrkcjmcPnHvjDQHfevECWr1OpVyWQQ5KRKsKM9qF6cK66EMnl7/Ck2uEHXJDg2CAN/3MaT7+JWrV1mS5KFarUYgi/q24zA0NMTuyUla7TaO46z1TvXhj770JY699hqHbruNH/8bf2Od+HkYhiIwmua6Gw9kbWRDn1QYhjQaDUEYyGaF4fPqqqhfhiE6YBkGB++4g723CH07RYrvFWzbZmRigiVdx200aAaBaKtQogSaxsT4OGfyeU6ePs1jQ0NCylGqzRQLBVEakVqovu/jeZ7I/Mg5xfW8tZ2YJOSo0k6v202YqNeuX2dxYYFqtUq9XscPAkzbZnBwkGw2S0kG1U63u84NSOGPvvxljr/2GgcPHuR/+Gt/jWxfGjiWi23dMJJ+auVF298m18/sbXc6eNIdKZPN0m63hcet6yba16VKhaMPPHDTytF9J3hfz4C6rjMyMoJlWTSrVTrtNr7vC5cNXccAdu/ezbnz53n5lVd46sknxQqpL2dvy3SrCjaRZJyplaLreURBwDe++U2e/tM/5e/8nb9DsVhMaogAn/2N31h3TrlMhnyhQMay0HWdSqFAGAsn8MD3cWQAdaSXnmkY3HnHHXz1a1/jpXqdv/WpTyU0bRCecutqERsbiPt+jxGqHo1mE9d1E/ePfrLByNgYd919N8U0zZriA4psNsvYxAQrlkW30aDRbCYLbeKYbC7HzMwMb77xBhcvXmTv3r3iHpItFqZhiJRp3zFDmdYMgoB2t0sURXz9G9/gT7/5TX7mZ36GkhRQAbGY/e3f+q3E2UhD2Ibl83myUmLPkOfZk3J3jmUJUp7jiBKRrnPH4cN87atfpdFo8FM/+ZOiBUXuJuM43pxm3UJ8IGkZCQKWl5dpdTromsby8nLSiK9LQuD+gwc5cPDgjmpFtyLe14ESRGBSvUvV1VV6zSbNRoNcPo9pmhQKBT509928+OKLvPHmm9x5552iL4k+8WJIBo8h0xK2ZZHNZtfSKkB1dZVyuczg4CC+7wsykaaxurICCFWb4eFh8oUCV69do5DLMb17N9PT08SIG8FWSkGSyWrLWsPthw/j2DadToc3T5zgkYceAkSdYSvxYUCkXvp6nTx5TvV6nSAMRW1SfkbZTIZcPs/e225jIjVbTpECx3EYGx+nlsnQqtXoSEJNRi5SbztwgMWFBV5/4w3K5TKVSiXZjQFrc4eEKWt8AJl8nsD3xbxRrVKpVBgcHCSKY9pyXqnV6wmPYHRsjJHhYWYvXaLuOOyZmWH//v2JAEhGWufFMk0bI9Kfhw4fJpPJ0Ol2xbzx4INJkPS2MpiWc0fiDiLnjq7rsrq6iue6aLpOsVBAl9eUzWYZGh7mtttvF2Wc9yHe94FSIZ/PY9s2Vceh02gk+o6ZTIbp6WmWl5a4cP48A5UKE5OTmIaRrO5UbUIJECe7L4SQcSRXZUq6zpKSTp7nEfg+f/bP/lmmJBmm0Wjw2rFjnDl9msDzmNq9m927dwsGmiySh7Fw9IijSPxfvvfDDz7IuQsXeP2NN5ianBR10iBY17PZr+caSUV/tSL0ZN9kGIYU8nnBxpUtMaVKhV0zM6mgeYoUfTAMg8HBQWzbpmZZeFJ5RrWE3HvffXzjG9/gtePHeeD++4XQeF9/o876VhGt7//KTEEpZVmWJYg+2Swx8LGPfYzp6WkmJyZwHIcXXnyRt958E8v3sSyL2++4A08y3j3PwzQMMecEAWEQ0PN9Yl3noQce4NyFC7z51lvsmppKBANUJkqp8KjzCvvVeuT5tWQGijhmeGiIQqFALp/HsW3GpqYYm5h457+M9xAfmEAJooYwPDxM03FoZjIEUrVHAw4fPsxqtcrJEyfIZDKUy+WkTzCK4zULmz6yjMrd65LJpv6umnZbzSYx8NRTTxHHMZcuXWJubi7ZQYIooKtUsCb7M7OWRWZoaN2KLggCbr/9dq7Pz7N0/bqQt3JdkTpRDc0y7ZMEc01LdsBBEKDMnfP5PGNjY4l+5cTUFPktxNBTpEghdV6LRRzHodFo0G238aQil22a3POhD/Hiyy9z7vx59u3dS04aHMdRRCTbS0DWBCWHIY6idUIEqjFfOXx0Oh0efeQRsrkczUaDV199NVEKUovZrGwBaTab6PKxUqmELgOm73mEYcjthw9z5coVFufn0eJY1EslsWfjvEbfbljtfrvSNMG2bUZHR4WBs2kyMjbGyPj4B4LD8P6/wg3QdZ1yuUyxWKQjGZ5uq4XX7XL77bfz6iuv8Oorr3D49tsTVf5EOqoPSsNRpTbRNPL5PPVGI2nYV7JvtVqN06dP43keH7rnHkpSQEDVOzWkNZeu0+l2Rdqj2SSTzSaMsVjTePCBB/jt3/5twiii1Wqxe8+edXTvddcpyT2hVPUIwxDLsnAyGYaGhijLlo80QKZI8fZg2zbDw8N4pZLQP2028TsdiuUyM7t3c+niRVzXZWZmhmKhINKhfa9Pdm/yvg+kMEAhn6fRaIjaoaYlouphFHH+3Dkuzc4yODDAw488wpf/639NHIxUmrdQLNKRykHtble4g2SzCVv3/gce4HO/9VtcvXqVdqfD7t27EwbtVlCs2G6vJ/gLMrVbKpUolcsfqACp8MG50g3QdZ1CoSD6J6Uah53P8+Ajj/DKyy/zxhtvsG//fmFCats4qnlXpVHiPreAKEKT+oyqwdi2LKIw5OTJkywuLjI2Ps7Re+4hn89zfX4+qSf0H0P523WlEWqn08HzvMSxZGBggD27d3P+wgVef/11bjt0SKRX2aw36QcBnXY7oavHmkalUmHPvn2MTkykKdYUKb5D2JJ1WiqVaLfbtJpNDmcymLbN2bNn6XW77N6zRzgZSUk3IJk7lOKWkpGzZF+zasnIZLOsrq5y9uxZgiDg7rvvZv++faysrCTOImruALEozuXzeNIlxPc8alIZzMlkGBwYYO/evZw7f57jr73GgdtuS/xsN84bcRzTc11cyWb1fB/bthmbmGD3zAzlgYEbCsK/H/GBDZQKmqaRk7qO0cgI/q5djO7axZe++EVOnTrFLim55Epije04a5JQUiZKrey6nQ55SZA5c/YsFy9exNB1PnT33ew/cCB5XiB3gV6fIICqgRoygLtSYzKQggWGrmPLmsiFixd59dVX+ZEf/dEkXdsvTKCcx12ZeikPDjI+OcnumZkP1CowRYp3EqZpUi6XKZfLBEHA+PQ0A6OjPPOnf0rPdZmYmBCp0F4v0UpN+A19/YvdbpdsPk+hVOLa1atcuHCB5eVlhkdGOHrPPZRKpaR/WgkJhBt2g8pE3bJtutIEotPr0e31ME2To0ePcv78eV49dowf/bEfS+YiFSyjKBJiCb1ewuY3TJOJXbuY2buXwQ+48UE6a/ZBCZaPT0zw13/iJ/ja177GsZdeYvbKFaanppiamsIMQyzHSXaZqt7gSr3EF154AV+2eBzYv5+xsTFsuRtVAzKQAVIFyn6RAPkAttRn7chVXRhFdNttbr/jDnLZLNevX2f+2jXGxsaIAVfKaPlBQOj7QktyeJjx8XHKAwMJIy9FihTfeyhG6wMPP8zk9DR/9Ed/xPG33mJ4YIDpXbsYcZyk11IFTRDzgee6nDl7ltpLL+F7HiMjI9x3332Uy+Ukk6X1tXL0O/wkjh+KaCh3l6bcXSqiz+HDhykWiywuLXH18mVGx8bQWDNl77luouZlOw6Te/YwMjrKwMBAmn0iDZTbwjRNvv/7v58nnniCl156iZdeeIELs7MYuk5O+roZMo/fabc5f+FCsuK79957mRgfR9N16o1GUpNQRXZlUaMINgobf9ekvmRWOYW7LmOjo4yMjVGrVnn12DE+dOSIIBtJkQHTshioVBidnKRYLFKQ8n0pUqR4dzA1NcVP/dRPMTc3x7NPP82rr7+OJdnweWmUEAYBrU6H8+fPE0YRV69c4a677mJmZka4Hbku3U4H3/fJZDJEkEhS+moOiddssYCkHASi1cyy7UTsYHxigpHhYZaWlzl27Bj33HNPktlSkpxOJsP49DRDw8OC1Sot/VKkgfKGyOVyPPnkkzz66KPMzs6yvLzM8vIy1WqVbrdLaXCQiakpmq0Wl+fmuPOOOxgaHBTK+pqWtIn0XJecdBABoe+6EzStz4xZKmjYtk2v1+PwoUO8+NJLnDxzhic/+lFMqVWrRJuVTmyaZk2R4r2Bpmns2bOHPXv2sLKywrVr11heXmZlZYX66iqO4zA5MMDC9etUBgZ46OGHGZdmA0EYYpsmPanwpZTBIilH53reph7N/vdNzBZkj7UpFYUOHj5M/aWXOHXmDI89+SSm45DNZsnlcuTzeRzHwZGPpdmn9Uhn0rcJy7I4cOAABw4cAKT7t+8npq4vvvYa569cQXccep5H2O0KergUGDd0nboUZfd8nyiKsKSVV7fXWzNSlancOIoIwnCtaK9pONksAyMjPPDoo3z2t3+bY2+9xWf+1b9K1IdSpEhx82FoaIihoaHk35Es1biuy7G33uKNM2dwCgUiTRO2d/Ke7/V6ib0WmiZUwKJIeD1GET3XFXNDHAtj9j4mvvq/al8rVirc++CD/MZv/zavnTjBL/zLf8nw8LCwFEx3jTdEGii/Q2ia9GuzbYqyxWLuyhUGZF1QqeGEYUi9VqPb6RCFYWLC3PE8dCCQaVNd00DSw3VZ7zCk5Y0hZfTUz/jUFIuLi8RxzIkTJ/j4xz/+3n4YKVKkeNvQdZ1sNktWtm/Mz88zMDTExMQEvu8nAuie61JdWSEMAqIwRLcslms1seuMYyEmIrVbDfl7/7yhS8eSjfNGGIacOnUqnTe+DaSB8nsI13XJ5XIMDg4Ca76Ro6OjtFotPM/DcRzm5+c5c+ECAHcePcrUzMw6yx3DMNaJmyuhYoWvfOUrxJLw85CUskuRIsWtCSWLVy6Xk8fCMCSKIkbHxmi1WgAsLy9z9uJFNE3jyNGj7Nq7d928oeaO/nmjf7f4la98hTAM03njO0AaKN9BaLJ9xDTNdcyxZrNJrVYDxE0yMDDwbR33D//wDwH4yEc+kuxmU6RI8f6BCnaWZSWiI71ej3q9DqTzxruNNDl9C+KLX/wiAD/0Qz/0Hp9JihQpbhWk88Z3jjRQ3mI4duwYc3NzQDrgU6RI8faQzhvfHdJAeYtBpU+OHj3Krl273uOzSZEixa2AdN747pDWKN8FPPPMM5w7dy759/LycvL7uXPn+M3f/M11z/+bf/NvbnusL3zhCwB84hOf+J6eY4oUKW4upPPGzYM0UL4L+OxnP8vnPve5Lf/27LPP8uyzz657bLsBf/nyZY4dOwak6ZMUKd7vSOeNmwdpoPwe4amnngKgUqm8Y++hVoXT09McPXr0HXufFClSvDtI541bA1rcLzCa4qbGf/ff/Xd85Stf4Wd+5mf4lV/5lff6dFKkSHELIJ03vnukZJ5bBI1Ggz/5kz8B0vRJihQp3h7SeeN7gzRQ3iL48pe/jO/7lEqlJF2TIkWKFDshnTe+N0hrlLcIvv71r1Mul/nEJz6Bbdvv9emkSJHiFkA6b3xvkNYoU6RIkSJFih2Qpl5TpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKdxGzs7P8g3/wDzh8+DD5fJ7BwUEeeOAB/vW//td0Op0dX/s3/sbfQNM0fviHf/hdOtsUKVLcDEjnjZsAcYrvCf7ZP/tnMRBfvHhxy79/4QtfiEulUgxs+XPw4MH47Nmz2x7/P//n/xwDcT6fj7vd7jt0FSlSpHg3kc4btwbSHeW7gGPHjvGX/tJfotFoUCgU+MxnPsNzzz3H1772NX7qp34KgDNnzvADP/ADNJvNLY/x/d///TiOQ7vd5mtf+9q7efopUqR4D5DOGzcP0kD5LuDTn/403W4X0zT54z/+Y37+53+eRx55hI9+9KP8+q//Or/4i78IiEH/y7/8y1seI5/P87GPfQyAL3zhC+/auadIkeK9QTpv3DxIA+U7jBdffJGnn34agJ/8yZ/kkUce2fScf/AP/gG33347AP/m3/wbfN/f8lg/9EM/BMAXv/hF4jh+h844RYoU7zXSeePmQhoo32F8/vOfT37/8R//8S2fo+s6f/2v/3UAarUa3/jGN7Z83g/+4A+iaRrz8/O89NJL3/NzTZEixc2BdN64uZAGyncYzzzzDCBSIPfdd9+2z3vyySeT35999tktnzM5OckDDzwApGmUFCnez0jnjZsLaaB8h3Hy5EkADhw4gGma2z7v8OHDm16zFVQaJR3wKVK8f5HOGzcX0kD5DqLX67G8vAzArl27dnzuwMAA+XwegMuXL2/7vE984hMAvPHGG1y8ePF7dKYpUqS4WZDOGzcf0kD5DqKfsl0oFG74fDXgW63Wts+566672LdvH5CuDlOkeD8inTduPqSB8h1Er9dLfrdt+4bPdxwHgG63u+Pz0jRKihTvX6Tzxs2HNFC+g8hkMsnvnufd8Pmu6wKQzWZ3fJ5Ko/zpn/4ptVrtOz/BFClS3HRI542bD2mgfAdRLBaT33dKiyi0223gxumWhx56CE3TCIKAl19++bs7yRQpUtxUSOeNmw9poHwHkclkGBoaAuDKlSs7PrdarSYDfnp6esfnPvPMM8RxjG3bPPTQQ9+bk02RIsVNgXTeuPmQBsp3GHfccQcA586dIwiCbZ936tSp5HeltrEd/vAP/xCAj3zkI+tWnylSpHh/IJ03bi6kgfIdxuOPPw6I9Mgrr7yy7fO++c1vJr8/9thjOx7zi1/8IrBWnE+RIsX7C+m8cXMhDZTvMD75yU8mv/+H//AftnxOFEX81m/9FgCVSoWPfOQj2x7v2LFjzM3NAemAT5Hi/Yp03ri5kAbKdxgPPvggTzzxBAC/8Ru/wfPPP7/pOb/8y7/MmTNnGBgY4NOf/jRhGG57PJU+OXr06A2bkVOkSHFr4u3OGydPniSXy/HpT3+adrtNFEVbHi+dN747bK+NlOJtIY7jpIaQyWQIw1D8+D6u6xJ4Hr/wT/8pf+Ev/2Vc1+WTn/wkP/UTP8H9995Lz3X5b3/8x3z+i19k9+7dTE1O8vGnnuLkG28wNDSEk8lg2Ta2ZeHkcliWlfRAKap3ihQpbk2oBXE2m8X3ffHvKMJ1XXzP45//s3/Gj/zFv4jneXziE5/gUz/5kzxw//30ul3+61e+wn/5/OcZHx/nwP79fOzDH+b86dNkMxkGh4YwTBPbcbAdByeTSeaNdDf5nSENlN8BfN+n1Wrhui7dToder4fX67F7925OHD/OtUuX0ADdMLAsi4FSiX/5C7/Av/7f/jc6nQ7//nOf499/7nPJ8UZHR5netYtP/cRPELguq90ujXqdQjZLt9djaXmZTqfD/Pw8c3NzlMtlmvU6n/13/46B4WHGx8e5++670wJ9ihQ3MeI4ptPp0Ol06Ha7uL0evuuya9cuzpw4weKVK4RRhK7rWIZBKZfjf/7n/3zbeaNYLHL44EF+6id+giiKqFWr1IBGvY5uGFRXVqg3GszPz3PlyhUGBgaorazwK//m31AeGGB4ZISZmRkOHTqErqfJxZ2gxalB2dtGq9VidXWVRrVKt9PB7fWIowhd0zhz7hynz5zhox/5iFDKiCJiTUMDDF0n4zjU6nX+0x/8Ac9961ssLC1hmia7d+3iI089xcefeoqhwUHQNGr1OqvVKtWVFZZXV5PXv37iBF/5+tcZqFT4+//j/0jPdel1u7Q6HcIoYmb/fh57/HGmpqZ2FFJOkSLFu4cgCKjX66wuL9NuNul1uwRSSODs+fOcPnOGj3/0oziOQxRFwjNS09A0DduyaDQa/MEXvsBzzz+fzBu7Jif56Ec+wvd99KPkcjmK+TztTodGs8nK8jILi4u4rott27zx1lt89U/+hKHBQf7h3//79Ho9et0uHfmTKxS49777uPe++8jn82nQ3AJpoNwBkUyDdDodrl+9SqNaFemROBYpDdvGMk0sy0LXdTRA03Ux0OMYPwjouS5xHIsfIOs45LJZNDkYm80mPdfFsm0KuRznzp3j5KlTeL5PpVxm9+7dDA8NEQG/8JnP8NbJk3zfxz7GX/1Lf4kwipJU7+LiItcXFvB9n/Hxce578EGGhofJ5/MUi0Usy3ovP8oUKT5Q8GXppb66yrWrV/E8jzgM0XUdx3GwTRPLtjENQ8wdmkYMxFFEHEW4noen2kLiGF3XyWWzZByHWNMIwpDq6ioA5VKJTqfDm6+/ztWFBXRdZ3rXLqampshms/x//vk/540TJ/j+j3+cv/bf//dEYUgYRURRRKvd5vr8PNVqFdO2ueuuuzhw8CDlSoV8Pk8ul0sDJ2nqdRPiOKbb7dLtdmk3GnRaLarLy3Q8jygMcWwbx7bRWbsZNCDWNIAkWOqGga5+1zTCMEQDeq6L63nkczlsy8L1PPGenQ7PP/cczWaTkbExBgYGqJTL5HM5QOg4vvb663S7XR564AEGBwaIZEAOo4ihgQH2zcxw+coVLs3O8sw3vsFthw5RKJXIFwqUKxWGhoYoFoto8lxTpEjxvUMQBHQ6HdrtNt1Wi0a1Sq1WIwwCNF0nk8lgmaYIhK5Lp9cT8wWADJbJ/KHrGJpGFMfiJ4potFq4nkchlxOBVwbQ06dPc+rUKZxMhl3T0wwNDVEplTBMk1anw+tvvUWv1+PBBx5goFwGSHaug5UKk+Pj1Op1zp49y/Fjx6hXq0xOTZHN5ylVKlQqFQYHB9+W7uz7FWmglPA8L6kfNFZXqddqtFstmq0WaBqmYVDM5cRAj2OCMCQGoiAATUt2jMjgpbbpsfqJIpABU9c0mq0WtuMQ+D4XL17k6tWrlEol7r//fjKZDJ1eD8MwyGWzmIbBc88/z9WrVykWCjz+8MPYliXeX95I6iYbGx9nenqab33rW5w+cYKDhw/TbjRoVKssLy1RKBYZGhpicHAwTc+mSPFdIoqiZGHdbDRorKzQbDZptVp0XRdT13EyGfKOg44g8GhxTASEUSTmC8Qcoco1qAyUpiWPxVFEGMdYpkmz1ULXdWq1GmfPnqXb7bJnZoaZPXvodDoAmKZJLpfjueee48qVKxTyeT786KOYpommaUmgVOWhocFBZqaneemVV7h08SJhFDE+NkazVmO1UOB6oUC5XGZoaIhSqfQefdrvHT7wM6XruqyurrK6vEy9WqUlLW4cyyKOY0q5HLppkpesU8s0MQxDpE7jGMMwiOKYWKYyQpk6iYA4DAmCQKRR4pgoDImjiHavR7fXY6VaZWllBQOYmJxk99QUumEkqVrP8+j0euiaxqvHjzM9Pc1jDz1EKFMzmq5j6DpaX2oXYHR4mI8+9RTPPvccp06e5IknnsD1PKrLyzRqNWrVKoulEqOjowwNDWEYxnv18adIcUsiiiLa7TaLi4vUqlVatRrdbhfbsjA0Dcs0cSwL23HIZzKYloVhGOJek/VHTS6w+1OhsdpBhiGe7+O5LmEYEkURURCw2mjQ6fW4Nj9P13UpZDIcuO02BioVAt/HMAyCIKDb66HJeWP37t088uCD+EFAINO/hq6LOUzOVSB2sg/efz/lUok333qLQi7HnulpGq0Wi3Kxvbq6SqVSYWJigpzMdn0Q8IGtUfZ6PZaWllhcXKReqxG6LpZpkpHtGMj0pOM4jAwNocnUCIhUSSCDXgzJ40EQEAQBfhAQykGpEIYhoRzAisk6f+0agaYxUC4zWKlg2zaZTIZsNovneWiaRj6fT3ax/VD/VoV/4hjDNDENA1MG806nw1e/+lVGRkZ4+KGHiIBuu02t2STWNCpydTgyMkKpVEprESlS3ABRFNGQTNLV1VU6zSYGiBYuy8KyLPwgwLYsisUiJcVElzu3OI7xfT/hKCAfC3wfT7aI+HJuES/T8Hwf3/Po9nq0Wy0uXb5Mu9MhBsbGxigVCjiZDBlZ+/SDAMMwKBYKxHEs3le9l3jDtcfl3GVZFpZhYMgd54kTJzh18iQffvJJhoeH8TyPerNJu9MhXypRrlQYGBhgcHDwhq4l7wd84AJlGIZcvXqV69ev0+12iT0P0zAo5fPk8nlymQyapomBGEUUCoVNuXmVeg3DkCAMCXxfrNaCQNQbZOBSN4cq1AdBQOD7LCwscP78eQrFIvVmk9sPHUp2qaZpEkYRnW4X0zQZHBxksFxGQ9ykoVx9+mFILH8HklWogi6Ptbi0xKuvvMLRo0eZmZlJ/t5otWi22xSKRQqlEuVymcHBwQ/UKjFFim8HzWaT2dlZ6vW6YK36PtlMhmKhQC6bJZfN0ul2k0BYLpU28QGiKBJzhpwvgiAQpB0lFCDnDk3TiDUNQ9MIogjf8/B9nxMnTtDpdJicmmJ2bo6DBw5gyiCNruN5Hq7vk81mmRwbw7HtJNMVhSGBfP9I7lKVm0g/1EL7+RdewO12+ejHPiY2D0Dg+1QbDfwoojwwQKlUEnyKSuV9Xcr5QAXKq1evcvnyZUHACUNsXadULDJQqQgPOJm+rNXrRFGEY9ubAodKa7i9niDTSKjfdV0XjDbLEoQeTRNtHL0e6DoXzp9nbnaWmb17GRke5oUXX+SxRx7BzmTEMeWgbnc6eJ6HbhhkMxlKpRLlYhHTMNbqnnJlGIUhnkzx+kFA6PvrzvnkqVMsLCzwyMMPi2Zkw0BDkJFq9TpeGJLN5xmfmKBcLlMul9/Xgz5Fim8H3W6XixcvsrS0RBwEmJpG1nEYKJUolcvJ/dSV7RYxUCoW15U0oijCCwJ6nY4IjH21SRWwbNPEtCwRqHSdUBILgyCg1+1y/PhxojDk7nvuIY5jXnzxRR584AGy2WziSen5Pk2p0JN1HLLZLOVKhUIut27OUOcUhiHdXo9QZsL6lX26vR4vvPgiQ0ND3H/ffdi2LQJ/HNOSrSiGZVEZHGR0dJRSqUQ+n39fkgU/ELOh67qcPHmSRq0GMkBWBgYYHhhY1zah6Trtdlv0Rup6EiRVm4jrukkKI5IDzrJtkfKUOziVvlSBqNluiyCqaZw+dYrr8/Pcc889jI2NUa1WAaHok8lmk5vHtm2KhQK1Wo1A9mnWGg1q9TrFQoFKqYRl20n6xDBNHF3HlDemugG8IMD3PA7edhvVWo2TJ09y5EMfwjAMQVG3LIYGB2k0m7QaDc7UaoyPj+NOTAhlIOmcniLFBxXXr1/n3LlzhK6LHscUcjmGh4bISpKdQhzHdOX8kM1mk3nA8308uRuENQKPyh5ZhoEuyyVJgInjpESjaRqtVovXjx/HcRwefvxxojCk3myiAYV8HlMuyrU4ZnhoiKWVFbqS2+DLDNaqZVEplynm8wlhSJO11DiTSdLCYRSJ8pHcFR8+dIi3Tpzg2vw8lYEBbNPEsW2K+Ty2ZVGr11m4coX6ygq79uxhYHCQSqXyvivjvO8D5eLiIufOncPvdjGB4aEhhoaGxCCXg0UhiiK6rksUx+TlKs3z/U2pCduyxI3SN7ijfgbbhoFu6DpnzpxhYX6ehx9+mMnJycRhPJbn4GQyGLpOs9PB9Tx0TaNYLmPIwnuj2cTzfdrtNs1mk1wuR7lcFn1VMjAq6JJeblkWsXRLv+P223nl1Vdpt1rkCwXB8JWr2Fw2S6xpeL0e169do91q0et0GJuYIJ/Pv4PfTooUNyc8z+PChQssXr+OFgTkbJvJyUkK+bzYAcK6uaOrxEfkgrXT7eJJUQEFQ9fJZjJohrFuURv3zUNhENDudAQ7VtMIfZ/jr71GqVTisUcfFXNUrycySzLg5gsFOu02nufR7nTI5XJkslkc204ESaIoYmllhdVqlVKpRKlYFG1r8lqQ12PKc8s4DnEcUywUuHz5MnOzs1QqFRH4fR/dMHAsi0qpREPXcT2Pc6dPMz4+jj81xfDIyPuKJPi+DZSe5zE3N8f1a9eIPY+cbTO9a5fYJcq+pP6BHscxPdcVtUbf35Q+sAxDaCeq9ANidRjLYwEg8/3tdlsELk3Dtm0uXbrE3NwcD9x/P5OTkyLF0cdSVaxZw7LI53K0mk08SQjK5XIUCgVyuRy9Xo9ao5EU9putFtlsllK5LGoUaxeT/KrOde+ePZw5c4b5a9e4+0MfwvM8AsWsk9cbxzGZbJZ2u83cxYu022327N37gaSDp/jgolqtcvHiRdrVKgYwODjI+NhYEpz0jXVHKU3X6/UwTHNd+lLTNBzbxnacJDjGrOm8JiQbOf90222QC11T13nhW98im8nw6KOPYlqWED6XbHv1Og3I5XJEkijU7XRwZKZrUBL2mu027VYLP4pYrdWoVqsUikWK+Ty6PJZqW+kPnJZpcucdd/DiCy9AGOJks3i+TxSGdOUcpwKsoessLi7S7XTodjpM79nzvgmW78tAWavVuCLTAQQBg+Uyk5OTGKaJHseErAUQtZrzfJ/l1VU8zyMnWVyGYWArgYEtUgmKpKOO05Par2iaSN3m81y9coXTJ09y15Ej7N6zR6Q35A61/5jqfGzLIp/P02w26cgaZUk+N5vLiXqE59FoNGi2WrTbbRqtFiUpKmD1sXNV/5Uuz+fgbbfx2rFj3HXXXZTLZQLfp+d5SfOyYRh0XTehmK8uLdFptTh0+DAV6bieIsX7FVEUMTc3x8rSEp1GA9s0mZDiH5pc2G5cYEdRRK3RoNFqAVCQ5QrbtrGlctemmp0UClABNZKchCAIQNexLQvbtnn6mWeI45jHHn8cW5ZaVIDtD0BqDsrncrRaLWKg0+2SzeXQEIzWSrlMpVSi1WrRaDTouS4rq6vU6nWGBgbI53IiSOp6UstUs9PU5CT5QoFz58/z4EMPkY9jXM/D9TyCIBDXIpXIbMOgJRfanU6Hg4cPvy/4Drf+FWzAysoKV+bm6DYamMDgyAgjw8NJqhXWWitAkHNWm1X+3SufpdPp8OjUIzx16MM4jrPW87ThPdSrdU1D1zTcMKTZaomBLvUZc/k8C9ev89qxYxy47TYOHTwoXiRFB4AtB1AcxziOI3amUjzZ8zyxk0UEP1VbzGazVGX/Vqvdpt3pMFipUCgU1MHEzYVYJe6ZmeHEyZOcOXOGo0ePYpomBdMklsG30+3iAJ1OJ9lhaprGG8ePc+DgQSZSe54U71MEQcDFixdp1Wr0Gg1K+TzDw8NUSqWkVSNpyYJEZq7b7VJvNIjCkHw+Tz6Xw5HEwK1ILaodQwfQdVzXpdlsJu1o+Xwey7J47rnn6LTbPPnkkwlXQtUQYX2gVPOCrmkiDdvt0pPGDVnJ4tcli7YgW0nqzSaNeh0/DFlYXiaXzTIga5AKiluh6TqHDh3i5VdeodVqUSwUyDgOmUxGLLZdV7TCxbHo+5blouWFBbqdDnccOXLLt5C8ryquy8vLXJmbI5SNv+MjI4wMDmKZZhIkQ5mqCIOAZrNJvdnkXz7/i5xdOcdsd47//eyv8Csnfo1QixK1m370S9WB6KdstVrJSjOfz5PP56lVq7zwwgtMTU1x95EjyY2gQVLzNLbZpYJIpViyn7Mlg7Ba0arWFNu2GRkZYXh4OGlhWVpdZX5hIamP9F+DpmnM7NnD5cuXN6WHMo5DuVhMaO5hGCbBMwxDLp4/z5VLl7b1u0uR4laFCpLdeh2/02F4aIiR4WHKpdK6fmXFbFclkE6ngy8Xx7l8npGRERxJjNkYJNXiWpPzD4Db6yWLUsuyKMsSyrFXXmF5aYlHHnmEspSco383KVOz/VCiI4auUywU0HUdPwhoSQZsJINsKOepYj7P+NgYpWIRS9dxpYhBVTL+xUHXsm67pqYwDYPLs7N9FxWLxXY+T0WWhyzLIooikYp2XVrNJqfffJNGo/E9+a7eK7xvAuXi4iLzly+D5+HYNiODg0JbUfYRqYEayN1fvdFIanOXWpdoxS3aUQdXc/nSxS/zqa/8bU5XzyTHVy0Z/QM9CAIazaaQpdN1KuUyWbnKev755xkYGOD+Bx5IBhxsvyrcCE3TyEiCTyDTO77vJ6lUTdeT4+ZyOZEiKpWwdB3f97l6/Tor1er6gAhMTU3hBwGLi4viBlJuBYgdcjabZXBggEKhkPRYtdptWq0W1+fnuXjmzCZyU4oUtyqCIOD82bP06nXiIGCwUiGXyQgSW78cpabhui61ep2OJMeo0kwhnxdGB7B5Yd3HRUgeA9qdTiIakM1kRMAyTc6fP8/F2Vnuv/9+hkdG1l7T1++4ZSpT1gpBzCuZTIYoDOn1eiJYSq9LFcQ1TRM1zIEBxsbGyGYymJpGvV7n2vXrdLrddYc3TJOJiQmuzc+vzRt986ppWRQLBQYHBsT5aZogF7Xb1Ot1Zs+eZWVx8Tv6jm4GvC8C5cLCAgtXrxJ5HqVCgZJMPeZyuUS5JgZaUo/RdV2Qu6hKuQymRqxFRHqIGtaXGpf4O1/9f/Mf3vot/CjcdBO4vp8EScMwKBUKIvDFMa+88gqapvHIww+LHitJx46iCD8IkpSmpmlC1k71Q8qfQAoZEMdkpEZkLFdpChvPR9d1ylJaKpvNYuk6rVaLq/PzoodToiJ7qubn55PHFCEpjCKQgXiwUqFYKAjmrKw/rFSr1Gs1Lpw5k9RZU6S4VaGCpNdqocVCINxxnMTVQ2mhqoVqp9sVfpGGQSGfpyR3e5ok7W2ECrD992qMsOvruS5xFJHNZsnJ3sNatcobb73F4UOHmJ6eTlo2VM0wkHOHbhjJLjGZO+T9qzSoFZNeQ+yA/b77VUPMF2qB7DgOY2NjQvhcCp4sLC2xtLKybqE9NTlJQ+6kk/Pql+6MY7KOI9pnMpmkzNRqt6nV61yZnWX5Fg2Wt3ygXFxc5Pq1a0Sex6BslgexwlG7rtD3qdfrImDIAVSWrhqGYTCdnQI0PNbTub3I4z+8+Zv8j1/7WWabl5PHe70erWaTKI6FVFWhkDDHzp47x/z169x///2iViGRMFw3FONVLVBZc9G3Y9U0TQT0XC4hHPVkYzGIHeDGFaxlWYyNjDA0NIRtmkRxzPziIvW+1Mfk5CTX+wOlOjdIUjRxHFOUSkUZSVAIfF8M+mqVuQsX3uY3lCLFzYcgCDh37hy9Vgtd09g1MZHcwxmZPgRRr6/X60nWqJDPUy6VyGQyicVdFMfrAqUKIhsXs1EcizYvz4M4Jl8oiICCuLdefPFFKqUSd955Z/IatchWspnQV7LpC5SweTermPq67A/vF0jRJMGvH4VCgYnxcUr5PJauC7P4vjLO2Pg4hmFwfX5+3Ws3BmvbNMlmsxQLhWT323Ndmq0Wly9dol6vv+3v6WbBLR0oW60W169eBc9jUNpI+b4vcueSudmW2qZhFGFoGqVikWKhIDQNETW/giH0GPsDZRRH6JpgkJ6qnuKn/ttP8/tn/jOtjiDNAGQch4KsBwBiRfjmm9x2222MjY1tOl9N0zYP9p0gUymmZLzqmkan212nIdsvsNyPvKxBFOTucrVeZ3FpiSiKmJycpOu61Gs1ccMgB/uG+qMhlUIs28YwDCzTJJTpnPn5eS5funTja0iR4ibElStXcFstLE1janwc0zRFdgfQLYsgDKk1GnRlNsaxbaHg1dceFkgRAduy1u0YtyIABmFIXZZPNFlH7A+urx0/Tqfb5cGHHtqSYa/SnbBzyQZIdGRjRFbNkLvHTrudPCepmfYx90Hc80NDQwwPD2MZBmEQML+wQKvdxjRNRkZGuCYX2UlWLF6fXI4RcyNRhGmaCWM3iiKarRbnT50S3QG3EG7ZQBkEAZdnZ9HCkGI+z9DgYJLeVISbZrO5NtAdR7RPSJNlve84jukQEREgpKWiOEbX1n80buTym6/9Fv/TM/+Spe4K2WxWyDWp4/g+L7zwAuVyed2KcCOSgvwOlOlEfF2JGcgUrGVZ6Jom1IPUc/tfx3pGryEHdrlcxtI0ur0e165fp1gsYlsWCyoN0sdwZcOgdxwnSRHbjpP8OwgCLl64wMVz57a9jhQpbkasrKzQqlbRo4ixsTFsxxFZFERKstfrrXEPNI1isUhBpkd1ucAGobpDHCfqXhuJfgpBFNHsL9NsMFKfm51ldnaWe48e3SzwEa/JzcGamMh26CfvqRRsTvIN/L6M1LqyzRbs3Fwux9jYmCj96DpLKyusVKuMj42xsrKSlF7UbnLjQt3o282GYUg2kxHXHMe0Wi3ePH6clmypuRVwywbKK3NzxL0eBjAyPAyQpDsUK61/F1mQ6UuVDlFBIQhDHMPGx09SJlsNnDx57NjmTPUs//hb/5inF59J3pM45rXXXqPb6/HQgw8mAzlJR8gUTRiGSaN/rOqVsE4gWT0vViSbvtRKXrqNK1YZsH6AShr4RpTLZUZHR0UqNgyZX1qiICXyYE2OT9Uu+o+plDpiTcNzXaF/qyS64pi52VlOnzjxnX6NKVK8q+j1eixcuQK+T6VSIZvJiIWxvK+azabQa41jHNumUqkkbkLJ3CHv71DuQE3T3ET0UwijiKaci0zTpLxBA7bVanHstdfYs2cP07t3J4+rHWQg5w/X88T7SVEBX753MneoNHA/0Ua1oRmG6KnU9c0ZKYmtWlksy2J0dJSCTMU2m01CIATqjUYyv62bU/vgyJ1k4PtEcUw2m03KON1Oh+OvvHLLpGFvyT7K5aUlvEaDMAyZnJhYSzXEQqzXlX2HjuOQlwESNuy+NA3dMAh9H0d38GIPDW3zchDIkSMTi1pCmza9oMe/+tYvMmgNckfldq5du8bs7CxH7r6bMIrEIJLFdnVeSNWLlkx/GLIGEMcx7W4XQ4qd96PbbuOFoXADcF3RC6WEDVyXKIqwZC3WUCzYLXaFIPRkx8fGWF5Zoee6mLbN8sqKCNpb3OCqdgprA14RAgzTJJ/PC5KA73Pt6lWCKOLOu+56+19iihTvMqIo4sqFC2i+L1Kp5XKyMO56Hs1WiziOyal+Q2mODpt3YL4MSsiWjK1kwKM4FsFFinkUC4WE4KL0VF944QUs2+bAgQM0Gg1B6FNymH33YK/Xw/P9xCe3LYUF2t2u0HmV7xkjgnOr1RLznq5jSJZ8IAPsahBQlLtM3TDW9KllGnUjSXBocJCMbbNaqyVzy+LiIuVyeV0GS+s7BrCmfS13lRprGaqeFCt47eWX+dDRo1QGB7+br/Ydxy0XKDutFtWrV/GDgEqpREZ+8GEY0pCmyyC+kGI+v+VAp++xKI4xDYtI27o/sCD/MzDw8MiQIU8eDY0T104yqU3yxhtvMDg8zODwMIHvbwp44s20hMijbGxUnVKHxAga+hqb5Y2ieifVblGT1OtqrZZI8gHJoDd0Xdw8smCvVrAqFVtvNCgWCly9do0r164xOTa2zh8v+aw0oeyjduJKekvRv3O5HK7UtF24dg2iiDvvvnv7Ly9FivcQ1+fmiKRw+cjoaBIglOuHarvK5XLYape4zbHUTkrfSnkHsdOrNRoJESabzYpAKFOoYRxz9coVVldXue+++xICXT9ipcPaF8AMNXdIhr2OCNwqs0XfvyPZexlrGppk6waui+d5RFG0Juoug6maPzQpn6fmEIB8oYBp26yurAjW/PXrjE9MUNhCC7pf9Ux9xmEf299yHAzTpNPp4Pk+x48d4+5772VgYOCG3+F7hVsqUEZBwPKVK4RhiGVZQlpK9g02m81E1aY/rWruUPhWruJ5M0sQ+xiagYmJhYWJSY4cuThLDLi4xMSY8iMzNIMjI0eYnZ3FD0OOHDlCLpNJUpdb1RK6vR6GruPYNvl8PrkR8oXClnqqjm3T6XaFobPjJO0jlm1Ds5mkXExJF4+DgAgI5M4ykjtZJdRsmKZI/5RKTIyPc/bsWer1OqZhMDo8vLmJGRHAffl5Ky1Jx3HEDRzHOJmMoLy321yfnycG7kqDZYqbDK3VVdq1Gl4YMjI4mPgrttrtxKKqUCwmqc2MGuPbQLFgDbnDU7tEZdzebLWEZrSuC3k4mSpVij1xGHLu3Dl27drF2NhYMl+ouUMx3lXw0zSNKIooFYuYppn0VOYLhaRNZd35yXu/WCiIDQEi8OqGQafdJvB9kTKOYwhDQk1L+rv7+yOVGbz6/+joKIVCgXqjwcrqKko4vR/9C22VllWymJZlock5KZ/LEcp57PVXXuHuo0cZuEmlMm+ZQBmFIc2lJdxejzCOGR8aQpeKEiqdaZomxUKBhhQT6Ha7m75EhRghnO55Hg4Ow8YwcRQTiwQsFhbZOEdISI8eTZoJ4WdfZS8/c/RvM21O8ccvfJU777yTwR1WQ/3+b8COxfitoCx5+mGZplAEiuNEHCCSRs5RFCW/qxpHFMfg+0TiRHAcR3hlttt4xSLXFxcZHR7e9D5hGOJLEQdlOLuueC8XJ2EQ0HFdFufnOanr3J6mYVPcJAi7XWpLS4RhSD6Xo1goEMcxzVYrsb9SZJ1avY7vugSZjFD02gJRLHwiu70eprw/lHBHhCiZ+EGAoeuUSiVs2xYuQHInqGkaL738Mrqmcc8992xrZ5fMG3H8thmvCobcVfZnrkCwUXVJxtOlc1DUN2cEfXNHFIaEkjcR93pJP2e5VGJxYQENWK3ViOKYcrG46Ry6cpfuyB2kLwMlyGCq6xQKBRrNJkEY8vqxYxy9/35KlcrbusZ3E7dEoIzjmKDdplGvE0YRhXyeTCZDq91ex2ot5PNEcUwul8OX/UquzOsDSfHbc11c36fX7dLtdrF1Gx0DdPBjnyAOsWKbOjVcXJqIlO5gZpC/9aFP8fHdH0VD40/+5E8oFgocOHBgx3NX2ErQeEeouuMWNUfbsrAtC1cuCAr5PLppbvpCYwQj1/N9QR7y/TVyUKGA6/t4vR6upnF1fp6JsbGEtq7qp0higyEJA0HfgAcx6G3ZD9bp9bh29Sq5QoE9MzNv7zpTpHiHEPk+nXqdXrdLEMdMVipEUUSj1UqsrJSwRhhFZDIZXNel3W5TLpeT3VEUReu8JRvNJn4QUJAi4ipr0+12sR2HXDZLqVTaUkVnZWWFS5cu7Rgk++95VbLZSLTbCev6szcgl8uJfk7XxbYsLGkUjWnSfzZhFCXkQ7UYUP2fyqMXTWNxaQnP8xgeHFxrnQmCZKdeKhSEHuwGkRJFHiwUCrTbbYIw5M3jxzn64IM3nTbsLREow26XbrstdpNhyGClQlOqW4DI/+elzUwcC/3BTCYjvNhaLULZHOwHQTLokKkGwzRxHBEUAwI0TaOiDeCGLj4+DRoowvVUYZLv2/0xAGZnZ1leWeGxxx7bdofY33gM3/6OcismWT+yuRye7M3yfD9JJ22EbhjYup4EQMWszWWzeJ5HuVKhXq/TdV0uzs0xIo1pA2n1pWkauWyWnuviSrZuf6BUt6LtOMSaRrfb5cK5c4n+ZYoU7wWiKCKQggFBFFHI5dANg1q9ntTPVCpT1QBzuRy+7wvOQ6OBaVkE0pO2P+TEiMVqQfZDGoYhSiu+jxFF5DewW5PXxTHHjh1jYGCAmZ0Wkn0L5GQ3+W1kohSnYCsov8lOFNHtdjGLxS2NHzRNw7QsIYkn/SkTZq2cZ23bpt3psLy6SqfbZWhgAEP6U4JwUclmMvQk+TCKos0lHk0TziftNp1ul5NvvsldH/rQlmpH7xVu+vaQ0PMIez2ajQZBFFHM5xOLF4CiVOxXzE31hduWhS/tqBYWFuh0uyJIahq23H2WikVyuRzZXA4fcSMUKRFHMZoOXb0tvlQNImJeX36TZ689h+d5vPHGG+zevXvnQNDX09SfPtHf5o5SXc9Wq0IQN44iM3W73TWWLaImodKw4lTWbgWlUZnP5wmkvuX46CiO9NJbXF5meXWV1VqNdqeTpItUvVfR1Le6Xse2yWazhEHAmZMnhTNCihTvAcJ2G6/Xoyel50rFIg3JZTANg7La8cUxWl8t0DRNWu02yysrrK6sJEHSMAyymQxFKZOZzWTIZjIYhoEfBHQliz2Xz4sMjCLD9N1758+fp9FocPTo0R0Xwf13l8pEvd15Q17IjsfPSD5FFIa4Miun9KwTElAsvDcTv0r52ZTkTtvQdUZHRxkolzE0jXa3m8wdymjetqzkdf2CKxuvU5M7S8MwWF1Z4eKFCzeVAcNNHSjDMCTsdHBdVwSCKMJyHDzPQwNKxaIgk6gAEUX0ej3qjQaNRkP4T8oBE/i+EPyuVCjKgaxwYGAfIHoljcgADe6cuJ1f/77/k/H8OLqmY+oGuq7x7974v3j9rTcIJYFnR2yTPtmq13FbbFDO2Ag14JVijgqOG1V21O60P8BlHIee9J8sFArsnp6mXCwSA8urq/i+j2VZBEFAvV4X/nOyfiEubz1LV51v1nHI2DbdTodzZ84kdaAUKd4tBN0uke9Tq9UIo4is44jFtSTDlcvlNfNjhHhAu92mWqsltnZAQqArl0pUSqWkhziGRCIzku0YikyY6ZOuVBZXuuxDfuvNN9m3bx+VHepwSkNVIfwOd5SKcLcVdMlaR1tT++o3SegPshszW6ZU6XI9D0sy6SfHx8lI3kRDtqaYhkGr06HRbCZkJmVFmFxr//nFMQX5+V6Zm1sns/le4+YOlO02xDGNRoNQbvXVAFLqMqp9ot3psFytrhmgxnHSO1gul3Ech65sZVhHroljdhV38ffu/ln2Zvdy1/Ad/JPH/hH/4vFfYH9lHz91108k56OhcbV1jT+6+Efccccd624I2H7nl7wX3z6RBzanX/sF1BWZRg34nVZhWt/qEMDJZHBlkV79PZ/L4VgWOamqkc1m0XRdsGmDQFhvtdtrnpVbXHcUx2SyWUzDYGVxkdlLl3b8bFKk+F4i9H3Cbld4JfZ6+LKlKY6ixMAAgDjGc13q9Tp1aWYcy9SgYobnJcmn2Wolu6F197LsaYxkGacgvSM3QdM4e/YsumFwxx13CHGCDbvNBBsC1bebiVp3qHWHXRNYVyUqtVjobnAL2Xz66xfsTjZLr+81lmUJQQFJXLJtG9txktY2Pwhot1o0W60ks7exhqrJlpR8NkscRZw/c+amsee6aWuUYbcLYShSA66L67qUJLMql8vh2LZId3S7YoADcRhiyPqkY9vCrTuOKVkW7U4Hz/PoSiX9fC6X2G/FccwTI4/x2PCjZKQfo8JHpz/Cfzr7Xzi1ejp57FvRS/y93X93k8ZqIgEnV5mwlusP+naU26Ff3DhGSmLJYNgvXtD/nrFMd3quixfHuK67YyFc9WXFcZwIMvdk20pXBs2BSkXc/Aj6/OjwsCjeex56r4cXxzSlyLIiI/T3YaqbP5fLCSHkixepDAwwLBWUUqR4pxBFEaFcxKmFYyxVcTRdp1gsYmhCzrErCSZqwakkGq0+8p9pGImnY73RSOYGDRLtZS8I0BCi4lsGPkQgOn/+PAcPHRLG7HKRru5HBeVYovXxG5LU606p2o1zR9/jkTxW8n4SGiTmy67nJdmp7aBStZqmras7dqXwSFYujnuuS7fXI5vNUimXBanS82h3u/jSoMLJZIRJ9Bbvp8sUd7fX4/zZs9x1993rOBHvBW7KHWUYhgS9HsQxvV5PKEpINY1MJoNt2zTbbeq1Gl1J6LFk7rxSqZDJZJIgCWKAqVomyGbgej0xJW6324SIVVFuwy5R0zT+9t0/vXZusWgX+d0zv7/1yfeJAsBa+kM17vene1Q9IJGrk9hq75XcCFvsLkGmYDUtGbw7QR3DkVY4VVmIV6vMSrksnAJkj+pKtYppmuRzOSrlslDqkU4BylfP87xNu8akVyqKmLt0aZ1NWIoU7wSiC+UXcQAAoyxJREFUXi/xXex2u7Q6HZFG1XXKxSJBEFBtNGi224KoBuSyWQakB2sSJOMYpPJVuVxOWkU63S71eh1PEny6khVeKBR2TI2ePn0awzS57bbbdjx/TQZJIDFtUI8rfej+XeGN5o7+eWhLmTrTFBrSsM6Ob8tzY21X6zgOnW6XZrMphN4RvpojIyPJZ7FareK6Lo7jCDOKfB5D1wWb1vepN5t0Zf04OX8p+uDYNqZpsrq8zPXr19/zeuVNGShj102+2GarRbvbJSsDJMBqtSq+VF3HsSzKxSLlDULDCv1DI+M4lEsloboRx3iex8rKCt1uVzT+5/NbrgjvHjnCE1OPCa9KORL/09n/wkJ7YYeL2JyOhD57Lfmjw7ar0LWL2L4wrx61LAtTkgf6rbi2QxCGSe3Q9Txh2iwNazVNwzJNhgYHMTSNXrdLVWoyGoaR6L06liWk+voMYjdSwBXDrrqywtLSUmr6nOIdQxiGhHLs+0FAS07i2WyWXCZDs9VK6mW6ppHJZhmQRs39GZGNi1Jd0xLin64Jf8pWu83K6ip+EAiD+B12PJ1ulwsXL3Lbbbcl7SJavNVymM3zhkq79hEDVVvFxt3oVtjpr+qdMpkMmqbhqhaQnV4j20I02cMeI/rXC4VCkl0akJsVXddZXl0V4vHI9GwuRz6bTdSDfN+n1aevu3biWpLGnr969T3XhL3pAmUYhoS9XuK/1qjVCIJA0LblCk5DsFpLxaJY7fVpMipspV8KYuIuSqstlT93JR280+1uO5H/lb1/WWZVxVG9yOOzb/z7LZ+rGo83XhfsnD7ZCW+nfyqTzaID7ja7StX71Gg06LTbyWLEkJ+Js0GNJJPJUKlUMDSNZrNJs9VKiAz9XpzqdZHcnatBr2owjqx3LszPJ0LsKVJ8rxG7biJMXpOkHMuykhYGX+4gM5kMAwMDQgdajufkGH27uY3ISqP3jG0nrWqeTFv2cx824vTJk1iWxf79+298DRv+/d3UJ2Ft57kl5JximiaWbYuM1Da7yjAM6UhiTk/Oz8Qx+XyeQj6/qRVmeHBQ9K/HsdCUDoI1swjELr6YzydMel9q7SqbRHV++VyORrXK6urqDeuo7yRuukAZ93oJO7NarYrex0iYgapCe7FYpFQqrak8qMZ8dQx2XkmBCJhqd5TPZjEMA8/zaDSb1BsNkRLoozI3Lze417pn3TG+evlrnKme2XTsfqsbdT5JGlgyVH2pCgRCISjw/TUxZHWcG35a65GkUfoGvNo5q0Gu2MOapuFks4IFKCncW6GQzyd1nWqthut5aPGaSaumaWQcR/jrye9o3aCXn0chl6NZq9GS55AixfcSURQRum7CB2jU63hBgG3bic6oY9sMDAyInaFs3u9ngu8UJBU0lRp0HGxpuhDHQqmnVqvRarXWlSHa7TYXLl3i0MGDW4oP3AhhX+o1kj3MrusmRBrV87mR5b7ufN/OIlu2mbmum8x7kewiaDabNPsMp03TTHaP26kXaZrG8NAQlnQsWl5dFX+I+8wVDIN8Lif6WzUh69fpdNaREk3TJOM4LC8uJjKl7wVuKjJPFIZEcrD3PI9GvU6n10uK5LZtJ4N8O7zdD7Ld6RBJKbeR4WGxs/Q8PDlQumEoGogNg163y9zly/zNu/4HTr91hnawZoD6q8d+jZ+/8x8LwlGvR6/XoyN7t3q93pp9lkxRbkQIPP300+sV+6VShrqZbcchn81iyRqt4zhkJA3dlv9W9ZFMJoPreSIN2udwkBxb13GkPFcQBILRusV59aNcLgsT7G6X5ZUVsjJV0988rEm6uSX1aeMoot1uJ2w4VXdYvH6dnFRWersqIylS3AhRrycWcHFMs9Gg0+nQ8zxGR0cT9Z0tG9g3BMsbjcggDJOsVrlcplIq4fo+bq9HIHeYnqzZmZbFiRMnsC2LvXv3rp1rFAmXI0lE7PV6Yu5wXXHevR6e5wkJSiUhtyEQKlnKp//0T9cuRRkiSM9M3TDIZbNksllsyyKTyYgfx8GR84bV1+domWZCtjEta/28oGlCDUzWDt8OucYwDIYGB1laXsb3POr1OpYUMOiHkh7tSYKV7/uEfSntTCZDvdGg2WySz+c3e3a+C7ipAmXY7SaKOc16PTH2LBQKoh1kB6UGlXLZykR0IzxJGweh6oMcKKbUPvQ8TxTr5WrtLZk6Cdsh35f/GF+pfw0fn4CAt2on+I/P/g4zzGCaJlnHwZRqFEVZN40R6vnKnkoFwW6vxyuvvMJdR46IJv0NOoue59GTgTsMAqq1mripVGpVE+4eyCbnfC5HLp/HkAO5UCgIaTtdx5SSd/2r2sSf820ErMHBQYLlZbrdLvVGg1KptGV61zJNSoWCYAN6Hn4QELbbou0kk6HRaNBqNikUCqKPK0WK7xJRFIkFtq4Ld6FqFc/3xT0oBUV2Sl1qmkbEDnXDPnQ6HdFmYlmiF1uyzh3bTqyzVK2vurrK5cuXGR0b49hrrwmlsE4nsc/rX+5n5A7Vtu2kDGLIxWwcRWSzWWzbRpfare1OJ5k7MlJ5LPG+lYo7vu8Ty99XV1dxpXOIvGjRJWBZFPN5snLxqlo7BgYHkznRkjJ3/RuUZM5QzPxtYNs2g4ODLMu5I5CKYFt9B9lsFkt2KERRRKfbxYkisSlwHBauXUvmjXd7kX3TBMooiohlymJVfqggmJlbiXVvB90wEsbaVoXuOI5pSxF1JT3Vj06nw+rKCsurq6wsL9NsNPDlyuripUvclj3A6/obNCKhOBMTcz5zkZ947MfJ2Gv06n73kJ7r0u10kuCloOp1IyMjWzYguzJlapkmuXw+CZiBbJnpSq3adqdDp92m3W6zcP16on8byh3zQKXC0OAgQ0NDyQ2gzlFhoxjBVhgol5PaTKfdTtpLNkJJ3lmWlaRRWu22IADZNivLy+QLBbHTTHeVKb5LxJLA0+v1qEqmpWWalMtl8luIdW8Fnb52rG3Qk7udWBLf+ueXMAyp1eusrqywsrxMtVajK++V6/PzZByHXD5PpVxmanISy3HIZTJkpJmxYRhoyj2kL11aq9eJo2gdIxegWq0C288ddUlaKuTz6FI5KJIEvq7MeHW6XdqtFp1Oh1azycL168lOVUOUXQaHh5O5Q5kvgORaSOWeaIfPLIbEFzgIQ5qtFpYkU2517yvfzq7cELiuSxSGYlfZbNLrdmm32+vm0XcDN02gjH1ftCpUqwllOJfLCaHvt7HNjzb0M8Z9/o79aMtja4aBrWk0Gg1WlpdZWVlhZWUl2WkWCgWGhoexbZuVlRU++tGPksvlCIIAc87i3x3/v9DR0dBY7a3yJ7N/ypO7nlhfPJcD3vN9fM/DljU95E5OsVNd1xXpSkj6JhODZmnq7Ms6S/+gzGSzgnBTLicWWirwLy0uJn54zUaD02fOiFSrplGpVETQlI4nShx6o2lr8t3EcaKLO1CpCNHobpeC6yaO5RuhmLOFfJ5Wu52kYrOZDG1puv1eDPgU7z/E8v5aXloikuICpm0n7WA7v1j2GCpegVowblhoh1FEp9MhQuz+fN/n+sICrUaDlZUVqtUqcSwMmgcHB5mamuLChQvs3buXu48cEbVTWYYJwlD0Vct7WYmH92doVNBsSdKdaZpCkUye005zRxTHQuNaajobyoZPHts0TQrFovCSHBnBNAwxd5gm3W6XxcVFWu228LxdXeXSxYuACHiDg4MMDw/TlrtDVbPdrkaqrqlYKtHt9eh0uzRarW3dltT8qFizqu896nbJ2Da11VWcTOaGJbjvNW6aQBnJHHar2Uyad1vt9ttje20xsNcpSci/BVIdYml5mXq1yvzCAr70ZRusVJjevZvhoSEGBweTVMofffnL7Nu3j6JcmRqGwccPfJQ/mPs8p6tnMOR//3n2P/Po9CNYmpX0TaqA50s3b0UYUvDUYPc87C1aOjaaueq6jhYLncr+OuZWq7Ph4WGyMpevhBqazWayIJifn+fcuXMAvHb8OK12m4mJiXWOCf2BWR0/l8+TcRy8MKTebFIsFLYfsPImKuTzSc+q6nttNZvo0iT33RzwKd5fiIIAv9djZWWFMAxFlsg06fR6wrf1Btgqi7LVQrvTblNvNKiurrK4tERN7uhy2SxDw8Psmp5maHCQcrmMrmmcO3+eMAy54447kpJR/47QV9wFGczCKBLOPuKkiKOIII4JJfFFMXYV1Dyy3dyh5h9F5lE7VkNfM3bXtc3ymIVCgSiOqQwMiFqm4xAEAaurq8nccfLkyUSo4dnnnmNqcpLRsbF1sqARQgBGzcm6rjM4OChcV6R/8FYevLDW/pJxHDRdp9vpECL63xv1OiPj47RarW1f/07gpgiUURTRkowxXdeplMsEUpT3bSvIb7GNV5N7p9fj6rVrzM3NsbyyAnIg7J6epjI4yO7paYwtXj93+TK+57Fv3751j+uazt+++6f59Df/PoH877q/wBeu/P/4iTv+BkAirad2mKqfy7btREpKrQodaczcv9tE07B8Xxg9SxF3RaBZN7jlbm8jLNvGkPJdfhBgmaZoiykWmZmZYW5ujldeeUUIwRcKXLxwgdOnT2NbFuMTE4yPjzMyMrJlECuXy2JnLjVgt3Mm1xC+eCEk7iNeX/2mUCzS6XTSXWWK7xh+p0NNCgDYts3w8DDXr19/e3PHNhkUWCtFLC8vMzc3x5Vr15LyyfDICJMTE4yNjW25M4qBc+fOMbVr15b1OBCpS8uy1gQO+u5r5c7he946UYQkiMYxlrIXlAQ/NWdoiN2oUhsqKZ7EhmxU8p5bLBQytk1bciQcx8E0TUZHRxkdHcX3fb71rW+xvLyc6Ne+8uqrxMDQwABj4+NC+m8LlSJVeqo3GtSbzUQ8ZsvPH5EKt0wTXS604zim0+kIMpWmUdhpkf49xk0RKJvVqkhrhKEgoBSLLC8vE8ONV4XqixZNjsnDge9z+fJlLs3OUl1dJdY0isUit912Gwf27SOTzVKTpqNbBckYOH/uHBOTk1uyrO4eOcLjk4/xzLVnk8f+4Pwf8AMzf5ax3Og6FR5dpnlzudy6WqvaUTqOs6XsnErlrPOh21BH2a46oGkaluMQdrtJzUbh5MmTnDp1il3T01y+fJk777iD0dFRlpeXuXz1KteuXuX8uXOYlsXU5CR79+5loM9rTjdNysUijXabVqdDJpvdtl6pzgWEckcUC33N2soKE1NTwkszDZQpvgOEYUizWhUGyoaR1OrCON7S7Hwddqir1Wo1Ll68yNWrV3F7PWzHYWBggCNHjrBrairhHGznJXn9+nVarRb33nff9u+/8T7u+7eu6+hAZBjYlpXIcvbD7Z87trj3TBksk0AiiX9vhxNg2Ta6ZPEGQZB8jt1ul2effRbXdZmamqJWr/PkU0/R63a5dv06l+fmeOONN3j99dcplUrsmZlhz+7dSTBM7PpkH+Zqrcbo8PDOXQyILF4um6XRbIKmsbSwwO6ZmRvKdX4v8Z4Hyk6ngytradlslrwsGLueJ7REb1SflAFS9U7WqlUuXrzI3NwcURgyPjHBAw88gCPbEfL5PI70VksOwWZa+OLSEvV6nSMf+tC2b/3/uusnef7atwgRZB836PEfTvwm//j+f7jhFLeWn7shtkoLsSE47nBMx7KSFhVVhzx27Bhzc3PceeedTExMcPnyZQzTJAYGh4cZHB7m7rvuolavc21+nrnZWS7NzVEuldi3bx/T09OJUXNO0tertRrWDoQrQ9eFtiXixg59nzCKuHL5Mrv37Fl3M6ZI8XYQxzHVxUVc2Xedy+fJZjJCJjGON7E0tz2O/H8YBFy5coWLly6xurJCJpNhZmaG4eHhxIWoXC6v65Hejvx24cIFKuUyQ4OD384FbXoo6guc3y002DLVuuVzZSteJFtWCqZJrVbj+eefxzAMnnzySc6cOYNpGMRRhG3b7Nmzhz179uD2eiwtLnL5yhXeeOMN3nrzTaZ27WLfzAyDQ0PC9alUSvrUm80m5XJ523M2dF0Izstg2el2qVWrDI2MkMlkPhiB0vd9GisrhK6b9Ms4Kk0gi93b9uv0EWb8IGB2bo6LFy5QrVbJZrMcPHiQmZkZMlLlvtXpJGlMlbdXIuZRFG3SaTx//jzFcpmRHYS8d5em+fP7/jx/eOEPAYi0mK9d/jo/sv+HOTggNB37+xi/4wHfHww3MvN2kJzSDUMES8+j3W5z/PhxVldXeeCBB9i1axerq6uibcUw1t1Amq5TKpcplcscPnSIxcVFLly8yGuvvcYbb7zB5OQk4+PjDAwMJE7v9UZj+4lB04Sgsvwsstks7U6H6uoqA7KuU3yb7MQUKQDq9TqhZKHmpHE7moYnew7tHTIc/fdPvdHgwvnzzM3N4Xke4+PjPPzww4yPj6NpGrV6nSAIRIuJYrRLqcitgk6z1WJ+fp777rvvu2Z098vXfS+wkdm+E8vdsW16UjT+ytWrvPrKK5TLZR5++GFs2xbEIsMQCmR952fbNhNTU0xMTeG5LrOzs1ySG5dSqcTk+Dij4+OUi0VqUnNXlaS2Qqw2Qn1CB51Oh2tXruA4DpVK5V1Jv76ngbLRaKCHIV4cJ4306DpRn4zcVi7hCkEYcvHCBU6dOUO33WZ8YoJHHnmEsbGxRLsxlur2aoJe5/bRX7DvC0CtVotr165x9J57dhzsMfDXDv/3fHXuq0KEQB7q3735f/FLj/8vCZNUvde3e+OoYdz/qo1H0DYGzg2wHYd6o8Gx117D8zwee+wxBgcHiaQwMbIOsOGga7RvTWN0bIzRsTF6vR6XLl3i4oULzF2+zNDgIIcOH0ZD6Fnmd2DB9p+/puvkslnq9TpLi4tJ7TRFircD3/fpNptEvR5OJoNpmslEG9/IpUfeK/VGgxMnTnDlyhUs22bvvn3s3bt3XW9vT7Z36IaxLs2qs3bfJQFT3ivnzp/HcRx27dr1tq9H8Rg2zg/fjTVfP/M+eWzjXLHD3KHLtO/5Cxc4c/o0k5OT3HvffRiSPOj5vnD/2ABN0xLypO043HbwILfddhtLS0tcuHCBM2fPcu78eQ7s38/g8DCe71NrNBjdYUOiaVqiFuTYNlEY0pCew91u910RIHjPAqXrunidDrHrCqV4wxCDXclJyedtNUiiMOTipUucPnWKXq/HnpkZ9h84sOUH1u31iKTNzsaaQpJGidfb3czJdOT07t07pk21OKbilPkrh/4yn33rN5LHX19+neevv8CjEw9/V6vC7VZ8/enXHVMpcUy9Xufll14CXeeRRx5ZRz5Qzu1btt/0DXiFTCbD4cOH2bN7N1evXuXihQs898wzDA8PMz45SaPZvGGgVDAMg0w2S7NWo16vMzo6+vaJWyk+0FAL7BA5jlRPY9/coW0TXJqtFqdOnmTu8mVyuRz3338/k1NTm+aZOIqETFwcC9H0jVkdNixkNSGWPjs7y769e0VAYfPCdjtsNb+olovvZGeanFv/xkC1wiRP2nr2iCUR6PSZM1y4cIFdu3Zx7733rjtWEAQ4WwUoTXjerhMj0TRGRkcZGRlhaWmJ2dlZTp85g3nxIuMTE4wMD9PpdrckPumaFIPouybHcWh3u9SrVWoDA+/vQNloNNAlBVppJyaDfYcv8PLcHG+dOEG702HP9DSHb7+dQj6f1MD6EUWRULiXu8mN0DcMePX73Nwc07t2JYK9m84D1gXWT+77Ib5w4QvMtxaSO+Ozb36WB8fu/65WhQqbbpQtVoIbg2ocx8zPz/PSSy9RKpW44847N6WxlRbrVvVBTaVLt/kuRkdHmZqaYmlpibfeeou33nyTysAA2uHDjIyMbHlucRwL/zn5mWQch1a7TbvVolarMTo6eoNPIsUHHa7r4nY6aFLwXCnJAGs9kGwOUJ1Oh5MnT3Lp0iUymQxH77mH3TMzCZN8I3q9HmEUiZ3VFgts2HzPXZ+fJwgC9szMrLHX+3Ajq7yNCL/DuWPbBfaGxW+89oJ1/pVhGPLiiy+ysLDA7YcPMzY+jh8E2H3zRyDb6rZ8H3nMjfyJOI6xbJsDt93G7XfcwZlTp7g0N8f169eZnJzkrjvu2HRMxdbtTxvruk5eZqSq1SpjY2PvOMfhPQmU3W4Xv9dLBnuym4SEmKN+V6jX67zy8susVqtMTU3x6KOPJv2B275Pr0cUx0K+bRudR2BdMFhZXaXVanH03nu3PW5yVvJ1junwN2//m/zPL/0riDXQ4HLrCl+69GW+b+Lj4jXfSfpkw/v1/1vRv2PY8kY/d+4cb7zxBrt27eLo0aO0pEN72FeP9T1PWHNtc24bbywFZQSr6TrT09NM7drF6VOnuHDpEs889xwH9u3jjjvuWEub96VOdEicVVQf5fLSEsVSKQ2UKW6IZrOJHkVil6Hra7vJPqgdCIiJ9uyZM5w4eRLdMLj7yBFm9u3DlGN+qwq/EgOP45js/7+9/46zND3rO+HvE05OlXNX5zjdPd2TuifPCLFacBBIvOzasLZxANs4AQa84DVpzbtLeO0PYTEsYLDBLIglSCDJSBrNaEL3TKeZTtM5VIfK8cTnPOn94w71nFOnqrtHmp50fvrUpzWnTq77ua/rvq7f9fu1kEszI22dKG7cuEFHoUBuFRb3ilOpHAnRpdum+0QDw72ggW8Qua1BUIHGkRQFx3F47bXXKBWLPP744xQKBW3MHA2U9Xp99QpQq1Nl5PMg2a/79u9ny9atvPnWW1y9epXxiQkee/hhuru7G56LyMlaPUcikaBYKlFcWmJubu5d3zvek0BZq9WwggBfnjAaTpNyoSgppyAIOH/+POfOnSObzfLcc8+1JI00s0H9IMCRszerzTKpgBH6PshFcHNsjGQqtSaJR79mZFF/bPR5/uTSn3Fh4bxc8yG/e/a/cLD7IDEiDLxQOJgrqKAT7XPo+6k5THm/hst1tb5kGPLWyZNcuXKFbdu28cADDwCivBpIBRNLEh0q1erarLE7LHh1IjcNg23btpHP57kxPs6ly5eZmJzkkUceobOjY4Uwe/RUmU6lmJiaolIuU73T+2njIw3f96nLBNuWghvNm7UKCIZpslQscuzYMebn5tiyZQs7d+xYcfJoVdSsqQTbthuG6BXMSIKtXs9xXcYnJti1c+ddfRbTMPDVqTMyttFQfYkGSnW73Ce1cbP63JG9Q98uH6P2jugJsvkxIJKQ1157jSAIePqZZ+jo6MD3fT3/nJI+kr5MJJJrXKsGK/dkdTKMfufZbJa9e/cyOTXF1atXefGll9i6dSsP7NqFaVkNM+KGaTb0oFOpFIsLC1qS9N3EeyKJ4jgOgWRbNpdOYPm0VK1W+eoLL/D222+zbds2Pvaxj63JrIyiWq0SIGaCVmPOKoKNLxeOH4aM3bjBunXr7v7DqMCOwfft+Yf6JsMwWHKL/MWVv5S3Lc9BqkWkb4+Wm5v/PzTcX6HhApHwfZ9Dhw9z9epV9u/fr4MkCP9OA7SJKnBXganVRtKKfGBZFrl8npHBQfbs3QthyFdffJHTZ8402JVB46IzEULqpXJZUPvbaGMVOI6jE0hDuuC0Ku8BjF2/zle+/GVcx+HZZ59lz+7dd1WeC2RvMgzDVUX7o7Z+Kom8ffMmge/f295B4/ULaDZ+EDlFKSESvXcYy6IkKmjKJ2v40XtM9Pmjrxv57qanp3nxxReJxWI8/9xzeibVsixsuU+qVk1NGjavdgCRb3zlSVi+p+YTujJv2LFzJ1u2buXK5ct8+StfYWZmpjHBbtpz4omE0KytVNZk8H4jcN8Dpeu6BPLHNE0RxJq+ON/zOHnyJKdOncL3fZ577jl27dp114SYMAioS6brWn9MS2Zqyk5manKSuuPc22KPLNK9PXt4YuCJhl9/6fqXmXXmvy6Kd0siUdNttVqNr730EjMzMzzxxBNs2LCh4ffKp1I5DICQ5bqjg4c82UehSQZNF0I2m9UknUcefZTt27bx9rlzfOWFF1hcWlrxvCACfjwWo1ap3JfMsI0PLhzHwZSyaGEoZiWbKysTExMcP36ci5cusWnTJj72Td9E1z3MMzoyCNgR1ZxmGJEgoALa2I0b9Pb1rRAGuBNaBY6mF7un52t86Br7RuR3Y2NjvPrqq3R3d/PMM8+sOCna8TimaepAWZUJ7b26/wSr7BumYZDP5zGB7p4enn32WUzL4sUXX+TM6dMNrbHoY2Oy2lWSZtLvJu57oHQcB0PVxg2jgekKYhM+deqUlncrl8ucOH6c02fOMDM3tyq5JLokHMcRi10Kha8GpXijnvPGjRvkCgU6VhmAbfm6TWWYf7j772OxTAIKwoDPXf5cwx84ylht1SfQ94sukGjvIvLfYRiytLTEiy++SM1xeOaZZ1rW6w1DSGaZpokjdSIrlQqpu1ns0QsuUu5Z0buRC94IQ8rVKps2beL5554jDAJeeuklpqenV3we9b6qUprqvTJmbeP9j3q9jl+vi1OObQsd6MgaXJif57LUWAW4PjbGkSNHuHr1qnbUaYYmnsh/HWlOfCf2tg6UYUilWmVqeprRezxNQmN/MgpN5IkklNF9w5ePi96un7P5lBr5/2qfUq/59ttvc+zYMdavX8/jjz/ecr9U1ShXCoUoEfY7tkmaTpWr7RsAmXRaJCZhiBeGPPvss+zatYtzFy/y+uHDy1WpyEnYlOugch+qUfe9R+l5HoHnYZomlmFgRf4wnudx+PBhJicn2bRxo/BIi8eZnJriyuXLXDh3jng8Tl9/PwMDA/T19S0v6EgJs+Y4hHe72A1D2M94Hrdu3mTHXfYYoKn8KRfeSHaYv7bxW/ns1c+J18DkjakjXFq4xI7u7Y2PjSYILZ4/2hlsqdMITE5M8Prrr5PJZnniiSfWzGjjsZj2iPQ8j5rjrF0+kVClnmbiUKtcN5NOUywWqUpXg0KhwLPPPcfhw4d59dVXeeThhxmR6j7qZBCPxURmKB0P2io9bTQjCAL8ep3A97Hi8cYE2zCYnJzk8OHDpFMptstepFOrMT4+zokTJwChUTwwMCA0Wru6lisl8l9H+s8aUXLhKrBMU1wTvi/UrUyToaGhu/9AioynEuVVrm9Dzi3q2+W/zf2/5l6g+lytAimINs3RY8e4ceMGu3fvZuvWrau+VVPKAQah0KyuViokpPj8nRANikqnerXqWj6fZ3p6mmqlQj6b1byHN954g5e/9jUef+IJIRgT6VXGbZtatfqunyjfkx3Jc11ipokdWew1x+G1V1+lVCrx1FNPaZfv4ZERRtevJ/B95ubnmZicZGpigqNHjwLQ2dlJf38//QMDFPJ56nKxm6a5gtbdDNUkD4Fbt27h+f6qg8IhtBwKVos8evt37/guvnzjBarecpbzm2d/m59/6v+4t5moyIJv9d6vXLnCkWPH6O/r47FHH12eh1R0atXfkAvUlrJevudpU+y7LZ8oK50gCDRZouXsl3xOx3WpVKvkcznisRhPPvEEx44d4/WjR6nWamzZskUnNyrrrEjD1jbaaIVQSiaCSPrUdXH9+nWOHztGf38/23fsYGlpiWQiwcYNG9i+fTv1ep2JiQkmJye5evUq58+fJxaLiX2jv59eOcOryq7aoGANGDJQ+mHI2NgYg0NDqyZ4Qat9QxFqVnn+aI/yXrHm7LfsNb762mvMzs5qlS75QNEHbapeEQqBedfzcKVH7r2Q7hRbVY/KtRi7CxE9R9u2qXse5UqFXDZL/8AATz/9NIcOHeLFl17iqSeeIJPNalKTYVk40qT63cR9D5Sh7wvlHZUVIkglL33tawS+zzPPPktHocDNmzdRHm6maWKYJt3d3XR3dfHAzp3UajUmpqaYnJzk0qVLvH3unLDL6uqi0NHB0ODgHReZel58n5u3b9PZ1UU6nV41KLZceKykmHckCvzP276T3z37X8RnJuTk7EkOT7zO44MH7/67WmXBh2HI22fOcObtt9mwfj37mhWEjGW1kGij3zBN4rGYNlCFuyif6KcUp0pl/dWcTarvTM2sLi4tCaf1Wo10KoVhmjzyyCOk02lOnjpF3XHYtXs3IP8OgFOt4nleW3igjZbwZMvAtm2tqnXp0iXeOnmSTRs38uC+fVSkf6OnmNZykx8dHWV03TrhXLO4yMTEBFMTExy7eZMgCISMYqFAV2cnHXdh32TJalSxWGRhYUFXoloFvpb7hkw89dhGE76u+es12hflUolXXnmFaq3G0089tXIUg6bSrQyesVgMQybZ5btt2UiYkjDpS0eoZrnQaKUqnU7jLi1RlYESoKOzk2effZZXXnmFF196iaefeYZcLqefSxnZv5u474HSdV3NWrNtG891OXToEIQhzz//vN64Vf/BU/M7TWWSZCrFhtFRNoyOEoQhc7OzjN28ye3bt7lx8yZvnz1Ld3c3A7JMm5eCxlGoMkDd85icmGDHjh1r1tFboVk/UeHbN3+SL1z5Im7NRXX1fvPMb/Fo/yPY5t197a2GpwPf59ixY9y4eZMHHniALZs3313D31jWSzQNYVit+wxNDLjVn0KUqQ3DaFjszSVZNR9ZKpXERaXKwYbBrgceIJ5IcPr0abLZLOvWr9ePcer1dz0zbOODCcMw8F0XA3Qva2JigpMnT7JdjkFpxx5DzO0qHkTkSTBNk+7OTro7O3XCPT45ydjYGGNjY1y7epWzZ87Qr9o7/f0rR1Bk0hmEIZOTk2AY9Pb23pXg+IrPtcrt6rnekaKXeu6mx87PzvLaoUPYts2zzz13d8bWES6BbVkEvk9xaYnBwUFR/r2bvUPuPcojU8+hqp/I3pGWrRtPjqAk5N6RzmR47rnnePnllzl06BDPP/sstiQogvC3fTdx/wOljPyxWIwwCDh2/DhLpRLPPftsw+lGDau7EfPPljAMTIRRcTyZZGh4mDAIKBaLTE5McP7CBc6cPUsymRSLv7+f3v5+rbpjmiaLS0t4nsdAf/837HMmrAT/y/bv4rff+h3tLiJECL7I39z01+/uSZpOlHXH4fDhw8zPz3PgsccYHBwUTun3ANu2RSZcLpPNZJZntIyIK8IqjzUMIdMVgJboCqOn1ggy6TTlchlHCitHT6BbNm+mWCxy4s03yWSzdHZ1gWHgvMt9hjY+uAiCgNDzxIZt2ywVi7zxxhsMDQ3pIAnLguWrXhdqL5FrNplMMrpuHZl0mq3bthH4PjPT00xMTDB24waGYdAlfRb7pZg3LM9gz8zM0LOGc85aWCu8fD2lV1ok2Ldu3uTY0aN0dHRw4PHHsVrMR98JMdumVqtRrlbJ5fMrEvm1gqay+FI/zcm1gmLNV6pVytWqDpQgSrOPP/44X/3qV3n9jTd44vHH9etVq9V7+iz3ivseKE355SohgZs3bvDYgQMrmKbRzHBVRE6ZQRDoOatCoUBPTw8bN24UC392lvHxcSYmJrh29aou4w4MDNDR0cHs7CyJRIL8PbBd9VugdZkW4MnBJ/jy5a9yqXRR3/Zfzv0e37TueTKxO+sTRjPDcqnEa6+9Rr1e5+mnn6aru1s07e8xUCI3mkqptOwDKev9YeQ+zWQBdbvKDLUbyCqIxWLEYzEc16VUqVCIlrMMg30PPkhxaYnDhw/z9DPPADSMrrTRRhSuFBkIw5BarcZrhw5prdbotacCli9dRFZVxFLkP6TAAKLvWejpob+/nwd276ZSrTIxMcHExATnz53jzOnTIuGWhCDLspibm2PXrl3v6DOtdQINv47SaxBJsENZnlYqXY88/DCmZb2jyo1t21QqFW2Vpd9rlJ2vbmt+T6plY1libn2N8nA2k6EqCTrNFnzpTIbHDhzg1Vde4dTZs2zauBGQutWr7MPfCNzXQBmGIRbiy5yfneXU6dPs2rmTkeHhFfdVrDI/4iSyFur1urDLsm1xWhUvCIZBT08PPT097Nmzh3K5zOTkJJMTE5w9exbf8wgQkkgT4+P09vXdU3YYsDLrU3081/X45Ia/zi+d/hVSpDAw8Ooef3Tmj/nObf8fTVmv1WpiNskwGk52br0OhsH09DRvvPEG8Xic5557TriHA8Y7HKWwLYtyqcTwag4HinYuyyTqVXxpfRZVJFkLmUwGZ36earVKrsmN3DBNDhw4wFdffJE3jhxhz+7dWKZJsVi8p7m3Nj4a8KW2qO95HD16FK9e56nnn19xrVqmqX0X3Tv1u1Wlpl7XJB5YJrAkEwk2rF/PhvXrCYKA2dlZTQq6fu2aPhVVKxUWFxfFaNS9bNQtuAcqoNRdVzj81OvavECx60OWT1C1Wk38/8i+UXccsXcA506c4Nq1a2zbupUHdu9uGMu611Esy7Ioy0C5Ggmw1UhbiCA9aQbuHV43Ho8Ts20Cz9OEwCh6e3vZs2cPJ0+dIpFIkMlm8V33wxMofd/HNAwMy+LipUv0dHezc5VxjJic3VEzf3dCvV7HNE3tZ7naIshkMmzatIlNmzbh+z5jY2McOXoU13V57dAhLNOkp7dX9zazLfRkgyDADwICz8P1PB2klYCvQq1WYygxzMMdD3F84YS+/cXrL/H0wNPEXcFSdV13xecM5ZjL3Pw8V69cIZ/Ps2fPHlzPY2lpCUO6oPvS1NQ0TU0wuBN838f3fUFcWiPr1heT/EzRZvzdLMhkMollmkIGq1ZbcXElkkkOHDjASy++yOTUFAMDA1QkyaiNNqJw5fzk3MwM09PTPPnkk2RXcY0wbRuzXl9bj1TC8zyRYBsGsXhcq4KteE7TpLe3V2/SlUqF1w8fZmZujmvXrnHl6lXSqRT9AwOivdMi4VY+u76snDiOI/YRJVWpmLByNhOWmeorvg95gHBddwWRxanVqNZqXD1zRhCNtm9naHhYGFGo2XFZCrUsC0uWq+8GtUqFZDp9V0E2jCTUbr0ujJjXsE2MIpvN4s7PU6lWl1tEEWzevJnp6WkuXbzIg/v2UXccPe3wbuC+BkpXlkYX5ucplUrs2bNn1T9QPKIGsWYJBVGmcF1XC6ArqST9p1yldq7r9IYhDEljMaanp5mYnOT06dOcPHWKTDpNT28v3T09ujwcDYaBpKy3YsiqhfitW76V14++gY9PSEg1rPJn1/+M/2XDdwHCY01bgMkLxvd9pqamuH79OgP9/ezcuVN/B0EQgHRecZtO3JZpLgdOOZDb/N5KpRIGYjH6vq8Fold+sY16kp7rEiL7y3eRvZmmSTqTYalYFDY6LbLQfD5PX38/169fZ3BwsE3maaMlfNfFMk2u37hBR2dnI1uzCfFYjKphUKvXaS1Pvox6va51XZX4wN0QVNKpFNVqlaHhYbZv3Uq1VmMyMoJiGgbdPT3ip6uLZDLZoFsKy+XCKAzQZDnDMBrmxNXssWEYWpAlrvaOcFlIoFqpcP78eWqOw4MPPqgrNGpfARFoo69tSqKT2juUlm7z91AsFsllMniuC2sx5iOHhiBcVj9raenXAklpbebLU/WK+XDDYNv27bz0ta8xNTVFZuNG6tJk493A/Q2UspwwNjZGX38/yVQK13VbfriYDJRKLWO1QfoQqNXr+EGALQNDczNbi5C3uAAmJibo6uzEjsUEk3bjRkbWraNWqzE9Pc3MzAzjExNcvXYNyzTplBdpb28vmWxWBOR4XJzw5OI25WIuWRau59Gb6ubZjU/z2at/oV/3r8a/xPNDzwGiSR0lMoVBwIkTJ7h+/TobNmxg//794nQns89A3icIAgzpt6nKvb78/1HYpoklVYps29Yn0nQ6jeu6jYs3EhhV1qngeZ5gHcrgqyTx1tpUFItN/e2bMz7Hcdi0aRMTr73G7Vu37lkrs40PP3TiODlJuVzmkYcfplarrbopxuNxLMMQMpZ3eN6aDJSpyMmz1Rxh8xpXyd+m7m5ChO1cZ1cXW7Zto7i4yNTMDLMzM5w/dw4/CEinUmK8Tf7Ytq0N083o3iErMKF8H6t5LarSa6Jp71haWODEm29CGPLEwYP09vXpqlAQBKJt4vvUZTVMnXBVMIuSoFSib9u22Fsti2KxyMDgoHguaWod+UKXS8QRqOCsWcmREvJqMKUzTKVaxXGcFfu/EiYZHhrixs2brBsZWeHm8o3EfQ2UnlS/qdZqPPLoo4Cwwmq54OX8kyNLC81fVLRM4cheXiweb1l710vcMBpOmX4QMDk5yYaNG6mUy4KOHBEp6O7poae3F8uyqFYqzM7MMD0zw6WLF7l48SK5XE6XY7q6u1fMB0Wb6t+947v58o2vUvGW9Uz/6+Xf5wCPNjzGdV2OHDnC5OQkO3bsYN3IyHJfQZZX1dJUzXH1edXiVcHS9zz8IMALArx6XZd3Z2dnyWQyBPIknlLfZ1M23bBhBAGeKr3KZCRQbNk1+h0xyxIOJJ6HU68vj4og1oPneSSTSYaHh7l67Rp79+1r+TxtfHTh+z6+53HlyhWGhoYo5POi5dFk/aSg1Fucer1lNUqtVc/z8GXyl1C8hiZEFaSiBKCJ8XEMwyCVTLJYLOJFyn7xZJKRkRFGR0cxgIWFBWZmZpiamuLWrVsNZdze3t4VwXA1T807YWpyksOvv046lWLPnj0UZAVMiarrvcO2sWIx4hFZOFUCVm0Zda2raxRERcmRal4B4lSakPvPWqVY1WONyVN7IO9vNqkONSMRCZTNUCfqLVu3cvv2ba6Pjen3+W7gvp8ob92+zejICL09PSwuLuLJDbTBzkZ+eYl4nEqlIsYGIozU6B8mCEPcep0wDEnEYpp6vBrU0Hy9Xuf2+Dh1zyOby+H5PhaiBGFHTl+qfp/P5eiX4yOu6zI1NcXkxAQ3btzg/PnzWJZFX1+flshKpVINzLUOW4gQ/PbZ/6zfy9mFswwYyyMp1WqVQ6+9Rqlc5sBjj5HOZNYuAUmVHD1zJTPT6B81uth9z8MLApaWlkhns9SqVeryYkkkky3LtAqe72PI17DkDJn6fKoM22rRh2FIMh6nIu16VKBUPVgQm9S27du5JWdgH1/9E7fxEYTrukxOTlKr1di1c6cw/K5UqFQqxJoINKo1YMr1WPc8vbdEyTAgJOtCRDnQsCyhYLXKxq3Wt+Ik3Lx1i47OTlHJkUEmpvYN6bGr+nGFQoH169cThqEeW7s9Ps7Jt97C831ycm8ZGBigu6dnVfHwtXDt2jXePHGCvr4+dj7wwJpi62Hz7ZFepT60yODpeZ4InJ5HsVhECYpUy2WcWo1CoUBM6e6uAnVKtVR5O/J9hmGIaVktT4Pq7+bK11c9X1fuZSGQz2YZHh4WymofhkAZhiGLUnFhULKvkskkZSmGrWviLG/8cSkl5ci+VfNCBylggOzNyS+yFSMzCEMc6aum/nDz8/PEYzE6OzpwajXMWIyOjo6WsnRRxGIxhoeHGRoaYs/evSwuLnL79m0mJic5ceIEYShGVAodHXR3d2vSwbdv/iR/cfUvmapO6ed6yzgJiJLJa4cOAfCcVPCvVKtr9gH1QPUaWZkSHY/J+clarcbC0hLr1q3DtCxMGcB8GXSVyXUzEcGT5SBVLmp+VzoLloojkTegSyj1SGZYd10CmbXGpR9pLptlamJi1c/SxkcTnucxMzNDKpWiUCiI671W076IDepSYYgpq0uO64oqUTzesiToSk3ohAoOq1xLShdZ8SDUXjY6OioSYkmMy2Qya/buDUOYBuTzebZs3YrjONweH2dycpJbt25x6dIlbNumu7ubQkcHAwMDd/xuwjDk7JkznDt/no0bN7LvwQcplcui3Lna3hGGdz6tRoKnwvXr17FjMXL5PKWlJVz5/dYQ86uxWEwcVqJiJDJRV2Ineo4yUm1TM5bNfx/LsvSIWc1xyEbGg0KEzqtpGPT09nLjxg2mp6fp6e2943f2TnBfA+XE7dsEQK90t0gkk9Tkgi+Xy+Sy2YZFlpCBUgW3VioVdVlOjLLbzMiX7knGpaKAK8Rsm1KpJMqmnZ3MLyzocqVl2w0Xlj6lNl8EsnzQ0dFBPp9nx44d1Ot1pqammJiYYPz2ba5fv86pU6cY6O+nr7+f797yt/n/nfqP+ikWjUXmZmc5feYM2UxGCJunUnr4ftWs8C5ZZxiGMEmWm8D8/DxmGDI4OKjp3mEQiH5jKESPXWmBlojHdTlbZWsqGVn1fUUWvfpXN+Z9n7pUV3GkOW4qkdASV51dXUxNTb2rNO82PngIw5DZ6WlGpei4gVCUKpXLVGs1TMsSp4/INZFIJKhUq9QchzysOLGo8qLB8t4RrUaFYSjaPrVaQ9/OlCQh3/MYGR4ml89TLpcbBALUdWc0JfUNJ98wJBaLMTIywsjwMGEoXIDGx8cZHx/nwoULnD9/no5CQZ82u7q6VvT4z545w+TUlBY2V4Gn+fVaYdWWSeR9R6/F+fl5ujo7yedyhEFA1XH0vhH4Po7v48hWWjyRwLYs/R2rthGg+7CNL9l4ulTvK5lMUpcl30w6LZxLpMJPPB4Xh5J8HsuyuDE2xs53ONN6J9zXQDk5OUk+m9VHagPIZLOUSiU8z6NcLjfU6y3TxLYs6gjB7GY6eIg4mYTyS4vCqdepSVUY/XyWRTKR0PddmJ9n27ZtKLWPwHW1iswKFiss9yoi/18vKHmfeDzOyMgIQ0NDLCwusrS0RKVcZmpqiuPHjhEQsj2+nfPeeQAeCHfy5ltvMTAwwGOPPaZPcup5Wy521Z+NfLf6v1sE82hmOTs7S0zOHnmui21ZhJZFTpafXUmrD6ROa61WE0LFcvzGjmSYq4kO6PcTuWBjto0vhdJVIhO3be0CEfo+XZ2djI2NMTU1pcvcbbRRKpUolUp09/To2+LxOEmZBFfKZb3Gor83Q2H+3qqsV4+WXSPBx5fCJY7jLHMM5PMlZKVFsVq7uroaEnIVVPT1Z0TUriL9f0MSa9TvlWh6oVCgUCgwun49pVKJ4tIS8/PzXL9+nQsXLhCLxejr66N/YECf9Kanpznw2GMNM9F37HFGvg+9nzXtEwrqs6g50h07dugqVRCGJBIJYrGYLkn7vr+cbKtyNoKrcCdEg7xCIpGApSXqUozd932CMCSTSunk2zRN8oUC169fv+NrvFPc10A5NTnJugceaLjdsiwymQylYpG662JWq7qUEiJOndV6nXKLQOnKIGlJOnMYhtQdh3K1usy0QtDF1R9UYUGWDhR12rZt8Qf2PNbyHGnICqOlGkluiS4sEP2J0dFRdu7ciSNdDEYmhjk+cYLQg063QDKdYHh4WJ9mkRmaKpFEsz6d4YUr571UMF8Ls7OzdHV1iTJrk4qJbVnYqRTJRIK66+qAWanVcGo1bFnCavVdNENtDKqfmUwmcep1iktL5GUGGCVOhWFIoaMDwzC4fv16O1C2oXHr1i0Mw6A7KkRhGJoH4NTrVEolMrmcTuQSspzvyRnlRFMirRNsuScEvi9OoLKsByJRT8TjJJLJhmrW3Pw8hUJBE+nUXOJaFnHNpgXN12mgyqHyuexYjIHhYTZt2iQqQQsLQiVocpJjR4+Kvl3oEu9O4Nv+8uOjz6XaIMay8pZhGMLEofkkeYd9Y3FxEc/39ViOZVmC7+H7xOXhIx6Pi6qR4+jWinIEyhcKy4kEdxY8UL+Px+OYlkVVBspYLEY6ldKvrz5rV1cXN6TA/bsxS3nfyTzNJz+1YWcyGV1KCYFUMqktm0rFItVqlUD2H/TzydNiTJ54qpWKGI2Q90skEiQSiRVsVIC5mRkMw6CzsxNYDhrvtCGsFqH6/0EkgKrblIvByPAwHBUbgGOKzOvo0aMYCNuwgcFBCoUCSfkd6OeXr2HQ6Fhyt6VK3/eZnZ3VIg+Kru2HIZ7vE5Pfk2Ga+rtzPY/FxUX9OsVSiYRMPJRXXqvXVrf5QSASmVgMp1bT8lUpWY4NwlCUqGQZO27b77oTQBsfLDiOg2EYDbqfINZjKp3WLYNSqUQ2kxHJpmGQTKXwgoBSudwQKEOWr3PLsqhUKtrPUIl/J5JJ4quQ22ZmZ+mTvbBoNcpvkltbC4qNGz1lqs+ky5CqYmUYdHR20tHZSV9fH68dOoTv1fgL9wtMLUyRPJzkm82P8+jAI/T39ZFMpbRwfDODXSXe99rYmJ2dxTQMOjo69PfWSlPXsixS6TRJ2T8uhSEBgjFbKpXE96pIl2sEyujvDPl4xzDI5XLL7jGSSBVKHoQSRHk3cF9PlC0/gsx2YvE46TCkXCpRrVZxPY9MOk0imcSyLFzfp1qpNJRmFZOz4vtYStnGMEil08sN+lUwNz9PPp/XC1tloiozXE1BItp7C4JGllzYeEdgpVZj3XE4dPgwCwsL7N69m2MnTvDYY4+RTCaFtN74OBfOn8fzfWFS3dfH0NAQfX19+kQcRn6aS61rEZEWFxfxg6ChhGXbtma2tRrTsS1L0LolKzZAsAXrrktC+setBcMwtCuI2hTUHKYhNwg/Wipq9ybbaAFNXJOIsjqVWbjn+ywVi6RSKeKJBOl0mmqlQrlcplsmxCBkMcMgwK3Xhd2cXH+2bQtLOMNYNfGsOQ7FYpEd25dN2GN3qkZFAlYI2nRY9fOb2xcqkDW/h5s3b3L06FG6Ojsxe02m3hakwJpR46/4KzoWCty4cQOAQj7P0PAwA/39gqAYeX3CUPz3PcwdzszM0NnZqfezO2nqGqaJKauFgSyP+mGoSX0JmSi3/rqWk4ZqraZ5FoZhLI8DhctTD5qc9C4FSbjPgXK1LVAFH1WKKxWLuPU6Jd8nk82SSqVwPI9SJFAGYUhJBtWclJlLyuFblamtNYA6OztLb4QhpdQoXNfVM1G6Lynr7NH3C42B0Wj67ygRSKFUKnEoImweDaLJZJL169cLGnkQcPPWLaYmJ5mfnxfenEB3d7du7KvPrMo4DZmUJCU0f9+zs7NYknykoDLD1cTIPck4jsVioo/peUKsOAjEeIfjkGwKmNH34jiO1rSNxeO6tKTfe+TvFNWVbaMNhdUChyaNmSbZXI5SqSR6WeUyfhCQlHuBmiFWp8parUaxVMI0DK0Alk6ndbUrDFYfE5mfm4MwbFAGWq0aFRIhEa2SUK82UqU+n3rsxYsXOX36NCPr1vHwQw9x7Obxhsc4YZ2/8P+Sn3nqZ3BmaszNzXHx4kXefvttEvG4GFsbGKCvt3fZyceydNCOvna0aqfey+zsLCMRMZDVqlFR1OXekc5kdNXPqdfFXHe5rEUFWpVKgyAQPUkZhOMRS63m+90P3NdACS0We+Q2RSHO5fOC4OP7FItFYokEtgyKimG1sLRETbKuUskk6VSqYZZnrXlK1Svbtm1bw+0x26buusKpQOkfrpWlRMsDTcEqSvoBmJ2Z4dDhwyQSCZ57TgibLywstHxaQwazXC5HJpPBq9eZkEzac+fPc+bsWRLxuHBoHxykp7t7Vddw/ZxhyPT0NB0dHcvWWixrL66mvu9GAiWITSGbzVKXZCk/CChXKoJcIVnKKkvWbGPZC8pkMlSjLEL5HlSQ1slJG21EcDflNMMwSGcyQhykWqVWrRL4Pol4HM/3KZXLxONxqrUa84uLBEFAIpkknU5rdr1+LtNcEUAUZufmSCaTDSMpqhql5g7vpUfWao9pHp148623uHb1Ktu3bxdOJYbBltxmtgZbuGhe0o+bry/wCyd/kR9/8McYGRkhm8kwOzcnhNwnJrg+NkYYhnR3ddEnNWkzTbPaK/ZNw6AsVYh6enoaEnDbtnGlQEFzNSrwfTH+hdhXVVCMx+OCLCWJk6VymXQqtUxiDMU4SbVa1Qpj+VxOaLnKeVWl7qOqegaycvcuVqPua4/SisVa9p90kIls3vl8XswDuS6uZK/6oRhvwDCEyK4hhAC0XVTz8zbP9EnMzc0RIk5oqskdhqE+XbmeR/ouvvS1eoPRxa5KJt1dXRw8eFCcrO703JFTViqTYePGjdo2bHpmhtu3bzM1Ocm1a9cIgO6uLp015rLZFYvGk9qx23fsaGDnmbI32LAII++hrmagmi6EeDxOLBajIpmxyuUgnUoJxqxKaoJAlMLica0vqQJjEIaYLA8kq+8+SvJpo41EIoEfhtSq1RWkHC08IjfMZDKJaVlU5OnSl4l1qVRqaDPYtk1XZ6eY4W2BVhUZEHtHlzxNRttJtm0T1OvUXXdZn/UdIsqkfeONN5icmmL/Qw+xYcOGhvs9EzxFojPB6cUz+raJygT/9+nf5F/u/2cYpqmdk3bv3k21UmF8YoKJ8XHOnzvH2dOnsWIxBiOnzVZarBOTk1iWRU9Pjx71CBGzkya0rEbV5enaltqxCqZpkpI91HKlguf7lCsVMYom44Ma5TMNg3Q6rYVUQpmIWJE2mdrLHMcRp84Puii6ZVl09/YyMzPT8veaPi1hGGIAvVKtCs1Gw6C0uIjjOPT392MYBtlMpnHYuAmrnSoXFxdFhpNKNQicK8cST2ZJayndR8k76rWayythGHL16lUuXrigSyZrKVhEocJ788VqWhb9/f26bFwulbgtZ69Onz7NqVOnSKfT9A8MMDgwQE9PD5ZtMzs7i+f7DMjvDvn+MAyx4Fv0Zl0p79U8FhL9zJlUCtM0qVYqeJ7H9PQ0pmnqZCCTyehsUUlYeXIY2gzDhsC5MD+PZVlslB5zbbQBsG7dOg6//DLTMzNalg2Wq1HNyXA8FsOS843xeJy52VnKUtQkIcc8YrHYmgmr2SLJDsOQhYUFNmzcuOKUq/qUnuvCHQLlnc7Haqj+2LFjVMplnnziCfpasMBNLP7Vrn/J/376Z7lWvAaAgcGV4hV+6+3/zA8d+AEMYzlwpNJpNm7cyIYNG/ClT+/t27eZGB/n2rVrGIawJGxOuMcnJrQ+rXp/sNy2aVX+VEIwrSQGYbkyVS6XcT1PBE2p+x3KXmQq0se0LYvA93F9X/eBteKPZTEzM8OmLVvuitT4TnBfA+Xw8DAXT52iVq2SbApwWly7aQGqY/ni0hJBEFAsleju7Fwm4dyjs3gQChmpXC7XMmO0bVuz6Na0hLlDOcj3fc6dO8f4+Dg7IiWTu0H0dH0nGatMNsuWrVvZuGkTvgxUE9Jv8+qVK1pX0g8CEvE4uaiBMrLXYJq4LIugqwtBl13vcAKO2TZePE5FUsh9KbSey+Ua+grRXo4iMkQFk2dmZyl0dtITIRu10UY+nyeWSjE9NcWWzZsbfrcaSVBVpZaWlsT9goD5+XmGBgexY7F7spZSCaXjONRqtWV+QASxWAwkCfFOLPTmINvQtpHM8pNvvYVpmjzz7LMNyUEz0naanz7wk/zgK/+amdoMwnwP3pg+wv999rf53gf+YcvHWZZFf1/fsk9vqaS9Ns+cOaMT7r6+Pmamp1vaIVryZKkMGUw5ChbIg4Zqpa0GU7JV68WiFp7x5Dx183SEbds4UshdnfZ1T9gwWFhY4Nlv+qZVX+vrxX0LlIZhsG7dOk4cOcLk1BTr16/Xv1MN5FZtWT8Qxqj5fJ5atUrVdSmVyyBHCfJNG/+K1zVNXStXWJSzfK2g+5Suu6pjSStEF7/nuhw7epTZuTn27N3L1i1b7vp5IEIAWIN91/TigFDNGRgcZGBwUF9wk9KhfXp6mjAI+PKXviQ88wYGdG/TtCxNstHjKLJXEIThqi4NYSi0L2u1Gq5kwUaTi3qTmL0SclAC6/FYTGeFtm0zPT3N7n373rWssI0PJizLon9ggPGpqdYlUZVkN8GRzjqdUhjADQJKpRK+75PL59cMaNF5QzWrVywWhb5oi0Cp7KkCqUu6pt3TGkn2xOQkx48dI51O89RTT61ZMVPoSfXwUwd+kh959UcxPMVuDfmzK39GX7KHb9v8bct3XuW7ymSzbN6yhc1btuBLycDxiQlu37qF7/ucPXuW6ZkZQSbs7xfOSUr3WZowGNIBRY/trVEKDeT8a7lSAYSuaxAEWLZNzXFWyOfZsRhGtUogq1zRStTS0hKYppg5fZdwX3uU+XweOx5nYnJyRaBUFOAofNlbUP3DwaEh5ubmKJZKxBMJ6sDS4iKxRIKUHF9oQBhCEDQIAYRhSHFpiYFVBtpj8ThGrSYylxa059WgSq+1apXXXnuNcrnMgw8+yLCU3boXqMtotVdeQW5odbHLmaNcLsfg4CD//b//d7Zt20a9XufWzZtcvnRJC7n39PaSyeUavO8cx9Ezrs1zqGEoHNh1g12WUJNyRspxHGqOg6MsjGQJxTTEjJobhvieB7GYzgrrrkuxVGqXXdtYAcuyGBkZ4fjhwywtLuoTlr6uW4hqV6VIBojZZAMolkqUKxVxOnEcFhYXSSaTJKVNnoIaoVD/X+0dS8WiVhNrhXgshh8Eq1oHRp8/esWqE+XVq1d588036erqYvcDD9xVkFTYmN/Ajz/yY/zc6z8PIQTy2PF/n/0telO9PDn05PJna/HaUVi2Tb8sv4KY996yeTNTU1OcOnWKk2+9RTabpX9ggI6ODtLptC6/hmGoZUUTLXxr/SDAqdU0IzZE2ABmpca2YiyXK5UGko9SXVInVUX0MQyDqakpcoUCfVIa9d3A/SXzWBbbduzg+vXr7Ny5U2gGRr7I6IiFL7M/FSQzmQyGYQgWrMxUEokEIWIEoe44xOJxUsmkqHMrUWC5QavnVeLGq50orUiW5HneqmXHVky8xcVFXnvtNQzgkccea6ix3wvu1T1ADxGv8loTExMYhsH27dux5eItLi0xMTnJxPg4p06dAiCZSjEgx09U6SOpBpdltqwCpPLENAyDRDwuMkBZelFiBNVqVZdv0/KityyLuueJEq0MsgAXLlwgk8m0LPG08dGGatucisU4c/YsTzwu/GUaVKoiqEWCZCqZJJFM4udyejxBzf/6kkhSrVbFaFkyqcfBouxtdV0Vi0XBrF3luozFYtTq9RVm6iugDgaR/z59+jQXL1xgw4YNrN+wYdXXWAv7eh/ke3b8Pf7r27+HKkiHhPz88V+gM9HJru67b/+o9zUxPs7w0BBbt21j67ZteK4r2jvytHn58mUMw6Crs5PBoSG6ursxZIXQlsIPGEIr2nEc8d3IkTDLtskmElrf1ZTM5aok+VTkOGD0dKkqUOpf1/e5fOUKn/jWb31XK1H3PVDu3LmTwxMTnD19moOPP95w2ov2KCvlsgiStk1WBklAN4Br1Sp9vb3EEwlhFyU1SuuOg2XbQllGBtRo1lQsFiEMybYonyjEYjGhWbhGoGzGxOQkhw8fJpvJ8PgTT+DJecx38scL7xQoWwTptV5lQjXjZZZrGAb5QoF8ocC2bdtw63WuXb/O5NQUYzduaBeDzq4uhoeG6OntxTZNYUskmaymZWm6t4FYsH5kU1FNfBUs67YtFDkkjVuVdgEq1SpjY2N88yc+0Wa8trECpmliWRa79u5l7Px5ZmZmxIYc2TeUALlytABBXklESGWLCwuEkrTW1dlJXd7Xl/J11UqFeCKhyT4GNCTZituwGpQajr+GaEmrE9bRI0e4ceMGu/fsYeOGDaK19A43/YP9B5ivLvDfrv03fVs9dPmpIz/DLz718wylGytca+1PxWKRSqWiT5YgSqCDQ0MMDg0RhiGzMzPcvH2bmZkZ3nzrLQyEmlpvXx/DQ0Pk8vkGT8sgDInZNol0WhB0wmXdW1hmulaqVTzPE8Eym9WjY+pvoRLwy5cuEbNtnn766Xf0fd0t7nugtCyL7du3c/b0ab3gFdQXocRvDcMgk043/DGzuRxTU1O4vi9MRNNpspkMfipFpVIRYwpSTqqC2LDjiYT2QisVi2CaqzqHg8wMpV5hapWTWjRUqZJJX38/jzzyCLZtU5R/yHey4Ncsva5CXliN4asywF1rqOrH4nEGBgfp6u4mnUoxPT3N5OQks3Nzwi0dyGYydHV10dvbS09v7woKvCEzxyjisRihFCaoVatYMmkxJFlJ+YheuniRdDrNI488sup7bOOjC8MwME2T9evXsyjZ3U8//XRDIqnk1Cqy56UCXvT3mWyW+cVFypWKYL0nEiSlHVe1WsWTdk41x8EyTaFfGotppvrS0hKDd2ilxGIxAslxaEkGjFwjTr3O4UOHWFhY4LEDBxgeHtYCH+/0dBQGAd+87uNM+RN8/sYX9e1Ft8i/O/wT/NyTP0dXonONZ1jG7fFxTDli0gqGIaT1bNtm/fr12LbNTWl3dfvmTa5eu4ZlmnR1dtLZ1cXgwAD5QqFROKBF6dcwhI5vqVQiUGNBsnoILGtQV6vcuHGDRx555F1PsN+doZNVoOr2/YODdBQKvHXy5ApFGXUyBJEFNjeDLTm4apmmyLxk4DBNk2w2K2rmmYw4zofCKqdYKrG4sECpVGJ+YYFMOt1S5UG/z4gT91rar6EsmZw4cYKNmzbx+OOPr6BQv5PlvmbpdbX3vcrt4+Pj+EHA8PDwmq9pSRGCknRi6Onr46H9+3nqySfZuWMHmWyWW7dvc+TIEb785S/zxpEjjN24Qc1xVp05AzEDF5O2ZZVKRbAUJdvVDwIWFhaETdADD5DOZhkZGcEwDD72sY+t+X4BTp8+rT3ufvEXf/GO92/jg4uY1AfdsXMnM3KOOIowFPKXqgqVbtHfS6VSWIZB4PtUq1VN1InHYhSkT2RC2sr5vk+1VmOpWGRxcVE7mKx1ogSRHJos2/+tgNwXSqUSL734IsVSiaeffpoR6f6hdsN3GigV8ej79nwfj/U92vC7ieokP33kZ6h61bt6rptjYwxIO77VYMkKUd1xKJfLpNNpNm7ezBNPPsnDDz3E6Pr1OPU6595+m69+9au8+OKLnDlzhpnZ2RXa3VGY6pCEGFNTJ0hYHj25dOkSyWSSXQ888K7vG/f1RKl6iyHwwO7dvPzyy5w5c4bdu3cDLC9gaE3OkUinUhSXlnBqNaq1WgOz0jRNUskkqWQS3/NwZOD1pA3MwsICqVSKYqm07Eje4nUS8Tih1Cht1Zj3PI9jR49y69Yt9u7dy2ZJW4+yRoF3dqK8Sz+5u8HY2BjdXV2k0umWr+PJfqEqPdVdV/dpY7EY6UxGy3WFCE+6yYiLQQh0dHTQ19dHb18fndIBJIpkKoUns0NX+lHWXRfD9zlz5gydnZ2MjIyQTCY5cOAAf/Inf8Lx48fvSLP/wR/8QXzfZ/Pmzfzzf/7Pv+7vqo33LxKJBLVajY6ODgYGBzl2/Dj5QkEHrppkuKoq1GpIptMElQrzCwskBwYa1lcsFhP8BkVWk9e/7/vMLyyIIGSalCsVvXc0J/LxeJxytbrqLHaIkIM7dPgwiXic559/nkw6vTzmohLsr2PfALBNm3/z8I/yo6/9r1xcvKhvv7R4if/z+M/zvz3641iGtSoDt7i0xOLSEjtW4Qz4kt2rTvG1el33dpPSPm9wYEAYQECDT+/Va9c4f+ECtm3T199Pb08P/f39K06FlmWRTKWoVqvCjUSy8l3P4+atW0xOTHDgwAHS6fS7vm/c10BpGEJbsV6vUygU2LtnDydPnSKXzbJ+wwat2mPZ9gqnAAVF7oknkwRhyJycjWoFy7ZJ2zbpdFprlFZrNTo7OvQIiHpftm0Ts21icsYqHo9Tk0E2JYWSFRzH4ZVXXmFxcZEDBw82MFuN5gX/Dr4nXXq9Q8k3CqPF7xzHYWp6mj0yEVFjGapnEFXUUEwyz/NIZrN0FAorEggD6OrspKuzk507d1JzHCYnJxkfH+fSpUtaWm9gYIB+aVStNBoz6bQYKvY8giDADUMunj9PGIYcPHCAmNTcPHjwIH/yJ3/C4uIiFy5cYHtEfDqKz33uc3zpS18C4Od+7udWzF218eGC2kQ93+ehhx7ipZde4rXXXuP5557Dsm2cel0bOq86khCGpDMZnWCXyuUV1n2AJqipkYV6vc7c/DzI06dTq+EYwsXHtCwRYGXgNAwh+q/Yn83M1Zs3b3LkyBG6Ojs5ePBgg2m0kmV7pwgiQVYErCQ/eeDf8UMv/zAT1Ql9v6PTR/m10/+J79/9T1dN5G/cuCHGcuR0gCI3qh+lfx2yXHmLx2Jk0umWREnl0zsyMqITbjW3efTYMUDsLf39/fQPDOiEOx6L4UnBedfzMAyD6dlZLl24wLZt2xgZHiaRTL7r+8Z9DZQgM8NKBdd12bxlC0vFIseOHxeyRvJNp1OpVct5gWRK5vN5SsUijuMIe51VKNsKysrLc10K+TyZVAo38kfXgbNaFYHTsjRzrlqtCgaraVIqlXjt1VepOQ7PPPOMtulSUMShr6eEsmbp9S4vJN/3uTE2RijnyIrFou77aisfhOKFLRMEddpLrnGajyKZSAiW3ugoXhAwPTUlHFAmJ7k+NrZCyF1tJNVajdu3b1MqFnn6mWdISok7gIMHD+rnP3r0aMsF77ou//pf/2sAnnnmGT71qU/d1XfSxgcXqvITuC6mafLE44/z1Rdf5PXXX2f//v1aZjGRSKwabALPw0QQAmuOw/z8vNCIXoNhakZaPYZh0NnRoRNKXyabvu9TA61iFQQBdSm7qUTXAS5euMDJU6dYt24d+x96qCWz9etq2cjHRhPszkQnP33wJ/mhV36YolvUt39x7L/Tm+zlf9r6nSte3/c8xsbG6B8YoCrJTkoERSmOIQ8XtmxxuXJ2NL3GaV4hmnDv2rmTSrXK+Pg4E5OTXLp0ibfPndNa1gMDA/T29AhBFFkOv3zpEr29vezauRMMYabxbu8b70mgBPGhMQz27dtHuVTitUOHePTRR8nlcrr80WrBqxOJEk9fXFxkbn5eawKuhUDOOKXTaTE/xfLgqut5OnMJg4B6KOyfHMeh7nmkk0mKxSInT54kFo/zxJNPChKRDD7Nr60C/R1HPMJl3dWohZdSzAEag5tkiIWyvxLKxMGXGZcfBASeRwCM3bhBR2enoGfLxW6ZZkPJWb0/T4oU+2F4T1qVSmPTMk16e3ro6e3lgQceoFqt6ozx3LlznD17lmQySaFQoFStUi6VeHDfPvL5vMh+ZQVBkaE8z+PIkSN813d914rX/JVf+RUuXLiAYRj8h//wH+76vbbxwUYikaAqxS0y2SwHDx7k5Zdf5tSpU2zfvl2I8iPkH1sFGjVS0NHRwczsLE69ztLSUoObzmqoy7GSaJtHnbKUxZZWpEGMoan5Yss0uXjxophH3LKFbdu3C/YtIqhFta7VKe1OCbYKWGrvEDfK/25SHRrJjvATj/07fuzQj1MP6hgYWFj84YU/ojvWw8HeAzrg+0FAaXGRcrnMlm3blu3xkDPVau+QIiUgDhKmfO27VkqLTDgkEwnWr1/PunXrCIG52VmdcI/duKF9ei3bZmFpiVQqxSOPPqrL2ilJBHw39437Hiht28aOx7XRacy2eezAAV74ylc4fuwYBx9/XMvLNS94dcwHkbnlslkq5TI112VxcXHF6a4ZjuMIc+BIIFB/XNu2IZnUgdP3fWK2zaIMohOTk7x97hwd+TwP7N5NEAQslUryjQn5JkMSYgzDoFarYYB2JjDEiy27pcjZIvWvbv6HIU69DkGAI4kFIaJsqqjtARHpLnkxKpq1WtT1mrDa2b17N0mpmGNZ1qqBW5WurHtc7MpwVv03kkyQSqWWhdzDkJmZGSbGx7l+/TpBGJLJ5RgZGdGkqw7pXp9Kpdi7dy/Hjx/nyJEjK15ydnaWn/7pnwbg7/ydv8NDDz10d++1jQ88EokEZdMUY1dAb08Pe3bvFmMJpsmjjz4q5qZpnHPW109kw8/n88zPzzO/sEAum122nloFjuOskN00FTNWVkMC2dpQAbNaq1FzHC5euMD8/Dzbt2+nr7+fkto3VPnWMECOP6hZT+QIFixr2sJyWdWTZUhX7R1hKJj69Tp2KLRio8n1utgI/2rHv+S3z/5n8Z2EYsby90//PskdSbZ1btd7ycTUFHY8Tn9fH5YUHLEigTGKUJamA1muvluEYcR2Ue4bap5SCbnv2rULp1ZjfGKCW7duMTc3R2AY7N63T/BG5F6lZDnfzX3jvgdKEAtezcmoctxDDz/MW2+9xSuvvMKBxx5jcGioYcGHyJJktDQh5wG9uTkWFhfJZrNrKmKo+aq1ygPRwJlIJPDlQOvly5cZHRlhz549Wn3DjwQn3/dBuWLI0RWAuCQnRTMohXK5TBgEVMplcVHI4FeTjDxbLobo41SioLJJ0xCi5jEVpKXS/uXJSQzDYMP69dh3WMCB72smWSwev2MzXH1PrU78KimI6saahhhIvnzpEn4QkO/oYHTdOt2XMQxDB0oQ5dfjx4/z5ptvriBE/MRP/AQLCwtkMhl+9md/ds332MaHC3GZOAaycmKZJgODg+xyXc6dP4/jOKLvF4ut8HxsXqm5bFbI2QUBcwsL9N5BX9hxnDsq5ZimSdw0QZIWPc/jxJtvUq/VOHjwIF0dHUJsQ+rBBtKxJzCEKpkhA1zddRvHwFrsHaVKBcKQarmsK09qYiAmn6vhOwD2dOzm29Z/kj+99mcEhIQEuLj8p3P/iR975N+wMb8BwzSZnJxkZHi4JQGw1feiTBPu1vABViktywOHaj0p44pcNsv8wgJ2LEahq4uMJHCFYdigg/tu7hv3dTxEIZFIEEpKMYh+WiKR4PGDB+nv7+e1Q4e4eOFCY4BooVAPot+gKN3zq/g7KjiOA6q0eBe9Ps/3OX/+PFcuX2bTpk088uijJJJJkqkUmWyWfC5HR6FAR0cHBcnAy2SzJOQgfjwWIy6ZdHak3Kl0IY1IaVUNVZtItw75uJhkkCkPvEw6TS6bpSOfp6NQIJ/Pk8tmSadSJBIJ4ZxgmtwYGxN9wbvI8moRubqYbd+VGepapIOQZZ9LUyr0vPy1rzE1NcXGjRvp6+khIU/vIBjO0ZKW6jdUKhXOnFm2EDp79iy//uu/DsCP/MiPMPQO5AHb+ODCNE3iySShaYoZXMD3PAYHB3nyiSdYWFjgxRdfpFQu6z6d7qlBY+AxDDo6OrBNk6LkOqyFaq2m/VbvBuVymaNHj+K5Lk88+SSDAwPa/zKXy5HP58W+0dlJPp8nm8mIllAiQUy5m6i9Q/IIbKl+ZZqmFkIw5L6hRN5NyyIei4n9Ix7X5eJUMkk2m+Vv7PzrPLXxSeaYZZ55llhkypvmZ078LPPeAjOzs1RrNUbXrbvjHhn4vjBvR+7pd7FvtCQPRW5T4gPqNHz9+nVefuUVMpkM60ZH6ers1HskQKEpwYZ3Z994z06UVixGqCjYclYxnkhw4MABzpw5w1unTlEqldjz4IMNfzCVHUYXbEdHB/WpKUqlEvlcblUxc6epHLraZh8isrPXDx9mSirnDwwM6Cy2Gaocov54pmmKcoghJJlWgwpIKujC8oyQku1reF93yYqbm5tjcWmJ3bt3L1sRqR5I00L1PU9vOslEQjsBrIXVfD6b3ysIdttrhw4RhiEPP/KIJk2ZliUUfkyzYbFDI6HnyJEj7N27F4Af+qEfwvM8RkZGdFO+jY8W0uk0CzKwWZalZ6j7+/t5/vnnee3VV/nqV7/KwQMH6Orp0VwIWJncpVIpkqkUfqXC7Nzcqux5EHtHQZb4Vp0bltfX+O3bvP7GG6TTaR7Yvbuh1dN8ZZmGARGJtoTrguzZr2XKoBjrmUxGj8gYhkHM80in0yvYnNHk9x/s/B5majO8Mv6qfBzMObP8xJGf5jtjn6aQy2khGMWm13rc0e/EcTBZdgW6074RQmOrRv9i+TYjkuCcOXOG8+fPMzI6yujICItLS5hST1e9VmeLQAnf+H3jPTlRGoZBNp8nNE3tRA7oMuzu3bt5+KGHuHLtGi985SvMzs3px7ZapAl52rJsm+mZmVVPRLVaTY8hYBgrShOhJPCUSyVeeukl5ubneeqpp1g3Ogpwx6zzGwFddmiReQVrLcTI/S9fuUImndYedtGZTlP1SyXUaVIRfBruvwruJnP0fZ+35ZBxIh7n8YMHReAPhYSVpXq0NC52gK1bt9Ilbzt69CgAn//85/niF4XSyM/+7M/eFbuujQ8fkskkhmwPVGRbQ3mlZrNZnn3uOfL5PF97+WXekiW4ZkST7M6ODizD0CLpq8GRTjiq3RGF4k74YcjlS5d47dAhent7efrpp0nE46JNo66Zta6tMGzpoHS3WI0tv1L5xuQH9/0Auzob1brGitf5vZk/YHTD6PJj5b+m7P3q1/J9YXoAune75v7EGgSlptsXl5Z46aWXOH/uHA/s2sXWLVsIkQcsed8gCEhnMg3JxLu5b7wngRJEZmhYlhjMldYp0dPahg0b+NjzzwPw4le/yptvvqnlnYAVX25Xdzdxy8L3/YbAGkUt0pCPnrR0vyAMWZif56svvojrujz77LP09vaSlNmZct6+05nOaPr3XqAXdauT69oPBMQFffvWLTauYjkTpZ8HkrEXhKHeBFR/8V4RfW/T09N85Stf4fz582zfvp0nn3xSnEJD6U9nmljS99M0TQotWIcHDhwARGboeR4/9EM/BAhW7Hd/93ff8/tr48MBwzDIFQqily85B7acWwSxmT711FPseuABrly5wpe+9CUmJsQMoV77kb3DjsVECdaymJ+fb5kM+76vWa/NUCS6IAiEStebb7J50yYOHjggVKmkZuyqSj2NH255Q/46xsqaA3mrABU34/xvj/w4I9mRhtsnzHH+vPg5mru6mo2LCBqKrBizbeJ3kWCvVcFTp0zf9zl16hRf+cpXcF2Xp599lmGpWKRaQ5b8WwdBIBj9TXi39o33LFAahkFSlgwcWaZsXhz5QoHnn3+evQ8+yLVr1/irL32JifHxls9nmiadXV2651Aql1fcx/d9bBmAVClSBUgQ4uFfe+klUqkUz8vMFNBGr4ShZpitha9nFsqPNLLfCa6PjRFCg41ZK4RAJVKKtmTfo/mkHcWd+jOO43Ds+HG+9rWvYcdifOxjH2PHjh16k7Al61brvSL+xq0kslQZ5dSpU/zH//gfOXfuHAD/4T/8h2+IYlEbH1ykUimMWEz4IErmeHTvMAyDrVu28M3f/M3k8nlefeUVjrzxhuZENCOXz5NMJjFNs2VFyo9UvGA5aKgSoO/7HHnjDS5cuMDevXvZ++CD+lSXSCRAnljvRUrgXld49D2vGFVbZb/KxXP81KM/SWeysaLztfGv8V/P/d6qr1WPSMollEPSncZZoizX5t8ZBpNTU3z5y1/m0qVL7Nixg2/62Mfo6OgQIgPIZMgwltnJhkFnRCdc4d3aN96zQAmQzefBMPQ4RhSK1qwW/Sc+8QkKhQLHjh/X/ctmpFIpsrkctmUxOzsrLqKm51T/6jETuUlfuXKFQ4cO0dffL0omkSO9YRi6z+DU63f3hd/F4mmJ1Uqvd1HWCMKQK1euMDw8fEfFibrjCGaqHKhWrh5rvdZqF5wfBFy7do0vf+Ur3Lx5k3379/Pss8+Sy+cFdVzNWEl3Bds09fc+sEpjXS34er3Oj/3YjwHwHd/xHTz11FNrfq42PvwwTZOEFBhxZOLaPA4Con/35BNP8NhjjzE+McHhQ4e4cfPmin0BoLuri5ht43qeUOGJQI9dGYZm3quKlFLpmpiY4ODBg2xpMmnX5sVhqPkHa6GZQ3C30LKXrExo16oQ9af7+KlHf4K40Xha/uMrf8znr39h5esgWPmGIQb9bUki0qMorfaINT5TqVzmjTfe4JWXXyaRSPCxb/omduzYAYah5Uzj8XjDaRYEAbDVOOC7tW+8J2QeBcuysDMZKJX0qWO10YR0KsUTTzzB1StXOH3mDF/72tcYGRlh+7ZtDUfwzo4OanJ+aXpmhoGIRYwfBITyj6pfIRTC5hcuXGDL5s3s2bOn5axhMh6nVq3qwf61/OK+HhkqXwXwFgIGd8LU1BSVcvmOLhxBEOg5q1Q6Lcqi8ndricU3w/N9rl+7xoWLFymXy/T397Nv3z6dZHiep1lxyURC6Ltalj5NJpNJenp7Wz73gQMH9AXoui6JRIKf+7mfu+v31saHG7lCgfmJCa05mkildIIXvf4Mw2B0dJS+/n6OHTvGhfPnuX79Otu3bWPjxo3aes6ybbo6O5mZmWFpaYl0KqX7WasFgXKpxCuvvILneTz99NMreu3q9RPxONVqteUs5gpEAt69QMvXtajO3Cmx39Kxhb+Z+hv8v5U/Idol/fWzv0F3spsD/Y/p26Kauknp3wlr7BstRltAmGBfOH+e62NjmJbFvv372bhhw7KIgXwdy7JIJBIsLC6i5EsBBlYxeXi39o33NFAC5Ds7mRsfB6kMY61R7zYNg6GhIfKFAlNTU1y7do0XXniB/oEBduzYIcS7DYPu7m4mJyao1mosLC5SyOdFw933GwKQ53kcPXqUW7dvs3fv3hXZYBSGHC52pOflnWaqWmV2d4NQnqwbFp4sEd/p+a5cuUI+n9cN7dWgMjVbjp7o96zKrkZELYSVLFfX87h65QoXL16k5jgMDw1x4MCBBo/PMAioSssjNeJSKpUgDLGUi0wkiWlGoVBgx44dvP322wD8i3/xL9i4ceOan6uNjw4sy8JOpfAch2qtRiabXU6yI/6GCol4nF07d7Ju3TrGb9/m1OnTnDt/ni1btrBlyxZisRipdJp0JkNQKjEzO8twPI4peQ9qHlhhemaGw4cOEU8mee6pp9ZktycSCW3jFUiT89UQqkrUPe4d6tRovYM9p1QskpvP8rc2/U/8t1t/sPxewoCfP/EL/OzBf8+2jq2iV1urESJn0dVrGY1iCA2fp6nkurCwwLlz57h16xbJZJK9e/cyOjqqzTJAVLu04Xs6LURWpLasktscWIWh/G7tG+95oEwmk9jpNGG1ytLSkjhOr9EnsywL0zAYHh5m29at3Lx1i3PnzvHSV79KT18f27dto7+/n0JHBwsLC8zNz4vZJCmLpxZ7rVbj0OHDLC4s8PjBgwwODd2RxBJPJHAcB8dxSCSTq2ZR6r2/kz6DfmyT196dgmRxaYnx8fE7Kk64risuWCDbHOybSQCSgKOCZK1W4+rVq1y6dAnX8xgdHWXbtm1k5Sal+qthGFKpVDRZJ5VOi/6ulMOypTPJ8Lp1a77Xvr4+3n77bXp7e/nxH//xNe/bxkcPXX193FpcFCLljrOs89riWjEMA8uyhPLTgw+yc9cuLl68yPlz57hw4QKbN29m8+bNdHd1UXccavU6UzMz9PX2rmCT3rhxg6PHjtHd3c2Bxx7TIh2rwYwk2TXHWdPdpEFQ5R4QRJLahqe7i8deuHiRRDLJJ/d8Ej8V8IeX/lD/rh44/MyRn+Hnnvg/yYU5MITou91C2EWrB0USazVeMjMzw/nz55mcmCCTybD/oYeWA2Rk7/A8j6oy3k4msS2LpWpVj8wZhkF3b++araV3Y994zwMlQEdPD3O3buHW6zi1GslUSvcnm6G0EX3fxzBN1q1bx7qREW6Pj3Pu3DleffVVkqkU69atI5vJYBgGE5OTDAwMaJucYrHIq6++iu/7PPPMM/oEthYzC9ALxJely1aed1HcawE2uriiJ9+7eZ5z58+TSibFoPBqzx+GYhEaBslEoqWSRlRWykCUV2/fvs3169eZnJzEME02btjAtq1btXJHc7nccRwtM6aMt5XZqgr6XT09a86JHTlyhJdeegmAn/qpn2pQ4GijDZD+kskkfrVKtVoVyfAa91ejHUEQkE6nefDBB9m5YwcXL17k0qVLXDh/nr7+fgb6+zEsi2q1yvz8vA4KpmFo3eJ169bx0MMPY8mT0J0qPslkUuhG1+ukJHFo1ff5Dr4LNWK3omVzh+S/Wqlw/fp1duzYgWma/O1tf5vp6jQv3HpB32fRXeT/+8b/wY/s+WGydrZ1NS0y/2gggmVxaYnrY2PcGBujXC6Tz+d55NFHGRkebgjoWm0sWoWKxYgnEsKaT5I9leDCiFL1aoF3a994XwTKTCZDKZ3GrVRwHIeYVNppCUU6iQY0WZIdGhxkfn6esbExrl29SrVWI51O09nVpcdQXNflxRdfJJlM8vTTTzcM9d8pUILIchwV0Nc4Varnuxes1me4U6AsVyrcvHmTHTt3rinCXqvVCOWQ/5rC52HI1NQUN27c4NatW9Trdbo6O9n34IOMjIxolxeFqOyU67qaYp9KpXQwrstBatM0sW2bgcHBNTVlf+RHfgSA3bt3873f+713+Aba+CjCNE1yXV0sjo/j1utUKhUy2SyBYsI231/qlUZ/E08keGD3brZv386t27cZGxvjxJtvgiFkFzs6O+mR8nYXLl5kcmKCHTt3snPHjuUTFOK0s1ZFyrZtYvE4vuNQc5w7Jtn3CrVv3Stb/uKlS9iWxSZZnjSAf7b3+5lz5nhz5k3xnFgUqyV+6+3/zA8+/K9a7jHqO3VqNW5PTDB2/Trzs7OYts3w8DAPPfww3d3dLUuziozVUIWSSbRlmlpRzbIsOrq6VgixRPFu7Rvvi0CZSCSIp1L40tKlUqmsOhhqmabWMdQebuqXhkFnVxednZ088MADTExNce3qVW7fusXY9etgWRjSdurJJ58k3lQ+MBBZ41qDs0pSyg0CnFpt7V5lq0AZIQWoLFDNYaleSHOfQTl0rIYL589jx2Jr1uKVeHIYhoJQ0Pwavs/czAy3xse5PT5OrVIhm82yZcsWcTrPZlfdCKKfJ8pUUyUp0zCEZZksu3b29Ky52H/zN3+TF198ERCK/2v1dNr4aCOZTOJks9QrFWJyjdurrBeV1AZyTUavczsWY/369YyuW0e5UuHGjRtcvXKFS7OzXLp8mSAImJyYYN++fWxaZUb5rt5rrXZXSfYKRIhKWluaxr0D7i1QOo7D1atX2bxlS4MovG3Y/JuHfpR/c/jHuLZ0lRzCpOJy8RK//Pav8KP7fwTTXP6Oq5UKt+W+MTM1BYZBf38/jx04QP/AQMv3FHU+CWmsQqVTKTFGJm/XpW/DoG9goOU8K7y7+8b7IlCapimcx12XaqmEaZpCHKDFF6IU83/uF36BifFxurq6+Pmf//nlL0XWu03TpLu7m9/49V/nhvRWW79hA/lcjtmZGV74ylfo6+ujt6+Pvt5e/eWrofu1TpapZBLPdXHq9RW9SuXnprwu1XPpec1IYC9VKoQIirQpM6d6vU48HtcXs5o7tGTZoTmbq1aronSyc6eQ9GrxvgMpvE4YklBek2HIwuIi01NTTE1OMjMzI4SEYzH6+vrYuHEjXV1dDezg6MlRfVfq9Xzfp1ypaGaaKquqDUmNicTicQYGBxsSoUqlwu3btykWi3z2s5/l3//7fw/A933f9/Hss8+u+ndoo410Ok05mcSV9luUy0LSTfbJoicYwzSpuy7/+8/8DJOTk3R3d/MLv/iLeu9QQSidSrFh40b+4A/+QJRe43E2bNhAT3c3b771Fjdu3qSvt5e+/n46OzqEbjNiH1O2e62gNJ9daSLffKpUBsiu61KV71UFwubxl+a9oxgZl7NsW+8dliH0X025j0Rx6dIlADZv3rzye7XT/OQj/45/+8r/Rq0uCDxLFDk8eZhfP/Mb/M3Ov8H0zAzTU1MsFZe4al/nOmN09Bb4p/v+MT3ZZZF5LYGn/lvuJeq2muwxA1phTb1TxZrHMBgYGiKXy+lK1P3cN94XgRIgn89Tq9WwajXcel3YXEmBb5oa9IlEgmeffpo/+qM/YmZ6mldefll8MYahrbmCMOT/+tVf5eKlS5iGwV/7a39NmDxXKmzdsoVyuczUxARXrlwBoKOzk/6+Pnp6e+no6FizWRyPsOGcWk0vfk960tVdl2qtpucF1TuPSsmJf5ZtdqLB2TAMAmWnJX9UgDUNo0Fg/eLFi5imyeaNG1uWaEPEglL9ydm5OWZmZpianMSp17FMk25paZMvFLDjcWK2rUsfDc/VFIT1STIIKJfLWrtV9SVN+fpV2Yz3goANW7aQzWYbvt/f//3fX1Emeeyxx9pek23cEbZtk8pkhKTa4iKmYVCuVMhIfkIUpmGQiMX4+Mc/zu///u8zOzvLyy+/zHPPPaeT2VZ7x9/5u3+X2dlZNmzYQDaXY252lvPnz3P2zBnseJy+3l56+/ro7u4ml82uyVhNJpO4pRJOrUZciia4rqvtucqViiC2yOtclSaB5X0j8mMayzrOigQZeB5B5MSsrlNLtj3U816+fJmNmzYRj8dbSv3l7Dz/fNc/55dP/TLT/gwBwmvz82OfZ+ryFAdTB+nq6eRI5igX5y/h+h5Xipf5f67+If9sz/fr51E9SxXwo0FSkSNB7OvNbZ2a/D4ymQwDg4NaBAbu777xvgmUtm2LU0YQUF9agjCkVCxqY98oYcQ0TQ4cPMhXX3yRifFxPvvZz/L000839C5/7/d+j6PHjgHwXd/1XTz5xBMcfv11ypUKdizG1q1beXDvXirVKtPT00xPTXHt+nXOnT8vBAbicQqFgv7p6Oggl81qJqhlWZRKJZaKRbLZ7HIwBHH6kuywVCqFEkxXRCT9Ix+Ty2bp6OjAXFrC8zxSqZRwcw8CfHlC9X1fGMEiyqiu51F3HK5dvcr6DRsaJO/qjsPi0pIwtZ6bY2lxkWKppE+DXV1dbNi0ib7eXrq6unRppFqtUqvVVi0JGSAuRpl5G4ZBKIOkJ4NkNpPRZRN9ci6V8IKAnq4u7bISxfHjxwFxoWzYsIHv/M7v5Id/+IfvOILTRhsAuVyOarWKnUrhuy5Bvd7AtlZQPcpHH3uML37xi8zOzvLZP/9znn766YbrsXnveOaZZ/jcn/85hmGQzWbZKsfI5ufnmZqaYnpqirfeekucYC2LXCZDoVAgH9k/lEKPKWU7a9WqrppF009DklYSsnWhqkhq71D3UYEml82KpED8gpxskWhvzIiHbSCZ5/V6nStXr+IHARvWr28QYimVSiwsLrK4sMDc3BzFYpE9zh4+H/8iAQHSUZej9jGe2PEEn5v4C96aP0knndJDOOC1yUP8kwf+MVakPEskQKrXq9frmuGqTbEl4ZJQWo75Pp7vs2X7dlKpVEOCfT/3jfdNoITlBR9Lp/GlX+VSsUghl9NfHqCtqr71W76F3/7t32Z6epqvvfwyzzz7LGEY8vkvfIH//ld/BcBf+9Zv5X/8xCcAIZo8OTWFaRhMTU3R19dHOpVi/ego60dHCcOQcqXC4sICi4uLLCwucvPmTc5fuACIBZrLZkkmkzrzsSyLuuPQ0dFBJpMhZtuiDFmtYqsS5F0KEKhGtirRaB89WRZWF0DNcSiXSly4eJEAwUw9fuwYpWKRxVJJSHXJ58rm82RzOUakRU1HodCS2g2ix3ind2oaBqFkDoZBQEmeJDXDVQZJhZrjUHcc/DBk644dpNPpFZ6hv/Zrv8av/dqv3dV31EYbzVBOOyXfxw8CAs+jItVjosxqS7UxTJNv+7Zv47d+67eYmZnhpZde4tlnn8UA/rLF3hGyPCrleZ7eO7q7uuju6mLnjh14nqeT04WFBRYWFrh56xae70MYEk8kyOZy+toG0Rft6eoiJx2PbMvCloE0KVskd0MIVIxbbUCvbo/sO4EUZihVKiwuLnJjbIyOQoFLly5RqVQoFovLybRs0WQzGQYHBtjds5sN7gZ+9dz/1fC6v3zql8XYhtTL0YmxW+JK8SpbC8tz6Yqr4Mv3qoJkSCRIwvJp0zBYKpUIfJ++/n5hJ9iUYN/PfeN9FSgtyyKbzVIMQ0zXxZczf8VyWZQ0EF94TC6g/Q89xMAXvsDE+Dh/+qd/ypNPPsmRo0f5g//23wB44vHH+Vt/62/p54/H4/jyxFatVpmcnqavp0fPNRmGQTaTIZvJMCyVHwLJxpqZmWFRnswWFxdx5uaoyUazGqo1DYNkKkUykcCOx4nbNvFkUnvIWbaNLf3jTMvS9ffxiQnm5ucpl8u65Kx0LFVW6NRqVCQNXhm/qoV5+9YtYvE4dizG0OAgmUyGzs5ObNvWgfdOWZZ+vnAN02Z1moTlICnvn81kdJlZUcQxDH2aHBkdJZVKrVjsbbTxjUA2mxVEsmSSQPbrypWKmGGU/rPqtFYPAg4ePMhffv7zTIyP8+fyVHnkyJGWe4eBECxISvcKp15nYmKC/r4+3d+0bVsHThDXgOd5LMzPMytPZkvFIgtzc0K0RDpvXJDPb8vqk/KiTMTj+kCgfkwZSJXHK8Dt8fEGWz9L9kmVYpEn20BVuXeoazP0febn56lUq9i2TSab1QEpm82KqpJpkstmMU2TdayjRInfPfdf9He+PC8umixRVZ+3Zt7SgTIIQz1GY1kWtVpNnyTjsZjmh+gysgyktVqNANi0eXPLBPt+4n0VKEEseNd1qQWBYIVKIkipVBIlTtX3k0f4T3/qU/zqr/4q0zMz/M7v/A6vvio81nbt3Mn3fe/3NpxuYrEYnu/T3d3N3OwslWpVDBV3d7dkYXqeR7lSoe66ZLJZ0pkMGxIJEYCkSPrs3ByVchnP9wnlfGWpVKIsR10ol8WAvyyhqpJIKMUFgiDQJqOGKZzCLXlBYFk6sMbjcXp7e0mlUqRSKa5cuUK5XOZjH/sYiURCy9Ip9lilWhXEIJnJrgZDng51j1SVPlrcT+tdyudXhKNUhEUbZSPX63WKxSIxOdfa2dnZZrC28a7ANE06OzuZnZ3FSiQIZOAolUrk1fWECEh1eT1++tOf5pd/6ZeYiewdYRiy64EHVuwdccng7uvrY3p6GtfzmJiaYiASLBXCMKTmOCKYSVJhb18fcanKY5gmdcdhdmaGquOIQOc41Go1lopFUZaV9oO+3Ac9z8OXJ1rNYQgCzp49K5J0GVQ1L8I0hZ2dPG339PToZPnNN99k+86d7NolbLZcGUyVN7A6jXdIopLCpzZ+O+fmz/H65BuN3z0mYUiD48hbsyf5js2fBtBBEsT4SDRIKiEYS54kDcSeWCoWqdfrrN+0SZev30u87wKl+gPNeB5BPI5fq2HILM4ol8lkMvp05nseDz/8MOtGR7l27ZqmBo+OjvKDP/iDK+b0VH3b9zx6enqYnZ2lXKkwPTtLEIb61BqEodZmVBt/XLqFK+ZnIINGoVDAMk2CMCQvBdnrrku5XMayLPK5XMtxkyAMmZ+b4ysvvMAzzzxDLpejIh+jTl3qhNeMmZkZZmdneeSRR5azMdMUCy8eZ2lxEaXob8teaiqZXJGRqR5jlGykCEMr7if+j04eCAJMxAxsw/uUz4lhsLi4iO/7rB8aoq+vb1VadxttfCMQj8fp6Ohg1vMIXVdXN4pLS+TyeSzL0tUo3/M4ePAgf/Znf8bY2JjeO9avX88P/MAPrNg7bKmsk0wm6evrY2pqCq9FsKy7LlVJQFFapclEQrc7lAJNPJEg39FBSo6zZOXeUywW8XxftHFkEIkiRJwGZ+fmeOGrX+X5557Dlu0e/RhYtd1z6PBhUskk27dv17cpxaKYbTM/P68TdtdxqIAeZXl54hWOTR9f8ZyquxtEAuXZ+bM4fp2EndCs11qtRl2ZPcsql+d5WHJ/UT+e77OwuEgmm2V4eJjOzs57nkn/RuM9dQ9ZDaZp0tXVhaVcLeRJp+Y4gl0ZhppC7Ps+z0nfShBaf7qhK/tpCvF4XHjDua4eH1FlhpnZWZaKRdEXXVrCcRz8ICBm2+TzeTKSlNMMNUhsGgY1WQ5pxmoKQ+riskxTz1Rqqjq0XOwhwkKmo6ODdU0qPKF8DwGCZt3T1aUv+GqlQqVabaRpN81Fthot0UESwVArl0ogSQsZWZaJMu7UqdNxHOYXFsgVCqxbt27Nuck22vhGIZVKkS8UMONxwRSXSW2xWMRzXd0e8GW16vkWe0da7R2R500kEtoPN5FI0NfXJ/qJnsfE5CR116VSrYpWg+z1p9NpCvk88USipQylYpZHbauijNlWocFAkJJU4FWuQbA8Q7laUJmZmWF8fJzde/Y0noIjVaJYIkEhlyMveSGe51EqFvmTi3/KL5z4RbxgpfOK5Ow3lF7dwOXcgrC4Uqx4ZXOWSCZJpVKCJS/3aLUXhWHIzMwMQRjS09fHunXr3hdVqPdloAQRgLq6uzHlYvIleUQFSzVSMT4+zv/7x3+sH+c4TkM2aEQ2f1V6KEuvStM06ZHB0jJNJqamuD0xIRrwQD6XI5PJiBEVw1hVcDglCTt1zxMOGe/g8zZrNa622G/cuMH8wgJ79+xZ8TunVqMmbYcyqRTJVIp8LifmUU0TT550WzkhBJHbTHlCNiLBr1Kp6ETAjsXIZbNae7F5Tsqt1xmfmMC2LIaGhxkZaTSHbaONdxO5XI5UPi9mKUG3PIqlkihdWhYhcPPWLf7kT/5EP27F3hEJlulUqsHjNpFI0N/Xp625ro+NUSyVRHIdj5PP5ZZns4kEvSYWbiKRwDQMQWwJlwXEdf/vDiepqBazCpStZOtC4OSpU3R2dKy4HkMp8qJ0mLOZDOl0WswsmibHp0/wFxf/khSteQ4WFmEIPo2v+9bMSXzPo1Qqad/QdCaj5+MNyxIjcCrRDgIWFhYolUrk8nktVv9+wPs2UIJYjD0DA7r+rtzE61JcuFgs8pu/+ZssLi3p0kWtVuNzn/vc8pOohWYYuiFcXFpqeJ2e7m7R5/M8FiRhJ5vNrpRYM4yWQdC0LC08oJhcDQ+7i8/qN58oW5zuPM/jzOnTDA4O0t3T0/A7NbsJkJSkAPWek8kkWan2rzaMFYFSZtiGpKNHNSzL5bLQW0SUYaKnw2a1nprjMDs3h+u6dPX0sOuBB97zskkbHy0YhnAQynR0YMqRDKV6VSqXxUhTsch//KVfYmmtvYPlYJnL5ykViw3zhvF4nN6eHnw5qjUzMyN6gul0a4WcsHEeHMT1hCTgOPIa0/flzntHVLBdJ60t7nf9+nUWFhbYs3dv01sKKVWreJKNmpbMdVgmV741/xYAGTKkWamYZmMREuLTeNo8M3NGf9+mfC5VTlbCLPpz+L4eTTFtm63btjG4ikPIe4H3daAEsZB6h4exJKklBC1K/v/84R+yuLREIZ/nR37kR9i/fz8AX/7yl5mPmq9G5i+zuRyLTYHScRzi8TipVIpEPE4YBExNT+O2GMJdzclDmR8rhio0Ltg7BQttkyMDVKtAeebsWWr1Ont272643fM8KuUyhiEGqlspGtm2TT6X0xewKmEr+JJcZEnVHsXaa84G48lkQ8YadQypVipUSyXK5TK5jg72PfRQu+TaxnsCwzDo7u8nWygsq+Z4nhbe/oM//EPKxSLxZJIf/tEf1a47K/YO+VyFfF5XVhRU0l7I57FjMZLxOAvz8yw17S/qOUwpv9lwu9Q1NQxhVKz8aNW91Oz0aojuG+p1mneamuNw6uRJRkZGhBVhBJVKRagJIfgGK4wSDIPt/dsoI07Tafm/KCxseaJc3i8zZJlZmqHiirn1TCYjDgEt9jXf9ymXy5TkeMqGjRvZsnXrGp/6/uN9HygBEuk0PcPDWj2eIOAzn/kMt27dIpfN8nf/7t9l/fr1fOrTnxaZmePwZ3/6py2fq6NQoFgs6v/2PE+XHXp6ehgeGsIyTVzXZWJigpoMelEYYbhiMRqmKTQKEQvTl/NIGmvMUq4on7RY7DOzs1y+fJndDzxARmbAIMpK5VJJK3m0HAORmawSBDBl5lmNXPTqYlHEpGq1SrlUasgG7VisIStWwdzzfUrlMnXXpVipkMpk2LF9O319fat+5jbauB/oGBggWygIAqBl4bgun/nMZ5idmSGVTvNP/8k/YePoKN/+qU8Jv8V6veXekc/nBUEtEgQr1argO1gWGzdsIJvPYxoGcwsLTM/MtNRGjs6DKyQkk94wjOX9RrVBDGNNTVgdKNeoRL355psYpsneptNkpVrFdV3CICCTTq/aC/yWdf8j/3DP3yeXEvtOmjRxRMXKwMBEzE57eMSI0UknKZKEhFypXBGnVCIjaKBLrjXHoVQq4cge7+DwMDt27lxTGe29wAciUAIkMhk6+/pIxON89rOfFULgts3zzz/PwOAgpVKJ0XXrePSxxwjDkK+88AITk5MrnicvSyggsrVyuSz6CpKFlU6nGRgYIGbbEARMTk6yFAmsgAhkLU6WMammYZimcOqILNpov6MZarGbsufXnHX6QcDx48fp7Oho0GX0PE9oPMogmImaqa4CU9LF1fPW63WIMHl9WQJRjfdYPE5ayoE1v68gCKjWapTlYHDdcbAMg9ENG1i/YcM9Oxm00cY3GqZpUujrI5vLYVoWn//Lv+TKlSsYpsk3f/zjDA4M4AcB60dHefTRRwmCgK+88AKTk5MNAS0Rj5NKJHSSrWYhwzDUbZrenh4KHR1YhkGlUmF8cnKZpCOh5q2bg6VSEfKjxJ67QBBJsFsRAG/dvs3t27fZ9+CDDazzSqUirn1E//VO/pKfWP8Jfulj/5F/tv/7ebBnLwUKGBiiP0lAQEiGDAUKWFgEYcBiuMjL06+oJ9PPGxoGnutSKpd19a1aqdDT18fGTZtWnHrfD/hA7WTJfJ4//exnefnll/E8j8cPHmT7jh249TqLS0sUi0W+/du/HUPW/P/4M5/RAUBLPuVywhxUzhm6ci4pKtIdi8Xo7+/X8nNz8/PMzM42qNhD65NlKpXS4sgNPQdW/7Kjix1W9hjefvttyuUyDz/yiH5tT54klWB6qyCpA3nT7ZZlCQKSYVB1HDGvJVlvjuMIIo9lkUqnxXfAykDvyX5u3XE0WcHzPAZHRxkZGVnV/aWNNu43LNsm19PDl7/8ZQ4fOoTrujz26KNs3ryZWq3GwsICtVqNT33qU7p98pnPfAY/SnozDPKFgk6yq9UqQRBoBR2FQqFAb2+vYMS6LhOTk1SibHg5ttWcRFqWRVJqJFdrNd3SUFg1yY4Q8Jr3Iqde580332RwcJBhSeBR6mPKRL1ZFi76PptPp4Zh8sjQQ/zDXX+fn3rsJ/juTd9Nf6ofO4yRJUsyTAqBlrDKXDhPnTpHp4+tqKxVJTs48DwsKZaQzmQYGhl53xL/PlCB8rd/+7f5pz/4g0zMzPDQQw/xP37Lt+hsrlwuU6lUyOdyPH7wIKZlcejwYW7cuCF6bqFwFcnJucYF6YwOgsbdfDq0LIteKZBuGQblcpnxycnGUqxhNDLaEAs2LQOsU6tpBq24e+O8EIiFG8j+YKuscGFhgQsXLrBzxw49X+m6riiLsizf1SASoFhka5R7E4kEtiQAFKVmrXI7ScTjZKUcH02fL/B9qpUKpWJRCxzbsRjlSoXegQH6+/vp7+9f/Y/YRhvvAX73v/5X/s2/+3eUymX27d/Pxz/+cW0dt7i4SLlcptDRwcEDBzBMk0OHDnHjxg19fQZBQDabZWFhQZwkJfmllfl4KpViYGBA8B1C4e06Oze3ohTbfLJMJhJi7E32KxX0KZTlfUO1dtTeYdn2imB68uRJAt9n37594rGyx+q5rmDGp9OrzzavtncYBql0mnyiwDf1f4yf3vOTfNeGv83m/Gb8MGCJRcqUCA3pTxu4WoPbrdcplkp6D40nEvqgMrRuHaOjo++7kqvCByZQfv7zn+cf/+N/TBiG5Ht7+Qf/6B+RkeLD6XSaZCJBpVKhXC7z3HPP6eH/P/7jP14+ASIWcTqVYnx8XAQxw9ABoRUKhQI9PT3YloUvZ6YaFr0swUb7CIlEQiiByADrh6FQ1ZDMO/WjbLf8aJ9BZpzI+aijx4+Tz+fZum0bgBYzCOX71i4J0YXdorQThbq/YZqUKxUWFhYENdy2yUrdSSVYoJ4vkBTyolTM8MOQZCJBMpFgaXGR7t5eBoaG2NAuubbxPoPaOyZnZ8l2dfH3vud7yOfzFAoFTXwrlcuUSyU+/vGP60T3jz/zmYZqTFd3t9Zz9YOAhAySrZodtm0zMDAgen+mSalU4vb4eEMABJbnkEEz80EkwzWpIOSFYUNlLIhWssJlX0ctP2kYjE9MMDY2xp69e0kmkyJIlsta/jKdyeigpBW51to3ItwExeEQ+22FDdkN/IO938PPPf9/8G2bPknMXA52T/Y/IRS6SiVNHAJBHPLqdTzXZWh0lNHRUTo6Ou7yL3r/YYRrHTvexwg8j/L8PKHv40uh4mqtJmTqZJYSi8fJZrOkksnlsmYYcvz4cSYmJ3n0kUeIJRLaF85A1M9bLXzf95mbn6cqXbhDhAuHeqyeBQpDCAJm5ua07F4ikdAkm6irxsLCAl/6q7/i0QMHtMasbdt6QZ44cYKxsTGee+45CoUCjuNQqVRQAsjRk7AvNWfv9OcMQ+EgoE675XKZWq1GMpUil83qUqtuuvs+NcfR4yEg5iiVaPvMzAyFri6GRkbYvHnzypGaNtp4n6FWKlGXbQslYq70SOuuS8y2xUiVHGdQ15jjOHz2c59j+7Zt9Pb309HR0WB11Ur6EUQ/cH5+Ht/3cX2fdCpFZ0eHNkuO6ixXazUW5ucJQiFMruaVmzE/P8+Xv/QlHn30UTo6O/WICwhG+wsvvEBPTw+PHzyIL4OkGpFRCj4KruvekdsAaJnMer2OI0XNPdclncnQmc/rU63ne7wy/goddoHNmS1aTAW5J8dsm1KpRLVSYWj9ekbXr3/fE/8+sLuaadtkOjspzc1h2bYokUp6cTKZpFaracmkmCwlpuV8U//AAJevXKFSq9Ed6aWpxarGM0LDwIwwRnt7evSidxyH6elpMum0XvSKvaoU8lOpFGEQ4EiZqmavNQ15oowGyevXr3Pt6lX2P/QQhXxe2/K0CpL6/asgqbI/+VmUNqTreVpxCKQ/XzwutF6leLp6Hs/zcGTGp2BHxNU912Vmbo5cRwcDQ0Ns3LixHSTb+EAgmc2KhFEmsortakq/RsdxKJZKVGs1ETDl6SuRSNDV1cXM7CwDg4ON5VAZLJX+cdRbNpVKkUgkWFhY0Ceraq1GV2enrgiFvo8vT46xeFy3QSrlsta4jiawUUQDaeD7vPH668RjMR555BH8IKBcqehgFZ0PD0GbF2hETrda29nzqNXruPW6fn11IAHRqjFlkAx8H9/1eLjwsNCj9X0M01z2mgwCisUi5UqF4dFRhkdG3vdBEj7AgRJEsEx3dVGenSWRTOJIck4qmSSdTlMql7VmqyM9GjPpND3d3Vimyez0NL1Ng/sKUSKMnmsMQ5LJJP39/cxIndhypUKlVqOjUNCaiEo1yLZtYrGY6ClWq+Sk4HnLzyKFjMMwZHFhgTfffJPR9etZv349JZkNGoYhTqfJpBZfUH1NVQrWXpEqww0CHMehVq8vk5EQ5eF4PE5J9gwMqflak5T36KykCsymaeLLecm5+XnyhQKDw8Ns3rz5fdtbaKONVkjlcmK9F4tCc1ReX52dnWI0qlLBlWYMlXJZmAtks/T39XHu3LlV56LNyL4B6B6iYRh0dHWRSqWYnp7G832mZ2cpl8vk83kxHgJYsoyalPPKQRhSqVYFU32V0qgyaMAwePOtt1gqFoWRPVAslcTzKiEEyxL7gNyjlDmDTqoRAdQEPWpXjyTLSrvWMk0hrhIEQhdWsoC9iIiACpBJ6cXpui7zCws4jsPgunUMDQ+/r0QF1sIHOlCC2MRzvb1U5ueJJxK6rJjN5+nq6hK+ZzKgKc+4paUlcrkc09PT7Ni5c9XnNiL/aiKOPH11S8eR2ZkZHM9jenISOxYjXyiQyWSEmFMQCNeBIMD1PMoyO4yq6Stij2kY2u380Ouvk81m2b17N0vFog5a6UxGuKJHehG6VxqZUTJlCcmt1fCknY/6HIlEgngspss+ddfFcV3sUJi26s8uRdbj8Ti2ZQkPShnEi+Uy/QMDdPf2smHDhnaQbOMDiWQuhxmLEc7NEbNt6nKzz+VypNNpao5DRbYm1I9t2wRhyOzsrJitJHIyi0D/tzoJykQ7kUgwMDjI4sICS0tLFCVbP5VK0dHRIeYL5UNT6TTFUom6rEjFFfFGnvZCuScpbsO1a9e4eu0aDz30EIlEgpKU+rQsSyS68v6GFF/QjkDq9Itg0Xr1OnXPawh6tpTbi8VimIYhfi8V0qpNZu+WbYsTeDyuT9u1Wo3ZuTlisRijmzYxMDDA0NDQN+6P+S7jAx8oQSrudHdjJxLU5emxLD0sVckkn89TrVYpFos49TqZTIYbN29y48YN0dRPJsWJUNm9tMgYDfFiekElEgn6BwZESUWyRudmZ1laWsIyTWIySKZSKbxSSShQVCpkUykddNUJ0LIswjDk6JEjuI7DgUcfFXY38vOlIwPB6r1ZcsHrsk8QaAfzqOqOaRjEVYCUQs7K13JpcRHHdYnLsqutvPDkBaECue/7TM7MYIQh6zZsoL+/n5GRkTZxp40PNOLJJHZfH6FhMDczQ7VWw7JtEvE4mXSadCqF67riZFmtEpd+kWNjY2TSaZKpFKlkElsaLjSj4TaZ3BpBQKGjg7gsxyp/xur4uHYosuSpLZVM6hOubo9IFq7aO0zDYGF+nhMnTjC6bh093d04cmwrHo8vk/Mi78eSJ0vVH/VcF1dW5KJnVtu2ScoAqUrUykGoWqsR+L6oosn9TiXhhgzkBsIRZX5hgY6uLvoGBli3bp1OMj4o+FAESoVkNkvf6Cjj16/jOg4lwxA9AESwyWQyZDIZ0afzPG7dvs3ExASWtKJSWVsqmSQuqdorLKfkv6ZpagJNoVAgl82yVCxql4JirSZmm0yTDsnMLZVKePU6lQi7LSqvd/LkScYnJoScVqR8m0ql1lTQd2o1Ko7ToENpADHpbGJId5KaMn2W93Fl1miGwmIsGoz1CIthUK1UmJ6ZIZ/P0yMXepc0qG2jjQ86TNumc2AAPwxZmJmhVCph5HLEJZEnHo/T1dVFQfok9nR1cWtiglK5TM1xWJS9zaQk7cViMeGbG9k7oom3Km/G4nH6+vqoOQ5LCwvU6nUqtRq1apV0Ok0qnSYRj+sAVS6XyUopOHWtm6ZJpVLh1ddeI5vNsnnzZv27dDq9erXHMPB9X/hQOk6DnLlpmsSl8XyAMDlQc6MK1UqFMAhIp9NkslltX6YS9NAw8IOA+YUFatUqgyMj9PT2vq9HQNbChypQAiTTaQY3buTWtWtCHScIyOZyDRqIiUSCkZERbo+PMzkxweYtW/DqdfwgoFKpUKlUsKWVTSwWE/9Ks2blMK7q+6oka9k2nZ2d5KWWrCMzr7mZGaqVCtlMhkQigSNZY7rsIXHp4kUuX77Mjh076Ozs1O+zWZLOk3qVnu/jypOjJw1eVXZpyfeqXAGaYRgGdixG3XVJSJ/KbC7XUL5FznItLS3hOY4otfb1sX79+pazY2208UGGYRj0Dg2BZbEwNaXbM/EI69UyTQqFAjt37eL25CRLi4sMDQ2JNocku5TKZWzbxrZt7Q9ryWtSue0YoC2mQOhEJ/v6qNXrzM3OUqtWqVSrjI+Pk0qltE6q7/uU5F6iyDm+7/Pyyy9jmiZ79uzRyXkmnSbWNFvpycTYk5MCigEfbdmosTa3Xtdz5lEoe0PDNIlLclNcemCqXqwvCTulUol4PM66jRsZHBykv7//A1uB+tAFShALb3jDBsbHxqjLwKfKqmqhxmIxNqxfz81btyguLbFx40bRz5TkH8/zdF9CzUkaMlCqC0GxW03TXP6xbbq6uojFYszOzoqFKZvYhCG2vPAU1RpgYnKSG2NjbN68meHh4eVSq/SD8z1PU8tDWXZRZZNAMm1D0ILGvnyMgoFY4DH5vk3LIvB9FhYW8MOQDiVcLi/cmuOwuLiI5zgYts3g+vW68f5BXehttHE36OnrIwhDluTJMifnsXXp0jDIZrOsGx7m5q1b7Nm7F2VKrEYnVBmzCtqJx5JEPtu2NWnPQFyzpmFocfShoSFMy9I6y9VqlWqlIhJf0PPiqjJ0+swZAt/XJu6JZJJkIiEkJV0X3/d1gNTiJvJfgLrvi/cnFYncJlEEwzT1vmHbNqZpsrS0RBiGxGIxEolEgwhCsVgUc96+TyqXY9369QwPD3/gSq3N+FAGShDBsn9khOnbt6lKD0bFSlVEmK7ubgb6+7l08SKbNm/WfcogDHEdRxiqyoXvhyGB5+HIAGoYhlCVME2h2mAs679ato3nusSkar7v+7onWJeB05PllBAxCjIyNER3d7fokViWZpTBsnqPGjS2bFssbtsmJkvAqtyiJO30j2kua8hGvp8l6c0Xl6XdQF7sxVIJr1YD2XPYvmcPIyMjH8hySRtt3CsMw6BXjisUZbBMR05nqt+/YcMGbty8ydWrV9myZQu5XI5sNiuu8Xod13VxXVckrZI7EEr9ZAxDjH+o8qxMxJX4SeD7pNJpkvG47l8GrksQBMwtLBC3LGGVhyDj7dq1S7+G63ksLi4Cy2YLSthE7U22ZS3Ph0YZrZGArn6i+xtIR6FymSAIKBQKmvNQku4f6jV7BwbYtXu3ro590PGhDZQgavTdAwPMTk9Tl2QbbcQsM6L169fz+uuvc+XyZbZIwXHLMDCTSRIslxJ8WbLwVPD0fZAnT0+KDGhLnDDElfezbJsgCJianGRycpK5+XlKxaIQREgmRZ+ip4dUNkvNcYjLwWdA9ykty+LPP/tZjhw9yq5du/jH/+gfiQUsLzTX9/WJ1pIO7urx0ZlKBadeZ6lUwvU8kuk0c3Nz1BxnuZRsGPT397P3oYfamq1tfORgmiY9vb2EQEWyUzPpNAmpcEMYUujspL+vjwsXLzI6OkpCknliti2qRnIvUEz2KBFGtU/8IMALG1W6qpITEIYhRWB6eprJyUlmZma0zqwtxRDS6TQdnZ14ksCnGPlRt6A//+xnOXrsGDt27uR7/8E/0HuGaZqEMtnWQTGaTDePosj/v7i0pMXgPd9nYnJSiJHI+8diMbbt2sWmzZs/VNWnD3WghOUB27l4nJocDUnLJrlpGAwODDDQ38+p06fp6u6mU8ooRSWiLMPAisV0LR7EBeDIEksYBPzlF77AX33xi/yvP/Zj5PN56o5DBXHR/dIv/7J4TsPQzLBEMkkiHscCOgsFLMPA9zxqcrGl5elWMVAf3LuXz3/xi7z22mv8wL/8l1qjMQgCrCbxdY2IAEGIKI04jsP4xISQs5LWWqZpNthp7XjgAQaHh7/hf4s22vigwLIs+vv7WUwmWZyboyYrMCnZEknE42zZupXXXn2VYydO8Oijj2IrT8jIuIUlGawgEvcwFA49yorvL//yL/mrL36RH/u3/5ZCoaArQ269zm/8xm9o4QFT9TwTCbKWhQXELYtUPI4Jgunu+2JuMZkklUph2zZ79+7l81/4AgsLC/zAv/gXJCOlUtd18VcjCTbNa9Y9j8WFBaZnZ6lWKoKcWCzqk2osFqN/YICdu3cLJ5QPGT70gRJkGXZggIVkktLiIpViEbdeJymJLA/u28dLL77IsWPHeOLxxzVZRalhACv+tUyTVDwuZiLDEBPh75bNZunq6sL3fZaWljCAmZkZwaaV5JxkMsnExARzs7Ns2bKFLVu24EkVC1XC9YOAUqlECcAwGBkdZd3ICJVqldePHOGhBx/EsixcedptHkMOfR9PZrOe/HFliURlhIVCgZgsvabSaXr6+li/cePyvFYbbXyEYRgGHR0dJBIJZmdncUolSsWimEVOJOjv72f7jh2cOXOGa93drF+/Xvcc1eNh5Ty2KXt9rufpfSOTTmut01QqheM4LMzPU6/XSaVSdPf00NnZydVr11haWCCbzfLggw8Sj8fx5IiGfFEhMSfLvMPDw4yOjlKr1Xj9jTd4cO9eLW7geF4jgU9CVc9cuWf4UqWruLiIJ5XPEnLsLpVKkclmWb9xIz0fYjOEj0SgBJEhdnV1EY/HWYzHqZfLFEslQetOJtm/fz+HXn+d8+fPs3XbNsE2bdJObRYKNwwDU7LRtHqPvJ8phYN93+fbv+3bGBoZob+3l6tXrzI5NcW1a9d0v7Gvr49Suaxfx7YsrSaknts0Tfbu2cPVq1e5dPEiG0ZHNeM1SttW80sqeEdPwBWpNmIAA1KrMp5IkMpkGBgaoqM98tFGGyug3EDm5+eplEo4coYwmUyybds2ZmdnefvcObLZLJ1dXcJkQYkCyHJog1ScJO/YkqATZZqD1GOu1/mWb/kWhoaHGRkZoVwuc+zYMU6fPo0hNWg3bNiwrJwThlqlq1ar4bouge8Tt232PPAAV69e5fLly2xYv147Kam9BVgWRWiBer1ORe5PuWyW/v5+4WFp28IMYXh4dXnODwk+MoESRADLSXeMsmw+16XjSC6fZ+OGDVy9ckWbN6dVP1MiqmIBcoEHAZYKTDKbU7OU9XodwpBnn32WhcVF3n77bQAee+wxvvbSS+I5pGl0LpulXC6L4Od5ZLNZuru7BWnIdfE8j+3btnH2zBkuXbjAJz7xCXBdTGg5Y2nIfqW6GJWRdDqdprOzk7ScKe1vB8g22rgjbNump6eHaiYjBL3LZeqVCkGtxu7du3n1lVc4dfo0e/fsEQ48iUSDq0ezfV4YBMuzi0GA53lUymVcz6Neq+HW6xx8/HHi8ThXrlzh1s2bDA4MAMsyeZZtk7FtTKkDHQSBeJ/d3UJ7WrZatm/bxunTp7lw7hzf+q3fKkzZwxCifIYIlHWeqUhHiApaPB6np7cXy7bp6umhf2hodZuuDxk+UoFSIRaL0dHRQS6XEwGzWKRWKrFp0ybKlQpn336bpaUlBoeGyGQyetETKaWoXoPn+3iui2Wa5PJ5arWann1UAsunz55lenqawcFB9u/fT6lYFCdROQ8ZhiGWtLgql8t4rku5UqFWq5HOZLBls/2RRx7ht//zf2Zubo5SscimTZsaRAaa4cs5ykq1KgyWTZNCPk//4KBwP2gHyDbauGsog/d0Oo3jOKI1srSEW6mwZ+9e3nrrLUGc2b5dk220S0dEcCCQVSDX8zANg47OTqqVig46pmVhWhbz8/NcuXKFIAh4cN8+crkcpmniycCqoMziK5WKIBEuLelRkUQiwcNy31hYWGB+bo4tmzfruetWUCfacqUi5sF9n0QySXdvL/39/fQODn5kAqTCRzJQKliWRT6fJ5fLUZGB6WBnJyeOHGHs2jWqtRrrpEyb0jkElhe9XGjR8mg8FiMt1YAmxsc5f/Eitm1z8OBBhqQA8PzcnFDGiCx2VTrJZbPCwqZSIZBzSUrAvFAosHnTJi5fvsyJ48fZuGmTnsmKwvd97ZxSrdXwPI90NsuIFFlPNIkYtNFGG/eGRCLRII1Z6Okhk89z+NVXOX3mDJs3bxZ2VrYtVL5aMEDViVKJhCSTSWFBVS5z4fx5ZufmGB4eZt++fSSTSWamp5fl6GR1S1358Xgcy7apViq4rovjOLieR0LuG5s2buTylSu8eeIEW7Zs0a0jtYeFhgGS01CrVqnV69SqVUzTpG9ggI2bN9PT1/ehYrLeCz7SgVLBkFJ3mUwGursZWreOI2+8wYsvvMDCwgJDQ0P09vbi+772UzMltVqNZRjA4sICnudx/tw5xsbGqNfrDI2MsG3LFi35ZshyBkgfuAjUeEYiHseWi96RIgiVSgXbttm/fz9Xrlzh2LFjfPunP62fMwxDXe51HEd7xuUKBXoGBhgdHRWfr4022viGISbVu8jn6enrY93mzfzxH/0Rp86cob+nh6HhYTKglXrUDLQa5QJYXFwkmUwyOzvL1StXmJ6ZIZlIsG/fPtatW6dnmP3I+EfQ4jRomSbZbBbHdUXAlGpBGAb7H3qIa9evc/zECT79Hd+x/CBDWvDJ4Kp+DMuib2iI/qEhBgYGPvIWeh/tT78KTNPkwMGDbNi4kVdfeYXT586RHRtjZHBQlGKlyXEylcKp1SiVy0xOThICr7z6Kl3d3WzatInR0VFtIq2E1j3fF+XSMNSziwrqfuonlU5jx2LCPkwSg3bs2EGhUGBufp6xsTG6Oju1HY7neUIYwfcpdHWxYXCQfEcH+Xz+I1cqaaON+w3DMMjn8/zd7/keTp48yauvvsrt48fp6+mhu6dH2//lpFxkpVplbm6OMAx54atfJRGP09vby4EDB+jo6NDchLh04XCl/Z3rustmzyyzatU8pm1ZZDMZnHqduhxD2blrF1/68pdZWFzk6tWr9PT0CGEVmVAHQUDg+1ixGH1DQ/QODJDL5XS596OOdqBcA/39/Xzq059mcXGRw4cP8/aZM1QqFUzQg7u2VNWoVKtYlsX+/fvZtXOnlpNbWlzUqhkJqbQBLPcYmjRf1W1q8auMNQgC6vU6AwMDdHd1sVQscvLkSfY/9BC2bWPF42SyWTKZDPlCgXyhQDabbQfINtq4z1D7wL59+7h48SKHXnuNsxcvEsik2USc/kzDYGFxETsWY2RkhP379pHNZgExR6nUfVTi7LouhmlqrWhdNo28tk7KTVMrjbmuSywep7enh/mFBU6fOcODe/dixWLY8TjxdJpUKkU2m6Wjq0v3V9cyYviooR0o7wKFQoFPfOITfOITn8D3febm5picnKRcLguV/0SCP/7DP+T0mTPCQ65Y1FJRSq6qVq1iIi4AQAfMVgjlqdALAq3tqjQbATZu3coX/+qvOHbyJJ/6n/9nbaycyWS0JuNHvVTSRhvvNQzDYNu2bWzbto0wDKlWq0xPTzM1NSU8IlMp/t/PfIa3Tp5keHgY1/NYWlrSxgu+JPqpMTFAi5q3glICCiTZJ5T7hiIdbty8mUtf+QrHT57k277jOzBlXzQjDRuU0fxqptQfZbR303uEZVn09vbS29sLLLuA13yfM5cuke3uJpnNiqHdMCQwDGqSITc3N4dhmtQcR5ABEBfTwsJCg8t4GIZavNyybaxYDCseJ5dKkc3neeq55/jVX/91Lly6xK//xm98aPQU22jjwwrFmF0vCXXqhOgGAWcvXybf20uhUKBeq4lAJ8dHlIcuhiGMmKVdoIGQk4u2alR7x7Jt/WPHYsRNk2xHB088+yz/6bd+iwuXL/Orv/ZrdHd3v9dfywcG7UD5dUK5hwNMTk7S09MjskMliiwF0Rck0Sdm25TLZS6OjWEaBht37KB7aEg7lNBCmNiSIsaxWAzbtvnYxz6mBYiPHTvGxz/+8ff4W2ijjTbuBcrnEoRyV1dXFyMjI7ovqX7m5+e1XWAsnebc5cuYpsnmHTvo7O/Xe4ZqBSmCYdStRO0dfX19IikPQ06cONHeN+4B7UD5DYYaJWnuDargaVkW165d4+atWxiGgVOvMzwysjycDFqgeDW88sorhGFIPB7nwIED7+rnaaONNt59KL1UPYIm0dfXp9nxY2Nj3Lx9G8MwqDpOw76hfpSVYCu09413jnagvE9QARQEVVwtfrVw7wV//ud/DsDzzz8vGHRttNHGhxYqeFqW1bBv3CtRr71vvHO0eb8fQHzuc58D4G/+zb/5Hr+TNtpo44OC9r7xztEOlB8wnDhxgrGxMaC94Ntoo427Q3vf+PrQDpQfMKjyyf79+xkZGXmP300bbbTxQUB73/j60O5R3ge88sorXLp0Sf/3zMyM/v+XLl3id37ndxru//f+3t9b9bk++9nPAvDJT37yG/oe22ijjfcX2vvG+wftQHkf8Ju/+Zv87u/+bsvfvfrqq7z66qsNt6224G/cuMGJEyeAdvmkjTY+7GjvG+8ftAPlNwjPPfccgHYpfzegssJ169axf//+d+112mijjfuD9r7xwYARrmZK1sb7Dv/D//A/8KUvfYnv//7v51d+5Vfe67fTRhttfADQ3je+frTJPB8QLC0t8eKLLwLt8kkbbbRxd2jvG98YtAPlBwRf+MIXcF2XfD6vyzVttNFGG2uhvW98Y9DuUX5A8MILL1AoFPjkJz95z0o+bbTRxkcT7X3jG4N2j7KNNtpoo4021kC79NpGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtZAO1C20UYbbbTRxhpoB8o22mijjTbaWAPtQNlGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtbA/x/fTuhHhZNRoAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZAd55reB/5yO3n2U3sVCjsIECAJEAT39fLebrc6bEVri9FmyS3LlhwOT2g04XbIEf5jNKMIOSbU0aHocDvC6nGrQ4qYsdyyeqRuS2P17eUuvFwAEgQJEDtQAKpQ+3bW3DPnj+/7svKcOlUAeQkS5D0PgwGg6pw8mXm+/N7teZ9XS5IkYYABBhhggAEG6Av96z6BnyXcvXuXX/mVX+HEiROUSiVGRkZ46aWX+NVf/VU6nc6u7/0bf+NvoGkaf/7P//mv6GwHGGCAxwGDfeMxQDLAl4K///f/fgIkMzMzfX//e7/3e0m1Wk2Avv8/+eSTyY0bN3Y8/r/6V/8qAZJSqZQ4jvOIrmKAAQb4KjHYN74ZGESUXwE+/vhj/vJf/ss0Gg3K5TL/8B/+Q959913+6I/+iL/9t/82ANevX+dP/+k/TbPZ7HuMX/zFX8S2bdrtNn/0R3/0VZ7+AAMM8DVgsG88PhgYyq8Af/fv/l0cx8E0Tf7gD/6A/+6/++947bXX+Lmf+zl+8zd/k3/0j/4RIBb9r/3ar/U9RqlU4ud//ucB+L3f+72v7NwHGGCArweDfePxwcBQPmKcPXuWH//4xwD85//5f85rr7227TW/8iu/wlNPPQXAr//6rxMEQd9j/Zk/82cA+P3f/32SAQdrgAG+tRjsG48XBobyEeNf/+t/nf79b/7Nv9n3Nbqu88u//MsAbG5u8id/8id9X/dLv/RLaJrGwsIC586d+9LPdYABBng8MNg3Hi8MDOUjxjvvvAOIFMgLL7yw4+vefvvt9O8/+clP+r5menqal156CRikUQYY4NuMwb7xeGFgKB8xrly5AsDRo0cxTXPH1504cWLbe/pBpVEGC36AAb69GOwbjxcGhvIRwnVdVldXAdi3b9+urx0eHqZUKgEwOzu74+v+7J/9swBcvHiRmZmZL+lMBxhggMcFg33j8cPAUD5CZCnb5XL5ga9XC77Vau34mpMnT3LkyBFg4B0OMMC3EYN94/HDwFA+Qrium/49l8s98PW2bQPgOM6urxukUQYY4NuLwb7x+GFgKB8h8vl8+nff9x/4es/zACgUCru+TqVRfvSjH7G5ufnFT3CAAQZ47DDYNx4/DAzlI0SlUkn/vltaRKHdbgMPTre88soraJpGGIZ8+OGHP91JDjDAAI8VBvvG44eBoXyEyOfzjI6OAjA3N7frazc2NtIFv3///l1f+84775AkCblcjldeeeXLOdkBBhjgscBg33j8MDCUjxhPP/00ADdv3iQMwx1fd/Xq1fTvSm1jJ/ybf/NvAPje977X5X0OMMAA3w4M9o3HCwND+Yjx5ptvAiI98tFHH+34uh/+8Ifp3994441dj/n7v//7wFZxfoABBvh2YbBvPF4YGMpHjD/35/5c+vff/u3f7vuaOI755//8nwMwNDTE9773vR2P9/HHH3Pv3j1gsOAHGODbisG+8XhhYCgfMV5++WXeeustAH7rt36L9957b9trfu3Xfo0rV65gGAZ/9+/+3V2VOFT65MyZMw9sRh5ggAG+mfg8+waISSOapu14vMG+8dNh5x15gC8Nv/7rv84bb7yB4zj8qT/1p/hv/97f4zvf+Q6O4/A7v/M7/NPf/m2KxSKnTp3ir/zlv8zS4iITk5Po+nY/RvVAKar3AAMM8O1Ev33j7e98h47r8i9/53f4rX/6T9E0jeeff56//Jf+Egvz89SGhqhWq9uONdg3fjoMDOUXQJIkBEFAGIbp/0kcMzo6ytLCAnocE0cRcRgSRxEFXefXf/VX+Ye/+qt0Oh3+h9/4DX7jf/wfUw9w3759HDt6lP/yb/0tFmdnWZydZebGDaqVCoZpYlkWZi7H/fv3uXjxIpqmcfToUW7fvs3o6CjVanVXb3KAAQZ4PBBFUdfeATA6OsrK0hKG/H0cBCRxTNE0+fVf+zX+4f/z/0nHcfgffuM3+B9+4zfQNA1N05iamuLYE0/wd/6r/4qluTmWNA0NqNVq5OSeYVkWyysrfPbZZ+i6zqFDh7h06RKjo6OMjIykYgUD7A4tGQwoe2gkSUK73abZbNJqNHBdl8Dz8D2Py1eucP3GDb739tsUCgWSKAJdx7IscqaJYRgsLS3xb/7tv+XD8+dZXVvDNE2mp6Z48403eOv11ymVSuQsi1a7DZpGqVBgaWWFxfl5Wq0WH124wA/eeYdKucx/9tf/OnGSEAG6YTA+McGbb73FiRMnBkZzgAEeMwRBQLPZpFGv43Y6eJ5H4HlcvHSJa9ev872336ZYKBDHMUmSYBgGuVwO0zRZXVnh3/zbf8u5jz7q2jfeeO01vvPmm+RyOUqlEq7nEYYhOcsijiLm7t9nbW2N98+d4wc//rHYN/6T/4QkSUjk3pEvFjl+4gTf+c53qNVqX/dtemwxMJQPgSAIWF1eZn11lXa7je+6aJqGYRgYhoGuaei6ThRFJElCHMdEUQSImXFoGpZpUsjnyeVyqUeIpuF7Ho1mEzSNoVoNDZidm2Pu/n0hjBzHjI6NUa3V+J9+67eYuXOHn/vOd/g//YW/gOf7uJ6H67psrK9TbzQolkqcevZZTp85Q61Ww7KsgeEcYICvAUmS0Gq1WF5aorGxges4REGAYZrouo6h62l5JYoiEiCOIqI4FnuErmMgJOoK+bzgLqhnWdOo1+sEQYBtWZRKJRzX5dbMDIsLC7RaLWzbZnJqit/87d8W+8Z3v8tf+Yt/kTAM033DabdZXlkhCEP2HTjACy++yMFDhygWixiG8bXdu8cNg9RrHyRJgud5OI5DfWOD1aUlPNclSRJ0w6BYKJC3bTTANE1M00Q3TUxdTyeIq/SsFwRCu1HT8HyfMIooF4vpom+32xiGgZ3P47suH3/8MYvLy1i5HHunpzlw8CA5y6LjOFy5epUwDHn+zBlKpRJ2oUBFPliTExM0Gg0WFhc5+957fHbxIqefe46RsbG0blGtVgeLf4ABHiHCMMTzPNqtFhurq6ytrhJHEchG/3K1imma3XuHrmOaJnGSQJIQxTG+dIKDKCIGWq5LIZejUCyiaxphFBHLyLNcLnNvdpaLn36KGwQMDw/zzMmTTIyN0XFdrt+4QRiGvPTCC5SKReIkoVgoEEmHfmp6mtXlZRYWFvi93/1dDj/xBEeOHmV4eJhKtUqtVqNYLH7dt/ZrxcBQZqCMY6vRwGm3qW9ssFGvE4YhWpJQKBTQAcd1cRyHOIpINI0Y0GQ6A03D0PU0irPkw6Ah6w9xzGazSd62yedy+L5PGMcs3L7NtevXsW2bp595hnw+j6br5CwLgI/On6fZbGLncrzx6qvkcjnhgcpUja5pRJOTHD50iOXlZT759FM++vBDnjx2jFK5TKFcplKtMjw8zOjoaJee5AADDPDFEccxjuPQbrfpNJu0m0021tZodTokSYJpmhRsmzAMRfYoSYiBWO4ZGhCDyEzJbJOu61imiW4YaYTpeB6e71MqFgmiiCSO8XyfH/34x6yurTE1Pc3U5CS6YZCXYuofnT9Pu93GzuV49eWXUwc/gTTrBbB3aoonn3ySK1eucPvWLdxOh73795PP5ymVy9SGhxkZGaFWq/1MOts/84YyiiI6nQ6dTofNjQ3q6+u0m00R/QUBhmFgGgalcjldILqmEScJsUybJHEMbC184phEGkrf93Fdl0TT0kJ+LB8ekoRms8n9+/dxOh3279/PwYMHMXSdjuuSM03ytk3Osjj30UdEUcQbr71GsVSCTMY8jmOiOMY0DCzbplIuMzk+zjvvvMP1a9c49eyzdBoN2vU69fV1lhYXqdZqjI2NMTQ09NXe8AEG+JbA87yUs1BfW6PRaOA6jhApl9mnvG1TtG00XScBYRTjGD1JSADknpEgslDq32EcEwUBMcKoKQKQStl6QcDa6iqLCwvY+TwnT51iZGiIIAyJ4picZVEpl9N947VXXqFaKol9Se4dlmEQhCFomjDmhQJvvP46V69e5eKlS2jA4SNHWF9eplGvs7a6SrlSoVarMTEx8VCTTb4t+JmtUUZRRKPRYHFxkfr6Os1GgziKsHM5cqZJEIZogJ3PUymXRWRoGBgyOtQMA0MaSg1hJP0gEN5ikhBFEaFMvfquK/70PMIkIfB92p0Oi8vLbDab5EyTgwcOMDoyQqVQwLJtOo5DFEUUCwWxIOXXpGsammGgIeqf6sFRHmm2Hul5Hu+99x6tVouf//mfhySh0WrRcV3y+TzloSGGhoaYmpqiWCwOapkDDPAQUIOVV1dXqa+t4TgOpq6Tl/yDIAiwLItioUBJ1voMuX8gs02GLNMkSUIgWfNJHBMDYRAQRhGe6+LKfSMIAuIooiM5DbP37xMlCaNDQ+zfu1ekR2WWqNXpoGsa1R6ZOkPXQddTToX6XznZKZKEufv3OXfuHIcPH+bUyZM0222aUqC9UC5TkcZydHR0177vbwt+5gxlFEVsbGywsLDAxsYGvuNggjCQuRyFQoE4itB0HduyqFar6NIwpceIY2IZRSoEQYAfBKmBVGnY7O2NkwSn3abjedy7e5eNzU2SJGF8YoJSuUxOEm8Ktp0arUKhQCGfT6PV1POErqgykcbZMAwsy0ofzDAM+cM//EPK5TJvvvkmuq4ThiH1RoNmu02lVqMqDebw8PDPfC1igAF2guu6LC0tsby8LBxrz8O2LGzbJm/bWJZFEIZYlkW5VKKQz4Ns2QDxjIaZdKf6met5RGFIGEWizIOIIjW5f2iahu/7dByHzXqd27dvE0ryz9TkJGWZ7bJME1umeE3TZKhaBU0TqVt5TCTZMOsUx0lCEseYlpWWigzD4Nbt23zy8ce88tpr7J2eJkkSHNelXq8TJglDo6NUKhXGxsaoytrrtxXf3ivrQZIkrK+vMzs7S71ehyhCjyKGi0WGajUKxSJ528YPAlrtNnEcpwuwF1EUCYOYWdxRzwOQstZk1BknCb7vk7Ntbt+5Q6vR4Mjhw8zcucP+6WlMmQYxTVMsSN/H8300XadWq1EuFgUzLo5FWiaOCeV5xKpvUxrL7LkYpsmpZ5/lgw8+4Nq1azx5/Di6rjM8NESlUmFdkpVcx8FxHGq1GsPDw9/qRT/AAJ8HQRAwNzfHkiT1EYbYhsHQ+DjlcplioYBhGDSaTSzprBby+W0ZGsUpUPuGihLjOE6dasWINzJ7hx8EGJpGHEXcu3OHcqHAkaNH+eTTT5kaH08dedM0iaQxM0yTUrHI2MiIyDhJ5z6M4zSCDdW+IXkOge8TyPmXmqYxOTHB+MQEH507x8gv/AJ2Pk/etrHHx2m32zRWV/FkqrndbjM8PEypVPpWZqZ+JnbDRqPB7du3hYEMQyxNo1goCFZXqYQm0yFRFNGRU8KLhQKWJNLAVp1AeXZd0RxAkmBaVuqVGbqOIY1fp91O0yyfXbpEp9PhxZdewtB1Zu/cYWRoCMM0hfGV0azebEIc40kvdt2yGKrVKJdK2JYlUjU91+kGAYGsrfqyaTkKQ8qlEgcPHuSzK1col8uMj41h5nIYhsHY6Cjtdpv62hr1jQ1Gx8YIgoBKpUK5XP5WLvoBBngYxHHM3Nwcc3NzhL4PUUTeMKiOjjJSq2GpVi+gLUslSZJQzhgL9dz7vk/HdQmDoOszojgWPAjTxJL/G8pZdhxcz0PXdVY2Nrh69Spjo6M8/dRTtB0HHahVq+Tz+fSzozgm9H0CSRxqt9uUy2WGajXsXA4zSbBtuzvTFcd4nocfhmktVLH2nzx+nA/OnuW9Dz7gpZdeIm/bGKZJuVwmZ9s0Gw0W79+nvr6Ov28fVcmS/bbVL7/VhlIt9Dt37pAEAQZQLZcZHx3FzufR5WJWi9p1XRK5cNW08DCKRHOwSqdCmsbIScOo+imzqRKSBKfTwfE8kTrxPD7++GPiKOLtt99GNwzqcsq4ZVmUymVarVZaNxjau5f19XVc+f4ojllZW2N9Y4Mh2eqh9aR2DU3DyOVAMmKjOCaUxvOJY8dYW1/nytWrFF54Ac11ycm0UaVSwcrl2NzYYHF+ns31dfYdOIA/MsLw8HBfKb0BBvg2w3Ecrly5QqvRIAlD8qbJ8NgYw7I3WUE52K5sHyuXSuiy/hgEAZ7nbaVbZbnGkOnNnGmKrJPKWslyTSida8V2nZ+f59q1axw+eJCTJ0/ScRw010XXNIrFInYuh+O6AJRsm2KhQKPRIJSRYqfTodVsUlTZs0JBpFshLRGpVhXyeXHuUUTo+5imydMnTnDh00+5f/8+Y+Pjop1NlqqGh4exWi1a7TY3r1xhbGKCiT17GB0d/VaVcb61htJ1Xa5fv87G2hp6FFEpFpnes4d8Pi9y9NAVLanFHicJxXwe13XxfL+rFqlpGrlcjkqplBblYatFAwShJgxD2p2OeEAk5fvTTz5B1zS++/M/T75QoL65KVIxcsGapkmlUqHVahFKJq6Vy2HlclTlz5utFlEcs1avs16vC09R1gbUNSmzqQGmrmPK+kkZePbkSd597z0a9TrVWg1PpncNw8C2bWq1Gs12m8D3uX3zJhMTEwS+z9j4+CAVO8DPDBYXF7l58yaR52ECE+PjjI2PoylHuSfL4rpuynLVdJ1Wu03QEzlahkGuWESTAiVASvxDOteJpqWtZwCGYbC6usr1a9c4cfw4zzzzTPo70zRJ5DNfKBbRdJ22VPxB/ixv2+i6TqPZFNGp6zLf6ZDL56lWKlTKZTTYNu9S0zRy0pAnQKVS4f7cHPfu3WN8fDzNvHWks52XHArX91ldWcHpdHAdh8mpKSqVyrciK/Wt3P1WVla4fesWXruNBUxMTDAxPo4m2zr0ni8uSRI6rpuScXq/2JxlkbNtLNPsSqlEGQOpaRoJwhN1HEcYSMmEe++DD/B9n+9+73sUCoW0RUSlbVR6Rtd1EVk2m+liLBYKoGnUajUq1aqoDTSbBGFIq9lks16nXCpRkWQgMg9hFhqwd3qa4aEh5u/fZ9++fSLdIq+50+kI4oGmoRsGepKwurqats4cOHhwYCwH+FbD933u3r3L4sIC+D4l2+bAvn0U8nnRL91nb4jjmLas0ymHVUHXdXK5HLZtp/VGEJke5SQDoGmiRNPppEbLtm0ajQafXrjA4SNHeObpp0kQRk0JDaSOtkqnAp1OB9/zQH52wbYZt21836fRagkHPghYXllhfXOTWqVCSTLe03YVSAlIKqB46umneeeddwh8n1qthuv7RFGE7/v4vp866fl8Hs91mbtzh3azyYFDhxgZHX0E39ZXi2/Vzuf7PrOzs6ytrOC3WhRyOfbv3UulXE6NUS9TFE3D9TzW1tcJg0D0KCKEAqxcjpxl9U89SqOimKiRjCIjGUXauRyFfJ4Pzp6lWa/z9ttvUy6XxWKXqRijz3ENXadcLtNstdJG5kq5nHqi5XKZcqlEx3GoNxo4nQ6NRoN6o8Hw0BA16cGpxd616DWNE8ePc/bsWdqtFkPDw0IFRDYyR1GEoev4UUQoe7Fcx2Huzh067TbHn3qqK+00wADfFqyvrzM3N0dzfV2Q/GTbBbouxEQyTNGU0R7HbGxu0my10DVNiITIZ1/ptJLpWwTxPOqSXKNJ4QHXdXGko6rrOsVSiXarxbmzZ9kzPc1zp0+n7Nloh70jSRLytk0syYWdTgfLNCnL/SyXyzE2MsJQrSY0ZxsNPN9nYXmZvG0zNjycGlt1nrC1d0xOTDA0PMyNGzd48803yefzQgpPGsokSTB0HcdxsGSNtb6xwdV2myeOHWNyz55H8r19VfjWFJ983+fWrVtsrqwQtNsM12ocOniQSqWyJSuXfYPsd6rX62xsbKStFVXZUFuuVMjlctuMpDKMQErY8X2fRqORRqPlcplSsciFTz5hcXGRV199laHhYfGxSUIkvcZeRq06tmEYlEslDFWvkOkWDdkrqesUi0UmxscZGR3Flue5trnJ/cVFOo4jNGelcxArJRBg7969lMplrl+/DkmCoWkU8nlR95RRaS6XE4u+08GT0e/6ygoXPvyQjuylGmCAbwuWlpaYvXuX9vo6lqYxNTnJ3ulpQfKTe0cqJoIQGOl0OmxsbtJoNkmShGKxSKlcZmhoiEKhsJV96SX9IZ5j1UfZkmlRpQddrVbxPY93f/ITasPDvPTSS0KsQDLaVRTau3coI65qlmganXY7jVCVtrRhGKlgQKVSwdJ1wepdXGRlfT0lBaX/s+UYnHjySVZXVtjY2ABE+rcs656lYhFLCix4vi8yVWFIGARcvXyZmRs3HsE399XhW2EoXdfl5vXreK0WoecxOT7O+NgYxWKxi+ySSBq2HwRsbm7SkDU/PwjIWRZjY2Pk83khQQfbU7SQenbqNyrVqmkaOdl3mbMsLl+5wp07d3jxhReYnJoS75cLL40oe1KZKhULYhGWSiU06KpbxEmSeo1JIjQbJycnGapWyRkGYRCwsLTE6toaYbbXU0XTmsbhw4eZm5tLqeAKlmVRkbWLUrEomLhhiOM4aWroyqVLKQlpgAG+6VhaWmJxfp6w06Fg20xOTIiWCqmcBSJViszSdDodNtXkoCBA03XKxSKjo6OiD5rtNcwEUqUu9ZsoimhlCDulYpFyuUzg+7zzzjvYts3rr73WVe5QRs+UxMGuz8gY8lKphGkYQiNWtroliP1PtY8ZhsHw0BB79uyhYNtYuk6r1eL+wgLtTqf7uPLPqT17sPN57ty5k14XiH0yb9vUqlWKxaLQkY0iIbnneSRxzP25OW5JrepvIr7xhtJ1XW7fvEnkOBCGKaO1pIxkkohFKoWE6/W6IMVEkdBTzOUoFYuiRyifR+vzGWqhZw1kgliEKtorFApUq1Us02R+fp6rV65w8uRJ9h840HUs1c8E/VOvsCUokMvlsPN5iCJanQ4dpS8r66zqYdFlr+X01BSlUgnLMGg7Dvfv3xfakj3Yt28fSZIwv7DQRUSSH54azOHh4bQHy/d9Op0OzVaLuzdvsryw8LBf0QADPJZYWFhgeX6exPMo2Dajw8OUZFtYIp8LZeA6jsPG5iYdzxM1QtMkZ9uUi0UK0qHdae8AkUlSv1ear6Hcg2rVKoVCAU3TeP/sWeIk4fU33tjWYrGTgw1sTSRC7AcFuZeFYcimnDLSRWKUr7Usi8nJSWHoZcp0eXWVxeVl/B5HWtd19u7dy/35ebEP9ewduuwWGB4aolwuA6IHtN3p0O50WF1d5dbVq6nT/03CN9pQpkay08HQdYZqNSzTpChrBUqDNYoikZeXJBgQhq1WrQrvTIqP9yP5ZBe6QpwIjVbP90nimFKxmFKhO+025z/6iP0HDnD8ySfTVhFVeFeKGul4HeXtZdIdkRQUUD1WyrvtdDrCu1XnJI+jFqthmoyPjTE+MYEta6trm5vMLy7iZzy5QqHA6OgoC/Pz6XUqA64Mpyaj1dGRkZTVFsUx7Xab9Xqdxfv3WZid/ZK+yQEG+GqxsLDA6uIise9TKZeplMugaeTlTEgATdfxfV9wAWQ5w5TlmWq1Cohyht2nZzCbZs3uKn4QpEbS0HWq5XIaNV65fJn1tTVeffVVSqVSegyVbg3DUDDkDUM8p/JZjfvsG3Eck5dDmRWjn8w56T2tZaVSiT179lCT6Vjf85hfWmKjXu+6rr179+L7fqoq1rt3aJKUODI0REVdmywhra2v02w2mbl2Dafd/iJf29eGb6yhdF2XWzduEDqOGGQ6OSkiNE3Dtm0x0UPXcYJAFK6DQMjDSY9HqWkEvk8C20gq/dKsIAxbo9kU9O8koVwup1PC4zjmg7NnsXI5zpw50zU7TpNRYBiGQpxA1hiUQc8ayq5+TITerCqQtzudrlqrmjSQRSGfZ2pykqFKBUvK2C0sLAhmq8SePXtYXl5OVUHS65YLP5IPYiGfp5jPUymVyMkH2nUcGs0miwsLrCwtfcFvcIABvh7Mz8+zIo3k2NBQSngp2HaaYo2BZrMpSHWJGGJQrVSoydJKKCM0XfYgZpFo/WJLcD2PZrNJjGDSVyoVdLkPrKyscPXaNZ555hlGR0aAbuYpSCKPZLwC24TUFYNe0zRBQpJcBk3TcCWrn8wx1X6poOs6w8PDTE5NifmXmsZmo8Hi8nJaxhkdHcW2LBYXF0Vgkd07MkZa0zQqUrUoLyU5kySh0WjQbLWYuXlzW+nnccY30lDGcczM7dtErkvOMNg3PZ16XcqDiaXoeTuz0NVcNU0ukCiKUjmnXhUe2J5KCcNQNPJK9ZyqJPwoXLl8mfWNDV5++eX+hhcxmBW2F+P7IVuHUNJQkZpv2ee1WQOq6zq1oSH2TE5iSwWRpdVV1jY2iOOY6T17COOYtdXV1BlQkw3Sc5beqi1H8+QsCzuXS4kFrVaLu7dv05DF/QEGeNyxvr7OyuIiie8zNjrK8MjIVu3PsoQaludR39xMnetiocDQ0BCWJMkoIiAIBztbjoHuNKtCW47hAsjncpTL5dTB9T2Ps2fPMj4xwZPHjnW9L5tlSnu1dxEASdOv8k9TTiDSNG1bRirVoe2JLu1cTvAehoawNI0rq1f55d//z3jud1/hL/7gP2ZiapKFhYVt788eO84oDpmmiWVZWJZFJO/vxsYGt69f36aZ/bjiG2ko52ZniTodTE1j7/Q0hoyaQKQlXMehXq/jy4VeKhSoVSpiSGqGMKMWu2lZW2r+bE+XAKkklFLar1WrXbWC5eVl4RE+/TQj0iPMQi1EtZh2M5Rq8aV0dET+X/U7OY7TtyjemzoGWYOYmKBSKmHpOs1mk6WVFYqlEuVikXlVa5SGtp9CvilltdB1oiRJp60r1Y8rn33G5oDgM8BjDtd1uT87ixZFjNRqDNdqInuihEF0naZUmUmd60z9MLsv+EEgMlHSUd5tskSr3cbNcBkUSU+8MeHDDz8kiWNeevFF4cRnIfeBLFP+QQ38XQTGJCFfKPTNSKnj9EvFAhRKBf6k8UP+t1v/kiJ5jnGU+Y1FfsS7NBqNNEOVFXHvhUr/kiTkpLFUakbLy8vcuHz5G2Esv3GGcn1tjdb6OnEcMyHllJIkAV0nThJa7TatTqdroeczKv5ZQ6mK45ZUoECyXXsRhqFImSQJOdOkmvEGQXiE586dY2JiguNPPrnt/dl0quqD0h8QUXYRh+RCytk2Oam2oR7mfu/rha7rjI6OMjIygmmaBL7P/OIiIyMjrK+vp69Txf7ecV0gGqA1TUtT1aViMZ2O4Hken33yCetra7te0wADfF2I45jZu3cxgoC8ZTGs2rXkfuAHARs9UWStUtmaQYuM5FRpQpJZrIyz3O/Zy6rllMvlVBpTGaWbN2+ysLjIiy++2HeYeupgy33DfIh9Q5ejtNT7NU0TxlnXd8xIKUchPa/Nm/xffvR/5X+59S+4xz00PWHMHGY/+wn8gETTWJPPuyrXpEShzL6kppqgaXi+T86yKJfLmHLfXlpa4tL58489G/YbJTjgui6r9+8ThSFD1SoFyWxVKclmq5UOIC1KFisZr0lB0/VUMDxJktRoaX0MTxhFaZ3CMk3KWUkmWR/48MMPieOYF55/Ps3Rq9E1ahGBiErTVpJcLvXuOo4jUrXqXOWfvhRhj+KYvJwkks/nUwZbp9MR9ZU4BmW4tS21n16Uy2Usy2JtfT31iOuNRnp+2feoqFbVGywZjaNpqbCzlcuJOrDjEIUhFy9c4KmTJ5mYnPz8X+4AAzxCLM3PE0sHemJiInV0NU0Tqly+T6lYFEzWUimt33XtG4i9I5SGT8/IWPYzkh0pGwfi2cuWaRJgc3OTTy9d4ujRo4xPTAjVnQxBR+0hIEiCvtSbTpJE9ErTs3dknn3X94mlTjXyvPOFAk67nYoC9GPPRknI/+fqv+B/vfE7RIkkQxJzn3lGtGEmrGGO5Y+Ss0zW1tbYt3+/6B/vuUcxpAbTzuVodTopkVJxRZSE5ka9zoWPPuLZM2ceWzH1b4yhDMOQxZkZYt/HtixGhobSzdz1vLTJPoGUzbpTrVF5PmEUESMiyn4LPYpjmpl0a6FYFENVpTGMwpC5+/eZX1jg2dOncTwPRy5Mhazx8aWqvyFZZUqOypcKF70PpR+GYnpAEHS1kigtWAAvCMRAaV0X0nNyPI8mI+ze67Jtm6nJSdbW16lUq0QgRn3t27et9tHLqlXebBCG6QZhmiZFuej9IOCzixdJkiTtHR1ggK8b9fV1Wqur+LJ9TK3jOI5Fq5jcwHO2Ta1S6etcK+gZNv1O+wZ09z4XCgV0yaCN5Eg+Pwg4e+4cxUKBvXv3splhl6pUppKUA3A8jziKMC0LTQ46SBIx9NnrIcUkQJARY8/qznquKxx2z0unnOiGganrzDTv8I8v/Do3G7fQ+lzZOhu4uIwVRojKMUurqzSbTSGz2YNs7dJUPamS9a8B6DqFQkEIm7guzXqdT86f5/Tzzz+WxvIbYSjjOGb1/n181yUCJkdH0yiw3engui6WZWGGYdo/lJVu64coDEU6RdO29TNGsm9ws14XRgHBJG02GpA5tuf7XLt6ldHxcUZGRlK9Vl0JFvSwylJyTC5HsVjcOnYuRzGf3/ZwaJpGIB9GZbASybSzTBMvDGm1WqIdJnsNSSJGdalp6rKoruobuq4zPjaGrut8dukS6xsb5AsFxkdH+xrLlCik0te6LgbUynMzTTM9P9/z+OzTT9MG5QEG+DrhOw7r8/MEUUSpUBAi3QhSXb3ZJJZEPlvNf9zFSCqoQcjblLUQ+0qr3RalkTDEkjW6bO9gAszeu0d9c5MXXngh/UxdMdgzaVDlkHquSyIl6QxdT41jPpdLU7apU56IySWJHHigS6c5iWNM28aXijntdptcLkcYB/z7e9/nD+5+n5iYMW0UP/GJiYmICAgQIQV0cBgeG8bvCLnQlbU1xkZGKPVMCknvn66TKI3cjJOhyfPM2TZIsYOGjCyfe+GFx85YPvaGMo5j/EaD1sYGfhQxPjwsmvCBZquVNsUWSyUM08T3fVzP2/bFZZEgc/66Tk7TUsMYhSGBHKqqBIoNw+gaF6MiNsM0uXXrFmEU8fxzz6Ws1H6KGQqqzlAqFrFtO1XysJSwQA8syyKQTcnVSqXrmFEcU280hDqIrAPEUSRSv0mCphqCEZGsMnJqJJghp5UUCwVcx8HzfZZXV5mQBnT7TRPeoGKx+b7fXZ+RHqIaSnv54kWAgbEc4GtDHARsLCzg+T66pjE+Po6GyIg0pfScYRiMjozQaDbTGa67sUqVMLmm6+jSWQ3lDMdIpjodme2xbTtt4tc0DdMw0A0DPwy5desWBw4e5MCBA/33DUj1ZaMoIic5Aip6y0lWvZUxlFlESYIvBQAUoSZJhJRlMZ8XqkBhyLwzz29d/m0WWgvo6GhoGBgUtAJREqeRZUJMQEBASF63GZ4Y4s7MDHEUsSo5IxUpMpCFliRC+cw005Y6pQwkT4qcVCFrNpu0Gg0ufPQRZ1588bHSlX78DaXjsLm2RiQL55VqVaRMZNMuICZn5HJCiUIaStu2+xa+1UJvdjq0Wi0MXU8beVVtUQ1aztt2Kkmny/SmwubmJndmZnj6mWeoZIzYrtcivamHne+YEnp66o3qoavIGZZRHGPLQcxA6j1GGckqVd+IowiPLQNerlRwPU/Q4n2fpZUVkZ7qqV90HAfimLycV7dtNA+iL6tULKYjxq599hmFfJ6aJE4MMMBXhTiK8Or19PkYHxnBNAw816Up2zRUb2SciKHrURjS6nSo9tnwYSvT1Gy1COTUHV3TiIEkikSpRPZ1F/J5ypVKqgedNYSXP/wQXdc5/eyzO+8FmWjyYZjyvejHU9A0DQMxlD4MQ95b+5j/+fI/ZZPN9DU6OiYmBgaGZqAlOhYWGjpmbKInBom7pQ7kOg6lUom1jQ2SJOly6EEOhXZdNF2nVCiAzEb1XoslA5JOp0Oz0eCzTz/l9PPPP5Dh+1XhsTaUkecROA6tZpMwjpkcGyOKIhoyZaJJZQvLsgQjNZcjJ0fKtNttMdwYYRz9ICCQY6XiJMFpt4mCAFMSfiwZKbmOQ7FYTKO4nRbnhQsXKJfLHD169KGuRRkp+JwLfpeFogTMXc/Dcd20cVrXNJCRI9IrU/WMIOP9hlEkFvn6OqVikY2NjXSSyJ6JiVRIIZCkIoBqqURLTknp8gzV+crpBx1ZvL908SJnXnzxWzXEdYDHG0mSELbbwkhGEaZhUK5UaHc6aQrUlr2MqmG/Uiqx2WgQ+D6edLSB1Mn0goDI9wnjWKQ1FUPcMFIhjrjVSgVI1LPYi9XVVe7evctzzz23e3oxwx7daWLIbkhLJn1IfQCFQp5/eeN/w8AgRw4f8XzHxOnf1YGCKMBMLCxMTCzyVh7btNFlW56m6wSuy+LKCn4QMDo8nH52u9MhkURIy7JwXFc42aptRH2MrosB9sUi7XabtdVVbl6/zlGlbvY147E1lHEUEcoRUpHswcnbNvV6PZ3HVi2XMWRqA0lcKcnaXxAErK2vY0kVjbRHUt50wzDIFwrUarU0NeHIwc2mYVCRRrLfQpu5c4e19XXefOON3dM0mfcqYeJ+Sjo7oWuszw5Q7LEgCFJx995zULVRNR9PPaBJkrBeqeB7HpZtUxsaoiEFn+/MzjI+OoplmvhBgK7r2LYtasGGIeogfTxDdY2lQoFWp4MjhdRPPWhjGGCALwmR4xD5Pk0pWTk+Okqn08GRDNRCPi8k4mTUpur4hUIBp9Oh3mySk6+NpOQkkJYvcrkcpmUxPDSUMujrzaYwmrL9Ics1UEiShAsff8zoyAgHDx7c8fyz/dzw+TNR6lzpcw4KumEQ6AFoGuWkzAYbbAl2QkKS7lm6phMkASEB4DA+PI6FmY7aqsq6b8dxWFlbo91uMzI8nJIVdV2nWCik90RNKMkawJQwaFmpoz139y6FUom9e/d+7cbyseyjjOOYqNUikeovYRRRrVTESBtI+yNV+J9NMyg1/mazSb1ep765KQauytaKSrnMyNAQ+XxeqEXIYwRBgCNTrsViEVMOaVZjrdTC83yfSxcvcvDAAUY/x0DSL5I+UZRvdlkkhq6n2raO44i0KyL9GimKOWzVQTLHUlMLAHKmyejICFOTk9iWRRzHLC0vs7KxQavTwfU8NNkuou5Z1yZCNxEJXadcKmGaJhvr68zcvv2NaCwe4JuNyPeJXJdWqyUIZ7JsojIi5VJpy0hCul4VQ9yTBnZtfR1XCqArZnetWqVSqVDI57EtKyXQqQyLYRiUy+V038i2j4Domaw3mzx35swDN/7sb6MvmIna7TMMTedvPvufYukiLVygQEJClMSEcSifVQ0ls6DrgtBnaCa2Lso8KoVbrVaFZObQEKam0ep0WFhcFIOi220xd1MGIJqup2WunZCTet1RHHP75s3HQszk8TSUrksSx6lcnGWaorlehvC1ajVt/gVx0x3XZbNep9FoEEcRhWIxJa5o8j3lYjGNuNSmrjb/VrstJnTbdpp2AbqECnRN49rVqyRJwslTp/o2/O94TV8wfaL+3C2qzNkyDRJFYsKIkrt6CEECW6aeXddF13VKpRL79u2jXCym4u9JImTsPNelLsXgwzAUaZdtH9D9k6Kkxs/duycmxw8wwCNCFEVEnQ7IdRtFEfl8PjWSlXI5rbEDoImRe612m42NDTqdjlCPkWnCJI5T4YFCPp82ySeQGklH9mBqkLZbZKEySH4Q8Nnlyxw9epRarbb7hfQc4wtFlPI4u+1Qb+99i3/w5v+D50ZOY8UWSQwkoKHTu1NoCKNfMAvpNebzeVzXTZnvE2NjTE5OYhkGju/T7nSwJZu/1WpRbzREK47kOGSZ+knGcCaahiU7AXzX5ea1a2k/6NeFx85QRp5H5Lpb0WQYCrk0qR1YrVZT9YdI9kGtbW4KHUNpjHK5HCPDw0Ln1LYhSVJJO6DLwGmILzGOYzEDcpdamuO6zNy5w/ETJyiouZU9nttOCzP6oou957gx3elUlR5Reo6+5+3qraXnK++BGi3myoWYIKLrUqlE3rYp2jaGYYgJCZJmHknHJDtmDE3b7jhI56JUKJDEMbdu3KDZZ+zXAAN8GYjabWEkWy1iOeRYKdQUi8UuI+nLRvd6o5Fuwrqsr++dnqZWq2HlcqLHT6pygTRa8rj9slA74cb16+i6zlMnTnRld1S/IXS3dyioZxwerOa1G5SAelbMIE4S9lX38l+c+lv8n0/+l1ToT2JS0DWdUm6rZ1I5zwqK4FcplylYlnA6DAMrlxOdBpJg2G63qTebRLIfW7Fxu6BpQonMsqhvbHD71q2vNSP1WNUooygikso1rlSk8Xw/rQVUKhV0TcOXCjdqgSdRhGGa2LYtBMAzTfK1Wk1QoaXCjp3LCW8R4RV2ZAOupmmU5KidnXD16lVM0+ToE0+IH/SkMWHLD1O9Vup1KqLMLnaVglALOPt+1VOpfp7IVGqv+Lkq+qtF6YchnuelUln9oGkammEQRVE6Ikg1IruOQyQp8pPj49Qlu7jRajE+OioEEmR/VhCGtOUU9bxtd6Wo08/SdQxNo5DP48iJL8+cOvVYUb8H+OYjdF2Qz5jnuri+nwpw5PN5Cvm8aDXzPDquSyQNKci5r7L+DuJZq5RKqZCJH4aE9TqFYnFrCDJsZaHy+e4sVA9c1+XWrVscO3ZMTDbKPusZY6mIhwppGxukfdHKiKqMWDpxSB4jO0VEZZV6JwQpZCPD6/Wb5MhhoKc9k/1QtirpnmPn82Iwc5LgyiHNIFSI7HyedrtNo9ViLJejVq3iBwGu49CRe0ij1RKExIwqWS8KhQJhFDE/N8fwyAhTX5OQyWNlKBPPS0k5HccR8kxSJ7BWqQhvsd3Gc11hNJDMz8xMtxSaGG1lGga1SoW2NKyeTAmEYSio3XIhlsvlXdOi7Xab2zMznDp5clfPEdhauFs/SKXgsp+h5J66XtrzvjT9uosBV8Yzn88Ttttpe8yDoldd19M0R6PZpCZp84bsiTRNk1wux/LKSuqBjw4PYxYKJInQ1VUealtGljnpiPQSkWzbJgwC1lZWWF5eZs+ePV84uh5ggCyiKCJyXVELi2Oxd3Q6TIyPk5PiHp7r0nZd0VKmiH+Fgmgry6YA5Z+adO4s06TZbhPLSMhxXQxdF7JtmhixVdrFKQW4LqPJYz2TQbYhk+mBrZKLagfr/V0WWX6AIgKlxrPP67NY8pb5o/t/TAIUKNKixb7yPpY7S/hx0PXaqiWClTgR7XO+71Ov11NDl8vlhIi8PJ92p8Pq+jpTExPYuRw52RvuuS5xGOIjxBgsSTLM1mHVHlIqFmm2WszevUu5XE6HQn+VeGx2KrXYFeqbm3ieR7FYpFwq4bgu6/JnIBQpVHF92zy4JOnSbdU0jXKxKFiycuhpp9NhbWMDz/fFvMcHRDhXr17FzuU4fPjwA6+lX/Ow8iIfpXFQjFRN0x4qpx9FEe1OB8uyRK8TwqCVM45HLpdjZGQEA+Es1KU6kWEYYhMqFMTorTgmjiJcz6Ol5nVCFxmpKCnzC3Nz4uEaYIAvAYnnidFWui6MWacjCDilEjnbpr65SaPdJo4iDNm0r2bSdhnJDHtewTRNoSstm/rDIGBtY0NI30WR2LR3cWIdx+G2jCbVHvN5+JvpEIUvyPpUbSK74bcu/1NatET0jY2t5fi/v/x/4ze/9z/x9t63ul77+p43RGTu+8LpkHVewzAolUrinsrXDg8NYds2hqaxsrYm6pKyFa9YLFIqFtOpJWEQ0G61Uo4FbDnZhq5TyOdpbGywvLyc1py/Sjw2EWXiOKkXVK/XhUSTplGrVml3OoK5itBXLBSLYuKHTIN0Hac3msvAsiyGLAtd01jf2BAtKBnhYDuX6xstNptN7t65w7OnTz8wmlTn0PXvTG79ixpKRTp60KLP5/OErdaOUWWSCHkrz/NS1qoiHFQqlb7nVywUiGo16o0G9UYjnS8HwgHISwPtS5HjOBHjtyzLIp/PdwlQl4pF6uvrrK+vC9WQPqoiAwzwsFAOttJg3djYIJRkPl3TaDUaxAhDk5eDElRdrItA0lP6yEIp4ti2LUoNUns5kfVQW6Zu+z2bV69dwzDNz9Vv3fXvL6E+qSLAfvh45QIfLJ0FICJER+fPHvgzTJeEotZ/+/zf488f+XN8sHSOg6UDvDjyAo1mU9RppVSn6kntvXpN0xgdHmZ5dZUgCFhZW2NyfDyV1EPdV9kLHkgN2zAIyOfzop1Mvi5v20RBwPLCAuVyWagsfYUtI4+FoYyiiMj30aVKTqPREHWvXA5fbryGrlMql7v6BLO1SNjyCHfz8IBUySa2LMqSKu7JHLspi885y0rTAFevXiVfKHDo0KGHu6CeRfnTEnlgd88wew8sy8K0LBI5TqcoJ6yEsrc0kD2l4qAatpwRpzRqd0KlUiGMIlrtNmvr64yNjqaydoo9bNt2KoDgyYUfhqFY9PJ7Mw2DnG2zsbpKpVLZcYMZYICHQeL76fpRqdEgDBmWacEY4Twq9nUWcc9e8aBVqKK6fD5PuVTCMk0iyTRP04eZmlun02FmZoZnnn66y8HekYnax5ile8cXfEZ2Y71GcchvfvY/p/9u02afvY9fnP5TxJKnEMcxBwsH2bN3migM02hOl+UZEqFqtNPZGYbB2OgoKysrBGHI6vq6iM4TIW1XkJ0JpWKRMAzpuK7oYnAcgiAQEapMHxdLJRrNJi0p7PBVipg8FoYydt2UidmRihqu5zFWqQgpuXw+HVq8E1KP8AELKowiXKnFWK1UGB4aIpRTOgKZTgjlwjcMA8/zuHvvHmfOnOnKn6uaQBCGuK6L67rC2LouHccRhAIZtQWylUJ5h5GcPKIIBT/84Q+FsLhU8VckBOUIWKZJqVzGlrqOdj4v2lgkiaD3mvP5PIHvpySmSDL1FLLiAbquY8repgdhqFYT98p1Wd/YEKO3JGU+JTNlajsd1yWOonTRF2R0mc/nqUumsiOVkAYY4PMijuN07wg8j2azKdoVNDHGTtM0qj3jrRQ0TROj6ZQQyEN8XsdxiGS72sjwMKZpilFR8jn3fT9tFTEti6uXL2OZJkeOHNl2rCRJ0j3CdV2xb7iu0F32PGHkJZkxTUXKZzmK43Qu7I9/9CPR8600qA0DXU7r0GQUXSqVyFkWtoyK1d7x/fvf527zbnpOISF/+sh/RE632dzcxLKsNPWrYFkWOdsWQxk8b1uw0g+W7NFeWV0V/BLV39rjuJimSaVUwvN9OnI4faPVEuebywnH3rZZXligVCqlA7W/CnzthjKOIuEVAp1Oh0azKUZLSd3QWrWKuVv9ULG8eLjF3u50iBELWTE+TdOkbJokxWK62JXM29WrV1NB4qtXr+JIokCr2UyL/Oqz1Z+2bacGzbZtrFyOOI7FYpXtFmrszmdXrnDo0CFyuZwQNJfScGo4rCfPp7O8nD5UQFr41wAzl6NUKIjBsMWi8PQ0La3H5mUK1pTRo6pjKmi6/lDFak3TGBkeZmVlBcf3cR2H2tAQsWzdyUItenXOoZyqUJL9rXnbZun+fQqFwle64Af49iBxXcH8lG1im/U6cRxTKpWwbVs417tkSTREu9XDrDzlICrSnGrxyEvDE4ZhOj9WaVHfnZ3l4MGD3Ll7F9d16XQ6tNttWs1mqhKU3TsMwxDpYenE5mxbRGvS+VQTgAzDoOM4XLlyhf0HDnTtHWrfCOTYu1arxfrmJh2peasi6CDx+Bf6vxREIfnfPnsfx63jtFot0dZVKol9Q5Zaeo2bElR4mPtn2zYjw8Osra3R6nQo5vN9BRTUPbVMU+zVMrqMooiCzEw1Wi1arRalUukrI/Z87YZSMV2DMKRer+M4Tpr+HBkZefAGKtMnqijMDlRoEDPdgiBIx2Zta2XQhFL/5uYma2trbKyvs7K+DsCHH34IkEa31aEhxicn0zpboVAQvVSyBpo971a7TeD722pym5ubfHblCgcOHGBoaGjb+cay/xNENJcAvjQ8juPgSA+04zi02202Nje5Pz8vvEBNtA3b+TzVapXh4WFGR0cZljqMvdetpKYe1KtkGAZDQ0N4KyuEcYzT6VAqFHZc9AUpTt9x3ZQpW5Rsw7qUy+t0OpR20MYcYIB+iONYMF01jXqjQVtmT3TDYHh4+KE3UF21W+0SFaUMb2Rpow9PQdd1nE6H9bU11iXpJI5jZmZmAPHcFIpFysUiU3v2YNs2hXyefKFAoVhMiUXZFGsUxzTU8z801PXcrm9scOXKFQ4ePNh373AcJ+UpFGWLhet5uO02Hdfld2f+vxTWCpQzvZNPt0/wyccX0vMtlUoMDQ0xOjrK6Ojotsg8ZbbLvz8osizIa/XDkIYc8bUTlMqRavVRw+pLxSIF22ZteVmQh6Qu96PG124oYylSvrq6ii/H4dj5PMU+xeF+yH41mqaRGIYwlj2I5KaOTOVGcZwW/9fW1lhfX2dtdTX19Ery8w1d58yZM6mqB4gxPcqDy8J1XWKZ1lWLXtN1IQwso6408tW0NN/vS3JNtmdS9VC15dQOVZBXNQvLtrFsm2qtlnrVhpxaHgQBbqfD6tqaMEaOw/Vr1wjCEF3XGRoaYmR0lLGREUZGR9MagCbPN+lz/9K+zjjGyuWo1WqiGVuKz+/IGtY0LMuirOu0HYcoDOl0OmlvW31zU2wafWpIAwywE5IgQNO0dI5hgmgVs2Qk+cD3y/+zfYw7OdqObCtRkZ0SSl9eWWFtdZX1tTU2NjfTzEq1VsMPAiYnJzl29Cj5QiFNYyr90+wzFkdRqoCFdLKV0+q6LpphpClldW5KPMUPAiEWIvcMtXc4UnbSDwIhQoIUSzAM2nqHj9bPYyCc24iIU2Mn+eun/zqu69Ko11nb2KDTbrOyuiqMvUx7jo6MpIYzvZeSZNhvULy618oBr9VqdOS51ZtNhnZRKVK2wDAMWnJfbbXbFPJ52pJ13G63H3p600+Dr9VQxmFIHIapkTRNUzSqdjpCkf9hoskeaAgJJPEBW4u+I9Oknu+zvrbGwvw8m42GmD9nGAzXauw7cICx0VHRDmEY/Lt/9+944sgRDvURMM7WD1QdMIoi0fQsGXgRQBThSyNoyuK/gkqjqsHT2y8vIZZqF9n2EqUjacjRXyq9pDy8Qj5PtVJhaGiItmQTVyoVGo2GcAjk9d+8cSNN4eq6zvz0NBMTE/3bW3qMZ6VcZkMyhzc2N9P6405Qwsiu5xF4Hq4kTrUaDcbGx7+yBT/AtwNJENDudNhYXydOEoqKlBcEYhjwAw/QZ+/QNJJMUz8IToNK/Xmuy5wcVuzI56qQzzM6Nsbe/fsZHRmhVquJoQmrq7zw/PPb6u+JJMCpCCmU6dJQ7R1SKCCKY2HkggBdGswsXNm3vNPeEYahcOQzzrnqx/xXM/+KelInIiIkxNAN/vrJv5aWQYaHhxkeHU2FRAzDSPeNtbU1rly5IlR45D5x+fJlnjl5koqaxtJzvVnBA13XGR4ept1u43se7U5nV8dG0zQMObC64zjEclawYRg0G41UdvNRO9lfq6GMXJf65iau46AbBmPj42LzTZKHW+w7IE0JyEW/tLzMnTt3WF1dpdPpoOs6taEhjh49yvT0NENDQxg9xmHmzh183+cJpcLTA12OhclCLYpYLvY4jlODmiRJ2oirlpJK4ajG/uy5q9eFYYghR35psibQa7TSxdgDK5fDcF0CSSiqVqtUq9WUvdtutzl37hwbGxtEccz777+PbhiMj4+zZ2pK6Dbukh4ZqlZTwlKz2dxVw1JDeIiFfB5d0/BcFz+OxbnJaetfxYIf4JuPOI5x22025V5RlLWqTruNYZoPt4Z2SBOqqC1JEnzP4/bMDAuLi8IgxzE522Z4eJinn36aifHxdJByeljg1o0b7N27ty9JTRmrXmdUKXRl/9RkT6GqV2aNkOJtWGrvyNQKlS61YRgU8nmKpZKoxyYJn6x+wo9Wftz12b906JeYLk93/Syfy9GWkXPFtpmYmGBiYiL9/Z07d7hw4QJRHLO0tMTC4iKlUompyUn27NnD8MhI9qK7jm1LEYhWp8PG5uaObXkg9w35fZaKxbTPMgoCmvU61VqNVqtFtVrt+/4vC1+boUyShOb6Oi3HQdd1RkdGsHM50b4AP53EWZKwsrLC3Nwc8/PzdKQs3tT0NKdPn6YqN3g1/Hjb2xFK/3ump3etnfUSiBT7MzW6hpG2oqBp22bUhTJ9UiwU+npVURwLZplc9OozHhaapmHZNpFk0lmZxeh5HmfPnqXValEoFpmcnOSJJ55gYWGB+bk5Pjh7FjSNsdFRpqen2b9//7aeR0PeP8dxaLbbKRt3h5NB1zRxPyQ5qiOL9Wurq0zt2ZO2swwwwG7w220a9TphFJEvFBgZGaHTbqfj+HbFA54f3/OYnZ1lfmFBNLcHAdVqlSeffJK9e/cSy1arSrnc9TwpLC8v05ATQnY8hb6nlXQ950DKlLdle0vXecqyTWGHvUNpuRqmmdY9kzjmn1z6f3W9rmbX+CvH/uK295uWhS5TzkpvW+HevXtcuHCBWq3GxuYmP/fzP0+n3WZ+fp579+5x5do17FyOPVNT7N23j4nJye72Fk2jKImTmqaxvrnJxNjYzvcrk01Tg+GDMGRjfZ2pvXtxHIdKpfJICYFfm6HcXF0V6YM4plQupyNb4jhGe9CCzy52bUv2yfc87t69y52ZGZqSFTW1Zw+1Wo2h4WFREEcYCdfzdmyJWF1dZbNe5+SpU7tew7avJXMu6anKSO+n+RKz79Q0bXsdZZeH37aslHWqRgE1m03effdd4jjmO9/5Du+//76Q4iqVeOLoUY4cOYLnedyfn2dhfp7PLl3i0qVLTO/Zw+HDhxlX6VkZIao+zc16nYmxsZ09ell/SRIxZNuXfZ0rS0uMjI4OWkUGeCDCMKSxtobv++RyOarVKoaczkGS7JoB6UL2WU0S1tbWmJmZYe7+fZI4Zmx8nCePHxdpSDmWL0kSGlKZaieH9ebNm9RqtV1H8G0rbSRJ3/3hy1Dzyh71D2b/gJn6TNfv//qT/zEla3uwoOu6YOvLtjdlKK9evcoVydQfHx/ng7NnUzWvsYkJnj19mrW1Nebn55mfn+eunCl5+NAhDh48mGbVdF2nUq3iui5+ENBsNncsveiaRqxtCa4UCgVCWdOdn51l38GD+L6/q97uT4uvxVC2mk2CdhvP91MmmJJCApGKfNjFkcjo8c7t28zNzwOwb+9ennv+eUZGRlLPs1QopF6NSmH2I62AWOzVapWJ8fFdPzubRlXn0rvcv/CIHHHA/p+r9RdG7wfdMISxlG0mrVaL999/n1KpxOuvv04+n8eTAtKpeocsoh+SizsMAu7eu8edmRl+/JOfUJYLf2xiAl3TGKpW2dzcxJfM5eHh4R0vSd2zBDHxJJHp1/uzsxw8fDhtdB5ggF7EcczGygqhzLIUCgWRwZCOWoyYZbgjep6RwPe5d+8et2dmaDYalEolnn7qKQ4cPEiSJGKWouz7Ve0giiXbb+9otlosLCzw/AsvPFTP907nlb1e+GJiA71HbAdt/tmVf971s8PVQ/yp/b+w4zHyuZwQDpF94J988gn37t3jmWee4cknn+TunTtbwgSZvWNkdJShoSGefvppNjc2mLlzh2vXrnH5yhX2TE1x8NAh8rLdpVatslmvU282U8GSflCdBIowVCwUaEvxk9rISNoS9KjwlRvKMAxp1+uErktOKVnIxa76gIyHWOxxknBHfgHNZpNyuczJZ57hwMGD6c12Oh0iyUTL1jzVeKxtKj6JEPGdn5/n9OnTD4wCH2Qk1XnCl6vxuo2K/YB0Us628YOAu3fvcvXqVSbGx3n55ZfRTTNtXu6XRtJ1nSgMMS2LJ554gieOHGFtfZ2ZmRkuX75Mcvky4+PjPPnkkwwND7Mqe6RKpVLfBa9YfTpbA7YLhQKxJGWMjI3hOM6gVWSAvmg2myRSeae3/zaOopQw1xeZZ6TZanH16lXu3btHHMdMT09z+tlnGR8fT53Ozc1NkiRJh6IraIaxVVpRf8pj37p9m1wux/59+z7fhe3g6H4pTrY8x39x43+lHjS6Ro/97af/Foa+816rGwY506TT6fCTn/yEzc1NXnzpJfbt2yf0XoMgFUbpvhwtNZ5DIyOcGRnh1KlTzM7OMjMzw3vvvkuhWGTf3r089dRTuI6D6/tsNho7p2DVXi35H4ZhUCgUaLZaLM3PUyqVqNVqjyz9+pUbymaziSa9P6U0o77MVF1np4Uhb9K92VkuX7lCu91mz9QUzz33HGNjY11GL5FMsZRE03sDk2SbcUs0jdszM+iGwf79+x94Lb0RZT+k47W+iFfYs9i3PnjnCLIfTNNkZmaGmzdvsm//fp4/cyYd2aPIR/0MJbDNW1TU8ODZZ7l18yZ37t3jxz/6Efv27WPP9DSGru+44LPRZJxJSRfyeVzfZ211laGhoYGhHGAbwjDEaTaJJatVl6L86jl4GGWutuNw7coV7ty5g2XbnDhxggMHD26rvTuumzrYvVGKOnqWn5BoGmEUMTMzwxNHjvTtKe53DIV+adyu0Xs/haHUgPn2Av/61u91ffgrky9zZuK5tN1sJ4RhyIfnz+N6Hq+99hpjY2NpNB0EwY5ckt4SkWlZHD5yhMOHD7O2vs6N69e5cesWs/fucfToUfLFIr7n4bhuKkDf97iZv1uWRd62qTcaNJtNPM97ZNrRX6mh9H0fp9UC38eyLAxd31rsyfaZjFkkwNzsLFeuXKHRarF3eprXXn2VspS564XjusTSw+xd7Glxu8/nzN27x8EDB/oyWrc9hA9hsL6UiLLPw589n53IASAit4/Pn+fevXs8cfQohw4e7DoXNWx1J/WjvjVRBKN2/8GDTO7Zw9rKCtdv3mRufp7xsTEmp6fF8NbeRas8QoRnnkgnwjAMCrZNs9FgY2ODiYmJB242A/xsodFooMmMU06K7WuZyE49A/2Mius4XL12jZnbtzEti1OnTgnmd5/XPsjB7vfMacDiwgJxGHKoZ7pQPwOe9Byzn6pYLPdERYL7wtA0/ulnv02QBOqfmJrJ3z75t7adR/Z8ATY2Nnjv3XfRdJ0Xnn9e9GxnEATBzhG8polyTq8h1jSGhoZ46umnOXT4MLN373Lx4kUKxSJ7pqcxTbOvoVRs/ygTWYIQgOk4Do16nc3NzUc2r/IrNZSNRgNDXqzS/CSz2NUN6F2cS4uLXLp0ic3NTSanpnjxpZcYlmoU0Q4pC9dxxGLvRw7JLlq2Funq6iodx+kbTfaLSMUfya6qFNnI6fNiJ8dBtVqkiiJxvC0NDGIhv//++6yvr/PSiy9SrlQIpVakmosZZurCfZFJo2w7PymEcODQIQ4dOcKdmRmuXr/Oyuoqy0tLPP/cc11OivJE4zje6ndVC962aa+vC4WhjQ2RIRhgAISD7bbbaL4v2JhZB1uhz7MShiFXrlzhxo0bmIbBiaee4ugTT2CaphD06BNNOVKUu5+DDVKUg+1R4L3ZWYZGR7cx27U+e42mslmSJ9E3MMjsGz/N3vHZ2me8s/iTrfNB45cO/xLTpWk0tW+ovSzz94WFBc6dO8fQ0BDPnTmTyuJlSZa9bNhe7HTW6pqLxSIvvvQSx0+c4LNLl5i5c4f78/M8eewYR44c6c72ZY+p66mTres6hWKRzY0N1qpVJiYmHgnH4SszlL7v47su+D5mLtcdTcJW+pWtG+z7Pp9++in37t1jZGSE77z9tphakUE/I9VxnLTFpB97Vtf11CjHGaNxb3aWYqGwK2Mt88FdEz0UIytNx2Z+rhr6HxaqlqeUNvqleNXAZA2hV7ntHsi6gu/7vPnmm4yOjtJut4l9n8D3MaTXphqZd2zrUNe4U3oIYbQNXeeJJ55g3759XPrsM+bm5/n+H/4hZ557jr1796b3LM5sDNnvTvV8rcv068BQDqDQarXQZYnAyJBrtnEMIP338tISH54/j+d5PHn8OMeOHdud6IMUEclEk/2gywECWTKP5/ssLC7y7EOy5LPGT5UiUshnWg0yUM/IwxpLdSylxPPbl/8ZcbJlECtWlb967C+lz24/UtKtW7f49NNP2bt3Ly+++CIJomTmBwGFTI3Tdd3dCTQyGu51stVnq1pvpVLh1dde4/78PNevX+fTixdZXFjghRdf3NqXEiHCkDoamT2pWCiwtLxMq9mk0Wj0lfT7afGVGUrP89AyX0oaTWYWezpvUdNYWFjg448/JgxDzjz/PAcPHHgoSbsoivDlYt+t1cCQElHKUIZxzNzsbF+l/wch6TGEWs/vVFSW/nvrl2LgsTR6Xe/NpKKznl76GZrWNZw6i42NDd577z0s0+Ttt99OdS9zuRy+FG9WufxOpyMYqLtNad9hwWdrlwq2bXPs2DFGRkeZuXOH9z/4gH379vHc6dPkcrld+0DzhQKra2tpf+WA/TqAGoGnhSGmHCZg90aTkDqVcRxz/uOPuXP7NmMTE3znrbf69hlq4uBda9dxHFGusawd2ZeKMZ+NRufu34c4Zp9yCD8nuvY1ZUBluSMlHtLNWcjuG9v2Dnlt7y99wN3WXXT1G03jbz79NyjLdpBtT2KS8OnFi9y6dYsnn3ySZ555Jv2VqetEuk4QBOkwiY7jPNAoqX0q+1mp1F3P871nzx50TWNldZW7d+/y/e9/n9OnT7N///5tfJKsk60lCflcjlazSbvd/uYbSiXvpiFqXP2ilDAMuXP1KisrK0xNTXHmzJldi7u9x3BdV9DEbXvXtIDahFVqdGlxET8IHorEo9CrorP91JKtlJB6bdYz1IS2qsbOaQoe8DvYeqigO2Xy6quvdj3wlmmiA2Ecp2mTjuOkMywfeK2Ze901jLrH2y2Xy7RbLY498QStqSluXL/OH/zBH/Ds6dNb0aW8Li0jxG5K2cJOp0On0/nKJgMM8PgiCAISKXVp2HY667EXSSwExK9cvkwUhjz33HMcOnz4oZxr6I4me5v7s1DZp+z6v3f3LpNTU19qe0I/Ik8X+1ZGpTvtHU7g8L/P/FuyJupg5SD/4cFfREu0LrIQiADj7NmzLC0tcUbeuyysXE6oaPl+aiidTofpPXt2vxAZJGQdizQT1fNSXdOoVCpESUKlVmNhbo6zZ88ye+8ez505s/3+ZgItK5fDkfvGo8BX4rLHcSyiPN/HkI2s2UK8wuzdu3x84QLLy8scO3aMV15+eXcj2fP+JI7xpUDwbqlEIJ3OrTbp2dlZhmq1L6Q3ulOMlBayMxFl1/uSZMdeTvmC9P3bkCUVyL/fvHmT999/nz179vDmm29u94rlgtJVgzak0z8eiJ5ryD5kvWkhXdOoVqtouk65UuF73/seteFhPjh7lg8//HDbjLts/SFnmnTa7Ue24Af4ZqE3E2VlyH8pkoQLFy5w48YNDF3ntdde43BPjasvMuvWkwIkaqTUTkgdbLnZt9pt1tbWPpeDnf3sHfcORQLcIeXaL8uUxf/v7v9BM2h0Gcr/4uTfxtCMLW1o+XPXdfnRj37E6uoqr7322jYjCSIbpQFBRtfa8/2HFwjJOtm7MJSLciC2qim//PLLrK6v8wd/8AcsLS+nr9N63p+TPZ+dTiclKH6Z+EoiSt/30ZIkJfFYcrBoFgvz89y6fRsd0CyLWzdvcvvWLcYnJpiammJqaqqvp5e91Z7npUzXB0ngqTplHMf4Ycj8wgJPP/XUF7q+ndKJ2Rpett7Y+56ErQcj++VnUyq9zDgt+2eS8Mmnn3L79u1tKZNe5OSw2SAISCRjbNe06w5QddGdaieFYpFWu43r+4Ja/uqr3Lt3j/Mff4zjOLz66qvpd2RkosqcZeG027Tb7c99TgN8++B5HkkYimHmmtBJzRq4KIo4d+4cvmxVcByHd378Y/LFItN79jA1NcXo2BhmH0c1zQTJ9K4aEr8b0r5BaTDmZmcxdJ09n5dtmWxvT8sinXOrZaZyKMZ4xsgqg529psX2In80+8fqgwB4ZfIVnh8/s/XZ8je9Kl076TVrmoZpWcRBQCD3D6A/WXL7m7sIgYrM04+hrKLK9Y0NGu02E+Pj/Ac///N8+OGHvPuTn/D8889zMDukQkaVak5nU47u+7KzUV+JoYyiiDhQ9GQR1WQX++1bt7hw4QITk5PsmZ4ml8tRLhZZWFpiYX6eCxcuAFCtVJiURnNkdBQjQwsnSYQs3UNEkyBFBxALcn5ujigMP5dXqAxftpbY77rVNZNsz7Gzy79huwHe9imaRuD7vP/++ywuLXHmzBkOHzmy9b4+52WaJoauE0gNx06nw0hWwHgXKGWSOElIoqhLsLgXuqaJeXLr63Qch0q5zIEDBygWi7z3/vv84Ac/4I0336RYKKQPrYZoU2m22zhyOsIAP9uIoogoCLDl4ODsvuF7Hu++9x6b9TonTpzAzucZGxmhJXVH78/NcevWLQwp9D8lhf7TmqV8Lv0gSGdZ7jYjUUHXNCJEj/Tde/eY3rt31zJPFv1Ief2QZcunV6xtH5Lcb9LPb13+baIkQkeTpBmTv/XMf5Z+tvpzeWmJ9957j1K5zOuvvy4ITD2GN4ucZRHIiSbq+dwtTb3tPOW1xklCzM7RcqFQwGw2CT2PjuNQrVR47fXX+fj8eT786COcTofjJ06k6WclomDImaCe530zDSWIBa8jNur0y00SLn32GdeuXePY0aM8cfQoKysrxFFEtVajUq3y5LFjYvbb0hKLS0vcm50VdG/TZGJigsnJScbHx9ENQ3yGrj/U5BHNMFIm1d3ZWSYmJ/t6k2kk2OdLzUaHuxm6L0pKSVOSOywoz3H40Tvv0Go2ef3115mcnOybyu3t/bLkuC8/CHDabYqfQ0lELXg1LX2na1N6rrqui1FFrku5VGJ0bIy3336bd3/yE374gx/w+muvURsaEmzCKEprQJ1BRDkAkESRGDXXQ7Bpt9v85J138IOAt996C8/3abXboGnskc600mZdXFpiaXGRTz75hCRJqFYqTExOMjk5yfDISMr8trMloV2gGwaEIRsbGzSaTU7twHZVRL6+0HaW0IStGujn3Tsurl7inYV3GEWwxhMS/szhX2JveesZ1zSNu3fu8OFHHzExMcHLL72EaVndDrYMJMgwTC05lD6MIlqt1oNJgD3Xq9phIjlOTO/TK62i5JIUIOg4DmU5VejMmTMUi0U+u3qVdqfDGSWcIo+v6zq+739zU68AkdQTzbaEfPzxx9yemeH0s89y9OhRPKkmH8obqQq1Octi39697Nu7lwSob26yuLjI4tISFz7+WGi5lssMDQ0xPT39UFJGhmTXep7HyvIyzz33HCAZWQ8R7cHuRlQdCx5MxtkRu9QoG5ubvPOTnxDGMW+9/fauA1B7HwDLsvB8XwgSh+HDpU8UFENZRpS9wgDqnigmcLFYpNlsCnKO7DGrVCp897vf5d333uOHP/oRb731FkMjI12Gd8B8HQAgkoPdNcMQG2uS0Gq3+eEPf4hlmnz3u9+lXCqxsrICmiYmbsj3appGrVajVq1y/Ngx/DBMHe7ZuTmu37iBrmnUhoYYGRnhcJ/aXD8YMrJbWFzENE3G5fipbXvHLnvQTgRAhYdRGupFHEf85qXfTI8PULbK/NUn/2rXca9cvsxnly9z8OBBnnvuue2fIQ1jNlunzsWyLKJE6ODm8/nPpRqkaxrBLiTAhK1IOi/n20ZRhOt5ItrVNI6fOEGxWOT8+fP4vs8rr76anq9uGHie9801lIHniQZRw0jZlTdv3OD2zAwvvvgiBw8cALYYZUpWrd+i04ChoSGGhoY4ceIEnu9z//597s3OpmNecrkck9JjnJqcxO6JFJMkQZP9UCurq4RRJKIxPt/CfNBi/6m0Gtn5YVleWuKDs2cpFgq89corD8+2kwvKlPWedqdDIr03jQd4wBmocVmqry09X7YPeC6XSrRaLYIwFMO55fdv5/N85623+PE77/D+++/z3e9+N41ANU3Mq1QZggF+dhHIcVI5y0LTNIIg4L133yVnmnznu99NGZhqnJSKVujdO5KEnGl2Odybm5vMzMywsLTEtWvXuH79OrVajanJSaamphgeGdm2/hLpbCbA4tISU5OTqCEFn1sY4AHcBj7nMf9w7o+51bhF1jX/a8f/KpWcSEPGUcRH588zOzvLqVOnOHL48EM971mYponm+2I6U8983YeB6qNWzznq/Zk2F+Tvi8UiTUnsy/a17j9wACuX4/333+fypUucPHUqTeVGUfRIslFfGZkHRPSha6JH8tNPP+X48eOpkQS2QvFETAPYlZAjF7+dyzE+Pk6pXMYwTcIgYGlpiaWlJT766CMARoaHt1Itw8Ppg6TrOpvr69Rqtc8XVfWcw074aVOv/Y59984dPv74YyYmJnjp5Ze7PuehoWmiNUSmqirV6pZRVh/9gENEcsK5Lieo99LNFQzDIJ/P4zgObcehlvlODdPk1Vdf5U/+5E/44P33eeutt9JjqGHXA/xsI5bjs0zTJE4Szp49i+u6fO9730uNJGyx2APZgrYNmXIPiHVeq9XYt28f03v3ki8U2FhbY3FxUQxbuH4dy7KYkGTCycnJNPVr6Dq+59HY3OTJY8e+2IVpOwsJpPVJHn7vcMIO/+zKP5PvE8ecKkzxHx36DwHhcLz3/vtsrK/zyssvs2fvXkK5L38eWJaFhiABjY+OdvV2PnDvUPwGtjJR/ZxrhWKxSLPVwpPj+LL2YGpqipMnT3Lp4kWqQ0NbPaxJIsY3fsn4SgylntnwGvU6Z8+eZWpqimeefrr7dZoYXJogapo7Gkq1uCRrVW2qxUIBq1pldHSUp59+GtdxRIp2cZEbN25w5fJlcrYtIs2pKYrFIiurq5+f2p1Bsoux/GlnUaaGVj5UVy5f5uq1axw+fJjnTp9Gk9M9+sn4PQiWZdFptykWCoJJ2POZ2fPuPXocx5hyKLXSYNwNpWIR13HEgNVyuevhz+fzvPbqq/zoRz/io48/5uTJk6BpREEwMJQ/44iiCEvXCRDr8tKnn7K0uMgbb765jaxhGoZQtHlQ2i3zvHquSyKZtKVikVKxyL79+8U4r42NdO/48Nw5AIaGh5mammJ8fJy19XViYEKmXb8IdizpfIG06+/c+JdseBvifdJk/YWjfx5DN2m3Wrz77rv4nidUusbGxDP7BfYlTRO9351Oh1KWfdonCu6XoUriWEhfShbsbs+4JTV9Xdel0+lsY+QefeIJ6pubnP/oI0qlUhrZ+1/AAXgQvhJDqcl6VRzHvPPuuxTyeV566aW+C0GF5L29djshy1jLGtY4ScjZNgcOHhTz5eKY9czin713T0wrjyI8z2Nzc/NLG9OiFEKCIEgnhHe1g8gF4noeIAdJS0JBynLTtPTagiDgwoULzN2/z8mTJzl27NiORuxhYZomrXabYqlELO9fv+tIoTYYWUOOEU7Cg4wkkM6e88MwLc5nMTQ8zJnnn+fDc+coFAqMSPk613Ee6Yy5AR5vBL4vHDLDYHZ2lus3b/Lc6dNM9jFOKkJ5mPWoNm/lYCuWfJL5/fDwMMPDw2IMlOumtc2bt25x9coVYsmdWFxcZHrPnociEGaxG9s1lPMfdV0XQi2Z96g0pZPZO2Y3Zvl3N/8P8uRFtIbBqaFTPFl7ktWVFd5//31yts13v/c9StLB+GmE1n3PQ0t2Vj7rcrbVz+SfkeQ29L5uJxSLRTzXxXFdKpVKd4StaZw5c4Z2u837773Hcy+8QIL4Xr9sPHJDmSQJiVSBmbt/H6fT4Rd+4Rd2jBaVOovn+w81bsn3PHRNw5byaDvdfE3X0xFRzzzzDI7j8NH588zPz7OwsMD9+/fJ5/NMTU6KNO3ExI7T0mMpLB6Hoailyfx6HMdd59CSNUBd1/tOw1Cejy+JNb1wOh1c3+eTCxdotlqcfOYZJicnabVaqJlvadSp5uQ95AOgaRqddpvxiQnCMCT3oGkdiqAjoz1V63xYFItFgkaji9STxf79+1lfW+PW7duUKxXK5TKtZpPaI5CjGuCbgdD3MWXf79WrV9m/bx9P7CAxqVpHAt8XfXoPSFmGUZTWwC3J+Ex2iLLy+XyXw726tsaPfvxjdE3jo48+4mNdZ3h4WNQ29+zZ0eFWDnQURWnNXv1MSdKBcP5d1xWlqh2uI8jsHf/brX+FneSwEfuVRY5f2PMfMHf/PjO3blGpVDh1+jRxHAvdXBkVhmGY9h9+ngAhHWgt20l223O6AgTpBCQyc/gwyNs2hmEQhCGO626TI9QNg1deeYXvf//7zN69y/4DB3AfgVjJIzeUKppK4ph7d+9y8ODBXXtccrkcBnR5UjshkVFbjBwTlWQExHdhjILo1fFcl4mJCU6cOEEcRSmN/M7du+iamNQ9MT7O6Pg4hUIhpTanjbNJQiQHxvZCQ8oeyQdRRcrZnihV87AU9V16jEnmgbl29arQuz1zhlqtln6mQm/q1dR10ZwtjfNOD5vv+6LfqFIRhnI3j1idl5z8Esbxg6fJ96BULNJoNonkBtGvX+3Y8ePMzs0xPz/PiRMn0oh7gJ9NBJIFv7y0hB8EHD9+fMcN3cxs+I7rPlAxJvB9sW+odrWHTPNntV6fe+EFKqUS9XqdxaUlrt+4weUrV8jn80yMjzM2Ps7oyIgokUhdafVsx1KwoC+SLWEW0zS3qdCkvejArHuP91bfFz+X/7295ztE9ZDb924zNTnJiaee2pKRk5+ZJImo52bKO7phYMh9Q9f1beIOCs1mU2SJZOvXrsOyZV0Smb1TpKeHNcy6rlMqldhsNMRQ9z7fq53Pc/jIEa7fuMHU1FQqhvBl4pEbyiAI0ID78/Nous7+/fvxMnqBvcjlcinNdzckSYLn+0RJgqm8wkwRHK1bjKD3C3ddl431dY4/9RSaNIpj4+OcOHGCRqPB0uIiyysrXLl6lejyZfL5PKMjI4yOjjI8MiJ0Uw2jayHrur6dzYUQSui3MJRXmM/ntz3Y62trXLx4kZxl8fZbb1Gp1VKvMxVEjmN8w0DzfSKp5BFmHgYFXdcxpSyUIQUH6vU6CaJVIwjDvvcoyTgEqHuaJKIOJAkWWubnu8EwTexcDtfzcD1vm6FUnvWBAwe4eesWBw8c2F3eb4BvPVTZ4d7sLPv37WO3SRoJQpDflQ7gboYyAVzPI44iivn81virzHF3c7YXl5bI53JUKxVM0+TQ4cPsP3CAwPdZWVlhaWmJ1bU17ty7J+QcazXGRkYYHRujVCphGAamYYhanTTuat/QdR3XdXE9DzuX2/E6hBOZ8P+e/V9o0Ux/XrYqnOA4d+/dE1yG554TjFLp3CYZg615niijqP0kDOmt8Jpyj1N7h6ZpNJtNypJrsNOorTSzltkXojAULWWmmTocD/OM2/k8WqOB7/t9W8aCMGTvvn3M3LnD3Xv3dlQX+mnwlUSUTqfD3OwsTxw7hmmaOI6T0r17Ydu2UH+J4x0jD5WrV7nonVKk2eitdxtfXloiAUZGR/F8n83NzS0NRF1nanqaqelpIbbcaLC2tsbqygrz8/MYus7Y+DgTExOCcdsnlZiq8vD5yTz35+b48MMPqVSrnDp1irI0tJphbBPnzUURkYwG4zgmjiIR8cnUsPq77/uozL2u66yurqIjUqJJFHV5hrulocLMHDjTMAgzxfkHGUs7n8f1POEE9WjqBkFAHMfs27ePu3fvMjMzw6nTpz/XfRvg2wPlkN25cwdN0zh85IjQF91pir3s8TNgx0yEWp+qBqhlsjq9a3ebA5gxmosLC4xPTAjBDtclDMM0y1SqVDhSqXDk6FF832djfZ211VXu3L3Lrdu3KRQK7Nmzh/GxMUbHxvqmIPvJWfbDDe0mM62Zrp+9mXud5bkVThw/zsGDB1HTmAxdJ/tJSZJgSSaxivbU/hGp0lIcC45FJoNl6no6F1j1rXbd32RnZZ90SLx01lUrj6brO+43sGWsgyDA9bwuNaAkSfBcF03TOHb0KJ999hn1RuNL78H+SiLK2dlZLNvmxIkTdNptwjDEdd1tM98SRArAsiy8IMDriTyUl6dmMfqSGZmTihr9xAIUsgXkIAyZvX+fcrksUoFBIFQmpJE2TTNNeximyejoaNqM3Go2U7GDSxcvEkYRhUIhldYbl4v/izDXkiThxo0bXLp0iX1793L02LGuCLXPG7rEDFREa3a9RGw4ilSkHojNep1SuYwnH/QojimXy1sP7g6fqViFqj6paxqxtjWNYEeDmSRpFkGpZ2QNs+f7IJnLTxw9ytUrV2g2m9uPM8DPBMIwJAgC7t+/z/ETJ6jVajSbTVzXJSef0y5IUk6/bFRvZkQ976ZliU26J/LJIju8IYoiGs0ma+vrTO3Zg+M4JHGcllbS6Ev+r+s6U5OTgHhuVmX7ydLiIjdv3iRJEsbGxlIta8XcTNOhu2z0TuhyVv+w62cj2igH2vt54cUXqeyQxeqC1KxV7WK9SIlFUSRKPHEsHF3XpVgo0Gq3heykYXQPuuiDJBEtfzE9IiXKGZHp2L5lLOnQhNImZA2lcrCTJOHw4cPMzMxw7969b56hDMNQLKzJSSzTpCCVWjy54LMN62qBWLkcukw/VCqV7SlA5PidRDS8qy9Z0/W+C14ZR1+K+cZJwtraGuPj4+m085xpUqtWdzdMQLlS4WilwtFjx/B8n+WlJRYWFlhcWOD2rVvohpHWJ8ql0kNrDiZxzIVPPmFmZoYTx4+LFLAyFDudj/z5TgtM/c7MjNFSNc7NzU2Ghoa2mnRlAVw3DHKWlaaWe6GUT9J73vNZ2dRY9ntLELVYyzRJgkCID8hjeIqAIZmEk5OTXL16lfv37/PCSy891P0b4NuFMAxZWV4mimP279tHzrIwTVNkqHpqVWrl52w7bVdSfXf9ohxFouk31L0XkcrGBAFhGLK8vIwmWbEqKi0Wi0JJZpd9wzDNVAQlOXWKRqPBwsIC8wsLXLp0iU8//ZRSqcTk5CTVWo1qtbrref3vc/87jtZNWnlLf52fe+N7WLYtpq7sZih3cQ4UdF0nl8uhQpU4Sbg/O0sYx6L3Wt7nZqslAgupx9slU6ruo8pEkXGyM8MQQBhmwzD6MpcL+TydTqeL0RrHcSpmX5DTTSYmJpi7f3/HlPAXxSM3lI16HafTSfuNsgu+3W6LXHdPMd3O5dDZGn3TL5xXjNFsxNlrMGIZlnuyhqcQyDrG1NQUY6Oj1BsNEc2qWXOKFCTPazcCwZ49e5iYmOD06dM0m82UEPTZZ58RxzGlYpHp6el0ioHRx8sJw5D33n+fpaUlnn/+eQ4dOkScSXc8sN+KndtEkszv1XWFYUi71eLE8eMpQUhR5eMowo0iXIQxzNm2mPaCZK1J8pKhDOUu7D4VWaepFURq3Q/DtI4UBAG+5xHHMcVCQRAVTJNKpcL8wsIOVzXAtx1JkrC8vEwhn0+dzWKhQKPZxPM8IWShCGgZQoppmoI16nnCCe4xBpGMkjRIMxz9np9ARi8q+lRoNhoUi0UmJiZwHCeNXvVdoqFt16ZpwuEulznyxBPCKVhdZUm2rt26fVuUd8bG2CMnoPSWd86vftz178PGIX755/4GhUIBR7E+d4mo1F6wG5TTq7JFmqaxWa9j2zaTExO0Wi3aUmoykfcsCAKRFczlhHauPAdF5NnNeCknp9fRBrFvqLZB3/fTSTEqi2VZFmEYMjQ8zJ2ZGRYXFzl06NADrvDh8cgN5ezcHAkwPj6e/qxcKtFoNsX0inZ72yLI2TaargsDF0V9NQGzaVcF1XAahiGu5wnPUf5Ol+F7zrJYXFpCAyYnJlLvJ5Z08ewX2Y+okjWgavGoSLZarVKVQu6tVov78/NsbGwwNzfHzZs3u4TcpzJjeT4+fx7X83jj9deZkKmaz5O67RU9yPZbqXuSXg+wtr5OkiSMjo1hWRZ2Po9hGBSKReElyhpOtp9LpbeVWkjW4GcNoYJKwWY/H8SCb7XbeNJDd+SwXOVAqbT68PAwC/PzO5I3Bvh2I0kSVpaXOZIRA7EsSxgCx8HpdMS67IkKbdsWZJg+rQRAuieYklACpGk/JV7iel4Xs9w0TTG9JJej1WqJ8opkpWa1RXccjCCfm231zszx90xNsUcKuc8vLLCyukpjc5OLFy/yySefUKlU0n1jdHSUvaVpbjZuAmBg8iuv/0payupV2ep7Tup8FYkv2RI/TzLv7d2H1tbWGB0dRdM07HyeMIpEq0g+L/rGfV8EKJKLYElnO1ufVFD3ZNsEFOVom2aXaItlWcS+j+f7aXtPnCSU8/m09DZUq6EbBrdv3vxmGcrF+XmGy+VuuSnDoFwu02w08IMAzXEEu0t+KTnLSoWH+/XdqbSrnkm7gngIWp1OlzqHaRjY+Tx2hjy0sb6epkuAtKi9U7i+TSSdnrpHknQtzkRe4/jEBPv27aNQKNCo10V9YmmJCxcuiHSBfJA9zxPC4KpnMMMYyy7mBCHeoB6ztPcq2d4/qox8P6ytrZEvFNIHyzQMojAkjmNs2yZn28RyMGsgmWau66Ypq2LP96HGDvVD9kFLkiT1DMMgoN5sYko6umpPSZIELUkYGR5mdm6OxcVF9jxoivoA3zo0Gg2arRajo6NdP7fz+XRtdlot9Eqlq+alBCranQ6jfcbH9XOwkzimI5Wjsk5lLpcTbRDy+FEcs7m5yT45bUftFapFrO+EoczP0kgp02+tDKn6TDSNYqHAgQMHqD3zDFEcs7K8zOLSEvfv3+fmzZvohsEJ4zhL0TLk4T996T/lyPCRNErsGvqs9qnMdcGWM93F7n2AgQ2jiPX1dZ6W825NSS4Mw1CUwPJ5EtsWtcQgIApDUfKS4/xM0+wKinp7wbNI07KZ3+XzeTypM1suFtMslCHnGytS4fDwMLfv3OHndriOL4JHaiiTRIy5OdCnSdgwDEqlkoguPA8N0duoUoT5YhFXpWf7GErY6uMLgoBOp5N6GOkit+2+hm91fb3rAVTpms+jOp9Al5TeTgQWFYVVazWqtRrHjx/H8zyuX7/OletXaIct7KjAD3/wg9RjnJyaSqX8lHi7liTbUkRZz+/zYG11VXiF8t+G7JeKwhDkRqMbBoVCQXiKyouTLFrNdTFklKnvUBfeugVbDoUuGXiWadJ2HDTXJVcqUZCTAkiStCe0Wq1CkrC+vj4wlD+D2NjYQIdttTpd0ygUi8RJQhAEtFotypUKhnxO1NQJTzbtZxmyKtsEwjlOkgRHRp/I9KGh69i2nbLve88pjuN071D9hmGfbNRuUHtHenS55uPs7+XeYZkm09PT7JmeJkkS6hsbfHj+PO6Gx+vhqyQtWDq/wMU9Qv90ZGSkSxqua7/IRI+wxch/EFtdYXNzkyhz/bqui3GFkilrylYXK5fDyuVEmtTzcBwnrRs7jkM+n0/LObqm7SjBqWbfqn0vb9usBQF+GJK3bSG/mbnnisxZrVZZX119qGt6WDxyQ5miT3ht5XIUk4R2q4XjusRJks43KxaLtFotOo6TDuZUUHUyTddpNptdDabFfB4rl+tbCwTpFW5sbInosuUZPoyh3JZOlJ5MNuoDumqMvcbt/vw87958j39v/SGbbPBi7UX+ythfYnl5hY/OnwegVq0yNDLC5MQExWKxf1pHKpCofqSdUhlZhFHExsYGz0ivEMQDr0Ff2UBN0wTpStKzE8/D1HVc38f3fex8Pm312alGk71naR9XHBMGAQVZl8xeE2wJ5D/sQzzAtwuJSgXuEKWV5P7gBwHNZpOSnFmo6TqFQoEwimh3Ol2GUvX/aojeO6fVStebYZoUbXtXgs/62hq6rncZb1OSTx5EHklrgj2liGxECWwrYWRfG/g+n168SLvd5vSpU3z8ySecfPppms0md+/c4fr165imycjICCOjoxzYvz8l8SnE2X1C17fSrjzY6V5bW8PQ9a4+RcMwiKTmdK9SlyrnxNIBVopm7U4HUw5L2GmfTu9N5h4oVSN1Deq7ipMEXf7+iwYPD8JXYyi1biWGbG+hbdsk8ua5jiNmSxaLom4mJwJk068JYsE4soisbrSdy1EoFNIZZjthc3OTOIoYyaRlVJ0ykl+Ekdmks1FcF4tTGUj61+j6zqJMxKDqG9evc718k1anBcCH9Y/4S8/8Jb779HfxPY+lpaV0QvvdO3cEE1ROMJicmNhS0VGFdnV4+Rnqd+pn2XPY3Njo8gpBGkpdF7P/dtB9DYIAwzCoVqvkLAtXSvc5rovveVi23V/SLmPogiCg3emkx1cU+n73bbcHaIBvP9JxTP3KHohnrlQqkcgRbo16nWKpRM62KRaLdNrtbelXxXzP9gVquk6xUBD7UOaZ7oe19XVGekZv7ZqNytb9MrwBdW3iBLYHEPT5XavV4r1338X3fd568830HCYmJ3ny+HFIEjY3N9MU7dUrV7h65QpDQ0NMygkowyMjXe0uSfa82O5k9/57bW1NjB7L/Mw0DPyebFTv9ahJUEXpwKgaY6vdxjLNtL1mp/uQJAmO4xBIyT0tIwmqaRpatgyG5Eds/zZ+KnwlWq/9LHw2ArFtGzShPRr4Pk05iLlQLOL1pF8dx6HRakEcU5RspzRPLbFb8/ua9AqzXpGmCe1BVadUA2Kzi6jPhfX/e+91ygUQRxEfffQRc3NznDx1ij+a+0HX6xY7C5wcfYacbbP/wAHGxseFik2nIyYZLC0xOzsLyLFhU1NMjo8zNDTUHUH2WSTZBb+2toZhGNuuPytG39dQSsmvfIYC7gdBqnUbOg6GLOpn2cMKrmQfJ8ipALadjthJiT9kRgz1Yb4N8DOGndjeCIOpuA4qsuy020RRREEOFA4z6dcEaDSbtB1HsGVlLVDVzHf7PBDrcG11lQPZiRn0ZKOyjvTWG7cdp6uliu6osZ/YwPraGu+99x452+bt736XcrnM5sbGtns1NDwsJpzs2UMgU55Ly8vMzMxw7fr11OGeGB9nfHJSdBdkU5/admGWLNZWV7cNt94tGwUQymyfIuMouU5PDo0PwpBAZqay+t/KPsQyiIrimCSKhEh6djizdERUunk3bsZPg68kokwecOJq8yxXq7RbLaIootloiMZdTWg3RpJQUm80SOKYXC5HpVLpK66u6boYFN0H6+vrXQNZ1Tlappn2S+06B7Pn2iDDHuvze03T8D2P995/n83NTV555RWm9+5Fu9/rSW77ADGkemSEPdPTPP3MM7iuK2ZtLixw49o1Ll+6hJ3PMzk5ydjYGBM7CblnHoDl5WVGR0e3Xb9pGISamAzSe/VhpvaraguaJoToc5aF53k4nifYsmp0l2ITxzGO4+CHIUkcY+dy2LYtvmfEBmPbdnoD1APwsKLJA3w7sdsUENWKkchUW6lcxnRd0a4h9wo7l0vTr2pSjuM4kIhB5dVKZZtwej+Wu0K708F1XUYymZiErXUaSrb4512320oWPYZyTqp0jQwP8+qrrz5wSokiAVq5HGPj40LIPUnYWF8XZMLlZe7euQPA8MgIExMTTExMCCJh7z6d2Tc2NzfxPI+xsbGt1yXJA7NRgWyvsbNzaHUxlDkXRbiOgy/JVFYQpI52It+rMlckCeVyOXW406yAvF+KwKnr+o6tOj8NHqmh1DSNUqVCs17vWztT+Xl1UYauU6lUaLfbBJI1pdIaS8vL2LZNJMP44aGhXQ3aTrnq9bU1pvfu7UqFwBZdXDFqP3dLwg61hna7zbmzZ0XK5K230pTv9paX7i+2i7kmkc/nOXjwIAcPHiSOY1ZXVoRK0PIyM7dvg6YxOjrKxOQkU5OTImrM1naDgJXVVU6dPNk1UkjTtHRqSz+hZqVJa/VpJNY0TTADLYtms0mcJLQ7HdFDBbiSLp5EEYViMa0rmKZJLD1KO59PU1JqLbSaTQzD2MZ6HOBnAyMjI/i+T73R6LsGerM9dj6Pbhi0Wy1CqQEdhiEbGxugifavBCHOX61Wd36++zi9IAxFAgwPDW2xVSVM0ySWPYQPMpS9R+51srPs+RvXrwuVrv37eeH55/tmerYdXz2/mXKX0rIeGR3l6WeeodNui37v5WVu3LzJZ599hm3bTExOskfO2+w1yEuLi5imKQwlW1mqrL51JLVrs+fiy6EYvbVSEM55qVTC8Dw6MrUatduinUTezxhpWEulVLUNtiJYFUUqw2kYBvV6PW2z+7LwSA2lYRjs3buXe9eu4fn+VoMwW3XKuCfy0zQt9RzUpOpmq4UfhkxNTYlUiUy57ga9T90wCAJa7TbljNqPghL4VgXjBzHYthnibYZPPFwXL14kn8/z3e9+N50Ft3UHsm/oH5HupPahaRpjUgHoJNBqt1mYn2dpaYlrV69y+bPPxNgwyaKdGB9neXmZJIq6ejjVZylx5lRzMZNGCuWC3e2em4ZBpVKh4zi4rsu6TA3ZsnZZyMrjIcgTiZTF6hdNrq6uUqpUtp3rAD8bGBkZITFNVldWONKT7tMgJaBkYVkWlVqNTqdDLklwOh06MvVaKBYpF4t9VWO6jt0v/ZgkNOp10RMox/n1fm4QBPgyItoNWs959yuTxHHM9evXuT83x/Hjx3n66acfOp2ojrdjhT8RhMlDhw5x6NAhoihiRTncS0vM3rsnDOvIiJDllA734uIiExMTW3rYmdKIbhhoUuQ9i0A9z2oSSb/7IR1tTdPodDq4nke92RR91YaRMpDV5xmyLBZJp1rtj8pwGqbJ+sYGL73++kPdr4fFI69R7t+/n8uffMLq6moX0xR2rz/l83niJBGFXlm/DH1fTCRnd4WHfp+hahRJklDtEeRWsCwrpZ0/FIMtA0VlVlhcXOTylSuMDg/z2muvbUuJauweUWaJUA+DYrHI4SNHhHi01JVckn2bSlg6J3sk1SLLbhjKKwyjiDgM0VWPmBR81ni4e66xxWyNpQ5msXfgKluOSZhhLCuv0DRNVldXeeLo0S9Vr3GAbw4Mw2ByaorFlZVtv9up/gdiUy6XSqz7vphSgXjuc7bdVTrYFT2OYgw0ZBtKP+Qsi46s7z9oFua2iLLn334QcPHTT1nf2OCMVOn6PEhr/DudQ08EaxgGY2NjwuE+dYpOpyOGVC8upg63nc/jOA6HDx8mDIJt0aFpGPjSeKm2F9UOorHz0IqueyD3IsWI9yUjvtfxUC05sdSuVlOj1HU35R7fW0v9afHIDeXIyAgxsLK83GUoH5RB9iSbslqtCsm1TofNRgPDNMnnculN2g1xz4OkRLYruxhKpQfbK9j+0EgSrl27xmeXLzM5Ockrr7zS18A8KPX6IGWe3ZyMrK4kQLvVYnFxkYsXLxLFMX/4/e9TLJXEoNmpKcbGx9MFqGsaMVseqaoxWDtMewGxuBWxJ5BKHZVyWXh5mkZbqi9ljZ4lm4RVqjdOuudsbtTrfG+HIb0DfPthGAbT09NcuXBhez+kKnP0eQbiOKbdbgsJuNFRTMPA8TwazWYq4P0wg52ze4eGkOIc2mGIuFKqimWdst/Eo10hr8d1HN5/7z06jsMLL7zAgQMHPt9x1LHg8xFaMr3QxWKRQ4cPc+jwYaIwZG1tjZs3b+I4DjO3b3Pnzh3GRkfTnu+ydIJV6hW29vZA6kLvtk+HciKM63nEiRicoKL2IAhwZcSZhWkYxFGEHwTkcrmtyNUwWFhYwC4W2dsTlP20eOSG0jRNxqemuD8/z+nTp9NCbdpb12fBO66L57qAqD1MTU2xsrLCZqNBXteJEiFkYJomBdk32UtrRh0/c+xWs0m+p0k1C0vW6dSEjZ2imX4mStM0kijiwoULzNy5w6FDhzh8+PCOKYfehRw/RI1y18/v/ymAIDuMjY0RRRGvvfYamqalqZbbt28Lr3J8nOHhYarVqliYUj5KaerafUgESvJLyYIplaByuZxuHO12mzhJaLXblIrFNP1qSkMZhmF3vUHTWFpaQtN1jgwM5c8slKE89/77zM3NcfToUaBn7ffwAqI4pt1qpXqhY2NjgnAiNUnzhQKe77OxsYGdz5OX/cHZ4yWZP7X0xwmtZjNV5OkHy7IIo+iBhnKnXuPNzU3efe89EuDM888z9gVr87vtGzt+Pv33FMM0mZic5N7sLLVqlVdeeYWlpSUWl5a4cuUKly5dolgqMT4+Tq1apZpxJDw5dFsNglZDDxSCIEhFTBL5+ZZpkpdpVmU8PclxKMj0LMiWHDnVJEnkAGrEmrk/P8/RY8e+dDLgIzeUhmFw6tQpPnrnHe7cvdu33pD9ktyMkSzk84LowdbkCTRNRHtyk222WkIgOZ9Pe6HU16EDYSbF2Gw2d4wmYWvGomog3mnB91tYQRDw3nvvsbKywpkzZxgeHpYv3qHG2PuD3oK+iij7GOudFvZuWFxcxDAMJiYm0GVa69kkodVqpWLM165dE/T6QoE9U1MMj45SKpXE0NZMbSKKolRLF8TDach+NKW+oyQGS+WyoO1LmrcSwVdDYFVqK5YPjKbrXLl8mSNPPNGlDzzAzxbUZPsDBw9y9epVDh061CVyrjSWs73NykiqdWfoOpVqFVfqCRfyeTGuSa5fNcEoL7WO1WauaRo6W0al024TRNGuEz1Ub3FW/ORhsbS8zAfvv0+5XOa5M2dQal5fBA8ylJ8XSRyzuLDAoUOHKJXLHJFC7lEUpWTChcVF7t29SxTHjI2NMTk1RaVcFtKhuZwIWmTUqhzrSJKrVAdDSTLfsy2Dmq6L/kmZwlVZPsM00TLkP5V2XV5ZYbNe54033vhSrj2LrySiHB0dZc/0NFcuX+bA/v3d7C1NSwvcak4liJuSjWIqlQqNRgPHcZiWpB4lfhxJg9mRbMucan7XNEEVlsdoNBqMSNbWTlAq9Cqs74veCNhx+Mm779JqtXjjjTcYGRmh2Wo9YLHvHFH2Y649EA943eLSEuPSSG69RaNSqVCRY8OcToe5+/dZXV1l7v59bt2+jSZTWFNTU4yNjWHI/kmlhGGaJoXMhBGlvqGgaxrFUik1lp1Oh1KxmBpU+SbxMGhiKG6r0+Hnfu7LVGoc4JsI5WRfePddbt68yfETJ7p+nyXGdNrt1EiWy+U0G1QsFtEkUS0MAmpTU4Ry4LIaBKwGyeekMo9KJarI9EElG9gSLYnVEPSHjGhmZmY4f/48k5OTvPTyy/hyYskX7gVUz95OqeUdItqdSjkbGxt4vi8GNWegasjK4V5aXmZpYYH1zU0uXbxIgtjDp6ammJyYoFKtpkOhxWkIvd2cVFFL2N6LqRjyjuPgBwGGaW6pgMlMpNLZTTSNq1eusHd6+kuvT8JXFFECPHn8OGfffZebt27x5JNPdr9ILrB2uw0IndbeVF+5XEY3DBIZkufz+TTiVONuwigicl0c18XIKP6rRd9stTj4gJtomSYO7Nomkl1S9Xqdd999F03X+e53vkOlVutuht0BOjsrUTwwfdLnZxrseL6e67K2tsbp06d3PB8QRffx8XHGxsawbZvllRVWVlfZXF/n04sXiRPRgzY8MsLU5CQTExPbJL8SXd96WNW1amJmX0s2hHcN7U7EdPUojomBG9eusW/fvm2N3QP87MGQTOqDhw5x7fp1Dh0+3O286jpaHAujJ5+53lq4+lmjXqcjxzKZlkXFslKD6XkevhTvVi0IuVwuLdE0Wy1M2fu3GyzLEvV638fcgeOgUrpJkvDZ5ctcv3aNI088wamTJ8XEJBkoPKqI8vNmohYWFshZFiMqQ9YHmqZRrVSwczmOPvkkjuOwsrrK+uoq8/Pz3J6ZQdc0hoaGxKDqycmtjFv23PoY65xlpSL4ruNsZbdk9KlE7peWlmg0m/zCL/7i57zCh8MjpxQqT6tQLHL48GGuXrmybQI5soaVJKKBtd+CVDRiQ+q7ZusIxUKBoVqNSrmcFoLDIKDtONTrdRrNJhsbG0QPSJ+o89WldN6D0iiLS0v88Ic/FO0fb7+9laN/ABFH/G7n42ZHy/TFDs3YO71+bm4ODR5Y4FbpVd/3qTeb6JrG3j17eO7MGd544w1OPvMMtaEhlhcXOXf2LP/+3/973v/gA+7eu4cjH/B+HiuIVFpBptGzkl+J/DfA3L17uJ7HyVOnyOVy7Nu3D03THiq6vHTpUrrWfu3Xfu2Brx/g8YdlWSBr1Ukcc+Xy5fR3alMNslmoTA08i4JU7lK1ctWza5gm5XKZoaEh8RpZV1cTKjY3N2m329Q3NynuEk0q5OT8xZ32DVUWiuKYc+fOcf3aNZ599lmeO306LbFk+5u/CD4vtwF2McpJwuzsLNPT0w8kPynnpN1u47guhVyOY8eO8eqrr/LC889z+PBh4jjm6pUr/OAHP+AP//APuXjpEssrK0Q99cteqBazBFKVHmTwozgON2/cYN/evUzv3ftI9o1HHlGqoZp+GPLEkSPcu3ePDz74gDffeCNNA7qeRxxFaDJN1w9RHFPM52kZhtAMbbe7XqtpWtpzExeLQmVHMljVYFS1iBzHEdO4dyD15HI5MVZql/TrzMwMFy5cYGpqipdeeimtn6jCtDqnnbCtPSSJM39P0nvXD7st+H6/m5ubY3xiYsdrUQtOTY/veJ6oKyDadHKWRbFY7NLN3NzcTAlB5z/6iAQx6WFycpLx8fFtmpAgNj5bstw6crisYre1Wy1uXL/OE0ePpt7rK6+8wu/+7u9y/vz5B4pA/Nf/9X9NFEU88cQT/J2/83d2fN0A3xzYti2cYsPgxIkTXLx4kfHxcaaVw5ckdDodkkSMb7N3KZUUCgU0x2GzXqdcKnWtJcMwKBYKQos0DNM6WizX6vrmpjiXVivVJu1nkHOWlcq59RVJ1zQ83+f9994TKl2vvspeORWkF1+4xrhbe8guTPl+WFtbo91u8/zzz/f9fSJTn2rfaLVauL4voj7LSlOl1Uol7XgIwpDl5WUWFxeZm53lxo0bIo07McHo+DhTk5PbWK4q0Gq1WmkQlCQJQRhi5XJcuXyZwPc5efIktm0/kn3jkRtKkFPtXRfDMHjt1Vf50Y9/zCeffMJzZ86QxHE6Zisvvbp+iKMIwzTFZIAkYX1zk7wUQe+FLjVH8/k8kQzbfVkD03VdRD+uKxRpDCM1mmphK1k23/dJCoWuRZckCRcvXuT69es88cQTPPvss1tfhGLwqohyl3uiaT2pV7anXvvOt9vlmP0eg06nw+raGi++8MLW8ZUnJo1jqvUoPe0wCMjncpRKpR3rMkNDQwwNDXHixAl832dJLv7bd+5w+coVoSspW1QmJyfTVLoth7iqSfNRHOM6DhcvXmR0bIyTJ0+mqiCvvvoqv/u7v0u9Xuf69escP36877n8/u//Pt///vcB+Ef/6B99fnr+AI8llFh2nCQcPnKE9Y0Nzp47x3dLJWq1Gq7niSyUae6aFo3jmGKxiO95BL5Po9HYMbNkyn2gVCwKZqYk/VQqFXypFqM5DpouZuFapolpWem+pXqxfd/fZihbzSbvvPMOfhB0qXRl1Xk+b//0tmt9wN7R11TukonKFwqpMlLWMKo/1flGsjYbhiGFfJ6hWq1vW4hlmuydnmbv9DRAKuS+uLjIhY8/FsOXe4Tcdck1KRYKdDod0XYSRYRJwszt2ywuLfHKyy9TLJXIFwqPZN/4SgxlPp+nWa8TRhEjo6M8//zznP/oIyrVKtPSozIlNXinonIciyHFtaEhNjc3hXh6q0XtAalU5S2amkYhn6dcKhEEgbjZcYwvPRMHUsNpGAahbLT3fD/1cKIo4qMPP+TuvXs8++yzKWW9Fw+z2LdHlH1krD5H+kS9vvf+zd67h6HrjIyMpDM7s0VzRYc35AaRPuQyinwY5HI59u/fz/59+4jjmJW1NRFtLi4yOzcHCCF3ZTTLlQqO46SkqTszM5imySsvvyzmAcr7/eqrr6af8eGHH/Zd8EEQ8N/8N/8NAN/5znf4C3/hLzzUOQ/w+ENliZS254svvMCPfvQj3nv3Xd5++208ybou5HdXw1HrfWh4mEajwUa93kX42QlK/N/zPIZqNYqFQpqhSqIIL4rwfV+ojKk2CMnGjzPi7CCis5+8+y45y+J73/sepZ5nKxUseQgneydkpfU+T+q1H+IoYnZujunpaZHxi+O0HSNr1HVdF5Gj/J5AlMIeRi8bhMNdGxrixPHjuJ7HvFQXu3PnTirkriQ5p+ScXk1G5o1mkzt37vD000+nWQZlKBW+rH3jKzGUlmWhSz3EKAw5dPAgzUaDTz75BBCiBPl8fte2h1CqXli2zVCtxvrGBpubm5SLxe5eqB3g+j55yaRV0U0YRYRy4WcNpyZ/5khvslypEIUhFy5coNls8tJLL6V6sb3jw0iSbUIHfdGrYAepqoWqZahaqfrdTqmTRH5mFEUEvi/GhcUxcRhyb3aWkdHRtPlXvV55zqZhpDqvAE6nkzZQP2wvUtZA67rOyPAwI8PDPP3UU7ium6Zabt68ydWrV7FzOUbGxrBMk9XNTVzP4ztvvZV6dErq8MUXX8Q0TcIw5Ny5c/y1v/bXtn32b/zGb3D9+nU0TeMf/+N//FDnO8A3B7Zt4zWbhL5Pvlzm1dde44//+I/5yXvvcea550Q6X66bfs9dIsliGohWEcfB9X02Nje7Sgk7QdUbC8UiBUkgVMYwCMN0/0gUozMRI6HUM2jncqysrHDx4kVqtRovvfxyl5Sngooq06HLD4go02kZihmf+TewNQGp5170O45q3lfynar1w/M8RkdHU05JIts80r3DNNPymcpQJUnyQOH2ngtPx2TlbJsDBw+yb9++VAJ0cXGRpcVFPpQO99DQUJpNWF1dZXp6mmPHjqXXbdv2I9k3vhJDCXLBe54Y8GlZPHPyJJv1Op9+8gmnT59OWVA62xd8nGwNR9ZlS0Or3cb1PDbq9YdqzvUzkaGCaRhdNG6VUlCjprwgIIwi6o0GFz/5hDCOee655ygUi2zW62lDbdp7Jfu6ApmiQdNS0orGVoQo+rS2K/Mksi9InYdS+gBB8IkSIS4eywcqln9P4phEE8oYigiUJAmddptGvc6pZ59N01iGjJj71TBUKvZBahq96H0AleFUBKwDBw5w4MAB4jhmfX2dpaUlFhYW6HQ6xJrG8WPHqGSmOdTkWigUCjz77LOcP3+ec+fObfvctbU1/sE/+AcA/PIv//KOtZQBvrmwbZtY14V8JSJ6fO211/iTH/yATz/9lJdffnlHJzJBDlCXz4Sh6wwNDbG6uirSrztMH8rCl43z2b0jOzKKQqHrmQ2l0XFdF9/3mZub49atW0xOTnL8+HE6jkOn0xH7htw7VDuK+rzefUN9ZmoU2dpP0j7CTCSLrqdpUTVlJZL7RQKpvGQSRShmhGL8qgzT4uIitm1TGxrCNAx0yTbdKSgJfF9E1Uny+WbJZr43FWgYMt2edbg9OadXzdtM5PWrvtM4jqlUq2JY9CPYN74yQ5nP5/GaTYIwJI+4yJMnT/LJJ59w/uOPiYGjTzzR973bPCFJNV5dWUnrDbtNJgchZFAulXadgG1m6pRFeY7Ly8tcunQJ27Z5+YUXyEkB5EiO+FGi7qlXp2l4rovreeSkl9a1GORCLwYlxhglIERDI3FEq0mSJLQ6HZCpZtUPmjLm+nmFsRhgbeo6SBk63TS5PzeHbpocOngw1W7dDZ7niU0g4yk+EP02qR0appWuZKVcZml5GaQu5+SePel15HI5ahmFj1dffZXz589z4cKFrqHaAH//7/99Njc3KZVK/Pf//X//cOc7wDcKhmFg2TaxJOZZlkWlUuHMc8/x6aef8u5PfsLrb7xBqVRKszEK/faNQrEophA5Dmvr60w9YMqEmxE/2QldhhMxRH6jXufatWvMz89z9OhRjhw5IqJPmRkLkwTiWERTmWhStbAoA9pv79AQ2rMgWlcUgiDAdRx02ZAPpCMOFds2zVAlW10Duq5jmSaGmgQCrKyscPjIEcpdgxz6Q7VvgHRskuSnaqdQRjD7/dm2LST9NI2F+XmsXI4909OYMhULYmyYwpe9b3xlitPKM4xkikJt+KdOneLo0aN88vHHXLhwYVs6M9ugqm4gSEECqaixvr7+wM/3HEfMOvscRfKVlRU++eQTyuUyb7/9NqMjI5QrFaq1Wppbr1QqYsh0oUBOKn/oSjdVLjq0reZ65eElyKhQRoGxyv9DOmdPl4ZP08RgaVP2hubzeYqFAqVikUqlwnCtRq1WE+dSLIp7Y1nMzc2xd8+ehzKSYRimaSY7l9t1HmAX+qWDMz/L3u84jmk0GvzxD35Ap9Nh37597Jme3koza1rXQGnYqlN2Oh0+++yz9OeXL1/mn/yTfwLA3/t7f49pSQ4Y4NsHtXeoemAYhgwPD/PqK68QRhF//Cd/wtramoiy5HtUarJfu8XQ8DCGrtPpdOjICUU7QU0wetBUkCySJOHSxYsszM/z7LPP8uypU5RLJarVqtg3pFRkuVQSBJR8npwcXGxo2va9I3NcJQCuBNgTmXlS5ZdEEl/QNOE0S7Ux07KwpQpRqVCgXC5Tq1ap1WpUq1Wq5TLFQoG8bbO6toYfBBzYv/+hrtd1XXQgZ5oi4vyc7Nrs9SkosQdxC4TRvHzlCh+eO8fI6Cj79+9nqFbr4lv0Gkr48vaNryyi1HWdfKZtQ4XwhmFw+vRpKpUKFy5coNNu89JLL2GYZpfCS79bPzI8jOe6dByHtlR86YckSXA8r69eab/XAly9epVLly4xOTXFk8ePb0VYGaKNBv2NkIwEbdveLq4uH2DPctlkg0CTOqeFmGq12rVYarXaNkLPbgYs+8ql5WXa7TYvvvjilmblLtetGp1zuVzX6KtdsUvdVEEZfNUU/MEHH5CXqZGWpP5nvcehnjR6tjB/7tw5nn32WQB+5Vd+hTAM2bdvX1qUH+DbiWLx/8/en0dbcp7nfeivhl1Ve95nHnqeMYONgQCJmbQpR5YpytS1rmMnnmLZN86yYuvKucv5I0vrWlIiyctK4lznKpQtOZZ9JVmOOIiSTYIkSIIgBqIBNBo9oNFz95nP2XPNVfeP7/vq7DN2gwTQ3UA9a/VCo8/etYfz1Ts+7/OW6DabRLKSo9oRjaEhnnnmGV544QW+/dxzPPTww4JQNkBq2ex0WpZFqVwm7vVYXl6mtM18sR8EmQiBysS2Qir7k88//zzdXo+PfexjjA7IMKpn6poGsgWy/vkqWK2vXyw9QKBR7FM0jXKlktkJz/eFwpBlbSDiDRKFNn3vA38/f+4cIyMjVGu1LAPd6plqZzCIgCaUjvuHwfptRuo1oyjiB6++ypXLlzl48CCNRgPX8zDV7wQhllIbCLLfa7vxge4wKpfLpLqOL2napGk2y7h//34++dhjzC8s8K1vfYulpaXNLzLwZZqFApVqFVPXWVpayrZcr4eq3au9Z1tuwZAH8JUf/IA3T5zgzrvu4r7778cwjI0iCVth4Cbd9HU0LbsBYhJiIhLi1QxygPW2/vnvJk47f+4c9Voto6Bn10T+0gduGjVDqfQwYXNixHpsxVBe/6mjKOLEiRM8//zzDA0N8eADD2CaJpasCKieK6yNCgEOHTqUfYZXXnkFgK9+9av86Z/+KQC//Mu/fMPs3By3J0zTxJG/Y9/3SeR9roLRJx5/nB07d/LSiy/y+htvEGxyr66/l4aGhjA0jVASe7aCJ/Vgt9JfVY4rSVNWmk2+8c1vEoQhTz75JENDQ8Rq5+qPCpklarou+oXSyQ4uTlYOalM273XuZ/XZut0uc/PzmSZ3OvDzzT6/53nZ+jJTystd13ZsYX/XP0tDyI4+9+1vc+3qVT529Ci75EaVgmWha1pm8+vrNru813bjA3WUtm1jSPFbz/NA0zAGeouTExM888wzaLrON77xDV5//fVsX+FWRrler1MwTZIkYVEuC14PX85brZ+TUaWZJBXrnoIg4HsvvMClS5d46KGHuPPOOwVDLRUjE6q0sS22ccTrHrjm/5TWq7qlfpSBYdd1mZmZYd8W2zdUCVuX70L1YWzLEkQftv6+V9/+NsLNA59/YWGBZ599ltOnT3PkyBGOHj2aLYk2ZV9EaWSWyuVNs/5HHnkEEJFhFEX8/M//PCBYsX/1r/7V7d9njg8FytUqqRTJTpABn3QWhmny0EMPce9993H27FmeffZZZmdnga3PsS6JPaZpsrKykt0D6+FLuUyQVSSloDPgIJM0ZXZmhueeew7btnn66adpNBrZHsYbDrIHcMMazwO4rqLX9i8IwLnz57Esix1bbEpRgbbSzlXkP9XWUoScbV/nBgLsOI458dZbPPvss0RhyOOPP54JkaiVgIZhrI7+bLIC7b20Gx/4VtyyHGBXq5nWf2m1Wo2nn36a++6/nwsXLvD1r32N2ZmZ7OfrD4Gu64yMjGDqOr1ej+5Ac1tBMcnWG2HFGEtTsQ3929/+NsvLyzz22GPZLriCVJjQIMuCr4sbeIy+TnAgK638CFGhwvkLF9AMg13X6TGkkCmQgAhkdF1f00/dFNcpuarrvvrqq3z729/GLBT49DPPcOjw4axsphY3D26EaGyhJ6nKKMePH+c3fuM3OHXqFAD/7J/9sx/OKOS47WDbNoZ0PIphOfib1zSNgwcP8qlPf5pKpcL3nn+el19+OcsuNzsn1Wo1k7dbWFzctGQYhuHaxcMDzlFlTufPneN7L7zA2NgYTz75ZOZYHfm8zNZdB9cNTq+DTL7u3bBOBxDHMRcvXmT3nj3bXiNFvFdPfreKCKTsxrYZ5Q18xvn5eb7+9a9z5vRp7rjjDv7Mpz+N4zjZKi4lij5IOBzaZPLhvbQbH1iPUqFULtOVxjEKQ7RSaQ2BRw20Hjp4kOnpaV47doznn3+eqclJ9h84wGYcLNtxqFartNptFhYXsW17De1bXTMrC6hfljT4zWaT733ve+i6zlNPPbVBtcO2bfpxjBcE193WnV138L+bPWRDRikXGG8VFabpDd1sSZpy/vx5du/ateXezdVLpqvZpOMIPczBvnC6Uf5JfYdbfbIUuHb1Ksdee40oDLn//vuzzFaJ3tuWJVRV1n3O0S3WaqkDHwQB//gf/2MAfvqnf5rHH39828+X48OFcr1Os9cjDAJsy9rAYE+BaqXCY489xuXLl3nt9deZmZnh4IEDq7J36zAyMkI4M4MfhiwtLzO2brtQmiRibEKOYKl7Qt0nJ06c4MyZMxw8cIB77713TSXIlFJ3sRQmuO68tyLhKCbsu0QWZP8Qz9WAK1evEgQB+/buve7jg0HZ0VJJbCv5EYPWwPd57fXXOX/hAiMjIzz6iU9QrVYJfZ8witAQs5aKvauceb1e37QS9V7ajQ/cUWqaRqnRoN9uZzNKgxgcti2XSnzyk5/k8uXLHHvtNWbn5th/4ABHDh/O1FsUVIPXDwIWFheZliMH6ppZtLaObn3t2jVefuklqrUan/zEJzZcF8AuFOiDkE2KohuO2LY7NhvOlHxbW/YZboA4g6YxMzOD53kb9n5uBs/zst6oY9uZ49I0bUunnG7hJFNEJHjq1Clm5+aYmJjgqJw5BVEOjuXgt23bdPv9NeWzWr2+phk/iEceeSQj/IRhiG3b/Oqv/up1P1+ODxeK5TJNqR4VRdFG2yEJLpqmsXv3bsbHx3nt9dd56623uHL5Mnffey9Tk5Nrbj5d1xkaHmZxYYFOt0uxWKQyoCGtwkZV/cqemaa8/PLLXLl6dUuVLk3TsGwbt9/HDwJK1xu5+hEyykEbt75tc6OZ6rlz5xgfG7vuSEiSJFmA7QyoDxnbtJ22W+UVBAHvvPMOZ86cIUoSjh49yt69e7OWjCfH1iy121ITIgXKRk5vUTl7L+3GB+4oQZRfF3SdJAwJfF8wyuQXsKGhKw99pVLh7bNnOXfuHOfOnWP//v0cOnRolVWqaYyNjjIzM4Pveaw0mwzJunUsB/PX49y5c7x27BiTU1OZmsNm0HRdCCbI+cjSFit0FLJRlm0es5GocwOl1+tAA8698w4jw8NbOh2FKIoIZFbnVCprsmCNG49KU8QqnlOnTrGyvMzQ0BCfePRRJgcClTAMsyXPSsg+CkNSROmVNGVqG+ZhvV7njjvu4OTJkwD8/b//99+XnXM5bm1omkaxXqfXamVze5nd2CQLcxyHhx58kLHRUc6dP8/3nn+eer3OkTvuYNfOndnji8UiFbnvdmlpiaJtY8iqV7yJQ/Y8jxdeeIGVZpNHH3102xEDx7LwXFeIedzonsofIjNLBsYk1tuO7SpACs1mk+XlZR6Vfb3t4LouyDGWQRWejPizyfvf7D14vs/Zt9/mnXPniJOEvXv2cPDQIbG0Wf5O+66bzZM7ti22v+g6BfkZnVKJkS12DL+XduOmOEpd13GqVXpLS/Rdl9Kgmr9cobIetm2z/8ABDh86xNVr18QXfPYse/fu5fCRI5TLZcxCgcbQECsrK6ysrOCobSLrUvU0TXnzzTd5++23OXDwIPfcc891a9a2ZeF7HmEQkKhe3ja43vW22h6i5kt/GEfZareZX1jgoYce2vZxKQhheF3HknqWa9/c6vzSVpFgkqZcvXqVU6dP02o2GR0d5fHHH2d0bGwNPT+JY1y5KcSWi3E9z8vmpHRNDIGPX2fwe3x8nJMnTzI2NsZ//9//9zf4jeT4sKFarzOv6xDH9Pt9irJ1s1XOZBgGw0ND1Ot14iTh9OnTvPTSS7z11lscOXKEPXv2oGkaQ40GntxNubC4yMTkZKYvPTjG0el2ef7554mjiKefemoD23I9NF3HsqxMXN3cYjsSbF2tuRFs15+8kWu+8847OI6zJsDdDJnWbZpu3PSk2meISlHmvLVVmToQjvb0mTOcP38eTdfZv28fhw4dyhIm9UjP80QVSpPKSJom+r1JIvrVacrUdeYg3yu7cVMcJcDQ2Bi9ZpPA9/Fcl2KpJMqOWzgYXRerjg25cufQwYOcO3+eM6dPc/7CBXbt2sXevXsZGx0VX3Cvx9zCAtPywIM4tFEU8corr3BNDgMfPHhQRI7X2YlmyvU6SRBcN6vcbMh5PTY4SvVfebjWZ3SqLr8dTp88SalYzFbabAXf87L+wma6k+L9sao/K0sgalbryuXLnHvnHdrdLhMTE3zsqaeyDQMaZDNeaZrS6/dF5iip/Clk2YBhGOiaxuT09La6si+//DLPPfccAL/4i7+4QZQgx0cHpmlSqdfpr6zQ7/dFb13Xs0rMemgDfb+hoSE++clP0mw2OXXqFD945RVOnTzJ/gMH2LVrFyMjI8zNztJ3XZYWFxkaGiJJkmyEbWFxke+/8AKO4/D4U09RqVTWBIVbQcl3BmFIMUmuGwT/MAXYbUdDroN+v8/FS5e46667trWBaZpme2dtx9lcvUt+10owXSmTpcDS4iIXL17k4qVLmIbB4cOHOXjgQMb7UCxiWFuFyvaJyl4vCDnCgm1v2XuG99Zu3DRHads2VqmE3+ngyfKrUSiQbFLqADJdROV8DNPk0KFD7N+/nwsXLvDOO+9w+dIlnGKRnTt3ZoSe+fn5jNkayl1w7XabRz/xiayPOajTuh0cxxEruzzvuio/13Nqm5VekyRZLV+sO/DXu16v1+PqtWvisG9zsyRJgi97k8V1K8S2eq04jrl27RoXLlxgbm4OTdOYmpriwYcf3rCpfLAE5rkuiSRDlEollMyfWqtm6DoFy2JicnLbz/aP/tE/AuCee+7hZ3/2Z6/zTeT4sKM2MoLX7RKFIf1ej2q1uu29q+s6iSTkIMdCHn30UTrtNmfOnOGtEyd48/hxxicmGBkZoVAo0Ox0xEC7DKAvX77MKz/4ASMjIzzyyCOZELuGLCteL8i2LKLrtG7WCBK8S2TrtX6I/uTbb79NwTSvS+JRa800yWlYj81oF91ej8uXLnHx4kV6vR7FYpG777qLvfv2rSFcDs5frq9CqcdFUsxAVbpGR0e3VUx6L+3GTXOUqvwaex5RGNLr96nValseOHV41vQkEFnJgQMHOCD31V26dIl3zp0jDALKpRKN4WGx7kbTeP7550mSJBsGHkQ2O7jNIS0UCpiGQSCb2VtmlWrUY9tvYOMcZTYHxbuPDE+fPk3Bsti9Z8+Wj0kR0SNS1mo7Bm+apiwsLHDt6lWuXL1KGIYMDw1x/333sXPXruvufAxkBA1i88LgBndFlzcMg7Hx8Y3qRQP4whe+wLe+9S1AKP7f6EaTHB9eWJaFXangtlokUYTveRQsa8tenKbrpJvcT9VajQcfeoj777+fqzIQPH78OJpcS9dpNrPl75cuXWLXrl088OCDa0S/lbzk9dRoHMfBc1389yDI3gyqzLlekPx6btLzfc6fP8+hw4e3ZeVG8ntOQZB9tnn/QRAwNzfHxQsXWFlZwZA7KI8+8ACjo6MbmfSsTiakaUrPdddUoUDMMaoxP13KeU5MTW3JK3mv7cZNc5QgMpqoUsHrdCgUCriuK1inm0RBar4vVSXI9b0zTct6EXfffTdzc3OcP3+eq1evCiFiyVh96OGHNx1OVZtAouuUYB3HyRa63tCBl798tdlD1eDN2KREkRBLPC4SNfkwDIV8XxQJFY4BKaet4Pb7XLx4kbvuvnvbA+F7XvY+ipv0SqIwZHFxkStXrzI7M5PJAh48cIBdu3cLNuAANX7zDy02H6gSjWPbYlYySdANI2PLKUbgyNjYGmp3v9/n2rVrdDodvvSlL/FLv/RLAPydv/N3eOqpp67zTeT4KMCyLIxCgYJlEUQRqeeJWectRivUIHySphTU+R14jFkoZPtU+67LxQsXOH/hAgsLC6Llkabs2rWL++67b9PNGBrbszphVbkmjKLtg+xBKLuRpmtKmIMzjH4QiP6n3BmpdGCzjSTXySjPvv02mqaxfwtxEuTr9V1XjGdY1kbnlKZ0u11mZma4eu0aCwsLpEnCxMQED3/840xNTmZl2q02Damfua5LEsdrq1AI9rHneZCKDVKjExNrlHXeb7txUx1luVym1+thBYEgyaRygfAmxl59Yb7v8/f+3t+j1WoxMjrKr//6r2fOQZF2DF1nZHSU3/zN32R2dpZGo8GuPXsYHR7m+e9+F8dxmJiYYHRsjInx8dUvXDrL7QZmLcsSjLgowvf9NVsF1Iouz/cJ5LJZQzq6QeebpilWalGiLLeHgBFp9CWZwIhjOgOPV1GrUqQw163JevvsWQzTZP/evVuWgcKBiLBUKqEbBmkcs7yywvz8PAvz8ywtLZGmKU6xyNDQEEePHmVsfHxthLsuo1e9CPX/oSyHgcjA1biN2o+nJK+SNGXnnj1Uq9U12fPv/u7vbiiTfPzjH893TebIoGmaUOqJY/x2G9Mw6PX72VjD+vlfTdcJg4D/1y/+IgsLC4yOjvJrA3ZjUPjEME1+7/d/n7Nnz7JjepqDR45QqVS4ePEily9fZnh4mPHxccYnJhgeHs5s1fUcJUgtVHkfDgbZiWTXhmGI63kisE5lhUk6+fXO35NVmVByPFzPy/gNqo+nlITUblllP9R3EwYB5955h/379wuN5wHm7CD6/b64z+UKKxBB9/z8PPPz88zNz+O5LpqmUa3VOHz4MAf2798427jJd6RKqcoZh5tUodTvNJC7dmulEpNTU5QHgv33227cVEdpGAblcpluHBO02+hpSq/bXS3BDkSHuq6jpWLh8E/8hb/A7/6bf8Pi4iLf+c53ePrpp9dkOUma8v/53/433j57Fl3T+NznPker0+HIkSNUq1XarRbz8/NcvHgRNLHfcnx8nNHRUbHJfBtmGogsqRfHuDLKiuOYMIoyRx0EAVEUUTBNUllPV+XUTOdVi/HwCAnR0Yk10cszdD1TrVFHKklTUqnHmgCkafa4OElE6eTQIcxCgWATvVulPBTHMa7nsbC4yML8PAsLC+J9FgqMjY5y/8c+xvjYmFhoHUVUKpUt9S3V+xt0klEUrSHvqJtK/S4TGTEGcczExAQNuX1lEK+++iogjMrevXv5S3/pL/ELv/AL25Znc3z0UKlU6Pf7FEolAtfFTBI818UpFjdkUrqmUbAsPvOZz/C7v/u7LC4u8t3vfIennnoq28+ogrdBu/FTf/Ev0u/3CcKQAwcPksQxi4uLnDt3jlOnT2PoOmNjY4yNjzMsN4Jkme0msCwL0/MIk4Rut5stF47lML2yIzqrmZfqxw06OA2xqUNDZMOmaWaVp0HbkaZif20cxxCGYv2VpmXL2t955x2SNOXQoUNbfs++72cOPApDzp8/z/zcHK12G9KUWqPBjh07mBgfp1qt4ochOmy+gEK+fpaIDATdnuuujpCVSplilwomlFhJkqbsP3SIcrm8psf5ftuNm+ooYe2BT3yfNI7pdLvUqlWQbLbssBhGRsv+0z/5E5aWlvjSl77E448/vqYE+m/+zb/hlR/8AIC/8lf+Co8++ihf+9rXsl/K4UOHuOfuuwmCgIWFBebn55mZneXs2bPoiI0g1Uol26ZdbzSo12qYhUJW3ui7LkEYEgUB5kBj3zAMUWYxDMqlEpYcJVl/88RmRJcuISEaGnEhwXEcMS/kOEKyKRUi7ZFcw6Uy1lg6nTAMOXv2LCkwNTWVRWNoGr1ul3a7TbPVYmVpiWangycjQ03XGR0Z4fDhw4yPj9NoNFbfX5rSlHsxt+sXqzlRdUPHkq6fypknNfKjys8gItNYOvn9Bw9SKpU2lIr/xb/4F/yLf/EvfsjTlOOjAl3XKZfLdKKINAiye1I3jA39c0NqCz/66KP86Z/+aWY3nnjiCWC1J7jBbjzyCC++/DLu4iIgbNX+fftI01SMYslKzFsnTmQbd5xiUdiNWo16o5Gt00LTCOV+2m6vB2kqMiLp1HVdLEW2TJOCaVKrVjMHuRkyRqjjiBaWEgeXm0SSJBF2I4rW2I8UQYrxfJ+zZ88yvWNH1hoCsQ1E2Y1ms8nyygrdTkdcX36+iYkJDh0+zPjY2BqBFt/3wffRrtMP1OW6RWVfPM/Dl7arVCoJBzjgJEE4yiiOs0xyvSjC+203brqjzA58kmDEMXEYEoYh3W5XZDSDvQTTJJJf8E/91E/xhS98gcWFBZ771rd4+lOfQktT/vhP/oT/+J/+EwB//sd/nD/3Yz9GX/bFVK9iZm6OqYkJIf67Ywc7JMXY932a7TatZpNWs8nS0hLnL1zIIqCS4+BI56duPsdxGB0ZoVatZlsGQBxGpRO7aZ9gPetV9SEgcx6apmGYJnqawkD0lMQxfddleWmJy5cvM9RocP78ebwgoN1q0et2CeWsk21ZlKtVxkZHGR0ZoTE0tKHcOYiMPbfNTZqVW+Xf4zim1+tlGabqLajIVpWOOp0OcRSxR5Zl1meTOXK8G1QqFZFplEqksv/e63bRq9U1fTRTLjJOgc997nP81m/9FgsLCzz33HM89fTTpGnKVzexG0DG7jSlIPu8LN026nUa9TqHDx0iSVO6nQ6tVotWu02z2eTc+fOijygDx0qlgmXbFNT1TJMwihgdHqZcLqMbhqgYSQfxbvY6Ds5QZlmnrmNqGhgGKmxQCjW9Xo+zb7+dBbVvvvkmPdel3enQ73TE8zWNUrlMuVIRWfPoKPVaDVsSI9dDg4y1vx3rXgUG6hquTDhgwEmyGowD9CV3QzMM9h84kGWcHyRuuqME0at0XZfIttHkQlLf94XRLZczQoxhmmi+TxRFPPnkk3zlj/+Ya1ev8qUvf5knn3ySl155hX/3b/8tAJ/8xCf4y3/5LwNgFQpoCPKQZVkEQcDM3BwT4+NraM62bTMxNsaE1BxNUjE3tLy0RKvdptPp0Go26Xa7eK5LGMdZeVhLUwqWRalYpCApzY5sfOuGIZhahiH6BaaJ11+7MLbTaXPlyhXiOM7KDrEsgar/uq6L67rZFnTSFJKEpcVFut0utuPgFIuMjo5SLpdFVCpfs1gqYQ042/VQpafs5twim8zKrQCpkBLry3Krruurq8wGroumiRJWEGA7Djt37tzWWefIcSPQNLHoe2VlBQoFdMlz6Mj2jSH74rpcTRVHEZ987DH++KtfZXZmhj/64hd5/IkneHkLuwHCdsRxzPDwMMvLy1nrYmx0NMt4dE0Ty49rNXYhHFIUx0LpZ3mZbrdLp9Oh0+kQLC/j+j5IMQPVknGKRbHA2TQxCgWKck7RVGu1pPC4IW2JGp+Ym5vDWFpadcqmucZuxHGM7/vCbvT7YrEDq9J8ly9fxpGC86PDw5R27aJWq+HI+VRN16lUKtcdWVESehpbj7dkymvSPqiyNojMWLFuB2e4kUFIGEXsO3QIx3GuK7H3fuCWcJS6pGMvLi6SWhaGbNq6rpsdIk3W1hWrUtN1Pv/5z/O//C//C4uLi/z27/wO3/3ud0nTlLvuvpu/87M/mxlrdbjiOGZ8fJyFhQU832dufp6JsbFNZ3GCMKTvukRBIA5xqcTu3bvXjFR4rsvS8jK+56FpQjWi77p0Ox163S5deXhC2YcIkiBjnV7TZ4n1OGPgXZq5zOtXXwddQ9OhaJSwdANN3iCFQoFiscjw8DDFYpEkSTh+/Dh33XMPhw8fzsotvu/jBQGhvDliz6NYLm8fgcmStAZZCel6ZVcQWbMrqdyGYVAqFrObf5DAlKapyCaThN1791KpVG7KYc/x4UOxWCQIAnpJQhIE2ZB7u92mXqtlwZiqRqVJwuc//3n++f/6vwq78du/zfPPPw/AXXfeucZugNh7GPh+ViZdXlrCdV0WFhYYGxvb4BQSSVjzPI8kTWk0GmLez7ZhgIm6vLxMt9fLpBzdfh+336fT7xO7Lt12myhJiMNQOLwkyappSLJPkiQcf/PN7LUN08RQzlVf3Vtp2zZDQ0NMT09TLBa5dPEizVaLT3/601kPTzHVA9/HDwLBv5CTBNdj9g/qaG+ZA2urMoOK3epLre+SDApUNj34+MD36fV6lKpVpqamxB7RmzAidks4ShAHudFosLS0RBIEmep+T4pn246TNarVguVHHnmE3bt3c+nSpWxmZs+ePfyD//a/XeMYFK05DAJMw2BsbCxzlkrAO1tYnCT0VKQj+3m2bWNblpjHSpJMZs4pFqnX60SyFKDElDvdLlEUUSqXsUyT/3Tp6/zrt/5PmkFTDATJREpHEn1SjbP6WRb1RRISllmmqBX523f9V3xm16c3fFcp8J3vfIdqpZI5SRCOySwUKBsGrTBEl9+Boet0u10c297Qv9FgjarJlkPPyunJ//Ul205dv1wsil2dqgw00LT3fZ9Op8PQyAhTU1ObjufkyPHDolarCUMfRaSyEqWcZU06S3OgGvXoo4/yR3/0R2vsxu7du/mH//AfbggoLcvKeniVchld01hcXMT1POYXFhgfcJZBGIo+vAyGrUIBS45HgQgsAdA06o2GeJ9pSq1SyRx5p9NB03UatVrW2lBIEcpdURyzvLTEc9/5Dk8++SS2bRNHkQjopfrVVmXblWaThcVFjh49uobooslqkK5pmQNzZJAQxzHFYnHTCtDg+1MVqc02DiknmSQJbr8vlktoGkXHoSBtsy4TocHrNlstUk1jescOxsbGrju//X7hlqp9OY4jGK+FAokcrQDoKfozguUFZM3rZ555Jnt+vV7nF37hF8S4x7pfllUoZA1w0zCYGB8XQgS6ztzcXEZNbrXbBGGIWvRcq9UoKSYdbFjcrA6bYrrCwMBwmuLHPv/rG/+bcJLbQJe/ihhxM7mRy//+5v8XPw42PHZ2dpbFhQXuuffejZlfKgZ20TRKsgyrJLhU+SXrQ7Jxd9wg2y77t3U/7/f7mZM0TZNyuSyCiIGbRF03TRLm5+cxTJPJ6WkmJia2nVPNkePdQtM0hoaGsNS6J/lvcZLQlkQUY6AaBZvbjWKxKDKZgfOpemaDjMzRsTFMXc9GJFRw3e12RdYHlGXVpLAuYFcwJOlI1zT67to2zFZOToOMrGRJu2PK8jIMiA1s0zY5fvw41WqVPeuESTSETe1L8YaRoSEq1SrI77HT6WRkwew+38x2yOQiu+5AuTWOIvEdRRFommCuWlY2Y60cqrJBruuKYKdeZ9euXWvmJj9o3FKOEsQy1XKjQarrWRlQGWe3389INFEUMTs7y3/4D/8he67v+2sjwoEyYbFUWnMgdV1nfGyMkoyULl+9yrwaMNY0atWqmDeUv3Rd1zc9wNmB1/XV6w9kX3GaECbhdT+3gSgnxKwdc1m/4DlJU44fP87Y2BiTm0i/9fv9jG5eLpexbJtKpZIFBVEU0et2M8Hn9bdUIplxg1lq5vyShJ7cBwgisCkrwpWMFgdl+NIkYVH2T4aHhzlw4ECurJPjfYGu66IsZ9skcSyUamTlqSPPu444k9euXt3WbijiD6wGwn3ZEwREADo2hiEJPufPn6cnM0nHtqnVahkfYLBfvx6OvHYcx1mvbhA3Gk6u13nVtnC0MzMzLC4uir2Z65xppNi4iNGTYqkkEpdqNZvb7vd6eLIdtpm2rrr3ddXKGbC/QRDQ7fXEFIMkNxUkF0OxZAeD9jAImJufxygU2LFzJxPXWZrwfuOWc5QgdktWhofXOiZJrFEKFMsrK/zyr/wKnU4n63d5nseXv/zlNddSB6JWq9Futdb8TNd1xkZHhQRVGLK4vIznedSq1U0N+lbkk+zAJ0km+K3ec7lQ4pNTn7juZzZkFTxmdQ7y6eknKehrS0Hnzp2j0+1y7733briG53lCqQSxyzP7DJqGbduidCSJON1ud+vDnqZZQDI4I9ntdollNFgql1ep4evGeEA43Fa7TafdxnYc7rj77rzkmuN9RaFQYHx6GsOyVs+u7OUpVna31+Of/bN/Rrvd3tpuaKtD/orI0mm317yWqtZEYYjn+ywtLWFbltBPXl96ZHOnN8i/2JBVqsfcIIlGXQ82l62Lk4Q3ZYC93ukkki2sITLUwcxNNwwq5TKObD35QZDNNK6/xuD7GGTFu64ryEdpilkoUCmXMQwjG1VTYysKnu+zsLREGEWMjY9zxx133PQq1C3pKDVNY3h0lIrSYx2sg8vI59/8zu/QXFnBMAz+u//uv+PBBx8E4Otf/7pgwa29ILV6nV6/v9onkPClSLHlOBRtm8D3mV9c3FKmbbODmx14RLlgfTnzv7jjr1z3M5tZRhln38FfOvR/W/OYXr/PW2+9xf59+zas9/F9P5O1KjlOVqJe8xqmSbVaxZRygN1eb8PnVJJZumlmJRPf9+lJx6qraFCuxEFKfA1eRTnVTrcLus6BQ4fYtcVy1Rw53kuYpsn4zp2Y0rArJKnYZPNv/+2/pdPrYRYK/KPt7Ia8z03TpFyp0FoXZMdxTBiG1BoNTNPEsiwWl5Y2dSLK8W5m6h3bFu8zTbN2xo2OhQDZ/KMqXW71/FOnTtHr9bjvvvvW/HuapvR6vYxIU96kbYWm4RSL2dhXJAUINnsfWYCNsNX9Xo9A2iXbcUSVbvD6Aw5WCaP0ul36vR71RoOPreul3izcko5SoTE+TlUNwyu2VxTxpS99iWarRblc5h/8g3/A7t27+dznPgdyTuiP/q//a8O16rVaRjVWUOyuFJianGRifBzDMPA9j5m5udUB/gFsd+ANwxBrpNYdov21fTw+9fi2n9VY5yif2vEUO8qru9ZS4NixY5imyd13373muUEYimWq8n1Ym6liqPcvewOGdJZKSUe9RjpQPlHzkVk/slAQzzUMsTcU0bPNnpcKDcperyfWCgUBu/bs4Y477shHQXJ8YCjYNqNTU6K/OGA3/uAP/oCVZpNyscjP/f2/z97du/ncT/0USZIQBMGmdgNgaGiI9oDdUK2gKIqwCgX27dsnWhvAwtLSxkAdxPvY7B5QzgnwJMP1xt0kGxe9bxLIN5tNTp8+zR133kmtVlvzOXq9XrbCT3ENNr5F8R1acvwNKQkYDFTP1Go9TdqVIAgyUiOa2Dnr2HZmOwcZsCAqUL1ej0DO0JcrFe64807G5KjezcYtbb10Xac+Pk6lXhdRiKbxla98hfPnzmEYBp/97Gcz1ueePXs4+uCDRHHMN775Tebn59dcq1atouk6HXngYznakKQptm3jOA7VWo2xsTFMOXN1TQqDD2I7VmixXBYSdlK3cRB/9Y7/nK26Drrgv4r3RQxo/OWDf2nNYy5dusT8/DxHjx5dI90UBAH9Xg9N08Ts5jZrZ7K3qusZgy+Vm1BUmUT1LVVWGMnPYTtOdkOnabqG8KBmPru9Hr5crdV3XSanpjhw8GA+CpLjA4dVKjEsRUXQNL785S9z4fx54jjmz37mM0xPT5OkKXt27+ahhx4iSRK+8Y1vMD83t+FatWqVXrebGXYl65YiRA9M02RiYoJqtYqhabQ7Hebm5jZop2ppumlFypQC7zqiDLyZcPhWyDI5VXZd99wkTfnBsWNUq1UOHz6c/btyklEco6UpZan/vB6atBHKAVu2LSYEdB1XLmBHMtxV+6XX7YpSq6pASdJOInu/g+8wliNtnW5XrNdyXcxCgT379m0gHN1M3NKOEkRJoToyQq1e55vf+AYvv/IKYRjy8MMPc/jIEZrNpigdJAmf/4t/UYwlJAm/9/u/vzqUj8yGSqXMUXqeJ9hwur5G2FwJptuyz7GwsEBzoOyisZboMgjTMMRCU1muHCxr7qvt5cnpJzb9jCqbjFQ2ufMJdlZ2Zj/3fJ83Xn+dnTt3riHw+L6fkQxMOWe5AVvcZJqui8fruqCAyzmtOEnw5OiHEnmoVKuCJr/JZ05l/6crD7qm6wRBQL3RYOfu3UxdZ2N6jhzvF+xKhfrw8Bq78YlHH+XggQO4/T7NZhM/CPj85z8vemVJwu//wR+sLmOWtqNaq+F6Xra4QQXYxWJxjYrW8PAww8PDGLqO5/vMzM4KWTcJde/omzBGS8WimPVOhfj3+s1IWyEdKHluNhZy5swZWs0mDz30UJZ1qp5t5iQrlY0rttKB5QfrXt+WIy+adJapzNhVhS6SPAnbcTLVoc3GRqIootvrrVmUkCQJ0zt3snvPnhsK+j8o3PKOEsC0LL74J3/Cv//DP8Tt97n/Yx/j8ccfF0a638eTc3qTk5M88sgjpGnK9194gUuXLokvXx78aq1Gu90mSZIs49tslERFiBVZomw1m8zJUuwgwWXQaSoUpaJFAlk5VOGv3vFX2CyrXEvk0fiZgz+z5uevvfYamq6v6S/4nieur2lYlkW5VNp0y8d2/Y6CaQrVIsMQTrfXoy9JD2hCnq+sNFs3uVmjKKLT7WaLmK1CgSgMMS2LqZ072blzZ15yzXFT8W//8A/537/wBTrtNkePHuWZT30Kp1jMBEX6vR5DQ0M8+sgjaJrGC9JuZBs80lSMrIEYHfP9THzc3mSmr1KpMD4+TsE0SeKYmbk52pIINFiF2bCYXdfFGBpiM0g4uNxg3SB/CqL1ka5qtG6mJ93pdjl56hSHDh3KiHTKScaSFVyWGfGGzSfaxk0fgyhLJxaFYVYu9aTwiiH7upsKo0NWxWp3OkRypZZpmriex9jEBBOTk7dMyVXhtrBiX/3qV/mbP/uzvHriBEeOHOGv/7W/RlmOPBiSkea6Lt1ul//sx388o3r//h/8gbjAwIFfWFzE8zziVMg9maa5acSmaRojIyOZEoQfBFybmaHdbq85kBskmyQjVEOURQNZoknTlB3lHTy946kNrzVI5Hl8+jH2VHdn7+nqtWtcu3aNj91/f3bwPM/Lmum2ZW2cL1pX/98Mqu9r2zZhEIjMXIqW25ZFZeCgbxoJdrv0ut1s912xWMQPAlJNY+euXeyVCjw5ctwsfPWrX+Xv/t2/y4uvvcae/fv563/jb1AplykWi0LRx/fp9fu4rsuf/cxnRAajafzhv//3GQEnTVMhoymrS4GsFKnHwsZyp23bTE5O4tg2uqaxsrLCzOxs1saAAa7DwHMtKX2pZisHg3wleafYpYMjWJmsZJoK9R/JOP3BD35AyXG48447gFUnqSpd1U2c5HXZpTIA1+QGkkDusI1kj7JYKq1yINZdL00SfM+jI51qkiTYloXjOLQ7HUbGxpjaseOWKrkq3DLKPNvhx3/8x7MM0Ov1CDodISmVpiwuLWVDxL1ej0q5zG/8xm9QKpWwLGvNypnJiQlOnjzJwuJiNic0uDJqM1SrVRzHYWlpCT8IWFlZod3tMjI8vKZXOKhEY8oNInEqdCerlUpW///PD/9lnrv2bdJ0tSxrZhllzF8+vJpN9vp9Xv3BD5ienmbnzp2kkMljpYjsdbA8MbjbbVvI8nQYhviehy9LSlEYil6t1GFd/71EculsLL/vFDAsi6Jl0Wq3iaKIHXv2sHvPnnwUJMdNx6DdSJKE3tKSkMscGsraDJomlGjK5TK/8iu/guM4WaCrlKZ0TWNqcpKZmRnGZaYzuDN3M+diGAbjExNCH7rVIggCrl67Rq1azdSCNhP1sG2bMAwJ5RhGUQXBao57C9Z9lqFKJ3ry5ElWlpd54sknxSJ4qXKm+o1qRGP1DVwnuJajHClCYciXdsiXu4StYpGK4+CoTUrrHGQQBCKQVu0oSWLSNKF01BgeZnJqin379n3gguc3gtsioxyEUy5jVSoksmwwNDSU9dpK5XImA7WyskKr1crWt+i6zsjICLZlsTA/TyozypTV2rjKPLP/ShQKBSYmJhhqNDAMg8D3uTYzQ6vZXDteoWli2DlJRHNeHt6+nCEC2FHdyad2PL3mM6ke5UOTD7K3IqKpJI556cUXsW07o7C7rpuNgKx3kuLlN+8pqNdWEbInFS96/T5Rkoi1YLqO7Tii/zC40JZ1GaR0kpZtUy6XKTsO7XabIAiY3rWL3bt3Mzw8/C5+ozlyvP/QdZ3yyIhwKobB6PCwcFiIe6lQKOC6Lq12m2U55pFIbVVN05iYnGRleZkgDMWgPKszjCrDG/w3EPdjrVZjamoqa8m0221m5+aykQklSJDIVVgawlkmaYovHSaQscw3gzE4GgLMzsxw+tQp7rr7bkZHR7MVeInM+gadZGbntsokZSKBEivp9Wi32/hSV9eQmaVq47BNBqnGy8rlMtVKBUPXWVxaojo0xNSOHbesk4TbJKNcD6dSEXNH3S6lUgk/DDHjOGsye1LcNwgC+v0+tjTqtm0zMTHB4sICe/ftW1MyHVSRyA79QPQDUJHZ5eLiIp7v02q36blull0OOk1NEzqGai+c63nCoScJ//dDP8OzV74JpOgYGeP1Zw7/TPZar73+Ou1Oh6eeegrDMMSwfyKWOzsDm0AGZeNUM1+T2a1irKWaBklCGAR4vr+6lodVFtvyygpJHGdGIJFqIWEYihtMwnIcQfPWhDpSs9XC8zx27NnDrt27GR0dfQ9/0zlyvHfQdZ3S8DDd5WV006RcLEIqxDVKpRKutB1918XzPLGIoFSiXCoxJUl0S4uLVPfu3XhxNQso/54kCehCmNIwDMbHx+l2u6ICFobMzs5SrdWoK01XJdghdWkN0ySOInquS1WKm29VLTL01eXp/X6fl195hcmpKY4cPrwqcM6q3OSa72SgErb246TZmFgYRWLca6B0bJqmGInTNJrttrAdco9kFEUEQbCG+a/LDUamYZAAge+zuLxMpVZjanqa/fv33zQd1xvBbekoARw57uG2WpQcR2RHUSSk54pFoQYhmWrdXo9+v49l2zSGhrh0+bIQ/kWsm9ksllLKHJnzlIfJkKLqnW6XlWaTSJZUisViJl2VSUlJsfCuJLyYhkHBsthR3cmRocOcXjmd9SdHiiMcqO8H4OLFi1y8cIGjDzxApVym3elkN1GpWBT6kbJ8mg68N9UYV4dcQ9CvwzAkkOVVEA7SdhxRmpaRYpIkYoYrTVcVeNR3oYkN8UW5QivVNHzPY3llBc0w2LFnDzt27mR8fPw9/A3nyPHeQzdNKsPD9FstbNvGk6LftuMwNDSE63l4rosvt2j4QUCn06FULFKt1VhaXmbf/v2re1bXQdmNrMfJ6v1ZKpeZMAyazSau54nlyHLLSaVUQhtwho5l4SP1V3s90e/fQv5RMVaTOObF738fq1DgwQcfFHscfZ9sWUKxmGkyKwHzFDIRd2Xv1OeKZEYbDNgC5SAVtyNW2XSa4svZykHFL0MuolczrSnQbbVotVoMj40xNjFxyztJuI0dJYBdLmMUCmhSei6Su9ccx8GSw/H+wAC853lCt1DTuHrlCo16PfsFbXvwYY1+q9rR5tg2S8vLhNIR93o9SqUSpVKJRLG5DAPLtgk8j26vR1VGjD9339/nv3nuv0FPdBJS/os7/ioghoOPvfoqO3fvZnJiQqjbIMZklCzdYOaoDZR6dFkmipOESBKJBpWIdEneUdq0ypH2JUU7jCIhwSUfb0hmX2Fd36HX67G0tERjaIjRiQl27drFkFJRypHjFodumlRGRvA6HfwgoCtF/gumSUkRfYJAZJe9HmEY0ul2qZTLzMzOik04Q0No8h7aLNjWBv6rqlVpkmAWCoyOjdHtdllaWiKOY8F7aLWECDmrc8nFYlGsp4tjuq5LRfYrVQslQepBy8D82Guv0Wq1eOKppzKyDIhSblHyMRiwFZEUGhh8z3EU4YchURCsUdsqmKao2MndvkBW0nVdFxwnE1rRdB1LzoaqCpV6/NLiImEUMb17N6NjY+zateuWd5JwmztKEKMj1fFxYmBpfl6s5ZIOQZVUiqVSNpjflQd+bn6eYVkydRyHYqmELVlqmznNNQ5T09BkvX1kZIRqpZKVIBX7VtOETmQKOJZFHEXZ3FClXGZ3ZRe/+ehv8vvf/AP+7NE/y+7RXXiexwvf/z7lSoXDhw5l80UF216zwWQQuq4TRxGppmXljjXUckQUaJkmBfn54ijCk9tOoiii3e0SRJFYLG0YFAoFrEIB0zSzEi6Im3NleZm+6zK1Ywej4+Ps2rXrlpp3ypHjRuFUq4xYFsGFC6KX1umIURBNw7YsoY9cqeB5Hr1ul2q1yrVr17h06ZJo6VgWjnSshUJhy2Ab9e+yFJvEMY7jMDU9TVcudI7jmFarRRRFmQCKpmmUSiUh/OH7eJqQklOOVFxY2KNz585x4cIF7r//fjGeJjPEslwBKB669t2px6mh/8GqE4jKk2lZwukVCiRpSijthtqxq0ZNCoUCZqGAbVmYkrk7yM71g4DFuTnscpldu3YxvWPHTRc6fze47R0lyMXPk5OkmsbK3JzIwjRNzAjKEohtWdiWRa1ep9Vq8eaJE4IlW6nQ7XbpdrsYktDiyD+6rmeKQAqDlG7lRAq2zfj4OJ7v05Zllb7rZr2Baq2WHfhEKmJUKxUcw2aSSWzDJkkSvve97xGHIUc/9rFM/aYod8xthiRJxKENQ5FRD5Y8dB3LsjJmbhRF2R649TvkAlmeGW40qMnVOqoso76/vufRajbRDIOd+/YxOTnJ1NRUPieZ47ZGwbaZ2r+fmQsX8Pt9WmqH5QDjtSz7lOVymatXr7KwsMDIyIgQ5vB9Wq2WEPxwHOE0TVOUUde9lhoJUbwCXZJ9KtUqnXY723LS7nQIwpCRkREqxSLFUglXzosjnfigtuq1q1c5duwYu/fsYXhkBBAVqFKxuCU5RgXJvuQtDL7HggyqDcMgTRLCKBIl6nUBuKf2Vto2w0NDGTkSWF2tJcmV7U5HlFrHx9m9e/dtNzr2oXCUCiMTE8RAe2GBdrtNVSrKDAoDGLrOvv37OXf+PCsrK+zdu1ds25al236/T7/fx9B1dDlnqRawGpLllSnfy9dVpKCi4+BMTuK6LteuXhWDuL0e3V4P27YpSXJPoglBcjXWkiYJ3//+9+n3+xx94AERTeo6lVJpQ+kiltGc2tauoKTnDNPMqOeBdKDrocmSsCl3dBYsCzNNqSonKR6UOch2u03o+5QbDabkqEq9Xn/Pf385ctwMFAoFpvbu5drFi/jdLl05frZGaBwhTrL/wAFee+01oXtaKol+puzlhbKfaRgGhq5TsKwsWNWl3YDVnqXqZxqaWORcrVZZXFxkZWVFEOUkc7/kOBimSZIk2ZorRbBrtVqcPnmSyclJDh44kC2pH5ytVhmoco6xVM4ZfC+6rmNKm5fIoHoz4pCu65iFAqbUxC4UCkK6T7WEJJTD7/V6oGlM7drFhGzT3KrM1u1w+73j62BsfBxN02gtLNDv9dA1Dd0wsp6cioD279vH8RMniKKI0ZERIR3l+9kIRhxF2eF35fMMSS1XjWwdUY83dF28xgDhZnR0VMg7KTKNLG0o+njRcTIn9vbbb9PtdnngwQfFDknZF0wkWzaWW80TSbbJGvFJgiZfWznuOFJCeKtQDlSVVXXDwJAl5marRZokYjPAwJCwospHvk+q6wyNj7P/wAHGx8dvi55CjhzvBoVCgandu5m5fBm/24V+P5vzQ/b+NU1j186dvPP227zzzjs89thj1Gs1kXHJtksYBIIjILM1WF07Zcp7MJFMWxXQKtuh6zqNeh3TNDMJzDiKxPyjtBuGbIf4vg9pyulTpxgaHuaOO+8UpVpJ2FHjGEqaMlW7YgfGWXTDQFNz5ElCmCSwLmscHAExZRCuBBGCMBQiA3LhNZDt/+z1eqh1fXsOHGDnzp23NY/hQ+coNU1jZHSUJE3pLi/T7nQol0oUZGaJdGa7du/m7LlznDp9mo8//DCGHOcoOo4YvpeZWyAFkKM4JokiYhk9RtJ5aazKRw0OEXuuC7pOWQofuJ6H2++LrDBJWJFKOClCaurAwYPZjKOSyRpcP6OyR9M00eXB1U1zdaxFW12WahpGFsEaA5FsxsiT1+31+/jytSrVaiYU3+v3hYOUn+ngkSMcPHw4d5A5PtSwLIuJHTuYn53Fa7VIZACpJCl1qQu9Z98+3jxxgpVmk2G5ZqtSqVCtVISQQRwLVa4gIFK2Qy0fkOxQVXoF0FSQLZnsgVwkXSqVsvEONXcZhCHzYUiz2SSRQf/OXbvo9/vZaFw2yymvp4h/ylEXpE4rSFH1gVVdhmFg6vpqZUr2VQeRQiYFWioWM/vmeZ5wkPI1K5UK9z300C0nR/fDQEuvK+NyeyJJEpaWluitrBC4LlahkClugDggb7zxBmfffpvHn3yS8XXzf8r5qIHbWDpPxSbN9j/KDE+p56tmuCe3aNiOI7Z1z80xNzfH4uIi3W4X0zDEwmfDYMf0NONjY9jFIpZpYkoyzWDE+Xu///u8+OKL3Hfvvfw//u7fXc1wNS0bBlYlnzUYcIyDiKKIufl5eq6LqeuYlkUQBGtuisbQEPd+7GMMyb5HjhwfBbiuy+L8vMgs45hyuSz2u8r7qNvr8eyzz1Kr13nsE5/YsOQ9u9vkvafKnaGcL3TlQoZUzlsqu6Hml5VmKprGvLQbC/PzNFstTNMUxMNSiUqpxOj4OEONBnahgGlZ2LJipDLUP/jDP+Sll17innvu4e/+7M9mAb3KDGNENmnI56zBFraj2W6z0mzieR6VSkWQByWhECnksnf/fo7cffdtWWbdDB9aRwkiE+t0OjSXl/G7XXRYs07GdV2ee+454iThiSeeyJil11E7FNmeJjaEqJLGF7/0Jb76x3/ML/7iL9IYGqLbbuMFAUXH4Z/80i+hIyJSSynva2LbQKVa5a677sok9wxJvy7IZbCqx/HasWP88v/0P2FZFv/+935vzc5JxUC7HiLZpwjCkLnZWfquSxzHGdNPDSUXSyX27t/Pnv37c7JOjo8koihiaWmJfrtN0OsJUp3cOZkCZ8+e5dixY9xxxx0cueOOVW3T61w3lddWWeYXv/hFvvKVr/D//if/hEa9ThSGtDodSFN+/dd/PbumWSgIUp9kvk5OTtKQnIFqpZJVzJSNsR0HyzR57bXX+NVf/3VM0+QPfu/3cGw7E1TRkgQvDLddnACC/6AWVXc6HeYXFvDkwntHijZogFMsUq/XOXL33TRu4zLrZvhwuPstoCSkbNtmeXkZT1KxLdsW5JpikQc+9jGe++53OX78OPfddx+2XC46uDFjU/aajJziKBLRGUIE3XEcKuUypuwT2I5Dt9sVElaGQckwsKSMXqfT4ciRI9xx5IjoY4ahmG+S0WYolXEApnfu5NDhw/iex/e+/33uufvuTHggCMNNG++KFRvFMZFcCptANjcZxzGNeh3HtikWi5TKZcrlMrv3789munLk+CjCNE3Gx8dpO47Qam23CcMwm0Pev38/CwsLnDp9mnqjwbjkRmRMeYnNbIdhGKSahiZbN2EYYltWppqj7uRWq4UlRcOLxSLVSoVLly9j9npMTk3xyMc/TkFu7FHOL4ljSBK8fh8P2LFrFwcPHiQIQ174/ve5+847BUlR9ko3W06fMkAcDMNsbVYcRZmmc8E0KUu9bOUwxyYmmN69e0OG/WHAh9pRKijpuhXLotftEvb7eK0WVqHAyOgod915JydPnmR4eJgd09PZXGDmegZmCQdZcIamkRqGINkwoJuYpqt7HT2Pz/7ETzC9cyeVcplz58+TJgl//JWviFKpaTLUaNDt9bDk6ptisUiaJKI3IXscuqZx15EjXLhwgQvnz7N//34hT5emBFG04YYcZNap+a5U9j/iMKRgGExPT2f6tQXLYnxyktGJiTyLzJEDca/XpShJs1DA7/UE2c91sW2bo0eP0mw2OXHiBI6cudQKBTGoPxC4DtoOFYTriKqUshsqMFfs1CAI+Mmf/El27tjB9PQ0V65e5Z133uGtkyepy0X209PThFK5B+QCaNPMxBJiWVK96447hN24cIEDe/eSDsxPKts1aD82C7qjMMR1XbG/t1JhemqKYqlECtQaDaZ27twgj/dhwkfCUcKqKHqlUqHX69HrdAj6fTqdDrt372ZhYYEzp09TME2Gh4dFE38gMhok1sCqE1XljjRNM2HlphwcjsIQTdd55plnOH/hAm+fOcPExAT7DxzgP/7H/6gunCn99Ho9wijCdV0KhQL1RiMrE6dxzOFDh3j55ZeJ45jPfvazGclow9JV9Zk1LXPGpCme52EYBpbjUK/VqFarwkFOTTE6Pp47yBw5NkGxWMS2bfrSXvi9Hq5cdHD//ffzwgsvcPLkSY4cOUKpXM60kBXW2w4gm1FOEZtIPM+jJQlEkdRXfvLJJ/F9n5NvvUXfdbn/vvt49tlns+BX13VsqbLV63az8Q8lt6dw6MABXnzxRcIw5C/+1E/hS1Z/JAPtzaCYrrquC41ozxPjcYUCIyMjYiykVmNq164PtYNU+Mg4SgVbll1rtRrdbpeO7EHcdffdvH7sGK+/8Qb79+1jZGRErOKy7VUHog6/rNkrHdU4jrOxkDCKMvq3USjQbbd5/bXXCKOIe+65h4MHDzK3sJBJzWUqOlKFw/d9XM8jkPqsRbUuTNN44MEH+Zf/8l9yRQ49H9i/f3XzyRZQMlOe59Hr99F1nVq1yujYGKMTE4yMjX0oSyU5cryX0GUwWy6XxdLhdhu300EzDO6++25OnDiB63kcOnSIouNQKpXWrOFTtkNtF1KsekPTKFerBEGQqe0YUuXn3PnzXLl0ieHhYZ5++mn8IMAwDOIkIZblVhBl4kq1Sl8KinR7PUzfp1Qqoes6Dzz0EP/yt3+bq1evMjM7y/59+wAy1v5mUOxct9/H9Tx8z8O2bepDQ4yNjzM2MUFlwBl/2PGRc5QKpmnSaDSo1WqinOJ5lOt1Xn7xRc6ePYvreUyMj9PRNCzbzrZ1rMeg0HgKOLZNvV7H7fd58803mZ+fZ2JigqMPPEBZDgFHcv4oCsM1GwE0TcNxHMxCIVPR6ff7BEEgnHu9zr59+3jn3DmOHTvG/gMHRNlG7qpLNaH9CoLV68kDrnbBFUslJqem2LV3L7VcMCBHjncNTc4NFotF/EYD3/epjoxQqlb5wcsvc+LNNzl46BB9qR1bsKw1uysHmaRq5EtDzHFWKhV0Xefy5cu8+eabxHHM/UePsn/vXjRdZ2FhAduyVvdGDmSqhq5TKZcz5xZHEZ12G8u2qVWr7Nu7V9iNV1/NAuxB1bEUwbtIQcyOuy5hGGYL4odHR9m1dy9TO3asDQA+IvjIOkoFXdfFXsVymZGREXbt28c3vv513jh2jGazydTkJEPDw2KNjNQ91DQtmzMy5DJTgG6nQ7PZ5MKFC8zNzlKwLO655x727NmzuiRa0zKh8kDtmlsH0zCoVCqrM1RBIGTmdJ2jDzzA+QsXePXVV/npn/7p1SfJ/ofqb/ieRyDnQJ1SiT27djE9PU1jeHhTzdgcOXK8OwxWpyYmJ9m5fz//4d//e944fpwdExNMTE1ls4xKO1mNZhiGkc0ytlstNE3j3DvvcP7CBfr9PqOjoxw5fFgIqKiZxzgWC5zl1iCFwftZbfbwpHCK63mZ4tely5czu7Fhb22SiG0pUhglCAKSOKYxOsrE1BQ7du78SM9Rf+Qd5XqYpsln/tyf48ChQ3z3O9/h2JtvMlStslOScRzHoVqtYkvJpna7nS1jTYFXX32VXbt28eBDDzE6OioOnNw1p9hkSmFnvQgxrK7lSZKEQqGAYRhrBIvvvOsuql//OisrK5y/cCHbuB5I9Z8wikilGkelVmN6716GhoaoVqtrZK1y5Mjx3kHTNCYnJ/mb/9V/xYsvvsgrL73EhatXmZ6YYHx8PMtCK9VqprzT7nRYXFoiBb71rW9Rq9XYtWsX+/btE1mj6iGqeUw5yuFJhS+FNauxpK0plkqYhQK+7xMGAXfddRdf+/rXabfbXLp4kaGREQxdF4LosuqkyD1oGiNjY4xNTVGtVqnVah+aecgfFh/tT78NDhw4wIEDB5idneV7zz/PGydPZsQdHTHnqA1EZWod1mOf/CT7DxwAVrO7MAwzZ+m5rvhZEKzurFvnLAe1aXVdz2a4ojCksGMHo8PDLC0vc/z4cT52//2kaSoU+00Tu1ymVCqJsnKjIdaByU0EOXLkeH/hOA5PPfUUjz32GG+88QYvvPACF197LVPeMaRQCIh7fGV5GQ246847ue+++4SwAWKVnaokOYZBovgMmkYolX3WO0uQi5ilrSmorR9xjFMsMjI8zPLKCq+98QYPHD0q2PRSWk8vFCgWi5TLZYZHR6lUKlQqlY+8g1TIv4XrYHJykr/4+c8TxzHtdpvl5WXm5+dpt9s4jkPZcShaFmEUceH8eQzTpN/vZzJz6kAHshGvtoQPKvZvBl2SfZReo6KNx3HMocOHufad73D8xAl+7Cd+Qqy3sW3K0kmapilWZX2ESyU5ctxMmKbJAw88wAMPPIDneaysrLC4uMjCwgJRFFEtlynaNn4Ycv7CBRrDw3i+jxlFmS6zshtOsbgaYIdhtjlkM6hgPonjTChA2Y7DR47w/He/y4m33uLP/rk/R0HNdsvNKGo1odqclGMVuaO8QRiGwdDQEENDQxwYyBjVQuhOEPDm229j2LagXcsxD0WoaXc62SGOwlA4M6k725ear0qjMVECxkkCSo5K09AMg6HRUR567DF+83d+hxNnzvDrv/EbjI2N5Qc7R45bFI7jMDU1xdTUFEDmAD3Po/eVr/DG6dMU63XQNPwoIpVM+m6nA4j2jqbruJ5HkqbYtk2apvRcN1uOMNiySaQdUf1QNA27WOSBRx7ht/7P/5MTZ8/yy7/2a4yPj38kiTk/DHJH+SNAKeqrOaJrMzOMTEwwNTWVKVrEcUxzeTlTwjF1HUyTpVYLXdfxo4hCuZxtItFUs182/5WoucoSC4UCk1NTLCwskKYpx48f58/8mT9zc7+IHDly3DDUYnlbylDOzM4yPDIiBASkGlcsNV9XlpdJ5MhZSdOYXVpC1zS8KMJSmZ9UA1IkQ2OAODRoN3bLVlKappw8eZIdO3bc5G/i9kHuKN9DRFGE4zhrdjWmacrY2Fi2dsa2bS5dusQ7Fy+iaRpHH36Ynbt3Z8ocSgZLOcjNMsWvfe1rpGmKZVk88sgjH+RHzJEjx3uMJEmwLGvDMuMkSRgfH8f3fXRdZ3Z2lnMXLqBpGg9+/OPs3Lt3jdTmIKPWWLdLE3K78aMgd5TvMzRNy8TNFYrFIl1J/onjWCxMfhf44he/CMAzzzzzrp+bI0eO2wODo2sAzWZTLEImtxsfNPLG1m2IL3/5ywB89rOfvcnvJEeOHLcLcrvxwyN3lLcZjh07xqVLl4D8wOfIkePGkNuNHw25o7zNoMonR48eZefOnTf53eTIkeN2QG43fjTkPcoPAN/97nc5e/Zs9v+Li4vZ38+ePctv//Zvr3n8X//rf33La33pS18C4Cd/8iff0/eYI0eOWwu53bh1kDvKDwBf+MIX+J3f+Z1Nf/b888/z/PPPr/m3rQ785cuXOXbsGJCXT3Lk+LAjtxu3DnJH+R7h6aefBqDRaLxvr6Giwl27dnH06NH37XVy5MjxwSC3G7cHtHSrzZ05bjl85jOf4Wtf+xp/7+/9Pf75P//nN/vt5MiR4zZAbjd+dORkntsE7Xabb33rW0BePsmRI8eNIbcb7w1yR3mb4E/+5E8Iw5BarZaVa3LkyJFjO+R2471B3qO8TfCNb3yDer3OT/7kT+ZbQXLkyHFDyO3Ge4O8R5kjR44cOXJsg7z0miNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB3lB4iLFy/y8z//89xxxx2Uy2WGh4d5+OGH+bVf+zX6/f62z/1rf+2voWkaP/VTP/UBvdscOXLcCsjtxi2ANMd7gv/hf/gfUiA9f/78pj//0pe+lNZqtRTY9M/hw4fTt99+e8vr/+Ef/mEKpOVyOXVd9336FDly5PggkduN2wN5RvkB4NixY/zMz/wM7XabSqXCL/3SL/G9732PZ599lr/9t/82AGfOnOHP//k/T6fT2fQaP/ZjP4Zt2/R6PZ599tkP8u3nyJHjJiC3G7cOckf5AeDnfu7ncF0X0zT5T//pP/GP//E/5hOf+ASf+tSn+M3f/E1+9Vd/FRCH/p/+03+66TXK5TKf/vSnAfjSl770gb33HDly3BzkduPWQe4o32e89NJLfOc73wHgb/2tv8UnPvGJDY/5+Z//ee68804A/uf/+X8mDMNNr/XZz34WgC9/+cukafo+veMcOXLcbOR249ZC7ijfZ/zRH/1R9ve/8Tf+xqaP0XWd//K//C8BaDabfPOb39z0cX/hL/wFNE1jZmaGl19++T1/rzly5Lg1kNuNWwu5o3yf8d3vfhcQJZAHH3xwy8c99dRT2d+ff/75TR8zPT3Nww8/DORllBw5PszI7cathdxRvs84efIkAAcPHsQ0zS0fd8cdd2x4zmZQZZT8wOfI8eFFbjduLeSO8n2E53ksLi4CsHPnzm0fOzQ0RLlcBuDy5ctbPu4nf/InATh+/Djnz59/j95pjhw5bhXkduPWQ+4o30cMUrYrlcp1H68OfLfb3fIx99xzD/v37wfy6DBHjg8jcrtx6yF3lO8jPM/L/m5Z1nUfb9s2AK7rbvu4vIySI8eHF7nduPWQO8r3EY7jZH8PguC6j/d9H4Bisbjt41QZ5dvf/jbNZvOHf4M5cuS45ZDbjVsPuaN8H1GtVrO/b1cWUej1esD1yy2PPPIImqYRRRGvvPLKj/Ymc+TIcUshtxu3HnJH+T7CcRxGRkYAuHLlyraPXVlZyQ78rl27tn3sd7/7XdI0xbIsHnnkkffmzebIkeOWQG43bj3kjvJ9xl133QXA2bNniaJoy8edOnUq+7tS29gKX/ziFwF45pln1kSfOXLk+HAgtxu3FnJH+T7j8ccfB0R55Ac/+MGWj3vuueeyvz/22GPbXvPLX/4ysNqcz5Ejx4cLud24tZA7yvcZn/vc57K//6t/9a82fUySJPzrf/2vAWg0GjzzzDNbXu/YsWNcunQJyA98jhwfVuR249ZC7ijfZ3z84x/niSeeAOC3fuu3eOGFFzY85p/+03/KqVOnqFar/NzP/RxJkmx5PVU+OXr06HWHkXPkyHF74kbtxsmTJ7EsK9s0spXtyO3Gj4attZFy3DDU4dQ0bc2/hUFAHEX88j/5J/z4T/wEnufx53/8x/lv/uv/mkceeQTP8/jyV77C7/3BHzA5OcnevXv5z37sxzh7+jTjY2PYxSKFQgGzUKAg56nUDJSieufIkeP2hNrkYRjGmq0eURgSRRG/8ku/xJ/78R/H9/0NduMrf/zH/P9+//ep1Wrcfffd/Gef+QyXzp/HsW3GxsYwCoXMdhimmduNHxG5o/wh4HkerusSxzGe5+H3+4Sex/79+zl5/DjzV65AmqLrOgXTpGrb/Nov/zK/9hu/Qb/f5wv/6l/xhYFyyo4dO9i7Zw9/+2/+TXrtNt1mk/mZGaqVCmga/X6fbrfLzOws77zzDuVymcB1+Xf/7t8xPj7O6Ogo09PTjI2N3cRvJUeOHNshjmP6/T6hdIT9Xo8oDNm9ezdn3nqLpZmZLOg2TZOKZfHrv/IrW9qN4eFhjhw+zN/5W38Lt9ul224DMD87i10oEKcp7VaLK9eucf78earVKkGvx7/8P/4PhsfGGB8fZ2RkhH379t2QsMFHGVqaLyi7IaRpSq/XY3l5mW67Tb/XI/R9ojBEA86cPcuZs2d55qmnxMBwkpCKJ1KwLBzbZml5mf/rS1/ixZdeYn5xEdM02TE1xdNPPslTTz5Jo1bDNE3anQ5hFNHtdJidnaXb7ZICx0+c4Jvf/jZDjQb/z5/7Odx+n57n4XseCTC9YwdPPPUUBw8eXJPd5siR4+YhjmOazSYrS0v0u118zxMiAUmS2Y1PPfUUTrFIGseo4qmu69iWRavV4o++/GVefOklFpaWMAyDHVNTPPXEE8Le2DaVSgXf93E9D8/zWF5ZYW5mhihJeP34cb757W8z3GjwC//wHxKFIf1+n77nEUURZqHAvfffz+NPPEGtVrup39WtitxRboM0TQmCgGazyeyVK/R7PeIoQgMs28Y0DHRdxzRNTMMATSOJY1IgTRLCMCROEnRdtIJNw6BYKmEVCtlr9Pp9+v0+umHQqNfpdjqceOstrl67RhrHTE5OMr1jB5VKhf/3//g/curMGT719NP8zOc/n0WfcZLQbDa5du0afdelWqvxsaNHOXDoENVqlWKxiGmaufPMkeMDQhzHuK7L3LVrLC0uEgYBaRxjmCaWZWHoOoauU5C2QNN14jiGNCWOY/wwRNc0NF1HS1Ns26ZYLKJrmrAzacrKygpJklApl7Esi4sXLnD67Fna7TaObbN71y7Gxsb4J7/2a5w6fZo/+6lP8TM//dOkaSr+AL7nMTc/z/zCApqmsWP3bj7+8Y8zMjpKWV7XMIyb+2XeAshLr+uQJAme59Hv9+m123SaTVrtNkkUkaQpVqGAY9vohpGVV5MkIUhTdMSB1zRN9AhsG5KEMIrwg4AoSWh3OliFApVyGV3T8HyfNE0pFAqcfOstTp48iWnbTExOMjY2xujIiCi/9nq8fvw4URTx8AMPMDw0RJIkxElCHMdUymUmJyeZn5/n6pUrPP+d7zB79SrTO3dSrlap1esMDQ3RaDQyx50jR473DmEY4rouvW6XfrvNyvIyvu8TRhGGrlN0HApyZZYmnWCcJJCmaAP9StM0sW2bJE0Jg4AwSfB8Hz8IKJfL2IUCQRAQxzGartN3XZ5//nmWl5aoDw2xf/9+picnsYpF+r0eb544QRRFPPTggww3GqRAEsfCdpRKNOp1du3axbWrV7ly8SLLCwvcedddVOt1avU69XqdkZGR60rkfZiRO0pWM0fVC+y1WrSlg+xLoeGCaVIpl0nSFNf30RBONU1TUk2DJCFWyflAkp5KZ2qaJmmakqQptmkS+D5OsUgSxyyvrHD2pZfo9fvs2bOH3bt30+v3hcPVNAqmyfPHjjE3N4dj2zzxiU9QsG00TSNJEhLIbrQdExMcOXSIH7z6Ku+cPUsYRYyPjbGytMRCpUK5UmF4eJiRkZE1mpI5cuR491CZo+u69Fotmisr9DodVtptUfFJU8qlEqZl4QcBYRhCmgrbAVl7Zo3t0LTMhhRME80wiKIIwzAIwpBSsUiSJERRxKXLl7l08SLFcpmjDz2Ebdv4QUAqn3vs2DEWFhZwbJunHnsMo1DIRh3iNF1jq/bu3MnM/Dwvv/wyJ44f5/CRI3RbLZZKJebn5qjV6wwPD38kg+2PtKNMkoR+v0+r1WJleZlOs0mv3RaOBxF1VYpFrEIBWzomFfFpmpY5QVUyieKYNE2zKDGR2V6q/h5FhGHIiucRRhGeLHu4rkujWuW+++6jXCqhAYauo+m6uGk0jVeOHaPRaPDk448Lp5skaLouyjNpSjRACy+WSjz2yU9y4s03OX3mDJZpsnv3brqtFt1Wi9bKCvNzc9QbDaampj7SkWKOHD8MgiCg2+2ysrJCa2mJbruN57rohkEUxziFArquU3IcDNPE0HV0wxD3q8wmlV1Y/ydFOODs/6OIME3pdrt4rkusaTSXl1laWiKJY/bs2cOOHTuwCgVSwJRVLV3TeOW112g0GjzxyU+iaxppkpDK92BoGnGSkEiHqRkG05OT/JlPfYrvPv88Z956i4c+/nGIIhbn5mivrLC8tES5UmF0dJSxsbGPjMP8SPYokyShI4kyK0tLtJtNSFMcy8IuFNB0PWty12s1quUyhmGgG4ZwkElClCQMdvzSNCWVhy6KY6IwFFFfHOP5PqHvE0RR5iA7nQ5XLl/GS1MqjsPE1BTVUolquUypVMKVzrRo29kaney15H81RKnX0HXQdUgSCqaZvU+AM2fO8Obx4zzy6KNMT0/Tc126nQ5eEFCqVKgPDTE8PMzo6OiG18mRI8daBEHA8vIyc3NzLC8uErguBcPAsixsy8rKrJZlMdRoYEsugyYD3jiOSQeC2hQyR5UkiRgNkQ4y8H28IBDl1ygi9H36vs/c3BwLKysAjA4PMzY2Rq1cplwuYxoG7V4PDTJizgY7labCces6mmEI56ppGKaZOT7f9/n2c8+BpvGpT32KBOh2OnS6XdB1hoaHqdRqTExMUK1WP/R9zI+Uo0zTlE6nw+XLl2k2m/iehx5FOJaFUyxSLhZxHAdPrq0pFApiRGMd4jgWhxtJ2pE9yDiKsmwSxE2gIfoRKRBFEUEQ0HNdTp08SRRFRDIitG07iwhT+Rxd16lXq9QrFWKZqarMNJaOeZCgEyUJyH8zTZNCoYBuGPzg5ZdZWFzkU5/+NCXHAU0jDEOWmk3iOKY+MkJFlmQbjUZGMMiRI4dAFEXMzc0JFnqnQ+z7FAwDx7IolcsUpUP0w5A0SajXapjr7qNUBtHZ36OIJI4Ff0FmkOsJdxrCkQZhSBQEXL16lctXrlAul+n0++zesYNSpYIhq0y6YRBHEbZtMzE2hiH7oMp2RHFMEsdrXieVBCKQPdJCgYJp0uv1+Oa3vsXePXu4//77s8d3ZRXOLpVoDA9TrVYZHh6mUql8aAmDH5nSa6/X4+LFiywtLZGGIUaaUrEshsbHaVSrmIUCGtDpdkVpBKjIzeGDiJME1/NEGVU6RnWYAZDRWqFQQDdNdFneCIIADej3+5x+6y1KxSL7DxzgtWPH2Dk1hVkoiMWrMmMNwpC+5xEEAUmS0Gg0xCbzNM1eL5QN+TSKiJTDluSgMAxFPwTYf+gQC0tLvPTiizz++ONZ+Xh8ZIS+59GWfRVPUsvr9TrVavVDe+hz5LhRpGnK7OwsV65cod/vQxxjAkONBkNDQ5SLRTR5j7fkHGO5XN7USYZhKJyitB2KeYrM8jRNo2AYoo8oA+VQBteOZXHq/HlmZmY4dOgQIyMjvPTSS0xNTGAWCuJ68lqdMKTb65GmKcNDQ9Rlxqfu5lAG20maZsG953nEcZz98eVjDx0+zKmTJxmRs9q6plEplSjaNiudDouzs3TbbXzfp16v05BZ9IcNH3pHGccx586dY2ZmBqIIPU0p2zbDw8PUlDOQjjEIQ4IgIE3TNY4iBcIgIFAlkCha0wTXDQPLMDANI8viQNwc/X4fPwjQNI2F+XlOnjrF2NgY9957L+12Gw15Y5mmGBtJUwzTFHNWKyvi0HoeM9euYTsOjXqdarksskbEyAnypozimFKxSBzH4n3KweaCYXDXXXdx7LXXePOtt9i3dy+2ZVGwLErFIpZp0my3mbt6lZXFRXbs2oXneQwNDeXZZY6PLNrtNqdPn6bf76PFMQWEg2zUaoIIJ3t9yPucNKVgmmtIcnEcEwQBvu+LkqrM3EBUjUwZVBumuYYRG8pZR8VsP/HmmzRXVvj4Qw9Rq9dpSdtRUdmk5Evosj/Z7/fRgGa7TavdplapUKtWseW4h6p0YVmkaYpj20JNTNq3UAbo05OTLCwscOzYMSzLEqxb28Y0TUbqdXquS7vdpt1qMTw8TDQ9TaVWo1arfagC7Q+1o+x2u5w6dYp+p4Mex5RKJcZHRymVStk80uCv0pUMV8e2KZgmgYzm1m8ZLxiGONiFgiD2IJxpKrM9YPWgy0hxYWGBEydPsm/PHo4ePUq708mup2salUolc6pxHGc3QBSGaJpGz3WJwpC5+XmWTZNGvU5ZKvdosiybpqmIRNVN5zhZuadYLLK0tMTFixfZMT1NFMdonpcRlUaGh2m2Wriex7kzZxgZGyPwPEbHx3N2bI6PFJIk4fLly1y8eBEtDDGBkeFhhmXgqO5x5QgCWb1JgZJkxodhiO/7WUkTxH1uFApYloVpGEK6buB1FZO+77p4vp+1bI6/8QZur8cTTzxBvVaj1+8LZydbLJVqlW63K1i2msbI8DDVSkX0OcOQIAxpd7u02m0q5TL1Wg3LssRry9lvWBU4sC2LtFgUWXAUcf999/Hcc89x+coV9u3bhx8EGIaBbduUikUKhkGz02F5cZF2s8mO3buJooihoaEPDdnnQ+kokyTh2rVrXLhwgSQIKGgaO3bupFGvZ+WJ9fB9X/QMo4iCZdFstVbLqYhDbklijSqnKsSy5q/Lg913XTzPy1iynU6HE8ePs3//fo4ePZoxzVIERVsd2FKphKZpuL6P67pEcYxRKNCo1ainKZ12m263SxTHLCwvs7iyQr1azbJfDUglG3fwZi5Ix3nv3Xdz+fJlFhcWmNqxQ2SrQbB68C2LJEkwDYPlpSV816XvupngQY4cH3Z4nseZM2dYWVxETxKqpRI7d+7EkvfGZjlS3/MEr0DXcV03a3koFKTIgJKJy2zHwOA/iD5ov98XREFNw7YsXj12jG6nw1NPPUWj0aDX75MiWPFr5O6ks4zjmCCO0XWdYqnEaKlE33XptNu4vi/IfN0udrFIo1ajWCwKOzcwkgJyzlO+B2toiIP793Pu/HkO7t9PwqocX1/TsAoFSo6DDoRRxOWLFwVhcMcOJiYmMM3b383c/p9gHTzP4/z58ywuLEAQUC0W2bVrF5Zto6vRjQGo3kCn36fb7wvFjIEM0ioUsB1HlCAHDpJpGIQyi1PXCeOYXq+XHWDbtvFcl5dfeonp6Wk+JhviURiulkrkc5E3TFHOSPnSWZZkZFcwDIYaDWryhmh3OkRxzEqzyVKrRa1apSFZbsphDzpMECXevbt3c+HCBY4cOUIkmXVBGGa9CVV+sWTPdObKFbrtNgcOHaLeaLzXv64cOW4ZzM3NcfnSJdx2GxMYHxtjcmIC2HgvgagiBWFIt9vFDwIq5XLGaDUMg4LMzgyVVckMdM0Mtrg4rgyukb3JcqnEG2+8wcLCAk88/jiNRiMjAKVpmjkfdZ/rmkalXKbT7eKHoSAbmaawKY5D0XEytn1fSuhdnZ3FLBQYGx7OnLjKYgeJgpqmcejwYd555x0WFhY4cOgQvuRPRLK0nCKcJIjMtNVs4vX7uP0++w8cuO0zyw+Vo1xaWuLypUui1BqGDA8NsWPHDlFmlcP+CoqRGkURnV6PVqtFmiQUq9XVCNC2V2+OdSICaBqGrotREdj0oHuex/eef57h4WEeevhhMRc5wHxbT6lWr1UqlTIH3nddKop+LSnc9XqdWq1Gu9tleXmZOAyFBm23y3CjkfVPdMjIQarMfPjIES5dusSVK1fYvXs3lmmSpCm+VP5Qn6/vuhRMkySO6bTbnHjjDQ7feSejufB6jg8ZoijiwoULNJeX8dptHMtienKSer2eOcj1toM0xfN9FpeWCMIQ0zSzcqRlWcKRra9cSceoa5qYt0xTojCk1+uJEq3M4IqlEiffeouLFy/y8UceWbPsQJVy9fXjGLJ6VSmXCYMAP4qEnGW1mjlox3FwHIcwilhpNmk2m4RBwOVr16hVqwzV61mPE+nYkiRB1zRKxSK79+7l7NmzHDhwQDjfYjEjKAVBgG3bWSXMMk3CIODqpUv0u13uuPvu21p4/fZ28wNYWFjgyqVLBJ0OlqYxNTHB1NSUiGQGxjUUoiii0+nQ7nTo9XqQplTKZYaGhqhUq2ud5ABUmVRj9cvr9fuZk7Qti1qtRhzHPP+97+EUi3ziE59YjQDlLBWwGmmug6ZplMvljEjT7XZFrxOy8mqSppSKRSbGxxlqNCjIfubM3BwLS0uCBj6gAJLIQKFSqTA5NcXp06ez19M1jaIsxVQlsajoOARBIEpJkhj01htvcFUuf82R48OAKIp455136K6sEHa7NBoNdu7YkWVwygZk42Bpiu95NFstut0ugeQQjAwN0ajXha6ylLccRIq4b4HsPg6laEEsS6WVSoVyucz58+c5ffo09913H7vk7sjB0RJdzU4PQL1P0zTFmAbgB0GmLCYepGWciUatlomNFHSdbrfL1ZmZjC2bynESEO2hJE05dPAgrudxWdkASV6qSBm8onTEuq7jysA7TVNWlpd549gx+r3ee/Abuzn4UDjK+fl5rl25QiLJKRNjY5nzUKWQrA8Qx8JBttsEspegaRrlUilrPquDPAh10Ad/FicJ7XabKAwxDINqpUJFNtGf/973SJOExx57LIukVIk13iKjHHyfylnqUvyg0+lkSj+xLL+QphiGQa1WY3pyUjhXw6Dvuly9enUNYWiwZ7l3717a7TbNZnPghcUrW5YlxkMqFRzHEcLJrovreURxzJWLF7nw9tvEssySI8ftiiiKeOfttwk6HSLfZ3RkhCF59pWTTFMhL6dJXeZmq0VPkvRiyTJv1Os4ckxky+AaITOpfu55ngjQNQ3LsqjV69iFAteuXuX1Y8c4fOgQhw4dWr3IQIBtXme437KsbIOR73m4vp+931TNeWsaBWkrR0ZGsCRzdmFpidn5+TUERvWeq9Uqo6OjXLxyZU1vFUSwXXIcatUqtWpV2K04zraZ9Dod3j55kuby8rv4Dd06uO1Lr3Nzc8xfuwZy1qiiRi0k7VkhjmO6vV52AFIEu9WQdXxg06azKrPCqp4qyIy02yWMInTpJJXjO/7663Q7HZ555plMHk6JCKgegybLL5u84OqaHU3Dtm1CSbqh1xNzW+qxUo1HjZSMjY7ieh4rKyuEUcRSs0m312NkeBh7oOwxMT5OoVBgZmZmVb1joB+hpSm24zBaKLC0vCw2p8cxrmQBFwoFwjBkz8GDt3U5JcdHF5mT7HZJk4RGrYZtWdlcZCorMZquZ6S2wQC36Dh4hkEYhtiWtaWD3Czo7rkuXr9PKitQisTX6/X4wauvsmPnTu69997VGUt5DRWcGlL7dTNktqxQwIxjkRi022i1WuZgFVEnjaIsIC8Wi7RaLTqdDkEQcG1ujnqlQl2WYxV2TE/z+htvZHYgHbieakdVKxUMXWe52RT2TtNEpgpo587hex4T09M/xG/t5uG2ziiVk0yCgKFaLRMIKJVKAJnKjet5tDodAknhtm07G69QB24zgz9YZh087EEY0u50iOMYQ9epDTjJy5cuceHiRR544AHq9frqLJEkEqlBY11qPSrFDFUmTSQTTpVMNU2jKJm2vudlWTDyPenrZpWKjsPkxASNapWCYRCFIddmZ2m1WtljdMNgYmKC2dnZ1e9Jvm4sby4lnDA8NES5UslusjiOWVpZodNuc+HMmS1v2Bw5blUEQcDZM2cIpLjI2MgItuwrFuQ8IZLZ3u50MiepeoBqvEIFvYV1tmN9tpX9O0LQxJMs2WKxSFnORCdJwosvvoht2zz04IOrdkc5Nchsh2GaGzViZWk2lmv+kjQVvVIpydmTjkpBl39UMqHrOkNDQ0xMTgqVIU2j1elwbXZ2TXY5PT0Nacr8/Pyaz6vmPZUcX7FYpF6rUSoWM1vX6/Vod7vMXLnCvLQ9twtuW0c5Pz/P7NWrJEHAcKNBrV4HpPapOkhxTLvdpue6pGmKbVmZgzRksz2UDNT1jnJQT3UQijmWIBix1Wo1ywy73S6vHjvGnt272b1799onyvGR9eWTQUe64fXkz0zDwHGcbJB4kLm7WblH13UheD4xQblUoqDrLLfbzC0sZOLp09PTrKys4Pt+RvpRn1vduLFkvhVtm6LjYFtWVgru9nqsNJtcPHs262XkyHGrI4oizp07R9DroWsaOycns7Nv2XZGfHM9j5Zsz6isq1GvY8v7UI2AmFLwXGGr4DpJU9oyW1N8iOLAfPKJEydoNps88vGPb1D1YV3LZlMGqWS+DlaGQATOapSk3++veYom9+kOwrYsJiYmGB4eFkS/OGZmbo5utwuIJKTRaDA7O7uaSQ58xsHgv1QsUjBNinKxBIj9l91ej6sXL95WZdjb0lH2+31mr16FMGS40WBkeDgbuSgUCiRxjOd5NNttojhGlwe9ptijslcQRVEWPQ7SrWHrkklPHjbHsqhUKtlBS5KEl158Edtx1ugiKqjILSvfbDNbpF57UBnIkSMqaZpms1SrT9A2HFoQWrVjY2NCv1X2WGZmZvCDgKnJSXRdF4pFA852M6dn27aY3TJNClLZI5VM2dnZWS6dO7flZ8mR41bClStXCLpdTE1jx+QkBZUZIs53FEWC4NfvZ/akXqtRcpw196XKsgYD7K2C60jK24VhCJpGtVpd87y5uTnePnOGe+65h8bQ0JrnrrcbuixvXg8ZJ0HXs9KuHwQbKlKwOhIyiEqlwtTkJEVJzllYXmZpeVmo9UxPMzs7u8ZWqJGS9bBtWzhxXc9G3ZIkodPr8fapU3QGeBS3Mm47RxlFERfPn0eLY6qlEiPDw9mXr5xFp9vNskirUKBer+PYdkahHlTPAZEZKnWdrdDr9/Ekg0yVTBhwTCfefJNmq8UjDz+8qc6jyhiVCsaNHHb1CNXTLJdKYtlrFOF6HrDxptysV1Kr1RgfH8cyDNIkYWZuDtf3GRkZycqv2fuEDQ5Xk71SXdcJJQ1cRdZxHHP50iXOnjp13c+TI8fNxPLyMr2VFbQkYXxsTGSQMgvSgCgIaHU6hCqLLJVWdVLV2jvEfRKowFySYNYT/RTiJKHTbmel23qtlvX2QFSoXnn5ZSYmJjh08OCW711VkTblNQxAW/ffNEkoFAqiIoXQvM4qUgP3+foWDojAYWxsjGqlQkHX6XS7zM7PMzY2JkZM5AYT1dPVN6luWZYlfi5L2SXF5pezoydfe4221Mi9lXHbOcprV66A52EAo6OjwGqU5wcBzVZLEGwGskiV9WURofz/SNbzTcNYQ91eD6W0A2SN70HMzc7y9ttvc+8mEaGCEk5WUnOaLIcMjm6sWeQycHCzPoJhUJH7Kj05trHBuW+SWYLISCcnJkQpRtNYWlnBdpzssGfBBgO9z4H3Y1uWkMqLImIpSFAqlbLs8urVq5w4fnztZ8iR4xaB53nMX7lCEkVilEHNKiPOfrfXo9PtrskiHVlJWV/hUWIBKEKeJMCth+pxxlLtqj6wjkoRdV555RXQNB566KE19/yGaw1wG5IkyRS9lN0YvO8GbZy6h1VFCthYkVLP2+T1dclTGBkZyUbQuq4rdGQlaz77PsRF1thQpe6j2lykKaVSKSs7e0HAGz/4AStLS1t+9lsBtxXrdWlhAa/ZJIpjpiYmVscrNKGF6noepmFgyd1sSqFmQw9P0zIZJuRqms0OOggikNKALZVKmTK+ciz9fp+XX3mF0fFxduzYkem7ZsobciYpReq/um421NvpdoXav6z/Z+9TOjulF2uaZtbjVJFfFMe02m0atVrGzhvEZhmyYZpMTEzQajZptdtYloXr+7S7XcqbLG/WdX1V+UP2fpEbDXRNLJ8tOg6+FJNfmJ3leBRxz/333/ZKHDk+PEiShGtSztIqFBiSM5K6phHGcTanDFCWRnyzMqoKIAPFPpX38WbuLZH3tcokq9XqakaaJMRhyNmzZ5mdneWRRx8limPCXk84vgGJS1XO7PV64jHyXuvKLKzT7a6xGwoqc0yTBMtxVreRSF1aHXDUPT/wPA2yxfWDKJfLWJbF4tISfhBgl0rMzs+zb//+NSVYTV5P8RxAZJWpHG1LJEvfsu1s5CaOY944dox77r+fkVtU0OS2cZRev8/KtWuEUURdahSqX0an2yVVJBm1Q3KbDFEhURnlFv1Cz/fpdbtESSL6dPK1ErWOJk05c+oUQRhy8NAhXLnHcpDSncj/BxkVJgm6KtcwwDhlYBRFlmqTNBXkG3m4s3IKEPi+YNFKmram62K5tNwgYMhSUaa0MYB6o0HBsrI+y4ULF9i/fz/OFqMemqZlzlJ9DgXdMCgaBoau43keSwsLvPn669x9330f+mWuOW4PzF2+TOy6JGnKjvHx7BwHvk+n1xNZYZLgFItbOkkFTdOI0xSSBGNAIH0QGXEnDMV1HQdXMmdjSTJ0PY+3Tp1ix86dlEolsQNXlnDXCKTIv0fr2PLIezJV42Qq0Jc/U3OTQRSBvM+VE/Nk8K/aR7quo8t72DCMLAheH+wWCgUmxsdZWVmhVqnQbLWYm59nZDPxcxmIJGmaqYopJrH6udq05Louvu9z/LXXuOdjH7sl1b9uC0eZhCELly5lGqTDQ0PCScYxLTmIb1oWFfkLjqIo2y+5FeIoEk5E17MsLUnTTBi977rZkL9j2ySmiauWrsprdFotLl++zB133EG5VBIHbuCQDTbLNTlLZMkl0UUZ5WlArVqlXq9nDhZ5A4RRJOYkVSNcjZGkKSVE1BgEgXCSabq6kHWASauyTVOuATNNE90wKJVK7N69m9defx2312N+fp7x0dENm0IGZzZVFG4WCplklfq5mlvt9fsszM/z5uuvc8/99+fOMsdNRXdpie7KCn4cMzYyIoJKyR5XqjXlUinbzbhZBWo9Ejk7PRhgR3EsbEcYilE0zxP3bamEL9s2sBoUn337bTRd59DBg4IjIQNalfkpgo0qDasycWNoaE0/sVqp0NjEduiScGTbtuiJJgkJIimI45goCPB8P7tvkyQhUoE6q+0ewzSzTSemaYpS7PAwI40Gc3Nz9CUXZHR4eNMqkuIxGIaBJvu6inMBompVKpVIpFN/87XXuPv++xkbH39Xv+f3G7e8o0yiiM7CAp7nkaQpYyMj2ULT7rKToAAAse5JREFUTqcj5orkwH+338f3ffqeR32bPYpqJklt/ei7LqEU+EX+rC/njqxCgWKxiCEjLlWC1DWNH7zyCo1Gg7vuumvT+j6sHrgMkmG7GWFmfX0/BbH8Wa6/WYNSCatQwA+CTIJORauKnh3LecgkigjimGBd816XJSHP99E1jfnFRUZHRihtUoaNwzDrTZqmKQatBxa0agiGWyyj5cWFBU688Qb3fuxjW343OXK8n4h6PZqLi8RxTNm2RaUJUa70ZfWn6Dg4ts3iygpRFBGEIfYN2I4wijDjmE6vRyhFwdMkWbM9pCzHIgxpM5T9WFxaYnZujocfeojh4eGtX2sgm9Qk23U96WZw2H/wJ8ohFgoFQWQcgOM4tDsdklTsocz6ngP2A9UuCgIiFXwnCZpc71WXJMpArgObX1xkfHR0g7PUEP1hq1AQKwPl51H9UpXllsplYtnPPfH669x39CjDkoNyK+CWdpRJkhD1erTbbeIkoVIuYzsOvufRkbqBpmlSq1ZFk7hYFIr2YYjneRuyoxSy/ZLNdhvfdbHkY9T8YBxFREGA7ThCkmmLBaTnzp1jZWWFp59+emsnCWuiJ1Wz34xhthkyAsEW/dNisZg5+DhJxKzSups8lg5T9TeiMMzmIwlDKqUSSysrmdjA7Pw8E2NjlKVoA/Iz9Af6tFEUCSLUwGdT79e2bbQ0pef7LM7Pc+7tt9l/6FDuLHN8oIh9H7fTwXNdoiRhanhYDPxLVitApVzGcRziKMq2a/R7PQr1+oZ7VDlR3/dpNpvEqqTIagaazVwWi0KSbp2DAmEDXn/tNcZGR9m1a9eW738wwM7sxrvo+2cchU1sh2kYFG2bvufh+b5YYL/+9RGtqSiKCKKIOAwJkgRNirerJdNhEGAaBm4UMbewwMTY2Jr3GQTB6lhMpUIorzm4EF5DqA2Vy2WxZiyOOXH8OA8+8kgmHnOzcWs7yn4fr9fD9zziOGZkaGhNycS27UyNJ0U010vFIv1+n57rZqWCIAjEEmbVQ5QOEU3sUnPkxm5NUqA1XceScnibwfd93nzzTfbt3bttRChearWsqw78jZYjtyIKKBi6TrFYpOu6uOrzrrvBVRRrykXTqYwcY1liLpXLXJ2ZoVqt0m638TyPy1evMjo8TL1WwzTNTJlE13Wq5TItqUq0/sArWI5DKjP1SxcvUiyXmZqezp1ljg8ESRwT9/u0Wi0iGWCbpklLjmmgadQqlazsmGpiF2wo1831ej3K5bLo8QXBarVJ2g3FlFdbQkwpZafKn5WBhQbr8fbbb9Pt9Xjm4x+/4fthq21D20Lajq046I7j4AcBYRThed4a8QNYdV66rmMWCsSWRTFdVe6KpT0JgoCxsTGazSYt36fvukyOjWVJSl+WnR3bxtB1YtcljGM21qxEi6hYKtHv9UTP8vXXOfrgg7eETOYt6yhj3ycOAtqdDmGSUK1UCMIwY6AWHYdyuZxlNcoJFR2HQC4ovdbtYjuOGP+QBBld7olLJCOsWquJ6ChNs55koVCgJss0GclmAMfffBPdMLjrnnu2/xCDUeGAqsa7chgDn20z2LaNJ6M2z/PWlE1VP2RwxhTI+pW2bVOv17OS6tDQEMvLy/i+z/zSEp6MFhOZrVak3FZBKh9FScIGcyANjyUp4X3P450zZyhK0fkcOd5PJElC1O0SBIHIJuOYer1Oe2BLR61axVQaz+mqUHm5XGal2aTVatFqt3FkD16R7gqmKQJqRO9OBdKhtEupvIZtWdkC9cG9jv1+n5OnTnHo0KFMY3kzrHduWUb5Lhzl9apRmmzXRJ1OVhodHF3J7J4aTVMcBV3PggBH8iYqUsJzaWmJMAy5OjtLvVolimNhZ2R5W11PJQ2DmWc2AqdplCsVet0unVaLM6dOccddd9305c+3JIc/jiJiGVW4rksqmWNqlVVFjn9kc1DyeaGUVlMU6DCK6CvppWKReqPBUKNBpVQSrFBWyxl91yWIIjRERKhYWppihUkHt7i4yMWLF7nn7rs39g3XYfCIZtnkuxmbUMzdbRyrOvCaZLNFUSSICQO6sZmsFUK2atDx2wPGoFqpsHv3bhpDQ9imyeLyMsutFlEUEaep2ATg+9nCaZWVZ59Xsfbke7el9J3v+5w9fTrrC+XI8X4hcV3SOM6yyXKxiO95pEmSDfwPOknFEPU8T4x2yQUEvu+LcTOpwDU8NERdKupoUoAAxH2tVlM5tp0Jm6hREkP29NA0Xn/9dWzL4s4779z+Q6xzbj9M6VXdl9uJS9qWRcGy0GX1J5GvtWbLSHa5jfPZRZmVFh2H4aEhdu3aRclxSJKEmfn5LGNN4lhUpeTvQEO0hDZ14dK5l+WM9tzMDFevXr3p89m3nKOM45i42wVNE71JSSNW4tuVUimLThQjzO33abZatNttfN9Hk7vdKpUKpUol019U+qrZfCPiC1B7F0nTLDraDJqmceKttxgeGmLP3r3X/SyDx2q71VrXe776nOuhBo4Lppn1DBQLbbtrDt5wtm2TalrGzNOA0eFhSqUSjmURh6Fg+BmGWJsjy7yqv8GAI17/qmmaikW2hQKtlRXOnT2bfQ85crzXiIOA2PezDC+WIxxJkqDpOvVaLRPIUKSSdrvNysoKvX5ftBJMU+hBF4uC7S6Nu2ppKAei9tz2ul3xGNNc09cfhKZpLC8vMzM7y7333SfskLZRNm7Lz3WD67U2eeEtWzcpwonatk3CKndDcTW2+hyDKEq+iIJj24yOjFAwDGzLwvN9isUiqWTgdrtdXM/LXmuwTbRGv1qOq6jv88LZs5kwys3CLecoU+mwIlk7D3w/E9R15FZtNUPU7/dZXlmh2+9nh8m2LKrVKsNDQ4yOjGSMr2zcQ2Zb2VCsPOwpghyzVW8BYHZ2lqWlJe65554swhr8A6ssLjUwrBD/MFEhq05dCRio8ZA4XVXjSNJ0jVjz9TZ6DPY+lbSVUh4Ko4hutytk+opFqnLDiiOzQ03XxeLoJMFzXVaazUzya4PWo8zCS8UiumFw7cqVNZJ5OXK8V1DEP7WuSrU6TF0HXV+jiqMcZKvdFuvrkPwG2R5Qf3RdJ5bCHp58nLqvVRaWVaEGZrc3w1tvvcVQvc7OnTvXZJyqRJoFm4Mz1ayq3mSl1HeBwWtldiQdUAFLxYYgW2aV3oDT2wqamuNEOFnlKBXhLwhDhoaGcCyLUrGIHwRiMYNlZU5YKaipoH6zgEGNuJQchzAMefvUqZtakbqlHGUchiSyKe65rij5SYqzZVli3kmq4aysrODKdTWmOuSNBuVKJRMP1zSNWrWa9e2CKKLZbOL2+5lR7/Z6xKnQhF3f0F6PE2+9xejoKGPj41sOI6ubQP1RhyATNR6ICjdIUMk/g7X87EaSKjnZa617bUPXseQ6rhs98CDmH3VNw3Vder2eMDKS0bdjepqKXB69tLKCJvs71UpF6GQiHWu/n+3mXA+VzVekZNjFc+eyTQQ5crxXiPv97J7zXJee62JJRSu1Bi8MQ9rtdra0PUUE1rVajXqjIYLGgfuiXq9nvbFeryd0YOX2jzCK1lahtgmAFxYWWFhY4M677tpoNwZZ4yroZtUpKruhxjIUBh3goN0Y/DNog9SfzeA4TkZUUozgraCxasMcx8HzfXzfpyP7wiDaXNNTU5hSCajT6YjWl1yFqOm6KHH7Pu1OR9jj9ZUmafMKhQJ2oUCn3ebSxYs3rSJ1azlKSdTRNI2eZK7ajoMpdUV7MoP0fV9EHIZBpVKhVqutOeSZuLe8btFxREQpnU3Xdel0u3R7PSIpPHC9iPDazAzNZlPMTF7nc2zm0BShZvCGWh8lDh7mGxl8zq4jr6H6I5Gc87ru83Rd7K2Tc1WhjI5t2842o4wMD4u5sjRlcWlJiDnIski5UsHUddIkIQgC8TuTPeL10HWdkuPQ7/W4duXKmh13OXL8KIjDkESepyAI6MlZRqdYFPc10Gy36bTbomcm+4lq5d4gUUQ5GCDbNasC6CiKaLXbdHs9XDlnfb0qFIgVWkONBpNTU9f9LJsRedbbDVgNxNVz1j9vsG2zFaEH+TNd0wRxSaprXQ/KbpmFAnGaCgnAJMHQ9WzkxrZtRoaHMZBBRquFpmk4jkOlVBK8CkQp2/N98Z267kbiouRg6LrO7NWrNJvNm9KvvGUcZRwEEMdoiCylJbdj1yoV7EKBZrudMV51KTDcqNeFEV9HKIGNTsY0TbEuR4qK+75Pt9ul2+1e96CTprz15puMj40xdiNDsOt+kYO/2HfDXBvEjThNQ9fFlo8byCqjKMLt9+l1u9nG9EKhQKVaFSVW9bqaJvoOcjfdoly1o1SILMsS2wWkM42jSIzn9PvZoVeZtmXbWKbJ3MwMKysr+R7LHO8JYinSrQGtZhPf87ClwEDg+7RaLcIwJIGMeFIulzc4n82CU9U6aNTrWQuo2+3S7veF6MB12Jhzc3MsLi2tySbfTQFVadC+KxLgOqzXgV77Q/FubHnPq5GYrZCmKUEQ0Ol2hYCAbAsVHYeKZBMrFCWB0jQMWnJ1GZCNqxWLRaFDKwP2SGaf6vUzQpGsSPm+z+zMzE2pSN06jlI6wTRNaS4vE8cxpmliFQp0JRtNlwo8jXodS/bkBrGVk1RQS4grkuCTQjYL1Gw2s4b+ely+coVmu81dd931Q322QYfxw04SbtefGHTE25VREpn5dTodugOlEl3XKUgywmY3pGEYjI6OYuhizdbSysqq7qsUHig6jijJSibw+kOvUJTzaitLS3kJNsePjDgMRYCt60RxLHbQypGFvueJ6hPSQTYalOVMpdIvVhgchdgMhq5TVQvfAV2S6DrdruhhyirXerz51luMjIwwMTFx3c+yfgsIrI6Vbevs3gOsySo36QXGkrnabrczdrApd/uWy+U1cpaDqFYqWVCytLyM53mZ7YjiGEuO2ZTlzkwA13VFSwxAPlZVpBblEukPugR7S8xRxkFAKkugXhAIKbowFEY1jknSlHKxmI1BKKg9Z0hyDtxYtOa6buYYhoaG8KWCvS/r7boUHLAKBUzD4NTJk0xNTq4RF9gu/VfkGz8IiKNIZK+SaKDEzJM4zpaWzs/P4/b7mTCxbhjij6bhuS6GFFHfboBYQZdjGZ7n4Xleli2qcZnMGGhCbMGyLNHLuQ4Kpsnw8DBLS0t4rktbjoiEAwdW18U2EatQoO95GUs2CMNs07qmaRQdh4X5eeoqss/1YHP8kEhkNpkmCe1Wi0jOFBcKBVKpMVquVDJWuEKmiTzgnK5nO6I4Jo4i7GKR0aEhdMMQ93Mc0+/3ceWmn4K0HXNzczSXl3niiSc2SFNuBzXepnZZqvnxjmGIqQBJMAJhO5TzMQbsRyjveTX3ueVrDsxa2nLcQ2WVg9tGBqs/uqxcVapVNlv6vB6Nel3YAs9jcXmZarlMiuy/yiy9YJqY5bKYQPA84iii2+lQlOvB1E7coNNheWmJYrFIo9G4ziu/d7glHGXieejyEPR7PbqdDlEUZRlOfV0fYRCqAa5q+deDJ5U2NIQcm5p9isIQT1LLkyTJHM3c7CzNdpt777+fKIowTFNI6HU6QjNSPs7zfaHK73m4/X6WzanMdX3ZRR2uJE05fvz44Ada+4ZVU14qgThyabJj26IX4DjYlkWpVKJSrQrRctMkCEPCIMCXogEKWRBgWat7OpXRuA6KjkOjXqfZatGVJVtbjeoMPN+QezODIBDzU1FEr9fDsW0sy6JQKOB1u6wsL1MqlYQgfI4c7xJJGJJKHVRXstp7rosjy3lFx6E4kKlswLtwkmpnZZqmWLJsaJqmYHb6fuZglA5sH3j9jTcYGhqi3mhkjqbb69FutXDljltFhlFznJ7nZY/dznYkMoG4EdtRsCwKpolTLOIUi9iWheM4WS+xWqlgOw5qT67vuvRdN+sjqmsXTDO7f4FsqcT1eoaapjE6PMz8wgJ+ELDSalEqlTbVrbVtG8M06ff7xEkixknCUDDnpRLZwtwcjaEhKtv4hfcaN91RJkFAKnuTnU6HVrstFB3k3jhnkxLrIJSRvhEnmaQpfakRa8kMR8EsFKjIPlsYRXi+T7vd5p133qFUKnH27Fne6PXoyd4EckTDNAxK0mE5jkNFlh+dYhFbSuMFMrN0isVskFbXdTqdDl979lmefPJJqtWqyDSjaI2oeavTIQpDDF0Xgu/yZlpeWcFzXfwwJBkoFxeLRUpSE7dQKFAqFhkdHaVUKlEYUN8YhCZnwtaXozZDpVIhCAJakgylVHo2iCGvO/QqoozlNpai47AwO8vQ8HBWDsuR490gdl2QI1EdyTdQxLx6vb4hixyEGlXIrMZ1zr3n+6ItI0uUCoqg4jiOyMTCEM91uXT5Mp1Oh4mJCb73ve+tSm8O7Jq0LUtUYGQ7aHh4WAS+cvZY1/Vsf60SSlAzzSutFs9+/es88cQTVCsV4lRsD1Ki5mrZvNo41O/38aUzXllZwfM8kRRIaT6zUKBcKlEqFjELBQqWRaNeZ3hoCEvasfX3ePb/aXpd8qGmaYyMjDAzO0ssRRqGtgiQTbmsQQnORDJIKZdKovQdBKwsLWXjPB8Ebrp1SnxfOMlul067TSTLJmXFNrueA1S/JBXZbHPg1eiDZhjYur7m2kEQsLy8zNLSEktLS6zIbQJJurq0uFQsMjwyQqlUolQur8o+SVaairAyNR/pwPuuSyRLyYM3mXJapmluKqAcy95LkqaZ8HsQRSTKocrPGwSBGO3o9+n3evRdl6XFRTzpmEhTSuUyo8PDjIyOMjw8TK1WW5NRqmhyA017/e8rTanWalkG3e52s60Mm8GUzGTP9/FclyAISJKEUrFIkiT0ul0cx8nl7XK8KyRxDHLx+tLyMr7noUnCWKNep3C9cr6yG4NiGVvYjkiWVpFs2fX9wk6nw+LiIkvSfigRgjRNabValIpFhoaG2Cl3TzqSKavB6h5ZNRYyYEfSJMmWtq+XvFNBfqFQWF3AnH00MVftui4FWYWKZdlYBeFJmpLGMX3Po9ft0uv1BLlP/lHatbqu02g0GBkZYWRkhOHh4Q3LJkBK3G1DzlMJTaNeZ2FhQWT+A1rd66Eh9WHlvkqlgFQqFnEsi5WVFYZHR6koIuH7jJvqKJMkIY1jev0+zeVlMapgWeiGkZFSrofBRaeqhJim6Zq+JQhl/0DOQJWLRZrNJvPz8/S7XRaXlsTKLgQZZmRoiLvuvJPLV68SBgGf/vSnM61D1aeIZE8zkc5K9Q42Y3J25ZxQJEu66r12ZXbb7ffR1I09MBOVpCk9tSVF/jwbFpbQpZBwqVRiSgo0K2Ztu9OhKVmAvX6f5aUlrly5QpqmGLLnODIygieNjLpRtzrwg6IJQ42GmJ0MAhEdbtMv0DQN27LQEP3hCFGCsqViT6lc/sAOfI4PB1LfJwGWFhcJPE+QURyHWDqJG7EdilEJrO21rXOYvX5fzGsXCiRpysrysmBuN5ssLS5mo1iNRoOJiQmKe/Zw/PhxHnrwQfZKBS8lJq5GtyK1m1FqJqebSLopB60PzFCq0QzFIM1sx0CSkKQpvu8TBAGWlJBLYY1t0gCjUKAmK3emaWZye0kcs7C4SLfbJYoiVppNLl+6xJkzZwBRVRodHc2Ce7VUftAWZ1+l+iP/XSUZnu/Tabc3X/o8AFOSfZSoTN91cSwr4120221GRka2fP57hZvqKNMgwPc8lqWTLJXLoinf692Y0dwig9Q0jVSWE0EcnG63y8rKCs1Wi/nZWdrdLmma0mg0GB0Z4ciRIwzLMqDKcF9/4w0eePDBNZnXoFycI+v6qtyhNmooMk8mJjBwEygnpPoMyP8mW2Vympb1HXUlaKBpWeNeZdKbOehSsUgcRZRKJfbt25f1cldWVrLM+ezZswSSofr8888zNT3N5MTEmgx3vXMGsGybarlMs92m1elQrlS2JAVpyN7oQDkpSRJc3yeU77vT6Vx3E0uOHApxGNJcWsJ1XZGpDA2xvLJCHIbbllzXYJMeGazNLl3fp9/rsbS8THtlhZm5OYIgoFAoMDoywsFDh0SVRjobgGOvvYbtOOzavTu7tiGXH9uWlYmCqz/KbsTSYSbSXsSS56Cz1m6A1Flme9uh7ERBLoZWSjy6bP1omrYpe1TNpytS0sGDB8V34bosLS1llTc10/j8977H3j17mJycZGRkZM33uJldatTrtJtNwiRhpdViZJtqknLApWJRcEiCgL7niZGTlZVsauH93jByUx2lL+vlSRzjFIuMjowwMzOTbavYFjfQQI6ThLm5OS5evMjMzIwYQnYcxsbH2btvH6Ojo1tmQufOncOyLHbt3Hnd1zFME4PN6d3KkaZAfWC3pcpOQTi0SqWyVoBARmcq01Plza0O32YwTROzUCANQ/wgyJa0qjLKwsICi4uLgnpdLBLFMa8dO0aaptTrdSYnJ5mcmqIq2W3rUalU6El1pObKCqNyqfam3xNyfkrTsr1zSZIQeB5dyf6NbmAuLUeOOAzptlr0+n00XWdoeBhdExKKBRmMbYvrtGiUDN7lK1e4ePEizVYL0pTRkRH27dtHrV5nempqU4ccRBEXLlzg0OHD1519VMsW1Aq89ej3+7iSxFcsldaQjwLpKEtSZlK9byATDvB9X8h+ylJpsknWup6Ip2DbNqHcv6l4IsVikZ07d7Jjxw5effVVms0mAOPj41y9epWz77yDYRhMTEwwOTnJ+MTEpt+RrmlUazVWpEpaz7a31MlVj08lW17XNFzfJwhD2q0Wo+PjdLvd9z3IvmlWyfc8uisrhGGIZdvZB1XqMDcaIWw47mnKwuIiF86d49rMjNApLZWYnJpi7549jI+PE/g+nV5vS5HhUB72ffv2/cijC7Ekuig5pkGoQ2QOZKnrnwtsiHw3HO5tbnpblikC6SgVLl26xKuvvsr4+Di9Xo/x8XHuve8+fN9nZmaGK5cvc/LUKd48cYJypcLe3bvZs3fv2v6EplGvVkUJNgzp9HrUq9Ut34vqhSpdTTUeszA/T6VaxXVdqts8P0cOgK4UMU/TlGq1SqVUoiV1nO0fIcAOg4CLFy9y4eJF2q2W0HCVbZh9e/dSLJVoSvGCra5y8fx5kiRh/759W77OZkXhzcgwaq2VKcfUBjFoO240uNyMrLcVCVKVYtXs9WCZ9fvf/z7Ly8scOnSIM2fOcP/99+PYNivNJleuXOHq1atcuHgRQ9eZmJhg3759jE9MZCxXTQqVlEslkjSl1W5jy92eW753+R3ZUjrTdV067TbdbjerlL1bHe13g5viKOM4pi33HarN1gXTzIaD0bTtS68Dv2z1yw98Xxzy8+fpdLtUqlXuvPNO6vU6uozYatWqOCiyDJFscdNcvHSJMAzZf+DAu/pcm274UGID7+pKa6Gt+7s2UFYW/7ixN6BQKBQwdD2r6RcKBU6ePMmpU6fYu28fH7v/fv70T/8UQ7JXTdNk1+7d7Nq1izCKWJif58rVq5w8dYq3Tp5kemqKffv2ZXq3hmSo9Xo9Ov9/9v48SLI7u+9DP3fJfas1a+99Re+NpbsxWEciadOyJC6SnkRK7/kpTP3xHklTNGmFFS9sWTbDTzG2HA5JDIUok5RIy4+UhsMZLsPRDAfAAN0NdAPoBb2v1dXdtS+535t3e3/8fr9bN7MyqxoYAANg6iAQ3V2VefPem797zvmd8z3fb6VCSo6AdL4QAXpSizqVTFKv1ymvrFBaWcE0zc1AuWnrWq1SwapWcWyblByJQtNC5Yt1K1GdnpkgYHFpiXt37/JQyjmNjo6yd88eMUSv6+Ql4lS8TVt7LGl+EHD77l0mJiY6Al7C02j/t+939A/KP30UwXP1GS3vbPMTGyHcE/G4wGLIQFmv1zl9+jS2bfPCCy+EGpymYQjAYaHAU4UCTz31FNVKhcfT0zx48IC33nqLTCbDtm3b2LZtW/gdpdNp7GaTpuOwXCoxuE6vMQrWVLtd13V59OABu/bupdFokOkCDPo47AcSKJcXF/FtG9/zSKfTZFIpCIRiCEHwxIs9QBAO37t7l0ePHxMEAeNjYxw9fpyB/n5cz6NcKon+p0SGKd5EPbpoIk39ALhz+zZj4+MtIsidrH2Qt1NW+FFEVztd63qfu1EZKR6PhzNJly5d4sGDBxw4cIDde/agBQG2TFhUkiLfiGmaDA0PMzQ8zJHDh5l88ID79+7xvbfeIpvJMDY2RnFoSIy2yPGPpZUVigMDXbO7QN3rIMCUs12Nep1HU1MkU6kwmG/aprVbs9mkurwselJyjljtrDw5Vxh7wkpUs9nk/v373Lt/n3KpRCaT4an9+9mydSuJRIJqtYpt22JUIrIedYmW75Rkz0jWmGefeWbdz17DKNYl0f1IGrYbWLdSayeLxeMYloXjeSwsLHDu3DkMw+Dll18mm81y7969EJnffvapTIadu3axc+dOVpaXuXf/Pjdu3OCqJG8pDg3R29dHf28vs3NzISlLVxSspqEjkgff88Iku16rsTA/L9SOvkiBstFo4En5rFQqJb6MWGx1vkiW5tazAMGheOXKFRYWF8llszy1fz9bt21r2c00pBipmmdUFh2wD9l9AIKA2dlZKpUKx44f3/BaWoJkEHQuqXwfWWHkhFv/ydqsdD2Lx+NUKhUuXrpEaWWFZ559lrGxsRBk5DoOZofgpPgzFeJv586d7NyxI8zAb926xc1bt9i6ZQt79u7FaTZxJddrttPISKTnqhh94rEYfiJBpVZjZWWFvr6+TQKCTetopeVlMRKCAJMpyT0kYA7WCSpqlMp1uXnzJrdu3cJ1XUZHRzl86BCDg4Phc+Z6Hk1JSdeeLIfocLmWo8Cf27dv09fXt2G/bM1OrkuiG/qOjxIo1TEjvkND9vue8BCaphFLJJh58IArV66Qz+c5eeqUeGZlSTbWxrWtPtPQ9VDOsKevj2N9fRw6dIipqSnu3rvH4wsXyKTTHDhwgFwuR7lSoSxVRp6khKp6pq7nMTc7S75QoLe39xNj+fpUA2UQBFRKJZB0dZosvwGtZYF1gsr8/DwfXL3K0uIiff39vPilLzFYLK55jyuZaQgC8UBFLGS4UAsx/IXG/fv3yebz9Pf1bRjkogGr2+Lzvo+sMOhyP7QPU0IJAhqNBu+++y4Ny+LpZ55hbHQ0fL/ruoLztlN/QNPWjovIweH+/n527dnD5P37PJic5MGDB0xMTNDX30+5WhXMGx1Ip9U5RS2RSNCwLFaWllju7d0MlJu2xhqNBq4UZlb9LNM0w7W0URnRcV1u377NrVu38HyfnTt2sH3nzo4l0ka9jg/hoH3UdFqfew1AjnrNzszwzLPPhufTNTl+krG3SPBvZ7B5Imv3beFHR/qUG9yzIAiYevCASx98QH9fH88991xLtW8jUvj2hN6Mxdi+Ywdbt27l4aNH3Lt3j3fefptcPs/4+DgZiXcotM2Mtl1AWLlT7ZuVUolKpUK9Xv/EWjefaqCs1Wqh5mRMUiEZarFHnH+nkLK0uMgHV68yNzdHb08PX/rSlygWix2RXCCEmtVcZHuW0QIDj5jtOEzPzPDU/v0dF7nKHjs+AJ9AVvhhdo0tn8Xq7NLy8jJnzpzBNE2eefZZUoqqSl6DotrrBqlf7xE1DYNt27axc+dOJu/f587t2zx69IjBoSES8Tj9XTJrPxDSPtEeTDqZFKQTlQqWZa3b49m0Hy4LgoByuYzueaL6I3cToUV2Se3Pmed53L59m5s3b+JK3MEe2X/0OqDHowl2utMalMdvL71OTU0RM02RhNLqYzRaK0taW5LbKaj6ESDfRwGphJ+wXpk38vcol7TyHZcvXeLOnTts37aNrdu3izGUSKBcF6XeKclW1yZR9ceOHqXZbHLl6lWuXr1KLp9neGREsIh1OK5KHqLkBrFYDDMWo1Qqsbi4+PkPlL7vC4opxwEZuNqFkn1o6RcCWJbFhQsXePjoEYVcjlMnTzIyMtKyC2wPUo4kRu70GSAfJgknV04bYPrRI3zPY2JiouM1qOxx9aO1kHAgKrLcck1KsPn7KJ+sQcPRurDb5xzV36anpzl37hw9PT2cOHECW94XJakFhMPSnUqv8iKFDE6HBa8e8kQ8zlNPPcXOnTu5cvUqU1NTzM7OcmD/frbv2NHCVRk912h2G4vHoVZjRc54jo2Nfbh7tWlfWKvX60KGr9kUCNAo0rMNXBN9/h49fMjFS5eoNxrs2LaNvfv3h8GvWxIaJtiSfrHdWkhNpAUIFPno2NiawKFF37d6kPB93QCF/vezm4SO1TmFDwh9R9A24y3/9DyPd955h9nZWY4dPcro2Bi1ep2mHK9T5qjSaxdTZepOkwnKV/b39/PSCy8wt7DApUuXuHnzJvNzczz7zDMtPUflO8JDyJ9pmkYmnWZlaYmenh5s2+7Icvb92qcWKG3bxnccNNfFkA3ylt0khDV/dXOnHjzg4sWLaJrGc888w/jExMbo0SCgLmf7kslkRxBNqCSuYMXyNZNTUwwWi0++m1HZobaqSr5GJicisRVEkwAZYOmwUMP3BkG4i1XHjS6Q9iHkqN2+fZvLly8zPj7O05I0QQ03NyOAGaXx2V6ebr3Mzgs+RPTKJCCRSHD82DGKxSL37t7lwqVLTE9Pc+zYMdLp9BrHEKXM03WddCZDaXmZcrm8GSg3LbR6vY7hefjtu8no8ySfLx3hay5euMDDhw8ZGR3lxRdf7AoSiZpSygg6tGuUGepZiCSOKysrlCsVDh069ETXE00cVc+wJXlE+o2gjX9Z+UnpF6L/t9+PMCENAnz5nvC9HZJqZZZlcebMGarVKqdOnWJoaEjcV00TrGRSkQWE71jPbwAdd5V+m99A0ygODvLC889z+9497k9O8u1vf5uDBw+yY+fOVd8T2TjokfuSkLiU8soK5XJZ9Js/ZvtUA6UWCQqdgpHv++iaIDk+e+YMjx8/ZmJigsNHjnSdj2p34LbjCEFRTeu4m1Rm6Poq5ZxhUG80mJub4+mnn37ia4qSB2iRYB81dW6KCSPyZvG/HPXo2mNp22FHM9SOPb8g4OKlS9y9e5c9e/Zw4MCB8FfxeBzbtnEdJ9xJNyQV1nr3Sp1/S6lKBfEO1zwgYd6F3l4mJyf59ne+w6GDB9mydeuac9XaFvzKygp1yTW5iX7dNN/3cWybQO5eTMNYu5tkNXA9np7mgw8+IACePXGCcVkKbTcN1jxbdZk0JlOprih1RTUZfRYePHhAMpGgWCw++YWp3Z06btszrpLqNX5DvHi1fKsS7uhxoeW4WptvURiHdp9TqVQ4ffo0vu/z0ksvhVgBTRPjen4geKVVcKzV6wwPD697mWpD0ik4t19XMpViWKLoHz16xIWLF3n8+DHHjh9fw2fbXjZOxmICBSv92cdtn2qgDFw3pF4LB2gjN8vzPO7cvcvSygox0wzLrOtaW+nVlrvJlJTa6fo2XRfbebngpx4+xND1sMfwcZjKCuHjbch3s5aSybFjIc+kMkWj5QcBjuOQiMcFd2IyGfZeulrbrjJKQN9+fkpNobe3l4GBAR5OTXH+vfd48PAhx44eJR1h4YjuKg3pBOu1GrVa7VPVm9u0z6bZtt1Sqot3KastLy1x/+FDapUKExMTHD16VJTg1gOsRJ5JVybYsH7SaKgdm/QbfhAwNTXF+Pj4h0O2t5WM2y0svX7U0ZCNrrutLzo/P8/Zs2fJZDI8f+rUmsCkqOKarktSvrdRr2+4oxQf1xYo5Yap0/3K5XJYts34+Djj4+NcunSJb/3Zn3Hg0CF2SBpOWG2DqU1KLBajUq2K2c71gFQf0T5Z2WxprusKcWbHQZfcg2uQX0HApYsXWVhcxHdd+vr6sKWI54f5HFey3ic3qFMrFKpakA8mJxkZHf1QFGrhFXRalEHQUnbt9sVFCQnWlRPr8NnRsotlWbzx+ussLCzw/PPPrwmSypQIqurhNur1lsC1nkUfWpXxdrs2RXvnui4HDh7k1MmTlEolvvOd77C0vBy5sNasPhYJlJu2abZtCxCPfMbiUgovatVymVu3b1Mul0mlUqTSaUrlckce025mSbKTRESntZPpUi1IiRbMz8/TsKyuuIZu1o68bzfVovgwgfJJQ0P42fLPyclJ3nrrLdEvfOmltbs3xHOpQDSuFKP3fP+JfEeLnBmr19xp85CIx0mlUuiaRiwe58uvvsrEli1cuHCB8+fPt3ynUb+jZsWr5bIQv/iY7VPZUTabTTTPE7Vy1tLTeZ7HuXPnWFpepjgwQCqdplar8f677+IHAT29vSF/YJ/kdexkllQUSEhO0/VMlTR832elXGalVGL/U099qOvyI1v/QO241E5LHltlTh1ZeyJlkhDIFD1+l/5mS/k1CASh+ZtvEkBLyaSTxePxVYHqIKBWrwseySe0KIAoei7tphZ8tVajVC4zNDTEX/jylzl9+jTfe+MNnnvuubBaEN1VxmMxqp9gCWXTPl/WbDbxmk1BqWaaa1CtCwsLnD1zhkQyyeDQEIZh8OjhQ27euEE8FqM4NBT6jjU7Rbmz8n2fpty5JjZoQWiaECnw5fM9NTVFNpP50DJxgcQYRGcx1Z9axHeIH3XwHfLn0WQ5+io/koCrNksLvgEIPI+rV69yQ7F0HT267khLLBYTM6aui2PbAE/sO6K9yhCn0OWz8tksjUYD27Jw02mOHj3K4OAg586fx7IsTp48udqW0XWQOBPDMKhWq1iW9bEDej6VQBkEQZgJKG1HZU3b5vSZM6yUSjwth/wN02R0dBTLspibm2N6epr79+5x8+ZNYrEYQ3LxD0VULgJJsE0QPBEYR4/sKKcePCBumgwNDa1/HZHriVJZqWZ5uFDbyjMftXwSPV50AUcfiNmZGc6cPUs6k+HUqVOkU6m1r408aLose/u+L5j46/UnL3FG+g2+FNvu1ssJgGwmQ61WE31R1yWRSPDCCy9w/vx5zp49y5EjR9ixY4e4d5oGvo9hmnieF8qRbdoPtwVSnipmGEKdJuJkHz58yPnz5+nv62Pb9u3YzSbFwUHSqRQrpRIzMzNMT08Lon+gUCi0JNwq6VPtGoWo3ch0XQfPw3EcHj58yK7duze+DmitnsgeYTQIRlH17UC5D23R40Z6oeo8XM/j/LvvMjU5yYGDB9mze/eqn9E6z1rGYjGsZhPXcULpsY3Yy1quTZovKwTdZsvNWCwc36nX6yQTCcbGxkgkEpw5e5bXXnuNL73wQujr1GZEidt/bneUIBj/DSJjCHI38+abb+I4Di+/+CLJZJLZubmwUZ5IJJiYmGBiYiKUh5qZnWV2ZoaHDx8C0Nvby+DAAIXeXmLRQeQNTFFReZ7H1MOHjI2Pr9mp+l1q3e2BqNuuar0Sw5PYGkKENpucnOT8+fMMDg7y3LPPhve2I/NHJNjGYjEc1xWl7Q9RehUnI7JwT2a83Ra7Ep2Nx2LY8sHqyecxTJPnTpzgg8uXuXDxIvVajQMHD4YLXh1PKYps2g+3KZFy4vHVSpSmcevmTS5fvsyWrVs5duwYCwsL2JIZStM0enp66OnpYd/evdjNJnOzs8zOznL//v0w4R4cHAxR7qZhbNiuUaYbBpqcuXYdh/E2haFufqMTKK+bhb7j+0yyO73fcRzefOstFhcWePa551rOP4o9UOesztU0TcEbLUf9DF1/cnkrCUxSkoRBEHRMsgNEhTGbydBoNGhYVjiv2T8wwMsvv8zpt97ite9+ly89/zyFnp6wUqnJQPlhSu5Pap/ejtJxMGKx8MY2m02+973voWsar7zyCtlMhqZEqzqS8zVquq7T39dHf18fB/bvx7IsZubmmJ2d5dbt29iOg2EYjAwNhRyk632JhtyyVyoVKpUKhw8fXtsH/D4bwt8PqTGweg/aGW6CgGtXr3Lt+nW2bdvG4cOH1/+MCDoXRHmzIcWc/SDYEPHaeigRcD2ZFbYv9oBWGbBMJoO9skK90SAvCaw1TePQ4cOk02kuffABpmmyb/9+fFYfbMuyWqDom/bDaa4s8ZmRsuu9u3e5fPkye/ftC8lBDNk7VE44OjaSiMdDon8/CFheWWFmZoaZmRkenD+P5/vkJTvM8PAwvb296z5POmKdz87MkM3lyGYyLb7jiZ73Lu0YZRu1Ntaz9Y5bq1Y5ffo0jUaDF154YWPR42ilDIibJq7nUa3VhN/4EL5N0zRcWW5WJezwY+R5q2pdPB4nZpr4jrPqOxDYh1deeYXTZ87w5ltv8cqrr4rRsyDAMIxQXuzjtk8lUNqNBgRCMiYmb/TZs2dxXZcvf/nL4fZdOcXA90N5qhZTCFdNqJlv27KFbVu2UD90iKmHD1lcWKC0ssI7586haRp9vb1CU3F4mHyhsHYmSdNYWFjAMAwGBwY+0rWtpw0ZfL+l1w4Pi+95vPvee0xNTXHo4EG279ix7oPRyTRdx9R1GrUaBIFQYGDtqE3X98seCqzuAKMLPWrJZBJDBlbLslqAAjt37cJ1Xa5cv04un2dkeDh8iFRmuBkof7jNlWU0Mx6HIGBhYYELFy6wY+dODkQwBaZhiFk/113rvCP/1jWN/t5e+qV81ozcaa6USty5c4fr16+TiMdFa2d4mCGZcEfJ/FXAnpmbY/vWrR8qWEStWzUq6lO+H6ISoOXclhcXOX3mDLF4nFdeffUjsV+Zpolu21TK5Ra/AU/mO0KEexQYSGc/mslkcGSSnclkwnuRSCb50vPP89prr3H2zBlefvllIUYt39f4BPANn0qg9CX7i5JKuXDhAktLS7z40kstNW6l6hEgEKwdd4SRTBEAOdvTUygwPDREOp2m0WgwMzPD7MwMN27e5IMrV0gmEuHiLxaLgvDAMFhcWmKgv78jC8dGFpKrdwlU3y8hejhvJP9s2jZnz55leXmZE889x9j4uOBq/ZCBEkQJvFavo+u6YMAIWuci1UPc8chB0JIEKARgJ9OV9mS1SrVeX4Oo27t3L6VSifPnz/PSSy+RzmRA08Ts3Ee4rk374lgQBCBHrHRdp1arcfbttxkcHOTw4cMtr9UNAy0IwhGPjtb2rLqui6HrDA8Ps3/fPtA0lpeWVnebU1MEQUB/Xx9F2dvsKRQwDINKpULTthneaHxtHduoZbMeWn49a+l7yvc/eviQd8+fp6enh5OnTmHGYuJefcjjm6aJpmnUqlXGt2xZs+PsRg/afm66VBxRzGadLJVKUZboZVuKaCiLJxKcOnWK1157jXPnzvHciRPhsRSJysdpn0qgNCAc8L116xb3793j+NNPd+QC1Q0DDZ64zux6ntCii4yEpFIptkvtM9/zWFhcDBf/5OQkmq7T399PvlBgeWWFp/bt+8jXtt4ubA0DxYe06AOjSibNZpMXX3yRPlUy+YjBRM0rZrLZjoKxQMusU/RTPM8T/YZ1AmTU0uk01VoNRwpItyRAmsbTTz/NG9/7HmfOnuXkqVPiM1x33d36pn3xzXVd4qZJUz7jZ86cIRaL8dyJE2v6/tHS67oWSbAty8KXpVnVQugfGKB/YID9Bw7QqNWYnZtjZmaGWzdvcu3qVZISXduo1zEMg95PYNY3inb/KNZOERll6Xrm6afRDUMkuh/l+PKYzWaTbAdsQ3uQbvcOvu8L5RVJ+LJuiVvXSUnfUe/AApTL53nm2Wd5++xZrl29ysjoKD6r/NUfp306O0rPwzBN6vU6Fy5dYs+uXWzburXjaw0JsnEc54mGWZvNZjhyEuqiRUqAmq6Lpv3gIIcOHaJWqzErAUF379yBIOD2nTs0LIvhoSEGi8UPNUuJhHn7sjei/vR8n3qjES4GW+68oijUigSsVKtV8eBHM0hNDPR6nke5XObSxYvE4nG+9MIL5LLZcKFrEoH3Yc2UUOpMNovreV2vuX1XrJrtH2a3F4vFSEqFkHqjsaZSYJgmJ0+c4LuvvcblS5fYtXs3umlSq1afaA1s2hfTXKmTqhsGV69codFo8Oqrr3bUqzXkuJcrq1cbWYB0qIEQAlbPU3Rdp9LpUGzY930WZcI9OzvLysoKruvy5ltvMSI1W/P5/BMHN/UpUb+h/m7bNo16XZQTtVaKO7WDK7f5jrC6hXg+G41GCHp6MDXFrp072f/UUyh+1+8Hf6GOvdFoiGrFqJKpmn7wgoBEJ8ahDpaRo4JWBNQTtZGREZ566imuXLlCIpUimUqJUZ+P2T7xQOn7PoEMlDdv3iSbTnPg4MHuJxSLoes69hNCfJuOQwCrfQT1f5cvIZPJsGPHDnbs2ME7b7/N49lZBgcGmJub4969e+iaxsDgIMOy1JKNsNF7kuvQ830818X1PJxms+uuSqmuu65L0AXhBayWLtuO4zgOC4uL3Lt7l3w+H3JJVqrV8DW+fMBNXRcPlq5jGMaGizBAqLkMDA6urwIQOUf1v5Lm+jAJRTqdxrIsGpZFPpdb03tJpdMcOnSId997j2KpxGCxSL1Wg0+At3HTPh/m2DamYVC2LB49esThw4dDUEe7xROJsHf+JPSHisZRsUGFfKRdfIceSbj37NnD17/+dUZGR8Us4rVrfHDlCqlUSmAi2hLuMEBE/Ifile1kzWYTx/MwNcGvup518h2KEODuvXuUVlbYt3evIDaPkHgEyA2MTEQM6Tf0SMDtZrVqVeBN4nERdNdjQJMbCZVge563ZtxtPYvFYsRjMQI5JdFJgmvPnj08evyYO3fucOjwYazPY+lVLYZatcrC4iKHNyAOTsTjIbHxRuZ6Xlhnj5lmi6JItPne8YsPBKvGULHI9h076OvtpVatihLt7CwffPABFy9dIp1O09/fT19fHz09PS0oz3CHyOogr67rYRCIx+NomkZWNqKjfLCapoXKIpl0WuwSiZQ9fZ/79+5x9949hoeHw55MdNcKq4rf7Xm0Og/TMDANQwxrR+5DrVbD831y2ezGWXhbiTXUsPwQXKypVErQ57kulm13nL8aLBbJ5nJMPnjAYLH4iZRQNu3zY2pdTj18SCKVWrcfqGsapmnSdBws295wbVoywU1Ipp+WFsM6iTbA3OwsAbBr506y2SzJRIL5hQVmZXvn7t27GLpOT08PfQMD9PX2kkqnW54/VZWJCjToEqOBPId4IkEmnQ5HNNSuUYvcm0w6TVb6DrVJqFYq3Lx5U+jPPv00/f39giRd7lrV8X0JmiTynGlIrIhphn6jfQSsUq2SzWQwDUMoEa0zXRAF+Kl2mhmZ5X6S8m8mk8FuNrEsq2OgDIBdu3bxzjvvsLK8LO7Zx2yfeKB05ajHvXv3KOTzDAwMYHdxlARBWEJtOs662YoqUfhIJJaqu0sLF36XL2KlVKJhWQwODqJrGk3bxozFGB4ZYWBwEMd1WV5aYnFxkbn5eR5MTWHoOn19fRSLRYpDQ6EiQbS8oMzzfZpyASZktttuCtGpywUZXpvvc/GDD7h77x5bt27lyJEja3ZvQRAQeB6OHHxWmarf9n80CJq6HjKcrKysAJCVgbLlXqtg3daoB5GFKg5bwzDCfuVGpiGyfpXttn//igBh1/btvPv++yzMz+Pt2bPhcTfti2ue61JaWWFhYYEDBw7gNJt4qVTH2d0A8ZxZto1t2+Sy2Y7HDAB8H1viGtq5Y7sRe0RtZnaWnkKBRCKBIyXr8vk86XSaia1bqddqLC0vs7iwwJ3bt7kpqd4GBwYYLBYZHBjAMIzQb7T7Bk3uiBKJRNcRt6jviPqG8soKZ99+myAIeO7ZZztyZasdblNK7vmetzrfCLi+D80mqqanaxqGDJymabKyvEwun0dDyPS1BErlM3x/je9VvkgBgtTOcqM2TjKZDEfSmo6zpvRuN5sUenro7+/n/v37DG9AHPNR7FPZUc7Pz1MqlTglgRq2ZRGPx1eJ0aWpEqqh62hBgNVsrpnxCyJOvCmRkYlYrCuopoVjULwRNI3p6WkMwyCZSlGuVrHbQCaGYTA8MsL4+DiGYVCv15mfm2N2bo4b169z7do10uk0Q7LM0t/f3/oAf0TkmuM4nDt3jtnZWfbt28fo6GhHwgJN09AMA1P+Lnru6kHwfV/suiUwxvV9AbdvNplfWCAupc4CGdRVr6brwDSEpSBTlmvU56lz6rboAwTZdL1e71hWt+V3OTAwQH9fH3fv3uW5kyef+L5t2hfLVJJ3584degsFxsfGaEqCjGynIBgEYTWqE6tTi99wHAEqkbvQKKYhalr7+2UZ8fH0NOPj41RrNVyVOEYsm83S09PDnt27CYKA5aUl5iQoaGpqSsyE9/czMDDA8PBwi+4iRMbKPmQfcW52lrNvv00mleLgoUMtbaOW69LE3GkcWn2wrBypEqnreQJUFwT4qlQcBFSqVfoGBsS1y3unqPIiH7Lmc13PE6Qi0U1BEGw4lqbJiqHnONi23RIoFf1gAOx/6inefPNNHj9+LJSoPiqrUQf7VALl7MwMvb29jIyMUKtWsWwbq9FYu+BlqTSWSGDJEooKlNFSo0LFupJGLR6Pr19mlRYEQjXDaTZ59OgRhUIh7Gv6vk9MsvqYUs4nGiwSiQS9vb3s2bsXx3EEtd7jx0xNTXHjxg1M06RYLIYUWar082GWeqPR4Mzp01RrNZ4/dSrknexKqC6Prxr+q7dRC7NMFT6VFqXruriuS6VcJpPJ4DoODdvGsm3y+Xw4NtPNvEhWqD4r6oTafxY1tbP2JIpRBXdP7or9QKjK79yxg3PnzzM/N8f+iEzYpv3wmOM41Gs1SqUSJ06cIJVO4zgOTemwW0qrcq3FEwk0XReakpEKSft8ryOxA0nZGokC7LqZJyseCwsLYseaz4sAKYOaGpA3TXPN85MaG2N0bAzFyzwzPc3j6WkuX77MxYsXyeVyod/o7+/vKkO1nt2/f58L779PsVjk0JEjeJKhqKtJP9pimiAB0HV99f4Ggu5OBc1yuYzjuiHmwJUl5GQyKdpf6zB1qXJz6Fulz94oSKrj2zJQRqsFtgySaj52YGCA2dlZfNdFf1LWoCewTyVQLi0vs3vXLgCS6TR2s0lTLvp4hwWfiMepaxq2ZYEMZu3D9wrEY8Zi4ZejtZVfxSEDQdcmicBVH7BcLrN9xw4ystZumuZq4Na0dQNcLBZjbGyM4ZERjnoeyysrTE9PMzM7y4ULFwiCgHw+T09PD4PFIrkO4JV2K6+scPrMGQBeeeklcvk8pXJZnM4TSGBt9KCHPUvTFFnu8jJbt20jnkhgN5t48h7Zth0+KPFYbA3zjuu6+Kxmhd0GptV8pTLVj4nFYvjNZriDDwIB0w8QCgWGYZCXs2qPp6fXv+5N+8Ka53nMzs4CUCwWBV1aIoElkdM50wx3XGqVxSUQkCDAbjZXeaCj6xChWasFQUsy2+np8eRuxW42w7GTpeVlgaTv7w/bQ5lUSlRjNngONU0jn8+Ty+XYuWsXzWYzxEQ8evSI27dvY5omvX199Pb2MjExsSG5dxAEXL1yhes3brB9+3aOHjmCZdsbBsonxqzLpNs0TYJEgpnZWQLfZ2BggIZE9asydgNC2kpTqhQpC8uuEnAIIrg9yXgZCJIBrVwWCbX0L47rrgptJ5MEvk9/fz83b96kblnkP0+Bcm5uDs91GZSipoauk0ilsBoNatUqWja7pvGekJmhIivutDtRs5MtgTbyxfiyh6nkYJQZuo4lv+Dx8XHy2SzLrrvKPxgtJ2paK9k5bVleIOaBCoUChUKBffv20Ww2mZub49Hjx4LM/cEk37n4HYb6ihwYP8jw0NAaRoylxUU+uHKFbCbD888/TzKVCndu6+aUG5U8gyB8eKNE7uVymabjMFQsks/l8H0fy7bDnqPv++G9i5km8UQC0zRFH0N+jirZqNLymvmpLueWTCaxm80wM2xIqjqC1TlYDcHh+/jRo/WuftO+wBYEAfNzcxR6ekL/kEqlhJqI54kZ4ExmDelHPB7HdpxQQaL9uVD9eGTSBqypQrkScKZQ6yDWZEyOuPX29FAoFKjX6zQsC8fzSGireq3RpF49fy29T/l7lXCPyd1muVxmenqaR48fc/PmTW7cuEEhnw/ZxXr7+tb0Z69eucLs3BwHDx5k9+7da569rvd3AyBNCxgyYktLSyLYZ7MisdV1QT1pGAJUKCtWumURSyREW0zXBQcvrWXX9QgXVKLdkgSZpkjom01BwymJ2eOyCtZ0HPr6+kACIQ8fOdL1+j6sfeKB8uHDhxim2SJDk0ql8GX5rVavr9lxxeNx0SiWr4m1AVk82b/QELvPqLmSKq19kSeSSRKyL3pncRFdDgurcQo19qDKgdF5xpCiSe1sNS0suQSs9j4VR+H4+DgDAwPUGw3+9ZX/g/+48G2Yh9G5UU4Gz7K3dy9DQ0OChQa4cPEiw8PDPPfcc6uQcnXuHRZzWNeXC6mltNRefu7w0CwtLYlg1NcXlmnjgZgnM00TV+72XdcVWZvrhiTywJqydFQmq91UL0hZMpGgjEh06vV62D9Np9Oh3p0vz+3uvXvYtv2xS+Zs2mffPM9jfn6eYxGUvKZpZDIZqpWK4IVuNATCMeLME/G4GFC3LPIdEJLKL8TbdjyaptGwbSHtFFnLpmkKUE0shq5pLC8vhwAZ9axGAXNrgDnih2t2tUSeXfU+lXAPj4yE/dj5+XkmJye5dPMSj41pMvkMr277MpmYQHbOz8+HLF3h8duqby0W9WERvxH1YdHXttvCwgJFObJlyAqQDuSyWeHTZWvLDwJsy8K2LGKxmMAlaFpLT7RbIG9JriObnGQ8Tt3zsBqNEHmva4LOVLXP0skk8VSKu5+nQBkEAdPT0+wcGmrJhDTEXJ1q2Fcl3Djckus68VgMx3GoVqtr2C9UjyFKlOy6LvVGo2WsxJCKAAnZi1C2tLhIb6EQfp4ppZ260uap845mhdHMDUI6Jk0uQC8IqNgVvjf3Fp4mvuyHwUN+X3vIIfsAR28dJetm8D2PVDrN2NgYnuuKjCtYHQEJ2kqY4edD597KE/Q1FhYXyRcK4aI1DUMovHsesViMWDxOLB7Hl2WVZrOJ7/vh7i+TybTsUNf7RLXolR5dTPZ/LcuiWq0STyRISfUGBSbQgoC+3l5u37nD1NQUu2TZftN+eGx+fh7XdVtIuzXEs5qJyLdpmtYC+EumUhilEo1GI9RhjJoCpKjnXKHnFTmI+px4PE5SJo7KGpZFvV4Pz0n9TlVh1muvtAegQFarlCnsBYjk0ozFyAxkuehd5k3rTS7MXxSVsWX48+XX+En3JwiCgOLQEMlUqiUh9Xx/dccYBC2BOdyBt7WoVEBfzyzLolat0i+ZzJT/8DyPwBeakEnDIJFI4DqOKFlL+rl6vY6m66TbqmkblV/VOas+Za3RoFSt0lsoiDiSSrWKYGsaA319PJicXPdaPqx94jtKr0PwUTNB2UyGSqWCJ4NlJpsNqdFS6XSocNEeKEPkpSwH1huNUINMQ2SLiUSi6yzVwuJii/ZkzDSFZuKHYLgJyQ1orfeHuz3fp+yURXNc0fVq4vyuNK5xhWtktBSn9OfZZ+zl/PnzYclxeGSEvr4+cf7BKqpMZVAKxBMGyQ+JjltcWKAYuX41Y9lOG6gbBqlUimQige041Ot1gah1XSqVColkck1mvuY+qT+jozuKUELTRAlHHSNY5ZBNplKi1/QJsGxs2mffLMtC07S11QRNIxaPkw7EAHqj0UBDlPR9IKZQ84hZ4Sjww5OAEhDPfFMGSDXupGuaSKyTyY6I08XFRYIgEOU9VrVdA9bhpu5m0Wc3EijmGwu8OfUW7y9c4O3SO0QbPzo6aLBCiXqiRqqRZn5+numZGeKxmCBxLxYFLaXs1Ybv1rRQ9SQKvnuS8YyW64cwUVDoWU8CfmIKKyK/o1g8jud5IQMZQN2ycFxXiCWoKtUGn6/O0zRNbFnq9lyXfC4X+g2Q1SvEWihHyBU+DvvEd5REAkr77zRdJ5vNUq5UcOUNTaVSmLEY6XSaleVlAcJx3ZbyqyrXOXIIVVk8HiclZ266mWVZVGs1noqohUQzw+hOqcNJr5ZR2gBG0fxMLUbXd/HpvghqWoNvGt8kWUzy0zt/kspSldnpaW7euIHrecTjcQYHBhgbHw+J3FX2pWDZ3RZat+toNBrUarWWTN2U/LqKYH1N+UjXMTSNdDqN47qY8jwassSdTCTEHGuH84gCJVT2HqjeaQdHqK7PUECNJ3yIN+2LZ2FCGDG1nuIRYd9avY7reYLuUBPUarbrirZOJFCq8YTA9ylXKqs7SF0nJZO+9Wx5aYlUKtVCq2hKNaRugTJ8niJBy48kpEEQMFub4c3pt3jz8WmuL12nj355/Z3XfkpL8aPP/gjfe+MtXnjxRQLfD0FBU1NTAGFvc3R0VAizR5DxLUQpHcrC3bzn4uJi5+t3XTxZjWo3xXyUTqdDuUDHdXGqVRKx2Jo51uh9iZqavzZ0XVBuRkBBnd7z/VD0dbJPPlBCOFgaNfVv3TDI5XJUqlXcZpOqLO3F4nExoO55LeVXPwho1OvULYuc3IGqL0IFPH+dneHi0hIEQQshuyFvuivnh8Jyi+ojyL8T+dNv/1LavtggCHB8t+tiX30zfG3qD/nzme/yN3b/df7Ssz+OqZnMzMzw+PFjlpaWePT4MRoik1Mw8lw+H+4kNVm+eJLF0Z4VgsiMNcMAOXTcPt8KhIjhTDpNQiJlFVCq1mhgaJrIxLss3iAIqDcauI6DrmnE2hd6JCsEgWD+eJf6pn2ebD1icBV8lMOu12phbzGbTgsS/mp1TfnVaTap1WpomkZarr1kKhUm1wF07bWD8B19bfqNZiwGHapRYbkzCNY4/SAIeFR7zJuP3+T1h29ya+XW6vEwokdo/azAYG9qD3//+V8i42XC+9Pb309ffz9PHTiAZVncu3+fxYUFbt+9y42bN0nE4wxLPtpisSjOOZL0r/mkdpyDuv7FxTX6lYous1s1zo/Q1uWz2RBk6bgutsRCKMBg1KIB3JGalEEQoJsmyUhS3r6jDDQNo0u76vuxTzxQqp1ju0VvhC6b9A3E2EetWiWRSpFOpURdXJZf/SBguVSiblmhtmUqnV5b2pX9sE621CErAtmnk4P3H3pQtdOXEgQ4vkNA5/Not7JT5l9d/Q3+6P4f849P/iN6Je3VU4kEBEGom3f9xg2uSBWD4uAgQyMjDA0OrnUoWutsZSAdxsLCAulkcg2Rg2EYeJqG57priSB8H0fxu8oyaVICHJrNJpaEz1erVZKpVJiZhxm07wuRaNnLyeVy2LLv6codqrqHKssPof+bO8ofSlPthnaHrdo2yhKJhJDgqlZxHYeKbOG0l1+bjsPyyoqYAUwmScjeeHT8SVWGOiVonu+ztLTEgba5XjUz6TqOSNDXSVYny5O8/uh7vD71BndL97q8Srzfl34jZaTYk9xFsTLIX9j9Fzh28ChoGivLyx3fnUgkGBkeZmR4mFwux/Lycig5OPngARrQ09vLkOSkzXUgJVjDZiap7paXlxmfmGj5VViN61KNciJz17oumlBmOi2QxZaF6/tYzSaO65JKpdb4Xtu2aciqoaHrZNNpkXC3Beb2ttHnKlCCCFqeu5ZLNAqlVk48k82iWxZWo4HVaIRqII5tU2s0aEqiAhA7GyXGvObYbUEiaotLS2GPgcg5GKaJ1mziyFLiRrbR1xAEAd6T7CjbbLo+zW9f+zf84v6fB8S1JFMptm/fzvbt24Vs2MIC0zMzzExPc//+fTRdp7e3N9TbzGWzax2MvCczs7MUh4dFv1P1MQJBR4f6rtquX6H6jDbUmq7rYtA4HqcuWUoacteYlLtLu9mkYVnhws1msxiS1Uf1dlTJJgiCcMGr0uymcPMPpykkeiffEYJUJODNNE2y+Ty1alX0xMpl8Ty7LtVaDV3XsSwLR1Yzent7uyKp9S49u5VSCd/z6OvrW215yNcrH+RE1jKI9XyndJc3H73JG4/fZKoyhR/4+H53n6CjkTJSHBw8wDPjxwkmfRbmFjl2/Bjbtm3b+MZFzl3XdQYGBhgYGODgwYM06nVmZmeZfvyYG9evc/WDD0gkEgwWi2K3OTgoktY1J6UzNzND4PsMFYthhVCNcehSMsv3/TXPq5p3by/Lqrl1u9kUPkNWDlOplMCe+L74zmQAjsVipJLJELfSHihD3Io8lw/DQ/0k9okGSsMwGCwWmV9c7I4Ka9v6p5JJQRlXrYLccdQbDebm5sjn8wRBQCaTIZfNrl9q7FIOXVlZYfeePWsY92OxGMgSwkaM+Oq81/ssX+4o1+tRdjNRshXWDirQDYPi0JBg4Dh0iFq1yrRc/FeuXOHy5cuCWk9mlQMDA+HsUrVSoVatcvDAgdbehGyUa1pnPT/FWdtt8Rmy16w3GliyrNKsVMIMPZDl3FQ6HV6PYZq4ti14JRVSWPWMNI3lhQUM02SiLYPdtB8OGxkZoW7bLCwuUpQz2Mo0CEm+VcAydJ1cLke9VhPrVdOwGg1KpRIx6Xhj8TipRGLdcaNu4JbS8jIBtLB5KYvHYjSkIohpmtxcvskbj9/ke4/eZLrWSprRbaeTj+d4fuQUpwZPsTO1EwK4fOkStVqNLz3/fAv4bj1TLaFO1JmpdJrt27axdcsWPF/Ihs3OzPDw0SORcGtaSKvXnnDPzMyQzmTIyJ5v1HcYsk/rSTWS8FzkzwJYM+KnTI3sVapV0cap11fp8DSNQPaeVdVQHScMlG2VKNM0WVxa4qk2Ye/v1z7RQKlpGmNjY1w6d45qtbpmrqljfRw5QFoo0KjXAQQ7hm3TUyiQSibxZRa50We3L0qFjs3lcmsCm6HrYnhWlhk3QrCtC/pBBIfJR1NsvPdstWwsy9/e+zMtC77j8eWfmWyWXdksO3bsCCm2pmWp5d7du6E80NDQEHazKVhF2hwPEM5JtvdowrJrEKyrEqBg+rquUyqVsJpN8H0SySTZTGYV2SpNIY09RchOK4/s3MICQyMjHUtDm/bFt2QySa5QYGFhoePvA98nkBURZZqsSpnNJn6lIipQts3y8jLFwUF0w+jqsCMHaf0cRGAul8trFECUGabB3dm7nJ9/j9cXXmOuPt/18FFv0Jvo5Uujz/PC6PMc7j+EoYtnYm5+nssXL6LpOi+99BKFQmH9c44efwO/QaRSUywWKRaL7HvqKeq1Wqi12Z5wDxWLTM/MMDo62vGQagPkR5JeEAm2GulZr52l6zqZTIZ6vU6pXBYJkK4LZZS2GXuF0A8U0jYyAw+iRF6pVJ5s9/0h7BMvvY6Pj3P6jTeYm59vCZQbhQ81BpHL5ahVKjhBQLlSCftjxkaBktW5RhV0KpUKBEFnUmXEjsnzvA0DZacgGZ0Hch2HixcvsryyiK89WY8S4Ej/Yf7+sV9iMDVIRdLX0W2BdchMDdMUC3t4GAJBXqykfy5fvhzu6q9evcrw8DAD/f1hj0apGASa0PTTpORPUxI7KM269e6J4zg0Gg0M00RvNiHC6dh+vwzTDHfwmq6LPogMlIZpsry0xLOSRH/TfvjMMAyGR0d5PDPTGYm9TntF8ZVmpSi57bpUJIjnSdoqUZ8RSIBIpS3R9wOfSwuXeePh93jz0VtgifNbpnPvUNlAqp8XR17gxbEXONB3AEPXW6o4c3NzvPfee6TTaV588cU1LF4b2ZOw8rSbSjB27trFzl278Fx3TcIdBAGLi4vcuXOH4aGhcGcJhDqW4XVogqRFzbtvlJwEQRBWomKxGJZlEVdgvg5+1pAsQJ4EArVUopaW0GMxduzY8cTX/yT2iQfKdDpNOpdjfnaWXTt3hj8PkIu9Q6nP932hl+h5JBMJhkdHWVlZEbN7cri2Uq2KQfVuX4KmicZ8JKBUKhU0wwjlsdotHouJL+yj6CDKTMpqNHjrrbeo1esMj48QPAELm6mZ/D/2/9/5iR1/BU2T2VkE6NTJon0S6ABA0DRyuRy5XI5du3djNRp885vfpFAo8OjhQ+7cvh1mlQpJq0sAhOf7IlND8GIG0BU6HwRCjaFp22K+STq1vr6+kIux0WhAELQkH4pzVu0oYbV80mw2qTcabN++feObt2lfSDMMg9HRUaZu32alVApR7wGRnUsH32FLRhtN0ygWi+i6TrVW4/78fVacEkf1I2i6LgjRuxF4E2GUks9YuVSiODrMudl3+d6j7/HWo9Ms2yvhe/Lkicv/GrQKBw9nhnhh9Eu8OPYiewq76cYkfe/ePS5cuEBfXx/Hjx370EESVueVN2wdRay9+taecF/+4ANu3bpFzDS5fPkyly5eJJvNCkDQ8DA9hYLwt5Hvw3Fd4Qug66bG831sy6LpOEIiMAhCbd6GZYlSbLVKJkJGA6Li5LguTc8jqWktPLLz8/P0DwyIkZiP0T7xQGmaJhNbtvDg0SOONBqhDmEQXYiRL8mX6Em1ULPZLOl0WtAhyXKeHo9j2zZN2xZ9h2SytYkuvzBDa2V9qFQqZBU/ZJdzVYFCzep0sk6ZrAaUIsTmx48f553lcxuCeXqDXn71+K9wZOzI6vEjkPKuUjsdUK7r2crKCp7n8fTTT5PJZqmUy8zMzjIzM8OFixfhwgWyuRw9hULILempQMYq5Zc6L18ihJtSEzTwfTH2EY+v9hNiMSxNawH0qP6QEtp2/VXtTBA727v37pGQAKZN++E0wzAYGhrC1zRu37rFs88+G/6u2/Nr27ZIyhAz1el0mqbj8M6j87z24A3KXoVvTP0R/5/n/yHJWJKkRL5qkXEC5ZdURavpNTk/fZ4/rP4Rk7enqN+od/xsB6clUI5lx3hp7AVeGH2B3T27wnP2JLlBu33wwQfcunmTiYkJduzc+ZHBKCG2YYPfR03r8nPxS7FLGxoa4tSpU7hSNnFmZobHjx6FCXdfby+F3l62bt1KOpOhadsh+YuhqlWq4ibZehypVRz4PoYc+zCkXzAMg2qthh8EVGu1FuY20zTRIm0blWB7QcDDqSle+ot/8SPdu/XsEw+UhmFw8OBBvjc9zbWrV3n66afFTk8unPYvqVavrwbJXE70DiVDTLVexw8CoXIdBDQlvZrTbGIaRkemmOgAbaVS2bDnZZqmAOI4TtdA2U6UDqLZffbsWbLZLM+dOIHjONgLa3XxovbjY/8JA3f72ZrZ2vqLdqDQx2Azs7NkZDNe0zTyhQL5QoE9e/bgRInc5+a4/+ABpmky0N9Pb18fQzIzF0heAVqwJHEAcvwnmUwSj8dbeC9hVXTVkv0iTdITGoYhSjSS29V1XdA0HMfhzp07vPLlL3+kjHrTvhimaYK0/ODBgzyYnGTPnj3kC4UWqraWdofrrgbJRCJMyF9//BoX599HDwzqWp3Hjce8M3uOF0a/REMi7OOSjceUDt3ybN6ZPsfrU69zevosdaeOE3joXvdn0cZmV2YXRweP8MLO59me3945oLcFSc/3OXfuHA+npjh46BCjo6OiovURn3t/ox1lhyC9XirvNJssLC5yRIJjzFiMkdFRRkZHCYKASrnM7OwsDx8/5saNG1y/fp1sLkd/by+9AwOMy76mas3YzWbI0xoEATHTJJFOh4IM4QZBls5rtVo4XqY2OaF8GoQ+CeDunTv4msYLL7zw4W/cBvapBMpYLMau3buZvHuXXbt2kVXUQxDWs9VAupKHUUFSWT6XY2lpSQy36zqpVArP84Siudy+N11XyPHIXU3MNDGC1UnGcrnMli1b1j3feCwWlgzbZw1Da9sFq5LJ4OAgzz73nKjPOw6P6p1lovqTvfzysb/PzsRO/uzun635/XrINaDz3OZ6FgTMTE8zPDzc8XixeDxk/6nWalQqFUqlEtPT00xfu8bVK1fIFwoM9PfT09sr0MeI7zYRjwugjjyWLgFRUVMqDnazidVohKwa4YiQ7AsD3L5zB9M0OfWlL324a9y0L5wZhsGuPXsozc1x9epVTp46tWb9BohdYE1SlsXj8TBI/vur/54/vPWHDDNExkiScTPMMMNbC2/xn+75MRqNhmgNWBYr1RWuLF/l7PzbnJ49S8Nt3TlqLSn3qu3q2clLYy/y0viLFIICjuuSSXUG/ajzVb+xm03OnjnD8vIyJ06cYHRsLLyOj2ph6bXb53dQDVmPxm5ubo4gCBgeHl7zu2jCPTI6Sr1epypxEdOzs9x/8IDLFy+KhLu/n76+vlBaL2aaJBSNHatBL2pqvl5VGBuWRTqVElU22bZTMluO43Dn3j2OHDnSFYPy/dinEigBtm7bxuzjx1y9epUTbcr1GqIX1pS8nul0eg1wJCH7kbqmUa3VSKVSGIZBWnKRWrI063meyBQlKUE8Hg93iY1GY8MdZSwWA8lO322kJco2c+XKFW7evMnOnTs5ePCgAKhIpx8Ea3soXxo5xS8e/QUKiQIrKysdz2HD/mSHn6lko9MDsry8TK1WC1UPupkuwTfZbJbevj6KxSJN26ZUqbC4uMjkgwfcvnuXmGkyODjI6MgIxeHhJ2LQSSQSodh2rU2lXqFq65bF1NQUhw8d6qj8sGk/XGaaJrppsnfvXi5cuMDCwkLIDKN69FoQUJUcxIZhCKo04P/3we/xR7e+AUCVOkWzSNpNYWBwfu49bGy0hM75+Xc5O/U2V+eu0/QFX3RaSxHDxMbGpgltQXJf314RHMdeZDS7+kypQfim43QHA8rzrlarnD59mqbj8OJLL4U9tXWVP57Auo2Vhcf8kDvVqYcPKeTzpOR97WaGrmPGYgwODZHL59mybRu2ZbG0tMTCwgIzV6/iI8CZwxITsdEx1XWkUynq9boQ7m5TLlKja/fu3cPUdY4dP/6hru9J7VPpUarRg6f27+fcuXNsmZ5ucdqe71OXmVSird+oLAgCwdRj21RrtZCCTpMIt3Q6TSqVEjdTCkO7nocne2PValUcY4MvRzH++LK0263853ke58+f59GjRxw+fJhdu3aFElFqx/eXd/znvLbwOm7goaHxd/b/LH9rz/9t48X6ERry6l50sqmpKRKJBAMRfttu7/ckybxfrRLI8Y5iscjI8DCmaVKt1Zifm2Nmdpbz588Dgsh9aHiYoaGhrlB2TRMcnCo7tCSZdYAA72iaxs1r10gmk+zeswfTNBkfH+fRo0e8+uqr/Pmf//m65/7BBx9w9OhRPM/jK1/5Cr/8y7+84f3atM+2xeNx6vU6g8UiPYUCFy5c4JVXXmmZ1bMsK6xCKdm6/+uDf8cf3/qT8DUuDh4eCSNOj9fDor/IL37nl5isPMDxle6rRlJLkCCJFhjoGKTJkNWyNHHoM3v5sad+lJfHX6SYXjteBaIaZSsdyw6jJCqRXVxc5MzZsyTicV599VUy6fSa+eWPylW6Xun1w050u47DzPQ0+/fvf+LX12o1fDk7mY2IVAeS2Wh2dpb79+9z6+ZNzFiM4aEhBotFhoeHQ+WkdlNSZ5ZtC25veW9c18U0TcqVCg+mpjh88CD5XO4T8RufPDOPJoivG64rHO7ICOfeeYdXX31V8JVC2FswTbNrudP3PBFEDQN8n5WVlRaNS/VZquwaqB6m3KmWy+UQWbW8soJpmkJSSmqqRU1JfHULlJZlcebsWUorK5w4eZIxWYdXYw4qKxzNjvJ7/+m/4/TMGZ4ePE5fqn/NsTpe63oQ77ZB67YbsJZkwfeZeviQ8fHxNQ+Pmj9yXVckFVKwtmFZAphjmqRTKWKqp4joOQ7097N//34s22Z2dpbZmRlu377N1atXBZG7nNssDg21oGWj2WFTKpX7ssdw/949FhYW+NILL4T3/MSJE3z1q1/lvffe23Bu9e///b+P53ns3LmTn//5n3+i+7xpn21TwC/X9zly9Civv/467733Hs888wwgklUl7p6RVajfvfx/8s3bf9pyHAOdGlVSRoKCV2CZZW6X7ra8JiCggUUDC0MzSJLkcN8hnh44jvfQY6QwzP7BfeiuQb3RIGaaIUmHMlXx0mSvvdOu8uGjR5w/f56+3l5Onjy59jUfYbyj9e0fYTyky88fP36M5/uMR7QulSn6SfW/EqhoWJbwG5kMaVkFVOeSyWSYmJggQFS5ZuXc5oP33oMgoFAoCBT+8DC9PT0t15CQJPiOqjwGAY7ngW1z4cIFegsFduzcSSKZ/ET8xiceKEFcZKNWw3Ucnn76ad54/XXeOn2aL7/6Kpqu4zgOUZLjTubJkkUml8OyLFZKJbJSoqmTqQCdSCTw02keP34stBBNk0AiNh05EKtJYnW1+KMsPe1sE9VqlTfeeAPXdXnppZfWBGtYzdw0TSMTz/IjW37kQ92v9UqvgThw52tmbda4sLCAZVligUrORrW4Pc8LmZFUj8CQ85OJRIJCPr8ui0kykWDrli1s3bKFQH7WzPQ0j6enQ17JKJF7Pp8XItHxuGjqy/s7vbzM5OQkR44coVgshoHy5MmTfPWrX6VUKnHz5k327t3b8Ty+8Y1v8B//438E4J/8k3/y4eSONu0zawrf4Lku2VyOZ595hnfOnSOXy7F3795wd5GIxYjFYvzOpX/Ln9351prjaBjU/QYZdDJ6igF/gDnm1n6ebnB88BgvT7zIC2NfojfZi+s4fP3eN0glkyHFoud5WBCOPsRME1PqrMYTCVxJbBJdh0EQcOPGDS5fvsyWLVs4dvz4Go1e9RyKH3zEHeVGvuND2NTUFP19faHepeu6eNJ3hOpFyOAsKSl1XSeTzVLI57sGKA3o6+2lr7c3TLhnpqeZlgn3tevXV4ncIwl3MpkUPUnlwzyPa9euYWgaJ06eFD4/mfxE/ManFihBlFhTsRjPf+lL/Pl3v8vZt9/miFShTiQSYcmzkyk6pGwmIxy+ZbG0ssKQVNtezxTAJJ1K0VMohKQCruOI/pjnYXveqqalpmHLOZ5KpUImk8EwDJaXlzl79iyGafLKiy8KdfUOtiEhb2QGstNr15uFWq/xHv18XyqBTE5Oin6uaVIql9fIXqlSsyn/r1Qq2M0mutydP6lpwKDkldz/1FPU6/WQ6ePGzZtcuXqVVDIZckqm02k8z6NUKnHv3j22bdvG9h07RFUgEiiVnT9/vuOCdxyH//q//q8BeOmll/jJn/zJJz7nTfvsWyKREL0/12VsfJz9lQpXPviAdCYTzkMnk0l++8K/4dv3/mPng8iq5grL9Jp9WE2bFVZo0iSmmzwz/Awvj7/I86PPU0i09sZ1ObPX09NDT09Pi9/wlR9xXbCskOSk3mig9BPNWAxD07hw8SJ37txh37597N+/vzOBQiT4bCT150cqV2rXFERGTzq2bboIRbS+RIxqNRoN5ubn2bN7N+VKRVTK1CnI8zAifkMDrEYD3zBIJhJPvqPVBAnEtm3b2LJ1K47rsry0FPqOloR7eDjcmFiWxePpaeq1Gi+99BLpVIoAwkCp7OPyG59KoDQMg1giQeC6eI5DOp3m1MmTvPHGG3xw+TL7n3pKBFPZnG8PAwGCnV4LAnTDoKenh+bcHLVqFSuXe6IxgmazSVx+gerLRWaJruuGD0DI9appYvTEcfCDgLm5Oa5du0ZPTw+HDx0KCb81TQvnhELgT1tDXi0sFaQ09Zq2soBa8NGZwlBGRr5OPSCK6zL8U85+uvIBVrONjx8/ZmR0NORcNOTu2ZQ6cVH1BCR5ALCGcm49i6q1qHek0+lVInffZ0HySs7OzjJ5/z66rpNKp7Fsm1yhwJHDh0XZClGiAXjmmWdCvbtz587xMz/zM2s++5/9s3/GzZs30TSNf/pP/+kTne+mfX4skUhQ1XVcyRC1b/9+KtUq5955h2eefpq+/n6+cvYrXJ693PH9vu+jBWJVNrBIY5M10hS9Irm+LF95+f9LNt4dJdlsNtEhlJBLxOMkZAIZTbjVLkuTn+l6HivlMoamceXqVZaWljh44ABj4+PYckzK0PWQAUv5jBbfJ31h1I8o3xFFxKs/w02G9EXRsqMKwr4MeH7Ud8g2led54TEeP3yI7/v0DQyEqihKW1L5juiu15FqQH4QPPEMaEArIYyaXx0YGKC/v58DBw7QaDSYlfPeN27cwHNdEsmk8FWex7Fjx0IUvmmaJJPJT8RvfCqBElYzQ8dxiMXjDPT3c/DgQS5evEhAZPfQoc/mR4Knhli0qVQKr15ncXmZsQ3QnCAykEyH0q6a14rFYiB/r/p1QRDQdF3u37vHvXv3KA4NsX//fgE+kmwzLecrF6+a7YzF4y2LOcr0oUZIkH/aEvEbBIEAKHieECmVQ7kq8Hm+L2i1iJRa5f1x5RxSgCi9LC8vYzsOExMTq9JD6wCEmrKsAXRWEehia9iV5D2JKgwUBwcZKhYFurVW49atW0xOTeED+/fubTmvHgnUSqVSHD58mPfee49z586t+dzFxUX+h//hfwDg7/ydv8PxTwjxtmk/OIvLZ8iPtEGOHj3K8soK777/PjOD03ww94F4TeChRUbtPd9HFw8IGhoBAcssM2qMUPfTzK7MYerru0DLskDOCbebYRiiLSMrZqo0qxsGtXod27K4fu0ajUaDI4cPkysUhGSUCjBtQUKDcDxEzY8rnxJFrHbzHU0pbqzrOvVaLfQFfhAQyApTJ41gz/NwPK9lxGt2dpa+/n56e3pChZD1ysG2bYsy+IfYTWodfP0aIvdUim3btrFj+3Zc32dhfp73338fy7ZJJBKMjo6G7ylI5PAn4Tc+1UBZ1XVc+aUCQgHj8GGuXb3KG6+/zqnnnw8XZMgAI3de7eXG3t5eGlJ660mIBGzLorf/ycA0pmFgGgbpTIY7ly7x+PFj9u3bx+49e/BcVwQUmZ35KkuTZY8AsXjVzsxaJzDVLQtfBkbFhxhomniYJFuF0a67FtmJKk5LtfNMIB84w8DQNG7euEE+m2XgCcrTBAG2ZYnjfBhWkA6LXf1bjde0f3cLi4vcu3+flCRdViQIAWKRR53SyZMnee+997hw4cKafvF/99/9d6ysrJDJZPi1X/u1Jz/nTfvcmKZpJFIpgSlwXXRJgv300aNcvX6dP5v+ZkhDEw2SQaDKkK2O18OjQpW8mcF2mpx9/DavbHm56+dbUgtxPfxE9FxN0ySXzVIqlbh86RK6rvPyK6+QlSxBjqxYhZUhlfhqgjxBjUrZzWZ3InFNoyaFjKO+w3FdmraNbhhY7bRxQRDSSyrAkabrGJpGPBYjIQO8YRg0LIvF5WWePnbsiRJmR+5GNUQlqqtSVNs1hJqj4Smu+okomYTi3nVdl+s3btCwLAaHhihKv6Y2DD0RvMjH7Tc+tUAZj8eF00TAepUDLQ4OUnz5ZU6fPs1r3/0up55/nkI+H5IERG9ewGrGYZgmuXyeUqnEsrzo9b6chmUxLLPTJxH1bDoO773/Pgtzc+zbt499+/eH1EqduAvD0obnhYsxHo8Lpy9/F939qTIocscVLWWYhoFmGKEah8om1fXpmtYZ/i13nOr8Hz16JPoh6j6uk+k1m82Qhk6Px7sKX3e67vajqoWrvm9lvu9z7do1rl+/zvDICD2FArrsbyjriWiFgljw/+Jf/Avq9TpXrlzhsGQIuXr1Kv/yX/5LAH71V3+1q7LBpn3+LZFIYMtKTSKRwHVdjFiMp48f59r5a7y2+BqGZkiH6qOh4fliF6mx9nkvUWJEGyGlJzl3//y6gdKWCMsnIVMH8TzMzc/z7rvvkkwmefbZZwWTGJDQdWIdfI8qgXqeJwSgfb+VWk/5jEhPUrGG6YYRBrMAEahM5XcgBCsq39GNxMSVwD6ABw8eoOs6ox3Qrh0uWLB0QbibfFLQ0Bq/EW1DsdrSUVWot06fxrIs9u7dixcINSPP80ICgr7I+NvH7Tc+tUCpaRrpbJa6ZNJRkk2maZLL5Xj11Vc5c/o0r7/2Gs+dOEGxWGyZLeqEBuspFKjXalhSvby/zckq830/HPVYL1Cqn9ZqNU5LYvNjx49TyOfFQxqPd2XFUQtQl6Vc3/dJJhLr9k9duetMp9MhG78vIdAgstj2Rd3OetN2EuFfH0xOQhCwbevW8PzC62wPmkGALRd7MpkUoxtPkExAZ2h5ENllqiDvui7vvvsuD6em2L13L0NDQ5RKJdD1ls/qaUMRRxvz586dCxf8L//yL+O6LuPj42FTftO+mJZOp6mYJr5lhYhtEO2Bn3v55+g718tbD95CjxtoCY3p8nQr8bimtZB/BASUWKFgFmjWBfq9W1/Ntm1MOUKmdoCdAo0KZHfv3OHCxYsUi0X27N0bokE1Wp+LqOmaJpR2dD08j6QMlN0s9B2pVNjTV2N2iQ5+JwoUWs/8IODe3btsnZgId6prELkRazabYnOAaIk1Za9yXetyH9pNYUUWFhY4e/YsumHw9DPP4MqKnaESCU0w+EQR+h+33/jUAiUIkEZ9eVnAjGWpUn0Z6XSal195hXfeeYe33nyTLVu3cuDAgXU1ENE0enp6WFxcpFQqkUmnOwYm9eWpG9lOs6YWuRJ2Pn36NLqu88orrxCLxWhY1mqg3Kj+rmmd//6EFqWg+n5mqe7evcvI2BjxDplwtMGPpokgKRdlPJEIZxzXtXUWezsga1ZKB1mNBk8/8wz5QgFH3k/HF1qUSpW8PVDu3r2bvr4+lpaWOH/+PH/37/5d/uRP/oRvfvObAPzar/3ahiQSm/b5Nk3TSOdy1G2buuSCBkLloJ9+9q/x4paXOHv2LGbT4MBzBzELMWaq00yXpplbmmWuvsCkNclyYxmAGnXyFDg18hzzCwuMdsE52LIXps5Di2hgRnd4frDK0rVr504OHTpEqVIRyFjHEfPEGwSHj/a0r1oIAuwUyJ/gswNgdmaGRqPB9ohMVRQfEqJzxUHD/mgimQy1bDesRm2wUVHmeR5Xr17l1q1b9PX1cfjwYTRdp+p5QspPJuDxeHxNJerj9hufaqA0DINENktzZYVmsylgxVH5FNPk1KlT3L17l0uyN3j4yBHGx8a6wqbTUvDTq9eZm59nbGRkTWk0nLeKBlHp6KPzQLMzM7z99tvk8nmeP3WKRDIpWGRkJusp7cRP0MI5qO/jcxYWFqhUqxw7dmzd16lFb0sFkHQiIcrB2ipUvStnZIeSa+TA4iFqNrl08SIPpqYY6Ovj+VOnQsSdbhjosgervoN8odDxuk+cOMGf/umfcu7cOVzXDdkznnnmGX72Z3/2yW/Mpn1uLZPJUF9awpWAMzMWa1krQ0ND/MiP/Ajvvfce77x9jrHRUY4cOcKhwcNUZOUin89jORaztVmWrCWGEkW8iiAtWF5ZCaW8omZbVstORQfcCLoVTbBZvXv+PA8jLF0AiViMhu9j23ZXmbqoRQPFR0mSw57e9+E77ty7R6G3t6tMVZRiz7btcIediMWwg1Vkf1dbL8GO/H1mZob3L1zAbjQ4ePAgW7ZsoSFHcAzDwA3EeIq65vYEGz5ev/HJev0Ols3nCTTBXNFp16JpGtu2b+dHfuRH6B8Y4O233+bMmTNYjUaHownr6+8nbpr4vs/i8vKa36vB+hAwI0soURTY3bt3OX3mDMWhIV588cUwqOq6LtCrgCXnLD9JWy8r3HCXJ+3O3bvkczn6N6CsA5lEyJ5HdCRk3QdV09bNfoMgYPLBA771rW8xPT3N8WPHeOGll4jF4yJIaloIyohFuBt7u5TOVRnl8uXL/G//2//G9evXAfin//SffuRd96Z9vswwDBJyB+BIyrp2S6VSnDx5kpMnTrC4uMiffetboeiwsmQsydaerRwbPsZo7xg9vb2YpikQ4hGgoTLX81Z7gJFeoR+pxrz55pvMzMxw8uTJMEgC4RhDWEHbyKIB5KMEyshY2Yc2TaNWrzM3M8OOJ5C3830fS96vpGoRRStV3WyDna1lWbz9zju8dfo0mXSav/AX/yK79uxp2bmq6zQkfsMwjBDxGrWP0298qjtKkM3mVArqdZxmEy2bxQ+CMDCo5nUqleLkiRM8mpjg/fff56233mLrtm3s2bNnTT9B13V6+/pYmJ+nWquRTqVaSLeju59oIApkNviBFCZVJZP2jCwRj4cjH0/a1IePOSt8gpq+hlho048fc/DQoQ1f70qUXIBc7IYRzneKj+ywo9ygv1CuVHjv/feZnZ1lbGyMw4cPk0wm8SOEDslkkmq12vJwGbrO4NBQx2OqBd9sNvlv/9v/FoCf/umf/kTkdDbts2vpQoHGyspqkt3Wa/fleh0bG2NwcJAPPviAixcvUujpETJdHYj2c5Lpy5cD9mOjoy2BJpC+qUUjVoJMKtUqp996C9d1efHFF9ckeirJdppN7Damno6mnocnxAe020bKIet+NHDv7l3MWKwjZV27NRqNcLay5bo+YuKqyFEuXrwoUM3HjzOxZQuaptFoNELwoyEF5RVICaA4NNQxOfg4/canHihBLPjywkIIhV4DNInY2OgoxcFB3nv/fW7euMHU1BR79uxhx/btLSXWVCpFLpejVKmwsLgomH5kQPV9X4xVtJknB1IfPnrEkSNH2LlzZ8fzVVynnuvSbDY3Hqj9iAsdBAMRdMgKn+ABCjSN+/fvo+n6hnJiAQIJjNSHVP0eha7V2sZSwvd1KbmurKxw/fp1Hj16RCwe5/lTp4RCunxPTSo8mKYpnIfjgCyfAAwOD3d1JCdOnAjLxI7jkEgk+Cf/5J+se32b9sWzRCKBIZPsZrO5OmKgAlkEaBOPxzl+/Dgjo6O8++67vPP220xOTrJv375QgURZf38/zvQ0tuOwtLTUIh6gxjiifkkDFpaWOHPmDPF4nFdeeSUkZG+3pFzrTdsWYuXrBRJVuvw+dpOw1nc8EYjH97k/OcnWLVvWcF+3myMJFoIgaLluRRjSsfLVxX95nsf9yUlu3rxJtVplZHSUY0eOEJMbEsW5DSLBdmU1QSF5NU1jdGKi43l+nH7jBxMo02kwTQLPw7IsEvF4OPrR6UuNxWIcOHCA0dFRHj58yOXLl7lx/Tq7du9m186dYWmkp6eHhmVh2zYLi4uMDA+vziq1BeSQ2LxU4uTJkxvChBPxOHWpzL1RoAxgw/Jk1/d+Hz3KIAi4e+8eE+PjG56jbVn4ritElzvtkruMoLRf08LiItevX2d2ZoZsJsOx48cZHRtrKR1bjUZYcs1kMqHcVoBALmqaxsjYWNdzLRQK7Nu3j2vXrgHwC7/wC2x/gvLQpn3xLN3TQ2lhIWSCCYFpdN5JDQ4OcurECWbm5piamuL1115jYHCQffv2iTk8mRiqilS5UiGZSgmqzEAQCLQfd+rhQ86fP09vXx8nn3tuXcChGYth6DqelN9KrPPaJwloXd/bDQT4hGjXhw8fYts22yIgnm7n2JBE9IlkspXZS5oiSggDY4cg6boud+/d4/atWzQsi7HRUU6cOEEulwt7nL7n0agLXdBEIoEZi1Gr19GAuEywe/v7u864fpx+4wcSKAFyAwMsP3xIo9Egm8lgmOa6ABJdijUfOnSIAwcOcOvmTa5fu8aNGzfYvWsXu3btIp5IMDgwwPT0NFajwdLKCoVcTjxQrG7VK5UKb50+jee6vPzSSxR6ejZcTIl4XAhLSxTbeoHooy93wl5Ge6B8knGNh1NTNBoNdnTZGYfHkgAlIJzXarHI/Q/p6SKLPQDm5+a4fuMG83Nz5HI5nnn2WcbHxgTJveuGx2jadki+kEqn0TWNhswQdUnfpcSg17Nisci1a9cYHBzkH/7Df7jhvdi0L6blcjlm4nF8x6FSLoveVKRd0G6GrqMZBsWBAXbv3s3MzAzXr1/ne9/7Hn39/ezbu5eR4WFSqRTZXI5yuczCwkIokuBHZhYVsfnVq1eZmJjg+PHjGz7rStGoYVkCGPQE/MkfJcHu5jeeqBIVBNy8fZvi4CC5DUSPLYmQ1zsl2NGkRf479OnyJU3H4e6dO9y6fRvHcdgyMcGePXvI5nIiMZHXEQSBIFVAzJUnIjvMIAjCXe9Gs54fl9/4gQXKQqFAaW4Oz3Wp1ethJrEe47yGyDLSmQxHjh5l37593Lp9m1u3bnHz1i1GR0eZmJggXyiwtLzM0tISpmGEqEpd05hfWODsmTMkk0lefOUVMjJz3GggX9N1UpKGz7KsDXdsaqF8WOvaZ3iSxX7jxrqakMoUabMhy6Dtpu51iHCTwbLeaDA1NcWDBw8ol0r09PRw8uRJhkdGWs43pMZyXVHeRSiNmKZJgEDLBZoWOqDRsbF1S1Lnzp3j9ddfB+Af/aN/tOH1bdoX2wqDg5QePcKWvb/kOgQZarbZl2Mdo6OjjI6MMDs3x43r1zlz+jSZbJYtW7YwPj4uNDAbDebn50VFSlZCPN/nwoULTN6/z779+9m/b184XL8RyE4Jy/tK1LmL7wjHML4Pv/FRKlGzs7OUl5d5foPencI0+EFANpVa499Cnyd9aRAEaLqO73nMzc8z9eABDx89IvB9tm3bxu49e1pGNKKbFavRwJdkAmmp7el7HnYkyc7m82vK6FH7OP3GDyxQxmIx0vk81cVFXNfFbjRIpFJdA5bepmwNYut/8OBB9uzZw+TkJA8mJzkzNYUZizEwMEAun2d+fj4sRzx+/JiLly4x0N/PiZMnwwWrSRTmRgs+kUxSjww9mx0YeoCP3KNcr8+wkU1PT1Mulzdc7E3HwXMcAk3rqv0ZNddxePjoEQ8ePGBudhbNMBgbGeHQoUMMDg6uCZDhbJniwwViphmiiDWJFFT9yWw+T98G1IK/+qu/CsDBgwf5uZ/7uQ3PedO+2JbJZKhJySWrXhdo9nV2ToqnNMpzOjQ0xNDQEIuLi9y/f58bN25w5epVegoFCoUC+UKBufn5kGf69OnTLMzPc/zpp0MSD4gkleucrya5Yh3ZanqSUZEPa93Gyp5Eaej6jRv09vWtK+weYhoQ1bWuvi9ilXKZyclJpqamxGYom2XPnj1s3bq1pVwaVhHld9hehVIVL9u2W5iGhorFdQFSH6ff+IEFSk3TSGYyuBL9auk6ZoRirj0oKpoihZCNliLj8Ti7d+9m9+7drKysMHn/PpOTkzx89EgQqCcS+DIj3LJ1K8eOHWvRgoMnW/BKPcD3PBqWtWGZ4sPuKKPq5B8mqwyCgOvXrzMwMEBflxELdfxGvS5QrolEx/6Cet3i4iLXrl9nenoaz/MYHBjgmWeeYWR0tOtDohDLIFBxivNRPRQaIvB6nhf2LIeKxXU1L3/jN36D1157DRCM/xsBDTbti2+JRIJENkt9eRnf96nXaqSz2a5BQTnhKPBHWX9/P/39/Rw9ckQkhFNT3Lt3DxBVr3q9zsryMmgaX3rhhZBftOX4cte03jObSCSo1Wp4rrth6+YjoeU7jZUF3ZmElC0sLrK0uMiJEyfWPb7aEaNp67KNWZYl1D6mpymVSsTicSbGx5nYsoVCobDmXALfX0Xb07kKhfzebAngMkyTdDpN/+Bg1w3Fx+03fmCBEgSKycpksJaX8T2PWq1GNpttYb9QFs0q/l//4B+wsrLCwOAgX/nKV8KbEAQB+VyOQ4cOsXvPHv7xP/7HNJtNbMdh9549jA4PYxgGszMzDAwOrsnsonJR656zZYWSXGa3YCPnp4gQp/tBEOq6BUFAVSoF1KpVdMPAdRwaloUZixFrNDAkoEZJeHVb8HNzc6ysrPCldXaTAVCTjXHDNFuDUxBQKZeZnZ9nfnaW+YUFLNsmm8mwb+9eJiYmVkskcqSm204SRJB0pCxSOpVq6YGq3qiaferp62txGvV6ncePH1OpVPj617/O//Q//U8A/L2/9/d4+eWXu17fpv3wmGmaxJJJEul0KFnVXAdkp+s6TrPJr/73/z0LCwv0Dwy0+A3liCfGxykODfFr/+P/yMzMDD29vWzbvp3enh4Gi0WWl5cFe1Sbw1ezfOtVpHRdJ55IYNn2uq2bANFvdJpNvCBoIVBXwJwAgbMAQbepGwb1Wi3EYviIgKnIQ9YLlDeuXydfKDA8PNx11tNxXZoSwNP+PLuuy+LCAnNzc8zOzlIqlfCB4WKR/fv3UxwaWt2UaFrLPVKl2TBIeh516aOiVSjFC9607bBNNjI+3hKwP2m/8QMNlKlUimo8TjyTodloEEc40mQHFJOuCa1K0zT5z//yX+Z3/u2/ZWF+nu9973u88sorAKsLJQj49V//de5PThKPxfgrf+Wv0LAsCoUCjx4/5s7t2+iaRm9/vyBlLxbp6+/HkFv6Tki38DzkbJQvF3w2kwmDolIAL1er4d+jw8rhMeXCUKMgARAoJKjvE3geTrOJw+pwcxAEmLouqJukuokhy9E3btygp6eH4sAAzYhcTtQsiXINNI10KoVlWczPzTE7P8/c7CyWZaHpOgN9fWzdto1CPs/Q8PDaRCAIMNr4WUOwD6L/qeDcqXQ6HP9Q59SQiikx02Ri61aRGEXu9e/+7u+uKZM899xzm1qTm9ZiuVwOx7Zxm02RYErf0Om51XSdeDzOj/3Yj/G7v/u7LC4utvoN9TwGAf/in/9zbt+9i65p/Ozf/tssr6wIxY8g4OqVK1y+fJlEPE5xaIhisUhxcJBMJtNC79bNEokETdtuad24kgjdk/23SrWKjtxptW0Yokf2iFBvSh1aBYaxJYNNwOpsqaHrq1q0khFteXmZubk5nn322a7nHASBQJ5KUFLMNFlaXGRubo752VkWlpYIfJ9kKsXAwADj4+P0DwzQ06kf2Gnzo+6971OtVkXF0DDCKpSaYXWkZrDjukxs2UJPT0/IcQufvN/4gQZKTdPI5XIsN5tozSae79OwLCH03EZArmka6Dp4Hq+88gp/+id/wuLiIn/4ta/x4osvhqVTgN/5nd/h/LvvAvA3/sbf4MiRI7z15psUi0UGi0VSiQTz8/PMzs1x+84drl27hmGa9Pf30yP7E/l8nnwu1xERmkwmaTQaVCuVcB4wakpySy1MJYeleqWqFOTKQJlKJoXUVL2OjujfJiSLTSCDsK9pQpPSdcF1seT1VioVFhYWeO7Eia6l3lq1yuz8PLVqlUajQWllRaiWBwE9vb1MTExQLBbp7+/HMAxKpZKQNFoP3NTW8wGxk7QjZM2xWCxEyIHITO1mE9fz2Ll7N6lUag3f4nvvvQcIp7Jt2zb++l//6/zKr/zKE8kcbdoPjyWTSSEGn8ngVKugaVSqVfLZbEuZFVbLkadOneKb3/wmi4uLfP3rX+fFF18U7Qe5jqN+42d+5md48YUXeP2NN6hbFtu2b2fw2WepVavMSd/xcGqKIAjI5HL09/WRz+fJ5fP0FAoddRkNqfRh1WosLS8TlyAktQv0lGi8IkfXWmX0VPtJtTA0hO9Ip9MCaR4EIe4gZB6TOzhf7kybMqAaus7Vq1fJZDJiNK7Dsx74PnNzc5TKZarVKnV53o7jYJomxYEBDh8+TLFYJJPJ0LRt6o1G15YOrPJsR/1HGCQltWVW9iXVpkcDqtUqBAGJRIKxiYk1CfYn7Td+oIES5K4ykRD19Hod33VFCVbXxW5Ggns0iZK0ZW/rJ37iJ/iN3/gNFhcX+e53v8uXX30VgD/+0z/lz771LQD+sx//cf6TH/sxKvJBCnyfaqWCYRhs27aNbdu2EQQBpVKJ2fl5lhcXefjoEfWbN8UXpOvkczl6enooFApks1niiQQBAiatqKlSyWSo+h0tA2czmTVK4FFTuzUFRTfkA5JKpcLSaEiZJWV4fN8PM1I/CLh9+zaZTIZMOk2lUqFWq1Gv1ymVy5RXVlgqlWhK8Iyu6+QLBQGL37ePwQ7N8Cice6Ph6Kg1Go1Q+DmdSoVoWqW6AFCVwTmbyzEyOkoul1vzGb/+67/Or//6r6+/aDZt04B8Ps+i42AkEgSy91epVsN1pYKl2mlqEPqNhfl53njjDV566SU0OvsNgEw2S61WQ0MI/g4NDTE4OMiBp56i6TgsLCwwPz/P8vIyjx89CklUEokEPT095PN5CoWC2HXK0SlLljFBlBgN0yQhx+N0TbDdZHO5dUGBCidgmqaockXEJZR5kSDpSeFr5bNK5TKzs7Ps27+figxStWqVarVKqVxmZXmZcqUSSoAlEgl6e3rYvWsXg8Uivb29Xec1NyRVaAuStVpN7CR1PQySsDpm4nketWoVx/PYt28f8Xh8TYL9SfuNH3igBFFGWXIctHgcXYqAVisV8vl8S7PWNE2asjf40ksv8Ud//MdMP37MN77+dV56+WXOnzvHv/s//08Anj91ir/5N/8mQBgMEsmk2DGtrBD4Pn3yy+7p6REkwLt3A2JWp1Qus7KyQmllhaXlZSanpsLyqJqNisViJJJJ8tks2VyOVDJJMpXC9/3V/keHfms3C2eh2jIyNfjcaDSwGg0alkWj0WBxYYHlpSWSqRRvvvWWoNmTmWYimSSfzzM+OkoqnaZQKDAwMLAumradVaMrIToScCTLwg3LCsWsE4lEGCT1yAPheh61eh3HdXlq9+4wIdi0TfuolkgkhFal7xM0GqGoeq1eD8uhQNii8D2PF154gT/64z9mZnqar33ta3zphRc49847Hf0GEFZ24rEYTcdhZnaWYZlgxmMxRkdGQuWRIAgE+KdUYmVlhZWVFR4+fMjNGzfwNQ3PdYmZpvAdiQSpZJJCoUA6nSaVTIb6iu1Aw43M7+I3NNkTbDabLb6jVqsx9eABhmkyef8+N2/eFD1RudPL5/Pk83kG5U5xsFgks57ShtzMKM+xXiVK7YgDCHEpKkhGZ7q1yOurtRpeEJArFBgaGuqYYH/S9pkIlMlkUkC+ZalAl1lPpVIRoqcSNqwWvOu66KkUP/VTP8X//r//7ywsLvLbv/VbvPHGGwRBwFMHDvD3fu7nwputGudmLEahUKBcKlEulwHo68A6H4vFGOjvJ5/PUxsYYIssiTQaDeqSPsu27XD39mhmhubkJJ4EsETnoQzDEMLMsqdoGIZQEpfMRADvX7iApgmieEXg7nmeaOrLXVo7vD0Wi4k+h2GEyNF4PI6m66TTaVHikcCZmGlS6KLMoUzNTW6UFbbTDaqdJIgykOpJ6vL36rur12o0m036ZTbaTZ1g0zbtw1ihUGDBcfATCXQJmLMaDXRNI6WcexCE1Sjf9/mpn/op/tk/+2csLCzw27/1W7z15psd/QaIJNt1HIrFInPz8zSbTWbm5sJgGTVNE8xTqXSanp4eLKmu4cpZ8Ua9jitRnZVymVK5zII8pmLzUuer/IbyF6b6t2liGkbYtnnv/fdFe8bzCGQv1ZUJveu6aOoZRDyPavdp2TaDg4MUZJlYlYUzmYzwdbZN3DRJptOk10lowxJ3BGzUUa9TAXeURXeSmpiVDOS1h++XyY3qXW7bvr1ju+bTsM9EoARRRnEcB8vzCBxHaI15HqVKRfQKVQklCPBkeePkiRP84ZYtTD54EEKBJ7Zs4b/6xV9sGWHQ5Xsd2xaINQQ3ablcxg8CBtpGKnzfp1avrwoYy9KDgjdHSxrlUokgCMSXpwkC3+XFRYFeNU3RT5AL1/d9PCnX5ct+rMqmkskk8UQiXDSGfChUydk0TZKpFKlUimQyyeTkJO9fuMALL78cBh3Vz1QlKNW3MAwD13Vb1EGipsmytDqG2jF2eGEY/BSVlRsJkrFYDFcOCasHX5FXr5RKmIkEW7ZupaenZ2O+3E3btCcw0zTp7e1laWmJoNnEkL25er0e0jNq6lmS1aiTJ0/yh1/7Wovf2Lp1K7/0S7+0ZvQpHovhuC6GYYhgOTdHs9lkenaWoWJxDTtNs9kUDF7yPAwp79Xf39+CKrUkcYmmaWSyWWzLolqrsbyygu+6xBOJ0Fd4rourWi8ygVaasYo7WQsCzFiMZDIpAqqui4TcMEjE46HvME2T73znO+TzeV548cXwfFRAtyyLlXJZsHc1m8TlaF23JDsMkqySHrS3mnzZE1UbCM91qUaCZDaTEVzcQes8peKIrjcajIyOMjg4+ANLsD8zgVLTNHp7e1mQ7BXIJrfrulQrFTK5nKjfmyae3HkZpskrr77Kb//2bwMiu/xvfvVXQ7ad9sxQoTFVwFteWaFWrRL4PoNy2NaS4rABhLX5VDIZfvntpADJVCosaRRyORL5PKbsRaQzGRKxWFf6uZWVFaanpzl08KDohVSrGIZBLpcDCDOsdnNdl6tXr7JlYmLtwpH9XN0wSCeTIQWUJcWn0+l0y6LXoGUkJlQvaVvsWiRI+tIReVJpPpVMEo9IaClT2WW5XMZuNhmbmGB0dHSz5LppH6slEgny+TzLrotXqwkBAzlqoEfQmg3Es6MBr375y/zWb/0WIPzBr/zKr4idU9vzFpM81IqntVgsMj8/j2XbzM7NMTQ4KNRxfJ9qrSawA4iKSjad7soDm0wmsZtNAt/HdRwy6bSoCsViaLpOj5Qj7DautrSywn/81rc4eOAAZiyG6zik02kBEIKu7Z47d+9SqVZ5rg3pqljR/EAoNzm2jS4p/CqVColEomUcI8rcFR5D/ru99BoNknaziaXG1GT1S5MgTRUko7Ofi4uLJJNJRsbG6O/v/9RLrso+dT3K9cwwDPr6+jCU5pi88U0ZLD2Z2Shl65npab761a+G77dtO8wI229oPJEIAyWIHWxfXx+6rlOXos/lSkUoqCvgSz5Ppi2wtGdLKmMNgiCkVwrtSZrb6qURsoGN7MbNmziuy4EDB9b8zpO9QBABbKCvTwQmuQArCqkbnmLbA6WAPJEfaZEdouu6VKtVESQ1jXQmI9CtwSoNYMBq+dlpNllYXCSVTjM2Pr5JP7dpn4hlMhmyuRyaaYbD/2pWudFoCL8BeI7D9PQ0//4//IfwvVG/0f58x6UWrfIdpmEwODgY7iRnZmepVKuUKxUcCbBLysCdSCRan6PogbXVwX1LVpZCU3+XM9cbmf+EvsNxXa5du8aWiYk1+o0aYnTLlclvb18fvYWCUDzRdZrNJjXpG8Uprj0zn9WAq64x9AeyTaOCpBmLkctmV31r5Ljqu1tYXMRxXXr6+9m2bdsTsQF9UvaZCpQg+oN9AwPo8Xg4ZIuco1FDtn4QsLS0xP/8P//PVCqVUHvSsiy+8Y1vrB4ssuhzuZxAv0Ysl83S39eHpmksLS8zMzeH67qkkknyuVwLm0NXFKgmqOA0JBtNtCfwIa7bkz2HlkZ+h8VYbzS4dfs2e+R4RdRUcxxESUqVgxOJBPlsNpyfUv3CTsf3ZJ9Hlxy5YZBEOBS1A9cNg2w2S0wpzSukWuSYjuznBEHA8OgoOzZQJti0Tft+rFAokOrpWeVflcmb4mfWdJ1qrcZX/pf/hepGfkOue/Ua5XuAEBeQSiaFjuKDB1SkvmpegvqUr1DjYJ2oORPxuBAwZ5WII2qapm3ooBUiXp1XeP4d7Pr167ie1zHBtixL7HCBjCzR6oZBJpMhLQO657rUqtXQV7WcB2IWPBwHi5yDYk9qRsSXM5lMeG88hcFQx5IJfWllhXQ6ze7du1tmJn8Q9pkLlCDKEgMjI60orkAO09o2dqPB//Gbv8n03ByJeJx/8A/+AU8//TQA3/72t1leXm49oKaRy2bDfmLUFOLMlxJatUajI91ROJPVIbjEZTNckz3K6DmHf93gmtsRr9006S5dukTMMNizZ0/Lz1VfVe2GM22kxbphkM1kRGnHMLDq9Y6K7r4EE+mGEZZMQmcjr001/ZWIqjyBlmu0bJuVlRXsRoNCby+HDh3a7Etu2idqmqbR399Pup0qLQjClsq/+bf/NmTY2chvaJpGSo46VST4T5mu6yHeAYRguSd7mWvOC5kAt/sOTZB/aIhAFfYwo6/boBoVbiZUQAboUK4tVyrcvn2b3bt2rUmwm81mi5pQe7k4nkiQy+Uw5ahXTbIARc2XQCJNApDUNXiyAuVGKlBhCVcGyahP9j1P9GqXl0HX2b5r14baup+GfSYDJUAylaJ/dLR14clxhK9+7WvMzc6STaf5+V/4BbZs2cJP/uRPhsjRr/3BH6y+Ry60QqEQolVXDxdQrVYxJdlAPpuFIODx9HRIpRQ1jdWxiHZTCLtmsxmWL6LvWxcyTQTi3VaKiNqjx495/PgxR44caSlDKFi6J5vjmcgsUuuJCKBQMpEAw8Cy7ZZyNKwGbBUkPblLddqywfB6IvNQ6lwaEuFXrVbJ5PMcOnJks+S6aZ+KaZpG//AwmTbZNs/z+L3f/31WVlZIpVL8/C/8AhMTE/xEN78ROV4+nxcEHRFToJ2enh56CgUyqRSVapXZ2dmOOy51rHYzYzFi8Ti6rtNoNEIw3ZNa9Hnt9hkB8O5775FOpdjblmC7riswGZpGIh7vyrusKlSKFq8aKcOq8/Alyl+1aWzbplqrhXyuWdmmEScVhGQL4blIX1OXY2Rbtmxh3759H0kR5eO2H/wZrGOpbJb+4eGWof1vfP3r3L51i3Q6zV/7a3+NQ4cOQRAwPj7OsePHCYKA115/nbm5uZZj5fN5dMNoKaHU63UxfgH09fUxMjJCQhKzz83Ps1IqdTyvTly0puRP1TRtbc9hAwuCIKSzM9VCa3t/03G4cOECIyMjjEU02MIg6Xng+yKIdWLGiDxAyWQy7K0qjU2Qau6q9KrrAonX1o9MJhKCZo/VMqvqSar+ZdNxqNdqxJNJdu7ezfgGmnGbtmkfp2maRu/wMNl8PnTE3/jGN7h75w4a8J/9pb/E7t270TSNLePjHD16FM/3O/oNgN5CgUqptIralDgANV85OjoqsBW6jmXbTM/MdKzWQOeEOZVKgb4q7txyLRtcq8I2RIlO2u3OnTssLS3x9NNPh+NbsPq8IqcCOqoJRXqGqhSrS1SqFameqVK3LoFU1WpV/D4Q1IJKc1iVw0NUvDxny7KoVau4EoQ1PDzM7r17fyCjIJ3sMx0oAZL5PD0DAyTicf78u9/l/Lvvouk6zz33HHv27mV5eTnspf3kT/4kfhDQdBx+7/d/v+U4uWwWQ9fF/KSm0XQcIUIaBGSzWTFHZJoMDQ2RkZlTaWWF2fn5jhlip8wtlUq1EPi2BLt1Amd0djGkuGuzixcv4nseR48ebXlfTSLtgiAgLcuhHc+17fOTySQx2YeoNxoEEvGmgl6tVhPlmEDKYWWzq0G87fwUGUJNZo+KnWR8yxa2b9/+A23Cb9oPp+m6Tr5YJJvP893vfpd3330XPwg4efIk+6XfsG0bNI2f+umfFjgIx+H3fu/31jwruXxeCBjIn6vxD8MwQkeezWYpFotC7NnzmJ6dDfECysK+ZYdzTUucg23ba8qR64EBuwo2S6vV61y5coUd27fTH5HRcmW/ETl+1t6qiZxcy7moYImmCbJ0x2kZmXOaTQG8lMl1Qs49atEAKS0IAvH6ahXbttEROI+enh62bN/O0NBQ1+v+tO0zHygBEvk8p8+e5Rvf+Aae53HwwAGefe45XFn+KJfL2LbNlokJTjz3HBpw9swZJh88aBnSz+VyYQnFkmWOuJJyQb1MY2BggN7eXgzDwG40mOmQISruxZYyrLYqMmo7TksJdt3FLgOxWuztkPCZ2VmmpqY4dOhQWN8Pg6TsKWaz2ZDGqv08uxE1Kzi8LwO767pYto1tWeKcNE0MHKfT4lo7XIPjOJRKJZrNpigxS6WG4fFxRsfGyLeVwDZt0z4tM2Mx/uhb3+I/fPWr2LbNkSNHePmVV0IB4nK5TKVSYWxsjJMnTwJw9uxZJh88CIUIQFSj1E5HzSkHvh+C5ZQlEgmGh4eFhB0wv7DAkpQCg9YA2b6zjCvCEFmRetJ6lDpHo0MlKkBwoMZjMQ4ePBj+3HGc1iDZDSij+p9tZhhGWJGypJBzU5ZZlc8zYzGymQyJeFzco/ZALlGwKrnWDQNHznqPjI8zMTHxmSi5KvvsnMk69md/9mf8rb/7d1laXma7JLxNp9PEEwka9brYttdqVCoV/upf/ash8e6//73fC1Fhvu+LXkOpJNj65axOt619LpdjcHAQ0zTxfJ9pKSETZa+BtWVYMxYjHo+jaxo1GYyjFkT+j/4bTcyItmddruvy/nvvMTg4yNZt2wBWZ7akUkhGIlpbPklbHdrtZpqcA9U0jXq9TrlSEQFP04jJXWRckRREUGkgmu71el30IALBfJJIJKjWavQNDlIcGhJky5u2aT8g+5M/+RP+n//lf8n7V66wa+dOfvZnf1aUAbNZAk2jItd7pVzmL/2lvxRWg37/938/fHY83xevDwJWVlawZKUoJekw280wDIpDQ+TzeQxdp1KpMD0725JoRxGxUUun0yG3qR1FwbYFv7DtEQRhQqt3aAdN3r/P/Pw8x44fDzcDTccRO91IkGxJphU6twNKN3o+yWRSEIt4HqVyWZSiPQ/dMEjKXWTHQBcENJtNyuVyCHyMx+MgCRVGt2xhYsuWz0zJVdnnoib24z/+42L0wnWpLS+D75N0HGxJEWVLAE0sHieXy/Gv/tW/Ek1pTQv5SzVNo7evj8kHD0Ky3ygFVaedVzKZDFXQbctipVSiWq/T09MjMiVpepvsVCqVCgfya40GqVRq7UJEDvcHkmlIjlloui5Qa/I1ly5fxmo2een4cfEeSf2kdqEqSEatGxy9k+maRkP2aj15jtlsNlyoUUo+EAHSsm0cCQIK5ENjGgYLi4v09PUxPDLCzp07N0uum/YDtR//8R8PZ4btahW7WiURjws6O+kzarUapmmSz+f55//8n4dobpAzfYidYjaTYXp2NuRyjssZyU5pqCJPicViLC8v4zkOMzMzZLNZchH+ak28eHVQ3zBISL3bWqOBGYuJ8ZEgWOufIv4kgJaRDA2oNRpcunyZiYmJsITZbDYFY5HsSarqV+grogC9Lr5D0zTRpvE8AqCq8BFBQCweJ5/LrQbINuRxU/ls+V5NovMVd/XYli1MTEwwECkRf1bsc7GjVKabJpneXsE2E4sxVCwKeLWmEYvHw+Z0qVymXKmE9GqaXEQjw8MEvs/8/Dy+5xE3zZZ5q06LXvUte2Wz3nMcZqenRW80ytIT6QMq0nRfNqmb0WyyQ5alApSh+gFygT148IDJ+/c5dvQomUxmNUjKwJ9rD5IKXNNtFxl54NRcak1qzQXyGtKpVAstlzqS2kFWKpUwSBqxGJl0mrhpsrC4SK5QCOclN4Pkpn2WLJHNEs9mxZxgNktvby9xGYgM0xTVkWqVlVJJJOWqXCpbDiMjI8zOzBDInr0iHF8Pe5DNZhkZGQl3V+VqlZnp6ZaZyRZyDwkOUpSS1Wp1VbN2nc8xIkESxI707TNnSMTjHD16VLSC5HgMCN+pgmR4Hh1wDC0mNx2e59Go1ymXyyELkeu6JJLJVgIBZXIHWalWachdJ5pGLJEgn8uFyNjRLVsYiwT1z5p97ryZbpqk+/upLy6iGwY9PT3ockEl0ulwBKRp2zQajVCvLRaLkc5kyBcKzM/PC1YeOfsYre2HS6Ut8OVyOVKpFMvLy4KJo1ymUa/T199PMplsKYX48mGKy8VVazTISd7FTgtekaPrkeBSKpV4//332bJ1K9u2bg2JlQNJExfNfOmUcYYHDwgiM1ZN28ay7RaAUlJmx45UN9Ajx3VdN1QlUWbG4yFCznUc5hcXyeRyjIyNsXPnzjVk0Zu2aZ8FS2azgtO0Xiefy4lqlG2HrQZLorwtyyIRj5OSM9a6rjM8PMytW7eoVav0KG7oiO9QCW77Psw0TQYHB6lJLcdms8ns7CxZGaxVYPGl3wggrEB5vk+90Qh7iN12sIZhtPiri5cuUa5UePmll4iZphBTl9dpyuQ2alEE++oPW0uwnvQDtm2H52CaJulkkrp8TRQjEUjVkqbjhMFezY0aUqe2VqtRrlYZnZhgdGyMEanC8lm0z12gBPkF9fZSW1oSUjvNJs1mU/CyplKCKknu5FTGkkwmyWazDA0NcefuXfbt3bsuwCaIlD8VJZau6/T39xNPJFheXsb1fWZnZ8lkMquSYKpfAGF5xnVd6rWaEBtVvYS2z1bUfCCa7W+//Ta5XI6jR49iN5s0pGq5aZrhnKQqDXkQosqipRxFRgwCTWdHhpo1BI9lMh7HCwLqliVIlmMxfAlTd5rNll2zGYuRlsheReq+vLxMKptlbGKCHTt2bAbJTftMWzqfpxEE2PW64DSV3K+ZbJZEIkG9XseWdG2NRoOYJNfo7+/HNE3mFxZa0KPKOvkS1VrREMFvJJFgYWGBWr0ujm9ZFAoFkhLxqp5/TRP0dpZtC7Fz2w5bSd3ANapd8+DBA+7fu8exY8co9PSI8S75DIc6t8GqyoeviELURkHTwmNpCFSt3WzSjARIQ9eFnF4sFqow+Z4nxBccR5S1I4m1IqePy/E513VZKZWo1euMTkyIkbexsY/4jX469rkMlCB2NbmBAeqlEslmk6brYlsWuUKBnkRCkO9aVth/UwrdScnKX65UKPT0hOri7cu8pSwRYagBBNl5PM7S8jL1Wo2SlMzJZbPkc7lVJQ7PIyORttHsMEoLpyzajH/3/Hls2+b5558XD4ss3caSyVXJGxkUFaAnYFUNXJVRA8+jLvuJIdk5onmeSCRC5XRXcjyqHkJ0PkqVtZPy9SrAVyoVVsplBoeG6B8cZNu2bS2kyZu2aZ9VSxUKGLEYtZUV4qZJU+6WMpkMyVQKW/bMLNvGbjaxm00MwxCSXouLT/w5msJIgAiYuk5ffz+pdJqlpSWazSZzc3PETJOenp6Qk5lAKP6kk0nqUtpPja+1fQCwWnpVVaiJiQnGxscFwl8GvWwmg6mG/eUomGLwUW0nlXgHmoYjq0hOBLlv6DqJZDIsD2sIkgDPddE1jYqktwxfL7U3Q+QrgrFraWkJzTDYsm0bQ8PDn/kgCZ/jQAmiVJnt78eMx7FkSbEmFc4Vy0Q2kxG7Sjmrk0wmMU2TycnJ8MFQQaBTwFSmGu8ASDjzwMAAlUSCUrlM07apVCpUqlWS6TQ6rKqOp1JiEF8iSpMyO/R9n8DzBKOOBATdunWLR48fc+LECTFP5boEmuCTTSaTq7tRuVBNXRevg3CnZzeboRBr9PyVZqUq2Xqeh+s4IRl8VG7LVAKzEsGrArvruiwsLuL7PhNbtzI4NMT4+PhmT3LTPlcWT6cx4nECTaO5sIAlZfES8ThpORLVlJWcmpSsS2cyzC8sMD09TZ8UG1BMMwEdkm35pw4tlJSpVIqhoSFWVlZCkYL5+Xli8TimaQqsgu+Lf7tuOGuYlbPgAazK9knfYds2Z86cIZPJsO+pp6hUq+iaUBHKpNNrELqG9BVBIBlyZNLdtO2QhCV8rRwHicVi6DLIqiCq0KuGaYrj6DrxWIx4LIYpxRKU36xVqywsLdHT28vA0BATExP0dtAD/izaF8K7JXM5BicmmJmcFIuqVgtVPwzDIJ3JkE6nRUmlWqUnn2dxaYlyuUy1Wg31IFPJJMlUCtMwOu8y5Z+6XMiO65KSOm/1ep1SqYQjP8O2LEEonMkI1gtZErYtC8MwRFYGYBiCC9I0efz4MVeuXGHnzp1kstmw/JvLZFYJj9tNBjFbJgrt9Hkx0yQmabI0ucBtWdJRQVHRTCVlMI6r3aMq5cpjWbbN3MICmWyW4tAQY2NjDA4Ofhxf4aZt2qduhmnSMzSE5/usLCxQrVbRcjniMvip3VAum6VhWXiuy4MHD3j0+DG6rrOyshK2I5LJZAvSvt2ivsOTqM+enh7yuRylclnox0odWV3ThNSWlPjzXVe0R1T7RiW0ss3jBwFvv/02drPJsePHcaSeb6wDaCdquq7jOA4NiemIIvd1WUmKx2JiRE7OnjquG/oYx3VDqbCM0ruUwbSFfUeO1tRrNUbGxugbGGDr1q2fqwrUFyJQAiTTaYa3b+fx/fui4RwE5OSiUiXNRDxOoq+Pffv3870336RUKjE4MBAOE9frdXRdD0uTiuxcqYsrU7V7WC3Rqiy0VqtRWlmh4fuiFDEzQzadFoQA8TiOhGjrUjMTRDa6tLjIuXPnGBoaYmLLFhE85ZxTVM9N7UR9z8PxPDwpRqskfkDQ4MVisTDLc12XZq0W6kdGTUOUXGKxmGAWiRKXy2trNpuUymWsRoOBoSEGi0W2fAZnnTZt0z6s6brO4NgYmmmyNDtLuVQil8+H8loB4hnPptMkt25lenqa6ZkZduzYges4oiLjOJTLZSGuLrVZFaJW1/U1vgNW+5G6adLb0xOSoTgSADO/uIht22SyWZKpVMgGVK3VhNCxYuQB3nnnHRYXFzl27BgJqUepkt528z0PVwpBu1LXtyn9goZQbzLlqJov+6M1OSsdNU3XV0fystmQyzk6F+7L4F6uVDBMk/Ht2xkeHmZkZOQzRSbwJPaFCZQgFsfotm1MT03RlA1zhVqD1aDW39/P0NCQEE0+fBjHtsUsj2XhOg6WZYXq47qmoZumGKiPxzFlhqWYO9qHh7PZrCBI17QQ3l2t1ajUaiJ4yRmmarUa6lfWajXeu3GDnt5e9j/1VNjMVwtdlTrC4NgW8FQJxkBkyT6E4J9203VdEDGbJqZpUi6VMGRgNWOxFpCRCpB2o4ERizG6dSvDw8OMj49/7hb6pm3aetZfLOIHAaWFBcFaIyXkNAgxBYZhsGPHDqYePqRWrbJ9+/ZQtN2Wff6qlPLTdB1D/h+LxUIGMF3XBa5AItFVTzAWi9Hf10cyHmd+YUEgRpVogWzXBL4P8Tg1OaMdBAG379xhcXGRw4cPiwkAwyAtZbJAtEo86TPcSDKtTCFSDcPAkECbKMJdmQISmqYZllSrtRq6TCLaqekUAYzreWSy2ZBt5/MqjvCFCpQgSQLGxph7/BhLci2mkskQ4KJmHLdv387Zs2eZevBAAFFSKXrkzI/VaIg+n+sSyD6e02zSaDRC9GsYKHVdiJvKAKjktpKJBAn5cKjA69g2DkKI2jSMEGp948YNctksT+3bJ7I608SV9X/f9wUzv5zZ8iVpuaZpGBKMY5ommuw3uJHsUNMEm3/0/yi61vU8KvU6nu9TUNJEmkbTsihXq0JkVZZgdu3fz/j4+OYuctO+kKZpGoNDQwRAZXGRWrW6SuStrXIw9/X1MToywu3bt9mxYweZbJZsNovn+wIn0WiInabn4clqjt1sQq0W7i6bjoNhmujy+dTbqlZRdLxivGnIHaVXrZJIJKhVq2gImryn9u+np6dHlGI1IfXnSdkrL9KHVAhXQ56HputohgGuK8ZTIvdDta0UiEiXQV/ZSrmM6ziYhkFKcr+q2c9qRLOyf2CAvU89xcDAwOc6uf7CBUoQZdD+oSGW5uex5GBsJp0miBD8FotF+vr6uHX7NhPj4yLAsYoIDQLBgep5nmhcyxEUz/NE+UL+HCDEiMoApktVjpDqyTAEL6LMPH3fx3YclldWALEoi0NDVOt14lF+WES2qThU1cJNyMC8+rEBOiLjM+QcpCFfvx43T6lcxpf8imYsxkq5jC0DuuJm7O3r4+gzz2xytm7aF940TWOwWBSiAMvLlCoVMhLhHgQBPmJEauu2bUyfPcv9yUl2bt8OiOCTSaXIpFKhPJ3anTXluIQrWyau47SqhEgsgC7bKpZlYeg6qUwGQ9PwJHGJLVWJ5ubmmF9YINA0enp70Q2Dar3eKvrOKgDRlKQKMQkUivoO3/dDAFE0oVa7XXljWkqvrusK4vMgoCeXoyF31ZZlhdJZhq6zc98+9n5GZLK+X/tCBkoQXK2GYbBomtiVCpVKhbTSQwuE9Mv2bdt45/x5rt+4wb79+zHU4pAwaUPTwgVGhIfRdV0c1w0zN9/3BQrNdUN1dQWddj0Px7KYm5lhdm6O+bk5SpVKyLOox2JsnZgI1cOb8XgIIkgmk2Hm+dv/5t/w1unTHD16lF/+pV8Ks1PFT6mEUddl15AWICTGSktLVCTF3tzMTAhEUKXf3Xv3sm3nznXnTTdt075Ipus6xWKR5ViM6soKdQmySWcyAr0aBAwPDdHf18fVK1cYHBggl8u1JKQaAidgSrSo6tt5sgxabzZxbTtErrquC7JSpPyHHwR4lQpzs7Oh31hYXBQAnVSKTC4nUPuxWAjii0vfkZTodl3X+be/8zu8efo0x44e5Zd+4RfCpN2UIyWu563OjK/H6BX+NWBmfp6KIkBXiHv5O90wGOjv59DRo2Q/p2XWTvaFDZQgdpbx0VGWl5eplkpUKhVSEqGmaRpbt21jdnaWGzdv0tPby3CxiGYYQhEkklGp4AkiUzJkIIvH4+FA/h989av8wde+xle+8pWQiaPZbJJMJvmvfvEX0eSQrpop0mXPc9v27Wzbtg3P88IegDLLtonLjO/IkSOcPnuWy5cvCxYi+SAAOIr5osNC92UQdaSaieM41BoNlpeWcDyPRCwmHhoI2Uj6+vvZsWcP6W6qApu2aV9gU8QiiUSClXgcq1ymUiqRkQh20zQ5cvQor7/2Gu9fuMCzzzwT4gladmLSFE2dLpPuWDyOI2ki/+CrX+Wrf/AH/K//6//KYF8fvu+zIitN/+C/+W8IEK2YpJT+04B4MsmWZJJju3eHLD7xeDykx1Sye7FYjMOHDnH27bf54MoVPM8jIQGKIHyDSuo7+Q5VNfNcl6b0HcsyeXB9n55CQWw6DIOUJEKf2LaN0c+Y8sfHYV/oQAmiHDkwMEA8HqcUj9OsVGiWSqGszbFjx1gplbh06RLJ554TDDuy3q7puiDDVYCdtmOHZOgRJhwFy1YL2Pd9EhGlAaXWsbCwgCNLvONjYyFJszIldeXIBbp1yxa2jI/TdBzePndOkI7LYyr9R2VRNK0nd7nq3BXgwJV90oH+ftLptNCnjMcZGhlhaHR0cxe5aT/0ls1micfjrCQS1OUIhxJo7+3t5fCRI5x/913u3LnDjp07BZVlVFJLW5Wmiz5NuiyHuorHFUKsAYh5Z8dxwrlKgKwUTX8wNUXctonHYuzbt0/oV8rKlRr3cOTIRrPZZOvWrYyPjdF0HM699x47t28PK1Ge7KNGTfkKtdOM+g5FfuB5Hj09PfT29JBOpYgnEqQzGSa2b//CJtdf+EAJYhEWCgUSiQTlZJJGrUZTynPF43GOHz/Om2++ya1bt9izZw+ZdFosUNmXaJHVYjVrVLV4hSRTIBnbtqnXauGD9SN/8S8yNDyMbVmUymXGRkf5P37zN0EeOyUp6ZRQshmL0dfbu6qMIneDO7ZtY3JyksePHrF71y6R7Ul5mtDa6PHU+ZqGEYKC4nKoenRsTACRDIPBYpHiyEjreMimbdoPucXjcQYGBijH41STSZx6nZoE5oyNjjI/P8/dO3coyMCRkomwj6CVbJ9NVIFTqWeon4OgrnQdh7osa/7oj/4o4+Pj5HI57t+7R8OyuH3nTsjOlZCzm9VqNQT/ZHt6iMfjLX5j29at3L93j0cPHrB7xw4C38eOAnhUYh1B8SszDQNdEyLNOqJK11Mo0N/fLwjmMxmGRkdX+W+/oPZDESiVqaFgO5+nWq1SK5dx6nVisRi7d+/mxo0bBEHA9m3byGazYYm2fW+lhml9mbV5sqeQTqcpV6sYUsNS9SaOHTvG1WvX8HyfZ599NuRJBMLmdyqVwjAManK3VyqVxGxmKoUmkab79+/n9OnTVGs1/tpP/zSO7Hn4bVmhMk3Xw11nXYqkmrpOIpulr6eHZCJBf7HI0OjoJrPOpm1aF9N1nR4566gUdOxqlYZlsXvXLpaWlrh44QL79u+nt6dHzEzL5zvqO5SWbSBBgq6s9sQTCSqVSgu5eQC88MILTN6/z41r1xgYHOTo0aP8yR//sTgWq7vWTDZLvVbDcRzq9TpNxwlbTARB6DcajQZ/82/9LSHSrhLsLn1JwzAwY7FQdcT1fdGayWQE3V46zdDYGL1f8ACp7IfOO0ZnFPP5vJj3KZXYKgd1b1y/Hs5IxePxkNswcgChEuL7LZBrXZVOJFAoaZrYts2tmzdZWFhgbGyMI0eOkEqlmJmZEY17WTJRepkx0ySXzwt+Wt+nXq9j2XZIQXXs+HGCf/2vWVpa4v6DB+zcuTOcp+pkfhAI3srIjGgilWJgcJDR8XH6BgaIbZKYb9qmPZEZhkEulyObzYYB06pWeebZZ7nw/vtc/uADdmzbJvRqFWFJtFcnWzoKrKPGvFIqIZejWIau8+jRIy5cuADA0ePH2bp1KwuLi5jxuKgiOU7I7axByDymxlMqjkNC+rnjx4/zm7/5mywuLXHn7l127dhBLAhCnuhO5jiOYBizbar1OqZhkC0UGJuYEMLUPT2f7M3+jNkPXaCMmkKJFQoFHMdhcGyMwsAAZ998kxs3brB92zah/CHZ7zvtuszInJVlWeQl2vbu3bvcun0b0zR59tln2bJlC0DIng+it6hFyjEgkLbZbFYohtTrorlfLou+ZzLJjh07uHPnDu+/9x47d+xY7Z8q1FoEYm4pAgXbxjRNRsbG2Lp9O/2btHObtmkf2TRNyNxlMpkQIDc4Ps5r3/42t+/cYWx0lMFiEcu2iUnO5HZwi+Jh1RB4hFQqRaFQEODC69dZWFxkaHiYZ59+moSU8QsksA9WBRCi56T4WBuNRjj3bcv20vbt27l9+zbvv/ceu3buFOfQAXDjSMIVp9kM0bSFfJ6h0VG2/RBL6P1QB0plukKkJhI8c+IEW7Zv5//6d/+Ody9dYnhggLHxcaE6Ivt7ivBXsfYrcuGmbXP+3XexGg1M02TrxAQTW7aEenKq7KICZcsslTI5sxSPxTBkqceTxMiObXPs2DEePX7MhQsX+Imf+IkwSAdBIIgR5EJXOpJmPM7Yli0MDA2FoKZN27RN+3hMoWBTqRR/7W/9Lb7753/O22fO8Gh6mvHRUUbHxvB9P6TGVKIEUQF3y7K4f/8+77//Po1Gg55CgaNHj4bIW1ViVX6jExUlrIIJ0+k0zViMuhR59yyLo0eOMD0zw8WLF/nJn/iJkEwdBDtPlAPatm1cx6HQ18fg8DADg4P09PT8UAP8NgNlBysWi/y/f/7nuXr1KqdPn+ad996jL58nJ/uWSveyKXsC1XKZ6zduhKMYx55+mvHxcTzXFfV9qXmHpgkSYdWjcByBLIsiVtWfsiyTyWRIJZNCE67Z5KmnnuLb3/42y8vL3L17l56eHkFxp8gQJAo3lckwsWMHfQMDYfb7RYNsb9qmfZZM0zS+/Bf+Ak8/8wxvv/02F957j7uTkwz295OSfiOZSgkxZQkKun37Nn4QcPfuXfbv28f2HTvo6emhXCrhSeGFeDwO8hknCEIu6yi6XZkCD8VMk3w+L5iBbJunDhzg29/5DisrK9y7d498oRCi4l3XFQHV9zF0nZ6BAYaHh8nm8yFW44fdNgNlF9N1nYMHD3LgwAGmpqa4ePEiiwsLzM3NUZO6a8lYjEIuRy6bpVgscuvWLZ577jmGhoYAUUZtaFoLfNuyLADBfiMp46LWiQ1Dl3NKiUSCuOSELFcqXL12jeNPP00ikSCdz4cw7WwuRzKZFOol66gHbNqmbdrHb4VCgR/90R/l5Zdf5v333+fBgwcsLi9TmZ4W6kG6Ti6TIS+BMclEgpdeeomx0dFwpxmLx/Esi6bjEIvFaEY0ZR3HadXLjX54xG9oclQtFouxQwVg6TcOHT4sQIXJJMlYjFQ6TTaXC+cho4CkTdsMlBuapmls2bIl7DGCWKilUkmUW5tNmpbFnQcPcH2fWq3G0vJySBvlSnSbJlFtniy3KkJ0ZQGEu8sAwlEOT84zKXLjWDzOtl27+MY3vsHZd9/lZ/6L/0LQ2iUSpOVYi6Kg2rRN27QfnCUSCU6ePMnJkyeBVbJwS85IN22bBzMz1GTJc2l5GUPSyaFp2LYdtmeati2wB5IfWllUUN6XAENP9jM9Kc/lSc7qPfv+/+3dzU9aaRTH8R+30HToRfCltBPQNmkXs2VlMhsxNS5lObvGvf+OXdi40D9BzdSFiXEBm4mRpBvSBCWti7EJA0hIBhF6Z3FfRhu9sRWRO/P9rEAIPpDLOeR5OecX/f7+vf4oFvXbmzderIhGo15damadrkai/AGRSEQTExOS/j0ictbrqXR4qMdjY4o5FSt6lqWHlqX26alOWy1ZTh+6TqejmFM71TAM/VWrSZK3sccwDPsLEw7r4aNHduEDp4jxSCKhmdev9XZlRUefP8s0TbsgMoChFnI26pmmKcku/nH+9as+Hh0pnkwqbpr22UbnR3Lo7Exn7bbaTqP0v9ttuyJYJCJDUq1et5do7Be3myBEIna91nDY7ivrHA/7KRrVrzMzevvunQ4/fdKKaWrsf3K0ox9IlLfkNn2WpGq1qifJpNLptF0MoNdTr9dTq9VSo9GQ5Zy1bDQa+lAqKWQYSr98qdSLF5KbDN0L/puuH+4UimEYymazXo+4/f19zc3N3e+HAOC7uTtY6/W6RkdHNTU15ZWa7Ha7etLtqlar2UXSHzxQtNVSsVSSISn96pWePX9+qd/lVXHDa6EXDiv59KmazaYsy9LBwQFx4zuQKPvs4rqAK5FIKJVKedOhlUpFf375olAopE6no5+dx749KnKdfD7v1Xecnp6+s/cCYHAu7r53jY+Pexv7KpWKTk5OvLiRIm4MDIlyQC4tvjtHSlxuHdib2tjYkCTNzs4qFov1Z4AAhtLF5vAXd7sSNwaHldsA2trakiQtLCzc80gABAVx48eRKAPG3W4uccEDuBnixu2QKAPGnT7JZDJKp9P3PBoAQUDcuB3WKAcgn8+rXC5796vVqne7XC5rbW3t0vMXFxevfa3NzU1JUi6X6+sYAQwX4sbwIFEOwOrqqtbX1698rFAoqFAoXPrbdRf88fGxisWiJKZPgP864sbwIFH2STablaQ7Pfzv/iqcnJxUJpO5s/8DYDCIG8EQsq5rZoihMz8/r52dHS0tLWl5efm+hwMgAIgbt8dmnoBoNpva29uTxPQJgJshbvQHiTIgtre3dX5+rpGREW+6BgD8EDf6gzXKgNjd3VU8Hlcul6P5MoAbIW70B2uUAAD4YOoVAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8PEPy2bqg9i4nDQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +230,7 @@ "rng = np.random.default_rng(seed=47)\n", "blochSphere = qutip.Bloch()\n", "for _ in range(10):\n", - " angleList = rng.random(3) * 2 * np.pi\n", + " angleList = rng.random(4) * 2 * np.pi\n", " sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList), blochSphere)\n" ] }, @@ -243,12 +243,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk2Vkmir/hI32W7a42M+3djMbP9DhJM3IYrSRk8AKWBZb9YZZ7l3svF8GywkgICS0/AVoWgdCuYHeBFcghJCRkkDTTMxqrGc2076621V02XfiIc+4fcU5UZKTPyqqZnon3eeqpqjQRJyIj47zn+97v/QRKKUWKFClSpEiRIgWD+EIPIEWKFClSpEjx4kJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKZpw7tw5/PIv/zIOHDiAXC6H8fFx3HnnnfjABz4A0zS7vvcnfuInIAgC3vrWt27QaFOkSLEeECil9IUeRIoUKTYG7373u/Gbv/mbOHv2LHbs2NHy/Gc/+1m8853vRK1Wa/v+ffv24XOf+xz27NnT9vm///u/x9vf/nbkcjksLi5C1/VRDj9FihQbhDRykCJFCgDAU089hR/8wR9ErVZDPp/He97zHjz88MP48pe/jJ/5mZ8BAJw4cQJvfOMbUa/X227ju77ru6BpGgzDwJe//OWNHH6KFClGiJQcpEiRAgDwS7/0S7AsC7Is44tf/CLe9a534Z577sFrXvMafOQjH8H73/9+ACFB+OAHP9h2G7lcDq997WsBAJ/5zGc2bOwpUqQYLVJykCJFCnzrW9/CN77xDQDAT/3UT+Gee+5pec0v//Iv4+DBgwCAD33oQ/A8r+223vzmNwMIUxRp1jJFimsTKTlIkSIFPvWpT0V//+RP/mTb14iiiB//8R8HAFQqFXz1q19t+7o3velNEAQBc3NzeOyxx0Y+1hQpUqw/UnKQIkUKfPOb3wQQpgVuv/32jq979atfHf390EMPtX3Nli1bcOeddwJIUwspUlyrSMlBihQpcPToUQDAnj17IMtyx9cdOHCg5T3twFMLKTlIkeLaREoOUqR4mcO2bSwuLgIAtm3b1vW1Y2NjyOVyAIALFy50fN1b3vIWAMCzzz6Ls2fPjmikKVKk2Cik5CBFipc54mWJ+Xy+5+s5OWg0Gh1fc+ONN2LXrl0A0uhBihTXIlJykCLFyxy2bUd/q6ra8/WapgEALMvq+ro0tZAixbWLlBykSPEyR9zF0HXdnq93HAcAkMlkur6Opxa+/vWvo1KpDD/AFClSbDhScpAixcschUIh+rtbqoDDMAwAvVMQhw8fhiAI8H0fjz/++NoGmSJFig1FSg5SpHiZQ9d1TExMAAAuXrzY9bUrKysROdi+fXvX137zm98EpRSqquLw4cOjGWyKFCk2BCk5SJEiBQ4dOgQAOHXqFHzf7/i6Y8eORX9zt8RO+PSnPw0AePDBB5uiEylSpHjxIyUHKVKkwP333w8gTBk88cQTHV/3L//yL9Hf9913X9dtfvaznwWwKkxMkSLFtYOUHKRIkQLf933fF/39sY99rO1rCCH4+Mc/DgAol8t48MEHO27vqaeewvnz5wGk5CBFimsRKTlIkSIF7rrrLrzyla8EAHz0ox/FkSNHWl7zwQ9+MHJF/KVf+iUoitJxezylcOutt/Y0VkqRIsWLD519UlOkSPGywoc+9CHcd999sCwLb3jDG/Cud70LDz74ICzLwl//9V/jIx/5CABg3759+OVf/uWu2+LeBrycMUWKFNcWUnKQIkUKAOEq/2/+5m/wzne+E7VaDe9617taXrNv3z587nOf6yowvHDhAp566ikAaUohRYprFSk5SJHiZYQHHngAQKgZaIc3velNeOaZZ/ChD30In/vc53Dx4kWoqoo9e/bg+7//+/ELv/ALyGazXffBowbbt2/HrbfeOsrhp0iRYoMgUErpCz2IFClSvHTwhje8AV/60pfw8z//8/jjP/7jF3o4KVKkGAKpIDFFihQjQ61Ww9e+9jUAaUohRYprGSk5SJEixcjw+c9/Hp7noVgsRimMFClSXHtINQcpUqQYGb7yla+gVCrhLW95S18dHlOkSPHiRKo5SJEiRYoUKVI0IU0rpEiRIkWKFCmakJKDFClSpEiRIkUTUs1BihQpRgbDMOB5HkRRhCRJ0DQNspzeZlKkuNaQfmtTpHgZgBAC4vsIggCEEFD2w58DAErp6g9/jL+GPyaKEAAIggBBDAOPIvvdMAzYtg2w5yGKEEURU5OT0LPZlCSkSHENIRUkpkhxjYIQAt/zEHheOOn7fkQAqCAg8H2QIAAlBCQI1rQvCnTdRsMwYDsOACCj66CUwg8C+L4PSRRRKhYhShJESYIkSRBFERSAKMuQJQmyooR/yzJkRYGSVjqkSPGCIiUHKVK8iMFX/L7nwXddBOzvwPcR+D56fX3584RSCGsYRzdyUDcMOIwY5HM56JoWjb1aqyEgBJqqopDPIxptl3FTABCEkCQoChRNW/2dpilSpNgQpOQgRYoXEJRSBEEAz3Xh2DbAw/08KuD77d4Ewn632x6lNCQV7DelFAFPJbDnATYJ8zQC3y4jESS2bcoeRyKtAACe58GwLAgActksNFUF2HOCIMD3fRiGAQogm80iq+sQWUpCFASIohhtq+k4YvtOQmSRBkVVV380DXom099JT5EiRU+kFDxFinUGpRQ+C/f7vg/P8+BYFhzbhmvbcB0HNAjCSZVNxJIkQWKiPkmSALA8P1g0ITb5cz0A/z+xc8SnV0JItB+0mZS7Hke4gabVv2EYCCiFrmkQBAGu5zXtG4IACAIcx4HneSBBEJKB+KQvCE1EIfmbCgIkUQRl+2s0GjAaDTQaDTTqddQNA67jIJvLIV8ooDQ2hrGJCUxNTWFiagpjY2NQFGWgY02R4uWONHKQIsWIQSmFbdswTRO+78O1bXi+j8B1I40AhwAAggBJkkAJgef78HwfNAjgcxLAJn6+yheZ0E8SRciyDCUWZo9/mUW2OuerdE4uqCCENcxs4uZj6PZbEIQorcBvGZbjwDAMCABKxWI4kbN9x0kIpRQr1SoIIchnsxAlqemY2EZB2fmwHAdGowHDsmCZJkzThBFLXQCAoijIZ7PIFwoo5PNQNQ22aaJhmhF5CAgBQSiqzOTzKBaLGJucxOTkJHbu3ImtW7eO4NNOkeKliZQcpEgxIlBKYZomqtUqHNOEa9vwXTec0BkBEEQxmhAFQYgmyCAImvQBJAgQ8N+EhGkBFl0Q2A+AaMWtaxoyug5FUZqe7zjWYY4vFpWglKJSrSIgBNlMBtlYSJ9P8nFwXYKuacjnck3bIYTAIwSXL13CudlZLCwtAQAkUUQmm0Uum4WeyUDXdWQzGWSy2baRAImTJhZ18TwPlm3DMAxYjDQ0Gg3UmXhyZts23PfKV2Lv3r09z1eKFC83pOQgRYo1wvd91CoVVJaX4VoWAt+HIIrQVBWiKEarf9/3W8P+CXA1fzylwKMKoiBEFQABIQiCAI7jIGCrdEopNEWBpmlQGUnoBj6J93sDiJMD23HQMAyIgoCxcjnaFxcTConbiut5qNXrLa83TBNnz57FudlZOK6LKbaqn5yagqZp0fi4biKIHTthv4Mg6HkMsiSFlRDsfM7Pz+P48eNYXl5GaXwct915J266+WZout7n2UiR4qWNlBykSDEEAt+HbRioLC+jVq2CBAH8IAChFIosQ2KkoB0ENvHLbUhAckLnxCIgpG21AaUUrufBtm24XLzIIhW6pkHTtEiz0AmDkoN41CCXzSLDJ9QuOgZKKVYqFRBKkcvnsby0hLNnzuDq/DxURcH111+PnTt3olAodBkAjUhCEvwccbIQEYdOn4EgQJYkVKtVnDlzBovz88gVCjh48CAO3XgjimNj0LPZyMMhRYqXG1JykCJFn/BdF7ZpwqrXUalUYBhGtJKnwOqKPfYeUZKgsPp9RZajGv9uiCoOmNCw369oEASwHQe246yaGQHQFAU6KwfsFk3otRdODqKogShirFRq0hp0i1UsLC3h7OwsrszNwfc8jI+PY+fOndi2dSukAcoTXebr4HteGI3pcH54xIGwtE3ARKHtIg2GYeDK3ByWlpagaRp279qFvfv2oTw2hnyhgHypBLEHyUqR4qWElBykSNEFhBDYjQaseh1Go4GVSgWGaUZRAUmWo1y/CES1+ZwMtCUCHb5yhJcMskmdstWwOGhVAaVwXRe244TRBLY/rk3QNa39uFhqouN22TFXqlX4QRBFDdppDOLHdPXKFZw9exaXr1yBKIrYPDODQwcOoFwu9zwOn03mUbUH12bEUil8Px020hLN4DoHThh8bhIlCLBtG3NXrmBpcRGiKGJm82bs3r0buXwe45OTmJyaQjaf7zruFCleCkjJQYoUCVBK4Zom6tUqjFoNjuvC9bwwUsCEgaqiIJ/Ph8SAO/sNac4T9yOIj6FJzQ80TYZtUwz88VipoMd0CVE0AYBAKbLZLDKs/LBFe8AnVPabMl8FGgSwz/wLzC/9OkAJcg/8KvRDb24aoxAby6WLF/HMc8/BMowoSpAvFCCIIkqFQpOokBCyqqdgJCCImS7FtysKQqjNEEXIPBLDjq0dSWg5VwmywH0dXM+D4zhwXRf1RgOX5+YwPz+PbCaDPXv3QmWfcTafx+TUFCamp5Fl4shU0JjipYaUHKRIweBYFmorKzBqNdi2vboqJQT1RgOCIEBVVYyPjSGr62ueENqRgvhzXb+asYmbv16gtOOYKKVwXBe2bcMLAoBSyLKMfC4HOR4uZ9tMboUCCBwDK39yGCBM2yCIKP/swxD1YtNrLcvC008/jbkrV7B1Zgb7DxzAGIsS1BsN2I4TOh7K8ioRICQsr+TVHLFqDJmlYxRJgsj0HEKnKAcjCQH3U1gDXM/DwsICHn/8cUAUsWfv3sj9kZefZnM5lMpljE9OQtf16CdFimsdKTlI8bIFpRSO46BeqaBRqcC2rKYJhfsCWI4TTk6yjHKx2FPg13O/WBUaUjYRxqcxHk4fOJ3Q8kD7r7Zl2zBMM9pXNpNBJk52kiZFbNvGkT+BdeRDTY/rd/w0svf/h+g1s7OzePaZZyDJMm695RZs3bIFYMfLKxbqjQYUWUYum23aV9RngYkz5W5pGe6hwH63EAFOvLqesf5gmCYefvhhGIaBW2+7DZlMJtI9cOdJUZJQKBZRGhtDeWwMhUIBmUwmFTSmuGaRkoMULzu4rot6rYZ6pQLbMJomQlmWoSoKNFWF5/uoGwYoq0AoFQpdb/a8XNHz/ShE7rO/A88LUxJAOJnFjIm4qRFfOccf590PJWZbHL22z0mHkw+eo+cIggCGacL1PFBKIUsScrlcZKiU1BEETgMrf/5aUKfatH1BL6P8U1+G4QR46sknsbC4iOt37MArbrwRqqKEbpAsLQPmFNmwLCiKgvFyOSQCjBQMs9JvV8VB2fnl0YV4embYWILreXjkkUewuLiI22+/HVu3bg0Nq1gqgn/enutC1jQUymWMj49jjBGFtB9EimsNKTlI8bJAEASwLAvVlRVY9Tp8x4kMhVRFgaqqUFUVEpt0Dea2RwmBoijI6no4AcQm/SD+fxCsWgPH3AijqECsBC/e2yCarHiYnFcpsPdEoKs2yJEBUsJmWJZlaKoKTVWjY1p9O23aD9+v4zjhcbI0RoYZDcW1CABgHPkwzCN/1PbcNg79NJ40dyGTyeDWW2/F+Ph4mLv3vCZvBJERL8M0IYkixsrl/khObOw8SsDHxtMvQuy4KHeCZI9HFtOx7URGUezxfqI0ASF48sknce7cOdxwww3Yt29ftF8/COB5HlzXhWXbcF0XgiAgk8uhND6O8fFxlMtlZNL+DymuEaTkIMVLFtzG2DAMNKpVuJYF4nkQBAEaU+3HxWSu76PRaGBpeRmmZSEIAkiyDJWv+tjEL2JV+BeRAAa+qpdZblxibYoF1j8AQHMvBEpBWWkdYSFqrsiPlzLyv/lxAe1LD3kondKwP4MaM0XSGAGKr9A5KTBME7brApRCEsVQi6CqECgFsVaw/NHXgbpG2/NsS0Us3P9h7Nq7PyoVjM4PM4PSVDVaPa8wX4hCoQAt6XTYJqXRCx0rFWLg57CbCRUndmK7tEqMWBx9/nk8f/Qodu7YgZtvuaWF4BBC4LguTNOEaVnwfR9aJoNCqYTy2BgmJiZQ6BGFSpHihUYa60rxkoPneaEff70OyzTh23YYAZBl5AqFyLnQ933UGw2YlgXDsuDaNhzPA2Ghal3Twi6DLDTPhXESC/PzcHj0eKxJEgcXx/XLwVsqFJLPx7QK8d88peF4HjzXjdwYPd+H67phF0eWWuBRBR5h0DQNhXwemuuiYZoICEG1XoeuachmszAf+2hHYgAAelDDNvc5eO7OJkKgqioUWW7q4ggAiiTBYWWESJKDdVqrCIIAiRG5TsZIPHIT8HHEIwx8/JTi0MGDyOVyeOKJJ2CYJg4fPtxUeSGKIjK6joyuo+T7sCwLDcPA4pUrqCwtYeHqVRTLZYyNjWF8fLwpwpMixYsFaeQgxUsChBCYpgmLNevxTBO+64aTPLtRC4IQEgG2onMcJ5w02ArOtu0oUlAulaBnMk1WxoOCInRSHOQL1steeZDtuK4b/rBwt8cIQ5S+wGrkgGstVEWBT0hUzUCtJdBPvAPw7e47LGyD/P3/G7qegcrIVy9BpKqqKI7IM6Cf6AFHwJwsh4XA9B/zV6/i0UcfRTabxT333ruaMujgreC6LuqGAcMwQADk8nnkCgWUSiWMj4+jVCoNPaYUKUaNlBykuKYRBEHUUMdnLZCJ74crY0VBQGlEGmzbDuvkea6eraJ1TQuFbaw8rZDPj0RA5g8QMYgfT9SboE+BXpRnj+kSkuF5no93fT9qn+y6LjzmMshfydMSge/D9jwUn/sIsuf+sa9xZN7wPih7v6fz+LBaiVGr1yOHxXbHyT8f/lkBzRoN7tfAxx20Kb/shCjaMoJbX61Ww0MPPQRV0/DgAw+0kMh2vSsIITAMA9V6HY7rIsO6S+aLRWzduhW5XC71TUjxgiMlBymuSfhMH2BZVmhr3GhAQriq85g7oGlZkdiMTzaSJK1298tkoCgKLBZNAIBiobDmUkUAUSfFuOAQSExuib879U9YD8TFjx7rzeA4TmQC5LguaH0O41//OQg06L1BABjbDbz5470bPlGKar0OACjm8z1z77w9Ne+4GP+fkwfKtRacJMXOd1Lcyf/3fb9vAtYNlUoFX/3KV7Brzx7cdOONYefN+OcdK1flehB+jmzbRrVWg2GayBYKUbphcnISGSYMTZHihUCqOUhxTcH3fdTrdViWBQAwazWYtVpk8sM7IoqCAFkUIUoSMpoGjRECjZvYxLZnmiYogBxLIwyM5MTfhwJeaPP3qKYBXr4YiR5ZGJ3/5rbMNGZBzA2eFNYJ0fc82N/5cP/EAABWTkOeewTi9a9qGgufrHnkAABURYmEi3Kbcx5vsMQ1FZ3AyQJYpCFJIJo0A1gVk8rMhAnov/lUO5TLZdz4ilfgmWeewabpaUxPTzeNLQkhRhR0XYemafA8D4vLy1i6ehU+0ykUi0UUi0Vks9mUJKTYcKSRgxTXBDzPiyIFQOjCt3z1KlzLgijLYVSATQ6apoU6g0wGuqqGK7k2oISgWqvBDwLIsoxCP/nvBBFoh2Fy2pxQ9HpN3DCJxCb5gNk6B7FKiH4cFiPvBEmKJk3PdeEtnYL3dz8CAYNpIMRNr8Dkj/7vllLIJGqNBlzXDW2cOzgKRkSGd1mMdajkvRFazk8bCIlIQ/zvgFLEr45kRKdvUIpvPvwwKisreN1rXws1QUIBNIsb48ZN7O+AEDRME/VGA5lsFrliEYVCAbquI5/PpyQhxYYiJQcpXtRwXReNRgO2HQriTNNEZWUFTqMRlhgKAjRFQYa5/A3iStcwDNi2DQFAiXUXbEIfRCAJijAaMSg6tndGGCoHK3EMgiA0WfL9vvUMUmw1LcbD87x0TxRDH4hYff7yP/4q9PP/NPBxAID94B8gc91dyOVyyOg6JFGMJlqufTBME5ZtQ9c05HO5nttMHikPz9MYWeDnJ97mulf1A68O4Y2yZEWJBKrxffVDGGzbxj9/+csol0q49957ex6TyISNAJoiG67rolavQ5AkZAoFZLNZZLNZSJKEfD6fahJSbAjStEKKFyV830e1WoXjOCCENIkOZQAZVQ1LxUqlUCU+YH284zhR/wTeDAhYe2h/0GqDyMEQq/lx/jtyWGSui+0gCQIESYp+x5sS8VB7ciKJ57wJIbBME5bjRMd+5swZ6EvnMGyHAKlyGsbkjag3GhBFEdlsFvlsFllG3CjCVtYQhDDSwVfSXbaZfC4iTbHyUQpE3RU5OFFoF3kgQQCB0rArI6vsABD5VLQjC900I7qu447bb8fDDz2E06dPY/fu3V3PE79WKMLPkftoqKqKcrmMhmHAqtUgiSIIIchms6jVamg0GilJSLHuSCMHKV5UoJSuEgFGECzLgkgp4PuQBAG5bBaFYjH0IBgCQRCgWquBEBLV8o8K/VQoxMPJ8ffFyYAftOb6uQuiHPNXiDsxdkPkisiV/8wgyrLtaDySKOLo0aOYu3wZt05bkL/5n4BBNAcAIGeQ+8G/hqNOw7LtcCJmaRZBFJHVdeRzOSiKgoZhQJIkjJVKffeF6HqMWC1pjLslgokV202khBDYrhumUnw/9F5IQBTFsA23JLWNLMT3LwB4+tvfxukzZ/DgAw+gWCoNTDjjkS/TNGHaNvLFInKFQtQSHAAURUG5XG7yWEiRYlRIyUGKFw1c10WlUoFt21hZWYFlWVBlGSJb4RWLRRQLhdXc7SCIrdBrtRp834coSSgWCiM9hvgKv4kEJMYb78Pgum5L/hxY7UjIV7ESW223bL8DeIQgHpEglK5GTdjrFNbf4LHHHkOlUsFdd92FLTMz8CoXUT3zCIjvIvAdXPj2VzFT+cbq/pUcpFt+AiA+BBBomQIye18PeWpfpKGwbRumZYVVJcximvDjDwJkMxls27y5belodGNiJYv9fOLcu6Ht+cBq+WMkjhSEKBUBdn4C9rn0JAvss0mShYAQfPWrX4UfBHjNgw9C4v0qBii3BBujIAhwPS90WgyC0BchYZyUz+dRYN+LFClGhZQcpHjBQQhBrVbD8vIyVlZWYBgGsooCWRQhS1JICphYcNDLlfvn8xsnt7QllKJcKo3EwpYCoaiN3cjb3aQD3piHRQZIjAzw1a7EwtnRpCNJ4bZ5ymQA3wM+rvjfDosU8HMoyzIyug7X9/HwN78J1/Nw3733YmxsLJrcq7Va9P4nP/1H2H/5L6L9SMWtmPiZr6DRaIDwzoT5fKgx4Cv42BisGFHwPA+1RgOEhl0hc9ksCvk88tls288k/ql3m2Tj0YO+QCkCRgjagbCSR79PsqCwTpK1eh1f+cpXsH37dtxy663RvuKRm76ncjZGx3FgMe1NLp/H2OQkFEYSJElCqVRK20WnGBlSzUGKFxSWZeHy5ctYWlqCZVnQJAlFZkxULBaRy+WilWO/xCAqDeSTKfvtsRUYpRT5XG7txIBrBeK6AVGMxIPxNEE7LYIky1BY7wWZ/Y70AKxeP3kM7dCpbJJHDFw2qRBWuigxUqCpKlYqFTz80EOQZRkPPvBAeL6xumIFwoknLDtMHIMoRVUeDcNAEASo1+thXwYeCeBllZRGlsIYG4PjuhCvXoVl25BFEa7jYN62sSRJKBeLLR0wm44ufqyJa2LglQ5LO7ToMhBWs3CjLJWF7iOy4HkhWWBRB+4RAayShUOHDuGZZ5/FpulpzGzd2lpOOcAYRaZFEEUx9OWo12HU68gVCiiOjUHPZLC8vIxMJoPiCNqKp0iRkoMULwg8z8P58+cxPz8P13UhE4IC8/gvsvKtqGQPPYhBbEJtKhGLgRCChmGAAlEHxqEgCK03djb5Oa4brYrbjTcucpMlCQJbYXO/Ab7tfggBsJo26OSn4LLxBDwywQygNNZ8aY7Z/5aKRdx7772RhoOv9n1GDhTuB0CbyYEghhOmJMsoFAqhToQRhFwu19zkiX02fNuaqmKsXEbB96EoCnzPQ50RjKWVFaxUKigxkpBMOSSJQrISgiRf0wPtPiuuz+AlmZyEDEIWJiYmMDU5iceeeAL3ZzIoFAqr+oB2n1mXa1xA+PmBUuRyubCyxHHQqNfhWhb0bBZqJhNeh44T+SOkSDEsUnKQYsNx/vx5XLhwAYHrQiAEWVXF+MQExsfGohsgR9PkGUe85j+uQegwUVqsy6IgCNHquBcoE9EJsf0ln/didsTAqiBREISQCMR+2hnx8H2sPjFA6qAdUUGYwjBMMxI1ioIQRgo0LTpPZ2dn8eSTT2LLzAzuuuuuppVm5HfAQuiyogCO02qIJErReRFFEcVCAQ3DiMpPs7kcdFbvnxRNUkIgSRJ834+iD6VyGfV6HfVGA57nYaVWw0qlgkKhgLFisSOhi0eKeIqHp0X6ycN39EdIVpGw7cdTAr3Iwv6DB/GtRx/Fd557DjfeeGPkw8GbfyV22JsgyDKo7yPLDLtM1k1TkCRQQlCvVJAtFKLmY2P8O5UixYBIyUGKDYNlWThx4gSqKyuA50FXVUxOT2N8bCxyyYuH33mb3aY8bYwI9CvAIoTAchwQAIU+VlNxotGuDt33fTis9C0+sUiSBF3TIDCtRNNkyCaUbmWFPZEgKO3eZds2DMuKIgq6pkHTtGgiogCOPv88jh47ht27duHmW25p2k5k5RzzUVDYyj2ZVhDEZsIDQUA+l4MhCFHLYkIIsrwhUXzMzG8BWP3MRUFAiRn/mKz3gOt5MAwjjEZksxjrkVePn+NIb9Fl0u07VRXbZvzzImBpJX5YCbJQoBQHDxzA0888A8s0kclmw+ZglgWFtdGOtw1PpkySkQseQQiCIOoYynUcQNhJ1G40UF1eRrFchud5mJiYSDs/phgYKTlIsSGYn5/HqVOn4FsWJABTmzZh8/T06qTFIwQMXFgWV9w3VSkMoMy2HQegFBLLBXdEYhKJ7yHKK7tuE4ERBCFaCfIVWryREX9NJwLQFzGIp006gBACwzTh+T4EAKosI5vLNSnpKYCnnnwSZ2dn8Yobb8Teffva+gc0RQ1iEY+WyIEkr56v2OeSy+VWV7W2DUIp8glSJmC1ZC8p8hMFAfl8Hvl8HqZloVavR2WXhmFA13WMlcvIdSB6AovIxP0jkp8t/2utXTBFJKIKCf2CKAjYtWsXTpw4gbnLl/GKm26Cw1pqe54Hz/MgimLUQrtplR9LmfD/wfUlooiAEGiaBkppJPYUGDlRFAX1SgVGowHHtrFp8+bVrpEpUvSBlBykWFe4rotz587h6twcqOtCVxRct3078nGr4iQx4KQAWA3rDwlCSKjQB5BNrjg76Afi4+Btj5MmRPxmzr0G4u8RJWm1GqHb5N9l1RqPKPQiEK7rwjDNaBWci4Xz4/jOd76Ds+fO4c477sB1113XdZvc5TFOpoSk5kCQorElj0TXdYiCEKYZHAeWILRMTpIkra6MOyCbySCbycBxXVSrVZhM0zF39SoURcFYudxS4SB0Oq/xqAuLSvlB0LUHRj8QEiSEV8jwUUiiiH179+KZZ5/FDYcOoVgoIAgCOKzBFSEEtm3Dtm0osgxV06DGownxsXOCIIoRedZ1HYRSuI4D0zQhZLNQVRW5bBambePi7CyMWg3bduxI20Kn6BspOUixblheXsa5c+fQqFQgEILxYhFbtmyJyq8AhGVaTAsAoGMefVg4jhOu5oBmgVwHUJYzdmKOeRyKLEdixm6RAAEA2M27177aPca7SPYCoWE7aodZHkuyHFYKsBJIAYi6FJ48fRrHjx/HzTffjOuuu67jhMxX3Z7ngRASbotNQi2GSKLcVEWS9HVQNQ1ZAIZhwLRtCKIITdcjN0RBFEEFIWwKxc9dh3OmqSqmp6bCEsh6HXXDACEE84uLbSscouhBB1CExDGydh5Ao9ANSQEmn9R37NyJY8eP48TJk7j5llsgSVLYGVTX4XkeHNY+m/srmKIITVGgalprYyq2TUmSQl0JKwcFE8UaphlqXhQF2UwGlm1jeWkJhmniuuuvx6aZmTUfZ4qXPlJykGLk8H0fFy9exML8POx6HaosY3rTJkyMjYW2uRw07LwXle6xh4MBzWI6gYdbKcIVaLcbYrSSc5ymSUUURWiq2pS37weiKDZ5GbQdX2KsycqDyNWP0tVWxOw5j7Ws5mPVWbMpgU220fYpxcVLl/Dtp57Cvv37sWfPnrbEIH7MQczRkH9e4cTdhhwkxKOxfwCEkzphfRsMwwhJg6Ks+h/wVsu80iCe1kl8XgIARVUxMT6OUqmEWr2ORqPRtsJBkuWuEQlKyCqpCXcWXYOjsn6Jj19VFOzZswdHjx3Dgf37obEoCu+GqaoqAkLgxlJXtuPAdhzIsgytDSkVBAESSy8AQIZVK7ieh4ZhoJDPQ5blJvHi6ePHUatWsWf//pF4fKR46SIlBylGikqlgkuXLqG+sgLfcVDK5zE5MRE6ESbEVgFb0QvrQAz4KoqwlXiyVTPAdAQsQhB3KBQEIboZt3Xu63OFKUlSmE9v99qYrz4/B1FJXmJf/Hj4ZG9aFhzbBgQBkiQhl822HScALC4s4LHHHsN111+PV9x4Y9fx8mPiKQUe9o+ep60+B3F0Oi+ZTCbSbBiNBkRWnigIQhg94O2jE2mG5CTdVFIoiiiVSigVi2g0GqjFKhyWKxUUWUlsu+6IUVOm5PGvngg+gNaTtAbs3r0bJ06cwOkzZ3DDDTdEpI9DEsWwk6iuh86ZjgM35pVhWlZTOgsINQ3RkYgicrkcKLMerzcaKBYKkCQpqo4wDANXLl9GvVbD/kOHkB+xQ2iKlw5ScpBiJPB9H5cvX8bK8jLMahUCpdg0OYlSqdS23jpgBjNJpXxS0DUImloaC0LUWCkTixrwkLnjOC06AkVRoGkalISOID6+dhUHncBLzyLiwev8BQGUh70TE0S36cj3fRiGETUX0pmpUKfx1Go1PHzkCCYnJ3H77bf3LeLkJZDJEjgBzZED7nMQ/d9l+9lstmVVyztDBmAhfh6lWN1gGMHosE3+ORcKhVC8aJqo1uvwXBcNw8BKpYJcPo9SoRB26xTCtsg+T2N1IDNJkhAnJWuBpqrYvXs3zpw+jX37969eZ7GIULjb1YoHTmAd1wUJgshsSZIkaJoWGSMRRrS5IJSLUxuGgTwTiCoxwyqj0cAzTz6J3fv2YdPMzJqPLcVLDyk5SLFm1Go1XLx4EZ5pwjFNZJm7YTGfD3PMMfAJUWo3+Q6Z823yI2DvdxwnmgQ0TYPneXDZTTYOmekItF56hC75cP58uwlEQNiBsElXEQ569X29DzBU61sWIIRdF3PZbNfKC9Oy8M2HHkIul8M9d9/dPYScOO+8eiCZ6+4VOegG7i9BGg34nCDEokmdzqzYQzuQ3D43CKrValG1hGGaYQfPYjE6Z/GITFJQ2OnxpMfBMNizZw9OnTqFs4wgxEsUgdbzIIpi5CzJtQmu5yEIApimCcuyQnMt1hSKvyefy6FWr4feByyCwFt1F/L50AfD93Hi6FE0qlVs37UrLXdM0YSUHKQYGoQQXLp0CcuLi4Dvg/o+yqUSNFVFLpdrJgb8Ztup3pxtbxBy0EQKgKaJ1rKsUNUtSajV601pA64jUDWtc4e9HkQl3jOAvaHja0UAkKSw/wB7rN8CusD3YXJDI5afzmazXRX2rufh4W9+E6Ig4P77748mjY7HEovgUKbgB9DGmTBRrSANdvsQhNAHoV6vI2BtuPl+u5UUtjMf6gY+mVq2jWq9DsswYFkW6mwVPVYqNR1bvA9EUylrLBLFIz7xCNQwJCGj69hx/fU4deoUdu/Z0xqdiUWUksRRYSWKhBC4LPoVBEFIfD0Pgm0jk8lEEYlCPo96owESBGgYBnLZbBitYeShzvQaV69ehWVZ2LJ9O8YnJ4c4qhQvRaSKlBRDodFo4Pjx41ienwccB1lNi4iBruurRjV01bioq3p8kKgBX23xiT3xPs91Ydl25LTHiYGmqijk8yiXSshkMm2JAWXbaxlLYuz9Tgz8XSLCnHIURu5jNezYNmr1ehQByedyYU+ILueJEIJHjhyBbdu4//77ezbiSZKcIOaq2DJxJQWJwuBrC1EUkWfNmQLfjwSjtAs5ABvjoCWHuq5jcnwcU9PTYaRFFGGZJi7NzaFWr/d8PyckvGSQEALC9REISVW8WqNf7N23D67nYXZ2ts1OV1trC+z/JERRhK5pKLEupZqmQUT42TUajajPhSiKUfqGEALTNFdJlhC2PhdEEb7vo1Gv4+LsLGZPnoTLekSkeHkjJQcpBgKPFpw+dQpOowGJEGyang6dAVn5FDenEQShyeRoLXlbGs/LimLHcLznuri6sACThVt5WHasXEYul2sNxTOVetNNfgT55abx8l0hnOCELuMHEK706nWYzPVOlmWUutgHx/f52OOPY2V5Gffed18Ytu+B5CgivUEbgWOLz0GbtEK7405CkiTk8vlQU8Bq/Ac543wl3wuEEHjMnnlychLT09ORMG+pUsHlK1dgsy6Hg4BfK7zigbDHCDv2XmPL53K4bvt2nDhxoiOx4J9LFK3o8DpZlpHLZlFixBxAVO5pmma0P0EIW1ObrGIECElGLpsFhLDJlu04qNdqOHX0KCrLywOdkxQvPaTkIEXfIITgzJkzWLp6FbBtFDMZbNu6Neo6KEkS8vl8VH0QD1X3mnA7eQJEIkO+6u5CCqrVKpYrlUhXUCwUMFYuNwkSk9tuMlwSRuOxEEUf0D7CwEvQxHAQTc+5rotavR6JJbPZbJQv7r5TimeefRaXLl3CXYcPY2Jiovc420QwglilQsu4kXRIbE1X9HsOZZb7FgQBnufBYhNZL0Rlr93IFUuNBIk0la7r2LRpE8rFIhRJgs/MlBaXluCvwSkxXv7IIwwBIU1kIXl179u/H45t48KFC713EIu+dTpqniooxpo7Oexacj0PuWwWlJEA3lALQtj/I8OiS7ZtR5U7F86exbnTp6PKlRQvP6SagxR9wfd9nD17Fma1CpEQTE9PI5/Ph/ljFvYuFgqrofMYuAlRJ7Tk7xEjBT1CyZ7rwrSs6CbmOg40VY3sd+P7aNnfiMhA0z56CReBprSIBETGS5ZlhcZLghCtCPttmnPi1CmcPnUKt916K7Zs2dL3mJPn1+8gRgTaCBKFzmPrJ02kKAryuRwcZo1sO05bZ8e24wZWqzxiE3NAY26bbXL3vAQyn8thuVKBZZowLAumZYVdIuPOnUOiqfdCvGRVEKLVWLFYxMyWLTh2/Di2b9/eX0qNXzfx1FS81JSlgvK5XFT6GAQBbNuGyHpZ0CCAaVkoxipydE0DZb4KhmVBFEXIsoxapQLLsrBj927oqfXyyw5p5CBFT/i+j7OnT8NmxGBm82bk8/loMuPEoJ2VMOlBDPjrmtBHpMD3PNRqtTAnz7wEVE2DnsmEor1MpuOqTYj9jALxUHpPYoA29fs0dDp02YpO1/UoV9wPLly4gO88+ywOHjiAnbt2DTT2OOL1/+18EwYRJParH9E0DZquh4ZVsXPQD/hnSBHm2/0gaNIudOtpIckypiYnMTU9DY1ZFS+urODylSstFS1rQVMUjekXCPte7NmzB41aDYuLi4NtNEYShMT/HLIso1goIMespQkhkRmVx7QecWQymSji0IhZcXuOgzPHjqFWqw1x9CmuZaTkIEVX+L6P0ydPwqnVAEYMdF0HJQSWZUVNctrlw/utD+fhV3QhA9F4GCmo1mrwPA8Cq/cvl0qRSltWlCYnxvhkPEpSAPROIfSC7/thNQUh4Q29VAqFYn1Orlfn5/H4E09gx44dOHTo0AADb13ZczGiFOuYGEc7h8S1IqocYdePwUSkvcBz/H4QgATBQJqFODK6js2bNqFcKESphstXrmBpeXnNTZkidEgJjE9MIJPN4uKlS6HQcUitS7KKIg5VVVEsFJDRdYis8ZhpmqhUq3ASwsNcNhvaSbN+JBwBITh38iSW5ueHGl+KaxMpOUjREZwY+PU6KKURMQANbYm5yU+7UHCyy2In0D5yyEB7UqBpGkqlUtQFkLdQVpVWc571IAWRKdKA7+WTju95qNfrIEEASRRRzOejhjuiKEY9FjpNGZVKBY8+8gg2TU/j1ltv7dvkCECT8RJHlFLo4LbYrvHSWsE/d1VRQoIgCDCY2r4dKA2dNX3fD82gYj4Bw5pniaKIUrmMmU2boqqGhmHg0twcGo3GUNtsC36dx/wTtszMYO7y5ShNEK+IGIgqxKuCWnYbEuhioRCJcn3fxwLrt8CvR0EQIv1BsvsoAFw6fx6X+9FIpHhJICUHKdrCdV2cPnEiJAaCgK0zM1FZHKU0tO9F2LOgHXrVgcdX3N1K1DzfRz1GChAjBflY6J0QAs/zQBH67zdNGoMdek/Q2M19KAgCHMdBvV4HBSArCgqFQnPfCfa6SLyYIFCmYeCbDz2EQqGAw4cPD+ST307jAcQiB53IQdKdYUCfg7bb5OdSCLs2ynLYr6HRaESracIIgRcECFjqoK3Qk28vkYfvF4qiYGpqCpOTk1BVFZRSLCwvY+7q1ZYmXGsBHycFMLNlCyzLQqVabXoNL++MyEKfUYUoQtGmdFgURWQzGUxNTER+CfVGA7V6PSwppRSKooTkkNKw1TlWoxGCIGBpfh5nT55sabOd4qWHlBykaIHrujhz4gS8RgNUELBl8+aok6IARCFHma/2EuhWnRAnBRztbt883F6tVuHESEE5QQqiMTNiILHJdNRiQz52ilBXsJZtW5YVtlgWhMh7oefkzsgBzx8/dOQIFFnGvffe23Gl33FTHR7vZJscvY8m7ZO777efskbeX4GD58j9IAitkFmEgBLSl55DQHhTW8vnk81mMbNpU+ioKIrwPA+XrlzB0srK6FINCEnx1OQkFFXF3Nxc19f2HVXglTcsktDudYqiYGJ8HLlsFr7vR6LFWr0Ox3WjSKDDKheSpZT1Wg2njh9vSUukeGkhJQcpmmDbNmaPH4dvmgAjBtxJUGR16VHUoE3PBC66ageu2AbQtLqLv9r3fdTrdVSq1UjsyA1f2pECDtd1o6jBiymFkNxOvdEIyRWl0HUdOVaDPgi+8+yzsAwD9957b5TmoYmfjmPo8HwQBNHE165SAWhTrdCDHPRT1sjHwz0JKKXhdSUI8Fnt/TBoMt4aIpcviiLGymXMzMwgo2lhqqHRwKW5ORh9ll32tR9Jwszmzbh8+XLf74lHFYKY3iL5uXKi1O453mmUeyBw0mmaZpQybIoeYPV7KgBwLAunjx6F0YeZVIprEyk5SBHBNE2cP3ECrmVBEEVs27IFmqY13eC5sYqiqlDarFgJWhX70U2l3STIViVxUsDV4nFS0G11zJspgdLICGbUWCvZIJSGKzPHAShFLpfrmJLphkuXLuH06dO4+eabUSwW2eCE1Tr4NqQrMu1po2rniEcNOpGVlrRCn4LEOGnhFRG8uoBXRxCuURFY7wjmTWFbVkuDrH4hoHMUpF8oioJNmzZhYmICKkt5zC8u4sr8PNwRhda3btmCer0Oy7IGFlYKgtBMFNoQocjDI/G5ZjOZ6DlN0yI/EP7ZWLYN27Yjh87It4S9JwgCnDlxArVKZfCDTvGiR0oOUgAIIwYXTp2Ca9sQJSlMJTBxHL+p+L4f5V7bTWyU0qgVMf+fJkRYSQRBgLphNJGCePqgKylgP57nRXX1g4bYu257rdoCBp8Q1LiQEkCBWd4OCtMw8MQTT2Drtm3YsWNHx9cJiXHHJ4fICphP2GClgOwc8qhBUyQCrO9FS7WC1PI6vu14yR4nAZExUCLdwMcbjzgpbGXL2wwHwyr5gVYtxxDI5XKYmZlBqVCAIopwHQeX5+awMoJUw6bNmyFJEuYuXw5vyEMKK/nnGzdgip4DopQDhyRJ0DkJcxyoihLZMXPdiWGaWKlUOkajKKU4f/YsLMMYaswpXrxIyUEKmKaJ2ZMn4dk2JFnGzObNUNt0KeQ5RlXTWiZhHuqM/98rrGw7DqrVKrwEKSj0ESngBjcCENXGKyOIGjSFT4eckOLwmaDSZxUJ+ZiD3UDjIgSPPf44FFkeuDJhdSM0En8KscdAaVPkoGUi4P+39FZIkAMunIv/AD31FFEZXuLxTCYTjcdcw+TTScU/KERRxNjYGDZt3oyMrkMWBFTrdVy+cqXFN2AQyLKMqakpXJ6ba9LKtKso6RdNTo0J8sIFi0CYXpAkKapA4qLFYj6PQi4HINTIVGPNy5KjIkGA2dOno+9xipcGUnLwModpmuEX27IgSRK2bt4cldMlwcO7yVJBYJUYRILDbtECQlCr19EwDBBKIStKX6Qgvv14+aPHSxjXSA7iOdVRaBYc5nEfEAKFmdIMG+Y+evQoFhcXcefhw0MfZ7fJkYf3u42vtbfCAFGaLkQrmgyTOXNBiDQZvucN1QcBWCV5gzZu6gRNVbFp0yaMj49DY6r/K1evYiVRcTAItmzZgqWlpSgyx90UB9GjdNP68MhNkvgKghBFAV3XjTwmJElCoVBAPpcDBAGe66LeaLRUbfAFgO95mD19umMJaoprDyk5eBnDNE2cPnkSAScGW7ZA7kAMKKVR+VJSa8DDzjRJCNrcrHi0wGVeBblMJgzV9mor3KE00fP9cGIThLYaiH4QpT8wGlIAhGmaRr0OwnwXCvl8kyp/ECwsLODY0aO44dAhTIyPDz2mTqFhEltddlvlD6s56OVBED3XZnySJCHLTKFMlv8GgBVnBT/y1Z/Eqz/3XfirU3/ddf/xFfgohar5fB6bN21CPpuFIkmo1Gq4Mj8/VJ+GmZkZgFJcuXKl5bl+Ih/cJbIX4tEEfr3LihJqiwQBpmU1XSe6piHPBKKUUhimGXZ3jL2GE3bLMHDx7Nl+DznFixwpOXiZotFo4PTJk6COA0WWsW3Llq6rdh41EESxxX2QBEFod4xEKD52Uw4IQT0eLWCdBrkIKlKWJxA1RuowufCVjKooQ934o0jHCFIIHAYrVQTYzZURg2HG5zoOHnvsMUxOT2Pfvn1rGlencxi1ae7gjBi9v43mYCTgaYUOn4GmaVBZW+KGYcD2Hbzxi2/Hw/OP4FzjPH79id/Es8vPdd58Yl+jarAFhJ4Qk5OTGBsbgyIIcB0Hc3NzA0c5dF3H2Ph416qFbpGPgVqeYzWa4DMjqYyuQ2AVC/EUicRcR3krdiAscaw3GqtpBiYqFgQBlUoFcxcv9j2OFC9epOTgZQjXdXH29GkQ14WqqmHEoMeqm3dyi6/wCc/7x2+2bW5QNuuY6CSiBfGSueTqsqlfQZebHhcjDpXHj+17FOClinxiyGQyTaWKA9MPSvHEk08iCALccccdQ0cewk113ns/KQWgNXIgCP1HavqJHHQbYzaTgShJIEGAX3n013HZbPYF+NS5z/Y9FrbTjoR0GBQKBWzatAmKqoJQirn5eVQH7EewdetWzM/Pd40AdOoXMawoUmDlyZRSZJhI1naclrLWgJCQ6OZyEEQxFBJ3SDMsXr2KpYWFocaT4sWDlBy8zEAIwblz50BdF7osY9vMTF95cC+WUojsVtE7j12v10O3uzbRgiSSk2ivcHQQBPB9P/Q3GJAcjJoY8FJF13UBSpHP55FZYye706dP4/Lly7jjjjvWtK1eZkTxngrd0BI5GIFDItBZkNj0GlFELpfDR8/+N3z64j+0PJ8kC/1CFMWREQRN07B5agr5TAaKKGK5UsH8wkLfE/eWLVsQBAHm++hhEGl6+vC26BeROyJCggBKIUlSGE2iFEEQQFEUFJk2qF2agX+fLl+4gHrarOmaRkoOXma4evUqnFoNIqXYNDXVl+0ubylMEa4uuZVvt5VsMlqQbRMt6LSvXqSAg69aFEXpW2w2atEhEHoExO2dC4VCe9HgADfwSqWCZ599Fnt278bmzZvXPMZux8q1JJ1sk6NttAgSB0srdPZPCNGrF8c/XPw8PnzyI22fO1490Xm/QNdzzye/UUBilQelUgmKKMKybVy+cqUv++V8Po9isdjTLZFDQEiaRkVuAETXreM48JhvAl888N4boigin8t1TDMAACjFhTNnYI3QMCrFxiIlBy8jNBoNLF+5AhoEmJyYgNpnrb3v+wATMKmqGpGCdiuiTtGCbIdoAQcvfRykRwBfpbernui0j1HDY+ZNQRBAkqTQcneIFEccge/jsW99C4ViETe+4hUjGmmX/fVwRuRoFSQOdpydPv1+iOC35h/H//3or3Z8/kx9FivOSud999iHIIojvT5KpRKmp6ehyjJIEODy1auo99HEaWZmBnNzc31P+NxXQhSEkRAcRZYhsnSLzxwrJXZuvNjkz5s0dUszcJMkMyUI1yRScvAyge/7mJudBQ0C5LLZVXe9LuA3KAoAbYSIyZvRMNECHvLmK/lkg6FO4Ha7pE+9wagMjeJwPQ/1Wi0qVSytoVQxjqe//W2Ypok777xzILLUDr1CzkGsqU9PP4IW++TBj7WjSyY6Rw7O1M7iZ77x83BJ91bOTy8/223HPcc2qlJHDp21g87oOiRBwOLyMhaWlrqmGWZmZuB6Hip9uA7yDpV81KIoDmzFnQR3S4QgNJVVgvlYxK8XAO3TDLGKB9/3cerYMZij7G6ZYkOQkoOXCeZmZxE4DiQhbPbSDUkhIM9FN5Uvxf5eS7QgbvrC0c8NLq6w75Yrj/oi0LU1S0rC8/2wVBFhNKVQKPQUDPazGrxw4QJmZ2dx8623olAojGSsXXUbPKXQxTY52g4SjZdG0LIZQHTe2p2dZWcZ//pf/i0qbqXndp5a+nbnffQ5aY6WHqymGYqsiZNhGF2tl8fKZYhM9d8LnfpGrJUgqIoSaQx49CC+Xe7AyNGSZnCcKM0gCqG988ljx0bb/jrFuiMlBy9xUEqxdPEi7EYDXhBg0/Q0JEkCCYD/9Tcy/vJ/yODmc/F8fPyGkFST09jfQ2sLYvtKgkcQuoHXu/eyV+60j7WA94HgxCDfZ/OkXuTAMAw8+eSTuG77dly/ffuIRtsdnGT1+ryANpEDafD0SafPG2glB3bg4Ke//nM41zjf17a7kYO+McIyRw7exGlychKqLIdRvA4NnERJQiGf70kOuDV1EjwCt5bKFlEUoTGHVIc1NANWDY/4hM+bdfEyyk5pBt6w7fTRo2ikjZquGYxGbpziRQlCCKxKBSuLi3A8D+PlcsTuf/Rf65g9F95A/uufKbj/vgCvf22A++4JoOu0iRS0lBiycKZpGGE7ZYSTdD6X60tw2M8NWGDeA52m06APcgCsAzEIAtRYhERVlL6JAdhxdwIhBI8++ig0TcMtt9zSVxi85y7Ru/6d6w366T/QUso4pM9BsoSwXSkjoQT/1yP/L55YfKrv7T699AwIJRCF1olxoLPJrs9RCv2AsIupoihYWlqC7bqYX1xEsVDAWKnUlNIZGx/vSg64t0g3RC2be1SqdIKmaXA9Dy4rd27dweo54teYKAhhmkGSYJgmfN8PfwcBdF1HEAQ4fewYdu3bh0KpNMSoUmwk0sjBSxSEEPiNBhbm5uAHATRVxdjYGADA94HZc0LstQK+/g0Z//HdGr77X2XwH9+t4atfk8G9UOI3LkJI5HI4VLRggJVZt9VPpJxO7LPJH6HP/fQLn6VPCNMY5PP5vkO4vW7Qzz//PCrVKu66807IaxQ0xtFrfP2WMQLtNAfDry2ayMHqg9HjHzn2F/js+X8caJt1r44z9fYOfcNMkKPox5CEoiiYnp5GIZeDIoqo1+uhq2IszVAqlVCr1bo2O+oX3QzGukGSpDDVJIpRQ7T4tcT/4ueILxgIIRAEoSXN0Gg0QndG38fp48dRW4PVdIqNQRo5eAmCEILAMLC8sADXdRFQipmpqeh5SQJkCfCD5PsEuB7wla8p+MrXgEyG4r57Arz2NQH27xMhSX5Yyz9gtAAYLsQvAFGf+aZtsXwoobRp34OSj0EQEBKJD2VZDu2QB1jdd3NgvHr1Kk4cP44bbrwRY2uwR25BjwmBn0egdxkj0M4hcbjbR7JUtYkEsgjLX538X0Nt+/H5J7GnuHuo97aDiNVo18i2KYqYmJiApmlYrlTgex4uX7mCqclJZHQd5XIZhBHRpHA4IKRnyWcSAkLy16n3QidomgbfNOG6bpRmaLt9Rj7ikQRRFKFrGmRJgmFZCIIAlmlCUVWogoDTx49j1759KJXLA40pxcYhJQcvMXBiYNRqqNfrcIMA0xMTkaKfhwDvvy/A177OPn5KQaiIcJ5dvQFYloB//oqMf/6KjIw+g1tvreMNrzNw661hfjGj6z0nyH7TCJ3QjiDwvvWiIKyKJbmF65D76QZCaViuyGq+h+mT0Om27DoOHn/sMUxPT2Pf3r1rHmukCyFkNQlAY22SY6tz3/fDHhcInSZdJnBrqlJh7zEtqyWt4Lg+Asta/XzbpKLiRCC6Vvhvfm0kDH0EAFtzW3DBGNyG97H5J/EDu9/RolkZ+rrgK2/Wv2OUyOfzUFQ1bLjkebgyP49yqYRyqQRBEFCtVJrIwTDEII5+nCjjiMoaCYHv+119KpLRichhUZZRzOejNIPjOAgIQUbTcObECezcuxdlFtFM8eJCSg5eQiCEIGg04Nk2lpeX4fk+ivk88vl89Br+BX/r9/khOaAAAScGnWHZIh4+UsLDR0r49z9v4gfe0bvJy6hW8pwgUNZVLt5emO9nlL0R4uDEgLdcLhYKw5UXdqhDf+bZZ0EoxR133NF28uGCr+g3yzdHza6YcjxZstg0ASRXvux/l3U6lCSpay06Rdj5UkpEDlyfwGO5p7hbZvJvoJkcCQAIQgLDr8e4kl2WZbz7Fb+G3/3O7+Ph+SPwaHtlfzs8s/Id2LYddRocFQQhpEajJp+aqmLzpk1YWl6GZZqo1GpwHAcZXUelWgWXpZI1EgMgNnYmEOxZnSKEPRXqhhE1SuvxhhatRkAIRFFELpuF4ziwHAeObUNA2HeEE4SRRsxSjAQpOXiJgBMD4nlR61dZljE+Ph75CMRx+60ExQJBrSZCGnCu+9KXNfzAO7obm4w67y8AgCgCLG8JhHqDdsc2KvBeCb7vQxRFFIYlBkATMeAT/cLCAs7NzuIVN92EgBAYptk04cejJe0mWX7s0c04RgL4ChzMyTK5sgcA0fMgSRI0RQnL12IRgGif7D1hv4jmyUnRMpBUdTXSENN7xMfEIxbJ1/BJCmzVGTDjHQDYrGzCh279AKzAxrdXnsGjS4/hv539K/SS112151E3DIiiGDpn8oZgifMzMISwhXI/k+qgEEURU5OTqNVqqFQqcBwHSiaD5ZXQ1CneNXMUGCTNIElSSMpjfgrdtgswIsWuPwGr/hW6rkOUJNTrddi2HfZz0HWcPXkSdM8ejE9MrOGoUowaKTl4CYCLD+GHmgDbcUKdwfR0VH6UhCRSPPhqgs98bnDF+Z7dnaMGa00jdAMnCD5LK8iyvP7EgOkrCvl83wZH3CyGC7ACFpYNYjd5SgieevppFIpFjE9MhF72aDPhA5FVtRj/LQhRF8W4s2Q8dNxrEqsLAiRZRi6bDY1vukBTZDiJx/RsDnI229c5aQdOgoCwPM4PAuQyGYiyHE1IClVw/+Z7ocs6Pnb2L5vef6CwHyfqJxFLoODOsdthWxY8x0E2l4tC3lw4JzEzL/5b5CmNPiHyiW/EBAEAisUiNE3D4uIiCrkcLl66hGq1ilwuN/J9AYicELtRBD8IILN+Kq7n9e3+GdchcHAhbyabhcW0DACQ0XXMnjoFSggmYtqoFC8sUnJwjYMQAr9eB4IgrCKoVOD4PibHx6GqarQy4+CThiCKePCBAJ/53GDK+N07Xfybf10H0FretJ7EoGk/hACE9CWEHGr7AIxGI+yVgLDjXruSScJqvYMgCCd+34ffIfwb+H6ki4Ag4MKFC2g0Grjn7ruhqmq0wk1O+J268PUafz/viIyk+jmPpDW0L6yhWiHcgLDqjCmKkBjhazcBPTPb7H54oLQPn33t/0bNa+Cxhcfx7PJ3UFSKeMu2N8M3PQRBEEXPonA3IWg5ClGEJAghYWBNhqL+Ie2iRKxkbz0iCABr3rRpE2q1GmbPncPlq1exaWoKxREZYiXBFw9Bh+PxPC9stkYpPNcF0fW+omftdAhAeI/QVBWUENi23UQQzp05A0opJqenR3FoKdaIlBxcw4gTg4AQLC8twQsC5DMZlEqlUKCXJAY8xAzgjtsJigWKWr2/m9zevR7+069fgabJSJKD9awUiCNgDaBE3kFuHbQGBvdvoDQqV3RdN4oCBIwUtN03W4kJggBZkqJVKhCq8kVRhG3bOHv2LPbu2YMtW7aMfPz9nJN42qKviEiyUgEYyj45jujajGslOrz2yPy3mv6/Z/owFEXBhDKG777+9fju618fPWdnHJimGZbUMb0NYZ+b7/sgQYCAewUEAQJBQEBISAbjERv22bVEG0Qx7MWwTgRBEEVs37YNzzzzDGzLwkq1CkopSn1Yng+Ldt0pfXZfkWUZoigiIASu60Ylin2hg2eErCjQANiWBZdFzTK6jvOMIExt2rTGI0qxVqTk4BpFnBgAwMrKCmzXhSCE9shc9MWRJAYAIMvAK+8P8LnP974M8nmC97/HhCDRqKeBGKsDX29SAIQTR7xJEL+hdbKRHQR80m80GjBNE8T3oWcyHS1fI+MXNnlIMSLQzoo4iEUTnn32WSiKgoMHD65pzGsBifkb9NVToE3kYC0+B0l0G4EdOHhy6emmx+7ZdLjj6zVVhcPInOM4yGazYd0+pVBiESAu6iSEgAQBfPabPyYEAWgQhNGG+DkSBEg8xcOuQ5n9vRaywK9lQgi0TAa6poH4PiRRRKVWA6EUY+tkHhSt9LE6kXuxrqeKLMOwLDiuC03T+j7OuAgynmYQ2HYppbBtO0qrZXQdF86eBSEEm2ZmRnV4KYZASg6uQZAgCDUG7AbveR4Mw4BPCLZs2rRasx4ThXXSHrz2Ab8vctBoiPjPf5jFf/g/GgDCmy5fQWwUMQBWzY/4ajcZGel3W4Hvw2c/nu+DEALHcZjwDshkMhH5SEYBpEREYBBcuXIFFy9exF133rnm7o3t0O854FGDvgWWpDVysOa0AlYrFyIhZZvXPL30bTiBE3uPgMNTd3TepiAgq+uoGwZsx4Gqqm3TQlyYJ4kiIMuIqy54VUgQIw+RZoQQBIIAEALqeU1W45IsQ5IkyJIUrbj7QbwihY+tVC7Dtm2UikVUWWkyIQQT61j6x0WolNLIz4STA9G2o4Zn/XZCbbddAYgiL6qqggJwbBtOjCBcOncOoBSb1iOylqIvpOTgGkMkPozZp1aqVQSEIJvJIMsEYvxmw0OgnXD77QHyeYJGo/dN7BvfVECCSfyf/8eViBxsJDEAWFohYX7UVCffLt9PCHzWRMb3/cgnAZSGOgAWLnVdF7IkIZfPh6vNDlGAoY6BfR7ffvppTE9NYeu2bWve5lqQLAftibZphRHcPgQhsvoN99NKD5IphRvGDqKkdl9BK4oSRRBMywq9KdC/U6IoCBBlueUG2S7aEMTEptTz4HseHHY9iqIYEQVOHJLXU6dqhHK5jPPnz6NULEIQBFSqVRimCUoIxsfG1tyxsxMEIGq4JCD0OxCE0BrZcRz4Q5ADvl2uQxCxGtnUVBUgBLbrNhOE82FPjZQgvDBIycE1hsAwImJAAfieB8s04ROCzTG3MUppGObssq0wpFfH4TuBL3+1VRG9YwfBlSsCbHt1K998WEVAJvF//4fFkCD0ULmvBe2c6XilQjtHP04SPN+H73nwgwCe563eePlqD+GKWVYUyJIUPk/DXgnZbHawnGqfEAQBJ44fh2EYuOfee9clVz1IYiWKHPRLDtqmFUbUlTEe/Wnz/JH5R5v+v2e6c0ohDj2Tged5CHwfrutCadcjYEB0ijZQIOpiGPh+SEYJAWVpCr4Kj0cXOPnshFK5DOv4cTiuG/prCAKWKxWYtg2yvIzJ8fF1IQg0Mr0ClFgKQZZlOK7bZPU8FLjINkaINGaoZiUjCBcuIJPLoZj2YthwpL0VriEElgXKbjJckV6r1+ETgqyur05qsRrjjtsKAlSrVbieh/vutVqev/EQwZ/9Fxsf/D0LmcxqjTqogEcfzeH3/2AKtbo10vrrONoRAxIrfYsMkNiq3zRN1Go1rFSraNTr0U0mclMURWiKglwuh3KphLFyGYV8PhIIQhCgZzLrQgyA0OTn2LFj2Ld//8haMbdgAN3FoGkF2q5aQViHtUXiGGzfxtOJbov3TN/V16YkQQijW6IIy7bXbCLUDZw0qKqKTDaLQqGAcrGIXD4PTdOiqglCCDzXhWVZqNXrWKlUUKvXYZjm6vXKtlkulwFBiPoQ5PN5TIyPQxQEWI6DhaWldfn+2Sx9IIoisjEXVK7X4LqMYSEkfnOoihLqLFiKz7JtgFKcO3UqqmpIsXFIycE1AuJ5oVUtVldXnufBaDTgszBj+CSNjG86wfd9VGs1+EEAQRTx6lep2L1z9ct+4yGCP/h9G/k8cPNNAd7/uxZ0LSQGfLOPPJLFB/9gHJVadzOkYcArH5IIYqsywzBQqVSwsrKCRqMB27Lgex5oEACCAIXV75dKJYyPjaFcKiGXy0HTtIhYuEyrAUGApmkjd9WL4+mnn4aeyeDAgQPrto9BMEirZgDtIwfSiMhBlyjKE0tPwSVe9L8oiLhj8va+N62paniMTPi2nkhGgwRRhCLL0HUduVwOxUIBuVwOqqpGZZO8v4XL0h+1eh3VahX1RgMSS0msMDMkAMhls5gcH4cihO2U5xcXR0oQfFYSDQDZTCYSq/KSWlmSQq+RtUYP2pU9iyJ0XYeeyYBQCpsRBM/zMHvq1Nr2l2JgpGmFawCEEPiG0fSYIAitUYPYF66jl7/rot5ohKF5SUIxn4cky/jjD9n4h3+UkcsCb/xeH6qKSLl8y80B3v8+C7/yq5mmFMPDD+fwex8AfuPXbeQyaw/Zot24mTDK9TzU63WYpglZliHHSq8kltONcrvtJjxmPczh+T4a9ToowhVLbg1mPr1w6dIlXLl6Fffec0//Of4Bwc1s+klWcOEbzwH3hTaCRAijO5ZOmoNkSuEVYzegqPYfeeFdQ2uNBhzXhSTLTRULo0an/gW8a6EoitA0LUpHxL0yuC6GEgKfUvgAcrkcFpeWsKXRgKwoUFjqSxRFLC4uwvM8XF1YwKapqTWnGCilkY22qqqRYDZecSDLcpiu8/32rZz7Rey6a/JDoBQa2y+vYuBncu7iRcy8wFqdlxNScnANIDCMKFcOhF8mz3WjqMHmsbH2TDwB27bRYCRDUZQorA4A5TLwzh9psxpgX+Lbbgnwvvfa+JVf1eE4zQThd94j4Lfe7UOR15ZH58dHWKrA8zx4ntdSqaCqKnRdjwhBX02QmP0t7xPQaDRAmCFLvPfEqOEHAZ769rexZfNmzKxzaVa/Zz9uftQ3OWjTkXGUugn+GSbJ4ZGrzWLEu/tMKcQhyzI0TYNt27AsC3KhsG5C2iQx50JU/lwS3PQqXrniB0EUIctms2iYZkgcggC2bUMUBMiKgrGxMaywro5X5ucxPTnZtiqjX9gsrSGIIjJt0mu8/NBmosS1IG6hzaupKBMI854OQHjP4hqEuUuXkCsUUv3BBiFNK7zIEVgWiOtGXxp+Q26KGmhaKzFIrFwahhERA03T+moglLyp3X6rj9/7XRua1rztbz6UxW/+thIvoBgYnu/DNE1UazWsVCowTBMuKxMTWdg/l82iWCigWCggk8lAUZTBuiOyG5FpWSCUQpXldSUGAHDs6FG4roubbr55XfcziAVwZH40yLlLphVGJEaMNgc09WAAAMMz8O3lZmfEfsWISWR0PXQ2DILIdGe9wCMywZC5eVmSous9n8/Dd13omhb2Q2Alla7rwvN96JqGIAjgOA6uLiwMPWkH8XRCFxdEhblHUm4ENiSartYYQQAQXgOMuOu6HnkhmJaV6g82ECk5eBGDeB58y2rxKPBcN/I1GGOipZapIRbe5I1OgDCPWGCuf93Ab9TJV91+q4/3vdeGqjYThH/5ega/+R61b4JAsZrzX1lZQbVahWXb4c2NpTyyuo4SEw/ms9lIWd+XaU/bnVI0DCNyfSsUiyG5WIfKAQCo1+s4efIkDuzfv27++BEGECNyQ6a+KxWAlrSCMMKUAttgZMLD8fjiU/BjHRllQcadk7cNtXlREJDJZCAIAkzLajKlGhUoQn8EXtYoJo5nGOi6Dod5NeRyOZRKJWQzmcgdVJRlFItFEEJQbzRw9vx51BuNgSZuSikMywIohaIoXdMFXHcgjEJ30Lzh8BcQLoQYOeEEAQijCLV6HedOnx7dflN0RJpWeJGCEALPMJq65HHU6nUEQYCsroc3vC7bqNXr0Ze4kMtB60ON38tI547bfPzee238yrt0uO7q3r/6VQ2iIOA3fs1Bu4UHL+nymIYANNZmWBCgyjIUlutst6qlrORwoGhBDJZth61ngaaUSpQnBqJucqPAk089hVwuh317945oi6MBnzjWFDmQRm/glDzvjyw0pxRuGr8ROWV4kqWpKmxFgcdaVY9KZ8K1OS39Fngqaw3unbquR/4ccsxvQFEU0EwGATPxEgQhsk+/fOUKxkqlKPWmKkpHvw5KKQzTRMC20Y8oV5HlcExBAHXIJlQ9zwl3PU2kGCzLwvzVq8gXCqn+YJ2RRg5epAgMA0KiaRKwGjXwCMHY2FjHiSzgFQnsS18qFkdCDDjuuN3H+95jQ0lEEL78FRW//V4tKmH2gwCmba+mCwwjDAuym4qmaSgUChgvl1EoFKLwaTsQJrobRnjluS4s0wSlFLlcrlUYyFauEmt2tFZcuHABi4uLuOWWW9ZNhDgsBnZHBECTmoN1iBwAaArDH7k6nL9Bt33w6AEPyw8LTggi86MOk+QwjbPi0DUNAhDl3Zu2jVBPkdF1jJXLuO6668KulqKIpUoFJutb0Gg0UGXlkq7rRt9xTgw8zwMEATkmdOwFWVEioyTuejgy8POVqLiKIgiCAMuycPb06ajEM8X6ICUHL0IElgXCvrBJxKMG2Q6TfRAEqLLXSZKEcrHYl1VvXPDYT5j6zjt8vO93WgnCP39Zxbt/R8LSciVMF5hmk+2xnsmgWCyiXC4jn8tBVZSeN1AS658waFohIAQN0wRFuBLrpbJOtkMe9NbneR6eeeYZbN+2DVMb0GFukPHx0jlgAHdEoCVyIIyqjJFvD1idGAA0PAPPrjzX9Jp+/Q06gVfo6MzYx7SsgT9bHl2Ke26sJzRdBxWEvsowFUXBlpkZFPN55HQ9FDISAioIkU7BNE1UajXUGw1UqtWQqAsC8tls33bekiiChwZJEIQlmWs6yg5I9EyJEwTTsnCS6XlSrA9ScvAiA/E8BLbddrKMaw3GO/irB4SgWq9HeftSsdjWTTAJbifM99vvje+uO338bhuC8NWvZvEHHyojIIjKr8qlEkqlEjK6HoY5+9pDiEgcOahGgFIYjQYIIZAVBbkBvQwEIWyyIw6wAnzuuefg+z5ecdNNA+1rGCRFfL0QnUdGgPp/Y2KVPWIDpHi5HAA8tvA4gli0QhEV3D5560j2obHoFCUETo9JN0oZJKIEA+13DdEDblFu9ymilCQJkxMTIQlWFDQMI9TXMH8FiGKkT6g1GmiYZth8a4BrIdIdCEJE+gfVV/Q8h4IAtIniaaoaWTdXqlWcOXFigL2mGAQpOXgRoZ2fQRw8apDR9balRoSJDymrpy6XSn196XlItFONdjf4QYAbb6jhXb+yCFlOihQL+MifbUYuW4Cu6xAlqamxzCCgMdvjQWCYZpSTzedyw4kPeZgzEVFot62VSgWnz5zBoRtuiIRUIw27JjHgtrkQb+BUR9LnYMTVChHY8ST7Kdw6cRMy8tpMqnhETBDFSKtj2XaLODFOCHiEYK2fIb92Bt2OoigQRbEniYlDkiRMTU4iw0jQ0vIyHNdFhomRuVsjT+sFQYBavY4684LoZ4yKLEMAmlIzfbttAn1XcbSLYuqsmoJSiitXruDShQt9bSvFYEjJwYsIgWF0tHjlUYOgQ9SAIlTH8zrlYrHYd/h90FUNRbiSqdZqqFarsG0bt95i4ld/ZRGy0vxF/qcvanjf+1VQ0rkCoh8E7H2DpBSiLouUopDLjdSHXmDRBDGRG3366adRLhaxZ/fuke2rx0AGejkZRowItKYVRtiuOdxg83EkzY/unlpbSiG5H0VVIatqaEXM0gvJlMF6kLqBKkQQXmd6JjOwu6MgCJicmAijdKKIpZUV1BsNmJYFPwigaxqmJidRZpFFglBDwMuJ+es6QZblKEUVNzDqJw3Xzhq942uFsAFW8ti4cNL3fcyeOZPqD9YBKTl4kcA3TRDP6zhR12o1EEKgt4kaUAD1RiMSCBXz+f6EdR1ufh0Jiu+jYRiRsJCXHSqKgnw+j9e9VsPv/KbVQhC+8EUN73mfChqQocOrPHLQb6WC7/swDQMUQCabhbwO7ZEBRGWkoiji4sWLWFpexs233rpu5ZFx0CEmsGAIMWK4s1YTpFEifraqbg3PVY42PX/3WsWI0Y5Wa+l1TQvbBTsObMcZKmUw8O7jY+gTuq4PZf0sCAImxseRzWQgAbh85Qoq1SoEANlsFhqrDMrncigVCtA0DYIoIqAUjuOgXq+jVq/DcZyW88LtnwG0lDT2IvAD6zx4Kiw2BkmSovugZVk4eexYqj8YMVJy8CJA0EVnACBq1OIHQduogWEY8NgXo1AoNLmkdfyadmDv3IaXg1AKy7ZRqVZRq9XCGwVLW2QyGZRZlYGqqhAEAffeE+B3ftNuSjEEBPinL2l43wdUkCHvvbxzYj+RA0oIGoYRGh2patsUzKhBKcXR55/Hti1bMDU5GUYUgKb0w3pMPINSkKHEiECrz8GoIwcxPLb4BAhdJaiqqOK2yVvWtM3ouqZhW29CadQoSRCEgcL2a8Wgglpd0/rWHCQhCALGyuUwFYYwNQmgpeWyyPoaFAsF5BmZ5p0mTctClbWLjhMBXlrZzu9AEISwHXoCFJ0XH10OIiQiCUIbt3iuVCqp/mDESMnBC4wgCMKyxQ43DAFhusAPgrZRA9OyojKnfD4PtYf4MO4r0A2e76PeaGBlZQWmaUbhQ1VVw45z5TIymUzbMOm99/j4bUYQAgIIQrjPz/9TBu/9PQm+P7gBDek3csCNjoIAoiSFOoMNwLlz51A3DBw6dCh6LG5exXPOccKwZqowRHRimDJGoE1XxvXSHKA1pXDb5C3QpcFag1MABCxNwIgBZcQAWCVVOus6GLD23huFQQR8w0YOgLBypt5oIJfLIZfJIKvrqNXrsLusshXWa6RYKIStlEURBKwvi2GE73ecKDXVqSS03RWWXHz0i6RgmiMT1x/MzaX6gxEiJQcvMIhpdhWVEWb36wdB6IYYg+04sFinxhwLEyYR/zLxZjudQAmBZVlRlICH6SRRRDabxfjYGPL5fF8lT/fd6+O33m1BUZq/0P/0xRze9wEZtjPYjThq1dxjUksaHY3S/7/j2AjB0WPHsG3rVpR6+b7HnODiFRDxcHPfEYYBIxE8nw4Mnvte77RCHMl+Ct1KGCOtAFaJQMDTA+3OT+J6EAUhLG3krbs3Ckyv0g90XR84skERhtsN5u0hSxJmNm9GPpeDJAhYWlrq6XAoiiJ0ZrWez+UgK0oomg4CWJYF07JgWRYc1+0oMGwR7g4bPYtpe+IixSb9QRBg9vRp1CqV4faRogkpOXgB4ZsmaKcvKJvILcsCCQLIstzkXuYwgSIA6JlMpIxvBwGrFQltUwmEwDQMLK+sRKtuICwbKhaLKJXL4QprINMcivvu9fHb77YgSQmR4pfy+P3/rKJuWH1PhPESvE6IGx1l2xkdrRPOzc7CNE0cjEUNBkFk+oJVoWP0WILcxf4ZeD9cjCiK4uAW1BskSKy4VRytHGt66p7pw1H1ANdZkMT/8fMxKCHUWLkgb528Uei3xFHTtDCd1+d2gyBAg1UeAGFaIseqFMbHxkJ3RUIGavcssxboZVaKLIgiqCCAEALbtlGp1TpGXvh1zQWfwyL+TkEUo8+8SX9g2zhx9OhorZ1fpkjJwQuEIAhAuuQR+eRgmiYCSpuIARcGAuGNo1ftfif3tjgpsGwbFOEXLZvNYqxcjm4ogyJervjK+3z81n9qRxAK+MM/zqBSq/flc8+tkzuFw5NGR+2iKOuBKGqwbRuKhf5bCXdFPJqA1UmEl1BGinAeaWCv46HzbmMFhnOYXM/GS/EJ/vHFJxAPPOuSjhvLNzYf48j2HKIperDOTZmGAW8+1E/DKJd1HA2YOVE+l4u8EoDw+z0xMQFZlhEEARaWlgZqDsXLH4uFAgr5PFRNA6U07HRqmqg3Gl3TM2v67JIkMHYdq6oateKu1mq4ODu7lj2lQEoOXjBQlg5oBx5i5iYtQRBEjXt83w9FRaxKoGdDHzahxqlBO1IgShKK+TxKzJN92P4FTcfA8Kr7ffzmb7QShC/8UxF/8qdFVKrVaJXT/hBWc8ZtV7xrNDpaC86cPQvLsnDo4MEN2yfAzm/CMyLSMyTAz3oQixwkn49+OpGLFp+DMLXUtHKP/dD4qh7NBKbd8xyPLj3e9P/tk7dClwfTGwwDLd618UUWPeBdV9tZKHNwK2Tu+qjI8qqnQQKKLGNyfBySENpIrwxZBihLEvLZbLiIkCSAEPi+35EkUELW1rckUTYMNIs7M8w6mlKK8+fORSnXFMMhJQcvAALfR9DhBhTPPduMGHAlcUAIao0GQGnoetZPX3qeSmBkwzTNFlJQyOdRLpX6tk/thk66hle/0se7/6MFUWyeDD7/hSI+8mdjqDeMsJtcm1UMDx8LbW4OwIiMjoZAEAQ4fuwYrr/++nVv/RwHpRSDSDr52SDsHCbTLUL8JxGNiPbZJnIQV53TxE9yvIiRiG6rx8cS5GBk/gY9wNuCC0JoVbzeJY1x9DJI0nQdoLTjZOcy0aHHtDYZXUcul+tKOlRVxfj4OCSE1U7VWm2osfMUlaqqoYBRUUKSEAQwOEnw/Yjgj1oDFN9mXH/gel5avbBGpOTgBQDpULaYrIG2LAuEUmRZ97harRaVEfZFDNj2CCEwmdCQG77ESUGvXgP9opfg8YFXtScI//iFIv78o2NwXA8VVjIVz03yFUc7YrCeRke9cOb0adiOgwMHDmzYPoHmKohBwMPH/RggJbcv0DaljCO+0S+7KzhZb27Hu+ZmSwl0G7GmaRCZvfBGVi5wdBKJ8oqKZOTAZxVFpmmCEAJJFJHP56Fp/UVaspkMSqUSZFFEtVaDYZqDj5nl/oNYeXOxUIAqy6CMJDQajagJHICozHcotBOaJvwPuP5q7vJlrCwvD7unlz1ScrDBCDwPpM+wJfc2yGYyqNfrYUvYAdwPCYsUrFQqsPsgBWtZK3VUhyfw4Kt9vPvXWwnC5z5fxMf+2wQoDaswKpVKGN2gFAHbbvKYN8zoqA1838fx48exc8eO3qmdEWPYz4l0SCv09+b1LWUUADy+/GTTY1k5ixvHhhN5dkK3iADXHogvQPQA6GyQJEkSVFWNqimCIIBhGJF4WBAE6LqOfKEwsAi3UCiEXUqZzXK3Esd24NcSjRlIiaKIbIwkBDGS0GDmaf02d0uCtoseJio/NFWNLKJPHDu24Z/jSwUpOdhgBJbVGjVoU0nAUwoA67mQcD/shogUVKthDpLSkBTkchgrl1sMUNYK/tXrN2T44AM+/tOvtRKEz/xDHn/5V9MQhbDLm2lZqNRqcFgKJH5TeCGMjuI4ffo0PM/D/v37N3S/wBAmMli1BgaGJQfrX8r42NITTf/fMXkbVGnEwtIe16imaRAk6YWLHnQYn6ZpsGwblmVFoXqBPV5krc6HXY2XS6WwVXqfJY5N4405sSaFjTwdWsjlQv8VSuF7XkQSBhFCxtFuqk+mLDIs2lKvVnE+FScOhZQcbCAC1wXa+JW3m1QtywpDdVi1Jy0m3A+T4BPqSrUK07ZBeAoilwsjBSyn2klsOAzDjsxJBnzfax708RvvsiAKzfv8+09l8Ff/cxrZTDYUiDES0Gg0opXvC2V0xOF7Ho4fP44dO3dGKZ+uGOHKZWgTmdiNeChy0C6tMGI8vtxMDu7ZdHhDfCriEHj0gPkevBCrzqRBEmUaI+4pAIQOh4VCIZoE1wJBEFZLHINgoBJHAJF7YfI9FKstnTOZTOikqihNJMHkNuyDoMvY+Jng0QsIAs6zUuMUgyElBxsEQgiCNoKiTqFEyzRh2XbUbjmfz0elOklQhPW9yysroekJJwU8fdBnDnJQDNthkeO1r/Hx67/WShD+9hMa/vwvilF7Z4GGDV4aRiharJvmhhsdxXHy5EmQINhwrQEwvN5g6J4KHOucVpi3FnDWONf02Kj1BkB/0S1NVSPtgfsCRA94mJzSsMdBrVaLKkkkRoaz2exI9TVRiaOiDFziyHUHydcTQprubXGSoHCS4PswDCNsKtel0VNihx2fiqcrZFmGzjwiZs+eTb0PBkRKDjYI1HW7Mt44XOZ86DgOtEymo/shEEYVqtUqTBamkyQJeUYKuPo6iU7lU8OsktY6Lb/+NT5+vU0E4W8/oeFP/lRHRs8gXypFqRDLsrC4uAjTsqBq2oYZHXG4rosTJ09i5+7dXY2n1gvDrmTXpDcAQNc5rfCtxeYqhbycw41jhyIDr40Er+XnrZI3ev+EkMivwOJpQVZl0qk8cRQYtsSRpznj5KBbUzC+qk+ShEa93ne0phPJS6YfNU2DLEmYv3IFS0tLqf5gAKyfB2qKCIQQBEn70y6OhdVaDZZtQ9O0yMQkCQrAZNEFAIAghLk91kimFzjDps0P9n1MvSoTBsHrX+uDUhvv+V0dhK5u9a//VoMgAD/xYxYyLERosrbWXL0d+D40XQ9LqDYggnDy5EkQAPv27ev7PXRI8VXbbQ35vn7tpztvYH0dEh9ZeKzp/7um74DM9jHSyFCfn4OmqnBcF4Hvw3XdvisA1oIgCOA4Thit4JMrszBeL0KQBC9xXF5agmEYkCUJpWKx63tEUYyqooDwGg36OM+cJGiaBtuy4HoeHMeB5/vI6HrPFGo3CCzyAoT+Bw3DwJXLl6Hrem+L8xQAUnKwISCu23JT6kQMfN9HpVKBTwgmx8baGvp4vh+6oDHXQEVVkc9mB+8Vz8KB/VYacIySGHC84XUeKAXe87s64lv/X3+jIfDz+KEfshD4PlRdh6pp0FQVnufBDwL4hgGT5Yr5im894LguTp46hT27doXGNBsMvhobqoyRRQ6GNrdKphWE0UZsHl1sJgfxlEL8Rr9R4NEDi03Y/ZLuQUEphed5cF23KewtiiI0XYciy+FnLopDCVGHQTaTQVAqoVqroVqrRdbJncC/b7ynRTDg/UQSReRyOSieF5Yxs1SDqqpRGedawNMZywsLmNq0CdlsdiSeLi91pORgA0CTzmaUduxxUKtW4fs+RFHE9ORk0/OEUpimGZU0CexLpanqmlbNAvpfkUZEYh1ulN/1eg+EAr/7vmaC8Ld/l4Pnu3j72y5D17QoHEkphe04cBwHhJBQzW3bUBQFuqaN/AZw4vhxAMDevXsHe+MIJ7Zhz3oUORg2DZNsvCSN7tZxxbyK2cb66w0GhaYocCRpXaIHPHXgJpoWKYoCVdOa9EWUhu2lh1X3D4NCoRCWHxoGlpaXIbHKg3aIk4O1jFFVFMiFAkzLgsfOue/7yGQybaMIvUijKAjRda/IMjxRRGV5GbquY3x8fOhxvlyQkoN1RuA4IKwWGUCYTuiweuOdzighKBWLTV8I1/PQYCF1IMylZTu0TB4EkU9/HxPYoCWLw+B73uABFPjd32smCJ/89Bg838e//Sk7mvQFQUBG15HRNHi+D9u24fk+PM+D53mQJAmaqnbUXgwC27Zx+vRp7N27d+BJYhDy1Q1r2UZknTzseUimFYTR3TqSLZqLShEHy6tiTwGr7o5rxgApHl65YPo+7BFFD3w26fHUARCSfFVRuke9YhPdRqFcKsFn36ullRVsmppqO0nHBYncDGlYiKKIXDYL1/NgsYorwzCgsHLljo3I2oCi+bunaRoW5udRGhuD67ojM397qSIVJK4jeIVC/ILudHPxXBeO68KxbciqGpXnEUpDhX69HpIMUUShWER+hG6A/RCEYUsWh8H3fJeH//f/sREv6AoCis/+wyT++m/HW2dJQYDCSrtKxWJY8y0ICIIg9EqoVGCYJvzYDXlQnDhxAqIoDh41eBEg3jNh6MhBiyBxdGmFI1ebycHh6TshxbffR/+B9YKqKBBZjX633gbdQAiB47qo1+toNBph7wZWeZDNZlEsFKK+AO0gCAJkSdqwtEJ8v/10ceSfDEWr18Gw+1UVBYVcLkyrEALPdVv7NQx4TUiSBIFSLC0uojakXfTLCWnkYB1BE1qDTmWLvOcBJSQy88jn82FbZv44pdB1Hdlsdl1ulNxXn7ZJGay1ZHEYfO93eyAEeP/v6yB0dd//439lIYoC/s1P2G0HxG+4mUwmJFuOEwm9HMeJbjxRF7c+zqVlWThz+jT2HzgwVKpiJFGDNegN4pNKP9cOZe8JCAEJgtCEy3Oam3cJ4WS11gZdQGvk4O7p1n4KI9MdDLgNHp0yGo1Ie9APKecmSq7rNpfoxa6/QUSGSe+DjQIvcVxYXITn+1hYWsLUxMTqOaA0iurwCM+oIIgiMkx3Ydl2dJ9UFAW6rkcN5brukY2LXzuaqmJxfh7jExOwbfsFqTi6VpCSg3UCIQQkWaHQASbrJeC4LmRZBkUYxnZdN7Q8ZkZG6ymiiTuMtfuyvRDrtjd+jwvLsvAHfzjWVNr8l/8jA0EAfvInOp9fHhLWNQ2+58FhN2rKzrPjuhDAcryqCkVROk6cx44fhyTL2LNnz4iPcDDEV2gu6ynBe0v4vh8KwghBEARhS3D2t+f7cB0HhOWu+aQf/Y69lv+dxN7FeUzE/j927ATOX/kkBFGEJIoQZRkS/1uSIEkSRFGEJEnRY/x/kT0mSRLm/UVcMC427euQfgCGYUDX9SjSMTJyMETliCLLkGQZPruGOk0oQRDAZSktkqjZ5xbIiqIMFfETRBECI4cbTRJ4ieP8wkJU4jgxNgYgJAMklkoYlS4icl1kBlD5XC681l03FCL7PnRd79vtlV8/oiSFTpDz89A0LSUHXZCSg3UCdZym1V6n6gSXlS7xL4PjOJAkCQ6byLKZDDKZTJNmYT1L9iKCwG6g61GZ0C9sx8GDD4ZtaP/so1uanvv4X2UgCsBP/HhvAiYrStTK2fd9uJ4H1/MikxtuqCQrSrSq4+fBNE2cPXsWNxw6NHw5WT+fGaWRbsK2bTi2Dcd1o78N0wzFl+x5oDmnykPPgiCsTsaSBJmVmVGEE5Qiy1BUFaIgNE3SYmwSb3lMFOF98RNAzGRuy/brMbH3tlVSwcRohJGUIAjCiSMIojbISVJCCMFDziNNpyGLLC4+fgGXcTH8TGQZuq5D03WoTD+i63r0mK5pYSmrpg1fptkDvHeBEatc4JOhH9O4NE2MggBZlqEoChRZXnMKUBDFqIZ/o9MLQKLEsdGAzDwX+DEnyxlHAQGIyCz/DBRFiXRZlmXB8zxkWBSh5/YYQdA0DYsLCxifmoJlsTLpFC1IycE6gBACwvKTkaNdu3RCEERtWBVZxkKjAcOyMDU5GXVYa5qQ1kmQlFyR8fE2CSk3GH4QhJanlOJ7v9eDLC/iT/60uXrjv/1lGEH48R/rL0IDQYiIQharN3bX88IVNrvJG6YZTqKKgueffx6qomDXrl1DHQfviBmt8tnfvMqCkwGbia/iE74kiuFkqGlQNQ1j5fLqxMgmSY1NjnIXLYFpWXBsG6qmdS1J64arktDUJro8PoHMjh1DbSuOLz36NWB29f/D03fi9be/PiRBMTLkOE7UWpgTJwBRJID3GdD5eWlDIHgkaZgGXaqiwJak6PqQRBG+77cQAn7dyCMgBHEICK8lbmD2Qpj5xEscVyqVpgoGLnRdj4oKMUaIuEMkTxn6vo+6YSDTTxSBXSeSKEbGSPx79ELd517MSMnBOoAm0wkdLjzemlgURZiGAddxIAoCyuVyq2c6vxls0EUcRTteIJimGXrKKwpEQcDrX1eHLCv4ow83G5h87OMhQfixd/ZJEGKQZRmyLCOTyYQhYR6yZKH4Wr2O2XPnsHfvXti2Hb2+XQSBt8+t12qo1+uo1Wphg5lGAy5rksMRn/Dz+TwmJyebV8Tsb1mWo4mATwzDYJBWzZ03khAkjsDngFKKR+a/1fTY3VN3haY7bYx3KMtvAyGxdlwXNk+vJMiE0WhgaWkJDvtMwzELoEEARVVRLBZRKBRQyOfD38UisvEIHT9sShH4PvwgQMDq7wkhyOXzYethJoblUYL1+s7ECcEgFUajRr5QgO048IIAy5UKNk9PQ2TRpXYWyqOAAAAxgsBThlyLQFgUgRDS3X8k9tmoqorlpSVMTk/DNM0N76x6LSAlByMGIWS1JXOX8ivuBEaYkZHDUgtj5XLYMCSOdSYGLbcYSptao1JKQ+vnDSILtuNEN/RcNhtFV773u03IkoI/+MPm1e9f/PcMIAI/9iODEwQOSZKQYSkcXoN++tQpyLKMmZmZSKfgslC/ZVmwTBOmYaDWaIShfuY4ya1hJ6emsHPXLuiZTLRq5c2vBsIay/iaQr9DgiZLGUfgc3DBuIjL5lzTY3dO3N75DTG9gCBJ4XntIyQcBEFTeqbGCNzy8jLOnTvXRJ7yhQLy+Txy2Sx0dj1ksllIjAiIsgzq+xAFAblcLiJw6w1RFJvIgYjRiv/6ASdn5XI5vH8FQaQ/iDQHPJU64nPCo5nxiIkkSchls7AdBy6LJBBCejaj4qk3VVGwOD+/rkLvaxkpORgxKJvUItV/mwuOsHQCL60TWamQquvtb3YbfNHSxP4EQQBlK4P1Bjd6IgiJQVO4XBDw5jc5oBT4//9RgiB8LAMBwDvXQBA4RCG0Zr58+TLGx8Ywe/ZsOKGwVrnhUARkMhnkMhlMT00hn8+jVC6jWCy25ED9fhvKdMBaz3pEDtbiiZE0QRqBz0GySmFcHcPufI/0zRCaG0mSkMvlkMvlUB4bw5Ytq/qVIAjQqNdRrdVQq9VgsA6gC/PzkRYF7LPOFwrIZ7NQNQ2EkI2dUAShpepkI9MLlNIo9y+KIsbGxrC4sADLsmCwdFUU5aIU0npUVCX0UPwxTgb4ooIQEnrAdCLD7P2qoqBWrSIIAhiGgXw+P/IxX8tIycGIQXnUAB3C8pTCMIywxM7zkMlmoagqZEWB7XkvjDFHHzeYjQplGoYRKpQlqUVJzM/mW97sgFDgD/+4mSB89GMZCALFj/5w//XojUYDKysraNTrqDcaUTqAG7osLS2hUCyiWCxiy5YtyBcKyLEeFoQQ+L7fdLPiJZOiKEKJpSAEHnrdYFBKo0llaAMkoDWtMILIwZFESuH28du6jjEqtx1iX/w8+L4Pz/cR+H4kmgSAIvuMgZBMSLIMynwyDMOIUkVX5uZg2nZkXa5nMijk86tpikIBY8wbYJRoV8ooiCLoGolnL/Cy1ng1EwDouo58oYB6o4FKtdrcGG497xEdqk00TYMoSbBMEwHClG02m22fSuNRUUIgiSIa9XrY52HEnS6vdaTkYIQghIRf1i4Kf8uy0Gg04Ps+cqypUkbXUalUAEqbRTUbrDMId9l5ZcYrLtYrzeCyUjFQinw221S6l8Rb3xISgCRB+PO/yEIUgB/+oVaCQAjBysoKlpeWsLS0hKXl5cjYRtN1FPJ5TExM4Prrr8eJEydQHhvD3YcP91wdBkEA3/ejiYcw5T5PRRDmUyEIYWe9pvI+9ncnRBUvQ55r3qp5zeSkxSFxbZqDUG/QHDm4c/y2ntdUr9Uy12fwqoiAVUsEbIIDIU3heAGAxEgc/2zi5ymXz2NqaqppH0ajgaVKBZZphuY89ToWFhdx9uzZSBtSKpUwOTmJ8fFxTExMIDukEJRDbFMJIGB9qxd6mRoVi8WQDHseViqV0Dl0nRcPSf1B9DgTg4q5HEzLAmHRgGwn62UgIvCNeh35QgGNRiMiiClScjBS0LiCug08z8PKygp8zwtD0rkcNE2LSrsAtEYONoIYMDZO+9zfeqQZCIuoUAB6hy90cmxvfYsDUOAPP9x84/3IR7OAALztrfVVIrC0hJWVlait9fjYGHbu3Inx8XGMjY+HXR0Z5q5cgWVZuPOuu/qalPmkwm2VgyAIG0Kx1Wm8yx4nEc2H1b6sUJKklhXboOA39zWHv5NphTV2ZTzbmMVVa77psTvGu+gNOPi1GjNp4mWU3KOh01UpAIAkQeUkjRGCQc9NJpNBwfeRy2ZRyOebXCcbjQYWFxexvLyMK1eu4NSpU4AgIJvJYGJiAhMTExgfH0epVBqIrAkxzUEcoiCArEN6IZ5G6ARRFDFWLmN+YQEOE/JmNsA3QAA6djrlOgSTtbo2DKN9o6XY+93Ya3O53Ia3gX+xIiUHIwTl9rwddAaLCwvwPQ+KoqAcCz16nhc2V0msWjYsYkDpwKHaUacZTMuKfNlbBJl8n20ee+v3OSAE+OM/SRCEP8/iueeexW23fAcZXcf45CRu3LoVExMT4Y25y7k9ffo0xsplTAzZnCUiC4zoBbGJK2405AdB5H4Z+D5aAsQsUsNV8VwVzv8X2N/dJplIbLfWG16yK+MaycEjV5tTClP6FK7PXhc57lHum8D/jv32PK+rGI+fk6Q5E59g1zqRipIETVFgM4FqvE4+n88jn89jByvzdF03IqdLy8u4dOkSKCGQZDmKKkxMTIQ2xV1Sit0iJoIQ9l0Yxd2iUxqhE1RNQ7FYRLVWg9FoRA3R1hsigADt7wm8P4NphZ1cTdOMSlkjsPu0yM6rY1nQs1k0Go20pTNDSg5GhCil0EYo5Ps+lpaW4DIHxMnp6aauax5zr4vY7UanE+hwnRab0gxruCF4ngeHqf3zuVzLF77dzSYIAqxUKlhaWsKWzYt44FXT+NrX72x6zUNHDuPAgQN421v7z8vWGw1cuXIFt99++0jFZnxiT0ZEKDMK8uPkgXe34yZCvTaeIA/8b0EQ4Ng2/CCAzMgIF9jx/H3fx5jQHAhdeitEBlrx/9ljhE3+37xypOk9t5VuhmEYoZdAIrLSafvcyElOmD51s3QeVQhe1TS4ngfHcbrWyauqipmZGczMzACIpbaWl7G4tIQzp0/j6LFjAKUol0oYZ2SBpyL4dnuRA3FE6YVhShGLxSJsx4Fl26jX6yhsRFkgn9j5eJNeLSxa07GSgX9e7H2ObUPPZqOyxqENz15CSM/AiEAdp+0E6zkOqrUabMuCJMuYnJxsIgYA4DFRW1Po60WiM+gHTSKxAbUIlFI0TBMUoagoeW44XNdFvVZDtVqNUgQ82jI+Po7vf7uL67bP4+P/Y7rpfR/9WAmaauL7395fFcOp06ehaRq2bdvW9zGsBYIghOHtNqQh8H14TMMS5dLZb766o4xE8DBwkgaZlhWlN5LpjNggmia3uKPnqiGW10TaTMeDXa+vRo949KmPKBSlFN9aeKzpsVvLt0bXIc+lRyRHFCEC0d9ASAxG0ddhWHCNArc971pfH4MoitHkz5t4NZgnw/LyMhYWFnDmzBlACGv5JycnMTExAdM0m3s0JNAt1N4L8WjBsBgrl1Gr1eAxU6KJDRBWx4+Zsusu2eSOVw7Zth1VMuRieiZ+vTVqNUxu2gTP81Cv1zHG7KFfzkjJwYjASxjjF6dt27AMA5ZlQZZllMrltu1+Pd8HQVhas972yG0xAv1AVGYkSSFB6BOmbSMIAoiC0CLaWqlUMDc3h/Pnz6NSq0GgFNlsFpMTE9h+3XVh7rZYjFIEhw4C2ZyJ//qR5u38lz8NNQjf/7buBMH1fcyePYu9e/e+4HlHThp6lR9y0hAnDzwkTymFyConJFlezVsnP+tEqL3tlZBIKxAIfSnlm8y0GOE42ziLJXe56XWv3HIvcnJYBVLoUVLWSyi3UdBUFT4zz+qXHLQDT0Vcf/31AEIivLy8HKUjvvOd74TaCkpx5JFHsHXLFmzevLlJnzSM9wHF6vWz1igZ74paqVRQbzRQYBU96w1REBDQ1cZP7Y5eY3bX3HG1YRjIJVKXPqtgAULReD6fX9deNtcCUnIwApAgiFIKHLZpwmLubbKiIJvNIt9Bsex7XuhzsNFljOuQG4zUxH2kGnzfh21ZAKXIsglhfmEBly9fxtzlyzAsC6qiYGx8HFu3bcPMzAzKPdTEP/gOG5QCf/pnCYLwX7MQBOAdb+1MEM7NzoIQgp1DWiWPGv18OrwCohO4rqFQKDSFSuO5dxpf7ccfi/1t0+bJOJPJQc7nWyb/KAweG18Sz175TtP/M5nN2Fm4HjYjMuuJUV7xiqpCYmkbj2mJRgFVVbF582Zs3rwZvu/jW9/6Fq5evQpREGCaJh57/HGIgoDJyUnMzMxgy5YtUQqiH+8DHuHhRGJU6bMsC8tTAMuVCqYnJzekNLCflIrCmjcZpgkSBKizSgY+PlEUUa9UMLl5MyzLQr1ex/iQmqOXClJyMAJQ1226MfKOeb7vQ5RlqIoSetq3+RJysRoQsu8NjxoA60MSeugReDrB833UqlWcOX0ac1euwPM8ZDMZbGY3vYmJiag3QLuoSzv80PeHBOEjf95MED78J2GZ49u+r5UgEEpx6vRpbNu2beSK66HNatb4ucQn+OQEMJDeAGipVpBVvWMKqBeS/gZ3T9/VHF3ogbV8QzqtLofaliBA1TQErPfDqFeatm3j4YcfhmEY2Lp1K1YqFTz44IOwLAtzc3OYu3wZzzz7LJ555hmUSiVs2bIFMzMzYeSlw3lcz6iLAKBUKKBhGAiCANV6HWMbIe7j6ShB6EoSeF8GwzRBCYFhmqHGiaUmVlZWsH3nzqjXieu6L4zvzIsEKTkYAeLGRz5Tx3Lhlcp6j3cSuPBKBVEQNlYEswGKYqC9HsGyLJw7fx6XLl7EMvN3KJfL2LNnD2ZmZlAqlVpy4IOO+Yd/wAYoK2uM4Y/+SxhBeOtbmgnC1atXYTQauOOOOwY+xl4YVr1NsbaJkMSI2ZpXcCOqViCU4NGFZnJwz/Thgbcz7CQ/6qteVVVYLHoQBMHI0lHVahUPP/wwRFHEAw88gFOnT0dkLJPJYNeuXdi1axc8z8PVq1dx+fJlnDh5Es8fPYqMrociyC1bMDkxEX2XCF17pUY3CAgrOYrFImr1OhqNBjIb0BY5Smn2QXp4JUOD9cgwLSvqqUGYW2Ymk4FpmqjX65iYmOi5zZcqUnKwRhAmJhQEAcT3YTQaYbOWIICqKJAlqetKlJdlyS9ESiG+Wlvnm0a9VsPly5dx8fJlLC8vgwAoF4u44dAhbN++vWvjk+jLP+B+f/gHbRAC/PnHmgnCH3441CC89c2rBOHU6dMoj40NXb7YDcNEDkbRKjuKGjBx39o2lqxWGO7WcaJ6CsvOStNj92w6HH22/Y7yhepMmIQoih3LGofF/Pw8Hn30UeTzedxzzz3QdR2+77ftJqkoCrZt24Zt27aBEILFhQXMXbmCixcv4tTp05AlKUxRzMxgetOmoaM9g0DX9bBJlWVhpVLBJtacaT3BhbP9XBPcDbFeq4WpTccJqxgALC0sYM/+/TBNM3SxHSHhu9aQkoM1gkcNCCFhOI1dnDwKkMnluoZKfUYOMhtFDjaoTJISguXl5Ug/0DAMSOxGtXXrVuSLReSyWRQLhd4b4+RgiMngR3/YBgXw0SRB+OMwgvB9b7JRq9dx9cqVdYkaDItRTHvcWGskN+aWyMFwN8xkP4Vtua3YltsKK9nJtBfWmdAOAlXTog6Ra23/Ozs7i6effhqbNm/GXXfeGU1Mnuv2nNhFUcT0pk2Y3rQJN914IxaXlnBpbg5zc3OYPX8ekihiemoKMyz9MPIVfey4i6USHNYCnTdnWm8IggCBkJbeMO0giSIymQwsy4LjumEjJlVFrVIBpRSqqsJ13Uic+HJESg7WCMIUrqZhICAkbDgiCAiYwFDuwTp598GevcjXEyO6yVJCcOXqVcxdvozLc3NwHQeapmFmZgavuPlmTE9PgwQBarUaCKXIZbOROKqrExvXLwyZK33nD9ugBPiL/95MED70R1mIAsX2bU9D03VsXa/yxSHOr9BHSWAvkFGlFIDW3gpDRg6SlslRSmGYErwe1027168HeBtv6vsDlTUm8Z3vfAcnT57Erl27cPPNNzc95/t+f1EJdt0QAGPj4yiNjeHQoUMwDQNzc3O4fPkynnrqKTz11FMYHxvDzMwMtm/fjuwIvAnidueSJKFcKmFxaSnsXqppa7aQ7oXZWR1HvlWGIBCUSj5KJQ+loo9SyUe55EHXScRfuK8Mtzm3bDv0IZEkLC8tIZfPRx1YU3KQYmAQzwNYL3E+yWssX8W79nUFpWEZY9LjYL3Q4ea41lumZZqYnZ3F7OwsLMtCoVDA9ddfjy1btmB8bKxpRdFoNEKL5JgOI26W0+5mzwVDaxnnj/1oGEH4WIIg/MEf5vDgqzS87W07u/Y4WBOGWOWOJHIwioZLACgJWkY0TFoh1Bs83vTY3dN3hfsYcFvcC2GQ87qesbK1lDUSQvD444/j0qVLuOmmm7B79+6W13ieh0KHSp22VSfco4I9l83lsHvPHuzesweu4+DqlSu4NDeHY8eO4bnnn8fmTZuwY+dObJ6ZWfP1wveps34l9UYDlVotXCytU1rj1OksfuKnb4TjdF6MqSpBqeihVPJRLHhQFALTkrBpuoF/97PPAggFiksLC5iYnES1WoXrumFK52VoivTyO+IRgrouXMeBY4cTTz6fh83Co5qq9vySUSCsraW0byX+8IMd7aqJEoKr8/M4e/YsrszNQRRFXHfdddixcyfK5XLb93iuG5GouA4jSQiSJCFyNFvjMfz4j4ZVDP/t480E4UtfuReHbljBoYMvjjA1MPiquB0icjBqMSIwVFrhaOUYqm616TFODjgGOeJBRYnrqVEYtqzRdV088sgjqFQquPvuuyMnxSTaTVDJksQWCAIk5gMQh6pp2H799dh+/fUIfB8XLl7E2bNn8ciRI9CzWezcsQM7duwYXD/R5notFgqhSyFLL0ytk8DvGw+VuxIDAHBdEQuLGhYWm++1z6KEZ78zhv/+F1+FaVnA0hIsy4KmaXAcJ1rwvNyQkoMhQX0fnmXBsixQIKoz9n0fgiCE+bweE5rruqAIb97XiujFtu0oSmAYBsqlEm6++WZs3769rWAqDpORKF3X25r7JK1iI/e9mNp6rfiJd9ogVMDH/zK88VFCIYoUf/ThMlTVwL/6XrfHFobAgJP8KIgBsKreXuu2aDKlAAyVVkiWMF6fvw5bsonJcICxDlyxsI46hWHKGhuNBo4cOQLf9/GqV72qI6kGwshBpDngqYN+3EhFEUIQdDxPkixjByMDlUoFs2fO4MSJEzh67BhmNm/Gzp07Mb1p00DRhPi+BNacaWFhAY7joNForEuY/vrrBtSsJHB1PgMgTAfbjoOLs7O4bteulBykGByeacIwDBBKoasqNE1DvV4HEEYNulq7shsUTymse8hqrTdESjF/9SrOnj2LyyxKsG3bNtx1552hzWgfNw7HdeF7XmRp2gtxxzMxZpE6Cvzkj1kABT7+VxmQWNHGB/8gB0EA3vg9oyUIwguQUgDWO3IwDDlo1hskowaDQhhwsl9vB5FByhqXlpbwyCOPQNM0vPrVr+6Zj/c8D6IkNXed7HPCFkUxat3dDeVyGbfcdhtufMUrcPHCBZydncVDDz2EXC4XEYiuIsYOET5VVVEsFFCt18P0gq5DHfE975X3rWB8zMXyynDC7okJF7lsBoZhwPd9XLlyBZu3bo0WfKM0ubpWkJKDIRC4LhqVCgI2sWeyWXie1xw16Ab2pfaYZkFdzzrgfm6eHSybHdvGuXPnMHv2LBqGgUKxiJtuugnbt2/v2kGu3fajCAvzOu8XUUMhQQgbEI1o9fevf9zC7Lnz+Oq/7G16nBOE7/3u0RGEFypZMTJBYhtyIAiDRboCEuCxhN4g7m8waCnjMFjv0sd4WaPjuh27i168eBFPPPEExsfHcffdd/ecdHgLcJm18B4YfToncsiKgh27dmHHzp2orKzgzNmzOHbsGI4ePYotMzPYuXMnpqanW421gI7fzXw+D4s1QaqsrGByYmKk5Y2KQvGWN83jYx8fXFScy/r4r3/8NCRJQiabhWWacFwXZ06dwo7du0MbfMtKyUGK7qCUor60BN/3Q8ct5kYWaQ00rTlq0GUy81lPhY2oPe6K+JecUiwsLmL2zBlcvHwZAoBt27bh9jvvbBEX9gvbdRH4PkRRHKp8KmoCxGr/aWK8w6Ber+PGg19HsVDEZ/5hU9Pmfv8/5yAKwHd/12gIwqBh/VF4HPCujsDayQFtFzmQBrtmn6scRd1rND12TzxyMOTnOJDfgSgCffSDWAt4WaPDa+cTn/2JEyfw3HPP4brrrsNtt93W8dqgWHW4dJlOp1farht4D4KBIAgoj4/jtvFx3HTTTTh//jzOzs7iGw89hHwuh507duD666+Hxr/TXa5zQRQxXi7j6uJi2NzIMFAaYaieUuDQgQYGtQ7L5Xz86YefxtYtDoDwXkx0HY7jYGlxERPT01AUBZZlodjDuv2lhpQcDAizVoPvOBAEAbl8HoIgNEcNBhAW8rz6uukN+rgZ8Fe4joNz589j9syZsHFKoYAbb7wR11933WBRgjZjsC0LlFJkh6wBj5dIxf8HhicKp0+dgqZr+Pe/IKOQt/E//nqVtFAKvP+DOUAAvvsNaycIg6xYI7vptYoRR2mA1I4cCIPdOpIphV2FnZjOTLe8btCxDqQ72ABfBFmWISsKqOc1lTVSSvH0009jdnYWBw8exIEDB1rGxjsMkhg5FBB6oQBY28p1wOhBErKiYNfu3di1axeWl5dx5swZPPf883ju+eexdcsW7Ny1K1oodTrPsqKgVCyGzZmYE+Fa0wumKeILX5zE331qE46fGEzLIMsEv/s7z2PXTrPpcU1VQQiB53m4MDuLXXv3ImCVKC8nO+WUHAwAQgjsWi0SIPJJ3bYsAG2iBn1sb63tkjuiz5vA8vIyTp48iYuXLoFSim1bt+KW227D5MTESMZlsxysJElDV2QIohj5HCTXBW2JQo8J1vE8zJ47h33790OSRPzUv7FAKfA//yZBEH4/TDF81+vXQaTYBS8mMWK4rdbVtjBg5KDV3yChN9iAiXu9NQccmqrC9/2orJE3T5qfn8ftt9+O6667DgBb41IKAhYt4oQusT1e4bNWbdJQ0YMkBAHjExMYn5jAzTffjPPnz+PMmTO48I1vIJ/LYcuWLbjuuuvQKT6Yz+XCpnSui1qthskhHUlPn8ngE5/cjH/8wiQMY7jz8q5fOYE7bqu0fY5/bqZhYGVlBWNjY7AsKyUHKdqjUakAhERuWkD4xfWDoLfWoMtkNaquaINgpVLB0eefxxcvfhkncBIT+UlsH9+GWfEcvj77TZCzhPWHCBBQAkIJAkpAKQEBwXX57fiRQz+MnNLZPIUSEjrfUYoM8y8fBvEqBsLOf9vXrb6hK1E4NzsLQil27tjBX46f/ikLBMBfJwjC730gB1GgeP3rvKHGHh9/PxjVFBmMSowIdIgc9B/t8oiHxxaeaHrs7kQ/hUFFdqvj6F+DslHaD0VRIIkifN9HrVbDY489BtM0cf/992NycjJKGcS9O7odtc+M1taSVgh3srboQRKKqobeCbt3Y3FxEadOn8bJU6dwdnYWB/btw85du9pGRYulEuyFBViWFbpK9rlocF0BX/naOP7uk5vx1LfXFuL/mZ+axXe/Yb7j8zwKbNk2rl6+jFKpBNu2USwWX5D79QuBlBz0iSAI4BoGgLDxCb+JNUUNOl00nfKKIzKpad1w5y9/rV7H0aNHcfHiRTwnPY8v+v8MAJitnMMTlSc6vq8dZmvn8J5X/nbH5y3bBiEEsiyvmXHzBk793tg6EQVCCE6fOYPt27Y1kTlBAP7tT4URhL/522aC8L4P5CGggdetgSD0jVG5VXK9wUgiB2urVvjO8nMw/ObQbbJSIfpch0grvNggCAJUVUWlWsUz3/42BFHEqx94APlcbqiOiDxyMAptkiiKobfKKO85goDJqSnk83lUd+7E+XPn8Oxzz+HkyZM4cOAAduzY0RRRVVUV2UwGhmWhVq/3JAeX5zT8/ac24dOfncZKpTtB2jJj47rrbDzyaLnja970xjn86x873/OwFEUJLaBdFysrK5iYmIDruuvvSfMiQUoO+kS9WgUIgSxJEYPvO2oAhF/GfuqS1wmGaeLo0aM4f+4c9EwGt912G/7x2BcAY/htPrd8tONzhJDQHGqNUQMOXto4lBXx6kawsLCARqOBO+68s43ZEvCzP22BEuBvP7H6eRIC/O4H8oDQwOteu74EYTA5VWesa18FQRro80z6G+wr7sGk3t4MZ5hjH9jvYJ1BKcXK8jKefOIJaJkM7r3nno6VC/3A931QrD2twCGK4kg8Q5IgzMztFa94BQ4ePIijzz+Pp55+GidOnsTBgwexffv26LopFgowLQuu60adEeMIAuDhR8r4xN9vxsOPlEFpF7GjQHH/vSt4+1uv4p7DFVSrMr73+26H77de+4fvWsb//R9O9X0b1lUVpmmiurKCcrkcmSO9HJCSgz7g+z5sw4CCMGrAr6u+ogZxJOxeo655oyQMiTC6ZVk4duwYZmdnoWgaXnHzzdixYwdkUcTh6t04unx86F3dMnVzx+cs2448HEaRp+Mr4LXe0i5evIhiodC2EQz/PP7dvw0jCP/77xIE4f15CEIDr33N+hCEUVQpxLcFYCANTEe09FUYTECbFCMebuNvEI13sJGF7xlhqHwoxMSElFKcPXsW3/72tzE1NYX9+/evOXrj+z4EjE64LKzTQoWTbUEUkcvlcMedd2L/gQN4/vnn8fjjj+P48eM4ePAgtm3bBllRImtlHj0QRRFLywo+/dlpfPLT05i70n3BNT7m4i1vmsfb3nIVMzOruqDxcR+veWAZX/znyabX793TwO/85jHIcv/XiqwokGQZFvO1URRlZCZlL3ak5KAP1Go1iDTsfyDLMgilUdSgZ3lePN+duIFF+cZRe/oLAmzXxYljx3D6zBlIkoSDN9yA3bt2NTWC+umbfhJPXH0czy4+N9Ru3nnwh9s+HhACh1cojKrZCicHa5gEfGYVu2/fvg67WP3C//9+1kJAgL//ZDNBeO/v5SGIDbzmgf4JQr+3kVFOb6PUHLSkFQZIKbiBiycWn2p67J6E3qAJw9x019H5sB1oG4LP9//ss8/i1KlT2LNnD/bv3w/DsuB63po6IHq8XfOoJiTmHTLq6AGvvoqPslAo4PDhw6isrOC5o0fx2Le+heMnTuCGgwcxOT0N0zTh+gEefkTD5z6/A1/9l/G2K/44bru1ine89SoefPUyFKX9MfzA9881kYPpaQcffP/zKOQJBsrsUApd02CYJqrVKjKZDBzWffOljpQc9IDrurANAzoLj/NLse+oQfw59rfpGjhTm8Vjl57AqcpZLJ1exrnGeZypzsIObPzA3rfhvfe9G6Iw4I2d1USfPHkSJ0+dAgDs27cPe/fubZuvFAB88MEP4Ke/8O9wvt47BxfHPTP3YM/YnrbPWaYZ+jeo6siMQ/g5XssNbW5uDoHvY/v27X3sD/jFn7MgAPjE32fYvZ+CUuC97ws1CA8OQBD6wSg6MXJEmoN1SCsM0nTp28vPwgqspscOT9/Z8rq1miCt52quLRlIIAgCPPHEE83Nk5j5l0/Impr3+L4/ci+UQd0l+wFl3hrtrrny2Bjuu/deLC0t4bnnn8fDR44gk92MM7Ovxhf/eQ8uXOwuMMzlfPyr71nA2996Fbt2Wl1fC0HAza9o4P/897P4n38zg5nNNn71/zmF6Sk3er5vESs7HkWWYbPogWVZKTlIEYsaqCokxrY9142iBt3yT49cehSPXX0Sdb+Bs9VzOF05gzPVWVw25rru80NP/xc8sO2V+O4dr+97nH4Q4OTJkzh14gT8IMCePXuwd+9eaD1C+jk5i9++/9342S/+HOygf3/yrfktsH0LutycK/SDAK7jAJSuKc+aRHTjH7JtMwCcv3gRYxMTyA3QnvYXfs4ChYBPfkoHn7qCAPjt9+YBGHjg1U7z+NaAURKDUYpdWyMH/Ye3kymFA6X9GNdaUzr8Zj2sD0ZfHRr7dAvlr6J9vsd1XRw5cgTVarW5eZIgQFFVENZ4aFhy4K3hvR0hCKHr6AgJQrStLp/hxMQEpqa+C1/4Uglf/doMXK/7/enA/gbe8dar+K7XLyKT6e+7zzUoP/JDc/ihH7jUQugGOW5+PWqahlq9DiOfR61WQ7lcfsmnFlJy0AWWZcG1bWiUQmcTHQWa3RA7XCA/+LmfwCdPfWbofa84K329LgiC0N706FH4vo8dO3fiwL59AzHbXaWd+L/u/A/4nUfe2/d7PnHy7/DP57+MH9j3Dnzf3rdEJY08aqBq2khvaCLWJjyzHQdXLl/GTbfcMvB7f/HnTIAAn/xMeE7Dj1zAe96XgygBr35lqw9CUk/ST158VKvfSBHPwsdr3+DwaYVH5x9r+r/F34BjjZPUoNdGy2cxZNSmUa/j4SNHEPg+XvXKV6Kc0LKosgyHdSOlQ5qArVfLYIG5jo6EHsTOZ7tjtG0BX/zyJD7x95vw3PPdzYo0leANr1vE2992FTccbAycTYlaWKN9pGfg42XfI13TsLK0hGw2C8uyRpcyfZEiJQcdQClFvV6H5PvQMxlIrJSun6gBpRSfOvXZNe3/lVvv7/o8IQSz587h2NGjsGwb1113HQ4dPDjcal0Q8PrrX4dnF7+DTw9AaCpOBR959s/xv479Dd6x7214y643g7pk5FEDAKGYE8OnFS5eugQqCNi2detQ7//FXzBBAXzqM3ENgoDffk8Owq8Br0oQhHa+86TLDXSUYfFRC12TJkj9phWcwMUTS816g7s3tdcbDO1zwN+G9jd9fl4pcx4cppSwE5aWlnDkyBHouo5XPvhg2xbHsixDEkV4QRCmB4ZIs3muuz6+/iP0PYhvIx6tOndex999chM++7kp1Ordr5vJiUXcctMRvOG1F3HHnbtRHNJemfuh0A6ftQAAotjx+RawY1NVFY1KBY16HSsrKyk5eLnCNE34rgtVECLv8H6jBoIgQJNU2IEz1L7vmTmMbfktHZ+vVqt4/LHHUK1WsW3bNhw4dAiFAULlnfCLt/4cji0dx/GVwSoY6l4dH3vuv+Pzx76A12x9Df7VvjeO3BJaZDbAfX+hE7hw/jw2bdq0psqJf/8LJigFPv3ZBEF4bw6/8WvAK+/v4qTIbsQtYCs3wqtMsPZJPWBljJ3MogbGkJGDp5aehhP7DggQcHjqjvYvXsMEFYng4qvgmDguWkmOkBhcvHABTzz5JCYmJnD34cOdDYoEAYoshz4pQ3b2W09f/1FpDyLLZ0GA5wv4+jfG8Im/34RvPV7q+j5JonjgVct48xsv4PrrT2N+cQGXL8/hy/98Fvv378eBAwcGjn7RxO92EICowqQn2OtEUUQ2k8HCwgLyhQI2b968ftb3LwKk5KADDMOAHATIZjLgl2a/WgNQig+/5j/jp7/0CxgmaPeOPd/X9nFCCI4fP45jx44hXyjggQcfxFiXHvD9gk9Fiqjit+77T/jpf/pZ1L1629f+4i0/j8evPoEjc480Pa5Ahev5+PzsF/B3Fz6JN+15I35o/w9gMjvZdjuDgq9G+mk9m0TDMLC0tIQ77mwVwg2KX/rFMILwmRhBCAIBv/WeHH7j1yleed+AIkXm39BkAx0r66PJCETcVa+TudYoyxgxvObgkYS/wQ1jB1FS208WyWOKf2viE3y79/GoQbwnAX9fu32sFcePH8fzzz/fs3kSh6qqcBwHvueBUDqwDsQwTUxv3ryWIXeGIEAaga0ypRTzCxo+9/lt+NwXtmFxsTsJn55y8Na3zOOtb57H1FT4nVlc0jE9PY2tW7dicX4ex06cwNzcHO644w6USt1JRtNYgL4iRH1HTWJlnxldR63RQK1SQaVSwcREe7+OlwJSctAGvu+HUQNm6gGEF5w1gK/Bjx36EWzNb8VbPvMDcILBvPn/5Nk/x4qzgnfsfSv2j4UthWvVKh5//HFUqtVmRj1ixfHm3Gb8+t3vwq9841dbnjs4fgDv2Pc2vGP/23Fi+QQ+/vxf4RuXvgkAyCMHAgIHDqzAwt8e/wQ+derT+N6d34MfOfBD2Jxf282NM/RhVn8XLlyAJEnYwoVia8Qv/YIJSgR89nOrBDEIBPzW7+Tx7v/YwH33thKEntGADimHlndxMyigbV8OgYfOKY3IQYuwLrZi6itKkaxW6GGdzMeVFCPePXVX08o+Xp4are5p2GugiSx12VcTGVjnkkZKKZ566imcO3euffOkDpAkCZIkRSXQvUTCcQRBAMdxRp+mi2MN2gNCgEe/VcTffmIK33hoDIR0J6R3H67gHW+9ilfet4KkjKJQKMB2HLiOg527d2PLli144okn8JWvfhUH9u8PPSP6ILz93iMEoOVaa//CuFGagIymod5owDCMlBy83OA4/x977xknx3ldef8rdO7JGWGQQQQCBAECBECCABNIijmKkiztOry21+v1WvJatmXLsrJkb/QG2Ss5rCRSlJiTmAlGBCIRgcg5Tffkmc5d6f1QYbp7Os70ACCJox81mJ7qquququc5z73nnptCtAx87NtCUdWyowY2buhcyzN3/ZJ7n/tcRZUARwaP8p0P/pbvfPC3LGycz7qGa5kZncbc+lmsW7eOBlv0NEED4cpJV/PF+V/gZ/sfyXr9Swu+6Dwocxvn8p1rv8XxoeM8svcxdp7eiYZOghGb3LSm8MyR53j+2IvcOn09X5j/OabUVN5vHazIgZ1LpDLvgFOnTjF58uQqmsjAH/9RDMOAF36dTRC+aRGE1atyCMIEiBHzbm99R/aKEHDCvaM+RMaxC+3fMAwMLeeziHLemvbMcsSkkuDDvl1Zb1vZenX295BBCDKPOdakSjFR4nifFFVR2PLBB/T09HDVVVeVVQ6bCZfLhappFZMDe0EyofltS3BXSVRucEjmueebeeLpVs6cKS5+rqtTuOv2Hu6/J8zUqYVTrR63G5/PRyIeZ3h4mNbmZq5ft44DBw6w/8ABzp07VzKKYFDZAkIsV3uQQTxdskzUKmn8JOMSOciDdDqNYBjIGQ9xOm2u/t1ud/m+BsCNnet46s5Huff5z2XlX8vFR/37HZviK7RFPHD8Hu4T72JG3fQJNX/5rct/k8MDR9gcMld/y9uvYvWklaO2m1E7nT+8/A84M+UML5x+kZfPvDLqnDRd48VjL/HS8Ze5sfMGvrjg80yvm1HR+YgZE3ux5ku5GBgYYDgSYfHixRUdrxQEAb78H2PoBvz6pRGCoKoCf/PtIN/8epRVmQShyD1jUF2XzEoFicW2M1fjOYOnpTnIfVfm79v7dpLWRz6/KIgsb1lW+lxKblHkvRPklJhIJNi4cSOJRMJpnlQp3G43yVQKpcLUQtyagPKJHauKMsSJhgG79wZ54slWXnujkXS6+DO4+PIID9wX5qYb+vB4yrsutcEgyUQCJcNWef6CBXR0dDhRhPnz5jF37txRUQTDMNB0fcIjSG63GzUSIRaLoYxRR/JxwCVykAPDMMzIga47vcbtKgUAd7EboUCd703TrufJOx/h/ue/MCaCYGNX7x529e7h65u+zbLWK7l/1l3cP/tupo5xNW7DFnNlnrcoinxvzXd4+/Q7qIbKdVPW5J3gkuk0mqoyqaaDr67+T3wx9hv8Yv9j/Pr4yyh69opTNwxeO/kGr598k7VT1/DFBV9gjpU2KQeSKKLrekXk4PTp03g9HlpaWso+TrkQBPiTPzYjCC+9nE0QvvHtIN/86yirVprfQdGpoMoDmV5Fd0Rzh5ULEnP1Bpc3LKTGVaCErcrVFdXE4OAgmzZuRJJl1q1dS3CMCnpRFJElCV3XUSpo3pOImxqXCScHFG7pHI+L/PrlJp54qpVDh4sLn31ejc/c2ssD94WZOydedNt8cLlcBAOBUbbK9Q0NXH/DDRw8cIB9+/dz7tw5li1b5kQRDEw9UqV3UMWVC5hpIlkUiUYixOPxivQQHydU2bf34w9VVdFVFUkQkCxyoCiK2fhEkpzX8sIKfefD+mk38vgdP8MtFQ4prpuyhudv/RV3Nd5GvVhcnby9eydf2/RNLvvZUtY9eRv/a9c/cjZa3FypKPKctyRK3DDtetZPvxmvnCd0aBgkLZtku7nSpGAHf7L8y/zijp/xwNz78OT5vAYGb51+h99+5ff4i3f/kn29hRs4ZcKe7MotR9MNg9OnTzNlypQJm3gEAf7Tl2Pcdks26bMjCJu3mGRy4tYxo1H1UkYt1yGxdHomlxysbCngb0C2AHNcqPI1DoVCvPvOO/j8ftaOgxjYsKOOdhSyHMTjcbxeb1bkbMKQU1Fz5KiP7//tNG65/Uq+98MZRYnBzBlR/uMf7ue5JzfxtT87PiZiYCMYDCJZ3SPjGaF7URSZv2AB69auRdM0NmzYwIGDB50S1fFc/ZLPZ07qS3K5iMdixONj/5wXOy6Rgxw4egOXy7nZ0oqCYb1WEGWs/m6dfjOP316YIKypXcXwniF+u/mL7H5wM6/c8wy/e/lv0uorvur9ILydr77/deb89ApuevpOfrTnn+iKhUuez3iRVhQ0TUOUpFEroVZ/K3+09A/55Z2P8vl5n8Un51/5vH92E7//+r/nKxv+lF3du4seTxRFU0RUJjno7u4mkUwytbOzrO3HCkGA//SVGLeszyYIiiLwjW8F2fJB8bBjNUPhmeK+qkUOjMoiBzElxq7+PVmvFTQ/ysQ4J/dqRmeOHTvG5s2baW1rY82aNVXpxOeyxhRV18vO78cTCXzn0apXUUReeqWJ3/rd+Tz0+UU8/mQbsXh+YuJy6dx2Sy//9I/7+NefbOWeu84QrBn/vSxJEsFgEFEQiEQio553O4owe84cPvroI15/4w2GhofHfDyBMp6VnPvH7XKRTCSIx+MXtunXBEIwPqmfbIzo6+tDjUap8fnwejwYwNDgIJphUFNTUxVR24vHXuahF7+UFXYXEfk/7f+ZpfOWMn/evKzjqLrKe+c28cThZ3j22Av0JftLHkNAYM2k1dw3+y7umXkHrf7iBEOzhH6VYHh4GMVqKlNKMDWUHOKJw0/x5KGniCqF+0Rf0bKYLy38Ale1XTVq5RuPx4nH47jdbgJlCLS2bdtGb18fN99cvg31eKDr8Hf/JcArr2VPJC6Xwbf+JsqypflFqZrV9rsa0HSd4aEhEISqlLkCRLf+M5ENI+6Zcudqau/7ScHt3wm9x79953dHthdkdt6zyXHRzIWqqkSiUSRRHHc9v67rBV3xbP+HojAM9uzd6zRPWnT55VWNSMRiMVLpNB63uywX0/feew9JklixcrTep5o4c9bNE0+18MxzTQwMFCezkycluf/eHu6+s4eGBpM4RqNRNFXF5/NVJQevGwbd3d0omkbA76euwH3R19/Ptq1bicfjzJs/n7lz5pgiwzFMa5WkJVKpFP2Dg8ycPZv5CxZ8Its4XyIHGTAMg1AohCudpq62FkkUSSsKsVgMAagplFvKU1JWCk8feJbfePV3UKxV2XU1q/nFnf9KY2MjduvXfPtU1DRvn32PJ48+x3PHXmQgNVjyWKIgsm7ytdw3+27umvEZmn2jy2+0jBVnOVBVleGhIXTDoKG+vuywZzQd5anDT/P4oScZShVm+wua5vPFBb/B6kkrnYkzlUwSjcWQJImaYHELVlVVeeHFF5k9Zw7zyyw5qwZ0Hf72vwR4NQ9B+OY3hrlqWXZI2bBDolWagFRVJRKJIAgC9dUiB1t+TOTtHzq/u6avoeaefyy4/d/u/q/8w4ER8rC0aQlP3Pho8XOORpEkacyueDYMQM9DAsohB5qmsW3bNrq6uli8eDEzZ84c17nkg6IoRONxMIyyPuurr75KW1sbl1dZUAtmj5B336/j8SdaeH9TLYZR+B4URYNrrxnkwfu6WbVyiNyFdmR4GE3XCQYCVasKisXjDAwMoBkG7a2toyykbSKo6zr79+/n8OHD1NfXs/yqq8aUAqqk0kFVVfosn4MlS5dSM8779mLEJUFiBtLpNIamIQqCI3iz84OucTjr5cOa5mv4evNXeSnyOlNrJ/OD9d+isb7R/KNVzjVqqjYMXJKLmzqv56bO6/kf1/2QN8+8w1NHnuX54y8xlM4/2eqGzptn3uHNM+/wH9/+KtdPuY77LaLQ4K0f0/mnUimnh0Il+dCgO8iXFn6RB+bez/NHXuAXB39Jf3Jg1Hb7+vbzF+/+JXPqZ/OlhV9gzZQ1CJIEliK5FLq6ulAVpeKSs/FCFOGrf2KKFF97fYQgKIrAN75Zy7f+ZphlS0cIgkB1hXh6tVMKUHFaYZTeoERK4XysTkoR31QqxaZNm4gMD7Py6qtpr5InRi5csowIZXdqjCcS+KpcxtjbK/P0s808+XQzXaHiK96mxjT33N3Dfff00NFeWCtRTtOlShHw+4lGoxiKQiQSGSnhJjtCJIoiCxcupGPSJHZs387rr7/OkiuvZPr06RUdr1gprLnBSBWELTCNRiIkk8lPJDm4FDnIwPDwMPHBQQIuFwG/Hx0YHhxENwyCVUopgBlafPfdd4nFYqYDnqaBINDY0EB7ezttHR3U1dYWJAj5kNJSvH76LZ48/AwvnHi5aOjehkt0cePUddw/6y4+M/1Watzl3eCGrjM4OIim69TW1o4rjJhSk7xw7CV+ceAxuuM9BbebXjeNL1z2ea6sXYJI6ZD5+5s2kUgmuX7t2jGf23ig6/CDvw3y+pvZpNLtNvjWN4ZZahEEo8KITSmkUini8Tiyy1U8upJpQkQeN0HbgwCIbfyfRN//e+dvrtk3U3PH/8jbZjmqxLjymZVoxsgq/adrf8KattXO/sh4n4FJwGPxOLIsl4wIlULByEERUpnZPGnV6tVVi7gUQjyRIJVKIctyUXOjVDrNCy+8wNUrVtAxxp4gNgwDtm4P8vgTLby5oQFVKz6JX7VsmAfu6+b6tQO4XCXuT8NgaHgYQ9epqa2tSidQG8lkkt6+PnSgtaUFlyw70YJ80DSN3Xv2cOLECebNm8f8efMqIt+VRA+GhoeJJxIsXb6czs7O6hLyiwCXIgcZsMWI9mSnpNMYmDX2BYlBhSmFgf5+Nm7ahCRJLLr8ckRZpr2tjVAoRDgcdqxZvT4fba2ttLW302I9FMXgkTzcPv0Wbp9+Cwk1waun3uTJI8/y6xOvElfzK2oVXeHlk6/x8snXcItubuq8nvtm3c1t09ZT4y48SKfSaXTLJGq8+UWP7OX+ufdy56zbeeX4qzyy/xd5W1qfGDrJ9z74AfP987h12npuCa7HLec/djKVoisUYvGiReM6t/FAFOHPvxrFMIK8sSHTL0Pgr79Zy7e+McTSpUphW+AyTJHsfgyZ22WaRJUkHRl/L7SlAKMaLyFIWdtn/vuD3m1ZxMAlyixtupJ8w62R8zPz30LG75VMNTbhKNc6ube3l82bN+Pz+VizZs15KRl0yzJpy/OgWKfGhKWEH0/kYDgi8fwLTTz+ZDPHTxT/bDVBlTvv6OPB+3uZOSNZnkaDjFW8IFSVGAB4vV68Xi+JZJLh4WEaGxuLCpIlSeLKJUsI+P3s/egj4rEYS5curc7EnTPWy7KMIAgMDw2RTqcr6oT7ccAlcmBB13WUVAqPYWSVMALjataTiVBXF1u2bKGuvp6VV19NuLubdDqN2+1mxowZzJgxA03T6OvrIxwKEQqHOXnypCkua2igo6OD9vZ2ampqig6YPtnH3TNv5+6ZtxNX4rx88nWePPosL598nYSa39Urraf59YlX+PWJV/BKXtZ33sh9s+7ilmk3ZQvJDINkMolhGHirKMJxS27unH0Ht824lddPvcHP9z3KqcjprG0MDMLxMD/d/wi/OPErPjvvAW6dfsuocskzZ8+Cro+5A2O14BAEgrw5iiDU8e1vDnPF4hGRYuZkXk40IZ/zoR3erVZfBXOnOaWMUuFhIzelsKTxioKVKg4KCAjz/TsXuWTAMZQqww74zOnTbNu+nZaWFq5esaJ4NVIVIcuy6UioqkU7NY7HAGnffj+/eqKFl15uJJkqfi8sXBDjwft7uPWWfnze7JK9cu7Dapt45cK2VU4mkyQTibLG4zlz5+L1+dixfTvJZJKrr766rIWMABiiaIb+cpFjVy+JIpIoMjQ0RCqVukQOPqnQNM1chUkSkiCgY1qmQhHjowqiBsePHePDnTvpmDyZq666ClmSTDYrCGiq6kQmJEmitbWV1tZWFmGmIELhMOfOnWPfRx+xd+9e/D4fbW1ttLW309rSUjRv6Xf5uW/2Xdw3+y6iSpSXTrzGE0ee4dVTbxY0ZEpqSZ47/iLPHX8Rv+zj1mk3c++su1jfeSOSLpnli6KIewIUurIkc+uMW1g/7SY2nH6Hn+37OceGjjt/19CREelL9PLfd/5Pfn7gUT4790HumPEZx4vh9KlTtLW3XxQKYkkaiSBseCuHIHyjhr/5a5UlS8bQi6EA7JBoNVdwoxovCeWTg1J6AxifL0O+6EPu75miT/v1A/v3s3/fPqZNn86VV155fg2YBAGXy4Wm60U7NSbicbPDa7mGSUmBl19p5PEnW/hoX3GzIq9H55b1/Tz0QA+XL8wfWSxkipQLw1L5T9R36HG78brdxBIJYrFYaXJgkcOpU6fi9XrZsnkz77z7LtesWoW3DKIlQt5IV2YDJjDHalEUiUUiZUdZPk64RA4yIGZM9nZKIbNpyphgGOzbt48DBw4wc9YsFi9e7AzcktWGWNU0Ct3ugUCAWTNmMHPGDDRVpae3l1A4TCgU4viJE4iiSHNzM+0WWSiWsw26gjw4514enHMvw+kILx5/mSeOPMvrpzeMcjO0EVcTPHX0OZ46+hxBV4CbJl3PbZNv4ebpN07ogCqKEjdOu57rO9ey8exG/t++n3Gw/zCG9diKSIBCb6KP/73rH3jkwC94cM793NRxY9U6MI4FBqNTApIEf/HVKLoe4O13Rgb6RErk639Tx7f/ZigvQRgL9HFMtIV3mjPwFYgcDKeH2TeYbWi1svXqkrt3UgnVOucc+1whwxpY13V2fvghp06cYP6CBcy77DJnReh0hDwPMiyXy1WyU2M8HjdLhEt8L8dPeHj8yRaee6GJSKT4kD59WpIH7+/hrjv6qK2tzoSmapozVlYb9vMUCAaJJRIkUilqSgk5M65fS0sL1113HRs3beKtt95i9bXXllcRUyh6kLWJGZFJJsvvm/NxwiVBogVFUejr6sItCNTX1hKJRlFV1cl5jSIHZUQNDF1n+44dnDx5ksWLFjF79uysATAUDhONxWhuaiqqdh11iSwRWzQWM9MPoZAp2tF1AsEgbW1ttLe10dzcjFzGAzuYGuL54y/xxOFn2HD2HdTclWIe1LhquH36Ldw76y5umLK2qPNjNWAYBh+EtvLYnl9ysv80CeLEGL3iCUg+FmgL+Optf0qDr37izofydAGZUNIa3/1hDe++a0Y4NM0AdDweg29/c4glV4yfIAwND6NbJWXV8nwffv2bxHf+3PndveizBG78xqjtXj/7Jr/3/h+ObCe6+fDeLXik4ivfhCXQ87jdVVHm5xOsaVbTo81btpjkcelSphSrZLGurZHZCKqMVEUliEQiKNYYk68Z0wdbt5JIJrn22mtH/U1RYcNb9fzqiRa2bivuDSFLBjdcP8CDD/SwfFm0ooKCYuI/G/F43GkoVc1onUG24Vl3dzcpVaUmECgpXM29TolEgo3vv08ymWTVqlVl9cco9bkNw6B/YIBUOs3Vq1czZcr4bOwvNlyKHGRA1HUQRXRAU80JsmAIq8QTploDUW9PDytWrGBqnhtHstIKqlp6Ms49tgDUBIPUzJ7N7NmzUVWV7p4ewqEQXWfPcuzoUURRpKW1lfb2dtrb2goaB9V76vjivIf5/GWfpTfRx4vHX+bJo8/yztn3ssRlmYgoER47/ASPHX6COncdd864jXtn3snayWtwSdXP3QqCwNUdK1hUdzk7z37IsyeeY3PfB6O2i6oxthhb+Y1X/g33zrqbB+beR72nfkzHdELWBUhApStdSRb4iz8dBkPg3fc8Dr9MpQS+/o06vvOtIa5YPD6CUHV3REanFQrZJ+emFK5sWlKSGJgHqG4ZXL69xONxs3lSMsm111xTenKwUxD5CEFu58gxkoZSnRrj8TiBQHZ6IBRy8cTTLTz9TDO9fcWfs/a2NPff28O99/TS0lzhGGMhX9+VXOhWSraq9xyjJ2e/3096aIhYPF6UHOS7Fj6fj+vWrmXz5s289957LL/qKiaXmMxHCVtzvgfB6mYJEB2HQ+PFikvkwIJhGGZagZyUgijmf/CLPDBJq4tbLBYr2sVNkmUzr1ckX1UwsGOHTq2fsiwzqaODSR0dGJhlmaFwmHAoxO5du9hlGNQEg7S1t9Pe0UFTU5PT0jcTTd5GvjT/83xp/ufpTfTy3PFf89SRZ3mvaxN6bnc+C0PpIX5+8DF+fvAxGjwN3DnjNu6bdTdrJq1GLqNJTyWQJIl5jZexoPnPOJU+zc/3P8KW0Fbn77qhIyCSUBM8evAxnjryNHfMvJ3PXvYQTd7Ggvu1J4J817SaIXpZhr/46hCGUceGt0csulMpgb/66zq+++0hFi8aG0HIKoucyLSCmH9S2tyzJev3siyTmaC0QgYG+vt57/33kWWZ66vQI6EYGRCscHQ5ZKFUp8Z4PE5zczO6Dps21/KrJ1p45706dL1YF02D1auGeej+Hq69ZogSRU6lYU2ABdOqVomoXdU1Xhj2f3lW7X6/n+FIBE3XSSaTFQsAXS4X115zDdu2b2fL1q0sSiSYM6dw4zcxR5CZrwrGIQfRaEXn8nHApbSChXQyyXBXl1O2qFpWoLaFctbDUYQYRIaHef/99wFYfc01RfNbg0NDDAwM4PZ4aG9rG71BEafEUedS5DKmVZXucNgkC+EwqWQSWZZpbWmhrb2dtvZ2/F4vOoVDaSf7T/Hk4Wd56cwrfNCznXLWSs3eJu6aeTv3zbqb1e1XI5XRsKcUFEVhOBIBw6Decqw8OHiYn+9/hPfObkTTNYQ8a0eX5OK26bfyucs+S5u/FTCv6fkUohmG4dTgqyp867tB3t+YvbL2eg2+++0hFl1eOUHQdJ1hawVTX1dXtc82+Ouvkvzoaed3z7Lfwr/mP2VvkxrkqmevybovHrv+pyxvuark/u3Wtz6vF0+VFN92eV1XVxcffPABwWCQVatWnT+RqmFkVYwUGmaj0ShpRcHr8WSdm24YPPLIK4R67uSNDXM5c7b4eTfUK9x9Vx8P3tfDlCnlN3YqC0U8InRNIxKNYhhGQYvjSo6jU1zzMTA46IgSmxrzk/2SI5Nh8NFHH3H48GFmzZ7N4kWL8j4ro0hKnrE4EosRiURobG7m+htuKHXkjxUukQML6Xic4XA464GutSyUS92wNnp7e9m0cSM+v59rVq8uWYIUjUbp7e1FkmUmTZo06u8VX5oyy46GhoYIWVqFgf5+DKC2ro621lZaWltpamwcVQo3ODSEqigEAgH6tQGeO/YiTx19ji3hrXmPk4s2fyt3z7iDe2fdycr2FYjC2EKQuqYxYBlTNdTXZ5Ww/ezXP2MHH/JhdHdB8iKJEus7b+bheZ9lSvD8ljpmkgOAVErjuz+oy0sQvvftIS6vkCBomsawbZ1cxTaygy98heT+50fOb/nv4rvmj7O2eeXM6/zBxj8a2UbysuOezXm7cuYiaul7/D5f1SpgdF3nyOHD7Nq9m0mTJrF06dIJEcyVDXtiySHyqVSKeCKBKIoEAwEMA3buCvDoLxt47Y1GNK340n/J4igPPdjDTTcM4PFM3FCuW6LDXCjptHn+gkBwnAZW5TifKopCd08Pmq7Tlq9Sq8zySzAryHbt3s3kSZO46qqrRt0f5RgixeNxBoeH8fp83H7nnWUd9+OCS+TAghKNMtTTg6rruGQ5y+d9FDnIwyDPnT3LB1u30tzUVHZNbSKRINzdDYKQV5MwpktT4XtSikK3lX4IhcMkEglcLhetbW1muWRbG5IkmStSq5lPJss+HTnDs8df4Kmjz7G9e2dZx5wU6OCemXdw78y7WN62rDIHM0sEpOu60/8CTCHeK6+9xjWrVpEOKDx64DFeP/VGwVSIIAjcOPUGPj/vYabVTiv7+ONBJjkwDAPdMFAU+O73a9m4KXtS9PnMCMLlC8snCIqiEI3FEEVx/Ku4DAw+90ckD77k/O69+t/hW/Ufsrb55o7v8tMjjzi/X9O2ip+u/aey9u+QA7+/Kp4ihq6za/duDh8+zJw5c7j88svL7uR53mAYIIoYVrRnaNjgnfen86snWjl8pPiiwu/XuOMzplnR3Dn5fUuqf7r5hYnJZLIst8ei+6ay5mM9PT2kFAW/zzfqPhcEoaLKsq5z59i6dSsNDQ2sXr161LhtG40VQiqVom9gAEEUueOuu6rmiXMx4BI5sKAMDzPU10cylcLn8zkpBcghB3lyuv39/bzzzjtM6uhg2VVXORNWKaTSaUKhEIqqMiPXB3ysyuhxXE4D6LUNmEIhBgYGAKipraWuro6Ojg46OjoKCo9ORk7z9NHneProc3zYW7z9so2pwcncPfNO7pt1N0tbrihrgBgYHERVVWqCQWRZxgAOHTrE3r17ufOOOxwTq3PRLh47+EteOflqwQoMAYE1k6/lC/M/z+z6WWWd81hh6LozwOoZ+gBFge98r5ZNm0cThO99Z4iFC8ojCPYqtBo2xJkYeOYPSB1+zfndu+o/4Lv632Vtc9srd3No6LDz+59c/h/5gwW/V9b+I1adeKAKFRaqqrJt61bOnTvHokWLmDlrVlmK+wuFg4e8/PSRWl56tYVEoniUYO6cOA/e38Ptt/UTCJznz2N9h7mjSzwWQ1HVMVUqFNMXFEM8Hqd/cBBBEGhtbs4ajyolB2BqUt5//32aW1pYuXLlKO1HsXsnnU7TOzCAIAisue46WlpbKzr2xYxL5MCCMjjIQH8/iXicYE0NtXV1jmCvWFohmUjw5ptvEggGufbaa8smBmCG0c6cOUNaUZgxbVpZOcqyMI73qhlMOZVK0dXVxanTp+mzQnket9sUNba309raWnBAODp0nGeOPc/TR59jT99HZR17Wk0n9866i3tn3skVzaPzgLb+YnhoyFk52Md/9513QBC45pprRu23O97Nrw4+zosnXiKtFc7HrupYyW/M+xzzmuaXdb6VIjNykDvQKgp8+7u1bN6S/X36/SZBWDC/NEFIJpMkkkncLtcolft4MPDU75E6+qbzu++aL+Nd/v85v/cl+1nxXHa53eM3PMrS5iVl7d/u6BcIBkvahBdDMpl0mictX76cltZWx/goX7+FC4VUSuCV1+t47FfN7NxV/Dq5XDq33GSWIV6xOFZVnWmlMHR91MQbtYidz++v6No5Oq4xjFW6rhMOh9E0jbq6uqx28WMhBwDdoRAbN2/msrlzWbhwYdZ5FtMdpNJpBq3utIsXL2b23LkVH/tixSVygHmzaUND9PT2oqRS1Dc0ZK28CpEDTdN49+23SaZSrLv++jHZCZ8+fZpkOs3UKVNGVk3VrKeu8PJqZD8M8XicRCJhijQVxdQqhMMMDQ0hWGmGdqsCoq6ACO7w4BEzonDsefb1HyjrPGbWzuDeWXdy78y7WNg433wgLYeyeDxuToJuN36/H0VReP6551i0aBGzZs8uuM++ZD+PH3qCF46+QEIrbFxyVdsyvjD/8yxurn5vBlVVETBbZOdem3Qavv29WrbkIQjf/84g8+cXL0ezG/p4PJ4xh3jzof+J3yZ9/B3nd9+a/4R32W85v//69Mv8h01fGTlf2ceOezbjKlDVkAu79XfQigSNBbYQWDcMVlvNk+w8eb5J7ULg1Gk3v3yiiaeebWRwsPjnbGke4ppVu/njP6qhoV7NKp+8YJ/EMMzKKvsZN0YaLgVraspaGNnnXkkaIR+GhoaIRKO4XC6am0Za0I+VHAAcPnyYvXv3cvXy5VkeGMVITCqdZnh4GFXXmTVzJlcsXTqmY1+MuFTKCGZXREZ6KRQMbWamFAyDnTt2MDg8zLp168bcZ0AQRQRMlzH7uFV9+DMe5LI2zzy+YZBKpTAMA5/Ph7uujqbmZhZefrmpl7CaRR06fJh9+/fj9XpNnUJrK61tbU7+bU79bL667Ct8ddlX2N9/kKePPsdTx57l8ODRgudxbPg4/2Xn3/Nfdv49c+tnc89MkyjMa5jrCIfsEtCe7m40w6Ctvb3oZ2vyNvL7i3+Xh+c+xNNHnuGpo88QV0YbKW0Lb2dbeDuLmhfxxflfYGlr9ex1Hd9/wxhVU+F2w9e/Nsy3vlvHBx+M5C7jcYG/+Ho9P/jOIPPmFSYIE2GdDIzqrZBbypjrb3BV87KyiQFklDKO5dwwr//mLVvw+3ysXr16xEjJ/q5LVPNMJFQV3n63lsceb+K9jcV1IKJosPbaQR5+sJehoSeYNKmdhnqLoGYuGDIqIc7rp8opa3QEhFaPgVLI9C4Y7/Pk9/uJxmKkFIW0ooxY3I/jOs+ZPZuhwUG279hBsKbG6c5ZsseE9VlisdKdcD9OuBQ5APRUinQ0yrmzZxFFkclTpmR5AOj2g5kRUjp86BB79uxhxYoV43LGCoVCRONxWpqbTbVvOeWLY0GZl9lg5KFPpVJEo1FEUSzaxlbXNPr6+83OkqGQo5hvampy3Bprc6IKhmHwUf9+kygcfY5jw8fLOr95DZdxz/TbubFlHTNqZlBfX8+O7dvp7u5m/S23lLUPG9F0lGeOPssTh58iko4U3G5+4zx+Y/7nubr96nEPapqmlcyBp9Pwre/U8cHWbHGTP2AUJQiRDNV/NUv2+h77AsrpEQLgu/6v8F7xeef39S/dwdHIMef3ry76Cr83/3fK3v/g4CAAtTU1FdfKnzpxgh07d9LS0sKKHCGwHTG4EL733T0yTzzdyONPNhEKFxepNTcr3HNHiM/cdobOqSBLEs889xxLr7ySadPKEMuez6hCRlmjkk4Tj8cRJYlgkTTWeFIIxdDX10cimcTr89GQUZ0znqNoqso7775LOpXi+uuvd7wUCj2vqXSaSCSCqmnU1tZy4/r14zj6xYVL5ADQ4nGUWIxQKIQgSXS0t2fZDmuQdWOHw2Hef+89Lps3j4ULFozr2N3d3QxHozQ2NFBXV1fdlEIhFLnkmeRgaHgYRVHw+/34Kqg/j8VihC1fhZ7ubjMnaTWLsrUKtpDQFjrt6fuIp46ZYsZT0dOlDgHAvLrLuG/WXTScquXKaUtYvHhx2eeYibia4Lmjz/PEoScYSA0W3G523Sy+MP/zXDv5mjGXYmq6niVMLIRUCr757Tq2bc+eWAIBg+9/d5B5l40mCLZ1ciAQKNwsbAzoe/RhlLPbnd/9N3wDz+LPAtCd6GHV82uztn/qxse4oqm8a2EYBkNDQwDU1daW3U3SMAwOHDjA/v37mT5tGlcuWYKQW4pm3VuFyvCqDcOALVuDPParJt54qw5VLU4kV66I8PCDfdywbgjDSBOLxxEFgbSi8OaGDVy/bl1RUp4XglC4cVCVYH+fyWSSdCqFVKBSwRYc6uNMIRRCIpmkv68PQxBoa2lxhInjvdaJRIK3NmwgGAhw7Zo1I7118njKxBMJYvE4umEQ8Pu55rrrsjQQH2dcIgeAFo2SjMfp7+0FUaSpsTErTaCB04QjGo2yYcMGmpubWbly5bhv+r7+fgaHh6kJBGhqajovTV+AogRB1XVURWHIKl+sr6sbszWqrmlmsygrBRGJRBCsZlFtlrVzTTDoREoMw2Bn7y5Ho3A2dq6s4yyoncf9c+/l7um301lTxDO/CFJqkl8ff4nHDj1Ob6K34HbTajv5/LzPc/2UtRUbO+m67kQPSp5PEYLwg+8NctncbIIwZOXua2pqyuqpUS76fv4AStcu53f/zd/Gs/B+AJ479SJf3vynzt+CcoDt92wq2xnT0HXzPoOCmpVR79E0tu/YwanTp1m4YAFzL7ss//usVe5ERw6GhiWeea6BXz7RxPETxUl0bY3KPXcN8PCDfcyYPtIVVdd1hiMRVFVlcGCA7Tt2cNddd43dm8EqlZyQiIKuoxkG8VgMVVVxezyj7J/tUt2JRigcRlFVamtqTJ+IKu13oL+fd959l86pU1m6dKmpZcgh9IZhEIlGSaXTCIKA1+PhiqVLac1naPcxxKeeHOi6jhGJEIvHiUWjGEDA788SJNriMUVR2PDWWwjAunXrqtLYZnBwkP7BQXw+H63Nzec3h1jg0quGQTQSIZlK4fV4xqV8t1MkhmGArhONx02tQihEd28vhqbhDwRob2+nra2NlpYWZ0DUDZ1t3Tt4+thzPHvsRbriobKOubR5CXfPuIO7pt/O5OBoc6lSSGtpXj35Gr84+BihWLjgdpODk/n8ZZ/lps6bkAt0KsxFJeQATILwN9+uY3sOQQgGTYIwd84IQRiww/MZ/g/VQO9P70ENj1Sc+Nd/H8+CuwH42rZv8Mtjjzt/u75jLT9Z86Oy951JDspZJSvpNJu3bKG/r49lV11VMqWnqCpGpoiuitiz18djjzfz61fqSSaLf9+LFsZ5+MFebrtlEJ8v/7WPRiKkVZVjR48SCodZX80QtZV6qErK0orIDNslqH5/lpA0n9h2ojA8PEwkGkWUpKqPn6dOnmT7jh0sueIKZs2aZZKDjMiBqmnE4nHSioIkirhcLubMncuMWRNbEn2+cIkcqCpGLMawFUI3DAOXLFOX4b6nWTqAjRs30t/Xx/XXXz9uNzAbkUiE3t5eXIUslM8Hcm4BVdPo7+9HNwzq6urGpCC3b6tit5emaU6zqHA4TDwWQ5QkWpqbTbLQ3u4QE93Q2RzayjPHnue54y8STnSXdR7LW5dx9/Q7uGvG7bT7K/t+VU3ljdNv8uiBxzgTPVNwuzZ/Kw9f9llunX5Lye6UumGYjbYqeOxSKfjGt+rYsSN73zVBgx98f5A5s1X0zEm2itbJAL3/eidqz0iVSeDWv8M973YAbvz1bZyInnT+9hdX/Cm/c9lvlr1v3XZ1BOpKkINYNMrGTZtIJ5OsXLWKpjI662maVtXIQSIh8OLLDTz2eBMf7SsePvZ6dW6/bYDPPdjHwgWlzYqSVkviHTt24HK7WXl16XbXFcMSM4530Dd0nYHBQQwrUiUCuiBU7FkwXmiaRigcRjcMmhobq25CtGf3bo4eO8a111xDS0vLiPYMU5OVTKediIIsSUyaPJnLr7iiqudwoXCJHKRSGImEs+qylanBmhrc1qSo6Tp79u7l8KFDXHPttbRV0eginkjQ3d2NIAhMnjRpQlY4ZcO6FaLxOLFYDFmWqa3Qac+wNRM2y67g2JFIhJClVejr7TVLpOwW1B0dNFuGJ5qu8c6Z9/nVwSd58eTLRIzSTU8EBK5uW87dM+7gzumfodXXUvapabrG22ff4dEDv+D40ImC2zV5m/jsZQ9x+4zb8Mr5w8uGYZBWlIqV+akUfOObdezYOZog/PAHg8yYnpoQ62SAnn++Fa1vpLIk8Jn/invurYTiYa554fqsbZ+9+Qkubyhfh6OpKpFoFEEQTM1NAQz097Np0yZkWWb1NdeUTc51TUOtAjk4eszDLx9v4pnnG4lEi4f6Z85I8vCDfdx9Rz+1teVPlqqqEonFeOftt5kxfTrz5k+M34aDcQgZNVV1tCI1NTUXtFS0v7+feCKB1+OhvqGhqvs2DION77/P0NAQ69atwx8IOONkLBZD0XUkQUDVNCRJoqG+nhWrV1f1HC4UPvXkQEsk0BIJhoeHEUQRt8tFKpXC6/U6IptjJ06wfds20+SiSB39WOC4JGoa0zs7q7rvscDQdfoHBkirKjU1NXlbyY56D4wIKat0OymKQm9Pj+OrkLS8Flra2mhvbaW5pYUzZ86wfddOGpY28krX67xw8qWigkIboiCyuu1q7p5xJ7dPv5Vmb1PJ94AZvdh4bhM/3/8ohwcPF9yu3lPHg3Pu585ZdxFwZa8uDV03ycEYSGAyJfCNv6ll54fZ16S2xuC73+mjtXUAscQkOxb0/ORmtIETzu+BO/4e9+ybeObkc/zJlj8fOQ9XLdvufr8iHYaqqk5FTCEieu7sWbZt3UpdfT0rV66sqDmTruuVt0S3kFYE3nizlsceb+aDbcXJiCwb3HTDEJ97sJflV43RrMgw6O3rY8OGDSxdtoypU8emnRkL7Pux3Kc3nU4TjUYxBIHgBRbgpdNpunt60A2D1nz9FsYJJZ1mw4YNiJLEurVrTTG1YTAcjaLrOl6Ph2QqhSRJBPx+Vqxe/YmwUb5EDqJR0omEuVJ2ufC63USjUSSXi7qaGvoHB3n9jTeY1tnJMkuYUk2oqsrZc+dIplLMnD69bLX2REFRFAaHhjB03WThub3rM+CQgkqjBJXCMBiKRAh3dREKhejr78fQdURZRtU0Vl59NS3NzWiCzrtdG3n2+PP8+uQrDKVL91iXBIlrO1Zz94zbuX3abTR46ss4HYMPwlv5+f5H2Ne3v+B2Ne4a7pt9D/fOvocat9WnYxyTFZgE4a+/UcuHu3IiCDU6X//aaWbO0op2Ah0Lev7v9WhDI2mVwF3/B/fMdfz51r/i8eNPOa/fNOkG/vHa/1XRvhVFIRaLIUkSNTnnbRgGR48eZffu3UyZPJlly5Y51tjlYizf97kuF796soknn26kt6+4rqijI81D9/Vx/739tDSP/braOHX6NFs2b+baNWtoaiqPtFYVtjah0N+t6SKeSJBMJhFFsWSDufOB7u5u0qpKIBCoqnW4jcjwMG+99ZYjRFdVlXjSNFLzejxZzbMWLlpEw4W4dlXGJXIwPEwiFjPFd14vXq+XQcsru7aujjc3bADDYO26dVUVeWXi9OnTJFMp2js6KioZnAjEYjHiVktnu3bZvkWyzEDOR8llASjpNOHubrZ88IEj8HPbzaKsCgjRLfH2uXd55vgLvHTqVaJK6dSDLMisnXQtd8+4g9s611PnKb4CNwyDnT0f8sj+R/mwZ1fB7fwuP/fMvJv759xLrbt2XOQATILw9W/UsWtX9sRVU6PxN3/dxaLLR3scGJZuJjO645C7jNez+tdbrw//y00Y0RFhpvsz/xOp8xpuef1OzsTPOq9/bdFX+dKc30BgxNBIEIQRQp35bwtK2izhk3L6QRi6zp7duzly7BiXzZ3LgoULx0TMyyUHug7vbazhscebePvdWnS98LEEweDa1RE+91Af1107TDWbPR44eJB9+/axdu3aUWTpfMN53jNEeIauYwgCsVgMVVGQZPn8tcEugmg0ylDE9CqpZto3E11dXWzauJEVK1bQ1NxMWlGQJQnZ5TL9Hixy0Dl9Op25vXI+hvhUkwO7UiFilRAFAgHcbrfz+8DgIDu2b2ft9dfTVOVcViZC4TCRWIz6+vosM48LgYGBAdR8TXCsicIRHF1IbQRmDvq1N95gyZIl+Hw+BgcGCIVC9FvNourq6kxb57Y2fHUB3j73Ls+eeIFXTr1OTC3tZOYSXVw/+TrunnEHt0692Vn5F8Le3r38fP+jbA1vK7iNV/Jw2/TbuH/WvTSVmcrIhF23bxgG8bjBN7/dyJ692WQyGFT5xl93Ma0z5bxnvEj9/FZI9I28sP7vCTVM5o5378/a7rFVP2VOTXlpN3uiVxWFZCqFS5YJBoMIooiuaXy4axfd3d0sXrSImTNnjjmiZlhVRoXQ3y/x5LON/OqJJs6cLT7JNTSo3H9PPw/d38fUKYV7dIwH27Zvp7+/nyVLllTk+zBRMAxjpIwv45m3+2F4vd4L2wrbgq7rhMJhVF2nob5+whZZG99/n0g0yqqVK9Et51hBEByPimAwSHNrK/PG6X9zMeDTTQ4UBSMed8LotbW1SJJEIpkkHo/zwZYtZp5zIlTDNgyDgcFBBgYHcV/IigXMEG+m4j1TS2Do+ui85EQ4OZaJ/fv3c+DAAVZfey1ul8sRqKVSKcLhsPlfKORYq7a1tdHW3k5tYy3v9m7kueMv8tqZN4irpVXkHsnDDZPXcfeM21k/9SaCrsKlnQf6D/LIgUfZeG5T3r+rmopH8nDrtPU8NOchWv0tWZO+/dMxS8p4LfdRTaYEfvjDyezbnx3Wra3V+Ku/PMO0zvwTmADZ6SJrRS/k/tv6PfpPazGSg877XXf8I8+pZ/n67m85r9W76njzxpcRMRsdGVY5W6nBJa0opKxIlc/nI51MsmvPHhKJBAsXLMiqSBBFEUEUEQUBURCcfzuvWX/PhKHrKDmRA8OAHR8GeOxXTbzyeh2KUnwCXnZllIcf7GP9TUO43RM7XG7YsAGvx8Ocyy7D6/VeuNx1ZkTJRkY55ODQkFmpEAxeuF4PORgcHCQai+Fyu2lqbJyQYwwPDfH6a68xb+FCOjo6qAkG0XWdWDyOIAjUBIP4/X6WrlgxIcc/n/h091awnOrsic9OG7hkma5z54jF46xetWqUK1Y1YQBujwdBEEinJ2Y1Ui7SioIBeFyurAEesr3QsxTOF4gghEIhWltbEQUhq1TN4/HQ2dlJZ2cnuq6bEYVwmFAoxOlt5qq+saGBP2n/Q76x8Gtsi+7g2RMv8MaZDSS1VN5jpbQUL516hZdOvYJX8nDTlBu4Z8ad3DT1Bvxy9sQ8r/Eyvr36mxwdPMYjBx7lnTPvYmAgWf9z40HWJd4+/i4bj29mdfsqbulcT7O/dFmeDXtCrAmKfP2vevjO91r56KORldLwsMR3vjeVH36vn+nT1KzQ/lhC81EjW+3v9QfYcTo7jXJ16wrqagtHvTLvpUyik0wmEQUBWZZRFIVtO3eCYbB8+XKCgUBW90pd100DnhLnK9hEIYPkCKJIIuHi+V838tjjTRw+UjxPHgho3HW7aVY0d07hJl1VhWEwPDxMy+zZZr8VRTm/5MBeCFj/LvR3xWoeZn/P6gQ5IFYCQRCcfgvJZBJVVasuTAQzIjlpyhROHDvGpEmTstNmGSWOnwR8uskBI817JFEccekDjh8/Tnt7O/4JELfkwmORAyWdRrNKYi4E0uk0hmEgu1xmvrFEzXJWr4SJPrkMpFIp+vv6WGJ1QNOslXXuACWKIo1NTTQ2NbFgwQKSySRhq/rh8OHDKPtVPB4P/77t/+PP13yFD9N7ePHMK7x55i3Sen6iltRSvHDyJV44+RJ+2cf6qTdx94w7uGHyOrySxyyd03U6PB185fI/5qHOB3jp2MtsCW3FwEBFJVPiuTG0ic2hLVzVtoxbp9/C5OAkZ2LL/Jn570wEA/C9b0f5i7+EffszCMKQyJ9/rZG/++Eg06eNs5RPz36/IUhs7tmS9drK1uIrJUEQnOcr8yqJkoQsy0SiUT7cuZOA38+q1auzRG6GJXrV7Z+Z/7aIhh1dsbe3n2vdMDhw0MuTz7Tz6mutxBPFh7x5cxM8/FAvd9w2SCBwfmv2o7EYmqZRX1+PIAgjfhgTPfFa31u55Yj2dyvKMoIkIVG498D5hMvlwu12k1IUYvE4dRWWYZeCPcbMmj2brlCIs6dPZ5WbGhnbfRLw6SYHuu7UQGeqoI8dPYqiKMyYMYN0KjXS5a3KsG8hSRTNlZOqkkylCFyA0iBFVZ3BaCzOj6PqpSdwUAuHQhhAR3s78UTCdGzTtJJKdq/Xy7Tp05k2fTq6ptE/MECoq4tQOMypU6dwCxK/3fgb/NGy32evvo9Xw2/y9rl3UfT8Oeu4muCZ48/zzPHnCch+bmhfx22T13Nt62rHDKnV18a/Wfhv+MzM23n55Mu8eXoDCgoaGnrG/34dfomXwi+zZtIaPn/ZZ5lZN7Ps78PnM/jaX4T4znfbOHBwZFIdGhL56p/X87c/GB9BMHI+/+l03yi3ylLkoPDODc51dXHowAFaW1tZvmLFqPtPEAQESaJU9j2TRCQTBi+9WscvftXErj3FCb7brXPj9T08cG+YJYvjSJKIJEkYhnReV8SRSAQD0ylSVRQ0y6NhIlbAQMWkwIZmpWlcsuzYytu6hAsVQbA/gd/nI51Ok5qAKKxofUavx0N7ezuHjxxh1qxZSJnNvoziTdU+Tvh0kwNGGK/dDS6dTnPw4EFmzJiBz+MhlUrh9ngmplIh46F0u90kUilS55kc2CHEZCqFAbjc7qwQdKUs2CEJEzhIhLu7aaivx+v1kkqnTdfBMshBJkRJorm5mebmZi5ftIh4PO7oFM4ePUOtFuA3PA/w/132JfYaB3hr4F02dm9GM/JPsjE1zvNnfs3zZ35NjauG9ZNv5M5pn2HtpGvxurw0NjQwt2M2D17+AL88+DgvnXhpFOkwMHjn3Du8c+4dVrWv5HOXPcy8hsvK+jwej8af/9lZ/vbvOtm3fyQUPTgo8md/YRKEaZ1jJAg5kYMPhrLLN5s8Tcyprdz/wzAMDh46xLFjx5g6dSpXLVs2LgGeIAicPOPlF79q4Mmn6xgYLH4/TJmc4L67Q9x2Sxf19eaEl1aAjMtiaxkkSXJ+StLEkIbBwUHcLhc+n4+EFf2YkPC4lR4Yy2RuWA6fumE45yXYqT07OnQhVs7WMb1eLwwNoaTTE/LdJa0W9nNmz+bc2bMcOnyYBXnEhxcyAlwtfOrJgc2C7Qt58NAhdMNg3vz5aFav8EQiUbQl6ZiR8SC53W4kzBzs+YBNCnTDQMAsKcMw8GSw4LGQA+e99nFySqHGG00wdJ1zoRCzZswAQJZlVFUdt0Wu3+9n2rRpTJ48mXQ6TW9PD909PfT19dERb+ULwgP8xuTPsl84yKbYFrb270Av0PsuokR48sQzPHniGerddXxm2i3cPeNOVrevpM3fyn9Y8gc8PPdBnjjyNC8cf4FUHq3DptBmNoU2c1XrMj5/2ee4vGlhiS/GwOcz+NY3+/nrv2li376R6zgwYEYQ/u6Hg3ROrex7MgwdjOzPuWXwo6zfr25dXvEko1vNk06fPs3s2bO5bO7cMRMDVYU33wry6C8bePf94lECUTS4fu0wn3uwl1Uro4giYPjRrHSFpmnmv+2fVlQq12VRFEVkiyjIspyVlhwrIpEINTU1CJj3dcqa4KoBw3rOM6MEYyE4TkohQ6MlYH4fWRolUTyvVsr2OCVJEi6XC8OKHlSTHKiqalrs6zp1tbXMnj2bo0ePMtMai8AcVwUw+3lcIgcfX2TmJmVJIpFIcPToUebOno3X40FzuVAsFppyucpyC6zg4Fm/etxuREmacFFibs8DAbImV1fGZ7RFieNZJWXWuGd6JNivVYr+gQGUVIq29nZghNRpYxiI7LCtqijmd5Cxj9r6emrr65kzdy6pZJKB/n56+/pY0DuHy/RZfLHlIQ56jrI5vpVt/TsppMsfTA/x6OFf8ejhX9HoaeAznbdy17TbWNGynN+7/Hd4eM6DPH30GZ459jzxPCWW27q3s617O4ubF/OFuZ9jScsVea+H/d0G/PDdbw3xl1+vY9/+0QThb39QIUHQc5T+wOaBPVmvrWqpLKWgpNNs2ryZgf5+Fi9e7NhiV4pwt8yvnqjnsSfqCYWKp8JaWhQevLePB+/vp70tJ00kCE5EILd8tyBp0HXSug5WmaQgCCZZkGWz9l2SKr6/h4aGaLaqM2RZdp5NQ9fHRpxy0gbVWM/bZCV30s1dSGRVN01wJCH32B63G0VRqh6FtVMVLpcLSZKYO3cux48d4+ChQ8y0my1ZiyFV1z/2k+vH/fzHBdV6sEUrTHhg/34kSWLOnDmAqQXw+HwkLTcwtyXUqwaMnPCb2+NxclrpdLrqKuViYhm7SsGV8/lsAVy1Hu68RME8qbIH0lAohMftpsFq0mOvXrQyVlh2mNbWV+TLDYqW/sMly+aK0CIf7RYZ0VSVnt5ewqEQdeF6FmrzeLD2bg55jrE1tZ1dw3sLHr8/NcDPD/+Cnx/+Bc3eJj4z9RbunPYZvjjvN3hg9v08c+w5njn6DMNKZNR7d/fuZnfvbhY0zOdz8x5mRcZqPbPkTBAEAgGD7357iK/9VT37D4w84v39IxGEqVPKJAg5KYVTEnSn+rJeW9lafqlvLBpl48aNpFMprr32Wtwez0hIugwYBmzc7OfRXzbw2hs1aFrx962+OsrnPtvP2usGcckV3sdFSINqE0uLWBuGgWLdW2CSbocoWD+LfUZN14lEIs4kY9+Huq6jKAruco2G7IqDCZqQVU3DgFEpvGKEVRCEqlqrl4LH6yUWi5kpR10fc7v5TCiWBkTXdTw+HwgCLllm7mWXsW/fPiZNmoQ30ynyEyBK/FSTA3tCEUWRSDTK8RMnWLRoEXLGQOD1eEinUmiaRiqdxlstN7Ccm0cUBFwuFymL8VaLHJTTHdGuUsh7zAnKIRasdChBFEKhEG3t7c4Dnxk5yB0INIsEOGQgz+eww8I2GSg1kEiybJortbez2DCIRaOEQiFmh2axovdK+moG+EjYzw5tF/tiBwvupzfZx08PP8pPDz9Km6+Vz3Tewl2dt/OvM/+ZF0+8xJNHnmIwPTjqffsG9vP1Td9gTt1sPnfZw6zuWIWhj3wu+/wDAYPvfWeQv/jLeg4czCYIf/rn9fznHw4yZXJpgmDkRA625dz+rd4WZtRML7kfgIG+PjZu2oTL7Wbd9dcTCAYZtpr3lCLdg4MiTz1bz6O/rOf4ieLPYF2txv33DvK5hwaY3mmm6TS9irexVXopyzJ4PE6EQVVVVE1Ds+411Rb5WqVtmURBkuWsz2yLEesyXBFll8u5d0uRAyOj5HOiYOsNjAy9gQ27tDHfOJPXYbXK55UJj6WbspucjXfMNixNlm4YeN3urAXTrJkzOXr0KMeOHWPBwoXO69XsBHqh8KkmB2pGSmHPnj34vF5mzMxWiQuCgNfrdepn3W434gSJ7VxuN2IySTKVqop1aq5dbj7YLW0FwD2GKoVqoFyikLC6Z2Y2v7LL/DQr4gI4g3I+MiBnrubKIAOlzjtYU8Psmhpmz5mDqqr0dHezNHwlN4du4Ix4lp3qbnYZezmcPFpwP+FEN/9y8Gf8y8Gf0eFv547O2/jysi8Tipzl8SNP0pvsG/Wew0NH+NYH32F6zTQ+N/thFtUswiVlP86BgMH3vzvIn/9lPQczCUKfyJ/+WT1/98MBpkwukY4pQQ5Wtq4oK5p29swZtm/bRn19PStXrXImu8z0Vi4MA3bv8fLIYw288FItqVTxa3XFogSff3iAO24bxus1KxdGMlgTMzFZO3ciDPbXo+m6Q05Va8Wp5mgXZFE0owuyzNDgIBgGNRkOqS5ZJolZSTSKNGc82+drjapa44QginkF2oIomrn2ArD9Laot5swVVgqCgNvjQU8mzSZ64yQH6XTaTJNkLKBsMiRJEvPnzWP3nj10TpvmpDEukYOPOezIQTQa5fTp02Zjlzw3vdvjQU4mUTWNVDI57kYjhR5mj9uNyPhNNJxBo4zBMGWlFGSXK29e0xYxna8SpWJEIRwOg2HQZrlI2r75qVSKeDJphl8zoh/2w2tHBeSc1Vq1IcsyHZMm0TFpEoZlaLM2tIZwdzf7w/vZmtrJh8YeTiqnC+6jKx7ixwf+hR8f+Bcm+yfxmc5buMbdyKazm+hOdo/a/kTkJP95539ljm8Ot05bz001NyKLI491IGDw/e+YBOHQoZHX+/pEvvpnDfzdDweYXIQgGNoIOTCAHTnBpVIpBcMwOHL4MHv27mXqlCksW7bMqQzKTIdkkrR4XOD5X9fxyGP1fLSv+LPm8+ncefsQX3h4kMsXnCezojIgiSKS2+3cj/a9aqe2NF1H1XVUSzjX09eHz+dDU1VT7GeRDVEUHWIh5/nezidUVTXTjwVEfkIZ401mKqwaKcssE6IMeD0eksnkuEsadV0nZVUo+LzeUSTEMAw6p03j0JEjHD92jFarr8MnwevgU00OVMvpq+vcObxeL512y+Qcli4APr+fSCRiRg/GW9pY4MZxezwIomhqAMYgQrJvSLsCoRwo1o1fMGpQ4OE7H8glCuFwmLr6enTDIBKNmsphu67Y+ulyubL0Ahfy3Ovq6qirq2PuZZdxdWoFt4ZvJRQKsfvcHjZGt7BT281ZvavgPs7Gz/HjA/8CQGdwKpc3zKc/1sdQajDHsVKkO9HNPx34Fx45+Qs+O/ch1nfe5HgtBIMGP/juaILQ2yfyp6UIgjFCDo7L0JcjwL66ZXnB8zd0nV27dnHs+PH8zZMynwNB4PARN4/+soGnn6sjEimu9J49M8XnHx7gvruHqKnJf+6ZA/SFdvATRTGLuNohelVV0VSVyNAQgWCQlFXOLIiiOQlb+XolnUa8wE3ZHDFiARW+7UhZzrSYFcmZgNRltUoabXIhWhqDTNj3lCgITOvs5OChQ6jpNLLPh34pcvDxhW34IwgCvb29tLS0ZAnmcuFyuXC5XCgTWNrodrmQRBHBMEim0xU1D8kUIZU7DNpqfQGKVmKc77KkXOiGQTqVorunh5bWVmKxEVW/KIoE/H5TO+ByTUi71mpAdruZPHkykydPZunSpdw9cBddXV1sP7OTt/rfZYe6i7AxOjJg41T0NKeiZsSh3ddKQPBj6BoeYSTNZWAQToT5+13/k0cPPspDcx7g1um34ZU8BIMjEYTDh7MJgi1SnDRp9DU2MgSJ23JukXZfO9OCnXnPV1VVPvjgA8LhMFdeeSUzMsq9nH0bBooisOHtRp55fjJbthZ/plyywfqbh/nCw4OsuCpeUsOYFcK+yFZygqUxcrlc6LrO0NAQs+fMcczQdDsloSgk02nSsuykIC4EDKtiw2B0pUIm7BRfpfseaxSh0DuqUdKoaRqK5aMSyBMtzhR5NzQ0gGHQ39/PpMmTPxFGSJ9ucoAZNhoYHGSGXYpSBD6fD0VRSKfTqB7P2B7UEg+Ay+MhaXWqK4cclCM4LIR0iZSCDUdtfB6hWSrtdDqNoqqkkkmSySR1tbWmgNAqLZUkyVR0WyFbO/94oVeKo5Cziq1vaKCuro558+bxYPp+uru72XJyK690vc629A66jd6CuwolRkhEUA5QIwSYLEuI4shn7k328X/2/COPHvwlD8y5nzumf4aaGr8ZQfhaPYePjNy7Pb2SQxA6OnIGtQzNQbl6g2QiwcaNG4nGYqxetcopO83E2bMyj/6yiV89OZf+geLi20kdCp97aICH7h+kubm8Fdmo3La1Ur3o7gtgYHAQRVVpaWnB5/PhtaIKdk09hkEymTRTDaKIbJEKSZJQz+1APfYOYm0H7jnrEfwT03DIXkTYplAFMYbvNzOKULE2pMi24y1pTOYISXOPJWSMvV6vF4/XS29v7yVy8HGHTQ4GBwcBnFxRIQiYbNTjdpNKp0kkEmMSDeaWMObC43IRFwRSySSUaN9cbue7QnCqFMoQIp6PgVXTddNTwvIdyEQkEgHDYOqUKfhzHnTRCsEqVj7X7XaPEmJebJNCZvjV7XYzZcoUpkyZwn3GPfT397PpxBZePPMyG2Nb6DP6C+4nqsaIEqNL6cYneAnKfmrlIB7RnHAH04P85KN/4leHfsU9s+7hnpl38f3vwp9/rZ4jR0ce/+4eyRIp5hAEixzowPacOXxVHsvk4cFBNm4yO1Kuu+46aq2SUwBNg3feC/DoLxvY8HYQwyh8TQTBYO2aGF94eIC1a6KV+8nkXG97YrsY4geZhF4QBPp6e5FE0Vx9kh1V8Pl8GEA8mTStoQWzQVs6nUYYPgNvfQ8s187UnidwzVyHZ+E9iHVTqnrOhfwNciGYH2DMkRpd1xElqexIZTEiYZc0psdQ0mine3Rdx19CY2YLnxsbGuju6TFfu0QOPr6wb6q+vj4CwWDJG8AO23u9Xmc1mxyLErbEQ+Pxek3dQQkhTb4WvpXALr0qt0pBEMUJCc2quo6SSpG2y74yIMsybpcLl9vN6dOnCVrtUPNBlmWn7tztdo8MUhayvitBKDv1Ui2Ue60EQaCpqYk7mj7DHcs+QzKZ5O2j7/L8yZd4Z/A9+o2Bgu9NGEkSSpIepR+v6KZWClIr1+AWXQwrEX564Gc8ceQp7pl5J1/75v189xtTOZpLEOwIQrs5uNmCxGMyDOVM0LlixO5wmM1bthAMBLKaJ/X2STzxVD2/+FU9Z84WjxI0Nqo8dN8gDz80yNQp+XtajBkXyNo3lwyMnI75796+Purr6/NWQQmCYDZmMwxcXi+SKKIqCoqqYvQfQsi089ZVlCOvoxx5HXnqCtwL7kVumz9qn2NBIX+DfBAFoeJ+DTbshm/lRBBK6RvskkbN8qAo18TOsCI1BiZxL0YqBFHEsPxympqaOHvmDMlE4lK1wscdAiY5KBU1sLdFEBAlCa/PRyKRIBGPm0KjKpYA2hObbbqR6889njRCJpR02skfimUsy6pZCqbpOulUipT1GTMhyzIeixBkij77e3tpamoquE/Z5YJUqqDdbG7k4HyTBYPytSCZ8Hq93LLwZm5ZeDOapvHOifd4+uhzvNX3Lv16YaKQ1NMk9X66lX68osciCkFQYzx66DGeOvoM6794P+q//jtOnhhJX3V3S44PQnub7qxKc1MKUwKTmRKY7Px+4sQJdu7cSVtbG8uXL0eWXWzd5uORXzbw8iu1KGrxT798WZzPPzzALTdH8LgnZgKf0HLGDJQiA7nb9vX20jltWsH9SZIEooiuqngDAVwuF17DIOnxUog+qac/QD39AVLLPNwL70WeuhxBGJuI2rAb1BlGQTFiJqrxLNmLn2JRhFJXMrOkMZlMlkUODMMgnkg4ImdHRFqAWGZaUjc2NWEAPT09l6oVPs4wDINUKkUsFqOlpaWs99g3vdfrRbdMkeLRKGJtbVkPTTm3iySKpvBRVUkmkwQyhI/jjRZkImUp/c9nv3jVirakLWICOD7ybrfbzKPmYemqpjE4NMSUzvziNxgJd6qWW12pNEJBsmArrjNyoOOF7Ws/6vi5teslIEkS189ay/Wz1qIbOpvObuHxQ0/xRvdbDGiDBd+X1FMk9RTdSh8+0UOtXEOtHuS5rkdwr3uV2lf+leGuNmf77vBIiqHRSivkihFXWpbJhmGw76OPOHjoEDNmzGDWzCt57PEGHnmsnsNHimtmAgGN22/t4bMP9LLkiir70BcYyKu6/wyyYaexSpGBXMRiMVKpVHHiK0kIZNfOC4KA7CpMDmxoPQdIvPV9hNrJeBbeg2vmWgSpsmdeVVVEMDtjlhGatzU/1ShTHK8QutKSxmQy6aQTAn5/WZ429jn6PB5qa2ro6e29FDn4OMOwlKUALZmRgyIDdmYYy+f3oxsGiqIQjUapqakpXd5Y5sPidrtJWGZIgUCg6n3CNV1HVZSKjI8EQUCn8gHWMAzT9dHyibAhyzIeqw681AM4ODCApus0FxlAJcsMyW6SU6gWuxByB/JcX/jcwa4apEEYR523KIhcM2UV10xZxcDQIB/0bOflM6/wWvhNBtWhgu9L6CkS6RRhevGJXurkQWpuehDXr/8Z+kbMpcI2QfhPGjqwY5QY8WqzedL27Zw+cwaf/xoef/oKnn+xjnii+HOwYF6Szz88wPqbupHEuHUPTkBjs1yM45rZBM/2GBByVpK5aaxy0dfXh2EYNDUWFhJmuYBqGgIG6OksD4qS5z98luSm/01y6z/hmno13pW/j+Aqz6/FTilU8kxVO0qTzxehnP1XUtKYTKVQFMXRGWRFbQuQlMzIgSCKtLS20tXVdUlz8HGGYRgM9vdTW1ubHW4q8oBnigkFQSDg9xONRlE1jVgsRjAYrIp7otvtRhIE03wDoMrWqIrFoiVJKiulYEOs4IHXLPOQlGU7CuaD5Ha78VZY6dHf348kiiUFoC7Li15V1YrJQSEUWgna3SYzowy522RtO4EQEFjRvIybZqwDATZ3f8BTR5/j5TOvMVSUKCRJpJOE6MV/2zpq9/57ag/8NnLSJMvhsMQ//MjHutkwnDPfL6tfwptvbuKtdzvYtfdu9h2oL3qObrfO7bcN84WHB1iyOIkgQCKhkUpNkFh0jGVxmdczNwJlgBNeNjQFQ0uD9dNQzX+j2/9OZ2yTNn+qadCt7bU0qAp0n+MKLYay8TBK5j51BdQUhqaAliZp+EkraTSlH5c+DrMnNYly/G3U3kME7/k/ZX33tvlROdFRG9W+pjbZqJR0lFvSmFYU0qkUuq7j9XpHb1cgrWAwEjkQBYGWlhaOHj1qOl5+zPGpJQe6qtI/OMikjo6y35MrgBFEkUAgQCQaRVVV4rEYgUAg/4NRwQ3tscyQ7Jat4zJcygMnpVCpmLIMQZdilWGmlZGApySKeNxuPF7vmMhTX38/jU1NZfU9oIptboshH2nIaoCU8e+JJgeZKRFJFLmmfRXXtK/ih/q32RjezLMnXuSlU68wrI5u6GQjTpT45T8ktPDv8Ieupe7kfdScvpOhAX2U3qDD3cl3/7KZjVuuIx4vvvqc1pnm858d4P57h2iozwm12uc9hvvbMAxzMrYmYXtSNtQ0hq6gp5MjE7OumBOzliadioOWBlVF11NZEznWBG7Y79HSGOrIBE/GZF8tYWOt9VM9WXw7SUojGDLV6vWnR7qIDA/j8XrNhnIFroHdhdI8hwrIAaUFg2OB/YyJFey7VEmjaqVwdSvNmjeaWuB6C+A0bhdEkZbmZgTg9JkzXLF0aZlneHHiU0sOBgYGSCWTTovUsUKUJILBIJHhYdKKgpBI5L0BS5UwZsLujqjruqk7qGLbUd0wUC1/A/cYQu/5PoFhGKTSaTNflxFOc8myOfiMw7a4HMFW5vGA80IO8iG3rt7+LbesMnN7280yX866HGSGL3OJlyzKXNdxLdd1XMv3V3yT90KbeOHUr3np1KtE1GiBD6ET73iHeMc7dK34EwZ7r+TqnNuka9MtdG1YVvCcJEnnhtVdPHzHIVYtPo1gpDF60yTDStYqOp2MoytJ0oKGhu6smu1tDHVk0nYm+ozXMqeHzO9YwBj5ugX7b+YvmqZSZfXBeYGoKyC60YQqRcTctRiYOXa746zb4xlFAGx/AzttV9ExJsg8zZmQyxxTPVZvnHwljZqmEY/HzbSJJOWtPit2txiG4SwEREFAkGXqGxo4c+ZMhZ/q4sOnlhycOXMGAVNhWgnyid0kSSIQCBC1xEWiIIzuv1AmMbC38vp8pFWVWCxWVXJgiwHtznAVIeczqJrmpA4yBYZuj8dMHVRcnD4asXicZDJZ1nWy7ZJ1q+lNxZ9vgiBgkcNc5PGpyK2icN6f8TOTRGS6YhYjFm7JzQ2T13LD5LV8f8W3eKfrPZ4/+RKvnnmdqBrL/yZRo7t1G29oI2tAwRAwtv1e3s1bgiHuXvRL7ln0GK01YeiG6OsFT8mBav2XD1kpm1GT/oioM/OTGwhZI7rg/N/HF6KhmPe2II+58sXZV+NMfNf9GZrXZ7Y11jQzrK4ojpeLbC1QtDL9DfJhor7yLEJchm7HY+ma1JySRl3XiScSzsTuLWQ6V4SE6Lru3H/289fa2srZc+cuWtOtcnFxjJ4XAGfPnaOpvj67T3sJFBuAXW43fsMgHo+TSCYRrYesUthhM7/fTzwaNctqDKNqnSAVK9zvGkuVgqVCtqMESsYKXRJFvB4Pbo+nql0r+/v6MKCoYGvk9MxWurplonSxkIMxh1YzlfA5+8nso2EYhrlKs/4m2Er6jH1kDnAeycNNk2/gpsk3kNTTvHX2bZ4/9WteO/MmCS3hHGyhAjNUeNdr8NnBlRwYltj1xnegKztqsKLzPe5b8ghrZr6BLCqZp55x5oJ1XjnfRybrMRP+OLUdZU36ld1rE2p1IAggeRBkF0husypAcmX89CBI5t+Q3AwORRmMJZg+aw6CaG6X9V7RBbLHeq8LUgaqIeD3B5E8XvRIN/FX/7Ls05MnL8Vz5ReRGmcAIGFqgFRNI22J8TRNI55IICaTuNxux0V1LM/SRE2Mkig6OiZbqFhMAJivpNEuWTR03eyd4/ON6Xzt88iMRrS0tHD02DHC4TDtedxBPy64OEbPC4DBgQFmtLRUzm6LjC4ej8dJBcRjMbNZh8tV1uRgMMJCwSzBESUJQ9NIJpMlTZrKhd1TYiyCvVQqRTyRyArbu+3UwQS1e+7v7ycYDJZdcinLMoplEjO+Rq1VRIUli5XtOqPk0iYM9jHJmEtzVd7W+XhEN7dOvZlbp95MQk3w+rm32fTRI6w68gErUgauGBj9AhuvWM2Vp2WOh5YwDNR6Brl94RPcu/gROhtPlHiOrChHvu9AyP05Ts8JUTYnUtGakGWXOWFLLgTRjSiIGKI5OSNbE3LGJJ45eQuy9VN0ITiTtLmtPYELsnks872VPVPb334bV7Mb39LRTpP54InHIZVC93hweTxQZrWC2DQb79IvIXcszvt3WZKQ/X4MXSelKCiWiDiRSBCLx5FkOaukuhKUmrjHgtwUrW41qSuWwvBYJY22K2zCNioyjKIli06krtC5WOQik1g01NdjGAbd3d2XyMHHEcYYB+xSIhufz4eu66TTabOCoYwSRwOLgWaK3EQxK7VQDXKg6brzoFYSJlQUhXg87jReETDzeB6PB7nKYslc9PX1Fa0Bz0Wm38HFgFL32XhDxHaJlZAZKchV2Oc/sVHbuNMJ1h7czIp9W8Ew8PXB3BdAThlc/vr/INHWwUPtr7J7UTONM0/hkQvUjouyNYlmTLr2ili0JmDZjWoIILiQvQEk2W1NwOZ7RMkNcsYKWjInaMF+zZrIBckDzmrbhSDKZvStwEShG8ZFUWamahr9/f0sWLiw7PdIkgR2qN/jKelXINS0473yi8jTVpVlgCRY0T+P241qlWgLALpONBbDa5ceV/DMV5sS6xn3eyZKuSr6vF6GhoZIp9MjY5ntZVDk85T6pLoV6ZVyBMof32TCCD615MBeaY3lIpbKJfn9fqekLhqNEgwGCxKE3IhB7n5i0SixeJymKqQW7JKkclsZq6pqRgrsygNBwOf14j1PxkmqqjIwNMS06dPLfo+tc9A1La/D5EWFPINIJlnIDr/nJxla7mA4hnvE0NIkdv6c2Kb/jZGKOAfvfA9ks/cMkqLhisVorpO5LiRx5j98m4FIjN7+Ibp7+0koOpLsobmtg7aOSbS1tRXO4VoYHBoyV241NWWX1Nr6jcyAQ0HNxkWMwcFBNF2viPhKuWZIrvzfr+Ctw7P4s7jm3GwSsQohCAIutxvZ7cabMdYlrZ4ObotAXIh8emZKIRfFSh0lScIly6QTCWKxGG63G1+ul0E+iGJBjwMYiRyMun8/xloDG59acgBWeKrSnCWlc2mCIBAMBIhEImiaRjQSyRtBMDBX84X257XUw0qVUgtOvXKJqIFu5R0z+zt4PB78Pp9j3HM+Wjj3DwxgGEZFolFRFJ3UgnoRkANnmLIn95wVe97qj3w7KhT2zEwrVHpuhkH66JtE3/oB2mB2LV3taQiGs7fXrftG7u2jrkfBt2QFk8wdMTg4SCgcJhwKsWPHDgDq6+tpa22lvb2dhsbG0T4RYzh3OzqST4fhbGPfmxnft026LhaBWF9fH5IoUl+iuVomJElCEEU0RUHXNER3AGnSErRzH5obyF7cC+/Bs+AuBNf4RMy6ppnHkGVqg0E0TSOZSqHpuuNy6vV4zqvDKpSu+ipGEARBMMsWBYHampqqeKHYRKXa5eYXAz7V5GAsgibs95RYoQiiSDAYZDgSQdN1IpEIgUDAuSHtVEKxwaraqYVSegND101nxuSIyYrL7cbv9WYJks5XC+f+vj5cskxthd0vZVlGtRo5jUUUOh7kTtaGYYyYWOW5Z8bTpCYTlU56as9BIhu+h3Jq0+g/GjBpa/ZLmteLmlE143vlFdJLltgHp76hgfqGBubNm0c6lSIcDhPu7ub48eMcPHQIt8tFa1sb7W1ttLW1jQiBBaFou/CxIt/3PdZU4kSgr69vFGEqBUEw2yULgoCmaYiShH/tV1GOvAmGjmvGdQi++qqcX9quUrAsk23SnbbcTnXDIG7l8POaBmWcc7XcEgulFHKRdZ0twW4ymcSwUkqCIJRFagzzoEWjy845XSIHnzyMZSVRSndgQ5QkampqiFkuitFoFJ/Ph9vjKfthsVML461aMCjcdtXuMxFPJJwBVZZl/H5/4SjDhMq+TfT399PQ0FDxNXLJMklwyrAmDBmVALkNsTJ/Fv2Wxvk92scp977QY31EN/4Pkrt/BUb+6I+3dy6BvkNZrw3ceiueDz90fvds3ow4NISeZ+Xr9niY2tnJ1M5ODMNgoL+fUChEuLubbVb9d319PQ0NDTQ3N1NfW1u9SbvY920dIx8pH5XemcAyNNu7Y8aMGRW/V5YkVEEwLcIBweXHPf+Oqp+jYnuhZAiNBUEwLc9dLlLpNKlUClXXicbjyJJkkoQ8kbpqkYNiKYVRyCgTjsXjaKqKYDXJE61y51LaiVLTfWavm2pWaF0suEQOxvi+cgcP0bL9jcXjZqMny03R5/OVNSDaVQtKKjWu1IKdUhBFMSs/ZpMCxwJUFPH7/SWZ9UR3uDMMg96+PmbOnFnxe+UMM6RqDPJZ+zCM0QNUiTBnMYx3SMkKoRfbTkuT2PEzU1eQzm+AFPFMJb3wd7j+h/+a9boyaxZd/+7fMeUP/gDZyncLioJ3wwbi99xT9LiCINDY1ERjUxMLFi4klUoRDoU419XFqdOnOX78OLt37aKtrY32jg5aW1rGVmY7csCSZEvME/ka9Q57P3YEyH557GfmIBqNkkqnK9Ib2JAtQ7GJFNxqll7HMIy8iwNBEMyUgstl+pxYKbxoLOZUL01EmL0SIzkwU7bxeNwRDdbU1Jh27pYwu6SwspTeINODQ8huwvVJoAqfenIwFlScuxQERxWbiMdJWU6CAb+/ZDhKEEV8Ph/KOFMLSk7UILMCwTmOVYFQzmdz3P0miDFHo1FSqVTFJlVgEhxJkkw3SFWtyMsCLDLAyIQwrm6YExxdyTRBKvT39NE3iL71w1G6Ahuqu5Gj9etpX/kbLNuzB9fx41l/H/rjP8aor+f49OnMOXrUed332mvE7767olW/x+Ohc9o0Ojo6iMZiRKNRhoeHCVlkQcA0Jmtva6OtvZ26akYVbJQ5yeQrvazGwN/X14cANJTh3ZELu2JBL7P76FigWE3ZZJeruJLfGpvcVpmgoqqkVZV0NJpV2VCNc9SLaLMKfQa79bIgCE7fG1mSSFvjwliMnTKRmUIURXFkLLXO82LRt4wVn0pykHlRx3wBK2SxBubAKIoi8VgMJZ0momkEgsGSojm/z0csEhlXasHWGwjAcCSSVYHg9Xrxeb0VfxfluJONFX0DA2AYNDQ0jOn9siyjaVpZ5CBzkLXFlnlr8seAkpPJOL8/Z0Wb53zVngOWrmBz/jfLPnpab+aY72qWrVjNpJYW6n4v2/0wvXAhifXrYXCQ/XPnZpED+eRJXAcPosybV/l5W995Y2MjU6dOZeHChSTicVOrEA5z4OBBPtq3D6/XS1tbGx1tbbS0tY17QK8GcqtIKn1uevv6qK2tHZMgThRFM7xure4n4vuwUwrlnp8kigT8flRLOK1q2ujKBspLxRZCuWONnSJNpdPolr7K6/M5vR4kWQZVRVFVitXSVKI3mMhx8ELiwj9pFwB5L2SFYqVybnbnOBkrT5fLRbC2llg0iqZpRIaHTaFikVCq1+tFlOVxpRYURSGRSKBqmpMXzKxAGBNEESYovNnf20ttXd2YzZVkSSJFkT4LhlE4MlAtYmAr8ovtTxCymjSN6RhkkwM91kf0/f9Ocs/jBXUF0pzPsEdaRYwA16xeTWNjI8Gf/xz57Nms7Ya+/GXn/Ls6Oki3teEOj5Qx+F59dUzkILNTp7Mvv5/pM2YwfcYMdE2jr6/P0SqcPHkSQRBobm42UxBtbWaXztx69zKOXdWUWG6KIpNokp8Y9vb20trSMuZDSpKEoqoTQg60jEZLlUbcZEkiGAg4zdfsygYlnTabrk2waM82N0orCrph4HW7R0VCXS6XQ2CKwSYTxeC4I+bqVz7mEQMbl8jBOPdT8kYwDLQcPwW7/XAsFkNRFGLRKF6fD2+BSX+8qYVUOu2UVXq93rwVCGOCNalOxMPQ399P4xjCrjYyzZDs/KJTBne+WP54IlNlIpMcGGqa+I6fEt/8fwrqCuSOJehL/z2bjkbweDysW7WKQDCIkEhQ+6MfZW2bWraM5Jo1I8cSBIbWraPll790XvO88w7C7/wORoX9P5zzLjBhiJJES2srLa2tLALisRihUIhQOMz+ffvYu3cvfp+PtvZ22tvbaWluNu/nC72CyyELuc9HMpkkFo3SNAZCZUOSJERhxAypmkhbKQVpHM3SXC5XVmWDZhjE4nFcLteY/BHKeV51XScWj5vpFl03dVM55CazjLuUWDnTcbQQ7DTCKNJzoe/BKuFTSQ4cZJipTITfAeB03Rt9aDMPFk8kSCWTJKz8mN/vz2+IlJFaqATJZJKBoSFzlWFVT1SrNlkQBNPiucqeB2lFYXBwkJmzZo15H7bRk13SeCHC0WWTkHFULNhRj/TRN0i895/RBk/l3U6s6SB43Z/SG7yCbdu309TYyMqVK52IVfDnP0fq6cl6z9BXvjLqXhxas4bmJ55AsAfGZBLPu++SvOWWis8byl9l+QMBZs6axcxZs9A0jd7eXsKhEKFQiOPHjyMKAi0tLbS0tNDe3k4gGCy4r/O6ssshC729vehAc3PzmPULdhpyIkSJajqNDvjGaYduVza4ZJlkMknKapmsqip+n6+iKEIpC2bbrM3eJlgkVSvLMpQj6CzDT8EmB3IOkboUOfgYo2oh5CI3kF1TWwp+y6UrEYuRTqXQNI1gIICQc3NnphbiyST+Eu5zmsWkFUVxOhQ21NdX37RkAh6EgYEBDBhT5CAzRSDLMpquo1wgclBuukAUhNFOh2VC6z2Itvm/oXRtz7+B7CNw9e/iX/abHD5+mo+2bmXq1KksXbrUqVoRIhFqfvzjrLcl1qwhtXz56OPV15Navhzv5hEdg/+VVyacHGRCkiTaLL+ExYsXE43FCIdCdIVC7Nm7l927dxMIBmlvb6etvZ3mpqbsyeICruy6QiHqamrw+nwjUQWrtK7cb8I2iXiw1wAAzXBJREFUQzJU1TQqqpLRl6qqzmKmWs+LXf0kp9NEYjHTFC4axev1VmUsSqfTJBMJNMNAkiT8RfokgPW5rOey2KJB1/WipYy6rjvXTxTFrHvqkxE3+BSTAwMc68uxXsyi761gAPK43ciiSDQWQ1NVhqNRgoFAtvFQZmohGi1KDlKKQiwWy9I5eCVpQtzMBMNAp7qlO/19fbhdLoJFVn+ZKFRN4JJl0uk0iqLgK0GmJgLl3gFjuf/0WC/R9/476p7HC+7Bu+AeAmu+ghBo5cMPP+TEiRPMmzeP+fPnZ5G6mn/+Z6TBwaz3Dv3xHxc8dnL9+ixy4Dp0CPn4cdQK6vYL5WsrhhWBC86ezazZs1HSabp7esxyybNnOXrkCJIs09Lc7KQgfFVsgV4RDINwOEzn1KnWqed0zrReK6XMFwQBSRTRMsyQqoFMIWK1V79ut5taQSBmNTxKJJOoqmoueopEEQo927axUUpRMAwDl8tVlqjaqViwxMqFSjWFEuO3HXmwI5SZW+uadl5SihONTyU5EEWR+oYGc4VaoRAxF/ly7iWNb/JAkmVHh6CpKpFIBJ/Ph8fjcc6vVGrBwMzNJi3bY1mS8Pn9RIaHzQdoIlbPgmDWjVdxNdbX309jU1PBhyvXaKgQXC6XGUJUVZMIXqQuZpXcfaau4P9ZuoJY3m1ck5YSvP5ruDoWoyoKmzdupKenh6XLljFt2rSsbcX+fmr+9V+zXouvX4+yaFHBc0gtW4bW1ITU1+e85n31VaI5lQ7FP4h17ap8TSRZpqOjg46ODjAMhiMRU9QYDrN79252ffghNbW1NDU3097WRlNTU9Um11IYHBwkmUjQlqdTX6aIMfP3QkRBkmUEVXXMkMYLwzDG1869DEiyTMDvN1f7qRSKqqJGo/j8/oJjU76Ugq7rTndYwzDMZlEVaC8kWUbUtMKphTLSfI6hnH3vZFyj/oEBJFn+WHdkhE8pOZAkiUmTJnF8/36Slkf4WJBPdzCevgNihlAxnU6TiMdJp9P4/X4kWS6aWlBV1Yw8WMf2er34fT6nH7soihM2OVbbEKm/v3+U+dFYxISiKCJLkjnwqer594Ev91zLqGowDIP0kdeIvPVD9KHTebcRayYRXPuneC77DIIgkEwkeP/994knElxzzTW0tLaOek/Nj3+MGBshGYYgMPQf/2Px85UkEjfdRDBDmOjbsIHov/23ZQvkHNOtiVxdCQK1tbXU1tYyd+5cFEWhu7ubUCjEmdOnOXL4MLIs09raakYV2toKioKrgVAohOxy0VQiXSbY4lnnY4yOMMi5TZjGCVXTRlIKE0SW7PHS4/Egy7JjUBSPx3G73XhLeKxklika1u+BYi6uBeCSZVKplOmamG/sKvHcZuoNRom6BYHucJj6+voxmVxdTPhUkgOAzs5O9u7YQU84zNTOzopLGfPBIQb2fsY4YQYCAWSXi6TFjiPDw3g8Hrw+36jUggEkLEEjmINtMBh0mLjNcCckamDDGryqMcyn0mlS6TQ1tbVVqS5wuVyoqoqiKOedHJQNK+9cCEp4H9EN30M580H+DWQvgat/H/9Vv4VgdeobGhxk46ZNCMDa666jNo/NsRgOE/z5z7Nei995J+qcOSVPOXnzzVnkQIxG8WzaRGrdupLvBbDpczWpQTmRpMmTJzN58mSWLFnCwOCgI2r8cOdODMOgrq7OLJVsb6exsbGqhDoUCtHa2lrRPkcRBSu/LYqiY4ZUDahWtNHlck1cONyaiAVBQJIkgsEgyWSStKKQTqcdsaKtD8lMKSiKQtLq6aDruulfUKLdciFIGaJEwzDM7zhjQacbRlG9QabZke0EaachBEGgt6+PRVdeeSmt8HFFfX09uFx09/SY5GCMF9Jmnrk17eNdSdse5olEgnQqZXZCs3JkEhC3cnfReNwhAB6XC38gkLUas0NvEy3Iq1ZqIRKJoOs6gUCgKlUQLlkmIQhmPnWCyi4LoRLClE+/YuoK/hvJPU/k+asJcc7tuFb8IYGOkcqOUCjE1g8+IBgMsmr16oKtk+t+9CPEVGrkfGWZoT/6o7LOV2tvJ7VkSVa/Bd9rr5VFDrI6Ml6oVI8gUF9fT319PZdZzaK6u7sJhcOcOHGCQ4cO4XK5aLW6Sra1teEZh24llUzS19/PsqVLx3XOjpe/1QxJK9cKuAjslIJB5d4GlUBghNyAOXb6fD5kWXaqtaKxGD5LrGg3mEomk875gZleHc95yrKctfrXdd0ZvyrRG+QbU9OpFNFYbEx9My42fGrJgSRJtLW3EwqHxz1pZHpqVxOCIOD3+/G43U6ODcMglU6jqCrhnh7H5CNgbZd1XhRutlR1jNcQyRI2Dg4OIkDZYsRSkGXZDL9ag8H5qlqwLZjLRZY3u5oivv3/Ed/yo8K6gslL8a75M1LBGVk58+PHjvHhrl20t7ezfPnygp9XOnWKwK9+lfVa7IEH0Do7yz7nxM03Zzdj2rULqasLraOj6Psy+0FUlaxVQE5zw8luj4cpU6cyZepUDF03W1BbWoXt281KkIaGBqdKoqGhoSJi093dDUBbW1vZ7yl6/pYtsYC50pXGQc6dvisw4S3O84XxXS4XkiQ5FswJq9ujJEmkUikMQcDQdTyWtmC894zLGhOyPFDsc6pAb5D5Xdnv6O7pQZLlMfWEudjwqSYHkydPZv/OncQTCQJjVDDbt+lEGuvYYsVMP4S4pS+YPGkSNTU1eRudaLZlsiCM3/CoBMZS9ZGPVEWjUfyBQFUbt7hcLnTDIK0oF4X9biEYhkHq8KtE3/4h+tCZvNuItZMJXveneC67zRSQxeOOYcvevXs5fPgwM2fNYvGiRUUnr7r/9b8QMoxgDLeb4T/4g4rON7VyJVpNDVIk4rzmfe01Yl/6UvHPaX+Wio5WHJWKgItNL4Io0tDYSENjI/MXLCCVTBIOhwmFQhw9epQDBw7gdrtpsyIKra2tJQVxXV1d1NfVjSv6kAtRkhAUxTT+kWVzgs+jTygFR4g4kSkFC6IgkG8JYZc8ptNpotEosVTKIQRutxtfTU3VHBZtEykdc6K3043lGB/ZaQ3Ir83o7u6m3RqTP+64eEfKCYYtSvzAUnIHclTc5eJ81rR6vF7SqorH4yEWjTrlQKqqIuXJpyvWimBC9QYZyM3dFYQ1kOcrgYxEIlV/sNwuF2lFMftJTKDgLBOV3hdq9z6G3vgOypmtef8uuPz4r/49/Mt+09EV2N+1rml88MEHnD17lkWLFzN79uyix5KPHMH/3HNZr0W/8AW0StXVHg/JG24g8Oyzzku+118n9oUvQJEVqD24VjOlMJFdQj1eL53TptE5bRqGrtNvt6AOhzl96hSCINDQ0OD4KtTX1WWlKQ1dJxwOV301KQoCWKkFyBAuklH9UIa4zkkpXGBNjq7rqLZIEGsiNgynJ001IcsymqJkkYNyIsiZroj5zqm3r49V115b1XO9UPhUkwOPx4MvGKQ7HGb6GMmBjfORz45Fo2iqauolgGgsRiQSQRAEUm43gQwxD5zHlIKF3HrfXNh/s7s55vu2hoeH6Zg0qarnZecnM8OIE41yDZC0aA+Rd/8LiT1PUtCvYOF9BNZ8GSmYHZI2ME1g9u7dSyQSYeXKlWV9d3X/438gZAqwAgGGKylDzEBi/fosciD19+PZto3U1VcXflNmCPdCYawaI1GkqbmZpuZmFl5+udksqrubcCjEoUOH2LdvHx6vlzZLq9Da2srw8DBpRal6aZtkVSzkEyXmVjsUKom0G7AJVv3/RKPQt55Opx3BoSEI1AaD6LrutF32j6EqoRhkWSZllYI655ZBMAud56gSRvu9mONxKp3+RKQU4FNODgDaOzo409XFcipXThuM1CFPZGcuwzCIxWLOjRkIBBzLzmQqZYbM02mUdBqf32+agXD+xIgZJ5r33O32zjYKkSjN6h1R7ciBPfDplltirjZjIlDqTjDUFLFt/0J0048wlEK6gmUEr/9LXO2X5/17JBpl+/btaJrGdWvWlNUC2PXRR/hfeSV7P//236KPsY+FNm0a6XnzcB844LzmffXVouSgagZIGRjLs1cNQu/z+5k+fTrTp08faRYVDhMOhThlRRW8Xi+StdKs5iLC1poUdWK1K4lEcST1l/Fd2VEDzwQKEXOR6V2gaZrTEM4wDKfDo/1d2VqreDyO1+cbcyO2XMguF4Kt48qBIIpQ4DstWMKImVJwuVxMnz69Kud4ofGpJweTJ09m+6lTDA8NUZen3KsU8j7oVSQJhmEQtTo4CoLgEANZlhkaGkLWdbOCQRRJK4rpjZBK4fF4HEvW80YOLIFZZv5Xh5LqXxuRaBTDMCYkX+fOKGk8H+SgEAzDIHnoZSJv/RCtmK5g7VfxzL214ETS29vL5k2bcLlcrFq1qixiAFD33/5b1u9aXR2R3/qtyj5EDhLr12eRA8/WrYh9fegF6rzHY51cLZTTda9SZDWLWrSIeCxGOBxm7969aLrOm2++ic9uFtXWRktr67ieTcn6/jRdL8vka5TBkqaRthcQ55Ec2HbRqVSKtNXLAcMwLZVdLic9KQgCfp+PhFWtYJdrV4MgOKXeduQgUxCs645AMxO6VRkC+fUGPT09TJsxoyJDposZn1pyYNfatre3k0inCYfDFZGDzKiBvT/n5ipD2FIOdF0nGo06x8lsKGL/rg4MEI1GmTJ5Mul0mng8jqppxIeGUBUFv99//hvN6HrR1EEhRCxh20SQA6fhynkqacx39ZXQXobf/C7pYrqClb9v6grkwgPM6dOn2b59O/X19SxcuJBAIFDWObm3bcP3zjtZr0V+53cwxvl9p9asQf/xjxGtwVvQdXxvvEHsoYfybj8h5GAsz1uOJ3614Q8E6OjoYMfOnSxbuhSvz2d2luzq4sTx44iiaLagtshCIBis6DsRRBHJWoVruo5cZrrM/sSKrbq3zMLOB2yNQywWc8R9bpcry0Y5U7ckCIJjfW4TBFuoOB7Y46hmpRolScp6ZsU8Y3iuZXLW58J0RlxWLJ32McOnlhyAeZElSaKhuZnu7m7mzp1b0ftzb5BqiqI0XScaiTgTWTBPRUKwpoah4WHzoYnHHRvSuFXVkLZq2G3f8YmOINgmUAZjG/gjEbONcLVCh5mQZRlREFANA1VVJ7SeG8gaWLRoN5F3/2sRXYGAb9H9BK/9MkKgpeg+Dx48yL59++js7GTOZZehWxGlcs5nVNSguZnoF79Y3ucptmufj+R112WlK7yvvkrsgQfy2iPbg381ycFYnrrx9FUpF+FwGDDTl263m9bWVrNZVCRiahXCYT7au5c9u3cTCAQcA6bmlpayygpFSQJrgqsUqXQaAc6LOZhhVQulrOZyqq4jWZHQTMF0vmtiRxCSgkDKsl42rEjDWGFXZhi6jppHh5RPe6DlKWG0MTQ4iK7rnxi9AVwiBwBMnTqVU0ePoul6WSV0uVGDrL9VgRzYncsMywktGAzmFdFJokggECAyPMzQ8DA+vx/Bytkp6TSqpiGKohm+S6Vwud34vN7qT4zWCkCw0goiZGkMykU0EqGmtra655YBl92lUVEmnBwYAGqK2LZ/JrrpHwrqCtxTllN7g6krsO+rfNB1nQ8//JCTJ04wb/585s+bZ0aVKC9373n/fbxbsyMWw7//+xhVakKUXL8+ixzIoRDuPXtIX3HFqG2dUsYL7SBXpQhfMXSFQjQ2NIyagIM1NQRraphltaDusQyYQqEQx44dQ5IkmltaaLfIgr9AdEi0tASVkgPV6uhoGIZDxvPZNI8Xuq6bDoiWNsq+X31WiWLmGGpY1QmFSKPXaqyUtC2ULYIwVpIpy7LTtZYCDZgyvwvH/CgPOQh1d+P1+5kyZcqYzuVixCVyAMycOZPDe/dy4vhxZs2aVeJdhYVMgmA2IRrLxGhDs3okGIbZgjQQCBRV19fW1JhljYkE6XR6ZBASBIJ+Pz6fD03TSKfTjmhRlmWTJOQ8nBXB0hXYZj/5wmyV7nloeHhMbZrLhcvtJmXZtE4kDMMgeeDXpq5g+GzebaS6KdSs+zO8GbqCQt+Xoihs2bKF3p4eli1bRqdVWVN2eN4wqP+v/zXrJXXSJKIPP1z+hyoBZe5c1OnTkU+ccF7zvfpqXnJQ9VLGMT5vEx050DWN7nCYOSXsqCVJor2jg/aODlNjlNksas8edu3aRU1NDa1tbXS0t2c1ixKLVCwUgx1V9LjdznWopqBa03XSOZoCURTxud243W7ytbQvZyzyeDwIomiOd5aYspxujPkgyzJpVXUiArnIjB5oFpGC0ZEDVdc5fuwYl1955YSbSJ1PXCIHQF1dHbNmz2b//v1MmzatZPh9onLWqqoSjUbNc5NlgoFAyeO4XC58Ph+qpjE0NERLixmWtgcLt9uNZCn1E8kkKcsbIRKNIkkSXq+3ctcxw8gbdrMhCAKStUooF7quE4lERnUNrCZctu6gCpazhZDu2sPg698ifWZb3r8LrgDBVf+OwFV5dAV5BudEPM7GjRvN5knXXutcX3Pz8koCfa+9hnvv3qzXhv/wD6Ga4WRBIHHzzdT8+MfOS56NGxGHh9FzokFV1xychwjAWNDf34+iqnm7MBaCIAjU1NZSU1vLnLlzURWF7p4eQqEQZ8+cMVtQS5LTLKq5qQkEwfE6KAe6ppG2ShjdRXL3gihiWO2Hy4WqaSYpsCZuwzCQRRG3FbF0TONy3lcJMbEjHclEwjRwMgx8Pl/F95Msy4iGgVKEWNmVC8X0BseOHSOZTHLTTTdVdPyLHZfIASYrXLFyJa8+9xyHDh9mwfz5Bd+jU2JQG+NAlVYU4lZ3PFmWK7IPrq2pIZFMEotGaaivNz+XYYAw0hhEtNINfp+PZDJJMplE0zRisRjxRAKf12t2RSs2YdpVCOV8PiufV+4DG4/H0XR9Qp3FBEHAJUkYVmqhmqpiLRJm6O3/TLyoruABatZ8BSlYQFeQc+8MDg6yaeNGRFFk3dq1o1IupWqyzRPTqPvv/z3rJWXGDGL33FPqI1WM5PXXE/zXf0Wwa+cVBe9bbxG/666s7apdyjhWWjDRotSuUAiPxzOmKigbssvFpEmTmDRpEoZhEBkeNtMPXV18+OGHYBgEg0Hq6+uZ0tlJc2MjQonVq601kCSpKEHOtLkux1LYtnXHSg/IlpdMPhO23G++Ur2W2+VCFATi8bhp9mZpriq5p0RBcKyZC8H+m13CmLtwTCkKBw4cYM7cuR/7Loy5uEQOMC98TUMDs2bN4tChQ8yaMaOgzWk5E16l4UpNVR1i4HK5ylaf2/B4vXisUr3hSIRaq6OhIIzu9mc3O/F5vSRTKRLJpNMfPZFI4PV4TOVwzgBjiw3LHVAr9X6YyEqFTLhcLhS7pLEK5MBQkkQ++AmRTT/CUOJ5t8nUFZSCfe90hUJs3bKFmtpaVq1alVd8lVualg/+F17AdeRI1mtDf/RHeXOs44VeW0tq9Wq8b7/tvOZ79VXid9450pBM152J5kKnFSYaoVCI9ra2qpEQQRCoraujtq7ObEGdTtPd3c3pM2c4Gwpx4uRJZJfLNGBqa6OtvX3UOGYYBorV8riskt5MYpCHJCiWyFC1rqtuGLhcLvxud/EKiCp8J7Is4/f7TS8Eyy+hYhv8cszKBKGg+dGhgwfRNY2l42modZHiEjnADGkbgsBll13GiRMn2H/gAEuWLBm1fcmoATi1/nZv9FIwDIPoOIiBjWBNDclUiuFIBL/fj0GJvuyWOYvX4yGlKGZ7aE0jkUqRTCZxezz4vF4nJWGLDStBJauBSCSCS5LwTbC9scvlQrAavIwnPWQYBokDLzK04QdoQ4V0BVMtXcEtFZGqo0ePsmvXLjqs5kkl+2IU2reiUPf3f5/1UnrePBK33VbWuYwFifXrs8iBfOIE8qFDqJddBmSnQqq2cr8IyUE8FiMyPMz8efMm7Bgut5vJU6ZQW1/PHCuU39fbazaL2rEDMLvPtrW10d7WRkNjo9OdVBSEyr0N7FJtQEmnzcoDqzrJ0HXcHg8et3tMfVHGqneQZZmA3++YxKUsj5dyYC+ASh1bVVXzfiVbbxBPJDhy9Chz5syhznKt/SThU00ObH9s29zC7fFw2WWXsfejj5g9e3ZWaN9+AMoRfyEIiGXa58Ys8aFoVR6MFba9qJpOm+ZIslxeTl0Q8LjdeNxusyQymUS1yoUSySQetxuv1zum/gyVehwEJ7BSwUZmznCsJY3prt0Mvv7twroCd4Dgqj8gsOzfFvUryIVhGOzevZvDhw8za9YsFhVrnpTpOFlgf4Enn0Q+fTrrtaEvfzlveWG1kF60CLW9HTkUcl7zvfoqEYscVN0dsczn7HwjZH3+TI3IREEWRRRRpLamhpaWFubNn086lSIcDhMOhzl+7BgHDx7E7XLR1NxMQ0MDk0p0zswHI0/lAZjuim6PZ+zXdJzkTpIkvD4fiUSCZCqFJEnll22XmTKxj5OJffv3I8syl82dO66yyosVn2pyADgrY03TkEWRWbNnc/ToUT7at4+rV6zI2rYig5IyVs124ySAwDhbFAuCQE1NDerAAMORCA0NDRUzeJfLZYbdLZKQtkqG0pkVDhV2biu3emM4EqGmSm2aS8Hlco2ppNHUFfydpSvIB4HAFQ8RvPbLiIHmis5J0zS2btvGubNnWbx4MbNKNE/KvLfyXo9Uitr//b+zX1qyhOS6dRWdV8UQRZLr1xP86U+dl7xvv030t38bw++vvsfBRSpGDIXDNDY1nZdmRk7FQkbu3O3xMLWzk6mdnRi6zkB/P2e7ugiHw5wLhfjoo49oaGw0SyXb2sx+LQWuia7rTrWT7X4qYJICj2XVXimEjJ+VOzSMRqYDajyRIFiiyss5hwxxdT5kNabKGCuGIhFOnTrFokWLkK3v4ZOGS+RAksxaV01DtvLkCxYsYNv27cyZPdsprav28KMoCqlkEqBqLYoDwSDDw8OOF/lY2lDbvRhqgkE0r9escEilzDx9NIokiritcqRyowmlyhptoVVba2vF5zsWuF2uEfFUGTB1BT8msukfCusKOq+m/qa/xt22wExTVTBhpVIpNm3axNDwMCtXraKtra3ke7L2n2dQDz76KLJlwGNj6MtfPi/NjhI33kjg5z93mjuJySSe994juX79SOTgPDS/KoWJ+iY0VaU7HGZ+EWFzNSGKIoJVhZMPgijS2NyMx+dj2tSpaLrO4NAQ3eEwhw8fZv/+/XjsFtTt7bS1tiJLkqPNsRcwutX7wGM9/87+K0ijZp0X1XOTBbOkUdc0s1mTpT8oREIz06TFjm6nH0VRzIpG7N27F5/Px4zp08EwLpGDTyIyRYmCFXKeOnUqhw8fZu/evay57jqHYVYEK0eVb5KwO42ByfCr5QgoWYZJQ5EI0ViM9nIn24xcYtb+rKoJn89H0qpZ1jSNhFXtINoDhcdTUN9gmyIVmyxtj/Xz1QPd5XKBYaBZEaNCtcmGYZDY/yJDG76PNnwu7zZSfSf1N3wN79z1Y3aFfH/jRnS7eVJDQ1llacW+TyEapfYf/iHrteSqVaRWrar4/MYCvamJ1PLleLdscV7zvfoqyfXrq17GePHFDMwGPJqmVb0LYyE42qkiJXm6pqEqCrphUFtbS319PdOnTUO3W1BbFRB2s6i6ujqamppoaGx0+rkEPJ684XpjDMQAcCqaqgVBEPD7/URjMTRNI5lM5tUwlVsCDKa2AiytklXW2NvXRygU4qqrrjL1QJfIwScT9oOlqirYTmGiyMLLL2fjxo2Eu7pos8xJKhbkkX/witsmR7KMv8oCvGAwiCwIRNNp0opSWnRURs5WkiSnDFJRFDPEqCiomoaWTJJIJpFk2ck95kZBirWMBatSwZiYhkuF4HK5MNJpUul03muQPrfL1BWc3Z73/YI7SO01/55gHr+Ccies3t5eNm/ejNfrZdWaNU6kp5xql2KVCjU//SnSwEDWa0Nf+UqZZ1UdJG++OYscuA8cQDp5EsMirJ9kMeLp06eptbwKzgecVbBhoGvaqEojMMsXwbzvM6M2oiBQX1eH3++nc+pUEokEvX199PX2cuzECbQjR/B4vXRYEYXWUs2irHRqOVc3sztjtSCKIj6vl7hlkiTJ8qjFl11FJdrVXAXuIc2KQsDIgsIA9uzZY5aO2m6Ilrj7k4ZPPTmww2PpdBosQaAgCGbXtJYW9n70Ea3t7WMbzPLcePF4fKTDYpWsazMhiiJujweXohCxKhfywhJOFrMrzYUgCE5KwTAMhySkUylUK/wYTySQZdlULlsDkYBVU1xgv5FIBERx3LqLSuDxeJywKRnkQIuEGHrr74jvfarAOwUCSz5L7XVfQSrUB6GMCevUqVPs2LGD5uZmrr766qx8ZiVVHrlXThwcpOYnP8l6LXHDDXmdCicSqeXL0Robkfr7ndd8r77K8Oc/b55nldIK43X1q2Y/FDBTCl1dXcy1BJjnA3bZsG2GNKoM2XIrzCxfVFUVVVFIW9EEc0MDrxUqnztnDggCfX19hEMhQuEwJ44fRxCErGZRowi9TQzKSBdMVIt7l8uFR9PMPgyJBHIhPwebUBXYTzqTUFnj19lz5+gfGOCaa64x9Ref0KgBXCIHDpPWdR1F05DAmTgvX7iQDW+9xamTJx3L2pLIeSgyBXm2uA8oaYs8Vui6jj8QIJFMmvW/+aIHGWZGY13BCYKAx+MxW0P7/SP2zIri5CnjmN+v2+0uKvyLRCLm93Ee8uE23JZbm6ZpqKqKaChEt/yYyOZ/wFASed/j6VxJ3U1fx922oOi+i2ksDGOkedK0adO48sorR98H5eRhC4Tna37yE0TLZdPG0B//cfF9TQQkicSNNxJ8/HHnJe+bb8IDD5jVPNW41hdh1KCrqwtV05h6nj32JUlCVNW8K3F7zAGTFCQSCVMXw4jbq9vlQna5RqUHW1taaG1pYdGiRcTicUKhEN3hMPv27WPvnj34/X6nWVRLZrMow3BaL18IeDwe89nWNGLxeNb4Uo55mG4YjibJjjzous5He/fS2tpKa0uLmWYwjE9Mi+ZcfOrJgT3JJSwrTufRMAwaGhuZMnkyH330EZOnTCnPN7tIiCph6Qy8E9ghUbNboHo86MDg8LBpsZpxfoZFfqoFURRNzwSv1+zjYHdfU1UzsqAoZl21JOGyiELmpDYciVB7HlMKNlwuF7phENnzNMmN/72IrmAa9Td+De+cm8sjUwW+X13X2blzJydPnmTBwoVcNnfuuHwWIJsciD09BH/2s6ztYrffjjKBtfbFkLz55ixyIEUi+D/4gKGrr65OOWUVxGzVjhycPn2ahvr6go2SJgq2KDGXHGiWVbqSSiG7XOZnte5PlyzjcrnKHosCfj+zZs5k1syZZrOo3l6HLBw/fhxBFGltaaHNMmAKBgLmdc45p/NB6QRBwOf3Oy3vk8kkfp8vbyoj3/VXLJdPu3MvwMkTJ4hEoyy3qtjs9F8xC+qPMz715ABwyEEqlcLrdmcN7AsWLuTVV19l+/btLF++vPLB3Bp8YrbRkSxPaH7KsJTyNbW1xKJRorFYlqWyYZ3TREGSJHyShM/rRVNVUlbaQdM0UoZhWreKIm4roiDLMpGhISZPnTph51QIQt9+4q99Cz20K//fPTXUXvOHBJf9m7L9CgppU5zmSb29XHXVVXR2dhY+rzImK2eLjGPV/sM/ICZGoh6GJDH8R39U1nlPBLRJk0gtXoxn927ntZoNGxi6+uoL35FxApBOpQiFwyxcuPC8H9uOPuma5vgR2BVRyWQSDAO3pbh3V0AICkGSJKcMEiAajRKy0g979u5l9+7dBIJB2tvbaWtro6W52TlHe1Kd6DtAtFK3sVjM1EpJUlaVRaHIre0iCSPli0NDQ+zes4fOzk7qLTts+xm8FDn4BMO+uGlVxXC7s3JmwUCA5VddxQdbt1JTUzOm8iQ7jCcIwoSvKGxWHAwETFtTyzWxfhz+7mOFJMv4LdGlqqpmq9VUCl3TSOm6+W+rcmMi9BeFoA53MfjW3xLbU0BXIIgErrB1BZX5FeRDLB5n08aNJJNJrr32WpqbS+xzDPla6dw5go89ln3ce+9FnTFjTOdcLSTWr88iB4G9e3F1dyNWQaxXjRV/NSeoc11dGIbBlMmTq7jX8qFYUbrMEt1UKoUoivj9/rIauY0VwWCQ2bNnM3v2bFRVpae3l3AoxNmzZzl65Aii3SyqrY221lZzHLTy+BNJEuzmcolk0jFIyhcBzmzEpmqao8VyyTLJZJJNmzYRDARGnHMzntFL5OATDEmSHPMfVVVxyTKCtco2gClTphCJRNj30UfU1NRU1LNbVVWHhQaDwQlv9mKrawVRpKamhlQ6zeDgIDWBQGkb3gmELMsELaLgCBnTabPsSNdBEBgYHDRTD9bKptqpF11JMLz5/zK86UeFdQXTVlF341+V1BWUi4GBATZt2oQoSaxdu7bsioxS4e7ctELt//pfTsMjAMPlMjsvXmCkVq1CDwazdBC177yDWqKN8ccRZ06fprmpCe8EW4CDOZmpVrthVVVRLbKtqCqyy4VLlk1PAo/HFPsWqfmvNmRZpqO9nY72dpZgpg3t9MOuXbvQdZ3a2lozotDSQmNT04RGktxuN6qlLUomk44TbSH30Uwhoq7rbNq8GU3XWbNqFZIkYQCZ7/Sch+t9IXCJHFjweDwm89Y0p7UvGU1i5s2fTzQaZdvWrQT8fhosc6RSSFhhXo/Hc156fetW33HJGhCGhobQNI2BoaFs7cEFgigIjhNjwOczW1QLAl6fzwyHZgiBBEFAlmVcFlEYK1kwDIP4R88y8OYP0CJdebcRaqfScNNf4Ztbpq6gDHR1dfHB1q3UWc2TKllhlNu8SwDk48cJPP101uvRz30ObdKkis53QuDxkLj+egLPP++8VP/22/T95m/COJ4HuxHYuFNkVbrWyUSCcHc3V155ZVX2lwvDIgP2JKdleBrY4mJRknCLIsFAAJfLRSIeR7SshC+k6VRtTQ21NTXMnTMHRVUJW54Kp0+f5sCBA0iyTJsVVWhvb5+QtKvX4yFqlV+rqmp+J/a1tyoWRHC8T8AkB9u2bWNocJA1113neCY4pMKaG7yXIgefbHg8HqLRqClEsS92Rs2uACxdupRoLMbGjRu54YYb8JUIhasWqxesOthqi5/ywakxtkJ29fX19Pb0MDw8TG1tbdUMl8YMq+xKtwZ2TdMQMVXRhmE4JZGKqmblTs23jpAFl8tVFtlKnd1J/2vfJH12Z/7T8dTguep3ERc+hKumfvzEwLq+R44eZc/u3XRMmsTyq66qnBiWSi1kRA5q//7vETImC93nY/j3f7/iU58oJNevzyIH8sAAnu3bSeXYk1cCx13vIsHZs2cRBYHJVSJkhq47E9koMmBFNW3CLNsEQJJIK4o5zljPjmEYF/6Zz4BLlpkyeTKTJ08Gw6B/YIBz587R3d3Nzp07nTGrrbWV9vZ2Ghobxx1VMAzD7LdgRYdTlh08WBE6MBeCouhEeWVZ5tChQ5w9c4YVV19NQ0ND5g6z0iGXShk/4XC73QhWnbDjmpdj5iFJEqtWrmTDW2+xceNG1q5bV3Q1a0cN3G63sz+dCbRttcSImVpcn8+Hx+tFSyTo7+93BEQXC1LJJK4M46TMUip7YFSsn1lkIZEwc4JWCsIly1kTsDp8jsENPyS295n8BxZEgks+R/3ar5ASzdLPlKKM2wvfAHbv3s2RI0eYM2cOl19++YSEc22S6Tl0iMCLL2b9LfqlL6GX0jWcR6gzZqDMnYvr0CHnNe+rr46LHFxsPRVOnz5NS2vrmO8fwzAcEpC5qLAbvtldVm1CIEnSqLC4YLuy6jppTTP9RXJsfy8W2AuYxsZGamtrmTdvHmlFoTscJhQKceLECQ4eOoTb5TJ1CtZ/Y8nvi5KEoet4PR5n8WFHD4ARh9iMqGV3Tw/79+1j/oIFTMohfI6BEqau6mL8fquBT+anGgPsksakZTMqSVJety+v18uqVat45+232bp1KytXrsw7+Gc+4J6MSEQpK+HxwNB1dMsHPBONDQ2kLN+DeDxe2BjpPEHIcCZLplIF+8rbA6EX8zuzB07FEl0Zuu54RwiY4T7ZUEjt/H/EPvi/GGoy736901fTcNNf424zxaVuSyyZTqcxxpGb1TSNLVu2cO7cOa5YsoRZM2eOaT8w0hSmUNjbvoeacpor6TU1DP/O74z5uBOFxPr1WeTAs3UrYn8/epnpuYmCbXE+HgIXi0bp7+9n2VVXlf2ezPvZiQxk6JwMw0C2JnabFBTs0GlBtJwSNcNASaUwDOPice4rQObs796OcEyZMoUpU6agGwaDg4OmAVMoxOkzZwBoqK83KyDa22moLx3pMwzDKaUURXFU9MBO39mdeQ3DIBKN8uHOnUyZOpW5c+eO2qdo+RvAJ1eMCJfIQRY8Hg/JeBxFVbEveb5br76ujuUrVrBp40b27t3LokWLRm0zKmqQsb+JWu/Yq2spJ4wou1wEa2oYGh6mf2AAr9d7wRvf2OZQqWSyrLCcnVKQrVJQwzDMsKtFFBQljbr/RYY3/z1GLJx3H3LDdFNXMOemrEFFlmUkQUAXBBRFySp3KhepVIqNGzcyMDjIqlWrquKr74Q888AAfHv2EHz77azXI7/92xgXoDKlFJLXXUfwJz9BtJqNCZqG7403iD344Jj2V02CPd64zpkzZxBFkY4ibZANw+rlYQsIrZLDzL+LomhGwCxCkM8GuRhs8qCk06bxmhVZuyhQ4HoVmtxFQaCxoYHGhgbmz59PMpmku7ubUDjM0aNH2X/ggNksytIptLa15U2f2FbJNnKjB5nkO60oJFMpdu7cSV1dHUuXLs17fpkLxouGfE0ALpGDDNgsUFXVrJs5X7lNR3s7ixYtYs+ePdTU1DB9+nTnb3mjBjas6EE5bYwrgW6tRCB//W5dXR2xWIx0On3BShszYUcPkqnUmB4wu8zIJcuIZ3cQe/WbpM99mH9jdxDPVb+He/Hn0NxeEomEKdSyypoEQcDt8aAmEqTT6YrJwfDwMJs2bULTNNauXVu977ZI6NwwDNp/9KOs17TGRiJf+lJ1jl1lGH4/sVWrqNmwwXnN++qrxCzHxAuKjJXgWHD69GnaOzqQZdmx1NVUFc1ajWqa5jgSAk6EQBQEhwjYmoHxQMiIxrldro/dqraYJsvr9dLZ2UlnZye6YTDQ308oFCLc3c2p06cRgKamJocs1NbW5t1fbvTAjrYomoaiKOzevRtJFFm5cmXecTSXLLgvkYNPB2RZRnK5MKzVqCzLzgOXD7PnzCESjbJjxw4CgQAtLabXftJaHeVGDSYK9sBjh8XyCXhEUaSutpb+gQGGhoYueGkjmINjMpEgOMaeCurwOQbe/AHxj57Nv4Eg4l30IO4Vf4DhrgPDIK2qZsmf9R3Z6QgBqzukReica18CPT09bN68Gb/fz5o1a6o6IBeLMvk/+IDgtm1Zrw3/3u9hFPou7Xt4PI6MVgjYfiYyIxu56bd85z18ww1Z5EDu6sK9Zw/pxYsrPZnqVCpYGGs0T9d1BgcGGB4eZtasWUQsNz4yiEDm9yOKoklIbVJb5bFBFAQUO0Xhdn8syIGtPRCwvAYsfUAxiIJAU1MTTU1NLFy4kEQiQTgcJhwOc/DQIT7atw+v1+uYNLW0tmZFUDKjB3YZdTqV4qOPPiIejbJ27dq8352Rc//DpbTCpwoej4e0ZaWcKTTJFz0QgCuuuIJoJMLmzZu5/vrr8bjdKJZiuOCNIxRu51wpdGOkq6JtgFSIkNTU1BCNxUimUhdFaaMgCKTS6YpLgfR0nOFN/8Dw5n8srCuYcS0NN30dd6tpHWzneJ3/rNIwQ9cxNA3DSilolgGKx+1GEkXHNMX+L3M1YTdPamlpYcWKFbhcrixV+bhRiJgaBi05WgO1rY2o1dRo9OYZE/d47jlrJWbft7n3b6k9J2bNIjllCl4rfwxmMyZl8WLns5ZzdhPt8jnqeBn3jh0JsO+T4ydPIsoywdpaVNtnQhDM+0UUEUURyfIcKKUZGC8E6x42dP1jNWnZ5Ey0ejFUWtXl+//Z+/MwOa7zPBR/a6/qdfYFgxns4AIuALiBlACCokjKcq4dKXbixI6vY1/Lsa0othzbebL5Z99EN5F9I1/Hy1Uib4kdxzeyYkuJJZEURUokuGIhCZAAsQ/W2afX2uv8/qhzaqp7qrure7oHAFnv88wDTE91bV19znu+7/3eT9OwefNmbN68GR4hWJifxzXqq3Dx4kVwlEyEm0WJIV8bcBzOnD2L+fl5PHD//Q27afJUVB7GejaLW28k5KAOqqrC4Hn/i87qWps8rALP46F9+/D888/j5UOHcD8VJbWKGrChbS30oCZUiZVURcMVL8fVlDZmM5kbOoiwPgxxS4EI8VA5/pdYfu7fwi030BUMbEH/4/8C2o7Ha+5DWLMQhud5QS4YhKBSrcK1bRBBgE3LyQLBGl398TyPCxcu4MyZM5jatAl7du8OPutuOr41WkGpzz2H1Ntv17xW/NmfBWQ5cvK/WQr+CCEoHjwI9U/+JHhNeekl4B/+w1URj5qWukBgPMPEes3Emu2CTU6EkJo0QJgQ1N9Vdg7Xr1/H6MgINE0LyCTrkLjeYMQAQEOR73oi7iQf3o79v9N2zjzHYXh4GCMjI76/SbXq+ypcv46T776LE8ePI6VpGB4d9dN/HIeFxUVcvnIFt+3cifEmpajMGI99xwRBQL6vr+1zvFWQkIM6yLIMIghwLcsPc7Hwc5P0giLLeOSRR/Dcc8/hyNGjuOeee1pPumuMHrjN3tdkYNI0Daqmwa1WsbS01BXhXKewLAs84ol6zMuHsfjMrzXUFXBKDn37/zGy9/8oOCH+wMgme+adAPiEIZvN1kYbQpPF8RMncP3aNWzdtg2bN21CoVCAQE1VCBCsEnnq6RC01I2JYHVO69VrPk3PQ/43f7Nme2dyEpVPfjL2/m8EWIlt8UMfwvCf/3ng5sjZNtTnn4f+N/5GzfZByiL0nHuhv616xtkE06LCg5UGsrJf5idg2zY8160pA2bHZ6ZiPI0GMAJQLBRQrVSwd/fuGy5MY2W+ANZcjtstxB7b6rZjBKFTX5jwuJpKpbBlyxZs2bIFnudhnjaLuj4zg+kLF8CLIgh8n5WtTaqLuLCwkc4F2Xz+hgu7e4mEHNSB53lIigLPsuCElOut8pLZTAZ79uzBG4cP48jhw/jw/v2tSwY7rNX22CBYh6hOfVHo7+uDoeuoGobfzvQGlTYahuGr7jWtYTmZU7iCpW//W1RPfDV6JxyPzN4fRt+Bz0JIra0sThAESKIIizqpqYpSk6u0LAuvvPIKFhcXsXvPHoyOjPiiMypA9cK58NBAwoGWmVGiINCVJSMmXIhEBPegASnVvv51yKdO1Zx34TOfAW4WVXoj0GfWzWZh7tsH9bvfDf6kfeMb0L/3e2OvtqMmjKAUzfPggXoDeB5cQkBcFy57LeK9LiHwaDqIeQOwVAD7f5SO5/KVK1BVNdAa3UiYtJyX53kIdCJbL7vktYI0KXPsJnie99stj4zgbkJw4sQJnD13DhzPY9OmTU0rO6LG/7guubcqEnIQAUVR/E5ejhNbue4Rgmw2iwfuvx9vv/02nvv2t/HIww9joMUD1G74LAirRv0t5peJlTYWi0UsLS1Bu0GljaZpAoRAVZSgNzqDZ1VCugIz8v3qlv1UV3Bb185JlmVfuVynhahWq3jp0CFYprmqeVKNB4Pj1NRME6ZYhz85cYTAZoNhxODN0QkpHHVggz7necj/1m/VbG9t347q935v166/V2ApL57joD/1VA05kC5cgHj6NJyImvLgHtJ/WQQn/LoXnvRD95RpLWpEkzwPHtQwiN5n5iYqCEKgXm8FQgguXb7sN1m6watH4nkwKdFm7YNvKDloc9EThOtX7ab9yEGc93iE4M1jx3D+/HkMjYygv78fiqI0vF/MWKr++zpwE9jR9xIJOYiAqqoo87wvWKv7kjXKKTvUWSubzeIjjz2GQy+/jBdeeAEPPPBAy0ZN7ailPddtucKKMyjk83lUq1WYN7C0kVV1qKrqq5WJbwFTeft/YPnb/66JrmCr71ew/SNdHwAlSQJ03e/MRju1seZJoijiwIEDq5onMT2DIIqQ2MQV+rsXIgksrx1+jU1woKtcj5II9jkz8jjwta9BunCh5tjXfvInUaFukeHz4bASfg8rwoO/1/0NwMp7wts0AQvjBwJFrITuWaSAbWc7jp9GEgQUdu4Ev2kThIUFEDoxO889h/LExEpqgBD/HoUGejbZu+FJnx6P47hgYg+ndMKRGUYE2HUF32VCAm1J3OjF/Pw8DMNoqwlbr2CaPnkWeR68JMGiBPWWCXk3IRPBZxWDJNRXzESBtU6fm5vDrl274NHPXmwWNajzSmDRzm412Nq4cSOuXLmCxx57DM8991zTbY8fP47du3fDdV38xm/8Bn7hF36hK+cQhYQcRECSJHCCAELV62EfbgCRDzIjB5IoQlFVHNi/H4ePHMGrr76KcrmM22+7reHAw3G+IVCrB9uNYK81YGmFFvsB/JVoLpfD0uLiDSttNAwDkiQFg5h55QiWnv5VWNfejNyeV3PI7/85ZO/7+23pCtqBIAiQRTFwXlxaWsLrr7+OfD6Pffv2rWhJQhMJGzg8OqGtOm+OAxq0ig0jvDpmJIK4LhzPAwwDo7//+zXbl3buxNL+/TXdGDtCxOAcJgkAUCqVACBolBWe+IPtQqv38GDKcRxM24ZlGBAkCQLPY+nAAWj/63+tPKtHjsD5xCdAWKSOkCDczCZ8trIXgWCy50IEoF2iuEoUHCJVrDS40T4vXbrUVgO2XsFzXRiUHCiq6rdoxtqEzmtCJ6nSGJ8bRysZmu+msWkYAFQrFbx06BB0w8DDDz8MSZIwPz8PUZabOmXWPwcc0FUh4kMPPYSvfOUrOHLkSMuIz2c/+1m4rott27bhH/2jf9S1c4hCQg4aQNE0WKa5qqQRiI4esBI2NsEKoogHHngAmUwGx48fR7lcxp49e6InCI4D3yC0xtAy9dBBfi6byaBcLsMwDCwtL9eEytcDJjVAspcvY+lbn0Plna9Fb8gJyO79YeQP/PyadQVxIMkyLMfB6TNncOa99zCxcSPuu+++lYoEdq+7nRNtQCI8QpD9ylcgX79e8/q1f/gPkUqng4nZj7sgWHmHBXXh0HrwL3sPm4hD18QGYvY+FknxXHclPx8exBhZYhMs9Y5gUQzHdSFIEmRJgqwo4D70IaT+4i/As0hBpQIcOwbz4MEgqsFjJc1Scz86ULHHQUAWQimQ8MrVowO357q4cvkytmzZckOqEsIwTTPQsUii6LcbpkLWG4JOvhNxogItShxbTaoLCwt45ZVXIIgiDj76KARRRLlchiBJEOnzFV4IMjTaZzdJ4b59+/CVr3wFhUIB7733Hm67LTpN+rWvfQ3PPPMMAODzn/98R06u7SAhBw2gKAoMnodl20GrTiB6VU4AvxQOqHm4OI7DnXfeiUw2i8NvvIFKpYKHH3448kNt+uCjRysBLlTaWCohm82ua2mjWVnG8NWv4srv/XRjXcHWA76uYHh1PrpXEAUB7506helLl7Bj+/bAHrvXHTUbga9Wkf/iF2teK+/ZA/3hh9Eny92foEitlwEBYLsuOI5DKp0O3OeAeOkHAEC1CoHnoaqqr+yfmIB4551QXn892ER85hksPflk0930ihg0QvgzZ6LEmdlZWLaNycnJdT2XeniuC5N2EWTVEuwc1/s+AehYYB1v1833XW+THMb0pUs4cvgw+vr6sG/fvoAYeJ5X07OinhyEO9zWn0s+3KVxjdi3b1/w/zfeeCOSHNi2jX/yT/4JAODAgQP45DpUJ90iSan1h6qqgCDAo2VOzeA4TpD3jIoMTE1OYv/+/SgUi3juueeCEG0NmgyybKXWFA0qGFqB5c4EmltfDxDPQ/HY/4f88z+D/PRfRhIDcXAbRv7OH2Lkh/7zuhEDlht/5dVXcfnyZdx2223Yun17/Pf36Lyyf/InEObna167/lM/1btVK6usYOV7oWhG2AyKhfNjgU5W4e31OiIgvfsuhOnphruo13J0DW3ex3Pnz6O/vx+5fN6fjG8QaTQMAzwQNGcCViI2N+KMek6e6XMZdZxGr73z7rt44/XXsXHjRuzfvx+yokCnWiee4yDSCiXAj26FwdPme/XI5nJd7cR4//33B/t7PUSWw/jt3/5tvPfee+A4Dl/4whe6duxmSMhBA/A8j1QmA4IV4RxDfW7LCUUNGnkXDA0N4bGDB8HzPL797W9jdnZ21TZRQ1RLnQFFzRHbHOz6+/og8HxQ2thL6BdfxeX/9HHM/uXPQbBWkxFezaP/yV/Bhp/8Zk8Eh/UI6wV0Xcfzzz+PudlZ7HvoIUxs2ADLNOP3wejB4MgVi8h+6Us1r1X370dl9266wa1RrhZUK4RSBNYDD8Cry91qTz/dcB8sRdFttLPPSrWK2evXg5p4Fs7msb6Dqes4sGwbHlBTVcNSMuueVljLZ9POM0xWd51tpBN4/Y03cPLdd3HnnXf6TZR4HrZlwXUccPDHawKs+JswUWroWFHo62LUAPAXaPdQC/EocrCwsIBf+7VfAwD86I/+KPbu3dvV4zdCQg6aIJPNAoIQdFELI/w4OvUphQYPeyaTwaOPPor+/n68+OKLOF+nPK+PHnQUGuxgsmCljSLPY3FxsSchSXvpEq7/95/ClT/8BMxrb63egBOQe+DHsPFnv4v8Q/8HIPSubp+ZDLE8sut5KBQK+Pbzz8M0TRx49FFsmJiAQMmeTUO3rdALIpP9gz+AUCjUvLb0mc+wA3b9eL0Ce6Zq/AJEEfpHP1qznfrtbwMx73e30M6K98L58xBpa+GafWBFi8SjPcLRCQzDAAdfAC2GopU3JK2w1uhJm++t1xfUX6tpGPjOd76Dq1eu4MEHH8ROKgYnnhcs9BRV9TUkhPh9LuiCz43S09Qdu68HIlSWWjh27NgqC/Zf+ZVfwfLyMtLpND73uc91/diNkJCDJhAEATI1CGLlQgwsehDWG0gxQk0ydVPcvHkzjrzxBt5+660als/Rn3ZDqGzbTieofD4PURThOA6KxWJH+4iCZ1aw8K1/i+nfPoDyiWjBobbtUUz81NMY/Nj/CSHVH5gG9QJMhR6uLJidncULL7wAWZJw8OBB9NHVrKIoAMfBiDtZdVuguLiI7B//cc1rlaeegnnnnV09Tq8R7sdQ31/AeOKJmt/5QgHKq6+u27kBrVXuDK7n4fyFC9g0NdW08iT4LoZ/uvhssK6vBKvdRdn9Xde0whqvre0qkxAZqde8FItFfPv551GuVHBg/35smJgI/mbSVtYCz0ORZd8aO5Q6A1qTA0VRVpUydwOMHFSrVZw4cSJ4/Z133sEXqd7ol37pl7Chib1zt5GQgxbQ6INgWZYf4g+Bg08M2IohGDBafFl4nsfu3btxz7334r3Tp/HKq68G0QdmyLLegiJW2ijyPJYLhYDwdArieSge/XNc/A8fwtJ3fwvEXa0rMJRRSE/9Jsb+3p9E6wq6MKASIIgOsBa64RX39PQ0Dh06hMGBARw4cKBGfKrQcCOhBkdxjtVN5L74RfCVysr+eR7LLGqA3q9Ou4Xws1wfEnYnJmBRwSdDo9RCL3Pace7l1StXYJomNjex2W18gO6lHoLVLy0LrT0Mt2Lasw7oRrSso0+Vpk/Cz9bMzAyef/55CKKIxw4erFnhe64Liy7wVFUN3stRshCQgxZVEd0UIoYRFiWGUwu/8Au/AMdxsHHjxkCQuF5IyEELaJoGgTa0sczVE5zdoEqhFTiOw/bt2/Hwww9jZmYGLzz/PJaXl1f+3qaBSVzr5GbIZjKBL/tcnQCuHfi6gu/B7F/9PNzyam0Fr/YhffCf4d3t/xTpHR+J3Aerbe8ELOoSdiqM2uadd97BG2+8gU1TU3j44YdXGaFwPB9UbxgRn30vIVy/jsyf/mnNa5Xv+z4427at63l0A42iBgz1wkT56FHwdWWbwA1S4Idw7vx5DA0NIdthJ75upB4c24ZHFyRRlUXM6KneQKpX6MYxOrkPHu05wvM8PEJw8uRJvPTSSxgcHMSjBw5Aq7OEZ1btoihClCTfT8R1/YZeorgqctAI/T0iBzt27AjcdN+grdj/+q//Gt/4xjcAAJ/73Oda2/F3GQk5iAEtnQbgpxbC4jSO44KHqVP16vj4OB599FG4nofnvvUtvP3WW3CoYKYtdGMg4PzWpiLPQzcMLNflulvBXprG9f+P6QreXr0BJyD/0E9g02deAnf7DwDgu1s6SfzmPoGlboPNPM/D4cOHcfLkSdy1axd279nTcOJi3e1s244vTOwCcr/7u+BC6QwiSSh8+tP+/7tABNcTkXqDEMxHHgGh3zEG7dlnV23X0+ttse9CsYj5+Xls3bKlK4djTxLfppDPMAx48J/LKAfEsDvmjSq9bRednCebzBcWFvCtb30L77zzDnbu3ImH9+1bRfKZrTkHQKNpmCB9AN9ZUhAE/56x6GID9NL06qGHHgLgRw4cxwncD++//378yI/8SM+O2wgJOYgBNZMBLwgghPgmIyE4tNXvWkpb+vr68JGPfAR37NqFk++9h2eeeQYzMzMdlUmtdfiUZRn5vj6IgoClpaVVWosoeGYZC8/+X5j+7UdRbmBklNr+EUz9zHMY/h5fVxC2Tm6EuDX0YWFhq3CqbVl48cUXcSUkVmp2DNbmmQMiI0d1J9LyXONAmJ5G+stfrnmt8oM/COcmsOrtBGFToUgoCozHHqt5SX3mGSBOCe864fy5c1BUtes53+De0J9mz5BtWcGk1qwlMxcRcu86ukjU2iZ9HAfLNHHs2DE/jcDz+MhHPoI7d+1a3eeCkGCskRXFL08EfNdRjgt+B3zCwVHb/ChkstmedrxkqYW3334bv/mbv4mTJ08CAL7whS/ckIVAYoIUA5woQpFl6LoOwzCgyHLth7WGEDiDIAh+P/GxMRw9ehTfffFFbNq0CXfffXcsJywWSu/GQ5TL5YKujXPz89gwPh65SiGeh9KxP8fCt/4t3Mpc5L6koR0YeupXVqUPTNOssU5uhFYrICYujGzjWwdmn2pZFj784Q9jMGbjFFVVUa5UYFgWFNoHIgqNusu1i/xv/Ra40ADlKQoKP/3ToQPRyMGaj7Q+8FqkFQA/taD9z/8Z/C4sLEA+ehTW/fcD6H0NfbPnzHYcXJyexvZt29b8PW+EcCQBAFZN64QEqS1VUZp+b3jaXKpnd4zeqxvx/BFCcPXqVRw7dgyObeOee+7B1iapNpMSKp7jagiVR79f4fvIA36DtHUqYawHIweWZeGf/bN/BgD4gR/4AXz4wx/u6XEbISEHMcDzPNRMxs9beR7sUCvnbsLzPGQyGXz4wx/GpUuX8NZbb+H6tWu46+67sWlqal1L1wYHB2FeuwbbcbC0tLRqItUvvIL5b/wrmNePR76f1/oxcPAXkL//74OLKEs0DCN2SiHsq86a49Qo4GPcl8XFRbz88suQJAmPPvooMm3kjSVJCkKOtuNAbhQl6sIEJp4+jdTXaqMv5R/5EXijo373uvAxbrW0QpMJzdm6FfaOHZBOnw5e0775zYAc9BxNPrtLly7BdRxs7lJKoelp0H9ZlQMjCZZlBWZocov23D33OugyMYj7rdGrVRw7dgxXr1/H2Ogodu/evaItiKjuIp4XRD4VVa0hdq7r+iLy0GucIDSNVvW6j8ZDDz0UkFTbtqEoCj7/+c/39JjNkJCDmOBF0bdUNgyYpllDDliOL/x7sJqNifpGNVNTUxgZHcXbb7+NN954A9PT09izZ09bk9paIIgiBgcGsLCwgEKxCC2VQkrTYC9NY/6Zf43KO/8z+o28iPwDP4aBR38eQqox03ZdN1bpJ4DA8S3oA9DmJHz16lW88frrvn1qA/vqpsenqw7DMGAZBuRGn0EXIgf53/zNmrI3L51G6Sd/MjiPdknRzQA2SbU6X+PJJ2vIgfzaa+AWF0H6+9fFfS/qsyOE4Ny5cxgdH6+pZFkPMPEigJpJrmW0DaixwO4qeuAI2arM0/M8nD9/HsePH4cginjwgQewYWJiVfS2/rwM0wQhxC9Jr/vOu54HEna0DZOpiOdUEISuNluKQj6fx+233453330XAPCZz3zG799xg5BoDmKCkyQotASG1RnXoJ65tjlwR4ndVEXBA/ffj/3796NSreKZZ5/FqZMnI1cEvRgIUuk0Uuk0REHA3NULmHv6X+Pibx9oSAxSOx7H1E9/C8Pf82tNiQEQnzwF3QkJCdTFcUEIwZnTp/HKK69gbHwcH96/v+OID/M8sB1nVUlr6IAd7ZtBevttpGhjFYbSP/gH8NiK5RYRmNUjyh0xCsaBAyBhtz/XhfrccytNoXqIRkdYXFpCoVDAths4SOuGAUKdAZtpDQLESLF1hF6JHJuca6FQwAsvvICjR49i4+QknvjoRzGxceOqsaPeGMl13UAfFkXqXNcFR+8pIcSfCJucR69TCgwjIyMAgOHhYfzzf/7P1+WYjZBEDmJCkCS4lIFapgndMJDNZGp8zNn/GXOP+wUlhARdx6IwOjKCJz76Ubx74gROnDiBS5cuYe999wWlL2F0ezXZl8+h8uafw3r1d1AwFiO38XUF/z+kdzwW+fdIeF7L/K1HVvpFsL4VcUVWxPPw5ltv4dy5c7jttttw5513runeCNSD3XYcmJaFVISQMrzS6wT53/zNmt/dvj6UfvzHI49zK4G0qFYItkunYezfX1OpoD3zDPQf+IGeX3Oj/Z87exbpVAojo6M9PoNouK4Li5bhpVKpoHeCRxthRYG92s17RuCv8NcrVuW6Lk6ePIn33nsPqVQKjz76KAabdI2tvxesf4IsSZGGVZ7nwQPtFcLzK91MG2A9WnO//vrreOGFFwAAv/qrv4p8Pt/zYzZDQg7aACdJUBUFlmnCse1VNbGtOoc1Qqt2o4DfKfDuu+/GxslJHD5yBM8/9xy2bt+Ou3bt8ut2w+fQJVQvHML813+lua7gsX+C/H1/H5zQ3qPkEVKjFA6jk9RBGI7j4LXXXsPMzAz27NnTtdCcoiiwHQeWaUKLECau5c4rr78O7bvfrXmt9KlPgYRTGOyzZffmFkgrNHNHjILx1FM15EC8cgXS8eM9d4UMk3wG07Jw5coV3HGDHCkJgKquAxzn2yQzUy74+fFWJKGbkaZOx7ZOMDs7i6NHj6JareK222/HbS0qihiYSNIK9U9oVA3FIgcBMQih/kgCz2NweLiTS2kLv/RLvwQAuOuuu/CpT32q58drhYQctAFeVcGbJkRJgmPbQbtUYPXAEneSZmHzWNtzfovlxw4exLlz53DinXdw9epV7Ln33qasul3Yixcx9/SvofLuX0dvwIvIP/gPfF2B1tfRMSIJEfUpaKSEDkxPmkQPDMPAoUOHUC6X8cgjj2C0iys+Vl3BOnWGhWFrGjYJQf7f//ual9zhYZR/+IejN6f/3vzUoLk7YhTs22+HMzkJ8dKl4DX1G99YF3JQj4sXL4IA2LRpU0+P3QiWaQaGR1GhcQK/c2DP3RDXiRiYloXjb7+NCxcuYHBwEPsefhi5bDa2vwjT5IT7J0QR0sAAieNilaCPjI8HzZl6hS996Ut4/vnnAfgdGJvZc68XEnLQBgRBgCfLUBUFZduO9AAIfNpjPtDtChc5jgPP89i2fTvGN2zAm2++iUOvvILxsTFs3bJl1UNMPBfEMcHLrd21XKOEpe/8P1h+5T+BuNH9BLjJD0F+5LMYvO2hWIN9I3ieF4SZw50RmUq7ETj44emoAaNYLOLQoUMghODRRx/teliOCRN1Jkrt0oChfuc7UA4frnmt+NM/DRIxIdxqIqF2ogb+hhz0J59E9vd/P3hJPXQIxfooSpdRr2sghOD8uXOYmJjoSWVSK3i0SRAjBo3uHwEA1qaZpeG6HVHqNTEgBNPT03jr7bfhuS727t2LqU2bgsm+nfHRMIya/glRcF0XrMldq0mY5zhMTE62dTlxUK1WcfXqVZRKJXz1q1/Fv/k3/wYA8FM/9VN49NFHu368TpCQgzYhqCpEy4IgikHb1PpJIipEGQVCiN/nvsMvcyqVwsP79uHKlSs4dvQoZq5fx+atW3HHHXdAlmWUTz2Dma98GsQ20H/gH2Pw4Gejz8NzUTz636hfQbRtsjy8E/0f/ZcopHbCdl0UCoU1WYmyL31N2Dnme6NCnLOzs3j11VeRTqXw8COP9ExZzipWHMeB67qx+2k0BCGrtAbOxo0o/+2/3fgt9N9bKXJQ3wOgGYzHHkPmj/848HrgLAvaCy+g+r3f25NzBFbfy9nZWVQqFdy3XqWUddANA6CTlxyj5JcAwTjS1eeih1EDAmBudhbvvPsuZmZnMbFhA+65994gFcBhNWlrBtu2YVkWeI4L+idEwfE8gFYx1J9PPQaGh5satXWKP/3TP12VOnjwwQfxhS98oevH6hQJOWgTvCgCoghVUVBxHFiW1TDkFIv1dkAMmEUqayI0sXEj+vr6cOLECZw/dw4XLlzAttEU1Gf/IYhdBQAsfvvXoW3ah9SWR2r2VT1/CHPf+Fewrp+IOBLAp/ox+NgvIX/fj4ATRPDlMhYXF7G0vAxN0zr+4niUvXeqLQinFy5cuIBjx45hZHgYDz744Cr71G6C53lIkgTLsnxhIiMhHRI87emnIZ+ovfeFT38aaLZavYU0B17MMsYwSF8fzH37oL74YvCa9vTTqH784z275vqn8Ny5c8jlcpGi317Ddhw4tg1CyKoeAS1BKxX4LlQW9MqCmQC4fu0aTp46hcWFBeTzeTzy8MMYHRtbOTbaS9V5rgtd1wH4TojNxgDbNMHxPIRGKQVGsjgOG3sQNQCAI0eOAPAXG5s3b8bf/tt/G7/4i7+47uWyzZCQgw4gaRqIbfuhPmpYUc+ueY5DK/PXrnx56f9lRcGOHTuwZetWXL92Fc43PxMQA4b5b/wKJn/qG+B4AdbiBcw//WuovPv16J3zIvoe+vFVuoJMJgND11HWdczNz2Niw4a20wuEEDietybLaRZGffedd3Dy1Cls2bIFu++9t2cOdmEoigLLsmBZlh/yRYefpeuuihrYW7ag+n3f1/g9dX4aNzsCA6Q2c6j6k0/WkAPp/HmIZ8/C2b69q+fHEL6XVV3H9evXcc+99/bkWM1ACAkmOUVVG09gzRCa3Nay8mdpvm7BIwRXr1zByZMnsVwoYGhwEI986EMYGRmpKQ8mbZJfQgiquh54GrQq9zQtC/C8htuxo+b6+pDpQXtmAPi93/s9/N7v/V5P9t0tJOSgA/CSBE4QoCgKSsCqfgsMHMc1TRuslZOHmT3L34uiiI36EcyVTq3a3rx+HMuv/zHcwhUsv/KlhrqC9M4nMPTUr0AeirYlHRgchHXtGkzbxsLiIoZjiiFZDwTQ0s1WpW3N4LguDh8+jOnpadx1113YsWPHupkCSZK0klayrHi15xFIffWrkM6erXmt8HM/B7SaEG6BiAFD3DLGeti7d8MdGYEwu9LVM/X00yj2iByEceHCBXCCgMkerRqbwTBNv6yZ56F22JSspry6TtcTfydcS3OiuHA9D5emp/HeqVMolssYGRnBgQMHMETHjfpz40OLnjgwDCOwSE7Tcs9G10s8z4/KcNxqzVCd++jGW7SXSbeQkIMOIWgaZMcBx/NwXReGaSJTN6hzAFj71MiJqwtfvsBbgYqS7OVLWH76/2y4/dxf/ws0+urJI7dh6GO/ivS25oIYnufRPzCA+bk5lMplaKra0rkxTAwAuirpcJVvmiZeeeUVLC4tYd++fV1vhhMHiiyj6rowTbMzcmBZyP+H/1D70h13QH/qqdi7uBUcEt2YBkirwPPQn3iipm219p3voPTjPw7Sgxwwg0cIzp8/j6nJyTVFtjqBQ8tkCSG+j0a3Pl+aZojdiKlLOgPHdXHxwgW8d/o0KpUKxsfHcd/996/2DKiLhrVzZJtG8ABApcQAaCxaZt1VeZ5fJTQNb51OpdAfs/fK+xUJOegQoqLAqVSQSqVQKpVQqVSgaVqt8KqJzW23cnkcY/gcBwKC8jP/YlU6oWb7iK+ekBrAwEd+Cfm9Pxzbr0DTNGSyWRSLRSwsLkJRlKbai/qBqZnpUzOUy2UcevllWKaJ/fv3Y3BwEKRJe+ZegTXicl0XjuO0HTZPf/nLEC9frnmt8PM/v7qrXBRuIc0BoV4gnUSJjCeeQPrP/gwc0y1Uq1Bfegn644939RyBlVDytWvXYBhG11ozxwXBighRkqSu6GZI3f9blQED/niy1nSC7Tg4f+4cTp8+DcM0MTExgYcffhi5XK7Bia6caTvfY9dxVlIwilJjx95oPwa9x6uIAXVgBfyqtF5UKNxqSMjBGiBqGjTDQKVSgW3b0HUdmVBfei7EXuvFiV2dzOh+jbf+HPbl12K/jYBHderjGH/qn6JvYmvbk01/X1/Qa2J+YQHjIUERgGDSjiJCXgdphfmFBbzy8suQZBkHDx5ciVaEGjOtFzieh6woME0Thmki1YZwjDMM5H/3d2teM/fuhXGTlDB1C16ItLVLngDAGxqCtWdPTZmn9swzPSEHhKboTp8+jcHBQeTW2Z3OMs1ApKutNTJCBcv1YBFGEorgrdpmDcTAsiycPXsWZ86cge042DQ1hR07d7aOKmL1+NgKxPN8nQEASRRXCaOjxhye43y9ASGron1uiMSmNA1D1Mb4g4yEHKwBPF0ta6qKarUaNGQK57KCxz2ijrqbcJYuovzd34i9vZAZgfQ9v4tL13WcffUYBgYv4fbbbvMn+LhfUo7D4OAgZq5fh2EYWF5eRh9tThKkERqg3bTC5cuX8fobb2Cgvx/79u2r6ejIoXfK6mZQFQWmYcC2bd+RLeb1ZP70T2ty6QCNGsQVYAG3RtQgVKnQSZTIIwTVJ5+sIQfyO+9AuHwZbg/ywfMLC1hYWMDDDz/c9X03A/M0APxnaq2iWpbObPj3TnUIDWAYBs6cOYOz587B9Txs3bIFO7Zvj19pQUjbOgNd1/0FBs9HKvzrxwOO83vi2LYNAqyKHDgsaiCKGN+4cU0eLu8XJORgDeB5HlI6DbFUgiTLcF0X1WoVYi63siqm+btVubQuTmTE83D9L3++aTqhHm55FmNpDh/5yEcwMzuLUydP4uVDh5DP53Hb7bdj48RErAlIlmX09fVhaXk5KG+UZLnlSj6uIJEQgvdOn8aJ48excXISe/fuhRixCuXQvqHUWsG6vVm2DT2q34LnrUoTcOUysl/8Ys1rxoc+BPOhh+IfmK3ubnKCELfhUkMQAvOBB+Dl8+ALheDl1NNPR/acWCtOnTyJfD6PsboIWK+hU4tknkajuoJW4wslbGuJuFWqVZx+7z2cP38evCBg69at2L59e+xW7MGpor1IqmkYsKkHRqqJQVRAEOi4wLQJgiiu0pO4juNHFBQFo+PjbZ3/+xUJPVojBFpupMhy0ECJ5cEAoL5bIzP96eYqd/n1P0b1/KG23zf/jV8BIR5GR0dx4NFHceDAASiqitdefRVPP/MMLly4EEvElM3loKoqOI7DzOwsHNtu+R4PrQV1nufh2LFjOHH8OHbu3IkH7r8/khiA7utGWI6qquqXs1rWyr0iBLn/8B8wcd99GGOiOjowZf/ojyAsL9fso/BzP7e+J71O8DqsVKiBKK5KI2jf/jYQ4xlrB0uLi5iZncVtO3d2db+tYNs2HMcB8bwVz4y1gkUGYm3aflSnVC7j8OHD+OY3v4npS5dw2+2342NPPYVdu3a1TQz8E40/FjqOA4M602otSj3ZVXG0f4JhWQDHQanTc3iEwKUVIhMbN667EPVmRXIX1gie56Gk0zVmSBa11pUkqSa81bJ6oQOYMycx8786a+1pXj+O8tt/iey9fwsAMDg0hA8NDWF5aQknT53C4TfewPG338bExo3YtGkTBvr7G65WB/r7YZomLNvG3Pw8RkdGml9jC0Gibdt47fXXMTszgz1792LL5s0tr4dZL69nckEURUiSBM+yfO2BpkE8fz6oROArFfT/6q8i+/u/j9KP/ziyX/pSzfurjz8Oq8N6+ps7bhAyQFojaas+8QTSX/lK8DtfKEB57TWYH/rQmvYbxqmTJ5HJZLBhYqJr+2wFQkjQPVBR1Y50GVEIokoxJt1gixbbW5aFy1euYPriRSwsLEBVVezatQtbtmxZ82RKYlo+E8+DXvWjo7IktYyysHGX6RlYd0upXm9AmzQJgoDJG9RH42ZEQg66ADWXQ3HRb2csyTIc20ZV15ETxcDNsAZdjBpc/rN/AJBWdkuNUTnz7YAcMPTRvH6pVML0xYuYnp7GuXPnkMlkMDU1hampKaRDwksQAl4UMTQ0hJmZGRhUoNjM/4DlC6NQ1XW8/PLLqHTQPImjjZHWM72gqqrvmGgYUFUV4vnzq7YRL19G/6/9Ws1rhONQXEPU4GYvZQyskzs4z3BkzZ2YgLVrV42TZOqZZ7pGDorFIq5ev4577rlnXe+pQcsW+TV4GqwFhOX6WSSzjiC4rovrMzOYnp7G9WvX4BGCkZER3P/AA7752RrITI0AMWZ6sVqtBmWIaowoC8HKd8R1HDiu6+sN6u6147rwAIyNjt6QPho3KxJy0AWIkgRRVeEYBgRBgOu68FwXhmGsEssEX4MuNUhxSjNrer+6ofGqNZvNYtddd2HXrl2Ym5/H9PQ0Tp06hXfeeQeDg4PYNDWFiYkJiLIc5OsGBwcxv7CASqUCSZLQ10D13agT5XKhgEOHDoEDcODRRxu+vxE4+D7+cTu5dQOBKRIVlqVpPrQVzAcegL2GMPbNTQ1WNAedCOzqn4/qk0/WkAP56FEIs7Nwu6AqP3nqFFKahql1LF9zHAcmXcmmMpmeNEtq9Q0IWyyHI5wLCwuYvnQJly9dgmlZ6O/rw6677sLGjRu70meAeJ4fTWrjO2qaJhzXBQffgyAOieOpgy2h7wfHQRYEiHXl5qx98+Z1Ll+92ZGQgy5BTqfhGAYc24amaahWKjBME5IsQxSEmtphjuOC0qm1rlRyd/9NFA7/afONOB68kgOvZMArWf9fNYfUtkeRfzCGsIvjMDw8jOHhYezevRvXrl3D9PQ0jhw7hsNHj2J8bAxTk5MYGx9HOp2G4zhYLhSwVChAFMWa8k6GKHJw/fp1vPbaa0hnMnjkkUc6L+nqkolLO9BC0QMSkxyor72Gkb/7d1H47GdhPvhg+we9RSIHnQgS658N85FHQP7jfwRXqfh/JwTas8+i/Pf+3prOsVKp4Mrly7jr7rvXxXobWPE04KhLX7dz3HHGlHoxYrlcxqVLlzA9PY1yuQxFUbBp82ZsmppCtpE/QQcgrEopFPJvBTvUAVfTtFgRC87feUCQmE5BqosaEELguS5yfX1d7+J6qyMhB12Clk6jurQEx3WREkWIkuSnF6pVZKPqfBvUIreL8b/575HZ+VHolw5DGrkDJp8CL2eQGxyjRCALImldW2UKgoCNGzdiYmICuq7j8uXLuDQ9jZdfeQWyLGPjxo2YmppCJp1GuVTC/Pw8REFYXYeM2tr38+fP+82TRkfx0IMPrrnvgsBxgTvfekCig7xj23DCgtQWUI4cwciP/Aj0j3wEC7/xG+21JWb16jchSWDiXGAN1Qrh/SkK9EcfReqv/zp4TXv2WZR/6IfiGUc1wKlTpyDJMjZv3rxupbCWaQZN03rR8Y+h0dWwpm12SEewuLgIURSxYcMG7Nm7F0NDQz25H2Fi4L/QQpQcbqgky6v0ApHHAE0phF4zLQsEWCVGZFUPE5OTSfliHRJy0CXIsgxOluEZBjzX9bs20vp3wzQDVXsNurTCzd75cWTv/Dg8z0NheRkeAJn6DTB0O8xOPA+qomD7tm3Yvm0bSuUypqenMT09jfPnzkFLpTA0NIR8Po/ZuTmMj43VOCgSzwsaFh0/cQKn33sPW7Zswb333tudL2kXSrXahaqqqLguHLpKaQfac88h9zu/g8Iv/3L8N3FcUx/5G4lwlUu70bFG11N98skaciDMz0M5dgzm3r0dnaOu67h48SLu3LULgiDAiRnxWQsCTwNCaux+u41wU7b641+7etXXEVy/DgAYGRnBAw88gPHx8dqKny57h0R6kTTZf31DpbhEqp4Y2LYdGEwxTQErfXYdB6l0OujzkGAFCTnoEjiOg5xKwbQs2LYNVVWhaBoMXYdhGH5emg4EvRrKgy5snrcqZdFNkyDPXS2AzGYy2HXnnbjzzjsxPz8fhCinp6eRSqcxMzuLXXfcETgJMrLy2uuv48rly7j77ruxffv2rgrCGPlYr5W1LEnQeR5ch5OMMDfX9ntuhPlTHAS5bJ5v7zOlVttR73G2boW9bVtNsyrt6ac7JgenT5+GIIrYGqMSphsg8L0BQMtueyZ+Y8QgFLpfWFjApelpXL58GZZto7+vD3fffTc2btzYsPyQAxX4doNgN3hOmz254YZKKU1r+RwxcWdw3fT1QG8gScHCg6V5HdfFhtHRzkow3+dIyEEXoSgKTEnyO/UpCmRZhm1ZcF0XerWKdCazutyORQ+6MImFa5Zdz6vxBGDlTaRJl8g4iCIGNecAYHhoCMNDQ7jn3ntx9coVnDlzBhcvXMCFCxewYXwcmzZtAvE8nD13Doau48EHH+xJBzQOfurCXa/qBWp9y3UwmHqqitL//r/H2rZXZlrdRKd6g1Z19/qTT0IKtbpVXn0V/PIyvLpIWSuYponz589jx44dECVpXcpfDRpVBMe1ZbfdEQhBpVrFpUuXcInqCFKahi1bt2JqchLZuK2I6YS7ZoLQ6Dlt8HpNQ6WYOgO+PhJLx1STlosGZIwSA9u2oWgaBoeGGvaF+SAjIQddRCqVQrlchkttOmVZhqZpKJfLvjrZNKNLlkJ2pmudxHhBgON5kV+6YCXQ4YTSihjUQ+R5TE1OYnR0FFeuXMHs3ByWlpbw6iuvwPM8VCsV7Ni5E319fV259iisd/WCLMvg27xP1s6dWPz3/35NlQs3Gzo1QGr1KekHDiD7B38AjqZuONeF9txzqHzyk20d5wyNPmzdFt2WvNuwacdFjxBkepROcB0HCwsLmJmZwbVr11AoFCCIIiY2bMB9992HgcHBzrRH9LvZaYSq2Xc7ao+rGirFmLgj904XQ5ZtgxBSozcghMCybWy77Tak0+mbviz4RiAhB10Ez/PIZDIoOg50mkrgBQGKosAwzSC9EPkgshXTGicxFploxvQ7+aKvJXStyDLGxsYgiCJGhochSRJefvllSJKEU6dOBQY0wyMjGBkZwfDQUNeFWusWfuc4SG0MNKUf/mEUfvmXO2tDTNNIQfqkF6A18Ox5inucTiMHrfZO0mkYH/4wtG99K3hNe+YZVD7xidgRMdu2cfbsWWzZsmWlAU8Pnw1GhAG/d0I3Oi7SHWO5UMDs7CxmZ2cxPz8Pz3Uhqyr6+/owNTWFzVu2QBSEG5N6oiv3phNv3Xl51IKeABDp2BnrUIgmCLZt+2kqnvfvOz2ebdsYGhlBJpNp2Rjqg4qEHHQZ6XQalUoFruf5kQJVhawosKgopkrTC70ajIKcWjNyALQnNgopzztFStPQl89juVCA5TiQFQVbaIOW+YUFf4CbmcG5c+fAAejv7/eJwvAwhoaG1la9QElXT4fHELGLM/S7fX1Y/NznYHz0o2s/NBpPqsTz4NHPzwv/n90PmtIiod8Dr/tQzrpcLoPAL3ljg33gxEcJChf6v67rfl06x4Gnwkme6g/4JjoEjwpVm0F/4okaciBeuQL5nXdg7doV427BbxDkutixfXvwWq9WjgRAlbr68W2I6qJ3RlCpVDA3O4uZ2VnMzc3BsiwIgoDhoSHs2rULIyMjvjC2WgXHcV0jBuzz9WKmJetLFhtuF/q/57qoVCq+0ZEgIBXDz4AZOTU6Z6Y3UGQ52I5Q07axDRuQzWaTqEEDJOSgy+A4DtlsFsuuG3Rp5HkeqVQKpVIJtm3DMs3Gq4c1Rg8YOYgzIMS1Gu6KIAlAPpeD4zgolUrgOA66rkOSJIyPjQXtnnXD8FdBc3O4OD2NU++9B57nMTg4iJHhYYyOjqKvr6+jXDYPX4vRk8EgfL9bpBWMffuw+PnPw+20wU/oWJ7nwXFduNSf36Vi1IAIhELCNZEpdg9CpIndlYAYsO3DBCB8GvD9BsKEgq3gLNsG8Tw4tg095PERHIuShHriwHpkNPuMrDvugDMxAfHKleA17ZlnYpEDx3Fw5vRpbNq0KZbL3lrBRHWEEL93QpvPnmkYmJufx9zMDGZmZ1Glk/7AwAC2bt2KkZER9Pf313wfLMtamcxJ5y2YoxCnOmbVs9Z8Y4DjVhGDOKmXZsQA8J+1wN8gtLiwHQdT1Pa559qPWxgJOegBAp2B58G0LL9BCA2R6YaBarWKXDbbvD67Q4EiG1RbTegcfPtertmKmjRvu9wJ+vv74bguZElCqVSCZds1La41VcWmqSlsmpoCIQSlchlzs7OYnZvDqVOncOLECUiyjJHhYYyMjmJkZASZmDlDjuPWRX8gTk9Hvk4EAYXPfAalT30KaNN61qNmLa7rQjcMWJYF23EgiaKfRmLHCE/EoWdIYBNweCIGalb9QbULVlaKQG1KJpPJIJ/LrVjusmP5BwwiECzPq6pqEKXyPM+vpKHbetS2NrhG9johEHkevChC4HkIggBBEFYmQI6D/uSTyP7hHwbvVV96CcWf/EmQCMOtMC5cuADLsiIbLDUKTXcK23ECP/90Oh1LVOc4Dhbm5zE3N4eZmRkUCgWAEGTzeYyPj2OERdKapCYIIf53G9130Wy1oGAVA7GjFYwYhKyR42oy+BaRCce2YVF/A2aZTAhBvr8fqXQauVwuiRo0QUIOegCO45DL5bC4uAjTdaHQPgLMg9+xbZQrFWQaKYZDq7p2CQLH87Fz0K3SC2yw7iZ4jvM1BYoC07Z9D4TR0ciOihzHIZfNIpfNYtu2bfAIwdLSEmZnZzE3O4tjx4753exSKYyMjmKUpiFahW7jRkw6BU/7bIThTExg4QtfgLV7d8v3h6MBrufBc93AOhbwV4aO6/ohY6xM/DzHgaerbiFGCL8TsH22On9G+KLEXh5NcRBCaiMdnue3zqWleI7jwMUK8eHoqlLkeTgf+hAy//k/g6NRGs40ob3wAqof/3jT83rvvfcwOTnZ8xUjIQR6tQpCQ9oNJ3PP85/puTnMzsxgfmEBxPOgaBpGR0awfccOjAwNtRXlIIQAnge+Rwr8ZtULbREDShAr1WrQayWTTsciBswBsRnK1SoIIZBlGTKNHHA0nSBJUk8NqN4PSMhBj6CqKmRZ9i11HQeaLIPjOKTTaRSLRZiWBaFahdZokOqwgkEQBIDj2jJ04Wn4MQzmcNcLXs1zHNKZDKrz83BdF7NzcxgdHW2pbOc5DoMDAxgcGMAdt98Ox3EwPz/v6xXm5nD+/HlwHId8LofR0VEMj4xgoL+/RtTEVsfdNkcK373KD/0Q1GefDe5d+d57MffFL0IcGIh8r0cIHMfx3RVpg5j68D1oDlcQBCiSBInaUqu0/jusEbjRCLoxNiAmPCUzwIo+I9A8YIU8uDRS4rouXJrr9jwPtufBUlWU9+5F9vXXg/1qzzyDyvd8T8Pvy8WLF2EYBm677bbIv3frWSfwbZkJsNq8x/NQKpUwNz+P2ZkZzM3Pw7ZtiKKI4cFB3HPPPRgeHkYmk+mI1BEW7etR9Q89SOSYwY4fF67ndU4M4uy7XAY4Dmk6xhIAG8bHg9RvEjVojoQc9BDZbBYLCwswCQmiB6zXQLFY9POHNKIQCa59i2W2YmSDa9SKPAo1X/YeEgMGmQqEBI6DaVlYaNHFMQqiKGJsbAxjNHdvGAbm5uYwOzeHS5cu4dR774HjOGhUDJnL5/1/czlkaWi8FzAPHsTi7/0e0v/1v6K0bx9mfuAHwIkimEN9QAbojxsicuyMBEEIQuq8IEAUhJqB03aclrn5GwWXdWNsRxcSylEz8hAWobLoAiMLnueh+NhjNeRAOnsW5ttvw92+HaIgQBTF4PknhOD0e+9hAxWh9RIm1RlYtg3PcXD9+nUUCwUsLy2hWCoFJk8DAwPYsX07hqluYK2fZbCQYOSsGxfTBOEIQrvVQIRO3owYpGOmEljUr+m1cRwqlYpvNhUaX/sGB6Gl05BlOYkaxEBCDnoIRVF8YyTThAmABQZlRYGWSqGq66iUyxA4blVDkABtChSZQtmioem45ACgBIEK2XoNWZZhOw6GhoYwNz+PSqUCUZLQv4bmJ6qqYnJyEpOTkyDEN4FZXl5GoVBAoVDA9MWLOEXrp3lBQC6bRZ6Shjz96ZZrnfHEEzCeeML3higUYJsmSkAQLq8X/7HJTJSkVUQgFkLiwxsNEoocxEWrVA8TKtY8z488And4uMZZMv/885jbvBmO48AzDAgcB1EUMXP9OsqVCh7opMFVC7BqjkKhgKWlJSwtLqJULgc2yTzP+89YXx+mNm1CPpdDX39/1xsu8TwPQtM0BL2rwGCo0Zy0SQzKlQrsEDFop/1zK2LguS7K1SrARKAAZFXFwOAgACDXxUZS72ck5KDHyGazME0ThuNAUVXwdOBUNQ2O68KyLJTKZWR5vmsuXaIowqIhaqXNyY7QkHuvpxhJkmBbFlKpVFDiuFwoBOHytYLjOGTSaWTSaWycmAhet2wbheVlFItFv3Pk0hKmL14MmjRpmoZ8Po8+2qUtl8shm8l0ZFrjOA5sy4JpWb7PhWUFgxVPJy3WsGmtpjg3AylgcKkOoJ3IQUd0VBCgP/EEMv/1vwYv5V9+GaUf+zHYouhXcMD/zN87fRoDg4MQJQmmZfkeJB3cM9u2fbK5vIxCsRg8Sy41HlNUFel0GhMbNmBgcBD5fL7jFEE74LBCyoJW2etwTHa8uMdixMClY0xsYtDqGKxcmRDfidJxwHFcUCEyPjEBjuOCdG+C1kjIQY/BXBJ1XYfueUjTh5j5hRPPg+04KJdKyGaz0cIl9qWIWWMsiiI4jqsJV8dGuPSt/XfHhizLgfAun8/7JY7lMubm5/3Szx6VmcmSFLSfBvxJyfM8lMtlLBcKKNJB/+LFi6jqeuCwmM3n0R9KTeTz+cgOcR4lfKZlwXNdEEoCOFpvLYoiUjHtYFui7lm4WfoseKH0QBwQdG7ipD/+ONJ/9md+SSUAvlJB/o03YDz+uC94dF2cO3cOFV3HnXfeGTQ+0qtViLIMmeo36iceQgjKlYo/+VPiWigUoFPPAo7nkc/lkOvrw+TkJPL5PARRDASg60EIGFgaMRyNImgvctPhgYMOqHGijcTzUGZVCRyHVMwKDv9QzYlB+Pkp05SCqmngeR4jo6MQaJSm1yml9xMScrAOyGazMGj5mZpKQaCsluN5pNNplMpluK6LcrmMbC7nr7iivgzhuvMmEEURXEgJHpvVY2WQ7oZbYzMw9m5bFkRNQ39/P1zXRVXXMTs7i5GRkZ4RhDA4+JNYNpv1B45QjwfTNIMIQ5FGGS5evBgYCKVTqSC6oNByVUkUIStKMFBLkgQplYKqabAMI3Brez+DRQ7ikoO1VI94IyOw9u6Fcvhw8Jr2zDMwHn88eO5Pnz6NKdpm3LJt2JYFB75Nb7FahWlZcBwHlXIZpVIJxWIRhUJhJRqgaejL5TC5cSPyfX3I53L+5B+6PpM6oBIgdmltt7DKOIqedy/PIPBQiDlOkLD4EH6L+9jHan4iNcTAMk2/fJHjkNY0KJqG/MAAXNeFpmlJD4U2kJCDdYAoikin0yiXyyjpOnKKAp6KkggNf5fKZbh0BZvJZKK1AjErGDiOg0DDqo7jxP5CrGL/PSQI7Jxs24ZGGT7TH+i6jpm5OYwMDiLdhRRDKzSanBRFqYkyAP4gV6L55cXFRSwtL+PcuXN+jjO0P0VRoKoq0qkUNE2Dqqp+vTVtzJXP54MIT7to+ol06I/RLRCqlAfaixysBfoTT9SQA/nECfCXL6MyOIh33nkHtm0jnU7jnXfe8aMGuo5qteobFNHKCA6A7XnIpNPI53LYsGED+vr6kOvra5macxzHJwaEBM/yeqA+YsDAPCh6RVBYdUyw/xbjBCMGLiUGaWpXHCfa0OwKohwbS9TBU6E21aMbNvidHXk+0Rq0iYQcrBOy2Sxs24ZpmiiZJrKSBB7UiEgQkMlkUC6V4DgOqtUqUuk0BI5bPdDHrGAQRBFcG+SAANHlfWwg6DJJYJEDy7aD13iex/DQEBYWFlCpVjG7sIBhoCsahFaIHZLn/J7w2WwWqUwGG6n40aVugI7rwqQTEJuI5hcWoOu633gntCtJEKBR8qCpKlRN8//Pfk+loMpye5GGGJa1vQSLGvinEpMctHm+Dm3Mw+6v3teHfek05EoFzA768u/8Dl554IFgojx58iQ0TUMqlYKqqsjn80hpGlS6mhRF0fdeCKXwRFluqZvwPC+wR5ZkeV3z2VHaIBbVatXdsqPj0XLaqE+rkfdBPTFIpdPgeR5OjOZkPHyPi0ZX4dURYdd1fREogLSmoW9gIBB99vf3tyXOTpCQg3UDx3Ho7+/H/Py8H8K0LKRFMVCrC4LgRxcqFViWBZ7mzBpGENgKrcEAIFLnPDfGl9AwTfzjf/yPUSwWMTw8jF//9V+vOS5zUbRsG//X5z6H02fOQBJF/PIv/zLuuP32ju4Ha0Bl07asDMwqGQAq1Srm5udBCEG2x81RWhpC0V4ZhmkGHhDgeSiqGqwsW62EWNe8arUKx3VBqNuhrusolcuYnZuDbhiBiyBzKVRTKWiqGkxmHC3zS2man84IuQiy8kYh5C64XitZINRwqcFATICackSX+jq4ET+MKBuGAUPXUdV1v2eD46y4PxICSZIwuGMH7jhyJPCxuPPCBZz56EexXKngscceixWBsqmI16Tuky79ngqSBEWWI0m2ruvBuaxXeRzXzKcj9Ax2kxx4hEBoQAz8w0Z4HkQQA0EQYpFXvoXuKWoPZeprIEkStEwG+f5+AEA+n4/dwCnBChJysI7geR4DAwM+QfA8mI4DRRSD1aQoSdA0zR8QTRO8IPh+AIKw+kvSSndAzZBsqthutrWiKPi+7/s+/Mmf/Anm5ubw3e9+FwcPHqw9FiH43d/5HZw+cwY8x+Gnf+ZnOiYGgL/KAiFBz/YwGEHgeB7lchnzi4sghPiW0z1EFEFgqxGT2rDC8/wGOuk05FCHzTj9JwRRRP/AAGRZBvE85PL5VStTQohf3UAnw2B1TP8tFAqo6Hqt2JTjgsgOqzZhzwdHCLiQZ0LUj0i9FMI2xfV/Yy10L126hOszM4GVM5vYScjIyaJ9Hgh1wHMoEXAcBy41eAqsu0Mr3cDsCSuDP0vJaJqG4eHh4HdGlFRVhSgIEHbvBvczPxPcErlUQubYMUz8zb8ZixiwCV6UJIiSBJf2RrEsy9fCVCr+91FRgs/dNE2/ZJIQZNPpjqofOkGz5lQ1mqEuohkxYMcLwvz0PCq6HlQlBMQArdNITR1eGxB44nmB8ZSqqhgaHoZAmzetR2ry/YiEHKwzRFFEX18fFhcXYXgeQMuqGBRFAfG8YDLgOb8FMIHPpmtIQZMIgiAI4DkOLjWOEZuF1AjB448/jq9//etYWFjAV7/6Vezfv78mevAn/+W/4MiRI4Dn4Yd/9Efx0AMPrO0+UO/8cFohDJ7nMcQiCOUyFpaWQDwP+TX4IMQBu4s2zSOblhU4KoqiCFXTIEa03Y4rzJLo5GPbNnRdX5Uy4TgOqqJAVRT09fVF7qNcLsOwLKg0ahCsxEMTtsN+pxbM9W6DruPUmArZphm81wttE7zXtuERgtNnzkAQRYh1Bk2CIPipLJ737YJFEbIsBwRDqCMgjIQwT4eo1wUa/YoDd+NGWHfcAfndd4PX7j53DvzmzTH3UAs2saiKElSfsDI50zAgiCJs0wzK5dYjZM0iBs3uSZBW6Fa0iOmcYmzK9CYEfidKRgTTIWIQbNcAfIPJPyAFDd5boVbJPM+jf2AA6UwGsiz3fLx4PyMhBzcAqqoil8uhWCzCcBzwjhOU2gC+B4LrebAsC5VqFVk6aLqEgEfdqqDJCkEURT8X7jhNyYFLJ75PfOIT+NKXvoS5uTl854UX8NhHPgIA+Ppf/zWefuYZAMDf+N/+N3zsYx/rSl5bppNkMwwNDoLnOJRKJSwWCiAA+nr4hfdoKNQ0zaB6QxJFqOl0U9OadvLmmqb5K2waxm7bDIfznd8kUYwUy62lNLARFhYX8eyzz+Lgo482JC2AX0bm2DZSqVTL/HsQNejSOepPPVVDDjZMT2Nufh5eSFDaLnhBgKppvpkZ7ajqeR4Ky8sg8FuRr4fOIOxj0AzdjBy0+9lwHAfwPCrlcmABXk8MgOj0G2FpiwbPbavnuUSjBpqqYnxiAoIgdMV18oOM93dN1U2MTCYDTdMAUURZ130nvRBSqRQkUQzc1zwWjiURnRLZF6DudfalbOZ3EH7HgQMHAivir37ta3BdF6+++ir+7L/9NwDAww8/jL/7Qz8UHHOt048sy7BoS9VmGBgY8NX9PB8YF3UbhBDouo7lQgG2bYNwHCRZRo6WrbWcwNsYhASWLuI4VGm4vqNz7sK5xEXckHlb7oi0SVi3YDzyCLxQ+StHCLRnn+3Kvjmeh6ooyGYyQTkqu8IynQx7iXaaGXFYO+HqRNDoeR6qlQps6gCaSqViRVSI50UTAzrGtLpyXdfh0ZTVps2bIYoiBgYGEgHiGpGQgxuIvr4+X5gnSShXKjVfDtakSRCEwKQnWDlQc5eaL1NEZQMzd2nWhCmcK+c4Dn/rB34AADA/P48/+qM/whe/+EUQQnDnHXfgU5/6VM0xuDUSBGahHAd9tL5c5HkUikUsdpEgWLaNYrEInZa28TyPfDaLbMSqp1tgXfaYB39HaDRhUEHjeoNVbQDx3BG7TmFUFTN79tS8lHr2WaBbEzchqOq6Lx5OpdA3MABeEOARgkqphKqud916nKPHjX+KXShj7MBMy3UcnyQ5DgSOQyqViiTU9ftt2OK5jXNg5CydzWJgaCgYVxOsDQk5uIFgzVdEVYUHv5Nbzd9ppzKe5/0uYyECwUrvaoRw9boDaobEutzVIyr8vO/BBzE1NQUAeP7552HbNiYnJ/FzP//zkV/2tQxCsiy3TCuE0dfXF4j4isUi5iNaI7cDl3oWlMtl2HRCTafTyGazASngEW/V1m6pJ8/zQUfFQPEeFy3uORez3LXbCHLCMVed3U592I6DV0dHa14T5uYgv/lmV/YfrpRIp9NIaRry2awvUBQEvxV7qeSb8HTh2jpxvAzGhw41B4F2po3vtWVZ/uLG84Ky7EaRtvDVMGJQdwJtpcUs0/Q/F9vGlq1bVyKyCdaMhBzcYLDcmKCqcCwrsGdl4OmXjaOVB9W6vwOojSKEIggcx0GQJJAW0YMacBwee+yx4Nd8Po9f/MVfbP6F6zCCIMVMK4TRl8/794vmNucXFto+LqErwEKh4HfOIwSKLCOfy63O4dP8fkt0QJJURfHrxmmFQjdxI3KtLGrALISbgVUmdBMnT57EzOAgzC1bal5PPf30mvdtmCZM2w6cMdnkx/E8UqkUMul0UCGkG4avvejEvpwirsagHmvqq8C+x3FTSFSgqdMmR6zjrNBMmxO6Jj4s4qXjVrtkqESjFfn+fmzYsCExOuoiEnJwE0CWZfQNDoKTZRimuWrCFAQhsGS1IghETRQh/GXDit9B3JzozMwMvvKVrwS/m6YZSzDXyWAkS1JHA2gul8PAwAB4nkelUsHs3FzscK7jOL4Q1DDgUn+JXDaLFF3FN0JPplqOg0Zr4/U2QtLBudxAs6MokBA5aIkuk5dKtYozZ85g544dMJ58suZvymuvgVte7njftmUF5jqaqkb21BBFEZlMBilVDb6P1XK57agQq+3vOPJAozft3t1O9QUmvS+KqgYGR81PL+L86P3qxAxruVCASwh27NzZVCiboH0k5OAmQSqVQqa/HzyAaqWyiiAwDwTAX8VU6jQKDK7n+YM0q9tuYoZU//5SqYTP/7t/h1KphAw1HTIMA1/72tfiXUSbA4wsSTDbjBwwZLNZDA4MQOB56Ibhq9JbDC6maaJYKsGm9yKTSiHbyKq6Dr0K1TMfC3BcMAHFRdO687WdVkdopxtjtx03jx8/DkVRfHLw6KPwQjlnznGgffvbTd/f6Gwcx0GFikYVWW5upsNxkBUF+WwWiiQBggDbcVCpVGL5YBBCGpfyxUS77ZpZpKCdI7qOsxIZ4Tho1HUyfMxIL4L6qAbn28d3cr3E8zA3Nwd4Hvr7+7F9x451Nfv6ICC5mzcR8v39kNNpgONQoc5wYSiKglQqBcDP81XCIkUKJhJ0KUOXWOSAmiGFEf5SmqaJ3/j1X8fs3BxUVcU//af/FPfddx8A4Nlnn41fIdAGQUil0zBNsy3dQRiZTAYDg4MQaN5+rkEEgRCCSqXiN34hvqNeNpttuwStGyrw1Tv16+Q5+J9BrAhPg+qU1ZutL0UIQtoxBuluUoOFxUVcuXIFd95xBwRRBMlkYH74wzXbpJ55pun9irpTruv6Hf7gi3u1mA6IHM9DS6WQod9Vj5DWaYYuEAOALg4QL3rTDolgsG3b1xe4bqCJivoeNSKI7HhB2qSD6/VcF8vLy/74x/PYc9997ZcDJ2iJhBzcROA4DoPj41BoVz+9Wl0VIVAUJUgx2LTNcX0ZJOB/+VzqlMdTy9Lw4ESwEgb2PA+/9Vu/hXPnz4PneXzmH/0jbNq0CX/rb/0t/zi2jb/8H/+j3YtpuQnLD5ZKpfb2HUImncbQ0BBEGkGoTzG4nodiqQTTsuB6HjRVDUSebYNGD6KubC3TMHPl42JGD+Iea93JQRuRg26lRAiAt95+G7lcDlObNgWvV594omY78fJlSCEPhKj91PxOBcAcfLfRdCrVdmRMlCTkMhmI9H5UKpXISBmrLlgrMfBoapHQiptm6IQYGIaBKu1fwdIoDfUFESZh4SiFF7FNHLDutUvLy+AEAZs3b8bGUCfVBN1DQg5uMgiiiPzQEDS6mrRZhCA0cEi08Q9P3fFYy+d6sAGH53kQjoNbHz2gX84/+IM/wFtvvQUA+Imf+Ancfc89AIDJyUncf//9AIDnX3gBs7Oz8S4iHF5sslk2kwEHoLgGcgD4KZmh4WGIPA/TMDAzMwOPEFi2jUKh4PcxoMdbs/99RMkogJWGPR2CpYxs2+44klIPFmJeLwRljK3SNF0kLVeuXMHS4iLuvvvumsnO3rULzvh4zbZaM2FieGKmkSaPruY7IQYMTFAsSxI4+nxWaQTLP1R3IgZAqK8FzzclB+16GHiUKDF9gawoLfUF4b0HxIeQjkSWDLbjoFqpoFgu+wZU6TT20vEpQfeRkIObEFIqBS2VQiqTAWiEoFwXIRAEwc+X025opVJpVRMjBlGSAEJqVy10MPofX/kKXnjhBQDAJz/xCRw4cKDmvZ/4xCcCz/S/+PKX27sQOgg1GvZEUUQ6k0GpWGxvvxFIaRpGRkYg8Dws28b09DQKhYI/wPM8stls12qfOUSYAq1xcBeobz9H1e6tjg/E86hfr9iBF9K5tKxUWMMEEYbreTj+9tsYHR3FyMhI7R85DtU6YaL60kvgyuXmOyUElWoVDmsvnE6v3YqY1v2nVBWgHQmZJ0A3IgYMnusCVGTb+FS4trwYXNdFhbpeAvCbgLUQ7wKrXRA9Zt7WIcmyTBM6jbzYpglZUbBz586kb0IPkZCDmxC8IECitqwsBO7YNsp1EQJeEPxJjzopMtvfesi09azjurAtCx4hcFwXL7zwAr5C0wUHDhzAJz75yVXvnZycxAO0j8Irr7yCS5cutX09zQaSfD6PYhfIAeDbUo+MjMCxbVQqFcwtLIDnuIBEdRvhFV83QviaqgKc3w/D7FL0YL1SC2ExYrNjdtPb4Ny5c6jqOu6+++7Iv+sf+QhIaKLkTRPqd7/bdJ+6rgfGXKl0umF3yU4gU4dFRiyrayx3rEczvQFLI7STTrDpmOMxfUEmE2nX3QjsOGv9zA3DgG4Yfs8GXYesqshls7j9jjvWtN8EzZGQg5sUYirlN6CRJD+3JwhwPQ/lUqlmQOF4PmgyQghBtVqNLHVkOW3WBfHNN9/Ef/xP/wmu5+Geu+/GT/zETzQ8l09+8pPg6Yrjy//9v3d2QayOue7lbDbbNXIA+JMUS7kwu+W1WBS3Qs1AvMZBkON5X/WNFqWNbNBd09G6i1atmhm61RDIMAycfPddbNmyBdkG3TpJfz/MBx+sea1RaoHArwKybBsgpMbLoJsQKKEXRdHvQ1CpxGqrHgce9TuJMhbi0N7zEtYXCK30BSEEWqYQcV5l1hYThBDo1Sos0wQHP3ogiiJ4nscdd97pR0QT9AyJxPMmBc/zUPv6oC8tBQMKUzyXy2W/4QstqwqslqkozzBNeIQglUoF7F1RlKAFrZZKYffu3fiT//Jfgi9zs0F7YmICf/yf/3NXritYvdCBI5fLBc5zax2Mq7TCQxQETE5OolgswrQszM3Pw8rl0N+DOmgOoVBtF1bpqqIEzX10Xffz3RHHBBCLjMRNQawV4Xx3M3QjckAAHD12zJ8kWqweq088AfXll4Pf5bNnIZ49C2fbtprtrLCXgab1zn6XTtSZVMr/PsP3aEjH7EPQDCxyEG6NzNIWcaMF7LljaQRJUaDVlSlGgX2qxPNWXBbXAOJ5qNIojgCAF0XYtLnSps2bsanO6CpB95FEDm5iCJIEha2KaHhckiRfSV2tBgIhBlXTkKaEwLKsmn4MoigGk69F2xADNH/O8yDUYnk9VqPhYYZVLKw1elDVdT/0SIiv10ilMDo66ju2cRyKhQJmZme7tkqrR9fC9xyHFM2jrqXMs3aXvU8tBGmFVhNcF8jBlStXcO3qVdy7e3dz3wEA1p49cIeGal7TaIdRBsdxoFer4ACorbwMOgWboEMmZelUyq9koKXLnayuGaIqFYKywZif/yp9gaa1NAcDNS9iZYlR27bbb8JzXZSrVTiO4y+SUimUy2WA45DP57G7rn9Ggt4gIQc3OSRNg8wiAByHTDodDF5VXUeV9jFnkGmpI8/5lsmlUikYuBVFATgu0qqX7T8gCb1236PH60bFgq7rMHQdxPOg0fa6/iE4DA4O+nbLggDTMHD9+vWOjZeaoZviP1EUISsKeJ5HNcph7yZMK8RquNQFkmJaFo4dO4bxDRswMTHR+g2CAP3xx2te0p5/Hhx9BljDIHCc35q7F778hAARzYU4nkc6nQ4IQjmmWVIUwpGbTiIQ9fqCdCbTnCTRa2lq18wqFDoQQLqu62uqUino1Spc14Uoitj3oQ8lngbrhIQc3AKQMxmITAhEV5apVCqoQKjWeSGIkoRMNguBNmxiOgWZ6g5cx4ls48xC5MBKnrDXJEGUpDVVLBiGAV3XfQ8DTYMSUaqYzWYxPDwMURThui6uz8ygEtGjYq3opouipqpB34WG1Qs3iX1ysHJE87RCN56lt956C8TzsGf37tjvqX70ozWlpny1CuXQIb/bKX0OBEEIDMa6jiZhdkYQBEYQOowgML2BIAht9UcA4JdX1ukLmjVOIvBJASvDbIg2KzFs20alXIZHCGRRRCaV8is7KhWA57F7796G+pIE3UdCDm4BcBwHJZ8HLwjBl01RFL8hE/yWw+EIAVArfPII8TsP2jZkWa4RJjY6HgOhJUhBx70eIJ/Po1QqtT15mJbl14w3IQYMqqpidHTUN5jiOMzNz2NpDX77UQiTqzXvi+cDvYFhmmtWtfcytcCeO65JpQLB2snB9evXcenSJdx9zz1NP+t6eKOjsOrIhPb0034XVELAM2LQ7XsUc3/MaVCg21eq1bajQkGlQhtRA9d1USmXA62FJMtIN/AvYJ9fkD5gYsMm+yeE+E6tLcAaOFXpdUuSFOillpaWAI7zdQabN8e+tgRrR0IObhHwPA+VEgQGSZaRyWbBc5xvhlQqQQ+lGVj5kSxJQakjUxLHaStbY17SQ5KQy+VQLBZ9UWTMfbuuG5jJKKoay9xIFEWMjo76pY0ch2KxiJmZma7rEDigK/dIlCRIsgye41AJpxfW2fmwFbyYKYW1nLXtODh69ChGRkawKeSEGBf1jonKiRMQrlwB4HdZbLoC7gRtivJYBIGVx7bTZ4Pj+cADJZZtMt1/UPnEcb6+ICRgDm1cExkK/t6lqhMWGTBNEwT+oidNK7VKxSIc10VfX1+iM7gBSMjBLQRBkqDUtSQVRRG5XC4oZTRM0/9S0ZUmR9MQKs0f2o4TEINmYrdAzFQ3CNSQhC4hXLHQyIGwHlVdh+u6EAQhtuc94F/XwMAABmjTJsM0u6dDCAnAeJ7vSnOhlKYFgz+bMNqpVgjQwxREHDHiWu/F8ePHYTsO9nQ4SZgPPgi37ruTf+EFf8XOQvHdQL3wsA3wgoCUpvnkPUa0iACBlsGl38lWegNW7cTEzMwGOawvYB0S2Xcd6Czy1Cw5wtJlFapz4HkemVQqEECapolSuQxFVbE76Z1wQ5CQg1sMkqJATqdrJme26mBCRJc6JjKxIsdxgYKfQY9o7BSFYEioGxyYJqEbRIHlEcul0spxmjgrspJMAB2HgzOZDEZGRiBRHcK1mRk/zNxFtBMJabYPNmDqhuE3Zurgetu1zG0HccoY13IX5ubncf78eezatatzXYAsQz94sOalvpdeAptKu0F2OaDtPHs9REmCIkngBAFVavwTeSz2WdIJvKHHAYVHSwPZZAzaHCod7kpKSKApiDpOu2jkhMkICus8K8uyH+GkuirP87C0tARRknDbnXdicHCw7WMnWDsScnALQslkIEasliVZRpZGEQDaorhYDEqTWNMmWRT9hkSFQqwVMxPaNVIkE0L8nGeHRCGbzfoVC3WixKjjOTSdQAiBqqprqg1XFAVjY2NQFQU8/EloaWmpY8V41NTbjTaykiz76QWeR7VaDQbqnleUxEQrckCAjkmS4zg4fPgwBgcHsXXr1g7P0D/HhbpOjcLyMpTXX+8OMeiiDbKqqn6aI0KMSuATxrDToccarDXoqcAqEWz6XZdkGVlmnIaQngDwIx/RF9jWNUS2bKYeCqyFNc9xyGQySKVSNSmpUrEIlxBMbNqELYmfwQ1DQg5uUai5HPiIUBtPhWyZTAY867tQLvvdHT0Pkiwj39cHRZbhUobeVo11g0GCw0o4MqhyiDlYiqKIdDod7XXASizpvnR6roIgrL2JEvxQ+MjoKHK5HASeR7FUwtzcXFd1CHyHYeYwUpoG0EZbjNB1ssdu0wlGDIEYHgcd4J1334VuGNi7d2/H+2Ctl43xcVR37Kj5W6pZM6aYCIhBF8WoLCJmmWZg5xwQg7pniX3f6jUfrCywSr/7nCAgnclA0zTf2yQkMIwCaUQUYqC+UyzrD8MifrIoBtbv4WOwdMLI2Bi2bt2apBNuIBJycIuCCRQjByRas53LZoNcomVZKNLmTIIgYGBwEKqqwrZtmIaBEq1maAV2tJaOaSzcGbMcMkcrFhoel+dhGAZs2/Y7snWx7IzjOPT399foEK512Q9hrbbBHM8jRZ3qLNp+ut2JvheNmMINl7oRJQljYXERZ86cwa4770Qmk+loH2yCZEJc82Mfq/m7fOQI+Lm5zk6whxEcURShyDJ4QYCu6z4xCB0zDNdxgqoLdj6mafrNnVjUUFWRpSWK4Qhfs+8x3yS11xQhokQ8D3q1iirrckkXLym6eKm/jqWlJfQNDWFi40YMDAx0cvQEXUJCDm5hCKIIra+vIUFgK5BMqHtjuVJBpVKBJIpI0Q5rBNSVjEYYWkUR2nVeI4TAdV2QJhMaq1hoshOY1BZaW2M6oRHCOgSP6hDKbegQmt2PYGJew0QiK0rQI8MwjI66G3Zbd9CqUqHT6hbX83Dk8GH09/Vh+/btHZ0bixgw3U0mnYa1fz+8kNERRwi0b30r+F28dg3pv/xLpP/qr8A1++xjCmfXAk1Vg/JG0zQbHo85m/I8D9dxUKlUYOh64FuQzmaDhkntWCl3+qS6rgvP84J0hkUJCtMWSLK8iqR6nof5hQVomUx8g6sEPUUSs7nFIcoy1L4+GIuLDQcPSRQhZrMwaN8Fy7Lg2DYEQYAgCJAkCYIgwDAM/2+OA412hWwFpsxuNZAErZs9Dx78VUl4kMrlcqhSy9SoUCIjBoIgtFXj3i6YDmF+bg6GaWJ+fh6WZaEvn1/zyrjGP6LDfaRSKVim6acXmnhVNAT9rLo1rbWqVOCoNXe7OHnyJMrlMj7y+OMdERrXcQJix3wEeJ4HEQToBw4g/c1vBtumvvlNmCMjSD3zDOS33gpeV15/HYv/+l9HH4BGInoGOomrqoqKrsOy7cCjox4uFQY7tu07hQLBeyVKJuMesxvXxMSPLB3C87w/njToV+F5Hubn5yGrKsYnJrB58+ZYY0+C3iKJHLwPIMkylL6+xuFNOhFrqRSy2SwEQYBHCGzHganrsCwLiqKs/M3zUKERhlhahDaV8Eyf4IX6OWSzWRDQioUIWJYFz3Wh0FUHU4b3AvU6hFKphNm5Odhd0CE0FXfGAM/zSKXTQfTAbXPi5TiuqzX9LcWIHUQNlpeXcerUKdx+xx1B74124DoOSuVycF6ZOmMf48kna7bnZ2fR93//3zXEAADkt94CVycIDD63HhKDwMocviEQ8z6wI0obPUJgWxYq5TJMmnJj5YnM8CzWMf0Dr/ncLdNEqVIJzpWJoJVmxGBxEYIkYXzjRmzZsqV3TpUJ2kJCDt4nkFUVaj7flCCAEIhUCKSpKkRBADgOlUoFpXI5cFXUaOmcZVkolUqxV6idDjDE8wI76MXFxVVhaIfaPRMg6EQJrL12vhnqdQiWZeHqlStNe0DEVqyvkSAosgxBEMDRz64T1JeskYgfDysNfVjJavA+OoG5rgvCcYFXAGERIvZvm5+RRwgOHz2KXC6HnTt3tn1dDo0YcBwHXhBWOf5x1SrEc+fgxVyZEhbFWscKkZpjcNyKq2mdBsaj1ujMWVCgacRGLodNj7nGc2bpjDLVd/CCgEwmE6QAo/bPShZ5nseGyUls2bKlY21Jgu4jSSu8jyBrml/+VChEDw5MKwBfoCTJMhzHgVUooFgo1DQukiQpaIBSrVRgWxZS1LmsIUIueKRNhb4kSRgaGsK169execuWmg5vpmnCJQSqoqwKhwfHi32k9pChnTAXFxdhWRYWFxdRrVYxODAQ2da3nek+jgVt5PtoyLhKV2iGaQYmV/UITzSEkpcgzB9XcBZ6bmr2SwgcZqfLnov6STScm4+hP3jvvfdQWF7GY4891vYEZ9u2r8znOIjUEpntQ7h2Dekvfxnqd78LPqb7oJfLAZSE9ZQU0PvX6BiKLAdRIocaf1mW5Tcco14IqqoGFUpxwaE7pMAwTTg0akEIgayqfoSvRURxeXkZHsdhIyUGnUSJEvQOCTl4n0FOpeB5HsxSqfGXk07iAs9joL8/sCI2aMtjwzShUPEQ63Nv2zaKxWJN18OGYCSBKZZjDqxj4+M4ceKE75hG+0gQz/MHRteFROuyo4abmokr1tHig+kQisUiisUiTNPElWvX0J/PI5vN1q5M21F4c1xnBIGu1BVKlnRd93UjrDwN/v3wUHfvwxN2F+CGKhWaWifXrYQb/b1YKuHdkyexY8cO9PX1tXUutm0HURSRRgwC4eziIgZ/7ufA63qD04vOtXt9fV0vU1yFulLdiJMDx/OQJQkmJQQAAvdEQnz78PrUSUsQUtOMql2ESQEDLwhByqtV6mppeRmO62Ji0yZs2rwZ+Xy+43NJ0BskaYX3IdRMBko264eCm21Iy8/6+vqCUCShbmu6rgelhayBEyEE1WoV5XK5rVx33PD5+Pg4PM/D3Px88JpJrZ5FSQrOz/VaOzN2eyjnOL+X/NjYGDRFgQBguVDAzOxsTclj28SEEri2dQAc5xsj0bB3uVKB43lwaQmp2+r+dEl4BiBoOdwxKKE6/MYbSGka7rj99rbebllWQAwkSaohBgCgvPlmQ2IAoOEk6fX19SwixXQFq6Ip4UgPS+PQqgPLsrC8vAybeQXIsl/uyHGt/QDqPQs6/LyC9EGoTFKiC4k07c3Q6lkuUPO1DZOTmJqaQn9/f0fnkqC3SMjB+xRqJgMlnQ5sVZtBFMUglSCKIlLpNHgqTNR1HeVyGZIkBVoE27ZRKhaDSENctJqQsnSAmbl+PXjNpuRACeWIg7bSwCovhVWRhS6v+CRJwujYGPqpFsG2bVy/fh1Ly8vwPK/jSbedErPQm6CIIlwqVjOaTIBRx1urMRNr+x1lxtUu3nrrLRSKRTzwwAN+qVvMUL5pmr5rJMfVdPMLw96xY0U70Aa8NqMXsRCOFESQgsCtkP7ueR502pac9R7hOM6PWFHNkCiKraMG7US0IuA0IAXZbDYQEBKgJTEolkrQdR0TU1OYnJrC0NDQGs4qQS+RkIP3MbRcDnIqFVgbR4JGDzSan2WlablsdhVJME0TkiwHUQRGHOK4CQYhXjQmCRzHYWxsDNeuXw8GSBYlaLoyogNfmCgEJi89yhVns1mMj48jRd3misUirs3MBA1t2kWsKgY6oXiuC+K68AgBJ4p+a2eaDnJiGFmFj7kWNHRGbJN4XL50CefOnsW9996LgYGB4LPjeb6pcZNpmjB0HRwAuQExAAB340Ysf/azIA0U843O1O0mOSChhkws6kZWGhwxUsDAvnOlUinoWChJEjTagVTgeTiO40fVmnw31kqNGSmohEiBHCIFvCDAdV1wPN+UGBBCUKaCxQ1TU5jYuBEjIyNrPLsEvURCDt7nSPX1QdE035ikwYDN0dWHRjvCsbbPiiyvIgmWafq+6HRCcBwHpVIpfhSBkYQGudbx8fFgheJ5nq985uK777GcPxtsA2LUA5IgiiKGh4cxODgIURDgOg6uz85icXFxTf0ZIidtz4PruoEzYlgAKMuyL9bkOJSr1VXWtY0P1iVyUP/ZhEWILVAqlXDk6FFflLZ5c/Q50tVyjc0uXU178JuRNSIGwfYf/jAW/9W/qjFAAprrYboVOeCAoHtimAhEKvhdF1VGCiyrpgohl8tBkqTgmXYcB8TzmpKDTp96x3FQKZcjSYFGSQG7Nmbu1exeVnUdxWIRGyYnsWFiAuPj4x2eWYL1QkIOPgDQ+vogaxo86lwWBR60goFGBYL2wBwXSRLYBMRW67quo8hWOTEnYg4rq0OGoaEhiIKAmZmZ4BhrcUMMpyCYtwJoXp79rFWJnk6n/ShCKgWB41CuVHD12jVU2wjz15wzQv0YPA+u48CtE8XVd8tTNc0vbwRqmjM1w1qum2lTgNWfT9yIhGPbeOWVV5BKpfxWzK3ex6pXDCN4PlVV9ftOxIB9771Y/NznaiMCzchBJ7nwutx+QFBb2Ih7VBRcpP0HCPz7mqbeJDI1KgN84ykWNeB4foUc1OsKOkANKaBpoyhSAPifc/1zGYVqtYrlQgHjk5MYHx9P3A9vESTk4AMAjuOg9fVBUtXa1XTtRsEKhfVTD6cLwiQhTUkC4E9iruvCsm24juMPcG2ShLCJkiiKGBkdxfXr1+FQvUQ3rZLD1QT1ZkxBLX8HhEEQBAwPDWFoeBiiIIB4HuZmZzE/Px/k5uMi3JfCaeHEF/bIZ4Iwh64+Y6FTYRp9Nnha6hc6oXiOiITgyNGjMHQd+x56KFaDHUIIKtWq77tByzm1Nt0ynW3bsPD5z8OJsXKNFTlgWoFQVIAJgeP0L6ghBXSFLooiMuk0srSMliEsGLYdB/A8iJJUU4XSlUhBC1LAI1QGGdJK1IPjOBi67hODiQmMjY1h48aNHZ5hgvVGQg4+IOB5Hqn+fgh0MGH+5+FJkMOKOBGgK1CgZtDhqClLmCSIoghJFOG6LmzbhsNIAhUtthtiHxsbC2yLWVi122DDNcdxQQvcYFJmiv8I0tAKqVQKY2NjQfVHtVrF1evXY5sVeXTwZ6vyRsK8ICIS+lu4lMyyrFWmOZHoMHoQ2CZ3mFI4c/Ysrly+jPvuuw+ZbDbW8UrlcmCGlU6nkaIC2XbhjY1h4d/9O1jbtjW9/ijNAUtRRWkFakSlLe4r8w+JIgWZdDqSLPE8D4HnA/JOCPEtiTtNDxHfcrkckxQA/oRBuBUDrGYwDAOLS0sYGRvD6NgYpqamut6cK0HvkHxSHyDwPI/04CAE6rde014Z8MWJHOdXJVDBk2lZkeHKepIgiCJE+uM6DkzTDJTkTJMQp6ETx3EYHxsDIQSzs7M+Oehh21aWM23kCVFPGsKEoV78yPYn8DwGBwYwOjICSZJACMH8woJvwdwgihBEMFy3ZhUWpBjqzzuULglDEkWotHtjlfpDxLkH7WItbZoXFhZw/PhxbN+xAxtihJht20apXAYhfle/XDbre++zMlA6YbYD0teHpX/zb2Ds2bPqbxwh4DzPL2WM+Jzr7znzQYhTYcFIQalchkWfBakFKQiDp9bnjuMEZk/twqWVLcVSyTc6i0MK2PWFSCm74149OSIElmliYWEBQ2NjGB0fx+bNmxNicIsh+bQ+YAgTBAYmVmQ5TJ7n/TwuDQu2qpeXZRn5XA7pdBqyLEOSpKBxSlXXA2+EYrHoi8hakIR0Oo1cLof5+fnOSvw6QCuSEEZYUFZPGICVsLKsKBgfH0c+mwVP7+W1a9dWt6YORXJanWP9/6M+G1VVIYoiOGClXXHTHXew+qYTSg05iBGFMAwDr736KgYGBnDXXXc135j4FTGVSsWPagkCsplMJCEJIkAR5xA1mRMAnqZh8V/+S+j79wMhAuABcDkOLnXsa/g8hJ+VFtfOVP9hUiCLol++G4MUMAi086LnuoH9eRwQzwvaOJfLZT/y4HngeD7oqxJFCpgQtP7qws8qF/qXVSXMLyxgcHQUY+Pj2Lp1a0IMbkEkDokfQDCCYBSLsKpVf0UQavvK0wHDsizYtg1d12uaoTASUT8gyrIMWZb9qgbLgmlZfiTBdWGYJkC7QsqSBJWWZDUaNDaMj+PcuXPgdu7suqFRMwTHigjbN3wPt9JHgPkshFeZuXweqqZhYXERtmVhYXERlUoFgwMD/v2JkXapGYBD59doUkqnUijRio+qriOdTjfcd9vCREJtk1FHDiKeifrjvP7aayAAHnzwwaYkjBAS2Hdz8MWyaoOuhAxM4Op6XqCgryEMoTQA248nCFj+7GfhKQpSzzyzcnxFARpN2KF7T9BcU+AwJ8FQxEgWRShtth0Pdz91aDQojvGR4zjB9zgMUZKg0LLkKILBiHLNs0YRfl6ZtwcjVsuLi7BsG+PUwyCJGNy6SMjBBxQ8zyPV1wdRlqEXi8Hq0qXWxRzHIZVKBXbBiqIEg1l4oIoaFnmeDyZ/lpqQJAm2bcO0LD/doOtQZBmpVMpX2tcNIGNjYzh16hTK5TJyUTnpGCrptaCeJLDrjfdmLpgk2X5kWcbY6ChKxSIK9J5eunoVaU0LHChX3s4F+wl8GuquNYgcNDoFnkc6lUKxXPYNkgwDahPxXtTqsBHCtsk1A38LknHixAnMz89j//79Tc+FaVbY85VKpyExEyz2ObAVLXsOWOSLpsaCUDd9rmtSNXUCSvA8ip/+NMBx0L71LRBRROHTn649qRAhjkOmIkmBJNV8j1qC48DDt8Fmv5NQfwWpATlwHQe2bcOy7ZqokSCKflRPklZKYesPSY8DRD8PYRFiOHJiWxYWlpagqiqmJicxNj6O0dHRhBjcwkjIwQcccioFQZZRXVqCa9srUQRCwFP/fsMwUK1Wka2bpONMzUyHQDTNH7BorwaDEgRd1yHLMrRUCplMJiAJg4ODEEURi/PzGB8bW73jdUg1ALUkgU2gpEUFQaOJluM45PJ5aKkU5ubn4dB0S7lSQYamUgTaUwJADSEhbDXMrfStYGkNNlGTOkLCCwJSqur3zdD14LOIQjuxgxrb5GAHzcnatatX8d577+Guu+7C0PBww+1M00TVMHxFPM/7ehae9w2fak44RNbqqgICghBDbxGQC45D8dOf9klCHQLvjBakgBASEOCw1kOWJKiKsipkHwlKCILPHbXfM9u2QQiByPM1+yOeB8u2YdOqoWB3tC+DJEnNtTsx03dME8OqlDiOC1KGA8PDGB4dxcaNG5MmSu8DJOQgAQRR9NMMpRIsqqpnJEFRVZh0BWRaVo2NcRhhMVJkmJJqE2QaLbAsC9VqFbph+NEEy0KpWESK1nVLkoTBoSHMLy42NG8K9g0Exke9pgzM0AZoMlmEIgdREAQBI8PD0HUdhWIRlmkG7nGZbBa5iLx6eOAOUhdhrUPoeOEjS7IMyXFgUVFfJp1eiQCx7TnOd+1jnhN1n2FwLHocm1YMcIzIRIjxCHxhH+E4lEslvP766xgfH8f27dujdQGEoKrrcCwLHMdBkKTAfTJ8rnHB0fscRDmi0ITQhAleM1JAqF6Ehe7DZbKSLEOV5XikAI1FpmFY1N9AolVHnaYNao4LBM90MwSfNdPIuC6WCwU4joMNU1MYGh7Gpk2bYusnEtzcSD7FBABomiGfh6go0JeXfWdCngcoQdB1HYau+yHJJur5mlx4g0GpPu1QrVZRqVSCCaxULkNVVfT39eHq1aswDcMv2WqA8IDMfu8lSVilS6iLJDQ7NpvQAUDTNGiahmqlgkKxCNuyUC6VUCmXkc1k/EhKg4kluN8s59skmpGiDpmu40CvVpHJZGo+Qy78WYWiFsE5o3Yl67kuQEgQ5WF6Fa7+HtDV+6uvvgpFUXDfffdFPjusK6hHr4E9G7FASWmjCZUJ+KLuTZRQkXkJtIqkhAlBmLzynN8QS5HlWCH1dsW2jm37Jkiui2Kp1HbaoB58k3tXj4CEEhKkEbRUCuPU9XB0dLSta0lwcyMhBwlqIKsqxKEhVGiaged5KKoKi0YPSqUSstls60Et5qAniiJyuRyy2SwMw0CpVIJOHfAEqsaevngRO3bsCDoztkL4yL0kCsF+W0US2LnQyoZ6pNJppNJpVCoVFAoF2I6DQrGIUqWCbCaDXCazarBn94EN2I2U+v6Jckin0ygWi3BpI5+4roJRYII4Rlz4BscmhODo0aOolMs4+NhjNYY+DLbjoMo8IDjfyClqu6h9x1lpA/6k2aykk5GCcGomCp7rwnIc2JZV8zlyQFChE2fVHIj9YgpBWXTCMAxUqlVYluUbXqGNtEH4+HT1T+ISA47z/SXo+ZbKZRRLJQwOD2N4ZARTU1PIZDKxjp3g1kFCDhKsAk/TDGapBLNSgchxSGcyKJVKsCzLD09nMm23GW5WlshxXLCStm0bpVIJruMgpWm4fPUqcvl8ECpVNQ0y7SDZCmwgXkvHxDjHYNcA+AKyqGuNU8KppVK+gRTtd18sFn1RJo0kMJIQTIyhJj7s9ahJh+d5ZNJplMtlWKYJURRXR2NiTFae5wX1z3wochBFBi9evIjp6Wncf999yOfzq/5umiZ0Xfc1AtQqOK5Yb1WkqtX2PL+qpDOOP4HneXBsG5bj1IgLAb/qQJRlSKLYuvyVEhAOK74Azc6dWSQ7th04heq67osRaYpOVZRYaQOGIO0HNGxTXfcGP4rCrNI9D0uLi3A9DxNTUxgZGcHk5GSSRnifIvlUE0SC53lo+TwEmmaQAZ8gFIs+QQhFEOJOuTU97JtAkiQMDAwglUqhVCrh3ZMnUdV1aDScWalW/clNFCGrqj9Ih7zn68Em6nYU+WsBz/lW1GHxYpzW2ey9mXQaqVTKTzcUCnBdF8vFIkrlMrLZLDLUBRFYEUhyIb1AozSDSEtImcCUj6qvb/H5eDTdxAuCTw4apI8WFhZw7NgxbNmyBVObNtX8jRCCarUa5MkbtVquf89ayB3PcT5pA2rV+A0iHrbjwLGswJOAgT13caNYTLwX/ryirsOjVQgOdRiNIpK2bUMUBOT6+uKt1MP3rB0yxcgSWXGCNKmpUSqTwYbxcWzYsCHpqvg+R0IOEjQFSzNUl5ehEgJCV5+2ZUGvVqFQr4LYJCG8amoxWSqKgsnJSVy8eBFLCwuYvPde6NVqsIqzLQtVw6gZsCVJ8v+NWM3VlLPBX+H3LOXAro/qNlqJKuvBcxwymQxS6TTKpZIfSfE8LBcKKJVKvhqcVSmg7jpYmiGCIKiqCsfz4FiWL4DMZGpd9pqUqAL+ilYUxRVRY0RKYXl5GYdeegmDg4O45557Vr2/Uq0G56ZpGlRq1x2FgNh1IerD1wkU6887LO4L/0XgeUiyDFkUY4sLWVVJs7N2HccnIRFRCWCl0kcURViWBUEQoMiy3z21GZh2ot17RkkBRytDCPH7ZJRKJRSKRQyPjmKIRguSNML7Hwk5SNASvCgiMzQEo1gEKZXAGuDohuE7rMkyPKAzksB+xeqBlOM4KIqCTZs3491338U999yDwaEh357ZtmEaBmzLWmk0FCIKQc8HShTq87HseOFKh7jlXHHA9ssBcLF6tRg3zcFzHHK5HDLZ7ApJcF0sLS3BtG2kNA2ZVAp8fRVJI0EoxyGTSqFMle4VShDCPhNcE+LGcvcirVSoX9GXSiW8+OKLyGSzeHjfvppojmma/jNDzyMbwxlwrZ9H2MEwqKCgv7PrsWwbtmWtFhZSHUHbqY4G8Dwv6D3ihHL4wTFph0VRkiCyyAx9HyMtMk1jNAITGLZFRetIAbBSlrm4uAgPwOSmTUGZYpJG+GAg+ZQTxIaay0GUZWBpCR4h0GmVAc/zfqtnz2ufJFCwCaN+UhIlCRs2bMDZs2dx+swZ3HvvvRBEESlRRErT/NWebQeCSYca/hAgaAjFiIFEyUI4JEzqj0+xZiEjvRbmzb/qz6FW1atq+CMQJgklmmLwDMMXGbouBgYGkA65WLJrIlFRBCr8K1MHQuazEK4+aDTRBR4HEZGZarWKF198Eaqq4pFHHvE7BoJWI+g6XMfxyxRFEelUKjIs3w277JqmVKHniYMfPXBo7w/dMBoKC4X6bpMNzjOqAVZ4G/ZM2tTyuP48RUHwyUAoGlMPmxIDjkYw6oluOGUWTpu0RAQpYKhWq1hcXEQqk8EIbbM83MSfIsH7Dwk5SNAWRFVFbngYPM/Dc93Arz2byQR+/h2ThIgBVqKD5tTGjTh7/jzuuP12yKEwNAu7BkSBDqSs3Mu0bRDD8BXroug3PtJ1f5VGV2gC/Qmj/pw7nbQareDCe2LCzkY5cNRtm8/nkc1kMDM7i2KxCMe2sbiwgGKxiHwuV2N1zaIAQdMcJlykAkVmscwiCOH8eOT1hER8YZimiRdffBEcx+FDH/oQFEUBIQQGbcDFhKGqqkKJsEFea/qgpscBu8bQvh0m8KN+HV6ItDHSKDUo0408TsT/Pc/zS0ZDx6qHQAkrIwNxhIyGacKy7SBtVnN8liJpupdVF9GQFOiGgaXlZdiWheHRUQyPjmJqaqrmmUrwwUBCDhK0DUEUkR0eBngeS7S1coUa+LDV55pIQvhYND0wMTmJ8xcvBgQhCmEHQJu6xTFHOVbnbzkOePgRCc/zYNUdSxCEgDDwocE7fP5eDKIQ+M230a46HL1gjnyNjsILAnK5HBRZDiY8x7axsLCA5UIBaeY4GSI9NSF1zm9UlMlkUGYEoVxGmlWhNEktsPvDVsuWZeHFF1+EY9t49OBBv+KEeiqwSUiUJGiatoqEdUoKaiI9dRGC8IqdkYKa93IcRJ6HKMuthYVcrWMhQ5gIeJSINmqtLdHIgCiKbdsJW5blixUdB6qq+gSm7vxiowkpME0TxWLRF/sKAjZMTmJi40aMj48naYQPKJJPPUFH4Hke+eFhCKKI+WvXYNG+8FnagZBhrSSB9ay3ZRkbN27EmTNnsHP79pY13VJolWXTnLJF1fEeNSKybNvP0RISTFqu69YQBp7nIfA8BLrSE0K54OAcEZ2CaKeWfdV7UbsybTTxcDyPbC6HIVlGgZY9utQgp1gsQlFVZNJpaKq6ksoI+TLw1KK4XKnAZRGEdLrpZyQIQpCmcF0Xh15+GXq1iv0HDkDTNFSqVdjU6RCc36NDjnDWrE/lxLknNaSF/ssmT0YEojwNGMkUBSEQUUaKRJmYL/iVRh0YEfA8v+a/wTnyPB8QzGYVNHFhsqgBJRbtlC4GiEEKDNqlUZIk3H7XXdi8eXPkZ5bgg4OEHCRYEzL9/eAFAdenp/38NSUIq8SFqHXSC6/IW0FRFJimGVQuXLh4Edu3bYttmcyIQgqAZdt+iVqd3Swb9OlJ1ZyX53l+OoJdC8f5RIERBjohrAIX330uDurz21xII8ALAvr7+5Hv60OVWjFblgXTMGAaBjhBQFrTgrbawIpoUhAEP8VAxY6VatU32WnQZZGZU7mui5dfeQWF5WXs378fmqYF7ag5+M2mwp0361Mzce5NVIQgCNvTaFCUsZTIyAD9qfk8gZrPn/3N9Ty/R4FlwaGRgUb9GTj4Ql322bOfbgpaHXpthmkipWmR6Zhm7yfNSIFloVgowDQM/zn1PPQPDOD+ffuSSoQEABJykKALSOVyGNu0CdcuXvQnFxqebjSMMZU7AQJjmGaDHstVu66LDePjeO/0aWzdti0w4wlyyzHOVab2sowosIkGjrPKX55FGKLOLSqnLNRNFsyBrhvTRVSumxGS8NTISiAzmQws20alXEa1Wg2Eh+VKBZIkIZ1O+70LBMHvQxBKMTiOg6quI6Vptat1elyJpmTeeOMNzM/N4eGHH4asKKjS9t88zyOVStV2mmT7aeNa2TPiUUGfS+95/Yqfg3/vAzLQZJImgF9a6rpwGQFwHDiUGDQ6nzABYNGjbhEBAvjPcl0qRzcM37CKRjuUJiWfoZMNKjMQgxSA46CpKjZMTuL2XbuSFEKCAMmTkKArSGWzGN+yBVfPnQsscdPpdNP3hKMJwIqCP2rQlWUZpmliatMmXL12DVcuX8bkxo01g1/4/3GJAkICr7CYrJHdbn14P5w6cB0H4XcxYxs2kbCVJcfz4OkkuhYRXiAeZILDlZMMrk+m0QRD11GuVGAYBmzbxvLyMpaXl6HRaIKmqhBF0XdRrFRg2zZ0jgtslh06cbJzPXL0KK5euYK9990HRVWD/gWB4LD+vrW6GKa4JyQwAmLRgah7LtRHBsLHoqkARkI92mXUC5EC07IQhfo0Et8oKtQFBJ/dyokHf2NVOLquQ0unoTaJGgT6liYaFdOy/Pbr1JGSOZJms1mMT0xgauvWrpGdBO8PJOQgQdeQSqexYetWXLtwAZZlgeN5aGz1GQPN0g4sepDPZjE0NIT3Tp3CxjpyEAYLmbPwaiDGawK2KmRh97CQkZGG+rUlm7gCEd/KH+BhJfoAYFXnvOBc6YQE+JNT/U8jAhHYNdep8+tX6DwhSKVSSKVS8FwXpXIZlUoFDhUN6tWqXx6aSiFNfyqVCixaZaBpGjwaJREEASeOH8f0xYvYtWsX8n19geBQpQQjDth98Wgen/24tCVw/XWyiAAjWMwZ0nGcQHTK9tGq6oOlIZjoVKRkgN3vXmHVJ9jkHFmVh0QraqL6TYRJAfu9HowUGLoekElV09CXz0MURYxPTGB8cnItl5XgfYqEHCToKlLpNEY3bcLM9DRM04TrukilUismO01U8Aw1aQc6oHGc7ydvShI2b9qENw4fxuzsLEabWLiyoZKLCEPHynezSSk04dWXq7l0hVrfNpnj/O58zMMgfLzg+uhERjwvWJk3OxeO822ZudAkxo7vum4gAKyPvoSbNgmiiHxfH/L5PAzTRLVc9j0IXBelYtEXMSoKZEUBoaWqHM/7+XhCcOXKFUxPT2Pnzp0YGxsDAF9wWBfyZikXz3X9ssG6f8Ngk1vYVIln0RUmFKVEIJziaFrNwSI0IYIl0H9dstq8qduoSRVgdcSpGRx63w3D8B0kVXXlXMPli032aVKLc4OlekKkQKKixqmtWzGYeBckaACOdCqnTpCgCarVKmYvX4al6+DgkwbW6KfTPDxH2++WSiW8+tprkCQJB/bv7/gcg8hCx3vwEVbLs0gDg1XnvMfAAeAEYSWXX1eKR//T9NwIISgWiwDHrRKB1lSF1JGGmr9R0WFV11GtVODYdmC767oueEGApigoV6s4evQoAGBqaspvuENXtIwcea7rT7yhVABbxQf/hq4zPHEH/4bz+Q1IQLOJP/xaI1gNehesFTX3ew3DakXXsby0BNfzkMlkkKa9NOKYZZmmiVK5DKNaDT7zgBRIkp/GEARs3bEDub6+js8xwfsfSeQgQU+QSqUwuW0bZq5cQWV5GeVyGaqqRqYZ4pIF1mBIkmVs3rwZbx47hoWlJQz293d0jlzdv4G7XGgQjkMgeJ6HLMsIF36xVIQoir4RE+2vQGjYnABBt7tOwM6VhZY9FjkIk4yaN5Aam+hVawJCoCoKbEGAaRjQDcMv93QczNs25hcWQADks1m/vbauQxBF6IYRvD+czuAQmvxpo6ZwRCCIZpCVXg4s8sGHJvmwNiPQbKxhxc/aZne6h1Xvi4pgrIEYuJ6HMu1+qqhq0HeiUZTE87ygu6VumoDjgNB7q2ka8tlsENUhhEBLp7Fl2zaoialRghZIIgcJegpCCJYXF7E4MwPXtiEIAtIhq96O9gmgWCjgxUOHQAjBRz/6UUg9Eo2Fj9mIODRr4EQIgVUnfvNA9RWUMIQFc+F/w2LNRqiUy3AJQUrTIIriqsk/6K5Xd07s3/ooRTgNohsGyqUSrl+7hsXlZQDA6NgY8rkcJEmCoihQVBWaLPsTuShCoKt/tpJnhCE8+Yf/X/O3dYBHyKoy1npEEYC1TPhxwPa+tLQURIMGBgehRHgNeJ4H3TBg6HrgTxB+NtU6UgBCAJ7H2MQExjZsSISHCWIhIQcJ1gWmaWLmyhWYpRII4NfbR4iswlGEZhEF1/Nw9epVvPLKK9g4OYn79u4NyuW40KSzHgh/gQIhJB2sPfiphU4mF7bSZ+2eA9JAV7/wvKD0UFFVX0hZd+0sshAYU7GUQrjSgZoCMaGfRx0XbdvGuXPnMDMzg1wuh2w267v0yTJkWV7ZN89DVhRotFIhXHIXHl6a9WxYL9g09XMjCEA96qNSlUoFC4uLcFwXffl8jd+A67p+dIASAkaomMeFpqpIaRpUTau9x4RAy2SweevWJFqQoC0k5CDBusF1XSzMz6O0sACXdphLpVKNV91oPsE7joN33n0X77z7Lh64/35MhlTXTMwYrFS7dxltgQCBFqEmPRHKqYf/ZdUV9VqESLdFQlA1DFiGAVVVoWpa7XvY8epC/vX7YETBdhwYuu5XZbgujh8/jsXlZdy2cyc2bNgAjudhGcbK9XDcKk0Fc5tkJEGjlr81CF1fOPIShM7D19/o/EOvcYTUVqREbMvO0LCsVQLV9QIjjfUNoQDfc2N2bg62bSOVTqMvn/erSXTd9zuwrMDXA4RAEEVomgYtlYJCiVo9eJ7HKI0WJEjQLhJykGBdQQhBuVzG4uwszErFN+1Jp2PVkgd+CKHXTNPEoZdfxuLSEg4ePIhsE3e3mhLJNVxDu3Cp30EvvmqmaUKvViErSuzmOPW2zI5tw6CTPjgOpmHg7bfegm6aeOjBB6EqCgiATDYL13FQLpd9Z0Weh5ZKwXUcP8xNW2izShNGTERRhKwoUOlPVFneesClLZPXEwFpCWkros5rdnYWpmWBwNfrmKYJh5YDM9IkUkKQ0rRV1SG1ByVI5XLYtHUrVFXtzYUleN8jIQcJbghM08Ti/Dyqy8twHQcpugKKi/BAu7i8jO9+5ztIpdP40COPtKy1Z22M63tA9AosDeCsQYDYCDZ1QRRFEZlstuF29VbIhBDYlBSEBXqGruPIkSMQRREPP/IIVOp8yNPOl4AfCamUy0HEIEM7cgIIOnWapul3E7SsmnbRhFBPBEYWVLVnJkNhEEJgN7FD7tpxsBKxaVZqyeC4Lq7PzvquhZa1QpRpmkeWZZ8QpNMQY9wnnucxvnEjRsbHu3A1CT7ISMhBghsGz/OwvLyM0tISzEoFsihCS6VqJu04IITgwsWLeO3117Fjxw7cftttbdvABuV94TK/LsL1PLghQ6Su7Zf6E3A8j3w+DwArofkIJT0TSDIPClZVICsK5ufnceTwYfT19WHfww9DkeWgiZKiKJBC5M3zPFSq1cDPYNVqlhICQggMwwhMfSzTXCWOFOusj1k7Y6kLjYuC+8SiN12+/0E0i+b/o+BRImaHnR+peVOlWg3srbPZLBTaj0KlEYJ2rj+Ty2Fy82Y/vZQgwRqRlDImuGHgeR4DAwOQZRnLS0swSiWUikWoqgo5woK3ETiOw6ZNmzA3N4czZ88in8thdGzMFzzS/DXhOHChFWw9WNg3nOPnuhhZ4OBrIFgznG6A1feD42omqQDhygpqGWyaZtAvgmkDZEnC6TNncOL4cUxOTeG+vXsD8yE2+YeJAQGCds/VSgWWbaNarcIjZCWMHWrdrWkaNDphua7rEwXDgGmasG0bLvUdME0zdOqE7sYvgwwTB/YjxWyBzEyP1koM6sWy4TJM1qfBtm3YjABQMhAYVFGwyEK1WoWh6+AIwdDgIIYGB1cLCmOA53lsmJrC8Ojomq4vQYIwkshBgpsClmVhaWkJeqUCu1oF53mQqagtbiTBcRx861vfguN52Lt3L9Kp1Kqc66q8L1vxxYgYRHWSjDuMs5JFgPYpaPW1o6mP4JybqOkLhQI8z0Mul1u10gyTAnadPM/7BEyWQTwPR44exfT0NO644w7cfvvtwfWxqAQ4Dvl8vmG/CVZWByAQmUaSsIjzd13X74IYsqgOui3S49W/q8ZIibVHpl0yGYlgUQcC/7lg/Rbign1WNQJCek3h1X/4J/BrwOpKBNZumREay7Jg0OhNJpNBX39/2wSU4zgMDg1hbGICUpymTAkStIGEHCS4aUAIQbVaRblchlEuw6pWQTwvaP0bxxuhUCjgW889h7HxcWyjgqwa+9kmxw6X99XY1K7eOPhvDWFoJnZk5Yd0f2ziY++Lk59uhFKxCIdOMsyx0LFtWLbt97ig5yVQUiBRdbtlmnjllVewuLSEvXv3YmpqauW64Pv769UqJFlGOp1e1YUyTLQsy0KlWgXgt0tOp9M1ts319yIOCCFB+D1MGGzaTTPoo8DOg97HcIUG0xiwlE7UcxD0JgACd8hm7pRs0mdXF74PoihClCRIoghBFIN24ezZZd0xdV2HaRiQVRX9fX1tpQ84nsfA0BBGN2yI16kxQYIOkJCDBDcdWJ66UqmgUijA0nV4rgtZFKGoqu8N3wRnzp7FsWPHcPfdd6Ovv99vUZxKrVuNfZDzR4g8YHXEwO1S/ps1SRJFEbwg1BACVvbGIgUM5VIJLx06BMe2se/hhzE4OLhqv+VyGY5tB70T6slBTWkmANtxUKGVDDzH+WZX9Z9VyE9hrb4C4UhDOIQfJhRBFISRA4RKRYHA3yF8Ta0QdISkJECkJKCVzsWmlR6ObUM3DMiKgmw63bzyIASe59GfkIIE64SEHCS4qWFZFsrlMopLS7B1HcRxgslOkqTIwZwAePnQIcwtLOCB+++HJEngeR7pTKZtsWM3wRTsAIKa/Ki+C7H353mwbBulUgnVahWyLEOhaRSR5/1VqyyvmrTm5ubw6quvQlEUPPLII6tba3Mc4HlYLhQAQpCl6Yp6csCuKXxHPWrMxIhPJp2G2Kh0sd7LoAtg95SExJ8stYC6c11PQyYWWWHEl0UUWrU1J4SAFwQMDg1hdGKihuAlSNBLJOQgwS0Bx3FQqVSwPD/vRxIcBwLPBx0E6yd90zTxzLPPQtM03HXXXb5wjeOQ0rQbVmcPQuDWfd3YCtoLWeCGXQxRt7JlGgKmfOfgG+iYhgFFVZHL5SDLcmSY2rZtvPPOOzh75gyGR0bw0EMPNZxsHMdBuVSqqYKIIgfRl0lQpi2hAUCi7aAbphlW7yD65YjfmXkSO26U8DCs91hvEEL8FIJp+pUith2QtVwu15igUG1I/8AARicmkkhBgnVHQg4S3FLwPA+VSgVL8/Mwy2V4ngeB4yArij8phiaghcVFvPTSS5AkCffeey9kWYbruivOjDcgihDOkzMwglCvag+/x7IsWJYVbMO2E0XRJwiWBUmSkMvnV4XKAeDq1as4dvQobMfBrjvvxLZt2yIna5YqMKjIUJZlpOjqNi45YNdkUGMkBmavXCNWDA8/IXJE4EdXPLpNqxbLQS+KiOHMoz0s1hu2baNKU2IO1UiIogjX85DNZhv6FvCC4JOCDRuCSFCCBOuNhBwkuCXBVmSLc3PQSyVfeEYIBKoKZ7XyumHgpZdegmmauP/++6GqahDyTqVSkf0denreQMNVLAGCcDgjBEx8xyZGQghkli6gQjfX81AsFMDRqoJAYc9xMKpVHHvzTVy9ehXjGzbg3nvvRZo6Ka6abEO5+FKxCNd1/Vbbshz0dqgXatbrDurhOg6q1JKZ0MlRS6X8Dosd3r96sHbRjVJMjaosegVC/BbYFi3NZJELnpKeTCazOrJDy1LzAwMYS0hBgpsACTlIcMtD13UUFhZQLhbh0g6ITPTGwxejvXnsGJaWl7Fnzx4MDAzApv0DJBpFWC8tQniSZa2WA4MkWu/v0JUmh5UJnOkHGtX2F5aX4RHir0hFEZ7n4fz58zh+4gQkQcC9u3f7/RFarL45joPreSgVCkEJY9CQqcNJlhAC07Jg6HqwsldYFUkH+2OExKUCz2ZD2HqnFJjnA+uoyfM8XGqdzfN8UMXBnjcOvodE/9AQBoaGElKQ4KZBQg4SvG/geR5MXUe5UEClVIJlGCstiD0P777zDq7NzmL7tm2YmJjwc/Z0oE7TFXIvQGjKwGNGObQu3qO9DCLeAHCcXwIX0+ynXC77TXtSKRiGgaNHjmBxaQlbtmzBXXfd1VRnUR+yZykFVsIIYE3kgMH1POjVatDfgBeEoNV0u2AdKutTFOEeBusZNfBoGa5t20HzKZ7nA2MnJj4MOlkKAnJ9fRgYHESur29dzjFBgnaQkIME71vYpony8jKq5TJsarRz+vRpnDt/Hhs2bMCO7duDhkMcx/nWtZpWmwuOKHNbZYZU528QJgKu50U687HUBnMq5HkegiBA4PnAFTCs5Pdct6mgT9d1VKtVTE9P48KFC8hms9izZ09kiWI96lMDxWIRnutCS6eDfhexyAFzomxxvPrVdavunGF4LSIFtacT8pZguoVY74wPZkdd1fXAG0GjqSvLsuB5Xo3XhpZOo39wEP2Dgx2RogQJ1gsJOUjwvofneTCrVd9YyTBw7tw5HDt2DIODg7jzzjvhOI7fEY8K1yRJWiVuDBB2KmzkWhjxepgAMGtigecDm+GWYEK9BtGGK1ev4s2jR2FaFu684w7s2LkzlrVwPepdEQOtA9YeOQjDoyV9pmEEvgiqpjVsvtUOKWBwXTfSXTFcCQKEtBO0g2LkZ8xsuLFCpizaXMr1PMDz/IZSqgrTMGDRyFAqlUKKEoKBoSFoMTtnJkhwo5GQgwQfKDi2DaNcxsVz53DopZegahoe3rcPoiiiUqn4YWH4E4skSVBkGYIorkxMobK58L9h8HT1z4gA638QBiGkcwU9tfP16Kr1rbfewqXpafT19+O222/HhrGx+GWDdYhKKQDdJwcMDhUsutR+WKIeFqIodkQIGHqVUggaV9FuloBPbJg5Fyvh9AjB2Pg4xjZsQK6vryOiliDBjURCDhJ8YHHl0iX89Ve/Cp4Q7N69G+Pj4/A8D4Zh+K2GgRr7Zr4Ni9tWCErvOhFCEoKFhQWcO3cOly9fhiiKgRuk57rIZjKNjYdagKUUUnUajHbIQWBFHfOYhBCYpumX/RECeB54QfB7a0hSR0Sn2+WLhBDYlhW0uCa0MkZRVciS5PevMAwIkoRcfz+2bNkCrYXBUYIENzMScpDgA41yuYz/8ZWv4NqlSxgaGMBtO3Zg06ZNANBzktBu9MA2TVy8dAnnz51DuVRCKp3Gli1bsGnTJiiyjDJtr6ypakeq90YpBaCzyEEcbwIGD4DnOH6qgVacsDC+rChQIpweG+4X3YsaNCMFkijCNE2YlgUtlULfwABy/f0YGBjoWqvpBAluFBJykCABgCtXruDQiy/i3JkzyKVS2LFjB7Zv2wZRFCNJgkx9BtYKz3WbRw8IwfzCAs6fP48rly+DEIINGzZgy5YtGB4eXlVloOs6JElCJp2uSWWwjowMUf4Es7OzOHf+PC5fvozz587h7LlzKJfLAIAPPfIIPvWpT7W8nv/3i1/Eiy++iPvuuw8//3M/F7oMEhwz+GnUCInaQodD98TzIIhirGhCN6IGHm3wZJomHM8DR0sRFVWFIAhBu+lMLof84CAymQzS6TS0DlouJ0hwMyKRyyZIAGBiYgI/+Hf+DhYXF/HKK6/g8Jtv4sS772Lb5s3YsWMHstksDMOAbduwHQeWZYHn+YAodBpN4AUhsgFTVJTgzjvvxNSmTVAbWOmylbUbIVpkk+mXv/xl/MVf/AX+n9/6LQwPDdVs86u/+qvgeB7VchlWG26IYdy3dy+++93v4u233gqsgsPlhTXn1GAS5agttkKbPVl0de55HoxqFToaRxOY/0EnE3TQzdKyYNk2OPhCSIHjoKRSEHgeumGAEIJsPo/84CDS6TQymUxib5zgfYeEHCRIEMLAwAA+/vGP4+DBg3j99dfxxmuv4b2zZ7Fpago7t29HPp+HZduwLSvIlRuGAZGuamVJivYuaAKe44Jc+/zi4qoowb333rsqShAFQRDAcVxQRlkf2mZBQl4QVlVTWJYFjueDVfvgwADGJyZw/K232JtX9sH0BGSlrTGb/O+++26INNx+4vhx7N69u3FVRwwwt0tN02qiCbZlwTIMP5ogyxBpNYgXspaOC9d1YZmmX3rIrpNWHyiyDI5+zhzHIT8wgPzAAFKpVNAiO0GC9yMScpAgQQRSqRQeffRRPPLII3jzzTfx8ssv49yFC9gwMoJ8Po9UOg1FUSDRyYnjOFQrFegcB4mlHRrkyC3LQrlUQrlcRqlUQqlYRIH+TjwvVpQgChzHQRRF2HT1q2la8LdWNf6GYeCxgwcxNTWFnTt3Ip/PY25uDj//2c+ynddUbNRP9WzfiqLgrl27cOzYMRw+cgS7d+8OSgfXksFsGk0wDIAQvyU2/GoRRhZ4nocgiuA5riYVEaQuTBOObcOjRlUAAgtu13VhV6uQFQWDo6PI5HLIZDLR9scJErzPkJCDBAmaQJIk3H///di7dy9OnTqFt996C5cXFlA6dw6ubfuTD3UzTGsaNE2DqmlQFQXpVAqCKMKgBkXlUgmFchkO1S8AgKZpyGYyGBkZwebNm9HX14fBwcGO89ayLK8iB0wY2GhyZv0bHn/8ceRyuTWX3e3ZuxfHjh3D0SNHQH78x4MoQ7NzaAf10QTbcfzPgqx0ZbTD5kfs+DQy4rqu72tBVppdqaqKVCYDVVV9jwvqdSFSopdOp32b7aQkMcEHBAk5SJAgBniexx133IE77rgDgD/pGIaBpaUlLC8vB/8uzs/j8uwsKuUy4LoQeB6yJCGXySCTzWLLpk3I5fPI0VVo2I1xLXX9DBIV63meB8e2IdDoRbP9ss6JiqJ0ZfLbu3cv/vAP/xDLy8s4d/as3wGyS8QgjCCaQLttsqZWruf5nRAdx9eI0DSQw8SkioJMKhUQAtaPgjXrEgSh5v9JlCDBBxEJOUiQoANwHAeNRgo2bNiw6u+u62JhYQGWZUEQBFimCdswYOq6HzmgeWxPFCFKUtCGma1y13Jekij6Rj2WhVSL8j/btv0eExzXNVFdf18ftm3dirNnz+LIkSPYtm1bcG7MYnkt11gPj9k2MxdJ2rzKpuSoP5eDlk5DUhQIggBJkpCi5IBN/kmFQYIEtUjIQYIEPYAgCBgZGQFAa+Vt26/hN02/DM40YVarqOg6SKUCURCCJksc7asQTFd0Io07gSmKErR7buU1wBoDybLc1ZD5nr17cfbsWRw+cgQ/+IM/GLwe2DG3SxDC2zISBd9h0aEEx6FdLRVNQyaXg5bNQlXVQKugUHKQIEGC1kjIQYIEPQbHcUHJI+BHFRhJME3TV8obBixdh0kbEvGCAJ7jILDwNrVgZuI+rvYAK/8nBKIoBlULtm037DbJQu4s595N3Hffffjyf//vuHzpEmbn5jAyPLxyuvQHrEojdO7hkscwdWCGUa7rwmUpA8cBoW231VQK+XQaKo0IMDIg0ahMggQJ2kNCDhIkWGcIguA35KFNeMJRBdu2/ZWwZfnRBcNAtVIBx3GB8l4QBD/SwPO+Ap91HAzl9SVJgmEYqFarEAXB345Oxh7tFlmpVkEAv1yPrejr2yA3QLgBUTCZ09A+AbBx40YMDQ9jZmYGhw8fxsc+9rFI46WoNApzOKz5oVEBjud94WA67ZeOUgGhLMsBIUhEgwkSrB0JOUiQ4AZDkiRIkoRsNhso6Nmq3rIsFBYXUV5c9Cd2Kq5jhICnzZ04joPAceBYxIG+5rouiuUysplMQAB4nke1UoFERXiKogQtjQEEkzXzSwAAJ+w6yHL79PyDqb2uxHHv3r34xje+gSOHD+Opp56q2c4jxHcyrPtxXdevKIgovZRUFWMTE0hRfwH2k5CBBAm6j4QcJEhwE4F5FbBSPQAYGhrya/tZNMG2YZsmHMfx/f49D65t+5MrLe3zXBeO60KvVgEApmEE6YX+/v5Aj6CoalDOV5OuoEQiIBThaEKofXGYVBDaLZK9vvvee/Htb38bFy5exPz8PFRFCc6X43m/Y6UkQZQkSFRzIYgiOBohkSUJkiz73TFpVCBJESRIsD5IyEGCBLcAGGEATUUACDQFbMUd9WMYBpYXF32dg+vCdl04hMADICkKLEoS2MTuhXoZlMtl9PX1ATRCsby87B+YRRBohQX7AU19sP9PbdkCy3FQ1nVcnZ3Fnr17IdDqDFYlwFpb1/8w3USCBAluDBJykCDBLQqe1vk3AktRDA4OolQq+TbBhODdM2cwNjWFicnJgBjU/wCAd+UK3jp1CjzPY2r7doxNTgI870cRQkSghiAAwf8PHTqE0xcugOd57D94EPl8voYMJEiQ4OZFQg4SJHifgqUo+vr6/AgAxcWLF9Hf34+husZLYTCTp+vXrwMATNvGho0bVxGAZqv7p59+GktLS3jqqacwOjranYtKkCDBuiAhBwkSJFgFVh3BBImElki2g6997WsAgO/7vu/r+vklSJCgt0hkvgkSJOg6jh49iunpaQAJOUiQ4FZEQg4SJEjQdfzVX/0VAGDPnj3YuHHjDT6bBAkStIskrZAgQQIAwIsvvogzZ84Ev8/Pzwf/P3PmDP7oj/6oZvsf+7Efa7ivr371qwCA7//+7+/qOSZIkGB9kJCDBAkSAAC+9KUv4Y//+I8j//bSSy/hpZdeqnmtETm4dOkSjh49CiBJKSRIcKsiIQcJEnyAcPDgQQCoqV7oNljUYHJyEnv27OnZcRIkSNA7cKTbTdYTJEjwgcaTTz6JZ555Bj/7sz+L3/7t377Rp5MgQYIOkAgSEyRI0DUUi0U8//zzAJKUQoIEtzIScpAgQYKu4etf/zps20YulwtSGAkSJLj1kGgOEiRI0DU899xzyOfz+P7v//6g0VOCBAluPSSagwQJEiRIkCBBDZK0QoIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSPD/b7eOBQAAAAAG+VvvnkNRBMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwAQSkOXSibj1iAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgk2Vkeir8ntozcs7auqt6mt+ll9hlNzyohJIzwNQiBEbtYBEjCgI2Nrjd8uQb/zL0/jLEtLywCIcBGV1hIFwQyCCGxSLP29PTsM71W9VrdXVtusUecc/+Ic6IisnKvrO7qmXifp56qyoyMLSPivOf73u/9CGOMIUWKFClSpEiRgkO62TuQIkWKFClSpNhaSMlBihQpUqRIkSKBlBykSJEiRYoUKRJIyUGKFClSpEiRIoGUHKRIkSJFihQpEkjJQYoUKVKkSJEigZQcpEiRIkWKFCkSSMlBihQpUqRIkSKBlBykSJEigfPnz+OjH/0oDh8+jHw+j/HxcRw9ehS//Mu/DNM0u372h37oh0AIwbd/+7ffoL1NkSLFZoCkDokpUrx18PM///P4hV/4BczNzWHPnj3r3v+TP/kTfOADH0C9Xm/7+YMHD+ILX/gCDhw40Pb9z33uc/iO7/gO5PN5LC0tQdf1Ue5+ihQpbhDSyEGKFCkAACdOnMB3f/d3o16vo1Ao4Bd/8Rfx5JNP4stf/jI+9KEPAQBOnTqFb/7mb0aj0Wi7jm/6pm9CJpOBYRj48pe/fCN3P0WKFCNESg5SpEgBAPjpn/5pWJYFRVHwF3/xF/jZn/1ZPProo3j3u9+Nj3/84/h3/+7fAQgJwq/8yq+0XUc+n8c3fMM3AAA+//nP37B9T5EixWiRkoMUKVLg2WefxVe/+lUAwI/+6I/i0UcfXbfMRz/6URw5cgQA8LGPfQye57Vd17d+67cCCFMUadYyRYpbEyk5SJEiBf7oj/4o+vuDH/xg22UkScIP/uAPAgCq1Sr+6q/+qu1y733ve0EIwcLCAo4dOzbyfU2RIsXmIyUHKVKkwNe+9jUAYVrgbW97W8fl3vnOd0Z/P/HEE22X2b59O44ePQogTS2kSHGrIiUHKVKkwOuvvw4AOHDgABRF6bjc4cOH132mHURqISUHKVLcmkjJQYoUb3HYto2lpSUAwM6dO7suOzY2hnw+DwC4ePFix+Xe9773AQBefvllzM3NjWhPU6RIcaOQkoMUKd7iiJclFgqFnssLctBsNjsuc9ddd2Hfvn0A0uhBihS3IlJykCLFWxy2bUd/a5rWc/lMJgMAsCyr63JpaiFFilsXKTlIkeItjriLoeu6PZd3HAcAkM1muy4nUgt/+7d/i2q1OvwOpkiR4oYjJQcpUrzFUSwWo7+7pQoEDMMA0DsF8fDDD4MQAt/38dxzz21sJ1OkSHFDkZKDFCne4tB1HRMTEwCAS5cudV12dXU1Ige7du3quuzXvvY1MMagaRoefvjh0exsihQpbghScpAiRQrccccdAIAzZ87A9/2Oy73xxhvR38ItsRP++I//GADwrne9KxGdSJEixdZHSg5SpEiBt7/97QDClMHx48c7Lvc3f/M30d+PP/5413X+yZ/8CYA1YWKKFCluHaTkIEWKFPi2b/u26O9PfvKTbZehlOL3fu/3AACVSgXvete7Oq7vxIkTuHDhAoCUHKRIcSsiJQcpUqTAQw89hHe84x0AgE984hN46qmn1i3zK7/yK5Er4k//9E9DVdWO6xMphfvvv7+nsVKKFCm2Hjr7pKZIkeIthY997GN4/PHHYVkW3vOe9+Bnf/Zn8a53vQuWZeHTn/40Pv7xjwMADh48iI9+9KNd1yW8DUQ5Y4oUKW4tpOQgRYoUAMJZ/h/8wR/gAx/4AOr1On72Z3923TIHDx7EF77wha4Cw4sXL+LEiRMA0pRCihS3KlJykCLFWwhf//VfDyDUDLTDe9/7Xrz00kv42Mc+hi984Qu4dOkSNE3DgQMH8J3f+Z34qZ/6KeRyua7bEFGDXbt24f777x/l7qdIkeIGgTDG2M3eiRQpUrx58J73vAdf+tKX8JM/+ZP4r//1v97s3UmRIsUQSAWJKVKkGBnq9Tr++q//GkCaUkiR4lZGSg5SpEgxMvzZn/0ZPM9DqVSKUhgpUqS49ZBqDlKkSDEyfOUrX0G5XMb73ve+vjo8pkiRYmsi1RykSJEiRYoUKRJI0wopUqRIkSJFigRScpAiRYoUKVKkSCAlBylSpEiRIkWKBFJykCJFipHC8zz4vo9UzpQixa2LtFohRYoUCVBKE78ZpWCUAoSAEAIiSSAAiCRBktbmF4wxrK6uwrZtAAAhBLIso1QqQdf1G34cKVKkGB5ptUKKFG8S+L6PwPPAGAMhBIHvI6AU1PdBgwA0CBD4PhgAUArG2NrfCAd3xhjQ5pHAANAgaL9hThrqjQY83wchBJIkgRECAkCWZUxOTkLVNMiyDElRIEsSJEUB9X3IqgpV0xJEI0WKFDcXKTlIkeIWAQ0C+J6HwPPgex5cxwELAgT8Jz6oi9t6VLd3N3JAKUW92YTPiUGpUICiKKCUomma8DwPiqKgXCyCEBKtjzEGEluPJMuQFQWyqkJRFCiaBlXToGUyUFQ1+myKFCk2Hyk5SJFiC4FSCt91QX0/JALit+ethfnFDL8PiKUY/2zH5VrIBGMMNPwj2i9GKYgkgTEGSQzUhKDBIwaSJKFULEJV1rKVQRCgWq+DMYZcLoesrreNTHRCIAgEIVBVNSQMqgqVE4ZMJgMlNVtKkWLkSMlBihQ3EJRS+L4P3/fhWBYs0wwjAFzAJ8LwsiRBluXEZztFAxhjoJSCMgZGafR3/LWAUoCx8P/4egQJCF8AOszORfqhFZ7nwbAsEEJQyOWgyHK0DkmSAMaiZcCjCpqqQpKkMP3AUxAk9jseIRARhk5gAGzLgu04MEwTiqZhcts2zGzfjmIsUpEiRYrBkAoSU6QYMSilCIIgIgG+78N1HNiWBddxQF03oeYXw1c0y29DAiRCwkGX6wnE+7Q1iiB0BPH9iYXvu84EYgOpmK2L3/H3hFaBMQbbcQAAGa4nYHwfgDBqAPB0gSzD9TwYpgmWzSa32zL4E0mCxIWPEiFghMCxbVimCZMTqmazCdM00TQMsCCI9k+siTAGSVVRLBZRGh/HxOQkJqemMDk5iYmJCWRb9yFFihQJpJGDFClGBNd10Ww2YVkWfNcNf3wf1HXDsDzCQVeKRQbE7NoVJMJ14XkePN8PqwT4uqm4TWO3q6Io4aCsKNEgLouBlc/E4zPz+GBPgEgwKMhG6+842kUOHMdBwzAAAJVyORzIY2kIEvvf831U63UAQLlYjJYREQ7G/wYAy7JwZWEBjUYDlmnCtu2QBPHjz+ZyyOk6cvk88vk8CoUCioUCCvk8iCzDNk0YzSYazSaazWb0t1hPAEDLZFAZG8Ou227DI488gnK5PMQ3niLFmxcpOUiRYoNwHAfVlRU0Gw34jgPPdcNBWpahyHI06yfgwj4eWQgo7SjyE8uB0ij3TxlDwKsMAETlhIosI5vJIJPJrEtFdMKgN30rOWCMoVqrIaAUuWwWudhMnIETjJZHy2q1ioBSFAsFZFp0AgFjWLhyBXNzc7h2/To0RcHY2BiyhQL0TAb5XA56Ngs1kwEVFRcd0ErAxHfBGAujDTHScGVhAZbr4tCRI3jHO9+JqampAc9MihRvTqTkIEWKIUApRaNaRXV5GZZpRiWCWV2HpmlglMITaYWWSoJWEElaG8gEoeCDGgOiWTXjs3EgLFt0XBe240QCRQYgo6rQMxmofaj7RSSjnwdAKzmwHQdNw4BECMYqlUQVAggBaXO8hmnCsm1kNA3FQiF6bX5+HnNzc3BdF+Pj49i7dy927NgBJSZsFOmSuIaCcoIVBEGCcHWDRAgURQnPs6IAhODC/DxOnTwJy3Gwc9cuPPjQQ7ht715k0tRDircwUnKQIkWf8F0XjmWhUa2iXquFVQSUwg8CqKoKWVHAgqC9gI4QKHzwjwsOo9RCDNFgL4SEXcAYg8tJguv74kVIhEDvM5owKDmIRw3yogKBb7eToBEIUwu1eh0MgGNZmJ+bw7XFRWiKgt27d2PP3r19hffFuYlXU0TnjKcpEuSB/007nEuJR3euXr2Kc+fOwTAMzM7O4s4778Su225DvlhErlCA1GdUJkWKNwNScpAiRRf4jgPbMOBYFoxmE/V6HS7XBFBKw3K6FgMfglAPoCgKVP67n3B/ZEQkHAo7GBJ13NcggOM4a9EEvr4ML/nTukQTem0lTg5s20bTNCFJEsbK5VBbwJfrFqtoGgZee+MNXLl8GYHvY3JiAnv27sXOHTsgK/1ro31u5uT7Pjzfj3weeh4DT8sEMW+IVsLAGMPKygquXr0KyzQxNjaGQwcPYvuOHSgUCsiXyyiWy32nb1KkuFWRkoMUKVpAfR+2acJuNmGbJurNJmr1elRhQCQpnJVzUhAnAionAv2W0ImKg1YiwBgD5QPeoOV4jDG4ngfbtttGE3Rdb+tG2O1BECcHVX4uRNRApCfaIdISnDuH60tLkGUZ09PT2LNnD2ZnZroeB40N5D7/CXhkhqClCkMIIQd8nIkoQzvCUK1WsXD1KoxmE/lcDnv27MH0tm3I5nIYGxvD2NQUiqmQMcWbFCk5SJEC4SDh2jbMeh1GvQ7HdeF7HizHgWnbYEEAWZaRy+WQz+VCIqCqUBVlqFr6iBS0CXWL0LgoXUyE6nlEoK8tEoIgCGDbNmzXjaofJEKQz+WQyWSigTZeRrnueES+nw+k1WoVADBWqUCWpI6phKWlJTz//PNoNhqYmJzEvr17sW16Gk3TBCEE4zGtQhAb/P1YNCA8jKTvgcSrMmRFCclZPD0T29dh4fk+HMeB47pwXBeLS0u4fPEiGs0mdu3ahenp6YgUZnM5jE9MYGJqCvlCASr3cEiR4lZHSg5SvKXh2Tbq1SqatRocxwkHFT7AmJYF1/OgyDKKhQIq5XJo8rNBUMaiga8VcXFhP4hu3x6kQUQTTMuKQvCaoqCQzyebJ/HfresR9smWbcO0LKiKghIvSWwlB57n4ZVXX8XcuXMYHx/H/fffj0pshr28ugrX88IKB8bgiwhJm3VJkgQ1rtVQFCiiNBNI6A7aHTONeSAMC8ZLTV966SWcm5vD7MwMdu7atVY1wgWluVwOpbExjE1MQNf16Cc1YkpxKyIlBynecnBdF/WVlZAQWNa6gVhRFLiui4AxyISgkM8nSvWGRVTT3+WWE34IkdAOfUYJkDRN6lSFwBiDZVkwbDtappDNJrsmtilDFOSgWq8jCIKwtLBNp8WFhQWcOHECvu/jrrvuwr59+8LtcKdEx3WxUq3CDwLkeGWHgKggEBUb7cSabY8bXc6RECmO6DF39uxZvPDCC5jmgkXXdeGJplY8JSHLMgrFIirj4yiPjaFQKCCXy6URhRS3FFJykOItAd/30ajVUF9dhWUYicFPkiRoqgpN06DIMurNZmRCVCoWoWcyHdcr7JA9XrLox8oXg9hrDDwkztsdSzGzosiwiA8eUstrok2yJD4X++kGJlISbaIKvu+jaZqRjkJVFOTz+Sgy0ro8Q0iqatzIqCJSChy2beOlF17ApYUFzE5P47777kMul4PHjZ0cntYAAMtx4Hke8vk8SsViRASGnWG39poQqQcAa/4SXIw4ijn8lStX8Oyzz6JcqeDRRx6BpCihcZXnwfW8sEFWEMB1XciqivLYGMbGxzHGiYKqqiPYixQpNhcpOUjxpgWlFLZto7a6CqNWg++60XuqokDTNGiaFjUKCoIA1VoNXhCABUHkze95XpQPj//t8xmjAIkN9sDa7L1dCoG1iQwwQkB9H4ip/xMz+Fi6IdoGJw0yd0vUNA2ZTAZ6SwVFgihwXYGwPzZMM1oml82GpYnCTVF8HgjdH20bGrclFq+fn5/Hyy+/DEmScO+992J2djYiBEEQrLkyEgJN00AIgW3bkBUFlVKp+5cojj9mHR33ZyAIUwvCAyLSUHCvhbghk1iOApDEOmNILN8DyysreOrJJ6GoKh5//HHk83kAYXTI5yTB5Z0zXd5GO5vPY3xiAmMTE6hUKshkMmnKIcWWRUoOUrzp4DhO6IJXrcKxrHDABaCpKnRdjxr/AOEM2rQs1BsNrNbr8DwPoBRaJrMmtiMEEpAY5CLbYV69IARqMv8tyTIU3hdAlL1FjZBEnT5PMYjfQaxpEhPvtfkbWBvs4yQDWCt/ZIxB5dGQDP8R0REhcqQIB8QgCKLWyowxKLKMfD6f6K7IEA6IlFIU8nlkNA1Nw8CJEyewuLiI3bt34+DBg2D8nMZ7Mmi83FMYMwkSBgDjlcoaiWmTzugXUffGPiCEle0QJ3atBAlAgqAZhoGvPfEEfM/Do489hrGxsXXr830/6inh2Da8IEBG11GuVFDh0YRisZimHFJsOaTkIMWbAr7vw7IsNBsNWI0GPNsGoxSyokTle7IkgVIK07Jg8CY+juOABgFsHlVQZDlcVoT2Y/lvoZBXhDAuJpRrBWMMPhc39gOhsO9ngKOCWCDUATDGIsdEEdoWJX9ieeF5IMtyOFhz3wNBHgghIakyzShMn9V15LJZEELg+n5UpVApl3H27Fm8+uqr0HUdh48cQalUSggKVU4IRKQASKYpVlZXQRlDpVRKOiFuAIPoCihjCHiUpiM48WsVSsY/4TgOnnjySdRqNTz08MMdyzPFd2TaNgzDgOM4UFQV+WIRpUoF4+PjGB8fT1MOKbYMUnKQ4paFSBuYpgnTMOCZZpg6YCxUinMbYZN39DN4E58o908IAl42p2kadF1HqViMvAqihkYDgnEF/qCfGeWtGJEF14XjefBEEyhKAUlacxjkJZOqqkJTVaiqGi7HIwiSJKGQz8N1XZiWBdu28dprr6Feq2Hnrl3Yu29fpFNQFCUyXIq6SHZAvdGA63kodBA2DoNBogdA96qRXohIA0JfjGeOHcPCwgLuu+8+7N27t2sXTMoYXN60yjJNUAC5QgH5YhFjY2OYmJhAgdtLp0hxs5CSgxS3HHzfDxvnGAZ824Zn2wh8HyrvK0CAtegAjyBEIj8e5s9ls5AkCQFXl2c0DdlcbsOCNaExGPS2iqoYRF+CPnPRIr8ebjyZn4/2KWYaFEUXYlGGaNsiLw9EAjshfHRcF4vXrmHx+nXkCwUcPHQI5UIhoXWQu4TG410gGWNhSaRtQ9c0FHi+Ptr36E8SdZWMjgXJFtdCJyCOc9CHmUjlbAj8fL/00ks4e+YM7r73Xtx+4IDYqXXtruM6gyAIYDSbqBkGXNdFNpdDoVRCvlDAzMwMytyBMkWKG42UHKS4ZeB5XtQS2XMc2I1GmOPng7ztODAtKxzUWloW67qOLC/Z0zMZBEGAVR4m1zMZZEfUZMfnPv5xPULroL9ugEM4SNyoQSAu2mOUhpbLtg3HtuFw4uC6LgJKYdo26vU6Lly5AgZg2/g4duzYgXKxiGw2m/R9GEAz4HkeDMuCLElRE6ZOEJUbcqxKQ5Q5itcE4q2xgZgwsYVARWLGmJ5jw2AML738Ms6cOYN3vetdGBsfD/e/zXJxy+nwJQbHtlGr19G0LOjZLMpjYyhXKti2bRvy+XxKElLcUKTkIMWWh+d5aDQaYUqAMVj1OlzDAAVCFzvHAeGueSJCkMlkkM1kkOVOgAnBF2Oo1evwfB+yLIdVCUPsF0NS9U55E6Zh7I5HfRvG9QZCgCdEkEL0KAyfhLCRxH47nGitVKuYP3cuFEwyhu2zs8gVCpBlGSrXc2Sz2XUtmDvuk6gcoBR1XhZZLpXanrNBnA4FWSCSBDlWBhovB+0EUY4KSVqLRAwQvWld11/99V/D8zx8w7veFaWmSMxJsu1aY9vzggCrKyswbRvl8XEUikWUy2WUy+WUJKS4YUjJQYotC9d10Ww2Yds2AMBoNLCyuAjPdaMZowg9a6qKLI8OZDKZriI3yzRhWBYYY6iUywMZ7XRsXMTz1wPfTEPMWsUeBKLSQbQt5v8LkWK39YroQeShwMWXjDF4vARxZXUVr732GorFIvbs3YsTJ07grjvvhCLLYAg1BgELXQhVVUU+l0Mhn4eu69H6u2G5D1GiqOLwgyAiN1GL5jYpgbiBVBySJEVtsKPoQ+xv2rKuqFySrLWf7vdbajYa+PJXvoKdO3fi/vvvb7svAu2uJ5F6MW0bq9Uq1EwGhXIZxWIRuVwuNVVKcUMwGplwihQjhChFdBwHQFhfX1tehmvb4WxVVSPdgM4V9Yqq9hXW9nk4G4ytsw4WELXu8cd2r4FOmBwNCtbOjVCkIfh+iMhCZLDEzZX6hSRm04oS/uaz7Di5oix0TnS4zmBhYQEnT53Czu3bceD222GYJiRCUC4WoWezUVMoPwiiLpCNZhO1Wg0yt2XO5XLIZ7MJTQCwdi5lWQbjIslO5zdeMbLu3LG1Fs1RAyUeBaCctIgBXyzjd9mOMINSVDXcXowYRMth7Tvr5EJZKBZx7z334Pnnn8f09DS2b9+eeD9OQuK+GJFhE/87p+tQp6ZQr9fRrFbBKIXHK1GazSby+TzyHa7hFCk2ipQcpNgysG0bzWYTruuCUopGo4Fms4nAtqFIUihey2ZRKpfbK9x7EANGKZqGAQBQuYhuGCLQDkOL2sTnYiSBcC2AGyMDneryI22FCKnzH8Lz8onBhyMuiqOUwrJtWLYdvkYI5s6dw/z8PA4dPIhDhw/DNIwoZZPL5aBlMrAdB2AMuVwOkxMTsCwrqmaglIZEoV6HJElRRCEb6wbJAEiyDPj+WvfJLqep3XuE+0hEgyNPCQTcEEkca5w8JP6OkQdReurbNmDbACFQeOpEkIWoJLMPwrBnzx5cvXoVJ06cwNj4eGgs1QbxlFLcR4MfIFRFwXilgqZpwqzXQQgBpRS5XA6U0gRJSNtIpxglUnKQ4qbD933UeOOjIAhQq9Vg2zYkSiH5PjQesi6L8POQOdemYSAIAkgk7JfQSgqGhRiAuuWCxYAc1cwLIyL+WiAsmPlPu5SALEnhYKUokLnhUiKP3cf2w8W4O2KMFAjNxhtvvIHLV67gvvvuw4H9+8MoC0IHRvHZPK/0ME0TDo8aFAsFFIvFqDmTYRiwOFEwTBONZhOSJCGXzUa9KhRJgsejFq2uku0sn9sh8b44v7K8Fo3ggzyTJKgdzo9IVYhujMI6W3wXEVngLbkV7nERv37WEQZC8MDb3oYv/eVf4vixY3j7O97R40gQeVEIkkFi1tnFfB6qqsKo1UBzOaiqGhldNZtNmKYZpR1STUKKUSAlByluGhhjMAwDjUYDrutidXUVtm1DUxQovg+JEJQqFRTy+WhwGmIjkcDO8zwwAMVCYeQP0La545ayvPg++Xwwcrn/QDvpj8IbEYmfyDugT1IT5f3JmqsjZSyqThBRE7Gd5557Dqurq3j0kUewfXY2TBt4Xrgv8fNPCHQeBTB4CZ5wThSRglwut1ayaJqwLCusfjBNNLldsyzLUfvldZGbdtGOPo55bReT4r94JCGeDmCMJSog4lbagqwJ50jf86LzEScLwhejdZsZTcNDR4/iq1/9Kk6dPo2DBw/2fSwMiNwwBVHIaBqUSgWGYeDa5cthc6exMWSyWVBKUavVYFkWyuVyaqaUYsNIyUGKmwLXdVGr1dBoNCJSkFVV6IRAYQyV8fHIr35QJAYaSYLP7YEZEM5YR+TIJ9DTj5/rBTzPi/QCoiY/TgoECRCzUyCW8uiTzLRGKOIlkyJSILYpKwpyug7P9/HEE0/AcRx83TvegfHx8UQ+H0DbnL/G+zc0m034vo96s4lioRBGNHgZZy6bRT6bBRWRCp5+8HmfCsOyUK3VYNk28rkc8rnc2rHHtpUo/euRPuqkBRDria87XqFBJAngAs/I+ZI33fKDICQHfL/jZMHi57odWdg2NYVDhw7htVdfxbapKVTGxpLfZx9iVEEUGMLoUTGfh2LbMOp1NOt1ZHM5bJuZgaJpcF0XS0tLyOfzUW+QFCmGQVqtkOKGQmgJrl27hmq1CsuykFNVaJIUes7z0KhYdlC0VhQwXrbox8oWR4LYwNvqtMcoTaQIfH+9DE7MVgUhiGaeLSV0gzzc2y3JALiOE4X4wWfqovxwtVrFE088AVVR8Pjjjyec+RzXhWmakGUZQRDgy1/+Mt79rnehUqlE5Ea4TEYpG+6oKAb4eA+I+P7Zto2mYWBpZQW+7yOXzSLgj6JysYhysZho59zuuPgG2qYfAv7eIBCiz6iss8s6BFkQ33PrY5RwsiD6bHz1q1+F73l497vfnYyCxSIZ/aRR4nA9DxYnWmAsdFicnITKz5ssy1GDpxQpBkUaOUhxw2AYBi5evIjV1VW4jgNNllHiDnnlYhEZIdrqt7xP5Kq7hNlNy4py+KUhIxGMxTz229S/U0pDx0EhHuxABhRVjWaXsixHLYQZeIthxoBBlOexfWl3/K7rhuF8ESngfSNEL4WFa9fwzDPPoFwq4bHHHou8CsQgJULoqqKssxmOiAzCCESxWAwjCEGARqOBfD6f6KsgdBZi3bquR/4Tnu9DUZTQ3Mr3IzFjIZ9HpVRqKz4lazvSckp4vh6DV49EwsAW/UNUMRLbrsIrKMSetSMLwmUSAA4fPoxnjx3D8eefxwMPPLBGBmMRkUi30IZMtYOiKMhms3AcB47rwmg0YBkGCqUSMrkc8oUClpeXkc1mUSqVUsFiioGQkoMUmw7HcTA/P4+lpSUErgsJQCmTQaVSQaVUiursAW5800fYGODGMl3g8ZkV61K22HU7LSVm4m8A0cPf4S15W6MDEs9fq5wQtJowRTqAmBivb6FljBS1g+v7sEwzqnCQCEGWD8ZiW3Pz83j++eexfft2PHT0aGLgEGFvjx+TqqphdcL6ExQdiyRJKBWLaHINQtMwkGMMOp+1tqZGRItlsd1SsYiJsbGwQ2a9HrldNptNZHM5VEol5HlEad1utO4Tf43xSMlGEBdxxtckOloKxMmC8LyIR49y2SwO3n47Xn/jDZTLZUzPzERNr6JzH48Yxf7vRBQkrhchug5FUWCYJnzfR6NeB4IARrUKLZtFMDYGx3FQKpWiqFyKFL2QkoMUm4oLFy7g/PnzYJ4HQinyuo7JiQmUy+Wwzj1uPMM6OwW25tD7gcGFbxovW+wbsVlxtG0Oz/PgcHvhtcVJQjioKkp74tKiHxhES5BcTfvPMIQGT5bjgACRbbQeIwUMwKuvvoqTJ0/iwP79uOfeexPHF9k5x0LlnTQaBFizJebHUsjnYUpSOLibJmgQJAakBMmKle0FlEJBqAnJZbNwXDfUIlgWXMfBwrVrUFUVY5UKCl0MgFr1JuFBsTV3xi4YJI0lIRZVwBrZAZLXQ7j5kCzouo7VlRWcPn0ak5OTsHnjMFVRoPEume2IoiAm7e4NSZIiQ6pioYCmYUT6j1KhgMBxcOX8eWTzeTi2jQJv7pR6I6TohZQcpNgUuK6LkydPYnV5GcTzkM1kMLNtG8qVSvhgapM6SDTO4SF20hLqHWT7Ip3Qc7bUjnTEthcEAVxu0xzfZ4kryDXe7KmdF0HHgbzPgYgxFkVVusH3fRiGEdX465lMwlcACAe/4ydO4ML587jnnntw4MCBdcfdGjXoWToaC4WL38K9zzRN2Pyc5VtK7MTfsizDE90iY8hoGqanpuB5HmqNBpqGAUopri8tYVmWUSmVUC4Wu5IEkQ6IkxCR2mhtgDSMhTVpIXki1dK6ljhZuO+++/DFv/gLrK6sYHp2Nkw98DJWk5DoemoVgApjpMT55n+L+wlc79FoNkGDIBKI5nM5uI6DS/PzKI+NwfM8TE5OjlyYm+LNhfTqSDFyLC0t4czp03BNEzKAqelpbJ+ZSeTI19necrIQN+0ZdmYNIFTlA4lZs9hON/1AfDmRy23Nt2f4LC9eLiYGl3amQ+1A0V18JtbVixgwhMdqWRYIwsE2l8tBayllo4zh2WPHcHVhAQ8/9BB27tzZdb1+LKXQDfGIRBy6rkMiBIZpRlGWQhvNhyxaZ3cgS6qqYnJ8HGPlMur1Ohpc+Li8uorVahVlThLaDXRtdQecCEbvEQKMoDNjq7ZCbKeVcBQLBezauRPnzp3Dgf37EQBrxJM3D7MdJ2x/zSNeieup5W/xn8TdJoUgVJynpmGgwD0SFEVBo1qF2WzCtizMbt+eihVTdERKDlKMDL7vY35+HlevXgWzbeiqil07dqxVCPAHZ2vEgHLjFyk+sG4gV+zFatMjMRvP7yNeU99GzCZ0BF6LhkBVFGQyGajx0G8MIn/e7+yz29H1m0IJgiDKMxM+6xStqBPHBeDFF1/ElcuX8ehjj2F2ZqbDhtdm1348ctADnUL2GhccNrjrpUHIOt2AJMvhcQqnQrQ/N7IsY4x3KWw0Gmg0m/A8D6v1OlarVRSLRYyVSsn0UUt6qPVYxXYYIQmnxI2W/7VGSFqrHw4dPIgvf+UruHT5Mnbu2oUsT/34vh+mrETJq+/DtKxIm9Duu4jEjAiFoaIqp5DPRyWmhmlGkZtcLgfLtnF5fh5Gs4nb9u5NVKikSCGQkoMUI0G1WsX58+dRW1mBRCkqpRK2z8ysVSAAa7nf+AObP8BHWY9tcVe/jKaFFr1xM6A2y3ueB5eTgjhkWUZG0xJCvm6QRQOfXgShDwLRa2u2bcOwLIh2xrlcLpxlrlsRwck33sC5s2fxwNvehhlODKJWxoip8vkg7/MmTiISIb4z0Q653Wy8ExRVRS6XQ5OnGIQOQsyqRc48iF8DXc6PRAjKpRKKxSJM00StXofreaGZVr2OfD6PMWGvLa61Lvsn9ADr+huMsMI7Uf1ACCqVCrZNT+PUqVNhBIeTYpVHoyilYbdR1wUNgjCC5ThQZDnUJmja+ogS32+JtwhXFAX5fB5Nw4iEuSLdk8tmYVoWVpeWYDab2L1vH7Zt2zbSezDFrY+UHKTYEHzfx5UrV3Dt6lXYjQY0RcHU1BSmJibCgTmGhI88WXPsG+UjyQ8CuNwJMZvNdkxNBJTC5WmDeEhZImG7Zy2uIm85hm4PUUmSQHs0RWolD53Wlhi4Y/ttmOZaJYGihA99slZuF8f58+fxyiuv4I477sCePXui9cZz44kBP1br386VslNuXqyz3bnRNA05SmFaFkzTBCEkmuGLPL3otBjXLkQivxiRERAW2IV8Pqxw4C29LcuCYRjQdR2VSiVyauwERmni/XVRpRGShGj9hODIoUP4m7/9W1y/dg3bpqcT16gkSWGHUV1fE8ByAyafu01qqgotk4kcHQVkXhoKAJqiIJ/LwTAMOK4b6kGyWRAewbEdB5Zp4swbb6BRq2HfgQOpUDFFhJQcpBga9Xodly5dQmN1FZ5to5jPY2piAqVicZ1aP3oIEwLxjihb3Cg5iIvORHtnlXdubF3O5TOy1tLDeOi23QAnBui+IgjcNKjDzoJSuvYQbiNii4fp4wO4wysAxGw4n8t1zRlfu3oVx48fx769e3Hk8OGOy7WmBaKUwgB18W3z+zHouh7m1HnfBTFTjg/CiZQCWzNPaifyi2s2stkssroOx/NQr9Vg2jY838fVa9cgqyoqpVLbUlbRgKnT8YR/xL6HERKFyclJTExM4OSpU5iemVk71hbEowkiuhUEQRRZENEt4VYJnt4ShFeQsKZhwHEcSIREqTY9k4EsSTBME1cuXkSjVsOhO+9Myx1TAEjJQYohQCnF5cuXsbK8DKteBwsCTI2Po1KphDnlNrn8yOgnvp4NEoOE7S3C8jvHdcEYi7rgCdc7m/dWiKOXjiCC0Cv0CYK1FAOLD35szVWw1eGvdXuJ4xTRAj77U1S1p2/D6uoqnnnmGWyfncV9993XXcPRkm4ZRG+QXE33b1PM4kVL7mKpFLVGFucnka8HT39gfZg/viXxnqaqmJycDI2U6nU0uR7j2uIilldWUCmXowqHgDEEXKvR17GFB7hW6dDXp7qsjxAcOnQITz35JJaXlzExMZGIErVeE5IkQc9kktoELpY1LQumbUNTVWQ0DaqiQFAegjC9xkTkhqeiBKlUVTUqgazX63jh2DEcOHQI2zrpUlK8ZZCSgxQDodls4uLFi3BNE65pIqMoqExOolgotG+jjDCX3fowba0NHwSRCIuHnAVs3jdA5bN/0zQjsiAgyg+FO1/b9beGx4eYMRJCIMlyaG3L/xemR8EAx+y5LgzTjGb3WV0Pc/Zd1tFsNvHkE0+gXKng6NGjPc2i4muKz6aHctTrkeMXrYY934fRbKLIB2vRPrn1OxkmzK8qCsbHx1Eul1FrNNBoNKIKh5XVVRSLxTVyFfuuW1NQ7Y5CRI9GQRJmZ2ZQKpdx8uRJPPbYY4ltRmSkjZGTKIvMZrPwYpEwlxMGSZbD5mUx8y1d1xE1wrIsgAtYgfB7LhYKkbj11Ouvw2g0sOu226AM4g+S4k2FlByk6AuUUly9ehWL16+Deh6I50Wtd/O53DpiIGZ7nR6gG1GFt/scDQLYrgufVynU6vXE8iL02m023DV1MGQOWoR4xRr7soXm2zFME67jRKHieFOiTnBsG1/72teQyWTw6KOP9ly+9XsQ6RDRpXBQiJl+JxBCkOe1+AG3ShbntNu5SZQe9nkOZVnGeKUSzoybTdSbTTiOg5XVVdQbDYyPjSGXzUbksTV1EM3kW0pfCWIkYQOpBkIIDh08iGePHUO9XkepVEouwMtuO21D6GMymQx8Llx0uYjRCgJQ00SGRxsk3k+DMRb1zJBEageIumk2mk1QSrFw5Qps08T23btRHhsb+hhT3LpI1ScpesI0TZw+fRqLCwuA4yCnqiiXy8hls+HDJ5sNF2Rrvvbhv51nVv0OkgmRXUukIA7DNGEYBiyuOQDWQqaVchm5PgbWtiRmbUeGiiBIABRey9+v0Y7v+6EKn6cRdF1HqUMtf+JznocnnnwSlFI8/vjjQ9Wwi0jHsAY5/Sj9JUlCoVCIiJPwpOh1fuOD8iCQJQmFYhHbJicxPjYGTVFAKcW1xUVcW1xs2xgLiOk9uA8C5XqRgP9QESURosnYZ/rFzp07kS8U8MbJk+0XiN1T3Y5a4eSxUi4jn8tB5VEDx3FCsabjhOm2bDZMowGRm6K4p4RHAiEkugbPnz2Li3NzbfuFpHhzIyUHKTqCUopr167h9KlTsBsNSEGAyYmJqJZe5bnv6AFG1nwK4rPlVnSqZU8sE69q6EIKfN9HvV7H0vIyXNeNKg3KpRKKhUJvPUHLfrVi0NhGXPkf/6xESO+ZOGOwTBONej0KsRcLhUhh3g2UMTz97LMwDANvf/vbkeujyVS7QTwYQozYin7LPguFQpj/pzRsENWjymPQbQDhd+FTGpYr8m3OzsyE14YkwbFtXFpYwGqtNrARkmhpTWPkAYSAxTUlPSBJEm6//XZcuXQJhmH0XL4XSRB6ghJPnYhSVItXdHieF0ag+H0hIjgCsiyHrdIJgeu6sB0H1ZUVnHrtNTRqtT6PKsWbASk5SNEWlFLMzc1h4fJlMMdBTtOwc/v2aBYljFaiXDr/iZwOu6y724NznZ6gwyAQ+D6azSZqtVporcsYMpkMJicmoofiOsQe2u0Gxg2JI4FIfNhtPVKsyVQcASc5tm1H+eBSqdTToTDcOMOJ48extLiIRx99FOVyua99bufmKCIH7coY+4XIx/eCuIYUPlM1uT9Fv2jtati6D5SLDlsjErKiYGJ8HNPT09AzGSiEoFar4crVq4nI06AQOhpRmUMZA+X70a7MVGDPbbcho+s4ffp039tKRBM6nOuMpoXkkvsbUC5sbTSbYaUC7wxptZx3RVGQ49FA27ZDK3LPw9zp07h84UIaRXiLICUHKdbB932cPXsWzdVVSL6PbRMTmJ2ehs3LqAghKBWL0cNlnT1xr4GhR265H1JQrdXgOE44CFCKfC6HifHx9t4EWD9gjdLwJSI0PUhRJDYjBDJZs0a2bRv1eh0BjxYUCgXk8/m+eioAwCuvvooLFy7gwaNHMTU11d8+txmsIq8BbDByAHSvjohBURTkCwUQIKy7H5QggFfBxLZHuW9CEARrOoU2yGQymJmZwRhPNQSU4ur167i+tNQx1TAwhJ4C4fkNKAVFMsKkyDIOHDiA8+fPR6W4gyDSRKx7g0R6m1KxGAlZha0yYwyUd49MNBJDSCyEYNHgbc8JIVhZXMTZkyfhbIBEpbg1kJKDFAn4vo+5s2dh12qQKMX2mRmUSiWYvDseAVAqldr6AaxzP+yA+CC9Tk/QJykAwhrurK4jo+tQuSkMi83SxA9p+RkV4umDftabODM8R21xUxtwcVipVFrXF6Ebzp45g1OnTuGee+/Frh79EhJoIxwUYX3R72AjGOTTmqaFAxdjsG17nVNlX2AMAaXwBSmIX4c9rslisRhWDuTzUCUJtmXh8sICajy9MwoQhFEjwisQRCpCaBf27tsHIkk4e/bs4CsXKTh0Pu+EV7qUisXI+4BSCo97Jhimue5Yc7kcVFUFYwzN2PuObePsG2+g2WgMvq8pbhmk5CBFBEEMnHodoBSzMzPQdR2B74eNfSQJxWKx7eDVr9hOhFsFuukJgLAKodlsolavR4OGqmkol8soFovRgCZmOa0EY5RkIH4MQ2nU46SIsbDngOdBIgTFQgElXtbXrwL+8uXLePHFF3Hw4EEcOHBgoF1pd16G9TfoiD6Pg0jSWlttXoLqtnhSdN4EJwWURttb54nQjwZCUTAxMYFt27aFZa6EYLVaxcK1a0PN5ruhXbRNkWXs2rkTFy5c6LtjZ8f1i20gJHpxiKoEIXDVVBW+SNHV6+vOXT6Xg8Jbq8fPQxAEmDt1CsuLixva1xRbFyk5SAGApxJOn4bLHxCCGIjaaFH21FUB32MwYIyBiXB6H6TAiKcPGAuFhuVy9GCjlEYNllRODtpa4Y4QLKZMH0asCIQztnqjAc/3QRDOXEX/BkmSQtvpHudncXERx44dw+7bbsPdd9011H60YqOVCuvQZ/RBpE+0eCibNw1qB8YYWDxKQOlaa2/EWhjHd6XPXdZ1HdPbtmGsUglTDb6PhWvXsLi8PHCqgTEG54X/DvPPfgb+1ZfXvd9KEmZnZ6N+ESKyMHSppCBKHb4D4W0gWjozAI1mEyurq8kUAyFr+gPXXac3uHz+PK5cvDjcPqbY0kh9DlLA932cO30afqMBCkTEACInyR8WrR31BIRqu5cIMRKQ9SAFlmWFPQ+4+ltTVWR5eVYcHu+hEK/JFzOmUSNKT2ygrp1RGs3SKGNRNUKrTiJerhfPTQvTqHq9jqeeegpTU1N429ve1vcg3HXfeJ4eGCE5QH9+FlGFC2ORi6LreaGLIte2iGgN5cSgp7ajNQIzgD+CJEkolUrI53JYrVZhmmb0M1apoCS6jHYBc02Yn/8w6NWXAADW2S8j932fgzy+v+3xM8awbWoKqqJgYWEh8jxojch11Bd0OhYkr6FWqKqKsUoFEiFoGEYYISQEqusiq+uR4ZKqqvA8D6Zto1gorLmTEoKl69fh2DZ27927ISFriq2FNHLwFofrujh38iT8RgOMEOyYnY265hFCIgW5lsl0HDS6+RkIQViUPujwgKZcJLVaq8FyHFDGoKoqysViqNpvs23X8wARNRhyNt8LQ6cQ2sBxXTQajbDaQ5JQakMMWkF4pEXiUQXXdfHVr30NxUIBjzz88MCNcjrpQsQsVUQvRoV+Qvqt3RjzvNokoBQ1HmEJgiBsaNWDGETrRPtqjEEgKwomJyexbds26Lx3wXK1iitXr3ZNNQSrczA/870RMeAHB+/lT3feX0IgKwq2bduGhYWFjssJvcI6XUUP9NIjlMvlsLxT0+DxltGNZhOGYSAIgsiOXLSSbrW5btbrOHPy5HB6kRRbEik5eAvDtm2cP3UKvmGAEoLtMzNh21/+UPV8Hz7P/YrQYis6mdeIFELrw5m0EAQaBDA5KYjsj1UV5VIJ5S6lfIwxeK6LgDFkVHVDM/pOiIgNNk46bNuG0WyCgZszFYvrulb2AgHw/PPPgzCGxx5/HIqiJCox+hks4lGJOETIXFSgjAr9lDWKts2UpwooN+shhCDw/b7q/9shXh2ykSPSdR3T09OolEpQZRm+52Hh2jUsLS+HWocYvNNfhPk/vxd0dW79irTeEYcdO3ZgZXW1p84hKhuOiRs7dsuMfw7tr2WRPhC9GUS1iut5obOk60ZaI1Hu2dqwy7FtnOHWyylufaTk4C0K27Zx8dQpuKa5RgwymUTY0jJNAEBG19vPcHnaYd3L6BH+5A82wzSxyrvoiR70pWKxKykINxs2U6KMQZakkYbBxf6zEZEChtC9sWkYYLysTJj/DIozZ85gYWEBDz74YJj2IUkr38T+A4Co3IgJ9TqldIbpxNgPWssaxf7E1fqiRbQoQWQ85ZLnPhoub1s87PY7EaJBIEkSyuUydszMhA6EsgzDsnD58mXUGw2wwIP91X8H+4v/FPDM9uvIjvXczuzsLBRZxtWrVwfex/h5jV8DHUGS9s+apkFV1UjzUioWw4gdC5tlOZ4H1/Pg+T48z0sQfRE9DIIAZ0+dwsrS0sD7n2JrIU0QvQUhiIHDDXdmp6cjQZyA6ziRtWquQ0OleNtcYE1X0I0UCCMWESUA1kxXtH6avPDPCNGUsIIdBeIzoVFEIhjCJkgi/SFaCw+D6uoqXnrlFdx+4EDY4rcNEg2EwhfW7Ix5eoSwFjtqfpzeBs2PxOAgyEf0P5AgJx12fE1jEVtGNBeyLAuGYUCW5aHJi0RIZEi00VTD1NQULNvG6uoqPN/H6sIZ0OO/BHn5te4fpr0dIFVNw+TkJK4sLGDPnj1RhGBQiIoH0USr9YgJEH73hCS2kctmUedpBT8IUCgU4HkeLNuOxJ+GYYBRivGxsbVrjpC1jpKM4dL8PCRJQmV8fOB9T7E1kJKDtxhEKsGzbRBJwvbZ2bUywBhMHjrM6nrb8DdjDIiFVCPBYQcIkZnZbMKNlcz1SwpY7EFGEIY7GRBVKWwU8RTCKEB5qaJIy+S5lfMw8D0Pzz77LCqlEu4csDIBiJGG1kEmNmgLFbosSWulprGBNGETzGemiW1g/Uw17gPRq5dGq+5AIJPJwPM8eJ4HwzRRKhaH/o6EfoMO2Q00jqyuIzM9jcbJr4D+7b+G5NR6foax/uyhZ2dn8fLLLyMIgoSfyFD7HSsdjio5YhAkQfgvSJIEnRMy0zShcjGioihwebTAbTRgmCZkWUa5VEp+dzGid3FuDqqqIt+HgDPF1kOaVngLoZUY7JidbetZQCmNBot2bZiFTaz4O/5AaAfKGJqGEbbO5emDYrGISrnckxi0K00UJWwABjIMart+JI2SRgE/CFCr18PQaxdviH7xwosvwrQsPDSEAFGgW+5fmNsQEvZ/aBuKb9WOtPz0Qs9BrU3kQHwun89DkuWokmVYiH1oV+o4KBijcI9/AvjLn+mLGIQf6p8cUEpx/fr1xOsDi0+RJGUMSDaNSizMInKsqeo6a2XhtFgulVAoFAAAlmWFvRlibcmTq2SYP3s2dVO8RZGSg7cIbNvG3OnT8GwbkiRh5/btkfiwFWK2K8f6wccRKfj7UIM7nodatRrljLPZLMYqlbbRinXbiIf54ykPkVJQlA33QwBGW+Hg+T7qjQaCIIAsy2HeVlWHrni4cP48zp8/jwfuvz9siLMBdPquon4KI6xSaIdu4XHhddDO/kcY9xBCQq//mEHS8rKEf/zPZvG//+wMVle7739CYb+BY2XUh/mFfwznqY8BbADDoj7SCkBYrVEul7Fw5cq696IeJv3sZ5fzLcyjgpiQUZwdSZbDVtYII3Re7HwTQqJW7UIj0uCCxcT6+bKB72P+zJnR2VGnuGFI0wpvAZimifPnziGwLMiyjNnZ2a4hbq+LU55Qla/z/W9RLlPGYBhG9NAQTXZESWLQb5i53f65bqT6HxabQQwc14XRbIIiJC7FQiEchIacpTabTZw4cQK33XYbdu3evbGd67IPUUphE2vUe4kCo3c67KeqqtAzGVi2DdM0IReLMAwF7/y7+9Fshmmvrz6RxzN/09l+eF0qhGsuBv123Fc/C//cVwb8FAYiEtu3b8eZM2ei7pytEOeLofM13K/1M+WaFJF2IIxBVRRkdR22bcO0LJRi6Q1FliHLMrJcqBwEAUzThO/7UQfReKWIbds4f+YM9h48ONIy2RSbi/SbepPDNE3MnT2LwDQhKwp27tjRM8QtyEGrt4BwpouIQavJDIfbJlpQafEqaDdQdDNrEQh4oxhGaX8CxjbbAEabRgDC8q4mJwaapqFYLK7NTocgBzQI8MwzzyCbzeK+e+/d0L71ErQJ0VrPltIbRLfz3U6Q2Ao9m4WqKGCMoVq38CM/vjMiBgBw7bqKq9c6E5yOdf7ddroNmLk84Cc4aP+z5+3bt8PzfSwvt9+WiCBI4T/r9xG9v/d2nxH9KRiALLeRFi2fBYTpGCEEuq6HIlsStniOpxmi5QmBaRi4fP78QPuT4uYiJQdvYvi+j/lz5xDYdkgMtm/vOQDE9QZiMI+aGbU+bFoeSpQxNAwjDKszFgmW8nw2kfgoWlTssdlLN4gQp6KqfXctFBi9EwKvSDAMmLzsM6vrYcQgXr43hPjtlVdeQb1ex9GHHtp017mo4dImk4PW0rnW9wB0JVJCfwAQ/F///5147vn1jp0vvDhgNQghfaXH4tCOfBtIcXaw7QBwnf5z75VKBTld72qIBCAhoo1fZxvpz0C4aJMyFmmOHNdNRCJE1Yjv+9B1HcV8HpIkdU4zMIbV5WVca5MqSbE1kZKDNzEuXbgAattQCOmLGABr9e6Ee/zHbVK7IYoWcIe0rK6vixbEkcidDvCAdnlKYVCBn3hwjjJaICoSxIMwl8sh18FiehBcvXoVZ86cwd13341KpbLh9XWDqD4ANl9zQICOhC5uodwNkizjU3+wG5/94+m27594sb1ZV1/712fZoFTajuL3fRaZR/8hiF7pe/2WaWBpebltuL+dceXs9u0hOejH3IpHEeKVDaOAqqpRMzDbcUKCh7WUY9xyu1goRJEd0zRhmOaanoHf39cXFrCaeiDcEkjJwZsUS4uLMKpVMEoxPT3d96zQb4kaSD0EUB2jBVxA1gmRJ0If0YJoW/FGS32Sg6gaYYDt9INANE9yXYAxFAuFtpUdg8KyLDz37LOYmZ3F/n37RrCn3SFSCpIk3Zh8cA9y0Atf+LMCfvk/dZ61b4QcAOH13k+EiWRK0I9+BMUf/gtod31Xf+sGRdMwcPX69aicNwiAf/N/zeLOB+7CnfffhX//H9dIj2jEVB/GcXCDpZpxZDIZgBA4joOAp/Rk7s7px2ycJUlCIXYfdEozXL5wAfVanxUeKW4aUnLwJoRpmli6fBnU91GpVAYy3hFhe1VVEW+n3G5GNWi0QECsSSJkINW4aLQkS1JfZjibIToEQgJVr9fhBwEIb9IzCr8FRimOHTsGIssjbajUDfQGVSr0gjjSbpGD4yd0/JN/1t4ASuClV3V06vYcGf903RGex+8zX0+0HILqfF/LZjMaNEWB7/tYWFjAq69TfNf378fvf3oSQUAQUILf/OQULCs8G1OTk1BVFVcGCMWLBlqjcIUUUBUlIk3i+RBFgRhbN/hndT1yAW2XZmCM4fy5c6hVqyPZvxSbg5QcvMng+z6uzs8j8H3omQwmxsb6+pyoiRaEIB7+bW3W0zZaUCz2jhYIlz4goWbuF6KEbRAh4qYQg0YDAaVQJAnlUqm3fXOfA83JU6eweP06Hjp6dCix5frN9lbi+zdKb8BBgLakp5MJksD5Cyp+7B9sh+N2f2TZtoSTp7q0Fe/nehtAg+AvnEBw6dnEa8rhb4VUXl9doo3vxvT0NBRJw1e+PI5/8k/Hcf5igKQahqDeCI9RkmVMT0/31h3EEE8nRARhgyRBeBwQYN0gT4UWqeV7E9U6SizNYMbSDCwIMH/6NGqrqxvatxSbh7SU8U0ESikWL16Ex01Htk1N9fxMdEszlggt03bLIBygjWYzKkXM6npUvtRzO20cCEX5FA2Cng+xgKuolR59F8R2Rk4M+CyI8lKvqFSxB/qhBsvLy3jttddw+MgRTPbxvfWLXucgEiPewFa7kZti4sXOEapqVcIHP7wDK6v97eOJl7K468723QHbbrvtgiQhmu0E59jHkx/Lb0Pu3T8PSDK801+Ec/y3QZdOQt75ELS7vhNn5rP4D//pCBaXXEyNmwAYNM3F6uoYKA2vpbGxtbtvanISly9f7ljSGEc0ULccrzieYWyYBTRNg83TCr7vR4RYrD/gBEGK9VSRJAmFfB6248C2bTiuCz8IkM/lQjJKCM6dOoW9Bw+i0uckJsWNQ0oO3iSglKJx/TqatRoc38f01FT35kWIzd7jA6p4SMccEBlXLhumGaUQZH7j95P77xXeJwgFkL1MW3yR7+zwkBy1BXIcPqWhwyOlAxEDoPeA5Lounn32WUyMj+PI4cMj2d9+EQnKblDkAIhVqsRNiTqQA8cl+PBPbcfZuf4jKSdezOIHvrfaftsDDpIE63uICATXX4M//9XEa5kHPgiihPuqHfp70A79PTDfhRto+OSnCvjs53IIKAGgQc+omJ5oIKMFUBQfq6tjkCUFmrq2f+VKBQxAo9FAuVzuuJ+MtW+CJo4h/GN4giBJElRVjZpgiYhAuFoSXeNBEETtxcV7WV2HoigwTDNKMwjbdCJJIUG4/XaMpX0YthRScvAmAKUUbq2GlaUlOL6PYqGAIrc4bUWcFESVCPFBruUhLXoiGIYRidf6jhbESEcv9Hpoi/C3JEltyQHj+c/NIAZBjBgoAxIDoMfskzE8//zz8HwfDx49uiHnvtZtiu+3E+LueDfanKaVDEbkoGW5n/uFbXjm2GAVIAOXM3YD1yAwStdFtuzWqEF2HNpd37FuFa+8kcd/+lgJl68kH7e2k4HvKygVa8hoDchyAE1NCirL5TIIgFqt1pUc9KryANbSDMN4IABARtNCx0TXRZBZn7qJ1i90CDw9SQiBqigoFQowuFmS+J3RdTDGMHf6NNiBAxifmBh4v1JsDlLNwS0OSin8ZhNL16/DtW3IkoSpNjdYPH0gfrcrUYzP4CgfFEWOXZakvrQF0fYGmMWL9EKnnHM3F7/NqEYQEOWKwg55UGLQy4Hv3NwcLl+6hLc98MBIyiAj9JE3j84pN7S5mYgTVoErCwr+4A87D4idcG4+09FKedjjbP3Og+Uz8M/+ZeI17f4fBFHXvkPDAP7rfyvin/7z8XXEQMAPZFSrY5CJhNmpBrbPLuLq9evwORFXFAWFfB7VLuI9ys3JBjqeIc6DoihhhEmSEtqDdesS1x5jiVJZkWaIeycYhhHVcc6fOYPlxcWB9yvF5iAlB7cwKKXwGw3UV1dhWRY8xjC9bdu6WaAYPIG1mUMn7wIhRHQ9D9VaLaxtRtiAqVIujySN0AkEoQirHUFoF/6OyhQH3E6/oIyh0WjA931IvIHSKGfYtVoNL734Ivbt34/t27ePbL1AfzNDEQm6kSkFgVZNSFyQuNbKm0GShguDP//SCKMHHPH0kPPcbybfzJSQuft7on8bDeBnPjqBP/1fvQkfA0GjWYJt57BrhwHHcbCwsACba4cqY2MdyQHtkk7odhxRCnHACIIQyjqOk0grtK5fvC6iFEGs5DGr6yjk8yC8msEwzbC0k1cxLLc0nEpxc5CSg1sUghi4loXq6ipc38dYpQK9Q7gv7kDXq8wp3m1NRAsK/UQL2lQjDIqIILTA9/2wjJG/t1lligIMCFsuc2JQKhZHWu4XBAGefeYZFIpF3HPPPSNbL4B1rZM7QQwq7c53tC4x++Pf7UZEbV0Rv7b4NrZNBfg/f3YR2ezghj7PPqeM3hGTh8mD1fPwTv1Z4q3Mvd8HkllL5T35lI7zFwfL2tp2Fhm1Ao3n8xeuX0edaw1qtdq675RSOjAxSBwOeLRuEHdI7kxKuc1yr2dC3CMlavfNfUpKvJoBABzbDskQYzg/N4fFa9eGPKoUo0KqObgFIYgB830sLS/DDwJkMhmMtbjp9dQXtCAIAjR5syRZlqFqWl+kQGxrVGLAqIJBiCIZC81WKIUsyzeEGDSbzag7ZbFQGHmp38mTJ9E0DHzDu989VDRCPGTFb0EIxADOKE28hpb3EUuXMEpD58mYziT+G4yhUa8DCAkTgGhASUSgYt9/vIwuIqct74MPMuL4fT579DwPiqKASBI++ANVfM/7azh+Iosnn8niK3+Vx+sne0cF5uc1OI7TlixvFO7zv41EEyU1B+3eDySWiVccDIJCQcbM9DSWVldhWxaWV1dBAbi+D9OyotRTPFy/UYjvoh/iRwiBFtMe9OquGtchCFBKQSQJosOjbduwHQeW44Ayhlw2i4tzcwBjmJrp7muRYvOQkoNbDIIYIAiwsroa5v4IwTQvf4sPnOuIQTdxmu+jxp3YCCHIZDLI6nr/xACjHazjBEEMgIQQyLFSqc0AA2A0m5GnQrFY7O1j0GN9rWg2mzh18iQO3n47iqVS9HrrgB8/9ug3/3ttA3wLMcV4/EEszptILYmUkhCain0MeGQmufNrFQVivZTSsMw1RhwE4mH36NrD+usi/h6NaUUsywqX5419wP8mAO69u47775WQ1bfh9ZM7onVlMhSeR0Bpciu3H7Bg2zZUTYM8Qj0FrV+B+/ofJ17T7v5uSNlK4rWjD7r4rvcb+Mwf5jCIGqZQYJAVBdNTU6hVq6jV6/D59be0tITdu3ePlBgAse9HkvrSLmQ0DavVami21O+5bSkNFeSVSBJ03t2xYRhRO/ZcNouL8/OgjGF6dvA+Fik2jpQc3EKgQQC/2QR4i9RmswkvCDAzNZXI2Saa/qCzvkDA9Tw0Gg0wxqAoCsYqFXi+D891oWQ729EOUo0wDAhCDYQTEyNutnDOMAw4ngcwhmKxuKG20ED4nQX8YU4pBaMUx48fh5LJYPvOnajX68kBv6XET7wmqjHiIIRAkuVQJyIevvHZuZjdx//n7weUwvN9SABKxWL0fvSZlmiAeKgXi0VUSqVEdEHsVTzSEEUtxHKIpTti78dr82VZDlX3nLyICAcBIvX7U8/kE+fgW//eIn76py7i+ReKeO54CfMXsrjziInvfv95mJYPPwhQ4E2BIkdOSoEhU0T2859MdleUM8jc/0PrliME+JEPNvHOd9j41V8v4tXX+yvFLBTWBudypQJN17G8tISMpuHSlSsYm5hAdhOiIcBaSXMvEW3UkrlH+XHiM7HPxgmhIAmapiHPWPhME1GSbDbs5MgYpkesyUnRGyk5uEUQJwa+72N5ZQWe74fVA/l8V3FQtwHVsW00DANAqEYuFYtwXBdeowHbdZHtQA4201MgDkJIKJxjbNNd/AzLinwcCoVC//0buOCKUopAkIEgiFIh8TKz69eu4fr167jn3nvDZddWEua0ebhV1IqL8KvMf5PYMm3bXvf5sHZdF6qiQFGUvo4zThrIKKM3nCAIAkApjZz1ItLEl3EcihMvFhMff/BtDRRyPt7+6Are8diq2FkEgYSmGRJcyr0p4rlvYfgl8wZj4ne3FA81FuG+8tnEa9pd3wEpP9nxM/sP+Pj3v7yKX/g3ZTz9bO90SLGYnLlndR2zMzMoFgowm01cv34d42NjHUuVNwqRYhAEst015vk+FFWFz6/zXiWzrZBaCAIQliprqoqsrsOy7UQE4fKFC6CMYXbHjvYrTLEpSMnBLYA4MWCMYXl5OcrLjo+PdxwQet2whmlGfdozmUyoIOY1yYQQBHyAa1Wzb3bOv3VbLAhCE5ZNdPGzbBs2Pxf5fL6tfXHr4B/wn9YQb1wQKB6cEiHwgwCnT5/G9MwMdu7c2feAvxkQvhE3o1IhAUEw4ykMfu4kHhkReOVVHaaZ3N93v5OhUqlEEQhBxiilkAiBbdvwfR+aqoJwkgERySEEfjwiwyMrCcLAUxyyJME58btAEHNelBTob/uRnod4ZUHG8ef7m+0XCuvvZUmSMD42hvkLFyBLElaqVTDGoojPZkGWpLb+CeLZk2EMkCS4rhs2ZxoArXbZBGGKSZFlZHUdpmUlCMLCxYsAY5jduXNDx5Sif6TkYIsjTgwAoN5ohDamjGF227bwBo4NTv3oCxhjofAw1jApn88nPq8qClzPgxtLLWx2GmHdfvLfPrdNFs2gRq2Yt20bpmkCALLZLGRZhuu666IA7SoABBEghEDhM09ZliGLWWjse3jppZfg+z4euP/+gZphbQb6qVS40eh1XT31bLIs8Pb9DqYm+XHwgT2eLtA0DfV6HQGl0DQtqq/3gwCB76+le2KpH1CKgFIEvg8vThzsGvDipxPbVw69F8hPJ7xB2uHjHy/C89eOTpYY7rjDxcuvrB9QK+UWosn3Z2x8HKdOn0Ymk4Hjulit1UApRaWLMdIo0HpsjAtGASCfy0WOiQOTA6xFH+MEAZyIZRmD3RJBWLh0CZQx7Ni1awRHlqIXUnKwhUF9PyQGfPD3fT/sguj7mJqYQCaTSTjh9aMvoLzVsGjNHDclAdYGZC2TiW78XDZ7w9IIrfsRldHxtIKozW7X7GXQ9fs8t9lsNBAEQdRZUURTov2IpWxaQ9GCCHQ652Lfa9Uqzpw5gzvvvHO0ZkdDQngc3OxujEBSyIiWv+N4uoUcPPqw2XW9EiHIZrNRhExT1UijQRRl3cOPIaYRadWKvPEZEH/tugCR4B/+HtTr9SjaQMS1Ebsunj2m4ZljyYHzfd9q4sMfauKZZzX8xseLuLIQ7sm2qQB33MFFokKPwb+ncqUSlVKWi0XUuDkZoxRjm9iXILqqeWWJJ0qKJQm5bBae50Wt1AfV5yTWzdMMEiEIGIOiadAYg+04cF0XBCFxv3b5Mhhj2Ll7fWOrFKNFSg62KFqJAYBQuRwE0DMZlGMq97jwrFdFQp2XrxFCUCwUEuFzEcIHIWEYVqQWfD8UA478KNsjPjgIFz8lNgALAsRi9r+94PPZoM9/giCA67phpzgAeiYDVVUjotUuCjCM5kGQtxMvvIBCPo8DBw4MvI5BttXvclGr5q0QOWgRTraD6wLPPT8YOQC45a/rwvU8mLaNQj7fcVkCRN83YgMdcxqon0xqDci+bwTKuxLRBgCIfAMZQxBI+LVf35P43FglwPd/X1gO+vBDLu6/bxlfe0LHyoqEr3+nDU1DQmshUMjnocoyqtUqbr/9doAQ1Op1NAwDFOi7++qwIAgJgcFn8iKKp2kaHH5+NyLejXQIseeXxqMRtuPA5tvNZrO4fuUKQCl27tkz9PZS9EZKDrYghCVynBj4vg+j2YTPGLbF/Aw6CRFb4Xke6s0mGBdjldqU6MWb4UiEQFMUOPyhWtokAVQrWoe3qKVwG70B4XbLrVEEERWI/1Dhjc+V2L7vw7IsyIqCrK5HXgabYSV84fx5LC0v4+ve8Y5N62HQTy+FxLKImeBsFcTKJlvx0itZWFZyXx8+2pscAOGA4vk+PJEmU9WBok7Oy38AOI3Ea/lH/gHkYnF9tIGxiHx+4c8qWLia1K587/csgRATjhtaEWuajHe/K3RCDEtF2ToNCxDe36VyGfVaDQBQLpVACEG1VoNhmqCUYmJsbFO/T9/3Efg+CEIzJCAkCY7rRpHIjSAyTIo9h7RMBuDakQRBuHoVsqqmIsVNREoOtiACw0gQAwagXqshoBR6JrMWlu6TGDiOE5nXKLKMYrHYc8bIGEM2l4Nbr8NzXTiOM3BecRC0dukT8LkIs1NLYUIIaBBED3/xYI7WJ4gDD/0KAZ4VBCgWi9BUFYVNJD6u4+Cll1/Gbbt3Y2qErZjXYYCUz81o09wPov1vM3A/9UwyanD4kI3xsf7cARVZRjaTgeU4sCwLxQGOm3km3BO/l1zf/m+EPL4/2ufWaAMDsLhE8Ed/lKxiOLDfxOOPrcJxCeA4UZpAkWWQWHSq0/dYrlSwuLQU/V8qFiERgpVqFZZtY2llBZPj45tCEBhjMHm6TdO0qCujwvdXVOxsJBIljltqEUJqmgZQCtt1o54OWa5BKBaLKMSiqClGh631dEiBwLLAYuY0AHcuNE14lGJSRA36FAealhWJ7TRNCxsHdSATUZtmvm5FlpHLZmGaJgzLgqqqm/bgaUcMAG6bHCtjFK2bfZ7u8H0/SoWAUgT8OCRJChvFiB8eEfB9H41GI0qdbCYxAIBXXnkFlDHcddddm7qdQWbCIgQujThCshEQQkIvB7SPHLSKER99qL+ogYCu63A8D0EQwLbtvomu++pnwezV5LqOfqjrZwiA3/3dEkxTAondLj/xD5oo5LPRtRtQCo/SyIxKfFbm16v4Le65SrmMubNnoyZoQFhySyQJyysrsG0bi8vLmJqYGPl9ajtOmI6UJOS4Rkk8R2RZju7Fjaap4n4I8TSZpusAIbAsKzJ+y+o65s6cwZF77tmQUVmK9kjP6BYC9TwEnJ1HznKEhIrrIICuacjncgli0GlIYIzBMIxE46Rhuinqug6Xhw0N0xx5fXWkWG73HqXwPS+smnAc2JYVWexGKQK25pyo8BmNzEVnraRD9JIPKL0hxGBlZQXn5udx/333JUSfNxtbsVIBiDV6aSE6jktw/ETSb6MfvUEchBDkslk0m03Yth1dJ93AAhfO87+TeE257R2Qp450/dyrr2v4q7/OQZIAygBCGN7zd0wcPhQA0KBiTfwYJ7oBJ8JioAW/dyUe8cpms2CEoF6tYmx8PNqeuK9XlpfhuC6uLy1h2+TkyAhCEATRcySn68n18somcQyjiC7GS6WjK4GxKJVhxfxIAGD+zBkcOHx4w9tNkURKDrYIKKXw+Qw/uiH4TLfZbIZRAyE66hExoJSi0WyulRzl8z1L5+JOd/F1E4QPn1qjAdd14XgeMht0DYy22X5H4AuxoGUlZvnR/hGSiAqostyWYIhwpygHE62nVUXZdGIAACdOnMBYpYK9e/du+rYGwc3sxtgVHQazEy/ocJy19whhePjBwcgBEObJNU0Lffwtq+c14L7+R2BGskNg5uiHu34moMCv/3qJ72dIeLJZih/+oVCzwICEkFZcw+CDqvDOaC23dCmFqmkgABauXYOWyUBRVaiKAolXDkiTk1jiHijXFhcxNTGx4Rk1YwyGaQIsbJbU6v9BEOoOLMeBN4QhUju0nfRwEbKmaWAIy48jglCt4tqVK6mL4oiRkoMtgsA0Iy8DYC1kty5qgO6q7iAIwjbDPNReLBR6NkcBgCBea9wCRVGg6zpsy4JpGFDL5Q2HpBOla7xESjRzEflGQW4URUEmk4kepIPMiES4WkQMhOZis82Gzp49i9VqFV/3zndu+rYG9X0QkYNuTbhuBkiHEtWnnk1WGNxx2EG5PFxvgWw2GzqABgFcz4tmo61ggQfn+G8nXpN3PgRl9r6u6//iF3M4e25tnYQAP/D9BirlAJSF577b9SD0C+KOFbl8MTNXM5mwPTuPLpiMRS6XqqpiamoKS0tL8D0viiBshCA4Ip3AIy/toPBInTAG2zAhEX/EDLIY1q5z8TwTDZsYgMsXLyJfLKKwycZQbyWk5GALILAsMNdNzIwBJKIGE1xr0PpYibNs3/dRbzQie9h2FQntwMB91bsgl83C48ZApml2LQnrZ3uU0lDl7LpR7bSAmI3IsgyFd4fciDeAYZpgjK1FDDZ5sLZtG6+++ir27duH8U0uMRsUjLE1j4MtFjkQVtGtV2KrGHHQlEIcsiQhm83CNAxYlhWSzTbXg3fqf4HVLyde0x/sHjWoNyX83v9IDk67dnr45m9uRuWJgxLFeJQMmQzyug7KrYY93w+jYkEAGgRwwg+gUCigVqsh8H1cW1zE9NTUUAN2PJ2QzWY7knJhmubxqN9GyUHHdClZ6/MRJwiOHVZ7zJ85g8N3353qD0aE9CzeZFDPg29ZbVMFwt1NV9WwdXKX9TiuG1YkcAVxPxUJAPo2EyII0xP1eh2O40BV1b4iEtF2EJIX13VD98GWci1JksKwr6qG7XoJgcE1BhuJUgifdoKwVlyJCRvjBkejxMsvvwwiSbjzzjtHvu6NQpTJCUvnrQShsYl/J7ZN8MKLyZTYow8ZG9qOnsnAtu1o8Mu1pNwYDeA891uJ1+SZeyDvfKjrev/H/yigXpcABviUAWD48IerkOVQQSTJcl9dD7sho+twXBe6rkPHmmOh53lrlT18lr9aq4G5Li5duYKZ6emB2lczxmBYFkQztl73uqIo8Ljgc6OphXUCZfFsFG3IORIRBNtGFcD5s2ex/9ChobedYg0pObiJoJTC402PWm+lKGoQBJicnOx6s1m2DYOvR1VVFAuFvkLvUTi65YHcCapIL9g2moYBENJVf0BjDy7X86JwttiewsmAqqpt89801tZ1GHieB8swwBASm/iMIuosx81X2BCzunZYXFzEhYsXcfTBB6FpWlQ2uFWwVaMGANqKbI+fyML11r5/SWI4+qC17qMDbQZhJKxpGHBsGxkepRLwzn4JtDqf+EzmwY90vT7m5hX86Rdy8AOAIAzDP/6YhfvujWyRoq6ZGyGkuq5jZXWtekLk4UUu3vd9+J4HhrC6oVarwXFdzF+4gKmJCeRyOWgtx9sKYa8e+D4IIVE6sxtURYHFt094t8ah76YO5zlygUWHFINtY+HKFRRKpbTN8wiQkoObiMA0gQ6DkogaZHjUoB0YgGaseZKeySDPmyf1QjyFMchsJpfLhQIp10Wz2QQpFBJ524DncgUpiLYnejaoKlRNC61se1VOcJe4YVTXlFI0OTHQdb2riloiBJDlSCw2LCileOGFFzAxOYldN8jedVC9QeRxsBXJAbCOqLZaJt99p41ScWOzbxASivlUNRK+iiocxhicY7+ZWFyaPAxlzzvaroohJMH/5b8VEVAGQsLhS1MpfuxH6us3jY0RhEwmE4XR261bVRSoioIswu9az2RwfXERjudhcWkJ45UKNE0DkaTwXuQpi3gPhaZhhIM8IVG7614QLqIBpaE2QlXDNMqAx9ftrDBCIHFb6ThaNQhnT58O9Qc3yLjtzYqUHNwkBLYN5rptB3IaBFFf89np6Y7rMAwDNn9Q5HK5joKhVrS6KrbrvNYJBGFtdbPZhMtTGblsFoyxqFlRHBJ/CMXTBf1CWMgOHP5mYV94SikURUG+z/NCsOa6SIGBZz+nT59Go9HA33n44cH2d0jEnQ77hUgrbLWUAoA1h8TYvrX6GzwyoL9BO4jrX/QG8H0/bB6kafDn/wZ0+VRief3oh9Zdt0IgxxjD3/ytjldfS4bdv/P9Bqan2zsdApyEDvEd6LoOh4vwen1almXk83ns1nVcX1qCZVlYqddRKpWQ0TQwx4HLzZiEqDEuQCy0RNt6QVEUUF72rHItx6ibpDFetRA5o3LECYJpWTj1+uu45/77U/3BBrC15MpvEVDfD8sWOzwcarxCIaNpHYV/Jq/1JQCK+fxAxCDenGmYm1foD0AIms0mriwshGWCvHOhoijI5nIol0ool8vI5XKRF/sgEGmFQSMHBldzEy7OGvghzPPxMv/dz36bponX33gDt99+O4o3yrFtAFdEga3qjgjEDHD4b9MkePHljfkbdN0OFydKhMC2LASUwjn28cSy0tg+KPv/TkgGEBJpUV7IGINtE3zik8nve3oqwPvf31kXQQAQWR7q3svoelj2HIvK9YIsy9g2OYlCoYCcrsOxbcg8esJI2OjI9TwsLS+jytMQWV0feGBVeP+VuJVyO4HpKNBuvRkekQRjqK6s4Nzp05uw5bcOUnJwgxH1Tej0Pi9FDCjtqHQXddpAKLLLDGCws26gG/AB5QcBDNNEtVYL8/T8dcdxoGkaxsbGUCqVkNX10GRnyNxjXDA4CKlwXBe2ZQGM9R0S7QhCovpqiXfbI/y1Vrzw4ovIaBoOH1kzyBn1rGkdhli/iBxshW6M3cAAPHciC89bO9eKwnD0gY2TgzgymgZZUcAAmGf/FsG1lxPvaw/+GBjIWnfGlnP+B58pYGkpmaL5sR+rIaN1/24IhutroXOnQLtDaqETZFnG1MREOOjLMqr1OhjCHg2FfD4sleRkXJbl0GOk2YTjun1fx6qigAJr9uUc0gAEoV1fiXZgABQe5YtD5yZNlDEsXL6MxatX+9xyilZsvenDmxyBYXQVv9XqdVBuONIuauC4biQ+1LNZ6LqeMDDqiA4Wxf3ctJSnDBzHScwKJFnGxMREpFJ2eV93VZKGGthbtylu/H5D4L7vw2w2wRCGjDfSJa4TSGy2LkLLCwsLWFhYwCOPPLKlw5hRtz9ssYZLHNG3zK+bp55JXv/33GUhn9844RJhaf4Pstls2Lb7xCeSBmClnZAPfFPHwfHKgozPfS65j/fd6+CxR522y3faj0GOSM9kABa2Mi4OWNNPCMHkxASWV1Zg2TaWV1YQBEHU06GQyyGTyYQTGNG91Pdhca1QhjuQdoJoZx7XHUTv9ZFiECXO/Ub6KGI2y/wzkROmYcDzfZw5dQr5QgG5VH8wMLbeE+JNDN+2QT2v44AptAa+72Ms1nlRwPP9sEoAoTCp31w6gPbEoCVv12l7q6urMLhICYxB1TQUCgVUeMqgVCqFne4ANLiTItloOROlYX5Rkvp6WDAuQAwYg6ZpyA5yboaBiCgQgldfeQXT09PYvn37ulzoVkLUpllEQLYoRD59lP4G3SDLMuSVV0GuvZB4XXvgR0CkzoPhb/5WCZ6/dh5lieHHP1wfKIs1aCWOrusgschBwAL8+ZW/wN/9yrfi6P96O37q2X/S9fojhGBifBz5XA4yIVi4ehW1Wi0q9c1lsyjk8ygVi6GIV5KitEOz2US90YDtOB1n+KqqQkL47Gi37W4np1uPlS4HtO4cyrIcOcIapolTr78+kq6RbzVs3WnOmwyB54GaZteHskgniHLExOeDAPVGI7IxzceiCq1NSgQiQd0gIkDG4DhOJEwSkCQJGV2HzpXOcRASOjEKy+ZGswld15HjD7JhQPm+9zvDbZpm1BVuIwZNg+LCxYuoN5t48KGHwghH7LsQj89BRYP9YBgCspWjBgAS12mjSfDyq63+BiMQI/Kf1pp5vPS7yV0pTEM5/N6O63nuuIZnnk3u37d8i4nduwcfhIgk9a3sF4ZIC82r+LPTX8Rnzn8OV+1r0ft/c/2r+O9zn8IP7vv+ztsjBOVSCRZ/HtWbTeQLheRMX5JCLwVdD91LuT8JDQIElgXLsqISSjUWTVBkGS7QcTDuWq0xLKnmE5FEoyZNg+/78HwfyysrmDt9Grcf6d4TI0USKTm4AaCUhm2YuwyUlDcF8n0f21pa+waUosaJgaIoof1vy+db68MHJQau58FxHLium3hd07QwVdAjRC/UzaZhwPE82LYNz/NQLBSGym+L/G4/A5llWQmjoxs1K2aM4bXXXsOOHTsSkR6xfQkAbUlDbIbpUr/wt3oZYwzHns8jCNa+R1VleNv9g/kbxJv2tJ71+P/+tVcRXHgy8b563w+ByO2NfzwP+I3fLCdeq1QCfOD7GgPtn4Agwb3KaBljeGbpGD4tfRavnHkNAdp7aMw15ruux3VdWJaFfKEAivC6qNfr0DWtbYOwqDxS1+F5HhxuYiYIgyRJoRhQtHIGIo1Gu/u3nQOiEHsODB7BY20IQjabRWAYoJTiyuXLKI+NYdvMzODbeIsiJQc3AAFvXNIJhJCwtjgI1kUNKGNoNBpRG+J2xKAV/TqU+dwhzrHttTAhY5B5L4NMmyhBr20WCgWoXBcRBAFqtRry+fxAborAmt9AL3LgeR4s0wyNjgqFG5rznz9/Hk3DwKOPPtr2/dZvvJWstRq69BthGJZeRJGDW4AcPPV0Mi103z0WstnOR06RtAAXepCO90Fs9uo8l6xQYPoYcPBbO27r85/P4/Ll5HX2Qz/Y2JAeotuMuupW8UcX/gT/c/6zmDfO91zX+3a1j3gwxmBaVuQ/oioKts/MYGV1FbZtY3l1tavVsiRJ4XMhk4maowm3U9txYNo2NFWNon6+769r1BQdb5tqqWHPXsJ6PUYQCNeTGDH9QS6fT/sv9ImUHGwyfNsG61J2JG4Sy7JAKU3MQBl4qoH3US+VSh3FeeKm6Kc23/M8WJYV+abzFSDDowSDDrDRzcj/z2gaZFkONQBBEImD8tls37P6gB9LNzHiOqOjAQnIRkApxRtvvIFdu3ah1Kl0scdMKCqpE2Kq2OcYIQni0Pq5YR6kWz6tEMM6vcFDZiLy0hoVaFfa1s+1Fiydgn/uK4nX2B3fDccH2l1NKysSPvXpZMrv4O0uvvEbNubaCKwnCCdWXsAfzP0h/vzKl+BSt/uHOUpqEfeM3bXudd/3YfFyTYKkMdj42BgWl5bg8mZNM9u29bxGFFmGks0iq+thS3XXBQuCqIGaz9tP9yxh5sc7VNQgvhq0GLvx9SmyHNplOw5M08SZN97AXan/QV9Iz9AmIggCUKvDQyM2q/F9Hy4X+QgtAQOiNAMIQamf8HyPVILn+7BMM6wuEDcPjxJomjZUOL6VGAgosoxysQiT25o6jgPf81AoFPpqFSwiBx0jF0MaHY0K8/PzMA0Djz/2WMdlhh3E4/4F7cx3xMwsijwAfVWGCA3JlmvVzCHOVb0h49XXk46WDx9tttdZDOH1EIdzPNlDAZkSyKG/H1XftM58P/k7RVh28pr8Bx+pd+o2PRDiBkn/9uVfwqfm/mDgdTw6+QgksrYzDIDDnQOBUIyay+USqSWZVx0tLi3B830sLi9jamKiLxJJxKSCW4W73ATJsW0YlgUiSdB5tKHd9SkIEePPuaHREnWJEwQR6fB9Hyurq7h8/jxu279/+G29RbD1pxC3MFgvYiCiBqYJysJOY0LcYxgGPJ7/L/bZXbHT4OD5Pur1Ouq1WtjjAGFJVLlUCt3SOty4/aLTJwkhyGezKBYKIODaiXodltO71EvMJDo9oDZsdLQBBEGA1994A7t37x64nGzDYCwKn8dNg+LfXztCQkVDHKzNskXofbS7F2u7HPthbX4nfoQgjzEcP1EApWvHo2kUD9w/WF1/PwhW5+Gd/mLitcy9H0CmMBZWBLRcp6+9ruHLf5WMaHzj3zFx6FD/hkS9QAAsONeHIgYA8PDk0ehvxljoosqPQ1NVFAqFtpoTVVEwOT4OmRC4rovVWm3gbcuyjGw2i3KpBD2bjb5ny3HCKgfb7ny9bZBdtVtr/J7IcnE0pRTnz5+PfGJSdEZKDjYJge8jcNuHAltLekS4T0QNhPshEFoVa32GwIgkJWba7UhBJpPBWLmMYj6/YZe8fu2FNVVFuVyOiI9pmlFlRicI6+R2pGWkRkdDYG5uDrZl4fDhw90X3ATC0g+Ja7dEwM+lJMuRV0OcVHSjCAy8tJSLRFsH9fjfic/EftDmd8uBRX8+eywZtn/gPguZzOiFnM7xTwAsdg2qeWj3fh8ymUxopMNnwgBAKfDrv5EkgvkcxQ//4HAixG7IyTpUaTiPjkcmw86Rrueh0WhEPRJyuRxyuVzX60fTNIyPj0MGYDSbqNXX94boB7IsQ1VV5LJZ6JoWCnMp7UgSgiCIrscNoQvRlSQpcpF1XRfnTp3quGyKECk52CRQ2+4YRos/CGkQwOEphVwul3A/zOVy/efRY+vsRgoK+TxkWd5wjm/QvgOyJKFULEbtcV3fR7VWg8GjJuvW36HpUtzoKLtJRkfd4AcB3jh5Env27LkpjV2GFm310Bt0+y4JOPFsN7DEXxsRGXr2ueQg/MjRjbVobgdavwLv5J8mXsvc/d2Q9DIkQqDzaJoYyP7iSzmcOZu8F7/vexsYG9tgE6g2GMuM4V/d888G/tyO7HbMZGbQaDZh8vtKluVwgtHnfZLLZlEul6HIMmr1Ogxz8PJR4f9BJCmsruK2ze1IQnyCQAhJiEoHRrvKiFi6QaRQAWDhyhWsxrpbpliPlBxsAgLPA+0QNWiFECIqigIQsuZ+qOuRkUdP8Iey5/toNBpoxEmBpiVIwSgQhY2HQDabRTmWJrEdB9VqFVZsNiEcHxmS7og33OioDc6ePQvXdXtHDTD6kD2AobtGBreIGLFWk3HydPJ7fWQTzI+c478N0FgtvqJDu/8Ho3+1TAaSLINSitVVH7/7e0kiuHunh/d+y+aYMgHA9+z9LvzHo/9uoAjCA5X7oyohQgh0XQ/TCAN+58ViEfl8HrIkYXllZWCrZoBfZzyML9pKtyMJ1VoNtuOsaZfaWCJvFPFrXoilQQhOv/76ljUs2wrY2k+KWxRBB7Ojdg5hpmUhYAy6rqPJey5omtZXD3UBX0QKqtVQNUzIWqSgQ45x6BlorExoWCiKgnKxGHkgMITnoVqvRzXUYhvxNMnNMjoS8D0Pp06exN49e5Ab4PsZFfqyye6AW6VS4fiJEhhbu7Z0neK+e/uzI+4X1FiE+9rnEq9pd74fUm4i+l8iJAyJE4LP/b8yavXkefvwh+vYbMH7/7bzm/Bbj/0aFNLfhh4o3QeCMEpYKhbD6MeQ266Uy9AzGciEYHl1dWCHQXGd0ZbIgCAJWV0HDQJQSuHYNuqNRthtkrHh+350GOhFNYvYhxyvmqrXargwPz/ctt4C2NpPilsQgeOABevNSdrdpIxS2LYdzvJ5R0OVi4b6ge/7qDcaqHFSEKUPKpVw4B2xKr1TZcKw0FQV5VIJuVwOEp9lNA0DtXodvucliMHNMjqK4/SZMwh8v6+owWYg3tdhUNwqDZeOHU+WhT74gNWzidGgsI9/EghikT1JQeaBH1q3XCaTwcJVDV99QoWurxGUxx6x8cD9/UUGNwLGGL545UvwWX8D8yNTD6FYLEbiu42AEILxsTGoqgpGKa4vLfXdFAlYu87apQwJCTtCikgCEF6fNicJNu82O8ROd05txfZDkqQwKksIzs/NwRwidfJWwNZ+UtxioJQi6KA1aAfbtiMzEeEu1o/Jke95qNfrqNVq8OKagkolihTE2zKPAqMmBgKEEGQzGVTK5SiN4vOeDhaPFERGR4whN2CP+VHB8zycPn0ae/fvb+sidyOwkRCo6Kuw1SMHx55PkoNHHzI72oMPA2qtwn4pWQmgHfk2SIV2znkEn/p/pgAmI5c1ADBoKsWP/dhwQr1B8dunfxefOtdf1cLthf3YWdkx0u9XlDgqioIgCLC4vNw3QWgXORBgjIHy1Ec83QCEEybLslBvNOAN0BFSoOPziesgBFRVhaZpcF0Xc2fPJqziU4TY2k+KWwzMcUJZc+LFzt4DTcOAaRiROroXMQiCAPVmE9V6HZ7vgyJMQcRJQRwdZ5oD3nCbRQziEOG+SrkMjRun+L6P1WoVS0tL8Cm94UZHcZw+fRoBYzh48OBN2T6wMQe5XqWhWwErKzLOnE2max7h/RRGRXTtE78H+LEyNiIj87Yfabvs157QceKFEgAZksSg6zbe/x0GZqY3fyD5wqU/wy+/+h8TrylEwZ2lO9ou/8jUw5uyH+tKHKvVvj4nrrPWiiTGWFQ5I9CabiCERCSh2WjA6VO/JdbfNb0Q+1/PZCDLMq5fu4alpaVUf9CCrfukuMUgogat6NSJjHFrYdfzkMtmu7ofMgCWbaNaq8F1HDAAahdS0LID626WYW6BGxXElyUJ+XweRR4hsLiBi21ZoDyKcKPhuC5OnT6NA/v2hS1zbwJ6ddDs+tnYA3ork4NnnkvqSHI5invuDu+pUZADatfhvPD7idfUg38PUnnXumVtm+C3fjvUP5hmmKPeubOB939Hc8P70QvPLj2Hf3H859a9/q8P/0v86n3/Gd86+y3r3nt0k8gB0FLiyNN+vSBxYaEodRXo1l+kHUmgjMG2rMhttScI6e6Z0GIwls1mQYMAVy5dQqMx+rLUWxlb90lxi6Gd4VFHt0LGsFqtwuN59ampqY65YCE2FKVJqqoOpCmIRH3DDiwDliyOAgyh/7+iadB4Fzo9lwurMZrNUOHczVBlxDh18iQA4Pbbb78h22uHjegNbpVKhWeeTWptHnzAwigrVZ2XPgXmxgd3gsyDP9Z22c98No/FxfD+sm0djMn4++9rgpDRiiNbcaZ+Fj/19D+GR5Mk+Cf3fQTv2f4eFPNF/OLbfh7fRL4BMsL9e3jyITw+1b6/x6gwaImjFCt9FakFBvQ1wCdIAhdVBr6PZrOZqGwYGrEJk8z1BytLS1hdXV3XeO6tjNQ+eQSglHY0PGoHy7LQbDbhBwHGx8bamhwxvpwpSAc3/Bkm3004m2aUto0kdMLNIAYCQsWs6zomSyWoqhq2knZdUEphiraxmUwUHtwM2LaNs2fP4vbbb49qpG8G3gp6g6ePJSMHj8ZKGAm4bfSQEQTmGrCf/73Ea+qBb4Q8vm/dsgtXZfzhZ+NEhWDvHgX33+/CdsjQVuO9cM26jg89+ROoe8kZ7Pt3fjs+fPhHo+0yxvAN8rvwvp3firGdFdxRPpKwTN4sFItF+LxXyvLKCmTe1rkTJElCwFjYnVGW4XOdQb8gvOpKVVWYlhXZMns82trxnu/jXpEkKUq1qaoKz/exurKCfD6PycnJvvfxzYyt/bS4RUDbhLo7RQ08z4s6ISqKgnKbpj2e76NWq4VmSIxBVRSMVSobEsLFywL7GWZuav6NMVi2HUVKxOCfy+UwVi5H3vAMgOM4qNXraDQaIesf8X6fOnUKkiTd1KgBMLzeAFjTG2zlSoXrizLOzSWv7zg5wAYFtvYrnwGzq4nXMg9+qO2yv/WJEjxvbVuSxPCjP2KHjqKMRe6lowKlFEuNJXz4iZ/AgnU18d67Zt6JX3jw55IW51xcN6lM4K7KnTeEGAgMUuIovA4CSiMXxGEgSRIK+XzocMjFjM1udsx9XCft9AeNWg2u6w7l6/BmxNZ9WtwiYIyta67UiRgwSmGaJnzXBSQJiqpGlslAeMEaphmW8vFGJMV8PtQjjGBmLELTvQb+GyFA7AbHdeFywpXP5da58EV9IbjzG0FIqJqGgVVOqgYpu+oEy7JwjkcNbrQTYxwb0RsAt0bk4Olnk0LEQj7AXXckH9JDRw18B/Zzv514TdnzTshT60tSj5/I4KmnkyTlW77ZxN49QeQbIKJXG4XneTAMAyvVFfzvz/9LnGycTrx/z9hd+A9HfwkyaREag7fdvgkEfpASR6E78Ab0SOgEkWpQ+HodxwkjsCNYvyRJQBBgdXk51R5wbN2nxS0COsBsVQxajudBkWVkM5lIhOj6fuQUCISliZVSCdqoQ9mczXfCzSYGlLGw7pgx6MLNrAMU7glR5mWQIuRq2TZqtRoazWZkrDIM3jh5ErKi4MCBA8Mezsiwke8jqlTYot0YgfUtmh960BqZyZDz6ufAzKXEa5mjH163nOcBv/EbyUheqUTxge8LBwtNVcPoAaVD56ZF6+R6vQ7DMOC6Ln7p1H/A0yvPJpbbld+JX3v0PyOrtHcBlWNh8RuNfkscZULCzrQjIFICEhcsZ0UUgVIYhgHLspL3eT9EsiUaldF1LF6/Dtd108ZMSDUHGwKlFAG/KIWHd6cWw57rrpXk8HKeSqEQDYaObYfhQklCPpcLW8UytinNeySuAm7FzSYGQBg5oUEASZb7TqNIkoRsrLe84zjwfB+e54WzM9OEqihRbXM/M2jTNDE3N4c777hjeF+FET28N7oWIQLrVA2zFfB0Czl4tI1l8jC6AxZ4sJ9LtmVWdj0CZfbedd/P5/80j0uXk9/1D/9QA4XCmiuorusweD+Ufq4lxhh8fi36vr/OMfD3Lv0+/mThC4nPVLQKfvOxX8VEZqJ1dQnczG9TlDheX1yMShwnxsfXFmAsfMZwc7NRQXQUVVUViqJEJnKu68LzfWR1feAon5hUEEKgEILlpaUwnTkCM6lbGSk52AAYjxrErTnbLscFdEBoHUx5eY+qKKjWamG5DwBd05DN5aJw3GYQA0EAOhGEm3kruJ4XlWrmstnBj5+rnLVYb3nP8+AHQUgWfB+mZUGRZaiaFs4EO8ym33jjDWiqin371gvWtgoYAN914QdBNEMLKAXl/weUIuD9NkRLcMpztpTngSlfjvKfIAjCjqKxdVFKwwgMgKefeQaaokBSFMgk7PIo8x9JkiBJEmRJCt+XpOh18ZokSVAkKfwc/724rGPufNK/oh05GEZ34L7xJ6CNhcRr2Yd+fJ2x0sqqhE/9P8lqidtvd/Geb0zuh6aqsGUZnu/DcZy2/T0YYxEZ8DwvsR1CSDSwfWHhz/Grpz+e+GxGyuDXHvnP2FO4retxif2XJGmkg+8g0DQNE+PjWF5ehmEYkYaKMYaA0ug5NuoIBwHCCCilUfM1y7ajtK0Y2GVOJPpdJ+PHtHz9OsbGx2GaZiLt+1ZDSg6GBKUUNCZc6Vi2iLBvAKU0DAXyh27ATT4YY5BkGcV8fo3x3qBwoUQIKN/ezaxMCHch7D3PEIqDNvpAEb3ls9lsOLi5LnzPg+f78IMAPq92kGUZmqpGD2wAaDabmJ+bw1333LMhN8Zhj8D3fdi2DYf7O0ReD7Yd/bi2nWxWxT/b+h3Ghw2ZkLVBXJbDQVoM5ISAyDIUWYaiqtD432JZUbUh8s1xYuH5PlzeE0OQCV/8HSMincRjx0/cCeD+6KWsbuHs2c9h4XL4kNezWeiZDDK6DlXToGsaMroOXde7zt4ZDWAd+83Ea8rs/VB2Hl333Xzyd4qwrOR6fvzDdUhtbgpd1+EbBmzHWWvvTGlEBjzfT9zDRJKiyJWiKCCE4MnrT+PnTvxC8lSA4N8f/b9x/8S9bY8nDlmSEpG+myUfzvISx1q9jlq9DkVE/NhaR1UGrEVXRwTxvKWMQVEUFPJ52I6zNiHw/fD66DOKEEUP+D2xsrgITdN6trl+MyMlB0OCCcVyjxm+xy9YQgjyhQIWFhbQaDaRy+dBGUOOD2DRBSgeKpt1QbY8oCUgdCzbnK31DcOywtmGCN2a5sj2KfJS13VQSuHxMKTv+wiCAFYQwLJtSJIETVXx6muvQctksG/v3o1tOFY2SoMADldCJwZ5x1k38MdrwQPe1U7PZKLBsFwqITM1FTpG6joURQln7/EZuSRBVhTQIAijJYqCSrk89KGsrK5GJZ2VSmWodYioRRAjDj6l+Nsn9ySWu++eKg4dOhCRINM0sbq6GpayOk4UrhZRu4ymRQRCnBM9k0F+8Wno1fOJdesPfSRy4BN4/Q0VX/5KMq3xDe82ceRwe8MtTVWhyjKcIECj2YQsy6EorsW/X1HVKDoVH2BO1k7hHz7zM+t6JvzLe/4pvnH7N/R3MvnAKMqUKaU37R4WJY6NZhOLy8vYtm0bNE6CJEmKIlOjLjcWraEZv0dESsGyrMhh0fM8ZHW9d/oHawRBz2SwtLiI8akpGIZxU1qzbwWk5GAIUEpB421GgY4uiCKdoGcycGwbDe5vUMjnUSmXkzPTTUol9IIkwm/CB+EGQ9QvgzHkC4VIXb8pegtJQiaTQSaTicK/YrZBKcXK6iouXLyIQwcPRqFS8dPtASMiH41mE81GI+ySWa+HA77jrHN2ZAjbx4oZcS6Xw/jY2NrgputhjTdPfww7e7EdB7IkQdkCYkSJEEiKsu6h8/wLlcT/b3/cw6EONtWB78O0bTiCTPGyYPG70WhgcWkJjmXigSufSHy2oW3HM683kZn/K2iqikKxiEK+iP/6q/cklstmKT74w+sV634QhCkc34fr+zANA5RfsxIfCHulq65a1/DhJ38Shm8kXv/hAz+AH9z//W0/0w5SLC0iBuFh23mPAuVSCZbjhPfQygq2TU5GRkgEIcndDC8S8ewV50LhHVsd14XjOFGfljwvf+65Pk44VFXF9atXoapq2BhuC1f6bBZScjAEWDyd0MEeGeDiOsag8JmFaZpglCKjaZicmEg+8G9QKqF1K4wTEgKAbUIv9Z77wxiaPJ2gZTLQVBUWJwebTVOEE5sQf3q+j7NnzkBTFMzMzEQ6BQERknf4bNYwDDQ4EWg2m6GWBOEDqlgsIpvNolQuIyNmtPx3VtehxevWu2Cj+eSt3qr50mUFFy8l9QYPP9gA0P5BLisK8rlcz5bZ7tkvwzx/Pfni3T+IXWO7Yds2moaBSxcv4sSLezA3l1zX17/zJJaXl2DbeeRyufD+5V1To/0gBLKqgvB0YU8bcwANr4EPPfkTuGYn9+vv7ngP/tldP9P1s61odT0lANgABmejBEX4XBmvVHD9+nX43Mm0XCpBlqQwpbTJxIW0kCU9k4GqKDBtO+r2msvloPaZJlQVBdWVFWybmUGz2USpjR/Nmx0pORgCkelRl5m+UMyLchtKKXzPC2cWnRzWNnnW3uprzlq2KZTAaFluM2HxzpSEkNDT4GaBE6TLV67g4O23I5/LoVqrhSWRjQaMZhNN0wwNUvi50TQNhUIBlUoFu3fvRqlcRomTAsLNXzbiTyD8DTaS89zq5ODpZ5OCr0rZw+0HLACdQ7m9ujQyxuA8+xuJ16Tx/dj5+PeDcMMgRinqDeB3/8c2vk4KRfExva2K/fuewysvNyK9hizLyOdyyOfzKBQKKBWLKJXLGKtUIkOkXufXpR7+0TMfxen6mcTrb5u4H7/0tn87sJERaakCIIRAQvsWyZsFhiR5VVUV5XIZq9Uq6o0G9Fg4fzNFk9H10EKOxPdmmiYCSmEaBvRstmfzNkmSQCiFpqpYXVmBoijI5/Ob5sK6VZGSgwFBPS+8ALtoA2gQRJ4GlFIoCJm+putwXHe9SOYGpRPWbaHNdsVAdCPSDD4/T2BhK+Z1pXY34JyYpolGo4FGo4GLly4h8DycOXMGr73+erRMPp9HIZ/Hzu3bkc3lovx2a8kU4XXdtm2HDxKurh/avAcbbzi01clBq7/BA/fXIck9jrnHDNm/8ASC668mXtOPfjhBDDzfx6c/nQOlJsbGPMhyGK364A/XcejQ28CASPRpmiZMw0Cz2cTS4iI83wcBn6HmcsjqOsrlMiq8EVqxWExcG4wx/NzzP4+nFp9J7NPewh78t0c+how8uJdJgsjHXiM3ML3QbsAvFAqhgNa2sVqtolwsAth8x9Woj0OLfooQglwuB4vbLts8kqB3idwxhPeLqqowmk1MTk2h2WyivAHNzq2IlBwMiChq0OmhzxgM0wwVs64LnXuA5wsFrCwvgwLJQeUGM/3E310GHkLIpqYZ4ukEoUBP7NsmbLfZbGJ5eRkry8tYWV1Fs9kMQ55AlLPN5nK4bc8eFItFFAuFjuFiUb8e/XA1fjwVIdIMopRPpCUUWYbUIlJrixGcg4gcbMFZD2PrnREffKDeM51ExIc7nD+7JWpASjvh7/w6OM1mKIRkDFcuEzzxVAa6vpYivPMOH3ffDShyNtSYdBBeCu1QvV5HtVpFrVbDxYsXcfr06ahyQKj4x8fH8bnm5/HHl/40sY7JzAR+87H/hoo23IBDOhCkdqRh1KBAVwIyXqng2uJiJFLUNO2GVFMQYJ32QmgSctksbJ4SdLnDZS4uBO+AgOuRRFnjRqqXbjW8dY50RBDeBh0fTI4DyzThOE54MakqCvk8CCGR6E1rDWvdYBFg37W/m5hmsLlYiADr0wmMhfnTDYBSitXVVawsL2N5eRnLKytRrX6pVML4+Dh279qFYqmEYrGIWq2GJ558Eg899BDG42YuHSDq1QXRY4whCIKIKAR8EEJMmd8qSiSCKHDiEPcKANb7vw8Kxlj0oNyKBkgXL6m4spCMvhx9W+92wEB47kTahcXKg/2LzyK48nxiWXrXB+D4FFFhJwM++7kiHCeDIFDgeSrAZPzAB5Z6ahmA0Ekvo+uYnJwEpRS1ej0abEzTRJMTh1qthv9+8lP4HPt84vO6lMF/uv+XsSO3o69jbXv8HcyFxAC5GWH81jRCJ8i8MmZlZQVGzN/lRqCd9kIQNp2XnVqmCR+IhIrtomoiMqQoCizDgKqqaDabQ1fq3IpIycEAaI0atIbKfG6B7Np2GHrW9cjMRwweANbIwU2qThhku5uRZgi4WQkYC5sotdycnWr2u8FxHCyvrGB5aQkry8tYrVaj8qnxsTHs3bsX4+PjGJ+YaNsF8/jzz4fv90EM2kE8SOIPwYDXvrcaE1EeZWCUwmv3gOfqc+GYKUlSpIYHV1P3kyYQrZpJjHBsJbSmFCbGPezbawFYI1wM4SyVUgrKzxnl91Lg+whYS9+J5z+RvG7y01APvReymolKPZ98Kounnk5+z9/9XXXMzPRuJ9wKSZKQUVXY3IyqUqlEA8jfXPsq/ngx6X5IQPCd/rfj/FPncV2/honJSUyMj2NiYgLlcrnv74l0sU/ejPQCG9DMKJfLwbZtePV6pD+4USCizDP2v7hGNFWFlM9H3jMdKxkIAbhmyDZNlCqVKHpwM/us3Eik5GAARHqDdmWLlGJ5eRku77ZYLJXC2noO3/cTLUJvStMU/rAdZoAfZZrBMAwwxqBwJ7O22ws32nEdjUYDSzxFsLy8jGazCQDI6jrGJydx186daw/cHsdbq9dx/do1HH3ooWEPqSNERAAtD5R4rb/oWieMgkTKomuelhNUQR7E3yRGHkSqQ95iUQMxyD/5dNJd8IH7a7BsC57vJe6XdojPYgl4x8nlNxAsHEsslz36o8iUKtH/jkPwW59IhvKnJgN81/ubQx+PlslEpXOix8er1dfwM8f+OQKWJBz/+t5/hW/b/t4wmsUjWlcuXwajFLKiYGxsDJOTkxgfH8fE+DjUDuI5mQteO2FU1QtM/AyxnkqlAsMw4Hgeao0GijfIL6BdeiEOITA0TXOtkoE7LUbgz3mJENiWFTnKNhqNoScQtxpSctAnKKVhSqGN1oAFAZaWl6OLaGJyEpmWhknCRjUqpbkJD+yNioJGkWaI1/x3rE7ggk9xhvwgQHV1de2BurwcraNSqWDb9DSOHDmCiYmJMFIzIM6ePYuMrmP79u3DHNJQkLkOoZU0CBGr5/uJGbN4HeD5Xk4iAkrRab4rBixFUSIzJQFRfy6qNOIlue1eF6p8hzelEd8+i4lzxUwfYsbP/4Z4TbzPX26NHNx/3yoC319n7d2O/IhjkWUZhL/e/JvfS6yP5Cag3fkdidf+52dyWFxMzhJ/5IM1ZDYwsVUUBYqqgvG+HkvBMn786X8EK0g27/nw7T+K79oT7s/s7CxmZ2cBhN95tVrFysoKlpaWcO7sWbz+xhsAYyiXShifmMAkjzDkeIqSSBJol26Eo6heYC3f2aCQJAmVSgXWwgJsLuzsJ20zEsSqF9o992TeBjqqZDDNqNy4HRzbhprJhMZcrrs+NfwmREoO+oWoc24Z1IMgQK1ahWmakCQJk22IARA+VBml0Li16A0nB21KfYZBIs0ADJRqEE2mKEJi0MmYx/N9LF6/jkaziVqtFvWfUBQFE+PjOHDgACYmJzFeqWw4l+l4Hubn53H48OF16Y2NolfJXTtEaYQehkuiP0ci3C5eE+/H1tn6kBz0KojIgePAHsGD8dKlLBaXkut57KG1B3Qhnw8HfXSu2IjPnIPFN+Cf+6vE+5kHPgiirI36V69K+MwfJksn777bwdvfnmwNPQwymgbf97FoLuPHT/wUlp3lxPvv3fnN+OkjP9n2s5IkRSkt0QHUMIwosrC0vIy5uTmA1+9PjI+jWqtFpbKdzo+olBn0GuxXW9APMpkM9FwOjm2jWq9D07Qboj+IVy90et6KSgZbVDJw9009k0ncH4QQ1FZXsXvfvqi6aWKie1OsNwNSctAnqOOsixp4rotmswnDNCHJMirlcttGLABPKwA3J1+1CSmMiCQMkGowuKOcIknr0gmmZeHKlStYWFjA9evX4fk+crkcpiYncdttt2F8YgLlUmnkxkjz8/NgAPZu1Cq5DTbqcdDtod9PzbWiKHB56iYTf+DFZ4Qx0hCf6be+r/DrVlNVZDKZRFQhngKKmpDF/xbHIUo7AfzZF8cS+7ptysPB2xlsR4XSxWGw9TyIfbdbeigQvYzM3d+VeO03f6sIz1s7p5LE8JEP1UbC01VVhc88/LOX/iXmmvOJ9x6efAj/v/v/9UBlqfl8Hvl8Hrt37wYQRh5XVlawsrKChYUFGIaBIAjw53/+55iZncX22VlMTU2tI5VEksCC/rQU4vseqVcCISgWClGabLVWw9QNGlgJ1txfO3XzJIQgm81G5maikkGPT/AYg9lsQuVOpcLGu1OU4c2ClBz0AUopWEsIz/M8NJtN2LYNiRDkuEFKJ/ieB8pYGI66WTngzSIJ4iHdZf2irSoYC2eFAFarVVxdWMCVhQVUq1UQQjA1NYUjR46gWCqhVCohP0SaoF9QxnD27Fns2rlzU270YWZtQHdiMNB6eCoh0j1sAKLdeCSy3SBaUwqPPGRGt0W/Ry5U6MHqHLzTX0y8l7nvB0C0tSjB88+rePKpJCH95r9nYM+ezqH5QcDA8G/e+L/xYu3lxOu3Fw/gPz/076FJG5sUqKqK6elp+L6PU6dOQVEUlEolTExMYGFhAXNnz0LVNGzbtg3bt2/HzMxMOJgBfYkTRRRq1M8mwn/KxWLYmt5x0Gw2b1i/gnj3ym73omigZVoWfN+HRelay2ZOaqvLyyiUy5EzakoOUkTEIApVcV91IfjK5XIoFApdH+iCOWdudOQgfkOMIK3QCd1IAmVh34GAUlimiYsXL2JhYQGmaULhVsUHDx4MG7ZoGizLCkWLm2zmsrCwANMwsH8ThIgbwai+IRF232rObowBTx9bTw6GPe4wahD7tFaAdt9anwLfB37940n722KR4vu/b33/hGHxy6/8B/zFwl8mXpvWt+HXH/0vKKrFkWzj9OnTeOWVV7Br1y4YhoFcPo977r0X99xzD2r1OhYWFrBw5QqePXYMEiGYnJzE9u3bMTs7C13X2w6OiRTCJkxaRKRIVVWUikXUGo0wvaDrbauGNgOkBzEQUFUVeUkKI5yUAlxgCgBgDMuLi5jZsQOmacLlTdRuZBXGjUZKDvoA47MmAJG6NaAUrusil82GDXK6XOiR8joWnr0huBkVEUK0yI/X933MXbiAhcuXsbS8jCAIkMvlMDs7i+3bt2NiYmLd4BWlLDZ5/8+cPYvxiQmMjY31XngY3ITzn9x8uP2t1nL2zFkNS0vJ++XRh82BzxchBEH1Irw3kgZDmXu+F1JmjQx8/k+zuHgxub0f+oE6CoXRfD///eyn8Nunk2LIvJzDrz/yXzCbnRnJNl544QXMzc3h8OHDOHLkCP7yy19ey90TgnK5jHK5jMOHD8M0zSgi9+JLL+HFF19EqVzGzPQ0tm/fjhJ3+mMxXcpmghECwljonsi71FZXVzE5MXFDSmxF2quf54kiy8hlszAMA67rhqWqPNprWRYcx0GhUECj0UCz2UzJwVsZlFIw7v3PGIsiBi5nlTK/mLohqlRQ1Ztbb36DBivbtsOH05UrWLh6FUEQIJ/PY//+/di1axfK5XLXAatbM6tRoVqvY/H6dTz08MObt5EhIzWMbbyFNuUVDcDWs05uTSnMzni4bbcHawhdoHP8t4F4uaCiI3P/D0T/rq4S/P7vJ0PYB/Z7eM83moNvrA2+dPnL+MUXfynxmkxk/Ns7fgEHS7dveP2+7+PYsWO4du0aHnjgAdx2223h657XcUKSy+Wwb/9+7Nu/H57n4dq1a7hy5QpOc1twXdexfXYWs5ycb/r1wUJTMyJJoXvi0hI8z0PDMCJ75U3HAPehqqqh1b1tw7assKupogCMYenaNezYvRuNRgOu6yIIgi0XmRsVUnLQAyzmbWBxW2RQGkYAuNq110AWVSrcyBxVu5ths9IKjKHOw5pXFhawurICEIKpyUkcOnQIpXIZlXIZeV6G1QsJpfEmQZQvinKyrYIoLbNBciTOnSjz20pol1KI72K/exs0r8F97XOJ1zJ3fxek3Jrg7ZO/W4BpJge/f/CROqQRPM9PLL+Ijx77F2gt9vu5O/4lHpl8CI7jbGhmads2nnzySRiGgccffxxTU1PRe57n9RWFVFUVO3fuxM4dO+BTGkUULl2+jNNnz0JT1VDQODODbTMzfXct7BfRd8mvR0VVUS6VUK1W0Wg0kM1kbkhZIOHNlPqNRmZUNXI1NSwLBW6UtLq6it1790LTNLi8rPdG6SduNFJy0APM80AIgW3b4SAPQFIUgFKoqtq7LIex0DYZN7BS4UZECBjD6uoqLl28iCtcPS3LMmZmZrD/wQcxMzMDhtCsCAhLF+Ppgp6RA2xeWsFxXZzfpPLFBIYclEcxmEc9FbYYMaAUeKaln8KjD7fM4vvcZ/u53waCmCW1rCLzwAejf0+eVPGlLyW39e53WThyh4eNylnmm+fx40/9QzjUSbz+j478JL5j77fBME24njc0OajVanjyySdBCMHXf/3Xo9gyw/Z9v+dAHlWh8MoTQghmZmexbXoauPdeVKvVUKewsIALFy5AliRsm5rCzPbt2LVz56Y9rwr5PGze1GqlWsW2yckbEr0gANCPOJP/1jMZUG5QZloW8rkcbF7KmM1mU3LwVgb1PDDfh+95sEwz8ue2ec13th/PAkIin/1Obmc3CqMYbD3Pw6WLF3Hu3DlUazXomUyojp6dxbZt29ZucsZQrdfDc6brbRv/dCIJm00ONrN8MQ5yEzUHW7Ub46kzGaysttEbDAhqrsB++X8mXtPu+PuQCmELZkaBX/215EM7m6X40Q82NpyyWbaX8aEnfgJVt5p4/Tv3/H38xOEPAwhNdnzfh+d5Aw+y165dw7PPPotCoYBHH310HcEQzcI6RQ66lSQKgSAjBJWxMVTGxnDkjjtgGkZEFF44cQIvv/QSdu3ciT1792JsbGx4wtrqi8IxVqnAu34dfhCg1mhg7EZ0PBTRgz4XJ4Qgq+swTDNBEC6fP4+Dd9yBer0eNtjz/TdlQ6Y33xGNEMx1QYMgVM4jJAaRR7emQeZ5qF7webXDulbNm4Eu+zP0Q5FHCebn53HhwgXQIMDM7CzuuPNOTG/bBtJmAHJcF4HvRzdYYj9i9e/xevrWuvjNIAeUMZw5exa7du3a9FKkYfZ+VMcsZkftvpubiVa9wc4dLnbuaGlI1cd67Od/F/BjIgUiI/Pgj0b/funLWZw6nSTj3/c9BsYnGBgd/hxbvoUff+of4oJxMfH6O6Yfx7++719F166maQgoheM4A5GD+fl5vPDCC5iemcFDR4+2zWf7vg9wDVMC/F7qVZIoSdI66+VcPo/9Bw5g/4EDsG0b5+fnMT8/j7nz51EplbB33z7s2r174LSD2IvWMy5zX5hl3h01m8lsurhPkCJCSNfoQfw9SZIigWIQBLBsG6hW0Ww0oGkaHMeBZVnrIjtvBqTkoAOY7yPgJkeU34iapqHOw+T9XsjCNx/C42Cz0S2SMaDmwPc8XLx4EXNzc6hWq8hmszh48CD27NkDvZsIk7HQYpcx5LjBSCdEM5noo2xNkCjCoX3vcW9cuXIFlmniwP79I1xrewwz2xrV8W7VyMHTz3ROKfR7ZVK7BvvF30+8ph7+FsilsMuhYRB88neSUYMdO3y87318W5IUOp4OiIAF+Oixf4GXVl9JvH5H+TD+00P/HmrMy0DTNFi2DZ936uxnZvnKK6/g9OnT2LdvH+69996Oy3meBxASDdTrbI57XXct91wrdF3HocOHcejgQVy7fh1zc3N44YUX8PLLL2PXrl3Yy6MJG0U2l0PetmFYFlarVUzHI4+bAaHDAbr2nYg3bQJCIpPL5WBwzZkkSbh4/jz2HjiQkoO3IqhlodloIKAUiiwjn8/DMsOHS0bT+laoujwFIVrzbhrEhd7twdAnMahWq5g7dw4XL15E4PuYnp3Fo0eOYHp6uq+ZqO04CIIAkiz3TaJaB1IC3qBnRIZAAmfOnMHExMQNab06sG3tCKoUBERIeStpDigFnnluvRgxQp/ny37h98FcI/YKgX70Q9F/v/+pAqrV5HX64x9prLWxGLKC5Bdf/CV8eSFp0bwjtx2/8dh/Q0FN2jKLEjibl+51IwdBEOD48eO4fPky7r777shCuROEZwqR5a7Nl7qhXfSgzUKYnpnB9MwMbMvC/PnzmJ+bw9z8PMYqFezZuxe7du3qHk0Q11+Hc14ql+E4DrwgwGqthonNKitG0pRMQtTAO4FO5FxRFGR1HbbjwLZtrK6sYNayQAgZOn201ZGSgzZgngej0QgHOEKQz+dBKY1c4jLxAa8dA43N3n3fB6UUyhZo1NHtkRj4Pi5euoS5uTmsrqxA13XcfvvtuO2225AdoFkKoxS2iBoIh7EBIPzgo4jCCJT7AqvVKpaWlja3fDGGQfd6lEmUrRg5eP2NDGq1JKlOkAOBLt83cw3YJ5KeAtrBvwt5LNSPXDgv4/N/koxqPfyQgwfftuZVMszV9InTv4PfP/fpxGsltYjffOxXsS071fYzGU0Lm1+5LrLZbNt7wXVdPP3006hWq3jkkUd6Vs8whCk7yictQ4OQdQ2uukHPZnH48GEcPngQV69fx9y5c6E2gUcT9u3d25twt7mXZVlGZWwMS8vLMC0L2Uxm05ozJcg66dCYqsv50DQNlFK4ngfTNHFhfh679+4NxZWWlZKDtwKM1dWo0UyhUIAkyzCNcKbSV9Qg3n+Bs/xNvXA2UP5Wq9UwNzeHC+fPw/c8zMzO4tFHH+07StAK23EQUApZljeU05cIARXbjx/XBnLyZ8+di2q8bwTYoN/HCDUWkQHSFiIHT7VUKdy228X22Zh9cSzs2wn2S58Gs2uJ17IPfYSnoAh+7TdKCIK1Nagqw0c+VE8sP+hZ/sLFP8Mvv/IfE6+pkopfffRj2F/a1/FzsqJAVRQwxtqWNTabTTz11FPwPA/veMc7OofquU+AKHMVHUk3WnZIhiltliTMzMxgZmYGlmlifn4e58+fx9zcHMYrFezdtw87d+4cSKCn6zoKhQKazeamNmeKV20AaBvVCCjtev1lMhlQxuAHARavX8f41BQURYFlWSiVSl0+eeshJQctcEwTjmmCMYZ8Pg9ZURAEQfuoQR8Q3fE2rWSun3RCCwLfx6VLlzA3P4+V5WVkMhns378fe/bu3RBrZ5TCtm0wxjrOlPoFid248bWwIYmC7Ti4cP48jhw5csNm0zcroM8Yi0RVWymt8NQzydB726gB0PFaZr4N6/jvJF5T970bytQhBJTiyScyeOHFZITu73+7idntw9ctPrv4HP758f9j3eu/9LZ/i6OTD/b8vKZp8HhfkTg5WF5extNPP41MJoOv//qvb3vfCS0B/yd63ff9rtUKfYMM17VRIJvL4cgdd+DI4cNYuHoVc3NzOP7883jppZewe/du7N2zJ3JjDA+hc4qwXCzC4SmYWqOxKemFdtuWCEHAnzH96H3iFQyUUlyan8fe229HEARvulbOKTlogVWtgpGwNaowLXLsUBXdNWrQYZBmfcyGbhRqtRrOnTuHCxcuwHVdTM/M4OGHH8bM7OxIBkzLtsNwp6JsuBIgMkJqfT329yBEYW5uDgCwZ8+eDe3XQBhGczBCjwMQsmXSCr4PHHsuGe5vLWHsNUjZr3wWzFxKvJZ9+CMAANeT8PHfSorCJiYCfM93G1iHPs/xmfpZ/OTTPw2PJqsp/uld/wTfvOt/62sdKu8w6ccGj0uXLuH48eMYHx/HI488kogqMqBnHb7neZAIaVsePCgi5f5GrjtJwuz27Zjdvh2WYWB+fh7z58/j3LlzGKtUMLN9O7ZNTnbfD0lCpVLB4uIiTNNEMZ+/YQOtLNIrfd6vhBDkslk0DSOMdqyuolypwLKslBy8WWE3Ggi4I6JQ4/cVNeghugEQKqRHjX4FhrUaXnj1RXzx4pegKSp2Tu3ExOQEGloTLzgvgc69gIAFoIzy3wyU/z+WqeAdO78OBS3fdRs0pjXo1LZ6IPRRzph4nImeDuGHEssFjOHc3Bx27d59YzupDfDAHaXwcisaIL36uo5GMzmYPfpQcuAW31q788ACF/ax30q8pu5+DOrMPQCAP/xMHtevJ9f/oR9tQNfbXD993DfXrUV86ImfQN1LNmf6/n3fgx+9/Yd7fl6AEBKWNfJ2wPPz83j11Vexe/du3HfffVG3wEFm777vjyxNSbit8ahKaLP5PI7ceScOHzmCqwsLODc/j9dffx2nZRmHDh3Cvn37Ok6wMpqGrK7Dsm1U6/WehGJUYED4/BhA3ClJEjRFgev7WLh8GaVyGbZto1QqbTlH0mGRkgMOxhjMepib1LPZKFdr9xM1EGh3UcTUsTcajUYDr7/+Os5eOItfdz8BDx4QALjEf/rEZ0//v/j4N/5611moZVlRqHMU7DnyOhjgho3OPok1fwJw5fLlsPviDShfHBaj9HTYimLEVn+DfXsdbNvWUk7Y5Rw4r38etHk18Vr24R8HAFy7LuMzf5hHXE1w910uvu7rku6F/aLpGfjIkz+JK9ZC4vVvmH0X/tW9/3zgh7+maTBNE6++8QauXLmCQ4cO4ciRIwOTAgHf80aak5cICSsXRjioEUnC7I4dmJmdxbXr1zE/P49XXnkFZ86cweHDh7Hnttva6mHKpRJs24brOLBse51HymYg8lsZ8LvQMhm4vg/PdbG6uorx8XG4rvumaeW8dZ4eNxlmswnKTXvE4CbySEAfvgYdLizGf0bOJruEwQzTxHPHj+NLX/oSlpaXsTS7GhKDIXG6egYXGhc6vh8EARyuNejVhKpfSP1EY7qAYK3y4f9j77zD47rq9P+5ZfpIsqzuKhe5lzh2XBIndjrpCQSSQGCBhaX3XfZHrwvLshWWvpQFEgJkIaQHEhJS3GLHXW5ylctIVtf0ueX3xy2aGc2MZkYzkuLwPo8eSXduOXPvuee851ve7/ETJ6iprWVSVVXZVBeztSH/nUvXPyZiMOIwyeQM8Qa25SB9u6YQ2fajlG3y1JU4pl0CwI/+x088IWBpGwmCznvfM1jULU1oCT667e9p7T+Ysn159VL+7ZJ/RhIKN+WrqsrevXs5c+4cCxctYsGCBaPqhyVPmyuj+8myJC5YuJBrrrmGmpoadu7cyR//9CdOnTo17D7IDgc+rxdRFOkfGMhy1uKRrUtY0sqFQBRF25rc092Nbuq7XCj4q+UAY6UVGhhAxCAB1kSebDUY0b8nihknMs0q9lEOU1PaOSORCAcPHuTEiRM4XC6WLl9Oc3MzdZ27+NXJXxd9GbfkptHXkPXzSCRi1I5wOktr7kx2FRSJcDTK+c5OVlx8sX1eMAmbGQU+EYyAJdU4mGCWg0QCXt6RShrXZpBMzibiEz/8JFp/Kjn1rDasBjt3OXnxJYu4G2FlN98UYfZshazIRuR1nS/u/CovdLyUsn2Gbzrfv/TbeOSRia/1HK1FQTgUYvPmzYTDYS5evpyq6upRu5BUVS15NH9RmQt5wLL7iRiZX5dccgnzFyzgQGsr27dv59ChQyxcuJBp06bZx1RUVhKORFAUhVA4jK+UqY0ZvqelKikKQkbtg1xwOhyGlSMUIhwOI0lSybVZxgt/JQdAKBRCUBQkScJpSiQXbDVIUvXLhHJ2lmgsxqFDhzh29CiSLLNw8WLmzJ5t50GvaryYdU1r2Hxua1Hnv3XOLbizDIyKohhCTyW0GgD2BDHayoyn29tBFJk6dWrq6c1rJMu75huxXAhyKdFZKFUlRgu2ANIEIQf79rsJhfPQNzCREnSqa0S2fj/lc6lhCY6Zl6Eo8IMfViQdJ1BRofLWe4NFtfO7B3/Igyd/n7Kt2lnNjy77LpNdkzMek7LyNVPlrC19fX1s3rwZURTZuHEjOsb7klCUUUmpJ0rsVgAK1j3IG2ZqYPL4V1lRwZo1a+jr7aX1wAFe3raNQ4cPs3jhQhqbmpAkiQq/n/7BQQYGBvC43SXry+mWCl1PqkFhvYMF3AMBQ1Y/HI3S292Nx+MZdTXOiYLXPDlQVZVgfz8OMNLvMF7ugqwG2QZ1RUFqb8d3+DCevj7ks2chHEa7+Wa0jRuLb7TZeeOJBIcPH6bt6FEEYP6CBcydOzdj/vPXr/gn3venD3Gg50BBl3KITu5e8Kasn1tWA5fLVdIBq1T1FU6eOsWUPErRCmm/Ldgm+jKvBEp5/okWkJiubzBvbozamgzyxRnudbztadSeoym7ede8F0EQePQxLydODj1XQYC3vy1IRUXhfeb3J//Atw58J2WbS3Tx/Uu/RbN/ZkobdfvP7Nfp6Ohg29atVFRWsm7dOlwuF9FoFNUsAzxaclCO8u+CIBjWtBKeM7l0eDomVVdz6aWX0t3dTWtrK5s3b2bS5MksXrSI2tpaQqEQCU0jGApRWSJ54vTUTQFSyIAgiugFSms7HA6keJywaT2IRCJ/JQcXAgYHBxE1DYcs45RlNAqMNYhG4eRJhGPHEE6cgGPHEI4fRzh+HE6dYoqSwbz5s58R+9Of0FesKLzBuk5CUWhra+PIkSOomsbcOXNomTcPV44BxyHK/NP6L/GOJ99Nf7w/637pWFa3lEmuSRk/UxIJEvE4lCpDIQmitaofBTnoHxigr6+PhQsWFH2O9EnbCnScyGZDmxyUINWtFBimb5CtCmOGVV1k2w9Stkk1LThmX0lfn8gv70utn9AyN8H114cZyfaT3qNe6tjMZ1/5Uso2AYF/u+SfWV69zJ5MkoNcc+H48ePs3r2bxsZGLkkqnuRwOGw5ZY/HUzR5UxQFry939lBRGKXuQSbkQ65ramq4/PLLOX/+PPtbW3nxxRepq61l1uzZCILAYDCI3+criyUsXULacjXmPe6Y1ga3y0UwHCYUCuHxeJg0adKEHiPywWuaHCQSCcLBIE5dT4mKzctq8PvfI3/oQxAKFWWGFl9+GbVAcqAqCm1Hj3L48GGURILZc+Ywb9483HmuIup99Xxu7Wf4h+f/kXzXBzs6dnDvE2/n3gX3cP2sa5GTisuEzQwFt9udd62JfGGb+0cxULW3t+OQZaN+fYlguSMsJLsjMpKGPAaaUg/GdkXGCTA4xeOwY2eavsHqDNoDDI85SJx4AbWzNWUfz5r3IAgiP/u5n2Ao9fu9/32DyNLIcSrJq+ODfYf40NaPo+ipJP7TSz/J1U1XFvxs9u7dS1tbG3PmzGHZ0qUpfUWSJGRRRBVFEokEriKzeuKJxOgFkLKg1LEHw1QJc6Curo6NV1xBoKPDcDe8/DKTJk+mqampZGWdk59ntmdbkPXA/F6yubjs7+3F4/EQjUZLvmAaa7ymycHAwACipqXIdSqKkpfVQP7gBxHChdeht6AvWpT3vpqqcvz4cVoPHiQRj9M8cybzFy7EW6DpSgAuaVrFO5a8nZ/s+2nex50NnuFftv8r/9v6C9684G5unH0DqNgyrmVJNzJXCcX6QHXgVHs706ZNK586JWnuiAykAUbWMChlnEOyAFI5v3e+2L3XQySS2o41l+S2HFir1/RYA3HSTJwtr+PQEQdP/TF14L3qyiiLFyXQ9ewrXytYUDWvdS4c4N2b3k9ISSUr75j7Nu6dc0/e3xFSiyctW7Ysa9qsw+kkoaok4vGiyYGSSIxaOjkrBAHJVA0sBXQz5iBvK4kgGPLMDQ2cOXeO/fv2cbC1lbNVVSxdsoSamppRtceKq7CCEDM2oVDrgbmvy+Wib2CAUChEf3//X8nBqxWxWIxYJIJT0+zJTQeiZirKiLEG8Xj2z0aAXl+Ptm7dyPsB7adOsW//fiLhMNOnT2fhwoX4R2NSFATetugt7Ovaz7bAtoIO7Qh38B+v/Bc/b/0ldzW/ifVNl1HlqyqL+doaTArROUhGd1cXoWCQ6WaWwljDGgrFDAIz6ebpUq7vxypGIl+k6xssmB+lunr4M00pOQwop19GObczZR/P6r9DFyS+972KlHHb7db523cYYkW6KWaTHFyafm5d0xhMDPJ3mz9AZ/R8yjVeN/U6/n7xRwv6jvF4nM2bN9Pf3z9i8SSHw4EQiZBQFKMGSYEETtf1URGLvCCKCKpaktgD+94X2h8FgalTpjClqYkDBw9y8uRJ/vLCC0ybMoWlS5cWPfHa8SIjjCvFuFckScLlcNB9/jxer5f6cpegLjNevS0fJQYGBpBVFbfLZb+gqqoSN1fDI8UaaPcUtrJIhnrrrTDChBqJRNi8aRPbX36ZydXVXHvttVyyatXoiAFW/r/IZ9d+mnpPfdb9Lqpbzvzq+Rk/C0aDPND6a/7x+U/z++O/J5QoLjo8F8RRWg5Otbfj8XioHSOVtUKQrMFgia8ki7AkR7wXKs4y0dIYt+Shb5AOAYhs/V7KNrGiCef8m3nmaTcHDjrQNMwfgXvuCjJ5sjrkUrHuWdK9ExgiYXE1zoe2fpwjA20p11hZczH/fPFXEIX8711wcJDnnnuOcCjEFZdfPmJVRVEUkR0OREmyLW+FIBqNoup6QZVSi0Gp+s9oS4cLgsCcOXNYumQJzc3NdJ4/z5+efpqTJ08WTV7yfqeKaLPX6yUcDDI4OEhfX1/hjZtAmBgjyBhDURQSsRiiruNOesksAQv3SFYDXUf7r/9C/cAHimtAby/Crl0ZzVY6cOrkSf709NP09vaydt061qxeTYXfP2zf0aDKVcmXL/sCsjDceCQg8PFVH+WH136Xb17xDZbWLkn53IsPHTif6OSHe3/Mmx55Mz/Z+zMGYoPDzlUsRFG0lQ4LrVmv6jqnT59m+owZJWtPsRjR/80QUbBW+8kTWTqJsM5p/1jEwvxfnUDkIBYThsUbZNM3sL+DrpM4t5tE+5aUfdyr3k046uTHP/ObZmrjZ9q0BLffPuQWGEkbQ9N1PrvzS2ztejll+2z/LP57zX/gkvLPAuju7ua5v/zFSFW88kom5VksyOlwIIDtviwEYXOMKmnacCYk9cdRweyfozmXy+nE4/VS39DAiosvpqmpiR07drDppZeKEh3K5k5IRnr6ZU4kjeOiKOJ2u+nr6WFwsHTj4Xhg/EeQcUDMJAayw2HfACXJapBX5UVBQPvqV1E/9amCry//3//huuYanKtXI3/1qwj79oGprrV50ya2b99OU1MT11xzjbESKaWsadK5FtYs5IMr3j9sn43TrmBm5UwQBFY3XcJ/X/Vf/NfGf2dl/cV48Fh2cSIYgZuD8SA/2/9z7nrkbn6w+0f0RftK0k5RFA2zcIHkoCMQIBaLMWP69FG3Y7QY6cnlu/rJRB5SiAVDJnQrMDKZOJBGIpL/ttQ2MxKOpBV4ikUj7WfYNl3nld0e4vGhIUYQdFavDKVYSrSka2PGBETTMhQEXx2uxXdw/wM++npTSft73j2IMyk2b6RB/T/3f5tHTj+Wsq3WVcMP1v03k5z5B7ydbm/nxRdfpKqqio0bNhRk5naY5EDTNNQC0+Yi4TA6lN1yAKVJhc2VylgIKisqEDHirxYtXszadevo6+8v2IpQsCWyCILgcjhsUaSxVGQtNV675EDTUtT8YrEYOnnEGqQ9bO2Tn0T9x38sqh3i8ePI//mfuDZuRFy1irMf+ADK3r2sXbeOVStXDtUoKGMHu2PubVwz42r7f4fo5G+WvC11J0HgooaL+PeN3+Srq7/M0slLCBEelvEQUiLcd+BXvPGRe/jvnd+lK62CXqGwBqdCX+j29naqqqpeFfXVSz14aKZGviSKKcSBNBKR/Lcl4JWRcFifJclZ26JNST/DtgGbt6ROmIsXRqmqSksdG7oRxq+ewySOP5eyj3vlO2g/5+MPD6e61C65JMrqS4bXT8g2nD9w7Ld871CqDLNX8vD9dd9mmm9qlqOG49ChQ7y8fTvTpk1j/fr1BWcOWBLtgiAUbD0IRyI4ZLls2QopGK31INmtM0qi4XA48Hq9iJLE4MAAjY2NXHP11QVZEXRdRyuAjBVkPUgiPw6nE0XTCIVCRVmHJgpecwGJuq4Ti8WQdd2O+NUxI+91PT9xkbQOo/3jP4KmIX3zm0W3y3nyJItPnmTxww+j/fznqLffjnrbbehz5xZ9zoxIn4wEgU+t+UfmTprDyYFT3DDremZVzcp4aCQapbmymY9f8hE61A5+0Xofz595cdh+MTXGbw49yENtf+DGWTfw5gV30+hvLLipoiRBImG80HkOhnFF4cyZMywsIBtkvFAOmVWbbEyAgMStL6eubnOpItoukz3/m7JdcE/CtfRN/ODLflRl6DvJDp33vidLrEuGSPNnzz3PF3Z+NWWbJEj8+yX/wuJJ+fUVXdfZuXMnJ0+eZOHChSwYhX6Gw+EgHo8TVxTcBfSDSDhcfpdCEsRRZC7oSUSxFL2xsqKCSCRCXFVtWeWVK1cydepUdu7cyZ+efprly5YxY+bMjNdTNa3gQEMBQwJ6xPYnnVOSJCRJIhQMEg6HX7WFmF5zloN4PI6uqoiCYMsLK4qCrutGsFABVgMbgoD2qU+hfvzjOa+tNzSgfOQjaM3NOfcTDx3C8Y1v4L70UlwbNyL/x38gHDuW85i8kWEQkkWZexbezf9b80mW1y/PeJiuaYb+g24IHs2vmc9XL/8yP3vdj7l65lUZTZBxNcFDbQ9zz+Nv5RvbvsnpwQJKQWL474QCB6ezZ86gqirTJ4BLYSSUY/rWJ0jMQTQqsGv3yPEGydD7TsCJ51K2uS9+G1t3VPPKK6muvtffHmJKU+b6CekT7d7e/Xxk69+jpSnnf375p9nQeHnONllQEgk2bdrEqVOnWLVq1aiIAYBDlo18+gJdC+FweGxT5EZhPbBqygijtUCYkCQJv9+PCAwMDtqxAyNaEXRDDj893Thf5PUupZ3XKcuEQyFCocyaHq8GvObIQSaXQjweR9d1Q9I0V+cxTazZPtM++1nUj3406+HqnXeifO5z9D//PC//+7/Tet11ROuzZwwAiK2tOL7+ddxr1+K6+mrkb30L4eTJnMfkQrGvaDQWQ9M0ZFlOYcKzJ83iC+s+y89v+Bk3zLoeKUOkt6qpPHbsCe59/G/4yuZ/4kT/8byuKZnFrAqJOTjV3k5tXd2YlHrNB7nudzmcRRNFOnnHTg/xxFBfkCSdS1aOYDnY+3OS74rgrEBYeC8//FGqdG5NjcLdd2cfdJO/eXvoNO9+6f1E1FST83vmvYs3Nb8hr+8SiUT4y/PP09vby/r160tDPAXBCEwUBDvWKR+EIxE85VBHzIFiiaZmxpCUsif6/X5kk1QFkyZeh9PJypUrM8YipAQ0l8tFmzZGOZ1OItEo4XA4rwDIiYjXHDmIx+Mp5MByKegYHSwrkkxkWSEIaJ//POqHP5zxY/X222k/dYo/Pf00p2pqcP/rv6Lv20f0ySdJvO99aFOm5Dy9uHcvjq9+Ffcll+C6/nrk734X4XRhq/GiYLpidF3PqsY4o3I6n1rzj9x30y+4bc4tyOJwj5Wm6/zp5DP8zRPv4vMvfZEjvUdyXlawLAd5vlzhaJTOjo4JEYiYD8oxTFnnHG+dgy3bUiewJYuiVPizP0e1/zQc+1PKNtdFb+F3jzUSCKT2pb99ZxCPO/fd04HeWB/vevF9dMd6Uj67dfrNfGRhfplGfX19PPfss6iqysYNG0qaGutwOBBMtcR8Td1j7VawUFR/MgNNS1k6XBQEKisrEQSBYCg0bOK1rAiNjY1s376dF154YZgVoVAIjPwd0s/qkGXQdQYHB1+1cQevKXKgaRrxaBQR7ICehOlSkJLcDBmRy2qQtp/2xS+ifvCDKZvV2bPZFImwfft2pkyZwjXXXmtnIugrV6J8+cvEdu4k9uijKO9+N/oIkr/izp04vvhF3BdfjPPGG5F+8AM4d27k9hWBeCKBqqqIojhiTMYUfxOfuORjPHDzL3nDvDtwScMJl47Oc+3P87dPvYdPvfAZWrsyF4OSrHTGPMmBXYExqfzrhEY5ghGtvPJxdiuk6xusXZPbvBp/5SegJ5nXZQ/B6X/Dr3+Tep7Fi+Ns3Bgd8fpxLc77Nn+YY8ETKdvX1a3hKyu+kNdkFzh3jheefx6P18uGDRvwl6j4jwVZlm2NlUSmGixpUFWVWDw+LuSgGEuUlqEiYyng8Xrtybc/Q7qgw+lk1apVrFm71rYinLAyGkbRllxva/p3FEURWRQZ6O8nFhseNPtqwGuKHMTM0sKyJCFZ+u0mq5Odzuwdp4j0F+3LXybxmc+g+XxEGhv5yz330NvXZ2QirFplFElKP68ooq1ZQ+JrXyO6axexP/wB5R3vQB9htSJt347zc5/Ds3w5zltuQfrxj6Gjo7A250DMqjXhcuX9otd76/nIxR/i17fczz0L7sKTpeTzS2c2896nP8DHn/0HdnfuSflMNN0KltzpSDjV3p5XBcaJgrJkKkDJfLzFIhQS2L03vZ5CdpeCNhggceChlG3uZXfxP/fNJB5LSoUUdd733oERzdSarvEPL3+aHd2pCovzK1v49rr/wCmOHNx67NgxtmzdSn1DA5dffnnZgsos10I+gkhhU659LNIYh6GI/mSltZa6L4qCQEVFBQIQCoVQMhArXddpaGjgatOK8Morr7Bp06aidBHAsB6MSLjT6mhIkkQ4GCz6muONV8coWiLY+gbmi25nKWAEkGRFMZ1bEAi97338cfZsovE4DXV1XL5q1ZCYkZkqNmx6sCYMSUJbtw5t3ToSX/sa4qZNSA89hPTYYwg9PelH2ZC2bkXauhX9059Gu/RS1NtuQ73pJqirMy5rXSPP76SYJWZzuRRyYbJ7Mu+76D28ecHdPHjkd/zf4d8RTAxfRW7v2MH2jh0sr1vG2xa/hVUNq4yARFEEVUXVNOQcL2f/wAC9vb3Mnzev4DaOB8oxaE4U6eQdO70oyZkFss7KFdnJQWTHT0FLGuAlJ0c9f8cLL6TGjdx4Q4Q5s0deYX999zd54vRTKdsaPPX86LLvUiH7c/uAdZ29+/bR1tbG3LlzWbpkSVkzPwqp1DhmAkhZIIliQYJkBddVKABej4eQ00k0Hqd/cJCaJAEqTdPsd8HpcLBq1SqmTZvGzl27+NOf/sSqVatGVLLMhLwzFzDeQVmWCZlBiaqqlrw4XbnxmrMciEkpjJZLQRAEpGypckWu7mKxGFu3bEHVdRwOBz09PTz9xz/y7HPPceDAAXp7evIvuCNJaJdfTuLf/o3o3r3Efv1rlLe8BX3SpKyHCLqO9NJLOD/5SdxLl+K8806kX/wCchCLjN8jGkUDnC7XqGooVLmr+Nul7+DXt/yKdy19B1WuzBoEu8/v4RPP/SPve/qDvHRmsz3RjeRasCowNjQWnjJZbmR8xqW0Gpjnsi0HhboUktqSqVWWWFG6EFI2bE5zKSxbEsHny5zSpoW6iO37bco256I38N2fpRYu8leovO2tI8t0/+zwL/jx4dR0SL/s538u+y5N3sacE72qqmzdto2jR4+yfPlylqZVVSwHrEqNVuxBLkRMy4F7PAv6FNBvC6nIWAwqq6oQBIFoJGL79bNJIzc2NnL11VdTW1vLli1bOFZk9lch7jpZlhFFkb6+vlela+E1YzlQFAU1HscFdgVGy6XgKLGgSHBwkJc2bSIRj7Nk0SIkWaahoYGuri46Ojpoa2vj4IEDOJ1OGhobqW9ooKG+3siWGAkOB9qVV6JdeSWJb3wD8YUXDIvCE08gDAxkPETQNKTnn0d6/nn0T34S9YorSNx6K8oNN0AOgqFrGnHTFVOM1SATKpx+3rb4rdw57w083PYIDxz6DT3R3mH7tXYf4FMvfIZllUu5pflmLvOsy+ou0BmbCoxFI0PefV7Qjepw2YZWO4/cPL81GItFFI0ZiSAIaefLdfYtW1ODEdesDqeoKCYjsvPnoCTFEAgSL/a9nxMnUt+Ft78tSGVFboL41Omn+cquf07ZJgsy31n3HyyoMuuEZLkvsViMzZs3MzgwwNo1a2gsYmVZLPKt1BiORHC73SUN8CsIpmppvqJkpVJHzAaX04nH7SYcjdI/MEBtTU1Oq5DT4WDN2rXs3bOHXbt3EwmHWbR4cUHkJaO1NwtEUUSSJAZNcuAdD3fQKPCaIQe2S0GW7QdsuxRyZSkUyHq7u7vZvGkTbpeLy6++mu7ubkN0SZaZOXMmM2fORNc0unt6CAQCdHR00H7qFACTqquNcqWNjVRVVY1sVXA60a6+Gu3qq41aEc89h/SHPyA9+SRCMPMqS1BV5GefRX72WYMobNhA4rbbUK6/HtIUBWPxOJp5z0pNoLwOL3cvvIs7Wm7j0WNP8KuDD9AZPj9sv2MDx/nBnh/x22MP8sZFr2fj9I3IQqoFo7u7e1wrMI6EYcIrWVY3FixJYcGa9HOf3P5TTYo5GC8MBkX2taa6A9atzhyMqEX7iO2+P2Wb0nwzP75/Ycq2WbMTvO76SOb7YN6nHV27+OjWfxim2vm1lV/i0vq1OdscHBxk0+bNqIrC5VdcwaQchLkcyLdSYyQcHvcJRiiA6NqWgzK2p7Kigmg0SjweJxwOj1gwTxQEli5bhsfrZd/evYTCYVauXFmQyd/SpxgJkkkOgsHgXy0HExmKoiAAUrpLQRSRZDnzYF2Abx7gzJkzvLxtG5MnT2btunU4HQ76JAkEAUVR7KAmQRSpra2ltraWJUuWEIlECAQCnD13jsOHDtHa2orb7aahoYHGxkbq6+tHDrJzudCuvx7t+utJRCKIf/4z0sMPIz31FEI4s79XSCSQn34a+emn0Z1OlKuuQrn1VpTrrgOfj+gI6YulgEt284Z5d3DLnJt46vgfue/ArzgbGsq60DAi2M8Gz/FP277Bz1p/wZvn3811M6+x0yXbT52asBUYIanQS/LqPMcAW6xYi16sW6GE2L7Di6oOtd0h61y8InNAVmzXfZBI6puCyB+OfZRgMLX973vPAGK2sVsQODZ4gr978f3E1NQB+KOLP8TtM28dqh9hkjRLElrXNLrOn2fL1q14PB4uv/zysRUYMmFVatR0nUQigZTlfQuHw+MTjJiMbLFSGWBVyCxn5ozD4cDjdjMYDhMyLSs522T+njt3Ll6Ph5e3bycWi7F27dq8F0BZi3ulvdOSJCGKIpFwmGg0iqZp455FVAheM+QAQEx6eJaPyul0FmQqyghdp62tjT179jB9+nQuXrnSZv8WI82lgubxeJjV3ExzczOaqtLV00Pg3Dk6AgFOnjyJIAjU1NTYVgUrUjfHCdFuugntpptIhMOIzzyD/NBDiE8/jZAlclaIx3E8+SSOJ59Ed7tJXHklrmuuQduwAefkycXembzhlJzcMvdmbpj1Op4+9Qy/bL2fU4PtqKaqnWSGx5wJnuWbO/6dnx/4JffMv4vrZl5L++nTzBxBdXIsYBUcSl+52wWRrP300Veqy3h9K41xHC0Hm7emTl4XLY/g8Qx/u/R4iNjOX6RsC9Zdy+/uX5aybcOGCEuWZPfFd0W7eecL76E33pey/U2z7uQDC98zTE7a/l/XaW9vZ/v27dTW1bFuzRpb5yTFXTNGcDocJBIJEvF4VjIeikRoGmOrRibks3LWNa3sbgXrffN4vQTNCVhRFNttnPmgob44ZepU1rtcbNmyheeee47L1q/PL9hT141aCun3IM2qkkwEBrO4fCcyXlPkwPKb6oBikYNsHSnfwUHX2bNnD21tbcybN4/FaT4sybQcjCSRanUpUZKor6ujvrYWli4lGArR0dlJIBCgtbWVffv24fV4aGhspKGhgfq6utwvg9eLdsstxG+5BYJBpD/9CfGhh5D+/GeELKYuIRrF+cQT1D/xBJrHg3rttUaMwlVXQZlXVrIk87pZ13PdzGt4tv157m/9Fb39fYikLh07wp38585v87/7f8nC2DxWT1ld1nYlI1f9gkwTviCK6GnPvxym/6IDEkuI4fUUMrsUYnseQI+lDpj/u/MfQB+6L263xt++M3vZ24gS4e9efD+ngu0p269oXM+XV34uu46+rnPg4EEOHjjAjOZmVlx0EaIoZrXmJD+rclXZsyo1qqacciYzdyQUGrdMhWTk03OTXVzlIKs6Q/3d6XTicDjQEwnCkQiVOfQo0p9eTW0tV2zYwKaXXuK5Z5/lsksvpSoPAiYCw+hRhr5hPcdwFjfvRMZrhxxYnRXTpYAxiMqynNlqkEeHVlWVl19+mbNnznDRRRcxe/bsYftIoogoCCi5yEGmAcdkoX6fD/+sWcyZNQtFVenq6iLQ0UEgEOD48eOIpouisaGBhsbGoVTJTPD7Ue+4A+WOO1D7+5GfegrHww8jPfssQpZIaTESQXz4YRwPP4zu86Fcd51BFDZuhDJKFIuixNUzr+SKqZfz/JHnefTYY+wYHB642BPv4QV9E/tebOWN8+7ktjm34s2iqVAoks3RKRjlYFcmAddxtxwMDIi0HkjtE5nqKeiJCNFXfpayrcd/NZtaU2NG7r4rRG1t5hWqqql8dMs/sLtnb8r2xZMW8u11/4FDdAybyHVNQ9M0du7axakTJ1i4aBEL5s/P/DzzIASWe8KOCxkFcbAqNSanNSYjGo2i6fq4xxwARmCiIOQMTNTMWgajyXDKhmRiYMHv89Hb20s4EsHv82U032d7nysqKti4cSObNm/mL88/z5o1a2gYQYTOOl/KmTKc2yIHoSyu3YmM1xw5gFSXQrGIx+Ns2rSJvv5+1q5bx5Qs0c2iJBkrghzkIOsrlmamkiWJxoYGGhsaYNkyBoNBOgIBAh0d7Nu/nz179+Lz+41YhYYGauvqsmsD+P0od96Jcued0N+P/OSTOP7wB6Tnn0fIotYmhEI4fv97HL//PXpFBYnrr0e57TaUK66AUdzLXJAliYsaLmJJzRLaYkf55cH72N/dan9u6LcL9MX6+dHeH/PAod/whpY7uGPu7VQ4chClNGjZzPzjrBlQCGwz7ji1edt2L5o2dG2nU2PF8uFurNi+B9HD3SnbfrQ1tex5Y5PCHbdntjrous5Xdn2dp8/+OWX7VO8U/ufy7+N3GNkSluXAuh8JRWHT5s10d3ez6pJLRl0jIbnqYAqs+18gWchVqdHSOBiPmIhMEATBGFOz9DVV04zMmRJasazJPRMpcbvdiKKIqqpEY7GMFhYR0LK01+V2c8Xll7Nt61Ze2rSJlStWjOiqHJYVlOHclns5/CoswPSaIQeldCmEQiFeeukl4vE4V1x+OZOTBDjSIZnkIJOKl32tXNfLER1c4fdTMXcuc+fORVEUOs+fN8jC2bMcO3oUURSpr6+nobGRxoYGfOaqY1jAW1UVyl13odx1F3p3N4nf/Q7PE0/g2boVIQupEQYHcT74IM4HH0SvqiJxww0kbr0Vdf36vMsr5wPBTJ8SRZFVdStY03QJu87v4pcH7ueVzl3mvRn6LoPxQX62/+f8+tBvuWPObdw57/VMck1KOaee4X6P5YRaDtN08kpqvIKe0iWTL14RweVKW70rcaI7fpqyLSBtZM/ZVSnb3vt3Aziy8M0fHfoJv2hLzXKodFTykyt+QL2nLmW79VxDoRCbNm0iFA6z/tJLqa1L3a+kSIprSK5qONJztys1Kgqqqqa4CyNhIx10QlgOYMS0Rqs/lkr4R2coiycTRFHE6/UyGAoRLrL+hCTLrL30Unbv2sWOV14hHImwYMGCrGNDpiyk9HHFspzEYjFbgv7VgtcMObAsB1aRJVGSsvvqc0wUfb29vLRpEw5ZZuPGjfhHqJAmS5Ihi5wlgEcf4XrD2pPl5ZBlmSlNTUxpakIHBgcHCQQCBAIB9uzezW5dp8LvN4hCU5NBaDJcN+b3E3r96wndeSfVioL8+OM4HnkEadMmhCzfQejvx/nAAzgfeACtuhrlxhsNonDppVACKWPLTK7pOjKwou4iVtRdxP3P/Zpnep+hLTFc0CSiRLj/0AP8ru333Dz7Jt44743UemrMBo+vNaAc6V3J6ojjZTlI1zdYm0EyOX7gD+jBQMq2/3n5H1L+X7UqyurVmYvVPHLqcb6x599StjlFBz9Y/9/MrZwzbH9BEOjp6WHTpk1IosiVZaiRkBUZgiCtGi3WyltP29/pcKCqKvFEImV8CofDyJJU8pTi0SBXWqOqqkbNmhJNhvlUNvR6vQwGg8QSicyBiXmkYQqCwEUXXYTX62X/gQOEw2FWrFiR1U2R8i7nsBxous7gwACTa2pG/B4TBa8ZcmBZDhKJBJIo5n7JsqzkA+fOsXXbNqqqqli3bl1OwRILllshY8xBMSvIfDo4Rv5vZUUF81paSCgKnWZQY/vp07S1tRmxCnV1RgZEQ4OtuhaNRtExzHS6203ibW8j8ba3IXR2GkThD39A2rp1mCiO/X17e3Hedx/O++5Dq6lBuekmErfdhrpmDRS5ihAlCSGRQFNV2yqhqCqeXid/v+gT6HXwy9b7eOnspmHHRtUYDx75HX849gg3Nr+Ou+a9iQbfyP7EcqFced9aUkzNeKC3T+LAodz6BrqmEN3+Pynb2hPrONC9zv5flnXe8+7MQYhbO1/mk9s+NWz7v6z+OqvrVmU4wnhnt2zdSlVlJevWrbMLro0LktwNySvOZMuCLMtGjFKapTEciRguhYnk5jJJTqbYjlKlMWq6bhRwyuN7OxwO3G430WiUUChEVVVVcRcVBObNn4/H4+GVV14hGo2yevXqYXOGJQ1tff+MmUoWEdR1+vv6/koOJho0TUMwWbpi5hEnqxGmdO0cxGDz5s00TZnCqlWrcldwTILFXvUcUcjlhkOWmTplClOnTEEH+vv7OXfuHGfPnWPXzp3ouk5lVRV1dXX4/H6qKiuHxWPo9fUk3v52Em9/O0IggOPRR5Effhj55ZezXlfs7sb585/j/PnP0errUW6+mcQtt6CuXm2kAuUJa4BRk1xDXV1dJBSF+vp6Kisr+fKlX+RY33HuP/Qrnmv/yzAxnISa4A9HH+HR449z3YxruWfB3Uz15y6RXSpYedHlHNbtYMRxMltuS8tScLs1li5NrZ4YP/Q4Wn9qZsEv9qRaDW67dZCp04YT6SP9bbz3pQ8R11IDZ/9x2Se4ZcaNGdt0tK2NXbt309jYyCWrViFKUl4r0LFG8uQqyzIIApqmoeq6XSAuYpGDCYZM5EA1J/PRWLGs+IJCU369Xi+xaJRwNEpFRcWo3ofpM2bg9njYumULm156ifWXXz58/E5arGVrp1WTov9Vls74miAHlkvBYuOiJGWf3DM84MGBAbZt20ZTUxOrV68uKBpcNH1zCAKqoqR0rqI9zwWolA07FJhUVUVVVRUt8+aRiMfp6Oyko6ODkydOEInFcDocNDY10WjGK6QLi+iNjcTf9S7i73oXwpkzOB55BPmRR5BfeSXrdcXOTpw/+QnOn/wEramJxM03o9x6K+rKlSOuhqwBUtM0O30ocO4cHq/Xru0OMHvSLD675tO8bdFb+dXBB3j61DNoeupkoGoqT5x4kidPPsXV06/izQvuZmblzMJuYhGwvmG5UuHGmxyk6xusXBHG5UzWdtCIbvthyj4nwxezv2eD/f+kSQne9KZBSEtb7Yyc550vvIeBROrg+ta5b+bd8985rC26prF3717ajh5lXksLCxctyp7WOMFgFezR4nGUeBzR6UQURYKhENUTQOMgHQLDJYVVVUWn+HiDkeILcsFt1oBRVJVINGrHWRWLuro6Llu/nuf/8hd27drFxRdfnEICBFKLMWUiM9Y7GXyVpTO+NsiBadJXEgmkkfx2aZaDeDzOps2b8Xq9rFq1qqg0MUkUEcx0Rns9PtqBqsiIaPtw81iH08m0adOYMmUKzc3N9Pf3Ew6HOd/ZyQ5zsq+urqahoYGGhgaqq6tTJiB96lTi730v8fe+F6G9Hccjjxiuhz17Ml8YEM+dw/WjH+H60Y/Qpk4lccstJG67DW358lQ/bVJEtM4QudN1nbOBAI2NjRnZ+oyK6fzjJf/A2xbey68O/ZqnTv4RRUs10+q6ztOnnuGZU3/miqnrefPCNzN30nCfdalRrgnKXhGPV7zBtnR9g9R4g0Tbn9B6U2NDfnvo70m2p7z5nvP40sbyYCLEu154L2fD51K2XzPlKj530aeGPX9FUdj+8sucCwS4aPlyZs+Zg5rUb14NcMiyIYhkqqqqmkZwYMDIrjAnn6xptmMNQRgmiqSNIt7AKvBVLERRxGfGHoTC4RRyUOx5q6urufjii9m+YweVlZW0tLSkfC4kCSJlehrWeBkazK7ZMRHxmiAHumro7Cnmyn1YgaPkgKHkzZrGtq1bSSQSrL/yytxiQzkgZlBJLNkwNQorAqJoHxuNGibgmtpaZlVUwOLFxKJRAh0ddHR0cPToUQ4ePIjT4TCCGk1Z5+Q69/r06cTf/37i738/wokTOB5+2Ahm3LcvexPOnMH1/e/j+v730WbMIH7LLSRuvRVt0SLb9WDdd9UsxRoKBgmGQkY53Rxo8jfx8ZUf5a0L38KvD/2Wx048TlxNDXTT0fnLmRf4y5kXWDdlHffOv5sFNQuznHEUyKSoVkJY5GA8LAdd3RJH2rLrG+i6TnTbD1I+PxVcws6u6+3/W+aFueyyAQRhqL5HQkvwoc0fY3/fgZRjL5q8jP9c+02kNE3laDRqF09at3atXTxJyCFwNBEhOxwIptqf1d8VTaPKDKRMiVcwf4/nt7MWGhZRUa1SzQVYDkZjLUiHz+djMBhEURTi8fioUtYtTJ8xg4GBAfbt20dlZWWKDkKyIFIu96GqqkQjkfGtqlkAXhPkAE2zX7SMLgVrgk1j4bv37KGrq4vLLrtsVOYpyXQr2EFGpZZnLdKKYAuZ6Dpxs45C8mTvcrvtYlGaptHb22tnQLS3tyMIAtWTJhlBjU1NRrEoa+Xf3Ez8wx8m/uEPI7a1IVtE4eDB7O05dQr3d76D+zvfQW1uJnHrrYay48KFRlvNuI1AIIAA1NXX5/U967x1fHDF+7ln4d08ePj/eOToI0TU6LD9Np/dzOazm1nVsJJ7F76ZpbVLC7qfI6FcssnWuWF8BJC2plkNvB6NpYuH9A2UE8+jnk997g8d+xj2MCrovP1tHWlJOTqf3/Flng+8mHLcDP90frj+u3jShK4GBwZ46aWX0HSdKzZsSCmeZJm99Rx5+RMJkigimRlOCUVhwPRVV2YIsEsPbLTM3GMKy3pgtkWz3Ar5EFVdRxOEvAoZ5QtJkoxqjZEIoXDYJgejpR2LFi9moL+frdu2ceXGjVRYZC1pn2xaKda9CQWDfyUHEwW6roOqGhOzIOT2gyVN2CeOH+fo0aNcvGIFdaPMiZbMCOQUIaRyDFJFkoRYPI6qaYiZrComRFGkpqaGmpoaFi9eTCQSodNUajx85AitBw4MFYtqaKCuvt5+KbW5c4l//OPEP/5xxEOHDKLw8MNIbW1Z2ySdOIH0rW/h/ta3UOfORbjuOvquvRZ16VICgQB1I8lGZ0CNezLvWfZu7p7/Jn535Pf87uhDhBPD0+22d+xge8cOltUu5d6Fb+Hi+hWjntCtCapcaYbjKYC0ZVtqCuOqlWFb6kLXdSJbv5/y+dlQC9s6brX/f931YWbNMqW8zfb/d+v3+c3x/0s5brKrmp9c/gNq3Km1Ps53drJl61a8Hg+XXnrp8OJEo7GujRNkWSahKCiKQv/AAC6HI4W4Z4JVBRGSMiDK3E4LoiCg6rpNDCC3FStF0KgMz8br8xGORkta8EgQBC5Zs4bnnn2WzVu2sHHDhqHaPFn6WHoW0eDgIDXl1NgoIS58cmBOyJbpK6t5MWl7V1cXu3btYs7s2cyaNWvUbRBFMSWdsewvbLIlJI8XLxqLoQMetzvvycXj8TCzuZmZZrEoqwR1Z0dHSrEoiyxYqx6lpQXlE58g+vGPIx48iNMiCidOZL2W1NZGVVsbVd/9LvGWFqa2tCC98Y15tTMTqlxVvGPJ23njvDt56OgfePDI7xiMD/cH7unayydf+H8srFnIvQvuYU3jmuInXyFLJbcSQR9Ht8KwegprhlIYldNbUQO7Uz7/w/GPoZtBh36/ylvvHQo0FASB/zvxEP+5/9spx7gkFz9c/11mVTSnbD914gSv7NxJXW0tq5OKJ6Ujk/DVRIZDlokJgmE56O+nosC0vIypkiVtYRosq4XVD3NkKlhWnHK2x+1y4ZBl4okEoXA4t6x8AZBlmXXr1vHsc8/x8ssvs+7SS+3vmmlusRaEohl3Fn4VyShf8OQAM9/WMrmh6ykpQpjbADAf3pYtW6ipqWHpsmWZzlgwZFPrQFPVsVvBJH+/LCRBwAjSVBIJBMhLtyETREmirq7OsLAsXUo4HObcuXN0dHZyoLWVvXv34vF4DOnnxkbq6uuNiOyFC4kuXEj0k59E2r9/KEbh1Kms13IeOcKqI0fg8cdRFi0idtNNRG+5BW1m4RkHfqefexe+hde3vJ5Hjj7Kbw8/SG+sd9h+B7oP8JmXPs/cSXO5d8E9XDb1MkShsEnY9suWCfo4WQ46z8scPZa6ol2XFIwY3Zoaa9AZmcHmwBvs/996b5DKCpXBoNH2FwOb+PTLn085RkDgP9Z8kxU1y+1tuq5z8OBBDhw4QPPMmay46CKEcUgTLhdkWTYmHFWlr78/L63/bEiX+C1XnIJopuwJgJjBqqcz5FobC/i8XhL9/UTCYcMFUKLr+vx+1qxezUsvvcS+fftYtnRp1sq+iqoiWBZrXX9VFWC68MmBqtoVwmRZRhRFI2shaSLUzQFVURQ2b9qELMusXrOmZOpedmXGMrPljLAmiwwuBwGImFYDt5kyNVroum6UoJ41i1mzZqFpmlEs6tw5Ojo6OHHiBIIkUVtbS0N9vVGC2u9HXbIEdckSop/6FNLu3TgeeQTnI48gnjmT9Vpyaytyayu+b36TxNKlxG6+mdhNN6EVqJnvlT3cNf+N3D7nFh4//gQPHP4tXZGuYfu19bXxxS1fYWblDN684M1cOW3DsKC4nPemoFblDy2pX4215SA9S8HvV1m00IjnUM7uRDm9NeXzR45/FFU3fA7NzQluvCFit/3wwBE+8PJHUPTUzJLPrfgU10+7xv5fV1V2vPIKp9rbWbxoEfPmz89JisZLMXJUMFMa44pCMBSipbJy5GPyQSbXQwmtKtZKOXnstK431hoTHo+HgYEBFE0jFongLGGhuLr6epYtW8aevXupqqgw6jBkGGMVRUE3XbY65FdWeoJg4rdwlNA1zVixA07TZ5dQlNRVsq6DprF9+3ZCoRAbNm4sehWdCZK5CkgoyvinHyVZEVRNM+pM6Dqu0bw45oCTaUVg1XeoN4MHg6EQHYEAHVYJ6r178fp8NJolqOvq6uCii1AvuojoZz+L9MorOB5+GOejjyIGAsPOb8Gxdy+OvXvxf/3rJC66aIgoTMlf6Mglu7mj5Q5umn0Tfzz5J3516AECoY5h+50cOMXXt/0zP2/9BW+efxfXzLgGWRq/V8m2GjD2E2E6OVi9KmwrZkfSMhR6ok08f/Ye+//3vncASYaEAoFoBx965RMElVRVxb+d93b+puVe+/9EPM6WrVvp6e7mkgKKJwllzhYpBxwOB5HubgQoXu0vB0qe9WCa1rUkZUSdsScFFiRJwuPxEIpECEajTC5xFdnZs2fTPzDAKzt34q+ooKamJuW7WhLSgiDYlmor+ySfstDjjQueHKCqtq/f5XSiKApKenliXaf1wAHOnjnDunXrqCoVSzchJaUylitavRhYUsmyw1EUk01WMcsXfp8P/5w5zJkzB1VVOX/+PB1mYOOxo0cNF0VtrUEWGhvxrVyJunIl0S98gZ4nniD085+z4MABHN3dWa/h2LULx65d+L/6VRIrVxK75RZiN96Ilqdp1ik5uXn2Tbxu5vU80/5n7j/4AKeDp4ftdyZ4hm/u+Hd+fuCX3D3/Ll7XfD1OKTupLHemwrgEI2app6B0tqKceD7ls8dOfhBFNwj6FVdEWLbUeA8HYv18+JVPcD52PmX/G6e/jv+3/O/t/0PBIJs2byYejXLZ+vXU1tbm39BXWUAiGJbOoFnNz18in3k22O+w6XYo9m5ZsS+SJBmKpuN8330+H+FIhGgkguL3l3bFLghctHw5wcFBtmzZwpVXXmlkIliLryQxKDWJNPyVHEwAaGa8gUUOHC6XEVGraSiqaqc0nj59moMHD7J4yRKaspReHg0kUTRSzEzrQSnybkcFcxKJxWJGjfgRoqCTYZkgS5F6JEmSkQbZ2MhyswR1wCxBvWfvXvTdu/H7/fY+56ZN4+Cdd1J59dVU7d+P69FHcT3xBGIuorBjB44dO/B96UskVq8mdtNNxG68ET2PiGFZkrm++TqumXE1fznzPPcf/BXH+08M268j3Ml/7fw2vzxwP3fNfxM3zboBt5ymKlnGQXK8MhXOBWROnkrty2vNegrpaoj98VqePf02AFxujb99pxEAGlfjfGjrxzkaTBVIuqR2Jf+6+ut2bEdvTw+bN29GlmU2XHllwZPlRCHkhUAURSLhsCGbPFaTbJrboZCrWpkKlmbBRKg/6HQ6cTgc6PE44UiEyhIX3RJEkTWrV/Pn555j85YtXJEksWzNO7LDgRozsnF0DHLwasAFTQ4sZUTL1COblRgT8bjh95Ek+np72b59O9OnT2demvJVKSGYBEGZCOQAw7Wi6bohCuV0jrz6tFwH5coVFwQqKiqoqKigpaWFRCJB1/nzBAIBTp85Q1tbm1GVUZY5deYMM5Yvx7tuHcEvfQnHli1DRKGvL/PpdR3n1q04t27F/8UvklizxrAovO516CMUQ5FEiaumX8nGaRvYdHYzvzxwP0f6jgzbrzvazXd3f49fHfwVd7a8gVvm3ILPYZbJHoXO/EiwiJowzvEGlZUqC+bHULuPkGj7Y8pnT5x8PzHNsDLc9cYQdXWGoNWntn+OrV2p9TnmVMzm+5d9G5dkkNazZ86w/eWXqZo0ibVr147OBfYqQygUwu/3oyhK1kyMciE94yFnbIK5CLPSBsdDbyMb/D4fvSY58Pt8JY/LcbrdXLpuHX/5y1/YsWMHl1xyCWDEG2iahixJxKyddZ1wKJT1XBMJFzY5MBX1rJgDWZIMadJ4nEQigcvl4pVdu/BXVrIiTTO71HA4HERiMWKx2ISoyZ6IG0qBTjMeAlIjiVO2gS1jPFbxEg6Hg6YpU2iaMgV0ne6eHp597jmcssz+AwdoPXCAyspKGhsaaJg/n5p16xC/8hUcmzbheuQRXE89hZil0ImgaTg3b8a5eTP+z32OxKWXGhaFG25Az2HuEwWR9VMv47Ipl7Kt42V+eeA+WrsPDNuvN9bHj/b9mAcO/4bXz72d18+9A6/sLbu+/0gDsvV8beldUl1DmdxE1nZLQTMeixGLRkEQ2LQ5dZK+ZGUQXVeIbk21GoQSVTzdbtRAaGxUeP0dxuD4b/v+i4dOPpKyb627hp9c8QMmuSah6zpHjx5lz549TJs6lZUrVyIVaRaeOFNVYRgYHKSxsXFYlcaxRnJci576gd1HVEVBxLAITiT3qdtM0dZUlWgshrcMIkSVVVWsXLmSLVu3Mn36dFsbx8pUSH73Xy3pjBc0OdCT4g2sjAGHw2GkMyoKZ86cobunh8svvzzvKovFwulwIAkCsXjmOvVjjVg8PqSIaK4IbEKgaejproNxDqKMRqPomsZFK1YgSRKxWIyOQICTp05x+MgRHLJMfUMDDTNm0PiVr+D+2tdwvvACrscew/nHPyJm0TUXVBXnCy/gfOEF/J/9LPH164ndfDPx665DzxIEJggCaxpXs7rhEnae38V9B+5n1/ndw/YbjA/yv62/4LdH/o9bmm/mjjm3U+UsPp5FN11iyb9VTSMciRCLRkk4HLafc9jkX/RVDcTNOJ1YPE7EJArp4kcXLeth8OxBOPJEyvanTv0dEdX43m95S4BINMR9Rx7iewdSSYRH8vCdVf9JrVRDNBqltbWVEydO0NLSwpIlSybMZDNWiMVixGMx/BUVaLo+blVdk2ERAYGhccKClY0lShLiBJKsFkURr9dLMBQiHA6XhRwATJkyhfr6evbt38/69euNeK6056WbzzEcDk+IRWIuXNDkAFNuF4Z0vkVRRJRlFEVh3/79Rt59IYFNRUA3swEEUSQWi418QJmhKAqamX/rdDiMYifWh9bLb+YrTxTxmEAgQEVlJR6PB1XTaJo8mWnTpqHrOn19fXSYss6v7NwJwKRJk4waEJ/+NNX/9E+4X3gB16OP4nz6acQsZj1BUXA99xyu555DdziIX3GFQRSuvRY9g69SEAQurl/BxfUr2Ne1j18euJ+XO7YP2y+cCHPfofv5XdvvuGnWzdw59w5q3EOujOQJ3/5b141MmyQikG2wTcTjKObEoeYZCyIYX2BoRW3+LZjWofTMB6tYmexw4HQ4OH3GwdlzqZaDNasGEfb9Ej2pEmZE8fNU+3sAWL48yMUrgjzf+RJfa/1myrEiIl9e+DnmeucQCgbZ39pKd3c38+fPZ+rUqfT39xtiM6bJWhRF++/kbckkNxmaro8q0G48MDAwgA5MqqxEwHAFjis5SMpKsuMS7I/0oQA883moE4QcADY5iFku5XKkEgoCixcv5rlnn6W9vZ36xkbb0pXe90KDg38lB+OKpDTG5JfKIcu0nzrF4MAAa9asKa+8qnleS2ZTVRQSiUTuypBlRjweRwdbKlk3xVYsJA+tKepqSRHNYwpdJxAIMH36dCRJSllFCYJAdXU11dXVLFi4kFgsRmdnJ4FAgOPHjnHo0CGjWFRDAw1///c0fPnLVGzebMQoPPMMQiSS8ZJCIoHrmWdwPfMMustFfONGIz3y6qvB5xu2/5LaJfzz5V/jYM8h7jt4P5vObrY/ExFx6k4EVeTJtid59uhzbJx6OddPfx3VrqqCJyx7QjRV11TTz+v1eOzy2ukxDtbfxcY+WKTW43bj9fnYsy/VqlI9SWH53C4GX3o8Zfszp99BMDEZWdZ533tDnFJP8ak9n0NLqwDwyfkf5+qpV6JrGjt37SIcDrN8+XJqamqGNPt13dAtGaGtgkUekkiE1Xet7a8G9Pf3I2KYrKORiJFlVUDwcCmhm2Q1/d23no3lvrUsB1Za40S414JpMXa5XMRiMUKhUNlSQ6urq2maMoW2o0epqa1FtqwU5hxjveuWm24i48ImB6b7AFLNO4IgcPz4cbtYUDnNX9aZJVHE4XCQUBRisdj4koNEAl3XkR0OoxZ5HmZna6U5HmuBvv5+IpEIDQ0NSJKEoihZV8gul4vp06czffp0NE2jr7eXgJkq2b7dWNVPrq6m8YMfpOHTn6bhlVdwP/YYzj//GSGLVUeIxXA99RSup55Cd7uJX3UV0ZtvJn7VVWC+/NbKf7Z/Fp+++FMcn32ch488ys4Ow5KhoA6RLh2eP/0iL53ezJrG1Vw/4zrqfHX2ZJa8Gra3JU126dA0DUUU7cjsscDmtGDENavDxHf+BJJKY8dVN4+ffD8At90WQpjczruf+cCwolfvnvtO3jjz9cTjcXZs344ObLjiCjvdS0+yotjWFOvvNDeLtX9KBVTT6qKZx1r3UxJFJNMEbhHNiYSBgQEqKitxOhwGOTAFdcYs8DRdvyTH/bGsBgKGrgsmYZ0IrgWrDT6vl1gsRjgapaKiouSBiZYK74IFC3j2uec4c/o0kxYvTm9MSpsmMi58cpCUd2vhxMmTxONxZs+ejaqqY6Yq53Q6icRiRONxypu1nB2KWYRKx7CgQGGm1mQz4lhZEAKBALIsU1NTY69g1TwCtERRZHJNDZNrali0aBHRaNQQYOro4MiRI7QqCi6Xi4Z3vYspH/sY0/ftw/fkkzifew4hS2yIEI3ievxxXI8/jubxEN64kcHrrye4bh1a0qqu0dXI3y15F4FZAZ44/iQvndtMnDgqGjqa/fvRwOM8GnicK6dt5J75dzHDX5i6I4x9toKuw9a0eIM1yzuI7X0wZduzZ95Gf7yB6mqVG+44zd+88B66Y6lpp7fPvJUPtLyH811d7Nu7F7/Px7pLLzXS90wIgoAgSSOmxulmXr2WRiR0s7phQlXBjCDXNI30HjTRSEN/fz9VVVVGO2QZTdfLn7WQNHkVMi4oioKAWV7dJGqSJJFIJMaVdCVPwm6328gY03Xi8bhtZSsVrG/pcjqZ0tTEiRMnmNfSgsO0GicjpQjfBMUFSw40TTMCZEzTlkUA4vE4Rw4fZsaMGbhdLiJmestY8DiXy4U0OEh8nExKOkPaBrIs25OJ5WcuhM0mv/DlvnfnAgHqGxrswRqKe7ncbvdQsShNo6enx5Z1PnXqFFtFkcn33suU976X2a2tTHrmGVwvvoiQLpplQoxE8D/xBP4nnkDzeglu3Ejwda8jdvnlSF4vkigyv3Ie85vm8abQG/nVwQf448k/DZMHBnjm9DP8+fSfuXzK5bx5/l3Mrpqd9/ca63LNp9odnAukWihWeP8X+ocsL4rm4NETHwTgre/o4qM7P8ixweMpx1xav5avr/oyx9uOc6C1lZraWtauXVu09cPqx5IokuKZ13Vc5ligqCqqmXKnqSqKSRSSfyYEadB1BgYGjGwdDCKvJBIkykUOLFKQFmSYLxQr3sDysVsBzaYVrJQlmQtBcpaAIAi43G7USIRYGcgBGCQpoSjMmjWL06dPc/jIERYvXmwvpKyx8q+Wg3FGpniDQ4cOoek6ixYvJh6NGmmNTmdZAlTSH7/T6TSCEuPxMTUPWvECmq4Tj8WMAMn0AXgUcRfDpFdLaFWIx+P0dHVx8cqVAPZzSiZ+xUAURWpra6mtrWXJ0qUEg0HOnjtHZyDA/vZ2dnu9uN/wBhre/GbmHjxI0+bN+LdtQ8hisRDDYSoff5zKxx9Hq6wkft11xG66ifj69WiyzBRfE5+4+KO8ed49/PbIgzxx8kniWqp1Qkfn+bPP8/zZ51nXuJZ75t/Ngur5I36XsVZITM9SqK2JM/X8f6Rse+Hs3fTEpjF/QZRHPR9lx+lXUj6fXzWP71z6n7QdPMLBQ4eYMmUKF190UXncImmxF5nedcsVUQxpkCUJWZJsmfRSIBgKoaqqrdZqFWJSSinBnpTRommaTa4KP41h0dDNRYcFQRAQLZKg60MkYQwtCenpw9aCsByB4YIgEDXP6/f5mDt3Lm1tbcyZPTvJpTiknjjRcUGTA1uhyiQHkXCYtqNHmd/SgtfjQRAEIpEIkUgEn99f+pVX2mTrcDgMC4auE0+v71AGJPtgwSBLimr4vocJMZXguydHvpeKKHR0dKAD9ab0sR1QZgZAFZP3bk0EiqLYP5qu22RBU1X6+vro7e2lu7ubU1OnIr7xjTS85S0sOnyYqVu34tm2DSHLakgcGMD94IO4H3wQraqK2PXXE7npJmJr1lDnqeUDy9/HPfPv4sG23/Ho8ceIqsMtSZsDW9gc2MKq+pW8ef49LKlZnOFKaZHjY0UOtqbGG6yavQdBGcrd1nSRh098FAQd+ZbP8PDpp1L2b/Q08KNLv8Oh3Ydob29nbksL06dNy1jJrxTIhzyNijQkEUZZFJFlGUmW7Qm9GAwODqKDXepckiQjA0DTUExhnaKQpGehJZHr0fQda0wRTOtKMuyshSQRpXLrfeSCy6qvk0iUPGshHo/bfcXl8dDS0sLxEyc4cPAg8xcsANIWUBMcFzQ5sOINrDTG1gMHkGWZFlMJ0e1yEY/FUFTV8EGVOhI4bTUumlGzsUSCaDRaNnKQScwGzEBEjHS0dKuFkDZYjBYZiUIRCAQCVFVV4UkyAVoZC0qe5MAyJyeTgfR7Y4mVyLKMLElUV1czZ84cBEEgGAzS2dFBoKOD52bPRmtuZvLrX8+SY8eYvm0bvp07EbK87GJ/P57f/AbPb36DVl1N5LrrCN90E5NXr+bvlryLu1reyO+PPsRDxx4hrAxPsdzeuYPtnTtYVruMt8y7h4vqlqc8Iy3pumNBDnR9uDLixf5fpvy/KfAGOiOzaLzj2/yu86cpn/kdfn6w9tsc3XmU3p4eVq9eTYXfbwezlRuFTkz5kAZFVVHNIFnFKmZmxqxIJlmQZdl2SeSD/v5+nA5HSvaJLMvGNRKJosiBbgVtloAQJCNT0LeNDNfQxzCtNP1ZS5KE0+EgFo8TjcXwl4gc6LpO1MwCsyrcupxO5s+bx/79+5k+Y4axILMsB6+CImAXLjlIiliWJImBgQFOnjjB0uXLkU3TpSAIuN1uwuEw0WgUp9NZOutBlgHI5XIZojVlMGulWwrSETeFj5yZTLdmXEY5GH3yHS3k7LqmEQgEaG5uTtkumzoV2UxzlpkzYRIBq+BVSpvMwdb+yeFD9vv9+P1+Zs+Zg6oonO/qoiMQYMekSTw/fz6+229n6dGjzNqxg8p9+7J+H7G3F9+vf43v179Grakh8rrX4bzhBt6+6l7unPsGHjr2MA8dfYiBxHDBpj1de9jTtYdF1Qu5Z8HdrK6/xLagWN9nLMjByVNuOs+n9p+L61JFjx4+/jES8x7m+covpmyXBZl/X/HPnNt5lngsxvr166mpraXPlLwuW2BwMoGiNJNSMmmwKL5m6qooioKqKChm3JMaj9viZ6JFFkw3RLay8AODg1RUVKS8O7K5sChELXFYCmIZ+kjCDHDORKKsLKf08dD+r5xp5JDRjeF0OoknEsTj8YxpycUgnkgY2jG6bltlBYzKjUfb2jhy+DCLlywZ+t5/JQfjB11VU2IO9re24vF6mT1rVoqp2+lyEY3FUBSFWDSaEiU9qutn6fQWASk1ORhJCU81zZ8CZLdYlPlFhcKIQm9fH7FYjMa0Ylh2UKL5glmmXfsnA2kQ08hAsQFlkiwPFYsCgoODRkXJOXPYtmIF7t5eFh44wNzdu5l06FD283R347/vPvz33YdaX0/k+ut550038fprfsKjp57kwSP/R1+8b9hxrb0H+NzmL9BSNZd75t/N6jpDx32svLjbX0nND6/1nWNm1WH7/20dt9Dm7efcuveQ3hs/u/CTRPeFcTiddvGksVDhTGlFGfu4FYNgxU1YJFW1+qXphojH48STjpElybZaWX27v7eX2rTiYLIsI0D2lMakGIJyEwL7kiYhSo83SIYoCCkWrtQTGBbOcixMBMgYXOnxeAiZgkhWLYjRQNM0O9Db43INjStmcOzCRYvYtWsXM2bMwGU+079aDsYRCTPCXJIkenp6OHvmDJdccsmwjiAAXo+HwcFBYtEoTpcrK5svCNksB04ngiDY/qnRKp7ZA8EIsISPkrMU0lFoFbbRYiSi0BEI4HQ4qE6rdyAKAolEgkg0iqaqGV80iww4LDJQJn+2v6KCuRUVzG1pQVEUznd2ElixgkeuugrxzBnm7NnDvL17mXzsWNZzSJ2d+H/xC/y/+AXVjY28+4YbeOP1H+MPVWf4Tdv/0RUdXnXySH8bX972Veb45/D66bezuvGSsny/dGx/JVX+eVXTn1PmnvvOv4lz176FBKnk92+nv42qNj8Vk/ysXbcOp+nCSy/uUw7oVrDdGMMS30kmC6pJXi0Sq2kacU0Dc7yyLECDwSCzZqdmrFhWB81MzUw2U6foERgnGpPvaMUbWMQoE0a695arR9M0ezwsCVHIQgQdDod9zXgiMWp3cjweB11HEgQ7PRyGxrcZM2Zw5PBhQxjJLPL212yFcYTlBxMlicOtrVRVVTFt2rSM+zocDmSHg4QZC+Aro6ylvWo1pZSLldAcyYWQDkv4aKSKkOOlapaJKJw5d476xkZEUbStA3HTRBuORNA1zQ7ytAZOR5JlYKwhy7JdLEo3U9ECl13GMx0dxA8dYvauXczbt4+aU6eynyMQwP/Tn+L/6U95z9SpvOV11/HMisl8R99MR7Rz2P5ngmf46YH/5Q8nHuaWBbdw9fQrkcVyBfbBjnRyMOVZ+++/9G5g27rPkXD0pOzzusnXMv9sC43Tp7Bq5Uo7Bsg4Z5kzLdL683jm3AuCgGyONQBYsTCWK8JcgQ+aBcNkWWZwcNAmGJIkITscxBMJW2V1vCcZy8WRK7DPkuIeqa3J1oOc1oZ8keV4K6VRM927oyEHmqYZY6um4TGD3O3LW9cD5s2bx67du+kfGMDtdv/VcjCeSFjkQBA439FBy/z5OQcGj8dDIpEgHovhcrlGVYhppC7tcrmImgExxZCDXDr7mWAFMQmQOd4gCclSs+MFAcPy09fby7Tp0xkcHDT8mkntkmUZURBwu1x4vd4xE7LKF4IgUFVVRUVlJXPnzSOxdi2dN97IlnPnCO7axYzt22nZs4fac+eynkM+c4ZJP/4pbwBunT6dA5ct4nuzu3h+Up+9MhRNaaBzkQD/tvPf+eXB+7hr3pu4bsY1OKXSBrx2dNbS05t6ToscRAT4SlOARMWJlM9XeJexsX89C+bPZ9HixcPewXJnWhSTsz9mSHJ1YRZAUzWNjo4OBMEoYa5pGtFolGg0mlL23Q4uHGek6xtkQ6GBoFYtjEL1V1LOkeMzl9NppDSOshBeNBq1XSrpBCm559XU1iJJEt3d3TTU19su74mMC5YcKKaZbsCcWOrr63Pu75BlI1AlHicaieD3j0LDcITO7HQ6kaDguINsWQgjwSrPLElSyqotE8YzzQiMQSEej3Pu3Dl0XcfjdtsVAWVJwmEW/nG5XESj0ZzmzAkB8146HA6mTpnClKYm1OXLGbjjDnafO0d41y7qn3+eubt3U9M53DJgwdHezrIH2vkeMDC9gceWenhgocrZBi8I2LUKOiIdfGv3t7n/0P28qeVOXtd8A26pNFk4R483p/zf4DvF1IpjqMCHfZPpq0yNsZjpmMEb4rez6uJVzJo1K+M5x1qjYQJTBcNHLUkM9PVRWVVFVVWVsWAxC2vpqoqq68SiURRNQ5QkQ1htnFQcdTNTA10fcTFVTPssV4lY7JiU4xi32w39/UbRsiJTGu3MJzN1MROSx9NJkybRdf48LFw47guwfHDBkgNVUZCAnq4uHLI8zG+dDh2jqEwiHjciWROJEVfZWTFC0JPL6UQ0yw7nC0satpguFbNcCnmYz8Y67gAMy4Z13y2LT3dPD5IsU1FRgcvpNAhVcvEsTSNmraLGOJ2vEGS6l5ZVoaqqChYsIP7619PW2cnul1+m6umnmf3KK1R3dWU9Z2V7B/e0wz2Pw+nGXv64dBJPLPfS2jC0T1e0m+/u/QH3H/o1b5j7em6ZdRNex+jcZW3HZqb8v2rKsyDAv1bBTl+qK6FGnMw7xHu5as1GGhobs55zrMmBda2JsOpOh9Wmzq4uplrKiKZLwc7AMWNtBE0jYtZbEE13heV6GKt7qSgKIhjS1iMQdIHiMkUEhlydWgGxIyM9Y8lcaOimm7IYchCLxewCdlY9iWzt0DSN6upq2o4cQTVVOic6LkhykGx27zh/nrqGhqFOlUWUR8Do5C63m2g0SiQSwVGMiEkeg47T5TJ8ambkcq44gEJjC9Kh6TqKqW/gzPMFGIucc9WK2s6QmiVLEuFgkNqaGiZlqZ6WrJQIQ5NLelDWuFOFDCmU6X3Q6XQa8TDTpqHffjune3o4tHUr/iefZPrWrVT19KSf1ca0QJB3BoK8809wqNHJU8v9PLHcz6k6o0/1xfv4cetP+O2R33L7nNu5ffat+J2FW8U0DY6dmJGybdWUZ/m5H36blg3mwcP73e/itvU3UzkSKbfIQcEtyhMZ3puxyrEfCcnvttV/w+EwkXDYDlyzkBzcKAgCwVDIiKdgyNoWj8eN/WTZiG0ooWJjJqTXaBkJo5FRtrQRSknsXE4niUSCWCxWcJxZIpEwYkQ0DWeODDervbquM7mmBvXQIbq7u/GVKIWynLhgyQEYEpU93d1cdNFFQx/mUknDFEYyMwki0SjeAlMbs6UwJiNZDCkWi2UlB7b63SheBjtLwcyrzgdFm/FGgKKqtoUgPd1QlmWcDoed6tnb38+cOXOynssSlLG08i2yMMynPY5kIes9zNUHBcEoFnXjjXDjjXRHo5x44QU8TzxB04svUtHbm/XY+YE48wM9fPipHg5McfLk8gqeXO7ndI2DgcQgPz/4Cx5s+x23z76FO+bcTpUrM/HKhLajHsLh1AE0NP9Rvp0an4iExAcr/467NtyVV1rweFgOxiJlNxMykQGjOUN/d3d3owOT08hBMqzAW10Q8Pt8RkBjPG7H5ViWTwFsi0I5iIIVb5BvfNaor16A9SCf8cvldhMMhYgXmNJoxYHoum5YgXPEaekMCZX5vF7cbjcdHR1MnTo1r2uNJy5octDb22tI744Qb2BBABBFvB4PwVDI9mkXFM2a56DjcDoRo1GisRgVFRUZ21+KCTqeSEAeWQopKOHgadVziJqEKxkOkxA4nM6U9NGBwUES8Tg1kyfnPLeV1pXLZ5iTLGTZp9woZPXjcrtxXXstXHstfapK4MUXcTz8MHUvvIAvB1FYeDbOwrPdfOyJbvZNc/HEcj9PLfdzrjrE/Ycf4HdHH+LmWTdx59zXM9md+z4DbNuRygJqF/6K/2oanmL5nup38rcb35l3jYSxyFYYDyST+lxkIB1d5qoyl3qqJEnGRGm+Tw6TLLh1Q/gtkUigJBJouk7CzGwAw0XhHGWwtYXkFOJ8M4Ps2g2jeCbp9zHbe5QXOTAXIoquk8hTzl7TNELhsFH6WxCGxtVsmRG6bltLREGgvq6O8+fPj3idiYALnhz4PJ68TTjWqt/hdOIxfXrhcBhRFIuPP8gCl9OJyPCgRKuLlYIYaLpOwrQcFNL+UsQdKKpKNBYzCj1Z58W0EJgxBNnUKHu6u9F1nerq6pzXkGXZCNYqQDEuE1mw25cW0zHaCavU05IoSXg3bIANG+jTNHq3bUP7zW+oe/55PP39WY9bcjrGktMx/uGxbnbNcPHU8gqeWubnQfX/ePjYI9ww83W8seVO6r11Wc/xcjI5qGul/453kUi7PW+tvYePb/xIYQXFrH5epqDSjGSw9Bexx45MLrlC+lF3Vxe1tbU597EqRGoZrGZ21LzHM6QSGo+nEAVRknA5nbaLohhY+gZSgQHBJUlRNGGt9tNVEPN1GwmCgNPlQjOzQUYiB7quEzFTqAVdx+P1pgge5bIegOFWqauvp729nXA4nHHfiYQLkhyA0UF6e3upT443yOMY60G63W50TSMaixEOBhErKkYMWimkyztdLgRRtHNkBTPHt5TmfIsYyGY9+LxRZBt03SgoFYtG7cBCMAYQt9udtzx1d08PlVVVI64+rRVQIeQgHSl9I8ntkPws7H5RoFuirL5tUURYu5aBBQsY0DRqDh1CfughKp95BlcOonDRqRgXnYrxj4908UqzmyeW+/njst/x2InHuW7GNdw17000+VIVKVUVtu80rVsVZ+EtN5Bwpg5ut9TeyOc3fqbgSqPljDmwnuGw938UpM9+P9Njl0rwPeLxOH0DA8xOEz/KBEmSSJjaCNnGJZsouN2GSy8Ws2V+I5GILRnvdDhGzGJKh5qHvkEmlPI5W5YDO95o6IO8xzAr6ymeR0pjJBo16mnoOr709Okc10vWbqivq0PHKCg30XFBkgOL4QWDQRYtWlT0edwejxFJn0gQDIWoqKjIrZ5YwKTqdDiQRBFBNwp2uF2ukvv5rRTAguu/C4VVTtPM9KpYPJ4i7uF0OHC7XAWX4e3u6hoWkJUJlh9VNQvflFIFMX1CSSYNydtykYZs969UQVWada9FEXXtWrR16+hSVZzbtuF4+GF8f/oTjhxE4eITUS4+EeVTD3exfZabJ5f/mk8se4KLFl7D3fPuYkbFdABaD7oYHJTBOQhvvgkmpYo4rZ+8jn/b+I2iUkq1pIGzHMi0MLDy5zO+r0lWAOv/jGSiDO3t6elB0LS8+r4ky4im1cyVh9tTliRkrxe3KdoTN+V+Y7EYsVjMcPG5XHlP9lYwYqHvXDncR3bKYxELLI/bTX9/v22BzPb9o7GY4arRNLweT0EqujYBNosxVfj9dHZ2lkS6uZy4YMmB5depyzPeIBMEQcDn9RIMBlFUlWAwSEVFRckGMocphhQOh0teoVEzA5PyUUXMiDzYt6IohuvAtFCAMci7XC4j/7qIjh9PJBgYGGDuvHl5NNHIC7eqLpZLIjn9min/m7+HkQbLfJpp5VoiZEzhlCTi69YRX7eO0Fe+gmvLFtyPPYb7qaeQB4cXdAIQdVh9LMrqY1E+89B5ts05y1PLf0/o2mu5bdXfsGnLChA0eOOboGlXyrFLKhfx/Y3/jSQW58e2Ta5jGPeRHuQ7bDJJC2IdK3R3d+NwufDlobFixR0UmhIniCIulwun02krjlruh4Si2NUEHabMeyZopt5CIcGI6W0oNmsh6zmTrAhaAeeWJMkI7jT1JDKRg3g8bpMpt9s9fJ8RxkotKeYAjPLz586eRVXVv5KDsYau65zv7LRz5As9NiXoRRTx+XwMBoOoqko4FMLn8w1/cYpYCbqcTkKCQDgSGVGHoVAkTGJglYwtFNlM4lY0tFWsyoJspoG6RuHHBGP1pMOIwYgWHGaFxkSeK6hyIRtpyKXwlqlSZCFIJmQZIcvE1q8ntn49/V/+Mq5Nm/A8/jjuP/4RKRjMeIikw7q2COvaIii/v4/NLb/npal/gLlxaHkyZd/p3mn8ZOMP8cijKFZm3YNSTcLJfv+0GBI9jaxNNK2D7u5uJk+enJfpXRLFoRx6VS3YLZCcGqmpKjEzFVLTNCKmD97hdNqaLMmwJZOL1FQQgXJl+RfzTF0uF3FzoZOuWKsoylBmginAlo4R70CS5QCgvq6Oo0eP0tXVRVNaUbmJhIlLW0YBTdM4f/48k/OcYCxYebTpECUJv9+PgLGyDUciw/YpVKZVA0P2VxCG+ehLAcuHVpTVAIaxYVXTCEci9PX3EwyFUio8VlVUUFVZiTvHaiNf9HR343Q68w4itYjPaOIOyobkiS/5BzIGZWmmSdQKkkwOTk3+sU9vrZDyuecOB7ENG+j7xjcIbNlC9/e/T/i229By3GdZg8sPhXnrpu+BN1WUqVKaxE83/JCaPDIdcsH6DiP2G+u7mz+WfLBu/q1Z/1u7k5RWbJGCpOtMNLEsVVXp7u6mNg+XAgxZzQRByFiFtBCIkoTH46GyogK3222Y5zHGkMFgkFAoZC82APvdL2bRYbW9XEgOEMz3Oi6Xyxjb0+IOVFUlHA6j64YCZNbFxwjXSbcc1NbWIggCx3IUY5sIuCDJQVdXF/F4PC/f3TBkedCSJBkWA4wMg0gGgpAPdAxioOs6kunnkySJUChU1Pmywcp5LpocYIhCJRIJgsEg/f39RhVEM4XH63ZTVVWF3+crepDIhO7eXibX1OT9YttiSGaFu4kCPZuvGrIOXClbrEkwB4mwfttCK6Sl0EEq2bDO53IRueoqer75Tc5u3Ur3v/4r0csuQ3Nmjg15e/R3vLU5QGW3EShXI9bz043fY1ZFc/qXtn8nT+T2/Ujaz2qPlrZPyk+2Sd+8hyPdz/FKYywG/f39qJpGzQiZCsmQJAmxCNdCNlguh4qKCrxJ77WiKITDYYLBILFYjISioFGcSyH5WuWAltQH89VEcJmidLqm2bUWNHMxBEZ2iNvtznisDjldJFoS+bXaIssykydP5vjRo/l+rXHBBelWOH/+PAIY8rQFIleEucPpxKPrhopZNGpM7kkV1kaCPUAnbfN6PESjUULhcFY1wEJhKXcJ5J+DnI64WfnQypEGo1O7XS6co3QdZIOm63R3dTEvj3gDC6IoIksSOsYgNhoyVEqM1BtGk8mQHudgP4kMBCH5MwChvx+5rQ3p6FHkI0eM34EAOhCbNh0xFEIKBpHCYQTzmFCtxOrl3XjFFZxiFtfUXk1lr4+QO2QLHVmrohTLRtq1U8z85jZrAM/YnwrMDknHq4caGC4FSRSZVIB7UZYkYjBqy0EmWNoJmqoSSyRIxGLGhBkKEY5EjGDgUdSfKVsmT1ocjmZmguUanwVTryBqBmc6HQ676iswrNpiMkaiONb7YLmBLFRXV9OZQyJ9IuCCJAeaOTEOSzXJc0LLmP5kwuVy2QpZoWAQwe8fKsGa65wMJwYAXp+Pvr4+27WQrxRpLiSS0owKncStVYKiKLYp1ul04i4gkrlYDAwOkkgkCnYHybJsl72dKORgRIxSDAZzpWP/nWEXsbt7iAi0tRl/5xqQRBGtogKtooKOxl4ivm4EDfpmqpyOfI8f+IyAxm3nt/O+rr+jcncllRUVNDY10dDQQM3kyTlXhOlttNo/LM7H3HfUE0iOFd3EcioY4keTJk0qKNhZlmUjKNEs/lOO1bgoSXgkCbfLRcJ0M4BB5IPBoBF8XIQ7sRyLi0xZQJZc+UgZQi63m2gsRjQaRZYkNLN8ts90/WaFKObsZ7blIO3ZCOS2OEwEXJDkwO4EaabHfJAt7iAZHo/HrosQCofx+/05I/OzEQPAdi0omkYoFCqJ9UA104wKmcxVRSGSlu/rdrvtOhBjgZ6uLgRBGFH8KB2ywwFpAZLjjhEm/vSJzw6iy/B3tvMnWw7Ezk6DABw9imQRgRwKirnQM7WPwPxU9cNn5KEAxm69n00NL/O55v9HZ0cHJ0+c4PDhw8iyTEN9PQ2NjTQ0NGQ1xQ59hdT31FYGtT7PcpyViphMIlKOS5oMsr7LEyjmQDctZjNmzizoOEEQDDEkQUDRNBxljHy3BIOcZp0W0SSkltCZy+0uyKJYjrufS1zJSnXM5nq0AtfD4bAhDgXDtQxG0SYpPWC5ROnM5cQFSQ4sFD2p5bGq83q9tnTv4OBgVg0EHZM95mhLqV0LCXPVnw850E3fWrJSo9PpxOvxIJppgmPFcHt6e6mqqirYQmH7Rk22PyGCzdJ87DbMvpUccGjvluXv9PNKgQBSWxv6sWNIZ87gP3KEilGKqugOB2pzM92zwnQrbcM+X6y52c5QnM2fA89xe/Mt3LDyetB1+vr6CHR00BEI8MorrwBGidqG+noaGxupnjx5uDql+bvQ99Rym2QjESlZCUnvcjKREMhtIRxLhEIhYrFYUTFSkiyTMJUSS2F1zAWrmqAkSVRWVNipzJquGwuLWAy32523rknJJ8gRzmW5GDKNZ1bWhqqqxKJRqidNGtElqxsnzUl09GyWgwnQ70bCBUkOrE5Q7APIx5wpCEbRk8HBQYMgDAzg9flSUl10TOY4QjtK6VrQdN0OUMp1Hl3XjeqT0aj9UskOB16PJ2VyFsx8/bHozN3d3dTVZZfwzQZLwlVTVZQxGCSzIblOgO33T7cYpccC5IKmIZ09i3zkyJBF4NgxRNO0O1hRQdTlQiowmFV3OlHmzEGZMwd1zhyUlhaUGTMI7/sNwae/OGx/32Uf4a0HnuRh7Qi94tDA+qWd/8S6+rVMclYxqbqaSdXVLFiwgHgsRkdnJx0dHRw/fpxDhw/jdDgMi0J9PQ0NDYZsbb6ZCgUiJVUxfcJIeh8tX/R4k4Suri50Xc87fTcZkiQZqYGKAmVO5U0kFXMSRRGnKcEci8eJxWKouk4oEkGOxw09gBEm11KSg3zPlYkY6Ca5sV0QopgXwREY+T3WksaEFJiCTRMZFyQ5SJE4HcU5RhowBFGkoqKCwWAQJZEgFAyieTyG9DIjWwwslNK1YCmXiaKY0Qep64YqWiQatV8UyUxlyuavF8egI8ficQYHBpg/f35RxztkGdW05IwJOTAnfZsIaFqKWXukzIlhd1NRkE+fTo0POHYMMUdWjHUFIcez0Twe1NmzUebORZk71yAD06ZB2j2K7H4gMzFY/zF8a99H9UAfn2jv4bPeoaIx3bEevr77m3zjkq+mHON0uZg+fTrTp09H13X6ens5FwjQ0dFBe3s7YARk1dXVUVlZWXKNj1xITzm2Mh+SrQr2Z2NIiisqKwtWHbA0KQAA6DxJREFUEgUzY8CMOyg3EqZLwZG2eLCClOPxOLF43BCMC4WMYlBud1aXaynvbaH1GqwFoKZpRoyVqhqkwKqymM858rAw22mMmWIO/koOxh72Cq7ISP184g6Gdhao8PsN03w0SjgSQVFV3G53QQFCpXItJAcjpiNuqjEmB8l4PZ6RxYNE0RDYLyMs8aNCgxEtyLKMUGARpnygm0GZ1uSRPghlFTgix6pCUZBOnsRx+DDy0aP2j5CHvnvKNcz+ZZEDze8fsgaYFgF1ypQRixpFdv+awT99fth232Ufxbf2fQCI0y/lmuPP8VTCwwuOIcLyu5MPccuMG1nfcGnGcwuCQPXkyVRPnsyiRYuIxWJ0BAIEAgGOHjuGqii4TKtCY1MT9XV1hct9F4u0wX3Yk7Q+TycUJSYN3d3dxaVdYy4CTHJTjBhSvlCTqjBmIjFWup/D6SQWjRK3VBeDQVwOh5EumN4PSzQ5JmfnFHKMpWNgfa/Kigr6+vtLlhpqNMto11jFbZUSFzQ5GBUKiSYXBLxer61XEItGUVQVv9ebN0EplWtBMfUNkslBSgaC2V6Px4Pb5cpvkBsD02t3dzcul2uYQlm+KJkYUvJkkRYbkG+vsggFAPE40okTSG1tSEeOGBaBEycQklJEi4FWUUF80SLizc0IM2cSaWlBbWwsONAuvPs3BP/0uWHbfZd+GN+699v/C/VLSAge/iFaww75DGFh6G58bseXeOy63+OVR352LpeLGTNnMmPmTCLhMJ2dnfT29dHT3c2p9nYEYHJNDY0NDTQ0NlJVWVlU8GA+zyq9CmfG8+QjzkTxq+BYLMbg4GBB6bvJEAQBWZJQrWydMpGDuOVSGCEDShJFvF4vTlW1NRFiiQTxRGJYZoOVwjra8bqYrJZ4ImFUWNRN3Rav12iHSQ7yqXug6XrOVMaU4m0ZrK9/tRyMA0rB1orpcFbHD4VCKIkEg8EgPr8/L62BUrgWdIYmR4csoyoK4WiURFoGgqdAq4YgCEZwYhkDE3t6eqgpQPwoHZZanKZphRVhMleGdjbJaF7YaBTp+HGkI0fg0CGDCJw8iTDKlYhaXW24BObOtS0CWm0twYEBNF1H9vuHuQnyweDOBwg/84VhFg7vug/gu/SDKdsESea8o5mp8YN8MFrNv3h67M9Oh8/wn/v/m08v/2RhDRAEqiZNor6hAY/HQyQSocN0Pxw8dIj9ra243W4aGhpoamigrqEh/2DVPPpqPmbhbO3Wk/7OZH3Itxd39/QY8QYFiB+lQ5IkBCjpijcdSjyORmarQSZYhZ4s+WHFrHCbntlQCr2DQo63Yq3iZhlrh8NhjIdJhMUKNM+VFi0IQk53HqTGG4iCgJqswVBAm8cLFyw5EAVh1Hm/ha6WVXPF7q+oIGTWYhgcGMDn8+VlKvWM0rWgJmkTWIIeFpIzEIpCGa0Gmq7T3d3NggULij6HVcteSyRQRiIH+pBCn/V/wdcLh5GOHTOCBI8cQWprQzx1yliNalrRNevVujqDACSRAS2LyXmYCFIB6NvxK2LPfpF0hQTv2vfju/TDGY8575zD1PhB7khU8EdHiF3yUP/63yO/5KbpN7B88tK826Cn+WM9Hg/Ns2bRPGsWmiknHAgE6Ojs5OTJkwiCQG1tLQ0NDTQ2NFBRUZG1X47pmixNZ0JIc0XkGke6u7txezy2mFQxKJWMcjYoimIEJVO4ZLIsy/j9fiMewQxatDIbPNZ4NJrYMMj7eF3XDbevWV3R7XbbLlXLgiGbRZgUVSXniJ0HscwpDf7XVMbxwWgGTQsFxR3ouv3ygGFaq6iosDXJQ8Egbo8H9wgDgM/no38UrgVFUYxKa8mqhhkyEIqBgBEAVw6KMNDfj6IoRftdLciyTCKRMIowmduSc96HZQ7kCSEYRDp6dMgt0NaGeOZM9pVDni+92tRkZw1YhEAvIDjPXqUWSNzOb/0F2gtfHU4M1rwX32UfyXq+frkBPDWIkW4+Ha3lXt8Z4uauGhqf2fF5fnf1b3CK+a0uc62yRUmirr6euvp6lgLhUIhARweBQIADra3s27cPn8dDfWMjjY2N1NXWjklVznwwzBWRgyx0d3UZ4lGjuF65xZCSAxGLtexZmQ3xRIJYNIqq6wTDYWP7KM6br+VB0zRC4bCtHuvxelMzy8xnYo0hIwZ45vGOq1mCEZOvOZExMd6mEqNk6THk7nj2hJPheoIg4Pf7jQpnkQiRSARVVY2CQllehNG4FnRgMBgkGAoZhUREEZ/XW1LFQLFMbLe7pwehQOnYTEiOO0h2ExTSZqG/34gPMDMG5LY2xHPnCmtIhiA2ZepU1LlzUVtajN9z5hhqhMW6apJNlAUMrGdf/CnSln8eTgxW/x2+9R/LfS5BQJi2Fv3IY8zUHPxtbBLfc/fZHx/qP8KPDv2EDyx8T15tKSSV0evzMXv2bGbPnm0UKerqImAGNh4/fhxREKirq7MFmPKKXRmrIDGzkFE6FFWlp7eXxYsXj+r0lhiSKoolF0PSdd2WUB9toKggCEY5aFk2XAxmmWTLilCM1Hs+77aiKITMAkqAIVqX4Vq6ruOQZSKMLEmdEleUBZabx7qWvUgR8i8KNZ64cMlBKR5APqYjchMIj1nlLBIKGfKjmobf58saqFiMa0FVVYLhsP0CuD0eJlVWlnwFUS5Vr57ubqqrqoquA6FjmHJlU7TJSmkc6XxCT49tCbCsAuL58zmPGbEtgoAycyYJiwSYREDPMFmNpnfqhZIDXef4n3+Id+e/DycGl7wb3+WfyO8809fBkccAuDdexdOOEEekIUvVdw58n+unXsPcyjl5f4dC+6kkSdQ3NFDf0MCyZcsIhkJ2BsS+vXvZvWsXXp+PxsZGGhobqa2pydgXxm14Nt0QXefPo6kqDfX19j3QVLWocUu2xJBKnMprC4sxukJLyRDNLCmHLBOJRFB0nWAohMftLmgxk89IFDMlkTVAFkU8I8ghW/0kV2BzPk9H1/WU0tbDzvFXt8L4wK7GVQJ2NlLcQT4P2OV0IosiwVAIVVEYCAbx+3wZzaCFuhZisRihSMQwKeo6Xo+H6qqq8jDTMrHdrp4eGurrCzrGltq1fpvbHQ4HWiJBIpEYmhB0HbGrC8mMDbCsAmJPT4YzF9AGSUKbMWMoPqClBXX2bFSns2RpWlmvnXz+EZ6Lpmkcfuq7VO//9nBisOpv8V3x9/n3l6qZiJXT0AZOIyPwmUgt7/QHsFQeElqCz+74Ivdv/F9EIfeknywaVTRMC51/7lzmzJ2Lqih0dnRwLhDg7JkzHG1rQ5Jl6mprjXTJxsZUq0KxQYklwLlAAK/Ph7+iYuh5JsVKFUIUbDGkEscdKPE4OpSl2JrD4UCSJMLhMLFEgkg0SiKRMGIR8iCMuSy7duBhIpEx8DBXm2DIJZD5wiP3GTXJKpZOTFNEuiYwLkhy4Ha7URWFeDw+an9WtmOtFWq+Z5Zk2Y5DUE3JZa/XizNNYyDZtRAOhbJWltR0nVAoZMcXCIKAz+s1dMHLaLIqNeONRqMEg0EWLVqU1/52IGGWNjhkGf3MGRwnT+I+fXooWLC/f1TttOSFLWuAMncu6qxZkGmlU8AAXWy0dlbltTQoiQT7H/s2jW0/GEYMPCvfgW/DJwvqL4Ig4Jp9OZFdvwJgoebizWodv5Q67X12dO/k/qO/5t659+Q8VzlywCVZpnHKFBqamkDXGRgcNIIaOzrYs2cPu3ftoqKy0ghqbGw06niMh4lX1wkEAjQ0NKTc/5T3y1zg2NUFc5xOShJDKlXaseVS0Mk/S6FQiKKIz+dDjEaNrAZVJWjGaDlHuGZWjRHdqJxrla0vxCIhmfOFZq78M8Zq5enKgOzWlpjpSpnIuCDJwfTp09m+aRNd58/jb24e1bkyDd5W/mqhr5+YFKgYj8cJmwGLXo8nxc1guRaC4XBGchBPJAiFQvYE4fV40FSVSCxW9sqJpV5p9fT0gK4zOUexpeR84bQPEM+eRTxyBPnIEcS2NvxtbYiDg6Nqk+50oppiQmpLi0EEZsyAPAdInQJM1sXezzzIQTQSYe9j32bGiZ9kIAZvx7/x/xU1iTjnbLDJAcC7Q27+UtdAe2yovsO/7vsPrpqykSnepszNT16ZlWtyFgQqKyuprKxk3rx5JBIJOjs7CQQCtLe303bkCIIo2rEKjQ0NIwYNlwqDwSDhUIjGhoYczU9dYVrW0ExEIUUMSdOKdtElw1ZbpfAshULhcDiQZdkWJYqYWQVu0y2bjmxvTCKRIBqNomoaVlXFQtoumit9zRR9ynRkPu+3HW+Q4doCRpbKsosvzrtd44ELkhxUVVUhOJ10dXXRPEpyMCyPOceqNV/4fD4kSSIaiRCPx21TmsvlAkHI6lrQMaqGRc0URUkU8ft8yLJM/8DAMPGjcsCWCy4R+gcGcDocwwLIhhECTUM8fdpwDRw5gmhaBIQc8sL5QHe77foCdozA9OlQbPxDEaSx2OtAdnLQ39dH61PfY3b7/yKQaiL1XPw2/Bs/VbymRNU0pMlzUHuOAuBG5LPeVbwn9pi9T0gJ8/lXvsyPLvtuxuukmNFLTA70LLLlDoeDqVOnMnXqVNB1+vr7OXv2LOfOnWPXzp3ouk5VVZVtVZg8Qgnq0aAjEDCISZ7utJR6HUMbjewE8x5KphiSZhZHGi1KFYg4EgRBsCXafT4fsViMWDxOQlFQQyE8GbKtRHN1b0GzCEVS8TW/z1dUVUVZkgx1x0QCt8s1PL5npDg0fai+TbLlwFpoRmMxgqEQs2bNKrhtY4kLkhxIZhpU5/nzpRHZSDPTjVosB+zqZVbebTgcJh6PG0qLGVwLiqoSCgZRzBWX21QTtL6fFV07FnUFslU2KwbBwUEqKiuBJEKgKEinTiG2tSEdPmy4BY4eRUjSbSgGms9nBwjaWQNTp44oL1xOFOumyUUOAoEAbc/8mJZzvxhODFbci//Kz4x6QnbOuYKISQ4AVpw7yZ3zb+PBk3+wt/0l8AKPtD/OrTNuGna8NbCXRVY2n3MKApMmTaJq0iTmzZ9PPBYzrAodHZwwS1A7HA7qzaqSDQ0NuEYoQV0IAh0dRvplEZN4yrNLIleiKBpiSJrGaJ0AY+FSSEZyiW23221YESIRw30aDuNyOo0sLPO7WpkuVq2YmBkboZvS9c4kJcZCIcsyglkCXiuC7FtjsWgWhLOgm8Sis6MDSZb/Sg7GA5IkMXXqVA7u2kU4EhmVbyc57iBlNVsC87okSVT4/cTicaKRiF3d0eVy4XK7bdeC0+UibK6QLUac7I+zUvdEUSybtnoySmU90IGB7m6aIhGkRx+1swbEY8dGLS+sVlQY0sILF9oBg1pTU9n9ywXflyL7UDYtj+PHjnFq0/0s6LhvODG46M34r/pcSVbqrlmXE3n5p0PtiQf5+OSr+EvHS5yPdtnbv7rrn1nfcCmTXaluo5IEI5YCZjucLhfTpk9n2vTpoOv09vbasQo7duwAjGJRpYhVUBWFrvPnWbxkyaibn/wuioIAolh8emwSFPP9EwWhZFkKuZB+J2VZxu/zETWtpzGzborX67WtOZYLQTNFxxyyjNvrLcpakH5ta8FVzBO2NBKyEb+uri4ampoMEa8JjAuSHMiyzJQpU9ixeTOd588zc8aMUZ3PClCxsyAorQKby+nE6XAQiUSIx2JEYzGDuSsKkWAQWZaRZRmnw2EE76Tn0OcotlQWFEuKYjHEY8eQjhxBOHIE6fBhbjp6FGGUg5lWXY1mWQLM3z1OJ4quU1VRURITa77IR68/Zf8iSeYwASRdZ9++fXTv+gMLOu9D0FODIj3L34z/6i+UbDIW/fXI9YtROvfb29ztO/j8RZ/hQ1s+Zm/rjffytd3f4F9X/3PaFygujXEkFGyFyXQ/hKFiUQsXLSIWjdLR0UFHRwdHjx7l4MGDOJ1OW1Ohob5+WGBxLnR0dqKpas54g2IgmSte1XSrCFDUyheSXApjYDUAMj4H0azTEE8kiEYiqJpGMBjE5XKhmGZ/62l7PZ6StdUK6s4khJSP29CyHKSPx5ZyZndvL6vXrStJW8uJC5Ic2BXCvF7Od3aOmhzouo6enlZU4jQUQTCKf7icTqPCo2lNiMVihIJBpkyZgjvLAJQwZZPHpFSx0diRzeGRCOLRo0iHDyO2tRk/J04MIwKaqo5c3CZ5/9pa1JaWFDKgZ1BWlINBNDOeYyzJwVglJyVrBKiKwo4dOwgffpqFnfcPIwbuZXfhv+bzJV+lO+dckUIOEqe2cf1lH+baKVfzp7PP2Nv/cOpRbp1xM1c0rre3aVksH6NFoW4agZHTlV1ut10sStc0enp6bKtC+6lTCIJAdXW1raswqaoqp1WhIxDA6/fj8/sL+WojIrnGQrrWSyGxMLqmEbcKuI0RORAgqzXW6XAgmymPkWiUgcFBHA4HDlk2rKz5FpDLE5Ip6ayaC0LbEiHkUU9B02zLTSaLSyQSIRKNTniXAlyg5MAKzmlobORsIDD61J4xNH1KsozX4yESjeJ0uYjF40M6Bi5XxhfciioeM8sBpL7IoZARH2AGCopHjiC2t4/4IgEZ1QQtaI2NBhGwAgVbWvKWF3Y4HCTManDuEvqKJwqsmI94PM62rVvh7BYWnr8fQU9d7biXvpGKa7+EMILmQDFwNV9GeMsPwSIjSpT4qS18YcVn2HJ+G4OJoayRz73yJR679iH8Dh9QvpiDYmJhCmmBIIrU1NZSU1vL4iVLiITDdHR20hEIcPjwYVpbW3G53TSYsQr19fWpAX26TqCjg6amzFkco4EoinZ5dV3ThgmtZQxqzICEoiCY5xsLl4KFXMTOVjw1J9+Eoti1EUpNeiVJQhRFNKvSpfX8zDbkupqSpIo4rF2CwPnz55FlefSB8mOAC5IcwFDcwZ6XXyYUDOIfhX/H0isfC9EKRVEIhUI4HQ7q6+oQgXA0SldPD5WJBF6fD1cSm7e0wgWy+7hKiv5+2y0gHDpkZA2cPTvq02qWvPC8eTYZ0EfxzJwOB2FBGLo/YxR0WEwPSY+8zus6ps7F3r178ffvY17gF6Clxmm4l9xJxXVfKQsxABA8k3A0LSNxdqe9LX78BRrmbOT/LfsEn9nxRXv72fA5/n3/f/H5iz5tbLAm8XEMBrUxisnF4/XS3NxMc3MzmqraVoVAIMAp06pQU1Njxyrouk4kHKaxsbGEX2AIopnuqGpaSvxRSpzQCC6HscpSSEem4HHNquZoVpZ1OJ043W5UVUVVVSLRaF7iRoVCNtMZEyY5sEjBSG7AkeINOs+fZ9r06RNe4wAucHLQ1NTE5miUzvPniyYHmj5UuKdU4iLZkDD1C8CwAvh8xiqru7ubcCSCz+cjODhI3Ok0shpE0XApMHKd9WIg9PYiHjpkxAccOYJw+DBiR8fIB+aALgho06ejtrRwyuOh3efjorvugny08AuAKIpIZnBWQsldfrWkGCPVs57eXnbt2kVt/Chzzv5sODFY/Hoqrv9q2YiBBeecDSnkIHF6B3pskDc2v4FHTj3OlvPb7M9+2fYrbpl+IytqLiqLABIMSacXgmLIWcbzSBK1dXXU1tWxZOlSwqEQHWaxqIMHD7J//37DTC8IKGb10FJb+yRJQlAUNFXNqcuhY0x0llvF3m6+L7qpKjiWSB+/4vE40WjUGHs1DdnhMHQPBIFEIkEkEjHiDnRDGbaU458sy8QUZSjzIHkOyHGckiGF0YKOUUfm8mXLStbOcuKCJQeyLONwOPBXVnK+q4vZs2cXdR6LEFg1ucs19McTCcImMXDIsu2PrKisZGBwMMWcFYvH7bRHtRQuBV1H6OpCNAmATQS6ukY+NtdpRRHNVBXUWlqMYMHZs8FkzQf/8hcjkKvExMCCw+FASWL/Y4GiCGSBQYnt7e1s37GDqcIZmk/9D6jxlM/di++g4vp/KjsxAHDOWEdI/M4QOdEUYic24Z5/PV9d+UVu+uMdxDQjBVVH51PbP88frnnQzqMoKTUoghgYjSitsJcFr8/HrNmzmTV7tpGh0N3Njh07UBWFrVu3IoqiUYLaFGDy+f2jnuCsdMZ8MxZ088ca2xKJhG2FlMbYqmN9c8sioJqphJaKoizLNpGxggbD4bBdWMk7Qt2EQiA7HAimO3d4QzP3FzvWg8yWg+DgIPF4vOi5aKxxwZID6+FMmTaN02fOsJrCB6JhA73VKUo8kMRiMSJmqqLTtApYkMwXQ9U04vE4tXV1hrKiohAOhwlHInbaT17QdYSODsTDh43YgMOHEUpRZ0CW0WbNsrMFNEteOIe/v39goKyBOU6Hg2gsZptJy41iLUt5H6HrHDp0iNbWVmZ5uply8PvDicGi26i4/msI4tj4igWXD8e0VSRObba3JY49j3v+9cz0z+Ajiz/Av+z9d/uzo4PH+P7BH/LOGX9jHF/KCahMk3wpIMkyk6uriUajLF+2jPr6egJmBsT+ffvYu2cPPp/Pdj/U1tUV5SaUTKXEnLUB0pDscrAtkWNsNQCD0MRiMSLRKGBYMSzNAjLEI1jWVasUczgUwpshm6sYWMHdVjpj8rUtd0z6VdRc8QYYLgWn282MUQbIjxUufHIwZQpb2toY6O/PWqcgG7RMg72u22IWBUPX4cgRY+U8fTpg1BaImi+D0+XCm8EXVVlRQSgYJBKJoKkqlZWVRhaDWVshGovhMlfGzrTgJ+HMmaEgwUOHENvaEAYGCm978tdwOtHmzBnKGJg7F7W5OW95YYB4LEYsFrMFkMoBWZbtVZSiqmMaXFUI8ulJmqaxa9cuTp44wZK6OFXbvwVqqiiUa+GtVLzun8eMGNjXnbMhlRyc24MW7kH0TuYdLW/jsfYn2d/Xan/+g4P/w+WTLmO2b9b46xyMITo7O9F1ncbGRjxeL3P8fubMmYOqqpw3BZgCgQDHjh1DMl0UjSZZ8OZJ/q04A62IAkyKohjCP2CPJ2MBzVz4xOJxFFUd0izw+WzrhZDF9SNJEj6v1yAImkYoGDTSvUdJOq35QzXbk1L/gsyxB9lSGC10dXUxs7l57Fyco8QFTw7q6uqImprqhZADyyeXDEvbvKi1SXc3fPvbcNRUlbv7bsJXXUXcVP1zu91Zo+odDgdujwdFVRkYGKC2thaXy4UoCHbao5pIMHj4MI7Tp/EdP47Hcg+YropioXs8BhGYNw+tpQW9pcWoM2DeX13Xi/LXDpquknILgciyjGaqvZWbHBS7ZhUgp0k8kUiwdetWus6fZ9V0EddLX8tADG6h8oZvjDkxAHBMvwTB4UFPWFLWOvHjL+BefBuyKPO1VV/m9c/chWpmNSR0ha+0fp3/WfW9ksYcFBswPFb0JBAIUFlRgSfNjSZJEo1NTTQ2NaHrOsHkYlF797J7924qKiqob2igqbGRmpqarGJnVo0FzfTTF2KZsYL+XFb8kq6XNRBbNS0F1nU1XUcSRdwuV0q8g5ak25AJkiTh9/nsejPBUAif1zuqAG3LbaFrGglVxZk24Wu6bvRd896MVKJZx4gTWnHJJUW3aaxxwZMDURRpmDKFYydOMHfu3LxWKjo5BhpBGK55MBL27oXvfheCQXtT+I9/JL5uHYjiUF2FHKioqLArGFZXVuI4fRrx0CH8x45RdeIEnqNHiQlGUZaIIBAHPJqGJ4/cXAu612uTAK2lBW3ePPRp0wwioGcufpQpqCkfDA4OIgD+Eud6p8PpcBA3Szh7ypzSWKgAUurBmftTJBxm06ZNhCMRLp3rhWf+AZRoyj6uBTeNGzEAEGQXjhlriR991t4WP/Y87sW3AbBo0gLeNe/t/ODQj+3P9/W38pv2/+O9S9415u0dF+hGFcbppsUwGwRBoKKykorKSlrmzUNJJDh//jyBQIAzp08bJaglifr6ejtWIZlsWHUKRNO1IOdJDnRNIxGPo8GQoJOQWiGyVHVDFFUlluTu0zUNSZbxuFzIsjys7LQoSSOmqIqiiM/vJxwKGRaEcBhvhpoMhUCWZRKJhBF3kC5olLZvrhLNAO2nT6OoKvPmzSu6PWONC5YcJBciWb9+PS8+9RSnTp1i5syZIx6ba6IrKDBR1+Ghh+B3v0vZHPJ6SWgadHfjbW7OXZpUUeDMGTzHj+M/ehT9yBHE1lbc/f1oHg+yx4MzHsc/OIgXiHo8RDweVCDo8RD2evFEIniiUcSkF0yvrESbO9cgA5ZVYMqUjKllIxWbstOiCiBMg8EgHjPjopywVgCKopQ/pXEUPu9MEfN9fX1s3rQJQRC4fF4F8Sc+MpwYzLuByhu/iSCO76vsmr0hhRwo5w+hDgSQKo2UvQ8ueh9PnXmaE8GT9j7fbfsht8y5iWm+qaVpRLEr3DFwbfT19RGNRgtOYZQdDpqmTKFpyhR0XWdwYMBwP5w7x65du0DXqayqorGhgYbGRmomT0aUJIREwnAt5Dk5xszVuyxJmVfcSe+3VeypUCQUhZhZs8BagDlkGVfSJJ7xCeb5XEVBwOvzEQmHUVSVsBmkWCxBkGWZuOlqydws3baw5LIaqLrOgdZWmpubjaJfrxJcsOQAsMlBfX09U6dNY39rK9OmTctpbsqnG+alwhYMwve+B3v2pJw75PejmJ3VFwjgaGkZOiaRgPZ2OH4cTpwwftrbwWTSfqeTsCwTlWW8goAmSei6jmSl2wDeSARPJELM7SZskYS6OoIzZ+KcORPnnDmI8+ejNzTkHBSt75fPQJBcVS1fDAwOUlnGeAMLlpCLJUddTn/fqMyvacTiXCDAy1u3UlFZySUznUQe+QAoqRUoxVlXU3nzv407MQCQp1yE4KpEjw3Fs8SPP49n+ZsAcEtu/mnll3jLX95ufx7VonzulS/xk/U/GH3sgWXZKjIgtNxpyoFAANnhoCaDmme+EASByqoqKquqjBLU8TidnZ10dHRw8uRJDh8+jOxwUFtbS9WkSXnLOuu6TtwsXJQz1iBJlTP5/5HOnVAU4rGYUTHR3OZ0OHA6ncMmU0vrwHoSgmkNzReiqTQbNmvVhMNh3B5P7gVYFkiiiKDrecVv5CrRfOLECULBIBs2bCi4DeOJ8R9VygiLBCiKwrLly/njk09y7NgxWpIn5DSMNMDnNQEcOwbf+pYRZ5AEixgIuo4vGETeswei0SEycObMkDhMBjjjcSJuN6rbTczlQrNcJ0nHaLW16C0tSC0teOfNIzZrFmGvF0VViZsuBqfLhVtVszJqXdeNdgj5l9PNJGCSCwMDAzSVSQgmHQ5ZtrXYJ2owULLr59ixY+zevZumxkYumiIy+NB70BPh1P2br0K68isTghgACJKMs/lSYoeetLfFjw2RA4DVdau4e/YbeeDYb+1tL3Zs4qFTD3PHzNtG2QBhVBaAcgdGBgIB6uvrS2q5cjidTJ02janTpqHrOn19fXQEApwLBDjX2krr/v1DJagbGqjOUoI6kUgYJdEFIT8J9iRXQzaCoOs68USCuFnrwdIIcLlcOJ3OnBZDkaGxpBjCLQiCrTJr6SEIFF4nIp86OpZyY6YSzWC4UA4dOMC0GTOYNm1aQdcfb0yMkaVMSI44rZw0iebmZg4eOEBzc3PGjpJ3N8zlZ3/mGfjFL+zVvoWIx2MTA38waKz2t2wxfgqAOxol4vMRDoehpgZ15ky0GTOIWTEC1dUp+zuAKowqa9bLEovHicViOJxOPGbpaAu2b6/AwVIwiUc+91A1y0+PVVUyh8NBxPRxlnOFOKqwLUEATWPv3r20tbUxZ84cFtQk6P+/dw8jBs4516Bv+DLiBCEGFpyzN6SQA7X3BGrvSaTqIVfeJ5d+nD+ffY7O6Hl729d2/wtXNKynxl38qnq0KJTcFoJYLEZ3Tw8Xr1hRpitg13eorq5mbksLvb29nO/qYqC/n+PHjnHo0CGcDsdQsaiGBtuqEEu2GhTybljuRlG0SYKmaTYp0BiyPFqkIJ8AVLsk/ChieARBsGOMEubYZ8ki5/fVhqxQI7XBIgbpJZoB2traiMRiLFq4ENerQBUxGRNrdCkxksmB4HKxcOFCTp06xeHDh1m8ePGw/Qsu2JK8IR6Hn/wEXnpp2L4Jh4OY+SJ6wmHbDVAQ6uuhuRm5uZnIpEn0VFcjV1XhcrnQqqpQR4jMlR0OKhwOFEUxSIIppJSIx5ElCZfbPer0pXyL3gTNwMxypjEmw05p1HXUHBaTUWMUbgVVVdmydSvnzp1j2bJlzPAO0vfgu9ETqdkmzrlX47vhXwlF4hMuDVBuXIzgrUUPD4lnxY8+j2fVW+3/KxwVfHbJ/+PD2z9hb+uL9/OVXV/nP9f+a9HXHvXEXkaNhE5TVbShxFUYs0ESRRwOB/X19YaVVNfp7emxdRXa29sBmDx5MnV1dVRWVuL3+4syvVv3zSIFUTP7yorvsXQKiuqpopjTkjpy0wyCoGmaoYMQDuPz+fJ6b1Im+RH6hZJIQIZAxFg8zuHDh5kzZw7+iooJa7XMhtcMObCyAlrmzuXIkSPMmTNndAV5kgeTY8fgX/4FMqQNqqJI2IwmdsViOPMR5JkyBZqbh35mzrRVBCXA3dtLpK+PwVAIl9tdUFCfLMtU+P22ClksGjWYvqIQliQ8JkkoauLJc4AdHBxE1/UxrWfucDiGUhrHskBVHojFYmzevJnevj7Wrl1Lrd5B34PvRI+nEYM5V1F1y3+hagIw8ciBIIi4Zq0nuv8he1vs+F9wr7w3pa0bG67gmoareLrjz/a2x04/yS1nb+bqKRuLu/goJ/ZyWg46OjqYVFWFe4xWjoK5ghVUFU1VDQGm2lom19ayaPFiowR1IECgo4Ojx46RUBRcsmxYFRobaaivz9sEr6WlI+qmoqHbLKFcTA+1rbIlIGuWiyFoZjFEotGMWjLZjoXci0YrpgIY5pI5dPgwuq6zYP78EbPRJiIm1ihZYqSTA4CWlhaOHzvGgQMHWDFKM58dYf6Nb0A4nHGfsM+HLghIioInEhm+w+TJsHjxEBGYMSOnqiAYokj9/f32yr8YX6skSXi9XtwuF7FYjGgshqooBEMhIpEILqcTp8tVkDaAQH469QODg7hdruJWKkXCkZzSWKZBOjmQKl8MDg7y0qZNqIrCFVdcgS9yMjMxmH0lVbd8C0FyoltSxROMHIBRayGZHGiDAdSuw8h18+1tuqbx9/M+yrae7QwkhgIYv7DzK6yuW0mFowjSOMqJpFzEQNc0AoEAzWNcotfWO9A00t9gl9vNjOZmpk2fTn9/P30DAwz299PZ2cmpU6cAqKmpsUtQV1VUpPY1K8jQrA9h1T6QZBmfmY6YTbQoLwh5lIQvAKIo4vV4CIXDRqVWWR5x7LHdjyNkplmuSkmSUhYd4UiEo0ePMm/ePMOl8ldyMLFgkQNN02wtd4fTybz589m3fz8tLS12nn3eHTnT6jgLMQh5vaiShKBp+LKJEa1bB3ffnd+1TUhmHXPJ1BYvGKZwkZXu6fV6cbvdxMxCJ4qqokajhp9Olg2iMEIQUerpc/v1g6OsklkMnA4HIYwAoZQa7SVEoVN1V1cXW7Zswe12c/nll+Pob6PnwXeix4Mp+zlnbaDq1m8jyIZZ0ho0J5rlAECqmYtYOQVtYKhSZ/zo8ynkQANqXJP55OKP8dldX7K3d0Q6+Obe/+DLF3++sIuORl/CRCkno2T09PQQi8dpHCOXgoVkGeVs02A8kUASRepqamg2JX0j4bBRLKqz0y4W5Xa7aWhooK62lknV1XZwYXI6ojNNUyA5za9QWOcvJWRZxu1yEY3FiEYiSKKYNWvN6gv5WDDiVgVLWU6ZG1oPHMDhcNjB769Gy8EEqJdaPiQHiCQPqLPnzMHjdrO/dUjStajOaEXzZ9DKjjmdJEwfkz8UQsx2/uPHC78uGIVIJMmYzAupHWC+1OkTiyiKeNxuJlVVUWH6H3VdR0kkCIXD9PX10T8wQDQWy5laZOlA5MJAf/+YuhTAaJfD1Dy3TKClRKH959SpU7z44otMmjSJDRs24Og/Ss9v/gY9Npiyn3PWFVTd9t82MSjmWmMJQRBwzboiZVvsxAvo2lCcjRX0eseM27isfl3Kvr869hu2nd9e6EWLa+wYoP30adxuN9VpgcLlhmjF2WSJb9J1nXgsNix90eP10jxrFmvXrOGmm29m3bp1NDY20tXdzfZXXuHpZ55h+44dnDx1ingsht/ny64lkJzVUADKRXpdLhcOWUYHwuFw1gWhPVeYRayyvW2KothjYbIbpn9wkFOnTjF//nx7u6vMAmzlwAVNDmBI5zqRSNhpPJIksXDRItrb2+np7QUK6JBpHUoA+OpX4Q1vgPnzoaICVZKImDECIwYgnjhRyNexITscOBwOZIeDvnxqJZhBQyNNK1ZkcUVFBdXV1SnV0KyS0r19fQwODhpRzllUE7M3wxByGWtyAIbVqFzkIF/ous7BgwfZvn0706dP59JLL4XuQ5mJQfPlVN32HQTZlX4SYOxkfwuFc3YqOdDDPSiBfUP/mwOqJEl8ZeUX8Eipbp7P7vgisTR56HKjHBOSrmmcOX2aqVOnlld8KwNE0ySerQBTwnx3BUEYNrFrmkY0GiUcCuHxepk9ezaXXHIJa9euZf78+TgdDo4ePcoLL7zA008/za5duwgEAsOUDW0UoD9RbtrrNks7a7pONJObN72dOawfltXAaQqtWcfu27cPj8fDrObmoeu+CsnBBe1WAIMtxs3UPUsfWwBmTp/OkcOH2b9vH5etX1/8BaxOcfvtcPvt6JpG8MgROHwYx+HDuPbuzX18OGxoHRTYeTRVxWemNAZDIaonTcqqbAZktBaMBNGMNna73aiqSjyRIGbGJsQSCWKJhJEb7XTiMsmKVd462wsVDoVQNG1cyIHL6TTEUcrgWshnUNM0jZ07d3Ly5EkWLVrE/PnzUTpb6f7N36SIBwE4m9dTdft3hxODpGtNRLcCgFQ9A2lyM2rPCXtb/NgLOKYsB7BdfKIgMN03jY8t/hBf2/Mv9r7Hgyf4zoHv8/ElH8nreiWZUMpgjek8f55oLMb0cchvlyQJBAHNjAlI7yvp6YuappEwY3JUU6wIAF1HdjjwOBxUVVbSUF8PGHFc57u66OjooCMQ4Pjx4wiiSH1dnZEq2diYWik2D20ESAoMLVP2iCgIRqEms7JtLBZLMfknWwqsmieZFkCaptmqiLbVQNPo6u4mEAiwauVKOyVTEIRXpeXgNUEOBgcHjQqAyUEoosjixYvZvGULnR0d1I/CJ5jsrwyFw+gNDYhNTXhvvtlQPTxwwFBK3LcPzp5NPbihAYrwR2mahsvlIqEoJBSFgcFBqidNSt1J19EozQpTkiQ8ZjaDqijEzFRI1dRJj8ViRgqVSRSkpNrryRgcNFbH40EOBFPkRdd1YvF4SWstjBTtbhdP6upi1apVzJgxg0TnAbp//Tfo0f6UfR0zL6XqtszEACjaXDuWcM7aQCSZHJx4Ee+694AgDWv/21rewqPtT7Cnd4hI/+jQT7lh2vUsnLRg5ItNUDfL6fZ2fF4vk8bYpQBDAYkIRvEgIWnhoCgKuqoaP7pRqEg1JY2teCSnw4HD6cwqiiRJklExsqEBli0jGAwSMDMg9u7bx549e/D5/TSa9R9qamuNmCWTqFhlj9ORTHzL5T6TJAm3x0MkEiEaiw0FE6bFruQSQbLqQkhJctMasG//fiorK5k2fbpddwb+ajmYkHA4HIiiaDC95MhdXaepqYmayZPZu3cvG2tri67iZU0M0WjUZpN2Pq3TCcuXGz9gqCbu3QsHDxoFjW65pahBXtM0BIzMhT7TzD+pqipl1V5ovYN8IckyXlnG6/WimOw7bq44VDM9UhRFZDOYMVlSdDAYRBZFvGmV6cYKTqfTWCGVmBzkQigcZvOmTUSjUdavX09tbS2JzoN0//pt6NG+1PbNuJSq27+H4MjetoluOQBwzb6CyI7/tf/X40GUMzsRp64EGLIwAZIg8bVVX+L2p9+Eohvvj6IrfHrH5/ntlfcjjyD2pJtqnhMJqqJw9swZZs2ZM27PSTR95qqm2VUcdV0nGAzaZeIFUbR977Ik4UiyABYCv9/P3LlzmTt3LoqiGFaFQIAzZ84YxaJkmbq6OiMDor5+xPe/nKmlYLgCLNXUcCSC3+dDMmXWhxqR+R5Y6o/WeSycPXOG7q4uLr3sstSyzoLw12yFiQjLhx6JREgkEra5zcKy5ct59s9/ZtfOnVy8cmXR+f1KImG/cF6zo2VETQ1s3Gj8FAnNVA9DFKmoqGAwGESJxwmaqoNjOXnIsowsy3iTNNTjiQSKqpJQVaKmMpnT5cLlcDA4OIhvjMSPMsHpcBAWBBRNQ1HVkpVxzrbK6e3tZfPmzYiSxIYNG6ioqCBx/hA9v34reqQ3tW0z1lL9hh+gS7kHEjtgqiQtLw/Eigbk+gUonQftbbFjz+OacrHxeVrfnF81j/cseBffOfB9e9u+3lZ+duQXvGv+O3JfrAT9vNTvSkdnJ/FEYlxcChYkUSQhCHYsQMJ0CwZDIdB1PKb/3e102ouoUkCWZZoaGw35b4zU5UAgQGdHB7t37bI1ThrMfaonTx6WCTUWY5fH7UZTVbuKo8/nS+mXVtxGumVKSXLVWPEaAwMDbN+xg8amJupN14sFp9NZluyocuOCJweATQ5iioI7bTKonjSJlatW8fLLL1NplkktFLqm2SmFzjHI39fNwEJREBAlCb/fj9LbS//gYNlLIP9/9t48TI6rPBd/T+29z75ImpFGluRFkq3VljdZArMlNwuEBEggCZdcchOSkJWQEMKShCwkIZebjcCPJCyB3AC5gYsNxtiWN1m2bMuSLGvfl9l7Znqr/fz+qHNqqvfqnp6RhPt9Hj2SqrurqqurznnP973f+1UDIcRrpsKqHEzT9Gyadd0zXMrnUQCQnp5GLBKBbdtXxYyIEOIZIrG0iLSIxjRXrlzBs889h1QyiTvvvNNLA00cx/RX3wm3lBgM3YHOt/wTiByp2572ekgrAF5qIUgOrPPPQDGZCKzCYPlLN70X37n4EE5lTvvb/teRv8Prlr8WK+PlFUHXMi6cP49UKrVkLqCloMwV0DAM6LrujUmEeFE9AEokglQyuSSTVjKRQDKRwLq1a2HZNsbHxzE6OoqLFy7g5IkTkCQJvX196Ovrw+Dg4JKF4AnxmjRlcznP4dEwio/N3R9LPlcqRDRME08//TSikQi2bds23zyKPafXYxkj8CqoVgDmfxzTsvyBlw+rlFIMDw3hxhtvxMGDB3HlypXaO6swIOu67hlhSFJo962FwGbfgYcKE4kEIAgwDcPP6V9N8GhNMpFAV1fXfKkTpZjLZiEpCuYyGa/qgYU4qyqdFwEKq1qwGikBbRAnT53CM888g/7+ftx7770eMZg8jul/r0AMVmxH5098FoISLWrAVA3XQ+QAAJSRewAyP8RQW4d18TkA5ZEDAFBFBZ/Y+jGQwDfTHR0ffv5j13T5Zikc28aVK1ewYmhoyY5JmaCwUCggk81idm7Oa49sml6lFlvlyrIMLRpFMh6/KqtZWZKwfNkybN2yBW9605uwe/durF23Drph4MCBA3jggQfwyCOP4OXDhzE1NdW8kVJIcNE1AWCaZtHxKj1fjuP4YxV3Xd23dy9s28add93lL3iC97dyHeoNgFdJ5EBkuTSL9RKXeYMRXvMPYP369chkMnj22Wexa9cupFKpyjsruVmp6/q90COa1pRLXqOgrMsZvwEFQpBKJpFOpzE9M+OFx66RMJYgCFBVFaqqwrZtOLaNGAtnUubHblkWSKEAwnQKsiRBkuWGbKEbgcJsXR3HaVkEg98VlFK/edKaNWuwceNGj4hMnsD0V98FNz9dfC4rtqPzrZ+DoLAcbAiV9vWgOQAAIdoJefBWWJcP+NusM08AfVuqemFs6dmMd97wDnzx1L/52/ZO7MPXzn4DPznyE2XvvxZJw+XLl+G47qJ24aOsT4ht2/4fLuLj5kSCKEJiIe14IuGZHjGvj2vFQryjowMdnZ246cYbYZgmxsbHMTY6irPnzuHI0aNesyjWKKq/v39RVuGqovjdI8uiByi+x4KmR0QQ8MILL2AqncY999wzr6MoSUdcr5GDa+MOWQKoquoJ0RynyDGMBP7evm0b9uzZg6effhqvec1rQv2oPGogiaLXWIOpfRcT3HiDMKElpRTJRALZTAaGZSE9M4Purq5FPYew4MIzSqmXqwOQ6uhARyoFx3Fg2TZsy4LFFNSG48A0TU/QIwiQ2WpHkqSWEh5FlmHAWy20ZKBkg/Vz+/fjyuXLuG3TJtywejUAwJ46hel/fxfcfHELb3n5VkYMYkXbw4qxrnVyAHidGoPkwL3yIoiZq1m6+5sb3o+HLz+CK4VRf9ufHvxL3DewE32R3kU711Yp5C9cuICuzs6Wim6DZID/HTxXSqn/vHAdEKUUc/AEiYSQiqZH1xJURcHQihUYXrECjutiipUFjo6O4sLFiwC8NDC3de7s6GjNM0C9VtL5QgGmaUJRVS9lWzLe8N4sgOeZcurkSZw7exZbt25Fd3f1jqLXKzm4NpaXSwD+Axk1QsmSJOHOu+6C7TjYu3dv3VB3MGqwlKUqbiBy4A8QhKCjowOiIGBubm5RQ+aNgj/Ahmn6DyJfvUQ0zTNc6uhAIpFAJBKBJIqg8LwcuIBqdnYWs3NzyOfzXnpogYO4Ekw1tWBCMAwDjz/+OMbGxnDnnXcGiMFpTH31nXBzk0Xvl5dvQddb/78yYgDUn/SDv/m1DmXlnYAQoOOuDVx+rqaLZlyOlVkoZ6wMPn7gE0XbuKd/y9CC62kYBsbGxxecUuBkwDAM5PJ5zGUyyOZy0FnbdZdN+LIsQ4tEkEgkvOcnGvXMvngpo7czWKbpLyquqe6AJZEyToxFQUBXVxduvvlm7N69Gz/0pjdh29atiMXjOHXqFB577DE88MAD2L9/Py5evOiv6Bs+PDuezCKVFIBplBtwcR8IwIuGTk5M4ODBg1i7bh2GShxy3RLL5eutVTPHqyZywPPMvG0vryYoTQNEIxHcuWMHHt+zBy+++CK21qhgCEYNZP7AEQLSAq/3WnAcp2KZYjQWg5rJwNV1TKfTvmHJtQJD10EBaBWYNB/oZFkGIhG/2xmPKjhsxeQ4DmAYXpMnXnrFVkqNrCJkZi/rMDOTsF3oKmFubg5PPPkkXMfBfTt3ooP5TdjTZxgxmCg+9rJNHjFQq4hH66QWrhfNAQAQNQ55xVZY55/xt9GLz0C45Ydqfm7X4E78yNAP41sXvu1v++6l7+GhSw/j9cvv9/ZNCGgLCVIryueuXL4M6rpYsXx5w591Xde/123b9oXHwTSSFIgMCHUqbYIEgVdSLWWzs1Co5LAKVoYtCKBsgaZpGoaHhzE8PAyXshbUo6MYGx/H+QsXQOA1i+rv78fAwACSyWQ4kh14T2n0oNTVkpMDwzCw79ln0T8wgFtuuaVsv2LJca9HjwPgVUQOuEjOtCzYvKQRgVrUALq7uuYrGBIJrLvxxrL91YoaLKaBB4U3oYHlFEvR2dUFc3QUuVwO+UJhSQSS9cD7Lei67kcOwnyGVz8A845kFqtNdhlRcBwHOrwBRQzoFaqZtwShKgooK71slhxMTEzgmWeegaKquOvee/1Qsj19lhGD8aL3y4O3oesn/xmCWt0Eqt50dz1FDgDP8yBIDjBxBDDmAKWn5uc+tOl38eTYU0ibM/62j734J9jRezuSytUrh62FCxcuoKe3N5QjHr+nuRaHrzhdwDcLEiUJEjPpEZtIfwnM/dBmXgfXctQgCIEQPx1SOpYKhKC7uxvd3d1Yv349CoWC59Q4NoZjx4/j5SNHoGkaBphOoa9KC2pBEIr2LcsyxID2gEcX+UKFRw+ee/ZZRKNRbN++vYyAVCIkbXJwHUBVVZjZLEzLmn94A6LEIIaHhpDJZHDo0CEkEgkMLltW9HrFqAEHIRDQQKfHBsDdzfymTyVQFAXRWAxOLofp6WlEm1jBLAoEAYauQ2L6gcY/LkBh3SEBJiZ0HFiM7PFVl23bgK57hIR1XpOYi5koikV5REVRoLO215SJJBvB+fPn8cILL6Cnpwfbtm3zByA7fRZTX/0ZuNmxovfLg7eh66f+pSYx8FHLj/46ihwAgDx8B4ikgdre6hXUhXX+Kcjrf6zm57rVLnxo0wfx289+0N82rk/gzw/9Ff5k68dafp4LvZ6FfB7jExPYUtIKnlIKx3V9QuuyMkN/fGCkgBLiaZcYEZBKPFmaAREET1cjilBa6GXQCvDOh9XAW07XW2xFIhGsWrUKq1atgksppiYnvajC2BjOnjvnk4l+5taYSCSq7rM0esDPw2AN5w4fOgTbcXDvvfdWHceC84msKE2b611tvOrIwawgeFahzFWtVh+AW265BZlMBvuefRa7d+/2KxiuhtaAwiMbvMtaLSV/RyqFPOtdPjc3h+RVNB3iIPA0B60S5/DJXg2QhSJxo+vCoRS244C3WSIAwAZgURQhiCJc5iNvW1Y5yasC3jzplVdewapVq7Bp0yZ/oLHT57yIQSkxGNhYN2IQBCHV+8g3VK1QjWTUIh8VdzPfzTPMcf2BnxAQWYM8vAPm6cf8160zTwJ1yAEA/OjQD+Nb57+NPaNP+Nv+z5mv40eGfhh39G4Pff5LgYsXL0IQBPT19UHX9XkSwNIDwXQjv1/EQJqgFWSgFJyQEEGomM67amDp19pvmb/XeJ+CehAIQW9vL3p7e7Fx40bk83mMsv4PR195BYcPH0Y0EvFEjf396O3tLZrkS6MHnKDYto0TJ09iOp3Gvffei0glsSlPhQS+1zUVqWkQrypy4Kt4mYNfUf9xlK8cCIBtW7f6FQy7d++Gqqq1owb+h1sbPeAPhssGmForAFGSkEqlkJ6ZQXp2FvGrVNNcCtM0F41M+R7nbADkKQfHdb0cLhuk4bowKQWxLM8UxjRhGgZ0w/BqvwORBiEo6mKgrosXWPOk9evXYx0zzaKUwp457xGDzGjRZ+T+DV7EQGsdSSvNl1Z5U/Hf1V4PA0L8/vZhU2bcqx/wUgtBcuCMvwKaG4cQ758/l0B58fxhCT6+5Q/xQw/9GHJ23t/+oec/gm/d/3VoYgvvpwYmZn/idxzYLCpw7tw5dHd2+guHIBEQBQFCgJSKLKq12Kkh07JA4GlsroUxAGgy7crSLI1+LhqNYvXICFaPjMB1XUyyqMIoaxYlCAJ6enp8rUIsFiuKHvC29ZcmJ3H50iVs2bwZXVUqwYRS+2V4OrDrFa8qcgB4ylFD12EFSthqRQ94BcMjjzyCvXv34p577gkfNWiRODHYapkrjut5ACQTCeSyWeimiXQ6XbPUZqlgGMaSaSCCDVE4uAI8SBxc1/W7dhqK4q92vb+IP4iLogjXdbF//36k02ls374dQ0yRTl0X9uxFz/kwU2yiJfWvR9fb/hWCVsU3o0Fwjwv2ha7ZpkOlkJZvBlHioGbW36afehyRW986/6Yq4rTl0UH81sZfx8dfnK9WOJ+7gE8f+Xt8YONvLuZpg7JonR1IBxSlBNh5FwoFzMzOYsOGDf7kz8mAKAhL3rIZ8KJhYJGxa0mIuBA9Fu+T0+xn+/r60N/fj1tZsyjeVfLll1/GoUOHEIvFMDAw4Ltb2raNmZkZnD59GjesXl1WmRBEpe91NZputQqvPnKgqigIgt8gKQyikQjuuusu7NmzB8/t34+b1q3zzHrChIxCmNrUQlk/9rBiNFbaODk5iVmWWliIIr8V0AuFq/qwBNXeHIl4HKIowjBNyCzXyysjqOPAYj0YCoUCDh48CNM0cetttyHV0YF8Pu+RhswVpP/9nXDnijtuSn03o/unqhODsla6ATEagn+XfCb4fa4XEFGGNHwnrJPf87eZp/cUk4MK4N/2Z1a/Hd869228OP2S/9o/n/gCfmjFG7Gx85b554FHNhq8NjxlZ9r2vNiVRQSKfoUA2eeaFlEQcOnSJYiiiFUjI9eMwZCu6wDT6lwz4tUGxsNKZ8xLuJuOyAaiD/F4HPF4HDfccANs2/ajClcuX8apU6cgShI0TUNe19HV1YVb1q+vuluhUhqQEHRdA4uyZnFt3MVLCFVVQUURDqv7FQKrxFqMtquzE1u3bsW+fftgmSa2b9sW6nh+288mbuaqD0DIfUWiUaiq6hmKTE977VWvIgzmPhY2f7hUUFXVLw0NRjb4SnF6ehovPP88RFHE1q1bEYlEPCGkbcOZuwzjm+8FssXEQOheB+1HPgMDKgTT9POngiBAJMT3a694X9QYQINljNcTOQAAceXdReTAmT4DZ+YCxI76ngACEfAn2z6OH3v4rbBcr6TMhYsPvfARfH33v0EOeCnwVsUAW/lTCsome0opXNf1tpX8DQCmbRcN9NR156MAjAxwUhD0Ebh86RIGBgauGWJgsXbqYFU/za62W44Gx8EyAg342pemIhA1IsQDAwMYGBgApRSZbBZHjx7F6JUroJRi/YYNNdMypakwUIp4IgHpGorYNIpr405eQhBCoCgKHOY5HnQLq3fD9fX24rZNm/Dy4cN4eu9e3HXnnZWFKaXHhNfru5Gh3K2S2/Unh5ATQ0dnJwzDQD6fv6qljZRS6IbhGSBh4fXkrYQiyyjouidkDAxGgiBgbGwMzz33HFKpFHbs2AFVUTwdg+PAnLmIwv/7xTJiQLrWQHzT38IkGsxCofyAjCQIhIAIghd2Ztv434IgVCQJNLCP6w2k52ZA6wACbarNU3sQ2frOUJ9fm7wBv3TTe/HpI3/nbzs6ewz/dPTz+IU17y6e9PmEX5rWY1UBhEUXqON4Xgms3FYKpAIEQYAoSTUNmwDP52Iuk6m5slxSsGeNe4pYJW6KVwtNTehVrr3rumWliKH2FeL9hBBMTkzg4oULiCcS6BsYQKxGQ7tqY/H1nFIAXoXkAPB0Bzmm5g+SA1+RXeVztm2ju7sbd911F57fvx+PPPoo7r77bt/0piqYOLERIVerHmZFURCLx+Fks5ienoY2OHhVhEm8FIiXkF5L0QOuFDeZ/oBXVJw8eRKHDh7E8hUrsHXrVl/DIIoikBtH9hv/HXTuUtG+xJ51iL/l84DW4TtZuixHzSctsNI2B97AYtUIg5eSBt5gRwymxphY0Fd2h6woWGpQAGT5DtBT3/G3GWf2QN30Dv91YP45RIXV/c8sfxu+ff5BnMrOd278h+OfxT0dd2EoWh6B4GFogRAQUfT+LiFnhBEBAvgW343gwoULkCXpmjEdM00TruOA4NoiB26d0sVKqPZ+gbkZNoQQ1yDYG2XF8uWIxGIQZbnM2Kj0HCvtuZpw8XrBq5IcaJqGLCFFfbmB2sJEwBs4CLwffdfu3di7dy8ee+wx3HH77WU+CKUIu1qm8MqP6q0MG3nIOjo6kMvlYJkmMtksUlehtNFglqRcxHmtRQ9URfHKHk0TqqLg4KFDOHXyJNauW4cN69cX/R5OZhQT//bTcGbOF+1D7F6Lzp/6AoRo9UGBq/2Dq9xguDs4GQIstWHb/vFtx0G+UJgXuVW4Z/372ftP8TY2ORa9VuF1lOyDu8NZluX/lsFJnP8/uFIvqmygFLlCAW7PJmgBcuDOXcHsuQMgXTf47wPgrea5Qj2wnYDg92/6AH5h/y+BH8l0TfzpsU/is9v/DqIkzxMAUYQANCYGZFEFfty6kyqluHjxIpYvXw5yLdSzU+r/Pqqm+aTnqpODEKWLDe+S7TfMdwujU7AtC8/u34/RK1dwyy23oLOrC5NTU5AVpchVtxSV9irJMhLVmvc1gRUrVuDSpUvYvXs3HnnkkZrvPXz4MDZt2gTHcfCXf/mX+K3f+q2mjvmqJAeSJIHIsic4s+0yJW+l6IHDhEmEEM9YR5Jw386deG7/fjz19NPYtGkT1txwQ/VJPVAKVgvcf6Hq6008YIIgeKWN6TRmZmYQj0abcltbCAzDAAgpTuNcQ9EDWZaBQgG6YeDwoUMYHRvDps2bMbJqVZHYzc6MYfIrPw1n5lzR58XuNXWJATA/+daL3vCJ1WbObDxvTpi7p98YhoXJa03S7MDBnTeclsgVCl5qSNd990k+gYcC9VzmaHwIjtYDkh/3wvsAyIW9EDpXzxMWFmnj9r98Zc+/812JHXjX9E/jC6e/7O/+hfQBfGv8Qbx95Ccb+l6l4KS11KLaJymuW2TZPD09jWw+j81L2J65FniEjhACVZaLiB4PxV8VLCI5qTeOUC70rYFCoYCnn34a2WwWO3bsQDQaRUHXoSoKBEJgOw4qyc+rpTZSLU4p3HHHHfjGN76BF154oaIOI4jf/M3fhOM4uOGGG/Crv/qrTR/zVUkOgPmSRruEHFSLHlgshCsFhEiiJOGOO+7A4cOHceCll5DJZLDpttuqrlTqrZbd0gG9CjhJaQTB0saZ2dklL200DAOgtKj881qKHojMEOnAiy8in8/jzjvvxEB/f9Gk62THMfnVn4GTPlv82e4bPGIQa9015av7UoGbzBpFiaKIRKKCoVJgtU5puekOf90P29d7jf1bYve0wNpqByMSfAIiqB2tcBhpUW7YCfPw1+cn3svPInXvL4GQ8BPXr6//FXx/9FFcys/rPf7y8N9g98BO9EcWILyt8vwHLauDQsQL589D0zT0XAOqdG7OxrUGvnaG/TYupddfp70QBJTWcVGsN1am02ns3bsXBMB9990HWZbnWzMril8CXfHYVY7Z2WJysGPHDnzjG9/A7Owsjh8/jhsrWPoDwLe+9S1873ue6Pcv/uIvFmTCdN3dK62CpmlwBcFrY1oalkX5pMXzu7Isl5WTbdy4EVs2b8bp06fx9NNPV++IyFZElRBWZ9D0ZEoIOjo7IQkCZufmmu5i1ix0XfcjLkE0LCpaBFBKMTM7i3379sE0TWzZuhX9nBgwONkJTH3lZ+BMnyn6rNR1Azp+6gsQYrX7BDSFwKoveK7eSzUiVDyPHrCN9l34ZBkys6FWVBWqqkLTNO9PJIJINIpoNIpoLIZYLIZ4LIZ4PO73jIhGo4jF44ix16PRKCKRCCJsH6qmQWX75XbXsiz7Ij9RFKHdsKvolN38FOzRl0NfFgogKkXxsU0fLtqetbP42IFPLP79xEiO4zi4cOkShoaGvD4nV/k+NkzTq65gFQocAr+PrsL5LVj7ElJAWHsX1fdx+coVPPH441BVFbt270Y0FvPHRomJUUVmblRKEGoJVTtbTBZ37Njh/3v//v0V32NZFn77t38bALBz50685S1vWdAxX7XkQFVVCGyi56ZGPir86Hbghqn0+sjICO6++25MTE7iscceQz6fL3tPtX0D8G2RQ6OJhy4SiUDVNIiiiOnp6YY/vxAYul7VOvlqGMQA8C2pR8fG8Nhjj0FRFGzbvh2xWMyPFAGAk5vE1Fd+Bvb06aLPi10j6H7HlyDGF0+Idu3JCptDsJRO7h6B1Lmy6HXz9J7wO2OD/T39d+HHh3+06KVHRh/Ddy491PR5NnK9L166BNM0sXrVKj/UK/CUyBJPxNR1/a6nqqYVT5js+boa5YwLdohtYJyrNFlXE+dSSnHixAk8s3cvevr6sPO++3z3W2De9ph7owAojx5UObd4PN5y2+Rt27b55/Hcc89VfM/f/u3f4vjx4yCE4FOf+tSCj/mqJQeEEMRZWNaoEj3g8PUGQM1cfX9/P3bv3g3btvHIo49WnoDZABKEW0dnEESjpYyl6OjogEgI8oVCdQKzCNBNs6q3+2J2sSwFj9C4rHLg3LlzePrpp9Hd1YX7du5EMpHw+kAwUZdHDN4Je/pU0X7EzlXoefuXPWKwmPnUCud/PcK/b9lEpYzcV/S6cfZpUCeEMRn77Tg+uPG30a0W6zz++OCfIW3MLOyEQ+D06dPo6+srKnPz0zIlFSSLDa7pkQShTEMlsPNYjEZw9bDQb98IyaIoXmhUG1dcSnHgwAEcOnQIa9etw4477oAoijAty+tDQQg0VfWcMANRmCA5qDVmJetVrzWBSCSCW2+9FUBlcjA1NYWPf/zjAICf/dmfxZYtWxZ8zFctOQCAaDwOIklwWXe/IIIPNV9FipLk3ew1bthkMondu3YhFo1iz549uHTpUvmbuFocxXnhpQAvbRQFAdPp9JKtJgxdr9rGlqB2r4iFgl9jbpfsUs8Y58iRI9i/fz9WDg/jzjvvhCTLfnTDsixY2UlMffWdsKdOFO1P7FyJnnd8GWLCy20v6ZAbyH1fT+D3Gf+dldU7i16nxhysywfq7qd0JdihpPAHt36w6D1TxjT+/PBfLfCMa2NmZgbT09NYvXp17Tey34tHFBaDSLqO4y9wKj1jvGLhaqc9mkKD9znXH3j/qaAdsyw8/dRTOHv2LDZt3oz1rBKJR14AptdgNs2E0vluq0FyUOMcOhaphJGnFg4cOFAWxfjIRz6CmZkZxGIxfOITn6j08YbxqiYHhBBorDEGXylWAtcbFPViqAFV03DvPfdg2bJleOaZZ3Ds2LHyG5Wpnxtm8yUq6mbQ0dEBSRRhmSbmMpkF7Ck89BppBY5WDl2lJYNBEuS6Lp5//nkcPXoUG9avx6bNm/0VhyiKnqtZIe0Rg8kSYtAx7EUMEgP+cZZymubX6PqiBvDV5DxqJiYHIPUWi6rCpBYq3SNvXP567B4ojkT83/PfxJNjTzd+oiEno9NnziCiaRgYGKi/SwQ8VFjkkABAi4g5H7skUfQrSYrA0wpLSQ5aRF4bPWNfUE7K7YzzuRwe27MH0+k07r77bqxatcp/zTAMuEzoqyiKV2LMIsayoviRAof5lFSLGkis6d1igJODfD6Pl1+e1+gcOXIEn/nMZwAAH/jAB7CsTll9WLyqyQEARFhqwbbtiv0WKMrJQRiIkoTt27fjxhtvxOHDh/H8Cy8UTVAETegMgJawf0EQkEomIYoiZmdnqwsoWwi9UKjZqKoVxj1cXR+MDpReLcs08eSTT+LSpUu4/fbbse7GG8uOqzg56P/vf8ItjRh0DHsRg+Rg8MQXdM51UUGUeD2CT0zBsK86Uhw9MM8/A2rrNfdTaVAmhOAjmz6EmFTcAe8jB/6oqJNjKIR4vizLwoULF7BqZKSpezaYYlnoAOw6TlGFQiUIgL86XjK0iIg0c+dTlKcjpqen8ehjj8G2bey67z709Pb6rznM3wRgPiyE+CtzQphrJrtvHdv2xKdVfvdUKrVoUdCgKDGYWvit3/ot2LaNFStW+ILEVuBVTw5kVYXCJq2CXjww8V7efHXYqG86IQTr16/Htm3bcO7cOex57DHMzs4CYM5tonjVVoCJRMITzVCKyampRT0WpRS6aVZNK3A0ey14BIbrCKoNS3zlkMlkcM8992DFihVl73Hyacx87d2g0yeLtoupIXS/48sQkyWsfAlWY8Hrcr1GDvxuooFBVV59LxAoX6RWAeaFykps/z1Vtg9E+vE7G369aNul/OUiq+UwCHNdz1+4AMe2i1aezYJrmfy0Q4PQdd0fm6qNT3yyutpVQUuFoAmYSymOHz+Oxx9/HNFYDLt37fK1Zhw6E3LKgWtol6TBuAGS4zg1r+NiWiavXbvWd13kFQsPPPAAvvMdz1TsE5/4hF9V1Aq86skBAESYoMhmgpQgbNsGKJ3XGwANTwjDw8PYuXMnLNvG97//fRw+fBgmi0bUc2UsRSWDpqZACHp7eiAKAnRdx8zMTCv2WhEmK7GqtrKZP6XGV8mcFNQb+PjKgVKK++67r6LPg5NPY/Kr74Q9cbRou5hage53fBlSKTFYIpR2bmQbr8q5NItSQSIAiNEuyAMbi95nnn685j5qrX5/atVbsa17a9G2L576NxycPhT+REOUxZ05dQqDg4P1W7Y3gKB1e1h9gGPbMC2rZtQAYGZSWJq0wtW27faFgoQgnU7j0UceweHDh7F69Wrce889UEquE2+gRoCi39NlrqRiCTmodw1bXcJYijvuuAOAFzmwbdt3P9y2bRve+c5wPUrCok0OAMia5nfP0ku0B7ySoMg6s4kHoLu7G6/ZvRs33XQTjr7yCr7/8MOYGB8vNlUJiWZMkCpBkmXP+0AUMZ1O19RdLAS+WKoOOQDCGyO5LP8XZjV0+fJlPPnEE0jE49i1axfiFZqouIUZTH71XbDGjhSfT3wQnW/7IqTU8or7pksxGFYKpS/+UVsKHjkoLVstFSaaF56Da2Qr7kOo86wIRMAfbf5DKMJ8GZkLFx968aMw3dakzqampjCbyWD1DTe0ZH/VQEJEEnTDAAFb8dawbg6KnxcTS1l1VA3cVfSlgwfx/UceAQWwa/dubNi40UsHFL95vnRRVYted1hvCr6Nj/9+f5QKiEaj0Ba5sR1PLRw6dAh/8zd/g6NHvYXMpz71qZYTszY5AEBk2WfepmkWscNKpYMEzT1ooiThpptuwu7XvhaKquLxJ57AC/v3w7Ks0IN9qx+9RCKBSCQCURQxMTm5KNUL/AEMs9Ligq1SBAWGYUkBpRQnT5zAM888g4HBQdxz770V64/dwiwmvvouWGPFRjwkMQj1Rz4DW+st+0zgIHXPoyUIuBhej/AFiSXblZV3AyQQDnctWOefqbyPEMcZSazC+276n0XbTsydxOeOf76Bs62O02fOIB6Po7e3xj3RIvgpB5STQdu2YfOoQZ3nyu/wicX1OlgMYtDohDd65QoefvhhnDl1Chs3bsRrdu+u2hjPME3fUro08sLFiDxy4Dc+q3HsVlsmVwInB6Zp4vd///cBAG9961txzz33tPxYbXIA7+GRNc3LN1Hql7RwVLw9m2RpLqVIJZO4b+dObN60CRcuXsT3vvc9XLx0qbGBv4UssauzE7IkwbLtRTFHMllEohljEF9kWEVgWPVzrouDBw/i4KFDuPHGG7F9+/aKQiFXn8PEV38W1ujhou1ichm6fuqLEFIrvLRIw2feQjDXQyCgObiO0grBct3SyIGgxSGvKE4FGDVSC2Hw39f+LG5OFVdC/MOxz+LU3OkqnwgH3TBw6eJFjIyMLGg/jYJfuyBJ8Fe8suxPYLXAP7toK/vFuh9Dnq9hGNj37LN4au9exGIxvPb++7F23bqq73cdZ750kYkQg3BYGaNPDlD/2nUuQRfGO+64w3/2LcuCqqr4i7/4i0U5VpscMAiBGvd6pkjNIpgzJYRgZGQEr3vd69Dd3Y19+/bh6b17UahjTLRQE6RKECUJXV1dkAUBc5kMci02R+I5PbnEnKUauPYgaFbU6PGe2bcPp0+fxmZWy1zpennE4F2wRg8WbRcTA+j96X+D1rvaGxwo9dXMVwv+3Xgdag6Cv18lgqauvrfo/9bll+AWZmrupxZkQcYfbf4ogrUAlmvhD178GFxaex+1ruq5s2dBCMHKlStrvGvxwO8B27LgsNbSYVJ1wPx4sWjkYJH2Wy9tRynF2TNn8N3vfhdjY2PYtnUr7r7nHt+YijfvKoVuGKDwhJyVxiXHcUCD6eQ65yEIwqKKETlSqRRuuukm//+/9mu/tmhktU0OGIgsQ5ZlCMxHm1sql95YZYN0A6ikFYhEIrjjjjtw1513YnZmBt996CGcOnmyag30Yj3ckUgEsXgckihicmrKaxPcIrhMIBSK0AQEhs0IqHRdx+OPP46JiQncddddVR8cV5/D5L//HKwrxcRAiPej96e/AqlzJQghXrSDkKrkYKkiCtfzg1pJjBiEMrwDkAKTHHVgnn1qQcfc0HkL3r32Z4u2vTh9AP92+t9rn2s1e3NKcfrMGawYGgpNchcDlFIUdN138avWRrgM1xGZDKLWWWczGTz+xBN4/oUXMDg4iNe/7nUYGh4uH7NLxhHbtv3y7WopGV5mzruB1kNyEUsYS9HX59m19/b24kMf+tCiHed6HnNaClGWQUSxdvQg4GzY6KNGKa3pa8Bv7lWrVuHAgQN4NFD2WAmLEVbu6uz0DUAmWljeGMYoiJMBJ2Dy1GhTprm5OTz22GMwDAP33Xcf+vsrd+dzjQwm//3nYZY48gnxPvT+9L9B6lrlb1NVFQTegFKxM9tSaQAWe+W3iPDLGKt1K5U1KEN3FG0zTi0stQAAv3LT/8RwrLiV8l8f+TQu569U/Uy1+3R8bAyFfH7JUwql0A3DcwEUBD8cTurkwgEUdcu83uG4Lo4ePYqHH34Y+Xwed999N7Zu21ZWicBRpGMKiBBVRalIrmhA1yRIUqgFwGK5Ipbiueeew549nlnYxz72sUUzXALa5KAIRJahMjcs13GKmu8Ewb3TG0G9HtyAVz2wedMm7Nq92yt7fPhhvPzyy8WT0mJODoSgu7sbkiCgUChgdm6uJbvlg1nV18EmvRISQYDQK6Px8XHs2bMHiixj165dVR8a18gyYvBi0XZODOTuYjtcQRA8hzR4/SFKsWS5f3Z9/F//Ohrog6m0alBKUgv2+MtwsuPz+2jiuBEpgo9vLu7cmLfz+NiBP2mYZJ06fRqpjo6Wt+JtBLZt+11kI4E8OQWLyix1A7OrcA9OTU/j0UcewZEjR7D6hhtw/2tfi74qi4AgeBTSNE04jgOBkKopGV6pQAQBcqXxp+R7i6KI/hBOma3ABz7wAQDAhg0b8N73vndRj9UmBwEIqgoEbppSYSJQHD0Ii3r12aXo6e7Ga1/7Wtxy8804fuwYHuZlj4EBbbEeS0VRkOrogCQImJ6ebklrZ5fSiiE3Hi2od23qfddg86SdO3ciUqWcyDWymPw/74Z56YWi7UKslxGDyuVpKkstWMxiteRL1Dm7FoGQosH/+qEG8wNzrbCrsnwriFLscGieeWL+P01e5x29d+CtK99ctG3P2BP4fxcfrPqZ0iPl8nmMjY5e1agBBTNpIwSyovil12VglQkVnSRbeUIN+rMsFJZl4aUDB/DYo48ChOC+XbuwcePGmo3wguDElJeqq6x/QiXYrFJBYHqjeujt71+SVNPnPvc5PPbYYwC8DoyhU0pNok0OAhAlCQLrcw9CvFByhehBw8ZFLOfeCCRBwI0334zX3n8/NE3DE088gf3PP78kVsfJRAKapkEgBBMTEwsufyqNmtCAvXG968gZfLX9Hnn5ZTz//PNYuXKl3zypElwz5xGDi8UOfEKspyYxADwhJX8QrZLowVIG+UujKtcL/KZLNZ4BIilQVt5VtM0MphYWMBH9zobfRK/aU7TtEwf/AmkjXflcSv5/9uxZiJKEoQqOmksF0zC8tCSPGtQCr24JXu9AlGHBWGJicOXyZXzv4Ydx5uxZbNi4Ebt37UJXZ2fD30UvFEAD/ROqwXEcgNkm10vnCYRg2SLdF/l8HidPnsSLL76Ij33sY/jlX/5lAMAv/uIv4r777luUYwbRJgclEFQVAheiAb4wsQwNGH40lSdmEYpEPI6d996LzZs349KlS3hm3z5cvnJlcd3OWHpBFEWYpon0At0Tg53S/LK2EDoE/3RQHpJ2XRf79+/H0WPHsGHDBmzatKkqiahKDKLdHjHoWVP3HFRGGCulFpYKpEIzmesB1QyQSqGsLh7w7OlTcGYuAljYpJZSkvjwbb9XtC1tpvGJQ/VLwFxKcebsWawcHg69Sm01XNct8gqpdx0BgPfkCPXeRrFExCCbzXpVXM88g0Q8jvvvvx9r166t6zdQCZZpwrQsCIRULF0MwmVphzLTJIbgJzu7u1tqWRzEl7/8ZaxduxZbtmzBRz/6UViWhdtvvx2f+tSnFuV4pWiTgxKIsgwETJEs0/Q6cZUgjIIVWJiAzG9GRAhWjYzg9a9/PTo7OvDKkSN46LvfxenTpyuL5FoAUZLQ3dUFmTVnyhcKTe+LV2mEsTmuhmCdsWmaePKJJ3D58mXccccdWLduXdV8tmvmMfkf74F5obgH+jwxWBvq+CqLSFDHqdiga8lwHZcy1qvHlwc3Qoh0FG0zQnRqDIPXL78fr1v22qJt37rwAB4ffbL8zYFre/nSJRi6jpF6rZkXEYVCAWCTVTXRXTVwfZRPLBc6sS/BfTczO4t9+/bhoYcewvjEBLZt24a77r4bUdZBt9Fv4Ni2dw3hOSHW65FjWhZcSmu6TnIsHxqq+55m8cILXvpTVVXceOON+PCHP4yHH364atq01WiTgwoQVRWCIPgh6tJQciNoBcfmj6OmaVi/YQNu37EDnV1dePHAATz44IM4ceJES0sPOaKxGKKxmFfeODnZ1DG4nelCVfaE1Rzncjns2bMHmWwW9957L5Yvr2xrDACuVcDUf7wH5vl9RduFSBd6f/rLkHurm6SUHV8Q5qMHQZvpJa4e8M2ElvSozYM7WwL1IwdEEKGsKhYmmqcfb1mFxodv+z0k5eKmOx858EfIWrmqnzl95gy6e3qQKGnWs1Tg3v/UdRFtdlLgUQT2d9NYZHvk6XQaT+/di+8//DCmpqZw22234U1vfCOGhoaKmik1Auq6yBcKnqdBoBqt1vt56latY9qW6uhAchGrBf7hH/7Ba1qn6zh69Cg+/vGPL+l92CYHFSCpKiBJXvSAEFiMSZZCILXzUfVeC4PSVsYCIYhHo9i6ZQve8PrXY3BwEIcOHcKDDz6Io0ePtlyT0MncE13XxWS6co62GnwToxCVGmEwNTWFPax50q5du/wOZZXgEYNfgFFixStEOhkxuLHKJ6uDDxbB+2FJeisE4A+S10nkoJ4BUilKey04c5dgT51qybn0ab34wIbfLNp2pTCKTx35dNE2fm1nMxlMTExg9VUSInJPAwBQNa1qmLtRNLOfRlOBjWBychJPPPkkHn3kEWTm5rBl61a8/g1vwMjq1UX3DEHji62CrvsWydFotO5z49g2XFZdVS/CsJhRg2sBbXJQBSJrxiSKIihQuSkR0wXUvOFa5GXOfyhe0+y4LmKxGLZs2YI3vOENWLFiBY6+8goeeOABvPzyy75l8YKPKwh+eWMul0M2W7kpTik4MQA8Nr5Qg5CLFy/iySeeQDKZxH333YdYLFb1vdTSMfW1/wHj3NNF2wWtAz3v+BLkvpuqfLI2JNbghmDeEnrJex1cZz4HYSoVgpD6boIQLy5NM0+1JrUAAD+x8s3Y0Xt70bZ/O/3veGHqwPwGds5nT5+GqqpYvuzqdOPUWdkiqeD93yiCIxTfZ0OfbzEZpQBGx8bw2J492LNnD4xCAdtvvx33338/Vq5cOd9mOvCZRnVWhq77i6VoJOJ/56rfhVIvKkgIFFmuec/GYjF0LXIHxquNNjmoAklV4QJ+fqdQKMAuye8HmWyl2zboKb9gMCIi8FLKwIMSjUZx26ZNeOMb34jVq1fj5IkTeODBB3Ho4EE/17YQqJqGRDIJSRAwMTlZMzpRyfI4jMdDrf0dO34czz77LJYtX46777mnplqbWjomv/Y/YJQ47BEthZ6f/jKU/luaOg8OnlrwhapLvYLnx7teIgcBp7kwIISUeR6YZ54ArWN7HBaEEHxs04ehCvOTLQXFh1/8GExn/je1bRvnzp/HqpUrF0fUVwe2bcNgq95IJNKS37tU0CqUVjTUQotIKQVw6fJlPPLII3jqySfhOg527NiB3a99LVasWFF+rV03lE9GKWzb9tN/EU0rEpNW24sgCP5nSqsZuLaLR3IHr2LlylKhTQ5qQI5EEIlEIMsyHNtGLpcrTxPwSbvC5yvZJS8EJFCiVEkkqWoaNmzYgDe+6U1Yt24dzpw9i+88+CBefOEF5HPV86ph0JFKQWNajGrdG33fgpJr5FLalEGL67o4cOAAXj58GOvWrcP2bduKyovKjm8bmPz6L8I4WywyI1oKve/40oKJAeANGoQQUNdtiQdEw2A12NcLwuoNglBLqhbc/CSc8aMtO6eV8WH82s2/XLTtVOY0/vH45wB4k8f5CxdgW9ZV8TbgngaEEKiKUje8HQoVnhk+Pi0F+XEpxYWLF/Hwww9j7969EEUR99xzD+7btQuDy5ZVHSd9v4EGQF3X71GjyHKZiLMSzeSCadM0AUrLPsPJgcTKIMMYL13vaJODGhCYUUYkEgEhBKZhFIvRUBKuK93BIoSAeSOgWsZBiqLg5ptvxpve+EbcfMstuHTpEh787nexf/9+ZDKZ5g7MyxsJgaHrZdbOfhqhwnemrhuqc1wQlmVh7zPP4OzZs9i8ZQs2bNhQJEoSS/3TOTE4U2y7S7Qket/+RSgDGxo6fjVwT/syYeISgVZpJHOtwglZqRCE2LkKYsdw0Taz5HddKH5uzTuxvqOYLH722P+H43Mn4FKKY8eOYdmKFYgsUplaLZiG4T1LvOyuBfCjjdXq9RfJUMdxXZw9exbfe+gh7Nu3D5qm4b777sPOnTvR29dX/15usHyXUop8Pu8br2kVRJykynXgZcqCKEIpIWQ8aixJEpatWLFkfRSuJn7wv+ECIAgCJE2DzNinbdvQdb3MzjioIA+umhdjhSeIYuh6d0mWceONN+KNb3oTbtu4EeNjY/jeQw/h2WefxUwT3gWSLKOjsxOSJCE9MwNd1/1oQS2jpEbTCvlCAY8/8QSmJie95kmrVpW/KbDiobaBqW/8UlnZG1ETHjEY3Bj62GGgqioIIXBse0GVLE2Br8SvE4LQTEjYSy0UCxPNs0+Buq0r25UECX+8+SMQyfykaFEbH37hYzh7/izy+TxuqtHyd7Hgexq4bnhPg7Co8RvwZ7ToeAu4x2zHwalTp/Dd734X+59/HolkErt378bdd9+N7pC5+mbE3IZhwGb2x7FqAsSS78mF5SYTf8olKQVKqT/mK4qCgaukQVlqtMlBHYiRCCRJgiLLvjNYPtDSOHjzBcWJjVomh4XAcl6V0grVIIoiblizBm94wxuwefNmTE9P45Hvfx9PP/00pqenGzp+IpFAJBKBKEmYmJiAZVl1v2cj5GBmdhaPPfYYTMPAzhrNkwBGxmwDU9/4ZeinHi1+zScGt4Y6biMQBMHvwaFXsNheTFBcP2WMQMAdscFJTh0pJgdUn4V95aWWnRcA3NxxE96z9ueLtr2UPoTPvfx5DAwMLGqZWjVwjZAoSTVd/JqB38OkGlip4kLaO1u2jePHj+O73/kODrz0Erq7u/G6++/Hjh07GupL0dSxLcsXjkcikZrRkEoRX/5ZtcRllRMDURCwbMWK1qR5rgO0yUEdCIIAJRaDSylkWQYFEwsFVoylgzVdxNWdb4vaRFmRIIqemdLrXodt27Yhm83i0UcfxRNPPIGx0dHQaZDu7m7IogjLsjAxOVn3QXYDDom1MDo6isf37IGqqti1ezc66g3Ojonp//sr0E89UrSZqAn0vO1foSy7re4xm4WmaX63xqtqinSNI4x1ciWIqWWQeopX7ubpJ6q8u3m876ZfxKr4yqJt3za/i9TKZMuPVQ+WZcFmZbItN7oh4XrC+FFJQWhofCnoOl555RV858EHcfjllzEwMIDXve512L59OxLJxq9lQ2JJeMJX3+hIUcpW/9XAxyXHtmHaNijKxYg2s60WJekHvnwxiFcHBVoglGgUAiGghECWJNi2jUI+D0mSvFxqwGucAAATtywGBEJAKIWL5tMWRBAwNDyMoaEhXL58GUePHsVTTz0FVdMwPDSE4ZUrkUomqz6cAiHo6OzExPg4DMPA1PQ0emqECmmVxktBnDlzBgcOHEBffz/uuP32uuycOiYmvvE+FE48XPzdlDh63vavUJdvrvn5hUIQBCiqCstxoOs64vH4oh7vekSRx0ETOW1l9b2wJ4/7/7fO7wV1fglEbN2KWhVV/NHmj+BdT/z3+eMQC//r/N/jHwf/dsnSN76nAdO0tFoDEPZb+JEDSj0PjxrE37ZtXLp8GefPn8f4+DiIIGBk1SqsW7t2wVoNWkUXUO29+UDfhDA6jVLvFcM0PWG5JJWNPY5tA4Sgf2Cg5dGcaxltchACgiRBjkSg53K+OYZt28jn80jE477ugN9qizmc+C5nruunMZrus0AIli1fjmXLlmFmZgbnzp/H2XPncPzECaRSKawcHsaKoaHiVQylcFwXEU1Dd3c3JqemkM1mIUlS1ZU+pbTqypFSisMvv4wTx49jZGQEt912W10iQR0LE9/4FRSOP1T8dZTYkhADjoimIZfLwbIsOI6z6F3Sgmh0JX41ENQbNDPJyqvuBZ79PDgNplYe9sX9kEsaNC0U23u24u0jP4mvnvkPf9veyX345sVv48eG/ltLj1UNumH4fiAL9TSoihDjhBBwQSQAIAhFaUOXUkxMTODC+fO4eOkSbNtGT08PNm/ejOXLloVesVcDCRw/7KjGdWACIZ6fQRP3mmEYoKw6JIhgg7hVV9FC+2qgTQ5CQksmoedysEwTiUQCmWwWtmXBNE0oitIa3/IQCA60jutCEkUICyEI3k7R0dmJjs5ObNy4EePj4zh//jwOv/wyDh06hP7+fgwPD2NwcBAkoJaPxWKwbRszMzNIz8xAlqSK5kRuFdMV23Hw/PPP49LFi9iwcSPWrllT98GmjoXJ//wVFI5/t/gryFH0vO1foK7Y0vx1aBCCIEBRFJimCV3XaxoztRzXATlo1ACpFEK0C9LABtijh/xtxuknWk4OAOC31r8f3zn7EGbofBXOJ4/8Ne7puxPd6uKa3di2DVPXQQFPXb9Yv20I++Oy19mzm56exoWLF3H+/HkUCgUk4nGsW7cOw8PDLWs8xMsJ/TEgxJhmmaZXfghAi0ZDRVz8SGZATG4YBkBpOTlg1tWd3d1XzUL7aqFNDkJCi0YBQfCFgJqqQtd15PN5SLJcPqnxkBxtvF1zPQiiCLukbJDX3i/0WIIgYGBgAAMDA7AsC5cuXcL58+ex79lnIQgCli9fjuHhYfT29kIQBKRSKdi2jWwmg4nJSYjcdjoAyqIcQRiGgb3PPIOZdBq33347VoQwFaGOhcn/+6vIH/tO0XYiR9H79n+FMrR9yR0EI5rmD1Capi1d9GAR7qtWo1m9QRDK6p1F5MC6+ByomQdRWltiaMwa+BH3Tfgi+aq/bc6aw5+//Jf4iy1/2tJjBcE9Dbgr36KJ3er8Bv7EHNhW0HVcvHAB586dw+zsLGRZxooVKzA8PIyOzs6Wp1zCapM4gg2VVFWFHPLaCTxtwv7PI38gpCxtYDE90dDwMF5taJODkBAEAWI0CiebhWXbUDQNlm37N2jFpigB1W9LzZDYH8d1/R/QDwG2cHKUZRmrVq3CypUrkclkcJGtHM6dOwctEvH1CZ0dHZ4OQ9cxMTGBgf5+yAHFb6nmIJPN4umnn4Zlmrh350501+iR4O/DtTH5X+9H/uiDRduJHEHf2/8F2vDtXllly759OIiiCJlHDwwDsaWqi+fppWvYTtlv1bwAwqSsvBP5vf8IUFbG6JiwLuyDcsPuVpyij2PHjuGO5HZMJKbxncvz6arvXP4efmj5m7Crf2eNTzcP0zA8F8kWehpUQ60RyHUcEEJgOw4uX76Mc+fOYWJiAoQQDPT345ZbbvGNf1pupczE1aX7rdmzpsGGShwCipuXcWt8CkCWpPlximkuHMdBNBZDT29vY1/qBwBtctAAIrEYsvk8bNuGoiiIaBqy2SxMw4DMWH9Qd+C3S0VrCYIgikCFEkIuhmwlQeDmRvFYDDfdeCNuvPFGT59w7hzOnTuH48ePI5VKYXhoCKqmgVKKcUYQ+CrapdQ3wZmcnMTevXuhahp27doVSsjnEYPfQP6Vbxd/XzmCvrf9C7ThO7z/EwIBjXuwLxSapsGyLJiGgYimLYlBCuH31aIfqXn4rZqbuO/5b0jUJOTlm2Fd3O+/Zp5+vKXkIJ1OY2xsDNu3b8dtPZvw9MQzmLPm/Nf/+NCfYWvXFiTk1opOHaawJ/BK766GTTPgTbQTExM4f+ECLjEdQXd3NzZv2oRly5d7ZdwcbMJs1Vjmj1VVHByrodGGShwu5klSUUohqDdgUTnqOHBdF32vMiEiR5scNABVVZGVZb+3AG/jaxiGL06s+ICHLCMKCx6mrTQJlt74CwEFykKNBEBnRwc6Ozrm9QkXLuDlI0dAXRfJjg50dXQAAJYNDvrpDgLgwsWL2L9/P7q7unDHjh11W6ICjBh88zeQP/LN4u8paej7qc9DW7mjBd90YZAkCbIkwbQs6IbRfGvdBkFaTARbDX+Cb2bSC3wvZWRnETmwLh8A1edAtNaUGx47dgyxWAzLly8HIQS/u+G38KEXP+K/Pq6P42+O/m98eOPvteR4gPds5QsFEEHwo0+LCZ9IBq7r7Owszp87hwsXLqCg64jHYli3bh2GhoaqR8BYFLDRFEDV86ohVK62oKrWUKkWKomiCVBkmcyjD4SJMB3Hgapp6Ovvf1U4IpaiTQ4agKIoEGQZbkCIqKiq18LXdWtPDC0MAfsmJdXKJQPRimZBwUKNNd4jCgIGBwYwODAAc9MmXLp0CWfOnsWZs2dx+tw59PX2Yt3atbAdB2YmgwsXLmBoaAibt2zxeiTUOwfXwdS3fgv5l0uJgYret30e2qpyYRohBEKLVzdh4EcPdB2api1eNcE1TAZK0awBUinkodsBUQF4YyTqwDz3FNQb37TQU0Rmbg6XL1/G5s2b/fvlR1f8N3z74oN4emK+3fd/nPs63rTsDdjW3RrBq14o+KH8pSKTgKfsv3jxIs6eO4fM3BxkRcHQihUYGh5GZ2dnOC8EeM++swCCQFlb5JrHqbDvWg2Vqh6LUogVXGUp4I/dwRbNfFw1TBPDIyOhUxY/aGiTgwZACEEsHkeG1bbLTIioaRry+TwMw1hcURGDwAxKqk3+ldy/GgJLJTTy2CuyjJFVqzCyahUmp6Zw4sQJjE1O4vHHH/fKowAsX74ct956a3hi8P9+G7nD/7doO5FU9P7U5xFZdXfVz/LBaynTCxL73S1msb0kA/41TBSCDqELJQdEiUIZ2g4z0GnTPP14S8jB0WPHoGkahgOCM0IIPrzx9/HmPT8F3Zl3wPzYwT/G13Z+Baq4sMnCZIsLSimisdjiphMoxezsLK5cvozLo6OYnJrydQTrmY6g0b4nHKIoNu3nIohiw4sX13FqNlSqhkrEAPDGCSPQopmPGQQeaUikUujq7l7aKqRrCG1y0CBisRhyuZznq29ZUBTFmxhkGbZlIZfPI1nNEaxFFQwCE6PVezCbDTs3SgxK0dPdDVmWMTgzg7lMBkdfeQUAcOHCBVy8eBGdXV3o6+1FX38/urq6ysiCRwx+B7lD3yjesaii9yf/P0RG7ql7DoSZRS369Bn4HTVNg53NwjCMxY0eBI690AgRJxg8jOu3IOf7ZNu5C6TN7nuuefDPg31XXmpbZIDUaFe9Ct9HGdlZRA7ssSNwc5MQYj0N7TuIXD6Pi6yMtvQcl0eX4Vdv/GV88shf+9vO5c7jH098Du+/6X1NH9PlHQMphappi7KQKOTzGB8f9/5MTMDQdQiEIJVKYf0tt2D16tWhCHpdBFIMjSDMuFQmTnRd5Oo0VKoEocaxKDx/CVAKRVF8YkAphUMphlauRCwWe1WmFIA2OWgYgiAgHo9jzrZRYEJEHj3I2rbfOKVqKIpN7HQBITm+0gjzUAp8oA4r2GmRs2MqmYRl2yCUoqOjA5IkYeuWLRgfH8fY+DhOnz6No0ePQhRF9DKi0Nvbi1Qygelv/y5yh75evENRRd9PfhaR1feGPgeeO1wqyIoCUZJAbRsGEycuNiqKEplRFaUUruN4bbRdd/5v1/WqOkoGzaCKuxRcGV7QdciSNE8iqnyGi+0EUfSEuoRAEAQv6lXy76LngJa3/AYAacVWEDkKavG+JhTmmSehbfjxGlenNo4fOwaJVeQUgZ3PT4+8Dd+5/BAOzRz2X/qXU1/AG5e9DjcmG2/KROEREgAVS36bhW2aGJ+YwPjEBCbGx73Oq5Sio7MTq4aH0dvXh1gsBsMwvHu0heW2jRLTZhYs1HWRzeV8AWLVhkqlx6pzfrSkRTPfo2XbGFy+HIqivKqdT9vkoAn40QMApmlCVVWPzWoa8oUCdF33BsQajHMh+XBBEIoslOvtiYQtcWzAsjQMujo74TgOZFlGNpfzSyNXrVoFSilm5+b8Fc7Lhw7BcR3cMP51dKX3Fu9IVND3k/+EyA33NXR8Au9aLaX+QFNVZBk50Fj3xsWA4ziwHQeO48BhfvxugAD4IlgerQqW1SIgTqMUYPep/36gLBIgi6KfrhFE0a8TL7W55f9yXNe7Nyn17GcDCBILXsImCIJnDc5MvQRBgCgI/jNERAXyyjthnvy+vx/rzONNk4NCoYBz587hpptvrrqKFomIj976B3jbE++ETb3v4FAHH3npj/Clu/8ZktDY8KkzhT0I8YyDmrw3XMfB9PS0/+ykp6e9FEU8jr7eXtxy883o6esrqjLIMz8A/vu3Cr5La4gFSCPEgKcEKxGDVllL6yylQAQBCtsnpRSRWAydXV1IJBJLqlu61tAmB02AEIJEIoGZmRnotg2FqWoVRYFlGLBsG7l8HvFYrPoDswCBIiHEG9AdJ5ywhx2vpkkSW222uqqiu7sbqqJgZna2qMSREIKOVAodqRQTLdoY+6/fhltCDFwiIbf5A5C0tei1rOKyqhAgWFhutBYqhr8VBSKzc+XphYXAZat/x3HgsNCq4zi+ktuf5PnAyysE2KTOJ12BTbT+v0sm/3qDIFeHx6JRJKs4xfHUBOBNRpIgQJJlaKoKv7U3O3fHdefTPjzCAYCy5jdg75cEAQLrYSIM3wUEyIE9dRLO3GWIycZb6J44cQKCIGD1yEjZa8ErsTa5Bu9Z82585sRn/W1HZl/Bl858BT9/w7tCH8+yLBisg2esUZ0BpZhjz8/42BgmJyf9cure/n6sXLkSfb29iNbIjVNmmrZYqS4hxDPWVMQgn2+KGIT5lrzlfDDKSwEsW7ECoii2zPnxekWbHDSJSCSCbDYL23VhWBY0VooUicVgzc7Ctizoul47N7YAgiAQAhfwH5x6qGmS1IQAMSwkQUAymcTo+Dhsx8HE5CT6+vqKBilKXcw99GG4x/6r+MOChMymD+ASHcLRvXtBCEFnVxf6+/rQ19eHzgp6hUrgq5slKftjKaZcLgfDMKA2ED1wWW7fsW04ruuTgiBsRggppX7jL25pLTDSxQnAUiNIMjgpUxWlaoqNkwmXpzrYv23H8WxrAb8Lqg3ATd4AqCnAmPX3UTj5KLRb3+YTzjAwTRNnz5zBDWvWFJl1VcP/WPNufO/KwzidPeNv+/tj/4jXDuzGUKy+s6frusjn894CQlUhhThmqW7A1HUQQtDT3Y0bb74Zfb29SKVSob5zsFfBoq2EOVmt9ow1qLNyOTFgPRPCEgMacjy0bduPpnDxMKUUvczA7dUeNQDa5KBp8OhBOp2GQSkUdlNyU45MNos8y7nWNdBoQqDIW5oGXRLrnrN34mUP8GJn5bVIBI5tQ4AXypuamkJvjycko9RF+rsfRu7AV4s/JMjoecvfY2jt/dgAIM8Gy7HxcZw6dQqvvPIKRElCX28vevv60Nvbi44ag2Wr7KXDQFUUvxkMTztVAicD/E/F8DsTYImiCFEUEbEsCIKAjlTKHyyXqq9HIwjTVyEY3QAwn6bg+2CkweGRE0eAvWw76Jn5TpzWmSdhrf5hCKwUTRJFSEx5Xg0nT54EBXDDmjWhvosiKvjorX+An3v6F8Alm7pr4GMH/wSf3fH3NSeRoM5AEMWqOgPbNDExOekTgkq6ge7u7qbEnb7uCE16ToRETXLQwHNHXRe5XG6eGMRioSMGYsgqiFw+77sicr+VWCKBVGcnJElqfcvs6xBtcrAA8OiBZVmwAPDHXlFVaI6DfC6HXDYLIZGovlpgAkU0OHFJzHTHtu1QZkL+4dgx/dUEy1Ev5pSpKgpAKTo7O5GemUGO6Q9SySTS3/0Ici/+W/EHBAk9b/5bRNbe72+KRqNleoWx8XFMcL0CpdBUFd3d3Uh1dKAjlUIymfRCuCz/LiywNjs0CIHKylt1w4CiKP7AGSQDlm0Xm1ZRComRAFEUPTGfKBYN6LzGeylIzkLAIx4LiWBwsh1U9Fs3349MgBwgcwlC5iJoahgOu66urkMkxCML7A8/D8u2cer0aYyMjDT03Gzqug1vX/WT+MrZ/+Nve3bqOfznhf/CW4Z/vOrndF33oyBR1lTJtm1kZmcxOzuLmbk5zKTToXQDzYCr9WuZCrUMJdULlLKGaw0QV16VYNk2xAaJgYAQqQvieaBwcsBTB4IoondgAADaUQOGNjlYIBKJBKanp1GwLCiaBsJuzlg06nVbM01ks1nEE4naZUvsIQ57U3IFeOlqMyy4knexiQEA/3tLsoyOVAozs7NIz8zAfPLPYRz8SvGbBQndP/63iKx7fdX9BfUKN65dC8d1MTU1hYnxcUyn0zhx4gQs1qlNVhSkUimkkkl0dHQgkUwiUe+3aAE0Fj2wDAOZbNb/rUoHL4FNYr79dhOTqa/KvkYGtKD2oRFyEMYOWuq7GUKsF25uwt+mjD8PZdnNsB3Hj8DwdITFrjknC2fOnoVt21hTK2pQZYL5tZveh0dH92BUH/O3/dWRv8G9ffegVysvqbQsC7MzM8hkszB1HZlsFrNzc8jNzYGy3yqeSKAzlQqlG2gUfrQM85Pmot8hbAzzHRSbIAa240Bkos3QGgNC/FLEGm8CpRR5pmOQAu2xB5cv95wqZbkdNWBok4MFQtM0v22vASAoP4vFYqCuC8u2kclkkEomq9/spDGLZUmSPCU4yz83wnQJAErq+yS0CjytYpomOlIpWJaF7GOfgHGspFyRiOj+8f+N6I1vaGj/oiB4vgmsOQqlFLphYHZmBrNzc5idncX42BhOnT7tC90SySQ6kkmkUikkGdHQmuwFXwqXpRNM0/QscgPtnIXAilaWpJYpr9HgCm0xEdRJNEIOwtyNhAhQVu+EHih1Nc88gcjWn/MIHxM/OowoWLYNh4kddV3H6TNnMDAwAJdSWJblk+ySg1Q8dkyK4cO3/j7e9+z7/W0ZO4tPHP5z/OXmP8Mcu9dmZ2f9e8+yLFBK/UhZf18fUmvXevddMrlo2hBuDRysTFn0yAEHI2ONjC6cGHBRdCQaDeV+OH/IcMQAALLZLECp3welo7sbWjQKSml1j5pXIdrkoAVIJBKYmpqCbpqIxGKgbNVKBAGxWAyZTAaO62KOEYSqq8MGmDYhBKIk+aHUMMKqos8DSzaZ8LC6xVzhyPN/C1KRGHwa0RvfuODjEUIQ0TREWOtpDsdx/AF8Op3G7NwcRsfGvFpn4jVeSTGikEyl/AE8TF246zgwbduvVuFlf4BHCESmtm5kwGvoO6NJN8xFgG+b3CjxCXk/KiPF5MDNjsMZPwqp/2YA3u/PCZjGzsdxHBx55RU4to2RVatgO47/O8my7DnkhRA13tt3N9448Hp8Z3S+c+P3Rx/Fn33zz3EzvQkEQDQWQzyRwNDwMBLxOPoHBhDRtKULVZPi9svc3CpMVcpCQRHQNYRcfFBKkSsUiohB2AhapZ4JZQjojQpMCwQmcpRkGf2Dg76h3avVKrkS2uSgBVBV1W/AlLMsxEQR1HG8FAMhiMfjyGSzcBwHmUzGy2m1YMUgShJIk+TA5WHo4N+LBB45MAwD6Yf/CNn9/1z0OiUiOn74rxC96YcW7RwAT6zU2dmJzs5OrGTaBUopCoWCF2FghOHK2BiOnzjhD6bxRAIdjCxw4qCxDpSmYfh2uFxXQCmFKMuIKAo0TfNKpkKqqMOidDi8VogB0LqeCtUgdo1ATK2AM3vR32ae2eOTg1IIggDDMHD29GmsWbMGvb29MC0LlmnChadDME3Tq3eXJF8f5LquTybnZmcxw6ICG81b8Lj8BPKk4B/jocijeOfmn8Hy7uXz9siui0QisfSVI6WpwsCzvZjkoKgagqeW6hyPUuqX5xKwaGvoA1bumVDpGPw8spkMCEsnCIKA4VWrfPfPdtSgGG1y0CIkk0lMTEx4/RViMUiOA4GVDlJR9AhCJgPLtpHN5ZCIxys/OHxbCIEibxFtl5S71QNFwAmRH2MRCYIsywClsJ/9NDKv/Hvxi0QA7v4DpDu2QGPNrJYCQcOfaDSKaDSKwUCUwbZtZObm/AlhdnYWV65c8UmAoiiIRqNQNQ0qa8AVjUYRj8WQTCa978HIgmVZcBwHumEsWj7zWowcNOvZXw+EECir70PhxS/724wzTyJy+/8AESpHK44cOQJJkrBu3Tqv6kMUoSkKsrkcstkssrkcDF2HbprI53LIzM0hm836IflYPI5UKoUbVq9GqqMDMT2Ojx75Y3//aTuNfx79An6/83dh6joovBXwUhIDAlTMu/vdMRczalCaFmVVKLX6m/D8f5AYiIIAO2TEgYQhBoF/m4bhkTZ4mrDO7m5IigLbtv30cBvzaJODFkGWZSSTSczNzSGbzyOpaRBY+Iq6LkRRRCwaRTaX83LRuRwiTElfESEeZF7jbzMBVthHv1a5Uasd1ADvvIYmvw0y8XDJCwI6f+Svke3ZAcM0cWVsDP29vQs2DmoFJElCZ1cXOru6AHjXzDAMpGdmMDc3h0wmg0w2i5mZGRiG4QsgCSGghEASBESiUUQiEd9BU1EUdHV2IhqNQotGoSlKa0vLFjkCFBaNRg6CPR3CQhm5t4gcUH0W9pWDkJdvBuA9EwXmVjo1NYVz586hp6cHzz//PAq6jjzzoQiegyAIUDXN0wd0dGDZ8uWIxePo6uhANBYrSi/9OP1RfH/iUTwxMd/v4RsX/gs7O+7FltQmP1WxZKjx7PpixMUiKtXE1DWqsDgxsIPEQBRD3QehUgkoJ8vZXA6AJxZWNQ3dfX2wbRuiKKKDtZlvYx5tctBCxONxWJaFQqGATKGApKp6pUTsRpYVBVH2UBQMA0QUoVXLRfKBvkZoThRF3x7Yse1QCvyiqEEFkBYTBEopph/5M/RWIAbdP/rXiG94M6KOg4mJCeiGgbGJCfT19i5ZXwI/P1vlGruuC8M0Yeg6XOo1aOnp7cXyZcsgMS0F4GkOdF1HQddRyOf9iUkvFJDL5ZDL5/30Aj82IQQaIxBRTYMWiSDC/mia5v+bT0pLYuLUAjSqOWjEoIpSCtM0UaAx0ORKkLlz/msXnvkPnEpOolAoeISZFjtH6roOQRCQTCS8yoBoFBFNg8auPc83244DQ9dhspQdhReOlmQZqqr6IsYPbfwg3rLnbcg7ef8cPnnir/EvWz6LhFbZRXLRUOOZ5qmuxYhi8IqIasSjknNiKTGIRqPz93i9qEE9YsDGzdK7yXEcz/SIlUf2L1vmP/ddXV2v2uZKtdAmBy1GR0eH37kuY5qIlwyQqqp6E4lhoFAoQGQWs7zTYhHCRA8kCY7rwg5BDnTDwK+///2YnZtDb28vPvnJT1YU21mWhU984hM4cfIkZEnC7/7u7+Lmm26q/+VLQClF+tE/x+zTf1/yCkH3j/wV4hve7H0H1nxpcnISBV3H2NgY+vr6lqTtMZ+kS8Htj7mvAHVdEFFEhIUf+Wd4SkcQRURjMa8Urbu7bH+24yAzNwfDMCCJojfBMfJQ0HUUCgXMzM5CLxR8oRyPBimq6hEFTYMgih7JjEaLPBFEUfTC+IJQcbsoir4N8aLmnZnLIQB/EHdZ9QD/w50feW8Il92/wffwagOHkS5d1z1SXSh4oWpKsULvwVr3jO+kmMgcQ+/IWxCJDUPTNEQjEWSyWbz4wgvYceedGBwcDPUdBOI5GSqq6t0HnCg4DuxcDiIzNhvQ+vFrN70Pf/byJ/3PXtIv44tX/g2/2fH+GkdoLeqR+cUilT6pqzGxlh6ba3yCxCA4btVslBSCGFT7fJaVE0uShK6eHt+5tqOjo2G91qsFbXLQYnAmOjk56Q1sjgNNFItyb5FoFC5bAeVyOcQTCUAUIXg7KN1hzVCxJEkwTNMX1dSCqqr4kR/7MXzpi1/ExMQEnnjiCezatav4TZTiH/7hH3Dy5EkQQvBLv/zLzRODxz6Jmaf+ruQVgu4f+UvEN76l+HuIIvp6ezExMYGCrmN8fHzJCILAaqQBLxyt89wkm4QEUUQkFvM7cBYhpL+AxCYUXsXQU4FAcFjMejvPSINeKKDA/szOzXm/NXcOpBTUcYpbLQeFpuwceX6WH58bLAnMVVAQBIj83+w1/j5RFP0Q/PETJyDLsmfxzPo92KwbKZ/MbW7/7LqeARClfvSsqI02X+WVhJ5FUYTIiIwkilBZFKWzs9OPqkSjUaju7dD/63kA3uRIHAM3d5lQhtd6XxvAiy++iJ7e3tDEoBQiI30aI4umZcFxXY/Y6Tp+fPBH8cCl7+DgzCH/M1868xW8cdnrcUuqskCyVaimMSiFn1ZoISn08/119smPGRT/cvJbiRhUG+n8yEedlGjFzzL7agogHouhi5U8x+PxtqdBDbTJwSKAq+KnpqZgsKoFuWSFHo1GfQ+EbDaLRDwOyghC1brrCje/b4YUUpT42te8Bg8+8ACmpqbwzW9+E/fee29R9OCLX/wi9u/fD0IIfuad78Qd27c39N050nv+GjNP/u+ibRQEPf/tk4jf+taKnxEEAb29vZiY9ELDYxMT6Ovu9j0CFhPc/95g2gHeu0BjOeiqaGDAjWgaLNOE7TgwazSRkmXZ93cvRXpmBgCQTKUgBlbmLpuo/cmZTdBFq3H2f5et2t2SlXpwFW8aht/jwHFdGIYB13UxPTkJibX95X8U/n9m6e0yjQ0PF/P0VyX3R4F1YRQlyS8lDH9FO2AP3AJ79GV/i3n6cSjDOwAAZ86cwVw2i9c0eA9XmmQEUUQkGoXG00yMLBkFHb88+D/xq7Pvh8U6N7pw8dGDf4wv3/2vkBvs3BgWvtFQiPfySbdVofMwQsDS97uu6xMDwFsglUY6a30XodoiiRPMGguoXD7vkShCMLhihf9cV3q+2phHmxwsEhRWMz8zM4O8ZSHqukWTDGG5L+6BwCsYqCB4D3ItHUIAfEDlA32tmnzXdSFJEt785jfjc5/7HCYmJvD4nj3Y/ZrXAAAefOABPPS97wEAfuiHfghvfAMzI2owLJne8ynMPPE3Zdsnbvh5rLrtJ2t+VhAE9Pb0YGpqyuunMDWFXniMfzHgsly0zjQFlOkKeG65lRCYxkRnEQG5kgFPWAQiAwIhXgQA5f0JWoV0Oo2Hvvc93H7HHTXFW6ZpIp/PQ5LlUL8Z5aK1JqGM7CwmBxeehWvrcCHhyJEjGB4aalxsViNaR1hrdk1VoRsGZmZnMaytwNsHfgpfvDJvA348cwJfPPNl/Pcbfq6Zr1UXjTibtipywEsVG727KKV+ugzwFkZyhWerWlO4WqLtUH0UcjmAUqRSKa9ZmySho6Nj6XwnrlO0VRiLiGg06nmDyzIKplm2uieCgHg87osKc7mcH8rmbXnLUHJDE0IgiSJonehBcNLYuXOnbw70zW99C47jYN++ffjKV73mR3feeSfe8fa3Fx8z5IOUfvxvkH78r8u2G5vfj6nOO0PtQxAEdHd3eytPQjAxOYlMNhvqs43ANE3Mzc2hoOtwGXnrSKUQi8UWzV5ZVVUQ5j/PoxSNoO6vcJVFi/weDF3GuMDzVVbd5ZXDctgmrPP7cPTYMVi2jfXr1ze8TxLynBzHgaaq0FQVPzfyLoxER4pe/8cTn8W57Lkqn24OzXQXbQVZLPIwaAAua6LE057RSKQiMQAqOGTWIgYI9724ONV2HKwcGYEgCG0BYki0r9Aiw695l2Vks1m4JRO4wDwQCCGwbBt51sGNDwIu68NehEAeDwjndxB8kAgh+Im3eqH9yclJ/Mu//As+85nPgFKKW26+Ge9973vLyUCIBzH9xKeR3vNXZdt7fvjPIKz7UViB0rF64AQhHo9DFARMTk9jLpMJ/flacBwHc5kMsrkcbLYCi8XjiLNyKqGBAbjR4ZKvPAkhfrSisR2Ey/FeLfg19UtEDgQtBXn5pqJthROP4sTJk1i3dm1TOWUa4hoWdN2b8AhBR0cHeju68eFbfhdCYEg1XRMfO/QJuLR1NuXNtFZfaNOlZomBzVKmDrtO0TopurJKhSrRU7eB0tdsNgvbddHZ2emZmXV0LHpflR8UtMnBIoMLFCVFAUTRE8ZUSA3EWHcw0zShFwpFr/P+CSU79gkETy3UFCWWfH7H7bdjeHgYAPDYY4/BsiwMDQ3h13/jNyo/PHWiB+kn/xbpxz5Ztr3nh/4UyS0/A0WW/SY4YSEw4V48HodECKbSacwugCC4lCJfKGCGed671OvkmEwmy/L/YtjBsIlBU1UUv8xP1/WGPw/UXjVdTYLgNhA5aFX6Qx7ZWfR/+8oBRAUb69ata2p/9c7LMAwY3EwnEvEbZm0b2IZ3rHpb0XtfSL+I/zj79co7agC8iVEzvyylFKTZUkbSnOWyYZrIZbOeMyhbAMk1rImD4kZ+tFJTpap+ClVgsoow27IwsmYNksnkNeGhcr2gTQ6WAH4oS9PgMHOWUvDyNMBblQQNWqpGEQgBYSpzQmnFrn8cZVsJwe7du/3/plIp/M7v/E79lRaPWgQ2zTz190g/+udlb+15058gufWdALyOjBSAaVm1918BPd3dXidFQjCdTmNmdrbhfZSmECRZRjKRqO55H3ZQbGaCI8S/zoauw2kk536N50kbMUBqlSmPsnIHIM2TO4G6WN9tNL1CrHWFLdP0CV1E0yCXuOr96k2/jGWRZUXbPn3873Aufa7xKFHgfOrW/9dAsLdCYwduLoVRKBSgswioJMu+wVGYcstgCW/peTR6LtyRtqe3F729vYjH4w19/tWONjlYIsiy7LntKYpn41khxK6y/CXg5cqsCjlpP4oQeFBEQYAgSaBARd1BJZHa2NgYvvGNb/j/N4wGBlMetQAw8/Q/YvqRPy17S/cb/wjJbT/r/19h38tqghwAQFdXF1KpFCRB8Fo+p9OhPkcpRS6X81IIrLY6EUgh1AJBFWFo8D1NTtayLEOSZRBBqEgWF4KrRR+CA3gYctAqdYQgR6Gs2Fa0LTn7cpV310e187JtG7lCARRe9KdSk56oFMEf3vr7RdtyTh5/cexTyGQyoUqOy85ngRGWpj9fwxys8ttd5HM5f2xTNc3TXIWMIgkoIQbEM5Br5vwt08QMa429Zt26tgNiE2iTgyVEJBJBnNnxltq3+u+JRqEoCiilnt97yXv8KEKQIDBRYtXUQsnDlclk8Bd//ufIZDI+m9Z1Hd/61rca+j6zz/wTpr//J2Xbu9/wcaS2/3zRNkWWQYCKpCgsOjo6kEomIQkCZufmMF2HIPBOmIZpwnFdaJqGZDLZmOlJPVFU+D2VgUcPTMsKPWn4Z1JnwLwaqQUeNSBhjZZa2DJcHrmv6P/26GE4uamW7d9xHN9+V5akmg6ed/XuwI+u+G9F256afhqPTu5BLvBMu9TFoZmXcTJzquJ+CLBgTQZl+2gkHO+/r4HIjsP0BVyHEY3FykL49Y5fRgwq6a1CgDoOJqamQClFb08PRkZGrroW53pEmxwsMTo6OqAlkwAhyOdyFVeN0WjUX5Xk8/mKOgWgOIogscm30iQT/KRhGPjLT34S4xMT0DQNH/zgB7F161YAwMMPPxx6RT7zzGcx/b0/Ktve/fqPIHX7uyt+JxCCXD5f9loj6Ojo8Gr8BQFzc3OYmp6u+D7TsjA7OwubGQQl4vHm2uYS4qnXqw1SCxi8uUeAQIhn7dpCXI2hsJGUQqtrKqTlW+CQIOmjsM4+2ZJ9U7YiJvDMrGLsXq6F37nlN9CldBVt+1+n/hZzTgaGruPg+CG86+n/jnc9/W689Yl34HMn/7novc1UJVSCy+5/Qki4VE9Ic6MgTNNENpfzXUTj8XhFAl4tNcL1FODH5d+9meoIx0F6Zgb5bBaSIGDL1q2hWq63UY42ObgK6B4YgBaJeIp15r1fWk0QjUZ9d0DDMJAveQ9/H6UUTlCUGHDL4+D/d10Xn/70p3H6zBkIgoBf+9VfxcqVK/ETP/ETXrWEZeH//ud/1j3/2X2fw/RDHyvb3vW6P0Tqjl+o+BlVURDRNGTm5uruvx46Uil0dnZCFARks1lMTs2vECkTHWazWbhMhJVIJBZmkcq0HdVeWwi4javDjJHCnAtQP1TcTDOjhcIvYwwxGLd6JXfm/CVMyMNF28zTjze3s+C1pdQ30REICUUMACClpPB7G36naFvaSuMfzn0Gnzv/r3j38+/Fy7NH/Nf++fQX4FDv+i1UYxCE47qgCP+bNHLPcH1BIZ/3Fyi10nWVIkq8c62/z0ri65BwHAfZbBazMzMgoojV69ahr7+/qX210SYHVwWCICDV24toJOKF2pmNculDoWoaYtEoCCEwLQuZTKasFBIIqHtZKK70PXyg+fznP4+DBw8CAN7znvdg4623AgCGhoawbZuXs31szx6Mj49XPffZZz+Pqe9+tGx71+s+jI4731vzeydY18pWIJlM+vXKuVwO4xMTcBwHmWwWBSbyUxQFCVYKuVBU0x8sdIoTBMEnioVCoe7AGPZ4hJBQnetaiYYiBy30YzAtC0dfeQVYvqNouzN5As7clYb3558ZIwa8pXA0FmtIRPn6wfuxq7+4kuKBK9/FFy58yScCHDk7hyl9umURAw7XcTwL8Drn3SgxqKQviIZoUe2TA5bmCOpUGo1YBGFZFvL5POYyGVBCkEgksHnLlqb21YaHNjm4SpA0DVoshhj3ODDNipO/oqqeURIzOcpksxVFh9wbn1IKPSBk5A/8f37jG9izZw8A4C1vfjN27iwetN785jf7Nqdf/9rXKp7z7HP/gqnv/GHZ9q77P4SOO3/R+0+NQSaZTCLTIq8CAEgkEuju6oIoCMjkcjh7/rxXYkYpYtGoT6xaCQGtdyDUmDESpTS0MdLVtTqqjLAGSDwP3iocO3YMtuti1fYfBtGSRa+ZZ55ofIfs3PzujkBZy+YwIITgQxs+iJgYDfX+cX28ZREDDl7hVPXceRi/gX06tu0JfJm+IBKNVu8uWwHBLo6UUj+60SxMw4BeKHgNskwTiqLglvXrPX+ZNppGmxxcJQiCADkahawo3uQvilUnf0mSEE8kIDJnvWwmA7tCCFqRZUAQYLKVswtvcNizZw++wdIFO3fuxJvf8payzw4NDWE786B/5plncOHChaLXZ5/7V0w9+Adln+t67e+h465fKtpWbZBIJZPeuYfsAxEG8XgcqVQKtmEgVyhgOp1GNNB+t+UgpCWRiNJ9cvGW33WwRVhKEsFLMutWgbSQsOXyeZw8eRI3rluHSCwOedXdRa83lVogxPMysKwiL4NmcGzuOEQhHKm4MHex5b8X1yWVts/2BYoN3mu+vsBxPH1BLNbQJOw6DgRR9CMGCyXaOiv7th0H+Xweiqqis7MTN6xdu6D9ttEmB1cVciTidcKTJN8J0HXdiiVPoih6uXNJglulkkGSZW8fYCWDlOLAgQP4zD/9EyiluHXjRrznPe+pej5vectb/A6FX/uP//C3z+3/IqYe/FDZ+ztf80F03P2+yjurYJqUSCRA4bmWtQq248ClFMlUCqokQRZFjE9ONm0uFBatjkj4xkgsvVD1uA3sk2DpHnDfgyOEP0SrIi8UwEsvvQRVVbF2zRoAgDJyb/F5zZyHM302/D4phcXaaQOVvQzCYMqYxgde+H38ynO/jjkrXLRsND/a0rJWCm8ydiktIrQULNcPhA7jU+r1IPH1BZLk6QsaJE2lGoNm4ySUUuTzeZiG4f9mkixDEkVsuPXWtj1yC9D2kbyKIIRATSahs057iUTCD9dlMhnEolHfHwDwBD2xeNx7KFiDG9dxEGHmSYQQqIoCp1CAaRhQFAWbNm3Cl7/0Jb9MqHTgNi6/hMkHPgTXyqNz52/gX7/whaLX557/EiYf+L2yc+/c/QF03vMrYb4keL/5ZCoFEIJMJoOOVKqRS1URNhMgOY6DaDSKzs5OTE5OwrZtjI2NobOrC8lF6rzGryVtYvVVeYeeCDWbyXihUdaZsdL7gPARgVbnsKshmFKoW/rZovO5ePEiRkdHcccdd/iTlNR/C4RYD9zcpP8+48zjiHatCrVP7mUAVPcyqIdJfRI/89TP40phtKHPjZuTsC0LeWY1vFBUqlTw8/yN7Md1Ucjn/QWLoqqNpREo9dJmJSkTiuaEl9R1kS8UPFtmeISDN3UaWb0aA8uW1fp4GyHRpldXGaIsQ2ETGBEEJOJxLz3AxFBGyQqYd3Pkdda6YRSJGXmIz7LtIv0Cf4zdgBqYUhfj//mrMC4fgDVxHONf/yXMPf8l/zNzL34Fk9/+YNk5d+76bXTe+2uhvyMfRFRZRkTTMNeEw2EpODGwbRsia2ClKAr6+/sRiUYhMDfFyakpXyjXcrR40pUkyWvMRIhntlNh/2F9Dvy3te70aiKsGLFVERfdMPDSSy9h2bJlWBaYDAgRIJdED6zTT4QiSI14GdTCw6OPNEwMACDtpAFCYFuWH7lYCPxKBRZt5KLDRn6DSvqCCBPQ1gWl/uRfiQQ0Q1pdx0E2n4dj2yDwfGFyuRxACLp6enDr5s0N77ONymiTg2sAsqZBYe1tKYBYLAaVDUz5QqGiz4EWiSDKKxlME9mAj7kiyyCEVBS38YfacRzoF1+ENXW66PXJb38Qc/u/gLkXv4rJb32g7POd9/0mOnf+enNflBAkU6kFN1AqIwaJhP+9RFFEb08PUh0dEAlBLpfD2Pg4rBbqHHwQ4kUQWrjLSCTiibUorTxBNDi5LlW9QuhKhRYRqoMHD4JSik233Vb2WllqITsGZ+JYzf25rG0673IatmSxEvq15srnJs1Jv3w5aNPcLHilgiiKEHkaoQFYljWvLxCEhvQFfnSiVhSpQdLOO9e6/HziceRyOb8y6fYdO9rphBaifSWvEajxOCS2auQh5no+B6qqIh6LQWDOiJlMBo7jzEcPaijfBUKQe+XbFV+bfOD3Mfmt30bpurPj3vej877fbO4LskEitcByRsdxkGOpBKGEGASRSqXQ29sLURBgWRZGR0cXT4fQSv0Br6WHtzqu5pzYyEC/FO5wYTwOKtl4N4Mro6O4ePEibrvtNp9EByF23wAhVRxaNk9Xr1rgFttgFr4LIQYAsKt/J35x7f+ASBqrbhjTx6GoqvfcCwIM04S+AEdR13WLrM4bga7ryLNr4muiQugLaCBaUAn8qlI0dg/bto0c8y4RmRDSsm0/arBt+/Z274QWo00OriGoyWSRqph7kxN4tdyVWj5LsuxXMjiskkEQBO//lPq5uFJQALlXHgh9bh33/Bo6d/12M1+rCMlkEvl8vrFmQwyUUj9iQAjxW11XQyQSwcDAgJemcV2MjY21zGchiDA9GBqBJMu+c2K19EKrUxoLhRMmctCCa2TZNg68+CL6+/sxNDRU5TAESkmnRuvsk6Buhb4jlCKfy/mRj1iDXgbVjv++G38R/+feL2N797b6H2AY08dBKYWiqp6bJ6s8MkOWtwZB4f0mrus2VGnBjYR4OlNRVUTr9EcoqzyopzkBKvq1VIPJUqeA15MkHouBEIL0zAyIIOCGdeuwbMWK0PtrIxza5OAagiAI0Do6ikRkiqIgkUhAYA6GmUymrEqBVzJIgUoGwkLe1XoZmFdegjN7MdR5ddz9K+jc/TstWYEmk0mAUmQzmYa7vhW4CIkRgzAhRFmWMTAwMK9DmJlpqQ4heE0EoGWTNk8vuI5THPFo4jdY7LhBcLVYK3LQivM4dOgQLNvGpk2bar6vlBy4hTTs0cNF27jDn+04njdGLFZW8rcQrE2uwed2/AM+ufVP0a/11X2/6ZqYsTw9jt+ETRT9TqKhwe4Rri8Ka0ql6zqymYz/jGl19AWlpYiN9III89y7LI3A02uyoiDGjJa4NXpndzc2bNgQ6phtNIY2ObjGIEoS1FSq6IEUmc+BLMtwXBf5fB7ZEsMkEhDlUUph2jZM04RlmhUHltyR8FEDIdrVstB0ivWV4LoDEjIXalkWdF2HywfxBlZ3hJDKOoQmO0QGUXTu3Ga5BQSBCILnoEkICrrue0M0+yssZmqBpxRqNVyqF24Og/GJCZw9exYbNmzw25tXg9ixAmL36qJt5pl5zwNeCmdZFlxKEY3FILHOpi0Dm5jfMPg6/Neur+E9a94NWaht4z2anxcyaqrqNVQThFC9N3iOn7d351UC9Z4VmzVN4tECSZYRj8eh1tAXFE3urBopbGmkG6JvgmkYfpRQYNUb3NRM13VkczlEIhFs2bq1aQ+KNmqjTQ6uQciqCqUkfyaKIhLxuPeAwAuvzpVEEXglg6aqXlrBcVAwjLKwJKUUuaOV9QaVMP29j2Nm7z+1ZNKTZBnRSKSox0K9ict1Xd/fXlHVpgeDoA7BNE2Mjo0tWIdQeuYELLTegmslKwpkRYEgCOWi1GsorcDJZ01zqAWSE9u28cILL6C7uxsjIyOhPqOsLkktnNsL6lje/XThJZgvfgHus38PLXPaSz21GoGa/qgUxftveh++sfPfcU/vXVU/cmgmEN0gxLdYdx2nYhfXIPhzRAiZr1So8Zu4bKGRY+lKIgiIRKOIVXKDpNTv7li26m9Q01ArahCMFrjwqkbi8bivLXFdF+mZGciqips3bGi3Yl5EtMnBNQo1FoOkacUPEiFQNQ2JZNK3SuZRhKCrYiQaRTQahSLLsC0L6XS6KMdvjh6GnT7f0PlMf+/jmNn/xZYIylIdHeW5f26aVGH/hULBFyBykWaz4DoElUVYFkuH0CqCwMVpjuMUidMa3vMikolGGi41iyOvvIKCrmNrA3758qp7iv5PjSxye/4Ss1/7BVjf/0PgxIPAxb3QH/0TOBm2Ym/ldaqwr5XxYfzd7f8Ln97+1xiMDJZ/pOT/gih6JZUsglQpCliJXPs9Far8JrzCiYuWuVNrsBphvuSZlgsIWbSgGVQbQ4xAtIDAc6YsJSqzs7NwKcXQ8DCGh4cr7qeN1qBNDq5hqIkExAorGlEUkUwk/FJGi1UqGLruP3iqqqKjowOiKMIyTaSnp2EwN7FqVQr1kH7kT/2QZdAvoVEk4/Hq5YwlKx3TNL3zdl2/7fNCwXUI0YAOYWJysikdQq2oRytC+UQQEGWGM3pwcmjw2i9mWiFUGeMCJt2p6WmcPHkS62+5BbEGFOlivA9CT3FqwTq3FwgYJAEAHMt3UWyJYVSdfRBCsKt/J76562t4y9CP+dv71N6i/3MoqgpJlucjSPwwCDRMKvl9q0UOeDlgIZ/3S59j8XhZ06Ra9sa8nXIzV6qSNbjL/CV0Xfd9GRLJpO/5wcHTCb0DA1izdm07nbDIaF/daxiCIEBLpZCfnq444KgsxJ5n7mX5QgGmZSEajUIURciKgs6ODkyn076jomEYyB1pjhwQQZr3ZAd8okAEYb7eP8QklEgmkT1+HI5tVy6P4l4M7Du5lELVtJYOBlyHMCvLmJ2d9VwnLQt9PT0La+9ccgzefpcuYHJWVBWmZfnmOJIoNjUw+3nhFqMeOVjIMR3XxQvPP4/Ojg6sYRbJdT+TnYR19gmYZ56AO3m6/gcACLxhU7OOl5R6xDZEPp1DFVV89LYP4zdvfj8u5i/hlo6bq743Folg1rbhUgrDMLxeHDWcDh0msuSrbkopTO6dwBcQmjY/AfMoQWAf1Qhl03cypUU6KX5OBiMFBF5kr5IrJU8ndPb0YOXKlZ6wuY1FRZscXOMQJQmRVAqFdLrioMO1CIZpQmdd5DKZDCKa5pVERaOIWRZ0Jmgyx16BnT7b8HkQNYnuH/6zsgGDDywUnk+6gPokIcWskzPZbM2coWmacGwbgiA07VZXD6lUCoqiYGpqCrZlYXRsDN3d3Q2lL+pNur517AIIQjQSwZxtw3VdWJRCbWICWwxiwLvqAYuTVjh69Ciy2Sxe89rXhop+5Pf/K4xD30Cj35bEmXFRs8RgATbaSSWJW5Takx0RBMQiEc811TCgyHLVlAFlkzCvVHBsG3ldh8vKmkVJQiQSgcAEpA1HS5q8j4OpCddxPAtkRhYkSara8tl1XUxNT0NVVQyWOGK2sXhok4PrAJKqQuvoQGF2tjJrJwSqqkKWJBRY9CBfKMAwTcRiMciiCEeWoWka0i99MfRxiaQhsva1iN/y3xBZ+1oIcsSLFNRYUQR92yv1cgC8HhKEEGTm5qqTA7ZCooBvCrRY4DqEiYkJmJaFifFxdHR0+CSmFRAEYUHdFgVRRCQSgWEY0HW9KbIksFBwK3stBBsutdqdbmZ2FseOHcPNN98caqXopM/COPT1xg8kyhCinQCaIFBLYDDFIasqJMuCbdswTBORKgSWR3II8bpL+uXMxOv+yXUFS9Fzo/S8eFtyXhlBAGia5nclrfSZ9PQ0iCBgcGgIw8PD7XTCEqF9la8TyJoG6rrQM5mqYT2BNWaSWH9zx3GQyWR810XLsmCefqTmcYioIrJmF2K3/Aii6+6HoMTKjhFqUOHRhGDagQ2kkiQhFo3WFAJyfYQkipADJWbBtEYrIUkSBgYGMDk1hUI+j/TsLEzTRHd3d/1JL+SqUSDEd61rBpwAGoQgr+uL1lSqEdSrVGi20ZJLKZ5/4QUkEgmsW7cu3IeanOuEeB8I8c6/oQlzAdGCRsFX+JqiIGtZsCyravMjx3Vh2bZHCtj5SbLskYnA++s+R6wUslUkwmFNrYLRgkiddGE6nYYrCFgxPIzVq1e3XRCXEG1ycB1BiUZBARhzc5UfbLaNaxF0FkWgrgujUIAsy55uoPRzggR55T1IbPhRJG5+IwS1/qQTNhxZlHag1HcSTNXqscCiBi6lfnc6EtjfYg3HXIcwNzeHmZkZ5HUd5pUr6O7urrqyafgYCxxso7EYcqwRjm6a0JpoJ8zzu6Xbgih93WWlbH5VCbyJ1HYcUEIgMh1EWWlnM2FrAMePH8fszAx27doVOiIhdq2CsuY1ME/WJsBln0t4KYVrjhjQ+W6G/EiSJPluqJZllfU6cKnnIqrrupc2YCk5qRkdTZO/XaXvkS8UfK8Gri2QVbWmIn56ehoOpVgxNIRVq1a1dQZLjDY5uM6gRqPeZJ/N1rTsFUXRSymYJgqFAgRRRC6fh7r7oyh89wOAY0DqGkF8xy8Bw/cCUgwuAN0REamzOg/WUwPhB1WedgC81MLpM2dAeZoicDzbtv3VhVxh8iNA61olV0AymYQsy97gZNsYHRtDPB5HJ6v+qHg+Iffte8s3IFwLQhRFKKoKy7ZRyOchs8miHnyFeYnwjAYn/eD7y3fgvz/4e/O0Arcc9pXzwTw8mW/bHQaZbBavHD2KtWvXorOzM+SnPETv/hVQx4YVMDyqB5JoQG/Av9MiE4OiZyv42xACRVVR0HVPexB4Pkz2rOuGAcd1oWlaXYvxisdG6/QpXETLDcdkrneoo09Jz8zAdhwsX7kSK1etavsZXAW0ycF1CC0e91bX2WzdVZWiqp76nhAYug6zdxuS//NZaKrqi5Jc10VB12EaBgzDgGXbiEYioVX7fDVPa+gRStHX14dXjh5FemYGHamU5y7o7Qw6Symoqlp1QiE1lNqtANchpNNp5PN55PN56LqOrs7Ouu589RC8Ro1+BwLPUptrPwqFAuKx4tRP0OPer1Gvlc5YQJrGDxEHB3t+/MAEGlTE+6r+SmVyAJ5//nlENQ0333RTw+fjuoCz6T2AS4Fz1ZstBSHGB/hJVn9Ti0Ps9VDrOIos+54HNhPs5gsFbwJmFUQRTfO1PWHBSUErvqFtWR5JsW2f4EQ1DbIk1SUGMzMzMEwTK5iXQVdXVwvOqI1G0SYH1ym0RMIrBcrlqhMENiATQpBKpeA4Dubm5rxIAtMgKIoCjVmTKrLslQ6y5iu8AUyYsK5foRByRd/d0wNFljE6OuqvCigA17Zh6Doc10WsDjkJDnuLMWSLooienh4UCgVMT0/DdhyMT0wgFouhq7NzQep8UrKqbuCDnoiLlXtZlgXDsqAEdBluhcm5bOJrMnJRug+/4VKla1F6L/DjBchL6f5OnTqFqelp3HfvvaG6AAbhMBtgEAHitvdCVCMwjz9U93NCvI8dvsrv0GCErFmETsEIAhRZhq7rmJmbm48cEa/dNK+0CXV/Bu6DVpMCDklRoCiKpzuqM5bMZTLQdR3LV67EiqEh9PT0tOCs2mgGbROk6xiRZBJyJFLbkCgQsk+lUogxz3QeHjYMA3Nzc8jn835ZJK8zNg0DmWw2dA8CXtcfxu9AIAT9AwMYvXKlaLvBHduY6YvjunDpvENbtQFsMTXjkUgEy5YtQyIeh8iMaC5fuYIs6xTXtEAyeL1Cf4SldEQRmqbBBZDNZmGyGviwFREL7TwIsE6MjHxWJJANTqYzs7M4fPgwbrjhhoYnBdu2vd+DEAiiiHg8gehd74Ny8w/X/azAyxgrkBUSkuw2jeDkXOs47Hl1qdejgrujFnI5UNZ5MRGPQ2Daj7qKftcN7UsSBjbrGpvL5fzGTaqmIZ5IQGMLDIEJk6shxz6/bHgYy1esQH9/f0vOrY3m0CYH1zmiHR2QNc2fQGtBIASRSASSLEOUJMR4s5kASdB1HRoLSQqi6EcRcoG2tnXBJ706A8/AwACm0+kiz3ibTXI8lxrMvfrujFW+Kwn8afWATghBV1cX+vr6oMgyKKWYnJryGjg10H624r7RGEGg8FbJkiz7q8N8Pt/Qd27F1WmlbbJlWdj37LNIJpPYuGFD6HsI8O6ZXDbrueuJot+5jxCC6B3vhbrhx2t+XkiwtEJpGqRVgrwqIITMp1hKwdIuvlMhvGfAMgxkMhmYluWRMlGEommIx2JeNNC2QV23fkowZMOzeqhGCpKMFFBK571PaiCXz2Mmk8Hg0BCWLV+OwcFya+k2lhZtcvADgGhnp0cQmPFJNXDlsixJcBwHtm0jkUggHo+XkQTTNBGPx32Vvmma3qDURG/5agP8QH8/CCEYG/V87SmlnrMbqk84Re6MfCVViSwQsiglj5qmYXBwEKlkEpIgwDAMXLl8uaiRVMOoF0FgE4XrOKDMupojziy0eROd0GhBy2q3VeSAUuzfvx+mYWDHHXfM7y8gfK32W1qW5RMDiYlwg1EMQggi294N9da3Vj62JENQy8vjFl1bwIlHyXF498pglIw/l5lMxjMzYlU/fpMkdm0c123db1IH9UgBIcRr5hSiuqhQKGB2dhbLhoawbNkyLF++fFHPvY1waJODHxBEUilIqup5qtcY2ARB8ISIzCDFcRzIslyRJGTm5sD73Iui6HWzy+UaiiL4gzob4IPnpqoquru7McrJAW8zizo+/SXgqyo/BRFQ1i8GCCHo6OjwowgEwHQ6jdGxsebbQLPrUzQJsonCYX/8SoDA60QQEGOCRNOy6nbuKz3eQmBXc0Zs8LqfOHECo1euYPu2bYiWiCuDKL0vTMtCjqUSZFlGLBar+J0IIYhseRe0ze8of02YNwRaCqmhf36B58cnuCVaDNd1obPnsBAgBVEW2eMtvbnuw2b3niRJ5dehlemDTKY6KWC/D4+81LrHKKXQCwVMz8xgcPlyLFu2DENDQy05zzYWjjY5+AGBIAheBEFR4DhO1dwzYaVQXFcQXG1WIwn5fB6iJEFhPuymafo6hdAkgf8tCEUD1eDAAMbGx71JMLDqaWbi8qMKgJ+CCE5UrSYLqqpiYGDAb3BlGgYuX7nidY5rdmUeEBPaFX7HokoH9pokSf5qraDrRR06ax6quTP0wY9TSuQa0TNMTkzg8MsvY92NN2KgXiiZl0Sye7DANB/cerde+W1k0zvKNAhC1yr/ddqCaEpF8Px+QC/A79FKJZ6u60LXdWSYOM8FikgBfw75defRAovZa3NPg6J9L/DeLyIFjlOTFBAuVKWVGzfxczMMA9PpNAaWLUP/4CBWrFixoHNso7VoVyv8AEEQBES7upCbmoJjWXAIgVCBvQvwRHaGaXpWrIbh9UtnD7Isy5BlGZZlQdd12MxtjRACSZL88KVhGDBNEzKreAhTb+/X+TOhV39/Pw4fPozJqSkkEgmA0paFRP2QZmCAcigFCazQguZKzR4jlUpB1TRMTU7CMAyvkVOhgO7OTigVmsjUAic1tYZyv+Qs8L00TYNj27BsG7lcDol4vP4kvYAJg4e/gZIyRoQnYXqhgGeffRY9PT1Yf8stYQ/sNxgjguBV25R076uF2I5fBJEiME9+H0JqEInX/eH8i60QH3KBYWA/Lpsw68F1XRimCZPZhgOs+ZqiQFaUsu/Ijadc14XtOH6zJZn9Hq3wK7DZGMCJoL+4UJSi+8tvMoaAB0mN62mZJqanp9E3OIj+gQGsXLmy5fbbbSwMbXLwAwZBEBDr7kZuchKObcOhXvOVIsMkNslHWSMXXde9UqOSUsRKJMFiQihJkrycv+PAZP7tvCwyzOTOldKdnZ2IRCIYHR1FNBqF20JyUAkC5o16gis4AgCCUBRKa4QwyLKM/v5+ZDIZzMzOwrIsjI6OIpFKIZVM1h34+GTLIwVcjOfSckOqaiVv0WgUmWzW0x8UCn66oRaadTDkpWqiKDZVJum6LvY9+ywIIbh9+/ZQYW+e1uJRmWAHP37twvxm0W0/i+i2ny1zdGzoOgS/I09JVJkQ652R67o+0eafFAXBs8uW5arfSRAEiABseJogXrUglGg2GgalngNnGFKAeRLul9Ky36f0evpRH8PA5PQ0evr70TcwgJGRkTYxuAbRJgc/gBAEAbGuLmSnp+Ey9bJLiN/jAIBfK2+aJizLQqFQ8Mx9Avl6PihVIgk2mxy4iRJvv2qaJhRF8S2c64EQgsHBQYxeuYKVw8OgAIRFbqwS1EEAKBrUiwLLnDRwYRzqEwaeC55Kp1HQdS9fXCigu6urYitaHlp2eOi5BLxZUtn5V8iRE0HwelZks7DY4F7P9rmaQ2I9VPM3CGtv/fLLL2N6eho7d+70olZ1YFsWsvm8Xysfj0aL7i8iCBBqhLF9sPu6lEjUKyMMTvql0aj5k5iP0rkV0gWlcB0HOntmOERBgKppUEIakAmSBGJZ3j4YaW8WruPAtCxYplnUvKkSKeB6l9L70KmRmiHE81aZnJ5GV08PBpYtaxODaxhtcvADCkGSEO/qQnZqyq9icB1nPorAyqCirAGSYRhQVdVftXNxXNBZL0gSDMOAZVlFuXX+b04SZNYJst6ANTA4iNNnziCXz3vleYtQZVAJ/lG49W+FAT84EVDAyx8HRZaBffmrPklCX28vcrkcZmZmvFbQo6NIJBLo6OjwB0M/hRBiIikKEQcqNkohShJikYjv6CiJYn1f/Saut68PKRnYw6y+L1++jJMnTmDjxo3o7u6u+35d16HrOgjxejjEY7GKKRMSIHvVzoIGKiAqv6ECEeDbiw82/xEwEhcgJ7WuqOs40A0DZkC8KooiNO5mGhKUUoiCAJNSWKYJURAgN9BqHPAiLpZlwbSsIuOiqqSAvx4wXvL35Z2Uf27+e9lrhULBc0Tt6vKJQbvD4rWL9i/zAwxBkhDv7UU+nYZtGN5DWhJFkCQJqqpC13Xk83kv788Q9HWvFElwXBeWacIwTb9syaXUH/QopbAsyxfMVRv4+np7IQoCpqenMTAwMF/C5e1kUUoSgyjae42Jl78enDCCuf+i0DK8JkmapmE6nUahUEA2m0W+UEBXVxeimhZaOFga+g5OgpWgqCpsx4Fpmsjl8745TtX9N5FaqGibHALZTAbP79+PZcuXY82aNTXfy41+LMsCAaAqCjSm0K+GYJ+OYCldUJjnV30EdQGuO0+EQ14LylJ2tYR3QThcpxMgBZIkQQsZZQtCIASU/W6+RkUQQrtK2rbtRw2D31eSZSjs+a5EGitFsjgcxyknRZTCodQTMBcK6BsYQE9fX5sYXAdo/zo/4BAEAfHubujZLIy5uXklv+NAYIrnInGiaUKt1OyowkAhCgJETYOqqkWDjcBMgkwWnuTRBok1XSklCbIso7evD5OTkxgcGPAHq2BIvzQ/vBgIfkc+YYaZJkjJqjE42BJBQHd3N/L5PNIzM3BtG2Ojo1A1DSmmPK90/IrHKXlPrQkpEonAYSK1fD7vtbqtsv+GUwu0jm1yFTiOg2f27YOmadi6ZUvN4/Hz5i2uo9FoWQfC0nMqLfPkJl48XVSXWDXw/UmNaFOl72LoOsygpXATpKBI9Bc4F77il+vsq1LaAPB+Q0WWPd1RlRC/wIh/tW8bTKMEr4ll20in0yCShKFVq9A/MIDly5e3UwnXAdrk4FUCLR6HpCjIp9PeigrzD7FAyLw4sVDwavcbWK0TQvxoghvoJc8nTdM0YRgGJEmCZVl+uiEothocGMBLBw/65XulU87SJBpKjhkcjOtMAvy7Vrtu0WgUmqoiPTOD2dlZFPJ55AsFRDQNqWQSCrO0DuywYvtj/+86q1VCiKc/yGRgs8ZakRoh57BaAaCKbXKgAqQiKMWLL76IfD6P3bt21Ux1WJaFHNMXcPLKCaUfTQLKIjiVVq2CIMC2bT9NtiAEVPhhSAGvBLICpEBmkbpGSQFH6VFddhxRFCtH5lgkzzTNsrSBrCiQZbnmufDSRIra5NX3KAlco3w+j5mZGaQ6O9HT34+hoaGGu2y2cfXQJgevIkiKgnhvLwqzs7BYb3W+OlYUpVycWA1s5eS65V0YBUGAqihQFQWO68I0DIiSBMe2YVoW8vk8iCCgoOvQVBVaJAJFljE4OIgDBw4gnU4jEbZvexNCumbAIxgE3mBcLexcd+UvikimUohEox5BKBSg67p/vVOsVTTYMUqP4lvp0oCNdHDVX3I9uEAxk81C13WIguBFKngahA38aIAYAFVsk+t899Nnz+LcuXPYvn07EsmkP5EEJxQXXnmjbhheVIvpJwRRLFe+F13YciIVhCRJsCuFvIP7q/KbBvUEYdINTnB1Hni/IklQQ1byAPA0QQDqOS/wiiQRxf0UbNuGZZpeCiOYNpAkKIwU1PvNfN+QOu/jBl1EEPyqkdmZGeiGgYHly9HV04OVK1fWFce2cW2hTQ5eZRAEAbHOTpiqisLsbNFqV1FVWGy1oyhK9RVFnVUyh8hWfZqm+WkHnnM1DQOGriOXy0FVVcRiMURjMUxNTWE4rEvaEgkXgflVqYD5wbJ0QqmVu+fW0ARey93enh6YhoGZuTnohQIKhQIK+TyisRiSiURVfQYhxBeUUm6XHTxmyfFFpvfQCwVvNS4I8zoBSotEZEDxpMtJEYXnD8Htqm1WAUMEwZsA2Qq92ndPp9N46cABjIyMYGhoaF6jEfibl186tu3pC1TVN3YKhTpEURJFP4JQCWWTMCPAJISewOWiPtMsUusTeCmzoNC3JhghCGpu6n17y7Y962gWtTMtyxMKB/QsAosqKLIcKg3kr/5DIPguLm6cnp6GJMsYGhnBwMAABgcH22mE6xBtcvAqhRKNQpBlFNJpb0AmBKqieJO2afrixLCDc2llQ+lrPO0QiUS8kkjDgK7rsEwT2VwO+XweyUQCo+PjsF0XNbLLlY+P+VzsomsT/H/UES8y8FLFUiiqir7eXo8kzM76otB8LodYLIZUKlVxUuF5YZefC1uxVZscNaYJsW3b1x8Ild5LKpj1sBB+sCrDYccSmaiVAhWjSIDX2XPfvn1IpVK49dZbK56f4zheR0V27GgsVlH3UhMh7lNRkoomzSAoO38/UoDav6vrurAtC2agrJdDliT/fm/k+QHK0wb1YJomLMOAJYrIBO8xQjxhYS2SHzx++QnV/QzvbwL2J5fLYXZ2Fh3d3egbGMCKFSuQSqUa+0JtXDNok4NXMSRZRqynB/rcHMx8HoQQRGMx3+wok816TnshBwpe512vt4PK7JvjsRgMw0Aul4NhGIgnEnAuX8aZU6fQPzCAaCQCLRIJtergRySB/y8ZSQD80Halb14vJK2oKvr6+qAbBmZnZrxrks8jl8shHo8jmUwWkQQ+sft2v3zVXG3Fx/UH2Sxcx0G+UEC8UtqIrZLr/d48d80nnWrvp5Tiuf37Yds27r333opExzRN5AsF378gVuJfUAuNVllwQWelFIXAuhTWihRQFjWxTNNfsXNITNQnsVbjYc+/2j1TC47jwLYsGKwZmmVZiDPDK5GlDZQQaQN+Ds2m51xKAdeFQylm0mmYponBFSvQ3duLlStX1haQtnHNo00OXuUQBAHRjg5IioLC7CwkUUQ8HsdcJgPTMDAHeKVwIQePaq5olSAynwUeTZBkGWdOn8b4xAQSyaSvT1CZ82K0kYkj8LeLxSUKQaEgAYr0An6PhxDQVBVaf7/XpW5uDqauI5vNIpvLIR6L+STBX2UGqyLY/6tNNnzizWazviVupRxwXWLgOL4rYr1J8Ogrr2BsbAx333VXmVsjpRQFXS+y5Y6yVsth0YyzoyAIvv6A0oCRT4198ZSYbVlF6QdBEDyVf8hwvf+5AEEJ8w1c1/UjP7wlMwDkCgVQeKmLaCzW0HkUpQ4aIQYsQki9E4NhWZiamoKmaRhavRqDg4Po7+9vpxF+ANAmB20A8NIMIqtmUChFPB73ViWmiVwuhyhbwTes+Ob5cVrd6IcQAkVR0Nfbi5HVq/HKK694JIAQfyLTdR2zs7OQZBkRTfNaTytKfVtiVF8xthpc2e3X2QeaSTWCSCSCSCQyTxIMA9lcziMJiQSibFIv0zwE/q70TXkpaYEZJHHi1Qhc14Uoil5Koca9cPr0abxy9CjW33IL+gcGyvaRz+fn9QWa1lB/hIVCZFEC1GgO5DiOryMICgsFQiDJMlRFCS0u9P0QMC8ArjUhc30KJwNOSdoC8CIE1HEgyTI6k8n6Yr8gSS/9OwwYKfDTd8zKemZ2Fl29vejt78eKFSuQDCsmbuOaR5sctOFDlCTEuruhZzJANgsaiyGbzcLQdQiE+ANQIySBr6S5uK1WeF0QBKwcHsbp06cxPjaGTZs3e9UT+TwKrNmOZZqwWDhVZLXivOKhVlQh6Fy3WNqEIp8E9v/gtjCWukFwkpDP5zE7O+vpMzIZZOfmAEL8UHK1c6mkQ1BVFZS1Ai6wVFJYq15g3gVTDKQUSifXixcu4MCBA7jhhhuw7sYbi16zbBt51k0xrH9BI2WWtVD0W1Qgbb6w0LKKSB0B0xGw/H2oe59FkQiK1f7VPsvJAP9Tek0FQYAky5AlCZIkwTQMgFJIolibGHCxKDunhsGJfaC6xLYspNNp2LaNZcPD6GFphLap0Q8W2r9mG0UQBAHRVAqSqgLpNBzXRaFQ8PLCbKXJJ4iGIwkVcr2ln45EIhgeGsKZM2dwy4YNnqgqlUIylYJj2yjoOvKFAizD8Pz2LQu5XM5zdmPlYrVyv6XahPlTa40TY3DVXjoBBVMzjUQxotEootGoL/jiPgD5QgFEFJGq1IGxhgZEi0Q8J0smPCXRaHF1RA0SZzsOVHg5dr/lcOB7jY6OYv/+/RgeHsatt97qv+YyrwXTNH3zrVppouB+F0IMikyPAgQx2BOENz2yFigs9Akw5jU41c7d1y/YtpeuKEk98VQL/xOMUlBKkSsUYLnuvJthrXMJ/Ds0gqSAHxdAQdeRnpqCGo1i2fAwBpctQ39/f2P7buO6QJsctFERiqZB6u0FYYN3gQnkBEHwndi4e12lttBhUCmaICsKhoaGcPrMGZw+dQo33XST/5ooSYjH44jH474VLY8ocKFYvlDwV1h8YOf/r2u7i+oh+fBfivg1+7X2E5z4wvRWAIBYLIZINIp8Pg/j8mXYto3ZmRnkslkk2XUp7ZiHwIoviGgkAgqvdW4un0c8FvMnap7TrnS9/MiBKJaVL05OTuKZZ55B/8AAtm7Z4n/eNE0UCgX/e/LunRXJGzvfshB4SBRVklQRgvKJWdd1WJblkQJ2HJEJC+UQwkJe2VDxPCpsdwK6gdIKB8C7v+UAGah2v1osggYAEU0rukZ+Cm3+RGp+h0rn7ZaQAsDTXczNzSGTy6Gnrw89vb0YHh72nDfb+IFEmxy0URWCJCHZ0+O1Zx4bg2EYyLIKBn/Fx8uZmiUJpeFTQqBFIli+bBlOnjyJtWvXVsztcjFjNBr1DJZsG3qhAIvZQBcsCwVdhxQccNm/RVH0J7ey0yn5PxeuhR5k2aREG+ibULRCrlGSCHjXJx6L+Y2dHMeB67qYmZtDJptFLB5HPBYrvmbBlEqgsiEWiSDLSvKyrDJC4pNStegBnXdGDBKDmZkZ7H36aXR3d+P2228HEQQ4juNPwLxpUrVoQRkpaAAVPxE4N9d1YQfC9jxlwH0bBEHwjYHq6gjIvBdBrTPlFuU2/2NZ5RoRRrR5dCCsiE83DBiW5ZcqeqdF6kYran8t4pclBr+X4zh+G3JJlrFsaAj9zO2wnUb4wUb7122jJgghiHV2AoKAyStX/NLDeCJR3JFvoSQhcDxFlrFy1SpcvHgR586dw+rVq2t+RpQkRCQJEU2DY9swuDaBRRR0XfeMYiQJCut3zyciURQhMsIgVSAMzeZqmxE/8vx0pWqEUvCwfCwahW4YyGQycFwXc7OzmJudhRaJIB6NekZCwVbdJavKeCyGbC4H27b90klREADuelfhu/OJjJ9fNpPBk08+iXgigTt37IAgCF5UR9d9gabGenCU7S+Q/mj0WvHQdyl4Twku5qvkMSGJIiAIoTQEpSWHpUd0XdcTn9o2bMeB47oVNQ0EmE8VhCEiFcCjBo5tQ2V6jeBv2yhqkYJsNotMNgvbcaAoCkbWrMHyFSvaFsivErTJQRuhEGOGPFfOn4dl28hmMkgkk+Vh1RaQBFmWEY1E0D8wgOMnTmBkZMQXeNWDKEmIShIQifhEwTZNfwVn2jaoYfileEIFUuCTBUHwyUM1lK4gg4LHZlDa/Cl4nOBqWGArcwBIJpOIJxLIZjLI5XKeyZSuQy8UvLbcsRjiJbqC4EozFo0im8vBcV1kczm/dLWaU16QGOTzeTz51FPQNA133XUXiCAgm816pkgARFZdUstts9FrU9rgqlTM55au0OH9ppIkeS2sGSGg8MLlZeQhEB0oLTl0ApO/Y9uweTfHKufLo1Q8KrFQXYtpGNCZg6miKAsi4bVIQTaX8yIrto1UKoXbtm5Fb2/vgs69jesLbXLQRmho8TiWjYzg8pkznnI+m63uthcgCQQoWr3WA28jvWpkBPv27sWlS5ewYsWKImFUGASJgs16O1im6QvpXNf1+j8EytVEQiCylXGQMAjMdjgYaeArSr6K5ftYjJJJTjqKmi9h3vZXIATJZBLJZNIvfcwXCnAdB9lMBplMBqqiIMaiDeC/ByGAICAeiyHDTJL837U0ncL+zUmGYRh46qmnAAB33XUXXNfFXCbj3w+RSARqoOtkM5UHRYSAlQE6ASJgcwvpks+IjATwP9XuPZ9IlJBPl6UFHFaOyv9U+20FQfC6lLJ7Q2DEciGg8Oy6OSzWNdU0Ta+RV4O9CoLiUABVSQGlFNR1IQoCVq1Zg1s3b277FrwK0SYHbTQENRLBICMINqsU4KKkarlfCoA6TlFOud6KR4tE0JFMoqu7G8eOHcOKFSv814KfDDvR8EkCkUhRDtphK0DvVKkfIrZM0594RTbwOyUrP6EkLRHUMTRKZMKg6NiC4DW6qVAxoKgqulQVHZR6QtJsFrphwGR/ZmZnEY1EEI3FPH8Bb4eet0U2C5dS5Jh+gU8JwdWxIIqwLAtPPfUUTNPEPffc44n62CpUYpGfsgklJDEIEgIuHgzqBSqRgWBUQKxBBvh58FJPTrocfi/wyECJA2IQAvutJUYGSonkQsEjNqXfgQtwG+3XABS7dAbvlSJSwHwfZFFEvLMTI2vXYmjlylZ9rTauM7TJQRsNQ4tEsGxkBJcYQcjncohEo/6qsNrA7HcVxHwZZLX3ikwkNjIygv3792N8fBz9fX1l7/NX1GD15LRK+94ABEGAwtztODhJsAOrRI4gYZg/sEcMHNcFKWmFS9lnREHw3scmclEUW0YaBO7sxxogFe2XTQICIYjFYogxS+xsNot8LgfbcZDL5ZDN5yEzZ8IYq1bgGgTHdZEPED8eehdYH4enn34auVwO22+/fb7kTRD8/XAiWLfVNbuW3ml738cX8THNQOkeBFJc5icErisHj7L4aR72G7oBAug6DvK6XtXBkqcjBGb6JImir1dpJcr2VuGa2Y7jV+ZEWTOz2jstrtYoPUZppACuC1mSkEilEIlEMLRqFfoHB5v+Tm1c/2iTgzaaAicIV86ehWmaQEmb51oTNAHmLVgxn3IoHXQjkQi6u7qQSqVw9NixiuSA7w9AUdOghlMQbDXI7Xi4Sx1fUdq2DTeQN3dZrpnXxpPAfig84Vi1cyWiCJEQELbi5GFwwrZVuhZl++Gvl6ww/cm2RLkuShI6OjrQ0dGBQqGAbC6HQj7vlagFRYyxmFfFwEhENptFLBbzyZJACPbt24d0Oo0tW7Z4pXTwyhOjkUhRGqIiMaBeEyruHsmvM1f3V/q9RCYclAIRGn93CER8ghM/+1PLvtoNvEYI8Sd/MfCn1ShNFYS9Pw3DQMEwIEkStCo205yM1SqN5U2ustlsMSno7EQsGoUgili5ejU6u7sb/GZt/KChTQ7aaBqRSAT9w8MYu3ABpmHAcRzEYrGiKoZ6q3hgniiUph0I8Rz0RkZGcODAAUzPzKCro6PueZVNloFzCYugCQ0Hn9CcQEpCDEyA/iRVEnkoimYwsZuD2uRJEEVPFMiiDgI8EiUKAkggfVEqvgt8gaLvHyQbvASUVyiUihiJKELVNLi2Dcgy8roOh020x0+cQDqdxsaNG5FKpTzBYyQy75EQnOxZJIAL+PhkXfO6s+8uBXL3BKxlNA/5m6ZHJGpM/JXALZ/5taXEs+2uVtbaSlRLFYSJQbiUetEcy0IkGoUW1HF4O/fusQppA44yUsDSB5wUEHily6vXrUOibYHcBgBCF9twvo0feOi6jvFLl6BnswA8sx4esvdD/gg3EPLPBCsdZmdn8eSTTyKWSODuO+9c0LlWOo+FPADV9AsGEz6WHoeHt/1tAc0Afz+fEDkxqHTdHNdFIZ+HKIqIJxJlJICTq6C5E4LbSsSUlmUhl80ix0SMhDUoch0HmqYhk8ngpYMHQSnF+vXr0dvTA1VRIEiS950cx5vAgwQgqPQPiDUFdnxBEPx/+1GUwHUpIj51himeuuH7FIL/58cpgVVK4hYI36uhZXv0kMvnMTU9Ddd10d3d7VcphBm6q5KCVMojBey6SLKMtTfdBK1St842XpVoRw7aWDA0TcPyVaswfvkycjMz3kpUURBlK5JGQTA/aQJAJBrFqpUrcejIEaRnZtAZInpQa98Vj1fy77BpiWr6BYX5LPDVLeVhb1K7m2FRftxx4PL0RGCi5edomqbnWCnL/rXiE2pZxCQwYfv1+qXkhVKIguBFEVjKwbZtjE1MYGJiAhRAV3c3REFArlBAQdfLrqFfwRGIfIiEeKkULtbkE3WwVJJFBiohGC0JO/HXA49wNPO5IsLFUWlbC+C4Lmbn5mDbNqKxmPdbeydS9TOGafrNyizT9K9zJVIAShFLJrFqzZp2i+U2itAmB220BKIoYmDFCswlEpi8csVrcWvbvltf2aAZUjwIeIY1K4aGcOLkSbz00ku4++67fQvnVqFaKqKUOADFE3QliKwZjliFBATz5KV/81A8/7vS6pAC/uqef85fSZas1otq9QPEgIvV+P+5LwEI8dsQc0fM2XQaZqEAkRAokoQ8E8YpqgpVUaCqKmRWteGnQgKTpR+p4KvqkteCkQz+2kIm/lCosV/u/1D269UiADXy/M2CAkjPzMAyTRBBQDKZrJgycFk5bqFQgK7rXvSKpzEIgSzLiMfjZaRAkCQsHxpCT7s3QhsV0E4rtNFyGIaBidFRFGZnQSlFtLTePQC/dr8OUaAAzp49i+eeew5r1q7F+vXri1IPizSF1EU14uBSCtOy6obDw+w/KNZzHMf3kJibnYXjul6FgCjOT3gV9AZl4e7Ae4L+CRSAzVaepmXh2NGjmJmbw+DAAGRZhhaJAPAEiMEIiCTLXodM1n6ZlxMWpRT4d1qEibRROI4D03EqE4CrPSQyopfJZJBOp2E5Dnq6uxFh1x6Yb2TFIwS8LJNDVVWvq2c06t0bQVCKeCqFlSMjUBr0Smjj1YM2OWhjUeC6LqanpjA7OQnHMDzXw1is5kowKNqrNEBTAPufew5nzp/HHdu3Y2BgwC8dFAKrz6s98XCYtu3pC9hKFCiejMsePUJAKPUslIOrfPaabyLEPpfJZODYNmLxuNc5EPPlnMFj1gIBAFaeyLsT8p4Ihw4ehGFZ2Lh+PTo6OyHJMgxW+mfZNkRBgGkYsErKDSmlXvSBEQWtRk0+JQQC+85VUeG7lBIP/tuX3TWcdAbuKcqI27Uw9AWjUEHSpBsGJiYmYDsO4okEUskkHFbOWNB1mIbhv5+yMlJe4hgNRghKIEoSlg0NoadK5U8bbXC0yUEbi4pcLoepsTEYuRwIpX4dfD0Eb8rgMGfZNh555BGYpom77roLiUSi4ueL+gk0ffYLg8PEiov1iOXzeZiGgUg0WjUyUxE84sJSF4ZpwjAMPz2RmZvDwUOHIEsS7rzzTt/jIJ5IgLouMpmMr22Ix2IQBAGFQgGGYcAwDE9rAW9C5ha9iqL4kQVVVa+q457DS1Cv8tBXSgg4bNvG+MQETMuCIAiIRKNeJMc0vUgHIYDrQhBFLzrASEHN8ldKkejsxPDISFtb0EYotMlBG4sOy7IwNTmJ3MwMHNP0Qs+a1tCkHYwqTE9P47HHHkNPby82bdpUXtr1/7d3J79xXVcawL83v5pYHCXbomhRaluy47REylPiNBAngJ2Vvco+yCKbbJL8EZ1dpwNk0QECJFnHCZBk4XbbCOy0ZcsTKSmmY9kSZYtqWTNZrPGNtxfv3sf3SqzioKIG+/sBBXEQySJL4vvq3nPPyX6cEGtdC3egkryfWJ7pH2RFfJY6emg7Tq7HRLf1piyKOE6m+3leGsRMXceN5WXMz89jdHQU33j6aQgk47p1y0LRddNn641mE2EQAJqGYqEAWz0GQiCUKw+dTgeePOKavGttNcRxnGTp23Fu2qLYSQLITWa8bbIrRX1+5cZC4NLly6jVavCDAKViMemdIUOEaZooFAr5n/kGDMPAngcfxBhnI9AWMBzQbRHHMWq1GlZv3IDfbMI0DBSKxZ5Fexv55NNPcfLkSTx66FCyd7qVZ0Oalm5v7GRYUDUCMdCzEv9W+L6PVrMJUxacKdkw0N1aWcRxcuH2vLXGTaYJ13GweO4cPlpYwN6pKRydnYVuGMnJE9+H6zgwMz9jAaDVbKZ1FW53177Mr5UwitBpt5Mw0ukkF+Zswx7Vb0D2lbDUXATLunm//BZlGzDtNJF9DLrep8Y4h2GIQJ4K8YMA9Xo9mYkRxxiS20W2bSeBQNWWbPoOCFRHRzG5bx9XC2jLGA7otmq1Wrhx/Tq8RgNCNnXJHgPcLAHgrbfewuUrV3D06FEMDw8nBVtyf3rTRW+qKn0Hj6IJuYIwsP9q8nuMogj1eh26rqNarfb9kFiGAk9OpIQQaY9+0zAwPz+Pz8+fxyOPPIJDhw6lgWJlZSVZkq5U8nUFSH5Wbbl6AcguicXi2ipFpjI+KwiCdN+843lJcMo8s86eqNC0ZBCWmptgGkYSGuTLW+limHssttA8aSMCWKt5yIQB1YpbjQ7P3rL/FjQAYRzD73TQarcRhSFGRkcxOjaGgutuq1OjaZq4f2oK41wtoG1iOKDbLgxDLC8vo1mvw280oGsaXMeBrYYAbZIfBHj11VdhWRYOHz6cVmjnJvllj8ipwje5t97LekfutksdTwSSC8CW9rm77nt36BFxjJVaDZqmoVqt9uyMp/ar1fst04TjurAsC77n4fg77+DGjRuYnZ3F1NRU+rGhHM2tyfARZmdIYO0i7vs+mq0WgOTYablcXr8Yssf37smixjAIcjMVup/ddxc9ArKbomyvnB3LrEYkZztJquZTQRTlWm1vlQoDkJ8zvfjLIKCmRnZ3b+zunWEYRnIkVzah8uUWT6lUwsjo6Lb/3Q2PjWHP1BRXC+iWMBzQHSGEQKPRQL1eh99qwW+1oCOZKGjb9qa3G65du4bX33gD+/btw9TUFAw5PGij2QS9Tkasd5xSvU3T9eSisoXQkL0opUcRM9QWQHrR3+JRupWVFQghklbG8mcm4jhdpvY9L+2HYNs2XNdNC0IbjQbeOnYMfhDg6aefxvj4ePaOJVsB7XayIiCHN/UShCGajQYEkqZFpVIJeq9nvJv8/ronMoaZ4VhhGOZmMaifXVrXIB8nU86syI7T7vd9dH99yM+rjo/mtmiAdHpjr38LugwultwmsdTWiWVBk6Gg0WymJ0Uc10V1aGjLqwWapqE6MoL79uxBgV0OaQAYDuiOEkKg1WqhXq+j02ggaLXWLmSbHEv70T//iY8WFjB79CjKlUpycSqXB9JAp9d/jmwb4Gyh403BQi5jZ0XylMAgpvutrq4iiiKUS6V04JMvp0eqEwm2PCWQ/Vlev34db7/9NmzbxjPPPINSqXTT51ZHJYvFImzH2fCiGscxGo3G2umGcnnjkym38OtHzbhQ+/fp65nRzunPX/6sY7F+J8buINArJKLr7SqUqO0OFQJUAOgXcj3PQ6vVQhhF8Dod2I6z/uyEPtJQ8MADKKzzGBJtF8MB3RWEEPA8D6urq2jVavDb7SQkmGaymtCnLiEWAn//+9/RaDTw5JNPphds1Z3xdsvNN8D62wndgWE7RBxjZWUF7U4nvSipi6Ap2yo7jnPTM/ilpSV88MEHGB0ZwdPf+MZNy89q73ylVgOEwNDQEHTD2NQzbqFOMsi/u+mq+h34NeTLoCQy4SANDV19D3rFNG2DFSxVC7FVqpthLASCIIAhB01VMoWl/XClgHYawwHddXzfR71eR315GX6zmS5Vu66bDJ1Z52OarRZee+01TExM4NChQ2nRWUn2o7+T1Fl/RS1zCwDITKTcDBHH6UUvDMO15Wi59K+q29cLRUEQYGFhAYtnz2LqwQcxOzvb8wihqjfQdR1Dsthx08vxyJ9ksCwracyz2ZMpt1IPIJf+IyEgMisEAmvHGO9kkywhBJqtFgLfT7cp1JCpoUplw7kbuqahOjyM3Xv2oMiVAtpBDAd011LV+LXr1+E1m4BcyrflGfnubYMLFy7g+DvvYHp6GgcOHEAg96VVFf0glvG3QwDrjhZW4SDuCg65joryVILv+2nBHjLbGHEcIwpDuIUChvqM2r148SJOzM8jCEM89thj2L9/f9+fR7vdTpa6ZegANh8O0s8hex0oBdeFs512vZln+KlM0Wm2wyA0LZlJ0ePnfdv7G2QEQZAcU5S1EhrWalJK5XLPeSECgKFpKFeruH9ykqGAbguGA7rrqb3s5atX4TUa6cXTtu20Kl3t7S6eO4f5+XlMTEzg8OHDyf6zvFAUt3lsciDfgxDo9V9NDU/KUkfgfFn9nl7GNS1dHTAtC3EYotlqwZCDebKtmTVNQ7vdxokTJ3Dx4kXcd999mJmZ6dkwKdeaWdYyFEuldNuhXzjoVZQXRRFa7XbSMAlrTXxuWtnILvMjfxoiWwPQ75eVqifoFXkGepx0C4QQybAqeRohDXbycS/0mj0iQ2ClWsV9e/agtMktB6JBYDige4YqXly+ehWtWi33dkPXYcj93xvLy3j33XdRLBbx1FNPQQiRW0UoFIs7N+2vz32Pe4UD2WY5iqLckb5soaNlmrBkIMgWuUVRhNXV1ZuOMwohcO7cOXy4sABD03B4ZgZ79uzJDWO6qUGSEICuIw5D1FdXAbmErQNJI6ds7UQmSPS8aIu1joie56HdaqWvq1WELT8Kme9P3X/1cr/eBXdq1cAPArRarWQ1A8njqB7rOI5Rlo2OUvIx1zQN5UoF901OMhTQHcFwQPekTqeD2vIy2qur6LRa6eRBdYyt2Wzi1KlTCMMQTzzxBEqlUjIgSP6SvhOrCL4MKLG8MIRxnL4OefIhfVnu1Vu2Dcs0++5F11ZWkj1reQRudXUVc3NzuHHjBh7ctw9ff+yxvmfeu0OCasts2XZ6ikFgE10eNziGGcUx2q1WUouA5Jx/sVDYVkGfuk8CgFBHGvt87Xid1ZmdFAuBdma1wDAM2LaNTruNSNaglMvldHqlYts2hsfGMDoxke84SXSbMRzQPS8MAtRlU6Wg00m2EoRA4Ps49Y9/oL66ikcffRTj4+PpMT8AcF13YEceFbVCEGeeHUZRlM5YyFbOZz4Iuq5Dlx3/1LG4zWrU6wjCEI7j4LPPPsPp06dRKpUwOzOzqQ553RMi1ZZCoVSCI0PFpsIBem8vZGWfTQOApWpCNvzsa18D6FHHkQ06cuVCCHFbVw26vz9HDkVqt9tJUaGupwOrAACahqFqFaMTExjq0cyK6HZjOKAvFa/dRqfRSHomhCF838fJkyfxxRdfYP/+/dg7NYUwCNDxvPSXt+u6aXfGdX8xZ96WHlPMvVtL6wbUUbn1ZDvjGTIMqA5/6FelvsEz3na7jUuXLuH06dNot9s4ePAgDh46tK25FVEUrW0pZLcpMNj5EOqZtSdnPGi6jkKh0Hc1p18o6Pu1gKRuI/vYqq0IDK5ldhiGaMtwKoSAaZooFosIgiBdMbBNE0XZpMstFJJVgrExWOxmSHcZhgP6UorjOAkJzSYCz8NHCwv4+OOPMbl3Lw498giiMES90UAkf5Gr4T8DaTmraWsBQNZC6PL1GOgZHvrKHH3MhhVfro6c/+wzDA8P4/Ennuh7aiH/KcVNYWi9LQVgi+FgC10eQ1lQqZ7Z25a1bk1Iv4LOjUSZToo3yZwM2a4oDNMW1ULToAmRjqZuq8mUcQzXcVAqlZJAMD7OWgK6qzEc0Jde4PvoNBo4vbCA995/H2NjY3jqqadgmWY6WjhtjgMkcx5sOz+jAev39s9eBFUvf13Xe15w+hUmbppcJl9aWsKHH36IKIpw4MABPHD//RgeHt50P4Hu7QQg6bgYd51SAAa/cpAlhEgnRar74zhOsqVxixfu9TpUDkokp036QZDWPDiOA9dxoGlaOtY6FgLjExO4f3IS1ZGRO9KYi2irGA7oKyOOYyx++in+5+WXUS4UcPjIEeySe/K+76chIY5j6LqeXKAc55YvUOvdj+3+p2s2Gjh37hw++/xzeJ0OHtizB0cOH4bneYjjGJVyeUv1Clm9thSA7YWD9VYm+gmjCK1WC77npV/Tsiw48pTGdvbid6IQMRsKgGTbx3HdJBToOnzfh9fpQNN1lKtV7JueRmWDqZlEdxuGA/rKuX79Ov74xz+idu0a7hsfx8MPP4zJyUno8hd7u91OLuBxDE3X4bjuQJ7FKltdPRBRhC8uXcK5xUVcuXIFpmXhwakp7JueTrcQGnL7RPXm7/vZeyyl99pSAHZm5SC7IpP9NRQEQTKpUV58IUTyONg2bMfpe3Kj+/OrI6GDoEKB5/tpi2nbcVCQBYedTgee78N1XVRHRzE0MoLR0dE73qGTaDsYDugrSfUBePvYMSx9/jlGhoZw8KGHMD09DcuyEARBEhLkyQNd12HbNhz57PBWbWapu91qJasEn32GTqeD0dFRTE9PY8/kJMyupelOp4N2uw3LspKRyV0BQABrw5561ARcvHgR55eWcOHCBZxbXMTZxUU0Gg0AwDPf/CZ+9KMfbXif/+vXv8abb76Jo0eP4qc/+cna11f3J3OCYKOVhTiK4Pk+fNlqGPJmWhZcx9lwhUQNuLoVQgiEsl21J8deizhOQ4EA4HU6CMIQxXIZw6OjKFUqKJVKd7QrJ9Gt2t4BY6J7nKZp2L9/P/bv348rV67g+PHjeGd+HqcWFvAv+/bhoYcfRmVoKK00j+MYnueh0+nANE04jpM8I9zmL389M0Y4J45x6fJlnFtcxKXLl2EYBqampjA9PY1qn6Vp1SsgPbLXdb/UiYCXXnoJf/rTn/Cfv/wlJiYm0hARhSH+/ec/B4RArVbb8raHutDPzs7if994A6dOnYIfBDBNc936jOQu9v/Z6YaBQqEA13URBgE830cQBAjDEPUgSHsH2LZ902qCCkPbFUdRunoRqeZPMpgUCwVEckZCHMdJB8PRURTLZZTL5SRAMhTQPY7hgL7ydu3ahRdeeAHf+c538N577+GD997Dx2fO4MG9e/HQQw9hdHQUQRCktziO0Ww2kxMOsnhxq0VmmqYlnQflBbPTauHz8+exuLiIdruN4WoVR44cwd69ezfVJMgwjGSgkzxO2e/+aLqeXuwAALIgEEIkTXuEwNjYGO5/4AH849Sp5K+oD850PUzfhLVJjv/69a/DtG34noeFDz/EkSNHct0Ut0PTtKQZlG2nF21fPg5qxUS10tZlUeh26gxEHCdbGnKOhVrp0DQNthz6FYYhGvKxr46MYGh0FKVSCaWuAk6iex3DAZFULpfx7LPP4lvf+hZOnjyJ48ePY/G11/DArl3YtXs3SsUiXNeFaVmwDAOxpsH3PHidDgzTTLYd+tUmyM6N9XodjUYDq6urqNVqWG004HseDMPA3slJTO/fj5GRkS3dd03TYJpmEmB8H0ahsM6XX/8CHcUxfN/Hs88+mw6tqlaruHr1Kn76s58ln7/Px2e/W8dx8NjXvoYTJ07gg7k5HDlyJHn/LQYERTeMpK5CNrny5HRK9X0DyYhsXdNyjaXUsdLu8dVAcpzSl4FDxDGiOEYcxzB1HbppwpTjqn3Pg+U4GNu9G5VqNQ0F2+3wSHQ3479qoi6WZeHxxx/H0aNH8cknn+Dd48fxj9On4XU6yUVH02BoWrKvXCjAtW04cniO47rJ6F3ZEa/eaKDRaKC+uop6o5E+ozUMA5VKBZVyGbsmJlCpVrFrYuKWmuGoWgnf9+F2hYN+F2Y1OfF7zz8/kLP3M7OzOHHiBObn5iB++MNkSwMYWEBIPpVctXGcZGql56UzCyAHLEXydR9IVzx0TUsDQhxF6HheMlBK/n1N0+C4bjL+Wq5GmPJmybkcqp5gs4WRRPcihgOiHjRNS7oNHjwIIKmir9VqqNVqWFlZwcrKSvLy8jIuLC2h3W5DR3IhNGQjJNdxUKlUMDIyggf37UsCQaWCQqGwNp0Pt7Y/rti2jXa7jSiOEYZh+oy23wU5juP0Gfe2ximvY3Z2Fr/97W+xsrKCxbNnceDAAQCDDwiKIVcTAKRHUdX2ivozDEP4QQBP1ixAblWYtg23XEaxWES5UoErZz0YasVBtbSWbzNNk/UE9JXAcEC0SZZlYXx8HOPj4+u+P4oi3LhxA1euXEEURSiXyxBRBL/TQdBuQwNgyvoEEceArkMDoAOIttBVsBdNjnP2fR+e5+WLAXvodDoQcsjToJbHR4aHcWD/fpw9exZzc3NpOAB2LiAg089A13Voug5N09LaBAGgWCrBLRZhuW5Sn6DrKMqVgGwg4IoAEcMB0cAYhoGJiYnkFACSvWzP89Kb3+nAl70EGvU6dFltb1kWTMNAJERupPJ2OLYN3/eTEdXq6GIPsaw1AJJagUGamZ3F2bNn8cHcHL7//e/n3jfQgCBPW8RAumLi+T6iMIRuGHALBZSHh+HKehHHcZJZGpkOmER0M4YDoh1imiZM00SpVIIQIn1Gr25Buw2v00Gz2YRQkxmzRXSGsTYMap2VhfUuboZpQtN1xFGEIAj6VtB78mSCYRgDb9Rz9OhRvPSHP+DC0hKuXL2adqJM77u8/wLoHWLW6dWgCiNjGQTiKEIQhsnLQsBxXZSrVRRLpbU6EBkI2LaYaPMYDohuA03T1toxI9mCyK0qeB5CeYQukP0URByv7XubJgw5xCk38yE7JVL2TrAsC54stjMta92R1GpYEAAUBlRrkLV3chK7du/GlcuXMTc3h+89/3z6vu5JiJquQ8tMSVTFg5oMRGrcdRRFiMIwHYFtySLBUqkEx3Vhy5UBdePqANH2MRwQ3QGGYaBYLKJYLCZd+NRxPHnzPA+N5WW0G42kAt/300ZDuq6nYUHT9WQ0s6alI5pty0q69vk+ms0mioVCepGM4xgagGarBUteRA3LWlviz6xQCNkdUn2c2gpQl1s1gfCmzQEZWo4cPoyXX3kF77//Pp5/7rn84KqbPkSkRwizhYSR3B5JVxA0DaZlYWxiApWhoSQgZG6sFyAaDIYDojtMFRJ2L+2Hu3ejUa+jUaslnQGDAHEUQZ1rEHGMMAjQiePkIp4JDwDWmgVFUdLKV4aIsjyuaJtmsmqQvcBnti6yKxOQDZaA/g2RMh+Mo48/jv9+5RWcPn0a9Xodruumg5DUUUP1J4RItlNMM2lkZJow5JaIruvpFo0j+ww4W5ixQERbx3BAdJcyTRPDIyMYzjREimQtgWojnC63Z5fdwxBxGEK3rKTZUrOJZquFKAwBAJVKBZ7nIYxjNBoNaJqWbktA09LXfc+D6zhp6FA1CtlQoGYkqLcDa4OUdu3aheHhYQDA6U8+wcFHHoFpGNAtKzkWaFkw5EVf7zo+qMKACk3cHiC6vRgOiO4h6uLpdtUJqCK97rCwsrKChmy+FMcxmmGIM0tLGNm9G8MTExBqfHQcJysScYxYDizSLAtN2fgpjCJAFkxqKkCoVQpdh67eJp/Na7qO+bk5fHLuHISm4cl/+zdUKpVcANBlDQWPEBLdfRgOiL4ENNl0qbsif2hoKC08VM++P1xYwPiuXXhgcjL3zL/7FmkaTi8uQtM0fG1mBpPT07lg0H1TX0Pd/uMXv8D/ffEFvvvd7+Z6HRDR3Y/hgOhLTNM0FLpaKQdBAMuyNuxtUCqVUKvVACQ9G7Y67+Gvf/0rwjDECy+8sLU7TUR3HNfxiGjg5ufncf78eQBgOCC6BzEcENHA/fnPfwYAzMzMYHJy8g7fGyLaKm4rEBEA4M0338SZM2fS169du5a+fObMGfzud7/L/f0f/OAHPT/XX/7yFwDAiy++OND7SES3B8MBEQEAfvOb3+D3v//9uu87duwYjh07lntbr3CwtLSE+fl5ANxSILpXMRwQfYV8+9vfBoC0/8BOUKsGe/fuxczMzI59HSLaOZoY+OxUIvoqe+655/Dqq6/ixz/+MX71q1/d6btDRNvAgkQiGpjV1VW8/vrrALilQHQvYzggooF5+eWXEQQBhoaG0i0MIrr3sOaAiAbmb3/7G6rVKl588UXYcnASEd17WHNAREREOdxWICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiyvl/jrR3kg7NE1MAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -279,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -328,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -367,7 +367,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -382,11 +382,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" - }, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } } }, "nbformat": 4, diff --git a/pr-2491/applications/python/deutschs_algorithm.html b/pr-2491/applications/python/deutschs_algorithm.html index 32fb3cd67e..60da74715f 100644 --- a/pr-2491/applications/python/deutschs_algorithm.html +++ b/pr-2491/applications/python/deutschs_algorithm.html @@ -803,7 +803,7 @@

XOR \(\oplus\)

Quantum oracles¶

-

0e5a154003024f3eaebadf91e657e07b

+

7f1f7f0b1a0249dca8458604ef579cc3

Suppose we have \(f(x): \{0,1\} \longrightarrow \{0,1\}\). We can compute this function on a quantum computer using oracles which we treat as black box functions that yield the output with an appropriate sequence of logical gates.

Above you see an oracle represented as \(U_f\) which allows us to transform the state \(\ket{x}\ket{y}\) into:

@@ -851,7 +851,7 @@

Quantum parallelism¶

Our aim is to find out if \(f: \{0,1\} \longrightarrow \{0,1\}\) is a constant or a balanced function? If constant, \(f(0) = f(1)\), and if balanced, \(f(0) \neq f(1)\).

We step through the circuit diagram below and follow the math after the application of each gate.

-

4380527f993e4c1b82d7c8b8059117d1

+

0ac2da0d6ee246348c42dcbf9d8d2b8e

\[\ket{\psi_0} = \ket{01} \tag{1}\]
diff --git a/pr-2491/examples/python/performance_optimizations.html b/pr-2491/examples/python/performance_optimizations.html index 0a4c67bf39..46e44c7054 100644 --- a/pr-2491/examples/python/performance_optimizations.html +++ b/pr-2491/examples/python/performance_optimizations.html @@ -731,9 +731,9 @@

Optimizing Performance

Gate Fusion¶

Gate fusion is an optimization technique where consecutive gates are combined into a single gate operation to improve the efficiency of the simulation (See figure below). By targeting the nvidia-mgpu backend and setting the CUDAQ_MGPU_FUSE environment variable, you can select the degree of fusion that takes place. A full command line example would look like CUDAQ_MGPU_FUSE=4 python c2h2VQE.py --target nvidia --target-option fp64,mgpu

-

6a44da587d9b4b23b574de1f55f4e7cc

+

e973f43b77c341cda0972bf333d57888

The importance of gate fusion is system dependent, but can have a large influence on the performance of the simulation. See the example below for a 24 qubit VQE experiment where changing the fusion level resulted in significant performance boosts.

-

1702916e3fab45389c6df6a4b1f49bc7

+

b3c54306256047be9e8a5fa0f0fb4886

diff --git a/pr-2491/examples/python/visualization.html b/pr-2491/examples/python/visualization.html index 789e48b6f8..bad0d99e66 100644 --- a/pr-2491/examples/python/visualization.html +++ b/pr-2491/examples/python/visualization.html @@ -742,7 +742,7 @@

Qubit VisualizationQuTiP library to render Bloch spheres. The following code will throw an error if QuTiP is not installed.

-
[13]:
+
[9]:
 
# install `qutip` in the current Python kernel. Skip this if `qutip` is already installed.
@@ -768,7 +768,7 @@ 

Qubit Visualization -
[14]:
+
[10]:
 
import cudaq
@@ -789,13 +789,13 @@ 

Qubit Visualizationcudaq.add_to_bloch_sphere() on the output state obtained from the random kernel.

-
[15]:
+
[11]:
 
rng = np.random.default_rng(seed=11)
 blochSphereList = []
 for _ in range(4):
-    angleList = rng.random(3) * 2 * np.pi
+    angleList = rng.random(4) * 2 * np.pi
     sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList))
     blochSphereList.append(sph)
 
@@ -803,7 +803,7 @@

Qubit Visualizationcudaq.show(). Show the first sphere:

-
[16]:
+
[12]:
 
cudaq.show(blochSphereList[0])
@@ -819,7 +819,7 @@ 

Qubit Visualizationnrows and ncols in the call to cudaq.show() accordingly. Make sure to have more spaces than spheres in your list, else it will throw an error! Let us show two spheres in a row:

-
[17]:
+
[13]:
 
cudaq.show(blochSphereList[:2], nrows=1, ncols=2)
@@ -835,7 +835,7 @@ 

Qubit Visualizationnrows = 2 and ncols = 1.

-
[18]:
+
[14]:
 
cudaq.show(blochSphereList[:2], nrows=2, ncols=1)
@@ -851,7 +851,7 @@ 

Qubit Visualization -
[19]:
+
[15]:
 
cudaq.show(blochSphereList[:], nrows=2, ncols=2)
@@ -867,7 +867,7 @@ 

Qubit VisualizationQuTiP toolbox to construct Bloch spheres. We can then add multiple states to the same Bloch sphere by passing the sphere object as an argument to cudaq.add_to_bloch_sphere().

-

This created a single Bloch sphere with 10 random vectors. Let us see how it looks.

-
[21]:
+
[17]:
 
blochSphere.show()
@@ -902,7 +902,7 @@ 

Qubit Visualization¶

A CUDA-Q kernel can be visualized using the cudaq.draw API which returns a string representing the drawing of the execution path, in the specified format. ASCII (default) and LaTeX formats are supported.

-
[22]:
+
[18]:
 
-
-
[24]:
+
[20]:
 
print(cudaq.draw('latex', kernel_to_draw))
diff --git a/pr-2491/examples/python/visualization.ipynb b/pr-2491/examples/python/visualization.ipynb
index 76347fe487..213d889f97 100644
--- a/pr-2491/examples/python/visualization.ipynb
+++ b/pr-2491/examples/python/visualization.ipynb
@@ -35,7 +35,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 9,
    "metadata": {
     "scrolled": true
    },
@@ -64,7 +64,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -92,14 +92,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [],
    "source": [
     "rng = np.random.default_rng(seed=11)\n",
     "blochSphereList = []\n",
     "for _ in range(4):\n",
-    "    angleList = rng.random(3) * 2 * np.pi\n",
+    "    angleList = rng.random(4) * 2 * np.pi\n",
     "    sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList))\n",
     "    blochSphereList.append(sph)\n"
    ]
@@ -113,12 +113,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zHTq1KNFduquq1XRP9/R0T8909/CP5YFYLgmC4GVBgiB4IoE97G1P5IEXEntYgKcFCAI8kReCAgsS/O2I3ZkW03palBZZKkVVisiIcC3sf3AzS4/I0CKrssoeUMiszEh3cw8Ps2ff9773EUophYSEhISEhIQEg/K4ByAhISEhISHxZEGSAwkJCQkJCYkmSHIgISEhISEh0QRJDiQkJCQkJCSaIMmBhISEhISERBMkOZCQkJCQkJBogiQHEhISEhISEk2Q5EBCQkJCQkKiCZIcSEhISEhISDRBkgMJCQkJCQmJJkhyICEhISEhIdEESQ4kJCQkJCQkmiDJgYSEhISEhEQTJDmQkJCQkJCQaIIkBxISEhISEhJNkORAQkJCQkJCogmSHEhISEhISEg0QZIDCQkJCQkJiSZIciAhIdGEO3fu4E//9E9x/vx5FAoFzMzM4M0338R/+A//AY7jdP3bf/bP/hkIIfiH//AfHtBoJSQkJgFCKaWPexASEhIHg3/zb/4N/u2//be4ffs2Tpw4se/3//t//2/88R//MWq1Wtu/P3fuHP7qr/4KZ86cafv7//7f/zv+0T/6RygUCtjc3IRlWeMcvoSExAFBRg4kJCQAAF999RX+yT/5J6jVaigWi/h3/+7f4aOPPsIvfvEL/Mt/+S8BANeuXcPf+3t/D/V6ve0x/u7f/bswTRO2beMXv/jFQQ5fQkJijJDkQEJCAgDwJ3/yJ3BdF5qm4f/9v/+HP/uzP8Pbb7+Nn//85/jLv/xL/Pt//+8BpAThz//8z9seo1Ao4O/8nb8DAPhf/+t/HdjYJSQkxgtJDiQkJPDpp5/iN7/5DQDgX/yLf4G3335732v+9E//FBcuXAAA/MVf/AXCMGx7rL//9/8+gDRFIbOWEhKHE5IcSEhI4H/8j/8hvv/n//yft32Noij4p//0nwIAqtUqfvWrX7V93R/+4R+CEIK1tTV89tlnYx+rhITE5CHJgYSEBH77298CSNMCP/zhDzu+7r333hPff/jhh21fc+TIEbz55psAZGpBQuKwQpIDCQkJXL58GQBw5swZaJrW8XXnz5/f9zftwFMLkhxISBxOSHIgIfGMw/M8bG5uAgCOHTvW9bXT09MoFAoAgHv37nV83R/90R8BAL799lvcvn17TCOVkJA4KEhyICHxjCNbllgsFnu+npODRqPR8TUvvfQSTp06BUBGDyQkDiMkOZCQeMbheZ743jCMnq83TRMA4Lpu19fJ1IKExOGFJAcSEs84si6GQRD0fL3v+wCAXC7X9XU8tfC3f/u3qFarww9QQkLiwCHJgYTEM45SqSS+75Yq4LBtG0DvFMRbb70FQgiiKMLnn38+2iAlJCQOFJIcSEg847AsC7OzswCA+/fvd33tzs6OIAfHjx/v+trf/va3oJTCMAy89dZb4xmshITEgUCSAwkJCVy8eBEAcOPGDURR1PF1V65cEd9zt8RO+J//838CAD744IOm6ISEhMSTD0kOJCQk8O677wJIUwZffPFFx9f9zd/8jfj+Jz/5Sddj/u///b8B7AkTJSQkDg8kOZCQkMA/+Af/QHz/n//zf277miRJ8F/+y38BAExNTeGDDz7oeLyvvvoKd+/eBSDJgYTEYYQkBxISEvjRj36En/70pwCA//Sf/hM+/vjjfa/58z//c+GK+Cd/8ifQdb3j8XhK4bXXXutprCQhIfHkobNPqoSExDOFv/iLv8BPfvITuK6LP/iDP8Cf/dmf4YMPPoDruviv//W/4i//8i8BAOfOncOf/umfdj0W9zbg5YwSEhKHC5IcSEhIAEh3+f/tv/03/PEf/zFqtRr+7M/+bN9rzp07h7/6q7/qKjC8d+8evvrqKwAypSAhcVghyYGExDOE999/H0CqGWiHP/zDP8Q333yDv/iLv8Bf/dVf4f79+zAMA2fOnME//sf/GP/6X/9r5PP5rufgUYPjx4/jtddeG+fwJSQkDgiEUkof9yAkJCSeHvzBH/wB/r//7//Dv/pX/wr/8T/+x8c9HAkJiSEgBYkSEhJjQ61Ww69//WsAMqUgIXGYIcmBhITE2PB//s//QRiGKJfLIoUhISFx+CA1BxISEmPDL3/5S1QqFfzRH/1RXx0eJSQknkxIzYGEhISEhIREE2RaQUJCQkJCQqIJkhxISEhISEhINEFqDiQkJMYG27YRhiEURYGqqjBNE5ompxkJicMG+amVkHgGkCQJkihCHMdIkgSU/eO/AwBK6d4//jP+Gv4zRQEBQAgBUdLAo8K+NmwbnucB7PdQFCiKgvm5OVj5vCQJEhKHCFKQKCFxSJEkCaIwRByG6aIfRYIAUEIQRxGSOAZNEiRxPNK5KND1GA3bhuf7AICcZYFSiiiOEUURVEVBpVyGoqpQVBWqqkJRFFAAiqZBU1Voup5+r2nQdB26rHSQkHiskORAQuIJBt/xR2GIKAgQs+/jKEIcRej18eW/TygFGWEc3chB3bbhM2JQLBRgmaYY+26thjhJYBoGSsUixGi7jJsCACEpSdB16Ka591WmKSQkDgSSHEhIPEZQShHHMcIggO95AA/386hAFLX7IyTsa7vjUUpTUsG+UkoR81QC+z3AFmGeRuDHZSQiyRybsp+jJa0AAGEYwnZdEACFfB6mYQDsd4QQRFEE27ZBAeTzeeQtCwpLSSiEQFEUcaym68icuxUKizTohrH3zzRh5XL93XQJCYmekBRcQmLCoJQiYuH+KIoQhiF814XveQg8D4Hvg8ZxuqiyhVhVVahM1KeqKgCW5weLJmQWf64H4P9vOTmyy2uSJOI8aLMod72O9ABNu3/bthFTCss0QQhBEIZN5wYhACHwfR9hGCKJ45QMZBd9QpqIQutXSghURQFl52s0GrAbDTQaDTTqddRtG4HvI18ooFgqoTI9jenZWczPz2N2fh7T09PQdX2ga5WQeNYhIwcSEmMGpRSe58FxHERRhMDzEEYR4iAQGgEOAgCEQFVV0CRBGEUIowg0jhFxEsAWfr7LV5jQT1UUaJoGPRNmz36YFbY757t0Ti4oIWkNM1u4+Ri6fSWEiLQCnzJc34dt2yAAKuVyupCzc2dJCKUUO7u7SJIExXweiqo2XRM7KCi7H67vw240YLsuXMeB4ziwM6kLANB1HcV8HsVSCaViEYZpwnMcNBxHkIc4SZAgFVXmikWUy2VMz81hbm4OJ0+exNGjR8fwbktIPJ2Q5EBCYkyglMJxHOzu7sJ3HASehygI0gWdEQCiKGJBJISIBTKO4yZ9QBLHiPnXJEnTAiy6QNg/AGLHbZkmcpYFXdebft9xrMNcXyYqQSlFdXcXcZIgn8shnwnp80U+C65LsEwTxUKh6ThJkiBMEqw+eIA7Kyt4tLUFAFAVBbl8HoV8HlYuB8uykM/lkMvn20YCVE6aWNQlDEO4ngfbtuEy0tBoNFBn4snlY8fwk5/+FGfPnu15vyQknjVIciAhMSKiKEKtWkV1exuB6yKOIhBFgWkYUBRF7P6jKNof9m8BV/NnUwo8qqAQIioA4iRBHMfwfR8x26VTSmHqOkzThMFIQjfwRbzfCSBLDjzfR8O2oRCC6akpcS4uJiQt00oQhqjV6/tebzsObt++jTsrK/CDAPNsVz83Pw/TNMX4uG4izlx7wr7GcdzzGjRVTSsh2P18+PAhrl69iu3tbVRmZvD6m2/ilVdfhWlZfd4NCYmnG5IcSEgMgTiK4Nk2qtvbqO3uIoljRHGMhFLomgaVkYJ2IGzh19qQgNYFnROLOEnaVhtQShGEITzPQ8DFiyxSYZkmTNMUmoVOGJQcZKMGhXweOb6gdtExUEqxU60ioRSFYhHbW1u4fesWNh4+hKHreP7553Hy5EmUSqUuA6CCJLSC3yNOFgRx6PQeEAJNVbG7u4tbt25h8+FDFEolXLhwARdfegnl6WlY+bzwcJCQeNYgyYGERJ+IggCe48Ct11GtVmHbttjJU2Bvx575G0VVobP6fV3TRI1/N4iKAyY07PcjGscxPN+H5/t7ZkYATF2HxcoBu0UTep2FkwMRNVAUTFcqTVqDbrGKR1tbuL2ygvW1NURhiJmZGZw8eRLHjh6FOkB5YsB8HaIwTKMxHe4PjzgkLG0TM1Fou0iDbdtYX1vD1tYWTNPE6VOncPbcOUxNT6NYKqFYqUDpQbIkJJ4mSHIgIdEFSZLAazTg1uuwGw3sVKuwHUdEBVRNE7l+BRC1+ZwMtCUCHT5yCS8ZZIs6ZbthZdCqAkoRBAE830+jCex8XJtgmWb7cbHURMfjsmuu7u4iimMRNWinMche08b6Om7fvo3V9XUoioKl5WVcPH8eU1NTPa8jYou5qPbg2oxMKoWfp8NB9kUzuM6BE4aIm0QRAs/zsLa+jq3NTSiKguWlJZw+fRqFYhEzc3OYm59HvljsOm4JiacBkhxISLSAUorAcVDf3YVdq8EPAgRhmEYKmDDQ0HUUi8WUGHBnvyHNebJ+BNkxNKn5gabFsG2Kgf88UyoYMl2CiCYAIJQin88jx8oP92kP+ILKvlLmq0DZ4lyr1QBCMM1305kxksxYHty/j2++/x6ubYsoQbFUAlEUVEqlJlFhkiR7egp2njhjupQ9rkJIqs1QFGg8EsOurR1J2HevWsgC93UIwhC+7yMIAtQbDayureHhw4fI53I4c/YsDPYe54tFzM3PY3ZhAXkmjpSCRomnDZIcSEgw+K6L2s4O7FoNnuft7UqTBPVGA4QQGIaBmelp5C1r5AWhHSnI/q7rRzOzcPPXE0o7jolSCj8I4HkewjgGKIWmaSgWCtCy4XJ2zNajcIdEx3Xheh50XUe5WGxKKXC4rouvv/4aa+vrOLq8jBfOn8c0ixLUGw14vp86HmraHhFIkrS8kldzZKoxNJaO0VUVCtNzkE5RDkYSYu6nMAKCMMSjR4/w+eefA4qCM2fPCvdHXn6aLxRQmZrCzNwcLMsS/yQkDjskOZB4ZkEphe/7qFeraFSr8Fy3aUHhvgCu76eLk6ZhqlzuKfDreV7sCQ0pWwizyxgPpw+cTtj3g/YfbdfzYDuOOFc+l0MuS3ZaTYqwRw6EX0GhkLoh8tez16ysrODbb76Bqml47Qc/wNEjRwB2vbxiod5oQNc0FPL5pnOJPgtMnKl1S8twDwX2dR8R4MSrnxvXA7bj4KOPPoJt23jt9deRy+WE7oE7TyqqilK5jMr0NKamp1EqlZDL5aSgUeLQQpIDiWcOQRCgXquhXq3Cs+2mhVDTNBi6DtMwEEYR6rYNyioQKqVS18melyuGUSRC5BH7Pg7DNCUBpItZxpiImxrxnXP257z7ocpsi8Vr+1x0OPngOXqOOI5hOw6CMASlFJqqolAoCEOlVh0BBRD4PnbrdQDA9NRU0xgajQa++vJLPNrcxPMnTuDll16CoeupGyRLy4A5RTZcF7quY2ZqKiUCjBQMs9NvV8VB2f3l0YVsembYWEIQhvjkk0+wubmJH/7whzh69GhqWMVSEfz9DoMAmmmiNDWFmZkZTDOiIPtBSBw2SHIg8UwgjmO4rovdnR249Toi3xeGQoauwzAMGIYBlS14NnPbo0kCXdeRt6x0Acgs+nH2/3G8Zw2ccSMUUYFMCV62t4FYrHiYnFcpsL8RoHs2yMIAqcVmWNM0mIYB0zDENe39OW06Dz+v7/vpdbI0Ro4ZDWW1CHys9Xodnu/D0HWUikVxrOvXr+PSpUvI5XJ47bXXMDMzk+buw7DJG0FhxMt2HKiKso9gdERm7DxKwMfG0y8kc12UO0GynwuL6cxxhFEU+3k/UZo4SfDll1/izp07ePHFF3Hu3Dlx3iiOEYYhgiCA63kIggCEEOQKBVRmZjAzM4OpqSnkZP8HiUMCSQ4knlpwG2PbttHY3UXgukjCEIQQmEy1nxWTBVGERqOBre1tOK6LOI6hahoMvutjC7+CPeGfIAEMfFevsdy4ytoUE9Y/AEBzLwRKQVlpXcJC1FyRny1l5N/z6wLalx7yUDqlaX8GI2OKZDIClN2hc1JgOw68IAAohaooqRbBMISZEQWwtb2NJElSu2LDQLVaxZdffYXdnR2cOn0ap06fFqWC4v4wMyjTMMTueYf5QpRKJZitTodtUhq90LFSIQN+D7uZUHFip7RLq2SIxeVLl3Dp8mWcPHECr/7gB/sITpIk8IMAjuPAcV1EUQQzl0OpUsHU9DRmZ2dR6hGFkpB43JDkQOKpQxiGqR9/vQ7XcRB5XhoB0DRYliWcC6MoguO6cFwXtusi8Dz4YYiEhapN00zz6iw0z4VxKgvz83C4+HmmSRIHF8f1+zHbV6HQ+vuMViH7lac0/DBEGAR7boyKkhKR9I+BTKSERxi4UVIQBGg4ThrhoGkzpXw+D4WkDZWqu7sghKBUKuHa1au4euUKCuUyLly4gEI+v1cpQYggIrqmNXVxBFJRoh8E+2yXh0U/5CB7/zoZIzWBa0FarahZdOLO3bv44osvMDc/j7feeqtjY6coiuC6LhrMslnTdRRKJZSnpjA9PY2ZmZmmCI+ExJMCSQ4kngokSQLHceCyZj2h4yAKAhAAlmUJwZ3jurDZjs73fRBCRCrB8zwRKZiqVGDlck1WxoOCInVSHOQD1steeZDjBEGQ/mPh7pARBpG+wF7kgGstDF1HxMiBpmkAISjk82mfAteFbdu4dOkSbNvG8ydO4MTzz4sdsJ6JTvDywnbggkjDMFAek2fAIAQhZk6Ww4Iw/cfDjQ387ne/Qz6fx9vvvLOXMujgrRAEAeq2Ddu2kQAoFIsolEqoVCqYmZlBpVIZekwSEuOGJAcShxpxHIuGOhFrgZxEUboz1nXElArS4HleWifPc/VsF22ZZipsY+VppWJxLAKyaICIQfZ6RG+CPgV6Is+e0SW0hud5Pj6IItE+OQgChMxlkL+SpyXiKIIXhlCQagVcx8HDhw+xvbWFSqWCcy+8gEIuJ3QOhq53DJO36gCiOE77LDCHxXbXyd8f/l4B2KeByF5v3Kb8shNEtGUMU1+tVsOHH34IwzTxwfvv7yOR7XpXJEkC27axW6/DDwLkWHfJYrmMo0ePolAoSN8EiccOSQ4kDiUipg9wXTe1NW40oCLd1YXMHdBxXSE244uNqqp73f1yOei6nu6IWWlfuVQauVQRgOikmBUcAi2LW8v3nfonTAJZ8WPIejP4vi9MgPwgSEWcvo/q7i7ura2BAliYncXRI0dQKpVQzOdF1GXQc/Oqh3Kx2DP3zttT846L2f9z8kC51oKTpMz9bhV38v9HUdQ3AeuGarWKX/3ylzh15gxeeemltPNm9v3OlKtyPQhf/D3Pw26tBttxkM+kG+bm5pBjwlAJiccBWV8jcagQRRHq9Tpc1wUAOLUanFpNmPzwjogKIdAUBYqqImeaMBkhMLmJTeZ4juOAAiiwNMLAaF34+1DAkzbfj2sZ4OWLQvTIwuj8K7dlphkLYm7wpLNOiFEYomHbaTlnrYbpfB5hkmC6UoGmKHAcB4HvI29ZaTvllvuaHQtfrHnkAAAMXRfCRa3NPc82WOKaik7gZAEs0tBKILjQkINrIzRmwgT033yqHaampvDSyy/jm2++weLCAhYWFprG1gqSIQqWZcE0TYRhiM3tbWxtbAidQrlcRrlcRj6flyRB4sAhyYHEoUAYhiJSAKQufNsbGwhcF4qmpVEBQqAZRlqJYFnI5XKwDCPdybUBTRI0Gg1QALqm7SMObdFCBNphGN1APwG8VsOkJLPIx8zWOc5UQvTjsEiAvYoKACAEYRCAKAqCIMD9u3cxOzWF50+cwBdffYXFubmUQFEKVddTrUejAd/3UcjnUSgUkGf3sVvPBU3TEARBauPcwVFQEBneZTHToZL3RuD3oZPTJADhE8EjDdnvE2Cv+gT7Izr94uyZM9h4+BCff/45/n9/5+/AYPcg+ywIcWOGkIGdzzQMLC0soOE4qO/sIMqkfizLQrFYlCRB4kAhyYHEE40gCNBoNOB5HgDAcRxUd3bgNxowNA2GacLUdeSYy98grnS26yJiu9diobD/BX0QgVZ08vfv+XedFjakoXJk2hGHzGeh34ygmtlNK9nwPC/dU5Q0hcDr8xUF6w8e4Mb16zj+3HM4c/o06o0GVEJQLpVgWdaeNiGO4XkeEkrRaDRQq9WgKIogCjnLgqooYqHl2geejkh42WO7cRMCMMfE1ivl4XmaIQu8H0O2zTXYa6IOhI1Xh/BGWZqui7ENRBgIwRs//CH++he/wOdffIF33nln30toC2FTmLCRH1dRFJSLRViGgVq9jka1ijiOkc/nRcSsWCxKTYLEgUCSA4knElEUYXd3F77vI2E7fC461ADkDAM5y0KlUklV4gPWx/u+L/on8GZAwOih/UGjBsLBEHv5cf5VOCwy18V2UAkBUVXxNduUiIfaWxeS7K41SRK4jgPX98W137p1C3fu3MGF8+dx5tw5OLad7rYJEakZl5G1fC6H+dlZ2KxKxPW8VHDnOKg3GlAUBfl8HsV8HnlG3CjSVtYgJI10cHOjLvep9XeCNGXKR7nFczaFwIlCu8hDEscglKZdGVllBwDhU9FKFrLjaKcZsSwLb/zwh/joww9x8+ZNnD59ussV7T0rlL2PvAzUMAxMTU2hYdtwazWoioIkSZDP51Gr1dBoNCRJkJg4JDmQeKJA2Q600WgIguC6LhRKQaIIlqqikM+jVC7vefunf9j3Obh1MADkLAtGhxr1YcffC2JCzyzSEaUiIsAdF9v9He/+yP0Vsk6MvcaVNW7iBlGu54lwt6oouHz5MtZWV/H6a6/h1MmT4j6prHqDMIJAmO6Ak7dSoYBSoZCSDd+HY9twPQ9xksCxbTQaDRBFQd6yUCwUUvMppKkdBRACwsyAe9/Hdj9jCzm/XoURJqqqMNrcoyRJ4AUBQlbqGbNyz6CFLOi6nt5zRhbaaUYApC2ez5zBt999h7m5OZQrlZ6Ekzs9ih4TjNhVSiU4joPa9jaK5bI4v67rqNVqcF0XU1NTHT0WJCRGgSQHEk8MgiBAtVqF53nY2dmB67owNA16koBQivLUFMql0n5jmn6Q2aHbrJ+CpmnI5/NjvYYsOciSgNbFO9uHIWCVAa1QMmRAZ0ZLTcK6fggBabZxTijdi5qwY+isv8Fnn32GarWKH7/9No4sL4voBYDm0k5CYLF0QcO2EYYh6o0GioUCVEbe8rmcICCO66ZVJczC2nZdkQbI53IoFQr7S0dJptsjK1nsZ5EVNsrZlBBbzLPlj1wcqSgKTF2HzqIPCaWI2fuSJQu+78Pn7wsnC+y9aU1DvPzyy9jc3MSnn32Gn3/wgSBW7bpdtgOPKBCkkRlN01KCVaulvgjMOClkXSOLxSJK7HMhITEuyFJGiceOJElQq9Wwvb2NnZ0d2LaNvK5DUxRoqpqqtplZzqCPK/fP5xMnt7RNKMVUpTIWC1uKVNQG5iTYbpKOeWMeFhlIMmSAaxRUFs4Wiw7LtQs73wF8D/i4st/7LFLA76GmachZFoIowke//S2CMMRP3nkH09PTIj++W6uJv//lL36Bn3/wAaampsTCzUtKE96ZsFhMNQYZ22U+BjdDFMIwRK3RQELTrpCFfB6lYhHFfL7te5J917stsgNrPihFzAhBOySs5DHKkIVWZMmCzjpJ1up1/PKXv8Tx48fxg9deE+fi72G/RCE7Rt/3RTqnUCxiem4OOoueqaqKSqUi20VLjA0yciDxWOG6LlZXV7G1tQXXdWGqKsrMmKhcLqNQKIidY7/EQJQG8sWUfQ3DUHgfFAuF0YkB351mdQOKArBdcVYz0E6LoGoadFYpoLGvYtfL6vVbr6EdOpVN8t1ywBaVhJUuqowUmIaBnWoVH334ITRNwwfvv5/eb6T3LgjDdJyquj+ywd4TTdNQKhbRsG3EcZyK5rKRAF5WSdOmTjnLAqan4QcBlI0NuJ4HTVEQ+D4eeh62VBVT5fK+DphNV9diZ9w0rI53qQOY2HOfLgMs5cGMsnjqSZCFMEzJAhNAco8IYI8sXLx4Ed98+y0WFxawfPTo/nLKAcaoMC2Coihp9KVeh12vp1bM09Owcjlsb28jl8uhPIa24hISkhxIPBaEYYi7d+/i4cOHCIIAWpKgZJooFYtCES9K9tCDGGQW1GyUIIskSdCwbVBAdGAcCoTsn9jZ4ucHgdgVtxtvVuSmqSoI22FzvwF+7H4IAbCXNujkpxCw8cQ8MsEMoEzWfGmN2f9WymW88847QsPBd/sRIwd6xg9g75L3BKCqpqFUKqU6EUYQCoVCc5Mn9np+bNMwMD01hVIUQdd1RGGIOiMYWzs72KlWUWEkoTXl0EoUWishktbX9EC796pJn5G+CAAGIguzs7OYn5vDZ198gXdzOZRKpT19QLv3rMszzktOQSkKhUJaWeL7aNTrCFwXVj4Pg6VyfN8X/ggSEsNCkgOJA8fdu3dx7949xEEAkiTIGwZmZmcxMz0tJkCOpsUzi2zNf1aD0GGhdFmXRUKI2B33AqVU+Oh38ssPM3bEwJ5lMiEkJQKZf+2MePg59n4xQOqgHVHBnuCSixoVQtJIgWmK+3R7ZQVffvkljiwv40c/+lHTTpMfm1dIaLoO+H7rafYqRFg5ZLlUQsO2RflpvlAQ5kitokmaJFBVFVEUiehDZWoK9Xod9UYDYRhip1bDTrWKUqmE6XK5I6HLRop4ioenRfrJw3csI22tImHHz6YEepGFFy5cwKe/+x2++/57vPTSS6nGgTX02he56lFxQ5ASMRpFyDPDLod10ySqCpokqFeryJdKovnYNP9MSUgMCEkOJA4Mruvi2rVr2N3ZAcIQlmFgbmEBM9PTwiUvG37nbXab8rQZItCvAIsr6BMApT52U1miQfZ+KH4fRRF8pmbPLiyqqsIyTRCmlWhaDNmC0q2ssCdaCEq7v/I8D7brioiCZZowTVMsRBTA5UuXcPnKFZw+dQqv/uAHTccRVs4ZHwW9Q58JgpYqA0JQLBRgEyJaFidJ0tR5Ubya+S0Ae++5Qggq5TJKpRIc1nsgCEPYtp1GI/J5TPfIq2fvsdBbdFl0+05VZY6Zfb8SQLS15teQJQslSnHh/Hl8/c03cB0HuXw+bQ7muqJRVbZteGvKpDVywSMIcRyLjqFcxwEAlmnCazSwu72N8tQUwjDE7Oys7PwoMTAkOZA4EDx8+BA3btxA5LpQAcwvLmJpYWFv0eIRAgYuLMsq7puqFAZQZnu+nzr6sVxwR7QsItkziLxyEOxzveM7Qb5DyzYy4q/pRAD6IgbZtEkHcG+BMIpAABiahnyh0FSjTwF89eWXuL2ygpdfeglnz51r6x/QFDVoiXi0Gxu7EPG1wKoWHMcRBknFFlJGsGct3CryUwhBsVhEsViE47qo1eui7NK2bViWhempKRQ6ED1esYAsSWh5b/l3o3bBVNASVWjRLyiE4NSpU7h27RrWVlfx8iuvwGcttcMwRBiGUBRFtNBu2uVnKzYy16AQAigK4iSBaZqglAqxJ2HkRNd11KtV2I0GfM/D4tLSXtdICYk+IMmBxEQRBAHu3LmDjbU10CCApet47vhxFLOteluJAScFwF5Yf0gkSZIq9AHkW3ecHfQD2XHwevdWEyI+mXOvgezfKKq6V43Qz8La9leZcrweBCIIAtiOI3bBhUw4P4vvvvsOt+/cwZtvvIHnnnuu6zF5CWOvGvpsx8QsLMuCQkiaZvB9uITsW5xUVd3bGXdAPpdDPpeDHwTY3d2FwzQdaxsb0HUd01NT+yocSKf7mo26sKhUFMdde2D0A9JCQrgeg49CVRScO3sW33z7LV68eBHlUglxHMNnDa6SJIHnefA8Dzpz/TSy0YTs2DlBUBRBni3LQkIpAt+H4zgg+TwMw0Ahn4fjebi/sgK7VsOxEydkW2iJviHJgcTEsL29jTt37qBRrYIkCWbKZRw5ckSUXwFIy7SYFgBAxzz6sPB9P93NAc0CuQ6gLGfsZ0xwOHRNE2LGbpEAAgBs8u51rnY/410keyGhaTtqPwhASFqFUCwUhN0wD/sTSnH95k1cvXoVr776Kp577rmOCzLfdYdhiCRJ0mOxRYi3Oc5el9ilI0Ni2K7dME3kkfpKOJ4HoigwLUu4IRJFASUkPSa/dx3umWkYWJifT0sg63XUbRtJkuDh5mbbCofsuNqBIiWOwtp5AI1CN7QKMPmifuLkSVy5ehXXrl/Hqz/4AVRVTTuDWhbCMITP2mdzfwWH+S8Yprm/MRU7pqqqqa6ElYOCiWJtx0k1L7qOfC4H1/OwvbUF23Hw3PPPY3F5eeTrlHj6IcmBxNgRRRHu37+PRw8fwqvXYWgaFhYXMTs9ndrmctC0854o3WM/jgepAe8CHm6lSHeg3SZEsZPz/X3+9yZr5jRI6aOiKE1eBm3H1zLW1soDHq4GpXutiNnvQuYvwMdqsWZThC224viU4v6DB/j9V1/h3Asv4MyZM22JQfaaY9a9kbCulkDn6EX275oWY/a9aRhIWN8G27ZT0qDre/4HvNUyrzRoIR5ZEAC6YWB2ZgaVSiXtP9BotK1wUDWta0SCZho1ibQDae4cOSqy4zd0HWfOnMHlK1dw/oUXYLIoCu+GaRgG4iRBkEldeb4Pz/ehaRrMNqSUu1ry7pU5Vq0QsI6apWIxNfrKiBdvXr2K2u4uzrzwwlg8PiSeXkhyIDFWVKtVPHjwQHSWqxSLmJudRblU2ie2itmOnkyAGPBdVMJ24u06LiZJIiIE2VI9QoiYjPc596F/EaGqqmk+vd1rM776/B6IkryWc/Hr4Yu947rwPQ8gRDgSthsnAGw+eoTPPvsMzz3/PF5+6aWu4xVWziylwMP+/aLTfcnlckKzYTcaUFh5IiEkjR7w9tEtaYbWRbqppFBRUKlUUCmX04ZPmQqH7WoVZVYSa3R43+M2WoN94tMxkQSO06dP49q1a7h56xZefPFFQfo4VEVJO4laVuqc6fsIMl4Zjus2pbOAVNMgrkRRUCgUQJn1eL3RQLlUgqqqojrCtm2sr66iXqvhhYsXUSyVxnqNEk8PJDmQGAuiKMLq6ip2trfh7O6CUIrFuTlUKpW29dYxM5hpVcq3CroGQVNLY0JEY6VcJmrAQ+a+7+/TEei6DtM0obfoCLLja1dx0Am89EwQD17nTwgoD3u3LBDdlqMoimDbtmguZDFToU7jqdVq+OjjjzE3N4cf/vCHfYs4eQnkoCVw3e5LPp/ft6vlnSFjsBA/j1LsHTCNYHQ6H3tNqVRKxYuOg916HWEQoGHb2KlWUSgWUSmV0m6dhCBmBlWtzpn7jsuODTSTklFgGgZOnz6NWzdv4twLL+w9Z5mIUHravYoHTmD9IEASx8JsSVVVmKYpjJESRrS5IJSLUxu2LWyt9Yxhld1o4Jsvv8Tpc+ewuLw88rVJPH2Q5EBiZNRqNdy/fx+h48B3HOSZu2G5WExzzBnwBVFtt/gOmfNt8iNgf+/7vlgETNNEGIYI2CSbhcZ0BGYvPUKXfDj/fbsFhCBt/tOkq0gHvfd3vS8wVeu7buopwKIF3cSCjuvitx9+iEKhgLd//OPuIeSW+86rB/blukcA95dIGg1EnCBkokmd7qzSQzvQenxuEFSr1US1hO04aQfPclncs2xEplVQ2OnnrR4Hw+DMmTO4ceMGbjOCkC1RBPbfB0VRhLMk1yYEYYg4juE4DlzXTc21WFMm/jfFQgG1ej31PmARBN6qu1Qspj4YUYRrly+jsbuL46dOyXJHiSZIciAxNJIkwYMHD7C9uQlEEWgUYapSgWkYKBQKzcSAT7ad6s3Z8QYOY2erGTJ/67puqupWVdTq9aa0AdcRGKbZVOq379hdxpLtGcD+oONrFQBQ1bT/APtZvwV0cRTB4YZGLD+dz+e7KuyDMMRHv/0tFELw7rvvikWj47VkIjiUKfgBdExVDAtCUh+Eer2OmLXh5uftVlLYznyoG/hi6noedut1uLYN13VRZ7vo6Uql6dqyfSCaSlkzkSge8clGoIYhCTnLwonnn8eNGzdw+syZfdEZIaTMiBk5dFaimCQJAhb9iuM4Jb5hCOJ5yOVyIiJRKhZRbzSQxDEato1CPp9Gaxh5qDO9xsbGBlzXxZHjxzEzNzfEVUk8jZCKFImh0Gg0cPXqVWw/fAj4PvKmKYiBZVl7RjV0z7ioq3p8kKgB323xhb3l78IggOt5wmmPEwPTMFAqFjFVqSCXy7UlBpQdb99YWsbe78LA/0pBmlMWYeQ+dsO+56FWr4sISLFQSHtCdLlPSZLgk48/hud5ePfdd3s24mklOXHGVXESznqKoqDImjPFUSQEo7QLOQAb46Alh5ZlYW5mBvMLC2mkRVHgOg4erK2hVq/3/HtOSHjJYJIkSLg+Aimp4q8ZBGfPnUMQhlhZWWlz0kxrbfb/ViiKAss0USmXUS6VUrEs0veu0WiIPheKooj0TZIkcBxnj2QRgkI+D6IoafOseh33V1awcv06gnZumBLPHCQ5kBgIPFpw88YN+I0G1CTB4sJC6gzIyqe4OQ0hpMnkaJS8Lc3mZRWlYzg+DAJsPHoEh4VbeVh2emoKhUJhfyieqdSbJvkx5JebxstPhXSBI13GDyDd6dXrcJjrnaZpqHSxD86e87PPP8fO9jbe+clP0rB9D7SOQugNhowatLvuVqiqikKxmGoKWI3/IHec7+R7IUkShMyeeW5uDgsLC0KYt1WtYnV9HR7rcjgI+LPCKx4S9rOEXXuvsRULBTx3/DiuXbvWkVjw90VEKzq8TtM0FPJ5VBgxByDKPR3HEecjhKSpCFYxAqQko5DPAyRtsuX5Puq1Gm5cvozq9vZA90Ti6YMkBxJ9I0kS3Lp1C1sbG4DnoZzL4djRo6LroKqqKBaLovogG6ruteB28gQQIkO+6+5CCnZ3d7FdrQpdQblUwvTUVJMgsfXYTYZLZDweCyL6gPYRBl6CpqSDaPpdEASo1etCLJnP50W+uPtJKb759ls8ePAAP3rrLczOzvYeZ5sIRpypVBgG/d5DjeW+CSEIwxAuW8j6OX7byE4G3NwobklTWZaFxcVFTJXL0FUVETNT2tzaQjSCU2K2/JFHGGLmCcHJQuvTfe6FF+B7Hu7du9f7BJnoW6er5qmCcqa5k8+epSAMUcjnQRkJ4A21QNL+HzkWXfI8T1Tu3Lt9G3du3hSVKxLPHqTmQKIvRFGE27dvw9ndhZIkWFhYQLFYTPPHLOxdLpX2QucZcBOiTtiXv0eGFPQIJYdBAMd1xSQW+D5MwxD2u9lz7DvfmMhA0zl6CReBprSICgjjJdd1U+MlQsSOsN9F+tqNG7h54wZef+01HDlypO8xt97faExixH7SRLquo1gowGfWyJ7vt3V2bAcC7FV5ZBbmmGbcNtvk7nkJZLFQwHa1CtdxYLsuHNdNu0RmnTuHRFPvhWzJKiFiN1Yul7F85AiuXL2K48eP95dS489NNjWV+TvCUkHFQkGUPsZxDM/zoLBeFjSO4bguypmKHMs0QZmvgu26UBQFmqahVq3CdV2cOH0alrRefuYgIwcSPRFFEW7fvAmPEYPlpSUUi0WxmHFi0M5KOOlBDPjrmtBHpCAKQ9RqtTQnz7wEDNOElculor1cruOujWT+jQPZUHpPYoA29fs0dToM2I7OsiyRK+4H9+7dw3fffosL58/j5KlTA409i2z9/6hixH71I6ZpwrSs1LAqcw/6Ogf2UgxxHKcdMVv6XnQah6ppmJ+bw/zCAkxmVby5s4PV9fV9FS2joCmKxvQLCftcnDlzBo1aDZubm4MdNEMSSMv/OTRNQ7lUQoFZSydJIsyoQqb1yCKXy4mIQyNjxR36Pm5duYJarTbE1UscZkhyINEVURTh5vXr8Gs1gBEDy7JAkwSu64omOe3y4f3Wh/PwK7qQATEeRgp2azWEYQjC6v2nKhWh0tZ0vcmJMbsYj5MUAL1TCL0QRVFaTZEk6YReqaRCsT4X142HD/H5F1/gxIkTuHjx4gAD37+z52JENdMxcdIQlSPs+bGZiLQXeI4/imMkcTyQZiGLnGVhaXERU6WSSDWsrq9ja3t75KZMAh1SAjOzs8jl87j/4EEqdBxS69JaRZGFYRgol0rIWRYU1njMcRxUd3fhtwgPC/l8aifN+pFwxEmCO9evY+vhw6HGJ3E4IcmBREdwYhDV66CUCmIAmtoSc5OfdqHg1i6LnUD7yCED7UmBaZqoVCqiCyBvoWy0iA5bNRDjAI9IDHNcvuhEYYh6vY4kjqEqCsrFomi4oyiK6LHQacmoVqv43SefYHFhAa+99lrfJkcAmlstM4iUwphLGLuBv++GrqcEgRDYTG3fDpSmzppRFKVmUBmfgGHNsxRFQWVqCsuLi6KqoWHbeLC2hkajMdQx24I/5xn/hCPLy1hbXRVpgmxFxEBUIVsVtO+0KYEul0pClBtFER6xfgv8eSSECP1Ba/dRAHhw9y5W+9FISDwVkORAoi2CIMDNa9dSYkAIji4vi7I4Smlq34u0Z0E79KoDz+64u5WohVGEeoYUIEMKipnQe5IkCMMQFKn/ftOiMdil9wTNTO5DgRD4vo96vQ4KQNN1lEql5r4T7HVCvNhCoBzbxm8//BClUglvvfXWQDv9dhoPIBM5eAzkgJC0a6OmaaCUotFoiN10wghBGMeIWeqgrdCTH68lD98vdF3H/Pw85ubmYBgGKKV4tL2NtY2NfU24RgEfJwWwfOQIXNdFdXe36TW8vFOQhT6jCiJC0aZ0WFEU5HM5zM/OCr+EeqOBWr2elpRSCl3XU3JIadrqHHvRCEIIth4+xO3r1/e12ZZ4+iDJgcQ+BEGAW9euIWw0QAnBkaUl0UmRACLkqPHdXgu6VSdkSQFHu+mbh9t3d3fhZ0jBVAspEGNmxEBli+m4xYZ87BSprmCUY7uum7ZYJkR4L/Rc3Bk54PnjDz/+GLqm4Z133hl4p99p7MPaJndCP2WNvL8CB8+RR3GcWiGzCAFNkr70HATppDbK+5PP57G8uJg6KioKwjDEg/V1bO3sjC/VgJQUz8/NQTcMrK2tdX1t31EFXnnDIgntXqfrOmZnZlDI5xFFkRAt1up1+EEgIoE+q1xoLaWs12q4cfXqvrSExNMFSQ4kmuB5HlauXkXkOAAjBtxJUGF16SJq0KZnAhddtQNXbANo2t1lXx1FEer1Oqq7u0LsyA1f2pECjiAIRNTgSUohtB6n3mik5IpSWJaFAqtBHwTfffstXNvGO++8I9I8tOVfxzF0+H0cx2LhG5dtcj9ljdl20GEUgVKaPleEIGK190Ofm5CuRLUbFEXB9NQUlpeXkTPNNNXQaODB2hrsPssu+zqPqmJ5aQmrq6t9/002qhBn9Bat7ysnSu1+xzuNcg8ETjodxxEpw6boAfY+pwSA77q4efky7D7MpCQOJyQ5kBBwHAd3r11D4LogioJjR47ANM2mCZ4bq+iGAb3NjjXBfsW+mFTaLYJsV5IlBVwtniUF3XbHvJkSKBVGMOPGqGQjoTTdmfk+QCkKhULHlEw3PHjwADdv3sSrr76KcrnMBkf26uDbkC5h2tNG1c6RjRoMm7vvhCxp4RURvLqAV0ckXKNCWO8I5k3hue6+Bln9gmD0KIiu61hcXMTs7CwMlvJ4uLmJ9YcPEYwptH70yBHU63W4rjuwsJIQ0kwU2hAh4eHR8r7mcznxO9M0hR8If29cz4PnecKhU/iWsL+J4xi3rl1DrVod/KIlnnhIciABII0Y3LtxA4HnQVHVNJXAxHF8UomiSORe2y1slFLRipj/n7aIsFoRxzHqtt1ECrLpg66kgP0Lw1DU1Y9LTEcxBm0BQ5QkqHEhJYASs7wdFI5t44svvsDRY8dw4sSJjq8jLePOLg7CCpgv2GClgOwe8qhBUyQCzfX6wlegzev4sbMle5wECGOglnQDH2824qSznS1vMxwPq+QH9ms5hkChUMDy8jIqpRJ0RUHg+1hdW8POGFINi0tLUFUVa6ur6YQ8JDnj72/WgEn8DhApBw5VVWFxEub7MHRd2DFz3YntONipVjtGoyiluHv7NlzbHmrMEk8uJDmQgOM4WLl+HaHnQdU0LC8twWjTpZDnGA3T3LcI81Bn9v+9wsqe72N3dxdhCyko9REp4AY3BBC18foYogZN4dMhF6QsIiaojFhFQjHjYDfQuJIEn33+OXRNG7gyYe8gVIg/SeZnoLQpcrBvIWD/5/luvuhz+2Dxjwvnsv+AnnoKUYbX8vNcLifG44yw+HRS8Q8KRVEwPT2NxaUl5CwLGiHYrdexur6+zzdgEGiahvn5eayurTVpZdpVlPSLJqfGFvLCBYtAml5QVVVUIHHRYrlYRKlQAJBqZHYzzctaR5XEMVZu3hSfY4mnA5IcPONwHCf9YLsuVFXF0aUlUU7XCh7ebS0VBPaIgRAcdosWJAlq9Toato2EUmi63hcpyB4/W/4Y8hLGEclBNqc6jsC6zzzu4ySBzkxphg1zX758GZubm3jzrbeGvs5uiyMP70+i2VJ68s5nF4tha86cEKHJiMJwqD4IwB7JG7RxUyeYhoHFxUXMzMzAZKr/9Y0N7LRUHAyCI0eOYGtrS0TmuJviICmeblofHrlpJb6EEBEFDIJAeEyoqopSqYRioQAQgjAIUG809lVt8A1AFIZYuXmzYwmqxOGDJAfPMBzHwc3r1xFzYnDkCLQOxIBSKsqXWrUGPOxMWwlBm8mKRwsC5lVQyOXSUG2vtsIdShPDKEoXNkLaaiD6gUh/YDykAEjTNI16HQnzXSgVi02q/EHw6NEjXLl8GS9evIjZmZmhx9QpNJxkdpeTMD/q5UEgftdmfKqqIs9MoRyW/x4U2R34ONUUxWIRS4uLKObz0FUV1VoN6w8fDtWnYXl5GaAU6+vr+37XT+SDu0T2QjaawJ93TddTbREhcFy36TmxTBNFJhCllMJ2nLS7Y+Y1nLC7to37t2/3e8kSTzgkOXhG0Wg0cPP6dVDfh65pOHbkSNddO48aEEXZ5z6YxHFqd4yWUHxmUo6TBPVstIB1GuQiKKEsb4FojNRhceE7GUPXh5r4RaRjDCkEDpuVKgJscmXEYJjxBb6Pzz77DHMLCzh37txI4+p0D0Wb5gN0RmwCTyt0eA9M04TB2hLz52egw7eca1wNtoDUE2Jubg7T09PQCUHg+1hbWxs4ymFZFqZnZrpWLXSLfAzU8hx70YSIGUnlLAuEVSxkUyQqcx3lrdiBtMSx3mjspRmYqJgQgmq1irX79/seh8STC0kOnkEEQYDbN28iCQIYhpFGDHrsunknt+wOP+F5/+xk22aC8ljHRL8lWpAtmWvdXTb1K+gy6XEx4lB5/My5xwFeqsgXhlwu11SqODD9oBRffPkl4jjGG2+8MXTkIT1U57NPPKWA/iIH3caYz+WgqCooK7cbw4A6EtJhUCqVsLi4CN0wkFCKtYcPsTtgP4KjR4/i4cOHXSMAnfpFDCuKJKw8mVKKHBPJer6/r6w1TpKU6BYKIIqSCok7pBk2Nzaw9ejRUOOReHIgycEzhiRJcOfOHdAggKVpOLa83NeiEGZSCsJuFb3z2PV6PXW7axMtaEXrItorHB3HMaIoSv0NBiQH4yYGvFQxCAKAUhSLReRG7GR38+ZNrK6u4o033hjpWL3MiLI9FR4H+iFPRFEE0QrCcGzNkRRFGRtBME0TS/PzKOZy0BUF29UqHj561PfCfeTIEcRxjId99DAQmp4+vC36hXBHREoQQClUVU2jSZQijmPouo4y0wa1SzPwz9PqvXuoy2ZNhxqSHDxj2NjYgF+rQaEUi/PzfYWReUthinR3ya18u+1kW6MF+TbRgk7n6kUKOPiuRdf1vsVm4xYdAqlHQNbeuVQqtRcNDjCBV6tVfPvttzhz+jSWlpZGHmO3a+VakknbJnd6T4UgscciqmmaKL2zbbtv/QEv4+sEvviNAyqrPKhUKtAVBa7nYXV9vS/75WKxiHK53NMtkYMgJU3jIjcAxHPr+z5C5pvANw+894aiKCgWCh3TDAAASnHv1i24YzSMkjhYSHLwDKHRaGB7fR00jjE3Owujz1r7KIoAJmAyDEOQgnY7ok7RgnyHaAEHL30cJOfNd+ntqic6nWPcCJl5UxzHUFU1tdwdIsWRRRxF+OzTT1Eql/HSyy+PaaRdzjdmZ8RO6PTuD5Irt0xTdN90HKfv97TXOYiijPX5qFQqWFhYgKFpSOIYqxsbqPfRxGl5eRlra2t9L/jcV0IhZCwER9c0KCzdEjHHSpXdmzCz+PMmTd3SDNwkaSxpIIkDhyQHzwiiKMLaygpoHKOQz++563UBn6AoALQRIrZORsNEC3jIm+/kWxsMdQK320361BuMy9AoiyAMUa/VRKliZYRSxSy+/v3v4TgO3nzzzZEFgr1CznGmqc9BiBE7umSid+SA/32hUICiqojjGK7r9nvini8ZV6kjh8XaQecsCyoh2NzexqOtra5phuXlZQRhiGofroO8QyUftaIoI7tbcrdEENJUVgnmY5F9XgC0TzNkKh6iKMKNK1fgjLO7pcSBQJKDZwRrKyuIfR8qSZu9dEOrEJDnopvKlzLfjxItyJq+cPQzwWUV9t1y5aIvAh2tWVIrwihKSxWRRlNKpVJPwWA/u8F79+5hZWUFr772Gkql0ljG2lW3wVMKE7BN7hf8vvW771UUBQVW3uh5Xl82xv1e27jvAE8zlFkTJ9u2u1ovT09NQWGq/17o1Ddi1PfR0HWhMeDRg+xxuQMjx740g++LNINCUnvn61eujLf9tcTEIcnBUw5KKbbu34fXaCCMYywuLHTc3Wbz8dkJoVVNTjPfD60tyJyrFTyC0A0839zLXrnTOUYB7wPBiUGxz+ZJvciBbdv48ssv8dzx43j++PExjbY7OMmadEqBo9P7DQyW9tF1HRavzR/BXnn/YMbfzZM3cZqbm4OhaWkUr0MDJ0VVUSoWe5ID7lLZCh6BG6WyRVEUmMwh1WcNzYA9wyO+4PNmXbyMslOagTdsu3n5MhqyUdOhgSQHTzGSJIGzs4OdzU34YYiZqSnB7rPIWgYDezXTwqO/tcSQhReHiha0pBE6oVctetwHOUCPcwyDKI5RY9ds6HrfxACUdg1tJ0mC3/3udzBNEz/4wQ+G9tdvOiV6ExKuNxhH/4F+0Xq/+illbAcrl4OuaaBI+050rXYYbIATiaLk83ksLi7CYgvvw83Ntm2gp2dmupID7i3SDYTpEIa9Ct77I2Btm/efYK8UVJhosRRfuzSDoiiIkwQ3r1xBfQQnSYmDgyQHTymSJEHUaODR2hqiOIZpGJienm56TXYy5ou16ImQmRyzuegkSYTL4VDRggEmrG67H6Gcbjlnkz9Cn+fpFxEjRAnTGBSLxb4XkV7L3qVLl1Dd3cWP3nwT2oiCxix6je9xlTG2PnvshwMRBEII8oWCsO/1uxgPDRNXGEc/hlbouo6FhQWUCgXoioJ6vZ66KmbSDJVKBbVarWuzo37RzWCsG1RVTVNNiiLKRrPPEv+O3yOuf0iSBISQfWmGRqORujNGEW5evYqaJAhPPCQ5eAqRJAli28b2o0cp86cUC/PzTa+hmZ1sdnLuVEbIzVJq9TrqA0YLgOFC/ATtRXKU5UMTSpsIyaDkYxDESSLEh5qmpXbIA+wuuzkwbmxs4NrVq3jx4kVMj2CPvA89FgR+H4HJlzFm0fqMNZHAIRaxQtZeeUxtlDmUIcbU85iKgtnZWczMzEDTNERh2NS8aWpqCgkjoq1o10ipFwiGI3/Z6EE3B8YsieKRBAD7TJNcx0EQRWmK4epV7MpWz080Dm5GkDgQcGJg12qo1+sI4hgLs7NC0Z/9kItcL08j9NipN2wb+VwOqqYhZ1mp5WovUsBIyLALNicI2QmR961XCNkTS3IL1yHP0w0JpWm5Iqv5HqZPQqflJfB9fP7ZZ1hYWMC5s2dHHqvQhSQJkr0f7kVUMrvzKIrSHhdInSYDJnBrqlJhf+O4LijSDn16pmMnAfbe3zapqCwREM8K/8qfjRZDn0HfQ8M0EUYRAt9Hw3FQLpX2aVaGfi74zpv17xgnisUidMNIGy6FIdYfPsRUpYKpSgWEEOxWq01VRTHrhDksBk3fiLLGJEEURV19KlqjE8JhUdNQLhZhOw6iKILv+4iTBDnTxK1r13Dy7FlMtUQ0JZ4MSHLwFCFJEsSNBkLPw/b2NsIoQrlYRLFYFK9pnahb9QXt4Lgu3Ex5UqVU6pnrB8a3k+cEgbKuctn2wvw84+yNkAUnBrzlcrlUGq7kr0Md+jfffouEUrzxxhttFx8u+BJfWb5ZNLtiyvHWksWmBaBV78D+H7BOh6qqdq1Fp9jrfOmzCX7f5aFF0Jr5HmgmRwRAgpTA8Ocuq2TXNC3t88AIK/e/IIqSdipsU7KXz+UQRRHiOIbneaLT4LhACEGCEUhGB5iGgaXFRWxtb8N1HFRrNfi+j5xlobq7Cy5LTUYkBkBm7CwK2NP7gaQ9Feq2LRql9fiDJjEzkBIaXl3i+z5c34fveSBIIwucIIw1YiYxFkhy8JSAE4MkDEXrV03TMDMzIwSAraBA14ZAlFLYtg3P99MJW1VhWVb/xKDDeYcBAQBFAVjeEkj1Bp2ubRzgvRKiKIKiKCgNSwyAJmLAF/pHjx7hzsoKXn7lFcRJAttxmhb8bLSk3SLLr11MxhkSIHbgfIHl32e1JGEIVVVh6npavpaJAIhzsr/hhMDSdZiWtXc92UhDRu+RHROPWLS+hi9SYLvOmBnv9IMsUeBEQlEUuL6PgL1fuq6npIJfSw9RaPcTpi2U+1lUB4WiKJifm0OtVkO1WoXv+9BzOWzv7ABo7po5DvA0Qz8NrFTWz4Jm/BS6HRdgRIqnKLHnX2FZFhRVRb1eh+d5aT8Hy8Lt69dBz5zBzOzsCFclMW5IcvAUgIsPEUWo1evwfB8xpVheWOis+qe08+/YMeuNhujvXq5U4LquMB7qVGo4ahqhGzhBiFhaQdO0yRMDdv2lYrFvgyNezcEFWDELy2bzxTRJ8NXXX6NULmNmdjb1skebBR8QKR8l+5UthkpmZ81fCzSnjzqhTghUTUMhnxf55U4wma2uYZrItal4GQacBAFpeVwUxyjkclA0TSxIPCqS8O+5CQ+l6U6+ZdGMowhhGCL0fSFWFKI8pIuioqriq8JTGn1C4QvfBKoZyuUyTNPE5uYmSoUC7j94gN3dXRQKhbGfC4BwQuxGEaI4hsb6qQRh2Lf7J08zZO8SF/Lm8vlUf8CEjjnLwsqNG6BJgtkWbZTE44MkB4ccSZIgqteBOE6rCKpV+FGEuZkZGIYhdmYc/egL4jgWoXQQglKxCF3XRVlTEASw2iwmkyQGTedJEiBJJlabTwHYGWJU6pBGSVitdxzH6cIfRYg6hH/jKBK6CBCCe/fuodFo4O0f/xiGYYgdbuuC3yvl02n8/fyFMJI6wDLGJrBnhV+3yghfrwWIR1W4riJLJAqsAoA/p5qm7YW7kwT74hKKApWQlDCwJkOif0i7zwghom5/EgTBNE0sLS6iVqth5c4drG5sYHF+HuUxGWK1gm8Q4g7XE4Zh2myNUoRBgMSy+oqetdMhAOkcYRoGaJKkBlYZgnDn1i1QSjG3sDCOS5MYEZIcHGJkiUGcJNje2kIYxyjmcqhUKiI6wEEp7ZpGAFKRWo2V6yksx65pGmJWDum4bltyMMlKgSxi1gBK4R3kJqA1sG0bfhgClIpyxSAIRBQgZqSg7bm5jwMh0FRV7FKBvRC453m4ffs2zp45gyNHjox9/P3ck2zaYpKtmrtBPJtZrUQff6ewxRwdxm0aBhzHSUvqmN4mYe9bFEVI4hgx9wqIY8SEIE6SlAxmIzbsvdsXbWD6BzohgkAUBcePHcM333wDz3Wxs7sLSikqfVieD4t23SkjNq9wDUicJOlnf5DIURsdAgBoug4TgOe6CFjULGdZuMsIwvzi4ohXJDEqJDk4pMgSAwDY2dmBFwQgJLVH5qIvjn6Ige/7qNs2wEoES6xXAP9gG4wcZFMLk/IUaAeK5iZBfELrZCM7CPii32g04DgOkiiClct1tHzlERhu36xmiEA7K+I4E0349ttvoes6Lly4MNKYR0GS8TcYd0+BYTDOEZiGAZ+ROd/3kc/n07p9SqFnIkBc1JkkCZI4RsS+8p+ROAaN4zTakL1HhEDlKR72HGrs+1HIAn+WkySBmcvBMk0kUQRVUVCt1ZBQiulKZejjd4PY6WNvIQ8zXU91TYPtuvCDACZzpuz3uOk3zWkGwo5LKYXneSKtlrMs3Lt9G0mSYHF5eVyXJzEEJDk4hEjiONUYsAk+DMO0hW2S4Mji4l7NekYU1stx0PU82LYNIP3QlopFET7kk4WmqmldNpt0+Q7ioIgBsGd+xHe7rZGRfo8VRxEi9i9ktde+78Njtea5XE6Qj9YogNoSERgE6+vruH//Pn705psjd29sh37vAY8aHESzpW4QJJZrJcZxTEKQtyzUmZjWMIy2aSEuzFMVBdA0ZGNhvCokzpAHoRlJEsSEAEkCGoZNVuOqpkFVVfFZ6ff+ZitS+NgqU1PwPA+Vchm7rDQ5SRLMTrD0j4tQKaUIWFqNkwPF80TDs347obY7LgFE5MUwDFAAvucJ0WvOsvDgzh2AUixOIrIm0RckOThkEOLDjKVpdXcXcZIgn8shn88D2JtseAi0E7jFKV8ULdNEIWMJ3FoiZ+p6Ezk4SGIAsLQCbTY/aqqTb5fvTxJErIkML3fj0QbKJvkgCNIctaqiUCymu80OUYChroG9H7//+msszM/j6LFjIx9zFLSWgz42EJI2xWqTYhgFuq6LCILjuqk3BfonHwohUDRt3wTZLtoQZ8SmNAxTt0b2PCqKIogCJw6tz1OnaoSpqSncvXsXlXIZhBBUd3dhOw5okmBmenpixI4AouESAUSLbF3X4fs+oiHIAT8u1yEo2ItsmoYBJAm8IGgmCHfvAoAkCI8JkhwcMsS2LYgBRWob6zoOoiTB0tSUeB2lNA1zdjkWZTX8fIeQz+f314e3TGQ8tRDHcUoQeqjcR0HWxZGDVyq0c/TjJCGMIkRhiCiOEYbh3sTLd3tId8yarkNTVeELb+g68vn8YDnVPkEIwbWrV2HbNt5+552J5KoHWVZF5OBxkwO0RH/GeFwrl0MYhoijCEEQQGcVF6OgU7SBAqKLYRxFKRlNElCWpuCfsWx0gZPPTqhMTcG9ehV+EAhjp+1qFY7nIdnextzMzEQIAqWp6RUBoGdSCJqmwQ+C0V0oucg2Q4hMZqjmtkYQ7t1DrlBAeULpFInOkOTgECF2XVA2yXBFeq1eR5QkyFvW3qJGe7vM7atIKBTalrNld+KccOTzeTisoYrBasnHjXbEgJezARkDJBbm5FGBKI4FAciGaVVVha5p0Ng//ve+76cGQITAyt7DMaPRaODKlSs498ILY2vFvA8D7LqflLTCPoxRYKqy99RxXbie15c/x7DgpEExDICREJoke5GFOEbE9QxBgAB77wHvYyBSEYzUT01NAYSgtruL+fn5VByrKKlhku/j0dYW5mdnx/4eeix9oCgK8mzRphm9BtdlDHteHsFpjeQYGQ1CliDcuXEDL7z8MowxkDuJ/iHJwSFBEoaIXRfA3gcqDEPYjUYaNeB5SF5O2KaMiCNbkUBYRYLeYeLMGtxw5bFlWQjYDqLhOChnHBjHAV750IqY7cpiZs7EledZ90EuvNSzodw2jnoAEDCtBgiBaZpjd9XL4uuvv4aVy+H8+fMTO8cgOOhWzV0xQUGkaRjiWfU8b2LkD9hfukcUBbqiiM8WZSZPIYtqAdgrhY1jBJnj8MiCpqrY2dnBPKv/L+TzIAC2t7fhBwEebm5iYW5ubAQhYiXRQOo6yUXHInqgqoiQziEjLdZ8Psn6LChK+v4Q0iRSBICVGzdw7uLF4c8nMTAkOTgESJIEERMLchBC9kcNMgt4Ry//IEC90UhD86qKcrHYsemOUC6zcH1WaVwoFLBbqyEMglTBPCZWv2/cTBgVhCHq9Tocx0l3/5nSK5URAZHbbbfgUdrkCBdGERr1OijSHUuBaTUmgQcPHmB9YwPvvP32xHL82VbYvcAjKjwH/CRg3JqD7HHzuRxqjQb8IICqaR2J8LjOB+wXhvKuhYqiwDRNkY7IemVwXQxNEkSUIkL6Odvc2sKRRgOarkNnqS9FUbC5uYkwDLHx6BEW5+dHJgiUUmGjbRiGEMxmKw40TUvTdaOSg8xz10SqKIXJzssJAr+Ta/fvY/kxa3WeJUhycAgQ27YIlQPphykMguaoQR8GRJ7nodGhIqEjSMZKNwNNVZHL5eA6DmzHSa1qR1xo+PUlTCAYhiHCMNxXqWAYhrBx1lhb2Z4gqf0t7xPQYJ0lTcNo6j0xbkRxjK9+/3scWVrC8oRLs/q9+1nzoyeGHPDKmAkcW9M0mKYJz/Pgui60UmliQtpWYp7tUtjunNz0Klu5EsWx0C3k83k0HCclDqxvhEIINF3H9PQ0dqpVRKxp08Lc3EipE8/3EccxiKK0dcHk5YceEyWOgqyFNq+mokwgzHs6AGhKMaw9eIBCqST1BweEJyzhKNGK2HWRBIH40PDJvClqYJr7iUHLzqVh24IYmKbZVwOhbpMakOYDufe63RLZGBRhFMFxHOzWatipVmE7DgJWJqawsH8hn0e5VEK5VEIul4Ou64N1R2QTkeO6SCiFoWkTJQYAcOXyZQRBgFdefXWi5xkkNC9y3U+Q3oATt0mYWgHps6oQgiSOhenOpMAjMjHLzQ8KTVXF814sFhEx0zFVUURJZRAECKMIlmkKcfDGo0dDL9pxNp3QxQVRZ+6RlBuBDYmmpzVDEACkzwAj7pZlCR2C47q4c+OGcFWUmCxk5OAJRhKGiFx33+4uDALha7DIREv7lgZe2kcpGiykCqCp3LEb+ETdbckhAIqFAnbrdQQDphcoUs1EyEoI46zNM6tGMHUdumGIvHiVCbuGjlBQioZtC9e3UqmU1luPwUSpHer1Oq5fv47z589PzB9fYIDxc0OmJ6FSQYDs9T+YBBRCkGOmVo7rQtP1sZMjnobjIXKFEMR9iIO7wbIs+MyrwTCMPd0Cq8hRNA3lchk71Srq7NqWFhbS1ur99gKhFLbrApRC1/Wu6QLu+RGycYwtTZaJUPKNELdaBliKgXVzvHPzJs4+RgOxZwWSHDyhSJIEoW03dcnjqDHv+LxlIZfLdW2eVKvXxW6iVCikHfV6oF8jHSAN2VqWBc910bDtNETaIbTJS7pCpiFAZiIFITA0DTrLdbabuCkrORwoWpCB63lp61mgKaUi8sSA6CY3Dnz51VcoFAo4d/bsmI44HvAd35MUOQAmb6ZlGgY8XUfIWlWPS2fCScG+fgs8lTUC8bQsS1TiaBm/AV3XQXO5tNFUFIEQIuzTV9fXMV2piNSboesd/Tq4z0nMjtGPKFdnRmhRHMOgwzWh6nlPOGFvSTG4rouHGxsolkpSfzBhSHLwhCK27bTjXIeoQZgkWJie7jihxlGEXUYiCCFpRUIfxiXDTGT5XA5xHCMMAtTq9abqhyiOU0LQpj6aECJ2RNxopRsSJrobRngVBgFcxwEFUGzXYZFFX1Se+xwxknDv3j1sbm7ip+++C1VVm+yTHzeeyDJG9t6PszVxu3PkcjlEzPeAP3fDgEfWsiLXds9vJ4Fiv7BMEwRpyW2rnoAAojQ3Z1koFgpY39iAFwTYqlZTgmAYaRqFkXadNbbiO3PbcdKeEoSgwISOvaDpOojnpZ9n7no4Lu1KVvicESq2EoTbN29K/cGEIcnBE4jYdZGEYdsPXDZqkO8QBYjjWBCDXhUJWWQFj+2cBjuB78TrjQbCIEC1WoVhmqIeOgtVVaEbxt5ups9zJJnQ/6BphThJ0GDEwLKsnirrrLaDsgVgkDOGYYhvvvkGx48dw/zCwsTy6ByDHJ1Suhc5eILSCjxCNkmBJK/QsUwTLsthlwcUJ7amDiYN07JAWWlfr9SUrus4sryMza0t+L6PBqvsUZnRFw0ChEy/pKnqnguioqCYz/dt560qCqAoAHOJ1FjXxrG/c5noAdBMEBzXxfXLl/Hy669L/4MJ4QnaOkgAzM/A89pOklmtwUwHf/U4SbBbr6d5e1VFpVzujxiwDyI/bzLE5GfoOjwWPdja2hLCIV5+NVWpoFKpCCHjIJOJEEcqymB18ZTCbjSQJAk0XUdhQC8DQtImO8oAC9f333+PKIrw8iuvDHSuYTCoiE/cR0KeqMhBtlxu0ucwmbiPJgl8ZhveCSJlwEoRs8ZafZ93BNLDLcq9PkWUqqpibnY2JcG6joZtp/qaQiFdRBUFSZKg3mig1mig4TipedMAzwLXHRBCRDQw24StH/S8h4QAbfxJTLaxAFLb+FvXrg1wVolB8OTMDhJt/Qyy4FGDnGW1LTVKmB0yZfXUU5VKXx96HhYcJgQaxTFsx0krDGwbJmulzLs5lkollEolWJYFJdPhcdCpkmZsjweB7TgiJ1ssFIZbfLjPA1tQFT5ptTnWTrWKm7du4eKLLwrDnYnuMgc8Nk9vPElRgyZM8F4RropXFKHVcT1vX8onSwi4K+eo7yF/dgY9js4cSHuRmCxUVcX83BxyjARtMcOkXC6HUrGYpid4ySCrdqjV66gz4XI/Y9Q1DQRplRFH302m0H/6iL9nWVismoJSivX1dTy4d6+vY0kMBplWeIIQ23bHHvE8ahAnCRbbRA0oUnU8r1Mul8t9s/lBdzUUaQ7Ub6l3JooCyzAwVanAdhxEUYR6o4FyqQRN0/YqIIZYoLnqe5CUQrbLYl+eDgMg2+WSZtIwX3/9NabKZZw5fXps5+oxkMEiB0+oGHGSEYN259ENA1oYIgoCuK4rQvaTThkorPS3XxBCYOVy4jke5O/mZmdTq2XPw9bOjrA8juIYlmkiNzUFhRD4rCySCx/djBaok4OmpmkpgWK9TgTxIqRniqGdNXrH15K0AVaSKZvkwskGc0lduXULpXJZ6g/GjCdshnh2ETlOR50BANRqNSRJAqtN1IACqDcaQiBULhY7WgY3/2H7SbDT5BVGERq2LaIEURSJ8qdisYipSiXtZsjKBDVNAyhFrV5Pe8N3ID79gEcO+q1UiKIIjm2DAsjl89Am0B4ZgBBQKYqC+/fvY2t7G6++9tqBLHbDLGTxkyhGxOQrFfZOtFcua5mmILqe7w+VMhj49Nkx9AnLsgYmB+lpCGZnZtKyRgCr6+uo7u6CIG2yZrLKoGKhgEqpBNM0QRQFMaXwfR/1eh21eh2+7++7L6qqimeoVWjci8APeof5fEQyY1BVVcyDruvi+pUr0v9gzHiyZohnFHEXnQHAlPauiyiO22oNbNtOF19gb1Fm6Pgx7cDeuQ0vR0IpXM9DdXcXtVotnSjYDiSXy2FqagqlUgmGYTSNnxAixkIpRa3R6Dtv2g68c2I/kQOaJGjYdmp0ZBhtUzDjBqUUly9dwrEjRzA/N5dqFICm9MMkFp5BF9UnUYzYiol0rOTPNU3beieUQlUU8dwOErYfFYMKai3THPqzQwjB9NRUmgpDmpoEsK/lssL6GpRLJRQZmeadJh3XxS5rF50lAry0sp3xEiEkbYfeAorOm48uF5ESkRZCm7V4rlarUn8wZsi0wmNGHMdp2WKHCYMAontiu6iB47rCXrRYLMLoIT4UIcAeE1TIGtVk2TilNPWFN82+lM2EEBSLRdiNBoIoguO6CMMQhUJh4LB20m/kgBsdxTEUVU11BgeAO3fuoG7beOvHPxY/ayVLIn/K0j20R/i1JwZMKQBPaBljK3h53AiHoGgj1mTEANgjVdxkKGbtvftV7I+KQQySLMvC5tbWUOcJwxAOS5skSYKI6QusXA5WB5U/91HgviRBEAhL8yAMBanin+EwitBO5itcLzNo3Xz0i6xgOkuyc5YlnCjX19ZQqlRw9PjxIc4g0YoneIZ4NpA4TtcJPqGp3W8Ux5iemmr6nef7cFmnxgILE7Yiu0D1mnBpksB1XREl4MRAVRTk83nMTE+jWCz2PYHybm6lUkm4MoZRlB6btZ7uF6JVc49FrdXo6CB6ByRJgstXruDY0aOo9Mp7kj0nuGwFRDbc3HeEYVBiQPd8/p8od8Q26Pdd4yQgAbs+VlXQ0fWy5XlQCEm9BBRlqND90GAVMP3AsqyBIxsUabjddhxQSqGpKpaXllAsFKASgq2trZ5Wy4qiwGJW68VCARojDFEcw3XdtBW268Jn5KH9ZbZsRIaNnhEiNgZZkWLWuCmKY6zcvIlatTrcOSSaIMnBY0TkOKCdPqBsIXddV9QSZ93LfCZQBJDuArqEzgm6RwxoksCxbWzv7IhdN5CWDZXLZVSmptKSqgF2m4Lps//nTDMtq1SUtKqi0YDtun0vhNkSvE4QRkeUIl8oHFjo/M7KChzHwYUhW8ry94WnIQRpaCmBoy274EHBRV2KoozcJGvsaB1Py/959QDXWSQt/8/ej0EJocnKBeM4PtC8db8ljqZppum8Po8bx3GTZbplmiiwKoWZ6enUXTFJ8HBzs++qAU3TUGDlyDk2F1BCkCQJPM9DtVZLzZTaXSe7Vu5AOiyyf0kURbznTfoDz8O1y5dHbgwlIcnBY0Mcx0i65BH54uA4DmJKm4gBFwYC6cTRq3a/k4NZlhS4ngeK9IOWz+cxPTUlJpRB0alcUWO+C1kzk916vS/3QG6d3Ckc3mp0NK4W0r0gogbHjqFcKo3noNloAvYWEV5CKXoQ8EgDex1PVXQbK/DkpRSaFviMyDJm2oA405FUpAvGiKbowYSbMg0D3nyon4ZRAes4GscxFEVBsVAQXglA+vmenZ2FpmmI4xiPtrYGcqXk5Y/lUgmlYhGGaYJSmnY6dZzUCK1LVHCk966VBGae46zb5W6thvsrK6OcSQKSHDw2UJYOaAceYuYmLXEci1KrKIpSURGrEujZ0IctqNmFuh0pUJiTYoV5sg/bv6DpGtr9nPkNFAsFsVvb3d0Vu5z2l0DFwtd2xzui0dEouHX7NlzXxcUDbgRDgL3QauZnbUkg+xpnIgetvxf/BtzZtS7s2QU+W02RXdzb/b51rMhcy0Gkhsxs18YnLHrAu676XcgBt0J2XBcUqQ9BqQO51zUNczMzUAlBEATY2d0dauyaqqKYz6ebCFUFkgRRFHUkCTRJRtbYtM5L2fkgl8sJ/4O7d+6IlKvEcJDk4DEgjiLEHSagbO7ZY8SAK4njJEGt0QAo3esq2OtkPJXAyIbjOPtIQYmVIY5DjNWvkIynLFRVBUXaUrreaLSNIvDwMWkzOQBjMjoaAnEc4+qVK3j++ecn3vo5C0opBtF787uRsHvYmm4h2X8t0YjsOff9y7xXtOVf698iQyL6pR8HQQo4eFtwQlKr4oOyRwZ6GySZlgVQ2nGxC8JQLMYEqUivUCh0vX+GYWBmZgYq0mqn3VptqLHzFJVhGCiXSjB1PSUJzByt3mggZDbNXIM0TmSPmdUfBGEoqxdGhCQHjwFJh7LF1hpo13WRUCrEfLVaTZQR9kUM2PGSJIHDhIYu21lkScG4vMkHVZhrqooKc08E0g90lZVMZXOTfMfRjhgIoyNKUSoUDjRkfuvmTXi+j/Pnzx/YOYFmA6ZBwMPH/VSKtB5faXfOJ0230Ae6jdg0TSjMXrhbaHxS6CQStSwrLbdsiRxwkzHHcZAkCVRFQbFYhGmafZ0vn8uhUqlAUxTs1mqwHWfwMbPcf5wpby6XSjA0DZSRhEajgd1arclqeegnp53QtMX/gM8na6ur2NneHvZMzzwkOThgxGGIpM+wJfc2yOdyqNfraUvYjPthLyQsUrBTrcLrgxSMslfqqA7vAUIICrkcKhl/Bs/3Ua1W0+gGpYjZcVuv+cCMjtogiiJcvXoVJ0+c6J3aGTOGfZ+SDmmFJwHtnubWsrVxoNvxuPZAeQzRA6CzQZKqqjAMQ1RTxHEM27aFeJgQAsuyUCyVBhbhlkolUVq8tb0Nb8CUCn+WaMZASlEU5DMkIc6QBO5q2M4WuR/QdtHDlsoP0zCERfS1K1cO/H18WvDkzRJPOWLX3R81aFNJwFMKAOu50OJ+2A2CFOzupjlISlNSUChgempqnwHKqOAfvVFChpqmocJETqqigCL1cKjWavBZCiQ7KTwOo6Msbt68iTAM8cILLxzoeYEhTGSAJqX4k0gOOmHsqYUexzNNE4R1MXws0YMO4zNZJ0nXdUWonrCfl0sl0dp5GExVKrBMs+8Sx6bxZpxYW4WNPB1aKhRS/xVKEYWhIAnDtudut9S3pixyLNpS393FXSlOHAqHZ5Z4ChAHAZDxCOdoNwG6rpuG6rBnT1pucT9sBV9Qd3Z34Xie8FIvFQpppIDlVDuJDYdh2K0li6PC0HVUymXk8/lUIMZIQKPR2PNXf0xGRxxRGOLq1as4cfKkSPl0xRh3LkObyGQm4ieaHLTcq4PUHfDzWSy98DiiB8D+DoeUaYy4pwCQfk5KpZJYBEcBIWSvxDGOBypxBCDcC1v/hiKNVvF0Q6lUSjcmGZLgcBv2QdBlbPxO8OgFCMFdVmosMRie4Fni6UKSJIjbCIo6hRJdx4HreaLdcrFYFKU6raBI63u3d3ZS0xNOCnj6oM8c5KAYtsNiLxBCkDPNvZpqStPabSZarDvOgRsdZXH9+nUkcXzgWgNgeL3Bk9pT4aDRl6+AYQjtwaBmXWMBC5NTmvY4qNVqopJEZWQ4n8+P9b0UJY66PnCJI9cdtL4+SZKmuS1LEnROEqIItm2nTeXabJw6nLDjr7LpCk3TYDGPiJXbt6X3wYB4tmeKAwRljYf6QcCcD33fh5nLdXQ/BNKowu7uLhwWplNVVTRB4urrVnQqnxpmlzTJZZmrj4uVikiFuK6Lzc1NOK4LwzQPvEdAEAS4dv06Tp4+3dV4alIYdif7JOsNuoEbeB3oOVnlAm+VfNDn51bFjUYjFRCzEl6V6YWG8R7pB8OWOPI0Z5YcdGsKxnf1rSShUa/3Ha3pRPJa04+maUJTVTxcX8fW1pbUHwyAwzVTHFIkSYK41f6Uh+LbPOS7tRpcz4NpmsLEpBUUaQlftVZDFMeghIhIQSdSkEXbHegAO/CR+wIMAJUQ5HI5FAoFRGEo2lrzXZUfBGMN3XfD9evXkQA4d+5c33/TrgHNsBhajMjd5A4ZOWh1iRwZfT4npmGk7ZUpPTDfgziO4TgOavV6WqmUJICiwMrlJkYIWjFMiaOiKKIqCkif0biP+9xEEti99n1fiBa7odfRm/QHuRziKML66ipqQ5ZsPouQjZcOAEmbxauTlXEURahWq4iSBHPT020NfcIoSl3QmGugbhgo5vMD++VzC9JBKw0OkhiIcxKCOIpgWBYM04RpGAjDEFEcI7JtOCxXzHd8k4AfBLh+4wbOnDqVGtMcMPhubKgyRhY5GNXc6nFgElUL/ZzTNE24cQzf9/d1HR0XKKUIWXOj7IKoKApMy4LOupoSRRlKiDoM8rkc4koFu7Uadms1YZ3cCfzzxntaxAPOJ6qioFAoQA/DtIyZpRoMwxBlnKOApzO2Hz3C/OIi8vn8gTXYOsyQ5OAAQFudzSjt2OOgtruLKIqgKAoW5uaafp9QCsdxREkTYR8q0zBGqjkn6H9HKojEAeb5ubAp8H2YpinCkZRSeL4P3/eRJEmq5vY86LoOq8/OkYPg2tWrAICzZ88OeAHjW9iGvesicvCEN1x6koK+pq7DV1XEUYQgCPr2D+gHosthS9MiXddhmGaTvojStL30sOr+YVAqldLyQ9vG1vY2VFZ50A5ZcjDKGA1dh1Yqpd1b2T2Pogi5DpGTXqRRIUQ897qmIVQUVLe3YVkWZmZmhh7nswJJDiaM2PeRsFpkAGk6ocPujXc6o0mCSrnc9IEIwhAN2xa7B9M0kc/lRu6uJ3z6+1jAxlGyOAy4s6OqKE3togkhyFkWcqYpWkyHUYQwDBGGIVRVhWkYfaVZesHzPNy8eRNnz54deJEYhHx1wyjHENbJh9S4iLs7jn6w/uvreeWCE0XwxhQ9iNiiF4Thnv21osDQ9e5Rr8xCd1CYqlQQsc/V1s4OFufn2y7SWUEiN0MaFoqioJDPIwhDuKziyrZt6KxcuWMjsjagaP7smaaJRw8fojI9jSAIxmb+9rRCkoMJglcoZB/oTpNLGATwgwC+50EzDFGel1AK27YRBIHwKyjyuuExgRCS2vF2iQhMqjKhH7i+jziORVOofSBE9KCPWRjYD4I0h8vayhqmCVPXhTnKoLh27RoURRk8avAEINsz4UmPHLTFuHUHA8DQdXiahjiK4Pv+UCLUJEnSnTB7jjlUVRVkt9v1EUKgqSrCA+z5wM87Mz2NR5ubCMIQDzc3sbSwsG/x5yOngCifHvW8hq5DU1V4vo8gCBDyKIJl7UUEBzRSUlUVJAiwtbkJ0zQx1xKZlWiGJAcTBG3RGnQSIPKdMWXd5wghKBaLaVtm/nNKYVkW8vn8RCZK7qtP2xCEx0kMojiGz0pA+7l2TiByuVxKttiE7LP0A594RBe3Pu6l67q4dfMmXjh/fqhUxViiBiPoDbK56n6eHcr+Jk4SJHGc7t5YnbjPJmtVVVMb3HFpGPoQ0I5FdzDgMXh0ym40hPagn8WPmygFjKRmDiiev0FEhq3eBwcFXuL4aHMTYRTh0dYW5mdn9+4BpSKqwyM84wJRlJQMaFrqlsrmSV3XYVmWaCjX9YxsXPzZMQ0Dmw8fYmZ2Fp7nPZaKo8MCSQ4mhCRJkLRWKHSAw3oJ+EEATdNAkYaxgyBILY+ZkdEkRTRZh7F2H7bHQQwoMztKAGi6PpCzIw8JW6aJKAzhs4masvvsBwEIWI7XMLru3q5cvQpV03DmzJnxXNiQyO7QAtZTgveWiKIoFYQlCeI4TluCs+/5rjVhuWu+6Iuvmdfy71sRxzESSvHb3/626VkgigJVUaBoGlT+vaqm5EFRoKqq+Bn/v8J+pqqq+HsgFdpapokgDNP3zrJEpGNs5GAI215d06BqGiL2DHVaUOI4RsBSWklLzT63QNZ1faidNVEUEEYOD5ok8BLHh48eiRLH2elpACkZyEYLxqWLEK6LzACqWCikz3oQpELkKIJlWX3PCfz5UVQ1dYJ8+BAme8Yk2kOSgwmB+n7Tbq9TdULg+6mhD/ud7/tQVRU+W8jyuRxyuVyTZmGSYkBBENgE+jgqEzg830/FmWCd6Ya8bk3XRSvnKIoQhCGCMBQmN9xQiROQbG7ZcRzcvn0bL168OHw5WT/vGaVCN+F5HnzPgx8E4nvbcVLxJfs90JxT5aFnQsjeYqyq0FiZGUW6QOmaBt0woBDStEgrmUV8388UBbZt49PPPsMrr76KXC63n1QwMVrCSAonE0kcizbIraSE56h5gx6xoLIFnIAZ2VgWTMuCwfQjlmWJn1mmCdOyYJrmxMo0ee8CO1O5wBfDKKNxaVoYCYGmaWm6S9NGD7UzS/GDrFrIgpc4bm9twW40oDHPBX7NreWM4wABBJnl74Gu60KX5bouwjBEjkUReh6PEQTTNLH56BFm5ufhui5yB9ji/TBBkoMJIEkSJKxCQfgJtEsnxLFow6prGh41GrBdF/Nzc6LDWtOCNCFBUuuOjI+3SUh5wIhYzTcohZnLjW3XyIlCHnsTexCG6Q6bTfK246SLqK7j0qVLMHQdp06dGuqUvCOm2OWz73mVBScDHhNfZRd8LsC0TBOGaWJ6ampvYWSLpMkWR62LlsBxXfieB8M0u5akdcPOzg4AYG52FlNTU0MdoxuCMITdaIidos/vESdLvi/q7jlxAtBEJPi9EsShhUDwSNIwDboMXYenquL5UBUFURTtIwT8udHGQAiyIEifJW5g9jjMfLIljjvValMFAxe6TqKiQskQIu4QyVOGURShbtvI9RNFYM+JqijCGIl/jh7XPPckQ5KDCYC2phM6PHi8NbGiKHBsG4HvQyEEU1NT+z3T+WRwQA+xiHY8JjiOk3rK63raJa+1HHQM0DQNmqalJilsd8u9E8IoQq1ex8qdOzh79iw8zxOvbxdB4O1z67Ua6vU6arVa2mCm0UDAmuRwZBf8YrGIubm55h0x+17TNLEQ8IVhGAzSqvmxguXjS8UiUC7v+zVl+W0gJdZ+EMDj6ZUWMmE3Gtja2oLP3lN+fBrH0A0D5XIZJdboq1QqoVQuI5+N0DEklCKOIkRxjJjV3ydJgkKxmGoumBiWRwkm9ZnJEoJBKozGjWKpBM/3EcYxtqtVIVDsZKE8DhAAyBAEnjLkWoSERRGSJOnuP5J5bwzDwPbWFuYWFuA4zoF3Vj0MkORgzEiSZK8lc5fyK9/3EfKdB6XwWWphemoqbRiSxYSJwb4phtKm1qiU0tT6+YDIguf7YkIv5PMiujLJs6uqihxL4fAa9Js3bkDTNCwvLwudQsBC/a7rwnUcOLaNWqORhvpZUyTu+jY3P4+Tp07ByuXErpU3vxoII5bxNYV+DzMyegGiqul97SMkHMdxU3qmxgjc9vY27ty500SeiqUSisUiCvk8LPY85PJ5qIwIKJoGGkVQCEGhUBAEbtJQFKWJHCgYr/ivH3ByNjU1lc5fcSz0B0JzwFOpY74nPJqZjZioqopCPi8qGrjfSa9mVDz1Zug6Nh8+nKjQ+zBDkoMxg7JFTaj+2zxwCUsnRKzWWdF10CSBYVntJ7uD9hVoOR8hBJTtDCYNbvSUICUGTeHyA7oPCkmtmVdXVzEzPY2V27fTBYW1yk2HwiydczkszM+jWCyiMjWFcrm8Lwca9dtQpgNGveuCHDzBZYx9X+MQmhtVVVEoFFAoFDA1PY0jR46I38VxjEa9jt1aDbVaDTbrAPro4UOhRQF7r4ulEor5PAzTRJIkB7ugELKv6uQg0wuUUpH7VxQF09PT2Hz0CK7rwmbpKhHlohTqJCqqWvRQ/GecDPBNRZIkqQdMJzLM/t7QddR2dxHHMWzbRrFYHPuYDzMkORgzaKYWue3EwXwLfN9HHIbI5fPQDQOarsMLw8djzNFno5ODCGXatp3mnVV1n5J4EtNwo9HAzs4OGvU66o2GSAdwsdzW1hZK5TLK5TKOHDmCYqmEQqEAwzCQJAmiKGqarHjJpKIo0DMpCMJDrwcMSqlYVJ5oA6Q+ymVFue1Qh0/vQxRFCKMIcRQJ0SQAlNl7DKRkQtU0UOaTYdu2SBWtr63B8TxhXW7lcigVi3tpilIJ06z98TjRrpSRKAroiMSzF3hZa7aaCQAsy0KxVEK90UB1d7e5Mdwk54gO1SamaUJRVbiOgxhpyjafz7dPpfGoaJJAVRQ06vW0z8OYO10edkhyMEYkSZJ+WLso/F3XRaPRQBRFKLCmSjnLQrVaBShtFtUcsM4gPWXnnRmvuJhUmiFgpWKgFMV8vql0bxxIkgQ7OzvY3trC1tYWtra34TMtg2lZKBWLmJ2dxfPPP49r165hanoaP37rrZ67wziOEUWRWHgSptznqYiE+VQQknbWayrvY993gqh4GfJe81bNj4ucDIwR/Q64PoNXRcSsCiJmCxySpCkcTwCojMTx9yZ7nwrFIubn55vOYTca2KpW4ToOwiBAvV7Ho81N3L59W2hDKpUK5ubmMDMzg9nZ2fbmXQNAaVMJQDDZ6gVuatQJ5XI5JcNhiJ1qNXUOnfDmoVV/IH7OxKBKoQDHdZGwaEC+k/UyIAh8o15HsVRCo9EQBFFCkoOxgmYV1G0QhiF2dnYQhaHoMmiapijtArA/cnAQxICxcdrn+SaRZuBOkBTo3IVuwHvhB8EeEdjaws7OjmhrPTM9jZMnT2JmZgbTMzMwM6RsbX0druvizR/9qK9FmS8q3FY5juO0IRTbnXKrXEqpIBHNl9W+rFBV1X07tkHBJ/enJp/Kn9WMSRMvo+SllZ2eSgIAqgqDkzRGCAa9N7lcDqUoQiGfR6lYbHKdbDQa2NzcxPb2NtbX13Hjxg2ApK3HZ2dnMTs7i5mZGVQqlYHIGsloDrJQCEEygfRCNo3QCYqiYHpqCg8fPYLPhLy5A/ANIGCpzzbXzHUIDmt1bdt2+0ZLmb8PMq8tFAqH00V0ApDkYIyg3C+9g85g89EjRGEIXdcxlQk9hmGYNldp2bUcWMSAE4MBMO40g+O6wpd9nyCTn7PHMer1Ora2trC9vY3NzU00Gg0AQM6yMDM3h5eOHsXs7Gw6MXe5tzdv3sT01BRmh2zOIsgCI3pxZuHKGg1FcSzcL+Mowr4AMYvUcFU8V4Xz/xP2fbdFRojtnvQJjz9HLGdNuW8C/z7zNQzDrmI8fk9azZn4AjvqQqqoKkxdh8cEqtk6+WKxiGKxiBMnTgAAgiAQ5HRrexsPHjwATRKomiaiCrOzs5iZnobeJaXYLWJCSNp3YRyzRac0QicYpolyuYzdWg12oyEaok0aCoAY7ecE3p/BcV3EUQTHcUQpqwCbpxV2X33XhZXPo9FooFKpTHz8hwGSHIwJIqXQRigURRG2trYQMAfEuYWFpq5rIXOvE+z2oNMJdLhOi01phhEmhDAM4TO1f7FQ2PeBbzfZxHGMnWo1JQObm9ja3k5TEgAqU1OYX1jAhfPnMTs315FstEO90cD6+jp++MMfjnW3zRf21ogIZUZBURtDIXAToV4HbyEP/HtCCHzPQxTH0BgZ4QI7nr+fVBtiYC8dlH0+kpbFn2sBPN+H67pQVVWIPnsdnxs5aS2mT90snccVgjeYkyPvt9DpPhqGgeXlZSwvLwPIpLa2t7G5tYVbN2/i8pUrAKWYqlQww8gCT0Xw4/YiB8qY0gvDlCKWy+X0/fM81Ot1lA6iLJAv7Hy8rV4tLFrTsZKBv1/s73zPg5XPi7LGoQ3PniLIOzAmUN9vu8CGvo/dWg2e60LVNMzNzTURAyC1jaVZcgA8MTqDftAkEhtQi0ApRcNxQJGKilrvDUcQBKjXatjd3RUpAh5tmZmZwalTpzA7N5fuwEb4YN+4eROmaeLYsWNDH2MQEELS8HYb0hBHEUKmYRG5dPaV7+4oIxE8DNwafXBcV6Q3WtMZmUE0LW5ZR09OJnhvBYc9x00EgC3+/PthaGLMiIIgLlmSoyhQAPE9gPH2dRgCXKPAbc+71tdnoCiKWPx5E68G82TY3t7Go0ePcOvWLYCktfxzc3OYnZ2F4zjNPRpa0C3U3gvZaMGwmJ6aQq1WQ8hMiWYPQFidvWbKnrvWJne8csjzPFHJUMjomfjz1qjVMLe4iDAMUa/XMc3soZ9lSHIwJvASxuzD6XkeXNuG67rQNA2Vqam27X7DKEKCtLRm0vbIbTEG/YAoM1LVlCD0CcfzEMcxFEL2ibZ2qlWsra3h7t27qNZqIJQin89jbnYWx597Ls3dlstjU+EHUYSV27dx9uzZxx6G56ShV/khJw1Z8pDdlSusckLVtL28det73RJqb/ck8IWpnWai63Ug85nIpElEhIMt8noYQmP9B0o9Ssp6CeUOCqZhIGLmWf2Sg3bgqYjnn38eQEqEt7e3RTriu+++S7UVlOLjTz7B0SNHsLS01KRPGsb7gGLv+Rk1gqTrOkqlEqrVKuqNBkqsomfSUAhBTPcaP7W7epPZXXPH1YZto9ASTYxYBQuQisaLxeJEe9kcBkhyMAYkcSxSChye48Bl7m2ariOfz6PYQbEchWHqc3DQZYwTyA0KNXEfqYYoiuC5LkAp8mxBePjoEVZXV7G2ugrbdWHoOqZnZnD02DEsLy9jaoJq4jsrK0iSBCeHtEoeN/p5d3gFRCdwXUOpVGoKlWZz7zS728/+LPM9T9nkLAsFnvrJpCfA/8/D4Jnx9QOaJAgPoKJinE+8bhhQWdomZFqiccAwDCwtLWFpaQlRFOHTTz/FxsYGFELgOA4++/xzKIRgbm4Oy8vLOHLkiEhB9ON9wCM8nEiMK7WUZ2F5CmC7WsXC3NyBVMj0k1LRWfMm23GQxDHqrJKBj09RFNSrVcwtLcF1XdTrdcwMqTl6WiDJwRhAg6BpYuQd86IogqJpMHQ99bRv8yHkYjUgZd8HHjUAJkMSeugReDohjCLUdndx6+ZNrK2vIwxD5HM5LLFJb3Z2VvQGaBd1GRcSSnHj5k0cO3Zs7Irroc1qRnxfsgt86wIwqN6AE1d9wO6YA6OfaplRDo/xEQRCCAzTRMx6P4x7p+l5Hj766CPYto2jR49ip1rFBx98ANd1sba2hrXVVXzz7bf45ptvUKlUcOTIESwvL6eRlw73cZJRFwKgUiqhYduI4xi79TqmD0Lcx9NRhHQlCbwvg+04oEnahrxYKKSfA0qxs7OD4ydPil4nQRA8Ht+ZJwSSHIwBWeOjiKljufDKYL3HOwlceKWCQsjBimAOQFEMtNcjuK6LO3fv4sH9+9hm/g5TU1M4c+YMlpeXUalU9uXAJz3mjY0N2I0G3njjjbEfe1j1NsVoC2GSIWaHwuNgAAy7yI/7CTIMAy6LHsRxPLZ01O7uLj766CMoioL3338fN27eFFqaXC6HU6dO4dSpUwjDEBsbG1hdXcW169dx6fJl5CwrFUEeOYK52VnxWUro6JUa3UCQVnKUy2XU6nU0Gg3kDqAtskhp9kF6eCVDg/XIcFxX9NRImFtmLpeD4zio1+uYnZ2d6NifZEhyMCISJiYkhCCJItFZLo5jGLoOTVW77kR5WZb2OFIK2VzwhCeNeq2G1dVV3F9dxfb2NhIAU+UyXrx4EcePH+/a+ER8+Cc2wlSIODU9PXT5YjcMEzkYR6tsETVg+f0nGfzu9DvKx9WZsBWKonQsaxwWDx8+xO9+9zsUi0W8/fbbsCwLURS17Sap6zqOHTuGY8eOIUkSbD56hLX1ddy/fx83bt6EpqppimJ5GQuLiyOJdfuFZVlpkyrXxU61ikXWnGmS4Gmufp4J7oZYr9XS1Kbvp1UMALYePcKZF16A4zipi+0YCd9hgyQHI4JHDZIkScNp7OHkUYBcodA1VBoxcpA7KHJwQGWSNEmwvb0t9AMN24bKJqqjR4+iWC6jkM+jXCr1PhgnBxNaDGr1OjbW1ycSNRgW47hSbqz1tEUNAEyc0A4CwzRFh8hR2/+urKzg66+/xuLSEn705ptiYQqDoOfCrigKFhYXsbC4iFdeegmbW1t4sLaGtbU1rNy9C1VRsDA/j2WWfhj7jj5z3eVKBT5rgc6bM00ahBCQJNnXG6YdVEVBLpeD67rwgyBtxGQYqFWroJTCMAwEQSDEic8iJDkYEQlTuDq2jThJ0oYjhCBmAkOtB+vk3QcnmsfthTFNsjRJsL6xgbXVVayurSHwfZimieXlZbz86qtYWFhAEseo1WpIKEUhnxfiqK5ObFy/MKFc6c2bN2FaFo5OqnxxiPtLhiwJzCI5TCmFYUrwejw37V4/CfA23jSKBiprbMV3332H69ev49SpU3j11VebfhdFUX9RCfbcJACmZ2ZQmZ7GxYsX4dg21tbWsLq6iq+++gpfffUVZqansby8jOPHjyM/Bm+CrN25qqqYqlSwubWVdi81zZEtpPsag6r2NU9wXxluc+56XupDoqrY3tpCoVgUHVglOZAYGEkYAqyXOF/kTZav4l37uoLStIyx1eNgUugwOY46ZbqOg5WVFaysrMB1XZRKJTz//PM4cuQIZqanm3YUjUYjtUjO6DCyZjntJnsuGJrE1B5EEVZWVnD23LmuPQ5GwhC73LFEDg5DwyWGgR06kaZLBrmvk7wLo5Q1JkmCzz//HA8ePMArr7yC06dP73tNGIYodajUaVt1wj0q2O/yhQJOnzmD02fOIPB9bKyv48HaGq5cuYLvL13C0uIiTpw8iaXl5dGfF3ZOi/UrqTcaqNZq6WZpwmkNAmYp3eu5YL/n9vVRFAmB4tajR5idm8Pu7i6CIEhTOs+gKdKzd8VjBA0CBL4P3/NAkdYre54HgNXW9viQUSCtraV0okr89GTjXVppkmDj4UPcvn0b62trUBQFzz33HE6cPImpqam2fxMGgSBRWR1GKyFoJQnC0WwCO787rFnOqZMnx37sUTBKsyUOQQ4OQ+SAYZArHlSUOEmNwrBljUEQ4JNPPkG1WsWPf/xj4aTYinYLVGtJ4j4QApX5AGRhmCaOP/88jj//POIowr3793H79m188vHHsPJ5nDxxAidOnBhcP9HmeS2XSqlLIUsvzE9Y4Ef6IAatv81ZVmoyxQSK2NqC67owTRM+c+4s9ZP+fMogycGQoFGE0HXhui4oIOqMoygCISTN5/VY0IIgAEU6eR8W0YvneSJKYNs2pioVvPrqqzh+/HhbwVQWDiNRlmW1NfdptYoV7nsZtfU4kVCKG7du4fjx45NVVA+4yI+DGAB76u0nXYzYhAHGOnDFwgR1CsOUNTYaDXz88ceIogg/+9nPOpJqII0cCM0BTx3040aqKCBx3PE+qZqGE4wMVKtVrNy6hWvXruHylStYXlrCyZMnsbC4OFA0IXsuwpozPXr0CL7vo9FoTDRMn3VJ7EQGW3/Oo7w2Iwie7+P+ygqeO3VKkgOJwRE6DmzbRkIpLMOAaZqo1+sA0qhBV2tX9nDylMLEQ1ajToiU4uHGBm7fvo1VFiU4duwYfvTmm6nNaB8Thx8EiMJQWJr2QtbxTMlYpI4T6xsbaDQaeHPCQkTyGFIKwOGMHAwCMuBiP2mKNEhZ49bWFj755BOYpon33nuvZz4+DEMoqtrcdbLPBVtRFNG6uxumpqbwg9dfx0svv4z79+7h9soKPvzwQxQKBUEgupLoDhE+wzBQLpWwW6+n6QXLgjHp9EIHnZKwHG8Bb/hm2zaiKML6+jqWjh4VG75xmlwdFkhyMATiIECjWkXMFvZcPo8wDJujBt3APtQh0ywYk9y19jN5drBs9j0Pd+7cwcrt22jYNkrlMl555RUcP368awe5dscXERbmdd4vREMhQtIGRGPc/d28eRPT09MTd0J7XJr6wyRIHLSUcahzTLi6IVvW6AdBx4Zf9+/fxxdffIGZmRn8+Mc/7rno8BbgGmvhPTD6dE7k0HQdJ06dwomTJ1Hd2cGt27dx5coVXL58GUeWl3Hy5EnMLyzsN9YCOn42i8UiXNYEqbqzg7nZ2Yk8l9z4ixACQikSND9T3Z4vVVWRy+fhOg78IMCtGzdw4vTp1AbfdSU5kOgOSinqW1uIoih13GJuZEJrYJrNUYMui1nEeiocRO1xV2Q/5JTi0eYmVm7dwv3VVRAAx44dww/ffHOfuLBfeEGAOIqgKMpQ4XvRBIjV/tOW8Q4DXr745ptvDvX3g2DQsP44PA54V0fgcJCDYd/HgfwOFAXo0rxoHOBljT6vnW95769du4bvv/8ezz33HF5//fWOzwbve0ApRcB0Or3Sdt3AexAMBEIwNTOD12dm8Morr+Du3bu4vbKC33z4IYqFAk6eOIHnn38eJv9Md3nOiaJgZmoKG5ubaXMj20ZlAqF67nfAx6O0RA96pSZ1TUNiWfB9H1ubm5hdWICu63BdF+UJWrc/iZDkYEA4tRoi3wchBIViEYSQ5qjBAMJCnlefmN6gj8mAvyLwfdy5excrt26ljVNKJbz00kt4/rnnBosStBmD57qglCI/ZA14tkQq+39geKJw88YNGKaJI0ePDjyeQTHIjlXYTY8qRjxEBkhZDDrWgXQHB+CLoGkaNF0HDcOmskZKKb7++musrKzgwoULOH/+/L6x8Q6DSYYcEqReKABG27kOGD1ohabrOHX6NE6dOoXt7W3cunUL31+6hO8vXcLRI0dw8tQpsVHqdJ81XUelXE6bMzEnwkmkF7LPhNhMZCo6esE0DCRJgjAMcW9lBafOnkXMKlGeJTtlSQ4GQJIk8Go1IUDki7rnugDaRA36ON6o7ZI7os9JYHt7G9evX8f9Bw9AKcWxo0fxg9dfx9zs7FjG5bEcrKqqQ1dkEEUR+cNWS+G2RKHHAuuHIVbu3MG5F16YXPniCHgmxYgHsHAf1J0wDQNRFImyRt486eHDh/jhD3+I5557DgATz7HQN6VUaFNax8krfEbVJg0VPWgFIZiZncXM7CxeffVV3L17F7du3cK93/wGxUIBR44cwXPPPYdO8cFioZA2pQsC1Go1zE0gpdd6hU2ljX1eP3/fHNvGzs4Opqen4bquJAcS7dGoVoEkEW5aQPrBjeK4t9agy2L1OCbwnWoVly9dwur6OnKWhYsXLuD5EyfG+vDTJIHreQClyDH/8mGQrWJI2P1v+7q9P+hKFO6srCChFCdPnBhqPINiIKOeMZ0zPmRixEFFdgIDaFAOSvuh6zpURUEURajVavjss8/gOA7effddzM3NiZRB1ruj21XzFtmjpBXSk4wWPWiFbhipd8Lp09jc3MSNmzdx/cYN3F5Zwflz53Dy1Km2UdFypQLv0SO4rpu6So65jLtdNKlfUaY4BosCu56HjdVVVCoVeJ6Hcrl8eAj3iJDkoE/EcYzAtgGkjU/4JNYUNej00HTKK07KpKbLh79Wr+Py5cu4f/8+isUifvTmm1haWhoo4tEvXM9DkiTQNG1k0sEbOPU7sXUiCkmS4OatWzh+7NjEG8IMhXG5VXK9wSGZyMT7OkRa4UkDIQSGYaC6u4tvfv97EEXBe++/j2KhMFRHRB45GIc2SVGU1FtlnM8FIZibn0exWMTuyZO4e+cOvv3+e1y/fh3nz5/HiRMnmuYXwzDSygDXRa1eHzs56EQYB733uq6nFtBBgJ2dHczOziIIgsl70jwhkOSgT9R3d4EkgaaqgsH3HTUA0ge2n7rkCcF2HFy+fBl379yBlcvh9ddfx3PPPQeFEEQTEGklSZKaQ40YNeDgpY1DWRHvHQSPHj1Co9HAG2++OTY/gXGiNW0yLA5rX4Vhrn1gv4MJg1KKne1tfPnFFzBzObzz9tsdKxf6QRRFoBg9rcChKMrYPUOAVOdimiZefvllXLhwAZcvXcJXX3+Na9ev48KFCzh+/Lj4vJVLJTiuiyAIRGfEsaHDtfXlnNgCyzDgOA52d3YwNTUlzJGeBUhy0AeiKIJn29CRRg34BNZX1CCLFrtX0TVvnAtUSxjddV1cuXIFKysr0E0TL7/6Kk6cOAGttaJizHA9T3g4jCNVwXfAo05p9+/fR7lUatsIZiLvxwAYR5VC9lgAJhIRmgTEeIf428feoTEjJqSU4vbt2/j973+P+fl5vPDCCyNHb6IoAsH4hMtkQhsVUUKoKCgUCnjjzTfxwvnzuHTpEj7//HNcvXoVFy5cwLFjx6DpurBW5tGDSRJZkVIYsBRa03WomgaX+drouv5EbiomAUkO+kCtVoNC0/4HmqYhoVREDXqW52Xz3S0Ppcg3jvtDQQi8IMC1K1dw89YtqKqKCy++iNOnTrVtBDXunVecJPB5hcK4mq30cD3rBxGzij137lyHUzR/4LlD48hRjz5fN+73ADh8kYOhFqwJOh+2A21D8Pn5v/32W9y4cQNnzpzBCy+8ANt1EYThSCmskLdrHteCxLxDxh094NVX2VGWSiW89dZbqO7s4PvLl/HZp5/i6rVrePHCBcwtLMBxHIRxDMdxJuacKCqAMET0gFJYpgnbcbC7u4tcLgefdd982iHJQQ8EQQDPtmGx8Dh/rPqOGmR/14EkjI2Dspro69ev4/qNGwCAc+fO4ezZs93zlWOeXF3HSf0bDGNsxiH8Ho8yoa2trSGOIhw/fry/c6YnbvrZJHcN4+jEyCE0B4eEHIxqgjTJ96UtGWhBHMf44osvmpsnMfOviDX2GTYtEEXR2L1QBnWX7AeUeWu0e+ampqfxk3fewdbWFr6/dAkfffwxZmZmcOLkSWiahlqjgXw+P57nNXttlCJOkubnahARK7seXdPgseiB67qSHEhkogaGAZWx7TAIRNSga/6ph8hqnF3zojjG9evXcePaNURxjDNnzuDs2bMwD7j0JopjBL4PUDrWPKKY+Edo23z3/n1Mz86iMEJ7WuHbDhZxGWMqYpzEYGJi10lhhPtIgP46NPazIGQIGo8c9UIQBPj444+xu7vb3DyJEOiGgYQ1HhqWHIQj/G1HMIOgcUYPkh7zHQDMzs7iZ+++i41Hj3D50iV8+cUXmJqawtKRIyjk86iMwWgoGwnNekZwDHLd/Hk0TRO1eh12sYharYapqamnPrUgyUEXuK6LwPNgUgqLLXQUaHZD7Ddq0PpzHuoa0ecgjuPU3vTyZURRhBMnT+L8uXMDMdtxphV41MAwzbFOaApGG6fn+1hfXcUrP/jBWMYjTGo6VaK0LHb95MXHtftNMvnVwxI5GHUXO+izse+9GDJq06jX8dHHHyOOIvzspz/FVIuWxdA0+KwbKR3SBGxSLYO5xfBYPvuZ+9nzGgnB4sICFufnsba+ju+++w5Xr1zB6toafvDyyyPbmYsW1mjzPmOIOYR9jizTxM7WFvL5PFzXHV/K9AmFJAcdQClFvV6HGkWwcjmorJRuXFGDLIaZMJIkwcqdO7hy+TJcz8Nzzz2HixcuDLdbH1OIMWJlP+OOGgBIxZwYPq1w/8EDUEJw7AAcEYH97ylB89h7takeBY9bWDkMhvY54H+G9pM+v6+Ups6Dw5QSdsLW1hY+/vhjWJaFn37wQdsWx5qmQVUUhHGcpgeGSLOFQTAZX/8x+h5kj9F3tIoQLC8vY3lpCd9fuYK7d+7g13/7tzi6vIwLFy+iPKS9MvdDaddgCWDEXlE6/n4f2LUZhoFGtYpGvY6dnR1JDp5VOI6DKAhgECK8wweKGgDdJzpKh26Ms7u7i88/+wy7u7s4duwYzl+8iNIIofJxwWHNlSzTHLsltMJsgPv+QLfg3t27WFxcfHwOZ2wi3ge2c0syoqlRF/WYlTE+ie6PHTHCAiVEcNldcEYcJ3aSYyQG9+/dwxdffonZ2Vn8+K23OhsUEQJd01KflCE7+03S139c2gMRvh9SUHr65ElUymVsPHqE1dVVrP71X+OFF17A+fPnB54facvXtqcEmmyVe42PaynyuRwePXqEYqmEpaWlyVnfPwGQ5KADbNuGFsfI53Lgj+bAUYNuGDJacPXqVVy5cgXFUgnvf/ABprv0gO8X49hfhix0CqDtDmpU8N3IIC5nHA3bxtbWFt44gCZLA4P5N2Tfg2xZH22NQGRd9XqlNA4ROWi9puwnKLvAt/s7HjVozS+33p1xpc6uXr2KS5cu9WyexGEYBnzfRxSGSCgdWAdiOw4WlpZGGXJnEAKVjG6rLCoVhiS2lmXBsiwsLCzg6NGj2Hz4EFeuXcPa2hreeOMNVCqV/seC/gyP+o6aZMo+c5aFWqOBWrWKarWK2dnZvsd12CDJQRtEUZRGDZipB5A+cO4gvgY9fs8niX7DybXdXXz++eeo7u42M+rHWd+dgeN5adTAsqBMgE1zhj7M7u/evXtQVRVHuFDsMaDne9wh5bDvr7gZFNC2LwfhoXNKBTnYJ6zL7JgmkXpoGhf7nnT4OX+92N3T/W12e+0AxfcTLmmklOKrr77CnTt32jdP6gBVVaGqqiiBHkQkHMcxfN8ff5ouizFoDyirCBjleSqVSvB8H4Hv4+Tp0zhy5Ai++OIL/PJXv8L5F15IPSP6ILz9zhEE2PestX9h5vNICHKmiXqjAdu2JTl41uD7PhSaGvjwxyKMovFFDQDRRIirhjshSRJcu3YNly9fRqlYxPvvv49pLnp6QoiBHwSIwjD94EyoxEchBOC5RAzmHXD37l0cPXr08YYAJyBGbPt6do/4jhBoX5KZ/X+n3VN2Z0VZk7CmhRztF3Ee4s+coCncj5bvaQsxGnZ56SZKHPWTEoUhfvfpp3j06BHeeOONvsthOXRdRxTHA5MDviGZaH6bCe6Gicpx8MjBKNUxpmEgl8vBdRzUajUszM3hg/ffx5UrV3D5yhWsrq72jCJQDLaBUPrVHmSIp65paLCSxqcZhyfueIAIggCE0qY8YhAEANIQYc8KhQE+IEqnXDTSaMGvf/1rXPr+e5w7exbv//zne8SAn+txg9Vyi6jBhELZ2WjEIKKynZ0d1Or1gSfzsaPLezVKOLbt8QaMChD2DLb+a/od64zZ9Hetx2nzs0Exyt9PSoDpui7+5m//Fjs7O3j33XeHepb4vBGy1EK/cNgCNIlUXRO6zEP9gKd0Rn0PysViep+YrTJRFFy4eBHvv/cekiTBL3/1K1y5cqXtHEApTfU2E54XDcNAFMewbVukUp9GSHLQAkopfN8HSRLRa5xXKQCA0U1QlBGV9XMegTbK9StXruAXv/wl4jjG+x98gIsvvrhfYDamyMG+nd4A8IIAcRRBmWDUgINf/yDk4N69e7BME/Pz85MaVl/oOl2NOQIk/DMOi+bgCa6uqFar+PWvfpV+Dt97D3Nzc0MdR1EUaKoKRVHEXNIPXMcBxQGQA4zoiTGGyAGQRliKhQIUQlCr18WzPDU9jQ9+/nOcO3sWly5fxq9//Wvs7u7unR7Yb3bUBwgG1+aoqgpNUdCo1+E4zoBnPDw4JLPHwSGKIiRRBJUQqIwchGGYNj5RVfGzthggatBaqcDzpbVaTUQLzp49iw9aowUc404pDPOhphQes0keR3OlXlAGJAcJpbh37x6OHTv22Beeg0wAHbZSxlH6KjRhzNe7vr6O3/zt3yKXz+O9995DccjSOg4ePQgGIAeO40xMx7MPI0QPkjE+c8ViESrrHulkQvdKJooQxzF+9atf4crVq6JEdZQz9/x8tqS+VF2HY9tPNTmQmoMWCL2BrouHLQhDUEqhdcsVDmNmlMkzU0px7fp1fPf99ygWCqm2oJMZyBOiNQjCEHEcQ1HVA+lUpihKKiLqkxw8fPgQrufh+HPPTXZgI2KcTYOymoBDEzngGHFhGWd05tatW/jmm2+wvLyMN954Yyx6FZ3NKVGSIE6SvkpNHdedeEQui2F9D8ZZIaOqatr+uVZDvV5PK8Yyx+VRhCtXruD777/H3Xv3Ui3CsL4I6EN70DK/G7oOx3HgOM5ErbsfJyQ5aAFPKeiZKoUoozfoiAEfjuxuqVav44vPP8fOzg7Onj2LC+fPd5+MJqDK7ibm6gTh+dBLhzEmDBo5uH/vHkrF4ljKPSeJcU4uWQvbw0IOxhY5QJfFrd/7Sym+/e470Tzp5ZdeGltEghACXdeRBAHCIIDax6LvOs5kKxVaMOxzyJsbjWsWKBSLsFlTpnqjsc9WWVEUXLx4EYtLS/j8s8/wq1/+EucvXMC5s2eHSm30rFxoOaahaWgkCeq1GoIgeCrbOB+O2eOAQClFEARQAWFWwlMKKiGdF+xhmDbbPayuruIXf/3XCIMA7733Hl5+6aW0c2KnYw6gaxgIA36goihCxCIq1gF9MFRmhNQPOYiiCPcfPMCxxy1EZOh0d8fdapjvfg7lPmYMi/AoO9c4jvG7Tz/FzZs38eqrr+Lll18ee6rCMAwQRUHQp5DNcZwDd+IbZnHl1VfjIqQKISiVSiCUot5oIIqifa9JkgRTlQp+/vOf4/Tp07j0/ff49a9/jXqtNtw5Bxi7qqpQVFWQg6cRkhxkEAQBaBxDIUSE/Pgbr4/ZWa9h2/jiyy9x5+5dLCws4N2f/nTPU7xT7u8JSScAaYSF91A4kHwoAMJIUz8lV2tra4jC8PFXKfTAOBTeWQzruvk4cRBPdS8S5vs+fvOb3+DhxgZ+/NZbOHXq1ETGoWsaFKQLW7sFrxWO6yJ3wORgGL+IfpouDYpCPg9d16EQgnq93nw+VloLpM/6iy++iJ+99x6iKMJf//VfY2VlZeDzDeJ3wAWmjXpdRFCfNhyeGeQA4Ps+lCQRUYMEELvjruRgUMcz28bnn38OgpR0bKyv4//+3/+Lv/n1r3H1yhVUd3fb1/JPMHQ/yJFpkojOiwcVNQDS6A1IfxbKd+/fx9TsLIpPgK10N4x7YRSRg17kIDP5txsD1y4k7Gscx8LrIPt3/YyfP8vtSh+bxvyYnu9GvY6/+Zu/ges4+OnPfoalSZplkbRTo9JH9MAPAsTMpfVAMWhKij8TE8i9V8plEKQmayEjU1ldTRYz09P44IMP8NyJE/jyq69w6fLlgSNzXT83mWNxcuC6LmzbHmvPjicFUnOQARcjipRCEKShMuZw1hYDChF3trfx0ccfQ1VVvPzSS1A0DUuLi1hfX8fGxoawZrVyubRz2dIS5ufnx97PfR8G2C34QYCEmURNpCFMB/AIRcIWrU7hT8/3sba+jldefvnAxjYsOtoC9zHR8n4M2ddlTaJ6Tow9CAKwt6gSXolDyL7X9vPUtJs6acvX7Pck8/9BlhuunWn9m05j3NzcxCeffIJcLoef/vSnB1IyaGgaAt/v2anRZUr4g44cAGyRZD06ekHs4nsYug0Dbqvseh5qtRpmZma6LsSqquK1H/wAhXwe333/PRzbxuuvvz6eSFrLXK9pGgghqO3uIgiCgTrhHgZIcsCQJAlC34dJaVMJI9BDiDgA1tfW8Lvf/Q6VqSn8+K23sPHwIYIggGEYOHnyJE6ePIk4jrG1tYWN9XWsb2zgzp07ACGYnp7G8vIylpaW0lzcWEY0BCiF53kHqjXgIGxHw0uXOqUz7j94ACTJgXVg7BuENPm0t/O3aPd9x8O1OYYoKTtEaYV2pLQdYWiHVjIgDKX6sAO+f+8ePv/iC8zPz+OtH/2oc/OkMUPTtNSRMIq6dmo8MAOkDui3cmHcJl6t4LbKnufBc92+5uOz587ByuXw5RdfwPM8vPXWW31tZAgAqijp57QVLXb1qqJAVRTs7u7C931JDp5WxHGc7sJUFSohIqUAdDE+GiBqcPvWLXz91VdYPnoUb7zxhjBEASGIo0hEJlRVxcLCAhYWFvAy0hTE+sYGVldXcen77/Hdd98hn8thcXERi0tLWJifn0iv904Q5YuKAuMxKHQVtqNJkgToQA7u3b2LxaWlJ0ZBLBYvPuFkwrCtzYI4hlaNcwOkQ1RaNYovQ7voQ+v/Ka+Dz0Q9rly+jMuXLuH5Eyfw2muvHWwpGqtaiJOka6dG13FACHlsz7FC+mvINI6+Ct1gGgYsw4DNQvg9yQEjh8ePH4dlWfjdJ5/gb3/zG/zk7bdh9UG0FLSPdDURezBRoqLArtdFJ9SnCZIcZKBkFnueUsg2TRkKlOLSpUu4cuUKTp0+jVdeeUVM3Fx9H8UxOj3uhUIBp0+exKmTJxFHER5tbmJ9YwPr6+u4vbICRVEwNzeHJUYWSsXicOPsE77vA0iFiI+jtpf08Dp43B0YKdqnBCiwL3UzaMi8H4zTjOagIFIJ4xpzy33mFtCcJHz19de4u7KCCxcv4vwLL4gdYdZzZNLQdb1np0ZRqfCEv5dRHIu5ctzgn6dCsQjbdeH6PkpR1H1DlHn/5ufn8bOf/Qwfffwxfv3rX+Odd99FuR8/hE7Rg6aXpNG5p1WQKMlBB4gqhRGiBjRJ0oqEO3fwyssv48yZM00TIA+L92Kd/FFXNQ1LS0tYWlwEffllNGw7TT+sr+O777/HN99+i0KxiMXFRSwtLmJubi4ti+wDCtjC0uWa4jhOSROlyD2m3UwvC+V79+5BVRQsT6rFLUMnEgB0XuSG8ZIYFIfOOhnj9Tngx9kXSaBpR8RPfvc7bG1t4c0339wrc2XnbyIF7L2lJNMIqo9URb/QNK1np0bX8x6L3kCAp/F6LJL89/2YOg0Cmjm2YRgwdB1+FMH1vIE2QeVKBe+99x4++vBD/M2vf4233367pw122+hBy+eaf8biOIbjOHvVZk8JJDnIQEkSQFGQAIiZMrZjCKsHMYjYRLT56BF+9KMf4fixY/teo7K0Qj8lTa3nJgBKxSJKZ87gzJkziKIIDx89wsb6OtYePMCtmzehKArmFxYEoSj0mGiIonTdNXm+D4qDLV9shdLF64Ai7cB45OjRsaRaRMh6QBLQEa2RgwnsUA+lO+KYy+DaHcVxHHz00UdwPQ/v/uQnvXsk8BREO0JAWjpHDkkaenVqdBwHhcdcbUOAnhuhhKVkx/nMZYkBRz6fR7C7C9txupKDdu9FLpfDz957D5988gl++9vf4s033sDRNnNy63Fa3+fsfeAaKABoDOmt8CRDkgMGSmmaVkBLSkFR2n/wu3xgPNfFRx99BNu28e6773aciFRNS/N6XSIHHRcQvtCwr5qm4cjyMo4sL4MCqNVqWN/YwMb6Or75/e/xe0pRKhaxuLSEpeVlzM7Oipa+/YCXLz4OIWIW3VwSq9Uq6vV6al4zIPhC0O49nVSIfuxljNkSryc8FJ3FRNIKGexsb+O3H34ITdPwwRh6JHQjA4SFo/t5bw3DgMeqFtqlFhzHGbrR09iQEQG3BfMd4VVdo4KXx7YrV87n86jV64iTBJ7nDSwA1HUd7/7kJ/j8iy/wu88+w8uui7Nnz3Z8vdIiyGyXBhTkoNEYaCyHAZIccGQexqCXXXIXYlCv1fDhhx8CAN57//2u+S3eKyDqRA64G2KnSbOFIIgfI60PrpTLeOHsWQRRhIcbG1jf2MC9+/dx48YNaJqGhfl5LC4tYXFpCXlWUtWJjPhBkPrBq+qBli+2gos425GDu3fvwjRNLCws9HWspDUiMOEFNSuIAzB2U6vsBH4oBYljPCZ/ltfW1vDpp5+iWCzi7bffnri4j2ZEp9mKkXafK14rnyQJwhYL3oSmTc0ea1qBoZspUvZzOHJagZGuTnOQoijI5XKwbRs2a0g1KIii4M033kA+l8O3334Lx3XxyssvtyembebVfWNihKguycFTDPaQU0pFmJ8vgu3Ciu2wubmJjz/6CLl8Hj95552eJUiaqqbiug7kQIjYuiFbFtfhQ2VoGo4dPYpjR4+CAtjd3cU60yp8/dVXoEjzcosLC5hfWMDszMy+UjiPmx495nIdlYnHEjaRZEvYVldXceTIkbYf9Ha+6Y9btDf2hi0ZMeLjvrZBMKkukjdv3MDvv/kGR44cweuvvz4RwVxHtBJtTuJbPqe6riOMIoRR1EQOPM8DBQ7eAKkdWBql3ezCo57j0Bv0UxlRLBTgOA4830fUTpjYj18LIXjxpZeQz+fx+2++gee6/TXXavN88uirY9s9x37YIMkBA2HkIIwi6Ews1PGBb7ObX33wAJ9+9hnmZmf7rqlVVTUtZRyXu1YfHwwCYKpSwVSlgvMvvAA/DPGQpR/u3LmDK1euQNd1LCwupuWSi4tQVRVxFIEoymMvDyQscgCmPOfvUa1WQ9228QoTIrbehSdtqZxEJze+iztMxKAJYxo3TRJ88803uH79Os6ePYuXXnrp8TvY8WvLlLFCUdLUguftSy1wA6SD7qvQCaRD10I+d42SUqBISUY/z62u66kwMQxhO86+hkyDiH5PnjoFy7Lw2Wef4be//S3eeeedpnmbAKA95lROKHzfF541TwskOeBgD3kUhtA1rXtKoQXb29v49LPPcGR5GT98442+WbSiqiCECFvQXueZBExdx/Fjx3D82DFQAJvcgGl9HV9+8QUAoFQuo1KpYHl5GVOVymNdfIQRUpKkRkhME7K2vg6FEMzNzR2IV/9Q6MORcBQcxkoFYLyRgyiK8Plnn2F1dRU/ePVVnDp9+kBKEwcGW3T486woCqIogmkYoJTCdhxQPD4DpFYQtF94kxEiB1l9wSDvfaFQgF+tiqqFUZ735SNH8NOf/hQffvghPvv8c/z4xz9uSskphHQtYxfOoQB2q1XM95nSPAyQ5IAjSZBQKqoUOvZSaHmIPdfFJx9/jOnp6YGIAQAREqOUph+QbI5ywOE3jW/IyZAAmJ6ZwfT0NM5fuADf97G2toa79+7h/r17uHPnDkzDSEWNS0tYWFg40EhC1qKVItVqcDfLjfV1zM/Pi/8/kcg+O5OsVDhskYMxiSg9z8PHH3+Meq2Gt99+e2+ifsLvh6ZpCOMYURQJw7VGowHTMPbmiMc5QCBNLbTRJCVJklYqDBg5oNiz/x4UlmVBZUJuz/NGjq5Mz8zgR2++iY8++QSXL13Ciy++2DTO5oE3R40pUmKUUCrJwdMI/oBzYaCmaX0p+eM4xicffwxFUfDWW28NzJ5VRRETeRT//9n70xg5sjU7EDzXdl/DY/OIIGPhElySTDKTmUkmmZWZzHyqBtTAtICSBKEHI2h+CChhGpA0rVKVBOmHRgJUgy4JKEFQT6GAgiCgJXT/6HkaVAElQa/qvcyqVyQzk/uWXINkcHOPPcI32+/8sHstzD18MXc39wiScQCCZIS7mbn5tXvP/b7znc+BzN/f7cLRxSIUnAC4uC+VSkEURdiW5WkV8nk8f/4chBAMZjJeqeTEBAZ6EFXg10IB36FMFEUQ5tQIeDbXi4uLHVUp9BNckBgmXNkJ3kjrZEQjSORCYJdSfHn+PDKZDFxmztPKzGa7IUsSDMOoiiCur60hnU5XVZ8E9TXbAUJItUsgr1Roo4yRX3vYNEI9CIKAeDyOQrGIcqUSSeolOz6O48eP4/bt2xhIp30PjC3Pap1r5tGF0lsmStwlB4DfYIT3UmhqfAT4u/NrV69ibWMDX331Vcflfdzxz3acxgLIblCb62z18uD5KYXByhdjsRiUgQEMj4zg+Pvvo1KpIM+aRT14+BB3f/wRmqZ5OoVsFtmxsY7zbz4hqL1m9lnEGvOoxYUFOJRirMfGR1HA9/2n9W2Tu8GbaJ0MBEoZO3z/4sICLn33HeKxGD777LNNhT+/1z0gYlGCN/ChjgPHcSCKItY3NjAeHM/B8slAJURfP1VNWaOvlWI9Bloh6F3Q7SYiHo+jWCrBsCyYlrVpcd/F93xodhbra2u4cvUqkqkUMpmMf61NU1Pss5TeMlHiLjkAANeF47pwbBuCIGxNKQQHBhsIDx8+xPz8PM6cOYPMwEDHp5a4KJHvGlqVL/YYwbMapumJ/kRxy0Ifi8Wwb/9+7Nu/H67jYHllxessyYSNhBAMDw/7bo3pEFGFRvXNtRBZlQcnB7lcDqlEAskeW0dHhXr10lHgTbROBrrTHMw/fYqr165hdHQUZ2qEwJzohhlT2wpCIEkSHNeFZduglKJYKiFdI7YLvp7WzEn9iioEyxq5+VErlX83KYRGkGUZmqqiousolctQ2Bzc1RkIwalTp1AoFnHx4kV8/fXX0DStpciR6zEqrFHW24JdcgCAOg7guhAI2VTlBga8v/Ngk1c+n8etW7dw5OhRTLZw2WqFoAWnj15M7h2kGrgjotqifFEQRYyOjmJ0dBQnTpxAqVRCnvkq3Lt3D3fu3EGMNYviWgVJkjYd6NqcNLgxleu6cB0HuVwOe3ZaB8ZG6OEu1t+VvUFpheB33w45oJTi3r17+PHHH7FvZganPvwQpHaR4qI/7ICcfQvIsgzTsmBbFsqsUmEg7KYjGFUgpHHjoCgQKGt0mJCwUUqBCw7dLlIIzRBPJLxOjboON5WKRIgrShLOnj2Lb37xC3x36RI+/+ILv6qsnqeMw1JXhImk/X4YbwF2yQHgRQ44A2aq4S09CdiAKBaL+P677zAxMYFj773X9alFSQJh5wT6NIk1WaD4I2yziYoQUtfatRkSiQQOHDiAAwcOwHUcr1kUS0E8efIEhDWLGmPWzqlksi1CRATB96VfXV1FuVLB+NhYW9e4XSBA5028WoELEt8gclAvKtfyLY6DK1evYv75cxw/dgyHjxypb2/NXx/BZfYaPLVg2TbW19YASpHqxMmRUo8YsFLJXtwD3q3Rr1SoEzmgzIsE6F0kK6ZpECUJlm2jXKkgmUhE8jljsRjOnj2LP/vzP8f169fx0UcfbVYtBCuOAp443H+lWCjskoO3Ba7rAizXJ8kyKDztQZWGgA0Iy7Jw4eJFaJqGTz75JJJBL7IH2GGiyL6h2Q6WED9qoClKV4sNEQRkx8Ywms3ihOuiWC57WoVcDnfu3sXtW7cQTyQwPj6OsbExr+IghPJZFATYhOBVLgdREDA8PNzxNb4teFPTChxhrtsyTVz67jusLC/jzJkzzSN3wQl9h98TQRAgCQJcQcDa2hoSiUR3pk1cbxH4P8FmxU9XIASEiRFdSrfoDZyIUwjNEI/FfGFiMsI+FINDQzj14Ye4cvUqMpkMDh486P0iMG9y22iuxaCAJ0p8QzYqrfDOkwOuZHZsG6IogrJyxtq8MAXw/Q8/wNB1fP3115FZCIui6D1oXFndTzQSK7I+CqC041LFKlFhQMiZTCSQPHgQBw8ehOM4frOoXC7nNYsSRYyOjHhkYXy8YeMZSRRhWhby+TyyY2M7u4QxCEJ68j0HTX7eJEFiO5UKpWIRFy5ehKnr+PzzzzEcou+AQAicN+R+8JLG9Y0NpLvQMdUFJwrMW6Hb3Hyw+Zkgil7EgpC+6zsSiQQKxSJs24YRsQnR9MwM1tfXcePmTaRSKYyOjlbdN64T86PMb1nFwhsyo/YQTFTjOM5mxz9KYdk2FL7gUIrbt28jn8vhVz7/PFLhG08rOLa9fTucGpLAowayLLfd3ZDySShY8tQAoihiYnzca69MKQqFAnJMq3Dz1i3QGzeQ5C2oJyYwMjLiRzFESYJt21hdXcWpU6fa/MDbB757i7xSIRA1eJMiB2EbRa2urODixYuQJAnnv/469DP45twJQJJlwDRRLBaxf9++3pwkKGbsQsjIy7+5GK+f0YIgRFFETNNQrlRQLpUidyh8/8QJbGxs4Pvvv8dXX32FeGCzYrNNpCSKsNnm7m2yUX7nyQFllQqAFwJXZBmGYcC2LJ8cPJufx8MHD3Dy5EmMRWxyIXKXRMfZ/tAnY/6GrsOltKUQkcMXFrK/+bHaPXcqnUYqncahQ4dgWRaWFheRy+Xw8tUrPH78GKIoYnRsDOPZLEZGR7GyvAyXUoy9SWG8HoW5e9G8qB/wyxib3I9XL1/i8g8/YCCTwdmzZ0OPS3bg7i6wj5BEEY5lwTQMJPpReRNIO/D7H3Z5dxj5py0cBPuBZDLpkQNdR7Jev4UuQAjBmTNn8Itf/AIXLl7EV+fPe2JqSmG7LqjrQlJV3yPHNM23xkb5nScHXG8AeAu1LEkwdN03JFlZW8PlK1cwMzOzmXeKEDxf59j2FpfE7YDtOF4ekRAoTIPRaHr1SUGIKEG7kGUZE3v2YGLPHoBSrBcKyL9+7TWLunED1HUhSBJkWUahUICmqpG0jO01KHqjCXgTKxWA5mWMlFI8fvwYN2/exOTevfj444/fnPRRJyAEZVYO129RW200oeFyz17nC/F2APlSFAWKLMO0bd9SOUrIioJz587hm2++wQ8//ICzZ8/6n59bXwOb97BUKEB5CzRQb/GTFhLM3wDwmLvEtASubcNxXVy5cgWDAwM4depUTyZ1SZIgEM8SWDdNxLa566FpmgAhkFV1czcRmMD9SaRG7NRTEOK3oD585Ags00R+YQHfff89qOvil7/8JRTeLIpVQGg7xJO+X2jlFUBZyWgwuhMsJa1XVsp/TilFRdcBeA1mdPZvwsPSgb/5v/lVVKU56qU8GkSaqOvi1s2beDQ3hyOHD+PY8eNvVLqkU5TLZYjNerv0GjXRBF/AyMeM64ISz7qYYOdUxsTjcViFAsrlcuTkAPD6y3xy+jQuXriAly9f+noX7lMTRKFQwOAuOXizUWubzEP8kizDtm08ffYMa6urOP/115G0JG0EWVGgWxZ0w9gZ5IDSqvLFoKufLzjaxolaVhQk4nE4joMPP/wQsVgMa6urXrOoa9cAeDXi4+PjGB8bw+DQ0I6ZxLq5b5R6nShr/3ZdFxVW7y1J0qZtMOq4THYI7h5qmqZPDroBX+htNu5lZllOBAGu4+D6jRtYWFjABydP4sCBAx0TgzeNUBSLRSSTSU+gvM2RRE4oCdhcycgfAH+MRRnC7wbxeBwbhQJs9iz0Yh6dmJjA+Pg47ty9i3Nnz4JSCklVNyOr7FnjPhVvOnbGN7tdYKSAaw546ZDEDEnu37uHPXv3YnhwsHfXwBbicrkMQ9eBqFXKbcCyLN/YhKcU+E6Cd06rUjpvY4lYLp+HLEkYyGSgyDLGx8f9ZlH5fN7zVJibw/3796HIsmfrPD6OsWy2vZx11Kij5q636Dssn+kGftZsobdZpEsM1Jc3QtVun/87GAWo/R3g29PKsuztaoMRB2xGIRCINlRFl+p8ZsATsrlM92NaFkxdx41bt1CpVHDyxAkMj4xgfWMDgLdLJawfCTcsC/7Nf19zoqb3YqehsLGBVCIBQRA8UfR2RhCC3yUDF9TyngqSKO4IHwlBEBCPxVAslVAul3u2yXr//ffxJz/7GV68eoWJiQnPb4U90/w+lN+SioV3mxywXRdf+Hh0QJYkvH71CqVyGZ+dO9dTVzsKQGEhfNM0e3KOsDAty3NEZMQgWIYY3IFVKZy3iSDkcjlks1mvVC3gLqmqKqanpzE9PQ3Xdb2IQj6PXC6H55cvAwCGBgc9p8axMQwODvZ8d0mZYYzturBME5ZlhV7068FfEFl1DY+KCKKIuKZ5lq/B7ysQzu/0s/JogaZpHeXDg2Mp+Jl1XYdAPPtgy7Jw+do1gFKcPn0ayUTCu0fsGK7remnAFufi9yRIcrhx1o6OJFCKjY0NjM7Oev1WLKu/5ICTAfbvRr+3bNtLHbH7bPfIAbEdEEL8fgu6rntGdj2IagwMDGDP5CSezs1hz5491Wkzds8Mw4j8vNuBd5scYNO2WBQEf5GjAJ48eYLx8XHE+6AaVhk5sEzTb7yyHTBN09sNyLIXIWhRsxycEPq5ezAMAyvLy/jwo48AwN/F1E5QgiBgaHgYQ8PDOHbsGHRd9zwV8nk8ZM2iVFX1+z9ks1koXbSgDpIAx3G8fztOlQcBDxfX3q/gZBtc9Ov9rB64W10n5af9QLDvffBbEkQRkiShUCzi+rVrSMTjOPfZZ4gFNCM8neXyv4P/ZkSDEy3+ev5cu9xDhP2ORxhEUfT/3imkoVgqwXEcZDIZEEI80Vs/yDe7N2GrDvi9FSQJRBQhotpnY7vAo1qGZaFULmOgUW+KDsHnmIOzs3idy+Hl8+c4GnDJjTqVt93YebNIP+G6m3qDwIQ69/gxLMvC/v37YRrGZpe3iMGHkCgI3s7JtqEbBhLbYL9p2bY/GXVi8LSlXrqHk1o+lwMFMDE+7qm72aLcSsmuaRpm9u3DzL59cB0HK6uryL1+jVw+j/n5eRBCMDQ05PeAaNSCOgwJqAVhoXApsBCFWfTDYrvLyToGpXj1+jUe3LuHbDaL02fObBl/hBAQUUSrO7SFRDC/Etu24bC0i8u/O6c6/rATSEOhUAAFkMlkYLOW5Lbj9I7stUkKOLiAW5YkP03GTZG2i2TxTxCPxWCaJoweRGEF9hk1VcX4+DgePnqEgwcPQgyMV05U3wa82+QAm4yXl8GZpon79+9j//79iKkqDMOAoqq9ESQGHkpFUVAxDBh9Jgc8hOgbHylKVQi6XRbsk4QeThL5hQUMZjLQNM3rHMlEpe2UuQmiiJGREYyMjOD9EydQLpc9rUIuh/v37+Pu3bvQVBXZbBaj2awnaiQkFAkQBcHbEbMFhi82voAwKOyMCP443inCyxCglOL+gweYm5vD1NQUPvn4464EeFtIBKWQJclP4YDlyl1G6hz2Xe4U0rC2tgZFlhGLxVBhEY+ehMdZeqCTxZz3E3Ap9a+L8NQejw5tB1Fl59Q0DVhfh2WaPbl3Omthf2h2Fq9evsSDhw9x7NixLa/bzghwVHjnyQFnwfyLvP/gAVxKcfS99zxDEstCJWLfbh+BB0lRFIhAJErwMOCkwGVqZItXKQRb3nZADvz38vPUlEJ1G02grotXuRwO7t8PwFNL27Zd3dWyA8TjcczMzGDv3r0wTRNLi4tYWFzE4tISns7PQyAEA5kMhoeGMDwygkQiAUkU65KAhtfO/m5aR94puDbkDSEHLmue9Pz5c8zOzuLI4cM9u/aguJIv7lXRiVrSwLp9NiUNguB/75IkVaUlO0WhUEAqlQKBN64NtsBFAb/qICgu7OB6/ZRCQKPFSxqrNEq8u22fwOcp/t1SFj2IkhzYtg3LskBdFwPpNGZnZ/H48WMcYHMRAN8XhjpOVWffNxHvNDkI5iYlUUSlUsHjx49xeHYWmqrCkWVYjIUastx2d8IWJ6/6r6ooEESx56LEqp4H8AZycHGVA5+RixK72SUFa9yDHgn8Z+1iZXUVlmFgbHwcwCapczqYiHjY1rYsX+3Pkc5kkM5kcOjwYRi6jtWVFSwtL+Ppkyd4/PgxEvG4Vyo5Po6R0dFQkxAnBb2IqbxJDomWaeLipUtYXVnByZMnq2yxowQNjL2m6IQ0uC5M1wVYiSdhKSNRkjy/lDr1762wvr6OEV4/L0n+s9lxSWNN2iAKQsrJSu14r91I0EBUotc5+Npzq4oCy7Iij8LyVIUsyxBFEYcPH/Yqoh48wAFukMc2Q7brvvGL65t+/V3BZg+2wMKE9378EaIo4tChQwA8LYAai0GvVKDrOhQm1IsCtCb8pqiqn9Pqhf1mM7EMr1KQaz4fz4VH9XDXJQreRYWeSHO5HFRFwWAmA6DaYbIVeJiW56HrpQcEpv+QJcnbETLyMc7IiGPbWFxa8oWNc0+eQCAEI6OjGGdahWSDVrs0wkm69rhB45qdjFKxiAsXLsA0DHz++edQVHUzJB01goSpk3B3E9Jgc2LJiDVl+gburEqATaLA/m72GR3XRaFQ8BcZPg5d14VlWeGFsnXKD6ME7yFQm8JrpM3hv2tYAdEDqJqGUqnkpRxdNxLiaTENiOu6UGMxzyhOknD4yBHcvXsXe/bsqTZee1M1QAG80+SALyiCIKBQLOLJ06c4ceKE75IIAJqqwjQMOI4DwzSrWzl3g5rBIxACWZZhMMYbFTmojRTUA69SqHvOHuUQG1Y6tCAKuVwOY+Pjmw2YApGD2onAYSTAJwN1PgcPC3My0GoiESXJjxicpF4XthzrKnn79m3cvHULyUTC91UYHRnxJ9Lg2buNyARR1ZFxB6cVVpeXceHiRciKgq++/hqJZBIb6+sAek9qIk3lsNJLSZIAVfUjDLZtw3YcOGys2Vzky0rbgkRBlKSqz8zFiAMBYinJsj92W5GDehUwUYPrDWhAb8DBq23qzTN1HVYjvq4gVKabopTCtKyu52zKNFkupX4Le37OgwcO4PHjx5ibm8Ox48c3/Tu6THPuBLzT5MAOpBRu3bqFmKZh/4EDVa8hhEDTNL9+VlGUnrXElRUFgq5DNwykGuw+20GtXW49cGFW0Oim3whLFCqVClbX1jA7O+v/jCv+HRZxAeBPyvXIgBTczYUgA62uO5lKYTaVwuyhQ7BtG4sLC8jl83j1+jUez81BEASMZbMYGxvD6Ogo4olEdW10BOCfcie3an754gWuXL6MTCaDs+fO+YtdT9MhNfn1noW3AxEGvgw5zJadEwaXVUYFtQuSIHjRBUnC+toaQClSARM0WZKgw6sk2kKaA892v/aoNpsniCDUFWgTQfBy7Q3gOy5GPE5rhZWEECiqClfXYRhG1+TANE0vTRLYQHEyJIoi3jt6FDdv3cL0zIyfxtglB284eOSgWCzi+fPnXmOXOoNeUVVIug7bcWDoelUNdido9DCrigIB3Zto+JNGiMnQYCkFSZbr5jW5iKlf4epmRCGfzwN0swujy3ZrhmGgrOte+LXG9pk30+JkoJefQ5Ikv1kUpZ6hTT6XQ35hATdu3IDtOEin0z5RGBoejqQKZidYWjcCpRSPHj7Erdu3MTU5iY8//tivDAqmQ3ZyxKMTiIIAUVH88cjHKk9tOa4L23VhM+Hc4vIyYrEYHNv2xH4BkSsnFlKd+9ZP8BbFcgN9DQkx3wR1CFGkLBsRbU1Voet61yWNruvCYBUKsTrmYpRSTM/M4MGjR3gyN4cs69r7NngdvNPkwGZOX69fvYKmaZienvZ+UcPSCYBYPI5CoeBFD7otbWwwcBRVBREETwPQgQiJD0hegRAGFhv4DaMGEe9y20EtUcjn8xjIZOBSikKx6CmHA2VqrutCluUqvcB2XvvAwAAGBgZw+MgRmIax6dT4/Dnu378PURSRZY2ixsbGOiadQYOfnQTqurhx4wbmnjyp3zwp+Bz04NqrbH+3+d4IglBFXHmInnswFNbXkUgmYbByZiII3iLM8vWWaULY5r4rvhixgQqfO1KGWRarIjk9SF1GVdLIyYXANAZB+H4lhGBmehr3HzyAbZqQYjHflOxNxjtLDrjhDyEES0tLGB0drRLM1UKWZciyDKuHpY2KLEMUBBBK2+7QGBQhhZ0GuVqfAE0rMfpdllQLl1KYhoGFxUWMZrMolUr+7wRBQCIe97QDstyTjmxRQFIU7N27F3v37gWlFKurq3jNDJiuXbsGSikGBgY8A6aJCQwNDobeTfvf+w7afdu2je+//x75fB6nTp3C/kC5F0evF++qEPYO28kRpjGSZRmu62J9fR2zhw75ZmguT0lYFnTThClJfgpiO0BZxQZF82ZLPMXX7rE7jSI0ekcUJY2O48BiPiqJOsQ9KPIeHBwEKMXKygr27N37VhghvdvkAF7YaHVtDft5KUoTxGIxWJYF0zRhq2pnD2qLB0BW1bY6NIYRHDaC2SKlwFHVbKlPcJhK2zRNWLYNg3UdHEinPQEhKy3ljU8sFrLl+cft3iluQc1CmBkcxMDAAI4ePQrTNLGwsIBcLoenT5/iwYMHkBUFY9kssszaWWsyFtw2SWGvoVcquHDhAoqlEj47d84vO61FqzbT3WBLbpvtVHfcuACwurYGy7YxOjqKWCwGjUUVeE09KIWu616qQRAgMVLRz8gY30RwU6iG6OB6glGEtrUhTV7bbUmjXiMkrT0XCcy9mqZB1TQsLS3tkoM3HZwcrK2tAYCfK2oEAo+NqooCwzRRqVQ6Eg3WljDWQpVllAkJ1aGxVee7VvCrFEIIEfsxsTqsMZHBfAeCKBQKAKWYmpzc0vhHYCFYi+VzFUXZIsTcaYtCMPyqKAomJycxOTnpRxXyLAVx9coVAMDg4KBfATGYyVRN0DspcrCxtoYLFy8CAL768kukWclpPfS0/LLmmHxh2wnxgyChJ4RgeWkJoiB4u09URxVisRgogLKue5bQxGvQZpqm9zpJgqQoVbbcvUAjf4NadFw2yuC6LgRRDB2pbEYkeEmj2UFJI0/3uK6LeIt0HyfnQ4ODWFhc9H62Sw7eXPBBtby8jEQy2XIA8LC9pmn+blbvRAnb4qFRNc3THbQQ0nTSzS8IXnoVtkqBCEJPQrO268IyDJi87CsASZKgyDJkRcHz58+RTCYbdgSUJMmvO1cUZXOSYqi6V4T0fZcd9rvi/R2GhobwHmtBnWOixsdzc7h37x4URfF1Ctls1p9It1tzsJDP49J33yGZSGxpnlQPvYwc1EWPynJboZYMbF6O9++l5WVkMpm63x8hxGvMRilkTYMoCLAtCxYrKTSZiysBa7rFGm9FfU8b+RvUg0BIx70+eMO3MBGEVvoGXtLoUM+DIqyJHWWRGgqPuDcjFUQQQJlfzvDwMF6+eAG9UtmtVnjTQeCRg1ZRA/5aEAJBFKHFYqhUKqiUy57QKMISQL6wcdONWjvebtIIQVim6ecPhQYCoyCiLAVzXBemYcBgnzEISZKgMkIQFH2uLC1heHi44TElWQYMo6HdbO1k2W+yQNFZ2F9VVczMzGBmZgau6/rNovILC36zqPTAAIaGhrB3zx6/w2e/8fTpU1y7dg1jY2M4ffp0qOZd/SYHPS1nDKAVGah97fLSEqZnZhoeTxRFQBDg2ja0RAKyLEOjnrurZVmwWQtwThQAr6JAVpSOmqhtuUbeoI7ShmLEIKL4Nvnmp1kUodU3GSxp1HU9FDmglKJcqfgiZ19E2oBYBi2ph4aHQQEsLi7uViu8yaCUwjAMlEoljI6OhnoPH/SapsFlpkjlYhFCOh3qoQkzXERB8ISPtg1d15EICB+7jRYEYTClfz/7xdss2mIyYgLA95FX2ERWrwrEdhysra9jkleT1AEPd9rMra7VgtOQLHDFdYQLF/e133L+2tr1FhAEASPDwxgZHsb78Hwf8vk8Xrx4gWfPnmFubg4xTfPTD9lstufeFZRS3L1zB/cfPMD+/fvx4QcfhE5v9MvjgCPS87Dvrsr1MgQZqEWpVIJhGM2JryiCoLp2ngSMmKimbSEK3K2RV0koLXRFzWDbNgTAa2oV4hhc8xNFmWK3Quh2Sxp1XffTCYl4PFQ0jl9jTFWRTqWwuLS0Gzl4k0GZshQARoORgyYTdjCMFYvHvYfQslAsFpFKpVqXN4Z8WBRFQYWZISUSicj7hDuuC5uFIsMuHoQQuGh/gqWUeq6PzCeCQ5IkqKwOvNUDuLa6Csd1MdJkAhWZGRJvktOoFrsRaifyWl/42skuCtJAuqzzjsVi2LdvHwaHhjwnPdPE0tIScrkcnj17BkEQMDQ05Kcg0ul0pLt013Fw5coVPH/xAifefx+zhw61dfxtSSt0CE7wuMcAqdlJ1qaxwmJ5eRmUUgwPDTV8TdAFtF6Jc5AoIBaDzVT2Fsu162znrLDnrd1ugTyl0M4zFXWUpp4vQpjjt1PSqBsGLMvydQZV96kBSQlGDoggYDSbxevXr3c1B28yKKVYW1lBOp2uDjc1ecCDYkJCCBLxOIrFImzHQalUQjKZjCTvqygKREI88w0AiNga1WIsWmRdBcNCaOOBd5h5iMFsRwHvQVIUBVqblR4rKysQBaGlAFRmXvS2bbdNDhqh0U6QMhIZjDLUvqbqtT0EpdQTtI2OYnx8HO+//z5KpZLXgjqfx48//ojbt28jFo9jjPkqZLPZrsriTMPApUuXsLa6ik/PnMHeycmOrhvoETnosCwu+H3WRqAoEHkKanl5Gal0umn4nxACMTi2W0T7JFGEFItB0zRf4Os6ji9k5JG6sNoEbn4UJjoavOYowclGu6QjbEmjaVkwDQOu60LTtK2va5BWoECV5md0dBSPHz/2HC/fcLyz5MC1baysrWHPxETo99QKYIggIJFIoFAswrZtlEslJJg97ha0MaBVZobEW7ZG4aIXhJ9SaFdMGULQZbEyTJ77BFgDK0WBqmkdkafllRUMDQ+H6nuACNvcNkM90lDVACnw736QA3Yh/s8SiQQOHDiAAwcOwHEcP6KQX1jA06dPvRTFyIjnqzA+jmQyGXpCLxWL+IsLF2CZJj7/4gsMNYnotLhw7+9edGRskFbwF3xKfbIf1INUPd99iGgsLy83TSlwSKIIm3jd/sIminjOXVFV2LYN0zD8Xg02c2JUVLVpyoF3oQTQVsSBoLVgsBPwZ0xo49itShptlsJ1WZq1bjS1wTNMAPAYAREEjI6MgAB4/uIFPvjoo5BXuDPxzpKD1dVVGLrut0jtFIIoIplMorCx4amGK5W6A7BVCWMQvDsiDwlG2XbUpRQ28zdQOgi91/sElFIYpunl6wLhNFmSoGoalC7U02EEW8HzAegLOaiH2rr6qgWn3mLFVN0k8Jp271NV06UG7xVF0dMhMNvpYqnkEYVcDnfu3MGtW7eQYM2ixsfHMTo62nAhWF9bw+3bt6EoCr766iskujCdilRzwBZ7QqnXhCgYfkb1QuX/rpeahxAwTBMbGxt+F9hmEJlbYpjuo/XA0w6u43i7ZGbu46ccZNlzfq353rm/AU/btYNemaf5C3LIOVVlvXHqlTQ6joNyueylTUSxbvVZs/FBKfU3AgIhIJKEzOAgXrx40ean2nl4Z8nBixcvQIC2dz31xG6iKCKRSKDIxEUCIVvLuEISA/4qLRaDadsolUqRkgMuBuSd4dpCzWewHcdPHQQFhoqqeqmDNnOb9VAql6HreqjviZvCuKzpTdufr0cgYOSwFnSrT0VtFYX//sDfQRIRXGDDEotkIoHZgwcxe/AgHMfBwuKi14I6l8Pc3BwEUcToyIjffTIoir127RqGhoZw9uzZ9iNPNeDppqbRpMCiD6BqnAXFgCQQBYAgAEHxXs3fOwUrTG8QZmxLoggB4QW3jSCIIjRRhKqq3m7aNDcJg2X5Xi4S26BwMtJJCqpX97u2C2mryJzKdE12TUmj67ooVyr+wt7QaKwJCXFd198I8O8km83i5atXffGG6SV2xuy5DXj56hWGM5m2Sn2aTcCyoiBOKcrlMiq6DoE9ZO2Ch83i8TjKxaJXVkNpZDXsFi916qRKgamQeZTACuxiREGAxkKYUdbbrywvgwJNBVubl+cJs1xmorRTyEHHodWaBbEeiXBZBQsRhKqUBniUJ5hyqCOuFEQR48yF8YMPPkChUEAun8dCPo9bt27hxo0bSCaTPlEZHRnBuc8+26JV8Ssy6oTqt7gTsgWfV99Q1JCiRot+8Hz8XKizCDVZLPpVzhgGy8vLUDWtoXdHEIIggIgiiOvCcd2uiTchxBco2o7jpRxYaXG5UoGg65AVxXdR7eRZ6tXCKAqCTyy5ULGZALBeSSMvWaSu6/XOicU6ul6f4AaiEaOjo3g8N4d8Po/xBu6gbwJ2xuy5DVhbXcX+0dH22W0TFqmqqp8KKJdKXrMOWQ61OFBsslDAK8ERRBHUcaDrekuTprDgPSU6EewZhoFypVIVtld46qBHJXMrKytIJpOhSy4lSYLFTGK629dGiDZLFts7dEDUxwkDPycCC2etyjsQeQheWYK1oD40OwvLtrGQy+HO3btYWVmBSykWFhdx6dIljI+NYWxiwo+QCYHj+eepPXdwkad0U6hae28aLfph0eRe7zRyMDw8HPpzSqIIhzn3RRGVCx5XisdBXReGZcFiIuJKpYJSuQxRkqqiR+2g1cLdCWpTtC6r4GiWwlBZSSN3ha1woyJKm5Ys+pG6RtfCyEVwDA9mMqCUYmFhYZccvImgHU7YrUQ2sVgMruvCNE2vgiFEiSMFY6BBkZsgVKUWoiAHjuv6D2o7YULLslAul/3GKwReHk9VVUg9tuwNK9jiCPod7AS0GmdVO+xOwL5PEowU1Crs619Y3dfU6iSePnuGb0p/huvqTWi2hv/7xN+EWbFw/cYN0Bs3kE6lMD4xgbGxMQwPDTWtpd+y+2fagHqeD1XPGQ2UD4bATln8m8F2HKysrODY8eOh3yOK4qbuoMuUTj0QFv1TFQU2K9EmAOC6KJZK0HjpcRvPfNSU2A2M9yBauSrGNA3r6+swTXNzLuNeBk0+T6tP6rKxKdYIlN/cZMIm3llywCekTr7EVrmkeDzulx0Vi0Ukk8mGBKE2YlB7nFKxiFK5jOEIUgu8JClswxbbtr1IAa88IAQxTYPWJ+Mk27axur6OmX37Qr+H76hcx6nrMLmjUGcSaaScbxR9cGonw4giFLx50svSK1wmV+FSBzrR8RfmJfyLL/9fsEzT1yo8Y82iJEnCWDaLMear0KxZFFDdMKpWtNlI+Mr1G0EdQUPNxg7G2toaHNdti/iKdcyQegFCCGRFgaQo0AJznc5KIRVGILYjnx5MKdSiWamjKIqQJQlmpYJSqQRFURCr9TKoB0Fo6HEAbEYOtpSEv8FaA453lhwALDzV5pcYRvhFCEEykUChUIDjOCgWCnUjCBTebr7R8TSmHrYiSi349cotogYuyzsG+zuoqop4LOYb9/SjhfPK6mpowRaHIAh+asHeAeSgKrReEw6laLAI1jtQo7Bno9B8F1gPNE8aPzYB3N783YvycwCeZoW3oAalWFtbQy6fRz6Xw9WrVwEAmUzG91UYHBra6hPRwbVzElFPh+G/ho/NwP3mpGunCMSWl5chCgIyLZqrBSGKIoggwGG+Be14lLQL13G8c0gS0skkHMeBbhhwXNd3OdVUta8Oq0Drqq9mBIEQ4pUtEoJ0KhWJFwonKlGXm+8EvNPkwBdQtf3G1iU0RBCQTCaxUSjAcV0UCgUkEgl/QPJUQrPJKurUQiu9AXVdz5lR1/2fyYqCuKZVCZL61cJ5ZXkZsiQh3Wb3S0mS/FruTkSh3aB2saaUbppY1Rkz3TSpCSKqRS+fy+H7779HMpnEuc8+w7XVa1W/r9sDlHgtqDODg14LasPwDJgWFvDkyRPcf/AAiiz77afHxsY2hcCE9KSbZL373WkqsRdYXl7eQphagRCvXTIhBE6PyYHJqxSYZTIn3SZzO3UpRZnl8OuaBgWuOSqdR6OUQi2qvmcmetV1HZRSv6V7GFJDvZM2jS7717RLDt4+dDKpttIdcAiiiFQqhRJzUSwWi4jFYlBUNfTDwlML3VYtUDRuu8r7TJQrFX9ClSQJ8Xi8cZQhZI1xN1hZWcHg4GDb35EsSdCBjmvCQyNQCVDbECv4d9O71OV99KsOIlj0njx5guvXr2N8bAynz5yp+92HuVJFVTE1PY2p6WlQSrG6suIbMF1m9d+ZTAaDg4MYGRlBJp2ObtFudr/ZOeqR8i3pnR6WoXHvjv3797f9Xt8MyXFCmyF1Aot7oQSExoQQz/JclmGYJgzDgO26KJbLkETRIwl1CEtU5KBZSmELWGSKwiuHdmwbhDXJE1i5cyvtRKvlPtjrZrs7ovYCu+Sgw/eFnTwEZvtbKpe9Rk/MTTEWi4WaEHnVgmUYXaUWeEpBEISqHQcnBb4FqCAgHo+3ZNa9Vn1TSrG0vIwDBw60/V5flMja2nY7ydeW4W2ZoFqEOZuh2ymlKoTe8UEobt+5g4cPHuDAgQM4efKkvxMSSE0qrM3vnBCCoeFhDA0P49jx4zAMA/lcDq9ev8b88+d48uQJbt644RkwTUwgOzraWZnt5glbki2hTuRryztqRJL891EsAcViEYZptqU34OCWx70U3DpMr0MprUsQCSFeSkGWPZ8TlsIrlkp+9VIvwuztGMkBXsq2XC77osFUKuXZuTNhdkthZSu9QeBagvNh1yLjHYJ3nhx0grZzl4T4qthKuQyDOQkm4vGW4SgiCIjFYrC6TC1YNVGDYAWCfx5WgRDms/nufj1izMViEYZhdGTNKwgCRFH03CBtu+22tb7wLfD/jolQj6Mr3boM8uZJL168wPsnTuDQ7GxN1UCNKrzLhJKqqpiemcHExASKpRKKxSI2NjaQY2SBwDMmG2edJQeijCpwhFxk6hlXRTHxLy8vgwAYDOHdUQteseB2aYbUDBZryibJcnMlP5ubFFYmaNk2TNuGWSxWVTZEcY1uE21Wo8/AWy8TQvy+N5IowmTzQje9RYDqFKIgCJtzKS/FfcOjCe8kOQh+qR1/gW2yWApvYhQEAeVSCZZpouA4SCSTLUVz8VgMpUKhq9QC1xsQABuFQlUFgqZpiGla2/cijDtZp1heXQUoxeDgYEfvlyQJjuOEIgfBSZaLLes6GnaAlotJl/fP39F2cL2mYeDipUtYW1vDp59+ij179255zZZ6ioi+b37Ph4aGMDU1hePHj6NSLvvNou7dv487d+9CYy2oJ8bGMDo21vWEHsm1V/2n/QV6aXkZ6XS6I0GcIAheeJ3t7ntxP3hKIez1iYKARDwOmwmnbcfZWtmAcCmpRgg71/AUqcHsoWVJghaL+b0eREkCWDvrZrU07egNejkPbie2/0nbBtT9ItsUK4UZ7EEPd/5vWZaRTKdRKhbhOA4KGxueULFJKFXTNAiS1FVqwbIsVCoV2I7j5wWDFQgdocamNkqsLC0hPTDQsbmSJIow0KTPQlDxXhsZiIoYcEV+s+MRUtWkqaNzoH1yUCwWcfHCBZimiS+++AJDjXaxtdygk4usg2AZI0csHse+/fuxb/9+uI6D5eVlX6vw7NkzEEI2m0WNjXldOmvr3UOcO9KUWG2KIkg0UZ8YLi0tITs62vEpRVGEZds9IQdOoNFSuxE3SRSRTCT85mu8ssEyTa/pWo9Fe9zcyLQsuJRCU5QtkVBZln0C0wycTDRDI/vvNz1iwLFLDro8TsuBQCkcWu2nwNsPl0olWJaFUrEILRaD1mDR7za1YJimX1apaVrdCoSOwBbVXjwMKysrjResEAiaIfH8ol8G1y+W301kKiQ6IQfLS0u4eOkSVFXFV181b55UGzlwaTQlrP51N1gwBFHEaDaL0WwWJwCUWbOoXD6PH+/exe3btxGPxTDG+j+Mjox443m7d3A1ZKH2+dB1HaViEcNHj3Z8ClEUIZDemCGZLKUgdtEsTZblqsoGh1KUymXIstyRP0KY59V1XZTKZS/d4rqebqqG3ATLuFuJlYOOo43A0whbSM92j8GI8E6SAx8BM5Ve+B0A8LvubT21lwcrVyowdB0Vlh+Lx+P1DZECqYV2oOs6VtfXvV0Gq56IqjaZEOJZPEfseWBaFtbW1nDg4MGOj8GNnnhJ43aEo0OTkC4qFuq1a26GFy9e4PLlyxhmzZNaif+i1hz4x2mT1MQTCRw4eBAHWLOopaUlv1nUkydPIBCC0dFRjI6Oes2imhGefu7sasjC0tISXAAjIyMd6xd4GrIXokTbNOECiHVph84rG2RJgq7rMFjLZNu2EY/F2ooitLJg5mZt/DXJJqlaiXW3bHnvQvgpcHIg1RCp3cjBG4zIQshNBhCvqW2FOHPpqpRKMA0DjuMgmUiA1AzuYGqhrOuIt3CfcxiTtizL71A4mMlEb1rSgwdhdXUVFOgochBMEUiSBMd1YW0TOQibLhAI2ep0GBKhS6koxYMHD3Dnzh1MTU3ho48+ClUnX1utEBW6MW8KtqA+efIkiqUS8rkcXudyuHX7Nm7evIlEMonx8XGMjY9jZHi4erHYxp3d61wOA6kUtFhsM6rASuvC3gluhkRtO1IzJNu2/c1MVM8Lr36STBOFUskzhSsWoWlaJHORaZrQKxU4lEIURcSb9EkA2Odiz2WzTYPruk1LGd2A9bcgCFVj6u2IG7zD5IACvvVlp19m0/e2MQGpigJJEFAsleDYNjaKRSQTiWrjoWBqoVhsSg4My0KpVKrSOWii2BM3M0IpXERburOyvAxFlr1ugCHQqJpAliSYpgnLshBrQaZ6gbAjoOPJpKaUqhFc18WN69fx9OlTHD16FO+99154UrdFcxDN1BeqXXMYsAhccnYWB2dnq2ydX718icePHkGUJIyOjPgpiFiELdDbAqXI5/OYnppil17TOZP9rJUynxACURDgRGyGFBQiRr37VRQFaUJQYg2PKroO27a9TU+zfhwNnm1ubGRYFiilkGU5lKjar1hgYuVGpZqkxfzNIw88Qhl8tes4fUkp9hrvJDkQBAGZwUFvh9qmELEW9XLuLY1v6kCUJF+H4Ng2CoUCYrEYVFX1r69VaoHCy83qzPZYEkXE4nEUNja8B6gXu2dCvLrxCHdjyysrGBoebvhw1RoNNYIsy14I0bY9IrhDXcy68drwj9HgXtmWhe+++w6Li4v46OOPMTMz0+a19Sat4C+IEX8noiRhYmICExMTAKXYKBQ8UWM+j5s3b+LG9etIpdMYHhnB+NgYhoeHe+o0GMTa2hr0SgVjdTr1BUWMwf83IgqiJIHYdmRmSJTS7tq5h4AoSUjE495u3zBg2TbsYhGxeLzh3FQvpeC6rt8dllLqNYtqQ3shShIEx2mcWgiR5vMN5fjYCXxHK6urECXpje7ICLyj5EAURezZswdPfvwROvMI7wT1dAfd9B0QAkJF0zRRKZdhmibi8ThESWqaWrBt24s8sHNrmoZ4LOb3YxcEoWeLY9SGSCsrK1vMjzoREwqCAEkUvYnPtvvvAx/2WsNUNbQ6fp336pUK/uIv/gLlSgW/8iu/gtFstq3jA3VMkKLSHPAysF7urghBOp1GOp3G4cOHYVkWFhYWkMvl8OL5czx6+BCSJCHLmkWNj401FAVHgVwuB0mWMdwiXUa4eNb/GFsjDFLETZhsx9lMKfSILPH5UlVVSJLkGxSVy2UoigKthcdKsEyRsv8nmrm4NoAsSTAMw3NNrDd3tXhug3qDLaJuQrCQzyOTyXRkcrWT8E6SAwCYnp7G7atXsZjPY2p6uqPJuRY+MeDH6XDBTCQSkGQZOmPHhY0NqKoKLRbbklqgACpM0Ah4k20ymfSZOGe4PYkacLDJK4pp3jBNGKaJVDodSXWBLMuwbRuWZfWdHIQGyzu3C78csM57efMkAuD8l18i3UaDn2aIigRy+hwlNQgTSeLNoj788EOsrq35osbr166BUoqBgQGvVHJ8HEMtWlC3i1wuh2w229YxtxAFlt8WBME3Q4oCNos2yrLcu3A4W4gJIRBFEclkErquw7QsmKbpixW5PiSYUrAsCzrr6eC6rudf0KLdciOIAVEipdS7x4ENnUtpU71B0OyIO0GSwLO4tLyME6dO7aYV3lRkMhlAlrGwuOiRgw6/SM48a2vau51EuYd5pVKBaRheJzSWIxMBlFnurlgu+wRAlWXEE4mq3RgPvfVakBdVaqFQKMB1XSQSiUiqIGRJQoUQL5/ao7LLRmiHMHWlfan5TLlcDj8Emie1ap3c/Lqiv19VHRm3K9VDCDKZDDKZDI6wZlELCwvI5fN4ylpQy7KMLOsqOTY2BrWL+2joOpZXVvDxRx91dc2+AJU1Q3LCWgE3AU8pULTvbdAOCDbJDeCN21gsBkmS/GqtYqmEGBMr8gZTuq771wd46dVurlOSpKrdv+u6/vzVjt6g3pxqGgaKpVJHfTN2Gt5ZciCKIsbGx5HL57teNIKe2lGCEIJ4PA5VUfwcGyiFYZqwbBv5xUXf5CPBXld1XWjcbClydGuIxISNa2trIEBoMWIrSJLkhV/ZZNCvqgVuwRwWnaRm6in+n8zN4fqNGxgfH8fp06e7/ry90BwE+0FEStbauH+191tRVUxOTWFyagrUdb0W1EyrcOXKFQDA4OCgXyUxODjYFrFZWFgAAIyNjYV+T9PrZ7bEBN5OV+yCnPt9V4CetzivN85lWYYoir4Fc4V1exRFEYZhgBIC6rpQmbag2zEjszmhygMlWBIcUm8QvFf8HQuLixAlqaOeMDsN7zQ52Lt3L368dg3lSgWJDhXMfJj20liHixWDfghlpi/Yu2cPUqlU3UYnDrdMJqR7w6MW6GTnW49UFYtFxBOJSBu3yLIMl1KYlrUj7HejQhU5oBS3b9/Gw4cPceDgQZw8cSKSXflWTU330Rz+fUcZM2hXBNxseSGCgMGhIQwODeG9Y8dg6Dry+TxyuRweP36Me/fuQVEUjLGIQjabbSmIe/36NTIDA11FH2ohiCKIZXnGP5LkLfB19Amt4AsRe5lSYBAIQb0tBC95NE0TxWIRJcPwCYGiKIilUpE5LHITKRfeQs/TjWGMj3haA6ivzVhYWMA4m5PfdLw9M2Wb4KLE7y9cwOLiIhJtqrg5+lnTqmoaTNuGqqooFYt+OZBt2xDr5NMttiPoqd4ggNrcXUOwibxeCWShUIj8wVJkGaZlef0keig4C6LdcRFmYtpyDnavXcfB999/j5cvX+LEyZOYnZ1t8+xNrmtL5KB78Mk1ypRCL7uEqpqG6ZkZTM/MgLouVngL6nwez+fnQQjB4OCg76uQGRioSlNS10U+n498NykQArDUAhAQLiJQ/RBCXOenFLZZk+O6LmwuEgRbiCn1e9JECUmS4FhWFTkIE0EOuiLWu6al5WWc+/zzSK91u/BOkwNVVRFLJrGQz2Nfh+SAox/57FKxCMe2Pb0EgGKphEKhAEIIDEVBIiDmAfqYUmCorfetBf8d7+ZY725tbGxgYs+eSK+L5yeDYcReo+1+CR0sbBSeCczt27dRKBRw9uzZyO9dvWqcrhEM4W4XOtUYCQKGR0YwPDKC4++/7zWLWlhAPpfDgwcPcPfuXaiahjGmVchms9jY2IBpWZGXtomsYqGeKLG22qFRSSRvwEZY/X+v0eium6bpCw4pIUgnk3Bd12+7HO+gKqEZJEmCwUpB/WsLEMxG17mlhJG/F958bJjmW5FSAN5xcgAA4xMTePH6NU6jfeU0xWYdci87c1FKUSqV/IGZSCR8y07dMLyQuWnCMk3E4nHPDAT9EyMGLrTutfP2zhyNSJTDekdEHTngE5/L3BJrtRm9QNsjgRCvd3wbi1ahWMSVK1fgOA6+/OKLjloAt7ysHmgOIjNACqCTZy8KQh+Lx7Fv3z7s27dvs1lUPo98Lod5FlXQNA0i22lGuYng/gxNnVh5JZEgbKb+AveKRw3UHgoRaxH0LnAcx28IRyn1Ozzye8W1VuVyGVos1nEjtlpIsgzCdVw1IILgPYt10LCEEV5KQZZl7Nu3L5Jr3G688+Rg7969uDI/j431dQx0UO5V90GPkCRQSlFkHRwJIT4xkCQJ6+vrkFzXq2AQBJiW5XkjGAZUVfUtWftGDpjALJj/dYGW6l+OQrEISmlP8nVKoKSxH+SgI7SxaCwtLeHSxYuQZRnnzp3rCTGoe0kRjO1urJOjAkG0ZZRATbOoEydQLpWQz+dx+/ZtOK6Ln//854jxZlFjYxjNZrt6NkV2/xzXDWXytcVgyXFg8g1EH8kBt4s2DAMm6+UASj1LZVn205OEEMRjMVRYtQIv146CIPil3jxyEIgaUNf1BZpBuKwyBKivN1hcXMTM/v1tGTLtZLyz5IDX2o6Pj6Nimsjn822Rg2DUgB/PH1wd5I/rwXVdFItF/zzBhiL8//bqKorFIib37oVpmiiXy7AdB+X1ddiWhXg83t9JmCmLm6UOGqFQKABAT8iB33ClTyWNnXz7YUWdz58/x5UrV5DJZHD8+HEkEokOzhb2mmpNkLpHT8hBJ89bjSd+1IgnEpiYmMDVa9fw8UcfQYvFvM6Sr1/j6ZMnEATBa0HNyEIimWzrnhBBgMh24Y7rQgqZLuOf2OKqe2YW1g9wjUOpVPLFfYosV9koB3VLhBDf+pwTBC5U7AZ8HnVYqlEUxaqxLdSZw2stk6s+FzxnxI8//bSr69pJeGfJAeB9yaIoYnBkBAsLCzh8+HBb768dIFGKohzXRbFQ8BeyZJ2KhGQqhfWNDe+hKZd9G9Iyq2owDQMAfN/xXkcQuAkURWcTf6FQ8NTJPdjFSJIEgRDYlMK27Z7WcwPoaNFpOX4oxf3793H37l1MT0/j0JEjcFlEqVeoPbaLCKoVAgK6qNBLMtYN8vk8AC99qSgKstms1yyqUPC0Cvk87ty+jVs3byKRSPgGTCOjo6HKCgVRBNgC1y4M0wQB+mIORlm1kMGay9muC5FFQoOC6XrfCY8g6ITAYNbLlEUaOgWvzKCuC7uODqme9sCpU8LIsb62Btd13xq9AbBLDgAAU1NTmH/8GI7rhiqhq40aVP0uAnLAO5dR5oSWTCbriuhEQUAikUBhYwPrGxuIxeMgLGdnmSZsx4EgCF74zjAgKwpimhb9wsh2AISlFQSgSmMQFsVCAal0OtprC0DmXRotq+fkoCPHyCYRJ9d1cf36dTx7+hRH33sP7x096kWV0GML4l6YILG/e3vdIRBRhK8ZXudyGBoc3LIAJ1MpJFMpHGQtqBeZAVMul8Pc3BxEUcTI6CjGGVmIN4gOCUxL0C45sFlHR0qpT8br2TR3C9d1PQdEpo3i4zXGShSDcyhl1QmNSKPGGivp3EKZEYROSaYkSX7XWjRowBS8F775UR1ykFtYgBaPY3JysqNr2YnYJQcADhw4gIe3b+Ppkyc4ePBgy/c1CksT4jUh6mRh5HBYjwRKvRakiUSiqbo+nUp5ZY2VCkzT3JyECEEyHkcsFoPjODBN0xctSpLkkYSah7MtMF0BN/upF2Zr98jrGxsdtWkOC1lRYDCb1p4j4JYZFo1ebbHmSUuLi/j4448xzSpr+pG7F7ZcVTTpMiDCUsYOn7deRw5cx8FCPo9Dhw41fZ0oihifmMD4xISnMQo2i7p1Czdu3EAqlUJ2bAwT4+NVzaKEJhULzcCjiqqi+N9DlIJqx3Vh1mgKBEFATFGgKArqtbQPM45VVQURBG++Y2LKMN0Y60GSJJi27UcEahGMHjiMSAFbIwe26+LJ3BzeP3Wq5yZS/cQuOQAwMDCAg7Oz+PHHHzEzM9My/N6rnLVt2ygWi961SRKSiUTL88iyjFgsBttxsL6+jtHRUQCbk4WiKBCZUr+i6zCYN0KhWIQoitA0rX3XMUrrht04CCEQ2S4hLFzXRaFQaLtrYDuQue4gAsvZZuh4fNSZnCvlMi5cuOA1T/r8c//75ecB0NOSwFrVSDfElyNyUtOHCEAnWFlZgWXbdbswNgIhBKl0Gql0GocOH4ZtWVhYXEQul8PLFy+8FtSi6DeLGhkeBgjxvQ7CwHUcmKyEUWmSuyeCAMraD4eF7TgeKWALN6UUkiBAYRFL3zSu5n3tEBMe6dArFc/AiVLEYrG2x5MkSRAohdWEWPHKhWZ6g7m5Oei6jl/91V9t6/w7HbvkAB4rPHP2LP7bH/4hHjx8iGPvvdfwPS5aTGodTlSmZaFcKgHwBm079sHpVAoVXUepWMRgJuN9LrZz5WkSgaUb4rEYdF2HrutwHAelUgnlSgUxTfO6ojVbMHkVQpjPx/J5YR/YcrkMx3V76ixGCIEsiqAstbDjVMU1Y2dtbQ0XL1yAIAj46vz5LSmXVjXZ0VzSzi9l7PSKei1KfZ3LQVXVjqqgOCRZxp49e7Bnzx5QSlHY2PDSD69f4/r16wClSCaTyGQymJyexsjQEEiL3SvXGoii2JQgB22uw1gKc1t3sPSAxLxk6pmw1d75dvVaiixDIATlctkze2Oaq3bGlECIb83cCPx3vISxduNoWBbu3buHQ4cPv/FdGGuxSw7gffGpwUEcPHgQDx48wMH9+xvanIZZ8NoNVzq27RMDWZbbVp+rmgaVleptFApIs46GhJAtrJ83O4lpGnTDQEXX/f7olUoFmqp6yuGaCYaLDcNOqO16P/SyUiEIWZZh8ZLGHpGDbpZPPnZe53L44bvvkEqnce7cubriq9rStF4gap8D6rr+QrPdaYVeI5fLYXxsLLLvhxCC9MAA0gMDXgtq08TCwgKev3iBl7kcnj57BkmWPQOmsTGMjY9vmccopbBYy+NQJb1BYlCHJFhMZGiz79WlFLIsI64ozSsgIrgnkiQhHo97XgjML6FtG/wwZmWENDQ/enD/PlzHwUfdNNTaodglB/BC2pQQHDlyBE+fPsWP9+7hww8/3PL6llEDwK/1573RW4FSimIXxIAjmUpBNwxsFAqIx+OgaNGXnZmzaKoKw7K89tCOg4phQNd1KKqKmKb5KQkuNmwH7ewGCoUCZFFErMf2xrIsg7AGL71KD3WTyyaE4PHjx7hx4wYmWPOkln0xelqtsPVn3dy3YCoksnu/A8lBuVRCYWMD7x092rNzyIqCvZOTSGcyOMRC+ctLS16zqKtXAXjdZ8fGxjA+NobBoSG/O6lASPveBrxUG4Blml7lAatOoq4LRVWhKkpHfVE61TtIkoREPO6bxBnM4yUM+Aao1blt2/bGK6r1BuVKBY8eP8ahQ4cwwFxr3ya80+SA+2NzcwtFVXHkyBHcvnMHs7OzVaF9/gC0nNBYOF8IaZ9bYuJDgVUedApuL2qbpmeOJEnhcuqEQFUUqIrilUTqOmxWLlTRdaiKAk3TOurP0K7HQbKHlQocwZxhz0oaO5zoKKW4efMmHj58iIMHD+JEs+ZJQcfJjs4WFvWO3lEtBoAeuCOGfM76jVwuBwBVGpFeQRIEWIKAdCqF0dFRHH3vPZiGgXw+j3w+jydzc7h//z4UWcbwyAgGBwexZ2Ki7fPQOpUHgOeuqKhq599pl+ROFEVosRgqlQp0w4AoiuHLtkOmTPh5grj744+QJAlHDh/uqqxyp+KdJgcA/J2x4ziQBAEHZ2fx+PFj3Ll7F5+eOVP12rYMSkLsmnnjJABIdNmimBCCVCoFe3UVG4UCBgcH22bwsix7YXdGEkxWMmQGKxza7NwWtnpjo1BAKqI2za0gy3JPSxo7meocx8EPly/j1cuXOHnyJA62aJ4UHFs9rVYgW8eQFzno7HiRexzsUDFiLp/H0PBwX5oZ+RULgdy5oqqYmp7G1PQ0qOtidWUFL1+/Rj6fx6tcDnfu3MHg0JBXKjk25vVrafCduK7rVztx91MCjxSozKq9XZDA3907Z1Q7oJYrFSRbVHn51xAQV9dDVWOqwFyxXihgfn4eJ06cgMTuw9uGXXIgil6tq+NAYnnyY8eO4fKVKzg0O+uX1kU9/ViWBUPXASCyFsWJZBIbGxu+F3knbah5L4ZUMglH07wKB8Pw8vTFIkRBgMLKkcJGE1rtM7nQaiybbft6O4Eiy5viqR0AwzBw8eJFrG9s4Oy5cxgbG2v5nqoJrc8+By5ox+2W/chBH5pftUKv7ppj21jI5/FeE2FzlBAEAYRV4dQDEQQMjYxAjcUwMzUFx3Wxtr6OhXweDx8+xI8//giVt6AeH8dYNgtJFH1tDt/AuNTrfaCy598/fhtp1KrrQnRusoBX0ug6jtesiekPGpHQYJq02dl5+lEQhKpoxO3btxGLxbB/3z6A0l1y8DYiKEokLOQ8NTWFhw8f4vbt2/jiyy99htkWWI6qHivlncYAj+FH5QgoMsOk9UIBxVIJ42EX20Ausep4rGoiFotBZzXLjuOgwqodBD5RqGpDfQM3RWrGzrnHer96oMuyDFAKh0WMtrM2uVAo4C8uXIDLmycNDoYqS+tVk69aNNIcdIqoyxh3XszAa8DjOE7kXRgbwddONSnJcx0HtmXBpRTpdBqZTAb7Zmbg8hbUrAKCN4saGBjA8PAwBoeG/H4uCVWtG66nHRADAH5FU1QghCAej6NYKsFxHOi6XlfD1E4JsGWaAJhWiZU1Li0vI5fL4ZNPPvH0QLvk4O0Ef7Bs2wa4U5gg4Pj77+PChQvIv36NMWZO0rYgD/UnrzI3OZIkxCMW4CWTSUiEoGiaMC2rtegoRM5WFEW/DNKyLC/EaFmwHQeOrqOi6xAlyc891kZBmrWMBVilAu1Nw6VGkGUZ1DRhmGbk30HYBWtpaQmXLl2Cpmk498UXfqQnjKCxH5UKQD0TpODZ20fkHgc7MKXw/PlzpJlXQT/g74Iphes4WyqNAK98EfDGfTBqIxCCzMAA4vE4pqemUKlUsLS8jOWlJcw9fQrn0SOomoYJFlHItmoWxdKpYb7dYHfGqCAIAmKahjIzSRIlacvmi1dRCbyaq8EYclgUAtjcUFAAt27d8kpHuRsiE3e/bXjnyQEPj5mmCTBBICHE65o2Oorbd+4gOz7e2WRWZ+CVy+XNDosdhP1bQRAEKKoK2bJQYJULdcGEk83sSmtBCPFTCpRSnySYhgGbhR/LlQokSfKUy2wiImA1xQ2OWygUAEHoWnfRDlRV9cOmiLpCIsSCNT8/j6tXr2JkZASffvppVT6znSqPXhsQ12ud5XZBDvhiEFVaodsISpT9UAAvpfD69WscPnIksmO2Ai8b5mZIW8qQmVthsHzRtm3YlgWTRRO8F1JoLFR++NAhgBAsLy8jn8shl8/j6ZMnIIRUNYvaQug5MQiRLuhV9EuWZaiO4/VhqFQgNfJz4ISqwXHMIKFi89fLV6+wsrqKX/mVX/H0F29p1ADYJQc+k3ZdF5bjQAT8hfP948fxi2++wfyzZ75lbUvUPBRBQR4X9wFoaYvcKVzXRTyRQEXXvfrfetGDgJlRpzs4QghUVfVaQ8fjm/bMluXnKcvw7q+iKE2Ff4VCwbsfPd4FB6EwtzbHcWDbdqRNqZppLCjdbJ40MzODU6dObR0HYfKwUe/AGyLa4/MFIZLvegdGDV6/fg3bcTDVZ499URQh2HbdnTifcwCPFFQqFa98G5tlqYosQ5LlLenB7OgosqOjOHHiBErlMnK5HBbyedy9exe3b91CPB73m0WNBptFUeq3Xt4OqKrqPduOg1K5XDW/hDEPcyn1NUk88uC6Lu7cvo1sNovs6KiXZqB055mpRYR3nhzwRa7CrDj9R4NSDA4NYXLvXty5cwd7JyfD5aabhKgqTGeg9bBDosNboKoqXABrGxuexWrg+iht3/e/GQRB8DwTNM3r48C7r9m2F1mwLK+uWhQhM6IQXNQ2CgWk+5hS4JBlGRTwqzEiQ4P767ourl27hmfPnuHY8eM4cvhw134BPU8r1Dl+V5oDvlhEQYwjELNFHTl4/vw5BjOZho2SegUuSqwlBw6zSrcMA5Ise5+VjU9ZkiDLcuixn4jHcfDAARw8cMBrFrW05JOFJ0+egAgCsqOjGGMGTMlEwvuea66pH5SOEIJYPO63vNd1HfFYrG4qo973bzF7ad65FwCePX2KQrGI06yKjaf/mllQv8l458kBAJ8cGIYBTVGqJvZjx4/jv/23/4YrV67g9OnT7U/GbPIpcaMjSeppfoq6LiilSKXTKBWLKJZKVZbKlF1TryCKImKiiJimwbFtGCzt4DgODEo961ZBgMIiCpIkobC+jr1TUz27pkZQFcUnL7GIDJEaaVP85klLS/jkk08wPT3d8BgkxGLlv2IbIgftdc2oRuQ+BzsIpmEgl8/j+PHjfT83jz65juP7EfCKKF3XAUqhMMW90gYhaARRFP0ySAAoFovIsfTDrdu3cfPmTSSSSYyPj2NsbAyjIyP+NfJFtdcjQGCp21Kp5GmlRLGqyqJR5Ja7SAKb5Yvr6+u4eesWpqenkWF22PwZ3I0cvMXgX65p26CKUpUzSyYSOP3JJ/j+hx+QSqU6Kk/iYTxCSM93FJwVJxMJz9aUuSZmuvB37xSiJCHORJe2bXutVg0DruPAcF3v36xyoxf6i1bgjWAcSntniASgVC7j4oUL0HUdn3/+OUZGRpq/YRvztVsvJbrIAc/RAtGQgyjuQZQL1KvXr0EpxeTevREeNTwsRnSDJbqGYUAQBMTj8VCN3DpFMpnE7OwsZmdnYds2FpeWkM/l8PLlSzx+9AgCbxY1NoaxbNabB1kev5ckgTeXq+i6b5BULwIcbMRmO46vxZIlCbqu4+LFi0gmEpvOuYFndJccvMUQRdE3/7FtG7IkgbBdNgUwOTmJQqGAu3fuIJVKtdWz27Ztn4Umk8meh4G5upYIAlKpFAzTxNraGlKJRGsb3h5CkiQkGVHwhYym6ZUduS5ACFbX1rzUA9vZ9Cr1EoSiKKBMK9ELcrC6uoqLFy9CEEWcP38+dEVGq3B3v9IKpJ4JUqcH65s3w/bgxfPnGBkehtZjC3DAW8xs1m7Ytm3YjGxbtg1JliFLkudJoKqe2LdJzX/UkCQJE+PjmBgfx4fw0oY8/XDjxg24rot0Ou1FFEZHMTQ83NNIkqIosJm2SNd134m2kftoUIjoui4uXroEx3XxxblzEEURFKjy+VD78H1vB3bJAYOqqh7zdhy/tS8CTWKOvvceisUiLv/wAxLxOAaZOVIrVCoV//j9qKd3Wd9xkU0I6+vrcBwHq+vr1dqDbYJAiO/EmIjFvBbVhECLxbxwaEAIRAiBJEmQGVHoBVlQFcUXinbS9rUZXr9+je9/+AEDrHlSOzuMsP0ZtkOO2GnbZjdAaLq9z7wRWNckI6LvW69UkF9YwKlTpyI5Xi0oIwN8kXMCngZcXCyIIhRBQDKRgCzLqJTLEJiV8HaaTqVTKaRTKRw+dAiWbSPPPBWeP3+Oe/fuQZQkjLGowvj4eE/SrpqqosjKr7kA2SckrGJBAHzvE8AjB5cvX8b62hq++PJL3zPBJxVsPGu7kYO3G6qqolgsekIU/mUHanYJgI8++gjFUgkXLlzAT37yE8RahMJtxuoJq4ONWvxUD36NMQvZZTIZLC0uYmNjA+l0OjLDpY7Byq5cNrE7jgMBniqaUuqXRFq2XZU79d66SRZkWY6EbPFJwgZgW1b3drfs+330+DFu3byJiT17cPqTT9q/1laphX5FDuqfvKNjRVnG6Lvr7RC8fPkSAiHYu2dPJMejrusvZFvIAItqcsIscQIgijAty5tn2LNDKd3+Zz4AWZIwuXcv9u7dC1CKldVVvHr1CgsLC7h27Zo/Z41lsxgfH8fg0FDXUQVKqddvgUWHjYAAmfASa9cFBMGP8kqShAcPHuDlixc48+mnGBwcDB6wKh2yW8r4lkNRFBBWJ+y75tWYeYiiiHNnz+IX33yDCxcu4PxXXzXdzfKogaIo/vFc9NC2lYkRg3KxWCwGVdPgVCpYWVnxBUQ7BYauQw4YJwVLqfjEaLG/q8hCpeLlBFkKQpakjsmCoihwdB1GBOSAArh58yYePXqEQ4cO4f333+/JAt6/aoU6C3mnBDfKa95hPRWeP3+O0Wy24/FDme7FCRACvnBRVnbISYDExnptWJxwV1bXhek4nr9Ije3vTgHfwAwNDSGdTuPo0aMwLQsL+TxyuRyePn2K+w8eQJFlT6fA/nSS3xdEEdR1oamqv/moKl/mDrGBqOXC4iJ+vHsX7x07hj01hM83UIKnq9qJ9zcKvJ2fqgPwkkad2YyKoljX7UvTNJw7dw5/9u23+OGHH3D27Nm6k13wAVcDkYhWVsLdgLouXOYDHsTQ4CAM5ntQLpcbGyP1CSTgTKYbRsO+8nwi1ODdMz5xWkx0RV3XTwkQeOE+WZL8nGvYHaoiy749NO0iN+s4Dr777ju8evUKH3z4IQ4eONDRcYDNpjCNwt7tWMB2gyhNkNw+EZp2wC3Ou7mmUrGIlZUVfPzJJ6HfExzPfmQgoHOilEJiCzsnBQ07dDIILF3jUArLMEAp3TnOfQ3IHL/3PMIxOTmJyclJuJRibW3NM2DK5fD8xQsAwGAm41VAjI9jMJNp+b1RSv1SSkEQtkQPePqOd+allKJQLOL6tWuYnJrC4cOHtxxTYP4GwNsrRgR2yUEVVFWFXi7Dsm3wr7ze0MsMDOD0mTO4eOECbt++jRMnTmx5zZaoQeB4vdrv8N21WBNGlGQZyVQK6xsbWFldhaZp2974hptDGboeKizHUwoSKwWllHphV0YUbNsGdRzojgPCyAKfDLhmodFnliQJIiFwCYFlWVXlTmFhGAYuXLiA1bU1nDt3LhJffT/kWQf92zPXK2Xc/rRClAS7W6ry4sULCIKAiSZtkCllvTy4gJCVHAZ/LzByKzJCUM8GuRk4ebBM0yNiLLK2I9Dg+2q0uAuEYGhwEEODg3jvvfeg6zoWFhaQy+fx+PFj/HjvntcsiukUsmNjddMn3CqZozZ6ECTXpmVBNwxcu3YNAwMD+OijjxpW6/Cf7hjy1QPskoMAOAu0bbtqMNcrt5kYH8eJEydw69YtpFIp7Nu3z/9d3agBB4sedCrqagSX7USA+pPvwMAASqUSTNPcttLGIHj0QDeMjh4wXmYkSxJi2AzL8qiCY9veZKzrMFi4FcyISWQTL/83IQSKqsKuVGCaZtvkYGNjAxcvXoTjODh//nx097ZJ6DyMy1s0lxAdOehXKqRtBHaCneD58+cYn5iAJEl+uSYff7wdPHckBOBHCARCfCLANQPdgPdX0A0Diiy/cbvaZposTdMwPT2N6elpuJRidWUFuVwO+YUFzD9/DgJgeHjYJwvpdLru8WqjBzzaYjkOLMvCzZs3IQoCzp49W3cerR27yi45eDcgSRJEWQZlC4wkSf4DVw+zhw6hUCzi6tWrSCQSGB0dBQDPdARbowa9Ap94eFisnoBHEAQMpNNYWV3F+vr6tpc2At7kqFcqSEbQU4HrD/hOiZd6WcGwLauGIJbl7xh4OoKAdYdkhM7/7ltgcXERly5dQjwexxdffBHphBwmytQq1OyjwzREvbQCwES6gchGbfqt3nVH5nEQVaUCQ6fRPNd1sba6io2NDRw8eBAF5saHABEI3h9BEDxCykhtt2SgFgIhHjF2HEBR3ghywEk7AfMaYPqAZhAIwfDwMIaHh3H8+HFUKhXk83nk83ncf/AAd+7ehaZpvknTaDZbFUEJRg94GbVpGLhz5w7KxSLOnz9f997xFEhwTXgT7nGn2CUHNVBVFSazUg4KTepFDwiADz74AMVCAZcuXcLXX38NVVFgMcVww4FDGrdzbhcu3dzH8bBtI0KSSqVQLJWgG8aOKG0khMAwzZ6UAgmC4DeJAjZzvP4fRh6o64I6DihLKTjMAEVVFIiC4Jum8D/B3QRvnjQ6OoozZ85AluUqVXnXaCa6q40ctNAnVL2uS/AxVzt+Wx2Zj88tpYz82mm4mESvXT63nC8wdngkgI+TJ8+eQZAkJNNp2KyqBoR440UQIAgCROY5EJrIdQjCxjB13Tdq0eLkTGC9GNqt6orFYti3bx/27dsHl1IsLy3hNfNVePbsGQgjE8FmUVLA1waE4NHjx1haWsLpTz5p2E1TYKLyIPrZLK7f2CUHNdA0DbogeA86r2ttMlhFQcCnZ8/im2++wcULF/AJEyW1ihrwqa2bqboqVIkQgi9CqkobU8nktk4ivA9DP0qBgpqFIFzX9XPBoBSlchmOZYGKIixWTuYL1tjuTxAEPH36FI8ePcL0zAxOffih/11H6fjWcAdFKVz2h/+/6u8adHM99Vo2d1yswDUHorj1eaolGjTQUhfwjWd8UtKEDLULvjhRSqvSAEFCUPuR+TXkcjmMZbOIxWI+meQdEvsNTgwANBT59hNhF/ng6/i/O23nLBCC0dFRZLNZUEpRLpc9X4VcDvd+/BF3bt9GPBbD6NiYl/4jBMsrK3jx8iWOHD6MiSalqNwYj49VURQxkMm0fY1vCnbJQQ0URQEVRTim6YW5ePi5yS5OVRR89tln+PnPf46r167h5MmTrRfdLqMHTrP3NZmYYrEYtFgMTrmM1dXVSIRzncI0TQjYXlEPX+y5dwLgEYZUKlUdbQgsFrfv3EHu9WscOHgQ+2ZmsL6+DpH5JVDA3yUKzNPBb6kbEr7NMKtXrxvYp5uh/Z6iruag/Uk7WGIbJq3gpywC49wN/G7LdfEFpkUEhZcG8rJf7idgWRZcx6n6ZPz83FRMYNEATgA21tdRLpXw0YcfbrswjZf5AujeqyMihJ7bal7HCUKnvjDBeTUej2P//v3Yv38/XNfFEmsWlcvnMf/0KQRJAoXns3KgSXURCQob2VqQGhjYdmF3L7FLDmogCAJkVYVrmrADyvVWeclUMolTp07h8pUruHrlCj7/4ovWJYMd1mq7fBKsQVjB12AmA71SQVnXvXam21TaqOs6KDzC0m05WRQQRRGyJMFkTmqaqlblKk3TxKVLl7CysoIPT53CWDbric6YrsEN5sIDEwkBKzNjREFkO0tOTEiARPj3oAUp7V8pYx10QmiDY7bLa663YPilaK4LF8wbwHXhUArqOHD4z+q816EULksH8SoXngrg/65HaF68fAlN03yt0XbCCFToiGwh2+7nKSxoqzEeEQRB8NotZ7M4QSnu3LmDx3NzIIKAmZmZppUd9eb/sC65byp2yUEdqKrqdfKy7dDKdZdSpFIpnP7kE9y6dQs//8Uv8Nm5cxhqMYDaDZ/Vy/X6vwv5MPHSxo2NDayuriK2TaWNhmEAlEJTVb83+nZDURRPuVyjhSiXy/iLCxdgGsaW5klVHgy2XVUzTbliHd7iRCiFxSfDOpM3YQtSMOrAJ/1gNKJfqGeC1Em1QrAbYzuLln8P2d88ghP8uRtc9APH5tGVKtGkIEAA0z2w+8ndREVRDH19lFI8f/HCa7K0zbtH6rowGNHm7YO3lRy0uenxw/VbDtN+5CDMe1xKceP6dTx58gQj2SwGBwehqmrD+8WNpWqf16EdYEffS+ySgzrQNA1FQfAEazUPWaOcss2ctVKpFH7y9de4cPEivv32W5w+fbplo6Z21NKu47TceYWZFAYGBlAul2FsY2kjr+rQNM1TK++A3Y4sy0Cl4nVmY53aePMkSZLw5ZdfbmmexPUMoiRB5gtX4PdugCTwvHbwZ3yBA9vluoxE8O/ZJ49c90AICqwFOGHit+B944SCh9+DinD/9zW/A1CVpuCvqWuC5EscqB92BzaJq58O4D+nnvOcaZoQRBEV1kJ4y3sDx+S6iuBEzxd7J7jos/MRQvyFPUiigpEZTgT4Z/SfZUp9bUnYqMbS0hJ0XW+rCVuvYBgGAEASBAiyDJMR1Dcm5N2ETPjfVQiSUFsxUw+8dfri4iKOHz8Ol333UrOoQY1XAo92RtVga3JyEi9fvsTXX3+Nn//8501fe/v2bXz44YdwHAf/+l//a/zGb/xGJNdQD7vkoA5kWQYRRVCmXg/6cAOoO5A5OZAlCaqm4csvvsCVq1fx3XffoVgs4uiRIw0nHkI8Q6BWA9upw16rwNMKLY4DeDvRdDqN1ZWVbStt1HUdsixv9nnfAdEDURShSJLvvLi6uooffvgBAwMDOHv27KaWJLCQ8ImjSiQYgEAI0KBVbBDB3TEnEdRxYPNweaBk1bFtUEJ8wVxXqDM587FuOiaGMQQHLigoCAiKhSLWrM0dqv/6wO49OJkSQmBYFkxdhyjLvlV2U1Dqh5v5gs939hLgL/YkQADaJZZbRMEBUsXvc6NjPn/+vK0GbL2C6zjQGTlQNc1r0YzuhM5doZNUaRgNCqtkaH6YxqZhAFAulfAXFy6gous4d+4cZFnG0tISJEVp6pRZOw4IEKkQ8dNPP8VPf/pTXL16tWXE5x/8g38Ax3Fw8OBB/N2/+3cju4Z62CUHDaDGYjANY0tJI1A/esBL2PgCK0oSTp8+jWQyidu3b6NYLOLUqVP1FwhCIDQIrXG0XAA6WFRTySSKxSJ0Xcfq2lpVqLwfMGoMkAjQ094TYSErCkzbxsNHj/DowQPsnZzExx9/vFmRwO911DnRBiSiSmNCPac9m0Ua4tzumYvt+HUFdvDBSIa/Uw+8hvKFOPCZ/ImYUu9HLgV1vZSC67hbF05OlvgCy7wjeBTDdhyIsgxFlqGoalU0oyp6EYhqCNhMs1Tdj27JUAP4ZKFOCoQy4kcIges4ePniBfbv378tVQlBGIbh61hkSfLaDTMh67agUz1Kq5e0KHFstaguLy/j0qVLECUJX50/D1GSUCwWIcoyJDa+ghtBjkbHjJIUnj17Fj/96U+xvr6OBw8e4MiRI3Vf90d/9Ef42c9+BgD4nd/5nY6cXNvBLjloAFVVoQsCTMvyW3UC9RcuCnilcEDV4CKE4NixY0imUrhy+TJKpRLOnTtX90ttOvDRo50ACZQ2FgpIpVJ9LW00DKPqfIT0tvdEWEiiiAf372P++XMcmp317bG367qq0k4sfM4bVKmKEv0CFQjnG46JNazBJRQu8QhwLKVhIDHALifkjr1chigI0DStK2V/r4hBIwS/cy5KzC8swLQsTE1N9fVaauE6DgzWRZDfU36N/b5PADoWWIc7dPNj19okBzH//DmuXrmCTCaDs2fP+sTAdd2qnhW15CDY4bb2WgaCXRq7xNmzZ/1/X758uS45sCwL//Af/kMAwJdffom/+lf/amTnb4Q3JCnVf2iaBogiXFbm1Ay2bft5z3qRgempKXzxxRdY39jAz3/+cxQKha0HaTLJciV1UwR3l22A585EllvvJ/SQfRX6BZ4bv/Tdd3jx4gWOHDmCA7Oz4d/fo+vq+96UheuJIEASRDhw4MBmfzsgBFX5/FAIGCB1ilotR2Ro85rmnjzB4OAg0gMD3mK8TaRR13UIgN+cCdiM2GzHFfWcPLNxWe88jX5298cfcfmHHzA5OYkvvvgCiqp6mhfAJ9kyIwR2zTwrsOZ7tUil05F2YvzkbXe3gQAAjCVJREFUk0/84/3www91X/Pv/t2/w4MHD0AIwe/+7u9Gdu5m2CUHDSAIAuLJJCg2hXMctbktOxA1CNbYBjEyMoKvv/oKgiDgF7/4BRYWFra8pt4U1VJnwFB1xjYnu8FMBqIg+KWN/YKu61vcEevWsPcQQb1ApVLBN998g8WFBZz99FPs3bMHpmGE74PRq8mx2f3o8b0idasV2odfrdCFSI6nKKJGO8cslctYyOX8mngezhbQ38nUsW2YlgUXqHqG+PPT97RCN99NO2OYbu0620gn8MPly7j34484duyY10RJEGCZJhzbBoE3X1Ng09+Ei1ID56qHTIRRA8DboJ08eRJAfXKwvLyMf/Ev/gUA4G/9rb+Fjz76KNLzN8IuOWiCZCoFiKLfRS2I4HC0a1MKDQZ7MpnE+fPnMTg4iF/+8pd48vRp9QtqogcdhQY7WCx4aaMkCFhZWelbSFLX9boh5lbCom7BTYZ4HtlxXayvr+MX33wDwzDw5fnz2LN3L0RG9iwWum2FnlVa1ExS/fI4AOovnJ00DfM7Mm5zjr4e2tnxPn3yBBJrLVx1DGxqkQT0Ptqj6zoIPAG0FIhWbktaodvoSZvvrdUX1H5WQ9fxZ3/2Z3j18iXOnDmDw0wMTl3X3+ipmuZpSCj1+lywOYdrxxo9y5RSZHogQuWphevXr2+xYP9n/+yfYW1tDYlEAr/9278d+bkbYZccNIEoilCYQRAvF+LgC1hQbyCHCDUpzE1x3759uHr5Mm7dvFnF8rlAq90QKn9tpwvUwMAAJEmCbdvY2Njo6BjtwHEcmKZZV+NA0LtFhKvQg5UFCwsL+Pbbb6HIMr766itkmBJZVVWAEOghyUG/Igf9DBlH0ZXRd3wEet5foBOEJaOO6+LJ06eYmZ5uWnniP4vBPxGODd71lWKruyi/v31NK3T52dquMgmQkVrNy8bGBn7xzTcolkr48osvsGfvXv93BmtlLQoCVEXxKn248yX7PluRA1VVt5QyRwFODsrlMu7cueP//O7du/j93/99AMBv/dZvYU8Te+eosfOe1B2GGBsIpml6If4ACDxiwHcM/oTR4mERBAEffvghTn7wAR48fIhL333nRx8QKKPqJ3hpoyQIWFtf9wlPr2CyBbepADKCCdUT2nvRAd5CN7jYzs/P48KFCxgeGsKXX35ZJT5VWbiRMoOjMOfqFepNVv3Yg9cNFrf5vQTHcjdphV7mtMPcy1cvX8IwDOxrYrPb+ATRpR783W+dslCeeulXWiGKaFlH3ypLnwTHVj6fxzfffANRkvD1V19V7fBdx4HJNniapvnvJYws+OSgRVVElELEIIKixGBq4Td+4zdg2zYmJyd9QWK/sEsOWiAWi0FUFIBSf3AFYTWoUmgFQghmZ2dx7tw55PN5fPvNN1hbW9v8fZuTaFjr5GZIJZO+L/vi0lLHxwkDwzDq7nw4eG17J+BRl6BTYb3X3L17F5cvX8bM9DTOnTu3xQiFCIJPXvQ6330/sW3B+Hr53A4iB0D3UYNtUeAHMPfkCUZGRpDqsBNfFKkH27Lgsg1JPWLNjZ5qDaR6hSjO0cl9cFnPEUEQ4FKKe/fu4S/+4i8wPDyM819+iViNJTy3apckCZIse34ijuM19JKkLZGDRhjsETk4dOiQ76Z7+fJlAMAf//Ef47/+1/8KAPjt3/7t1nb8EWOXHIRALJEA4C1owXwrIcQfTJ2qVycmJnD+/Hk4rouf/+mf4tbNm7CZYKYtRDEREK+1qSQIqOg61tbXuz9mA+jMJS/S0knqNffxLXUbvMx1XVy5cgX37t3D+8eP48NTpxouXLy7nWVZHeXae4EoiGA72BI96DBy0G2qqKeft8Wx1zc2sLS0hAP790dyOn4HhTaFfLquw4U3LutFYYLumNtdEhwWnVwnX8yXl5fxp3/6p7h79y4OHz6Mc2fPbiH53NacAIixzYifPoDnLMldRrnZWCP00vTq008/BeBFDmzb9t0PP/nkE/zNv/k3e3beRtglByGgJZN+m1mzJv9ss1a/3ZS2ZDIZ/OQnP8F7x4/j3oMH+NnPfoZ8Pt9RmVS306eiKBjIZCCJIlZXV7doLaJC0Dq5EcLW0AeFha3CqZZp4pe//CVeBsRKzc7B2zwToG7kqOZCWl5rx9hGIV/tot6J5qDecd4kPJmbg6ppked8/XvD/jQbQ5Zp+otas5bMpE7IPXJE+F22TfoIgWkYuH79updGEAT85Cc/wbHjx7f2uaDUn2sUVfXKEwHPRIwQ//+ARzgIs82vh2Qq1dOOlzy1cOvWLfybf/NvcO/ePQDA7/7u7/ZtIxDErglSCBBJgqooqFQqXm2+olR/WV2EwDlEUfT6iY+P49q1a/jzX/4SMzMzOHHiRCgnLB5Kj2IQpdNpv2vj4tIS9kxMRO7TbhhGlXVyI7TaAXFxYZgSSG6fapomPv/8cwyHbJyiaRqKpRJ004TK+kDUQ6PucpGDRw56fyaGGnJA21t03AjSCr3eBTcbZ5Zt49n8PGYPHuyZoDIYSQCwtSk2pX5qS1PVps+NwJpL9eyOsXu1HVSPUopXr17h+vXrsC0LJ0+exIGDBxu+3mCESiCkilC5jAAE76MAeA3S+lTCWAtODkzTxD/5J/8EAPDX//pfx+eff97T8zbCLjkIAUEQoCWTXt7KdWEFWjlHCdd1kUwm8fnnn+P58+e4efMmcq9f4/0TJzAzPd3X3ePw8DCM169h2TZWV1dDL6Rhoet66JRC0FedN8epUsCHuC8rKyu4ePEiZFnG+fPnkWwjbyzLsh9ytGwbSqMoUb8XsH6lFbqslvDTCjuwUsFHk+/u+fPncGwb+yJKKTS9DPY3r3LgJME0Td8MTWnSJAjog9dBxMQg7HiqlMu4fv06XuVyGB8bw4cffripLahT3UVd1498qppWRewcx/FE5IGfEVEEmmgOet1H49NPP/WfccuyoKoqfud3fqen52yGXXIQEoIkeZbKug7DMKrIAc/xBf/fbofB2kY109PTyI6N4datW7h8+TLm5+dx6tSptha1biBKEoaHhrC8vIz1jQ3E4nHEI+pCBngPZ5jSTwC+4xtFdVlcWLx69QqXf/jBs09tYF/d9Pxs16HrOkxdh9LoO+hx5IB0QIqiwNa0Qnvgi1TH19sPcV2D745Sirm5OYxNTFRVsvQDXLwIoGqRaxltA3p3z3owxluVebquiydPnuD27dsQJQlnTp/Gnr17t0Rva69LNwxQSr2S9Jpn3nFdUBJwtA2SqTrjVBTFSJst1cPAwACOHj2KH3/8EQDw9/7e3/P6d2wTdjCV31kgsuxZ/RLi1xlXoZa5tjkR1hO7aaqK0598gi+++AKlchk/+5M/wf179+ruCHoxEcQTCcQTCUiiiKWlpUjLG8OSJ787IaW+ujgsKKV49PAhLl26hPGJCXz+xRcdR3y454Fl21tKWgMn7OjYobFNArPab8ndGvRuim7dEWkfSFCjM6ysrmJ9fR0Ht3GSrug6KHMGbKY18NErl9FeiRybXOv6+jq+/fZbXLt2DZNTU/jvfvVXsXdycms0q2Y+4T4qAOqSOsdxQNg9pZR6C2GT6+h1SoEjm80CAEZHR/FP/+k/7cs5G2GXHISEKMsQAgyU+3MHhxPf4QJoayKnlDYNAY5ls/jvfvVXcejAAdy5cwd/+qd/ipWVlbqvjXo3OTg4CEWW4ToOlhqcsyO4bsv8rVuzS27V8jgI6rq4ceMGbt66hSNHjuD06dNdhbVF5sFOCPGb3Ww5Z8dHbw/9pwhbJ+J2QLusVuhHfKTRJ5p7/BiJeBzZsbE+XMVWOI4Dk5GDWCzm97xo9h3w+xXlOKFA5OmEZnAcB3fu3MHPf/5zmKaJ8+fP49SpUw0FgbXzHp+fFVmuO2+4rkdxRVGEKAib3UwboB+tuX/44Qd8++23AIB//s//OQYGBnp+zmbYTSu0ASLL0FQVpmHAtqwtNbGtOoc1Qqt2o4DXKfDEiROYnJrClatX8c3Pf44Ds7N4//hxr243eA0RQhAEDA0NYWFhAaVyGQXWvbFbuJRWKYWD6CR1EIRt2/j++++Rz+dx6tSpyEJzqqrCsm2YhoFYHWFizydO/t320T4ZAMiWPUSbxHcHuyNyVBF7BsM08fLlS7x37Nh2XBIogHKlAhDi2SRzUy54+XECz9yn4TMf4S6/07mtEywsLODatWsol8s4cvQojrSoKOLgIkkz0D+hUTUUjxz4xCCA2jOJgoDh0dFOPkpb+K3f+i0AwPvvv49f//Vf7/n5WmGXHLQBQdMgGAYkWYZtWVU7yC0DLOTEzcPmoV5PvBbLX3/1Febm5nDn7l28evUKpz74AMMjI218kvagahpS6TTW19extLwMTdP8ZiWdoi4hYj4FjZTQvulJkyiLruu4cOECisUiPvvsM4xFuOPj1RW8U2dQGNbP3XxQtNYP1Fbit0PconBH7Ee9fr17+ezZM1AAMzMzPT9/PZiG4Rse1QuNU3idA3vuhtgnYmCYJm7fuoWnT59ieHgYZ8+dQzqVCu0vwjU5wf4J9Qipb4BESKgS9OzERNfzXSv8wR/8Ab755hsAXgfGdqKkvcIuOWgDoijCVRRoqoqiZdX1APB92kMO6HaFi4QQCIKAg7OzmNizBzdu3MCFS5cwMT6OA/v392wQZwYGYOg6KoaBhaUlTIyNdRWmd13XDzMHOyNylXYjEHjh6XoTxsbGBi5cuABKKc6fPx95WI4LEytclNrjCaMetmPvvYXDtfHerqMG/XL6q5PDfjI3h7179/akMqkVXNYkiBODRvePAgBv00ypN+9EHVHqg5Zmfn4eN2/dgus4+OijjzA9M+Mv9u3Mj7quV/VPqAfHccCb3LVahAVCsHdqqq2PEwblchmvXr1CoVDAH/7hH+Jf/st/CQD4O3/n7+D8+fORn68T7JKDNiFqGiTThChJftvU2kWiXoiyHiilXp/7Dh/meDyOc2fP4uXLl7h+7RryuRz2HTiA9957L/oJjbknvn79GqZhYH19vSsrUf7QV4WdQ1/K1p3MwsICvvvuOyTicZz77LOeKct5xYpt23AcJ3Q/jSjR98hBTdvmTiIHtT0A2jh5X+5t7b1cWFhAqVTCx5980vNz10NF1wG2eCkhSn4p4M8jkY6LHt5/CmBxYQF3f/wR+YUF7N2zByc/+MBPBRC0J0a1LAumaUIgxO+fUA+26wKsiqH2emoxNDra1KitU/yn//SftqQOzpw5g9/93d+N/FydYpcctAlBkgBJgqaqKNk2TNNsuFsPxXo7IAbcIpU3Edo7OYlMJoM7d+7gydwcnj59igMHDuDQoUORDmxJljE4NISVlRWsrq0hFot1fHyXsfdOd4XB9MLTp09x/fp1ZEdHcebMmS32qVFCEATIsgzTNGGY5mZ5Zz8dzPquOag5fRvVCm63ZYx9Qu0onJubQzqd9v3u+wnLtmFblidCbNdPn1UqCBFUFvTKgpkCyL1+jXv372NleRkDAwP47Nw5jI2Pb54b7UWoXMdBpVIB4DkhNpsDLMMAEQSIjVIKnGQRgskeRA0A4OrVqwC8zca+ffvwN/7G38Bv/uZv9r1cthl2yUEHkGMxUMvyQn3MsKKWXQuEoHkLj+5zqcFWs4qq4tChQ9h/4AByuRzmHj/G48ePsW/fPhw5fLj9SaYBkskk9EoFxUoFi0tL2LtnT9vpBUopbNftynKah1F/vHsX9+7fx/79+/HhBx/0RfSmqipM04Rpml7IF/3JiwOoIgTbpzkI/17fAKnDHGq/4jHBT1iuVJDL5XDygw/6dPZNUEr9RU7VtMYLWDMEFrdudv48zRcVXErx6uVL3Lt3D2vr6xgZHsZnv/IryGazVeXBtE3ySylFuVLxPQ1alXsapgm4bsPX8bOmMxkke9CeGQB+7/d+D7/3e7/Xk2NHhV1y0AEEWQYRRaiqigKwpd8CByGkadqg24kvyOx5/l6SJBw/fhyHDx/G3OPHePjoER7PzWHfzAwOHz4cSaXB0PAwzNevYVgWlldWMBpSDMl7IICVbnbjtW87Dq5cuYL5+Xm8//77OHToUN92p7Isb6aVTDNc7XmU6PMufKtDYhvVCl2WMfLue/3E06dPQUQRUz3aNTaDbhigrMxX67ApWXDXzb+7tskrIS3NicLCcV08n5/Hg/v3sVEsIpvN4ssvv8QImzdqr00IbHrCQNd13yI5EY83LfWkrutFZQjZqhmqcR+dnJxs4yrePuySgw4hxmJQbBtEEOA4DnTDQLKG5RMAYOK5ugtXBA8fnwgIEyVxoZ4syzhy9ChmZ2fx9OlTPHjwAM+ePsXk1BQOHz6MTBduX4IgYHBoCEuLiygUi4hpWkvnxiAxALvOTnf5hmHg0qVLWFldxdmzZyNvhhMGqqKg7DgwDKP/5IChb10Zt5CD8GkFp0sDpH4TA5dSPHnyBNNTU11FtjqBzcpkKaWIN8mZtw2WZgjdiCkinYHtOHj29CkePHyIUqmEiYkJfPzJJ1s9A2qiYe2c2WIRPADQGDEAGouWeXdVQRC26LKCr07E4xiM2DL+TcMuOegQkqrCLpUQj8dRKBRQKpUQi8WqhVdNbG6jCkMTzvB5CNFx/J0H4NkgH5ydxf79+zE/P4/7Dx7g53/6pxifmMDRo0c7zqnGYjEkUylsbGxgeWUFqqo21V7UTkw0bPlmDYrFIi5cvAjTMPDFF19geHgYtEl75l6BN+JyHAe2bXccNu8IfdYcbDFBauOdlHmB7PSOjPzqXr9+DV3XI2vNHBYUmyJEWZYj0c3Qmn+3KgMGvPmk23SCZdt4MjeHhw8fQjcM7N27F+fOnUM6nW5woZtX2s7Ycmx7MwWjqlV27I2Oo7N7vIUYMAdWwKtK60WFwpuGXXLQBaRYDDFdR6lUgmVZqFQqSCYS/u9JgL3WihMjXcxqcoz1fAIEUcS+/fsxMzODFy9e4N79+/jFL36BbDaLo0ePeqmBNifwwUzG7zWxtLyMiYCgCIC/aNcjQm4HaYWl5WVcungRsqLgq6++2oxWBBoz9QtEEKCoKgzDgG4YiEek6diJEGoLKMOW6QZIW1/JUweg7Ll5+PAhhoeHke6zO51pGL5IN9atiJjUqkQ88AgjDUTwtrymC2JgmiYeP36MR48ewbJtzExP49Dhw62jitg6P7YCdV1PZwBAlqQtwuh6c47A3U0p3RLtcwIkNh6LYYTZGL/L2CUHXUBgu+WYpqFcLvsNmYK5LH+416mjjvRasBmhcF234WRMBAFT09OYmprCq1evcO/ePfzZn/0ZhoaHcfTIEW+BD/uQsvLGfC4HXdextrbmpyv8NEIDtJtWePHiBX64fBlDg4M4e/ZsVUdHgt4pq5tBU1UYug7LsjxHtj45AAbL1vqB2jOFjdMEGy51EiUKa34TFZaWl7G8vIxz58719bzc0wDwxlS344inMxv+vlMdQgPouo5HTNvkuC4O7N+PQ7Oz4UXQlLatM6hUKt48Jwh1Ff618wEhXk8cy7JAgS2RA5tHDSQJE5OTO7uDaJ+wSw66gCAIkBMJSIUCZEWB4zgol8uQ0unNXTHL323JpUU98bGaaJ5TC/P6PXv3Ys+ePcgvLOD+vXu4eOECBgYGcOToUUzu3RtqAVIUBZlMBqtra355o6woLXfyYQWJlFI8ePgQd27fxuTUFD766CNIdYgP11v0s2SOd3szLQsV0/TyxP0A391tVyljGwZfQBetmvtMDu7fu4eBgQGM10TAeo0Ks0gWWDQqErS6d4ywdRNxK5XLePjgAZ48eQJBFHHgwAHMzs6GbsXuXyrai6Qaug6LNYGLNzGI8gkCmxe4NkGUpC16Ese2vYiCqmJsYqKt639bsUsOuoTIyo1URYFl26Cui0qlgkRNn3E+wfKJtd0wWhgIrClLW5MqIRgbG8PY2BiWl5Zw7/59fP/dd7ibSuHw4cOYnp5uObmn0mlUdB2lchn5hQWMj421dB5z0VpQ57LmSU+ePMHhw4dx/Pjxhu/hbmehRVcRQdM0mKYJyzThKspbuePYaoIU7h67XVYq9BOrKyvILyzgzOnTfT2vZVmwbdsTIQZSkl2BRwZCvbT9KEKhWMSD+/fxbH4ekiThyNGjOHjgQMOmSC3Rxrlt24bOnGljLUo9g2JtCkA3TYAQqDV6DpdSOEyntXdysu9C1J2K3bvQJQRBgJpIVJkhmcxaV5blqvBWy+qFLkEEoUrn0C6GR0bwKyMjWFtdxb3793Hl8mXcvnULeycnMTMzg6HBwYa71aHBQRiGAdOysLi0hLFstvlnbCFItCwL3//wAxbyeZz66CPs37ev5fVz6+V+7jclSYIsy3BN09Me9NHEpG9LbhdliABAdrjeAPCiBslkEnv27u3bOSmlfvdAVdMi02X4UaUQ84D/ihavN00TL16+xPyzZ1hm/VWOHz+O/fv3d72Y0pCWz9R1USmXAXjdFltFWWo3Yiazo64lMbxJkyiKmNqmPho7EbvkIAJo6TQ2WDtjWVFgWxbKlQrSrMXvlmHfo3BpsFdBNzn4DMvrFwoFzD97hvn5eczNzSGZTGJ6ehrT09NIBHc5lEKQJIyMjCCfz0NnAsVm/gc8X1gP5UoFFy9eRKmD5kmENUbqZ3qBRw8MXYemaX3bKfetlLHDagXfOrmD6+ynfmRjYwOvcjmcPHmyr+NGZ2WLQheeBt2A8lw/tzCvIQiO4yCXz2N+fh6516/hUopsNotPTp/2zM+6IDNVkdOQ6cVyueyXIWohSDjF5jPi2DZsx/H0BjX32nYcuADGx8a2pY/GTsUuOYgAkixD0jTYug5RFOE4DlzHga7rW8Qy/mMQki23A+51EBSCdTPJplIpHH//fRw/fhyLS0teKeT9+7h79y6Gh4cxMz2NvXv3QlIUP183PDyMpeVllEolyLKMTAPVd6NOlGvr67hw4QIIgC/Pn2/4/kYg8Hz8+ylm802RmLCsX9GDfi1jtWSnXc1BJwK70J1KI8C9+/cRj8Uw3cfyNdu2YbCdbDyZjF4/QltbVQUtloNzxfLyMuafP8eL589hmCYGMxkcf/99TE5ORmLHTl3Xiya18YwahgHbcUDgeRCEGRsCS7FS9n4QAkUUIdWUm/P2zfv6XL6607FLDiKCkkjA1nXYloVYLIZyqQTdMCArCiRRrKodJoT4pVNRToACK2Xk5+LMuetdGCEYHR3F6OgoPvzwQ7x+/Rrz8/O4ev06rly7honxcUxPTWF8YgKJRAK2bWNtfR2r6+uQJKmqvJOj3uSfy+Xw/fffI5FM4rPPPuu8pCsiE5d2ENuO6ME2+Ry4IU2QfM1BB+SgX8SgVCrh5YsXeP/Eib5Wm1R0HYS59EWd4w5z72rFiMViEc+fP8f8/DyKxSJUVcXMvn2YmZ5GqpE/QQegvEopEPJvBSvQATcWi4WKWBDv4D5B4joFuSZqQCmF6zhIZzKRd3F907FLDiJCLJFAeXUVtuMgLkmQZNlLL5TLSNWr821Qi9wN+OTmRw7Yz2mEi6UoipicnMTevXtRqVTw4sULPJ+fx8VLl6AoCiYnJzE9PY1kIoFioYClpSVIori1DhnVte9PnjzxmieNjeHTM2e67rsgEuK78/UDMpvkbcuCUSdi1BPwevUeL6R1LLxavocyi2ygi2qFPuD+/fuQFQX79u3rWyrDNAy/aVovOv5xNPo0BB5xswI6gpWVFUiShD179uDURx9hZGSkJ/dji2C6lSg52FBJUUKJHv2NUeBnhmmCAlvEiLzqYe/U1I4ep9uBXXIQERRFAVEUuLoO13G8ro2s/l03DG8SqH3YIt7hCswtsXZfJwBtGN6GA3VdaKqK2YMHMXvwIArFIubn5zE/P48nc3OIxeMYGRnBwMAAFhYXMTE+XuWgSJlnPqUUt+/cwcMHD7B//3588MEH0TykEZRqtQtN01ByHBim6QnMer37JaSpj3xUEGqrFUKQg2DVSLtRgH4t0pVKBc+ePcOx48chiiJstlD0Er6nAaVVdr9RI9iUrfb8r1+98nQEuRwAIJvN4vTp05iYmKiuMorYO6RuFLPJ8WsbKoUlUrXEwLIs32CKawp46bNj24gnEn6fh11sYpccRARCCJR4HIZpwrIsaJoGNRaDXqlA13UvL8139j28BhACuO6WlEWUJkGus7XfZCqZxPFjx3Ds2DEsLS35Icr5+XnEEwnkFxZw/L33fCdBno/+/ocf8PLFC5w4cQKzs7ORhpM5+ehX+F2RZVRYrw2TE8Ieox/mT1tMkMKo4AN6g7a+U2a13Y+0wsOHDyFKEg6EqISJAhSeNwD3JOmZ+I0Tg0Dofnl5Gc/n5/HixQuYloXBTAYnTpzA5ORkQ18CAibwjYJgNxinzUZSsKFSPBZrOSa4uNP/3Oznvt5Alv2NB0+92o6DPWNjbXszvAvYJQcRQlVVGLLsdepTVSiKAss04TgOKuUyEsnk1nI7Hj2IYBELOtE5rltlFsTLm2iTLpFhUI8YVF0DgNGREYyOjODkBx/g1cuXePToEZ49fYqnT59iz8QEZmZmQF0Xj+fmoFcqOHPmTE86oBF4qQunX9ULxLO+LTG3TFVVe3Lenppp1UUH7oYdphQ6dVNsF4Zh4MmTJzh06BAkWe5L+avOooogpPd225SiVC7j+fPneM50BPFYDPsPHMD01FT47qxswe2aIDQapw1+XtVQKaTOQKiNxLI51WDloj4ZY8TAsiyosRiGR0Ya9oV5l7FLDiJEPB5HsViEw2w6FUVBLBZDsVj01MmGUb9kqaYEsRsIogjbdes+dP5OoMMFpRUxqIUkCJiemsLY2BhevnyJhcVFrK6u4rtLl+C6LsqlEg6xDpG9MIUC+l+9oCgKKmzHw0nim46tJkjh0wrtplb6pRJ59PgxAODAwYN9OZ/FOi66lCLZo3SCY9tYXl5GPp/H69evsb6+DlGSsHfPHnz88ccYGh7uTOfUZWl0s2e73hG3NFQKsXDXPTrbDJmWBUppld6AUgrTsnDwyBEkEom+lrC+KdglBxFCEAQkk0ls2DYqLJUgiCJUVYVuGH56oe5A5DumLhcxHploxvQ7edC7CV2rioLx8XGIkoTs6ChkWcbFixchyzLu37/vG9CMZrPIZrMYHRmJPCTft94LTGRWLpehs14bPZt4WBrJT5/0ApRCoAQEBAIEUNBQLZs7jRz0gxxYloXHjx9j//79mw14ejg2OBEGvN4JUXRcZAfG2vo6FhYWsLCwgKWlJbiOA0XTMJjJYHp6Gvv274ckin3vOwLA37k3Hf811+UyC3oKQGJzZ6hToT5BsCzLS1MJgnff2fksy8JINotkMtmyMdS7il1yEDESiQRKpRIc1/UiBZoGRVVhMlFMmaUXemaExHNqzcgB0J7YKKA87xTxWAyZgQGsra/DtG0oqor9rEHL0vKyN8Hl85ibmwMBMDg46BGF0VGMjIx0V73ASFdPp8cAsVNZ9MANRJB6emo0XlSp68Jl358b/De/HyylRQP/973u2edJ0zSGMeyXMFolG2tra5tOfIygkMC/K5WKV5dOiCeUFQTP3psQ/+96cJlQtZd4PDcHx3FwaHbW/1mvCBwFUGaufkIborr6B6MolUpYXFhAfmEBi4uLME0ToihidGQEx48fRzab9YSx5TIIIZERA/79uiHTkrUliw1fF/i36zgolUqe0ZEoIh7Cz4AbOTW6Zq43UBWlyiROkCSM79mDVCq1GzVogF1yEDEIIUilUlhzHL9LoyAIiMfjKBQKsCwLpmE03j10GT3g5CDMhBDWajiqfgUD6TRs20ahUAAhBJVKBbIsY2J83G/3XNF1bxe0uIhn8/O4/+ABBEHA8PAwsqOjGBsbQyaT6SiXLcDTYvRkMqgpz9JUFRVmhNUwWhTBuVzXhe04cFhfD4eJUX0iEAgJV0Wm+PUESJNf+srPwV7fyCGRAiCcXLD/8x2caVmgrgvbslAJeHz452IkoZY48B4ZvZqwbdvGo4cPMTMzE8plr1twUR2l1DPHavNzGbqOxaUlLObzyC8soMwW/aGhIRw4cADZbBaDg4NVz4NpmpuLOe28BXM9hKmO2TLWmr/Y82apIQZhUi/NiAHgjTXf3yCwubBsG9PM9vltbrXeLXbJQQ/g6wxcF4Zpeg1CWIisousol8tIp1JAs8HfoUAx2La56evg+R+QZjtq2rztcicYHByE7ThQZBmFQgGmZVW1uI5pGmampzEzPQ1KKQrFIhYXFrCwuIj79+/jzp07kBUF2dFRZMfGkM1mkQyZMySE9E1/oCqKL0CzbLvqM3YCl5m1OI6Diq57zZ5sG7IkeWkk9joaXIgDY0jkC3BwIQaqdv1+tQs2d4oAUBALWMISXLggIBBjQDqVqlok/KgDG088z6tpmh+lcl3Xq6Rhr3WZba3/GfnPKYUkCBAkCaIgQBRFiKIYSYnr06dPYZomjhw+vOV3jULTncKybd/PP5FIhBLV2baN5aUlLC4uIp/PY319HaAUqYEBTExMIMsjaU3GE6XUe7YRvYtmqw0FrxgIHa3gxCBgjRxWkyG0iEzYlgWT+Rtwy2RKKQYGBxFPJJBOp3ejBk2wSw56AEII0uk0VlZWYDgOVNZHgHvw25aFYqmEZCPFcGBX1y5B8C2UQ0YOmqUX+GQdJQRCPE2BqsKwLM8DoUEXR0II0qkU0qkUDh48CJdSrK6uYmFhAYsLC7h+/Tqo6yIejyM7NoYxloZoFboNGzHpBoT55VdYKWs75CAYDXBcF67j+NaxgLcztB3HCxljc+EXCIHAdt1iiBB+6M8SeD/vMdqs66bruv7nrSf2clmKg1JaHelwXa91LivFs20bDjaJD2G7SkkQIEoSBEYcwn4+13Xx4MEDTE1N9XzHSClFpVwGZSHthou563pjenERC/k8lpaXQV0XaiyGsWwWs4cOITsy0laUg1IKuC6EHinwm1UvtEUMGEEslct+r5VkIhGKGBD2/mYolsuglEJRFCgsckBYOkGW5b6UGr/J2CUHPYKmaVAUxbPUtW3EmDAtkUhgY2MDhmlCLJcRazRJdVjBIIoiQEhbhi4C2drJkTvc9YJXC4QgkUyivLQEx3GwsLiIsbGxlsp2gRAMDw1heGgI7x09Ctu2sbS05OkVFhfx5MkTEEIwkE5jbGwMo9kshgYHq0RNfHcctTlSvWmKR4oc294SIQnCpRS2bcNm7XuDRMA/NsvhiqIIVZYhM1tqjdV/BzUCUaN2/LVSb/jdGBsQE4GRGQDgd8TXPGCTPDgsUuI4DhyW63ZdF5brwrRt//OKkgRJkiCxCEOj5+XZs2fQdR1Hjhyp/zmbfqrwoPBsmSmw1bzHdVEoFLC4tISFfB6LS0uwLAuSJGF0eBgnT57E6OgokslkR6SO8mhfj6p/2Enqzhn8/GHhuG7nxCDMsYtFgBAk2BxLAeyZmPBTv7tRg+bYJQc9RCqVwvLyMgxK/egB7zWwsbHh5Q9ZRKEuSPsWy3zHyCfXZju8IKoe9h4SAw6FCYREQmCYJpZbdHGsB0mSMD4+jnGmV9B1HYuLi1hYXMTz589x/8EDEEIQY2LI9MCA93c6jVQ63XvzIBY90HW9KnrgkwH2xwkQOX5Foij6IXVBFCGJYtXEadl2T3PzVZ9jS2+F5vfN4d0Y20kDBHLUnDwERag8usDJAo8y8HSL6TiosEWLEwVJkvzxTynFwwcPsIeJ0HoJg5eyWhZc20Yul8PG+jrWVlexUSj4Jk9DQ0M4NDuLUaYb6Pa79DcSNfbpvUIwgtBuNRBlizcnBomQqQQe9Wv62QhBqVTyzKYC82tmeBixRAKKouxGDUJglxz0EKqqesZIhgEDAA8MKqqKWDyOcqWCUrEIkZAtDUF8tClQ5Aplk4Wmw5IDgBEEJmTrNRRFgWXbGBkZweLSEkqlEiRZxmAXzU80TcPU1BSmpqZAqWcCs7a2hvX1dayvr2P+2TPcZ/XTgiginUphgJGGAfYn6soClZEDyzBQAPxwea34jy9mkixvIQKhEBAfRo+aY7YSpAUiB+2codlRuVCxdjw7juOTLNg2XLD2vLYNV9chMrKQz+VQLJVw+syZ0NcUFpRSFItFrK+vY3V1FasrKygUi75NsiAI3hjLZDA9M4OBdBqZwcHIGy4JggDK0jQUvavA4KjSnLRJDIqlEqwAMWin/XMrYuA6DorlMsBFoAAUTcPQ8DAAIB1hI6m3GbvkoMdIpVIwDAO6bXt++2zi1GIx2Mwop1AsIiUIkbl0SZIEk4Wo1TYXO8pC7r3edciyDMs0EY/H/RLHtfV1P1zeLQghSCYSSCYSmNy71/+5aVlYX1vDxsaG1zlydRXzz575TZpisRgGBgaQYV3a0uk0UslkR6Y1tm3DMk0Ypun5XJimP1nxHS5v2NStKU4vFwJhS7VCi8gBM8tqJ3LQKR3lhEFVVU/DwPQZPCLDxZEPHj7E0PAwJFmGYZqeB0kH98yyLI9srq1hfWPDH0sOMx5TNQ2JRAJ79+zB0PAwBgYGOk4RtAOCTVLmt8ruwzn5+cKeixMDh80xoYlBq3PwcmVKPSGwbYMQ4leITOzdC0KIn+7dRWvskoMeg7skVioVVFwXCTaIuV84dV1Yto1ioYBUKlVfuMQfipA1xpIkgRBSFa4OjWDpW/vvDg1FUXzh3cDAgFfiWCxicWnJK/3sUZmZIst++2nAW5Rc10WxWMTa+jo22KT/7NkzlCsV32ExNTCAwUBqYmBgoG6HOJcRPsM04ToOKCMBhNVbS5KEeEg72JaoGQu9MnraojlocQ6+OIWtLqAhjhkGhKcUJAkIkIW5uTmUKhUcO3bMb3xUKZchKQoUpt+o9xmLpZK3+DPiur6+jgrzLCCCgIF0GulMBlNTUxgYGPBFkoSQvhCC4OcO+kP4JaW97jLI0p5iA/1BLajrosirEghBPGQFh3eq5sQgOH6KLKWgxWIQBAHZsTGILErT65TS24RdctAHpFIp6Kz8TIvHITJWSwQBiUQChWIRjuOgWCwilU57O656DwNPMbSYdCRJAgkowUOzemxO0lG4NTYDZ++WaUKKxTA4OAjHcVCuVLCwsIBsNtszghAEgbeIpVIpb+II9HgwDMOPMGywKMOzZ898A6FEPO5HF1RWripLEhRV9SdqWZYhx+PQYjGYuu67tb1JqB09rUYFjxyEJQe9qh7h4/7hw4eYZm3GTcuCZZqw4aUfNsplGKYJ27ZRKhZRKBSwsbGB9fX1zWhALIZMOo2pyUkMZDIYSKe9xT/w+QzmgEqB0KW1UWGLcRS77l5ege+hEHKeoEHxIbwW96HP1fxCqoiBaRhe+SIhSMRiUGMxDAwNwXEcxGKx3R4KbWCXHPQBkiQhkUigWCyiUKkgraoQmCiJsvB3oViEw3awyWSyvlYgZAUDIQSiJPm517APxBb230OCwK/JsizEGMPn+oNKpYL84iKyw8NIRJBiaIVGi5OqqlVRBsCb5Aosv7yysoLVtTXMzc15Oc7A8VRVhaZpSMTjiMVi0DTNq7dmjbkGBgb8CE+7aPqNdOiP0RRt9FagTCkPtBc5iBo8vHz37l1YloVEIoG7d+96UYNKxbO31nWvVJQtrpbrIplIYCCdxp49e5DJZJDOZFqm5mzb9ogBpf5Y7gdqIwYctKf6E/jVMf7xW8wTnBg4jBgkmF1xmGhDs09Qz7GxUCyCEAKV2VSP7dnjdXYUhF2tQZvYJQd9QiqVgmVZMAwDBcNASpYhgBkRiSKSySSKhQJs20a5XEY8kYBIyNaJPmQFgyhJIG2QAwrUL+/jE0HEJIFHDkzL8n8mCAJGR0awvLyMUrmMheVljAKRaBBaIXRInng94VOpFOLJJCaZ+NFhboC248BgCxBfiJaWl1GpVLzGO4FDyaKIGCMPMU2DFot5/+b/j8ehKUp7kYYQlrXtYqtDYuMyUB418C4lJDlo83pt1piH31/+b71SQalSQYV1xeTHppTi3r17iMViiMfj0DQNAwMDiMdi0NhuUpIkz3shkMKTFKWlbsJ1Xd8eWVaUvuaz62mDeFSrF90tuSVyvW+rkfdBLTGIJxIQBAF2iCZuAjyPi0afwq0hwg5zJAWARCyGzNCQL/ocHBxsS5y9i11y0DcQQjA4OIilpSUvhGmaSEiSr1YXRdGLLpRKME0TAsuZNYwg8B1agwlAYs55ToiHUDcM/P2///exsbGB0dFR/Kt/9a+qzstdFE3Lwv/7t38bDx89gixJ+Ef/6B/hvaNHO7of3FLYYm1ZObhVMgCUymUsLi2BUopUj5ujtDSEYr0ydMPwPSAgCFA1zd9ZttoJ8a555XIZtuOAMrfDSqWCQrGIhcVFVHTddxHkLoVaPI6YpvmLGWFlfvFYzEtnBFwEeXmjGHAX7HYn247mwG+41GAipsCWckQ76GcQ+MOJMl/4y4wI2La96f5IqWdoE4shHothIJ3G+NgYNE3D8+fPsb6+jq+//jpUBMpiIl6DuU867DkVZRmqotQl2ZVKxb+WfpXHkWY+HYHvJkpy4FIKsQEx8E5bx/OgDjEQRTEUeRVa6J7qHaHIfA1kWUYsmcTA4CAAYGBg4K3ojtpv7JKDPkIQBAwNDXkEwXVh2DZUSfL3YZIsIxaL+R39BFH0/ABEcetD0kp3wMyQLKbYbvZqVVXxV/7KX8F//I//EYuLi/jzP/9zfPXVV9XnohT/n//1f8XDR48gEIL/x//0P3VMDABvlwVK/Z7tQXCCQAQBxWIRSysroJR6ltM9RD2CwHcjBrNhhet6DXQSCSiBnglh+k+IkoTBoSEoigLqukgPDGzZmVJKveoGthj6u2P29/r6OkqVSrXYlBA/ssOrTfj4IJSCBDwT6v2RmJdC0KY4+DuT7cY4cvk87pbv+pUBvHcAN3IyWZ8HyjwIbEYEbNuGwwyefOvuwE7XN3vC5uTPUzKxWAyjo6P+/zlR0jTNG+s1WF1bw7Vr1/Dhhx+GIgZ8gZdkGZIsw2G9UUzT9LQwpZL3PKqq/70bhuGVTFKKVCLRUfVDJ2jWnKpKMxQhmhEDfj4/zM+uo1Sp+FUJPjFA6zRSU4fXBgSeuq5vPKVpGkZGRyGy5k39SE2+jdglB32GJEnIZDJYWVmB7roAK6viUFUV1HX9xUAgBDKbOIXaNEOTCIIoihAIgcOMY+pNoD4oxV/6S38J/+W//BcsLy/jD//wD/HFF19URQ/+4//2v+Hq1auA6+L/9rf+Fj49fbq7+8C884NphSAEQcAIjyAUi1heXQV1XQx04YMQBvwuWiyPbJim76goSRK0WAxSnUZKYYVZMlt8LMtCpVLZkjIhxGvapKkqMplM3WMUi0XopgmNRQ38nTjfcfMFOWDBXOs26Nh2lamQZRj+e93AaxzXRcEtwqEOXJeCgOJ1/jWeLD2pMmgSRdFLZQmCZxcsSVAUxScYYg0B4SSEezrU+7nIol/tggK4desWUqkU9u3b18ER4C8smqr61Sdcx2DoOkRJgmUYfrlcP0LWPGLQ7J74aYWodA9c5xTipVxvQuF1ouREMBEgBv7rGkBosPj7pKDBe0vMKlkQBAwODSGRTEJRlJ7PF28zdsnBNkDTNKTTaWxsbEC3bQi27ZfaAJ4HguO6ME0TpXIZKTZpOpRCQM2uoMkOQZIkLxdu203JgcMWvl/7tV/DH/zBH2BxcRF/9u23+PonPwEA/Jc//mP8t5/9DADwf/kf/gf85b/8lyPJaytskWyGkeFhCISgUChgZX0dFECmhw+8y0KhhmH41RuyJEFLJJqa1rSTN4/FYt4Om4Wx2zbDIZ7zmyxJdcVyUZUGcvz5L3+JV8uv4S03BCfeP4H/ft9/X/e1xVIJtmUhHo+3zL/7UYPIrtTD69evsbS0hM/Onet6By2IIrRYzDMzYx1VXdfF+toaKLxW5P3QGQR9DJohyshBu98NIQQQBJSKRd8CvJYYAPXTb5SnLRqM21bjucCiBjFNw8TevRBFMRLXyXcZb1ZN1VuEZDKJWCwGSBKKlQrcGm1APB6HLEm++5rLw7G0TqdE/gDU/Jw/lM38DoLv+PLLL30r4j/8oz+C4zj47rvv8L//H/8HAODcuXP4v/6P/6N/zm6XH0VRYDLhWDMMDQ156n5B8I2LogalFJVKBWvr67AsC5QQyIqCNCtba7mAtzEJiTxdRAjKzLGxo2uO4FrCoB3NQVvuiEKtvVL3cCnF7du3MTo6ijE2lqMAt8JOJZN+OSr/hEW2GPYS7TQzIuiecHUiaHRdF+VSCRZzAI3H46EiKtR16xMDNse0+uSVSgUuS1nN7NsHSZIwNDS0K0DsErvkYBuRyWQ8YZ4so1gqVT0cvEmTKIq+SY+/c2DmLlUPU53KBm7u0qwJUzBXTgjBX/vrfx0AsLS0hP/wH/4Dfv/3fx+UUhx77z38+q//etU5SJcEgVsoh0GG1ZdLgoD1jQ2sREgQTMvCxsaG1ySJWboOpFJI1dn1RAXeZY978HeERguG26r7QbsIV63AqzaAcO6IvdjTzc3NoVAs4sT770d/cEpRrlQ88XA8jszQEARRhEspSoUCypVK5NbjhJ03/CVGUMYYtnInAMe2PZJk2xAJQTwer0uoa4/bsMVzG9fAyVkilcLQyIg/r+6iO+ySg20Eb74iaRpceJ3cqn7POpUJguB1GQsQCF56VyWEq9UdMDMk3uWuFvXCz2fPnMH09DQA4JtvvoFlWZiamsL/83/+n+s+7N1MQoqitEwrBJHJZHwR38bGBpZWVjo+N+ClUwrFIorFIiy2oCYSCaRSKZ8UCAi3a2u31FMQBL+joq94D4sW95yELHcNf7pw9sl+TjjkrjNqN0fLtnHvxx8xMz2NgQZ6jW4QrJRIJBJedUQq5QkURdFrxV4oeCY8EXy2Thwv/fmhQ82Br51p47k2TdPb3LiuX5bdKNIW/DScGNRcQFtpMdMwvO/FsrD/wIHNiOwuusYuOdhm8NyYqGmwTdO3Z+UQ2MNGWOVBueb3AKqjCIEIAiEEoiyDtogeVIEQfP311/5/BwYG8Ju/+ZvNH7gOIwhyyLRCEJmBAe9+sdzm0vJy2+elbAe4vr7udc6jFKqiYCCd3prDZ/n9luiAJGmq6tWNswqFKBFlrnVrb4X64FEDbiHcDLwyIUrcu3cPtuvi+PHjkR4X8Mp9DcvynTH54kcEAfF4HMlEwq8Qqui6p73oxL6cIazGoBZd9VXgz3HI93KBZoU1OeIdZ8Vm2pzAZxKCIl42b7VLhgosWjEwOIg9e/bsGh1FiF1ysAOgKAoyw8MgigLdMLYsmKIo+pasZh0CURVFCD5s2PQ7CJsTzefz+OlPf+r/3zCMUIK5TiYjRZY7mkDT6TSGhoYgCAJKpRIWFhdDh3Nt2/aEoLoOh/lLpFMpxNkuvhF6ImsiBDFWG19pIyTtX0vEi2vrE/LTNkgrBMhB62NGe0dL5TIePXqEw4cORe43YJmmb64T07S6PTUkSUIymURc0/znsVwsth0V4rX9HUceWPSm3bvbqb7AYPdF1TTf4Kj55dW5Pna/OjHDWltfh0MpDh0+3LC6ZxedYZcc7BDE43EkBwchACiXSlsIAvdAALxdTKlGo8DhuK43SfO67SZmSLXvLxQK+J3/5X9BoVBAkpkO6bqOP/qjPwr3IdqcYBRZ9p3s2kUqlcLw0BBEQUBF17G4tNRycTUMAxuFAix2L5LxOFKNrKprEHWonoP7WIAQfwEKi6Z1591dVs2xQkYO2ujGGLXj5u3bt6GqKg4fOtTR+xtdjW3bKDHRqKoozc10CIGiqhhIpaDKMiCKsGwbpVIplA8GpbRxKV9ItNuumUcK2jmjY9ubkRFCEGOuk8Fz1vUiqI1qEM8+vpPPS10Xi4uLgOticHAQs4cO9c22+l3B7t3cQRgYHISSSACEoMSc4YJQVRXxeByAl+crBUWKDFwk6DCGLvPIATNDCiL4UBqGgX/9r/4VFhYXoWka/vE//sf4+OOPAQB/8id/Er5CoA2CEE8kYBhGW7qDIJLJJIaGhyGyvP1igwgCpRSlUslr/EI9R71UKtV2CVoUKvCtB/Xq5Am87yBUhKdBdcrWl0VztULtNNHgvH5IO8QkHSU1WF5ZwcuXL3HsvfeahrSbod6dchzH6/AHT9wbCxmRIIKAWDyOJHtWXUpbpxkiIAYA2xwgXPSmHRLBYVmWpy9wHF8TVe85akQQ+fn8tEkHn9d1HKytrXnznyDg1Mcft18OvIuW2CUHOwiEEAxPTEBlXf0q5fKWCIGqqn6KwWJtjmvLIAHv4XOYU57ALEuDkxPFZhjYdV3823/7bzH35AkEQcDf+7t/FzMzM/hrf+2veeexLPz//vN/bvfDtHwJzw8WCoX2jh1AMpHAyMgIJBZBqE0xOK6LjUIBhmnCcV3ENM0XebYNFj2o98m6WYa5Kx8JGT0Ie66oyEFt5KBRLYTbRuQgqpQIBXDz1i2k02lMz8x0dZyq/zMBMIHnNpqIx9uOjEmyjHQyCYndj1KpVDdSxqsLuiUGLkstUlZx0wydEANd11EulTb1BclkYzJWxyQsGKVw67wmDHj32tW1NRBRxL59+zAZ6KS6i+iwSw52GERJwsDICGJsN2nxCEFg4pBZ4x+BuePxls+14BOOIAighMCpjR6wh/Pf//t/j5s3bwIA/vbf/ts4cfIkAGBqagqffPIJAOCbb7/FwsJCuA8RDC82eVkqmQQBsNEFOQC8lMzI6CgkQYCh68jn83AphWlZWF9f9/oYsPN1nY+uUzIKYLNhT4fgKSPLsjqOpNSCh5i7xhbNQf2j+mWMrdI0EeoNXr58idWVFZw4caI7MhT8TCzS5LLdfCfEgIMLihVZBmHjs8wiWN6pookYAIG+FoLQlBy062HgMqLE9QWKqrbUFwSP7hMfSjsSWXJYto1yqYSNYtEzoEok8BGbn3YRPXbJwQ6EHI8jFo8jnkwCLEJQrIkQiKLo5ctZN7RCobCliRGHJMsApdW7FjYZ/eef/hTffvstAOCv/tqv4csvv6x676/92q/5nun/3//z/2zvg7BJqNG0J0kSEskkChsb7R23DuKxGLLZLERBgGlZmJ+fx/r6ujfBCwJSqVRktc8E2Oqj3+XkLjLffsLU7q3OD4TzqI9iGQ5TyugGdC4tKxW6WCCCcFwXt2/dwtjYGLLZbCTHBKUolcuweXvhRKJ7K2JW9x/XNIB1JOSeAFFEDDhcxwGYyLbxpZC2vBgcx0GJuV4C8JqAtRDvAltdEF1u3tYhyTINAxUWebEMA4qq4vDhw7t9E3qIXXKwAyGIImRmy8pD4LZloVgTIRBE0Vv0mJNiKdCqNgiFtZ61HQeWacKl///23uzJjuu+8/zmvtylVqA2VGEjKa4iCFISRYUkOqy2FG63NdZY7nl02BF+8UxEd8fMy8S8+E+YDj9MTzvGdtvR7QjLbluOaDvstmW3SYoSTQKkSVGUAJAACBBLrXfJPfPMQ55zKvPuW4EE+PsoSgXWcjPz3lt5vue3fH8MSZriH/7hH/CnPF3wla98Bb/0rW91/e7m5iY+x+covPrqq7h+/frY1zPoRjI3N4fGDMQBkNtSHz9+HEkco91u4+7ODlRFkSJq1hR3fLMI4Tu2DSj5PIxwRtGDWZxXVylmj26FYjHioGPO0tvgypUr8HwfTz311Mwe0/d9aczlVip9p0tOgskdFoWw9KZsd+xkUL2BSCOMk06I+T0nE/UF1WpPu+5+iONM+5oHQQA/CPKZDb4P07ZRr9Xw6GOPTfW4xGBIHHxC0V03H0BjGHluT9OQZhlazWbphqKoqhwywhiD53k9Wx1FTltMQXzzzTfx//7H/4g0y/DZp57Cr//6r/c9l29961tQ+Y7jO3/8x5NdkOhj7vhyrVabmTgA8kVKpFyE3fI0FsXDKN2Ip7wJKqqaV31jSGujuOlOdbQxzmuEboVho5rlY81IpAVBgB+/+y5Onz6N2gymdTLkXUBRHAOMlbwMZonGBb2u6/kcgnZ7pLHqo5Bxv5NexkIKxnu/FOsLtGH1BQVkLVNBOHeZtY0IYwy+5yEKQyjIowe6rkNVVTz2+ON5RJQ4MqjE8xOKqqqw5+fh7+3JG4qoeG61WvnAF95WJa2WeVFeEIbIGIPrulK9W5YlR9A6rotz587hD//gD+Qf86Cb9sbGBn7/P/2nmVyX3L3wG0e9XpfOc9PejD3e4aFrGjY3N9FoNBBGEe5ubyOq17FwBH3QCgqh2hns0m3LksN9fN/P8909jglgJDEyagpi4GN0pRW6Kea7BzGLyAEDcOHixXyRmNHuMSp6GTjO0dnv8oW66rr53zNyj4bKiHMIBiEiB8XRyCJtMWq0QLzvRBrBsCw4HW2KvRCvKsuyQ5fFKWBZBo9HcTQAqq4j5sOVTp46hZOnT0/1+MRwKHLwCUYzDFhiV8TD44Zh5JXUnicLhAS246DCBUEURaV5DLquy8U34mOIAZ4/V1UwbrF8L3ajxduM6FiYNnrg+X4eemQsr9dwXaysrOSObYqCxsEBbt+5M7NdWiczcyRUFLg8jzpNm2f5Iac7t+5uhQFphWEL3AzEwY0bN/DRzZt4+ty5wb4DI5IkCXzPgwLAHuZlMCligS6YlFVcN+9k4K3Lk+yuBb06FWTb4Iivf1d9geMMNQcDNy8SbYm9fnbceRNZmqLleUiSJN8kuS5arRagKJibm8O5Z54Z6/GIySBx8AnHcByYIgKgKKhWKvLm5fk+PD7HXGDyVkdVyS2Tm82mvHFblgUoSk+rXvH4UiQctfseP94sOhZ830fg+2BZBoeP180PoWBpaSm3W9Y0hEGAW7duTWy8NIhZeiDoug7TsqCqKrxeDnv3Oq0wQvHlSAOXZiCgwijCxYsXsba+jo2NjakfTwwMgqLko7mPwpefMaDHcCFFVVGpVKRAaI1oltSLYuRmkghEZ31BpVodLJL4tQy0axYdChMUQKZpmtdUuS58z0OaptB1Hc9/6UvkaXCPIHFwH2BWq9BFIRDfWbquKzsQvA4vBN0wUK3VoPGBTaJOweR1B2mS9BzjLELkwGGe8KhFgm4YU3UsBEEA3/dzDwPHgdWjVbFWq+HYsWPQdR1pmuLW7dto95hRMS2zdFF0bFvOXejbvXCP7JO7aw7Kx5U7RwxOK8zivfTWW2+BZRmeOXdu6sfKsgwt/j7QNE0ajM2cAWF2IRA0IRAmjCCIegNN08aajwAgb6/sqC8YNDiJIRcFog2zL2N2YsRxjHarhYwxmLqOquvmnR3tNqCqOHf+/EzqS4jRIHFwH6AoCqy5OaiaJv/YLMvKBzIhHzlcjBAA5cKnjLF88mAcwzTNUmFiv+MJGG9BkhP3joC5uTk0m82xF48wivKe8QHCQGDbNlZWVnKDKUXB3e1t7O3vT3nmZYriaurHUlVZbxCE4dRV7dOcV1daoeN1Eu87ZUCnAsP04uDWrVu4fv06nvrsZwe+1qMgevfBGFQhDGbovwBg5McTToMa//m2540dFZKdCmNEDdI0RbvVkrUWhmmi0se/QLx+Mn0gig0HPD5jLHdqHYIY4OTx6zYMQ9ZL7e3tAYqS1xmcOjXytRHTQ+LgPkFVVdhcIAgM00S1VoOqKLkZUrMJv5BmEO1HpmHIVkdRSTzKWNmSeckRioR6vY5Go5EXRY742GmaSjMZy7ZHMjfSdR0rKyt5a6OioNFo4Pbt2zOvQ1CAmTxHumHAME2oioJ2Mb0w60VsTDqvLBsxpTDNWcdJggsXLuD48eM4OYUTIgDZ1SPOu+K6g3fAkzBmUZ6IIIj22HHmbCiqKj1QRrJN5o8vO58UJa8vKBQwF364FBmS359R14mIDIRhCIZ801PhnVrNRgNJmmJ+fp7qDD4GSBzcR2iGAatjJKmu66jX67KVMQjD/I+K7zQVnoawef4wThIpDAYVu8lipo6bQEkkzIhix0I/B8JOPN9HmqbQNG1kz3sgv67FxUUs8qFNQRjOrg6hUACmqupMhgu5jiNv/mLBGKdbQTLFuajK4NkKoxQjTvtcvP3224iTBM9MuUiIiEHKDYOqlcphKH4WdBYejoGqaXAdJxfvI0SLGCBrGVL+Nzms3kB0O4liZmGDXKwvEBMSxd86MFnkaVByRKTL2rzOQVVVVF1XFkCGYYhmqwXLtnGOZid8LJA4uM8wLAtmpVJanMWuQxQiptwxURQrKooiK/gFfo/BTr2Qt4TOdjZekzALoSDyiK1m8/A4A5wVRUsmgInDwdVqFcePH4fB6xA+un07DzPPkHEiIYMeQ9ww/SDIBzNNcL3jWuaWfrer5qB82x+ljXGaZ+Hu9jbef/99PPHEE1PVBRSFAWMMlULv/izErgKMnWfvRDcMWIYBRdPgceOfnscSryVfwPt6HHAy3hooFmPw4VCV4lRSxmRNQa/jjEs/J0whUMTkWdM08wgnr6vKsgx7e3vQDQOfefxxLC0tjX1sYnpIHNyHWNUq9B67ZcM0UeNRBICPKG40ZGuSGNpk6no+kOjgYKQdsyi061eRzBjLc54TCoVarZZ3LHQUJfY6XsLTCYwx2LY9VW+4ZVlYXV2FbVlQkS9Ce3t7E1eM91p6ZzFG1jDNPL2gqvA8T96oj7yjhNPlc9Bx2GHigPX6pRFJkgSvv/46lpaWcObMmYkeAzgUBuJca4Wiu5kIgxnaINu2nac5ehSjMuSCseh0mIkBa31mKohOhJj/rRumiZowTkOhngDIIx+9L3Csa+g5spl7KIjXQVUUVKtVuK5bSkk1Gw2kjGHj5EmcJj+Djw0SB/cpdr0OtUeoTeWFbNVqFaqYu9Bq5dMdswyGaWJufh6WaSLlCn2sHus+NwkFh+FI2eUw4s1S13VUKpXeXgeixZI/ls/PVdO06YcoIQ+FH19ZQb1eh6aqaDSbuHv37kzrENQJw8xFXMcB+KAtIegmecRJfmfQbAUhDIERPA4m4Efvvgs/CHD+/PmJH0OMXhaLaLVSmXi0cy+kMJhhMaqIiEVhKO2cpTDoeC+Jv7fOmg/RFujxv31F01CpVuE4Tu5tUigw7AXrJxRGoHNSrJgPIyJ+pq5L6/fiMUQ64fjqKs6cOUPphI8REgf3KaJAsecNifds12s1mUuMoggNPpxJ0zQsLi3Btm3EcYwwCNDk3QzDEEcb6pgmwp0jtkPWecdC3+OqKoIgQBzH+US2GbadKYqChYWFUh3CRzP2Q5jWNlhRVbjcqS7i46fHXehn5cVQTCsUBy7NIkpSZGd3F5cuXcITjz+OarU60WOIBZIdhTA4wgiOruuwTBOqpsH3/VwYFI5ZJE0S2XUhzicMw3y4k4ga2raMlhQjfIP+jtUBqb2BFIQSyzL4ngdPTLnkmxeXb146r2Nvbw/zy8vYOHECi4uLkxydmBEkDu5jNF2HMz/fVyCIHUi1ML2x1W6j3W7D0HW4fMIaA3cl4xGGYVGEcZ3XGGN5nnfAgiY6FgY8CEJuC+1MmU7oR7EOIeN1CK0x6hAGPR9yYZ5iITEtS87ICIJgoumGk9QdDJqtMKxTYdLuljTL8Mbrr2Nhfh4PPfTQ2L8PHEYMRN2NKD6cCSMWzk6DY9uyvTEMw77HE86mqqoiTRK0220Evi99Cyq1mhyYNI6V8qTv1DRNkWWZTGdEXKCI2gLDNLtEapZl2N7ZgVOtzszgipgOEgf3Obppwp6fH3gDNngIzy5EEZrNJjRNg6ZpsExThujF9wb5IBQZ1fhHzFRgWSbrE4rU63V43DK1F0IYaJo2dY/7IDrrELa3t7E7RR1CEVEUOM2SItrN0jTt6XQ5FNZr4PJgOrsViq/dsE6FSSMmP/7xj9FqtXD+2WcnEjTS+ZAx2dLb7xwn2vnPaOx0X/gibvNJnVEc9z3PlBcGi8mtne2JwmBplGPOgizL4HmebDVWecF0hZ9LT2GwvQ3TtrG2sYFTp07Juini44PEwQOAYZqw5uf73+T4ouS4Lmq1GjRNQ8YY4iRB6PuIogiWZR1+jxdvjRJFKD7+qIj6hKwwz6FWq4GBdyz0IIoiZGkKi+86RGX4UdBZh9BsNnHn7l3EM6hDGFjcOQKqqsKtVGT0IB1zkVIUZeqe/qK8GFqMOMGCs7+/j/feew+PPvaYnL0xDmmSoNlqyfOq9jH2mQT5uh1h1EBamSM3BBLeB3EP4ZwxhjiK0G61EPKUm2hPFIZnIx0zP/DU5x6FIZrttjxXUQRt9RlklWUZtnd3oRkG1k6cwOnTp4/OqZIYCxIHDwimbcOemxsoEMAYdB5FcGwbuqYBioJ2u41mqyVdFR3eOieiCKPuUCe9wbAsk3bQu7u7XTuYhNs9M0BOogSm750fRGcdQhRFuHnjxsAZECNXrE8pECzThKZpUPhrNwmdLWusx0eG3kNzZPEdj2AwRZFeAUzkqcXnMV+jjDG8fuEC6vU6HnnkkbGvK0kStNrtXARpWl/Hv7G5hx0ipWMoyqGraUcNTMat0YWzoMbTiJNc87RXJdIZLV7foWoaqtWqTAH2enzRsqiqKtY3N3H69OmJa0uI2UPi4AHCdBzY9Xr/3b6oFQAvUKrV4LguGGNoHBzg4OCgZxTBa7fzoSzDdqli0Ssca1QMw8Dy8jI+unWrVMgoiqtSxmBbVldIcpYDj3oh6hBMw4ACYHd3F7du3+5bvDnOuSgTVoOLcLOCvAo8GFA4WTK0AZAW6z9E0WjhZ4ofYkFUO24TDIeueYmw0xWLUeciqii5m96Ioe2f/OQnONjfx7PPPjv2Aie8+Rny6I9w2hvKoAV/jBz9xAw5hmWaAH/dkjQFQ24d3mg288FcyNsfq3xq66jM4qqkKOAFzYwxmLYt6zsGXdf+/j4yRcEGFwaTRImIo4P6RB4wTNdFlmUIm83+xjd8EddUFYsLC9KKOOAjj4MwhMWLh8Sc+ziO0Wg0SlMP+yLy6qJiecTd1uraGt55553cMY3PkWBZlofP0xQG78vudbspfm3WeztRh9BoNNBoNBCGIW589BEW5uZQq9VKC5CorRgJRRnJo77X72mals+JQD6V0jAMaKI9DfnzkaHjuS8u2OMcrrMgkT9OWuhUGGid3LET7vf9RrOJd3/8Yzz88MOYn58f6xzjOJZRFJ1HDEZd1AdJ3lm3KfY4wGDjJC68TMNAGEXwfR8AZG0OY7l9+NipE8bAprimlIvSpCCSVU2TKa9hqau9/X0kaYqNkydx8tQpzM3NTXwuxNFAkYMHELtahVWr5TvCQT/I28/m5+dlKJKx3G3N933ZWigGOAlP+larNVaue9Sb9NraGrIsw93tbfm1kFs964Yhz08UYA0SHbO+lStKPkt+dXUVjmVBA7B/cIDbd+6UWh7HFiZcwI1dB6AouTESb8trtdtIsgwpjwSkw56fcWpEunwOckQkSR+14K3/AcAAvP5P/wTXcfDYo4+O9etRFElhYBjGWMIAQHfkoNiKN9aZjI6oK0BnN0fh30LoMd51EEUR9vf3EQuvANPM2x0VZbgfQGeUasLXqxgpEMLA4BuJCi+WHfZePuDma+ubm9ja2sLCwsJE50IcLSQOHlDsahVWpSJtVQeh6zosy4JhGNB1HW6lApWnFHzfR6vVgmEYshYhjmM0Gw0ZaRiVYTfsGr/B3L51S34t5uLAKlQvK4Ubd6eXQldkYcY7PsMwsLK6igVeixDHMW7duoW9/X1kWTZxCHqcFrPCL8HSdaS8WC3gu8pRjzdqPUDnWcnIAd+99jLjGpe33noLB40GPve5z+WtbiPWb4RhmLtGKkppmt9UiEX7KChGCnqIAulWyP87yzL4fCy56EJQFCWPWPGaIV3Xh0cNJvUs4CR9REGtVpMFhAwYKgwazSZ838fG1hY2t7awvLw8xVkRRwmJgwcYp16H6bo9WwclPHrg8PysaE2r12pdIiEMQximKaMIQjiM4iYovRHQXyQoioLV1VV8dOuWvEGKKMHAnRG/8XXWKgBHV7RYq9WwtrYGl7vNNRoNfHT7thxoMy4jdTHwBSVLU7A0RcYYFF3PRzvzdFAygpFV8Zgj/mD5NHggvq8z4hjCAwA+vH4dVy5fxtNPP43FxUX52qm87a3fWYZhiMD3oQAwpxAGYqGedGDSiAc5fHwRdSvWeAClv1HxN9dsNuXEQsMw4PAJpJqqIkmSPKo24G9jWmksREG7IArMgihQNQ1pmkJR1YHCgDGGFi9YXN/awsaJEzh+/PiUZ0ccJSQOHnDc+XlYjpMbk/S58Sl89+HwiXBi7LNlml0iIQrD3BedLwhJkqDZbI4eRRAioU+udW1tTe5QsizLK5+V0d33pJ8CDq19j2LMNJBHXI4dO4alpSXomoY0SXDrzh3s7u5ONZ+h5wKXZUjTVDojFgsATdPMizUVBS3P67Ku7X+wUdvcOsVBoeYAPQyQRMh8BJrNJt64cAEnNjdx+tSp3ueodPtDhHw3nSEfRjaNMFB4WuSoagsUQE5PLAqBnhX8aQpPiIIoKnUh1Ot1GIYh39NJkoBl2UBxMOm7PkkStFutnqLA4aJAXJsw9xr09+/5PhqNBtY3N7G+sYG1tbUJz4y4V1BB4qcAh3sgRL4P9BnOoiLvYIiiCHEcIwgCecO1TBOmYSDiXy8uPhljUHgUIYwi2JY1cn+1AsjJheK2sry8DF3TcPv2bZzc2gIwnWd/MQUhbmCqopSK0KZpKwSASqUC27axu7eHdquFVrsNz/exuLiYz0QY95z5+Qhr4pRb/xYXrs5pebbjIElTWVxarVaHLnSjpoS6TJD472Z9DJBGTQkkcYxXX30Vruvmo5iHvQZ85x0GgZwoatv2WCO7S9fBxcBM2xN5hIDJ/8xrQIa9v7I0RRCG0k0QyJ9Xm6f7gMMixDRNZdRAUdVDcdBx7ElIkgRhEJTMyEzThGVZUhAIFEU5fG8OEgaeh/2DA6xvbmJtbY3cD+8TKHLwKUBRFDjz8zBsu7ybLv+Q3KGIeerFdIEQCfVaLS9e5DcKlfe6R3GMNEngeR4aIhQ66k230FWh6zqOr6zg1q1bedsWGz6jfhyKN89OM6bOlr5x0DQNx5aXsXzsGHRNA8sy3L1zB9vb2zI3PyrFuRSJuPkO+FlxXaIgLOG7z5GYaLedyfeG2tmuxjtMRngQvHHhAgLfx/Nf+MJIA3YYY2h7Xu67wds5JxUGxR3vVIhagUJUQBQCjzK/IONirlGwGdZ1HdVKBbWO1sRiwXCcJECWQTeMUhfKTCIF/P3aK1IA5IuGgkPBDfSOUCiKgsD3sX9wgLWNDayuruLEiRMTniFxr6HIwacEVVXhLiygvbODNI6RZlme0y0szAoOixODIIDneajVanJ3JXa0pmnCMAzEcQw/CKCDh/DFYs4YvDRFEASweCRhnDar1dVVXLx4EVEhrDprxO26lN7oDPWKCu9CSHvYDtB1XRiGgf39/XwinufBDwIsLiygUqkMPa+MMTDeyy6O16tYUUZECoubaCVr8+l3uqaVTKN6MsLi2OuapW1yr5TCCFy6fBk3PvwQX/jCF1Ct1Yb+fJqmaHuenM9RqVRgGkZXrn5UhFHTuOJA/B10vk/E98QCPuxx0zRFGASICsJR13XYltVXKKmqCk1VkTImxbdpGJOnQnhqIgjDkoDtFykAcmEgWiDTNB1Y0xAEAXb39nB8bQ0rq6vY2tqa+XAu4uggcfApQlVVVJaWpEAQux0hEsDbkBzHQRhFeYgxiqRlcZFeIkEsZEmSIObiQ4wYHkUkiEVobXUVFxjDnTt38q6AIxzbKq+rx2ILFNIR8guHggGFRbsosDRVxdLiIqqVCnZ2dxEnCbZ3dtD2PCwsLMDocT3SqKhj1y0EWedSU0qXFDB0HbZt5+IuCKDp+tDIS9di10GnG76IPgGTpXx2dnbw9ttv46GHH8b6CCHmOI7R9ry8TY779GvFnDd/300kEjp/p7gLLyz6RYHUeRQR3heRqEH0EgUGF+SjRE9UTUOcJEiSBKqm5S6nY5ImCeI4zuc1FN5vA0VBoZYHOBRJAE8toiCOsgxRFGFnZwfLq6tYWVvDqVOnSBjcZ5A4+JTRKRCA/IalapqsAVAZg+s4aHseAt/P3QEHdBiYpgnTNBFFEaIoKokEz/dly5+ISliWNfBGUalUUK/Xsb29jfmFhelb00ZgmEgoUgqnFuoYRIRB5JhNy8La2hoO9vfRaDYR+D4+CgIszM/nERn5gGy0jg+glBLpd562bSPhC0i73UatWh08AGnYDrrj+c/AkPHFrSQORijoC4IAP/zBD7C4uIgnn3xy4M+CMfhBgDAM86JZ7nrY61qEuM3StOv90tneKgsPC6kAIQCVwx8qP3Yv+Os9SqQgSRKEYViaj2DqOqwxJ4xqfPJilqb5cKIR/zZYliGKY8Q8/ScvgRssmXw8dCeiw6Lz6ooiVil8Fl0JjUYDSysrWF1bw5kzZ0gY3IeQOPgUIgRC0Ggg4jsyEa5VecGiZVmyONH3/dIwFFnh3XFDFCIh4zuHMIqg6zpSXmyFIEAQhjANAzZvyep301hfW8OVK1egPPLIkdojdzKOSDj8UaVrgSn6LtTn5mA7Th5FiCLs7O6i3W5jaXExf35GyNGXbsCF8+u3KFVcF03e8eH5/sCURuc13vFu47Z3O7dJBnDXu1v6/l3vLt7afjtvMfU1LDtLODt3tud7ovM4r/3wh2AAPv/5zw8UfYwxtNttGbq2bFt2ZPRDAR9bnGWynkARYX7+3yINIR4nKyzsI7/PCs89w+BUkwjbJ1OKguIinXAhOYrxUZIk8u+4iG4YsHhbci+BUYpYdXy/+H4V3h5CJO/v7iKKY6xxDwOKGNy/kDj4lKKqKtz5eeimCb/RkOFFGUVQFLiuK+2CLcs6DOUWblS9bouqqsrFX6QmRPohjKLcuMb3YZkmXNeF7ThduevV1VW89957aLVaqPfKSY+wS52GTpHQa/fU/5eVrgXHNE2srqyg2WjggD+n12/eRMVxpAPl4a8r8nGkT0NnzQH/3O+cFFVFxXXRaLVyg6QgkGO5e/48f6w/eO8P8Uc/+aOBl/fP2/+MD7c/BAPDDnYAAC+e+Cr+j2f+94G/984772B7extf/vKXB55LwgtbxfvLrVRgCBMs8ToUd+2FKIBw6BNtu+J9XXyeOgsoR6IgiEfqxOglCgyj9Hc0FEWBioK9MxfxSZpC07Se6Smgf9pA03UYhpFHAvss2DJlht7vrWLUrFhIHEcRdvb2YNs2tjY3sbq2hpWVFRIG9zEkDj7lmK4LzTTh7e0hjePDKAJjULl/f6k4scAoS7Ou67lpkuPkNyw+qyHgAsH3fZimCcd1Ua1WpUhYWlqCruvY3d7G2upq9wPfg1QDUBYJYgFlQzoI+uXwFUVBfW4Ojuvi7vY2Em5F3Wq3UeWpFI3PlABQEiRM7IaVw7kVojJeCCXWIUhUTYNr2/ncDN+Xr0UvGIAoDfGdn/7J0OdEQ764pThMhfz9h/+AX3vs17BkL/b8nY9u3sRPfvITPPnkk1g+dqzvY4dhCC8I8op4UV+gqjKvfXjC5ToQoFD3IQTCCKmaUbwNpHfGEFHAGJMCuJgmMg0Ddp9cfo+D5UV/4jFR/jsTw410VS093rC0gWEYg2t3ehS99iLjxbKiS0lRFLRaLTQaDSweO4ZjKys4ceIEDVF6ACBxQEDT9TzN0Gwi4h71QiRYto2Q74BEcWIvZKi2z822WJvgui6iKJKV/CFPQTQbDbiui1qtBsMwsLS8jO3d3b7mTfKxAVksddSSQQHyCYMYsFgMyeFrmobjx47B930cNBqIwlC6x1VrNdSr1Z7eAQKZuii0YBaPVzyyYZowkgRRHKPZaslpefJawKvPswyaYsDUTIRRCAYGBQo/FkPGMvk6qFCRsgyhEiFBHvY3NRNVvVJKpygsH+7Tajbx2muvYW1tDQ899FDP540xBs/3kfCaFc0wpPtk8VxHReHPsxwO1YsBwqAo8AbWn/B6ERG6L9aEGKYJu08uv+cxB+zYBRH3NzB4C+OkaYPScQH5nh6EEFIKv+YsTbF/cIAkSbC+tYXlY8dw8uTJkQoriU8+9CoSAHiaYW4OumXB39/PnQlVFeACwff9gcWJxVA4gIE33s60g+d5aLfbcgFrtlqwbRsL8/O4efMmwiDIW7b60FWkh6MVCV11CR2RhEHHFgs6ADiOA8dx4LXbOGg0EEcRWs0m2q0WatVqHknps7DI51vkfAdEM1zukJkmCXxukFR8DRVx01cU/KtTv4D/8pM/kq6Ih/9/uHPXYUBRgBSJ7GT4xubXYWqF+Rf8+cnSFD/4wQ9gWRaeffbZvm2Rnuflz4uiyPfGSLDBxj+igK/Xc9Or60C0Ig5LHBQFQVG8qko+EMsasX133GLbJI7l6OZGszl22qATdcBz14kUoYzJNILjuljjrocrKytjXQvxyYYSQkQJ07ZRW16GxhdjVVXz4inu5d5sNkdrGRvxpqfrOur1OlZXV3H82DFpahMEQb4wKgquXb0qbZtHoVSZPtJvTIYiPkQr6BCKLYBF3EoFa2trWOLukFmW4YDPajgo1IMUEQuPuGEP60aoVCqAkjva+QPmP/zSmW+iort9vw8AekdawVAMfPuhX+55vRcuXEC71cIXnn++ZOgjiJNEWmWL8xxFGLA+kZJeDGuFFVGvUvFiD4SLYbPZRLPVQhhFMt1hGoZMDTkDCm0BXjipdJpSDz6/hD9PbT5aXViLK7x4uMrFpGVZQ4WBwlMXI7sp8hSCSDc2Wi3c3d3FwvIyNk+dwsOPPELC4AGEIgdEFypPM4TNJsJ2G7qioFKtotlsIoqiPDxdrY49ZriXmY9AURS5k47jGM1mE2mSwHUcfHjzJupzczJUajsOTD5Bchii6nqaiYmjHENcA5AXkPW61mHiplKpwHHd3DGPz7tvNBp5USa/+YsbvwxBF4b4iK/3WuBUVUW1UkGr1UIUhtB1vTsawxiqRhW/dPZ/wh++9597nqPK/wcACfLc9r/Y+hdYdrqn6129ehXXrl3Dc88+i7m5ua7vh2EI3/fzxYq3KY5arNcVqRr287z/vggrREz6iYIsy5DEMSLeGlrE1HXopglD14e+t6SfCHAYaRjwO8IiOYlj6RTq+35ejMhTdNIwadTnoJDuYqP8juhC4PUTWZZhb3cXaZZhY2sLx48fx+bmJqURHlDoVSV6oqoqnLk5aDzNYAK5QGg0coHQbKJWq6FzIM4gRC/6sApxwzDyuQSui2aziXd//GN4vg+HhzPbnpcvbroO07bzm7Rh9F1Y5M4QRxtJEKhKbkVdLF4cZXS2+N1qpQLXdfN0w8EB0jTFfqOBZquFWq2GaqVSyk+LHaRs3+uTZtB5C6koMFUrle4bu6LgF0//Iv7synfRiltd56cjFxQpUjAw6IqOX+kRNdjZ2cHFixdx+vRpbJ08WfoeYwye58k8+SijlgcJy1EQ8zSKrXmlyvuOY8VJgiSKSmZFAOT7TjeMkdIGoniv+Hr1uo6MdyEkcYwkSXoKyTiOoWsa6vPz+eyMoQdn3SJqDFEgfSBY7si4s7MDt1rF+toa1tfXaariAw6JA2Igpm1DX16Gt78PmzEwvvuMowi+58HiIdSRRUJx1zRksbQsC5ubm7h69Sr2dnaw+fTT8D1P7uLiKIIXBKUbtmEY+eceu7lSOxvyHf5R1SbIXRqv2xhWVNmJqiioVqtwKxW0ms08kpJl2D84QLPZzKvBRZcCOq5D9Pf3EAi2bSPJMiRRlBdAVqtllz3GUDEq+KWzv4Q/+PEfdJ2Xzm8ZMfKF/WubX8Nxt7xI7O/v45WXX8bS0hI++9nPlr5XtEEGjxbZAyyepbCbQdRH7ShQ7BRrxeK+4nc0VYVhmjB1feTiQtFVMuis0ySRboedUQngsNNH13VEUQRN02CZZj49dRCidmLc54yLAoUdOh6yLEOz2cRBo4FjKytY5tGCkcQJcV9D4oAYiqrrqC4vI2g0wHjNQZt3GiiqCss0kQGTiQTxn+i+kSqKAsuycPLUKbz77rv47Gc/i6XlZaRJgjCOEQYB4ig6HDRUEAqqpkHnBVqGrnflncXxip0Oo7ZzjYJ4XAVAiu7d4qhpDlVRUK/XUa3VDkVCmmJvbw9hHMN1HFRdF2pnF0m/glBFQdV10eJ57DYXCEWfCUVR8M3T/wp/duXP0IyapV83eOQgQQJN0btqDZrNJl566SVUazV88fnnS9GcMAzz9ww/j1qvyEXX6U73ehSnV8oOCv7fAOTQsJjXDwhURcmL+0xz/FRHH7IsQ8wjA2KqYhGVT1jUDQO6ph3WlXBTsTiOc8vyAc9Zp83xiCdeEgXAYVvm7u4uMgCbJ0/KNkVKI3w6oFeZGBm7XodumsDeHjLG4PMuA1VVYeh6XomPMUUCR5qvdNwwdcPA+vo6Ll++jJ9euoSnn34amq7D1XW4jpPv9uIYEW+3TLjhD0O+8yoKA4OLhWJImHUenzN1xwO/ll7zEgAcpgGA7h7+HhRFQpOnGLIgQKPRQJqmWFxcRMUtFxKK3V9XFEHJJzi2uAOh8FkQAoFlGVzdwS+f/RZ+993fLz3mYeQgwc9u/gzWKoceFJ7n4aWXXoJt23jhhRfyiYHg3Qi+jzRJ8jZFXUfFdXuG5adNH+SXp8jHKr6fFOTRA2Fl7AdBqUBUAUqCYJQ0R68BWMWfEe/JmFsed56nrmm5GBgwAyPmwkDhEYxOoVtMmfVyNOxLD1Eg8DwPu7u7cKtVHOdjlo8N8KcgHjxIHBBjods26seOQVVVZHyoUou33um6fth/jwlEQo8brMFvmlsnTuDy++/jsUcfLU0aFGFXKRT4jVS0e4VxDMYHEKW6nnvb+36+S+M7NI1/FOk850kXrb4OhoV/i8LOfjlwdPzs3NwcatUqbt+5g0ajgSSOsbuzg0ajgbl6vWR1LdIbiqLkYWZRuMgLFIXFsoggFPPjv3DqX+JPLv9XNKIGAECDXliEGH7loV+RxwnDEC+99BIURcGXvvQlWJYFxhiCMMxnI/BzsW07r6jvTPlMmT4oRgg63SkZY3k+ny/UostAiDYhGo0BM0S6jtPj31mWj7JOC8fqROOCVYiBUQoZgzBEFMcybVY6fsFXYmQGiAI/CLC3v484inBsZQXHVlawtbVVek8Rnw5IHBBjo+k6aseOAaqKve1tRFGULy61mtx9TiUSisfi6YGNzU28f/WqFAi9KDoAxtwtTjjKiT7/KEmgIo9IZFmGqONYGp90p2matJEGUDr/bAShIP3mR2y/BMrRC+HI1+8oqqahXq/DMk254CVxjJ2dHewfHKAiHCcLoqcUUuete9VqVbYStlstVEQXiqLA0R388kP/M/6/H/0uAMDgt4sECX7mxItYr6wBAKIowksvvYQkjvHVF1/MO064p4JYhHTDgOM4XSJsUlFQivR0mkAVduxCFJR+V1Ggqyp00xxeWKiUHQsFRSGQcSHaK3qg8PSEeG+OayccRVFerJgksG07FzAd5zcyA0RBGIZoNBp5sa+mYX1zExsnTmBtbY3SCJ9S6FUnJkJVVcwdOwZN17H90UeI4jiPINRqpRbHaUWCmFkfmyZOnDiBS5cu4ZGHHhrau24UdlkxzylHvDo+40ZEURznOVrG5KKVpmlJMKiqCk1V5ehjrZALlueI3imIQS1ywxA7bXmMPguPoqqo1etYNk0c8LbHlBvkNBoNWLaNaqUCx7YPUxkFh0cxArnVbiMVEYRKRV7PL5z6l/jP7/0XtJN2qRjxf3no2/L5euX734fvefjyV74Ch0/zjLnTIZR8RofZw1mzM5UzynNSSj3xz2LxFEKg14RLITJ1TZN+Bj2LREUxn/xPHnUQQiDLkCZJ3526qqpSYA7qoBmVUEQNuLAYp3VRMoIoCMIQLMtgGAYeffJJnDp1qudrRnx6IHFATEV1YQGqpuHWtWt5/poLhK7iQkBOfizuFEfZMVqWhTAMZefCB1ev4qGzZ0e2TBZCwQUQxXHeotZhNytu+vykSueVZVlp1K6iKLlQEIKBLwhdKKO7z41CZ35bKdQIqJqGhYUFzM3Pw+NWzFEUIQwChEEARdNQcRxUKhV50xcpAk3T8hQDL3Zse54cjWxrFr668RX8t6t/KYsR16tr2KidQJqm+P6rr+Jgfx9f/vKX4TgOms2mfGzTNEuTNztTM6M8N70iBDJsz6NBvYyldCEG+Efp9QRKr7/4XsqNhaIoQsIjA/3mMyjIC3XFay8+ZlnQmvBrC8IQruP0TMcM+n02SBREERoHBwiDIH+fZhkWFhfx3PPPUycCAQBQ2KRbG4Io4DWb+OjqVaRpCkPXUalWhy7aDJDGMMNuemEYot1u4+2338bu/j6+8Y1vyHCvzC2Pec6RqE1IktKwGoHISXeeW79z1ToWC6YoSJLkyNolwyhCu9WCYZqo9hjJHMUx2q0WPM/Ld9P8vA3DQKVSyWcXaJosXEy4uBM/4zoOFABhFuN//d7/hnbTQ0Wv4v/6yv+JNXcVr732Gj766CN88YtfRKVaRcIHd6mqCtd1y5MmMfrr0ymCsjRFzF+jJEm6dvwK8udeioEBi7TwhQiiCKkQAEmChAuDfudTFAAiejQrIcDArWo7CnKbrRba7TaSNIVl26h12F73OdmBdSudogAAHNvG+uYmHn3iCUohEBISB8TM8Npt3LxyBVmWweQL0DgoA4QCYwzNZhO7e3t49dVX8bnPfQ6bJ070faxJ3tTFYjLx717n0VmINtBdL03lQiJ2loqqQuWL6DRFeDFP5ei6jlqt1jWlUJ4HYwh8H612G0GHdbLDowmObYMh9+5v8eFbpmnC5T31d7a38b2//x6+8LnPY2NjA6+/8QauX72K888+i7n5ebn4O6LgMH9yRr8YUXHPmBQBIjrQ+fyK57IUGSh8X9hUCwOfjP87yzJkaYo0yxBGEXrRmUZS+0WFZoAyYCFPkgQHzSYaBwdwKhVU+qRmxOOIa+33XgqjKB+/zh0pgfy1r9VqWNvYwNaZMzMTO8SDAclEYma4lQrWz5zBRx98gCiKoKgqHL77HIVBaQdR6T5Xq2F5eRk/ee89nDhxou9ji8VKhFdlMd4AxK5Q3ISLhYxCNHTuLcXCJYr4Ct9AhsP6BgBdk/PkufIFCcgXp86PfgJC2jV3VOd3LsoqY3BdF67rIkvTwx0pLxr0PS9vD3VdVPhHu91GxLsMHMdBliRQkC/K77z9Nq5dvYonnngiFwa84NC27ZF3nuJ5yXgeX3ykfCRw53WKiIAQWCICkCSJLDoVjzGs60OkIUTRqc7FgHi+j4quV3DAOYouD4N31PSaS1EUBeK/OxGiIPB92YliOw7m5+ag6zrWNjawtrk5zWURDygkDoiZ4lYqWDl5ErevXUMYhkjTFK7rHprsDAl7ApA3vKL1rKLkfvKhYeDUyZP4p9dfx507d7AywMJV3CqVHmHokfLdYlEqLHid7Wop39l2jk1WlHw6n/AwKB5PXh9fyFiWIRnS1SCeA01V88gDfz7F8dM0lQWAndGX4iAeTdcxNz+Pubk5BGEIr9XKPQjSFM1GIy9itCyYlgXGW1UVVZU78Rs3buDatWt45JFHsLqaexy4rltqLwUgOwSyNM3bBjs+F5Fjngu7X1VEV0ShKBcC8v0j8ul9ni9VRGgKAkvjn9Mhu+xZUEoVFK5xFBL+vAdBkDtI2vbhuRbbF4ekD5rNJgLPy5/PgigweFHj1pkzWCLvAqIPlFYgjgTP83Dnww8R+T4U5KJBDPqZ1GBI4eN3m80mfvDDH8IwDHzly1+e+BxlZGHiR8gpVsuLSIMg6nDeEygAFE07dDLsaMXj/xh4bowxNBoNQFG6ikBLXSEdoqH0PVUFGIPn+/DabSRxLG130zSFqmlwLAstz8OFCxcAAFtbW/nAHb6jFeIoS9N84S2kAsQuXn4uXGdx4Zafi/n8PiJg0MJf/Fo/oj6zC6al9HxPcVtt+z729/aQZhmq1SoqfJbGKGZZYRii2Woh8Dz5mktRYBi554Wm4czDD6M+Pz/xORIPPhQ5II4E13WxefYsbt+4gfb+PlqtFmzb7plmGFUsiAFDhmni1KlTePPiRezs7WFpYWGic1Q6Pkt3ucJNeBQBoaoqTNNEMSMsUhG6rudGTHy+AuNhcwbIaXeTIM5VhJYzETkoiozSL7CSTXTXnoAx2JaFWNMQBgF8PhY4ShJsxzG2d3bAAMzVaqjVagh8H5quH45/FiKHo6Cw+Kuq9IwQEQEZzeDnJaMdfJcr0yoF4SBrNqbY8Yt6hEkfoev3ekUwphAGaZahxaefWrYt5070i5JkWSanW/phCCQJGH9uHcfBXK0mozqMMTiVCk6fPQubTI2IIVDkgDhSGGPY393F7u3bSOMYmqahUrDqnegxATQODvDSK6+AMYavfe1rMI6oaKx4zH7CYdAAJ8YYoo7itwy8voILhmLBXPGzSDsMot1qIWUMruNA1/WuxV9O1+s4J/G5M0pRTIP4QYBWs4lbH32E3f19AMDK6irm6nUYhgHLsmDZNhzTzBdyXYfGd/9iJy8EQ3HxL/679L17QMZYVxtrJ70EwDQL/iiIR9/b25PRoMWlJVg9ihCzLIMfBAh8X/oTFN+bdocoAGOAqmJ1YwOr6+tUeEiMBIkD4p4QhiFu37iBsNkEA/J++x5FVp2tif1uY2mW4ebNm3j11VdxYnMTz54/LyvklcKicy8o/gHJQkh+s86QpxYmWVzETl+Me5aige9+kWVotVpIkgSWbeeFlB3XLiIL0phKpBTE88SYNAUShX4Zd1yM4xhXrlzB7du3Ua/XUavVcpc+04RpmoePraowLUt2KliF+oPi7YWNOGzqKIl56ufjEACddEal2u02dnZ3kaQp5ufmSn4DaZrm0QEuCISgEh4Xjm3DdRzYjlN+jhmDU63i1JkzFC0gxoLEAXHPSNMUO9vbaO7sIOUT5lzX7b/rxuAFPkkS/Ojdd/Gjd9/F5557DpuFqmtRzCh3qrO7jLFggKxFKKUnCjn14mfRXdFZi9CzZZIxeEGAKAhg2zZsxyn/jjheR8i/8zGEUIiTBIHv510ZaSo9JT7zyCNYX1+HoqqIguDwehSlq6ZCuE0KkeBwy98ShesrRl5k6Lx4/f3Ov/A1hbFyR0qPnxVnGERRV4HqvUKIxs6BUEDuSXHn7l3EcQy3UsH83FzeTeL78IMAURRBxtoYg6brcBwHjuvC4kKtE1VVscKjBQQxLiQOiHsKYwytVgu7d+4gbLehKko+EXCEtIB4oxZvg2EY4pXvfx+7e3t48cUXURvg7lZqkZziGsYl5X4HR/GnFoYhfM+DaVkjD8fptGVO4hgBX/ShKAiDAP/81lvwwxBf+PznYVsWGIBqrYY0SdBqtXJnRVWF47pIkyQPc/MR2qLTRAgTXddhWhZs/tGrLe9ekPKRyfcSKVoKtRW9zuvOnTsIowgMeb1OGIZIeDuwEE06FwSu43R1h5QPyuDW6zh55gxs2z6aCyMeeEgcEB8LYRhid3sb3v4+0iSBy3dAo1K80e7u7+Mf/8f/gFup4EsvvDC0116MMe6cAXFUiDRAMkUBYj9i7oKo6zqqtVrfn1N4V0LxnGIuCooFeoHv44033oCu6/jiCy/Atix4ngeVT74E8khIu9WSEYMqn8gJQE7qDMMwnyYYRaVx0YxxTwQhFmz7yEyGijDGEA+wQ57ZcXAYsRnUailI0hS37tzJXQuj6FAo8zSPaZq5IKhUoI/wPKmqirUTJ3B8bW0GV0N8miFxQHxsZFmG/f19NPf2ELbbMHUdjuuWFu1RYIzhg6tX8cPXXsPDDz+MRz/zmbFtYGV7X7HNb4akWYa0YIg0s8fl/gSKqmJubg4ADkPzPSrpRYGk8KAQXQWmZWF7extvvP465ufn8fwXvwjLNOUQJcuyYBTEW5ZlaHue9DPo2s1yQcAYQxAE0tQnCsOu4ki9w/pYjDM2ZjC4SD5PInoz4+dfRrN4/r8XGRdicRwfOj9y86a250l761qtBovPo7B5hGCc66/W69g8dSpPLxHElFArI/GxoaoqFhcXYZom9vf2EDSbaDYasG0bprDgHQFFUXDy5EncvXsXly5fxly9jpXV1bzgkeevmaJAKexgOxFh32KOX5lhZEFBXgMhhuHMAtHfD0UpLVKSYmcFtwwOwxAZLwwUtQGmYeCnly7hnbffxubWFp49f16aD4nFvygMGCDHPXvtNqI4hud5yBg7DGMXRnc7jgOHL1hpmuZCIQgQhiHiOEbKfQfCMCycOuMPk7dBFoWD+DBGHIEsTI+mFQadxbLFNkwxpyGOY8RCAHAxIA2qOCKy4HkeAt+HwhiWl5awvLTUXVA4AqqqYn1rC8dWVqa6PoIoQpED4hNBFEXY29uD324j9jwoWQaTF7WNGklIkgR/+7d/iyTLcP78eVRctyvn2pX3FTu+ESIGvSZJjnobFy2LAHI3xGF/djz1Ic95QDX9wcEBsixDvV7v2mkWRYG4TlVVcwFmmmBZhjcuXMC1a9fw2GOP4dFHH5XXJ6ISUBTMzc31nDUBQLbVAZBFpj1FWI/zT9M0n4JYsKiW0xb58Tp/q2SkJMYj8ymZQkSIqAND/r4Qg6VGpTh0SxYQ8msq7v6LH9KvAd2dCGLcshA0URQh4NGbarWK+YWFsQWooihYWl7G6sYGjEE1CAQxASQOiE8MjDF4nodWq4Wg1ULkeWBZJkf/juKNcHBwgL/9u7/D6toazvKCrJL97IBjF9v7Sja13T8s/1kSDIOKHUX7IX88sfCJ3xslP92PZqOBhC8ywrEwiWNEcZzPuODnpXFRYPDq9igM8eqrr2J3bw/nz5/H1tbW4XUh9/f3PQ+GaaJSqcgogrykwrVGUYS25wHIxyVXKpWSbXPnczEKjDEZfi8KhphP05RzFMR58Oex2KEhagxESqffUC/xGMIdcpA7pVj0xdUVnwdd16EbBgxdh6brcly4eO+maYpWuw3f9xEGAUzbxsL8/FjpA0VVsbi8jJX19VLbKEHMEhIHxCcOkadut9toHxwg8n1kaQpT12HZdu4NP4BLly/j4sWLeOqppzC/sJCPKHbde9ZjL3P+KIgHdEcM0hnlv8WQJF3XoWpaSRCItjcRKRC0mk28/MorSOIYz3/xi1haWup63FarhSSO5eyETnFQas0EECcJ2ryTQVWU3Oyq87Uq+ClM6ytQjDQUQ/hFQSGjIEIcoNAqCkh/h+I1DUNOhOQiQOciYFidS8w7PZI4hh8EMC0LtUplcOdBAVVVsUCigLhHkDggPtFEUYRWq4XG3h5i3wdLErnYGYbR82bOAHz/lVdwd2cHn3vuORiGAVVVUalWxy52nCWigh2A7MnvNXdh5MfLMkRxjGazCc/zYJomLJ5G0VU137WaZteidffuXfzgBz+AZVl44YUXukdrKwqQZdg/OAAYQ42nKzrFgbim4jOacWMmIXyqlQr0fq2LnV4GM0A8p6xQ/ClSC+g413tpyCQiK0L4iojCsLHmjDGomoal5WWsbGz0HdtMELOGxAFxX5AkCdrtNva3t/NIQpJAU1U5QbBz0Q/DEH/z3/87HMfBk08+mReuKQpcx/nY+uzBGNKOPzexg84KFrhFF0N07GxFDYGofFeQG+iEQQDLtlGv12GaZs8wdRzH+NGPfoTLly7h2PHj+MIXvtB3sUmSBK1ms9QF0Usc9L5MhhYfCQ0ABh8H3TfN0P0Avb/c47+FeZI4bq/Cw2K9x72GMZanEMIw7xSJYynW6vV6f4HCa0MWFhexsrFBkQLinkPigLivyLIM7XYbe9vbCFstZFkGTVFgWla+KBYWoJ3dXbz88sswDANPP/00TNNEmqaHzowfQxShmCcXCIHQWdVe/J0oihBFkfwZ8XO6rucCIYpgGAbqc3NdoXIAuHnzJi5euIA4SfDE44/j7NmzPRdrkSoIeJGhaZpw+e52VHEgringxkgCYa9cKlYs3n4K4oghj65k/GeGjViWsyh63M4yPsPiXhPHMTyeEkt4jYSu60izDLVara9vgappuShYX5eRIIK415A4IO5LxI5s9+5d+M1mXnjGGDReFS565f0gwMsvv4wwDPHcc8/Btm0Z8nZdt+d8hyM9b6DvLpYBMhwuBIEovhMLI2MMpkgX8EK3NMvQODiAwrsKZIW9oiDwPFx8803cvHkTa+vrePrpp1HhTopdi20hF99sNJCmaT5q2zTlbIfOQs3OuoNO0iSBxy2ZGV8cHdfNJyxO+Px1IsZF90sx9euyOCoYy0dgR7w1U0QuVC56qtVqd2SHt6XOLS5ilUQB8QmAxAFx3+P7Pg52dtBqNJDyCYii6E1FXoz25sWL2NvfxzPPPIPFxUXEfH6AwaMI96oWobjIilHL0iCJ9/snfKep4HABF/UD/Xr7D/b3kTGW70h1HVmW4f3338fb77wDQ9Pw9Llz+XyEIbtvRVGQZhmaBweyhVEOZJpwkWWMIYwiBL4vd/aW6CKZ4PGEIEl5geegW9i9TikIzwcxUVNVVaTcOltVVdnFId5vCnIPiYXlZSwuL5MoID4xkDggHhiyLEPo+2gdHKDdbCIKgsMRxFmGd3/0I3x05w4eOnsWGxsbec6e36grfId8FDCeMsiEUQ7vi8/4LIMevwAoSt4CN6LZT6vVyof2uC6CIMCFN97A7t4eTp8+jSeffHJgnUVnyF6kFEQLI4CpxIEgzTL4nifnG6iaJkdNj4uYUNmZoijOMLiXUYOMt+HGcSyHT6mqKo2dRPGhnGSpaajPz2NxaQn1+fl7co4EMQ4kDogHljgM0drfh9dqIeZGOz/96U9x5f33sb6+jocfekgOHFIUJbeudZxyLrhHm1uXGVKHv0FRCKRZ1tOZT6Q2hFOhqqrQNA2aqkpXwGIlf5amAwv6fN+H53m4du0aPvjgA9RqNTzzzDM9WxQ76UwNNBoNZGkKp1KR8y5GEgfCiXLI8Tp318OmcxbJhkQKyqdT8JYQdQsj/eboCDtqz/elN4LDU1dRFCHLspLXhlOpYGFpCQtLSxOJIoK4V5A4IB54sixD6Hm5sVIQ4MqVK7h48SKWlpbw+OOPI0mSfCIeL1wzDKOruFFSdCrs51rY4+tFASCsiTVVlTbDQxGFen2iDTdu3sSbFy4gjCI8/thjePiRR0ayFu6k0xVR1jpg+shBkYy39IVBIH0RbMfpO3xrHFEgSNO0p7tisRMEKNRO8AmKPV9jYcONQzEV8eFSaZYBWZYPlLJthEGAiEeGXNeFywXB4vIynBEnZxLExw2JA+JTRRLHCFotXL1yBa+8/DJsx8EXn38euq6j3W7nYWHkC4thGLBME5quHy5Mhba54uciKt/9CyEg5h8UYYxNXkHP7Xwzvmt96623cP3aNcwvLOAzjz6K9dXV0dsGO+iVUgBmLw4ECS9YTLn9sME9LHRdn0gQCI4qpSAHV/FplkAubIQ5l2jhzBjD6toaVtfXUZ+fn0ioEcTHCYkD4lPLjevX8d+++12ojOHcuXNYW1tDlmUIgiAfNQyU7JvVMSxuhyFb7yYphGQMOzs7uHLlCj788EPoui7dILM0Ra1a7W88NASRUnA7ajDGEQfSinrEYzLGEIZh3vbHGJBlUDUtn61hGBMJnVm3LzLGEEeRHHHNeGeMZdswDSOfXxEE0AwD9YUFnD59Gs4QgyOC+CRD4oD4VNNqtfBf//RP8dH161heXMRnHn4YJ0+eBIAjFwnjRg/iMMTV69fx/pUraDWbcCsVnD59GidPnoRlmmjx8cqObU9U9d4vpQBMFjkYxZtAkAHIkiRPNfCOExHGNy0LVg+nx76Pi9lFDQaJAkPXEYYhwiiC47qYX1xEfWEBi4uLMxs1TRAfFyQOCALAjRs38MpLL+HKpUuouy4efvhhPHT2LHRd7ykSTO4zMC1Zmg6OHjCG7Z0dvP/++7jx4YdgjGF9fR2nT5/GsWPHuroMfN+HYRioViqlVIaYyCjo5U9w584dXHn/fXz44Yd4/8oVXL5yBa1WCwDwpRdewG/8xm8MvZ7/5z/8B7z00kt49tln8W//zb8pXAaTx5Qf/QYhcVvoYuieZRk0XR8pmjCLqEHGBzyFYYgky6DwVkTLtqFpmhw3Xa3XMbe0hGq1ikqlAmeCkcsE8UmEymUJAsDGxga+/a//NXZ3d/Hqq6/i9TffxDvvvouzp07h4YcfRq1WQxAEiOMYcZIgiiKoqiqFwqTRBFXTeg5g6hUlePzxx7F18iTsPla6Ymed9ihaFIvpd77zHfzJn/wJ/u9//+9xbHm59DO/9Vu/BUVV4bVaiMZwQyzy7Pnz+Md//Ef881tvSavgYnth6Zz6LKIKt8W2+LCniO/OsyxD4Hnw0T+aIPwPJlmg5TTLKEIUx1CQF0JqigLLdaGpKvwgAGMMtbk5zC0toVKpoFqtkr0x8cBB4oAgCiwuLuLnf/7n8eKLL+K1117DP/3wh/jJ5cs4ubWFRx56CHNzc4jiGHEUyVx5EATQ+a7WNIze3gUDUBVF5tq3d3e7ogRPP/10V5SgF5qmQVEU2UbZGdoWQUJV07q6KaIogqKqcte+tLiItY0NvP3WW+KXDx9D1BOww7HGYvF/6qmnoPNw+ztvv41z58717+oYAeF26ThOKZoQRxGiIMijCaYJnXeDZAVr6VFJ0xRRGOath+I6efeBZZpQ+OusKArmFhcxt7gI13XliGyCeBAhcUAQPXBdF1/96lfxwgsv4M0338T3v/99XPngA6wfP465uTm4lQosy4LBFydFUeC12/AVBYZIO/TJkUdRhFaziVarhWaziWajgQP+3yzLRooS9EJRFOi6jpjvfh3Hkd8b1uMfBAF+5sUXsbW1hUceeQRzc3O4e/cu/u2/+3fiwUsdG51LvXhsy7Lw5BNP4OLFi3j9jTdw7tw52To4TQZzYDQhCADG8pHYyLtFhFhQVRWarkNVlFIqQqYuwhBJHCPjRlUApAV3mqaIPQ+mZWFpZQXVeh3VarW3/TFBPGCQOCCIARiGgeeeew7nz5/He++9h39+6y18uLOD5pUrSOM4X3y4m2HFceA4DmzHgW1ZqLguNF1HwA2KWs0mDlotJLx+AQAcx0GtWsXx48dx6tQpzM/PY2lpaeK8tWmaXeJAFAb2W5zF/Iaf/dmfRb1en7rt7pnz53Hx4kVceOMNsF/7NRllGHQO49AZTYiTJH8t2OFUxrhofiSOzyMjaZrmvhbscNiVbdtwq1XYtp17XHCvC50LvUqlkttsU0si8SmBxAFBjICqqnjsscfw2GOPAcgXnSAIsLe3h/39ffl5d3sbH965g3arBaQpNFWFaRioV6uo1mo4ffIk6nNzqPNdaNGNcZq+foHBi/WyLEMSx9B49GLQ44rJiZZlzWTxO3/+PH73d38X+/v7uHL5cj4BckbCoIiMJvBpm2KoVZpl+STEJMlrRHgaKBHFpJaFqutKQSDmUYhhXZqmlf5NUQLi0wiJA4KYAEVR4PBIwfr6etf30zTFzs4OoiiCpmmIwhBxECD0/TxywPPYma5DNww5hlnscqc5L0PXc6OeKII7pP0vjuN8xoSizKyobmF+HmfPnMHly5fxxhtv4OzZs/LchMXyNNfYSSZsm4WLJB9eFXNxtFCvw6lUYFgWNE2DYRhwuTgQiz91GBBEGRIHBHEEaJqG48ePA+C98nGc9/CHYd4GF4YIPQ9t3wdrt6FrmhyypPC5CnK54gvpqAuYZVly3PMwrwExGMg0zZmGzJ85fx6XL1/G62+8gW9/+9vy69KOeVyBUPxZIaKQOywmXOAkfKql5Tio1utwajXYti1rFSwuDgiCGA6JA4I4YhRFkS2PQB5VECIhDMO8Uj4IEPk+Qj6QSNU0qIoCTYS3uQWzKO5Tygc4/Ddj0HVddi3Ecdx32qQIuYuc+yx59tln8Z0//mN8eP067ty9i+PHjh2eLv+A6NIonHux5bEoHYRhVJqmSEXKIEnA+Nht23UxV6nA5hEBIQYMHpUhCGI8SBwQxD1G07R8IA8fwlOMKsRxnO+EoyiPLgQBvHYbiqLIyntN0/JIg6rmFfhi4mAhr28YBoIggOd50DUt/zm+GGd8WmTb88CAvF1P7Og7xyD3oTiASC7mPLTPAJw4cQLLx47h9u3beP311/GNb3yjp/FSrzSKcDgsffCogKKqeeFgpZK3jvICQtM0pSCgokGCmB4SBwTxMWMYBgzDQK1WkxX0YlcfRREOdnfR2t3NF3ZeXCcEgcqHOymKAk1RoIiIA/9amqZotFqoVatSAKiqCq/dhsGL8CzLkiONAcjFWvglAEBSdB0UuX1+/nJp72hxPH/+PP7qr/4Kb7z+Or7+9a+Xfi5jLHcy7PhI0zTvKOjRemnYNlY3NuByfwHxQWKAIGYPiQOC+AQhvApEqx4ALC8v5739IpoQx4jDEEmS5H7/WYY0jvPFlbf2ZWmKJE3hex4AIAwCmV5YWFiQ9QiWbct2vlK6ggsJKSiK0YTC+OKiqGB8WqT4+rmnn8b3vvc9fHD1Kra3t2FbljxfRVXziZWGAd0wYPCaC03XofAIiWkYMEwzn47JowKUIiCIewOJA4K4DxCCATwVAUDWFIgdd6+PIAiwv7ub1zmkKeI0RcIYMgCGZSHiIkEs7FlhlkGr1cL8/DzAIxT7+/v5gUUEgXdYiA/w1If499bp04iSBC3fx807d/DM+fPQeHeG6BIQo607P0TdBEEQHw8kDgjiPkXlff79ECmKpaUlNJvN3CaYMbx76RJWt7awsbkphUHnBwBkN27grffeg6qq2HroIaxubgKqmkcRCkKgJBAA+e9XXnkFP/3gA6iqii+/+CLm5uZKYoAgiE8uJA4I4gFFpCjm5+fzCADn6tWrWFhYwHLH4KUiwuTp1q1bAIAwjrF+4kSXABi0u//rv/5r7O3t4etf/zpWVlZmc1EEQdwTSBwQBNGF6I4QBYmMt0iOw1/8xV8AAH7xF39x5udHEMTRQmW+BEHMnAsXLuDatWsASBwQxP0IiQOCIGbOn//5nwMAnnnmGZw4ceJjPhuCIMaF0goEQQAAXnrpJVy6dEn+9/b2tvz3pUuX8Hu/93uln//VX/3Vvo/13e9+FwDwzW9+c6bnSBDEvYHEAUEQAIDf+Z3fwe///u/3/N7LL7+Ml19+ufS1fuLg+vXruHDhAgBKKRDE/QqJA4L4FPHiiy8CQKl7YdaIqMHm5iaeeeaZIzsOQRBHh8JmPWSdIIhPNT/3cz+Hv/mbv8Fv/uZv4rd/+7c/7tMhCGICqCCRIIiZ0Wg08Pd///cAKKVAEPczJA4IgpgZf/mXf4k4jlGv12UKgyCI+w+qOSAIYmb83d/9Hebm5vDNb35TDnoiCOL+g2oOCIIgCIIoQWkFgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKLE/w9l88NEAIl3NAAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zFR46UlWKrqquqq6urmrd03p6emdmZ3/LA7FcEgTBy4IEQfBEAnvY257IAy8k9rAATwsQBHgiLwQFFuR/Z2d3dkT3dPe0VqUzS2aJFKFcu5v9D25m6REZwkNlZXb5AxKpIlyFu9mz73vf+whjjCFDhgwZMmTIkIFDedQHkCFDhgwZMmQ4XMjIQYYMGTJkyJChAxk5yJAhQ4YMGTJ0ICMHGTJkyJAhQ4YOZOQgQ4YMGTJkyNCBjBxkyJAhQ4YMGTqQkYMMGTJkyJAhQwcycpAhQ4YMGTJk6EBGDjJkyNCBGzdu4E/+5E9w/vx5FItFzM/P4/XXX8d//I//EbZtD3zvP//n/xyEEPyjf/SPDuhoM2TIMAuQzCExQ4bHB//23/5b/Lt/9++wvr6OU6dO7fv///k//wd/9Ed/hGaz2fP9586dw1/+5V/i7NmzPf//P/7H/8A//sf/GMViEVtbWzBNc5qHnyFDhgNCFjnIkCEDAODTTz/FP/2n/xTNZhOlUgn//t//e7z33nv42c9+hn/1r/4VAODy5cv4+3//76PVavXcxt/7e38PuVwOlmXhZz/72UEefoYMGaaIjBxkyJABAPDHf/zHcBwHmqbhr/7qr/Cnf/qnePvtt/G7v/u7+Iu/+Av8h//wHwDEBOHP/uzPem6jWCziJz/5CQDgf//v/31gx54hQ4bpIiMHGTJkwIcffohf/vKXAIB/+S//Jd5+++19r/mTP/kTXLhwAQDw53/+5wiCoOe2/sE/+AcA4hRFlrXMkOFoIiMHGTJkwP/8n/9T/vwv/sW/6PkaRVHwz/7ZPwMA1Ot1/O3f/m3P1/3BH/wBCCHY3NzERx99NPVjzZAhw+yRkYMMGTLgV7/6FYA4LfDqq6/2fd0Pf/hD+fOvf/3rnq9ZW1vD66+/DiBLLWTIcFSRkYMMGTLg22+/BQCcPXsWmqb1fd358+f3vacXRGohIwcZMhxNZOQgQ4bHHK7rYmtrCwBw/Pjxga+dm5tDsVgEANy6davv6/7wD/8QAPDll19ifX19SkeaIUOGg0JGDjJkeMyRLEsslUpDXy/IQbvd7vua559/HmfOnAGQRQ8yZDiKyMhBhgyPOVzXlT8bhjH09blcDgDgOM7A12WphQwZji4ycpAhw2OOpIuh7/tDX+95HgAgn88PfJ1ILfziF79AvV4f/wAzZMhw4MjIQYYMjznK5bL8eVCqQMCyLADDUxBvvvkmCCEIwxC//e1vJzvIDBkyHCgycpAhw2MO0zSxsLAAALh9+/bA1+7u7kpycOLEiYGv/dWvfgXGGAzDwJtvvjmdg82QIcOBICMHGTJkwLPPPgsAuHr1KsIw7Pu6ixcvyp+FW2I//K//9b8AAD/+8Y87ohMZMmQ4/MjIQYYMGfCDH/wAQJwy+Pjjj/u+7u/+7u/kz++8887Abf6f//N/AOwJEzNkyHB0kJGDDBky4B/+w38of/4v/+W/9HwNpRT/9b/+VwBArVbDj3/8477b+/TTT3Hz5k0AGTnIkOEoIiMHGTJkwBtvvIF3330XAPCf//N/xvvvv7/vNX/2Z38mXRH/+I//GLqu992eSCm88sorQ42VMmTIcPjQ3yc1Q4YMjxX+/M//HO+88w4cx8Hv//7v40//9E/x4x//GI7j4L/9t/+Gv/iLvwAAnDt3Dn/yJ38ycFvC20CUM2bIkOFoISMHGTJkABCv8v/7f//v+KM/+iM0m0386Z/+6b7XnDt3Dn/5l385UGB469YtfPrppwCylEKGDEcVGTnIkOExwo9+9CMAsWagF/7gD/4AX3zxBf78z/8cf/mXf4nbt2/DMAycPXsW/+Sf/BP8m3/zb1AoFAbuQ0QNTpw4gVdeeWWah58hQ4YDAmGMsUd9EBkyZPju4Pd///fx05/+FP/6X/9r/Kf/9J8e9eFkyJBhDGSCxAwZMkwNzWYTP//5zwFkKYUMGY4yMnKQIUOGqeH//t//iyAIUKlUZAojQ4YMRw+Z5iBDhgxTw9/8zd+gWq3iD//wD1N1eMyQIcPhRKY5yJAhQ4YMGTJ0IEsrZMiQIUOGDBk6kJGDDBkyZMiQIUMHMnKQIUOGDBkyZOhARg4yZMgwVQRBgDAMkcmZMmQ4usiqFTJkyNABSmnHd0YpGKUAISCEgCgKCACiKFCUvfUFYwy7u7twXRcAQAiBqqqoVCowTfPAzyNDhgzjI6tWyJDhO4IwDBEFARhjIIQgCkNElIKGIWgUgUYRojAEAwBKwRjb+xnx5M4YA3oMCQwAjaLeO+akodlqIQhDEEKgKAoYISAAVFXF4uIidMOAqqpQNA2qokDRNNAwhKrr0A2jg2hkyJDh0SIjBxkyHBHQKEIYBIiCAGEQwPc8sChCxL+Sk7p4rKf1eA8iB5RSNNtthJwYVEolaJoGSinato0gCKBpGqrlMgghcnuMMZDEdhRVhappUHUdmqZBMwzohgEjl4Om6/K9GTJkmD0ycpAhwyECpRSh74OGYUwExPcg2AvzixV+CohXMf7evq/rIhOMMdD4B3lcjFIQRQFjDIqYqAlBi0cMFEVBpVyGru1lK6MoQr3ZBGMMhUIBedPsGZnoh0gQCEKg63pMGHQdOicMuVwOWma2lCHD1JGRgwwZDhCUUoRhiDAM4TkOHNuOIwBcwCfC8KqiQFXVjvf2iwYwxkApBWUMjFL5c/JvEaUAY/Hvye0IEhD/AeizOhfph24EQQDLcUAIQalQgKaqchuKogCMydeARxUMXYeiKHH6gacgSOJ7MkIgIgz9wAC4jgPX82DZNjTDwOKxY1hZW0M5EanIkCHDaMgEiRkyTBmUUkRRJElAGIbwPQ+u48D3PFDf71Dzi+lLrvJ7kACFkHjS5XoC8X/aHUUQOoLk8STC9wNXAomJVKzWxffk/4RWgTEG1/MAADmuJ2D8GIA4agDwdIGqwg8CWLYNls937rdr8ieKAoULHxVCwAiB57pwbBs2J1Ttdhu2baNtWWBRJI9PbIkwBkXXUS6XUZmfx8LiIhaXlrC4uIiFhQXku48hQ4YMHcgiBxkyTAm+76PdbsNxHIS+H3+FIajvx2F5xJOukogMiNW1L0iE7yMIAgRhGFcJ8G1T8ZgmHldN0+JJWdPkJK6KiZWvxJMr8+RkTwApGBRko/t7Er0iB57noWVZAIBatRpP5Ik0BEn8HoQh6s0mAKBaLsvXiAgH4z8DgOM4uLu5iVarBce24bpuTIL4+ecLBRRME4ViEcViEaVSCeVSCaViEURV4do2rHYbrXYb7XZb/iy2EwEwcjnU5uZw4skn8dZbb6FarY7xiWfI8N1FRg4yZJgQnuehvrODdquF0PMQ+H48SasqNFWVq34CLuzjkYWI0r4iP/E6UCpz/5QxRLzKAIAsJ9RUFflcDrlcbl8qoh9Gfei7yQFjDPVGAxGlKOTzKCRW4gycYHQNLbv1OiJKUS6VkOvSCUSMYfPuXayvr+P+gwcwNA1zc3PIl0owczkUCwWY+Tz0XA5UVFz0QTcBE58FYyyONiRIw93NTTi+j2cuXMC7P/whlpaWRrwyGTJ8N5GRgwwZxgClFK16HfXtbTi2LUsE86YJwzDAKEUg0gpdlQTdIIqyN5EJQsEnNQbIVTXjq3EgLlv0fB+u50mBIgOQ03WYuRz0FOp+EclIMwB0kwPX89C2LCiEYK5W66hCACEgPc7Xsm04roucYaBcKsm/bWxsYH19Hb7vY35+HqdPn8YTTzwBLSFsFOmSpIaCcoIVRVEH4RoEhRBomhZfZ00DCMHNjQ1cvnQJjufh+IkTeO2NN/Dk6dPIZamHDI8xMnKQIUNKhL4Pz3HQqtfRbDTiKgJKEUYRdF2HqmlgUdRbQEcIND75JwWHMrWQgJzshZBwABhj8DlJ8MNQ/BEKITBTRhNGJQfJqEFRVCDw/fYTNAJxaqHRbIIB8BwHG+vruP/wIQxNw8mTJ3Hq9OlU4X1xbZLVFPKa8TRFB3ngP9M+11Lh0Z179+7h+vXrsCwLq6ureO6553DiySdRLJdRKJWgpIzKZMjwXUBGDjJkGIDQ8+BaFjzHgdVuo9lswueaAEppXE7XZeBDEOsBNE2Dzr+nCfdLIyLhUNjHkKjvsUYRPM/biybw7eV4yZ8xIJowbC9JcuC6Ltq2DUVRMFetxtoC/rpBsYq2ZeGbixdx984dRGGIxYUFnDp9GsefeAKqll4bHXIzpzAMEYSh9HkYeg48LRMlvCG6CQNjDDs7O7h37x4c28bc3ByeOXcOa088gVKphGK1inK1mjp9kyHDUUVGDjJk6AINQ7i2DbfdhmvbaLbbaDSbssKAKEq8KuekIEkEdE4E0pbQiYqDbiLAGAPlE96o5XiMMfhBANd1e0YTTNPs6UY4aCBIkoM6vxYiaiDSE70gtQTXr+PB1hZUVcXy8jJOnTqF1ZWVgedBExN5yL8iHpkh6KrCEELIEYczEWXoRRjq9To2792D1W6jWCjg1KlTWD52DPlCAXNzc5hbWkI5EzJm+I4iIwcZMiCeJHzXhd1swmo24fk+wiCA43mwXRcsiqCqKgqFAoqFQkwEdB26po1VSy9JQY9QtwiNi9LFjlA9jwik2iMhiKIIruvC9X1Z/aAQgmKhgFwuJyfaZBnlvvMR+X4+kdbrdQDAXK0GVVH6phK2trbwySefoN1qYWFxEWdOn8ax5WW0bRuEEMwntApRYvIPE9GA+DQ6fQ8UXpWhalpMzpLpmcSxjosgDOF5Hjzfh+f7eLi1hTu3bqHVbuPEiRNYXl6WpDBfKGB+YQELS0solkrQuYdDhgxHHRk5yPBYI3BdNOt1tBsNeJ4XTyp8grEdB34QQFNVlEsl1KrV2ORnQlDG5MTXjaS4MA3k4zuENIhogu04MgRvaBpKxWJn8yT+vXs7wj7ZcV3YjgNd01DhJYnd5CAIAnz19ddYv34d8/PzeOWVV1BLrLC3d3fhB0Fc4cAYQhEh6bEtRVGgJ7UamgZNlGYCHbqDXudMEx4I44LxUtMvvvgC19fXsbqyguMnTuxVjXBBaaFQQGVuDnMLCzBNU35lRkwZjiIycpDhsYPv+2ju7MSEwHH2TcSapsH3fUSMQSUEpWKxo1RvXMia/gGPnPBDkEI7pIwSoNM0qV8VAmMMjuPAcl35mlI+39k1sUcZoiAH9WYTURTFpYU9Oi1ubm7i008/RRiGeP7553HmzJl4P9wp0fN97NTrCKMIBV7ZISAqCETFRi+xZs/zxoBrJESKUxrmrl27hs8++wzLXLDo+z4C0dSKpyRUVUWpXEZtfh7VuTmUSiUUCoUsopDhSCEjBxkeC4RhiFajgebuLhzL6pj8FEWBoeswDAOaqqLZbksTokq5DDOX67tdYYcc8JLFMFG+GCX+xsBD4rzdsZIwK5KGRXzyULr+JtokK+J9ia9BYCIl0SOqEIYh2rYtdRS6pqFYLMrISPfrGWJS1eBGRjWRUuBwXRdffPYZbm9uYnV5GS+//DIKhQICbuzk8bQGADiehyAIUCwWUSmXJREYd4Xd3WtCpB4A7PlLcDHiNNbwd+/exYcffohqrYa333oLiqbFxlVBAD8I4gZZUQTf96HqOqpzc5ibn8ccJwq6rk/hKDJkmC0ycpDhOwtKKVzXRWN3F1ajgdD35f90TYNhGDAMQzYKiqII9UYDQRSBRZH05g+CQObDkz+HfMUoQBKTPbC3eu+VQmA9IgOMENAwBBLq/44VfCLdIPfBSYPK3RINw0Aul4PZVUHRQRS4rkDYH1u2LV9TyOfj0kThpijeD8Tuj64Lg9sSi7/f2NjAl19+CUVR8NJLL2F1dVUSgiiK9lwZCYFhGCCEwHVdqJqGWqUy+EMU55+wjk76MxDEqQXhASE1FNxrIWnIJF5HAShimwl0vH4Itnd28P5770HTdbzzzjsoFosA4uhQyEmCzztn+ryNdr5YxPzCAuYWFlCr1ZDL5bKUQ4ZDi4wcZPjOwfO82AWvXofnOPGEC8DQdZimKRv/APEK2nYcNFst7DabCIIAoBRGLrcntiMECtAxyUnbYV69IARqKv+uqCo03hdAlL3JRkiiTp+nGMT3KNE0iYn/9fgZ2JvskyQD2Ct/ZIxB59GQHP8S0REhcqSIJ8QoimRrZcYYNFVFsVjs6K7IEE+IlFKUikXkDANty8Knn36Khw8f4uTJkzh37hwYv6bJngwGL/cUxkyChAHAfK22R2J6pDPSQnZvTAEhrOyFJLHrJkgAOgiaZVn41a9/jTAI8Pb3v4+5ubl92wvDUPaU8FwXQRQhZ5qo1mqo8WhCuVzOUg4ZDh0ycpDhO4EwDOE4DtqtFpxWC4HrglEKVdNk+Z6qKKCUwnYcWLyJj+d5oFEEl0cVNFWNXytC+4n8t1DIa0IYlxDKdYMxhpCLG9NAKOzTTHBUEAvEOgDGmHRMFKFtUfInXi88D1RVjSdr7nsgyAMhJCZVti3D9HnTRCGfByEEfhjKKoVatYpr167h66+/hmmaOH/hAiqVSoegUOeEQEQKgM40xc7uLihjqFUqnU6IE2AUXQFlDBGP0vQFJ37dQsnkOzzPw6/few+NRgNvvPlm3/JM8RnZrgvLsuB5HjRdR7FcRqVWw/z8PObn57OUQ4ZDg4wcZDiyEGkD27ZhWxYC245TB4zFSnFuI2zzjn4Wb+Ijc/+EIOJlc4ZhwDRNVMpl6VUgGxqNCMYV+KO+Z5qPoiQLvg8vCBCIJlCUAoqy5zDISyZ1XYeh69B1PX4djyAoioJSsQjf92E7DlzXxTfffINmo4HjJ07g9JkzUqegaZo0XJJdJPug2WrBDwKU+ggbx8Eo0QNgcNXIMEjSgNgX44OPPsLm5iZefvllnD59emAXTMoYfN60yrFtUACFUgnFchlzc3NYWFhAidtLZ8jwqJCRgwxHDmEYxo1zLAuh6yJwXURhCJ33FSDAXnSARxCkyI+H+Qv5PBRFQcTV5TnDQL5QmFiwJjQGoz5WsopB9CVImYsW+fV45535eXlMCdMgGV1IRBnkvkVeHpACOyF89HwfD+/fx8MHD1AslXDumWdQLZU6tA7qgNB4sgskYywuiXRdmIaBEs/Xy2OXPxLZVVKeCzpbXAudgDjPUQczkcqZCPx6f/HFF7h29SpeeOklPH32rDiofe2ukzqDKIpgtdtoWBZ830e+UECpUkGxVMLKygqq3IEyQ4aDRkYOMhwZBEEgWyIHnge31Ypz/HySdz0PtuPEk1pXy2LTNJHnJXtmLocoirDLw+RmLof8lJrshNzHP6lH6J70901wiCeJg5oEkqI9Rmlsuey68FwXHicOvu8johS266LZbOLm3btgAI7Nz+OJJ55AtVxGPp/v9H0YQTMQBAEsx4GqKLIJUz+Iyg01UaUhyhzF3wSSrbGBhDCxi0BJMWNCzzExGMMXX36Jq1ev4sc//jHm5ufj4+/xuqTldPwnBs910Wg20XYcmPk8qnNzqNZqOHbsGIrFYkYSMhwoMnKQ4dAjCAK0Wq04JcAYnGYTvmWBArGLneeBcNc8ESHI5XLI53LIcyfADsEXY2g0mwjCEKqqxlUJYxwXQ6fqnfImTOPYHU/7MUzqDYQAT4gghehRGD4JYSNJfPc40dqp17Fx/XosmGQMa6urKJRKUFUVOtdz5PP5fS2Y+x6TqBygFE1eFlmtVHpes1GcDgVZIIoCNVEGmiwH7QdRjgpF2YtEjBC96d7W3/785wiCAD/58Y9laooknCR7bjWxvyCKsLuzA9t1UZ2fR6lcRrVaRbVazUhChgNDRg4yHFr4vo92uw3XdQEAVquFnYcPEfi+XDGK0LOh68jz6EAulxsocnNsG5bjgDGGWrU6ktFO38ZFPH898sM0xqpVHEEkKh1E22L+uxApDtquiB5IDwUuvmSMIeAliDu7u/jmm29QLpdx6vRpfPrpp3j+ueegqSoYYo1BxGIXQl3XUSwUUCoWYZqm3P4gbKcQJYoqjjCKJLmRLZp7pASSBlJJKIoi22DL6EPiZ9q1LVkuSfbaT6f9lNqtFn72N3+D48eP45VXXul5LAK97ieRerFdF7v1OvRcDqVqFeVyGYVCITNVynAgmI5MOEOGKUKUInqeByCur29sb8N33Xi1qutSN2ByRb2m66nC2iEPZ4OxfdbBAqLWPTlsD5vohMnRqGC93AhFGoIfh4gsSIMlbq6UFopYTWta/J2vspPkirLYOdHjOoPNzU1cunwZx9fWcPbpp2HZNhRCUC2XYebzsilUGEWyC2Sr3Uaj0YDKbZkLhQKK+XyHJgDYu5aqqoJxkWS/65usGNl37dhei2bZQIlHASgnLWLCF68JB+xHmEFpuh7vL0EM5Ouw95n1c6Eslct46cUX8cknn2B5eRlra2sd/0+SkKQvhjRs4j8XTBP60hKazSba9ToYpQh4JUq73UaxWESxzz2cIcOkyMhBhkMD13XRbrfh+z4opWi1Wmi324hcF5qixOK1fB6VarW3wn0IMWCUom1ZAACdi+jGIQK9MLaoTbwvQRII1wL4CTLQry5faitESJ1/EZ6X75h8OJKiOEopHNeF47rx3wjB+vXr2NjYwDPnzuGZ8+dhW5ZM2RQKBRi5HFzPAxhDoVDA4sICHMeR1QyU0pgoNJtQFEVGFPKJbpAMgKKqQBjudZ8ccJl6/Y9wHwk5OfKUQMQNkcS5JslDx88J8iBKT0PXBVwXIAQaT50IsiBLMlMQhlOnTuHevXv49NNPMTc/HxtL9UAypZT00eAnCF3TMF+roW3bsJtNEEJAKUWhUACltIMkZG2kM0wTGTnI8MgRhiEavPFRFEVoNBpwXRcKpVDCEAYPWVdF+HnMnGvbshBFERQS90voJgXjQkxAg3LBYkKWNfPCiIj/LRIWzPyrV0pAVZR4stI0qNxwqSOPnWL/8cu4O2KCFAjNxsWLF3Hn7l28/PLLOPvUU3GUBbEDo3hvkVd62LYNj0cNyqUSyuWybM5kWRYcThQs20ar3YaiKCjk87JXhaYoCHjUottVspflcy90/F9cX1Xdi0bwSZ4pCvQ+10ekKkQ3RmGdLT4LSRZ4S26Ne1wk7599hIEQfO/VV/HTv/5rfPzRR/jBu+8OORNILwpBMkjCOrtcLELXdViNBmihAF3XpdFVu92Gbdsy7ZBpEjJMAxk5yPDIwBiDZVlotVrwfR+7u7twXReGpkELQyiEoFKroVQsyslpjJ1IgV0QBGAAyqXS1AfQnrnjrrK85DGFfDLyuf9AL+mPxhsRiS/pHZCS1Mi8P9lzdaSMyeoEETUR+/ntb3+L3d1dvP3WW1hbXY3TBkEQH0vy+hMCk0cBLF6CJ5wTRaSgUCjslSzaNhzHiasfbBttbtesqqpsv7wvctMr2pHinPcOsVP8l4wkJNMBjLGOCoiklbYga8I5MgwCeT2SZEH4YnTvM2cYeOP11/HLX/4Sl69cwblz51KfCwOkG6YgCjnDgFarwbIs3L9zJ27uNDeHXD4PSikajQYcx0G1Ws3MlDJMjIwcZHgk8H0fjUYDrVZLkoK8rsMkBBpjqM3PS7/6UdEx0SgKQm4PzIB4xTolRz6BoX78XC8QBIHUC4ia/CQpECRArE6BRMojJZnpjlAkSyZFpEDsU9U0FEwTQRji17/+NTzPw++8+y7m5+c78vkAeub8Dd6/od1uIwxDNNttlEulOKLByzgL+TyK+TyoiFTw9EPI+1RYjoN6owHHdVEsFFAsFPbOPbGvjtK/IemjfloAsZ3ktpMVGkRRAC7wlM6XvOlWGEUxOeDHnSQLDr/WvcjCsaUlPPPMM/jm669xbGkJtbm5zs8zhRhVEAWGOHpULhahuS6sZhPtZhP5QgHHVlagGQZ838fW1haKxaLsDZIhwzjIqhUyHCiEluD+/fuo1+twHAcFXYehKLHnPA+NiteOiu6KAsbLFsNE2eJUkJh4u532GKUdKYIw3C+DE6tVQQjkyrOrhG6Uwb3XKxkA3/NkiB98pS7KD3frdfz617+Grml45513Opz5PN+HbdtQVRVRFOFnP/sZfvfHP0atVpPkRrhMypQNd1QUE3yyB0Ty+FzXRduysLWzgzAMUcjnEfGhqFouo1oud7Rz7nVefAc90w8R/98oEKJPWdY5YBuCLIjPuXsYJZwsiD4bv/zlLxEGAX73d3+3MwqWiGSkSaMk4QcBHE60wFjssLi4CJ1fN1VVZYOnDBlGRRY5yHBgsCwLt27dwu7uLnzPg6GqqHCHvGq5jJwQbaUt7xO56gFhdttxZA6/MmYkgrGEx36P+ndKaew4KMSDfciAputydamqqmwhzMBbDDMGjKI8TxxLr/P3fT8O54tIAe8bIXopbN6/jw8++ADVSgXf//73pVeBmKRECF3XtH02w5LIII5AlMvlOIIQRWi1WigWix19FYTOQmzbNE3pPxGEITRNi82twlCKGUvFImqVSk/xKdk7kK5LwvP1GL16RAoDu/QPsmIksV+NV1CII+tFFoTLJACcP38eH370ET7+5BN873vf2yODiYiI1C30IFO9oGka8vk8PM+D5/uwWi04loVSpYJcoYBiqYTt7W3k83lUKpVMsJhhJGTkIMPM4XkeNjY2sLW1hcj3oQCo5HKo1WqoVSqyzh7gxjcpwsYAN5YZgICvrNiAssWB++kqMRM/A5CDv8db8nZHBxSev9Y5Ieg2YZI6gIQYL7XQMkGKesEPQzi2LSscFEKQ55Ox2Nf6xgY++eQTrK2t4Y3XX++YOETYO+DnpOt6XJ2w/wLJc1EUBZVyGW2uQWhbFgqMweSr1u7UiGixLPZbKZexMDcXd8hsNqXbZbvdRr5QQK1SQZFHlPYdRvcx8b8xHimZBEkRZ3JLoqOlQJIsCM+LZPSokM/j3NNP49uLF1GtVrG8siKbXslrn4wYJX7vRxQUrhchpglN02DZNsIwRKvZBKIIVr0OI59HNDcHz/NQqVRkVC5DhmHIyEGGmeLmzZu4ceMGWBCAUIqiaWJxYQHVajWuc08az7D+ToHdOfQ0sLjwzeBli6mRWBXLfXMEQQCP2wvvvZx0CAd1TetNXLr0A6NoCTo30/s9DLHBk+N5IIC0jTYTpIAB+Prrr3Hp0iWcfeopvPjSSx3nJ+2cE6HyfhoNAuzZEvNzKRWLsBUlntxtGzSKOiakDpKVKNuLKIWGWBNSyOfh+X6sRXAc+J6Hzfv3oes65mo1lAYYAHXrTeKTYnvujAMwShpLQSKqgD2yA3TeD/HuY7JgmiZ2d3Zw5coVLC4uwuWNw3RNg8G7ZPYiioKY9Ho2FEWRhlTlUglty5L6j0qphMjzcPfGDeSLRXiuixJv7pR5I2QYhowcZJgJfN/HpUuXsLu9DRIEyOdyWDl2DNVaLR6YeqQOOhrn8BA76Qr1jrJ/kU4YulrqRToS+4uiCD63aU4es8IV5AZv9tTLi6DvRJ5yImKMyajKIIRhCMuyZI2/mct1+AoA8eT38aef4uaNG3jxxRdx9uzZfefdHTUYWjqaCIWL78K9z7ZtuPyaFbtK7MTPqqoiEN0iE8gZBpaXlhAEARqtFtqWBUopHmxtYVtVUatUUC2XB5IEkQ5IkhCR2uhugDSOhTXpInki1dK9lSRZePnll/H/+6u/wu7ODpZXV+PUAy9jtQmR91O3AFQYI3Vcb/6zeJ7A9R6tdhs0iqRAtFgowPc83N7YQHVuDkEQYHFxcerC3AzfLWR3R4apY2trC1evXIFv21ABLC0vY21lpSNHvs/2lpOFpGnPuCtrALEqH+hYNYv9DNIPJF8ncrnd+fYcX+Uly8XE5NLLdKgXKAaLz8S2hhEDhvhcHccBQTzZFgoFGF2lbJQxfPjRR7i3uYk333gDx48fH7jdMJFSGIRkRCIJ0zShEALLtmWUpdRD86GK1tl9yJKu61icn8dctYpms4kWFz5u7+5it15HlZOEXhNdT90BJ4Lyf4QAU+jM2K2tEPvpJhzlUgknjh/H9evXcfappxABe8STNw9zPS9uf80jXh33U9fP4jeFu00KQai4Tm3LQol7JGiahla9Drvdhus4WF1by8SKGfoiIwcZpoYwDLGxsYF79+6BuS5MXceJJ57YqxDgA2d3xIBy4xclObFOkCsOErXpUszG8/tI1tT3ELMJHUHQpSHQNQ25XA56MvSbgMifp119Djq7tCmUKIpknpnwVadoRd1xXgA+//xz3L1zB29///tYXVnps+O91XWYjBwMQb+QvcEFhy3uemkRsk83oKhqfJ7CqRC9r42qqpjjXQpbrRZa7TaCIMBus4ndeh3lchlzlUpn+qgrPdR9rmI/jJAOp8RJy/+6IyTd1Q/PnDuHn/3N3+D2nTs4fuIE8jz1E4ZhnLISJa9hCNtxpDah12chxYyIhaGiKqdULMoSU8u2ZeSmUCjAcV3c2diA1W7jydOnOypUMmQQyMhBhqmgXq/jxo0baOzsQKEUtUoFaysrexUIwF7uNzlg8wF8mvXYDnf1yxlGbNGbNAPq8fogCOBzUpCEqqrIGUaHkG8QVNHAZxhBSEEghu3NdV1YjgPRzrhQKMSrzH0bIrh08SKuX7uG7736KlY4MZCtjJFQ5fNJPuRNnEQkQnxmoh1yr9V4P2i6jkKhgDZPMQgdhFhVi5x5lLwHBlwfhRBUKxWUy2XYto1Gswk/CGIzrWYTxWIRc8JeW9xrA45P6AH29TeYYoV3R/UDIajVaji2vIzLly/HERxOinUejaKUxt1GfR80iuIIludBU9VYm2AY+yNK/LgV3iJc0zQUi0W0LUsKc0W6p5DPw3Yc7G5twW63cfLMGRw7dmyqz2CGo4+MHGSYCGEY4u7du7h/7x7cVguGpmFpaQlLCwvxxJxAh4882XPsm+aQFEYRfO6EmM/n+6YmIkrh87RBMqSskLjds5FUkXedw6BBVFEU0CFNkbrJQ7+tdUzcieO2bHuvkkDT4kGf7JXbJXHjxg189dVXePbZZ3Hq1Cm53WRuvGPCT9T693Kl7JebF9vsdW0Mw0CBUtiOA9u2QQiRK3yRpxedFpPaBSnySxAZAWGBXSoW4woH3tLbcRxYlgXTNFGr1aRTYz8wSjv+vy+qNEWSILdPCC488wz+7he/wIP793FsebnjHlUUJe4wapp7AlhuwBRyt0lD12HkctLRUUDlpaEAYGgaioUCLMuC5/uxHiSfB+ERHNfz4Ng2rl68iFajgTNnz2ZCxQwSGTnIMDaazSZu376N1u4uAtdFuVjE0sICKuXyPrW+HIQJgfiPKFuclBwkRWeivbPOOzd2v87nK7Lu0sNk6LbXBCcm6FQRBG4a1OdgQSndG4R7iNiSYfrkBO7xCgCxGi4WCgNzxvfv3cPHH3+MM6dP48L5831f150WkCmFEerie+b3EzBNM86p874LYqWcnIQ7Ugpszzypl8gvqdnI5/PImya8IECz0YDtugjCEPfu34eq66hVKj1LWUUDpn7nE/+Q+BymSBQWFxexsLCAS5cvY3llZe9cu5CMJojoVhRFMrIgolvCrRI8vSUIryBhbcuC53lQCJGpNjOXg6oosGwbd2/dQqvRwDPPPZeVO2YAkJGDDGOAUoo7d+5gZ3sbTrMJFkVYmp9HrVaLc8o9cvnS6Ce5nQmJQYftLeLyO8/3wRiTXfCE653LeyskMUxHICH0CilBsJdiYMnJj+25CnY7/HXvr+M8RbSAr/40XR/q27C7u4sPPvgAa6urePnllwdrOLrSLaPoDTo3M/jTFKt40ZK7XKnI1sji+nTk68HTH9gf5k/uSfzP0HUsLi7GRkrNJtpcj3H/4UNs7+ygVq3KCoeIMURcq5Hq3OIT3Kt0SPWuAdsjBM888wzef+89bG9vY2FhoSNK1H1PKIoCM5fr1CZwsaztOLBdF4auI2cY0DUNgvIQxOk1JiI3PBUlSKWu67IEstls4rOPPsLZZ57BsX66lAyPDTJykGEktNtt3Lp1C75tw7dt5DQNtcVFlEul3m2UEeeyuwfT7trwUSBFWDzkLODyvgE6X/3bti3JgoAoPxTufD233x0eH2PFSAiBoqqxtS3/XZgeRSOcc+D7sGxbru7zphnn7Adso91u471f/xrVWg2vv/76ULOo5JaSq+mxHPWG5PhFq+EgDGG12yjzyVq0T+7+TMYJ8+uahvn5eVSrVTRaLbRaLVnhsLO7i3K5vEeuEp91dwqq11mI6NE0SMLqygoq1SouXbqE73//+x37lGSkh5GTKIvM5/MIEpEwnxMGRVXj5mUJ8y3TNCEbYTkOwAWsQPw5l0slKW69/O23sFotnHjySWij+INk+E4hIwcZUoFSinv37uHhgwegQQASBLL1brFQ2EcMxGqv3wA6iSq81/toFMH1fYS8SqHRbHa8XoReB62GB6YOxsxBixCv2GIqW2i+H8u24XueDBUnmxL1g+e6+NWvfoVcLoe333576Ou7PweRDhFdCkeFWOn3AyEERV6LH3GrZHFNB12bjtLDlNdQVVXM12rxyrjdRrPdhud52NndRbPVwvzcHAr5vCSP3akDuZLvKn0lSJCECVINhBA8c+4cPvzoIzSbTVQqlc4X8LLbfvsQ+phcLoeQCxd9LmJ0ogjUtpHj0QaF99NgjMmeGYpI7QCym2ar3QalFJt378K1baydPInq3NzY55jh6CJTn2QYCtu2ceXKFTzc3AQ8DwVdR7VaRSGfjweffD5+IdvztY9/7b+ySjtJdojsuiIFSVi2Dcuy4HDNAbAXMq1VqyikmFh7kpi9AxkrgqAA0Hgtf1qjnTAMYxU+TyOYpolKn1r+jvcFAX793nuglOKdd94Zq4ZdRDrGNchJo/RXFAWlUkkSJ+FJMez6JiflUaAqCkrlMo4tLmJ+bg6GpoFSivsPH+L+w4c9G2MBCb0H90GgXC8S8S8qoiRCNJl4T1ocP34cxVIJFy9d6v2CxDM16Kw1Th5r1SqKhQJ0HjXwPC8Wa3penG7L5+M0GiDdFMUzJTwSCCHyHrxx7Rpura/37BeS4buNjBxk6AtKKe7fv48rly/DbbWgRBEWFxZkLb3Oc99yACN7PgXJ1XI3+tWyd7wmWdUwgBSEYYhms4mt7W34vi8rDaqVCsql0nA9QddxdWPU2EZS+Z98r0LI8JU4Y3BsG61mU4bYy6WSVJgPAmUMv/nwQ1iWhR/84AcopGgy1WsSj8YQI3YjbdlnqVSK8/+Uxg2ihlR5jLoPIP4sQkrjckW+z9WVlfjeUBR4rovbm5vYbTRGNkISLa1pgjyAELCkpmQIFEXB008/jbu3b8OyrKGvH0YShJ6gwlMnohTV4RUdQRDEESj+XIgIjoCqqnGrdELg+z5cz0N9ZweXv/kGrUYj5Vll+C4gIwcZeoJSivX1dWzeuQPmeSgYBo6vrclVlDBakbl0/iWdDgdse9DAuU9P0GcSiMIQ7XYbjUYjttZlDLlcDosLC3JQ3IfEoN1rYpxIHAlI8eGg7SiJJlNJRJzkuK4r88GVSmWoQ2G8c4ZPP/4YWw8f4u2330a1Wk11zL3cHEXkoFcZY1qIfPwwiHtI4ytVm/tTpEV3V8PuY6BcdNgdkVA1DQvz81heXoaZy0EjBI1GA3fv3euIPI0KoaMRlTmUMVB+HL3KTAVOPfkkcqaJK1eupN5XRzShz7XOGUZMLrm/AeXC1la7HVcq8M6QTtd11zQNBR4NdF03tiIPAqxfuYI7N29mUYTHBBk5yLAPYRji2rVraO/uQglDHFtYwOryMlxeRkUIQaVcloPLPnviYRPDkNxyGlJQbzTgeV48CVCKYqGAhfn53t4E2D9hTdPwRRKaIaRIis0IgUr2rJFd10Wz2UTEowWlUgnFYjFVTwUA+Orrr3Hz5k289vrrWFpaSnfMPSYr6TWACSMHwODqiAQ0TUOxVAIB4rr7UQkCeBVMYn+U+yZEUbSnU+iBXC6HlZUVzPFUQ0Qp7j14gAdbW31TDSND6CkQX9+IUlB0Rpg0VcXZs2dx48YNWYo7CqQmYt8/iNTbVMplKWQVtsqMMVDePbKjkRhiYiEEixZve04Iwc7Dh7h26RK8CUhUhqOBjBxk6EAYhli/dg1uowGFUqytrKBSqcDm3fEIgEql0tMPYJ/7YR8kJ+l9eoKUpACIa7jzpomcaULnpjAssUoTX6Tra1pIpg/SbLfjyvActcNNbcDFYZVKZV9fhEG4dvUqLl++jBdfegknhvRL6EAP4aAI64t+B5NglHcbhhFPXIzBdd19TpWpwBgiShEKUpC8D4fck+VyOa4cKBahKwpcx8GdzU00eHpnGiCIo0aEVyCIVITQLpw+cwZEUXDt2rXRNy5ScOh/3QmvdKmUy9L7gFKKgHsmWLa971wLhQJ0XQdjDO3E/z3XxbWLF9FutUY/1gxHBhk5yCAhiIHXbAKUYnVlBaZpIgrDuLGPoqBcLvecvNKK7US4VWCQngCIqxDa7TYazaacNHTDQLVaRblclhOaWOV0E4xpkoHkOYylUU+SIsbingNBAIUQlEslVHhZX1oF/J07d/D555/j3LlzOHv27EiH0uu6jOtv0Bcpz4Moyl5bbV6C6nd5UvTfBScFlMr97fNESKOB0DQsLCzg2LFjcZkrIdit17F5//5Yq/lB6BVt01QVJ44fx82bN1N37Oy7fbEPxEQvCVGVIASuhq4jFCm6ZnPftSsWCtB4a/XkdYiiCOuXL2P74cOJjjXD4UVGDjIA4KmEK1fg8wFCEANRGy3KngYq4IdMBowxMBFOT0EKrGT6gLFYaFityoGNUiobLOmcHPS0wp0iWEKZPo5YEYhXbM1WC0EYgiBeuYr+DYqixLbTQ67Pw4cP8dFHH+Hkk0/iheefH+s4ujFppcI+pIw+iPSJkQxl86ZBvcAYA0tGCSjda+2NRAvj5KGkPGTTNLF87BjmarU41RCG2Lx/Hw+3t6eXahDH1EUSVldXZb8IEVkYu1RSEKU+n4HwNhAtnRmAVruNnd3dzhQDIXv6A9/fpze4c+MG7t66Nd4xZjjUyHwOMiAMQ1y/cgVhqwUKSGIAkZPkg0V3Rz0BodoeJkKUArIhpMBxnLjnAVd/G7qOPC/PSiLgPRSSNflixTRtyPTEBHXtjFK5SqOMyWqEbp1EslwvmZsWplHNZhPvv/8+lpaW8Oqrr6aehAceG8/TA1MkB0jnZyErXBiTLop+EMQuilzbIqI1lBODodqO7gjMCP4IiqKgUqmgWChgt16Hbdvya65WQ0V0GZ0ShJD32NISdE3D5uam9Dzojsj11Rf0Oxd03kPd0HUdc7UaFELQsqw4QkgIdN9H3jSl4ZKu6wiCALbrolwq7bmTEoKtBw/guS5Onj49kZA1w+FCFjl4zOH7Pq5fuoSw1QIjBE+srsqueYQQqSA3crm+k8YgPwMhCJPpgz4DNOUiqd1GA47ngTIGXddRLZdj1X6PfftBAIiowZir+WEYO4XQA57vo9VqxdUeioJKD2LQDcIjLQqPKvi+j1/+6lcol0p46803R26U008XIlapInoxLaQJ6Xd3YyzyapOIUjR4hCWKorih1RBiILeJ3tUYo0DVNCwuLuLYsWMwee+C7Xodd+/dm0mqQdU0HDt2DJubm31fJ/QK+3QVw7aPwXqEarUal3caBgLeMrrVbsOyLERRJO3IRSvpbpvrdrOJq5cujacXyXAokZGDxxiu6+LG5csILQuUEKytrMRtf/mgGoQhQp77FaHFbvQzrxEphO7BmXQRBBpFsDkpkPbHuo5qpYLqgFI+xhgC30fEGHK6PtGKvh8kscHkpMN1XVjtNhi4OVO5vK9r5TAQAJ988gkIY/j+O+9A07SOSow0k0UyKpGECJmLCpRpIU1Zo2jbTHmqgHKzHkIIojBMVf/fC8nqkEnOyDRNLC8vo1apQFdVhEGAzfv3sbW9HWsdpognnngCO7u7Q8mHLBtOiBv7dstMvg+972WRPhC9GUS1ih8EsbOk70utkSj37G7Y5bkurnLr5QxHHxk5eEzhui5uXb4M37b3iEEu1xG2dGwbAJAzzd4rXJ522PdnDAl/8oHNsm3s8i56ogd9pVweSAri3cbNlChjUBVlqmFwcfxsSqSAIXZvbFsWGC8rE+Y/o+Lq1avY3NzEa6+9Fqd9SKeVb8fxA4Co3EgI9fqldMbpxJgG3WWN4niSan3RIlqUIDKecilyHw2fty0ed//9CNEoUBQF1WoVT6ysxA6EqgrLcXDnzh00pzgZrq6uQlNV3Lt3b+T3Jq9r8h7oC9Jp/2wYBnRdl5qXSrkcR+xY3CzLCwL4QYAgDBEEQQfRF9HDKIpw7fJl7GxtjXz8GQ4XMnLwGEIQA891wQjB6vKyVGiLIdT3PGmtWujTUCnZNhfoSiH0AiGgnBTs7O7CcZwOUlCrVmWZVV/wwUiIpoQV7DSQTCFMIxLBEDdBcj0P4KthMeGNivruLr746is8ffZs3OK3B5INhMSknAzZdxOGZMQhmND8KNlaWWoD+IQvSQCv8xfle+I1yeNMTlaiuZBCCCzLkoLJcSDu7Ul6IQDx9VlaWsLSsWPI6XpHqmFcApOEbhhYXFzEXZ5aGJfUCDOmiBOFbgj9THfqpZDPg4CnD6IIpVJJmooRvl3LstBstfb5hkjnU8Zwe2MD9Z2dsY49w+FARg4eM4hUgue6IIqCJ9bWZAg3CZuHDvOm2TP8zRgDEiFVKTjsA9HwpVGvj0UK5MTNBzOfixH1KXWNm2YKAYgnx2arFZMYxlAslWTedlSEQYAPP/wQtUoFz41YmQDsCUH3nVdi1Rfx1buqKHLiFqHqfTbBif4C4ksQATEpCRICvqIcNil36w4EclzrQgiJu1OOfPad+xilVHQQ8qaJleVl1MplmWq4e+8etnd2Jk41rK6uYuvhQykQTbqPjowEOevl2SAmcxEFUBQFJh8PbO5tIHqUFHiDNRH121f6KCpG+PHeWl/PUgxHGBk5eIwgiEEgiMHqak/PAkqpLFnq1YZZ2MSKnwdGCxBPlG3LilvnclJQHoEUCIg9iBI2ACMZBvXcPjqNkqaBMIrQaDbj0OsAb4i0+Ozzz2E7Dt4YQ4AoMCj3LyYNQohcIe4LxXdrR7q+hmHoCrhH5EC8r1gsQlFVWckyLsQx9Cp1HAeKoqBaq2F1eTlONSgK2paFzc3NiQSLq6uroJTiwYMH+/Y3CkQEJ/l7R9OojhczSSANXd9nrSycFquVCkqlEgDAcZy4N0OCxHRukmHj2rXMTfGIIiMHjwlc18X6lSsIXBeKouD42poUH3ZDiBDVRD/4JLpX8YPgBQEa9boMuebzeczVanumRX0gc+UiVJ7Yj0wpaNrE/RCA6VY4BGGIZquFKIqgqmqct9X1sVe8N2/cwI0bN/C9V16JG+JMgH6fleynMMUqhV4YtPIVXge91tzCuIcQEnv9pzRI6kaHwn6K56rrOpaWlrC4uAhD08AYw+aDB2NrEYrFIqrVKjbv3t33PxlFSLGdQddbmEeJqA+w9xwoqhq3skYsSAwS15sQIlu1C41IiwsWO7bPXxuFITauXp26R0SG2SMjB48BbNvG+tWriBwHqqpibW1toOAvGOCUJ1Tl+yaaroGIstgBUEQLVFVFtVJBkeeQh0E2c+p1fL4vVf/jYhbEwPN92VFR1zRUeY3+uKvUdruNTz/9FE8++SROnDw52cENOAYRJZpljfowUaD8T5/j1HUdJjeKsm0b0Rih+33K/Sl7YhQKBawsLyOfz0NTFGzv7uLB1tZYFsxra2vYvHev73vFcQ+6s9Lul3KiICNIjEHXNOR5LwabpwEFNFWFqqrIc6EyYwy2bcdpny6iIQjdjatXp2ZFneFgkJGD7zhs28b6tWuIbBuqpuH4E08MDXELctDtLSCc6eTknhzIkyv7HtGCWpdXQa+JYpBZi0DEG8UwSoeLF3sgSQqmOTE4rhubGyFWfZfL5b3V6RjkgEYRPvjgA+Tzebz80ksTHduwXLWYaIe2lJ4QA42L+qQVkjDzeeh8ZT6O/qBvnf+I2xkEVdOwvLQU3++KAsdxcPfevQ7XwTRYW1tDEIbY3t7u+X9BnpX4l33/T1NC2us9QjjKAOS5SFm0fBYQpmOEEJimGWtpSNziOZlmkK8nBLZl4c6NGyMdT4ZHi4wcfIcRhiE2rl9H5LoxMVhbGzoBJPUGYjKX6vbuwaZrUKKMocWVzN3Rgn1+B9gbvKQxDxvc1RCADHFqup66a6HA9J0QeEWCZcHmZZ9500S5VOosLRxDcf7VV1+h2Wzi9TfemLnrnGy4NGNy0F061/0/AAOJlNAfEEIQBcF0jIiEWHOK3g4AUK3VsHTsGAxNA40i3L1/H+12O/X7a7UaCqY50BAJQIfQNHmfTdKfgRASC08Zk5ojz/c7Vv6i5DUMQ5imiXKxCEVR+qcZGMPu9jbu90iVZDicyMjBdxi3b94EdV1ohKQiBsBevTvhHv9Jm9RBkNEC7pCWN8190YIkOnKnIwzQPk8pjCrwEwPnNKcAkToRA2GhUEChj8X0KLh37x6uXr2KF154AbVabeLtDQJNhJNnrTkgQF9Cl7RQHgRFVaX+wHEcGeWayvGNWxHQB6KiIW+aUBUFD3d2sLW9nTq8vrq2FpODFMckogjyOk4phK/zck3GWFySy59ZkXJMWm6XSyUZ2dmXZuDP94PNTexmHghHAhk5+I5i6+FDWPU6GKVYXl5OvSoMu6IGyhABVN9oAR/A+0EIlkiKaIHcV7LRUkpyIKsRRthPGkSieRIvVSyXSj0rO0aF4zj47YcfYmV1FU+dOTOFIx0MkVJQFGWqtsl9MYQcpIGRy8HI5aAoCizLGkooRoGSUuyXFsIXoVIqyWqGew8ewE9BakQjprGEjVOMhORyOYAQeJ4Xl7xSCpW7c4YJG2dFUVBKPAf90gx3bt5Es9GY2vFlmA0ycvAdhG3b2LpzBzQMUavVRqqvF2F7XddlfTzQO385arRAQGxJIWQk1bhotKQqSionv1mIDoGYQDWbTYRRBMKb9EzDb4FRio8++ghEVafaUGkQ6AFVKgyDONO0E32hUIDKV7R2SntlUdM/+EU8jz9NwqEomJubk9UMYRhic3NTpqL6YWlxEbqu4+4IoXjRQGsarpACuqZJ0iTGBxkFYmzf5J83TekC2ivNwBjDjevX0ajXp3J8GWaDjBx8xxCGIe5tbCAKQ5i5HBbm5lK9T9REC0KQDP92N+vpGS0ol4dHC3gJZFIMOMoAJkrYRhEizoQYtFqIKIWmKKhWKsPtm1NONJcuX8bDBw/wxuuvjyW23L/b4U2jwoPSG3B02ynLv6fQHHS/vsC1HUEQxCHvdG9M9ZppaxCAmNAsLy8jx0uI729tYXt3t28KQFFVLC8vD9cdJJDcliQIE56L8DggwL5JXrpcdn1uOk8zaIk0g51IM7AowsaVK2js7k50bBlmh4wcfIdAKcXDW7cQcKHWsaWloe9JerAnQ8u06zUCfaMFQ8L8SQfCJAjSm9JEXEWtDem7MLOIAV8FUV7qVSmXU4Xi00x329vb+Oabb3D+wgUspvjc0mLYNYgmtE0eBz2PKUW1Qjc0VUWeE1LbcVLZK6e+J2ZEEHRdx/KxYygXi9AVBa1WC/cePOjrA7C0uIhGo5FKQyAn6gR6GlqNAUFWI96VMbl9AIh4OWRy74qioFQsdogaRZqB8Kjh9cuXUc8IwqFERg6+I6CUovXgAdqNBrwwxOLCwuDmRYmfpcc6EiVlCQdExpXLHdECRUkVLUjua1Ap2bD0gmi2xHi74777mXLtukBIaezZwD0MyqVS6pTIsOPxfR8ffvghFubnceH8+ckPdgRIQdkBRQ6A3uH9NKWMvWDmctBzOSgALMsaSsRGnSQJpl/loigKFhYWMD8/D03TpPWy06P6olqrgQFoDdEdMNa7CRowHYKgKEo8niiKjB50iA3566Io6oxeECLTDCSRZvB9Xz731y9fxm7Wh+HQISMH3wFQSuE3GtjZ2oIXhiiXSihzi9NuJAc60UmNKMrewNE1SDPG4mhBo9EZLahWh0cLeqQR+mHYwCVWhYqi9CQHs6hGEIgSxEAbkRgAQyY8xvDJJ58gCEO89vrrU3PuS9PCOemOdyBixAS6z1OSgzG2VcznY3tlSmENyeOPDJFim6IGQaBUKmH52DG5Kr/34AF2u4R61WoVBEBjiIAvjVZD6ATGJQnC1TTw/X06g+T2he4heX/pmoZKIs1g8TQDEN+r61euYKePp0OGR4OMHBxxUEoRttvYevAAvutCVRQsLSzse50cOsQg0qdEMbmCo3xSFDn2kaMFI6zih6UXBrn4zaIaQUCUKwo75FGJgehU2A/X19dx5/ZtvPq9702lDFIixSQgryk3tHmUkLX6Y0zCRFFQ4Pek7/sDuyOOe57TtFtOImcYWEn0Zqg3m3Gaga++NU1DqVhEfYB4TzS8GgXjXAdN0+IIUyJ60HNb4t5jrKNUtleawbIs6XGycfUqth8+HPm4MswGGTk4wqCUImy10OTtjwPGsHzs2L5VoJg8AciyxH7eBUKI6AcB6o2GFHqZKaMFYn/A6Kt4gliE1Ysg9Ap/yzLFEfeTFpQxtFothGEIhTdQmuYKu9Fo4IvPP8eZp57C2tra1LYLpJtkRRnjQaYUBLqjSR2tpccgCLquw+R2v5ZljWWvPAyzSDEA8aS5tLiIWq0GnZcMJps31ebm+pIDOiCd0A8daYYRr7WIcnie15FW6N6++LtwaowSJY9500SpWJRpBsu249JOXsWw3dVwKsOjQUYOjigEMfAdB/XdXfhhiLlaDWYut++1HQpxkUoYsHJIdlsT0YJSmmjBCGmEfpAEoQthGMZljPx/sxIdCjAArXZbEoNKuTzVcr8oivDhBx+gVC7jxRdfnNp2gT2B6TCISaXX9ZbbEqs//tlO0ySoA8l7a8x9mKYZN+Mik7d37gmeYpjVNahUKlheXt7XvKlarcZpha79UkpHJgZJyGjdKB4T3JmUcpvlYWNC0iNFRBGET4lIMwCA57oxGWIMN9bX8fD+/THPKsO0cHAS5QxTgyAGLAyxtb2NMIqQy+Uw1+Wml1xVS6fDARNcFEVoWxY834eqqtANIxUpEPualhhQDFoiHMkYi81WKI0bvSReNwswxE2PRHfKcqk09VK/S5cuoW1Z+Mnv/u5Y0QgxyIrvghCICZwJ5XgyrZGc4BPpEkZp7DyZtLNOfAdjaDWbAGLCBEBOKB0RqMTnnyyjk+S06//gk4w4/5CvHoMggKZpnVqYFCCEoFgooNluIwoCeJ7XkyxPCoWQvbLfKSOXy2FleRlbu7twHScudQTghyFsx5Gpp2S4flKIzyIN6SGEwDCMuFuj7w/trirug+S2KaXysy0Vi3BdF67nwfE8UMZQyOdxa30dYAxLKyuTnVyGsZGRgyMGQQwQRdjZ3Y1zf4RgmZe/JSfOfcRgwGAWhSEaXBFNCEEul5Nd2YZhFpN1kiCICZAQAlVRZkYKgPhcrHZbeiqUy+XhPgZDtteNdruNy5cu4dzTT6Ncqci/d0/4yXOX3/nPezvge+ATb/fqXlw3kVoSKSUhNBXHGPHITOfBsz2BKhJRhOR+E/tKht3lvYf990XyfzShFXEcJ349b+wD/rO4FxQ+oRBFgcJX8eJnMdkovFugbdtwXRe6YUCd9iTO992zO+kUIJo3Nep1NJpNhPz+29rawsmTJ6dKDIDE56MoqbQLOcPAbr0uSxLT7YR09lPh5JUoCkze3bFlWbJBVSGfx62NDVDGsLy6OvI5ZZgcGTk4QqBRhLDdBqIItm2j3W4jiCKsLC115Gw7mv6gv75AwA8CtFotMMagaRrmajUEYYjA96Hl833fx/jkMavJWqifvYQYcdbCOcuy4AVBbIlcLk/UFhqIPzPRDpdSCkYpPv74Y2i5HNaOH0ez2eyc8BMTsgRjcTVGj/I/RVVjnYgYfJOr864KjuRKPqIUQRhCAVApl+X/5Xu6ogFiUC+Xy6hVKh3RBXFUyUiDjFqI1yGR7kj8P1mbr6pqrLrn5EVEOAi45mTYvSYIAyHwuKI+jCKUeFMg6chJKTCFFJEgr7O6J6u1GgzTxPbWFnKGgdt372JuYQH5GURDAK5L4vfZoBiCLF3kDpWptp14b5IQCpJgGAaKjMVjmoiS5PNxJ0fGsDxlTU6G4cjIwRFBkhiEYYjtnR0EYRhXDxSLA8VBgwYvz3XR4vazGjf28XwfQasF1/eR70MOZukpkAQhJBaXMTZzFz/LcWS5ZqlUSt+/gQuuKKWyhIvyiUl4RAg8uH8fDx48wIsvvRS/dm8j8eQmVsDiZ/67KlbNidf0bHudcrD2fR+6pkHTtFTnmSQNZJrRG04QBAGglEpnPUmaEhETcT2TWgjw74SQ+HoSAlVV4XgeAt5NUOe9AADIVIYoi1VUVX4fNcUz7V4M3cibJlZXVlAulWC323jw4AHm5+b6lipPCpFiEASy1z0WhCE0XUfI73MRnUoLpYsgAHGpsqHryJsmHNftiCDcuXkTlDGsPvHEROeWYTRk5OAIIEkMGGPY3t6Wedn5+fm+E8KwB9aybdmnPZfLxQpiQqSoS6y8utXss875d++LRVFswjJDFz/HdeHya1EsFnvaF3dP/hH/6g7xJgWBYuBUCEEYRbhy5QqWV1Zw/Pjx1BP+LCB8Ix5FpUIHBMFMpjD4tVN4ZCQNBGEQ5IFSCoUQuK6LMAxh6DoIJxkQkRxCECYjMjyy0kEYeIpD7SfcG0PxPyoURcH83Bw2bt6EqijYqdfBGJMRn1lBVZSe/gli7MkxBigKfN+PmzONgG67bIL4M9REWshxOgjC5q1bAGNYPX58onPKkB4ZOTjkSBIDAGi2WnA9DxFjWD12LH6AE5NTGn0BYywWHiZMjYrFYsf7dU2DHwTwE6mFWacR9h0n/x5y22TRDGraanHXdaUhSz6fh6qq8HlYOhkF6DUJCCJACIHGV56qqkIVq9DE5/DFF18gDEN875VXRmqGNQukqVQ4aExyX4nUSjJdYBgGms0mIkphGIasrw+jCFEY7qV7EqkfUIqIUkRhiKBr4heRhX7RhllUMTB+PHPz87h85QpyuRw838cut1SuVatT32cS3c6VjAtGAaBYKMAPAnjjkAPsRR+TBAH8uuYZg9sVQdi8fRuUMTxx4sQUzizDMGTk4BCDhmFMDPjkH4Zh3NcgDLG0sIBcLidzs8P8C+Q2eath4Y+eNCUB9iZkI5eTD34hnz+wNEL3cdBEGFma9bDezV5G3X7Ic5vtVgtRFMnOiiKaIo8jkbLpnhwEEeh3zcWxN+p1XL16Fc8999x0zY7GhPABeNTdGIH9/gHTmmIVQpDP52WEzNB1qdEgmrZv8GNIaES6tCKUUiAMB0YbiLg3EvfFuJBNjfjnVK3VpKaiWi6jwc3JGKWYS9lcbRzIu5oLMANRUqwoKOTzCIJAtlIfVZ/TsW2eZlAIQcQYNMOAwRhcz5NWy/l8Hvfv3AFjDMdPnpzWKWbog4wcHFJ0EwMAsXI5imDmcqgmVO5J4dmwioRmovFJuVTqCJ+LED4IicOwIrUQhrEYcOpn2RvJyUG4+GmJCVgQIJawZx2GkK8GQ/4VRRF83487xYF79Ou6JFq9ogDjDPaCvH362WcoFYs4e/bsyNsYZV9pXydbNR+GyEGXcHKayBkGfN+HHwSwXRclHiHreRjA3qTeNdEJs6FB0QYAkL6BjEEhBJqmQeXajrROlEmthUCpWISuqqjX63j66acBQtBoNtGyLFAgdffVcUEQEwKLr+RFFM8wDHj8+k4i3u1VHmrwaITreXD5fvP5PB7cvQtQiuOnTo29vwzDkZGDQwhhiZwkBmEYwmq3ETKGYwk/g35CxG4EQYBmuw3GxViVHiV6Im0AxA+roWnw+KBamZEAqhvd05tsKdxDb0C43XJ3FEFEBZJflNIOJXYYhnAcB6qmIW+a0stgFlbCN2/cwNb2Nn7n3Xdn1sMgGUFK9VokTHAOC0QIe8qbzefzcfWNSJPp+shRJ4UQKGmiDYxJ8hkxBhoEQBDIe0/lFsTye9LxMyG07AYhBJVqFU3eY6FaqYAQgnqjAcu2QSnFwtzcTD/PMAwRhSEIYjMkICYJnu/37So5CqRhUmIcMnI5gGtHOgjCvXtQdT0TKc4QGTk4hIgsq4MYMADNRgMRpTBzub2wdEpi4HmeNK/RVBXlcnnoipExhnyhAL/ZROD78Dxv5LziKEgSkyRCLsLs11KYEAIaRXLwFwOz3J4gDjz0KwR4ThShXC7D0HWUZkh8fM/DF19+iSdPnsTSFFsx78MIKZ9H0aY5DeTxTzl3r6kq8rkcHM+D4zgoT/G8e0UbhCeEuBeFxoEyFmsdogjwPJkm0FQVJBGd6vc5Vms1PNzakr9XymUohGCnXofjutja2cHi/PxMCAJjDDZPtxmGIRsoafx4RcXOJJEocd5KlxDSMAyAUriJvhl5rkEol8soJaKoGaaHwzU6ZEDkOGAJcxqAOxfaNgJKsSiiBinFgbbjSLGdYRhx46A+ZEK2aebb1lQVhXwetm3Dchzouj6zgaenEhzcNjlRxigG3ZCnO8IwlKkQUIqIn4eiKHGjGPHFIwJhGMbtb3nqZJbEAAC++uorUMbw/PPPz3Q/o0yoIgSuTDlCMgkIIbKz5iy0/6ZpwgsCRFEE13VnSnRFOaC498SeqEht8Xs3ohQBpdKMSry3O7ognrlatYr1a9dkEzQAshXy9s4OXNfFw+1tLC0sTP05dT0vTkcqCgpcoyTGEVVV5bM4aZoq6YeQTJMZpgkQAsdxpPFb3jSxfvUqLrz44kRGZRl6I7uihwg0CBBxdi6d5QiJFddRBNMwUCwUOohBv4GUMQbLsjoaJ43TTdE0Tfg8bGjZ9tTrq6Viudf/KEUYBHHVhOfBdRxpsStTBGzPOVHjKxqVi866SYfoJR9ReiDEYGdnB9c3NvDKyy93iD4fNQ5jpQKQaPQyA9U/IQSFfB7tdhuu68r7ZFYQz25S0KooChTDgI69dESS6EacCIuJFvzZVXjEK5/PgxGCZr2Oufl5uS/xXO9sb8PzfTzY2sKxxcWpEYQoiuQ4UjDNzu3yyiZxDtMgXclSaXknMCZTGU7CjwQANq5exdnz5yfeb4ZOZOTgkIBSilD0Nxd/5CvddrsdRw2E6GhIxIBSila7vVdyVCwOLZ1LOt0lt00QDz6NVituhxsEyE3oGij32ftAEAqxoON0rPLl8SVWZZqmQVfVngRDhDtFOZhoPa1r2syJAQB8+umnmKvVcPr06ZnvaxQ8ym6MAzFj/YOh6zAMI/bxd5yZ3wMEexOcdJEEOoS04h4Gn1SFd0Z3uaVPKXTDAAGwef8+jFwOmq5D1zQovHJAWVzEFvdAuf/wIZYWFiZeUTPGYNk2wOJmSd3+HwSx7sDxPARjGCL1Qs9FDxchG4YBhrj8WBKEeh33797NXBSnjIwcHBJEti29DIC9kN2+qAEGq7qjKIrbDPNQe7lUGtocBQCiZK1xFzRNg2macB0HtmVBr1YnDkl3lK7xEinRzEXkGwW50TQNuVxODqSjrIhEuFpEDITmYtZmQ9euXcNuvY7f+eEPZ76vUevrReRgUBOuRwEyhRLVYcjn87EDaBTBDwK5Gp0lRGUNRXztB90PQr8gnliRyxcrcz2Xi9uz8+iCzZh0udR1HUtLS9ja2kIYBDKCMAlB8EQ6gUdeekHjkTphDDYxIRE/JAyyhI4DgBzPRMMmBuDOrVsolssozdgY6nFCRg4OASLHAfP9jpUxgI6owQLXGnQPK0mWHYYhmq2WtIftVZHQCwzcV30ACvk8Am4MZNv2wJKwNPujlMYqZ9+XtdMCYjWiqio03h1yEm8Ay7bBGNuLGMx4snZdF19//TXOnDmD+RmXmI0Kxtiex8EhixwIq+hZ+g2qioJ8Pg/bsuA4Tkw2Z3g/MKDD7nlUopiMkiGXQ9E0QbnVcBCGcVQsikCjCF78BpRKJTQaDURhiPsPH2J5aWmsCTuZTsjn831JuTBNC3jUb1Jy0DddSvb6fCQJgue6AOL0wvkXXsj0B1NCdhUfMWgQIHScnqkC4e5m6nrcOnnAdjzfjysSuII4TUUCgNQrNYI4PdFsNuF5HnRdTxWRkPtBTF5834/dB7vKtRRFicO+uh636yUEFtcYTDJ4C592grhWXEsIG5P54Gniyy+/BFEUPPfcc1Pf9qQQZXLC0vkwQeTpZ21HbOZycF1XTn6FKetBxH2VVNyLJllpuh4OQs404fk+TNOEiT3HwiAI9ip7+Cp/t9EA833cvnsXK8vLI7WvZozBchyIZmzDnnVN0xBwweekqYV9AmUxNvImTQIdEQTXRR3AjWvX8NQzz4y97wx7yMjBIwSlFAFvetT9KMmoQRRhcXFx4MPmuC4svh1d11EulVKF3mU4OuWArIv0guuibVkAIQP1BzQxcPlBIMPZYn8aJwO6rvfMf9NEW9dxEAQBHMsCQ0xskisK2VmOm6+wKXXXe/jwIW7euoXXX3sNhmHIssHDgsMaNQAwVGQ7td0gjoS1LQue6yLHo1STQoS++/Y6AXp21xwFpmliZ3d3b5s8Dy9y8WEYIgwCMMTVDY1GA57vY+PmTSwtLKBQKMAYcr7CXj0KQxBCZDpzEHRNg8P3T3i3xrGfpj7PoXSBRZ8Ug+ti8+5dlCqVrM3zFJCRg0eIyLaBPpOSiBrkeNSgFxiAdqJ5kpnLocibJw1DMoUxymqmUCjEAinfR7vdBimVOvK2Ec/lClIg98dXE7quQzeM2Mp2WOUEd4kbR3VNKUWbEwPTNAeqqBVCAFWVYrFxQSnFZ599hoXFRZw4IHvXUfUG0uPgMJID4EAiByAkFvPpuhS+jluFI3PhbHCbY7lrTEYQcrmcDKP32rauadA1DXnEn7WZy+HBw4fwggAPt7YwX6vBMAwQRYmfRZ6ySPZQaFtWPMkTIttdD4NwEY0ojbURuh6nUUY8v0FXhRECpSsiA+zXIFy7ciXWHxyQcdt3FRk5eESIXBfM93tO5DSKZF/z1eXlvtuwLAsuHygKhUJfwVA3ul0Ve3Ve6weCuLa63W7D56mMQj4PxphsVpSEwgehZLogLYSF7Mjhbxb3haeUQtM0FFNeF4I910UKjLz6uXLlClqtFn7vzTdHO94xkXQ6TAuRVjhsKQUAew6JByTgFL0BwjCMmweNmCYbFCXoBzkJC8fOEWGaJjwuwhv2blVVUSwWcdI08WBrC47jYKfZRKVSQc4wwDwPPjdjEqLGpACx1BVtGwZN00B52bPOtRzTbkbFeNUCuq59kiDYjoPL336LF195JdMfTIDDJVd+TEDDMC5b7DM4NHiFQs4w+gr/bF7rSwCUi8WRiEGyOdM4D6/QH4AQtNtt3N3cjMsEeedCTdOQLxRQrVRQrVZRKBSkF/soEGmFUSMHFldzEy7OGnkQ5vl4lX9Pc9y2bePbixfx9NNPo3xQjm0juCIKHFZ3RCBhgHNQ++HiRIUQuI4zkCSLckTKBZ10hL4evfZPVHWs9+dMMy57TkTlhkFVVRxbXESpVELBNOG5LlQePWEkbnTkBwG2trdR52mIvGmOPLFqvP9K0kp5VgLTXtvN8YgkGEN9ZwfXr1yZwZ4fH2Tk4IAh+yb0+z8vRYwo7at0F3XaQCyyy40gqNo30Y04QIVRBMu2UW804jw9/7vneTAMA3Nzc6hUKsibZmyyM2buMSkYHIVUeL4P13EAxlKHRPuCEFlfrfBue4T/rRufff45coaB8xcudJzDTDHG9kXk4DB0YxyEWesOBHKGAVXTwBBrd7qPgfIwNp2QEHSDYLy+FiZ3CnT7pBb6QVVVLC0sxJO+qqLebIIh7tFQKhbjUklOxlVVjT1G2m14vp/6nHVNAwX27Ms5lBEIQq++Er3AAGg8ypeEyU2aKGPYvHMHD+/dS7nnDN04fMuH7zgiyxoofms0m6DccKRX1MDzfSk+NPN5mKbZYWDUF30sitM8tJSnDDzP61gVKKqKhYUFqVL2eV93XVHGmti79ymd5VJuIwxD2O02GOKQ8SRd4vqBJFbrIrS8ubmJzc1NvPXWW4c6jCm7/eGQNVzikJ+yuG9mRK46tk3its7tVgu+58HgOXgKTE2kOuw4RjlLM5cDWNzKuDxiTT8hBIsLC9je2YHjutje2UEURbKnQ6lQQC6XixcwontpGMLhWqEcdyDtB9HOPKk7kP9LkWIQJc5pI30UCZtl/h7phGlZCMIQVy9fRrFUQiHTH4yMwzdCfIcRui5oEPQdcITWIAxDzCU6LwoEYRhXCSAWJqXNpQPoTQyG5EzF/nZ3d2FxkRIYg24YKJVKqPGUQaVSiTvdAWhxJ0UyaTkTpXF+UVFSDRaMCxAjxmAYBvKjXJtxICIKhODrr77C8vIy1tbW9uVCDxNkm2YRATmkGFVHMSlU7qUhyvcEMT2IazRqJY5pmiBjRA7k/gjBwvw8ioUCVEKwee8eGo2GLPUt5PMoFYuolMuxiFdRZNqh3W6j2WrB9by+K3xd16EgHjt67XvQszyox8qAE9p3DVVVlY6wlm3j8rffTqVr5OOGjBwcEKIgALXtgQOOSCeIcsSO90cRmq2WtDEtJqIKfRspjeE2RxmD47qoNxrS0wCIVwX5QgFzc3Mol0qx4jnB1sulUpzDBNBqt2WN9LigPB2RNvzdtm3ZFW4Sg6ZRcfPWLTTbbTz//PNxW19FiXUK6LTMnTbGubaHOWoAoGNiSFoOTxMM8YoTlMYElItexaQb8e6eBwkiIm0pIAyRxiUHQPy8VisVqadptttxj4TkSl9RYJomKuWyFCZG3OTIcRw0mk1Ytr2PBIiS5H6TsfSy6IVxx4seRM4wDOg8yrG9s4P1TH8wMg5vDPQ7BEpp3IZ5ADGgvClQGIY41tXaN6IUDU4MNE2L7X+73t9dHy6V9imZuB8E8DwPPm+JKmAYRpwqGBKiF+pm27LgBQFc10UQBCiXSmPlt0V+N81E5jhOh9HRQa2KGWP45ptv8MQTT3REesT+FQC0Kw0x8zK9AQgPexljAvIznOB6yXf2CN13/64Qghw3R3JddyYpqX4Q+oO0ZbQmFxWOC9/34TgOiqUSKOL7otlswjSMng3CZHmkaSIIAnjcxEwYmimKEosBRStnQGo0ej2/vbwshL5jZHCCI4TWSdKcz+cRWRYopbh75w6qc3M4trIy+j4eUxzSJcR3CxFvXNIPhJC4tjiK9kUNKGNotVqyDXEvYtAN6VA2ZJIMowi262K3XpfpALC4PXKhUMBcrYZSqZRqoBT7LJVK8QSNONohTFhGBUu5yg2CAA63Ry6MWHo1KTZu3EDbsvBsQoSYRPcnTgBZKSI+H9K1Wk6DcadLGTk4AuRgVIjSU/El9BV99Tg9ng0ZPYiig48e9DmmXhBGZKNCNFGyHQcM8aS/trKCEk8xbO/uDgy/K4qCXC6HSrmMcqkUp2IQL15cz0O92YTN0zKEsYHbImR/FdC493WH9Xpim4TrSQBI/UG71RpzL48fMnIwY4SuCzZgoBE3s+M4oJSikhAZMfBUA++jXuGhwEHbSVObHwQBms0mdnd34di2FAHlcjlUqlVUq9V4oEy54pe+Cfz3nGGgUqlA5cZCbctCm0/gaRHxQX6QGHGf0dEIdeqTglKKixcv4sSJE6j0K10ccr6ypC6hX0g6N/aLgIwbFzn0aYUudJ9n0lsgWUUQ8dSASEUkDb5GgUIIzFwORFEmCtuPi7QEYRxyIB1XgwAEQN40USwWoaoq5ufmoOs6GKV4sLWVqmJAU1UU8nlUKxXk83mZGhEN1CzHgWVZw595MrrXSs/NdGxy7zdNVaVttG3buHrxYqY/SImjMUocUURRBMpLDvchMYmHYQifi3yElkDk7sMwBAhBJU14fkgqIQhDNJtNNJtNuHw1r2kaisUi5mq1fRbDadBNDAQ0VUW1XJZhSs/z0Gg2ZWh76HZFD4B+5zym0dG0sLGxAduycGFAH/lJ7GO7iUMy2iCG7qSmIQ3xEh4Hh65VM0fHGfDzoT2iAB2vS+lDkRY504TCowfdKbZZQ37GQz7LHDdCSgMGSLvziFKoioJSqdThGKryqiNN0xBFER5ub6cuKSSEIGcYKJdKqHC3VE1VEYUhLK5NcF13oKU0CAGb1Ga86x5I3hOioysA7Ozu4s6NG5Pt6zFBRg5mCDaIGCTC/o5tg7K405gQ0ViWhYAPTuWU3RX7DZKSFDQacY8DxCVR1UoldkvL5SYaYPu9kxCCYj6PcqkUpxkoRaPZhJNiYBMriX6r3ImNjiZAFEX49uJFnDx5cuRysonBQ7ZAp2nQsPQEFQ1xsGcgk5ZUjHZ4ibbLiS/W43vHl/DM6IoAyPM6oM9XaA8IIbIj4UEijUGSmculIgeMsdhFlb/W0HWUSqWemhNd07A4Pw+VEPi+j91GY+RjV1UVeR5NMPN5+Tk7nhdXOQwgCZgwmtVrq8lnIs9TRpRS3LhxQ/rEZOiPjBzMCFEYIuqz8ujWAziOgygRNRDuh0BsVWykXM0TRelYafciBblcDnPVKsrF4sQueWnthQ1dR7ValcTHtm1ZmdEPwjq5F2mZqtHRGFhfX4frODg/IGoAYCYTWhoS1+sVEb+WiqrK1EWSVAyiCAyQyv5ek3ry5473JL7Q43vXiSV2+GhLQXO5XGyk8wiiB8BwgyRpoTzgOvlBgFarJXskFAoFFAqFgfePYRiYn5+HCsBqt9FoNsc6flVVoes6Cvk8TMOIhbmU9iUJURTJ+3EiDLgeiqJIF1nf93H98uVJ9/adR0YOZgTquj0fxO6wP40ieDylUCgUOtwPC4VC+jx6YpuDSEGJ5xknzfGN2ndAVRRUymXZHtcPQ9QbDVg8arJv+32aLiWNjvIzMjoahDCKcPHSJZw6deqRNHYZW7Q1RG8w6LMk4MSz18SS/NuMyNBB+0ZI7QH3E3gUvhWDBMVmLgcC9IweBGGIVrsNmz9XqqrGC4yUz0khn0e1WoWmqrJccZxjV7j/gKZpKHPb5l4kIblAIITIqNhY6FUZkUjTaJom0ymbd+9iN9HdMsN+ZORgBoiCADTlikMIETVNAwjZcz80TWnkMRR8EAnCEK1WC60kKTCMDlIwDYzjnyCQz+dRTaRJXM9DvV6HkxiEk7nlpCDxwI2OeuDatWvwfX941ADTD9kDGLtrZHTExIhJPArDJiOXg6KqcVv1A65cEOgnxs2ZJhjpNEKKogiWZcGyLNk4yTTNOI0w4mdeLpdjsaKiYHtnZyxxpsLNyyh3mTS4LqGbJNQbDbiJKIhofDZNJO/5nGHE4yAhuPLtt4fWsOww4OiNFEcAUR+zo16rAdtxEHETljbvuWAYRqoe6gKhiBTU6/B9H4znTeeq1b45xrFXoOIhnmDA1jQNVV4OpXKVs+04qDebsoZa7COZJnlURkcCYRDg8qVLOH3qFAojfD7TQiqb7D44apUKSTwKcqAQEofEH2H0AOhtkGSaJgggJ1WH90EIwhAEkOWGIsIwDmrVKsxcLlWJYy+I+4x2RQYEScibJmgUgVIKz3XRbLVkqmTsvh99PqOkdkXYKxNC0Gw0cHNjY7x9PQY4eiPFIUfkeT2Vt70eUkYpXNeNV/m8o6HORUNpEIYhmq0WGpwUyPRBrRZPvFNWpferTBgXhq6jWqmgUChA4auMtmXFVQ1B0EEMHpXRURJXrl5FFIapogazQLKvw6g4Kg2XDhNyuRzII44e9NIfiFRju9WKJ1UepTR0HeVyWYrvJtovIWOVOAqI+6xXypCQuCOkiCQA8f3pcpLg8m6zYxx0KvdFRVHiqCwhuLG+DnuM1MnjgGykmCIopYj6aA16wXVdhFz0JNzF0pgchdynoNFoIEhqCrhpkSpEZ1OcQKdNDAQIIcjncqhVqzKNEvKeDg6PFDxKoyOBIAhw5coVnH7qqZ4ucgeBieyoOWE9qpGDqa/cU2yPcO2Bwn0PHln0ID4YAPE94IchFFWVHRM1HkkrFApT/XwnKXHsFTkQYIyB8tRHMt0AxAsmx3HQbLUQjNARUqDv+MR1EAK6rsMwDPi+j/Vr12SZb4Y9HL2R4hCDeR7Q/TAM8B5oWxZsy5Lq6GHEIIoiNNtt1JtNBGEIijgFkSQFSfRdaY74wM2KGCQhwn21ahWGroMQgjAMsVuvY2trCyGlB250lMSVK1cQMYZz5849kv0DkznIDSsNPeyYeqQo5fZyhhFbG7O4+dCjAkFMUFutFlzHkWWfxWIRpVJpZoR5X4ljvZ7qfeI+665IYozJyhmB7nQDIUSShHYiMpIGg/RQDJ1jmJnLQVVVPLh/H1tbW5n+oAtHc6Q4hBBRg270Ux0zbi3sBwEK+fxA90MGyGZIvufF1qcDSEHXAex7WMZ5BA4qiK8qCorFIso8QuC4LlzPg+s4oI/A1haISycvX7mCs2fOSLe1g8awDpoD35sYoDNyMPp+c3zC8h5B9ECE21utVhxJ426mRFE6mgvNEh0ljjztNwwKFxaKUleBQf1FepEEyhhcx4mFyGlW94QM9kzoMhjL5/OgUYS7t2+jlVkrdyBrvDQl9DI86utWyBh26/XYylRRsLS01DcXHIYhLNtGGIagjMHgHRnT6gkIf1jYCH3SOw91tJLFaYAh9v/XDAMKbxOdM00EYYig3Y47xuVyE5s3pcXlS5cAAE8//fTM99UPk5R5HeVKhcOAnK7D465/vu93uAvOCiHflx8EcjIlqoq8YcDQNCgHXOJZyOcRVatoNJtoNJuxK+kAUa7CS18Zd7cUVuqikmIQBEnQdR2+78P1PETc/jnHo4cTPfeExBFeQqBy/cHO1hbmFxdhmiaMRxSdPGzIyMEUQCnta3jUC47joN1uI4wizM/N9TQ5Yvx1tiAd3PBnnHz3PoKQclB5FMRAQKiYTdPEYqUCXdfheR483welFLbjwHEcGLmcDA/OAq7r4tq1a3j66acPZFLoh8dBbzDMa4H2McUad19pr6jQHthhCNfzOtqVTxOMsbjroed1rJJVVZWdUWUHQkWZ2KtkVJTLZYRRhLZlYXtnBypv69wPiqIg4uRAUVWEKYhBEoRXXem6DttxEIYhPN7ttZDP93/mU1wXJXH9dF1HEIbY3dlBsVjE4uJi6mP8LiMjB1MA7RHq7hc1CIIArufBc924pK9H054gDGW9sqxgKBYn6qYnCULKcrhHmn9jDI7rgvJzN3M5QLi85fNwfV8OoJ7nwfM86NzgxND1qZrxXL58GYqiPNKoATC+3gDY0xsc6UqFKQtsR4Wh63A1DVEYwvO8qYpSKaVxu/Qg2EsBEQJD15HrRXy5uO5RPKO1ahVhGMJ1XWzv7mJ5aamv3kFRFES8MRbhLojjQFEUlIpF+L4fd32MIrRbrTiK0Ct6mGIBJPQH4lVmLhf7wywvw+WLkscdGTmYEIyxfc2V+hEDRils20bo+4CiQOP5dfl/xNbCjuvGQkZFQblQgDGlG1W4hTHGBk6gByFAHASPh1MVRYlDl10ufCaPFoScaAVBEKccuFWsSDlMulJ2HAfXr13DM+fPH7gTYxJCbzB2GeMRiRxIDMhJT2tCHHUryeiBx6uLJr2eQRDA9/0OHY3CtQSDtk/A224/IufG+bk5PNzagh8EeLC1hZVjx3oeq9AdBGE4FcGkwQ2MHBFF4M9+Pp+fePuKogBRhN3t7XhBkpGDjBxMCur7qR9S4YboBQE0VYXOTVaA2E7YardlfjiXy6GQz09/QFeU/RUVCTxqYkAZi+uOGYMp3Mz6QNN1lHRdrrykKYzrwnVdaLoOg5csjbPqvHjpElRNw9mzZyc5palgks9DVioc0m6MRwWGrsPTNIR8Uh9nAgnDMCazQdBR5qfpOnK8nDnNvao+grSC3DcvcXy4tYUgDPFwextLCwv7xiqVkFQag1Gg8AWV7/txdJFSWJYFwzBicyixrzTpUy5OFGNezjTx8MED1Obn4TjOI3FgPUzIyMEEoJQicpx4Vcdvxn4thgPf3yvJ4eU8tVJJToae68bhQr5aNgwjvrlnEEpVuAq4G4+aGACIey1EERRVTT34KoqCfD6PvGnC5znbIDEIW7YNXdNkbXMawmXbNtbX1/Hcs8+Ovyp5RKvcboj8db9qmKOCaesORt4/tyS2eDorzb3EGJOEIAzDfY6BumHsWfqOejwjv2N6ECWODx4+lCWOC/Pzey9gcattYaE8LYiOorquQ9M0aSLn+z6CMETeNEeO8kkdByHQCMH21paMHjzKVNajRkYOJgDjUYOkNWfP13EBHRBbB4ve9Lqmod5oxOU+AEzDQF4YmcyIGAgC0I8gPMpHwQ8CWapZyOdHP3+ucjYMAxE3lwqCAGEUybSD7TgyamPoet9B+eLFizB0HWfOnJn8xGYEBiD0fYRRhIhb0UaUgvLfI0oR8X4boiU45QY0lNL4Pfx1lH9FURR3FE1sS0RmGIDffPBBrJbXNKgk7vKo8i9FUaAoClRFif+vKPLv4m8KT6cpqhr/TVXjyhRFQRhFcH2/f0+RKeoOxk1RGLoOV1UR8LB2r9WlEBYKUpDcDyFETmxCYDjJ8SuKMtXJdxQYhoGF+Xlsb2/DsiypoWKMIaJUjmPTjnAQQEZARfM1x3Vl2lZM7ConEmm3yfg5bT94gLn5edi23ZH2fdyQkYMxQSkFTfga9C1bRNw3gFIahwL5oBtxkw/GGBRVRblY3GO8BxQuVAgB5ft7lJUJ8SHEvecZYnHQpAOK6C2fz+fjyc33EXJtQhhFCHm1g6qqMHRdDtgA0G63sbG+judffHGiXOa4ZyAEXx73d5BeDzxd4roufNftbFbF39v9GSanDZWQvUmcT8iKmMgJAVFVaKoap2P4z+K1ompDWOomiUXAy+6SZCIUPyeISM/JOPnMJCJXei4Hk4eKzXw+1pGYJnTDgGkYyJmmLDs7aC2FaZoILQuu5+21d6Z0L2XAy2/lKSqKjFylTRsMg8rFxcBolRfTRp53cZQljiLix/Y6qjJgL7o6JYjxljIGTdNQKhbhet7egiAM4/sjZRQhWQWiKAp2Hj6EYRhD21x/l5GRgzHBRLvUISv8gN+whBAUSyVsbm6i1W6jUCyCMoYCn8DkDSgGlVndkF0DtALEjmWz2VtqWI4TrzZE6Na2p3ZM0kvdNKVPvu/7CMMQURTBiSI4rhuLwXQdX3/zDYxcDmdOn55sx4m8J40ieL7fMcG7rgufayWSf0uWsUW8q52Zy8nJsFqpILe0FDtGmiY0TYtX78kVuaJA1TTQKIqjJZqGWrU69qns7O7Kks5arTbWNkTUIkoQh7ArOmFbljT6ESTItm3s7u7KyhQRrhZRu5xhSAIhrkn3zzk+Uex7zsaAoevQVRVeFKHVbkNV1bgxUWKbiqJIzYuwM58q+MQoqpAopY/sGRYljq12Gw+3t3Hs2DEYnASJigXhdTBNiNbQjD8jIqXgOI50WAyCAHnTHJ7+wR5BMHM5bD18iPmlJViW9Uhasx8GZORgDFBKQZNtRoG+LoginWDmcvBcFy3ub1AqFlGrVjtXpjNKJQyDIsJvYxolTQpRvwzGUCyVpLp+JnoLRUGOVzOI8K9YbVBKsbO7i5u3buGZc+dkqFR8DRpgROSj1W7HDXGaTTSbzXjC56rqjtcjtuYVE1ehUMD83NzehMbLtET6Y9zJxfU8qIoC7RCIERVCoGha30HHCwLkC4W4x0ifATkKQ9iuC0+QKV4WLL63Wi083NqCx/uWAIjTEXxVmOfX19B1lMpllMtlVPj3YbnqMIriFE4Ywg9D2JYFyu9ZhU+Ew9JV00KylFFMwuO2854GqpUKHM+Ln6GdHRxbXJRGSAQxyZ3FNRFjr7gWos+Ex8udRZ+WYqGQav+CcOi6jgf37kHX9an3rDgqyMjBGGDJdALp3wnMsu047MVXFrZtg1GKnGFgcWGhc8A/oFRC915EWSMBwGbQS33o8TCGNk8nGNynwOGD+qxpinBiE+LPIAxx7epVGJqGlZUVqVMQECF5j69mLctCixOBdrsda0kQD1Dlchn5fB6VahU5sYrl3/OmCSOlu+Ok+eSj2Kp50FVRuTNfmpbZgnSKyIyXiM60LQu3b92CzfsUMMTpgnKphHKlglKphCJvZqRxA5/ks6ESAlXXQXi6cKiN+ZRBup5VAoCNYHA2TVDE12++VsODBw8QhiFa7TaqlQpURYlTSjMmLqSLLJm5HHRNg80rGtqWhUKhkNpuWtc01Hd2cGxlBe12G5UefjTfdWTkYAxI06MBK32hmAd3CKOUIgyCeGXRr7Ruxqv2bl9z1rVPoQRG1+tmCYev8AghA+1YZw5OkO7cvYtzTz+NYqGAeqOBRqOBVqsFq91G27bh8ggHEIuXSqUSarUaTp48iUq1igonBYQQRF2+8qNC+htMcF8cKXKQ8lqlFRNqmgatVEKxRxSCUQrKWCzYbLdlpKfZauHBgwfYWF+Xeg1VVVEsFGSTo0q5jEq1irlaDR5PLx709SVdVQCEECjo3SJ5VmDoJK+6rqNarWK3Xkez1YKZCOfPUjQp74cuciQ+N5v3pLAtC2Y+P7R5m6IoIJTC0HXs7uzEVtEjWNZ/V5CRgxFBhdf5AG0AjSLpaUAphYaY6RumGRuodIcvDyidsG8PPfYrJqKDSDOE/DqBxa2Y95XaHcA1sW0brVYLrVYLt27fRhQEuHr1Kr759lv5mmKxiFKxiONra8gXCjK/3R2GJryu23XdeCDh6vpxJ3eRB50ER4ocCAw75wlXyIyLKCMuTlVUFZVKpWN1yAAp+rRtG7Zlod1uY+vhw9hsC3yFWiggb5qoVquo8UZoaVIUk6KDyCf+Rg4wvdBrwi+VStJnZLdeR7VcBjB7x1XxnNAu/RQhsbOqw22XXR5JMAdE7hji50XXdVjtNhaXltBut1GdQLNzFJGRgxEhowb9Bn3GYNl2rJj1fZjcA7xYKmFnexsU6Bw4Dpjpd/w8YBAmhMw0zZBMJwgFesexzWC/7XYb29vb2Nnexs7uLtrtdhzyBGTONl8o4MlTp1Aul1EulfqGi0X9uvziavxkKkKkGUQpn0hLaLx8b+jEP4VrIMnBEVr1DKNDBEhFqFlX1YT8me3vFgjwZl/iS9Og9BFeCu1Qs9lEvV5Ho9HArVu3cOXKFZmiECr++fl5LCwsYI5XeUwLpA9B6kUapg0KDCQg87Ua7j98KEWKhmEcSDUFAfZpL4QmoZDPw+UpQZ/3ZykkheB9EHE9kihrnFVr7MOIx+dMpwThbdBvYHI9D45tw/O8+GbifREIIVL0tq/r1wGLAEdpODOrNIPLxUIE2J9OYCzOn04ASil2d3exs72N7e1tbO/syFr9SqWC+fl5nDxxAuVKBeVyGY1GA79+7z288cYbmE+aufSBqFcXAz5jDFEUSaIQ8UkIicmpW5RIBFHgxCHpFQDs+b+PC8YnQeCIGCCNcI8R0SeEn6P0ZeAeDZSnDfpB4aWbqqpC1TT5OaRBjosaFxcXQSlFo9mUk41t22hz4tBoNHDlyhV88803IISgWq1icXFREoZ8ismp7/n3MRcSE+QswvjdaYR+UHllzM7ODqyEv8tBoJf2QmpKeNmpY9sIASlU7PW5i8iQpmlwLAu6rqPdbo9dqXMUkZGDEdAdNeheeYRhiHq9Dt9149CzaUozHzF5ANgjB4+oOmGU/c4izRBxsxIwhkKhsK8hUL+a/UHwPA/bOzvY3trCzvY2dut1WT41PzeH06dPY35+HvMLCz27YH78ySfx/1MQg14QA0lyEIx47Xu3MRHlUQZGKYJeAzxXnwvHTEVRpBoeXE2dZiITVtwkQTiOEkSTMJaY7KVWQJg1cYLQD/uMmHip57Ry84qiIKfrcLkZVa1W2zeBtNttbG1tYWdnB/fu3cPVq1cBXnq3sLiIBU4WqtVq6s9pUFfGWaQX2IhmRoVCAa7rIuA6joPsVUBEmWfid3GPGLoOpViU3jN9KxkIAXh0ybVtVGo1GT14lH1WDhIZORgBUm/Qq2yRUmxvb8Pn3RbLlUqH01sYhh0tQh9J0xQ+2I4zwU8zzWBZFhhj0AY0OBlkKgUArVYLWzxFsL29jXa7DQDImybmFxfx/PHjewPukPNtNJt4cP8+Xn/jjXFPqS9ERABdA0qy1j8SzoSCNPCUxcA8LSeogjyIn0mCPIhUh3rIogbJSV6G+CmFw3P8vrAaHnD+yVUsAfYm/qTzIr8evUB4OmkaMHI5WTqX72G5W+LpqVOnTgEAfN+Po1k8onX3zh0wSqFqGubm5vaiC/Pz0PuI51QueO2HaVUvMPE1xnZqtRosy4IXBGi0Wn3LU6eNXumFJITA0LbtvUoG7rQowcd5hRC4jiMdZVut1tgLiKOGjBykBKU0Tin00BqwKMLW9ra8iRYWF5HL5TpeI2xUZSnNIxiwJxUFTSPNkKz571udwAWf4gqFUYT67u7egLq9LbdRq9VwbHkZFy5cwMLCQhypGRHXrl1DzjSxtrY2zimNBZWvZLtJgxCxBmHYsWIWfwd4vpeTiIhSRL12AMgJS9M0aaYkIOrPRZVGsiS319+FKt/z/dhkhm+HJcS5sh24WPHznyH+xga3CxciwW5r717kR5yLqqogA0hAP0yTmmuaBk3XwXhfj2GrZMMwsLq6itXVVQDxZ16v17Gzs4OtrS1cv3YN3168CDCGaqWC+YUFLPIIQ4GnKImigCbKbLsxjeoFluIzGwRFUVCr1eBsbsLlws40JahTQaJ6ode4p/I20LKSwbZluXEveK4LPZeLjbl4V87vOjJykBaizrlrEIqiCI16HbZtQ1EULPYgBkA8qDJK4/bLjyKd0KPUZxx0pBmAkVINoskURUwM+hnzBGGIhw8eoNVuo9FoyP4TmqZhYX4eZ8+excLiIuZrtYlzmV4QYGNjA+fPn9+X3pgU4/j3yzTCEMMl0Z+jI9wu/ib+n9hm9yA56l0gyYHnwZ3CwKiQ2NlP6Z70EXckLRWL8aSP/hUbg1bOwzBty+GcYSAMQ/hBMHIIXVEUmdISHUAty5KRha3tbayvrwO8fn9hfh71RkOWyvaNjvRJfw5DWm1BGuRyOZiFAjzXRb3ZhME7T84ayeqFfuOtqGRwRSUDd980c7mOe4MQgsbuLk6eOSOrmxYWFmZ+Do8aGTlICep5+6IGge+j3W7Dsm0oqopatdq3zWcYhvsrFQ4KM0hhSJIwQqrB4o5ymqLsG0Btx8Hdu3exubmJBw8eIAhDFAoFLC0u4sknn8T8wgKqlcrUjZE2NjbAAJye1Cq5Byb1OBg06KepudY0DT5P3eSSA15yRZggDcmVfvf/NX7fGrqOXC7XEVVIpoBkE7Lkz+I8RGknek/4Lo8YaCkdBsdtniTPdYrQdR2qosj+CpM+58ViEcViESdPngQQRx53dnaws7ODzc1NWJaFKIrw//7f/8PK6irWVlextLS0j1QSRQGL+sWWOiE+76l6JRCCcqkk02S7jQaWDmhiJdhzf+3XzZMQgnw+L83NRCWDmVzgMQa73ZaNsoSNd78ow3cFGTlIAUopWFcILwgCtNttuK4LhRAUuEFKP4RBAMpYHI56VDngWZEEMUgP2L5oqwrG4lUhgN16Hfc2N3F3cxP1eh2EECwtLeHChQso87rz4gx7qlPGcO3aNZw4fnwmD/q4k9e0mtQIz3mpe5gAot24FNnOEGnPfNqr/0kg3DYj3iNi2osAXdexvLyMMAxx+fJlaJqGSqWChYUFbG5uYv3aNeiGgWPHjmFtbQ0rKyvxZAakEieKKNS0xybCv6rlctya3vPQbrcPrF9BsnvloGdRNNCyHQdhGMKhdK9lMye19e1tlKpV6YyakYMMkhjIUBX3VReCr0KhgFKpNHBAF8w5d9CRg+QDMYW0Qj8MIgmUxX0HIkrh2DZu3bqFzc1N2LYNjVsVnzt3Lm7YYhhwHCcWLc7YzGVzcxO2ZeGpGQgRJ8G0PiERdj8qzm6HZaIfF4ZhSMfPMAynHj6/cuUKvvrqK5w4cQKWZaFQLOLFl17Ciy++iEazic3NTWzevYsPP/oICiFYXFzE2toaVldXYZpmz8mxI4Uwg0WLiBTpuo5KuYxGqxWnF0yzZ9XQLECGEAMBXddRVJQ4wkkpwAWmAADGsP3wIVaeeAK2bcPnTdQOsgrjoJGRgxRgfNUEQKpbI0rh+z4K+XzcIGfAjS6V14nw7IHgUVRECNEiP98wDLF+8yY279zB1vY2oihCoVDA6uoq1tbWsLCwsG/ykimLGR//1WvXMM8NamaCR3D9O3cf7//ItJwd8Xr1MwIavpvZfC6KoiBnGLJ18DTJwWeffYb19XWcP38eFy5cwF//7Gd72yexh0K1WsX58+dh27aMyH3+xRf4/PPPUalWsbK8jLW1NVS40x9L6FJmCUbixlelUgkOvzb13V0sLiwcSImtSHulstxWVRTyeViWBd/35WcKQuA4DjzPQ6lUQqvVQrvdzsjB4wxKKRj3/meMyYiBz1mlym+mQZCVCrr+aOvND2iycl03Hpzu3sXmvXuIogjFYhFPPfUUTpw4gWq1OnDCGtTMalqoN5t4+OAB3njzzdntZILJa9Kzp7yiATg61snj3J3jpG5meWcZhhHnpH1/IpMjgTAM8dFHH+H+/fv43ve+hyeffDL+exD0XZAUCgWceeopnHnqKQRBgPv37+Pu3bu4wm3BTdPE2uoqVjk5n/n9wWJTM6IosXvi1haCIEDLsqS98swxwj2i63psde+6cB0n7mqqaQBj2Lp/H0+cPIlWqwXf9xFF0ZGJzI2KjBwMAUt4GzjcFhmUxhEArnYdNpHJSoWDzFH1ehhmlVZgDE0e1ry7uYndnR2AECwtLuKZZ55BpVpFrVpFkZdhDUOH0nhGEOWLopzssECmZSacVMS1G6fM71FjlKMdR3cwy4jUqGWNg+C6Lt577z1YloV33nkHS0tL8n9BEKSKQuq6juPHj+P4E08gpFRGFG7fuYMr167B0PVY0LiygmMrK6m7FqaF/Cz5Ndd0HdVKBfV6Ha1WC/lc7kDKAglvppT2s8/punQ1tRwHJW6UtLu7i5OnT8MwDPi8rPeg9BMHjYwcDAELAhBC4pavvh975WsaQCl0XR8eOmQstk3GAVYqHESEgDHs7u7i9q1buMvV06qqYmVlBU+99hpWVlbAEJsVAXHpYjJdMDRygNkN4p7v48aMyhc7MOakPI3JXPZUOGLEAMDsBbsz1N4Ak5U1CjQaDbz33nsghOBHP/oRyl0r7DAMh07ksgqFV54QQrCyuopjy8vASy+hXq/HOoXNTdy8eROqouDY0hJW1tZw4vjxmY1XpWIRLje82qnXcWxx8UCiFwQA0ogz+XczlwPlBmW246BYKMDlpYz5fD4jB48zaBCAhSHCIIBj29Kf2+U13/k0ngWESJ/9fm5nB4VpTLZBEOD2rVu4fv066o0GzFwuVkevruLYsWN7DzljqDeb8TUzzZ6Nf/qRhFmTg1mWLyZBHqHm4Eh2YxwHhMiqjNRvmeHhAJOXNd6/fx8ffvghSqUS3n777X0EQzQL6xc5GFSSKASCjBDU5uZQm5vDhWefhW1Zkih89umn+PKLL3Di+HGcOn0ac3Nz4xPWbl8UjrlaDcGDBwijCI1WC3MH0fFQRA9SvpyQ2OLasu0OgnDnxg2ce/ZZNJvNuMHeDMSnhwHfvTOaIpjvg0ZRrJxHTAykR7dhQOV5qGEIebXDvlbNs8CA4xl7UORRgo2NDdy8eRM0irCyuopnn3sOy8eOgfSYgDzfRxSG8gHrOI5E/Xuynr67Ln4W5IAyhqvXruHEiRMzL0Ua5+indc5iddTrsznsGDWtIGrZ0+Ig2gePW9a4sbGBzz77DMsrK3jj9dd75rPDMAS4hqkD/FkaVpKoKMo+A6lCsYinzp7FU2fPwnVd3NjYwMbGBtZv3ECtUsHpM2dw4uTJkdMO4ii6r7jKfWG2eXfUfC43c3GfIEWEE8p+SP5PURQpUIyiCI7rAvU62q2W1Jc4jrMvsvNdQEYO+oCFISJuckT5g2gYBpo8TJ72Rha++RAeB7PGoEjGiOHUMAhw69YtrK+vo16vI5/P49y5czh16hTMQSJMxmKLXcZQ4AYj/SBXMvKtbE+QKMKhqY94OO7evQvHtnH2qaemuNXeGGe1Na3zPYqRg7Gn7FHTBIoSO57OEOOUNX711Ve4cuUKzpw5g5deeqnv64IgAAiRE/U+m+Nh913XM9cN0zTxzPnzeObcOdx/8ADr6+v47LPP8OWXX+LEiRM4zaMJkyJfKKDourAcB7v1OpaTkcdZQOhwgIF9J5JNm4CYyBQKBVhcc6YoCm7duIHTZ89m5OBxBHUctFstRJRCU1UUi0U4tg0gzimmVaj6PAUxSkvYsSBu9EEDQ8oBtF6vY/36ddy6dQtRGGJ5dRVvX7iA5eXlVCtR1/MQRREUVU1NoronUgLeoGdKhkACV69excLCwoG0Xh3ZtnYKVQoCIqR8pDQHB5WGOYD9jFLWGEURPv74Y9y5cwcvvPCCtFDuB+GZQlR1bAvpXtGDHi/C8soKlldW4DoONm7cwMb6OtY3NjBXq+HU6dM4ceLE4GiCuP/6XPNKtQrP8xBEEXYbDSzMqqwYnZUtCoBeZ9+PnGuahrxpwvU8uK6L3Z0drDoOCCFTc8U8bMjIQQ+wIIDVasUTHCEoFouglEqXuFxywuvFQBOr9zAMQSmFdggadQwaEqMwxK3bt7G+vo7dnR2Ypomnn34aTz75JPIjNEthlMIVUYMeHeqGQfjBy4jCFJT7Arv1Ora2tmZbvpjAqEc9zSnrKEYOJEa9ZzDatTsoupQzjLj51YCyRt/38Zvf/Ab1eh1vvfXW0OoZhjhlR/miZWwQsq/B1SCY+TzOnz+P8+fO4d6DB1i/fj3WJvBowpnTp4cT7h7PsqqqqM3NYWt7G7bjIJ/Lzaw5UwdZJ30aUw24HoZhgFIKPwhg2zZubmzg5OnTsbjScTJy8DjA2t2VjWZKpRIUVYVtWQBSRg0SD0DAWf5Mb5wJyt8ajQbW19dx88YNhEGAldVVvP3226mjBN1wPQ8RpVBVdaKcvkIIqNh/8rwmWPVdu35d1ngfBNion8cUV7TSAOkokYNE2HcUEEJGagB2UDJRVdOgaxoYYz3LGtvtNt5//30EQYB33323f6ie+wSIMlfRkXTSssOxTKQUBSsrK1hZWYFj29jY2MCNGzewvr6O+VoNp8+cwfHjx0cS6JmmiVKphHa7PdPmTMmqDQA9oxoRpQPvv1wuB8oYwijCwwcPML+0BE3T4DgOKpXK1I/5USIjB13wbBuebYMxhmKxCFXTEEVR76hBCojueDMrmUuTTuhCFIa4ffs21jc2sLO9jVwuh6eeegqnTp+eiLUzSuG6LhhjExvAkMSDm9wKG5MouJ6Hmzdu4MKFCwe2mn5UAX3GmBRVHam0gsA4x3xIz9MwDAS8r0iSHGxvb+M3v/kNcrkcfvSjH/V87oSWgP8i/x6G4cBqhdQg43VtFMgXCrjw7LO4cP48Nu/dw/r6Oj7+5BN88cUXOHnyJE6fOiXdGONT6J8irJbL8HgKptFqzSS90GvfCiGI+BiTRu+TrGCglOL2xgZOP/00oij6zrVyzshBF5x6HYzErVGFaZHnugCGRA36TNJszNXQLNBoNHD9+nXcvHkTvu9jeWUFb775JlZWV6cyYTquG4c7NW3iSgBphNT998TPoxCF9fV1AMCpU6cmOq6RMI7mYIoeByDkSKUVJqkiGGmSO0AiofMOk2Fi8rh9+zY+/vhjzM/P46233uqIKjJgaB1+EARxq+spOPNJ5f4k10RRsLq2htW1NTiWhY2NDWzcuIHr169jrlbDytoaji0uDj4ORUGtVsPDhw9h2zbKxeKBTbSqSK+kvH8IISjk82hbVhzt2N1FtVaD4zgZOfiuwm21EHFHRKHGTxU1GCK6ARArpKeNtALDRgPffvMNbt+5A90wcPrMGZw6dQrFYnFqh0ITWoN+batHQopyxo7hLFnO1vWeiDFcX1/HiZMnD7aT2ggD7jSFl0fVAEl8auNch5F0BwfoPyHLGnk74I2NDXz99dc4efIkXn75ZdktcBRiFIbh1NKUhNsaT6u8M18s4sJzz+H8hQu4t7mJ6xsb+Pbbb3FFVfHMM8/gzJkzfRdYOcNA3jThuC7qzeZQQjEtMED6ZaSFoigwNA1+GGLzzh1UqlW4rotKpXLkHEn7ISMHHIwx2M0mgFh8I3K1bpqogUCvmyKhjj1otFotfPvtt7h1+zaKxSJee+01rD3xxExWk47jyFDnNNiz9DoY4YGVV58kmj8BuHvnTtx98QDKF8fFNGvvj6wY8RGaRs0ShmHAtm18ffEi7t69i2eeeQYXLlwYmRQIhEEw1Zy8QkhcuTDFSY0oClafeAIrq6u4/+ABNjY28NVXX+Hq1as4f/48Tj35ZE89TLVSgeu68D0Pjuvu80iZBaTfyoifhZHLwQ9DBL6P3d1dzM/Pw/f970wr54wccNjtNmgYQuFMH4DMIwEpfA36CAIZ/5o6mxwgQrRsG99++y1u3rgBM5/HK6+8gpNPPglCyF7IeYqIogge1xoMa0KVFkqaaMwAEEBem/WNDSwsLqJWrU69NHLoMaR+8fQsfY+kGBGJyMEY7x23Q+NBIIoifPnll3iwtYVnn30W555+eiIyOPWyOZ5+mkUvExFJPH/hAp579ll8++23+PTTT3H58mVcuHABJ06c6HgeNV1HsVBA27bRaDanTg76RZiEtTJGjB7keIOmne1tzM3NwXGcjBx8l0AphdVsQkFMAsTNmowaDM3vKUrPwYmKZh+zmJC6tuk4Di5evIiNjQ3ouRxeeOklnDp1ChqfJKZPC/b2SwHohjHdcOeIzne9YLsuHj54gFe+9z25XYATNq4CPwxBwKl6HBzRyEFqE58+SK07mCGJEJ+jWBTYloX3338ftm3jey+9hOrc3MQENYqiqav5Z0WuxJijIK78ev311/HM+fP49ptv8Nvf/haXLl3ChQsXcPz4cfmecqUC23EQhiEs20ZxmqWNPc5TuEoqhIw8Rhq6Hkc5LAu2bUNV1QNdgMwSGTkAYFkWSBhCVVUY3CJ5rKjBgAdsljeL63m4dOkSrl+7BlXTcOG55/DUmTOT1UGnRBiGsdHTFKMGAOQEMelq5vatW4Ci4IknnujcPN9H0t41rWJ5FKTJhU+rE6OANEA6YuRAYNyrMKrfwTTQQUZ4qZz4S71ex/vvvw9FUfCjH/0IDPHzEoThRFbqwZTTCgBG9j1IDV4amBz/KuUy3nzzTdR3d/HNt9/iow8/xKXLl/HchQtYWV2Fqqool0potFpo8ujBtO7lbvLIWKIHhXgGR7gGBLGtvu262N3eRj6fn7gb52HBY08OoihCu9GADsTld4gf7pGiBikG9amKw/jN6wcBLl++jKvXroEAeOb8eZw9e3bqbVcHQUQNcrncVAesafVXuHHzJtZStKIlXd8FZIh+xiuBaW7/qAoScUDXeiIkbIoH3Zv379/Hhx98gHKlgrfffhu5XA6u6yLibYAnJQezaP9OCImjaVPcZrJ1eDdqc3P4/ve/j+3tbXzzzTd4//33UZufx3PPPovFxUVYloWAUrQtC5Up2RN3R5cI0EEGiKKAjWitres6VN+HzaMHjuNk5OC7gFarBYVS6JoGQ9NAMaLWoBtdzHMUQV0qMIYgDHH16lVcuXIFEaU4+9RTePrcOeSGDDjTHnLDIEDg+8C0KhQSUMSqfgJy0Gg2Ua/XceH8+bG30T1RCaHjYZ7AJDk4gMjRVDHpqpWk69A4yl6SE0lS5DoI6+vr+Pzzz7GysoLXE82TdF2Xdsr5fH5s8haGIQpTrDSSmND3oBfSkOuFhQW8++67ePjwIb7+5hv86le/wtLiIk6fOQNCCFrtNkrF4kwiYd0W0iLVmPpe5NEGM5dD27ZhWRby+TxqtdqhHiPS4LEmB0EQwG63YTDWIXwZKWowBNNceUZhiKvXruHy5csIgwBnnnoK586dgznKKmKK4WubVyiYppm610RayHD/BAPVrVu3oGta3L9+SkgKHYHOdERP0pBioJn2YCw7Mh6xwWlizQHSdWjsXh3vu/4TrJ6//PJLXL16FU899RRefOGFjnNRVRWaoiBSFARBgNyYVT1+EExugNQH09Ye7HMlHIClpSX86Hd+B/fu34/TDR99hNr8PFZXV6fW1rmD7PVLAY8SPeDnpfHFZWN3F/l8Hq7rTn3BdNB4rMlBs9mEQmmHXWcYhuNHDQQSD5hUYE/AemkUYX19Hd9cvIjA93HqySfxzIULKIx4fN0T2yTwfV/auM6k3EiIKMccqBiAm7du4fjx47Nzp0RXOqIHaQCGexhMU+eQNECa5XnPBFMg0oNWvkIsGCX2NS1ilmye9OKLL/Ytm9UNA0EUIfD9sclBGASzSx0SApW7Bk4DjGsOUkdJCIntmZeXcWdzE19/9RUufvMN7lareOH557GwsDDR8QhdhRAh9jyEUaMH/LW5XA71ZhOWZaHRaGTk4KjC8zx4jgODUjm5MQCu4wBIETXo44go0XVzjTPcMQC3bt7EV19/Dce2ceLECVy4cAGlSUKK01gZMAbHdWXUYBbhazGYjJuW2d7agtVu4wSvUjhoiM9b6WEw0x2enub6/qA0EtMGm2C13rEdkVpAIqrTHSmYcqrP9328//77aDQaQ5sn6boO4jgIwjDuQTIigWOMTUQsUkFRQKJoOp+HuPaj3o+E4Im1NaytruLbixdx48YN/N0vf4nja2t44YUXxp54pV5kyD0wTnpFVVXkdB3bDx+iUCjg2KxbUM8Yjy05aDab0KIIZi4nH9AoiuDz1fDQqEGamz15g434cDiOg08//RT3Njex9sQTePadd1AulUbaRs9DwuSKbs/3EQaB9BmfBZQJIwc3b91CPp/H4gG5rI2CZJRBlrqK/yXC4mJiE39Pg6NaxphEvzPtFpL1ujNE5YecBHptc4qptXarhffefx9RGOJ33n0XtSE9ARRFgabroIjTmuqIwkLXdRExNlKn1HGQqqVzCkzaOpwQgqeeegqVchn3Hz7E3Tt38NO//mu89OKLsXfLGNtMbXg0xkKqUCjg4dYWWq0W6vU65ufnxzjCw4HHkhyEYYjA82AwBjPxkDk8amBOGjXoeOloDwcDcOvGDXz2xRdQFQVvvf02VldWUr33QMCYdEMsTLHEqBuKokhyNeoKK2IMt2/fxpMH2UehD4bmv4F991Hyt+6qjX3eD133YnQEyQFDYoXZI4IgPCm6/9YLhNeq9yUY8YvGPtYktre38f7778M0Tbz74x+nXs0aur7XjGlEcmDzMWqqZcO9MC1xIp+IJ4lk5QwD+UIBx5aXsby8jLt37uDjjz/G7du38b3vfW/kKEIaIzjxXI7qm6EoCkzTRH1nB61WKyMHRw2e50FhDJquS1vjMBE1SNV5cYSbPe3DkYwWnHjySbz4wgt7VsRTygFO+sC7nocoiuRDMCsQ4dpGaRwCHGGyu3/vHjzPw8kTJ2Z2fGkx7FNP+0kk7x/S+Y/O7fGVM+mKWkkRXtJ5kv8sJl6W/J94rTD16arh7z7ufSv57prxPquwfYJOcX5jpl1kTX0/sdkI2xqE27du4eNPPsH8/DzefuutkQSCuq7H2gdKEUXRSGJex7bBgJlHDoC9joWTYFAp4yiolMuyFPTZ557DE088gU8//XTkKMLIkci00YPE85TTdTTbbdi8u+9RS/EJPL7kgFLoCdbueR4YRtAapEXSYKPfS9AjWpDMW07bmGRcMCabKxUSTpKzgoi2jPpA37p1C9Vq9Uj0V5/24EG5R76qKJ3b7XaC7PofkJg4e/0vQRx6kcuen1DydcMm6zHTb/222e+OmYYA8dKlS/jmm29w8uRJfO973xv58xPNmJJljWlhOw50TZtZtUIHJo0eJO6VSe9xXddRKBRg2TZazSZWVlbwez/5Cb748svUUQTG2Ej28SNFDxIOubphIKQUlmUd6V4LRyf2OCUwxuB5HghjUvHLEOf/wFg6c5G0N3oipaCoas8B0nEcvP/ee/jtb3+L1dVV/N7v/d5sicEE23NcFyGlsfDmAG54QdLoCKYkfhjizp07OHHy5KwOa2qYxapiXI3Lo8ZUW5sPOvcJrgtjDJ988gm++eYbXLhwAa+++urYn5+u61AIgR+GI02+jm3PPqWQwCRGWtL5E9P5XCvlcnzNogiWbUM3DLz66qt46+23UW808NO//mvcuHGjLzGMUnhgdCO1RivxGaqqClVVYfHowVHFYxc58H0fLIqgECLthUP+gCqKMthyeIKJVeEruWRYdmC0YFYYs1qBURr7P7DY8OggQmXimo0S2rx75w6iKMKJQ5BSGIZpiEO7wY6g5qAD04gcpPA6GBVhEOCDDz/Ew4cP8dprr018f+maFtfTh+FIvRJs2z7YErkJogeip4xM9UwIVVVRKpXQaDbRbLWkrfLQKALXLUl9z4jnoijK8AqXru0amgbbsmBZFuaGiFQPK47oCDI+ZEohEZbzfR+MsdjSdNiqY4SbfF84nL93aLRAYAbphHEfUdfzQCmFpmkHFiZTeahulNKzm7duYXFp6UBavabBoOs9i2TRUbVOnmYJ5rTP3HEc/N0vfoHd3V384Ac/mA7xJASGroMQIrVOaWA7DvKzcEccgHGJJk1qSKaEUqkEjU/WbcuSfx8UReiouphVirZrjDIMA47rwrbtmXTCPQg8duTA9/0OciBSCgzxDdYXiRBZWjBK5QSgKIr0LfjpT3+K3d1dvPX223jt1Vf3RIfd+zss4KkYxtjI6upJQETkIOXDZbsuHty/fyiEiGkwi09Ylu4dNXJwQNsbdQVcr9fx87/9W0RRhB/98IdTLY3VdR2EuyWmPa6DTisIjHU/cRHrNFuHK4SgUqmAEIK2Ze2beEUUYWVlBb/97W/xy1/+UlahiWMaFQTDz6F7q7qmAYyh1WpJU72jhseKHFBK4bsuFEAKegKeUlATaYaeGDFq0I1ktGBtbQ2/9//9f/3TCIeJGCC2axUVCrNo+NIPqihnTEkOZAfGRPvXQ40pf86U0j2dy2OcVog303s7o0xy9zY38ctf/AL5QgE//OEPUZpS8x8BTdNkiW4QhkNfH0URPN9/JORgnEgU7dGRcRrIFwpy8m20Wvv+rxsGXnvtNbz51lsyirAhtAiTaCgG/K/7HBVFgaYoaDYa8Dxv7H0+ShzREWQ8eLy1sKaqUPmHGXBWpxlG/xtnzEFc+NxvbW3hp3/913vRgtdei5sk9dvuIVv1eaLXRC53oCtShacVhN3pMNy8dStVB8bDgmn2VAD2UgqE54mPEqYqSBywnbRX/Pr16/jNBx/g2PIy3n333Zml0kRqIUiRWhDitoMoY9yHMe4nUfo67XtRIQTlchkEgGVZCHsQK8YYlpeX8RMeRfjkk0/w3nvvdUYRRgBBCsKdOE8hSrTb7bH3+ajx2JEDhbGYCCBRpYBYQNIXY97cnu/jk08+wfr6OiqlEt79nd/Zixb0G8DHSF+Mgu4a8mEIeYvZg04pAFyQKNwrh0QPGs0mdnd3j4QQEZjNoHlUrZNngb7XYNi9zxi+/PJLfP7553jqqafw5htvTL2pWBK60B34/tCS3QMzQOqDka2eR+2rMAIK+Xxcdk7IvugBpVQSZUPX8dprr+EtEUX46U+xubk51j5HERATQqBpGjzXhWVZiEZsA30Y8FiSA7GyFCkFQgjUfnXDY07Unufhg9/8BhFj0HUdOzs7+Ou/+iv87c9/jm+//Ra7OztTbbgzK3iuCwrAyOUeSQvgtD0WRAfG5cPkJsnR8zOeJgHk25KRg1FTColj6XVUTERvuoyQBm4S6ClG63u/Tzty0G9CGjBRRVGEDz78ENeuXcNLL72EF7q6Ks4ColOj0B4MgsMjB+ajbOgzwn07SkfGcVCpVkEIges4Mq/fzxp5ZWUFP/nJT7C4uIjf/OY3uH79+lj7HCVdp2kaFEVBvV4/kqmFoxF/nQLCMETk+8gBsmxIpBT0KRuKtFst/Pq99xD4Pp5/9lmomobl5WVsbW3h/v37uHr1Ki5++y0Mw8DyykpsC3rsWFwtcRBIa+VMKXyeijnoqIGAoqoAb1LT7+owHEwHxrExZvkoWNwdrm+IXESZ+PbFYKyMU3o2hCCktS9Oohed6/c+sWpOkg+xUiMYbdU28Pj6XBfP8/D++++j1WzirTffxMpBlBVzpO3UaDsOTNOcqsBvJAjX0pT31rTcEfshZxjImyZs10Wj2cTiwsLAygBD1/HmW2/hyy++wGeffw7HtvHsc8+NRF5GuQ8VRYGqqmhxclB4FOmgCfDYkAOZUtA0+QHLlMKgKoURWe/29jbef+89mLkc3v3JT7C9vQ3P86BpGp588kk8+eSTYJRie2cH9+7dw/3793Hr5k0AQG1uLm5XurKCarU6s6hC2hvc46FOTdOmTqDSQuWT46DIwfb29iPtwDgM++rE+6xuBCif9IUN8MDPKnF/RgnNwVFDrx4kSU+QQZO98DVIkohRatqTzZPe/Z3fQa1WG+8kxkTaTo2ObT/yCWaQNXU3ZORghscjbJV934dt20Mt3RVC8MKLLyJfKOCrL7+EZdt49dVXR0odkTS+B4jTMKqqot1uZ5GDw4wwDEEAqN0pBUWBqmm9B2uxKkuJO3fu4KMPP8T8/DzeevttGLqOuqoChCAMQylqIoqCxcVFLC4u4vnnn4fjOLh37x7ubm7iMrdmNU0Ty8vLWFlZwbFjx6YrskvzgDMG9xGUL3aD8Os3SHNw6+bNQ9uBEUg0ekmuzgdcfzmxjQg2blrhEGDsEswuY7Huqyp/58+ydKXkVTBbDx/iNx98gHw+j3ffffdgDYY4ZKdGxgZ2arRt+9GIEZMQZD3FSxmvnpll5Yyu68ibJlq2DYtHVgYeE/9+9uxZFPJ5fPTb38LzPLz11lupF0B9Tba6nmlVVaEoChzbhuu6oJQeqSqix4YcAICS+PBEjsowjMmd6hjD1atX8cUXX+DEiRP43quvSvYvGOkgQUo+n8fpU6dw6tQp0CjC1s4O7m1u4v69e7hx4wYIIVhYWJBRBaHUHRspyEEQBIjCEOSAyxe7oRLeNKgPOYgYw61D1IGxlyUyQScZEHnRWQkSj5oBEoC9+3GKx97dfCreDZP7u3XrFn77299icWkJb7/5pvQ56UjXHBBEp8ZgQKdGy3GwesBRjV5Is3JmlM48rSCet3yhgDafgMMwHOw2mXgO1554Aj/I5fCb3/wGP//5z/HOD36QTuzJWNxLofsadI2rSSLQajbTntahwWNFDmT3OQChIAf9bqS0gwNj+OKLL3D16lWcO3cOz3XlsFSx8h2iVpVmSaqKY0tLOLa4CLzwAtqWhfsPHuDevXv45ptv8NVXX6GQz2N5ZQXLy8s4trSU2npVIA0ZcnkY7KDLF7uhDIkcPIoOjIP6F/S6VkRRwLo+/1lc07EFiYcBB1lpwRi+vXgRF7/9FidPncIrL78cm5T1IczJY5p2+alAmk6NjmU9skqFJNJ8QskU1yzIKsPe/W4YBnRdBwsC2I6DygA/iu5Pb2FxEb/zwx/ivV//Gj//27/FO9//PqopCJiCHpqaHveG+BztdnvoNg8bHh9yIG5W8JQC4kFU07TeE2WKGzqKInz00Ue4e+cOXn75ZZw5c2bfa1RFgUIIwkHkoNeAw1loqVhE6fRpPHX6NMIowtbWFu7dv4979+5hfX0dCk9RrCwvY3llBeVSaehxDzuziIujHnVKAdhj3/2ERrdu3UKlVptJB0YG9CaJEw52sypUPcqRg1lNuh374CVun372GW5ubODCs8/i/DPP9P48UxACkZ6QupAJzmFYp0bXdUEZe+SaAwCxMJGQgcJEGkVxGeMMKpySxECgVCxid3cXtuOgVCz2DN/3e57L5TJ+9KMf4b3338ff/eIXePPNN7G8vJzqODq21GPbghxYR7AB02NHDoDOlMK48H0f7733HuqNBt56+22s9VE3K6oarwgGkIO+j1hXmEpTVawsL2NleRl48UW02v9/9v4sRo6rzQ5F144x56wpswZWkVUcJZKSSImiRImaus+5bxcHMAy/3Ibvm417APtcuO02YD/42oD7oW2g/WCgYcBvvn7thzbg66n/X/r/FklJpEiK8zwUycqsuXKMed+H2DsqMiqHyMzIrCLFJRCkqjIjIiN37L32961vfRUUCwUUikXcvHULv9y4gWQq5WoVJicxkctBarWLbBMZ4e2rZUUZaI13GAg+l0SH0oaFz7QsvHr5Eu8cP973eZxWYf7XaKF1hrn7jhiD8GjgaQV+TNOycOHiRaytreHMxx/37Ynh7zoYODF/QVfHk2UZhmHAsCzEAuORexzshiaiGQgh7pza4vuymXV8lDl2vrg3IyUx1oTJtm1out40wiIAcFpcrxqL4csvvsCPP/yA7y9cwEenT3dMVe6oCmpybJ5ervn6QLwu+NWQgyhTCtVqFd9//z0Mw8CXX3yBsTZdt0RGDpq5eHnnane+NvqAdCqF9OHDOHz4MCzLwvLKiksWXr3C40ePIAgC8vk8JqemMDU5iSTbdbQTvFHH2e6jsAeaFxFePuU4cGwbgu87e/nqFaweOjDSJvd7mAvqIHbJ/p3U6yR64vCXL0YJ/r1Wq1VcuHAB1VoN5z/7DBO5XMRn8sGna/CbnXX63tt1aqzXaqDA3ogcAB3LGvl4jGpzQbFdxdMMgiAgkUigXK2i1mP/CVGS8Olnn+H6tWu48vPPqNXreOedd9pacQerkILzCo+c6LruWdC/LvjVkAMeOeBNlgRRbJ2rb7NQbG5s4PsLFyBLEr7++mukOnRIk0QRYItbM9AO59txPS0eDkmSMDM9jZnpaVAA5XIZhUIBhUIBv1y/juuUIp1KuURhetolNE3Oq5smHMeBKIrD813oAB4tCE5EL1++xPj4eMcOjDuiAru8sx5EeZd/5/1aRg7Y31FfOyEE6+vruHDhAkRBwDcD6JHQ5uQAGkWQvEcL33nTwOsVWYZt2zBMs2F+qtVqkERx10qKm6FdWaNt227PmogWwzCdDROJBMqVCnTTbC5MDCHEJoTg1KlTSCQSuHXnDmq1Gk6fPt0yTdHwLLeJHDiUolwqYWx8vOPn2Cv41ZADHjkwTROiILR/yFrs5AtLS/jhxx+RzWZx7ty5toYlHDyt0FRz0MsOMswAh1v/m0mncfTIEZiWhWUmalx88QIPHz50tQq5nFsBMTnpua5pmgYK7ImoAYcgiiCmCce2Afa9WbaN5UKhaUohGBnYS4vloOq+HZ+m5rXEAKoVAPeZvfTDD8hmMjh37pzXcG1X4Es3+Hec/siCJEmuRikQaazV625KYQ+NZU5yghER6jiRlTE6lLoNnEJ8blmWEYvFoDHL4mw229tJCcHRY8cQj8fx888/Q9M0nD17dseaQdCYWmhaqcSJIKXY2tx8Sw72GhzHAWEs3WJ1xP5dccPQbkMMLl68iOmZGZw5c6Z9B0cfOHulbVTIg4YsSdg3M4N9MzOgALa2trC0tIRXS0u4dvUqKKXIZLPI5XJIplLIZjJ96TGiBp9gbF9qaHV1FaZlIZ/P77nIQBB+k55BwRMjvkZhSz8GoTl49PAhrl2/jqmpKXx85gwEUQy1Ax02/IurJEkAIXAcBzalXoO4OicHewzNyIHNFvN+olhcX9BtyW8ikYCuaahpGtLpdF/Pw9z+/YjF4/jh0iVc+P57nP/ii53zt2+z1uo6RUGA7TjYes3KGX8V5ICnFDgbF0Sx9eLe5Asul0r48ccfMT09jbNnz3alBhdYbg6EwLashsHVc+Y5RPSg5VsBjGSzyGazOHL0KEzDQHF5GcViEc+ePkVd16HIMqampzHF9Aq7HUXgE6TjOF75UGFpCfFEwuvtvtfBr3BQqvw3hhxEcSzHwY0bN/Dw0SMcPXIE7x4/3nQR24vgDXscw4BlGBAUBYIgoFKtYnQPeBwEQbCzNNq2bVD0rjfopC9ohxjrAWPZNuqa5umsekUul8Pn58/jd999h2vXruHDDz9smG8I3JJG//PdrH0zAFRes3LGXwc5YCF9yzQhdsrbBSIHhmHgwsWLSCQSOHPmTE9lYqIggLByRm8/3u9E1aMi2ns7e6+sKJidncXMzAzm5+extbWFWq2GleVlXPn5ZwDA6OgoJicnMTk5idHR0aEsQF5qgCmiKbbJHaUUrwoFTE1NvRbEwI9BLVDejvg1ux8eIoocWJaFyz/9hKVCAac++AAHDx2C7Rs3rwNkSXINkZirqu04qJRKrvCWbttFD9uoqSkI2WGK5PShN+ANvnqFIAhIMu1BtVZrIAe9Hnd0dBQffvghLl+5gkwmgyNHjjT8nvgMkZp9G3y+rAa6R+51/CrIAbVtOHAnjqZCO79gyP9jx8GPP/wA0zRx/ptvujYb4uCKVX85Y2TTVB9RBAiC915N0wC4piAL6TRw4gR0TUOhWESxWMSjR49w9+5dKLLsihqZrXOkfe6pr+ufr0yK33fbcUApRbVSQaVaxXsnT0Z37kGjmaNahODk4LWNHLC/+yEHmqZ5zZPOffqp1zyJtDE42ouQZBmEuf3x8W45DrJMSNmgV2B/7+an4xsN/rzavFVzF5GDfqIFQSSTSZQrFViWBcMwIkmRzu3fj1KphJs3byKTyTT4IPgNkdqlD23bhlav725XzS7wqyAHcBzvQWuaUuALbGBiuv7LL1hdXcXnn3/eV3hKZGkFT2TUqXyxW/QYRfCMTCiFwcoX/Yu9Got5zaIcx8HGxoZXAbG4uAhCCEZHRlxR4/S02yyqy8/kiXmC1+87jsCMpBym2ygUCiAAcvl8V+fabQzKNpkfG/j1GiCVSyV8//33cCjFl1991dA8iYe9aZu6/L0EURAgsgon07JQYrnqTBOBXVDYyMPcQwWPHrBrcXhaIQxRpRQO8zGJCqIout0a63VUazWPHPQ7yo6fOIHS1hZ++PFHfPP110hzsuZ7TSuvFH5vqpXKW3KwV0ApBWzbXZgJaZ8H8y3YT588waNHj/Dh6dPI9VkTLTIFcoMR0iAmqR5Jgm4YsB0HQpvyRUEQMD4+jvHxcZw4cQL1eh3LzKnx/oMHuH3nznazqMlJ5PL5lozdr+4NC1EUPWvZQqGAXA+20bsJvkANKg3yOhsgtSKFYbGyvIxLP/yARDyOzz77bGdzon6ia7sESZJgWhYsy8JWqQRVljtG6XgXRMBXATHg6+QQCIFNqUcMgPZRLL4ZiCpaEEQimURN0yJteEQIwceffIJvf/tbXLx0CV9/9dV2b54WYyxYRVQulzE+SI+NCPH6zK49gnva89BXywXJ9/PV1VVcu3YNhw4exMLCQt/XIAhCQznjwB9YfyQkxIOnMUfEeCwWenGJx+M4MD+PA6xZFG9BvVwsNjSL4mSB73p63SWKkgRiWdANAysrKzhx4kRPx9k1kBad3CICfY3TCs3K+sLi+dOn+PnqVeQmJnDW1zyp6TleI+IkSxJ0QtzIwdYW0l2W5TUtlYz0CgPgUQs+DttUKvAoziCvJ6aqkCUJhmmiWquFspUPA0mScO7cOfz222/x008/4dxnn3mftdncxjeEAtOd1V4jG+U3nhyA1dvykBsobSgRAvsZAIB9eZcuXcL4+Djee//9SC5BYl4Hjm0PbwcTLO1rcl4CV6RpmSYIEMq3oRkEUUQul3MjLO+9h1qthqWlJRSXl3Hn9m3cuHED8XjctX6emkIun+96188jPqvLy7AcB1NTUz1d627By8sOCIMoBRwWerl2Sinu3r2LO3fuYP7AAZw+dcpt7/2GQJIkd8GxbWxubYXy+m+FoMXvoHQKAivZI0CDk6l3HdhOrQ0DyUQC5tYW6rWamwKI6LzJVAqfnD2L77//Hjdv3sT7773XspmdZdsgPGJN6WvVgOnNJwe27XUIkyQJgiC4VQu+hZCyScmyLFy8cAGSJOHsJ59E5u7ldWYcMFtuCj7hNkk5EAB1FjWIsZKpfkEpdVtQLyxgYWEBjuO4zaKWllAsFvH06VMQUcTExAQm83m3BXUq1XFXx7+L5ZUVpBOJ4bncRYhBffeOb1y9lpED9ndYakBtG1d+/hnPFxdx4vhxHD12rC2xeB0JE1hJo2FZqFSrOBJVY7FmqYcIoyp8p+yfO/n5hu0xEY/HUSqVYDkO9HodSoQl2bl8Hu+//z5+uXED2XTa7cPQZI61LAuUpWwpEK6t9B7B3r/CPkGZJz8AKCxnZ1pW4y6ZUsBxcPnyZVSrVXz19dc976KbQWS7ANOydr/8yBdFsB3H7TNBKdR+HhxeZdCEmfP+DnkmHqxUqygWCijyFtQ3biCRTGKKtaDO5XJNdSFcRLqysoJ9MzO9X+sbCL9HwOu4EHqLVQhiYxoGLv3wA9bX1vBxF82TyICrRQYBWZZRX1sDAXp3+2uDyKseWGjd8TkjUgyfFHCIooh4PI5qvY6KpmEsYr+WgwcPYqtUws9XryKVTmN8fLzhs3ILaUKIF6nm1Sdh2kLvNt54cgDb9nL9qqLAsixYptn4Gkpx+84dvHr5EufOnUM24va/oq+UcVBq9V7ArZIlWe6JyfpdzMIilUwidegQDh06BNu2sbKygiITNj5+9MhNUUxMuGRhagpJ1ruCCALq9TrqmoZ8HyHW3cSgKxX2yrjqGiHHT7VSwYWLF2FoGj4/fx4TExORn2MvQZIkVFg3v1REOfNW8J5hlnbo9W5x7Ysoiq6j6S7f92QyiVq9Dq1eh5VKRbtjJwSnPvgAlXIZly5dwjfffONWIvDNl88MyvaRhrfkYA/AYXoDTg5kVXUVtY4Dy7a93eiLFy9w9+5dnDh5EtMtWi/3A5GV4oFFD3bdmpgtIrquuz3iu/Aq4CHIKEqPRFF0yyCnpvABa0FdYC2of7lxA/T6daRSKe8166urEAUBIwPYRQ0ag8yzvtaVCghHbjbW13Hx4kVIkoSvvvmm68Xydbw3giCgXqu5tsnDWmQDaYduzsorFbhnwV5IcCmKAlmWQQ0DtXodmYjTkUQQ8MnZs/jNt9/i4qVL+NJnsczXHUmWYes6APfeVF8T3cEbTQ64MyIP9UisE6NpGG7eRxSxubGBy5cvY25uDkcDzldRgjCCYO0FcgA3teJQ6ppCKUrnCZqnDgZVK04I0uk00uk0jhw5AtM0sbqygkKhgBcvX+Lhw4dwqNuY5vnz59h/4MDeaV8bAoPslsiJWpiw/J5Eh4Xv1cuXuPzTT8iOjODTTz/tLwX2mqFarSKVSsGyrJaVGINCsOKhrTaBbcJ42eBe8ttIJZPYYOQglUxGrstRYjF8du4cvvvuO1y5cgUff/wxAFdv4DgOJFGEzl9MKWosGrTX8WaTA+aoxzUHkii61qSGAdM0oaoqfr52DalMBqcDntlRQ5Zl1HUduq7viUXNNAwAgML0EECjkrjhZ8C2Y+GQHnpZljE9M4PpmRmAUqytr+O3334LRZJw684d3L5zB5lMBlOTk5icmsL42FhXjmzDBk8pDDKC0GlC5t+v33DKnxpqlibiP+cOmoauQ9c0L/zsPTM+8uP/OfGNmZalbS0MnCilePToEX755RfM7tuHjz76CGKPYeG9s1R1h1K5jKmpqR1dGocNv66FNv7CGyO2ZUGAGxHcS+nTGCvRdmwbmq4jMQATokw2i48++giXfvgBc3NznjcOr1TwP/uvSznjG00OqE9vwCsGZFl2yxktCy9fvsTa+jq++OKL0F0We4UiyxAJgc4W5d2GbhjbjohsR+ARAscBDaYOdllEqWkaqOPg1OnTEEURuq6jWCjg2fPnuP/gAWRJQn5y0quAeF1cyLoBZSkx/9+246BWr0PXNJiy7OU5dyz+fZ7bYDod3TBQZ0ShV3hlxWzM6bruRvMUxf0d29ndvn0bT58+xZEjR3Dy5Mk9s9gMC7quw9B1pNJpOJTuWldXPzgRINieJzh4NZYgihD2kGW1IAhIJBKoVKuo1WoDIQcAMDMzg3w+j5u3buH8+fOunivwfVH2PdZqtT2xSWyHN5ocgDnqAds+34IgQJAkWJaFm7duuXX33QibegBl1QBEEKDreuc3DBiWZcFh9beKLLvNTvgv+cPP6pX3inlMoVBAOpNBPB6H7TiYHhvD7OwsKKXY3NxEkdk6/3z1KgBgZGTEM2AaHRvb9RK/dhOlf8H3/k2pW2njIwKtjmEaBiy2cNghtSDe4uz9wBcJCEYFAK9ZmSTLUGS5wY3Pu65gBKLFuYPRC9uy3HpwZnJlWxZu3b6NtbU1HDt2DPv27cPW1pZrNsNC1oIgeP/2/8xPchvuMaV9Ce12A6VSCRTASCYDAjcVuKvkwFeVFCw/5YsexbbGyt4j5ACARw50nlIeRCkhIThx4gS+/e1vsbi4iPzUlBfpCo69arn8lhzsKnxljP6HSpYkLD5/jnKphE8++WSw9qrsuNxm07YsmKbZvjPkgGEYBijgWSVTZrbC4Z9aG9zVfIrmoYJSFAoFzM3NQRTFhl0UIQSjo6MYHR3FO+++C13Xsby8jEKhgCePH+PevXtusyiWfpjM54eas+aLvsHMpnjFip8IdDvyvAWRua7ZLM+biMe99tpBjYM/zN/LDpyT2ngshgSrIAkDP3Hg/+/vp0HBCLuuu9oXx8HVa9dQq9XwwQcfYHx83Hu9Q6nrW9LhnISTBx+J4OfnP38dsLW1BQFuyFqr190qqygbnXUByshq8Nn3W6FzQaLAorR7JbVAWMRYVVXouo5qtTqw0tDR0VFMz8zg4aNHGJ+YgMSjFGyN4c+61mf0bRh4s8kBSx8AjeEdQgiePHniNQsaZPiLH1kUBMiyDNOyoOv67pID0wSlFJIsu73IQyxQfKe5G3uBza0t1Ot1TE5OQhRFWJbVcoesqirm5uYwNzcHx3GwubGBAiuVXLx8GQAwNjrqdpVkLaijmMD4gm8z0y2bXaMX/mekoNVY44u2ENgNez/zLXZBOI4DSxA8ZfZegl+TADTP/ZuiCEeWYRgGrly+DArgqy+/9Mq9+MLUEE3h/w6kWfjrGzqgsvvusPfy+ykKAkQWAudEcy+hVCohnclAkWWXHDBDnaEJT32RAgBtNwU8akDg+rqAEda9kFrg15BMJKDrOmqahnQ6HXk0kafL3nnnHfz222/x8sULjARt3n1jdK/jzScHvrpbjqfPnsEwDBw8eBC2bQ8t5KwoCuq6Ds0wMNiq5dawWBMqCjeCAnQXavWHEYcVQSgUCpAkCePj494O1g4h0BIEAWPj4xgbH8fx48ehaZprwFQs4gFrFqWqqpd+yOfznlFWK3QiAa0g8TwsXKK4Y3fbx7183asVHEqxvrGBmzduIJVM4txnn7nlewyEEBBR7FgaR6lbV+8EiARl3Q1N2waYgtxxHARH0F4jDVtbW8hms+51SBIcSgdfteCP8HTxNsuyQMDaq7NnQRRFmKa5q6TL/0zGYjG3YoxSGIbhRdmiAv+UqqJgZnoaT58+xdEjRyCzqLEfDU349ijeWHLgOI4rkGGhLU4ADMPAg/v3sX//fsRUFXVW3jIMHqeqKsRyGcYuhZQotr0NJEnyFhOeZ+6Gzfof+EHfu6VCAfnJSW+yBnp7uGKx2HazKMfB+vq6Z+v8/PlzEEIwNjbmkYV0Ou0SgJAkgI8zkU3mou96gW1iETVe53bNAPDy5UvcuX0b4xMT+PTTT3uOfvBxLAoCGjLzlEJl35tl27BZyZ1j27DYd+r/sydIA6UolUputQ5cIm+ZJsxBkQNOCgIiw7CwuN6A59i5oJlFwaJsydwN/FUChBCosRjseh36AMgB4JIk07KwsLCAFy9e4P6DB26TOH96Fm8jB7uOZnqDe/fuwaEUx0+cgKFpblmjogxEoBL8+hVFcUWJhjHU8CDXCziUwtB1VyAZnID70F3ssF6NMKpgGAbWV1fx4UcfAYD3PfmJXy8QBAETExOYmJjAyffeQ6VSwaulJSwXCrh79y5u3rqFmKJgjLWpHh0b887digS0igBwQjGopeR1dUiklOLO7du4e+8eZmZm8OGpU4NJiwS0F82edZ6K6IU0SKIISRQ9m/QoUKlWYdu259bKGzFZUVqw+7QfjuM0lJ12dxg3okHZpoODEAKBkwRKt0nCEMdpsHyYbwgHIQwnhEBjx00lkzh8+DAePnyIQwcPbj/7XIT7NnKwu/Acqhg5qNdqePjoEY4dOYJEPA5CiGvJW68jmUpFv/MKLLayLLsRDEphBPs7DAD+HCzgkiXLtkGAnUZMEXx2v/I9KqJQLBZBAc8y2VuAmQCql7p3vhBYluX9cSj1yIJj29jc3MTGxgbW1tawtLQEgRCMjo9jenISU9PTyKTTXS8EPH8b5SLeoBx/jciBw5onLS4u4vCRI5ibnW3ayS8KhCFPfZEGX4pLEgRIkgRRkrwFvReUy2VQwGt1LoqiWwHgOLCYsU5P8FWKOL6x2M/Y4XMKYYTZD69qgWybKA3a76MdVN5fxzQjr1owDMMbK2o8jiNHjuDJ06e4c/cujr3zDoDABmqP440mB1xvwMsYb9+5A0mScIQ5IcZUFYauw7JtNwcVtRI4sBsXmGpWN01omjYwctDMzAZgQkS45WjBqAUJTBb9oilR6AGFQgHZbBZxXwiQVyxYIckBDyf7yUDw3nCzEkmSIIkiRkdHcejQIRBCUKlUsFwsolAs4s7du7h1+zYS8bhn6zyRy7WdZPyLU9QLuOP7HK8LOTANAxcvXcLG+jrOnj2LdCrlidkGjW4XpjCkwbJtL+1k8WZmzM9EZGRBkiQvuhQGW1tbUGS5ofpEkiT3HKbZEzmgPCUWASHwo5no20OTc/Ao2jCWx+B3LYoiFFmGbhjQdB2piMgBpRQaqwLjHW5VRcGxo0dx69YtzO3f727IeOTgNWgC9uaSA59iWRRFlEolPHv6FO998AEkFrokhCAWi6FWq0HTNCiKEl30oMUEpKqqa1ozgLBWMFIQhMGMj5RmoVsWKh8Eo/ff0W6OTh0HhUIB8/PzDT+XmE9Fq9AcD3OajAjwSoGGa2KTrfenTQ45lUohlUrh4KFDsC0LK6urrq9CsYjHT55AIAQTuRymJicxNTXVtp105LumARKPQaBaqeDChQswdB3nz5/H+MQENjc3AQyw3bSfQCGaRclPGjjF50JVy7Jc7wauVzEMz/xM4GSBpSFatYUvlctIp9MNz47ENhbduCXuKEEcwBgxmcC5GYniVU7B+dD7v0GWkQNN0xiKosAwTRiGAXRRltsOhmm63jGUelFZArdz46OHD/Hg/n2cOHly+3O/JQe7B2rbDZqDW7dvI55I4ODCQkOoW1FVaLoOy7Kga1qDSrqv87cY9JyARE0OOhnP2Cz8SYDWEYsBP6hAd0RhY3MTuq5jKtAMyxMlsgeMh3a9P01IgxAgA70KykRJ2m4WBaBSLnvNom7evIlfmOKe+ypMjI+3NOaJAn5b272OjbU1XLh4EbKieM2ThuHC2TDOBjjGuQaB6yY4SbX5uGRpCMMwYPjeI4miF7XiY3trYwMTzIKXQ5IkEKB1SaNPQzBoQuCdkhGioN7AD4GQhghX4wHcCOcgNiYEaCqujMfjqDJDJN4Loh84juMJveOq2lC+KwoC3j1+HNeuXcP+/fuhsu/0beRgF2Eyu1dRFLG+vo5XL1/i448/3jEQCIBEPI5yuQxd06Coaks23xVaRQ6YRSzPT/XreOZNBB3AjY/8VQpBdNuFrV90IgrFQgGKLGM00N5UIASmaaKuaXBYSWEQnAzInAwMKJ+dSqdxOJ3G4SNHYFkWVpaXUSgWsbS0hEePH7vCx/FxTDJCEbVCmlc/7PUyxpcvXuDK5csYGRnBp+fOeSWjweY+gwDlYrshg5vv+MkCd4PkJNZxHBiOA7D5ikeAypUKFg4ebDgejzo4rDTTH6Zu8CNwDzSUz8j1BpwYNUOne8+jaY7jePNhJEShBRGUZdk7p2GafaeTDcMAKIVIiFceDmzPb/v378eD+/ddY6TxcQBvqxV2FTwPJogi7t++jWw2i9nZ2aavlWUZkizDZFqA5ABtLb1dK7NS7tVCs1MKIQhufNSpI+RuuZo1Iwovl5aQn5qCIAhedMBgIdpavQ7qOJ7Ik0+csi8yMGxIkuQ1i6KsFK3w6hWWikX8cv06rl27hlQqhXw+7zaLGh/vm4ju9TJGSikePniAGzdvYnZ2Fmc++qihQdbAKy0C43k3Uy+EEEhsrgEAcC0MT0WwHXi5VALgjqdyuewRDFEUIckyDNP0XFZ3e5HhKY52mhtuxd3pWv3Rg7bRhrBoU3KsxmJwWHq3H3LA3U+p4yDORO7e6fn5ABw9ehTXrl/HVqmEWCz2NnKwmzA5OSAEK8Uijhw71nZiiMfjME0Thq5DVdW+GjF1GtKqqkJjgpheyEE7p71m4CImAjTXG/jgt5rdLRC4kZ/NjQ3Mzs2hXC67eU3fdUmSBIEQxFQViURi13snBEEIQTabRTqTweGjR2GaJpZXVlBYWsLi4iIePHgASZKQZ42iJicne0pp7eUyRuo4uH79Oh4/eYJjR4/i+IkTO65z0JUWvdTsDw2+VBdYAzTbcVAsFkGI28LccRxomgZN0xravnviwl1G0N+gFbrV2vBeGN36rzQco83vVEVxSxr7bISnaZqXUgkSJP/IG5+YgCiKWFtbw2Q+76W89zLeWHJgsTBdiS0s+Xy+7etlSXKFKoYBrV5HKtWHh2GHwawoCkSga91BqyqETuDtmUVR7NjWeDfLjAB3UjAMA0tLS6CUIh6LeR0BJVGEzBr/qKoKTdPahjP3BNi9lGUZ+2ZmMDM9jQ8++AClUglLS0soFIu4evUqKKXIZrOuAdP0NMZGR0N9LmePkgPLsvDjjz+iWCzi9OnTWFhYaPq6YZObvXWXAmAVM6XNTWSyWWSzWXfDwhprUduGTSl0TYPlOBBE0TVW2yUXR8oqNUBpx81UL9fHUyVCr3NSm/fEYjFga8ttWtZjSaNX+cRKF5vBP5+OjIxgdWUFePfdXd+AhcEbSw5sy4IIYH11FbIk7chbB0HhNpUxDcNVsppmx112S3QQPamKAoG1HQ4Lbg3by5DSeUohRPhs2LoDwI1s8PvOIz5r6+sQJQnpdBqqoriEyt88y3Gg813UHi7na3YveVQhm83inXfegWEYXrOop0+f4v79+5AVBZP5vEsWpqa8+uwdx9+DmgOtXseFCxdQqVbx2blzmJyaavna3Yh87DYBbgV+Tcurq9jHnRFZSsGrwGFaG+I4qLN+CwJLV/DUw7DupWVZEADX2rrD+CPorVKEYDvV6XShHen0HYtso0FZmrIXcqDrutfAjveTaHUdjuNgdHQUDx88cK3X30YOdgf+sHtxZQW5ycntQeWrVPCDwB3kaiwGTdNQr9ch92JiEmLSUVTVzakx5XI7HUC32oIgHEphMX8DJeQDMIyac5urtpuUZkmiiFqlgonxcYy06J7md0oEtheXoChr16lCkxLK4BhUFAWzs7NeC+qNjQ0Ui0UUi0VcuXIFADA6OupVQIyOjHiTMT/6XtEclDY3ceHiRQDA119+iUwnUj7oaosmz82wauw7wf9s8/Fbq9VQr9U84RqHX9xICEGlWnX1FNiOthmG4b5OklxtQ4SOjc0Q7NHSCf3YKHNvhCiJnaooME0Tuq53rTMzeYdVx4HSJh3Ir5dSirHxcdj37mFtbQ3JiEooB4k3lhwArkXl+toaTp06tf3LNg8LATNGYpUEdU1Doss8cKsSRj/8Zkg6a1Xb6nPwVEKv8KoUWF11GPQcxusAy7a9CEGw3FCSJCiy7JV6bmxt4dChQy2PxQ1luFe+39rYj90kCy3vYbsxSNz+DmNjY3iXtaAuFAooLi/j0ePHuHv3LhRF8XQKiUQCwh7pKLhcLOLSDz80bZ7UCruimRhCyW4zNCMD7uVs/3ttbQ0UwFiAHPjBhbeUEKSSSVfQaBieLodHPgngRRQGQRS43iCsPqvvs3cRPQgzf6mxGCrVKowuSxq5DoRS6kaB2+i0KLZTf8lEArFYDMViEfv27Qt1rt3EG00ONjY2XOvdDnoDDgIAgoBEPI5KterltLtSs4acdGRFgaBp0HQd6YBpTr/RAj8M0wRCVCk0IMLJk/dz0Bjh8kNmhEBWlAbVfqlchmkYGB8ba3tsXtbVLmfYliy0eM2g0c3uR1VVHDhwAAcOHHCbRW1suM2ilpfx/PlzgBBkMhlMT01h3759yGazu0IUnj59iqtXr2Iyn8fHZ8+G7pEwjGqF3YCf1LcjA0Gssl1lO/dUURTdhZI9TzIjCzHqGr+ZpgnLNOFQCpNVNgBuikLpU2zN4S8hDlsZ5PVu6OM7Cd7HVs9RKHLANiIWpTBD2tk7joNqrea2/iZke15tVRlBqRctEQhBPpfDyspKx/PsBbzx5CAZj4cO4fBdv6woiLOcXq1WgyAIvesPWkBVFAjYKUrkQywKYuBQCpNFDrq5/ih0B5ZtQ9N1t9ETPy5YhIBpCFqFwtfX1kApxejoaNtzSJLkirW6cIxrRha86wtoOvpdsKJelrhnwsT4OE4CqGsanj59itWVFTx8+BD37t1DLBbz0g/5fD7ycRsEpRS3b93Cvfv3sbCwgFMffNCd/oGP8wFpJpqSwehP4s0dzVJy3YyjtdVVTExMtH0Nb/rlNImaear5eHzbJdQwGoiCIIpQFcVLUfQC7m8gdikIjqREkYHv9oMuiGHTRoQQKKoKh1WDdCIHlFLUWQk1oRTxRKLB8Khd9ABw0yq5fB6Li4uo1WohrnB38UaSA8AdIBsbG8j79QYh3sO/yFgsBuo40HQdtUoFQjrdUbTSzZBXVBVEELwaWcJqfKMM53NiILHugaHR4zVQ6jaU0jXNExYC7gQSi8VC21Ovra8jk8123H3yHVA35CCIhrHhSzv4vwtvXHSZlhh0bjsei3lujalUCptMq1AoFPDs2TMIgoCxsTEvBZHJZCLdoTu2jStXrmDxxQucPHkSR44c6fr4g9Qc8O9wxzX1cQ+85zOoXYrgcxiGgc1SCQcD5kfNIIoiTOaN0Gpe8ohCLOam9HTds/mt1+ueZbwiyx2rmIKwQ/gbNEOU3zOPHHh6o+1fhJ7DeNWTEaKksa5pbj8NSpEMlk+3OZ/fuyGfy4HCbSi31/FGkgPO8CqVCo4fP97zcWLxuKukN01UqlWk0+n2pjVdLKqKLEMUBBDqNuyIqWrkeX5eAth1/3fSXec0h5VX6YbRYO6hyDJiqtp1G9611dUdgqxm4HlUmzW+idIFMbig+EmD/2ftSEOr+xeVqMrx3WtJFJHL5ZDL5XDy5ElUq1VP1Hjnzh3cvHkT8UTC6/+Q69AsqhMMXcelS5ewubGBT86exb4WBmMdP4Nv4hwEmpEVXj/f9Hn1RQH4/zclEwO43vX1dRDHCTX2RUmCwKJmrSpZ/JBEEVIigRgz7TGY3a+u69B13U3xqWroMcHFiN0+c4NIH3kljz1ssOKxGLa2trwIZKvPr+m6m6pxHCTi8a7MyzwCzJoxpVMpLC8vR2LdPEi8seSA53VyIfUGzUAIQTKRQKVSgWXbqFQqSKfTkU1kMjNDqtVqkXdodJgwKYwrYlOEYN+WZbmpAxahANxJXlVVt/66h4FvmCZKpRIOHz0a4hLdunBKw3do7BehSQMPnzbbuUaEdiWcyWQSBw8exMGDB2HbNlZXVz1h45MnT9wUxcSEVyqZSqVCX2e1UsH3Fy7ANAyc/+KLtuK5jp+hxfUPEkGR747FJCBiHRbW1tYgqyqSITxWuO6g25I4IghQVRWKoniOozz9YFqW101QZjbvzeAwv4VuxIjBa+i1aqHlMX1RBKeLY4ui6Io7mZ9EM3JgGIZHpmKx2M7XdJgrHZ/mAHDbzy+9egXbtt+Sg2GDUoqV5WWvRr7b9zaIXgQByWQS5UoFtm2jVq0imUzufHB62AmqioIqIajV6x19GLqFyYgBbxnbLVqFxLkamjer4pBYGajaRx4TcHdPFOgoRuSQWYdGM+QOalBoRRraObw16xTZDcKWMYqi6OoQJicBAJVq1SUKhQJu3bqFGzduIMmaRfGoQiuR2dbmJm7evAlFUfD111+HWsjafwj2KaJahP15/4CGhAbI2l7zOlhbW8PY2Fio0LsoCNs19LbddVrAXxrp2DZ0VgrpOA7qLAcvK4rnyeKHZ5ncY5WMAGBQVf69fKeqqsJgG52gY61lWduVCcyALYiOd8AXOQCAfC6HR48eYXV1FdOBpnJ7CW8kOXAcBysrK3inTSlcM/A62iAEUUQqlUK5VHJLhOr1HXWxYUoYG64RQCKRwObGhpejD1svHAY8h9ZT1ADYZsPsftis8xjvPga490tRFMS6CEd2wvraGhRFCS0i5eftR3cwMPD714RIevawPjT8jL2HoDWJ8HZfXU7QqWQShw8dwuFDh2DbNpZXVtwW1IUCHj9+DEEUkc/lPLLg/y6uXr2KsbExfPrpp6FMtTqBBnwqWr+wUexH/eF+/jvfMSjYM+nbRXrpBERbLx8FbNvG2toa3n333VCv51Ezm/VmUPqoQBBEEfF43C3jZjtor3sk200riuKl8Xh3116f+UFGibzvlaX6QlUtqKpX0uiHbduo1Wqg1HWAbLn56DJyMDExAUIIHj9+/JYcDBurq6swDCNU7m4HWnzRoigimUy6rT51HQIhvXnh8z+UQmR5PstxUK1WWxr+9AJe89wzOYBrCmUwQmAwIyUAXk+DyDpY+rC2sYGx8fHQE4hnhsQ63O2VMF3D4hUE03QEx1nDq3kZXJO3cxLh+AR3/vMR9u+G8LnvfP6FURBFV4cwOYkPPvgAlUrFjSoUi7hx4wauX7/uWomzY+cmJnDus8+a71T5NQRV+wHhmD+vz1Mv3j0LHK/Zou99Hv/9bHKfdquMsRdsbW3BdhyMd6hU8EMURQg9pBZagaccVFWFaVkwWHSQ/xEEAYqiwLQsOOgtpeA/V9SpBWBbw8LHVphW0CozpbMdB7phQFUUOI6DWr0OwK0OadVNlQKA47SMHjg+8svHsSRJGBsbw5NHj/D55593+xGHhjeSHKysrIAAyPaw2LZTmMuKgjilrouZprmLu6/DWidwUuB/ZSIeh6ZpqNZqkZED7txFEL4GOQiDdT7kNdKAO6hjqgqlz9RBKziUYm11FUdD6A04BEGAJIqgcKMH/ZChKNFpNPRTyRDUOXjfBBtbflLg/x387/OF1v3fZCKVwqHDh3H48GGYloXlQgG3bt/Gxvo6HEqxvLKCS5cuYWpyEpPT0x5BFnzH884TPLd/7LOfcVObpuOpy+qQIF4fauCmFERBwEgX6UVJFKEDOwzFogD3TnBsG7ppwtR1d8GsVlGr190oQh8ppYFV8gR0OA6rBGs3PxPi+hVobCOkyLLX9RXAjm6LfnTaivDngaeBOEZHR7G8uhryQ+0O3khy4LCFcUepScgFrWn5E4Oqqp5DVrVSAUmltluwtjsmdhIDAEgkk9jc3Iw0tWD6yoy6XcQty0KtVnPD9GzhiDp10AqlchmmaWIspN6AQ5Ikr+3tXiEHHdFlGqrZ+/1phVZHanmGZos4fMSDvebps2f4tvodriq/IG7H8f+c/iMYdRPXrl8HvX4dmXQaU9PTmJycxPjYWFuPg+C18OvfofNhr+17AWmzMx2ezDAcVtfWMDIy0pXYWZIkV5TImv8Mor+GIIqIiyJiqgrTMFCuVAC4RL5SqbiRhjbixVYYxOaiWaqIR+g6pZHUWAyarkPTNEiiCIe1z04mEu2/E0FoO868yEHguyHAQCInUeKNJAfeIAiEHsOgle7Aj3g87uXkqrUaUqlU2/B6K2IAYCCpBZuVGXWzmNuWhXqg3jcWi3l9IIaB9dVVEEI6mh8FIckyEBBI7jo6LPzBha8hnx74d6vjD9JdkDdPell9hcvkKmxqQyc6vjcu4V99+f9xW1AvL6NYKOAZaxYlSZLbLIr5KrQKxW5/hMbn1HMG5b9v8T6uHfCTiIb3+RaDlvdmiFUInUBZxGz/gQNdvY8Q4pohEQLLcSAPMKXGDYMUll4UGCHlRmdqLNZVRHEQd7+duRIvdWxVycCF67VazTWHAnZ6GfRxTWJQsLzHNC/N8EaSA46eF7UQu7pEIuFZ95bL5ZYeCBSMPba5lqhTCybb9YchB5Tl1vxOjYqiIBGPQ2BlgsNiuOsbG8hms11HKDxRImP7e6HPQMP4CZbG+cP//re0+HfrUzDdQMSfd8vXPGnq+DRwc/t3L2qLAFgL6n37XI94SrG5uYlCsYhioYCff/4ZgNuidjKfx9TUFEbHxnZ8L2GrLYLgUY1WJKKhKsH3LPuJBBer7YWxwnVMvWikREmCyZwSoxQ0NwPvJiiKIjLptFfK7FDqbix0HbFYLLSvSeQLZIdj8RRDs/mMV23Ytg1d0zA6MtIxJdtJbwCgZdfUvTDuOuGNJAd8EPT6BYQJZxLiNj0pl8suQSiVkEgmG0pdKBhz7HAdUaYWHEo9gVK741BK3e6TmuY9VJIsIxGPNyzOhLj1+sMYzGtra8jlcl2/j1u4Oky5PehJshX8O3kv7x+MGAW1ABGcL8pdcLFQwI8//ohUKoVzn32GqxtXG8/Z7MkgBCOjoxgZHXVbUOs6isvLKBaLePLkCe7dvw9Flt2IAmtDrbD0nPv2aMdWQ6liE5GjJ9xkuejdJgmrq6uglIYu3/VDFEW3NNCygAGX8pq+Zk5cnCjLMnTDgK7rsClFtV6HZBiuH0CHxTVKchD2WM2IAWXkxktBCEIogkPQ+Tl2fHNCA0IIJXcbbyQ5aLA47eMYnSYMIghIp9MoVyqwTBPVSgVOPO5aL6NzxIAjytQCdy4TBKFpDpJS1xWtrmnegyKyUqZW+fowit9+oRsGyqUSjh071tP7ZUmCzSI5QyEHPiU930H4w9qdjFiiuJtOhEQDAJ48eYJr165hanISH5892zSCE+a6FVXF3Nwc5ubmQCnF5sYGllgFxOKiG3kYHR1FLpdDJpOJ3OOjHWiz6AX7DoP3cVikYW1tDelMpmsnUYBVDDDdwaBhspSCHNg8cJGyYRjQDcM1jKtW3WZQsVjLlGukVt5dzk98A+g4jquxsm2XFPAui2GOESLC7JUxNtMcvCUHw4e3g+tRqR9Gd7D9YoJ0KuWG5jUNtXodlm0jFot1JRCKKrXgFyMGYTA3Rr9IJhGPdzYPEgRgAIpoP7j5UbdiRA5JkkC6bMIUBlzNzxeP4CTU0uAIHRZtvquNYILsW4hGKW7euoUHrHnSB77mSQIRAi/tchImBKNjYxgdG8Px48eh67rnqfDo8WPYlgWVRRWmpqeRz+W6t/vuFYHJfccn478PEoqIScPa2lpvZddgmwBGbnoxQwoL29eFsRmJ4eV+sqJA1zQY3HWxUoEqy265YHCcRrQ4+qtzunkP9zHgnyuTTmNzayuy0lD3sgaT+hsG3mhy0Be6UZMTgkQiAVEU3fyhpsGybaQSidAEJarUgsX8DfzkoKECgV0vNz0JNckNIfS6trYGVVV3OJSFRWRmSIGSP782IOyoCpYHNoOXD+8DUQgSefOkFy9e4OR77+HI4cMN1xUsJmwuqw0PVVWx/8AB7D9wAPVaDcvLy9jY3MT62hqeLy6CABgbH3dLJaemkM1kerpPYa4y2IWz6XE6nbuJF0M30HUd5XK5q/JdPwghkLgZkmX1ZYbUDgZPKXSogBIFAYlEAoptQ9d1mJYF3TRhmOaOygZewtrvfN1LVYthmm6HReq2Xk4kEu51MHIQxjPFobRtKWND87Ym0de3kYNdQBRsrZcBxwd+tVqFZZooVypIplKhvAaiSC1QbC+OsiTBtizUNA1moAIh3mVUgxDiihMHKExcX1/HeBfmR0GIzMrVcZzumjCxnaFXTTLEB7bfUr3Q7oItYOg6Ll66hM3NTXzyySeY2bevyTUGjh3l/SEE2ZER5CcnEY/HUa/XUWTph7v37uHW7dteC+rpyUnkJifDi1VDjNUwYeFW1019/24WfQj7jaytr7t6gy7Mj4IQRREEiHTHG4RlGHDQPGrQDLzRE7cftliH22BlQxR+B928n2utDNbGWpZldz70ERYuNG9XFk0Icc3G2sCvNxAIge33YOjimncLbyw5EAjpO9za7W7ZZjv2VDqNKuvFUC6VkEwmQ4VK432mFmyfNwE39ODwVyD0hAFGDRxKsba2hnfeeafnY/Be9o5pwupEDnhEIAJtStPDh3xdv7umftodVyoVXLxwAYZh4Isvvmidzglygx7O1Qo0kI+Nx+OYX1jA/MICHGYnzJtFPXv2DISQ7WZRk5NIp9Mtx+VQ92QBnwnuUOldS5t5ZG1tDbF4vCe3VQ5OjAdhhgS4Gw7uytlLJVEqlXL1CEy0yCsb4nw+6ucZAEK/n1Lqpn1Zd8VYLOalVPmzKLEmTJZto+2MHYJYtiXvb0sZdwdR9IjvSndAG73yRSZUrFarMJlQMRaPI9ZhAkgmk9jqI7XAbU4Nv6thkwqEXkDg9oMYBEUobW3Bsqye864ckiTBNE23CRP7WYO9cIgwchQIE66OAt4utUvitra6iouXLkFVVXz9dfvmScHIgUOjix6122ULoohcPo9cPo/3ANSqVRSKRRQKBdy5fRs3b95EMh5HfmrKbRY1MTGUrpxhsCMV0YYsrK2uuuZRfZxv0GZIfiFir1EqXtlgmCZ0TYNNKSq1mvvzPo4bNvLgOA6qtZrnHhtPJBory9h3wueQjgLPEAu73UKM6D/nXsbeeJoiRmTlMWg/8LwFp8n5CCFIpVJuh7N6HfV6HbZtu01sWjwI/aQWKIBypYJKtQpVVd1ukolEpI6BwoDY7tr6OkiX1rHN4Ncd+NMEw34IQ5+t17A20PC+bibWFy9e4PLlyxhnzZM6RbSi1hz40U0pYyLQgnqNtaAuFApuC2pCkMvlPAOmUNqVYYnEBKHpXbNsG+sbGzhx4kRfh+dmSLYgRG6GRCn1LNT7FYoSQtx20JLkphhYkyceRejF6j3Ms21ZFqqsgRIA17SuybkopZAlCXV0tqQOoyviaR5+roamUK+BQPHNJQdRfAFhQkdovxjEYzEIgoB6terajzoOUslkS6FiL6kF27ZRqdW8ByAWj2Mkk4l8BzEoV6/1tTWMZrM994GgcHfrEjNt4iWNvR5vWOhndNJuyQGluH//Pm7duoXZuTl89OGHoVJMwWqFKOEXa3UDURSRn5xEfnIS77//PirVqlcBcfPGDVy/dg2JZBJTU1OYnJrCxPh407Gwa9MzS0OsrqzAsW1M5vPePXBsu6d5S+JmSBGX8nrGYuiv0ZIfAquSkiUJ9XodFqWoVKuIx2JdbWbCzEQ6s0R2AEiCgHgHO2Q+TtoJm8N8O5TShtbWO47xNq2wO+DNXKLYGXTSHYRqCaookAQBlWoVtmWhVKkglUw2DYN2m1rQdR3Vet0NKVKKRDyO0Wx2MMx0QGx3dX0dk/l8V+/xrHb53+znsizDMU2Yprlr5GAoKQX/uOvwvTiOg+vXruHp06d455133LbAoUt1A+eN8NNFYv/MInSpw4dx6PBh2JaF5WIRS4UCXr18iUcPH0KUJOQmJtxyyampxqhCP9GbPrFUKCCRTCKVTjcYWvVCFDwzpIh1B5ZhgAIDabYmyzJEUUStVoNumqhrGkzTdLUIIQhju8iuJzw0zabCw3bXBGynBJqfuPOYsX1RseA81GDStYfxRpKDWCwG27JgGEbf+axW7+U71LBHFiXJ0yHYzHI5kUhACXgM+FMLtWq1ZWdJh1JUq1VPX0AIQTKRcH3BBxiyiprxapqGSqWC48ePh3q9JyRscQ2yJLn11ZaF9s7+A0QX96dXtXZL57UALNPEDz/8gJWVFXz40Uc40KV/vxAo1hoEOYiyBlyUJEzNzGByehqgFKVy2WtB/csvv+D6tWtIZzKuqHFqyu3jsRshXkpRKBQwOTnZ8B02PF9sg+N1F2xzONFnhhRV2TFPKVCEr1LoFoIgIJlMQtA0t6rBtlFhGi2lwzlbeoxQt3Mub1vfTURCZOuFw3b+TbVaIVMZQOtoi85SKXsZbyQ5mJubw+ULF7C6soLU/Hxfx2o2efP61W4fP8EnVDQMAzUmWEzE4w1pBp5aqNRqTcmBYZqoVqveApGIx+HYNuq6PvDOiVHvtNbX1wFKMdam2ZK/XrgTZFkG2A5kt2xxKboIWfd6P0OQA61ex/fff49avY7PP/8cuS6jM82OHxU5aCiLHdR3RAgymQwymQyOHj3qNYsqFApYXFzEwwcPQATB0ypMTU52FA1HhXKlglq1iqnJyTaX37jD5NHQZkShwQzJcSKJmnluq+i+SqFbyLIMSZI8U6I6qyqIsbRsEK1GoWma0DQNtuOAd1Xs5toFttN3mOlTs3eGeb49vUGTcxO4VSrvf/hh6OvaDbyR5CCbzYIoClZXVzHfJznYUcfcZtcaFslkEqIoQqvXYRiGF0pTVRUgpGVqgcLtGqaxEkVREJBKJiFJErZKpR3mR4OAZxccEbZKJSiyvENA1g0h8EMURYiEwIG7ax6a2x5DL6Sx1/MArckBb55EAHz15ZfIRNDQy3/eyI4zAHEWbWFbvqNZ1NYWXr16haWlJVy7ehWUUmSzWS+qMNahBXU/KBYKLjEJSdga+nVs/9CtTmD3UGRmSA5rjtQvohIidgIhxLNoTyaT0HUdumHAtCzY1SriTaqtBLa753A4ofA1X0slkz11VZRE0Y0+miZiqrpT39NJh0a3+9v4Iwd8o6npOirVKhYWFrq+tmHijSQHIiuDWl5ZicZkI7AD7aa2thV49zJed1ur1WAYhuu02CS1YNk2qpUKLLbjijE3Qf75uLp2GH0FWnU26wWVchnpTAZA74QgCFlRYFPqEqshk4Nu0Wuaph05KBQK+MnXPKlT6+S21zcgqsMn9oHYyoY5JiEYGRlBdmQER48dg6HrblShWMRT1oJalmXkWVfJyclJqH3cxyAKxaJbftnDIt7wnfvIlSAIrhmS46DfJMAwUgp++Ftsx2IxN4pQr7vp01oNqqK4VVjss/JKF94rRmfaCMqs6xWfE2O3kCQJhLWAd3og+3wuFlhDOA7KiMVysQhRkt6Sg92AKIrYt28f7l67hlq93ldux687aFi8Igivi6KIdCoF3TCg1eted0dVVaHGYl5qQVFV1Op1dlqXEfvzcbx0TxCEgXmr+xFV9IAC2NraQiab7dioqBvIsgyNWbcOG13flx7HUCsvjyePH+Pa9euYmprCxx9/HIG/xYDSClGIEaO5EABus6jZuTnMzs0BlGJjY8PTKly5cgWA2ywqCq2CbVlYXVnBiZMn+758/7MoEAIIQiTPksWiBgIhkVUptEPwTkqShFQyCY1FT3XWNyWRSHjRHJ5CcBzHFR1KEmKJRE/RguC5+Yarl2+YeyS0In6rq6uYnJ52Tbz2MN5IciBJEmZmZnDl4kUsr6zgwP79fR2PC1S8KghEq0hXFQWKLKNer8PQdWi67jJ3y0K9UoEkSZAkCYosu+KdwKTkiV+GZQITwe6edy4slUpNbXv7gSxJIAAsx/H6zw8L3Rog9Wrhu8MAiVLcvHkTDx48wMFDh/D+e+9FEhLfoTmIygSpxzLGzoft8l62cK/jzaLePX4cuqahWCyiWCzi0aNHuHv3LhRF8TwVJvP5HcLidiguL8Ox7bZ6g14gsh2vzdIqBOhp5wv4UgpDiBoAaPo9CKxPg2Ga0Op12I6DSqUCVVVhsbA//7YT8Xhk18pF3c2MkMKkDXnkIDgfc+fMtY0NnD13LpJrHSTeSHLgdQhLJLCyvNw3OaCUggbLiiIuQyHEbf6hKorb4ZFFE3RdR7VSwczMDGItJiCT2SYPpVWxe7E9hcO9RkYsfMhzhINg0JIkwWF6jmGSg2EVJ/k9AmzLwpUrV/Dy5Uu89/77OHz4cGTn2VmtEA2ibjfN0e24JOhcrqzGYl6zKOo4WF9f96IKi8+fgxCC0dFRz1dhJJttG1UoFgpIpFJtnSl7gb/HQtDrpRstDHUcGLyB25DIAQFaRmMVWYbESh7rmoZSuQxZliFLkhtlDdtALiREZulssw2MF4kgIfopOI4XuWkWcanX66hr2p5PKQBvKDng4pzJqSm8KhT6V60PMfQpShIS8TjqmgZFVaEbxraPgao2fcC5qnhokQMgdFol6EPgvtX9FOVyGaB0IORAlmWYrBtcPzn3vQqu+TAMAz/+8AM2t7bw6aefYnpmJtoTBX0OIiLFg9Ic9KKF6eYKiCBgfGIC4xMTOHHyJOq1GorLyygWCrh//z5u374NNRbDJNMq5PP5Rt0LpSgUi5ienu76OjtBEASvvTp1nB1Ga01FjU1gWhYIO94wUgoc7Yid53jKFl/TsrzeCFGnpkRRhCAIcHinS/79sWtodzbL54q447oIwcrKCiRJ6l8oPwS8keQA2NYd/PLTT6hWKkj1sQBxv/JhmFZYloVqtQpFlpHP5SAAqGkaVtfXkTFNJJJJqD42z73CCVrnuAYBwioCWj4otLHdcTOUy2UIouhaSkcMRZZRI2T7/gxIdR5ELyMkqLwOdR7mc3Hjxg04to0vv/gCo62aJ/WBgdkn80V8SN9LW/SxuMQTCczPz2N+fh6ObXtRhUKhgOcsqjA+Pu5pFSilqNdqmJqaivADbENg5Y624zTojxp0Qh1SDsOqUgiimXjc4d0cWWdZWVGgxGKwbRu2baOuaaHMjbqFxMoZTUYOOCnolAbspDdYXlnB7Nzcnvc4AN5wcjA9PY2LmobllZWeyYFDtxv3DLpu3mT+BYAbBeCL5traGmr1OpLJJCrlMgxFcasaBMET3XXqsz4ICM2qFiiFg86hWgAolctIDkiUIwgCRCbOMq327VcjxZBcz9Y3NnDt2jWoqoovzp+PPETNsWNnH3EpY+SRAxZO7wa9kLOmxxFFTORymMjlcPK991CrVlFkzaLu3r2LW7duuWF6QmCx7qFRR/tEUQSxLDi2DbRJCVC4Cx1Pq3g/Z88LpXR4egOG4HxhGAY0TXPnXseBJMuu7wEhME0T9Xrd8zNJxOORzn+SJEG3rO3KA/8a0OZ9VpMSRg4Kt4/MF++/H9l1DhJvLDmQJAmyLCOVyWBldRUHDx7s6Th8keM9uQc19RumiRojBrIkeZN9OpNBqVxuCGfphuGVPdq7kVJg4LuRdqmDdqiUy8gOULEryzIsH/sfBnoikF2KEhcXF3H5yhWMZLM4e/bsQCIvvotr+L/INAdNj94neiAG7kVEa+zFkUgmsXDwIBYOHnQrFNbWcOXKFdiWhR9++AGCILgtqJkBUzKV6nuB4+WMYSsWeHSPz22maXpRSHHIUR3+yXlEwGalhNxFUZIkb67hosFareY1Vkp06JvQDSRZBmHp3J0X2ny8eFoPNI8cVMplGIbR81o0bLyx5IB/OTOzs3jx8iXOovuJaMdEzwdFxBOJruuos1JFhUUFOET2YNiOA8MwMJHLuc6KloVarYZave6V/QwdLHXQayvnrVJpoMIchZc0+lpYDxK9RpZCv4NS3Lt3D7dv38bU9DSOHTsGdQgGNX44iKZawet1H+UCNKBFPgqIkoSx0VFomoYP3n8f+XweBVYBcevmTdz45Rckk0kv/TCRy/WUJhSZU2Lb3gAB+FMOXiRyyFEDwCU0uq6jrmkA3DHCPQvQRI/Ao6u8FXOtWkWiSTVXL+Dibl7O6D83T8cEz2K30xvATSkosRj29ymQHxbefHIwM4NLDx+itLXVsk9BKzjNJntKPTOLKKAxT3HArbVONMlFZdJpVCsV1Ot1OLaNTCbjVjGw3gqarnuLxDDD594E38PbDV2HruueAdIgILGSRsdxYNn2UMVV3SDMSHIcB9euXcOzp0/xzrvvYmZ62n3fgFNJgzJB2jM+B0PE8vIyKKWYmppCPJHAoVQKhw4dgm3bWGEGTIVCAY8fP4bIUhRTjCwkQpJ/rjNwemjAZFmWa/wDDJx0+uGwjY9uGLBse9uzIJn0ohe8nDwIURSRTCRcguA4qFYqbrl3n6STrx82u56G/hdorj1oVcLIsbq6igPz88Obo/vEG08OcrkcNOap3g054Dk5P7i3eVR7kxrzNQBcx8RWqnpZlhGLx2HZNkqlEiYmJqCqKgRCvLJH27ZRLpchiqLbaGQAKl4ALinwW992WdfPUWapkkEbgUiSBIe5vQ2aHPQ6LgjQNiRusuZJq77mSZubmwAG5DDYcG3B4+/daoVeBcPDoieFQgGZdBrxgFW4KIqYmp7G1PQ0KKWo+JtF3biB69evI51OIz85iempKYyPj7c0O+M9FhxG3ruJzHDRn8r1S5QOVIhts0gBP69DKURBQExVG/QOjs+3oRlEUUQqmfT6zVSqVSQTib4E2jxtQR0Hpm1DCSz4DqXu2OUpVdq+RTOFqxM6/fHHPV/TsPHGkwNBEDA5M4PHT5/i8OHDoRZMfx59BwjZ6XnQA7hdMoDtvgptkE6nvQ6Go6OjEEURFEA8FvPer2sabNtGpVqFoGku4YiKJNDm1sbNRE1hUC6XQQCkBiSk41BkGQZr4RwfcEljr0TJfXPz76heq+HChQtu86Tz55HL5Xb46w8SwSk5CuGevz/JryZyQN0ujHNzc21fRghBOpNBOpPBkaNHYZkmVlZWUCgU8PLFC7cFtSgin897WgU/2eB9CgSWWpBCkgPqODANAw6wbehEGjtERtU3xLJt6L50H3UciJKEuKpCkqQdbacFUexYoioIApKpFGrVqhtBqNWQaNKToRtIkgTTNF3dQdDQKPDadi2aAWDxxQtYto2jR4/2fD3DxhtLDvyNSM6fP4+/+e//Hc+fPw/VsrbdQheFMLFaqXi5vUTACrkV4rEYZEmCZVnYKpUwNjq6bbbBvBHizHJZ03XYto1qrYZ6vY6YqrrlPj2G2jo1m/LKorqY6MuVCuKs4mKQ4DsAy7IGX9LYR7qpmWJ+c3MTFy9cACEEX3/1VUMPCv/7BolBdGX0JnpCov0+eiUuQyAom5ub0DSt6xJGSZYxPTOD6ZkZUEpRLpXc9MPSEq5duwZQikw2i6nJSUxOTWF8bAyCKIKYpptaCLk46myjIoli8x237/nmzZ66hWlZ0FnPAr4BkyUJqm8Rb/oNhvxeBUKQSCZRr9Vg2TZqTKTYK0GQJAkGS7U0vyzqRVjaRQ1sSnHn9m3Mz8+7Tb9eE7yx5ACARw7y+Tz2zc7i1u3bmJ2dbRtuCjMM+2mWU61WvYGUTCa7KhfKpNMwDAOlUgmj2azblhTbURJCCOKcJLAyIK781ep1qCyS0KyNaLNrBcJNBP6uamFRKpeRGaDegIMbuXA76kHm+/oKvwaIxVKhgJ9++AHpTAbnzp1rSDnR4PsGiEH4HAzEAIlHtnoUhA66TLlQKECSZYyPj/d8DEIIMtksMtms24LaMLC8vIxisYhnz57h/v37kGQZExMTyI6MhLZ1ppTCYI2L2moNeLSHE7qQJmimZcHQdbdjIvuZIstQFGXHYsq9Dvg3QQjpqleEQFyn2RrrVVOr1RCLx0NtwIIQBQGE0lD6jXYtmp8+fYpqpYKvvvqq62vYTbzx5ABwhTbvf/AB/sd/+294/Pgxjhw50vI9nSb4fhYATgwIIV5pTjdIJJOQtrZgGQZKlYqX89oxyRKCmKoipigwTBN1TYNlWdB0HTpzXuSdz5qBUuqa1JDw7XSbGZi0Q6lUwvSAjGCC4BEX0zT3rBjIb8v6+PFjXL9+HdOsedKOCWeIivxmX3+/C+lAxIhMD9T72wdLsgqFAvL5fKSREllRsG92FvtmZ0EpxebmJoqFApYKBSzdvo3bt25tt6CenMRoixbUpmkCjgOBkHAW7L5UQ6uxSCmFYZowWK8H7hGgqioURWkbMRSwPZf0Mt8SQjyXWe6HQNB9n4gwfXS4c2OzFs2Am0K5d+cOZvfvx+zsbFfn3238KsiBbdvIjIxgfn4ed+/cwfz8fNOBEnoY9pBn5ws0IQSpVKrnVq2pVArW5iZKpRIyTMzX8liEQFEUKIoCi5EE0zShGwZ0XYesKG66wncv/CHfbq8tbM7dZu2nh9WVTJZl1FmOc5A7xL6WbEIAx8GNGzfw8OFDHDp0CO+1aJ7UqiPjIEBIs0m8k4lse/Ax1q+iPEp0S267ga7rWFtfx4enTw/oDPD6O4yOjuLwkSPY2NjAyuoqSltbePL4Me7duwdFlrebRU1OelEF3R816ObZ4OlGQfBIguM4HilwsB155KQgTLTIawnfh4aHEOJpjEw293Fb5HAfbTsK1ekaODEItmgGgIcPH6Ku6zj+7rtQXwNXRD9+NeSAqCreffddPH/+HPfv38eJEyd2vL7rhi0hX2uaJnRWrhjvU0WbSqdRLpehm6bXoSzMgJdkGWlZhmVZLklgRkqmYUASRaixWN/lS2HTLZVKBQAGWsboh1fSSCls2x6cYVQfO3rbtnHphx+wtLSE999/H4faNE/iZxmGmK+ZRtwlWL0fcxBNl/pe2AfokbBcLAIAJiPuwtgKoiBAlmXk83k3SkopNtbXPV+FxcVFAMDY2BhyuRwymQxSqVRPoXd+3zgp0Fj1Fdf3cJ+Cnr5rQdi22e4BnCA4rDtrrVZDMpkM9dw0zKkdxoVlmkATIaJuGLh//z4OHTqEVDq9Z6OWrfCrIQcQBMTjcRw5fBgPHjzAoUOH+mvIE3IysR0HtVoNgNvdracH0AduimRsbqJcrUKNxboS9UmShHQq5WkRdE1zmb5locbKIFVF6W3hCXlPyuUyKB1Mw6VWkGV5u6RxF9wk20HXdVy8eBEbm5tu86ROTXmGqvTfeQ4HFP3s+f0dJSNDnwv7ICMHxWIRI9ksYkPaORK2gyW2Dce2XQOmiQmMTUzg+IkTbgvqQgGFYhGPHj+GaVlQJcmNKkxNYTKfDx2CdwLliJQ5GsZYC+VeRqgXlY2ArPEUQ4VVMdQ1ramXTKv3Au03jVxTAWBHSube/fuglOKdY8c6VqPtReytWTJiBMkBABw5cgRPHj/GnTt3cLrPMF8YT/ZatQpKqVuqE1EpXSadxtbWlrfz72UbJ4oiEokEYqoKXdfdCgfLQqVaRb1eh6ooUFS1K28AgnD3pFQuI6aqfROlbiD7SxoHNEn3Emwvl8v4/sIF2JaFL7/8EiMjI6HOA2AoKvtmYeB+694Hklbo95oiuowdx3UcFAoFzA+5Ra/nd+A4CD7BaiyG/fPzmJ2bw9bWFjZLJZS3trC8vIznz58DAMbHx70W1Nl0unGscZEh6w/Bex+IkoQkK0dsZVoUCqS3lvCtIAgCEvE4qrWa26lVkjrOPV76sUNlGk9ViqLYsOmo1et49OgRjh496qZU3pKDvQVODhxn2/RVVhQcPXYMN2/dwpEjR7w6+9ADuYvwY7VadVMahCAZMD7pByLrYy4S4kUlugKlXumhRxJiMeiswsGybdia5ubpJMklCh1ERI2Hb5/Xr/TZJbMXKLKMKlyBUEOP9gjR7VK9urqKS5cuIRaL4YsvvkAikQilzB6mu2DzM/Q3aUfeV6EffwmGKBcjP9bX16EbBqaGlFLg8Nsot1oGDdOEKAjIjY9jnln61ms1t1nU8rLXLCoWi2FychK5iQmMjI564kJ/OaIS8BTwl/l1C378KCFJEmKqCk3XodXrEAWhZXqXj4UwEQyDd7CUpIa14fadO5Bl2RO/v40c7DFwgYjD1LKA+8UfPHQIjx49wq3bt/HJ2bMAelRgtxEm+k0+UhHYeQaRTCaxsbHhLuamGd4LnT3Uwc8qCALirNTRYHoEwzC87nG1Wg0SIyWKLLf8PGF8IEpbW6F2yFGCEAJZFD2r1r5SSk3Q7WT2/Plz/Pzzz5iYmMAnn3wCWZZDL3DDaB3O0Uxz4PS5FEfeV2GAeoF+sfjiBWKxGEZHR4d6XkGSQHS9ZRkepRSGru8oX4wnEphfWMD8wgJsx8HK8jKWlpawsrqKZyyqkM1mMTEx4VZAMEO2Fidx/+7y+xkU6VVVFTZrxFar1ZBMpdpGxghrYtXqyi3L8si8Pw2zVS7j+fPneO+999yfUwp1wAZsg8AbTQ4AZmRhGG4ZG1PBiqKId48fx5UrV3DkyBGMjY6GH5CBQd5s8NiW5TVSisdioXwFuoUky+7AEwRslkqY6FQ/7YsWtANXFquq2uh5zkLylmWhCncnrjCi0MxmutUCxo1cOjnFDQKyosCwrIGQg7CgdLt50oEDB3D69GmPaIWeEne9WqE/7MlqhQEsSNRx8PLFC+ybnR2s+VYTCCwk3qoBk2kY3oYoqMHhz71pmognEjh48CDmFxagaRo2NjawvraGR48e4cH9+0gkEl6zqFyrZlFc+R/GF6GnTxsesXgcVqUCh1Jo9XpDkzsAO6+zzXXzqIE3B7LX3rx5E/F4HAvz89vnfUsO9h5UthPWdd3zxyYADszN4cH9+7h18yY+P3++9xMEBg+lrrc34LLJQTFGx7aRTCZRq9VQqVYxOjLS+sEEmkYLOkFgauNYLAbbtmGYJnSmTdBNE7ppurXRigKVkRXe3rrVA1WrVmE5zlDFiByqorjmKANILYSZ1BzHwdWrV/Hs2TMcP34cx44d62lRGm61QpPz97lL58tVVCZIkSwoA4g8LK+sQNN1zO1CfbsoigAhcJgmIDhWguWLjuPAZBsAm5kVAQAohSTLiMsyspkMJvN5AK6Oa2V1FcViEcVCAU+ePAERBORzObdUcmqqsVNsyCiCt9kaUDRIYCneKutsq+t6Q8jfv9kj7LqbjXfHcTwzOy9q4DhYXVtDoVDAmY8+8koyCSFvIwd7EaqquqV/uo60P/QuCDhx4gQuXrqE5WIR+T5ygv6dcpUJEAVB2MlKI4TjOFBVFaZlwbQslMpljAZD9ZT23E45CFEUEWfVDLZlQWdpB5v5pOu67pZQMaIg+nqv+1EulwEMvuFSMxBm8kIphW4YkfZa6KR295onra7izJkzLdu2hlLN+yfagaNJ2LWPts28ft09dETXv0dTCi8WF5FMJDAy5JQCsC1IBHGbBxHfxsGyLFDbdv+wzYzNLI15hFGRZciK0tIUSRRFt2Pk5CTw/vuoVCoosAqIGzdv4pdffkEylcIU6/8wPjHhapYYUeFtj4PwE99Bpc9EUUQsHke9Xoem69tiwoB2pZ0JEk8Ziz67aQfAzVu3kMlkMDs3B953BngbOdiTkFl+3HEcWH7lLqWYnp7G+NgYbty4ga8nJnr2H+ATusaMjgCErqftFY7jgMCtXNjc3ES5XMZINtuwa++230FYiJKEhCQhkUjAYuzbYDsOm5VHCoLgahQUpSGtUq5UIA2YOLWDoijuDilictAO1VoNFy9cgKZpOH/+PCYmJlq+NsykOMzIgdAkrdDPpO15HHThvtkJlLl57iXYloVXL19i4dChIZWc7oTAcua243hdHCmlqFQqXpt4IgjedyKJImRfBLAbpFIpHD58GIcPH4ZlWW5UoVDAy5cv3WZRkoRcLudWQOTzHZ//QZaWAm4qgLum1up1pJJJt5ldMKXQBNz9kR+H49XLl1hbXcVnn3/e2NaZkLfVCnsRPIder9dhmqYXbuN4/4MP8Nvf/AbXrl7Fhx991HN9v2Wa3gOXYANtUHD47ksQkE6nUa5UYBkGKsx1cJiLhyRJbuMnuu2hbpgmLNuGadvQmDOZoqpQZRnlchnJIZkfNYMiy6gRAstxYNl2ZG2cWy2YGxsbuHjxIgRRxFdffdU5YhIinDpMh8RmE2Q/k/ZA+ipEcKyon5Xi8jIM09yVlAKHKAgwCfEc/EyWFqxUqwCliMfjIIQgpijeJioKSJKE6akpTE9N4RTc0uVCoYDlYhHXr13zPE4m2WtGx8Z2VEINY+6Kx2JwbNvr4phMJhvGJddtBJ9Hy5eq4XqNUqmEy1euYGp6GnmWeuFQFGVP6WvC4o0nBwA8cqBbFmKBxWB0ZAQfnTmDn376CRnWJrVbUJ/RkTKE+n3KGi4JhEAQRddSeWMDW+XywFsgtwIhxBUpyjJ4IxfdMLw20vVaDXUAG+vrSMbjsCxrV8yICCGuIRJLi0gDNKZZWlrCjz/9hCxrnhRZOdMQ0wqRaw64QO41nCy7weLz58hms0NzAQ2CMldAXdehaZo7JxHiRvUAKPE4spnMUBatTDqNTDqNo0eOwLQsLC8vo1Ao4MXiIh4+eABJkpDL55HP5zE9PT20EDwhbpOmSrXqijB1vfHc3P0x8L6gEFE3DFy4cAGJeBxnzpzZbh7FnpPXsYwR+BWRA8D9UqksN5SoUEqxf24OpVIJv/zyC1LpdHuHuiZMUtM0z+gorPtWP7C42psRnXQ6jc2tLRi6jnK5vCv5fD/8FQ92IuE5qFmmiVKlglQ2i1K57DFvWZIgy/JAoy1+KKwhlWmawIC+r4ePHuHGL79gemYGH585E/qzkRAL7zAjB01LvfqIHQwkcrDHYFsWlpaW8M677w7tnJRFwizLcn1KWKthyzDgAF56T5ZlyKqKVCKxK7tZWZKwb2YG+2ZmALitrAvFIgrFIq5du4arV69iZGQE+VwOuXweo2NjAx0rXHSt1eswDAOKqnrna3ZW27a9SAx3Xf3h4kVYloXzX3zhbXj816y8hnoD4FdCDkSWSzNZL3GZNxjhNf8ATpw4gXK5jB9//BFff/01stls84MFJm/qOF4v9Hgs1mdLmnCgzLeBD0CBEGQzGbfMaHPTDY/tkZ2ZIAgeUbAsC7ZlIcnCmZT5sZumCVKvgzCdgixJkGS5K1vobqAwW1ebTaZRRDD4qKCUes2TDh8+7DZP6mZyC5NW8F46jMhBk3NEoDmIrFJhD4oRX716BdtxBtqFj1LqjV/+h+tV+KZHEEVILKSdSqdd0yNRbFq+uFsYGRnByOgo3jl2DLphoLi8jGKhgKfPnuH23btusyjWKGpycnIgu3BVUbzukTuiB2gcY37TIyII+Pnnn7G2sYHz589v6ygC6Yi3kYM9DlVVXSGabTc4hhHf3x+fOYPvvvsOFy5cwB/8wR+E+lJ51EASRbexBlP7DhLceIP4DJ4y6TQqrCHTxuYmxsfGBnoNYcGFZ5RSN1cHIDsygpFs1jMksUwTJlNQ67YNwzBcQY8geFEFSZIiJTyKLEMH3NRCFBMlm6x/unwZS69e4YNTp3Do4MGeDhVWjLVrjZf6UR3s4bRCVAr5xcVFjI2ORiq69ZMB/rf/Wiml3vPCdUCUUpTgChIJIU1Nj/YSVEXB3Ows9s/OwnYcrLGywEKhgMUXLwC4aWBu6zw6MhLNM0DdVtK1QPQgON/w3iyA65ny6OFDPHv6FB999BHG2/jMvCUHexyqqqJSqUA3zZahf0mScO6zz/Cb3/4WFy9exBdffNE2HOyPGgyzVMXxRQ68CYIQjIyMYHVtzWvn3G3/8kGBT7q6YXgPIt+9SJIExGIeeeBkwWKlVrptQ2dkQRBFL6ogM//2XqGoKnTThGGaiEdQ1aHrOi5cuIBSuYxz585hamqq52N1WqT83/ngEa1DYpSRA+7pH9l9iKC2Xtd1FJeXcfLkyb6OQyn1auktPxngviWsXFqSJIiSBEkUvTSjB07EKIVpGN6mYk91Bwzcc06MRUHA2NgYRkdH8e6770LTNFerUCzi0aNHuHP3LlRF8QyY8pOTPWm9+PlkWYbYJnrgOI7XYEkQBKyurOCXX37BkaNHMRcoS3Yobehn8bq1aub41ZADhXUa5G17+aIfTAMk4nGc+/RT/O6773D16lV81KaCwR81kPkDRwgI7d/rvR1s225apphIJqGWy3A0DesbG55hyV6BrmmgAGJNmDQXCsqyDMTj4N3OeFTBZjsm27YBXd8mC4woSF2SBZm1cbbZBNwPkSqVSvj93/wNHNvGVyGbJ7VFh0VqmJqDZvd0r2gOCCGgERKkKMrnll69AnUczO7b1/V7+QLE9QJceOxPI0m+yMAOMhAA4V4HgFdJNcxmZ6HQZJwTsDJsQQBl+f1YLIb9+/dj//79cChrQV0ooLi8jOeLiyBwm0VxspDJZDrOB5Q7NzIEowdBV0seNdB1HT/8+CMmp6Zw/PjxHccVA+d9HT0OgF8ROeAiOcM0YfGSRvhqUX0YHxvbrmBIp3H02LEdx2sXNRikgQeFu6CB5RSDGB0bg1EooFqtolavD0Ug2Qm834KmaV7kIMx7ePUDsO1IZrLaZIcRBdu2ocGdUESfXqGVeYsfqqKAstLLXsnBysoKLl26BEVV8RlrntQvOi13w4wcRK05gBNxX4U9hsXFRUzkcqEc8bzIACMEDosMOIBnFsSjAjxC0C0E5n5oMa+DvRw18EMgxEuHBOdSgRCMj49jfHwcJ06cQL1ed50ai0Xcu38ft27fRiwWwxTTKeRbtKAWBKHh2MHoAfcm4BsV7iL5048/IpFI4OOPP25qHR/EW3LwGkBVVRiVCgzT3H54faJEP/bPzaFcLuPGjRtIp9OYZupajqZRAw5CIKCLTo9dgLuboYWJjKIoSCSTsKtVrK+vI9HDDmYgEATomgaJ6Qe6f7sAhXWHBJiY0Lbdfg+m6e26LMsCNM0lJKzzmsRczERRbMgjKooCjbW9pkwk2Q38zZPOnDkTbRonsKvZ8TvsXrVCFGmF3TIGaod+r6heq2F5ZQUfBlrBU0phO45HaB1WZujND4wUUEJc7ZIvVdAvASSC4OpqRLFtw7TdAO982Aq85XSnzVY8Hsf8/Dzm5+fhUIq11VU3qlAs4umzZx6ZmGRujel0uuUxg9EDfh26rsNxHNy8cQOWbeMLX2XCjs+F7bEkK8rQqrCixq+OHGwJgmsVynKV7foAHD9+HOVyGT/8+CO++eYbr4JhN7QGFO7EyrustVPyj2SzqLHe5aVSCZldNB3iIHD93KMS5/DFXvWRhQZxo+PAphSWbcPwXQPYBCyyHK3DfOQt09xJ8lqAUoq7d+/izp07mJ+fx6lTpyKPFBHSurNlV9UKrUhGO/LReCUtr6/9aal3v/n/+1v9RqU52Et48eIFBEFAPp+HpmnbJIClB/zpRn7toi9NEAUZCIITEiIITdN5uwaWfm3/ku0NEO9T0AkCIcjlcsjlcnjvvfdQq9VQYP0f7t65g5s3byIRj7uixslJ5HK5hkU+GD3gBMWyLDx4+BDrGxv44osvEG8WIeSpEN/n2lORmi7xqyIHnoqXCd4a+o9j5zRIAJz56COvguGbb76Bqqrtowbem6ONHvAHw+GTaxtyIEoSstksNjY3sbG1hVQqtSd2DIPshuh5nLMJkKccbMdxc7hskobjwKAUxDRdUxjDgKHr0HQdmVTKLf/yRRmCiyB1HPzMmiedOHECR5lp1rAXqmC+tMWLGv9u9fsezh3m83Kvfu//eUqBkIZ8uHctvvLiXUEXC7O38Ns2LBYVePbsGcZHR72Ng58IiIIAwUdKRRbVGnRqyDBNELgam70wBwA9Svgj9wAAnEFJREFUpl1ZmqXb9yUSCRxcWMDBhQU4joNVFlUosGZRgiBgYmLC0yokk8mG6AGlFJZp4uXqKl69fIkPT5/GWItKMCFovwxXB/a64ldFDgBXOaprGkxfCVu76IFXwfCb3+DixYs4f/58+KhBROJEvvPg/wbaRw4A15WsWqlAMwxsbGy0LbUZFnRdH5oGwt8QhYOXg/mJg9eWWtehK0rDbpcQ4k3ioijCcRxcvnwZGxsb+Pjjj72202F2NFGBe1ywD9S3ur4Tmve77+3zBsWIOyb6FuI09x+kgcA7jjOUngqURessXzqgISXArrter2NzawsnT570Fn9OBkRB2BWNhWWaAIuM7SUhYj9EmvfJ6fW9+Xwek5OTeJ81i+JdJW/duoUbN24gmUxiamrKc7e0LAubm5t4/PgxDh08uKMywY9mn2s3mm5FhV8fOVBV1AXBa5AUBol4HJ999hm+++47/HT5Mt45etQ16wkTMuqzPGpHP/awYjRe2ri6ii2WWtjt0katXt/Vh6WhfJIhnUpBFEXohgGZ5Xp5ZQS1bZjMea5er+OXX36BYRh4/4MPkB0ZQa1Wc01l2MQvtNCBtMKOVro+MRr8fwfe4/88g0aUPgf+yEHo93j/oA3/73UcBBoIHXhUo8t7w1N2hmVti11ZRKDh0/rIPte0iIKAly9fQhRFzC8s7BmDIU3TAKbVGU7Zawh0MR+2su4WWNVZr+fnz1AqlUIqlcKhQ4dgWZYXVVh69QqPHj2CKEmIxWKoaRrGxsZw/MSJlocVmqUBCcHYHtiU9Yq9MYqHCFVVQUURNqv7FXy7xHaMdmx0FB999BF++OEHmIaBj8+cCXU+0mqXFAItH4CQx4onEq6FseNgbX3dba+6i9BZ/XDY/OGwoKqqVxrqj2zwneL6+jp+vnIFoijio48+Qjwed4WQrPbcyylju1Uu3y3y/hc8fyoIAkRCPL/2puOizQTqL2PcNXLQ47zsRQ6i2EXz57bJRXHi4P7YNSWjbLHn35dDXY8E/98AYFhWw0RPHWc7CsDIACcFxEdIXr18iampqT1DDEzWTh2s6qfX3Xbk6HLw7CDQYCngXivC2kSIp6amMDU1BUopypUK7t69i8LSEiilOHHyZNtx6z8qj0Sn0mlIeyhi0y32xkgeIgghUBQFtmHANM0Gt7BOAy6fy+GDU6dw6+ZNXLh4EZ+dO9dcmBI8J9xe391M5U6LvK63OIRcGEZGR6HrOmq12q6WNlJKoem6a4CE/uvJo4Qiy6hrmitk9E1GgiCgWCzip59+QjabxaeffgpVUVwdgy89YbBqCS6CBIC2cSlGEgSWexcZoRB8fwuC0JQkUN8xhoIIqxX4AhUFOeALusNC/DsWfb7gB9N6rCqAsOgCtW3XK4GV20q+VIAgCBAlqaN4slQqoVQut91ZDhXsWeOeInxc7zZ6WtBb3HvHcXaUIoY6VojXE0KwurKCF4uLSKXTyE9NIdmmoV2rufh1TikAv0JyALi6gypT8/vJAVdSt5oKLMvC+Pg4PvvsM1y5fBm/+e1v8fnnn3c2vWHixLADmXbx2k5QFAXJVAp2pYL19XXEpqd3RZjES4F4Celeih5wpbjB9Ae8ouLhw4e48csv2Dc7i48++sjTMAT1DNyxkmsY+MLEf+4tYOx3YK+14U4sZpsweJA0UFZrLfpTY4Q0RBL8Ku9+0fwo0aQVgo5/fgEfFzMGd/d+EuZ/f6ur4mFogRAQUfRSP35yRhgRIIBn8d0NFhcXIUvSnjEdMwwDjm2DYG+RA4e2L11shlavFwSh+1EYRkRLt3ujzO7bh3gyCVGWdxgbBa+x2ZFbCRdfF/wqyUEsFkOFkIa+3EB7YSLgThwE7pf+9Tff4OLFi/j222/xydmzO3wQggi7W6Zwy4867Qy7echGRkZQrVZhGgbKlQqyu1DaqOs6gG0R516LHqiK4pY9GgZURcEvN27g0cOHOHL0KE6eONHy+/DC1mwcNRNCBl8f3OX6w93+xRBgqQ3L8s5v2TZq9fq2yK3JmPXGs/s/jT9ji2PD75r83jufYyIGFRZsUFAQEFfAKekNizj/bAgu8j79RLVe94ysNF1veJ8/RA/A3c1zhbrv5wB7Rlj9O1/gBUGAADQSAFF0f9YNGWZRBX7ejosqpXjx4gX27dsHshfq2Sn1njU1FvNIz66TgxCli10fkh03zGcLo1OwTBM/Xr6MwtISjh8/jtGxMayurUFWlAZX3SCaHVWSZaRbNe/rAbOzs3j58iW++eYb/OY3v2n72ps3b+LUqVOwbRv/9t/+W/zxH/9xT+f8VZIDSZJAZNkVnFnWDiVvs+iBzYRJfAGQJAlfffklfrp8Gd9fuIBTp07h8KFDrRd1NiF3GsidFNi9POSCILiljRsb2NzcRCqR6MltrR/oug4Q0pjG2UPRA1mWgXodmq7j5o0bKBSLOHX6NBbm5xvFbk3e28034tcetANfWC3mzMbz5oS5e3qNYViYvN0izU7sP3jotIRFbSRoEjZ1AOomFPSahjpq3gIeCtR1maOWBaoonl+HP4rgERYWaePljt7i70+5sM8Qte6Ck9agRbVHUhynwbJ5fX0dlVoNp1nlym6DR+gIIVBluYHo8VD8rmCA5KTTPEIpRadZpl6v48KFC6hUKvj000+RSCRQ1zSoigKBEFi2jWby81apjWzEKYVPPvkEf/mXf4mff/65qQ7Dj3/0j/4RbNvGoUOH8A/+wT/o+Zy/SnIAbJc0WgFy0Cp6wJtuSD4hkihJ+OSTT3Dz5k1cu34d5XIZpz74oOVOpdNu2Wmx+ATBSUo38Jc2bm5tDb20UWc7RX/5516KHojMEOna1auo1Wpu86TJyR271mGB7+6DAjfZNEEphSiKSKfTO9/o260HQ/X+33th+w6/ExwCCxYc9h8FIEiCJ7TyRxoI2kcrbEZa0ul0QxlxLwv8wAR2LZ5/v2W1P8qx+Pw5YrEYJvaAKp2bs3GtgaedYd+NQyn2htNBFwhBQGkHF8VO42tjYwMXL14EAfDVV19BluXt1syKAl4C3fTcLc45GjE5+PTTT/GXf/mX2Nrawv3793GsiaU/APyX//Jf8D//5/8EAPzZn/1ZXyZMv1pyEIvFUBcEGLqOeCzWMICaCQh5fleW5R2piPfeew+pVApXr15FrVrF2U8+aV42SAiEFiw2rM6g52WKEIyMjmJ1ZQVbpRLSmcxQa581TfMiLn4IguA6uA1LYNcElFJslUr44YcfYNs2PvzoI0xyYhDuAIO5sECo3f1nB0Gqb/GK4o46jo0tbHnkAACUuIpkl+Yu3AgIQN/tt3edULLvwLZtLL58if0HDrhum0PwXWgH3TDc6gpCGp5tgUcPdonk9pXSCCkgbH+I1jvtV0tLuPzjj0imUvjss88gShKq1SoAd5xalgWw6EAwtdC0fJFhNGKy+Omnn3r/vnz5clNyYJom/vE//scAgC+//BJ/62/9rb7O+doRyaigqioEttBzUyMPTQaSxZikJElNf7+wsIDPP/8cK6ur+Pbbb1Gr1ZqfuJX6tgUzbYkeJqF4PA41FoMoilhfX+/6/f1A17SW1sm71YSHwt1NFYpFfPvtt1AUBWc+/hjJZNKLFIXCABeE3a5OF8jO76aXagX/Tr/v0PYgQ9RdvPbFy5cwDAMH5+e9BUjgKZEhL8TUcbyup2pgswN2v3ejnLFvh9gunq1mVSWtIlOUUjx48ACXLl7ERD6PL7/6ynO/BbZtj7k3CoCd0YMW15ZKpSK3TT5z5ox3HT/99FPT1/z7f//vcf/+fRBC8Od//ud9n/NXSw4IIUixsKyu6zvYrf9r9/QGQNtc/eTkJL755htYloXf/Pa3zRdgNoH40c2Oo9tSxiBGRkYgEoJavd6awAwAmmG09HYfZBfLIHiEhlcVPHv2DBcuXMD42Bi++vJLZNJptw8EE3WFO+jwFquh7/2ajbMePq83biMgBnulZv/x48fI5/MNZW5eWoY0VpAMGlzTIwnCjoigwK5jEI3gOqHfT98NyaJoHF+t5hWHUly7dg03btzAkaNH8eknn0AURRim6UUxY6rqOmH6ojB+ctBuzsr027K9CeLxON5//30AzcnB2toa/tW/+lcAgL/7d/8uPvzww77P+aslBwCQSKVAJAkO6+7nh/+h5rtIUZLcwd5mwGYyGXzz9ddIJhL47rvv8PLly50v4mpxNOaFhwFe2igKAtY3NoY20eqa1rKNLUFExjgtwO+xV2rIKgxu376Ny5cv48D+/Th37hwkWfaiG6Zpep4FHY8/sCtvdrLt3PduoZcRG5XHQZRlmv1gc3MT6+vrOHjwYPsXsu+LRxQGQSQd2/Y2OM2eMV6xsBtphb7R5XfN9Qfu/zTRjpkmLnz/PZ4+fYpTp0/jBKtE4pEXgOk1mE0zodRLEVt+ctDmGkYGVMLIUwvXrl3bEcX4F//iX2BzcxPJZBJ/+qd/Gsn5ftXkgBCCGMudttspcr1BQy+GNlBjMXxx/jxmZmZw6dIl3Lt3b+dAZfmqrtl8QEXdC0ZGRiCJIkzDQKlc7uNI4aG1SStwRDl1BUsG/STIcRxcuXIFd+/exckTJ3Dq9GlvxyGKIiRZBgFghIgedGo7GzX4PRrmOYORrl6iPFxN3m83xoEvbyGv7/GTJ4jHYpiamup8SGwTVK/8EgAiIuZ87pJEEXKzyCZPKwyTHERE4Lq9Yk9Q3kQPUKtW8e1332F9YwOff/455ufnvd/pug6HCX0VRXFLjFnEWFYUL1JgM5+SVs+AxJreDQKcHNRqNdy6dcv7+e3bt/Ef/sN/AAD8yZ/8CWY6lNWHxa+aHABAnKUWLMtq2m+BYic5CANRkvDxxx/j2LFjuHnzJq78/HPDAkXQg84AiIT9C4KAbCYDURSxtbW1I2oyCGj1ettGVVHsCCm2a+B5dCB4t0zDwN/8zd/g5cuXOHv2LI4eO7bjvDz9wZXfbTHoXayvFG23ELRQ7ilyEFFaYeDppxDHN00Ti4uLmF9Y6GnM+lMs/U7Ajm03VCg0gwB4u+OhIaLvqZeRT7EzHbG+vo7ffvstLMvC1199hYlczvudzfxNAObDQoi3MyeEuWaycWtbFoQ23TSz2ezAoqB+UaI/tfDHf/zHsCwLs7OzniAxCvzqyYGsqlDYolVnYSUO3sub7w679U0nhODEiRM4c+YMnj17hu++/RZbW1sA3AlCEMVdE5yl02lXNEMpVtfWBnouSik0w2iZVuDo9V7wCAzXEbSalvjOoVwu4/z585idnW36OlmW3QmAuRG2P/ngd2P++7IbkYPg2XrqE8K7ie7xyEGYq3u+uAjbshp2nr2Ca5m8tEOX0DTNm5tazU98sdp1I6QhwV+t41CK+/fv43e/+x0SySS++fprT2vGoTEhp+y7h1YgDcarFGzbbnsfB2mZfOTIEc918fLlywCA//pf/yv+23/7bwCAP/3TP0UihJ1/WPzqyQEAxJmgyGKCFD8sywIo3dYbAF0vCPv378eXX34J07Lw13/917h58yYMFo3o5MoYBJ9M+gYhyE1MQBQEaJqGzc3NKI7aFAYrsWq1s9m+pO53yX6b4nbgOwdKKb766qu2Pg/cQAaEdCdMHBCCnRvZD4d2/mDFQi+RgygEiZTSwe9+Q5TFPXn0CNPT051btncBv3V7WH2AbVkwTLNt1ABgZlIYTlpht/UgnlCQEGxsbOC3v/kNbt68iYMHD+KL8+ehBO4Tb6BGgIbv02GupGKAHHS6h1GXMAbxySefAHAjB5Zlee6HZ86cwR/90R9Feq635ACAHIt5pi5aYDHglQQN1pk9PADj4+P4g2++wTvvvIO7d+7gr//X/8LK8nKjqUpI9GKC1AySLGNkdBSSKGJ9Y2NgC6EnlupADoDwxkgOy/+F2Q29evUKf/P73yOdSuHrr79Gqk0TFQ41FgOo61C4o222D3QYk2GTzzjMKTj4EXtZYnjkoB9y0G1L7EFgbW0NW+UyDh46NNDzkBCRBE3XQcB2vG2sm/3i50FimFVHrcBdRa//8gv++je/AQXw9Tff4OR777nRwMYXb5cuqmrD723Wm4L/jM//Xn+UJkgkEogNuLEdTy3cuHED/+7f/TvcvXsXAPDnf/7nkT8bv1oTJD+ILCOmqqiYJgzDQDwe94RTzUoHOQvv9ssQJQnvvPMOJqemcPXqVfzu97/HwoEDOPnee665UohjRP3opdNpaJoGp1bDyuoqZgbQmIk/gGF2WnxSDE4yzVz/OoFSikcPH+KXGzcwOzuLM2fOhP5sgiBAVhSYhgFd11t3sxzWZMh2Q7tiZBO8lF4iBzxM28d17IWg+OMnT5BKpZDz5awHBX8kgetpOCzLgsWjBh2eK6/DJwZroTwIYtAt4SgsLeHqtWvQNQ3vvfceDh8+3HIzpxuGdz+CkRcuRuSRA6/xWZtridoyuRk4OTAMA//sn/0zAMDf/tt/G+fPn4/8XG/JAdhCEItBYnbKuqYh7lsMmg6tHlmaQymymQy++vJLPH36FDdu3MBSoYD3P/gA+2Zmwh83QpY4NjrqNtMxTayvr2NiYiKyYwPbqv9ejEH4o9htSJQ6jts86dEjHDt2DMePH++azMUUBaaPMO7anpW4/QX8xGi4O+jGxcSh3YX2G657t7z9I4Cm63j54gVOnDw51PPyeydgmyR4O15Z9hawdhCwXTUxEAyKuIY8pq7ruHb9Ol68eIHcxATOnz+PZCrVMg3l2PZ26SITIfphszJGjxyg870bHUIXxk8++cQjTKZpQlVV/Nmf/dlAzvWWHDAIrMbdsizouo5YE0vlfsFzplyZv7CwgKmpKfzyyy/44YcfMDU1hdOnTiHeRlTSrwlSM4iShLGxMayurKBULiOeSCAZobCF5/SaWko3gdcRj1Ud9HK+n376CYVCAadPn8bCwkLXxwDctIvI7J15t8bdgncXdkFzEKxW6HYPH5U74jA8Odrd1WdPn4IQggMHDgz8OpqB33XLNGGz1tJhUnXA9nwxMHIwoON2au5FKcWzp0/xy40bACE489FHmJ2b2xYlthBjaroOClfI2Wxesm0b1J9O7vC8CYIwUDEiRzabxTvvvIM7d+4AAP7hP/yHPc9vnfD60viIQWTZU6n7LZWDi/COSboLNNMKxONxfPLJJ/js3DlsbW7iv/+P/4FHDx+2rIEe1MMdj8eRTKUgiSJW19bcNsERwWEh8VCExicw7IUYaJqG3/3ud1hZWcFnn33W14NDCHGjHYR4pU47Lrfno3eH3XxQd5CDrq05oiljHAZaaUgcSvH4yRPMzs2FJrmDAKUUdU3zXPzatQdvwB4wjuoF7a66Ui7jd7//Pa78/DOmp6fxf/vf/3fM7d+/c84OzCOWZXlVSK1SMrzMnHcD7YTMAEsYg8jn8wCAXC6Hf/7P//nAzvM2csAgyjJsUYSqqqjXatB1fcdO0V9Z0O2jRimF06bB0PT0NHITE7hx6xauXbuG58+f48OPPmppqDGIsPLY6Ch0XYem61hZW8PU5GQkxw1jFMRDz/y13DWxm6ZMpVIJFy5c8CoSojAj4X7rlmU17+k+LA0AG3u7IfjaYffdY+QgTPh7t9FqpC0Xi6jXagPbpYWFputu9FEQvHA4L7lu95QQ4LUlCEHYjoMH9+/j7p07UONxfP7558i3mat4h1OH0gYRoqooTckVdRxX7AxAkKRQo31QrohB/PTTT/juu+8AAP/yX/7LgRkuAW8jBw0gsgyVuWE5tt2y+Q4Furf1DCFglGQZp0+dwtfffOOWPf6v/4Vbt241llcOcnEgBOPj45AEAfV6HVulUiSH5ZNZy9+DsfsAiSBA6J3R8vIyvvvuOyiyjK+//jqyh4YLEwnc/hBBDC33z+6P9+0Pc6Lv0yGR5337uVe7LUZ89PgxsiMjkbfi7QaWZcFglT9xX56cgkVlhk2+doFsrK2v47e/+Q1u376Ng4cO4X/7wz9sSww4eBTSMAzYtg2BkJYpGV6pQAQBcrP5J/C5RVHEZAinzCjwJ3/yJwCAkydP4u/9vb830HO9JQc+CKoK+AaNHjBFArZZaDfotj57Ynwcf/iHf4jj776L+/fu4X/xskffpDyox1JRFGRHRiAJAtbX172+5v3AobRpyI2nDjrdm06f1d886csvv2wQk0YBlaUWTGax2oBhRg78TWWGc9am5+q2WoHfs77CrkOMmATPVK3VUCwUdjVqQMFM2giBrChe6fUOsMqEZgQu0jEz5MoZ0zRx/do1fPvb3wKE4Kuvv8Z7773XthGeH5yY8lJ1lfVPaAaLVSoIghDqM+YmJ4eSavqP//E/4ttvvwXgdmAMnVLqEW/TCj6IkgRHUaA4DjRdb2qnDDDBXLedFLtk2ZIg4Ni772JmdhZXr17F73//e+w/cAAH9u8f+KDIpNPQ6nXU6nWsrKxgemqqr4k9GDWhjgPKJrBOd4UAbj/1JgSCUoo7t2/j7r17WFhYwKkPPhhIXluWZYiiCNuyYBpGw45jmDvaYFRlWNhhgtTlouA1XepnpznEhSh4lU+fPoUoSZhr4ag5DBi67uXB451Kgll1C4AdAtZI7uKQicHSq1e4ev06DF3Hyffew+FDh9yywi6Po9XroHS7f0Ir2LYNMNtk7761+LwCIZgZ0Lio1Wp49eoVyuUy/uqv/gr/+l//awDA3//7fx9fffXVQM7px1tyEICgqhB0HYqiwNB16IbRPFfKF7cQE15PeWJCQChFOpXCl198gadMkbu0tISFhQVXADOosB5LL+hLSzAMAxubmxjvI6fm75TmlbWFIAbe5WBnvTNvnrS4uIiTJ0/iyJEjAw3xq6qKmm27NtAhFeJRg1dx7Da6jhxEYIC0W5/boRRPnj51SXmX9umRXYPjNHiFhLqPXK1PBtBTYUjEoFKp4MbNm3i+uIh8LofTX3yBRDIZ2ijND9MwYJgmBEKali764bC0ww7TJAb/O0fHxyO1LPbjP//n/7wjdXD27Fn8+Z//+UDOF8RbchCAKMuwZBkxx4Gh6zANA2jCMgVCQrX07UdARnxsf35hAVPT07hy+TLu3L6N58+e4eixYzhw4MBAIgmiJGF8bMx1hNvaQjweb20E1AG8SqOfUjS/8ZRhGLh08SI2NjfxySefYN++fT0fNyxUWUYNALVtWJbVdZ+NyLAbpYw7zvXmChIBNOyMX718CV3TsNCpNfMAUa/XAWbCE7T/7QSuj/KIZb8L+xCiBptbW7h39y5evnwJUZZx5swZzM7ONsyH3cC2LPcewnVC7PTsGqYJh9K2rpMc++bmurya8Pj5558BuBuT+fl5/J2/83fwT/7JP4k8bdoKb8lBE4iqCpimm9fTNJcg9MgOo3iMOFOOxWI4cfIk5g4cwKuXL3H12jXcvn0bx44dw8GFhch3NolkEnVNg1OpYHV1Ffump7s+B7cz7VdlT1jNcblcxoULF2AYBr744guvEcmgQQQBqqp61Rwpfh+GXD3gmQkN8ZxBI99uqhV462zg9ShlDOLxkycYn5hAOtCsZ1jg3v+UUiRYe/muQch2KXE/pDJkKrBXrG9s4O7du1h69QrxeBwffPAB5vbvb7jmbqMG1HFQq9ddTwNWjdbp9bzMsZOvSXZkBJkBVgv8xV/8Bf7iL/5iYMfvhLfkoAkkVYWtaa6lcqUC0zCa1twL3KynTXohikXRfxyBEKQSCXz04Yc4ceIE7t27hxs3buDe3bs4fOQIDh06FKk4ZnR0FLqmQTdNrG5sYLIL21jKPAt6sZpuhrW1NVy8cAESq0hI9jpZ9ghVUaDrOky2sxAI6WjSEjU8c5fdNEHq4vNGYYA07PJNnsLaKpexsrKCjz/+eKjn5+CeBoDb66NVmLtbCKLYdbt4CoAMiBisrq7izt27WC4WkUql8OFHH2Fubg6CIHjzB9A9MQBcESe3SE4kEh3tmG3LcstCBaFjhGGQUYO9gLfkoAXEWAxgde0GXHvOHa6BTBfQlo13IVxsBwGAA3f3ReHW+iaTSXz44Yd45513vLrfe/fu4fDhwzhy+HDXIcim5xUEjI+PY3l5GdVqFZV4PFTjIk4MAJeN92sQ8uLFC1y+fBmjo6P4+OzZXcn7S6zBDS8pi7HmTEPFnuitEB59VyrshrcDO9/Tx4+hqqpra74L0FjZImni/d8t/N8hP2Y3WoRuu8d2AgVQLBZx9+5drK2uIpvJ4OOzZ7FvZqYhwuQ/Y7ebDF3TvChAIh73jtuSIFDqVjMQAkWW247ZZDKJsQF3YNxtvCUHLSCpKsxqFfF4HPV6HfV6HVYm05CHInAXbABNWyn727D2DUZEBF5K6RvciUQCH5w65ZKEhw/x8MEDPHjwAIcOHsThI0f6zlGpsRjSmQy2trawsroKVVVbRid4GNn/8IUVbrY63v0HD3Dr5k3Mzs3hww8/hCgIQ2k/2wyqqsKybeiGsS1sGua18Pu4i5qDbgSJfqe5Hk8+fEJECCzTxLPnz3FwYWFX0iG8xwsFXDIewfcdFLQK/DkKc38j+g4o3C6pd+/exebGBkZHR/Hpp59ianq6+RzB3FKJIHQ1h1iW5ZUtxmOxhnRoqwiEIAjee4LVDNxrhlvfT+9i5cqw8JYctIEcjyNu25BlGZZpolqtIpNONw5Stmg3G3DN7JL7AeElSoQ0bSOsxmI4efIkjh49ikePHuHhw4d4+PAh5ufncezYsd5zlgBGslnomoa6rmNldRVTk5M7JnzP8jgwkTiU9mTQ4jgOrl+/jidPnuDo0aM4ceJEdMKqHqEoipvDdBxX/TzgstIdYDXYw0QwrdBN46XXUW9AADxfXIRlmrvibcA9DQjbwUYifm0yD3nz0yAqGgJwKMXLly9x9+5dbG1tYYI1R5rI5drOkdxvoFudQb1WA+A2pgpGUJt9Ui6Y5jbpwfdwciCxMsgwxkuvO96SgzYQVBWkVkM8HkeFhZI1RWmoM24I1wX+fxALmMiMOdo9zIqi4N1338WRw4fx6PFjPHzwAI9ZOdaxY8d6E1ex8salpSXomoatra0Gtzh/GiEI6jhdK9VN08SPP/2E5WIRpz/8EAvz89uXAkAMWS0SNbinfV3ToOn6wMqYWoEKgpvKGiaCk3cX57f7rFTYDbtoh1Lcu3cPM7OzbZugDQqGrrvPEi+7iwBetLFVvX4POoQwsB0Hi8+f4969eyhXKpicnMSpU6cwHjYk32X5LqUUtVrNM16LNYmaEh7ZDIxr7oAqiCKUACGzODmQJMzMzg6tj8Ju4i05aANBECDFYpBrNSisY6OmaW6bVL5j9KUOCBpD6IOY1gRRDF3vLskyjh07hsOHD+Ppkye4f/8+nj97htm5ORw9ehQjIyNdnVuSZYyMjmJjYwMbm5uIx+NQVdXroNgK3aYVavU6Ll68iGqlgs8++wyTzVg6L88aQqe+IFRVhabrninSUBvx8J34ENMKQh+JsX6sk3kkatgmvYuLi6jVajj36adDPrPP04BSxBKJaCMu7Xbo/Bn1P1N9pHQs28azp09x7/591Go1zMzM4MzHH3dlP90LMdR1HRazP04yAeIO8LnDJ/KmAAwm/pQDKQVKqRc5UBQFU7ukQRk23pKDDhDjcUiSBEWWoTkOwJgp3337B5m/uYm/PXOUENjAbpZWaPkZRBGHDh/GwsICnj9/jnv37+M3f/3XmJqexjvvvNNVOWA6nYamaXCYe+Lk5GRHn4VuyMHm1hYuXLgAAuDLr77CSJtSoV7Uy1FAEASoigJN16Fp2lDJQWQali4Q/O660Xt47og9LHKEC36HCEop7t29i6mpqYGWqbUCr8cXJamti18v4JVVLeEzduO6oW7HmmlZePL4MR48eABN1zE7O4vPP/sM6Uymu2vt4Xs3TRM61xnE421Tfv65g//N36sGnmdODERBwMzs7O55nAwZv45P2QcEQYCSTKJarUKWZVAwsZBheHWwzYSIwGB2d1xzwB0Gu3mEBFHE/MICDhw4gBcvXuDuvXv47W9/i3w+j6NHjrg79BDXPD4+DmNpCZqmYWV1FZP5fNvP6oQkSYVCAT/++COSqRQ+++yzjjaxBPDKnYaNWCzmljVa1u6aIg0FfQgSo7BOHiJeLS2hVC7j9OnTQz+3aZqwTBMOgFTURjckXE8Yb7MjCCBdPFd1TcPTJ0/w8OFDmJaFA/v348jRo6Eqm5pB6FJ07Nj2ttGRouzY/bcCn5dsy4LB7PKDpMyybYBSiJL0xpcv+vEmz2iRQUkkvJp2WZJgWRbqtRokSXJzqb7wG48eDGrBEthuykHvu2YiCJjbvx9zc3Oecvj777+HGoth/9wc9h84gGwm05IoCIRgZHQUK8vL0HUda+vrmGiTQ6S0eeMlP548eYJr164hPzmJT86eDb3YNrNWHga4W51p29A0redJ8HVAcGEPSw4aPA56EG4O+zvlUYNcLofRIZlr+c/NGyvFVDVyoWtYauZF+Sjt6OFhWRZevnqF58+fY3l5GUQQsDA/j6NHjvSt1eBdWsO+tubrmxBGpxEsi9QNw91sSNKOuce2LIAQTE5NRR7N2ct4Sw5CQJAkyPE4tGrVM8ewLMtNL6RSDboDYLBhX8/ljPVvJ4T0XtZHCGb27cPMzAw2Nzfx7PlzPH32DPcfPEA2m8WB/fsxOzfXWApJKWzHQTwWw/j4OFbX1lCpVCBJUssUAGUlmK1+d/PWLTy4fx8LCwv44IMPug5Be/3sh7w7jcdiqFarME0TNvPEGBaGuRMP7jlpU733Tvj1Bj1pDrp+R38oLi9jc3MT586dG/KZmacB8wPp19OgJULME0IwTRrwQ3AoxcrKChafP8eLly9hWRYmJiZw+vRp7JuZCb1jbwU/0Q/7/Wua5rVhTsTjPY01XddBCdnhiuj4KrDmd9FCezfwlhyERCyTgVatwjQMpNNplCsVWKYJwzCgKMrQyuv8E63tOJBEEUI/BME9KEZGRzEyOor33nsPy8vLeP78OW7euoUbN25gcnIS+/fvx/T0dEO9cTKZhGVZ2NzcxMbmJmRJaupa6LA65SAs28aVK1fw8sULnHzvPRw5fLinB5sAu+J9IAiC26DLMKBp2nAdG4dKDhoR9jZHYYA0TNy/excjo6PI5/NdaXr6hWVZMJinQSweH9x3GyLCtuP37NndWF/H4osXeP78Oer1OtKpFI4ePYr9+/dHVrGzg+SH+P5Nw/DKD2OJRKiIixfJpLRRb0DpTnJgWaCOg9Hx8V2z0N4tvCUHIRFLJABB8CaNmKpC0zTUajVIsrxzUeMhuU4Oij1AEEVYTBy5fbru2ki3PLYgYGpqClNTUzBNEy9fvsTz58/xw48/QhAE7Nu3D/v370cul4MgCMhms7AsC5VyGSurqxAlacfOh7Iohx+6ruPipUvY3NjA2bNnMduvqUgXE0qUiMdi3gQVi8WGFz0YwLhqjYCfRZdphddBb7C6uorVtTV8+umnQyVe3NOAu/INTLvS4TN5C7PvZ3VNw4vFRTx79gxbW1uQZRmzs7PYv38/RkZHI4/UdRv98zdUUlUVcsh7J/C0Cft/HvkDITvSBibTIczt3x/6ut4UvCUHISEIAsREAnalAtOyoMRiMC3LG6BNOxb6KhciNUNif2zH8b5ALwQY4eIoyzLm5+dx4MABlMtlvGA7h2fPniEWj3v6hNGREVeHoWlYWVnB1ORkg4I/qDkoVyq4cOECTMPAF19+2Vc7aA6CbYvpYUIURcg8etDMYntQ4OmlIUWr/Ag7xrxWzcM2iuoB9+7dQyaTwfTUFKKv9m8NQ9ddf4EIPQ1aod0M5Ng2CCGwbBuvXr3Cs2fPsLKyAkIIpiYncfz4cc/4J2pSwKsiuhln3TZU4hCwna7ggm5d10EByJK0PU8xzYVt20gkk5jooqfMm4K35KALxJNJVGo1WJYFhZkhVSoVGLoOmbF+v+6AAp5KOEqCIIgiYJo7avy5GDJKgsDNjVLJJN45dgzHjh1z9QnPnuHZs2e4f/8+stks9s/NQY3FQCnFMiMIfBftUOqZ4KyuruLixYtQYzF8/fXXkQr5CHH7Bw47vRCLxWCaJgxdRzwWG4pBCuHjauBn2qk5CHtWr1VzD+N+mN/hxsYGisWi22BpSIQLcEvk6vU6CNzSu91ykaSOg5WVFTxfXMRLpiMYHx/H6VOnMLNvHxR/aR9bMKOay7y5qoWDYys0a6gUBg62SVJDSsGvN2BROWrbcBwH+V+ZEJHjLTnoAqqqoiLLXjMPfxtfLk5s+oCHLCMKCx6mbTaBBgd+P6DAjlAjATA6MoLRkZFtfcLiIm7dvg3qOMiMjGCMmSvNML90nlZYZM2TxsfG8Mmnn3Zsifq6QJIkyJIEwzRd18Qh9VsfVpWGEDRIDEsO+rFOHiI5uHfvHpLJJPbt2ze0c1K4Zl9EELzo0yDhEUnffd3a2sLzZ8+wuLiIuqYhlUzi6NGjmJubax0BY1HAqATA7brZttpQtWqo1A7NRNEE2LZMptSLPvCmVLZtQ43FkG9iFf9rwFty0AUURYEgy3B8QkRFVd0Wvo7TfmGIcEfiOTC2Ek35ohW9goKFGtu8RhQETE9NYXpqCsapU3j58iWePH2KJ0+f4vGzZ8jncjh65Ags24ZRLmNxcRFzc3M4/eGHDQ2sogQhBELEu5sw8KIHmoZYLDa4PPuu9JTozQSpHwOkYaFcKuHVq1c4ffp0V0K4fqHV614of1hkEnCV/S9evMDTZ89QLpUgKwrmZmcxt38/RkdHw3khwH327T4IAmVtkduep8mx2zVUankuSiGSna6yFPDmbn+LZj6v6oaB/QsLu9IBdi/gLTnoAoQQJFMplFltu8yEiLFYDLVaDbquD1ZUxCAIQtvF3/9I9TTNsVRCN4+9IstYmJ/Hwvw8VtfW8ODBAxRXV/G73/3Osyfdt28f3n///YERA47dqF6Q2PduMovtoUz4Q/p8vWgOuEMosLfJwd179xCLxbB/iIIzg20uKKVIJJODTSdQiq2tLSy9eoVXhQJW19Y8HcEJpiPote+FKIo9+7kIotj15sWx7bYNlVqhGTEA3HlC97Vo5nMGgUsa0tksxsbHh1uFtIfwlhx0iSRzS7QtC6ZpQlEUd2HgnRtrNWRaWYVGVMEgMDFapwez17Bzt8QgiInxcciyjOnNTZTKZdy9cweA61n/4sULjI6NIZ/LIT85ibGxsYGQBW69O/Dl0/c9xmIxWJUKdF0fbPTAd+5+I0ScYHittr0fU+/3iqNAgQKH/daxHViWtT1GfOW1vNS2wQCpy8VnWOZH1VoNL1gZ7bAIjMM7BlIKNRYbyEaiXqtheXnZ/bOyAl3TIBCCbDaLE8eP4+DBg9E8c74UQzcIMy/tIKSOg2qHhkrNILQ5F4XrLwFKoSiKRwwopbApxdyBA0gmk3ua3A4Sb8lBlxAEAalUCiXLQp0JEXn0oGJZXuOUlqEotrD303eB7zTCPJQCn6jDCnYiqu/OZjIwLQuEUoyMjECSJHz04YdYXl5GcXkZjx8/xt27dyGKInKMKORyOYxks5GlA3jucFiQFQWiJIFaFnQmThw0mooSmVEVpRSObcNhu3jvb8dxqzoCk6Zfxe1HnCaQQQbsXXB0G5VKpe17uNhOEEVXqEsIBEFwo16Bfzd834ykDAP3792DxCpyGjAgUkfhEhIATUt+e4VlGFheWcHyygpWlpdRLpcBSjEyOor5/fuRy+eRTCah67o7RiMk491+V71sWKjjoFKtegLElg2VgufqcH3UpzdQVNUbw6ZlYXrfPiiK8kY7n3bCW3LQA7zoAQDDMKCqqstmYzHU6nVomuZOiG0YZz8LoMDa9nIL5U5HImFLHLuwLA2DsdFR2LYNWZZRYb0p5ufnMT8/D0optkolb4dz68YN2MyEZHJqCrlcDpP5fF8GKwTuvRqm/iCmqqgwchBT1YGd17ZtWLYN27Zhm6br5OYjAJ4Ilker/GW18InTqOujD2xXu7h/bf9tExsGDFBQt3KBuGkbr5GPb8zwf9mOG2cglLr2sz74G97wEjZBEFxrcGbqJQgCREEYWMi9Xq/j2bNneOfddwee5uLQmMIehLjjusex4dg21tfXvWdnY33dTVGkUsjncjj+7ruYyOcbqgxqzA+gl2ZK7cC/vzAbkG6IAU8JNiMGUVlLayylQAQBCjsmpRTxZBKjY2NIp9NDd13dS3hLDnoAIQTpdBqbm5vQLAsKU9UqigKTNeOp1mpIJZOtH5g+BIqEEHdCt+1wwh52vrYmSWy3GXVVxfj4OFRFwebWVkOJIyEEI9ksRrJZHD1yBLbjYG1tDSsssvD82TOAEKRSKUzm88jn88gFJrwwIOgvN9oOzSY6RVEgMjtXnl7oBw7b/du2DZuFVm3b3u6e517IdgkrrxBgO3K+6ApsofX+HUgDtJsENbGOEkpe5IDESNPUGU9NAO5iJAkCJFlGTFXB2y877Nptx9lO+/AIBwBqWds/oxSSIEBgPUxEUYQoipGEeR88eABBEHBwYWHH7waxHJimCZ21BE52qzOgFCX2/CwXi1hdXfXKqXOTkzhw4ADyuRwSbXLjlJmmDSrVJYR4xnqKGNRqPRGDMJ9S0zRQX5UC4BLWmdlZiKIYmfPj64q35KBHxONxVCoVWI4D3TQRY6VI8WQS5tYWLNOEpmntc2N9EASBEDiA9+B0QluTpB4EiGEhCQIymQwKy8uwbBsrq6vI5/M7JilREFwdQi6HEydOwDBNrLDJsFAs4tGjRyCEYHRszCMLoyH1Cnx3M5RwNUsxVatV6LoOtYvogUMpLGasZTuORwr8sBghpJR6jb+4pbXASBcnAJF9pJBdGf0kg5MyVVFaptg4mXB4qoP927Jt17YW8LqgWvClMCh10xWCAJEZ13DCGQaGYeDpkyc4dPjwUNptO46DWq3mbiBUFVKIcwZ1A4amgRCCifFxHHv3XeRzOWRDpuD8vQoGthOmtP0z1qXOyuHEgPVMCEsMaMj50LIsL5rCxcOUUuSYgduvPWoAvCUHPYNHDzY2NqBTCoUNSm7KUa5UUGM5144GGj0IFAXWDdLvktjxmt0L3/EADzorH4vHYVsWBLihvLW1NeQmJtq+R5Fl7JuZwb6ZGQBAjU2WxeVlPHr0CHfu3IEoScjncsjl8x31ClHZS4eBqiheMxiedmoGTgb4n6bhdybA4rvmuGlCEASMZLPeZBmsX48aO+5piHOF6avgj24A2E5T8GMw0mDzyAkzpaEsjG04DmBZrkiNEEiSBEkUITHleSs8fPgQFMChw4c7fo5+4dcZCKLYUmdgGQZWVlc9QtBMNzA+Pt6TuNPTHaFHz4mQaEsOunjuqOOgWq1uE4NkMnTEQAxZBVGt1TxXRO63kkynkR0dhSRJjc3mfqV4Sw76AI8emKYJEwB/7BVVRcy2UatWUa1UIKTTrXcLTKCILhcuiZnuWJbVlZlQkCDwkrNBLpmqogCUYnR0FBubm6gy/UGrLo7NkEgkdugVisvLWPHpFWKqivHxcWRHRjCSzSKTybghXJZ/F/qszQ4NQqCy8lZN16Eoijdx+smA6VP88wVeYiRAFEV3dyyKDRM6r/EeBsnxPk7Q5yDEe3jEo58IBifbfkU/jzRwomDbNizLggPXa9+yLDiaBpGTBfaHX4dpWXj0+DEWFhaGYsKlaZoXBUmwpkqWZaG8tYWtrS1slkrY3NgIpRvoBVyt385UKDIEqhcoZQ3XuiCuvCrBtCyIXRIDASFSF8T1QOHkgKcOBFFEbmoKAN5GDRjekoM+kU6nsb6+jrppQonFQNjgTCYSbrc1w0ClUkEqnW5ftsQe4rCDkivAg7vNsOBK3kETAwDe55YYIdjc2sLG1hYkSXJ1GV3Cr1c4FtArrG9s4MGDBzBZpzZZUZDNZpHNZDAyMoJ0JoN0p+8iAsRY9MDUdZQrFe+7Ck5efMfr2W/3sJh6quxBTWjBsrIOE7Bf+9ANOWhaebHjUohHnvzn4wJNHoHh6QiT3XNOFp48fQrLsnC4XdQgoiiMaZrY2txEuVKBoWkoVyrYKpVQLZVA2T1NpdMYzWZD6Qa6hRctw/Z3NvAlj81hnoNiD8TAsm2ITLQZWmNAiFeK2OZFoJSixnQMkq899vS+fa5TpSy/jRowvCUHfSIWi3lte3UAfvlZMpkEdRyYloVyuYxsJtN6sJPuLJYlSXKV4Cz/3A3TJYAXmh0GeFrFMAyMsC6O5UoFq6urkESxb9GeX68AuBOhpuvY2tzEVqmEra0tLBeLePT4sSd0S2cyGMlkkM1mkWFEI9ZjL/ggHJZOMAzDtcj1tXMWfDtaWZIiU16jyx1aNwirOeDw6yS6IQe9jkbiu6dg4kceUTAty40ywN3FP37yBFNTU3AohWmaHskOHLDra7BtGyU21ra2tryxZ5omKKWQZRnZTAaT+TyyR4644y6TGVgNPbcG9lemDDxywMHIWDffJycGXBQdTyRCuR9unzIcMQDgluFS6vVBGRkfRyyRAKW0tUfNrxBvyUEESKfTWFtbg2YYiCeToGzXSgQByWQS5XIZtuOgxAhCy91hF0ybEAJRkrxQarfCKgIMzWGPh9X5bn50dBSWbaNWr6O4soLpqam+w6d+EEIQj8UQZ62nOfwT+PrGBrZKJRSKRbfWmbiNV7KMKGSyWW8CD1MX7tg2DMvyqlW4SyPgEgKRqa27mfC6+szo0Q0zBILiUUrbT/uebXK3xCei8egnCzF2PbZt4/adO7AtCwvz87Bs2/ueZFl2HfJCihrrmoatzU2UWFpga2MDlUrFK81MJJNIpdOY278f6VQKk1NTiMdiwwtVk8b2y9zcqlNVShSg8OkaQm4+KKWo1usNxCBsBK1Zz4Qd8OmN6kwLBCZylGQZk9PTnqHdr9UquRnekoMIoKqq14CpappIiiKobbspBlaOV65UYNs2yuWym9OKYMcgShJIj+TA4WFo/98Dgj9yALi7ydzEhLcwF4pFTOXzA+98JooiRkdHMTo6igNMu0ApRb1edyMMjDAsFYu4/+CBN5mm0mmMMLLAiUOMdaA0dN2zw+W6AkopRFlGXFEQi8XckqmQKuqwCE6Hg6R53S4ne62ngiAI0HUdTx8/xuHDh5HL5WCYJkzDgANXh2AYhlvvLkmePshxHI9Mlra2sMmiAtz6mEcDcvk8Dh85gmwmg0w2u22P7DhIp9PDvw/BVKHv2R4kOWiohuCppQ7no5R65bkELNoa+oTNeyY0Owe/jkq5DMLSCYIgYP/8PCyWmn0bNWjEW3IQETKZDFZWVtz+CskkJNuGwEoHqSi6BKFchmlZqFSrSKdSzR8c/rMQAkXeItqyu+tAT+FzQuTnGCBB4MTF8OkjBEFAPp/H8vIyDMPAUrGI6cnJobVG9Rv+JBIJJBIJTPuiDJZloVwqeQvC1tYWlpaWPBKgKAoSiQTUWAwqa8CVSCSQSiaRyWTcz8HIgmmasG0bmq4PLJ85yMjBDs1BhzN5rZr3CDkAgNu3b0OSJBw9etSt+hBFxBQFlWoVlUoFlWoVuqZBMwzUqlWUSyUvGgBKkUylkM1mcejgQWRHRpDNZj2BoR+8+RaFuwMeJjEgQNO8u9cdc5BRg2BalFWhtOtvwvP/fmIgCgKskBEHEoYY+P5t6LpL2uBqwkbHxyEpCizL8tLDb7GNt+QgIsiyjEwmg1KphEqthkwsBoGFr6jjQBRFJBMJVKpVNxddrSLOlPRNEeJB5jX+FhNghX3025UbRe2gBrhhaVmSYHKlPYMkih5B0BlBmMzl+tYgRAFJkjA6NobRsTEA7j3TdR0bm5solUool8soVyrY3NyEruteyoQQAkoIJEFAPJFAPB73HDQVRcHY6CgSiQRiiQRiihJtadmACJ6Axmt0QpKDsAujv6dDVLAsC3XmVrq2toZnz55hYmICV65cQV3TUGM+FP5rEAQBaizmRgRGRjCzbx+SqRTGRkaQSCY7ppccx3Fr5wnxUhVDQ5tn1xMjDoqotBJTt6nC4sTA8hMDUQw1DkKlErCTLFeqVQCuWFiNxTCez8OyLIiiiBHWZv4ttvGWHESIVCoF0zRRr9dRrteRUVW3lIgNZFlRkGAPRV3XQZgYrylB4BN9m9Acd4uzbRu2ZYVS4DdEDZqADIggyEy0GQQnCCsrK9B0HcWVFeRzuaH1JfDysy3useM40A0DuqbBoW6DlolcDvtmZiAxLQXgag40TUNd01Cv1byFSavXUa1WUa3VvPQCPzchBDFGIBKxGGLxOOLsTywW8/7NF6Vh9RwIYodUtsN1dKs56MagilIKwzC8+1uv192SUU2Dpmnus1Wvu4SZNjpHapoGQRCQSafdyoBEAvFYDDF273m+2bJt6JoGg6XsKNxwtCTLUFW16XNGKfVMdbjmZaho80zzVNcgohi8IqIV8WjmnBgkBolEYnuMd4oadCIGbN4MjiabaZzAyiMnZ2a8535sbGzPpMD2Et6Sg4gxMjLiqqRNE2XDQCowQaqq6i4kuo56vQ6RWczyTosNCBM9kCTYjtslrxM50HQd/+//6//CVqmEXC6Hf/Nv/k3T3ZBpmvjTP/1TPHj4ELIk4Z/+03+Kd995p/OHbwNVUWC2KLuUWPOl1dVV1DUNxWIR+Xx+KG2P+SIdBLc/5r4C1HFARBFxFn7k7+EpHUEUkUgm3VK08fEdx7NsG+VSCbquQxJFd4Fj5KHOFrnNrS1o9bonlOPRIEVVXaIQi0EQRZdkJhINngiiKLphfEFo+nNRFD0b4n7Dy+32+dyHANgWMjqsesAzMmJ/894QDhu//tfwagObkS7/wu/4SiUBNBCpXC7nkatEPI5ypYKrP/+MT8+dw/T0dKjPJxDXyVBRVXcccKJg27CqVYjM2Iw3XQPc1r+2aYIyjdEw6+Q7kflBkUqP1LVZWIPn5hofPzEI+li0O1YnYtDq/RVWTixJEsYmJjzn2pGRkaG4ZL6OeEsOIgZnoqurq+7EZtuIiWJD7i2eSMBhO6BqtYpUOg2Iohu8bUYQ2jwwkiRBNwxPVNMOqqri//5//B/4//6n/4SVlRX8/ve/x9dff934IkrxF3/xF3j48CEIIfh//Z//Z9/EAABkVW0aOeCQRBH5XA4rKyuoaxqWl5eHRhAEViMNuOFojecm2SIkiCLiyWTDYuAhpL+AxBYUXsUw0YRAcJjMervGSINWr6PO/myVSu53zZ0DKQW17cZWy36hKbtGnp/l5+cGSwJzFRSYFbHkM1/ir6tVaw3Xt/jiBS6vXfb6PVisGylfzC1u/+w4rgEQpV70rKGNNt/lBULPoihCZERGEkWobPEfHR3dXvjZrl+NxVoujBTA1atXMZHLhSYGQYiM9MUYWTRME7bjuMRO06Cy1ty6rrs6g3h8aLvQVhqDILy0QoSExcv3dzgmP6df/MvJbzNi0Gqm8yIfHVKiTd/L7KspgFQyiTFW8pxKpd56GrTBW3IwAHBV/NraGnRWtSAHduiJRMLzQKhUKkinUqCMILSsu24y+D0zpJCixD/8gz/A/++//lesra3hr/7qr/DFF180RA/+03/6T7h8+TIIIfh//NEf4ZOPP+7qs7eCIssNOd5mEAQBuVwOK6urqLMyx/z4uOcRMEhw/3udERjeuyDGctAt0cWEG4/FYBoGLNuGYZotc9KyLHv+7kFsbG4CADLZLETfztxhC7W3OLMFumE3zp0F2a7dCezU/bt4Q9e9Hgd1rQ7LcUBtB4QA5UoZZbviRSYU1gZYZJbeDtPY8HAxT3/9/9t7sxjJrvS+83/OXWPPtTKrKjOrssjivlY1ySapptQtQO2xPa1hSwJkzzwYFqAXwwPLgAEP5t2GRp6xrdGDZQi2ZNiwPGq1x2qP23I35KZEqsnmUmQ1q7lXkSx27blGxN2XeThL3rhxI+JGZGQt5PkBgVwi4q4R53znW/5fkfoj5V0YNV2XpYTTmsIuXLiA3U4HXxvzM1w0yVBNQ6VahS3CTPyz7DoOuq4LU9dRrVZvWp6BFBoq8Vox6U7LaCmTCJh/fZIk0jAA2AIp7+kcdi500CJJGJhDFlBdx2FGFCE4vLIiv9dF3y/FHso4OCBMXjO/vb0NJwxRTZKeSYbw2JfQQBAVDClvhVvoPiv4gogBVQz0w5KmkiSBrut4/vnn8Xu/93u4fv06/vyFF/DVr30NAPDd//Jf8N++9z0AwF/9q38Vf+XrX2dvnIJb0jRNphc/AlHmuLGxwfopbGxgEZhISbEMCY9FezynIOV5BYNiy/uB8hwTESs3igR4ypLxDFBCmAcA/f0JpsH3f/jf8fHVT+Sx3nPyJH72xHOFrw2CAI7jQDeMUvcsFUlrUyaKIvzkJz/B2urq+MlmQ7x1hLdmty0Lnu9je2cH4BUpQqHxoNU3AYylbDotz4EoVRz305WmqQyXAWxhZAzI2yj459Ck7VJ9FLpdIE3RarVYszZdx8zMzE0N/dyJqCyMA6RarTJtcMOAGwR9q3tCKer1ukwq7Ha70pUt2vL2kftAE0KgaxrSEd6D7KTx3HPPSXGgP/nOdxDHMV555RX8+z/8QwDA008/jb/xq7/au899fpEMw0AQhqVeSynF/Pw8W3kSgus3bqDd6exr/0UEQYDd3V24noeEG28zrRZqtdqBDfCWZYFw/Xl/SJhlECPvwi2uVhCfwdJljAcUD3/3vfcQRhEefPDBsd9LSh5THMewLQu2ZUnZ4263C0fkRRwAk3QXnYax2KNhMAYJb6Ikwp7VSqXQMAAKFDKHGQYod14iOTWKYxxbXwelVCUglkRdoQNG1rwbBjqdDpLcBE65BgIhBGEUweEd3MQgkPA+7D1k4nhAOb2D7BeJEIJf+uVfBgDcuHEDv//7v4/f/d3fRZqmeOD++/Hrv/7r/cbAPgcY0zT7ShmHIQyEer0OjVLc2NzEbgnPQxniOMZuu41Ot4uIr8Bq9TrqvJyKjjEAjztcipUnIUR6K8bbQLkY7zQZp1pB1tTfQuPAcV188OGHuOfkyYliymmJa+h6HpvwCMHMzAxmmk1YPCdFaGT4vj91L84krdX323RpUsMg4iHTmF+n6ogQXV+lwgDvaTJG6Wun00GUJJidnWViZjMzN8Wz83lAGQcHjEhQ1E0T0DSWGFMQGqjx7mBBEMDjJVEC0T8ht2FpQIjQwtCkxNz7v/zkk1hbWwMA/OAHP0AYhlhdXcXf+43fKP7y7NN7YBqGbIJTFsoT9+r1OnRCsLG1hZ19GAgJLzfb5pr3Sco6OTabzb5YsVb2XCe4JpZpyjI/z/PGfj8wfNU0bQNhnN4KyRieg4PKoj937hxMLng0CaOOy/d9+EJMp1KRDbMq1Spr6sU7afq+L7u27hfRxGiSO5umKcikpYxkMsllPwjQ7XSYMihfABlDpImzyY1ib3lRpYF6CgMIeEVYFIZYv/tuNJvN20JD5U5BGQc3AenKsm3EXJwljyhPA9iqJJu8N9CLQAgIzzInaVrY9U/Q919C8NWvflX+2Wq18A/+wT8YvdISXovhr+pDNwykQOnQQpaF+Xk26BKCza0tFucdk3wIQTcMNBuNwZr3ZQfFSSY4QuR19j0P8Tgx91sRJ83tc5i3YxwBpIMQ5dna3sbFixfxwIMPTrxCHHaFwyCQBl3FtmHkVPU0PhFWeRVDCsBxHNYJcEJjiKBE/f8Qsr0VxtvxZCEM13XhcQ+obhhS4KhMuWW2hDd/HOMei1CkXVhcxOLiIur1+ljv/6KjjIObhGEYTG3PNJmMZ4GL3eLxS4DFysKCmLT0ImS+KBqloLqOFCjMOyhKUrt69Sq+/e1vy7993y8/mAqvRblXA2C1+gAmXkXNzc2h1WpBp5S1fN7aKvW+NE3R7XZZCIHXVjcyIYRhEAxIDM2+ZsLJ2jAM6IYBQmmhsbgfpm0+9EWYBtz57ABexjiYtt8gBXD27Fk0Gg0cO3ZsX9spIooidF0XKZj3Z1iTHtOy0Gg0YHFNjCiOmYt7ghbr+/WwTPz+IeJgxS9P4HS7cmyzbJvlXJX0IlHkDAPCBOQmOf4wCLDNW2Pffc89SgFxApRxcBOpVCqocznevHyrfE21CtM0kaYp03vPvUZ6EbIGAk9KHBhayH252u02/o/f/E20221pTXueh+985ztjnc84BoJpGCBAoVFUlpmZGbSaTeiUYmd3F5sjDATRCdMPAsRJAtu20Ww2xxM9GZUUVX5LfQjvQRCGpScNeSQjBsyp1rSXzDkQXgNSVmhpylUKly5dwsbGBh5++OGph1biOJbyu4aul1JAJJSiUqkwrxefILsDvveF7wf2nZOR8m2M446XrxvDsxPz/AKRh1Gt1fpc+KP232cYFOVblSCNY1zf2ECaplhcWMD6+rqqTJgAZRzcZGZmZmA3mwAhcLrdwlVjtVqVqxLhkiyynrNeBJ1PvkWTTPadvu/jn/zWb+Ha9euwbRv/8B/+Q5w+fRoA8P3vf7/0ilxQ1kCoVqsAIeg6zugXD2FmZobV+FOK3d1dbGxuFr4uCEPs7Owg4gJBjXp9sra5hLDs9UGD1D4Gb6ERQAmR0rvTYppDISW9w8Qgz8E4IYVpew2SNMW5t9/G4uIilpaWprrtlK+ICZiYVY1/lssiQg0m9xT5XO1xWJhhkqqEIhL++SeElAv1lBQ3yhIEATrdrlQRrdfrhQb4oNCIyKeA2K8490mqI+IYW9vbcDod6JTi1OnTpVquK/pRxsEtYH55GXalwjLWufZ+vpqgWq1KdUDf9+HkXiNel6Yp4mxSYkYtTyD+TpIEv/3bv43zFy6AUor/9e/+XRw7dgy/9Eu/xKolwhD/73/8j2OfT5kJ1zJNVGwb7d3dsbefZ6bVwuzsLDRK0el0cGNjQz4nNO47nQ4SnoTVaDT2J5HKczsGPbcfhIxrzIWRyhwLMNpVfBDNjOS2B/xfljGWGIynvZI7f/48Ot0uHn744f1vLHtt01SK6FBCxjYMJOI7bdsApTLMUBQG3G+OQZY4YYWnZe/JOJ8ZkV/gOo5coAwL1xV5lETnWrnNouTrksT8mu5sb4NoGk7ccw8OTdlQ/CKhjINbAKUUrcVFVCsV5mrnMsr5L4Vl26hVqyCEIAhDtNvtvlJIIJPdy11x+deIgeZf/at/hbNnzwIAfu3Xfg0PP/IIAGB1dRVf+tKXAAA/eOEFXLt2bfyTKlHN0OBdK6dBs9mU9crdbhfXrl9HHMdodzpweZKfaZpo8FLI/TIo/2C/UxylVBqKruuOHBjL7o8QUqpzXaltlaxWGMtzMMVKhSAM8e477+DYsWNotVr73p48Mm4YiJbC1Vpt30mUpmWhUa/Le9Npt6VRKFz/07w2SRwzCfARxz2uYVCUX1At0aJaGgeZcxXnO67HIksYhnAcB7vtNlJC0Gg08PipUxNtS8FQxsEtQrdt2LUaakLjIAgKJ3/TsphQEhc5ag9YbQht/DRN4WUSGcUX/j9++9t44YUXAADffP55PPdcr8Ld888/L2VO//hb35r8xIYMMs1ms5RKYlkajQbm5+agUYp2t4uPP/2UlZilKWrVqjSspgnF9EvwbC6MlKZpaWGkg/IKFJG/hmlavKotK4Ak4uDT4r333kOUJHjggQems0F+bLK7I1CqZXNZNE1Do15nJZCaBs9x4LjuVD0GAlHhNPDYhRt/jG3GUcQSfHl+QaVaHdxdtoBsF8c0TaV3Y1IC34fnuqxBVhDANE088OCDTF9GMTHKOLhFUEphVKswTJNN/po2cPLXdR31RgMaV9brtNuIClzQpmEAlCLgK+cEbHB44YUX8G0eLnjuuefw/De/2ffe1dVVPME16F9++WVcvHhx4nMbNEi0mk127CX7QJShXq+j1Woh8n10XRebW1uoZtrvTh1CpuKJyG9TJG+5U1bXm8aWynoOREnmyCqQKRpsXcfBhx9+iHvvuWd6NeyENVLyw7BHy2CaEEpRr9VYdRIhiIIADq+EmCYiLynfPlsmKI75WZP5BXHM8gtqtbEm4SSOQTVNegz2a2h7vOw7imM4jgPTsjA7O4u7Tp7c13YVyji4pRiVCuuEp+tSCTBJErTb7b7EQk3TWOxc15EMqGTQDYNtA7xkME3x5ptv4nf/5b9EmqZ45OGH8Wu/9msDj+eb3/ym7FD4rT/6o/2dXEGYodFoIAVTLZsWURwjSVM0Wy1Yug5D03Dtxo2JxYXKMm2PhBRG4uGFgfsdY5sE0/mC9xkHBeO51OAooQ8xLc9LCuCtt96CZVk4effd09lmmiLk7bSBYi2DaWLzcj8QgigMp1rWmoJNxkma9hi0KXisHyjtxk9T1oNE5hfoOssvGNNoyucYTOonSdMUjuMg4CqUYRBANwzomoaHHnlEySNPAaUjeQshhMBqNuHxTnuNRkO669rtNmrVqtQHANhqo1avsy8Fb3CTxDEqXDyJEALLNBG7LgLfh2maeOyxx/Dv/u2/lWVCwwbuo0eP4g/+zb+Z9klC9JtvtloAIWi325iZQmw4m9RVrVYxOzuLGzduIIoiXL16FbNzc2geUOc1cS3TCVZfxRtkCWuddpu5RnlnxqLXAeU9AtOOYQPFvRWyIYWRpZ9TOp7PPvsMV65cwVNPPTX2JDUIoWUAjNYymBYGFwrqdruIwhAOYVLD+6WoUkHG+cfZTpLAdRy5YDEta7wwQpqysFkuZJJisjBKmiRwXJfJMoMZHKKp0/qJE1g+cmTsbSr6UebVLUYzDJh8AiOUosFLnkQylJ9bAYtujqLO2vP9nmRG4eILo6gnf0F8jZN9ZANPihhELMNAxbaxO4HCYZ6sqIzGG1iZpomlpSVUqlVQrqZ4Y2NDJspNnSlfR13XWWMmQpjYTsH2y+ocyJdN4bjypYxF+y6bjDgtj4vn+3jrrbdw5MgRHJnSZDCJlsGk5F36hmHISogoDKXnYj/ISgXubRRJh+Pcg6L8ggpPoB1JmsrJv8gImGQcSuIYHcdBHEUgYLow3W4XIARzCwt45PHHx96mohhlHNwGGLYNk3d1SwHUajVYfGByXLdQ58CuVFAVlQxBgE5Gx9zkDWCKktvEl3pg18eDhBA0W619N1DqMwwaDXlemqZhcWEBrZkZaISg2+3i6rVrCKeY5yAhzOE+zQBDpVJhyVppWjxBjDm5TuPY+kSQCkyO0pUKU/rMnT17Fmma4rFHH53K9hLeNl10OZ24ZHEUIjO/oI7fME1ZvpyVaZ4UUamgaRo0EUYYgzAM9/ILeI5E2fwC6Z0Y5kUa02gXnWsTcTz1OrrdrqxMevLLX1bhhCmiruRtglWvQ+erRlkTPULnwLIs1Gs1UK6M2G63EcfxnvdgSOa7KKUqbOp0EPD9tfZZzhjHMbo8lEBzhkGWVquFxcVFaJQiDENcuXLl4PIQpjmJiFp6sNXxIOXEce7Yflfr+fcXJUyW0ThIMZ18g8tXruCzzz7Do48+Ko3o/SAktsElfA/MMABGqg6alsW+95TCDwJ4+1AUTZJkIqlzgCX6OfyayJyoEqGbNOMtKEJc1RTjfYajKEKXa5doPBEyjCLpNfjSE0+o3glTRhkHtxFWs9mTVSy0yQlYLXdRy2fdMGQlQ8wrGSil7O80lbG4PnjskYINIjfLSGg2m3AcZ7xmQ5w0TaXHgBAiW10PolKpYHl5mYVpkgRXr16dms5CljI9GMZBNwypnDgovDDtkMYw+koZi3IOyngOpnCNwijCm2fOYGlpCaurq/veXpqmcLpd6fmoTUHLoAgZRihx30zLYmqevPIoKFnemiUFuydJkoxVaSGEhEQ407QsVEf0R+irPBiVcwIU6rUMIuChU4CFX+q1Gggh2NreBqEUd91zD46srJTenqIcyji4jaCUwp6Z6UkiM00TjUYDlCsYttvtvioFUcmgZyoZCHd5D+tlILwUlFJWY52mBx5uaDabQJqi027vyaSWxBVJSNwwKONCNAwDy8vLe3kI29tTzUPITpwUmNqkLcILSRz3ejwmmGCnvQbOGwfZ1eIwz8E0juPHP/4xwijCY489tu9tCYW/iH/ma7VaX8nfNBDiZOPcO9mETdNkJ9ExdghgL7+orCiV53notNvyO2aPyC/IlyKO0wuizPc+4WEEEV4zTBM1LrQkpNFn5+fx0EMPldqnYjyUcXCboek6rFar5wupcZ0DwzAQJwkcx0EnJ5hEMkl5aZoiiCIEQYAwCEoNLCL7XkoyH5CR0OJ9JUTeASkZCw3DEJ7nIRGD+BirO0JIcR7ChB0is/QcOyEyX2C/EEqZgiYhcD1PakNMOsHuJ7QwSudAhBSGNVwa5W4uw7Xr1/Hxxx/joYceku3NJ0WUwoVhiCRNUa3VoPPOplMjq3g4wfW3LYs1VKO0VO8NEeMX7d1FlcCo70rEmyYJb4FuGKjX67CG5Bf0jA28GqlsaWRS4noEvi+9hJRXbwhRM8/z0Ol2UalUcOr06alrUCgYyji4DTEsC2YufiZU1WrVKgiYe3U350UQlQy2ZbGwQhzD9f1ybkn+ZSWZn8JISERy0RQmPd0wUK1UenosjJq4kiSR+vamZU08GGTzEIIgwJWrV/edh5A/cgLuWp/CtTJME4ZpglLan5R6E8MKfY2XcvsWxudQcah9hhSiKMIbb7yB+fl5rK+v72tbwjCIokiqaZr76b0xiFxN/9gQIiXWkzge2c0x+92VlQpD7knCFxpdHq4klKJSraJWpAbJQyKFwkVj5jQMuyZZb0ECVjVSr9dlbkmSJNja3oZhWbj/oYdUK+YDRBkHtylWrQbdtnu/SITAsm00mk0plSy8CFlVxUq1iiof8KIwxNbW1lgx/uxkLWKlaZIgnoKiGQC0Zmb6Y/9CNKlg+67rygREkaQ5KSIPweIeloPKQ5iWgSCS0+I47klOG3vLB2hMjNNwaVJ+8s47cD0Pp/eply9yDIRhUM1n4E/zOk1hW1TTWEkl9yAVeQGLjGvZU2HAPREVTiJpWSi1Zq+F7HnAFwc9Z8O9BZMwaAzxM94CAqZMmTdUdnZ2kKQpVtfWsLa2NuERKMqgjIPbGKvRgFawotE0Dc1GQ5YyhrxSwfc8+cWzLAszMzPQNA1hEGBrcxM+VxMrTW7QEXkJCU90mtRQaNbrg8sZcyudIAjYcSeJbPu8X0QeQjWTh3D9xo2J8hCGeT2mUdNPKEWVC8542clhzGs/zbBCkuutUKqMcR8T5cbmJj788EM8+MADqO0jI11UJYSZHIO8x2AqobQpG2KmZUE3jD0PktgNsFeJkLu/gzwHohzQdRxZ+lyr1/uaJg2TNxZhkknOsqjSJeH6Ep7nSV2GRrMpNT8EIpywuLyMu0+eVOGEA0YZB7cxlFLYXFWwCMuyZCJitlWxWMkZponZmRkYpikVFTudTikvgkhoHDal9IQdSmZiA6w7Y6fTkQpnBTsHCGs05fBeA5ZtT3UwyOchOI6Dy1evTiUPIbsPSgjIPicLMTmI/INJ2zFPah70iSDl9j7KONjP2cdJgjdefx2zMzO4ex8SyUmSsJr4OAZJU9Tr9aEKlGOTjaMfQBlkrVIBCJM2931/pFKmyBkSq+6Uv6/T6ci+LJZto84bQBWFDQYZlBOfXZr25Ellj0mIGlUrFTQLOqmKcMLswgKOHTvGEpsVB4oyDm5zNF1HpdUaOPGKXASxCo5yXoRKtYqaGADAYrft3V1mpZeZtIS7f9BAIcIOaboXdhixXdFWtz2ix0IQBIijCJTSA1OrE3kIuqYhCkNcuXq1VPJXllGD5TSSFKtickgShNwlPi6THkGfBFJm36KrHnAwYYV3330XnU4Hp06fntj7kTUM0jTt+T70Mcl9EobBAYZuCKXMQABzvydxPDT5M+HnSimVKoee6zJRJJ7gLFbmhWGDoQcz2X3I7kPkFghvgc69BWaBXHWSJNjY3IRlWTg8RUVMxXCUcXAHoFsW7JmZwV9eQqQXwTQM6UUQ7ZENTYNhGLBtW1YzuPz5ovbPfZsXjxGlhzLswB+DXtvgwkXtYbF+vqpIgX1npo8in4dw/do17ExB4jnLfpXbqKbJsjLP80rdt75tkNFNkYrJhRWyv2caLk1bnW57Zwfvvfce7rv//olXisIwEN6NxjDDABMYUEMM52ljCA8SF0gahDhXQohcmSeiPJHH8UUDpJupkipCkZ7vy+6zBKy5VYN7C/JXMkkSbG1uglCKw6urWFtbU+GEm4QyDu4QDNuGzbsaDoLyxkzCixDHMdrttoxJhmGIWq0mRU3E8+4goZ0B+yiF8CZkww4cXddRq1aHJgKK/Ahd02Do+p4b9YAGM13X9/IQKMXWzg6uX79eLg+h5ORA97m6tCwLhq6DEALngLtOZukTQcqcw6hKhUmrXJI0xetvvIFGo4F77rln7PcDe70ShFJgGZW/sXNybtLkKjx0tmkCaYowDAcea8y9Sx5vwAawKqFGo9HTYXKkochLMadFzBUNZckkr0QY1mp7a2sLCaU4uraGEydOKBXEm4gyDu4gzGoVVqMxeADjX2TLslDPeBGSOIbvugiDAFEUweLCSsKL4HkedgvaRA+j7KDRE3bgK4c0TdEa1mOBew2SNJVd8YT3YppKhEXHuriwwBI5+QR8+fLlqcou71d9r8oVM6MogjeBch5QvDpOc48s/fd6LyEtimOkhEDTtMLtTjq5vP/++9jZ3sbp06cn8kiIxDshPlQvKs/LcdsZBmJyzhjXuq5LQ6woPyZJmYqo53lSd6PKq5dEHlFpxhQpG3YejuNgN+MtqFYqw8M7ADY3NxGnKY6urOD48eMqz+Amo4yDOwyrWoVZrxdm/WbRNA21Wk0qilFNQ9dxsLO7iyRJmJehVmNKg5qGhHsRipo85cnWU48z+IuwQ5qmaDQa2NjYYIN3bn9RFPUkVRZt5yBduc1mE4uLizD4dbly9SpubGwMdOWPcyQyyXPCQVfTNBmXdceQoZZxZVGexh9JuieYk30kmUd+1k+wV6kiwgrC6EkBpNxwSDMCQOOcbbvTwTvvvouTJ09idnZ2jHcyhMcg5ZNrGcOAHXzJHJyyr90HWUGyns86Iez+85BBliAIWD6R78tmRPV6HfqYGg7T/GZFYYi2MFbAdAsajQZMyxq6n63tbURxjKNrazh2/LjSM7gFKOPgDsSu12HVaqVc3qZlodlssj4EALqdDra2t+E4DpIkgWEYrE00n3B838duuz1W1r6QYR5nlXHo0CH4vo+t7e290shMTDLlXoNBA8h+KwBGIfIQqrUaNF5CdvnKFTiOs+9ti4F/0ui/aZosPksI3ILkSTnJg03+MffaxEkiQzxltfCBAhGkzO/CYNKzk6/YbuYe9RiRlA7cZwrg9ddfR9W2cf999w09riJirvYnDJZ6vV4+UXLYdcis4m8GwypSRPllkiSIokh2lOzy73SSJCyOP6Ap2SDEK6dxhhHvBdPtdqUcc7VSQbVSgaZpQyuhtre34QcBjvAcg7m5uSkckWJcVGbHHYrNwwtBtzvY7coHM0IIWq0W4jjG7u4uXNcFJazVs2masLk0qWkYrHSQN18RDWDKuHXlar7kADq/sADTMHDlyhW5KkgBJFEE3/MQJwlqI1Y82cHlIIZsTdOwsLAA13WxubmJKI5x7fp11Go1zM3O7is7X04047puuVFhc2MuDEP4YQgzI/2bFEzOfRNffkU6Dpnty4ZLRdci/1nIr7oLjumjjz7CxuYmfvYrXynVBTCLNAx4cuS4MtujwnUHnbw3KuFXQilMw4Dnedje3d3L9yCs3bQQCivtLRlRFjkOURgyz0UmRKmbJkzTZAbBiPux227D8zwcPXYMK6urWFhYmMJRKSZBeQ7uYCrNJoxKZbggUSabutVqocY108XK0fd97O7uwnEcWRYp4vwBzyou60Xo0UYYuRolWFpexpXLl3v+L7KwDS76Ile7KI6Hy32XOsLJqFQqOHLkiMyodhwHly5fRod3ips4aauElkT/W3hIR9Ng2zYSAJ1OB0EU7YUBymxnzN4UWcSaNhYhhUGVCmNOpts7O3j77bdx1113jT0pRLxcD4QwYZ8xDQMAhcbKgXsLspPzsP1kwj3Cw+Y4DlyeV6HrOho8RChKA4eSJFMNzxV5CizbRr3RgM0XGLSgGiFLl7//yNoajq6sYGlpaSrHppgMZRzc4VRnZmDY9l7/gyFQQlCpVKAbBjRdR000m8kYCZ7nweYuSZGLIL70pRUExaQ3YuBZXl7G5tZWT+w04pOckHElmYFTqjMOOFeSeUx7QCeEYG5uDocOHZKJnjc2NlgDpwnKCnu2jfEMhBRslawbhlwdOo4z1jmPc3XyQ7qYxKYpmxyGIV750Y/QbDbx8EMPlf4MAewz0+10mLqepsk8m7HJh0GmlZA3AEIIC7EU7SPtFSUS+SKh76PdbiMIQ2aUaRpM20a9VmOdW6MIKQ8XDqVkw7NRDDIKmtwoSFPWFn7UXew6DrbbbRxeXcWRo0dx+PDhKRydYj8o4+BzQHV2lhkIIzopEi4mZOg64jhGFEVoNBpSJS1rJARB0FNmFAQBG5QmyJAfNMAvLy2BEIKrV64A2FNcFIP8sG3l9RT6znrimv7h2LaNw4cPo9VsQqcUvu/j8qVLwzUbRjHKg8AniiSOkfKYsqDOs9BFE53STNACWB4Ov9rJtIyDNMVrr72GwPfx5aee2tteicTXMAylYaBP6jEoPKQDzi0QhkduP6nwDGDPgBPfy3a7DYd3JqWE7DVJ4tcmTpLp3ZMRjDIKCCFSqGnUlXRdFzs7OziyuoojR47g6NGjB3rsinIo4+BzQqXVgm5ZslxwEJRSVCoVUJ7tHMcxS0osMBLau7sQGvSapklBmXG8CHJQz2ZfcyzLwvz8PK4I40C0mcV4okFiVZVNuAMOboAnhGBmZkZ6EQiAza0tXNmP/LJIUsxOgnyiEMmEQq8i+zzhsXUACMJwZOe+/P5KvbSvtwK7rtEgZcQxr/sHH3yAK5cv44kvfQlVfi7Fx9H7uQjCEF0eSjAMA7VabWKDcFJJ6nGRx5f5/mSTRPmL+EsSJhi0u8uaLnGjoMo9e6Klt8j7ELLIOtfCyO14KscfhSE67fZgo4DfH+F5GXY/0jSF57rY3N7G4aNHceTIEayurk7lOBX7RxkHnxMopcyDYJpSeKgIwkuhRF5BdrU5yEhwHAearrPyI57IKPIUShsJ4mcuU/3w8jKuXrvGJsHMqmeSQV56FQAZgshOVNM2FizLwvLysmxwFfg+Ll2+zDrHTdDEiR+k/BkV3MfsdcnWvovVmjuGemLZq9FfV9EbVsgbcuPkM9y4fh1vnzuHe+69F8ujXMncuBSfQZfnfOi6Luv4J4UQwspqDwIR38/kC4jPqDCGe1+ewPM8tHlyXgL0GAXieyiuu/AWhLxyQZQu9mx7n5/9HqMgjocaBUQkqmYNnhxibNnc2sLykSNYOnwYKysr+zpGxXRRxsHnCEopqnNz0E1TrjiLvpwULMmOUIooinoauQDFRkLg+wiDALqus6SnTAiiO0a9fT5hcWlpCVEYMh0BPqAM60E/DsKlmV2VxeleV8m+FduE+2i1Wjh8+DBsywIFayt79do1qU43DkK0atj1JJnXCmweLiLAnvjP6J2VOqa8cSDj4Hwfes5zUPZ6eq6LH/3oR1hYWMCDDzxQ6j0QiXieB0IpLNue2DBIkQt5TWN1na0UEeEgQnqSageRJAlcYRRw6XDKu3JmjQKBEJ6KkwRRHMveEQa/H2TE/sqQNwrIEKNACJSlGW/hIMIgwObmJg4dPoyl5WUcO3Zs6vLbiv2hShk/Z1BKUZufR/fGDcRRhDhlzVdobhDUdR3VSgVdx4HneazUKFeKaBgGDMNAGIbwPA9RFCHkiVC6rrOYfxwj8H0Evi/LIsvEO4WBMDs7i0qlgitXrqBarSJJ0wONl1JAuuezKzgCAJT2WMvjTDiGYWBpaQntdhvbOzsIwxBXrlxBo9VCq9kcOfCJyVZ4CkQyXpL2S9gOKnmrVqtodzos/8B1ZbhhGGXK54qqFUSpmqZpE5VJJkmCV370IxBC8OQTT5SamPN9EiqVivSAiWs3rpGQbyI1xht7SjPT7P/y3p4Rm0qSBL7vIwgCOZlrlDK5bN6NswhKKTQAEVhOkKhaoLmcjbFJU6bAmfFCSY+jafZ4hsTnNGv4iPuTv57S6+P7uLG5iYWlJRxaXsb6+royDG5DlHHwOYRSitrcHDqbm0h49nJCmJSqdO+D1coHQYAwDOG6LmtwlInXi0GpyEgQUsuUUllKGQSB1E6wLKtUgxRCCA4fPowrly/j2NoaWy0dcGMVkl/ZZAb1nvW2MBpEYhxGGwwiFryxtcVWgVxXYn5uTk5kvbvYk5Yu2jItSOiSkrr5/1PKelZ0Okxbn1eeDEMmxQ05rz7PATBQ36BMAhoAnDt3Dpubm3juuedglei4GYUhOo4ja+Xr1WrP54tQClrGC8Q/13lDYlQZYXbSl4ZAnkyMPSkIF+RJ4hge/84INO4NMUuqGlJdBwlDtg1utE9KEscIwhBhEPQ0byoyCkS+S/5zONTjRVh/lxubm5hbWMDykSPKMLiNUcbB5xSq66jPzaGzsSGrGJI43vMi8DKoKm+A5Ps+LMuSq3Yp38q16YFeI8H3fYRh2BNbF78LI0F0ghw1YC0fPozzFy6g6zisPO8AqgyKkHsR0r8FA352IkgBFj/OJllmtiVXfbqOQ4uL6Ha72N7eZq2gr1xBo9HAzMyMHAxFXkRR3LnoWOXRZSo28mi6jlqlAod7hHRNGy2fO+J69zkGkO7lh+QG9jKr70uXLuHDDz7Aww8/jPn5+ZGv9zwPnueBENbDoV6rFeY1kIyxN+gohMt7oJFXZAiI//fubO8t4EZcxjgZdkWTOIbn+wgyyauapsHmnoKypDwEF6QpwiCARikMLoBUehtJgjAMEYRhj3DRQKNAPJ8RXpLbYgclj02+lj/nui62trcxMzcnDQPVYfH2Rd2ZzzFU11FfXISztYXI99mXNOdF0HUdlmXB8zw4joNGoyHfn9V1L/IkxEmCMAjgB4EsW0rSVA56acq6x4mEuUED36HFRWiUYnNzE8vLy3slXGwjB1KSmKVn60MmXvF8dsJIM6/tcS2DNUmybRubW1twXRedTgeO62Jubg5V2y6dOJg9vux9GJQzYFoWojhGEAToOo4Uxxm4/ZGhhXzOQVIsm1yCTruN1197DUeOHsXdd9899LVC6CcMQxAAlmnC5hn6A49UhMaAnlK6bGKerPrInLOQ7y4KCww7PipWzyXeE8cxCx9kjAJd12GX9LJloYTI3hWJqGShtLSqZBRF0muYPV/dMGDy73eR0VjkyRKIpko9pEy+e3d3F47r4tDyMhYOHVKGwR2AujufcyilqM/Pw+t04O/u7mXyxzEoz3iuVCrwecdGPwhgFTU7KhgoNEqh2TYsy+oZbCgXCQq4e1J4G3RdR6VS6TMSDMPA4qFDuHHjBg4vL8vBKuvS7xngD4jsOYoJs8w0QXKrxuxgSyjF/Pw8HMdhfSSiCFevXIFl22jxJLOi/RfuJ/eaYRNSpVJBzJPUHMdhrW4HbD8bWoiTGG9cP4PL3UtIUjbpvL/9Qc/rP9n9FP/14z9lHgQzwVxlFs8efgZ1Y3g73TiO8fIrr8C2bZw+dWqox0Ict2i3XK1WpTDWgJPoK/MUIl4iXDTSsCprhKaZRlNljQLPQ5CVFJ7AKBAKpD2Jjele/ocxYltFYQOAhYZMw2B5RwNc/DSTVFm47Yz3K3tNwijC1tYWiK5j9fhxLC0v4+jRoyqUcAegjIMvCHa9Dt004WxtsRUV9r7ElJC95ETXZbX7Y6zWCSHSm5DwXvKB78tJMwgC+L4PXdcRhqEMN2STrQ4vL+Ots2dl+V5+PXpzAg25fWYH4xJJez2TT45qtQrbsrC1vY2dnR24jgPHdVGxbbSaTdk+O7PBvnPOdsMctVolhLD8g3YbEc+CrwxxOYsV9v999nfwvYvfG3quF9sX8Z/b/x9SpNjABgDgP3/8n/HbX/lnIGTAoJ+mOHPmDBzHwVd/7ueGhjrCMESX5xcI41UYlNKbBPR5cIpWrZRX5IzbQbQQ4VUokcQJQFYChRmjwOCeunGNAkF+rwnfj6ZpxZ457skLgqAvbGCYJgzDGHosojSxr7IjvxsRHstcI8dxsL29jdbsLBaWlrC6ujpRl03FrUEZB18gdNNEfXER7s4OQt7NT6yOTdPsT04cBF85Jdn4O4dSCss0YZkm4iRB4PvQdB1xFCEIQziOA0IpXM+DbVmwKxWYhoHDhw/jzTffxNbWFhpl+7aXyIqfBsKDQcAG40Fu55Erf01Ds9VCpVplBoLrwvM8eb1bzebeAF+wSst2U8yWYvbEybPeD56gKFrmapQyT4UIg/CBX4RK4iTGf//sv4+8HjofNiLsTTbndy7gs85PsdooFrE5//HH+OSTT/DEE0+g0WzKiSQ7oSRg5Y2e7zOvFs+fEKWzPdei58IO73Cp6zqiIpd3dnsD7mk2n6BMuCHOrs4zrzd1HVbJSh4ALCcIwKiCVFGRpKG3n0IURQiDgIUwsmEDXYfJjYLRuSa50sRBx8DDGoRSWTWys70Nz/exfPQo5hYWcOzYsZHJsYrbC2UcfMGglKI2O4vAsuDu7PSsdk3LQshXO6ZpDl5RjFglCzS+6rNtW4YdRMw18H34nodutwvLslCr1VCt1bCxsYG1sippNylxEdhblVLsDZb5CWVY7F5IQxOwlruLCwsIfB/bu7vwXBeu68J1HFRrNTQbjYH5GbKenBCkQi47u8/c/jWe7+G5LluNU7qXJ5BmSvDAeigsV5fxSfvTPruLJU6Cr9opYsTwSYCYT181vYrFymLh+W9tbeGtN9/E+vo6VldX93I0Mj9F+WUcRSy/wLKksFMpRhiKuqZJD0IRfZMwN4BJiXyCRCT1BUFPtj4BC5llE32Hwg2CbM7NqLMPo4hJR3OvXRCGLFE4k89CuVfBNIyhuSd7hzFG3kX2d34dNjc3oRsGVtfXsby8jMOHD6swwh2IMg6+oJjVKqhhwN3aYgMyIbBMk03aQSCTE0tL7OYqG/LPibBDpVJhJZG+D8/zEAYBOt0uHMdBs9HAlWvXECUJhkSXi/ePvVjsgecmyF9GJC9yRKliHtOycGhxkRkJOzsyKdTpdlGr1dBqtQonFREXTsSx8BXboMnR5jkhURTJ/ANa9FpC8M27nsc/e/O3+zaVdRfr0EFAkGBvNf7Xj/81WFp/qWbg+3jllVfQarXwyCOPFB5fHMesoyK/jtVarTDvZSglPqearvdMmllS7gWTngIMv69JkiAKQwSZsl6Boevy8z7O9wfoDxuMIggChL6PUNPQzn7GCGGJhcOM/Oz++w9o5HtEfxPwR7fbxc7ODmbm53FoeRkrKytotVrjnZDitkGZc19gdMNAbWEBJg8hEEJQrdWgUYowDNHudErFVoG9yoZRgyHl4i6tZhML8/Msc59noNcbDcRRhAsffYQbN27AGaOHgzhKkvv7ICHZxxDX9iiXtGlZOHToEA4tLclJses4uHTpEra2tvqqGqQSnbg2YtU86Nrz/ANCKZI4hsNDSgUHiq8d/SoO14bLGOfDCrZm4/kT/1PB5lK8+tpriKIITz75ZKGhEwQB2p2OXKnXeUvxMoybQ5BP6JTHCS4BLXJMhnh/wjCE0+3KJkjCMNA1DVWuHFir1fZExUYcP50gF0IkOO7u7kqJZbENTddR4SGqSk4LYtAxyMTfYZ+hApI0BbgS6+bmJtrtNg6vrGBlbQ0nT55UhsEdjvIcfMGhlKI6MwPdNOHu7EDXNNTrdey22wh8H7sAK4UrOWgMUkUrQuM6C8KboBsGLpw/j2vXr6PRbMr8BIsrL1ZLDHYCkvmZoGBlNEWyiYIE6MkXkD0eSmBbFuylJdalbncXgeeh0+mg0+2iXquh2Wz29J3oqyXPJ+plj5HnH3Q6HURczKooBqxTHX/znl/F/3nmnxYeI4UmWzgL4+CvH/9raFn9E8G777yDq1ev4tlnnulTa0zTFK7nycRV0R9hrIZbJQ3XnuOnVOYfpGlGyGfItkRILArDnvADpZRl+Zd018v3ZcJPZc4gSRLp+REtmQGg67pIwUIX1VptrOPoCR2MY5xwD2HKDgx+GGJjYwO2bWP1xAkcPnwYS0tLKozwOUAZBwoALMyg8WoGM01Rr9fRbrcRBgG63S6qlQoopeNnfIv4eDpY6IcQAtM0cWhxEesnTuCdd95hRgAhciLzPA87OzvQDQMV22atp01ztCwx9laMB9WlMXseIsEPYIN6WS2DLJVKBZVKZc9I8H10ul1mJDQaqPJJvS/nIfOz6ExFKanLBZKE4ZXnZ4/+LP7w/f8HP+3+tO85AywXQhgGlmbjm3c93/e68+fP451338WDDzyApeXlnudEe2mZX2DbsHN9Aw4SjVI5uQ0yDOI4lnkE2cRCSgh0w4BlmqWTC6UeAvYSgIdNyCI/RRgDcS5sATAPQRrH0A0Ds83m6GS/rJGe/1kGbhTI8B2Xst7e2cHc4iIWl5awsrKCZtlkYsVtjzIOFBJN11Gbn4fXbgOdDtJaDZ1OB77ngRIiB6BxjASxkpauyyETNKUUx9bWcP78eVy7ehWPPf44q55wHLiuK7PAwyBAu91myXaZiodhXoWsct1B5Sb06CTwv7P/KyOpm0UYCY7jYGdnh+VntNvo7O4ChKA+rL3xgBwQy7KQ8lbAruMwwyyX/KgTDX/z3r+B33rjn/RtV4QUQm4c/LVj/wNmrJme13x28SLefPNN3HXXXbjn3nt7ngujCA7vplhWv6CsJPMoeu5FgdEmEwvDsMeoI+B5BDx+X+qzz71IBL3Z/oPeK4wB8cgbLJRS6IYBQ9eh6zpr6pWm0DVtuGHADZNRBsmw80jTFCRTXRKFIba2thBFEY6srWFhcRHHjh1TokafM9TdVPRAKUW11YJuWcDWFuIkgeu6cFxXrjSFm3xsT0JBOVr+3ZVKBWurq7hw4QIeeOghllTVaqHZaiGOIrieB8d1Efo+09sPQ3S7XabsxsvFTMOAbhiFXoV8bsLeoU1HiTG7as9PQNnQzDhejGq1imq1KhO+hA6A47ogmoZWvd4vXpPJAcnvy65UmJIlTzwl1WpvdQQheO7IV/CH7/8HXOxc7Hmvkck3MKmJ53NegytXruC1117D2toaHnnkEXlNRcfBIAik+NawMFH2fuzHMOgRPcoYiNmeIKLpUbjPxEJpAGMvB2fQsadpKj0DUU6GXBy3zg0BXdd7vBRpmqLrugiTZE/NcNixZH4vTdYoEPsF4HoetjY2YFWrOLK2hsNHjmBpaWm8bSvuCJRxoCjEtG3oi4sgfPB2HQfdbheUUqnEJtTrJkmqAlDoTTBME6urqzh/4QLOf/QR7rvvPvmcpuuo1+uo1+tSilZ4FERdt+O6coUlBnbx90jZXQx2yZc/KSJr9odtJzvxlemtAAC1Wg2VahWO48C/dAlRFGFnexvdTgdNfl3yHfOQWfFlqVYqSMFa53YdB/VaTU7UaZKAguBv3vur+M3XfyuzPZLxHIT4xvH/EfP2nHz+xo0bePnll7G0vIzTp07JcwyCAK7ryvMU3TsLjTd+vH0u8JL0VJIMSAQVE7PneQjDkBkFIqGPqwUaA4zLnu0AA3Nxij5rcSZvIF/hALDPt5ExBgZ9XkPuQQOAim33alvwfcuzHvf6Ed6UKveZjKKIJUB2u1g4dAgLi4tYW1tjypuKzyXKOFAMhOo6mgsLrD3z1avwfR+dTgeNen1vxSfKmSY1EvLuU0JgVyo4euQIPvzwQ5w8ebIwtiuSGavVKhNYiiJ4rouQy0C7YQjX86BnB1z+u6Zp0DRtqGdBILPXy54Xn5TSMfom9KyQh5QkAuz61Gs12dgpjmMkSYLt3V20Ox3U6nXUa7Xea5YNqWQqG2qVCjq8JK/T7aJer0MXkxIh+Mrhr+DfN/4DPm1/CgDQuG5lghQ6ofiljNdge3sbP/zLv8T8/DyefPJJEEoRx7GcgEXTpEHegj6jYAwK35H5XCVJgijjthchg4R/dimlUhhoZB4B2dMiGHakQqI8Eo8w7M8R4Ya28A6UTeLzfB9+GMpSRXZYZKS3YvhpEVmWmD2vOI5lG3LdMHBkdRVLXO1QhRE+36i7qxgKIQS12VmAUty4fBm+76PLE+N6OvLt10jI7M80DBw7fhyfffYZPvnkE5w4cWLoezRdR0XXUbFtxFEEX+QmcI+C53lMKEbXYfJ+92Ii0jQNGjcY9AKDYdJY7STJjyI+XVSNkEe45WvVKjzfR7vdRpwk2N3Zwe7ODuxKBfVqlQkJZVt151aV9VoNnW4XURSx+1qvs/vKk8/+l3v/Z/yj1/4xgN5kxK8f/zrmbdZRsdNu48UXX0S90cDTX/4yKKXMq+N5MkHT5j04+j4XJUtgi66VcH3nET0lRDJfkcaErmkApaVyCLIy2kC/AZkkCUs+jSJEcYw4SQpzGgiwFyooY4gUILwGcRTB4vka2Xs7LsOMgk6ng3angyiOYZom1u++G0dXVpQE8hcEZRwoSlHjgjyXP/0UYRSh026j0Wz2u1WnYCQYhoFqpYKl5WW8/8EHWF9flwleo9B0HVVdByoVaShEQSBXcEEUIfV9dnyUghYYBdJYoFQaD4PIryCzCY+TkG/+lN1PdjVM+cocAJrNJuqNBjrtNrrdLhOZ8jx4rsvactdqqOfyCrIrzVq1ik63izhJ0Ol2ZekqIQTPLD+NOWsW170bPfoGv3LXLwMAHMfBiy+9BNu28cwzz4BQik6nw6S1AWi8umSY2ua41ybf4CqfzJfkV+hg91TXddbCmhsEKZi7vM94yHgH8iWHcWbyj6MIkejmOOB4hZdKeCX2m9cS+D48rmBaRkthEKOMgk63yzwrUYRWq4VHT5/G4uLivo5dcWehjANFaex6HUfW13HpwgWWOd/pDFbbyxgJBOhZvY5CtJE+vr6OV374Q/z0pz/FysrK2AJHWUMh4r0dwiBAtj9BnCQ95WoaIdC4izdrMFAuO5z1NIgVpVjFim0cRMmkMDp6mi9hT/aXEoJms4lmsylLHx3XRRLH6LTbaLfbsEwTNe5tgLgfhACUol6rod3psNeL+5qmoITgl+7+ZfyLt/+F9BycaK1jobIA3/fx0ksvAQCeeeYZJEmC3XZbfh4qlQqsTNfJSSoPegwCXgYYZwyBSEhI596jcSNAPAZ99qQhkTM+Ex4WiHk5qngMureUUtallH82KDcs90OKXpW6kHdNDYKANfIas1dBNjkUwECjIE1TpEkCjVIcv/tuPPL440q34AsISQ+6+FvxucNzXVy6cAERb8MskpJGTf7ZmPKoFU+cJGjv7uLV115DGIb4+Z//+cLtT/LhzcagY74CBPYEixK+MhQTr8YHfppb+dFcWEJMCtm49kF9uRzHYe21LWugRkCSpiyRtNOB5/vy/4RSVCsVVGs12HzyTsGui1DF1AhBLWP4/ebLv4WfXH4Hh6pL+N+f+99gERN/8Rd/Add18TM/8zN7uRZpCsM0pS7GJOQ9BFmvQNEELTP7uUGgDTEG+BvYypmXLiZcV0A+kgQJ71lQBOX3WufGQN6Q3C+Deht0ul1sb28jBVCv14c3R9vbGIDBSa89RgHXfTA0DfVmE+snT2L12LH9nYzijkUZB4qJ8FwXP71wATFPjKpUq1KTfpSRIORqh0kOA2wCvHT5Ml577TU8++yzWDp0aOD2ZD15OqB97wiEkRBlJglB1mCQcMMgX84pVsYJX3mBEGiUgvCV5Ljej0GIbo6maaJaq/Vut+ArHUUROp0OnG4XkTBcCIHBlQlrvFohiiI5UQi1TAC4dv06fvDCC3jqySexvLyMF198Ebu7u3jiySeZcQJudPCEQ2EIjmx1zS4aOx6+Yo1FEh/PGchvgZLeMj+aua4C4WWRYR5xD3MGoON5AxUsRTiCaho07jnKG4jToMzWojjG1tYW2p0OqpUKWjMzww2SAQaGIO8pQJLA0HU0Wi1UKhWsHj+OpcPDZbQVn29UWEExEXalgiPr67j88ccIggDItXkeNkETYE+CFXshh/ygW6lUMD83h1arhXffe2+gcSATsjKD4dghCL4aFHI8QqUu5qvVKIqQZOLmCY81i9p4ktlOCpY4NuhYiaZBIwSErziFG5zw/xVdi77tiOdzK0I52eYy1zVdx8zMDGZmZuC6LjrdLlzHYSVq2STGWo1VMXAjotPpoFarSWOJEoJXXnkFW1tbOHXqFCulAytPrFYqPTkEhYZByppQCfVIcZ1Fdn/R/dJ44qCe8dDIzSHj8clO/PwxTL46yTxHCJGTv5Z5TJt8qKDs59P3fbi+D13XYQ+QmRbG2LDSWNHkqiP6pgijYHYWtWoVVNNw7MQJzM7Pj3lmis8byjhQTEylUsHS2hquXryIwPcRxzFqvHGToJQnQfSDz4UdCGEKeuvr63jzzTexub2NuZmZkcfVN1lmjqUsWREagZjQ4kxIQstMgHKSynkeerwZPNktxnDjiWoaSwrkXgcKZkRplIJkEijzyXeZE+g5/6yxIUpARYVCPomRaBos20YSRYBhwPE8xHyiff+DD7C1tYWHH34YrVaLJTxWKnsaCdnJXngCRJiGb2Podefnrmdi9wRAnMkBSIKAGRJDJv4iNG6IiWubEibbPaisdZqIUEH+npfxGiRpyhJGwxCValWGgjIblyEdua8cfUYBDx8Io4CAlS6fuOceNJQEsgIqrKCYAp7n4dpPfwqv0wHAxHqEJK90+aO8q1+Iy4hBbmdnBy+++CJqjQaeffrpfR1r0XHs5wswKH/B54mP+f0I97b8n1jpZVzwYkIUhkFhrDhJ4DoONE1DvdHoMwKEcZUVd0L2f7lkyjAM0e100OVJjIQ3KEriGLZto91u462zZ5GmKR588EEsLizAMk1QXWfnFMdsAs8aANlM/0yyJuX7p5TK36UXJXNdegyfEcOUCN2IbdLs32I/OcK8EbdPpFbD1LbI6DoONjY3kSQJ5ufnZZVCmaF7oFHQajGjgF8X3TBw8r77YJfJY1B8IVCeA8W+sW0bR48fx7VLl9Dd3mYrUdNEla9IxoVgb9IEgEq1iuPHjuHHP/kJtra3MVvCezBs24X7y/1eNixBKYXJu/MJ4jiGyXUWxOo2FW5vPnENoic+HsdIRHgiM9GKYwyCgClWGoa8VmJC7fOYZCZsWa+fN17SVLbr9njIIYoiXL1+HdevX0cKYG5+Hhql6LouXM/ru4aygiPj+dAIYaEUft496oeZ4yrSBgDQ4y0pO/GPQng4Jnlfj8ElKPrfFIiTBDu7u4iiCNVajd1rdiAD3+MHgWxWFgaBvM5FRgHSFLVmE8fvvnt4jwvFFw5lHCimgqZpWF5ZwW6jgRuXL7MWt1Ek1fr6Bs0xkgd1TcPK6io++PBDvPXWW3j22WelhPO0GBSKyBsOQO8EXYTGm+FoA4yAbJw8/1O44sXPotVhCsjVvXifXEnmVus9tfoZw0BIC4u/hS4BCJFtiIUi5s7WFgLXhUYITF2HwyWrTcuCZZqwLAsGr9qQoZDMZCk9FWJVnXsu68kQz+1n4i/FkO0K/Ye+uzfMABgS55+UFMDW9jbCIAChFM1ms7gqhZfjuq4Lz/OY90qEMQiBYRio1+t9RgHVdRxdXcWC6o2gKECFFRRTx/d9XL9yBe7ODtI0RTVf755B1u6PMBRSAB9//DFeffVV3H3yJB588MGe0MMBTSEjGWQ4JGmKIAxHusPLbD+brBfHsdSQ2N3ZQZwkrNJA0/YmvIJ8gz53d+Y1Wf2EFEDEV55BGOK9d9/F9u4uDi8vwzAM2JUKAJaAmPWA6IbBOmTy9suinLAnpCDO6QAm0nGJ4xhBHBcbALd6SOSGXrvdxtbWFsI4xsL8PCr82gN7jayEh0C0UxZYlsW6elar7LORJU1Rb7VwbH0d5phaCYovDso4UBwISZJgc2MDOzduIPZ9pnpYqw1dCWaT9ooG6BTAa6++iguffoqnnngCy8vLsnSQZlaft3riEQRRxPIL+EoU6J2M+756hICkKZNQzq7y+XNSRIi/r91uI44i1Op11jkQe+Wc2X0OgwAApUiTRHYnFD0Rfnz2LPwwxMMPPoiZ2VnohgGfl/6FUQSNUgS+jzBXbpimKfM+cEPBtqyBmf8pIaD8nAdScC55w0Pc+75PjTA6M5+plBtut8PQl/VCZY0mz/dx/fp1RHGMeqOBVrOJOI7h8nBO4Pvy9WmaSu0K27ZZOG/A9dR0HUdWV7EwoPJHoRAo40BxoHS7XWxcvQq/2wVJU1lPP4rshzI7zIVRhD/7sz9DEAR45pln0Gg0Ct/f009g4qPfHzFPVjyor5jjOAh8H5VqdaBnphDhceGhCz8I4Pu+DE+0d3dx9sc/hqHrePrpp6W8cL3RQJokaLfbMrehXquBUgrXdeH7PnzfZ7kWQI9Er2ma0rNgWdYtVdyLRQnqLR768gaBIIoiXLt+HUEYglKKSrXKPDlBwDwdhABJAqppzDvAjYKh5a9pisbsLNbW11VugaIUyjhQHDhhGGLjxg10t7cRBwFzPdv2WJN21quwubmJH/zgB1hYXMRjjz3WX9qVfV+ayonoIDLJh5Hwmv5pZsRnEaWHpmUNVcsTMf3sZJgmCevu5/vSENMpxebWFs6cOYO5uTk8/eUvIwVr100NA1Xblqv1TreLKAwBQlCtVGCKe5CmiLjnwfM8+LzElT215w2xLIu5vi2rL0RxkKRAj4LlTSPrKRoy5CZpiitXr2JnZwdBGKJWrTLtDG5E6LqOSqXSe81HoGkajh47hnnVG0ExBso4UNwUkiTBzs4Odjc3EXS70DUNlWp1YNLeKN7/4AO89dZbeOC++1jsdJzVECEyvHGQxoLIEUiAgZn4+yEIAjjdLnSecCbIGgPZ7HqAGwWeB8/394SbdB22ZeH8hQv4yblzWF1bw+lTp0A1jVWeBAFsy4KeucYpAKfblXkVNl+97r1gb1iJ4hie6zJjxPPYxJwV7BF6A1xXwhB9EQyjP16+T7ICTAdNmr0HuedEG+coihDyqpAgDNFut1lPjCRBk4eLTNNkBoHILSl9AClac3NYOX5ceQsUY6OMA8VNxXEcbG5swO90kHJRl2wZYFlSAH/5l3+Jq9eu4fTp05iZmWEJWzw+XTrpTWSlH2ApWso9CFP7qvFzjOMY7XYblFK0Wq2hb0m4UeDzjpRIUxiGAcuyoGsazpw5g08+/RT3338/7rvvPmlQbG9vM5d0o9GbVwB2rVzuvQC4SmK1uuelyGTGZwnDUMbNPd9nhlNmZZ2tqCCENcISfRN0TWNGA/99HBXDnnsxhnjSKFJgL+chYwwIKW7ROjz7yH4WCIAoSRB4HhzXRRxFmJ2bw9z8PCq2PZFSo67rOLy2hgXlLVBMiDIOFDedKIqwtbWFbruNoNMBJQS2ZcHkGv1lCcIQ3/ve92AYBh599FGZod3TuCdbIicS33hsfRBFJXeTIsoTATYBjBXnzh173uhJkwTbOzsghKDVag1UxhPxavG8oeuwbBuGYSDwfbz8yivY3NzEqVOnsLa2Jt8b8dbchBsfERd4AnpLOYMgQNdxAGCvH0PR9R1w7j5PaozCsKenQn51n096BLiaIpdXzrZlFi2Ss0qSQnwqjOMeqe1xEcYA+Dbl5M8NAdE1Mq/emNfO0DSNleRyEaqAh3hqtRpm5+Ym/tzNzM/j6Nqa8hYo9oUyDhS3hDRN0el00G63ETgOAscBBWDyGHTZcMONGzfwgxdewPHjx7G2tgZN11Gv1Ub2JhhUGVFUTin+Ryhlk8oYRkN2UpKliBlECEBO+mOW0m1vbyNNUyZlzK9ZmiTSTR34vtRDME0Ttm3LhNBOp4O/fOklBGGIL3/5y1hYWMgeGAsFZJo7ZY2DPGEUodvpIAUTLarVaqCDVrwlzy9N094Vd6Y5VhRFPb0YxLWTeQ38Pum8Z0W2nfaw88jvH3y7ony0J0QDyO6Ngz4LlBsuBg+TGCJ0Yhgg3CjodLuyUsSybbSazbG9BYQQtGZnsXz0KCpK5VAxBZRxoLilpGkKx3HQbrfhdToIHWdvIhtSApflJ++8g5+cO4dTp0+j3miwySnTbnhfxzfkuGX5ZCbRsc+w4G7sLDGvEphGd7/d3V3EcYx6rSYbPgVBwI6FT2omrxLIXsuNjQ388Ic/hGmaePbZZ1Gr1fq2LUolq9UqTMsaOakmSYJOp7NX3VCvj65M2cfwI3pciPi9/DvT2llef36tk7RYiTFvCAwyEpH7vzBKRLhDGAHCABhm5Pq+D8dxEMUxfM+DaVnFvROGII2CI0dQKbiHCsWkKONAcVuQpil838fu7i6cnR0ErsuMBF1n3oQheQlJmuLP//zP0el08OSTT8oJW6gz3mx6+hugOJyQNxgmIU0SbG9vw/U8OSmJSVDnssqWZfWt4C9evIjXX38dc7Oz+PLTT/e5n0XsfHtnB0hTNJtNUE0rteJORSUDf23prPoDGIYCbiilGeNAGg053YNBZhoZ4cESuRDjItQMkzRFGIbQeKOpRiaxdBjKU6A4aJRxoLjtCIIA7XYb7a0tBN2udFXbts2azhS8p+s4+P73v4/FxUXcd999MumsxvXobyWi1l8g3NwpAGQ6UpYhTRI56UVRtOeO5q5/kd1eZBSFYYhz587h/EcfYe3YMZw6dWpgCaHIN6CUosmTHUu749FbyWAYBhPmKVuZsp98AO76j9MUacZDkGKvjPFWimSlaYqu4yAMAhmmEE2mmo3GyL4blBC0ZmawdPQoqspToDhAlHGguG0R2fg7Gxvwu12Au/JNXiOfDxt89tlnePmVV7C+vo677roLIY9Liyz6abjxJyEFClsLC+MgyRkOPYqKvCohCAKZsIdMGCNJEsRRBLtSQXNIq91Lly7hzTNnEEYRHnroIZw4cWLo9XBdl7m6udEBlDcO5Da41oGgYtuwJpHrzazwJZmk06zCIAhhPSkGXO+brm+QIQxDVqbIcyUI9nJSavX6wH4hKQCNENRbLRxeWVFGgeKmoIwDxW2PiGVvXb8Ov9ORk6dpmjIrXcR2z1+4gDNnzmBxcRGPPvooiz/ziaI6YdnkVM4hTTHoqyaaJ2URJXABz36X0zgh0jugGwaSKELXcaDxxjxZaWZCCFzXxZtvvolLly5heXkZjz/++EDBpB5pZp7LUK3VZNhhmHEwKCkvjmM4rssEk7An4tPn2ci6+dFbDZHNARg2WIl8gkEmz1TLSccgTVPWrIpXI0jDjt/3yqDeI9wIbLRaWD56FLWSIQeFYhoo40BxxyCSF7euX4ezs9Pzf41SaDz+u7m1hR/96EeoVqt46qmnkKZpjxehUq0eXLe/IceeDDIOuMxyHMc9JX3ZREdD12FwgyCb5BbHMXZ3d/vKGdM0xYULF/D2uXPQCMGjjz+Oo0eP9jRj6hNISlOAUiRRhPbuLsBd2BRgQk7Z3ImMITFw0k73FBF934frOPJv4UUY+y5kzk8cv/h9mHbBrfIaBGEIx3GYNwPsPop7nSQJ6lzoSMLvOSEE9UYDyysryihQ3BKUcaC4I/E8DztbW3B3d+E5juw8KMrYut0uzp49iyiK8MQTT6BWq7EGQXyQvhVehIAbKAmfGKIkkX+DVz7I33ms3jBNGLo+NBa9s73NYta8BG53dxdvvPEGNjc3cez4cTz80ENDa97zRoKQZTZMU1YxpCih8jiiDDNOEriOw3IRwOr8q5XKRAl94phSAKkoaRyy76TAO3OQJGkKN+Mt0DQNpmnCc13EPAelXq/L7pUC0zQxMz+PucXFXsVJheImo4wDxR1PFIZoc1Gl0PNYKCFNEQYBzv74x2jv7uKBBx7AwsKCLPMDANu2p1byKBAegiSzOozjWPZYyGbOZ94ESikoV/wTZXFl6bTbCKMIlmXh448/xnvvvYdarYZTjz9eSiEv3yFShBQqtRosblSUMg4wOLyQJbuaBgBD5ISM3PrePoABeRxZQ4d7LtI0valeg/z5Wbwpkuu6LKmQUtmwCgBACJqtFuYWF9EcIGalUNxslHGg+Fzhuy68TodpJkQRgiDAW2+9hcuXL+PEiRNYXVtDFIbwfF8O3rZtS3XGwoE58z9ZptjzNJF5A6JUroisMp7GjQGh8IdhWeojVryu6+LKlSt477334Lou7r33Xtx7330T9a2I43gvpJANU2C6/SHEytrnPR4IpahUKkO9OcOMgqH7AljeRvbeilAEpieZHUURXG6cpmkKXddRrVYRhqH0GJi6jioX6bIrFeYlmJ+HodQMFbcZyjhQfC5JkoQZCd0uQt/HT86dw7vvvouV1VXcd//9iKMI7U4HMR/IRfOfqUjOErJnAPBcCMr/ToCBxsNQMqWPWWMl4N6RTz/+GDMzM/jSE08MrVro3WTaZwwVhRSAMY2DMVQeI55QKVb2pmEU5oQMS+gcRZxRUuwjUxkyKXEUSYnqlBCQNJWtqV3RmTJJYFsWarUaMwgWFlQugeK2RhkHis89YRDA63Tw3rlzePW11zA/P4+nnnoKhq7L1sJSHAdgfR5Ms7dHA4q1/bOToNDyp5QOnHCGJSaWhrvJL168iLfffhtxHOOuu+7CkcOHMTMzU1pPIB9OAJjiYpKrUgCm7znIkqap7BQpjseyLBbS2OfEXaRQOS1i3m0yCEOZ82BZFmzLAiFEtrVO0hQLi4s4vLKC1uzsLRHmUijGRRkHii8MSZLg/Acf4L9997uoVyp49LHHcIjH5IMgkEZCkiSglLIJyrL2PUEVHcekX7pup4MLFy7g408+ge95OHL0KB579FH4vo8kSdCo18fKV8gyKKQATGYcFHkmhhHFMRzHQeD7cp+GYcDiVRqTxOIPIhExaxQALOxj2TYzCihFEATwPQ+EUtRbLRxfX0djRNdMheJ2QxkHii8cGxsb+OM//mPs3LiB5YUF3HPPPVhZWQHlA7vrumwCTxIQSmHZ9lRWsYJxvQdpHOPylSu4cP48rl27Bt0wcGxtDcfX12UIocPDJ0Kbf+jWB7jSB4UUgIPxHGQ9MtlhKAxD1qmRT75IU3YfTBOmZQ2t3MhvX5SETgNhFPhBICWmTctChSccep4HPwhg2zZac3Nozs5ibm7ulit0KhSToIwDxRcSoQPww5dewsVPPsFss4l7T57E+vo6DMNAGIbMSOCVB5RSmKYJi68O90sZV7frOMxL8PHH8DwPc3NzWF9fx9GVFeg517TneXBdF4ZhsJbJOQMgBfaaPQ3ICbh06RI+vXgRn332GS6cP4+Pzp9Hp9MBADz7zDP49V//9ZHH/C9+93fx4osv4vTp0/iNv/f39vYvjidTQTDKs5DEMfwgQMClhsEfumHAtqyRHhLR4Go/pGmKiMtV+7ztdZok0ihIAfiehzCKUK3XMTM3h1qjgVqtdktVORWK/TJZgbFCcYdDCMGJEydw4sQJXLt2DS+//DJeOXMGZ8+dw93Hj+PkPfeg0WzKTPMkSeD7PjzPg67rsCyLrQgnHPxppo1wD0mCK1ev4sL587hy9So0TcPa2hrW19fRGuKaFloBsmQvd1yiIuBb3/oWvv3tb+Of/fN/jsXFRWlExFGEf/SP/zGQptjZ2Rk77CEm+lOnTuEvXngBZ8+eRRCG0HW9MD+DHeLwa0c1DZVKBbZtIwpD+EGAMAwRRRHaYSi1A0zT7PMmCGNoUpI4lt6LWIg/ccOkWqkg5j0SkiRhCoZzc6jW66jX68yAVEaB4g5HGQeKLzyHDh3CN77xDXzta1/Dq6++itdffRXvfvghjq2u4uTJk5ibm0MYhvKRJAm63S6rcODJi+MmmRFCmPIgnzA9x8Enn36K8+fPw3VdzLRaeOyxx7C6ulpKJEjTNNbQiZdTDjseQqmc7AAAPCEQacpEe9IU8/PzOHzkCH589ix7iXhzRvVQ/gt7nRwfefhh6KaJwPdx7u238dhjj/WoKU4CIYSJQZmmnLQDfh+Ex0RIaVOeFDpJnkGaJCykwftYCE8HIQQmb/oVRRE6/N63ZmfRnJtDrVZDLZfAqVDc6SjjQKHg1Ot1fPWrX8XP/MzP4K233sLLL7+M89//Po4cOoRDS0uoVauwbRu6YcDQNCSEIPB9+J4HTddZ2GFYbgJXbmy32+h0Otjd3cXOzg52Ox0Evg9N07C6soL1EycwOzs71rETQqDrOjNgggBapVKw++IJOk4SBEGAr371q7JpVavVwvXr1/Ebf//vs+0PeX/2bC3LwkMPPog333wTr7/xBh577DH2/D4NBAHVNJZXwUWufN6dUpw3wFpkU0J6hKVEWWm+fTXAyikDbnCkSYI4SZAkCXRKQXUdOm9XHfg+DMvC/NISGq2WNAomVXhUKG5n1KdaochhGAa+9KUv4fTp03j//ffxo5dfxo/few++57FJhxBohLC4cqUC2zRh8eY5lm2z1rtcEa/d6aDT6aC9u4t2pyNXtJqmodFooFGv49DiIhqtFg4tLu5LDEfkSgRBADtnHAybmEXnxL/y9a9Ppfb+8VOn8Oabb+LMG28g/dt/m4U0gKkZCGxT3GtjWaxrpe/LngXgDZZi/ncASI8HJUQaCEkcw/N91lCKv54QAsu2Wftr7o3Q+cPgfTlEPkHZxEiF4k5EGQcKxQAIIUxt8N57AbAs+p2dHezs7GB7exvb29vs960tfHbxIlzXBQWbCDUuhGRbFhqNBmZnZ3Hs+HFmEDQaqFQqe935sL/4uMA0TbiuizhJEEWRXNEOm5CTJJEr7onaKRdw6tQp/Ot//a+xvb2N8x99hLvuugvA9A0Egca9CQBkKaoIr4ifURQhCEP4PGcBPFShmybseh3VahX1RgM27/WgCY+DkLTm/9N1XeUTKL4QKONAoSiJYRhYWFjAwsJC4fNxHGNzcxPXrl1DHMeo1+tI4xiB5yF0XRAAOs9PSJMEoBQEAAUQj6EqOAjC2zkHQQDf93uTAQfgeR5S3uRpWu7x2ZkZ3HXiBD766CO88cYb0jgADs5AQEbPgFIKQikIITI3IQVQrdVgV6swbJvlJ1CKKvcEZA0C5RFQKJRxoFBMDU3TsLi4yKoAwGLZvu/LR+B5CLiWQKfdBuXZ9oZhQNc0xGna01J5EizTRBAErEW1KF0cQMJzDQCWKzBNHj91Ch999BFef+MN/Mqv/ErPc1M1EHi1RQJIj4kfBIijCFTTYFcqqM/MwOb5IpZlsV4aGQVMhULRjzIOFIoDQtd16LqOWq2GNE3lil48QteF73nodrtIRWfGbBKdpu01gyrwLBRNbpqug1CKJI4RhuHQDHqfVyZomjZ1oZ7Tp0/jW3/0R/js4kVcu35dKlHKY+fHnwKDjZgCrQaRGJlwQyCJY4RRxH5PU1i2jXqrhWqttpcHwg0CJVusUJRHGQcKxU2AELInxwwWgujxKvg+Il5CF3I9hTRJ9uLeug6NN3Hq6fmQ7RLJtRMMw4DPk+10wyhsSS2aBQFAZUq5BllWV1ZwaGkJ165exRtvvIG/8vWvy+fynRAJpSCZLokieZBwg0i0u47jGHEUyRbYBk8SrNVqsGwbJvcMiIfyDigUk6OMA4XiFqBpGqrVKqrVKlPhE+V4/OH7PjpbW3A7HZaBHwRSaIhSKo0FQilrzUyIbNFsGgZT7QsCdLtdVCsVOUkmSQICoOs4MPgkqhnGnos/46FIuTqkeJ8IBYjpVnQg7AsOcKPlsUcfxXf/9E/x2muv4eu/8Au9jav63pLKEsJsImHMwyPSg0AIdMPA/OIiGs0mMxAyD5UvoFBMB2UcKBS3GJFImHftR0tL6LTb6OzsMGXAMEQSxxB1DWmSIApDeEnCJvGM8QBgTywojpmULzci6rxc0dR15jXITvCZ0EXWMwEusAQMF0TKvBmnv/Ql/Nc//VO89957aLfbsG1bNkISpYbiJ9KUhVN0nQkZ6To0HhKhlMoQjcV1BqwxeiwoFIrxUcaBQnGbous6ZmZnMZMRRIp5LoGQEZbu9qzbPYqQRBGoYTCxpW4XXcdBHEUAgEajAd/3ESUJOp0OCCEyLAFC5N+B78O2LGl0iByFrFEgeiSI/wN7jZQOHTqEmZkZAMB777+Pe++/H7qmgRoGKws0DGh80qe58kFhDAijSYUHFIqbizIOFIo7CDF52rk8AZGklzcWtre30eHiS0mSoBtF+PDiRcwuLWFmcRGpaB+dJMwjkSRIeMMiYhjocuGnKI4BnjBJhAEhvBSUgor/8dU8oRRn3ngD71+4gJQQPPmVr6DRaPQYAJTnUKgSQoXi9kMZBwrF5wDCRZfyGfnNZlMmHorV99vnzmHh0CEcWVnpWfnnHzEheO/8eRBC8ODjj2Nlfb3HMMg/xD7E4//6p/8UP718GT//8z/fo3WgUChuf5RxoFB8jiGEoJKTUg7DEIZhjNQ2qNVq2NnZAcA0G8bt9/Cd73wHURThG9/4xngHrVAobjnKj6dQKKbOmTNn8OmnnwKAMg4UijsQZRwoFIqp85/+038CADz++ONYWVm5xUejUCjGRYUVFAoFAODFF1/Ehx9+KP++ceOG/P3DDz/E7//+7/e8/m/9rb81cFt/8id/AgD4xV/8xakeo0KhuDko40ChUAAAfu/3fg9/8Ad/UPjcSy+9hJdeeqnnf4OMg4sXL+LMmTMAVEhBobhTUcaBQvEF4ud+7ucAQOoPHATCa7C6uorHH3/8wPajUCgODpJOvXeqQqH4IvMLv/AL+N73voe/83f+Dn7nd37nVh+OQqGYAJWQqFAopsbu7i5+8IMfAFAhBYXiTkYZBwqFYmp897vfRRiGaDabMoShUCjuPFTOgUKhmBp/9md/hlarhV/8xV+EyRsnKRSKOw+Vc6BQKBQKhaIHFVZQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9PD/A/sYf30wPVYxAAAAAElFTkSuQmCC",
       "text/plain": [
        "
" ] @@ -140,12 +140,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZBcZ3oeCj7fWXPPrL0KBaBQ2AmATYILSDbJJtkt2ddaLNltW5YtS2ovMTMxMaG5o7n3ejo81zMxce8PaRQxuhMz4asZX1myr8fSbVntlmSpN7Kb3VyaC0CysBFAoRag9qrc8+znfPPjW+pkVmZWFgiSWPJhVKBYlXXynJPne793ed7nJZRSij766KOPPvro46GF8nmfQB999NFHH3308fmi7wz00UcfffTRx0OOvjPQRx999NFHHw85+s5AH3300UcffTzk6DsDffTRRx999PGQo+8M9NFHH3300cdDjr4z8IBjYWEBv/mbv4mTJ08inU5jcHAQTz/9NH77t38blmV1/dtf+7VfAyEEf+tv/a3P6Gz76KOPewV92/GQgfZx3+Jf/st/SQHQubm5tr//1re+RXO5HAXQ9uv48eP0+vXrHY//J3/yJxQATafT1LbtT+kq+uijj88afdvRRyv6mYEHFBcuXMAv/dIvoVqtIpPJ4L/77/47vPnmm/j+97+Pf/bP/hkA4Nq1a/jZn/1Z1Gq1tsf463/9r8M0TTQaDXz/+9//LE+/jz76+JzQtx0PJ/rOwAOK3/iN34Bt29A0Dd/5znfw9a9/Hc899xy+/OUv4/d+7/fwW7/1WwDYov6d3/mdtsdIp9P4yle+AgD41re+9Zmdex999PH5oW87Hk70nYEHEO+88w5+9KMfAQD+yT/5J3juued2vOY3f/M38cgjjwAAfvd3fxe+77c91t/8m38TAPBnf/ZnoH3l6j76eKDRtx0PL/rOwAOIb37zm/L7r33ta21foygKfvVXfxUAUC6X8dprr7V93c///M+DEIKVlRW8++67d/1c++ijj3sHfdvx8KLvDDyA+PGPfwyApeqefPLJjq976aWX5PdvvPFG29fs27cPTz/9NIB+uq+PPh509G3Hw4u+M/AA4sqVKwCAo0ePQtO0jq87efLkjr9pB5Hu6y/oPvp4sNG3HQ8v+s7AAwbHcbC5uQkA2L9/f9fXDgwMIJ1OAwBu3brV8XW/8Au/AACYmZnB3NzcXTrTPvro415C33Y83Og7Aw8Y4q0+mUxm19eLBV2v1zu+5syZMzh8+DCAvoffRx8PKvq24+FG3xl4wOA4jvzeMIxdX2+aJgDAtu2ur+un+/ro48FG33Y83Og7Aw8YEomE/N7zvF1f77ouACCZTHZ9nUj3vf766yiXy3d+gn300cc9ib7teLjRdwYeMGSzWfl9t/SdQKPRALB7WvCZZ54BIQRBEOC99977ZCfZRx993HPo246HG31n4AFDIpHA0NAQAOD27dtdX1sqleSCPnDgQNfX/vjHPwalFIZh4Jlnnrk7J9tHH33cM+jbjocbfWfgAcSpU6cAADdu3EAQBB1fd/XqVfm9UBTrhP/0n/4TAOCVV15piiD66KOPBwd92/Hwou8MPIB44YUXALA03vvvv9/xdT/84Q/l988//3zXY/7Zn/0ZgG0yUB999PHgoW87Hl70nYEHEL/4i78ov//93//9tq+Jogh/+Id/CAAoFAp45ZVXOh7vwoULWFxcBNBf0H308SCjbzseXvSdgQcQ586dw4svvggA+Nf/+l/jrbfe2vGa3/md35HKYb/xG78BXdc7Hk+k+c6ePburGEkfffRx/6JvOx5edNab7OO+xu/+7u/i+eefh23b+Gt/7a/h61//Ol555RXYto3/8B/+A37v934PAHD8+HH85m/+Ztdjif5g0SLURx99PLjo246HE31n4AHF2bNn8Ud/9Ef4lV/5FVSrVXz961/f8Zrjx4/jL/7iL2AYBorFIhRFQSqVahIcuXXrFi5cuACgn+bro4+HAb3ajj//8z8HpRTFYhG6riOTyYAQIl/Ttx33F/rOwH2Ml19+GQCr2wVBgND3EUURwiAAjSK8+Oyz+NGrr+Jf/d7v4Tvf/z5WlpdhmCamp6bwsz/zM/jHX/saNEIwe+0aQCkURYGiKBgZGYFhmgAh+I/f+AYA1j509uzZz/Fq++ijj7sFYTtyuRw815U2I4wiREGAF555Bq+/+ir+x9/7PXzne9/DysoKDNPEoakp/NzP/Ay+9uu/jigIcHt+HoQQEEVBMpnE4NAQVEUBURT86X/8jwD6tuN+AaGU0s/7JPrYiSiKEIYh2+T5v77rsnYf/rvI9xGGIVvIlCKKIkSUIowi0DAEpRQUgPiIKQACIKKUvT4MUWs0AEqh6zoopQjDEJqmIZvJQFUU/Jf//J/jJ++8g7/zt/82/s9f/zpUVYXn+7BsGw3LQjafx9DQEAYHB5sUzProo4/PB612IwgCeK4LhCGzG8Jm8H+jmO2IoghRFDHbwb/Ao30CIIwigFI4jgPH80AIQcI0mRohIUinUkgYBhRFwf/+v/6v8fY77+DvffWr+G//xb8ABeC4LuqNBiJKMTQ8jMHBQRQKBShKn772eaOfGbjHEAQB6vU6Go0GPMeB6zjwXBe+68IXkT9fkBQAjSIAgKZpMA0DqqqCECIdgVZQ/gVK4bguKKXQNA2pRAIRgGq9Ds/34bouXN/Hx9euIZvNYmxkBH/+Z3/WpENOxPGiCCEAwzRRKBRw7ORJnDt3DqlU6lO+W3300QfAHH7btlGv19nate0m2xGFIYIoAo2ibRsQhoCiwNR16IYBVVGkbYB4TZv/p5TC5XLF6UQCGg8kHNeFbVlQFQV128bH168jl8thcGAAf/KNbzTpFhBKEYEHJoQgm8theHQUTz/9NI4ePdpUbujjs0HfGbhH4Loutra2UNnagm3bcCwLNJa6VxWF1fK59x6GIfPkufdOAPjcy08mEkgmEmxxEwJCKQj3vAkhoABC3wcoRcI0kc/loKkqKABd0+A4DiqVCv7iL/8SlUoFyUQCx48eRS6TgWGaMBMJJEwTmmEg8H1pBGzHgWNZ+MmPfoS3f/xjHDtxAi++9BJGR0c/z1vbRx8PLCilqFar2NrcRKNWg91owOcRu6ooUFQVqqJA1zToPJAQ5QDKbQIFm0WQMAwkEgmYhgGiKDKoEBuz+FdMN9RUFdlsVmYMiuUyHNfF0tIS/vwv/xLVahWpZBKPPfoo0uk0TNNEIpGAwTMHjuvCsW04tg3btlFaW8Mf//t/j3w+j6effRZPPvUUNK2/RX1W6N/pzxG+76NWqWD59m3UKxUEYShT9ulkEpqmQVFVaKoKlX8RQqC0eM1BGMJ1XTiui4hSBEGAar0OU9eRSiahtllQDk/rJQwDJicMOq6L27dv4+b8PDzHwYczM6CU4sXnn8cXn3uOpRzDEIHnIYwiBGEIRVFgmiY7Z65RPr5vH9bX1nDj2jV8fOUKxsbG8PgTT2D/gQPI5nIwTROqqn76N7iPPh5AiCzA5vo6NlZXWbYuikAUBQnDQDKbhaIoTXZDUdUmu0H4cTzfh+M48HjU7rguPN9HwjSRTCRAVJVlH/nfhmEIjzsb6XRaBhFbxSKuffwx1tfXoSgK5hcWoCgKXnz+eTz5xBMIwxC+77OAJQwRRhHLSKbTSCSTyEURRicmUKvVsLqygu9/+9v48Q9/iKNHj+ILZ89iYHCQvZ+m9bMGnxL6nIHPEFEUwfM8WJaFeqmEeq2GaqWCkFIgimCaJrLpNBKJBDRNgx7fxAmRtTyRDQAgywUCnuvC5iUFcM8+mUgglUjIRRRyBjClFLlsFpquY35uDjMzMwjDEMOjoxgeGcHIyAgTomiz+AgAhacVRalC8BYCnrlwXBcry8tYWVmBoqo4cfw48oODyOZyKAwMIJ/PI5fL9b3/PvrYBUEQwHEcNKpV1KtVVMtlWLYN8KxfJp1GOpmEYRgsiCCEEfsIkVwAsT7jEGWBiFLYrgvHcWSJUVUUZFIpZocIAShF3bLQsCxomoZCLgfbcfDBhQtYWVlBKp1mdmN0FLlMpolvIEAAmaUEL1mwU6DSboRBgFK5jKWlJRRLJYyNjWF6ehqpTAb5gQHkcjkMDAwglUr1HYO7iL4z8CmDUrrtAFSrcC0LAY/iq7UaKHi6LZ2GoigIOMkn4OQfsfmDp+sUnuZXFAUKIVB4Oo8oCjRFYWl8wwAhBLbjyNqeyg2GrmlwPA/VahUKIVBVFRcuXMDm5ib27d+P6elpeJ6HIAyRMk2W0tM0aLEMhaaqgKKwDgRCQLnTIQxNfHmGUYRSuYyfvPMOHMfB0aNHkclkoGoaEuk0stksBgYHMTQ01OcY9NFHDGEYwrZtNBoN2LUaXNtG6Puo1etw+LpOmiZSySQjDscIg4JXFPI1qsT4AKqqMmeeZwsURWGcI9OErmkIggC2bTMHghCYhoF0MglFUVCqVOD7PpKpFFaXlzEzM8Mc/RMnUCgUULcsEAD5bBZEUZi90DRpN5RYuVI4GGEYAoSgdVv3PA/XbtzA5cuXURgYwOHDh0EIgZlIIJnNIp/PY3BwEAMDA/2A4i6g7wx8SgiCAJZlodFowLUsuNwZ8IMAtuuiYVlQCIGuaUhzD1fW5sRBCGGsX4CRePjiiTp8ZJEgB1EKRVVh6DoIPxdN06DpOpKJBMIogm3bWL59Gzfn5mCYJk6ePInBgQGAUnhBgCiKkE6lUMjltr1v/v7ANnFQnImIQMIgABSFRQAxr933fbz91lvY2NzEF77wBQwMDsKybfhBgEQqhXQmg2wuh8HBQQwODvbZxX08lKCUwnVdWJYFi9uORrXK0veeh3qjgTCKoCoKEsLxB7Y3U/5vGOsmEhBBBQVfm7H/j9ibg/IypaZp0qHQdR2GriORSKDRaKBWq2F2dhbFYhH7JiZw5OhR6JoGSghsy4Ku6xgaGGjSKwE/N/l+lILEzk+cr7CDgtsEAKsrK3j7Jz9BNpPBY48/jiCKYDsOFFVFKp1GOpNBYWAAQ0NDSKfTn9pn86Cj7wzcZbiui3q9DqteR61aRa1UguU4oFEEg6fbPNcFIQSGYciavtbKDeA1dU1VZdRNOR8g3gYkCIU0iuCFIXzPY6/hzgPltX3bdeF6HgilKJbL2NrYQBAEOLh/Pw4cPAiDL3jDMBCGIRqWBVVVkeNTxkgsE6FyUiONOQcCIkJpB0opLpw/j/mFBTx+9iwOT0/Dtm3UGg1YlgXNMJDJZpHKZDAiyhR9p6CPhwBRFLHsYb0Ou9FAZWsLtWoVQRgyW6Hr8HwfURhCIQSpVAqmaUpugIi+BRcn3lUkNnVf2A5uPyiloPz/Pd+H53nSzgBsg/bDEBYnM7ueh7X1dUYMTCRw/PhxFPJ56JoGwzBg6Dpq9TrCMEQ6lWJaJTESdNx2tAY04jx3bEeUAoqCcrmMt954A0RV8eVXXoGiqqzryrLghyGSqRQrI+TzGB8fR4bzl/roHX1n4C7BdV1UKhUUi0UUNzZQr1ah8rYdwZ5VFAVBEMDQNORyOWRzuR2pMeE9B8JTjv2q1aOWHIAw3F7kUQQ/COB5HhzPY61Fvg/f92E7DjY2NrC6uQkQgpHBQYyNjSGXySCbTjOiIU8t1up1ADzd16EuR3gGIL7IVU4oAtD+7yjFBx9+iLm5ObzyyisYKBRAwUiQ9Xod1XodIAQDg4PI5HIYGxtDNpvtEw77eCARRREajQZKpRK2NjdR3tqC53kwdR2mYTSl1ikAQ9cxMjS0Yx6A0BChUcQ4SLGfAdt8HmB7XQqtkTBmO4Td8D0Pjusi8H24noeGZWHx1i04rotkIoHJ/fuRzWSQzWSQTCTYORICy7Lg+T5Mw0Cyg+6IKBEIcSItVuqkwA6CtIBlWXj1tdcwUCjISYmipbFaq8GybaQyGeQKBQwODmJ4eBjJZPJOP5qHDn1n4BPCdV0Ui0VsbW2hVCzCtSyYqgrTNKFpmmzzSyQScDlTV1EU5GLp99ZHX2oJtIACrF+Yk2xEfbC1jCCMgIgMXN+H73lYXlnB4uIi0skkaraNA5OTSPP6PY0imalIJ5NMGATMGVB5diKMImk8pJBRm8eHcmdGkCB1TWM1PeG8RBFee+01hGEovXyFOxagFJV6nbU0ZrPIFwrIZrMo8H/7mYI+HgREUYR6vS5tR6VcBjiLX+f1e2E3DE1DtV4HpZTxfmKlAQHRHRCGYVt9EdGOHOcVBGHYbHtajheGIRzPg21ZuHrtGlzHQRhFOLB/PxLJJAxNQ8RT+slEAulkEiAEjutC58Jl4r3l+wuyMbAjqwhsC6JpmgZd16GrKrNP/LWrq6t484038IXHHsPhw4cBQJIlvSBAqVSC6/soDA8jwzMF+Xy+7xT0gL4zcIcIwxCbm5tYXV1FtVpF5PvQACQMA/l8HulUSvbrAoBl27AtCxRALp+H1mVTE1mBpnQdj/bjwh0AZJ1NJQQKZxELYlDg+3C5nsCNmzdx+/ZtTB04gJHRUbzzzjt44uxZqKqKIIpYtoEQFlWEIdwggKnrGB0eRjab3bFwQ+6wCLIjjSJZnoh4aYK2ODSapkHVNBiaJr38/QcO4IkWqdJ433IYRcjk88jmcshy0lCfaNjH/QzHcXD79m0Ui0XYtg2FZwvTqRSy2SzSqZTMhNEoQrlaRRRFrH03nd6ZTeQQTrhAFEXwfR8BLx8Kol4chJOIxb8iKvd4AOG6Lj744AMAwJEjRzBz8SLOPf00NE2D7TiMo0AIojBEBEgbkEmnMTk+zsqJsQynCCoCLpseDzBEEBS22DjCdRJUTYOh65i5eBGzN27glVdeQT6f33EfbNtGqVZDkvMJ8vk8MpkMCoVCP8PYBX0K5h1ga2sLi4uLqFarQBDA1DSWnspmkctktltnhBhQGMKxbVBCmH5AF0dAEIji0T+wTdgTi1nXdRh8gcR7byml8H0fjm1LgZGrH3+MjfV1nP3CFzA0PIwK7yQQUUa8Bci1bZYmDAI0bBu3l5cZ4z+f3ybn8Dqgqiigmta2/idqkB43QhF3FoIggMtfd+LECVy+cgUjQ0M4cPDg9t+DlR4GBwZg2TZq5TJrqcrnJdM5n8/3GcR93FfwfR+Li4tYW1tD4HlQoggpXUd2cBD5XK5JzltsnnXbBo0i1tefSrV1BChvLxQpfbHOolgULta4qiiSIKhzHROxWUecmOd6HgiAeq2GmZkZpNJpPHn2rOwUyIpuoEQClHcnBL4Py3HgEYJ6o4FiqQTP85DPZpHLZpvIhIIfFWjajjIoKIXlOAi4DQr4zATP8wDPgw0262BtdRU/eecdvPzyyzB1vSkbkkwmoRsGavU6iuvrqJbLGBkbg+d5zNlKp/stiW3Qt6Z7QKPRwPXr11GpVECCABohyOdyGCwUkBTRKl90JLbBNnj93dB1mKa547gUzKMWm6doKRRQFGWbZChS7uJvY153GARoWJZMxYVhiJmLF1GtVPDcc89haGgIFicGEkJgmCZSqRQajYZc1KNjY6BRhM1iEdVqlUUbvo/V9XXomoZCPo9si8OD2LUCLNrQVBVKrM0xDAJ4sdJGFEUYGxvDxsYGzn/4IRLJJNKZDOuTVlWAECiA7HOu1GoobWygUixi34ED8DwPuVyuzx7u477A0tIS5ubmEPk+SBQhqWkoDA+jEHdqhe3gHQGu68LjQmK5lomAwHYGTTjefhDsiKpVvuEb3HYoLZGxOKLjurBsWzL5i8UiZj76CCPDw3j2uefQsCz5N4qiIJvNMsl0TjrMZDIYGh6GbVlY29iA47pQCUGtXkelWkUmnUaBOzzCsimc4Bw/FwrA4NlD4cQEQYCACxYFQQAC4JHTp/Heu+/igw8+wMlHHmEcCz5cDZRCU1XkcznUGg3YloWF2VnkBwYwvm8fbNvutyO2Qf9u9Ijl5WXMzs4i8jwolGKgUMDw4CCSyaRkzzdxAPj3juvK36dTKenFE7BygMdTcfHNX+U1dF3ToInNsaWlUJQHhO6A4zhyMYsa2nsXLsD3fbz80ksoFApyQYtFQABJbqzX6wijCLV6HVmeWhMM5ZCT+8IowkaxiK1SCflcDvlsFpqmgfJUID8xANhBVlI1DQlVBXj0EwYB/CDAo1/4An7wwx9icXER00eOwHFdOWfB4I6EaRgYLBRQrlQQBAEW5+aQzWQwum8fBoeGkM/n+55+H/ckPM/Dxx9/jNLWFojvI2EYGB4dxUA+zwhzwpmPtRYL2I4DAEhyETLw11FK4fPAwY/r/YPJiau6zurtPPIOW4jIcYScwCi6FnRVxdr6Oj766CMcPHAATz75pOxKioPwzKLFZYUt20ZEKVKpFAYKBQRhCJ2XA8Xv6/U6krxdOZ1KQQFraRRdSfHSqLge0Umh6zqSYNlRPwiQSCRw5PBhXL9xAwenphAYBizHgWEYMHUdmq5DAZBLp6EqCizLQq1SgVWtYnBkBL7nYXhkZGf740OMvjOwCzzPw+zsLNbX1qAEAdLJJA7s34+kacrWHCW+kFsWtOM4oAASiQQUQhBGERsgImp4EH9G5IOs8B7fphRaSypeRA/xxQyxcAwDP3r9dQRhiJdeeonNGQdkyUFVlG1NAjDnI5vLoVavIwoC1Op1eb4EwMDAAAq5nGT7B2GIUrWKcrWKHHccZC2OEFmbbO2GiBs74WiIRT138yaOHD0q645BEMCybXZPuEOUz2ZRqdWgKAoaloWlhQXUazVMTE5iaGioTy7s457C5uYmrl+/Dt+yoAIYGR7G2NjYNvk2ijo+syJDGFGKBFcP9XkGQAiJCQiyXcIwZMeRROsajH3vcL0TkQ1IpVLY2NjAhx98gKPHj+OxL3wBFIDveYyUzIXG5NH534j1aLsua0FWFKaoahjIZrNwHQeVWg22bcNzXaysrcHg3KpUMsl4Ctw2BJwA2eq8iP8nfEaLYRg4deoU5ubmsLK8jOkjRxBxWXbXdaFyEreh64xjFAtSSsUirEYDjm1jfN++PgeJo+8MdMHW1hbmbt6EVa1CAzA4NITJiQlZ22pl9LbC5Up+QqmvVq83efIAq/0L5a/4Zkm4GqHoCIiwc4HYPBsgkOYKg2+88QZs28ZLX/qS7LcNYkxeTZCThOgIP79MKsUyAFwwSbQxEgBUUZDN5ZDJ5dCo11Gt1eDzGQilSgXpdBoDhQIMXUfIz1tcT9QhMhG/P3H8OG7OzmJ9dRVHjx2Dy2ufrYvbMAyk02nUGw1onKtQ2tyEVa/D2r8f+w8c6BOE+vjcEQQBFhYWsLK8jMh1kdB1HOCteEIwSKytdqC8bk7BMndiDcQ3eYUQZjdE5pBDtBfSKAIUZTuijwv+RBHrz/d9ACwYyKTTKG5t4d133sHBqSk89uijTdcjyoji/OLdRCYPjCzbhtVoyDJpxN9PNwyMDA+zmSm1Guo8eNnY2ICiKMjncsjlctJOSP4Tv5Z25RGAlV2PHT2K6zdu4PSZM6y04nnw+Gh3y7JgE8KyJLqOJGWjlyOeWbm9sIB6vY6p6em2RMSHDX1noA08z8PS0hK2NjZgV6tI6jrGx8dZOhrb6at27X9x2LYNx3F21NS1mEhHp8hATB0LeTkg7pFHYcjU+/hi1jQNmXQaCiF49733sFUs4sUXXkCOP+Ci5QhgWYF2KT+AGYV0JoNarSZnC6R4S450fChFJpNBJpOBZduoVKtSMa1WrSKRSmEwn4fOST1yYQseRRskEwlMHzqE2dlZHD12TLZj+twpEIvbtm3WdqQo8HhGBoTA9zwszM7Cqtdx/JFH+g5BH58bSqUSlpaWUN3aAgkCDORymJyYgGEYiCiFSohUAmyFKP0FYQjHcWA7DlLJJPyYjRDlM13XtxVBW8S/FEIQxmxGvI3P55oBYjNPJZNIJBKoVqt48623MDw8LEsDABs1HMRsxw7w1yW4sqnrOHBsG7qub2/uvByiaRoGBwaQz+WYU1CvIwgCbJRK2CiVMJjLIc35SNJaxrlJbXD02DFcn53FzdlZPHLypAxGvCCAy0u0goslSrSKaF9UVZS3tmDVajhy4gRGHvLpqn1noAWVSgW3b9+GW6/DrdeRz+UwygVwENtEWx/N+KhPSimqtRqK5TKiKEI2k2n25LlAR7eeTpGW04CmckK7xWyaJgghmJmZwe1bt/DMM89geHi46XiiRKBpGvyWNGMcGo8SqrUaG0/MjZcUAokZnlQyiVQyCcu2USyVYPGMgmVZGCgUkMtmd3AJwDdwyssg4p4dO34cN+fmMD8/jyNHjgCAdJgESUp0WYjWS8/zoHPDGIQhNtbWYFsWHjl1Csm+AlkfnyGiKMLi4iIqpRLsWg0qgMGREYwMD0PXNERRBLGVtpb8mnhEQYDNzU1YjgOdBwtCd0DT9WZBnta1JcDbBCmw3dfPFQ49zwM4wTedTkNVVVi2jR+/8QYymQyee/bZbZGjWGszgLZOdjxmTyWTUqnQsiymQNjy2ogfZ6BQQCGfR7laRalUghcEWC8WkWg0dkgZx4MKSbLkv0uYJqanp3FzdhbHjx6FyjuskqqKhGmy7iXuDMRF2VRCEBAmB+95Hq5cvAhrehoHpqYe2nLjw3nVHVAsFrEwNwe3WkXouhgZHsbw4CAyXJI3Dpkm4/8v0vm2baNUqaDCe4OTySRyfEpfMpmUTHlgZ9pfHFcek3+J2n2j0UCdi48ItqyoJ964fh3Xr1/HFx57DJP79zcdT0QbADoyaOPmRNd1mWnwPI+NSI2dk9jQxfENw8Dw8DBGx8aQ4ITErXIZy6urLDMSew/BswBYtkCIjKTTaRzYvx/Xrl3b4UCofGHncznk+EAnMau9wZ2PhGEAhKBeq+Hihx9iY3W17XX20cfdRhRFuHnzJipbW/BqNSQNA6MjIxgeHGQZslb+j/yGfSfaAmu1GnOq+eTAHBfbymSzTGhoF5KsyAKQ2JfKOTyVahUen2SaSCSkqqfn+3jzxz+GQgief/55aC3KhvGZAbtl3ET7o8haNOr1ZiJxC0kyohSpdJplXXM56IoC3/extLqKrVKpacKiKE0IGyJkkymA40ePwvd9zM3PN99XQM5+EcJDwrlyfR+2bTNFWF0HKMXi/Dw+vngRbsxmPUzoOwMcW1tbuLWwgMjzoKsqRoaGkE4mkeNyvK2pdRp74CilsB0HpUoFDduWSlsJ02SRga63VeprBQWk1xtf9kKy1Pd9EEVBMraYAeD27dv46KOPcPz4cRw9erTpmHHJYqCzMyDaegRM00QimQQBYPMWotjFS/EQn9cTCViqcGxsDIVcDjrvPV5ZW8Pm1haCdiWVmEMVUYrDR4/Ctiysr69v3w/+OnFPDO4UpFIpGIYBVVXhuC6K5bIc+Ww7DpYWF3F7fn7HyNY++ribCIIAs7OzaJTLoL6PHNfkyGUyrJbe8vw1kfs4L6jGybheEMD3fVhhA7998Xfwy9/9Ffzu+f9Brq+OYkNAUwCB2Pd+EMjWZlVV2eyPZJIJBUUR3n7zTTiOgxdeeKFJ56A1K6B1cQTidoMQwjKhvMRZbzR26JBElMLn2iMErFVxoFDA2Pg4kqYJXVFQq9WwtLLS1NLYBJ5ZjSiFmUhg3759mBfOQOtLwUocKW7PTdOUWYNqvS5VYWkUoVQqYfbqVdRrtY7X+6Ci7wyAsX6XFhcBz0OabzaqqiLDH+omBS1AerhNToBlIYoiaKoKwzSRzWSQSqWY/jY6L2RxzLhHH0cYRajVavB9HwpfaCK9RwjB1uYm3nvvPUxNTeHRM2eajys27Zh33y0F1vreiUQChmGAEiYk4vk+Uw8LQ0SCGMkZxiJToCgK8vk8JsfHWZSgqmjYNpaXl+W8g07vLWaULy0tyeFLO1woXrJImKY0vGLmQ50TNMMwZJ/L1hYWbtzYodrYRx93A0EQYG52Fk6lAiWKMMDZ8bquI5lMbov9cIh0t8jU1Wo1GbGLFlozkcC/uvL/wcf1j1H1a/jm7Lfwv3v1N1Byym3PoTWLGIftOKjzMemGriOfy8HUddmJ9O6776JUKuGLzz/PVEbjEOcpOpC69eTT5umIqqoyhwOshbheq0m10pCLCCnifGP8CdMwMDY2hqHBQSYkRCnWNzexur4Or8MaFqXGyclJVCoV1hHFywFNtiOW3UilUijERNSEQ+BxLQPXcTB3/Tq2NjY6X/MDiIfeGdjY2MDKrVugnicHbxBA1qJp7GEVi1kwZ8stToDQwhaLo3WYSDvQLiWDIAhQrVbhhyEUVUW2RcnL9zy8+957GBwcxBNPPimPFW/9aVrQ3IHoeC7YdiCEN29wSeWIM4HDFj1zQRBqPa6qaRgZGcHw8DAbpUwINkslLK+uNmcZWo61b/9+LC8vb9/z2BCVpuwKd0QSySRG+Ht4nFBp2TZq9Tob+VqrYfbq1Yc29dfHp4MgCDB7/TrcahU0ijA2MiLr+SmuJ0L5WokHEEEYMiGeSgUuJ7WZPAARkfmWtYWQbK+zi1uX8LVv/1O8vfqOfP9uTgAANGybiYlxJ0MENsIZuXnzJpaXlnDu3DkMDQ01rf24zZNcoy6ZAeFciPMS52aaJiMVcoJxu/bodsFJOpPB+NgYctksdEWB57pYXllBqVLpmOkbHx+HqqpYWVravkftbAcP7DRVxWChgGwmA01V4fPupUajwYalAVhaWMDK4mLH637Q8FA7A+vr61i9fRsRl80cGRqSDP1UMimFfpoWs++jXKnA4nK/aswJSJgmIsoU+0QtvRNkNoC2b7vzfJ+R+MIQqqIgl8k0p/gpxfvnzyMMQ5w7d2570A+2Sxc0YqNKfd9negI8yxGJ64pt/OL/RYlDLKCIUsYD4MOMrDZpu26Zj1QqhYmxMRSyWVk6aFcTFJicmIDH7/GOe8ZrhULeWCzspGmyDod0WrKWfd/HVqkkZzrcvH69K3Gyjz56hXAE/HodFMDk+LjMjIk2Nrm5xvg1lm2jyrtvKBj5rcB181X+zAKAaRqgLTmxklvCf/P6/wm/e+H/BTfs/BxTAPV6HY5tA5SyAUIt8ruVSgUzMzM4cvQo9k1OAtiOsEmM2CxnjFAqbUcYsxtiPYo1KbJywm4CTGiNECLr860QKfxWR0HlnQdjY2NMdIkQVCqVHTwkAU3TMDY2htXVValx0nRfKJVD3gQUzrtKpVLQdF0ORKo3GqhUqwCAjfV1rMUcjAcZD60zsLa2hpWlJUSeh4FcDqMjI1IDQEj+CuUu0RrTsCyUecpLVRQmscmdACmaEdt423nTwkB020Ad10WtVkMElt7LZrM7ZERnZ2exvLyMJ598su1ELrGwCSDnmctUH93WF5BRAP9q0jqIdRCkuRyq5/twXHfH+8UZvq1QFAX5QgETY2NIplKyJri6vr7DQAzxKH9lZWX7nsV+L0lE/LpEOlAMdzF0HSlOMgx8XxrGwPOwePNmn0PQxyeCECHz+KjtyYkJJJNJuZEnTFP28os1EQYBSjyAoGARs3QCxLrm3TGUUuSSubbvTSnFn1z7E/yvv/e/xVxlfsfvI8q6mIQoUTqd3mEbwiDAOz/5CTLZLB6NaQnE0cozEsPPALZhNGUQYn/TTnhN13UYpslUTrl2yY73E0JFbWCaJsbGxjA4OMimJEYRVtbXUW1T09+3bx+2ikX4ntf2eBG3b2IgUhSG0FQVKdNk5ykEisDawmv1OqIwxNrKCoqbm23P70HCQ+kMFItFrC4tAZ6HwXxetuGJBa3zKFjUtHzPQ7lalfKgpmliYGAAZiIhiSzi8Repar1NVoACgKJ07LcHWPTQaDSY0TAMScaJQ3r2R45gYmKi7XHiCzWuMbAb2joDvHshydXCLMtq8rCB7QeJdHEKdF3H2MgIBgcHoWkaAt/H8uqqvK/i7/ft24eVlRVpYBT2CwBoa0zEBm/yex4FAVLJJFSu5Gg7Dur1Ouq1Gm51IBn10cduiKIICwsLcPigr/3j4ywbyDcWAFB5f70oGTRsGxVeXlMIQZYP7tG49n782IKMq6jtNrIIBDzFX7mJ/9V3/zf4j9e/KY8RRBEq1aq0Ya0lRYEPPvwQlmXJbGIr4t0+0hnoUbdDZibj3UZgWVZB0GuXWWzqyOpw7Ewmg4nxcdaRpSjYKpWwvrnZ5NyPj48DYGOOxfHiAkbtAoEwimTLpmh7FC2SYRiixrlSS4uLDzyp8KFzBhzHwdKtW0AQYCCfx9DQkPxdEASgADROmqOUNi1mlRDksllk+RhRBZCpavYtS8lHlLJ2lRjkA9/BEaAA6o2GbONLJZPItBnCIzz7bC7X0bOPv18Yq5ftWYwn1j4IMEKhpusgXH60o0vDHYJOHRSZTAZjo6PSWK2ur6MUKwtMTEygWq2i0Wg0HS9+Lu0g5iwAkGlYMd/A5zLLW+vrWL51q5er76OPJqyursKuVKBSisnxcdlHL8qCiqKwNmDKhuuUq1UplGUaBgqFAkxhF2iz2p4UENN1aGozWY8phCpNqUQv8vC7F/6f+Oc/+jo26puoVavMRnECr97ibACs62h+fh6PPf74TsJgDOKcpNhQr3Yjlp6Pa64QRemaWYwHD006Ci1QNQ1jIyOsW0lRYNt2EwcpkUhgcHCQcY5a0JrJiENRFMbX4A6AoihSFZZSCsuy0Gg0sHDjRlOb9YOGh8oZiKIItxYWQHwfScPA4MBA8+/5AlV5v2trNiDP5XYlh6CFOBfwWrZCSPNkQf5vt9ager3eNb0nIDz7p59+umNqLd79EMUWdK/DfJo8fDSn6dO8Q0KoIDb9Xfz4nBzUaQGahoHxsTHWcaAoKFerrGwQRRgdHYWiKFhbW2v6m6jF0Ow4b8LmO4DrIwCMKJTl3RdRFKFuWbi1sMC6R/roo0dUq1UU19aAKGKEVe4IyIhTUaBxwrHVmg3gxGQxVIwQAtKywQpnwNB1aAqzHYKz023dvrfyPv6r7/5zzGxchK5pyPFOqFZYjQbOnz+PAwcOYCo2LrwbemkrjENooojvgW3bsVtmsfU43ZAvFDAyOsrKBmGI5bU11Dnpb2JiAutrazs5A13mQAAsGyxmzEjeWDqNJCd1ep6HcqWC61euwO7U7nif46FyBlaXlxE1GgClGOMbTjx9JB5kQSBpzQaIxQzEBIFEax0gx4dqfFrYboxf8Nc0eCoKlCLL+2DbQXr2Z8929ezj6KYe1gnC+LRTTFMUBSlOCnIdR5ZF4n8XRzeHQFEUjAwPo1AoQCcErutiZWUFQRAgn8+jXC7L14r0pRRU6WAgTcNgBCZOfiLsxNjcBi4u4rouFubmsDg31/M96ePhRRAEWLl1CyQMkU2nm9ce3VYP9H1/mxsQzwYYhuS6SLsB7AgkBPlVV3RElE0j6RYpa9CQRx4Vr4L/xwf/Azajrfa18ijCT955B7qu4+zjjzfV9ONobYWM7sB2tAqqxXUWmjKLvBTa6Ri7OQTJRALjnFyoKgo2ikVsbm2hkM8jjCLpHACxCapA81C5prck8nMSthhg5d4MJ2CGYYhyqYSLH33Uttxxv+OhcQYqpRLqm5vwggAjQ0PMi+e/Ey03URiiWq9LoYumbEDLYhYQBEOgOa22u8QQQ6PRYBkBSpHNZHa0I4rFaTUaeP/995lnf+BA0++jKELARwKLqWbiy7JteL6PwPflYCObs5ldz4PjOHBcV75e9NsGnBkcCvnf2KLWdV0qH1qWtT2joVPE3sUhAIBcLodR7ulTSrG6sYFkMokKLx3EZyvIY2JbmbHp52JRg0dbMSJlMpGQGRc/CHBzdhaz1693PK8++gCA23NzgG0z55WXFePpcEIIHMeRAUS7bEC7DU4O8uJsfFFqUIkChSidlhMAQIWKPPKgEUWIEMWoiItbM21fe+XyZZTKZTxz7lyTwqDoBAi42JHveXIeiO04cLg98LlanyPshusyu+E4bIhSi+3wfR+h6Ezi1yWQEZnFKJKZxbaWoQeHQLQv5zIZ6IqCeqMBlxO4he3Y0ZKMzsGEKFtG/LxlKUdRkEmlpKiZVa/jg/feQ+MB4xA8FLMJPMfB5tIS/CBAJpVClmvmiweC8Ki0zjUDACCXzcq6f6fFLCDIJ2HLdK/dHuaGbcPl9bNMJtNEOhSbvGAY/+Tdd6HqOo4fP876YEVbT5zRC6b9jdjPGpYltQHEgBTR3+y4LgzOcBZ/H182Pp81oKgqcwYIi1RE9BEEARMhiiLkMhl5j0hLdBLvyOiEBPf0N0slOLYNRdNQqlR2Fwxqw08Qym9iQcuXKgo0TUM6nYbtOAiDgGUHoghHTpzo/j59PJTYWFqC32jAoxT7Rkflcyzb8ChFo9GQdXCTT9YUEX23EqHILIq0tMJZ9braPjMoEHcEIhKhiip0VcfjI48D4M5FELBR46USrl69imMnTkA3DFSr1e22Yr6m4zoq4rz8IIDjOFAIgc3toJic6HgedL6RC5sRtx2izh7wTVVolSjYtg1iEqNowRbti00e0C7cI3HPBgYGYJomisUigiiCbhhY39zEvn37OnYPCYcgLv+uiA4wLmIm34MQUFVFIpmE4rrMSXIcfHD+PL7wxBM9Z2nvdTzwzkAUBFhbWEDgulAJwcjICAA0OQK2baNhWexBoGx+eJMjgN03dtGyQqMIKi8TdIPNp3tFUYREMomILyDZ58/nekdRhLW1NWxubODs2bMIogiE/y4Okd1oTegRsLJFIpFgvAEABudBiDno8QVBgSbBETkxUfQVA1BEWYUPOXH4xqrpOmgYArHZAWrs+90GgAiCUKVcZqpllGJ2bg7TXYaHyPtMyLZxwzajOQhDSNPKWd5EUZBOJtnglijCwvw8IgDH+g5BHzHUi0VUNjbgBQEGBwbY/AtsZwNCriIY8TG7QuZWEUS6HqJbAkjNDE3XmeCZ0tksK1CQQw6EEoAANmw8VvgCvnbm11BAAcVSSfb5R2GICx98gHQmg3379sHjRMfW9xfl0ni9P+BCapquy4hZ8KV0TdvmTsVth3AqROkkZsPAbQeJbc6u58EvFpHi+iCgVNoJaT9UVa7ZbkjxmQibW1vIZjJY39hApVpFdreBZZzwKe28ICDzrImwOwQAOLFQURSWcXVdzLz/Ph49exbZB2AE8gPtDERBgNLyMhzbhk8p9o2PNzkBlFLWhx6Lzl3Pk6I2TaM0d4HoRFA1jU0lbAEFyxwEQYCGbaPOe1hFD64XY9jGU5BRFOHatWsYn5jAxMSEVO0S/8qHVXi5sYxHGIZyQ8/FvFch2pFMJJBq07EgkEgk5HvkslkWUfBshPgeALu/vs/GlrI3ZvKjQQC/JR0nz1tVofHF3lqTzBcKgKLg4qVLqHI9gtHh4Y5zFYDt7EME1t5pGIYsd8TviTgHEIJUKgWvVgPCELcXFkCjCMdOnuyZaNnHgwu/Xsfmygr8METSNFHI5ZpsR8AVOaMoAlFVFAoFOSFP44N6erYdnMEunm+txRlQoEDn/xVQgEZ1KCBIJ1P4W8d/EY+NfEF2zACQTu/yygpq1Sqee+45JGNrGYSNR2/SBkALN8iyoBDSXFrzPDmDpJvdEPfI930kk0k2vpkHShHYRqvrOsBF1UKusBpFERAEiAAE4rxi/xJA2gtN03aQokXr8mI2i8qtWyhyYbN8rr1uAwDJKRLOXcQ7MjTDgOd5TfMaCKWAokA3DCQB1PjeMXPhAk4//jizW/cxHlhnIAoC+NUqk/0MAgxxIo9YAFEUoVavyxRdOp2GaRgolssI+aJOxh6EbqBgG6/QviaKIhW5Av4lamee67J2I7DWN3FOmqpuR9L8gSeE4PyFC4iiCE+cPduxw0CixQCJWv6eWwrl4bZTnYQQqIRszxfnSJgmKqrK0oG6DiOTYTU3nt0QwkBRrHYYhCGo70O4PyI9p2kaFH7/0qkUUskkXMdBGIZY39zc1SFgJ8vaOzWeBaG8zauViyGch2wmg1q9DhqGuM07DI4/8sgd3a8+HgwEjQaqxaLsSBkdHW1yBDzPY88MLwlmMxn43DlwPU/21fcCESSAEOhctluHhgQS0gFQOLUrgwwUqgKgqKOOx4cew5MTT0ibocRsh+04uDE7i+npaezbt2/382jJGNwJ8TiO+CYtRYtajqVpGmtRjiJkeATfajPE9+DiYpI71MY5ECqs+yYmMD83hygMUeZlkYHdIndKWZkXrNSj8ImOidY9gPMIdF1HMpWCZVmwuUPw6Nmz97VD8EA6A1EUIWg0UKvVEPo+NN57C6ApvReEIUAIsum09F4TpolGEMB2HPZQ7LKoxRJyXRee67LolD/IojYnUmlhGML3fZimyXQE4gpkbVAqlzF74wZOnzmzuyMANNXHgRgbuEfD1ApZD+xSsyOEIJVMsgyL40iPXVVVoGUDFqnLkJOWAl7XpDwT4/CZ48KpyhcKsHn5JghDrG1sYGRoqKvMs+u6rI1IVaHrOnxOrOw0J0LhJYOGbSMKQyzduoVEIoGD09N3csv6uM8Rui4Cx0GtWkUQRXIQltjcHMdBnetf6LrOZpmI7hsurGPbthyC0w0ULEp2PQ+e57EghVKkwhTSSCPu2ieRBKEENiyUUIIHD/9p+Vv46qO/iH3pnZv9zMwMCCE40zK8rNN5tEJ2WN2p7RDOQBfbYRoGPNeFD3ZfU8kkFE3bsSlRbDsJItspsrdRFCHwfVjc1qqKItd6FIbQdV2WcoZaWsmb3oOyoXMErH3a4bMK4qWCOBRCoGsaUtwh8DwPlz78EE8++2zHbrB7HQ9kN0FoWaBBgFq1Ci+KkBcLGiydX6lWZWqukMvBNE258ZlcmpLynvROEGz1RqOBUrnM5hUI0gxPTWuahmQigUw2i3QyyaQvUynkslnk8/ldve4PLlxANpfbMZa42zk13Ye7sKB7SZkboq7IhUA6QegvmIaBdCqFbC6HQj6PVDotPXuAGcggCJBMJlGr15nKWxDAc12sbWx0HHQUhqEs+aQTCSQMQ37mHa8RLLoQcsZhFGH2xg1sPQTyo300IwoCBFxgxg8CEEDaDoC1HAtHwORTMxXu/IN3EABMTtzv8sxFUQSbS45vbm2hwYdqRdwxPjZ4DJESwSY2KrQCTdXwU4e/gv/quf8DKkoFDhxEiBBGIX7/0h/sOP7m5iYWFhbw6JkzXR1nidYggpOTgd7VB9sftnXCwk4kufyv53kd75lYo4auM3uaySCXyyGbzTLtAs4rEF1HKuc6WCKQ4APfNra2OhIKLc7fUhUFyWSSdQ60EAlboRACQ9OQSiZZMOM4mPnggx2dT/cLHrjMQGBZiHwftXodQRAwXfxcDgSA43mocZ0BjU8BFBuyeEQU3pNeqVbhex5c15Wenhj64/EWHGEEALbxqpqGdDLJ+ml5uhtgi7/CFfsMXe8papibn8dmsYgvvfhiz5t567b9SVN98phdvHuBZDLJCEFhyGr2PUxsFEQnVVGgxtJxwvvP8PRrBCCXz6NULqNh25i7dQtjIyPIpFKybCBmR4BSpjPOMz2EH6+Thw9AzpJIJZOy++LSRx/hiXPnZPqyjwcbIpuIiI8MD0MM5POyDa4WEwVLJZNSwz7ecqxrGkzTZJ1J9TpzJLh9CIIAXhCw9r3YBhNwbpLBo0xN0/Di4POoKVX8ePlNHM8cxSvjryCtpZDJZPBzR38Gf3ztG/Lvv7/4Gv7+iV/CkcJheT4fXLiAgYEBHJya6u3iYx0FwHZGUSgq3glkP/8utkNTVSRMExZve85lsz1xLSj/EnNkAF4S5MFYIpGAbdtI8M+pVq9jc2sLtm1jZHi4KesrbDrAsgIKL9uKrGInh0qUVnQ+D8WyLFTKZVy9cgWnTp++77hHD5QzEPo+IscBKEWtVoMXhhgaGICqKHAcBzUuRCHSezISjQnaANtqWbZlMZIIf1ACzi+IE/x0w5CtMTQMkeIRpgQnKQqJYkHka20BjMP1PFycmcGhgweb5JK7oV37zSdN9QlHp5fRPqqiIJVIoGFZsG2bRfptFoMQNpH3EDszGqLMkM9mQaIIhqZJqeGtYhGe72NlZYUxvLnjJcSPRNlCXLfQfAg6LOp4F4Wqqsik06g3GvBcFxc/+ghPnTu3O0+hj/seYaMBykfY+r4PAqBQKCCilAUGfAPPptNsJgnQtmMglUrJQKFUKsEwDARBINeiUBQUka6QvVVVtSm9/DOH/wZ+ev9X5MCyTCYD0zDwDx/5+/jzm38OK2AkYAqKf33x9/Hfv/B/AwDcuHEDlVoNL7/0Uk+bUdyZERDneqflRQDMdvS4GSYSCbieh4C3M3biasWnrAoiclz/hPDUvUjfh1GEdCrFeFmKggofOR+sriKXy21LlfMSjWmacq3rus7OqVuUH+u+MHQdSCZh2TZWl5aQTqdx6D4rNT4wZYIoihBaFkCIJAaqqop8Pg/XddGwLMaEjaX3gM49rCpPEVWrVWxubkoJSqFjnc/lMFAoML5BTHGwdQNs2DZLORLCoky+SBT+RdosmksXLwIAznSZPbDr/bgLqb4407Zbr6+AmUgwTQKuYSBAY+fTKkJCuhzfTCRAOWFLzHw/sH8/cuk0NF3HVqmEeqOBcq2GGheLapVOFWqQQZt2zFYIomQ6lYKqaahXKvj4ypWerr2P+xeh4yDiqnNVnhXIFwoghEhuEeEZxrgjQACgTdpZ1zT2XFYqKJZKMtWsc42LQj6PQi7HauQ8em512ENepqRgm6UYwlVIDOCXH/llgFBEYHykt1bexszmRdi2jctXruDY0aN7IrJ1yih+khKBOG4vK0chBMlkkmVvHWdbxAzbDkBIt8fJk9gm3MnhSCYS8FwXOi/Vjo2OYmJiAgnDgB8EKFcqcGwbpVKJDSPyPBY48LUeJyCHbdZ/u+vSDUMOOZqfnW1SUL0f8MA4AyFP8dEoQpWPGS7k8wiCQNb5Erze1K7NDGAOheU4KJXLqNfrUDkJTVVVRJQimUwin88jzdN5soWPlwtISz+s67pyrniGj9VtAv8bIeRDCEGxWMTcwgJOnznziYgodyPVF/d8e4HCo3JCCGs3jJF+aMtCbn4b0jZ7kUgkmIGIORa6pmFiYgKFXA7pVAqlahWO57ESDF/olWqVRfe8qwBgmYHW+yAIXK3XLEoGRFGwuryM2/3BRg8sQt9HaFkghLCsgOdBIQSFXI45Avy5ycfUQaUjQLblyT1emiyVSnB5S5pY24J7kM1mkTTNpohbbHBNzyalaNTriCI2US/dQh7+u8e/isHEEDRFBVEVgFD8jzP/X3z44YfQVBWPnDrVU2kP/Bp23JO7mBno1ZE2dB2aYTCRIz7qOIy1MXe6nk62zUwkpKCbQJZPPkwnkwCl2CyV2HpXVeiGAcuyUK3VYAv+gKpCAXtGWu/Tjuvin7Wh60iYJoIgwOWPPtpxDvcyHghnILBt5tkDsoNAaOiL0oDBNaYlYgIZruOgWq+jVC6zB5Fv7olEAmPj42yWNiekWJa140GgXFQj7ggEQQCL628nk8mObPY4CCG4fOUKCrkcpg8d2j7+HdyTT1wiaD3eLos6AmSrlcpTbSKb0ku6sl2GRNd1KIrCHKqW1xYKBcboJQSOZaGQz7OMj6oiwja50+IyqqKfmRACGmM6d5JCjY8ynb1+/b7z8vvYHWEYsiCCMMGqSq2GgFLk8nnYXDsDhCCXy0kZX1EaAO9Katg2SuUyK0vycqKqqshls5jct49xCwhBNTZeOA4qZG9j67Qpm5hO71gXSS2Jf/TIPwAAEBAoRMWV4hW8ufw2Hn30UUZ+6zUA6FZe/ISZgZ7eHtsKrwnTREiZQmq7e9UJ8ZkxAolEArbj7Pi5mUggl83KsnAQhhgeHGSBFyEIeVdTtVaD67qMT8DLRnE71o6IKIIdUW6wLOu+yize985A6PsIbVuSVaxGAyFlA3/qgiyo680ZAb4JOK6LUrnMUoNiyh1P5Q0UCmy4Df9/8bA4rsuMRqyWFKG5RECjCHV+HoZh9NYWCGBjYwMbGxs4ffr09jhUQpqGmsRTY3HFrx335S6QByViXQVi8YraXdxzF2eRME2IcaV7Yda2evmEECSSyR0jTz3Pg9VoIJPJIGGaSKdSqFSrktGdy2TYVDneqiXUHaV2PL+mTlwIcR26rsM0DAS+j6sXL+4ujdzHfYWIZ+0AZgvCIAAohanr2zLh3AYQsj1jIApDlgVoCR5M00Qul0M+n2cqpoaBXC7HHFRKUa3X5RAjgZA7Fyp/9nfNJnL8/JGfw1h6TP4/BcVP8A72H9gvS2+tX9uvFd+036Sk7bgLgUTTBkq3lUyl/eCzAwST3+QKjkIYrcc32XGuCdNExInIAkI6OqIUBT5zRiEEtUYDSe4kCM5XBIASAtt1UalUmGPBnTbZMt4GwiFI8szQ+soKFhcW9nLLPjfc/84AT/GBM0mF0A+lFOCpnmwmsz1FizJt7VK5jEa9LlNiggeQE62GsQ2XgBmFDD9OGIaoVquwucEQKXnh3dc5I10Q0nrFpUuXUCgUMD4x0fwL4QjwiER4qa365wJxcQ7CpUbFBt70Orqtg9D6Rdt8Lxbubi1DmqpKwt+eFjV2evmJRAIuP0YURWhYFjOoYKnF/fv3M8IRpdjkrUOqqjYtbp1Lp7qeJwdRhUGws0QQg3imEqYJVVVRr9cxe+PGfePl99EdoeeBxqJPIQ2ua5p0BIQQGQApSlPnToDQ6W8NHppGl1PWtZTP5WR3jc2zkCKYiGcVm7KJ/LntBF3R8bVTv7p9PTTCerSB127/sOPfCKdABBk0tlGLbIcQByPYlimmbTa/drZDBiex14DX3IWdpbEvcU5xJLgTLwav7QXxYwmxIGF/fN+XZR9CCPL5PCbGx6Hx8lClWgXhaf5MOo18NosU39AjsOejWqvB5VoEHTMv/OciswhCMD872zRF8V7Ffe0MBI4jCTyE15qEYpV4mLPZrNxgHNdFtVpl7H4ubpNOpTAwMMA8whbWeJzxDgCmriOfz0PTNFAAlmWhXK2yYUL8/WzbZgIigBx92QvW1tawWSzi1KlTO2aBd0SHmr4gvhBCoHMiTGuaK764aZuv1uPthR0MbNf7hSRwz2jx8hOGAdtxYPNuEMH0TiYSSKfTUFUVw0ND0Pls8/XNze2RpXxxZzOZbbJWFMH3fVRrNVi23TFzIZniMR7E6tISSqVS79fSxz2LUJSe+MYnpvKJZzyZTLKNCcyxrvO1LhwFQ9fbBg8CklcAyCmGad7mJrRO6lyXRKzFOo9aDcPoSf30p6d+CodyU6CgbFYBgN+/+G/gh72ttyYxsdjGTQhTDCSxwENkRlqDilabEXcQhN1oHdfc9lzEJnqn2QG0cQYIQcOyUOcBQMTLmJlMBoauI8U5YJqioFKtymm1ALPlyWQSWd7FIfYVy7ZR5m3nHQMDfh467xbxfR9zs7P3fGbxvnUGwjBEGH9Y+AffaDRYipjr6SuKAtd1US6X0Wg0WJqYE8QGCgUk2yzkOFp/oyoKcnxzkVmCWo0Jh7gubM4pSLVECbvh8pUrGBocxNjY2O4vjqGTwxDGNsRWiEW+FwgHY/cTYq9RFQWGaULlpZW9QnQY6KYJ27LkhDONL+Y4uVJVVQwNDkIhTA+91FLfFy2GCdNElqs+hmHIlMvqdVZaanUKxD3i/IFkIgHf93FrcXHPRqqPewuB624HEYoiR3g7rsskwrlCaBhFqNfrKPJMgFCdy3PBG71DCa7TOknwjhgxCte2bdRrNTiuK4eUKXvIJipEwd89+FWEUST99KXGMv7z3F/u+redsnu0C9fojrvm9xBEANsbechHK+/trdh7iaFP1UqFdYNwTkImk2kKNrLZLAsqeNuy0yJopvIsZzqVQjKRYCWNMITNlSjdNk5B/GpFZnFzbQ3r6+v3dGbxvnUGqOcxz5Z7slEYol6rwQsC5vFlMqCUolKpoFavM2NP2HCaQZ4JiLOBdxw/5tm3QtSECoWC3JR838dmsYg6l+Q1e1H+4lhZWUFxawunY1mBT4K4935XOAMcu00OYy+Keeci5bfH7IAY3Sz030XqP81LNe2uyTAMDA0OQgVY2o/PMwe2a59CeCgZcwoiMBJRvVaDw+uC7a7F4HoSxfV1bGxs3LcqYw87oihiXAFsG+1GowHbspgjkEgwiVnHQalUgu26EP3rgg8gOlTabqYt2cRWaJxcmM1koClsHLIsPXgeMqlUz9lEAEitp3BAn2z62R9e+Xdwgu4Oa6f3+KSqpR3ebE8vVzj/gtxBdiCKItiOA4u3mYdhCNMwkMtmZbayFYV8nm3ahGBra6t5fHGsBV2UEMRxojCEw4fOtXIT5KUDSPOptKvLy6hWq3u6ns8S96UzEM8KiId6q1hkk/M0DYV8Hq7nsXQO/5CSqRTLBPCUL9B5wXZzBOJQCEEmlUI2m2Xtc2HIJvZxToHruj21+Fy+fBnDw8NyvHLsRLr+XbtaHrDNYQB6Y/L3ir0eKZ7ys3tY1GEYNrX3gJdyACa6ou+SaUkmk8gXCtBUFZVaTab9SCzKD/nAEyFBnE2nmXEnhCnHNRpyYTfdWUqR5M7Nxtpak7PRx/2DqGVN0jBEqVSCH4bIZDJIJhKMD8TbkYVQWI5H9HEy3g6uzi6OQByGriOXz7N2WN6CSwjTSGnEnsFuWF9fx+bWFv7xI7/e9PMtZwvfvPmtrn/bybLc7S4k4M4yCqI1U8xz6QZKqQweapwMLs7f5ATurtlfQjA4MCBl6OOlRnGcMIqYWiQhMA0DWf6siKF3jUaDDaCLlRf5wVlmMZlEaWsLZZ5luhdxXzoDlNfkhYH3fR+1ahU+H1dpWRbbfLg3NzAwIOu+AoKM13ZB7zGVE4YhNE1DKp1mYiVg0WbDslCqVGDZdsfFvby8jFKlglOnTu3pPeV1tPmZVBD7pFmBlgXU06Ju+RvZstMh5SeyAHW+kD3PAygTYUny1FzP7w3WS9yU9nMcCB2DiNIdn4NwCtK87BNxFTq5sMWzQJiGRMo0USkW0eBCJX3cP4iiSDoDwnZUajX5XGa4DLkQqMqk08wJaJ14yccAx7EXRyD+N2EUIcm7EFKJxDbRtVaTUxA7pZYvXb6MoYEBfPnkl/H02JNNv/sPV/8INb/W+b07kGfvivpgG+x2X1qvUOFpfdKFhBzydH2tVmNlFj790eCbdStPqhtUVcXQ0BA0TUMYhnKOgXAGAj6rQl4PdwpyXH8ins30BYE9dm2mrkPXNGyur6NW6/y5fJ6473RWoyhiksMclNf1XM9DGARyfDBRlO2WwA4QEaPw5joxXLueD29bo7wVKJfNQijwua4rB1g4jgNFUVi6WddlqvHypUsYGx3F8PDwjmPv5pJEUQTXdeE6jpTOjMIQruvCdhw5GEho84uxwiJivnbtGpKpFDRFYcM++L+qokDl31uOw8Yrx4R49nJ/RHZA3AOxcALuHPi8nUtA13UYXKIVgBR82gsK+TwCbig2i0WMjowwDgInAbWDruvI8tGvYoqcz0tOcVVDVdeh+j421taQTCbbfm593JuIxERLbuA910W9VkPg+9D4hEsRQKTT6a599m25OHs8H9txEIQhVEWR0xGDIGCDjrg8bxAEsMBannVuOxRFwerqKra2tvDiCy+AAPinZ/4J3l17Xx67HtTxRx//L/inZ/7xjvellMIPAmY3eC+9sA913jYtuh/CKEIUBAj5NEYAuPbxxyzajo1cV4TN4APHojBEEIZM619RoPOhYR3vJ3baO5PLFIdhCM/zpLSz7/vbs2E4pG2NzRwQ3KBeoWsahgcHsc6HoZUqFRSy2aZM647zJgTpZBKGpqFh26BRBKvRgK5pSJimfIYo70yqFItojIywtugeSKKfJe47Z4AKz55H9jYnDTqOA4XX6k3TRIo/hL1AjB0G9r6gG7yDIa4tLjgFSdOEzxd3wB9esSkSQrC5uYlytYqXz55tvkawVpZKtcpYzo4jN3zbtlkvsuMwUR/uxMQ7EMSiUgmBqmlskYpZ54rCnAZKUSyVgFJJjgelXC1wx4YpyircaUokEuzLNJFIJmHy700um5rJZJrIk6ZpwrJtuI7TdnEqfOyoaZo7PjOFkK4jlNuBECIXtet52NjcRIYzuTs5A+I8UqkUNF1nmQGeJdD5tDSxASQSCZS2tjB0jy7qPnZCZAVEO65wiuuNBhzfxyDXIcmkUjB6+DwppVAIkT3ne7UbQRjCsSwgimAmk/K51zQNGU1DlEyysehcq0MMzRGOwczMDIaGhjDMS4snBo/j5f0v4Qex1sL/eP1P8Sg9g0RowOE2w3VdlqlsydLF7YYCbG/w3GYofMYHjSI5pVUw7MWo37bZT0Kks6/rOpNWNk0kk0mY3GYI0mYylWrK4CqEzX7x63WUKxWmHRBfv5zLoes6dF3f4aApigLsMcNhGAYGBwdR5NMkRbAoeFidAiFd15HjwYQIJIIw3J6AyDs0dF3H2toakqlU2y6UzxP3lTMQRRFCx5FENt/z0Gg0UKtUAO6hZbNZ5tXu4SYT8NRfl42iHTzfh+e6rNWNR83NBybyQQX3xj3Pg+f7oJTixvXrKBQK2NjawuLt23AsS7bChJx7QMFIR6Zpyg13cGAAJhc1ERuzYRhQNQ2aqjL1tCBAKpWS7VFxFItFfOe738Uz586h0EbDXJD2giBAuVyGHwTQdR2+68JyHDi8Dcu2bdQ3N2UWRPwdwCa7pdNppNJpqcCoqioCw5DCHuLedCtnCJ0E0jKUZDcQQjA0OIjV9XV4vo9qo4FUItHVGQDYs2DqOlTeheJ5HnzPQxRFrD2RO1a6rmN9dZXd474zcM+DxrkCnLRnNRpwbBuqqm4rWO5x81AIF6+Koj3ZHMuyEIFlmtpN+BStbUne1SAmpQZBgLXVVZQrFRw/fhyXL1+GY9uwbRvHa0fxOn6EiMtpedTDH83+Mf5G+q8jwTskBgcGYHCnXWzM8Wi63miAEIKBNnahXC7jr77zHZzrYjfEGGHbcWDxVkkFrK27YVkyG1Gv1bDJbUfANT8owCa/ptPIpFKsTMidA40PFRI2Q+fTCrt9Xoqw6TGHpBekkkkEuRxK5TIq1SqSySTLUPKgr9v7pbitE5LGVqPBAiZOKE8kEigXi2iMjiKTycjpl/cC7itngPJ6MggBDUOUSyWWuuLp8MGBgd5G57YeFzxNJRZzDw+OULOiAGuhU5Su0YEfBNja2kKxWESlUmGiR40GaL2OYrEITVWRzmSQTKUwODiIdCaDDN9IDcOQnrpkt/LF0+167nQmAeGkF4W3BxqmKcexCuUwcQ8oTy8GQQDHtlGLDQ1qNBrY2NjYrr8DIKqKXCaDfD6PQqGAwcFBptLWYVELgo5CCCLSu9Y5BZNTHSgUsLm5ycRCFAXpHjduVVGQTCSkrGjIswTCkUmYJsqlEjyerelVZbKPzweRsB2KApuTVH2eelY0re3m1hUxgR1CCKii9LzhODw1D0p70hOwGg1scvJZjQ9OA6X4+No1JoyVTCKdSuHI8BF8Rf8y3i2/h5D/dz26gf/y3G9gMjspo9BODrHQ8LjTaFWKGvFSbZhIwDBNOVshitksYTeiMITr+7AbDVRrNdQbDViNBrMdm5vynCLwIXN8yNPA4CCGhoa6l4F5t4bI4PQKSinS6TQs20bkuqjV68jncrs6AwK6pkFNp2HzYMJxHERRJLOLCdNEcXMTqZizcy/g/nIGfB9CGW6zWIRl21B4H6iK7Va2vR+4mQFKgV09/YZtI+SbVIILS8RR55v81uYmNre2UKvVGJGE9xoL4Zwnn3qqufedp5fYKUSybiggNmoxFKl10JESK3l8Um1xIRcaUQqfZzNoFMELAtAwRNjazaAoyGSzSPPx0BofRUz4fIFN7ghZloVSqYSF+XlQSqFqGoaGhuTXAGf2iuuNX3vUY0o24q2kCS5OFFQqqFWrSPToLIr31TUN2UwGdS5aUm802KAqVYWp66iUyzL9ea8s6j6aEfk+60xRFHiui62tLakQapomdNOUNmAviG8vUq54l00njCKZFUgmk1KwTP6edzdsbW3JL2Fbsrkckjy7deToURw6dIj1vgPSTgxaQ7j45iX4dNse/fHMN/C107/eLHEesxeE//xuEY/FpD+h5eGqalPQEHHbEYduGBgYGMDAwIDMcKpcSKxWq2FjYwM1Pi9gfmEBVz/+GADrMhoeHsYgdw6y2eyObjFhK3vJLEqHhXcYrK2vw+HKkJkeonjxHBBCpIKhyDCK7KJpGKhVKrJ7Kr0HldpPE/eNMxDx1j0KsIxAo8FmjufzKJVKiHyfiQ3tAVJ4o5U1Twioqm5LbbYg4OQbUIp0JoOGZaFSqWB1dRWVchlFzmIH2AIeHhrC8ePHMTg0hEw6jXq9jm9/+9t44sknMTY62va8Au4Y+L7PJv9xhirljPhO3j0Fc0TEAlA4t0J6/IRIIpBl21JNEaIuJr7nTkCDt1hpMQZ1XJubALKmKEaAaqq6wxExDAOpdBq1QkFOlIyiCOVyWRq9Gzdu4PLlyxByoUNDQ5IYKep1rTPM2927qMWw5/N5dh2eh0qthnwu1/Hv20FRFKRTKRYp8DYikbGpVSooDAzcU4u6j2ZEfOCQ57pSI8JMJKDrOiqVSk9DxFrRLkMlO5Qo7RhMWHyWgaZpSCQSqNfrKJfLuLWwwKL/SgWU/35wYABHjx7F4NAQhgYGoGkaLly4AMM08eijjzYz/rnty2Yy+NLhF/Bns38Blf/37vp7+OmDX8H+zP6dDnwMDi+JGYYhFVrFdREwewH+r6br2/LDcQEjbjc8z4PrujA4YVi8Lh6hK7yOLmyL4Cg0OdXc0U6nUnA8D4auI5lMwrZtaTeKxSIWFhYASqEbBgaHhjA8NCTLFfKzQRdSNt05qljlbeoN20aDc7V6GjjH3lCSBhWejQrAOGapRAKqosBqNGQ56K7qOtwh7htngPKadLVSkTrPA0NDrDeUt6Ld8ajeNpAfKNDcl8yjQz8IUKtWcXN2FkvLy3BdF6qqYnBwEFNTUxgaGsLg0BCMNr3xszdvwjAMHNi/v/17c2KMqKsLRJywEwQBwiCQm3J84IcYFwzwVFyb4/s889CT/jfPPGiati1Ryr9UHlXEF2839q6macyI+D5c10UikZDZAIF6vY7NzU0Ui0Wsra0x6WhK8b3vfQ/79+/HxMQEMtnsjuxAq6GJQ1EUDPAN2+W1y3SPXn78GOlUCrZtIwhDWLbNmN08o1Ov15Hao2BMH58+KKWgfJMrFosIggCGYWB4eBilYpFxcvbIMRKtiZ02Flk2AJqcApdzjBqWhUathtXVVWxsbiLiaenhoSEc5LYjx2XU43B9H/MLCzh+4kTH1j9VVfHLp34Jf77wn1ELtlvY/mjxG/hvz/0LhEHASMLC4eeRsPyeb+ztGPSCdCiClF3vUYw0JwITOdmU247tl9OOAQ7ASrFezG4kk0ns378f+7kNDcOQZWK5g3D16lUEQYC5mzfhOg727duHsbGxHaqw4to7fZapdJpNU4wilCqVnonpQkGVgGlKKOm07OKqNRpImiaqlQpS6TQajQay2eyux/y0cd84AxFP1dT5Dc3m88im06jxzUI3jD0v6F5qfDL9B8CxLCzcuoWlpSUUSyXQKEI+n8fBgweRz+cxOjq6aw3QDwIszM/j8OHDe07HCc6AqqqgHRQOXU5oVBQFmUwGAHZ48EIeOJFIIJVOb2s2YLvuh1hUAKDpYe228e4Gk7cHeb7flniXyWSQyWQwMTGBt956ixkUsAzLtevXcfnKFaSSSYyPjWFichKDg4O9vS/vMLEsC+VKBaZh9CQXHU//EsIULB3e2eG4LpKJBOq1GvKFAhp8kmIf9w5oECDgQ2oc14VpGKyfXFXheR7CKEJiD2qhEruQ0mQkyjNZm5ubmF9YwNraGousVRVjY2N45NQpDAwMYLxNhrAVC/PziChtGm/eDnkzj79z9G/jD67+W/mzn6z/BNcqH+PUYHs9E0opCB+znOJZL5kl5HZDOAAJrtIoM478fojso9AGcF1XSjsLdJv41w0aD44iykYctxKjVVXFyMgIRkZGcOvWLWxsbAAABgYG0LAsvPvee1AIwcDQEPaNj2NiYgKJZJJlGXfZN/L5PFxe969UKhgYGOjpnMWEQ1A20CqTycjMkO26UHig12g0WCvr55wduC+cgSgImIa8ZSHwPGS4IhgIExyKKEVyLwt6Dw9jrVbDyvIyVlZWsLG5iTAMkS8UcOrkSew/cACZTAa1ep2VDXpwRhYWFuD7PqYPH+79fFtPf5ffq4oCTXQxtIFgthq6DrNL2qvjhk9Yz3674Sy7QedMfRFdtDvHer2ON954A1EU4eDBg1hbX8e5c+cQRRE2NzawsrqK24uL+Pj6dei6jomJCUxMTLT1/ONIpdPwuEErlssY3YNGQLytKMHrtI7jwHZd2PU68oUCLMvqOwP3GHzbZiJktg2dDxozDENm0UDp3soEMeJgN0RhiLX1dayurGBlZQUNywJRFIyNjeHxxx9n5UFCUCqXe1o3EaWYvXkTB/bv76l75avHvopv3vwWKt62Uua/vvT7+O0XfqttBlWUAsTE0Xb3xInbjR7tbes7dcuo7AbTMBBwzYF2XVIAcPXqVVy5cgVTU1NYXFzEgQMHcPjIEdi2jZWVFSwvLeHChx/i/IULyOfz2LdvH/ZNTCCXz3fM6qmKglwuh7ploW7bTLK6B8KwCMpElkXl2cVqvY4gimDzbpZEMgnHcT73zoL7whmwuLSv53lIp9NIp1IyTeYFAWP072EokEQH7z4MQyzfvo2bc3PY2tqCoqoYHx/Ho2fOIJvLIcUliHeoju2yqCmAGzduYHL//p4eps4H6vw+YgO/GyWTTqpqolOh9Sx6eUdCmEJYyAWTWo3O5uYm3nrrLaRSKXzxi1/E9evXpeiPoigYHR3F8MgIzpw+ja1iESvc2C4sLkLTNEwdPIjpQ4eQb8MOVwhBLpuVvcC1Wq2n9BwBI2PGuQpiGlkYhihubWGID5jq5OD08dkjDALUSyUp/yrY2wBrC47AoreeP68eNu1arYb5uTksLC7Cc11kMhlM7t+PbC6HdEzRkICz+rkNimuFtMPq6irq9Tqefuqpnk41pSXwD0/8Mv7fM/9K/mxmcwbvrr2LZ8bPtb88/m9PM0g+B+iGAZULNbWuM0opzp8/j8XFRZw6dQpHjx7F/MKCDA6SiQQOTU9j6tAh+J6H5ZUVrCwvy2xjIZ/H9OHDOHDgwA7ZcwLOeYoieL6PcqXChON62XN4ECFsqeAIWPU6PEqxtbmJyQMHYNt23xnYDY5lwa5UEHieVOGKe4UBZ7nf0YJuWdy1ahXzc3OYX1yE73kYGR3FuWeewfj4OCiAarmMiNIdtWGZEtzFWIgF/cSTT3Z9XezA7S8BnQ3Hp6Et3u484g94/Lx6gcHHEguSpFhUi4uLOH/+PEZHR3Hu3Dlomgbf9xnJMZauBAAoCgaHhlAYGMAjp07BajSwsLCA+fl53Lx5E4MDA5iensb+/fuhapq8X7qmwcjlUK5UUKnVZJ/1blAIQdjiPKaSSSY6RSmWbt/G1KFDMgLt4/MFpRSVzU2EERtZneLS1mKtCrtxJ63IrYjCEMsrK5ibm8Pm+jo0w8ChqSlMTU0hm8ux6XaOAy0WUYtME+Elt26CNgBwY3YWg4ODPZfFKICfnf4Z/MmNP8WavcbOk1D8T5f+DZ4eewoKabYPERcdA+5OICHReqxO5ZUeS7aGaSJsIfMFQYC33noLxWIRTz/9NPbv3y9lzYXtiGLlAF3XJd+ARhHW1tcxPzeHDy5cwMzMDMsmTE/vaDfNZbNy3k25WsVwj59FaxeUxh0C23FQ3NxEjr+P6HD5vHBPOwNBEKBWLMoatWGacrwlwG5exFN93fpNJVofOEIQBQGWlpcxPzeHjY0NGKaJQ4cO4dChQ00p31qthggsIhSbl1TK4iS63R7nmzdvopDPY6jXh6jNAtlN7Uws6E/bu6e71Ey7QVEUmAZTRfP4Zi/Se4cOHcLjjz8u763neVA6SBKLeiUFKwE8cuoUTp48idWVFdycn8d758/jo5kZTB08iANTU/K12UyGCSd5niwX7Oo80eZ+ZcG2TiWTqDcaqJbLKJVK0Ph0uz4+X1TLZYSOgzAIYCYSUFQVpkivU8rKRVHUewdS6/PHO23m5uawMD8P13UxPDyMp55+GvsmJ7c17cMQHp+GGc8Gxom40rHusAlXqlWsr63h6XPtI/p2IAAM1cCvPfIr+K3zv8PPGbhZvYkf3H4dXz7wctPrxXNNYlomdwPtsoqfBPFAQsgUv/HGG3AcBy+88IIkI4suLFXTdnQXgZOfQ95uOj4+jvHxcTi2jfn5eczPz2Nubg6DhQKmDx+WDhhRFAwODGBjYwOO4/RERBY2R3RBiadI13UpJrV8+zYOHz0Kx3E+146ke9oZqJRKAK/xCmEfWatqiRT36lE5rotr167h5twcPNfF8MgInj53Dvv27duxGALfh889zXbiMpJ01/rQxQxIrV7HysoKnnzyyZ4Z5+222l1rlXczM9ChTAAwR+VOygQChmHIuQqXL13CrVu3cPr0aRw7dow5aZx40zXt3qZ/mCgKJiYnMTE5CavRwNz8PBbm53Fjdhb5QgEHDhxAjouWrK2tIQwCNCwL2V1q/cJgCx0Hca1CdazeaGBtZQWZTEbqqPfx+cD3fTi1GkgYyj56Kf3K16iwHT3ZDUE25g7/2vo6rl69ivW1Nei6joMHD2J6ehrZNk6gY9uIwOxXu7SyGKAFoKPtmJ2dhZlIYN++fb3fBH6tXz7wZfzR9W9gobYgf/VvLv8BXtz3PHQ1lma/Qzn2TuiWJW3LG+gxuFAUBaauw/E8bGxs4MKFC1BVFS+99BIymYzMsoghYt1S+a3nkUgmcfKRR3DyxAmsrq1h7uZNvH/+PAxdx9jYGI4ePYpCoYBMNotarcbUCROJngIJQghoTMsBgJRXtup1lEolVgLvOwM74bouAsdhYxVjxC25YOKs1F42V/5az/dx7fp13LhxAzSKMDU1henpaWS61I4t2wbl79/OeIiNojVqp7HzujE7C9M0ZSvMnaLdJhyH5Ax8BmWC1l5q2qOTA0DqG3zw0UeolEp46qmnMDk5idapkb7vd1X36/aOqXQap0+fxqlHHsHS0hKu37iBmZkZLC4s4NTp08jxckGtXpcDVTqBdvheXEvCNFG3LFSrVQwMDPSdgc8R1XIZKqVSK0ThzgAA+WyJlrqeW0EJwcbWFi5fuoTNzU3kcjk8+eSTmNy/v6NDEQQBPC6DnOpA+ouXGNvZDtfzMD8/j5MnT97RJEFVUfG1U7+O/8tP/q8AJQABVqwV/NXCt/Hzh39Ovu5uCZW1ou1ApzYlxr3AME0sLS9jZmYG2VwOX/ziF2WLOcBsghBq0/YQSEgoCsYnJjA+MQG70cD1GzewcOsWbi8t4fD0NI4dOwZN0+DxLpV8Pt/1fIUSohiWFr8jQrBua32dBSkDA59bqeCedQaq1SoUnsahUQSVT6WSiKVse6lx+UGAGzdu4Pr16wijCEePHMFR/qF2/TuuCQ6gY9ugTPW1/pz/G1KK27du4eDUVNMUq10NUZvfd1tCQiEQuLsEwo7OVsvPexkoJI5pNRp47513YDkOHj97FpOTk21fHwRB5wXNzyGuutj2JXxxZ3M5VMpl3Jybw5tvvIGBwUFM7tuHRCq1+6KOs8jbXKdhGFAcB5VSCaVcDrlcrq858DnAdV14jgM99hk1qUO2yAbv+hlRilKphEuXL2NtbQ35QgFffO45DPfQCmhbFgsiTBNqBzvTSQxHnNXy0hKiKMIh3k4oN7w9PFtfnHgWJwrHcaV4Vf7s31399/jpqZ9GQjXv+Lhd0c0WtMsC9OIc8EBobm4OH83MYGhwEGefeKIt70PY7FYyYPNpkF27G5LpNI4ePYoD+/djeWUFN2/exNzcHKYOHkRhcBA13hbYbR8RxxfSyHFHSJRMa7aNRqMBy7I+N82Be9IZsCwLvusiQbdVoZqyAkDT990e4DAMMXvzJj7++GMEnofpw4dx4sQJJEwTFEwetOu5OI7MCnTymncjEK6trsJ1XUwdPNjUzw9skwHbkQI7cgY6XK/cEPkG+Umx2/Js9fDbljXotkCLeG25VMJbb70FRVVx7qmnoJtmE5EwDr/Dz1vPY9eWJf7eAwMDeGn/fqytr+Py5cu4ePEiCgMDGJ+Y6Lqo49kf/oMmAybLBfU6G6nNxVH6+GxRrVah8jUi5tEbsdIiAFkmANB1ql21UsGlK1ewvLSEbCaDc+fOYXJyEgToquQHsM1IDCTrOrdiF9uxuLiIsfFx+SztaOfl19XNBhJC8E9OfQ3/xx//N/JnRbeIP73xTfzyiV8CsG0H7yT70A7yajqRoHsJhmIOuMgYfjQzg9nZWRw+fBgHp6Y6jhf2fZ8JSu1mO3qQKY4ohaJpOHrsGI4dO4brPLN86/ZtjI6NwTCM7m3K/NwjEdy2nLOY6lqr1VAsFvvOgAClFLVaDVoYgqgqaBA0ZwXidfkuNW1KKebm53H1yhXYto1Dhw7h5MmTe2rpcz0PAZ+H0E1MaDdn4NatW8jn822JZaTlXyDmGHCj1ZRK7LKAPi3vvtPR4s6ATO/HyhjCUMXvysrKCt59910UCgU8++yzTNqZT3Js6wx0+PmOc9llUUdRxIymqgKEYGxsDGOjo1heWcHFS5dw9coVrK2t4ezjjyPXYTG2Zl5aSY2maaJWr6NSqWBra6tjtqOPTwe2bcN3HJixZ64pKxAvaYmsYpvjWJaFS5cuYWFxEelUCk8++SQOHDiwp2ybkO5NJJNdU+9ybbd5dhuWhc3NTTzVpZ1Q2IkmxNakOP5jo4/jyZEn8f7G+/Jlf3z9f8HPTf8MskasTfpuOQNdsopEvI94DSeISwGgNqXQMAzx7rvvYnV1FY8//jgOHTqESqUCn49fb3VigiBgUum7pNybCJydL0ZG9Zqm4dSpUzhy5AiuXL6MxVu3sLa2hsOHD+PkiRNtgzBCCCMr8mO1BhKEEKTSaWxtbCCbzX5unKN7zhmwbRuh78PEdqTblBVoWdC05WcAE615//33sbm5iQP79+ORU6eQ2Ssxg1I2bQ/YlSSidFnQXhBgaWkJp061V/5qh7iDEN/Yd2yuMadIRELA3eMLiPeRwzdiP2NvyxZwvLOgmzLh7OwsPvroI0xOTuKpp56SEtJiPCttGfYjhq/0EmHvlh0Qz0mTo0QI9u3bh4HBQVy/dg23l5bw6quv4pGTJ3Hs+PEm40+x8/PdYUQoRTqVQnFzE4VCARMTE5+7qtjDhFqtBi2KoKgqfN+XKVgATVkBgVbOAAUwd/MmZmZmoGkazj72GKamp6Huse7t8SACuwQRAKCK57bNsW7dugVVUTAxMdH1GG1OrjkdzTfbr53+dbzz2ru8C4eg5tXxR9e+gX965msywr7rz2ssg9K0PoXtED8Xdq3NfXBdF2+99RZq1Sqee+45jHFND03XEXFyt9pyn23HYd0jPThwCiE75hLEITstYscyTROPnz2LkfFxzM/N4eq1a1hZXsZTTz21o9woZJ4F2mYHDAO1ahUVPqRqz5/5XcA95ww4jgOVL+igXVYAaEqtNUXUlOLG7CwuXbyIRCKBL734Ioa7pG+aPLXW8/A8hEHARCJ2WdDC84/4ootvIstLSwjDEPsPHNj12tui9fy48Wi+ELbwhaKaFASK/a24Vsp/J1i3bZcA/zuRFhfM/nZ1TYrtckbH5UQpPvzoI9y8eRPHjx/H6dOn5a/ETPKQb/zxzgExUKnX8cAKbxdqewqCLd3ms04mEpicnERhYAArq6u4dOkSlvjCFlmCtvrligLEFjUhBAnDQKVaRaPRuCdUxR4WBEGAwPNgAMzQUtq1tNgauVqWhffPn8f62hqmp6dx5syZrvXmjqBUEo57YZqLTFXrc0sBLC4sYGLfvt7EbbqdEtgaPTFwDK9MvoTXl38kf/ens3+Kv3Xkb0KN1M62I7ZR09hXU4a25Xsx7XRHMCOuW5yX+F2HzbhWq+HNN99EFIZ48Utfaur9N3RdlmNaAwbbtnvPAnfLDsSdmTaf5ejwMEAphkZGsDA3h1dfew0nT5zACZ4liJdH5dtxO9yaHUgmk6hx2/F54J4KW0RLiBLzGs3WrEA7L11V0ajX8aPXX8dHH36IQ4cO4Stf+UpXR2D7j9t4jpTCsW1W7+thNG18JGgrkW3x1i0Mj4z0NLd81/Pr4r1KAqM4F2xHy2T7RfL/SXzxtn7Ff47uZMROi10gDEO89fbbmJubw9mzZ5scAXFOuq5DURQpFSwgUq09b6g8ImoH4Th2+n0ul4OqqpiYmMBzzz2HwPfx6quv4uOPP5ZO3o63a+NIKpoGQ9Ng85nsfXw2cF0XJIqggDm6pF0Q0QaEENycm8P3vvc91Go1vPDCCzj7+ON35giAlRbDIJCjzXeDzAy02I1KuYxqrYYDdxpExBBf779+6lehYDt17kUe/uer/347c9bOdpDteSVNT3sHe7FbeRH8mLthc2MDP/jBD6BpGl5+5ZUdIkBxJcfWAWm2ZfUcRACdMyJxnlC7M9Z1HalkEulUCo9+4Qs4fuwYrly9itdeew3lcrkjsXmHYxFFMHSdyZvz6aifNe4pZ8D3fURBIFW5QOn2oow/bBwidbu6soLvfu97aFgWXnzxRTz22GNSwvZO4HoewjBkQiU9ipKIhyn+IVqOg/W1NRw8ePCOz6WVS9ANd71M0MOiblJibPmd4zh4/fXXsbm5iS9+8YuSEd0KsagDPmdCwOZDqfbiSHUkV3YoKcXPIZVMMiOoqnjly1/G4cOHMXPxIl79/vdRq1Z7fj/dMGBZVt8Z+AzheV5TGlrX9R0loThoFMF1HLz/3ns4f/489k9O4qe+8hWM9tAl0A22IBz3OJZWZBVbMwO3bt2CrusY5SnxT4K43TiQPYD/4tBfa/r9X85/GxsWG+xzV9UH0d12dLNni4uL+PEbb2BoaAgvvfRSR30XwzBYIMF1BQQalrXnrFy7tRzPIHWyLblcDgohCIIAU4cO4eWXXkIYhvje97+Pq1eutM1Wkjb8L03TQKII9XodDh+9/FninnIGXNeFwkkkBGxoRhP5puXmVatVvHf+PG7evImJ8XF85ad+CiMiG9DjQ93uA3ZcV7YE9UrGU1R1W2+c4/atW4CifDIimSiJYBdPG58CgbDlHNr+qs37Ayy998Mf/hCO4+BLX/pSVyMrJpKBkKbRqJZts/TfXpybDouW9pDlEIva56NSz5w+jRdefBGu7+P73/8+bs7N9XQKhq7Dtu3PzcN/2EApZSPEucNHge12sw5ZgStXrmBmZgalSgXPnDuHs088wUpU3YhkMbR7igLfRxgEIIT0PMinXRARUYrFW7ewf4+kxU7n15qm/pUT/wCGsn1+FBR/PvcXkkx3V7CLLYpnK1rv+JUrV/D+++9jamoKzz33XNcyiQgkvCBous69ZgaA9rZBlDq6WSBVVZFJp6EQgmq9jlw+j5dfeQXHjh3D5StX8IMf/EBmOZvfMHZUntHVNO1zCyTuKWdAlgj4l9EiFBJHo9HAhfPnWZ1LUbC8vIzvfPvbeOfdd7G4uAin3c3vAYHvsw4CoOesALD9IMUX9eKtW9g3Pn7HKcc4eurhF4Qc/pBJpj//XvAEBHM3zvoXX4j/rCUz0K4k0G6xb/D0nq7reOXll3cV5QC2I7m4M2DfgXff6ZykKFQXY9e6qP0gwNDgIL7y5S9jamoKH3zwAS5dvNhMBkJLJoYyPXQC5qy2Rix93H34vo+IywsDkKUn8X1rqe3G9esolUqsVu/7eO/dd/Hqq6/i0qVL2NzauuPx3CKIMHm02gsURZH8HPG+G5ubsGz7E2UU24I7SyOpEfzC4Z/fPgcoeG/9fdyqLzXbBGErxPecCNdqK9Du/7vwiKTtaPk3iiK8//77uHr1Kk6fPo2zZ8/u6pzomiY7iYTQkMtHU+/ZdrTjY/UYYGUyGSZxHIaoNxoghODUqVN4+eWX4ToOfvDaa6iUyzuP3ZK9MgwDNp/Q+1njniIQ+r4PlT9wRFGaxSRiN61cKuGNN9+Eqqo48+ij0A0DuUwGq6urWFtbwzvvvgsFwMDgIMbHxzE2NoaBgYH2kXULkeNOFjTAMwMxzkC1VkOpVMKJ48f3dhNaIBZVFHOSdtMZ2NHyx9G0+Dp45fH/j1p+3hphRLFzE+zlhYUFXLhwoWnYUC8w+KwCMZJaIQQNy0LyTpwBtDCXEbs3u3ym2VwODcuC57qSAKiqKh4/exapTAYXZ2Zg2TaefPLJ5ucj9hypqgpFUdDo6w18JgiCQPKMFEVhznd8Xcf4MTMffYTrN25g//79GBweRobPqVhbW8PNuTlcvXoVhmGw1lP+1bH2HzPmURRJtcFeuAIChPNcIkIQhSEUTcOtW7eQTqUwODBwx/ckvlYjSrf5LXwz/3vH/h7+Yv6vYAUNKFBAQfGnN7+JM5OndhD9Om2IXW1HLJBo6ygIJ43bNN/38bYYNvTUU70TrgmBoetsTgEnIMvy4h3YjlYSspAe381uqKqKbDaLIlc0FeTRQqGAV155BW+8+SZ++PrreObZZ9n4amzb4fhnpes66pxv1JMWw13EPeUMUD7FTtU0NmmuRS0MYJP/fvKTnyCfy+Gpp57CVrEIPwjkRK9TjzwC27axur6OtdVVXL9+HVeuXIFpmnJxj46NweSORvxhbVrQezTgrZmBxcVF6JqGsfHx3q5dnEuLtyh+1ksJIL4A7wpajWkLxLmIqVyXLl3Cx1ev4tD0NBs2hG1io3RQOkRdiqJAU1VEUQTf86QQR7tRxLuCNEuNxoVJdku7EkLYeOIggNUyVvTo0aNIJhJ47/334TgOnn32WRmBxq9PGHgvpl7Zx6cHsTZ8bjuasgIcYRjivffew9Lt23j88ceRLxRQrlSgEIIDBw7gwIEDiMIQpVIJK6urWF9bw/u3bwNgQlVjY2MYHx+XQQVpOb7DuQK6rndUG+wEhXelRJQiCEPcvn0bR48c6f362U1oOh/xM1lebHnu82YOf/foV/EHV/8QCk8Qf7j1IS5uXcSZoTN7Ov8d59PCkm9FnLxMwbK8P/rxj+G6Ll548UU2yK0NWbFTvkbnswoC3p4sujk6SUDvBUK2erfAUPJEKhWEYQjX8yTXyTRNfOnFF/GTn/wEb77xBp548klMdcj6CL2Ehz4zoFAKly9oo82Cnp+bw/kLF7BvYgJPPf00FEXBVrEIytmkqqrKD+XQ1BQOHTyIiFIUt7awuraG1bU1LC4uggAYHBpiC3xsjM0lIAQuX9Bar7OqYxA1b/HwLN66xcbntnmIRJTd1tNu+Vm7ntR2iJcn7jqBcJcNVKT35ufncebRR3H86NHtzEObDIUEae6x1nUdfhDA832Ypgm70diTSFTTodmbys9ElJM6XYv4TCilSKfTLDvA25biGarJ/fuRSCTw1ttv44c//CGef/55JDnxUKRPCVimyHUcmbrs49NFxNX+CGJ69Pzz9zwPb731FkqlEp597jnsm5hAuVyGEIMRryWEYHBoCINDQzh9+jQcEVSsreHGjRsyayCyjSMjI+y9KIXnuqCUbk9G3AMUVQXxfURhiPX1dfi+3zYybrfpS7TaDbL7FNW/ffQX8Z9ufguexxzWECH+p0v/Br/z4m9/sog0vta7HYcQFDc38eabb0LVNLz88svbk2Lbbf6xjIKYjULBOUeKgiCK4AcBbMtiLel7yNDEzykuKCaVGbsQ0im2p5gmUykW2VtWE/FZ1TQ899xzOH/+PN577z04to3jx4/LLg1hA8X7NOr1hzwzEEUIufHUWwg4H1+9ikuXLuHw4cP4wmOPyQhP1NxCrknQBE78GB4exvDwMM6cPg3LcbC2soK1tTVcu3YNly5fhsFZu9lsFrl8/o4mRyk85RVRinK5jEajgcnHH++4IHv+kHsoD7CXbW/cn4m+OIfveXjjzTextbmJc+fO7W0Qk1jwvCxkivGkPCqPKL3zPn2RHaCUqX8R0lkJTtxj/r+6riNhmrD5mFKjhfMwNDyMl770Jbzx5pv4wQ9+gBdfeEE6lILboRICx/Pguu6dnX8fe4LI/miGwZ5//jk4joMfvf46XM/DiyLqBDO6hNLmlrSWdZNIJnHo4MHtoKJYxOrqqgwqoijCwOAghoeHkclmkc1k2urk7wZhy0JKsby8jHwuh2wm037z38PaJuguApbUkvgHJ/4+/u3M/wyAEQkvFi/hnfV38cxY7+OSu55Dl/NdWV7G22+/jXw+j3PPPLM7RyueUWjJPohSge/7sER58U7tYOz5CcMQlNKOMs3CERBIp1JoNBps0B6XUpccCUXBk08+iVQ6jYuXLsGxbXzhscea9EpEICcCic9SifCecgbC2NhJNTba89biIi5euoRTjzyCkydPNj1gKo/2gjBE29vWQh5KJRKYnp7G9PQ0QkqxtbWF5aUlLC8v4+bNmyCKgpHhYTnjOpvN9ra5ijIBpVhdWYGiqnK29idCLBXfDXG+wN3Cbgz8Rr2ON998E47j4MUXX0ThTmucwjMmBJqqIghD1KpV7KrrvguEspjYKDpladoZzFQ6Dcdx4DgOomx2R7Ylm8vh5Zdfxo9efx1vvv02Xnn5ZaaIhmZSYaeWxD7uHgilCDwPmqYx4xlzzN9++234vo+X+YhbAVGGFMHHbm6vQgiGh4YwPDQkg4rVlRUsr6zg+o0b8HhaeGJiAuPj4xgdHe08erv12DyjGQQBVlZWcGh6eldt/55AdpHZBfAzh/4G/ur6d1B1qog4S+j3L/0Bnh59Cgq5swzjbi3JlFLc4BNExycm9jTWvdPxNM4TCYIAtXqdZRQ7ZVF2gSjzhWHISo08q9j0nmgu3wroug5D1+F6HhqWhXyrBD0heOSRR5BMJHDhgw+QSqdx7NgxaTcA5qh63Jl4aJ2BgDsDce+6XCrh/fPnMTU1tcMRAGJ9utyD28uHrxKC0eFhDA4N4eDUFCrVKurVKoqlEq7wITapZJKlBcfHWVowVj6Qnjv/Uni0sbq6irHR0bs2DrQXbrPUGLibzoD4ps0xS1tbePOtt6AbBr78yitIJJO7Dn3qBZqmQQ0ClMtlgBBkuQEXZ7AnnjcvQ4QRM3NNzgCliNChfAGmbaBqmuQOtJOzTiQSeO6LX8QPXnsN77z7Lp579tltkibPWH0etb+HDZ7jyOdf1zTp3F24cAHlUglfanEEAJ4Z4EFE1wxYLBqNQwQV+/btQ6lcRqVSQaPRwPraGhYWFqAQgqHhYclTik+xlHaKbmveA0CpWITreRi/C9oC8tx3cQYM1cAvTv8C/vDKv5XOwM3qTfxw6XW8sv/lO3rbbnMJaBTho48+wuzNmzhx/DhOnjoFGkWfuAVXU1XW608pqtUqkyzm9/lObYfIKLZmW1uzAa1Ip9PwPA+WbSObybQlHx6anka90cDFixeRy+UwOjbW5ES5rvuZtyXfM86A2MxpzAtzbBtvvfUWCvl8xzYTlRtdoQXeFS1Zgvh7B76PZCKBfePjUFQVYRBgc3NTpgVvzs2x6GB4GGO8ZphJp7ePSQhUVYVlWSgWi3ji7NlPfE+AZjZvL7ib2uKdPPyl27fx/nvvoTAwgGeffRYGnzp4N6DrOmzHQaVaZW1+fCZ9E8OZ7JRM7QSFt/sIZ02SRXu4p6lkEjXe5tOpdJTJZHDu6afx5ttv48rly3jk1CnIgUaUwv0cxEMeNkScpCmUN8Ejz/n5eTz91FNtWfnCMYx4GWnXddNhY3Vcl43IHhtDmjscjUaDdTatrzcFFaNjYyyoGB5uCipEnXhjcxO6rmOAlzI+KQQfZ7eo+5mxp/Hdhe+hbJXlz/7gyh/ixX0vQFP2vkXItHjL+wZBIIcNnT17FtPT06CUItiDfesIQqBrGnzfR73RwLFcrql7QrymXXdD+8MxZ4CimS8gurq6QUy4DcIQdhdJ8tOnT6NWqeCdd97Byy+/jHQ6LR0ASiksy9rhxH6auHecAc9jKWJKpbzkW2+/DUopnnnmmY41G1XTmEe4Vy8q5vG7joMIjPUponmVdwKMjY/jC5SiVq9jlXMNZi5exEcffoh0JiNZxiMjI1AVBeVSCVEUYbzHLoLdQIEdOtbtEH4KZQKJWERz4/p1zFy8iAP797P2On6/7tb7qqoKlbfldRrl2a5dstPdaSJWEtJ+xkAHpNNp1Op1uag7KSGOjo/jzJkzuDgzg2wuh8nJSZmN8Ps6A586FEB2roSUYn1tDTMzMzh+7FjHXn3x3AqektJLOrYlSxDvPooTB9PpNI4cOYIjR44gDAJsbG5iZWUFa6urmLt5E0RVMcKzBuPj48hkMlAUBRsbGxgdHb2rBODe1iXBzx/+OVy6eFn+ZLmxgr9a+DZ+bvpn7+h9gWab4Ng23nzrLdTrdXzxueeauqzugisAgGUVG40GCNBe22SvjkGM/xPnHu0GRVGQSqVQq9VgddFKIYTgqXPn8IPXXsNbb7+Nl770JWavOL/JqteBT6iIuRfcM86AqPlFUQTP93Hp0iVUymV8qYMUpYCIBu40MqWcCYwo2tFOKEllUYRMOo2jR4/i6NGjCIIAGxsbWF1dxcrKCm7OzjKOwPAwrEYDmUwGiU9Q646D8A1st4dQDuL5NDID/Bw+/PBD3Jybw4njx3Hq9Onmc7qLToiqaag3GjjYA+eiXRtTfIGLPmFKdo4c3vU8VBVJ3qpk23ZXWeSjR46gXC7j/PnzMBMJSWTriw59+ojCkAUFioJyuYy33nkHo2NjOH2mc4ucQogMMMIowp5of/w5cz2vbfeRbOvjxNjR0VGmwPnYY6jX61IP5eKlS5j56COkMxlkcznUazUcnp7e8/Xvdp7dIJzlLww9ihOFY7hSvip/9+8+/v/hpw7+FBLqHln5LWWCarmMN996CxTAS1/6UlO78F4zn92g67pU7ts1oo45Bp2UEKMwZN1h3HbsJeDJpNOoc+GybiOJdV2XpcZ3330Xjz72GMAJi5+1CuG94wy4LosKNQ1rq6u4OT+Pcx1SfHFomsZSTXfoDHi+D0qI1DYQM7WbUkEtD4GmaZiYmGBjJilFtVbD2toaVpaXUa7VEAYBvvvd7zIS4tgYhoaG7hp/ANgeiRnxWhulbNyy5/uIYkpcTQSX2MNfrdUAsFHPsiYmrjNWY7MsS7bKzczMYGNzE48/9ljbGQN3Mx8RhSHCMNxzJ0GT88J+gICXn+402spkMrA4kVCwg9uCEDxx9qwcn33u3DmoXDeh0WjcUYdKH7sjDENEvB0ZhODC+fNIGAaefvrpXfkzQkLcDwLcSUe653kAYZMq4/aiWxo5k8k0BxWbm1hbXcWtxUVQQnDx4kWsb2xgnJcU7uZzE1cRFP8GQSCng/7K4X+I3zr/fwcAEBBQJ8I3L30Lf2Pqr4Fi227UhN0AZGsc+yP2M9/34TgOdF1HtVzG++fPI51K4Zlnn0W6ZU3frawA+LnYto1kKrVrKr/pHFoCChEECjvara2wE1RVRSKRYB1Jtt2VCChKjW+88QYKAwMYGh6GpqqwHlZnIPR9EM4mv3HjBsZGR3uS4zQMgwm8+D6LoPdo9D3PAyiFYRhNA5J6jnQJQS6XQy6Xw9DQEFa//30cOXwYYRDg1q1buH79OjRNw+jIiOxP3k0ZS4wjDrkIk8flNSkfC9oODh+upGlaz45R0zjSNvCDAL7rYuajj+A4Dh577DEMDg5KoyBY8yQ2qlNTFChcge9OYVkWCNjo4ogPjOoZfCHLPmGuFX8nCxpgz5ehaXB9H7ZtdyxdAGxzeeLsWbz66qtYWV7GKE+F1qrVvjPwKSHgrZu6rmNrcxOlchnPP/98Ty1+pmHAchy4riuJqr0iDEP2bPH3jrfJAujJfmiahonxcUyMj8NqNEDKZUxyQuJHH32E6MMPkc1m9xRUCLshMqw+DxA6rfMwDOHzKYtHc0fx2MCjuFzazg58b+F7eGHii0jrseeXxlpx2xzT5+PI1zc2MDc7i4HBQZw+fRpBEKDCu2sUwlp/FV6bVxQFiqJIYuedol6vI5NOI/D9O2Li0yhCyK9JED3v1JalUynYjgPHttt2JMUxOj6O/VNTuDk3h8GhISiKIpUUPyvcM86AaP/a3NyE1Wjgscce6+nvdF1nD1AQwImpPvUCyhdMRCl0Xd9RY9ur17q2ugpN03BwagqZdBqGYaBSqTAS4uoqLnzwASilyOdyGOOti7lcbnvz5/XL+IYfj/7jEBG9wheUp+vQVBWpVIrpdcdaEuPfA5DtVOlUSvYzxzsjKL83pVIJV69cAQjBuXPnkE6nmxwSCs5ViCJ27rGebQJG0lJ4+nYvTkK1WpV1tyAIYPSykYvzFs4cR+D7TBnOMO641SiTycArlXZ1BgAwHsnEBG7Oz0tnoM8b+PQQcvKgrmm4OTeHgYGBnmV8dcOACtzRhDjP8xCBlQjk+gJYVnGPx4qiCOsbG5icnMT+Awdw5tFH4fs+1rmK6u2WoEJ0NhmGITOBEV+DcTshnIJWyI2Yf5mGAU3TkEom8dVTX8Xbb/xzMNUBinJYxnfWvotfe+QfyVKksBvAdosd+5/t7oj5+XncvnULBw4cwMmTJ+V1xuXVEYYIYtk7eX7CMeDOwV6chFqthonxcRYQ9breRQAhugewvWY1VW2rhNsLEokENFVl2gcdOpLiOHb0KJaWlrCyvIxD09OfuXrpPeEMiE6CiFLMzs5idGICiUSie1pWgFLopgnH9+G4bs/OAKUUju8z5UJFgW4YO5T+mshpPTxYK6urGBkdlQMrCCEoFAooFAo4efIkXMfBysqK7E64+vHH0DUNg4ODGBoawuDgoFTNUjiJROHCOTIK5w5AO6ZuRKl8ALtBbMgKL8u0w+rqKmZmZpBMJvHC88/vyGaIdqCIf++LKCQMEXCSXhBFQMtGKKJ0TdOgqSo715ZrqVarklTlB8HuSmKUts2YRGGIkBsoTVVZluEOuANCDMXnmZpuz6Trujg8PY3l5WUsLS1hamqqP7nwU4TPHdu1tTXU63U8+dRTMkXdFZTCNAwQRYG/x6wipRQOb/1qZ29I7HW9bEZbW1tsKNbwMCOeRhF0Xcfk5CQmJycRRRFKxSJWeIfC+QsXQClFNpPB0OAgBoeH2cRNsa65tDe44I3YXEmbKFe0sGmaBtM08cjISTy77xm8vvy6fM2f3vwmfuHoz0NVmF3pZjeiMMTly5exvLKCEydO4NSpU80BFu+0EcPSQkrheZ50aOJfrflNlU/1E/aj3bV4rotMNstKIDxT2haxzEa77ocgDFkQwUtJvWg2tIIQggTvtPI8D+jiDIRhCEVRsG/fPiwsLGBy//67MuBuL7gnnAHhAS3fvg3XdXHuxAlQQmDZNnK7RGIgBKauwyJMThi7TMiLk3s81wUI2TWd1PQwxJn9cbas46BULDICCCAj5SAI4Ps+Au6l5woF5AoFHDt+HLVqFcViEcViEVeuXAEAFAoFjPPUYY4LVojF0Q13cy7B/Pw8Lly4gKGhIZw6daptWYMIz53/v6qq2waYUin2I6IT6STwOqUoZRAwwqBwDDRNQ6VSQS6f3yaGthrVeHTRBQFP44qOkyjmCJA9LG6FMIUzlzucmQ6LNAgCBGEI0zQxdfAgW9T79vWdgU8RAc/sXbt2DZOTkyhks1LSulupgIKXGHnU53rervNIxPMinl8CVmoAJ9i2YkeWsUMJYW1tDQnTRD6fRxCGCMIQhNsO8UwRVcW+yUnsm5yE73koFYsolstYWV3FwuIiDF3HCC9Fjk9MwDRNWTLoiQEfe82vn/pV/Hj5DURgwZEbufj3V/8D/tGhf9j1GJ7r4u2330axVMKZ06dxYGpqx3sTQkBUVY7L1QA5k4TdIipthsiWCvsXRpEUpgO2nR6N872q1SooWCeBoihtHXeROdyNECjsk3A6RMAqgrNekUwmmSKh5yHq0sIqlEqP8uzAwsICTp482fVv7jbuGWcgCALMzc9jenoaQ4ODqFSrCHwfrud1ng3OPxQzkdiVuS02crFoKTh5UPAFsHtZQD488Y2E/7u2toaIUgwODaHRaEhpzFYIr1bXNAwUCpKM5zoOVtfWsL62hrmbN/Hxxx/DMAyMjIxgdHQUw8PDHeU6dxsM0isopbh86RI+vnYNhw4dwvT0dM8PYtO7EgKVs7WbIjTK2nOCIJCOUtTiHCCKUK3VMD4xIQlJQRhC4xoBe1mIwrsXmZL48KJ4SWjXYxKCRCIBz/fhum7bdJ+IFkEpTF3HqVOnsHT7NhYWF/HI6dM9n3Mfe0MYhli+fRuO4+D06dPQ+Tx4y7Kgx4R+OsEwDLj8c+3kDLTO1/B46UkTw9TQg+0Atlt0tw8MEILVlRWMjo1JGe527HNCWB+9pmnQslmMjo5Kh7ZUKmGNdyicv3ABuHABhXweI6OjGBkZQaFQ6LiOozYOyv7MJP6LqZ/Gf174K/mz/zz/l/jpsa90vD6hRuq5Ls49/TRS6XRvgUnLpkwIaRvNU0oRxpwjEVx5vNQLMBusEIJUKiWzDfG/F+Rw8T4dT0mUXNBMHpTkQl4K2c2hoNgezU4phef7bSdaCvsXUYpcJoPD09OYm5vDIZ5VfKicgSAIsLG2Bs/3cfLECRBFQTKRQN2yYNs2jFhdLg7Rf2/wNi6fk+hayWKSPBMz+sIRUHjqCdhbtBhvR/E8D7eXlpDJZBBxJ4DyKFjntXyNL+ROH6yZSGBqakqmlUvFIlbX1qSXSCllI5l5b3I+n5fncDeGFEVhiPfffx+3bt/Go2fO4ND0NBqNRm+Khvye7ZqC5yWC+OcjeBJikdfqdURhCMM04TgOW9RRhGwms2cSYBjz7sX5xQtBcZErUS/cecrsmTBNE6hWWa24zQIVJRJQCsM0QQjBvslJLC0tNU1N7OPuQUSQt5eXceDAAcl/cVyXTY7rYXy0aRhoWFbbrGKrEyDgeZ4MIu4E4ikLogjVSgVbpRImeMQvInmFb4rCAeiUlieEyImtj5w6BddxsLa+jtXlZdycncXly5eh67rUNBgdHW0KKmRLcsuz/w9P/gN879ar8CIWYIUI8cdz38BxHNtxDsWtLbzF1UhffuUVycS/m2qohBDWwhnLPgYie8LJnLV6Hel0Gr7rosE7oQQnQiiC9gKZUeTlFfH+rd1KhH91tHjcWTATCUS2zZ7HFmdABBEUgMll+KenpzE/P4/l5eXPNKt4TzgDvuuiWC5joFCQ/flGIgHVcRBGERzHaa81wD8cEYH6QQDHcSRzu9NiFu8JQI4yBtBRZawVEffyfD6iloJJiQ5xZbFUIgEQwkiEprnn1L2iKBjiMsknTpyA4zhYXlnB6soKrl27hsuXLyORSDCp0/FxOQPhThefSO+VSyU8c+4cJvfv3ya99XLMWMZkr0QbVVGgGoY0rOtra2wATKHA7i2lsHl3gaIo0HRdOljdIPgCwLZ33+5KxCIXxKEdZ8+PYRgGU6YMQ3gtKWXK08wUXLiKH3NoeBi3bt3CVrG4p3vSR2/wfR+ObcNqNHCGZ19EF0q9Xofjuowk2MVBNvjn5bZk8TrZDpHZIsAdDSUKeAlDdAitb2xA4dwiQ9dBFQWGprFe/F0iz3YwEwkcPHgQBw4cQBAEKG5tMduxtoZbt26BEIKBgQE5e0Vsrq22YyQ5gr95+OfxjRt/In/2xvqbGESz9kc7NdJavQ6gxywl50PtGdxZEo5+RCmzwSMjjGtFCHzfl0ODhGOl6/qu3JAgCGTmR0DMOWk9h6hLMCGeHdMwYNs23DaZ69YgAmCZzEKhgGKx+JkGEveEMyAi4ampKfkzuagbDTiOwz7MLovP4G1Cjusy1nsXR4AC8IKARe4x7363sZ8iTSwcAAE/CGA7DsbHx1HI59HQNBmdkNg5xDeensBfm0gkMHXwIA5NTSGMIhS3trC2tobV1VUsLCyAKApyuRxGRkYwdfBgkw76bmjU63jjzTfh86luA9yxaKci1vk074yvIO6FiNAJISiWSsgXCsjncpIvIDZaofjmuS4UQqAbxrbX3wKfG2ylhYXcLXshFnY8nRj3yxOmCUt4+NwZEBoPQtxIbBAhpcjn81BVFctLS3u8M330Akop1tfXAQAjMaU20zDgcDlYIQLWqUvI5FkcL5ZV7FaO8oXQkKY1tfl1yypGlMJ1Xbiu2zS/gwBo1GpIplIY4+dfKpdlG3HcXuxlPYp7I4IK0dpnOw7W1tawtrqK69ev4/LlyzAMA4NDQ5jYtw+T+/Y1OTi/dOzv4T/P/xWsoMHvG8V7yvv4u/g76KZG2okb0ek8d7t/bf4IlLAJoaL86zoOLMvCqZEROVyu0WjIz1qk4m2+lxi8g6Ld/ZT6Am34Bu04EO2Cifj1JBIJoFKBz0sXwskIwxCO44BSigR3SgFmcwYGBjB74wbjstwlAbvdcE84A1ulEjzPw8jISNPPddOEwb3oRqOBTDYrI8LWx8bgbUIuT7l0e7BE763SWtMGdkS3EScaOi0LWVVVGLoOwzCwuroKAjCVMfB56q7LhqCgeQG3PvQE2+WOHZ5l7Ofid6qiYGRkBCMjIzhz5gwsy8LtpSWsrK7i5uwsbly/Lo2LSAt2YtRWymVcvHgRhmHg5ZdfltrqwN6cgZ4gOBstn0vr+2xubkopZ03TWOSmKEim00DE5pX7nDQmDKzOP4f4dbaWCARIl+yF/GziCzv2WpOrEcbHEotRpTSKkEylto/PnYNsLoel5eU7uWN97AJKKTY3NpDNZpt4RRRs6mS9VoMfBGhYVjPPI/aZCoa6HwSwXXd72l0HuL7POpja1PRbn+0gCOC4LisriNcB8nnVdR21eh3Dw8MyHS24Ma0T61qHHMWDjPjv4/egFclEAoemppqCisXFRWxyueQPzp/H0NCQLCnkcjn83aNfxR9c/UN5jNvkNvzAx4cffNBRjbRT6aEVO+xg5xdKWyg3ZMq7APh7bG1tgQIyS2qYJgsIFAWpREKSSqMYMVMhBIZpsjK0mFURhnL+gNbi7O1GHmwXTADb5GrqeXBjSruWbTNeQus+FLHR2GEU4dbiIvKPPtr1Pt4t3BPOwMrSEgghO0b+EgCpVEr20ta5Xr3apu/TNE0QRYHLPfxuKXNBNGyX5hOLOuA1R+FciPMxTROmaTY9KKViEclkUrYZiQ0o4NmHdt5k63W2bpTxLEVrdBBHKpXC1MGDcjaCbdtySMr8/DwURWHDlWI66AIXLlzA4OAgnnvuuR3GLe7h7gq+MOPnK68nfv27eP42T/nGnwOND42KOEtf52pvge/D9X2E3DnwfR+KqsLkRjYIAtYHfoftORHlg41iaTqx4YgWwzCKJIcgyVs6RRuoIBcNDQ1hYWGhtzbZPvaEKIqwsbGBR44ebfq5yAil0mk06nV4ngdbUVipsc0zaBgGbMeBbdusxNfp/fhzR9FSXuSIEwwd7iQKaKrKbAfnNwGs5FAqlXBmcnL7dZoma+HtOAmtgYV4X7le6bZOSLe1K4IKwzBw+MgRqIqCzc1NrK2v4+rVq7h06RKSqRSODE9jQC+g5JcBABmkcXFmBuVyBU888URbNdJeM4WEEDm6t8l2oE0UvktwsrW1xWwwj6I13rEQcIdA2O0oDGWZJqJUjik3dB2GaTYFEa3v1bZU0HI90laHYZNDYBoGfJ5ZTiWTTN2VBwzJZLIpSKGUIp1KwTAMzM/P48xD5QysrGCcp1RbQXjtvVarIeTSrtlMZkcEr+s6q91wec1W2cs44l0ErfB9H5Zlyf5lgC2chGnK+mIrtjhfIP56RVFAOeu1137RHU4C7+MHIYxIwjdZALLWRsFS0oL5Ojo2JjMUDctijsHqKi5dvoyZmRmkUinpBY8MD+O5L35xh6qZZN6Keh4/fjunBZQP8OC/j3dZxBnUvUB494OxqW0q1yEIgwDgNTXCSwS6YbAavutKr9+2bTQaDQS+D61NvVh4+LsRcwghTalacS6ixbDOyZURZeRC4dmLqxV/Ozw0hNnZWdy+fbut4ezjzlEsFuE6DgbbzLAQEXgqlULDsmA7DhT++bUikUigVqsxxbcugkUiwtdUte2acVwXjuM0tfkavJTVrsRZLpcRhWHT8y6zinuQV2+yG8Iu8mBCkqfjv49BRMGpVArT09OYnp5GFEXMMVhbw+raGv66+9N4W3kHiqrgjHsGtUp1x7Ch2I1gjjDQVL7bEcjQbVJ3qyOw45p6wNbWVlMQoSgKiKoCvD1RBG+KqiLBHTPf8+Byu+H5vvwihCDdjhzaY5mXUoqIkCZnSLQYOq6LeqMhCeZpkU2MQWSgh4eHMTc3t6f78EnwuTsDlFKUy2Ucm5xs60lSyoZ9ZDIZNkGOZwjSmUyTKBClFMlkEl4QMC34Ds5AEIbSI4tHakEQwLKs7b5ewnrLTZ5G6oQwilAsFnGmZSiKSAUFQXDH4hHx5SNr3fEShnwhj8Djiw9sBO/hw4dx+PBhhGGI9fV1XLp4EUU+WXFtfR1vvPkmJnhvcjrWDhTxY3TslRZoXRh3QCIU2NraQjqVahJyUbnoR9iBSKOqKpKpFBK8xchzXXg8JRhQioTrbveT7wE7sjQ89WcmEnBcF7VaDblsFoamyYxB3LsXmYFCoQACYGNjo+8M3GVsbm6CKAryXI8jDuHEGaYpSchWowGSyTStxwh85CzPKnZrZRYbdHxjF07A/7+9Pw2S40zPQ9En98zae9837AABkNgGnCFBDqkZSbZ1JHkkb0eyrAifa8c9vnLElSzZYUcch30lXXl8fKWwdaTwOYq48pXtYzmORtKMLVkac4bkkABJrCQWYutuAA2g1+ru2rJyz/vjWzqrOqu6GgOSAJEPgwGgu6pyqfze712e93nr9ToX0xEFgUei7ciLxWIRoig2TNjjWUXa1/5IZbqYDKMQ8zt2/kDjxi2IIm9LPHToECrVKo7PHsetW7dgBw6cwMP5CxcwODSEoYEB9NFJi3ydoDHSj70OWvpkmbfvpxjpeR7W1tcxOjbW8HNJkuCLInzP20Q4FliJgIkCMbtBMwZcGC3yrHAHZyv7FuEzsNezFkPHtmHV61AUBelUitulhowi/YyuQgH3PsUS4xPhDADUkMakz9lDJEoS0qwO6LqoUYcAoL2yggAjlUKtWoVZr/NF2YwoU1SgEadpWQ2SsYZhkFJABxvIeqmEwPfR1RRRyLK8qdd1u2Dp9qj3DEScBPr7KOO0VRQQBgFmZ2bw3eqbuKBegu7p+FvDP4PQCvHR5cv48KOPkMlkeOuibhg8/dhMuGuI+JtqeG1rf1ugWCxuivIkKgfqUw++lTY7SwWqqgqPOmGyKMJyHDiOA03XeYtqRyIskexBGIYArQXKksRbgQRq9DdOIuIM0D5lURCAT6lP+FnFVo6eYRgIgwC246BWqSCVyTTMExBppOh5Hqqm2d4ZCEM+HM2xbZiWxTdASZKQYjXoDp6x1dVVdHV3N5w/yyoG28wqRsGddnYO0RR05HdRoaTYdUsdCbNWw+zsLDLZLJzVVRw+fBjVahWL8/OYnZmBREuRg4OD6Ovv37Bb2LBHbDSvED1WxK6E3wc3aY0GN81lZlmS4DRlFePANn3FceA6DtctqJomZDpwiGcW0EgqjkVkTwuDgHQX0V+xsmY+l2vUMGBvZc+SIDzWCbSd4IlwBtjCiXscomlaWZaJQ1CtwnFd+JUKUobBNwhd03idt1WpgDNFRZG3nTCoqoqUYTSI02yFVRqdFCJjOQHwRex34Aw0k+hY+iwIQwiRlOOmM2pacK2Wk1Wv4/Tp03hYm8c54SKCMEBZqOB71jv41Zd/heg8LC1hYXER9x88wO3paUiShK6uLgwNDWFkeLhBhXDTQm4qG8Rd31bGkXn3zcOpWFpfEATCBdmipZCl53WaYXBsG34Yom5ZcGybOwXbRkjEkVzH4cdQIvVfgBg8kb+cfHePjYCZYBP4c9fiHkefO4Nyj2zHQbVSgW4Y0CIZKCOVQr1eR71WA5rWMkAcYpadCqk+AEvnMpKaqml87XZy7sWVFYzGDGNTZJm3MG7lDLCIkt2DhqFEzC40BRPNdiP6s2bMzs7i0qVLGBwYwO49e/DGG2+gp6cHO3fuBA4fRqVa5R0KH12+zEsOPT09GB8bI+TIpo6eMPJnQ2ATd33YOmtQLBYhSxJXbGXYKqvYDM/zoKgq9FQKkkDaTT3fR7VWIxlAKm7X9vsNG9UNBZrRNU2zoczQkHEQRYA+SyzwEjvJQDxmfObOAEOUGdoOiqoik82iWq3Cs21UfB+ZdBoSVQPbqlTgui7qlkVqyvQLkRUFKcNo+II6nV+9uraGrq6uTdEJG6zBBDGibSpsAceRZppf0wnakf1KdJY4AIwcHAE+2vjdfZO0vMmyjKHhYQwNDwNhiHK5jDv37qG4soIrly/j8uXLyGWzfLhST3d3a681zpGK1DHZ+TafaXF1Faw3vxmyJMGj93KrbdyhLYUyTd+rikJaQi0LfhgShTfb5l0KcWius4YhIRqxXnTWzhj4PsC4AjQ1yMAzA0lW4BNDO2Z3NKsI+vd0JgOBCpmZprkxJlsQkE6lsL621rJUwCbxsaiRfigMXYfONokOzovBrNdRr9fRE+ELMMiyDKFdVjEk7PqGlHwr5xzxnQ7R18XamTDE1atXcfPmTUxNTeH555/nEwcjH4xsNotsNstHMs/Pz+Phw4dYWl7G3Nwc4TH19xMCc/PE1phyxiYEQUNmLS6wWFlZQXdPz6br6DSryD6XtYzrtDOJCZ+5ngfH8+BWq1Cp8FGrvUEQRQgR++f7PkzTJIGCQKTvN9nO6HcX7cRo4h180vjMnYFOFk7zAyBLEtKZDMxajShPVSpIpVJQNa1tqcChIzQ9z4OWzZK0XioVS+7pRIM6DEOsrKxgdHR00++Y98fkdiU6NIQRZ7a86qaHjXv6MQ9hqzbAxYUFfPDBB8hkMvjil76Ey+uXtzoqIAjI5fOYHB/H+NgYdF1HsVjE4sIC7t29y6enDfT3Y2BwEP0DAw2Gs9UiaU4DNjsEq8UiFEWJnQrISzodePgunSanR1QlNVWFQss2NlU0dE0TCh3Osok13FQiME0Tru8j9H3ouk6evXq90Vg3lQi2uh8JHh9aGuaYTdCgmb96rUayRjSY2KpUUK3VUK3VuK3QNY1/1qZjdnDOqzFkWYZoN1LzJr9VJL0dtAoimBrp/fv3cfDQIezetaujQE2WZQwODCBLW8CDICAE5sVFfHjpEi4BDUHFJpnkuKhbFNvez4BytnY2dZSw6+o0q8jKxyI2RMokUUQ6lYJH9QA83+fS1UYqFUt4jz5vjIzObF2+UICzvMyVM+MCBWY7Posg4olxBlou6KbfMZKOJIrIZrOo1WpwHIc4Br7fslRgWRZK5TJ8Oskqm8221PqnJ7TlgmPtSHELGiCLw7Zt2K67qXVvK8R59+3Sofw1FDy9NziIEydOxLe1tbk+tp2pkelpCAnZc4GmBS9cuIAwCJDP5zEwOIiBgYFN3Im21xj5+9LSErq7uxtY/Ay8o2ALUhUbbMLqulGIoghd16GqKpE5pnMvPM9DKkLkaf480zT5aFjmONqOA5FmKjYuJmx4H0CMCRMjSfD4ERV76fANCEMyrVAWRVRpMFGuVpFJpzdKBabJSwV+EBBHoFIBABiaRuq932ebaHFtDelMZpMNCsOQb1qB78OJIb9teZlN/26V2o4jDzq2jTPvvYf19XV8gaqRbgdB5DNz2Sxy+Tz27N0L13VJKZIGFTdv3tyUNVA0raMgKfqa9fV12I6Dvt7e2Ixjp1lFNkdGiYn6ZUlCJp3eyCqDOIfNraJRsqRlWWQ4EbVFhmGQ0dGCwInlTEY/+t0wmyKyaYmfIj5zZwAgF+5GavfNYB5+XESdTqchSxKRe6Tem6qqvFSg6zpqpsknB0qyjEIu194RABp6xVthtVhEGIbcGYhG/sDGLGyPtjJuJ0rcVOdDa/W8htppGOLK1au4dfMmduzYgcOHD/PFvikCaLH0GuqN0fcIAgpdXSh0dWHfvn1wbBsLCwtYWFjAzMwMbly/DllROJmov7+/oS7bCq7jYKVYxPOHD5PDiBsjmgM62lOiaXnmzMV+TmRBt/KsRVFEKpWC5LqoVqvE2Fer3FEIw5AoHToOUQcDeRbYSGWAOHkhGvkgQRhyvgBb0IxECmDL5y3B9qHS1lLbsmIzSsCGwxCGZJIme5olGhDUajV4NLuoqiqRJqYOPMKQaNzTCXq6rqNQKGzpCHTCOVpdWUFvVO2TkXAj/KiApq636wx0mjVoDiKq1SrOnD4Nh6qRtgpytvOZDIqi8KmLLKh4OD+PhYUFXLxwAQCQzWbRPzCAgYEBEhh0EB0vLi5CURQeSEQ7zFhQsFVWMVoiaBe0KYoCie41luMQwTHX5cEEm5TIM4lBAE1VG7KPsiwjpHtR85ECansAsnfYjrP1+PbHiM/cGWC98YsrKx1tmHGPuabrECUJJu0vD4IAnuui5Dg8qgQIMYf1/W4JYWvFqfVSCZquQ9e02L51WZYJgYWSj7YjOrOdJGC0t//s2bMt03vNMVSra+OGbAtGq6ppGBsbw+jYGMKQTE9bWFzEg/v3ce7cOQBo0EEvFAqx2Y2lpSWEYdjQtxx1cARRhCTLGzrerZwBuvFuOcseRDRGzGZJO6nvE4+fCgPZNH3c7NUzyLIMhCHcyHjYKF+Ajz+VJDyYn4ckyw1S2wkeD0ZHR1GzLKysrKC3Sb0UIE4cc6DjODhiU3bRsW14ARmXu7K8vCEDSzkFUpuBQdtBEIZYL5UwPDKyiezHoNJZK67rNrTadoJY0l1MiTHqsKwWizh95gw0TcOrX/5ygzjZto69RaaX/hKFri7k8nns27cPtuNgaXGRqKjSia2bhiu1uAcLCwtkgiNr0Wv6fVT6txU8GkQIgrCl48WCCUEUYdHZOSyYCIKAdBqFIVckbSYry9SOxZ0PCy6YY1EsFrF7//625/M48Zk7A6IoYnR0FB+dPYtypRLbMwyg5aJhUBQF2VwO9XodCEPY9TpqlkVGBXd1IZ1KoVSpIAiCzjdlUQRivjTmyZdLJWSz2baT+hRF4YONvl8Futh0H/236zh459IllEolnDx5knjgce+PvrVVZoC9fovzaVA+Ezamp+3ZvRs2yxosLuLW7dv4+OOPoWka+mlKsL+/n3u9CwsLyGYyhMwVc85hSGQ+IYot77VHN28AHbdjSbRd1bZtmPU6KtUqfM+DqmlEv8AwYjsP+PfIWhijMsi0pMA+f2VlBf10ymSCxwtd15HN57FcLGJfi9eEgsCZ2q2QTqehqCrqtJVsbW0NlVoNo8PDZOiZIMAMw+2Jh7Ug7YFxUDwP2Wy2pUOuKApAeSlhEHTcZtaSeBzHNaJ/Li4u4vLly+ju6opVI90Owk5r3pHr1lSVBxXeCy/woGJpcbEhqGDOQVdXFyCQeQTF1VUcO3o0/hjMUads/VZ1epYViFOVbAUmf87kyavF4gY/SVGgp9Oxx2rggzR9Jw0ZRddFqVwmXRufEj5zZwAgHv7pt9/G4uJivIAIOiMaiqKIdDrNDbQAoFKtcp1n0MxDp949a+fjXxlj8dK/lyuV2IgkCsZm91wX2MbAibirjf0ZNS4ffvghfM9rm97rtEzB21selfwmEHGeiclJTExOIvB9ssBpSWHu3j3uPAwMDGB+YQFjTYIhzRBFkciB+j7v34+yqHlWoMXwkfanS17v0TKE4LpIp9MtWxBFGkE4dFx13EwE1k2ysryMky+/vK3zSdAZJEnC0MgIHs7Pt94wOyHrgqxTMZ2GSSdkMjXBTCbD1Ui35cw3Oe7sb0EYolQqAUDL0gYAXhoLwxBuC2ni7SBORyAMQ9y9exfT09MYGxvDsaNHt2zd3QodBxItAhtBFNHd04Punh4coCOZGQnx9vQ0rl+/DlVVMTA4yL+PgYGBlsdhJEIIAlFKpXaEl3TpvJMQ2BiPvAWiWiWCICDwPN7SqanqhrxwDBqcAXoODF7EdiwtL0OUZezYsaOjc3oceCKcAcMwkMnlsLS8jD27N8/LDtC6PaYZtWqVt6gJoog6JRfWajUEYYjMNidAsXG0ITuPCGO8Uq1iaosvi6WsvTYM0ljEXGvc47VSLOL8+fNQFAWvvfZaw7Chze/vLDPAI6ktzrXVd9LMbRAlCT29vejp7cVzBw+ibppc6vT69evwPA/37t6F67okLdjXt2lhclIVkwjeOAkAG9PkOikR8MukPcQsZZeOCC1Z9TqXtI0DG27DMhIiNW5R775qmqjbNqampjo+pwSdQ5IkjIyM4N7t21hbW9skWBWisYTWDj7lGBmGge7ublRNEyb9v2aapKVsG6lz1l8uNK0FQRBQqVYhs1kJbaAqCjzqcHbqDLS6ymZnIAwCXLl8GXP372Pnzp2Er/MYOl9YuXRLhzzu+4h5TzSoCGnnAAsqSqUSwjDE+++/TzoUBgaQy+c3HVuSJAh0w2a2I6S22GVk3w5KBBunHhLSOu0UkGQZGVXlwkqmacJIpWKDKYWWGD060ZY5jUEkoyhLEhYXFtDb17dJv+aTxBPhDMiyjMHhYTyYn4/lDfDaVpsFHYYhJwMBQKFQIN5euQzbtiFKEmzbJj3oisK7DtoiDHm9EWjcjGtUX7qddw9s1KEC6oF2xFdAfN2vub3w/v37OHvuHAr5PA4dOtTWESDn32GZoMPMQEvnbItODCOVwuTUFCanpvDxtWu4ceMGxsbGsLS0hLt37kAQRfRGpqdlsllI9Fz4eNeIo+K6Ls/gxLX7NMP1PD5tkMlTM/VCgAxMcumMixDxA60YMYkvano/mGMhSxLmHz6EoqqJDPEnBFmW0dfXB8t1STdKszMQsSUB+UHs57C59wAx7INDQ1hcWEDNNOHQIVgO1R4w6ACZtqBrtMEZiaBaqSDTohwahaIoEGybRK4dEpDjiMcAiGNP7ajnuvjggw+wuLSE/fv3E2f1MbXAxnUoxL6uabIfsJEBbtfDz4KKAwcO4L9861vo6umBJIq4ceMGrl29Cl3XeesiCypEUSRZ3kjJV6AtizZrRe4giAgikueMUySJItK5HOku8jzSckxHZ6fS6U02lOnhMNKiJMsNnUkso7i6uoqjJ09ueU6PE0+EMyBJEsbHx/H+7Cwezs9jZHiY/45lBQDEC9qAPECsTUgQBNJhQNnClmURz5pOsgtBWgKtep2T/+LKBowE0mpSVYUKcGQ7iBbYsV3X7cgZaFX34+2FYYibN2/i6tWrGB0dxc6dOztKYW5yssL4WipvD3pMBqIdFhcXMTAwgMPPPw+ASJ8uUjLRxx9/jCtXriCVSmFgcBD5XA7pTIYMHmlqhxIAzgaPc0ZYutWho6WZoVaouAhz2ACSqQJ9bhgHpXkDYB0FzPlkXQi83U0UMXv3LsYnJ7eMABM8GpiWR09/P2bv3sWevXs3tN7RfmNhcFwXJnUEFFnmDrVuGCTrQ7uTWDdSpVIhfBKqOLiZhwPy7FGeSxyxuFwuI7dFEAFsEJAD2s3QyRpvmRmg64GpkdZME8eOHUMul3usLWwdEQjJC1r8uLOzWV1dheN52L9vH7q6uxHS4Uqs7ZkFFT09Pejr7UWG2o4ofM8jZT2a3m+V6WTKlWxuAcIQEEXoETJ6SMnGaToYiw3VSze1LbMSIxOxai4byJKElWIRVdPErhjthE8ST4wz0N/fj67eXly9cgXDQ0MbvZvRnvMwjI2Yq9UqqfUKAjKZDI8ODV2HIsvwPA91Wv9LGQap4dNZ47ZlQdE0MoKWpnBYOilaF2p+SCqVCskwdMD0lWUZEARCVOnEw9/i9xcvXsSdO3ewb98+7Nq1CzXT7IhgtDkzEI+OF/T3Cdu2UVxdxdEjR/jPUuk0pnbswBQdrrSysoJFmha8MzsLPwzR092NoaEhMkOBzioPQZwB7ghEnh/uzUekWlkmgPX9Rr9fQRCQMgzUQTaLumUBgtCQIZAkiZRDIsY+6t3PLyxgdXUVf+Nv/s1P9B4+65AkCUePHsWl06dx5+5d7KAlmRBoWL9xEbMbdQQUhZAFKbLZLCw6ATOfzxOSoaIQJUtaXhItC7quQ6eqcpsIzk2ZPPIjovDZtwXXiIERkJu5KS3RKisnCCitrXE10ldfeQWiJPERv48DUeXOR+UbxXEb4rC4uAhVUXganQ9X6u/HoUOHYJomtxs3b96E7/tQVBWDQ0MYHBhAb18fXMchQYSi8O+PkZXDIIAfhrCpJgkAngnQ6L7CprVGy0AS1SSo1moImEOQyTTcDzEyTZF9LtcXkGVcuXoVff392Lt37yPdw0fFE+MMAMDhF17AxTNncOfOHTJKE5v73EU0pt6YrKggCCSd3PRg57JZOLaNdapSaOg6DMOAR408mzHtWBYkRSEef1PKKO4BrVQqHWUFgA0PHyFRI9yyrt2KMe95eO+997C4uIijx45hYmKCE+ce57bdiQoWy5zEOS6dnsvS0hKA1gQgSZIwQPuODx0+jGKxiIcPH6K4uoorly/jo48+QjqVQldPD/r7+hq+j5COJbVpqylzKjVVbRhFzQx43B1nRCDbcWDV65BEcaMMIQibHFNGNBMlCVevXMHg0NCnSgB6FiFJEnp6ejAyOopr165hfGyMZG2ahKua17AfBEQvHnQmSVMni6HrJE1fr6NSq6E/lULKMGDQqZUWdQpqtRrqpglVVaHreoP9YeS16Gbh2DZcx9mko98KiqLAcRzSYthJhqmF7VhYXMR7Z85wNVI2tpndm8eBTluS235Gh69bmJ/HwMBAy+OkUqmNoMLzcPfePT5DYXZmBqIgoKurC109PRgdHQX79gUatDFBMmbnJFmGoWmbOkriiJCiKCKTTnOemlWvNzxfIkBsDuOfscmNgoClxUWsrKzgr/71v/6pZGajeKKcgXyhgLGxMVy7dg1jY2MQYlSYoouapW4A0h4UNy40lU5DWFuDAFILZpuXrCjIUoJO3TRh2zYCWh+URBGqqkKlMrZxkUW5UkG2wwUNEO/TBolGtnIG4haEaZo4feYMzFoNL730Evr6+xtf20k9seluBi3KBJ1494IgtJ401uFDvLiwgHwut9HP3QaCICCby2FckjA5OQlV07C8uIh79+9jeXkZc/fu4dKlS6Sm2NODQj5PPpel9Gib4CYeBjvfFkaU9Q+7noeaaRLxIUHYuDf0fT7rRBBFPHzwAJVqFV9+/fWO7kOCRwezHfsPHMD33nwTt2/fxt59+zYb0qbv2KzVEIYhJFmObWkFSCBRrlR4hwH5GDKPwNA0PrrYpzoVFm1lVunkQlarjjqN5UoFYRhuyTViUBUFNVpT7oSAHPcUMzXSvv7+RjXSx5wBZMfeyg1ot+G3ElaLwqrXsVYqYWcM2TwOkiyjr7cXhUIBqXQaVr2O+w8eYGlxEdO3b+PWzZtIpdPo6+1Fd3c3cvk815hRZBlqOh07wZZlFWOvg+oR1Go1zlHiwmNNEssOzRiLkoSr166hr78fuz/lrADwhDgD0VnY+/fvxxtvvIHbt29jT5sb4tNNHMBGij8GgkAEQ8qlEmr09VFIoohMJgPDMLiEZHRxi5JEekdVlUsjh2GISqVCBvt0CEVVYbsujx7boTmKKZVKOH36NARRxJe//OWG2lcnHRYMotD8QLcnED4uUlEcfDrUZDuRM+MD+FQrorunB6l0msi2ui4WFxexUizi+rVr8AFk0mn09/VhaHgYmXQ6Vqehky4V3TDgV6sNXj77LGYKmPohwhDXP/4YIyMjGN7G85Hg0cCcAc0wsHPHDty4eRMTk5ObFR/DDSXCaDYxbpgZQ4oFGEGAejS6o4GBpmnQNI1kjujwM4eu8RrAA4qobapUKkTEqMOsIiMgs3KXvpUiXeRZDsONYUM7du7EoUOHml76eNc57yTYhsbApl91cJwHDx5AFAQMtmkpbAZLzQe+j3Qmg5HhYQz09wOUrLe8vIyFxUXcuXsXoiiiu7sbg4ODGB4aIo5AC9vRDpIkQTcMolho25AkiTyvjGBKCerMdiwtLqJSqeD4sWNbf8+fAJ4IZ0AQBJIOC0NoioIdU1P4+Pr1+EVNb2K1WgVASD9bSd4ahgFJkuDStF46nd6UGmYCNKlUitSYaWrO9zyYvg+hXocoy1BlGT5t9+nUuwfAo1Lf9zcJ1bTDwuIiPnj/fWSzWXzpS1+CqqoNnvN26vudcgY+jWEZi4uLcBwHo1voC0QhUzXJgI4SLpfLcKhkJ1NDHJ+YgACiWb64tISHDx9iZmYGsixzHfSBwcFtqbqJgrDJy4/emzAMeV1x7t491G0bBw8e7EiKOcH3B0bs9DwPe/ftw507d3D944/x/AsvNL6QZvcs227IJrZ7xgVBgEGNebVWQw/tVmjQHgERzdGoNDIbhuV7Hp+AKIDYKUXTUCmXN9WQt7xGSkB2HGfLTYJlIXzfx7lz5/DgwQMcPnyYiNc0RbKdhxGdIezQGWjnfHfinM/NzaGvv39b4kgsS8MmT7KW4nQqhe6uLhQKBRzYvx+2bWOlWMTS4iKZ2PrRR8hksxiiHQpd3d1E/yFyve0QJY+b9TpRdoxkFZkjEIYhrl+/jpHhYXR1dX0mtuOJcAYA4mU7tE6zb/9+zN69iw/efx8vvfTSRgsg9c7qpsmJHqkI6aclBIGMzqzXUSqXkTKMtmxWtriZRr3junAdB57rwnMcrK6uIggCqKq6rY2dlQocx2n7HrYYWHpvaGgIx48f35TeazjvTk6g6UVxi65TElDbBY2tmdz35uaQz+c7dqhCqvbn2jZMmsFxHIeweCWJjxZlvcKZTIZPk1wvlQiZaHERFy9eBADk8nnOR8jl81sa5wYv33G4WlkYWdDlchk3btzAzl27kEmnk3kEnwLYHAovCCBJEvbu3YvLly+jv79/U+bODwJY9TqA9tnEKHQaSHi0TGQ0jSuOgqlWGobBnQGHZhqZY7C6tkbGrFMb0InDraoqTCqXvWWpIAxhuy7eO3MG6+vrOPnii7w7q3nFxrVMfz/opEzw/R7LrNVQXF3F8WPHOn4PC8Asy4JH+UOsO0OSJCiKwgcUpdNprqLqeR6WlpawsLiIubk53Lp1CxINKgYHBtDX39+R/oOh62SuCuWpsOfHD0Ouj3Lt449h2TaeO3gQkix/32q1j4InZtg6Y+U7tJXniydPYml5GR9+9FGDcAjzsgDi2XcSEYe+jxRd1PV6HTVqELYCm3SXy2ZRKBSQoS2LJu0/D0OiQri2vo5KtcpJRa3AHhxWI2p5vmGIK1eu4OLFi9ixYwdOnjzZ8HA0bFzbyAw0b3ixtLnoebX7zC2893Zn47kuFubn26oOhkHAW/sqlQpK5TIZOEV1AWyadstls8jlctB1vaVoSCGfx969e/HqK6/gL/3Ij+DEiRPI53K4c+cO3n77bfzJn/wJPjh7Fvfu3YPdZmCWSo0GwpBHlwDtOKjXcenDD9HV3Y2DBw4goNoFUYyOjkIQBLzeAZfgypUrXMvgX/2rf7Xl659VCILA77Pruti1ezeGR0bw/gcfYH19veG1dbru5Q6yiQBxHlhWSJJlrK6udlyWY1yEQqHAn08IRHBIVVVUazWUSiWUymUiT9zGJoiiSLhLotjw3DWDaa289eabqFSrOHXqVEObdqs1+bg4A52UCba6f1udy9z9+5BEsW2JlgVxpmmiXC6jWqmQTC/dO8IwJMONurqI0mhk8mAUsixjeHgYR48cwV/4C38Br73+Ovbu2QPbtnHh4kX86Z/+Kb7zne/g6tWrWFlZacl1EOgzxAYm+b4PIQy5VsGdO3cw/+ABTpw4ERtEfFp244nJDDAPPwDZLPr6+nDkyBFcvHAB2WyW91yyBa11IhpE4QcBRElCJpOBaZpYXV2FoevbSoOzeo+maRBFkdcLmXY4EydBvc7LHrIsQ6HeJ7tGgZ5Pq64C3/fxwQcf4P79+zh8+HBsr2m09v39lAniNvSoxkC7z+ST1lodS2g91/3hw4fwg4BH7uzzPM/jXrxHNSNYpiIEKRMoqsqZuLKqNrSDdQJVUTA6OorR0VEiDbu+jrkHD7C4sIBz588DALoKhcaZ65HrNHQdHh00Evg+AhDp2o8++giyJOHFF1/kUxe1JmLkyZMn8Y1vfIOMft4ic/LzP//z8H0fO3fuxM/93M9t6xqfNWiahjoVHFNVFcePHcPbb7+NM6dP48uvvcYjddd1AUHoLJsIwvIOQbJM5UoFruOgUq22nJ/SCizyZM9OOp2GJEmkz51uDhbVymBRoUL/ZM+Iqihc/KhVO/NKsYjTp09D0zSiRtqGDxFd+4+NQNiJ+mAbsm4nuH/vHgaHhhqCIzYS2KO6AUwLgAtNUXusqSpC20Y6lYL8CNF3IZ8ngQWb2Lq4iIcPH+LOnTu4cfMmVEVpmL0S/Z5EUYSmqrBoNwlA9rnV1VXMTE9j/4EDGB4eRhiGmyYVflp244lxBgBwMo7reZAkCVOTk6hUKvjoo4+QyWTQ09PDNwnDMDruSfVpNNlVKPCaXrlSQeFRhscIAhzbhpFKIZvJgKnOsYyFS50DliIUQDxlTh4BSCrPcTY5A7Zt47333kOxWMSLL77YEQFteySgpm6CmLvX8VyCTn7fYtHfm5tDd1cXRElC3TTJpDjfb+BxhCHRKWdGUaaRkWSaWGMiQzGzx7cD1l6Uy+dxYN8+WLZN2o8WFzFDddA1VeXlBLbAFUXhHQZBGGL69m1YloVXXnkFqqpyTflmo/3iiy/iG9/4BkqlEm7evNmyj/hb3/oWvv3tbwMAvv71r3/fuvSfd2iaBogiPJrVkWUZL37xi/jud7+LM2fO4NVXX+VBhKqqkNsMvIoioA6frCjI5/NYW1vD+vo6MjRTsF0EYYjA95HLZpHP5fgmxiLWIOIIWyCrVaR2g0nnMj5As9Lm/fv3cfbsWXR1deHkyZMtnxlmM5t1NR4HWAX9UcuL9AUtf1WmmZRdu3fziYGB522IwkXahKMOlSxJnNfj1+vwgwCp72dNhUSEbGxsDENDQwjDEGvr61ikMxTigoquQoGQyGlZwPU8mJaFGx9/jOHhYezZswdAY6aL4dOyG0+eM1CpkKE+9IYcPHgQ1WoV77//Pk6cOMHnzoui2NCr2Qo+22hAHpBcLoe11VWUSiVk0+ltL2oBJC2s0xvNVNBkWYau6yTC9X141DHwPA8hrRcJVMWsVqsBdEKeRDMHddPE2bNn4XseXnnlFTKZqwPEXn2LqF1o6iYIEeNlUs/zcZAHmaPk07Yo3/dhWRaWl5exa9cuIuYT5SjQzV+iCzgu88PGU0u0y+NxQBAEIkmq6xgfH8f4+DiCMMQa1UFfXFrCvbk5CAB6mKZBLgfP8zC/uIi1tTWc/MIXOP8hDEMo7BmN4MUXX+R/P3fuXOyidl0X/+Af/AMAwCuvvIKvfe1rj+UaP89gdd+QEvdkWUbKMPClL30Jb731Fs6dPYvdu3cDgsDT9S1leyPgQjCiSJTlajVYto31UomTCbcD27ZJFwJ1EsVICzOwUdt2PY+PYmc/E2gQ4tKhZ0YqRdaIKGJmZgbXr1/H6OgoXjhyJLbFmoFn27Z99hSR4ENo+HHIo1a2bjuVUI5D1Gawv09PT0OUJKQzGViWxc8nxEZGhW3+zfaP6QeAcow6kS2PRSTIYYGeCKC7qwvdXV3YT0mIi0tLWFxYwMz0ND7++GMYdGJrd08PmVtSrWL2zh1kMhkcO3aM21wB2FTC+rTsxhPnDASiCN91+ZAPURDwhRMn8N3vfhfnz5/HsaNHNwQ7tljUQbihFS/Q9pBsJoMqre+vra+jt7d32+fpWFZLVq8gCIQ5LMswAO4csJSg7PuwqH61ZdtQggBra2u4cvkyVE3DETo5rFqtkgeN/c8eFrZRR9pTYoexdJiKa3amopK6cdcGbKQDA+poBfRnQbghyevSlF3zWSzOzyPwffT39/MNn4n5dFL2cT0PItCYaXkMaGYxi4KAnp4e9PT04LnnnoNZr2OJZg1u3r6NgDpyAYA9u3djYHCQvI8a4jhRGUYC9TwPZ8+exU/91E9tes1v/uZv4ubNmxAEAb/+67/+2K7v8w5N02DW63AihN6uQgEnTpzAe++9B0EUsX//fv7MbMVa56qUYchbWguFAlaWl1Eql5HN5VpOtWwF27YhCEJL2xEtRQIb2hX8f02D57qwHAcyLRvcuHEDD+fnMTU5iakdO2DWag12gk3pE6liJr/isEnNtRN7EQ0yYuxu6PsNtqP5zxAg8xHCkARp1GZEpbxZp1ZDxxR938OFBfTReQMStRuiJMVu/s1g9hfAo2fa4toLseH0MOVaTdMwPjaG8bExBGGI9fV1LMzPcyKiQM8bgoATx483BLYCfc6i+LTsxhPlDEiSBEXTENCWPlYflmUZR44exZn33sO5c+fwpZde4p55q0XdsEkikgqLLOpypYJsNrtt1rdl28h3OE0q6hzw65RlIiEsCFhbXcVHH32EfD6Pg4cOEeay68JrJglG/02dJEEQUDdN+LSzgs80iHjtvPYvCAi9ADJkBPARQIQUEo1sll4DANuyiEynIMCyrI1Rn5FFy4YFRe86WxQAWbweXexswbINf2llBT19feh5BCeM1wQFYduGeOPWbX5e2slOM6RTKUxOTmJychK+7/NyjijLGJ2YIC+KLuiYMdKGYeDw4cO4cOECzp49u+n3xWIR//yf/3MAwM/8zM/gaKs57Qk2QdM0VEWRZBV1nW90g4OD2L17N27evIkgCHD8+HHiENA1Evd9s7Qzi6DZ82EYBjRdh1+vY3V1dVt97sCGM9CpvWl2eFkrpEOliT+8eBErxSIO7N+Pwf5++J4Hj9mKVmQ2UYQQhlwzQxBF1CnPidmYqA1hP2flCWAjg8FsA+jn2Y7DybXRtcSkfRmLP1raZNwiphgZBAE83yf2TRR5wFApl2HWajj6wgukPW+bsG0bIuUOPHLWcwuHSYrMN2EQsJE1OHDgAJaWl/H+++8jCEP09fVx7QqRtitKsoxsU/n607IbT5QzAFAP3zThUmeALWpZlvGF48dx9do1vP3WWzh+4gRhowtEorjZk2TjJKMpHQbDMIiQTK2GtbU1DNKorlPUqSb5I1+jqsKyLMzMzmJ2Zgbj4+M4dvQoBIFMvrIp74B5y0E06maeNcgCsimZTaJM1Xaw6w7yYQ5+SKN/iHzkMwMTT2GCGHELwKc/Z5kblr1g0YgoEHVClkZDECAUBNTrdawUizgWmUWwHViWBYE6Ao+afgzC+CFQDDyKicmYsFTjB++/j6XlZTI8qVCAwqLNiJGJcwYAkvK7cOECLl26tKn2+0//6T/F+vo60uk0fvVXf/WRru9ZRXTOhE+dUIA4kGNjY9B1HVevXsXbb7+NL37xi9B1PZZzFH3m40x/d1cXbMuCWa/DNM2W6oVxYM/vo9oO1vZctyy8f+YMLNvGyy+/jL6+PlITdxyuVBjQzTdqQ8LIbA6Ptj6KokjKdY0Hil33VSqva5om4cVEicwgyoAQhE3jxznCEH7Ebgh0wxcFASLbpAUiPsccNiZ5fmthAZqmdTzTIQrG5wrDkLeMfxLgI5KjGUY2swJEcfX9Dz6AommcnMzA3tEqyPw07MYT6QxURZEwLilJkHmTqqbhlVOncOHiRXzw/vuoVirYv3//ps+Iaua3ivS6CgVY9TpMy0K1VkOmQ4Yxi0512m+8HQVABkEUcf3GDdy/fx979uzBc889R84VZFCFugUBh0fongefjUbWNKLJHjaS8OhfENJ0ZwiyGRKetN/AD2B/l2SZEK3opssihOhrmefeCowsxbIagiDg/v37EARhW8qNDJ7rIqDqjc3CS9tB3J2N+yQhMiGTOQhmrYZ3z5xB3TTx3MGDRGNCVfnAEfY8pFKplgb/xRdfxG/91m/BNE1cvXoVhw8fBgBcu3YN//bf/lsAwC/90i8l6oXbBOvecBwHruNAotkB5iCPDA+jp6cHZ06fxpvf/S6+9NJLyOVyDYFEM7Eu8uH8r7KiIJPNolQuY3VtDfo2upKYJG2raYadwKzXcf7cOUAQ8MqrryKXzfJzlmW5bamNOQi+5/EggrHco9cejfj5z5uzk3QTZ1mEwPf5OF7Ws8/WDbMVUTvTzpnn2YNIKfTe3BxGR0bIKOZtwrYsUovXNHKuj2g74hDdA+L2A/bv6elpfPjhh+jt68PIyAgs24ZKicgKnYAKtA8iPmm78cQ5A2wTCinrX1NVTuSRJQmSLOP48ePIZjK4eu0aqrUajh49CokyhIO4WhY2M2bZoi6Xy1hbW0PKMDpa1Iy48ijOQAjAdRy89/77WFpawoEDBzA8MtK4QW3xeXxTphuzSutnhmG09sgpDKyhiFUE9D9gc22blQDSmUzL1ptODFnzUg+DADMzMxgbHSVRHCLGt4Mo37JtBCAL2nVdeI/Ruxdi7nkY8fLDMMTq6irOnDkDUZJw4gtfAECmZUqSRIxq5FnItyF/RslAZ8+e5Yv6F37hF+B5HkZHRzkRKMH2YBgG7HIZtm3zyJ+PhlUUdKfTeO3113GaOgQnX3yRDLuhNqP5uW7VtpvP51Gr1eBssyvJtizeNhZ1NjtBGIZYWFzEmTNnkEqncfDgwU0O51aWSBQEgJIOAcDVNEiiSATZOgDbRDOZzKb2SiYAxpRcW11DJ/ayobwL4OH8PGzLwuTUFBfGCdFZJ5lHJ9SGYciF7TrlU22cROuyS2zJke5DzOn76KOPMD09jakdOzA5MYG19XVCMJYkeL7fUEJuRRz/NOzGEyM6xCAIAtLZLEJR5AIwTM8/Sv7Zt38/Tp48ifv37+Ptt9+GRZm629mc8/k8J2aUyuWO3mPbNqJtY1ulq0OAOynVahVvvvUW1tbW8NJLL2FocJDU+bZI78ciSsqJ/LvtW+LOr9mT7aRX+BGwtLQEs1bjswjYUQVa5ml3NJeyxAHS58+udVvRVbvrifkdW9RhGGJubg5vv/020uk0Xn75ZdI1EgRQqTENw5BnBwCSdWqF3bt3o5t6/+fOnQMA/Mmf/An+23/7bwCAX/3VX91W6jnBBnRdh6CqCGn9OkogZo5tKpXCq6++iu6eHrz7zju4PT3N1+gmtLAloigin8tBkiSUSiX+bG4FizopQPvnnR+enpcfBLg9PY13330XAwMDePHFF6GpaluBrHaIru3HpjFA79X31VbY4pxmpqfR3d2NfD7f4AQIWxwPIPccIKVZ1jm2rcxAG0eg3XsEQYDjODh9+jSmp6fxwvPPY+euXfx3ClWfDCLcq3Q63VIM69OwG0+cMwCQBStIEgLf56x0gHj30QdqdHQUp06dQq1axZ/9+Z/jzuwsYat2CFEUkcvlIEsS1tbWOlpc7DWMBNRqMUXT+WEYYm1tDW+++SY82jrYT6UshchnAmg9CTAG213IcQsnmkeJbq6Pey7BzMwMcrkcf6Abz4FAoP83d0WwBa3TFCtLT3a8qB9lQQOo2zY++OADnD17FkPDw3jp5Zc3VNZohMVKKdE2tHyLVB/DyZMnARAP3/M8/MIv/AIAwhr+6Z/+6W2fZwICQRCQzecRCgJs2yaOAI3Qos+zoij44he/iB07d+LDS5fwzjvvkHbfVp8b87NsNguVOh7LxWJH51e3rIaZGHHrl5X5ONs+CHD58mVcunQJO3fswMkvfIGLCUUZ8ttCNEJ/TM4AFyt7HHYjck7VahVLy8vYMTUV+1JGmo47qkeJ6CwrwLpCHidnIO7uBUGAhw8f4tvf/jaKxSK+9KUvYWR0lHdXSVRMShRFImzVQUYR+OTtxhPpDAiCAJ32bNuWxaPVuFaynp4efOWrX8Xg4CDOnz+Pd959lw8xAlqn+hiy2SwfZLS8srLlg8JJbJH2lOgmG80EsAWysLCAt996C4Zh4MuvvspT8yxl6NAohp5w2+NHEd04O3MM4oxPZHAJ2+jafN6jLCSzXsfCwgKmOpxQyLIFAL03rCWIlkHYou7oXj2CIxCGIWZnZvDtP/9zLC8v4/jx4zhx/HiDNrxEe4JlSeLENQB8/Gk7sJTf5cuX8Ru/8Ru4fv06AODXf/3XH3tG5llDNJCwLQsQhFi7IYoinn/+eXzxi19EqVTCf//2t3Hrxo3G1H2750YgracyZeN3klm0LauhkyD6XTMngBGFgQ010lu3buHw4cM4/PzzvPauqiogCITB/wTgkxpuNjM7C1VVMRJRK40DI5qzLGMYBBsl3UgQQV68DXuwxWubgzfTNPHee+/hvfffR6GrC1/5ylfQ19fHz0WWJKI0SVs9fdbCCqBriyDik7YbTxxngCGTy8FaWyOKXIw9GYaxBBJVVXHs6FGMjY7iwsWL+Pa3v40D+/djz549HdWVuru6iDKh62J1bQ29bQRFXNflBBkGdowg3FwTm5mZwYcffojhoSEcP3GiwTAxhSyPTuF7lME229rmYjMDG2Bm8LF49xHMzs5CkKS2swhiz4sypENsLGhygu3Jod8PyuUyLly4gGKxiMmJCRw8dIgPpLIjfBHLshAIAiRK2mTYakEDG4vacRz843/8jwEAP/mTP4mXX375sV/PswZBEKCn07BKJdiOsyHA04KbMjAwgK9+9au4du0aLl+9irn793H0yBFO5GpnYlVVRb5QwPr6OpE4N4y2La9OjOqoEN0QIs8RUyMtra/HqpGy+rfjONtSY6UH7fSVneMxlhfZtfi+j7t372J8YqJjJ4PdA8/zuJw0D9xoRtF/jHaDnWsQBJidncWVK1cgShJOfuELGBoaAgTSoh2EISTaKgkQZUkhYs9EUdyyXf2TthtPrDMgSRLUVApOrQbXdclNpNFYM9hX29/fj6985Sv4+No1XL1yBXNzczhEjXm7h1SSZXR3dxPtgXIZhmG01PUOm6aGRbXzWWsJ+/nly5dx+/Zt7Nq1C4cOHozdZDVN4wJE23YGhNb6/3GIu3vRjSx8nN49q+uHZBDH+NjYtrXALdsmi0iSSK11u6nNbWQFfN/HjRs3cOPGDRipFF4+dYq3MYX0XEJQmVNFIcNGaAtU9B52d6CfcPLkSU5OdF0Xmqbh61//emfXlGBLpPJ5WOUyZ6XLkRblKELKrpdlGYcPH8bY2BjOnzuH77z5Jnbv3InRsbFY8nEUuVyOdyUtLy9jaHBwy7HI7NhAfKmrUqngzOnT8DwPp06dinUwFUWBJMvw6WhjjWqydIrtcI06AZcxb3Ht2yVaA8D9Bw/gOA52TE5u61zCMOTy04ZhQJRlIGKbHydCAKVSiQcQUzt24OBzz/HxyqHvw2FlTl0nBEZB2KQS2dXdvaXd/aTtxhNZJmAwKEvXc10i54sYwhtd0AyyJOHQoUN4/StfgShJePedd3Djxo22074A8tCkMxnIkoSVYrElKYgpI0b5AAAxNOwLZuk9Rhw5fPhwy2ibRRJM6/5RfdaOigQxiyGIlAmCLbz77Zwb+4T5hw9hWVbLml8rsEg8CAIYbOQ0VVTjvc1bpHE7Yi4DWFpcxBtvvIEbN25gz549+IHXX2/oZ47yVhh50Pd9PpCIXW9Xdzc51y2Qz+exb98+/u+///f/Pqa2eX8StIaiKFDo9+C6LieabbIdQMNm2NXVhdd/4Adw8OBBTM/O4vTp01haXt7yOerp6YFEJwquNU1KjMKngQQPIGi9O7raVlZW8NZbb0EQRXz5tdfaZpp4qeARiITR5/ZxgJcJ4mxHh10EDOwTZmZm0N/fj/Q2RYaYIyDK8oZkObW/HZ1Fh06D47q4evky3njjDbiuiy+/+iqOHDnCHQEAqNEJt7IsQ2ZBRBg2tIAKAAZHRrY83idtN57YzABAZolXdR2gE8MQdq513VUo4LXXXsON69dx7do1zM/PY8eOHdi1e3dLg93d1QXbtmHZNpaLxViFMVa/jhWvEQTYloUzZ86gXCrhxRdfJKmiNhDoBETbsmDbNlKp1CM5BJ3cl61ewRd0i17l7bZCAcD0zAx6uruR28ZQqBCEbMUEhqIZhRBorP+1eL8Q9/00vWZhYQE3rl/HysoKcoUCXv/yl5FtStUFvg/LNImmvKpCkiQ+gCoEcT4dKgQ1vI0ySH9/Pz7++GP09fXhn/yTf9Lx+xJ0hlShgNr6OpG2bfHcxj3Poihi7549GB4exrmzZ/HRhx/i3t272Ld/P+lzj3nuJFlGT3c3isUiSqUSDMNAKsbGMLJYXDuaAODevXu4cOECenp6cPLkydipplHoqgqrXieKgI9CJHxMiF5TbNCzXd6OIPDSS7SlrhO4NFMCNHYekY8lLdlticcdnKvtOLh9+zamp6fhOA720ZJ0c2TPRtpLosiJo57nAVSRlSGTyXQ8i+aTtBtPtDMAAKlcDuvLy3xRy4rSsBG38zhFAFM7dqDQ1YUHDx5g9s4dTE9PY2JiAnv37t08ypSSghYXFjgpKNpPy1rI4lKOAFCtVPDOO+/A832c2sawIU1ViQxwJAPSKbZTKxRiE0ExZYIW3v12IAgCypUKJ+BtB45tcwXJlmptjEQY96s2nx2EIR4+eIDr16+TgTPd3fjSl76Enr6+Ru12kO/brNd5zzA7F8dxyERFReGvz2SzHX/fZ8+exVtvvQUA+Gf/7J8h/yjTMxO0hW4YEDUNsG3Yto1cNtugI88j81bE4kwGR48dw/LSEubu38cH77+Pa9ks9u7di/Hx8U3vS6XTqFsWgmoVKysrGBkaahiCxtoc41LBYRjixvXruHrtGsbHx3H0yJGOeDsCJRLa9BpVTevYdkQzmt8vWIAkIL5M8CjBzczsLHRd35Y6bAiigsgI3rFD6Oh3HqsRs4UjULcs3Lp1CzMzMwgB7JicxI5du2LL0K7n8YyNrus8wLIdB0EQkJHUVAp+pMMg4pO2G0++M5DNQlAUBK6LWq2GQqHARUK2FP0RBMh0Et6OqSkcfO45TM/M4PatW5i9cwfj4+PYu3cvnzYHREhBa2sNpKCopGfcZrm8vIz33nsPuq7j1KlTHQt5AODTtjzPg7MN7sB2CXRCzNKPThhgxJrHxQieZUzgDlJg/HwoCzgMQxip1JaRxibxlhYL2g8CzN27h5s3b6JcqaCvrw+nTp1Cb28vbw1sfhfz7AVBQJqeSxiGfPqcGpE27STNx/BLv/RLAMhEzr/zd/5Ox+9LsD2kcjnUSiUyGIwOlopiq2yaKJA5JsPDw6jVarhx8ybOnT2Lj69dw569ezExMdFACO7q6oJj27AcByurqxjo7weX9Wb95E3H9IMAFy9exL27d/HcgQPYvWfPtmrbqqbBtm1OTuyU/MvP5THU0Xlb4WMaHOY6Dubm5rB79+5t3QuLlhVbST7zGS3kH7y1j6OFPa3Warh16xbuzM5CkiTs3rULO6kTwKSfo2DZRIDYCIW2oLrUERAEMunW9Txouo6+DmdcfNJ244l3BgAg29WF0tIS6vU6Uuk06e2O1t3aPDCsFScIQ8iKgr1792LXrl24MzuLmzdv4u7duxgdHcXePXtQoJFdLptF3TQRWBaWlpYwODDAjxFgcyrs3r17OH/+PHp7e3HyxRf5vPvtQNd1VKtV4uFvQXhkiD6CHZUJ4gL+aGaA9cpv0XXQCWzbxuzsLHbv3r0t54LV+2QqiRyH5rNrIGU1LUzP93H3zh3cvHULtVoNg4ODOHbsWEMtNu67cl13I91oGIT9S1/L1NZURSEqmZq2ZesTw+/8zu/gzTffBEAmjT3OyYsJGpHv7sba4iJ810W1WkUun+cOdCeOtChJCGlauau7Gy+++CLKdKb8xUuXcO3aNezdswdTU1OQqbZ+d3c3lpaWUDNNlCsVTkQOyEEb1pbjunj//fexsryMY8eOYWJiYsN56BDRjiTbtjvirNAbsImv8Khoyxegv9/OcaZv30YYBJjaBnHQ9304dLBaKpXqyMkJae0+8P3YIKJcqeDmjRu4e+8eVFXF/gMHMDU11VC+af6motlETnymsCl5UI3sD0Ojox3Z7k/Dbjw1zkCNthmapolsNrtBgNnKu492IND2IkmSsHPXLkzt2IF7NFr8zne+g+6eHkyMj2NkdBS9vb14+PAhbNvGysrKBrM80k0QhiGuX7+Ojz/+GOMTEzgSmSW+ZW2qCZwd7DhcTrVjdOg9x5UJOKs5ooQVF11s1xmYnp4GAOzcubPj97BZ7QGAzFZGLZoVon+PKnqtrq5i7t49zN2/D8dxMDIyghdffHFTao3JDkcNQeD7qFPPXtO0hsXPZqKLdAojAPQNDrbslDBNEw8fPkSlUsE3v/lN/Mqv/AoA4O/+3b+LV199teN7k2D7EEUR6Xwe5ZUV2I5D+vyZTHEnzgCt5UedxVw+j+MnTmD/gQO4eeMGLl+5go+vX8fo6CjGx8bQ29uLbC6H9bU1LC8vQxoYgK7rCHy/IY1eq9Vw+vRpWJbFhw0xbFfm3NB1VKpV4pjq+paqfI8b7QSHWpVUW8H1PNyansbk5GRLNb64Y9TpkCSFEvXavRZoLBdFZ0W4nocH9+/j3twclpeWoOs6Dh8+jMnJydgNuPl7imYTU4bRsE+xrgKVSuxLktQya/pZ2I2nwhnQNA1qOo16qQTP82DV6zAo0W7LzABjoTPBmMgXKooiJicnMTE+jofz87h79y4uXLqES5cuYXBoCH20jlwzTcilErryebJ5iGJDem///v3Yt29fw3k0bzBbQRDInHOHOgOapnWcIut0sbVSPAMaBYeaI/m4iLsdXNfF7elpTE1NdTw7PAxDPj0tWmOLRcx1iIKAaq2Ge/fu4d6dO6hUq9B1HRPj45icmoode9oQGUR+VqOEQTkyWx4g0R1rMdQUhaSe2yxoAPgP/+E/bErpfeELX3jkmeMJtodUPg+rUiF2w7YhqypkOklzKyeaTdQDe/4jr0+n0zhy9Cj27d+P2dlZ3Lt3D7Ozs0inUhgZGUE6k4EoilheWWkkIgsC1tbWcPrMGUiiiFcjImTk1zQDuY1WOKZzD9rGtp1A4nFodbD109wuB2yP0wQAd2Zn4bkudu/Z0/F7HNvm6n7tMiOMqNkMPwiwuLCAu3fv4uH8PHzfR19vL44dP47R0dHW7ZK0m4x9T3HZxOhrHTo5kWUUBwYHW85x+CzsxlPhDIiiCCWVQmBZpK5O62OyoiCMtJq1giSK8LcoJYyMjGBkZASObWNubg537tzB3NwcFEVBoasLlUoFsiTxdN/pd9/FSrGI48ePY3x8PP68t5kdUClbnV3jo4gQtUfr9H+7ut92F/TMzAx838fu3bs7fo9FlSZFSYK+xXVHr8J1HNy/fx93793DarEIkW7Oz7/wAuEDtClR8Dav6HnU68RpFASiZhdpwWJ64wI2vPu+/v62muAXLlwAQBzayclJ/NW/+lfxi7/4i52ncxN8X9A0DUoqBatcBsIQddMkjmEHDoHERuoCvNTYDMMwcODAARzYvx/F1VXcvXMHt6en4bouZ4l7nofBgQHSk76+jgvnzyOXy/FRys0QQHRWtlNqNHQdrutyvZJOZqYArTuHtoOtVF47RRAEuHXrFsbHxzteH4xjBEGAoesdcSZYeXl9bQ335uYwNzcH27aRz2RwYP9+jI6Odsb5EjamL7bLJooALBqMsnZkURQxMDTUMqP4WdiNp8IZAEi06Ok6fNq3adbryHYoYsOJI8yLCzdPNmRQVBVTU1OYmppCpVrF3bt3cffOHSwtLmJmZgaqLMO0LEiShJdfeqntfG0mq9upQyAIAjRdh1erkRGXHXIHgK0zJAAgtuEMMMMjxWUPtpHl8H0ft27fxsTEBAw6RnYruK67wbxlmgJt4HkelpaXsTg/j6WlJfhBgP7+fhw/fhxDw8NEoEpor0Eel4p1bBuO6wLAJvJiCOrdU0VERVXhOA56+/vbOm2//du/jd/+7d/e4g4k+KSgKAoEWYaq65y9bds26QTZwiHgXJSmEdUtXoyu7m50FQo4ePgwjzTn5uZw59495HM5hGGImzdvYmhoCCdOnNhahGsb606hnAXf97cXSDyGkgIb0hXnWGwnGLp75w4sy8KevXs7en0Ikk5nx1a3uOYwDGGaJuYfPsT8wgJqtRo0TcPY2Bgmxsc32p/b7A9hGHKtk2hHG9MTkJqyiew8nQhfwPd9dHV3x2YrGT4Lu/HUOAOpVArVchkiTc/KkoR6vd5RXYmlh/wggEJ+EL+oaccA+5KzmQwOPvcc9u/fj5npadx/+BCLS0sIfB+GruPOnTuomSb6+/tj+4qjx+40HaerKur1OgLPg+u6HafZ2cYVUnZr4Psb8sj04bYtB1lkESKEDx8hQtTNOhRfJu1JjgNBEOB6HkRQycxtljtmZ2fh2Db2dpjmC4IApmmSaFvXYw1k6PtYpTXY5cVFFFdX4fo+spkM9h84gPHx8c3ZhEhNcNO9avp5COKQ1CNa5uw8WE0R4cbAJEmS4LsuhoaHkc1mH7see4LHB0EQYKTTMH0fQb2OAKS+LDE52GiQEPNehCHvshHID2OfqZB2DACALIoYGR7GyPAwKtUqrt+4gQcPHxLRIUFAvV7H9evX0T8wgO7ubi5R23BsgGvXd0YOJgx60zS3HUjQC+DMeM6QZ7aD2g9G7rUsi2zC1LZZlgUBgO55vMzIU/Id2o4wCHD95k2MjIwgk8l0NIDJsiwu5dzK/tpUGXJpaQmLi4tcGnh4aAjPP/88+vr7N3EsWgU/0WASAH8WzFoNAR1jno5kE4GNLKZtWUAYQpFlhACGRkaeuOmkT40zIMsyUpkMzCCAQPvQHcuCrCh8bkErsgr3WCNfsMgix8gXFyskBJIu3LlrF9LZLHzfx3qphPGJCSwvL+Pu3buAICCbzaK/vx8D/f3o7etr0CjfDiGIcQfqNP0V5wywNkfXdWHRQT5CpE2mue2S17Q8Dxo0hAjg00kEnufAgY26ZcGni5nzCEAlKinpkv/PlACbEAQBbt68ibGxMaRSKSKE0ua6Gzx7Wd7Y0MMQlXIZi8vLWF5awvLyMjzPg6Io6Ovtxb59+5DJZlEoFLaOgGIWdvN34ToOPw9VURocTClyH5nRE0URKm0JiralJngykc1mUa/XIXoeAs+DQHlAmUyGb2hxYJtatDbMo8HoC5uCiIZj09RzT3c33j97FgODg1AUBTMzM7h+/TokSUJfXx/6+vvR39+PQj7fUJraTrlAU1WideD7cFx3Q30vgiAMuYRx3bLgeh5Js4cb7drkkhodpDAM+Sh5NkuFZd9cWiev0/XB7DBLiTNNfpFO+oxzUubu30fdNLH3xRc74kC5ntfQPcBsvOd5KK6sYGlpCUuLi2SAVBgim89jeHgYmXQamVwOXYVCS2cpzuljQUHzz+qmCY+SQ1u1QgdhyAdKhQBGx8eRyWQ6DvQ+LTw1zgCwsahD34fo+/CCALVqFblslpAEY4g+wIaD4AcBLNvGL/z8z6NUKqGntxf/8l/+S8hs2Ezki7ZdF//vX/1V3Lp9G4os4x/+w3+I3bt24V46jXK5jL6+Phw8eBCe63LPc35hAdO3b0MQBHT19GCALvJ8Pg9VVTnLdCtoqko8WLqoFVmG7/uEbU8HN4G2IDHCChvKAYDXpKIeuiAI0KDCRA0+AgQIIECArCjQVA0udQRURYEUYdcGAIQwJAaApllDEGeK6SPIdDb33bt3YVkW9naY5mPM2yAMIVAdgMXlZSxRD14QRfR2d2PPnj3EUNIFXKvVtpSXZt+7AKKfwO970/Phui5q1BFQFIWUKSLvj3IqzHodPgBVkjA2OQnDMLZUiUvw2UOSJKTTaVR9HyLVCnFtG7YsE8evRSTIyosA2eh+8R/8A5RKJfT39+PrX/862YDoOuQRYIzd2L9vH3p6eqBIEmRZxoEDB3Di+HGUymUsLS1heWkJV69cweUwhK5p3DHo7urinVMdBRMskKjXYVsW0UcBkXN3PY8P7wFI66/recTRl2WSSYvUs5laHyL2g7PhFYXIclO7oMgyYfJLEslkUBsR0s4en9oxdg0SvQ8y/RMArt+4gcHBQeQj7Z+twDZhCAIkQUCpXMYKDRyKxSKCIIBuGBgYGMDuPXvQ39cHTdcRBAEqlEy6lR1udgjiHAGzVuN2M5VOb2QTGVGdvp5P0RUE5AsFFOj3+qThqXIGJElCKpVCjW6GkiDAdRyUazXkqJcPbPZqZTo/2vd9pFMp/A8/+qP497/3eyiurOCdd97Bq1/+coNnH4Qhfut/+99w6/ZtiIKA//v//D9jP9WEzuVyuP/gAWzHwcrKCvr7+jj5ECAtQ0tLS1haXsbt27fx8fXrQBgilUohl88jn8uRP/N5ZNLpWE9SEEWoioKybcMqFvnCY2Cet0QFlSRRRIY+XFILzxsAHNGBiTp1Bchmr2oKDN2A7ThQZBmZTIY/1Cxd6Pk+At+Hz/6ni5w5COx+36ALul0tzHVdlEslrK6vo1gsolapoFqtcgcnXyhgbGwM/f39RPO9KYUa7RPvNA3asJCjjoDnbTgCskymv0WjIWw4kmatRhY5gJHRURiG8UQu6ATxyGQyME0TgapCpnX1Wq1GyMltIjRZkmDTgVTMbiwtLeF73/sesRsAN/rt7EY+lyM8hTDEysoK5IEBFPJ5FPJ57Nm9G34QYLVYxNLyMpaWl3H//HlOXMzncsjmcshTu8GCizjomoZqrcb5L5Io8ueYkwZppk8NQ6R0nTDaqRPQDmwMr6ZpnPho2zZ834dMbQe5HaS0wOyG5/sI6DyPEBtaHTa9b8ViEdVyGUdeeIG8v8Xxa9Uq1tfXsVIsolKpoFypEKcgJBoy/b29OHT4MPr6+pDJZDbZB6bhsJ3ySfNgKfb3er0Oh2ZKjIgjAICXFUGvtWqaCMMQumFglJIjn8Qg4qlyBgCSHTBNE4EsQwfgex5c20ZNEMhAC8bwjHx5kiRBoOmxMAzxlR/4Afzpn/wJisUivvXNb+Lll15qWAj//t//e5w7fx4A8FM/9VM4eeIE/52RSnG2uWmaWF1bQ3dEhjadTnMCYhiGqFSrKK2vo1Quo1QqYfbOHZ5Ok0QRuXwehUIB+XweuWwWqqbxiN+2LASgaWnaPSHLMhRZJi1xEfUrpWmUbjziuwmiWZHofWAaDaIoAlGhjZBIq3o02nA9D/MPH8Ks1/Hcc8+hXK2SOe+WhVq1ilKphPVSCaVSCWatxj4cmXQauVwOY2NjyBUKKLQxcvycIsTATtXW4tJ+nudx9q8iyyTFF1n40TqiAKBMzzudzWJweBipVGrbUxgTfHYQRRHpdBoVmvLXNA11y0K1VkNWFDe+y6Y1JMsyHNeF7/sNduOb3/wmXj51qmFFtbMbAMn4CYIAQRSxuLyMoYEB/rxLokjKBX19eA5EkKi0vo5yuYx1un7m7t7l/AXDMJCntiOXyyGdTkOi4kOe68JxXbiui1Q6zYWJWDQuiCLq9Tos2yZtiTQz8CiI0xhgGRVZEABZRnRFB8xu+D4814UXhpiZnkZXTw9kWUa1UkEIoFKroVouE7u5vo5SqcQDBlVVkc5kMDw0tGE7c7ktN3ke8G3DbnD7SMEcAZd2B6RSKZIZibwnciNI9pPuO5O01fpJDSKeOmsmiiIymQwqlQoc1yWZAtPkaeU4UoYoinzcJ/Ni//Jf/sv4nd/5HSwtLeGtt97Ca6+/jjAM8Sd/+qf4sz//cwDAX/qLfxE//EM/1PBZjAuQyWRQq1ZRLpcRhiF6YqaLCYKAXDaLXDYLpj4dgnjY5XIZ6/QhXy0WMXvnDklfeh5EykjVVJWnrrsKBaQMA7phwDCM+Pa7Lch+8cqCYQNZp2E8M+KJj77vo16vE4NiWahWq7h16xZ0VcWNGzdgWxYsx+F1RVVVkc/lMDIyglwux+vykiyT7EiHnjrjM3SiPBl37cyQMvEqxv7Vdb2lIwBaXw48D34QYPfevRAEoW32I8GTCZYd8IMAou9DoZKwlXIZuVxuQ644UkpiWUXP85AyDG43lpeX8eabb+K1114DwhD/dQu7AQCarhPtCtqJMr+42OAQRKEqCncOGIIwRJlukOX1dayXSpidnSXE15DMTZFlmbS2qSo0TUM2k0E2m0WK2Q3DIJt0FI+wnvg5tdAYiGtHDsMQjutu2I56HfPz86hUq8jncnj/gw9gWxZxvjyPBAyZDLryeQwODfGspaqqMFKpBl5WOzTMo0DnLZD8dRHeiEUdgZBme6MRfpQvwYKPaq2GMAyRy+fR3dv7RAcRT+ZZbYFMJkP0uGm6Sdd18oCZ5sZAmebsgCxDoJGsLMt45ZVX8F/+63/FgwcP8M1vfQuvvPoqzp47h//0f/6fAIAvffGL+Bt/429sOraqqhBAe0llGevr66hWqwjDEL09PVueuwCSylN7e1Ho6oJlWVzetlaroVqtwqVevVWvo1qroVQu497cHJcL5hwAXYeqaVCpARAliaQAZZmT/cQI6c/G5jr73NwcimGRiOkEAeQHD0gdPwh45M9SfGwRe3Qx8HsrSfA9D4VCAalUihsjCAKymQxZMIIAjWp5u56HMAg2MW+3QrOU7JbvjDDFmRFwXZc7AjJtR4qegyRsHlZUrVbh0fbFVCqFQqGQyAg/hRAEMmugWCzC9X2oqsrLXZVKBfl8fiPCpQ5Bc1aR2Y35hw/xzW9+E6+88grOnTuH//gf/gMgCC3tBkDmCHieh/7+fiwtLcGmDsFAf/+W2hoAcWhzuRwymQz6ens5m95xXVTKZcIDcF04to1avU4GhS0tEdXMCPmROQxMN19TFEAUIVFVzShRWKJZSFmSYNFugsWlJZTKZQRBgJppwnNdvh6i9sKnGQA34gDwzTLcaN9TFAXpdBq6rkOlAkqqpiFNy3aSokBRFE50lBWlY0eAfe+sM4LxiNqBkwXZfQfgg2iQsNJAqklUiB0j6gg4dICU5/vYtWcPZFl+YrMCwFPqDAiCgK6uLqysrJABM54HXdNg2TapA9JoNOoQSFRb3qNfpiiK+ImvfQ3/+t/8G6ysrOB3f/d38e677yIMAhw4cAB/9+/8ndiHhklduo6D7u5uiKKI1bU11KgH2NPTs6UcqO/7MOt12FTaNqSpL9amFu3NtW0bdVZz0jTYjsMXVr1eR6lU4iNMfduG43kIaV2f1et8urE7ggNf8hH4AUKQ43740YfIClnuOCiSBIEufjFiHBRFQSaTgUEjDEPXOdnujTfewO49e3Dw4MGG62SKXLZtww+Jsl/dNKGoKgr5fMctec0dDh1FMmxxRl7j+36DI5BKpXiPNMsINDgCINoDLOu0Y9cufg8SPJ3QNA25XA7lchmWacJQVYRBAD8IUK5UyHRD2nIIuilIsgyflgpkWcZP/MRP4F//63/dYDcEQcD+/ftb2g2ARPtlKl7W39+P5eVlWLaNxaUl9Pf18TG3rRCGRCPBpMJYwEb2sbe7G0Hji1GmGzaLRK16HXXLQr1eR6VSgUkHglmOQ8qtkY2c1/ppYMA28SAIcPnyZX4YZiNEyl8SqRMhRpyKdDqN3t5ebjt0XYdhGJiensbNW7fw+uuvN2R0A+rgsAFMvu+jWi4jABFX2uo+MUTtBrt/vFW41T0GKXk024F6kyMgyXLDdxBGHQHapVapVuF6HoZHR5HJZPh+8aTiqXQGALK5d3V1oVgswnMcUlen6TdWB2QsV4QhWRAC6aFnD/YXTp7E+B//Me7du8eHQIxPTOD/+fM/Hz/+EuDtOkycJpvNAoKA1dVVskhXVtDX2xvrEAQ0zWTZNu/jVVWVyO/Sh6S5jUijI0oZ+YaRjtjnlUolgP6cRcCxfdAAanYV/78/+z1AFBH4pJvgh37oh5ATslwCObrRdcJgPnf+PCRJiu8gEASSuVBVWLaNtVqN1OtC0rMvCEJHRJpNCxpUv6FVa5AgbCIKOY7DOQLMEeCvR1NKMHK8SrUK23WxY+dO5HK5J9qzT9AZMpkMPM9DlTrlacOAaZrkZ9UqUun0Rto7JANnolnFF0+exB+NjzfajfFx/PzP/zwJFlqsG0VRSJQO8gz29fVtOASLi231Slh6nWXtRFEkmUFF4c9uQLsDAACCACOVQq1ahes4yFHCMgPjDGiahpRhtLQbALhuydraGr773e/i5VOnyMYmCNz+5CMtkcxhbwezXset27exe9euzaVdmpFJpVLQNY0EPBFCXt2yiM3cIuhqvp52MxTY68UmRyAIApINpd9bStehUOEgcqobGQF+3ZSsXqlWISsKxicm0NXV9cSWBxieXDelA6iqikKhAFHXYVsWJ9fx1C71dAGy+Fh6in2RYRiSmh9FPp/HL/7iLzYMmGgGS3mzRQ2QXuKenh5IlDCyvLKySXnLdhyUSiVYdGNXFQX5XA7pVKq9tyjQgRegzN0teo7b9c5KUtzDGPLPjKa+O6ETrZdKuHfvHvbt2xe/qUcWsOM4SKXTyKbT3ODVTRO1Wi22j3qTwEfTZwLx1xotCbDPYSUkgOpV0PJEtFsAMY6U53lYL5WQSqUwMjrKWxsTPP3I5/MksyWKMOt1/kzwTZelsWlmIJpVBBBrN7gj3ZRhYlBVlffkA8QmDfT3I0WDgaWlJZg0Fc8Q0Loz67gJAaRTKUK2jTgC7LhRMMl2Rhhsh3ZPNWsjZmucdTBFI+PtrourV69CaRVERNagQzlUKcNALpvlExor5TLv3e/0WraSTRaavjff91Gr1TYcAcPgnSc8E0A3/+bve319HZ7rYnBoCAMDA5+AtPzjx1PtDACEVZvN5yGqKk9BM6GOSrVKald0YSus75Yu6oWFBXzjG9/gn2XbdqP3FvPQsJ56Jp/LkEmnuUNQr9extLzMFQBrtRpqtRpxQgQiUJROp+PrznHHZIuafjZ/acz9aBfNx74eiGXnd6Jtfvmjj5DJZDA1NdXigCRlZtIyh0TbpHK5HKmRUg+6Wqs1OFcsPRvGOAlBiwUd5Qbw1wYBTNpmBRACVzpCWGSkIPb+hs8LAiwtLSEMQwwMDbUdWJLg6QMrNSrpNI822WZu2zZRlaPdOswmeDSruKXdwOaNBSD2h/GDGETaRWAYBkTaZcDaXT3PQ7lc5qlyRVGQy2b5xtLJ88iuyaEaJZETBNDo9G93Q+eji5vPY4uswNr6Oubm5rD/wIG20bLrOGRmCUiXFsvMsY4ImyohNgdeXD2xGRHeQCwi1+/SsddM0C2TyXCeAp902iITa9s21tbXoafTmJyaajmM6EnD58K6ZbNZGIUCV7STI55rpVKBTwUvmJiG57pYL5XwL7/+dVQqFc4MtywL3/rWtxo/nH7p/J8A0oaBGhOSiCCdTqO3rw8yfVDnFxZQoh6sT4UwctlsIwNVaFRAE1osJL6oHadxUVOwd7VbzoIQN8I42JhL0NRJ0A6LCwtYXl7GwYMHY40Sa1es1evw6OJJMYUugUin5ujCRkgEPBhBSGjhCAB01DJN3fKfxaT3fM9DtVYj94qmTHU6vpbcC2qsY4x2GAQorq3BrNWQyWaxb9++Jz7Fl2D7kCQJPb29kDQNPlXiYxut4zioVauEtMsMfxhifX0dv/Zrv7a13cBmhyCdyXDHIwpRFNHX20tq0YKApZUVFNfWUK5UeNYul89vyiIKaOoQirEdkiQRUp4gNGQdhDbv6RRxMwlCtLcdIYDLly8jm81icnKy5es8z0ONnq9OOyMAcj2ZTAYpShL3fB9VGvSx62llA5k+SoO9itgBBsuySAt0GJKOp0yGlI2ZfgCTfo+5d45tY3FhAQKA0bGxthNNnzR8LpwBQRDQ3d2NdD4PhCFsy4JE+2pZewfz3kNKZPsXX/86lpaXoes6/tE/+kc4duwYAOC///f/jrW1tcYDRMlrAPKFAsrlcuy5pAwDvbQdqFQuY2FpCa7nIZvJkKlaLVLbzQzbZvBFTdOa7H2t7kfsz2N+5gU+T3U1LJI25Qi2oHv7+jA0NNTydaZpconjdDq9aZCJSBe2pqoQJAlOEzkqDqyVic9iADY5Aow3EjKvPp3m7VucCNXCCPq+j3KlgnKpBFGW8dyhQ+jt7W15PgmebiiKgr6REUiKQspZtg2ddpi4nodKtQoEARRZhmXb+I3f+I3O7QYoiY2uxyx1HioxtkMURfT29iKdSiFwXTycnydkQ8pAj5tfwI9BP7/VumdEX6YE2BJt7E8c4jIDzcFNM+bn57GysoJDBw+2PF+PZgsFAKosN6iCMqiahkw6zZ2haq3W9tpYBpQFDuxco0TkIAhQq9XIHAEAiqYRuxXhj7Dx9XH3ybIsrK6vw3Zd5Lu6cPjw4aeq6+hz4QwANO03MECEh0A8NAGkTheGZFqV67oQBAH/8T/+R9ybm0MQBPi5n/s5TExM4Cd+4id469kf/eEfNn84ac2hXmQ2m0WlUml5LqqqEjU72pJUM80tB28wMZJ2izG6qK2mMkVHiziO1OjTbotoVmCLdOHt27dRrlZx6NChlq+pWxbpbACpcbZcFDRqT+k6IIpwPY+3IMWBLUQ2Xrb5TC3L2lAli3r12OgYCMIwNvPgeh5q1SppFQVRGtyxY0fbe5Hg6YeqqugZHCTBAgi/R6OONyOCQRDwn37/97G0tIQgDPH/+Ht/b2u7AWw8o4LAhYHKLWyHKIow6FoRaFCzVa0fwJbtcqIoQqc8KLNeJ45wizLBdgoFzKY1rO02mQbP8/DRRx+hr68PA4ODsa8JgoA7AlIT0bcZsiyT1mWqBVFnmcAY8PkS2BjAFuUWNfMDdMNo4I6xLEBcCYLtL/VaDbVqFZph4PALLzw15QGGz1XuUxRFFAYHISwuEhat5/GI2nEcWLaNP/qjP8LtW7dgaBr+2t/6Wzh48CDCMMTY2BiOHz+Os2fP4s233sJf+pEfQX9//6ZjCIKAfD7P9QGaBUNY2kqWZfT395Po2PexuLiIru5uMkehBVjaz2+xoJixqJsm6vV6I2kvssDZw/ru/Gm8O38aju8gCAME4eYN8N9e/t+RQQae6MKTPRzqOYSf2PmX0cosVKtVXL12Dbt27kShUIh9jW3bvE6f0nXejtnyugWBZz1Yar9er8cyq32qLc+7PSJefZT1q1LJ1IbBK9jICDQPqXIdByYVFHFsG909PThy7FhSHnhGoGcy6OrrQ2l5GY7rcqa9R4XK/vN//s+4MzsLAPif/vbfxuHnn0cQBBjt0G4AZP3mstnYzABAGPaObSOXyyGVTsM0TZimCcd10d/b27bzhm3krbZiXdPgUAIym9oIYNPG1vEcBGBTeXGrLoJrH3+MumXhpZdeavl5NZqeF0UR6VQqNoCJQpQkpFMpVE0THs36ptPpTZkUPwjI50YcAQamPcIifyYMFDKb2tTNFEUYBDCp9kq1VoOqqti5ezfGxsbwtOFzkxlgkBQFmZ4eZDIZsrFS2UtVUfDd73wHFy9cQCqVwg9+9as4depUg2f44z/+4zyd9Af/1//V8hi5XA4QhE0efhAEvItBEkUUCgUMDg7CSKUgCgJW19awQgdptIIoCG1bZjQ6XlcQBNTp6N9mCIKA88sX8MtnfwXfvf9dvDv/Ls4snMH7i+9veu3t9WlcX7+OD1c/wrml8/j/fvy7+MbMH8UeOwRw4eJF6JqG5w4ciH0NY2OHoOJKW7BoufERyNCkNI0EPNpn3Hz8MKbux8g+HhVXMVIpzrFgvcXs/ZEDk58FAeqmCZOes1mrIZPLYd+BA8iz+eYJnglo2SyyXV18aqVN21+/+53v4Pz581BkGT/w+us4TmWG2bP7Yz/+4yQFvYXdAEjnQVyJ0bZtWLREZhgGent70dfXB1mS4LkuFhYXN3UaNGMr3Y1UOs27klpF0EBnWcYwkl3ja7HN8Yurq7h9+zaeO3AgVr2TRddMMjjdYgJg5A0bbcCCgEwqxTsn4kiFnu8jFIRGrhElN2/iB0jSRudBMzkxYrtd2orq0QAiFAQMjIxg//79TyXZ+Ok74w6gGgaMQgGZbJYTCc+89x7eeOMNhGGI5w4exMkvfpEragGkBj06Oorjx4/D932cPnMGc3NzsZ+fzWYhCsLGNCoK1gcs0sFBAn34+np7kS8UIAlk4t7i0hLcNmWDrQR1jFQKCMlIUcbCb/ZYr6/e2PI+AYAMsjh8bJzPdGk69rWzs7NYWVnB0aNHY3UYHMfhswcUOtmsJaKLOQJFVUlGQBB4GyYAztoNgwCCKPIUbq1W40OEBCpwwgbCxJKJwo1WSuZE2K4LUSBDrxRNw/jkJMbHx9vctQSfR4iiCKNQQDqTIWRXAO+//z6+893vAgAOPPccTpw4gWqE2CcAGB8dxRe+8AV4vo93T59uaTcAEkiwEiN79pkYVhCSYTbMGTEMA4ODg9BoqXN5aYn39cdiizS/LMtQNQ0ibTWMywBsVXJgYOuSRdr0guJfGwS4cP48ugoF7Nq1a9PvWceVR6eiGpGRxLFgpO7o8ZhDQDfhhvKKsCEnzLIYjuMQUSDansj4AZu6lGL+zgOIWo07HY7rorurC3v27Glb2niS8bl0BgCS9lMNA7lcDtMzM/jjP/5jCKKIXbt24atf/SqCIMDa2hppXaGbhiAI+ImvfQ0CdSD+0+//fuyCEUUR2UyGePj0wWRKeyEdXtH8UOXzefT19UESRbiui4WFBT4FrBmsv75VhkCSJOj0GHUmYNSEQz2t6/kNnxXjDLzQ+/ym15n1Oq5cuYLJyckGvXQG27ZJqk0gQkKtxFMYYjUEKFRNg8K8/HqdD2vi3j1t7eTZAPqebCYTzxRuPDBJ7dVq3ADLsgxZUeC5LoaGhzE5NZWUB55RiJIEvVCApmmYvXMH3/iDPwDCELt37cL/8CM/AkmS4DgO1lZXN3hAgoCvfe1rRMEyDPGffv/3CS8F2PSM53I5eJ5HRLcoO52RZiVJ2iRLLMsyBgcHeSfBWqmE5eXlltlFPnq4BQxdJ/YNZM3GrcFOWgybyYPRYWfNuH79OqrVKo4eO7bps1lpwGNE48jU1Fi0sRssKwiQbiKHzkbh2jL0fbVajfCKaGCRpuRudh2trj8MQx5AOK4LEST76dO5FaOTkxgYGGh97k84PtcWT8vlUF9bw/Hjx3HkyBH+0IVhCMuyeOuh4zi87390dBT//vd+r6H/PKAPDfeaBQG5QmGj9hcSYZvA96EZRsuHmXn6KysrcF2X8Ai6ukjZoQnsgWSEt2bomgaXKi9aloV8Exfh+d6DONh9EFdWr7S8PwL9DwB8KmbaZ/ThtZHXGl4XArh48SJkWd4kOQxspDgFkIyAYRhb1h23SkWmDIO0hQYBuU5N42OUPc8jWvEgMyd0OgAGQGOUErOoLctCjeoeAICu65BEESvFInr6+zE0PNySC5Hg2YCsKNByObzwwgv4rd/6LVj0+Q4BLtlrWRYqlQp0XYemaRgdHcXv/d7vQRDoVE1angpAIi72XLK1Xi6VoOs6mUPiOAgBElG26Dbq7e3lw81My4KzuLiJRxDlDDBnu3mdCbQW79g26q4Lo025oB04eTBaIohZ8+vr67hx4wb279+/yc6x2QasQ4g5Aq1KGJ3wGSRJgm4YsCwLlm1DprNk/CCA7Tjw6MRZxlNiXKWtjsGIjQ7NJEiyDEPXYVIxqNHJSYyNjT2V5QGGp/fMO4AkSTAKBQhUPzuXzSJFPex0Ok1qxJT8UalUeJYAoIScaOsJXdw+/ZNnBkDSzQEln2ylW68oSiOPYH0dy8vLDfKWzQ9jrKdPa4AAMVDNalyCIOCn9/10+/tDfUGSFSDH/Ku7/goUsdGZmZubw+LiIo4cObKJxMQYzwFIqi2q7rf5lDvnKguMAS2KsB0HAY2gTDoDAiAbeaaJLBRVFIwioO1KzBGQZBm5TAayJKFYLKLQ3Y3B4WGMjo52fI4JPr9QDQNqNku4L7qObC4HWZJg6DoUSkhmc0LKlQqJbFmLX5MWAAso2MhbWZI438imjoCu61u2oeVyOcIjEEV4rov5hYVNpcrocVutN1lRoGoaJNpd0GxvWpUKeKkuUmprl84PwhDnL15ENpvFnj17Gn9HMwIBjdizkYxAqw2/I2JjSGa4MCfFc13SJWSasB2HDHKj9j8qA9/u8xzHQZkGjQB9HtJpomxqWRgeG8PY2NhTP8n0c+0MAMSDS3V1EaEIgYrd5HIwDIPMLqCbjO04ME0TFbqwGZjSFP83yEOZy+dRM03UqlVS2w4CaBFRm3YQBKGBR2DW63g4P88XdtxnxDkELK0oUjIhUzwMwxBBGOJw76G25QK5wRkAevVefHXiKw3pdcu28eGlSxgdHcVgUzuQZVm81KHreuvSQCTLsiUidX5VUSCAMP3X1tZ4Z4aqqshElNgAtNRpCGg9tlKpwKPiUwZdzACwUiwiWyhgcHgYU0l5IEEEejoNNZPhIldZyvJXFQWyLMOyLELGc11UKhVeh48KWzUjDEPkCwUsLS3BdRw49JnkglhbOMwsu6hrGhCGWFldxeLiYqOCZwSt2gVZ25xPsxzAxmYfhCEPD4KII8PZ9YLApZFFNtQp5txv3ryJ0vo6jh8/3rDpsiibdfQ0t/82fM42AggAXBBIVVWEApmdsL6+Dp+SunVdJ1yyrfr/qRNQqVaJbQ0CiJKEHC0p1Go1VGs1DI2NYXRsrGUHydOEz70zAAAidQjYRiFJEnJUFpd5tkyhq25ZKJfLGwubLqbmhTrQ3w9JFPHg4UM4to2AyoU29+22Qz6fR39/PycIsYXdKk0W5xAw75ZpmPs0e8Ecg5/e2zo7wMiDHsjxfnLXT0IRlIZzv3DhAgRRxOHDhxveW6dpOBbVbJokxjb+JmeqHaISn4wg6bgu6lSMCACMdJpPd4w6DiE7FkXUCWAkIVEUiRSyriPwfawUi0hnsxgaGcHOnTtj58oneLahZzJQ02nuyGqahv6+PjKwjGYDHdqWapomypUK1zMB4iP0wcFBLC0toU5LlRJtYwuxmb0eB1mWMTAwgHw+T9ROHQcP5+djtU+Y7Wo+B0GSOFHRtCxYrgs/CLjtYJlQ8uKmNRzpJIgy7/lrQcoDH1+/jt27dzeU3Xzaeh1QZccM1V7YBPaZnQQQ0eujjosXBKiWy7BsG7bjEJufzzfOCIizS81OAOUp6aqKXDYLSZZRq9VQrlYxPDaGkdHRtsJrTxOeCWcA2MgQMO9XEMhsc5aeEgQyECigDPVypcIXNgDO1GUpcFmW0dffj4WFBQAbMwt4ZN7sTbeArusYHBxEPpdrWNitFA7FaG2OLlpVUchcc6rlHcXBnufwQu8LsZ/FMgMePHRr3fih8a82/P76jRtYXFjAiRMneM9+yDIpVDrY0PWWXQPtSIINr6PXwhi/bDEy8REGnY4/bZgw2PRZvufBrNUanABZUZDOZIjhoeTQYrEILZXCyNgYduzYkTgCCVpCz2Yh6zrn7siKgu7ubmQyGYRBAE3ToCoK6vU6qtUqSqUSqYVHtCxYMBGGIQYGBuB7HorFItj4cmAjKg8p56Dd2mH2i3UbCIKAtbU1zC8sbM4SRAMaciAIIenlZxF7rVrdJMTVympFSwRxAY/runj/gw9QyOdx4MABzrdic0iYCmAmZj4Ld+o7CSAi9yeko5dZMOfYNiRFgSiKkCUJmqqS2QKRAKLh/oYhHNtucAIEmknIZjI862uaJkrlMoaoE/A0yQ1vhWcqJyqrKlJdXaitrpK+UiqHG4I8+JqmQZJlxL3xGAAAKBdJREFUOLbNhXPq9TqZw63rfNGyCH1wYAAfffQRPN+H3lRLjy4Srn7VtHkx54It7HQ6jWKxCN/3sb62hppporenZ7PYSKRmx0h0Km21s+j0xmi6+3/c8zdwaeXSpvsR7ST4K7t/Eqq0sSEuLS3h42vXsH//fs6QZb3AbGBLyjA2TeOKqvzFgt0HVjqghCum4hZtJwTAJZyZcpraIo3Pen2jhlCm7Y2yLMP3PAQg38VKsQhF1zE8OorJycn2LZAJEgBIFQqora7CcxwIIGQ/23EgShJRwKO8JMdxeH26rqpIpVLQKElVAOETFPJ5GIaBpeVlpGIEcqJObkj77sOmdD+zL4qiYGBgAJVKBevr63BpMMEGgkXT8yFIxiyqoqdpGiRJIm26pknGHEfT/i3IdJIkNYx55u8JQ5w9dw6e6+LUqVNksw9DMmuA8nWYIxBXr+8kgGABFsuksKmoNs1UAiQLmDYM2I5DMjXABich+llBAJdqmkQHtmmqCk3XN7RNKOl8fX0dg7Rk+nnjFz0zmQEGWVWRLhR45K7TNjYW0eeyWeRyOWQyGTJlzLZRWl/HysoKiqur5IGjD+vQ4CACAKurqw1yvnGIm7LHzoGl9JlqYVdXF0RJ4gt7fX2dZxnY65uJcgplxgoC0TKIevkHe57D0b6jDceXIEGAgBAhsloOPzT2g/x39XodZz/4AP0DA9i3bx8AcFlWPnkxk4ndRBscnqZFzVKhQWQxs3JApVLhss0CSM0vl82S2fKSRGqXdJ48/7wggE1Z3bVqlTsCiqIgk8lwARHmOAU0GpNlGUOjo5iamnpqe4ITfPpId3dD1jSyFkHmbQggkbCu68gXCsjmcsjQskLNNLG6uoqVlRXeGQOQzWZwcBDF5WUiMtbGdnDOEl1LAavpR20HiPbJ0NAQ5xCVy2UsLC5yJdAgCEjKG43lRpYRBcAja4ZWHJ9NMsSRz2PZxOMnTvC1ZVkWqhH9kTzVf4keh3VC8GNGeEZMX4SXUhihm6opVioVXrKURBEpwyD2yTAQBAH8IOCjhxk8z0OdlnXqtLWTZQIYp4y1IQdhiDr9LvuHhjA4NITx8fGnunMgDs9UZoBB1nVkentRW11FEARIp1IoUe9Q0zSS9lNVGKkU0bqv1+E6DqrVKsxaDZqmIZPJkNRzKoVisYjxiQmeYWiHhk2cPmxAo7eayWahqirWVldhOw5JO9IJemn6kG58DPl7GBKxDp9u2FEvn3AHfgoXli/w90WzAj+58yegySTCD4IA7733HiRZxokTJwAasddMk/QwUyZuVII0DBsnDUZHAzc4BJHoIYh45FEBF1XTuC48uz4/2JhUKAgCJ1550XSoQPQNNFUlSmSMTCgIQEAmxa2triKVzaJ/aAhTU1NPPfs3wacPI58nHS7VKmHlqyrJApgm0pkM0nQ6pk7JtdH/S+Uy0qkUstksBgYGMDM7u0HeC9sLjUU5CIiseb5pgg476u9HrVrF2vo6PBpMpNJpUu+OpPVZSZOv6VRqY6CbJPHNM9quyMCyfpIkNfy+OZvYPBNGU1XSIRR5DxdeotfCAqSGDAGzL/Q1vu/DchzekgkQJ0DTdT5mmP3M8zwEngdFURDQQU2u4zToNIhUsp6VW9j9ZM7W+vo66vU6BkZG0D8wgImJic+dIwA8o84AQDIE2f5+mGtrCC0LqqrCosI52WyWlA1onSmTTpP+dLpY6paFumVBkWUUCgUsLC0RAQvEL544bHIKIpsm69fvHxhAtVrF6urqhkFhETPzXOnxWDoxZRik1cl1YVJ9/xDA3q69ONZ/DGcXz8ELfGjQECCALCv4i5M/zI99+cMPsV4q4dVXXoGiKEQv3bIAQeCDQ9hApSjBMprab0jDhZHxwnQh244Dj7ZjsutlDljUCWDGwHMceL4Pn853j94rSZahKgoUWh9kmQk2bCnwPJQqFVSrVfQODKC3vx8TExNJRiDBI0EURaTyeciqinqpBD2SivZcF4qikNa1VAopw4BL5blrtRpcz0O5UkGFTiMURRErKysYHBxs2ITaBRQNDkPUKaD/FgFkKON9dW0NlWoVFXrMDCXfKrJMeATU7gRhSLQVNI2IeZkmsrTsIYgimWDKovGQDF/j5T56KnXTxPvvvYe+/n7s2buXlwUYUTBlGFAoUZp9ligICNA4QTSMXiN1Alh5z3UcOJ7XQLBmHVW8lErvQUDPk2mTWLZNzjtyHxVVhaIokCVp0+TTEKQtcWVlBZKiYHxqCgODgxgeHv5cOgLAM+wMAGRhZ3p6YFWrCMOQ8AQoCY+lwAVBIOTDdBqpVIorUJmmCdfzoOk6HNfFvbk5DA8Nkfpg1GPegkAYt7ijYPK6pXIZVZoKL66uoqKqyOdyRPWMlRDo4kkZBh/FKUkSVNrl8FO7/0ecXTgHEQKkkHz1Lw99EYpAFunc3Bxuz8zgyAsvIJ/Po8JYvwA0XeejXTedO3UUor3WLB0ZgqqBuS4c1230yEEyAdwJiCzkkNYZHddFuVqF7TgwNI07Fwp11Fg3SJzIiksXcygIGJ2YQF9/P0ZHR5P2wQTfN1TDgKwoqK2twaCBQq1WQzaXgxSJuhWaPchmsySlXa0SO+O6yKTTePjwIcbGxkirs6Jw53o7AQUfwRvh40iyjO7ubui6jhIl1FUpKTeTTiOXy/HBXSwS1+lgJs/zyLVkMiRrJwgk0xb9n2YUQurgn3nvPciKguPHj5PBP1SEjGUSY+v19NyjWUUWAAiUd+TSDIBLeUoMsixDo5t5gwMBMofA8zysl0rkPASBOwKyLEOl72PEyk3nFYao1GpYX11FvrsbfQMDGBsb+9yLkSVWEaR9SFZVeEGAUqmEaq2GENhol2M1elGEqqro7u5GoVAgNXTPgyJJePDgAVRVhUQ3KoNqjCuyzBd3px6/EPGYfUrW6e7qQi6bRblcJkpYto2llRVIosgJg+w4iqpCp2RC0zQh0sW4O78LI+kRzFXnIEOGCAl/Ze9f40zkCxcuYJz2zUbblFLpdEdse1mW4bFZAkEAmzoAXiRrIABQZBmKqpJzFkWI9Lx9z4NNjRHz/m2aFRBAOi90OqiJRTZNN5Efo1avEw2BbBZ9g4MYGRlBb2/vlteQIEGnEGUZ6Z4eSKoKd34etm2jUqkQ4h57FiNp+VQqhXQ6DdtxUCmXkc/ncffePSwsLiJlGCTK1XUyn0BRNlrutggoGARBIH32vs83bcMwYBgGYcGXSiSYoT3yLLUeBgFANVfSqRTK1SpXB0wzafUm/oDEsnBhiEuXLqFUKuGVU6cQBAEf8CTLMhd5azhH8peN+ygI8KgjE2AjePAcB9H+BlGgqoEsCGCOUxCQjIHrkrIA5XTU6nX4QYA07UJSmoKHOE2DwPextrqKumVhcHQUvX19mJiYeCa6jRJngEJWVfSOjhKhitVVVKtViKJIhG8iaSsGURSRz+WQMgysFIuYmZ3F5OQkAso6tSyLOAZU7Yux2iW6aW8Frn4IkvIOgwAy9fZzuRzK1GlxXBeVahWmZZGyBn1odV3nHnK1VkOGtlD+m1d+A//rB/8frMwX8dcP/DXk1DTK5TLeffdd5PN57Nu/H9VajROb2DjPLc8X4BMi65YFp6m9SZZlqHQGAEvnB0EAh05QYzLRzfeApV7TlNTJfh7HOBZA2p7K5TIqlQr6BgfR29eH8fHxpCyQ4BMBKxsMyjLm792D6zhYX19HgXILGtY6tSOqqqK3txeSJGF+YQErS0uYmJwka7VaRa1W4+UvnXYxyYrCM22t7Ec06PBotM/IxqlUCqlUCmathlK5TDhQlkWyf0GA3u5uCJT5n06l+NwPs15HOpXatDaZTbh65Qru3r1L1ElVFY5t87Jfp106zL5a9TpMy2ooG4ggtpkJPbF7GHge3KbAIQ6apqGnpweqpm3wLSLZB0R+Zts2JxiP7diBwcFBDA4Ofm7LAs1InIEIRFHEwNgYIAgor66iUqkgS7sKWAtgMxRFweTEBO7euYNqpYLde/agXq/DojLHlm3Dsm3UqlVSn6IPtSzLpFZF61XND5xAiW8AeEsSgyTL6O7pQS6fx+rqKhzLgmvbWFhchK5pZOqaYSCTTpNFTaU/s5kMdFnH/23X/4S3Hr6NofQgzHod77zzDnRdx6FDh8jURYGME04ZRvuFEIbwfB+u68L3PK5Kxlj9Es2ksHqe3/za5s0f4EODZFnmUwklSUKKjqRuEEKJvM8PyPjocrUKURAwQoeGjI6OPjOLOcFnBy2dxtDUFB7OzPBSopFKcdIe4xMB4JF+Kp3GxMQEbt++jaPHj3N2vO04ZJIh5RtIskyyaTRbIEsSae2jn90QeaMxCxntHAjCkJQ702k+PdWiffm24yBtGEil04QgnU6jWqvBdRyYkY4DBkmScOPGDdy8dQv79+9HV1cX11VIpVLcZrZCEARwPQ8+i+bDEC5te4xmD3knURCQ9mLKAWiGKIqQFQUKta3lcpmUPlS10RFo/pM6AZVKBWa1ikJvL/oHBzE2NhY7M+bzjMQZiEH/yAhCUUR5ZQW1ahUZWgdkbT7NSoDpTAYjY2OYuXMH+/btQz6fRy6XIzMDaJbA9TzYtI9eEIg+thRxBhgBTpJlcqwmQksUzLgoioKenh4IoohqpcJnlduOgzVRhKHrZAYDNS6VWg25TAYB9aT9IMD3vvc9iKKIw4cOcc/boMNXmhEEAd/IPc+LXZSCIECkPcgC5RHYltXyWiRJgswMXZOISbVahet5UGiUxLsDNg5GZg5Uq6jUagh9n4wgnprCyMgIurq6Wn7HCRI8bmi6jqEdO/Dwzh3S0kej6gCARG1HNKhQZBmjo6OYmZ7GzPQ0Djz3HFKpFHzKerdoF5PnebyrKWojJFGEKEmQKWlRpCXDVi2BUbuVTqcx0N+PUqlEeuypIFClWoWqqkin09BUleutRNPqIci8kqtXr2LHzp0YHh4m10MDCKHJ+Wa8Ah4MxAUCgkD0FkQRoiwjoKS/IMbG8NezoEqWG8SLPM8jGYYggEFHyTe9ucEJsEwToSCgb2gIo+PjGB4efibKAs1InIEYCIKAgaEhCIKA8vIyqpVKgwSuRx0Ctinruo7J8XHM3b2LmTt3sHvXLgiCAFVRSDdCJsOnkznME/Z9+GEIl4pdMNESmS5wUNKLQBc5iwBEutmKggCBbrqKLKPQ1YW0YcCkzGXf82CaJkzThCzLCMIQhqaRGd60pnbt6lX4vo9jx4+TthxNQ4oqrXmeR1r6mLyn7xPBEtpuw9qA2LlJ9JyZsInv+xAipQIBpMbKnKBoZNN875n2gElV3Jq1xAWBaKPXmBNAnZtsoYCDzz+P3t7eJBuQ4DOBrusYnpzEw3v34JgmREGAYRh8zUSdAVEUkclkMDY+jpnZWezbtw+yJPHI39B17hgwIp0fhghoOc5mLbd0A5UkCZIgwIvoGbByH7ch1HYwpyKVTiOfz0MAUDVN7oCsuy7hH1F1VgC8DXJ1dRUz09MYHR3F1MQEIBBZYVmWecDANvxoCZDppLC/N9gOULsRBEBT2p85ChLtwGC2gyE6DwIgw+ds2ybt4ZGMhgAgAJl1UimXyRhjGrTs3LMHO3bseKbLiYkz0AKCIKCP9spWV1dRLpeRymSgyvIGs5a+ThAE5AsFDA0N4fbt29i5cyeJBLDBmGXjMtMgEbZHI2xWZ/fpZuuHIVzLghcEpI8+Ek2IlHkrRBwRQZJQr9UIo59mGAqFAmzL4ovCcRwEvo/VtTWoioJKtYoQgOU4OHjgACHuUUelQlv3ogIgTPQDIJG8JMukN5cSAKOLkTGTo6lMFsFsEl5CTP2THrNG+RCMhAQamTC5aJYJEOg5Te3cif2HDiVOQILPHLquY3B0FEsPH8KqVuEHAVLpNCHKRmyHKJDBaRPj47h39y6mp6exl073Y+si6hjwCJtutqxmzgSFmIPg0uFHzCawFLkYsR0s2HAdh8h1p9PIUI0EyzRh1utkNghrA/Z9OHRTn56eRl9fH4aHh2HZNkRZxuraGo/iG1oFI5LsMs0CsrbKZjCZ4miwINHMaRwaUv8ULEgIgoALx7GuLot2VDAnACBtmM8fO5aQi5E4A20hiiL6BgYgSBKqq6uo0vnlBhXOADaEP1RVxfj4OB7Mz2N6ehp7du0CsHmzY+IgmqpCjbBhWeQddRLqlsUVsNiMdJ9G56yVEGFIVMNo/Z6JAfHam6KgTqeruY6DtdVVrCwtQQDQ090N1/Mg07ad6OJibUEi9ZxFuphZVCHQNKUQ+TdvNWrSOGcSxRwtCIAMjuuiTBXbcrkccQCqVUJMdBwumymJIvKFAvYeOID+pomKCRJ8lkilUugbGkJxaQl2tYpKqdTQYidgw9nO5fMYHBrCzVu3MDk5SYYgRcB4AGwzV2SZl91YP70XdRJcl4xGborEHdclg3yoM+L7Pmk/lmU4VLKXnZPEUvV0VLNjWSiurQEg5ZB8oUBU/8IQIh1DTE52I4MpiCIk2scvRH7G7IoYcVBEUYQTaU1uvv6NfzTZjqasABs1LEsSUroO0zTJqGHbJhlE6gxpqoqhkRHsO3AAaiJHDiBxBraEJEno7++HrutYLxbhUIW/VCrVIKkpCgIGBgcxMjSEK5cvo7enh9esow9rw98jrFZZliHIMiG7UBawYdukv7ZJipg7CNQxYLr+jGQUrccxmWND01CqVlGZnyd66iEZcBSGIWyamdA1DbqmcYGQqHMQLU9EHYaG9pww3FjQkXPYtMDZdUd/RP8MggAry8uwLQt+GBKnwHV5BkIEIRmm02kMjYxgcseOZDEneCKRTqehjo6iuLICc30dlWqV8HGaRp1rmoZdO3dicWEB58+fx8mTJzfEt+hrBKBh42N/SoIAkYpusZ95tN6+SfI88veAZhZY6UKnHKEwCIhgVxgSfX7XheM4eFirwbEsqIqCQj4PEeDlTlXXYdDugZRhQJQkHlwIwEZZk/EmsJEV5OueEpfJxW0QhVtlDht+RM+3VquhtL6OumVBNwwsLi8T+8junUjkhguFAiZ37ED/52Ta4OOCELZimyTYBMuysFosol4qIXBdPtsc2Hi4y5UK3n77bYiyjFdOnSKtiUBDX3wnrYUA8fqbW/Q2IQy5jCjLWrBjeNTz96jy2eXLlyEKAvbs3UsEk1QVnudxT52pGYI6ECqdxsZSe0qL9F7D+dJJgZ0gpO/xXJdwKjwPK8UiqlS/IZ/Pc4eL1f/YPR8ZG0Nvkg1I8BQgoPol5bU1ONUqiVrT6YZWwRDA9Y8/xuWrV3Ho4EHs2LGjgazMyoKdwm3Bum8+rzUa7efz+Y2x4KJIiMh0aNj09DTu37+PwcFBdHV1EdlzyimSRJGk3CMlRY1KijN2vyRJm4etNcGhjkUn4O2TlE/hU7n05ZUVWLYNTVX5fAim3ZCiJZBsLoexHTuS4WQxSJyBbcL3faytraFaLsOlC5uJCzHcv38fp8+cwcTEBJ47eJAz4VkkzVJjQHvHIAR4yaAdbNtG3TSh0YfedV0Ui0XcuXMHDx48wMzMDO7evYtqtYpsJoMXXngBP/U3/yYs6iiEVNiIaSQ4joMwCPDn3/42rly9iqmpKfz4j/0YAOLls9of6wSQKR/Ao+ShuOtgTobreaRWSeudfkRZzKSlAM/3kc/lkM1moRsGF2QBgGw+j/HJySQbkOCpg0mH3diVCkLX5eqbzOH1PA9nzpzB4tISvvilL6G3pyeWYNtczouDT8l7bc27IKBUKiH0feTyeYiCANtxUCwWMTc3h7m5Ody4cQMPHjyA67pIGQYOHDyIn/3Zn0W1WiWfEYYQ6bRG27K4rfpvf/ZnuHL1Knbs2EFsRxNnIGpDwjCE7Xm8lZohjPzJpgt6rguHERTp630qOe65LkRJQk93N4xUCoZh8IyHJEkYHB1NyoltkJQJtglJkoiIhaqirKpwTBPVapV7oIqiYGR0FHv27MHNmzfR1d2NwYGBBnlj9nDzVjmaqhPZv7GRYmP1tOaJXQDwjT/4A/zhH/0Rvv4v/gUUVUWtVuMtf/+vX/5liIIAx3FQr9d5uSDa1iRnMjApUS8IQ+iahkKhQPqdLQsH9u/HtatXsfDwIVn0VDbUDUM+fCQqUerR7oM4AxQlC0bTg+xnjm3D830oioLBwUH09vbycw3DEKlMBoMjI8h/ziVBE3x+wfrv1zUN9WoVrmnConNRmCjZsePH8cYbb+DKlSs4cuQI72LiBF1WKghDBAC3GcxWADQ1Dzqoh6XJm8Bsxy//8i8jZRioVCqcCPxrv/ZrCKgNcNnI5nQaAHiHQTaTQa1WIwqBYYiuQgGSLJMx5PU6Dhw4gBvXr2N5cZFE6JSwyBQKGcIwhE95D+zf7BqiVqRZP4GVJ4MggE05ArqmYWR0lDsAoPekZ2AAA4ODUGPapRNsIHEGHgGCICCXyyGVShFme6UCxzRRM02IIDXAQ4cOoVgs4vrHHyNlGJxnEN3M2aIG/TOI/JtnEoKAD/RAGPKhIWzRGIZBFi2t1TO9As9xSJ9uECCfy2F8YgK3bt2ih9o4fjqdhhiZrOb5PlKGgVQqhePHj+N//z/+D6Lzvb6OQ4cO8VYh9r/LZg6EIQTaIsk3/RgyEBNQYRECBAG2ZaFKWyRT2SxvdYIgIJ1OY3BkBLnECUjwOYCiKOjt7YVFN1OT2o5SuQxVlqHpOr5w4gS+9847mKWqpulIOTK6onjBrqn7h/8Y4A482zyZTQEIk96s13m5gon8mKZJdBIEAd1dXRgZGcHc/fvkQ+l7ZVlGNpslAYjvo1KpEAl2TYOSy+ELJ07gd5jtWFvDocOHSXuk68KnnVKu68J2XYhhiLCZI9GcEaH2QaITFWVJIp0DtRoJFlIpHqSBXndPfz8GhoY2jS9OEI/EGfg+IMsy8vk8XxTVahV1Oh/bsiwcOnQI77/3Hi5cuICDhw7xjXar+hnQqCDmUyIQ24BZ77FPa2JsKAprw5ufn8fE1BS6u7rw6quvYv+BA1heWsI//V/+Fz7vgCEEcSgkUeSZhVKpBCOVgqaqOPjcc7h46RLOnT+P5194AQpV+mIZjoAyiRk7uVOEYUhYvrSNKQgCGHTUqgAi5DQwPIx8IhyU4HMGgWoPGIYBJ5cjA4RKJZJlpB1Lu3fvxq1bt+C6Lnbv2gVHVYnOf4yD3Q5hEJD2Zdpt4FAFUJ9mJgUAoButqqq4cuUKJicnMTU1hR/8oR9Cf38/Fufn8cu/8iu8e4lfBx1CxMYU1+t1OI4DwzCgqioOPPccLn34Ic5duIAXjhyBqGlkFgI9L57mb5FNbAWmQVKnQkyqqiKbyfCBZ4kT8GhInIHHAFEUkc1mkclkUM/nUS6XYVUqgG3j+IkTuHjpEi5dvIidO3eiUChAo0Q/SRRb1v5YC6HP+nsjU73YVD8BZMymQevqNdPEmTNnsLK8jB94/XU8f/gwH0TiBwEEyvINmhTAwjCEoijI5nKomyacIIBpmrBtGy8cOYJLH36IixcvbugJ0PRcdJ56dBrhVnAihqNWq5GMQCaDfD6PQk8Penp7kc3nH/n7SJDgaQEbfJbL5VCr1VBeX4djmhgbH4coirhx/TrqtRp27NyJSrmMDN30GDMfaOrKYVoEEbXQ6NjgkHYfCYIAx7bJuGPDwPzCAm7fvg1BFPEzP/MzGBsbA5NEd5lcsONw28NBs3c2LUcysrKmaTh69Cg+/PBDXKK2g2U0WaYijJxzJ2ABhG1ZqNs2XNeFruvIZDIodHWhi9qOxAl4NCTOwGOEIAh8IIjX20vq9bUa0vk8zr73Hm7euIHxyUl09/SgUqlAVZSNNqMteu8BcPEeiUXnIGpboiTh7r17mJmZgaZpeOnllzEwMLBxXgCvybUb6iFRRTTHdYn6n+9j9549ZJJZuYyZmRlM7diBwPcbxEtY37IgCAgZwSlsHCcMEOUvRlpkgiYpOk51fHIS3X19yXjhBM8kWJYxl8sRMp5tI9fTg1Q2i0vnz+Pj69exa9cuUg4EKUXKkU6lVraDZQ2ZeE+U2W/bNizLwvXr11EqlTA+Po5Dhw836BwElB8EILZTiDkibJxwvV6HQzsR9uzZA1VVsb62hpnbtzG5Ywd904Zomk+7FyInTP6gn82GtFlUKyUMAph0CFwmm8XQyAiGR0eRyWYf+d4nIEgs7ycEVhNPpVLo6evD2I4d+NP/+l9x++ZNjJgmBgcHAUWBaZp82iDrzwXAtcYlKtjB0nlReL4PURTx9ptvQpIkjE1MYM+ePchHBmwwkp9LnQC3TesfMxyqokDO5VCv15EDMD45ibl793D27FmMDA9DbipzNJOX6IH5313HQd2ySKRC1Q4VRcHg8DAGh4e59HOCBM86BEEgrXmahlwuh6HRUQxPTOCbf/iHuPbxxxgbGUFPTw8vF2pspDd7P7Ah20vFwJpV+kAzfwKA02fOoLenB0deeAHjExONst8gNgY0A+i2CSQAUtJMp1JQFQVmvY5MJoMdO3fi/twczp4/j7Gmz2flgqYbwI8dBgGsep1oJlCioO/7yBUKKHR3Y2JiAik6yTTB94/EGfiUoKoqfvTHfxwXLlzAO9/7Hu7ev48ROh0rnUohoO19zMNuXsBMcTD0fcwvLGB2dha3bt1CEAQYGBzE4UOHADQScLhqIX0fsDFRsBWiKTvdMCDLMvbv24cH9+/j+vXrqH3lKxCogqKiqhBEkfAGms438H04jkPkTGm60rYsGIaB0clJFGhqNJt49AkStMX4xAT+1t/+2/j2n/0ZLl27hnwmg/HRUYyOjhJnPwi43LkY2WwZGEeobpq4e+cOZu/cwd179xAKAg4eOICdu3bx+SPMsWDiQywb0M5uRCeJhmEIkYqCWbaNA/v348GDB7h+/TrK5TLhJmgaacWOCQDCiO6I7TikW8CyEIYhCt3d6BsYQDqXQ1dXV0fcqwSdI3EGPkUIgoBjx47hhRdewNWrV3H69GnMnT2LnkKBiHkwFa9Uivf91ut1MpWvWkVpfR2ra2uwbRtdXV0YHhrC9evX8dyBAygUCiiVy1xxLDoEyK7XyWhhurjimMdRRLXFZVnG8ePH8Y1vfAO2ZWG9VEKhq4tMUaOzx9kURuaA2NQJ4IpnQYB0NoupPXuQ7+pCKpVCOp1uiBISJEjQGtlsFl/7yZ/E+vo63nvvPXx48SJuz8xgZHCQsPip+l8mk0E6k4Fj26jRtudKuYxSqYTVtTWSQRwdxY6pKdy4fh3j4+PQVJXoe7guwJQIQRwCh8oaR+WNyQsay4DNUb4gkOmnx44dwzf/+I/x8OFDlNbWUOjpgWua3DawCYwA+HRG3/M4aVoSRXT39aFvcBDpTAaZTAYaVWlN8HiROAOfASRJwuHDh3Ho0CHMzs7i3AcfYH5lBZVyGaAEH9YnzBZKKpVCNpPBxPg4RsfHUcjnsba6yj9ToONLXSofynQNArqgAcB2nFhvvBl8XCnF6Ogoent7sby0hBs3buAHXn+db/h+pM3Qp4tbUVVoug6dzk7PZLOc6GMYRjJMKEGCR0ShUMAP//AP49VXX8W5c+dw88YNPFhZgVWv83KdJIpEphikXTBD1+H4xATGRkchKwpmZ2f5Z8qqClAuD9vsBdryG1JRIY/JjDfZBgbGXWj+3djYGApdXcR23LqFV0dGyJwU14Xr++TvtPwgqyqZpJhKIZ3NIpVOw6AcLEacTPDJIXEGPkMIgoAdO3YQ6VGQaL1arWJpaQnLy8ukf9YwoCsKfDrGlM0IsCxr09Q/VVVJeo1KEwOEJBRd0B2dFzm5hoV99OhR/Nmf/RkuffghXn31VR4lyIqCVC4HVVWhaBpESYJhGMhms0Rdrc244gQJEjwaDMPAqVOncOrUKQAkqi4Wi1haWkKpVIKmaUgbBoQwhOc4ZMKnIBDZ36aonk1G9OnmrOs6z/AB6HgT5nYDaCA0Hj16FN/+8z/HpQ8/xKlTp4hdEUWkNA2qrkPVdUiKApW2T6ZSKc65aje1MMHjReIMPEEQBAHZbBbZbBY7d+4kxD+6uTM2rWvbRFDINBEEAbK5HMqVChlwJIqwbJuPNlaogAgoKZCl8VgyjzH/G1p9IkqCfDZ5EGD//v04c+YM5u7dg+W6yHd1oYfqfTPCk6ZpSeo/QYLPALIsY2BggHcRsY2d/e/QqaWuZaEWsR3VWg2arhNOD43YBVqe9H2fOAqyzAf+MBvSUCIIN6YjsrIga230fR/79u3DmdOnMT09DR9Az8AA9FSqwW7wdskEnxkSZ+AJhiAInBiUzWZ5yt+lBJu67+P23bswcjno2SwC34cehqhVKlhfX0dIe4xVOsY4n8/z2Qhr6+sbkX+EACRJEkRZJrU8TYOWSgGShOfzecz+838Os17H8toaDr7wAhQ2LS1ZxAkSPFGQJIlH2QC4zWDiQMx2qKkUtHQaEhUkslwX9aUlvvmnUilUymUUqO2QZBmrdLhR1G4INGMp0cFmGnUiRFHECz09mP5n/wylSgWLxSKee/55njVM8OQgcQaeIoh0BCcrAfhhiNuzs+ju68PwyAgXKSqXy6hUKrz1KJ1OY35+Hldu3oQoipjYswd9o6NkWiH5YJ6KY+2Mzf+/9dZbmJ6dhaqqePXVV5GmWuUJEiR48sEcd4BMKPTDELN376K7vx9DIyPwfR+9g4NYXV2F4zg8SylJEjA/jyu3b0MURYzv3o3BsTFiMyiHgA1eY7ai2Ya89dZbmL17F6qq4pVXXuGTVRM8WUicgaccAW0rim7OhUJhk8Kg4zh4uLBAiEGOg5GRES4cFP2/Ff7Lf/kvAIDXXnstaQdMkOBzAM/zoGkaMpFe/b6+Pq43wgaQOY6Dhw8fEs6B62Jom7bjW9/6FoDEdjzpSJyBzymii5NNPmSzA5j88HbAFvSP/uiPPr6TTJAgwRMHLiDG0v+J7XgmkNA0E2yJixcv4t69ewCSBZ0gQYLOkdiOpweJM5BgS/zxH/8xAODIkSMYHR39jM8mQYIETwsS2/H0ICkTfE7xzjvv4Pbt2/zfKysr/O+3b9/G7/7u7za8/md/9mdbftY3v/lNAMCP/diPPdZzTJAgwZOHxHY8m0icgc8pfud3fgf/7t/9u9jfvfvuu3j33XcbftZqQc/NzeHixYsAkjRfggTPAhLb8WwicQaeYnz5y18GQLoHPikwz35sbAxHjhz5xI6TIEGCTw+J7UjQDCFsN7EmwTOPH/zBH8S3v/1t/L2/9/fwm7/5m5/16SRIkOApQWI7ni4kBMIELVEul/Hmm28CSNJ8CRIk6ByJ7Xj6kDgDCVriT//0T+G6LnK5HE8rJkiQIMFWSGzH04eEM5CgJb7zne8gn8/jx37sx5LxoQkSJOgYie14+pBwBhIkSJAgQYJnHEmZIEGCBAkSJHjGkTgDCRIkSJAgwTOOxBlIkCBBggQJnnEkzkCCBAkSJEjwjCNxBhIkSJAgQYJnHIkzkCBBggQJEjzjSJyBBAkSJEiQ4BlH4gwkSJAgQYIEzzgSZyBBggQJEiR4xpE4AwkSJEiQIMEzjsQZSJAgQYIECZ5xJM5AggQJEiRI8IwjcQYSJEiQIEGCZxyJM5AgQYIECRI840icgQQJEiRIkOAZR+IMJEiQIEGCBM84EmcgQYIECRIkeMaROAMJEiRIkCDBM47EGUiQIEGCBAmecSTOQIIECRIkSPCMI3EGEiRIkCBBgmcc/3/cnOCF980SvQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aYxc55oeCD5nP7FHRu4kkzspLiIlaqd23VttN8ZwLW20XZi2q7pcXdXT86PLjZpfBUy70YAbGBvGoGYw00a5ygY8Xsoe2FOL7Spf31v3Xl2JlESRlLgvSWYyM5l7ZKxnX7758S15IjIiMpKiRImM54KXVGbEiXNOnO/93uV5n1cihBAMMMAAAwwwwADPLOQnfQIDDDDAAAMMMMCTxcAZGGCAAQYYYIBnHANn4CnHgwcP8Nu//ds4duwYMpkMSqUSXn31VfyDf/APYNt2z/f+6q/+KiRJwi/90i99Q2c7wAADfFswsB3PGMgA31n83b/7dwkAMjMz0/H3f/Inf0Ly+TwB0PHP0aNHyd27d7se/9/+239LAJBMJkMcx/marmKAAQb4pjGwHQO0Y5AZeEpx+fJl/I2/8TdQr9eRzWbx9/7e38O5c+fwox/9CL/xG78BALhz5w7+yl/5K2g0Gh2P8Zf/8l+GYRiwLAs/+tGPvsnTH2CAAZ4QBrbj2cTAGXhK8Vu/9VtwHAeqquIHP/gBfud3fgdnz57F9773Pfze7/0e/v7f//sA6KL+h//wH3Y8RiaTwfe//30AwJ/8yZ98Y+c+wAADPDkMbMeziYEz8BTis88+w89+9jMAwK//+q/j7NmzW17z27/92zh+/DgA4Hd/93cRBEHHY/38z/88AOBP//RPQQZdqAMM8FRjYDueXQycgacQf/RHfyT+/Wu/9msdXyPLMn7lV34FAFCtVvHjH/+44+v+6l/9q5AkCUtLS7hw4cJjP9cBBhjg24OB7Xh2MXAGnkJ89NFHAGiq7uWXX+76uvfee0/8++OPP+74ml27duHVV18FMEj3DTDA046B7Xh2MXAGnkLcvHkTAHD48GGoqtr1dceOHdvynk7g6b7Bgh5ggKcbA9vx7GLgDDxlcF0X6+vrAIA9e/b0fO3Q0BAymQwAYH5+vuvrfuEXfgEAcPXqVczMzDymMx1ggAG+TRjYjmcbA2fgKUOy1SebzW77er6gm81m19c8//zzOHjwIICBhz/AAE8rBrbj2cbAGXjK4Lqu+Leu69u+3jAMAIDjOD1fN0j3DTDA042B7Xi2MXAGnjKYpin+7fv+tq/3PA8AkEqler6Op/s+/PBDVKvVRz/BAQYY4FuJge14tjFwBp4y5HI58e9e6TsOy7IAbJ8WfP311yFJEsIwxOeff/7VTnKAAQb41mFgO55tDJyBpwymaWJ4eBgAsLCw0PO1lUpFLOipqamer/3oo49ACIGu63j99dcfz8kOMMAA3xoMbMezjYEz8BTixIkTAIDp6WmEYdj1dbdu3RL/5opi3fDHf/zHAIAPPvigJYIYYIABnh4MbMezi4Ez8BTi7bffBkDTeBcvXuz6up/+9Kfi32+99VbPY/7pn/4pgE0y0AADDPD0YWA7nl0MnIGnEL/4i78o/v1P/+k/7fiaOI7xz/7ZPwMAFItFfPDBB12Pd/nyZczNzQEYLOgBBniaMbAdzy4GzsBTiNdeew3vvPMOAOAP/uAPcP78+S2v+Yf/8B8K5bDf+q3fgqZpXY/H03xnzpzZVoxkgAEG+O5iYDueXXTXmxzgO43f/d3fxVtvvQXHcfCX/tJfwu/8zu/ggw8+gOM4+MM//EP83u/9HgDg6NGj+O3f/u2ex+L9wbxFaIABBnh6MbAdzyYGzsBTijNnzuBf/+t/jb/5N/8m6vU6fud3fmfLa44ePYr/8B/+A9LptFAfMwyjRXBkfn4ely9fBjBI8w0wwLOAndgOTdNQq9WgqirS6TQkSRKvGdiO7xYGzsB3GO+//z4AWrcDgDAIAEIQxTHiMMT33n0X5372M/zv/+gf4T/94AdYXFqCpmk4cOAAfuGv/lX8d3/7byOVSmFmehqEEEiSBEmSMDI6ilQqBUmWRZpvamoKZ86ceUJXOsAAAzxOJG1HHMeIgwAxgDiKEEUR3u9mO/bvxy/8/M/jN3/910EkCXMzM8JuGKkURoaHoWgaZGBgO75jkAgh5EmfxACdEccxwjAUf+I4hsS+LhJFIHGMwPfhex7CIEAcx4iiCIQ5BCAEBAAhhG727N8x+28QgoZlIY5jKLIMWZYRRhFkWUYhn4cqy/gf/s7fwblPPsH/8Zd/GX/vf/1fYZgmNF2HrChwHAeu76NYLCKbzbZEBQMMMMCTASEEURQhDEPxN+IYBADiGBKA0PcRBAF810XIbEmc+ANAvD7ePDC1KwCCMIRlWZAkCbquIwxDEEKQTqVohgDA/+m3fgvnzp/Hf/PLv4z/2//2v0EzTfraOEa90YCu6yiVSj05BwN8cxhkBr5FIITAdV1YloUwDOF7Ht3sbZv+7fuIoghRHNPoP44hSRJURYGuaVtGjsZxDHTYoPki930fnu9DliSkTBOQJHieB58QSI0GoijCvfv3MTw8jCMHD+LHf/EXcGwbtuPAdRxwLzImBLKioDg0hOLwMEZGRvDcc88NCEMDDPANIYoiWJYF13URBAFCz4PnuvA9jwYLYShsRhRFAABZkqCpKjRdhyJJm+sZ1BZJhGyxH4QQII7RbDYREQJT16GpKgghsB0HAXMKbNfF/fv3MTIyggP79uHP/uzPYFsWbMdBxPQLYhaYpDIZDJVKGB4dxfj4OE6fPt0ijTzAN4OBM/AtACEEjuNgo1xGs16H6zjwHId69JIERZIgKwqNvFlKDiyyJ3EMP44RBAFUVYWp6zBNE6qqQgI2FzN/H//MKEIliqgnb5owDQMxAFVRYNs2AOAnP/0pbMdByjShKAqqtRrSqRRGR0eRTqXo5+g6XMeBY9twXBe1lRU8nJnB+Y8+wq7du/Hu++/j0KFDg6zBAAN8DQjDEPV6HdWNDdjNJlzHQeD7iOIYsiyLjB+Azawisx0hqBPh+j4MXYdpGDB0HbIsb9oOSRL/5plF13VhmCZkAIVCAQCQAWjGIYoQBAH+/M//HI7rImWayGQy8D0PmWxWlCBTpomIEGo3bBuO42B+ehrXL13CX/zgB3jx5ZfxzrvvismIA3z9GDgDTxBBEGB1eRkba2twLAu+70OSZbEwFZZuk2QZiqJAYX+DOQN8cfpBANfzRDnACwIAgMnIgASgzgPbkAkAx7ahKgoUTUM+n4fMfhdFEZaWlvBwaQl/9p/+E2zbxitnzuC/YmxgPwxpRsHzaKYijmGmUtANA4XEtVUqFSwtLeHf/It/gWwuhxOnTuH5U6dEWnDgHAwwwKOBEIJmvY6V5WXUKhV4jkNLfapK13wmA4Vt5LIs03Uuy5D4Jg9qA+Iogut58FmkTgiB7/swDAOGYUBWlC2fHccxLMuCrmnIpNMwTRMSaJTvuS5mZmdRLpfx0w8/hG3beOPVV/GLP//ztCTh+/CCQJQ1JUKQyWaRTmz4QRBgZXkZX168iC8+/xy7p6bw4pkz2HfgADKZDLV/A3wtGHAGvkHwxWY1GqhtbGB9bQ2+74PEMSRZhmkYyKTT0DQNmqrSRcwyAgRAxOp9cRyDf20E2HQKfB+u78NnzgAIgaZpyKbTUFRVpAEJIahUq4jCEOlUCqlUCn4Q4OqVK3jw4AEgSRgbG8PU3r0oDQ0hjCLEUbS5gUsSCOMkxKCGgLBzEmUM9netWsXi4iIazSaKxSKOnziBYrGI4dFRZHM5pLlBGTgHAwzQFVEUwXEcNGo1VNbWUK1UqPMPQFNVpEwTKZYRVBO2A9hMx4MQwQcAIEjDEXMKXN9HHEUi2ODZP5EdAOD5PuqNBiQAQ8UiJEnC6uoqLn/xBZqNBjLZLMbHx7F//37Iskw5Bm3lSm4riCQhjiJh23gJI4oi+J6H1dVVLK+sICYEhw4dwp6pKRRLJQyVSshkMkin01tKowM8OgbOwNcMnlZrNpuwajX4joPQ99GwbURhCEmSkMtmYRoGXZhsQQSM/MMJf4qiQAbb/FnqT2apf4n9jvMGwjCE53lwXFc4AJlUinr7koQgilCpVEAADBUKWFpawpdXriAMAhw5cgS5YhGB70PXNKTTaZFVkGVZGBtFUcQ58EcoYhyGxMUjYOfy8OFDXL95E6Zp4vCRI9B0HYZpIpfPo1AsolQqoVAoiJTmAAM86wjDkDoAjQacRgOB68JzXTQdBxIhMHQdmUxG1OwjRjgOwpA665JEMwZsrfLNX2b2Q5IkyJIERZah6TogSQh8H67rimyBqigimJAA1JtNWiYwDOiahqtXr2J2dhYjw8M4ePgwgigCCEEuk6GlTQBg2QlVUaCqKi1fMEeFZzOTm5AEakt834dl27h29SpW19exd+9ejI2NQVFVpDMZ5IeGUGS2Y7sxygNsj4Ez8DXB933Yto1mswnPsuDZNnzPg80cg5il+VOmCUWWAbYJyokanSAJ8oMyL55vzuKLS9QCVVWFrmkwdB2KosBnDgcAqLKMTCYDLwhgsy6CO7dvY2llBaMjIzhy9ChMw0AQBLBdF6ZhoFQotCxgnokAaMTR8vnsHFoeqMTjVa3V8NFHH0GWJDz/wgtQZBl+EEBWVWRyOWRzOZRKJQwPD8MwjMf4bQwwwHcDcRzDdV3Ytg2rXofnOPAdB47nwbZtOJ5HM36qCkPXxdrmJQCRRQzDlrVKJAkx4yC12w1uT3RNo066rossX0uWwDCwUa0iimPU63XcuHYNQRji8OHD2L1rFwCgaVmALCOfySCdyUBTFOEUiCwmaKaDOyj0AiTayZQIJqSEnbty5Qpu37mDffv3Y2rPHgRhiDCKkEqnkcpmabZxeBhFlq0YYOcYOAOPEXEcw7ZtumhtG1a1imajAY+n30BbcgC66adTKeoISJLw3lVVpQ4Bi7oBIGJpeBBCWwy5Nx3H4t+8DZEkzoWwdH7IUm88fRiEIdbLZTycm4Oiqjh69ChGhochyzJ0XYeuqmiwtqGhYlGcB48mWq657fHhEUrysRIGS5JgWRY++ugj+L6Ps2fPIpvJoGnbsGwbBICZSiGTy6HAFjcnKA0wwNMMj232tm3DbTZRq1TgOA7NDsYxIkJoqQ40A2gYBiRAEIv52pYSQQXnBfA1GXN7wdYn/3cUxyJdD0DYFJ5pAOs6kCUJtuNgbm4O1WoVY6OjOHrkCHRdh6ooMAwDURjCC0OYuo5MOg0AIhuRBA8cWn5GCEJmJzm4k0MIwb3paVz58kvs2rMHZ86cgR8EaLBMhW4YSGWzyOZyGBoawsjISIt42gDbY+AMPAZEUYRms4l6vY5KuYw6W8iyLMPQNOiMMOe6LlRNg2kYKObz0DQNCl/EiU02ZAs4CU7SadlkwbxtlqqPooiWB1hbkef7CHwfIXMIHMdBrdnE4sOHCAlBKZ/Hvr17UcjnYeo61ASxr95oICYE2UwGaoK0I7POBs5S5gRHOVG6IIRQB6bLo+X7Ps5/8gnq1Sq+/3M/h0wmQx0px0G90YDneTBME9liEcViEZOTk1QEaeDxD/CUwXVd1Ot11CoV1CsV1Ot1BEFA7QbbZLlegKHryGazyDIinZLgBQDUFiTHDnO7wDOKye4ikTFgpQOP2QyH6Zb4jFgYxzH8IEDTsrC2sYFypQJNkjC1Zw/Gx8eRSaeha5o4Dz8IYDsOFFlGLpttuVZuM2QW+IhOKUZulFlZg2sZbAEhWFxawqeffYZ9e/fipZdegiRJ9PwaDTQsC5AkpLNZ5AoFjI2NYXh4eMAr6BMDZ+ArIGTCG+vr6yiXy6iVy5AlCSZbyLIswzAMpE0TIYvsuaBPcmNLLtKYp+c6IEn+4WIiPFMQM8KeaDtkCwugDF3LslBvNDAzM4OAvWdyYgLZXI6ep67DZG2GiqLAsiwEQYCUacIwjI6ePEd7FiCZFtRUlToZ9IXiOoMgwA9/9COYpol3331XZEikOIYXRWjU62g0m8gNDSFfKKBYLGJoaGjgFAzwVMBxHNTrdWo7WDeRoWnUKVcUaKoK0zShGwZ834csyzAZSbAFic2d1+vbQRKOOWHZxSiKRMaQZxaltvdEcQzX82A1m1heWcHyygoAYHhkBLlcjgYzioK0acJIpZAyDERRRKXNJQn5XE5kKLgAWvt5JcEdBUII1UDQdWoX2jA7M4NLly7htddfx57duwGePYhjWI6Daq2GGEBxeBi5XA4jIyPI5/MDp2AbDJyBR0Acx6jValhbW8PGxgYcy4IURTANg7Lz2aJNM0lfz/PQaDZB4hj5QgFaj4cyjGNaEkiAsM3eD4IWNcIWQRC20XLHQmGLKowihL6PpmXhxrVrUFQVBw8dwtVr13Di2DEoCTJgxARFDNMU3no2k0GWtThydbIwwfzlBiVuKw0ANMPBjZPCyEMq65SQJQlr6+v48MMPcfzYMTx37Jh4H08pBkGA9Y0NQJZRGBpCLp9HJpNBsVgciJIM8J2E53lYX1/H+vo6qtUqYt+HLknUEWe2w2QOOAhBrV5HEIZQFAX5fB4A0MkVbs8KiJ+z1uMgCBAx20EPIonfSwmHgm/I3N5EUYQHDx5gfmEBE2NjeLiygheffx6yoiCMIuiaJsoRsqIglUohCEMYuo5SsQiV2SEe8UdttoOrH7afMw+IRAlEVaExgjSJY3xy/jzWymV87/vfb3GQZFkGAdCs11FtNpHN55HN55HL5ZDL5ZDP5wftiV0wcJV2CMuyMD8/j42NDQSeBw1ARtNQYGz4FuIbe6gtywIAwfzthZYWPd5VEIYisyBeB0BjGyxPF/I0PVhJwvM8KLKMSqOBGzduoJDP4+Tzz8NxXciShGKxSBdvEAhjEgQBwiCA5/twXBf1dBpjIyMo5HI04lcUqG2bfsTblth584XvM9XEZMuQ53kAAEVVkclkcOTIEdy4eROj4+MolUot7U+KomB8bIxmNSoVOJaFfLGIMAyRTqdRKBQGC3uA7wTiOMbq6ipts200IEURDEmCmc2iUCjQKDoZBRMC27YRspbeXDbb0QnYfDmL/OMYQRQhYl0FEcsCCrCAQWUbK9cukUDXJO9giFl0fnt6Gutrazh96hQyqRRWVlcxPDQERdOEfZJAyx0xoeJpdcuinURBgKGhIaRZcCETgmQVn4C1PbIAKOkoOFwmmR0nCAI4jgNJkqBpGk6eOoUPP/wQFy9cwNts5DK/zwCQyWZhmiaqjQYqa2uwm00EQQDP85DP52mX1AAtGDgDfcLzPMzMzGBtbQ0kDKEQgpxpIp/LIZfJQGdOQHLgDyFEOAI87dcO/npCCN2AmfJgp4SNqijUO9Y0qMyDbz+Gz1sK2fuXlpZw+9Yt7N6zBy++8AIc14XreZAlCZl0GmpCFzyfy0GRZTQdB1azSTf2MMRGpYJKtYp8Nosh1l2Q1CzgDGa5jShk6LqIBkKW1Qj4DAVmqHbt3o3llRV8+umnePvtt5FOp+kGn2A6Z1g/cb3RwMriIjbKZezeswe+7yPHtAoGpYMBvq1YXV3F3Nwc1fIPQxiqSqPUQgHZNoU9ntkLmJAYCBXm6dVyG4YhHNelkXyH7IAEQNN12mmkqlASAQln+HPekx8EtMU5CHD12jU0m028+eabyGYyqFSrADtWOpuF1WyKTEKpVKIdVExu2A8CWLYN13FgmCaG2LUmOxkI+3yZdVMl3Xpul6K2jCjXUwGAY8eP4/IXX+Da9es4woiMya4FRVUxVCigadtwGg3M1esolEqIogi2baNYLA5KBwkM7kQfmJ+fx+zsLEgQQI5jpFMplIaGUCwUWmphvLWHb0yu74uafr5dVpPV9rkyF+8y4A+8xBi8KiMZiqi/Ddx4xFGEpmWJdiBFVfFgZgbT9+7hyNGjOHXqFBzHAQCxACRJQjabpXKgnif6h4cKBRRyOZi6Dtf3IUkSgjBEvdlErV5HjjkFOutNBrrwCVj7pCrLUA0DhDlMURzTQSlsgZ88cQKfXriA6zdu4OjRo1BZ25SeIDQauo6hYhG1eh2+5+He7dsojYzQ+mWhgKGhoYFGwQDfKriui9u3b6NSqUCOIuiShHyxiFJbmYuvaimxlnh3jc76+VvA+EC+59FOpfaZA4pCs4aaJoYAdXOWeVRvs6hbkiREYYgvvvgCQRjivffeQ7FQQJU5Ahy6qkLOZoXNsW0bmUwGmUwGKcNAvdmkJcUoQhgEWF5dhaaqKOTzIgvCdVPAOA3J6xcdTKxEwH8ehCGiIEAQhiiVSti3dy/u3L2LoVIJ6XQaOmuN1HgbtCwjn81CUxTULQuVtTXUKhWMT07Cc13xvgEGzkBP+L5PF3O5DCkMkdI0TO7Zg2w2C5npAPAF1L7UuNgQAZBOp2kUz+r6IZfmZB4uh6qqlEHMUv9iAbMUfCcQtC5mWZaRSqVw88YN3J+ZwenTp3Hk8GEAmzXFZKlCApBKpyHJMmzbhud5IKAiRYqmIa2qKObzcD0PtXodHhMCaTQaSGcyKBYKSLUrCPKSQZsIEf+XKstQTBMGe202l8Nzhw/j5u3b2L9/vzhXW6IT0QzDgCrL0BQFQ4UCqvU6FEVBrVKB3WyiUCohCAKMjIwMPP0BvhVYW1vDnTt3ELkuVADDQ0MYHRmBrmlCDVDIirdt1B4bSCYBSKdSIrUfsxkkHgsykuBKgbqmUaeY9+jzaYVo3WQB6pRbliVKEfzczp87B13X8cEHHyCTTtNApYOdUxQF+VwOTctCEIZoNhrI5fOiY0pnwmL1ep1qq8Qx1isVbFSrKOTztPTIsoyC+AxsbS/kf0sSDE0DGE+BxDFOnz6NlZUVzM/N4ehzz9GuCM8TrY6apkGSZWHj6s0m4ijCysOHqG9swHUcjIyNId9G6n4WMbCcXbC+vo7pu3fh2zYUACOjo9g1MSH0AqI47hipcyQXtGkYWzx5DlmS6EPLWMScbJPc+tvVuTj4Yg4SizmTTuP2nTu4f/8+Xnr5ZRw4cABiMAk7H0mWxWdwz9w0TUiKgmajAd/zhMgQZxun0mlk0mnKI6jXabnBcbBoWTBME/l8fjPlySIXTuYh7cqEyeuQ6NTFo889h+n797G6soIjR4/C8zzEcdxxcedzOdTrdQC05lhjJE7HcTA5OTkgFw7wxBCGIe7fv4/l5WUgCJDSNOybmkIqnd5c10kHoIMNcR2HrjnWOROykkHAZcYZNFXd3PBYqU50IvEoG5ulvKS98jwPTdsWG3w6kwEIwU9/8hNoqor33n1XlD6546EwkSBhN5iDkM1maYkhDNFoNmEaBrUBhEBVFJpFzedp+3WziTAMUanXUWVZxlw2K7KMwnlJOAedwO1YyjDw3NGjuHr1Kk6ePAmJCZmFUYSQXR/PFhiGgWwcU2EkUBu9ND8Py7IwuXs3hpnWyrOKgTPQhjAMMTc3h8WHDxF7HkxNw9Tu3chms9SzZgtiu0fGdV0xBbDBFkASIp3VlgKUWCcA944JNkcRi7QaNrMBHOl0GoZh4MGDB7h+/TpOnDiB/fv3i7YiUX6QZaiJdBxf3BIh0FUVmXQaFhNN4iSiiBAooM6HYRgYGR1FGASo1utwHAcBSwPqbKPOMMMCQMiRsg/seK+4kMrhQ4cwPT2NE8ePI53Pww9DeGzWQnJxa0x0hTCHgcuoLszMwKrXceDw4cG0swG+cVSrVczOzqK+sQGZEAwVCti9a5fgwPA++m4RKCfLhZx5H0Wo1motJThFUagwWKK3n4N3A/Bgg7+Pf14MgEQRLDbZkHcdZTMZkDjGTz/6CH4Q4IP33xeOQMxS83xMOT9ue1kwnU4jajYRhSEs224hAvPNPZfPI8syCQ1G6Gs0m6hUq8hmsygyQnAyUBDv7+EYHDxwALdv38aDmRmcOn1a8Ax4QMYDCoVxrlKGAdf3qR1XFFTLZTjNJpypKeyZmnpmHYKBM5BAtVrFw4cPUSuXIQUBhvJ57JqcFG0+ElsEXEo4CS7uIQFwPQ9Ny4Ln+8hmMuLh4p48l/ftBb4Jt2gQgLbw2GwDBmhpgX/G8vIyLl28iIMHD+J4olWPS33y13dKw/HowWBZDB7565rWYlSEfoCmYXR4GGEU0TQgSxWurq1BqVQw3K4JwJ2OHh7/4UOHcPfuXdy/dw/PHTsmjB7vTOCL22cLGaAOCp/IpigKNtbXYVkWjp04gUKx2PMeDzDA40AYhlhcXMT62hqsSgW6qmJ8bAwjw8M0CxeG1BHoVupjTroEoNFsomlZmxNKAbEuDd53355VSByXjzknyY2YIWAlPm6r+CCimBB8+umnaDYaeO+995BhYkFijfHMQIcSHCfrybJMMwSNBp2i6rrCIedRPLcxPBtgM60Fx3HQbDZRqdWQz+VQKhY35xpsXtjmvWo7B03TcOjQIdy5e1fYjZSiwDRNBGFIBZRYmyTvdhKcLdYGGQQBZqen4VgWDj/33DPZpfRsukBtiOMYc3NzeDA7i+bGBhRCMDYygj27d9OUF6/xYfPh52jxvllrzeraGjw26EfTNKRSKRQLBWRzOeiGsa0jwIkvXJmQf0bAJoZxRyCdSiHHmMYblQo+/eQT7Nq1Cy++8EIrsS/Rt9vtIU9GK6lUiuqey3KL48ENTfK1PA04MTEh1AqjMMTSygpW19dFa2FSNhmgWuki3chgmiYO7N+Pe/fubc5gAE1PmqaJAusXNhhrOGbtlo7rbvIhNA2e4+Dq5ctYfviw530eYICvimaziTt37qC8sgKHddzs2bULoyMjdO0m9PY7ugISlR4PgwAblQqq9TrCIKCOsK4jxyLmNBsWBLm1/bC93RgSHTzU0jEQx7CaTTSbTRCWui/k87ScRgguX7qElbU1vPHGGygmHWiWyYgT63DL6SeuS2EOgcrKizbLLnZ7fTqVwsT4OEZHR2m5Q5bRbDaxsLiIRr0uiJH8Dx++BElCu0bhoUOHAAD37t9v+SydtTAX+D3kTgbLloZsJDsfFLeytISrly7Bse1O39ZTjWfeGYjjGLOzs6iurSFoNGBqGsZGRzFcKtGBHcDWBYdEJoBt1o7rolKrod5sImCRwHCphEI+Twl2fBPuke5q6UrApsetyDIcNvSofTFLkoRms4lzH32EYqmEV159VeiT04PRc+SbpdrFGWhXGEwzmVGw4ydVEUW2gjlAEduUC4UCVTVkA0ps28bDpSXUG43We04S+ujM2HBn4fCRI/CDgI5SToDfD86LKLBuBkVRoGsaJTU2m0KgJIpj3Lt7F3evX99Sax1ggMeBZrOJ+9PT8BoNhLaNkaEhDJdKKBYKtKTXFsWK0b38B2xdNup11Op10YaczWZRGhqi48y5vj7f+HvYD4CW+yRQw85V+Wr1Oh1rLkkwTRO5XE4EBddv3MCDBw/w6iuvYHx8fPNc28h8LYTm9s9M/FtRFORyOWFz+DXRy20NJgghCKIImq7TTMrICHQ2gXFtYwNLKyuijRCA4B/xICBpOwxdx4H9+3H/3r0t7ZUSqKOSMgwU8nlKAJdlmnVkmVbLtgVZs16v49oXX6C8utrzXj9teKadgTiOMTMzg2alAhKGomUul07DNE3x8CUhMgGyDMLS6ZVaDbZtiwc1nUqhVCpBZzK+wOYi7YQtk/6S58haBnn/b8o0kU0sZs918dFHH8E0Tbx59mwLmz6ZFeAReTe2ffu5SZK0Gemzc2jx8tli9FnqjS9wRVUxMjKCsbExmEySuVytYnF5Ga7rbv3chIEhoIOKJicmcD/h4bfdLEE6TKfTyGWzYpxqEARYL5dFG2bERjVP37r1THr6A3x9qNfruD89DRIEUCUJwyMjSGcyKOTztG4PuuY5ROcRG/YVMtneWq0GLwjo2mKp++LQEHXou3QbJJHMrrW/KghDKg0Mui5zuRxVRWXHuz8zg9u3b+P06dOYmppqfTMrCUbbBBHiHBLXqrJoXAIlKjoJbhN/LVcfRMIuptNpTE5OopDPQ5NlBEGAh8vLKFcqLaTr5Dkmj3vgwAF4rovFpaUOJ7mZwdV1HflcDimm+EgIoTyGRoN2K4DKRc/PzuLh3FzntumnEM+sMxDHMe5PT8OuVIAoommkVAqKqiKVTtMNmg/3QGLBsQfQcRxUajVYti1mhmcyGcoJYMx3oLN0aBKCldvhtVEc07KA70MCkGPkPIUZlCiK8PHHH4MQgrfefrvjlC7+OgDifd3Q/jtZlpEyTSpPGsdo1OtiJgKfpsYHjbTDNE2Mj4/TgUyKgjAIsLSygvVymaopdoEsSdi9ezdqtZrISHQa2sSvR9U0ZDMZlIaGoKkq4piOV+XqaJ7vw3dd3Lt9G/W2XukBBngU1Ot1PLh/H/B9GCxLp7H1z8d8I/GMC2EdnglgToDPSHymYSCdTtPyHLMfnexBEr2cAIDxlhoNwe8p8PIai8yXlpbwxaVLOHrkiGg9ToIfM8k16oYkr4lD0zRRhnAcB67riimIfPoizxQk3yvLMob4cLJE6eDh0hIlJvZALpdDsVTCwsOHQh5dZHL5ixiRU5JlOjCOqT8CQNNxYLuuEEZzPQ/l1VXM3r3bUer5acMz6QxwR8Ct1UDiGOOjo1DYA5lhnnPyISKJ1JbjOKhUq8IJUBUFWSYpKpi8EtXT7mcxd1v0nJgXsLnfuVxObPZ8QV9PKIRxB4Yfu+VY3Lvvpwc/QZLkMDRNTC/rtCD5wu7kTBQKBeyemKApT0WB5ThYXFzcUjpIYnJyErKiYGl5WZRhWmqH/FTjmGZc2OjlkZERmIaBgHVOcMJUw7JACMGDe/ewtry8/T0YYIAuqNfrmGOOgKnrGBoaEqOEDV0XQQRA7YYo08XxZibA90EAGIm0Ne/24Sp6vdBeTmyHzQh5RJJgMN4Bd9glSYLjOLh08SJ27dmDU6dOiWOK7iJuRxJco+1sRzJo4hlJRVUhqypiQgTXSWp7j8zOqd3h1zQN4+PjGC6VROlgdX0dy6ur8HtszLsnJ7GysiLGqPNsbXJEM2FkcIBmeAv5PIpsZoznupBlWZQd+eCle7duwUtkOJ5GPHPOQBiGuHf3LnUECMGu8XFK8CGEiv7wCX1s0+EM+jAMaTnAcSiDPeEEmGy2OK9Nb7egCds0u73GD0PU63WEUQRFotO/2hfjw4cPce/ePZw+fRrFYnHT08ZmdwCwmZIjgBheFAOCkJOs18eEICSbs88JINKXmUwGfAxzp8UoAcKhaoeiqhgdHcXo2BgM1hPNSwedjqUy3sby4mLHTIZY4NyAsFSjrmnIZDLIZbOI4xg6m6JWq9VE7XJpYQGrA4dggEdArVbD3P37IL4P0zSxa2JC1LRFEJGIRiW2KdqOg3q12uIEFAsFZLNZuiaZXDcI2dJqnMR2TgAB0GR6G1w7hK9b8Zo4xucXLkBVVbz80ksiMk869DE2HQGenuct1THL1HF7wWcLxHwmApueSti9MFn3lCRJQlWxHXLi+O3IZLO0dJDLQZNl+J6HxaUlVGq11msnBDcqtxAV6DmX19dbMg4S67CIE7ZDwmb5Np/LIcMyMxIrQ/q+j3KlQjuYPA/3p6dpS+ZTimeqtTAMQ8zcuwe30QAIHeGbTqVQZQ8Wn36VFMkhbDE7rN7Nme38oRERvkTnagPouqBbjEQXuJ4H27IQg25uqVRqSxretixcvHgRu/fswYEDB7a9bs7MV9pIjKT932hl+4p7wK7JNAw4rgvbsqDk81s3/0TrYSekTBPG+DglTDHthaWlJYwOD2+RBN01OYkvvvwSQRBQxUSptUebG6QoUQuUWc2VRzO8TdLzPFiWBRLHSKfTWHn4kEZlQ0Pb3rsBBgBo2/Hc7CyI7yPLSmCi5i3LIoiIsbluwjBEIyERbug6UqnUprwuADC7kewg6gTSoyUXoE57k5GXASoi1KlsePPWLaytr+O9997r+Psk6TFJHuQQDk+Hc5ETEb7IFBCCTCaDeqOBOIrgOA4l6nWAzByRdkdHlmU68CiTQbVSged5qNbr8DwPIyMjWHVW8Dd/9mt4aC8CAN5RzuLA0n6Mj493vG9xm+3gHKNUKoXYcYRzUGGlnGaziRQ755npaRw6erRjm+V3Hc9MZoCTBZ1GAxIh2D05iXQqJYbmAJuRM0cQhlRYhzkChmGgWCxuTiZknr8EbPawdvHue9X3OGzHgcUcAcMwWtJ74jhxjAuffw5NVXHmzJkttbpO152cArgd2jMM9DLp2ZupFDSWsrMtq3urVI9zkmUZhWIRk+Pjooa5sr6+hSQ0uWsXCCFUyY2fT+JetBsjwrsaQJ0OWZLgeR6yjAwaxzElVDGxk4XZWdgJpvMAA3RDvV4XjkAuncb4+Dhk1g4IUEeZp8dlQGQDao0GItZayMfnqmz9AJsRfjKj2A5RpuxBQA4ZT8Zn2YVcLtc6PZVhfW0Nt27cwIkTJzA8PNz5YNKm5HDSLvYLfm1ywmmXZRkZNkzMZQOVtn4szVDIPZweQ9cpD6lYhMaO9W+//CP80g/+hnAEAOBc9BmWl5ZayInJIKKdjMinrGpsABwIAZHoIDdFlkWbpGXbcG0b8zMzfd+P7xKeGWdgZWUFbr0OOY6xKyFZy+vpsqJQnWxWa7JsGzVGROOp+lyCvCfSa+wh4+lCXdNaZD+Fwh+6OwIt6T0AadOk0r4dNtWbN29ifX0dr77+ekfj0Y6kvsBOtbdbBIMYq5mnHUMmLNLrvZ1qgRyapmF8bAy5TAaaLKPRaGBlbU18HynWkZFkBicdlajLcQFa35SYFHIcx3TwkWFAYUTIpm3Dtm3M3rsHr8c1DDBAGIZYmJsDggC5VApjo6PCQefcFE1VRWAQsgDCZpLChq7TAIIFCMmBPPy/uYhW+3ruJ5PIWxPDKILCODqapm3ZUH3Pw2cXLmBkbAzPHT3a9XjJ9cqd616dBEkk1ycStgPYzCxKkgTbtsWxk+8V/97GTuXzeSh5Ff9u5t/hP8/9AHvJFIaRdG4IHM8Tw5VEcCNJokTbDVyEKQwCyIqCFAuAAGrjG80mqpUKHs7N9TzOdxHPhDNQr9dRXl4GiSKMMpIZRxhFQjZYAhBE0ZZsQKFYFEp8nBnc/kj5HWp+BAA6vDYJAtqvzIcWZTIZpLpM0VpbW8PNW7dw8uRJDJdK3Y/ZYUF3EgzpBnG+yYXDPX5FEV4+H7fc8r42I9StFsh/Nzw8jFKpBFVVEfg+FpeXxb2fnJzE6srK1iwA2gxPB/DIyA8CIVaS5alTQnUhatUqpm/f7unUDPBsY/7BAxDXhaYoGBsbE44Ar6lLrKOFlxNbsgFMaU9m5UQ+SCyJMAxbSMft6GU7gjBEvdFAxBzefD4voviWNUMILl66hCiK8Morr7TqkCD5slYdg+QUxH6R3HjbzyOZWWznD7SsZUnqHjgRgv/04Af4Hz/+Lfy4/mNIMsGIOoQpTGEv9kKChLyeh65pHVsMCZ8p08UmcZ0SApoZIaAcJp6ljaIIjWYTiwsLT51D8NQ7A2EYYml+HogiZNNp5FgbSbLWzxerZVkdswH898kWwPaUdRiG1KngEQD7XS+vngCw2Azxjum9xHt9z8Nnn32G0bExHD1ypPsxSatmwaMsaCCx2XZY1LphCCXFZrvKWIcNupdDAFCRlfHRUREZLa+uolKrYWRkRPRjJ6+PD4Di59jp2JqqihokZ2oT0IwDl0kOggDlchm3r10bOAQDbMHaygo8poQ3zjICScVRngEMfF+Qi1uyAex5TpYI5baNjtflNdZ91EJA7HFuvEUxJoTOBEmWFBnpl+PevXtYXFzEK6+8Imrf3SDmGCTLizvV6k98fvuGzzOL0TaZxU7lxjVnHf/zp/8L/u9f/C6s0EaEGA+xiIZUx5g2hHFpFEdwBJP6JEZGRlBpayXm4mgAC+i6BBP8e/N9nwYShM4wyGWzwplxHAdzs7O0s+QpwVPvDDycnQVxXSiShLHR0c1fsHqSIssIo4gqgLE0fTIbAHSu98uJ/+ZtLJIkQWXp6fbXd4JlWfASjkBXJjEh+PziRZA4xqs9PHuO5Oc+St2PHqTNw2/7dZoRG0kcw060G3ZbYHKXTZvDMAyMj47SFkRZpgQhxr6uJRZ1HMdb25M6yaQywhYIoYJN2MxccFEUPuq1Wq3i6uXLcAfCRAMwWM0mqsvLCIMApWJxcxJmwhkAq1tXWQDRKRvQqUSYXCPJMl4y4OiFkEWnMStRZLPZrjahWq3i6tWrOHzoECYmJvq+fp5RlGV5R4N7uIPO39G+5ntlFrsdD4TgBw/+M/6HH/+fcWHl8y2v2UAFS1hCQc1iVBnGQRyEmUqhVqmI13DV0y3H72CvNFbqjQkR4535955mHCSAcj1mZ2dx/969ntfwXcHTR4lMYH1xEX6ziSCKsGtiomVYBv/jeR6azSZlopsm0tlsS32v1+KUZRkxIZsbLu/l7ePcLMeB53kAaGTcq6Xo/swMlpaW8ObZs9B1XaQWeXtPUuaUS3XyToFavS7Yvw5zVBrNpvg7Gf23EAfZ5s3blFRVhabr1AliBiKdTtPRpWxCGJ8Z0I1YuJ1DoKgqRkdGUK/XUa1WEcYxdF3HermMqb17BXt7y6GRYDknfq7rOmBZiBMtUgBzTBhBiI+GtSwLX166hBdeeglmlzLNAM8GwjDE2oMHCIOAkoZZ14kYKMQ6WyzLgut5VDQolaIOZpvz3MkW8KxCzER4CCGCnb6d7YiYXkEUx9BUFblstqsDHkcRLnz2GXL5PE6cPClaBUVbIGs5Jm02BITA8304jrNZuiAE9Xqd2o1GozVyT9hI/rcfhnAdB0EYUr0Bds2SLFNbYhgIfB9N20Yhn+963evuBn73y/8HPl3+FFKP2NWGg3nMY0KexKQ2AgBw2DUYpimyiUkky6Fi7gHo96PrOpq2TQXf2u4vnxhpM62Zufv3gSjCwR5cjO8CnlpnwKpUUGUCFaVCQahhJcVxmmwxAxDCPqLtZxtHgIPL3gKdp3p1Ap8ICFCOAE+PkzimHIY4Fkp/juPgyytXMLlrF3TTFG2QIIQOLeGbI9vwOfOYL3Le1gRsevsh6xWOCOmoBpjc0MMoQhxFcD2voxfv+z48z4Nt28jnckJpTZFlyIrSOmUN3dP6SeTzeei6jnK5jGwmg9VyGdV6HdltNmmuCcHLFjwVKLHsT6fXp0yTzn5wXdi2jS8uXcLpl17a0uo4wLOBOIqw9uABHbAFYHR0VDjXfLJgFIaoN5ti7fHOH6B/u8Ed2IiXF9un9HUAVySNCJ1PkmMZAc6Q5x1NEZP6vX/vHqqNBl5/7TUh8sVLEVvS+AmiMyc1xlEEqKqwbzHr2IkSnTv8mPxY/N9BEMAPQ8iEQOsk1kMILMehSqG+j1QqRTsPFAUKsxvrbhl/52f/EzbcCmRJZtoA3e9SiAgLWMAJ85goB9+fncXBAwcECbATeNk3ZucF0A0/ZpyBLdZKoqOfeTDh+j4ezM4iBnD4O+wQPJXOQNBsYm1xEUEU0fod8+yTDHdO2pNlGdl0GpKiIAhDQR7pZ0FzcAELtY90muO6NMUXRTCYWp7neR2j3jAMcevWLUgADh48KHqAJbbRckKS3FZf49F+wEb+qqqKPBsewqMaAMiyqYdAIp3H/ubiRGEQIIwiaJoGhRueRCShqCok30cYhmhaFp2DnnQw+DmyBa4oCj3/DmSqJEzTxMT4OB4uLWHuwQOUy2WQOBbn2ws8A8E5ITzaieN4U4kNEMxi7ow1LAu2ZeHKpUs4feYM0mwE6wDPBuIoQn1lhY7hjSKMjYyIUiGw2QZYbzZBmKiV2pZF3Ind4KUFmZBt6/Ixi8w9Jk1uZDKUr8M2//bX2raNu9PTmNq9G2mmTsodY4X9ze0GdyjkRJYQYOPRs1noTCiMcwGy6TTy2Wzr0Db6DxGEqMyJkCWJtl6SzcFC3HaomoaADzNiQUwywPnw4YeIXYIccogQIZBCBHEAIsWds48MSkbB7slJXLt6FdVqFWvr6xgbGdlWRVEGtQncsVI1DWGH+8vvEJdrj8IQYRRhfnYWiGMcTo6P/w7hqXMGQstCdX1dpODH2ChRgHnirN7Go9xcJoMgimDZNjzPo5MAd/B5BEDEJoJpuk4XU2JTD1mEz6N8rhduMkEc3/NadbPZhikzTe6lpSW8+OKLGC6VepJe+Lm0s4FVVYWh6y0LgacyZUXZdoF4ug4lipAyzRbDSD+KOgaZdBo1JirCCTZCApRFEnEcI+QGMxGFKKoKRVWhsogg6SBIsozx0VHMsJHGG9UqYkJQYF5/T7Coiwu5qJoGPwhaOkmSaUJN12Eyx0yUDM6cQboP52OA7z7iMETQaKBSLiOIIuQzGSGOw9ec57poMG0KlaXoK9UqojiG7/vQmRJpP+BsdcgydD6qPJGqjllWj4/YFTNKWETqe95mOZA5IDwbJ8kyrl+9CkPXcfr0aaqI2oGQ13I+7bV9ls432GRQ/jMJ1G5slwVVZBk+C7YyHbJsXLmwqWnUwSEEumkijiKEcQwSRSjpJajsf+I8ZYI4JoilCCFCBOL/NzfslJqCmUohn8/D9zxEUYSVtTWMj472JassKwp82xbKib7n0cmzbfeP39NMNosaI5rOs8FGh48d23Er95PGU+UMhLaNyHXRaDQQxjFGhoeF585TcrVGg5LQZBn5bJZ+4WEIy7YRhiGCINiy6XUDr9HzOFiRZXGMgEXUnLQSBAGdbAiIwSSyokBlG6DCNkOOOI5x4/p1DA8P4+DBg9s+WEk9g+QxgM4Eu37B22k6QZIkKJIExTAQRpHol06n0+I8uFETMqBssSOKqJMQBEI1jbN2uVOgyDJKrIWSRBEUXUeVzZMoFgo9z1sC4LouJED0NwdtzkDL62UZBhth6rouHNvGl5cv48wrr8DchoE9wHcbcRwjbDZpv34QQJYklNqcb9u2YbN0t870/gkh0A0DDlMo1bs8W+0QJTgm+a2yAVtBGMIPAjoILAxFLdu2bQRhCIlF5bqui42f24/kGn+4uIjllRW8/vrrm8THndwPQr6y7SCJP50gSxJl6OdyILUaYlASpVCBBfB27m3M+wv403v/HhIkKOx/siwBRIEBFZt3nCBECDd2YcQ00CoNDeHh4iJUVUUYhlhZW8Po8PC2+iwR+w40FqQAtI2z274gyzIymQwVjItjLMzPQ1KU71zJ4KlxBiLfR+S6dGJdGNK52glyjR8EaDQaNLWtKMhns1BYFCtLElKGAZdFhWqh0CIc1Ak8CnccB7bjCOKeiHw5e5WlrKMwRCqVEmN3t8P09DTqjQa+98EHfXuY7a/aKZeh1zF7V/lpy17IFpHPyIQAW/QdPp+ApmUDljUJw1A4B8kZ5hKo8fU8D6XhYViWhXqjARLHGOohJ+yx0oXMPPdms9nS9bHlOtlzYGgaJDDjb9u4fuUKzrz66ldyqAb4diOyLJAoQqNeRxDHGCoW6Zph67hpWSLTaHJBMFAnImUY8Fj06bgu0ttsvtxuRHEM27LoRq/rLW12EZsbIisKfGbLTKZ+ul1kG0YRvvzyS4yPj2PXrl19XX97VqDfKae90F667AZFlmGmUnBcF47rQmVkQwmUR/G3Tvw3eH/ve/iDG/8En61coMdm/1OhQocOFSpiEkOKJaSQQpqkUa3VoBsG5TJlMmhYFoIwxCorGXRzCLhehARAY4Robkt6BYkKcwhs20bESgbZTAYTu3c/wt17MngqLFwcRQgtCyAEjWYTfhTRBc0MuMecBF7LKuTzYoMUc8RZq1kcx3B6tJjFcUzr/vU6NioVKgPqeaIOJrGUczqdRrFYpLV6AIZpItOnI+A4Dm7cvIlDhw6hUCz2dxM6LDzh3X+VdBWruW9H+lMkCaZpQpZluI7Tqj3Q6bCgkYDBsiS5bBbZTIaOcdV14ZETQqgmea1G0/2KIlTe1jc2Oh47jmOh5miaJk11qiqIJPVsZZIS318qnQaJY1SrVdy6ebPntQzw3UXkOIiZTHXIRIQKhQIlojLCnuj6yWQ2HQGyKUDG0+AOI8R1AgHLDloWKrUaqrUampbVMqiLjz4v5HIolUowdB3aDhwBALhz+zYc28YLL7zQ12bc3oEDQGQzd6pN0g7eFrgdTMOgfKQ4FoTuJKaye/C/vPY/47XxVwEAMWKEUghHclAmG1iOVrARV9BEEx48GKopMpQEQKVahcGGlvm+j6WVla4aBy5z7CRZRto0xT3frgWSgNrZdDot2hJv3byJettApW8zvvOZAUIIQsbsrTcaNCsgy2JGtWXbYmMwdJ325CaYtMnBHNlsFvV6Ha7nQdU0Ed3y9F3g+yJdJz4fNHLlG1oygiRxjCYjx+iMjNOeyu+EK1evQlVVHD9+fCc3ouU/k6m+HWsMtCHZZ9sLhq7DY6RFx3E61gqT4PefDw7h6U4tQcqK2HChJuur5m1/9WYTa+vrcGwbIyMjMHRdiMJYti3Ijfw75FyGIAx7DpIijNBlaBrAIpalhQVkczns3bu3/5s2wLcecRAgcl0Q1q4XhCGGSqUW7RHejZPLZjdFhDiRlx3H0HV4uo6AydXm83mxIQQs0xUEgVAaBKijoTDOTpFLCCfsiud58DwPkkTnGqgdJIbb0Wg2cfv2bRw7dgzZfrkunLiXQJjIDDwqhI3t0K3U6bXpVAphGMJzXRisdS+J2cYDfL56kR4TBDGJQcjmdxEhRIQQLlw6TTafpwEF+w4kSUIhn0e1WoXrupidn8fY6Chy2Szt5GBlRO6MpFlgw7sQeJmzZ4ZQos2P2WwWTctCGEW4+uWXePm11x6pXPNN4zvvDESOQ+eHsw4BP4owWipBliTaOsgcgRQb58nBpTeTG7OmqjBNkwqJ1Gqbm1Kid18CrfHprO/ecRy4nic2oySaLGWksNpY+8S9TlhZWcHCwgJee+21ntoDLehwrJgrD36FVB+w2a7X72vTponA9ymhSte3tPSILANpVVqTJAlR2/fBR4lm0mlUKhXk83mEYUg3allGvVajvcDLy7QdkZEEJdbayMfKAvS79X1/iyZ6J/A59Nz4O66L+3fuIJPJdB/wMsB3CnEcI2QZQMuyaElJllHM5+nYay4kxAKLZMuxIPslkE2nUWPlrrX1dRi6LrIESdVCTddpnzpj88dxTInHCYRhKAaBtUwfZA5GcqpqEl9cvox0JoOjzz3X/43oZDseR2aAraHtZgFwaJoGTdcRex5sx2nJoBIA//ja7yMiISISA0SCIev4YOp9/HD+LxDEfksdc9gsiTo+76zK53IIggCqomC9XIYfBFheWYHvuoITFIQhVEWBruvinsuMgMzbNfXtHCR2vZlUCpbjwLFt3Lh2DS+cOfOVg7KvG9/pMkHk+4hdF5Ik0Wl0vk/7b/P5VlGfTGaLI9BpMXHPz2NjKytsXCYAqLqOTDaLoaEhFHI5OopUUVp62pNwHAc+awPKts0UFy2ByaFHoLW6L774AuNjY9i9k1pTjxLBV/HugQRnoI/MAAAxFIgrjAkiEdmcfd4pNcm1CTrBNAx4jAyoqSpSqRQmxsYwOTkJU9cRBAEq1SrqjQYsNl2Mt1Dy8+bGPOLz2Dt8Tvs1cvER0zQRhiFuX78+kC1+ShBZFsBq8/V6HUEYolgogBCCGuOkqIpCI8ykI8De314Gi5jtaDQaaDabqNVqwp6YpolCPo+hYhG5TEY4mQC2rF2eTYwJHVyUaosoZUkS7bm8hAcA8wsLWF1bw4t9lgd64XHYDiFCtINzSTNlwjCKxKwWAuDT5U/x+epFxDEgERkSJPzXh/8afuuF/xH/6P3/F85OnBX34fjQMTxXpMQ9WZYp38h1Icsy1YPI5bB3agr5XA66pmGjVkOt0UC90RCBXbL9GkjYDtb90Y5OdoPrEMiyjI1yGTP37vVtQ58UvrOZgSiKENm2YNw2Gg2EhGBkaAi+54mMQDab3TLOs6VMAFrL8zxPENcMXReqghKYnn2XNA8nDiYf+iAI4LDOgQzrWOiGZOR9e3oalm3jzTff3NEi6vSQdZpF/sho6z/e7rWmaQrSjes4fbOs6du3ihIZbDMOmQ4ER47d2/X1dTRtG/VmE5l0WrRtWpZFZ83rumiRItzDZ73PHB1rp+y7MTQNEYvWbt24gdMvvjggFH6HEdk2YpZBarI2Y0VRkM/lKMmYpfBzXEQLCUcg8XzGcQzP9+G6rtg80pkMXNeFqmlUyCyb7bgGuTPRsuEysmIURZAVRfATOoFn0wC61q98+SV279qFsfFxoSz4yPfnUSXMu5xnt+CrHTKzHZy8KysKIhLi9679AZLF1WFzGH/t0F8DAOzO7sbffe3/igf1Oaw7azhROgFF3jxvM5Xa4sArioKJ8XGUNzZQbzRQq9eF3eBkZc/zoGkadMZf8kAzB2lChd1aMiod7C/PIqdTKTQtC3MPHqBQLGJ0bGwHd++bxXfSGSCEUM+efQmNZlNwBQxdh8XSf6lUCqZhbAqC8L9BnQmbZQ+SXiAntRULBdi2Dc/3YTMN7aTcqDgXPsiCLeqYefYEm+S1fhCEIe7evYsjhw/Tdhtgi2ZBx3uBzovtcbQVgp8DevMckvc3ZudkmCYc24breZSV229HRAdngGs/eL6/xbHipR3HdYVW+1CxCI+VKhDHcF0XrusK5cXA94WQSgwIxcZu1y9xcZE4xvrqKh7MzuLAwYN9Xc8A3y5EQYCQZRNJHKPOiIPFQkGU9SRWGpCZfHeLYh+h6nyO67Z0vQA0iMizoIETlmv1OjIJiXNxHqytMLk+HdcVczR6yQy3QJIwc/8+giDA6dOnhcOSVCHtdpxOQUTMzivpbHwl9NESzR0sQujUV0VREAYBfM/Dny/+Jzy0Hra859eO/ypMtTU425ffi335vVsInAbr9uh0XqlUCrZtw9A0BEEgdAg830cYRbQ9PAhAJAmu50HRNFH2FeeMrVkifnxJlqEy2+G4Lm5dv45cPv+t5Q98J8ObyHGAxJduN5sI4xjpTEY4AgbTC0+m4SFtig5VqlU4jkNr65IEwzCQz+dRYNLFsqIgk80K4RE/CFCr11tYpfxh4ExSzluI4xiqpiGzg/70u3fvIo5jHD16VIhZ8AWZ/ANsXaTdSh7AV2cEJ8GNi0j5k4SqWBsHwNA0yIoijOdO0H49hmGASBK8hIdPQHUEmpYFTdNQGhpC2jCoQlyjgXQqhUI+TwcqKQp1UggbXcwY4oQQsQC2637gs80BYHZ6GpXEEJQBvhuI4xihZYnny/M8KkwlSVBUFSETD8vzaF6SWpxyz/NQZWll/kwrioJ0Oo2hoSGRBVQUhY4TZmqmzWYTTUZq5SBtznrg+zSbSAgymUzfUXkYhrh9+zb279+/WSNnGyyfgcBtYDvxuROSU06/kjPQVhZNEoVbSobYdEq4HTVNE5Iso9zcwL+6/Ycth32ueATv736v68e227tUKrXFGYjiGM1mE0EQIJ/PI5fNIpVKYaNaFWTRfDYLndkdLqLm2DZqjYbIunaah9J6C+g9MAwDmqbB8zzcvHq1Jfj8NuE75wxEYYg48eWGYYiACf1wVqym6y0cAQAtToDneYhZm2Emm8VQsYhMJtMSdfK0YCqVouNBWR2p1miIUaV8A+GSnhYbzCFJEk3x9bmYfN/H3bt3cfDgwS3T0dqRdAi2sPwTn5fsFSZtvxMEPk5kTPwhHf4WQ0wSzk/yM1uMRuKemEyRzW3LvmyHpGw0sJkZ4Om+KIpgNZuC+WvoOoaHh1EaHobC+CN8CBMXiMmzBQ8wgpbjtLSN9crA8OvTVRWmYSCKY9y5eRNBEPR9TQM8ecSOI2yEBMrr4Qz/kH2XyfkkEgAwldBqrUa1KtjAm/bgIUkOBmibYCGXEyJXnuehVq+LZ0a0JkoS3Zy4IJlpbiuKk8S9e/cQBAGeS5IGk+uxLbPXHli0I0oQj7eUzbAZDLTYDnrhrfLEbRs/SR6j03kmwAcB/ccH/xFx2Go3fvPkb0CWum9bPDPCYRqGsBsEEIPpuFRyJpPB5MQETDbhdL1cFmWjlGkin8shnU5TSWX2/kazKco5vexG8jcp1p1QLpfx8OHDru95kvjOlQliPvSCpb8cltrjBB4uE8ofh5CJgfD2QoA+bKZhdBTDATbrPRyapqFQKMCyLPhBAMd1RU2JMDVDr42nsJP0/J07d0AAHH0UxaqkQ5CoZdJfUZWv9n7f9nGnnRZ98m/Ba+ijbJGErmlwVRUREyLaSXqMkywJI1LJjJBoM2Imf006lRJdF9lMhg6RaTRQqVahqqrgenBCj8/KB4QpR9quC5vxGrj8aDuSkYtpmnSEbL2Ohfl57D9w4PGkUwf4WhGFISJGDgMA8OfJ80QGL5vJQE+QBfnkvpANrOFRq65pHUcGk4SjQT+CTsbUNE2IXtWbTeiqSqW52eutR8wmhkGA27dv48DBg49tsBYvK3QanNSpdEDom/ibW2xJ8j7EXTog2o/P378WrOPc0nmYSMGBgxgE7+1+F8dL27db87ZOgK5Xl/HBPM8T3USaqgrCIgCMDA9jdW0NQRhifWMDYyMjguCtaxrtbpBlxEEAMLXIoNGArCgwdR3SNpkcWZY3+QMzMyiVSlsC1ieN71RmIAoC+mUAIvVl2Taatg2TEcRyTOQniiLUm01UWSZABtvU8/kW778dLd5uAnxWOecNxISgYVloWhYC3xetQCm2+PuF53mYnp7G4cOHtxAdt0WXc02KDT3ObWqnD4sk0amAErCFm9Hv+3mGQDdN1BPpWb5A2+91oVCgpQFJwtr6+pYShaIo0A0DmXQaKcYniaIIruPAsm0qINV+T5P3kRCkWSS4uLCA2ndIVORZBu864u3EPiOJcd35dDpNy1GgImXVWg0Wi/4kZsiHikVaeuzh6HdabzoLJjh/yA9D1Gs1KmP8iNlEgJUWo6g1K9Avujj1PDPQ6xof5bN2Soj+J3f+KUIppNlZpKDLGn7t2K/2fQyZlXhUTaNjn5kzxjflTFuHl6IoGGYaE4Hvo9xWBpTZgCc+oVJlWhRBEKDRbMLuJjiV+AyV85tsG/Nzc9+6zOJ3yxlwnJbUeBRFaLK2oHQmI3r5LdvGRrVKh3mAOQHFYmubUIfjt3v2nWDqOopsw5FAI45ypYI6q0Wmdrih3759G5Ik4cjhw62/6GPxdIvRvw6+QL9oX/QaG0QEFmntBDEj/9WbTTojgXUT5LJZqvTVxWCVSiWhara+sdHC85DZVDSuK89ZxAAdVsPTiFsUxxIRpaIoSLNFvby42JJ1GuDbhygIECeySZAk1Fm5jytgpkwTQRiiVquhwVPAkoRUOi2cgF5rMtl22AmKLCObyaCQzwsBLG6nHNelDuwONmDf93Hn7l0cPHTokQhp3drcOnY5PAb0pYbI/v587SIur12GBQuyJMOEib926K9hLN0/Ez8IQzhs3gxYzd9krYXdyjC6rqPEHALXcTbHxQNiNDsXi0ql08hlMlAVBQQ0S9NkTkHLvW0L2Ew2NG5laQnlcvlbxR/4zjgDke9T0iAhosd2Y31dKMqNlEqImHwsHyii6TryhYIQDUnWyrakxvtwBDh4xFtgrP+Y9SsTQlBhHn8/X7LjOLh/7x6OHj26ozrhduCpsMfR/tZyPx4hHS4lCEF+n9kBPta0Xq9TFTYwz1xVke2DXCVJEoZLJaoDEUVY39ho7Z1mddqY1Q25t8+dAsLaErcsbAYCajgMw8DK8rLoKR/g2wkeRPBSVxRFqFarCKNI1IQt26Y1fRalp9Jp4fTzjaAb2suKvaCyFsYMU9zjs1Es26YqiEHQVynuzp07iAEc6VRa3EEprx1JzsCTQEhC/ONrvw8ACBAgkiIU9CL+yu7/w7bvjeMYnuehXq9vCklJtLMinUr1NZE2ZZooFgpQZBn1RoMqyKL1fvDZEbz0yJ0CsE6lBiMnAtjals32jjAIsL66ikajsaP783XiO+MMxIwEkmQCNy0LISEoFYt0XkCthjiKhBxxPpfbooAHbF24O3EEkggZ+SiTTqM0NCRq3I7rosa0x8Mei/vW7dtQVBWH27MC6O659/Oax9ZW2AGPUnbghCBOwOmEloWcWEyqqiKTTkNhA0z6haIoGBkZoWm/IBBpP35PwrZebCnhFOhM+jW5sDs5j6auI2Yp32/Toh5gE1EYgiSzPISgVq0iCALIioJisYgqi85BCAxdR5FlAlrGafOSVZvTRwgBHsER9MIQpmkil8sJPYGAzUio1uu0VbbLcT3Pw/S9ezhy6FDXKZy90M2yJO3J484qdmoZ7oT/MPsfsZBoJbRg4RcP/jykSOp6P8IwhG3bQjiI8xMMwxCyzDspU2SzWWSzWSiShI1KhU4/ZZ0ZkCT4bel97hRkMxkxY4FrJXTiSiiKgnQqhUq5DJtnL74F+E4QCOMgoFEcQFM1UQTbsuD5PvXKJYm2igEi7ddtI+S95Vt+vsNzIoTAtm2AEJipFHK5HEAIfKZvzaf3+b4vSChCnleSYDsOZmZmcPLEib4GkHQ4ga0/Ao1qk58bhaEYIcz/rrD0V6VSQRTHUNi44JbxwYrScfOV2MO+U5imidCyqHSzYYihUEEQwA8CIXRCP4TeL8MwRBZAlbobg27QVBXDpRLWy2W4joNKtYosG0DUeZwMy/owUiKfRmnbNjRNa51pzoyDaRhYWVpCLp+nBuRbLjn6rCFmE+h4VsBhRjqKIui6DofNDuHTLXtl6ESbcrw5jVT8fAfw2KwCACjk86JDhYvd8EFbjuNAVZRNCWP2bN25fRsSgCNHjjzCHUFX28FHrxNCYLNxvFEUIWbjxhvMbmyw0psiy5BVtcV+yPzvDh+73X2qe3X8i9v/quVn+wv7cXbXG1TAzHXp8CFCxKj4MAw76sRoTEek2WhQm7XDbEmxUKBOhutSQuHoKGRJgh9F0LscS2WZS9fz4LiuuJ9p09wye4K3GlY3NpBKpVDsdyDd14jvhDMQsQUNAGC1Njch+qEydi+f9b0deMqQt8o9SrRru67QMxfqhKyVTdd1OnSDM9dZvdxj8sSapuHmjRvQVBUHe4nXEDpYh4vmeK4L1/PEf3P5TI/dC74oOj2qyWsMowgxIbh06VJrCqtThoQtdMMwqIgTe7BN06TMasOAaRhUYMk0u9YadU2jSl5hiHq9Tnv/2wg3CtMF15h6W8tpsL7nnX5fpmnS6K9SQaPZBIC+nApVVZHLZOC4LlxmvIMwRIqplAH0Pmu6DrfRQLVS+dYs6gEo4iAACUNBhuODaGw2zjbFptqZmoYUm1q6HTijnrck7tR2xITAYoJpyemcCiO2pZl6p8+GooVRhJA5BgpbM9PT03ju2LHuto6dn882JY/ZCG47bNum3U/sv3ldvb0TIKkbkjz/y5cvby2bdLAdkqpCZfocpmnC1HVobfbCNAwYrEPjX9z5l2gGzZbD/ubzv4FUKoV6vS7a+ZIy4/RypU21wLbASmIdAY8iBTxcKiFaW4Pn+1hfX0c6kxHTLLuBl5B1VYXFgwnXhRoESCWzTYQgZZpYWV5GnrW274R4/nXgW+8MRL5PFzTzyrkTUGMKXwaTCk6xunQ/4IM+CLBlYlc/4DK7AFp6jJNQVZWmuFlt0GcRMB+L+mB+HocOH0aj2aSjO9kitSwLDaaVbVlWi8NCALEx65oGkzGcTdOEpuvUQ1cUOI4j5ExVPhRFUejfsox6vY6ffvghzp49i3Qmg5gtMB4J8Hp6FEXifsdMxtd1XVRqNfjMuAAQLYcSNmvp+VwOWVaPTafTMEyTKrfZNmJCkGHtlzzy0VS1pzHm91h+hMxENpMRY49r9TpM5rRsN4VMkmWk02momkYlZwmhY2oZGYmfUyqVwsrSEgrFIrLbyE8P8M0hZql/sPS+bdtwHQeO5yEGkMlkaCmxLWrrBZ6JfBRHAKBTVGNCFUs7qpOy9LbBOl1834fPlPCiKMLdu3cBWcbI6CiqtRpdU44Dm3U2Ner1lq6b5HnzlmpN12Eyx9VgLbXcOQ/CELquU119ZjMURYGsKGg2m/jpT3+Ks2fPIpPNUnvBbUXCZkTMjli8TAqaDak3m3DW1uAxNVB+vRIhqMo1/Kn078X5ypDx+tDrmJQmhPPCJz+aLLOoqio0TevaEgy0lUoT5PN+IEkSRoaHsbKyAjcIEDUaSKVSfQUTnN/Ena6QUKnpdCpF7YMk0b9dF5VyGalUCqVSqe9z+zrwrbdaxPMECSOKIjSbTThMZRCShOGhIaESuFNIAMBTSHHcl0EghAiBEJ6K6vk+SYKqaVA1DcSyUK3VRJpvdWUFszMzCBIpcs5SHR0bw5RpIp1K0dkIzLtWWIQcxXFHYxRFEer1OiBJKBYKHRcJZ/WnmEpfL3DJZpM5XAA2lcRYatP1PJqlYDoAjUYD9WaTTgVj8qqcOGOkUlTuuVjEyPAwMqnUlqltnW8jbeeUgK3a4NuBEORyORElNZpNSv7s8xh8yhzP7nAiJFe45ETFeq2GVCqFoaGh/s9tgK8FcRgiTowbt9mG6bouVEWBKssYGR7eIlLTDwgg+EH0B/09Rz6T2AUhSKVS2z5/vO6tqCrqQYDy2hoWFhaQMk1cuHCBElzZxsRT1NlcDkOlkrAZ3G6I0lyXdmQAYtPlpdZ28I1dlEV7gBAi2PjcDhFQ+yRJkhhX7LguHNvG//PO/xumZUKFCg0aFKJg/+o+/HjtJ6ImbxgGzFQKo6OjKHKl2H4DQEbU3E5ptOU9oAFBsVjE2tqa4DspfeoD8O9PVVXYjANiWVaLiFHKNLG+tobSyIiY9Pqk8K12BuI4plkBACCEEn0sCwqT/DRTqW1bfjqCp43Y+yRJAmEtZ9uB8wE449hNljASiKIIlUoF5Y0NbKyvY71c3iSiEQKNtShOTkwgk8nQ6N4wRJ2ejyrl58ujdJnV8rnqoSxJLQsiWcd8HGI44o4QIli0URzTUgOLAiRJgplK0WiDtfGI+8DKHI7r0qxHvY7KxgZV4WLnWsjnURoexghTEWzvAebXw/uVZWwvH8zBZU8lScJQsYjV1VVRC0yOSd0OkizTdkVFgcVIP03LEpPJ0qaJ2sYG8oUCsh30Dwb4ZkFYSQ6SRBUEKxXamspKUQZrDd6J7UiuBbR3Jm3zPBJWHiCAyJKFCWclCdtxUF5fR7lcxsbGBmq1msgQcic0VyjQlkjmXCej44jNS6GXJyEIQ0RxLEoSXEynfby5mMD6GHgvybsRs2ArJgQhyx5w26GqKuaDBSxZS8hgc5P9uanv47+Y/D61G7YNu9lErV5HuVzG7MwMJACKpmG4VMLw8DCGh4cxNDS0Zd21DJqSWpVNtzt/bscM00Q2l0NQq6HRbPZN2hQdLMyZ4TNubMeBwTIcfHiaw4KoJzki/VvtDBDfF4u1UqnAajQASUI2m6XEszDc0US8zQNvfRi459prUYdRJEiDnMjC3gzXdbGxsYEy2/irtZpoPymVSjh06BBKpRIqlQquX7+O733wwRbvmwvg8Al9fhjSCWRkU8sbjODT8kBLmzrkYRjC9TzqjXLyVIL0JgGCvOSzaY38ugkSanvs83hmwPd96MwzTnr4SSiSJFQdFUWBytKL7dfYqNfhsZSfbVkob2xgvVzGzMwMwEh5YpGPjKBYLG7Wadn19ENk5BkMfp5CSdJx0LQsDCV0J7YDL9PomgZkMoIpzB0ChXn/hBDU6/UnuqgHgBAnC8MQa2triJitUBQFASMP7hi8rt7BUd3OdlisvCRLklDClEBLlpVGg2785TLK5bLQrchksxgeHsaB/fuRLxbx2aefolQq4dVXX91y/IiV8SJWkgyjSLQ7R2GICECArfVuSZZF627TtoE4piUD5kAnHSZeeuB2g14yabUfAMCChaZliUFu/Bhxm+2K4gj/7v7/DyFCRIgQIkTWyOKXTv4i0lqrffQ9D5bjiMxctVpFuVzG3bt3cePGDUiShEKhgJGREZSY/WhvJe/XGeAzazjy+Tzlqnke6o0GioXCtsdgH0jvL4BMKgXH8xAwNcQ4jpFi/IkaIxLyzMyTwLfbGWALulqtolGrgQAoDQ0JA66wyHhnB+2eJuMp/24qhBYvDzC1w7m5OTxcXESVtZ8ANM0/Uiph7759KJVKKOTz4hwJgCtffoldu3Z1TMNJrI6kqipiQmCyhdtejwvZRsq7B7iITgTA44xgoGWwTxLc2Liuu20EG3P9bfZQ82yEmmQSMxYxb73qFbVLkgTdMBCxtN3I8DD27t0LgDopGxsb2NjYwPr6Oq7fuEG7SJhxkmUZlUpFOAcdhaOS593h2cgyPYHYcVCp1fpONfKoImYRVpYNxSKsFshJQ/V6XXS3PKlF/awjZu28URRhjWWCNE3DyMgINjY26BpmddvHhZbnsa3kyFPiYFyZer2O2ZkZrK+vo95oIGYqh0PFIvbs2UPnbDDhLI6l5WU0LQuvdHAEAOp8K4oC6Dp0Vo8nhIgIXDgLSQIeyz7yKDhgZGeVdW+1g9u4fuwGLyOym0NtoCxDYfeK8xH+bO7PcN2+0fLe//7Yb2xxBABmd9l46Ewmg7HEOOBms4n19XVsbGxgeXkZ09PTlH+h6yCgMxwyp07BMIyegYRwVtqeDZmVC6xmEz5rOe43s5gMxviMApd1G8RRRCWT2b2t1+sYHR3t67iPG99aZyCOIhA2kKbJergLxSJyuRwa9TodV6vrj7agt6k5tyxs9jrH89BoNFBeX0etWsX6+jqdlJhOY3RsDJMTExgeHt7sLOiA1dVV1Ot1vHjmTB+nuHldvHWHL8AkX4BH8GJwEuNTmIzIl/Ta+fUozJlSVZVGum2EKDHMhBEOwzBEipdkkp/b6R72Uc/XdR0OIxGJkaCgkfv4+DjGx8fFZ1SrVVy7do1Gd1GEv/jxj5EyTUzu2oVdExMYHhlpTXUmDFA3FHI5uGxiXa3RwFC/Xj42WytlpijHZUh5LdCxLBQKBTQajYEz8IRAmJGtbGzAZ2OvR9l42iAIEMXxI2UGtiMbiyhUUYT2ACEEjWYTGxsbtGy4vg7LtiFJEvKFAp577jlaAy8WofZwSqfv3cPQ0BCG+yCZ8SyWJNFpjDw3184XEBNHWenPY84Al9tun8jX0W4krptnIfl/xzGd25LkLiXT7w2/gX9+51+2nPuhwiF8b8/3Ol+XJEEzDEQsW5nUkOHaAPv37wdAsxgLCwu4du0aSBxjbm4O8/PzGBkexuSuXRgfH0cmEZARVgbtVVo1dB2ZbBYWK1kYLADoBxIgWtoNXYcsy7Btmwqc2TYdc8yCNMdxxFC1bxLfWmeA+D5cx6Ga0lGEbC4nyG5BGG46Azs6KEuB9/FSXqOuNxqYX1jA3NwcavU6ZFnG+OgoTp0+jdLwMK1DahpyfZBKpu/dQ6FY7CuF3C2V1S57KklSS2+7z6KDVEJmtx1cNINrdPdCyFoW21sGd0ziS0CWZRiaBpcR8roRQOM4xu3bt1Eul5HJZFBiWYSlxUUsLS1h5t49yIoinLHxiYm+avWKqiKfzcJxXTSbTZGq6xfJ+mM6laL68mxR8+mWXOvhSRKCnlWEjCTquC5UVUWpVKKELZYtACE743QkyoH9PPMSqMO+srKCBw8eYHF5GSFrLdu1axcmJyeh6TriOEa+j+6TeqOBleVlvPLKK/2db7fzbPuZLMtUD0BRIEURDF2HJMtdbUK4A7sRsRJpS5kSra2H/+L2v0TDbxXr+s0Tv95zKqHBOntCpp/STdejXq/jxo0bVN8kDPHOO++g0WhgcXER165exZUvv0Q2m8XExATGJycxxLKN2yGTTiPwfciShEqlgtHh4f5IjJIEhXG/AJqZymYyol3S8314to1UKgXLsgbOQBJuswnbthF4Hh0jnM+LL8tnzkC/XhmAHW1ctVoNc7OzWFxagmVZkGQZ+WIRp/btw4F9+2CwjYMz0/s5dqPZxNLiIl56+eWvROzb7pO+TvXBJKS2qEH8vM/364ZBFwAbFNN+TzzPw/nz59FoNPDGG2/g6tWr0DUNo6OjGB0dxenTp1Gr1TC/sICHDx9ibn4esiRhdHQUu3fvxp6pqY7qkxx88/eDAJVqFeNjY333mcuKItKMXKQoZKUcy3HgWBYyuRwcxxk4A98wIs+DxTuOJAnZXE5k6/wgQAya3XkUgud2ay+KIiwuLGDh4UOsrK4iCkOkMhnsmpzEvn37MDY2Jp7zKpOw7qdJ9t69ezBME7v37OnzRHfupIvnecfv3AYdbJ0EYK4xj38/8x9afv7Orrdxcvj5noeTFUUEEr7vd9w05+fncfHiRYyOjmL//v349NNPKf9iZAT7DxxAGARYWVnB/MICpu/fx41bt2i2cXIS+/buxVCp1NFG85/kcjmqMxMEaFgWCtt0VgiwIIIHeoqiIJ1Oo9lswmcl0uLwMHzf7+nofF34VjoDbrMJx7LgeR50w6CTABOGnXuofZMH2xdHh8UShSEWFhYwMzuLjXIZhmFg1+7dmBgfh8oMR7590FGCFLMd7t+/D13XMdXngu7mMHTbhDkEI/jrdgYkqWM7JunT0VFVlbZbMjJSMjJvNBo4d+4c4jjGO++8g2KxiMuXL9PXs+uLCUE2n8fxEydw7PhxWM0mlpaWsLi0hMuXL+PKlSuY2rsXB/bv39Lqx88wn8+jWqshCAJUajUM99kSKEsSokT0xQdUWbaNKI6xtLiIQ0ePwnXdFid2gK8fjUoFISPQZZjGBX9GeU1cf5SsQK/PrNcxMzODB3NzCHwfw8PDOHniBArFolDzLBQKLWQ7kTbf5vh+GGJ2dhZHjh7tf3hQl8xAkkzbjm9yuJkkSfjH1/8AEdnkJWiKhl87/t/29X7dMASJsV3n5datW7h58yb279+PF198EQ8fPhQcEU68lmQZE7t2YWJyElEUYX19HUuLi1hcWsL9mRkU8nkcPHAAU3v3dnQaVUVBIZ+nXLZGo0WIrBd46Ya3SPNjmYYhxLA2ymWUhofhOI6QUv6m8K1zBsIwRHNjQ0wN0w0D6cRGwdtSsNNF3QX1Wg0zMzOYYwt5fGICb7zxBiYmJiDJMprNJlzPg6ZpLQ+GhM0Rwdst6IAt6AMHDvTt7XUtE2zzHu7h75hY2e2Y/B+djvcVP8NgSo1+EAhnYH19HefPn0c6ncabb74pPP8wCITud7vDIQFIp9M4eOgQDh46BNdxMDs7i9nZWczMzGCoWMSBAwcwNTXVkpKVWT1zvVymMrVd+qu3gLT2LPO+8zRL8Tm2jaXFRezavRu+7w+4A98Q6pUKAtuG7/tCiEsEEYSqeSKOH0sQEUcRHj58iBlGBNQNA/v378f+/fuRzWYRxTFqlQpi1nkEbLaa8U1BEIB74MHMDOI4xsEDB/o7566X0nuM8KNKK/c4ID1eh199vnoRF1YutPzslw7+IibS430FViprLY8Zz8FkAk2XLl3C3NwcTp48iaNsgBOXK06qRgq7JdH2ypHRUYyw0u/q6iruz8zgiy+/xNVr1zC1Zw/2HzyIoWJRvI8AyGUyomV6o1rF2MjItgEY/+6TwmmEEOisZOQHAZYePkQunx84A4QQVNbWQBixzDRN6LoORdMEIScMQ3FD+06jtLFDoyiiWYCZGZRZFuDAwYM4cOBAy2YQhqEQCelU1xYM+uTxOzzMD9js6oOHDvV9L7otyn68e/6QPxZsR7Rs+/1OFB01JubDdcaXlpZw6dIljI2N4bXXXoPKvHmACiUpqto588Cul09rNFMpHDt+HMeeew7LKyuYuX8fly5fxpWrV7F3agoTExPCyTBNE7lsVgyI6SRp2unzQIiYr5BM+6XSaTiOg/LqKopDQ1R9ceAMfO1wXRduvU6/F8asb0khS7TtNga+kgZEo9HALMsC+J6H0dFRvPraa9i1a1fLmnMcR3QetX+eJEmtnVBdIvmYEEzfv4+pqalHGlOcxHYBC187j3t08ZbPIRH+8fXfb5EVHzKG8MtH/3pfLX8chq4jjCL4vg9FlvHJJ59gY2MDr776Kvaw7CuXgVe72Q1scsPYf2BsfBxj4+NwXRcPeEDx4AGKhQL279uH4tCQ2HeGikWEq6sIoqhvIrIgfrPP5ddssPkUYRhiYX4e+/bvR8hGtn9T+FY5A7ZtA4l5AwA2SXBt/aJ9b3aJjdoPAty5cwd3p6fhex7Gxsfx2uuvY3JysuPxHMdBDAhRj3Z0Isa0PHQsLXhvehq79+zZkVJix7a5b9q7T55Hlxrao1EI+SHpLIcojnH9xg3M3L+Pffv24YUXX6SpeNY1wR1AdRsjvuV8ZBkTk5OYmJyEY9uYnZ3FgwcPcH92FoVcDkePHMGeqSnkmTphwGqAO+kuAFqjO01VEbOSwcryMtLpNApdlCAHeDwghKBRrdISWqI9V1XVllZivj76sh1tG9NauYwb169jdWUFmmFg39692H/gQMfoLYwi+ExzotuaTxLrJGy1GwCwvLKCZrOJV/slDvbCNuRHYTsetzPQ9tz/x9k/x1xzHki4A//t8V9BSk3TYKZPh4C3GTZtG599+ilc18Vbb7+N4eHhFi2FIAh6b6ic2Nf2uaZp4rljx/Dc0aNYWV3FzMwMvrxyBYqiYHJyEs8//zxM00ShUEC5UoFlWXSUcZ+bt9z2mZyM3LQsVMtljI6NwXGcbZUeHye+Nc5AHMdo1mqQEyQLXddFO4tY0H20jgmw9wRhiOnpady9exdRHGPfvn040GUhc4RBgMD3AUK6Mju5IEfL0Izkx0sSVldWUKvXcaaPdsKWY3eq+W3znq9lFnmPdF/Hl+/w8Kqq4uaNG1h4+BDHjx3Dc8eOidIL/0wuktSLENieHWhHKp3G8RMncPzYMcw+eICZmRl8duEC7t2/T+u7+TzKGxt9Leqk09Fpk9c1Db6qosaMRDsnYoDHC8uyqEAZIOyCWLOJ74e3w+7EMduoVHD9xg2srqwgl8/jlVdfxa7du3uuMZcFEXqXIAIAwBRP407ri5UQpqenURwa2rFmfaeMXXsXUjvix2w7koJsHI2ggf/PrX/e8rpDhUP4uanv05duw4dKQpIkWLaNzy9cgCTLeOedd5DL5baUXfqKriWp+2fLMsZZp5JlWbh79y7m5+bw8OFDHDp0CEePHoWp63DYvJx+Wj8F2rOqEhVc88MQq6uryOVyz6Yz0Gw2ASbPyT27ltY4Vush2D5CBgAQKn15/9493L5zByFL0x89ehSarm+bkrJZmo/PA+gE7kVzI9Nep5cALMzPo5DPb2kn3PYaHiGS3FHk0+8x+el0+J20TbTR9ZjsPb7vi/Te888/jz27d3f8HD7v+7GkzFiNsDg0hGaziTu3b+PDn/0MY2Nj2LVrFzTD2HZRC64A31zaREy4Jrlbq6FWq2FoaGjgDHxNiOMYzXodKssAxqxtsNOz0nf0S6iu/s0bN7C4tIRcNovXWQZxu5p2S2mxx3feInDWAa7rYm11dUsQ8SjZPyGi1uM9j5t43Mlu/Mvbf4h6UKc/Zx71bz7/G5BlpeU9XY+ZuFeLDx/iwuefI5PN4sSJE8h0CeyCINi+LLRNIMFhGAYOHjiAvVNTWFpawr3paczMzODA/v3IFQqwHQe5bdqJk44aAVrKJQAtYRm6DqteR71ex8jIyDcmbf6tcAaiKIJVr0MjhOrOA61ZAWAzzcUUs3oR5OIowszsLG7dugXP87B/3z48d/y4WJztKaF2BIl5471EhESar503wBCGIeYXFnD06NEtizcpwsHTm0mWcVc2cI/zjh8zeZCfHzvhjr/fVt6z7cHn/23bNs6dOwfP8/DGG2/AYB6x2cFJ4oOc+l3U200V4+c7PjaG3ZOTWFxexo3r1/HlF1+gWCphYtcu5HrMthfkQfankxqirmkwDAP1Wg0bGxst0qgDPD7wIEIGEPIgIrlm+brskr1rR6Nex42bN7GwsIB0Oo1XXnkFe/bsgSxtLzkMAA5TKTXZgKFu4OTjbsebn58HZHlLO2H7M9TenSB+1obtyouPm3jcfl0LzYf40/t/mjgfGW9OnsXpkVNdz4m9sKW2DtBWyytXrmD37t147tgxRFGEoAtRt++6u9TH3AKWPdA0DSdOnMChQ4dw584d3Lt/H7KiYILpnEwklBHbwZ0uXgKVO3ymaZqoVCqw2QTbb2qa4bfCGajX65CYqhuPAjsuaEkSfbmdHm4CYP7BA1y7cQOOZWHvvn04duwYsn1OmeKwXVdkBbZrtZHZOXV6iJaWlhCFIaamprq+n5ca+N/i59JWFcS+vfuvoT2o26eKlDlJaJSzTbLbsqpWKjh//jwUVcV7772HbCaDWqMBwoRE2hdvX2UCfj4JxnY3iJ5qWQYkCbsmJ7FrYgILDx/i2vXruHX9OlaWl/HymTMdxVV4dipOfC+dDEkmk0G5XIY1NIRGo4H8NhMiB9gZoiiC1WjQrIAsA3G8NSuQ3CQT2hDtcF0X169dw8yDB0iZJs6cOYO9+/ZB2cHmGLAx5aRHaVGcFj+nLpvP3Pw8dk1MbPvMt9sNHmmK8kMf5/91EI/by2i/f/0PQCckUOiyjv/u+N/ezHRgUyGx5Y4k7w8huHL1Ku7du4cjR47g+eefh+/7sFgHSSdnIPD9viPr7exGzDZwnlkyDAOnTp3CkSNHcPPmTczPz2NpeRmHDh3Cc0ePdnSsOBcKbc5OEqpEZZQ3ymWkM5lnxxmIogiOZUGPY0jswdeZ9r9A+03tED3ato3Lly5hZWUFk7t34+233uquHd0jve35PsIgoL3jfaR2hfRmh+PNLSxgiE3hexQk0/DcCeLlhWQaTvTefx2ZAZaJQftn0pMR8qL8E7s5RhxLS0u4cOECisUi3njjDRF965pGlbg6EH5c5pwZfabaew4xShiblmdIkrBnzx6MjY/j5s2bmFtYwA9/+EM8//zzOHjoUKszlOggaPnMNj13RZah6To21tcxVCoNnIHHjGazCSmKoCY7Sbo9I5LU0ZEmAObn5vDll18CkoQXXngB+/fv7ygNvN2qspmcrJlKbeuQ8w2lU2q63migUqngOdYetxOI4CJxraKlDmi1e9x29XCSHhXcYSaE4OLqJZxb/gTAZsDwXx/5rzCemRDZzu3sRhRFuHDhApaXl/Hiiy/iAGu11DSNkozZ/IX2kq7juhgZGenrnCVZhtRhbbdcE7beJ5M5j5OTk7g7PY2bN29idXkZL7300paaf4zWYVGdeGeQJGRSKaxubKDYbMKyrEfeQ3aCJ+4MeJ4HmUlXcgJcz/oqe3iSafbZ2VlcvXIFqqri7Ftv9UzTAD08QEJES1C6zwE2sqIAbLogEpuY63lYXlzE6Rdf3PYYXZHwHqW2rEDycUxqgbdEqUliTMIYkLY/Lb9rO7ZgY/M/2Hrv+jUh09PTuHr1Knbv3o1XXnml5f5qTFUsDAKQNiERx7ZhGkbfGY9eo0qTP+vkNOmahn379qFYLGJhcRFffPklHj58iJdfflksSCJJW52NDuloSBIdbdxoUB3yHZLXBugNz/Mgs6wAaecKdMqiJco6AHUyL1++jMXFRezduxenTp+G8Yj1WZ89u+gziBCjdTs4A3Nzc9BUFeMTE490Lp0g7kQnh4jfF3Yf6csS6ycZlHC7Qd/Y8jvC7RQgHGOCGP/42u9T2WN2FkVjCL989Jdbgp1eq0KokdbrOHv2rJhdws9T03XEngc/CJBqdwZsuz/tEIZ2ln8ShGcGuqzh0dFRxIRgeGQEs7Oz+NFf/AVOHD+Ow0eObA6r6/B9d7JViqpCU1U0G41nyxlIbs5cUKIr+CYnSS3ZgH379uHU6dN9pZK7wfV9RGEIWZb7Jnwp7FzaMwMLDx+CSBL27N79yOfTTjbZDnxjb5lTLkmtC41HDckHukc9tWMUnTzc1pPodGL48soV3L9/H0ePHsXJkye3vERlExDDOEYQhi2CUvYjDO7otqiF+lePTTmXzcK2beyZmsLuyUncuHFDZAkOHDrUcaIb0CE7ENN57XyQ0UCA6PEhDEOEvg8DdOMhQOu97bLp8QFccywbIMsyzp49i8l+N95OWUVCBOE41W8QwV4Tk1byMQHlC+zZs+ex9Pz344DyzAG3ZRztmTMgsd6TpUv+kg7r7cPFn2G2Mdvys189/itIq+lNHhG627cWNdJ330WxWNzyGl3T4LMSTdIR84MAARuy1je2CSQIumdeFUVBNptFTAieP3UK6ysruHrtGpaWlvDSSy8hk812z36wMlfyPHRNg21ZsCyr//P/CniizgAhZNO7Zx6nsY2sY0zfiOXlZXz66afQVBVvvvXWpre4DcGnF3g6Om1u1crvBok5Lu0bxNzcHMbHxx+fNv0215Xs0f06Wgt7djf0KLtEUYTPPvsMKysrOPPii9jfQ0mNlwqCIGh1BixrRxoN/Jy6tVhtyX60gS/qeqMB6Dq+98EHuHHzJi5/8QUezM21ZAlaPpKQlgFOhB1LVRSxqAfOwOOB7/uQWKRGQO+91taG3OmZDYIAFz//HMsrK9g7NYUXXniBrtGvYDeCIEDEOqG6DQdrhyzLNC1N6NRRnvUql8toNpt46aWXHvl8pLZ/b3dlX5fGgBM6+Hf3/qjlZwfyB/GX9v4XW17baT2ur63h/CefIJPJ4M2zZ2F2sQGaqkKWJIRR1EIYFFneHWQGgN6BBD3Z7tYjm83SVtc4xoFDhzC1dy8ufv45/vMPf4jjx4/jyOHDHd/PifNJGLqOSq0G27bFCPevE1/v0bdBEASIgwAyIeJGCLJHIi2dRK1axeeXLuHu3buYnJjAz/3czz0WRyC5oHeygSss8k5mBppMY7oXcbAftDCEt7m2ZErvcaWik557L3RjMruuiw8//BDr6+s4e/ZsT0cAYPU/SYLv+y33095hqo+jkwdP2khA3ZDNZqn8MSFwPA8vvPAC3nzrLdi2jR/+8IeYnZ3t+L4tkZUkQWMevs3GSw/w1eF5HmRsPqN6cpx5F37AzVu38OWXX2KjXMYbr7+OV199dcfOeqeV5XoeAJqZ2InBVhLZAY75uTmkUqm+69zboZ/1+3UMNyOE4M/nfoBG0DqV8L9//jdbphJ2ywzMzc3ho48/xvDwMN59992ujgAAscYkSRITWQFaIpBANUZ2hPZsKj/HbTIDYL/L53KQQPeBfD6PD773Pezfvx9Xr13DTz/8UHBLOn1u4sOociIoN8bnOhpfI56oM8CzAjxSUxRl00h3WNCWZeHK1atiNsHDhQV89LOf4fr16yiXy33pWgOdF7THFzSbNd0v5A6Zgfn5eSiKgl2Tk30fpxc6kVbaWbed+o9bfp/4m2cR+nWd2utkW8hzbecF0PTeT3/6U7iui3fffbelztcNiqJAZRFTkFjUtuPsfEF3gcgMbOMwtS9q3/cxOjKCn/v+9zE1NYVLly/j+rVrne9F26LWNQ2O4wgPf4CvhmRGkTPQxTjzTkEEIZi+exe1ahUE1PG/fOkSPv30U8zMznY3zp3Q9tzwtjZCSN9ZAXEoWaaBBLMdESGYX1jA1N69OzpOL/RdXsTWEkCnNH7yee917CVrGR8+/LDlVW9OvokXEq2E3ervN2/exMWLF7Fv3z6cPXu2r9ZAXVWF3eDnaDsOJGDH3wvQOVgQ3IptbIcYrEcIGs0mJEnCqVOn8N6778K2bfz0Jz9BrVrd8j65zW7IsgxVltFknKOvG0+0TBCwrACvdRvJBQ20LLxqpYKPz52DLEk4ffo0dF2HLElYXlnB7MwMbt68CdMwMDY+jnH2p+dDkCAYRXEM3/MeaUHLbd49AfDgwQPs3r37K4+gFMsosQDj5AOZ2NAjVjdt71vt5BAkU4e9FrQYptH+WsaR4G18aHMU1tbW8Ekf6b1O0HQdAe8b1nV4bJznjssE7LzadQc4Z6Cf7EkqnUaDeeWWbSOfy0FRVZw5cwbZXA7Xrl6F7Th46aWXWr7r5BAjEbUQgka9jiAIBqWCr4goimhGMYogKwpktLWdthnVK1euYHp6Grt278bIyAhMJiy1vLyMi59/DlmSUCgWMT4+jomJCZRKpe7RX5uj4XmemEGw0/XenhlYWV6G53nY+xUzii1gfABB+OuAiHUMtZTVOtiQdrGc5O/a8a/u/CEiEm5ywSQNv378b7coQG7hJ8UxLl66hPn5+ZZhQ/2Ac46CKBKcI8e2qe15hEyphK0lFtF1sU2wKEsScrkcyhsbaDabyGYykGUZpVIJH3zwAT4+dw4//fBDvP7GGxhvI7vz74B/H5qmwbVt2Lb9tbcYPnHOAHhLiCy3as8nvsDlpSV8+tlnKOTzOPPSS6gwr2pqzx5M7d2LOI5RqVSwuLSE1eVlLCwsAACGhobEAh8aGhIPX/sG5jGugNYudNQHZNarzvvOq9UqGs0mXnjhhZ3fEGCrXCpJsP47nPvmyx4/X6BXaSLZzZHsuZ+dncUXX3yB0dFRvP766y09vgToOPY4CV3X4TgOgihCFMd0Lj0eIdXHz5NeyGYbFXOa+iFnSZKEdDoN3/dhO45Y1BKAw4cPI2Wa+PziRbiuizfeeENcKzeW/Co5obP5DRGBnnYQQiARgjAMYSgKtRsdeCu8HW3x4UO8+OKLyLCBVOlMBpO7duHYsWPwPA8rKytYWlrC7MwM7ty5A03TREDRHlS0kHrjmDoDhDySwiR/LnhmYH5hAfliccctqMnNut12xOhM7Gt5/2MuE3yxdhmX1y7DhMmbCfGLB38Bk9nWTGnSofBcF+c/+QTljQ28+sormJqaot0JiWvpeRWSBJ2RdTnn6FHLi/x4yRblZOa3n9btVCpFO+TiGJZtizZ3wzTx7jvv4NNPP8W5jz/GSy+9hH379rV8Lu+YA2i21LYsob/zdeLJdhOwKU2SRIeLyMkSAcPM/fv44osvMLlrF1555RXEcYxqtSpU6ejLJZRKJeo5nTgBx3WxsrqK5eVlTE9P49atW9B1HRMTExhnU6nERDyWcnyUrAD/bB59xlGEufl5mIaB0dHRru/hG2in6LR9+BF/7Xb4WnqFO5QeOoFnCK7duIFbN25g/4EDePHFF7uycnkbE7DVQZAkCaqmIWazIXgKd6fdBImTo98POw8+ZXA7w8fLKalUCvV6nWog+D5lK7MFu3vPHpimifOffIKf/OQneOvtt5FOpaiyWMKQ8M/yHEe0zw7wFUGo3LgBtNb92XPkex7OnT+Paq2GN86exa7JSayXy4Akbfb2sxLO1NQUpvbsQUwIKtUqlpeXsbq8jIs8qCgWMT4xgYmJCRSHhsRHeUGAiLVFP8o49WRWMQhDLC4s4NiJE70vG/3ZDv7afqzB4xxwFscRfu/a74tPjhGjqBfxy0f/esfXS5KEZqOBj86dg+s4eIcNG+KZjC3WI5FVaLctmq7D9TyEQYCYEFiO8+jOAFoDCV5abenU6gD+/RBCkEmnEdRqcBLOAAiBoqo4++abuHzpEj6/eBGObdOZLJx/hk2nU2YzLL6JjoIn6wwQgjAIxJjPloeXEFy/cQO3bt3C4cOHcerUKcry5BFpHFMyGI8IEuShlGli/9692L93LyJCUCmXsbyyguWVFczNzUECaFpwYgKloSFIbOTpo2pAc08ximM8XFjA7j17WiLnlvMDP83+F15f7UE8M/A4nQH297afHUX4/PPP6SzxU6dwtAtjlh2MHrtHrV3XdQRBgCAIKAlIkr5Sal08I4SIjaCbZkFyMQPUYKfSaTQtC5Ztb+khHx4ZwXvvvotz587hpz/5Cd48exaFxOxz/vmSLMPzvBYuxACPDhKGIFEkAgkCiHtuWRY+/vhj+L6Pd995ByW2gauKQm0ICySS74EkQZYkDJdKGB4awsnjx+G6LpZXV7GystISVIyMjmJiYoJmAyTpkedO8KxiHEVYXl5GGEVbWpE7yZz3azv6CSJIYsN9HJmBP5/7AWYbs8iBZzcI/taxv4W01rlPvlKp4KOPPoKiKHj//fd7Do9jJ8yOuvnfEtswFdaWHrOskWPbGE44bztGIpCI2F7TS+tE8LEYeCARxjFc14Vpmi029aWXXkImk8H1W7dg2TbOvPQSZPYccpvPM5iNRmPrBz5mPFFnIA5DRGFInYHk8CBJwu07d3Dr1i2cZnKPHGIOuCQhCEO6gbcvjoSDoAAYGRnByMgInj95ErbrYmVpCUvLy7h96xYC1ooyPj5OFejGxnbsFMiKAgQBKtUqLNvGxMREq0f7FTbofhZ08nVfR5mgl/EJfB/nP/kE6+vrePX11x+NNNlW01QVBZJE589btk35Al/FyZFoh0XIo/LEImsBM4xbZIXTaTF9MOTPXAK5fB7vv/8+zp0/j48+/hgffO97m5kMdixl4Aw8VkSJeRWStCkC5QcBPvroIwCgm0uiBVRWFFpeYATkrmD2w0wEFTEh2GBBxeLiIuYePEBMCPL5PKb27MHk5CTyOxxVrbBNLCIEi0tLyBcKMFOpx2I7+n2XyCjiq2cGrKApphLyBP9Udi/+codWQoAOG/r8wgVkczm8niiz7QhtPAdVVRGyUoFt21+ZeMwDCV4m6FZebHcEAJriT6VSsBwHluNQBdW2wPW5Y8eQTqdx8dIlqKpKy8ucD5bIYDqW1VdQ+FXwRJ2BkDH4NU2jM6XZz5cWF3H92jUcP3asxRHgkNlmEUVR9weoy01LmyYOHDiA/QcOwHZdzM3NoVwuo1at4uHDhzQ6GBkRXINcLtfxC+ikZLe8sgJFlnc2xnI7SP21Cn4dZYLtWjWtZhPnzp2D73l4lwmCPA62PGfRRrKMWrWKNDPo/Mr6c49aIWqzhHRc0C2zBtqgaRp0TYPHiISFQmHLawzTxFtnz+IvfvITnD9/Hu+/9x5kRWlhIBOW7ntcbWPPKuIoQhQEkNBaIiCE4LNPP0Xg+3j/gw+2zCTh3UqPUqqRJUkEFcdPnMDa2hoWFxdRrVZx5+5d3Lh5E6ZpUrsxPo7RsbGubYvc8eXPRBxFWFpawv79+x/f+u1Woms/l8dYIvjDO/8GNb9Kj8dW66+e+BUxlTD5mVyNdM+ePThz5kzfQc924EqmtVoNBKD2m3/uoxyQpe6jOEaMrc5AeyaxHZlMBrbjwHVdxGEIuQMnbWrvXoRhiC+vXEGhUMC+/fvZR0sie+R5Xse5LY8TT9QZiELKNlUVRSyQeqOBC59/jl27d+P48eMd38e/kCAMsW2CrgOxiMP3PAwNDWFyfByZbBZWs4nllRWsrKzg5o0buHbtGtKplKgXjoyMbKYkE3VuziJeW1nB2Pj4jkmIvdBvu+TjJgEBvcsElXIZ586fh6breP+DD5DJZDYj78cAVdMQRBHqjQb2TE211g8fwXDxFq5Oqb6Ibdi9kMlkBJEwn81SxbA26KaJs2+8gQ8//BCfX7yI1159dctx7QGJ8Csj9DzErFafLBFcuXIFa2trePvttzsOJ1NYvTeKoo7p9xa0EfGSiKMIsiRh165dOHH8OCRJwnq5jJWVFSwvL+PBgwctQcX4+Dhy+fwmhyZhO1RVRbVahee6mHiM8sP9ol+G/HZYbC7ij+//sfhvCcCp4dM4Nfx8y+tIHOPKlSu4d/8+njt6FCdOngRhaf3HAV4K4mn1fC7XslGLuvx2338CMntmQIiwHXy/2s4+66wEHvs+LMfZMquA48DBg6jVarj8xRfI5XIYKpVEdkACI7k/JoepG56YM0AIHVec/Dp838f58+fp6NCXX+7qrSqKAiTTvtuBHydxM+M4RuD7ACFiAE4mm8WhbBaHDh1CFIZYX1/H0vIylpeWcP/ePUiyjNHRUZE14PUtRVEQhiEq1SrObCOssxP0M4GP43F6+ImD0mO2/fjhwgIufv45ikNDdNgQq+c/zodVVVUEYQjPdVFoX0DJz5Gk/jx/aXPipaIodCFLHWYMdAGfYBlGEWzX7UpMKhSLeOXll/HpZ5/hVj6P5557jnYwMOKi57p9fd4APUCofC+P8mVZxszMDKanp3HmxRe7knd5VBVG0c4cyraAoqWdkB1zbGwMY2NjOHXqlAgqlpeXcf36dVy9cgWpdFrYjdHRUXEusqKgvLEBTdcfe+tYP2nlx1Ve/IMb/wQh2dzQVUnDLxz8hZbPD8NQDBs6c+aMGDbE+TxfqRTIIUnQVBU2U/vU27hGnCMhpKmxvX1Nbvh8lPVOMqDZTAaB78NxHGRYR1InvPDCC2g0m/jkk0/w/gcfIGWaIosVxzECz3tkXls/eGLOQOT7wlOPowgxIfj0s88Q+D7e/t73eqZDkmWCHSHhFLiuCzDyUafPkhUFYyzdd/rUKTQtC8vLy1heWcE1tsAz2azw/CuVCmJCenYRPAr6dQT6JfvtBO1jUAmh4i1Xr13D1J49ePnll1ui7K7dA48AVVHobHhJQqYXqagtY9BJ1pMjZm2skiz3lQ1IQpZlpNNpNBoNymPoUYuc3L0bx44fx42bN5HP5yk7WpYhKwq8nQjcDNARke9DURTqnIUh6o0GvvziCxw6eBAHDx7s+j4R1XWZcNcTiTquy7qPOpFaCSFIZzI4cOAADhw4gCiKsL6+juXlZawsL2N2ZgaSomBkZAQT4+MYGhpCuVzGyPDwY5eb7au82MXh3wm+XP8S55fPt/zsgz3vYyw1Io7rOg7OnT+PZrOJN8+ebR3CxDhgjwuqqsKyrJ6j65M6Lbw2380acClg4UjssBRqsnkVURTB9byumimSLOP1117Dj3/8Y5w/dw7vvvuuCHgVRUHTspDejmD5FfDEnIEgsaBjQvDl5ctYX1/HO++8g8w2pA8e2YWPSsaSqGxlTAjSiQXNvcW4faOQJGSzWRw+fBiHDx9GGIZYW1vD8vIyFhcXcf/ePVHuWFxcxO7dux/blKm+PFc+dpMZK+4kJWtZyX9zacuAte8l2/r4kuSkLJ5OJXGML7/8EvdnZkR6r93YPFZqiyTBsW3IO2Frk01Za4mTEvmvWPdJLHWWGu0H2UwGzWaTzq33/Z5Stseeew71Wg0XPvsMb7z5JhRFgSLLA0nix4AoCIS2QLPRwPlz51AqlXDq9Ome75OlzSFeQRDsXBSMvY/EMSRZhp4MIpIbRWJdKIoiAga88AKazSZ1DFhQEYchwjiGIstYXl7G6MjIYykz9uvmkjgWUa6wG/x6uKPN/p20G77vs3R7jD+4+k+hQhWfmdNy+Mt7/pKwp/VaDefOnQMB8N6779Jum5aTeLzpb03TYDkOhopF8V31QnsQI/6bfY8RC1Y7tTP2AxFIMEnyXgJqumHgzTffxE9+8hNcuHgRJ48fByGEOgONBsb6UHJ9VDy5zAAjD+qGgaZlYXpmBi+cOoWR4eFt36szBvGjMrNDNnJYlmUYui4WcC8iSBKqqmJychKTk5MAIag1GvjRD38ITdNw/do1XLt2DblcDhMTE5gYH8fw8HDf43fbwTd3QojY9CO+sbGfhWGIpmWJFrbtwLXUXdeF1SPt5Lku/CCA4zj4fHoa5XIZJ0+exN6pKSoHyz6PG9nHLbRr2zYymcwjkRJblNQkiY5GjmMonJTzCFAUBaZpwmHs4J669pKEl19+GT/60Y9w6+ZNnDh5EoqiwA8ChL4P9XENsHrGwAl3PCC4c/cuCIDX33ijLyEpVVXB5188Skugx5xnk81CEDaDbx7bRLjtQcW169dx584dNJtNfPzxx1AUBWNjY5hgeijbttp1ASe9CbuRsBfJn1m2jSAM6Qa/jT1N2g2erj63fB7VRgVFFMXr/sa+v47IjdBEE5VKBdeuXUMqlcLLL70E3TDguq4Y1CTj8bZDA3Tzdh0H2T17qBrhDtdakvTLNSAk1qnwqEgzNVPP91uGKXVCLp/Hi2fO4PMLF7BrYgJmOg1Jkr52rYEn5wwwwoih67h+7Roy6TT290jxJWEYBmS2oHec7gONjAmoUyHqR/yXfBPp9wGVJNoiGUU4deoUikNDaDabWFlexvz8PO7evQtVVTHGepPHx8c7trvEzEOPwhARS2MGjDW9HUlFDBrpEOGLmjrrSpCwWTtVFYVGIYnsQTJ1RkAzODenp+F6Hk6fPo3h4WFqEDsgiiIquKMokGVZZH6UR0wDNhoNZLNZRNx528n33BapcclVPnzoUcspmUwGruPAdRzEuVxPx0JRVZw4cQKfX7yIarVKa8KE0I6EgTPwSIjCkDp1igLLsrCwsIBTp09vO+2UQ9d1yI4jZpHsBIQQMYdAb5+F8AjPk6qq8D0PBWb8AaC8vo7llRVcuXIFMSHI5XKiQ2FkZKTjGoiiiP5J2I8gCPoqowquEVPWRAfbwQduqeyzeWnVCWz88cyfIEQEif1vV3oX3ph4A7ZlY219HXOzsxgqlXDy5ElaJutw33mAI8syFG432N+Psk7r9ToIu3dhEOzMGeB2AwD4zAieqv8KzoCmaTBME57rwrKsjh1JSUzt2YPpu3dxh/FgAMD9mrOKT8wZ4LUQq9nE2tratim+JGRZFgQz1/O2LSu0w/N9xHFMvVvSppXdll7uB8srK9A0DXkmNrNnzx7s2bMHhBDUajUsLy1heWUFl7/4AnEco5DPY2R0FCMjI8jl88Jrb0fMNcOx2WbC05zJv8MwhCzL0DWtK1s1CZ7uS6XTm8pYHbCyvIxbN28CkoR33noL2VxOzF/n6UUeZfBzjeK4dS43g8pq5nyR8witKwhBvVbDXtZuFYYh9H6cgWR6E9hM9THnU9U0KhPKOgt2CtMwqLBJGMLtQSTkGB4dRS6fx8zMDEqlEiUfDVQIHxkBe3YVWcb9mRmkUilM7oCFzwMJ9xGcAZ8pDkpMOp2w77HbcLDtQOIYy8vLVKRMlpE2TZSOHsWRo0cRBAFWV1exwuTVp6enoSiKsBvDpRI0Xd8sEbYfm/0tsSBAZhk8iW24yZ9FcYxsJrPtpsnXUCqVQjabxb+58f/FfDDX8pr/ywv/E4YKRTyYfYDZ2Vns37cPp06dEqQ7wm1H0oYAoqOgvaeA27ykk6AyAnk31Ot1SKCOexiG/Tlr7B6222HOLyGgG3q/2eNOyKRS8FwXjuehtytAz+PQ4cO4cOECNjY2MDo29rUPOXsizgAhBHEYQgJw6/ZtFPJ5jI6MwLXtvhWodF2H43nwduAMENASAS8v6Kzu2E4IEez05EPU44FaXl7G2Pg4HVDDHni+CAuFArLZLPYdOADHtrG6uor1chlz8/OYvncPmqqiVCpheHgYwyMjSKdSkNn0PnDpyz4yAzzt9riwurKCTz/7DKlUCq+/9hry23iyhJUrgiBAyBZ5zKIUAiDs4CQozKlTmXJYMsp2XBdBGKJQKEBiDk87M7jl87dZpGEYIgZLE4M5V+z72klURwiBbhgImTxxL2cgiiKEQYCDBw7g888/x/raGsYnJvpuFx1gKzhPqNZoYHVlBcdPnKCbyDapV4Cuf0PXRZmgn3qyeC8h8FhG0dC0rlyeLZ0tPexGeWMDvu9jbGxMpPU5NE2j7cyjozh67BiqlQrW1tZQLpdxjU3LzGWzGC6VUBoZQWloSKwjhbVq9/tUi372HWDJWsYf3fvjlp+9Mf4GTpdO4/OLF7GwsCCUY/tRMPV9H2EUUQ2JOKZ9/Yk/SSdBAo3SVRZUtDsHtVpNTA4MggBht/58nhHFVq4HB295VBOO06MQpSXGfeLEd5/NT+gG3/dRLBYxPDyMe/fuYWRk5Ol0BvhmvL6+jo2NDZx9802a9g+CbRc1/wp0XYcC9JXuS5LoPM8TXQRSDwYp0MPjTyxwz/OwUS7jpVdeoQ9JFIlZBwErHySVFcfGxzE+MQFFltFsNlFeX8fq2hpu3rwJSZI2hyuNj9NMA9m+l7VliNFjwOzsLC5fvozhkRGcOH68v7kAzHMnkgQ1eb7s/OMoEk6CKIXEMSLfF2UHnvFRFQWVSgWEECpkxCaRoc05I8m/eyCOIto9AAjDQTjZkDltO1ncKdOEbdtdyyUc/DkYHR3FyPAw7t+/j7GxsUFm4CuAG+e7d+6gUChg79QUXM+D06OHW4DVfXn62ekjs8Ofi5gR6FpKBD2QTLV3e7KWV1ag6zqGSyVYtg2fkaoD5twkjX86k8G+TAYHDh4EiWNsbGygXC5TXYO5OeiahjFmN8bGx6H3yBq0XJ84zZ1Zj39y458gJJscA1VS8StH/xY++vhjbGxs4PmTJzExMdHXcfk8kvYSCOdL8bkvIY/SeRYhDAFm/5OOQa1WQ7FQgMoGF7XsKUkHoI0k3gkhC1p5iUCWZcHF4B0G/YJPIYx8H57ndXUGIuYcEULw/IkT+MnPfoalpSUU24mXjxlPxBkIwxCEEGEcJycmYDsOHPan56JmkbKh611rUBz8a0p+YbzmZ+ywX7ObY7CyvIyYbVqWZYmINmkw5EQLY9IY5fN57Nq1CwAl6y2vrGB1ZQX3793DrVu3KBN5bAyjrIe5mz6/aA/6ipkBQghuXL+O23fu4MCBAzh48GBrdqT3m+k5oM1xYhG4LMstDxtf0BFb1NxR8H0fPqijyO+XyzaAIAyhsQFTO/HLxYJO1CCTC5lzRvo9pmEYmx5+l66CMGHQ06kUnn/+efzso4+wuLT0yGnGAWggUSmXsbGxgbfefhupVAqB7wsCXNdoK3HPDcOAywxyN2dAbBbsfUEQiAwc31iSU+16Ibl6kt/88tISxsbH4fs+Gs0m3fTang0+zZVvdJwfNTQ0hEOHDoEQgkqlghXWoXDx0iUQQmWSx1lr9FCx2DHyT2bTduIM3KjexMdLH7f87L/c81/i7oU78D0Pb549C90w+s+6dPl8PneiHZwjEYYhzSbEMcIoEjLTtXode9jgqZgQBEFA5wI8Qoo/jCKaUeSOSoKXxY/Xj1PAf28aBjz27HUr0XoJByc3MoJdExOYnZ3FoUOHdnTuO8UTyww0Gw00m01BnEkxckUQhn0tap3V/vgG0m6Qk20xHBF7YJIyphLYlKgdnL/E0kWB72NhcRFpVpsSxDRCp6FpfPPvg3himCb27duHffv2IWae/+LiIpaXlzH74IHIGkwwNcRCQgddqA9+BVZuHEW4ePEi5hcWcOr553H4yBE06vWuC7XDTRH3pp8Fx71kMfaXEOoYsEVeq9eRzeXgs1IQZ+Fmczkxu6BfiFRf4ntoP08RIcmyUCrsdM78O9bZhDTP8zo6A7wmrWsaFFlGsVDAUKmE5eXllnTwAP2DR4orKysoFAoYGx2l6ddUChab+a4xpb8t7038m8ufd+INJB3EJIJkiSDBMdqxW8ec4GaziY1KBROTk/CZ7SCEiinpui4c4e3S95K0ObH1+IkT8FwXi8vLWFlawvT0NG7cuAFd14XgUTKoaG+n6+v0QfDP7/3zlp9l1SwmFsZADOD9Dz6AruuwbLvv8ttON2heCuHrjndUhVGEZrOJ0PeFYqhlWcKJ4wFkv4iZowFChBPGeWVIOFGkw7+7XaNpmqg3Gi3OZRIiiCAEGcOARAgOHDyIpfPn6dTNrxFPLDOwsbEBWVEwzFoJJUmiQx22WdQcMttMvCBoMcjdFjNACUAElESW9FrlPj38kDkAvJwBANVqFUOsXpfNZqG5LlRdRzaT6X8jbb82Wcbw8DCKxSJOnjyJpmVhZXkZy8vLuHPnDm7cuCF00McnJoSmwaMy5H3PwyeffIJqpYLXX3sNu/fsAbDD8sNXjHZ5qlDVNJA4RrVSwe7du6FpGnUQfR+u51FuBKhB5xHTdte9xbtH93slJmF24mq0RZfcSWnPY/lBIOYgcMMbE4LhUgn37t2D/wjktQEgyGAbGxstOv6GacJ1XURxDM/zOrcMJr5Pk0Wt7VnFbmUnAjquGIS0KMD1+8TzkqHPMhgxIVhfWwMAFItFej4sik2lUpuByiOsZ8M0sW/vXuydmkIcx0LwaHllBfPz8wCAUqmEcaaEmCQl94M70l3MWrMtP3vRfxEjQyNCjZQ/3/3aja9a3pRlGbquQycEa2trCOIYoyMjgiwZRxFsVoaR2XRaXVW3dQw4yV1t4zPJktSxdEsI6RhMJJ1GjZVDojDcHImeeL/L1C0NTROfmUqnYRgG1lZXH+0G9YknRiAsb2xgpFRq6Q02DAOO6yKOY1iWhUwm05Opq+k6ZNeF63nI5XLb1pBFza8969BjIRBC4AcBnZPdpp9N4hh2s4njx46hkM9veqjMsxPpI0mClDivfhcef106lcL+/fuxf/9+RHGMjTYddDCi4uTEBHbv3o38No5UElaziY/PnUPg+3jnnXcwlNB54Oe7E3LRoxiwZEujJElosgmBY+PjSKVSouvDY0InBHTD9dmwGk3Xu3r9vMbIywTiPLGNJ59QHePnGJPNzhPTMFAHfaaSHj7vcSa8lMWzN4RgqFRCdPcuFhcXse8xylY/K+DdOb7vUxEfBgk04rJsG47jdB5HnvieeVYxYNPttmOJh6ydkWezxOcyp7Hr+5hz4ntey+YhAWhaFkzTxMT4uGD1O66LMAxbI/e2KHQnkCWJEpOHh3Hy5Ek4rkvtxtIS7rKgQtd1jIyMYGpqCmNjYz1JbW7k4VP5QsvPimQI3598H6++8ppYf486Tn3HxLxk9pd9Vnl9HblsVpSa+b3mZxJHEbwoggfaAm1oGjRGKm1H1CGjyI/Z9ZTYc9JyLW2BhanrsBm3LOkMuK4rgoj2bGNpaAhr6+vb3ZGvhCeWGahWqzh54kTrLyQJmUwGzUYDfhBAdt1Wtaa2B8XQdcjYJGr1epAitlFL7H0tH4utjgaPMry2haypqhg+sbq6CkiSmELH2+Z4OrPF45YkoWAlnII2x6WfFiWFzUcYHR3F888/D8uyMPvgAdbX13GHjX1OpdMYHxsTacFuhMxatYpr165B13W8//77LbK/LZmSfhY1f32vxUwICFsYW9jO0mZ/c7lcBmGRNEAXIx9VzScYBkGAkEVZvu/D932o7LtJZgu4A9epZ1mSZdEe1o729F87NE2DysheXGI0jmPYjiP0DHTD2GxZimNkmIc/NzeHs2+91f0+DdARhBAsLy9DliSU2sTJdNMU0bdlWaKc1Amcw8OdfDEorQv8DiUCgQ4ZJD8IqGBXIniQJQmarovy4dVGg+oGMCdSzE1IvCdpO/j1i98BYi21n5NwYNuuI2Wa2L9vH/bv24cojrG6soKHDx+ivLHx/2fvP2MkS9PzUPA5/pzwkZHeVGZ512W6u7qq2kyboXhpJPJqhoIA7XAlcFcr4gqgsBhKlFb6QVCC5gpDCJTu1RUhgMASK1EC7/IOr4bLoTQz5HRzZtp3eZPlTVZV2sjwcfw5++MzcSLihMnq6unq7nwbjarKjIhj4nzv95rnfR68/957EGjwwFoKnUnF9cp1WIKJKIfn35j+JZw8cTrWdw0TvIQ9MujIxbQCLvZn5zVH/r6xscGrzQCd71dVMrppGIR1lSVsvg+TUgQrqkqy8cgzE51AitpQNM8dyUTUdF1Hs4PrgsmbM4yRSOWt2fXmR0bw6OFD1Gq1ocbHH8c+lWDg0aNHCIOgi8efZW/JZBL1RoMzVekRpxo1NVLu8zyvL/kQW9BsiqCXua4Lm24uPDMWBOhU9CJaySgWi9A0rQ2ExBCsbozuPYCuhzg6xhgtyzMq4EGPXTKZxMzMDKanp5FMJFAqlTjd6d27dyGKIkYjkszR0c2zZ89iZGQEL774IpQYzEXsOfcwHjp0RveRqJ3/G/2j62KxiHQm03b/JFpaC3wfqqaRBWoYhD3NtvkC9zyP9F01DaqikKwO3QsaIMHYMNZrYauaBi9S7ms2myQzAJnFbgOO0fcWCgUs3W+fzd624SwMQ6ytrmKko6IIkOcpkUi0GDnrdaTTaUIyFfNZmqahaVmE5XLARIFDBc061wg5MPmWgzCEY9uwbLt9RFCWoek61EiA6tNWx4GIKmtURCmul0wO1RHM0uNHM1CBnosYqVrErV9JFDEyMgLdMLBfljkd8uraGhYXF3H58mUYhtEmrpTTcm2fcSR9BF994Svd94Rd/5BJRLQCwq8lUilE5Ge8Zx9jtuOgUq1i9549reuke4LneQDzC5qGMAhIdZEmew6t4CiyDEXTIAkCn0CK21cGgUejlMadI4Es62f4KDblFgQBdOrbOKiZnkM+n0cI4PatWzhGSYietH0qwcDS0hI0Ve1WowMFlqkqjCCAaZpoNpsQRRFKjDNXKDhLEAQ0mLRsD3NcF73GglgrwDTNNiVEWZZJEBCXEQDY3NxEoVBo+50syzw42YrFLfRQEHgG7dNNhr649RqAz8pLVFxpfHwcANBoNIgkM1NPu3gRiUSCB0Njo6NkrDNmpIfrM3RkPmH7CwGgW8shGgA8RtugWCy2RfcAHe2hs8jRb1CRZSiyTGaVKWd6EBIhKsuyYNt2TzEqxsg4KCRgOgedZUxd08iIoWWhqSh8lCtJ6UOj9y6g5cOxsTFcuXKFcJRvkSzri24eVRLdu2NH7O8FQUAqmUStVoNPW429ENuapkEC0BwgHMVH/DpaBMwCz+NjgTwjpp+vaVpsdaJaLsPzPF75AuKrisNaW1ZON392LmHrF93nHtlwjUSCiytFsQara2s8qUin0/iS/woWxWvYO7oX//DU17tPJmyNQgv03yE5ya5KKDsH9r4w6muErWuIlDY3IYRhm+9g/CWMt4ADAUWRqBqqKjxaUfI8jyQXdCTcp5tznO8XBQFDDQizNjFaG7skSVAp3q1O9VcCujdFge0A9RsgviaTTuPm5y0YKJVKmM3nYzXhmcPVdR1hEMCybTTrdSRTqTaHHoI8SEYiAdt10Ww0egYDIVrlt86gwrFtNE2Tz6ILIJEbi9B6WRCGKBaLOHDgQNvP2efzXvVjgvo6F03bp7ANBmiLpKMVjxAkU9pFldwYCvvK5cvYLJUQBAFW19bw47ffxtTkJCanpghGgx+CLFxR6MPISK9NRAdz12NeM0Ci+2q1ir1797b9nJX5e1GsipIEXZKgaRqv7ri09Oa4Lqki6Xp3RjkkeJS9RhAETlDCSERMy4JCR0aTiQR35EEQgB2NPQsj+TzCkACd5ufnt3h3vthWqVQQ+H5PAiwG4EqlUqjV6/A8D416HYkO7FEAqiQny3Btm0hS99ApcGllSekAqoa0JWRHKgGSKELXdUJ53GcNbJZKEEQR+Xy+7eeDqopDWcemL4liLFlNiBZWp5PYTBBFjI2PY2xsDEcFAbV6HXfv3MGNGzewz9uLfcI+JCoJXL14DVN0fJG1RAWgLdvnQUkPUp9oMP5xgYQbGxtQNa1LJI5JzPsx1ePoVFNAicQcChJnmAHWFm7z5UNWFZm/6EwmdF2HZduoVavI0JaWTrEi0e+DBWyiKCKXz5PW9CdknxqAUBwi8tMNg/Ns16kkpSzLPBAAwGVlTdNslcc6zKcoZEEQ+Jif67poNputzUUUYSgKcRJDbGbVSoVE950ZLN20AjoL+7jiFm3AmF6ZOdC1kfUi0giDAHfv3MEP6m/hjHoOuqfj70z/bYRWiAsXL+L8hQtIUUnmyYkJZHO5NvBc1DqRskEkC47LoLdimxQv0NkTZhmW7/t9mePY2J+qqqgDvG/reh68eh0a/d2WMi+07nsn70JAMznbtjFaKLQyD5oJsfewYEAUxb6gs23rbTyziksi0HouRdZqpNijkApeAa1NUKDtR9d1ScDQIxjgY6mREViTVp3YumTPVD/wXdQ2i0Xks9muZ1B5zKpi1LjfANqes66KHgtq0aNXz94PoNlo4M6dO0il07BdF0ePHiX6K8vLuHP7NiTWiqRjzwF73tHuO6JVC550RP/8GEkEQCqKI4VC177CfHJnVbHTREni0xyO48ADSYaalgXJcaBrGg/SukCCPSyaJEXbjbKiwLEs+PSajR7PH2s7CnTq45O0Ty0Y6IvIDFt0vslEAvVaDS6dIdUNg4wG0puo0lKcS5X74qoD0eje9zw0TbNN8VDXdfJlRBbIICtubkIQxVhWKEWWEYThUBSp/HqBtsUbhCHZTOj/vR65Ycb/LNPE22+/jeXGMj4UziAIA1SFKn5o/RDfeOVfEknmtTWsUEDRrVu3IEkS8vk8xsbHMT831yauFDefH61QsJ8LHb8bpkpSLBahG0ZXCZ0FcoxgRBmwMMKQcJ/rug5NVTkpiUUjf1XTODXtIAs7AjL2+c1mkzs8prcQOeH2NkrkOtj7t21rNoiONeqcZVkmAUG9zic+oi0yAEgmEmg2Gn1bBaynK4kiLMuCaVncR0iShASlvd0KVexGsdg2DcFMfpyqYsfG3wakjgsE6GvJr8O2f8cZYyOdnJjAvn378L0//3MUCgVCgHP0KGr1Op9sunjxIi5cuIBEIoGRQgGz09OYmJhoa0N2BSdR3xYJmqOvH+Y++L6PzVIJByM4DGYSreoMI9zEPoslFCodIfaDAA3ThEzVLhnXycB13LH2Gb2yY9vcr3RVHSLGfIfU0Wr4JOxTCwaim0XUohE+QCKiVCaDOpV/bNRq0BIJvnkDGNgq8BgtMB0lYqZpGgxd5w/rVm50aXMTuUwmFlzCkMo9I/zogggjKlmRTLIN3Naj38Y/A7032kq5jLffeQcAMP3MDHCh9bsHzYf8fKempzE1PQ2EIarVKh48eICVtTUsXrmCq1euIJNO88i/MDLSnpnHVSOi5xs5/2iAEHfOxWIRIyMjsc+GLEnwaIQ/qIzKNMgB8j3rApG8tiwLfkjmeR0a7TMu917WGSCy0Vc/DCFS8pOua4kGTJEWw7Y9vrH+6bAZpKKqSKZSaDQacB0HNd9HMpnk1UHdMHirwLKsLn4CRoXruS4aFBwKkJKtYRjtjKAxAWOcWZaFeqOBQ3QCKWqsv+31qCp2Jg1dQF30qOL1OK+23n6nhSEuU3nlnTt34tixY6hUq+2vEQSk02mk02kuyby+toalpSWsr63hwdISl2RmFcc2xdZOn8aClI6fde4Vcb6jXC7D932MdlQUgeGrisy4do2mccyYTWnTPd9HvdGAKss9GWFbp94dLDiOA9OyuHqs2NHG6fy+gsgzx679k7KfeDAQzRJ7Oce4m5iifT/LsmCbJnzfJ0AtURzYKmiaJur1OpKJBGRRhKIoSBhGFzNgFHgzyNaLRUxQoF6nRceE2h7ccLDOwJaN3c+YB3x1ZQXvv/8+UqkUXnzpJVwsXxz8eYKATDaLnZqG6ZkZiLRnuLK8jPv37nFJ5onxcUxQSeZBiwIAHyGKlgWFjr6i7/vY3NzEocOHYz9jKxE+U7eLRt0KJSlio19BGKJpWWRaRNeHKsO5rkvGB+l9z2UyWKdiKG3XG6l+RRc0+/t2ZeDxTOzDPsmQ9NHfK7KMZCqFZqMBz/NQq9WQTCbJbHmkVVCr17uCAZcGAVzhVBCQoEFAF+B3yNZPcXMTCMM28GDUZEniExFSR0bNfckTfnY6fUfg+/jozBk8WFrCM0eOYO+ePUMFYCypMJJJ7KPnuLa6itXVVZw/dw7ngK6kovtk4o/TN1gHSSIkUUQ2plLLqop+GA6sKoZBQCrJYYtgShRFGBQLwkZGHcaUGwH9dVrU14chATUzrhtFUZBKpWCaJscmxJ5P1L9/wsnEp9cmYH3mIY2xc0myjGa9DtdxUPd9JFOpnq2CIAxRq9XQaDTAJgmSyWTfrHKYRW3ZNur1Og7FlKSA9h7VoJHHOOvVv4tzAr1K8Hfu3MG5c+cwOTmJF154oa9qV6zRTUvRNMxks5iZmQHCEOVymU8onDlzBgCQTqcxSQODkZGRoTLguMBrc3MTvu9jbHQ0tnIkSxIExARZXZdFGN8CoKuPKwgC6fGyaJ+WAOv1eovgqP0N/D7Ztg3TsgCQvjXLchgamLWFOs+K66GLIpFOxnYw8DgWRHrcvawT8BqC3PcUDQgcihHQDAOGYfRsFbieh2KpBMdxSGWJthL7YVU6A5E42ywWYdBjx5ksy7DoVExn+Xiollbnv/s8Z3G+g7GRlsplnIywkQ5rDJQIANlsFrlcDvv272+TZGZJhSRJGBsb41UD3TCGC6o6fUdIALn5kZGeeC9ZkuC5LvwBVUWXEplJktSFTZFo4qn6PizLguf7nCgqNpmIVGsajQafaGC4BNd1+T4RvTbeXqSvB1pB8OeuMsBKYYNexy4+WqZVFQUSbRt4vo9arYZEItHVKnDprDEjDUomEm18/j1tiMh7s1gEwhAj0ciWZrlBpJ/o0Shzq8FAXEtAFFpzr1HrqjSEIS5dvowb169j165dOHr0KHdgndce9Im3Y1nEBAG5fB65fB4HDhyAY9tYXV3Fo0ePcPv2bVxbXISiqhinSOTx8XFoPYAxcba2ugpN05DJZlsMgWhl2aIoQpAkgI799CKVYcGCiPgZYXYvGCCo2WzCoehwxfOga1qrLEeR0ZZl8fFURVHIxkDvjSRJCKPqaB3PEHvWJVlGSFUzP2kw0OfRWGWlb3Utcu/Zd0d+LCCZShHGUtOERSeIOlsFGuWLYIyjkigin8sNNQY6jGBNcXOzzW9woB1a2BMRJBh5LNtCm6CzfVWv1/HO22/DoWykIz2qF30PH+EYaKvQKApmZmbakopHKytYWV7GWZpUZHM57jdGOluRfcz3faytrRG8AO2td+K/WFVx0L7jdgBG40yWJKSSSTLpZpocnBxNJtjexVuT9FySFATPjhHSagVAA7nICDn3G5IEiV5nLNfFE7KfeDAgUga9tbU1UrKJm/9GZOOK2RglSUI6nUaj2YRPI332mmazSehsaZk4CEOkk8nW7PcA41lbn9eWy2WCNzCMFiAmEhEDpDzpeh5RzBqijB61ftiArp9HnB0TG3rw4EFsea9zfmOYrKHfZIWqaZibm8PM7CzCkBCprNKqwb179wCAiytNTEyQUao+n7e8vIyJiOwpx0MAbRuvLwgIPA/oFQzQnl8/YA4zSRSRSibRoJLELh0pSiQSkCSJtxSYbCkrF0ZNliTyvhgWxqiEtSRJKBaLkBUFU1NTfc9r27qtUCjA8TxsFouYnZnp+1qeRHR8/4auQ5IkNCmw0HVdAs4SBFSqVei2DS8IENKZ9IRhDL9+ByQSbI0cPHiwzW9E38HZM2mlaasjhnEVtV7TAlHw8WaxiHfeeQeqpuG1119vIyfb6vEBoO82TpOKbD6PA/v3w3Yc0k5YWcGdO3ewuLgIRVGI9gr9v19SsbGxAT8IMDk52ToH6sNZYMCSgr4l+ZgWQT9jeKM6FUNqmiZUWiXwgwCWZXGBK1EQkIiMHQOtMXS26XfeMz8SDABAuVTC8/v3Dzyvx7VPpU0wNzeHd27fRrlU6mIhZMaQl72WliiKSKdShFzGNCGAlLgapkmQxKkUdDrv621lxE8QIEhSz6mCMAxRrdWQSqX6bqaKogCWBZdmkx8XPNbz3fQcXNfFhx9+iHK5jFOnTmE6xll2nkM/IeBhkMb89/T6GA/6oUOHCOERFUi5cfMmrl69Ck3TWprr4+OErpdas9lEtVrF/riHPVIWFEURkKSeyn8sGg+AoR2pIBCRLFmWCedESGRQQatYAQia16ABQqexagADjEYdMhc7oe2D9fV1zM7OxovpbFtfUxQFudHRvuptDDcQhiFCSunaaay62DRNEjiKInn+6nXMTE+TqpFh8Ox2WKW7OMxC1JqmyZU3B/kOJr27lWCg15RWz2CA/vloeRkfffQRRvL5WDbSrVgQSU4GGn2tpqqYm5vDXFRciQYHDx48AECSCsaG2JlUrKyswNB1pGJI7FhgIIoiqTQEAXzfj13HTOtEooyMw1i0SuBQkGGT7keMw4QRUHXeE1atCMOwVemMVhRZlUKSCFumZWHnJ6hp8qkEA9PT07BcF+vr6z2DAYQhZ23rZ7quQ1FV1Gs1BDSy2yyVUCgUYBgGrFKJIzeHtbh+NnuoAhCE/kgMGjhqkiRBEgSEggDPdbe0wGLdBKs8dG7oIRlxu3jhAjzP61ve20pAMuw4YC+npuk65hcWML+wgMD3OU3y8soKlu7fhyAQ6VW2wDc3NwGAsyf2MoniBoJo1hddQFSZkvHPD2sCfX0qmUSlUkGz2UQQhpBlGdlMpu8YIjsOKzFGX9UZ3Rc3N/H6c88NfV7b1jJJkjA9PY3lu3f7j+0O0VeVJAnpVIqQzFByKtO2UavVMDs9zfkp4iqXPY22fzrXBMv+y+UyAAKi62cMz/Jx+AbajG6CHSeFMAxx//593Lp1C3Nzc3j+uee2JPEba+w4w2ymMd+TIIoYKRQwQpMK27I4vfrNW7ewuLhIJJknJ3lSsbK62lZRjLMox0cQhpBiqjhupKI4rDEgvEH5aUqlEp9kSiYSSKVSPVuVIq1YBL4P13EgR3AkfqTFJUkS1h89gqwon79gQFVVZPJ5rFMZzzhjDn0o9D19ALPZLCHtCENUajXYTFFOkh77IW+b+6d9qFq9PpTqnKIo8CmYbUvRdtw19wBcbm5u4szZs9BixIa6PqKzTbBVzEDsh8aXRqNgF1GSUBgdRWF0FIefeQbNZhNrdDb52rVruHLlChhZ0PrGBsbHxnr27KLsftFzYAGCS4OBYQlg+EeAOAPTsiBQSVTP86BSmuF+xtoRvARJ70lIS70Aie6rlC/jk1zQn2eTJAkzMzO4ceUKNksljMckEiHQeiaH8B2+53HWuhAEHFyt14l6HLaWRAAgm2CkNRQ9g3q9zsvF/UyWZdImoACyYfElva42ToPD931cu3YNjx49wv59+3D48OEnglYf2m/EtH/Zz6PWK6lYoUkFeUuIfC6HSrlM8EY9ji1JEkRGL82MPisB5SEJscUAkB7fpJMCrKqjDgn4Y8B31/ehR9o2zJcwMPr6+jqmZmY+UQrzTyUYkCQJU1NTeLi0FPuw89s3BJiPiZIAQCqdhiiKKFUqqNdqnM44lUwONV8aNUEQ2krR7AFjo0bDKEcpigLLcbYMBorr+wHd5b4HDx7ggw8/RDaTwcmTJ/sGAuT9wwUDUfzDwGpCj++n30JIJBJY2LkTCzt3wqd88+9QLoT33n0XgiiiUChgkokrpdMtzACTCmZCTh34gq30/Jh5nkcIZSIqYul0GgIAkxJUhWGIBEU7d5pEy3seK/dF5IzZvZAkCetra9A0DTt6cOtvW38T6XPhhSFWV1big4FI0D7IGo0GR3TPTE1hbX0dVSqQxkXSHqOd0yuBqdVqSPWgUo6aIBCK3IDS4g6LWejFRdIFaHVdvPfee1hbX8fBgwdjiXoe14auKPb4OfMbce/vTCrMZhMXLl7EwwcP8OjRIywtLUHXdT662JlUMMpkHgywYwgCHKpoK22B6S+gYkc2nSwIgwCariOTyRC8gOeh2WxCN4yeyYksyxBsu81XIAIqZIy7xWIRL7/22lDn9bj2qQQDsixjZmYGd65dQ7FY7GoVDDs+4dDpAfaZqVQKqizDdhyuDc3UqUqlEjRdJ6CPfpEf6zcCsQ9lrVYDgKGDAQHgJCLDTBX0Y2fkwUAY4vr167h8+TImp6awf9++nrOube/vajH0cJgRvMDAAKoH5/iwxrkDggCvv/IKZFnmWIOrV6/i0qVLSCQSvCw4OjZGFrXvI/D9tu/SoaBRxgYY9mkzsfFDhwLGEBIOCEPTCFgp4tSazSbhuafiQp1ZDyOLCYOA8J/TlgJf0PR7X11dxcKuXY/PO79tkGUZhbExLK+s4JkjR9rJaCJ/H5SV1al2AQAkkkmoioK0ZSFE6zliztylrHNqD9GatuMHQc+KZq1a7SumFjVFlonc7haCgZ5XGzkXxkbaaDRw7NixLjr1j2vDBgP9vp9hvYmRSMB1XYyOjeGlF19EsVjkWIN7d+92JRUMhMiqPtFzZrwkmqoOTEKDIGhTtvV9HxAEPikQhmQMnmHGTNMEwniRPEVR2rRzGJ9EtKJYq9fhuO4nXlH81CoDo6Oj0BMJXF1cxOjYWBdXNdDqx8Q9NLbjwGw2AZAbyrjHNV2HRqVr/SCAkUgQIg+QEqBtWYRZStdjGb74JoB4kZ56rQZJknpySXeaTKmJXdcdbsSw3yISRQSeh3PnzuHe3bs4cOAAZmZnh8JWAHGVgXjjpb5BH9grE8HW8Amrq6vQdR1pqp++a/du7Nq9G77vY2N9ndOd3rl9G6IoIj8ygmwuh+mpKeQpPiIMQ+7EdVXloEZBFBH4fquCEIZcupRVF8Iw5NMhnc8bo7VtUB2LZqOBRDLZFRDIksS5BlRVbRsZkmQZpXIZqxsb+Cs/93ND35dt6zZJkrBv3z5cPXMGqysrHEEOdCQRLMPseH8Yhqg3GrwMm4oIoKVTKTRNE6ZpIplMIgD4GHS90YBoWTB0PRYMxtkR+1i1VsPOXhipDmMA5EGcGkOZQBhAyxE20pdffrkvgdPjWpSl8bGtB/Cz03zPw8b6Og4dPgxRkoi40vg4jhw5gmajgdXVVSyvrPCkwjAM5EZGMJLPY0fE/3uuy78/RVG47+jcd/wggE2BggDxk5IocvK7KKkYwxEIIEmraVncz0RNlmUyNh6pHkdBmJIk4erVq0in05/fYEAQBDxz9ChuX7mCtdVVztXdRaeJ7k3L8zweCKiq2tVHSWcysKi29djYGNEPCAKYNFJjZDMKVSdUFCU2i4x7IGq12lBVAWZtEf4wAUSfReC5Lt555x2sr6/jueefx/z8PKqUIvRJLmn+QA9a0D1wDFu15eVlTE5MdKNtJYmwHE5O4sjRo2jU61ihvAa3bt7E9evXkUwkMDkxgcLoKN+ko5k3aw+FLJqnvBNsfFSj/OMsm4vDBzA1wkazCT8IYNIKQfR8JUkCKF4BIM8x+yxZknDx0iXkczkcO3bsY9+vL7JJkoTZ2Vk8unMHly9dIsAxxAe2YszPmzQQEAQidxytLLFEwrIsNE0To4UCUmxiiZZyG5SgSKdU5syiT27cbL9j27Bte2jfIUkST0YeZ8Sw01ZXV/Hee+9xNlJJktBoNJ54MMBWz6BP7Ve16fV9dtra2hp838dkjM5DIpnEzl27sJMqtm5sbGBleRnLKyt4sLSEixcuEE6DyUlk0mlomgZF07g/Y4mhIIpwPQ+2bZN2b0hGViVZhqFpUGgZPzpCzK+DTikJgkCq1bZN8EiR75LvMZHvgYGgZUlCuVzGgwcP8It//a9/4hXFTyUYYL2b2dlZlJeXceniRYzHfKEAeFTLbjPjhQfiAwEAZEyMbmSNRoNw6UsS0rRiYNL5T8e24VgWZKpWqFCu6Nahuxd1tVpFJpMZ+loVVSUR/pC82L0WQbPZxNvvvIN6vY6XX34ZYxR1P/QIILorA8GANsFWMBaPa416HfV6nQCY+pggCEil09iTTmNuxw7UqlWUKxWUSiU8Wl7G7Tt3OBJ5mvYME4kEkYSljG4haAYnitBUlWR40WP0Ob5ER4jqjQY8qlLYFtwJLYIkoCWOJYki1jc2sLa2hp/92Z/dJhv6mMYTiSNH8NE772BpaQk75uZiN5fOYN6mfVwAXYEAs3Qmg1q9jlqzidFCgTt0Q9dh0faj7/toNpswm02oVAirE3TW2Sqo1WoIMVx7kZmqKDApKHaYjaCX77hz5w7OnDmDiQgbKSuLP9lQoFUZGOg7hmwF97PV1VUkk8mBWClJkjhfwc5qFVX6/8b6Oi5fvIgAhH9iYnISU5OTGB0dhUSDACeC+QrCEIosQ6NjyMx4VbvHNTE/YTsOLNOETNuKUYu+16X4BVmW8dGZM0in03juJzCB9KkEA6z8EYYhDh8+jB/98Id4sLSEmbm5+Nej9aA3mk0wpq5eyErGNlaqVLpoRmVZRjqVIlSSpkkchOvC9TyeVTI5UkEQ2hZ1GBIRn2hpcpBJosg1xV1aQu57b2JK75VKBW+//TYEUcTrr72GdDQYibQ1BpkodC7Q+Id32DbBx1/OZEZYEITeI6YxxsYGC4UCFhYW4HkeVldWUCwWUS6VcOHCBZy/cAHJZBIjIyMYKRSQzWahRCRKezmjfhkL4yhvmiZsxyEiRZRFDAAvTQNUGyEMIakqLl++jJFCAXv27Rv+xmxbrLFWW75QwPT0NK5cvoyZ6WnOCdDLWBIAkF5zL9yQYRg8WWmaZmvzFghjpa6qsCgttU+Bp7ZlQZQkLmXMFO3QEQwIwJbIfBRFgcUy0mGs49kNwxCXr1zB9WvXsGv3bhx55hm+SW8lidiKDdsm6EfsNlRlIAyxvLKCqQEjhZ0mSRISySRGCgXs278ftWoVq2trKG1uYplKMouShJF8HiOFAgojI9B0HaqiQKUkQ71GIsM+7IaapsGnEwuNZpNr7XQ+hx6ddhAEAZulEtZWV3Hq9GkYtA3+SdqnEgwAlK7X85DP5zE1PY3LV65gamoqfgSQOlkm6iAIAhIDbo6RSECmYMJ6o4F0ZBGGQcCZ5wxd5+Vj3/e5OpVIR91UVSUIdkEgpSLX3VJ0D5AI3/d9LmzRzzrlcldWV/H+e+8hnU7jpZde4oAT/np+i54gZuAnGN0vLS1hbHy8L/1np0mSROaFaT/VdRwkk0leGrQsC6XNTWwUi1ihbIgy7SlOTkxgYnKS6Ap0tgSGuIeKokCjzwmL8tkGxSSnfUqXDADrq6solct47dVXe/LRb9vwxvu8vo/Dhw/j+9//Pu7cuYNdu3d3v5hWFf2OaqLWZw0KAhEjajSbPPGIbuwhwElkGPbEoayVTZpgSLIMTVUhKwrHllRrNRKEbKEyxEdWo1TXfSw6heQHAT768EM8ePAAR48exe7du7uEc4AnXxlgK2qokeSPYcViEc1mE9PT01t6nyiKfAw5DAL4QYBcLoeJiQns833U6nVsbGygWCzi+rVrCMIQqVQKU7RdOTIy0hUQMFB3PxMEQlpWr9cR0JZ1wjDafBCbTgDIc37lyhXk8nnMzc1tfcT1MexTCwY0qhPtRBb1rdu3sXfv3u4XCwIv6wNkNG3gogpD6IaBIAhQqVZJMMCy7o5eb8IwkDAMeJ7HUaKB78OybVi2zSsGlUoFCMNYpqt+pqoqn0MNDaP/Jht5qG7fvo3z589jamoKJ06c4EjV2Ox1mMXV8ZJeWfDQkruD+n4DgE+Neh3FzU2cOHGi/3E6jGVuIQg6ulKtwnVdTg8tSRImJyf5IqpWqwRlvLqKs2fPAgAy2WyXuNKwUyydUX46lSLXS8+JAYxEUcTVq1cxMT6OwujoNuvgEzBFUQhQy/OQSCYxPz+PK1evYnZ2to3RkpkAoE6FyvpVE6Om0zJwEAQkkaAcBJ2mKgrnoWCtKMdx4DH58jAkgYGioFarbam9GD2GDfJMDdwQaLZtOw7efecdwkZ6+jSpnDBwdMco7pPEDIR0Kod+8ON/0AA0PwAsPXgAXddRGED+1mmMtMylI4EmVSBlAOBkMol8LoeDBw4AILiEldVVLC0tccXWtqSCggSHuV6RBprNZpM8L7Lc9p0ytUp23FKphC+98spPzG98qsEAQJCW+UwGO3fuxMWLF5HP5zEa/YLpyBcDDGq6PlT/zA8CJA2DsIvZNhkLG5CZyfTL4YEBjfoD30fT87C+scGleB3XhcJ4xAeYRLPHEIDjeX0zE3LJIS5duoQbN25g9+7dRGwoMhPLF0pkwQyMxGNe05NnYJjP7DNJwGzQvXnw4AEkUdwSTz/LkmzbhmWaaDYanBBKkWXe5okeO5fLIZfL4cD+/XAchyzwlRXcvXsX169dg6wofIEXCoWBiy8a5YeUk5xlHH4QABQvcOniRTSbTZw6fRoIQ2jblYEnYpqmwaS6HwcPHcKDBw/w3nvvcYQ8AL5OTFrxE4eoJkbNMAy4nodKtTpQ10QURV4tCIKA09J6tP3ouS42SyVMjI/DsizuZ4YxVdNguy4c14XRJ7hmgXe9Xsfbb78N13Xx6quvEupedj/i3vsEg4EoCv5JAxOjFgYBHj54gJnZ2aGPEwYBwfo4DtmMaUnf933ouk4AgVTiPGrT09O8+lCuVLBKx57Pnj2LEEAmk+F4hGwuN9APy7IMXddhUi4LvifRKSeAcJucO3cO01NTGOugbf8k7VMLBhRFIRuk58HzPBw9ehTVSgXvvvsu3njjDT4qCBDgD0BGtIYd6QvpXH8ykUDTsrC5uYnEAHETZoz0Q6H9YEYsYZkmFCo9yaQuRUkir6ULvNfDqakqfNMkkqh9ggHP9/HhBx/g4cOHOHr0KPbs2dP7GrdYpu9sE/SKvodqEwwRvQ+ypaUlTE5N9XWMLFpm/4dUr4Jl5mEYQtc0pFKpoSJoVVUxOzuL2dlZThG7QtXTPvroI3i+j3wux4lLcj0WOI/yKb+9T7Miz3UhaRru3buHR48e4eSpU8jSjHC7MvBkTNd1TgaVTqfx4osv4i9/+EOcv3ABx48f52X9kI6CicDQJXo2bpqgwZ5D5cqHbQ0yoiJd10nbkSrbNZtNKKrKMUyM/poFsL3GjhWqaeHTddAvESoWi3jn3XehaRpef+MNJDuqIG2gxsjG/aRsWPbBQX5r0Bmtra/Dsm3M9cCYsWN4nseTB4+2l/1IUGBoGlTDQD6XG+o+5LJZ5LJZ7N+/H47rchbVu/fu4dq1a5AkqU17pdd6V1UVHgM2U9KrIAxhOw58z8PZM2eQSCTw/IkTseOIn5R9qtBmdpGe5wGCgFOnT0OUJB7ZAuA3CcDAzD5qbHwsnckQZKjr8jG8rZhAx88Yn3gykYBGJW5D2h+2LAu1eh3lchnVWg0mFSSJmkLJLFw60xpntm3jhz/8IVZWVnD69On4QCCm70dPdJiraftXLxmoYYlDBh6tz/urlQqq1SrmOvTSWWbVbDZRq1ZRq9VgNptwHIdwfoMEhTrlitBpRvY4G60AkJLgwYN444038Fd//udx4sQJJFMp3L51C2+++Sb+7DvfwYcffoilpSVe/mcmyzKv+LBxIM/zsLa2hps3buDgoUM8q1BUtQtUNUszmy9/+csDz/XSpUs82PzX//pfb/laP0/G/AbThx8dHcWzzz6L27du4fatW/x1Fp3tlmmpfhhjsseKLCOdTkMSRZTK5YGU1HHG2hKsspBJpzkOgJGhNWmbq1Quo95okBHGjmNpFLfEMsc4e/DgAX74ox8hm8ngtVdf7QoEOo1n8Vu+qn4fOqQuwcdMIh4sLSGZSJCRcf6RIWcSrdfrqFaraFI2Sc/zePVQU1UiNSzLUFV1aDXbTlMVBbOzs3j+xAn81Z//eXz5y1/G7t270Ww08OFHH+E7f/Zn+MEPfoArV69is1TqIqHSaULo0spzQAWULl26BM/38dKLLxIeCKBLsfGT8hufWmUAIIu6STdqjQJ7Xn7pJfzgBz/AB++/jxdPn4YdWdCMD2CYR8mnrH8pTUM2m0WpXEapUkEqlXq88S5BgOO6SBgGX2gs6mSlQDYxwJDLbGpCEkU+PcHKQZ2sYrVaDe+8/TYs224v73WdRgTMtMUFLXRME/Qq9A8T4X9c6ODS0hJkWUY+n+d634HnwWe9TYC3ImRZhkQrLzIFD1qWhXqjAQjCx9f4psfTdR27FhawY24OQRiitLlJRFLW1nB/aQkC0CaulMvloGsa6p4Hjz4LpmVh8epVTE9NYR+bHqBg1E47deoUvvWtb+HMmTMD8RVf//rX4fs+du/ejV/7tV/7eNf7GTdRFAldLwXuybKMnQsLqNVqOHf+PFLpNMZGR3kSoes6z74GrRUmMiNLEnKpFNlQXBflSgUjPdbkILNtm0wSpNNIU7VT3/e533BpxYvhlQSQqly0vejTDaOTEjsMQ9y4fh0XLl7E3Nwcnn3uuZ4VkLZr/wSmCYbyG0O0F/udk+95ePToEeYXFkgLl5LLcWGfiG8URREK8x0RfRrGCBiG8ayAwxrzxYIgIJ/PI5PJ4ODBg7Btm0i5r67iNhVX0lQV4+PjHKekqioURYHrusR3+D6W7t9HuVzGK6+8witZIcW+Re2T8hufejAA0I07DCHS6PnUqVN4++23ceHSJc7jzjK/YRa1T2lh2WhgJp1Go16H5TgoUUXDxzHbNJGNRKNssUavo3OBe2EIl35hruPANE2YloVMOk3eL8sol0p4//33oRsGXn/99bYWSZyx0Ru+qNjD0Gdch72v62cd7+X3ViDsfQxY1/XQDRHds/f6kcjXpzTC95eWMDo6CiuiB4CQqEKynmp08+80n95fRhz02NbR7ghpv1MEuCTz4cOHYZomX+DXb9wgksy6jsmJCeTyeSiKgnq9jrt37yKZTOLECy/w5w+IbxGcPn0a3/rWt1CpVHD9+vV4+WYAf/Inf4Lvfe97AIBvfvObH8uBfV5M13U0TBNuBGX/zDPPoFar4b1338Xp06chKwpkSeLBojjERuT5PkA3EggCcrkcNopFVCoVpFOpxyJ+YRwXLAFgLQJZlgFdB2Or5BgDz0NIJ1IEWg1oUk2UgPLfy5IEQRRx6eJF3Lt3DwcOHsSB/fuH76E/bmWA+oFOTRDmkwRB4ABfAF3sqMMAdRn4GAAXEAqCAIHvY2VlBa7rIj8ywnFkUTBk1Hf0EqfjipS0SvO4Fr0O7jMBrj+yY8eOrqRi6cMPeVIxPj6OdCYDl+qzrK6u4vixY0R1lmLlBHT7jk/Kb3yqwYAoilB1nUR3ngeJLrTJiQkcPXoU58+dgwBgYefO1iIUhL6LmhHLALTnTb/sXC6HjY0NMlmQyWxZ1Q4gi7qzZBM1FhyAtT/oxse0CQCQqQLKgigKAlZXV3F1cRG5bBZHjx1DGIZoNJsQKb1ldHFJotg+VhjdpGNAhYMsRMdkQkjUu8LIgo9j1QJIOVUAbccEAWHvY3+n/2aEP20jTQBqlQoa9Tr27t0Lkd4zSRTJ35nueN8Tp2CbMPzYC7rzfvFP6ggSDMPAwsICFhYWEAQB4UGn0qr37t0jdKQ0cDl98iTZTMKQBBcAMpEgktnp06f53z/88MPYRe26Lv7hP/yHAIBXX30VX/3qVx//Wj9Hpmka6rTtxpylKAg4efIkfvCDH+D9Dz7Ac889h9FI4D9oI/LpuBloYgIQJjutVkNgWRwEuFUbJHrEwa+yDAPgwYFPe96+70NRVS6mJYgiTN/HpYsXUSqVcPDgQUzPzBC/wfyFKJK/SxLpBTNfyDJnoAs/MNBowhA30RQCbb6jq9VI1wFneg1Dns0zfxFG/rRdFyFtC0aP/3B5GUYySaSBIz5DGlKZ1nUcrqfysSuKHcYCoigtsSgIbUmFbVlYoViDGzdvIqD7XhiGJICYnyfvo9ciiWLX9Non5Tc+1WAAIIu6QUctGKe7AGDXrl3Y3NzE9evXEYQhjh09yjf2XouaBQJxPW+D9vr9IMDm5mYshWU/C8MQlm1vaVZcliRAkhB95CRJgmnbkCUJ9+/fx40bNzA1NYX9+/e34SP4wo1uSnShM0cVUICSLMuwbZsvuDY0b/RnodAOIgxbPVJ2Nx1a8pZoJYNdO3MebIEGtA8XsghWaH1yAECgVRGmCyCIImfeuruxAUXTsDA/P5zueYc5kQW9FX6CYSyaMTHAURxN8tjYGMbGxnDkyBGsr6/jvfffhx8EGBsbIxwGIE6B3deRmGoUGxf1PA8ffPABvva1r3W95t/9u3+H69evQxAE/M7v/M4TvdbPsimKAkGSENKeq0RlfxVZxokTJ/D2j3+Mjz78EC+/8gryzOkLQk9lP+a848rY+ZEROCsraNAe9FbxKTZd78NOEESDA2aJRAKlSoVgU4IAZz/6CKZl4fjx48jmcmT9tz6gO8ilfoOtU5MKuTn0GNxnsHXMfC0iCUCkBB923K8wDPlIpe/7cB2n7XfRTd+nbKzs96wtwu+978Oj7WCRJkGszVpcX8e+/fu3zPVCT5ZQAj/haiL/eH6YeG0DVvKfn5/H/Pw8giDA2bNn8fDRI0AQOEaMtzsEAdkYcOMn5TeeimCgJorwaKbHLtv3fezZsweapuHGjRswTZPfhF6LmoN8ekS6uXyeoHubTTRNc0uARNu2yZf5MRHhmqrCcRxcuXoVK48ecQnRgC4mhzJQRTNs9ncWTftoLT7LtiF5HokkO6872gIAYDYsFFBAQP8TIKBcqbRVFlzPg0WJU9g4EtND5w872h2DSMvqQkc1gx0/itEIaXQ/NzPzWIEAwpD0YOmC3upEBbceC7qtHwuy8UfBY53H21hfx7vvvQdJkjA9M4OxyFgse6VuGF19P4BUG44ePYozZ87ggw8+6Pp9sVjEP//n/xwA8Lf/9t/+iVCSflZMEARohkHoYl0XEuWIF0DAXSdeeAEXL13CW2+9hZMnT3IgZ6yTRjcGJvocqKqKRDIJv9FAcXOTzO1vwWwaQAiCMLSoWKexyYN6vY6LFy5AlCS88cYbSKdSRECHBkV+xHewDZhtvAF95sMw5LTKAgA3LqCOWR9MKp79SV7Wel2j2eSKgI7jtOOb6OtDgOO+WBuN+Qsx0prUQbJi/n0JApaWluAFQd8pgn7G+GMY898wMtex1sPnsMoAeUnYdQ8Z6BwgidW5c+dw//59FMbGMDIywqvfIg18BBCmzU77pPzGpx4MMBKRMDI6w5ChgiBg165dGB0dxfvvv4+/fOstvPjSS7HqcnFo384lp6oqkqkU/Hodm5ub0KemhgYTRoMBURTJQnqc8rQg4PyFC9gsFvHs8eNY2LmTf/GyovQskXdF154HWxTh+j4kUSRBEo0o+WbN/h5dlGEIP/RJ4InWz9qyAQZeomNNvB/W0Q+MLuBe58zaI8zWNzZgNZuY7ZgiGNZs2+b6AoqqEmxGuHVVN37NMT/vel3kWYsu6Pv37+Ojjz5CPp/H7OwsbM/jv4+2dHIxLQJmp0+fxpkzZ3Du3Lkumevf/M3fRLlcRjKZxDe+8Y0tXd8XwTRNgyUIcD0PLNRiEx2qquJLr7yCs2fP4p133sHRI0cIoRkrV0fL5VSClv0bQBdOJZfNotlowHGcLYuVWbYNjXJfCEMq8sVZqVzG2TNnYCQS+NIrr0DTNF6WVhUFYY/KQ1v7jmJ3XNeFJwiQKX0y0OEzaIuL/oL8wZKTaNuPrT2BeBNWAWS+A0BXRTOaNPRat7xlQ98vgKy3Qj6/Jb6IyIny6gnjg3isb6FHEtH9Mlq9jakSOK6Ld999F8WNDezbt48EJ9HEJuKrc1SVtdM+Cb/xqQcDgiDASCZhUra/Tn1nRZYxPT2N119/HW//+Md48wc/wIsvvYRcLscXdWdpL1p+6rRcLodGowHXcVCr1/kM+CBjZXhWXtrqog7DEE3TxI9//GM0Gg08e/w4xjo0DvpluUJkMwaAkC62IAggKwpSQyyQslBGEUWECBEgQIgQ2Wy2bUGapklGsaikby97nFErgLAqZrNZjIyOclU5HkUPMDY3HgJIUOIOttC2Ggz0enXc50QDAnbdV69cweK1a5ibm8PuPXtQrlSg0B6tTwM0Zrk+gNXTp0/j3//7f49ms4nLly/j6NGjAIArV67gP/yH/wAA+I3f+I0t065+EUzXdVQkCT6lCZdlmfStQb5HVVVx6tQpXL58GRcuXkS9Xsex48e5GiDHFw3x7EiyjGwuh1KphE3qaLeSSLDKkAjA38LzytbGzZs3ce7cORQKBRw8eHBL7TFREACGZ6JtPddx4FO/MVT7ggYKAoi+QqffiLYO0plMz3sztN+I+EIBpOqwtrqKZ597jrcuOsf1+hlPIgQBqqbBNM3H8mG9kgggvurEKossSWg0Gnj77bdhWRaee/556LqOaq0GgUplR+9psg93yifhN54KCbVkMomQtgqYBjzTd2YPai6Xwxtf/jJUVcVbb76J5eXlVo+610MRs+BEUUQ2m4VE5SGjOtL9zLZtINImGAYVyza6IAyxWSrhL/7iL+B5Hl555RXkRkbgUjndxzGhx9/7GclWQ94mCOl/UYsCX3pZ5xx075Ns/wzLsrD86BEWdu5sK6nxNgPQN8CymfiPIHDgICu9Dm2PUc1hC5QFX++//z4WFxdx+PBh7N27l4M7JYqJ8CNZhyiKAysDzKIlv1//9V+H53mYnZ3lQKBtazdRFJFIpxEKAu8FM34ShYoFCYKAZ555Bs89+yxu373LOUyi1YGo9ePYyKTTJAMPApTK5aHP0zTNFnFMn0pa9BxYQuMHAc6fP49z585hz+7deO7ZZ1sYoce1mBbrQKPZP/lrd0YfXYNPRJmz4/Pv3L4Nmc72A61NWcAQgmp0bBMgVQGJVYG2GgwIQl9f2+t5Yj6qWCziB2++CT8I8NJLLyGTyZDpEMpbE8W7AWibXOu0T8JvPBXBgCzL0Ghma9t2K7oH2lSdDMPAq6+9hrHxcTJ6eOEC15jeimXSaQ5W3NjcHOo9lmVBioCABPR+6FkAwGaWl5eX8ZdvvQXDMPD6a6+1xC4ADtIjH7rFUveWXs3OuvNc2xcEJyPps6CHPUuh43u5e/cuBFHk46L8HNC6Ft5H7CzXBwFsy0KA1tw4owDe0n34GMHXZqmEH9BA9OSpU5ibm+NZKEdviyLvmwJEA6EXuxwA7N27l4wSgSCDAeA73/kO/tt/+28AgG984xtD8el/US2ZTCIUBJ5IsGRCjqpJgkwkvfLyyygWi/jzv/gLrK6vx39gv+dDIKOGsiiiUqnAosyog8y2rDYWuZ7PbKREH4QhXNfFB++/jxs3buDo0aM4euwYSUYEgY8r8rcOdSZoBSOPi7XpYeEQfmMrFvUxfhDg7r17mN+xI3Ytsb1CRLxvsh0HYRAQ8blIK3bLd2DAPevX8lhcXMRf/uVfIpVM4rXXXuP7mizLXIVVEAT+/AIE49bLPgm/8VQEAwCQymQQ0oecRfdx5StZlnHq1CkcPnwYN27exPe+9z2srq1t7WCCgJF8HrIoEqa7Wm3gW2zLih0rjAJGWNmR9dUEQcDt27fxzjvvYGJiAq+++ir/DE3TAEGAFQ0GtrJABeHxovse58+MVwaewKIOI8cLwhC379zB3OzswFltVhqNni0jbpEp4QwA3qsctjLwuCOIruvi3Llz+MEPfgABwOuvv46JyUnOSKgqCglcaWUgyj7Zb0EzO3XqFAAS4Xueh1//9V8HQFDDv/zLv/xY5/xFMVmWoVGnZ1MdAvbzThsfH8eXv/xlGIaBt958Ex99+GEXqySzXk+KkUjAMAxIkoS19fWBz15Ie9VR3xHln6AvIskDA/7Ra/nRj37UxUYqKwppQYVh+7lvwXdEg5GPNZYbsWEqilupgkZf+fDhQ9i2jYVdu4Z6D68WUNyBbVlEbZImEWyiYisVxaHOPOb6isUi/vzP/xzXFhexd+9evPLKK7wCIEkSaVlFggGWSIiiONB3PGm/8dQEA6qqQqY688zx98qURVHEvn378OWf+imkkkn8+Mc/xgcffMBVDfuV+phpus6pijeKRR6A9DLLcTiFJDMOEgF50KOglDAMceHCBZw7dw67d+/GyZMn26JaRo8aUuY64PEj1WGXsxhbGejOwIEn4ySin7CysgLTNLFzwIKO/QyKFQjQTs3JHM+w5b7HacksP3qE733/+7hz9y6OHD2KN954A5lsllDdgmBa+NQEXdzR57YXAChqrOR38eJF/Jt/82+wuLgIAPid3/mdJ+asP89mUNyPQzNAoBUodloqlcLLr7yC559/Ho8ePcL3vvtdPLh/v+XIh3hGRgoFqFTVcKNY7PtaxrPRyTgqAJybw2PlYXq+tVoNb735Jhr1Or70pS+19X0ZFgKC0BpDJr8YeN6P9dohjQNse302xRwMa9FPuX37NkZHR9tk6AeeD0iVwqYVFJmCLPk5Mt8x5DkNc8eiyY/jODh79izefPNNSJKE1994A4cOHWpTNdV1nTCuBkFLkZa+P5PLDUzInrTf+NQBhFEzMhnU19fhUDBQP3BYCCCdSuHll1/G0tISzl24gJX//t9x9NgxTHUA83pZLpslMpa2jbWNDUxNTPT+AoKgjdQi+sV1bka+7+PDDz/Eo0ePcPzYsVitdYEqndkUOJmigMAtbVeRHt5wL+9+XRBpEwzT93vcUb7bt28jn8/37Z/3sqZpgrGLRWevt+rUtvJq0zRx4cIFPHj4EONjY3j2S18iKGaakXmex9nBTMsChG5SKI0KKA0ytqgdx8E//af/FADwN/7G38Arr7yyhTP+4pphGGgoCnwq/KJSEHJPVxqGWFhYwOTkJC5cuID3P/gA9+7fx7PPPgtg8HMiiiLyIyPYWF9HvdFAwjB6fs8sC+wcr432kqPrcmNjA+9GxIbiSr2appHRQDrTL8WNFfeziO96UmHBwPbikCh8/nL6Z6VaRbFYxMkXXtjyOfm+D4cmlrphIAhDPsoIPL4v62XMfz989Ajnzp6F53k4duwYdu7cSUYmAdQpa6JKFRIDqsvT2f7oRUcftSftN56qYEBPJtHc3ERIVQE7pWiZRZGrgiBgx44dGJ+YwIXz5/HhBx9gbGwMu/fsGawfLhB2qOWVFTi23Zd/PAhD/qAHkSiXYQfYRmrbNt555x1UKxWcPn26rzyvpqqwKRL6cbLWrS7kQa/n9xS9UfXD8Lu3vQdAs9HA2urqY83Ju5TIJAhDpGi/FIKAsGNksa9twRGFYYg7d+7g4sWLgCDgxIkTXBiEXQ/LyFRNgyhJZHYZ6GJAGx+S2OrUqVM88HVdF5qm4Zvf/ObQl7dtgJHNor6xAcdxeBspLpGIrjNd13Hy5EnMzc3h7Nmz+O53v4s9e/ZgempqYIBtGAbS6TQqtRqKm5vQNC22/cXOgY1PhyzBIb9sAyIvLS3hzJkzKBQKOHXqVM92mkjHah3HgeU4SBpGz+mpWNvixjyMRcvbT8JYln3n9m1our7laZoQ4AqRiqq2T18MW/2MfldDWLPZxNmzZ/FoeRkTExN49vhxTkAGkE3bjyQRAAVj07YRO5YkSRgfIqF90n7jqQoGJEmClk7Dsiw4to1EIsHlOwc9ZLqm8YV95swZvPvuu5ifn8ehQ4f6EgXJioJ8Po/S5ibK5TIShhH7evZFRQMBZmzzrFarePvtt+H7Pr7UR2yIH5ty73ueB8e2t8w532smupcJsblS61p4dN8D8CbEAPsGHlMQcOfOHciKgpktcguEYUhERUAWT3SzFYahLSYnMJTjC0FaGVeuXMHGxgZ27NiBo8eOdTlki44kiaLIS79sJEim58MW9NSQ15vNZnHgwAFcvXoVAPAP/sE/wM6dO4d677YR01MpNEslgDrGngFtTEtpamoKY6OjuHT5Mq5fv477S0s4fOgQIbfps7ZyuRxMy4Jt29goFmMrkrzaxjA+kc2FtxmDANevXcPlK1cwPz+P5559duCzrakqHNuGY9swdH3rGT5dF0+qDTWoNbvV0EMAGS+/d/8+9uzevWVgosOA6GHYJXvPsnR23j3vwZCBgO04uEUFiURJwskXXsD09HTbOQe+D9OyCIhR0yBQrho22irR0UIAGJ+cHEoD40n7jacqGACAZC6Hyvo6Z+TjRB0R65dFT01O4rXXX8fVq1exdP8+7t+/j/n5eRzYv78tSotaKpWCZZrwm02sra9jdmamK/joVMXqtOLGBt5+5x3ouo4vfelLQyM5NU3j+tqKpm293LeFyDVuMCZKvcEcl/SEHARAFsHdu3cxPz/fF1UfZ0yCNrrxcmN9+kHnOsT458OHD7G4uIhKuYx8LodXXnkFYzEc9I5tcxlZwzD4ObisLynLfOxyYnJyS8Hd+Pg4rl69irGxMfyzf/bPhn7fthGTJAlaKgVUKnAoQZggCFzMCmgvz3earCg4RkVirl2/jg8++ACLV69i/8GDmJubi98wBAFjo6NYXl6GZZool8tdbTBOvNXjOQyCAGfPnMHde/dw6NAh7B9SbEhRFEiyDJ8mElvhHWA+40nWBthz31MfYItjfCGA+0tL8D0PC1vc4IIg4JMehmF07R/RkeZerYJhRsdNy8LNmzdx69YthCATK/v27uVkUPx4YYiGaXLQIOOqcR2npSMhigBNKqZmZoa+1ifpN566YECSJKjJJCzLam0Gnb21AeM/mqpi186d2LFjBzbW13Hj5k3cvnMHC/Pz2LdvXyx72EihAMdxYLsuNopFjI+N0UOR0njg+z2rE4yJrlAo4GSf8l6cqaqKpmkiDAK4jjM0fzm71l5AqR4v77IwrjLwhEp9AEUCO86WFzSrloQg/b5B1yjQMmz7D3tXBYIwxNLSEq5du4ZqtYqx0VG88sorGB0bi2Un86k8MUCqUAqlv/WZqhpIOdKnREiTW1jQH3zwAd566y0AwG/91m8hm80O/d5ta1kyn8f6o0dkM7BtpBWlVZanmXm/jVYQBOTyeTx7/Dhsx8Gd27fxwQcf4MqVK9i/bx/mFxa6fICsKMjl84SMqFSCYRh8jDAEOJNq3HEd18V7772HjfV1nDhxomvkdpBpmoam58FyHKQeU6PjiVUGBkwTPA44+vbt25iYmtqSHgwAvk5FSYLamURQY89DrwSlXzu00WzixvXruHPnDkRJwp49e7B7924SkIXdHA6WaZL9QxAIBT69R4w3RYmwD+YKhaETySftN566YAAAMoUCqhThb1oWKYNFIrVBjHNMrVCWZew/cAB79uzB3bt3cf36ddy7exezc3PYv39/282LAwUlk8k2AZPOY4ZhiMXFRVy9ehU75udxPMJuNqwxjn0W/AwDOIucwJZAdHFtgijPwKC+31ZxDWEY4vrNmxgfG9syEpiB8hjQJs46s5sodqNXIOBT+eTr166hVq9jcmICzz33HJ/ZDWIWcxgErf6jLLcmGsKQTLAIAlRGBw2gMDq6pRnf3/iN3wBAJHj/3t/7e0O/b9vaTZIkGOk0GpUKGnQNM657AENV3SRRRCgIyGWzOP3ii6hUKrh27RrOnjmDq4uL2Ld3L3bu3NnGf5Kmrc2g2cT6xgamJie5v+LViI411Ww28eO334Zlmm1B6FZMUxQ06Tia67pDJyHRiacnYU+ccAhE86NSqeCZZ57Z0vuYhHxceyDOQrTOOZpMxHnVer2Oa9eu4d79+3xv2b1rF1c/ZNMhUWurJiYSXHcAoJw61P+zFsFWAsIn7TeeymDASCSgJ5OwGg00Gg2oqsq5rIMBgQBAFrQIWroKQ0iyjN179mDnzp24d+8erl2/jj///vcxNT2Nffv2oTAyAggCDMNAKp1GtVrFRrFI0Ot0gQW0xMPMp4pT9+/dw8GDB3HgwAHuALYqRqLrOgESUi3zYasDWwINoRcoMPp3Oh7Ua0Fv0Xmsrq2hUi7j5Zdf3tL7bMtC4HkQxN6yr7GnB3D1s85zdVwX9+/dw/Xr19E0TczMzODkyZNdLF8igE6XbEZwAp1ZCitHKnRBCwDmFhaGPuff+73fw5tvvgmAKI1ttZWybe2WGR2FWa/D8zw0m02kUqkW1/4Q7xeZ76DOOZvN4uTJk6gdPIjr16/jwsWLuHbtGvbQoIC1ggq0smjZNjY2NjBKBavY5hDNmEvlMt5++21IoojXXnuNA52HKU1HTRBFGJqGJk0ktlKRZO9/EmOGUTD3k6o0XL12DblcDuNbkIxmGCPGKSD186MxEwVx9z8EUCmXce36dTx48ACapuHw4cPYuXNnl5/umirrqCay14uCQCqKnkfai4oCz/OQSqdRiAid9bNPwm88lcEAACRyOXi2zRd1MpkkD9oQi0UQBEAUIVASD9bHEiUJO3ftwvzCAh7QEvGbb76JVCpFtKR37EA+lyNZumlidX0dUxMThF/a9/lYm+O6eO/dd7FRLHaV9zhyeAuLWhRFqJpGFAPpmOGWbOgFGD+iyYz3/Z5QdH99cRG5XA5jtOUyjLX1+3R9qJZF551mFQM/CLC2uop79+9j+dEjBCHRDO/VKhIEgcz9RsyyLLgUAZyI9h9p+8p2HARhCFVR4LkukpkMCn20CJrNJh49eoRarYZvf/vb+Jf/8l8CAH71V38Vr7322sBr3bb+ZiQSUHUdVqMBx3VhOw7p0QoCEBEk6mW9Nsh0Oo3nn38eBw8cwPUbN3DlyhVcuXwZk1NT2LFjB6ampjAyMoKV1VXUGw3SPshmuUIf+8zllRW8/957yGQyePHFF9uC3cfp42u6DpNOJG0lkXiSNshvbLUCsbm5ifX1dZx4/vktvc+ybcI0GIcx6jAB3d6QtQ5Ag4r7S0u4f/8+qpUKDMPAsWPHsDA/34WLYK3sKFdEz2oiO1dW+ZQkjqeITi112k/Cbzy1wYCRTMLSdTh0ntZxHPIFCwLXsu9noiAQyc6434kidszPY8eOHVjf2MD9+/dx7do1XLlyBSMjI5iZmYFCwTlr6+uYnJjgFYmo0MQrL78cu9EJQNuDMYzpmsYFlHxdHy7S2+IiEwdgBp4k4dDGxgYJlrY4H8w4BSRJ4uW3nia0QyLZPS+XSrhPwaOWbSOXyeDQoUOYnZvr2X/k31nknnqexzng9Y5MQxAELn4iCgJkSYLrupicmOjrkP/gD/6gq6R38uTJoTXHt62/SZIENZVCQMe4LNOELEnEgQ9BwyvSZyqkf+8s+yaSSRw/fhyHDh7E0oMHuH//Pt59913IVFBttFCAJIooVSqESAZ0/FgQcOv2bVw4fx6Tk5N44YUXup4Txky4lXaBKIrQaGZpWtaW2nFPCiYc9gkGHqdSuri4iHQqhekt4G44xigMkWAjyFswQRDg2DYeLS/j/r17WFldhShJmJ6cxOHDhzExPh6bmETxKNFj9qomssDBon5F0TT4vg/dMDDWZxT5J+E3ntpgQFVVCKoKkWZelmlCkWVSBhYGK9VFXxe3qMmLBIyNjWFsbAzHjx/HA7q4z58/DwGESjaXz0OgvWjXdfHmW29BEkW8/vrrPWVMBYGo121lUUuS1CIhsiwkH0emc4DFTRMwzMCgvt9Wo/tr164hk8lganJy6GzHcRz4rouQtmwGmQDwBdhoNPBgaQn37t9HvVaDpmnYMT+Pubm5gcCaaEYWJZIyGUGIqrYBkdhdtB0HEAQuu20YBkbHx/s+l2fOnAFAwF8LCwv4m3/zb+If/aN/tGWQ1Lb1Nj2RgNdswqObg2lZRNVziGeYsdNFA+O4Z1/VNOzevRu7d+9GrVrF3bt3sfTgAe7euQPdMJDP52FbFrKpFCAIuHHjBu7fv489e/bgmWee6ZlFs4x1K6tNNwyYlsX1GeSfcKuJt0JirmmrrYNKpYKV5WU8u4WqAMcYIYZToJfRDTwIAmysr+P+0hIePnwI3/cxWijghRMnMDk11bf10rYHRZ4Rm1YTgY5qIsAxZYwZUZNlOL6P6dnZNv2KTvtJ+I2nNhiQZRmyrgOuS5CYkkTaBXRxDXq8WITPEfKdEwkdJggC5mZnMTc7C8uyyMK+exe3bt3Cndu3eYSbz+e7ynuxn4f4zKKf6bpOACeOA8Mwhi7XD90kiL12cn4sGGgDXEVsK9F9qVTC6uoqXnjhhaHn/H3fR5Nuvjol8xlkpmni4YMHeLS8jM1iEZIsY2ZmBkePHMHY+HhLqnaI8cLWPwjgq9FscpxI53fNsj1WNVAUBY7jYG5hoe+CBoDf/d3fxe/+7u8OvLZte3xTVRWCokCmQmEuZSYUIy2eXpkjJxbbgtRuMpnE4cOHcejwYWxsbODuvXt4+OABlh4+hKaqCHwf9+/fx9GjR7nGQD/bKnaAkRAFNJEYRs48crCPTUA0jC7BsHZtcRFGMom52dmhfadlWQT8LAjDgQZ9H+VSCY+Wl7G8vAzbtpFJp3Fg/37Mzc1x8G8ItI2mdloULM7+ZK1egLQ5o9VE1kpwPa8F1pYkaJKEfKHQN/D4SfiNpzYYAIBEIoGq40C0rDYBD4X1APs8LFyZKsKq16uX30kkpOs69u7Zg7179mB5ZQW3bt/G0tISAKBcLuODDz/E+Pg4xsfHkevQ9W4/ia0tNJmWxh3HgWVZW0Kke56HkIkkBQHnRWD/IwzRcJoooAAghAeiDFmr1QGbiOtYlsUpfxlgU6RqfFspu127dg3JZBIzMzNDyR2HoO0BKgMcJwgFAJ7jYG19HWvr61hfW0OtVkMAIJfJ4PkTJzAzM9OVFbHqwbDONQhDmM0mfDrzmzAM/v2yKhN7nes4/GfpTAaF0dHtDP8pMF3XIdHyq0BVTZuNBpKp1EAMiiiKEMIQAVpBH58M6HwxTRCYCQDGRkcxNjqKZ48dw9XFRdy6fRteEEAMQ9y4cQOVahXj4+MYGx3tmVA8TrtA13VCk72FNiPb7HzfR0ADp6gP4ddM/6zV6wAIqp6NNAsg/ewgCHjyJQoCn53fCv6oXq/jwcOHZCqrQ/2zl7muC5tWBZKJRPz3G4aoVatYXV/H+uoq1tfXCUBUkjA7M4P5+XnkcrluDAEAoUeFNy5g8zwPZqMBgNANd1YT2eutyKSU4zjYtXcvUqnUEwNfPq491cFAMplEo9GA73mQ6ENrmibRLRi0qCNOm1ncxsCojXt9DVOTk9A0DfV6HZ7vY3ZmBuVyGVcuX8bFixehqSrGJyYwTtsN0dHAx60OuK4L27YJ614n+ZHv89n2RrMJm46uyJLUJs0ZZdhimVAA0ioIEUIAU+6iwYPnIfR9hKLYLqsMgq4PwxAS3ayZOl/0mMxq1SoePXqEZ599lpcIB23EbA6Xbb78uL6Pzc1NrK2tYW1tDaXNTYRhiGQ6jfGxMezduxeJZBKqqiLZJ3ASAN7qYcZBP5HXhWGIZrPJdQcSdBSIWTTzcShYCaIISZYxOz+PVCr1xMCX2/b4JggC0uk0yq5L1jbd4EzTJPoSNEiPazUy8DHoBsk31ZjAvt+6lmUZBw8cgKppOHv2LOYXFiCLItbX13H79m3ehpygSUWhUGjDELBndlgRLkmSoCgKXNeFZdtd6yEIQ/iehyAI4DgOGmzNIYJvon/yPnjYmrXnWTIiPoUGCR4lVfKCAKDcIAJafkOkbdNO/9F5769fv87be+EQG2MQBGg2mxAEwuoXbQ9Ypom11VWsbWxgbXUVFuX/GC0UsP/AASQSCeiGgXQq1T9wCsMuHxYbCPg+mo0GmQ6QJMKN0sMYQFoQRYyMjSGTzW5tpPwTsqc6GOCL2vMQUrYm3/dRr9dJv549wDFlP0Y5Gfg+LNvGr3/966hUKhgbH8dvf/ObxMl3BAK26+J//sY3cOPmTSiyjH/8j/8xDh44gJF8HgnDQL3ZRCqdxt69eyHLMjaLRaytrWF1fR0Plpb4RjU5Po7RsTHyvkSiff59gLHM3KGLWqdTBp7rwqXZP1tsLuXsD8OQK+YJNJPnzFaRCB4OUEIJAQL4INdtJAyk9RSazSYpNyoKNE3jVJ5BGBIdALoAPM8j/TDqCCRRJC0d+v/itWvQdX3oeVnHdYnaXBhC0zRUymVsbGxgbW0NGxsb8DwPmqZhbHwc8/PzGB8f5xUT0zQJxecwG3AY8u+hDfTDf00qAiwQMJLJNucsor2dUK/XEVDg4PTMDHRd/0RwHtv2eGYYBuqqCi8IIPs+ec4oUx9T/eu13UjUz4Rh2O47xsbwzd/+bUiSxDNmZr18x/jYGCS6rqanpnD8+HGYloW1tTWsr63hLh11FiUJo4UCxsfGMDo2hlw2y0vMw6YSuq7DdRwOtg6CgK9X9lyz7J2xIrJxXClSCWR+g/f7WWJFM/VkIsE3L3aMMAy5RgJfY0EAzycVyIAmMaAcAFHhMUmW4VgW7t27h8OHD0MSxa7x3k4LQch/AFJqD4MAy48eYZ0mDtVaDQhD5PJ57Jibw9jEBAojI3zjr1QqZEpoyGycnXNcu9n3fTQigUCCTb5Rix7B9Tw+gaTrOqamp5FMJp+KJOKpDgYAuqjrdXhhCJVG667noV6vkwcyUsKNfgGyJAGCQOY3Uyn8wi/+Iv7Tf/yPWF9bww9/+EO8/sYbbSXsIAzx7/+3/w03bt6EKAj4n/7+38fBAwf475PJJGr1OgQAa2trmJqcxOjoKEZHR3EIZFNjm9jq6ipu3boFgKBFc9ksMuk0MtksstksMplMfDRKgxtZllGt1VCv1doeLBYEyDS6DsMQviwjmUySSHRABi4HEnz4COh/ACDKZFGKoghFlmHoelvfmy/uIIAXBHxR+7SsGIQh39CbpokHDx/iwIEDA9sKpmWhXCphfW0N9UYD9Xod9VqNo7hHR0dx4OBBjI+PI5PJdC1aTuaC4acfWAbU+Wo2n8zJQZLJNnXETkCX67qEHVMQMDIygnyh8FSU+batZYIgIJPJYNPz4AUBNE2D2Wyi2WhABIhceo82HstaPc+Drust37G+jh/98Id49bXXeFkc6O870sxHBQEadOQwn81ifscOzO/YgTAMUavXsb62htW1NSwuLsK7dAkAkEqnkc1kkM5kkMvlkM1mCb1uj+eMqWY2TROWZXXLJgtkSkcGYGgaRFFELpvti6Fo+3zqsyRJ4oEyH2eMAf0y38HaEFH/EYLM4bNZ+xvXrkFSFKIH0ceCIECtVsP6+jrK5TJq9ToatRpn8zOSSUyMj+PAgQMYGx+PpQTfqu8Q6DWHkUSCGQsEgiCA1BkIhJRsKvKM1et1QBAgCQLmd+6EoihPRVUA+AwEA6w6UCqV4AUBEskkatUqbMeBQPkHmIOPflGSJPEozvd9/JWf+in82Xe+g2KxiG9/+9t45UtfatsU/tN/+k/48KOPAABf+9rXcKpjJI5ly7Isw/U8rKytYXJ8nC8QlUb+01Sl0LQslMtlVCsVlCsVrK6u4saNG+RcBQGpdBo5Ghzkslkk02kgDGE7Dnza8/dpZpKiWaqiKPy6AFK2c2h/cah7GTtNQB5UFhjFBSmCIECQJDITGynFsayA/X/n9m0oioLx8XFUKxVetmuaJmqVCirVKiqVCsrlMqkGgAQ26VQKo6Oj2L17N3d6/SJl/j3TqtCwWzDTOYiWd8OQTKq4nodQEJBIJLoCgY6bQXqnkgRFFLGwezdkWd4SvmPbfjKm6zopnQcBhDCElkjAajZRazSQoQE1gK7NUJZlLlMNoMt3vPTyy23PZz/fIdFAW1VVSJKEcqUCSRSRoZNIgiCQRCGdxu7duxGEIfcZFfr/2q1bvM+sqSqy1G+wxELXdTieR8aSfZ9ssmEIjfatFVq1Yy2vwPfh0GsTBIGU5B8TRMj1THpNR9AKAGQZbFtmeg2e78NzXdTrdTx69Ag7FhZg2TZs14VCR3XrjQa/D+VyGbVajfssTdeRy2YxvmsXsrkcctnsUOuwjWlwKwF8x33igQD1K8nOikDM6+uNBhCGmJyZQTqdRjqdfmqSiKc+GABa1QE3COD6PpLpNOr1OizLaqG9OzI+gZZwHVqq0lQVX/nKV/B7v/d7WF9fx5tvvok33ngDAPCn3/kO/vt3vwsA+Ks///P42Z/5ma5zUFQVnudhbHQUa2tr8GICgrZz1nUYk5NtSmae76NcLvOHu1Kp4NGjR0Rljfb0DU2DRrNzWZZ5EJJMJiEK3brX/HoxBLdB7O9CjpsAtkg4FBIxqaZpolgsYnV1FYVCAdeuXoVFkc31RoNH1EYyiXwuh927dkE3DMLjrutIp9NbQiIzVC4DOA27mFjmFKWKtUyTO0ZD17tZxRAJCGi2aDab8IMA87t3Q1GUp2pBb1u7ZTIZFItF2J4HQ5LgyzJc30etWkU2m20jkWLrg2W6LBiQZZn7jrW1NfzlW2/hjS9/GWEY4jt/9md9fYcAQhss0qC3VquhWCohBJCNGU0WBQG5XK5N8IiNR5bKZVTKZVSrVSyvrJDkAmRDZuOvLABSFAWWZSGfy8EwjPgg/2PeW3ZsoNtvsKpAr3UR+D4cy4JpWbh85QoEQYBjWbh44QJM24ZlmlyxVBJFZLJZFEZGsDA/D1lVkUomYVAfMqyxFskghcXuNwo86WBbux/FCIgiNEqZ33pLJBCgf280GsTPyTLmd+4klYSnKIn4TAQDAJEL3djYgAsAQYBEIoFms4lGvc5lITuBQTLtvXueB01V8eqrr+L/96d/iuVHj/Dtb38br776Kj788EP85z/4A0AQ8NKLL+Jv/a2/FXt8VVHgeh7PfNfW10lAsLqKScpSOMhkSUJhZAT5fJ5Tl3p0FKVaqaDZbJIxKMeBaZpoNhow6ay0CCAUiNQlWwQK5e3XNA0aLftJokjAOjH/24HTdU6VSgVokGw3oJErq6b4tN/I/u26LunT0/8dOkLD+BxA++5GIoFUOo0R2qMzDAOJVAoyHYFihD0AmcMdNhBoY/rCFoSVIm0WoFX2jwYCiR7l1+hPwpCg0oMggKbrmKEkRtsTBE+vaZrGgci240BPJBDQaZFKtYpsJtP1/HRWFSVJ4r7jwYMH+Paf/Alefe21oX2HoihwHYfrX9RqNWyWSgiDgJTpB5hAS/C6rmN8bAyWZZEKIsVP1ep12JZFhNZsG5VyGY1mkzNnAuQ5VjWNJCmGAVGSICsKkokEv17WLpRkmWCBKFkT8x9slp9N/gS09WHbNiRRxGap1GohRqqGvu+TNmKzyX0Ho4rn91yW0Wg0oOs6CokE1PFxSDTQ1qnkr6ZpcByHBBlbpCrnlWO09EeGYTftpMAXQFojzUYDAUigYiQSbYBCEZFxZpZ4BAHqjQY8z8OuXbsgyzLy+fxTlUR8ZoIBRVGQz+exubkJx3WhSRJ0TYNl2wRQKAh85JB98bIsQxAE+NThi6KIX/qlX8K//bf/FhsbG/j93/99/PjHP4Yoith/4AB+9e/9vZ7RMus9uRTQNkEDAtfzsLy6ionx8bbyci9zXRd16owAAIKAbCbDVRKjJWzf91Etl2E5DiRRbG3GlC6ZVUeCMARoBcTz/TaQIa8GhCE8wYUv+QgCnzBgCsAPf/wjpIVMbJmQAYskigRWVBUGJVSZnp7mDqpWq+HChQt46eWXMdHBosUcgUXLrrbjoNloQJIkpDOZ4fnUY1C9YRiPCG97G2IyIEGA2Wy2BQKKLBM0NHtJzOeEQUDwK0GA/Xv2QFGULsnabXv6LJPJkGcvCGCaJpLJJOr1OnzfR61WI5Ud1ttliUSkqsjQ77/01a/i3/4v/0uX7zgwwHcomsbxKCMjIxBFEZVqFeVKBSHlLhlkYRhyLAB77hVFwdTkJGZluWuyodlswmw2iUyuJLWCeMuC2WyiWquRygcr2Xse0daIyWijfw/CEO+8/TZfV3EtBgFkJE+SJMg0uNA0DYZhIJfLkYAkkYCu67hw/jw838dP/dRPta1jJmFvOw5XL2WgP5XuBcNupCwAaJuwwuDKAAMZt50XrQiwQCCZSLSSIXTIIkf+3qStSCOZxNTUFLLZ7JYkzn8S9pkJBgDSA0yn06hRdrhUMkkAbI5DAIXpNNmQaUAgSRKEMOQz94Ig4NSpU5ifn8f9+/e50MPc3Bx+/etfh0yZ5OIeEUVRCIKfcp2rqorxsTEeEKyygKDH5ubTUUDP8+BTCltV06CpKo9QO2fyJUmCRhmsRFHkAQOzOl3shmFApxrarAzGQDu+7xP8geeh6TTx/373/4MQIkSEQAicPn0aBbUA13GgahrS6TSvLgiCMHC0KQhDnD93DmNjY12BAECDMkVBio49lTY3+diQa9uwaT91qIXdGbCwRd3j5b3Ik0zThEedc4KWVcPIZ4WtD2gLPpqmSeiNCwWMjo5iZGTkqYrsty3eBEFAPp/HOq10Ma2TRr3eAiN3tHo6q4oAevqOr3/9630pqDVNaxvXZQFktVpFpVpFCGCkR0AQhiFs2yYy5yABqUwnfrivCbvV8gzKOyDSUnTUd/hBgGq1CgDI03PhvoNJclOf4dOAKPB9VCoVfPTRRzh+/Dgy2SwkUeTqopl0GqqqknFjYThej4ePHqFULuOll17qWkcCwLN/nY52swkPQRDQNE0YhjGQbbEzEGD3i01WxFlIgX+dV+C6LuFUQCsQEOjkSVuywiqRkXtQrdXgBQF2LCwgnU4/Ve0BZp/+PMMWLZ1OQ08kIKgqLyvJNDKuU7Uy9oWIoghRlhFG+n8CwLECAFEli9I6do6cMWM8+U5kUbOAQJVl+EGAldVVngEwYxF9uVqF67oIQkJbm81moQ8hxGNQPITv+wQxG7HOh5k94KIgEHEMTUMikUA6lUIul0Oh0K2IlclmkEwkSCnfMKAykCIw1IK+ffs2ao0Gjhw5Ev+CSGXCtm2CEUgmkUomIUgSbNtGjX5vccZJkzp/jgGVgRiHxAA/bYEA/V55poNWENH5/lK5DEGSMDs3h0KhsK0w+BkyURRJ20rT4NNZewb4clyXt3+YdVYVAfJs9PQdgtATr6MqSpdfyOVyfEOtVqsobm52vc/zPFRrNTRNk5eqM5kMMul0W9IRN5PPNlIBZAS37VnucZ4CyJieqqpkVDaVQiaTwUg+j9HRUS7Alc/nURgZ4dMNBm0/KPSeDQNFDMIQly5dwvj4eM8kInofvCCAkUggm05DUVWEYYhG5N70srjkrp/fYGDATrMtC00K/pMlqUVwRFsA0c/q9FlsiiWTyWBycpKrVD5t9pkLBgCykLRkEgGARr2ORCJBZlNZGZf2uQGiGCWgJUm6vLKCb33rW/yzbNuOFQzpfLxYdtC5qFVVxcTEBDSaXa6srvKAwQ8C1Fgpn0b0mXSaqPExwGPkoYlbonxRCwJMWiLssuhn9MlUY+GDkawiugg4sUgfcz0Pi1evYmF+vjf/P/2cRrPJNbvT6TTSmQySEcrlBr1PWzlvtnHHEsd0gCldiloOfB+CKCKVSrWRlERLh4ztMmqVahWmaSKbz2N+fn4g7fC2PX3G2jqipsG2LPi+z5MAy7Y5MDQEDQZohY09a8vLywN9R9xGy+iqOy2XzSKfz0MSRdTrdWwUi/x3lm2TbJIeP2EYyKTT/Hhtz3yPdcp67ay6wE8x8pq2tlvsp/S2KKFZ1HcMUy27fesWGkMkEayiKgDQVZWMZ6fTUBUFgiTBo5Ud3nZlbycnGPvR/bBGUkdFIKTAv6hUeSrCZBmEhIytE5fE3x8E2NjYgCTLmNuxA+MDtEs+TftMBgOiKCKfz0PWdfhBgHqtxrn82b95OZ62CjzPQ7Vaxb/6V/8KtVqNz3ZaloU/+ZM/6TpG5xemahpE2mvuNFmWMc5mWsMQK3R2nvW4QgCpVAqpZLItm2QkH4M2XbaoEYac9zpqQy/imIcwRNjiyY4ujiEe2MXFRXhBgEOHDvV+UUhm+Fnmn4zcA0VVkU6loNGF7TgO1wQYNDYYMgBSRzDAA7nIz6xIVC/JMlKpFAdJAS3H0UsAyzRNbG5scHGaQcJH2/b0mmEYyIyMQJBlNE2TBAQUiGbZNqfWDUDJbGhVsVqp4Le/+c2hfEfn2jEMA2azGRvIZzIZjiNoNBpYW18n1QB6HrIsI5PJQNO0rgCAgwN7rVWBcPULIKPO/TJoVlHcirENuHOscFBr0XFdXL16FQsLC72z5JD4pQalQJZkuVW9FUUkEgmk6IQVQOb3WaI2qE3Bppvarpf6kei7GECTVRJ1w0Aikej2Nz0SiMD3sb6xAdt1kRsZwe7du58KcqFe9vSe2QCTZRnj09OQ6ehdo9kkwhCSxFsGruPwfzcaDfz2b/82NtbXoes6/sk/+Sd4nipjff/730epVOo+SKT0J9M5UtZriz0fGhC4joO79+5xdrx0KgW1D1Bu4AMitAQ4LMuCHwX1AO3BRJ9FELfYmY4B0M4xMMgtNJpN3Lx5E/v27u2L6mVzwyGApGF0V2EoGpfJjvo00h/E2MgzOHrOfGQw8hqOdmZRPUWW8/tNHQBDF3feO8ZKWNzchB+GmJ6Zwe7duwfcmW172i2dTiMzOsrFpnzf506e4Y8QEPlZUBT4N7/5Taxt0XewpylNAYxmj8pXOp1GgeJPNkslrK6vw6NVi1QPdjpWWRTifEDEVE3j0wLs+G2VgSHuVy+LGysc5vMWFxcRAjh08GDP14S0mhiC9udZKyZisiwjnUpxenqr2YRlmgODEb/zvGklMXrunueRySrfB0QRyVSKVwPbKN57tBzYtEqtVoOqqjhy9GhPldunxT6zwQBAHoax6WnIrIfUbELTNKi0ZN9oNuG5LkRJwn/+L/8F95eW4Ich/sGv/Rrm5+fxS7/0SxAEAa7r4v/84z/ufSC6sLO5XM9gACAbUzYS6VarVYSUmWqQDYrKVU2DRHtybP42tq0QUzbnv4t5R9Ajw+63qEMAFy5cgKZp2Ld3b8/XOY7DHZAR6c/HmapphCecVkDqHT3cTmNZidCjRNeJD9ApJiJK2MRwB3EZE9MpqDcasJpNpNNpHH/22b5AsW377Fg2n0cqn4cA8pw6jsPHXD3PQ61Wg6woCMIQv//7v49rN28CgrAl38GmedK0ktDPdyQouj7wfdiWhUazOdhvdKL9exhvhVgWb9X1sq0EB7EcAwP8WLVWwy2aRPQSJGOlecZTkEwme2KrBFFEKpEgbIuiCJuKvPWykJ43wwZ0gv4Agg9osIBQljnpW+sSBaJfQSsMneZ6Hhr1OqrVKgRBwM5duzA9Pd33vjwN9pkOBgCS7Y2Mj0OlX1aDjq2xKK5pmvjjP/5j3Lh+Hbqu4+/+3b+Lw0eOIAhDzM3N4cSJEwCAN996C2traz2Pw8A71Vqt52ss24Zt24RFL5OBoWkoVSpY39gYSptgIJiQLmrHcdqwC52PY090fcxveFWgUzikT4Xh4cOHWH70CEePHm2T6IyaR1HbEAhr2jA9dplSK7MeXJ21DGKMleVkWeZIXmad+IDOqF5gi59mA50LOqQVBdfzUKvXYSSTOHL8+FML/Nm2x7Ps2BjSuRwEUYRHKaYZ/sgPAlimiT/5kz/B9evXYWga/m+/8it4hva4h/Id9BlL0ey11iMYYFgnNj6dTiYJ1/7KCpf17mWCQBlI+6xXWVGgqCokUez6vOi7+iHs44y3CYasKIYAPvroIyRTKezpk0Q0I9iNfoFA66ACdF1HggKybUp4FnsObLIMxHd0AoYbzWY7PiDS1mR+glUG4nyT6zhoNBowKSZlfHISzxw9+lS3B5h9LtIcPZNBxvdRLZU4R76u60gYBv70T/8UZ+gDePLUKbzy8sstTvEgwF//ylfw4YcfIggC/B9/9Ef4n/7+3+95nEwmA5sSfmgdWS6bn2cCFPl8nrMMMiW80QGa1ULYznLVaYxgiI0a9eI1YGXvixuX8PbK27A9G0AIP+wOSP5g8T8jLabhCz58JcAzhcP42R3dDIzR6zx//jympqcxMzMT+xrWawvpVMNAjXE2yhMSwaVkMkkqAzRDSKVSXU6G8ZuL0cpAGMKyLE6GJFGaYJExD9KgIQiCtvdEzfN9mI0GqQzU69AUBTt37cL8/Hz/a9i2z5yJooh0oQAxDFGt1eBTFTzDMGA7Dr733e/i0sWLUBQFv/ALv4DXX3+9DSn+lWF8By3nZ7JZQvDVYSwLdmkrbXR0FGEYYmNjAzaV7M5Tiu6+10JL1r0y84RhoEIJgNpwRx3vGXYsEOgutw8CHd+6eRObpRJe+9KXelY9GL4oCIIujFWcRc9XpePVpmXBtm1OAx01jyo1crEp9nPPg0mVHAFSSeQJDPvOO+5NJ625TZNBhIQxMpfP45mjR5/KMcI4+1wEAwCgZ7MIqSM3KTnH2TNn8J0/+zPouo7Dhw/j1MmTsCyLA4AEALOzs3juuefw/gcf4N1338Vf+4Vf6CmWkc1mIQgC6rUa1MiMue/7BPAThlApMQ97vaqq2CgW4TgOVlZX++qYA73H2pgZhkFGFIMAlm13yfACxDFc3LyCf/LO/wthTAAQtQsbF6FDR5P+94MHP4Dj2/jFhV+If/2FCwh8H8ePH4/9PePfFgTClsioovtaxyITJQkpFhAEASzLagsoQlDMAOvrApyQifULGUES793SAKCzJMgqNiEFZzq2DRHgDmliaTEF7QAANFdJREFUehp79+/fbg98Tk1SFOi5HEKKM/KDAI1mE2c++gjf/d73oCoKnn/+ebz88svwg4CD5UIA09PTeO755/HhML4jk4kNBizL4oFAKiKnOzExgWKxiGaziRIlHhsrFHpnmLRCEA10234tikjoOpo0841ey+NYlMKcnXO/QKLRbOLS5cvYvWsXCqPdI84A3cSp4FAikRi45uKOp2kaTwqY3L0Y+c7CMCQ8AUynIQiIDDwLkCh/ADt2lECo8/qZ+b5PRhx9H6IgoN5oIJFIYOeePbFjk0+rPf21iyFNFEXo2Sx0Kq9588YN/J//9b9C13Xs3r0bP/dzP4cwCFAulVrz+jRq5/0/z8Mf/uEf9oxu2UhJtVZrK12xiFISRSQ6qGkNw8DkxAQ0imtYXV2NdQpRYxWC+F8KPNJ0KSlK3Ple3LgwMBAAAAlkUfho9RIvFS/HvnZldRVLS0s4cvRobEDDwH+g/TiuHf8YJkoSv5cOpW1mJT2f9hL5WCKd4w0pTamRSJB7JAhtUwddd4neNzae5NDgSpJlggAuFLCwa9d2e+BzbqphQEunOWr/2rVr+K/f/jYkScLOXbvwU3/lr8C2bZRLJR48MvDeV7/6VQCA43n4w//9f+/pOzKZTKtNQDcxz/f52HHn5icIRLkzn8tBEkXYloXl1VW4HaPN/PX0z37TSaqmQVYUCIIAi9Kcx33OMCuW34dIezGO7wAgm/CZjz6Crml45vDh2Nc0TROOZQFhSJRT+zGTxmTpUdN1nVwnbYuw6SJBEPioKGN0ZeseIEqWaYoPCMJ2efu462dBB2tJirS6CUHA1MwMFhYWPhPtAWafq3RHUhTomQzCchkvvPACnjlyhCDJ6YPgOA4830elXEaSCl2IoojZ2Vn8p//4H/nDxedQ0T62wyYDor0/27Z52a3X5qcoCiYnJ7FRLMJsNlGqVOC4Lgp0pKjLaA+wV8tApmpktuPAtqxYbvwD+QMx74y5ZzHBwDOF7gXreR7OnjmDsbGx2JI521DZJs0IXXqGI4LAs/VeJisKNFWFTcWQ0plMm146o5Nlzo8JtXAcQAzKt+2c6dgjmwEXJQkJXUe1WoWmaZienf1MAH+27eObnk4j8DwkBAEvnDiBgwcPwqf0vJ7rEkEuCuozEgnCHCoImJudxX+M+A4/JDoiDDzILJPJkBaUacJIJCAAaDYa8Cn/SC9q2nQmA0VVUSwW4XkeHi0vY2x0tG/pWaScK3FrK5FIoFqtcuXC2IBgiFZBFGvErQcu6u7du1jf2MBLL70UizFqNpt8DRq0PN8T6BjB+/SzJG2LBGEI13G4JgrTTbBoOR8ABEptr6hqG6YgNoGg5rK2Ag0YFMq+uFEsYnx6GnM7dnxm2gPMPjthy5Amaxq0dJpn0Ol0mkdsTLvAoWJANaaDHTG+EMIWrW+0T5jNZluoYBpgACQa7dffEgQBY6OjyGazkAQBzWazK9LvnF/tDEaixscogViwzLOjx4YICASI9BHwaDCQ03L4H+b+h65XXrx0CY7n4bnnnuv6nUfRs4JAVBXZ+F5fgqQ+/c2o6boOiX4njNLVoy0Bx3HacAasWiEAXe2ATnNcF1UqpQwQUqk0bU14QYCp2VnMzc1ttwe+QKZnsxBlGZIsEwCwrhPGOTq6xsS6mo1G9/grfdbYsxfQ/9kaYNUl5js8ShMuCEJXNbHrvHSdEJvRDW1tfR3lSiX2+K1/xj/7oijyJIgRLz2OdYIHe1UFTMvCxYsXMTc311UyZ3gJh7ZJjI4+/ccxgVVpBQEWXeOsr8/aj6FAKOFTySTBctHkoR9hEeiUEZt2YImPqigoFosYGR3FxMTEZ6o9wOxzFwwAgJpIQEulCNpcUZCl5T9FliGLIlHjc10uQ8kWNltAoii2EXqwYMAPAiRTKZTLZSAM28Q9GPXnoIc4m81ibGwMsiTBc108XF5GpXNhMxOEni0DQRShs5GhiPZ6660CfvnAL/c9F5lWBQjFCjnvr+76CnSpHfm/sbGBO3fu4PChQ13Rruu6ZAynIxDoaVsomwmCAEEUoVLSJSaLXKHUziKdGkkmkzzjYFF9L2cYUHxHVIc8lUohkUigVq3CcV1Mz81hx44d2+2BL5iJoggjn4cgSYTbI5FAOpPhz5koy7Adh2SbrotqtcqZ/doIgCIBL0soNF2HKEmolMsAyORRGATQKA/AIJNlGRMTE0RlUBRRqVSwurbWxiwYNTZlIMT4IyaPLtCkpNN6TfCwilsoCARoJwj8Xglh2JVFhwDOnj0LSZJw7Nix9t/RTZW1OZOJRO+Jo2iFb5i2I329oih80sKyLNRqNZ44MUphxu7KjFdjO48TEg2caq0Gi452a3QcWhQEbGxsIDsygsnpaezcufMz1R5g9tk74yFNS6WgMmlJWiXIZrNcd9qhwQCTDI4ubABdc/cAeVBGR0dhOw42SyVYtEykUhGjXu/rNMMwMDk5CUPTIAEo04XtUPBM+0GF1vhQ5zUqCqdbZmN4QRjCD0N4QYBnC8dwIN+b2EOmXSIPJJDIqBn81YWfI8ekKH3P9/HRmTMYoQxaUXNcF41GA6FAVN5YayDW2M+3EPFzlLCi8NlvxggmiiIy6TRfzFE64bgjsCCgVquRikJAZIgzVNyqWq3CtCzMzM5ix44dGO0Bctq2z7eJoogEHTcEyCaczWTIeKBASLE8z+P+gz1TfiSZYFwf0WeS+Y6VtTWioGjb8GkwAAzXq2c4gpGREd7zXllZQalc7km0w9UYO8wwDCK85nlc+ZT5DjaNxH7WVuWgm6tHy+kSrQCG7PwjvmNpaQkrKys4fvx4u5ZCSKTAmY5MIpnsapN0aikMO+HAOADCSEBgOQ42y2XCwkivPUnHPfn72HE7P5AGAbV6ndBVex4gCEglk0gYBsIgwFqxiHQ2i6mZGS5P/Fm0z20wAJA+oBzRmpZlGWOjozDolwiQ8TPbtmHT+VC2sKMW3eBGR0ehyDJWVlZgUwyCoqotFjv0ngSImizLmJicRL5jYXeV/yKf2RkQCLTMFdIqRb1ebytNQhDwf93/td7n0BEMfHXXX4cuG61rCEOcPXsWlmXxmWpmDh2lFAQyPpiICQT4XRiix0cP2v4ZkYXoui4CkABE1XUkEok2BzKoElCr1XibQZJlJFMpMpcsCKjV62iYJqZ37MAs5Q/fti+uibKMRD7fkqYVBKRSKYwUClBUFa7rEslrCgB0HAe1apXLC7PAl5HaMJuamsLGxgYBtVGq4TCy+QLDgfdSqRSmpqZg6DpEKnS0vLbWc7Y+LkuVaMUtCALUqbxu1Hf09WFhi8K8rarBgIRhiHqthnPnzmFubg4zEdwNaw0wzQVWYm//eHoPtwI+pgFXGARAECCgY6IMjxDQUWTDMIjIUASXBQwOAhhniabryFDpdd/zsFEsIplIYGp2Fjt37nzqZIm3Yp/rYAAAEpkMZF3npS9JlpHP55Gi1JCyJPFec9M00TRNVCuVFjikI9oXBQGTk5NYXl4GQMb4oqQUYRi2WP2GsHQ63bWwV1ZXuxZ29DwAtNEIR6sdTkfZ8PjoMTwz8kzssaPgwZSaxl/b+dfafn/7zh08WFrC888/TyYpaNRvUw53gLRhOvm66c1o/TlsNUAg6H827lOt1dCgBCSyJEGTZciyDEWS2kSG4iwuCJAVBZlMpk36tE4DwOnZWczMzn4me33b9uRNlGUkR0bastJUMsmFxkKQipWmaVzTgCUTDMvCjK2NqclJhGHICYpYqR6I4AyG9B2M/rxQKECWJPhURn1zczM2meDERHQjZ7oHMq0sNug0TtR6bcVRfoE4xlPP8/DOu+/CMAw8++yzbdXSeqPBJX9TqVRv3pVhEwhmkVZuwzRJpZdKOCuyTLBHtEoiU1XWXhNGcUGAbhhEMZdqRARBgOLmJvREAtM7dmDXrl19R8Y/C/a5DwYAIJHLQaFRcBiS0RVVUcjGQjczRlLEMuxKtYpyucwFQ5gJNBgoUYKjOHQsK1VHg4Mg8mcUkAi0FvbIyAhkWYbXY2Gz2d6QgY/oz6Pz/M1OUJAg4Gv7/y+x9yVaGfjKrr8OQ24BmUqlEi6cP49du3djdnaWnQCaVMFLEATSr48LBOhxe4L4ooFCx31iksZN0+TXqGsaafFoGpeB7qX1wJgPO4OAdDqNFJ32YA+92WyiUq1iem4O0zMz25MD29ZmkiwjUSjwtcwEckRJgkSrBZqmIUE1N5rNJvEdlQqqFJwcbRUkaDCxtrZGZt3jysmdvqOP3wAIQ9/U1BSSlFyrXq/j0fIymrSvzYz5Dsbsx9asTpOQMAy73tMrM+c0xJJENuFoEEGriaZp4vTp07xkztp8TO63s0zP3svBv3GBQIe/iP7d9zw0mk1UWTAGUrVIJhLIpFIAxTlIkgSJMg+2fXQQwKG+py0I0HVkMxnomsYpzIMgQLFYhKJpmJyZwc6dOz/zgQDwORst7GeJfB6NUgmuaZK+oGHwTDqdzSKjaXBsG5Isw3UcTkBjWRYnEtINA5IoYnJykoBGikXsYBtlH+PRP/03F7cAAFGESDfNZDIJTdMI2Yhpok43xZGRERiGQSJyughEoTW2F4aE9dD3PMKL3WggHZHZPDZ6FEcLR3GheIGfkwiR0xMbso5fWPir/HeO4+Ddd99FLp/H0aNHyTkHAenzMcCkYRB0M8g4FQPeRN1HGB1vYqVQ+qcoELUvFtGze87llEFGBVVV5c4qCAIy3UErBcwChv1wXV6+BEgQoNPZaoRUlZA61lq9zisCU9PTrYBn27YtYjKtEDRoYK6qKnRaDXAch0+xWJYFWZbhUFpjm0oia5rGW1qCIGBqchK379zB7t27hyL9iY4ost48IhVLgGToo4UCdF1HqVSC7/tYX19HMpEgks2UXjm6NqOVxmQigWq9zvEDbGPjm3xHUOAHARQQ8bbO37Fq4gsvvMCFeWzHgWmaYERkCcosyDbXyEm1AhXaMoy2XqPgYKZsGlBGxSg9u0wBn6zq4AcBAs+DFwRIRJMI2l51XJdMdbHATRQJhbquc1I3Rn/ueR42NzchKwqmZmexa9euz9wIYS/7wgQDAJDM52FJEqx6ncywU11zs9kkUb6uQ1VVOI7D/7SprK5pmryKkEwmkcvnsVksYseOHQC6N8I4a0OtRig8A/IX8m9BIJu/ZZGF7XlYWVmBpuvIZTLcqQDdvcBEIoEanYxomiaSySQ7ML62/2u48HYrGIhWBf7H3b+IpJLk5/P+++8jCAKcOnUKbM66YZqETEiSkEgkCBUy3WBFQeDViOiGH1ASIGZhGLZRlwZBANd1YXcGAbRyw17LSpFs9pi1CFwqMNM2SSEIUCkXe1sJkoK/fN/HZqmEMAgwMz+PiYmJ7UBg2/qarKpIjo7CLJXguS4SlK6Y+QmFymLrus4paVmiwfyHrmmk1z89jes3bqBWqyGXzwMAB7sNMgZEZEFtW5BAE4KJiQmUy2U0aNui3mwilUggk8kQgiD2YQz4FxJZ76RhcHZCmbXhBlQGmHAay9Lbqolzc6SSaFlwbZuD+RIR9D6f1CIXAXoxvHrR1mohb+DX63seHNuGE1n7siyT4L9TVAhklDOkrwl8nwQAjtNWeZUkCQrdF7h/ZtcMKmVeKiGby2F0YgI7d+7kbLafB/tCBQMA0TGQVRWNchmGrsN2HD5RwDZaTdMIuMb3udYB0ySw6XhJJpPB/fv3eSa6BahL98KPLChREBAIApm5VVVslkp8nGWZ8qZnMhmujcCcAvszkUiQUpnrQjJNrgz2zMghHCscx9mNswjDABJEBCClz/9x5y/yU1m8ehVrq6t4+ZVXYBgGLMsi+AWhRSbESE2iY1SSKHLeb35ZkUBAoIAgFgC4rgs3spBFdt+jwU4kMwiCgMxmUzR3tVptcxaSLENVVTLZEZNxhSBjkOvr60im0xifmsL09PQ2WHDbhjJZlpEsFGBVq3CoXDpLEuR0GghDSJQ1k1GGMw0RlwYEzWYTiqJAkiQUi0VCXRzppw+TUIC9hm7snCCNYZpEkVcSN4pFeI6DSrWKar2OTDKJdDrNdUCAFoGXoqpQfB+ObaPebBIFUdpbZ+OEoH8PKBto1A84to13330X2XweR44cQeD7ZMLJ8xAKAgxKCIaOzZ8FOJ2gbXYsVhUMAb6JO5SOnZlCNVt4EEBbgewVjFo8oIBPP+J3BEHgiYMsSbHTF67rokynESampzFKidc+D62BqH3hggEAkHUd6bExNMtlJBwH9UaDS4ZG0bGSLEOnAEPP8wjAkJJkJAwDge/j7t272EHZpuJ6YIMQsZ3zs9H+myBJyOZySCSTqFBQo2VZMCnrYI7OwTPgjEidQcIw0KQaDaIokgxZEPC1/X8LZ9fPAhAghTKAEC9MnEBCToJRJV+5ehWHDh3C2NgYH+MDwKsi/eZ9ZUnqwiswh+XRgIvxsPN7TEtyjCGMo4LZ/7SUZ1kW6jTISVIOCVEUodAAQKSOK260MASwWS6jUathdGICo+PjmJ+f/9yU97btJ2Ns7FCmgjiWZcGlfiHJniX6/Kp0g0kmk3AcB/V6nZez05kMVpaXsTE7yysKUW6TYYy9lk0YdXIDaJqGiYkJNBsNVCsVwrxaq6HWaCCTTvNJhmj/3dA0eK5L+u/1OgcNA+DYAIZjIJdKfuf7Pt57/314noeTL7wAj/K3sPvBSX3ov2OvRxS57+M4C0r05LkubDrKGb1+RZahMbI3GgDwtgJI8MASh6ZpQpVlHgjINHlgvpEBLDs5BizLQnFzE5IsY8fOnZiYnMT09PRnkkdgkH0hgwGAiuEUCpBUFe7Dh7Aoej2bybQWZqSvrygKsoqCdCrF+4OqpmF1bQ2ZTAblcpmI4+g6AShS1OmwxklLRBGgD71PM21VUTA2OgrHtlGuVmGZJizTxEqziTAkoh4IQwi0D6eqKu+FNWgLRJYkHMwdwHhiHCuNFchQIELE1w78LQBApVLB+++/j4mJCezZuxe1ep0sflql0IeQICa3qlV+9Fk/jhK18NfQaFylWVLnQmbZv0v/BIj+QBCGUGg/UFVVHnyJQCtzabuppMWxsb6OQBAwOz+PsfFxzM7OfmZngbft0zfVMCArCsIwxObmJu+HdzIJsmxdp1mxSymNc7kcNjY2sEbHAQVRhK5pMAyDMItGn80hEgqABgUUR8Qod0UKckwkk2jU66hWq/CDAOVKhY82ypFWXAgCSGSva5omEoYR68eY5HkYhrh06RLW1tbw8ssvQ5IkNBoNCCA+NplIEHzAgFaIKAiEA5Veg0sTh2j1EKCbuCxDjrQRWQXRp9VDj2q2sD6/SUHgCv0eVFXlmgosWekMAgQAtUYDm5ubyObzGJuYwNzcHHK53MDv4rNqX3iPaKTTmFxYwPK9e3AsC+VKBdlstj1Sj25kVAjHMAwsLCxg8epVBEEASZLIA0wJjGRJgqbrvNwv0hEeoH85kAHrgjDCj02Pr2oaxsfGSFBQqZASPi1FBkGAfD7P++kJwyCldQooTKVSkEQR/+ur/wb/8p3/GdWNGn5p3y9hJDGCRqOBH/34xzAMA0ePHiUaA/TYTLhjkLHXM0CPZdttC1kAqS6wTZyBCAGqHMY2f9ftQkwz3IKkKMhnMjyjF1nPMabtAhDu9+LmJlLpNMYmJzEzM7NNJrRtT8REWUZuagqQZRRXV8mobRgSMp8ez6OiKMhmszh08CCWHz0i9LUjI1w+1zRNwrgpyyQAp4I7UiT777ehCgJlAoyC70LCT5JOp5FMpVCv1cj4o+ehUq+jaVkQJAlJw4AgSYSRk9Jyu64LkwY5nWuSVVCvX7+Omzdv4siRI0gkk7BoYMQqidFz63fejKmRsYx2Vg9ZFs/Gm1ny4HsebJo0dLKwAmjxA6gqV32MUqVHJysAcCKmCk26JmdmeFvgs8whMIx94YMBgADWpnftwsPbt+FQ2sokRbxyruqIsWrBzp07cefOHRQ3N/Hs8eMwm02CL7BtEqE2Gmg0GnyEUVNVKJoGSRBaIy5xC5xuqq1/tn4fggYF4+OwbBurKyswTRP1RgO2bUNPJJCkqn2JRAINKoZSpxMGaSWNrx/4f+LNv/xL7MnsgmVZ+OGPfgRZFPHs8eNceEOWZTJGNaAc5tNSHMvmWZTt0vNXZJn05KiUKJsI8CmVs097eZ33l81Ay4rCGQcVWgVhmUBnNB8NAqq1GlzXRWF8HOM0qt9uC2zbkzRRFDEyMQFBllF8+BCNZpNs5qpKqIB7bICarmNhfh6Xr15FOpOBpihomiZMyyLshBSbJNRqUBgWhq4hif4fN70DoE0YrA10B0AIQ2QyGaTSaZTLZThrawg8D6ViEVVFQTKRQJLO/iep73BsGwIAo2PtyLKMW7du4fKlS9i3fz/Gxsc5RTGfNBpQ0WAZvEd9CNAC+kWrh6wFyJIb3/f5/51BiiiK3G9IoohSqcSnC1gS0uU36L89yqhardWgqCpmd+7E5OQkmR77HLYFOm07GKCmKApmdu3Cgzt34FJsQJIiRSXWy44+QBS9Ozc3h1u3buGZQ4eQTKWQTKW4KpZlmrBsm2yYkchfEkXIkgRRkgjfAS2XS/RnoH25uKUUXeC6rmN0dBQN2o+EIJBjNpsoSxISlDLTtCwC6KnXkUomW8j/MMSPfvQjBJ6HZ59/niOIWVmz01j0zmic4xYjEyuSJImMTglk0sBsNgmFaQ/aVEYOwolQIoClOg1otEhVofvGCDDZnLFtQ5AkTM/NYXZu7guzmLft07F8oUBaBsvLqDcayAgCqaYJLRrxqO+QRBGzc3O4cesWri0u4sSJE1A1DTkQsBrDBrFpGSamJYkiEVKibUtFUUhwQH2KJMu9aYnZOQgCJEFALpsFAN7b930f1VoNlWoVuq4jxUYm6XQEBx3S61heXsb58+exY36eTOOEIWRFgWEYsVoLAeU4YAFAnECSJEm8gipR/JHjOHw0MG7d88SB8sZEj82YZQOQYKaX32BBQI3KrxuJBHbs3ImZmZkvlD7JdjAQMUVRMD0/j+WlJTgUgGcYRosXoGNxq4qChfl53L17F9du3MDRI0dIr4yC+Fip3nEcsrjpBhr4PmzXRWjbaNLXs0UtiiJRIwwJ0p9lGKIkcYAgH80B2URVTUM6k4FESUcYYU+tWkW1WoWiaQAVS2k2mzz6vnz5MlzHwbPPP4+EYXBaYQCtmX46Asiy/+iCYtgAURQJEQs9N9/3YffQSwe7XhYwsCAoOnlAbjAQhnxGORQEpNLp9oCMvsY0TVIJiIwwHTxyBLNzc5/70t62PR02MjqKEEBpZQX1eh3pdJqv45BiYqJVxmQyiZ0LC7h+8yYOHz7MtQIUmhxkMhlSJaBTTJ7rwgsCwiUSBJz4S2JrrwP8zHyHSKubrDwe/b1ERboy6TQZRaTUvbZlwabtA0WWIQKwAK7wWqlUcPPmTUxOTmLPnj1ghEqqorQqf75PtA7oRt65+TNMg0B9gUgTB9u225RcoyYAPBiK+o7OMj+zeqMBz3WhKkpbcsPaEqyFWqvXARDw9ujEBJ45evRzjQ3oZdvBQIdpmoaJmRmsPXoEm87sJ5JJDihkZXCGKchkMpidncW9e/dw4MABaBHRIvY6Q9f5wxgtkbORxoCWy23P46Q4Pi25MWISIRIISCwwkCS4ngeXUhAnqMpaKpOBRdnQbNeFTTnTy7UadE1DtVJBGIYwLQtHnnkGMgX4uJ6HcrnczRkQ/R9oC1oYADAMAng0K/EjCGXmqGQa8HQ6JWbRMUXQ4wJArV4nqm+qSkRdWP+UjgnV6nUeBAiCgJHRURw/ceJzNf+7bZ8NGykUEIQhquvrqFSrSKVSZNQ1snZYhVFRVczPz+PW7du4fv06jlNVPw4kBs14Uykk0Zqq8X2frHnKr+GzAIFibXxK5839BWhgQP/OuAFkWYZNKc9tTYOmqgTkSBk8m40GXMchIGAaBDBGxZs3biA3MoJdu3bB933CvthooEanDRBZ/yyZYMmURMf3ZLaJR6qNAHi7oK3CGEkYOlumIr2nfBKAmkMrLH4YIhediqDHqNfrqDca5DyDAIqiYN+RI9izb98TfCI+W7YdDMSYYRgYm5pCcW0NVq2GWqWCZARIJwCcPUuSJCwsLODevXu4cf06Dh8+3Lago8YWoyxJYPlqEBIWrU4EfdOyWqM8tLwedDzwjKDDdRxIktSSI428ThQEDjT0XBfra2vYWF+HIAjIjYwQ1jEK9otm5KzEGQ1AOjN4oMVPzjZ5URThhyGgaTwr6bwHiByH9z1jqggmJYTyggAj6TTCsEWHzERhBOpkkqkUZufmsHv//u1JgW37VEwQBBQKBQBAfXMTjUYDrqK0RLwiG2UAIjg0NzuLe/fvY+/evXw8sdN/sMoCA+DqEY4A1m9nAQFjEWSJix+GCCmWp+1cQcbmgiCA7ThdbIiCIACU59+lrIolKr8sKwryIwR4HA3Qmf8QQMaimf9QVJVXDaPHF0WRVyhYMC/RNmHUzzAfEW2R8kkv+vfo/QKIEqzn+22THCbFZTiOw69PURRkR0dx8PBhjHzBwcXbXrOHJRIJKDMzKG5soEm5xg3DILrmUVAOgJF8HrMzM7h+/TomJiYwOjoaDzoEuL54dE5YpABDBvLxwxBJWhoM6Hwvi64ZSC+gfzp0Lph8aIuhjB1HkWVIySQUWUatXke9WiXlSFGERisLfr0ORVWh0+zbMAxyPnSjjRKaiKz8SMt6DMwnRFD9rusiZFSlUdRu9IbELGD+K5AKSnFzk4iNiCLHAjBK0jBssSHmR0awY+dOjG4TCG3bp2yiKGJ0dBS6rmNzYwNOrYZqtYoUBSQD4OtCkiTs2r0bS/fv48zZs3jx1CkODoxam8+IbIKiKEIVRWjUdwDgnBzMb/gRboCAVhJYKZ+ReIGW66NTCBIASddJBcG20Ww0YJsmVElCJp1GSFsVjufxMjzbeBnpF2+NsKQiuvGziie/SIFQJjO/Qa+17TWRn/WyECBy5BSjpSgKVlZX4bkuD0ZYYJVOpTA5PY0dCwtQP2cEQo9jQthXq3LbgiAgwiOlEpx6HbIkwUgkiI43Wg9qwzTx1ptvIgTwyssv8xGjaH9/K+bTsn3swx/ZYD06BoMw7O5zhSHnUDdNExfOn4fn+9izZw+CMISmqlwRkC1CBkBSFQWarnMUrkx7dYMspH3+xzGW6diWhfWNDdRozy+bzXJSEFGSyDy2YUDTdeRHRjC3c2dv9bNt27ZPyWzbJjwElQo820aCJhNRC0HG886fP4+DBw9i7759rWAbW/cbAJnkiQPotQ5KKhONep1MIEXamKwq6HkebAp+vn//Pu7euYORkRGMjIwgkUzyiiYD+zKCMFGSiJaLphFwtKq2dERowtDrmlwWnGzBOMlQ2FIbXKX8DYy7gR1PU1UyFp5IQFNVTM/NYXRbpZTbdjAwpDWbTWxubsKu1xE6DnTDIOQVkdesrKzghz/6EaZnZnD0yBFCPATKPU4zamaDFjnLjr1+ixoAwhBlWr7L5XIQJAm+65LSPxXfKJXLuHjpEgxNw9Fjx0h/kFINs+xAouxctm2Tvh0F2fDHg+IXZDraJNN2h8KQvAx3QAGS/YzhJXhbxHFa5c6A6JCzKYxcJgOd8jUkDAMqdaaSLGN2YQEjtCy7bdv2NFoQBCiXy6hXKrBqNSg0mI2C/YIwxLvvvIOHjx7h9IsvYnR0tC3w5tW5IY/pBwEZ7R3g2pmYkqrrSFK0PQMQ+kEABAGuLi5idXUVu3fvxo65OYiSxBUa2bEkSSI6DLZNaIIjk0Ds/Fl7lI8MMznyyMix0yv5idwnNzKO6NDqKcMceHQiIvA8yLKMdMR3GIypEEA6m92uBsTYdjCwBfM8D6VSCc16HU6jASEIuLIeW7yXLl/G1atXceToUUxOTMBIJLr75DQ44OM+7Ncdx/N9Hz6NwFn03cadTTfsWrUK3/OgahrZkCnT2dKDB1i8ehVXrlxBqVSC67rIpNM4duwY/s6v/AoAkh24ngcEAYmYKfWyZZr4wz/8Q1xdXMS+vXvxsz/7s23HBCJsf9FKRee4YQS/wGajEXEYQuRzgiCASXUgBJEosY2MjrYpFDKQ4NTc3HY1YNs+M9ZoNFAul2HX6/Asi/AH0OwZIBvzn//FXwCCgOefe45MI0RGbAHwtSSywKBH1ZHJHrNEgvsO9h66Pl1Kxc70WNi0U7PZxL27d/Hhhx9i6cED1Go1AKRaePCZZ/D/+Lt/F57rok7HErkSoSjykepvfetbWFxcxJ49e1q+A+0ModFEw6cTS20Awc6tKQgQCC0J8qi5jsPl5hVNw/TUVDt9Ogg4fHJ29guPDehl25iBLZgsy2Su3zDQSCRg1euwqdIXkzY9fPgwisUiFhcXkU6lEIQhkuyhjETKXCgk8sBHATigC1gUBAiyzMmAopHzt/7oj/CdP/sz/MZv/AaJgD2PsHQB+Bf/4l/ApiQmbEGwrJr33QEkUynCTWBZBH3r+0gkEkjRoOEvfvADlEol/O2/83cAoAVWokBHTgDCCIfo2CKzKKkSc0ihILSyBDofzABNEmV4zKTTXAKV3bP86CgmZ2a6Sq3btm1PuyWTSaiqijoj86GqgialIlY1DadOnsSbb72Fu3fvYmFhAUk6jRA1VmmMKp3y37G2JPUvsiRxAaAo2C4MQ/zxt76F733/+/i1X/s1pNNpvjYlScJv/uZvwqYTSux9WcpLAOqHFEVBJp1GnU771ClRG2s5HDl6FH/xF3+B4uYmvvbLvwxREAg+ifoK13X5JITnea0pBHaO9M+2NqsgQEKLV4CRMDHtApFWGwqFAlFVpfdK13VMTE9jZGxsIBHSF9m2g4EtmiAQvu9kMgkrk0Gj0UCjUoFjmrBrNaiyjOPHjuGtt97CxYsX8cwzz5ANloLy+Od0/MktshAAUobjin8063YdB67nIQCJdhmoSKR4hnq9jgaN2gVBQGF0FFNTU7h75w6AiNIZ/T3DN5imCcd14VWrMAwDR44cgaaqsC0LV69exfHjx4laYgTgwyhBPcqH7keykV4WnQ0Ow5CLL9m2TQKURIKPBgqiiHyhgMnpaa7AuG3b9lk0RVGQz+eRoX6jXqvBpLwglmUhkUxi//79WFxchKqqmJ6ehquqXRku0KPNGG3roUVfzDj62ZigR/lCJFplZJwpsizj9u3bbYFAYXQUU9PTeHD/frvUMMg6TqfTaDQa8Hwf9UaDcJUkEqRNqiiwLYuPTuoAr0wwUjXbdRFQTgKGV+rlOxgAkRkTj2OVTFVRkE6noVBiMl3XMTE1hfzo6Dbp2BC2HQw8prFNlEkK1+t1VEsleHS29dizz+LCuXP46KOPcODAATipFHTDQIqNGfUxNk7oU7lfn4pueDQLj0b5nu8T5i+KVr569SpuUa7wF198EUePHkUmk8H6+jp+67d+i7OAsUwgCAJAFIn6F50X9oMAtXqdlAUPHsS5c+dw5swZPgvNgoCAzTSDKBYGPTgEehmbaWZtDVGSoKsqUuk0yTzy+e0gYNs+dyZJEqEFTqVgmiZqlQoatRpM28b09DSsZhO3bt1CrVrFrt27Ydk20qnUUARajCXUZRThlO7b9zz4YdhS5wtD2LZNxNUMA/VaDefPn0e90cCLL72EUydPYs+ePchms3j48CG+8Y1vwGXTTWi19wRRJNVFOu7ruC6cchmGYeDAoUNtvoNVRAP6P4IAsigiFIk6IWKYC3tdIzueTTEObArKSCSg6zrGJye3g4At2nYw8ARMVVWMjIwgk8nANE0063WohoETL7yA8+fP4+LFi9i9ezcymQwqlUqbZG80LOCLhZF3UHR/QEtoANqAOABQr9XIGFOxiGvXr8P3PBw9ehRf+cpX2sZ3XNclvTnWNoj08kEjcplG+oyXwHFdHDt2DIuLizhz5gx+5Vd+hTuBIAgIup8eI6SRfbQF0st8NpZENRxsy4Km61AUBWNUSyA7MrLNF7Btn2sTRRHJZBKJRAL2yAgh+6nVsOfAAeiJBK5evQrLsrBz1y40qcaJFgHC8eoiTS78CN13VGqYvUah9OdMFbFJJc6vX7+ORw8fYmRkBF/+qZ9CllHw0qCB+Q7ODBi2850IAAy6fs1mk8s6Hz9+HJcuXuS+I4wkEQC4fwoZhmjQ2CA9F9OyiKiRaQKCACOZRCqZxOT0NArj45xGftu2Ztve9gmaLMtIs1731BQcx8HEjh146/vfx80bNzA3P4+x0VGYNKpVWVAQ81mcrUtVIdCZZEb72wkcunDhAur1OgqFAl544QUkKaUw/SAwOWEAXZKgccc1DAOKqsJsNrGPOibPdbG4uIi9e/bwRYzOCgc7rw6MANAKFkzLgmvbCEBYwsIgQDKdRmFsDAu7dnE65G3bti+KCYLAe+0jIyMIggDTCwsYGR/H2z/6Ea5fu4aFnTuh6zqcWo0rovYa9WXsoFzhjzKAgr0+UpL/4MMPoWkaDh46hAP797fWNvkgQkFOA/9eNMHMZElCKpUiFOLNJvbv38+Ti+vXrmE3pS7urIxyXFE0kYgkSqw1atEgwA8COLZNlBHTaczu2IGJqant5OFj2vbd+wRNVVVMTE3hb3zta/juf/tvuHDuHNbX1zE3N4exsTFeslM1jctzAuCUncyYNgIzz3GwtLSEO3fvAgDq9TqOHDmC8bGxtlJilKCH9fIZdXGsRaJzkfKWK4qCyclJPHzwAOfPn8fY2BhUTSP8A5Gynh8T1bPF7HkeHz1iPARhECCdy2FkdBSj4+PI5/Pb4J5t2zbQikEqhWMnTmB6fh7/3//yX3Dm/HnsmJ3F7MwMjEQCvu8T0iEq3gVEeuqRYJwpCTIrl8u4e/s2bt68CQDI53I4evQoknHtSzq7D4DjDHpZlKCMCYpJsozp6Wncf/AAZ8+dw/jEBPEditKqCnRWGaLTBEEAh9Kps9FB13GgyDLGp6aQGx3F5OTkNqD4Cdl2MPATMFEU8bM///M49MwzeOfHP8aH588jm0xifscOzExPkz6b4xCZY03rWpSiIMB2HFQqFdy/dw9LS0vwKZWmIAh47dVXkUgmuc4BIoEFBKG1oCmCt3NRs6ABaA88QgCKquLQwYO4desWFq9exU//9E/DtW04tg2Jlh0Zg1mUOzygXAKMt8D3fThUijhXKKAwOopkOo1UKrUtLbxt29bDxsbG8H//1V/F2bNn8f577+HO/fuYGh/H3NwcCoUCLMviQYEaBfeiBRBuNptYXVvDndu3USqVoBsGRgoFCIKAZ599FoqitIC/9L3MRzgUX2TZNgf+RUebo8a0Sdhxk8kkDhw8iNt37uDatWv46Z/+aVjNJkyQyaYoDbEYSSw86g8Z5bjr+/BcF7quY3rHDuQKBaLDkk5vVwOeoG3fyZ+g7dixAzt27MDm5ibeffddXDx/HovXryOVTMLQdRiU8Y9xE5iWhXqtRpQIm00EYQjDMLBv3z4sLCzgO9/5Dj744AMw4RHHceC4LnTD4McMgwCWaSJECzcAdM/wdiKFo3bixAn8H3/0R7hx4wYs20YmnYbjukSq2bKIE6DYBsZM5lBRE5+OODFQz8joKBKpFFKpVKxM8rZt27a1m6ZpOH36NE6ePImrV6/inbffxnsffQRD05DQdSQMA7quc4Y927bRNE3uO2wqbz4xMYEXX3wRkxMT+OM//mMAJNGQRJGU3l0Xmqq2AgGaXAgUaxStOJC/tPsLifIFRIME5juuX7+OZrOJTDrNM3yb+gqWgIQUMB3lKlEoOLqwYwdyIyNIJBJIRqmdt+2J2XYw8CnYyMgIfv7nfx5vvPEGrl69is3NTZRKJWxubqK+ugrLNKGIIrKZDOHPnppClqoRjuRy7X09aqqiwBQEXk5j/US2aQuRCkE/4xwHkYU+OzuLsfFxrK+t4cL58/iZn/kZJIKAMJhRLgOHso8pmgbVMGBkMjASCSRp5s/015PJ5DZZ0LZt22OYKIo4fPgwDh06hAcPHuD+/fsolUooFYt4sLGBJlNZ1TRkaMA9PjGBXCaDTD7PhZA6TVVVLuATbTOaVNWQ6aYMYyywYBXCqO+4dOkSfuZnfobrJ5imyeWZRUGAbBhIJBJQNQ2JZJLzFkg0mUgkEtvTAZ+gbQcDn6IZhoHnnnuu7WdhGBJSEsf5/7d3Pz9NpHEcxz+dTltsqyI/qkXKxXiQZA/1uGKCF4/yL3j3sJf14t/h0YP+CWqiMSJ4kGVvVU9iPKywgtklQunKdDr9sYeZZ3YgsMJmEYZ5v5ImpG1oL/320+f5zvP1Rxy7rn+GQdB4t76xITuYINgNuvm7wYmGdibjJ+5mU/l8PvzlLvnL/Xv9QEdPNzOhoFqtanp6WrXXrzUxMRGeLZC2bQ0MDytfKCgTmWOQz+eVy+V2nHQI4L9LpVKqVCqqVCpb7m+322o0Gv4kQtdVq9n0b47jb9d5Xjh9NLo1mM1m5QTTCbvdrizLkhusCliWte/wbgVzW8zKweVqVdMvXuh1raYfr1xRJ3idE8WiBgsF9eXzsjMZf9sxmw0nxEbPI8HBIwwcMeZQI8Psu7vBwCHzZb9Zr0u9ngrFohqNhr/vF3z5m4M4zF69ZVn+EZ7bzgeInvZlGnnMhERzzkG311PX83RpfFy/zs/r96UlOa6rs+WyssF8hlzQUJjL5fjiBw6Jbds6c+aMJIXnCERrR7vV0mYw0a8r6WRwqbOdyagZfPl77bZO9PXJaTbDSwbNjBJzM6cahr1F0ceCJf5OZELipfFx/TI/r98+fpQsS6WxMeWCpulcMOmQ1cLDRxg44szyerFYlBlh7Hme3FJJjSdP9ObdOxUGBtRfKqnT6WijXlfTcdTY3AwHBhXyeTmtlgrFor9HaNtar9f/GYASXNYTjhlNp/0Gn6AjOG3bGiiX9fOdO3KbTa1//arLY2PKBGkewNESvVxR8n8AeJ4nr1SS67r669kzvVlYUHFoSCcHB9XXaqm+vq6256neaKjX7cq2bXndrr5ubupksRj2JtWD2mHGmJs5K2nbVjq4ksCK1I7hkRH9dPu2Wp6nP7580Q9B0yK/+o8WwkCMpFKpMByYDvzl5WUNDQ+rfP68Op2OSufOaW1tLdweMPv1+vRJbxcW/CXGixc1euHCljAQvZmlxOhtdnZWKysrymazunr1Ks1/QIxYlhWu3pmVx+XlZQ0MDmpkdFSdTkdDZ89qbW1NnWA0sXleL5PR2/fvJelfa4fZEtxeO2ZmZvTn6qqy2awmJib2dJIivj/CwDGQTqe3XGsbHfBjOI6jz58/S/K7hMvl8r6S+aNHjyRJ165d2/H/A4iXXq8n27bDYF8oFDS4w0hwx3G0srIiya8dIyMj+3odakc8sMGbUPtdonv8+LEk6caNGwfxdgAcU9SOeCAM4JtqtZoWFxcl8YEGsHfUjvggDOCbHj58KMm/vHB0dPSQ3w2AuKB2xAc9A8fUq1evwvPHJWl1dTX8+8OHD7p///6W59+8eXPX/2X2/Kampv7X9wjg6KF2JBNh4Ji6d++eHjx4sONjc3Nzmpub23Lfbh/opaUl1Wo1SSzzAUlA7UgmwkCMTU5OSpL6+/sP7DVMsq9UKqpWqwf2OgC+H2oHtkv1tk+sASKuX7+u58+f69atW7p79+5hvx0AMUHtiBcaCLGrjY0NvXz5UhLLfAD2jtoRP4QB7Orp06fyPE+nTp0KlxUB4FuoHfFDzwB2NTMzo9OnT2tqaoojRAHsGbUjfugZAAAg4dgmAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4f4Gk4VU1boEKZcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -167,12 +167,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADX10lEQVR4nOz9eZQk53neC/5iy8g9s/at9x1Ad2NfGiAEgKZMmxRFitKV7COPZEkW5bGu5WvRkmfs4+HI91LnHso6snykke2rjbJlj62dHFOWuAHEjgbQ3ehu9IquXmuvyj0z9pg/4vuiMrOyqhsgeq+nT52uJTIyIvKNL97leZ9XCcMwZB3ruEug3uwDWMc6biTWDX4ddxXWDX4ddxXWDX4ddxXWDf4G4sKFC3z+859nz549ZDIZ+vv7efTRR/mVX/kVms3mmq/98R//cRRF4Qd+4Adu0NHeoQjX8aHgC1/4QgiEk5OTPf/+la98Jczn8yHQ82vXrl3hmTNnVt3/n/zJn4RAmMlkwlardZ3O4s7H+gp/A3Do0CF+5Ed+hGq1Sjab5Ytf/CKvvPIK3/zmN/npn/5pAE6fPs0nP/lJarVaz318/OMfxzRNGo0G3/zmN2/k4d9ZuNl33J2CtVb4p59+OgRCXdfDV155ZcXfv/SlL8Ur/Re+8IVV3+MTn/hECISf+9znPsQjv7uwvsJfZ7zxxhu8+OKLAPzUT/0UBw4cWLHN5z//ee655x4Afv3Xfx3XdXvu6/u///sB+OpXv0q4Xi/8QFg3+OuMP//zP4+//4mf+Ime26iqyo/92I8BUC6X+fa3v91zu0996lMoisL09DQHDx780I/1bsC6wV9nvPTSSwBkMhkefvjhVbd75pln4u9ffvnlntuMj4/z6KOPAvCVr3zlQzzKuwfrBn+dceLECQB27NiBruurbrdnz54Vr+kF6dasG/wHw7rBX0dYlsXCwgIAGzZsWHPbvr4+MpkMAJcuXVp1u09/+tMAHD16lMnJyQ/pSO8erBv8dUR7ijGbzV51e2nw9Xp91W327t3Ltm3bgPVV/oNg3eCvIyzLir9PJBJX3d40TQBardaa2627NR8c6wZ/HZFMJuPvHce56va2bQOQSqXW3E66Nd/5zncol8sf/ADvQqwb/HVELpeLv1/LTZFoNBrA1d2fxx9/HEVR8DyPN99887s7yLsM6wZ/HZFMJhkYGADg8uXLa25bKpVig9+4ceOa27700kuEYUgikeDxxx//cA72LsG6wV9n3HvvvQCcPXsWz/NW3e7kyZPx97Lquhr+4i/+AoDnnnuu4ymyjqtj3eCvMz7ykY8Akbvy1ltvrbrdCy+8EH//1FNPrbnPr371q8By8LqOa8e6wV9nfOYzn4m//73f+72e2wRBwB/8wR9gmiYjIyM8++yzq+7v0KFDXLx4EVg3+A+CdYO/znjsscfiVf53fud3+PY3v0mtXKZSKlFZXGRpYYH/43//35mdnWVgYIB/8FM/xdzMDK7j4Pv+iv1Jd+bBBx+8ajFrHSuxeq17HWvCtm0cYZSe5xH4Phs2bODiuXO0ajV83yf0PFAU/unP/iyXLl3CcRz+wec+xw9/9rPcv28ftuPw/Isv8p2XXmJiYoLhoSGefOwxTr37LufPniWTTqNqGoqqYtk2lmXxR3/0RxiGwf79+3nnnXfo7+9nYGDgqqnMdURYN/j3gTAMabValEol6tUqVrMZGb5l4VgWfX19LC0uRtRd3ycEFFVlbGyMf/7zP8+v/rt/R7PZ5Mt/+IeEYUgYhiiKQn9/P0NDQ/yjz32O/mKRRquF7TjUajWmrlxhcWmJMAyp1uuUSiWGh4cZHRjg//dnf0YI+MC27dv5nu/5HjZt2nSTr9KtDSVcJ1aviTAMcV2XSqXCzNQUjVoNz3UhCDASCTRVRVVVjp84wdFjx/jMpz5FOp0mDAI83wdFQQFQFMqlEv/tT/6Eb33720zPzmIYBrt37uRjH/0o3/+JTzA6Okqz0eD4yZNcuXIFz3Ho6+tjdHycVDLJ8y+9xB/96Z8yMDDAF/7Fv8APAmzbpl6vMzMzg2VZFPv7eeDBB9m5axeZTIZkMommaTf7Mt4yWDf4HgjDEMuysCyLWq1GrVSiXCpBGBL6PoZpYiYSqKqKCqi6jqaqsWFrigKqiqooeL6P7Ti4nhe9HkiaJul0GlVRWCyXCVyXVDrN5cuXOX70KIGiMDAwwNjYGIMDAyiKQgj8v37plzj0zjt84m/9LT73kz+J7/vxl+f7zC8sMD01hWVZbNu+nY2bN5PL58kXCvT19ZHL5VAU5aZe25uNdZemDY7j0Gq1aDQaNKpVqqUS5XKZZqtFCCQMg1QyCY6D53koikIgXBfpooQAYRgbt6Io6LqOpmn44vee6+I4DmYySeB5VGo13jp0iEq5zIaNG9mwYQOO66KLm0YzDCzL4jsvvUTLsnj6iSeiGyEMCcKQAFDCkInxcfbs2sWRI0d47+xZLMtibHSUpYUFZrNZ8vk8fX199Pf3YxjGzbzUNw13vcFLv7xWq1EulagsLVGr1SKDDkPCICBlmpimSdI0CcMwWtlVFUVRotU3DAmCgMD3CYThB2FIIFyaMAjwggDf93E9j8VWiyAMaVkWc3NzNOp1ctks9+3bRz6XQ1NVfM9D0zQSiQSKovDaa6/h+T75XI7HHnssfpooAEFAEIaoikImleLJAwc4efIkx48fx1BVtmzZQmVhgVq5TGlxkZlslr6+PsbGxu46w79rDV4a+tzcHHNzc1RKJULPI2EYpE0TxTTxPI9EIkEumyWbyaBpGqqqohsGge/jBwHtDoIXBCiKgu95eJ6H5/u4rovlOLiOQxAEqIChadQbDaYvX8ZyHFKpFCNjY5G7EYbouo5l2zieR7PVQtM0Dh89yoaJCR5/9FGarRaNZhNdVVHEzReI1+mahgLs3r0bM5Hg7bffZnBoiE0bN9JoNKjW69QqFaxmk1qtxtDQEH19fXeN4d+VPnyr1eLy5cssLi7SajRAGHoqmSSdSpE0zaiRWlFIJBJkMhm6PV/P82JXxvM8fM/Ddt3o9yL70g4F8D0PS7hNJ06exLZtAmDTxATJZBIjkYjcE1UlEDdbf18fSdPEDwIC8ZTwgyB6j7b9+0FAGAQgXCjDMNA0jUOHDjF15Qof/ehHyWazqKpKq9ViqVRC1XUK/f3k8nn6+/spFAqo6p1dmrmrDN7zPM6fP8/c3ByubaOGIQlVjYK6QgHTNFGAaq2G47qoqkohn+/YRxiGuJ6HZVl4vo/veZEbE/0x+lIUDF1H03VU4XbYwu9vNJscOXIETdPYsX07R44e5fFHHkHTdVq2HbspzWYTx/NIJhL09/fTVygsZ1vCEMf346dMGAQ4rotl29H7t8EPAt44eBBdVfmeZ54hIVbyIAioNxo0mk2MVIq+vj76+vvp6+u7o3P6d41LMzMzw+TkJI5lofg+KcOIVrVcLuo1Ff64bdu4rksYhmRFB1IIhEGA7TjRqhwEHUQwBSJ3Qqys0q2A6GnStG0URaFcLnP82DFy+TwPPvgg9XodhYgOrOk6yVSKMAjQNY2EYVCt1VAVhVq9Hok4ZTIUi0XMRAJDUQhVFcSTJBkEZNLp2I3yPA/XddFUlfvuvZc333yTY8ePs33bNsxkkoSuk8vlSCQSlCsVLl+4QLlUwtm4MQ5u78SMzh1v8J7ncfbsWWZnZ1Fcl6RhMDwyQrFQ6Az8BCzLilKHySSqquLYNlZXmV8Rro5hGLHfHHStrIHvU2808H0fRVGoVqscPXqU0dFRHn30URqNBvIViqqSy+VoNBo4wtcv5vOkksnIXfJ9LMeh2WpRr9dJpdMUC4UoiBb7kMenaxq6eBKEYYgfBKTTaTZv3sylS5fYuGEDfhDQVBQSuo6ZSDAwMECpVKJZr3P63XcZn5jA8zwGBgbuuBz+HW3w5XKZs2fP0qxU0ICB/n5GR0fRFIWgywcGsMTq7noehq5TrlQ6/m6IrEnCNKMGDGFkYRAA0UofArZl0RBteqqi4DgOhw8dYmR4mCeeeGLZFRHZHJnSTKZShIBj2zSaTRRFwUwmyeVy2JZFtVaj1WphWxbTzSZ6IkGxUCCTTkfvLzJGEoqixDfA3vvu49LFi8zNzbFh40Z838dx3ch10zSSyWRUtfV9pq5coVGvY7VajE9MrKm2cLvhzjmTNniex9TUFDPT01j1OglNY2JkhGJfH8AKY5cmUqvVqDca6LoeFYqIRJISiQSmaaJ1BXSKokS5dbEP3/dpNJuxu2MYBkoY8vLBgxQKBR4TnUq+uEG0NtdHEQWrTDodr8zNZjPi0gBmMsmgaeI6DtVaLX6f6ZkZ9ESCgf5+UolElAaFOJ6Qbkk6lWLrli1cvHCBPXv2EIYhtuNETxTfxyd6Kvm+H7lT1Sr22bM0Gw127dlzxwSzd5zBO47DuXPnqJVKuI0GhWyWsdFR0qnUckAnjVT8bztO5CfX65HvnkySMs2IOqDrHYYjEUJcafVEib/RJnmdSadRgOdfeAHDMHjywAF0XY+zOsCKGwgiw8+k0xH5DGg0mxSLxSj4Fa7U4MAAxUKBpXKZcrWK5zhMTU+Tz2bpKxaXjVO4awHR02fnrl1Mnj/PpYsX2bp1K4auE6bT2JaFLegSAM1WC8Mw8Hyfuelpmo0G9+3fHzeZ3864M25bAcdxeO/MGaxaDd+2GRoYYGR4OJK/aFuJpaG7rkulWqXeaGBZFiqQz+UoFosk02l0XUeBDmOXqqdK25dl2zSFC6NrGsVCAV3TePnVV3Fdl4889RRmW0O3dIV6+ceysJXLZiPXy/ep1WrxMYeAL7JCxUKBsZERMuk0hqpSbzS4PDW13D8rXCaEy5ROpRgfH+fs2bPx+8mnRyGXI5vJYArahKw6u65LrVrl2KFD1KvV7/Yjuum4YwzesizOnj6N22wSui7Dg4NkRMEolL62ooCi4Lou5UqFar2O5/txliWVyZDP5+NUYjdCYfjybyFRc3bLslAUhXQqRb5QQFNVDr75JtVqlY889RQZ0ZQtjVYGmGoPg5c3l6ZppNLpKHB2XeriWAPfB1HgCsMQwzAYGhpicHAwlgKZX1pienZ2hVKCoqps2LCBarVKrVYj6MrnJ0yTXC5HPp/HEH67ZdtRJbpa5b1Tp1gUwlK3K+4Il8ayLM6dPYvfaqEpCrl8Hl3XIzeG5RXZ8zzqzSaOkMNQVZVkMhkZj2igNnoEaHE2pS0gDMKQer2O47oQhmTE6gjw3nvvMT09zYEDByj29dGev/EF/UAhCmjl6ksYErbRFFRFieIHw8D3fVq2jaJpJIVRK0QukSuyQOl0mmQySaVapVat4rouV2ZmyOdy9LUVlEZGRjB0nampKXbu3BkHzPI8VSKZEF3XWVhcxJH1A99HUVWYnMRzHEbGxz+ET+7G47Zf4aWxe60WmqoyPDiIruuomkbCNOOgsimyHL7noaoq6VSKgkj9+TLI7BJLislgsKKqWRVGpRDJcUhjL5fLHD16lO3btzM2Nha/Vr7e830Iw4hdKQw8ztYEQRwvyDSnpuukkklURaHZaMTuULRjpcPdUlWVvmKRsbGxKAZRVWq1GjNzc3HcoOs6wyMjTE9Pxzn8+HyDIC5kGbpOf6FANpNB1zTCMKTZbFKr15m+cuW2Xelva4P3PI/JyUncVouEprFxYiL+myECxDAIqNRqEeMxDDENg2KxSDqdjrIkwsUJwzCuQoJY1YVro3S9Z7VajXgzIn8ueSi+53HwjTfI5fPs27ev5zHLm0u7hlSfNGYzkUA3DBRVpdFsdtyEMYGt7XWGYTAyMsJAfz+GruO5Llemp+M4Y3xsjKWlJVzxpJOZHZk9kk8ZXdATkqkUqqYREt2wtVqN82fOULsNffrb2uCnpqbwGg0MRWFifBxN02KOi6qqNJtNKtUqnuehKgrZbDaqagpXAiID9gUHRRpur1UdwPW86CkhqqGFfD4u8gAcPnKEZrPJo48+uiKNF/vvbSnJ1RC/rzD4MAyjdj9VJfD92HDbt1V7VEUz2SyjIyOYgnE5OzdHqVJhdGwMVVWZnpmJbhjxHiv4P4oS0S0UBUUEvXLbRrPJyWPHbrtA9rY1+KWlJeqLi4RBwPDQULQCCR5LEATU6vWOVb1QKGCKPLWqqijC4OKcuUg/hj1WdbldrVYjEE+CvCBiSVy6dInz589z/4MPrtCKaXeNZMDaKyXZjtjHJ0orqqoapToVBduyotgBOtySXoG2XO1zmQyGplGpVChVKmTSaZaWluLjCwTzs7t4lTAMVPE71/dJZzIkRIW31WrxzuHDt5Xc320ZtFqWxdzlywS+T1+hQCqdjnxfVY3SaPU6ZiJBMpkkncmQTCRWrNoqELRVS1XBS2kPTCU836dWr0fGrutks9l4NQzDkHqtxltvv83ExARjIyNYtt3RGCL98zAMI0VhsZrW6/U406PI95fHqCg0m814/E0o+O7yKVar1ykUCp2rcttq3Q5VVRkYGMA0TZbKZRzbJpFKsSR6ZaWxy+ujCbpxtMso9x8qCp7joAKJZBJNUeLK9JG33mLv/v0MDA19Nx/rDcFtZ/C+7zNz/jy4Loau01csxiX9RqMRC5KqmhbRXYV/2mv1U8XTIAxDNJFz74YXBNRqNVzfR1MUdMOg1WrFNF3XcThy5AiqqrJt27YOHxuIcuFEGR5PVDLlU0hmbDzZ/9p1nJ5oGFHa0ouyQup5HrZlkUylUBQFVdPQVDXqsRWxSbeLks1mMQyDhaUlMuk05xcWqAhSWq9rI59Mhq5DEOCL9yeMZP5UTcOyLFzX5eiRI+y7//5b3uhvK4MPgoD5y5dxWi38MGRiaCh2K+qCeKVrWsQmNIzoA18lpw7RTSK7ktp9cU9Ib7iuG1cyVVUlncnEUtayfD8/P8/CwgL79u/HSCSiHH57R5TYpyI4NWEYYug62VyOUKysmVRq2ejaqsCybpAQLEy5GieTSWr1OrbjoOo6uuiQcrsKZApRrKAJgpumaZimyejQEI16nXOTk1yemmJ8dJR8D8k+efye70dNL0EQ8YxErKNpGul0mnq9Hhn94cPsfeABBm9ho7+tDN6pVqmXSji+z3B/P4lEIvLXa7V4hezr66NWr0fkKNvukKzuhgxYJd231Wzi+j6h+F2z2cTzfVRNI5VKoakquqbFq2kYhpw5e5bR0VF27tjRk04b81oQhqPrmMlkxJcXPBlNGHQ3fN8n9H1M04xrChKpZDIOXpPJZJxSlK2G8skSCP6+PAZFVaPU5NAQmqLgWBalSoUwDFdw/6NDj3pwdV2PDN51QRyLdL0y2Wyc8j12ixv9bWPwfqtFeXERX+SIc/l8lCIUFUNFVeN+UDOZpNVs0rSs6NHbFSD6Qkmg0WhQq1ZRNA1dVeMiUCC4Mbquk0wmKRYKPQ3y2LFjOLbNAw88sDp3vM2fvtaANYaqxlSGbiSTSRzXxRM3aPeNLXtqPWGkvqAZh4IvD5BMpWg2m2RyORbLZfwgoL9Y7NiPZVn4vo9pGDHD0/P9+ImoQER6S6ViQtvxo0d56NFHb0mh19vC4APXxWk0ovJ6EDAyMIAjCF9hGKJpGnnRROH7PqlkElf4ufVGg2w2G634jhM1RwjDi10MTcNIJCIqra7Tajaj4FHeRD1SiLV6ndNnzrB79+54VM1Vz0OkJK+VeRgHsD0CaVVRSKVSMbVBauS0/13VdXTANAw8sfJLfr3n+6RSKTzPI2Wa1BsNZufmaDSbDA8MYAgXxhLxQzqdxnGcOH5odwGl4FQmnabZauE6DsffeYcHH3nkliOc3fIGHwQBXqNBtVrFDwIShkEikaAqCFWGYZATWROZnVCAbCbDYqlEq1qlWquRFPlkmX1IGAYkk2iCgiDb2lqWhSMUA3LZLJrwnbuN7tChQ6TSaXbv2nVN5xGKFRfWzsF3o7uo1A7TMLClYbZaHTdeu3SI3I+kOktks1kq5TJ9fX2oqkqlUokWFdclk07jel5M0UiI93HaFowVxyoq2I0wpF6tcvLdd7lv375bik9/y+fh/UaDQOTAPd8nm83GbEDTNMkLcSHpUARhJKJUbzQIhOti23a0Coqbo7+vj3wuR0L2nIqV0XVdWo0GYRiSSqej6ibEvBYZBF+6fJn5+XkefOCBngQwifb0oMx4SMO7FsROkngy9EJaZGkc140rxr7IAHU0g8AKKkHSNHEch1QyyejICKOjoyQTCVqtFrMLC7hSfcF1o4YUlpvRVz1mVY0UHnSdhbk5Ll64sCJNejNxSxu812wSilK+rG7Ki2eaZpzZkN1HtVotmqQhfElD1ykWi2TS6bjzX9O0uKDji0KVJtKEddF2lxQaNN2QMhrHjx9nYmKCkZERYGXeu+e5fIDVXbwprHKDSCpxQtQZ6s1mR/58xa7k/gSSqVTc0ghQyOcpFotRYE4U1KfTaUJFwRUths1WK3INhVAsLHd8tR1Y3IV1cXKS+fn593fO1xG3rMEHnodvWSDK2LHfGEb6K7lsNmZAVqtVKpVK1LVP5COn0ulIZauvL26K8H2farUa+6WSrIWi0KjXCYIATdfjD6sXzp8/T6vV4r777otz3bI5A5aNKmhzJ4DYnXlfnUOy0iqeDrHAkwisZUBrmmZUUxBxyuq7U+KbFqIbW6ofS7qAoijk83mSphlf72wmg2YYEctTUbAch1K5jC1ulu5+XkRaNp1ORz3Fp05ddTLhjcKt41x1wWs04jK653m0LItCPh/51rkcvuvSaLVwbDui1ULciteeUZGzkAq6Tr3RiKiuokAlsxVS9EgqCHQ/+iV83+fEyZNs3LiRfC637FtLY28zelVVO1Y+v0fAKo2lw9dmOSsj1RJUQYTrQDtLUlFImibNVgtLuG6rZY0UAE0j8P2IGg1Uq9W4G0sB+sRTsVKtUqnV0A2DTDpNOpWKegiEHHhLNLhruk6i6z0VJZIqSSYSNBsNLpw/z46dO2+6P39LGrxv21GTA0LmotkkYRgRVTaViopMQvoiUBSSiURccWxHHGwqCpqqks9maVlWFJg6DvV6HV+sYKqikBVpzdUwOTmJ1WpxT9uY+FXRZaCBaNpo37/Cykdst3N0VakMGYSbZqSuIApma82FlTekpmmEgkJcLBajQlIqFReoPKG8sLi0hCZ6B1LJZJzeVCBOeTqWRcI0Y2lAeYMmk0lc32d2epr+gQGGhoZuqvzHLefSBEGAL6uZYUipVMJxXVLJJLquU6vXo1WdiL/eXyySy2Y70mTQxnjsWnXSqRTFQiEqWoUhjXo9KlR1yeZ1w/N9Tp06xebNm5fHSq7hu3evyHFK8oPKXlzFSFRx46uKEvnlqxybrDHUhNiU5N6kU6mISdp2fFIKRFMUFpaWItapCN41TYtWfZH/b08WeG3+PYpCNp3Gc13mZmY6ppPfDNx6Bu84EbmKiC5gOw6e72OK3HoYhhiJBH3S0IWIUndGRO6jFzSZSdC0KFctyu7Vep1KtYplWbGBSpx77z0s22bPVSbsrXpekhb8Abv/r2VNNE0TRdOWK6Jt8DyPZrMZS30EQRBXi5NyZe5+T0VhcGAgelqEIXMLC/E2sggltTfTokkl8H0ajQattptOUVXSySSL8/OxUO3Nwi3l0gRBQGDbUeorCCiXy1iWFclNi6pjPpsl0ZVBUWQmQ3Dh4eoGYts2QRiSSiYZGR7G9Twc28YXfPNmq4Wh61EThKpy+tQptm7ZsnpAGy5L8LWEL22J+MPzfZrNZqQqJnzlIAjiDMnRo0dj4SdVEsDkdsLXzhcKJAwDM5nslAzpeoIlTZNWENASY+89kVpsv4FVTSNpmqRSqZgkthrkhJJ5kaacX1yMcvLiHGQTTSKRiERgLSuS/7BtPNclZZrohoGRSGA7DksLC6RFQuFm4JYy+FBIRUgabbVSwfF9BoULkslkVs1yKIIeHIoez7XgB0HEamxb3RKJBOlUKhphI6XqxNeF8+exXJexiQlm5+ZoNZvU63VqQh9GGrfMnEhCmiZ4K5J6rKlqx9QQmZv3fD9iYErJbSmvLWZHydXab3tyJQT92UwmSSaT0SqbTpNKpbBFTt627biLSxENLtIwAVzHuSZ/2tB1Bvv7mZufx7FtbMchk0rFBi8hMzOGrtMQ16PRamEGQXyDLczNUezvj5mbNxq3lMH7rRaKEmkp1qpVHFHpG+rvJ3M1Xkbb47P9515oNptRC5tgVkooikIymSRpmiyVSiwsLFAql7l06RKqovDiiy92pPTSmQxJIUSaTCbjRmppjHL1s22bZrOJpusdrMRyucz0zAwP3H8/xS4OC0R6Oc1mE13TMHSdZqsVBd3NJi3LwhJPksWlJS5durScCRKdSslkkr6+PorFIkNDQytEUuW1upaykJFIUCgWWVpcpGlZGOIpsdq2eV2PZD4EjTkIAlKCR19aWiKTydDf338N7/zh4pYx+EAEUK1mk/LSUuS3GwaaYZC6Bq5KqCgd8hW05ZvbYYvpGxBlEFAUPNdlqVRicWGBxcVFlkqleMKHaZoEQcCmzZspFIukxKqqiSJYt6+PWLkt244rtJJ/oqhqR0AnXysro7BckQ3DEFuspr7QgZdZKjOZpBif+PIxOI6DZVlRa2O5TK1e5+KFC5w5cwaIUq6Dg4Px5D9JRZAFrBXn0v75BAHpVIpWKoUl1M/W4hCpqhq5TI5DS3DmA7HSl0slBoeGcBxnzWzS9cCtY/COg91ssrC4GIn7GwZpRSG8llK8zGN35cPbqbkQZRKajUbk0ohBYEulEg1BVTAMg4GBAXbv3s3AwADFYpHnX3iBsVyORx55pO3twmWXx3VjVyQMoxlQXteNJj/whNRwF5AUiUaj0fMcHdfFsW0CIb3dXuTRRFpRVo2lUkP8nmL1l1TmxcVFlpaWWFxc5MKFC5FygnApzr33HoMDAyTb1dlYXvnbb4RioUCtXscVo3q6acvtUFQ1CqRVlVaziS+OKyS6OavVKoODg6u+/nrgljD4MAyxGw0WK5UoSEulIhnnUmlFgPp+0E688hyH85cuMXXlCguLi3iuS8I0KRaL7Nq1i8GBgah1r+31C4uLlEslnnzyyRX7NQwDXfjEEr7wuyWPRQZ2tuOgCiam0m7YbTeoKng67W1+YRgSGAYJMQRN3sgxr4eoMLWi0kmkdGDZdsSGzOXYsGFDPMjY931mZmY4cuQIbhiyVCrxV3/1V+QLBUZHRhgbG6NQKHT04kpouk6xUMCZm4trJOlVAnl5LQ1dR81kaIrGndD3qSwtkUgksCxrzZ6FDxu3hME7zSb1ahVXDPoa6O+nXKngQ4d0xqpYxV93XZcrly8zNTXF7OwstuuSzWTYvm0b4+PjsevQzQGXeO/cOdLZbMyZWfm2ne+rqSoInfh2+L6PKYhvHYGaeH0um6VQKKzYvyWKa4lEIo41uikLqCr0YC+qmkZC12MXLtVmVM1mk2PHjsU3zSOPPIKiKExNTXHq7FmOHT9OOp1mfGyMDRs20Nff3xHcmqZJKpnE8TzK1WpHINwTbXl7yVdaXFxkcGSEZrN5dxm8L+52S2QU8iK37gp+R7c4UgfkBy/8d7lilkslJicnuXjxIoHvMzA0xI6dOykWixQKBTKZDEEQsFQqRbthZRqzaVlcunSJ/fv2rV2m7zic5cruit9D5+p+LehxI7dTD1bbRiJhmnG6VdKj5+fnee2118hkMtx///288J3vYJomQ0NDjI+P86DvMzc/z9TUFJevXOHMe+9RyOfZtnUrGzdtim5YRSGTyxFUq4RBQLlSYXBgoOcxKIqCRpRhkn59vVbDsW0WFxcZGhqKlNZukDrxTTX4MAxZmp/HF0WKVDpNUigQeCIVZ15j6sr3fS5dusTk5CSlUolUKsWuXbvYsmULuq5TqVbjiqKk6CqqSiAotd1Gfe6999A1jc2bN69+/L0YiT2MPWzLnnwgrPG6tfZoGAaqGNbgOA4zMzMcOnSI4eFhHnvsMer1OoHvd6gUqJrG6PAwQ0ND3L9/P3Nzc0xOTnL4yBGOHjvGxg0bGBczqQqFArVaDcu2o0ab1YJYZXnaoTT6VqvF7PQ0mUwGy7JWdYs+bNxUg6/X64QioEuJYWJxt7xgMuqrGbz4gCzb5tSpU7z33nt4rsvo2BgHDhxgZGQkXlGrQiwomUzGgZ30m0OhqBVndcJIReDcuXNs2rx5zVzxtZhvHPC9Dx58fIq93keJxmB2BOZrIJlI0PB9Tpw4weTkJJu3bOGB++8HRcF2HEJA736KKpFcSagoDI+MMDwygmVZXDh/nvPnzzN54QL5XI5t27YxMDBAtVajKgLYVeskgkFKGMbdVLV6ncWFBfL5/J1v8L7vU69UQHTEyykU7Wm2tWA7DmfOnOHs2bMoisL27dvZunVrpFHTBtnWB6zMQ8uVU9IQRFboyqVLWJbF9m3b3tc59apYynP5QISpVVwaKT0idrzmLjRN49133+XylSvce8897Nm9O953rKnZ7X+Lm9Nv+xySySS79+xh965dXLp8mfcmJzl8+DA5ERCns1kqtRp9PWKRWImh7VemaWI7DqWlJfpEmvRGuDU3zeDr9Tqq4HwkhCa5IhqpacsOdF8Ez/M4ffo0Z8+exQ8Cdu7YwY6dO3s3VoRhPEU7JUr37VDizTo7gy5dvszw8HDchBxCvOK1m1e3gfeKBb4bDs1qNIkOdbDuYxA3r0z9vfbaaywtLbFv717G27Q3IQrqQ+gdcLa5IR1QVQaHhsgXCjREX++7775LLp9nbHycXCazcn8yxuraVzqVYqlcjqvWvQL3Dxs3xeA9z6NZr6OI+UKywtkRhLb/T/QBnjt7lndPnMB1XbZv386uXbviap8nA8Y22IIuq8r9d6FdPUyiZVnMzcxw/wMPLG8njmVNw6O3i/OBA9YexxnvU7hfscx19/9EmZiXX34Zx3E4cOAARiKB5ziEQh4cIq1MqV3T833p7TJJd7N/YIBnRkeZnZvj6NGjnD51itmZGR5++OFOnRuRolUgKsyJRUDXdRKJBEtLS+Tz+TvX4JvNJooQ99fFJLl4dW+vlAo0Gg3eevNN5hcW2LJ5M3vuvTempUr0yl60hLakHCzQDUVVo5EwbY/uy5cuEaoqEyJnvRYUlo0x6PHYJgxjt0ARFdiOCnCboba/Tp6LbAwJu/YrdXPat2tHqVTi1VdfxdB1nnnmGbLZbKSeJghuMtUb58BXy0KpKorgNnWclviSPb4jIyMUi0XOnD3LxYsX+da3vsW999zDjp07Y/ero8Gl7RpkUikWSyWq/f1RV9t1bhC5KQZv2zYIkpciGgu6K6LSmN47e5bjx4+TME2efvpphq6xMmcJ5qO6BudDuhnthZuLly4xNjJybfn/Nkjj6xVgQqTdonQ/udp98R4VznYjaf97x4rfZYxTU1O8+eabFItFnnjiibgwJmc2uY4Tn1trjaKRhKosD26L37JHXGKaJmNjY+Tzea5MT3P02DGmp6d58KGHVlAQ2p+MhqAlN5tNGo3GdV/lb7jBB0GAa9uEjhNpwXRXHwXm5ueZmZmhUa+zfccO9t5334omj3Z0+7WyCSLd9gjvhqxYyn7TWr1OaWmJxx5//NpPqMu9WHG+0mg/pKAV2p4sXU+Gs2fOcPTYMTZs2MDDDz/c8VQzROXVcV1SYSTM2mw2VwT5K99spS8vv+9Os+ZzOSzLYmJ8nI0TExx95x2+/td/zX333ce2HTvi7RWWB60RRmrMVqNxQwz+hjeA2GI8usx9JwwjDlQl5mZnOT85Sa1WY3BwkHwuF4ukXgsc141Wd8HlWA1q1wp/8eJFNMNgVEzuuBb0CnzbEa/wq3RkhYJS3C410r1Nz2xN1yp/+PBhjh47xq5du3rq02uqii5qDzJr1Wi1rmnMfLdhx0/Ert8bhkE6nY5Vjp/76EfZsm0bR44e5fXXXusY7txxMwqB2mbbFMTrhRu+wjuOg+K68QdsCM12icuXLvHGG2+QTCYZyOVQgoB33nkHz/MoFgqMjI4yOjpK/8BANNhAos0o5M0hBwivBslTl9LWFy9dYmJi4n1nVLorrDLfLHPP3S4KPX7uxYdpD3ilYkD32Xiex+uvvcbM7CwPPvggW7ZsWfU4jUQCVygbmIkErUZjTfJXjPbkQXsjSY9rm8/louHJQqVs/759jAwP8/rrr/Pid77DgSefXLEIJRIJavU6DTG5/HpO/77hBi+F9XUlkp5uz4WfOXOGo0ePsnHjRoaGh3Fdl82bN+P7PrNzc8zMzHDx4kXOnDkTCYIODzM6OsrIyEgcB/jCTw3DkNRViGeaCJSDMGRxaYl6rcaDDz64+rG3ncOKG0npVD6TP7crf32QayX33avQ1Gq1ePGll2jU6xw4cIDRkZGelV6JhBBZ8sQA5SAMr7ngo4qb1287n17npGla1I4p3iOVTDI6OsrTTz/Nq6++yvMvvMBHnnwymmwoMjayTbPZaKxoKvmwcVOC1sBxwDCWA8Mw5Mg77/De2bPs3rOHe++5h8uXL+MqCr7vYxgGGyYm2DAxEXM3ZmdmmJmd5e233wagUCgwODREoViMZo2a5lUbpuUQgjAMuXzpEslUqoMTsloVc4VRrXae7avhB0lLruI6AFQrFV566SU83+d7nnkm9n1XuFbiyaMQna9uGASuGzdTX4tLEx1ClEsPRCqz1/mEROecSadjKRRPyGsX+/p45plnePnll3n+hRc48OST9IsJh3JfUnf/enZC3XCD98Soc0UM6iIMeffddzl79iwPPvAA20R1U+bnuy+AokaT6vqKRfbs2YPtOMzNzjIzM8PkuXNYQst9bGSEsfHxaMbRKmw8SS/wg4Ar09OMjo52Zk6uAe3CRt2Ii2cfkEPT8cRow9zsLK+9/jqpZJKPPP742kbb/mQII21613VpCEnBa3JpxH5kk0hIp/qCTFNKd8cQi5ntODSazViGO53J8Mwzz/Dqq6/yyssv8+xzz5ESc6NURYmr4teTPXnDDV5OjtM0DUVVuXLpEidPnmTv3r2xscNyytD1PFacvjQyRcFMJNi4cSMbN27knkaDK9PTlEolqpUKb731FgD9fX2MCNenr69v2QgES6/VatGo1RhbZfLemlgrQ/Pd0AroXWk9f/48hw4dYmR4mIceeuh9y34YhoFiWVTLZRKmGacFu9+zFxSxOMDyqhyyHLO0I5PJ4Ah5vlw2G2fiEqbJk08+ybe//W1ee/VVnnn22WiEp6pGjfXXQCv5bnDjfXg52kVVKZdKvPXWW2zYsIFdO3d2bKdpGijKqkq1HY95cQPYrkshn2d8bIxkMollWZHrMzfHGVECTyQSjAjh0JHhYTRNY2FpCRTlg4n4K6uP1Anbik4fBO3+fxiGvHv8OKdOn2br1q08cP/9kU+92vVZBVIVodZskuuaEC7fC1YxfFFXCMMQXbAwV7vZJVHP831aXWxII5HgwIEDPP/887x58CCPPPwwhOHyGM3riBtu8DKzYlsWb771FtlslocefnjFKtju0qwJ8TrHdfFdN24rg6gYsmnzZjZu2kQYBCwuLTEzO8vszAyXLl4ERaFYLNJoNMgLGb/3C8ldWe1vsDxLqv13sCyw6nsevuih7fU0CMKQQwcPcunyZfbu3cvOnTujbT/gamjoOs1Gg4EeHPa1jF9WeGU3l7qKscOygoFUdugOjnP5PI88+iivvfoq72YyjIyOoqoqDTGs7Xrhhhp8EASoRBfj3Hvv4XkeBw4c6FlQ0jQNJYiGhl0LHNcF0eUDdGRIIFplBwcHGRwcZO9999FqtZiZmWFqaor5xUV83+cv//IvGRV02JHh4bWbT8R7BL6P47pxq11sEEFAq9nEEo3K8ZjJNsi8c7PVWjGoOAyj0fae7/P2W29Rq9V44P77GRsfx7btSOYj2vD9u0yKgtVqkb5Kc3xHlojoBpX++rUE4dlMJp7/1Kthe2xsjHvvvZd3T5wgm82SyWavey7+hhq867ooYYjrukzNzLB3795VA66kmBJ3LQWnMAyjGyMIogBX5r7XyHKkUim2bt2KmUhwZWqKe++5B9fzoqLXhQuoisLA4CAjw8MMj4zEU0Rkw7Yn9GN88X8vxCm8rt/LfHpceVylmmnZNmfOnMH3PB548EEKhULH9QgFN0ZqVmqaFrssmq6veiM0hUpwOpPpGF+z6vUVK7srlCVW0IlXgaZp8SyqRqvVU6Fg565dXLh4kQsXLrBv/35ad5TBiw/r0qVLpFKpqL1LlLm7IYtGUohorVSVVPdCUeIPI86FX+WYZmdnSaXTjI2Nkc1muX//fmq1GjPT08zMznL83Xd559ixqBAmeNt9/f2x+6MKApqkKUj1MJkBcoXybrIHxUEaeLarpzUMQxbm5zlx4gQJXeepp58mlU7HTw/5NPHF8LIQMXmwy/1TVTWWEdTFEDUgmp5C1EvbPb5GHED0H52rvOTP6+LG8q9B9CotmrdXW7hc12Xr1q0cO3YsmgPwPmOS94sbavCe51Eul5lfWGDfvn0oRIy9XqkxOW3OcV0s2+5p8HIVt4S4qmkYK2Sq18xAhCHTMzMMDQ7Gw341TcMXfbADQ0MEvk+5XGZxcZHFpSWmpqbQVDVa/UdGGBkZIZ3L9QzebNuOxkaKeORaMXXlCgfffJN8Ps/9+/dTWKXJPBRPS7/taSOfQHKinxMEINwpRYnGc5aWlkglkxiaFrVSmmZvI+96L8/zCCDuWEKQ/1YMRGiDVBOWM7baV3kpNzg4NEQmm2Xy3Dl2X4sy83eBG+7SXLhwgUI+z9YtW6jVatiW1amVKBGGmKaJZdvYth1nFKI/RSlJSZF1hACrIaWaV3n/dpMLwpCFhQXq9TqbNm+m2WqhC6EjEKujrkfDj/v62LFjBwD1Wo0ZUfR69/hxjhw5QiqZZFhQHoYGB+OV9P0Sx0JRbT527BgbxsfZsWvX2kUY4b/Lm6pbEUHOm/V8H180xbueR7lSIZ3JUBdyg1dVHYA4/y758zIVKbnxMf25CwqR0cvPsd3gbaHKYKgq9+zezcE332R2ZuaartUHxQ0z+DCM+OlLS0vs3bs31jm0HYdWs7ksQd0GM5FAJXoKxPthmbuiEOXp5WpztQqdbGZ2hBLYzOwsiqpGOiueh6ppZDKZ2A3ohWwux45cjh07d0b7mJ5manqamelpzr33HqqmMTw0xMjoaCy9dy1pyTAIOHzkCJOTk+zZvZsdO3bQFNKDa53Pak0aKAp6u2SIuAFc16VSLrNx06ZourbnUalUSAidHcMwehq/VPzVRWygtmfQRPyxoiFG/Jw0zVhFTbaF+OJYpKDtwNAQpmkyPT191Wv13eCGGvzs7CxhGDI8PAxEgaPjODiuS6uNuScvWUKoVkmZtl4tZ45oRO6eQNEOz/MiaqzYVqJarVLI5xkaGornvRriA+3+AFfjjYyNjzMyNkYgZkzJtOfRd97BF2X20dFRxsfHGRgc7ElM8zyPV199ldm5OR566CG2bNkS+7xrpjwlYW2N9GB78K6qajQq3vMYHx8naZrUBH+lfTGQc6MShhHfrJ5QZl4rdSszY2rXU1amiR3HiQN8OVTZMAx0TcNxHPr6+pidnV11/x8GbqjBz8zMkEgkyItSsypGlzeEOKgqxU3FB5SQPnkYrqpQJd2Z9kelItwd6f+365HrmkZCyDfXarUo/ShWNaka3L2v9o4kpQf7UfLT8/k8+XyeXTt3Yts25y9cYHFpiStXrnDu3LmY8CYLXxJvv/02tm3z1JNPMtw1KG0tTZwVtIYwXG7/o3d2aGFxEUVR6O/ri3x+3ydUIpltT6gOS9/aEoOdDcOI50DpbUmBXguQdCkVVY2nD0qjdsXoonbpEtmcE4Qhxb4+Tp06RaPRuObZt+8XN9SHn52eZuemTfGHKOnBSXGBm40GKnRIcxiJBLZt02i1Vhh8u+65dGfCIKAlVHaDNoNMJBLRoC7xgVmWRb1e514x4EDX9VhLvTt91mF0SueIzBXUX7GtpusMCX2XYrFItVKJff/Dhw8jWw8BHNvm6aefXlYQljWELmPqSFuKn1dUO1dJhUosLi5SLBQ6AmnZamkYBkmR4rVdNx6S1mq1sF2XhBge0X5drtYHILeRolDVapVMOk0YRpP+VHFjhEFAX18fYRBw/vx57rvvvlXO4LvDDV3ha7XaCl9dUaKJ0kEQRHOXGg2yuVw0opLI7Wk2GlF+tktEXz5m5Q1iWVb0qAyCaESlqpI0TUwxnaIdS0tLALFks7wR3s90ip7+s8x2CINVxQ2SLxTIFwrs3r0b27Y5ffo0J06foOk1SPhJXnj++ZjqPDI6GgeJCApz2PEWyz/JFrxrDYwXFxcZFw0uMoUqszzxcAPTJGGaeEK1zLHtaI4T0VSWZDKJrmlr6vIoEHP4IVrJy+UynvDZO4xd3LRJwe2Rn831wA01+PbVUUKuAGmRZ3Ych3qtRjKVwhBDCkpCctoWjQsSrjDOMAioVCodc5TymUzsj/fC0tJSNKRLxA2xwQsh1NVe1y6DIf3j7ibs+HyjE+w0VuDK1BSvnH2VvzK+QYkSjxYf5e8M/C/Mzc3zlqA75/N5+vr7mRgfxxweXpPnfq3G3mw2aTWbHYq9mq7jiydbt38ug17X86J6ieDG1BsNErq+KgsV6FBWkDUDz/cJwoixKblS7eS72E27jrihBt/rVOLmZ0WJStFE6apGvU4ylYq+ksnoQjebHQZv2zbVep20GHimqGqk3y78wrXywwuLiwy0iYTKqRxBEOD5/nI1sc2wupUJgh5aK+3nCytb8Y4dP86Z06c5kztLvRHJZb9ZfpMfufd/4dl7n8WxbWZnZ7l85QpXLl/mwvnzJAwjZnuODA/HisqxO9X+xkHQkRVqv3kXFxcJgf42Do2maSBW+V7wBZ3ATCbJZDLRuE/Pw/E8nHodQ0htrDBUce2DIJq2Evh+1PrXtgh1t0eqqoqyRgD+YeDGrvBXgaKqZNJpFFXFarXihoBkKhWtTo0GFIuR7kqjEWdWNE0jmUqRaq9mipWl14rhhyFLS0vce++9Hb83dB3fcfBcN5rFdDVyVo8UXPf5tvvJb731FpcvX2bvvn188/LzHbuabk5z38B9JEyTjZs2Uezri9KIts3CwgIzs7NcunQJiOjOQyMjjA4PUywW424kIOoiWuVwFxYWyGQyHYuGJlyT1cbJy0l/mvDf9XQaz/ej+VWCR+S4bjzuUl6XEKE/JAaoAWSyWRzXXUH5bpcy6UUD+TBxQ4NW2Zu58g+djz+pEtZqNCKOjPgQXTFNwnFdWm0zmvqKxZW8cFHm73WjVcplfN/vWOlCQNV1EPnitZq/21+zatqw7WZxbJtXX3uNcrnM448/zvjEBMqVbhel6/Xiidg/MMDwyAj33ndfRHeenWV2epozp05x4vhxzGSSQVH1He5FeJMuVRgyMzvLsJyTKjJZMgj1ReDYXTPwHIcASLUlEnRNI5vJ4LouzWYTLwioNxqkxLifkCiecmwbPwyj+a/pNKEgA8YUCHHS8maTBa3r6dbcMINXVZV0Lke5XF7xN4XlHK48WTORQFdV6jJPLFaVqZkZioVCtPInk+RzuVWbIOSQs25UxDEUCoUO4ldC12mKgkqvD78d3S7aihVe/N9qtXj1lVdwHIenn346DpK7P9LuKKCXS5RMJtm8eTObN23C832WFhcjxufMDBcuXEBRFAbEDTI6MhLxc8Tr6/U6zUaD0X37OnLziihQ+aIwZbSdsyd8d4XecnyGYZDN5eLZrC0xwRCWdewNw4ifvDKTFsixP+IY5A3Qajbxg4Cx96Ea8X5xwwxe0zQmJiaYvnJlZWf6KoGfpuvk83larVbk5ogp2rlsllQqhS8KRWuhfRWWRlSpViM1sm4OvmAaBkEQKXR9N/OHwpByuRyPpHz22WejxmUBRVlJpVj+djmQ69keKJ5eg0NDDA4Nce/evdTrdWZnZpidneXUyZO8e/w4qVQqzvrUarWIIt3W5CJvJlXTUNoq1vJYpJzHWsG/nHnbarWoVqtRXUSN5rKm0ukOQat4eqDvx766nJYCML+wgJlMsmnTpqtf3w+IG7rCT0xMcP7UKRaXlhhu7y5qe+x2Qz5+M5kMtWoVy3EislgQYLbl1dd630CMSZd7r1WrcfGrG7FC11UMvvtIu4Otqakpjhw9Sl+hwFNPPbXC1ejOV3Xc7u37uobHu6IopNNptm7bxtZt2/A9j4XFxfgGOH/+fFQ0MgzOT04yMjoajfeRBt8mOSgrpUEYxmKra/UFhGGI47rYjoNhGLiuuzytu+sJKdPHciyn1hYsa5rGwsICW7dtu3OauEdHR7F8n7mZmdjgQ5bztb387WazGbHsDIOR4WEqtRr1Wi3KEwu3JpVMrn6RgmBZ5UqgWq0y1qWkK5EwjKj83qNhox1K9xNJroxhyOnTpzl2/DgjIyM8+OCDPQ1mpfLBymzQah1QPRz+jh81XY+ZnBC5cN/61rdImibvvvsuR48eJZ3JMCoqvnnh+viSvgFxZVUyLLshK9mObeMJZqaqafQPDES+u8jOpFOpeFFSFQVV0wjFQDhdfIYQPWWWymWe+MhHel3uDw031OANw2B0fJzzFy5wz733xm7NagSohpgWBxGvOpfNRkN3PS8q6ggOhus4EdMxmexkTEoKa5tBeJ5Ho9lcdYWX5CjZ5LFac0Sv4w2CgCOHD3P+/Hm2bdvG5s2bV1fm7TLkoIfBr6Z2sOLp0sb96QU5BfzAgQMkUykWhIzhzOws586dQ9M0CsUifX19bN68OcqmSDEryVESN7Qc0iZ5SXI4QzKZxEwkYvpBq9mMJ5Cn0+nY6HVNi6jMnkdgGLGC8dSVK4RBwG6pX3+dcEMNXtM0Hn74YQ6+8AJnz55l1+7dHcKp7at8S5CcIOqAlyt4OpWiZVn4nsfgwEDUFSVGvNfq9YiPY5oxNx7omEFar9cJwzDWfu8FXdfjR/qq3UBdPBbP83jttdeYm53loYceYkBw7NfiwnSgfZWWgfRqQfNqrt8qmJ2dJZ3JxDHEyOgoI6Oj7A+jNsKZ6Wmmp6c5c+YMp06dIpPJ0DcwwEBf3/LkP8/DEZQDmfLVVJWkWMG9Nl9cFS6WHEzcbLXIiinqMnMWiGq4XFxOnTzJ7j17YmLh9cINN/hcLsemzZs5eeoUW7Zs6Xjcy5XedV1sQQlOtxk7RM2/pVKJpliBMuk06VQqphV4ggDWUpZHrbcHtlKAaC2DTwhf1HXdjul3HWgzularxcuvvEKj0eCpp55iaHg4fp/VzfDqLs2qK7yoWnfvrWf+PYyaXHplPhRFIZfLkcvlGB0dpSWu4fT0NPNzc1y6eJGjR4/SL7q8Bvr7o+yZYZDquq4rGm8EZSRsW+kzmUzc3ghiIEMYcvnKFSzb5unv+Z5Vr9aHhRsqpiof79u3bycMAk6ePNm5gcgNy0ZeM5lcIVttimYFVVGoi+0UIgpqX7FIOpOJMy2241Cr1ylXKjSbTVzXpVatYiaTa2Z35KQ62bfaC9K4KpUKzz//PJ7n8eyzzzIkV6heldY2qF2Xvr0+cTWD7xXIrlZsWlxcpNloMNbGzux5PLqObhgM9PezZcsWHnjgAR5++GG2bNmCY9ucOnmSl19+mYMHDzJ57lxUy2gvvPU8TIWUmC/rBwEty4qe4kok9+GKotV7773Htu3bGRkZYcOGDSiKwkc/+tE1jxfg2LFjsQv6q7/6q1fdHm7wCi+LOVoiwc6dOzlx4gTjExPLchFhGPmbYRiNWV9ldU2nUjSaTZoi/9vO/EuJINbzvNjXDHwf27ZptVosLi2RTqcjd2WVdJuqqhi6Tii67XsqYYlCzhuvv04ul4v842Qyrhp2sye7sWbyZQ2XZrWK9WpB/+XLl+Pi1GrwRWeUZVlURBeSXP37xODmUFGYn5tjdnZ2Wd/TMBgaGmJ0ZITB4eGOCq6Eqijx5yWfmgpRBddIJDh9+jRhGLJnzx5SqRSPP/44f/qnf8rbb7+9ZlwC8PM///P4vs/27dv5x//4H6+6XTtuqMGrqophGPiex5atW5mZneW1117juWefJS2UqmTVLbOGyKcpuDMA5UqFAVHMaYckPqVTqcj4RQW1Wq+Tz+ep1evLJXPRytd+A0i3ZjWDPzc5yZHDhxkdHeXRRx9dkR6N+fOrnMNaack1V/iu2GGt34dBwOXLl6NVs+3mCYIgpkJ7nkcoMi6uIOilTJNsJhO7IBJS3xOgXC4zIyQO33r7bYIgiCd5j46OUuzri49f1/Wo60l0mgW+jxuGXJmaYnZ6mkcee4xUMoluGDzxxBP86Z/+KZVKhdOnT68axH71q1/l61//OgBf+tKXrrlmcsOFmEzTpG7bBL7PgQMH+Na3v80rr7zCM888Q8uyQFF6DiCTkM3JGbFKVyoV8rncqmlJWeEzDIO0yA7I8YqB7Pn0PCzouAGk5iSC6SfdsTAMOX78OO+eOMGO7dvZv39/h1HETMqruDQrfPhw2XVa0+BXW+FZ6dbMz89j2TbjY2PxvCtfVE8l30XGA7quo+k6ZhiSyWR6tly2o1gsUiwWuWfPHizbZmZmhitXrjA5OcnJU6cwE4m42WVkZCTqaxCqzo7rUq/Xo6bt3bvZMD4eMy+feOKJ+D3efPPNngbvui7/7J/9MwC+53u+h89+9rNrHms7brjBJ5NJ6tUqnu+TTqd5SuoMvv469917b8eImtVSf34QkMlm41L04tISo6uMh2+Hoii4tk0+l4vpCZ7ICXui08cVNwBE6miuaIKWT5x3jh5lamqK+/fvjxu7u9+jw7VY1aXp+r2kKijK2hJ9a7AzfXGsUsHg3OQkKZFFifVehKFLA9cFKczzfRqNRrRAvI8KcxiGmIkEmzZtYsOGDXhC5WFmZiZSeLt8GYj6DgYHBjBNk2q9zuVLlxgZHWX3nj0danGPPPJI3Ixz8OBBfvRHf3TFe/7Gb/wGp0+fRlEUfu3Xfu2ajxVugsEbbVIavu+Tz+V4/LHHeOmVV9BUlQceeCAecNbLJ/VE3lZRFIp9fdi2TbPZpNlqXVUJV/aJShdFdvvLi+2LCqvvebFqsSM4IoHvc/ToUer1Onv37mVgYIBKtYrUomn/HyJ+iKxe9uJ5d7s0Acv8+vYAVtIMpMqZH4aEvo8nnj6yH9UX1zPeXxAwOz3N+MaNKJoW0Z+FPo0uuehd11VWWnv54j3R5UaFYYiuqvT39dHf18e999yDZVmRuvPsLJOTk1EqUghFPfzQQ/F1yYq6SCqVYv/+/bz99tscPHhwxVsuLi7yr//1vwbgx37sx3jooYeu7VgFbrjBK4pCIpmMpZFVTWNwcJD77rmHd0+cwPN9nnj88WiV6SJjtfPPFUUhkUiQyWbx63WWlpZIr1I9lbBtGxRl1cYFeQMgboBcLsfC0hLVapW3334b3/d5+OGHo/cUvqjk8tOWKvQ9j0ajER9nnIpTlnngKT9FH324OCiohFZItVLBF7nxuMtJnq84xva2wnaEYYgShqi6jqaqzC8s4Hge27dtWzMFK16MIyUz3scUvV49DiGddY9kMsnmLVvYtHkzU9PTHDx4EAWY2LChI2YqtnWzPfHEE7z99tscPnx4Be/qC1/4AuVymUwmwy//8i9f87FK3PAZTxD58aGixFU21/MYHRvj4UceYWlpieeff55Go9Hhw65oFhb/F4tFNEXBdZx4xPxqkAZ/rZroiqJgNZu8c/gwiqbx7HPPsWHDhqhZu1Agm8uREUS2hKjyapqG0rWCSqm6QIzq9IMAJVBQQgUCFSVQ8f2IX+J7XsTwFH5228FEK7RhYBoGSdMknUqRSafJZbMUxZzTXCZDOpViemqKgjjOq0H61rK975p6F5SV3Wvx+YbhiiD57JkzvPbKK+SyWTZv3Up/f3/8PpqmdRyn9OObzSbHjx+Pf//uu+/yH/7DfwDgF3/xFxkfH7/qcXbjpkwASSaTVDUNXygKyIrq6MgI/c89x8uvvMK3v/1tDhw4QH9fX0ejcjerUlVVCoUCpVKJUqVCJp1eIUwqYVkWhJHA06rZDoEwDLl46RJvvvkm+VyO+/btixVw2yX1esET1AcUhWI+3/PYHd2mRhVXEY0XZkg+m41cIUG8yuXzK/g0a9YFxN8s22Z6aop79+6NJDPk9euVvw+C2NWT1yUIgrXFUldJgXbvF6In0pHDh5mcnGTLtm0U+/qwHCfqWRb7KBSLHefYHrgePHiQ/fv3A/D5z38ez/PYsGFDHLS+X9yUFV7TNFLZLKGiYFlWxI8mCqRyuRzPPfssuVyOF77zHU6fObNCM7HbJ87nciQMgzAIWOrBt5ewbTtOV0oOfjvCMCQgygSdOHmSN954gw0bNvDgww9j6HpEfb0GrFA5EIL/qnCZNE0jVMHBxcHBxSVUg7j9TRU+bntMAKsbO3SyNS+cP4+iKGzZvLkjW9Qr62M7TsyHSYjhCFdf368ORVGo1+u89OKLnD9/nn3797N161YII468oihxcqDY1Zy/c+fOuG/gzTffBOBrX/sa//N//k8AfvmXf/maZ1N146YYPEQCoqGiROkyEdjJVcU0TZ566im2bd3KkSNHeOH55+PGkfjD6DKqYl8fuqpSq9epC/+5G1LWL3qJEj92Q5ZZm4Hn8fbbb3P8+HHuueceHn744agApijva3QmrEUr6NEAIk6s19Dfa4G8LkEYcm5ykg0bN65I1UqfWxX7D30/pnAkTXN5quH7aG3sBT8IOHXqFN/4xjdoNJs8+eSTDAl2rKpG4zMNXY+LdH09dOofF7NyDx48iOd5fP7znweiLM7f+3t/b+3jWwM3zeB1XSch7lLXcaKVsO1D1jSN/fv389xzzxEGAd/81rc4dvToqjIaqVQqkvdQVRYXF3vSex3X7aAqKET9rVKmwnVdXnn1VS5evMgjjzzCPffcg6JEY3UUliuSV1sBr8UHXo1LE+fg3+fUEHnt5mZnaTWb0Wq62vFFBxkRwYjSn+2N2Nd2/F3vL163uLTEt771LY4fO8b2HTv42Mc+Rk6IzSpEn2vIcso1JZr0uyHdmqNHj/Jv/+2/jWkov/Zrv/a+F4N23DSDB0jn8yAbDXpkHwIhzvPcRz/Kvvvu48zZs7z4ne9EI2p6oK9YjCpuYcji4uKKvwdh2MHWkwMaFEWh1Wzyne98h6WlJZ566qmOrpvYIADLcdZcuYE4w7LWB7Oa7EYsNfIBP9T3zp2Lqb5rwfM8bMsiRFS124PQD2Dwrudx5PBhnv/2t1GBZz/6Ufbu3RvTCGCZoyR17AEGV2FHSoN3HId/8S/+BQA/9EM/xEe+S778TQlaJVKpFFXTJBQ8i/aPuENsSFXZvXs34xMTvPXmmxw+dIiLFy5w3733RnRSaRxK1NM5OzNDy7IoVyoU23XXRTNIu18bAuVSiVdeeQVVVXnmmWd6cuUTQhDUdRyCqzV4K6s0brRvcpUVvrvodC2rbr3RYHZmhgfWmDUbvRcxkSthGHGQv6bo6ypBvuM4vPfee5w9ezYaRLx/P9u2bYtltNs1JIGOQRCqqjK6Sqbl8ccfj4t4rutimiZf+tKXrnIFro6bavAAqWKRytISjm2vMMRu5LJZHnvssXhixIsvvUR/fz97du+O6K8i8CoWi5TKZUqlUqxTEwrXpdsQZ2ZmeP3118lmszx54MCqOXrJtfEEL3zN9r+u3HkvdK/gscHLFb7b4NfYl8SFyUk0XWej4LCvBkdOy1OUnu7Eipu1h7FblsXZs2d579w5/CBgy+bNbN++PZYPhOimkiK4qWSSSqUS0xgABgYHV1WHKBQK7NmzhxMnTgDwcz/3c2u6adeKm27w2VyOUHTBNBoNMtlsRxNzNzRNY2hwkLGxMRqNBqdOneKVV16hIGTsNm7cSC6fj7nd8wsLMTVW9mtKvHfuHO8cOcLo6CiPPProVf1mU8jPtcSAhlXVyaCj0NQbK12adpHRFcdylRXe8zwmz59ny+bNq6ZlYXkIAWFIUmgALR+SEi82iqZF9YAuY2+2Wpw+dYrJ8+dRVJXt27axY8eO6Nq0ZdMc247jKKk1JOd1SdWxiY0b1zyn4eFhTpw4wdDQEP/yX/7LNbe9Vtx0g1dVlcLgINXZWZrNZqRbqOsgL3aP7RVRyZPEpMXFRU6dOsUbBw9y/PhxNm/ezNj4eNSh4zjMz88zNDQUl7XDMOTYsWOcOXOG7du3R9NI2qqDqyGRSETdVqJKfDWG3prmvoJKE35Xk7snz5/HdV12dI3/7IaU0dCEYtiK41o+oOgglUi2ZHZ2losXLjA1PY2u6+zevZvt27b15N1IyQ6I6NqarkcMSd8nIFI6KOTzy+KxPXDw4EFeeOEFAH7pl37pQ5vsd9MNHiBXKFAvlfA9LxqOkMutKnKkyNy0rEQKv/3JJ5+kXC5z7tw5Tp85w4kTJ8gJ+epCX1+sJKYoCq+//jpTU1Ps7yKAqVcxekVRMIUKrpSSXhNrrPDdDSDQprH4Po09CALOnD7Nhk2b1pzK7bpuRJIDslepNodhSLlU4vz581y6fBnbtikWCuzbt4/Nmzd30KGVNsJbGAQxUS1hGHHl1hJMWF3UGUbHxtZUJ/jFX/xFAPbu3cvnPve5a70UV8UtYfCJRIJULkdzaQnf97FbLYxVfDtViZqyA4SBtj1ui8UiDz30EPfv38+VqSkuXrzIhYsX4cIFcoUCnmgdDMOQJw4ciFV0Ja4lL5JMJCKtRM9bkeZcgbVcmq6/BSyv8N3yFj3V2tpw4cIFLMti965dq24ThtEEFpRIC3418apWq8XM7CxTU1PU63VSySRbtmxh48aNqza+h0LpOAyjBh6ZDUuKm0oT9RaIOqvS6TR9AwOruoS//du/zfPPPw9EzMgPMj93NdwSBm8YBkYyiZlKYQm+iyJZfV0lcUVRcDyPf/Nv/g3TU1P09fXxb371VzsuiqKqbJiYYGh4mF/+4hdZXFwkJXRb+otFBgYGqFWrlJJJCoVCh/vQodPYA4qqkkwkaAlfeC2DD0WjhWQ0hqLROQQSXoICBTyivL7iRJVJGRDLWayqcCtWjRfCkFOnTzMxMRHnu1dsAzQajYjY1Ua/hqgGMj83x9z8PLNzc9SqVRRVZWJ8nAceeIChoaGO6mvP2Eo8caXepILw25XlxnzbtmMe/tjEREew2mw2mZqaolar8ZWvfIUvfvGLAPzMz/wMzzzzzKrX94PgljB4iCqvnuNglUqRD9hsRiw/pVOCQhaCnnn6af7bf//vLC4u8tKLL/LMs88CnRTb/89v/iZn33sPVVH44R/+Yaq1GpZloRlGrM+SME2Gh4YYHh5meHiYTCYTN3+sZmTJZDJWTpAjNeMuIiEJWK/XI+31tpa/jsJaqGFgECcoAyWeQCLFZCGiDQdBgN5GN5AjKBVF4dKlSzQbDR5//PFVMzm2ZcUqwEnTZH5+nrm5Oebm5igvLRESJQ8GBwbYsnUrQ0ND5LomcLQ3tsSyIILGDVEwK6kXqXQ6foKEYTRgQdKXxzZvplAsdlAD/vAP/3CF2/LYY4+9b677teCWMfhUKkXDNAnzeVxBj202m6QzmRWuhqppPPb443zzW99idnaWr3zlKzz99NMomharjP3n//yfefOttwD40R/9UT7ykY/w8ssvE4YhW7du5fHHHqNWrTIrPvi3Dx2CMNKpL/b1Rb6/YBt2t7qpqoqZSFCv1ymVyyRNs4OL7olCmjQGaZztK7anedSo4eCiouDrXjTih+VG9SAMI0KYqkb1A1FltsSYH03TOHnyJMPDwxQLBdwuzpHneZRKJebm52nUatSbTapCSNY0TYaHh9m2dSuDw8OkU6lonmqrtSpFWFZKfc+LGKHi/FqtVuyypFOpjpw7LEujmKbJxMaN5HK5juv5ttDEN02TLVu28MM//MP8wi/8wprxyAfFLWPwsml4yXVREwkC34+LI6l0uiM1Jrt1PvnJT/K7v/u7zM/P850XX+R7nn4aBfgff/mX/NVf/zUAn/zEJ/hbH/84EK1ipVIJ3/dZWFhgZHiYgYGBaAq367KwuMjCwgKVSoXJ996jadsoYdRQXiwWKeTzZHO5uAxvt9EXZGOFJKfJwWDZXK5nSjHUQmxsXFwUFEI1iM5LVclms3FQGBBJbcezWEVHVqAoTE9PU6/X2bZ9O9PT07RaLeqNBtVKhXK1SqNWQ6oEZDIZ+opFNkxMMDw8vMLo5A26WrJAQsqTS7dPqjmHQRALYYVtbEtfqFB4nsfue+7BNM0Vhvxbv/Vb/NZv/da1msp3hVvG4CFyFRKJRDSypl6PK3WKqnb4nVLT/JFHHuFrf/mXzExP8xd//uc89dRTHDx4kP/6X/4LAE8eOMDf/bt/d3n/pokv3APX85iZm2N0eDiecTo2OtohZ2FZFqVymUqlwlKpxOzcHGcnJ/EdB1+U4nVdJ5lMkk2nSYkvwzCi+VVi5ZdUYk0YtDz+dgRhtCL7Ql7Esix84Sb5vo9j2zRbrXjYWKPRiEbDKApHjhwhDMN4kEMul2NkeJj0li2kBF++28DbEbspMkO1RrCtSf154bPLoXKpZDIa1BCG8TaKolCtVvGCgFyxyODQ0JrHcSNwSxk8RJmWhYUFwlQKX7AeG40GmlA8ADo0zX/ws5/lN3/zN5mdm+P3f//3Y7fl3vvu42c+97kOw0okEviuy9DwMPPz89Gc1Taj74ZpmvT19WGaJgNDQ3FLnS14/JZtU6lUaFkWnuuyuLSELUSF2lfKgID5cJGGUicUzvBx9TiBIuYbEfLGmTeonqqCEmCFNjlyDAfDaMqygalqNOEkJRrYfd9n165dFIvF5fmpoqhjiyqnkUh0CKf2guTMX1UtgeXgVapAQLRQaSLtqwqeuyTb1RsNAmDrtm1kMpnekic3ELecweti8vXS0hKB40R+q6JQq9XI5fPx0GA5jOvRRx9l0+bNTE5OxqmszZs380//6T9dIZ0hxfo1VWV4aIg5afSzs9Ewgbbt5fQKueoqStQaaIp9SOOwLCsKMBWFgli9LNumJAhuyWSSf3fiN3ll/pUV5yob/pQQppVpmloTD58yJQA+MvYR/u+7fwZN06K5qYLAZjsOf/1Xf8W2bdvYu3dvxzG7nke90cAVYqiaoEKYprnS6EUGLG5QEV8rhV6Xb16Z3pRVUymvIZ9k0n0LiHx3y7IYHR9neHh41bTmjcRNZUuuBtM0yefzKLLdTPiW9VotKl8rSiS9LJoInhUZGog4GL/wC78QtfF1cXLkE0KSkUaEkXu+z+zcXGwkzVaLaq0WD/NKp1IUCoWeU7VjHrksrkCcg85ks5Cmp7F3Q0OMq2c58Hxp7mXMjEkum40pygAnTpwgBO4RIzcl2s81LSQIE8kkjutSq9c7G2lkurc9vhA9wysazsXPkv7RbuyJRCJinQoXT6ZdA99nYWkJM5lkYsMGBtbIu99I3JIGD5GAaq5QQDUMQqLHYxCG1Gs1HMuKXJAw0k384z/+4/h1sqtJop2IJnO/sryeSCQYHhqKmhF8n+npaUrlcuw/G2IgQ1KMvez5cSlKHIRZQia6fbuskcXUrv4Ylwbvtxl80SyS1DtfW2vTc+kmXkkXAqJMz0B/fzQeUhhaQ+T5wx7GLlOO3SlgCc/zqNfrkVCWopDOZKInZrg81TAQ1yMMAuYXFiLB2+Fhtm7d+r6pEtcLt8ZRrIJ8Pk9GTNpTBacjCEPqIupv1Ov8x//4H6lWq7FwkGVZfPWrX+3Yj/zgZMBUrdfjvyUSCUZHRtA1LRISnZ3FsiwyQnmrveq5WuOyIdKIiqLEq3z8N9Xg+7Z+8qrn2svgP7P1+1e837Fjx0gmk2zfvr3j90EQ0BBqarqmxRx3wzDIZbPRFA9VpSUC3+7MUSDHdYoAO9bXUZR4qqL00bPZbAd5rr0YFfg+5UqFWq1GOpuNJfRuFdzSBq8oCv0DA+T6+uI8ti+k4er1Ov/lv/5XKuUy6VSKX/zn/5yHH34YgG984xuUSqXunUWGkMlQ71I3UJRIyUAVq16z1Yr10XsdU68shiyjy4AWll2MH97xg1dd5aXBe8Lgs4kcn9zyiY5tpoSs9d59+zqC7DCMpD1CooBTGnt8zKpKJpMhLVwyR2SB2uEHAWFb0Cv9+WarFRfBdMMgm81Gi4B4GshVHZafApVqFc0w2LVnzwdSFrieuKUNXqJvZIS80CrUNA3Hdflv/+2/MSN0z3/6c59jy+bNfOYHfiAebvznf/ZnK3ekKBQKhQ45j0DcPACDg4P09/WhaRqLpRILi4s9yWRKW1FJQtd1EsKfbwm+jtymaBb59LZPrXmOyyt8dLP8wLZPk9aXV0bX8zh86FCssCsRhiHNRiPW2c9kMj3JZ1KCQxq9HPQcXwcxd0k+0XwZ/LaJV2XS6Y6hzDKVKakDjUaDhhDD3bx1Kzuvwty8GbgtDB4gPzxMvlhEVVW+9j/+B5PnzqEqCt/7sY8xNjaG67ps2riRhx95BN/3+da3vsXc7OyK/RQKBapCux0if14Gwvl8npGREQr5PJqqRoPC5uZWVDBjxmYXUsKYAmEA7bfED27/LEmt96NdGnso/mWNDJ/a8n0d2xw5cgTP93mwrZtJGrscRpDOZFaSwroyMQnTjI9TzsGV/rckfbVaLer1ejxtL53JxKzH9nOSE7YbjUakPiFoFWMbNrBr166bnoLshdvG4FVVJTM4yNe//nVef+MNHMfhySefZMfOnbiex+LiIo7j8EM/+IMxh+W//9EfLWvaiA88n89jiXSjlIgOgyDi0IjVrVgsMjgwgK5puK7LzMxMhwugQBxXtK/08WBlUYVtpxsUzQKf2f79Pc+t23//zLZPk9GXuSazc3NcvHiRffv2xf5wGIY02ow90zZWpgPdmRii4N3QdVQRt8hslyt47NKdky5Mz/0K6kddZH8UovhpcHiYjRs3xioFtxpuG4MH+PKXv8wv/Kt/RaVS4cGHHuJvfOxjZLNZXNel0WxSbzQoFos88cQTKIrCq6++yqWLF6P2PmH4GUGKkjnikGjV6/5Q0+k0o6OjUW4+CJidnaVSqUT6i23bdY9L18XUEU1RaLVaHQHdZ3d8lpS+Uk+l3X/P6Gm+r21194RsyODgIFu2bAGW04O+UCiTQeT7QSqVitOIsorbarWim0NVSaXTpLtHe7b56tV6PaJ+ELU/2o5DMp1mZGysw+W61XDbGPzXvvY1/uE//IcslsukikV+4id+gnwuRzaTiZl9lXKZRqPBx773e6MgUlH4oz/6I2BZRiInmktmZ2ejbvowXPXRaxgGIyMj8UzXcqUSuThdgkzdPnNaTr0Qj3iZ8stqGT6zbeUqr4n6n4/H92//NLlELjau4+++i2XbPCRcmSCIpuPJ+aYZsQJ3rOFXyXfLimxCDBWbX1qKfXXTjPL+hnSNeqQmGyI9qaoqyWQSx7bRdJ3xjRvZunXrLenKSCjhBxEhuQXgNJtYQr23Ua9HVAFBbAqDIJoAnU6TzWQ6tN0BXnr5ZVzXZd/evaiaFt0wIjOxWnGkVqtRLpcjsSbfJ5PLUcjnO/LLsvoq89BymFc2k4lnlDbcBj/xjZ+k4UX5ctf36Qv70NFwNIf/+L3/npwRiZ9OT0/z6quvsn/fPrbv2BGv7DKQzmYycf9qEATLI2hW+0ilexOG2I5Do9mk1mjgWBaGYZDJZsn3EF6Vrp/fln3SdB3TNKNrAmzYuJGt27Z9aK141wu3zQrfjUQ6jZnLEQg3pa+/n7TohzVNE9d1qVYqzM/PU6vVlv1pRWFkZISlpSU8z4tG27QVp+JmjbYviHL4Y2NjpFMpNE2jVqkwI3L2EjJrEQjqrq7rUcqw2STwZboxyw9s+8zyawBduDR/a+vHY2NvNBq8+eabjI2NsUMau1jZUZQoPSjdMFksalNX7oDI4AS+T6vVolKtRqQ8RYl59mYiQaq9kBWGeGJwgVzRIXL/Mtks6VQqIob5PuMbNrB5y5Zb3tjhNjZ4ADOTwcxm4/K/kUhgJhLkcjny+Ty68C2XSiVmZmcpl8t4rsv42BhhGDK/uLiiw7+7uBSyPHVE1TQGBgfp7++PJTtmZ2cj3o/vx8YuXy9pBwpRVw9hpErwqa2fQleiFV/676Dw2e0/AEQV09dffx0zkeDRRx7BFSM55eyrfC7XSXZTOuXxYj15EW8ERDTeWrWKJTqPVCWSzpBPQD+I6Mky01Kt1aI4QRi6YZoUCoV4SNlSqYRt20xs3MimTZuuKvx0q+C2NniAZDZLqlBAFTRdFAXXdcnn8wwMDFAsFEgYRhRo1WrMzMzQarVIp9OUlpau2sfaLhwkDSmVTjMyOhoFfopCpVrlwqVLLJXLcV5aukZycogfBHFPaS6R5cBopKwlDX5X/w5yRlQtPnz4MPVajccefxxXDFIGMfYzm43pxSEsy3CHbSNsiG7cQLxnTTA6A3Eu6WSSbDZLMpmMXhcEhOIJUqvVor5fofBgCkPPpFJRJ5ZlMTszA8DGrVvZuGnTmgPTbjXccmzJD4JEOo0mmzJsG09M7UsKjnY2m8WyLGr1epyRyGQyLMzPUy6XyeXz0QRvVrbiSciVPyTy0XVNY3BggGYqxcLCAp7nUSmXqVWr5MVTByK/PpVKUa/XaYnGCNM0+d/u/zkmy+eZLc/Rn+rnc3s/RxiGTJ4/z/nz53nwwQejApFtQxhiplKkksllN0tRUCFKZApXSgbKckCZ37bqq0rUvG0kEjHT1LZtarUajWaTTCoVr+a6YWDIQhoQiutRq9UolUoUBwYYHh1ds7H7VsVtG7T2QhAElObmWJqbA6KgTqqOSSO2HYd6rcalS5c4eeoU27Zto7+/P5LwFsKeiUQCtUeThoRcSX0xnl7yWKrVamxkjuOQSiYZGBwkkUjEjRsgJotrGuVKhb/+xjd49JFHGB4ZoV6r8eKLL7Jx48YO+ZBMJrPqiE15HLLzqFts1tD1iOsj3BY5uFlqay4sLGB7HgN9fWQzmVh6r7vAtLS0hG1ZDE9MMDg4yKZNm655ct6thDtihZdQVZWB0VFQFJbm5qjVaihCmlnCTCQwBwZIJpNcmZpibm6OgYGBaHR9rUa9XkfT9SjLk0xGM6kkB1+yCFnmyShE/Ho5DaReq1Gr1QjCkIqgGPf39ZFKp6MZUq5Lo9EgJxTWEPuqV6u8/MorFItFtghJOVVVSfcoKEkjl/uTLE0J2VUllXpdx6HVQ3VZjhzKiIHEUmg2DuBFJbdaq2EYBhu2bmVsbIyRkZFbhv34fnFHGbzEwMgIoaJQnpujIlwMwzAiSoDYJplKsX3HDg6//TamaZLJZGg1m/F4R891aTWb0TAw0Zonx1/KG0BSgWXVNSSiLmSzWebn56lUKvieR7lSoVypxAQzXdepiSYNiAhn7xw+TDqdZt++fZF+umHE+Xwg7nDyhGS3zMaEIk3q+350nMJ3l/Lf7ZCKB7phRFoxth3HBYps3RM0hGazGWdh8oUCoxMT8bif2xl3pMEDDAwNEQKVhQXqYkWV6gHSQMdHRzmbzXLmzBmeevJJ0ul0NLVbGLvnuvHcJVfo0MQTOgTtQEr/aSK9pwiCWyqVQhUd/p7r4vl+LFLkex4JXcd2XULg5MmTGIbBvn37QFEiabowjJ4Ubdo2cfZF5NKlAUOUF5cxCBAfhyom+OmCSqBGf6TRaGA7TtQ2KNiV7YGrJ8hkQ8PD7Ni9m6Ghodt2VW/HHWvwiqIwMDgY8ecXF6lWq6TT6dinD4FkOs2mzZs5/u67sbS2pmmkdJ1UKhU1Rgtj9TwPV0yS9sVN4IgGayDOhccyHEKzRhPSIZevXGFeBMnlchlPVHgTpsnAwACbxsepNxqYphk3qLTjf3ztaxw6fJjdO3fyEz/+4x0kMamKLHVr4mmEsCzq2haq+b5PtVolCAJSqVTUOLK0FAspqYChaey69162bt/em0tzm+LOOZMeUFWVoaEhDMOgVirRbDRwXTdiFaoqGrBp0ybOvvceb771Fs8+80z0FJCrJJE+ohTyl03ccp6rFGsNPI9vv/ACL37nO/yjf/SPyOVysY8N8Nu/8zsdx5ROJslksyTFzNpiNosfRr2inutiihvBTCSi1VnTuO/ee/nGN7/JwUqFf/i5z2EmkzGV13HdzoC2mzDW1dlUKpWo1mrYth2zHeWrVUVhaGSEvfv3k7vN3ZdeuKMNHiID6+/vxzRNSktLWLUatWqVtMh8ZLNZ7t+/nzfeeIOjx45x3333xaoIMhWpwLKoknBfEoZBKpWK1bZUoLS0RKFQoL+/H9d1o6BZUVgS00gSpsng4CCZbJYrU1Nk02k2btrExo0bCYk6pxKy8uv7keyeoCTcs2cPZiJBs9nk2LvvckDMQOqpkCaO1WsLbD2hhVmr1ahUKni+H/nu4hqlkknSmQxbd+5k7BZr2vgwcccbvERG9GCWTJNmtRplYzSNZDLJxo0bWZif59x779FXLDI2Po7eJjakCr9fcsvj1ZBIBU1OIZSUAiORiKf+ea7L3/7bf5sJEfRVq1UOHzrE6VOn8ByHiU2b2LRpE7Zt4zgOmqriCwZjGATR/+K9n3jsMc6eO8c7R48yMT4exRGi0Vy+fztfJvA8wrb6gSPy7r7vk81kouyRSMXmi0U2bNlySxO/PgzcNQYPEftxcHCQmmlSSybxWi2azSYKsGfPHpZKJU68+y5JIbIq88xBGC5TgNuCQilfoYr0n/y7K/Tj67UaIfDss88ShiHnz5/n4sWL8YoOURFLulhSqzFlGCQHBnBlwCu4+/fccw8z09PMz8zEXUaeaNKQ2jXSZ5f/yyeSJxQZ0qJXd2RkJFJ7y+cZm5ggc7Vp3XcI7iqDh+VBxrlcjqYspdfrOK0W99xzD2+/9RZvv/UWe+65h0KxSC6XWyFfDcskM+kyoERydpVqNS7cyP7XcrnMqVOncByH+x94gLyg9Mp4QEFQilWVZquF63m4tRrJVCpuTg8VhccefZT/9J/+E75oS9y0eXNHk0nHeYog1hc8HN/3MQwDM5lkYGCAgkg13i2GLnHXGbyEKjQcM5lMxDep1UhkMjx24ABvvfkmR48eZdv27VH1MZFYFjKS/nIbmzIIApQwjPLbqhpzzQPf58SJE8zNzTEyOsqDDzxAJpNhZno6HvrVvg9TjK5vCVWGZrOJ4zgxQ7Ovr4/NmzZFo3reeYedu3dHbgsr9SBdz6PZaGDZNlarRagoFItFNm/bxvDY2B3vuqyGu9bgJRRFiUSL0mmCoSHcDRsY3rCBr331q5w8eTLSmR8awhYBZMI0l7uAFCUu+cvRlxkRCJ4+c4bJyUk0VeX+/fvZvmNHvJ0URHLaCkMyRpBiqrbjxIZfrlSiQDmZ5KGHH+bc5CRvv/02n/3BH4zdoPYClSXa9GzHwfd9Cv39jI6Ps2nLljsqxfhBcHeffRcksWt0bIwf+8mf5Jvf/CaHDh7kwuXLbJyYYGJiAt33MUwzXvVlwUaOtHz99dcjZbNkkh3btzMyMkJCPB0UIlfIE4YuDb69WCR+QULwX5qtFo7rRmzLRoN77r2XdCrFzMwM01NTjIyMEBJpwFuWhet5+K6LH4YUBwcZHR2l0NdHsVi8JZS/bjbWDX4V6LrOxz/+cZ5++mkOHjzIwddf59yFC2iqSjqVIpNOowlJjmajwXvnzhEIt+ahhx5ibHQURVWpVKuEwldXNS1S/iJqxpCBpET391JPJiWkR2zbZmR4mKGREcqlEm8fOsT9+/ZFQbUoNumGQV+xyPD4OLlc7gP1u97JWDf4qyCdTvPMM8/w5JNPcuHCBRYWFlhYWKBUKtFqtcj39zM2MUGtXufSxYvcd++9DPT3RzrqihKnJy3bJp1KxYxJexWhJwnJZwdiGoFkXe7ZvZs3Dh7kxOnTPPPRj6ILLlAmkyEt5Lp7kc7WsW7w1wzDMNixY0dM25UTom3bxrZt3jh8mPcuX0Y1TSzHwW+14g6opiChVQR5zXHdSMpaUJBbotEbof4lGzI80UUl+e9mKkXf0BCPPvkkv/2f/hOHjh/ni//n/xlXk9dxdawb/AeEoiixhHVOpPYuXr5Mn/CbZXXT930q5TIt2dcqmjmajoMKeMIdURUFxEgcVUwR0cRUEU3QG+TX6MQEc3NzhGHIu+++y8c+9rGbezFuI6wb/IcI27ZJp9P09/cDy7z14eHheEKfaZpMT09z+tw5AO578EEmtmyJMzgxy7GNBCbFTSW+/vWvE4rA9nFBMVjHtWHd4K8jFJG2lGNxJKTkB0QSGO+3Afov/uIvAHjuuefip8s6rg23P8H5LoSUA//+7+8t3beO1bFu8LcZDh06xMWLF4F1g/8gWDf42wzSnXnwwQdvaQ3HWxXrPvwNwEsvvcTZs2fjnxcWFuLvz549y+///u93bP/3//7fX3VfX/nKVwD49Kc//aEe492CdYO/Afjt3/5tvvzlL/f828svv8zLL7/c8bvVDP7SpUscOnQIWHdnPijWDf5DwrNikmCxWLxu7yFX940bN3YMRljHteOOEmK60/E3/+bf5Otf/zo/+7M/y2/8xm/c7MO5LbEetN4mqFar8eDldXfmg2Pd4G8T/OVf/mUsEivdp3W8f6z78LcJvvWtb1EoFPj0pz99W2o63ipY9+HXcVdh3aVZx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYO/gbhw4QKf//zn2bNnD5lMhv7+fh599FF+5Vd+hWazueZrf/zHfxxFUfiBH/iBG3S0dyjCdXwo+MIXvhAC4eTkZM+/f+UrXwnz+XwI9PzatWtXeObMmVX3/yd/8ichEGYymbDVal2ns7jzsb7C3wAcOnSIH/mRH6FarZLNZvniF7/IK6+8wje/+U1++qd/GoDTp0/zyU9+klqt1nMfH//4xzFNk0ajwTe/+c0befh3Fm72HXenYK0V/umnnw6BUNf18JVXXlnx9y996UvxSv+FL3xh1ff4xCc+EQLh5z73uQ/xyO8urK/w1xlvvPEGL774IgA/9VM/xYEDB1Zs8/nPf5577rkHgF//9V/Hdd2e+5IDib/61a8Srg9f/EBYN/jrjD//8z+Pv/+Jn/iJntuoqsqP/diPAVAul/n2t7/dc7tPfepTKIrC9PQ0Bw8e/NCP9W7AusFfZ7z00ksAZDIZHn744VW3e+aZZ+LvX3755Z7bjI+P8+ijjwLwla985UM8yrsH6wZ/nXHixAkAduzYga6vPvh8z549K17TC9KtWTf4D4Z1g7+OsCyLhYUFADZs2LDmtn19fWQyGQAuXbq06naf/vSnATh69CiTk5Mf0pHePVg3+OuI9hRjNpu96vbS4Ov1+qrb7N27l23btgHrq/wHwbrBX0dYlhV/n0gkrrq9aZoAtFqtNbdbd2s+ONYN/joimUzG3zuOc9XtbdsGIJVKrbmddGu+853vUC6XP/gB3oVYN/jriFwuF3+/lpsi0Wg0gKu7P48//jiKouB5Hm+++eZ3d5B3GdYN/joimUwyMDAAwOXLl9fctlQqxQa/cePGNbd96aWXCMOQRCLB448//uEc7F2CdYO/zrj33nsBOHv2LJ7nrbrdyZMn4+9l1XU1/MVf/AUAzz33XMdTZB1Xx7rBX2d85CMfASJ35a233lp1uxdeeCH+/qmnnlpzn1/96leB5eB1HdeOdYO/zvjMZz4Tf/97v/d7PbcJgoA/+IM/AKBYLPLcc8+tur9Dhw5x8eJFYN3gPwjWDf4647HHHuPpp58G4Hd+53d49dVXV2zzq7/6q5w+fZq+vj7+yT/5J/i+v+r+pDvz4IMPXrWYtY6VWL3WvY5rQhiGsW+eTCbxfT/6cl1s28ZzHH7pX/0rfujv/B1s2+Yzn/kMP/2TP8kjDz2EZdv81V//NX/+1a+yadMmJsbH+dizz3Li6FEGBgYwk0mMRIKEYWCm0xiGEefeZWpyHe8P6wb/AeC6LvV6Hdu2aTWbWJaFY1ls2rSJd48cYer8eRRA1TQMw6Avn+eXf+mX+JV/+29pNpv87pe/zO9++cvx/oaHh9m4YQOf+8mfxLNtllotqpUK2VSKlmUxv7BAs9lkenqaixcvUigUqFUq/PZ/+A/0DQ4yOjrK/v371wPYa4ASrhOrrxn1ep2lpSWqpRKtZhPbsgiDAFVROH32LKdOn+ajzz0XVUyDgFBRUABNVUmaJuVKhT/+sz/jlddeY3Z+Hl3X2bRhA889+ywfe/ZZBvr7QVEoVyoslUqUFhdZWFqKX//Ou+/y9W99i75ikZ//X/9XLNvGarWoN5v4QcCW7dt56iMfYWJiYk2i2t2MdYNfA0EQYNs2zWaTmStXqJZKkX8dhiRMEzORwNB1DMNAVVUUQFHVqDkjDHE9D8u2CcMw+gJSpkk6lUJRo/CpVqth2TZGIkE2nebs2bOcOHkSx3UpFgps2rSJwYEBAuCXvvhFjp84wff+jb/Bj/7Ij+AHQexCzc3NMTM7i+u6jI6O8vBjjzEwOEgmkyGXy2EYxs28lLcM1peBLoRhSKvVotVq0ahWadbrlBYWaDoOge9jJhKYiQQqkWtj2zYKECoKQGz0qqahyu8VBd/3UQDLtrEdh0w6TcIwsB0nes9mk1dfeYVarcbQyAh9fX0UCwUy6TQQ8WsOv/MOrVaLxx99lP6+PgJxY/lBwEBfH9u2bOHS5cucv3CBl779bXbu3k02nyeTzVIoFhkYGCCXy6GIY70bsb7CCziOQ7PZpNlsUl1aolIu06jXqdXroCjomkYuncZIJGKDCYHA80BR4hUcYYTyosbNqkEAwvBVRcEwDBKmiee6TE5OcuXKFfL5PPfs2UMymaRpWZiJBP3FIrqm8T+//nV+7p/9M3LZLAdfeomEYUTvH4YEYYgi3KcQmJ2d5bXXXiNhGOzaswdVVUmmUqSyWbK5HAMDA/T399+Vbs/dd8ZdsG2bpaUllhYWqJRK1AWl1zQMwjAkn06j6joZkSUxdB1N0yKXJAzRNI0gDAmDgCAI8IMg+h4IfR/P87AdBycMCXyfMAhoWBYty2KxVGJ+cRENGBsfZ9PEBKqmxS6Q4zg0LQtVUXj7yBE2btzIU48/jh8E2I6DoqpoqorS5jIBDA8O8tFnn+XlV17h5IkTPP3009iOQ2lhgWq5TLlUYi6fZ3h4mIGBATRNu1mX/4bjrl3hLctifn6eubk5KuUyvm1j6DpJkQZErOKmaTI0MICiqvHKrgCeMN4Q4t97nofnebieh+95eG35dN/38T2PljD2+YUFpqem8BSFvkKB/mKRRCJBMpkklUrhOA6KopDJZDB0fUXTtvw5DMPoWMMQTdfRNQ1d3JTNZpNvfOMbDA0N8cTjjxMArUaDcq1GqCgUBwbI5/MMDQ2Rz+dR1Tu/LHPXrfC+73PlyhVmZmZotVqEjkNC08gPDJDOZEgnkyiKQqPZJAwCstnsihVQrsB+EOD5Pp7r4gpjVyA2QOlmKIoSBbWKQgqoVioszs3R39dHpVZj88RE/NTQdR3XdWlZFrquk1VV8rkcClEQ7fs+fhDg+j6h+B4gABzbRpKQVbGvffv38/ZbbzF5/jxbtmyJzjGToVqvU15cxHMcHMehXq/T399PWsQMdyruKoO/cuUKly5digJN38dUVfL9/fQVixF3XbgF5UoFiApJ3Y0bnlilbcuKgkYB6UerqkpCZm40DVVRovShZaEbBhcvXuTihQts276docFBXn/jDYYGBkgkk9E+29wix3EoLS1hNZvk83kKuRxJ01yOC8SNF/g+jnCdXM/Dd10C8fpiocDY+DhH3nmHdDpNv3Bh8tksKZEqnanVqJTLOI5DoVCgUCjcsf79nXlWXbBtmxMnTlAtl8H3Sagqxb4+Bvv6OtJ1iqrSaDSi3LqqxqudTE/ath37yYEwNiORiFwJsaJKt0AhyuLUGo3oxlAUTp08ycz0NA888AAjIyOUSiUgurGSqVQU8BJ1R+WyWcrlMp7I85erVcqVCrlslmI+j5FIEIZhlOfXdUxVRRdPIvkkcDwP13HYtXMnpXKZEydOsO/++9E0DdM0SRgGA/39VGs16tUqp8tlRkdHscfGokqv6MC6k3DHG/zc3Bxnz57FbbXQgcGBAQYGBiLjEKuyRBAEtGybIAzJpFLYto3juitovQnDIJVKoet6/PogCGKDDcMw9tUVRUFTVU6fPs3s9DRPPPEE4+PjcadSKI7BTCbRVJVas4ntOKiKQq5QQBOBabVWw3FdGo0GtVqNdDpNoVCIVnxh4BKqqqKqKoZhEIquq3vvuYe33n6bRr1OJpuNMlKKQkLXSadShIqCY1nMTE3RqNexmk1GxsbiPts7BXeswTuOw8WLF5mZmiJ0HNKJBBs3bIhW7TAkCIIOYw/DEMu2I1/cdVfkqg1NI2GaJNrSkn4QRC6F8KMRXUiNRiMyQEUhkUhw/vx5Ll68yKOPPML4+Diu50VPCLFvmeXRDINMOk29VsMRgW86nSabzZJOp7Esi3K1ius4tCyLWr1OKpUiXyhgtheW2lwteaxbN2/m9OnTTE9Nsf/++3EcB8/3cVwXR5xvGIYkUykajQYXJydpNBps3rqVfD7/4X9ANwl3pMGXy2UuX75MZXERPI/+QoHx8XE0XUcNQ3yWDUGusI7rsrC0hOM4pEVPqaZpJGShqUcGQ1GU5Xy7uGFazSYIXz6dyXDl8mVOnTjB3n372LR5cxTsiidG+z7l8SQMg0wmQ61Wo+k4qJpGXmybSqdJpVLYjkO1WqVWr9NoNKjW6+RFccloyyaFihJTH1RVZdfOnRw+dIi9e/dSKBTwXBdLBK2hSLG2bBtN0/A8j6X5eZr1Orv37KEoOrdud9xxeajFxUUuTE5SX1xEB0aGhpiYmMAQxg7EOeuQKAit1mosLi3hui6aqpLNZMjncuRzOZLJ5Apjl69VFQVdVQmBWr0eqQ0oCgnDIF8osLiwwOFDh9ixcye7d+2KXiyKT0DPwDAMQ0zTJJVKoSgKrVYrbgCXGSDpew8PDUX1AVWl3mgwNTVFrV6Pi1GheAL54ufNW7aQSCY5ffo0hGGUBUqn6RMVXd0wME1zefV3HGzL4uiRI0xfpUXxdsEdZfALCwtcvngRv9UiYRiMDg0x1N+PoevxY94XgZ7vedRqNSrCfXBcF8MwYv6J9M+7i/DtFAKI8vH1ej12kTKZDJlMhnKpxOuvv87ExAT79+2L8/oKxDGBtspTAyAtCl0oCvV6Hc/zosqqSIX6vk8ikWBoaIjBwcE4mzS/tMT07OzyTdJ2DoqisGXzZi5durTshonfJ02TQi5HOpUinUrh+z6249BstfB9n8n33uPy+fMdr7sdcccY/NzcHNOXLoHjYCYSDPX3kxR88kAUiCAy0Fq9TqVajX3XhGGQFinIL739Jb7vzz7DP/n252m4y1M55KquiBsGlp8Ovu+jqirFQoFUMonnurz66qv09fXxyKOPxsYOxPl7YM0Kp6IoJEUg6wVB5Lu7buyiKKoa7zedTjM2MkJfPo+hqriuy5WZGRZLpU7DBiYmJnA9j7m5OQJRHZZFLFVRSKVS9Pf1kc1mY2WEeqNBvV5nZnqaydOn1+zNvdVxRxj87Owss1euEDgO+WyWvJC5SKfTcSUyBOqtFrVqNdJ/EatasVCI3B1N42sXvsbzV75Dza1xeP4wf+d//CgnFk9Ghg4dq73turGxy7y2JjI/b731FoqicOCJJ6KCkihEBUGA63lx3KAoSkQ3kPl08eX5flSlDUOSpolKxMVpH4vTfTyqqlIoFhkbGyOVSkVuTr3OlenpDkGoYrFINp1meno6/p0MvP0gAHFD9ReL5LLZKNMjmJ+LpRKVcplzp0/Hccjthtve4Ofm5piZmiJwHPpF0QRAN4x4FfRdl0qlEn3wIgVYECxCTdNiPfaTlVMd+y7bZX72m/+YPzzxX/HD5ZXSsizqtRpBGJIwDHLZLKpYrc+cPcv0zAyPPPIIZpsQU5yREf67XN1ldkRSiml7giiKEt2Y6XQcWFtCrAmiFbnb5TIMg5GhIQYGBkjoOkEYMj03R6VajbcZHx9npt3g5bERZYxk9iknKs9JkY/3XJd6o0G5VOLiuXPX9PncaritDb5erzNz5Qo4Dv2C/uq6bhSQiUxDQ3BH/CBAUxTyuRy5bBZN1+Nyveu6BGHIcG4k3ncQBqiKik/A/3X0t/n55/8Zs815Gq0WDbHSJk2TbDYbB7XlUomjx46xc+dORkZGVhyvoigxv6aX/97jBQDoIkOjKgrNVquDo4N4UnSnUTOZDKMjI2TFar9UqTA3P08QBIyPj9OybSrlclQdRgTyXf65puvohhEV1zQNQ9fxfR/LspienubS+fNXP4dbDLetwXuex6ULF1B8n1wmE3ULiUezDCxrtRot8Tg3TTNK24lmDbVtPyGRSzCYEfsIQ1Sl89Icnj/Cz/3V/8bL5yPt9lQqRSaTWfbnXZfXX3+dQqHAfffdt+pxywyNtkbpPiapyaKWcG0Mw0BVlKgaLLdtfx3LpDL5HkNDQxQKBQxFoWVZTM3MkMvlSBgGs3Nz8g1jN6s9hy+vm3S9EqYZ/+x5HpPnzjF59uyq53Er4rY1+MsXLxJaFhowNDgIEPvaskDTvqpnhVsgfV/54crV0tB1dEWL043dyJDBcRz+/Tv/kd8+9Xugh/F7EoYcPnyYlmXx+GOPxSt+7BvLxm6R6pNMS1fcbJJl6XlevJ1MKSLdHSCTTqOqKkGbP9+xsitKz2MvFAoMDw9HLo7vMz0/T1ZQF2CZJqFATHKT0DUNXdOiSqxtYyYSpFOp6BzDkIsXLnDq3Xc/0Gd4M3BbFp4W5udxqlV832d8bCxulwvDkLoozScSCUzTJCMMHbpWQ0VB1TR84b+rmoauGT27gdKkSYaRP96gwdcufo2jS+/w/3j0F9ma3crU1BQXLlxg3/79+EFApVqNOPHtFN4wJADqQk5PU1WazSZhGNJotdA0jbDrfVuNBo7vY7suKdtGFSuxZdsRBSIIMESsosmsTY9VGiK+zujICAuLi1i2jZ5IsLC4GN18bXFD+/WRN5opeDuuTKfqOplMBsuycF2XqStX8IKA+/buvdaP8KbhtjP4Zr1O6coVXM+jmM+TFI9Y3/eptumxm6ZJLpPp+ein7XeBWIUNXcdQVvZ9ZsU/DQ0HhyRJMmRo1S1+6fn/g+/b/AlyU1n6BwfpHxzEc90Vhhu9mRIHrJKvLv142QrYzsUBUSkVx+eJTqloV0rEpCyXY6oERDetKoxfFdkhVVXjAFm6OJVqlVw2y5WpKS5PTTE+MhIvGh3XSlRq27upfN+PCmaKQjqdxhacodmpKQgC7tu/f+0P8CbjtjL4wPNYuHwZ3/cj+Yu+PhSRd67VanGVst1d0dfIdfsiD62KFj5N0TExMTDQ0UmTJh2mCAEbm5AQve2SuaHLH5//Ux7hYX5m3+dIi6qsNLTuCm3LstBUFTORIJPJRMYEZLLZnnwVM5Gg2WpFjSGmGactjUQCarXIDRLnGAQBoecRAJ5Y6WXPqyqYlJquo+s6hXyesdFRzpw5Q6VSQdc0hgcHVxyv7M91xfUOwhDXdaNrDBCGmMlklPJtNJiZniYE9t7CRn/bGHzg+9Tm57EtCz8MGR0YQFVVbMuK3QRd18lls1RFUanVapFbRXo6JCKYSZ+6Vq+j2gpZomYLA4NUmMbHx8KiRo2AAA8PX/wD8EOfhfwC/X19qx67XLFlEej9dhbJxpB2GLoeVXjDMC4SBaIhJAiC+HtPxBBBGILrEkQHgmmaEVe/0cDJ5ZiZm2N4cHDF+/i+jyuKeZ5oWYwD3OjkME0T3/No2jZz09OcUFXuuUXdm9vC4MMwxGs0qFYq+EFANpMhmUxSbzQ6sjDZTIYgDEmn07i1WsQFcd2YSSgDRMe2sV0XS6gTqCLdZqgGoRLghT5GmKBCGRubGr2nY4eEKCg8u/2Znn+Xxy4RZ2iutYdU+uU9fPKEYUSqB+LGzmYyqLq+4gMNiTJIjujKCl13OQjOZrFdF8eysBWFK9PTjI2MxDQFGV8QhpiJBJoIqD3P6+wjABKi5tC0LKauXCGdzbJ5y5ZrO88biNvC4P1Wi1ajEa3uvk9/sUitXo+LMKlUikw6HWcbdF0nmUxGIkX1Or6QwHM9L/ajUZQoi6PrpJJJctks6VySmlKlqPRh+zYuLlWqrCzvREiFKX5s1/+NT237vp5/lyQ1+er3u8LH2aRVkEqncQTlwHHdqBe3B1RNI6GqsSHLTFBa9M4WikUqlQot22by4kWGBgZIpVJR1sjzUBSFdCoVSYyI7FK7wcvbMWGahILwdu7sWdKZDENDQ9d0rjcKt7zB+46Db1nUqlW8ICCXyWA7DrYgR+UymciPFJkGaR4Jw6AmPsRqpUI6k4kzGQnRqG3oOrbjRJwbw0BXDHLkCYMQRYUmDVTUuOyvCNNP6kke5SE+PvFxHt+3xkACRUGR7kwbb169xhVens9qffZSkazh+7RarajjStAoYmmQ+FCWsy6apqFpGplMhmazSX+xSMo0mV9YwHIc5hYWyGQyBEGApqoU8nkUEefYRDdMh1vTdr6muKlarRanT5wgmUzeUhKAt3Qe3vd9/GYz0nBstaJsiqCvKkA+l4uNHaIP2LIsKtUq1Wo14r+LKqTnuhExqliMbpK2XtV4xfUUtEADBapUY5dFVVR0VUNVFVAgrWR4UHmAh/Y/tPYJtPe8iieLKoSZrhltnPtekPRlWQGVPnx31VQ+LdpvnqRpYgn+ezabZdPGjRRyOUJgQdClDcPA8zwqlQq2iHck+a1DOaHteFOmSTKRoNVscvb06Zi6cSvgll7h/UYDwpBqtYovXBX5QeZyuVi+IggCWpZFU/ibQES8SibJ53IxxVX6+ymhTCDb8lSR5lP8yKDr1OOgFEBVVIIwiFZ4RWHRXaCysRqrBUv0XPUEPmjACivdmnYNGhk0er5Ps9WKK8mr7UfVtPgamqJxPCbHKQqZdBrLtlHFsaZSqWVWpWgUD4MAQzwhZDN5x7mKzinP91mcm+PC+fNs37HjllA8u2VXeL/VAt8n8P24gVr6jel0GjORwA8CGo0GpXKZlmURCppuOp2mT1BcjUSCfD5PQo6EtCyq9Tqe78e04TAMadTrbMhuINQCHGTDhcLHNn2UL3/8d9nVt7Pj+L628D9xfCfmscRSHHSupCFErX9tK/xqaCeRhWEYUSRk0Up8+W1UZ4hy9WYigSHy7nYbuawX2uOClAg0LcvCcRxq9Toh0Fcskkml0DWNeqNBNpMhm8mgC2qDH4bUGg1q9Tqu667Usxdp0XQ6jaKqXJqcZHFxcc3julG4JQ3e9308y4IwxLKsSPfFdTGFUFEikaDWaFApl2mJD9jQdfKFAkUhuRGLmhJRBXKZTKzT6Hke5UolXvkbjQY+kE9m+X8//a94euIpvm/bJ/i/vvff8y8f/3+yITfBP9j7k9GxhT6KojBvLfAX7/WYk9rFg5H5alnAkRka6We3dyZJ9HJh5N97rfYgXBslkgS5WpOG3IeZTIKiUFpaotlqxQF/sVBgZHQUTdQ4FksldKG+ViwUosqroBM3mk0azWbcJtgOVVXJpNP4QcDF8+c76M03C7ekSxMKgVJFUaK+zVaLVJtGzJKQt1BUFVPTSCWT6LqO3yO4azePpGmi63qk6S5y8M1mM44FMpkM+3L72De0b8V+Hh15mG3JrZxpno13+l9O/n/525v/Fmmjh3hRj8c8tNGCxZcKHQ0iPdGDDdl+fiERLVgXsn+Wbcd9uavB8/3Yt7Ydh2w2G0l3iKKSoesM9PdHVIRWi1KlQl+hEEl8JBIg0qIty4roDpaF7TjxZyGhaxpJ06S0uMj8/PxNl/K+5VZ43/fxLSuWs6uWy3iie9/1PFqtVpT3NQzyuVzEBBTCou3oxQ+B6APICYqwLNnb4rHcbLVW7eap1es8YN/fYXgVp8IfnfnjFduGgjfTfV7Qm5h2LbgW/zeZSqES6fD0WuWlvk61WqXZaMSLiiauSVxBlftLJikWi2iKQq1Wi4pzooe3vRdAvi4QT0v5tJB8ftM0UVWV2enpmz5I+ZYz+FBouYRhSKlUinLnQUBCBKyqqpLL5cjn87FP397uBnTkvleDLlJzZiJBJpVC0zQcx6Faq1GpVmkJd0fixIkTbM9s46mxzgl7f3z2TynZ5Y7fdffCtgd2MqPiiicMRBVfT6iFdUhsXNMVW0asVa8ocZdTLMrabFKt1eJsl6IomEL8yTB6k+YAskJfXlMUSuVyJOLa1iEl+2Fz2Wz8GbkiHpBPEEVRyKbT1Mpl6uIYbhZuKZcm8H0C20ZRFCzHoVqp0LSsaDK1yJ+nBUV2NVyrNmyj2SQQJfahwcFopXccHNuOMjoiq6NpGlarxcVLl3jowQfZ07+HV6ZfQeZJWl6L33n7d/nhiR/Ctiwsy6JpWVitVhR/SNqvKPd3wwdefPHFznY9XY8IYIKXkzBNMqkUhohhTNMkaZpRPCN+lkS0ZDKJ7TjUG404MG+/iVRVjWZH6XqkhamqPY+rHYVCIWqmabVYWFzsyHLFSmsiSDUE/ycUCQVDiFYpgkM0NzNDWlTKb0bW5pYyeF/IXPhBQK1Sice1Z7PZqGmhS+exHbK5eq3UoITjuvEKmEqlQFHQBbFKVh8d18UTrs7xEycwDINyuYw1Y/FI4iGOOEfx8AgI+Pr0NxicHqBP7yNlmuiJRFS9FZM3QiKVBEmrlcbcsizeeust9u7bRyqVim8K+b/jOFjiBvQ9j1K5HPnK0mURbEbCkLQIytOZDJpY6bPZbEQ5UFV04XO3+8/tYq9XQ39/P97CAq1Wi0q1Sj6f7+k2GbpOPpulKeRFXM/DbzTIpNOYySTVapV6rRaLS91o3DIGHwQBoYj0l8SFhSiT0IvUtBqkvjrCILoRhmE84j0hWtfa0Ww2WRKzlRYXFqhVq7hiBZw8f550Os2zhWe4OH8ZH5+QEA+PhbElfuSBH45XvHa2pBRokkYoIf3ZoaEhisXiimO1hSti6DrpTCY2fE+kauNJJc0mzUaDRqPB7MxMXG/wxROsr1hkoL+fgYEB+toGIXQLQV3t6dhXKMT0jmajEac1uyGpCIZh0BQuVL3RIJ1KYSYSLC4skMlmY+2dG4lbxuBD141SZKVS5D8HQeS+iL7KqyFou3CKohC28cvb0RD7VjSNhKJQrVZZXFhgcXGRxcXFeOXPZrMMCL2XxcVFPvrRj5JOp2MX5fyxC3z70gsoKBgYvD39Nu9tmGQsPbJsOCK74rguruOQkPJ+YmWVXCDbtiM3AOK8e9zoIZpDpNpBu2JxMpWKAstCIab+yht4fm6OcrUa5derVU4JeQ1FUSiK/t8+wfD0/SjVGqwS6EtpEU3X6SsWsW2bRqtF1rbjBu9uKIqCoetkMxn+/+29eZAc+XXf+cnMus/u6vtE426cM8BgBpgbMyY5FrUrmqTWtpZaibsOHWuH7VhK4sbSsaGQY80IU3bQu9YRdDAoai15LZNLysMVr+HMYC4MKFwzg/sGuoHurr7rrqy89o/8/bKzqqu6gTkAzEy/iI4GqquysrLe7+X7vfd9329RENSWxCIpieGdUqlUFwDuht03Dm/XauRyOYqFAgquwxVLpdvDnTSJ6H4aPPk30zQpFYvMCLWPSSECFggEyLS1MSQExDKZjAuHNU3+5kc/YsOGDR4eRDLv/soD/4C/ufVDaraBhkaAAH997a/5x7v+Z6/uLh3XqNUwTdPbGEurSYev1Qg1aRhJ9gBpqlD7CGhaXZ7fLI3r7OwkKohQU+LcC4WCt7AnJye5LOZR33r7bYqlEn19faTTac/p/QvMI4iKx4mEw9Qsi1yh4DI2tNpTKS5/TiIeX+p2i89ZLBS8JuHdFGK4Lxzetm2Ki4sURdmrLZ32Rs9WytvrrMmtUX5J5WqVWxMTjI2NMTs3B45DW3s7w0NDtGUyDA8NoTV5/dj4OEatxoYNG5b9rT3Szue2fI6/OP+XmJjo6ByafYXPWL/E9vZtHuRBdk8NgeUJiXE5h6UIHxYDHv7oj6IQFNR/EvosN4p19y1nidjJb8FQCK1axRAo0WAg4JZjk0lGRkYYGxvj+PHjOEAykeDa1atcuHDBZWzr66O3t5eurq6mzphOp907pcDYtLeYBVAATVGwwENb1mo1bNtmYX6eRDJJuVy+q1H+vnD4wsIC5XIZ27LcjVYyyezsrNtQWc3hfdgZv9ObhsH4+DjXb9xgYX4eR1FIJpNs3ryZTRs2EIlGWVxcxHacps7uAFcuX6avv78lZfQ/2PLf8fyV58kbS3j5b536M/7wyX9d11VVRfoUi8Xq9iIywksuyeUfzSU4rRusbsDHt8q6FUUhGA5jVSouLMP3vufOneP8+fMMDg0xPj7Oju3b6e7uZnZ2lvFbt5i4dYsrly8TCAYZ6O9n/fr1tGcy3jmogQDpZJJ8qUSxXHYF01rk8/JcwIUy2I5DTddZnJujb2DAxfJ/nBy+XC6ji1wzGo0SF9M7eq2G7Tj1NNDNzFliFlNwuWGuXbvG2NgYtmXR29fHww8/TFiUweLxOOFweFkrv9Hlp2dmyOVy7HrggZZvHQvG+JWt/4BvnP6mexzb5u25dzgxfZKHepaQlK1gAatai85x3aMrHDMcDHqlUZmnnzx5krGxMXbs2EFfXx/j4+NogQAOeHO5u3fuZDGXY2JykrEbN7g+NkY6lWLDhg0MDQ15Ax8x28YU1aPgCoUFSRcI7uK2DAPLtrk5Ps7wunWYpnnXuq/31OENwyA/N+cKigWDbo1ZULvZgmqupaCub2NomCY3xsa4dvUqCwsLRKNRtmzZwsjICJFo1FOrlumBH/AluWwaiZGuXLlCMp32KECamaIo/Lfr/xu+d/mvmanOYisOiqPwrbN/xt7uPXWITHh3SEn5Gev+7V8IK+BmVE1znb5Wo1Qq8fbbbzM/P8/DDz/M4OAg8/Pzbrm0gTFBUVVS6TSpdJrRrVuZnp7m6rVrvPXWW5w6dYr+/n56e3tpb28nXyhgmCa5fN7lBmpx/pJeBMchGo1SKpdZmJ+nPZMhnU7fNcz8PXX4fD6PalnUBJQ3HA6Dqrrap8JWGoczLYtrV69y/uJFKqUSvX19PProo/T4pvAdAR2WF9ofZf1MAX5HKhaLTExMsOfBB1eMyg4QDkT41dEv8PW3/k8v9F5cvMRrE6/z1MCTS5u+Br6X27FWZEt+a0ae5LdQOEwun+fkW29Rq9V4/PHHyWQyrgaUqIwFG6Or4vLbSKme7p4eunt6qFarXL9+nWtXrzI2Pk5HJsPW0VEUoFypEF+hauM/f0VViUWj5HI5Zqanvb3F3bB75vC6rlMrl3EEuU9AiA94VBXiec2iom1ZXLt+nQvnz1OtVlk3MsLGTZua5toVIRQWCASWaRZ5EABZjhMOOSZu80PDwyumI3Ka6bl1n+Q7l7/LjfyY97dvn/1zHut7bAkH/y7qza3q4v60ZsXKueOQy+U4dvQoqCqPPvpo3bC5ZF1rWvZVlGWVr0gkwujoKOuGh7l16xbXrl7l8Ouv09nZSW9/P/lCYVWHl6ZpGpFolMLiIrlcziWKut0CxXuwe4alyefzqKKKoYhUw7u4Lb5ox3GZrn7y059y8q236Orq4pOf+hR79+xp6uy2bbsDDiK6N5p0wjp8OTA2NsbQ4CABgTFfBsmV/xCPa2qAL47+OjhLzxsv3uSFsRfe0+DH0tssH6VrNFkN8piIbZtbExO89tprxBMJHn744WXpocS6NMufJb6/lXV3d/PEk0/y0L59FEslzpw+zflz55iZmWl6bt5v3zEjYnClVCzeNVDZPXH4SqWCUa1i12oerNVb3f76uR+ZmMvx8ksv8bdHj9LW1sYnP/EJ9u3bR2IF0a2KkJYMBIPNo4c4vr+ZMzc/T7FYZGhoqOVxvbPyve7xgcfZ3L6pbvX8x/N/gW66jSzlXTh8Y0ojMfQSQiFx9P7yp/y5fPkyR44coa+vjyeeeIJQMFg3ngdg1Gruol5hQqpZ8JH6VIqqMjQ0xKeee44tW7ZQLJV4/fBhTp06VT8UIuAiUO9wsg4/OzNz1wZE7onDV6tVNNlU8Ud3P1JQ5pG2zblz53jppZewbJuDBw9yYP9+r5niPb/hPSzbRhcw1VbYcLlRdXxfzs2xMSLR6IqbVf85esdSVP7R9v8RvCElh2x5hp9cfwHwRXhnSW4HlpxHIirr/i0dWTxPdmHlcZqa4/D2229z6tQptmzZwsMPP+zihMTon+FrfJUrlaZ3Pt8HbNr48w/WyN9btmzhwd276R8c5PKVK7z08sssSO7KBgCbP8rHolEqlQrlUumuoCjvicPruo4tqgOajz6iLuI6DpVKhZdfeolz586xZcsWnn322RUrAX6rVCrYuHX8VpUeuZGUgyOW4zA2Pr5idG/1vg7wUPdeHuh8QEy4uQv2b67+kIpVraujy+EP97/KckducGr/86V5ObzPkSzL4s0jR7h27Rp79uypYzEOBYMouMA5aZXVHL7J+8r3bOzuappGMpVisK+PXbt3g+Pw8qFDnD5zZtkIoNrw72AgQLFUuisTUXfd4Q3DwBY/Uku00Vkt0+Sdd97xbo0HDx5k+/btt73xc2ybmqjMrDT5o4kqjYTHTmez1HT9zhze55yKovA/bf9i3Z/LZpkXx19814Mf0GLD3PBYtVrl1VdeYXZ2lscee4yRBhIkiZOXbMYA5VJpdcSispyRWA6BN6ZCCSEwEYlG2ffww2zdsoVz58/z4ksv1QkyyOOCu3BDwSDVctkD9X2QdtcdXtd1FNkeFxj3us6hbXPq1Cmv7V4qlTh54gSnz5xhdn6+Lt/2m/8rkYrZEvLbymQHUx5zfHycZDpNm1ARuR3zc7g7wPaObTzW+9jSe6Dys7GXyRlLX7i/wuI0QgV85o/efgd3fP93HJfV4dChQ1R1naeeeoru7u6m5ykZDSSnT7lcJno7EF2/wztLjAmNi05VFFKpFIrjMpZt2LCBZw4exLFtXnnllboNrZ8DPxgMUimXqYgU9IO0u+7wpmlim6bLaqsorjCA+PCmafLG4cOM37zJhvXrefDBB3nooYdIpdNcvXKFVw8d4od/8zf87dGjjI2P18m/+Cs8VV3HcZxVS2SqmJSyBd7k1s2bDN9BdK9LK3woxy9u/zWPrUxFpWbrfOfid7xUAN9v/7Eaf/wtJX+uD0sLJTs1xSuHDhEKhXjmmWc8yZ9mJtMaQyA+b2f2FeonuBpF0hotLuATpmlSrlRIp9M8ffAgbW1tvPHGG9wcH/deK50+FAy6eKpicTkDwvts96QObxoGQVUl4IvuVV3n8BtvUCwWeeKJJzzqiIHBQYbXrcO2LOYXFpjKZpmemuLYsWMAtLe309PTQ09vL+lUipoY2lBV1aPmaGWS1N8Bbt26hWlZDA4ONn2u3Eg2LVE2PD6SWscnhv4OPxt/0Xvs/7v+Qz67+bP0xpdL4bQ0f1OsyblfvXqVo8eP09PdzSMPP7xUTxfn48iSqlgcgUDAHTE0TW+45naHMBRVdTnvBeNxq0aaI46pGwblSoWUUBt5/LHHOH78OD8/doxKtcqmTZu8QoXc0JfFFNoHaXfd4R3LcjupoZC3Wa1UKrzy6qvYlsVTTz9NWzrNzZs3kdIqqqqiqCodHR10ZDLs2LaNarXK1PQ02WyWy5cvc+78eRfmm8mQbmtzhRJWyZvlcbEsbk5M0J7JuMp/NHfuprk0LBvYBvgfRn+VV8dfcz8zDgYGf3H+L/ndh750+9eqRdPLcRzOnTnDmXPnGFm3jgcbO8KytCvvJOLfiqp65cmCcPjVNq1Lh3SjvIQsN0r2eJUl0fPICQWWSrVKTIz47du3j1gsxjunTlHTdbYLhmHJ56OLIfoPsgF11x1eao1KCmipaYrj8Mwzz3hfgKppLoZdkoT60YK4ww8jw8OMDA9jOw7zc3OM3bzJxMQE4zdvcu7sWTo6Oujt6aG3t5dUOt00OquKQs00yU5NMTo62jI/bWWtJoV64z18euTv8tr1N7z515+Nv8gvb/48I6l1t3Vsz+F9j9mWxfHjxxm/eZMdO3awaePGFQFkvhNF8s6oijv44iAcvgFp2voQbvqnKEod9sihPtWR9fVisUipXF5CUioK23fsIBQOc/r0aRKJBEPr1nmv0Wu1D5yW7+47vCROCgZxbJvjJ06QLxY5+PTTddFGYmgMy1r5y1BcFbrOzk5CkQj9AwM4tk2hUCA7NcWFixc5c/YskUiEnp4eent66Orp8YQSVFUll89jmia9TZT33ot9fuPn+fnYMUq2G01tbP787P/N7x/432/vAA0RvqbrHDlyhIWFBfY/8gh9fX31in63YVK9oyAYxWRa5+HwWRlybNo2Nm6Fyx/VGy0ei1EqldB13R1+8d0RNm3cSKFQ4ORbbxFPJGjPZEBR0H16sh+U3XWHV8XFsW2bCxcucHN8nEf2719WGdFEhF9xE+OL+pJzBcchnU7T2dnJ+vXrsS2LWTHhMzU1xfVr17z0qLe3l7a2Nubm5giHw6TuoDrjnQLN0x+AdCjFs0MHef7GD7zH3pg6zPn584xmRlc9tv9uUyoWOXz4MLVajSeffJJMR4dbXbrTTZ7iDqyXi8UlHLrIpf0d7mUwZPG4bIh56McWFvTx1xfLZdJ+hRNF4cEHHqCQz3PkyBGefOopgLqS6Qdld7VK4zgOGq6TLMzNcer0aUZHRxkcGFj2XE3kdber+CwnaeTEvow+KAqdnZ3s2rWLT37yk3zquefYvXs3AU3j7NmzvPbqq9y8eZNAIMDU5OQdy6rbLE9/LEnwVKvxdM9TLpsBUVdChzj/8dRfUvKJOVSrVa8sVxFUH9VqFUPc4mdmZnj55ZdxHIeDBw+S6egAlsBrd2oBTaNULLYcbJG5v5Tk8T6XgGzb/sWxgsXjca+B2Lg4FFVl//79qJrG3x49Co6DpqoUCs3FJ94vu6sR3hLCXIqmcenyZTo7Oti2bVvT5wZFCU33tcJXslqt5nKuCDx9q3puPB5nw4YNbNiwAcuyGBsb4+ixYxiGweE330RTVTq7urzcP9EEtipJiGzTxDBNb7E1DllXq1WwFJ7r/yTfG/tr7/FrC9d5e+oUgyF3oRuGsexzyiHu+YUFrl29SiqVYteuXRimST6fR1FdrVnLtr2pKE/JbxXzBBFiMW8/1cy8/YnsRIuxS+02oc6RSATNR+XdWBEKRyLs37+fVw4dIjs9TW9vL2Wxmf6g7K46vCFSjsWFBYrFIrt27Wp54UKhkIv98G1yW5ljL6lpB4JBD+7ruV6LTZkmxMBQFA4cOEAoGGRmZoapbJbTp0/zzqlTxGMxOru66Ojs9NIuv1PbYuqnWUVHjvk9Mfw4P8m+wJw+521gv3P9u/yvO38PcGdaPeiyWKyWZTE9Pc2NGzfo7elh27Zt3jWwbRtsG9NZkpL0PpOqLi0ATSMQCCw7t2Kx6A3KW5ZFoNW1lZFe/FcqFAZFULmdKlgsHidfKFCuVJqWQFOpFN09Pdy4cYO+vr6P1qbVEHRyY2NjdPf0EIlGPdL9RgsKh8dxPJWOZuYA1VoNy7ZdEd1AoA6DAnjK3M0cf2pqikx7O4Fg0K38rF/P4NAQ1WqVmZkZZmdnmZya4tr162iqSnt7Ox0dHXR1dbnjiIATCrkRV0Q+KcJQFPQasWiUz237e+6QiLAzhTO8lTsJuEMa/g27Y9ucPHmSGzduMDIywp497vSUrIPb4jm2baMIvL8sF1ri334LqKpH4xEIBLw7RCwWc1kb/Nff5+CSkk+aaZoe0aof3LfSXSUWi1EoFLzvvhFyrOs6GzZsYOrwYSZu3bozWMe7sLvq8KboZlaqVfY9/DDgQnibgrscl7FANwx0XV/m8H6MtV6ruZM7oVDTMqH3dShKXdS3bJtsNsvI+vWUSyWq1WrdkEhHZyedXV1omkalXGZudpaZ2VkuX7rEpUuXSCaTdHV10dXVRaajY9mYoJ/i4lPD7pDIzeIt7+//+dp3+BSfqHuNYRgcPXqUbDbL6OgoQ4ODS214kbZI/KIc8paf16/eZ9k2lqD4M20b0ycTNDc350naGIZBVF5PmQr62v7e5RL7Eq8GL9M3sbhbpZBBTUPVNGwhpuAf9pYcP5FIhIGBAa5dv87uBx9sepz3y+56hL81McHw4CBdnZ3kcjlMcSH8EjQyQodDIXfIu1oFXwXFn6Pbjsv74jjuwHcdH00Tk82TWq3GxOQkNdMkkUxiWhYabl0+4IuGmhgCSSWT9IiypWEYTE9Pk52aYnx8nAsXLqBpGt3d3fT29tLT00M0GvVAVm5+rfHFbb/O/3H0q965TFQmuKhc4u8Ip69UKrx5+DDFUon9jzxCLB5fOScXm0r5eSXbmf9LdRxnid/SNDFtm3w+TyyRoFqpUBNVkbCguW6VppiW5UnTa6rq8drL92jl9I7jEAmFKFsWVV33HF7uUcAdNt+ydSu3RA/l0daf+D3bXXN4x3FcVt5ymb6dO1EUhUgkQklUJwKCWAiWvsCQGLjWRV7nRSHfcQ2RV2riti1f3/i12Y7jjhUKnSKAhYUFQsGgy6ZVraIGg7S1tTWFC/gtGAwyMDBAf38/u3bvJpfLMTExwVQ2y8mTJ3FEaTQtGL7kkMqT/U+wuW0zlxYvecd6Rz0NQH5xkcNvvgnAwaeeIhKNUq5UVsyTJQCvJTaeJXBWUNTfq9Uqi/k8Q0NDrnK3cERLLB45LNMIujMty83fxePL4MrybiYgCL4TIBKJuFyTPuxTzTCwJfeQmIdIJhJMT021/Czvh91Vh5+amMAGugSaLxyJeEJcpVKJpKDokCYZBqSTNoPYSiYvfzta9UUbU1QIarVa3UKRwr5dXV1k2ttZWFz00gBJW+Fv7TddBAIH0tbWRiqVYnR0lFqtxvT0NFNTU0xOTHDjxg1OnTpFrxiE/tVN/z2/f+wPvEMUKTA7O8vZs2dJxOM89thjRKJRrwnTyuFvB1XopScyz3ZcCnLVcejr60PTNErlsltXF6hRQ6itqILtV6aJslwrg0rL8xJ5vz/qS6Zgy7KoGYZbfRPTaFEhkGw5Du2ZDNPT07e1IX63dlcdPpvNkkokvPRFwRXHLRaLLg1eqVRXG9ZUVzK9hgssahznc3AjRTOGMl0w7/rr6ppQo5DPXVxYYMuWLSgijbENw+sKLqu6gNd4wfdvP9RXwV14g4OD9Pf3s5jLeeID09PTnDh+HAeHB8MP8JbxNgA7nO2888479Pb28sgjj3iRdUWIg9y/+K6t9/8mi9KfFs3NzREMh4knEpiGQUDTcIQggunjrZdCcdVqlUAg4JV9ZYcaaNl88s5H4uYVlxnBEoAyGZBCgYAHD3csi0x7O2NjY0xPT3vp4/ttd9Xhp7NZhnxTOICnF1osFKgZBqpvCsfBvQtUajVKTRzeEM6uCVyO47isViWfmIGCCz8Nh8N1m+NFIeibERNUgUDAjW6myUoYy7qNnD+dEJs4Dx8vvux0Os3w8DDbtm1Dr9WYmppiYGqAjVMbsUyLNiNFJBZmYGDAu7vgLPHyyE6u/zoum5KS5+ae4Apn7zp8JpNx0xexuCzLwpFVrmjU5Y40DM/xy9UqerVKIBSq569ZKd0S+yyZ70ve+oKg2pYcnf7np9vaUBSFGzdufPgdHlwHbYzE8sLHBctsRcgoRiMRD2oqVSNsx6lLa2QNOigiUKVcdkty4nnhcLhOLMBv87OzKIri8SLKL/9OO63S6oYy8NXqfdE3FAoxPDzsdpaPuZBkXTVQNY1jx46h4MKdewWpaURcA+/4LKEW/XH1dlMAy7KYm5vzmn2yT2A5DqZlEZTiBmLOOBwOuyRLuZz3PoVikbAIIFI4bqWJLEuQXAWCQZdqWyxUT1TBcVDE4lBVlVAgsKoS4Xuxuxrhm2adIloFQyFijisfWalUMEzTI9HXNA3DsqiUy3Upj6w8lC0LTXYqFYVoLLYqRd/8wgKpVMpzdHmrlniOVgRQ/txUdle9v9U/EVhOz1HTdd48coTFxUV27tzJ8ZMneeSRR4hEImSzWbKTk1y8cAHTsgiFQnR3d9Pf3093d7d3h/IPiTSmMCttuHO5HJZt0+EbUJfDGpZlNS0PBzTNrbuLKo4N6ELqPixE4lYySZso78aI9MZjf3Mcb6b4du5Q79XuqsO3+ijSieQtrlgoYNRqFC3LI87XTZOiz+Ftx6EoFodkrYqIBo6MPI1q1H6bm5ujq6vL+78q0iLDMNwNssDyIBo+fmeuy5mFNYKtmmHZi8Uib/oAYP7FEIlEWLduHevWrcOxbW7eusV0NsvCwoI7GwB0dHS4iM/e3iWmLkWp31vIc2Z5JWVubg5NbLKlybJrK9CWKSpkwWDQzfNN0+WrtG23rCjYxvyO7z8XXdc9zFAwFPKAft65+74nKZj2QdpddXhYnvf5R70kXjuZSrkbWcuiUCgQDIcJCOe2RX67mM+7itGKQjQSIRaN1lFKrFSPl7nkli1b6h4PBgKeeIEkYVqp5Of/W2Md2r+5BZibneXNI0cIh8McPHiQeCLRknxIEU6ZTCaJx+OYtRpTovJz/sIFzpw9SzgUcie9+vro7OhoTqfhP6bjMDMzQ1tb2xIkmCUYtikEFxq/H8Pn8ODeERKJxJIcj+1qtYZ8lN+SU9Orjjmu4l88HqdSrS5Bmp0ljA4sDYJ8kHZXc3gtGGyanzWClDRNI5VKUSyVsAwDQ1RbLFFWQ1EwajWvIdSKbnlZTVjY/Pw8Dm7ElHV92bVUFJecNXYbt9aVcmf/Ar958ybHjh2jI5PhwIEDq1OAQ13Ui8bjrF+/3oM7z8zOMjExwXQ2y/Xr17GBjkzGbXr19pIUInB+MwU2Z+voqHfeiqKgitzZElAFfyrn2DY1sRAa6fhCgv6kLCo5NSH6EBNS9V5wsm2PF1+qmEgHtx0HVZybvFaGaS6jRHw/7a45vKZpdHR1MTs72/TvjQhHRTQiypWKS7mhKBRzOXRdd8lSFYVEPL7iiFqrKJ/L5VBVlUg0WgcEkwhNU6AJVyJy9W9S5Xv5I75cRNeuXePSxYsMDg3x0N69t6dowtKmtHE5qZpGT0+Pl46VikUmJieZnJzk9OnTnDp1ilgsRk9vL329vXR2dqIFAszNzWFaFr3i2sFSnV7VNNQmexdDYGcay5H+zxyPRl2BtnIZ0zSZmZlx6VfEoo7H4166EwwEvOuLWGz+BbC4sICmaaxfv/62rtG7sbvq8AMDA1w6dYpqpUKkwVFtX3PEb7FolEAgQC6fx7ZtCsUiHe3tS5vNO+QVtx2HQqFAMplsLlwcCHgNmJUcfsVUB/c2ff78eSYnJxndupXt27ff9obMf7dbjaIvnkiwafNm1m/YgCUcbiqbJTs1xbWrV1FVla6uLlfgLBQi6R/EQFRqVBWDJbCYDDxeOrPKHSkYCGCGQpRzOTdYCEBaMpmsq6r5K2GyQWX5ovvs3Bzp9nY6b4P17d3aXXN4RVEYGhri5NGjZKenWSdmGcH9glVFaToMbdk2lXKZVCpFtVKhYhgUSyUQJaxUwxe47H1VV4fU755SdrGZeXm8YbREaDYz/93JNAyOHzvG3Pw8u3bvZvOmTbd9HFhKZyQw6zbeHHC7oL19ffT29YEoIWanppiammJmZgbHtvnZCy/Q09tLb2+vl/vL+WG/nI7E4NhOa45+x3HhydVqFUNUbfxBotYA+pMNPQlEkwPl4C6GmZkZdq5CUf5e7a7m8KlUikAoxFQ2u8zhvRa4zyzLolgsevl1X38/8/PzFIpFQuEwNSCfyxEMh4mKslmdOQ7Ydl1DyHEcCvl8y/nVYCiEUq26+eYqOHy/yZSmWqlw+PBhSqUSDzzwAAP9/bd/geRpi9+t3nkZrKCZgyiKx7ve19fHT37yE7Zs2UKtVuPWzZtcuXzZA7x1dnURTyaXeHwUxSXMgjqMk//9a4bhijiL6yshBCGxT6vquqfiImvuqqIQ0DQMx3En2YJBr+9RMwwKxeIHms7A3d60ahpbRke5ceMG27ZtI5VM1m38/KU9SxDzSGePC1GvQqHgMWiFw2EcBNe8rhMUgsDBYNAlSBUlO9WXy1d1HcMwWkZ4TaIBxWBHq9t5MyxLLpfj8OHDKMC+Rx7xvug7NVm2u+3Fxsob6KmpKRRFYevWrQTE8EYhn2cqm2VqcpJTp04BLhOEnPSSDcKIGKhB3Cmlo0tMvqIohIXereyqyqZUpVLx0iJJ+KRpGjWhNSsXC8DFixeJx+MtJ+DeL7vrDr9t2zaOTE1x9vRpDjz6aF309efw5VIJib2WCnbgTumUSiWqlQrdXV2EwmEX5iowIDVdRxPiB2GxMPx5aaFQAMdpOronLRgMYkn1u9vkSJnKZjly5AiJeJxHH3sMU9Tz343Dt+JuXHrC8sW20rtMTU3R0dHhVVoURfEkbbZs2YJRq3H9xg2y09OMjY9z+fJlAoEA7ZkMA/39dHZ1EVBVdNE8sm0bVdPciB4KuWxmwoHl5w2J95JOXwsEXOYzMYYoUyZwWYzHxsb45HPPfaAVGrgHDq9pGlu3buXs6dPMzs56A8mwFOHL5bInwhWPxeqcJpFMMj09jSHUqGOxGIl4HCsapVwuu+Uxw3A7sLgXPhQOu/kjblMLVW09wIzr8FVdp2YYRFtETr/LXRP6R909Pezbt49AIEBBjqq9G4cXv5u6e4uOdauKlCmGwLdv397y/YKhEL19fWQ6OohFo8zMzJDNZpmbn+fkW28BkIjHyWQydHV10dnVtYzGUBF3U7+FBBVLVdepVireLKwiNuVyjuHypUvEYjH27dvX8hzfL7urrAVy89PT10dbOs3b77yzrEMoIzW4Ja3G1rymqt5wcLFU8hxAVVUSiQRtbW3E4nFPgl4XuWFO6MAuLC4Sj8VWZPOV5TPbF4WameM4nD59mpMnT7J+wwYeffTRJbSjv11+h7ZiStPqvFs8Pjk5iWXbDDRhhvCbZFIulkooikJndzd79+zhiccfZ9voKPFEglsTExw9epSf/exndfyezbq60sLhMEEBty6Xy275WVRnLNtmcXGR7PQ0O3fsIJZIMCgmvJ599tkVzxfg9OnT3tDKv/23/3bV58NdjvAy93aAHTt38tprr3HmzBl2Cso127I8Uvymm1BhsWiUQj6PXq1SqVbrKgGqqhKNRIhGIlhimko2RWq1GouLi0SjUQrFIkHfZFOjhUMhHIEBaValME2T48eOcevWLXbv3s3GjRuB5ZDddxXhfbDa92pjY2N0ZDJNWYIdsU8xLYtypUKlXKYmxJA1QWUei8fdBh3uZ1tYWHArP9ksx48dwwHa2tro7u6mq7ubdoF49FskGsUsFr1yr4K7SVUsizNnztDe3s7g4CARwWLwve99jxMnTqwKivvSl76EZVls3LiRf/pP/+ltXY+76vCK4tJj12o10uk0u3ft4p1Tp0gmEqwbGfG6sFogQLjV0LbYxIaEyO38wgL9fX1Nn6sFAsQCAWKxmIcBqVSrtLe1eaVHeV6BQICg4LTRhARPVSyWRvU/Xdd5/fXXyeVy7D9woK4So8iU4z1EeC+lWSWV8lsjlkee5/TMDLtEQJHlQG/kz4efkQPgpmkSSSRoS6eXBQIFyLS3k2lvZ9u2bVR1nWw268nYS8iDHHPs7ukhJHjp47EYJdGcsm0bw3G4dOECjuNwYP9+b2j/wIEDfO973yOXy3Hx4kW2bt3a9PP+4Ac/4IUXXHWVr33ta7fNR3nXmcfC4TDVchnDMNi4aRP5QoHjJ04QjUa9DWIsGm15m7TFzj6VSlEsFNB1naKfRauFSQiyaRikUyni0ahHG+3Y9tICEGN1AU3zpo4qlYpbcVFVisUih994w+Nib5RdlxvkFQc4VrEVU5pVGl7SLMtifGwMx7Zpz2QoFArevkh2tR3wmB6CwaAXfSMr3F39FgmHGRkZYd3wMKZtMyPIbbPZLDfGxpYB3mT6UalWmZiYoFgo8KQYZ5QOe+DAAe/4x44da+rwhmHwu7/7uwA89dRTfO5zn7utawL3yOHBTV9QFB588EGXRu7NN3n44YdJJpMe70mz0p+MEBJklsvlmF9YIBaLraqUJ6f0Y7EYkUiECHitbcM0McUAiGPb1ARsVdd1aqZJLBKhUCjwzjvvEAyFeOzxx93NsnCixvf28OurlRZ9uBY/9Fh2QIF6JxUdacdxvEFqW9S1DcFSYJsmNq78Zlt7OyjKEuOAqtalcvL8TDHtZTmr8+o3XlMFdw/QJVgeduzYQaVSYWpqimw2y/nz5zkr+D3T6TTFSoVSscgDDz7oCigoipeWyk2/aZocPXqUL3zhC8ve84/+6I+4ePEiiqLw9a9//bbPFe6BwwcCAQKhELaopAQDAR7Zv5+XXnyRE8ePc+DRR722v019lPcPVqiq6mJtSiWqhkEul1sWbRtN1/VlvPEynQkEAhCJeAvAsiyCgQA5sRimslnOnT9PWyrFjp07sW2bvGTJEgAsKXSsKO6wtMLSXK6EGnvoUEXMiYrfcqOOI2hHbBtd0o7gpiOOwLvY+OYLxEKQQC0ZJGrVKvPz8+zcuZOI6IBqKyj26bWa67jietyWyYqL7/9ySisajS4B3hyH2dlZpiYnuXHjBrbjEE8mGRwc9IoLbWLyLBqNsnv3bk6cOMHRo0eXveXc3Bz/8l/+SwB+7dd+jb17997euQq7J4II4XCYsuACl7e5vQ89xNtvv83rr7/uMuP296NSjz33q8FJB0ql05jz8yzmciQSidZS9QjqO1YWAfAvgHA4jGVZXLl6lStXrjA8OMiuXbuwxJ3C8jmZZVkesaktSqYAIalM1wQnVCqVcGybcqnktveFE1crFZAIxYbXyQUv7wKqAH8F5WITVB1XslkURWFk3TpXeGIFsy3LY38IhkK3NUHVipbDm8jy4XJURSHT3s6Vy5exbJtUWxvDQ0Ned1pRFM/hwU1rTpw4wVtvvbUM0Pb7v//7LC4uEo/H+epXv7rs/Veze+bwJUXxsBaWZREOh3n0wAHOnD3L4TffZPeuXa5KhLBWTLWJRIJSsYhVrbKwuEi3b6ij0SS7cCQcdp1olS/VtCwuXLjA2NgYGzZs4MEHHnDPxXHq7hIy3ZD7i5quu9QijosD908n+Z+v+FIWiQW3xfCJJ/jm/7s4X1VVXXYzP0e7D3XoOA7jY2Nu3nwbm7mqD0YQDASWwYSb2UqsCQ5LNIaqqlIulzny5pvkCwXWr1/vzrOKu6miuPMM/krbgQMH+JM/+RPK5TJnzpxh9+7dAJw9e5ZvfOMbAHz5y1+m/13ANu6Zw2vBII4YFJazqaFwmP3793PmzBnePnXK5Z984IF62K2Igv4I1NbWRm16mmKxSCqZbAn60hvSjFZfmoNL//HzI0eYnplh27Zt9Pb2evOZjeZhy8XfVFV1UxRFccmUWphcxPFEwtOd9Xh2BJyi7rxa7GsabX5+nlw+z86dO70UyuP0aVjklmm6DSDcTahl26u+R6s5g8ZzBbeMefjNN3Ech4f27fOKA6pvQaQbpEj9G9ejR496Dv87v/M7mKbJ4OCgt2m9U7snOq2KopBIpXBUlWql4slGyvRm586dPLR3L1evX+elF19kbn7ee22z6k04EiEajaIFAszMzra8G1Sr1SXOyobOpMSvW447V/vKK68wv7DAE088wdDwMMAHOlwszZOqb3L3aaVgCNTdra5cvUo8FqNbAOT8PQFVUequn4zuQV8/YjWHX83Zwa0SnTt3jpdffplwKMSjBw549NnBQABNWeK6aW9w+M2bN3tsElLL64c//CE//vGPAfjqV79629pUjXZPHB7cPFrRNBdEJAYN/NFzZGSEZ595BoBDL7/MW2+95c1XAsvSkUxHByFNcyfzfQvEb1Vd93D4/sjnT0cWFxZ4+dAhDMPg6aefpquri4hICySZ02oxVmn4fSfmOVuzO8nKLwTcRTlx6xbrN2xY8fgKuHTfgnVZkiXJ/PtOzX9uMzMzvPjii1y4cIGtW7fy+OOPe3PGgUAABEucLTb7ad+MrbT9+/cDboQ3TZPf+Z3fAdwqzq/+6q/e8flJu2cOrygKEXEbl2SojU6cSqd55pln2P3AA1y/fp2fvvACU5OTTY+nqirtmQwB1SXVLzYRufVTQ8tbvHR0cEFWr77yCtFolGcOHvQQlQHRjMJx3FRltQj4HppOkvl3tRJrK7sxNoYDdfDrZuYAZV+Kp4l9QeOdz2+rbWR1Xef4iRO8+uqrBIJBnn32WY+NDdyav1T/k9WdVDrddL8g05pTp07x7/7dv+P8+fMAfP3rX39PHeh7ksNLS6RSlObmvDKg32TNWVEUNm/axMDAACdOnOD4iRN0dHaybXR02XhfNBolkUySz+eZm5sjKkBj/mPK37Yon8lc8urVq7z99tv09fV5tWBpiqIQCoeplMvotZrXJ1jRmizg27JWKc1qebXicrxcvXqVgYGBVTuPNV13KykCmyRRjCu9V6vPbNk242NjvH3qFKZp8uCePYyMjKAoikeppyiKx90fUFVv1LG3xcZTOnytVuMrX/kKAL/8y7/ME088seLnWs3uqcNrmkYgHodi0YsCrUpisWiUxx57jGtXr3L6zBleffVVBgcH2bpli9tcEdbe1uZKxug6M7Oz9Pb2en+zbBtHNnbkgwIAdvHiRTZt3OiKNDSJrpFQiGql4jV4mm1elw55e93QZiY5Wpo1slaz6elpyqXSqqhDySjgOA7RWMxNN8TfVgLVNZppWdy4fp2Lly5RKpXo6enhwQcf9GAhUvwY8NjMFE3zonskEqGzRVVt//79Xsopp6m+9rWv3fa5tbJ76vAAqfZ25icnwcfrCM2dRlUU+vv7SaXTTE9Pc/36dV566SV6ensZHR11QU6KQkdHB9mpKSrVKou5HOlUyq3ji5KfNNM0OXbsGLcmJti9e3ddGbTRFFV1+eoF5n41fVOvwXSH5kjKCv9rReq12vGuCmmcTMMmsNEkQC8guR3lOct0RqnnfG+syhimybWrV7l06RJVXWegv5/9+/fXzRg4YjQT3A1xKBRyxZAdB02iZn3BqNHS6TSjo6OcO3cOgH/2z/7Z+zINdc8dPhKJEIjFcCoV8vm82y1dIY/UNA1VURgYGGDL5s3cvHWL8+fP88rLL9PZ3c3WLVvo6ekh3dbG4uIi8wsLRASvpGyCgFuxefPIEXKLizx64AB9/f2rbtZC4TC6rqPrOuFIpGU09HA0d3gt/DOl/ruMLHuuZIV8nsnJyVU7j4ZhYBoGNpBoXLQN79FIaFWtVrl27RqXL1/GME2Gh4fZsmULiUTCA5+BG6zK5bK3KY3GYu7+RwyQBESPYWAVtY/u7m7OnTtHV1cX/+Jf/IsVn3u7ds8dHqCts5P5W7cwajX0apWIEBNo9iVLORnLslBUlaGhIYYGB5mYnOT8+fO88cYbRKJRhoaGvEmpqWyW3t5eN5cUm9o33ngDy7J46qmnvIi4Um0eROkuGMQSKUFslSh/p4mNBwumPqW5neOcv3CBaCTC8ApO5DiOywKmKETC4aaUId4VFxUb07KYELTf2WwWRVVZPzLCls2bPchxYxqq67onoCAHeCQxq1y8mc7OFYfkjx49yiuvvALAH/zBH5B+F5Kizey+cPh4PE4xFsMol9HFbGrLiCY3Vw0Yjv7+fvr7+lhYWGBsbIzr1665suexGO2ZjFf+NAyDQ4cOEYlEePLJJ+uaO6s5PLg4fV0uzBWivDzenZgnkdPgiKs5fKlc5ubNm4z6hM+aWbVa9TRWVwSIOQ7T09OMj49z69YtarUamfZ2HnzgAQYHB5eNPfppsw0hUQRuEUEuqpphuH0AQWnY29e3Imbny1/+MgA7d+7kN3/zN1e5Ardv94XDh8NhQtEoVrWKZVmUy+WWjQVNVT3MucRieA6hKLRnMrS3t7Njxw6mpqe5fu0aE7duMXbjBmgaioDLPv74497cpfdy8IQBWlkwGHQn720bvVpdOZdv5vC+bqlsuNmC9cuThWx4nUQktrKLFy4QCAZXzHGlvKbjOG4vovE9LIv52VluTU4yMTlJtVwmkUiwadMm926ZSLRM+fyfR+4PQkJMQaaRerXqVWjaOztXHLH85je/yaFDhwAXGbkazOFO7L5weFVVicRi2IZBpVhEVVW3SdQkCkk6tq/9m3/D1OQkmUyGP/zDP1y6KCKXVFVXbfs/fOMbjI+N0dPby7qREVLJJHOzs7z04ovelE53V5cHW5bNl5UifTQSwRTaqo25vOMsQXWl6p2/seVfoMVyGQcolkqoqupJ8oRCIY8aXNatJStAYwSvVCrcuHGD0W3b6gTO/GYLgBqO42k54Tgs5nLMTE8znc0yOzvrArWCQbq7u1m/fr3HIy+va6MAgv+OaFmWqybiuAM6Ml2RAaQmKDvk/Kw/oJXLZSYmJigUCjz//PP8q3/1rwD4rd/6LZ5++umW38O7sfvC4cHlrKlWq2hCgVrSN8tZS39ECofDPP3kk/yX//JfmJ2Z4fXXXnMvjKJ4kGLbcfiTP/5jLl2+jKoo/OIv/qI7LFIus3nTJkqlEtNTU1y9ehWAtvZ2egRHS1tb24p17FAohCq6urpQyJAOLqksKtWqV2+WZ9449icXl9qwyBRFwZYwYJaAZw7LRdcuXbqEqqpsXL++aerjnyWtVKvMzc8zOzvLdDaLXquhqSodnZ1s376dVDpNIBQiGAjUqe15x2pYTF5kt13JIomNkXm7Kt6/UqngAKZtM7JpE4lEou76/uVf/uWytOWRRx65Y6z77dh94/ABMYqHbVPL592B4kLBGxDwb4xUVWX/gQO8fOgQU5OTPP/88zz55JN1uf1f/MVfcOz4cQC+8IUv8Phjj3Hk5z+nVC4TCAbZvHkzD+zeTblSYWZmhpnpaa7fuMH5Cxe8UcR0Ou39tLW1uRpUonKhaRrFYpF8oUBC6LXCknOqisuDLscDPYSj/0e8JimGz9V8HtM0iQp6Qdu2scQdw7IsT/LdkArgus71a9dYNzJSB0Wo6Tq5fN4djpmfJ5/LUSgWveicyWQY2bCB7q4uMpmMt0GuVCpUq9WW+xIJyfbQnorLIlYqlTCFsyficfeuxNLeo1gsYto2nZkM6XR6iepb2IkTJwA3kI2MjPD3//7f5/d+7/dWLf2+G7tvHB4gmUxSqVQIxmJYAi+fLxRIJ5PecAXgyUl++hd+gW9961vMzMzw6muv8dTTT+M4Dj/80Y/4yU9/CsAvfvrT/N3nngNcKHF2ehpVUZienqa7u5tYNMq64WHWDQ/jOA6lcpnc4iK5XI7FXI6bN29y4eJFwI28yUSCSCTibdw0TaOm67S1tRGPx10tI8uiVKkQkLf222xEyTJeMBj0JHwcADklJnL9qq5TKha5eOkSNm4l5cTx4xQLBXLFoquWJ46VSKVIJJMMDg+TaW93Z1VbzAw0UhI2M1VRcBRBy2fbFEVk9yoyaj3ldVWQZFmOw+bRUWKx2LKZhT/90z/lT//0T2/rGr1Xu68cXtM0EokEBcdBNQwsUTMuCIU/cG+jUkFiz9699P7oR0xNTvL973+fxx9/nKPHjvH//Kf/BMBjjz7Kr/zKr3jHD4VCWCKCVioVsjMzdHd2Ehf5pKK4jMSJeNyjtbBFTXl2dpaciJS5XA59fp6qaM/Lzq2qKESERlIgFHJFuwSliCoAUwFVSMNrmteFnJyaYn5hgVKp5KVytu0qCpqWhS02yOVKhYoIBP652YlbtwiGQgSCQfr7+ojH47QLwlm5gFaLlv4JqpbVJWVpXtdzdvH8hKBGkZFd3g1kdB8cHiYajS6L7nfb7iuHBzcKG4ZB1bY9Ya9areYNaisyLxa31c9/7nP88R//MTOzs3z729/mjTfeAGD7tm381m/+Zl20CQryzo6ODubn5ihXKkzPztLd0dG0amCaJiVBXRFPJIjF44wItQs5oTQ3P0+5VHJnRkV9vlgsUhIlVkolt9EjUhNbMAdIVRHbtjlz5gzgNnoCYhQvoGmgad4CCYVCdHV1EY1GiUajXL16lVKpxLPPPks4HPbgArIGXhZsbKFweEWWNUVEa28P4ThNS5veBlXsL8o+za2or+rjr57VajWXGlH0Rdrb29/Xisu7sfvO4RVFoa2tjVnTxA6FsKpVF4RUq6EIWUsZLS3T5KGHHmJoeJjr1697pazh4WG+9KUvLavzyo2SZZp0dnYyNzdHqVxmZm4O23G8u4jtOFQqFXRJMiRy+nA47FUqpOx6Op32OBVTyaQrs2kYlEolV9ghmWxa5rQdh4X5eV586SWeeuopkskkZfEaGQX9U1J+m52dZW5ujn379nnVJVVVCQWDBEMh8rmcNzcbEHsNybnZeK0dX8lTRu/GHN4POZBBANtGxe2h1J2nOCaK4mpKWRbrhEbVB02jdzt2z+DBK5mqqmQyGTSJ4hORp6rrbjXAcTzqPMuyOChw8+BiMLwNj8g3pUkexJoQ3u3o6CCRSKAqLjd5vlBw9w35PLpgxg0KSu54AzeNtEAg4A6VKIo7i9rEWnWMZbTTBFEpLEnQtHJ2Bxcy29bWxlBDV9UR52DjNn06Mxlv0VfKZcqVSl2lpXGQo9WMqnxUF3sHbBtF04gnEkvyOeJ58i6g6zoLi4sk02mGhoZWrLvfTbsvHR5cR8p0dKCK8pglNknS6WUpb3Jykv/3u9/1Xqfrej201/clyjy2JLDyqqrSKZxeU1WmpqeZmJryOMtTQmNJE93dxoaQd1yxMa2Zpqc0fafmdVl9c67NbHx8nIXFRXbv2rXsb3q1SlXg9ePRKJFo1B15DIdBVTHFnafZqKDte0wVdyzF58Tlctlb0IFgkGQi4UkEeY4uzKjVmJyaIqBp9A8MMDg4+C6uyAdj963Dg1um6uztRRVVGUlFIQW1CoUC3/zmN8nl8x4RU7Va5Qc/+MHSQaTjKIpXISjk83Xv09nR4ebBpsmi2JgmEonlrW9FaerMqhhKVhXF05mte9ltfFarMcI3ibamaXLm9Gn6+vrqpCcBr/YPLrWd1/5XXM6XRCzm5t+2q6KyzOGlELJobmkCMixr7IaAb0cikbpo3dh9reo6c/PzruhzZyfbd+x4TwMb77fd1w4P7gXuGhhw+Q41DQc88NZ//qu/IpfPk06l+PKXv8yePXsA+NnPfuaKn0nz1e8TySS5BofXdZ1QKEQ0GnU5JW2b6ZkZjCZSjq2Qi3KIQlZUoB4Ds9qXLh1HOlozhz9z9izVWs2jzpNmmiZlQYIaDgabdqgDgQCpZNKrucvUUJolNtFSCdwRxy0Wi654geIOpIcikbpUyI+QrJTLVIpFSqUSybY2Hty7975JZaTd9w4PEI7F6BwYcCsYqgq2zXe+8x1u3bpFMpHg13/911m3bh2f+/zn3e6nrvPX3/9+02O1pdMuR7ww0zS9TmRnZycD/f2u5pFhMDU15XHZ+E1xlmvOKqpKLBpFAU/OsS4HX6EW74fgygHzxuPPzs1x5coVdu7YQdxHK2iZpptXiw5s0/KjyKtlY0gKREi8Orh3GDlXLDftpWLRBZuJcrGcWPIqMuIzmZZFsVRyVTzKZaLxOKNbt9Ld3d3yM98r+1A4PEA4Hqe9u5twKMTzzz/vAqYCAZ555hl6+/ooFosMDw3x8COP4DgOL770ElPZ7LLjSE5KcPPWUqnkbk5FrToWi9Hb20swEADbJpvNkvctEMAbkGiM2kEBmFJU1ZsoWnpJa4y/x1QgcmKlYXFYts2JEydob2vzWIrBXawF4eyypb/aWKHqo/+wRHqIr/IkZYZqokcQDIWICZh143nZtk2lWqVULLqQCl1HUxSGR0ZYNzLyrudyP0i7/85oBYukUnz/+ed57bXXME2TRw8cYOvoKEatRi6fp1Ao8NnPfhZFVbEsi+9+5zveFymdT6pJV0Sd2jBNFJHfSwsGg/T09HiwgPmFBWbn5pZITiUWpkmkjwoZR8uy3OF0n7W62LZdP7jduDDOnTtHqVTioX37vPc2RWSXwLJmzu4tyIbHNU1zN9qKQkXXscVMcVmUYm3HQdE0orGYew1YvmBNsd+pCZoPRTzWNzzM4ODgu6bR+KDtQ+Xw3/rWt/jHX/oSU7Oz7N27l7/7C7/gbS5LpRLlcplUMsmjBw6gahpvHjnC+Pi4B8m1bJukqIsv5nJerh1rUBkB1ym6BJBMUxRKpRKT2Wx9iiNSD/8rVZnaCEis6dsHeBUNlpxaIikdfNLrvki6uLjIxYsX2TY66tXnDcNw0w2WCJvqmkWyTLhCGhUOhwkIJGZBYIIkujMcCpEQMAkaPp9tWVTKZYqFggv9VVUCwSClcpkuQZPd00Iw7n6wD43D//CHP+S3f/u3cRyHVFcX/+g3foN4PE46nXbZgMNhyuUypVKJgwcPek2g7373u0sRGTcCx6JRJicnPYHcYGM1xmfpdJrOzk4CmoYlSFXn5ueXqhMitfE3a8LhsNspFQvFclyCJ8ng63HhiP6C3Php4jXyx3Ycjp04QSqVYvOWLQBeU8sR5y3F3hoHYlbaM3icjqpKqVxmcXERyRmTEMxtsnElj2eLOYVCoUCtVvNYhiPhMPlcjo6uLnr7+xm5T1MZafddp7WVffrTn/YEDMAlESotLBAIBOju6mJ6eppKterJ1n/lK18hGAp5gwv+L6G3t5epbJbhoSGCQgkQkZ44TTaMsViMcDjM/MICFbGoiqUSmUzGG/Oro7rGnX+tFYsYYlMsG2F+FKE0j4tGUVyaDuFob7/9NqVikYMHD6JpGrquUy6XkYSv/juT7AivyhrmON7ElmlZ2EIgIRKNkhR3S/852pblKh/60rNAMEhEgNtmZ2dp6+igt7+f9evX37FQ9N22+/vsVjA1ECDe3k5xfh4tEHBTDwGBjUQiLlVHterJWSbicY9Dvqe3lytXr1KuVunw5Zp+3LnjuDyMqq/C0dXZSblcZmFhAV3XmZmZIR6L0d7WhibRjbbtqdlFxWyuXqsR0LTWioDC4QOBgOfsN27c4Pq1a+zZu5e0EGWu6npTZ/fOXzq7rKQ4S5NhtqD9lh1kcBdYOBTy+Gkk9MBxXG0rXQjESQv4QGimYTA7P0+yre1D4+zwIXZ4cJ0+lslQmpsjLGZNDdMkGokQi8UolkoeJkYXGPF4LEZnRweaqjI3M0NXC5lz/4bPq4s7LiVdT08PswKHUyqXKVertKXT3oyr7AL7lTVKlQpJAQxr+lkEK5fjOOQWF3nrrbcYXreOdevWURQoSkVRCAsRZtmEU30NIsR5Oo7jbqhFCVfXdapiiBrw2MYkdUa1WkURmJpqpeKyC/hq7XKBqaqKJert8wsLpNJp+gYG2Lhx421Lztxr+1A7PLhfRrKri/LCgptGGAZ6tUpC8LPUajU3DRH6Qrl8nnw+TzKZZGZmhtEVhHAV32+/MIEicDjxeJy52Vl002QmmyUQDJJKp4nH49gAtk1INLIM06RUKnkwBm/TKn5U0QU1DIM3f/5zEokEO3fuJF8oeM4Xi8cJBYNL2rbiNe6BluDCqqq6LL3VKmathu37HOFwmFAw6PH/1AwD3TAIOI7LGyOfK8BooVCIgKa5GHixGAulEj29vXR0dTEyMvKhcXb4CDg8iA5qRweBcNjlZhd4m6QYJQuHw6RSKSqVCoVCAb1WIx6PM37zJuPj46RFdI5EIm7EbIEJV9w380YIw+EwPb29LC4uUhBVjvm5OfL5vCstI5w9KlTs5NxnQmhYOQJLLyeoHMfh2NGjGLrO/ocfplypeJQdsVjMuzvIc9NU1euCympPTVCQ+7uoquJSBYYER6Ysy5qmST6XQzcMb6A9EAwSFth62aBycBtT2dlZFMdhaGSEnp4eV8HjPt6gNrOPhMNLiyQSdA8PM3njBoauU1QUt4qB6zTxeJx4PO7msabJrYkJpqamvHG9gKYREimDFDNeBpUVv1VV9bjU0+k0yUSCfKHgOr5hUKhWPRmcNlFJKhaLmLUaZX/d3wd7eOedd5icmnLJlHxpUTQaXRFHrlerlHW9jp9TweXRkY0w27KoyuER8Rw5h6sKaLR/UXmlU0WhUi4zMztLKpWis7eXoaGhVdnN7lf7SDk8QCQWo2/9em5dv+7xsCSSyboZ0nA4zKAgb8pOTbFx0ybMWg3LtimXy5TLZVfdLhh0x+2CQYJi6COgaZ5ahySLkhiU9vZ2UgKrowtt2PnZWSrlMol4nHA4jF6tUqvVllVULl+6xJUrVxgdHfW0qsLh8DKogFQdNC0LQ0RyU4j8SkoMTZyrI0qJjSaJTWuGQVjg5BPJ5DLKk4pggzN13U1hurtZt27digRK97t95BweXCDXwMgIk2Nj1IQDy3RFOn4wGGRk3Tpu3rpFIZ9n/fr1br4vNrlS17UqBlBURUERDi8ZA2Q1RkrUqKqKGgiQyWQIBoPMzc25mqiGwcLiosvLEgx6U0ayiTWVzTI+NsbGjRsZGBhYSmFU1VXWE0PchpiUkrOtspYvp6ck6ZElXiNNwV2QUvRA1TRsy2JxcRHLcWiTAC9xt6nqOrlcDlPXUQIB+tato39ggL6+vg9dCtNoH0mHB9fpewYHmZmYoCIw4LKKIjd8mY4Oent6uHzpEhs2bvTyeNtxMIRcpSFKc5bjYJsmulgIkh9HUVW3e+fD12iBAKZQ8I4LaUuZM9fEAjAtyxNYuHHjBoP9/XR0dHi9hIq4O0E9r410Xk1MfQVFaiXTGY/DRv7IkciG/kK+WMQ0TUIiZbIdh2q1SqFYxKxWQexBtu7axeDg4IdqY7qSKc574Xb+EFixWGRuZoZaoeDl8ZLq2nYcbt68yc9//nOXPdgHzJIXRVEU16HEQLUpF4FAZZqm6W4QJWYHwHFcKo1azVW6sG2mhWDv/MICxUIBRVEICvaD7s5OBgYHicdihEKhJSpu4aSapvG973+fo8eOsX37dn77N37DU+tTFQXDJ4Sm+XhwvI5rQ+dVr9XITk+j12pEYjE03KjupWiOQ09vL7v37r1vMTHv1j6yEV6axNrMh0JURUkyFosRFmN5fb299Pb0cOr0aTIdHbQL+RU/45amKGjBoKfIB27dWzcMVxDMtvmbH/2In/74x/xvX/kKqVSKmq5Txt2M/l///t+7x1QUgqEQoWCQcCRCOBRCA9rTaTRFwTJNqo5DMBgkJu42smLywO7d/PDHP+bw4cP8L//8ny8JPNs2WgNIzTNfI0rOEei6zuTUlDd4Ljf0fhjw6I4d9AnWho+afeQdHkR609vLYiRCMZejXChg1Gouv0wwyAMPPsgrhw5x/PhxHnv0UW9T5udYafytqSpREY0dx0EFypUKiUSCTCaDZVnk83kU3KHrUDhMVGxCI5EIU1NTzM/NsWnTJjZt2uS1+WVqZNk2xWKRIoCiMDg8zNDgIOVKhZ8fPcreBx5AExyXlq/yIs2xLExR1zfFj2GaLm5dcEym02mPLCoai9HZ3c269evrJDk/avaxcHhw04JMJkMoFCIXClErlSgUiwQCASKRCHv27OHNn/+cCxcusHnLFrc60jD72QioUhTFo9zzTynJjaxhGFiWxWf/3t+jf3CQnq4url27RlaIOch8vLu7u06TKiBwM7ooNUok5e5du1x+9kuXGBke9io0dXyPAhIhF6H/jlQulzGE4nZvT49LKRgOE43H6e3vrxMH/qjax8bhQTCHCTRgqVRyBx0EGCyZSrF+ZIRrV696QyAxX74PS/AC7/8Ato0mHUxRPC4WUzSAcByefvppFnM5T83ikUce4VXBfe6I4ZNkIuGN3ZmmSSKRoKOjw90cC3WUrVu2cPbMGS5fvMhzzz0HhoEKTWv0isjnA2IsUg6kxGIx2tvbiYmeRM/HxNGlfawcXlowGHS5IpNJ1/ELBarFIhs2bKBULnP23Dny+Tx9/f3E43EiQshYRndJWmRZlruRNQw0VSUpCGFl7TwQCKDrOqfPnmVmZoa+vj727NlDsVBw7wySlMlxaUcS4nxMw6BULruiC/G4R860b98+vvVnf8b8/DzFQoENGzYsE4Pzm6QeL1cq7qCGqpJOpejp66Orp+dj5ejSPpYOL01CiZPJpEtDUa1yoL2dk0ePMnb9OpVqlSHRPg8L2RxgKa0R0d6fdoSCQXckDpianOTCpUsEAgEOHDhAf18fAAvz8yA2qZ6JYYpkIoEu8D+2bVMoFDygVzqdZuOGDVy5coWTJ06wfsMGD3DmN8uyPKRopVrFNE1iiQSDAowW/gBISj8s9rF2eGmKgCDE43Ho6KB/aIijf/u3HHrpJRYXF+nv76erq8vlfRR00pL9TJYDFSC3uIhpmlw4f56xsTFqtRr9g4Ns2bSpTlZHKlD78f2w1LkNh0IEAgFPJrNSqbjd30CAPXv2cPXqVY4fP85nP/9575iO43hplOSZ12s1kuk0nb29DA8P33cMAvfC1hy+iUk67pH163nj9dc5ff48ibExBgVRqRyWiESj6NUqxVKJbDaLA7z+xhtkOjrYsGEDw8PD7ticskT3bUpNWsfxat/S5PPkTzQWIxAMurBnsQEeHR0lnU4zL6R9Mu3tHlODaZpug8yySGcyjPT1kWprI5VK3Rc0d/eDrTn8CtbT08PnPv95crkcR44c4dyZM5TLZVTwmj4BATsoVypomsaePXvYvm2b1+bP53IuO4BhEA6FPDiBjPJNZ099XdGgwPNIAqre3l46MhnyhQLvvPMOe/budenDQyHiiQTxeJxUOk0qnSaRSKw5eoOtOfxtWDqd5rnnnuO5557Dsizm5+fJZrOUSiVisRjRcJjv/tVfcfrMGaKxGIVCwaXGFjOqpmlSrVRQwRuVa8Z3I80RUdoU9IJS/0kukvWbN/Pjn/6U4++8w+f+4T/0BjTi8XidOsiaLbe1q3KHJtkMuoSCtEwnqpbFmcuXSXR0EEkkXCiC42ArClVdp1gsMj8/73LW6DrhcJgwbhqzuLi4bLxQgry0QAAtGEQLhUhGoyRSKZ44eJA//sY3uHj5Mt/4D//BQ1eu2eq25vDv0TRN8/Am2WzWZS8bGMAwDC/vrlQqLIoNbVBQilwaG0NVFNaPjtLR37/EfCDq540/MrUJBAI8++yzFAU/5PHjx/nEJz5xj6/Ch8fWHP59NlnCbMyd5SLQNI3r169z89YtJO/9wOBgHZOZZOVtZa+//jqO4xAKhdi/f/8H+nk+arbm8HfJ5EIAtyElS5LSce/E/ut//a8APPPMM/dcQubDZh9uNP/H1CQd+C/90i/d4zP58Nmaw3/I7OTJk4yNjQFrDv9ubM3hP2Qm05k9e/bcV8oaHxZby+Hvgr3++utcvnzZ+//s7Kz378uXL/Ptb3+77vlf/OIXWx7r+eefB+Azn/nM+3qOHxdbc/i7YN/85jf58z//86Z/e+ONNzypTWmtHH58fJyTJ08Ca+nMu7U1h3+f7ODBgwC0iRHBD8JkdB8aGvLkfdbszuwjP8T9UbJPfepTvPDCC/yTf/JP+KM/+qN7fTofSlvbtH5ILJ/Pe8LLa+nMu7c1h/+Q2I9+9CMMwyCVSnnp05rdua3l8B8Se+mll0in03zmM5/5yJAi3Qtby+HX7GNlaynNmn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPla25vBr9rGyNYdfs4+VrTn8mn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPlb2/wPTTb42AUvIOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhnUlEQVR4nOz9d5gcaXbeif7CZEb6zPKFgvfobnSj0d1otDekREpDcmiXI11SpCiJI+3KcKWRqOeR/pjLvSJ3lxQvSS0lrrQ0Ii+1ekQtKU4PjciZ4bj2DkADaNiGL+/Sh4+4f3zfF5WVlVVA9zRco955elBARYbLEyfOd8573qPFcRyzjnXcI9Bv9wncS7h8+TKf+9zn2LdvH/l8nv7+fg4dOsQv/MIv0G631/zsj//4j6NpGt///d9/i872E4p4HR8LPv/5z8dAfPHixZ6/f+mll+JSqRQDPf/bs2dPfO7cuVX3//u///sxEOfz+di27Zt0FZ98rHv4W4AjR47wmc98hnq9TqFQ4Gd/9md59dVX+cpXvsJP/uRPAnD27Fm+67u+i0aj0XMf3/md34llWbRaLb7yla/cytP/ZOF2P3GfFKzl4Z999tkYiE3TjF999dUVv//5n//5xNN//vOfX/UYn/rUp2Ig/uxnP/sxnvm9hXUPf5Px5ptv8s1vfhOAv/23/zZPPvnkim0+97nPcd999wHwK7/yK/i+33Nfn/70pwH44he/SLyea/hIWDf4m4w//MM/TH7+iZ/4iZ7b6LrOj/3YjwFQrVb56le/2nO77/me70HTNCYnJ3nrrbc+9nO9F7Bu8DcZL7/8MgD5fJ5HH3101e2ef/755OdXXnml5zZjY2McOnQIgJdeeuljPMt7B+sGf5Nx6tQpAHbt2oVpmqtut2/fvhWf6QUV1qwb/EfDusHfRDiOw9zcHACbNm1ac9u+vj7y+TwAV69eXXW77/3e7wXg+PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc/pdPq621uWBYBt22tutx7WfHSsG/xNRCaTSX72PO+627uuC0A2m11zOxXWfOMb36BarX70E7wHsW7wNxHFYjH5ea0wRaHVagHXD38OHz6MpmkEQcDbb7/9rZ3kPYZ1g7+JyGQyDAwMAHDt2rU1t11cXEwMfvPmzWtu+/LLLxPHMel0msOHD388J3uPYN3gbzLuv/9+AM6fP08QBKtud/r06eRnVXVdDV/4whcAePHFF5e9RdZxfawb/E3GM888A4hw5Z133ll1u69//evJz08//fSa+/ziF78ILC1e13HjWDf4m4zv+77vS37+rd/6rZ7bRFHE7/zO7wBQqVR48cUXV93fkSNHuHLlCrBu8B8F6wZ/k/H444/z7LPPAvAbv/EbvPbaayu2+cVf/EVOnTqFYRj81E/91JoVWRXOHDx48LrFrHWsxOp3dh0fG37lV36Fp59+Gtu2+Y7v+A7++U//NM899xy2bfN7v/d7/OZv/Ra5XI4HH3yQv/aZzzA9NcXwyAi6vtIfqdy7Sk2u48Nh3eA/AuI4xvd9giBI/oujiIGBAaYnJ9GjiCgMiYKAKAzJ6jq/8gu/wM/KVr7/41d/lV/9t/8WTdMAQTvYvWsXf+/v/B2mrl5l6upVLp47R6lYxDBNUqkUZjrN+Pg4x48fR9M0du3axYULFxgYGKBUKiX7Wsfa0OJ1YvUNI45jWq0WjUaDZr2O4zj4rovnurx/6hRnz53jxeefJ5vNEoch6DqpVIq0aWIYBtPT03zhj/+Yt999l7n5eUzTZGx0lGeefppnn3qKfD5POpWi2WqBppHPZpmenWVqYoJms8k7R4/ytZdfplgo8Ld+9EeJ4pgQ0A2DoeFhnnn2Wfbt27du/Gtg3eBvAL7vMzczw8LcHK1WC89x0DQNwzAwDANd09B1nTAMieOYKIoIwxAQXHc0jZRpks1kSKfTaJomjFLT8FyXeqMBmkalXEYDrl67xrXxcUE8iyIGBgcplcv8n7/xG1y8dIlve+45fugHfgDX83BcF8dxWFxYoFavk8vnefChhzhw8CDlcplUKrX+AHRgPaTpgTiOcV0X27apLS4yNz2N6zjEcYxuGOSyWTKWhQaYpolpmuimianrSSeSCntc3xecGk3D9TyCMKSQy4mFqabRarUwDAMrk8FzHI4cOcLUzAypdJqNY2Ns2bqVdCpF27Y5dfo0QRDwyMGD5PN5rGyWYhgSRhEjw8PU63Ump6Z487XXOHn8OAcefpj+wUHKlQqlUolSqYRhGLf35t5mrBt8B5SRN+t17FaL2uIii7UaQRCgxTHZbBYdsB0H27aJwpBY04gALY6FsWsahq4nXjUlHwgNCMOQKIqoNhpkLItMOo3neQRRxOSFC5w5exbLsrj/gQfIZDJouk46lQLgnXffpdFoYKXTPP3EE6TTaWJESjOOY3RNIxwZYfu2bczMzHDsvfd45+232bN7N/lCgWyhQLFUoq+vj4GBgWU8n3sJ97zBh2FIu92m3W5TXVyktrBAq9EQ3tj3MQwD0zDIFwqJd9Q1jSiOiWQWJY4iACJl9FFELA3e8zwcxyHWNMIwxPd9ojgWHj6OaTQajI+PY7fbbN68ma1bt2LoOm3HIW2aZCyLdCrFW++8QxiGPP3kk+TyeeiIRKMoIowiTMMgZVkUCwVGhoZ4+eWXOXvmDA8+9BDtep1WrUZtYYHpqSlK5TKDg4NUKpVbe8NvM+7ZGD4MQ+r1OlNTU9QWFmjU60RhiJVOkzZN/CBAA6xMhmKhIDy1YWBIb60ZBoY0eA1h7J7vQxyLxWQYEsiQxnMc8afrEsQxvufRareZmpmh2miQNk22btnCQH8/xWyWlGXRtm3CMCSXzQpqsfyadE1DMww0xPpA13UMXSdSv+uI113X5bXXXqPZbPLt3/7tEMfUm03ajkMmk6FQqVCpVBgdHSWXy90Tsf49Z/BhGLK4uMjk5CSLi4t4to0JwtDTabLZLFEYouk6VipFqVRClwaW7COKiKRXV/B9H8/3E0NX4U3n7Y3iGLvVou26XLl8mcVqlTiOGRoeJl8okJYLzKxlJcaXzWbJZjLJ2yOGpX127DuWD5lhGKRSKQz5gAZBwJe//GUKhQLPPPMMuq4TBAG1ep1Gq0WxXKYkDb+vr49cLneT7vydgXvG4OM4ZmFhgatXr1Kr1SAM0cOQXCZDpVwmm8uRsSw836fZahFFEaVikZSMoTuRGHYQEMg/VVZGQQM06X1BvgE8jzAMOX3mDAtzc2zeupWLly7x8EMPYRoGfhBgmiZxHGN7Hq7nUSoUGBkeppDLiSxQFBHIECYIw2RdEIUhgfx9JwzTpFar8cYbb/DA/fezZ+/e5OENwpCFxUViTaNQKlGuVCiXy/T19a1Z7b2b8cm8qi7U63UuXLggDD0ISGkauWyWvr4+ivk8mlxkhmFIW3Yb5bLZZcYeI72454ltOr0rQBxjplKYqRQp08TQdQxpxO1WS3jnOObkiRO0220eO3QIQ9e5eukS/ZUKhmmKh0i+XfRGA6II13GYnp5mIZWiUi5TyOexUiniKKLbUzm+jy/XHp7vE0cRYRBQyOfZunUrJ0+dolAoMDQ4iJlOYxgGgwMDtFotavPz1BYXGRgcxPd9isUihULhExfmfKINPooirl27xqVLl4h9HwMoFQoMDQxgZTLo8stUX6rjOMRRhGEYSddREIa4rouvwhSE946BtDRwlY/XZAijaRrEMXa7je26aDLffuTIEaIw5Pnnn0c3DGqyWymVSpEvFGg2m0lcXtm4kYWFBRz5+TCKmJ2fZ2FxkYpMMWpdIZOhaRjpNMgMThhFBPIh2Ll7N/MLC5w6fZrso4+iOQ7pVArLsigWi6TSaaqLi0xNTFBdWGDTli14/f309fX1pDjcrfjEGrzjOJw9e5bF+Xn0MKSYyzG2YQOZTIYoikTI0eG9wjDEcRyiOCaXyeA4Dq7nLYvVNU0jnU5TzOehI/WoUoMgFo5BENBqtwnCEDQNXdN479gxdE3jhW//djLZLLVqVaQVZVxumibFYpFms0kgM0epdJpUOk1J/nuj2SSMIuZrNRZqNQqFApVSCdM0k2tS5q8Bpq5jWhYZy6IAPLR/P6++9hr1Wo1SuYwrwybDMLAsi3K5TKPVwvc8Lpw/z/DwML7nMTg09IkJcT4ZV9GF2dlZLnzwAW6rRQoYHh5meGgITaYT9a7XdBzHtB0nic27X+PpVIq0ZZEyzeR3cRwTdhi6pmnEiAZs27aFoes6mXSa1954A8/zeOHFF8lms0lqUtM0YaQy3NF1XXj6RiMJr3LZLGga5XKZYqlEq9Wi3mjgBwHNRoNqrUYhn6coF72oc+9ammnAxrEx+ioVJsbH2bRpE67rJtfcbrdBZnl0w0CPY+bm5pKU7ZatWz8RRn/3X0EHPM/j6tWrzM/O4jWbZNNpNm/cSLFQSIyqO7OBpuG4LvMLCwS+L3LciIJRKp0mnUr1fqVL41CZk1B69VB6dSudJpvJ8Mabb9Ko1Xj++ecpFArEiDAJSBa0nTB0nUKhQKPZJIoibNumWCigSQpDoVCgkM/Ttm1q9Tp2u029XqdWr9NXqVAuFpOHT3l8LTlljX179/Lmm2/Sajap9PURRhGe6+LKBbWh63hhSBBFpFMpHNvm2qVLtFst9t53X89F/N2ET0xw5nkeH3zwAdXZWfxWi75ymW1bt1IsFpfK/Z0f0DR836dWq7G4uJik9ErFIuVymUKxSDqdXmHsysCBZGHqeR71ej15OxQKBfK5HEePHWNqaoonnniCSl+fOGwcE8pWv+4yv9q3YRgU8nkMGR6phbSGzLXrOrlcjuGhIfoHBrDkec5Xq4xPTdG2bcHpkQ95FMdEQARs3LiRfKHA2bNnIY4xNI1sJiPWBfItkU6nMXQdu93GlW+jhdlZjr79Nu0baEa/k/GJMHjHcTh/9ixus0nguowMDTE0OEgul1u2qIujSBC2fJ9qtUpdxsSe75NOpRgcHCSTyQhqAKwMfUB4dpa8pgphNE0jLfP26VSK90+d4tKlSzz26KOMjI6Kz0uDTjx8V4igQhwQMX0+n0djicoAIuaPZCo0jmNy2SwjIyNUSiXShkHg+0xOTzM3P0/QmaJUbzdNY/v27Vy7dg2/SzoklUpRLBYpygfWME3CIMC2bZFtarc5deJEsti+G3HXG7zjOFw4f57QtiEIkgxMXhl7HIsyv6YRhCG1Wk0s/sIQXddJpdPkczmsTEbwV3ocIwbiLkOPgWarlXjfbDZLqVQiZZpMTExw+tQp9u/fz+YtW5btK+ooWvUKaWCpsJROp7EyGQhDmu02bcXfkesQtZ7QdZ1yuczY6Cj5fJ6UYdCybcbHxwUTswubNm0ijmMmJieXLbjlwRPD7+vrE1XcKBLp2HabRrPJ5fPnmZmcvNGv6I7CXR3DJ8bebmMYBsVyGUPXyWUyYoEqMxdhGGK32ziumywWs9kslmXheh6erpMyzZ6LWbUI1Loqps1mE182fuTz+UQ1rN1q8e4777B5yxb27tkjPi8fuiiORXEIYeyxLCAtq54i0okqFWkYhnhg45h2u41RLC6jNOi6LnL3moZhmgwNDmI7DouLi/hBwHy1SrPVYnBwkLR8o2SzWQYGBpicmGDz5s1L65uO69YQtQitv596s4njukk/gLonYRCw4TqSInca7loP7zgOH5w7R2DbopFiZEQYgqZhWZZgMOo6tu9Tr9dxfT8x9L5KhVw2KwpDnkcMKxZjvcIXEMZYbzTE0II4plAoJMYeRRFvvPkmqXSagwcPLmVMNA1NeuUgCESRSsbvmqaJIpKiDsgHMsnnI/g8KVmBbbXby9YimswGdSKbyTA6MkKlWCQl6QWTk5PLBqdt2LCBmZkZ8bbpeNATPn8UEUcR2UyGXCZDMZ9PHhjHtqk3GkxNTjI7Pf0Rv8Hbg7vS4KMo4uKFC4SOQ9ow2DQ2RiQ9lOKZR5Ic1mo2E3ZiuVwWJCn5YIRhmHjp7qoqsCK8CYKAer2eVENLcmGrcOr991lYXOTxxx/v/QABkYrfb4CX3pkezefzwusrfn2PbTsfBF3XKVcqbBgZwZJNJ9Nzc8wvLhJFEWMbNhBEEfNzc8lDrcl7m5yzXPBakvufTqWw0umEt9NsNrl84QL1xcXrXsudgrvS4K9dvUrYbmNqGhvHxjCkFwMwDQPHtqnVanjSq+ezWcrFomjU6FgYqtEyZiolQgy5qOz26gB+EFBvNBIabrlUWrbonJmZ4fSZMzxw//309/evOGcVMoQqfl/D4DVI0p4gHhbdMMhLRqNt2z1FnbpDMhBvrpHhYYr5PCldp9FoMD07Sy6fp5DLMaFicfnA9CJWmaYprlXXCeOYbCaTcH7a7TanTp68azQu7zqDX5ifp7mwQBRFDA8NiRg3jkHXRWzdatFst5e8eqkkmh2koXcavMqWpExTfNEyO9ONIAhoNBpEcUzaNCkVCsvCCM91eeuttxgeHhZxexc6w5Sk9e86Hn7ZAlk+JGnLIm1Z6LouCG49eH+9zl/XdQYGBujv78c0TXzPY2Jqiv7+fhYWFpLt1Jqnm2YMQtlY07QkBMzncmTlfXVdl5PHjrEwP7/mNd0JuKsWrY7jMDc+ThgEVEolsjITo171jWYT0zTJZrPkZNYlWXR27EdTC0aZ2lPGp/UwoCAMRREojkmZJgVZ2AGSVN/bb79NFEU8+sgjCXU4iuMkNldhgi9TfIqioOLxtm2LEKiL2+NJsloYRWQ8D03XyWQyolIbRbTbbQr5PEQRqAewo3rbjUKhQCqVYn5hQZDLgFq9npxf52fUWyaSC+hkUa9pBPLNmEqnxTrJtgmDgONHj3Lf/v0Mj4x8+C/3FuGuMfggCJi6eJHI87BSKforleRLcVw3KbbEQLlUwjSMVWNxxaMJwpAI4eF7ecYwimh0hDHZXI7A9wmkUYdBwLXxcSYmJ3nowAFs18WWktcKnUbkeR5+EIhqpusSBIGgDQcBjuctfyhB/Lvrovv+shSm4toAuL4vGlN0XVACJCVZk2+87uuyLIvRkRHmFxYolkqEwMVLl9i8adOKxa/KAqlrUAttPwiSh9I0TXLZrMh2+T4njx8njuOk9nCn4a4w+CiKmBsfx3McQmBkYCDxyq12G8dxhHZLEJCVufTOknovhEGAjnh9d+fDQ5l3rtZqSedTNpOhUa9Dx75dz+PM6dMMDA3R39+f8GF0VbiSi2OFZBGYTpPL5Zb2nU6Ty2SWYugOfo4vH0ZleHEUoUuP6wYBzWZTpGE7ryGOBcVYEtwMwxBxuGR06rrO0OAguq5z8sQJFhYXyWSzDA0M9DT6ZEGswkJdxw+CxFGYppmcn+e6nHzvPeI4ZnTDhhv+jm8V7niDj6IIr16nubiIF4YM9fWJYgzQaDaTQQO5fB7DNEUPqeuSX6NzJ0bk5tF10jLf7XkeYRDgy6aOdrtNEAQYhrGsC0h5UMM0+eCDDwjCkEcefjjJonTHvsvy6zJ+z+dyWLJXVUOEBlaPpupUKoUvC2SlDpVgRVyr1ev4vo9mGKRMk0gqGERxjCabQWLkMAZprIrKbEh2Zi6bxbFtXM9jZm6OYfkgrLxpooagVBo8zyPVsWjXdJ1sNps0xbx//DjAHWf0d77B2zbV+XnCKCJlmhRLJSIZaqhFZ7FQEHovQCAN3rKs5BXciRi5CG23aTabGLLlTSkARHGcNGxkLCuhCugdPawg5qleuniR+x944IYlq1WsfKP88mTh2s181DRMw6AoOfRhFGHJhg4gWT+EUh8nDEMRs0tagsvSg1goFnFcVzSbeB7Ts7MMDQysYEa2bRuiiEwmQxzHK7JEGqKYls/lEmr0mZMnyWYylCWP6E7AHZ2lCV0X37ZpNhoEUcRAfz9hGFLryIWXSyUsyxINGek0acsCWRFUZhIjYt1ms8ni4qJgGbZahDJtiaaJJgxZls/lchSLRYaHhsjncqJHtMtIjx49SqFQYNeuXTd0LcrY4MZy8AprdRwpopemadgduXldhjHpVIpsJkMhn6evXBZFMlnEUmnYfD5Pq9Uin8vhOw7NZpNrk5PJ+B1Y6vQCKOXzCd2gu60RhKfP5fMiGxSGnDh+fFnB63bjjvXwURgSSOprGMekUykylkWtViOKY8FsLBQwZD4YuUDLy9jY933mFxZIpVJJU3XMkgEZhkEmm6VcLpNRw8RkA4hpGBSLxaWUZxcuXrrE/MICzzz99JreelkDtwwvelVGV0Mn9341ZOWCUTWRp7sLXh2MSV3XhVOQxbI4jlkoFvFcl5RlUa5UqEsJwUtXrzI0MEDKNPF8H13XsSxLrJUMA+JYLMC7GZ/yvPPZLM12G1sSzh58+OEbGux2s3FHevgoigibTWJZzQvCkFKxSL3RSLqDOgs/nWk4xUNpNBrUajVq1WqiQpCRkhv9lQqZTIaU7D8F4cVsGcrkpDKYJruVtI7Fp+t5nDh+XMhqyHE2N4IbKTitgHz7sIaX7+QO2baddFBFcUyoKMKwTN5vafdastZJmyYD/f2MjoxgpVJEUcT0zAyzi4s0JQ9J8ZPUPQslL0ihc8GNrlOQnn5xYYGLFy6sUHq4HbgzDV72lqoyfso0RZFF5sLLpZLwkvLmRlGE7ThUazXqUl8mm8st9ZrKzxRyucQDqi9HfYlNGQJlLCvhxgDLCla6pnHm9GniOGb/gw/2LPysek1rNH2sBq3jz7W8fNqy0A1DLLZte4kBeQOFKUvWKhzHER1X+TybNm2ikMsRxUIoKpb0AtdxqCmRKqmavOJR7Ho4c9ksuq5z7coVpu4AhuUdF9KErkvoOBBFwrsHgVDjlczBUqkkNpSZirZtCyZfh/dIp9Oi8SOKaDSbEMfUZA9oOpVaZqgaJN1Fpmmumd2xHYeLly6xb98+spmMWLh1hR2rpUPDD7lg7Ybar5L1U/+G9OAZyyIIAjzXTRpCeiEJkyRpTFGiHRmzK3WGfD6P5/tEsjHGSqfxgyB5mGypl5lKpZI2xBUeXDqJfDZLo9Xig3PnKJZKt3Uu1R3l4cMwJJSVSFdWGF3PE8Kluk6xWBSMwzCk0WqxWK3iui6x/FJyuRx9lQqFQgFTtuiVy2URiyMMu9lqJVkZTUraqUJKvlBYM3w4ffo0pmmya+dO8Q9d4UESAkkqcMcvEw/fSSlQmaFOpqSq3naKLqk/wyhKDDzu2DeIBWxKXqfbVfzqhupbjWVNAMCV96HZaOB5HrquMzI0RC6fJ4oi6s3mUu+szAhFUZT02Hqum1zjsmPJFG42k8GVDFfFYboduKM8fOy6yeKzbdui5C7Zj+ViUWgxtlq4jkMot0unUqSlgS+DpOSahkG5WKRl27iyd7Mlc+x6hyEWCoU1w41Wq8WFixd5cP/+6zYzKz55xz8kJfrOY2iwvGBEF3mrYz9rZWtUYSiTyRC0Wkla9npvE13XiTWNVDpNvdGgLMdmGjKnbpom6XSamdlZPM9jsVZjoK8PM5sllrwltSBuyUaYdDq9TKJbvfksyyLwfeZnZ5mZmWHDhg23Rf7jjvHwYRiKUEaiJr13LpejkM9jOw4L8t8AMuk0Zfl67DbAOI6X8WI0TaOQy4msjvRM7Xab+cVFXM8TqbrrNCefPn0aK51m+/bt172WFcUnSDz+zfySVQZFk4Su6yEMQ1rtNqlUCtdxhJamZSVvSBAG3N/fj4F46Guy2mwYBul0mlw2KyjDUv3McV2aql8Ali26VYP85LVrQhTrNuCO8fCxbSeFllqthiurg+VSiVa7LTItCN5LNpcTDMce6lsrvGsHUqkUlVQKXdNYWFxM5OmUcVjpdE/v3Wg0uHzpEg8dOHBDUhXdC8zO9cVHNfikg2sNTw/Sy8sOpV5ePtGtd90ky6JSpcVisef55bJZwnKZmlRHMOUYHhAPckY+aJ7UuYkkbTiVSpHJZJJ9qqxQbWGBhYUFstnsLZftviMMPgxDQhk3Jk0WQZDop0dxLKp4SntFQusgNgFLMfB1jEJVJqNUikI+jxqA4LqukJyW8hwqhXj69Gky2Szbtm27sQvqMvhvdcEKS5yW3odbOl5KqqHFslFENbIHsjbRqaCGpmGlUqSkFMla51csFgnCkGarxfzCAoMDAwndQGW7LMsinU7jyHup5mBlMpnkezMNg7RlsTg3R7FYTGjHtwp3hMFHcoQMsqzflB5qUEpsZGRT9lo3plMQaS0EYYgjK3+lYpG+SoVAshJ9OaEjkEoEhmHgui6Xr1zh4MGDy3LoKkPiBwGO4wilMtfFdRzato3rODjSi/odg89APAChFGCN4pivf/3rgoBlGJgdrEf1QKdMk3yhgJVOk8lkRMO5ZWFlMj0NJpPJ4HsezVZLOBO52FXoLCLpui4ml9zA91Qpl8W9chwWFhcFZVguftU5aJqQ/UiZJm3HIQpDoXrg+2Slt89kMtSqVdrtNrZt31LF4ttu8FEYEktqbLvdpt5oCEqs5GWUSyXMteJrGcJcjx2p0Gq3iRBdTipDYZomBdMkzuXwPE9M5ZAGefr0adLSqE6fPo1t27TbbZqNBg2pMtwtemRZVmKYlmWRSqeJpLCRZVliLpSu43keJ0+dYtu2baTTaUH86lAEDsNQ0G49j/bMTDLPCUiawzXATKfJZ7MUCgWyuZzQxZT0giiKyMjQxpTeXMX5Cpqu39BiTtM0+vv6mJ2dxfY8HNumXKkQyZRxJ0zTpJjPJ+ccBAFNSWEwDIOMZTE9Pi7kwLPZW+blb7vBq8yMHwTUajVs207Civ7+/uvfCBnC6LKjiK6m5E7Y8jWr6L7d2ykF4Wq1yvz8PIsLC8zKjqC3334bIHnblCoVhkZGkjg0m82KCq1cI3Sed1PqNXbHrNVqlZOnTrFly5aekzgiWT8A4V1jRHeVI3VqbMfBkdmslkzTjk9MJOpnOqKwVOoYddPX17finiYShJIjsxYMw6BSqeDOzhJEEXa7TV42xHdDad2bhkFbzshqtlrJkIeapDG0223yckF7s3HbDT6SylZzc3Mi/6tpWJkMuULhhjx2dwd/bBjC6LsQyi8HGSKprvzFxUXm5+dZWFhgfm4uIWHl5fENXefgwYMUC4XEWP0gSLxxJxzHIZLhkqbrCS2h1W4nhbPkTaRpCSHLk4vIpHglc+1hGIp0n+TARyoXD6Qsi5RlUSqXRW4+ijBk76nv+zjtNnPz88KobJuzZ87gB4FQJq5U6B8YYLC/n/6BgSStqcnz7daYV/c5RizAVX3DdhwarZbQ41ntLSyLUwVdpyU7o9rttnASMrSxLEvMz7oFacrbavBREBAFQWLspmliZTK02m0hCXEj3r0LGiTzlTq9fVuGH67nsTA/z+TEBNV6XTRUGAZ95TKbtmxhUPZ+GobBn/zJn7Bzxw62bd268tzlvlTooai4SO8aRxEhQBjiSWM2pQa8ggpPVAPLysuLiSQNtzOtqcZkGpKyrHVkQUC8vUrFIpVKhZbMfhWLRer1uniw5fWfP3cuCY10XWdibIzh4eHeadWuh6BYKLAoM12L1WoSn68GXdcF99518V0XRyYImvU6g0NDtFqtW1KBva0GHzoOtWoVx7bRDYPBoSFxE+NY0Hw/IpKih+TbTM/McOnSpUQNV0lY7Nq1i7GxMSqVCkbXl3zx0iU8z2Onqqp2Qdf1lVIcssCUaDrKVkDX84hjMQVQxfpAkuJUBZ7Oc1fbBbIlsFQsJoMbuo2vs2+2E6l0GsNx8OXCWY2uVNmmVqvFW2+9JbQ1o4jXX39dDDkeGmLD6CgjIyOk1mA4VkqlZGHeaDQol8urbqv4SFmpy+86Dl4UiXPzfUFRzudvupe/bQYfxzGNhQWati266vv7BV9DNhd/Syq1cczs7CzXrl1jYmKCtqQrjI6NceDAAUryi1JNFCs+Dpw/f54NY2NrxpbdC2WVrUgeHsNIUqBommi47oBqhs5lsz05PGEU4UqWooqRP8yEIk3TSFkWoawyd3Youa7Lm2++SbPZJJvLMTIyws6dO5mcnGTi2jXeePNN0DQGBwYYGxtj8+bNK3Lmhrx/tm3TaLWS7NEqJyNGa0ZRkllqt9tEUhtndMOGJI16M3HbDL46N4cj49N8oUBOtodFUYQm+e+roounov7uuS6XL1/m0sWLNJpN8vk8oxs2UC6XqfT1UZGN3658pa5mOnNzc1RrNfY/+OCa19CTKbhK0elbyUIsa+7WtJUL8zUeAiuVSrIkSiG50Wjw6quvEkURzz33HK+//noi3rpz1y527NiB67qMT0wwOTHByRMnOHHiBGMbNrB9+3aGVNgjPbbK81drtdVbBMXJo+RK0uk0nqwLzE5P0z8wcEtSlLfF4JuNBn6rhet5ZHM5CrmcWMQpYSTZFHwjiKU3v3ThAtcmJgDYtHEjDz/yCP39/dRrNYIwJJ/NLo24kaFBr8UZCO9eKpUYHhpa89id4Yk6l26z/rBtfV0X1/u42nKVsV4PmoJuGMLoZXqz2Wzy+uuvk8/neeqpp8hkMrieh24YS4Q3mTjYtm0bW7duJfB9Ll+5wqWLF/nmK69QyOfZvm0bg8PD6JpGpVSiWq3iyUxb3xotfeqeKYZnLMOa8atX2bp9O1EU3dSw5pYbfBAEtGo1AscR3TdyugaxaIGLZLZhVSgOfBxz6dIlzpw5Q6PRoFAosP+BB8Sodhl32u12IkjauSZIJmV3V2Vjod04MTHBgQMHruuVr2fs6jzh4+XQdM92WsvDg+DLe77P5cuXOX36NMNDQzz++OPopkkYRfhdDdkKuq4TBgFmKsXOnTvZuWMH8wsLXLx4kffff5/4/fcZGhpiz549VPr6mJufpylTjL26m5Q4rc5So042myVqt1lcWKB/cBDbtm9qivKWG3yj0UALAiJIKofdnPJuBmECuRi8cvUq7586RavVYsPoKA8//DCDg4PLjDeOIjGkTC0Wu41X7mtZDK5pXLh4Ed0w2HwDqrjdHr4XElrwRwhpOikAyw+8ukfvBdM0uXjxIufPn2fT5s08cvBg0kCjFtm9DB6E0Xd6/oGBAQYGBvAfeogPzp/n0pUrfPMb32DTpk1sGBvD0HWq9TrDg4Mr9tXp3aOOUC+byeB4HvNzc1QqlU+OwXueh91sgucljdHJlOl4SbK5l2nECE3JU6dOUW822Tg2xpNPPEGhY8JHJ5L+VNNc3sHEkvH1MplrV66wdcuWnhmYFQ/NDRjex+LhezwsnefT6ww6Wx6PvPsuV65cYeeuXWzbunXZuSSanKusmXquGRAZoM1btzKyYQPzs7OcPX+eaxMTDA0OMjI2RrFQEMW97uuQNQbNMIg7mtqzlkWjXmdxcZHh4eEP1wr5IXBLDb5er2NEEaHM+3Z694RG2sOwpqemOHHiBNVqlZHRUR47dIg+WZkMexhcFEU4Uoks22sR1PkmYOkBm5ubo23bPb17rzeE+CNeGWJ0nUvPz98AVnMAKsWX9JB2sUbV53zf5/XXX2dhYYFDjz1GoVhMhhorXn7QsW7qCZnz79XOqEShtmzbxrYdO7h08SKnz55ldm6OmelpHnn44WXORq2ZkomDHQ4jY1m0FhZExXhxUbyxbwJumcF7nofnOOB5Yihup3eHpbCGpS/Y8zzee+89rly5Qn9/P889/7xg6XWgl7G1bTtJbfbK9iSKYPKVrr78K1evkpPDAq4LTVvGYFTU3STM6fh3Vdi5UahYV3U69QqdVOOFavtbcQ/abV555RU8z+OZZ55hQA4gjjwP3/MwpPdVxa9V04nqGnsZvPTWSr1t586dbNq0iRMnT3JtYoIvffnLHHz4YTZu3JjcM2Xsar/qvA3DIJvJsCDDmrve4F3XRevIiiTevWPhmPC9NY3JyUmOHDlCEAQcfOQRtm7ZckNUgzAM8WTsvlaKS2mrKIMPoohrV6+yY8eOD31tcZdBd+fmlZdM/r70S9E4IY132Wc7QrzEk3dA07Se4q8Ai4uLvPbaa6RMM5keCKKZwwsCPN9PcuptKeiakYOYe0Lm0Lu9fNTlrEAQ53bv3k3/wAAXL13i9TfeYNOmTTx84ABpqS2/GjLZLHPz80l+/mZka26pwauyu4aIAXt5jSAIuHT6NLOzs4yOjnLw4MGVsWAnuvbhOA4RIjOxVrOGupkq5JiemsLz/RtarCp0V0VXnlqcnF8nfbZjByJFytpMz+s96HFHjD05Oclbb71FpVLhiSeeWJYtSZkmOhBEEUEQYJpmoly8JiOVlV5+WVNLV7hWKBRoNZvs3rmT5ugo586e5c///M956MCBJW8vr0vrIKypYRZqNmyhR1HwW8UtafGLokh4Xc/D0MUgseSL77hZVy9f5sjRo8zMzLB7924OP/742sbe9fk4EjNHieM1X9FAIniqbvbVq1eplMsfic+xms9Kyv1ab/ElJY66+o5XydJ0/Ftn+HT+/Hlef/11NmzYwDPPPLMyNaiJ/lVd15Oah2I7Xhdd17BMWrvr/HRNo1Qqoek6hWKRF198kXJfH2+8+SZvv/32CsUytScNoY/TbrVumlrZLfHwnueJ+aTy1Z8yzRWeeXJigg8uXEAHtFSKD86f58IHHzA0PMzo6Cijo6NCDqILnbfalUPLOlvQVoOK46MowgsCJiYnuf+++z7S9a32mu6McTvj8e7PdPa8dhpPZ5jTTWPQOv+MY4699x4XLlxgz549PPDAA6uea9o0E6WyOJOhbdtrhzOrQK0bVluMZ3M5mq0WjtT6fPKJJ7hy5QrvHjmCbds88cQTyXdkdHj5dCqF3WqJ4Wk3AbfE4MMwJJIeRZNeptNrXfjgA44ePcrwyAgbxsZIp9MUcjkmp6eZnJjg6NGjgOhQGpHG3z8wgNFZcYzjZNLc9bw7kMxijaKIiWvXCIPgQ4UzyoA7Y+1e162umXh5zr8XJ33FMbppCt0baGIix+uvv87U9DQHDx5k+44dS5/rcV6m1JX05azXdrvdc0RPLygZkiiOiWWP8Wpxtpoa7i4s0JbTxLds2UIul+O111/na1/7Gk8/8wy5bDbJzWuI9Gij1Urm0n7cuGUxfBiG6JBI2AEQx5w4eZIzZ86we9cudu7axezsLFEYUiqXKZZK7Nm9G8/3mZmeZmp6mitXr3Lu3DlM02R4eJiRkRGGhobQDSOZvXojTEtN6iOGUcTlq1cZHhnp2VCceOYeBtnprdcy2G9FfAlWT2m6ts03Xn6ZZqPBU089xcjISM8QqTtfn5I0ZU/KC+Y2bbrhc1IPbyjXDatdm+LLqLGatuNQyOcZGBzk+eef59VXXuHrX/saTz35JOVKRUiGhGGSMWvfzR4eEE3aUtpBeZ4jR45w4eJFDjz0ELt27cL1PNRkDlWMQhMTrjdt3MimjRvFmJZqlampKaampzl65IjgyhQKVCoVxsbGKJfL1817GzIb5LouszMzPPzwwwDJHNdOrNo8zdqv9RWZlw+LNWL4erXKy6+8QhBFPPv881TWoOYu8/iS1ux6Ho7j4AVB71rFalAZNenhe4mpKlEpXdfJ5XI0Go2l8TwIbv4LL7zAq6+9xte/8Q2effZZKv39yx6gm5WpuSUG70t1MAwjyQacP3eOCxcv8thjj7FVTqs2OjInKwyvIyNSqVSoVCrs27cP1/MYHx/nytWrTExMcOXKFdLpNCMjI4yMjAhx0C7PHcdiQkYMzM7NEYSh8I58uALR9agF3xJxjI7CU9c5zUxP88abb5LLZnn28OEVleRVIb2zaRjomiY6seJYNMir493A9Suar1KTSM6XlY0ihXw+GeLseV7y/VuZDM89+yzffPllXn/9dV544YXkjaBpgi+v3tgfJ27ZohWEN9Bljv29995j7969ibFDhwxdLOimay485ZdnpdMMDQ2Rl9LZge8zPT3N9PQ077zzDgD9fX0Mywegr68veXPouk51YYFyufzhvFzXOayGbzWk6bXvy5cuceTIEYaHhzn0+OPLjnPD0DSRkpRTtYul0oqq7vX2GEpdTV22LSZSgV0wDINMJoNt27Rsm3LHd2qYJk888QRf/epXeeP113n22WeTfaimmY8bt8Tg9Y4Tr9dqvPnmm4yOjvLA/fcv307Tkr7PMAzX7JNUf3Z2FOWyWVKlEgMDA9x///04ti1Cn6kpzp07x6n33ydtWcLzj46Sy+WYnZv7UIvVbsRrGP23yoVPHhhZkTz1/vucPnOG7du38/CBA2iSzdiLXnE9pFIp2rKhunNSSq90Y/feo0gMeVOMx+s1fudzORwpfVLsGvmZyWR48okn+MY3vsE7R46wf/9+0MRUxrvW4LV4qSP+5VdfJZvJcOjQoZ6GoF5pvaZL9ILn++LVZxjLHhDVJrhl61a2bN1KHEUsLC4mD8DVK1eI4jhRHqtWqzcU+98IVMud7/tC50aOx+z8fSyzSiAbUmSJX9ETVH9AKFvgjh49yrXxcfbv38/u3bvXJI7dCEzTFAoC+TyRvH+9riNBR1VcTT+Mb8DYQRi1aZp4QUDbtld0flX6+jj4yCO8/dZbZLNZ+iWtwLHtGw/XbhA33eDjOCaWVb1r4+PY7TZ/+S//5VW9t6q2uZ53QzRRz3WF0oEsW6/mFTRdT6itDzzwALZt88677zIxMcHk5CTj4+NkMhlGR0ZE+DM8vGo/ZyQJWFEQJMKukTTyznNoyhhZNVyvOHelWiAXkN2w220cz+PY0aM0mk32P/AAIyMjNJtNlDxe8hYwjGQhfiPQNI12q8XQ8DBBEJC+HjtRLUSl91VrgRtFLpfDr9eXLV47sXnzZhbm5/ngwgUKxSKFQoFmo0G5h3zJt4KbbvDKu8VRxJXLl9m6deuaJeN0Oo3B9SWfQYQMvu8nwkoq172Me7JaYSSbxXUchoeH2bdvH1EYMjU9zfTUFJcuX0bXNPoHBhgeGmJgaCjRqFdqYeIQYrJ2r4dMQ5axZVZEvbmSs9G0pBKakrOaFHVW7c/zfc6cPi34RAcPUi6Xk2MqdIc0ncplaiBErzWE53m4risYlEGwdipXnZdkugZRJOgbN6CzqZDP5ag3GoRy8dqrQWT33r1clX3I+/btS96AHyduusEr4aPxiQk0XWfz5s1CsXcV75lOp9GlxN1aiONYaMjHMaY0qiRmhoRtKDdeYfiO47C4sMDe++5Dk8Y9ODTEvn37qNfrTE9NMTM7y6nTpwnff59MJsNAf78QM+rvT2TmTDmrVHlcZdiwFG6UOqd3d94b6eEzmcwKotvC/DzHjx8nnUrx/LPPUiyXE6JZQjiLIjzDQJNa+jGCJ9Oty6Pruhg3KcdVGrpOrVYjRqQI/SDoeY86dXJQ9zSOxYJVVrS1jn9fC4ZpYkndScd1Vxi8CgO3bNnC+Q8+YOuWLWvTLj4ibomHt9ttrl29ys7duzFNE9u2xYzSHkZgWZao5kXRqp5AlexdaTCrhR6d3rT765iZniYG+gcGcD2ParW6pO+i64yOjTE6NpaM3pmfn2dudpaJiQkMXWdwaIjh4WGRIerxik6qrHz4Rev4tWu8/fbbFEslHnzwwWTcvWYYK8hP6TAklN45kuJQalJ4FATJz57n4cnP6LrO3NwcOiLUiKWKsiLbJRyfHuetRoXquo5pGARS0KozvFoNViaTCK3SxVnyfZ8oiti0aROXL1/m4sWLPHjgwIe6bzeCW+Lhr169Ssqy2LdvH205gcNxHKGB2AHFO0mlUrhSjavT4FWoorjgavaoGt3Yq2ik0FkV9YOAq+PjFAoF8YqV0iAZ+bCZpklKDuA1TJOBgYFEF77ZaCRFrxPHjxOEIdlsNqE8DA0OLpv+92GMPY5jzp07x4kTJ9i0cSO7du9e9sbo8YFlRS31hjGXbSI8slo8B7JvuFqrkS8UcJWiQRSJoRAqLl/lmKHqkJLb6ZpGJD28Wq/0NPx4adqI0u7sfMBczwOZadu5axenT52i0Wjc8L27UdwSDz+/sMDoyEii7d5oNHAdh7RlLZ+6IW9UKp1Gl+q7xY4Wvs4bqWSfDfm6BuGZe6UIlZF7kjQVxTHz8/MMDQ1hmqaY8doxLG0tIy0Ui+wqFtm1e7eYXj09zeTkJFOTk1z44AN0w2B4aIjBoSEK+fwNU1zjKOLosWNcvHiRfXv3itBKfeGrnU8H5XjVxbqmYXbQf9UaoFqtUqlUxCJUTh4HsfhNy+mGvTI3alxQcs+7jrWs9bDje4shmZoYy7mvah+u5xHLFGc6lWJkZITTp08zPj7Oo4cO3dD9u1HcdIOv12rY7TbDw8OAYMOZpinUC1otCoWC4FN3fGFWOo2OWLgmXr1rvyrD0fkG6P7iozjGdZxkXpSCLxdso6OjDA4MUKvXxdulo0lDYynHvtoDYBoGGzZsYHh4mAMHDtBoNJKF78mTJ4miiHwux9jYGKOjowwMDvYcqxMEAa+9/jrT09M88sgjbNu2bZlu5fV04deq+MYdv1fXFQQBrWaTfXv3JgthVcuIwhAnDHGQimiWlTR4x1FEIBfpycjQVThESlE4qWrL+29ZFl4QJNNdfN8X86GiiJxstk+ZJsVikYmbMPXvphv81WvXiIGhDo2XQj5PvdEQbD0psdaJtBxi5nqeyLF3L6ZgWTijoPRalN6753mJIegyK5JOpZiankYDRoaHEzKbkqnubBrptSDrfBCUN1NvFiVlt2f3bprNJuMTEywuLnLt2jXOnz+/jPA2Ojqa7PPIu+/iuC5PP/UUwyMj4ho/REjUXfxSHlU9rJ18c4D5hQXiOGZgcJBUKoWVyYgWu1xOZL6knr36Tw00VlkmXdeXz6rqIcCqQptuDR3Lsmi2WrhyWIItu9OUI1Thal9fH5MTE2tylT4KbrrBT01M0CfF/BV0w6BQKNCo1/F8H00pTskvLZ1KYcib2ytvq8IZvSOcAeH1m+12EmeC8MJWJoPVsUheXFggl8sl7Eg1B7YzruzECjIZXRmMOF7hbXXDYGh4mE2bNpHNZqnXakxNTTE9Pc3Ro0fpbDB3XVcQqFTOWe1PfdkygxIjinjKgFS2pvP4nee4Wig0Pz9PRuqyq3sUStU3y7JIWxaR1Kb3pWCs4zjCgcRxMqtJQdc0VisTdj64cRwnMnuB71NrNDBl+lSlReNYzOfq7+vj6rVrTE1NsWHDhlX2/uFxUw0+jmPq9TpbevSJGoZBPp8XT7vrCs12xY2OYzK5HI4Ke3oYPCzlgX3fp91uJzlyDRHqZFZp85tbWFjWqG3K8epBx4Ny3WuDZRSH1RZqyiuWymVK5TJ79+7FdV3Onj3LqbOnaAVNrDDL17/2tcTzj4yOLklrS5KbFq9s5lbhyofF/NwcAwMDyWcNwxDl/CAAaXi6YSR69r6c3RTIrI/mOEkTvr7KumnpFiw5Bl0WxlKmKVSNHYd0Pr+kPBzHSU2hVCpBHLOwsHB3GXyCHjneVDpNLo5pNZuJjozqvsnlcjSbTTFZWt0sCRVHarpOo3NiHJDLZIRq7iqErTCKqC4usqmjt1I9FDdi8Cte0yqF1+GFgWUxeLeRjk9M8Or51/iz1Jepsshj5cf4a4M/zMzMLO+8+y4A5VKJSn8/I8PD5FYZ9xNH0TLZQPXmWSsECMKQxcXFZV1RhmGgQU86h6ZpIrkgdedj18XU9US6z5Lzm1ZbOHcuZFXxKpKpzMD3V4hkqdBILZg/bj7NrTF4bflEjM7ctCX1BVvtNo5tC257LifiStmV1BnWxIhFpy350sqwrXQ6EdVfi4dTrVaJwnBZl4+K45XGe6dSb6dXXZZ1UIZO7xi2Jxc+Fg0v586e5WzhPM12E4C3a+/www/8MC/c/wKe6zI9Pc3ExATj165x+dIlkbmQ8tUjw8NLVVGVDlS7l8dQv1P/1nkOVSmN3fmGMwxDENHk5O1e2Rnf95NJ6Gkp0BrGYiK357qk5KSPFejKrLXa7WT/vTRE1X1ba2but4JbwqXp5W86PYJlWSC5Hb7n0ZANHdlcDrcrrLFtm3qzCVFETlZYc9nsMj3KtYog8/PzQh++o2FCyVGrOF6X3VCdxtTjwnr/3H2diuMfhrzzzjtcu3aN/Q8+yFeufW3ZdlPtSfYPPEDasti8ZQuDQ0OiKtlus7i4yNT0NFevXgUk3Xl0lJGhIaGI3OnR9ZUDyjq9/vz8PIZhrLj+TtJeT4P3PCIgo+ZEyTBQcYkC28aQ4lq9JEkcmS1T6cmMZSX8+WSBy0rhqrvSw8drvGKB5CYUSiVazaYQ2JfzQE1Nw3YcQrlwqsmpHel0mmKx2JOEpsl2sV5YWFigr79/xZeSMk1RjfT9G9KmX0Gj7fpiOhdrnuvy2uuvU61WOXz4MGMbN6KNd4d4Kw4gml36+9kwNsb9DzyA4ziC6z85ybkzZ3j/xAmsTIaRkREGBwcZXo3w1hFqzczMMDAwsOL6TcMgkEzI7qsPOtZGqY50pCWzXq7rivlZQUCgKMcq+xVF2LaNJ6cYWuk0lmWJ7xkRRlpSTBeWwsq7UmpP0zTyxSKNWq1nbKk6bOKO11ixWKTVauH7flIFDYKA6ZkZLMsilI0hfZXKmoa52oJuYX6esY0bl6XuQIY1up5kgD50KixezkVRIU6r1eKtN9/E8zyeffbZJJRamWpdbvGJJmXHdplMhq1bt7J161aiKGJudlZUfWdmuHjhAmhC7HRYdnqVy+Vl5xT4PrNzczy4f//S0WS4qViqYbSSv6I4P6nOfuTk45qg/6ZSNBoNMYa+3cZKp9EAR87ZjcOQbC63NK/VNImCAD8IREdavMQ2BVHRNgzjxlTgPgRuqsEbhsHGjRu5cuYMructUxNQcXz3YDBNE93ujpxQB9BoNvGCgNHRUZHW0leOm+mG3iOu9n2fZqvVU4BVEaHUzKbrTdxe8UD1qBVUq1WOHz9OJpPhhRdeIL+s6tr1QK3yhlhNdVjTNAZlRXc/YlLg5MQE09PTnDl9mvdPnhR0Z5n1GR4aYmZmhjgMl9UA1LF0Ocoy4dB0rFcCyUhd656bhkGxWKRt28kcVxDhqmkYZDtpCwgyWSwpDb28+9zcHPliccW5fqu46TH85s2bef/YMebm5pZlRmDt+CyTyQgZZzkGst1qEXgesaZhsob4ZxeSsAqoNxrEcUxpFbGlVCpFFIvR7Gvtv9e6pFuKbmpqivdPnWKgr48nn3xyRaihsbaH71zw3whyuRzbd+xg+44dhEHA3Pw80zLvf+nSpSTbkrYswazseoupGD4IQ6IgQJfXHwZBEs7cyD3XWMrERFEk1lg9RtorBxN0ZNgUMc00Tebm5ti5a9fd19Pa399PBMzOzCwz+OstRVy5+i+VSqIU3m5TrdcxTJNMOn39nldYZoBAQkZaTV0slUolfJtuYtsNI445c+YMJ99/n5GREQ4fPtzTUK4X0lyv0rqWszBMM2liB2g1m0xNTXH8+HHCKOLLX/oSuXyeUZn3HxwaSnjzuqYRsSRJ1zlza1V1hihKFrB+GKLpOsVCIZkX22tgmRLjUiFUFC/n+S/Warz4EXQ+r4ebbvCmaTI0Osq4nKqhyyxCkpvtseCzHQdXdgBZ8rU8OztLtV4no+uEsqBlmqYYc94p3cdS9bM7N9xsNMjIBVUvpGQcqxiFq2qu9Pg3TdOIw5CjR49y8dIltm3bxvbt21fvCuoynugGYvg1j9/7KICYOTs4OEgYhjz55JNompYwPi9cuIAhJyj29fVRKpVEBdo0hXShjN97tdqpfmJF4VBV30KhkKiJtVotojheNoUb5NtCZsWUoSubmJ6eRtP1jyRsez3cdIM3DIMHH3yQd15+mUuXL7ND0mwVuquHToexZ+X4dlhi2qGJMSnqZjWazaQz3rKsZeGGDgQdr+5Go7GmdqTieEdSbLQXF7/XOYPwhK+99hqzs7McPHhwac7RajF49z90PJjqgQV6TkNZiyy2GqampjAMg+HhYXTDYGR0lIfimGazybTs8z1z5gyhpDtvGB2lb2CAfD4vGkdUr4BMXSquEpDIdeTUHC3paHRdJ18o0G61CGWtRZEFDbkAjuOYCDGzV1WWT73/Pjt27lzGv/q4cEs8/MDAABvGxjj1/vts2bx5eZ5X0xJ+iOLJg6AZdHoVNVjXtm3G5OLVcRxRAJGG35bZgbQqgmja0uAAxECG/uvojqdSKQKZHVrN4Fe8kWybV159lWazydNPP01/fz+NZvM6Zf/VPXyy2O4q2K29u7W3m5qeZkga+9JHNIrFIkVJd7bbba6NjzM3N8e18XE+uHABTdcZHBgQoc/gIIbMv+tI9QLTJNvBqFT9vgq6ppHL5xOjb7fb5HO55MGQHxKdcZrG1OQkzXabb/u2b7ux6/6QuCUeHmDP3r28+eqrnP/gA/bs2bN8I5mtUQKaaZmr7UShUBAaKLJFTI0ut6Tmieu6BGFI6DjYjiNaylKpJNyJoohGs8nWrjdMN1KmiQ1rpic7zb1Wq/Hqq6+i6TovPPccxXJ5iaKwhhHqXb1L3bRmWD1Ds1pIs9r5uo7D/Pw8B67TQZSSGj+Dg4NYlsXM7Cyzc3NUFxZ47/hxoliINvX194tm9+HhFQMnYl1f2WKoaYIq0mqJt0Nn808slCNC2Sd77swZNm3axJYe088/Dtx0uWxVgMjmcmzfvp3Tp06t7FeVMV4cxxiG0XOQgcr3GpI/g3wraIjBvpVymWKhkIjuB75Py7ap1WrUGw0xbToMBSnpOuerpLQ7OTq9MDU9zde//nWRdnz+eUodbEd1zqthLYd8XT2bVXo9V9v+2rVraLBMm70XVNjieR61RgNd09i4YQMPHzzI008/zf4HHqBcqTAzNcVbb77Jn/3Zn/H6G29w+coVbKW6sMpiWtf1RPq8k6gXy7+DmK/luC77H3yQdDrNpk2b0DTthrz9iRMnElv7xV/8xVW3u+keXo1o94KAnTt2cOXKFd544w2eefrp5PXquK7QKpSvv14Io4hcJkPTMJJR5Z3bapqGZVlYlkWUy4mqqcy4BEHA7Nxc4jlt28ZUa4IeSKfTgg67Rlhz8eJFjh49yujoKIcOHUq43DFLHnhNg+9OS8ZRx89xcu96YbX4fbXY/tq1awwND696LWrNEgQBtm3Tlhr7GiI9nE6lyOVyDHTwj6od+p7vvvMOMYLhqMRt+/r7V7yhUqkUltQBUh1WsUwDt5pNzp09y85du+iX65/Dhw/zB3/wB7z77rvXLQb+k3/yTwjDkJ07d/IP/+E/XHW7WyLEZFkWnuNgGIZQmfrmNzl27BgPHzxIHEUJPTiTza5KGorCEMM0yWazBHHMQrVKRpLFuqEGpmUyGULJ6/ZkjKjruvBGjiMqjFLvUvWwAkm53PM84mx22cIxjmOOHz/O2bNn2blzJw899NDSF6EyTr2IY13QtK6QhpUhTa8veK199jL2drvN3Pw8jz366NL+pYGH0sgTmQ9Z7Qx8n0w6TT6fX3WR36nv6Xke0zMzTE1NceHSJd4/dSpp1VP/qRDVsqykh1b96dg2x48fZ2BwkP379yfkuCeeeII/+IM/oFarcfbsWfbu3dvzXL74xS/ypS99CYCf//mfX33txS0y+EwmQ0NOxO4fGOCRRx7h3XfeoVgqMTY2RhwLyYeMzLL0ghJYLVcqVKtVQTJrNilfJ0QxDENwOzQxD7SQz+P7Pr7kdnix6He1IXkADMMgkAUX1/OSRpEwDHnn7be5fOUKD0nF4164kaLRSg8fr/j5euuHFfvsQdG9euUKhq7T39+f9Ax05rsVvcKQD3wUx4no6Y2OgU+n02zevJnNmzYRRRGz8/NLCm/XrgGC8KaMv1AsYtt2khy4dPEipmly+PHHMXQ9ycw98cQTyTHefvvtngbv+z7/9J/+UwCee+45fuAHfmDNc70lBp9KpdBNk0jyY7Zt3UqjXufYsWOAKE5lMpk1021BGBJHESnLolIus7C4SLVapZDLrT25W8LxPDIy86O8TRCGBDLk6XwANNV+5rq4jkOhWCQMAo4ePUqj0eDQoUMJH6eb9kwcryh49UQ3swBEVoalSq5aS6jfrRYfq7a4MAzxZf+uUka7cvUq/QMD4vo6tjelgZtSW0c9nHa7nbTw3SiBq/NB03Wd/r4++vv6uP+++3Achxnp/c+fP8/p06ex0mn6BwdJmSZz1SqO6/Lcs88mnllRUB577LGk//mtt97iR37kR1Yc+1d/9Vc5e/YsmqbxS7/0S9c911umD29ZFq7rJqPMH9i/n2qtxnvHjnHgwIEkb62zskKqxIeIRSNIsVgU41Rcl8VabcUoy17wOjy1gmkYywpDqgiiKLKu1Ias1escP3aMIIp4+OGHyeZyVGs1QStWimLakvSd7/tiwatpyeKsswdA0zT0HtSCWJb81XlEsr8USFS/YslcjGLRcK3uTSyJX2rBG8cx7VaLeq3Ggw89lKifKTWyXvl9FeKoyuqNYkV7obbU9JHJZNiyZQtbtmwhiiIWFhaYlkoP7XabSNPYu3s3xWIxOaeytIVsNstDDz3Eu+++y1tvvbXiuPPz8/wv/8v/AsCP/diP8cgjj1z3XG+ZwWcyGdxGAz8IyCBuyv79+zl27BjvHjlCBOzaubPnZ1eEOZpGpVJhbnaWer2eNCWsBUdOoFiNRQkkXg8gJ89xZmaGEydOYFkWjz/6KOlUSjA5pdKXIr8pinCsCW1zx3VJS3GhTs+sjD7n5xlkAJ8ADY3YFinOOI5pttsgQzhVT1Bef7VBzIauY+o6SHqAbpqMX7uGbppi+vYNvAVd10WpBvTixPdErzeP1h2wCRiGweDgIMVCgemZGdB1Cvk8I7KFL5K07049ySeeeIJ3332Xo0ePLmvOAfj85z9PtVoln8/zcz/3czd0urfUw0eyq0aNSwF48MEHuXr1KseOHKHZaHBALgKVkYcdHitmyWCy2SxWJkNo2yxI3Zu14No2gwMDifT0jWB2dpZjx45RLpd56qmnRMoTEj1JZfDKyypSlu/7S7J7dPQDxEvN2TFLAqw6og6REN1Um5s0YBXe6JI4p0mdfU0T+uw6okKpvL7CtWvX2Lhhww0ZexAESRrWSqdvSBVYXdNa/9ZJqouiiEajwSuvvkoYhmzatAkrm02uL47jZY0pIAz+3/27f0e73ebkyZM89NBDALz//vv8+3//7wH46Z/+acbGxm7odG+Zweu6TqYjXajibsMwOHDgAMVikaNHj9JutTh06BCGaS6r2PUy0f6+PlzHoW3btGQFrxfiOMZ23RuSXlZGd/r0aU6cOMHI6Ch79u5dNqwBxIOnQW9jkp7ZsqyVJDRp9G7KocoiviZ5JNmIUsdgAqCnfPdahti55fTMDK1Wi8cee+yGhhwoOkc6nV5G2V0Ta6wrFGKWjHl6epo33niDjAxVmo0GKFqy3E+lKzztXLi+9dZbicF/7nOfIwgCNm3alCxabwS3ZE6rQj6fJ9Z1XNcVTQVxnOTCd+zYwVNPP83M7Cxf+9rXmJ+f772TDgMwUykKxSKmrjM/P79MnqMTQRAQhaFYGK9RrlcLv7ffeYcTJ09y3/3389CBAxg3IO6aIO6Q7Oh1HE1LYtWQiJCAiHBJCKojpbmiYebGzgCAixcuUC6VlvXuavI/XZ6ngsrBx3GcFIduZOG92puy+6qDIODkyZO88sor9PX18egjjwiRJ6mH0zmJvK9rouDu3buTa3j77bcB+JM/+RP++3//7wD83M/93A1nk+AWG7xlWRiynctxHNA0jI7Ye3RkhBdffBFN1/mLv/gLjh07lvClV7u55XJZ6MpEEXOy6aAbrhxn2UuxVrH8QskMfPW117hy5QqPPfYY9913n8gYyFRdJGP0NXHD/JfeXBrlv3stKm/I6yIKa5OTk2xfhW2oQkNdnoXiL1npdKJgcN2wb5U4Xf1OYXZ2lq985SucOXOGvXv3cvDgwaTZRI3QVI1AuXy+51v48OHDgPDwQRDwuc99DhBZnB/90R9d+zy7cEsNHiAvCxmJKljXjS2VSrzwwgs8dOAAly5d4stf+hJTHZJr3cak62LQganrtFotms3mimN6ngeyEtuJOF5qK7Pbbb7xjW+wsLDA008/zRY5eyqVSglmHyRvpeviBrbRuwpPSYdRZ/z+EfYLcPHSJTTDuO4onxhxb1Tcb1lWMrBZHG6V410nlFH7fffdd/nGN76BmUrx7S++yO49e5Ksk2oAURVqEJNAekGFNcePH+eXf/mXOX36NAC/9Eu/9KFbMW9ZDK+Qy+dpyosMfB8tl1uWz1aLut27djE2NsbRI0d45ZVX2DA6yo6dO+klTWplMhSLRWr1OrNzc1iWtSyt1smPV5xtIPniqtUqr776Krqu8/zzz6/g21iWRTsMcTxvVWnuZeisvK62yQoPLxshVuPRxGsoKHTuJ465ePEiWzZvvn6bonrTIu6hId+Unb/v1cOqOqB67hOYGB/nyNGjBL7PgQMHkjeNIgcqnfjOJATA4Cp0YGXwnufxL/7FvwDgh37oh3jmmWfWvL5euOUGr2kauUqFdr0uRtJ3x6lxnBhKPpfjqaee4urVqxw5epSp6Wl27NzJ3j17VoyirFQqonHE85idm2OsQ61K6cjIvyw7l4mJCd56802KpRJPPfnkiv0CWKkUbRA66lJr8Yaudc370PUP8rRWHXV5AwtENDEh0XGcFX0HveA4TrJ2ULIZao2z2pFWk12JEYoIp0+fZmp6mpGREQ7KmgWIMCuUs10ty6LZbov1hEwGKGW2Xjh8+HCysPV9H8uy+Pmf//nrXl8v3HKDBxHWzOo6kVSOTaVSSx1QXdtqmsaWLVsoFAqcO3+eCxcucOHCBXbs2MHu3buXsiCaxtDgIJOTk7iOw2K1Sp/M53aOqenEhQsXOHrkCKMbNiRVvV7QdF0UzmR+PXed9r8khbrGNisXpDcQ0lwHGnDhgw8Y6O9f1XgUgiDAk142UygseytprE5N7kYMTE5Ocvr0aRYXFujr6+PJJ55gtMPh+FIeG0gIf4FsHVSdTxvWYHKWy2X27dvHqVOnAPhH/+gfJXr9Hxa3xeB1XSdTLNKan6dt2+Ty+SUDWGXyhGVZ7Ni5kz27dzM+McH5c+f44Px5tm3bxp69e0VnTipFpa+PxcVFFhcXySj2pJSh69RiOXHiBOfOnWPnrl3s37//urGglU6Lnk3PI1Kx7hq43v5WY0uqwtJHMfhavc7M7CyPPfbYmtvFiDZKdD1R7V1+cksV4dUk9KI4Znx8nNNnzlCrVhkcHOSZZ55hcGhILO5V7j0MsSUz0rKsRLUsknrwuqSOD1+njjI8PMypU6cYGhriX/7Lf3mDd2QlbovBA/QNDdGqVvFcF8e2yeZy4nW+iqHoumiZMAyDffv2sXvXLi5cvMjZM2e4eOkSmzdvZtu2bQwNDoouqFaL6dlZxkZHl+JiXScIAt5++20mJiYSAlgsszRrGalpmkLVwPOu6+UT8/gw5DH1pxop0/XZUD60a+HMqVPkstkV6hDdcB0noWNnVqlNdHJ4VBZF0zQc1+Xa1atc+OAD6s0mIyMjPPz884l+jAZJ83YcC42aGJK6RMzSqCI1qHp0bGxN3s5bb73F17/+dQB+5md+ZkVx6sPgthm8ZVmkczncRgNHhjVGKkUUBL1psWoyh/ydYZrs3r2bHTt2cOnSJT744AOuXrlCJpsVFTy5cJ2ZmUkyMb7n8fprr1Gv13niySeTOL+TB7MWMpmMoBo7jpCUW9Og10avkCaKlhr9utOS19tfq9VifGKC+++/v3dKUyKKIlwZu2e7qM+rHSsMQyYmJrh06ZJosNY0NmzYwKOHDi317qrr6FiDObYtKsmatiQIG8cJHdzQdVLpNCPX0Z756Z/+aQD279/PZz/72evcibVx2wxehTWh44jupHabUqm0qpdVxpXE+tI4DcNg586d7Nyxg4XFRa5cucIHFy7gex75XI5Kfz9ZWXB65ZVXiKKI5557bsUXleSe1zDiVCqFaRh4UvZvVS+vUoxr3oGVefjOKYQfNqQ5c+YMqXR6zda4GMGPRzarr5VxiuOY2dlZJsbHuTY+ju/79Pf1ceChh9i0efOanHMQ83NVJ1M2l0seLJWyjBHf3dDw8JqSKL/+67/O1772NUAwI79VCb7bZvAgPExQKOA0GqRSKWzbTmTXuqHyw0oWmu7YUtPo7+ujXC7zwAMPMD09zcWLFxkfHxfUYplheezQoaXBA3R+XDAfg+uENplMBl8OXLshLy/jWcVkVAtaMzTJkcVHSNIRiKyJ7/uCVhEEaJKPc710pN1uc/nyZe5/4IE1DcKVGp1xFJHt0VkW+H7SwD01OZnQNXbt3MnmLVuEoK12nenbkiGqWv6URn8cReiGsWzieNqyGBgaWlYfabfbTExM0Gg0eOmll/jZn/1ZAP7u3/27PP/889e5E9fHbTX4fD5Pq9UirSZNxLIRoceXpozQdV3+/t//+9RqNQYGB/nX//pfJ1+yWpwaus7A4CD/4T/8B6ampqhUKmzeupXB/n5eefllMkqAdGgo0V+XBxF6KmuENul0OpGJc103KcUDCbVYSVgEYYihBhp0PBhxHJOO0+TIS7YkGIFG23FwXRcjDGl0bK9p2rIhw2YXvffc+fMYpsmObdtWnWToy6nhMUKlTDcM4jBkYXGRmZkZZmdmmJ+fJ46FRn9fXx8HDx5kaHh4heR35xtWyXGov/u+T1vm29U4HSBRZHYcR0gaxjGbtm6l2KVK9p/+039aEbY8/vjjN8R1vxHcVoNPpoCEIV69jh6L4QhJaNMRYui6jhaLxoXv/p7v4T/97u8yNzfHN7/5TV544YVlXieKY/7dv/23nDt/Hl3T+L7v+z5qjQZ79+4Vch+1GjMzM1y+fBk0wa8fHh5mcHCQSrm8al+tQsayaIUhtm0nizRfjozRWBrLmDJNYrnoSxo6FI9GC3Fw8PHR0Qk1EeuqqYTJolFeTyz5LhGIDiW5XRhFXLx4kd27d2PK3uFuqEpyGIbYjsPs3ByzMzPMzs4mCm5Dg4McePhhhoeGkhGXhUKhd849XtLN7zR2pRCnFqkqVFHfZRTHQkk4DBkZGaFSqaxoIXxXDoSwLItt27bxwz/8w/yzf/bPProSXBduq8GDkN9ot9ukcjki1yUOQxrNptB/lIKoSYOFnEX0wvPP89//9E+Zn5/npZde4plnnlkWWvzu7/4ub7/zDgA/8iM/whNPPMGXvvSlxDPt2b2b/Q88gOd5zM7OMjMzw6TsyNERDMhioUClUqFcLlOuVCiXSpipVKKZ2LZt0X3veZgyntUQD3FKvqXyuRxpmcLs9rqhGdCkiY+PhkaYioQKrxSVymQyIhRSg4bl2yMMQ0JpPL7vc/78eWJgw4YNSyoLmkar2aRer1Ot1Vicn6faaOC028JYpdbMnj17GB4eXq4xH8dUV1F7VlBaP52cGzX6MpZMUZVqVmEdiHAllA/rjl27yHUokSn82q/9Gr/2a7/2Ea3p+rjtBq/rOvl8nkYUYYQhoewWajabwsN0siNNk0Cmx77/+7+fX//1X2dudpavf+1rvPBt34YWx/zxn/4pf/bnfw7Ad33qU/yV7/xO2jJu1OUXMDk9zYaREdLpNBs3bkzkK1zXpVqvU6tWqVWrzM/Pc/HSpSTEyWUyZKQRG5IAlclkGBwYoFQsiumD8nyDMEx4OD0rpD0qzOotpYxA04RClx7H0EGViMKQtm2zMD/P1atX6atUuHjxIo7nUa/VaDWboqUvFsOA88UiQ4ODDA4MUOnrWxFGdKKzgXxV1QQVxsifQ6kppDy+ysiot4BaczUaDcIgYOuOHViWtaYK3M3CbTd4ELG8bdsEloUme1dd1xU3L59PFn6GaaK5LkEQ8Nxzz/FHf/zHTIyP89IXv8hzzz3Hm2+/zX/+v/9vAJ568kn++l//64BQIdAQi+R0Oo3neUxOTzMyPLwsD21ZFiNDQ4xITkcUi5EuC/Pz1Op1Go0GtWqVZrOJY9v4YZiEXVosZ1Zls6RkSjSTTgudG8NAl+2Ehq5jmCZO2152DxqNOteuXUukuhPvLtv9lISGbdu0bTvhBxFFzM/N0Ww2sTIZMtksg4OD5PN5SsUimjxmpzZ7L6i4ehnPqAeSMAYgFu2IbRnGKLWIxLOzZOztdjuZCbVp06Y1H7qbiTvC4HXZVT83N0ecTmPIRmTbtsVNlIOvVLtbIDMYP/iDP8i/+Tf/hrm5Of7jb/82L7/8MnEcc/8DD/B3P/vZZVPqdMMgDEOGh4eZnZ3FcV2mZ2YYGRpa0esKQhyobdsEsvk7k8uxZcuWZak8x7aZX1jAlZIfnufRtm2ajQatZpOmfFB9KYnhRV6SJZnQpwj1MCm2XZm8yrHxY6BraDpkjRxp3UCTFNpUKkU2m6W/v59sNksURRw/fpz79+9nz549KHU113VxPA/fdQV/xXHI5vNrE8m0jhZC2fxxvXAGxFvMtu0kxZjLZhNiWedCPY5j4d2jiC3btlEoFG54QvnHjTvC4EGEK5VKhfn5eSLPw5AG2pIkIyuTWRpaIL3f4cOH2bJlC1euXElytVu3buUf/8//84oBw+l0Gt/zMA2DoaGhxOgV0SlpfJCin57viy9e8misdDoZXqbK/5lslnK5TJDLYZpmMoeq0WwSBAG5fJ60afLnV77M77z//6PqVQUhWzo2HbmgjTXO6+eZ0+eIiFhggayW5Sfv/zt8x+ZvX3GvYuCb3/wmxUIhMXYQBmamUuQNg5rvJ91Yhq7TbDbJWNaK/LkGywZHKGNekW5Vxiv/6soKudp/PptdpgTd2drnui6NRoO+gQE2bNjQMy18q3Dr3ylrIJPJiAxNKiWEl+Qrr2XbYmIzossJlqZFvPjii8nny+Uy/+yf/TORZuz6wtJS+x1EBmFkeFgUpHSd6elp2raN7/vU5LBk1TBSKpWSkejAigYQlT1QmRnoKCnFMW7o8n+892+Fsa8BpTUZyhG/dmDzf57497iht2Lbqakp5mZn2f/ggz1pxC3bBk0jJ8Mb1VVm27ZQClBxOis7m3p1a8Vdv2/LiYsgHFU+nxfOoOPNoPYbRxEzMzMYpsno2BgjIyMfmsP+ceKOMngQKsH5SoVY15PXq7rJdrudLBaDIGBqaoo/+IM/SD7ruu7yV3fH6zeby9G2l+JmXdcZHhoSEs+6ztXxcWZmZxNOTalYFPlq+dCtNoDXMIxkQG+y/w5vGMYRfrS2RiWAgViohixPr3Y3ikSxUD4bGhrqOQ6mLSeRa4i1UdqyKBQKycMdBAGtZjMRtuo2vSgMl4UjnS2RSu9dzXzKZDLkVWJBhlSd9Ig4ipibn8dxXfr7+9m5c+dNG1Z2o7jjDB4Et73Q37/cwOQC0nVdoW+yuMjP/a//K41GI4kHHcfhi1/84rJ9qS+rVCpRr9WW/U7XdYYGB0Vfpe8zt7CA4ziUisWeX8xqiyw1TDmUAwI6zzmfyvHUhieve82GjC5DlvLoL4w9R0pfHnVeuHCBRrPJgw8+uGIfjuOIaXmwbPiA6vYqyCkcMdBsNlfMwAIS3pFyLJ059mazKfqGNaEBmvQOdKWPQTw4tXqdRr2Olcmw74EHbmsoo3BHGrymafQPDlJQfJcOw4+iiGarxe/+9m9TXVzEMAz++T//5zwqtRO//OUvs9jd26pplMplWu12MkdIwZXMx3QmQ9ay8FyXmbm5VcvnvagEycIaETZ0hwl/Y99KxaxumImHX9K5+eHd/8OybVrtNu+//z47tm9fpt2irsORjeY5OVVvxTFMk6JsekfTaLZaK65TSY3oppmwJV3XpSUfEN0wKBQKSQ8DUYQWx3TuRT0cjWYTdJ2du3dft93wVuGONHiFyvAwRVUUkQuiMAh46aWXqNZq5PN5/vE//sds2bKF7/u+7wNZjPnD//bfVuyrXCpBHAtpCAnX85Isw4bRUUaGh4VCgeMwOT3dUy5bozdzMSNz8zFLkhcKO0rbeWbD2u1oRpfBP7/xeTbml7RWYuDIkSOYprlsbDyIjJItw6mMHFy2GjRNI5/Pi/WRpiWVUXWMWIYkuqYl+fUkXk+lxGcNI5HsjrWlkfJxHOO4Lq1WKxGj3bx1K/v27bstKcheuDPOYhXouk55eJhCuZxMjPijP/ojLsq5RJ/+9KeTLMXWrVs5+OijBGHIX3z1q8zMzCzbV0lKuanBZqFMqUVxjGVZZDIZiqUSQ0NDmLKiOyEJVJ1YK4uRzecFtaBD1EjhR/f9v1iN5KuLfI04L0JA46/v+uFl21y5coWZmRkOHjy4rF/X8zzarRaaponcf48Uazc0qfilSzKeavVTGpUaS15aqUZYmUyi+xPHy9UbVM2g2WrhSkpw27YZ3bCBnbt23bYUZC/c0QYPgnRUHBigVC7z1b/4C956+2183+fQoUPs2buXarUqBmdFET/4Az8g0mFRxH/5vd9bKs4gvVMulxi84zgEQSCKMh1GoohllpwcMjs7S7Uj9tdYvqDrhGkYWJJBqdYaCttL23hu7Nme16i8e6C8+6Zn2VTYlPzecV3eO3aMTZs2LVuoduqsmzJPvwKrZEQ0XRfb6zqe6wr5ajmJw5EpR1XsKxSLieraCh6/XMg2m03RJKLreJ5HuVJh05YtbOho9bsTcMcbPICZTvOFP/1T/p/f/33sdpsDDz/MM888I252u40j87yjo6McPnyYOI55XerLKJGfOI4plkrU63UhUio9V68UpinHPhbkq79WrTItQ5zOhVyn8Stk5ZSSCJIwQ+FH9/0Ivbz88gWrxmd2fWbZ748ePYqm64nqFoiwyZbpx3Q6TT6X68lqXKvxO2WaogothabarRZtSRFA0ibyihPT48FRQ+VUQ0c6lSLwfcx0mg2bNrFp06Y7JpRRuLPOZhX8yZ/8CX/rs5/l3ZMn2bt3L3/zx3+cvEy1GZpGQw47azab/NVPfSpJTf7ef/2vYgfS4EulErNzc6IFMF6SjO7lBTVNjHHv6+sTcb3nMTE5Sb1eX/bla3SFNzKDoViTnmxWjuOYjfmNvLBxJae7c8H6zNjTbC1uSc5pfGKCiYkJHj5wIOGNO3KOFYhe2xXKW5LusFYHl1oXWZaF73niTSnJXVY6TaFQSI7Xbewq3Gk1m0JpWb4tXDk4epNst7yTQhkFLb5RZdE7BE6rhddooElG4Nz8fDJi0vd9wcG2LHK5HOl0Oilzx3HM/Pw8X/3a1zh06BDZXI58Po8lB+6udRN832d+fl58oVGEkUox0N+/QlJaZWcc2xYzpWIhXVeUA9kAxpvj/N2v/Y9J07YfBvTFfZiYNGjw/33hX7OtuA0QbXt/8ZWvMDQ8zBOHDxNDMrkwRrxNOmP2QKYMk/Hxq0Fu48thwjVZ9g98n0wmkzzknRRltX81NRH5Oz2VIptOU6vX8X2fjVu3sm3btmUSf3cS7goP34lMPk+6UBAT5QoF+vr6klg0l88ThCENOcSsVqvhytBFKZRZ6TSzMzOooQAxJCq+6k2Q/CmRkuNb+ioVDMPAc10mJiepVavL03qaaHaOooiULEaBbKuT+9tY3MS3bXxh2TWpGP6x0UfZVhAtelEY8uYbb2BZVpJytW07ST12G7s4vNa7TbEjBIvjGMe2qdfrIk0bRYLOrIvJG5Ya+cmSsS/z6NLY05ZFPp8nn8lQlxpDY5s3s2XLljvW2OEuNHgQOipWPi8GneVypCwLK5US3rRYxJJtePV6nfm5ORZkQUnTNEZGRpibncWQ8tMKnV4+lv+pymEUi7a8QrGY8G50TaNWrzM1PZ0sUKOO5gtN05LFcBBFS1Puooi/tvszqFhex0gyNJ/Z85nEWI8eO0a90eDxw4cxDINmsylkuGXIpIx92agc8Q/LeOpxJDTNIpmNqdfr2I4jqriINGa5XE54QinlBOR4yYYkwiWGnslQKpdFA7imUa3VcByHsc2b2bxlC4PXmYN7u3HHkMc+LDIyzWjXauQyGeGtgkBQArJZQaWVOjLNVot2u03asqj09XHl6lVczxNcEnonC5O+Wfn3zqbxoaEhGs0mi9UqgecxPjFBNptNBjMoz65JUlVTLuxU4/TG4ib29u3hzOKZJH4fyA6wsywk6S5fvszlS5c4+MgjFPJ56jKE03Qx7VpNJFdl/KQaGoaJ/r3ioYcydFFisCC8nJXJiJBP0g2iKEp075sdBi5ug0YqnU6a4dXQh4XFRTTDYOPWrWzctInh4eGP8Ru+ObhrDR7AyucxUik06cEDORJRjVrM5/OiSigLIY7jiH5QTWP82jUq5XLCHkwaFbqQ/FsHP0bTdQqFAhnLYn5hAV8+UK1Wi1wuRy6XI5LGZxoGaTnFsNlqUZSteT/10D/iH3z9H6BHOhExf2OfUMGtVqscefddNm3ZwujIiKhWItKzii6QeHLJw0/mK8lsShhFBHLB3FlZ1uUiVXF/1APRbrVEA3kQCM8ttzdMEyudTijRavHaarWYn5+n0tfH4MgImzdvXqECcafirlu09kIURVRnZpiXxaZCl+yykoZoy3zxiRMn8IKA+/btS4o12VxOqOdq2qrGr/YVA5EcuRhFEZ7rJq92ZIVS0zQKhQL9/f1J+lTx+FW6c2p+mt/76n/lLx/8y2zZIErvX/3a1zANg8cffzzhuqQsaxljsxthEBBrGrZkfPrB8r5W0zRJmyYpeX2hHOKmdOHrzSbNVgvTMOjv6yOVSiWKZJ1N4XEcs7iwQNu2Gd6wgcHhYTZv3nxDxa47BXe1h1fQdZ3+0VFiTWNxelp4RU0TOWbZfWOl01jpNKVymVqtxomTJ2m1WhQKBZrNJs1mMxmZqHpK1ZiZzkVgZ4+mMoaUZTE8PIzjutSrVWw5lUQ1eRdLJTF6vdkkimNarRbFQoGMYTHKKJYh5ABfffVVQt/n4MMPJ9XMbDa7qjqYmrfq+754w3UsoA1dJ51OJ5mkIAiw5UPX6eOiOMaTs536KxXRSyzz96rQpAFtx6FWraIZBpu2b2d0dJQNGzbccXn26+ETYfAKAyMjhEBdDjsrygphZ4HI0HW279jBhYsXWVxcZNu2bdi2jStDona7TbvdFotamadPp1Kij1VfmoLXqaKrFr/ZTIbM6Ci2bTMxPo7n+zRbLZqtlkiVZjJicSuJW8n49Sji9ddfp91uc/CRR0SbnK5TyOWSRSRIGRDlnWUrpIKiBBimmTSNe/JB6IbqHjNlj0AqncaMY9Fjqh7uDkOv1+v4rku+UmHD2BibNm36luTubic+UQYPCB0VTaM2O0u71RIT7aSeizL8jGWxY/t2jp88SRAEDA4MEEpPp1J/YRDgS70cNbTY0HW0jrmmapiYoeviGB0Ly8HBQdG0ohaNarK3jLmzmUxijOfOnaPZbPLIo48KDruMmyOZ3QnDkCAMk8Fnqvc0jiIh1tTxAIaBIigsQT0IhmGI8ZWGgSFDt2qtRiyzXUpCRJPhUa1eJ3BdYl2nb3iYHTt3MrzGCPu7AZ+IGL4bURQxOztLc2GBUErupaSnRy7sGo0GX/3a1xgYGODxQ4eWxeyRbE72paS0Lxd/kZzOHcex0G6ReufKo3bKcTi2DbqeEK5sx0m0YcIowpPyglevXkXXNHbu2kW5I8vTmX2J4yUZPtUUbppmskiNYaklUXpvXb6J1H+wlHlSIVmz3RazsaJIdCIhcv2tdlsYuibUfXfu3cuuPXvuakNX+MR5eJCNHUND6LpOa3GRVrtN2vdFyV95WKmye/7cOWa3b2e4I3+sS+ahUiHQEDLWQRAk2Y+Efy49rnpIkj5Oz0vy+L7nMT09zfT0NHNSYcA0DNE4YhhsHBsjCgLRNO77mHLRmDxIhsF/+b3f44033uChBx/kf/x7f2/pjaNpIJu8DalQsAzdfJqOho5atYrreclQOM/zlgozmkZfXx8PPvwwfTcw+PluwSfSwyuobvnqwgJus4mO6ARSZX7btvn6179OGEU8++yzSSbkeh2XMYIH7rquKOxEEV946SX+5I//mJ/5mZ+h0tdHs17H8TyymQz/6md/VvRu6zppqbWoaRr9/f0UikXuv//+hAphSEmRlGmSTqeThefRI0f4uf/9fyedTvP//Jf/sozzrlQRrgelKOb5PtNTU7TlVA6l9KYh3iDZXI5tO3awdceOu25Rej18Ij28gqZplEolLMsS1dZGg0ajQVoOSshlszzy8MN8/eWXOX78OA899BCWZSWxfkID7t4vJLJ/oRyBo7M03r6Qz2PqOo7jYGUyNJtNQXQzDHKyB3Z2ZoaGlP/bt3eviPNlJVVlUpIR9sDYpk3s3rMH13F49fXX2f/AA0kBSjWdd0NlcYIwJPB9MQkFkrx7GIZUymUycp5sLp8nn8+zZccOCrdBJOlW4BNt8AqWZTEyMsJiOi1UudptnFqNdCrFwOAg9993H6dOnaK/v5+NY2NLZXu1g45cdGcu3NA0YsNIGp8750glvHLH4dPf/d2MbdpEIZ/nwsWLxFHEH//RH4kQxDTpq1RotlqkpbBTNpsllro8qnikaxr3793LpUuXuHTxIjt27Ei6jDzZtN2JTgpzIosnawah75MyDMbGxhJ+UCqdZnh0lMGRkU+cV+/EPWHwsEQeKxQKtFotWo0GXrtNo9Fgy5YtzM7OcvbMGVKmSX9//wrdw84FJCw9DGrRGsdxIvldrdWEZ/V9NF3nxRdf5OKlS5w7e5aRkRF27NzJn/3Zn6kdJ5XbVquFLxXGUqkU5UolCb/iMGTP7t289dZbhGHIpz/96WQxraaar7hmTUseKqXcaxgG6UyGcqlEsVgUhi6LSJ9kQ1e4ZwxewZLhTKlUEo3G9Tpeq8X9DzzAsSNHOPbee+zYvp2BgQGyuRyZznlOyrvLljbFUwllp08umxUqwrLr30ilaNbrHDt6FD8I2L9/P7t27WJ6djahACRVUU1MyXBdF9tx8CT/JatozprGI48+ym/+5m9ybXyc2dlZdu7YscT0XAVK5NRxHFrtNrquUyoWGRwaYnBkhIGhodsunXErcc8ZvIJSOiuVSiL37jjky2XeeuMNzp8/j+04jAwP09CEcP9quoydhKyYJfah3W5z4sQJZmZmxAjHRx5JUpSB7wvJwO4OKtllZKZSSVU00WS0LErlMtu3b+eDCxc4cuQIO3buTNSAkZVZTe4rlOxI13HwPA9XPjyjGzawedu26075+6TinjV4BaVenM/nGRgYYPP27fzFl7/Me0eOUK1W2TA6Sl9/P1EYkkqnE7qCqmiqgQcAzUaDarUqZiFNTZFKp9m/fz9bt25N5K81TUsIXUoJrRumlMJQqgqe54nyv65z8JFHuHjpEu+++y4/9EM/tPQhmWUJgkAYuNSo8VyXTC7H1s2bGRsbo9Lff1uVv2437nmD74ZpmnzHX/kr7Ny9m5e/+U2OnDhBX7HIJrnozCjOvWQt1ut16pIXHyME/Tdv3syjjz3G4OCgoOVKkaIYOTNWVkw7KbsKiXpAFCW5dSV5EcUx991/P0WpvXPx0iWGpdKxJ6u5fhAQy4bsQqnE2LZt9EmJ7BWtgPcg1g1+FezcuZOdO3cyNTXFq6+8wnunTiULVB2RJ9c6uosUjffpp55ix86dwJK39X0/MXql8RJ4XuKVu1OKndwf1S+ayWQIfJ/Uxo0M9vczv7DA8ePHefjAAdG9lUqhmyZWPk8ulxPhWqUiaMySx76OdYO/LkZHR/mBH/xBwjCkXq+zsLDAzMwM9XpddPVnMmTTafwg4NLFiximSbvdTsr/Kkb3pCKymmynWvVWgy4XtXEUEcrmDKUVv3vPHia++U2OnzzJd373d2PKPt68NHY1U/aTQAX4uLFu8DcIwzDo6+ujr6+PnR0eXDWWNDyPE+fOYVgWQRQRy/SiWjjWG43kDRH4vjBKSTZTAwUUsSwRJY0ikKQ0XdPQDIO+wUEee/pp/sNv/zYnz57lX//yLyc0inVcH+sG/y1AyXzkpS78xOQkAyMjybwl5ZGrsiMrDEOh62iazNdq6LqOGwSk8vmEealGVRqyAUORv5TXTqVSjG7YwOzsLHEslIT/0l/6S7f3RtxFWDf4jxFBEJDJZJZxxeM4ZmhoSMxAkrJ+V65c4YPLl9E0jYOHDrFpy5aEyqBYl51jKrvxpS99KdGvP3z48K28xLse6wZ/k6FpWkICU8jKxm4QWZsPO9zrC1/4AgAvvvjibRkMdjdjPfC7C6E08D/96U/f5jO5+7Bu8HcZjhw5wpUrV4B1g/8oWDf4uwwqnDl48CCbNm26ztbr6MZ6DH8L8PLLL3P+/Pnk73Nzc8nP58+f5z/+x/+4bPu/+Tf/5qr7eumllwD43u/93o/1HO8VrBv8LcCv//qv89u//ds9f/fKK6/wyiuvLPu31Qz+6tWrHDlyBFgPZz4q1g3+Y8ILL7wAcFMHdynvvnnzZg4ePHjTjvNJxie6p/WThu/4ju/gS1/6En//7/99fvVXf/V2n85difVF612Cer2eTBtfD2c+OtYN/i7Bn/7pn+L7PqVSKQmf1vHhsR7D3yX4i7/4C8rlMt/7vd+7zoL8FrAew6/jnsJ6SLOOewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBn8LcfnyZT73uc+xb98+8vk8/f39HDp0iF/4hV+g3W6v+dkf//EfR9M0vv/7v/8Wne0nFPE6PhZ8/vOfj4H44sWLPX//0ksvxaVSKQZ6/rdnz5743Llzq+7/93//92MgzufzsW3bN+kqPvlY9/C3AEeOHOEzn/kM9XqdQqHAz/7sz/Lqq6/yla98hZ/8yZ8E4OzZs3zXd30XjUaj5z6+8zu/E8uyaLVafOUrX7mVp//Jwu1+4j4pWMvDP/vsszEQm6YZv/rqqyt+//M///OJp//85z+/6jE+9alPxUD82c9+9mM883sL6x7+JuPNN9/km9/8JgB/+2//bZ588skV23zuc5/jvvvuA+BXfuVX8H2/577UqJsvfvGLxOuy/h8J6wZ/k/GHf/iHyc8/8RM/0XMbXdf5sR/7MQCq1Spf/epXe273Pd/zPWiaxuTkJG+99dbHfq73AtYN/ibj5ZdfBiCfz/Poo4+uut3zzz+f/Nw9t1VhbGyMQ4cOAUsjLNfx4bBu8DcZp06dAmDXrl2Y5uojtfbt27fiM72gwpp1g/9oWDf4mwjHcZIx85s2bVpz276+PvL5PCAmbq8GNXL++PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc83MmrSsiwAbNtec7v1sOajY93gbyIymUzys+d5193edV0AstnsmtupsOYb3/gG1Wr1o5/gPYh1g7+JKBaLyc9rhSkKrVYLuH74c/jwYTRNIwgC3n777W/tJO8xrBv8TUQmk2FgYACAa9eurbnt4uJiYvCbN29ec9uXX36ZOI5Jp9McPnz44znZewTrBn+Tcf/99wNw/vx5giBYdbvTp08nP6uq62r4whe+AMCLL7647C2yjutj3eBvMp555hlAhCvvvPPOqtt9/etfT35++umn19znF7/4RWBp8bqOG8e6wd9kfN/3fV/y82/91m/13CaKIn7nd34HgEqlwosvvrjq/o4cOcKVK1eAdYP/KFg3+JuMxx9/nGeffRaA3/iN3+C1115bsc0v/uIvcvr0aYrFIj/1Uz9FFEWr7k+FMwcPHrxuMWsdK7F6rXsdNwxloJqmLfs33/MIg4Cf+1f/ik9993fjOA7f9alP8Q/+p/+Jw4cP4zgOX/yjP+K//Nf/yujoKNu2beOvfud3cv7MGYaHhrCyWVKpFGYqRUrm8VXuXaUm1/HhsG7wHwGO42DbNmEY4jgObruN7zjs2LGDU8ePM3PtGsQxuq6TMk2KlsUv/NzP8Qu//Mu0221+/bd+i1/vCG82btzItq1b+cm/9bdo1es0q1VmJicpFgqgabTbbZrNJpNTU3zwwQfk83k82+Y//+f/zPDwMIODg4yNjTE0NHQb78rdAS1eJ1bfEOI4ptVqsbCwQLNep91q4bsuge+jAWfPn+fs+fO8+PzzouAURcTig6TSaTKWxfzCAv/tpZd44803mZmbwzRNNm7YwAvPPcfzzz1HpVTCNE3qjQZ+ENBsNJiamqLZbBIDx0+e5Kvf+AZ9lQr/9Kd+CrvdpuU4uI5DBIxt3Mizzz/Prl27lr1t1rGEdYNfA3Ec43ke1WqVqWvXaLdahEGABqQtC9Mw0HUd0zQxDQM0jSgMRetSFOH7PmEUoetiqWQaBtlcjnQqlRyj1W7TbrfRDYNKuUyz0eDk++8zPjFBHIaMjo4ytnEjhUKB/8//9r9x+uxZvu2FF/jMD/5gEkqFUUS1WmViYoK2bVMslXj44EF27t5NsVgkm81imub6Q8B6SLMCURThOA7tdptWvU6jWqVWrxMFAVEck06lyFgWumEkYUsURXhxjA5ouo6maRipFCnLgijCDwJczyOIIuqNBulUikI+j65pOK5LHMekUilOvf8+p06dwrQsRkZHGRoaYnBgQIQ1rRbHjh8nCAIOPfII/X19RFFEGEWEYUghn2d0dJSZmRnGr13jlW9+k6nxccY2bSJfLFIql+nr66NSqSQP4L2IdYNnyZOrWLlVq1GXht6WRK6UaVLI54niGNt10RAPRxzHxJoGUUSoXpYdL81YPhSmaRLHMVEcY5kmnuuSyWaJwpCFxUXOv/kmrXabrVu3smXLFlrttnhwNI2UafLKkSNMT0+TsSyeffJJUpaFpmlEUUQEaPKYG0dG2Lt7N++8+y4fnD+PHwQMDw2xOD/PbKFAvlCgv7+fgYGBZVyfewX3tMFHUUS73aZWq7G4sECjWqVVrwsDAqIwpJDNkk6lsKSBGYaRhAfKmMMwhDgmCEPiOCaMIohj4YHlv0VRRBgE+L7PouPgBwGO4zA9M4Nt21SKRR566CHyuRwaYOg6mq6DpoGm8faRI1QqFZ575hnx8EQRmq6jaxpaHBN0pDKzuRxPP/UUJ0+c4MzZs6RNky1bttCs1WjWatQWF5mZnqZcqbBhw4brktU+SbgnY/goimjIBeHi/Dz1ahXimEw6jZVKoek6QRBgplKUSyWK+TyGYaAbhjD0KCKIIjoj4jiOiaOISBp+4PtEUUQQhjiui++6eEGQGHqj0eDa1as4cUwhk2FkwwaKuRzFfJ5cLoctH4qsZSW04eRY8k8NEUIZug66DlFEyjST8wQh/3Hi+HEOP/EEY2NjtGybZqOB43nkCgXKfX309/czODi44jifRNxTBh/HMY1Gg6tXr1KtVnEdBz0IyKTTZLJZ8tksmUwGR9J0U6mUSA12IQxDInnb4o4YPQyCxLuDMEwNkZ+PgSAI8DyPlm1z+tQpgiAgCEO2bt2KZVmkU6lEmUnTNHRdp1wsUi4UCOWbQ70pQvmAdS5EgygC+W+maZJKpdANg3feeovZuTm+7du/nVwmA5qG7/vMV6uEYUh5YICCDHUqlQqpjkX1Jw33jMG3Wi0uX77M/Pw8se9jyHRhX6VCpVjETKXQgEaziet5aEC5XF6R2QijSOTgpbcOpaePOuJ3Q9eFsZkmuqYRRhGe5xGFIbV6nfeOHSObzbJj506OHjnC4cOHMVMp0fgh3yCe79N2HHRdZ0AuNrOZDMRxcjw/DAmjiDgICNSD57rL1hAAfhjyxuuvU8jneeaZZzAMQ55qTNtxqDebGKaZePtyuUyxWPxEZnU+8TF8GIZcuHCByclJCAL0OCZvWfT391NSX6qmoQGe7+N5HnEcL/vCY8D3PDzPw5eG3mlUumGQNgxMw0i8KkiDarfFA6RpzM7McOr0aYaGhnjwwQep1+toiNY+0zRFujKOMUxTGO7iImEY4joOkxMTWJkMlXKZYj4vvDgi1Yn0yEEYkstmCcNQnKfvEwQBKcPg/vvv58jRo5x4/322b9uGlU6TSqfJZbOkTZNqvc70+DiLc3Ns3LwZx3Ho6+v7xHn7T7TBN5tNTp8+TbvRQA9Dcrkcw4OD5HI59A5DV1CtdRnLImWaeDIE6e5WShkGhgwZTNNEQ8qGSe8L4Ps+7XabKI6Fsc/OcvLUKbZv3crBgwepd/S76ppGoVBIHo4wDCkUChimKQpbmkbLtgl8n+mZGRZMk0q5TF5WYjUZ7sRxjK5p6KZJyjQhkyGWa4psNsv8/DyXL19m49gYQRiiOU6yIB/o76daq2E7DhfOnmVgaAjPcRgcHv5EZXM+kQYfRRETExNcunSJyPNIaRobN22iUi4n1c9uuK4rYuogIJVOU63VlsIUhFGm5QJShSkKYRiKmFvG6m3bxnGcJKvTaDQ4efw4O3bs4ODBgyIWj2NiELE4gKaRy+XQNA3bdbFtmyAMMVIpKqUS5TimUa/TbDYJwpDZhQXmFhcpF4vJ20gDYpk9Ug+eJtOaKdPkwQce4OrVq8zNzrJh40bx9vA8XM/DMAysdJooijANg4X5eVzbpm3bSeHrk4BPnME7jsPFixeZm50Fz6OYzbJ582bSloWuUoYdiKUHbrTbNNttDF3H6PDo6VQKK5MRr/aOB8A0DHzpVdV+/DCk1WolFVDLsnBsm7fefJOxsTEePnAAgMD3k5SmLj+LNPxsNksURbjS6HPZrChMGQZ9lQqlYpFms0m90SAIQxarVeZrNUrFIpVSCSB58DoNH0TotG3LFi5dusTevXsJogjPdfF8nzAMxWJcrgXSck0xee0azXqdnbt3U65UPu6v65bjE2Xw8/PzXL1yRYQwvk9/Xx8bN24U4Yss+iioDEoQBDRaLWq1GnEUkS0WSZkm6XSatGUtGUxXMQlNw9B1kaJEhEOO44DMruRzORzH4dVXXqG/v5/HDh0SeXUZYgDJ4lFBHSuXyyUPYtu2KRSLYltNE4vLcplSqUS92WRhYYHQ9wXHp9mkv1IRIYimCe63XASr8G3P3r1cuXKFa9eusWXLFtKmSRTHuK6LKx/0OI5p2zYp0yQKQxr1Oiffe489993H4F1OUPvE1JhnZ2e5duUKXqNBWtPYMDLChg0bRBm9I02oEAQBjUaDeqMheknjmEI+T19fH4Vicbmxd0CFHxpLN6/VbifGbqXTlEolwjDklVdfJZPN8uSTTyaqY7GmiUIVorjUC5qmkc/nkwVjs9kUawFIwpYojslls4wMD9NXqZCS8f7k9DSz8/MEMnUaSRJbJB/4QqHA6IYNnDlzJjmermlks1kqsuZgmibZTAbP87BtO1kAv//ee4zL5pO7FZ8Ig5+ZmWHi2jUiuQgbGRpKjCCW4YUy9iAMhaHX63hSpVfTNPK5HH19fei6nhhWJ2KEoXX+Lowi6vU6ge9jGAbFQoFCoUAURbzy6qvEUcTTTz+daNKo0CVcxcN3nqcyel0WwRqNRlK5DYMg2ZdhGJRKJcZGR8VDYhi0bZvx8fFlC+POmH7btm3U6/XlEh/SKaTTaZGWLBTIZDLEgGvb2I5DEIZcu3yZS+fOEa7Rn3sn464Paaanp5mZmADPI5NOU1ApvnR6maR0GIY0W60k4xIjsjGGaSZG1kv7UYUvsMRXAfmGaDbxgwBdGrsy4OPHjtFsNHjxxReTsr0qJgXSWDVNS9KXXQdErTJ0TcOyLHy5uKTVIp/NLj2MsrqqUplDg4PYjsPi4iJ+EDBfrdJstRjo78fqEIIaGR4mlUoxOTlJScb9KgWryayPlckwmEoxv7CAbdtEYYgts1apVArf99m6a9cNCUzdSbirPbwy9sjz6CuVKEipulwuByzNk7Edh1qjgef7xIjFpErrKSWBXl9cZ/jS6fE936feaBCGIYauU+ow9qtXrnDp8mUeeeSR5YUruWD2pcHrup7wbiKZtVF/xh2hiKZpZGVmyHWc5K2EPCe9qziUzWQYHRmhUiySMgwC32diaoparZZsoxsGIyMjTE1NLd0nedwwDMUaQxbQ+vv6yBcKIt+PcBzzi4s06nUunT27phLDnYi71sPPzMwwNT4Ovk9/pUKxWKRRrwtuiWkK44kiGjKNB2Cl02QyGQzlyeMYX2ZMug2+k6/SCcdxaLXbxJomqMLZbEK3bTabvHvkCFu3bGHLli3LPygXkSqcMQ0DT6Yz1bmo48Udn1HbpmTWpN1uYxSLSfyfpCM7DqXrOuVKhVw+T7VaxbZtFup15loL/PfFP2draTMPje3nrbfewnVdMpYlGJ8yU6RYmGr/WctCB3RZeAuCgGarhR8EXD5/nu179tw1lOO70uDb7fYyYx/o76fdbgvDTaWIwhDXdWk7TlKMyeZyZNLphOuiaRp+EIgvVnJPoIP/0uO4LdvGUcUpWaVUmZ8oinjzjTewMhkOyPRjJ1SKMInfTRNWkd/rjLfVOWUzGQK5eGy12xQLhaVz7CigdYZxqVSKoaEh6vU6b19+h98++7ssxDUucYkXx57jef1pJicn2b59e/LQ9GogtywLx3XFOeu6aHKRmZ2pqSkM02Tbrl09r+VOw93xWHYgCAIuX7yIFoYUczkG+vuTEEDTNJFTbzZp2XbyAJTLZTKWJdJ6hrGsGgoi197tJbvRarcTY89ms0LptyOcOHniBNVajcOHDmF2lePVAhME5RhWz9B0Qm2hYv58Loem64RBgC2FWrsfzO6/t/wWv3nht/g3F36VrJlh0OhnJzs5MvEeAwMDSViTnCfLm9HV3y3LQtd1fM/DsiysTAZNZpyuXrnC+Q4hqTsZd52Hn7h2DRwHAxgcHASWGImu52G7Lul0OvHqWctaEZ5oMn4OZDueaRjJK72XZ1eVUxDFm24a7fTUFOfOnePBBx+k0tfX87w1WZ1VhS9Ndkp1pgzVdcgPJJ9VhqgbBoVcjmaziSPz5CsW2irEiWPemXmXXz76K8zaQqP+KlcY1UcZ0QYoRDmsTIbZmZnkGFEH5TkJa+R5WOk0ruMIpmYQkC4USJkmjuMQhiHj4+O4vs/9+/ff0aSzu8rg52dncapVgjBkw8jIUlpPck1sx8E0DNL5vEjpyYpj9+3XNY0IGV5EkeCPr0IataVCAYjFsDJ2ZSDtdpu33n6bweFhNm7cmPBnkm4oSeONkfwa2xapT/kmIo7Fn53nKd9Uio9jmqZYA8j/QKRXa/U6lVJJXGPHG6Ptt/kPJ/4v/vTyny27lpCIcSYY0PrZmdtJOp3Gdl3qzSb5Hk0guq4nC1pdro3QdZGZ0jQ0XSebyeBK0t3s1BTHg4D9Bw7csTH9XWPwTrvN4sQEfhBQLpXIZrOJF2o0m8RqMag47CrNtsY+VcP1aqNoHNel1WwSRBGWZRHLY0WyDB/GMWdPn8bzfXbt3o0tefTJ4g9EilE+TGEQEEcRumz3S2ZVqp9VClSGQJHqZPJ9fKmOgPyM57oi6yPThJquYxgGpxbf5/96/zeZdqbR0YlYGZPPs8D23HbKMiV56dIlduzYQWaVFGNnd5e6DgXdMMgaBoau4zgO87OznDh2jAceeqhnneF2464w+Mj3mb1yJeF49Pf1CWMPQ2qyIGOm0xSk11HdSmsZexgEwtPKNjkQoYUikLVtOyn2ZCyLyDSx5UOl3gWNWo2rV6+KUfK5nODGyHNQBSwgWVs0Wy3Sstkkm8mIbYFSsUi5XE4eFOSbwQ8CkWfXdcGpUenLOCaH4Ph7noem63i+zRcuvsSrU0LZrEQJNAjjkIiIgAA/+f+QlJViy5YtHD12DLvVYmZmhuHBwRXMyM6cv0oAmKkUnozl1e9V3aPVbjM7M8OJY8fYf+DAHWf0d7zBR0FAY3YWx3GI4pihgQGxeJLVx1hWG4uFAs12O8nOlNfgcccgmjdkWrBt2/iel6Qv/SCg3WoRIxa02WwWQ3ox9WrXNY133n6bSqXC/fffv2rcuqK/RmaEei0Mu+nKMYgmEl1fVjgCQMp9uJ7HmeoZfu30v2fBWcDExOj8n2ZArGFholYeERGFMI/reRSLRRzXRdc0ZubmGBwYINcjvAl9X8TukhLt+/6ytYyGyOaEYYjtOMzNznLyvfd48OGH76iY/o42+CiKCFot6vU6YRRRyOexMhlcx6EhtdRN06RULILklnieR+D7OI6zwlvFkPDbq/U6rm2Tltuo/HMYBASeh5XJkMtkKJVKPb+wCxcusLi4yAsvvLC6sbOUYVHXAyuLRashWcSusr7IZrOcnjvDrx79d9Sp48n/dUJHx9AM9NgghYkeCo+b1bM4jkMhl2N+cTEpOk3NzDAyNEReFu9giUwGYh2jWhM7r02dr2VZaHFMy3WZm5nhwrlz7Ni9+44x+jvb4NttnFZLZAfCkIG+PtrtdnLzLctKqqsxItWXy2aFpoxtY0rv6HmeaOZQMbY0bFTxyLKE19V1Gs0mmq6TljSFXnBdlxMnTrB92zb6+/vXvAatI1xSBn+jr3mty+N3w9B1jlWPEWsx+TiPh0fclVyNiAgJCeKAOBJGaWCSstKkTJNcPs/45CTFYpF6vY7jOFwdH2ewv5+yVEJrS1lBXdcp5vPUZJU5CIKeHVHpTIZYvjmvXL5MNp9nw9jYHWH0d6zBh65L6HlCdi6KKBYKeL6fZEyymQz5fD7xMsqYspkMnuvSsm0mmk2sTEakHeVCUDcMUrLRIY4iiqWS6A6K4yRmT6VSlGTDQ7KY7MDxEyfQDYP79+9f+yI6Pqfy7ypDc8PouLZe2DO0hz+/9GW0WCNPniZLo3XCOEoKXjoGsR4RRTEhATlL1BLK5XISqvT19bGwsIDruszMz+N4HqZhEEVRIh6lGkoiqdywwtxjodOTTqchFj2zH5w9S1aS82437sjcURgEhK1W0gQRR5FQE5AU3IJMO6ovU5mVr0reMqvhBwFtmfLLZbOUKxX6KhUKuZzQfYEk89C2bTwpo1dQRSW52NTVIlTTmJub4/Lly+x/4IGVcXUXOh+TxLt/mHRdB6FrNTw79jQ/9uDfIG/mSZNGi3WCKCCIQoihkwmkoScKCtmUCFnUwjMGioUCW7ZsodLXh2WazC0ssFCrEUiVBNtxRLwvG1fUWzK5Xmns6twtyxJpS9fl/JkzydC224k7zuDDMCRsNkHTROweCxk6RVIq5HKC+6GMPY6x222qtRr1eh3XddF0nYKk6uYKhYQEpghQSX4ccQMU7xvJF18t5NA0jZPvv09/Xx9bt2277rV0mulalODrfV5dZzdU0eqvbv9Ofuap/zfPbniWfJwXhr1KMKRrOmiQN5cMPpbENHWswf5+coqK4fvoskE9CENs2xacHmn8dMTx3WcYx3EiP1JbXOTC+fPJfbhduOMMPpaGF0jBIs91E/HRTCYj6LYyL9xut1lYXKTZbic30kqnKRaL9Pf1MTgwICgFsJRmlAxF5b2jOKYl1XmzUo99NUxNTTE/P89+WU3s/g+kkcr9dhqAqrB+2IKMejhVIUulJUP57yCMfrA4wP+w64fYWdiOeZ1I1dAMctLgM5kMGkszZf0goNlsCvpENktRMkoz0ltrui4aUKIIx7ZZrFZFjUDTkt6DBPKtmMtm0Q2DiWvXllEZbgfuKIMPfZ/I9yGOcWxbvErDkFQqRTqdJp/LJdXNxcVFbMcRhSNdJ5fL0VepkC8USKVSSWxfKhaTNJsXBII92G4nX06z1SKUnJvsdbrzT77/PoODgwwND/f0n52pxaQ7SV2biuE7PLzy0MqoVcFJ/dxJN9Bk1TM5VtexDV3nePU4V5pXydN7sd2JfFpso2gYtm3TarVET65M9W4cGxOir7rO/OIimq5TKhYpFgqkJWXDDwKa7XbSG9AN9XYtyLbFyxcu3NAIz5uFO8vg5YJU0zRaMtNiZTKYqRS5XI6W9OiuVNzVDYNCoUCpVBKeSnrPhAQl95vNZChLSm0MNG2bRrNJs9UikAWowv+/vTcPkiu7zjt/b8l9qyUrqwpVBRTWBhpbo9ENoJvdTXSTsifksShSi8cjjSyFQlLMaCTZks1R2H84bIcVDoUccjg0ZsiirX2xPEGRbEmkRFK9sBeQQKOxdGPfqgqofcl9e9v8ce999TIra0ETQG84EQgAVZkv33t53rnnnvOd7wt0ZzvZ5NQU+Xxe1NzXuY5OjqnAbcEcvgU7wzJ+X/17o1tbTdNoOE3+4NofCuJWTEKY5KJZfmbvT5MKr2QcGIwPCDyP5xGORn1OelVaTCaTggSqp4eIHGCfX1gQTT3DIBGPC5y8nOttNpviO5N7qHbTdZ14NEq1UmHy9u0NCTXfD/vAOLzTbILjoCGiRiGfx7Zt0skkkVCIfLHoV2h0wyCTStGVyYgvowPQqt1ZTNMkk04LKgxEabFcLlMul9cnG/I8LrzzDrm+PvokYG2917f+t5W06b3Yes7/1ZtfZao2RQPBbBwnwU/v/Wk+u+0H+Z3n/yuf2foPCeki1fnM1n9IT7hHCCqUyxiG4ZcYk6mUSF3U52oa2d5ef6B7fnERV3Le67Iak5KrKp6HY9uiLFyttkoBaYLmJGyazExNsbS0tGb16X7ZB6YsqaK753nkFxdxHMdn4ypLrLthGCRiMcIBAFfQmVZzdmVqmMFJJlnK5/EQmPFms4nVbAremXB4BbZm4vZt8sUizz/++Hu6tuAX/14r0QrP0skWawv82dU/B6BChR69h13JnRzNHgEgHU7xc/t+lv9j149TaVSIEm1JK5Q0T7DZFDTDMMhms8zOzmI1mywsLdGVyQD47MixaFQgKiXPjW1ZlCyLWCzWUs2KxeOUymWWFhaIxWL+iOGDsg+EwzvNJp5MLerNpoAIWBaxeBxLTt8nYjEfMKZM0zSfm30jYDFlNQmtVYPbjUZDkBI1GjRk2S0cDos2umFw6eJFBgcGWppMa1Fyqk2mIlhtNBqUKxU0TfNBX64cJgcxvVWTKiCGrqNLpmJd06jXamLutq0EG7Q/uPSH1GwZMPBo0OBHdvwQjUYD0zT9wRHLtgl5IRwcv+kWDocJrwKeC1rINOnp6WFhYYF6rUZRliatQNVFl+jJcChEVQ5912o1mpZFLBoVpWBNIyZhyZnubhKSmflB2QfC4d16Hd0wcByHaqVCuVTCtm0Ssl6eSSZXRTSqConKkdezuozmGqJNHo1EiEYiAo7QaGBJmut6vS7426enyReL7D94ENu2Be+jpLsulcs05OvqjYYQO6vXqVWrfh6r8vJgiVH9HMSm9fz588ELaj1htXE1DAE8k8MX0UiEaDTKrDfP34x9Y/ntaDw19BT9kQFKpRIN2TxS5j/M4bBfMVIpx3oWk9yW+UKBskyFIqpEHHi/IXH7zWZTdGltm0qlQjQSIRwOEwqFqJfLLC0uEo/HBXDuAdn77vBus4knc/dSqUShWMR2HMxQiG5JKrSWI6ubvRFndz2PqsTghGXEUWaGQiRlHmrZNvVGg2KxyPXr14nH41y7do1zlQqVatUnU3U8D9MwiEejwgmjUZLJpI+IjEjIQlNG+mgsJh5iqQ1VKpX4xre+xXPPPUcqlRKRXzISK0qOQqkkaEB0XQDjJAfO4tIStWqVL9tfJayF5UY1RIQIu4u7uHXrFqFQiHgsRlbyaYZCoY7RVBFErZU2KUsmkzSbTQpy06+6ru3lVjUlZZgm1WpVRPt6HUeiT2PRKHPT03T39Phksg/C3n+Hl/IxpXKZkuR4CYVCJJJJUSZcz5EV9lzCV1cDWgF+yU0zDCJKXUNas9lkcXGRhYUFFhYWWFpawpa6TgohGY/F6OntJR6PE08kCCsHktUXBTf2u7PyQaxKItSYXFGUKeczTbOjGIHjOH4lRQHkmnIO17Vt3p49Q/1CgxQp/z1PJp8gpsdZmJ8X00hyhjeeSJDt6aE3mxXMyel0S4T3PE/cw3UaQ67nkUqn/RWtWC535NBXZspKWr3RoF6rCdpw1xXzwK5LpVwmGo0+MNjB++rwruviOQ6VapX84qIokYXD6Ibh08WtZ2o0D5aXZs/zWvJ6WKbCRu4H8vk8s7OzVMtl5hcWBNQY0Yjp7e7m0T17mLhzB6vZ5FOf+pRPq2FLIiRb5vyut0yupLgZ261creI5DrZMldS5luVqU65W0VTkDdTiXU9IZQJ+WqLq9rZr8eUbX/HBYQ4OmWiaf/L0TxALi75DsVTyhR8q1SqLCwvcvn1bFABkTt7b2+sTv2rIwLFK9STYPOvu6hK192aTcqVC9xq8k5omGNk0xP7JRvQ/IrIDG08kSKpKz32299XhvWaTRr3OonT2eCKB57oUK5WNXfwqEV3TNLwAxZ7reZTLZZaWlsgXCsxOT1Msl/E8j66uLrK9vTzyyCP0yOVVrThnz53j8cOHWyKhYuIF8XB4nicmoGQKooiWghwzasQPaGFCU4Ay13H8f3e4GDF0ITH4qkP84q1vcrl+pQUd+X/t+T99ZweBH3Jsm3g8LpgJ5F5naWnJX8muXbtG07IolUq8/vrrDG7axEB/f8uKo64jaOFIhFQiQb5YpFAqkUgmV938KsxSOBRC13WqtRqu61JrNLDk/SiVSusiT++Fva8O35AdU9dxiMZiZHt7mZqa8tF5a9o6uaYamp6ZmWFsbIypqSksyyIajdKXyzG6dSvZbHbVyHTjxg3C4TAjw8Prfo5hmhisLJMif6ZGCTMBbL1aLUA4ZlLSbrQMcav9Cfhpgwcs1hb5k2t/1uLse7r38OymZ1o+2zRNzFAIz7JoNJtCblPX6e3tpbe3l7m5Oebn50VTKBbDdhzOvP02nueRyWQYGBhgYHBwVTWQZDJJRXa780tLZOVwTsf7hHB6UxMUglVZp2/W65Rltcq27fuey79vDt+o1ykvLWFZFmGpyAH43b6NUritcHvPY25+nls3bjA5NSVwIPE4A4ODjG7ZQi6Xo9loUKpUWqoXQbNsm1u3brF169bvuWSmhIk1KYMTNLVSmIFVo/29wIrU7vcv/YFfhlT2M3t/uqNTRsJhX1squH8YHx/n9OnT5HI5KpUKuVyO/QcO0Gg0mJqa4vbEBBcvXeKdd98lkUwyunkzW0ZHW4dqNI1MKiVSG8uiVKmQSaVWnMPyy0W6aUgoiCrLzs3OkkylqNVqpNZ4/72w98XhHcehKPHWhmEIElAp86KwF2umNIEoqm5is9FgbGyMWzdvUiqXSaZS7Nmzh0wmIxQxQiHSqZSIwDLdcVdZJcbGx7Esi23bt9/VdXVENKqm010dqdWC771RuMnX29gIPjX8Aru6dnV8bygUwpBzvpYsCFy8eJFLly4xunUrjx08yNe//nWfrc00TUY2b2ZkZATLtpmbneX2nTtcvHSJCxcvsmlwkK1bt/p4IsMwSKVSVCoVSqUSMVl67HwhYnOvqjqxaJRqtSo0cfN5TNP8aDr80sICbqOBK2VoErGYj5BEArlWtWBnFUGTffPGDSHV7nkMDw3x2OOPk+3txXYcilLJQwHIFJ5FD2x28Tw/inrA9WvXGBoe7jjbGbT2RlAn/Is/1vdeVooO6dF/ffd3ZBNKfFLEiPBP9vyT1c9Rtv8d16VWr3Pu3DnGx8fZu3cvO3ftQvM8XwFEBRv5RkzTpH9ggP6BAQ4eOMDY+Di3bt7k26+/TjKRYGhoiFx/vyipyrLjYj5PLptdNbUJMjOYpkk0FqNWrXJnYoJoLOY/lPfLHrjD12o1HAn7jcVihMJhjFAIApu89YYkPASR6rvvvsv8wgKpZJJH9+xhy+hoS3Sp1Wq44NfDlQUbLX63FsDzmJmZoVQqcWgDMIIWZ/c6kzitxuZ1Vybfe2L6O5ydPyv+Kz/8R3f+KNloz6qrFYj0sFQqcfbcOQr5PE88+SRDQ0P+Ztq2rBVsadCK+DRDIbZv3872bdtYWFzk5o0bXL16lStXr7Jl82Z2PfKIGISXWJqOEjmBPYnq0IZDIdxIhFKlQj6f91UE75c9UIf3PI9SoSDU9GRe60NygxF3DeeYm5vjnQsXWFxYoKe3l2c/8Qn6crkV77EtC0uWIduVpv1uZzv2RtO4desWyXTap/ATP+58PsEIv5q7qTz8riad2s4PTaPpWvzOu1+U/xUl0r5YHz+047NrN4s8j1qtxltvvUWtXufwE08wtGmTf69t2xaYok6bRQVLDpYpNc3f9O7YtYuxW7cYHxtjfHyckZERenp7KZbLQjiu7Zr9s2w730gkQq1eJ7+4yFJ390fH4SuVio95D8kWsyHnSYMO38k1FhcWeOfCBWZnZ+nu6uITn/gEuVzOp6trt2qt5tfVV0jLrDKh07AspqaneXTPno5OrjhjOj4Aqzid/9C8F4cP/PurN15ksjoljqVpuLj89N6fImJE/JJm8AFWs7hLS0u8+eabmKbJE08+SUyWUtU1KAhER4dn7b2HaRiMjo6yfft2xm7d4vq1a9y5c4e+/n4i4TC9q5QZXU/w27iBgBKPRkXzsVTqyDhxr+yBObzrupTLZXTLAumA7QMXPktXwKHq9Tpnzpzh9p07ZFIpnjp2jMHBwZao3O5sVrPpf5Gdhjo02WVVxEaKNmPqzh1cx2FkZKTjNahppuWP1vzG0wpuSHVNgeHtuzZ5XeVmmT+98meBn8MjPbt5bvBZv0HVghqVf09NTXHy5Em6uro4evQoDXlfgmwDamijU0ojLxJdbjRXnp743Eg4zKOPPsr27dt598IFJiYmmJmZYe+ePWzdtq0FRxQ81yCUIRQOQ6VCXvYIhoaG7v5+bcAemMM3Gg1cy0KzbYxQaGV0B3/AWEWoifFxzp49i6ZpHHniCYZHRtavdnhiUl5F906bxeBYniu5JQHGJibouxtdUk2oZfhTTh2wKEFocFBNxG+aBZtSbYdXY4JfvvFlSs1SyzTV/7nv5/zjdFpbrl27xvnz5xkeHuawbJ4pfE4zsDH0WSDW2KB34qCHQAVKPsyRSITHDx0il8tx88YNzpw7x9TUFIcOHRJCbdCy1whCGXRdJ55IUFhaolgsfjQcXgt8uZ2cynVddE2QiJ54800mJycZGRnhwMGDYtCjg7V/EQ3L8sV81xrZM3R9GQogdZFmZ2c5fPjwhq8p2ETSAg9t0NS5raDnUBtnWSJdLQ+fLE/y7clvt5A3vTD8Ant6di93Z4Pv9TzOnjvHjRs32LVrF3v37vV/FQ6HhR6tZfkrW61aBTqvhEHTdb1V8jPwoLVfc7a3F4BMdzdjY2N881vfYv++fWzesmXFuQaDRCQcJp/PU5Vo0/tRrXmgDu/Ztk9Z5zd9AjfLcRyu37jBYj5PyDT99GVNa0tpGjK6x6LRNdMITdJ0qAg8cfs2hq6LDd09MlcCt2DjbGNB81yXL13/EsFdSsSI8pOPdi5DOo7Dd7/7XWZmZjh06BCjbcwKhmFgGAauJ5RPIuEw1VpNBJ/1Uq62KB8E6rVfWVQiR7u7u8lms9yemODU6dOM377Nocce8yWJoDXKG4YhiJ/kbG3XfdCFfSAjfrZtiyEPSfkQahvLA8DzOHf2LPMLC7i2TU9Pj+B7l2CrjX6OLYfAox3Qh0FTVRPl8ONjYwxu2nRXrW3/CjpFZ89rSWdWpeMLNKbaX3Nq7jRX8q14mR/Z8cP0RbPLG1P583q9zquvvML8/DxPP/30CmdXFgqFUFTcALVqtcUB17JgAFHp2WrXpuAItm2zd98+njp2jEKhwLe+9S0Wl5YCN6B1zxYKOPz9sAcS4ZvNJprj4EJH2IDjOJw8eZLFpSVy2SyxeJxKpcLbb72F63l0dXfT39/PgJw6Wi1a1hsNv+6+3iZRpRiu65IvFskXCux59NG7ui6VjyoCIo1A5JPH9lh9PE/9zKOVVhvAciz+6OIfy9+Ln2ejWX5ox+f816jjlkolXn/tNTzgueeeW7OsFw6HlwddPMH2G9ugw8NyCumuEt2VRcJhYrEY5UqFQrFIf38/n3rhBd544w2+/eqrHDlyxF+9g1FejXRWZap1r+2BOLwi6gSWifWlNRsN3njzTfKFAodls8cwTTZt2kS9Xmd2dpapqSlu3bzJlStXCIVC9Pf3+398gQIJRMLzNrTp1AMRfmJ8nLBp0t/fv/Z1BK7Hj2qekJnUgptH+Tu/y/oeKjR/eesvmanNkCDuf/JPPfqTRIxIy55lZnqaN0+cIJ5I8NRTTxFvG4NUpdTgdSv6PKvZpFqtbjx1kNFcAeI0Vu8gewgGt4pkkLNtm0gkwjPPPMOpU6c4ceIEBw8eZNu2beLeaWJU0zBNHMfxYdT32h5YDu9YFgaB8peMLq+99hqWZfHJZ58lGo0yMzvrb44ikQgjIyOMjIz4sNbpmRlmpqe5ffs2AN3d3fRls2S6uwnJAeyNpCW6LE06jsPE7dsMDQ+vWDncVWru7Q61WpTz3mP+XmwU+JMrf+bDBzxgd/dujg8db3nd2NgYp06doq+vjyMBbakVq0kg/QCR1li2LVLGu0hpAH/P5MjVa7WGmidxOeFQiIYUYutKpzFMkyNHj/LO+fOcOXuWaqXCXklsFTxeOSCqfC/twUV4y8KQQ8Mg0pxvf1tUH44fP04ykaApqytqhC5oiiOlt6eHvXv2UK/XmZ6dZWZmhqvXrtGQatiD/f0+xmMtxKWhC1HfUqlEqVTiwIEDK8pu3yvbbbCxcjf2R5f/mIpVJoGCBHv8zN6faakKXbxwgYuXLjE6OsqBAwfW/ozA+0CkDTU5FOJ63roVmtZDiQdHsRW0R3iPViXARCJBI5+nWquJqS35/v0HDhCPxzn3zjuYpsnuPXtwWV4NlXbUvR7wfiAO35D0eYoOwnYcTpw4gW3bvPDCCz5IS12cJ8W/VqQCqiKjaUSjUUY3b2Z082aq+/czcfs2C/PzFPJ5vnvyJJqm0dPdLTDdAwOkpUhwsF2PJshRDcPYGN9MB1uLW8V7DynNreIt/mrsa+IUZYR/euAp9vTsFp/nOLx1+jQTExPs37ePrdu2rQ0t6GCarmPqOrVKBTyPpEQodqq1d3y/tsxorCKy6uy2n0s0GsWQD0i9XicaqPdv37ED27Z599IlUuk0gwMD/gOlmCQ+lA7vym6emjs9c+YMi4uLPPvccy2IRIVi9BAVl44ROoDmA8DzaDabdGUyDPT3E4/HqdVqTE9PMzM9zeUrV3jn3XeJRiIi7x8YICel1w3DYGFxkWxvb8u+YqPmg9DWgxVsMMJ7nsfvvPtFPE9VbjRMLcT/tutHAbHfOXHiBEtLSxw9coSh4WF/wupuzQyFqFSr6LouJDjb6urBBmCHE215mFW3t5PpCvteLlOuVlscHuCRRx6hUChw6tQpnnvuOeKSudmS7HL32h6IwxvIPNfzuHr1Krdu3uTxw4c7Yi10qaO6UZZZ23FoNpt4gVJkLBZj6+goo6Ojgi1rYYHp6Wmmp6cZGxtDk1M/6UyGpXyeR3fvfs/XtlZUdNs6kevZyZmTvD33duDYGp8e+RTZWJZKucwbb7xBs9nk2WefpUc2d9ab/FrNVL07ERQ4Rh1yuXrUCXekxBHcNRw9aPF43FfubjabrYFM0zh8+DCvfvvbvHniBMeeekp8hhKNvsf2YCK84/h0DWfOnWPXjh2MbtnS8bWG3ExakrVqPWtKjplwOLxMOBrEa+g6fX199PX1sX//fiqVCjNy43vj+nXwPK5dv06tXmegv5++XO7uxswUJkex+8q/Hdf1lTM0TaMhI2GwaqImfsrlMh4uf3b+f9BFN6oQORga5Jns00zPzHDu7FlC4TCfeOYZUsmkiLASzch7oKA2DYNyuUwimRS0KKtcc/sq5bHMNrZRC0mVlVq9TrVWW7FyG6bJsaNHeenllzl/7hw7du5EN00qksX4Xtp9d3jFTGCYJleuXCEZj7N3DeUMUw76NjZIttm0LCE+JlXkfIzKKmlEIpFg27ZtbNu2je9+5ztMzszQJ2nkbt68ia5pZPv6GJB1/2RgAkcxEziu6zMXWM3mqlGu2Wz66ZnXIRcNljlfuf1t5mvziOlYYX9/+PtYWixw88YN0uk0+/fvB/B1XQFfPNhUjGW6kK9cL43yEOjVbF/fhmZJfU59z/MhxXcTGOLxuE9UlU6lVuxrYvE4+/fv563Tp8kVCvTlcoJDqK9vw5+xEbvvDq86ehVJh3FAfmmrWSQcRocNqUXYjiM6q5pgEwgiKIOTNR2d3/OYm5ujP5dj67Zt9HR3UymXReozM8M777zD2XPniMfj9Pb20tPTQ1dXVyvddTDvRURBpRYCctXRNJ9yOoi30TRtmbUg5PA/xv8HFar+RnVnegc5O8f1m9cYGBjgwIED/meqVQSkdpTj0E5Urc7DlGIGRptyYKVSwZFSQkpsYlVrS118DP1dYF2UEqIrSa46TZP15XIkUynGxsfpy+U6shB/r3bfHV6N7d28eZNMOk02m6WxygXjeX5q0rQsPNddNf/1PE8gMBGRRjeMlkEFfwleJdLlCwVq9Tp9fX3omuB8NEMhBgYHyfb1Ydk2S5KYaXZujvGJCQxdp6enh1wuR66/f1lQzfNWRCzHdWnKLywSiXSMuKoC8RcTX6FgF1p+91z0WW7evMmWLVs4ePDgimjqeR6e42A5DpZl+SuP2/Yn6MymrmOaJoZpks/nAcE8YEvBZP9eBzvIbefsKsCdJ8htVT6/nmkIag9bcm22f/+qEbZj61beevtt5ufmcHZ1ntP9XuyBRPi5uTkKhQJPyQ1Jo14nHA6vYA1QqYmh62ieR73ZXFEj9gJfRlPu5CNShLhTYhF0Mz9/1jSmpqYwDINoLEaxXKbRtpkyDIOBwUGGh4cxDIOqFNydmZ3l8qVLXLx4kXg8Tr/M+3t7e1ubMIHcd630Yoklvjn9rZaf7Q3vxZly2L17N5s2berYuNI0Dc0wMOXvgueuOtuu64pVUG4AbdfFbjah2WRufl4wp5mm6FJL3VU1I7DaOStqEVOCANXnqXNaLbdXgL5qtdoxXVWc/9lslt6eHm7cuMGRY8dWvW/v1R6Iw89MT9Pd3c3g4CCVctmnXVsx9yhTkFAkQl2SmyqHDy7hqopjy/Z2OBxeO32R5kmUoNVscufOHTKZjJ/3u65LSHZpTckaHPzSI5EI3d3dYnbTsgTkYXKSiYkJLl++jGma5HI5H/Ojlvv1CpJv6t/B9ZY3nSYmh5oHefqpp4jIa18VeCaPr0q5y7dR81cE9RgoLLxSGi8ViyQSCWzLotZoUG80SKfTq/JPKlOy8+r4QSdfz/HVSufIypp6SB25SrmeRzwaZfu2bZw8dYq52Vn2BODN98IeiMMvLi2xc8cOAKLxOI1mU1DfWVYrQ0EAF13VpNCWdMr2+VO1WTVDIX8p1trSGnFIQY7akIAp1SApFots3bZNEHlKWKr/AGpr87iHQiGGhoYYGBzkMcdhKZ9namqK6ZkZzpw5g+d5pNNpurq66MvlSHXYpAHcKN1kQr/TAlk9pD3G//rsPyCVTlMoFsXpbAC6u1550s/pJfX20tKSGHqPRFpovRVdeCgUEkxhbc5v2zYu+H2LTvdJ0XC0c/drmqBfcSWHvCo01CWkO2SaGIZBOpPBMAwmp6bWvu73YPfd4WdnZ3FsWwxaI8qOkViMeq1GpVxG68ApGIlE0HTdx7Z3ihaq9t7ywAQioStz/IbkY1dm6Dp1WS4cHh4mnUyyJBl7g7m4D39ty2Nboq0nCEgzmQyZTIbdu3fTbDaZnZ3lzuQkU1NTjI2Pc+7cOfpl3j/Q3++D2yYrd1quKakl+afHf4l0qsuPpGuuEOulEgqUJQOGOvdisUjTsujP5UinUoIevNHwc3LXdf17FzJNwpL1wXUcHPk5Kh1VKVvw84P/b/9dNBoVogmNBqlkUjAKO04LpFtDYKQm77Ten3th993hb9++jWGaLeywsVgMVy5rlWp1RQQMS+JNS76mfcDYkZsxDVZopdqyha1KgiBuYEQqVJiGwfWFBXTDoLuryy/jqXKbWmaDlHfK6fyVRiL7IIBJlw4VDocZHh4mm81SlRKPxUKBmZkZTr/1FiC+zP7+fnZEd5DwYtS0GgYmv3z4n9Gd6vGP23IeAVOUIGpT2dLSb0/rOnR7FxcXhVP19PjpT9jzfDoTW66+tm1jyT8KbAesSPfWYh1u5+2PRiIUEQGrWq36+wvFcuC5Lq48txs3b9JoNDoyK79Xu68O73keU1NTbO/vXyHmFZeKfLaUSVSlO1gm3rQsi3K5vIL/0ZLOrOTiQSy11VqtpZxpGIYQEJDlQWWLCwt0ZzL+55kSkroqnEGddxAlGYxiLGPENYUmlI7XlckwODjI7t27aTSbAvIwM8OVa9ewLYsfbn6OhdgiT+58ksd6DvoPjyo9em2pgf/5rIT+ypNc9fyVzS8skM5k/ChtGga2ZWFLxcRQOCzUyh1HpJ+S4lpF46ACurr+te6ZJ1dCzxUq56ZhUK/XKZfLhCVXvGkYfvlT8zx6uru5dv06ExMT7JDp8L2w+x7hnQ5OpGrWyUSCUqmEI50+IZXjXM8jFo/7iL52h/crBXKZrUrecXXscChEJBJZtU48v7DQgn1XNH/2KlGqkwVH3Ly2n2tI4Fgg2qoK1ObNmxkeGuLUqVPcuXOHiB5hh7mD2+/c5s47t+nu7mZgcJCenh5fKMw/JssbVAXVEBd9d2jMhfl5coHrVzX6djiHbhjEYjGikQgNy6IqtbYc26ZUKhGR8jZrVaH85lqwZKwai5rmC6KpQKFeF5VsdPdavfu+R3gCjtH+O6WYXSyVsKXmUSwW82Uq81Ki0rLtlrRGLYNWs9kyKBAOh4UC3RpfQL1ep1yp8GgAHakqDqplvur7pQOr6wpG+OBWObjvaD9Ws9HgzRMnyOfz7Nu3j9Nvv82RI0fELMDMDDNTU1y5fBnbcQiHw/RlswwND/uAN9UA8ukuVtmwrnYdSo+1V2FxkCkK+EC09vdpuo6hacTjcSzbxpTnUZOpYzQSEX2QDucRLBer3omaEEPTVqQr6vqMNkjzvbL77/DQMnygTP1fl2ScpXIZu9mkLJfMUDgsGhWO05LWuJ6Qmq/W66TkimCaJvF43HfcVbnWgYXFRfC8FuCakqCxJXTAb/KoHFn+m8DfLXQTHZyuk8OXy2XeDADAgvuWaDTKli1b2LJlC57rMj09zeTkJIuLi9yZnEQDent7/bJnKp32I7vix9kIKnNhYQFPHkuZrutCkEE2rzqxKqsKVyIeJyIrO6ogUKnVMDSNSIfB+WDJUimh6JpGSN7zwAvFfVWAO/kQ3mu77w6vInm7BXfvuiY4w2uIcmOlXCYSixGPxagH0hrX81gqFKjW6z62PhaPr0yZ2unhArYo5RLbQUmmYWDLBsxdj+StUiFR16Y+94033yQSiXD8+HESyaTf7Ww3Tdfp6u4mFo/zaCQCnicmvWZmuHT5Mu9euEA0GiXX10f/4CD9fX0rnb2tNu95gpZjfn6eeDS6oqFnGAaOpuFI4eGWS3FdLIWfkelHNBIhLCU/680mjiTaisZifuVMfb7rumLYRFaAUqkUDbkvsOWKoe6XPwr6YYzwIL48x16J1VBLnXoodE0TOXy9Tr1Wo16r+ehHq9GgUqvRlA0rEJFGDXWsOHbblx20hcXFVvlJeQ6GaaJJhb/1GA/U+9b8fSDC3759m1OnTtHb08OxY8cEy9Z67w8wHkRjMbZu3crWrVsF3Hl+nqnpaaanprh16xaarvuVn/6BASGe0GFF9YDpmRlyAwNiPxDgxDEMA9R31Xb9Cp5gaNoKRcBoNEooHKZaqfgylbYUnlAgwFq97t+PZDLpU7UoYJ3aawVnn1XK86EaADEMg75cjrmFhY5Kb4CfNiiLSS7IarkMMgIokqR0Oo3neSQSCVLJ5PpjbR3SjHw+z85du3yKPGWKOsR2nDUxPMHzXuuzVI599do1Ll28yPDICIcff3zDtNnqaO2wAt0wyPX3CwGD/fuplMtMzcwwNTnJu+++y/nz5wXkYWCAwYEBstms3yQql0pUymX27d27YvrLVBvXDiujwgStVgQw5F5Mr9UEI4Jt0yyV/L2NJ9OkWDzuX49hmtiNBrZEexJwdk3TWJqfxzDNVWkP36vdV4fXNI2hoSHOnTxJuVxeobrcCZwEospiZDI+K1ZTNkG6Mhli0Siu560LTe3UjFHVnJRUxAuaoes+Wb+1TnlSnfua1QnX5dKlS0xNTbFn92727NlzV9WU9eZh1dknkkl2JJNs27YNq9n0o//M9DQ3b9xAl/MA/f39NJpNMR8gm4BBU3X29nq6n8543pork2J603WdQqFAvdkE1yUSjZJMJJYrMdJUZcxRwDVacTqz8/P0S7mde2n3PaUZHh7mjVdfZXZursXh10sJVPktlUpRKZWwPI9iqeTnj+uN5Gks18WV85RKJfC8ztzliAjmOM66Dt/J2YNsuLZlcfbsWRaXljh06BBbt25d52o7mIq0q600HXJbIyBggOdRKpeZkZNe58+f91fZCxcuMDAwIDSZ5Iqj4MueJkWe5bhlUzb4lEr4WvfEsixqUjlcbzZBNag6FC0M0/RXVE0O1KsIb5gmS4uLPCnBhvfS7rvDx+Nx4qkUczMz7AhIyHjIKNxhCXVdV+C1HYdoJMLApk3k83lR+5X6nqVyWTQsVnN8TfP5YpSVSiU0w/Bhve0WDoV8kqK7Nrks12s1Xn/9dSrVKgcPHmTrKgxg65l6eFaj+PBLkurjO5xPKpUilUqxY+dO6rUaX//618lkMty5fZvr165hGEYL4E2X9IOO6xKSiiANNWCzSjrjeZ7ARTUaWBJ6oGkaPT09oksrHwI8ryWIKEyPivCwvGFVCt7vKVCsY/fd4ZVm0PidOxys1XwctKdazm35r6LVVi3pZDJJPB6nUa+LZoXroktS0GajQUjW3oP5pbqBRiDqgnD4ZCKxappgyiESR8JqVxM967Q6aUAhn+eNN98E4PHHHxcryV02haAVKrAqp02Hqsxals/ncRyHw4cPk0gmKRWLTM/MMD09zZmzZ+HMGZKplBiGl0wPjnJI8BtMPmpVVrSacibBk0S4ISlrD2LFrGtay8ZV1d3VwI4dwO6DWGlu3LxJRG7U77Xdd4c3DIN9+/bx7akpLl64wOHDh0XkDbSlgw5UkXKGmqaRTKVEbi07fmXJo5JJp8ETbAVNWVkxDaNj58/vSiIcfr2c0DRNn2x0NYdvB5QBTE9Pc+LECZLJJEeOHv3epnXaN8T3wKZnZkgkEmJoW9NIZzKkMxl27dqFFQS8zc5ya3wc0zTJ9vbS3dNDfy7nox8d18WS0G3VgNNktSYsFQODFpWNwLqEIGsSNqIUzDWJnbFtGzQxy3z9+nWOv/DCfRFFeCAOHwqF2LFzJ2M3brBjxw6SQd1PbZmTsVqr4dh2i7MrS6dSLC4uiiaHrhOLxQTXSaNBo14X0ca2MXSdsIwyIdPE8Dy/C1osFtm8efOa5xuWrFyWZa1OUNS2Kt28eZMzZ87Q19fHk0eOCOCbJJV6LxbcsHY8xt3Wpj2P6akpBiTvS7uFwmG/m1uWanyFQoGpqSmmLl7kwrvvks5kyPb20tXdLapliO82IpVc1FE7iSdEIhHRZW02qddqmLLp5Jem5b4J4Nr165imyVOf+MTdXeMG7YE4PMCW0VFmJie5cOECR9smWTRErtiUuIl4PL5igxSR+bquCcl2NSMZl1iPukx5lJpcXTanwpJ+z/W8DemAhkIhqNV8+EKnUmqwe/juu+9y5coVtm/fzr59+8RGbCPQ3jVs3fy9w89U0Ojk0EtLS1QqlXWpx3W5yUwmk3TLUcZmo0GhVGJhYYGx8XGu3bhByDTp6+tj0+AguYGBDV1nJBLxh3YqbaJnqgpUrdeZmJjgwP79Kyp698ruO122aZp+BeDRPXuYuH2bqTZgv+O6YkId4did6r2eJ6QnQ6ZJuVJZkffF43G6MhlSqZSADMsKQK1ep1gqMT09LY6xDo+i6uBquu4D0jqZ4mK/cuUKBw4c4ODBg8sOuk5JcV27Sz4bZat93sTEBJFIhOw67GoKQFapVllcXKRWq2GGw+RyOfbt3cunP/Upnn3mGbZv20a1WuXUqVP89V/+JS+//DIXL11qpcHucOxYPI5iLavXan6EV7MNVy5eJBqNsnPXLkzTZHh4GE3TeOGFF9a99nckZZ+mafzH//gfV33d/e+0SoBQzbbJ5XIMDg5y8rvf5fnnnxd4EJZlV0zTXDWNcB1HPAyGAa5LPp9vwdirz1LpjKdyfLlyFItFMeTseSxJEdxQKORP2QRNQZObzWbHPLJer/PmiRMU8nmOHjvmiyio8lqwofNebM0avEIUdvpdp2ab6zJx+7Zwng44FzXyZzsOjmQUqNXrYgNqmiLIBMb+otEo2d5e9uzZQ73R8Dl+rl27xoULFwTgTdb9c/39LdUdXdOIx2JUq1WaliWCltwX3Lp5k/n5eT7xzDP+PT969Chf+tKXOH369Lp9j1/+5V/GcRy2b9/OL/zCL6z6ugdCxBSJRKhVKtiWJVimXnmF1994gxeefx5N1/18dy3SHYUvT6RS1Ot18oUCyQ7TUsrUgxaJRHDjcSYnJwUWOzC0bFmWgCpLAJqaaQ12Xdv5DcvlMq+++iq2bfPcc8+teOhg7eGNjdhaKY0nDtz5mlmZ7szPz1Ov1xkZGfE5O5WTq0kjBZDzPM+nO4xEImTS6TWHL6KRCFs2b2bL5s148rOmp6aYlJNe7YC3dDothk3CYRrNpn9/p5aWGBsb4+DBg+QCGlvHjh3jS1/6EoVCgStXrvDII490PI8XX3yRb3zjGwD8+q//+po9lAfm8CBSl1goxNOf+AR/99JLnPjOdzh48KD/mpDMtTuZK29OMpEQX5xUfe7fAFGP2kjFYzG6Mhm/uWRblsgfHYeGnK4C4aiNeh1HsgsnEgkMw2BpaYkTJ05gmCbHn32WxCrp0bqAp0ANveNwxxopzVrMAMHPdyXycWxsTOx3TJNCsbgCrqtSOEUzXiqVaDSb6HK13KhpQF82SzabZc+jj1KtVv1hl8tXrvDuhQvEolHB7dnXRzwex3EcCoUCN2/eZHR0VCj+aRrhgMMrO3XqVEeHtyyLf/7P/zkgxCA+97nPrXhN0B4Mt6RhEIpE8Gwbx7KIx+M8dewYr776Ku+cP8+eRx8VD4W2coYUxBfk2DaaJ+iZu7q6aM7OCgaEVGpD5atms0lYTs37HPJSs1SNsqmpH9UjaEqZR9fzmJ2d5eLFi3R1dXFg/34fGKVpQspekTCJE17Gyavzx1se4vCHN9qWabVsB/cmPvRYvs6n9JOpjf93kJJDqq14rsvk5CSDmzYJrD8CQmGapj+43oLtkU0kYAUUYC0LolPVO+Lx+DLgzXWZX1hgRj4AY7duoes6sXiceqNBKpPh4IED6LJil5CNwSeeeEKMHNo2J0+e5Md+7MdWfPZv/dZvceXKFTRN4zd/8zfXPdcHJogQiUSo1mpCnS0cJtvby759+zh79iwegad5NSCW/LeG2NjGYjGcapWFpSWG1hM+Q+TdiQ4pk5qkD4VCIH+v8lnP82jaNrdu3uTmzZvk+vvZs2ePzxvpO2IgZ/cflGaTUGC00C8xBvoPqlZvWZY/2aOm+B3HwdB1n8hKObDjur5kvB+t5f2x5QCLh0iHlpaWaFgWIyMjJJJJ8WCusRFW5Fewhm5rB1vRLZf3RK1Guq4LKHMuJ6oxlQpXr15lbGICF9jzyCMt59Ul0ayxWIwDBw5w+vRpTp48ueJzFxYW+Lf/9t8C8BM/8RM8LhVk1rIH6vBlXccOjGzlcjn2HzjAxQsXePWVV3jq6af9aB3koQlOFynr7u6mJiHDG2koNep1ugNDD2uZoqeLJxJcP3eOyclJdu/ezc5du3BsWziG5/mbLlc6oXI8Sw5BA9TXcLBqvY4rHVxNdHmaJoTcXCH/YrSBuZzAyqBry9R+mqYRQT5YhoGhaVy5fJl0Mkl2I/yMnkejXhfHuRu5yA4BKjjM0U7XAWLE8uatW8QkqlM1wzyEkwdX7GPHjnH69GnOnDmzYj/1r//1vyafz5NIJPi1X/u1DZ3uA3P4cDgsLh7RVVM3ItfXR+6Tn+SNN97g5Zde4qmnnyaTTvvNohZuE5Y3goZpCu6WQoEledFrDW7U6nUGZMTdyFBB07I4/fbbzM/Osnv3bnbv2YOGlH7sgN9RcABXsgWrHDgajfoPbDAaq/QCGQFNCaYCOXJnGD76UAMIpEy6pnWM1GoFUOd/584d9sjzbsferLjeZtOHB+jh8KoDNJ2uu/2oauVR37cy13W5ePEily5dYmBwkK5MBj3ICcpydFd27Ngx/st/+S9Uq1Xeffddn2PzwoUL/PZv/zYAn//859m0QbnRByJbCcJR48kknuSbUc0ZU1J4PP/885imySsvv8z0zEyLhioEqg+BL60rkyFkmjiuy9Iq00PI46gS43oDxx5QrlR4+aWXyC8ucujxxxkcHFyuya/ysKgcXlV5wuEw0UhEaJbGYsTicQGkSyRIJBIkEwm/JxCPx0kkkyQSCT/CqbRN/VsNpRuGsXpaEri28bEx8DyfllzTllW8O0XkRqOBh1Qv11YfoFnxkZ3uYxuoTdX3T548yaWLF9m5axc7duwgFA5jtBUqutqqXsGNazCt+ZVf+RVs22Z4eNjftG7EHpjDg9yMyLy0LhX31FIej8f55PHj9GazvP7aa7z11ltY61FmaxpdXV2EFAZ7FeU3RTOhqkUr5i7BT00WFxd56aWXsGyb48ePM9DfDzIvV5+53jl1/PcGLTjp9F7Lmp7ncePGDQaHhgh3KCsq51eO32g0/I26ev26YgRrnJvW9kDNzM7yjW9+k8nJSQ4/8QTDw8PgeYIpWiE0JSlru8Pv3LnTn1A7deoUAH/913/N17/+dQB+7dd+7a5E2R6owxuGQUS2lJuSpiEYrUzT5KmnnuLgY48xMTHBN77xDaHWF8jh250gLqOiYRjMzs11HCes1+ugaT5XozwQsOzonucxMz3Nq6+8QiwW4/njx0nLOrQGft36Xs9Ytptfg7/budqAzc/PUyqX2b4O2lBVgBQLczQS8QUpWsidOtia90He20azycmTJ3nttdeIR6O88MILvkPrhoEum35qOiwd4AoK2tGjRwER4W3b5ld+5VcAUcX58R//8TWvsd0eqMMDJNNpPImK6xRFNE1jdOtWvu/7vo/ebJbvfOc7vPnmm/4sayfr6e0lbJq4rstCh/a2arD4G0Pp5IpeD+DGjRu88eab5Pr7efbZZ/2HQ9d1UW0BMcVzn80vSXaIoBuVgLl+4wbpVIreDQi1qZXWlCC/YFVpVdPW5t70PI+x8XH+9m//lqmpKR4/dIhnnntOkDupfYKk9QgFWMy6O0ggwXJac/78ef7Tf/pPXLp0CYDf/M3fvOtV8IE7fCgUwpTlP0vWsYM5nIKcxmIxjh09ylNPPcXi0hKvv/464xMTHbWfdF2nu6cHU9cpVyqUAwoZ6pjqtqhoriocnudx/vx5zpw5w/Zt2zh65MiKoRKFzbEk5mOj9l5SEh9W0B7pNvC5GsKBpyYnGd0Alty2bUE5jiA+0iRkV31Wx2vtVJUJWLFU4rXXX/f1Yz/9fd/HltFR0d2WASMajeLJzb1aDQxdp28VYWjl8M1mk3/5L/8lAD/8wz/MM888s+41ttsDq9IELZ7JUJyf91Fy7c2XoA1t2kSur4/Tb7/NlcuXmZiYYNeuXWzburWlWhKLxUilUhRKJeYXFlqYx1zX9UlAg+bIhsbtO3c4ePAg2wMTWUFTm0VHinKtq3zxPaQ9ilNnVcnOtT5W03wWg/Vg0B6icoXEp/sPuQwE2ircPp2qMiAGTC5dusSdO3cIhcM8/dRTYtRQvqciWctM0yQUDosehOf532HfwMCqnd2jR4/61TVL8tj/+q//+prXt5q9Pw4fj4Np4kni00g4vDzy1+FLDYVC7N27l02bNnH79m3Onz/P5UuX2LFzJzu2b/ebJF1dXdTqdRqNBvMLCwwODPjpS/uD5QPACgWOHTu2blkrEg5TdRzBqLuOwyu8y3vZcvqTTu8hh/c8jxs3bzIyPLzuOTbqdVzbFsMbnfAyq5Q+269pfmGBS5cuMTM9TTKR4NDjj7NpaKglJavXan4qk0gkfJiwxzLPzeDQ0KrnqpiZL168CMAv/uIvvudpqPfF4QFS2SxLt29Tq9VIJhJCicLzVjimMl0Ofezfv5+9e/dy9coVLl28yOXLl9m5Ywc7duwgHInQl80yNTVFvVZjMZ8nI+mgFUgMxOTT62+8gWPbfPK558h0da2bqkTCYV+Vz7KsNR3qe9nWqjp6u8NvRB7y9sQEtVqNbausVP6xXNevaMWi0ZWOHSwrKthAMNUB5mZnuXT5MnOzs6RSKZ548kmGh4YEGFBOL4FgnFBNOEXTUZOpjS6BamqoZC3L5XJcvHiRvr4+/tW/+lfr3ovV7H1z+EwmQ0FyxyvK7GBjqd1UDdl1HOKJBAcfe4zdu3dz9do1rl69ypWrV9m0aRMjIyOkMxkWl5ZYXFzEDFQBdE1jbn6eE2++STQa5dnjx30m3PUaM5quE5PwiHq9vm4EVc2iu7VgWbL1F+sDxq5cvkx/fz+ZTGbN11ZrNYEBkulFu6l77QX2E56EU0xMTDA+Pk6xUKCrq4tjx44xMDjYcr7q345ti7QJUQEyTVMMhjcaeNoyqdOmoaE19zsnT57klVdeAeDf/Jt/s+71rWXvm8OHQiHi6TTlhQUhdFWrEYnFVnU83VgpxRiJRtm3bx+7du1ibGyM8bEx3pyYwAyFyGazpNJp5ubm/Jr25OQkZ8+dI9vby9Fjx3ystiarButVQSLRKFXZNFtT6vE95vDBz7/blGZqaopiscjT62zkmpaFY1l4mrb6CGPAbMvi9p07jI+PMzszg2YYDA0Osn//fvraKP6CKal6QEAMbAflexqNhp+/J9PpZZHlVezzn/88APv27eNnf/Zn1z3ntex9c3hN04gmEtjVqmAB1nXMQOu/E+8LsqIT5IABAVvYuXMnO3fuJJ/PM3brFmNjY9y+c0d0LCMRXNflzJkzbN6yhUOHDq0YIfSj2hrnrOs6EcmbXpNkrutc5F3dk6By991UeDzP49KlS2Sz2RYawU7Hr1WroiojGX9Xe93CwgIXJZGU4zj0ZbM88cQTDG7atLaIsfxeaipvl6koiPtrS8VBldP353JrYu6/+MUv8vLLLwMCGfm9Uu+9bw4PojxVTySoLy3hOg6VSoVkMilyyrYoqfLMRqPBz//qr5LP58n29fEbv/Eb/k3wPI90KsX+/fvZuWsX/+7f/TuazSYNy2Lnrl1sGhjAMAxmpqfJ9vWt4FpZi4S15ZzrdR9KvBqzgesJ2DEBgJnreWIiSp5rWY41VspldClKUKvXMUMhQpKRVzm/vsZDMDs7Sz6f5xNrRHcPwQgBAofU4mSeR6lYZGZujrmZGebm56k3GiQTCXY/8ggjIyPL3UwJE1gtsoNwdksSOMVjsZY9gto7GIZBpquLLsWDL61arTI5OUmpVOKrX/0q//7f/3sAfu7nfo5PfvKTq17fRu19dfhYLEY5HCacSNCs1Qgjbki0A4xX1wRW3jRN/uEP/AB/9Id/yPzcHN/+9rc5fvw4gL85dT2PL3zhC9waGyMcCvGZz3yGWr0uSIgmJ7l+7Rq6ptHd2yvAa7kcPVJ2Utf1FV9oy3nIRpTbaFCv10kmEr5z27aNY9sUy2X/36qC1LJqKTShIg5FTO4rLL4nFb4t+T61BzF1XbB6KbFhmeZdvnyZrq4uctksTals2G51WZXxNM1nZZ6bnWVmbo7ZmRnq9TqarpPt6WHL6CiZdJr+gYGVD7QnpqJaeieBkcOgOEUsHl8hflaTCNGQaTKyZYsIcIF7/cd//Mcr0pYjR45sCOu+EXtfHV7TBDvWUrOJJimXa/W6GBgJh1uivKZpgnbOcTh+/Dhf++u/ZmFhga98+cs8++yzy8Ao4I/+6I84JfWU/tE/+kccPHiQ1197jVwuR18uRywSYW5ujpnZWa5dv87FixcxTJPe3l66JF9LOp0mnUp1rGBEo1FqtRrlUsmvJwdNQYXVsIUeiNBBXLziUoxFowIiW62iI/Y3EdmVVAMqriaY1DzbBtumLq+3VCoxPz/PkaNHV02hKuUyM3NzVMplarUahXyeoqQd7OruZmRkhJzSmjUMCoWC0HVaaxOvtZKxgojsDVmRUbOwXoD5wbJtf7Rv+86dxGKxFTiY06dPAwJOPjo6yo/+6I/yL/7Fv1hz/PNu7H11eJBRXnKgu9Uqrm2L1EbXfd0fNVhhGgYNmft99rOf5Ytf/CILCwu89NJLvPD88wD81de+xt/87d8C8A++//v5X/7+36dULgt8iOtSLpUwDIPR0VFGR0fxPI9CocDM3BxLCwvcvnOH6pUrgpdS10mnUnR1dZHJZEgmk4QjETyg3miIKO66vkaRGRgI9zyPZCLRAvttN19jSc7TGrqQi4zFYn7KodIfpbOqONVt28b1PK5duyYIluJxSqUSlUqFarVKoVikmM+zWCgI+hMJQ05nMvT09rJ79276crkVzR6/NMw6neK2h7xWq/kDJPFYzK/+KME4EOzFeB7JVIrBTZtIBfmJpH3hC1/gC1/4wtpO8z3Y++7wIAhTFy0LLRxGl9wy5VKJdDrdUq0wTVOoyzkOzz33HH/5V3/F1OQkL371qzz3yU9y6uRJ/vRP/gSAp596in/8j/8xsKxSHZFU3IV8Hs916enuRpOIy66uLti5ExADHIVikXw+TyGfZ3FpibGJCT/tUOwIoVCISDRKOpkkmUoRk1Bg13WXN1cd9iOrmV+Dbxck8ASVdE3y5tfqdWq1Ggvz8ywtLhKNxXjt9df9kUQ1FZZOpxnetIlYPE4mkyGbza5Z/WmHZK/m8B5yYy3TrZokwlJUesrZ9cAqoPhoLNvm0Z07/Qf7QdsHwuGj0SiJRIKKnBzSZeQslUqCVk82PVTOats2eizGD/3QD/Gf//N/Zn5hgd//vd/j1VdfxfM8Ht27l5/72Z/1Uxy1KTJDITKZDMVCgaIU/e3pwDoQCoXI9vaSTqepZLNslrl1rVYTFBNS7kVF0zvT0zTHxsTcLcuVHk3TfDkdlXMbhiGYeGWnGeDtM2fQJKBOAd0cOYRtqbG7thQiFAqJ0qhh+JWOcDiMJjl6zFDI3yCGTJPMKkhEZaruvhoq1X9dGwxERXaQ3P4yZ9cJDJ14Yqyv2WzSm8vR3d0tAsz7YB8IhwdIp9OCs9Bx8KQOkO04FEolkUtrkrTf8/x502NHj/KVzZsZGx/3S1cjmzfzT3/pl1pKZ7p8ryU55jUE9qNYLOJ6Htm2Up6SaGnKAW4klj4jFUdUJHZdl2KhgE/wpGnUajWWFhZEtUURhsqVwXVdHAkzVjKQrkw1otEo4UhEcLdI5jWlrqfSpaiU6olGo4yNjfH2mTM888lP+s7jD6RbFqVyWXQ8ZaBQShudHFnTllmc1WRWxyET9dDJv2uyWgX4hLa24ywPkGhyIN3zyBcKmJEIm7dsETMMdzNGeA/tA+PwmqbR3d3NvOOIiCErLrZtUy6VSKRS6LI76MhIaJgmx59/nt///d8HRPf2//n855d1RAPHD4fDfvVAOe5SPk+lXMZzXfoklLbeaAh5RsTmMyJ1RH38fFtzKCpVxWv1OplUikg6jSnb6/FEgkhAea/d8lKyfv++fSSSSSrlMoYUeYPlAe12s22bCxcusHlkZGWklPsd3TCIR6MCryJ1UZvNpi8A7L+c1iHs1UigtICzu65LtVr1Zw9ikkhV1daVqcpUsVik0WwyNDLCpk2b3pdURtkDhwevZYZh0NPTgxGN+pEBoCmd3pE7fl2mNdNTU3zpS1/y399oNPzI3v6FhSORFuq8dDpNT08Puq5TrVaZnZujWCpRlQzFuq6TTqdJtDlI+wY0GomI+r0nyEJbbJ30oOWld0Gvd/nKFSzbZu/evSt+p6jyQDhitqdHOJh01JKqLPmnuHLcL1jxUuevIrYSknYkXiYu1T2C8Aw1KgkCAj6/sEAsHmdoePh7ggXcC/tAOTyI/LknmxWDxKpz53lYUgwXRBRaXFzkP/yH/yA432XHs16v8+KLLy4fLOBoShozaKlkkl4pv764tMT07Cy2bROLRkmnUi1dvVWrFrJFryG7iwFoxN0ADHz1i6DDd4ju1VqNq9eusUuW9YKmmneAL+WJJljE0smkr1yu8ulOx1d0hLrEIPnOjggoakXUDcNnftN13VcqCT5AVrPJ9OwsnucxsGkT27Ztu4s7cn/sA+fwIPkLBwdXkAQ5rkuj0aBRq/Hff/d3mZqdJRIO86u/+qscPnwYgG9+85sstU89aULxWeXbQYvH40I3SkJ/K7Vax/a1cna9g5OEIxF/Q10LTmYFmzPrXHN7hcZbZVU4d+4cIcNg165dLT/3pSHl6pSQUV2ZLpVPwqEQmmFQr1Y7qly7ctOsJG5UWbQqK0QgNv+Kjc1bPoGWa6w3GuTzeRq1Gpnubvbv3/++5e1B+0A6PIgJnN5Nm1qdT5bBvvTlLzM7M0MyHucXfvEX2bx5M5/73Of8SseX/+Ivlt8jv/RMJuNXV5YP51EulzFl0ymdTILnMTk1RVWmBUFTEOP2IWUQXUUQUzntogAaayh5SAuyjalrbbc7k5NMTk5y8ODBlk2553kip5Y4o0Q8vuqmMx6PC/y7YVBvNFYwJKsHTzm7I1cNS963iKyotTMlu4FNb61apVatUi6XSaTT7D948H1PZZR9YB0eIJZM0jsw0NK8efGrX+Xa1avE43F+5Ed+hP3794PnMTw8zKHHH8fzPF5+5RVmZ2dbjpVOp9ENw0+LQOA2lMJ0T08Pg4ODRCSAbXZujnyh0PG8OmF9TIlP0TRNtPHvAjGp+GxAbDA7bVablsWZM2cYHBxkaHi45b3ValWkRK4rnLETvifwwEWjUX/voTD+gE8opVaJRr2+Il+PRiI+85mPjJR/VH7ftCyqlQrhaJTtO3cKloIPiH2gHR4gmk7Tlc0SCYf5u5de4tRbb6HpOkeOHGHXI4+wtLTk55qf+9zncD3Bj/jn//N/thwnJanmisUiaBrNgGyLEss1TZP+/n4SsixYyOeZmZvrOEfbKZ+PxWL+nKzqbvq2xgMQrH2vRs9x9uxZXMfhsccea3lfpVLBlmXauEwzOp5r2+dHo1FCEpdTrdWEep+3TBJVqVT8AW/DNEkmk8sPY9v5qaZYpVJpkbkc3ryZrVu3risx+iDtA+/wAJF0mjdOnODFF1/EcRz27d3Lk0eOYEu1t2KxSKPRYPPICEel5MyJN99kbHy8pVmTSqUEhgQxduZ5HmE5mKBM0zSy2Szd3d0YhkGjVmN6enpFvqvYxVrSG5kyaJpGw7JaUpu1KjW+3Lra+LUhNqdnZpiYmGD//v0tVIQVqX6NfGhDHRxrLaa1eCzmp4lNCZVQEkKO4wjckCSQ0ld5EC3LolAo0Gw2Reqm61jNJgPDw2waGrpvSh7v1T4UDv83f/M3/O8//dMsLi2xVQKK4vE44UiEWrVKvV6nIrWJfvAHf9Cnx/7//vzPfRyK67qk02mKhYLAZEviodVIfFKpFH19fZiS2WxqZoaC3PQGHag9vTEl65iuaVTkQxU0L/An+H9kj8Gn5JNm2zZvnz5NX18fW6QEpuu6lKWzawhxYjVNtHxiIqqvNbqoyT6CpmlUq1WKpZJwXE2IISSTyWWROK2Vjcx1HKrVKuVKRSA5DUPwh1Yq9PT1kevv3zD93YO0D85as4Z9//d/vyj52TaVpSVwXaKScdd1XYHAs21C4TCpVIrf+Z3fWabfBl8VsLunh7HxcYqlEq7XqhvaKRJGo1H6+/tZWFigIUUYytUqXV1dgrpDmt4Gl41JlQvHtqnUasTUJBf4YDhYJop1bBtPlveUioh6zbnz56k3mzwnmXGDGraw7OxBCzaJ1jNd06jJvYxidlBSobByKMaVQnKKFc7zPKISPDe/sEBXTw8Dg4Ns3779A5XKKPtQRHhlummS6O72p937czkxYKAJfVC1aSoUixRLJb/trUk2rcGBATzXZW5uDtdxfPImFQk7xUKV13f39GDoOo5lMTM1JfYOwa5rIE9W4DLFDNwMpEOdqifK0QzFtCsddXx8nLFbtzj02GMkEollZ5cPcKrd2dUmcrWo7i1TWKu+RqVa9aO3kqQJshioI6mIXiqVfGc3QiES8Thh02R+YYFUJuPX2z+Izg4fkggfNN00iff2Ul1Y8MUR9HJZaEDF437psdloUKvViEWjxONxMUObSJDOZJibmxNdVlk7D1ZFfFdpc+BUKkUsFmNpaYlSuUyxWKRWrdLT2yuIhVS0dhxcudELyxWmUquRksCxTs6oQGR6wEkKhQJvv/02m7dsYXTLFmw57K4YfhPBDWrAkVce3MOT+beHYBGoNxotG/GopBO0bNvfyKr32pKLJ9idNaUYNIiRvbmFBRKpFINDQ2zfvv2ulEMetH3oHB5kF7G7m8riotBxkgLFkUiEWCwmYLQysjYaDcqVCtFolGQySX9/P9dv3GD3I4+suZEMTvH4FNi6Tm9vL+FIhKWlJWzXZUYK/vpQZm2Z1joc4KWsto8vtn22gkyA2Ah+5zvfIZVK8dhjj/lK1pq8dlVnV3ghB4RySgDYBSJlUp3bhtqMKggDQp81Gg7jeEIy0nVdzFAIV+KZLElC69/3UIi4rEQp8NvS0hKxZJKhkRG2bdv2gXZ2+JA6PIgok8pmqRYKRJtNmrZNo14nlcnQFYkIEdx63c9Py+Uy1UqFaCQixvBKJTJdXSLHpxU7Aq1VFS3QcQRB4BoJh1lcWqJaqVAoFikUi6SSSdKp1DLy0HFIyMqQUg1JJBIt7XplemDz+9apUzQaDZ5++mmRL8uUKBSNisoK+A+N2rh6CAdX/9Y1Dc9xqMp82weFIYB0kUjEn8KyJRNDU+6LgjyeKl2MyterB7VUKpEvFunr76e3r4/R0dH7opx9r+1D6/AgUoBkby9mOOxLm1fKZV+rNRKJkEwkRJQvl2k0GmKDZZqMjY2RSCSIypxV1/WOjq+shWdGYkmy2SylSIRCsegrkZTKZaLxuBjVU1TgsZhoyMgKSFRuqF05v+rIRo/reVy9epU7k5McPXpUkL3KOdRYNOqLKyCrJhpg6rp4HcvibQ0pueMEorMGPmZepUKO42Bblg+aC8KEldpeSFac1ANq2zbzCwu4rsvIli309fczPDz8gc3Z2+3DcZbrWDSVom9khOmxMaxmk3Kl4qMcDSldE4/HaTSbVMplutJpFhYXKRaLlMtlH4+uJpZMw+gc9eXfumQ3sGybmMSoV6tVMQsqP6NRr5NIJIjLMT+VajXkzG5YybUbhlAWMU0mJyd599132b59O4lk0k+rUonEquwIasPZkA98O6whpPRow2E0z/P1pCzb9p27LBtGUflQhVU0D6AfQeBjZufnSSST5Pr7GRoaom8jcjofIPtIODxANB5nYOtWJm/dEsxWnkdKTcTL5TwSDhPp6WH3nj18+7XXKBQK9GWz2LICUa1Wfbn6SCTig8JMObWkTGMZc6JSn7hs0FQqFQr5PDXXpVQu401Pk4zHRWMoHMZqNsXnSMw+iBRkcWGBkydP0t/fz8jmzb68TiKR8HEt8gNFX8FxsBwHR448WnLGFfCprw2pSWvbNs1KpSN3vpp0CoVC5HK5VoCXvLZms0mhWKReq5Ht76cvl2Pz5s13JUTwQbGPjMODqJtvGh1lamKCZrVKpVr1dZJg2TmVWO7U1BT7DxzAkurTaoKnXq8L2grZTdWlzGMkHMaUTLuKOqOdTz2ZTAogmaZRltWjcqVCqVIRTqiJ6atyuezj5yuVCqcvX6aru5s9jz4q0h6VwiByc8uylp28zXEVO7KBWClc8De57abruuC9kdKdxUJBsESEQoJSJLB3UY7eqNUwQiE2bdnCwMAAw8PD35Ngw/tpmne/JS3eB6tWq8xOTtKU1ZmYnPwJtsfHJyY4ceIEhw4dYlR2MD1PyNXXazWRB0vRYuXcgF+t8R1eF8K+agRRwYTLpZLoF5im/wApa8pZ1Eajwdtnz2LoOqlkkv379hFuo/lWwg2qX6AInTRtWR/WNE0aUsc2aGqmNvgnWA2yHYepmRmazSY93d0+fr5Zr1Msl6nLGn0oFGLHnj0MDw9/KKN60D5SEV5ZPB6nt7+fxbk56sUitm2TiMfx9GUJxVwuR09PD1evXWNkeFg4KssVDEWApNiCLVn6dBwHV86oqtq0X9OQjqhLFCKyC6lLIbJ6vS5oql2XhmX5Qmy6rpPr76dcrRIO4m8QuHiFUVFOG5EP2PLHeuiIh0sRNRny9Wv1WgvFIq6cdTVDIfLFIo16XVSFZATv7unhsSee+MBhYt6rfSQjvLJqtcrC/DyNUgkk63AoFPIBU2O3bvHdU6fYI2UpjVXq8grroiErG1K5uyahtUoF27VtUR6UM5+2bROJRrEsi9npaWZmZ5mbnaVQKmHK/FwPhdgiZ1MVAVU4HCYiJS8NSeT0+3/wB7z+xhs89thj/Mo/+2e+PqtCZ9qKonoDX6cn783M1BQlCX0wApUfEPMIOx95hNHt2zc0ovhhsY9khFcWj8cJb9rE0tIS5UKBUqnkT/1rmsaW0VFmZma4fOUKXd3dDORyaIYhUoPAl6+B70iGrmNIh1SDywB/8aUv8Rdf/jK/8Ru/QV9fHxU5RheNRvmnv/RLaLoummRSPkeXe4LRrVsZHR3FcRwhCR8o79UbDcKui2maHDx4kDdOnOD8+fOiqywV8AAs1TXt4OyKBtCS6E3LsqjUaiwtLmI5DpFQCFMeJxIOE4vH6entZduuXcSlBPxHyT7SDg9imc9ms4TDYQrhMM1SiWahQFjWpA8dOkS+UODcuXNEjxwRHVNZj9Z0XYCN1Ma07dg+aCzQ2dRlzqsAY67r+gRQgI9OnJ+fx5Kp0/DQkA+AU6YgupZ00i2bN7N5eJimZfGdkycFOEseU+HPlQWrP45cddS5K7yR4rTJ9vaKKaholFA4TP/gIP2bNn2konrQPvIOD2LzlslkiEQiFKNRapUKTQkrDofDPP7447z22mtcvXqVXbt2kYjHRaT1PMHnGIQDy+Opyf4gsajaDDYaDaqVCiU5Pvh9n/40/QMDNOp1CsUiQ5s28d9/93dBHjsmoQK+ol4oRE939zISVEbnbaOjjI2NMXnnDjt37BAIR0nB51sbbEGdr2kY/uY3HA4Tj8fZNDQkNtyGQV8uR25w8AMxd3o/7WPh8MqiUtG6kU5TLpepFItY1SqhUIidO3dy+fJlPM9j6+goyWTST33aY51CViqFbzXpH4/HKZbLgjtHjcEBhw4d4sLFiziuy5NPPtkiuOZJ/h2lNVuR0bdQKIjafiyGJisje/bs4Y033qBcqfAjP/zDWAFSp06mKX5OBNtBpVLB1HUiySQ9XV1EIxF6czn61+B8/6jZx+MqAxascafTaTE4UiiwRQqrXb50iUq5zNatW8XmMRpt5ZGXG0NHzX+qtr4sD+IJSu+oadJoNLh65Qrz8/MMDQ1x8OBBYrEY09PToqwZYCRTQxepdFrgf+TGt95oiJFDwxAzu//tv7G4uMit8XG2b9/us7B1MtfzaMj+guoxRGIxsn19bBoepieb7Sh581G2j53DBy0sN56ZTAbLsugbGiKTzXLitde4fPkyW0dHBdJR132NonZTA+ZqeFvx2dy4cYOr165hmiZPPvmkLyOpuDFB5N7tM6yGppFMJgVCslrFdV3yxaLYF0SjbNu2jevXr/P26dNs37ZteX+hKjSyE6tq/7ac3TVNk8GhIbZs3UrvhwwOcC/tY+3wynRVQYlEeOLoUTZv3cqf/emf8ta5cwxkswwNDwuUpcx/w7JurWTaFY97s9Hg1FtvUa/VME2TLSMjjGzeTEJWO9R4oHL4ZgBj7puE94ZDIYxUyp+csppNrEaDQ4cOcWdykjNnzvDZz37Wf9g8z8O2LMHPqdCPzSZmOMzQ5s1k+/v9zfvH2R46fAfL5XL837/wC1y4cIE33niD754+TU86TUrm9Qp337QsMddZLHLp8mW/BHjo8GGGh4dxbNuvxyu0ZUOqeSukoicfFmX+rKtsYiUSCWLRKA3Z+Hr00Ud9sqkbN27Q1dUloAeqKSarRrFEgpFt2+jJZgV/fCLxoYUD3Et76PCrmK7r7Nu3j7179zIxMcHZs2dZmJ9ndnbWp5uLhkJkUilSySS5XI6rV69y5MgR+qWEuqFp1DTNF+LVVSUGRDdTNnuC5v8vMMihG4YvkhAOhejt6aFYKnHh4kUeP3yYSCRCPJ0mHIkQTyRIplI+BbliUXhowh46/DqmaRqbN29ukXJX1BQKe9Os17k+Po4tZ04Xl5YEH7xpCqps20aTyiOOTGPaiVc98KO9B34J0ZHc9LasyITCYUZ37ODFF1/kxFtv8WM/9VMCbhCJCF74AJ7noa20hw7/HiwkdWBhuTTZcBwuXr9OoqeHVCYjKjmeR9jzqBcKFMplPCm33mw2SUlsiq7rLCwuAstETLrkhjdMk7BUylaMBumuLj75qU/x//72b3NjfJxkMvm+iQt8GO2hw3+PpoZHAObn5+nL5RgeHvbVPBzHoVwuk8/nUcIJ+Xyecxcvouk6w9u3MzQ6CsqppdO3oxxDoZDP1Hv8+HHB8uV5nDp1ik9/+tPv7034ENlDh7/HpkloQbBj2dXVxVBAXv3mzZtMzcygaRrNZpNB+bvVaPba7bXXXhOVnHCYo0eP3rdr+SjaQ4d/QNYu5Bvsjt6tuvRXvvIVAJ5//nlfLeShbcwe1qk+hKZEH37gB37gfT6TD589dPgPmb399tuMj48DDx3+vdhDh/+QmUpnDh069IHiXf+w2MMc/gHYa6+9xrVr1/z/z8/P+/++du0av/d7v9fy+p/8yZ9c9Vhf/epXAfjMZz5zT8/x42IPHf4B2Be/+EVfWrPdXn/9dV5//fWWn63m8BMTE7z99tvAw3TmvdpDh79Hdvz4cYD72gRS0X1kZIRDhw7dt8/5KNtHeoj7o2Z/7+/9Pb7xjW/w8z//8/zWb/3W+306H0p7uGn9kFixWOTll18GHqYz34s9dPgPiX3ta1/DsizS6bSfPj20u7eHOfyHxP7u7/6OTCbDZz7zmY/9EMf3Yg9z+If2sbKHKc1D+1jZQ4d/aB8re+jwD+1jZQ8d/qF9rOyhwz+0j5U9dPiH9rGyhw7/0D5W9tDhH9rHyh46/EP7WNlDh39oHyt76PAP7WNl/z+nq4piOhV44QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -194,12 +194,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRcd3bfCX7eFntERkTuiX1fCIAASZAEySqSJY1lWS2rJC/q40W2JcvT3bbHp10e9xmddsttt3Vm5Ja3455z7BmvbY/lllWWVW3JlovFnQRJrMS+ZgIJ5L7F/vY3f7zf7+WLyMgEyCqAICu+ODhIREa8LX6/372/e7/3e5UgCAJ66KGHHnrooYeuUL/oC+ihhx566KGHJxk9Q9lDDz300EMPG6BnKHvooYceeuhhA/QMZQ899NBDDz1sgJ6hfIy4c+cO3/rWt9i/fz/ZbJZyuczx48f523/7b9NsNjf87J/6U38KRVH46Z/+6cd0tT300MOTgN668QQg6OEHgl/+5V8OgGB8fLzr73/7t387KBQKAdD17969e4MbN26se/zf/M3fDIAgm80GrVbrEd1FDz308DjRWze+HOjtKB8Dzp49y8/+7M9SrVbJ5XL8rb/1t/jggw944403+MVf/EUArl+/zk/8xE9Qq9W6HuPHfuzHSCaTNBoN3njjjcd5+T300MMXgN668eSgZygfA/7SX/pLtFotdF3n937v9/ilX/olTpw4wTe+8Q3+8T/+x/zqr/4qEA76X/u1X+t6jGw2y4/8yI8A8Nu//duP7dp76KGHLwa9dePJQc9QPmJ8/PHHvPvuuwD8wi/8AidOnFjznm9961scOHAAgL//9/8+juN0PdYf/IN/EIDvfOc7BD2diB56+Mqit248WegZykeM3/qt34p+/jN/5s90fY+qqvzcz/0cACsrK7z55ptd3/eTP/mTKIrC9PQ0n3zyyQ/8WnvooYcnA71148lCz1A+Yrz33ntAGAJ59tln133fq6++Gv38/vvvd33P2NgYx48fB3phlB56+Cqjt248WegZykeMK1euALB79250XV/3ffv371/zmW6QYZTegO+hh68ueuvGk4WeoXyEME2ThYUFADZv3rzhe0ulEtlsFoDJycl13/dTP/VTAFy4cIHx8fEf0JX20EMPTwp668aTh56hfISIU7ZzudwD3y8HfL1eX/c9hw4dYufOnUDPO+yhh68ieuvGk4eeoXyEME0z+jmRSDzw/clkEoBWq7Xh+3phlB56+Oqit248eegZykeIVCoV/Wzb9gPfb1kWAOl0esP3yTDKO++8w8rKyue/wB566OGJQ2/dePLQM5SPEPl8Pvp5o7CIRKPRAB4cbnnhhRdQFAXXdTl16tT3d5E99NDDE4XeuvHkoWcoHyFSqRT9/f0A3Lt3b8P3Li8vRwN+y5YtG773vffeIwgCEokEL7zwwg/mYnvooYcnAr1148lDz1A+Yhw8eBCAmzdv4rruuu+7evVq9LNU21gP/+E//AcAXn/99Tbvs4ceevhqoLduPFnoGcpHjFdeeQUIwyOnT59e931vv/129PPLL7+84TG/853vAKvJ+R566OGrhd668WShZygfMb75zW9GP/+zf/bPur7H933+5b/8lySTSYaHh3nttdfWPd7Zs2e5e/cu0BvwPfTwVcVnWTdUVWVkZCQyrt3QWze+P/QM5SPG888/Hw3gf/JP/glvvvEGtZUVKsvLVBYXWVpY4H/5m3+T2dlZ+vv7+bO/8AvMzczg2Dae5605ngyfHDt27IHFyD300MOXE93WjUa1Gq4di4ssz8/zt/7m3+T27dsMDw/zC3/mzzAzNcXy4iKu6+L7ftvxeuvG94f1tZF62BCWZWELY+a6Lr7nsXnzZu7evk2rVsPzPALXBUXhv//zf57JyUls2+bP/rk/xx/9mZ/h6cOHsWybt959l3fee49NmzYxNDjIS88/z7XLl5m4eZNsJoOqaSiqimlZmKbJb/zGb2AYBkeOHOHTTz+lXC7T39//QGp4Dz308MXD931M08R1XVzXJQgCNm/ezOTEBGathu95+MJB/tZf+AvcvXsXx3H4s7/4i/zRP/SHOHL4MLZt8/Z77/Gffu/32L17NyPDw5x44QXGb9xgQlUp5HJouo6m63iui2nbfPs3f5NkMsnBgwf58MMP6e/vp1wuUyqV0DTtC34qTz56hvIzIAgCWq0Wy8vL1KtVzGYzNJimiW2alEollhYXw1Y2nkcAKKrK6Ogo/8Nf/sv82j/4BzSbTf7Fv/7XBEFAEAQoikK5XGZwcJD/7s/9OcrFIo1WC8u2qdVqTN2/z+LSEkEQUK3XWV5eZmhoiJH+fv7Pf//vCQAP2LlrF1//+tfZunXrF/yUeuihh054nke1WmVleZlmvY7ZauFYFlazSalUYnF+HjwP3/ejVlj9AwP8D9/6Fn8ntm4A0dqRSqUYHhriz/38zzM0MECz2cR1Xar1OosLC0xNTWFZFtVajYXFRfr7+9m+aRPvvPEGrlifkqkUzz3/PC+++GLP2d4AStBrULYhgiDAcRwqlQozU1M0ajVcxwHfx0gk0FQVVVW5dOUKFy5e5Js/+ZNkMhkC38f1PFAUFABFYWV5mX/7m7/J9958k+nZWQzDYN+ePfzoN77BH/wDf4CRkRGajQaXrl7l/v37uLZNqVRiZGyMdCrFW++9x298+9v09/fzy7/0S3i+j2VZ1Ot1ZmZmME2TYrnM0WPH2LN3L9lsllQq1fMYe+jhC4DcPc7OzLA0P49lmviui6rr6JqGJtaNi5cv8zN/8A+SzmTCdIvv4/o+iqKgKAqLCwt8+7d/m+9+73tMz8xgGAbbt27lJ378x/mvfvzHKZdKJJNJJicnuXXrFgtLSyQ0jZFNmyiXSrz17rv8xr//9wwODPDX/8f/kQBwHAfTNFlcWGBxcRE0je3bt/P8iy/S399PJpPBMAwURfmiH+MTgZ6h7IIgCDBNE9M0qdVq1JaXWVlehiAg8DyMZJJkIoGqqqiAqutoqhoZRE1RQFVRFQXX87BsG8d1w88DqWSSTCaDqigsrqzgOw7pTIZ79+5x6cIFfEWhv7+f0dFRBvr7URSFAPif/uf/mbOffsof+P2/nz/38z+P53nRX9fzmF9YYHpqCtM02blrF1u2bSNfKFDo66NUKpHP53sDv4ceHiFc16XVatFsNqlXKqwsLmKaJoHvg6KQSqVIGAYKoOk6qqKgqqtUEUVV0RQFPwhwPQ/bsvDELlPVNHLZLAnDwLRtqpUKiqpi6Dpnz5xhbn6eTCbDwNAQW7duJWkYAPw1uW782I/x3/zZP4vreXi+H60drVaL6ZkZ5ubmyKTTHDx0iGK5TL5QoFgs0t/fjyGO9cOKXug1Btu2abVaNBoNGtUq1eVlVlZWaLZaBEDCMEinUmDbuK6Loij4IoQhwyEBQBBERlFRFHRdR9M0PPG66zjYtk0ylcJ3XSq1GqfPnqWyssLmLVvYvHkztuOgC2OrGQamafLOe+/RMk2+9uKLoQENAvwgwAeUIGDT2Bj79+7l/Pnz3Lp5E9M0GR0ZYWlhgdlcjkKhQKlUolwu/9AP/B56+EFB7hybzSatRoPKykq4dlQqeJ6HoiikhYG0TBPLtsP1IQgIhBH0IVw3IAq9KoqCIRxyz3FQdR3XcUinUnhi7t+/c4fbt2+TSCZ5+uhRjEQC3/dDQyy4De+fPEmr1eKVl16iVCqhEqZr4uvU9q1bWVhY4NSpU1w4f57du3dTyWZZzOWYmZqir1Siv7//h9bZ/qE3lDLvWKvVWFleprK0RK1WCw2hGMjpZJJkMkkqmQw9OxFulaGRIAjwfT9MxIsJ4AdBmJRXlDAMKzw4x3VZbLXwg4CWaTI3N0ejXiefy/HU4cMU8nk0VcVzXTRNI5FIoCgKJ0+exPU8Cvk8zz//fLR7VQB8Hz8IUBWFbDrNSydOcPXqVS5duoShqmzfvp3KwgK1lRWWFxeZyeUolUqMjo72DGYPPXxOeJ5HXfAGqktLVCsVms0mAL7rYug6qUSCTCz9oel6uG4AgVgbgiAIRQWEwfSkEx4E+K6LB7ieh1mvY9o2ShCwXKmwMD+P6zhs3rSJbdu2YRgGruuiKgq6pmEYBm+/+y6O45DP5XjhuedWo14QnkuwY3VdZ3RsjB/50R/l3Xff5caVKxx77jnsZpNGtUqlUmFpYYFMLsfIyAjFYvGHymD+0BpKaSDn5uaYm5ujsrxM4LokDINMMomSTOK6LolEgnwuRy6bRdM0VFVFNwx8Eb6IDxWZV/AEo831vDAXYNs4to3v+6iAoWnUGw2m793DtG3S6TTDo6PhwAsCdF3HtCxs16XZaqFpGucuXGDzpk28cPw4zVaLRrOJrqoowmj74nO6pqEA+/btI5lIcObMGQYGB9m6ZQuNRoNqvU6tUsFsNqnVagwODlIqlXoGs4ceHhKu67KyssLMzAzLi4s063U0RSGZSFDK57EdB0VVSSWTlPr6MAwjZKGK9cNx3dBQQvivcMh9wHUcPN/HcRxsy8IS//pBgC7Csgvz80wvLICiMDAwQKFYxHVd0skkSiJBq9mkaZooqsq5CxcYGx3lhePHaZlm+LqihKki4egrgGYYaEA6leL1117j3Xff5cKFC/zoj/4ovu9TbzRYmp+P1o58Xx8jIyNks9kfCoP5Q5mjbLVa3Lt3j8XFRVqNBggDmU6lyKTTpJJJHMcBRSGRSISDoeMYrutGIVfXdfFcF8txIsp35+BRIKJqt1otrly9imVZ+MDWTZtIpVJh2IQwT+ELI10ulUglk3i+jy/zCsILjZ/B8/0oD6Lrejg5NY2zZ88ydf8+3/jGN8jlcqiqSqvVYml5GVXX6RO5iHK5TF9fX1u+pIceeliF7/ssLi4yNTXFysoKnmWhAplUirT4qyhK5EAXCgV0vX0vEojcI0Dg+9iuiyNSOZ6IQEVpG4giVrZtY7suM9PTTNy5QzqVommabN20iXQ+j6ZpBL6PqqphFCyTYWhgIIx0+X64fngeHhCIcHB0PWIHq6oqhmGg6zqWafK9t95iZGSE4889F13/SqVCvdEgXyySEznMcrn8lWfM/lAZStd1mZiYYG5uDseyUIOAhKqGZJe+PpLJJApQrdWwHQdVVekrFNqOEQQBjuuGtVCeh+e6Ybg1/GX4V1EwRB2TKjw2S0yGRrPJ+fPn0TSN3bt2cf7CBV547jk0XadlWVE4tdlsYrsuqUQirHfq61tlrwYBtqi3kgbSdhxMy4ryHBKe7/PxJ5+gqypff/VVEmLnKL3ERrOJkU5TKpUoibqqr/qg76GHz4qlpSXu3r1LpVIB10UXxJxyqUQ+m0VTVVxRAuIFAdlMhpToEynh+z6mZeG4Lq7j4HoeCuDLOSvSOtLJlZ0+LNtGAW7fvs3du3fZvGULI8PDfPTJJzxz9CiarofHEimfWrOJ73mUSyWKxSK5TAZFVVGCANf3I0ECaUBboq6zczMwOzfHxYsXOXr0KNu3b0cVxtWybSqVCr6ikM3lKA8MUCqV6IuvUV8x/NCEXmdmZhgfH8c2TRTPI20Y4S4qnw+9PhGGsCwLx3EIgoCc6BweEHp/lm2Hu0Ax2CQUwhi/3MnJ8CeEu9emZaEoCisrK1y6eJF8ocCxY8eo1+sohO1xNF0nlU4T+D66ppEwDKq1GqqiUKvXqVar5LJZisUiyUQCQ1EIVDX0QIGU75PNZKJwr+u6OI6Dpqo8dfAgp06d4uKlS+zauZNkKkVC18nn8yQSCVYqFe7ducPK8jL2li0R6eeHIaTSQw8bwXEcrl+/zvz8PIrnoQUBhVyOcrlMJpOJwpcEQZSfTBpGZCTljs1ynEhtK66aownWqpzzimDPe75Po9EIc4hBwNVr15idneXI008zODBApVpFJVw7DMNYJQCpKr7nYYs1YH5+niVdp1goUMjnw3RNR5olmUhEO07HcbBFhGx4aIiFkREuXLhANpslm82STCRIJBIM9PdTq9epLC5SWVmhOTKCaZqUy+W2fppfFXzlDaXruty8eZPZ2VkUxyFlGAwND1Ps62snxAiYphmWcKRSqKqKbVmYHXJyigjJyjCFrmmrXqGA73nUG42I9VatVrlw4UIYyjh+nEajgfyEoqrk83kajQa2yGUWCwXSqVQUkjFtm2arRb1eJ53JUOzrC8lF4hjy+nRNQxdeXRAEeL5PJpNh27ZtTE5OsmXzZjzfp6koJHSdZCJBf38/y6IQ+vrly4xt2oTruvT3939lPcQeengQlpeXuX79Oma9jhYEFAsFBgcG2naK0pmUhskPArLZbFTjbNs28aCdrmmosbVD5iqjdE0QYFkWjVYryh9evXaNhfl5XnzhBQYHB6k3m1GkKmEYZLNZ6o0GQRCgqSqDg4NRCqhlmniex+LyMssrK/QVCuQFYTBQFAKxbmiqGhptwyAdIxUdOnSIN996i7uTk+zatSuMtGkayUSCfD6Pqmk06nXu3b1LZWUFe8sWBoaGHtgb88uGr7ShXFlZ4ebNmzQrFTSgv1xmZGQkqlPq3C+ZYjfpCMbaSqXS9ntDsFATyWQYFonlGoBo0FumSaPVAkBVFGzb5tzZswwPDfHiiy+uhkxFqCRS2kinCQDbsmg0myiKQjKVIp/PY5km1VqNVquFZZpMN5voiQTFvj6ymUx4fpHPkFAE+03XNA499RSTd+8yNzfH5i1b8ITXKQd+KpUKVX48j6n792kI9ZCxTZvW5Fl66OGrDNd1mZyc5N7kJIHjkNR1tm3aRCabDZnwXT7TNE08wTyv1etdHetkIoGu6yGbVawZ0pFWBAO23mjgxJze6zduMDc7y0svvRQJkgRBgCaOExAyafO5HJV6PdwROg6GYZDPZimVy9TrdWr1Oo7rslytsrSyEkan+vrCHayo05a8B0WwYjXDoFwssnf3bm7cuMGe3bsJCDcBrVaLlmmS0HWMRAJFVWnW64zfvEmjXmdsyxZKpdIj/qYeH76SK6DrukxNTTEzPY1Zr5PQNDYND1MUX1ynkZQDv1arUW800HU9FAgAVFUNB3kyidZBdFEUJayNFMfwPI+GkJECQmWLIOD9Tz6hr6+P50WHcUnJ1mIhWkUIFWQzmWgn2Gw2Q61XQqmpgWQSx7ap1mrReaZnZtATCfrLZdKJRFiOAlG+VHq8mXSaHdu3c/fOHfbv308QBFi2He5gRZLfFwXICcOgWq1i3bxJs9Fg7/79PZJPDz8UqFarTE5OsixCrX25HFs2bw7nahDgQbuDLeZRrVbDsm3ysZ2UYRgkk8l2hRthTOOS5QGhdrQM3QJkMxlu377NnYkJnnvuOUZGRoCQWQ9EUSMQa4euU8jlqIrSNt/zyKTTIQejUCCfy0Wsd9uyqNbrLFUqFPP5MLcoDGacSCSxZ/fuMCo3M8O+ffvCFJTgXNgiTSU3F57nMTczQ6NWY8fevQwODv4gvpYvHF85Q2nbNrdv36a2vIzTaNCXyzE6MkImnV4lunQU9lq2HeYB6/UwN5lKkU4mQ4k6XW8zOBIBRMo8rgizNDoGugK89fbbGIbBSydOoOv6as0UrDG8EA76rJCyCoBGs0mxWAxDLcIzHejvp9jXx9LKCivVKq5tMzU9TSGXo1Qsrho1EZ7xCQf+nr17GZ+YYPLuXXbs2IGh6wSZTFgELWT5AJqtVliT5XnMTU/TbDR46sgRkh3khB56+Cphfn6e+/fu0axW0YKAgYEBhoeHwx2fFPZArBtiBygZ5LZgqScSCRKGEUWdEJ9pW3MUJWKpOkFAs9HAse2IsZ7LZrl79y5Xrlzh0FNPsW3bNiB08OVOdU1KRJSH5bLZSNSgaZqkUqnw/KpKNpcjl8tRbzRYXFoC32elWqXebFIuFsmIyFQEcf3JVIod27dz69Yt9uzeTSqZJJVK4bhuWMJiWSQMg5ZpRoa21Wpx5dNPMXftYsv27Y/g23q8+EptE2zb5taNG5i1Gp5lMdjfz/DQENlsdnWgsmogHcehUq1SbzQwTRMVKOTzFItFUplMlEOIG8mA1fon+de0LJoi1KprGsW+PnRN4/0PP8RxHF55+WWSsQS3u95gF9emqir5XC4MEXsetVotuuYA8MRgLPb1MTo8TDaTwVBV6o0G96amqNfr8mBh7lSEdjPpNGNjY9y8eTM6n9yt9uXz5LJZkkKeT6oUOY5DrVrl4tmz1KvV7/cr6qGHJxKzs7NM3buHU6+TMgzGRkYYGhoKHdTY3EOkbZrNJiuVCk3TxHZdVFWNZCKTqVSUQ2yLXClK5LwqhCzYRqMRRq8UhXQ6TT6XY25ujrNnzrBz50727dsXnduLlZ51rh2BWKMSiQRp4aSbrRa2bYs3hPfgel7Y93ZoiHK5TNIw8H2f2YUFZufnIyc+rjbmBwG7du/Gsizu3b8fRawMTSObzdJXLEYlMr4oZWm1WgRBwPitW4xfv76m7deXDV8ZQ2maJjevX8dpNgkch6GBgdCDymajhLUcqI7jsFKpUK3XI4q2ruuks1kKhUI0yDsRxD1EwsFUr9dpiSLeTDpNQYQxPjl1imq1yisvv0xWhGOksZNeodrFUEqjrGka6UwmJBQ5DnVxrb4QTZb5SMMwGBwcZGBggEQiAcD80hLTs7Ork0QeW1XZvHkz1WqVWq0WdSqQ95NIJsnn8xQKBQyRlzQtK1Quqla5de0aiwsLn+Pb6aGHJxezs7PMTk0RWBbJRILBcplcLheGNyWHQDit9UaDSqWCaZphrjEIyKbT9BUK/O7k7/IvLv3vNN1m2/Ej0l5srrmuS1XMQelcZ9NpqrUaJz/8kLGxMY4+/XS0q1NieU2927rB6vqSTqVIChWxar2OZdsRqzV6v6KQy+UYGR4mn8thqCqWaXJveprlSqXNsClANpul3N/P/fv3I9lOeV2aokQEw0I+H96feFaWZTE7O8vta9fCXfOXFF+J0Ktpmty+eROv1UJTFPKi0Dcj6gHlDtB1XerNJrZlAWHoNCWKhINGAyAyEHHEB4WEHwTU63VsxwHBdJOhyVu3bjE9Pc2JEycolkptyX9PyNwphEQfORERk1HK4Umx5IRhhMLFloWiaaSEMZRajo4gA2QyGVKpFJVqlVq1iuM43J+ZoZDPU4oJCQwPD2PoOlNTU+zZsyfyGuV9qkA6nUbXdRYWF7Fl/afnoagqjI/j2jbDY2M/gG+uhx6+WExPT7MwM4Nv22SF2IiiqiQTiYjJHigKltCAlpwEwzDIpNNhvbPj8Nc/+hucWT4LwL+5+uv8vdd+jf3lfZGhi0M6vp7noYnokappeK7LqY8/ptDXx3PHj4OYs/I6HLGjVDVtVfAEonCnDyCcX90wQi6E71Or1ynk86sbAEVBEcIEmq7TXy6Ty2ZZXl7GFjWSjUaDgY5Sj81jY1y4dAlfrDnRuijWLU3WnQcB9WYTx3HChhDLy+iahnP1Kjv27CH1JazT/tLvKKWRdFstNFVlaGAAXddRNY1EMhkN7KZgjXoiTJIRXmA6lcKT5BthhCQikXPaQyie71MVxkiBMNwijOTKygoXLlxg165djI6ORp+NPEnPAzGo5ACL2K+iZkrqPELIaEuLUE6z0YjCtuGBlbawsKqqlIpFRkdHwxyrqlKr1ZiZm4tCKrquMzQ8zPT09JpJHIgC5MD3MXSdcl8fuWwWXdMIRLipVq8zff9+b2fZw5ce09PTzAsj2V8sRnXTGcE+h9W53hCNEXRdpyCiLnGD9enyhei4pmfy377xF/g31/4tAe3EQdmRyCd0ymWJBcC58+dpNps8//zzUdoHiMpEojks5mMg5qofc7Z934/CpslUClXkQuNEoSidFJv/yWSSkZERSqUSCV3H932m5+ZCgQWB0bExAt9nbn4eWN3BytypZPLn83mymUwkXBIEASsiijVx61aoevYlw5faULquy/j4OE6rRULT2LJpU/Q7QxBnAt+nUquFHUCCgKRhUBSJa6l+IQUGErFCXJmP6MwzuK5LtVoNdV1F/aPUSfVcl08+/ph8ocDhw4e7XrM0ytpDlFxII5hMJNBFMXKj2Wwz3hG1PPY5wzAYHh6mv1zGEB0H7k9PR3nUsdFRlpaWcMTOWjJlJRtX7mp1oRCSSqfDCUdo6Gu1GhM3blDr5Sx7+JJiaWmJuelpAttmoFSiXCpFRk8XBD6z1aJSreJ6XthwQHTgSRhG1AUoIEyThLzxEKGDHfCPPv3/8K23/u/Mt0KnsiE0mgFShkFWSEoC3Lt3j4mJCZ4+epS8CF+2HS8Wel1v7YivB/L/UovVFprTbe+FcO7HImX5fJ7RkRGy6TSGqrJUrYa5S98nJ+5/emYmlLwTxjYu2SmPlUom0XWdhKgX9TwP0zRZWlzkzs2bX7qc5ZfaUE5NTeE2GhiKwqaxMbSYh6eqKs1mMxzoQlE/J1hfmgh5Qmj4PKGRKg1et10khKGPaq2GJ/IKfYVCW75AeoTHjx9fU04R5SdjpSHrITpvbPBlRb7S97zI4MXfqyprQzxZkYNIig4ks3NzLFcqjIyOoqpqNOBlfmONPq2ihLJ+gtCQSaej9zaaTa5evNgj+PTwpYNpmty7exfF8yiLXq3xdQOgUquFu0jhQPf19UWRHRnJscXOKGEYJLUkBCFBJz6Pzsyd5ef/0y/yvZtvYYp5m06n28TEm40Gp0+fZsuWLWzburXtWtt2imKOdpvrEnFDKY1+Op3uHpGCKAUUN5aarjM4OEixWMRQFEzLYmZmBsu2GRsbY2Z6OpLqJBYJiyMhmtpruh6lkKQk3/TMDLevXWs755OOL62hXFpaor64SOD7DA0Ohjse8eX5Ii4f30X29fWRFHWGqqqiCEMV1TwKLzLosouU76vVavhi4hRi3iDA5ORk6BEeO9bdIxQ/R/TuB9QlRjlMwtyDqqphyYmiYJlmNEnj4ZNu00fuLvPZLIamUalUWK5UyGYyLC0tRdcne9h1ihYkDCOaSI7nkclmSQhFoFarxafnzrGysrLhvfTQw5MC3/eZvHMHzXVJGQalYjH8hbKqyby0shI519lsNszvifmqygbtEKnfGIaBoRr4BF3rjX3H5x+e/n/zLy7/K7SU3qal7Ps+H338MYlEgqNHj3bNacbFTaJ6x4dAtLtLpbpGpGInWGMsIRR1HxoaIqFp+J7H9Ows2WwW27ajnbFMEaldrkumo2zbRhMKQrIs5v7UFJfOn28TZniS8aUk85imydy9e/ieR6mvj3QmE+b2VDUsZ6jXSSYSpFIpMtksqURizS5RBfzYAFSFbqrSxctxPY9avR4aSV0nl8u1hRrqtRqnz5xh06ZNjA4PY1pWW0NnmX8MgoBarRblIev1esScVeT5WQ2JNEVCXJ5HFbRw13Wp1ev09fW1D87Y7jAOVVXp7+8nmUyytLKCbVkk0mmWlpbajKR8Pppo2xUeMqzdDBQF17ZRgUQqhSY8TcdxOH/6NIeOHKH/K1Jc3MNXFzNTU/hC3WZ4aCicd4Tjvt5o4LoueRFezWazYTcOOpxQwYD1PC8isSRUo+tOL0eORBByH373/u9ypnqav/biL7G3tJcgCLh86RJLy8u88vLL+EKgXK4VUngEwjXPsqxQ1xWoybWj0UCJC5cQGq9WqxU2VxCNnw1dx7YsHM+j0WiQEfnY+D2p4rPxNSWVSjEyPMzC4iKmZWGKdW1paSnM5XaEUOOOdiIWofNj3BDTsrAdh8WFBc6fPcvTx4498VKZXzpD6XkeMxMT4DgYuk6pWIyk4xqCjgxh6UVfX1/oKdF9t6WK3aeUhOr2Htf3qdVqOJ6HpijohkGr1YqS145tc/78eVRVZefOnWs9tkAUKgdhex3ZSke2zPIDoegvDHZbPlQ0elZiuQWpqOO6LpZpkkqnw3CMpkV6jarIvXZ6eFJAeWFpiWwmw8TCAhUhtt7t2cidsKHr4Pthix4RCkokEqiahmmaOI7DhfPnOfz00z1j2cMTi8ryMvWFBWzPi0h/ijB61VotnINK2BUkl8msm4KJyHbBahN3Q0t0no4MGZJBEhUNCxMdnZVahf/Hd/8af2j3z/Bi+QWuXr/Ojh070HU9lL2M12wSEuwUJZTB9Dwv5BwI/WfZsssTYWN5rUEQYItImSlK1yDcvTZbLeq1GjnRr1IT64aqaRFno3Pd0HSd4eFhKisrVKpVjESCe1NTDA4OtslbxlNG8rp14YhE3UlUlXQ6jaaqmJbFyuIi58+c4elnnnmijeWXylD6vs/8vXvYrRZeELBpcDAKddSFoLguBHsj2ah1aiKBSLcQRWnLNbqeF3XfkMo3qqqSyWZpiTyDpGXPz8+zsLDA4SNHMBKJkIItJo8SO7cc7EEQYOg6uXw+HExANp1eNVZyoogwMEooXi47BPi+TyqVoibqo1RdR1dVPNfFiQ1w6RxomoYmhNs1TQvZbYODNOp1bo+Pc29qirGRkaj+KY6Ibed5YbNq3w+lqoSnqGkamUyGutCYvHDuHIeOHmWgZyx7eMJgmyaL9+/juC65bDaMChHyDqSgh9RilY73RgFOz/NCIykMha7qKCjo6BgY5MiRC7IoqJiYBPgkEMY0gG/f+Pec1c/ySupltm3bFjrqIi2kxoyVXMM8z8MwDHK5XFgyJnZyWZHvDI8brHY6sqzQyTWMVcOlqiQcB9P3abRapFMpAt/HjXE2AAJxDZqqRk0fVE2jr1hEFzvtaq3G3MJC5HDEoRDWbPuI2nOREvM8LzKGSVGGU280WF5a4tzp0zz9zDNPrK70k3lV68CuVqkvL4ceYblMIpEI85HSGwRKpVIkSmxb1oYtXySRR7bNajWbOJ4XUq4Fpdr1PFRNi7wgOWg0VSUIAm7cvMnIyAh7du/umjuIdFcRBkfXSaZSYb9KETLRhCHshOd5BEJJI9NRe5ROpSJST0oMeHkvvihB8QlDKY7rRtegiME/NDiIpijYpslypUIQBGt6b4aXHrL7dEEZdxwHxLXIEHFWaEx6rsvFnrHs4QmD77osT03h2DaapjE4MIBC2HygJuqndV2nLATELcsiLSI13SDZ334QoAqjU6QPExOABAkyQVhiYmFhYuLF/ri4eHjMO/N88/BPUV5HPDyIOc2acL5TySSqiBzB+mtHIpmEIIjWLYlcLke1UsH1vJBwo2nRmiHXDzwv7B4iCUsi7aNqGoqqUi4WuXP3Lp7nMTs/z2B/fyR2Eodr26hK2JtX1/Ww7V9sQ2IkEmSDgGqtxsryMudPn+boc889kTvLL42h9FotVhYX8USNX75QaFO3UFSVgmgfk0ylaDWbNE0zDBF2JNg9z8OybRqNBrVqFUXTwhBBjIZtWRa6rpNKpSj29XUdjBcvXsS2LI4ePbp+gj3mqT0skSeCyI9044alUqmwtY8w7J0OgR8E+J6HK4ybJ8M1ouccQEoUTGfzeRZXVvB8n7IkNwiYok1PUnixMtwjd+AKhGLu6XQk1H7pwgWeOX58Damphx4eN3zfx6pUQmUr32ewvx9NUWi0WlF0KJlMhq2xXDcyHM1mc01KIgAc28Z2HJaXlrBtm3Qmg+55JNUUEKChowUaTVo0aFCjhs/aUgg/CJVjNw9u7nrdkt+gyPQQRDvOh4GqrNZix6EpoVRes9XCsW1SQoksfl5pNF3PCxtMu264gXCcyDF2HQez1ULXdWbm5hgZGmozljLfqhDqXnvBqsa1hCKIUNlslkazSWVlhauXLnHw8OGHJiw9LnwpDKXvONiNRjTYh/v7sYWQeRAEaJpGQTQ/9jyPdCqFI/J49UaDXC4X7jBtO2xqLAxWFArVNIxEImxJpeu0ms0ofFDI57t6OLV6nes3brBv377V0MeD7kOESx52sEfEni4DXhUDXkroGYKOHf+9quvohI1kXeE1yvyG63mk02lc1yWdTFJvNJidm6PRbDLU348hQq2y9iqTyWDHugbEQ9WBeFbZTCaagJc+/ZRjzz3XE1Lv4QuF12hQr9XwhHOXy+WitAWEkZlsNosnyIC5XC7snGNZJMSaYDtO2L5K9pYUZQ4ytJlMJPANl7paJ+vnsHwbV3WoU1/3ulRUfuHAzzOWG133PdJYPExJWTfEVbfikFrOthB1z8bE0KN0jaZhGAZeIrFqOEVD50w6jR+E6j8EAc1Wi/HJSYYHBsgKjexmq4Xv+2F6Jp2O2nx1K0MzDINcOk290WBmeppMLsf2HTueKGP5xBtK3/dxGw2q1Sqe74fK/IkEVZFXMAyDvGChRl2+gVw2y+LyMq1qlWqtFkpTxbyshGFAKoUmpO4kZbslRI41TQuFyWX38I4Bd/bsWdKZDPv27n2o+wjEDg8+24DvFBOII2kYWNKgtVptBjsuaiyPI1uGSeRyOSorK5RKJVRVpSI9b8chm8nguG4kBZgQ57FjjsaaaxWstkYQUK9WuXr5Mk8dPvzE5h16+GrDM01cywrJeK7LYH9/qD8qjGQumw3TFsGqeo6h6ySTSWq1GtMzM2GbLCFeAqGTqxtGGJpVVYqFQsicVSFPPpyrekCDumCTh38kVFR2s4s/deBP8vzB5x/qPuS68Vla3XUq73T+LpNOh/1obTvKzUrIPGfEfFdVdMnjEEICsnytVC6HUpeOw/TMDOVyOSJIJsTarItayoAwJ5zoEp0zhABDo9Fg4tYtMtksw8PDD32/jxpP/ArmNRr4IuHueh7lQiHqjpFMJqPwiEzA+0EQtn4RfRblpJA5uIQg+qiKEtZFSg1Twm4irUaDAMhks6HHxOqgkyzQyclJ5ufnefnll7sKm0vEvTn52c8SPomG+QYqFpl0OvQOHYeEzCUKAxn3yBRiiXWBVDLJvG2TFsr/aVEy0mq1qDebUW8913FoNJvoIqfqdYRQ2q5ZVclls9TqdRbm5rh75w47du58orzDHr768BwHt9mMHD/DMEBVcR0HRVHI53Jh2ZOcD2LHZIm1wxEhR8/zyOVyZDOZSGXGFdGp+NqRJUcYTQ2oU0NBRVdVAkQ6hwAlgG/mf4qnjH0cP3B83WuP1gp5L3JH+Rl7wiod8z0OmVZqtVo0Wq1ornc2fo+uSYiyQCgmoCoKnutSyOfJpNPMzc/TaLWYnp0lIzRz5c5Spr98kQON31uUhxWkxUCEhW9evUpWkK6eBDzRggNus0kgJOOkGo58sG1GUtRD1mo1lpeXo1yZoesUi0WymQypZBJPhAJkTN4TYRRN5AHqwkimkklSXUKGcuBdunSJTZs2RR7PwyhMbNRaa0MoSiSO3AnZkish6kTrzWZb/eOaQ8njCaTSaUzTjHasfYUCxWIxJCwRkp0ymQyBouDYNs1Wi6Zo3SNbAwFraqkIgiicc3d8nHmhDdlDD48DnufhNZsg6pZd3yeVSOCK3HxBOMySaGdZFivVKpVqFdOyIAjI5fPk8vmwllKMczl3ZZ2jNJIt08QIQpZ9lRp+LAakoKAqKrqioakaH9U/5uljxx6srhP7/+eKRLE+a1caYqm65TpOyJJdZx1TACW29iqKQlKsHRAa3eGhIVKJBKlkElOErTVNC6XrWi1apknLsmiZZrRRCFhNR4Ewlskk6USCljCWT4ou7BNrKH3XxRONQKXhk21vdF0Pw62saq9WKpVwkBOGKNKZDCWh4SibGXueR7VajfJukfSSotCoh6ESTdfbYvadmJiYoNVq8dRTT0U1R210bgjrJDvyA58nfCINkS9p30K8wA9i4seEA14V9WCdrbXaD6e0eZmpZDLMV4rcQaPZRFEUCoVC6BGK553LZtEMIypGNm2b5ZUVLGFk15AGBEMvk8ngui43r12LiBM99PCo4TebIAg5UhhARn5keYVMVyxXKtTq9ZBoEgQYiQQ50QB9oFwmnUqBotAyTar1esgMFeNdU5QoClVOlWnQwGU12rK3tIcf3/77o/8H+NwL7jPpTYIsH4v9lfA6HE/5/8+0drBqiGQKJr5+yHCzXDtM09zQ4Vc6zp9OJqOadcd1aQguSCqRIC/SNjK0LdcDx3GoCwKlK+pA14SHg4CU7F40P8+diYknQuruiTWUbqMRyrVZVli6YZokk8kwd5jP4wkFnmqlgu04+IQhgbxovJxOpcJWMqI4vq+vD13XI2GCSq0WiaGbloUtCmJzudy6sX3P87hy9SpbtmxprzvsqHmSg6rb4I8PNmlk4gOZ+P8JjXm8+L/znBDmCmQO9mEGvPQOZffzqsjjym4opWKRocFBdE2jUqth2TZZ0W8uncmEYRfR+qtaq2FKkkPb5YW08FQiQbPR4M7ExBrWWw89/KDh2TaBGGetVgtLlIRIxy2RSNAyTSorKzSazbClXcyxjodkZYhWOs6u64bNmpvNaD7KKNSP7/795NPhmrA1v4W/fuKv8Y9+5H/j/3bsz1NOheUfoQ4s/H8v/JOuIdG44x0JDginWEpvRlEcVne20ommwyBKQqJ0qIPYeeS/SSEcEpV+bYD4Tjcpw7bNJo1GIyT36DqbxsZIC8We+cVFDMOIuq0YgvxjiTZjtUZjbRpHXFtW5IDvT06yvLz8wO/9UeOJzFF6lhU2JyYc7M1mk4RhhC2nBDvKtqyQnKMo4Za/S91TRMIRxbOFXC4MAZgmtm2HPeHEjklVFHKivGQ9jI+PY7ZaHNi//8E30TERpFhy/PgKaz2VzunzwNyeJCclk5i2HQoPOE7Xuqa28wpVjkC04ioWixFDTQoTyOari0tLaGrYuzOdSkVlJgpEpSe2aZJIJkkIAfa4zqTjecxOT1Pu72dwcLCXr+zhkcET6jYBhIt4s8nAwEDkFC4tL0eRJFUJGw53ln7FSYGw2gmj3mjgiaYEpmVFzHND19lT2smv/8S/YtFcZDA1EC34KT3FnzzwJ/h7Z/4+crZfWrrCB9Mf8NLoS2uuv1MNKC6yrooSNqAtitWp5gNrNZvXg2x84Ps+pmmuCrWs934RmdMNIyRJCec6kUxGz7i/v5/5hQUc12VhcZGB/n50TSObyUT143INcYUjk0ylVglFihKx6OuNBvcnJ0M50g0ifY8aT9yO0vf9cLATDtjl5WVsxyEtHmStXseWqhOJBOViMWRWdcTvO70n+XMmnabY1xeKFQQBjXo9FCiI6Z12g+t5XLt2jW3btq0mmDcYiJ2DNCoN+bzFtA8wLqpwGB4URpE1orVaDVsM8iAIO4Pkcrm2PEixr49UMommKCwsLYVC0WKnrImBnxH1m34QYJpmpJcZXa+ikMtkcB2HuZmZUOu2hx4eASIHW1FoNBq0ms2omYAsFfN9H1XTyOZylEqlMBLT5Vidr+maRrFQCHOWhEo/jWaTZqMR7siCAFVRGUwPrpmrT6kHyAX5tpf/6cV/LmopO7DOuvEoivADcUFJQbYJgmDD1I3rumFPWqFX7Yuqg1w+H0bwxPsMXae/VEJTFCzbZln0tFSFVF4ikSCbzUY7TE/oz7Y61i1d10klkyzMzbEk1p8vCk+eobTtUDQcIiq363kkRW1kIPIIJWkgdT1ipErIneR6pkUTzExN08JaQ1E3VK3Xw4S+aa7pl3b71i1My2L/gQOf774+J3NN4mH2YMlkEmWdMIoc5NVajZascRKTIyV3gp3nVBQGpOpGEDC3sNDGxJNh7XwuR0a0IPK7DHpFVcmkUizOz4fkil4ItodHAMlp8H2fpcVFHM/DSCRwRJQlIOzPWOzrI5VKRU5f3DQFG6wbAKlEgnQ2G+bdFIVkKoVt22FpVaMREobi3ATf58bVG/xXgz/edpyJ2h3emHzjwfckHezPGYV5mE8p4j5kqivouH7btqnVatTrdWzbRoGoIiCbyXRd05LJJOVyGY0w1VWt1aIdses4aKKULJ/Ph1rShEpJdVFvKZESCkPLi4tfqJP9RIVefd/Ht6ywBMH3WVlZwTRNdF0PF3WgkMuF8kwxKJIZ2iEOvBEsy8IPAtKpFMNDQziui21ZUWil2WqF0kuGgaaqXL92jR3bt69P9AlCqTjTNGm1WpimiWmauK6L63lhXsP3wzypmMyScXrhwoVo4kp5KlW+z/NIpVIU+vrCvnepVJirlYOzY8ecSiZpCVUMCA2k67pthl/VNFLJZNSnbsOcpqJQLpejUMr84mJIhhD3IIWUE6IWyzRNLNvGtixcxyGdTKIbBkYiEbYwWlggI/JBPfTwg4JrWQRCf7VRq9FsNmk1m4yMjKAQRp9ymcyaiE5bCcQDjKR8T6vVwtA0MoUCfYUCpuBR2LYdGhJFieq979y5Q6vV4r9++Wf5+OQpblVuR8f6F5f/d17b/Bq6omOZJqZl0Ww2scQcks2OpeHQVTUSDmmJ5gsXLl4Moz4xaU1NiCSogpiXzmRIJhIkU6moL6S4mehakoaBpWl4Yg1TNS0UbRFymOJhhWtQMklaGLCNkEmn8fr6WKlWWalUyOVyaxjyMnes2zZNsUFpNBoYiQRpwbvIZDIszs1RLJejxg6PG0+UoQwcB2LtqKqVCrbnMSBCpbLtTTcogq4deN4Dc2Ce74ddPmK7qUQiQSadxhItYFzXDT1R1+XOxASm4zC6aROzc3O0RH1WrVaj0WxGRlEyUaXQuhQVlkl4TVUjBR0Z6pC6ka1WK2TUeV4osuD7eK6LH5Oc82I75YRoI5ZMpUilUuGuLpMhnU5jCSURy7Ki4l5FCRtTS4MGoRzXw+QLDV1noFxmbn4+qlHNptORoZSQg97QdRpy0LdaJH0/MswLX/CA7+GrB9/38U0TVVFwLIuVSgXTNNGEMEAul9tQIUpVlDVM0/UgDZfMocm1w3Xd0EEUUS9LlFNdvnKF0dFRXNfjZ8Z+mv+18neQtLyZ5iz/r+/8Kge9MEoVJ/EZhhHKaqph/0td1zF0HVUQkyQhz7VtGp4XqedIzefIQRa6rUEQoIhyspRYM4xEIhKIT2ez6JqGZZrU6vWwsbR8PpoWGX65/sq2gPGayG7I5/NRm8KVlRUy2SzdZr1clyR/xLHtSPhEkrEW5ubIZDL09/c/1Hf1g8QTZSi9VgtFUajV69SqVWyhDDNYLpN9kG5oLMwX/383NAXbTXYakVCUsMVOKplkaXmZhYUFlldWmJycRFUU3n333bbSikw2SyqdDnMdItmcSqUiIyZ3W5bwFDVdb2PLrqysMD0zw9Gnn6bYobEKYRPZpij0N0Txbss0aTWbtEwTU+xcF5eWmJycbAvTJEVyvVQqUSwWGRwcbGsYG39WD0O+NhIJ+opFlhYXaZomhtiVrvfegq7TarVwRDsw3/dJiz6Wy0tLZLNZyuXyQ5y5hx42hnSwfd9naWWFphAkyefzYWnYg0RBhAEJgiAU91jHeXRFtAnJGI857boQ/jZ0nbn5eZYXF5mZm8OyLKZmZrh3/z4BsJ99TDMTCaN/Glzkpw/9NOV8iUQiQTKZDEs2xLGr1Sqe55EVZS0Sy8vLTE9Pc/TYsa5rR0WIqaRTKVzXjRz6llhDLMFYnVxaiqJPEBosI5kkL0pk+vv7KRcKazYossxMVdW1ddQd6CsUouharVrt2nwBRHN6URpiir6c9UaDbCZDMpVicWGBoZERLMt67NKYT4yh9AWxpNVssrK0FOYlDSP0Ch9CSzVQlCiRH9XndDGWlpBtgpCRiSi4XVpeZnFhgcXFRZaWl8P+aTFG2NZt2+gTZSdJYQQj6nYcYsJJVpyqqpE+qqKqbUQX+VnP9yPB9DjdW6qEeKoa9o4TrN9kKkUxuvHVa7BtG9M0aQqB4Vq9zt07d7hx4wYQlr4MDAxQLpfp7++PJO+kcMGae4l/P75PJp2mlU5j2jbVWm1DjVtVDfvOqbZNS/Ss9MXOcmV5mYHBQWzb3pCd20MPD4NA8BoWFxexRAu+lChnemDtoaJEpBZFUQhizNJOyF6zulDogbDp+uLiIkuLiyyIPFoAJHQdV8yZbdu3k06nSaVSbG1u5X8983fQ5dLrw9n6OX5i8MejVlStVivcNYq1Q87xeM/azrUj3mnEhyiNJNM5cseWjSvdiJpQmQZqmSZ1USpWqVSYnpoiEFGjklgz+stlyv390TrbTfErDlm3WSqVsOfmaJpm2G2ls+l87PtIiqhbo9UiEKFYyS6urKxEzsTjxJNjKG0bq9lkYXExEtzNiEH8wMEuaxDj9YzQ1uIKwi+t2WiEodd6nZmZGZaWl2kID9QwDPr7+9m3bx/9/f0Ui0XeevttRvN5nnvuudjpgtXQrONEIdMgCELKc8egkYYiIUIjElKKr9FodL1H23GwLQtf19FEDWhU7CxyETLJr4uwTHROsduUeYvFxUWWlpZYXFzkzp07EARowkO9fesWA/39pNLptuclf4ob0GJfXyRwXKnV1rT/ikNR1ajvXKvZxBPXFRAa9Wq1ysDAwLqf76GHB8H3fTzRzaPZbKIqCtlMBst1QyfsAamFzt1QG7kntruUc9i2LJaWlpidnaVSqUQkoUKhwIBYO8rlMo1mk3feeYcTJ04wFGs5N+QNsu/eXs7NnUcTf747+QZf3/Q1MlqauIqyHwQ0m00gDH/GCT110R5svbXDsqwwaibKMaRoiXTeNWGIJYNdHsP3/VAQIAjIiqYLi4uLLC4uMjE+ztVr1yLRF9d1mZ2dZXCdlnrxrieGYdDX10ez0aDRbIYasxsYO03TyGUyNE0T13FotVpouk61UqFYKmGa5oYtFH/QeCIMZRAEWI0Gi5VKSF5Jp0kkEqwsL68h7nwWxAe9a9tMTE4ydf8+C4uLuI5DIpmkWCyyd+9eBvr7o2auEguLi6wsL/PSSy+tOa5hGOgibi/hibyi9PCkt2bZNqroTBIP18QNuyrECqRggSzb8A2DRDJJJpNpq6eKnIGYUkgcyUQiIhmk83k2b97M5s1hSx/P85iZmeH8+fM4QcDS8jL/+T//Zwp9fYwMDzM6OkpfX99akQPC/nfFvj7submoxnW9+qY4XVzNZmkKbz/wPCpLSyQSicc+4Hv4asG3LOrVamgkVZVSuczKygqB43QV327DOuSdaG5pGngelWqVW7dvMzc/T7VaRQHyhQJbt21jeGiIcn8/iQ7h/wsXLlAoFBjscAQ1TeNPH/k5fvG7/0302rK3zO/M/A5/at+fipR0ZI9cyQFYrzykTTtaip0oSrTjTafT6ILAo0Lb+tNt7VAFj8IX+tGlUolSqcTu3buBMG117fp1JsbH8YOAD95/H80wGBwcZGx0lOGREQxdD8vtOpyUXDZLIpnEN02WVlYYHhxcn3MiriWTTmOK9JUv6sQ9IVf6Q2co7WaTerWKY9skUyn6y2VWKhU8ePBgh3W3/Y7jcP/ePaamppidncVyHHLZLLt27mRsbCwKcXb2YJS4dfs2mVxuXRX7TraopqogchVxeJ5HUogrtxFYxOfzuRx9fX1rjm8KUYVEIhHlUjul8VBV6NLNQ9U0EroehZrTsUHVbDa5ePFiNJCfe+45FEVhamqKazdvcvHSJTKZDGOjo2zevJlSudw26JPJJOlUCtt1WalW2whCXRGru5RKJouLiwwMD9NsNnuGsofPjZpQ2AmCgIIo+5BpjIcK668TNlwR3ISZqSlWqlV8YGhwkL179lAsFnFdl2QqFdURx1FvNJiamlq3T+3u4i5+ZPPrvHHvzei1f3/7P/DNnT/FYGZ1d+Y4Dr6Q3+vM68mdcD6X65rzk02YJSNWvvYw955MJiNheKlcJHHnzh0mxscpFArYjsOJF19kenqaqakpTn78MUBoNEdG2LJlS9tGR1EUCrlc1IGoUqtR6rLuyWtTFAUE619RlLB1l+extLjI4NDQY03dfOGG0hO7C1MwNAuiNlL2LjM2ehAx2nI8TLKyvMz4+Dh3797F9zz6BwfZLQZ4X18f2Ww2TPwLaaRuzK2maTI5OcmRDZqIdr4aVwJa8zrt3txDocsgVugg32xAWkokk1HZi5S4m5+f5+TJk2SzWZ5++mnefucdkslkOLjHxjjmeczNzzM1NcW9+/e5cesWfYUCO3fsYMvWraGhVxSy+Tx+tUrg+6xUKgysw0RTFAWNkLEr85b1Wg3bslhcXGRwcHDNZOyhh4dBdWUFS9QupjMZ8vl8JEupx8KJXRHL6Ul4rsvkvXuMj4+zvLREMplkaGSELdu3R6Q4TdNoClGN9cqqxm/fRtN1tmzZsu7pf+7gz/HWvXfwRLDVcm3+1bX/H//9sb8Uveez9q/tdn8bv6X7ezRBHpRtuGQrsjNnznD37l2eeuopms0mi4uL5AsF8oUCu/fsodVsMjU1xf3paT69cIELFy+yadMmduzYQb/Ia8r2hbJmMi1Ih+tB5kITySS26+I6Dgvz85TKZVqiM8njwBdqKIMgYGl+Hk8Up6czGVKZTFSUCmF9z8PA8zwmJyfDQb68TDqdZu/evWzfvh1d16lUq5ECjQxXKKqKLyZWpzG8fesWuqaxbdu29a+/iwHtJqMnvb/PWzS8UZ5loyMahhGphti2zczMDGfPnmVoaIjnn3+eer2O73loqhqFYFRNY2RoiMHBQZ4+coS5uTnGx8c5d/48Fy5eZMvmzYxt2kQqlaKvr49arYZpWWGD7PXIPcI7DGLGstVqMTs9TTabxTTNL1SeqocvH1qtFs1KJXQC02ly6TSaotAQBfMP5WALVCuVyLF2bJvhkRFOnDjB8PBwJHqSTCSiwnhZwxx0ieS4rsvtiQl27NixYZRlU26MP7D99/Odif8IhFP8P935Pf7w7j/ElnyYIonm5OddNzrQKWu3xumOIZlMRiUvqqry0UcfsbS0xPHjx9m8eTOfnDoViZvIlFE6m2XHzp1s37kT27Ki3efdyUkKhQI7t2+nr1gMKwJUFdOyWF5ZYXhoqKszEDWtENeaTiZpCjH72ZmZUEe2UHgskphfqKGs1+sEIkmeFj3MIgFw8ZD09QyleICmZXHt2jVu3bqF6ziMjI5Gg1zu4KrVKhCyXCXhJRIf1rRwsMgwRBDg+j63b99m67ZtG9b6PczXExFhHoaU1HmL3c6jKASx+P+D/MZUIkHD87hy5Qrj4+Ns276do08/DUJeKgD0zkVFUVCCgEBRGBoeZmh4GNM0uTMxwcTEBON37lDI59m5cyf9/f1UazWqgtizbs5BEU2zg1D2yvd9avU6iwsLFAqFnqHs4aERBAHVlRUC20bRNIxEgqQglXmiQL5T0nLNMYDZ2VmuXLnC/Pw8iWSSnTt3sn3Hjmgsuo6DI1in8dIqSYKRBkJcFAB3JydxbJudO3Y88D7++IE/xu/d/S6WH3bh8AOPf37lX/LXnv+l8P/fx44yWhfigiS0rxcbCY0YhhGKN9TrfPzRR9i2zcsvv0x/f38kgymjS3Goqorn+ySSSfbs3cuePXuYn59nfHycTy9cQFVVhoaHObB/f/h8NwjBRk0mxJqsKArpVArf85ifm6OvWKRcLj8WBuwXZig9z6NeqYAQ2FU1LdyCdyu56ALLtrlx4wY3b95EURR27drFjh07SHcsuLaItQNr6whjg1wJXyBQFO5PTmKaJrt27vxM99Rt4Ml7+Vxezzqh13h3gQex+jRN4/Lly9y7f5+DBw6wf9++6NhSud/o9HyFUY/nNFKpFPv272ff3r1M3rvHrfFxzp07R14QhTK53Po5Bxnmir0k8yDLS0sR9bwXfu3hYVCv10GIgiRTKZJi/YiPs3XnWxAwv7DApcuXWVxYoFgs8vwLLzA6Orpm/DUFQ1vWREvE22Ipqy8SEPIaRkZHH8rx60/1881d3+TXr/86si/HO/ff4fryH2FvaU8UifrMKRtxn/Ja18UGZR0QluqdPn0aRVH42te+FirriPe7rtvdQAlCUXx9GhwaYnBoCMs0uXbtGncnJ5memmLzli309/fTaDTIZ7Pdd+CCUOgLLW4ZkVqqVFhZWfnqG8p6vY4qNEkTySTJRCIcEGLXIR905+B1XZfr169z8+ZNPN9nz+7d7N6zpzsrLAiiwZ4WEnFxKNHb2sMRk/fuMTQ0RF6IAwQQ7bDiw67TMHbLdX4/Gq/ryfG1hVA6r0HWNhE6CSdPnmRpaYnDhw4xtmlT23sltb3rAI2FS9ugqgwMDlLo66NRr3P9xg0uX75MvlBgdGys+4CXOeSOY2XSaZZWViKVo26Eph56iMPzPOq1GorjoOl6pFO6ZsHvYiCWlpa4dOkSs3NzFItFXnrpJYaGhrqyxp24g92ZQ5N10B2fq1SrVCsVDh482C6NB6EzHt/dibn1s3v/ML9967dpuI3od//00j/n//nK3/rcO8pubPXouuPX3HnfYo0jCLh//z6nTp0il8tx8ODBNZsMx3HaazJj6HSyJZLJJFu3bWNs82YWZme5cfMm9+/fZ2h4GF3XGRkaWveaVU2LQt1SLL22ssLS0lKU/3yU+EIMpeu6NOt1FMdBFeo1qfhglzfdMdhu37zJ5StXcByHXbt2sXfv3kgdxpVEmhgsQSdW5fE7EIUvY59rmSZzMzM8ffTo6vvEtWxosFhr0OLH/lxeYcd1RscUgydeZNz2LyGz9f3338e2bU6cOIGRSODaNoFgkEHYcFVhA+o53UO7Mixe7u/n1ZERZufmuHDhAtevXWN2ZoZnn322vV9nsNofj5iSh67rJBIJlpaWKBQKPUPZwwNRr9dRhDSbbhjtu0kZ3qe920Oz2eT8p59y/949Cvk8L77wAmNjY6vju4vBaAod5ni6RkLtsm4ATN69i2EYa1jycv2IHx9x7pyR42f3/VH+6aV/Fv369Pxpzs6fY0ciDN9+P5EWpeNnBaK56ItraXsGQcDNmze5cOECmzZt4sCBAyEh0HFIx56D4zjr52DXcbJlyzBd09i3fz87d+3i6tWrTExMMDs3x67t2zlw4MCanr1eLH0lrzObTrOwtEStVqNWq1FYR+3nB4UvxFA2m00UoU+o63r7blKJKesINBoNTp86xfzCAtu3bWP/wYNraNnd2KCtVisiCXUbbIrQUYyHeu9NThKoKptEzeFGUFg1Yn5s8MevwYuFT9YoBsUMXPxz8l7aGjjHDyuo3/H3xbG8vMyHH36Ioeu8+uqr5HK5sHdcEAq3y5KbqIZxPVavqqKIuq622yIW3lIUhoeHKRaL3Lh5k7t37/K9732PgwcOsHvPnihMHO/xF3QM+MXlZarlMq6QLOyhh24IgrAAX3EcFOFgd9tNyrEZEPaQvXjhApquc/y559i8ZcsDyTGW4+A6TpQT64T8fHzdCAgN5ebNmx9MvlFWa6UBvrnzp/j2zd9iyVxCzvR/cvGf8jee/uvIZsnrqY0FcUMn3uvLZxC7Nvk5yROI5mTHDvP8p59y+/Zt9uzZw6FDh0JBlUYjanUoYbZaXZ9N/Bl5Xb6X8PbDKzMMg8OHDzM4OMjt8XGu3bzJ7Owszz77bOQ0twnVx4yvJsrfVpaXWVlZ+WoaSsuyQIiXK0KkN/6FRd25FYVbN29y6dIlEskkX/va19YU8K4HU0o4baBJKsOh8RDK3clJRoeHH65+MwZptLoRbwC0WF4jvmOOzhy7hiB6adW4xH/ftsPsGIxTU1OcOnWKYrHIiy++GNGnDcPA9Twc247urbWBWIBE1wHfJe+aTCYZHR2lUChwf3qaCxcvMj09zbFnnlkjdRf3Ng3R3qspOqX3dpU9rAfbtglcF991w3SN3E12QOorv//ee8zOzrJ92zYOHzmyNhffDdLBhrB1XBcHW55TioqoisLCwgLNVostW7c+1L3EF/+UluTn9v8x/sH5/y36zY2VW5xfvMjRwSPtEZ8Yr2LN2hE3muuEWOXc69xJe57Hxx9/zOzsLMeOHmW7ICMZQiQlECLruq6HkTohz7f+Da7dVQbCue90zPv7+/F8n1J/P3fGx3nzzTfZf+AAe/bu3ZBwlEqlaNTrkXrRo8RjZ0/4vo9jWXi2jSaK86USffwBzs3Pc/XKFc6eO8eWbdv4kR/5kQ2NZKfxkM2L07FQYyekwo0vYt+1ep3lpaUN65+6nFicsvsXKo3wD4rMA+072fg7bt64wUcffcTo6CivvPJKW42RkUigKAq240TX1Gw215Cf1p5MWXPt8l47PedCPo+maWwaG+PFF1+k1WrxX37v97hx/XqbM9K2+w8CEoaB2WjQaDTooYf1YFkWSkzP2ejS6smxbe7cucPJkyepViq8/PLLPPPMMw9nJAllIzdK1wCr5WWKEu0q705Okkmn6X9Iof8g9q+iKPz49h9nLDsW/V5F4Tu3fpt1so0POHhHCqvj2jthmibvvPMOCwsLnDhxIjKS8hiyNZctcrYtYZgetHZ0rg/SQHe+bhgGmUyGfDbL4aefZveePVy8eJE33niDiqhYACIyT/S5RALbtmk0Gmv67/6g8dgNpWVZUX5N9m3r9IDmZmeZGB+nVqsxMDBAIZ8PP/eQsB0nEgTesL1Ox47y7t27aIbByOjoQ5+rGyEojmhH2eH5BrHfy8nSOYS77Taj83Y4BufOnePCxYvs3buX48ePr/GENVVFF7WjclA1Wq01Sfpu6BzY/joTUQ54VQkLi1//xjfYvnMn5y9c4KOTJyPFFOgY8IYRyeH10MN6sCwLRLMCVeS62ngMvs/Zs2eZnZ0FiOaxuwGLvjNaY4pOGkkh0LEe4tqoru9zb3LyoXeTbRDn1lWdnzvwJ1ePj8p0a4aPZj7u+jE/9tm1h1zfuCod/9ZqNd5++21M0+TrX/96VxUywzCidSOIESQ33FHCGic7zlPoRCGfD5tGeB7btm3ja1//Op7r8tYbbzA1Pd1+f+JfTdPQNI3WY9hVPnZDadt2mGMQhsGQwsXigd6bnOTjjz8mlUoxMjqKpqp8+umn/O7v/i7f/e53uXDxIvMLC2vCgfFBI41q4mEGu9hRBoRe4aZNmz4zQ7Uz1i81XmVoJh5KlX/jZJzoM6zm/9ryekIQoNvwd12XDz/8kPHxcY4dO8ZTTz217nUaiQSqokTdU1qNxoMHO6xZjCS65WIK+XzUMcWybY4cPszLL73E3Nwc777zTleHJ5FIYFsWjUajzZj20INEEARhJEqQSDoVWVzX5f0PPqDZalEulxkeHmZ2dpb33nuP//M73+GDDz/k9vg4jQ0WVFcov8g+tRtB1bSI3zA7M4PtOJ/dUMbCqACvbvo6OwuCwCOW5t8a/w9YrtW2dsRJe13/xlI2ct1o4ziIlM/8/DxvvfUWhmHw+muvrZv20HU9WhMd16XVbKKp6kPpcMfXiGhH2eV9mqaRy+VQg4BqtUq5VOIb3/gGwyMjfHTyJLdu3Vp9r+yJqSgkdJ1Gs/nIDeVjz1EGQYDjeeiKEon1il9w48YNLly4wJYtWxgcGsJxHLZt24bneczOzTEzM8Pdu3e5ceMGuq4zNDTEyMgIw8PDUZ7TE3m4IAjCLtwbQBMEIj8IWFxaol6rcezYsfWvPXYPawxwLB6vxP4fvfY5Qq+RIY15ZvEB32q1ePe992jU65w4cYKR4eF1w6QQGqRWq4XreTSaTfwgeOhCf1UwCr3Y/XS7J03TSKZSOOIc6VSKkZERvva1r/Hhhx/y1ttv88pLL4XUcsGA1XUdFIVmo7GmGXQPPYBYZEXTAUU0HZYwTZMP3n+fer3OsaNHQdTaDQ4MUK1UmJ6dZXZ6mvPnzoWdPvJ5hoaHGRkdjUoLAkTHDUIHe6MeltBO6JmcnKTY10d+nXKJ6B5YXTtk78uIEBQEaIrKnz74p/mfTv5yZCjnzXl+Z+J3+eaun3roZyVd2c45Go9QTUxMcPr0aQYHB3nh+efRBVdg9S3tbnlC18O11XFWUzafcU3zhRjEes82m05TqVTwRNuvVCrF8y+8wIVPP+X8p59itlocfOqpiNuhAKqut9XKPyp8IWQe37bBMFYJM4JtdevmTfbt38/BAwe4d+8ejhL2ZzMMg82bNrF506ZIW3R2ZoaZ2VnOnDkDQF9fHwODg/QVi6vNTx8w2KMu3UHAvclJUul0m2bpegGMNcZovfuM776+H73GLgOyWqnw3nvv4XoeX3/11TaW2JpjSJadqqIbBr7jUKvVgLUiDOtBUcJaSF+UlHSVnCK852wmQ6PRwBLdSwzDoFgq8eqrr/L+++/z1ttvc+KllyiXSqGHKY7VarWi77uHHjrhuW5InlHVKOxar1Z574MPCHyfr7/6KqqqsriwgOd5KEChr49CXx/79uzBdhzm5uaYmZ1l8t49bt68ia7rDAwMRI3NdcN44G4SiMrabNtmanqagwcOtP2+k7kv8SCH+YXh4xwqP8X40kR4z/j862v/ht+39f9CxnhI9aoN1o0gCLh85QpXLl9m27ZtPP300+H8WydiFTFUk0lMYZAazeZDrxuIfK4fcwo6147IgRDdQhqtFo1WK8oRHz5yhHQmw8ULF2i2Wjz77LMRm15TVRqW9dUzlK5t43seSiIRytMFAZcvX+bmzZscO3qUnUINRw7EzoVTUVVKxSKlYpH9+/dj2TZzs7PMzMwwfvs2ptAmHB0eZnRsjJHh4ZBC3gUy1+H5PvenpxkZGWlnoj4EZKfvbpCvfl6txrYdagxzs7Oc/Ogj0qkUr7zwwsaDNr4TDQIMXQ8He6OB1L59KMQGfABtTkgU8hETwRBOkGXbNJrNqLtBJpvl1Vdf5cMPP+SD99/ntddfJ51OR2pD0jPsdRPpoRs8kTKQspaWafLe+++jaxovf/3rpNNpGs0miqquDeErYReezZs3hw43UFlZYWZmhqnpac6eO4freRTyeTZv2sTIyAilcnldB1clnJ8L8/M4Qjoz6DjfRpCSjp3RKUVR+Pmn/jS//O7fACDAp2JX+Pat3+JP7P9jD/eg1oli+Z7H6TNnuHPnDocOHWL3rl0PvM6oHENVw6iSolBvNLp2LFkPsrzFE2vHGr6GeB0gK9rxmaYZthkTJKzdu3eTTqU4deoUuq5z9Ngx8LxobZU9hR8VHruhdESOStM0FFXl/uQkV69e5dChQ5GRBNpi4muWTWmclLAb9pYtW9iyZQsHGg3uT0+zvLxMtVLh9OnTAJRLJYZFiLZUKq0aD9G1otVq0ajVGD18+LPfUEeuMY7vS76OWN1R7LWJiQnOnj3L8NAQzzzzzAN3zZ0wDAPFNKmurJBIJqPyjM5zdoMinApY9QoDVmuz4shms9i2TbPVIp/LRYILiWSSl156iTfffJOTH37Iq6+9FjWRlc1me+ihG3zXRSVsvef7Pic/+gjX83j11VcjZ1ETbFRP8A66Qgn1Q4vFIsVikT379jE3N8fs3Bz1apWJiQmuXb+OYRhhiFb8TaRS0aKvCo3ouYUFCvk8uQeEXbtfRvf0xaH+QxztP8qVxSv4IpD6725+m5/c8RP0JR9cPtVtPXJsmw9PnmR5aYkXX3iBkdHRzzzXDMPAcV3qtRqbx8YgZuQ33FzIULNYs6PaakLjHX8GiUQi1IKWa0dMuGTT5s04rsvZs2cpFArs2LEjWoe+ejlK4ekpqsrK8jKnT59m8+bN7N2zp+19mgituOuRO+IDTBhOy3HoKxQYGx0llUphmmYYop2b44aQWkskEgwPD4e5zaEhNE1jYWkJFIWBdTp1b4hYvHzNvX4/Wo3EdpRioF2+dIlr16+zY8cOjj79dJgz/IzkF9ndvNZsRjmVNnWhjQa+EtaFyjZGa3pjxiAVTVzPo9XRHcRIJDhx4gRvvfUWpz75hOeefRYEWaOHHrrB8zxUVqMz586dY3lpia+JnaSEFKxYd92QiEWCHMdBVVXGRkcpHjhAEAQsLy8zOzvLzOwsp06dgiCgWCoxMjLCiBDYUAgJMZsfQpyk+yWs70D/zM5v8iuLVyND2XQb/PqN3+D/eujPPvC4nbyIRr3OBx98gG1ZvPLKK5T7+6PuTJ8Fhq6HzqznUeiS6tlo7ZCNHFRVjVI08c/EkctmcYShzGazbbv67du3U61U+PTTT8nn82GuNAjCBg/duCM/IDx2Q6mJG7FMk1OnT5PL5Xjm2WfX3GA89LohxOdsx8FzHJRYSYjUFtyydSuB77O4tMTM7CyzMzNM3r0LikKxWKTRaFAoFD4XiaRNOaLL70AQYcTAiA8sOZk91w1JCut4mH4QcPaTT5i8d49Dhw6xZ8+e8L2fc/dl6DrNRoP+Lj0kNxr4UhEoKrTegIauqiqZTIZarUaji7BBvlDguePHOfnhh1zOZhkeGYm6FfREB3rohGvbGJqGFwTcvHWLiYkJnnn22TV1i5EYgO/jed7Gc1o62KJkLSFqrhVFodzfT7lcZv/+/aHDPTvL7OwsN2/d4uqVKySSSXK5HJZlUX7I2slObFTGsSm3ieeGnuG/zL2BIv78x1v/kZ/a8ZMMpAZwRUMD3/PWrB1R7TawvLjIBx9+iJFI8Nrrr6/qs26QMloPuq7TbDZD6b0uO+g28iHtBlNWAuiyNdcGSAmhB8/zMC1rTXro8JEjVGs1Tn70Ec8dP05AOD4eJR6rofR9P/QKVZXbt27hui4nTpzo2hJH0zQU3w/b3DwEbMcBIWsEq6UYEoqqMjAwwMDAAIeeeopWqxXmJ6ammF9cxPM8fvd3f5cR0VZqeGho45524hy+52E7TmhE4mUhvk+r2cQUXbjtLh6cDBc0W60oFh8/dr1ex/U8zpw+Ta1W4+jTTzM6NoZlWZFnxufxohQFs9Uis17/yNg1yPcrhIZdhkwehpyUy2ap1+s4ogFsJ6V/dHSUgwcPcvnKFXK5HNlcrldL2UNXOJaFpuuYjQaXL11i565dbO/SK1bW8EqizYNIJ0EQ632bSKxZNyBcuLdt28a2bdsIRMP3mZkZxicmUIBPPvmE27dvhyHa0VH6+voeOCd938d13ag20ResXrmGVKtVXh/8BmfmzkXNnQng3134Tf74/j9Gs9UCoNFsrkm/WJaFbdvUajVuXL9OvlAI0zRiR6gqCq7vh5uWz7J2KAqtZhPDMNasVx0PdY1cnSPrXx9i3Yic7EaDZrO5xlAqisLzx4/zvTff5OqVK+zeuzcq6/lK7Cgdx0EJAhzHYWpmhkOHDq07kFOJBKqmPZTQQBAEoUH1/ZD4E3RINHV5eOl0mh07dpBMJLg/NcVBIf47NzvLxJ07qIpC/8AAw0NDDA0Pk8vl8DwPz/fxPQ/X8/CF17qeh+TFPLs4ZA2pDCNJb7BN7ikIMC2LGzdu4LkuR48do6+vr+15BEEQDUBNVdFEV3dNVaPOCt3QbDZRFIVMNovreQ/u3Sd2ko7jhLWvD6lyomka6VSKpmCxdetGvmfvXu7cvcudO3c4fORIpPrRQw9xuLaNruvcv38fTdc5ePDguu81DAPFsjBN84GG0nIcfEStoEgtxDkQnVBUlf7+fvr7+5mdnSWRTDI6MsLK8nLYSefKFVKpFMNDQwyPjDA4MICqaeHaEVs//CDAdd2uu0pZb1hKlXhp5ATvzrwXvk7AhzMn+dGtP0paDSM0yjq7t5mZGSYnJxkZHma/YORaQkwBQsMVBEFI0tG0NevHega03miQy+fDHe1G7GBZvymIOr7rPrSDDZDJZKjX61i23VUDOpFMcuDgQc6eOUO9ViObyWBZ1sOzcT8jHq+hFIv85ORkWOc0OBhpJXZCigX4onZno5IB13XDMKaiRIt4VMv4gGuanZ0lnckwOjpKLpfj6SNHqNVqzExPMzM7y6XLl/n04kVSqRT9om9iqVyOQjqqEFaXklaqqq7+rCg4hkE2kyHVRUpPTpJcLtcWbpRsuitXrpDQdV7+2tdIZzLRblV6nrJJbUC42+vMy0gavaZp4UIgrrlaqxEA+VwuHISdhjKIFTTHnA3Zv1IXE8rrSMR3Q0aw2NZzeBzHYceOHVy8eJFqtdoTHOihKzzPo9lqMTs7y+49e3Bj4v6dSCQSaErYmHwjBCLsGsnhKTF1LCXWnKGL0XREL9Vde/cyOjrK/v378T2Pufl5pqenmZubY1w43H3FIv2lEv0DA2Sy2WjOSIOkKqHmtRoPn/o+iqryR478YX5n9nexgtX58+/u/Tv+uz3/LSDWjmIx+p3veVy/cYN7k5Ps2LGDQ0891b5jFX89CP/6Pp7v0xnv0lU1XDOkzKi4rlq1Sl+hEBp5cY0dDzX8x/fD5gfimiQJUNf1dbsStZ1f1zEMA89xaJnmmhrVIAgol8vkcjkmJycZGhqK1qdHgcdqKF3XZWVlhfmFBQ4fPoxCWCzcrURBEV+U7TiYspt2B+Su0bQsAghFkmNtnICNGZ1BwPTMDIMDYcy/Vq+jCe+vf3CQ/sFBfM9jZWWFxcVFFpeWmJqaQlPVcLc5PMzw8DCZfL6rZ2hZViSz9FlCAlP37/PJqVMUCgWePnKkbSK0X364O/diu1vpsXpiQti+DyK0JFvcLC8tkU6lMDQtDDvFNDPbjGPHuVzXxSf02H3heSsdz7sTCaEx63nemvCrLwqLBwYHyeZyjN++zb79+x/6OfXwwwE5vsdv3SKdTrN50yYs0ySZTK5V0QqCqBvRes6ZHN+e74dC6+Iz3Uo1oGPdEEZzdm4OPwgol0q0Wq3IcUwkk2zbvp1t27djtlosLi6ytLTE+MQEt27fJpVOMzI8zOjwMOWBga47LNd1w92dotCXKfHN3T/Fv73xf0S/f2fqXX5s5Me6fk4Km+/ft49du3d3Tx+JUg3XdaOdbjw65gcBru+HeT/hbEhmer1eZ2zTJlRxPnn8NULrsefoynZ+uo6qaW1M1/XytLJZhuU4WJa1xlBatk3g++zes4fTp0+zsLDQtQfmDwqPPfR6584d+goFdmzfTq1W23jAJ5OYlrXmQUlPT7aasm07rBEUi/K6QgGxn/0gYGFhgXq9ztZt22i2Wui6Hm3dVWGoDV2nVCqxe/duAOq1GjNC7ODypUucP3+edCrF0MgIIyLUIndun1UQPQhCdaKLFy+yeWyM3Xv3blx8Lya2NMZt7w2CcJcpdtueCLU4rstKpUImm6XebBIEAYlE4oHtrWT9pEIYUo3a9YjelFEbsQ4ohMZSfo9xQ2lZFoqiYKgqB/bt45NTp5idmXmoZ9XDDw9c16VaqTA3P8+zzz1HMpHAtG1azeYaUkmAiEYRkuQ6o1Eyx45wMmXRuqbrEaO7E53qNq7rcv/ePTIiIuMJdSlJQJQRnHwux+joaOgoui7zCwshKWhmhomJCQgCSuVyyKQdGSErdpud68Yf3fOH+Y/jv0PdXa0V/De3f53jPBf932y1+OCDD6g3Ghw7dixk5a6z7sidnqIo6GLHGIc0mq7oGCJ3nXUhUJ5MJGiZJr7vk3+ITYDkNuhC9i98/BvvKRXC3HC1VsNxnJDfEtPXtcXmaFSU/E1MTETNLR4FHpuhDIKwfc3S0hKHDh0Ki9ITCax1BjyEX4jKqlAxxHY8gm3quG60u3mQoosfBNi2jS3i3jOzsyiqSrGvD9t1UTWNbDYbhSu7IZfPszufj8I/M9PTTE1PMzM9ze1bt1A1jaHBQYZHRsjIkOtDxOUD3+fc+fOMj4+zf98+du/eTbPV2nAQSpHh9Uo52iaBMJyO41BZWQl1KYUkWKVSIWEY6IaBYRhdjaZk2ckwjBpnJIswVWeeVf4/lUxiWRaWbSOroqQclh+EHV76BwdJJpNMdwgg99CD4zjMzsygahpbNm8O5eZsG9tx1qZlRL5e1vxZIholjWN8fErN48h524AJ6rouluPgiBZTC4uLoSCBMBS6SLHo63ADNF2PDCJPPx1K683McP/+fS5evMinn35KVrC/B/r7SaXT0TzMJ/L80b1/hH96+Z9Fx/t0+VO2KGFZSnVlhQ8+/BCA177+dRQRFVt37ZDrxjrkF5k+ks9VRpNmpqfxgWwuF2ozC0dDrjMJIZ7e7dnJ9ymwZs0KCPkancbTEG3UfNfFsu2o/6WMFGiqSsIwGB0d5crly9RqNUqfk4H8IDxWQzk7O0sQBAwNDQEhocYWA74V62QhH1cimYxU62V37M6Hadt26EXGdWM74LoupmCCxT9dFfH2wcFBqrUavu+H/de6LPzr6ZqOjo0xPDqK73lhblN4jBc+/RRPyLmNjIwwNjZG/8BAV8F1KWw+OzfHM888w/bt26PBsGHpSTyHst77wjcD4QQwTRPHdRkbGyOVTFIT+qpxJ0JVVRKJRNvAl4N9I7q9ZAzKgmIJWa5j23ZEfJKsPcMw0DUN27YplUpR54ceepAIRPSnP6aUI6NNjWaTfD6/Oq/EWE+IXY9p22QBYuovEM4LWzAlu5HM5Hkt245620rIGr/9w8P0l8uYpokudpHyGmRz8vXWpFw+z+5cjh07duDK3ebMDDPT09y6dQtNVSn397NpbIyRkRG+ueun+K3bv82SuRgd4z5TLC0ucvHSJXLZLCdeeol0Ok1V7PzWNZTi9c55ut4zgNDIVatVioUC5VKJ5eXlaFcpd56maWLoOolkMnoWniAuyUgUhOtQPEwaN9qR4Lv4N5VI0BRlIulUCkuod/miH6bv+/SXywSE3JetXZjQPwg8VkM5MzNDIpGIulGrmkYmk6HRbNIyTVRNI5lIrA52mXMMgkgktxMy7Bof7LJPnMxvyt0QhNv/hGFgJBLUarWwDETsomzHCUkCHceK4u+AEvs5LjGnKAqFQoFCocDePXuwLIuJO3dYXFri/v373L59OxJyl4IHEmfOnMGyLF5+6SWGRJubB4mpy3O2GcnYBO0mgqAoCguLi2GdWKkU5ScCRSGVTOIKD13mDk3TjJQyJENPTgB5/k7HRYa+FVWFmKSdrmlh5wHRJ1TmNaWuph+EBd3Xrl2j0Wisafbcww8vHMdhaXmZnbHuHOlMJkor1Ot18vl8GykwmUyiEjI9ZYomDpmb1ESKBVZl5TxB8rFMs00dS86F+WYTBRgZHg5LVkwTt2MHF5EJ4xEWWJ2fsdd1XWd0ZITRkZHIKbg/Pc3K8jIXLlzg/Pnz5PN5fjT3Df4P8zeiz/VT5tz584yMjHD8+PG2HWB0Dd0Q4yOsvhS0Keh0W3cWFhYYGR1F1/Ww1lHXo/kruRKO6+KI6FzSMPDFdajxEO16IeFgVdJPso9TgjVvCz1XyzTxRVpO0zQ8sV7nslnu3r3Ly+vd8/eJx5qjnJ2eZs/WrdEDUwhVWlJiYW42Gqisajkifm9ZVptIroQrw66wOkh8n1arFXo7sQGTSCRIxTwd0zSp1+uRmLGu65Fn1Olhtg2aGDOus4WW/D2EoZbBoSEGBwcpFotUK5Uot3nu3DmCIIgan9qWxde+9jWKkrQjJ1KHEWorHxH/X6OO84BJsri4SLGvr41g5HtexDJLBWGpjeU4YY2obdNqtbAch4SutzFkuxnK6DJiyhtBEJBIJnFcl2q1SjaTIQgCsplMuEPwfQLfp1QqEfg+ExMTG7YL6+GHC1NTUwS+T3+scbuiKGSzWWr1Op7n0ajXyeZy0bhPJpOgqpitFn4X4QGnM+xKuJ40Go22mmdNVUklk2FHETFfVpaXSafTpMWOBgSzs8t5Og3OGgPaxThlslm2bt3K3j170HWdeSHk7s66vOp/nXvqfbbrW9hqb2NkeJgTL74YcQQUWC1xgeg1WI0u+XQh34if5fV1oin6xQ6I70Cul0EQkEqlSCaTIWHPssLm8J5Hy/MwTRNFUdpSa9E51ssHxzgPkgzoiEYOqqaFu1axoZLPv1Quc2diYt1w8veLx7qjrNVqa3KRiqJEA8627ahORxdaiul0mmajEdbXlUptn41i38JImqYZhvRE8lkO8mQqtaYEZWlpCSBS1Yikrz4DxbhrfjAeOhBhSIVYF4N9+7Asi+vXr3Pl+hWaboOEl+Ltt96KWoYNj4xE5Bm6KPvHjZOqKHifYXAsLi4yJhraylyEZLtJ45kQC4PruuHAtyw818UmrKNKpVJtifn1no0fu65UMsnKygquyEm2GUlh7FNCe1Z+Nz30ALCyshLOoZjuJ4RRi1wuR71Ww3Fdmo1GJKKhC3KbbCnX+VnHdUMCoGHguS7NVisq/oewrVQylepagrKwuEhZqFpJ0p/jOLgPUgLqhBJqzkaN0DvWDlmzPDo2xujYGEEQ8PzScU6dPcvK8jKu53J/aorvfve7jIyOMjIyEnXkIQhAlK7B6joVAIgdtmyd9zBYXFwkYHW9lGtFPCStaRrpTIaUiObJ7kE+oJtmqJomDN+G5xZM+oioqKo0bBtN08hns6Sk0yKenRwbc/Pzj6xN32M1lG11SgJyx5ERdYK2bVOv1Uil0xiJBJl0muVYI+BkzAN0hFELfJ9KpbLaxkXTKGSzUb6xG5aWlkilUlFeNK4RuZFXEnltrHpoQYchi+43vME1uZH7U1N8cPND/rPxXZZZ5njxOP91/x9hbm6e06JtWKFQoFQus2lsjOTQ0Lo1mPIZPgyazSatmFcI4c7XEzvpzgEmk/SObG8ktFvrjUa0kKyHeIhJ1ny6Il9hyJrOjjBUFE7uoYdOKO3yjnKsaJpGJpulUathWRae75PJZFBET0pLNASPG0pZOuX7fqRiI5FKJjGSSfR1CHheELC0tNQW8YhHo5Lr5DsjxCNAsRQErBqzSMCkY+1wbJsLFy/SbDQ4cvgwZ8+f59DBg9RqNe5MTHD9+nU0XadcKjEwMBDt9DohHdg2Nu8DnO3FhYWwHlwcL76xWFNWI2REVcEvsV0XRdMinkgqmWyLGrZdW0ckyvM8fLEmu64bdhuKX3e8ScMjXDseq6HsdhvS6CiKEkqeEbKaGvU6qXQ6/JtKhQt0s9k2EC3Lolqvk0mlQkaVqpKODY6N6vsWFhfpL5fbin9lGynX81bVZ2IGSXpAbQN6vdBjtxxjEHDx0iVuXL/OjfxN6o2Q7n1q5RQ/e/CP8NrB17Ati9nZWe7dv8/9e/e4MzFBwjCi7ifDQ0NRZ/E2LzG6yPYi4PggjrzCmMarpmnQrS2RgOzCkEylyGazWJaF47rYrotdr0dhkDWTTIakfD9sEi1a4sQVgzqp4qqqojykh9vDDw860xoRhKNlGAaZXI5GvY5t23ieRzaXI5vJUKtUMEWfU+kIOoK74AjiGoRRqYxgmm5UZlBZWcHzvDZ9V0PXMaGt4D0+/ztl8eL/X8MzCN8AtLfnq9frfPjBB9i2zddeeSWaQ0PDw+zdtw+CgJWVFaamp5memuLKlStcuXKFYrEYciKGh0NGaMxAxh186fSvZywXFhbatKGjaJRwOLrt4hyhppTOZNBUFdOy8IOApmmi2nbItO9g2GuqGq2zllBXUgVRsxuj2I+PjUe4djzeHeUDoKgqWeENmq1W1Mg3lU6Hu6FGA4pFAqDZaERMVU3TSKXTpOPqN3Jb3uWLl15hpwyWoet4to3rOOiiruoBN7V67cpaCTr5OohecKdPc+/ePQ4dPswb995qO9R0c5qn+p8ikUyyZetWiqVSWM5hWSwsLITNZicngbBt2ODwMCNDQxSLxfYwhtSA7YKFhQWy2Wybs6GJEOp6qha2kK3TRH5Sz2RwRe7BFTq3tuOQSadXJ4uYgK4IaUkvMZvLhZT+jtZpkgGnPGKvsIcvL7pFG+KpD8MwyOZyNBoNPM+jVq2GpV6JBI5w1gr5PJ4QEGm1WiQTiXBHmsms6Xm73txfWlxEVdVVPgHtu6uoZCseRu1A2ytdFvjOtWNpcZEPP/yQRDLJq6+9Ri6XY7kzPaEoFEslsvk8Y2NjoZJRo8HM7Czjt29z7do1EqJt2JCQ5ewkLa65NvGMHVFCtmPHjrbfSTKN1yUaJWu2feHIyFC4ZdtRO716s0kqkSApVNggjEQFgrNii/KxpOCXyCiAbDQNHV1Ivgo7SggHYNe4dEeYLi3U41uNRph0F4u/Y9u0xANsiWL5VDJJqVhc25dRUSLGbCcirzDmIQWAqusg6v26hSw60Y1ZGv0uNtFsy+LDkydZWVnhhRdeYGzTJpT7naHUjs+LCVfu72doeJiDTz212sVgepob165x5dIlkqkUA0IlaKibkLsM3wQBM7OzDA0ORoNKqvlDaKy6SVK5to0PpGMLia5pYSscx6HZbOL6PvVGg3QqRSKRICDMF9uWhRcE0WIU+KHIfSS1J25aGmkpZNALv/bQCRmG6/a6dFI1TSOfz9NoNMLm5PV6xBFoNBokEwnqzSaWbaMoCvlCYU3uEthwwV1cWqJYKq2uLcqq/JxPKNP5oGYKa5jz4jgS8V3SvXv3OHXqFOVSiRdffDGKJq0Lse4kkkn6+/vDzklBwPLSUkgmnJnh7p07QEiAGejvZ2R0NDT8Xe47AObm5iAIGBwcXH1PEITC6GI+d96xGxNzkGuMItj1CcPANE0C34+0XGV3Id/3aYmmzYGwBYlEgnq9HknwaZoWEXkiLofIu37pRdFVVSWTz7OysrLmd9IDi4cJk4kEuqpSl3V+YhczNTNDsa8v3GmmUhTy+XWbFyuqGvW/jKMirqGvr69N0Dyh6zRFgrqrjmEMnaHkNTtK8W+r1VoNmXzta1HIpvPr7MxydgvdRl0Mtm7F9TyWFhfDDigzM9y5cwdFUegXhnVkeDjUjxWfr9frNBsNRg4fbmO7yZCGF4SCBEbsnuMecjcRAsMwyOXz1BsNXFH60RL1kZKNaxhGtNOXXrvvum2etDScrWYTz/cZFWSjHnoAGB4e5lPLYnlpicymTdHrUYlSTFFHMiybrRaWKDmzTJNqrRYpWEGokZrraP0WP25naYfE8soKQ4ODbcInELLzPZGWeGDXofi5uu2ExNy5dfMmly9fZvOWLTz7kE3aozRGPGeoiLZh/f0ceOopWmKnOTs3x42bN7ly9SrJZDIqW+t0uGdnZsiI7j7xY8p0VzcHJmqg0CUXKbuDaIZBo17H831qtVpUniPvQQo4AFH5nuO60THluqGpKkvLy4yMjT206PpnxWMzlJqmsWnTJqbv319Lo16HEKPpOoVCgVarFYZjTTMSyE2n03hCIGAjxHd98guoVKukM5k1TFipnO/7Pk6XMpHPBJEzuHDhAqlUitdee61joHUXE5bX2W3Axz6MqqoMDA4yMDjIwUOHqNfrzM7MMDs7y7WrV7l86RLpdDpi0dZqtbDVWKw5tTTCqqahxBSO5LU4gia/ESlKU1Vy2SytVotqtRoSI1SVTCpFOpNpYw3KQe94XpSL9ESiHmB+YYFkKsXWWL1cDz0MDw/jEu5sNsUMJcTybB0hzEw6jaHr0e6yZZosr6wwPDgYpXc2NDydIdEg1D+tVqvs3LFjTWjW0PUw7/k5hLk7GaC+73Pt+nWmpqbYv29fmCJ6yJ1SvCSuK4KAVDrN9u3b2b59O47jsCgc7pnZWe7evRsa1nKZYdGkenpmhrGxsfbDsEqg8QWPIVpnfR+7oyKhGxK6jpLLUa1WoxSNpmnkcrmQ2RozerquYwvClNykSAOt6TqLi4u88tprD/WMPg8e645y06ZNTFy7xuLSEkOxBTseHuyE9Liy2Sy1ahVTKGUEvk8yVhe50Xl9z2vLZ9Sq1Uj0oBOSUv4gQ7kmlt9x7VNTU5y/cIFSXx8vv/zyGi+zk//b5ibEj/UQE0RRFDKZDDt27mTHzp14rsvC4mJkOCdEfZFuGEyMjzM8MkIul1s1lIJGLruTyIkrtTA38pCDIAip4LYdyoaJbvGKoqxRIZKTxvf9sB9ezBvVNI2FhQV27Nz5QCnCHn64oOs65cFB5hcW2l5vm3Fd1g5Z5J7NZiPWfLPVwgfyDxC0kLsbBaK6w3qtBkHQde0wDCPq2fqghtEbsTUc2+bTTz9laXk5Uun6LIh21uvtrDqek6ZpkcN96PBhms0mc7OzzMzMRA637/vU63Wmp6YYHByM5rGc54hdvSL4DrYQQVdjYddu8EXNO4K9HH9unY65rusoIuolCVCylM8S6bidO3d+pmf1WfBYc5QjIyOYnsfczExkKANW6crdQh3NZjPsOmEYDA8NUanVqNdqYZ2fCL+mU6n1F1ffj9QhJKrVKqMdnqmEjJ87ztpGy3HE8wzhC8IDDQKuX7/OxUuXGB4e5tixY10NzZpyj9jR4qLIXXdy67DkJDRdjzqbQBhq/t73vkcqmeTy5ctcuHCBTDYbNpodGaEgQrSelAmknfbdbbBL5SPbsnBlkl3TKPf3h7lJQaDIxDQrVUVB1TQCod6hi+8QwkVtaWWFF195pdvj7uGHGJqmMTY2xsTVq2u0XRVFWSNPB+Fuo16vEwRhOyZVVak1GmGHIFVFZbVfajejIneq8riKooTt6YKAfLe8JuFiLh3MDWv5OuarXPjNVov333+fRrPJ00eOfGYjCbQJfXQ/dXs+dM1OPJNh+44dbN+xA891OX/+PBN37lCv1Th58mQYlervD2u+R0aiHLAn5n8AkWDDetE+1/Mi9rwUjckLxz1ae4OgrRRE1/VwjRLrkhcLt88vLGCItNSjwmM1lIZhMDI2xsSdOxw4eHDVe6C7l9Wo16NQRiabJZ/LhcLEolhYFRqhEQ05lWrvICJCifHdnuu6IQNunR2lpCDL5szreUTdrtf3fc6fO8fExAQ7d+5k27Zt606YNTTnLoaya9i1y7nj2rTd0Gw2CXyfEydOkEqnWZifj0Itt2/fRtM0+opFSqUS27Zti0SPIaahKyaULxLwUjdXFganUqmoVZGu67SaTVzPCzuUx3MNmhZ2J3BdfCFcrRC2Fgt8n3379nW9hx5+eKHrOlu3buXqhQvcvn2bffv2hQ62dOw6FnvPdak3GhHBJ5fLRYtqvdnE0HUCCLVgWy2SqRSpZDIkp7Cae+wMidZqNZKJxLqRJhlRcRynq9ymRCcJMCB0ZqWw+bFnnlnTVuphIa+269rRaSQfAE3XqdXrDA8Pc+LEiZBFKzsnCYc7nclEJSgyPOsJkQH5nOTa5IjIkxSKkRwGKVUK4VrWarXCxtJi7ZD5UMSOEohKeFRNY3x8nN27d39/qbIH4LEaSk3TePbZZ/nk7be5efMme/fti8IbcvckB3RLiHcDZLPZyIvMpNO0TBPPdRno74+S9bKfpKppJJPJqDclENVHApGXuZ5XCO2e4bqhg47J6bouJ0+eZG52lmeeeYZ+0eNyI63WNsS9TJn/eMjwSXg560+A2dlZMtlslCMdFt7gkSCgXq8zMz3N9PQ0N27c4Nq1a2SzWUr9/fSXSmzeHHYo8FwXW0jbydIbTVWjLgduLNeoilCwHPDNVotcNhvVXgXC4ModrO95XLt6lX3790eC+T30IKGJrj7bduzg6rVrbN+xo612N+5o+4KBLR022bqqkM9Tq9dDwloiQV+hEGk7m0LX1UgkSAo9126o1evkNlg3DMMARQnnwjpkwG715LOzs5z88ENyuRzHn39+w3XjQfA32lF2KUXZCLZlsbi4yNNPPw2Em5Wdu3axc9cuPM9jYX6e+/fvh6Vr9+6hnj5NeWCAcqnE0PBwVMbhiBKyyED6PglRFiKdkbgUqaIoNFstXM+jJfoVyzSOXGMcQQicmZ6mVqvx+37f7/tcz+th8dgNZT6fZ+u2beGA3769LSwpB7wUv4Xwy4kP3HyhwPLyMk2x48lmMmTS6Ui+zhVfSEuwLBOJRFsIoFarhcfZYMAnYp5hej3PMDbgWq0W73/wAY1Gg5dffpnBoaHoPOsP9weHXtfdUXbxDNfblROEzam7MUkVRSGfz5PP5xkZGaElnuH09DTzc3NM3r3LhQsXKPf3UyqX6S+XQzayYZDueK5rGmYroTRhENtZykVLXrmUDLt3/z6mZfG1r3993afVww8vFEFee+rgQU6/9x5Xr17l8OHD8TegEs6bpigbkztJCU0IeWuqSqPZZGxkhHQ6jSuIPqZp4omeqVLQOyH65Mr5WKtWQyb5OtA+BxlwfHycc+fOMTA4yPPPPw+EzvznNZQPzFF2YKOzzM3NEQQBIyKFE4emaQyPjFAul9mxcyfNVotqpcLU1FSbw13u76e/XKavWERVVZKiIUVk+GCNwIOu62TSaRrNZmhkdb2N7+DGQrbXr19n27Zta8hGP2g8Gi7tOpBhyF27dhH4PlevXm1/g6jtazabAF21FpOiybCqKNTF+xRCEeRSsUgmm40Gq2Xb1Op1VioVmuKh16pVkqnUhmzZuGcYLx+JQxqlSqXCW2+9heu6vPbaawzKHVGX8o441I5H38Z6e4ChXK/eqRsWFxdpNhqMxrqVdL0eXUc3DPrLZbZv387Ro0d59tln2b59O7Zlce3qVd5//30++eQTxm/fDmtRY9fc7UoVRSEtQieeqI+SobLA9yNP89atW+zctYvh4WE2b96Moih84xvf2PB6AS5evBiFyn/t137tge/v4csLXddJptPs2rOHmzdv0qjX29+gKFH9HRBpvsaRzWTQVTXSIJXHzeVyFIvFUIhD5MGapkmlUqFSrUYRrGq12rVvbhwJw0BVlDZh9W4IglCl6+zZs+zYuZOXTpyIwovh7XzOHeUGa0dX0ZcNznPv/n2KfX1R84ZukISpdCrF2NgYBw4c4Pjx4xw+coRCXx8zs7OcOXuWd955h0uXLjE1PR21ENwIeqwzidlqtV275I/cu38f0zR57vjxR75uPNYdpSzi1xIJ9uzZw5UrVxjbtGlVGinuEYqcYzdIb6Mp6vfinTDSgtzjimaftm3ji+Rxq9VicWmJTCYThlXXKXtQVTXMYzhOqE3Y7TqCsID/448+Ip/Ph/m/VCpSmVlXdosNXw6xQeh1PYWj9chQ9+7di0QJ1oPsZm6aJhXLisLg+XyeUrHI3r17CRSF+bk5ZgWF/MaNG+iGweDgICPDwwwMDXXVuVQVpc07lPVVtuNgJBJcv36dIAjYv38/6XSaF154gW9/+9ucOXNmw7wrwF/+y38Zz/PYtWsXf/Ev/sV139fDlx+JRALbttm6ZQvjExOcPXuWl19+OVJzcoTcmQKRs9wJQ0RDdM+jUqtRKpUiB08aTF86cLEG747rsiTSCEnRLGA9tr1hGKu9b9PpNTu7gJD4cvrUKe7du8eRI0fYtWsXQFsN4ecxk/G6zofdUa4Hx7aZmZ7mgOiu1PV8or7dtm2aon0eQdgpaCCbZUy05Gq2WszMzDA7M8P5c+c4T9iPc3RkhMHh4UhdrBOyI4lM30jipy2ETm7dvMmOnTsZGBh45OvGYzWUsmu257ps37GDmdlZTp48yeuvvUYmmw11GmVecgMvJim0XQFWKhX6u3S1loLemXQ6NJpCcadar1MoFKjV66vSbLqOIf6VD1iGX9czlLfHxzl/7lzUC65z4kRsuXXuYaPykA13lOvlGbq8Hvg+9+7dC72t2MSJN1t1XTesexLd2y3bJp1Mkstmo1CpxOZNm9gs2MIrKyvMCBr56TNn8H2fQl9fxKQtlkrR9UvvUCbyfc/DCQLuT00xOz3Nc88/TzqVQjcMXnzxRb797W9TqVS4fv36uuSe73znO/yX//JfAPjVX/3VR5rI7+GLRzKZjPgFzz/3HO++9x7nP/2Uo0ePgoxWECrSdOv4AWGILyP6WK6srJDP5dbkI1Uh6J0Ukmm2KEdrinZdqqZRFcXxct0wDCOKlum6HpZNrBN+tS2LDz74IFTpevFFNomQoSyPi2bw59hRRqmPLmz5IAja2m89CFNTU3i+H3EU5DFc140ca5lLdVwX23HQCL+nvkKhLWJXyOcp5PPs3bMHx3WZm5tjZmaGO3fvcu36dRRFYWhoKOqeFF9vU+k0rvjePdclUBQsy+L8+fNk0mkOHTpEMpV65OvGYzWUIAa8ZeF7HidOnOB7b77JBx98wKuvvkrLNEFs49dTWJAivFmxK6xUKhTy+XUT8FIRxjAMMoJtmUmno/rKqDs3tBlOVYQLCYK2+p4gCLh06RKXr1xh965dHDlypG1QylxhV1H09itr+18QrIZ4NzSU6+0oWRt+nZ+fx7QsxkZHsYQT4gm1HTkpZb5T13U0XScZBGSz2QeGmIrFIsVikQP792NaFjMzM9y/f5/x8XGuXrtGMpGImlQPDw+HfUVFs1zbcajX64wLBuPmsbGoE8mLL74YnePUqVNdB7zjOPyVv/JXAPj617/Oz/zMz2x4rT18+SHJOz6h9Nqxo0c5c/Ys+VyOzVu24HkeqmiKsB583ycpCDue77O0vMzwBuQxVVVJpVKkUimWl5aitl7S6NgiQkKrFa0zuqZF89ay7baFuF6v895772F1qHQB0bx+GE3sde9vg3UjYgd3vg5dd2CTk5P0l8vosjG1MJBxYy4JfYZhoFsWqVSKnOjatB4MXWfT2FjkICwvL4cO8+xsuBskXFuGheEslctRRMp1Xbwg4MaNG7iexyuvvBKRNx/1uvHYDWUqlaJereIK7+7ll17izTff5ORHH/HUwYOomhbFptcrwfB8n2wuF0meLS4tdU04d0IRIZpCPh/J4MnQius4URI+XsjqiC7qcof76YULTE1N8fSRI+zevbvrOdoG+7qh17WyVZF0VlwkvBPrTCTpccm8qud53B4fJy1YqS2Rz5UDXRpGXYidu55Ho9EIJ/xn2J0FQShavHXrVjZv3owrRKdlqGXy3j0g7GM30N9PMpmkWq9zb3KS4ZER9u3fH7XlAXjuueeitkWffPIJf/yP//E15/yH//Afcl14on/37/7dh77WHr68UBSFZDIZhkMdhx07dlCt1Th7/jwoCqVSKex6v56eNKst9ErlMstLSzQaDUzT3LCUQ8IWghrFvj6k7qxcNxwRlbFsGxtRw9loAOEuT9d1KpUKp0+fRtd1Xn/99TURM1lLuaarSPzfDkgDFwmKP6CGcj3Ed4qekAqdX1hgz549NOS6Id4n01KySYKqaQRCqFyyWR8K4r5KpRL5vj7279+PJTonSZGUa9evY+g6wyMjFItFPNdlem6OWrXKyydORBGvZDL5yNeNx24oDVG2EYjFvJDP88Lzz/PeBx+gqSpHjx4NDUQQdPWuXFF3pyihWr5lWTSbTZqtFhnRW3I9yCSynBhS+1Eu0nLwe2LQGIaBLTRMfc/jwoUL1Ot1Dh06RH9/P5VqNWLkxf+FcFJKtRt5vXF0hl59VsMv8Yku5eyCIAi7qAcBgefhit2u7/thv0fxPKPj+T6z09OMbdmCIpqfqpoWGcbOiSdZZNLwPRQ6wr1BEKCrKuVSiXKpxMEDBzBNM1T6mJ1lfHw8LAlRVTRd59lnnomeS07UtabTaY4cOcKZM2f45JNP1pxycXGRv/E3/gYAP/dzP8czzzzzcNfaw5ceyWQSu16PHNnDhw9TrVb59Px5nj52jO1S27jLuiHnj0LYczKTzeLV6ywuLUW7m43gxHrhyrCrruuQSoWGxvNwHSd0vlUVTdPC3FqzydLKStjyqq+Ppw4exLFtKq4blkspSqRMg0iJeL6PLtaByFXuTKuw6pTLdTIuVCKNZhAE4doi1gxflK744viB2BwE0WkCpqem8H2fgcFBVLF2aGLtWCP7JyJECqulHQ+F2P2ogjiZTCbZsmULW7ZswQ9CCdBZIeR+/949NF3HB/bu3Uu5v3+VS1EooBvGI103HruhVBSFRCoVCgU4DqqmMTAwwFMHDnD5yhVcz+PFF14IdzXxRZj2/o+KopBIJMjmcnj1OksdgsndYFkWKMq6DYcj0WRhOPP5PAtLS1SrVc6cOYPneTz77LPhOUWuTQ7YuNfnuS4N4VHKL1PuFiEMd6S9NCVKONgoqARmQLVSwRO1jVGIoyO57wdrNXHDtwUoQYAqqNTzCwvYrsuunTs3LIURH8YWJJ4HaeeuOWfna7TXraZSKbZt387WbduYmp7mk08+QQE2bd7clhMulkrRMV588UXOnDnDuXPn1siB/fIv/zIrKytks1l+5Vd+5aGvtYcvP5LJJBVVxRViF6qicPjQIT45dYqzp0+jKQpbt21rG3+wqv4lf1YUhWJfH81GA9u2qdVqD5wjpmWt64jLeROfO8lEgmq9zt07dxgfH2d0dJR9+/dHuzbkWhYzLH4QhHJsto0tOBJA+9oh/pWM/0ajEdUmSx6GYRhrGipHSkOS8BM3aGJ90jUNVVWZm59nYGBgQwKghO04Ue5zI13XzufV2UAiEhyQ/1cUyqVSRCY8efIkC4uLJBMJxkZHIwchl89H532U68ZjLQ+RSCaTBCIJrBAWj46MjvLsc8+xtLTEW2+9FQ6A2JfZubuUvykWi2iKgmPbVKvVDc8rDeWDdp7RORQFs9nk03PnUDSN115/nc2bN1MoFCj09ZHL58kKgfaEUAXSNA2lY8cm28P4olu35/sovoISKOCrKL6K54X6p57rhh1PYgw2cTHhjtAwSBpG6BWn02QzGfK5HMVCgb6+PvLZLJl0mumpKfrEdT4IMneoKAqJZPKh8iTxeshOBEGwhjx088YNTn7wAflcjm07dlAul6PzaJrWdp0y39BsNrl06VL0+uXLl/lH/+gfAfBX/+pffeS1Uz08WdB1HV20cZM6xADHjh1j85YtfHLqFJcvXVpNYwjIOr34qNZ0nb5iMew8sbKybhmYhGmapB5y3YBQ1/jG9evcHh9n7969vPjii5SKxXCOFgpks1ky2SypVIpEMhmycWOOYyB3i51rh/jriFSRJxTEPN/H8TwCsWOM98NUxNph6DrJZJJ0Ok02nSaXzVLI5+kTZJtsJoMvUllbt2x58E0K46woCsnPoM/cGRpv43jEjagg7rz9zjssLCwwMjrK1u3b0XQ9MoLxvqCPct147DtKCHcZVU3DE/VMUoFnZHiY8uuv8/4HH/Dmm29y4sQJyqVSG226s8uIqqr09fWxvLzMcqVCNpOJpKg6YZomBEEYal2PPSoQBAF3Jyc5deoUhXyepw4fjnqmyTDreoQjV0jsoSgUC4Wu127rFjWqOIroNpAMKORykeivpqrkC4W2HASwcV2n+J1pWUxPTXHw0CHUeHimW57D96OQtHwuUXPU9bBOKUrncSGcFOfPnWN8fJztO3dSLJUwbRtd06Jj9BWLbfcYT8x/8sknHDlyBIBvfetbuK7L5s2bo6R8Dz9cSKfT1JtNbMtCE31qpeJXvlDg8qVL1Ot1nnn22dVFt3Pci/8X8nnqtRqW47C8stKVPS9htlqUyuWQUCQUpbpB5vtOnjzJzNwcBw4cYFtMs1VRVTQZau0CTUTKksnkKlcjtm5EyjSOgyKc/nwuFxIRVRU3kSCTybQ1Q4b11w1oXzsmJibQdZ2xTZtCEYd1PxXmbQPPCzWcE4kHN7qHNZKi4qbarkX2pZWyfr7vc/jIESzbRtP1tnBzvKfwo1w3vpAdpaZppHM5AiUUwfVjxb/5fJ7XX3uNfD7P2++8w3XBcIqjM+dXyOdJGAaB77PUpd+lhGVZUW5Bsr3ikPF8z/e5cvUqH3/8MZs3b+bYs89i6HrYQuoh0DaJlLCxq2zrI8O7gQo2DjY2Dg6B6qMJj1IVObx4zhM2HuzxwXdnYgJFUdi+bVsbOaAbG86y7UivNZFIrK/w8xmhKErI8nv3XSYmJjh85EjYIT0IolyGzDXFw64Ae/bsiRiBp06dAuB3fud3+E//6T8B8Cu/8iuR09LDDxcymQxoWiQ9RxBEIcP9+/bxwgsvcH9qinfeeYdKpdI2ltcw0RUljEipKpVKZcNCeMuyIuOznpH0g4BGo8Gbb73F4tISL77wAqOjo9iW9XBzKmYQlXXWDbl+yXI0SchrWztideXw4PkcT+uMT0ywbetWdKGHq4i/aufGQuwmA8KNT6Sv/RD3+CD4nsfE7du8/fbb6LrO8ePHyYqWfZogD0n1pXwsEvUo140vxFBC2Dg1UJSwbEEQXuQuJplM8vLLL7Nzxw7Onz/P22+9FTV87lpnJIg9uqpSq9cjxlknLNOMiDtyIMpjyjyG77qcOXOGS5cuceDAAZ599tmQci7CAJ8FG6W11+T2xI19buaa+NcPAm6Pj7N5y5Y1JTMyp6iK4weeF0kFRv3fhMe88ck2Huye73Pt2jW++93v0mg2eemll8Lu6IjWO4I5J8UZSjGvUOKFF14AQs/QdV2+9a1vASEr9k/8iT+x8fX18JWFpmmkxGLXajaj0iaJTZs28dprr+E4Dm+88QaXLl6MSG7doiCZbJZ0Oo2macwvLHQd+77vYwpDCbRFaeS64fk+y8vLvPX22ziOw6uvvsro6Gikdxo52RvNnc8457tdp7y+tsM+4HPyiqbu38cyTXbu2LH2PWJnrorjWaLVoUzXSOLi50Lsemu1Gu+89x5nzp5lbGyMEy++iGEY+EEQpbZQwtK9TgcbHt268YUZSl3XSYgB79j2miJZTdM4cuQIr7/+OoHv88b3vsfFCxeiXUgn0ul0mNhVVRYXF7u2ybIdp60YWQE8QfWWihwffPghd+/e5bnnnuPAgQNh/F3stGQ5yYN8ooerheouOBDVQn1GZQ357OZmZ2k1m+Hubb3rCy8yFDgnDAfFRaY/Ty2X3KEvLi3xve99j0sXL7Jr925+9Ed/lHw+HxlpTbTikU5KOp3uSs+XYZQLFy7w9/7e34vkDv/u3/27n9mJ6OGrhVyhEHEcZLPx+JgtFot84xvfYP+BA9y4fp3vfve7zM/NRb/vHD/lUglD10MFnuXlNeeTxJioGwar410yxWdnZnjn7bdJpVK8/tprFETaRMriRYbyQWO3g7TzsIiHI7upAW14SvHv7fFx+gcGyK/TWSleIy53ySkhbP6g+9rwfsQafOX/z95/R0l2Zeed6O/68BHpXWVVlkFVwRQaBW8baMOhJIrsJilR0kgjieRjUxLnsWUWJS1q6WlRmtZoKPLNaIYUR5ymxCbFmUVSEpvdj90S27EJ17CFginvMstkpQ1vrn9/nHNuRtpCGwBVwP2wciErMuLGvRHnnn3O3t/+vhMn+NpXv0qn0+Hxxx/n3nvvTeZ7Q/a2m5K4BFDZIlX+Ts0b70mNUiFXKuHW6/i+j5PJbLKfiaKIgYEBPvLRj3L27FneOnGCy5cvc+DgQSa3EPkeqFTo9Xq4UvV+fIO+aRTHCUNM/ehApGl0Ox2ee/55Op2OEDbvM5ZWgcR1XXqeRy6b3XnwyZXmtlqtbB44CcV7m1Xh28X5CxcSy6ydEAQBbq9HDBRyuYT5ps7/24UfBBx/7TXOX7hApVzmqY9+NOl9SvzppIauIVNlAMPbNHyrAe95Hj//8z8PwF/4C3+Bx1O/yg88LMvCzOWg2xWL7A3pNHUv3X74MLumpnj11Vd5+umnmZiYYN/+/Zt2WIZpMjg4yPLSEo1Gg1w2uy5F1x+A4nitfUvtsi5cuMDx48eZmJhI+vkUHMdZ37B/A2yq371N9O/mNi6yb1Q71IBGs8nS0hIPPPDADd+rK+XkDNMU5L8bHf8GnIbl5WVefuUVWs0mhw4e5OChQxiy91u9j+owUO0puqYx3DdHK7xT88Z7Giiz2SwNxyGWOqD9A7j/g9V1nUOHDjE5NcUrL7/Ma8eOMTc7y5133CFsmfpqDkNDQyxcv06316NWr1Ppy2HHUZS4lYuni7x6rVrlueeeQ9d1nnzyyS29Km3HEWajnkckUzDbYoc6RvKUG+woN60K38YN1Gq3Wbh+nXuOHt3xeTEkAuW2ZSXkpx31IbchP3mex/nz5zl37hyu53H33Xezb98+MalEEZ1uFyBJAyf1DsT3Or4NA+2hhx5KbjDf93Ech1/8xV+8wSeQ4oOCXKlEa5vMkTKCB9Hi9eEPf5hLFy/y2uuvMz8/z/4DBzh4223r2sSy2Sz5QoGo2WRpZYVdtr3On1K1VSQtUbJ08/rrr3P27FkO7N/PkSNHNt1DSrbTk/KQlsxObYfvVOv123UNWfdaTePixYs4jnPDnlJf2u0BSUlK8R/U57TdJmAjlpeXOXX6NNfm56mUy3zsYx9LdrO+54n+TE0otXU7HZGRksceHR/fUo3tnZo33tNACZCtVKivroqt/IYAthHFQoEHH3yQ2bk5ZmdnefqZZxgcHOTwoUPCRkoSUiqVCtVajWq1SjaTEe0ocnu/8Uu8fv06L7zwAoVCgUcfeWTbHkulBRvIgbKTAsXbGewbd4xJoFQ7ym8zfQIwe/Eihmky3afPuBU8101SVlulPTcF+S2CZK/X49y5c5y/cIEwipjZs4f9+/evcxro9noJQzCbyVCv19fVlIaGh5O6z0aUpVrHyZMnAfjZn/3ZHdPJKT5YyOVyxNK4wO31yGYyawFyg6appmnM7N1LNp9ndnaW8+fPc/78efbu3cvBgwfJyraPQSlg0nNdllZWErUvVZrpP2YQBLzyyitclsLmW6l0KShFIdd1k6zKdlB8iW8X280bbwdBEDA7O8u+vXt3DLQxgv2riH9Jd4Hcae9EdOo/xsLCAqdOnWJleZlSqcSDDzzAZF8PfBgEdOUCW3lWqnYg07LQYNsF9js1b7zngbJQLBJL1/t2u01eaSluswoxDIOR4WEmJiZot9ucPn2a5557jnK5zKFDh5ienqZYKiXeikvLy4nFVBzH6wLU+QsXeP34ccbHx7n/gQduOMiUc0BXDvhtKeKsbxLeGptXXYlwMVsM+BvsKIMg4OKlS8zs2bNtewxIYoJsk8nkcutvDDnQY0AzDNHPuSFIdrpdzpw+zcVLl9B0nf379nHgwAHx2fSlljzXTVb7efk+vlyJqoL81A16tUZHRzl58iQjIyP8k3/yT3Z8booPHgqDg1SvXKHb61FQMmqy7LHxzlOLtf379nH77bdzWTrgnL9wgZk9ezh48CCFQmEtI9XtJrZaG4NQr9fj+W99i3qtxiOPPLKpxLMRlszaBNJkYbvFYf+5frvEnvi7KNnMzc4msoA7ode38N1uga3EAxTRJ2mNQwitnz59murqKpVKhYcffpjxiYlEIQhNS7JQMUIAIaN2k/Iz0XWdUrm8ZdZP4Z2YN97zQKnrOuXhYRoLC3Q6HTLKGURN0ls8X5PKG0pwe2VlhdOnT/PiSy/x1ltvsWfPHiYmJ5N0x9LSEiMjI4l8WhzHvPnmm5w9e5b9fSmTG7G2bNsW3nRSVehGuoY7hskNf1TEgP7r/HZw8dIlfN/nwG237fg8tVIzTHPL819Xp5SDMwxDYa81O8u1+XlM0+TQoUPs37dvS13YQMr+gUjPqBqDH4ZEiH6vcqm0rll4I1566SW++c1vAvALv/ALOxrmpvhgYmBggNriIoHv05GLbNieOKLrOrHMaBw6fJgDBw5w8eJFzpw5w6VLlxgfH2f37t0UikUa9TpLKysYhpGws3VNo9ls8uxzzxEGAR/+8IcT4Yzt9GUVMo5DS1rZ9RPntoJqyfh2oLxhN2Wi3ka/8+kzZ5jatWtH38kwDPEkpyEnOQ07QTcMQmnYfvnyZeZmZ2k0mwwPD/P4448zPDKCktrrF2xXWShd15M6sev7INtBAKamp7edH9+peeM9D5QAxXKZVrUqttydjthlsvVg0VRvoawZqLrko48+Sq1W48KFC5w5e5aTJ09SLJUolUqUBwZEX5D8Ul544QWuXbu2KWWyUfpq03trQoDX7xvwO2KHwbTRuBm2Z63dCFEUcfbMGXbt3p2kkbaC7/tC/B0o3EBlJI5jatUqly5d4vKVK7iuS6Vc5siRI+zZs2cdYWGdtmQUJQLstnSJj+NY7GI1DVOuCscnJrZ1fAGhoAFw11138alPfertfhQpPkAwTZN8uUxreRnPdbEtC0uOt60Cka7Lu07eZ4ZpcuC229i3bx9zc3Ncmp3lhW99S8hqDg1RqlRYgETert5o8K1vfYtMJsMTTz1Fvs8c+kaEFdu20btdEXB8/+3rKb9NxDKbsy6A7JCZU5i7fJlut8vDsq1iy2MjMkloQqpvS6m6vs/b9zyuXL3K5bk5FhYXMUyTyYkJjt5775r3MGsKXmrO7c9C5aSXp4Zo64s0DUvXyefz60QGNuKdmjduikBp2zbZYpHO6iphGOJ2u1jbpCd0TSg7RMjAtoEWfu+99/Khu+/m6rVrzM3NMTs3B7OzFMtlAlnPiOOYhx95ZBNz9u2s4jK2TbvTIZJszu2878QBdzjihr9FrO0oN5rO3mi1Ojs7S6/X49DBg9s+J45jsZvUNEHp3kYZpNvtcn1hgWvXrtFqtchmMszMzDA9Pb1tuiOOooQ23ul0EnaxkvwyNNEvC6CbJrlcjgEparwVPvvZz/Inf/IngFD8307FJEWKXKGA12ol5gWmaSamChuhTJ5VLVMFEd0wmNm7l5m9e2k1m1yanWV2dpb569cxpGNIFMe8fvw4wyMjPPTQQ+sCnRrHOyn2aPK+8yXb3P52BMTfBrZsK9uGgKcQxzGnT59mfHx825YQkJwG6byy3UI8jmOWl5c5efIk8/PzxHHM8PAwDzzwAOPbEG+S7ykWzkcbs1BAYoMYxTGGaTIyNrZt6vqdnDduikBpWRZWJoOTzQq1DU1DUy4XKgUooWkaXhDwS7/0S8xfu8bAwAC/9Mu/vO5D0XSdXVNTjIyO8i8/8xlWVlbI5nLs3bePwUqFoaEhmo0G1UyGcrm8bnDp8kbaDpquk7FturLWt1OgjKUbgHL4iOVgiwE7sClTJkD0ZWqeULJRRCHXdde5C+wkmXX6zBmmpqaSfsVNz0GIJyt6daZvoPmex9LiIotLSyxICxtN15manOSee+5hZGRknVrPlitUeUP2er3ENSWfyyXFfSXYrHwwJ6am1g32TqfDtWvXaDabfOELX+Azn/kMAD/90z/Nk08+ue3nmyJFJpPBLhTorq4ShaFwEerb6fVDl/2M/9O/+BcsLCwwNDzML/3SL615zQLZXI47br+d/fv385nPfIZer0e71+PQoUOMj46Sy2ZZXFhgZGRkXZ1O9QjvlJFyMhna0gB6p9JNjEilalLPNerr1wRxDyr7q063i2VZtDsdtFioXqmdmn4Dcs21a9doNZs7OmkEMnsWxzHZfk5DLEwcFpeWWFxYYHllhZ7rUiwWueOOO5ienk68QdUiuh/9CxWVogURC1TLiW4YYoGtCaGDQqHA4NBQ8rm9m/PGTREoQXwIgefRq1ZFjavTESkP+YGqL1w18T75xBP87u/9HisrKzzz9NM8+dRTwFozfRTH/Ntf/VXOnT+Prmn82I/9GI1mk16vh2FZnDhxgjfeeAPbcRgdGWF0dJTR0VHy+Xxi2rzdIMtkMqJWGQT4vi+UI2RQDKSfW6vVQtf1pL6xMR1kxAYWFkmjSKTh+b6wEdN1erKWGCFWqmafrJ0pRYE1TePy5ct02m0eeuihbdlybq9HKPuQMo7D0tISi4uLLC4uUltdFb2UxSLDQ0PM7N3LyMgIxQ2TTX+zsRrk/Sv3Tre7RhvP5ZIdaxzH+FJ9KQxDJvbsoVyprOtT+53f+Z1NaZIHH3ww9ZpMcUNkMhksxyEsFHA7HSGkYZpbpjY1XcexbT7+8Y/zO7/zOywvL/P000/z1FNPrWv9iOKYf/tv/y3nL1zAsW3+4l/8i9TrdcqVCqurq4LIpgkHktHRUUZGRxkZHk5EzbdLd2qaJhbZvR4918W27YSNr/osm61W4olrbiTlKaKSpiXEuUimcgOZslS/K8UgpRttyPnDlHNIHMecOnWKkdFRBgYHt+zxTLJQgGXbhEHA7LVrYu5YWsLt9UQ/4/Awe2ZmKJfLjI+NbdrJKWJjv9h50jcufXCjOEY3jCS4GlILutftit2kprF7714KhUIyj76b88ZNEyiz2SxtxyEulfClzVSn0yGXz29KieqGwYMPPcTXvv51FhYW+MIXvsATTzyBZhiJ59x//I//kZdfeQWAv/pX/yqPP/44zz77LHEcs3fvXh568EGajQYLMmC8euwYxDG5XI7KwICobUr3DWUQmry/vOFarRbVWo2M46wbaIHvJ31XQBLU+neIgRHQpImHj45GaAbYloWOsOgxTVPswKIIdF30f0qVip7nJcXtU6dOMTo6SqVcxt8w2IMgoFqtsri0RLvZpNXp0KjVCKX32+joKPv27mVYrpQ73a5Ie2/DmlWr5jAIhEOKvL5ut5ukVnPZ7LqeSRDO7nEsxOinpqcpFovrPs9XX30VEKzimZkZfuzHfoyf+7mf27HemiKFQrFYxPc8ApnR6Ha7GLqOqXZX8nmGvPceeugh/ut//a+srKzwh5//PE888UQiNQfr544f+7Ef4+GHH+aPv/pVKpUKe/fuJes4LC4tsbS0xOXLlzl95gy6YTBQLieMzHK5TLlc3pRydByHdqeDL0UIdG09MzSKonXMd6X3bMi0MYj7yuszMnBsG18uDBx5zWHfcSLpQOJKswZd06hWq9RrNR5/4oktP9NOu83C0hL1Wo1Wu02j0RDcgzimMjDAzO7djIyOMiRLKM1GA196bO6IvnRwFEW0VKnGMCjIHasOyQJCaYHv2b+fXC63ri78bs4bN02g1DSNYrHIqu+j2zZRGCZN8dlcbl2uXYkA/8AP/AD//t//e5aWlvjTp5/mw088gQb80Ze/zH/74z8G4Af+3J/jz3z/9wNi11StVgnDkOXlZcbkF33H7bfj+z7LKyssLy9Tr9e5eP48HddFk7nxSqVCuVSiUCwmrDW3r9lZGSKbfas227YpFItb1gliI8bFxcdHQyPWhRO6oesUCoVkNRlBYq8TSRuuIAiINI35+XlarRb79u9nfn6ebrcrBnW9Tq3RoN1sJoyyfD7PQKXCrqkpRkdHNwWrpKGanWu1URQl6v4gWGrKky4rrcaU4zkI3ddOp0MQBBy6/fbE5qcfv/Zrv8av/dqvvd2hkiLFOiirKkolgkaD0PdptVqUSqW1AKhpQjhc7rI++clP8hu/8RusrKzwzW9+kw8/+SQ6W88dyT0RRdTqdYyBAXZPT7N7epo4Fv6xi0tL1GTv9uylS8JYHVGCqFQqlEolctLZKAgCwjhG933xmGTiGqaZ7GwLhcKOZDf1N9uyhH2W1EFVgUQFXWXFldhzSQnOs+fOUa5UCMMw4SM0mk2a9Tr1RiPpW7RMk3KpxOTkJMNDQwyPjGwqN6n0MGzPONYQwgaKUKnaARXDVQVJTdWQgWa7LRbY2SzTe/ZsmrPezXnjpgmUIAe8bUMUEbZaSU+Npuvr6mqGYaAhhG6/9OUvc31+nj/8/Od57LHHeOmll/h//u//G4BHH3mEv/JX/sra8R1HuIfrOn4QcH1xkfHRUQzDwLIsJsbHk55LEH1D1VqNer3OarXKwuIi5y5eJPQ8Qk2anZommUyGQi5HVv5YsinWkjtNtTI0ZCBU59+PKCZxN3c9j16vRyjTuWEY4rkunW6XXq8n6ibtNqurq6BpHD9+nDgWLuuWdGAZGx0lNzNDVvpVbhxk/UjSqaq+skNdQ1kbqZqkJ3e3WTVZxXHyHE3TaDQaBFFEsVJheGRkx/NIkeI7RalUYtnzMLJZAskubTQalMvltVKBpmFYFqHv88ijj/JHX/pSMnc8/vjjvLjN3KFBomBlaBorUg+2JMdysVhcZ/wcxTHNZjMJnLVqlfPnz4tyjSS+KTutnFQESjSPNS3J2liOI3bGUvJRmbJvvH/CKCKQpZVOpyOCYhQRyFJOr9ej2+vR7XbpdDrU6/WkJvjc888nu89cLke5VGLf/v1kHId8oUC5VNqx71PTNOH3uQ3TuO+J6HGcOL+odKsGImMnGa4qAxDHMW1J0rrrzjsxTfM9zTDdVIESBHN1eXmZOJsllC4g7XYbQ0pBgWhEBTFAfvRHfoRf/dVfZWFxkd/8zd9M0qt33HknP/2pT60LSLZtE/o+I6OjLC0tEWwIlhvhOA4DAwM4jsPQyIiofUr/RmXzU6/X6fZ6BL7Pyuoq7tWr9KRgsHrviIileIW21iKWxb639LeItEiSe2JePPsijdMN0CJ6sUuRIqPRKIa2Fph0XSebyZDN5fB9nzAMOXjwIJVKJamP6LKZ35X9SJZtr8vrbwWV/kmYc1s9Vz6m9sbKTR3EAseQ7Te6rC1oiCJ9q90mAvbu20deGtWmSPG9hm3bFItFmlGE7vvEctHZaDQSgXJVrtBkBuRHf/RH+ZX/4/9geWWFz33uczz9zDPEUcQdd9215dxhmibFQoFWq8VKtUocRVv26emaRiGfFzulQoGpXbtEKjEIcD2PIAhotlq0Wy3cXo9up8NKtYrb7SYi4DGspSnVQhYS30nFF/j6178u5hCVlpVZocSHU/7ftm0ymQzZTAbP88jn8xw8eFC0rRiGSO32yU5aMjDdKEj267zuxPhV5xP21yQ1TYie9M0tigvRarfxfJ/y4CBDQ0MMDAy8pwvsmy5QmqbJwMAAq6urRJ4n6nKaaPQtlkqY0pdN13XCMOSBBx5g9549XLx4MaEG79mzh7/39/7epmK4Ld3RDV1ndGSERRUsFxYYHR1dV5sLgoCOHLiK2ONkMjjyGCqo9Ho9QbzRNMpyhdlzXaqrq4AIIv/7yV/luaXnNl2rqjhoMcxr83SMDgEhNcSK9fGJx/nbh34awzCwbTvxi3Q9jz/+b/+Nffv2cdddd607Zz8IaLXbIsUSxxhScm+jkSuQ3ET9NRK1E1z3NNaCvirw+316j6ZlJTvnpP6AqE32ej3GJycZHR3dUU0jRYrvFsViEd/36YSh4CrILEur1aJQLKJJIpwGBGHIww8/zB9+/vPMzs0lc8fumRn+3t/9u5vmDsu28T2PoaEhdF2n0WiwWq8TAQP9etJxTM916Xa7glcQRRiWRcZxMPus5YhjGo0GURSJckQmQxzHrNZqdLtd4Vik64Qyo6R2iaG8tmazyekzZ7jt4MFkA6ECm/KkVD+ZTCZpOTt95gyLCws8+pGPUJACDXEcJwv/Wr2O0km1bXtrUhEbeqfFA1v3vcsAjyb8ZzudDkohLZfLrc03KsDL19XqdTRNY2ZmhqGhoR3T0O8GbrpACWInVyqVqPo+kRRLjzWNVrNJoVgU7gGWlaQmn3rqKS5evAgIrb+f+7mfIye36f3FfPVh+7I2MDY6yuLSEn4QsLC4yNjoKKZhCFaaVKGI45hcNivSihL9q6iM4yTaqb1ej2w2m/QQGoZBaAdbBsmNMBA72og1Qs4zi8/yd+/9WbLm+l3YyZMniYHbb7993eP9ldBcLiduUtPE8308ec1qN07/ilMhirZMofT3iXU6HUK56s3KVHkgXc4VYxCZjlleXcXJZJjatSsp+qdI8U5iYGBAkEDU3BHHeL5Pq9kkXygkmSO1c3vqIx/hc5/7HCDmjn+o5o4N94Zj24kLjtrd1BsN6rUaSJcjlUFRfALDNMkVChjamvJMAk0TBMZ2W7SZOY5Ix5omuiStqFaPrVCt1Th95gy7pqbQJYkxXyiIxf6GnZ5Cz3U5ffo0e/ftS4IkrAW6KAzJOA6BTPGiabTbbSzbJivNmRUi6SEMcj5ULHj1mMyAJRkoz6Mn072GYZDNZpN65EYOR7PRoNftMjY5yeTk5E2RhXrP/ChvhHw+T7FcRrcs0VcUhkRxTKvZxOv1xICPY+avX+c//af/lLzOdd3NqjHyd5VGUJRn27YZHRkRJsJhyPz8PNVaLakPWqZJqVQik8kkgWAT5IAHMRDDvgEEULAKOMaNv2gVKMO+QFlxKmQ2BMlmq8XFCxc4dOjQprSIulFB3NhDg4Pkc7kkldqWfZrxFkFSLQo2tuIoBEFAq9USQVLTyOXzCb1dpUsi+XnEUcTS8jJhEDA8OsrevXu/I7HmFCm+XWiaxuDgIGY2m7R5RVGUBEuQTflRxLWrV/kv/+W/JK9N5o4tFnQZaZelUKlUKJfLGLpOvdFgYWGBeqOR1ApzuRylYhHTMNYLIPTdc5YUFtc0LWkH6y9xvB0pu37pS7Vr3C64njx5Eg04fPjwpr/1ej18eW9XymUq5TKOFEUIfF+UUFTLXN/mA8TiuD8TFUMSJFUGSgVJ07JEC55i8cZrBtggvoOl5WWcXI7de/bc0C7w3cJNPXuVSiXyg4MoG5ckWEoWZbvV4td//dcT8WIQX/gXv/jFdcfpt9zRNI1Gq5X8zbZtxsfGMA2DTrfL/MICvV6PfD5PPp9fp5KjbRMsLVm/0DRt3c0EYOkWf37vD9zwWrcKlJ/c+0Ob3u/NN98kk8mwf//+dY9HUUS71RIEI8MgL/UYLcuiKFeamq6LQStF0de9XoohaH2UdBVQXdelLclVumEkjLzkxug7VhSG1Op1ms0muUKBw4cPp20eKd5VGIbB8OgoutylKQaoLxd7aBqtTof/7//6v9JsNrefO2Q7ieozbjYa68Z6pVymUqkQRRFLKyusVKtoCJLPxkVsslDcEITVveF6XiLWAST3543kLJM2NE1b28FtESgbzSYXL17k0OHDm87Nc11cyavISa1tTdfJ5nKi1irngla7nfRr9iNSBKU+r0j1mXfa7bVWlkxmXZBUvd3qM+m5LovLy8RRxPjExKY57r3ETR0oNU1jcGiIokx16DJnH0cRrVaL//v/+X+o12rksln+4T/6R9x3330AfPWrX6W60alc00QAyedpNRqb3icnV6DEsWiel1/uVue05YpTDXhJ9IG1VOiPHfjRG+4qVaAMZKAs2EV+YObPrXvOtfl55ufnuevIkXXkI0VRjxGDVAXJ5JylRmIuk0HTdTzJqu1HGEXEfWQgVS/odLvJate0LAqFglg8yJWg2kXC2q6z3mhgWBYHDx9m8gb+dilSvBOwLIvRqSlM207IL6rW12m3+e3/+B9pNZsYhsE/usHcoWkapVIJ3/dxN8wLjuOI+r88fluyTrfCViQ50zSxbBtd00T9Tj6e/P8GRg3hht3kVuWNGDh27Bi5XI59+/at+5vn+8n7ZhxnXYkJ5A6wUMCUx293OpvUh0LJeu1XOArlXBD0ZaAysg6L6g9X5xfHdDsdmvU6brdLZXCQD33oQ+95XbIfN3WgVBgYG6M0MIAuqdOe7/O7v/u7XF9YIJfP81Of+hQze/bwyR/+YZFm8Tw+/wd/sPlAmka5XKbRFygjGXQBhoeHGRwYwDAMVqpVlldWtpSk0rbIq5vS7VvXdbpS8kk9p+JU+MS+H9zxGtd2lCLI/vC+T5Az13ZifhDw2rFjjI2NsavPbzKOYzpbUK03X7qG7ThJsHSls0ryOUjyg7rhQkUKkhNDJpMRsnSsJ/3EUlrLdV3a7TZtWazfs3cvt93AySRFincSlm0zMj2NJWtuuiY0h3/3936PRr2O7Th8+tOfZs+ePXzik59MSCxbzR2lUglku5OC63l0Oh2ymQwT4+NkMxl83+e6zEptha0yUllZE1UpYmBtR7nNwlxBBdL+ILURFy9eZGVlhXvvvXfdAjsIArpS2tKxrK1rgbKPPJ/Pi2CpaSIN20cAVC0vmlyQuL0erXZb9EzKzUl/vTVh5SLmnU6nQ891abXbFEol7vrQh246t6BbIlAClEZHKVUq6LrOl/7oj7h44QK6pvF9H/84ExMT+L7P7ulp7rv/fsIw5Otf/zqLCwubjlMul2nIWgWIemUgLb1KpRJjY2OUSyUMXafVarGwuLhJ8SZxMNmArAxCkQwc/YP2R/f/CBlj6xSkCpKx/K9g5fnBmT+/7jnHjx8nCEOOHj2aPKaCZCDTprl8frPY+QZmqy0ZdioNq9IfESRi5t1ul1arRdRfj5SuDP3XFMVxQvfu9XpEUkljYtcuDh48eFMU4VN8sGE5DkOTk4Ixrut8+Utf4vLcHGEY8uf+3J9jevduAGb27OG+++4jCEO+/o1vsLi4uO44xUIB0zBoNpuJaowyAHAyGSoDA4yPjQlWfByLmmW9vul8NDbvLHVdX0vBSn7Extdsh8QCrE+DtR/tToc33nyTmZkZRkZGksdVLyOatn2PogrSsiTTX4pSWab+VLTKbKnSjmlZSZvMxrppINvs1K6z2+2ScRz233bbuo3AzYJbJlDquk5+eJivfOUrvPDii3iex6OPPsqB227DDwJWVlbwPI+/8KM/mmis/t7v/74oNPft7kqlEj3Z9pEI/kbRWu4cUagfHhrCNAyxQrx+fd0KUYOkbto/MDVdT8TAXdnnqFBxynxy/w9teW0b65Of3PcJ8uaaFurC4iJzc3McOXIkGdBxHNPuC5L5XG5LGvcmZisiXWSZJrqsyyrqti8V/FXaWaVatzxuLCQGW61WUlvp9XoMj44yPT297qZMkeK9hJ3LURke5htf/zovvfQSPdflkYcf5sD+/bSaTeqNBmEU8SM/8iOJaszv/e7vrp/cNSEs0Gg20XRdsL+lSpXSJ7Usi/HxcXK5HLquU63XWVpeXp+V0tZrVys4joMp6/7b7Ua3gjpHwzAEs3YDQe/YsWPYprmujcz3fcE5kOnSjaUadZ5sDNjKI1LT8OV8EUiGrzpmGIag62RyuYTZuvFaVZBW16lqnJN79rB79+6t55v3GLdMoAT43Oc+x8/9039KvV7n6L338rGPf5xCoSC+pE6HVrudOGdrmsbzzz/P5bk5sQKUAVNJPKmVT4zYZW38cnK5nLCHMU2IomSFqL5UBV3XRSpWwrQsbNvG0DS63e66m+1HDvwIWXOzOWp/fTJv5vjzfbvJIAh49dVXGR4eZmZmBiCRf1K1gRvJXW2FbDabKGAo1Z9utytuNFnIz/UxZoF1tchGqyUkBhEyV67nkcnlGJuYuClXhCk+2Pid3/99/s2//be0mk3uuecePvKRj2DZdmJg0Gw0GB0d5eGHHiKOY55/4QXm5uYSGbgYschuNpvJIps43mRirGkaI8PDghEr647zCwtJbVMtstX/+5GTgSUMQ+GipI65w3WpxfjGeQhgbm6OxcVFjh49uq41rt1uE2vCW3KjjrW6hqR9bAMM6T6k6bpQ5nLdRKIy1rRkF7mljVgs1LyazeaaYplpiiyUbAXZycz9vcQtEyi/9KUv8bf+1t9ipVYjW6nw4z/+45SKRQr5fOJ0Ua/VaLfbfPz7vk+QazSN3//93wdIgkJRmkIvLCyIekAcb5sitCyLsbEx4YahadTqdZGK7avtwWZmWk7uKpWor8rJF4w8n9y3eVdpyHbWkIAf2v8JinYxGaRvnThBz3W5V6ZcoyhKCANxHItCu2mur03coF9RKfjYloUfBCytria1SMdxBEtWpXC3aBFpyzYRXdfJZDJ4rivMWaen2bt3b5pyTXFTQc0dx956i6ndu/nxH/9x8oUC+VxOmAG02yJYNpv8mT/zZ7BsG+KY35NzB4haYLFUYmVlha5KuUp91a1QLpcZGRnBNAxCmZWqVqvr7tONwVI3DDIyWKqSUH+5Q80jSfDuZ7z2369yV/r68eNMT08zJmU5Pc8T6VbE4jYng+TGuua2Zs9yJ+zYNrFsRavVaoRBIHpGs1nRjraRIxHHuL0ejWYzSS1bckPRajQYGR9nfHLypl5ga/GNLLBvUnidDr1GA03TaLdaQpJOpkJi+UUoenNS6JaX+syzz+L7PkfuugvdMESglQNmu6Z4pd0YxbFo7i0WKSvRZYmkwC37CDvdLoV8nkI+n7iCt/02P/7Vn6AdiAHrhyED8QAmBp7h8evf939StIRu5Pz8PM8//zx3HznC/gMH1gkJA+LalHh6FBFu0au1DmqlGMe4nke706HZbuP1eliS3Vbq06xUUCnqsI/Na5gmjuOIzwTYNT3N3n37broifIoU/YiiiM7qKpFkzy8uLdFqtRJbJ6UrXSgURBtFX69fs9nkj7/yFT50992UKhVRt5RtYdtBOfh0pV2UbhgMVCqbFpOJ0peUswMhqF4oFNbVChWq1Spf/cpXeOCBByhXKuu0ZuM45plnnqHRaPDxj3888bdVxu2WNE9X5636J7edN/qOG8ldoRJO91yXTDbL4MBAonrUz9j1JGmwn71rZzJowOLyMsOjo0xMTrJ///6butf65j2zG8DO5XCKRSKZTh0YHEx6gBzHwfd9GvU6S0tLyVYfAE1jbGyM1dVVgiDAMk2hai+Pm5gs9/2A6MGcmJggJxV3mvX6JnabYoFGMvdvmqYocHc6QjgYKNgFfnjfJ9deA5gy9fpn9n5/EiTb7TYvv/wyExMTHFBBUlHPNU20aah0sap5SIWMTZCM2EhaENUbDSE2r2mJz6Vj22T7qeFxLBqN+3aQINLU+UKBXDYrBM/DkMlduxI/uhQpbmbouk5ucBBN9goODQ4m0phZ2SLW7nRYXllhdXUVV97fmqZRLJXIZbMsr6wkhgjAurlCBRP1u2majIyMMCQ5D2EQsLCwICQ6NzLqo4gwihKpzTCKEnGUjU3+/VA2fgonT55keWmJhx58EKc/SCLE3fuDZNLHuHHeUKxb+U/f9+lIuy3P80RftqZhWxYZ207kP2NEgOz1ejRVeUs6hGRzOSElCCwvLzM0PMzY+PgtIUhyc5/dDeDk8ziFAlEsZOYs28aR4silUglT1s5Wq1WuLyxQq9UIfJ/JiQniOGZpZWUt2EhsFBVQAzaSzfZDw8NC+UPa5SSDPgyTIKlen5HtIhpC1Z84Jo4ifnDvD2JqYoep6pOg8SP7fxgQdYcXXngBx7Z54P778aWIciyp2qVicX3KRxIQknNWN6ysrUQIO6xmo0HPdRNB4mwmk+y4w0jYfCnmaqPZFHVQGSAtx6FcLguXc01jtVrFdV2mpqfZvXv3TaOgkSLFjaDrOvnBQZCelflsFkdaxA1UKkLCTjbYLy0tsbC4mNy/o2NjLC0vb5tyVVAN92rhncvlGJ+YSEiDrXaba/PzifapEvxQwgE52XPoyl0bsG1JRZdi5gDX5+c5feoUd951F0PDw7Q7HXq9XsKsVWRDFXjjKFoj7aiMWLwmrK5EGlrtNp6aC0yTkhQxiTVNWOvJhXVbBlNXBUjDIJfPUyyVMAwD13VZXl6mNDDAmBQVuBnJOxtx85/hDZApFNB1nU69TiaTodvr4fs+pVKJbDabWMt4vk+j2aTVapHJZMjlclRXV9E2NOBuhKoj9O8us7kcY5bFarVKt9MRmo+NBsVSiZJMlajX5HM5sROUq8NsLkfRLvDI+MM8Pf90EigPDh6gaAmFkNdee41Ws8mHn3wSXzoOAAlDTd0YSnQZtYqFdf1Xyp7Ld11UGNU1TQg0WxaG1LWNZUBt9+m4gqi92rK/SvVzdXs9VpaXsR2H6b172bVrF8PDw9+jbzNFincHuq5TGB6mW62KecN1icIQI5NhaHhYzBvttug3lso1prSwcy9epNvtJnyHjeFLW3uTRP9YlXUGBwdxHIfVapXQ95mfn8fJZCj3SWXGsrXCNk3cXo9Or5dY9Ik30Nb935QiIe12m5defpnxiQn27dsnFtcyCGZzuaR1Jal7RtHa7/JxlTr1PQ9P2nQp2KaJIwXWY0SGypfPaTSb69KrqjRjW1ZS1lJiJCNjYwyPjrJv375bIkjC+yBQgkjDGspM2XUJwhDXdRND10KhkKQCFMMzn8+zLM1Wi6USlnTm2Iq6DWs7TZVaMA2D4aEhOtksy8vLBEFAvVaj2WhQkrtcEDdJNpul1WrRlSkIx3H4ux/6WS7WLrFQW2QwO8in7voUcRxz8dIlLl26xNGjR4UwgOtCLMxLlcNAsvIE0VCirRmihmGI5/v4nreuH0sFSMu2E+cV13VpNpu0Ox3y2WwSJE1pBms7jnAbl59Hs9mkWq1SGRpidHyc6enp1BEkxS0LXdfJDw1htFp0JXuz2+1SNE1B9Mnl8DyPrmTUB0EgvCGB2dlZ8rlcYjG3FdQsoiTdQMwvmUyGibExVqtVsftyXRaXlnAch3wul2SDspaF32fLVSwURA+3chGRC2RN+us+//zzWKbJkSNHaDSbQp9almlUGQhEGjGCdeekaRpBGOJ7XmLarKACpDqGUiBqdToEsg1OQy6sbVuYVqj3k3PS0tISURwzvWcPI1I05VYJkvA+CZQgVjDF0VECYHVxkXanIxhaMv2ptFtdz6PVbFIpl7l+/TpXrl5lsNtNFO2VebS+hbkyyMGvRI7DENtxGJ+YoN1q0ZD9WDWZx89mMmSzWWzbJpvN0uv1EiNqx7D5V/d+hj/+6ld54Pb7KWaKrKyucvy119izZw+Dg4PJCi3f18u4MYiroOdtsQIEkSaxbFvUR2TtIAiCJC3UkyQD23HEtUuD2n6mXRTHSb1mYvduhoeH2b17tzDZTpHiFkemUGDEspifnaXX7QpLv2JRLGotC2dggFKpRLfbpSoX1ouLi4xKH1vl9ZiRlnNbtX6sC5q6ThjHVCoVcvk8zUaDdrst1K06HZAM22KxSC6XE+If0rlH9TyqUovqU3z15ZdpNps88sgj+L6PLoUENrV4iRehy8AYyFYU3/OSxb06T9u2kx1h4Pu4cu6IEQYLyiFFPc+0rGRHrM6t1+uxvLxMNp9ndGKCqampW7LH+n0TKEEEjaHxcdA0VhcXacrm4H6fSce2cYaGyGQyXL12jcXFRYaGhsSqTaZmDdMUrNlMBsuyhLGpYSQDrp/ZpSF0FgvFIvlCgVazSbPZJIpj6s0mfhAwODBANpcjlKmKdrtNsVBYJ+nUajR49rnnqFQqzOzdm1xPbgshAbWqU8dTriUKRp8fnUqjdDcEUBAFet0wyFsWQ4ODiYJGQmyKhfJPo9nEsix27d3LxMQEY2NjN33xPUWKbweW4zCxdy/XLl3C63RoNJuUpImCFsfJYjuXy9HtdHj51VdpNpuUy2XhSSvrgJbcfTmOI+5BXReLbjV3qMxUX6uFPTREsVSiXq/TabfpeB69lZWknU0FyyAIRPYnl0vud03Xef34ca5cucKRu+8mIwl5TiYj+h03BMlYEoaCIMB1XTzfTwKkIigpx5NAylhu1RjhhyGmZPAW8vn1GrVSkKAhFwDDY2MMj4ywZ88e0Xd6C+J9FSgVhsbGiDWN2uIidZkKtSxLpC3kczLZLPsPHOC1V18VKY98nm6ng+t5hEFA4Pt0Ox0x0GV9wLKsdYFTWWoplZ4Y0T9VKBRYWlqiXq8TBgG1ep1avZ4Ip5umSVOaK4MQUn/9tdfI5XIcOXIEU77XOgq3THEEYZg0OwMJESAMQ3GecrWp1DL6oUvjWtOyMGSa2jCMJKWjBnkcC9UdxWotlcuMT02xa9euNNWa4n0Ly7KYnJnh2uwsruytzOVyCXFH7d4mJyepnD/P8tISBw8doicJM57vJxrKmq6LuUPec5ZcfKvFayQDpfpxbJuRkRHcYpFr167Rc1160unHNAxsx0l2kV0pFxnHMVcuX+bq1ascOnyY0ZERwYjP5ZJ2tEgGxVDOG/1qYaGcI9S5qhTuxqwUkFyDIkgaug62Ta4vSIJoNWk2GrTl3Dm1ezejt2CqdSNu3TO/AYZGRoiB+vIyLbmDUzRqFdgmx8c5Vyhw9uxZHnv0UXK5HFEY4sogGfg+QRQRBgG+TFsqFxNDytvpcoAZss1C07QkjatLOnjg+wR92pBhEIhCvawFnDp1CsuyOHLkCGgahmkSyb4tNdBVg7GinyNXuWrwGaqHqS/tYRiGCOryebqsr6jCv+t5CW1b1TnbnY5QH5Ei6SOjoxw4dIiRkZF0F5nifQ/LspjYvZvrV67Qazah10tM4FXNz3Ec9u3bx7Fjx2g1GgwND1OK4yS705MaylEY4gcBniTj6TJwqtRp/1yi5iZd1ykWi4n8W7fbxZMBTdUlc9ksrXYbTdO4eu0a+/bvF0ESQezp9HrQ6RCEoRAs7xMoCOM4CeD9cxeI3aYmz1PNZ6rNrZ+j0axWCaOIrGyV0zQhgVmr1URpCVHXnDl4kN27d68zib5V8b4NlJqmMTQ8LPwrV1ZoNBrkcjmcPnHvjDQHfevECWr1OpVyWQQ5KRKsKM9qF6cK66EMnl7/Ck2uEHXJDg2CAN/3MaT7+JWrV1mS5KFarUYgi/q24zA0NMTuyUla7TaO46z1TvXhj770JY699hqHbruNH/8bf2Od+HkYhiIwmua6Gw9kbWRDn1QYhjQaDUEYyGaF4fPqqqhfhiE6YBkGB++4g723CH07RYrvFWzbZmRigiVdx200aAaBaKtQogSaxsT4OGfyeU6ePs1jQ0NCylGqzRQLBVEakVqovu/jeZ7I/Mg5xfW8tZ2YJOSo0k6v202YqNeuX2dxYYFqtUq9XscPAkzbZnBwkGw2S0kG1U63u84NSOGPvvxljr/2GgcPHuR/+Gt/jWxfGjiWi23dMJJ+auVF298m18/sbXc6eNIdKZPN0m63hcet6yba16VKhaMPPHDTytF9J3hfz4C6rjMyMoJlWTSrVTrtNr7vC5cNXccAdu/ezbnz53n5lVd46sknxQqpL2dvy3SrCjaRZJyplaLreURBwDe++U2e/tM/5e/8nb9DsVhMaogAn/2N31h3TrlMhnyhQMay0HWdSqFAGAsn8MD3cWQAdaSXnmkY3HnHHXz1a1/jpXqdv/WpTyU0bRCecutqERsbiPt+jxGqHo1mE9d1E/ePfrLByNgYd919N8U0zZriA4psNsvYxAQrlkW30aDRbCYLbeKYbC7HzMwMb77xBhcvXmTv3r3iHpItFqZhiJRp3zFDmdYMgoB2t0sURXz9G9/gT7/5TX7mZ36GkhRQAbGY/e3f+q3E2UhD2Ibl83myUmLPkOfZk3J3jmUJUp7jiBKRrnPH4cN87atfpdFo8FM/+ZOiBUXuJuM43pxm3UJ8IGkZCQKWl5dpdTromsby8nLSiK9LQuD+gwc5cPDgjmpFtyLe14ESRGBSvUvV1VV6zSbNRoNcPo9pmhQKBT509928+OKLvPHmm9x5552iL4k+8WJIBo8h0xK2ZZHNZtfSKkB1dZVyuczg4CC+7wsykaaxurICCFWb4eFh8oUCV69do5DLMb17N9PT08SIG8FWSkGSyWrLWsPthw/j2DadToc3T5zgkYceAkSdYSvxYUCkXvp6nTx5TvV6nSAMRW1SfkbZTIZcPs/e225jIjVbTpECx3EYGx+nlsnQqtXoSEJNRi5SbztwgMWFBV5/4w3K5TKVSiXZjQFrc4eEKWt8AJl8nsD3xbxRrVKpVBgcHCSKY9pyXqnV6wmPYHRsjJHhYWYvXaLuOOyZmWH//v2JAEhGWufFMk0bI9Kfhw4fJpPJ0Ol2xbzx4INJkPS2MpiWc0fiDiLnjq7rsrq6iue6aLpOsVBAl9eUzWYZGh7mtttvF2Wc9yHe94FSIZ/PY9s2Vceh02gk+o6ZTIbp6WmWl5a4cP48A5UKE5OTmIaRrO5UbUIJECe7L4SQcSRXZUq6zpKSTp7nEfg+f/bP/lmmJBmm0Wjw2rFjnDl9msDzmNq9m927dwsGmiySh7Fw9IijSPxfvvfDDz7IuQsXeP2NN5ianBR10iBY17PZr+caSUV/tSL0ZN9kGIYU8nnBxpUtMaVKhV0zM6mgeYoUfTAMg8HBQWzbpmZZeFJ5RrWE3HvffXzjG9/gtePHeeD++4XQeF9/o876VhGt7//KTEEpZVmWJYg+2Swx8LGPfYzp6WkmJyZwHIcXXnyRt958E8v3sSyL2++4A08y3j3PwzQMMecEAWEQ0PN9Yl3noQce4NyFC7z51lvsmppKBANUJkqp8KjzCvvVeuT5tWQGijhmeGiIQqFALp/HsW3GpqYYm5h457+M9xAfmEAJooYwPDxM03FoZjIEUrVHAw4fPsxqtcrJEyfIZDKUy+WkTzCK4zULmz6yjMrd65LJpv6umnZbzSYx8NRTTxHHMZcuXWJubi7ZQYIooKtUsCb7M7OWRWZoaN2KLggCbr/9dq7Pz7N0/bqQt3JdkTpRDc0y7ZMEc01LdsBBEKDMnfP5PGNjY4l+5cTUFPktxNBTpEghdV6LRRzHodFo0G238aQil22a3POhD/Hiyy9z7vx59u3dS04aHMdRRCTbS0DWBCWHIY6idUIEqjFfOXx0Oh0efeQRsrkczUaDV199NVEKUovZrGwBaTab6PKxUqmELgOm73mEYcjthw9z5coVFufn0eJY1EslsWfjvEbfbljtfrvSNMG2bUZHR4WBs2kyMjbGyPj4B4LD8P6/wg3QdZ1yuUyxWKQjGZ5uq4XX7XL77bfz6iuv8Oorr3D49tsTVf5EOqoPSsNRpTbRNPL5PPVGI2nYV7JvtVqN06dP43keH7rnHkpSQEDVOzWkNZeu0+l2Rdqj2SSTzSaMsVjTePCBB/jt3/5twiii1Wqxe8+edXTvddcpyT2hVPUIwxDLsnAyGYaGhijLlo80QKZI8fZg2zbDw8N4pZLQP2028TsdiuUyM7t3c+niRVzXZWZmhmKhINKhfa9Pdm/yvg+kMEAhn6fRaIjaoaYlouphFHH+3Dkuzc4yODDAw488wpf/639NHIxUmrdQLNKRykHtble4g2SzCVv3/gce4HO/9VtcvXqVdqfD7t27EwbtVlCs2G6vJ/gLMrVbKpUolcsfqACp8MG50g3QdZ1CoSD6J6Uah53P8+Ajj/DKyy/zxhtvsG//fmFCats4qnlXpVHiPreAKEKT+oyqwdi2LKIw5OTJkywuLjI2Ps7Re+4hn89zfX4+qSf0H0P523WlEWqn08HzvMSxZGBggD27d3P+wgVef/11bjt0SKRX2aw36QcBnXY7oavHmkalUmHPvn2MTkykKdYUKb5D2JJ1WiqVaLfbtJpNDmcymLbN2bNn6XW77N6zRzgZSUk3IJk7lOKWkpGzZF+zasnIZLOsrq5y9uxZgiDg7rvvZv++faysrCTOImruALEozuXzeNIlxPc8alIZzMlkGBwYYO/evZw7f57jr73GgdtuS/xsN84bcRzTc11cyWb1fB/bthmbmGD3zAzlgYEbCsK/H/GBDZQKmqaRk7qO0cgI/q5djO7axZe++EVOnTrFLim55Epije04a5JQUiZKrey6nQ55SZA5c/YsFy9exNB1PnT33ew/cCB5XiB3gV6fIICqgRoygLtSYzKQggWGrmPLmsiFixd59dVX+ZEf/dEkXdsvTKCcx12ZeikPDjI+OcnumZkP1CowRYp3EqZpUi6XKZfLBEHA+PQ0A6OjPPOnf0rPdZmYmBCp0F4v0UpN+A19/YvdbpdsPk+hVOLa1atcuHCB5eVlhkdGOHrPPZRKpaR/WgkJhBt2g8pE3bJtutIEotPr0e31ME2To0ePcv78eV49dowf/bEfS+YiFSyjKBJiCb1ewuY3TJOJXbuY2buXwQ+48UE6a/ZBCZaPT0zw13/iJ/ja177GsZdeYvbKFaanppiamsIMQyzHSXaZqt7gSr3EF154AV+2eBzYv5+xsTFsuRtVAzKQAVIFyn6RAPkAttRn7chVXRhFdNttbr/jDnLZLNevX2f+2jXGxsaIAVfKaPlBQOj7QktyeJjx8XHKAwMJIy9FihTfeyhG6wMPP8zk9DR/9Ed/xPG33mJ4YIDpXbsYcZyk11IFTRDzgee6nDl7ltpLL+F7HiMjI9x3332Uy+Ukk6X1tXL0O/wkjh+KaCh3l6bcXSqiz+HDhykWiywuLXH18mVGx8bQWDNl77luouZlOw6Te/YwMjrKwMBAmn0iDZTbwjRNvv/7v58nnniCl156iZdeeIELs7MYuk5O+roZMo/fabc5f+FCsuK79957mRgfR9N16o1GUpNQRXZlUaMINgobf9ekvmRWOYW7LmOjo4yMjVGrVnn12DE+dOSIIBtJkQHTshioVBidnKRYLFKQ8n0pUqR4dzA1NcVP/dRPMTc3x7NPP82rr7+OJdnweWmUEAYBrU6H8+fPE0YRV69c4a677mJmZka4Hbku3U4H3/fJZDJEkEhS+moOiddssYCkHASi1cyy7UTsYHxigpHhYZaWlzl27Bj33HNPktlSkpxOJsP49DRDw8OC1Sot/VKkgfKGyOVyPPnkkzz66KPMzs6yvLzM8vIy1WqVbrdLaXCQiakpmq0Wl+fmuPOOOxgaHBTK+pqWtIn0XJecdBABoe+6EzStz4xZKmjYtk2v1+PwoUO8+NJLnDxzhic/+lFMqVWrRJuVTmyaZk2R4r2Bpmns2bOHPXv2sLKywrVr11heXmZlZYX66iqO4zA5MMDC9etUBgZ46OGHGZdmA0EYYpsmPanwpZTBIilH53reph7N/vdNzBZkj7UpFYUOHj5M/aWXOHXmDI89+SSm45DNZsnlcuTzeRzHwZGPpdmn9Uhn0rcJy7I4cOAABw4cAKT7t+8npq4vvvYa569cQXccep5H2O0KergUGDd0nboUZfd8nyiKsKSVV7fXWzNSlancOIoIwnCtaK9pONksAyMjPPDoo3z2t3+bY2+9xWf+1b9K1IdSpEhx82FoaIihoaHk35Es1biuy7G33uKNM2dwCgUiTRO2d/Ke7/V6ib0WmiZUwKJIeD1GET3XFXNDHAtj9j4mvvq/al8rVirc++CD/MZv/zavnTjBL/zLf8nw8LCwFEx3jTdEGii/Q2ia9GuzbYqyxWLuyhUGZF1QqeGEYUi9VqPb6RCFYWLC3PE8dCCQaVNd00DSw3VZ7zCk5Y0hZfTUz/jUFIuLi8RxzIkTJ/j4xz/+3n4YKVKkeNvQdZ1sNktWtm/Mz88zMDTExMQEvu8nAuie61JdWSEMAqIwRLcslms1seuMYyEmIrVbDfl7/7yhS8eSjfNGGIacOnUqnTe+DaSB8nsI13XJ5XIMDg4Ca76Ro6OjtFotPM/DcRzm5+c5c+ECAHcePcrUzMw6yx3DMNaJmyuhYoWvfOUrxJLw85CUskuRIsWtCSWLVy6Xk8fCMCSKIkbHxmi1WgAsLy9z9uJFNE3jyNGj7Nq7d928oeaO/nmjf7f4la98hTAM03njO0AaKN9BaLJ9xDTNdcyxZrNJrVYDxE0yMDDwbR33D//wDwH4yEc+kuxmU6RI8f6BCnaWZSWiI71ej3q9DqTzxruNNDl9C+KLX/wiAD/0Qz/0Hp9JihQpbhWk88Z3jjRQ3mI4duwYc3NzQDrgU6RI8faQzhvfHdJAeYtBpU+OHj3Krl273uOzSZEixa2AdN747pDWKN8FPPPMM5w7dy759/LycvL7uXPn+M3f/M11z/+bf/NvbnusL3zhCwB84hOf+J6eY4oUKW4upPPGzYM0UL4L+OxnP8vnPve5Lf/27LPP8uyzz657bLsBf/nyZY4dOwak6ZMUKd7vSOeNmwdpoPwe4amnngKgUqm8Y++hVoXT09McPXr0HXufFClSvDtI541bA1rcLzCa4qbGf/ff/Xd85Stf4Wd+5mf4lV/5lff6dFKkSHELIJ03vnukZJ5bBI1Ggz/5kz8B0vRJihQp3h7SeeN7gzRQ3iL48pe/jO/7lEqlJF2TIkWKFDshnTe+N0hrlLcIvv71r1Mul/nEJz6Bbdvv9emkSJHiFkA6b3xvkNYoU6RIkSJFih2Qpl5TpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKdxGzs7P8g3/wDzh8+DD5fJ7BwUEeeOAB/vW//td0Op0dX/s3/sbfQNM0fviHf/hdOtsUKVLcDEjnjZsAcYrvCf7ZP/tnMRBfvHhxy79/4QtfiEulUgxs+XPw4MH47Nmz2x7/P//n/xwDcT6fj7vd7jt0FSlSpHg3kc4btwbSHeW7gGPHjvGX/tJfotFoUCgU+MxnPsNzzz3H1772NX7qp34KgDNnzvADP/ADNJvNLY/x/d///TiOQ7vd5mtf+9q7efopUqR4D5DOGzcP0kD5LuDTn/403W4X0zT54z/+Y37+53+eRx55hI9+9KP8+q//Or/4i78IiEH/y7/8y1seI5/P87GPfQyAL3zhC+/auadIkeK9QTpv3DxIA+U7jBdffJGnn34agJ/8yZ/kkUce2fScf/AP/gG33347AP/m3/wbfN/f8lg/9EM/BMAXv/hF4jh+h844RYoU7zXSeePmQhoo32F8/vOfT37/8R//8S2fo+s6f/2v/3UAarUa3/jGN7Z83g/+4A+iaRrz8/O89NJL3/NzTZEixc2BdN64uZAGyncYzzzzDCBSIPfdd9+2z3vyySeT35999tktnzM5OckDDzwApGmUFCnez0jnjZsLaaB8h3Hy5EkADhw4gGma2z7v8OHDm16zFVQaJR3wKVK8f5HOGzcX0kD5DqLX67G8vAzArl27dnzuwMAA+XwegMuXL2/7vE984hMAvPHGG1y8ePF7dKYpUqS4WZDOGzcf0kD5DqKfsl0oFG74fDXgW63Wts+566672LdvH5CuDlOkeD8inTduPqSB8h1Er9dLfrdt+4bPdxwHgG63u+Pz0jRKihTvX6Tzxs2HNFC+g8hkMsnvnufd8Pmu6wKQzWZ3fJ5Ko/zpn/4ptVrtOz/BFClS3HRI542bD2mgfAdRLBaT33dKiyi0223gxumWhx56CE3TCIKAl19++bs7yRQpUtxUSOeNmw9poHwHkclkGBoaAuDKlSs7PrdarSYDfnp6esfnPvPMM8RxjG3bPPTQQ9+bk02RIsVNgXTeuPmQBsp3GHfccQcA586dIwiCbZ936tSp5HeltrEd/vAP/xCAj3zkI+tWnylSpHh/IJ03bi6kgfIdxuOPPw6I9Mgrr7yy7fO++c1vJr8/9thjOx7zi1/8IrBWnE+RIsX7C+m8cXMhDZTvMD75yU8mv/+H//AftnxOFEX81m/9FgCVSoWPfOQj2x7v2LFjzM3NAemAT5Hi/Yp03ri5kAbKdxgPPvggTzzxBAC/8Ru/wfPPP7/pOb/8y7/MmTNnGBgY4NOf/jRhGG57PJU+OXr06A2bkVOkSHFr4u3OGydPniSXy/HpT3+adrtNFEVbHi+dN747bK+NlOJtIY7jpIaQyWQIw1D8+D6u6xJ4Hr/wT/8pf+Ev/2Vc1+WTn/wkP/UTP8H9995Lz3X5b3/8x3z+i19k9+7dTE1O8vGnnuLkG28wNDSEk8lg2Ta2ZeHkcliWlfRAKap3ihQpbk2oBXE2m8X3ffHvKMJ1XXzP45//s3/Gj/zFv4jneXziE5/gUz/5kzxw//30ul3+61e+wn/5/OcZHx/nwP79fOzDH+b86dNkMxkGh4YwTBPbcbAdByeTSeaNdDf5nSENlN8BfN+n1Wrhui7dToder4fX67F7925OHD/OtUuX0ADdMLAsi4FSiX/5C7/Av/7f/jc6nQ7//nOf499/7nPJ8UZHR5netYtP/cRPELguq90ujXqdQjZLt9djaXmZTqfD/Pw8c3NzlMtlmvU6n/13/46B4WHGx8e5++670wJ9ihQ3MeI4ptPp0Ol06Ha7uL0evuuya9cuzpw4weKVK4RRhK7rWIZBKZfjf/7n/3zbeaNYLHL44EF+6id+giiKqFWr1IBGvY5uGFRXVqg3GszPz3PlyhUGBgaorazwK//m31AeGGB4ZISZmRkOHTqErqfJxZ2gxalB2dtGq9VidXWVRrVKt9PB7fWIowhd0zhz7hynz5zhox/5iFDKiCJiTUMDDF0n4zjU6nX+0x/8Ac9961ssLC1hmia7d+3iI089xcefeoqhwUHQNGr1OqvVKtWVFZZXV5PXv37iBF/5+tcZqFT4+//j/0jPdel1u7Q6HcIoYmb/fh57/HGmpqZ2FFJOkSLFu4cgCKjX66wuL9NuNul1uwRSSODs+fOcPnOGj3/0oziOQxRFwjNS09A0DduyaDQa/MEXvsBzzz+fzBu7Jif56Ec+wvd99KPkcjmK+TztTodGs8nK8jILi4u4rott27zx1lt89U/+hKHBQf7h3//79Ho9et0uHfmTKxS49777uPe++8jn82nQ3AJpoNwBkUyDdDodrl+9SqNaFemROBYpDdvGMk0sy0LXdTRA03Ux0OMYPwjouS5xHIsfIOs45LJZNDkYm80mPdfFsm0KuRznzp3j5KlTeL5PpVxm9+7dDA8NEQG/8JnP8NbJk3zfxz7GX/1Lf4kwipJU7+LiItcXFvB9n/Hxce578EGGhofJ5/MUi0Usy3ovP8oUKT5Q8GXppb66yrWrV/E8jzgM0XUdx3GwTRPLtjENQ8wdmkYMxFFEHEW4noen2kLiGF3XyWWzZByHWNMIwpDq6ioA5VKJTqfDm6+/ztWFBXRdZ3rXLqampshms/x//vk/540TJ/j+j3+cv/bf//dEYUgYRURRRKvd5vr8PNVqFdO2ueuuuzhw8CDlSoV8Pk8ul0sDJ2nqdRPiOKbb7dLtdmk3GnRaLarLy3Q8jygMcWwbx7bRWbsZNCDWNIAkWOqGga5+1zTCMEQDeq6L63nkczlsy8L1PPGenQ7PP/cczWaTkbExBgYGqJTL5HM5QOg4vvb663S7XR564AEGBwaIZEAOo4ihgQH2zcxw+coVLs3O8sw3vsFthw5RKJXIFwqUKxWGhoYoFoto8lxTpEjxvUMQBHQ6HdrtNt1Wi0a1Sq1WIwwCNF0nk8lgmaYIhK5Lp9cT8wWADJbJ/KHrGJpGFMfiJ4potFq4nkchlxOBVwbQ06dPc+rUKZxMhl3T0wwNDVEplTBMk1anw+tvvUWv1+PBBx5goFwGSHaug5UKk+Pj1Op1zp49y/Fjx6hXq0xOTZHN5ylVKlQqFQYHB9+W7uz7FWmglPA8L6kfNFZXqddqtFstmq0WaBqmYVDM5cRAj2OCMCQGoiAATUt2jMjgpbbpsfqJIpABU9c0mq0WtuMQ+D4XL17k6tWrlEol7r//fjKZDJ1eD8MwyGWzmIbBc88/z9WrVykWCjz+8MPYliXeX95I6iYbGx9nenqab33rW5w+cYKDhw/TbjRoVKssLy1RKBYZGhpicHAwTc+mSPFdIoqiZGHdbDRorKzQbDZptVp0XRdT13EyGfKOg44g8GhxTASEUSTmC8Qcoco1qAyUpiWPxVFEGMdYpkmz1ULXdWq1GmfPnqXb7bJnZoaZPXvodDoAmKZJLpfjueee48qVKxTyeT786KOYpommaUmgVOWhocFBZqaneemVV7h08SJhFDE+NkazVmO1UOB6oUC5XGZoaIhSqfQefdrvHT7wM6XruqyurrK6vEy9WqUlLW4cyyKOY0q5HLppkpesU8s0MQxDpE7jGMMwiOKYWKYyQpk6iYA4DAmCQKRR4pgoDImjiHavR7fXY6VaZWllBQOYmJxk99QUumEkqVrP8+j0euiaxqvHjzM9Pc1jDz1EKFMzmq5j6DpaX2oXYHR4mI8+9RTPPvccp06e5IknnsD1PKrLyzRqNWrVKoulEqOjowwNDWEYxnv18adIcUsiiiLa7TaLi4vUqlVatRrdbhfbsjA0Dcs0cSwL23HIZzKYloVhGOJek/VHTS6w+1OhsdpBhiGe7+O5LmEYEkURURCw2mjQ6fW4Nj9P13UpZDIcuO02BioVAt/HMAyCIKDb66HJeWP37t088uCD+EFAINO/hq6LOUzOVSB2sg/efz/lUok333qLQi7HnulpGq0Wi3Kxvbq6SqVSYWJigpzMdn0Q8IGtUfZ6PZaWllhcXKReqxG6LpZpkpHtGMj0pOM4jAwNocnUCIhUSSCDXgzJ40EQEAQBfhAQykGpEIYhoRzAisk6f+0agaYxUC4zWKlg2zaZTIZsNovneWiaRj6fT3ax/VD/VoV/4hjDNDENA1MG806nw1e/+lVGRkZ4+KGHiIBuu02t2STWNCpydTgyMkKpVEprESlS3ABRFNGQTNLV1VU6zSYGiBYuy8KyLPwgwLYsisUiJcVElzu3OI7xfT/hKCAfC3wfT7aI+HJuES/T8Hwf3/Po9nq0Wy0uXb5Mu9MhBsbGxigVCjiZDBlZ+/SDAMMwKBYKxHEs3le9l3jDtcfl3GVZFpZhYMgd54kTJzh18iQffvJJhoeH8TyPerNJu9MhXypRrlQYGBhgcHDwhq4l7wd84AJlGIZcvXqV69ev0+12iT0P0zAo5fPk8nlymQyapomBGEUUCoVNuXmVeg3DkCAMCXxfrNaCQNQbZOBSN4cq1AdBQOD7LCwscP78eQrFIvVmk9sPHUp2qaZpEkYRnW4X0zQZHBxksFxGQ9ykoVx9+mFILH8HklWogi6Ptbi0xKuvvMLRo0eZmZlJ/t5otWi22xSKRQqlEuVymcHBwQ/UKjFFim8HzWaT2dlZ6vW6YK36PtlMhmKhQC6bJZfN0ul2k0BYLpU28QGiKBJzhpwvgiAQpB0lFCDnDk3TiDUNQ9MIogjf8/B9nxMnTtDpdJicmmJ2bo6DBw5gyiCNruN5Hq7vk81mmRwbw7HtJNMVhSGBfP9I7lKVm0g/1EL7+RdewO12+ejHPiY2D0Dg+1QbDfwoojwwQKlUEnyKSuV9Xcr5QAXKq1evcvnyZUHACUNsXadULDJQqQgPOJm+rNXrRFGEY9ubAodKa7i9niDTSKjfdV0XjDbLEoQeTRNtHL0e6DoXzp9nbnaWmb17GRke5oUXX+SxRx7BzmTEMeWgbnc6eJ6HbhhkMxlKpRLlYhHTMNbqnnJlGIUhnkzx+kFA6PvrzvnkqVMsLCzwyMMPi2Zkw0BDkJFq9TpeGJLN5xmfmKBcLlMul9/Xgz5Fim8H3W6XixcvsrS0RBwEmJpG1nEYKJUolcvJ/dSV7RYxUCoW15U0oijCCwJ6nY4IjH21SRWwbNPEtCwRqHSdUBILgyCg1+1y/PhxojDk7nvuIY5jXnzxRR584AGy2WziSen5Pk2p0JN1HLLZLOVKhUIut27OUOcUhiHdXo9QZsL6lX26vR4vvPgiQ0ND3H/ffdi2LQJ/HNOSrSiGZVEZHGR0dJRSqUQ+n39fkgU/ELOh67qcPHmSRq0GMkBWBgYYHhhY1zah6Trtdlv0Rup6EiRVm4jrukkKI5IDzrJtkfKUOziVvlSBqNluiyCqaZw+dYrr8/Pcc889jI2NUa1WAaHok8lmk5vHtm2KhQK1Wo1A9mnWGg1q9TrFQoFKqYRl20n6xDBNHF3HlDemugG8IMD3PA7edhvVWo2TJ09y5EMfwjAMQVG3LIYGB2k0m7QaDc7UaoyPj+NOTAhlIOmcniLFBxXXr1/n3LlzhK6LHscUcjmGh4bISpKdQhzHdOX8kM1mk3nA8308uRuENQKPyh5ZhoEuyyVJgInjpESjaRqtVovXjx/HcRwefvxxojCk3myiAYV8HlMuyrU4ZnhoiKWVFbqS2+DLDNaqZVEplynm8wlhSJO11DiTSdLCYRSJ8pHcFR8+dIi3Tpzg2vw8lYEBbNPEsW2K+Ty2ZVGr11m4coX6ygq79uxhYHCQSqXyvivjvO8D5eLiIufOncPvdjGB4aEhhoaGxCCXg0UhiiK6rksUx+TlKs3z/U2pCduyxI3SN7ijfgbbhoFu6DpnzpxhYX6ehx9+mMnJycRhPJbn4GQyGLpOs9PB9Tx0TaNYLmPIwnuj2cTzfdrtNs1mk1wuR7lcFn1VMjAq6JJeblkWsXRLv+P223nl1Vdpt1rkCwXB8JWr2Fw2S6xpeL0e169do91q0et0GJuYIJ/Pv4PfTooUNyc8z+PChQssXr+OFgTkbJvJyUkK+bzYAcK6uaOrxEfkgrXT7eJJUQEFQ9fJZjJohrFuURv3zUNhENDudAQ7VtMIfZ/jr71GqVTisUcfFXNUrycySzLg5gsFOu02nufR7nTI5XJkslkc204ESaIoYmllhdVqlVKpRKlYFG1r8lqQ12PKc8s4DnEcUywUuHz5MnOzs1QqFRH4fR/dMHAsi0qpREPXcT2Pc6dPMz4+jj81xfDIyPuKJPi+DZSe5zE3N8f1a9eIPY+cbTO9a5fYJcq+pP6BHscxPdcVtUbf35Q+sAxDaCeq9ANidRjLYwEg8/3tdlsELk3Dtm0uXbrE3NwcD9x/P5OTkyLF0cdSVaxZw7LI53K0mk08SQjK5XIUCgVyuRy9Xo9ao5EU9putFtlsllK5LGoUaxeT/KrOde+ePZw5c4b5a9e4+0MfwvM8AsWsk9cbxzGZbJZ2u83cxYu022327N37gaSDp/jgolqtcvHiRdrVKgYwODjI+NhYEpz0jXVHKU3X6/UwTHNd+lLTNBzbxnacJDjGrOm8JiQbOf90222QC11T13nhW98im8nw6KOPYlqWED6XbHv1Og3I5XJEkijU7XRwZKZrUBL2mu027VYLP4pYrdWoVqsUikWK+Ty6PJZqW+kPnJZpcucdd/DiCy9AGOJks3i+TxSGdOUcpwKsoessLi7S7XTodjpM79nzvgmW78tAWavVuCLTAQQBg+Uyk5OTGKaJHseErAUQtZrzfJ/l1VU8zyMnWVyGYWArgYEtUgmKpKOO05Par2iaSN3m81y9coXTJ09y15Ej7N6zR6Q35A61/5jqfGzLIp/P02w26cgaZUk+N5vLiXqE59FoNGi2WrTbbRqtFiUpKmD1sXNV/5Uuz+fgbbfx2rFj3HXXXZTLZQLfp+d5SfOyYRh0XTehmK8uLdFptTh0+DAV6bieIsX7FVEUMTc3x8rSEp1GA9s0mZDiH5pc2G5cYEdRRK3RoNFqAVCQ5QrbtrGlctemmp0UClABNZKchCAIQNexLQvbtnn6mWeI45jHHn8cW5ZaVIDtD0BqDsrncrRaLWKg0+2SzeXQEIzWSrlMpVSi1WrRaDTouS4rq6vU6nWGBgbI53IiSOp6UstUs9PU5CT5QoFz58/z4EMPkY9jXM/D9TyCIBDXIpXIbMOgJRfanU6Hg4cPvy/4Drf+FWzAysoKV+bm6DYamMDgyAgjw8NJqhXWWitAkHNWm1X+3SufpdPp8OjUIzx16MM4jrPW87ThPdSrdU1D1zTcMKTZaomBLvUZc/k8C9ev89qxYxy47TYOHTwoXiRFB4AtB1AcxziOI3amUjzZ8zyxk0UEP1VbzGazVGX/Vqvdpt3pMFipUCgU1MHEzYVYJe6ZmeHEyZOcOXOGo0ePYpomBdMklsG30+3iAJ1OJ9lhaprGG8ePc+DgQSZSe54U71MEQcDFixdp1Wr0Gg1K+TzDw8NUSqWkVSNpyYJEZq7b7VJvNIjCkHw+Tz6Xw5HEwK1ILaodQwfQdVzXpdlsJu1o+Xwey7J47rnn6LTbPPnkkwlXQtUQYX2gVPOCrmkiDdvt0pPGDVnJ4tcli7YgW0nqzSaNeh0/DFlYXiaXzTIga5AKiluh6TqHDh3i5VdeodVqUSwUyDgOmUxGLLZdV7TCxbHo+5blouWFBbqdDnccOXLLt5C8ryquy8vLXJmbI5SNv+MjI4wMDmKZZhIkQ5mqCIOAZrNJvdnkXz7/i5xdOcdsd47//eyv8Csnfo1QixK1m370S9WB6KdstVrJSjOfz5PP56lVq7zwwgtMTU1x95EjyY2gQVLzNLbZpYJIpViyn7Mlg7Ba0arWFNu2GRkZYXh4OGlhWVpdZX5hIamP9F+DpmnM7NnD5cuXN6WHMo5DuVhMaO5hGCbBMwxDLp4/z5VLl7b1u0uR4laFCpLdeh2/02F4aIiR4WHKpdK6fmXFbFclkE6ngy8Xx7l8npGRERxJjNkYJNXiWpPzD4Db6yWLUsuyKMsSyrFXXmF5aYlHHnmEspSco383KVOz/VCiI4auUywU0HUdPwhoSQZsJINsKOepYj7P+NgYpWIRS9dxpYhBVTL+xUHXsm67pqYwDYPLs7N9FxWLxXY+T0WWhyzLIooikYp2XVrNJqfffJNGo/E9+a7eK7xvAuXi4iLzly+D5+HYNiODg0JbUfYRqYEayN1fvdFIanOXWpdoxS3aUQdXc/nSxS/zqa/8bU5XzyTHVy0Z/QM9CAIazaaQpdN1KuUyWbnKev755xkYGOD+Bx5IBhxsvyrcCE3TyEiCTyDTO77vJ6lUTdeT4+ZyOZEiKpWwdB3f97l6/Tor1er6gAhMTU3hBwGLi4viBlJuBYgdcjabZXBggEKhkPRYtdptWq0W1+fnuXjmzCZyU4oUtyqCIOD82bP06nXiIGCwUiGXyQgSW78cpabhui61ep2OJMeo0kwhnxdGB7B5Yd3HRUgeA9qdTiIakM1kRMAyTc6fP8/F2Vnuv/9+hkdG1l7T1++4ZSpT1gpBzCuZTIYoDOn1eiJYSq9LFcQ1TRM1zIEBxsbGyGYymJpGvV7n2vXrdLrddYc3TJOJiQmuzc+vzRt986ppWRQLBQYHBsT5aZogF7Xb1Ot1Zs+eZWVx8Tv6jm4GvC8C5cLCAgtXrxJ5HqVCgZJMPeZyuUS5JgZaUo/RdV2Qu6hKuQymRqxFRHqIGtaXGpf4O1/9f/Mf3vot/CjcdBO4vp8EScMwKBUKIvDFMa+88gqapvHIww+LHitJx46iCD8IkpSmpmlC1k71Q8qfQAoZEMdkpEZkLFdpChvPR9d1ylJaKpvNYuk6rVaLq/PzoodToiJ7qubn55PHFCEpjCKQgXiwUqFYKAjmrKw/rFSr1Gs1Lpw5k9RZU6S4VaGCpNdqocVCINxxnMTVQ2mhqoVqp9sVfpGGQSGfpyR3e5ok7W2ECrD992qMsOvruS5xFJHNZsnJ3sNatcobb73F4UOHmJ6eTlo2VM0wkHOHbhjJLjGZO+T9qzSoFZNeQ+yA/b77VUPMF2qB7DgOY2NjQvhcCp4sLC2xtLKybqE9NTlJQ+6kk/Pql+6MY7KOI9pnMpmkzNRqt6nV61yZnWX5Fg2Wt3ygXFxc5Pq1a0Sex6BslgexwlG7rtD3qdfrImDIAVSWrhqGYTCdnQI0PNbTub3I4z+8+Zv8j1/7WWabl5PHe70erWaTKI6FVFWhkDDHzp47x/z169x///2iViGRMFw3FONVLVBZc9G3Y9U0TQT0XC4hHPVkYzGIHeDGFaxlWYyNjDA0NIRtmkRxzPziIvW+1Mfk5CTX+wOlOjdIUjRxHFOUSkUZSVAIfF8M+mqVuQsX3uY3lCLFzYcgCDh37hy9Vgtd09g1MZHcwxmZPgRRr6/X60nWqJDPUy6VyGQyicVdFMfrAqUKIhsXs1EcizYvz4M4Jl8oiICCuLdefPFFKqUSd955Z/IatchWspnQV7LpC5SweTermPq67A/vF0jRJMGvH4VCgYnxcUr5PJauC7P4vjLO2Pg4hmFwfX5+3Ws3BmvbNMlmsxQLhWT323Ndmq0Wly9dol6vv+3v6WbBLR0oW60W169eBc9jUNpI+b4vcueSudmW2qZhFGFoGqVikWKhIDQNETW/giH0GPsDZRRH6JpgkJ6qnuKn/ttP8/tn/jOtjiDNAGQch4KsBwBiRfjmm9x2222MjY1tOl9N0zYP9p0gUymmZLzqmkan212nIdsvsNyPvKxBFOTucrVeZ3FpiSiKmJycpOu61Gs1ccMgB/uG+qMhlUIs28YwDCzTJJTpnPn5eS5funTja0iR4ibElStXcFstLE1janwc0zRFdgfQLYsgDKk1GnRlNsaxbaHg1dceFkgRAduy1u0YtyIABmFIXZZPNFlH7A+urx0/Tqfb5cGHHtqSYa/SnbBzyQZIdGRjRFbNkLvHTrudPCepmfYx90Hc80NDQwwPD2MZBmEQML+wQKvdxjRNRkZGuCYX2UlWLF6fXI4RcyNRhGmaCWM3iiKarRbnT50S3QG3EG7ZQBkEAZdnZ9HCkGI+z9DgYJLeVISbZrO5NtAdR7RPSJNlve84jukQEREgpKWiOEbX1n80buTym6/9Fv/TM/+Spe4K2WxWyDWp4/g+L7zwAuVyed2KcCOSgvwOlOlEfF2JGcgUrGVZ6Jom1IPUc/tfx3pGryEHdrlcxtI0ur0e165fp1gsYlsWCyoN0sdwZcOgdxwnSRHbjpP8OwgCLl64wMVz57a9jhQpbkasrKzQqlbRo4ixsTFsxxFZFERKstfrrXEPNI1isUhBpkd1ucAGobpDHCfqXhuJfgpBFNHsL9NsMFKfm51ldnaWe48e3SzwEa/JzcGamMh26CfvqRRsTvIN/L6M1LqyzRbs3Fwux9jYmCj96DpLKyusVKuMj42xsrKSlF7UbnLjQt3o282GYUg2kxHXHMe0Wi3ePH6clmypuRVwywbKK3NzxL0eBjAyPAyQpDsUK61/F1mQ6UuVDlFBIQhDHMPGx09SJlsNnDx57NjmTPUs//hb/5inF59J3pM45rXXXqPb6/HQgw8mAzlJR8gUTRiGSaN/rOqVsE4gWT0vViSbvtRKXrqNK1YZsH6AShr4RpTLZUZHR0UqNgyZX1qiICXyYE2OT9Uu+o+plDpiTcNzXaF/qyS64pi52VlOnzjxnX6NKVK8q+j1eixcuQK+T6VSIZvJiIWxvK+azabQa41jHNumUqkkbkLJ3CHv71DuQE3T3ET0UwijiKaci0zTpLxBA7bVanHstdfYs2cP07t3J4+rHWQg5w/X88T7SVEBX753MneoNHA/0Ua1oRmG6KnU9c0ZKYmtWlksy2J0dJSCTMU2m01CIATqjUYyv62bU/vgyJ1k4PtEcUw2m03KON1Oh+OvvHLLpGFvyT7K5aUlvEaDMAyZnJhYSzXEQqzXlX2HjuOQlwESNuy+NA3dMAh9H0d38GIPDW3zchDIkSMTi1pCmza9oMe/+tYvMmgNckfldq5du8bs7CxH7r6bMIrEIJLFdnVeSNWLlkx/GLIGEMcx7W4XQ4qd96PbbuOFoXADcF3RC6WEDVyXKIqwZC3WUCzYLXaFIPRkx8fGWF5Zoee6mLbN8sqKCNpb3OCqdgprA14RAgzTJJ/PC5KA73Pt6lWCKOLOu+56+19iihTvMqIo4sqFC2i+L1Kp5XKyMO56Hs1WiziOyal+Q2mODpt3YL4MSsiWjK1kwKM4FsFFinkUC4WE4KL0VF944QUs2+bAgQM0Gg1B6FNymH33YK/Xw/P9xCe3LYUF2t2u0HmV7xkjgnOr1RLznq5jSJZ8IAPsahBQlLtM3TDW9KllGnUjSXBocJCMbbNaqyVzy+LiIuVyeV0GS+s7BrCmfS13lRprGaqeFCt47eWX+dDRo1QGB7+br/Ydxy0XKDutFtWrV/GDgEqpREZ+8GEY0pCmyyC+kGI+v+VAp++xKI4xDYtI27o/sCD/MzDw8MiQIU8eDY0T104yqU3yxhtvMDg8zODwMIHvbwp44s20hMijbGxUnVKHxAga+hqb5Y2ieifVblGT1OtqrZZI8gHJoDd0Xdw8smCvVrAqFVtvNCgWCly9do0r164xOTa2zh8v+aw0oeyjduJKekvRv3O5HK7UtF24dg2iiDvvvnv7Ly9FivcQ1+fmiKRw+cjoaBIglOuHarvK5XLYape4zbHUTkrfSnkHsdOrNRoJESabzYpAKFOoYRxz9coVVldXue+++xICXT9ipcPaF8AMNXdIhr2OCNwqs0XfvyPZexlrGppk6waui+d5RFG0Juoug6maPzQpn6fmEIB8oYBp26yurAjW/PXrjE9MUNhCC7pf9Ux9xmEf299yHAzTpNPp4Pk+x48d4+5772VgYOCG3+F7hVsqUEZBwPKVK4RhiGVZQlpK9g02m81E1aY/rWruUPhWruJ5M0sQ+xiagYmJhYWJSY4cuThLDLi4xMSY8iMzNIMjI0eYnZ3FD0OOHDlCLpNJUpdb1RK6vR6GruPYNvl8PrkR8oXClnqqjm3T6XaFobPjJO0jlm1Ds5mkXExJF4+DgAgI5M4ykjtZJdRsmKZI/5RKTIyPc/bsWer1OqZhMDo8vLmJGRHAffl5Ky1Jx3HEDRzHOJmMoLy321yfnycG7kqDZYqbDK3VVdq1Gl4YMjI4mPgrttrtxKKqUCwmqc2MGuPbQLFgDbnDU7tEZdzebLWEZrSuC3k4mSpVij1xGHLu3Dl27drF2NhYMl+ouUMx3lXw0zSNKIooFYuYppn0VOYLhaRNZd35yXu/WCiIDQEi8OqGQafdJvB9kTKOYwhDQk1L+rv7+yOVGbz6/+joKIVCgXqjwcrqKko4vR/9C22VllWymJZlock5KZ/LEcp57PVXXuHuo0cZuEmlMm+ZQBmFIc2lJdxejzCOGR8aQpeKEiqdaZomxUKBhhQT6Ha7m75EhRghnO55Hg4Ow8YwcRQTiwQsFhbZOEdISI8eTZoJ4WdfZS8/c/RvM21O8ccvfJU777yTwR1WQ/3+b8COxfitoCx5+mGZplAEiuNEHCCSRs5RFCW/qxpHFMfg+0TiRHAcR3hlttt4xSLXFxcZHR7e9D5hGOJLEQdlOLuueC8XJ2EQ0HFdFufnOanr3J6mYVPcJAi7XWpLS4RhSD6Xo1goEMcxzVYrsb9SZJ1avY7vugSZjFD02gJRLHwiu70eprw/lHBHhCiZ+EGAoeuUSiVs2xYuQHInqGkaL738Mrqmcc8992xrZ5fMG3H8thmvCobcVfZnrkCwUXVJxtOlc1DUN2cEfXNHFIaEkjcR93pJP2e5VGJxYQENWK3ViOKYcrG46Ry6cpfuyB2kLwMlyGCq6xQKBRrNJkEY8vqxYxy9/35KlcrbusZ3E7dEoIzjmKDdplGvE0YRhXyeTCZDq91ex2ot5PNEcUwul8OX/UquzOsDSfHbc11c36fX7dLtdrF1Gx0DdPBjnyAOsWKbOjVcXJqIlO5gZpC/9aFP8fHdH0VD40/+5E8oFgocOHBgx3NX2ErQeEeouuMWNUfbsrAtC1cuCAr5PLppbvpCYwQj1/N9QR7y/TVyUKGA6/t4vR6upnF1fp6JsbGEtq7qp0higyEJA0HfgAcx6G3ZD9bp9bh29Sq5QoE9MzNv7zpTpHiHEPk+nXqdXrdLEMdMVipEUUSj1UqsrJSwRhhFZDIZXNel3W5TLpeT3VEUReu8JRvNJn4QUJAi4ipr0+12sR2HXDZLqVTaUkVnZWWFS5cu7Rgk++95VbLZSLTbCev6szcgl8uJfk7XxbYsLGkUjWnSfzZhFCXkQ7UYUP2fyqMXTWNxaQnP8xgeHFxrnQmCZKdeKhSEHuwGkRJFHiwUCrTbbYIw5M3jxzn64IM3nTbsLREow26XbrstdpNhyGClQlOqW4DI/+elzUwcC/3BTCYjvNhaLULZHOwHQTLokKkGwzRxHBEUAwI0TaOiDeCGLj4+DRoowvVUYZLv2/0xAGZnZ1leWeGxxx7bdofY33gM3/6OcismWT+yuRye7M3yfD9JJ22EbhjYup4EQMWszWWzeJ5HuVKhXq/TdV0uzs0xIo1pA2n1pWkauWyWnuviSrZuf6BUt6LtOMSaRrfb5cK5c4n+ZYoU7wWiKCKQggFBFFHI5dANg1q9ntTPVCpT1QBzuRy+7wvOQ6OBaVkE0pO2P+TEiMVqQfZDGoYhSiu+jxFF5DewW5PXxTHHjh1jYGCAmZ0Wkn0L5GQ3+W1kohSnYCsov8lOFNHtdjGLxS2NHzRNw7QsIYkn/SkTZq2cZ23bpt3psLy6SqfbZWhgAEP6U4JwUclmMvQk+TCKos0lHk0TziftNp1ul5NvvsldH/rQlmpH7xVu+vaQ0PMIez2ajQZBFFHM5xOLF4CiVOxXzE31hduWhS/tqBYWFuh0uyJIahq23H2WikVyuRzZXA4fcSMUKRFHMZoOXb0tvlQNImJeX36TZ689h+d5vPHGG+zevXvnQNDX09SfPtHf5o5SXc9Wq0IQN44iM3W73TWWLaImodKw4lTWbgWlUZnP5wmkvuX46CiO9NJbXF5meXWV1VqNdqeTpItUvVfR1Le6Xse2yWazhEHAmZMnhTNCihTvAcJ2G6/Xoyel50rFIg3JZTANg7La8cUxWl8t0DRNWu02yysrrK6sJEHSMAyymQxFKZOZzWTIZjIYhoEfBHQliz2Xz4sMjCLD9N1758+fp9FocPTo0R0Xwf13l8pEvd15Q17IjsfPSD5FFIa4Miun9KwTElAsvDcTv0r52ZTkTtvQdUZHRxkolzE0jXa3m8wdymjetqzkdf2CKxuvU5M7S8MwWF1Z4eKFCzeVAcNNHSjDMCTsdHBdVwSCKMJyHDzPQwNKxaIgk6gAEUX0ej3qjQaNRkP4T8oBE/i+EPyuVCjKgaxwYGAfIHoljcgADe6cuJ1f/77/k/H8OLqmY+oGuq7x7974v3j9rTcIJYFnR2yTPtmq13FbbFDO2Ag14JVijgqOG1V21O60P8BlHIee9J8sFArsnp6mXCwSA8urq/i+j2VZBEFAvV4X/nOyfiEubz1LV51v1nHI2DbdTodzZ84kdaAUKd4tBN0uke9Tq9UIo4is44jFtSTDlcvlNfNjhHhAu92mWqsltnZAQqArl0pUSqWkhziGRCIzku0YikyY6ZOuVBZXuuxDfuvNN9m3bx+VHepwSkNVIfwOd5SKcLcVdMlaR1tT++o3SegPshszW6ZU6XI9D0sy6SfHx8lI3kRDtqaYhkGr06HRbCZkJmVFmFxr//nFMQX5+V6Zm1sns/le4+YOlO02xDGNRoNQbvXVAFLqMqp9ot3psFytrhmgxnHSO1gul3Ech65sZVhHroljdhV38ffu/ln2Zvdy1/Ad/JPH/hH/4vFfYH9lHz91108k56OhcbV1jT+6+Efccccd624I2H7nl7wX3z6RBzanX/sF1BWZRg34nVZhWt/qEMDJZHBlkV79PZ/L4VgWOamqkc1m0XRdsGmDQFhvtdtrnpVbXHcUx2SyWUzDYGVxkdlLl3b8bFKk+F4i9H3Cbld4JfZ6+LKlKY6ixMAAgDjGc13q9Tp1aWYcy9SgYobnJcmn2Wolu6F197LsaYxkGacgvSM3QdM4e/YsumFwxx13CHGCDbvNBBsC1bebiVp3qHWHXRNYVyUqtVjobnAL2Xz66xfsTjZLr+81lmUJQQFJXLJtG9txktY2Pwhot1o0W60ks7exhqrJlpR8NkscRZw/c+amsee6aWuUYbcLYShSA66L67qUJLMql8vh2LZId3S7YoADcRhiyPqkY9vCrTuOKVkW7U4Hz/PoSiX9fC6X2G/FccwTI4/x2PCjZKQfo8JHpz/Cfzr7Xzi1ejp57FvRS/y93X93k8ZqIgEnV5mwlusP+naU26Ff3DhGSmLJYNgvXtD/nrFMd3quixfHuK67YyFc9WXFcZwIMvdk20pXBs2BSkXc/Aj6/OjwsCjeex56r4cXxzSlyLIiI/T3YaqbP5fLCSHkixepDAwwLBWUUqR4pxBFEaFcxKmFYyxVcTRdp1gsYmhCzrErCSZqwakkGq0+8p9pGImnY73RSOYGDRLtZS8I0BCi4lsGPkQgOn/+PAcPHRLG7HKRru5HBeVYovXxG5LU606p2o1zR9/jkTxW8n4SGiTmy67nJdmp7aBStZqmras7dqXwSFYujnuuS7fXI5vNUimXBanS82h3u/jSoMLJZIRJ9Bbvp8sUd7fX4/zZs9x1993rOBHvBW7KHWUYhgS9HsQxvV5PKEpINY1MJoNt2zTbbeq1Gl1J6LFk7rxSqZDJZJIgCWKAqVomyGbgej0xJW6324SIVVFuwy5R0zT+9t0/vXZusWgX+d0zv7/1yfeJAsBa+kM17vene1Q9IJGrk9hq75XcCFvsLkGmYDUtGbw7QR3DkVY4VVmIV6vMSrksnAJkj+pKtYppmuRzOSrlslDqkU4BylfP87xNu8akVyqKmLt0aZ1NWIoU7wSiC+UXcQAAoyxJREFUXi/xXex2u7Q6HZFG1XXKxSJBEFBtNGi224KoBuSyWQakB2sSJOMYpPJVuVxOWkU63S71eh1PEny6khVeKBR2TI2ePn0awzS57bbbdjx/TQZJIDFtUI8rfej+XeGN5o7+eWhLmTrTFBrSsM6Ob8tzY21X6zgOnW6XZrMphN4RvpojIyPJZ7FareK6Lo7jCDOKfB5D1wWb1vepN5t0Zf04OX8p+uDYNqZpsrq8zPXr19/zeuVNGShj102+2GarRbvbJSsDJMBqtSq+VF3HsSzKxSLlDULDCv1DI+M4lEsloboRx3iex8rKCt1uVzT+5/NbrgjvHjnCE1OPCa9KORL/09n/wkJ7YYeL2JyOhD57Lfmjw7ar0LWL2L4wrx61LAtTkgf6rbi2QxCGSe3Q9Txh2iwNazVNwzJNhgYHMTSNXrdLVWoyGoaR6L06liWk+voMYjdSwBXDrrqywtLSUmr6nOIdQxiGhHLs+0FAS07i2WyWXCZDs9VK6mW6ppHJZhmQRs39GZGNi1Jd0xLin64Jf8pWu83K6ip+EAiD+B12PJ1ulwsXL3Lbbbcl7SJavNVymM3zhkq79hEDVVvFxt3oVtjpr+qdMpkMmqbhqhaQnV4j20I02cMeI/rXC4VCkl0akJsVXddZXl0V4vHI9GwuRz6bTdSDfN+n1aevu3biWpLGnr969T3XhL3pAmUYhoS9XuK/1qjVCIJA0LblCk5DsFpLxaJY7fVpMipspV8KYuIuSqstlT93JR280+1uO5H/lb1/WWZVxVG9yOOzb/z7LZ+rGo83XhfsnD7ZCW+nfyqTzaID7ja7StX71Gg06LTbyWLEkJ+Js0GNJJPJUKlUMDSNZrNJs9VKiAz9XpzqdZHcnatBr2owjqx3LszPJ0LsKVJ8rxG7biJMXpOkHMuykhYGX+4gM5kMAwMDQgdajufkGH27uY3ISqP3jG0nrWqeTFv2cx824vTJk1iWxf79+298DRv+/d3UJ2Ft57kl5JximiaWbYuM1Da7yjAM6UhiTk/Oz8Qx+XyeQj6/qRVmeHBQ9K/HsdCUDoI1swjELr6YzydMel9q7SqbRHV++VyORrXK6urqDeuo7yRuukAZ93oJO7NarYrex0iYgapCe7FYpFQqrak8qMZ8dQx2XkmBCJhqd5TPZjEMA8/zaDSb1BsNkRLoozI3Lze417pn3TG+evlrnKme2XTsfqsbdT5JGlgyVH2pCgRCISjw/TUxZHWcG35a65GkUfoGvNo5q0Gu2MOapuFks4IFKCncW6GQzyd1nWqthut5aPGaSaumaWQcR/jrye9o3aCXn0chl6NZq9GS55AixfcSURQRum7CB2jU63hBgG3bic6oY9sMDAyInaFs3u9ngu8UJBU0lRp0HGxpuhDHQqmnVqvRarXWlSHa7TYXLl3i0MGDW4oP3AhhX+o1kj3MrusmRBrV87mR5b7ufN/OIlu2mbmum8x7kewiaDabNPsMp03TTHaP26kXaZrG8NAQlnQsWl5dFX+I+8wVDIN8Lif6WzUh69fpdNaREk3TJOM4LC8uJjKl7wVuKjJPFIZEcrD3PI9GvU6n10uK5LZtJ4N8O7zdD7Ld6RBJKbeR4WGxs/Q8PDlQumEoGogNg163y9zly/zNu/4HTr91hnawZoD6q8d+jZ+/8x8LwlGvR6/XoyN7t3q93pp9lkxRbkQIPP300+sV+6VShrqZbcchn81iyRqt4zhkJA3dlv9W9ZFMJoPreSIN2udwkBxb13GkPFcQBILRusV59aNcLgsT7G6X5ZUVsjJV0988rEm6uSX1aeMoot1uJ2w4VXdYvH6dnFRWersqIylS3AhRrycWcHFMs9Gg0+nQ8zxGR0cT9Z0tG9g3BMsbjcggDJOsVrlcplIq4fo+bq9HIHeYnqzZmZbFiRMnsC2LvXv3rp1rFAmXI0lE7PV6Yu5wXXHevR6e5wkJSiUhtyEQKlnKp//0T9cuRRkiSM9M3TDIZbNksllsyyKTyYgfx8GR84bV1+domWZCtjEta/28oGlCDUzWDt8OucYwDIYGB1laXsb3POr1OpYUMOiHkh7tSYKV7/uEfSntTCZDvdGg2WySz+c3e3a+C7ipAmXY7SaKOc16PTH2LBQKoh1kB6UGlXLZykR0IzxJGweh6oMcKKbUPvQ8TxTr5WrtLZk6Cdsh35f/GF+pfw0fn4CAt2on+I/P/g4zzGCaJlnHwZRqFEVZN40R6vnKnkoFwW6vxyuvvMJdR46IJv0NOoue59GTgTsMAqq1mripVGpVE+4eyCbnfC5HLp/HkAO5UCgIaTtdx5SSd/2r2sSf820ErMHBQYLlZbrdLvVGg1KptGV61zJNSoWCYAN6Hn4QELbbou0kk6HRaNBqNikUCqKPK0WK7xJRFIkFtq4Ld6FqFc/3xT0oBUV2Sl1qmkbEDnXDPnQ6HdFmYlmiF1uyzh3bTqyzVK2vurrK5cuXGR0b49hrrwmlsE4nsc/rX+5n5A7Vtu2kDGLIxWwcRWSzWWzbRpfare1OJ5k7MlJ5LPG+lYo7vu8Ty99XV1dxpXOIvGjRJWBZFPN5snLxqlo7BgYHkznRkjJ3/RuUZM5QzPxtYNs2g4ODLMu5I5CKYFt9B9lsFkt2KERRRKfbxYkisSlwHBauXUvmjXd7kX3TBMooiohlymJVfqggmJlbiXVvB90wEsbaVoXuOI5pSxF1JT3Vj06nw+rKCsurq6wsL9NsNPDlyuripUvclj3A6/obNCKhOBMTcz5zkZ947MfJ2Gv06n73kJ7r0u10kuCloOp1IyMjWzYguzJlapkmuXw+CZiBbJnpSq3adqdDp92m3W6zcP16on8byh3zQKXC0OAgQ0NDyQ2gzlFhoxjBVhgol5PaTKfdTtpLNkJJ3lmWlaRRWu22IADZNivLy+QLBbHTTHeVKb5LxJLA0+v1qEqmpWWalMtl8luIdW8Fnb52rG3Qk7udWBLf+ueXMAyp1eusrqywsrxMtVajK++V6/PzZByHXD5PpVxmanISy3HIZTJkpJmxYRhoyj2kL11aq9eJo2gdIxegWq0C288ddUlaKuTz6FI5KJIEvq7MeHW6XdqtFp1Oh1azycL168lOVUOUXQaHh5O5Q5kvgORaSOWeaIfPLIbEFzgIQ5qtFpYkU2517yvfzq7cELiuSxSGYlfZbNLrdmm32+vm0XcDN02gjH1ftCpUqwllOJfLCaHvt7HNjzb0M8Z9/o79aMtja4aBrWk0Gg1WlpdZWVlhZWUl2WkWCgWGhoexbZuVlRU++tGPksvlCIIAc87i3x3/v9DR0dBY7a3yJ7N/ypO7nlhfPJcD3vN9fM/DljU95E5OsVNd1xXpSkj6JhODZmnq7Ms6S/+gzGSzgnBTLicWWirwLy0uJn54zUaD02fOiFSrplGpVETQlI4nShx6o2lr8t3EcaKLO1CpCNHobpeC6yaO5RuhmLOFfJ5Wu52kYrOZDG1puv1eDPgU7z/E8v5aXloikuICpm0n7WA7v1j2GCpegVowblhoh1FEp9MhQuz+fN/n+sICrUaDlZUVqtUqcSwMmgcHB5mamuLChQvs3buXu48cEbVTWYYJwlD0Vct7WYmH92doVNBsSdKdaZpCkUye005zRxTHQuNaajobyoZPHts0TQrFovCSHBnBNAwxd5gm3W6XxcVFWu228LxdXeXSxYuACHiDg4MMDw/TlrtDVbPdrkaqrqlYKtHt9eh0uzRarW3dltT8qFizqu896nbJ2Da11VWcTOaGJbjvNW6aQBnJHHar2Uyad1vt9ttje20xsNcpSci/BVIdYml5mXq1yvzCAr70ZRusVJjevZvhoSEGBweTVMofffnL7Nu3j6JcmRqGwccPfJQ/mPs8p6tnMOR//3n2P/Po9CNYmpX0TaqA50s3b0UYUvDUYPc87C1aOjaaueq6jhYLncr+OuZWq7Ph4WGyMpevhBqazWayIJifn+fcuXMAvHb8OK12m4mJiXWOCf2BWR0/l8+TcRy8MKTebFIsFLYfsPImKuTzSc+q6nttNZvo0iT33RzwKd5fiIIAv9djZWWFMAxFlsg06fR6wrf1Btgqi7LVQrvTblNvNKiurrK4tERN7uhy2SxDw8Psmp5maHCQcrmMrmmcO3+eMAy54447kpJR/47QV9wFGczCKBLOPuKkiKOIII4JJfFFMXYV1Dyy3dyh5h9F5lE7VkNfM3bXtc3ymIVCgSiOqQwMiFqm4xAEAaurq8nccfLkyUSo4dnnnmNqcpLRsbF1sqARQgBGzcm6rjM4OChcV6R/8FYevLDW/pJxHDRdp9vpECL63xv1OiPj47RarW1f/07gpgiUURTRkowxXdeplMsEUpT3bSvIb7GNV5N7p9fj6rVrzM3NsbyyAnIg7J6epjI4yO7paYwtXj93+TK+57Fv3751j+uazt+++6f59Df/PoH877q/wBeu/P/4iTv+BkAirad2mKqfy7btREpKrQodaczcv9tE07B8Xxg9SxF3RaBZN7jlbm8jLNvGkPJdfhBgmaZoiykWmZmZYW5ujldeeUUIwRcKXLxwgdOnT2NbFuMTE4yPjzMyMrJlECuXy2JnLjVgt3Mm1xC+eCEk7iNeX/2mUCzS6XTSXWWK7xh+p0NNCgDYts3w8DDXr19/e3PHNhkUWCtFLC8vMzc3x5Vr15LyyfDICJMTE4yNjW25M4qBc+fOMbVr15b1OBCpS8uy1gQO+u5r5c7he946UYQkiMYxlrIXlAQ/NWdoiN2oUhsqKZ7EhmxU8p5bLBQytk1bciQcx8E0TUZHRxkdHcX3fb71rW+xvLyc6Ne+8uqrxMDQwABj4+NC+m8LlSJVeqo3GtSbzUQ8ZsvPH5EKt0wTXS604zim0+kIMpWmUdhpkf49xk0RKJvVqkhrhKEgoBSLLC8vE8ONV4XqixZNjsnDge9z+fJlLs3OUl1dJdY0isUit912Gwf27SOTzVKTpqNbBckYOH/uHBOTk1uyrO4eOcLjk4/xzLVnk8f+4Pwf8AMzf5ax3Og6FR5dpnlzudy6WqvaUTqOs6XsnErlrPOh21BH2a46oGkaluMQdrtJzUbh5MmTnDp1il3T01y+fJk777iD0dFRlpeXuXz1KteuXuX8uXOYlsXU5CR79+5loM9rTjdNysUijXabVqdDJpvdtl6pzgWEckcUC33N2soKE1NTwkszDZQpvgOEYUizWhUGyoaR1OrCON7S7Hwddqir1Wo1Ll68yNWrV3F7PWzHYWBggCNHjrBrairhHGznJXn9+nVarRb33nff9u+/8T7u+7eu6+hAZBjYlpXIcvbD7Z87trj3TBksk0AiiX9vhxNg2Ta6ZPEGQZB8jt1ul2effRbXdZmamqJWr/PkU0/R63a5dv06l+fmeOONN3j99dcplUrsmZlhz+7dSTBM7PpkH+Zqrcbo8PDOXQyILF4um6XRbIKmsbSwwO6ZmRvKdX4v8Z4Hyk6ngytradlslrwsGLueJ7REb1SflAFS9U7WqlUuXrzI3NwcURgyPjHBAw88gCPbEfL5PI70VksOwWZa+OLSEvV6nSMf+tC2b/3/uusnef7atwgRZB836PEfTvwm//j+f7jhFLeWn7shtkoLsSE47nBMx7KSFhVVhzx27Bhzc3PceeedTExMcPnyZQzTJAYGh4cZHB7m7rvuolavc21+nrnZWS7NzVEuldi3bx/T09OJUXNO0tertRrWDoQrQ9eFtiXixg59nzCKuHL5Mrv37Fl3M6ZI8XYQxzHVxUVc2Xedy+fJZjJCJjGON7E0tz2O/H8YBFy5coWLly6xurJCJpNhZmaG4eHhxIWoXC6v65Hejvx24cIFKuUyQ4OD384FbXoo6guc3y002DLVuuVzZSteJFtWCqZJrVbj+eefxzAMnnzySc6cOYNpGMRRhG3b7Nmzhz179uD2eiwtLnL5yhXeeOMN3nrzTaZ27WLfzAyDQ0PC9alUSvrUm80m5XJ523M2dF0Izstg2el2qVWrDI2MkMlkPhiB0vd9GisrhK6b9Ms4Kk0gi93b9uv0EWb8IGB2bo6LFy5QrVbJZrMcPHiQmZkZMlLlvtXpJGlMlbdXIuZRFG3SaTx//jzFcpmRHYS8d5em+fP7/jx/eOEPAYi0mK9d/jo/sv+HOTggNB37+xi/4wHfHww3MvN2kJzSDUMES8+j3W5z/PhxVldXeeCBB9i1axerq6uibcUw1t1Amq5TKpcplcscPnSIxcVFLly8yGuvvcYbb7zB5OQk4+PjDAwMJE7v9UZj+4lB04Sgsvwsstks7U6H6uoqA7KuU3yb7MQUKQDq9TqhZKHmpHE7moYnew7tHTIc/fdPvdHgwvnzzM3N4Xke4+PjPPzww4yPj6NpGrV6nSAIRIuJYrRLqcitgk6z1WJ+fp777rvvu2Z098vXfS+wkdm+E8vdsW16UjT+ytWrvPrKK5TLZR5++GFs2xbEIsMQCmR952fbNhNTU0xMTeG5LrOzs1ySG5dSqcTk+Dij4+OUi0VqUnNXlaS2Qqw2Qn1CB51Oh2tXruA4DpVK5V1Jv76ngbLRaKCHIV4cJ4306DpRn4zcVi7hCkEYcvHCBU6dOUO33WZ8YoJHHnmEsbGxRLsxlur2aoJe5/bRX7DvC0CtVotr165x9J57dhzsMfDXDv/3fHXuq0KEQB7q3735f/FLj/8vCZNUvde3e+OoYdz/qo1H0DYGzg2wHYd6o8Gx117D8zwee+wxBgcHiaQwMbIOsOGga7RvTWN0bIzRsTF6vR6XLl3i4oULzF2+zNDgIIcOH0ZD6Fnmd2DB9p+/puvkslnq9TpLi4tJ7TRFircD3/fpNptEvR5OJoNpmslEG9/IpUfeK/VGgxMnTnDlyhUs22bvvn3s3bt3XW9vT7Z36IaxLs2qs3bfJQFT3ivnzp/HcRx27dr1tq9H8Rg2zg/fjTVfP/M+eWzjXLHD3KHLtO/5Cxc4c/o0k5OT3HvffRiSPOj5vnD/2ABN0xLypO043HbwILfddhtLS0tcuHCBM2fPcu78eQ7s38/g8DCe71NrNBjdYUOiaVqiFuTYNlEY0pCew91u910RIHjPAqXrunidDrHrCqV4wxCDXclJyedtNUiiMOTipUucPnWKXq/HnpkZ9h84sOUH1u31iKTNzsaaQpJGidfb3czJdOT07t07pk21OKbilPkrh/4yn33rN5LHX19+neevv8CjEw9/V6vC7VZ8/enXHVMpcUy9Xufll14CXeeRRx5ZRz5Qzu1btt/0DXiFTCbD4cOH2bN7N1evXuXihQs898wzDA8PMz45SaPZvGGgVDAMg0w2S7NWo16vMzo6+vaJWyk+0FAL7BA5jlRPY9/coW0TXJqtFqdOnmTu8mVyuRz3338/k1NTm+aZOIqETFwcC9H0jVkdNixkNSGWPjs7y769e0VAYfPCdjtsNb+olovvZGeanFv/xkC1wiRP2nr2iCUR6PSZM1y4cIFdu3Zx7733rjtWEAQ4WwUoTXjerhMj0TRGRkcZGRlhaWmJ2dlZTp85g3nxIuMTE4wMD9PpdrckPumaFIPouybHcWh3u9SrVWoDA+/vQNloNNAlBVppJyaDfYcv8PLcHG+dOEG702HP9DSHb7+dQj6f1MD6EUWRULiXu8mN0DcMePX73Nwc07t2JYK9m84D1gXWT+77Ib5w4QvMtxaSO+Ozb36WB8fu/65WhQqbbpQtVoIbg2ocx8zPz/PSSy9RKpW44847N6WxlRbrVvVBTaVLt/kuRkdHmZqaYmlpibfeeou33nyTysAA2uHDjIyMbHlucRwL/zn5mWQch1a7TbvVolarMTo6eoNPIsUHHa7r4nY6aFLwXCnJAGs9kGwOUJ1Oh5MnT3Lp0iUymQxH77mH3TMzCZN8I3q9HmEUiZ3VFgts2HzPXZ+fJwgC9szMrLHX+3Ajq7yNCL/DuWPbBfaGxW+89oJ1/pVhGPLiiy+ysLDA7YcPMzY+jh8E2H3zRyDb6rZ8H3nMjfyJOI6xbJsDt93G7XfcwZlTp7g0N8f169eZnJzkrjvu2HRMxdbtTxvruk5eZqSq1SpjY2PvOMfhPQmU3W4Xv9dLBnuym4SEmKN+V6jX67zy8susVqtMTU3x6KOPJv2B275Pr0cUx0K+bRudR2BdMFhZXaXVanH03nu3PW5yVvJ1junwN2//m/zPL/0riDXQ4HLrCl+69GW+b+Lj4jXfSfpkw/v1/1vRv2PY8kY/d+4cb7zxBrt27eLo0aO0pEN72FeP9T1PWHNtc24bbywFZQSr6TrT09NM7drF6VOnuHDpEs889xwH9u3jjjvuWEub96VOdEicVVQf5fLSEsVSKQ2UKW6IZrOJHkVil6Hra7vJPqgdCIiJ9uyZM5w4eRLdMLj7yBFm9u3DlGN+qwq/EgOP45js/7+9/46zND3rO+HvE05OlXNX5zjdPd2TuifPCLFacBBIvOzasLZxANs4AQa84DVpzbtLeO0PYTEsYLDBLIglSCDJSBrNaEL3TKeZTtM5VIfK8cTnPOn94w71nFOnqrtHmp50fvrUpzWnTq77ua/rvq7f9fu1kEszI22dKG7cuEFHoUBuFRb3ilOpHAnRpdum+0QDw72ggW8Qua1BUIHGkRQFx3F47bXXKBWLPP744xQKBW3MHA2U9Xp99QpQq1Nl5PMg2a/79u9ny9atvPnWW1y9epXxiQkee/hhuru7G56LyMlaPUcikaBYKlFcWmJubu5d3zvek0BZq9WwggBfnjAaTpNyoSgppyAIOH/+POfOnSObzfLcc8+1JI00s0H9IMCRszerzTKpgBH6PshFcHNsjGQqtSaJR79mZFF/bPR5/uTSn3Fh4bxc8yG/e/a/cLD7IDEiDLxQOJgrqKAT7XPo+6k5THm/hst1tb5kGPLWyZNcuXKFbdu28cADDwCivBpIBRNLEh0q1erarLE7LHh1IjcNg23btpHP57kxPs6ly5eZmJzkkUceobOjY4Uwe/RUmU6lmJiaolIuU73T+2njIw3f96nLBNuWghvNm7UKCIZpslQscuzYMebn5tiyZQs7d+xYcfJoVdSsqQTbthuG6BXMSIKtXs9xXcYnJti1c+ddfRbTMPDVqTMyttFQfYkGSnW73Ce1cbP63JG9Q98uH6P2jugJsvkxIJKQ1157jSAIePqZZ+jo6MD3fT3/nJI+kr5MJJJrXKsGK/dkdTKMfufZbJa9e/cyOTXF1atXefGll9i6dSsP7NqFaVkNM+KGaTb0oFOpFIsLC1qS9N3EeyKJ4jgOgWRbNpdOYPm0VK1W+eoLL/D222+zbds2Pvaxj63JrIyiWq0SIGaCVmPOKoKNLxeOH4aM3bjBunXr7v7DqMCOwfft+Yf6JsMwWHKL/MWVv5S3Lc9BqkWkb4+Wm5v/PzTcX6HhApHwfZ9Dhw9z9epV9u/fr4MkCP9OA7SJKnBXganVRtKKfGBZFrl8npHBQfbs3QthyFdffJHTZ8402JVB46IzEULqpXJZUPvbaGMVOI6jE0hDuuC0Ku8BjF2/zle+/GVcx+HZZ59lz+7dd1WeC2RvMgzDVUX7o7Z+Kom8ffMmge/f295B4/ULaDZ+EDlFKSESvXcYy6IkKmjKJ2v40XtM9Pmjrxv57qanp3nxxReJxWI8/9xzeibVsixsuU+qVk1NGjavdgCRb3zlSVi+p+YTujJv2LFzJ1u2buXK5ct8+StfYWZmpjHBbtpz4omE0KytVNZk8H4jcN8Dpeu6BPLHNE0RxJq+ON/zOHnyJKdOncL3fZ577jl27dp114SYMAioS6brWn9MS2Zqyk5manKSuuPc22KPLNK9PXt4YuCJhl9/6fqXmXXmvy6Kd0siUdNttVqNr730EjMzMzzxxBNs2LCh4ffKp1I5DICQ5bqjg4c82UehSQZNF0I2m9UknUcefZTt27bx9rlzfOWFF1hcWlrxvCACfjwWo1ap3JfMsI0PLhzHwZSyaGEoZiWbKysTExMcP36ci5cusWnTJj72Td9E1z3MMzoyCNgR1ZxmGJEgoALa2I0b9Pb1rRAGuBNaBY6mF7un52t86Br7RuR3Y2NjvPrqq3R3d/PMM8+sOCna8TimaepAWZUJ7b26/wSr7BumYZDP5zGB7p4enn32WUzL4sUXX+TM6dMNrbHoY2Oy2lWSZtLvJu57oHQcB0PVxg2jgekKYhM+deqUlncrl8ucOH6c02fOMDM3tyq5JLokHMcRi10Kha8GpXijnvPGjRvkCgU6VhmAbfm6TWWYf7j772OxTAIKwoDPXf5cwx84ylht1SfQ94sukGjvIvLfYRiytLTEiy++SM1xeOaZZ1rW6w1DSGaZpokjdSIrlQqpu1ns0QsuUu5Z0buRC94IQ8rVKps2beL5554jDAJeeuklpqenV3we9b6qUprqvTJmbeP9j3q9jl+vi1OObQsd6MgaXJif57LUWAW4PjbGkSNHuHr1qnbUaYYmnsh/HWlOfCf2tg6UYUilWmVqeprRezxNQmN/MgpN5IkklNF9w5ePi96un7P5lBr5/2qfUq/59ttvc+zYMdavX8/jjz/ecr9U1ShXCoUoEfY7tkmaTpWr7RsAmXRaJCZhiBeGPPvss+zatYtzFy/y+uHDy1WpyEnYlOugch+qUfe9R+l5HoHnYZomlmFgRf4wnudx+PBhJicn2bRxo/BIi8eZnJriyuXLXDh3jng8Tl9/PwMDA/T19S0v6EgJs+Y4hHe72A1D2M94Hrdu3mTHXfYYoKn8KRfeSHaYv7bxW/ns1c+J18DkjakjXFq4xI7u7Y2PjSYILZ4/2hlsqdMITE5M8Prrr5PJZnniiSfWzGjjsZj2iPQ8j5rjrF0+kVClnmbiUKtcN5NOUywWqUpXg0KhwLPPPcfhw4d59dVXeeThhxmR6j7qZBCPxURmKB0P2io9bTQjCAL8ep3A97Hi8cYE2zCYnJzk8OHDpFMptstepFOrMT4+zokTJwChUTwwMCA0Wru6lisl8l9H+s8aUXLhKrBMU1wTvi/UrUyToaGhu/9AioynEuVVrm9Dzi3q2+W/zf2/5l6g+lytAimINs3RY8e4ceMGu3fvZuvWrau+VVPKAQah0KyuViokpPj8nRANikqnerXqWj6fZ3p6mmqlQj6b1byHN954g5e/9jUef+IJIRgT6VXGbZtatfqunyjfkx3Jc11ipokdWew1x+G1V1+lVCrx1FNPaZfv4ZERRtevJ/B95ubnmZicZGpigqNHjwLQ2dlJf38//QMDFPJ56nKxm6a5gtbdDNUkD4Fbt27h+f6qg8IhtBwKVos8evt37/guvnzjBarecpbzm2d/m59/6v+4t5moyIJv9d6vXLnCkWPH6O/r47FHH12eh1R0atXfkAvUlrJevudpU+y7LZ8oK50gCDRZouXsl3xOx3WpVKvkcznisRhPPvEEx44d4/WjR6nWamzZskUnNyrrrEjD1jbaaIVQSiaCSPrUdXH9+nWOHztGf38/23fsYGlpiWQiwcYNG9i+fTv1ep2JiQkmJye5evUq58+fJxaLiX2jv59eOcOryq7aoGANGDJQ+mHI2NgYg0NDqyZ4Qat9QxFqVnn+aI/yXrHm7LfsNb762mvMzs5qlS75QNEHbapeEQqBedfzcKVH7r2Q7hRbVY/KtRi7CxE9R9u2qXse5UqFXDZL/8AATz/9NIcOHeLFl17iqSeeIJPNalKTYVk40qT63cR9D5Sh7wvlHZUVIkglL33tawS+zzPPPktHocDNmzdRHm6maWKYJt3d3XR3dfHAzp3UajUmpqaYnJzk0qVLvH3unLDL6uqi0NHB0ODgHReZel58n5u3b9PZ1UU6nV41KLZceKykmHckCvzP276T3z37X8RnJuTk7EkOT7zO44MH7/67WmXBh2HI22fOcObtt9mwfj37mhWEjGW1kGij3zBN4rGYNlCFuyif6KcUp0pl/dWcTarvTM2sLi4tCaf1Wo10KoVhmjzyyCOk02lOnjpF3XHYtXs3IP8OgFOt4nleW3igjZbwZMvAtm2tqnXp0iXeOnmSTRs38uC+fVSkf6OnmNZykx8dHWV03TrhXLO4yMTEBFMTExy7eZMgCISMYqFAV2cnHXdh32TJalSxWGRhYUFXoloFvpb7hkw89dhGE76u+es12hflUolXXnmFaq3G0089tXIUg6bSrQyesVgMQybZ5btt2UiYkjDpS0eoZrnQaKUqnU7jLi1RlYESoKOzk2effZZXXnmFF196iaefeYZcLqefSxnZv5u474HSdV3NWrNtG891OXToEIQhzz//vN64Vf/BU/M7TWWSZCrFhtFRNoyOEoQhc7OzjN28ye3bt7lx8yZvnz1Ld3c3A7JMm5eCxlGoMkDd85icmGDHjh1r1tFboVk/UeHbN3+SL1z5Im7NRXX1fvPMb/Fo/yPY5t197a2GpwPf59ixY9y4eZMHHniALZs3313D31jWSzQNYVit+wxNDLjVn0KUqQ3DaFjszSVZNR9ZKpXERaXKwYbBrgceIJ5IcPr0abLZLOvWr9ePcer1dz0zbOODCcMw8F0XA3Qva2JigpMnT7JdjkFpxx5DzO0qHkTkSTBNk+7OTro7O3XCPT45ydjYGGNjY1y7epWzZ87Qr9o7/f0rR1Bk0hmEIZOTk2AY9Pb23pXg+IrPtcrt6rnekaKXeu6mx87PzvLaoUPYts2zzz13d8bWES6BbVkEvk9xaYnBwUFR/r2bvUPuPcojU8+hqp/I3pGWrRtPjqAk5N6RzmR47rnnePnllzl06BDPP/sstiQogvC3fTdx/wOljPyxWIwwCDh2/DhLpRLPPftsw+lGDau7EfPPljAMTIRRcTyZZGh4mDAIKBaLTE5McP7CBc6cPUsymRSLv7+f3v5+rbpjmiaLS0t4nsdAf/837HMmrAT/y/bv4rff+h3tLiJECL7I39z01+/uSZpOlHXH4fDhw8zPz3PgsccYHBwUTun3ANu2RSZcLpPNZJZntIyIK8IqjzUMIdMVgJboCqOn1ggy6TTlchlHCitHT6BbNm+mWCxy4s03yWSzdHZ1gWHgvMt9hjY+uAiCgNDzxIZt2ywVi7zxxhsMDQ3pIAnLguWrXhdqL5FrNplMMrpuHZl0mq3bthH4PjPT00xMTDB24waGYdAlfRb7pZg3LM9gz8zM0LOGc85aWCu8fD2lV1ok2Ldu3uTY0aN0dHRw4PHHsVrMR98JMdumVqtRrlbJ5fMrEvm1gqay+FI/zcm1gmLNV6pVytWqDpQgSrOPP/44X/3qV3n9jTd44vHH9etVq9V7+iz3ivseKE355SohgZs3bvDYgQMrmKbRzHBVRE6ZQRDoOatCoUBPTw8bN24UC392lvHxcSYmJrh29aou4w4MDNDR0cHs7CyJRIL8PbBd9VugdZkW4MnBJ/jy5a9yqXRR3/Zfzv0e37TueTKxO+sTRjPDcqnEa6+9Rr1e5+mnn6aru1s07e8xUCI3mkqptOwDKev9YeQ+zWQBdbvKDLUbyCqIxWLEYzEc16VUqVCIlrMMg30PPkhxaYnDhw/z9DPPADSMrrTRRhSuFBkIw5BarcZrhw5prdbotacCli9dRFZVxFLkP6TAAKLvWejpob+/nwd276ZSrTIxMcHExATnz53jzOnTIuGWhCDLspibm2PXrl3v6DOtdQINv47SaxBJsENZnlYqXY88/DCmZb2jyo1t21QqFW2Vpd9rlJ2vbmt+T6plY1libn2N8nA2k6EqCTrNFnzpTIbHDhzg1Vde4dTZs2zauBGQutWr7MPfCNzXQBmGIRbiy5yfneXU6dPs2rmTkeHhFfdVrDI/4iSyFur1urDLsm1xWhUvCIZBT08PPT097Nmzh3K5zOTkJJMTE5w9exbf8wgQkkgT4+P09vXdU3YYsDLrU3081/X45Ia/zi+d/hVSpDAw8Ooef3Tmj/nObf8fTVmv1WpiNskwGk52br0OhsH09DRvvPEG8Xic5557TriHA8Y7HKWwLYtyqcTwag4HinYuyyTqVXxpfRZVJFkLmUwGZ36earVKrsmN3DBNDhw4wFdffJE3jhxhz+7dWKZJsVi8p7m3Nj4a8KW2qO95HD16FK9e56nnn19xrVqmqX0X3Tv1u1Wlpl7XJB5YJrAkEwk2rF/PhvXrCYKA2dlZTQq6fu2aPhVVKxUWFxfFaNS9bNQtuAcqoNRdVzj81OvavECx60OWT1C1Wk38/8i+UXccsXcA506c4Nq1a2zbupUHdu9uGMu611Esy7Ioy0C5Ggmw1UhbiCA9aQbuHV43Ho8Ts20Cz9OEwCh6e3vZs2cPJ0+dIpFIkMlm8V33wxMofd/HNAwMy+LipUv0dHezc5VxjJic3VEzf3dCvV7HNE3tZ7naIshkMmzatIlNmzbh+z5jY2McOXoU13V57dAhLNOkp7dX9zazLfRkgyDADwICz8P1PB2klYCvQq1WYygxzMMdD3F84YS+/cXrL/H0wNPEXcFSdV13xecM5ZjL3Pw8V69cIZ/Ps2fPHlzPY2lpCUO6oPvS1NQ0TU0wuBN838f3fUFcWiPr1heT/EzRZvzdLMhkMollmkIGq1ZbcXElkkkOHDjASy++yOTUFAMDA1QkyaiNNqJw5fzk3MwM09PTPPnkk2RXcY0wbRuzXl9bj1TC8zyRYBsGsXhcq4KteE7TpLe3V2/SlUqF1w8fZmZujmvXrnHl6lXSqRT9AwOivdMi4VY+u76snDiOI/YRJVWpmLByNhOWmeorvg95gHBddwWRxanVqNZqXD1zRhCNtm9naHhYGFGo2XFZCrUsC0uWq+8GtUqFZDp9V0E2jCTUbr0ujJjXsE2MIpvN4s7PU6lWl1tEEWzevJnp6WkuXbzIg/v2UXccPe3wbuC+BkpXlkYX5ucplUrs2bNn1T9QPKIGsWYJBVGmcF1XC6ArqST9p1yldq7r9IYhDEljMaanp5mYnOT06dOcPHWKTDpNT28v3T09ujwcDYaBpKy3YsiqhfitW76V14++gY9PSEg1rPJn1/+M/2XDdwHCY01bgMkLxvd9pqamuH79OgP9/ezcuVN/B0EQgHRecZtO3JZpLgdOOZDb/N5KpRIGYjH6vq8Fold+sY16kp7rEiL7y3eRvZmmSTqTYalYFDY6LbLQfD5PX38/169fZ3BwsE3maaMlfNfFMk2u37hBR2dnI1uzCfFYjKphUKvXaS1Pvox6va51XZX4wN0QVNKpFNVqlaHhYbZv3Uq1VmMyMoJiGgbdPT3ip6uLZDLZoFsKy+XCKAzQZDnDMBrmxNXssWEYWpAlrvaOcFlIoFqpcP78eWqOw4MPPqgrNGpfARFoo69tSqKT2juUlm7z91AsFsllMniuC2sx5iOHhiBcVj9raenXAklpbebLU/WK+XDDYNv27bz0ta8xNTVFZuNG6tJk493A/Q2UspwwNjZGX38/yVQK13VbfriYDJRKLWO1QfoQqNXr+EGALQNDczNbi5C3uAAmJibo6uzEjsUEk3bjRkbWraNWqzE9Pc3MzAzjExNcvXYNyzTplBdpb28vmWxWBOR4XJzw5OI25WIuWRau59Gb6ubZjU/z2at/oV/3r8a/xPNDzwGiSR0lMoVBwIkTJ7h+/TobNmxg//794nQns89A3icIAgzpt6nKvb78/1HYpoklVYps29Yn0nQ6jeu6jYs3EhhV1qngeZ5gHcrgqyTx1tpUFItN/e2bMz7Hcdi0aRMTr73G7Vu37lkrs40PP3TiODlJuVzmkYcfplarrbopxuNxLMMQMpZ3eN6aDJSpyMmz1Rxh8xpXyd+m7m5ChO1cZ1cXW7Zto7i4yNTMDLMzM5w/dw4/CEinUmK8Tf7Ytq0N083o3iErMKF8H6t5LarSa6Jp71haWODEm29CGPLEwYP09vXpqlAQBKJt4vvUZTVMnXBVMIuSoFSib9u22Fsti2KxyMDgoHguaWod+UKXS8QRqOCsWcmREvJqMKUzTKVaxXGcFfu/EiYZHhrixs2brBsZWeHm8o3EfQ2UnlS/qdZqPPLoo4Cwwmq54OX8kyNLC81fVLRM4cheXiweb1l710vcMBpOmX4QMDk5yYaNG6mUy4KOHBEp6O7poae3F8uyqFYqzM7MMD0zw6WLF7l48SK5XE6XY7q6u1fMB0Wb6t+947v58o2vUvGW9Uz/6+Xf5wCPNjzGdV2OHDnC5OQkO3bsYN3IyHJfQZZX1dJUzXH1edXiVcHS9zz8IMALArx6XZd3Z2dnyWQyBPIknlLfZ1M23bBhBAGeKr3KZCRQbNk1+h0xyxIOJJ6HU68vj4og1oPneSSTSYaHh7l67Rp79+1r+TxtfHTh+z6+53HlyhWGhoYo5POi5dFk/aSg1Fucer1lNUqtVc/z8GXyl1C8hiZEFaSiBKCJ8XEMwyCVTLJYLOJFyn7xZJKRkRFGR0cxgIWFBWZmZpiamuLWrVsNZdze3t4VwXA1T807YWpyksOvv046lWLPnj0UZAVMiarrvcO2sWIx4hFZOFUCVm0Zda2raxRERcmRal4B4lSakPvPWqVY1WONyVN7IO9vNqkONSMRCZTNUCfqLVu3cvv2ba6Pjen3+W7gvp8ob92+zejICL09PSwuLuLJDbTBzkZ+eYl4nEqlIsYGIozU6B8mCEPcep0wDEnEYpp6vBrU0Hy9Xuf2+Dh1zyOby+H5PhaiBGFHTl+qfp/P5eiX4yOu6zI1NcXkxAQ3btzg/PnzWJZFX1+flshKpVINzLUOW4gQ/PbZ/6zfy9mFswwYyyMp1WqVQ6+9Rqlc5sBjj5HOZNYuAUmVHD1zJTPT6B81uth9z8MLApaWlkhns9SqVeryYkkkky3LtAqe72PI17DkDJn6fKoM22rRh2FIMh6nIu16VKBUPVgQm9S27du5JWdgH1/9E7fxEYTrukxOTlKr1di1c6cw/K5UqFQqxJoINKo1YMr1WPc8vbdEyTAgJOtCRDnQsCyhYLXKxq3Wt+Ik3Lx1i47OTlHJkUEmpvYN6bGr+nGFQoH169cThqEeW7s9Ps7Jt97C831ycm8ZGBigu6dnVfHwtXDt2jXePHGCvr4+dj7wwJpi62Hz7ZFepT60yODpeZ4InJ5HsVhECYpUy2WcWo1CoUBM6e6uAnVKtVR5O/J9hmGIaVktT4Pq7+bK11c9X1fuZSGQz2YZHh4WymofhkAZhiGLUnFhULKvkskkZSmGrWviLG/8cSkl5ci+VfNCBylggOzNyS+yFSMzCEMc6aum/nDz8/PEYzE6OzpwajXMWIyOjo6WsnRRxGIxhoeHGRoaYs/evSwuLnL79m0mJic5ceIEYShGVAodHXR3d2vSwbdv/iR/cfUvmapO6ed6yzgJiJLJa4cOAfCcVPCvVKtr9gH1QPUaWZkSHY/J+clarcbC0hLr1q3DtCxMGcB8GXSVyXUzEcGT5SBVLmp+VzoLloojkTegSyj1SGZYd10CmbXGpR9pLptlamJi1c/SxkcTnucxMzNDKpWiUCiI671W076IDepSYYgpq0uO64oqUTzesiToSk3ohAoOq1xLShdZ8SDUXjY6OioSYkmMy2Qya/buDUOYBuTzebZs3YrjONweH2dycpJbt25x6dIlbNumu7ubQkcHAwMDd/xuwjDk7JkznDt/no0bN7LvwQcplcui3Lna3hGGdz6tRoKnwvXr17FjMXL5PKWlJVz5/dYQ86uxWEwcVqJiJDJRV2Ineo4yUm1TM5bNfx/LsvSIWc1xyEbGg0KEzqtpGPT09nLjxg2mp6fp6e2943f2TnBfA+XE7dsEQK90t0gkk9Tkgi+Xy+Sy2YZFlpCBUgW3VioVdVlOjLLbzMiX7knGpaKAK8Rsm1KpJMqmnZ3MLyzocqVl2w0Xlj6lNl8EsnzQ0dFBPp9nx44d1Ot1pqammJiYYPz2ba5fv86pU6cY6O+nr7+f797yt/n/nfqP+ikWjUXmZmc5feYM2UxGCJunUnr4ftWs8C5ZZxiGMEmWm8D8/DxmGDI4OKjp3mEQiH5jKESPXWmBlojHdTlbZWsqGVn1fUUWvfpXN+Z9n7pUV3GkOW4qkdASV51dXUxNTb2rNO82PngIw5DZ6WlGpei4gVCUKpXLVGs1TMsSp4/INZFIJKhUq9QchzysOLGo8qLB8t4RrUaFYSjaPrVaQ9/OlCQh3/MYGR4ml89TLpcbBALUdWc0JfUNJ98wJBaLMTIywsjwMGEoXIDGx8cZHx/nwoULnD9/no5CQZ82u7q6VvT4z545w+TUlBY2V4Gn+fVaYdWWSeR9R6/F+fl5ujo7yedyhEFA1XH0vhH4Po7v48hWWjyRwLYs/R2rthGg+7CNL9l4ulTvK5lMUpcl30w6LZxLpMJPPB4Xh5J8HsuyuDE2xs53ONN6J9zXQDk5OUk+m9VHagPIZLOUSiU8z6NcLjfU6y3TxLYs6gjB7GY6eIg4mYTyS4vCqdepSVUY/XyWRTKR0PddmJ9n27ZtKLWPwHW1iswKFiss9yoi/18vKHmfeDzOyMgIQ0NDLCwusrS0RKVcZmpqiuPHjhEQsj2+nfPeeQAeCHfy5ltvMTAwwGOPPaZPcup5Wy521Z+NfLf6v1sE82hmOTs7S0zOHnmui21ZhJZFTpafXUmrD6ROa61WE0LFcvzGjmSYq4kO6PcTuWBjto0vhdJVIhO3be0CEfo+XZ2djI2NMTU1pcvcbbRRKpUolUp09/To2+LxOEmZBFfKZb3Gor83Q2H+3qqsV4+WXSPBx5fCJY7jLHMM5PMlZKVFsVq7uroaEnIVVPT1Z0TUriL9f0MSa9TvlWh6oVCgUCgwun49pVKJ4tIS8/PzXL9+nQsXLhCLxejr66N/YECf9Kanpznw2GMNM9F37HFGvg+9nzXtEwrqs6g50h07dugqVRCGJBIJYrGYLkn7vr+cbKtyNoKrcCdEg7xCIpGApSXqUozd932CMCSTSunk2zRN8oUC169fv+NrvFPc10A5NTnJugceaLjdsiwymQylYpG662JWq7qUEiJOndV6nXKLQOnKIGlJOnMYhtQdh3K1usy0QtDF1R9UYUGWDhR12rZt8Qf2PNbyHGnICqOlGkluiS4sEP2J0dFRdu7ciSNdDEYmhjk+cYLQg063QDKdYHh4WJ9mkRmaKpFEsz6d4YUr571UMF8Ls7OzdHV1iTJrk4qJbVnYqRTJRIK66+qAWanVcGo1bFnCavVdNENtDKqfmUwmcep1iktL5GUGGCVOhWFIoaMDwzC4fv16O1C2oXHr1i0Mw6A7KkRhGJoH4NTrVEolMrmcTuQSspzvyRnlRFMirRNsuScEvi9OoLKsByJRT8TjJJLJhmrW3Pw8hUJBE+nUXOJaFnHNpgXN12mgyqHyuexYjIHhYTZt2iQqQQsLQiVocpJjR4+Kvl3oEu9O4Nv+8uOjz6XaIMay8pZhGMLEofkkeYd9Y3FxEc/39ViOZVmC7+H7xOXhIx6Pi6qR4+jWinIEyhcKy4kEdxY8UL+Px+OYlkVVBspYLEY6ldKvrz5rV1cXN6TA/bsxS3nfyTzNJz+1YWcyGV1KCYFUMqktm0rFItVqlUD2H/TzydNiTJ54qpWKGI2Q90skEiQSiRVsVIC5mRkMw6CzsxNYDhrvtCGsFqH6/0EkgKrblIvByPAwHBUbgGOKzOvo0aMYCNuwgcFBCoUCSfkd6OeXr2HQ6Fhyt6VK3/eZnZ3VIg+Kru2HIZ7vE5Pfk2Ga+rtzPY/FxUX9OsVSiYRMPJRXXqvXVrf5QSASmVgMp1bT8lUpWY4NwlCUqGQZO27b77oTQBsfLDiOg2EYDbqfINZjKp3WLYNSqUQ2kxHJpmGQTKXwgoBSudwQKEOWr3PLsqhUKtrPUIl/J5JJ4quQ22ZmZ+mTvbBoNcpvkltbC4qNGz1lqs+ky5CqYmUYdHR20tHZSV9fH68dOoTv1fgL9wtMLUyRPJzkm82P8+jAI/T39ZFMpbRwfDODXSXe99rYmJ2dxTQMOjo69PfWSlPXsixS6TRJ2T8uhSEBgjFbKpXE96pIl2sEyujvDPl4xzDI5XLL7jGSSBVKHoQSRHk3cF9PlC0/gsx2YvE46TCkXCpRrVZxPY9MOk0imcSyLFzfp1qpNJRmFZOz4vtYStnGMEil08sN+lUwNz9PPp/XC1tloiozXE1BItp7C4JGllzYeEdgpVZj3XE4dPgwCwsL7N69m2MnTvDYY4+RTCaFtN74OBfOn8fzfWFS3dfH0NAQfX19+kQcRn6aS61rEZEWFxfxg6ChhGXbtma2tRrTsS1L0LolKzZAsAXrrktC+setBcMwtCuI2hTUHKYhNwg/Wipq9ybbaAFNXJOIsjqVWbjn+ywVi6RSKeKJBOl0mmqlQrlcplsmxCBkMcMgwK3Xhd2cXH+2bQtLOMNYNfGsOQ7FYpEd25dN2GN3qkZFAlYI2nRY9fOb2xcqkDW/h5s3b3L06FG6Ojsxe02m3hakwJpR46/4KzoWCty4cQOAQj7P0PAwA/39gqAYeX3CUPz3PcwdzszM0NnZqfezO2nqGqaJKauFgSyP+mGoSX0JmSi3/rqWk4ZqraZ5FoZhLI8DhctTD5qc9C4FSbjPgXK1LVAFH1WKKxWLuPU6Jd8nk82SSqVwPI9SJFAGYUhJBtWclJlLyuFblamtNYA6OztLb4QhpdQoXNfVM1G6Lynr7NH3C42B0Wj67ygRSKFUKnEoImweDaLJZJL169cLGnkQcPPWLaYmJ5mfnxfenEB3d7du7KvPrMo4DZmUJCU0f9+zs7NYknykoDLD1cTIPck4jsVioo/peUKsOAjEeIfjkGwKmNH34jiO1rSNxeO6tKTfe+TvFNWVbaMNhdUChyaNmSbZXI5SqSR6WeUyfhCQlHuBmiFWp8parUaxVMI0DK0Alk6ndbUrDFYfE5mfm4MwbFAGWq0aFRIhEa2SUK82UqU+n3rsxYsXOX36NCPr1vHwQw9x7Obxhsc4YZ2/8P+Sn3nqZ3BmaszNzXHx4kXefvttEvG4GFsbGKCvt3fZyceydNCOvna0aqfey+zsLCMRMZDVqlFR1OXekc5kdNXPqdfFXHe5rEUFWpVKgyAQPUkZhOMRS63m+90P3NdACS0We+Q2RSHO5fOC4OP7FItFYokEtgyKimG1sLRETbKuUskk6VSqYZZnrXlK1Svbtm1bw+0x26buusKpQOkfrpWlRMsDTcEqSvoBmJ2Z4dDhwyQSCZ57TgibLywstHxaQwazXC5HJpPBq9eZkEzac+fPc+bsWRLxuHBoHxykp7t7Vddw/ZxhyPT0NB0dHcvWWixrL66mvu9GAiWITSGbzVKXZCk/CChXKoJcIVnKKkvWbGPZC8pkMlSjLEL5HlSQ1slJG21EcDflNMMwSGcyQhykWqVWrRL4Pol4HM/3KZXLxONxqrUa84uLBEFAIpkknU5rdr1+LtNcEUAUZufmSCaTDSMpqhql5g7vpUfWao9pHp148623uHb1Ktu3bxdOJYbBltxmtgZbuGhe0o+bry/wCyd/kR9/8McYGRkhm8kwOzcnhNwnJrg+NkYYhnR3ddEnNWkzTbPaK/ZNw6AsVYh6enoaEnDbtnGlQEFzNSrwfTH+hdhXVVCMx+OCLCWJk6VymXQqtUxiDMU4SbVa1Qpj+VxOaLnKeVWl7qOqegaycvcuVqPua4/SisVa9p90kIls3vl8XswDuS6uZK/6oRhvwDCEyK4hhAC0XVTz8zbP9EnMzc0RIk5oqskdhqE+XbmeR/ouvvS1eoPRxa5KJt1dXRw8eFCcrO703JFTViqTYePGjdo2bHpmhtu3bzM1Ocm1a9cIgO6uLp015rLZFYvGk9qx23fsaGDnmbI32LAII++hrmagmi6EeDxOLBajIpmxyuUgnUoJxqxKaoJAlMLica0vqQJjEIaYLA8kq+8+SvJpo41EIoEfhtSq1RWkHC08IjfMZDKJaVlU5OnSl4l1qVRqaDPYtk1XZ6eY4W2BVhUZEHtHlzxNRttJtm0T1OvUXXdZn/UdIsqkfeONN5icmmL/Qw+xYcOGhvs9EzxFojPB6cUz+raJygT/9+nf5F/u/2cYpqmdk3bv3k21UmF8YoKJ8XHOnzvH2dOnsWIxBiOnzVZarBOTk1iWRU9Pjx71CBGzkya0rEbV5enaltqxCqZpkpI91HKlguf7lCsVMYom44Ma5TMNg3Q6rYVUQpmIWJE2mdrLHMcRp84Puii6ZVl09/YyMzPT8veaPi1hGGIAvVKtCs1Gw6C0uIjjOPT392MYBtlMpnHYuAmrnSoXFxdFhpNKNQicK8cST2ZJayndR8k76rWayythGHL16lUuXrigSyZrKVhEocJ788VqWhb9/f26bFwulbgtZ69Onz7NqVOnSKfT9A8MMDgwQE9PD5ZtMzs7i+f7DMjvDvn+MAyx4Fv0Zl0p79U8FhL9zJlUCtM0qVYqeJ7H9PQ0pmnqZCCTyehsUUlYeXIY2gzDhsC5MD+PZVlslB5zbbQBsG7dOg6//DLTMzNalg2Wq1HNyXA8FsOS843xeJy52VnKUtQkIcc8YrHYmgmr2SLJDsOQhYUFNmzcuOKUq/qUnuvCHQLlnc7Haqj+2LFjVMplnnziCfpasMBNLP7Vrn/J/376Z7lWvAaAgcGV4hV+6+3/zA8d+AEMYzlwpNJpNm7cyIYNG/ClT+/t27eZGB/n2rVrGIawJGxOuMcnJrQ+rXp/sNy2aVX+VEIwrSQGYbkyVS6XcT1PBE2p+x3KXmQq0se0LYvA93F9X/eBteKPZTEzM8OmLVvuitT4TnBfA+Xw8DAXT52iVq2SbApwWly7aQGqY/ni0hJBEFAsleju7Fwm4dyjs3gQChmpXC7XMmO0bVuz6Na0hLlDOcj3fc6dO8f4+Dg7IiWTu0H0dH0nGatMNsuWrVvZuGkTvgxUE9Jv8+qVK1pX0g8CEvE4uaiBMrLXYJq4LIugqwtBl13vcAKO2TZePE5FUsh9KbSey+Ua+grRXo4iMkQFk2dmZyl0dtITIRu10UY+nyeWSjE9NcWWzZsbfrcaSVBVpZaWlsT9goD5+XmGBgexY7F7spZSCaXjONRqtWV+QASxWAwkCfFOLPTmINvQtpHM8pNvvYVpmjzz7LMNyUEz0naanz7wk/zgK/+amdoMwnwP3pg+wv999rf53gf+YcvHWZZFf1/fsk9vqaS9Ns+cOaMT7r6+Pmamp1vaIVryZKkMGUw5ChbIg4Zqpa0GU7JV68WiFp7x5Dx183SEbds4UshdnfZ1T9gwWFhY4Nlv+qZVX+vrxX0LlIZhsG7dOk4cOcLk1BTr16/Xv1MN5FZtWT8Qxqj5fJ5atUrVdSmVyyBHCfJNG/+K1zVNXStXWJSzfK2g+5Suu6pjSStEF7/nuhw7epTZuTn27N3L1i1b7vp5IEIAWIN91/TigFDNGRgcZGBwUF9wk9KhfXp6mjAI+PKXviQ88wYGdG/TtCxNstHjKLJXEIThqi4NYSi0L2u1Gq5kwUaTi3qTmL0SclAC6/FYTGeFtm0zPT3N7n373rWssI0PJizLon9ggPGpqdYlUZVkN8GRzjqdUhjADQJKpRK+75PL59cMaNF5QzWrVywWhb5oi0Cp7KkCqUu6pt3TGkn2xOQkx48dI51O89RTT61ZMVPoSfXwUwd+kh959UcxPMVuDfmzK39GX7KHb9v8bct3XuW7ymSzbN6yhc1btuBLycDxiQlu37qF7/ucPXuW6ZkZQSbs7xfOSUr3WZowGNIBRY/trVEKDeT8a7lSAYSuaxAEWLZNzXFWyOfZsRhGtUogq1zRStTS0hKYppg5fZdwX3uU+XweOx5nYnJyRaBUFOAofNlbUP3DwaEh5ubmKJZKxBMJ6sDS4iKxRIKUHF9oQBhCEDQIAYRhSHFpiYFVBtpj8ThGrSYylxa059WgSq+1apXXXnuNcrnMgw8+yLCU3boXqMtotVdeQW5odbHLmaNcLsfg4CD//b//d7Zt20a9XufWzZtcvnRJC7n39PaSyeUavO8cx9Ezrs1zqGEoHNh1g12WUJNyRspxHGqOg6MsjGQJxTTEjJobhvieB7GYzgrrrkuxVGqXXdtYAcuyGBkZ4fjhwywtLuoTlr6uW4hqV6VIBojZZAMolkqUKxVxOnEcFhYXSSaTJKVNnoIaoVD/X+0dS8WiVhNrhXgshh8Eq1oHRp8/esWqE+XVq1d588036erqYvcDD9xVkFTYmN/Ajz/yY/zc6z8PIQTy2PF/n/0telO9PDn05PJna/HaUVi2Tb8sv4KY996yeTNTU1OcOnWKk2+9RTabpX9ggI6ODtLptC6/hmGoZUUTLXxr/SDAqdU0IzZE2ABmpca2YiyXK5UGko9SXVInVUX0MQyDqakpcoUCfVIa9d3A/SXzWBbbduzg+vXr7Ny5U2gGRr7I6IiFL7M/FSQzmQyGYQgWrMxUEokEIWIEoe44xOJxUsmkqHMrUWC5QavnVeLGq50orUiW5HneqmXHVky8xcVFXnvtNQzgkccea6ix3wvu1T1ADxGv8loTExMYhsH27dux5eItLi0xMTnJxPg4p06dAiCZSjEgx09U6SOpBpdltqwCpPLENAyDRDwuMkBZelFiBNVqVZdv0/KityyLuueJEq0MsgAXLlwgk8m0LPG08dGGatucisU4c/YsTzwu/GUaVKoiqEWCZCqZJJFM4udyejxBzf/6kkhSrVbFaFkyqcfBouxtdV0Vi0XBrF3luozFYtTq9RVm6iugDgaR/z59+jQXL1xgw4YNrN+wYdXXWAv7eh/ke3b8Pf7r27+HKkiHhPz88V+gM9HJru67b/+o9zUxPs7w0BBbt21j67ZteK4r2jvytHn58mUMw6Crs5PBoSG6ursxZIXQlsIPGEIr2nEc8d3IkTDLtskmElrf1ZTM5aok+VTkOGD0dKkqUOpf1/e5fOUKn/jWb31XK1H3PVDu3LmTwxMTnD19moOPP95w2ov2KCvlsgiStk1WBklAN4Br1Sp9vb3EEwlhFyU1SuuOg2XbQllGBtRo1lQsFiEMybYonyjEYjGhWbhGoGzGxOQkhw8fJpvJ8PgTT+DJecx38scL7xQoWwTptV5lQjXjZZZrGAb5QoF8ocC2bdtw63WuXb/O5NQUYzduaBeDzq4uhoeG6OntxTZNYUskmaymZWm6t4FYsH5kU1FNfBUs67YtFDkkjVuVdgEq1SpjY2N88yc+0Wa8trECpmliWRa79u5l7Px5ZmZmxIYc2TeUALlytABBXklESGWLCwuEkrTW1dlJXd7Xl/J11UqFeCKhyT4GNCTZituwGpQajr+GaEmrE9bRI0e4ceMGu/fsYeOGDaK19A43/YP9B5ivLvDfrv03fVs9dPmpIz/DLz718wylGytca+1PxWKRSqWiT5YgSqCDQ0MMDg0RhiGzMzPcvH2bmZkZ3nzrLQyEmlpvXx/DQ0Pk8vkGT8sgDInZNol0WhB0wmXdW1hmulaqVTzPE8Eym9WjY+pvoRLwy5cuEbNtnn766Xf0fd0t7nugtCyL7du3c/b0ab3gFdQXocRvDcMgk043/DGzuRxTU1O4vi9MRNNpspkMfipFpVIRYwpSTqqC2LDjiYT2QisVi2CaqzqHg8wMpV5hapWTWjRUqZJJX38/jzzyCLZtU5R/yHey4Ncsva5CXliN4asywF1rqOrH4nEGBgfp6u4mnUoxPT3N5OQks3Nzwi0dyGYydHV10dvbS09v7woKvCEzxyjisRihFCaoVatYMmkxJFlJ+YheuniRdDrNI488sup7bOOjC8MwME2T9evXsyjZ3U8//XRDIqnk1Cqy56UCXvT3mWyW+cVFypWKYL0nEiSlHVe1WsWTdk41x8EyTaFfGotppvrS0hKDd2ilxGIxAslxaEkGjFwjTr3O4UOHWFhY4LEDBxgeHtYCH+/0dBQGAd+87uNM+RN8/sYX9e1Ft8i/O/wT/NyTP0dXonONZ1jG7fFxTDli0gqGIaT1bNtm/fr12LbNTWl3dfvmTa5eu4ZlmnR1dtLZ1cXgwAD5QqFROKBF6dcwhI5vqVQiUGNBsnoILGtQV6vcuHGDRx555F1PsN+doZNVoOr2/YODdBQKvHXy5ApFGXUyBJEFNjeDLTm4apmmyLxk4DBNk2w2K2rmmYw4zofCKqdYKrG4sECpVGJ+YYFMOt1S5UG/z4gT91rar6EsmZw4cYKNmzbx+OOPr6BQv5PlvmbpdbX3vcrt4+Pj+EHA8PDwmq9pSRGCknRi6Onr46H9+3nqySfZuWMHmWyWW7dvc+TIEb785S/zxpEjjN24Qc1xVp05AzEDF5O2ZZVKRbAUJdvVDwIWFhaETdADD5DOZhkZGcEwDD72sY+t+X4BTp8+rT3ufvEXf/GO92/jg4uY1AfdsXMnM3KOOIowFPKXqgqVbtHfS6VSWIZB4PtUq1VN1InHYhSkT2RC2sr5vk+1VmOpWGRxcVE7mKx1ogSRHJos2/+tgNwXSqUSL734IsVSiaeffpoR6f6hdsN3GigV8ej79nwfj/U92vC7ieokP33kZ6h61bt6rptjYwxIO77VYMkKUd1xKJfLpNNpNm7ezBNPPsnDDz3E6Pr1OPU6595+m69+9au8+OKLnDlzhpnZ2RXa3VGY6pCEGFNTJ0hYHj25dOkSyWSSXQ888K7vG/f1RKl6iyHwwO7dvPzyy5w5c4bdu3cDLC9gaE3OkUinUhSXlnBqNaq1WgOz0jRNUskkqWQS3/NwZOD1pA3MwsICqVSKYqm07Eje4nUS8Tih1Cht1Zj3PI9jR49y69Yt9u7dy2ZJW4+yRoF3dqK8Sz+5u8HY2BjdXV2k0umWr+PJfqEqPdVdV/dpY7EY6UxGy3WFCE+6yYiLQQh0dHTQ19dHb18fndIBJIpkKoUns0NX+lHWXRfD9zlz5gydnZ2MjIyQTCY5cOAAf/Inf8Lx48fvSLP/wR/8QXzfZ/Pmzfzzf/7Pv+7vqo33LxKJBLVajY6ODgYGBzl2/Dj5QkEHrppkuKoq1GpIptMElQrzCwskBwYa1lcsFhP8BkVWk9e/7/vMLyyIIGSalCsVvXc0J/LxeJxytbrqLHaIkIM7dPgwiXic559/nkw6vTzmohLsr2PfALBNm3/z8I/yo6/9r1xcvKhvv7R4if/z+M/zvz3641iGtSoDt7i0xOLSEjtW4Qz4kt2rTvG1el33dpPSPm9wYEAYQECDT+/Va9c4f+ECtm3T199Pb08P/f39K06FlmWRTKWoVqvCjUSy8l3P4+atW0xOTHDgwAHS6fS7vm/c10BpGEJbsV6vUygU2LtnDydPnSKXzbJ+wwat2mPZ9gqnAAVF7oknkwRhyJycjWoFy7ZJ2zbpdFprlFZrNTo7OvQIiHpftm0Ts21icsYqHo9Tk0E2JYWSFRzH4ZVXXmFxcZEDBw82MFuN5gX/Dr4nXXq9Q8k3CqPF7xzHYWp6mj0yEVFjGapnEFXUUEwyz/NIZrN0FAorEggD6OrspKuzk507d1JzHCYnJxkfH+fSpUtaWm9gYIB+aVStNBoz6bQYKvY8giDADUMunj9PGIYcPHCAmNTcPHjwIH/yJ3/C4uIiFy5cYHtEfDqKz33uc3zpS18C4Od+7udWzF218eGC2kQ93+ehhx7ipZde4rXXXuP5557Dsm2cel0bOq86khCGpDMZnWCXyuUV1n2AJqipkYV6vc7c/DzI06dTq+EYwsXHtCwRYGXgNAwh+q/Yn83M1Zs3b3LkyBG6Ojs5ePBgg2m0kmV7pwgiQVYErCQ/eeDf8UMv/zAT1Ql9v6PTR/m10/+J79/9T1dN5G/cuCHGcuR0gCI3qh+lfx2yXHmLx2Jk0umWREnl0zsyMqITbjW3efTYMUDsLf39/fQPDOiEOx6L4UnBedfzMAyD6dlZLl24wLZt2xgZHiaRTL7r+8Z9DZQgM8NKBdd12bxlC0vFIseOHxeyRvJNp1OpVct5gWRK5vN5SsUijuMIe51VKNsKysrLc10K+TyZVAo38kfXgbNaFYHTsjRzrlqtCgaraVIqlXjt1VepOQ7PPPOMtulSUMShr6eEsmbp9S4vJN/3uTE2RijnyIrFou77aisfhOKFLRMEddpLrnGajyKZSAiW3ugoXhAwPTUlHFAmJ7k+NrZCyF1tJNVajdu3b1MqFnn6mWdISok7gIMHD+rnP3r0aMsF77ou//pf/2sAnnnmGT71qU/d1XfSxgcXqvITuC6mafLE44/z1Rdf5PXXX2f//v1aZjGRSKwabALPw0QQAmuOw/z8vNCIXoNhakZaPYZh0NnRoRNKXyabvu9TA61iFQQBdSm7qUTXAS5euMDJU6dYt24d+x96qCWz9etq2cjHRhPszkQnP33wJ/mhV36YolvUt39x7L/Tm+zlf9r6nSte3/c8xsbG6B8YoCrJTkoERSmOIQ8XtmxxuXJ2NL3GaV4hmnDv2rmTSrXK+Pg4E5OTXLp0ibfPndNa1gMDA/T29AhBFFkOv3zpEr29vezauRMMYabxbu8b70mgBPGhMQz27dtHuVTitUOHePTRR8nlcrr80WrBqxOJEk9fXFxkbn5eawKuhUDOOKXTaTE/xfLgqut5OnMJg4B6KOyfHMeh7nmkk0mKxSInT54kFo/zxJNPChKRDD7Nr60C/R1HPMJl3dWohZdSzAEag5tkiIWyvxLKxMGXGZcfBASeRwCM3bhBR2enoGfLxW6ZZkPJWb0/T4oU+2F4T1qVSmPTMk16e3ro6e3lgQceoFqt6ozx3LlznD17lmQySaFQoFStUi6VeHDfPvL5vMh+ZQVBkaE8z+PIkSN813d914rX/JVf+RUuXLiAYRj8h//wH+76vbbxwUYikaAqxS0y2SwHDx7k5Zdf5tSpU2zfvl2I8iPkH1sFGjVS0NHRwczsLE69ztLSUoObzmqoy7GSaJtHnbKUxZZWpEGMoan5Yss0uXjxophH3LKFbdu3C/YtIqhFta7VKe1OCbYKWGrvEDfK/25SHRrJjvATj/07fuzQj1MP6hgYWFj84YU/ojvWw8HeAzrg+0FAaXGRcrnMlm3blu3xkDPVau+QIiUgDhKmfO27VkqLTDgkEwnWr1/PunXrCIG52VmdcI/duKF9ei3bZmFpiVQqxSOPPqrL2ilJBHw39437Hiht28aOx7XRacy2eezAAV74ylc4fuwYBx9/XMvLNS94dcwHkbnlslkq5TI112VxcXHF6a4ZjuMIc+BIIFB/XNu2IZnUgdP3fWK2zaIMohOTk7x97hwd+TwP7N5NEAQslUryjQn5JkMSYgzDoFarYYB2JjDEiy27pcjZIvWvbv6HIU69DkGAI4kFIaJsqqjtARHpLnkxKpq1WtT1mrDa2b17N0mpmGNZ1qqBW5WurHtc7MpwVv03kkyQSqWWhdzDkJmZGSbGx7l+/TpBGJLJ5RgZGdGkqw7pXp9Kpdi7dy/Hjx/nyJEjK15ydnaWn/7pnwbg7/ydv8NDDz10d++1jQ88EokEZdMUY1dAb08Pe3bvFmMJpsmjjz4q5qZpnHPW109kw8/n88zPzzO/sEAum122nloFjuOskN00FTNWVkMC2dpQAbNaq1FzHC5euMD8/Dzbt2+nr7+fkto3VPnWMECOP6hZT+QIFixr2sJyWdWTZUhX7R1hKJj69Tp2KLRio8n1utgI/2rHv+S3z/5n8Z2EYsby90//PskdSbZ1btd7ycTUFHY8Tn9fH5YUHLEigTGKUJamA1muvluEYcR2Ue4bap5SCbnv2rULp1ZjfGKCW7duMTc3R2AY7N63T/BG5F6lZDnfzX3jvgdKEAtezcmoctxDDz/MW2+9xSuvvMKBxx5jcGioYcGHyJJktDQh5wG9uTkWFhfJZrNrKmKo+aq1ygPRwJlIJPDlQOvly5cZHRlhz549Wn3DjwQn3/dBuWLI0RWAuCQnRTMohXK5TBgEVMplcVHI4FeTjDxbLobo41SioLJJ0xCi5jEVpKXS/uXJSQzDYMP69dh3WMCB72smWSwev2MzXH1PrU78KimI6saahhhIvnzpEn4QkO/oYHTdOt2XMQxDB0oQ5dfjx4/z5ptvriBE/MRP/AQLCwtkMhl+9md/ds332MaHC3GZOAaycmKZJgODg+xyXc6dP4/jOKLvF4ut8HxsXqm5bFbI2QUBcwsL9N5BX9hxnDsq5ZimSdw0QZIWPc/jxJtvUq/VOHjwIF0dHUJsQ+rBBtKxJzCEKpkhA1zddRvHwFrsHaVKBcKQarmsK09qYiAmn6vhOwD2dOzm29Z/kj+99mcEhIQEuLj8p3P/iR975N+wMb8BwzSZnJxkZHi4JQGw1feiTBPu1vABViktywOHaj0p44pcNsv8wgJ2LEahq4uMJHCFYdigg/tu7hv3dTxEIZFIEEpKMYh+WiKR4PGDB+nv7+e1Q4e4eOFCY4BooVAPot+gKN3zq/g7KjiOA6q0eBe9Ps/3OX/+PFcuX2bTpk088uijJJJJkqkUmWyWfC5HR6FAR0cHBcnAy2SzJOQgfjwWIy6ZdHak3Kl0IY1IaVUNVZtItw75uJhkkCkPvEw6TS6bpSOfp6NQIJ/Pk8tmSadSJBIJ4ZxgmtwYGxN9wbvI8moRubqYbd+VGepapIOQZZ9LUyr0vPy1rzE1NcXGjRvp6+khIU/vIBjO0ZKW6jdUKhXOnFm2EDp79iy//uu/DsCP/MiPMPQO5AHb+ODCNE3iySShaYoZXMD3PAYHB3nyiSdYWFjgxRdfpFQu6z6d7qlBY+AxDDo6OrBNk6LkOqyFaq2m/VbvBuVymaNHj+K5Lk88+SSDAwPa/zKXy5HP58W+0dlJPp8nm8mIllAiQUy5m6i9Q/IIbKl+ZZqmFkIw5L6hRN5NyyIei4n9Ix7X5eJUMkk2m+Vv7PzrPLXxSeaYZZ55llhkypvmZ078LPPeAjOzs1RrNUbXrbvjHhn4vjBvR+7pd7FvtCQPRW5T4gPqNHz9+nVefuUVMpkM60ZH6ers1HskQKEpwYZ3Z994z06UVixGqCjYclYxnkhw4MABzpw5w1unTlEqldjz4IMNfzCVHUYXbEdHB/WpKUqlEvlcblUxc6epHLraZh8isrPXDx9mSirnDwwM6Cy2Gaocov54pmmKcoghJJlWgwpIKujC8oyQku1reF93yYqbm5tjcWmJ3bt3L1sRqR5I00L1PU9vOslEQjsBrIXVfD6b3ysIdttrhw4RhiEPP/KIJk2ZliUUfkyzYbFDI6HnyJEj7N27F4Af+qEfwvM8RkZGdFO+jY8W0uk0CzKwWZalZ6j7+/t5/vnnee3VV/nqV7/KwQMH6Orp0VwIWJncpVIpkqkUfqXC7Nzcqux5EHtHQZb4Vp0bltfX+O3bvP7GG6TTaR7Yvbuh1dN8ZZmGARGJtoTrguzZr2XKoBjrmUxGj8gYhkHM80in0yvYnNHk9x/s/B5majO8Mv6qfBzMObP8xJGf5jtjn6aQy2khGMWm13rc0e/EcTBZdgW6074RQmOrRv9i+TYjkuCcOXOG8+fPMzI6yujICItLS5hST1e9VmeLQAnf+H3jPTlRGoZBNp8nNE3tRA7oMuzu3bt5+KGHuHLtGi985SvMzs3px7ZapAl52rJsm+mZmVVPRLVaTY8hYBgrShOhJPCUSyVeeukl5ubneeqpp1g3Ogpwx6zzGwFddmiReQVrLcTI/S9fuUImndYedtGZTlP1SyXUaVIRfBruvwruJnP0fZ+35ZBxIh7n8YMHReAPhYSVpXq0NC52gK1bt9Ilbzt69CgAn//85/niF4XSyM/+7M/eFbuujQ8fkskkhmwPVGRbQ3mlZrNZnn3uOfL5PF97+WXekiW4ZkST7M6ODizD0CLpq8GRTjiq3RGF4k74YcjlS5d47dAhent7efrpp0nE46JNo66Zta6tMGzpoHS3WI0tv1L5xuQH9/0Auzob1brGitf5vZk/YHTD6PJj5b+m7P3q1/J9YXoAune75v7EGgSlptsXl5Z46aWXOH/uHA/s2sXWLVsIkQcsed8gCEhnMg3JxLu5b7wngRJEZmhYlhjMldYp0dPahg0b+NjzzwPw4le/yptvvqnlnYAVX25Xdzdxy8L3/YbAGkUt0pCPnrR0vyAMWZif56svvojrujz77LP09vaSlNmZct6+05nOaPr3XqAXdauT69oPBMQFffvWLTauYjkTpZ8HkrEXhKHeBFR/8V4RfW/T09N85Stf4fz582zfvp0nn3xSnEJD6U9nmljS99M0TQotWIcHDhwARGboeR4/9EM/BAhW7Hd/93ff8/tr48MBwzDIFQqily85B7acWwSxmT711FPseuABrly5wpe+9CUmJsQMoV77kb3DjsVECdaymJ+fb5kM+76vWa/NUCS6IAiEStebb7J50yYOHjggVKmkZuyqSj2NH255Q/46xsqaA3mrABU34/xvj/w4I9mRhtsnzHH+vPg5mru6mo2LCBqKrBizbeJ3kWCvVcFTp0zf9zl16hRf+cpXcF2Xp599lmGpWKRaQ5b8WwdBIBj9TXi39o33LFAahkFSlgwcWaZsXhz5QoHnn3+evQ8+yLVr1/irL32JifHxls9nmiadXV2651Aql1fcx/d9bBmAVClSBUgQ4uFfe+klUqkUz8vMFNBGr4ShZpitha9nFsqPNLLfCa6PjRFCg41ZK4RAJVKKtmTfo/mkHcWd+jOO43Ds+HG+9rWvYcdifOxjH2PHjh16k7Al61brvSL+xq0kslQZ5dSpU/zH//gfOXfuHAD/4T/8h2+IYlEbH1ykUimMWEz4IErmeHTvMAyDrVu28M3f/M3k8nlefeUVjrzxhuZENCOXz5NMJjFNs2VFyo9UvGA5aKgSoO/7HHnjDS5cuMDevXvZ++CD+lSXSCRAnljvRUrgXld49D2vGFVbZb/KxXP81KM/SWeysaLztfGv8V/P/d6qr1WPSMollEPSncZZoizX5t8ZBpNTU3z5y1/m0qVL7Nixg2/62Mfo6OgQIgPIZMgwltnJhkFnRCdc4d3aN96zQAmQzefBMPQ4RhSK1qwW/Sc+8QkKhQLHjh/X/ctmpFIpsrkctmUxOzsrLqKm51T/6jETuUlfuXKFQ4cO0dffL0omkSO9YRi6z+DU63f3hd/F4mmJ1Uqvd1HWCMKQK1euMDw8fEfFibrjCGaqHKhWrh5rvdZqF5wfBFy7do0vf+Ur3Lx5k3379/Pss8+Sy+cFdVzNWEl3Bds09fc+sEpjXS34er3Oj/3YjwHwHd/xHTz11FNrfq42PvwwTZOEFBhxZOLaPA4Con/35BNP8NhjjzE+McHhQ4e4cfPmin0BoLuri5ht43qeUOGJQI9dGYZm3quKlFLpmpiY4ODBg2xpMmnX5sVhqPkHa6GZQ3C30LKXrExo16oQ9af7+KlHf4K40Xha/uMrf8znr39h5esgWPmGIQb9bUki0qMorfaINT5TqVzmjTfe4JWXXyaRSPCxb/omduzYAYah5Uzj8XjDaRYEAbDVOOC7tW+8J2QeBcuysDMZKJX0qWO10YR0KsUTTzzB1StXOH3mDF/72tcYGRlh+7ZtDUfwzo4OanJ+aXpmhoGIRYwfBITyj6pfIRTC5hcuXGDL5s3s2bOn5axhMh6nVq3qwf61/OK+HhkqXwXwFgIGd8LU1BSVcvmOLhxBEOg5q1Q6Lcqi8ndricU3w/N9rl+7xoWLFymXy/T397Nv3z6dZHiep1lxyURC6Ltalj5NJpNJenp7Wz73gQMH9AXoui6JRIKf+7mfu+v31saHG7lCgfmJCa05mkildIIXvf4Mw2B0dJS+/n6OHTvGhfPnuX79Otu3bWPjxo3aes6ybbo6O5mZmWFpaYl0KqX7WasFgXKpxCuvvILneTz99NMreu3q9RPxONVqteUs5gpEAt69QMvXtajO3Cmx39Kxhb+Z+hv8v5U/Idol/fWzv0F3spsD/Y/p26Kauknp3wlr7BstRltAmGBfOH+e62NjmJbFvv372bhhw7KIgXwdy7JIJBIsLC6i5EsBBlYxeXi39o33NFAC5Ds7mRsfB6kMY61R7zYNg6GhIfKFAlNTU1y7do0XXniB/oEBduzYIcS7DYPu7m4mJyao1mosLC5SyOdFw933GwKQ53kcPXqUW7dvs3fv3hXZYBSGHC52pOflnWaqWmV2d4NQnqwbFp4sEd/p+a5cuUI+n9cN7dWgMjVbjp7o96zKrkZELYSVLFfX87h65QoXL16k5jgMDw1x4MCBBo/PMAioSssjNeJSKpUgDLGUi0wkiWlGoVBgx44dvP322wD8i3/xL9i4ceOan6uNjw4sy8JOpfAch2qtRiabXU6yI/6GCol4nF07d7Ju3TrGb9/m1OnTnDt/ni1btrBlyxZisRipdJp0JkNQKjEzO8twPI4peQ9qHlhhemaGw4cOEU8mee6pp9ZktycSCW3jFUiT89UQqkrUPe4d6tRovYM9p1QskpvP8rc2/U/8t1t/sPxewoCfP/EL/OzBf8+2jq2iV1urESJn0dVrGY1iCA2fp6nkurCwwLlz57h16xbJZJK9e/cyOjqqzTJAVLu04Xs6LURWpLasktscWIWh/G7tG+95oEwmk9jpNGG1ytLSkjhOr9EnsywL0zAYHh5m29at3Lx1i3PnzvHSV79KT18f27dto7+/n0JHBwsLC8zNz4vZJCmLpxZ7rVbj0OHDLC4s8PjBgwwODd2RxBJPJHAcB8dxSCSTq2ZR6r2/kz6DfmyT196dgmRxaYnx8fE7Kk64risuWCDbHOybSQCSgKOCZK1W4+rVq1y6dAnX8xgdHWXbtm1k5Sal+qthGFKpVDRZJ5VOi/6ulMOypTPJ8Lp1a77Xvr4+3n77bXp7e/nxH//xNe/bxkcPXX193FpcFCLljrOs89riWjEMA8uyhPLTgw+yc9cuLl68yPlz57hw4QKbN29m8+bNdHd1UXccavU6UzMz9PX2rmCT3rhxg6PHjtHd3c2Bxx7TIh2rwYwk2TXHWdPdpEFQ5R4QRJLahqe7i8deuHiRRDLJJ/d8Ej8V8IeX/lD/rh44/MyRn+Hnnvg/yYU5MITou91C2EWrB0USazVeMjMzw/nz55mcmCCTybD/oYeWA2Rk7/A8j6oy3k4msS2LpWpVj8wZhkF3b++araV3Y994zwMlQEdPD3O3buHW6zi1GslUSvcnm6G0EX3fxzBN1q1bx7qREW6Pj3Pu3DleffVVkqkU69atI5vJYBgGE5OTDAwMaJucYrHIq6++iu/7PPPMM/oEthYzC9ALxJely1aed1HcawE2uriiJ9+7eZ5z58+TSibFoPBqzx+GYhEaBslEoqWSRlRWykCUV2/fvs3169eZnJzEME02btjAtq1btXJHc7nccRwtM6aMt5XZqgr6XT09a86JHTlyhJdeegmAn/qpn2pQ4GijDZD+kskkfrVKtVoVyfAa91ejHUEQkE6nefDBB9m5YwcXL17k0qVLXDh/nr7+fgb6+zEsi2q1yvz8vA4KpmFo3eJ169bx0MMPY8mT0J0qPslkUuhG1+ukJHFo1ff5Dr4LNWK3omVzh+S/Wqlw/fp1duzYgWma/O1tf5vp6jQv3HpB32fRXeT/+8b/wY/s+WGydrZ1NS0y/2gggmVxaYnrY2PcGBujXC6Tz+d55NFHGRkebgjoWm0sWoWKxYgnEsKaT5I9leDCiFL1aoF3a994XwTKTCZDKZ3GrVRwHIeYVNppCUU6iQY0WZIdGhxkfn6esbExrl29SrVWI51O09nVpcdQXNflxRdfJJlM8vTTTzcM9d8pUILIchwV0Nc4Varnuxes1me4U6AsVyrcvHmTHTt3rinCXqvVCOWQ/5rC52HI1NQUN27c4NatW9Trdbo6O9n34IOMjIxolxeFqOyU67qaYp9KpXQwrstBatM0sW2bgcHBNTVlf+RHfgSA3bt3873f+713+Aba+CjCNE1yXV0sjo/j1utUKhUy2SyBYsI231/qlUZ/E08keGD3brZv386t27cZGxvjxJtvgiFkFzs6O+mR8nYXLl5kcmKCHTt3snPHjuUTFOK0s1ZFyrZtYvE4vuNQc5w7Jtn3CrVv3Stb/uKlS9iWxSZZnjSAf7b3+5lz5nhz5k3xnFgUqyV+6+3/zA8+/K9a7jHqO3VqNW5PTDB2/Trzs7OYts3w8DAPPfww3d3dLUuziozVUIWSSbRlmlpRzbIsOrq6VgixRPFu7Rvvi0CZSCSIp1L40tKlUqmsOhhqmabWMdQebuqXhkFnVxednZ088MADTExNce3qVW7fusXY9etgWRjSdurJJ58k3lQ+MBBZ41qDs0pSyg0CnFpt7V5lq0AZIQWoLFDNYaleSHOfQTl0rIYL589jx2Jr1uKVeHIYhoJQ0Pwavs/czAy3xse5PT5OrVIhm82yZcsWcTrPZlfdCKKfJ8pUUyUp0zCEZZksu3b29Ky52H/zN3+TF198ERCK/2v1dNr4aCOZTOJks9QrFWJyjdurrBeV1AZyTUavczsWY/369YyuW0e5UuHGjRtcvXKFS7OzXLp8mSAImJyYYN++fWxaZUb5rt5rrXZXSfYKRIhKWluaxr0D7i1QOo7D1atX2bxlS4MovG3Y/JuHfpR/c/jHuLZ0lRzCpOJy8RK//Pav8KP7fwTTXP6Oq5UKt+W+MTM1BYZBf38/jx04QP/AQMv3FHU+CWmsQqVTKTFGJm/XpW/DoG9goOU8K7y7+8b7IlCapimcx12XaqmEaZpCHKDFF6IU83/uF36BifFxurq6+Pmf//nlL0XWu03TpLu7m9/49V/nhvRWW79hA/lcjtmZGV74ylfo6+ujt6+Pvt5e/eWrofu1TpapZBLPdXHq9RW9SuXnprwu1XPpec1IYC9VKoQIirQpM6d6vU48HtcXs5o7tGTZoTmbq1aronSyc6eQ9GrxvgMpvE4YklBek2HIwuIi01NTTE1OMjMzI4SEYzH6+vrYuHEjXV1dDezg6MlRfVfq9Xzfp1ypaGaaKquqDUmNicTicQYGBxsSoUqlwu3btykWi3z2s5/l3//7fw/A933f9/Hss8+u+ndoo410Ok05mcSV9luUy0LSTfbJoicYwzSpuy7/+8/8DJOTk3R3d/MLv/iLeu9QQSidSrFh40b+4A/+QJRe43E2bNhAT3c3b771Fjdu3qSvt5e+/n46OzqEbjNiH1O2e62gNJ9daSLffKpUBsiu61KV71UFwubxl+a9oxgZl7NsW+8dliH0X025j0Rx6dIlADZv3rzye7XT/OQj/45/+8r/Rq0uCDxLFDk8eZhfP/Mb/M3Ov8H0zAzTU1MsFZe4al/nOmN09Bb4p/v+MT3ZZZF5LYGn/lvuJeq2muwxA1phTb1TxZrHMBgYGiKXy+lK1P3cN94XgRIgn89Tq9WwajXcel3YXEmBb5oa9IlEgmeffpo/+qM/YmZ6mldefll8MYahrbmCMOT/+tVf5eKlS5iGwV/7a39NmDxXKmzdsoVyuczUxARXrlwBoKOzk/6+Pnp6e+no6FizWRyPsOGcWk0vfk960tVdl2qtpucF1TuPSsmJf5ZtdqLB2TAMAmWnJX9UgDUNo0Fg/eLFi5imyeaNG1uWaEPEglL9ydm5OWZmZpianMSp17FMk25paZMvFLDjcWK2rUsfDc/VFIT1STIIKJfLWrtV9SVN+fpV2Yz3goANW7aQzWYbvt/f//3fX1Emeeyxx9pek23cEbZtk8pkhKTa4iKmYVCuVMhIfkIUpmGQiMX4+Mc/zu///u8zOzvLyy+/zHPPPaeT2VZ7x9/5u3+X2dlZNmzYQDaXY252lvPnz3P2zBnseJy+3l56+/ro7u4ml82uyVhNJpO4pRJOrUZciia4rqvtucqViiC2yOtclSaB5X0j8mMayzrOigQZeB5B5MSsrlNLtj3U816+fJmNmzYRj8dbSv3l7Dz/fNc/55dP/TLT/gwBwmvz82OfZ+ryFAdTB+nq6eRI5igX5y/h+h5Xipf5f67+If9sz/fr51E9SxXwo0FSkSNB7OvNbZ2a/D4ymQwDg4NaBAbu777xvgmUtm2LU0YQUF9agjCkVCxqY98oYcQ0TQ4cPMhXX3yRifFxPvvZz/L000839C5/7/d+j6PHjgHwXd/1XTz5xBMcfv11ypUKdizG1q1beXDvXirVKtPT00xPTXHt+nXOnT8vBAbicQqFgv7p6Oggl81qJqhlWZRKJZaKRbLZ7HIwBHH6kuywVCqFEkxXRCT9Ix+Ty2bp6OjAXFrC8zxSqZRwcw8CfHlC9X1fGMEiyqiu51F3HK5dvcr6DRsaJO/qjsPi0pIwtZ6bY2lxkWKppE+DXV1dbNi0ib7eXrq6unRppFqtUqvVVi0JGSAuRpl5G4ZBKIOkJ4NkNpPRZRN9ci6V8IKAnq4u7bISxfHjxwFxoWzYsIHv/M7v5Id/+IfvOILTRhsAuVyOarWKnUrhuy5Bvd7AtlZQPcpHH3uML37xi8zOzvLZP/9znn766YbrsXnveOaZZ/jcn/85hmGQzWbZKsfI5ufnmZqaYnpqirfeekucYC2LXCZDoVAgH9k/lEKPKWU7a9WqrppF009DklYSsnWhqkhq71D3UYEml82KpED8gpxskWhvzIiHbSCZ5/V6nStXr+IHARvWr28QYimVSiwsLrK4sMDc3BzFYpE9zh4+H/8iAQHSUZej9jGe2PEEn5v4C96aP0knndJDOOC1yUP8kwf+MVakPEskQKrXq9frmuGqTbEl4ZJQWo75Pp7vs2X7dlKpVEOCfT/3jfdNoITlBR9Lp/GlX+VSsUghl9NfHqCtqr71W76F3/7t32Z6epqvvfwyzzz7LGEY8vkvfIH//ld/BcBf+9Zv5X/8xCcAIZo8OTWFaRhMTU3R19dHOpVi/ego60dHCcOQcqXC4sICi4uLLCwucvPmTc5fuACIBZrLZkkmkzrzsSyLuuPQ0dFBJpMhZtuiDFmtYqsS5F0KEKhGtirRaB89WRZWF0DNcSiXSly4eJEAwUw9fuwYpWKRxVJJSHXJ58rm82RzOUakRU1HodCS2g2ix3ind2oaBqFkDoZBQEmeJDXDVQZJhZrjUHcc/DBk644dpNPpFZ6hv/Zrv8av/dqv3dV31EYbzVBOOyXfxw8CAs+jItVjosxqS7UxTJNv+7Zv47d+67eYmZnhpZde4tlnn8UA/rLF3hGyPCrleZ7eO7q7uuju6mLnjh14nqeT04WFBRYWFrh56xae70MYEk8kyOZy+toG0Rft6eoiJx2PbMvCloE0KVskd0MIVIxbbUCvbo/sO4EUZihVKiwuLnJjbIyOQoFLly5RqVQoFovLybRs0WQzGQYHBtjds5sN7gZ+9dz/1fC6v3zql8XYhtTL0YmxW+JK8SpbC8tz6Yqr4Mv3qoJkSCRIwvJp0zBYKpUIfJ++/n5hJ9iUYN/PfeN9FSgtyyKbzVIMQ0zXxZczf8VyWZQ0EF94TC6g/Q89xMAXvsDE+Dh/+qd/ypNPPsmRo0f5g//23wB44vHH+Vt/62/p54/H4/jyxFatVpmcnqavp0fPNRmGQTaTIZvJMCyVHwLJxpqZmWFRnswWFxdx5uaoyUazGqo1DYNkKkUykcCOx4nbNvFkUnvIWbaNLf3jTMvS9ffxiQnm5ucpl8u65Kx0LFVW6NRqVCQNXhm/qoV5+9YtYvE4dizG0OAgmUyGzs5ObNvWgfdOWZZ+vnAN02Z1moTlICnvn81kdJlZUcQxDH2aHBkdJZVKrVjsbbTxjUA2mxVEsmSSQPbrypWKmGGU/rPqtFYPAg4ePMhffv7zTIyP8+fyVHnkyJGWe4eBECxISvcKp15nYmKC/r4+3d+0bVsHThDXgOd5LMzPMytPZkvFIgtzc0K0RDpvXJDPb8vqk/KiTMTj+kCgfkwZSJXHK8Dt8fEGWz9L9kmVYpEn20BVuXeoazP0febn56lUq9i2TSab1QEpm82KqpJpkstmMU2TdayjRInfPfdf9He+PC8umixRVZ+3Zt7SgTIIQz1GY1kWtVpNnyTjsZjmh+gysgyktVqNANi0eXPLBPt+4n0VKEEseNd1qQWBYIVKIkipVBIlTtX3k0f4T3/qU/zqr/4q0zMz/M7v/A6vvio81nbt3Mn3fe/3NpxuYrEYnu/T3d3N3OwslWpVDBV3d7dkYXqeR7lSoe66ZLJZ0pkMGxIJEYCkSPrs3ByVchnP9wnlfGWpVKIsR10ol8WAvyyhqpJIKMUFgiDQJqOGKZzCLXlBYFk6sMbjcXp7e0mlUqRSKa5cuUK5XOZjH/sYiURCy9Ip9lilWhXEIJnJrgZDng51j1SVPlrcT+tdyudXhKNUhEUbZSPX63WKxSIxOdfa2dnZZrC28a7ANE06OzuZnZ3FSiQIZOAolUrk1fWECEh1eT1++tOf5pd/6ZeYiewdYRiy64EHVuwdccng7uvrY3p6GtfzmJiaYiASLBXCMKTmOCKYSVJhb18fcanKY5gmdcdhdmaGquOIQOc41Go1lopFUZaV9oO+3Ac9z8OXJ1rNYQgCzp49K5J0GVQ1L8I0hZ2dPG339PToZPnNN99k+86d7NolbLZcGUyVN7A6jXdIopLCpzZ+O+fmz/H65BuN3z0mYUiD48hbsyf5js2fBtBBEsT4SDRIKiEYS54kDcSeWCoWqdfrrN+0SZev30u87wKl+gPNeB5BPI5fq2HILM4ol8lkMvp05nseDz/8MOtGR7l27ZqmBo+OjvKDP/iDK+b0VH3b9zx6enqYnZ2lXKkwPTtLEIb61BqEodZmVBt/XLqFK+ZnIINGoVDAMk2CMCQvBdnrrku5XMayLPK5XMtxkyAMmZ+b4ysvvMAzzzxDLpejIh+jTl3qhNeMmZkZZmdneeSRR5azMdMUCy8eZ2lxEaXob8teaiqZXJGRqR5jlGykCEMr7if+j04eCAJMxAxsw/uUz4lhsLi4iO/7rB8aoq+vb1VadxttfCMQj8fp6Ohg1vMIXVdXN4pLS+TyeSzL0tUo3/M4ePAgf/Znf8bY2JjeO9avX88P/MAPrNg7bKmsk0wm6evrY2pqCq9FsKy7LlVJQFFapclEQrc7lAJNPJEg39FBSo6zZOXeUywW8XxftHFkEIkiRJwGZ+fmeOGrX+X5557Dlu0e/RhYtd1z6PBhUskk27dv17cpxaKYbTM/P68TdtdxqIAeZXl54hWOTR9f8ZyquxtEAuXZ+bM4fp2EndCs11qtRl2ZPcsql+d5WHJ/UT+e77OwuEgmm2V4eJjOzs57nkn/RuM9dQ9ZDaZp0tXVhaVcLeRJp+Y4gl0ZhppC7Ps+z0nfShBaf7qhK/tpCvF4XHjDua4eH1FlhpnZWZaKRdEXXVrCcRz8ICBm2+TzeTKSlNMMNUhsGgY1WQ5pxmoKQ+riskxTz1Rqqjq0XOwhwkKmo6ODdU0qPKF8DwGCZt3T1aUv+GqlQqVabaRpN81Fthot0UESwVArl0ogSQsZWZaJMu7UqdNxHOYXFsgVCqxbt27Nuck22vhGIZVKkS8UMONxwRSXSW2xWMRzXd0e8GW16vkWe0da7R2R500kEtoPN5FI0NfXJ/qJnsfE5CR116VSrYpWg+z1p9NpCvk88USipQylYpZHbauijNlWocFAkJJU4FWuQbA8Q7laUJmZmWF8fJzde/Y0noIjVaJYIkEhlyMveSGe51EqFvmTi3/KL5z4RbxgpfOK5Ow3lF7dwOXcgrC4Uqx4ZXOWSCZJpVKCJS/3aLUXhWHIzMwMQRjS09fHunXr3hdVqPdloAQRgLq6uzHlYvIleUQFSzVSMT4+zv/7x3+sH+c4TkM2aEQ2f1V6KEuvStM06ZHB0jJNJqamuD0xIRrwQD6XI5PJiBEVw1hVcDglCTt1zxMOGe/g8zZrNa622G/cuMH8wgJ79+xZ8TunVqMmbYcyqRTJVIp8LifmUU0TT550WzkhBJHbTHlCNiLBr1Kp6ETAjsXIZbNae7F5Tsqt1xmfmMC2LIaGhxkZaTSHbaONdxO5XI5UPi9mKUG3PIqlkihdWhYhcPPWLf7kT/5EP27F3hEJlulUqsHjNpFI0N/Xp625ro+NUSyVRHIdj5PP5ZZns4kEvSYWbiKRwDQMQWwJlwXEdf/vDiepqBazCpStZOtC4OSpU3R2dKy4HkMp8qJ0mLOZDOl0WswsmibHp0/wFxf/khSteQ4WFmEIPo2v+9bMSXzPo1Qqad/QdCaj5+MNyxIjcCrRDgIWFhYolUrk8nktVv9+wPs2UIJYjD0DA7r+rtzE61JcuFgs8pu/+ZssLi3p0kWtVuNzn/vc8pOohWYYuiFcXFpqeJ2e7m7R5/M8FiRhJ5vNrpRYM4yWQdC0LC08oJhcDQ+7i8/qN58oW5zuPM/jzOnTDA4O0t3T0/A7NbsJkJSkAPWek8kkWan2rzaMFYFSZtiGpKNHNSzL5bLQW0SUYaKnw2a1nprjMDs3h+u6dPX0sOuBB97zskkbHy0YhnAQynR0YMqRDKV6VSqXxUhTsch//KVfYmmtvYPlYJnL5ykViw3zhvF4nN6eHnw5qjUzMyN6gul0a4WcsHEeHMT1hCTgOPIa0/flzntHVLBdJ60t7nf9+nUWFhbYs3dv01sKKVWreJKNmpbMdVgmV741/xYAGTKkWamYZmMREuLTeNo8M3NGf9+mfC5VTlbCLPpz+L4eTTFtm63btjG4ikPIe4H3daAEsZB6h4exJKklBC1K/v/84R+yuLREIZ/nR37kR9i/fz8AX/7yl5mPmq9G5i+zuRyLTYHScRzi8TipVIpEPE4YBExNT+O2GMJdzclDmR8rhio0Ltg7BQttkyMDVKtAeebsWWr1Ont272643fM8KuUyhiEGqlspGtm2TT6X0xewKmEr+JJcZEnVHsXaa84G48lkQ8YadQypVipUSyXK5TK5jg72PfRQu+TaxnsCwzDo7u8nWygsq+Z4nhbe/oM//EPKxSLxZJIf/tEf1a47K/YO+VyFfF5XVhRU0l7I57FjMZLxOAvz8yw17S/qOUwpv9lwu9Q1NQxhVKz8aNW91Oz0aojuG+p1mneamuNw6uRJRkZGhBVhBJVKRagJIfgGK4wSDIPt/dsoI07Tafm/KCxseaJc3i8zZJlZmqHiirn1TCYjDgEt9jXf9ymXy5TkeMqGjRvZsnXrGp/6/uN9HygBEuk0PcPDWj2eIOAzn/kMt27dIpfN8nf/7t9l/fr1fOrTnxaZmePwZ3/6py2fq6NQoFgs6v/2PE+XHXp6ehgeGsIyTVzXZWJigpoMelEYYbhiMRqmKTQKEQvTl/NIGmvMUq4on7RY7DOzs1y+fJndDzxARmbAIMpK5VJJK3m0HAORmawSBDBl5lmNXPTqYlHEpGq1SrlUasgG7VisIStWwdzzfUrlMnXXpVipkMpk2LF9O319fat+5jbauB/oGBggWygIAqBl4bgun/nMZ5idmSGVTvNP/8k/YePoKN/+qU8Jv8V6veXekc/nBUEtEgQr1argO1gWGzdsIJvPYxoGcwsLTM/MtNRGjs6DKyQkk94wjOX9RrVBDGNNTVgdKNeoRL355psYpsneptNkpVrFdV3CICCTTq/aC/yWdf8j/3DP3yeXEvtOmjRxRMXKwMBEzE57eMSI0UknKZKEhFypXBGnVCIjaKBLrjXHoVQq4cge7+DwMDt27lxTGe29wAciUAIkMhk6+/pIxON89rOfFULgts3zzz/PwOAgpVKJ0XXrePSxxwjDkK+88AITk5MrnicvSyggsrVyuSz6CpKFlU6nGRgYIGbbEARMTk6yFAmsgAhkLU6WMammYZimcOqILNpov6MZarGbsufXnHX6QcDx48fp7Oho0GX0PE9oPMogmImaqa4CU9LF1fPW63WIMHl9WQJRjfdYPE5ayoE1v68gCKjWapTlYHDdcbAMg9ENG1i/YcM9Oxm00cY3GqZpUujrI5vLYVoWn//Lv+TKlSsYpsk3f/zjDA4M4AcB60dHefTRRwmCgK+88AKTk5MNAS0Rj5NKJHSSrWYhwzDUbZrenh4KHR1YhkGlUmF8cnKZpCOh5q2bg6VSEfKjxJ67QBBJsFsRAG/dvs3t27fZ9+CDDazzSqUirn1E//VO/pKfWP8Jfulj/5F/tv/7ebBnLwUKGBiiP0lAQEiGDAUKWFgEYcBiuMjL06+oJ9PPGxoGnutSKpd19a1aqdDT18fGTZtWnHrfD/hA7WTJfJ4//exnefnll/E8j8cPHmT7jh249TqLS0sUi0W+/du/HUPW/P/4M5/RAUBLPuVywhxUzhm6ci4pKtIdi8Xo7+/X8nNz8/PMzM42qNhD65NlKpXS4sgNPQdW/7Kjix1W9hjefvttyuUyDz/yiH5tT54klWB6qyCpA3nT7ZZlCQKSYVB1HDGvJVlvjuMIIo9lkUqnxXfAykDvyX5u3XE0WcHzPAZHRxkZGVnV/aWNNu43LNsm19PDl7/8ZQ4fOoTrujz26KNs3ryZWq3GwsICtVqNT33qU7p98pnPfAY/SnozDPKFgk6yq9UqQRBoBR2FQqFAb2+vYMS6LhOTk1SibHg5ttWcRFqWRVJqJFdrNd3SUFg1yY4Q8Jr3Iqde580332RwcJBhSeBR6mPKRL1ZFi76PptPp4Zh8sjQQ/zDXX+fn3rsJ/juTd9Nf6ofO4yRJUsyTAqBlrDKXDhPnTpHp4+tqKxVJTs48DwsKZaQzmQYGhl53xL/PlCB8rd/+7f5pz/4g0zMzPDQQw/xP37Lt+hsrlwuU6lUyOdyPH7wIKZlcejwYW7cuCF6bqFwFcnJucYF6YwOgsbdfDq0LIteKZBuGQblcpnxycnGUqxhNDLaEAs2LQOsU6tpBq24e+O8EIiFG8j+YKuscGFhgQsXLrBzxw49X+m6riiLsizf1SASoFhka5R7E4kEtiQAFKVmrXI7ScTjZKUcH02fL/B9qpUKpWJRCxzbsRjlSoXegQH6+/vp7+9f/Y/YRhvvAX73v/5X/s2/+3eUymX27d/Pxz/+cW0dt7i4SLlcptDRwcEDBzBMk0OHDnHjxg19fQZBQDabZWFhQZwkJfmllfl4KpViYGBA8B1C4e06Oze3ohTbfLJMJhJi7E32KxX0KZTlfUO1dtTeYdn2imB68uRJAt9n37594rGyx+q5rmDGp9OrzzavtncYBql0mnyiwDf1f4yf3vOTfNeGv83m/Gb8MGCJRcqUCA3pTxu4WoPbrdcplkp6D40nEvqgMrRuHaOjo++7kqvCByZQfv7zn+cf/+N/TBiG5Ht7+Qf/6B+RkeLD6XSaZCJBpVKhXC7z3HPP6eH/P/7jP14+ASIWcTqVYnx8XAQxw9ABoRUKhQI9PT3YloUvZ6YaFr0swUb7CIlEQiiByADrh6FQ1ZDMO/WjbLf8aJ9BZpzI+aijx4+Tz+fZum0bgBYzCOX71i4J0YXdorQThbq/YZqUKxUWFhYENdy2yUrdSSVYoJ4vkBTyolTM8MOQZCJBMpFgaXGR7t5eBoaG2NAuubbxPoPaOyZnZ8l2dfH3vud7yOfzFAoFTXwrlcuUSyU+/vGP60T3jz/zmYZqTFd3t9Zz9YOAhAySrZodtm0zMDAgen+mSalU4vb4eEMABJbnkEEz80EkwzWpIOSFYUNlLIhWssJlX0ctP2kYjE9MMDY2xp69e0kmkyJIlsta/jKdyeigpBW51to3ItwExeEQ+22FDdkN/IO938PPPf9/8G2bPknMXA52T/Y/IRS6SiVNHAJBHPLqdTzXZWh0lNHRUTo6Ou7yL3r/YYRrHTvexwg8j/L8PKHv40uh4mqtJmTqZJYSi8fJZrOkksnlsmYYcvz4cSYmJ3n0kUeIJRLaF85A1M9bLXzf95mbn6cqXbhDhAuHeqyeBQpDCAJm5ua07F4ikdAkm6irxsLCAl/6q7/i0QMHtMasbdt6QZ44cYKxsTGee+45CoUCjuNQqVRQAsjRk7AvNWfv9OcMQ+EgoE675XKZWq1GMpUil83qUqtuuvs+NcfR4yEg5iiVaPvMzAyFri6GRkbYvHnzypGaNtp4n6FWKlGXbQslYq70SOuuS8y2xUiVHGdQ15jjOHz2c59j+7Zt9Pb309HR0WB11Ur6EUQ/cH5+Ht/3cX2fdCpFZ0eHNkuO6ixXazUW5ucJQiFMruaVmzE/P8+Xv/QlHn30UTo6O/WICwhG+wsvvEBPTw+PHzyIL4OkGpFRCj4KruvekdsAaJnMer2OI0XNPdclncnQmc/rU63ne7wy/goddoHNmS1aTAW5J8dsm1KpRLVSYWj9ekbXr3/fE/8+sLuaadtkOjspzc1h2bYokUp6cTKZpFaracmkmCwlpuV8U//AAJevXKFSq9Ed6aWpxarGM0LDwIwwRnt7evSidxyH6elpMum0XvSKvaoU8lOpFGEQ4EiZqmavNQ15oowGyevXr3Pt6lX2P/QQhXxe2/K0CpL6/asgqbI/+VmUNqTreVpxCKQ/XzwutF6leLp6Hs/zcGTGp2BHxNU912Vmbo5cRwcDQ0Ns3LixHSTb+EAgmc2KhFEmsortakq/RsdxKJZKVGs1ETDl6SuRSNDV1cXM7CwDg4ON5VAZLJX+cdRbNpVKkUgkWFhY0Ceraq1GV2enrgiFvo8vT46xeFy3QSrlsta4jiawUUQDaeD7vPH668RjMR555BH8IKBcqehgFZ0PD0GbF2hETrda29nzqNXruPW6fn11IAHRqjFlkAx8H9/1eLjwsNCj9X0M01z2mgwCisUi5UqF4dFRhkdG3vdBEj7AgRJEsEx3dVGenSWRTOJIck4qmSSdTlMql7VmqyM9GjPpND3d3Vimyez0NL1Ng/sKUSKMnmsMQ5LJJP39/cxIndhypUKlVqOjUNCaiEo1yLZtYrGY6ClWq+Sk4HnLzyKFjMMwZHFhgTfffJPR9etZv349JZkNGoYhTqfJpBZfUH1NVQrWXpEqww0CHMehVq8vk5EQ5eF4PE5J9gwMqflak5T36KykCsymaeLLecm5+XnyhQKDw8Ns3rz5fdtbaKONVkjlcmK9F4tCc1ReX52dnWI0qlLBlWYMlXJZmAtks/T39XHu3LlV56LNyL4B6B6iYRh0dHWRSqWYnp7G832mZ2cpl8vk83kxHgJYsoyalPPKQRhSqVYFU32V0qgyaMAwePOtt1gqFoWRPVAslcTzKiEEyxL7gNyjlDmDTqoRAdQEPWpXjyTLSrvWMk0hrhIEQhdWsoC9iIiACpBJ6cXpui7zCws4jsPgunUMDQ+/r0QF1sIHOlCC2MRzvb1U5ueJJxK6rJjN5+nq6hK+ZzKgKc+4paUlcrkc09PT7Ni5c9XnNiL/aiKOPH11S8eR2ZkZHM9jenISOxYjXyiQyWSEmFMQCNeBIMD1PMoyO4yq6Stij2kY2u380Ouvk81m2b17N0vFog5a6UxGuKJHehG6VxqZUTJlCcmt1fCknY/6HIlEgngspss+ddfFcV3sUJi26s8uRdbj8Ti2ZQkPShnEi+Uy/QMDdPf2smHDhnaQbOMDiWQuhxmLEc7NEbNt6nKzz+VypNNpao5DRbYm1I9t2wRhyOzsrJitJHIyi0D/tzoJykQ7kUgwMDjI4sICS0tLFCVbP5VK0dHRIeYL5UNT6TTFUom6rEjFFfFGnvZCuScpbsO1a9e4eu0aDz30EIlEgpKU+rQsSyS68v6GFF/QjkDq9Itg0Xr1OnXPawh6tpTbi8VimIYhfi8V0qpNZu+WbYsTeDyuT9u1Wo3ZuTlisRijmzYxMDDA0NDQN+6P+S7jAx8oQSrudHdjJxLU5emxLD0sVckkn89TrVYpFos49TqZTIYbN29y48YN0dRPJsWJUNm9tMgYDfFiekElEgn6BwZESUWyRudmZ1laWsIyTWIySKZSKbxSSShQVCpkUykddNUJ0LIswjDk6JEjuI7DgUcfFXY38vOlIwPB6r1ZcsHrsk8QaAfzqOqOaRjEVYCUQs7K13JpcRHHdYnLsqutvPDkBaECue/7TM7MYIQh6zZsoL+/n5GRkTZxp40PNOLJJHZfH6FhMDczQ7VWw7JtEvE4mXSadCqF67riZFmtEpd+kWNjY2TSaZKpFKlkElsaLjSj4TaZ3BpBQKGjg7gsxyp/xur4uHYosuSpLZVM6hOubo9IFq7aO0zDYGF+nhMnTjC6bh093d04cmwrHo8vk/Mi78eSJ0vVH/VcF1dW5KJnVtu2ScoAqUrUykGoWqsR+L6oosn9TiXhhgzkBsIRZX5hgY6uLvoGBli3bp1OMj4o+FAESoVkNkvf6Cjj16/jOg4lwxA9AESwyWQyZDIZ0afzPG7dvs3ExASWtKJSWVsqmSQuqdorLKfkv6ZpagJNoVAgl82yVCxql4JirSZmm0yTDsnMLZVKePU6lQi7LSqvd/LkScYnJoScVqR8m0ql1lTQd2o1Ko7ToENpADHpbGJId5KaMn2W93Fl1miGwmIsGoz1CIthUK1UmJ6ZIZ/P0yMXepc0qG2jjQ86TNumc2AAPwxZmJmhVCph5HLEJZEnHo/T1dVFQfok9nR1cWtiglK5TM1xWJS9zaQk7cViMeGbG9k7oom3Km/G4nH6+vqoOQ5LCwvU6nUqtRq1apV0Ok0qnSYRj+sAVS6XyUopOHWtm6ZJpVLh1ddeI5vNsnnzZv27dDq9erXHMPB9X/hQOk6DnLlpmsSl8XyAMDlQc6MK1UqFMAhIp9NkslltX6YS9NAw8IOA+YUFatUqgyMj9PT2vq9HQNbChypQAiTTaQY3buTWtWtCHScIyOZyDRqIiUSCkZERbo+PMzkxweYtW/DqdfwgoFKpUKlUsKWVTSwWE/9Ks2blMK7q+6oka9k2nZ2d5KWWrCMzr7mZGaqVCtlMhkQigSNZY7rsIXHp4kUuX77Mjh076Ozs1O+zWZLOk3qVnu/jypOjJw1eVXZpyfeqXAGaYRgGdixG3XVJSJ/KbC7XUL5FznItLS3hOY4otfb1sX79+pazY2208UGGYRj0Dg2BZbEwNaXbM/EI69UyTQqFAjt37eL25CRLi4sMDQ2JNocku5TKZWzbxrZt7Q9ryWtSue0YoC2mQOhEJ/v6qNXrzM3OUqtWqVSrjI+Pk0qltE6q7/uU5F6iyDm+7/Pyyy9jmiZ79uzRyXkmnSbWNFvpycTYk5MCigEfbdmosTa3Xtdz5lEoe0PDNIlLclNcemCqXqwvCTulUol4PM66jRsZHBykv7//A1uB+tAFShALb3jDBsbHxqjLwKfKqmqhxmIxNqxfz81btyguLbFx40bRz5TkH8/zdF9CzUkaMlCqC0GxW03TXP6xbbq6uojFYszOzoqFKZvYhCG2vPAU1RpgYnKSG2NjbN68meHh4eVSq/SD8z1PU8tDWXZRZZNAMm1D0ILGvnyMgoFY4DH5vk3LIvB9FhYW8MOQDiVcLi/cmuOwuLiI5zgYts3g+vW68f5BXehttHE36OnrIwhDluTJMifnsXXp0jDIZrOsGx7m5q1b7Nm7F2VKrEYnVBmzCtqJx5JEPtu2NWnPQFyzpmFocfShoSFMy9I6y9VqlWqlIhJf0PPiqjJ0+swZAt/XJu6JZJJkIiEkJV0X3/d1gNTiJvJfgLrvi/cnFYncJlEEwzT1vmHbNqZpsrS0RBiGxGIxEolEgwhCsVgUc96+TyqXY9369QwPD3/gSq3N+FAGShDBsn9khOnbt6lKD0bFSlVEmK7ubgb6+7l08SKbNm/WfcogDHEdRxiqyoXvhyGB5+HIAGoYhlCVME2h2mAs679ato3nusSkar7v+7onWJeB05PllBAxCjIyNER3d7fokViWZpTBsnqPGjS2bFssbtsmJkvAqtyiJO30j2kua8hGvp8l6c0Xl6XdQF7sxVIJr1YD2XPYvmcPIyMjH8hySRtt3CsMw6BXjisUZbBMR05nqt+/YcMGbty8ydWrV9myZQu5XI5sNiuu8Xod13VxXVckrZI7EEr9ZAxDjH+o8qxMxJX4SeD7pNJpkvG47l8GrksQBMwtLBC3LGGVhyDj7dq1S7+G63ksLi4Cy2YLSthE7U22ZS3Ph0YZrZGArn6i+xtIR6FymSAIKBQKmvNQku4f6jV7BwbYtXu3ro590PGhDZQgavTdAwPMTk9Tl2QbbcQsM6L169fz+uuvc+XyZbZIwXHLMDCTSRIslxJ8WbLwVPD0fZAnT0+KDGhLnDDElfezbJsgCJianGRycpK5+XlKxaIQREgmRZ+ip4dUNkvNcYjLwWdA9ykty+LPP/tZjhw9yq5du/jH/+gfiQUsLzTX9/WJ1pIO7urx0ZlKBadeZ6lUwvU8kuk0c3Nz1BxnuZRsGPT397P3oYfamq1tfORgmiY9vb2EQEWyUzPpNAmpcEMYUujspL+vjwsXLzI6OkpCknliti2qRnIvUEz2KBFGtU/8IMALG1W6qpITEIYhRWB6eprJyUlmZma0zqwtxRDS6TQdnZ14ksCnGPlRt6A//+xnOXrsGDt27uR7/8E/0HuGaZqEMtnWQTGaTDePosj/v7i0pMXgPd9nYnJSiJHI+8diMbbt2sWmzZs/VNWnD3WghOUB27l4nJocDUnLJrlpGAwODDDQ38+p06fp6u6mU8ooRSWiLMPAisV0LR7EBeDIEksYBPzlF77AX33xi/yvP/Zj5PN56o5DBXHR/dIv/7J4TsPQzLBEMkkiHscCOgsFLMPA9zxqcrGl5elWMVAf3LuXz3/xi7z22mv8wL/8l1qjMQgCrCbxdY2IAEGIKI04jsP4xISQs5LWWqZpNthp7XjgAQaHh7/hf4s22vigwLIs+vv7WUwmWZyboyYrMCnZEknE42zZupXXXn2VYydO8Oijj2IrT8jIuIUlGawgEvcwFA49yorvL//yL/mrL36RH/u3/5ZCoaArQ269zm/8xm9o4QFT9TwTCbKWhQXELYtUPI4Jgunu+2JuMZkklUph2zZ79+7l81/4AgsLC/zAv/gXJCOlUtd18VcjCTbNa9Y9j8WFBaZnZ6lWKoKcWCzqk2osFqN/YICdu3cLJ5QPGT70gRJkGXZggIVkktLiIpViEbdeJymJLA/u28dLL77IsWPHeOLxxzVZRalhACv+tUyTVDwuZiLDEBPh75bNZunq6sL3fZaWljCAmZkZwaaV5JxkMsnExARzs7Ns2bKFLVu24EkVC1XC9YOAUqlECcAwGBkdZd3ICJVqldePHOGhBx/EsixcedptHkMOfR9PZrOe/HFliURlhIVCgZgsvabSaXr6+li/cePyvFYbbXyEYRgGHR0dJBIJZmdncUolSsWimEVOJOjv72f7jh2cOXOGa93drF+/Xvcc1eNh5Ty2KXt9rufpfSOTTmut01QqheM4LMzPU6/XSaVSdPf00NnZydVr11haWCCbzfLggw8Sj8fx5IiGfFEhMSfLvMPDw4yOjlKr1Xj9jTd4cO9eLW7geF4jgU9CVc9cuWf4UqWruLiIJ5XPEnLsLpVKkclmWb9xIz0fYjOEj0SgBJEhdnV1EY/HWYzHqZfLFEslQetOJtm/fz+HXn+d8+fPs3XbNsE2bdJObRYKNwwDU7LRtHqPvJ8phYN93+fbv+3bGBoZob+3l6tXrzI5NcW1a9d0v7Gvr49Suaxfx7YsrSaknts0Tfbu2cPVq1e5dPEiG0ZHNeM1SttW80sqeEdPwBWpNmIAA1KrMp5IkMpkGBgaoqM98tFGGyug3EDm5+eplEo4coYwmUyybds2ZmdnefvcObLZLJ1dXcJkQYkCyHJog1ScJO/YkqATZZqD1GOu1/mWb/kWhoaHGRkZoVwuc+zYMU6fPo0hNWg3bNiwrJwThlqlq1ar4bouge8Tt232PPAAV69e5fLly2xYv147Kam9BVgWRWiBer1ORe5PuWyW/v5+4WFp28IMYXh4dXnODwk+MoESRADLSXeMsmw+16XjSC6fZ+OGDVy9ckWbN6dVP1MiqmIBcoEHAZYKTDKbU7OU9XodwpBnn32WhcVF3n77bQAee+wxvvbSS+I5pGl0LpulXC6L4Od5ZLNZuru7BWnIdfE8j+3btnH2zBkuXbjAJz7xCXBdTGg5Y2nIfqW6GJWRdDqdprOzk7ScKe1vB8g22rgjbNump6eHaiYjBL3LZeqVCkGtxu7du3n1lVc4dfo0e/fsEQ48iUSDq0ezfV4YBMuzi0GA53lUymVcz6Neq+HW6xx8/HHi8ThXrlzh1s2bDA4MAMsyeZZtk7FtTKkDHQSBeJ/d3UJ7WrZatm/bxunTp7lw7hzf+q3fKkzZwxCifIYIlHWeqUhHiApaPB6np7cXy7bp6umhf2hodZuuDxk+UoFSIRaL0dHRQS6XEwGzWKRWKrFp0ybKlQpn336bpaUlBoeGyGQyetETKaWoXoPn+3iui2Wa5PJ5arWann1UAsunz55lenqawcFB9u/fT6lYFCdROQ8ZhiGWtLgql8t4rku5UqFWq5HOZLBls/2RRx7ht//zf2Zubo5SscimTZsaRAaa4cs5ykq1KgyWTZNCPk//4KBwP2gHyDbauGsog/d0Oo3jOKI1srSEW6mwZ+9e3nrrLUGc2b5dk220S0dEcCCQVSDX8zANg47OTqqVig46pmVhWhbz8/NcuXKFIAh4cN8+crkcpmniycCqoMziK5WKIBEuLelRkUQiwcNy31hYWGB+bo4tmzfruetWUCfacqUi5sF9n0QySXdvL/39/fQODn5kAqTCRzJQKliWRT6fJ5fLUZGB6WBnJyeOHGHs2jWqtRrrpEyb0jkElhe9XGjR8mg8FiMt1YAmxsc5f/Eitm1z8OBBhqQA8PzcnFDGiCx2VTrJZbPCwqZSIZBzSUrAvFAosHnTJi5fvsyJ48fZuGmTnsmKwvd97ZxSrdXwPI90NsuIFFlPNIkYtNFGG/eGRCLRII1Z6Okhk89z+NVXOX3mDJs3bxZ2VrYtVL5aMEDViVKJhCSTSWFBVS5z4fx5ZufmGB4eZt++fSSTSWamp5fl6GR1S1358Xgcy7apViq4rovjOLieR0LuG5s2buTylSu8eeIEW7Zs0a0jtYeFhgGS01CrVqnV69SqVUzTpG9ggI2bN9PT1/ehYrLeCz7SgVLBkFJ3mUwGursZWreOI2+8wYsvvMDCwgJDQ0P09vbi+772UzMltVqNZRjA4sICnudx/tw5xsbGqNfrDI2MsG3LFi35ZshyBkgfuAjUeEYiHseWi96RIgiVSgXbttm/fz9Xrlzh2LFjfPunP62fMwxDXe51HEd7xuUKBXoGBhgdHRWfr4022viGISbVu8jn6enrY93mzfzxH/0Rp86cob+nh6HhYTKglXrUDLQa5QJYXFwkmUwyOzvL1StXmJ6ZIZlIsG/fPtatW6dnmP3I+EfQ4jRomSbZbBbHdUXAlGpBGAb7H3qIa9evc/zECT79Hd+x/CBDWvDJ4Kp+DMuib2iI/qEhBgYGPvIWeh/tT78KTNPkwMGDbNi4kVdfeYXT586RHRtjZHBQlGKlyXEylcKp1SiVy0xOThICr7z6Kl3d3WzatInR0VFtIq2E1j3fF+XSMNSziwrqfuonlU5jx2LCPkwSg3bs2EGhUGBufp6xsTG6Oju1HY7neUIYwfcpdHWxYXCQfEcH+Xz+I1cqaaON+w3DMMjn8/zd7/keTp48yauvvsrt48fp6+mhu6dH2//lpFxkpVplbm6OMAx54atfJRGP09vby4EDB+jo6NDchLh04XCl/Z3rustmzyyzatU8pm1ZZDMZnHqduhxD2blrF1/68pdZWFzk6tWr9PT0CGEVmVAHQUDg+1ixGH1DQ/QODJDL5XS596OOdqBcA/39/Xzq059mcXGRw4cP8/aZM1QqFUzQg7u2VNWoVKtYlsX+/fvZtXOnlpNbWlzUqhkJqbQBLPcYmjRf1W1q8auMNQgC6vU6AwMDdHd1sVQscvLkSfY/9BC2bWPF42SyWTKZDPlCgXyhQDabbQfINtq4z1D7wL59+7h48SKHXnuNsxcvEsik2USc/kzDYGFxETsWY2RkhP379pHNZgExR6nUfVTi7LouhmlqrWhdNo28tk7KTVMrjbmuSywep7enh/mFBU6fOcODe/dixWLY8TjxdJpUKkU2m6Wjq0v3V9cyYviooR0o7wKFQoFPfOITfOITn8D3febm5picnKRcLguV/0SCP/7DP+T0mTPCQ65Y1FJRSq6qVq1iIi4AQAfMVgjlqdALAq3tqjQbATZu3coX/+qvOHbyJJ/6n/9nbaycyWS0JuNHvVTSRhvvNQzDYNu2bWzbto0wDKlWq0xPTzM1NSU8IlMp/t/PfIa3Tp5keHgY1/NYWlrSxgu+JPqpMTFAi5q3glICCiTZJ5T7hiIdbty8mUtf+QrHT57k277jOzBlXzQjDRuU0fxqptQfZbR303uEZVn09vbS29sLLLuA13yfM5cuke3uJpnNiqHdMCQwDGqSITc3N4dhmtQcR5ABEBfTwsJCg8t4GIZavNyybaxYDCseJ5dKkc3neeq55/jVX/91Lly6xK//xm98aPQU22jjwwrFmF0vCXXqhOgGAWcvXybf20uhUKBeq4lAJ8dHlIcuhiGMmKVdoIGQk4u2alR7x7Jt/WPHYsRNk2xHB088+yz/6bd+iwuXL/Orv/ZrdHd3v9dfywcG7UD5dUK5hwNMTk7S09MjskMliiwF0Rck0Sdm25TLZS6OjWEaBht37KB7aEg7lNBCmNiSIsaxWAzbtvnYxz6mBYiPHTvGxz/+8ff4W2ijjTbuBcrnEoRyV1dXFyMjI7ovqX7m5+e1XWAsnebc5cuYpsnmHTvo7O/Xe4ZqBSmCYdStRO0dfX19IikPQ06cONHeN+4B7UD5DYYaJWnuDargaVkW165d4+atWxiGgVOvMzwysjycDFqgeDW88sorhGFIPB7nwIED7+rnaaONNt59KL1UPYIm0dfXp9nxY2Nj3Lx9G8MwqDpOw76hfpSVYCu09413jnagvE9QARQEVVwtfrVw7wV//ud/DsDzzz8vGHRttNHGhxYqeFqW1bBv3CtRr71vvHO0eb8fQHzuc58D4G/+zb/5Hr+TNtpo44OC9r7xztEOlB8wnDhxgrGxMaC94Ntoo427Q3vf+PrQDpQfMKjyyf79+xkZGXmP300bbbTxQUB73/j60O5R3ge88sorXLp0Sf/3zMyM/v+XLl3id37ndxru//f+3t9b9bk++9nPAvDJT37yG/oe22ijjfcX2vvG+wftQHkf8Ju/+Zv87u/+bsvfvfrqq7z66qsNt6224G/cuMGJEyeAdvmkjTY+7GjvG+8ftAPlNwjPPfccgHYpfzegssJ169axf//+d+112mijjfuD9r7xwYARrmZK1sb7Dv/D//A/8KUvfYnv//7v51d+5Vfe67fTRhttfADQ3je+frTJPB8QLC0t8eKLLwLt8kkbbbRxd2jvG98YtAPlBwRf+MIXcF2XfD6vyzVttNFGG2uhvW98Y9DuUX5A8MILL1AoFPjkJz95z0o+bbTRxkcT7X3jG4N2j7KNNtpoo4021kC79NpGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtZAO1C20UYbbbTRxhpoB8o22mijjTbaWAPtQNlGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtbA/x/fTuhHhZNRoAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZAd55reB/5yO3n2U3sVCjsIECAJEAT39fLebrc6bEVri9FmyS3LlhwOT2g04XbIEf5jNKMIOSbU0aHocDvC6nGrQ4qYsdyyeqRuS2P17eUuvFwAEgQJEDtQAKpQ+3bW3DPnj+/7svKcOlUAeQkS5D0PgwGg6pw8mXm+/N7teZ9XS5IkYYABBhhggAEG6Av96z6BnyXcvXuXX/mVX+HEiROUSiVGRkZ46aWX+NVf/VU6nc6u7/0bf+NvoGkaf/7P//mv6GwHGGCAxwGDfeMxQDLAl4K///f/fgIkMzMzfX//e7/3e0m1Wk2Avv8/+eSTyY0bN3Y8/r/6V/8qAZJSqZQ4jvOIrmKAAQb4KjHYN74ZGESUXwE+/vhj/vJf/ss0Gg3K5TL/8B/+Q959913+6I/+iL/9t/82ANevX+dP/+k/TbPZ7HuMX/zFX8S2bdrtNn/0R3/0VZ7+AAMM8DVgsG88PhgYyq8Af/fv/l0cx8E0Tf7gD/6A/+6/++947bXX+Lmf+zl+8zd/k3/0j/4RIBb9r/3ar/U9RqlU4ud//ucB+L3f+72v7NwHGGCArweDfePxwcBQPmKcPXuWH//4xwD85//5f85rr7227TW/8iu/wlNPPQXAr//6rxMEQd9j/Zk/82cA+P3f/32SAQdrgAG+tRjsG48XBobyEeNf/+t/nf79b/7Nv9n3Nbqu88u//MsAbG5u8id/8id9X/dLv/RLaJrGwsIC586d+9LPdYABBng8MNg3Hi8MDOUjxjvvvAOIFMgLL7yw4+vefvvt9O8/+clP+r5menqal156CRikUQYY4NuMwb7xeGFgKB8xrly5AsDRo0cxTXPH1504cWLbe/pBpVEGC36AAb69GOwbjxcGhvIRwnVdVldXAdi3b9+urx0eHqZUKgEwOzu74+v+7J/9swBcvHiRmZmZL+lMBxhggMcFg33j8cPAUD5CZCnb5XL5ga9XC77Vau34mpMnT3LkyBFg4B0OMMC3EYN94/HDwFA+Qrium/49l8s98PW2bQPgOM6urxukUQYY4NuLwb7x+GFgKB8h8vl8+nff9x/4es/zACgUCru+TqVRfvSjH7G5ufnFT3CAAQZ47DDYNx4/DAzlI0SlUkn/vltaRKHdbgMPTre88soraJpGGIZ8+OGHP91JDjDAAI8VBvvG44eBoXyEyOfzjI6OAjA3N7frazc2NtIFv3///l1f+84775AkCblcjldeeeXLOdkBBhjgscBg33j8MDCUjxhPP/00ADdv3iQMwx1fd/Xq1fTvSm1jJ/ybf/NvAPje977X5X0OMMAA3w4M9o3HCwND+Yjx5ptvAiI98tFHH+34uh/+8Ifp3994441dj/n7v//7wFZxfoABBvh2YbBvPF4YGMpHjD/35/5c+vff/u3f7vuaOI755//8nwMwNDTE9773vR2P9/HHH3Pv3j1gsOAHGODbisG+8XhhYCgfMV5++WXeeustAH7rt36L9957b9trfu3Xfo0rV65gGAZ/9+/+3V2VOFT65MyZMw9sRh5ggAG+mfg8+waISSOapu14vMG+8dNh5x15gC8Nv/7rv84bb7yB4zj8qT/1p/hv/97f4zvf+Q6O4/A7v/M7/NPf/m2KxSKnTp3ir/zlv8zS4iITk5Po+nY/RvVAKar3AAMM8O1Ev33j7e98h47r8i9/53f4rX/6T9E0jeeff56//Jf+Egvz89SGhqhWq9uONdg3fjoMDOUXQJIkBEFAGIbp/0kcMzo6ytLCAnocE0cRcRgSRxEFXefXf/VX+Ye/+qt0Oh3+h9/4DX7jf/wfUw9w3759HDt6lP/yb/0tFmdnWZydZebGDaqVCoZpYlkWZi7H/fv3uXjxIpqmcfToUW7fvs3o6CjVanVXb3KAAQZ4PBBFUdfeATA6OsrK0hKG/H0cBCRxTNE0+fVf+zX+4f/z/0nHcfgffuM3+B9+4zfQNA1N05iamuLYE0/wd/6r/4qluTmWNA0NqNVq5OSeYVkWyysrfPbZZ+i6zqFDh7h06RKjo6OMjIykYgUD7A4tGQwoe2gkSUK73abZbNJqNHBdl8Dz8D2Py1eucP3GDb739tsUCgWSKAJdx7IscqaJYRgsLS3xb/7tv+XD8+dZXVvDNE2mp6Z48403eOv11ymVSuQsi1a7DZpGqVBgaWWFxfl5Wq0WH124wA/eeYdKucx/9tf/OnGSEAG6YTA+McGbb73FiRMnBkZzgAEeMwRBQLPZpFGv43Y6eJ5H4HlcvHSJa9ev872336ZYKBDHMUmSYBgGuVwO0zRZXVnh3/zbf8u5jz7q2jfeeO01vvPmm+RyOUqlEq7nEYYhOcsijiLm7t9nbW2N98+d4wc//rHYN/6T/4QkSUjk3pEvFjl+4gTf+c53qNVqX/dtemwxMJQPgSAIWF1eZn11lXa7je+6aJqGYRgYhoGuaei6ThRFJElCHMdEUQSImXFoGpZpUsjnyeVyqUeIpuF7Ho1mEzSNoVoNDZidm2Pu/n0hjBzHjI6NUa3V+J9+67eYuXOHn/vOd/g//YW/gOf7uJ6H67psrK9TbzQolkqcevZZTp85Q61Ww7KsgeEcYICvAUmS0Gq1WF5aorGxges4REGAYZrouo6h62l5JYoiEiCOIqI4FnuErmMgJOoK+bzgLqhnWdOo1+sEQYBtWZRKJRzX5dbMDIsLC7RaLWzbZnJqit/87d8W+8Z3v8tf+Yt/kTAM033DabdZXlkhCEP2HTjACy++yMFDhygWixiG8bXdu8cNg9RrHyRJgud5OI5DfWOD1aUlPNclSRJ0w6BYKJC3bTTANE1M00Q3TUxdTyeIq/SsFwRCu1HT8HyfMIooF4vpom+32xiGgZ3P47suH3/8MYvLy1i5HHunpzlw8CA5y6LjOFy5epUwDHn+zBlKpRJ2oUBFPliTExM0Gg0WFhc5+957fHbxIqefe46RsbG0blGtVgeLf4ABHiHCMMTzPNqtFhurq6ytrhJHEchG/3K1imma3XuHrmOaJnGSQJIQxTG+dIKDKCIGWq5LIZejUCyiaxphFBHLyLNcLnNvdpaLn36KGwQMDw/zzMmTTIyN0XFdrt+4QRiGvPTCC5SKReIkoVgoEEmHfmp6mtXlZRYWFvi93/1dDj/xBEeOHmV4eJhKtUqtVqNYLH7dt/ZrxcBQZqCMY6vRwGm3qW9ssFGvE4YhWpJQKBTQAcd1cRyHOIpINI0Y0GQ6A03D0PU0irPkw6Ah6w9xzGazSd62yedy+L5PGMcs3L7NtevXsW2bp595hnw+j6br5CwLgI/On6fZbGLncrzx6qvkcjnhgcpUja5pRJOTHD50iOXlZT759FM++vBDnjx2jFK5TKFcplKtMjw8zOjoaJee5AADDPDFEccxjuPQbrfpNJu0m0021tZodTokSYJpmhRsmzAMRfYoSYiBWO4ZGhCDyEzJbJOu61imiW4YaYTpeB6e71MqFgmiiCSO8XyfH/34x6yurTE1Pc3U5CS6YZCXYuofnT9Pu93GzuV49eWXUwc/gTTrBbB3aoonn3ySK1eucPvWLdxOh73795PP5ymVy9SGhxkZGaFWq/1MOts/84YyiiI6nQ6dTofNjQ3q6+u0m00R/QUBhmFgGgalcjldILqmEScJsUybJHEMbC184phEGkrf93Fdl0TT0kJ+LB8ekoRms8n9+/dxOh3279/PwYMHMXSdjuuSM03ytk3Osjj30UdEUcQbr71GsVSCTMY8jmOiOMY0DCzbplIuMzk+zjvvvMP1a9c49eyzdBoN2vU69fV1lhYXqdZqjI2NMTQ09NXe8AEG+JbA87yUs1BfW6PRaOA6jhApl9mnvG1TtG00XScBYRTjGD1JSADknpEgslDq32EcEwUBMcKoKQKQStl6QcDa6iqLCwvY+TwnT51iZGiIIAyJ4picZVEpl9N947VXXqFaKol9Se4dlmEQhCFomjDmhQJvvP46V69e5eKlS2jA4SNHWF9eplGvs7a6SrlSoVarMTEx8VCTTb4t+JmtUUZRRKPRYHFxkfr6Os1GgziKsHM5cqZJEIZogJ3PUymXRWRoGBgyOtQMA0MaSg1hJP0gEN5ikhBFEaFMvfquK/70PMIkIfB92p0Oi8vLbDab5EyTgwcOMDoyQqVQwLJtOo5DFEUUCwWxIOXXpGsammGgIeqf6sFRHmm2Hul5Hu+99x6tVouf//mfhySh0WrRcV3y+TzloSGGhoaYmpqiWCwOapkDDPAQUIOVV1dXqa+t4TgOpq6Tl/yDIAiwLItioUBJ1voMuX8gs02GLNMkSUIgWfNJHBMDYRAQRhGe6+LKfSMIAuIooiM5DbP37xMlCaNDQ+zfu1ekR2WWqNXpoGsa1R6ZOkPXQddTToX6XznZKZKEufv3OXfuHIcPH+bUyZM0222aUqC9UC5TkcZydHR0177vbwt+5gxlFEVsbGywsLDAxsYGvuNggjCQuRyFQoE4itB0HduyqFar6NIwpceIY2IZRSoEQYAfBKmBVGnY7O2NkwSn3abjedy7e5eNzU2SJGF8YoJSuUxOEm8Ktp0arUKhQCGfT6PV1POErqgykcbZMAwsy0ofzDAM+cM//EPK5TJvvvkmuq4ThiH1RoNmu02lVqMqDebw8PDPfC1igAF2guu6LC0tsby8LBxrz8O2LGzbJm/bWJZFEIZYlkW5VKKQz4Ns2QDxjIaZdKf6met5RGFIGEWizIOIIjW5f2iahu/7dByHzXqd27dvE0ryz9TkJGWZ7bJME1umeE3TZKhaBU0TqVt5TCTZMOsUx0lCEseYlpWWigzD4Nbt23zy8ce88tpr7J2eJkkSHNelXq8TJglDo6NUKhXGxsaoytrrtxXf3ivrQZIkrK+vMzs7S71ehyhCjyKGi0WGajUKxSJ528YPAlrtNnEcpwuwF1EUCYOYWdxRzwOQstZk1BknCb7vk7Ntbt+5Q6vR4Mjhw8zcucP+6WlMmQYxTVMsSN/H8300XadWq1EuFgUzLo5FWiaOCeV5xKpvUxrL7LkYpsmpZ5/lgw8+4Nq1azx5/Di6rjM8NESlUmFdkpVcx8FxHGq1GsPDw9/qRT/AAJ8HQRAwNzfHkiT1EYbYhsHQ+DjlcplioYBhGDSaTSzprBby+W0ZGsUpUPuGihLjOE6dasWINzJ7hx8EGJpGHEXcu3OHcqHAkaNH+eTTT5kaH08dedM0iaQxM0yTUrHI2MiIyDhJ5z6M4zSCDdW+IXkOge8TyPmXmqYxOTHB+MQEH507x8gv/AJ2Pk/etrHHx2m32zRWV/FkqrndbjM8PEypVPpWZqZ+JnbDRqPB7du3hYEMQyxNo1goCFZXqYQm0yFRFNGRU8KLhQKWJNLAVp1AeXZd0RxAkmBaVuqVGbqOIY1fp91O0yyfXbpEp9PhxZdewtB1Zu/cYWRoCMM0hfGV0azebEIc40kvdt2yGKrVKJdK2JYlUjU91+kGAYGsrfqyaTkKQ8qlEgcPHuSzK1col8uMj41h5nIYhsHY6Cjtdpv62hr1jQ1Gx8YIgoBKpUK5XP5WLvoBBngYxHHM3Nwcc3NzhL4PUUTeMKiOjjJSq2GpVi+gLUslSZJQzhgL9dz7vk/HdQmDoOszojgWPAjTxJL/G8pZdhxcz0PXdVY2Nrh69Spjo6M8/dRTtB0HHahVq+Tz+fSzozgm9H0CSRxqt9uUy2WGajXsXA4zSbBtuzvTFcd4nocfhmktVLH2nzx+nA/OnuW9Dz7gpZdeIm/bGKZJuVwmZ9s0Gw0W79+nvr6Ov28fVcmS/bbVL7/VhlIt9Dt37pAEAQZQLZcZHx3FzufR5WJWi9p1XRK5cNW08DCKRHOwSqdCmsbIScOo+imzqRKSBKfTwfE8kTrxPD7++GPiKOLtt99GNwzqcsq4ZVmUymVarVZaNxjau5f19XVc+f4ojllZW2N9Y4Mh2eqh9aR2DU3DyOVAMmKjOCaUxvOJY8dYW1/nytWrFF54Ac11ycm0UaVSwcrl2NzYYHF+ns31dfYdOIA/MsLw8HBfKb0BBvg2w3Ecrly5QqvRIAlD8qbJ8NgYw7I3WUE52K5sHyuXSuiy/hgEAZ7nbaVbZbnGkOnNnGmKrJPKWslyTSida8V2nZ+f59q1axw+eJCTJ0/ScRw010XXNIrFInYuh+O6AJRsm2KhQKPRIJSRYqfTodVsUlTZs0JBpFshLRGpVhXyeXHuUUTo+5imydMnTnDh00+5f/8+Y+Pjop1NlqqGh4exWi1a7TY3r1xhbGKCiT17GB0d/VaVcb61htJ1Xa5fv87G2hp6FFEpFpnes4d8Pi9y9NAVLanFHicJxXwe13XxfL+rFqlpGrlcjkqplBblYatFAwShJgxD2p2OeEAk5fvTTz5B1zS++/M/T75QoL65KVIxcsGapkmlUqHVahFKJq6Vy2HlclTlz5utFlEcs1avs16vC09R1gbUNSmzqQGmrmPK+kkZePbkSd597z0a9TrVWg1PpncNw8C2bWq1Gs12m8D3uX3zJhMTEwS+z9j4+CAVO8DPDBYXF7l58yaR52ECE+PjjI2PoylHuSfL4rpuynLVdJ1Wu03QEzlahkGuWESTAiVASvxDOteJpqWtZwCGYbC6usr1a9c4cfw4zzzzTPo70zRJ5DNfKBbRdJ22VPxB/ixv2+i6TqPZFNGp6zLf6ZDL56lWKlTKZTTYNu9S0zRy0pAnQKVS4f7cHPfu3WN8fDzNvHWks52XHArX91ldWcHpdHAdh8mpKSqVyrciK/Wt3P1WVla4fesWXruNBUxMTDAxPo4m2zr0ni8uSRI6rpuScXq/2JxlkbNtLNPsSqlEGQOpaRoJwhN1HEcYSMmEe++DD/B9n+9+73sUCoW0RUSlbVR6Rtd1EVk2m+liLBYKoGnUajUq1aqoDTSbBGFIq9lks16nXCpRkWQgMg9hFhqwd3qa4aEh5u/fZ9++fSLdIq+50+kI4oGmoRsGepKwurqats4cOHhwYCwH+FbD933u3r3L4sIC+D4l2+bAvn0U8nnRL91nb4jjmLas0ymHVUHXdXK5HLZtp/VGEJke5SQDoGmiRNPppEbLtm0ajQafXrjA4SNHeObpp0kQRk0JDaSOtkqnAp1OB9/zQH52wbYZt21836fRagkHPghYXllhfXOTWqVCSTLe03YVSAlIKqB46umneeeddwh8n1qthuv7RFGE7/v4vp866fl8Hs91mbtzh3azyYFDhxgZHX0E39ZXi2/Vzuf7PrOzs6ytrOC3WhRyOfbv3UulXE6NUS9TFE3D9TzW1tcJg0D0KCKEAqxcjpxl9U89SqOimKiRjCIjGUXauRyFfJ4Pzp6lWa/z9ttvUy6XxWKXqRijz3ENXadcLtNstdJG5kq5nHqi5XKZcqlEx3GoNxo4nQ6NRoN6o8Hw0BA16cGpxd616DWNE8ePc/bsWdqtFkPDw0IFRDYyR1GEoev4UUQoe7Fcx2Huzh067TbHn3qqK+00wADfFqyvrzM3N0dzfV2Q/GTbBbouxEQyTNGU0R7HbGxu0my10DVNiITIZ1/ptJLpWwTxPOqSXKNJ4QHXdXGko6rrOsVSiXarxbmzZ9kzPc1zp0+n7Nloh70jSRLytk0syYWdTgfLNCnL/SyXyzE2MsJQrSY0ZxsNPN9nYXmZvG0zNjycGlt1nrC1d0xOTDA0PMyNGzd48803yefzQgpPGsokSTB0HcdxsGSNtb6xwdV2myeOHWNyz55H8r19VfjWFJ983+fWrVtsrqwQtNsM12ocOniQSqWyJSuXfYPsd6rX62xsbKStFVXZUFuuVMjlctuMpDKMQErY8X2fRqORRqPlcplSsciFTz5hcXGRV199laHhYfGxSUIkvcZeRq06tmEYlEslDFWvkOkWDdkrqesUi0UmxscZGR3Flue5trnJ/cVFOo4jNGelcxArJRBg7969lMplrl+/DkmCoWkU8nlR95RRaS6XE4u+08GT0e/6ygoXPvyQjuylGmCAbwuWlpaYvXuX9vo6lqYxNTnJ3ulpQfKTe0cqJoIQGOl0OmxsbtJoNkmShGKxSKlcZmhoiEKhsJV96SX9IZ5j1UfZkmlRpQddrVbxPY93f/ITasPDvPTSS0KsQDLaVRTau3coI65qlmganXY7jVCVtrRhGKlgQKVSwdJ1wepdXGRlfT0lBaX/s+UYnHjySVZXVtjY2ABE+rcs656lYhFLCix4vi8yVWFIGARcvXyZmRs3HsE399XhW2EoXdfl5vXreK0WoecxOT7O+NgYxWKxi+ySSBq2HwRsbm7SkDU/PwjIWRZjY2Pk83khQQfbU7SQenbqNyrVqmkaOdl3mbMsLl+5wp07d3jxhReYnJoS75cLL40oe1KZKhULYhGWSiU06KpbxEmSeo1JIjQbJycnGapWyRkGYRCwsLTE6toaYbbXU0XTmsbhw4eZm5tLqeAKlmVRkbWLUrEomLhhiOM4aWroyqVLKQlpgAG+6VhaWmJxfp6w06Fg20xOTIiWCqmcBSJViszSdDodNtXkoCBA03XKxSKjo6OiD5rtNcwEUqUu9ZsoimhlCDulYpFyuUzg+7zzzjvYts3rr73WVe5QRs+UxMGuz8gY8lKphGkYQiNWtroliP1PtY8ZhsHw0BB79uyhYNtYuk6r1eL+wgLtTqf7uPLPqT17sPN57ty5k14XiH0yb9vUqlWKxaLQkY0iIbnneSRxzP25OW5JrepvIr7xhtJ1XW7fvEnkOBCGKaO1pIxkkohFKoWE6/W6IMVEkdBTzOUoFYuiRyifR+vzGWqhZw1kgliEKtorFApUq1Us02R+fp6rV65w8uRJ9h840HUs1c8E/VOvsCUokMvlsPN5iCJanQ4dpS8r66zqYdFlr+X01BSlUgnLMGg7Dvfv3xfakj3Yt28fSZIwv7DQRUSSH54azOHh4bQHy/d9Op0OzVaLuzdvsryw8LBf0QADPJZYWFhgeX6exPMo2Dajw8OUZFtYIp8LZeA6jsPG5iYdzxM1QtMkZ9uUi0UK0qHdae8AkUlSv1ear6Hcg2rVKoVCAU3TeP/sWeIk4fU33tjWYrGTgw1sTSRC7AcFuZeFYcimnDLSRWKUr7Usi8nJSWHoZcp0eXWVxeVl/B5HWtd19u7dy/35ebEP9ewduuwWGB4aolwuA6IHtN3p0O50WF1d5dbVq6nT/03CN9pQpkay08HQdYZqNSzTpChrBUqDNYoikZeXJBgQhq1WrQrvTIqP9yP5ZBe6QpwIjVbP90nimFKxmFKhO+025z/6iP0HDnD8ySfTVhFVeFeKGul4HeXtZdIdkRQUUD1WyrvtdDrCu1XnJI+jFqthmoyPjTE+MYEta6trm5vMLy7iZzy5QqHA6OgoC/Pz6XUqA64Mpyaj1dGRkZTVFsUx7Xab9Xqdxfv3WZid/ZK+yQEG+GqxsLDA6uIise9TKZeplMugaeTlTEgATdfxfV9wAWQ5w5TlmWq1Cohyht2nZzCbZs3uKn4QpEbS0HWq5XIaNV65fJn1tTVeffVVSqVSegyVbg3DUDDkDUM8p/JZjfvsG3Eck5dDmRWjn8w56T2tZaVSiT179lCT6Vjf85hfWmKjXu+6rr179+L7fqoq1rt3aJKUODI0REVdmywhra2v02w2mbl2Dafd/iJf29eGb6yhdF2XWzduEDqOGGQ6OSkiNE3Dtm0x0UPXcYJAFK6DQMjDSY9HqWkEvk8C20gq/dKsIAxbo9kU9O8koVwup1PC4zjmg7NnsXI5zpw50zU7TpNRYBiGQpxA1hiUQc8ayq5+TITerCqQtzudrlqrmjSQRSGfZ2pykqFKBUvK2C0sLAhmq8SePXtYXl5OVUHS65YLP5IPYiGfp5jPUymVyMkH2nUcGs0miwsLrCwtfcFvcIABvh7Mz8+zIo3k2NBQSngp2HaaYo2BZrMpSHWJGGJQrVSoydJKKCM0XfYgZpFo/WJLcD2PZrNJjGDSVyoVdLkPrKyscPXaNZ555hlGR0aAbuYpSCKPZLwC24TUFYNe0zRBQpJcBk3TcCWrn8wx1X6poOs6w8PDTE5NifmXmsZmo8Hi8nJaxhkdHcW2LBYXF0Vgkd07MkZa0zQqUrUoLyU5kySh0WjQbLWYuXlzW+nnccY30lDGcczM7dtErkvOMNg3PZ16XcqDiaXoeTuz0NVcNU0ukCiKUjmnXhUe2J5KCcNQNPJK9ZyqJPwoXLl8mfWNDV5++eX+hhcxmBW2F+P7IVuHUNJQkZpv2ee1WQOq6zq1oSH2TE5iSwWRpdVV1jY2iOOY6T17COOYtdXV1BlQkw3Sc5beqi1H8+QsCzuXS4kFrVaLu7dv05DF/QEGeNyxvr7OyuIiie8zNjrK8MjIVu3PsoQaludR39xMnetiocDQ0BCWJMkoIiAIBztbjoHuNKtCW47hAsjncpTL5dTB9T2Ps2fPMj4xwZPHjnW9L5tlSnu1dxEASdOv8k9TTiDSNG1bRirVoe2JLu1cTvAehoawNI0rq1f55d//z3jud1/hL/7gP2ZiapKFhYVt788eO84oDpmmiWVZWJZFJO/vxsYGt69f36aZ/bjiG2ko52ZniTodTE1j7/Q0hoyaQKQlXMehXq/jy4VeKhSoVSpiSGqGMKMWu2lZW2r+bE+XAKkklFLar1WrXbWC5eVl4RE+/TQj0iPMQi1EtZh2M5Rq8aV0dET+X/U7OY7TtyjemzoGWYOYmKBSKmHpOs1mk6WVFYqlEuVikXlVa5SGtp9CvilltdB1oiRJp60r1Y8rn33G5oDgM8BjDtd1uT87ixZFjNRqDNdqInuihEF0naZUmUmd60z9MLsv+EEgMlHSUd5tskSr3cbNcBkUSU+8MeHDDz8kiWNeevFF4cRnIfeBLFP+QQ38XQTGJCFfKPTNSKnj9EvFAhRKBf6k8UP+t1v/kiJ5jnGU+Y1FfsS7NBqNNEOVFXHvhUr/kiTkpLFUakbLy8vcuHz5G2Esv3GGcn1tjdb6OnEcMyHllJIkAV0nThJa7TatTqdroeczKv5ZQ6mK45ZUoECyXXsRhqFImSQJOdOkmvEGQXiE586dY2JiguNPPrnt/dl0quqD0h8QUXYRh+RCytk2Oam2oR7mfu/rha7rjI6OMjIygmmaBL7P/OIiIyMjrK+vp69Txf7ecV0gGqA1TUtT1aViMZ2O4Hken33yCetra7te0wADfF2I45jZu3cxgoC8ZTGs2rXkfuAHARs9UWStUtmaQYuM5FRpQpJZrIyz3O/Zy6rllMvlVBpTGaWbN2+ysLjIiy++2HeYeupgy33DfIh9Q5ejtNT7NU0TxlnXd8xIKUchPa/Nm/xffvR/5X+59S+4xz00PWHMHGY/+wn8gETTWJPPuyrXpEShzL6kppqgaXi+T86yKJfLmHLfXlpa4tL58489G/YbJTjgui6r9+8ThSFD1SoFyWxVKclmq5UOIC1KFisZr0lB0/VUMDxJktRoaX0MTxhFaZ3CMk3KWUkmWR/48MMPieOYF55/Ps3Rq9E1ahGBiErTVpJcLvXuOo4jUrXqXOWfvhRhj+KYvJwkks/nUwZbp9MR9ZU4BmW4tS21n16Uy2Usy2JtfT31iOuNRnp+2feoqFbVGywZjaNpqbCzlcuJOrDjEIUhFy9c4KmTJ5mYnPz8X+4AAzxCLM3PE0sHemJiInV0NU0Tqly+T6lYFEzWUimt33XtG4i9I5SGT8/IWPYzkh0pGwfi2cuWaRJgc3OTTy9d4ujRo4xPTAjVnQxBR+0hIEiCvtSbTpJE9ErTs3dknn3X94mlTjXyvPOFAk67nYoC9GPPRknI/+fqv+B/vfE7RIkkQxJzn3lGtGEmrGGO5Y+Ss0zW1tbYt3+/6B/vuUcxpAbTzuVodTopkVJxRZSE5ka9zoWPPuLZM2ceWzH1b4yhDMOQxZkZYt/HtixGhobSzdz1vLTJPoGUzbpTrVF5PmEUESMiyn4LPYpjmpl0a6FYFENVpTGMwpC5+/eZX1jg2dOncTwPRy5Mhazx8aWqvyFZZUqOypcKF70PpR+GYnpAEHS1kigtWAAvCMRAaV0X0nNyPI8mI+ze67Jtm6nJSdbW16lUq0QgRn3t27et9tHLqlXebBCG6QZhmiZFuej9IOCzixdJkiTtHR1ggK8b9fV1Wqur+LJ9TK3jOI5Fq5jcwHO2Ta1S6etcK+gZNv1O+wZ09z4XCgV0yaCN5Eg+Pwg4e+4cxUKBvXv3splhl6pUppKUA3A8jziKMC0LTQ46SBIx9NnrIcUkQJARY8/qznquKxx2z0unnOiGganrzDTv8I8v/Do3G7fQ+lzZOhu4uIwVRojKMUurqzSbTSGz2YNs7dJUPamS9a8B6DqFQkEIm7guzXqdT86f5/Tzzz+WxvIbYSjjOGb1/n181yUCJkdH0yiw3engui6WZWGGYdo/lJVu64coDEU6RdO29TNGsm9ws14XRgHBJG02GpA5tuf7XLt6ldHxcUZGRlK9Vl0JFvSwylJyTC5HsVjcOnYuRzGf3/ZwaJpGIB9GZbASybSzTBMvDGm1WqIdJnsNSSJGdalp6rKoruobuq4zPjaGrut8dukS6xsb5AsFxkdH+xrLlCik0te6LgbUynMzTTM9P9/z+OzTT9MG5QEG+DrhOw7r8/MEUUSpUBAi3QhSXb3ZJJZEPlvNf9zFSCqoQcjblLUQ+0qr3RalkTDEkjW6bO9gAszeu0d9c5MXXngh/UxdMdgzaVDlkHquSyIl6QxdT41jPpdLU7apU56IySWJHHigS6c5iWNM28aXijntdptcLkcYB/z7e9/nD+5+n5iYMW0UP/GJiYmICAgQIQV0cBgeG8bvCLnQlbU1xkZGKPVMCknvn66TKI3cjJOhyfPM2TZIsYOGjCyfe+GFx85YPvaGMo5j/EaD1sYGfhQxPjwsmvCBZquVNsUWSyUM08T3fVzP2/bFZZEgc/66Tk7TUsMYhSGBHKqqBIoNw+gaF6MiNsM0uXXrFmEU8fxzz6Ws1H6KGQqqzlAqFrFtO1XysJSwQA8syyKQTcnVSqXrmFEcU280hDqIrAPEUSRSv0mCphqCEZGsMnJqJJghp5UUCwVcx8HzfZZXV5mQBnT7TRPeoGKx+b7fXZ+RHqIaSnv54kWAgbEc4GtDHARsLCzg+T66pjE+Po6GyIg0pfScYRiMjozQaDbTGa67sUqVMLmm6+jSWQ3lDMdIpjodme2xbTtt4tc0DdMw0A0DPwy5desWBw4e5MCBA/33DUj1ZaMoIic5Aip6y0lWvZUxlFlESYIvBQAUoSZJhJRlMZ8XqkBhyLwzz29d/m0WWgvo6GhoGBgUtAJREqeRZUJMQEBASF63GZ4Y4s7MDHEUsSo5IxUpMpCFliRC+cw005Y6pQwkT4qcVCFrNpu0Gg0ufPQRZ1588bHSlX78DaXjsLm2RiQL55VqVaRMZNMuICZn5HJCiUIaStu2+xa+1UJvdjq0Wi0MXU8beVVtUQ1aztt2Kkmny/SmwubmJndmZnj6mWeoZIzYrtcivamHne+YEnp66o3qoavIGZZRHGPLQcxA6j1GGckqVd+IowiPLQNerlRwPU/Q4n2fpZUVkZ7qqV90HAfimLycV7dtNA+iL6tULKYjxq599hmFfJ6aJE4MMMBXhTiK8Or19PkYHxnBNAw816Up2zRUb2SciKHrURjS6nSo9tnwYSvT1Gy1COTUHV3TiIEkikSpRPZ1F/J5ypVKqgedNYSXP/wQXdc5/eyzO+8FmWjyYZjyvejHU9A0DQMxlD4MQ95b+5j/+fI/ZZPN9DU6OiYmBgaGZqAlOhYWGjpmbKInBom7pQ7kOg6lUom1jQ2SJOly6EEOhXZdNF2nVCiAzEb1XoslA5JOp0Oz0eCzTz/l9PPPP5Dh+1XhsTaUkecROA6tZpMwjpkcGyOKIhoyZaJJZQvLsgQjNZcjJ0fKtNttMdwYYRz9ICCQY6XiJMFpt4mCAFMSfiwZKbmOQ7FYTKO4nRbnhQsXKJfLHD169KGuRRkp+JwLfpeFogTMXc/Dcd20cVrXNJCRI9IrU/WMIOP9hlEkFvn6OqVikY2NjXSSyJ6JiVRIIZCkIoBqqURLTknp8gzV+crpBx1ZvL908SJnXnzxWzXEdYDHG0mSELbbwkhGEaZhUK5UaHc6aQrUlr2MqmG/Uiqx2WgQ+D6edLSB1Mn0goDI9wnjWKQ1FUPcMFIhjrjVSgVI1LPYi9XVVe7evctzzz23e3oxwx7daWLIbkhLJn1IfQCFQp5/eeN/w8AgRw4f8XzHxOnf1YGCKMBMLCxMTCzyVh7btNFlW56m6wSuy+LKCn4QMDo8nH52u9MhkURIy7JwXFc42aptRH2MrosB9sUi7XabtdVVbl6/zlGlbvY147E1lHEUEcoRUpHswcnbNvV6PZ3HVi2XMWRqA0lcKcnaXxAErK2vY0kVjbRHUt50wzDIFwrUarU0NeHIwc2mYVCRRrLfQpu5c4e19XXefOON3dM0mfcqYeJ+Sjo7oWuszw5Q7LEgCFJx995zULVRNR9PPaBJkrBeqeB7HpZtUxsaoiEFn+/MzjI+OoplmvhBgK7r2LYtasGGIeogfTxDdY2lQoFWp4MjhdRPPWhjGGCALwmR4xD5Pk0pWTk+Okqn08GRDNRCPi8k4mTUpur4hUIBp9Oh3mySk6+NpOQkkJYvcrkcpmUxPDSUMujrzaYwmrL9Ics1UEiShAsff8zoyAgHDx7c8fyz/dzw+TNR6lzpcw4KumEQ6AFoGuWkzAYbbAl2QkKS7lm6phMkASEB4DA+PI6FmY7aqsq6b8dxWFlbo91uMzI8nJIVdV2nWCik90RNKMkawJQwaFmpoz139y6FUom9e/d+7cbyseyjjOOYqNUikeovYRRRrVTESBtI+yNV+J9NMyg1/mazSb1ep765KQauytaKSrnMyNAQ+XxeqEXIYwRBgCNTrsViEVMOaVZjrdTC83yfSxcvcvDAAUY/x0DSL5I+UZRvdlkkhq6n2raO44i0KyL9GimKOWzVQTLHUlMLAHKmyejICFOTk9iWRRzHLC0vs7KxQavTwfU8NNkuou5Z1yZCNxEJXadcKmGaJhvr68zcvv2NaCwe4JuNyPeJXJdWqyUIZ7JsojIi5VJpy0hCul4VQ9yTBnZtfR1XCqArZnetWqVSqVDI57EtKyXQqQyLYRiUy+V038i2j4Domaw3mzx35swDN/7sb6MvmIna7TMMTedvPvufYukiLVygQEJClMSEcSifVQ0ls6DrgtBnaCa2Lso8KoVbrVaFZObQEKam0ep0WFhcFIOi220xd1MGIJqup2WunZCTet1RHHP75s3HQszk8TSUrksSx6lcnGWaorlehvC1ajVt/gVx0x3XZbNep9FoEEcRhWIxJa5o8j3lYjGNuNSmrjb/VrstJnTbdpp2AbqECnRN49rVqyRJwslTp/o2/O94TV8wfaL+3C2qzNkyDRJFYsKIkrt6CEECW6aeXddF13VKpRL79u2jXCym4u9JImTsPNelLsXgwzAUaZdtH9D9k6Kkxs/duycmxw8wwCNCFEVEnQ7IdRtFEfl8PjWSlXI5rbEDoImRe612m42NDTqdjlCPkWnCJI5T4YFCPp82ySeQGklH9mBqkLZbZKEySH4Q8Nnlyxw9epRarbb7hfQc4wtFlPI4u+1Qb+99i3/w5v+D50ZOY8UWSQwkoKHTu1NoCKNfMAvpNebzeVzXTZnvE2NjTE5OYhkGju/T7nSwJZu/1WpRbzREK47kOGSZ+knGcCaahiU7AXzX5ea1a2k/6NeFx85QRp5H5Lpb0WQYCrk0qR1YrVZT9YdI9kGtbW4KHUNpjHK5HCPDw0Ln1LYhSVJJO6DLwGmILzGOYzEDcpdamuO6zNy5w/ETJyiouZU9nttOCzP6oou957gx3elUlR5Reo6+5+3qraXnK++BGi3myoWYIKLrUqlE3rYp2jaGYYgJCZJmHknHJDtmDE3b7jhI56JUKJDEMbdu3KDZZ+zXAAN8GYjabWEkWy1iOeRYKdQUi8UuI+nLRvd6o5Fuwrqsr++dnqZWq2HlcqLHT6pygTRa8rj9slA74cb16+i6zlMnTnRld1S/IXS3dyioZxwerOa1G5SAelbMIE4S9lX38l+c+lv8n0/+l1ToT2JS0DWdUm6rZ1I5zwqK4FcplylYlnA6DAMrlxOdBpJg2G63qTebRLIfW7Fxu6BpQonMsqhvbHD71q2vNSP1WNUooygikso1rlSk8Xw/rQVUKhV0TcOXCjdqgSdRhGGa2LYtBMAzTfK1Wk1QoaXCjp3LCW8R4RV2ZAOupmmU5KidnXD16lVM0+ToE0+IH/SkMWHLD1O9Vup1KqLMLnaVglALOPt+1VOpfp7IVGqv+Lkq+qtF6YchnuelUln9oGkammEQRVE6Ikg1IruOQyQp8pPj49Qlu7jRajE+OioEEmR/VhCGtOUU9bxtd6Wo08/SdQxNo5DP48iJL8+cOvVYUb8H+OYjdF2Qz5jnuri+nwpw5PN5Cvm8aDXzPDquSyQNKci5r7L+DuJZq5RKqZCJH4aE9TqFYnFrCDJsZaHy+e4sVA9c1+XWrVscO3ZMTDbKPusZY6mIhwppGxukfdHKiKqMWDpxSB4jO0VEZZV6JwQpZCPD6/Wb5MhhoKc9k/1QtirpnmPn82Iwc5LgyiHNIFSI7HyedrtNo9ViLJejVq3iBwGu49CRe0ij1RKExIwqWS8KhQJhFDE/N8fwyAhTX5OQyWNlKBPPS0k5HccR8kxSJ7BWqQhvsd3Gc11hNJDMz8xMtxSaGG1lGga1SoW2NKyeTAmEYSio3XIhlsvlXdOi7Xab2zMznDp5clfPEdhauFs/SKXgsp+h5J66XtrzvjT9uosBV8Yzn88Ttttpe8yDoldd19M0R6PZpCZp84bsiTRNk1wux/LKSuqBjw4PYxYKJInQ1VUealtGljnpiPQSkWzbJgwC1lZWWF5eZs+ePV84uh5ggCyiKCJyXVELi2Oxd3Q6TIyPk5PiHp7r0nZd0VKmiH+Fgmgry6YA5Z+adO4s06TZbhPLSMhxXQxdF7JtmhixVdrFKQW4LqPJYz2TQbYhk+mBrZKLagfr/V0WWX6AIgKlxrPP67NY8pb5o/t/TAIUKNKixb7yPpY7S/hx0PXaqiWClTgR7XO+71Ov11NDl8vlhIi8PJ92p8Pq+jpTExPYuRw52RvuuS5xGOIjxBgsSTLM1mHVHlIqFmm2WszevUu5XE6HQn+VeGx2KrXYFeqbm3ieR7FYpFwq4bgu6/JnIBQpVHF92zy4JOnSbdU0jXKxKFiycuhpp9NhbWMDz/fFvMcHRDhXr17FzuU4fPjwA6+lX/Ow8iIfpXFQjFRN0x4qpx9FEe1OB8uyRK8TwqCVM45HLpdjZGQEA+Es1KU6kWEYYhMqFMTorTgmjiJcz6Ol5nVCFxmpKCnzC3Nz4uEaYIAvAYnnidFWui6MWacjCDilEjnbpr65SaPdJo4iDNm0r2bSdhnJDHtewTRNoSstm/rDIGBtY0NI30WR2LR3cWIdx+G2jCbVHvN5+JvpEIUvyPpUbSK74bcu/1NatET0jY2t5fi/v/x/4ze/9z/x9t63ul77+p43RGTu+8LpkHVewzAolUrinsrXDg8NYds2hqaxsrYm6pKyFa9YLFIqFtOpJWEQ0G61Uo4FbDnZhq5TyOdpbGywvLyc1py/Sjw2EWXiOKkXVK/XhUSTplGrVml3OoK5itBXLBSLYuKHTIN0Hac3msvAsiyGLAtd01jf2BAtKBnhYDuX6xstNptN7t65w7OnTz8wmlTn0PXvTG79ixpKRTp60KLP5/OErdaOUWWSCHkrz/NS1qoiHFQqlb7nVywUiGo16o0G9UYjnS8HwgHISwPtS5HjOBHjtyzLIp/PdwlQl4pF6uvrrK+vC9WQPqoiAwzwsFAOttJg3djYIJRkPl3TaDUaxAhDk5eDElRdrItA0lP6yEIp4ti2LUoNUns5kfVQW6Zu+z2bV69dwzDNz9Vv3fXvL6E+qSLAfvh45QIfLJ0FICJER+fPHvgzTJeEotZ/+/zf488f+XN8sHSOg6UDvDjyAo1mU9RppVSn6kntvXpN0xgdHmZ5dZUgCFhZW2NyfDyV1EPdV9kLHkgN2zAIyOfzop1Mvi5v20RBwPLCAuVyWagsfYUtI4+FoYyiiMj30aVKTqPREHWvXA5fbryGrlMql7v6BLO1SNjyCHfz8IBUySa2LMqSKu7JHLspi885y0rTAFevXiVfKHDo0KGHu6CeRfnTEnlgd88wew8sy8K0LBI5TqcoJ6yEsrc0kD2l4qAatpwRpzRqd0KlUiGMIlrtNmvr64yNjqaydoo9bNt2KoDgyYUfhqFY9PJ7Mw2DnG2zsbpKpVLZcYMZYICHQeL76fpRqdEgDBmWacEY4Twq9nUWcc9e8aBVqKK6fD5PuVTCMk0iyTRP04eZmlun02FmZoZnnn66y8HekYnax5ile8cXfEZ2Y71GcchvfvY/p/9u02afvY9fnP5TxJKnEMcxBwsH2bN3migM02hOl+UZEqFqtNPZGYbB2OgoKysrBGHI6vq6iM4TIW1XkJ0JpWKRMAzpuK7oYnAcgiAQEapMHxdLJRrNJi0p7PBVipg8FoYydt2UidmRihqu5zFWqQgpuXw+HVq8E1KP8AELKowiXKnFWK1UGB4aIpRTOgKZTgjlwjcMA8/zuHvvHmfOnOnKn6uaQBCGuK6L67rC2LouHccRhAIZtQWylUJ5h5GcPKIIBT/84Q+FsLhU8VckBOUIWKZJqVzGlrqOdj4v2lgkiaD3mvP5PIHvpySmSDL1FLLiAbquY8repgdhqFYT98p1Wd/YEKO3JGU+JTNlajsd1yWOonTRF2R0mc/nqUumsiOVkAYY4PMijuN07wg8j2azKdoVNDHGTtM0qj3jrRQ0TROj6ZQQyEN8XsdxiGS72sjwMKZpilFR8jn3fT9tFTEti6uXL2OZJkeOHNl2rCRJ0j3CdV2xb7iu0F32PGHkJZkxTUXKZzmK43Qu7I9/9CPR8600qA0DXU7r0GQUXSqVyFkWtoyK1d7x/fvf527zbnpOISF/+sh/RE632dzcxLKsNPWrYFkWOdsWQxk8b1uw0g+W7NFeWV0V/BLV39rjuJimSaVUwvN9OnI4faPVEuebywnH3rZZXligVCqlA7W/CnzthjKOIuEVAp1Oh0azKUZLSd3QWrWKuVv9ULG8eLjF3u50iBELWTE+TdOkbJokxWK62JXM29WrV1NB4qtXr+JIokCr2UyL/Oqz1Z+2bacGzbZtrFyOOI7FYpXtFmrszmdXrnDo0CFyuZwQNJfScGo4rCfPp7O8nD5UQFr41wAzl6NUKIjBsMWi8PQ0La3H5mUK1pTRo6pjKmi6/lDFak3TGBkeZmVlBcf3cR2H2tAQsWzdyUItenXOoZyqUJL9rXnbZun+fQqFwle64Af49iBxXcH8lG1im/U6cRxTKpWwbVs417tkSTREu9XDrDzlICrSnGrxyEvDE4ZhOj9WaVHfnZ3l4MGD3Ll7F9d16XQ6tNttWs1mqhKU3TsMwxDpYenE5mxbRGvS+VQTgAzDoOM4XLlyhf0HDnTtHWrfCOTYu1arxfrmJh2peasi6CDx+Bf6vxREIfnfPnsfx63jtFot0dZVKol9Q5Zaeo2bElR4mPtn2zYjw8Osra3R6nQo5vN9BRTUPbVMU+zVMrqMooiCzEw1Wi1arRalUukrI/Z87YZSMV2DMKRer+M4Tpr+HBkZefAGKtMnqijMDlRoEDPdgiBIx2Zta2XQhFL/5uYma2trbKyvs7K+DsCHH34IkEa31aEhxicn0zpboVAQvVSyBpo971a7TeD722pym5ubfHblCgcOHGBoaGjb+cay/xNENJcAvjQ8juPgSA+04zi02202Nje5Pz8vvEBNtA3b+TzVapXh4WFGR0cZljqMvdetpKYe1KtkGAZDQ0N4KyuEcYzT6VAqFHZc9AUpTt9x3ZQpW5Rsw7qUy+t0OpR20MYcYIB+iONYMF01jXqjQVtmT3TDYHh4+KE3UF21W+0SFaUMb2Rpow9PQdd1nE6H9bU11iXpJI5jZmZmAPHcFIpFysUiU3v2YNs2hXyefKFAoVhMiUXZFGsUxzTU8z801PXcrm9scOXKFQ4ePNh373AcJ+UpFGWLhet5uO02Hdfld2f+vxTWCpQzvZNPt0/wyccX0vMtlUoMDQ0xOjrK6Ojotsg8ZbbLvz8osizIa/XDkIYc8bUTlMqRavVRw+pLxSIF22ZteVmQh6Qu96PG124oYylSvrq6ii/H4dj5PMU+xeF+yH41mqaRGIYwlj2I5KaOTOVGcZwW/9fW1lhfX2dtdTX19Ery8w1d58yZM6mqB4gxPcqDy8J1XWKZ1lWLXtN1IQwso6408tW0NN/vS3JNtmdS9VC15dQOVZBXNQvLtrFsm2qtlnrVhpxaHgQBbqfD6tqaMEaOw/Vr1wjCEF3XGRoaYmR0lLGREUZGR9MagCbPN+lz/9K+zjjGyuWo1WqiGVuKz+/IGtY0LMuirOu0HYcoDOl0OmlvW31zU2wafWpIAwywE5IgQNO0dI5hgmgVs2Qk+cD3y/+zfYw7OdqObCtRkZ0SSl9eWWFtdZX1tTU2NjfTzEq1VsMPAiYnJzl29Cj5QiFNYyr90+wzFkdRqoCFdLKV0+q6LpphpClldW5KPMUPAiEWIvcMtXc4UnbSDwIhQoIUSzAM2nqHj9bPYyCc24iIU2Mn+eun/zqu69Ko11nb2KDTbrOyuiqMvUx7jo6MpIYzvZeSZNhvULy618oBr9VqdOS51ZtNhnZRKVK2wDAMWnJfbbXbFPJ52pJ13G63H3p600+Dr9VQxmFIHIapkTRNUzSqdjpCkf9hoskeaAgJJPEBW4u+I9Oknu+zvrbGwvw8m42GmD9nGAzXauw7cICx0VHRDmEY/Lt/9+944sgRDvURMM7WD1QdMIoi0fQsGXgRQBThSyNoyuK/gkqjqsHT2y8vIZZqF9n2EqUjacjRXyq9pDy8Qj5PtVJhaGiItmQTVyoVGo2GcAjk9d+8cSNN4eq6zvz0NBMTE/3bW3qMZ6VcZkMyhzc2N9P6405Qwsiu5xF4Hq4kTrUaDcbGx7+yBT/AtwNJENDudNhYXydOEoqKlBcEYhjwAw/QZ+/QNJJMUz8IToNK/Xmuy5wcVuzI56qQzzM6Nsbe/fsZHRmhVquJoQmrq7zw/PPb6u+JJMCpCCmU6dJQ7R1SKCCKY2HkggBdGswsXNm3vNPeEYahcOQzzrnqx/xXM/+KelInIiIkxNAN/vrJv5aWQYaHhxkeHU2FRAzDSPeNtbU1rly5IlR45D5x+fJlnjl5koqaxtJzvVnBA13XGR4ept1u43se7U5nV8dG0zQMObC64zjEclawYRg0G41UdvNRO9lfq6GMXJf65iau46AbBmPj42LzTZKHW+w7IE0JyEW/tLzMnTt3WF1dpdPpoOs6taEhjh49yvT0NENDQxg9xmHmzh183+cJpcLTA12OhclCLYpYLvY4jlODmiRJ2oirlpJK4ajG/uy5q9eFYYghR35psibQa7TSxdgDK5fDcF0CSSiqVqtUq9WUvdtutzl37hwbGxtEccz777+PbhiMj4+zZ2pK6Dbukh4ZqlZTwlKz2dxVw1JDeIiFfB5d0/BcFz+OxbnJaetfxYIf4JuPOI5x22025V5RlLWqTruNYZoPt4Z2SBOqqC1JEnzP4/bMDAuLi8IgxzE522Z4eJinn36aifHxdJByeljg1o0b7N27ty9JTRmrXmdUKXRl/9RkT6GqV2aNkOJtWGrvyNQKlS61YRgU8nmKpZKoxyYJn6x+wo9Wftz12b906JeYLk93/Syfy9GWkXPFtpmYmGBiYiL9/Z07d7hw4QJRHLO0tMTC4iKlUompyUn27NnD8MhI9qK7jm1LEYhWp8PG5uaObXkg9w35fZaKxbTPMgoCmvU61VqNVqtFtVrt+/4vC1+boUyShOb6Oi3HQdd1RkdGsHM50b4AP53EWZKwsrLC3Nwc8/PzdKQs3tT0NKdPn6YqN3g1/Hjb2xFK/3ump3etnfUSiBT7MzW6hpG2oqBp22bUhTJ9UiwU+npVURwLZplc9OozHhaapmHZNpFk0lmZxeh5HmfPnqXValEoFpmcnOSJJ55gYWGB+bk5Pjh7FjSNsdFRpqen2b9//7aeR0PeP8dxaLbbKRt3h5NB1zRxPyQ5qiOL9Wurq0zt2ZO2swwwwG7w220a9TphFJEvFBgZGaHTbqfj+HbFA54f3/OYnZ1lfmFBNLcHAdVqlSeffJK9e/cSy1arSrnc9TwpLC8v05ATQnY8hb6nlXQ950DKlLdle0vXecqyTWGHvUNpuRqmmdY9kzjmn1z6f3W9rmbX+CvH/uK295uWhS5TzkpvW+HevXtcuHCBWq3GxuYmP/fzP0+n3WZ+fp579+5x5do17FyOPVNT7N23j4nJye72Fk2jKImTmqaxvrnJxNjYzvcrk01Tg+GDMGRjfZ2pvXtxHIdKpfJICYFfm6HcXF0V6YM4plQupyNb4jhGe9CCzy52bUv2yfc87t69y52ZGZqSFTW1Zw+1Wo2h4WFREEcYCdfzdmyJWF1dZbNe5+SpU7tew7avJXMu6anKSO+n+RKz79Q0bXsdZZeH37aslHWqRgE1m03effdd4jjmO9/5Du+//76Q4iqVeOLoUY4cOYLnedyfn2dhfp7PLl3i0qVLTO/Zw+HDhxlX6VkZIao+zc16nYmxsZ09ell/SRIxZNuXfZ0rS0uMjI4OWkUGeCDCMKSxtobv++RyOarVKoaczkGS7JoB6UL2WU0S1tbWmJmZYe7+fZI4Zmx8nCePHxdpSDmWL0kSGlKZaieH9ebNm9RqtV1H8G0rbSRJ3/3hy1Dzyh71D2b/gJn6TNfv//qT/zEla3uwoOu6YOvLtjdlKK9evcoVydQfHx/ng7NnUzWvsYkJnj19mrW1Nebn55mfn+eunCl5+NAhDh48mGbVdF2nUq3iui5+ENBsNncsveiaRqxtCa4UCgVCWdOdn51l38GD+L6/q97uT4uvxVC2mk2CdhvP91MmmJJCApGKfNjFkcjo8c7t28zNzwOwb+9ennv+eUZGRlLPs1QopF6NSmH2I62AWOzVapWJ8fFdPzubRlXn0rvcv/CIHHHA/p+r9RdG7wfdMISxlG0mrVaL999/n1KpxOuvv04+n8eTAtKpeocsoh+SizsMAu7eu8edmRl+/JOfUJYLf2xiAl3TGKpW2dzcxJfM5eHh4R0vSd2zBDHxJJHp1/uzsxw8fDhtdB5ggF7EcczGygqhzLIUCgWRwZCOWoyYZbgjep6RwPe5d+8et2dmaDYalEolnn7qKQ4cPEiSJGKWouz7Ve0giiXbb+9otlosLCzw/AsvPFTP907nlb1e+GJiA71HbAdt/tmVf971s8PVQ/yp/b+w4zHyuZwQDpF94J988gn37t3jmWee4cknn+TunTtbwgSZvWNkdJShoSGefvppNjc2mLlzh2vXrnH5yhX2TE1x8NAh8rLdpVatslmvU282U8GSflCdBIowVCwUaEvxk9rISNoS9KjwlRvKMAxp1+uErktOKVnIxa76gIyHWOxxknBHfgHNZpNyuczJZ57hwMGD6c12Oh0iyUTL1jzVeKxtKj6JEPGdn5/n9OnTD4wCH2Qk1XnCl6vxuo2K/YB0Us628YOAu3fvcvXqVSbGx3n55ZfRTTNtXu6XRtJ1nSgMMS2LJ554gieOHGFtfZ2ZmRkuX75Mcvky4+PjPPnkkwwND7Mqe6RKpVLfBa9YfTpbA7YLhQKxJGWMjI3hOM6gVWSAvmg2myRSeae3/zaOopQw1xeZZ6TZanH16lXu3btHHMdMT09z+tlnGR8fT53Ozc1NkiRJh6IraIaxVVpRf8pj37p9m1wux/59+z7fhe3g6H4pTrY8x39x43+lHjS6Ro/97af/Foa+816rGwY506TT6fCTn/yEzc1NXnzpJfbt2yf0XoMgFUbpvhwtNZ5DIyOcGRnh1KlTzM7OMjMzw3vvvkuhWGTf3r089dRTuI6D6/tsNho7p2DVXi35H4ZhUCgUaLZaLM3PUyqVqNVqjyz9+pUbymaziSa9P6U0o77MVF1np4Uhb9K92VkuX7lCu91mz9QUzz33HGNjY11GL5FMsZRE03sDk2SbcUs0jdszM+iGwf79+x94Lb0RZT+k47W+iFfYs9i3PnjnCLIfTNNkZmaGmzdvsm//fp4/cyYd2aPIR/0MJbDNW1TU8ODZZ7l18yZ37t3jxz/6Efv27WPP9DSGru+44LPRZJxJSRfyeVzfZ211laGhoYGhHGAbwjDEaTaJJatVl6L86jl4GGWutuNw7coV7ty5g2XbnDhxggMHD26rvTuumzrYvVGKOnqWn5BoGmEUMTMzwxNHjvTtKe53DIV+adyu0Xs/haHUgPn2Av/61u91ffgrky9zZuK5tN1sJ4RhyIfnz+N6Hq+99hpjY2NpNB0EwY5ckt4SkWlZHD5yhMOHD7O2vs6N69e5cesWs/fucfToUfLFIr7n4bhuKkDf97iZv1uWRd62qTcaNJtNPM97ZNrRX6mh9H0fp9UC38eyLAxd31rsyfaZjFkkwNzsLFeuXKHRarF3eprXXn2VspS564XjusTSw+xd7Glxu8/nzN27x8EDB/oyWrc9hA9hsL6UiLLPw589n53IASAit4/Pn+fevXs8cfQohw4e7DoXNWx1J/WjvjVRBKN2/8GDTO7Zw9rKCtdv3mRufp7xsTEmp6fF8NbeRas8QoRnnkgnwjAMCrZNs9FgY2ODiYmJB242A/xsodFooMmMU06K7WuZyE49A/2Mius4XL12jZnbtzEti1OnTgnmd5/XPsjB7vfMacDiwgJxGHKoZ7pQPwOe9Byzn6pYLPdERYL7wtA0/ulnv02QBOqfmJrJ3z75t7adR/Z8ATY2Nnjv3XfRdJ0Xnn9e9GxnEATBzhG8polyTq8h1jSGhoZ46umnOXT4MLN373Lx4kUKxSJ7pqcxTbOvoVRs/ygTWYIQgOk4Do16nc3NzUc2r/IrNZSNRgNDXqzS/CSz2NUN6F2cS4uLXLp0ic3NTSanpnjxpZcYlmoU0Q4pC9dxxGLvRw7JLlq2Funq6iodx+kbTfaLSMUfya6qFNnI6fNiJ8dBtVqkiiJxvC0NDGIhv//++6yvr/PSiy9SrlQIpVakmosZZurCfZFJo2w7PymEcODQIQ4dOcKdmRmuXr/Oyuoqy0tLPP/cc11OivJE4zje6ndVC962aa+vC4WhjQ2RIRhgAISD7bbbaL4v2JhZB1uhz7MShiFXrlzhxo0bmIbBiaee4ugTT2CaphD06BNNOVKUu5+DDVKUg+1R4L3ZWYZGR7cx27U+e42mslmSJ9E3MMjsGz/N3vHZ2me8s/iTrfNB45cO/xLTpWk0tW+ovSzz94WFBc6dO8fQ0BDPnTmTyuJlSZa9bNhe7HTW6pqLxSIvvvQSx0+c4LNLl5i5c4f78/M8eewYR44c6c72ZY+p66mTres6hWKRzY0N1qpVJiYmHgnH4SszlL7v47su+D5mLtcdTcJW+pWtG+z7Pp9++in37t1jZGSE77z9tphakUE/I9VxnLTFpB97Vtf11CjHGaNxb3aWYqGwK2Mt88FdEz0UIytNx2Z+rhr6HxaqlqeUNvqleNXAZA2hV7ntHsi6gu/7vPnmm4yOjtJut4l9n8D3MaTXphqZd2zrUNe4U3oIYbQNXeeJJ55g3759XPrsM+bm5/n+H/4hZ557jr1796b3LM5sDNnvTvV8rcv068BQDqDQarXQZYnAyJBrtnEMIP338tISH54/j+d5PHn8OMeOHdud6IMUEclEk/2gywECWTKP5/ssLC7y7EOy5LPGT5UiUshnWg0yUM/IwxpLdSylxPPbl/8ZcbJlECtWlb967C+lz24/UtKtW7f49NNP2bt3Ly+++CIJomTmBwGFTI3Tdd3dCTQyGu51stVnq1pvpVLh1dde4/78PNevX+fTixdZXFjghRdf3NqXEiHCkDoamT2pWCiwtLxMq9mk0Wj0lfT7afGVGUrP89AyX0oaTWYWezpvUdNYWFjg448/JgxDzjz/PAcPHHgoSbsoivDlYt+t1cCQElHKUIZxzNzsbF+l/wch6TGEWs/vVFSW/nvrl2LgsTR6Xe/NpKKznl76GZrWNZw6i42NDd577z0s0+Ttt99OdS9zuRy+FG9WufxOpyMYqLtNad9hwWdrlwq2bXPs2DFGRkeZuXOH9z/4gH379vHc6dPkcrld+0DzhQKra2tpf+WA/TqAGoGnhSGmHCZg90aTkDqVcRxz/uOPuXP7NmMTE3znrbf69hlq4uBda9dxHFGusawd2ZeKMZ+NRufu34c4Zp9yCD8nuvY1ZUBluSMlHtLNWcjuG9v2Dnlt7y99wN3WXXT1G03jbz79NyjLdpBtT2KS8OnFi9y6dYsnn3ySZ555Jv2VqetEuk4QBOkwiY7jPNAoqX0q+1mp1F3P871nzx50TWNldZW7d+/y/e9/n9OnT7N///5tfJKsk60lCflcjlazSbvd/uYbSiXvpiFqXP2ilDAMuXP1KisrK0xNTXHmzJldi7u9x3BdV9DEbXvXtIDahFVqdGlxET8IHorEo9CrorP91JKtlJB6bdYz1IS2qsbOaQoe8DvYeqigO2Xy6quvdj3wlmmiA2Ecp2mTjuOkMywfeK2Ze901jLrH2y2Xy7RbLY498QStqSluXL/OH/zBH/Ds6dNb0aW8Li0jxG5K2cJOp0On0/nKJgMM8PgiCAISKXVp2HY667EXSSwExK9cvkwUhjz33HMcOnz4oZxr6I4me5v7s1DZp+z6v3f3LpNTU19qe0I/Ik8X+1ZGpTvtHU7g8L/P/FuyJupg5SD/4cFfREu0LrIQiADj7NmzLC0tcUbeuyysXE6oaPl+aiidTofpPXt2vxAZJGQdizQT1fNSXdOoVCpESUKlVmNhbo6zZ88ye+8ez505s/3+ZgItK5fDkfvGo8BX4rLHcSyiPN/HkI2s2UK8wuzdu3x84QLLy8scO3aMV15+eXcj2fP+JI7xpUDwbqlEIJ3OrTbp2dlZhmq1L6Q3ulOMlBayMxFl1/uSZMdeTvmC9P3bkCUVyL/fvHmT999/nz179vDmm29u94rlgtJVgzak0z8eiJ5ryD5kvWkhXdOoVqtouk65UuF73/seteFhPjh7lg8//HDbjLts/SFnmnTa7Ue24Af4ZqE3E2VlyH8pkoQLFy5w48YNDF3ntdde43BPjasvMuvWkwIkaqTUTkgdbLnZt9pt1tbWPpeDnf3sHfcORQLcIeXaL8uUxf/v7v9BM2h0Gcr/4uTfxtCMLW1o+XPXdfnRj37E6uoqr7322jYjCSIbpQFBRtfa8/2HFwjJOtm7MJSLciC2qim//PLLrK6v8wd/8AcsLS+nr9N63p+TPZ+dTiclKH6Z+EoiSt/30ZIkJfFYcrBoFgvz89y6fRsd0CyLWzdvcvvWLcYnJpiammJqaqqvp5e91Z7npUzXB0ngqTplHMf4Ycj8wgJPP/XUF7q+ndKJ2Rpett7Y+56ErQcj++VnUyq9zDgt+2eS8Mmnn3L79u1tKZNe5OSw2SAISCRjbNe06w5QddGdaieFYpFWu43r+4Ja/uqr3Lt3j/Mff4zjOLz66qvpd2RkosqcZeG027Tb7c99TgN8++B5HkkYimHmmtBJzRq4KIo4d+4cvmxVcByHd378Y/LFItN79jA1NcXo2BhmH0c1zQTJ9K4aEr8b0r5BaTDmZmcxdJ09n5dtmWxvT8sinXOrZaZyKMZ4xsgqg529psX2In80+8fqgwB4ZfIVnh8/s/XZ8je9Kl076TVrmoZpWcRBQCD3D6A/WXL7m7sIgYrM04+hrKLK9Y0NGu02E+Pj/Ac///N8+OGHvPuTn/D8889zMDukQkaVak5nU47u+7KzUV+JoYyiiDhQ9GQR1WQX++1bt7hw4QITk5PsmZ4ml8tRLhZZWFpiYX6eCxcuAFCtVJiURnNkdBQjQwsnSYQs3UNEkyBFBxALcn5ujigMP5dXqAxftpbY77rVNZNsz7Gzy79huwHe9imaRuD7vP/++ywuLXHmzBkOHzmy9b4+52WaJoauE0gNx06nw0hWwHgXKGWSOElIoqhLsLgXuqaJeXLr63Qch0q5zIEDBygWi7z3/vv84Ac/4I0336RYKKQPrYZoU2m22zhyOsIAP9uIoogoCLDl4ODsvuF7Hu++9x6b9TonTpzAzucZGxmhJXVH78/NcevWLQwp9D8lhf7TmqV8Lv0gSGdZ7jYjUUHXNCJEj/Tde/eY3rt31zJPFv1Ief2QZcunV6xtH5Lcb9LPb13+baIkQkeTpBmTv/XMf5Z+tvpzeWmJ9957j1K5zOuvvy4ITD2GN4ucZRHIiSbq+dwtTb3tPOW1xklCzM7RcqFQwGw2CT2PjuNQrVR47fXX+fj8eT786COcTofjJ06k6WclomDImaCe530zDSWIBa8jNur0y00SLn32GdeuXePY0aM8cfQoKysrxFFEtVajUq3y5LFjYvbb0hKLS0vcm50VdG/TZGJigsnJScbHx9ENQ3yGrj/U5BHNMFIm1d3ZWSYmJ/t6k2kk2OdLzUaHuxm6L0pKSVOSOywoz3H40Tvv0Go2ef3115mcnOybyu3t/bLkuC8/CHDabYqfQ0lELXg1LX2na1N6rrqui1FFrku5VGJ0bIy3336bd3/yE374gx/w+muvURsaEmzCKEprQJ1BRDkAkESRGDXXQ7Bpt9v85J138IOAt996C8/3abXboGnskc600mZdXFpiaXGRTz75hCRJqFYqTExOMjk5yfDISMr8trMloV2gGwaEIRsbGzSaTU7twHZVRL6+0HaW0IStGujn3Tsurl7inYV3GEWwxhMS/szhX2JveesZ1zSNu3fu8OFHHzExMcHLL72EaVndDrYMJMgwTC05lD6MIlqt1oNJgD3Xq9phIjlOTO/TK62i5JIUIOg4DmU5VejMmTMUi0U+u3qVdqfDGSWcIo+v6zq+739zU68AkdQTzbaEfPzxx9yemeH0s89y9OhRPKkmH8obqQq1Octi39697Nu7lwSob26yuLjI4tISFz7+WGi5lssMDQ0xPT39UFJGhmTXep7HyvIyzz33HCAZWQ8R7cHuRlQdCx5MxtkRu9QoG5ubvPOTnxDGMW+9/fauA1B7HwDLsvB8XwgSh+HDpU8UFENZRpS9wgDqnigmcLFYpNlsCnKO7DGrVCp897vf5d333uOHP/oRb731FkMjI12Gd8B8HQAgkoPdNcMQG2uS0Gq3+eEPf4hlmnz3u9+lXCqxsrICmiYmbsj3appGrVajVq1y/Ngx/DBMHe7ZuTmu37iBrmnUhoYYGRnhcJ/aXD8YMrJbWFzENE3G5fipbXvHLnvQTgRAhYdRGupFHEf85qXfTI8PULbK/NUn/2rXca9cvsxnly9z8OBBnnvuue2fIQ1jNlunzsWyLKJE6ODm8/nPpRqkaxrBLiTAhK1IOi/n20ZRhOt5ItrVNI6fOEGxWOT8+fP4vs8rr76anq9uGHie9801lIHniQZRw0jZlTdv3OD2zAwvvvgiBw8cALYYZUpWrd+i04ChoSGGhoY4ceIEnu9z//597s3OpmNecrkck9JjnJqcxO6JFJMkQZP9UCurq4RRJKIxPt/CfNBi/6m0Gtn5YVleWuKDs2cpFgq89corD8+2kwvKlPWedqdDIr03jQd4wBmocVmqry09X7YPeC6XSrRaLYIwFMO55fdv5/N85623+PE77/D+++/z3e9+N41ANU3Mq1QZggF+dhHIcVI5y0LTNIIg4L133yVnmnznu99NGZhqnJSKVujdO5KEnGl2Odybm5vMzMywsLTEtWvXuH79OrVajanJSaamphgeGdm2/hLpbCbA4tISU5OTqCEFn1sY4AHcBj7nMf9w7o+51bhF1jX/a8f/KpWcSEPGUcRH588zOzvLqVOnOHL48EM971mYponm+2I6U8983YeB6qNWzznq/Zk2F+Tvi8UiTUnsy/a17j9wACuX4/333+fypUucPHUqTeVGUfRIslFfGZkHRPSha6JH8tNPP+X48eOpkQS2QvFETAPYlZAjF7+dyzE+Pk6pXMYwTcIgYGlpiaWlJT766CMARoaHt1Itw8Ppg6TrOpvr69Rqtc8XVfWcw074aVOv/Y59984dPv74YyYmJnjp5Ze7PuehoWmiNUSmqirV6pZRVh/9gENEcsK5Lieo99LNFQzDIJ/P4zgObcehlvlODdPk1Vdf5U/+5E/44P33eeutt9JjqGHXA/xsI5bjs0zTJE4Szp49i+u6fO9730uNJGyx2APZgrYNmXIPiHVeq9XYt28f03v3ki8U2FhbY3FxUQxbuH4dy7KYkGTCycnJNPVr6Dq+59HY3OTJY8e+2IVpOwsJpPVJHn7vcMIO/+zKP5PvE8ecKkzxHx36DwHhcLz3/vtsrK/zyssvs2fvXkK5L38eWJaFhiABjY+OdvV2PnDvUPwGtjJR/ZxrhWKxSLPVwpPj+LL2YGpqipMnT3Lp4kWqQ0NbPaxJIsY3fsn4SgylntnwGvU6Z8+eZWpqimeefrr7dZoYXJogapo7Gkq1uCRrVW2qxUIBq1pldHSUp59+GtdxRIp2cZEbN25w5fJlcrYtIs2pKYrFIiurq5+f2p1Bsoux/GlnUaaGVj5UVy5f5uq1axw+fJjnTp9Gk9M9+sn4PQiWZdFptykWCoJJ2POZ2fPuPXocx5hyKLXSYNwNpWIR13HEgNVyuevhz+fzvPbqq/zoRz/io48/5uTJk6BpREEwMJQ/44iiCEvXCRDr8tKnn7K0uMgbb765jaxhGoZQtHlQ2i3zvHquSyKZtKVikVKxyL79+8U4r42NdO/48Nw5AIaGh5mammJ8fJy19XViYEKmXb8IdizpfIG06+/c+JdseBvifdJk/YWjfx5DN2m3Wrz77rv4nidUusbGxDP7BfYlTRO9351Oh1KWfdonCu6XoUriWEhfShbsbs+4JTV9Xdel0+lsY+QefeIJ6pubnP/oI0qlUhrZ+1/AAXgQvhJDqcl6VRzHvPPuuxTyeV566aW+C0GF5L29djshy1jLGtY4ScjZNgcOHhTz5eKY9czin713T0wrjyI8z2Nzc/NLG9OiFEKCIEgnhHe1g8gF4noeIAdJS0JBynLTtPTagiDgwoULzN2/z8mTJzl27NiORuxhYZomrXabYqlELO9fv+tIoTYYWUOOEU7Cg4wkkM6e88MwLc5nMTQ8zJnnn+fDc+coFAqMSPk613Ee6Yy5AR5vBL4vHDLDYHZ2lus3b/Lc6dNM9jFOKkJ5mPWoNm/lYCuWfJL5/fDwMMPDw2IMlOumtc2bt25x9coVYsmdWFxcZHrPnociEGaxG9s1lPMfdV0XQi2Z96g0pZPZO2Y3Zvl3N/8P8uRFtIbBqaFTPFl7ktWVFd5//31yts13v/c9StLB+GmE1n3PQ0t2Vj7rcrbVz+SfkeQ29L5uJxSLRTzXxXFdKpVKd4StaZw5c4Z2u837773Hcy+8QIL4Xr9sPHJDmSQJiVSBmbt/H6fT4Rd+4Rd2jBaVOovn+w81bsn3PHRNw5byaDvdfE3X0xFRzzzzDI7j8NH588zPz7OwsMD9+/fJ5/NMTU6KNO3ExI7T0mMpLB6Hoailyfx6HMdd59CSNUBd1/tOw1Cejy+JNb1wOh1c3+eTCxdotlqcfOYZJicnabVaqJlvadSp5uQ95AOgaRqddpvxiQnCMCT3oGkdiqAjoz1V63xYFItFgkaji9STxf79+1lfW+PW7duUKxXK5TKtZpPaI5CjGuCbgdD3MWXf79WrV9m/bx9P7CAxqVpHAt8XfXoPSFmGUZTWwC3J+Ex2iLLy+XyXw726tsaPfvxjdE3jo48+4mNdZ3h4WNQ29+zZ0eFWDnQURWnNXv1MSdKBcP5d1xWlqh2uI8jsHf/brX+FneSwEfuVRY5f2PMfMHf/PjO3blGpVDh1+jRxHAvdXBkVhmGY9h9+ngAhHWgt20l223O6AgTpBCQyc/gwyNs2hmEQhCGO626TI9QNg1deeYXvf//7zN69y/4DB3AfgVjJIzeUKppK4ph7d+9y8ODBXXtccrkcBnR5UjshkVFbjBwTlWQExHdhjILo1fFcl4mJCU6cOEEcRSmN/M7du+iamNQ9MT7O6Pg4hUIhpTanjbNJQiQHxvZCQ8oeyQdRRcrZnihV87AU9V16jEnmgbl29arQuz1zhlqtln6mQm/q1dR10ZwtjfNOD5vv+6LfqFIRhnI3j1idl5z8Esbxg6fJ96BULNJoNonkBtGvX+3Y8ePMzs0xPz/PiRMn0oh7gJ9NBJIFv7y0hB8EHD9+fMcN3cxs+I7rPlAxJvB9sW+odrWHTPNntV6fe+EFKqUS9XqdxaUlrt+4weUrV8jn80yMjzM2Ps7oyIgokUhdafVsx1KwoC+SLWEW0zS3qdCkvejArHuP91bfFz+X/7295ztE9ZDb924zNTnJiaee2pKRk5+ZJImo52bKO7phYMh9Q9f1beIOCs1mU2SJZOvXrsOyZV0Smb1TpKeHNcy6rlMqldhsNMRQ9z7fq53Pc/jIEa7fuMHU1FQqhvBl4pEbyiAI0ID78/Nous7+/fvxMnqBvcjlcinNdzckSYLn+0RJgqm8wkwRHK1bjKD3C3ddl431dY4/9RSaNIpj4+OcOHGCRqPB0uIiyysrXLl6lejyZfL5PKMjI4yOjjI8MiJ0Uw2jayHrur6dzYUQSui3MJRXmM/ntz3Y62trXLx4kZxl8fZbb1Gp1VKvMxVEjmN8w0DzfSKp5BFmHgYFXdcxpSyUIQUH6vU6CaJVIwjDvvcoyTgEqHuaJKIOJAkWWubnu8EwTexcDtfzcD1vm6FUnvWBAwe4eesWBw8c2F3eb4BvPVTZ4d7sLPv37WO3SRoJQpDflQ7gboYyAVzPI44iivn81virzHF3c7YXl5bI53JUKxVM0+TQ4cPsP3CAwPdZWVlhaWmJ1bU17ty7J+QcazXGRkYYHRujVCphGAamYYhanTTuat/QdR3XdXE9DzuX2/E6hBOZ8P+e/V9o0Ux/XrYqnOA4d+/dE1yG554TjFLp3CYZg615niijqP0kDOmt8Jpyj1N7h6ZpNJtNypJrsNOorTSzltkXojAULWWmmTocD/OM2/k8WqOB7/t9W8aCMGTvvn3M3LnD3Xv3dlQX+mnwlUSUTqfD3OwsTxw7hmmaOI6T0r17Ydu2UH+J4x0jD5WrV7nonVKk2eitdxtfXloiAUZGR/F8n83NzS0NRF1nanqaqelpIbbcaLC2tsbqygrz8/MYus7Y+DgTExOCcdsnlZiq8vD5yTz35+b48MMPqVSrnDp1irI0tJphbBPnzUURkYwG4zgmjiIR8cnUsPq77/uozL2u66yurqIjUqJJFHV5hrulocLMHDjTMAgzxfkHGUs7n8f1POEE9WjqBkFAHMfs27ePu3fvMjMzw6nTpz/XfRvg2wPlkN25cwdN0zh85IjQF91pir3s8TNgx0yEWp+qBqhlsjq9a3ebA5gxmosLC4xPTAjBDtclDMM0y1SqVDhSqXDk6FF832djfZ211VXu3L3Lrdu3KRQK7Nmzh/GxMUbHxvqmIPvJWfbDDe0mM62Zrp+9mXud5bkVThw/zsGDB1HTmAxdJ/tJSZJgSSaxivbU/hGp0lIcC45FJoNl6no6F1j1rXbd32RnZZ90SLx01lUrj6brO+43sGWsgyDA9bwuNaAkSfBcF03TOHb0KJ999hn1RuNL78H+SiLK2dlZLNvmxIkTdNptwjDEdd1tM98SRArAsiy8IMDriTyUl6dmMfqSGZmTihr9xAIUsgXkIAyZvX+fcrksUoFBIFQmpJE2TTNNeximyejoaNqM3Go2U7GDSxcvEkYRhUIhldYbl4v/izDXkiThxo0bXLp0iX1793L02LGuCLXPG7rEDFREa3a9RGw4ilSkHojNep1SuYwnH/QojimXy1sP7g6fqViFqj6paxqxtjWNYEeDmSRpFkGpZ2QNs+f7IJnLTxw9ytUrV2g2m9uPM8DPBMIwJAgC7t+/z/ETJ6jVajSbTVzXJSef0y5IUk6/bFRvZkQ976ZliU26J/LJIju8IYoiGs0ma+vrTO3Zg+M4JHGcllbS6Ev+r+s6U5OTgHhuVmX7ydLiIjdv3iRJEsbGxlIta8XcTNOhu2z0TuhyVv+w62cj2igH2vt54cUXqeyQxeqC1KxV7WK9SIlFUSRKPHEsHF3XpVgo0Gq3heykYXQPuuiDJBEtfzE9IiXKGZHp2L5lLOnQhNImZA2lcrCTJOHw4cPMzMxw7969b56hDMNQLKzJSSzTpCCVWjy54LMN62qBWLkcukw/VCqV7SlA5PidRDS8qy9Z0/W+C14ZR1+K+cZJwtraGuPj4+m085xpUqtWdzdMQLlS4WilwtFjx/B8n+WlJRYWFlhcWOD2rVvohpHWJ8ql0kNrDiZxzIVPPmFmZoYTx4+LFLAyFDudj/z5TgtM/c7MjNFSNc7NzU2Ghoa2mnRlAVw3DHKWlaaWe6GUT9J73vNZ2dRY9ntLELVYyzRJgkCID8hjeIqAIZmEk5OTXL16lfv37/PCSy891P0b4NuFMAxZWV4mimP279tHzrIwTVNkqHpqVWrl52w7bVdSfXf9ohxFouk31L0XkcrGBAFhGLK8vIwmWbEqKi0Wi0JJZpd9wzDNVAQlOXWKRqPBwsIC8wsLXLp0iU8//ZRSqcTk5CTVWo1qtbrref3vc/87jtZNWnlLf52fe+N7WLYtpq7sZih3cQ4UdF0nl8uhQpU4Sbg/O0sYx6L3Wt7nZqslAgupx9slU6ruo8pEkXGyM8MQQBhmwzD6MpcL+TydTqeL0RrHcSpmX5DTTSYmJpi7f3/HlPAXxSM3lI16HafTSfuNsgu+3W6LXHdPMd3O5dDZGn3TL5xXjNFsxNlrMGIZlnuyhqcQyDrG1NQUY6Oj1BsNEc2qWXOKFCTPazcCwZ49e5iYmOD06dM0m82UEPTZZ58RxzGlYpHp6el0ioHRx8sJw5D33n+fpaUlnn/+eQ4dOkScSXc8sN+KndtEkszv1XWFYUi71eLE8eMpQUhR5eMowo0iXIQxzNm2mPaCZK1J8pKhDOUu7D4VWaepFURq3Q/DtI4UBAG+5xHHMcVCQRAVTJNKpcL8wsIOVzXAtx1JkrC8vEwhn0+dzWKhQKPZxPM8IWShCGgZQoppmoI16nnCCe4xBpGMkjRIMxz9np9ARi8q+lRoNhoUi0UmJiZwHCeNXvVdoqFt16ZpwuEulznyxBPCKVhdZUm2rt26fVuUd8bG2CMnoPSWd86vftz178PGIX755/4GhUIBR7E+d4mo1F6wG5TTq7JFmqaxWa9j2zaTExO0Wi3aUmoykfcsCAKRFczlhHauPAdF5NnNeCknp9fRBrFvqLZB3/fTSTEqi2VZFmEYMjQ8zJ2ZGRYXFzl06NADrvDh8cgN5ezcHAkwPj6e/qxcKtFoNsX0inZ72yLI2TaargsDF0V9NQGzaVcF1XAahiGu5wnPUf5Ol+F7zrJYXFpCAyYnJlLvJ5Z08ewX2Y+okjWgavGoSLZarVKVQu6tVov78/NsbGwwNzfHzZs3u4TcpzJjeT4+fx7X83jj9deZkKmaz5O67RU9yPZbqXuSXg+wtr5OkiSMjo1hWRZ2Po9hGBSKReElyhpOtp9LpbeVWkjW4GcNoYJKwWY/H8SCb7XbeNJDd+SwXOVAqbT68PAwC/PzO5I3Bvh2I0kSVpaXOZIRA7EsSxgCx8HpdMS67IkKbdsWZJg+rQRAuieYklACpGk/JV7iel4Xs9w0TTG9JJej1WqJ8opkpWa1RXccjCCfm231zszx90xNsUcKuc8vLLCyukpjc5OLFy/yySefUKlU0n1jdHSUvaVpbjZuAmBg8iuv/0payupV2ep7Tup8FYkv2RI/TzLv7d2H1tbWGB0dRdM07HyeMIpEq0g+L/rGfV8EKJKLYElnO1ufVFD3ZNsEFOVom2aXaItlWcS+j+f7aXtPnCSU8/m09DZUq6EbBrdv3vxmGcrF+XmGy+VuuSnDoFwu02w08IMAzXEEu0t+KTnLSoWH+/XdqbSrnkm7gngIWp1OlzqHaRjY+Tx2hjy0sb6epkuAtKi9U7i+TSSdnrpHknQtzkRe4/jEBPv27aNQKNCo10V9YmmJCxcuiHSBfJA9zxPC4KpnMMMYyy7mBCHeoB6ztPcq2d4/qox8P6ytrZEvFNIHyzQMojAkjmNs2yZn28RyMGsgmWau66Ypq2LP96HGDvVD9kFLkiT1DMMgoN5sYko6umpPSZIELUkYGR5mdm6OxcVF9jxoivoA3zo0Gg2arRajo6NdP7fz+XRtdlot9Eqlq+alBCranQ6jfcbH9XOwkzimI5Wjsk5lLpcTbRDy+FEcs7m5yT45bUftFapFrO+EoczP0kgp02+tDKn6TDSNYqHAgQMHqD3zDFEcs7K8zOLSEvfv3+fmzZvohsEJ4zhL0TLk4T996T/lyPCRNErsGvqs9qnMdcGWM93F7n2AgQ2jiPX1dZ6W825NSS4Mw1CUwPJ5EtsWtcQgIApDUfKS4/xM0+wKinp7wbNI07KZ3+XzeTypM1suFtMslCHnGytS4fDwMLfv3OHndriOL4JHaiiTRIy5OdCnSdgwDEqlkoguPA8N0duoUoT5YhFXpWf7GErY6uMLgoBOp5N6GOkit+2+hm91fb3rAVTpms+jOp9Al5TeTgQWFYVVazWqtRrHjx/H8zyuX7/OletXaIct7KjAD3/wg9RjnJyaSqX8lHi7liTbUkRZz+/zYG11VXiF8t+G7JeKwhDkRqMbBoVCQXiKyouTLFrNdTFklKnvUBfeugVbDoUuGXiWadJ2HDTXJVcqUZCTAkiStCe0Wq1CkrC+vj4wlD+D2NjYQIdttTpd0ygUi8RJQhAEtFotypUKhnxO1NQJTzbtZxmyKtsEwjlOkgRHRp/I9KGh69i2nbLve88pjuN071D9hmGfbNRuUHtHenS55uPs7+XeYZkm09PT7JmeJkkS6hsbfHj+PO6Gx+vhqyQtWDq/wMU9Qv90ZGSkSxqua7/IRI+wxch/EFtdYXNzkyhz/bqui3GFkilrylYXK5fDyuVEmtTzcBwnrRs7jkM+n0/LObqm7SjBqWbfqn0vb9usBQF+GJK3bSG/mbnnisxZrVZZX119qGt6WDxyQ5miT3ht5XIUk4R2q4XjusRJks43KxaLtFotOo6TDuZUUHUyTddpNptdDabFfB4rl+tbCwTpFW5sbInosuUZPoyh3JZOlJ5MNuoDumqMvcbt/vw87958j39v/SGbbPBi7UX+ythfYnl5hY/OnwegVq0yNDLC5MQExWKxf1pHKpCofqSdUhlZhFHExsYGz0ivEMQDr0Ff2UBN0wTpStKzE8/D1HVc38f3fex8Pm312alGk71naR9XHBMGAQVZl8xeE2wJ5D/sQzzAtwuJSgXuEKWV5P7gBwHNZpOSnFmo6TqFQoEwimh3Ol2GUvX/aojeO6fVStebYZoUbXtXgs/62hq6rncZb1OSTx5EHklrgj2liGxECWwrYWRfG/g+n168SLvd5vSpU3z8ySecfPppms0md+/c4fr165imycjICCOjoxzYvz8l8SnE2X1C17fSrjzY6V5bW8PQ9a4+RcMwiKTmdK9SlyrnxNIBVopm7U4HUw5L2GmfTu9N5h4oVSN1Deq7ipMEXf7+iwYPD8JXYyi1biWGbG+hbdsk8ua5jiNmSxaLom4mJwJk068JYsE4soisbrSdy1EoFNIZZjthc3OTOIoYyaRlVJ0ykl+Ekdmks1FcF4tTGUj61+j6zqJMxKDqG9evc718k1anBcCH9Y/4S8/8Jb779HfxPY+lpaV0QvvdO3cEE1ROMJicmNhS0VGFdnV4+Rnqd+pn2XPY3Njo8gpBGkpdF7P/dtB9DYIAwzCoVqvkLAtXSvc5rovveVi23V/SLmPogiCg3emkx1cU+n73bbcHaIBvP9JxTP3KHohnrlQqkcgRbo16nWKpRM62KRaLdNrtbelXxXzP9gVquk6xUBD7UOaZ7oe19XVGekZv7ZqNytb9MrwBdW3iBLYHEPT5XavV4r1338X3fd568830HCYmJ3ny+HFIEjY3N9MU7dUrV7h65QpDQ0NMygkowyMjXe0uSfa82O5k9/57bW1NjB7L/Mw0DPyebFTv9ahJUEXpwKgaY6vdxjLNtL1mp/uQJAmO4xBIyT0tIwmqaRpatgyG5Eds/zZ+KnwlWq/9LHw2ArFtGzShPRr4Pk05iLlQLOL1pF8dx6HRakEcU5RspzRPLbFb8/ua9AqzXpGmCe1BVadUA2Kzi6jPhfX/e+91ygUQRxEfffQRc3NznDx1ij+a+0HX6xY7C5wcfYacbbP/wAHGxseFik2nIyYZLC0xOzsLyLFhU1NMjo8zNDTUHUH2WSTZBb+2toZhGNuuPytG39dQSsmvfIYC7gdBqnUbOg6GLOpn2cMKrmQfJ8ipALadjthJiT9kRgz1Yb4N8DOGndjeCIOpuA4qsuy020RRREEOFA4z6dcEaDSbtB1HsGVlLVDVzHf7PBDrcG11lQPZiRn0ZKOyjvTWG7cdp6uliu6osZ/YwPraGu+99x452+bt736XcrnM5sbGtns1NDwsJpzs2UMgU55Ly8vMzMxw7fr11OGeGB9nfHJSdBdkU5/admGWLNZWV7cNt94tGwUQymyfIuMouU5PDo0PwpBAZqay+t/KPsQyiIrimCSKhEh6djizdERUunk3bsZPg68kokwecOJq8yxXq7RbLaIootloiMZdTWg3RpJQUm80SOKYXC5HpVLpK66u6boYFN0H6+vrXQNZ1Tlappn2S+06B7Pn2iDDHuvze03T8D2P995/n83NTV555RWm9+5Fu9/rSW77ADGkemSEPdPTPP3MM7iuK2ZtLixw49o1Ll+6hJ3PMzk5ydjYGBM7CblnHoDl5WVGR0e3Xb9pGISamAzSe/VhpvaraguaJoToc5aF53k4nifYsmp0l2ITxzGO4+CHIUkcY+dy2LYtvmfEBmPbdnoD1APwsKLJA3w7sdsUENWKkchUW6lcxnRd0a4h9wo7l0vTr2pSjuM4kIhB5dVKZZtwej+Wu0K708F1XUYymZiErXUaSrb4512320oWPYZyTqp0jQwP8+qrrz5wSokiAVq5HGPj40LIPUnYWF8XZMLlZe7euQPA8MgIExMTTExMCCJh7z6d2Tc2NzfxPI+xsbGt1yXJA7NRgWyvsbNzaHUxlDkXRbiOgy/JVFYQpI52It+rMlckCeVyOXW406yAvF+KwKnr+o6tOj8NHqmh1DSNUqVCs17vWztT+Xl1UYauU6lUaLfbBJI1pdIaS8vL2LZNJMP44aGhXQ3aTrnq9bU1pvfu7UqFwBZdXDFqP3dLwg61hna7zbmzZ0XK5K230pTv9paX7i+2i7kmkc/nOXjwIAcPHiSOY1ZXVoRK0PIyM7dvg6YxOjrKxOQkU5OTImrM1naDgJXVVU6dPNk1UkjTtHRqSz+hZqVJa/VpJNY0TTADLYtms0mcJLQ7HdFDBbiSLp5EEYViMa0rmKZJLD1KO59PU1JqLbSaTQzD2MZ6HOBnAyMjI/i+T73R6LsGerM9dj6Pbhi0Wy1CqQEdhiEbGxugifavBCHOX61Wd36++zi9IAxFAgwPDW2xVSVM0ySWPYQPMpS9R+51srPs+RvXrwuVrv37eeH55/tmerYdXz2/mXKX0rIeGR3l6WeeodNui37v5WVu3LzJZ599hm3bTExOskfO2+w1yEuLi5imKQwlW1mqrL51JLVrs+fiy6EYvbVSEM55qVTC8Dw6MrUatduinUTezxhpWEulVLUNtiJYFUUqw2kYBvV6PW2z+7LwSA2lYRjs3buXe9eu4fn+VoMwW3XKuCfy0zQt9RzUpOpmq4UfhkxNTYlUiUy57ga9T90wCAJa7TbljNqPghL4VgXjBzHYthnibYZPPFwXL14kn8/z3e9+N50Ft3UHsm/oH5HupPahaRpjUgHoJNBqt1mYn2dpaYlrV69y+bPPxNgwyaKdGB9neXmZJIq6ejjVZylx5lRzMZNGCuWC3e2em4ZBpVKh4zi4rsu6TA3ZsnZZyMrjIcgTiZTF6hdNrq6uUqpUtp3rAD8bGBkZITFNVldWONKT7tMgJaBkYVkWlVqNTqdDLklwOh06MvVaKBYpF4t9VWO6jt0v/ZgkNOp10RMox/n1fm4QBPgyItoNWs959yuTxHHM9evXuT83x/Hjx3n66acfOp2ojrdjhT8RhMlDhw5x6NAhoihiRTncS0vM3rsnDOvIiJDllA734uIiExMTW3rYmdKIbhhoUuQ9i0A9z2oSSb/7IR1tTdPodDq4nke92RR91YaRMpDV5xmyLBZJp1rtj8pwGqbJ+sYGL73++kPdr4fFI69R7t+/n8uffMLq6moX0xR2rz/l83niJBGFXlm/DH1fTCRnd4WHfp+hahRJklDtEeRWsCwrpZ0/FIMtA0VlVlhcXOTylSuMDg/z2muvbUuJauweUWaJUA+DYrHI4SNHhHi01JVckn2bSlg6J3sk1SLLbhjKKwyjiDgM0VWPmBR81ni4e66xxWyNpQ5msXfgKluOSZhhLCuv0DRNVldXeeLo0S9Vr3GAbw4Mw2ByaorFlZVtv9up/gdiUy6XSqz7vphSgXjuc7bdVTrYFT2OYgw0ZBtKP+Qsi46s7z9oFua2iLLn334QcPHTT1nf2OCMVOn6PEhr/DudQ08EaxgGY2NjwuE+dYpOpyOGVC8upg63nc/jOA6HDx8mDIJt0aFpGPjSeKm2F9UOorHz0IqueyD3IsWI9yUjvtfxUC05sdSuVlOj1HU35R7fW0v9afHIDeXIyAgxsLK83GUoH5RB9iSbslqtCsm1TofNRgPDNMnnculN2g1xz4OkRLYruxhKpQfbK9j+0EgSrl27xmeXLzM5Ockrr7zS18A8KPX6IGWe3ZyMrK4kQLvVYnFxkYsXLxLFMX/4/e9TLJXEoNmpKcbGx9MFqGsaMVseqaoxWDtMewGxuBWxJ5BKHZVyWXh5mkZbqi9ljZ4lm4RVqjdOuudsbtTrfG+HIb0DfPthGAbT09NcuXBhez+kKnP0eQbiOKbdbgsJuNFRTMPA8TwazWYq4P0wg52ze4eGkOIc2mGIuFKqimWdst/Eo10hr8d1HN5/7z06jsMLL7zAgQMHPt9x1LHg8xFaMr3QxWKRQ4cPc+jwYaIwZG1tjZs3b+I4DjO3b3Pnzh3GRkfTnu+ydIJV6hW29vZA6kLvtk+HciKM63nEiRicoKL2IAhwZcSZhWkYxFGEHwTkcrmtyNUwWFhYwC4W2dsTlP20eOSG0jRNxqemuD8/z+nTp9NCbdpb12fBO66L57qAqD1MTU2xsrLCZqNBXteJEiFkYJomBdk32UtrRh0/c+xWs0m+p0k1C0vW6dSEjZ2imX4mStM0kijiwoULzNy5w6FDhzh8+PCOKYfehRw/RI1y18/v/ymAIDuMjY0RRRGvvfYamqalqZbbt28Lr3J8nOHhYarVqliYUj5KaerafUgESvJLyYIplaByuZxuHO12mzhJaLXblIrFNP1qSkMZhmF3vUHTWFpaQtN1jgwM5c8slKE89/77zM3NcfToUaBn7ffwAqI4pt1qpXqhY2NjgnAiNUnzhQKe77OxsYGdz5OX/cHZ4yWZP7X0xwmtZjNV5OkHy7IIo+iBhnKnXuPNzU3efe89EuDM888z9gVr87vtGzt+Pv33FMM0mZic5N7sLLVqlVdeeYWlpSUWl5a4cuUKly5dolgqMT4+Tq1apZpxJDw5dFsNglZDDxSCIEhFTBL5+ZZpkpdpVmU8PclxKMj0LMiWHDnVJEnkAGrEmrk/P8/RY8e+dDLgIzeUhmFw6tQpPnrnHe7cvdu33pD9ktyMkSzk84LowdbkCTRNRHtyk222WkIgOZ9Pe6HU16EDYSbF2Gw2d4wmYWvGomog3mnB91tYQRDw3nvvsbKywpkzZxgeHpYv3qHG2PuD3oK+iij7GOudFvZuWFxcxDAMJiYm0GVa69kkodVqpWLM165dE/T6QoE9U1MMj45SKpXE0NZMbSKKolRLF8TDach+NKW+oyQGS+WyoO1LmrcSwVdDYFVqK5YPjKbrXLl8mSNPPNGlDzzAzxbUZPsDBw9y9epVDh061CVyrjSWs73NykiqdWfoOpVqFVfqCRfyeTGuSa5fNcEoL7WO1WauaRo6W0al024TRNGuEz1Ub3FW/ORhsbS8zAfvv0+5XOa5M2dQal5fBA8ylJ8XSRyzuLDAoUOHKJXLHJFC7lEUpWTChcVF7t29SxTHjI2NMTk1RaVcFtKhuZwIWmTUqhzrSJKrVAdDSTLfsy2Dmq6L/kmZwlVZPsM00TLkP5V2XV5ZYbNe54033vhSrj2LrySiHB0dZc/0NFcuX+bA/v3d7C1NSwvcak4liJuSjWIqlQqNRgPHcZiWpB4lfhxJg9mRbMucan7XNEEVlsdoNBqMSNbWTlAq9Cqs74veCNhx+Mm779JqtXjjjTcYGRmh2Wo9YLHvHFH2Y649EA943eLSEuPSSG69RaNSqVCRY8OcToe5+/dZXV1l7v59bt2+jSZTWFNTU4yNjWHI/kmlhGGaJoXMhBGlvqGgaxrFUik1lp1Oh1KxmBpU+SbxMGhiKG6r0+Hnfu7LVGoc4JsI5WRfePddbt68yfETJ7p+nyXGdNrt1EiWy+U0G1QsFtEkUS0MAmpTU4Ry4LIaBKwGyeekMo9KJarI9EElG9gSLYnVEPSHjGhmZmY4f/48k5OTvPTyy/hyYskX7gVUz95OqeUdItqdSjkbGxt4vi8GNWegasjK4V5aXmZpYYH1zU0uXbxIgtjDp6ammJyYoFKtpkOhxWkIvd2cVFFL2N6LqRjyjuPgBwGGaW6pgMlMpNLZTTSNq1eusHd6+kuvT8JXFFECPHn8OGfffZebt27x5JNPdr9ILrB2uw0IndbeVF+5XEY3DBIZkufz+TTiVONuwigicl0c18XIKP6rRd9stTj4gJtomSYO7Nomkl1S9Xqdd999F03X+e53vkOlVutuht0BOjsrUTwwfdLnZxrseL6e67K2tsbp06d3PB8QRffx8XHGxsawbZvllRVWVlfZXF/n04sXiRPRgzY8MsLU5CQTExPbJL8SXd96WNW1amJmX0s2hHcN7U7EdPUojomBG9eusW/fvm2N3QP87MGQTOqDhw5x7fp1Dh0+3O286jpaHAujJ5+53lq4+lmjXqcjxzKZlkXFslKD6XkevhTvVi0IuVwuLdE0Wy1M2fu3GyzLEvV638fcgeOgUrpJkvDZ5ctcv3aNI088wamTJ8XEJBkoPKqI8vNmohYWFshZFiMqQ9YHmqZRrVSwczmOPvkkjuOwsrrK+uoq8/Pz3J6ZQdc0hoaGxKDqycmtjFv23PoY65xlpSL4ruNsZbdk9KlE7peWlmg0m/zCL/7i57zCh8MjpxQqT6tQLHL48GGuXrmybQI5soaVJKKBtd+CVDRiQ+q7ZusIxUKBoVqNSrmcFoLDIKDtONTrdRrNJhsbG0QPSJ+o89WldN6D0iiLS0v88Ic/FO0fb7+9laN/ABFH/G7n42ZHy/TFDs3YO71+bm4ODR5Y4FbpVd/3qTeb6JrG3j17eO7MGd544w1OPvMMtaEhlhcXOXf2LP/+3/973v/gA+7eu4cjH/B+HiuIVFpBptGzkl+J/DfA3L17uJ7HyVOnyOVy7Nu3D03THiq6vHTpUrrWfu3Xfu2Brx/g8YdlWSBr1Ukcc+Xy5fR3alMNslmoTA08i4JU7lK1ctWza5gm5XKZoaEh8RpZV1cTKjY3N2m329Q3NynuEk0q5OT8xZ32DVUWiuKYc+fOcf3aNZ599lmeO306LbFk+5u/CD4vtwF2McpJwuzsLNPT0w8kPynnpN1u47guhVyOY8eO8eqrr/LC889z+PBh4jjm6pUr/OAHP+AP//APuXjpEssrK0Q99cteqBazBFKVHmTwozgON2/cYN/evUzv3ftI9o1HHlGqoZp+GPLEkSPcu3ePDz74gDffeCNNA7qeRxxFaDJN1w9RHFPM52kZhtAMbbe7XqtpWtpzExeLQmVHMljVYFS1iBzHEdO4dyD15HI5MVZql/TrzMwMFy5cYGpqipdeeimtn6jCtDqnnbCtPSSJM39P0nvXD7st+H6/m5ubY3xiYsdrUQtOTY/veJ6oKyDadHKWRbFY7NLN3NzcTAlB5z/6iAQx6WFycpLx8fFtmpAgNj5bstw6crisYre1Wy1uXL/OE0ePpt7rK6+8wu/+7u9y/vz5B4pA/Nf/9X9NFEU88cQT/J2/83d2fN0A3xzYti2cYsPgxIkTXLx4kfHxcaaVw5ckdDodkkSMb7N3KZUUCgU0x2GzXqdcKnWtJcMwKBYKQos0DNM6WizX6vrmpjiXVivVJu1nkHOWlcq59RVJ1zQ83+f9994TKl2vvspeORWkF1+4xrhbe8guTPl+WFtbo91u8/zzz/f9fSJTn2rfaLVauL4voj7LSlOl1Uol7XgIwpDl5WUWFxeZm53lxo0bIo07McHo+DhTk5PbWK4q0Gq1WmkQlCQJQRhi5XJcuXyZwPc5efIktm0/kn3jkRtKkFPtXRfDMHjt1Vf50Y9/zCeffMJzZ86QxHE6Zisvvbp+iKMIwzTFZIAkYX1zk7wUQe+FLjVH8/k8kQzbfVkD03VdRD+uKxRpDCM1mmphK1k23/dJCoWuRZckCRcvXuT69es88cQTPPvss1tfhGLwqohyl3uiaT2pV7anXvvOt9vlmP0eg06nw+raGi++8MLW8ZUnJo1jqvUoPe0wCMjncpRKpR3rMkNDQwwNDXHixAl832dJLv7bd+5w+coVoSspW1QmJyfTVLoth7iqSfNRHOM6DhcvXmR0bIyTJ0+mqiCvvvoqv/u7v0u9Xuf69escP36877n8/u//Pt///vcB+Ef/6B99fnr+AI8llFh2nCQcPnKE9Y0Nzp47x3dLJWq1Gq7niSyUae6aFo3jmGKxiO95BL5Po9HYMbNkyn2gVCwKZqYk/VQqFXypFqM5DpouZuFapolpWem+pXqxfd/fZihbzSbvvPMOfhB0qXRl1Xk+b//0tmt9wN7R11TukonKFwqpMlLWMKo/1flGsjYbhiGFfJ6hWq1vW4hlmuydnmbv9DRAKuS+uLjIhY8/FsOXe4Tcdck1KRYKdDod0XYSRYRJwszt2ywuLfHKyy9TLJXIFwqPZN/4SgxlPp+nWa8TRhEjo6M8//zznP/oIyrVKtPSozIlNXinonIciyHFtaEhNjc3hXh6q0XtAalU5S2amkYhn6dcKhEEgbjZcYwvPRMHUsNpGAahbLT3fD/1cKIo4qMPP+TuvXs8++yzKWW9Fw+z2LdHlH1krD5H+kS9vvf+zd67h6HrjIyMpDM7s0VzRYc35AaRPuQyinwY5HI59u/fz/59+4jjmJW1NRFtLi4yOzcHCCF3ZTTLlQqO46SkqTszM5imySsvvyzmAcr7/eqrr6af8eGHH/Zd8EEQ8N/8N/8NAN/5znf4C3/hLzzUOQ/w+ENliZS254svvMCPfvQj3nv3Xd5++208ybou5HdXw1HrfWh4mEajwUa93kX42QlK/N/zPIZqNYqFQpqhSqIIL4rwfV+ojKk2CMnGjzPi7CCis5+8+y45y+J73/sepZ5nKxUseQgneydkpfU+T+q1H+IoYnZujunpaZHxi+O0HSNr1HVdF5Gj/J5AlMIeRi8bhMNdGxrixPHjuJ7HvFQXu3PnTirkriQ5p+ScXk1G5o1mkzt37vD000+nWQZlKBW+rH3jKzGUlmWhSz3EKAw5dPAgzUaDTz75BBCiBPl8fte2h1CqXli2zVCtxvrGBpubm5SLxe5eqB3g+j55yaRV0U0YRYRy4WcNpyZ/5khvslypEIUhFy5coNls8tJLL6V6sb3jw0iSbUIHfdGrYAepqoWqZahaqfrdTqmTRH5mFEUEvi/GhcUxcRhyb3aWkdHRtPlXvV55zqZhpDqvAE6nkzZQP2wvUtZA67rOyPAwI8PDPP3UU7ium6Zabt68ydWrV7FzOUbGxrBMk9XNTVzP4ztvvZV6dErq8MUXX8Q0TcIw5Ny5c/y1v/bXtn32b/zGb3D9+nU0TeMf/+N//FDnO8A3B7Zt4zWbhL5Pvlzm1dde44//+I/5yXvvcea550Q6X66bfs9dIsliGohWEcfB9X02Nje7Sgk7QdUbC8UiBUkgVMYwCMN0/0gUozMRI6HUM2jncqysrHDx4kVqtRovvfxyl5Sngooq06HLD4go02kZihmf+TewNQGp5170O45q3lfynar1w/M8RkdHU05JIts80r3DNNPymcpQJUnyQOH2ngtPx2TlbJsDBw+yb9++VAJ0cXGRpcVFPpQO99DQUJpNWF1dZXp6mmPHjqXXbdv2I9k3vhJDCXLBe54Y8GlZPHPyJJv1Op9+8gmnT59OWVA62xd8nGwNR9ZlS0Or3cb1PDbq9YdqzvUzkaGCaRhdNG6VUlCjprwgIIwi6o0GFz/5hDCOee655ygUi2zW62lDbdp7Jfu6ApmiQdNS0orGVoQo+rS2K/Mksi9InYdS+gBB8IkSIS4eywcqln9P4phEE8oYigiUJAmddptGvc6pZ59N01iGjJj71TBUKvZBahq96H0AleFUBKwDBw5w4MAB4jhmfX2dpaUlFhYW6HQ6xJrG8WPHqGSmOdTkWigUCjz77LOcP3+ec+fObfvctbU1/sE/+AcA/PIv//KOtZQBvrmwbZtY14V8JSJ6fO211/iTH/yATz/9lJdffnlHJzJBDlCXz4Sh6wwNDbG6uirSrztMH8rCl43z2b0jOzKKQqHrmQ2l0XFdF9/3mZub49atW0xOTnL8+HE6jkOn0xH7htw7VDuK+rzefUN9ZmoU2dpP0j7CTCSLrqdpUTVlJZL7RQKpvGQSRShmhGL8qgzT4uIitm1TGxrCNAx0yTbdKSgJfF9E1Uny+WbJZr43FWgYMt2edbg9OadXzdtM5PWrvtM4jqlUq2JY9CPYN74yQ5nP5/GaTYIwJI+4yJMnT/LJJ59w/uOPiYGjTzzR973bPCFJNV5dWUnrDbtNJgchZFAulXadgG1m6pRFeY7Ly8tcunQJ27Z5+YUXyEkB5EiO+FGi7qlXp2l4rovreeSkl9a1GORCLwYlxhglIERDI3FEq0mSJLQ6HZCpZtUPmjLm+nmFsRhgbeo6SBk63TS5PzeHbpocOngw1W7dDZ7niU0g4yk+EP02qR0appWuZKVcZml5GaQu5+SePel15HI5ahmFj1dffZXz589z4cKFrqHaAH//7/99Njc3KZVK/Pf//X//cOc7wDcKhmFg2TaxJOZZlkWlUuHMc8/x6aef8u5PfsLrb7xBqVRKszEK/faNQrEophA5Dmvr60w9YMqEmxE/2QldhhMxRH6jXufatWvMz89z9OhRjhw5IqJPmRkLkwTiWERTmWhStbAoA9pv79AQ2rMgWlcUgiDAdRx02ZAPpCMOFds2zVAlW10Duq5jmSaGmgQCrKyscPjIEcpdgxz6Q7VvgHRskuSnaqdQRjD7/dm2LST9NI2F+XmsXI4909OYMhULYmyYwpe9b3xlitPKM4xkikJt+KdOneLo0aN88vHHXLhwYVs6M9ugqm4gSEECqaixvr7+wM/3HEfMOvscRfKVlRU++eQTyuUyb7/9NqMjI5QrFaq1Wppbr1QqYsh0oUBOKn/oSjdVLjq0reZ65eElyKhQRoGxyv9DOmdPl4ZP08RgaVP2hubzeYqFAqVikUqlwnCtRq1WE+dSLIp7Y1nMzc2xd8+ehzKSYRimaSY7l9t1HmAX+qWDMz/L3u84jmk0GvzxD35Ap9Nh37597Jme3koza1rXQGnYqlN2Oh0+++yz9OeXL1/mn/yTfwLA3/t7f49pSQ4Y4NsHtXeoemAYhgwPD/PqK68QRhF//Cd/wtramoiy5HtUarJfu8XQ8DCGrtPpdOjICUU7QU0wetBUkCySJOHSxYsszM/z7LPP8uypU5RLJarVqtg3pFRkuVQSBJR8npwcXGxo2va9I3NcJQCuBNgTmXlS5ZdEEl/QNOE0S7Ux07KwpQpRqVCgXC5Tq1ap1WpUq1Wq5TLFQoG8bbO6toYfBBzYv/+hrtd1XXQgZ5oi4vyc7Nrs9SkosQdxC4TRvHzlCh+eO8fI6Cj79+9nqFbr4lv0Gkr48vaNryyi1HWdfKZtQ4XwhmFw+vRpKpUKFy5coNNu89JLL2GYZpfCS79bPzI8jOe6dByHtlR86YckSXA8r69eab/XAly9epVLly4xOTXFk8ePb0VYGaKNBv2NkIwEbdveLq4uH2DPctlkg0CTOqeFmGq12rVYarXaNkLPbgYs+8ql5WXa7TYvvvjilmblLtetGp1zuVzX6KtdsUvdVEEZfNUU/MEHH5CXqZGWpP5nvcehnjR6tjB/7tw5nn32WQB+5Vd+hTAM2bdvX1qUH+DbiWLx/8/en0dbcp7nfeivhl1Ve95nHnqeMYONgQCJmbQpR5YpytS1rmMnnmLZN86yYuvKucv5I0vrWlIiyctK4lznKpQtOZZ9JVmOOIiSTYIkSIIgBqIBNBo9oNFz95nP2XPNVfeP7/vq7DN2gwTQ3UA9a/VCo8/etYfz1Ts+7/OW6DabRLKSo9oRjaEhnnnmGV544QW+/dxzPPTww4JQNkBq2ex0WpZFqVwm7vVYXl6mtM18sR8EmQiBysS2Qir7k88//zzdXo+PfexjjA7IMKpn6poGsgWy/vkqWK2vXyw9QKBR7FM0jXKlktkJz/eFwpBlbSDiDRKFNn3vA38/f+4cIyMjVGu1LAPd6plqZzCIgCaUjvuHwfptRuo1oyjiB6++ypXLlzl48CCNRgPX8zDV7wQhllIbCLLfa7vxge4wKpfLpLqOL2napGk2y7h//34++dhjzC8s8K1vfYulpaXNLzLwZZqFApVqFVPXWVpayrZcr4eq3au9Z1tuwZAH8JUf/IA3T5zgzrvu4r7778cwjI0iCVth4Cbd9HU0LbsBYhJiIhLi1QxygPW2/vnvJk47f+4c9Voto6Bn10T+0gduGjVDqfQwYXNixHpsxVBe/6mjKOLEiRM8//zzDA0N8eADD2CaJpasCKieK6yNCgEOHTqUfYZXXnkFgK9+9av86Z/+KQC//Mu/fMPs3By3J0zTxJG/Y9/3SeR9roLRJx5/nB07d/LSiy/y+htvEGxyr66/l4aGhjA0jVASe7aCJ/Vgt9JfVY4rSVNWmk2+8c1vEoQhTz75JENDQ8Rq5+qPCpklarou+oXSyQ4uTlYOalM273XuZ/XZut0uc/PzmSZ3OvDzzT6/53nZ+jJTystd13ZsYX/XP0tDyI4+9+1vc+3qVT529Ci75EaVgmWha1pm8+vrNru813bjA3WUtm1jSPFbz/NA0zAGeouTExM888wzaLrON77xDV5//fVsX+FWRrler1MwTZIkYVEuC14PX85brZ+TUaWZJBXrnoIg4HsvvMClS5d46KGHuPPOOwVDLRUjE6q0sS22ccTrHrjm/5TWq7qlfpSBYdd1mZmZYd8W2zdUCVuX70L1YWzLEkQftv6+V9/+NsLNA59/YWGBZ599ltOnT3PkyBGOHj2aLYk2ZV9EaWSWyuVNs/5HHnkEEJFhFEX8/M//PCBYsX/1r/7V7d9njg8FytUqqRTJTpABn3QWhmny0EMPce9993H27FmeffZZZmdnga3PsS6JPaZpsrKykt0D6+FLuUyQVSSloDPgIJM0ZXZmhueeew7btnn66adpNBrZHsYbDrIHcMMazwO4rqLX9i8IwLnz57Esix1bbEpRgbbSzlXkP9XWUoScbV/nBgLsOI458dZbPPvss0RhyOOPP54JkaiVgIZhrI7+bLIC7b20Gx/4VtyyHGBXq5nWf2m1Wo2nn36a++6/nwsXLvD1r32N2ZmZ7OfrD4Gu64yMjGDqOr1ej+5Ac1tBMcnWG2HFGEtTsQ3929/+NsvLyzz22GPZLriCVJjQIMuCr4sbeIy+TnAgK638CFGhwvkLF9AMg13X6TGkkCmQgAhkdF1f00/dFNcpuarrvvrqq3z729/GLBT49DPPcOjw4axsphY3D26EaGyhJ6nKKMePH+c3fuM3OHXqFAD/7J/9sx/OKOS47WDbNoZ0PIphOfib1zSNgwcP8qlPf5pKpcL3nn+el19+OcsuNzsn1Wo1k7dbWFzctGQYhuHaxcMDzlFlTufPneN7L7zA2NgYTz75ZOZYHfm8zNZdB9cNTq+DTL7u3bBOBxDHMRcvXmT3nj3bXiNFvFdPfreKCKTsxrYZ5Q18xvn5eb7+9a9z5vRp7rjjDv7Mpz+N4zjZKi4lij5IOBzaZPLhvbQbH1iPUqFULtOVxjEKQ7RSaQ2BRw20Hjp4kOnpaV47doznn3+eqclJ9h84wGYcLNtxqFartNptFhYXsW17De1bXTMrC6hfljT4zWaT733ve+i6zlNPPbVBtcO2bfpxjBcE193WnV138L+bPWRDRikXGG8VFabpDd1sSZpy/vx5du/ateXezdVLpqvZpOMIPczBvnC6Uf5JfYdbfbIUuHb1Ksdee40oDLn//vuzzFaJ3tuWJVRV1n3O0S3WaqkDHwQB//gf/2MAfvqnf5rHH39828+X48OFcr1Os9cjDAJsy9rAYE+BaqXCY489xuXLl3nt9deZmZnh4IEDq7J36zAyMkI4M4MfhiwtLzO2brtQmiRibEKOYKl7Qt0nJ06c4MyZMxw8cIB77713TSXIlFJ3sRQmuO68tyLhKCbsu0QWZP8Qz9WAK1evEgQB+/buve7jg0HZ0VJJbCv5EYPWwPd57fXXOX/hAiMjIzz6iU9QrVYJfZ8witAQs5aKvauceb1e37QS9V7ajQ/cUWqaRqnRoN9uZzNKgxgcti2XSnzyk5/k8uXLHHvtNWbn5th/4ABHDh/O1FsUVIPXDwIWFheZliMH6ppZtLaObn3t2jVefuklqrUan/zEJzZcF8AuFOiDkE2KohuO2LY7NhvOlHxbW/YZboA4g6YxMzOD53kb9n5uBs/zst6oY9uZ49I0bUunnG7hJFNEJHjq1Clm5+aYmJjgqJw5BVEOjuXgt23bdPv9NeWzWr2+phk/iEceeSQj/IRhiG3b/Oqv/up1P1+ODxeK5TJNqR4VRdFG2yEJLpqmsXv3bsbHx3nt9dd56623uHL5Mnffey9Tk5Nrbj5d1xkaHmZxYYFOt0uxWKQyoCGtwkZV/cqemaa8/PLLXLl6dUuVLk3TsGwbt9/HDwJK1xu5+hEyykEbt75tc6OZ6rlz5xgfG7vuSEiSJFmA7QyoDxnbtJ22W+UVBAHvvPMOZ86cIUoSjh49yt69e7OWjCfH1iy121ITIgXKRk5vUTl7L+3GB+4oQZRfF3SdJAwJfF8wyuQXsKGhKw99pVLh7bNnOXfuHOfOnWP//v0cOnRolVWqaYyNjjIzM4Pveaw0mwzJunUsB/PX49y5c7x27BiTU1OZmsNm0HRdCCbI+cjSFit0FLJRlm0es5GocwOl1+tAA8698w4jw8NbOh2FKIoIZFbnVCprsmCNG49KU8QqnlOnTrGyvMzQ0BCfePRRJgcClTAMsyXPSsg+CkNSROmVNGVqG+ZhvV7njjvu4OTJkwD8/b//99+XnXM5bm1omkaxXqfXamVze5nd2CQLcxyHhx58kLHRUc6dP8/3nn+eer3OkTvuYNfOndnji8UiFbnvdmlpiaJtY8iqV7yJQ/Y8jxdeeIGVZpNHH3102xEDx7LwXFeIedzonsofIjNLBsYk1tuO7SpACs1mk+XlZR6Vfb3t4LouyDGWQRWejPizyfvf7D14vs/Zt9/mnXPniJOEvXv2cPDQIbG0Wf5O+66bzZM7ti22v+g6BfkZnVKJkS12DL+XduOmOEpd13GqVXpLS/Rdl9Kgmr9cobIetm2z/8ABDh86xNVr18QXfPYse/fu5fCRI5TLZcxCgcbQECsrK6ysrOCobSLrUvU0TXnzzTd5++23OXDwIPfcc891a9a2ZeF7HmEQkKhe3ja43vW22h6i5kt/GEfZareZX1jgoYce2vZxKQhheF3HknqWa9/c6vzSVpFgkqZcvXqVU6dP02o2GR0d5fHHH2d0bGwNPT+JY1y5KcSWi3E9z8vmpHRNDIGPX2fwe3x8nJMnTzI2NsZ//9//9zf4jeT4sKFarzOv6xDH9Pt9irJ1s1XOZBgGw0ND1Ot14iTh9OnTvPTSS7z11lscOXKEPXv2oGkaQ40GntxNubC4yMTkZKYvPTjG0el2ef7554mjiKefemoD23I9NF3HsqxMXN3cYjsSbF2tuRFs15+8kWu+8847OI6zJsDdDJnWbZpu3PSk2meISlHmvLVVmToQjvb0mTOcP38eTdfZv28fhw4dyhIm9UjP80QVSpPKSJom+r1JIvrVacrUdeYg3yu7cVMcJcDQ2Bi9ZpPA9/Fcl2KpJMqOWzgYXRerjg25cufQwYOcO3+eM6dPc/7CBXbt2sXevXsZGx0VX3Cvx9zCAtPywIM4tFEU8corr3BNDgMfPHhQRI7X2YlmyvU6SRBcN6vcbMh5PTY4SvVfebjWZ3SqLr8dTp88SalYzFbabAXf87L+wma6k+L9sao/K0sgalbryuXLnHvnHdrdLhMTE3zsqaeyDQMaZDNeaZrS6/dF5iip/Clk2YBhGOiaxuT09La6si+//DLPPfccAL/4i7+4QZQgx0cHpmlSqdfpr6zQ7/dFb13Xs0rMemgDfb+hoSE++clP0mw2OXXqFD945RVOnTzJ/gMH2LVrFyMjI8zNztJ3XZYWFxkaGiJJkmyEbWFxke+/8AKO4/D4U09RqVTWBIVbQcl3BmFIMUmuGwT/MAXYbUdDroN+v8/FS5e46667trWBaZpme2dtx9lcvUt+10owXSmTpcDS4iIXL17k4qVLmIbB4cOHOXjgQMb7UCxiWFuFyvaJyl4vCDnCgm1v2XuG99Zu3DRHads2VqmE3+ngyfKrUSiQbFLqADJdROV8DNPk0KFD7N+/nwsXLvDOO+9w+dIlnGKRnTt3ZoSe+fn5jNkayl1w7XabRz/xiayPOajTuh0cxxEruzzvuio/13Nqm5VekyRZLV+sO/DXu16v1+PqtWvisG9zsyRJgi97k8V1K8S2eq04jrl27RoXLlxgbm4OTdOYmpriwYcf3rCpfLAE5rkuiSRDlEollMyfWqtm6DoFy2JicnLbz/aP/tE/AuCee+7hZ3/2Z6/zTeT4sKM2MoLX7RKFIf1ej2q1uu29q+s6iSTkIMdCHn30UTrtNmfOnOGtEyd48/hxxicmGBkZoVAo0Ox0xEC7DKAvX77MKz/4ASMjIzzyyCOZELuGLCteL8i2LKLrtG7WCBK8S2TrtX6I/uTbb79NwTSvS+JRa800yWlYj81oF91ej8uXLnHx4kV6vR7FYpG777qLvfv2rSFcDs5frq9CqcdFUsxAVbpGR0e3VUx6L+3GTXOUqvwaex5RGNLr96nValseOHV41vQkEFnJgQMHOCD31V26dIl3zp0jDALKpRKN4WGx7kbTeP7550mSJBsGHkQ2O7jNIS0UCpiGQSCb2VtmlWrUY9tvYOMcZTYHxbuPDE+fPk3Bsti9Z8+Wj0kR0SNS1mo7Bm+apiwsLHDt6lWuXL1KGIYMDw1x/333sXPXruvufAxkBA1i88LgBndFlzcMg7Hx8Y3qRQP4whe+wLe+9S1AKP7f6EaTHB9eWJaFXangtlokUYTveRQsa8tenKbrpJvcT9VajQcfeoj777+fqzIQPH78OJpcS9dpNrPl75cuXWLXrl088OCDa0S/lbzk9dRoHMfBc1389yDI3gyqzLlekPx6btLzfc6fP8+hw4e3ZeVG8ntOQZB9tnn/QRAwNzfHxQsXWFlZwZA7KI8+8ACjo6MbmfSsTiakaUrPdddUoUDMMaoxP13KeU5MTW3JK3mv7cZNc5QgMpqoUsHrdCgUCriuK1inm0RBar4vVSXI9b0zTct6EXfffTdzc3OcP3+eq1evCiFiyVh96OGHNx1OVZtAouuUYB3HyRa63tCBl798tdlD1eDN2KREkRBLPC4SNfkwDIV8XxQJFY4BKaet4Pb7XLx4kbvuvnvbA+F7XvY+ipv0SqIwZHFxkStXrzI7M5PJAh48cIBdu3cLNuAANX7zDy02H6gSjWPbYlYySdANI2PLKUbgyNjYGmp3v9/n2rVrdDodvvSlL/FLv/RLAPydv/N3eOqpp67zTeT4KMCyLIxCgYJlEUQRqeeJWectRivUIHySphTU+R14jFkoZPtU+67LxQsXOH/hAgsLC6Llkabs2rWL++67b9PNGBrbszphVbkmjKLtg+xBKLuRpmtKmIMzjH4QiP6n3BmpdGCzjSTXySjPvv02mqaxfwtxEuTr9V1XjGdY1kbnlKZ0u11mZma4eu0aCwsLpEnCxMQED3/840xNTmZl2q02Damfua5LEsdrq1AI9rHneZCKDVKjExNrlHXeb7txUx1luVym1+thBYEgyaRygfAmxl59Yb7v8/f+3t+j1WoxMjrKr//6r2fOQZF2DF1nZHSU3/zN32R2dpZGo8GuPXsYHR7m+e9+F8dxmJiYYHRsjInx8dUvXDrL7QZmLcsSjLgowvf9NVsF1Iouz/cJ5LJZQzq6QeebpilWalGiLLeHgBFp9CWZwIhjOgOPV1GrUqQw163JevvsWQzTZP/evVuWgcKBiLBUKqEbBmkcs7yywvz8PAvz8ywtLZGmKU6xyNDQEEePHmVsfHxthLsuo1e9CPX/oSyHgcjA1biN2o+nJK+SNGXnnj1Uq9U12fPv/u7vbiiTfPzjH893TebIoGmaUOqJY/x2G9Mw6PX72VjD+vlfTdcJg4D/1y/+IgsLC4yOjvJrA3ZjUPjEME1+7/d/n7Nnz7JjepqDR45QqVS4ePEily9fZnh4mPHxccYnJhgeHs5s1fUcJUgtVHkfDgbZiWTXhmGI63kisE5lhUk6+fXO35NVmVByPFzPy/gNqo+nlITUblllP9R3EwYB5955h/379wuN5wHm7CD6/b64z+UKKxBB9/z8PPPz88zNz+O5LpqmUa3VOHz4MAf2798427jJd6RKqcoZh5tUodTvNJC7dmulEpNTU5QHgv33227cVEdpGAblcpluHBO02+hpSq/bXS3BDkSHuq6jpWLh8E/8hb/A7/6bf8Pi4iLf+c53ePrpp9dkOUma8v/53/433j57Fl3T+NznPker0+HIkSNUq1XarRbz8/NcvHgRNLHfcnx8nNHRUbHJfBtmGogsqRfHuDLKiuOYMIoyRx0EAVEUUTBNUllPV+XUTOdVi/HwCAnR0Yk10cszdD1TrVFHKklTUqnHmgCkafa4OElE6eTQIcxCgWATvVulPBTHMa7nsbC4yML8PAsLC+J9FgqMjY5y/8c+xvjYmFhoHUVUKpUt9S3V+xt0klEUrSHvqJtK/S4TGTEGcczExAQNuX1lEK+++iogjMrevXv5S3/pL/ELv/AL25Znc3z0UKlU6Pf7FEolAtfFTBI818UpFjdkUrqmUbAsPvOZz/C7v/u7LC4u8t3vfIennnoq28+ogrdBu/FTf/Ev0u/3CcKQAwcPksQxi4uLnDt3jlOnT2PoOmNjY4yNjzMsN4Jkme0msCwL0/MIk4Rut5stF47lML2yIzqrmZfqxw06OA2xqUNDZMOmaWaVp0HbkaZif20cxxCGYv2VpmXL2t955x2SNOXQoUNbfs++72cOPApDzp8/z/zcHK12G9KUWqPBjh07mBgfp1qt4ochOmy+gEK+fpaIDATdnuuujpCVSplilwomlFhJkqbsP3SIcrm8psf5ftuNm+ooYe2BT3yfNI7pdLvUqlWQbLbssBhGRsv+0z/5E5aWlvjSl77E448/vqYE+m/+zb/hlR/8AIC/8lf+Co8++ihf+9rXsl/K4UOHuOfuuwmCgIWFBebn55mZneXs2bPoiI0g1Uol26ZdbzSo12qYhUJW3ui7LkEYEgUB5kBj3zAMUWYxDMqlEpYcJVl/88RmRJcuISEaGnEhwXEcMS/kOEKyKRUi7ZFcw6Uy1lg6nTAMOXv2LCkwNTWVRWNoGr1ul3a7TbPVYmVpiWangycjQ03XGR0Z4fDhw4yPj9NoNFbfX5rSlHsxt+sXqzlRdUPHkq6fypknNfKjys8gItNYOvn9Bw9SKpU2lIr/xb/4F/yLf/EvfsjTlOOjAl3XKZfLdKKINAiye1I3jA39c0NqCz/66KP86Z/+aWY3nnjiCWC1J7jBbjzyCC++/DLu4iIgbNX+fftI01SMYslKzFsnTmQbd5xiUdiNWo16o5Gt00LTCOV+2m6vB2kqMiLp1HVdLEW2TJOCaVKrVjMHuRkyRqjjiBaWEgeXm0SSJBF2I4rW2I8UQYrxfJ+zZ88yvWNH1hoCsQ1E2Y1ms8nyygrdTkdcX36+iYkJDh0+zPjY2BqBFt/3wffRrtMP1OW6RWVfPM/Dl7arVCoJBzjgJEE4yiiOs0xyvSjC+203brqjzA58kmDEMXEYEoYh3W5XZDSDvQTTJJJf8E/91E/xhS98gcWFBZ771rd4+lOfQktT/vhP/oT/+J/+EwB//sd/nD/3Yz9GX/bFVK9iZm6OqYkJIf67Ywc7JMXY932a7TatZpNWs8nS0hLnL1zIIqCS4+BI56duPsdxGB0ZoVatZlsGQBxGpRO7aZ9gPetV9SEgcx6apmGYJnqawkD0lMQxfddleWmJy5cvM9RocP78ebwgoN1q0et2CeWsk21ZlKtVxkZHGR0ZoTE0tKHcOYiMPbfNTZqVW+Xf4zim1+tlGabqLajIVpWOOp0OcRSxR5Zl1meTOXK8G1QqFZFplEqksv/e63bRq9U1fTRTLjJOgc997nP81m/9FgsLCzz33HM89fTTpGnKVzexG0DG7jSlIPu8LN026nUa9TqHDx0iSVO6nQ6tVotWu02z2eTc+fOijygDx0qlgmXbFNT1TJMwihgdHqZcLqMbhqgYSQfxbvY6Ds5QZlmnrmNqGhgGKmxQCjW9Xo+zb7+dBbVvvvkmPdel3enQ73TE8zWNUrlMuVIRWfPoKPVaDVsSI9dDg4y1vx3rXgUG6hquTDhgwEmyGowD9CV3QzMM9h84kGWcHyRuuqME0at0XZfIttHkQlLf94XRLZczQoxhmmi+TxRFPPnkk3zlj/+Ya1ev8qUvf5knn3ySl155hX/3b/8tAJ/8xCf4y3/5LwNgFQpoCPKQZVkEQcDM3BwT4+NraM62bTMxNsaE1BxNUjE3tLy0RKvdptPp0Go26Xa7eK5LGMdZeVhLUwqWRalYpCApzY5sfOuGIZhahiH6BaaJ11+7MLbTaXPlyhXiOM7KDrEsgar/uq6L67rZFnTSFJKEpcVFut0utuPgFIuMjo5SLpdFVCpfs1gqYQ042/VQpafs5twim8zKrQCpkBLry3Krruurq8wGroumiRJWEGA7Djt37tzWWefIcSPQNLHoe2VlBQoFdMlz6Mj2jSH74rpcTRVHEZ987DH++KtfZXZmhj/64hd5/IkneHkLuwHCdsRxzPDwMMvLy1nrYmx0NMt4dE0Ty49rNXYhHFIUx0LpZ3mZbrdLp9Oh0+kQLC/j+j5IMQPVknGKRbHA2TQxCgWKck7RVGu1pPC4IW2JGp+Ym5vDWFpadcqmucZuxHGM7/vCbvT7YrEDq9J8ly9fxpGC86PDw5R27aJWq+HI+VRN16lUKtcdWVESehpbj7dkymvSPqiyNojMWLFuB2e4kUFIGEXsO3QIx3GuK7H3fuCWcJS6pGMvLi6SWhaGbNq6rpsdIk3W1hWrUtN1Pv/5z/O//C//C4uLi/z27/wO3/3ud0nTlLvuvpu/87M/mxlrdbjiOGZ8fJyFhQU832dufp6JsbFNZ3GCMKTvukRBIA5xqcTu3bvXjFR4rsvS8jK+56FpQjWi77p0Ox163S5deXhC2YcIkiBjnV7TZ4n1OGPgXZq5zOtXXwddQ9OhaJSwdANN3iCFQoFiscjw8DDFYpEkSTh+/Dh33XMPhw8fzsotvu/jBQGhvDliz6NYLm8fgcmStAZZCel6ZVcQWbMrqdyGYVAqFrObf5DAlKapyCaThN1791KpVG7KYc/x4UOxWCQIAnpJQhIE2ZB7u92mXqtlwZiqRqVJwuc//3n++f/6vwq78du/zfPPPw/AXXfeucZugNh7GPh+ViZdXlrCdV0WFhYYGxvb4BQSSVjzPI8kTWk0GmLez7ZhgIm6vLxMt9fLpBzdfh+336fT7xO7Lt12myhJiMNQOLwkyappSLJPkiQcf/PN7LUN08RQzlVf3Vtp2zZDQ0NMT09TLBa5dPEizVaLT3/601kPTzHVA9/HDwLBv5CTBNdj9g/qaG+ZA2urMoOK3epLre+SDApUNj34+MD36fV6lKpVpqamxB7RmzAidks4ShAHudFosLS0RBIEmep+T4pn246TNarVguVHHnmE3bt3c+nSpWxmZs+ePfyD//a/XeMYFK05DAJMw2BsbCxzlkrAO1tYnCT0VKQj+3m2bWNblpjHSpJMZs4pFqnX60SyFKDElDvdLlEUUSqXsUyT/3Tp6/zrt/5PmkFTDATJREpHEn1SjbP6WRb1RRISllmmqBX523f9V3xm16c3fFcp8J3vfIdqpZI5SRCOySwUKBsGrTBEl9+Boet0u10c297Qv9FgjarJlkPPyunJ//Ul205dv1wsil2dqgw00LT3fZ9Op8PQyAhTU1ObjufkyPHDolarCUMfRaSyEqWcZU06S3OgGvXoo4/yR3/0R2vsxu7du/mH//AfbggoLcvKeniVchld01hcXMT1POYXFhgfcJZBGIo+vAyGrUIBS45HgQgsAdA06o2GeJ9pSq1SyRx5p9NB03UatVrW2lBIEcpdURyzvLTEc9/5Dk8++SS2bRNHkQjopfrVVmXblWaThcVFjh49uobooslqkK5pmQNzZJAQxzHFYnHTCtDg+1MVqc02DiknmSQJbr8vlktoGkXHoSBtsy4TocHrNlstUk1jescOxsbGrju//X7hlqp9OY4jGK+FAokcrQDoKfozguUFZM3rZ555Jnt+vV7nF37hF8S4x7pfllUoZA1w0zCYGB8XQgS6ztzcXEZNbrXbBGGIWvRcq9UoKSYdbFjcrA6bYrrCwMBwmuLHPv/rG/+bcJLbQJe/ihhxM7mRy//+5v8XPw42PHZ2dpbFhQXuuffejZlfKgZ20TRKsgyrJLhU+SXrQ7Jxd9wg2y77t3U/7/f7mZM0TZNyuSyCiIGbRF03TRLm5+cxTJPJ6WkmJia2nVPNkePdQtM0hoaGsNS6J/lvcZLQlkQUY6AaBZvbjWKxKDKZgfOpemaDjMzRsTFMXc9GJFRw3e12RdYHlGXVpLAuYFcwJOlI1zT67to2zFZOToOMrGRJu2PK8jIMiA1s0zY5fvw41WqVPeuESTSETe1L8YaRoSEq1SrI77HT6WRkwew+38x2yOQiu+5AuTWOIvEdRRFommCuWlY2Y60cqrJBruuKYKdeZ9euXWvmJj9o3FKOEsQy1XKjQarrWRlQGWe3389INFEUMTs7y3/4D/8he67v+2sjwoEyYbFUWnMgdV1nfGyMkoyULl+9yrwaMNY0atWqmDeUv3Rd1zc9wNmB1/XV6w9kX3GaECbhdT+3gSgnxKwdc1m/4DlJU44fP87Y2BiTm0i/9fv9jG5eLpexbJtKpZIFBVEU0et2M8Hn9bdUIplxg1lq5vyShJ7cBwgisCkrwpWMFgdl+NIkYVH2T4aHhzlw4ECurJPjfYGu66IsZ9skcSyUamTlqSPPu444k9euXt3WbijiD6wGwn3ZEwREADo2hiEJPufPn6cnM0nHtqnVahkfYLBfvx6OvHYcx1mvbhA3Gk6u13nVtnC0MzMzLC4uir2Z65xppNi4iNGTYqkkEpdqNZvb7vd6eLIdtpm2rrr3ddXKGbC/QRDQ7fXEFIMkNxUkF0OxZAeD9jAImJufxygU2LFzJxPXWZrwfuOWc5QgdktWhofXOiZJrFEKFMsrK/zyr/wKnU4n63d5nseXv/zlNddSB6JWq9Futdb8TNd1xkZHhQRVGLK4vIznedSq1U0N+lbkk+zAJ0km+K3ec7lQ4pNTn7juZzZkFTxmdQ7y6eknKehrS0Hnzp2j0+1y7733briG53lCqQSxyzP7DJqGbduidCSJON1ud+vDnqZZQDI4I9ntdollNFgql1ep4evGeEA43Fa7TafdxnYc7rj77rzkmuN9RaFQYHx6GsOyVs+u7OUpVna31+Of/bN/Rrvd3tpuaKtD/orI0mm317yWqtZEYYjn+ywtLWFbltBPXl96ZHOnN8i/2JBVqsfcIIlGXQ82l62Lk4Q3ZYC93ukkki2sITLUwcxNNwwq5TKObD35QZDNNK6/xuD7GGTFu64ryEdpilkoUCmXMQwjG1VTYysKnu+zsLREGEWMjY9zxx133PQq1C3pKDVNY3h0lIrSYx2sg8vI59/8zu/QXFnBMAz+u//uv+PBBx8E4Otf/7pgwa29ILV6nV6/v9onkPClSLHlOBRtm8D3mV9c3FKmbbODmx14RLlgfTnzv7jjr1z3M5tZRhln38FfOvR/W/OYXr/PW2+9xf59+zas9/F9P5O1KjlOVqJe8xqmSbVaxZRygN1eb8PnVJJZumlmJRPf9+lJx6qraFCuxEFKfA1eRTnVTrcLus6BQ4fYtcVy1Rw53kuYpsn4zp2Y0rArJKnYZPNv/+2/pdPrYRYK/KPt7Ia8z03TpFyp0FoXZMdxTBiG1BoNTNPEsiwWl5Y2dSLK8W5m6h3bFu8zTbN2xo2OhQDZ/KMqXW71/FOnTtHr9bjvvvvW/HuapvR6vYxIU96kbYWm4RSL2dhXJAUINnsfWYCNsNX9Xo9A2iXbcUSVbvD6Aw5WCaP0ul36vR71RoOPreul3izcko5SoTE+TlUNwyu2VxTxpS99iWarRblc5h/8g3/A7t27+dznPgdyTuiP/q//a8O16rVaRjVWUOyuFJianGRifBzDMPA9j5m5udUB/gFsd+ANwxBrpNYdov21fTw+9fi2n9VY5yif2vEUO8qru9ZS4NixY5imyd13373muUEYimWq8n1Ym6liqPcvewOGdJZKSUe9RjpQPlHzkVk/slAQzzUMsTcU0bPNnpcKDcperyfWCgUBu/bs4Y477shHQXJ8YCjYNqNTU6K/OGA3/uAP/oCVZpNyscjP/f2/z97du/ncT/0USZIQBMGmdgNgaGiI9oDdUK2gKIqwCgX27dsnWhvAwtLSxkAdxPvY7B5QzgnwJMP1xt0kGxe9bxLIN5tNTp8+zR133kmtVlvzOXq9XrbCT3ENNr5F8R1acvwNKQkYDFTP1Go9TdqVIAgyUiOa2Dnr2HZmOwcZsCAqUL1ej0DO0JcrFe64807G5KjezcYtbb10Xac+Pk6lXhdRiKbxla98hfPnzmEYBp/97Gcz1ueePXs4+uCDRHHMN775Tebn59dcq1atouk6HXngYznakKQptm3jOA7VWo2xsTFMOXN1TQqDD2I7VmixXBYSdlK3cRB/9Y7/nK26Drrgv4r3RQxo/OWDf2nNYy5dusT8/DxHjx5dI90UBAH9Xg9N08Ts5jZrZ7K3qusZgy+Vm1BUmUT1LVVWGMnPYTtOdkOnabqG8KBmPru9Hr5crdV3XSanpjhw8GA+CpLjA4dVKjEsRUXQNL785S9z4fx54jjmz37mM0xPT5OkKXt27+ahhx4iSRK+8Y1vMD83t+FatWqVXrebGXYl65YiRA9M02RiYoJqtYqhabQ7Hebm5jZop2ppumlFypQC7zqiDLyZcPhWyDI5VXZd99wkTfnBsWNUq1UOHz6c/btyklEco6UpZan/vB6atBHKAVu2LSYEdB1XLmBHMtxV+6XX7YpSq6pASdJOInu/g+8wliNtnW5XrNdyXcxCgT379m0gHN1M3NKOEkRJoToyQq1e55vf+AYvv/IKYRjy8MMPc/jIEZrNpigdJAmf/4t/UYwlJAm/9/u/vzqUj8yGSqXMUXqeJ9hwur5G2FwJptuyz7GwsEBzoOyisZboMgjTMMRCU1muHCxr7qvt5cnpJzb9jCqbjFQ2ufMJdlZ2Zj/3fJ83Xn+dnTt3riHw+L6fkQxMOWe5AVvcZJqui8fruqCAyzmtOEnw5OiHEnmoVKuCJr/JZ05l/6crD7qm6wRBQL3RYOfu3UxdZ2N6jhzvF+xKhfrw8Bq78YlHH+XggQO4/T7NZhM/CPj85z8vemVJwu//wR+sLmOWtqNaq+F6Xra4QQXYxWJxjYrW8PAww8PDGLqO5/vMzM4KWTcJde/omzBGS8WimPVOhfj3+s1IWyEdKHluNhZy5swZWs0mDz30UJZ1qp5t5iQrlY0rttKB5QfrXt+WIy+adJapzNhVhS6SPAnbcTLVoc3GRqIootvrrVmUkCQJ0zt3snvPnhsK+j8o3PKOEsC0LL74J3/Cv//DP8Tt97n/Yx/j8ccfF0a638eTc3qTk5M88sgjpGnK9194gUuXLokvXx78aq1Gu90mSZIs49tslERFiBVZomw1m8zJUuwgwWXQaSoUpaJFAlk5VOGv3vFX2CyrXEvk0fiZgz+z5uevvfYamq6v6S/4nieur2lYlkW5VNp0y8d2/Y6CaQrVIsMQTrfXoy9JD2hCnq+sNFs3uVmjKKLT7WaLmK1CgSgMMS2LqZ072blzZ15yzXFT8W//8A/537/wBTrtNkePHuWZT30Kp1jMBEX6vR5DQ0M8+sgjaJrGC9JuZBs80lSMrIEYHfP9THzc3mSmr1KpMD4+TsE0SeKYmbk52pIINFiF2bCYXdfFGBpiM0g4uNxg3SB/CqL1ka5qtG6mJ93pdjl56hSHDh3KiHTKScaSFVyWGfGGzSfaxk0fgyhLJxaFYVYu9aTwiiH7upsKo0NWxWp3OkRypZZpmriex9jEBBOTk7dMyVXhtrBiX/3qV/mbP/uzvHriBEeOHOGv/7W/RlmOPBiSkea6Lt1ul//sx388o3r//h/8gbjAwIFfWFzE8zziVMg9maa5acSmaRojIyOZEoQfBFybmaHdbq85kBskmyQjVEOURQNZoknTlB3lHTy946kNrzVI5Hl8+jH2VHdn7+nqtWtcu3aNj91/f3bwPM/Lmum2ZW2cL1pX/98Mqu9r2zZhEIjMXIqW25ZFZeCgbxoJdrv0ut1s912xWMQPAlJNY+euXeyVCjw5ctwsfPWrX+Xv/t2/y4uvvcae/fv563/jb1AplykWi0LRx/fp9fu4rsuf/cxnRAajafzhv//3GQEnTVMhoymrS4GsFKnHwsZyp23bTE5O4tg2uqaxsrLCzOxs1saAAa7DwHMtKX2pZisHg3wleafYpYMjWJmsZJoK9R/JOP3BD35AyXG48447gFUnqSpd1U2c5HXZpTIA1+QGkkDusI1kj7JYKq1yINZdL00SfM+jI51qkiTYloXjOLQ7HUbGxpjaseOWKrkq3DLKPNvhx3/8x7MM0Ov1CDodISmVpiwuLWVDxL1ej0q5zG/8xm9QKpWwLGvNypnJiQlOnjzJwuJiNic0uDJqM1SrVRzHYWlpCT8IWFlZod3tMjI8vKZXOKhEY8oNInEqdCerlUpW///PD/9lnrv2bdJ0tSxrZhllzF8+vJpN9vp9Xv3BD5ienmbnzp2kkMljpYjsdbA8MbjbbVvI8nQYhviehy9LSlEYil6t1GFd/71EculsLL/vFDAsi6Jl0Wq3iaKIHXv2sHvPnnwUJMdNx6DdSJKE3tKSkMscGsraDJomlGjK5TK/8iu/guM4WaCrlKZ0TWNqcpKZmRnGZaYzuDN3M+diGAbjExNCH7rVIggCrl67Rq1azdSCNhP1sG2bMAwJ5RhGUQXBao57C9Z9lqFKJ3ry5ElWlpd54sknxSJ4qXKm+o1qRGP1DVwnuJajHClCYciXdsiXu4StYpGK4+CoTUrrHGQQBCKQVu0oSWLSNKF01BgeZnJqin379n3gguc3gtsioxyEUy5jVSoksmwwNDSU9dpK5XImA7WyskKr1crWt+i6zsjICLZlsTA/TyozypTV2rjKPLP/ShQKBSYmJhhqNDAMg8D3uTYzQ6vZXDteoWli2DlJRHNeHt6+nCEC2FHdyad2PL3mM6ke5UOTD7K3IqKpJI556cUXsW07o7C7rpuNgKx3kuLlN+8pqNdWEbInFS96/T5Rkoi1YLqO7Tii/zC40JZ1GaR0kpZtUy6XKTsO7XabIAiY3rWL3bt3Mzw8/C5+ozlyvP/QdZ3yyIhwKobB6PCwcFiIe6lQKOC6Lq12m2U55pFIbVVN05iYnGRleZkgDMWgPKszjCrDG/w3EPdjrVZjamoqa8m0221m5+aykQklSJDIVVgawlkmaYovHSaQscw3gzE4GgLMzsxw+tQp7rr7bkZHR7MVeInM+gadZGbntsokZSKBEivp9Wi32/hSV9eQmaVq47BNBqnGy8rlMtVKBUPXWVxaojo0xNSOHbesk4TbJKNcD6dSEXNH3S6lUgk/DDHjOGsye1LcNwgC+v0+tjTqtm0zMTHB4sICe/ftW1MyHVSRyA79QPQDUJHZ5eLiIp7v02q36blull0OOk1NEzqGai+c63nCoScJ//dDP8OzV74JpOgYGeP1Zw7/TPZar73+Ou1Oh6eeegrDMMSwfyKWOzsDm0AGZeNUM1+T2a1irKWaBklCGAR4vr+6lodVFtvyygpJHGdGIJFqIWEYihtMwnIcQfPWhDpSs9XC8zx27NnDrt27GR0dfQ9/0zlyvHfQdZ3S8DDd5WV006RcLEIqxDVKpRKutB1918XzPLGIoFSiXCoxJUl0S4uLVPfu3XhxNQso/54kCehCmNIwDMbHx+l2u6ICFobMzs5SrdWoK01XJdghdWkN0ySOInquS1WKm29VLTL01eXp/X6fl195hcmpKY4cPrwqcM6q3OSa72SgErb246TZmFgYRWLca6B0bJqmGInTNJrttrAdco9kFEUEQbCG+a/LDUamYZAAge+zuLxMpVZjanqa/fv33zQd1xvBbekoARw57uG2WpQcR2RHUSSk54pFoQYhmWrdXo9+v49l2zSGhrh0+bIQ/kWsm9ksllLKHJnzlIfJkKLqnW6XlWaTSJZUisViJl2VSUlJsfCuJLyYhkHBsthR3cmRocOcXjmd9SdHiiMcqO8H4OLFi1y8cIGjDzxApVym3elkN1GpWBT6kbJ8mg68N9UYV4dcQ9CvwzAkkOVVEA7SdhxRmpaRYpIkYoYrTVcVeNR3oYkN8UW5QivVNHzPY3llBc0w2LFnDzt27mR8fPw9/A3nyPHeQzdNKsPD9FstbNvGk6LftuMwNDSE63l4rosvt2j4QUCn06FULFKt1VhaXmbf/v2re1bXQdmNrMfJ6v1ZKpeZMAyazSau54nlyHLLSaVUQhtwho5l4SP1V3s90e/fQv5RMVaTOObF738fq1DgwQcfFHscfZ9sWUKxmGkyKwHzFDIRd2Xv1OeKZEYbDNgC5SAVtyNW2XSa4svZykHFL0MuolczrSnQbbVotVoMj40xNjFxyztJuI0dJYBdLmMUCmhSei6Su9ccx8GSw/H+wAC853lCt1DTuHrlCo16PfsFbXvwYY1+q9rR5tg2S8vLhNIR93o9SqUSpVKJRLG5DAPLtgk8j26vR1VGjD9339/nv3nuv0FPdBJS/os7/ioghoOPvfoqO3fvZnJiQqjbIMZklCzdYOaoDZR6dFkmipOESBKJBpWIdEneUdq0ypH2JUU7jCIhwSUfb0hmX2Fd36HX67G0tERjaIjRiQl27drFkFJRypHjFodumlRGRvA6HfwgoCtF/gumSUkRfYJAZJe9HmEY0ul2qZTLzMzOik04Q0No8h7aLNjWBv6rqlVpkmAWCoyOjdHtdllaWiKOY8F7aLWECDmrc8nFYlGsp4tjuq5LRfYrVQslQepBy8D82Guv0Wq1eOKppzKyDIhSblHyMRiwFZEUGhh8z3EU4YchURCsUdsqmKao2MndvkBW0nVdFxwnE1rRdB1LzoaqCpV6/NLiImEUMb17N6NjY+zateuWd5JwmztKEKMj1fFxYmBpfl6s5ZIOQZVUiqVSNpjflQd+bn6eYVkydRyHYqmELVlqmznNNQ5T09BkvX1kZIRqpZKVIBX7VtOETmQKOJZFHEXZ3FClXGZ3ZRe/+ehv8vvf/AP+7NE/y+7RXXiexwvf/z7lSoXDhw5l80UF216zwWQQuq4TRxGppmXljjXUckQUaJkmBfn54ijCk9tOoiii3e0SRJFYLG0YFAoFrEIB0zSzEi6Im3NleZm+6zK1Ywej4+Ps2rXrlpp3ypHjRuFUq4xYFsGFC6KX1umIURBNw7YsoY9cqeB5Hr1ul2q1yrVr17h06ZJo6VgWjnSshUJhy2Ab9e+yFJvEMY7jMDU9TVcudI7jmFarRRRFmQCKpmmUSiUh/OH7eJqQklOOVFxY2KNz585x4cIF7r//fjGeJjPEslwBKB669t2px6mh/8GqE4jKk2lZwukVCiRpSijthtqxq0ZNCoUCZqGAbVmYkrk7yM71g4DFuTnscpldu3YxvWPHTRc6fze47R0lyMXPk5OkmsbK3JzIwjRNzAjKEohtWdiWRa1ep9Vq8eaJE4IlW6nQ7XbpdrsYktDiyD+6rmeKQAqDlG7lRAq2zfj4OJ7v05Zllb7rZr2Baq2WHfhEKmJUKxUcw2aSSWzDJkkSvve97xGHIUc/9rFM/aYod8xthiRJxKENQ5FRD5Y8dB3LsjJmbhRF2R649TvkAlmeGW40qMnVOqoso76/vufRajbRDIOd+/YxOTnJ1NRUPieZ47ZGwbaZ2r+fmQsX8Pt9WmqH5QDjtSz7lOVymatXr7KwsMDIyIgQ5vB9Wq2WEPxwHOE0TVOUUde9lhoJUbwCXZJ9KtUqnXY723LS7nQIwpCRkREqxSLFUglXzosjnfigtuq1q1c5duwYu/fsYXhkBBAVqFKxuCU5RgXJvuQtDL7HggyqDcMgTRLCKBIl6nUBuKf2Vto2w0NDGTkSWF2tJcmV7U5HlFrHx9m9e/dtNzr2oXCUCiMTE8RAe2GBdrtNVSrKDAoDGLrOvv37OXf+PCsrK+zdu1ds25al236/T7/fx9B1dDlnqRawGpLllSnfy9dVpKCi4+BMTuK6LteuXhWDuL0e3V4P27YpSXJPoglBcjXWkiYJ3//+9+n3+xx94AERTeo6lVJpQ+kiltGc2tauoKTnDNPMqOeBdKDrocmSsCl3dBYsCzNNqSonKR6UOch2u03o+5QbDabkqEq9Xn/Pf385ctwMFAoFpvbu5drFi/jdLl05frZGaBwhTrL/wAFee+01oXtaKol+puzlhbKfaRgGhq5TsKwsWNWl3YDVnqXqZxqaWORcrVZZXFxkZWVFEOUkc7/kOBimSZIk2ZorRbBrtVqcPnmSyclJDh44kC2pH5ytVhmoco6xVM4ZfC+6rmNKm5fIoHoz4pCu65iFAqbUxC4UCkK6T7WEJJTD7/V6oGlM7drFhGzT3KrM1u1w+73j62BsfBxN02gtLNDv9dA1Dd0wsp6cioD279vH8RMniKKI0ZERIR3l+9kIRhxF2eF35fMMSS1XjWwdUY83dF28xgDhZnR0VMg7KTKNLG0o+njRcTIn9vbbb9PtdnngwQfFDknZF0wkWzaWW80TSbbJGvFJgiZfWznuOFJCeKtQDlSVVXXDwJAl5marRZokYjPAwJCwospHvk+q6wyNj7P/wAHGx8dvi55CjhzvBoVCgandu5m5fBm/24V+P5vzQ/b+NU1j186dvPP227zzzjs89thj1Gs1kXHJtksYBIIjILM1WF07Zcp7MJFMWxXQKtuh6zqNeh3TNDMJzDiKxPyjtBuGbIf4vg9pyulTpxgaHuaOO+8UpVpJ2FHjGEqaMlW7YgfGWXTDQFNz5ElCmCSwLmscHAExZRCuBBGCMBQiA3LhNZDt/+z1eqh1fXsOHGDnzp23NY/hQ+coNU1jZHSUJE3pLi/T7nQol0oUZGaJdGa7du/m7LlznDp9mo8//DCGHOcoOo4YvpeZWyAFkKM4JokiYhk9RtJ5aazKRw0OEXuuC7pOWQofuJ6H2++LrDBJWJFKOClCaurAwYPZjKOSyRpcP6OyR9M00eXB1U1zdaxFW12WahpGFsEaA5FsxsiT1+31+/jytSrVaiYU3+v3hYOUn+ngkSMcPHw4d5A5PtSwLIuJHTuYn53Fa7VIZACpJCl1qQu9Z98+3jxxgpVmk2G5ZqtSqVCtVISQQRwLVa4gIFK2Qy0fkOxQVXoF0FSQLZnsgVwkXSqVsvEONXcZhCHzYUiz2SSRQf/OXbvo9/vZaFw2yymvp4h/ylEXpE4rSFH1gVVdhmFg6vpqZUr2VQeRQiYFWioWM/vmeZ5wkPI1K5UK9z300C0nR/fDQEuvK+NyeyJJEpaWluitrBC4LlahkClugDggb7zxBmfffpvHn3yS8XXzf8r5qIHbWDpPxSbN9j/KDE+p56tmuCe3aNiOI7Z1z80xNzfH4uIi3W4X0zDEwmfDYMf0NONjY9jFIpZpYkoyzWDE+Xu///u8+OKL3Hfvvfw//u7fXc1wNS0bBlYlnzUYcIyDiKKIufl5eq6LqeuYlkUQBGtuisbQEPd+7GMMyb5HjhwfBbiuy+L8vMgs45hyuSz2u8r7qNvr8eyzz1Kr13nsE5/YsOQ9u9vkvafKnaGcL3TlQoZUzlsqu6Hml5VmKprGvLQbC/PzNFstTNMUxMNSiUqpxOj4OEONBnahgGlZ2LJipDLUP/jDP+Sll17innvu4e/+7M9mAb3KDGNENmnI56zBFraj2W6z0mzieR6VSkWQByWhECnksnf/fo7cffdtWWbdDB9aRwkiE+t0OjSXl/G7XXRYs07GdV2ee+454iThiSeeyJil11E7FNmeJjaEqJLGF7/0Jb76x3/ML/7iL9IYGqLbbuMFAUXH4Z/80i+hIyJSSynva2LbQKVa5a677sok9wxJvy7IZbCqx/HasWP88v/0P2FZFv/+935vzc5JxUC7HiLZpwjCkLnZWfquSxzHGdNPDSUXSyX27t/Pnv37c7JOjo8koihiaWmJfrtN0OsJUp3cOZkCZ8+e5dixY9xxxx0cueOOVW3T61w3lddWWeYXv/hFvvKVr/D//if/hEa9ThSGtDodSFN+/dd/PbumWSgIUp9kvk5OTtKQnIFqpZJVzJSNsR0HyzR57bXX+NVf/3VM0+QPfu/3cGw7E1TRkgQvDLddnACC/6AWVXc6HeYXFvDkwntHijZogFMsUq/XOXL33TRu4zLrZvhwuPstoCSkbNtmeXkZT1KxLdsW5JpikQc+9jGe++53OX78OPfddx+2XC46uDFjU/aajJziKBLRGUIE3XEcKuUypuwT2I5Dt9sVElaGQckwsKSMXqfT4ciRI9xx5IjoY4ahmG+S0WYolXEApnfu5NDhw/iex/e+/33uufvuTHggCMNNG++KFRvFMZFcCptANjcZxzGNeh3HtikWi5TKZcrlMrv3789munLk+CjCNE3Gx8dpO47Qam23CcMwm0Pev38/CwsLnDp9mnqjwbjkRmRMeYnNbIdhGKSahiZbN2EYYltWppqj7uRWq4UlRcOLxSLVSoVLly9j9npMTk3xyMc/TkFu7FHOL4ljSBK8fh8P2LFrFwcPHiQIQ174/ve5+847BUlR9ko3W06fMkAcDMNsbVYcRZmmc8E0KUu9bOUwxyYmmN69e0OG/WHAh9pRKijpuhXLotftEvb7eK0WVqHAyOgod915JydPnmR4eJgd09PZXGDmegZmCQdZcIamkRqGINkwoJuYpqt7HT2Pz/7ETzC9cyeVcplz58+TJgl//JWviFKpaTLUaNDt9bDk6ptisUiaJKI3IXscuqZx15EjXLhwgQvnz7N//34hT5emBFG04YYcZNap+a5U9j/iMKRgGExPT2f6tQXLYnxyktGJiTyLzJEDca/XpShJs1DA7/UE2c91sW2bo0eP0mw2OXHiBI6cudQKBTGoPxC4DtoOFYTriKqUshsqMFfs1CAI+Mmf/El27tjB9PQ0V65e5Z133uGtkyepy0X209PThFK5B+QCaNPMxBJiWVK96447hN24cIEDe/eSDsxPKts1aD82C7qjMMR1XbG/t1JhemqKYqlECtQaDaZ27twgj/dhwkfCUcKqKHqlUqHX69HrdAj6fTqdDrt372ZhYYEzp09TME2Gh4dFE38gMhok1sCqE1XljjRNM2HlphwcjsIQTdd55plnOH/hAm+fOcPExAT7DxzgP/7H/6gunCn99Ho9wijCdV0KhQL1RiMrE6dxzOFDh3j55ZeJ45jPfvazGclow9JV9Zk1LXPGpCme52EYBpbjUK/VqFarwkFOTTE6Pp47yBw5NkGxWMS2bfrSXvi9Hq5cdHD//ffzwgsvcPLkSY4cOUKpXM60kBXW2w4gm1FOEZtIPM+jJQlEkdRXfvLJJ/F9n5NvvUXfdbn/vvt49tlns+BX13VsqbLV63az8Q8lt6dw6MABXnzxRcIw5C/+1E/hS1Z/JAPtzaCYrrquC41ozxPjcYUCIyMjYiykVmNq164PtYNU+Mg4SgVbll1rtRrdbpeO7EHcdffdvH7sGK+/8Qb79+1jZGRErOKy7VUHog6/rNkrHdU4jrOxkDCKMvq3USjQbbd5/bXXCKOIe+65h4MHDzK3sJBJzWUqOlKFw/d9XM8jkPqsRbUuTNN44MEH+Zf/8l9yRQ49H9i/f3XzyRZQMlOe59Hr99F1nVq1yujYGKMTE4yMjX0oSyU5cryX0GUwWy6XxdLhdhu300EzDO6++25OnDiB63kcOnSIouNQKpXWrOFTtkNtF1KsekPTKFerBEGQqe0YUuXn3PnzXLl0ieHhYZ5++mn8IMAwDOIkIZblVhBl4kq1Sl8KinR7PUzfp1Qqoes6Dzz0EP/yt3+bq1evMjM7y/59+wAy1v5mUOxct9/H9Tx8z8O2bepDQ4yNjzM2MUFlwBl/2PGRc5QKpmnSaDSo1WqinOJ5lOt1Xn7xRc6ePYvreUyMj9PRNCzbzrZ1rMeg0HgKOLZNvV7H7fd58803mZ+fZ2JigqMPPEBZDgFHcv4oCsM1GwE0TcNxHMxCIVPR6ff7BEEgnHu9zr59+3jn3DmOHTvG/gMHRNlG7qpLNaH9CoLV68kDrnbBFUslJqem2LV3L7VcMCBHjncNTc4NFotF/EYD3/epjoxQqlb5wcsvc+LNNzl46BB9qR1bsKw1uysHmaRq5EtDzHFWKhV0Xefy5cu8+eabxHHM/UePsn/vXjRdZ2FhAduyVvdGDmSqhq5TKZcz5xZHEZ12G8u2qVWr7Nu7V9iNV1/NAuxB1bEUwbtIQcyOuy5hGGYL4odHR9m1dy9TO3asDQA+IvjIOkoFXdfFXsVymZGREXbt28c3vv513jh2jGazydTkJEPDw2KNjNQ91DQtmzMy5DJTgG6nQ7PZ5MKFC8zNzlKwLO655x727NmzuiRa0zKh8kDtmlsH0zCoVCqrM1RBIGTmdJ2jDzzA+QsXePXVV/npn/7p1SfJ/ofqb/ieRyDnQJ1SiT27djE9PU1jeHhTzdgcOXK8OwxWpyYmJ9m5fz//4d//e944fpwdExNMTE1ls4xKO1mNZhiGkc0ytlstNE3j3DvvcP7CBfr9PqOjoxw5fFgIqKiZxzgWC5zl1iCFwftZbfbwpHCK63mZ4tely5czu7Fhb22SiG0pUhglCAKSOKYxOsrE1BQ7du78SM9Rf+Qd5XqYpsln/tyf48ChQ3z3O9/h2JtvMlStslOScRzHoVqtYkvJpna7nS1jTYFXX32VXbt28eBDDzE6OioOnNw1p9hkSmFnvQgxrK7lSZKEQqGAYRhrBIvvvOsuql//OisrK5y/cCHbuB5I9Z8wikilGkelVmN6716GhoaoVqtrZK1y5Mjx3kHTNCYnJ/mb/9V/xYsvvsgrL73EhatXmZ6YYHx8PMtCK9VqprzT7nRYXFoiBb71rW9Rq9XYtWsX+/btE1mj6iGqeUw5yuFJhS+FNauxpK0plkqYhQK+7xMGAXfddRdf+/rXabfbXLp4kaGREQxdF4LosuqkyD1oGiNjY4xNTVGtVqnVah+aecgfFh/tT78NDhw4wIEDB5idneV7zz/PGydPZsQdHTHnqA1EZWod1mOf/CT7DxwAVrO7MAwzZ+m5rvhZEKzurFvnLAe1aXVdz2a4ojCksGMHo8PDLC0vc/z4cT52//2kaSoU+00Tu1ymVCqJsnKjIdaByU0EOXLkeH/hOA5PPfUUjz32GG+88QYvvPACF197LVPeMaRQCIh7fGV5GQ246847ue+++4SwAWKVnaokOYZBovgMmkYolX3WO0uQi5ilrSmorR9xjFMsMjI8zPLKCq+98QYPHD0q2PRSWk8vFCgWi5TLZYZHR6lUKlQqlY+8g1TIv4XrYHJykr/4+c8TxzHtdpvl5WXm5+dpt9s4jkPZcShaFmEUceH8eQzTpN/vZzJz6kAHshGvtoQPKvZvBl2SfZReo6KNx3HMocOHufad73D8xAl+7Cd+Qqy3sW3K0kmapilWZX2ESyU5ctxMmKbJAw88wAMPPIDneaysrLC4uMjCwgJRFFEtlynaNn4Ycv7CBRrDw3i+jxlFmS6zshtOsbgaYIdhtjlkM6hgPonjTChA2Y7DR47w/He/y4m33uLP/rk/R0HNdsvNKGo1odqclGMVuaO8QRiGwdDQEENDQxwYyBjVQuhOEPDm229j2LagXcsxD0WoaXc62SGOwlA4M6k725ear0qjMVECxkkCSo5K09AMg6HRUR567DF+83d+hxNnzvDrv/EbjI2N5Qc7R45bFI7jMDU1xdTUFEDmAD3Po/eVr/DG6dMU63XQNPwoIpVM+m6nA4j2jqbruJ5HkqbYtk2apvRcN1uOMNiySaQdUf1QNA27WOSBRx7ht/7P/5MTZ8/yy7/2a4yPj38kiTk/DHJH+SNAKeqrOaJrMzOMTEwwNTWVKVrEcUxzeTlTwjF1HUyTpVYLXdfxo4hCuZxtItFUs182/5WoucoSC4UCk1NTLCwskKYpx48f58/8mT9zc7+IHDly3DDUYnlbylDOzM4yPDIiBASkGlcsNV9XlpdJ5MhZSdOYXVpC1zS8KMJSmZ9UA1IkQ2OAODRoN3bLVlKappw8eZIdO3bc5G/i9kHuKN9DRFGE4zhrdjWmacrY2Fi2dsa2bS5dusQ7Fy+iaRpHH36Ynbt3Z8ocSgZLOcjNMsWvfe1rpGmKZVk88sgjH+RHzJEjx3uMJEmwLGvDMuMkSRgfH8f3fXRdZ3Z2lnMXLqBpGg9+/OPs3Lt3jdTmIKPWWLdLE3K78aMgd5TvMzRNy8TNFYrFIl1J/onjWCxMfhf44he/CMAzzzzzrp+bI0eO2wODo2sAzWZTLEImtxsfNPLG1m2IL3/5ywB89rOfvcnvJEeOHLcLcrvxwyN3lLcZjh07xqVLl4D8wOfIkePGkNuNHw25o7zNoMonR48eZefOnTf53eTIkeN2QG43fjTkPcoPAN/97nc5e/Zs9v+Li4vZ38+ePctv//Zvr3n8X//rf33La33pS18C4Cd/8iff0/eYI0eOWwu53bh1kDvKDwBf+MIX+J3f+Z1Nf/b888/z/PPPr/m3rQ785cuXOXbsGJCXT3Lk+LAjtxu3DnJH+R7h6aefBqDRaLxvr6Giwl27dnH06NH37XVy5MjxwSC3G7cHtHSrzZ05bjl85jOf4Wtf+xp/7+/9Pf75P//nN/vt5MiR4zZAbjd+dORkntsE7Xabb33rW0BePsmRI8eNIbcb7w1yR3mb4E/+5E8Iw5BarZaVa3LkyJFjO+R2471B3qO8TfCNb3yDer3OT/7kT+ZbQXLkyHFDyO3Ge4O8R5kjR44cOXJsg7z0miNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB3lB4iLFy/y8z//89xxxx2Uy2WGh4d5+OGH+bVf+zX6/f62z/1rf+2voWkaP/VTP/UBvdscOXLcCsjtxi2ANMd7gv/hf/gfUiA9f/78pj//0pe+lNZqtRTY9M/hw4fTt99+e8vr/+Ef/mEKpOVyOXVd9336FDly5PggkduN2wN5RvkB4NixY/zMz/wM7XabSqXCL/3SL/G9732PZ599lr/9t/82AGfOnOHP//k/T6fT2fQaP/ZjP4Zt2/R6PZ599tkP8u3nyJHjJiC3G7cOckf5AeDnfu7ncF0X0zT5T//pP/GP//E/5hOf+ASf+tSn+M3f/E1+9Vd/FRCH/p/+03+66TXK5TKf/vSnAfjSl770gb33HDly3BzkduPWQe4o32e89NJLfOc73wHgb/2tv8UnPvGJDY/5+Z//ee68804A/uf/+X8mDMNNr/XZz34WgC9/+cukafo+veMcOXLcbOR249ZC7ijfZ/zRH/1R9ve/8Tf+xqaP0XWd//K//C8BaDabfPOb39z0cX/hL/wFNE1jZmaGl19++T1/rzly5Lg1kNuNWwu5o3yf8d3vfhcQJZAHH3xwy8c99dRT2d+ff/75TR8zPT3Nww8/DORllBw5PszI7cathdxRvs84efIkAAcPHsQ0zS0fd8cdd2x4zmZQZZT8wOfI8eFFbjduLeSO8n2E53ksLi4CsHPnzm0fOzQ0RLlcBuDy5ctbPu4nf/InATh+/Djnz59/j95pjhw5bhXkduPWQ+4o30cMUrYrlcp1H68OfLfb3fIx99xzD/v37wfy6DBHjg8jcrtx6yF3lO8jPM/L/m5Z1nUfb9s2AK7rbvu4vIySI8eHF7nduPWQO8r3EY7jZH8PguC6j/d9H4Bisbjt41QZ5dvf/jbNZvOHf4M5cuS45ZDbjVsPuaN8H1GtVrO/b1cWUej1esD1yy2PPPIImqYRRRGvvPLKj/Ymc+TIcUshtxu3HnJH+T7CcRxGRkYAuHLlyraPXVlZyQ78rl27tn3sd7/7XdI0xbIsHnnkkffmzebIkeOWQG43bj3kjvJ9xl133QXA2bNniaJoy8edOnUq+7tS29gKX/ziFwF45pln1kSfOXLk+HAgtxu3FnJH+T7j8ccfB0R55Ac/+MGWj3vuueeyvz/22GPbXvPLX/4ysNqcz5Ejx4cLud24tZA7yvcZn/vc57K//6t/9a82fUySJPzrf/2vAWg0GjzzzDNbXu/YsWNcunQJyA98jhwfVuR249ZC7ijfZ3z84x/niSeeAOC3fuu3eOGFFzY85p/+03/KqVOnqFar/NzP/RxJkmx5PVU+OXr06HWHkXPkyHF74kbtxsmTJ7EsK9s0spXtyO3Gj4attZFy3DDU4dQ0bc2/hUFAHEX88j/5J/z4T/wEnufx53/8x/lv/uv/mkceeQTP8/jyV77C7/3BHzA5OcnevXv5z37sxzh7+jTjY2PYxSKFQgGzUKAg56nUDJSieufIkeP2hNrkYRjGmq0eURgSRRG/8ku/xJ/78R/H9/0NduMrf/zH/P9+//ep1Wrcfffd/Gef+QyXzp/HsW3GxsYwCoXMdhimmduNHxG5o/wh4HkerusSxzGe5+H3+4Sex/79+zl5/DjzV65AmqLrOgXTpGrb/Nov/zK/9hu/Qb/f5wv/6l/xhYFyyo4dO9i7Zw9/+2/+TXrtNt1mk/mZGaqVCmga/X6fbrfLzOws77zzDuVymcB1+Xf/7t8xPj7O6Ogo09PTjI2N3cRvJUeOHNshjmP6/T6hdIT9Xo8oDNm9ezdn3nqLpZmZLOg2TZOKZfHrv/IrW9qN4eFhjhw+zN/5W38Lt9ul224DMD87i10oEKcp7VaLK9eucf78earVKkGvx7/8P/4PhsfGGB8fZ2RkhH379t2QsMFHGVqaLyi7IaRpSq/XY3l5mW67Tb/XI/R9ojBEA86cPcuZs2d55qmnxMBwkpCKJ1KwLBzbZml5mf/rS1/ixZdeYn5xEdM02TE1xdNPPslTTz5Jo1bDNE3anQ5hFNHtdJidnaXb7ZICx0+c4Jvf/jZDjQb/z5/7Odx+n57n4XseCTC9YwdPPPUUBw8eXJPd5siR4+YhjmOazSYrS0v0u118zxMiAUmS2Y1PPfUUTrFIGseo4qmu69iWRavV4o++/GVefOklFpaWMAyDHVNTPPXEE8Le2DaVSgXf93E9D8/zWF5ZYW5mhihJeP34cb757W8z3GjwC//wHxKFIf1+n77nEUURZqHAvfffz+NPPEGtVrup39WtitxRboM0TQmCgGazyeyVK/R7PeIoQgMs28Y0DHRdxzRNTMMATSOJY1IgTRLCMCROEnRdtIJNw6BYKmEVCtlr9Pp9+v0+umHQqNfpdjqceOstrl67RhrHTE5OMr1jB5VKhf/3//g/curMGT719NP8zOc/n0WfcZLQbDa5du0afdelWqvxsaNHOXDoENVqlWKxiGmaufPMkeMDQhzHuK7L3LVrLC0uEgYBaRxjmCaWZWHoOoauU5C2QNN14jiGNCWOY/wwRNc0NF1HS1Ns26ZYLKJrmrAzacrKygpJklApl7Esi4sXLnD67Fna7TaObbN71y7Gxsb4J7/2a5w6fZo/+6lP8TM//dOkaSr+AL7nMTc/z/zCApqmsWP3bj7+8Y8zMjpKWV7XMIyb+2XeAshLr+uQJAme59Hv9+m123SaTVrtNkkUkaQpVqGAY9vohpGVV5MkIUhTdMSB1zRN9AhsG5KEMIrwg4AoSWh3OliFApVyGV3T8HyfNE0pFAqcfOstTp48iWnbTExOMjY2xujIiCi/9nq8fvw4URTx8AMPMDw0RJIkxElCHMdUymUmJyeZn5/n6pUrPP+d7zB79SrTO3dSrlap1esMDQ3RaDQyx50jR473DmEY4rouvW6XfrvNyvIyvu8TRhGGrlN0HApyZZYmnWCcJJCmaAP9StM0sW2bJE0Jg4AwSfB8Hz8IKJfL2IUCQRAQxzGartN3XZ5//nmWl5aoDw2xf/9+picnsYpF+r0eb544QRRFPPTggww3GqRAEsfCdpRKNOp1du3axbWrV7ly8SLLCwvcedddVOt1avU69XqdkZGR60rkfZiRO0pWM0fVC+y1WrSlg+xLoeGCaVIpl0nSFNf30RBONU1TUk2DJCFWyflAkp5KZ2qaJmmakqQptmkS+D5OsUgSxyyvrHD2pZfo9fvs2bOH3bt30+v3hcPVNAqmyfPHjjE3N4dj2zzxiU9QsG00TSNJEhLIbrQdExMcOXSIH7z6Ku+cPUsYRYyPjbGytMRCpUK5UmF4eJiRkZE1mpI5cuR491CZo+u69Fotmisr9DodVtptUfFJU8qlEqZl4QcBYRhCmgrbAVl7Zo3t0LTMhhRME80wiKIIwzAIwpBSsUiSJERRxKXLl7l08SLFcpmjDz2Ebdv4QUAqn3vs2DEWFhZwbJunHnsMo1DIRh3iNF1jq/bu3MnM/Dwvv/wyJ44f5/CRI3RbLZZKJebn5qjV6wwPD38kg+2PtKNMkoR+v0+r1WJleZlOs0mv3RaOBxF1VYpFrEIBWzomFfFpmpY5QVUyieKYNE2zKDGR2V6q/h5FhGHIiucRRhGeLHu4rkujWuW+++6jXCqhAYauo+m6uGk0jVeOHaPRaPDk448Lp5skaLouyjNpSjRACy+WSjz2yU9y4s03OX3mDJZpsnv3brqtFt1Wi9bKCvNzc9QbDaampj7SkWKOHD8MgiCg2+2ysrJCa2mJbruN57rohkEUxziFArquU3IcDNPE0HV0wxD3q8wmlV1Y/ydFOODs/6OIME3pdrt4rkusaTSXl1laWiKJY/bs2cOOHTuwCgVSwJRVLV3TeOW112g0GjzxyU+iaxppkpDK92BoGnGSkEiHqRkG05OT/JlPfYrvPv88Z956i4c+/nGIIhbn5mivrLC8tES5UmF0dJSxsbGPjMP8SPYokyShI4kyK0tLtJtNSFMcy8IuFNB0PWty12s1quUyhmGgG4ZwkElClCQMdvzSNCWVhy6KY6IwFFFfHOP5PqHvE0RR5iA7nQ5XLl/GS1MqjsPE1BTVUolquUypVMKVzrRo29kaney15H81RKnX0HXQdUgSCqaZvU+AM2fO8Obx4zzy6KNMT0/Tc126nQ5eEFCqVKgPDTE8PMzo6OiG18mRI8daBEHA8vIyc3NzLC8uErguBcPAsixsy8rKrJZlMdRoYEsugyYD3jiOSQeC2hQyR5UkiRgNkQ4y8H28IBDl1ygi9H36vs/c3BwLKysAjA4PMzY2Rq1cplwuYxoG7V4PDTJizgY7labCces6mmEI56ppGKaZOT7f9/n2c8+BpvGpT32KBOh2OnS6XdB1hoaHqdRqTExMUK1WP/R9zI+Uo0zTlE6nw+XLl2k2m/iehx5FOJaFUyxSLhZxHAdPrq0pFApiRGMd4jgWhxtJ2pE9yDiKsmwSxE2gIfoRKRBFEUEQ0HNdTp08SRRFRDIitG07iwhT+Rxd16lXq9QrFWKZqarMNJaOeZCgEyUJyH8zTZNCoYBuGPzg5ZdZWFzkU5/+NCXHAU0jDEOWmk3iOKY+MkJFlmQbjUZGMMiRI4dAFEXMzc0JFnqnQ+z7FAwDx7IolcsUpUP0w5A0SajXapjr7qNUBtHZ36OIJI4Ff0FmkOsJdxrCkQZhSBQEXL16lctXrlAul+n0++zesYNSpYIhq0y6YRBHEbZtMzE2hiH7oMp2RHFMEsdrXieVBCKQPdJCgYJp0uv1+Oa3vsXePXu4//77s8d3ZRXOLpVoDA9TrVYZHh6mUql8aAmDH5nSa6/X4+LFiywtLZGGIUaaUrEshsbHaVSrmIUCGtDpdkVpBKjIzeGDiJME1/NEGVU6RnWYAZDRWqFQQDdNdFneCIIADej3+5x+6y1KxSL7DxzgtWPH2Dk1hVkoiMWrMmMNwpC+5xEEAUmS0Gg0xCbzNM1eL5QN+TSKiJTDluSgMAxFPwTYf+gQC0tLvPTiizz++ONZ+Xh8ZIS+59GWfRVPUsvr9TrVavVDe+hz5LhRpGnK7OwsV65cod/vQxxjAkONBkNDQ5SLRTR5j7fkHGO5XN7USYZhKJyitB2KeYrM8jRNo2AYoo8oA+VQBteOZXHq/HlmZmY4dOgQIyMjvPTSS0xNTGAWCuJ68lqdMKTb65GmKcNDQ9Rlxqfu5lAG20maZsG953nEcZz98eVjDx0+zKmTJxmRs9q6plEplSjaNiudDouzs3TbbXzfp16v05BZ9IcNH3pHGccx586dY2ZmBqIIPU0p2zbDw8PUlDOQjjEIQ4IgIE3TNY4iBcIgIFAlkCha0wTXDQPLMDANI8viQNwc/X4fPwjQNI2F+XlOnjrF2NgY9957L+12Gw15Y5mmGBtJUwzTFHNWKyvi0HoeM9euYTsOjXqdarksskbEyAnypozimFKxSBzH4n3KweaCYXDXXXdx7LXXePOtt9i3dy+2ZVGwLErFIpZp0my3mbt6lZXFRXbs2oXneQwNDeXZZY6PLNrtNqdPn6bf76PFMQWEg2zUaoIIJ3t9yPucNKVgmmtIcnEcEwQBvu+LkqrM3EBUjUwZVBumuYYRG8pZR8VsP/HmmzRXVvj4Qw9Rq9dpSdtRUdmk5Evosj/Z7/fRgGa7TavdplapUKtWseW4h6p0YVmkaYpj20JNTNq3UAbo05OTLCwscOzYMSzLEqxb28Y0TUbqdXquS7vdpt1qMTw8TDQ9TaVWo1arfagC7Q+1o+x2u5w6dYp+p4Mex5RKJcZHRymVStk80uCv0pUMV8e2KZgmgYzm1m8ZLxiGONiFgiD2IJxpKrM9YPWgy0hxYWGBEydPsm/PHo4ePUq708mup2salUolc6pxHGc3QBSGaJpGz3WJwpC5+XmWTZNGvU5ZKvdosiybpqmIRNVN5zhZuadYLLK0tMTFixfZMT1NFMdonpcRlUaGh2m2Wriex7kzZxgZGyPwPEbHx3N2bI6PFJIk4fLly1y8eBEtDDGBkeFhhmXgqO5x5QgCWb1JgZJkxodhiO/7WUkTxH1uFApYloVpGEK6buB1FZO+77p4vp+1bI6/8QZur8cTTzxBvVaj1+8LZydbLJVqlW63K1i2msbI8DDVSkX0OcOQIAxpd7u02m0q5TL1Wg3LssRry9lvWBU4sC2LtFgUWXAUcf999/Hcc89x+coV9u3bhx8EGIaBbduUikUKhkGz02F5cZF2s8mO3buJooihoaEPDdnnQ+kokyTh2rVrXLhwgSQIKGgaO3bupFGvZ+WJ9fB9X/QMo4iCZdFstVbLqYhDbklijSqnKsSy5q/Lg913XTzPy1iynU6HE8ePs3//fo4ePZoxzVIERVsd2FKphKZpuL6P67pEcYxRKNCo1ainKZ12m263SxTHLCwvs7iyQr1azbJfDUglG3fwZi5Ix3nv3Xdz+fJlFhcWmNqxQ2SrQbB68C2LJEkwDYPlpSV816XvupngQY4cH3Z4nseZM2dYWVxETxKqpRI7d+7EkvfGZjlS3/MEr0DXcV03a3koFKTIgJKJy2zHwOA/iD5ov98XREFNw7YsXj12jG6nw1NPPUWj0aDX75MiWPFr5O6ks4zjmCCO0XWdYqnEaKlE33XptNu4vi/IfN0udrFIo1ajWCwKOzcwkgJyzlO+B2toiIP793Pu/HkO7t9PwqocX1/TsAoFSo6DDoRRxOWLFwVhcMcOJiYmMM3b383c/p9gHTzP4/z58ywuLEAQUC0W2bVrF5Zto6vRjQGo3kCn36fb7wvFjIEM0ioUsB1HlCAHDpJpGIQyi1PXCeOYXq+XHWDbtvFcl5dfeonp6Wk+JhviURiulkrkc5E3TFHOSPnSWZZkZFcwDIYaDWryhmh3OkRxzEqzyVKrRa1apSFZbsphDzpMECXevbt3c+HCBY4cOUIkmXVBGGa9CVV+sWTPdObKFbrtNgcOHaLeaLzXv64cOW4ZzM3NcfnSJdx2GxMYHxtjcmIC2HgvgagiBWFIt9vFDwIq5XLGaDUMg4LMzgyVVckMdM0Mtrg4rgyukb3JcqnEG2+8wcLCAk88/jiNRiMjAKVpmjkfdZ/rmkalXKbT7eKHoSAbmaawKY5D0XEytn1fSuhdnZ3FLBQYGx7OnLjKYgeJgpqmcejwYd555x0WFhY4cOgQvuRPRLK0nCKcJIjMtNVs4vX7uP0++w8cuO0zyw+Vo1xaWuLypUui1BqGDA8NsWPHDlFmlcP+CoqRGkURnV6PVqtFmiQUq9XVCNC2V2+OdSICaBqGrotREdj0oHuex/eef57h4WEeevhhMRc5wHxbT6lWr1UqlTIH3nddKop+LSnc9XqdWq1Gu9tleXmZOAyFBm23y3CjkfVPdMjIQarMfPjIES5dusSVK1fYvXs3lmmSpCm+VP5Qn6/vuhRMkySO6bTbnHjjDQ7feSejufB6jg8ZoijiwoULNJeX8dptHMtienKSer2eOcj1toM0xfN9FpeWCMIQ0zSzcqRlWcKRra9cSceoa5qYt0xTojCk1+uJEq3M4IqlEiffeouLFy/y8UceWbPsQJVy9fXjGLJ6VSmXCYMAP4qEnGW1mjlox3FwHIcwilhpNmk2m4RBwOVr16hVqwzV61mPE+nYkiRB1zRKxSK79+7l7NmzHDhwQDjfYjEjKAVBgG3bWSXMMk3CIODqpUv0u13uuPvu21p4/fZ28wNYWFjgyqVLBJ0OlqYxNTHB1NSUiGQGxjUUoiii0+nQ7nTo9XqQplTKZYaGhqhUq2ud5ABUmVRj9cvr9fuZk7Qti1qtRhzHPP+97+EUi3ziE59YjQDlLBWwGmmug6ZplMvljEjT7XZFrxOy8mqSppSKRSbGxxlqNCjIfubM3BwLS0uCBj6gAJLIQKFSqTA5NcXp06ez19M1jaIsxVQlsajoOARBIEpJkhj01htvcFUuf82R48OAKIp455136K6sEHa7NBoNdu7YkWVwygZk42Bpiu95NFstut0ugeQQjAwN0ajXha6ylLccRIq4b4HsPg6laEEsS6WVSoVyucz58+c5ffo09913H7vk7sjB0RJdzU4PQL1P0zTFmAbgB0GmLCYepGWciUatlomNFHSdbrfL1ZmZjC2bynESEO2hJE05dPAgrudxWdkASV6qSBm8onTEuq7jysA7TVNWlpd549gx+r3ee/Abuzn4UDjK+fl5rl25QiLJKRNjY5nzUKWQrA8Qx8JBttsEspegaRrlUilrPquDPAh10Ad/FicJ7XabKAwxDINqpUJFNtGf/973SJOExx57LIukVIk13iKjHHyfylnqUvyg0+lkSj+xLL+QphiGQa1WY3pyUjhXw6Dvuly9enUNYWiwZ7l3717a7TbNZnPghcUrW5YlxkMqFRzHEcLJrovreURxzJWLF7nw9tvEssySI8ftiiiKeOfttwk6HSLfZ3RkhCF59pWTTFMhL6dJXeZmq0VPkvRiyTJv1Os4ckxky+AaITOpfu55ngjQNQ3LsqjV69iFAteuXuX1Y8c4fOgQhw4dWr3IQIBtXme437KsbIOR73m4vp+931TNeWsaBWkrR0ZGsCRzdmFpidn5+TUERvWeq9Uqo6OjXLxyZU1vFUSwXXIcatUqtWpV2K04zraZ9Dod3j55kuby8rv4Dd06uO1Lr3Nzc8xfuwZy1qiiRi0k7VkhjmO6vV52AFIEu9WQdXxg06azKrPCqp4qyIy02yWMInTpJJXjO/7663Q7HZ555plMHk6JCKgegybLL5u84OqaHU3Dtm1CSbqh1xNzW+qxUo1HjZSMjY7ieh4rKyuEUcRSs0m312NkeBh7oOwxMT5OoVBgZmZmVb1joB+hpSm24zBaKLC0vCw2p8cxrmQBFwoFwjBkz8GDt3U5JcdHF5mT7HZJk4RGrYZtWdlcZCorMZquZ6S2wQC36Dh4hkEYhtiWtaWD3Czo7rkuXr9PKitQisTX6/X4wauvsmPnTu69997VGUt5DRWcGlL7dTNktqxQwIxjkRi022i1WuZgFVEnjaIsIC8Wi7RaLTqdDkEQcG1ujnqlQl2WYxV2TE/z+htvZHYgHbieakdVKxUMXWe52RT2TtNEpgpo587hex4T09M/xG/t5uG2ziiVk0yCgKFaLRMIKJVKAJnKjet5tDodAknhtm07G69QB24zgz9YZh087EEY0u50iOMYQ9epDTjJy5cuceHiRR544AHq9frqLJEkEqlBY11qPSrFDFUmTSQTTpVMNU2jKJm2vudlWTDyPenrZpWKjsPkxASNapWCYRCFIddmZ2m1WtljdMNgYmKC2dnZ1e9Jvm4sby4lnDA8NES5UslusjiOWVpZodNuc+HMmS1v2Bw5blUEQcDZM2cIpLjI2MgItuwrFuQ8IZLZ3u50MiepeoBqvEIFvYV1tmN9tpX9O0LQxJMs2WKxSFnORCdJwosvvoht2zz04IOrdkc5Nchsh2GaGzViZWk2lmv+kjQVvVIpydmTjkpBl39UMqHrOkNDQ0xMTgqVIU2j1elwbXZ2TXY5PT0Nacr8/Pyaz6vmPZUcX7FYpF6rUSoWM1vX6/Vod7vMXLnCvLQ9twtuW0c5Pz/P7NWrJEHAcKNBrV4HpPapOkhxTLvdpue6pGmKbVmZgzRksz2UDNT1jnJQT3UQijmWIBix1Wo1ywy73S6vHjvGnt272b1799onyvGR9eWTQUe64fXkz0zDwHGcbJB4kLm7WblH13UheD4xQblUoqDrLLfbzC0sZOLp09PTrKys4Pt+RvpRn1vduLFkvhVtm6LjYFtWVgru9nqsNJtcPHs262XkyHGrI4oizp07R9DroWsaOycns7Nv2XZGfHM9j5Zsz6isq1GvY8v7UI2AmFLwXGGr4DpJU9oyW1N8iOLAfPKJEydoNps88vGPb1D1YV3LZlMGqWS+DlaGQATOapSk3++veYom9+kOwrYsJiYmGB4eFkS/OGZmbo5utwuIJKTRaDA7O7uaSQ58xsHgv1QsUjBNinKxBIj9l91ej6sXL95WZdjb0lH2+31mr16FMGS40WBkeDgbuSgUCiRxjOd5NNttojhGlwe9ptijslcQRVEWPQ7SrWHrkklPHjbHsqhUKtlBS5KEl158Edtx1ugiKqjILSvfbDNbpF57UBnIkSMqaZpms1SrT9A2HFoQWrVjY2NCv1X2WGZmZvCDgKnJSXRdF4pFA852M6dn27aY3TJNClLZI5VM2dnZWS6dO7flZ8mR41bClStXCLpdTE1jx+QkBZUZIs53FEWC4NfvZ/akXqtRcpw196XKsgYD7K2C60jK24VhCJpGtVpd87y5uTnePnOGe+65h8bQ0JrnrrcbuixvXg8ZJ0HXs9KuHwQbKlKwOhIyiEqlwtTkJEVJzllYXmZpeVmo9UxPMzs7u8ZWqJGS9bBtWzhxXc9G3ZIkodPr8fapU3QGeBS3Mm47RxlFERfPn0eLY6qlEiPDw9mXr5xFp9vNskirUKBer+PYdkahHlTPAZEZKnWdrdDr9/Ekg0yVTBhwTCfefJNmq8UjDz+8qc6jyhiVCsaNHHb1CNXTLJdKYtlrFOF6HrDxptysV1Kr1RgfH8cyDNIkYWZuDtf3GRkZycqv2fuEDQ5Xk71SXdcJJQ1cRdZxHHP50iXOnjp13c+TI8fNxPLyMr2VFbQkYXxsTGSQMgvSgCgIaHU6hCqLLJVWdVLV2jvEfRKowFySYNYT/RTiJKHTbmel23qtlvX2QFSoXnn5ZSYmJjh08OCW711VkTblNQxAW/ffNEkoFAqiIoXQvM4qUgP3+foWDojAYWxsjGqlQkHX6XS7zM7PMzY2JkZM5AYT1dPVN6luWZYlfi5L2SXF5pezoydfe4221Mi9lXHbOcprV66A52EAo6OjwGqU5wcBzVZLEGwGskiV9WURofz/SNbzTcNYQ91eD6W0A2SN70HMzc7y9ttvc+8mEaGCEk5WUnOaLIcMjm6sWeQycHCzPoJhUJH7Kj05trHBuW+SWYLISCcnJkQpRtNYWlnBdpzssGfBBgO9z4H3Y1uWkMqLImIpSFAqlbLs8urVq5w4fnztZ8iR4xaB53nMX7lCEkVilEHNKiPOfrfXo9PtrskiHVlJWV/hUWIBKEKeJMCth+pxxlLtqj6wjkoRdV555RXQNB566KE19/yGaw1wG5IkyRS9lN0YvO8GbZy6h1VFCthYkVLP2+T1dclTGBkZyUbQuq4rdGQlaz77PsRF1thQpe6j2lykKaVSKSs7e0HAGz/4AStLS1t+9lsBtxXrdWlhAa/ZJIpjpiYmVscrNKGF6noepmFgyd1sSqFmQw9P0zIZJuRqms0OOggikNKALZVKmTK+ciz9fp+XX3mF0fFxduzYkem7ZsobciYpReq/um421NvpdoXav6z/Z+9TOjulF2uaZtbjVJFfFMe02m0atVrGzhvEZhmyYZpMTEzQajZptdtYloXr+7S7XcqbLG/WdX1V+UP2fpEbDXRNLJ8tOg6+FJNfmJ3leBRxz/333/ZKHDk+PEiShGtSztIqFBiSM5K6phHGcTanDFCWRnyzMqoKIAPFPpX38WbuLZH3tcokq9XqakaaJMRhyNmzZ5mdneWRRx8limPCXk84vgGJS1XO7PV64jHyXuvKLKzT7a6xGwoqc0yTBMtxVreRSF1aHXDUPT/wPA2yxfWDKJfLWJbF4tISfhBgl0rMzs+zb//+NSVYTV5P8RxAZJWpHG1LJEvfsu1s5CaOY944dox77r+fkVtU0OS2cZRev8/KtWuEUURdahSqX0an2yVVJBm1Q3KbDFEhURnlFv1Cz/fpdbtESSL6dPK1ErWOJk05c+oUQRhy8NAhXLnHcpDSncj/BxkVJgm6KtcwwDhlYBRFlmqTNBXkG3m4s3IKEPi+YNFKmram62K5tNwgYMhSUaa0MYB6o0HBsrI+y4ULF9i/fz/OFqMemqZlzlJ9DgXdMCgaBoau43keSwsLvPn669x9330f+mWuOW4PzF2+TOy6JGnKjvHx7BwHvk+n1xNZYZLgFItbOkkFTdOI0xSSBGNAIH0QGXEnDMV1HQdXMmdjSTJ0PY+3Tp1ix86dlEolsQNXlnDXCKTIv0fr2PLIezJV42Qq0Jc/U3OTQRSBvM+VE/Nk8K/aR7quo8t72DCMLAheH+wWCgUmxsdZWVmhVqnQbLWYm59nZDPxcxmIJGmaqYopJrH6udq05Louvu9z/LXXuOdjH7sl1b9uC0eZhCELly5lGqTDQ0PCScYxLTmIb1oWFfkLjqIo2y+5FeIoEk5E17MsLUnTTBi977rZkL9j2ySmiauWrsprdFotLl++zB133EG5VBIHbuCQDTbLNTlLZMkl0UUZ5WlArVqlXq9nDhZ5A4RRJOYkVSNcjZGkKSVE1BgEgXCSabq6kHWASauyTVOuATNNE90wKJVK7N69m9defx2312N+fp7x0dENm0IGZzZVFG4WCplklfq5mlvt9fsszM/z5uuvc8/99+fOMsdNRXdpie7KCn4cMzYyIoJKyR5XqjXlUinbzbhZBWo9Ejk7PRhgR3EsbEcYilE0zxP3bamEL9s2sBoUn337bTRd59DBg4IjIQNalfkpgo0qDasycWNoaE0/sVqp0NjEduiScGTbtuiJJgkJIimI45goCPB8P7tvkyQhUoE6q+0ewzSzTSemaYpS7PAwI40Gc3Nz9CUXZHR4eNMqkuIxGIaBJvu6inMBompVKpVIpFN/87XXuPv++xkbH39Xv+f3G7e8o0yiiM7CAp7nkaQpYyMj2ULT7rKToAAAse5JREFUTqcj5orkwH+338f3ffqeR32bPYpqJklt/ei7LqEU+EX+rC/njqxCgWKxiCEjLlWC1DWNH7zyCo1Gg7vuumvT+j6sHrgMkmG7GWFmfX0/BbH8Wa6/WYNSCatQwA+CTIJORauKnh3LecgkigjimGBd816XJSHP99E1jfnFRUZHRihtUoaNwzDrTZqmKQatBxa0agiGWyyj5cWFBU688Qb3fuxjW343OXK8n4h6PZqLi8RxTNm2RaUJUa70ZfWn6Dg4ts3iygpRFBGEIfYN2I4wijDjmE6vRyhFwdMkWbM9pCzHIgxpM5T9WFxaYnZujocfeojh4eGtX2sgm9Qk23U96WZw2H/wJ8ohFgoFQWQcgOM4tDsdklTsocz6ngP2A9UuCgIiFXwnCZpc71WXJMpArgObX1xkfHR0g7PUEP1hq1AQKwPl51H9UpXllsplYtnPPfH669x39CjDkoNyK+CWdpRJkhD1erTbbeIkoVIuYzsOvufRkbqBpmlSq1ZFk7hYFIr2YYjneRuyoxSy/ZLNdhvfdbHkY9T8YBxFREGA7ThCkmmLBaTnzp1jZWWFp59+emsnCWuiJ1Wz34xhthkyAsEW/dNisZg5+DhJxKzSups8lg5T9TeiMMzmIwlDKqUSSysrmdjA7Pw8E2NjlKVoA/Iz9Af6tFEUCSLUwGdT79e2bbQ0pef7LM7Pc+7tt9l/6FDuLHN8oIh9H7fTwXNdoiRhanhYDPxLVitApVzGcRziKMq2a/R7PQr1+oZ7VDlR3/dpNpvEqqTIagaazVwWi0KSbp2DAmEDXn/tNcZGR9m1a9eW738wwM7sxrvo+2cchU1sh2kYFG2bvufh+b5YYL/+9RGtqSiKCKKIOAwJkgRNirerJdNhEGAaBm4UMbewwMTY2Jr3GQTB6lhMpUIorzm4EF5DqA2Vy2WxZiyOOXH8OA8+8kgmHnOzcWs7yn4fr9fD9zziOGZkaGhNycS27UyNJ0U010vFIv1+n57rZqWCIAjEEmbVQ5QOEU3sUnPkxm5NUqA1XceScnibwfd93nzzTfbt3bttRChearWsqw78jZYjtyIKKBi6TrFYpOu6uOrzrrvBVRRrykXTqYwcY1liLpXLXJ2ZoVqt0m638TyPy1evMjo8TL1WwzTNTJlE13Wq5TItqUq0/sArWI5DKjP1SxcvUiyXmZqezp1ljg8ESRwT9/u0Wi0iGWCbpklLjmmgadQqlazsmGpiF2wo1831ej3K5bLo8QXBarVJ2g3FlFdbQkwpZafKn5WBhQbr8fbbb9Pt9Xjm4x+/4fthq21D20Lajq046I7j4AcBYRThed4a8QNYdV66rmMWCsSWRTFdVe6KpT0JgoCxsTGazSYt36fvukyOjWVJSl+WnR3bxtB1YtcljGM21qxEi6hYKtHv9UTP8vXXOfrgg7eETOYt6yhj3ycOAtqdDmGSUK1UCMIwY6AWHYdyuZxlNcoJFR2HQC4ovdbtYjuOGP+QBBld7olLJCOsWquJ6ChNs55koVCgJss0GclmAMfffBPdMLjrnnu2/xCDUeGAqsa7chgDn20z2LaNJ6M2z/PWlE1VP2RwxhTI+pW2bVOv17OS6tDQEMvLy/i+z/zSEp6MFhOZrVak3FZBKh9FScIGcyANjyUp4X3P450zZyhK0fkcOd5PJElC1O0SBIHIJuOYer1Oe2BLR61axVQaz+mqUHm5XGal2aTVatFqt3FkD16R7gqmKQJqRO9OBdKhtEupvIZtWdkC9cG9jv1+n5OnTnHo0KFMY3kzrHduWUb5Lhzl9apRmmzXRJ1OVhodHF3J7J4aTVMcBV3PggBH8iYqUsJzaWmJMAy5OjtLvVolimNhZ2R5W11PJQ2DmWc2AqdplCsVet0unVaLM6dOccddd9305c+3JIc/jiJiGVW4rksqmWNqlVVFjn9kc1DyeaGUVlMU6DCK6CvppWKReqPBUKNBpVQSrFBWyxl91yWIIjRERKhYWppihUkHt7i4yMWLF7nn7rs39g3XYfCIZtnkuxmbUMzdbRyrOvCaZLNFUSSICQO6sZmsFUK2atDx2wPGoFqpsHv3bhpDQ9imyeLyMsutFlEUEaep2ATg+9nCaZWVZ59Xsfbke7el9J3v+5w9fTrrC+XI8X4hcV3SOM6yyXKxiO95pEmSDfwPOknFEPU8T4x2yQUEvu+LcTOpwDU8NERdKupoUoAAxH2tVlM5tp0Jm6hREkP29NA0Xn/9dWzL4s4779z+Q6xzbj9M6VXdl9uJS9qWRcGy0GX1J5GvtWbLSHa5jfPZRZmVFh2H4aEhdu3aRclxSJKEmfn5LGNN4lhUpeTvQEO0hDZ14dK5l+WM9tzMDFevXr3p89m3nKOM45i42wVNE71JSSNW4tuVUimLThQjzO33abZatNttfN9Hk7vdKpUKpUol019U+qrZfCPiC1B7F0nTLDraDJqmceKttxgeGmLP3r3X/SyDx2q71VrXe776nOuhBo4Lppn1DBQLbbtrDt5wtm2TalrGzNOA0eFhSqUSjmURh6Fg+BmGWJsjy7yqv8GAI17/qmmaikW2hQKtlRXOnT2bfQ85crzXiIOA2PezDC+WIxxJkqDpOvVaLRPIUKSSdrvNysoKvX5ftBJMU+hBF4uC7S6Nu2ppKAei9tz2ul3xGNNc09cfhKZpLC8vMzM7y7333SfskLZRNm7Lz3WD67U2eeEtWzcpwonatk3CKndDcTW2+hyDKEq+iIJj24yOjFAwDGzLwvN9isUiqWTgdrtdXM/LXmuwTbRGv1qOq6jv88LZs5kwys3CLecoU+mwIlk7D3w/E9R15FZtNUPU7/dZXlmh2+9nh8m2LKrVKsNDQ4yOjGSMr2zcQ2Zb2VCsPOwpghyzVW8BYHZ2lqWlJe65554swhr8A6ssLjUwrBD/MFEhq05dCRio8ZA4XVXjSNJ0jVjz9TZ6DPY+lbSVUh4Ko4hutytk+opFqnLDiiOzQ03XxeLoJMFzXVaazUzya4PWo8zCS8UiumFw7cqVNZJ5OXK8V1DEP7WuSrU6TF0HXV+jiqMcZKvdFuvrkPwG2R5Qf3RdJ5bCHp58nLqvVRaWVaEGZrc3w1tvvcVQvc7OnTvXZJyqRJoFm4Mz1ayq3mSl1HeBwWtldiQdUAFLxYYgW2aV3oDT2wqamuNEOFnlKBXhLwhDhoaGcCyLUrGIHwRiMYNlZU5YKaipoH6zgEGNuJQchzAMefvUqZtakbqlHGUchiSyKe65rij5SYqzZVli3kmq4aysrODKdTWmOuSNBuVKJRMP1zSNWrWa9e2CKKLZbOL2+5lR7/Z6xKnQhF3f0F6PE2+9xejoKGPj41sOI6ubQP1RhyATNR6ICjdIUMk/g7X87EaSKjnZa617bUPXseQ6rhs98CDmH3VNw3Vder2eMDKS0bdjepqKXB69tLKCJvs71UpF6GQiHWu/n+3mXA+VzVekZNjFc+eyTQQ5crxXiPv97J7zXJee62JJRSu1Bi8MQ9rtdra0PUUE1rVajXqjIYLGgfuiXq9nvbFeryd0YOX2jzCK1lahtgmAFxYWWFhY4M677tpoNwZZ4yroZtUpKruhxjIUBh3goN0Y/DNog9SfzeA4TkZUUozgraCxasMcx8HzfXzfpyP7wiDaXNNTU5hSCajT6YjWl1yFqOm6KHH7Pu1OR9jj9ZUmafMKhQJ2oUCn3ebSxYs3rSJ1azlKSdTRNI2eZK7ajoMpdUV7MoP0fV9EHIZBpVKhVqutOeSZuLe8btFxREQpnU3Xdel0u3R7PSIpPHC9iPDazAzNZlPMTF7nc2zm0BShZvCGWh8lDh7mGxl8zq4jr6H6I5Gc87ru83Rd7K2Tc1WhjI5t2842o4wMD4u5sjRlcWlJiDnIski5UsHUddIkIQgC8TuTPeL10HWdkuPQ7/W4duXKmh13OXL8KIjDkESepyAI6MlZRqdYFPc10Gy36bTbomcm+4lq5d4gUUQ5GCDbNasC6CiKaLXbdHs9XDlnfb0qFIgVWkONBpNTU9f9LJsRedbbDVgNxNVz1j9vsG2zFaEH+TNd0wRxSaprXQ/KbpmFAnGaCgnAJMHQ9WzkxrZtRoaHMZBBRquFpmk4jkOlVBK8CkQp2/N98Z267kbiouRg6LrO7NWrNJvNm9KvvGUcZRwEEMdoiCylJbdj1yoV7EKBZrudMV51KTDcqNeFEV9HKIGNTsY0TbEuR4qK+75Pt9ul2+1e96CTprz15puMj40xdiNDsOt+kYO/2HfDXBvEjThNQ9fFlo8byCqjKMLt9+l1u9nG9EKhQKVaFSVW9bqaJvoOcjfdoly1o1SILMsS2wWkM42jSIzn9PvZoVeZtmXbWKbJ3MwMKysr+R7LHO8JYinSrQGtZhPf87ClwEDg+7RaLcIwJIGMeFIulzc4n82CU9U6aNTrWQuo2+3S7veF6MB12Jhzc3MsLi2tySbfTQFVadC+KxLgOqzXgV77Q/FubHnPq5GYrZCmKUEQ0Ol2hYCAbAsVHYeKZBMrFCWB0jQMWnJ1GZCNqxWLRaFDKwP2SGaf6vUzQpGsSPm+z+zMzE2pSN06jlI6wTRNaS4vE8cxpmliFQp0JRtNlwo8jXodS/bkBrGVk1RQS4grkuCTQjYL1Gw2s4b+ely+coVmu81dd931Q322QYfxw04SbtefGHTE25VREpn5dTodugOlEl3XKUgywmY3pGEYjI6OYuhizdbSysqq7qsUHig6jijJSibw+kOvUJTzaitLS3kJNsePjDgMRYCt60RxLHbQypGFvueJ6hPSQTYalOVMpdIvVhgchdgMhq5TVQvfAV2S6DrdruhhyirXerz51luMjIwwMTFx3c+yfgsIrI6Vbevs3gOsySo36QXGkrnabrczdrApd/uWy+U1cpaDqFYqWVCytLyM53mZ7YjiGEuO2ZTlzkwA13VFSwxAPlZVpBblEukPugR7S8xRxkFAKkugXhAIKbowFEY1jknSlHKxmI1BKKg9Z0hyDtxYtOa6buYYhoaG8KWCvS/r7boUHLAKBUzD4NTJk0xNTq4RF9gu/VfkGz8IiKNIZK+SaKDEzJM4zpaWzs/P4/b7mTCxbhjij6bhuS6GFFHfboBYQZdjGZ7n4Xleli2qcZnMGGhCbMGyLNHLuQ4Kpsnw8DBLS0t4rktbjoiEAwdW18U2EatQoO95GUs2CMNs07qmaRQdh4X5eeoqss/1YHP8kEhkNpkmCe1Wi0jOFBcKBVKpMVquVDJWuEKmiTzgnK5nO6I4Jo4i7GKR0aEhdMMQ93Mc0+/3ceWmn4K0HXNzczSXl3niiSc2SFNuBzXepnZZqvnxjmGIqQBJMAJhO5TzMQbsRyjveTX3ueVrDsxa2nLcQ2WVg9tGBqs/uqxcVapVNlv6vB6Nel3YAs9jcXmZarlMiuy/yiy9YJqY5bKYQPA84iii2+lQlOvB1E7coNNheWmJYrFIo9G4ziu/d7glHGXieejyEPR7PbqdDlEUZRlOfV0fYRCqAa5q+deDJ5U2NIQcm5p9isIQT1LLkyTJHM3c7CzNdpt777+fKIowTFNI6HU6QjNSPs7zfaHK73m4/X6WzanMdX3ZRR2uJE05fvz44Ada+4ZVU14qgThyabJj26IX4DjYlkWpVKJSrQrRctMkCEPCIMCXogEKWRBgWat7OpXRuA6KjkOjXqfZatGVJVtbjeoMPN+QezODIBDzU1FEr9fDsW0sy6JQKOB1u6wsL1MqlYQgfI4c7xJJGJJKHVRXstp7rosjy3lFx6E4kKlswLtwkmpnZZqmWLJsaJqmYHb6fuZglA5sH3j9jTcYGhqi3mhkjqbb69FutXDljltFhlFznJ7nZY/dznYkMoG4EdtRsCwKpolTLOIUi9iWheM4WS+xWqlgOw5qT67vuvRdN+sjqmsXTDO7f4FsqcT1eoaapjE6PMz8wgJ+ELDSalEqlTbVrbVtG8M06ff7xEkixknCUDDnpRLZwtwcjaEhKtv4hfcaN91RJkFAKnuTnU6HVrstFB3k3jhnkxLrIJSRvhEnmaQpfakRa8kMR8EsFKjIPlsYRXi+T7vd5p133qFUKnH27Fne6PXoyd4EckTDNAxK0mE5jkNFlh+dYhFbSuMFMrN0isVskFbXdTqdDl979lmefPJJqtWqyDSjaI2oeavTIQpDDF0Xgu/yZlpeWcFzXfwwJBkoFxeLRUpSE7dQKFAqFhkdHaVUKlEYUN8YhCZnwtaXozZDpVIhCAJakgylVHo2iCGvO/QqoozlNpai47AwO8vQ8HBWDsuR490gdl2QI1EdyTdQxLx6vb4hixyEGlXIrMZ1zr3n+6ItI0uUCoqg4jiOyMTCEM91uXT5Mp1Oh4mJCb73ve+tSm8O7Jq0LUtUYGQ7aHh4WAS+cvZY1/Vsf60SSlAzzSutFs9+/es88cQTVCsV4lRsD1Ki5mrZvNo41O/38aUzXllZwfM8kRRIaT6zUKBcKlEqFjELBQqWRaNeZ3hoCEvasfX3ePb/aXpd8qGmaYyMjDAzO0ssRRqGtgiQTbmsQQnORDJIKZdKovQdBKwsLWXjPB8Ebrp1SnxfOMlul067TSTLJmXFNrueA1S/JBXZbHPg1eiDZhjYur7m2kEQsLy8zNLSEktLS6zIbQJJurq0uFQsMjwyQqlUolQur8o+SVaairAyNR/pwPuuSyRLyYM3mXJapmluKqAcy95LkqaZ8HsQRSTKocrPGwSBGO3o9+n3evRdl6XFRTzpmEhTSuUyo8PDjIyOMjw8TK1WW5NRqmhyA017/e8rTanWalkG3e52s60Mm8GUzGTP9/FclyAISJKEUrFIkiT0ul0cx8nl7XK8KyRxDHLx+tLyMr7noUnCWKNep3C9cr6yG4NiGVvYjkiWVpFs2fX9wk6nw+LiIkvSfigRgjRNabValIpFhoaG2Cl3TzqSKavB6h5ZNRYyYEfSJMmWtq+XvFNBfqFQWF3AnH00MVftui4FWYWKZdlYBeFJmpLGMX3Po9ft0uv1BLlP/lHatbqu02g0GBkZYWRkhOHh4Q3LJkBK3G1DzlMJTaNeZ2FhQWT+A1rd66Eh9WHlvkqlgFQqFnEsi5WVFYZHR6koIuH7jJvqKJMkIY1jev0+zeVlMapgWeiGkZFSrofBRaeqhJim6Zq+JQhl/0DOQJWLRZrNJvPz8/S7XRaXlsTKLgQZZmRoiLvuvJPLV68SBgGf/vSnM61D1aeIZE8zkc5K9Q42Y3J25ZxQJEu66r12ZXbb7ffR1I09MBOVpCk9tSVF/jwbFpbQpZBwqVRiSgo0K2Ztu9OhKVmAvX6f5aUlrly5QpqmGLLnODIygieNjLpRtzrwg6IJQ42GmJ0MAhEdbtMv0DQN27LQEP3hCFGCsqViT6lc/sAOfI4PB1LfJwGWFhcJPE+QURyHWDqJG7EdilEJrO21rXOYvX5fzGsXCiRpysrysmBuN5ssLS5mo1iNRoOJiQmKe/Zw/PhxHnrwQfZKBS8lJq5GtyK1m1FqJqebSLopB60PzFCq0QzFIM1sx0CSkKQpvu8TBAGWlJBLYY1t0gCjUKAmK3emaWZye0kcs7C4SLfbJYoiVppNLl+6xJkzZwBRVRodHc2Ce7VUftAWZ1+l+iP/XSUZnu/Tabc3X/o8AFOSfZSoTN91cSwr4120221GRka2fP57hZvqKNMgwPc8lqWTLJXLoinf692Y0dwig9Q0jVSWE0EcnG63y8rKCs1Wi/nZWdrdLmma0mg0GB0Z4ciRIwzLMqDKcF9/4w0eePDBNZnXoFycI+v6qtyhNmooMk8mJjBwEygnpPoMyP8mW2Vympb1HXUlaKBpWeNeZdKbOehSsUgcRZRKJfbt25f1cldWVrLM+ezZswSSofr8888zNT3N5MTEmgx3vXMGsGybarlMs92m1elQrlS2JAVpyN7oQDkpSRJc3yeU77vT6Vx3E0uOHApxGNJcWsJ1XZGpDA2xvLJCHIbbllzXYJMeGazNLl3fp9/rsbS8THtlhZm5OYIgoFAoMDoywsFDh0SVRjobgGOvvYbtOOzavTu7tiGXH9uWlYmCqz/KbsTSYSbSXsSS56Cz1m6A1Flme9uh7ERBLoZWSjy6bP1omrYpe1TNpytS0sGDB8V34bosLS1llTc10/j8977H3j17mJycZGRkZM33uJldatTrtJtNwiRhpdViZJtqknLApWJRcEiCgL7niZGTlZVsauH93jByUx2lL+vlSRzjFIuMjowwMzOTbavYFjfQQI6ThLm5OS5evMjMzIwYQnYcxsbH2btvH6Ojo1tmQufOncOyLHbt3Hnd1zFME4PN6d3KkaZAfWC3pcpOQTi0SqWyVoBARmcq01Plza0O32YwTROzUCANQ/wgyJa0qjLKwsICi4uLgnpdLBLFMa8dO0aaptTrdSYnJ5mcmqIq2W3rUalU6El1pObKCqNyqfam3xNyfkrTsr1zSZIQeB5dyf6NbmAuLUeOOAzptlr0+n00XWdoeBhdExKKBRmMbYvrtGiUDN7lK1e4ePEizVYL0pTRkRH27dtHrV5nempqU4ccRBEXLlzg0OHD1519VMsW1Aq89ej3+7iSxFcsldaQjwLpKEtSZlK9byATDvB9X8h+ylJpsknWup6Ip2DbNqHcv6l4IsVikZ07d7Jjxw5effVVms0mAOPj41y9epWz77yDYRhMTEwwOTnJ+MTEpt+RrmlUazVWpEpaz7a31MlVj08lW17XNFzfJwhD2q0Wo+PjdLvd9z3IvmlWyfc8uisrhGGIZdvZB1XqMDcaIWw47mnKwuIiF86d49rMjNApLZWYnJpi7549jI+PE/g+nV5vS5HhUB72ffv2/cijC7Ekuig5pkGoQ2QOZKnrnwtsiHw3HO5tbnpblikC6SgVLl26xKuvvsr4+Di9Xo/x8XHuve8+fN9nZmaGK5cvc/LUKd48cYJypcLe3bvZs3fv2v6EplGvVkUJNgzp9HrUq9Ut34vqhSpdTTUeszA/T6VaxXVdqts8P0cOgK4UMU/TlGq1SqVUoiV1nO0fIcAOg4CLFy9y4eJF2q2W0HCVbZh9e/dSLJVoSvGCra5y8fx5kiRh/759W77OZkXhzcgwaq2VKcfUBjFoO240uNyMrLcVCVKVYtXs9WCZ9fvf/z7Ly8scOnSIM2fOcP/99+PYNivNJleuXOHq1atcuHgRQ9eZmJhg3759jE9MZCxXTQqVlEslkjSl1W5jy92eW753+R3ZUjrTdV067TbdbjerlL1bHe13g5viKOM4pi33HarN1gXTzIaD0bTtS68Dv2z1yw98Xxzy8+fpdLtUqlXuvPNO6vU6uozYatWqOCiyDJFscdNcvHSJMAzZf+DAu/pcm274UGID7+pKa6Gt+7s2UFYW/7ixN6BQKBQwdD2r6RcKBU6ePMmpU6fYu28fH7v/fv70T/8UQ7JXTdNk1+7d7Nq1izCKWJif58rVq5w8dYq3Tp5kemqKffv2ZXq3hmSo9Xo9Ov9/9v48SLI7u+9DP3fJfas1a+99Re+NpbsxWEciadOyJC6SnkRK7/kpTP3xHklTNGmFFS9sWTbDTzG2HA5JDIUok5RIy4+UhsMZLsPRDAfAAN0NdAPoBb2v1dXdtS+535t3e3/8fr9bN7MyqxoYAANg6iAQ3V2VefPem797zvmd8z3fb6VCSo6AdL4QAXpSizqVTFKv1ymvrFBaWcE0zc1AuWnrWq1SwapWcWyblByJQtNC5Yt1K1GdnpkgYHFpiXt37/JQyjmNjo6yd88eMUSv6+Ql4lS8TVt7LGl+EHD77l0mJiY6Al7C02j/t+939A/KP30UwXP1GS3vbPMTGyHcE/G4wGLIQFmv1zl9+jS2bfPCCy+EGpymYQjAYaHAU4UCTz31FNVKhcfT0zx48IC33nqLTCbDtm3b2LZtW/gdpdNp7GaTpuOwXCoxuE6vMQrWVLtd13V59OABu/bupdFokOkCDPo47AcSKJcXF/FtG9/zSKfTZFIpCIRiCEHwxIs9QBAO37t7l0ePHxMEAeNjYxw9fpyB/n5cz6NcKon+p0SGKd5EPbpoIk39ALhz+zZj4+MtIsidrH2Qt1NW+FFEVztd63qfu1EZKR6PhzNJly5d4sGDBxw4cIDde/agBQG2TFhUkiLfiGmaDA0PMzQ8zJHDh5l88ID79+7xvbfeIpvJMDY2RnFoSIy2yPGPpZUVigMDXbO7QN3rIMCUs12Nep1HU1MkU6kwmG/aprVbs9mkurwselJyjljtrDw5Vxh7wkpUs9nk/v373Lt/n3KpRCaT4an9+9mydSuJRIJqtYpt22JUIrIedYmW75Rkz0jWmGefeWbdz17DKNYl0f1IGrYbWLdSayeLxeMYloXjeSwsLHDu3DkMw+Dll18mm81y7969EJnffvapTIadu3axc+dOVpaXuXf/Pjdu3OCqJG8pDg3R29dHf28vs3NzISlLVxSspqEjkgff88Iku16rsTA/L9SOvkiBstFo4En5rFQqJb6MWGx1vkiW5tazAMGheOXKFRYWF8llszy1fz9bt21r2c00pBipmmdUFh2wD9l9AIKA2dlZKpUKx44f3/BaWoJkEHQuqXwfWWHkhFv/ydqsdD2Lx+NUKhUuXrpEaWWFZ559lrGxsRBk5DoOZofgpPgzFeJv586d7NyxI8zAb926xc1bt9i6ZQt79u7FaTZxJddrttPISKTnqhh94rEYfiJBpVZjZWWFvr6+TQKCTetopeVlMRKCAJMpyT0kYA7WCSpqlMp1uXnzJrdu3cJ1XUZHRzl86BCDg4Phc+Z6Hk1JSdeeLIfocLmWo8Cf27dv09fXt2G/bM1OrkuiG/qOjxIo1TEjvkND9vue8BCaphFLJJh58IArV66Qz+c5eeqUeGZlSTbWxrWtPtPQ9VDOsKevj2N9fRw6dIipqSnu3rvH4wsXyKTTHDhwgFwuR7lSoSxVRp6khKp6pq7nMTc7S75QoLe39xNj+fpUA2UQBFRKJZB0dZosvwGtZYF1gsr8/DwfXL3K0uIiff39vPilLzFYLK55jyuZaQgC8UBFLGS4UAsx/IXG/fv3yebz9Pf1bRjkogGr2+Lzvo+sMOhyP7QPU0IJAhqNBu+++y4Ny+LpZ55hbHQ0fL/ruoLztlN/QNPWjovIweH+/n527dnD5P37PJic5MGDB0xMTNDX30+5WhXMGx1Ip9U5RS2RSNCwLFaWllju7d0MlJu2xhqNBq4UZlb9LNM0w7W0URnRcV1u377NrVu38HyfnTt2sH3nzo4l0ka9jg/hoH3UdFqfew1AjnrNzszwzLPPhufTNTl+krG3SPBvZ7B5Imv3beFHR/qUG9yzIAiYevCASx98QH9fH88991xLtW8jUvj2hN6Mxdi+Ywdbt27l4aNH3Lt3j3fefptcPs/4+DgZiXcotM2Mtl1AWLlT7ZuVUolKpUK9Xv/EWjefaqCs1Wqh5mRMUiEZarFHnH+nkLK0uMgHV68yNzdHb08PX/rSlygWix2RXCCEmtVcZHuW0QIDj5jtOEzPzPDU/v0dF7nKHjs+AJ9AVvhhdo0tn8Xq7NLy8jJnzpzBNE2eefZZUoqqSl6DotrrBqlf7xE1DYNt27axc+dOJu/f587t2zx69IjBoSES8Tj9XTJrPxDSPtEeTDqZFKQTlQqWZa3b49m0Hy4LgoByuYzueaL6I3cToUV2Se3Pmed53L59m5s3b+JK3MEe2X/0OqDHowl2utMalMdvL71OTU0RM02RhNLqYzRaK0taW5LbKaj6ESDfRwGphJ+wXpk38vcol7TyHZcvXeLOnTts37aNrdu3izGUSKBcF6XeKclW1yZR9ceOHqXZbHLl6lWuXr1KLp9neGREsIh1OK5KHqLkBrFYDDMWo1Qqsbi4+PkPlL7vC4opxwEZuNqFkn1o6RcCWJbFhQsXePjoEYVcjlMnTzIyMtKyC2wPUo4kRu70GSAfJgknV04bYPrRI3zPY2JiouM1qOxx9aO1kHAgKrLcck1KsPn7KJ+sQcPRurDb5xzV36anpzl37hw9PT2cOHECW94XJakFhMPSnUqv8iKFDE6HBa8e8kQ8zlNPPcXOnTu5cvUqU1NTzM7OcmD/frbv2NHCVRk912h2G4vHoVZjRc54jo2Nfbh7tWlfWKvX60KGr9kUCNAo0rMNXBN9/h49fMjFS5eoNxrs2LaNvfv3h8GvWxIaJtiSfrHdWkhNpAUIFPno2NiawKFF37d6kPB93QCF/vezm4SO1TmFDwh9R9A24y3/9DyPd955h9nZWY4dPcro2Bi1ep2mHK9T5qjSaxdTZepOkwnKV/b39/PSCy8wt7DApUuXuHnzJvNzczz7zDMtPUflO8JDyJ9pmkYmnWZlaYmenh5s2+7Icvb92qcWKG3bxnccNNfFkA3ylt0khDV/dXOnHjzg4sWLaJrGc888w/jExMbo0SCgLmf7kslkRxBNqCSuYMXyNZNTUwwWi0++m1HZobaqSr5GJicisRVEkwAZYOmwUMP3BkG4i1XHjS6Q9iHkqN2+fZvLly8zPj7O05I0QQ03NyOAGaXx2V6ebr3Mzgs+RPTKJCCRSHD82DGKxSL37t7lwqVLTE9Pc+zYMdLp9BrHEKXM03WddCZDaXmZcrm8GSg3LbR6vY7hefjtu8no8ySfLx3hay5euMDDhw8ZGR3lxRdf7AoSiZpSygg6tGuUGepZiCSOKysrlCsVDh069ETXE00cVc+wJXlE+o2gjX9Z+UnpF6L/t9+PMCENAnz5nvC9HZJqZZZlcebMGarVKqdOnWJoaEjcV00TrGRSkQWE71jPbwAdd5V+m99A0ygODvLC889z+9497k9O8u1vf5uDBw+yY+fOVd8T2TjokfuSkLiU8soK5XJZ9Js/ZvtUA6UWCQqdgpHv++iaIDk+e+YMjx8/ZmJigsNHjnSdj2p34LbjCEFRTeu4m1Rm6Poq5ZxhUG80mJub4+mnn37ia4qSB2iRYB81dW6KCSPyZvG/HPXo2mNp22FHM9SOPb8g4OKlS9y9e5c9e/Zw4MCB8FfxeBzbtnEdJ9xJNyQV1nr3Sp1/S6lKBfEO1zwgYd6F3l4mJyf59ne+w6GDB9mydeuac9XaFvzKygp1yTW5iX7dNN/3cWybQO5eTMNYu5tkNXA9np7mgw8+IACePXGCcVkKbTcN1jxbdZk0JlOprih1RTUZfRYePHhAMpGgWCw++YWp3Z06btszrpLqNX5DvHi1fKsS7uhxoeW4WptvURiHdp9TqVQ4ffo0vu/z0ksvhVgBTRPjen4geKVVcKzV6wwPD697mWpD0ik4t19XMpViWKLoHz16xIWLF3n8+DHHjh9fw2fbXjZOxmICBSv92cdtn2qgDFw3pF4LB2gjN8vzPO7cvcvSygox0wzLrOtaW+nVlrvJlJTa6fo2XRfbebngpx4+xND1sMfwcZjKCuHjbch3s5aSybFjIc+kMkWj5QcBjuOQiMcFd2IyGfZeulrbrjJKQN9+fkpNobe3l4GBAR5OTXH+vfd48PAhx44eJR1h4YjuKg3pBOu1GrVa7VPVm9u0z6bZtt1Sqot3KastLy1x/+FDapUKExMTHD16VJTg1gOsRJ5JVybYsH7SaKgdm/QbfhAwNTXF+Pj4h0O2t5WM2y0svX7U0ZCNrrutLzo/P8/Zs2fJZDI8f+rUmsCkqOKarktSvrdRr2+4oxQf1xYo5Yap0/3K5XJYts34+Djj4+NcunSJb/3Zn3Hg0CF2SBpOWG2DqU1KLBajUq2K2c71gFQf0T5Z2WxprusKcWbHQZfcg2uQX0HApYsXWVhcxHdd+vr6sKWI54f5HFey3ic3qFMrFKpakA8mJxkZHf1QFGrhFXRalEHQUnbt9sVFCQnWlRPr8NnRsotlWbzx+ussLCzw/PPPrwmSypQIqurhNur1lsC1nkUfWpXxdrs2RXvnui4HDh7k1MmTlEolvvOd77C0vBy5sNasPhYJlJu2abZtCxCPfMbiUgovatVymVu3b1Mul0mlUqTSaUrlckce025mSbKTRESntZPpUi1IiRbMz8/TsKyuuIZu1o68bzfVovgwgfJJQ0P42fLPyclJ3nrrLdEvfOmltbs3xHOpQDSuFKP3fP+JfEeLnBmr19xp85CIx0mlUuiaRiwe58uvvsrEli1cuHCB8+fPt3ynUb+jZsWr5bIQv/iY7VPZUTabTTTPE7Vy1tLTeZ7HuXPnWFpepjgwQCqdplar8f677+IHAT29vSF/YJ/kdexkllQUSEhO0/VMlTR832elXGalVGL/U099qOvyI1v/QO241E5LHltlTh1ZeyJlkhDIFD1+l/5mS/k1CASh+ZtvEkBLyaSTxePxVYHqIKBWrwseySe0KIAoei7tphZ8tVajVC4zNDTEX/jylzl9+jTfe+MNnnvuubBaEN1VxmMxqp9gCWXTPl/WbDbxmk1BqWaaa1CtCwsLnD1zhkQyyeDQEIZh8OjhQ27euEE8FqM4NBT6jjU7Rbmz8n2fpty5JjZoQWiaECnw5fM9NTVFNpP50DJxgcQYRGcx1Z9axHeIH3XwHfLn0WQ5+io/koCrNksLvgEIPI+rV69yQ7F0HT267khLLBYTM6aui2PbAE/sO6K9yhCn0OWz8tksjUYD27Jw02mOHj3K4OAg586fx7IsTp48udqW0XWQOBPDMKhWq1iW9bEDej6VQBkEQZgJKG1HZU3b5vSZM6yUSjwth/wN02R0dBTLspibm2N6epr79+5x8+ZNYrEYQ3LxD0VULgJJsE0QPBEYR4/sKKcePCBumgwNDa1/HZHriVJZqWZ5uFDbyjMftXwSPV50AUcfiNmZGc6cPUs6k+HUqVOkU6m1r408aLose/u+L5j46/UnL3FG+g2+FNvu1ssJgGwmQ61WE31R1yWRSPDCCy9w/vx5zp49y5EjR9ixY4e4d5oGvo9hmnieF8qRbdoPtwVSnipmGEKdJuJkHz58yPnz5+nv62Pb9u3YzSbFwUHSqRQrpRIzMzNMT08Lon+gUCi0JNwq6VPtGoWo3ch0XQfPw3EcHj58yK7duze+DmitnsgeYTQIRlH17UC5D23R40Z6oeo8XM/j/LvvMjU5yYGDB9mze/eqn9E6z1rGYjGsZhPXcULpsY3Yy1quTZovKwTdZsvNWCwc36nX6yQTCcbGxkgkEpw5e5bXXnuNL73wQujr1GZEidt/bneUIBj/DSJjCHI38+abb+I4Di+/+CLJZJLZubmwUZ5IJJiYmGBiYiKUh5qZnWV2ZoaHDx8C0Nvby+DAAIXeXmLRQeQNTFFReZ7H1MOHjI2Pr9mp+l1q3e2BqNuuar0Sw5PYGkKENpucnOT8+fMMDg7y3LPPhve2I/NHJNjGYjEc1xWl7Q9RehUnI7JwT2a83Ra7Ep2Nx2LY8sHqyecxTJPnTpzgg8uXuXDxIvVajQMHD4YLXh1PKYps2g+3KZFy4vHVSpSmcevmTS5fvsyWrVs5duwYCwsL2JIZStM0enp66OnpYd/evdjNJnOzs8zOznL//v0w4R4cHAxR7qZhbNiuUaYbBpqcuXYdh/E2haFufqMTKK+bhb7j+0yyO73fcRzefOstFhcWePa551rOP4o9UOesztU0TcEbLUf9DF1/cnkrCUxSkoRBEHRMsgNEhTGbydBoNGhYVjiv2T8wwMsvv8zpt97ite9+ly89/zyFnp6wUqnJQPlhSu5Pap/ejtJxMGKx8MY2m02+973voWsar7zyCtlMhqZEqzqS8zVquq7T39dHf18fB/bvx7IsZubmmJ2d5dbt29iOg2EYjAwNhRyk632JhtyyVyoVKpUKhw8fXtsH/D4bwt8PqTGweg/aGW6CgGtXr3Lt+nW2bdvG4cOH1/+MCDoXRHmzIcWc/SDYEPHaeigRcD2ZFbYv9oBWGbBMJoO9skK90SAvCaw1TePQ4cOk02kuffABpmmyb/9+fFYfbMuyWqDom/bDaa4s8ZmRsuu9u3e5fPkye/ftC8lBDNk7VE44OjaSiMdDon8/CFheWWFmZoaZmRkenD+P5/vkJTvM8PAwvb296z5POmKdz87MkM3lyGYyLb7jiZ73Lu0YZRu1Ntaz9Y5bq1Y5ffo0jUaDF154YWPR42ilDIibJq7nUa3VhN/4EL5N0zRcWW5WJezwY+R5q2pdPB4nZpr4jrPqOxDYh1deeYXTZ87w5ltv8cqrr4rRsyDAMIxQXuzjtk8lUNqNBgRCMiYmb/TZs2dxXZcvf/nL4fZdOcXA90N5qhZTCFdNqJlv27KFbVu2UD90iKmHD1lcWKC0ssI7586haRp9vb1CU3F4mHyhsHYmSdNYWFjAMAwGBwY+0rWtpw0ZfL+l1w4Pi+95vPvee0xNTXHo4EG279ix7oPRyTRdx9R1GrUaBIFQYGDtqE3X98seCqzuAKMLPWrJZBJDBlbLslqAAjt37cJ1Xa5cv04un2dkeDh8iFRmuBkof7jNlWU0Mx6HIGBhYYELFy6wY+dODkQwBaZhiFk/113rvCP/1jWN/t5e+qV81ozcaa6USty5c4fr16+TiMdFa2d4mCGZcEfJ/FXAnpmbY/vWrR8qWEStWzUq6lO+H6ISoOXclhcXOX3mDLF4nFdeffUjsV+Zpolu21TK5Ra/AU/mO0KEexQYSGc/mslkcGSSnclkwnuRSCb50vPP89prr3H2zBlefvllIUYt39f4BPANn0qg9CX7i5JKuXDhAktLS7z40kstNW6l6hEgEKwdd4SRTBEAOdvTUygwPDREOp2m0WgwMzPD7MwMN27e5IMrV0gmEuHiLxaLgvDAMFhcWmKgv78jC8dGFpKrdwlU3y8hejhvJP9s2jZnz55leXmZE889x9j4uOBq/ZCBEkQJvFavo+u6YMAIWuci1UPc8chB0JIEKARgJ9OV9mS1SrVeX4Oo27t3L6VSifPnz/PSSy+RzmRA08Ts3Ee4rk374lgQBCBHrHRdp1arcfbttxkcHOTw4cMtr9UNAy0IwhGPjtb2rLqui6HrDA8Ps3/fPtA0lpeWVnebU1MEQUB/Xx9F2dvsKRQwDINKpULTthneaHxtHduoZbMeWn49a+l7yvc/eviQd8+fp6enh5OnTmHGYuJefcjjm6aJpmnUqlXGt2xZs+PsRg/afm66VBxRzGadLJVKUZboZVuKaCiLJxKcOnWK1157jXPnzvHciRPhsRSJysdpn0qgNCAc8L116xb3793j+NNPd+QC1Q0DDZ64zux6ntCii4yEpFIptkvtM9/zWFhcDBf/5OQkmq7T399PvlBgeWWFp/bt+8jXtt4ubA0DxYe06AOjSibNZpMXX3yRPlUy+YjBRM0rZrLZjoKxQMusU/RTPM8T/YZ1AmTU0uk01VoNRwpItyRAmsbTTz/NG9/7HmfOnuXkqVPiM1x33d36pn3xzXVd4qZJUz7jZ86cIRaL8dyJE2v6/tHS67oWSbAty8KXpVnVQugfGKB/YID9Bw7QqNWYnZtjZmaGWzdvcu3qVZISXduo1zEMg95PYNY3inb/KNZOERll6Xrm6afRDUMkuh/l+PKYzWaTbAdsQ3uQbvcOvu8L5RVJ+LJuiVvXSUnfUe/AApTL53nm2Wd5++xZrl29ysjoKD6r/NUfp306O0rPwzBN6vU6Fy5dYs+uXWzburXjaw0JsnEc54mGWZvNZjhyEuqiRUqAmq6Lpv3gIIcOHaJWqzErAUF379yBIOD2nTs0LIvhoSEGi8UPNUuJhHn7sjei/vR8n3qjES4GW+68oijUigSsVKtV8eBHM0hNDPR6nke5XObSxYvE4nG+9MIL5LLZcKFrEoH3Yc2UUOpMNovreV2vuX1XrJrtH2a3F4vFSEqFkHqjsaZSYJgmJ0+c4LuvvcblS5fYtXs3umlSq1afaA1s2hfTXKmTqhsGV69codFo8Oqrr3bUqzXkuJcrq1cbWYB0qIEQAlbPU3Rdp9LpUGzY930WZcI9OzvLysoKruvy5ltvMSI1W/P5/BMHN/UpUb+h/m7bNo16XZQTtVaKO7WDK7f5jrC6hXg+G41GCHp6MDXFrp072f/UUyh+1+8Hf6GOvdFoiGrFqJKpmn7wgoBEJ8ahDpaRo4JWBNQTtZGREZ566imuXLlCIpUimUqJUZ+P2T7xQOn7PoEMlDdv3iSbTnPg4MHuJxSLoes69hNCfJuOQwCrfQT1f5cvIZPJsGPHDnbs2ME7b7/N49lZBgcGmJub4969e+iaxsDgIMOy1JKNsNF7kuvQ830818X1PJxms+uuSqmuu65L0AXhBayWLtuO4zgOC4uL3Lt7l3w+H3JJVqrV8DW+fMBNXRcPlq5jGMaGizBAqLkMDA6urwIQOUf1v5Lm+jAJRTqdxrIsGpZFPpdb03tJpdMcOnSId997j2KpxGCxSL1Wg0+At3HTPh/m2DamYVC2LB49esThw4dDUEe7xROJsHf+JPSHisZRsUGFfKRdfIceSbj37NnD17/+dUZGR8Us4rVrfHDlCqlUSmAi2hLuMEBE/Ifile1kzWYTx/MwNcGvup518h2KEODuvXuUVlbYt3evIDaPkHgEyA2MTEQM6Tf0SMDtZrVqVeBN4nERdNdjQJMbCZVge563ZtxtPYvFYsRjMQI5JdFJgmvPnj08evyYO3fucOjwYazPY+lVLYZatcrC4iKHNyAOTsTjIbHxRuZ6Xlhnj5lmi6JItPne8YsPBKvGULHI9h076OvtpVatihLt7CwffPABFy9dIp1O09/fT19fHz09PS0oz3CHyOogr67rYRCIx+NomkZWNqKjfLCapoXKIpl0WuwSiZQ9fZ/79+5x9949hoeHw55MdNcKq4rf7Xm0Og/TMDANQwxrR+5DrVbD831y2ezGWXhbiTXUsPwQXKypVErQ57kulm13nL8aLBbJ5nJMPnjAYLH4iZRQNu3zY2pdTj18SCKVWrcfqGsapmnSdBws295wbVoywU1Ipp+WFsM6iTbA3OwsAbBr506y2SzJRIL5hQVmZXvn7t27GLpOT08PfQMD9PX2kkqnW54/VZWJCjToEqOBPId4IkEmnQ5HNNSuUYvcm0w6TVb6DrVJqFYq3Lx5U+jPPv00/f39giRd7lrV8X0JmiTynGlIrIhphn6jfQSsUq2SzWQwDUMoEa0zXRAF+Kl2mhmZ5X6S8m8mk8FuNrEsq2OgDIBdu3bxzjvvsLK8LO7Zx2yfeKB05ajHvXv3KOTzDAwMYHdxlARBWEJtOs662YoqUfhIJJaqu0sLF36XL2KlVKJhWQwODqJrGk3bxozFGB4ZYWBwEMd1WV5aYnFxkbn5eR5MTWHoOn19fRSLRYpDQ6EiQbS8oMzzfZpyASZktttuCtGpywUZXpvvc/GDD7h77x5bt27lyJEja3ZvQRAQeB6OHHxWmarf9n80CJq6HjKcrKysAJCVgbLlXqtg3daoB5GFKg5bwzDCfuVGpiGyfpXttn//igBh1/btvPv++yzMz+Pt2bPhcTfti2ue61JaWWFhYYEDBw7gNJt4qVTH2d0A8ZxZto1t2+Sy2Y7HDAB8H1viGtq5Y7sRe0RtZnaWnkKBRCKBIyXr8vk86XSaia1bqddqLC0vs7iwwJ3bt7kpqd4GBwYYLBYZHBjAMIzQb7T7Bk3uiBKJRNcRt6jviPqG8soKZ99+myAIeO7ZZztyZasdblNK7vmetzrfCLi+D80mqqanaxqGDJymabKyvEwun0dDyPS1BErlM3x/je9VvkgBgtTOcqM2TjKZDEfSmo6zpvRuN5sUenro7+/n/v37DG9AHPNR7FPZUc7Pz1MqlTglgRq2ZRGPx1eJ0aWpEqqh62hBgNVsrpnxCyJOvCmRkYlYrCuopoVjULwRNI3p6WkMwyCZSlGuVrHbQCaGYTA8MsL4+DiGYVCv15mfm2N2bo4b169z7do10uk0Q7LM0t/f3/oAf0TkmuM4nDt3jtnZWfbt28fo6GhHwgJN09AMA1P+Lnru6kHwfV/suiUwxvV9AbdvNplfWCAupc4CGdRVr6brwDSEpSBTlmvU56lz6rboAwTZdL1e71hWt+V3OTAwQH9fH3fv3uW5kyef+L5t2hfLVJJ3584degsFxsfGaEqCjGynIBgEYTWqE6tTi99wHAEqkbvQKKYhalr7+2UZ8fH0NOPj41RrNVyVOEYsm83S09PDnt27CYKA5aUl5iQoaGpqSsyE9/czMDDA8PBwi+4iRMbKPmQfcW52lrNvv00mleLgoUMtbaOW69LE3GkcWn2wrBypEqnreQJUFwT4qlQcBFSqVfoGBsS1y3unqPIiH7Lmc13PE6Qi0U1BEGw4lqbJiqHnONi23RIoFf1gAOx/6inefPNNHj9+LJSoPiqrUQf7VALl7MwMvb29jIyMUKtWsWwbq9FYu+BlqTSWSGDJEooKlNFSo0LFupJGLR6Pr19mlRYEQjXDaTZ59OgRhUIh7Gv6vk9MsvqYUs4nGiwSiQS9vb3s2bsXx3EEtd7jx0xNTXHjxg1M06RYLIYUWar082GWeqPR4Mzp01RrNZ4/dSrknexKqC6Prxr+q7dRC7NMFT6VFqXruriuS6VcJpPJ4DoODdvGsm3y+Xw4NtPNvEhWqD4r6oTafxY1tbP2JIpRBXdP7or9QKjK79yxg3PnzzM/N8f+iEzYpv3wmOM41Gs1SqUSJ06cIJVO4zgOTemwW0qrcq3FEwk0XReakpEKSft8ryOxA0nZGokC7LqZJyseCwsLYseaz4sAKYOaGpA3TXPN85MaG2N0bAzFyzwzPc3j6WkuX77MxYsXyeVyod/o7+/vKkO1nt2/f58L779PsVjk0JEjeJKhqKtJP9pimiAB0HV99f4Ggu5OBc1yuYzjuiHmwJUl5GQyKdpf6zB1qXJz6Fulz94oSKrj2zJQRqsFtgySaj52YGCA2dlZfNdFf1LWoCewTyVQLi0vs3vXLgCS6TR2s0lTLvp4hwWfiMepaxq2ZYEMZu3D9wrEY8Zi4ZejtZVfxSEDQdcmicBVH7BcLrN9xw4ystZumuZq4Na0dQNcLBZjbGyM4ZERjnoeyysrTE9PMzM7y4ULFwiCgHw+T09PD4PFIrkO4JV2K6+scPrMGQBeeeklcvk8pXJZnM4TSGBt9KCHPUvTFFnu8jJbt20jnkhgN5t48h7Zth0+KPFYbA3zjuu6+Kxmhd0GptV8pTLVj4nFYvjNZriDDwIB0w8QCgWGYZCXs2qPp6fXv+5N+8Ka53nMzs4CUCwWBV1aIoElkdM50wx3XGqVxSUQkCDAbjZXeaCj6xChWasFQUsy2+np8eRuxW42w7GTpeVlgaTv7w/bQ5lUSlRjNngONU0jn8+Ty+XYuWsXzWYzxEQ8evSI27dvY5omvX199Pb2MjExsSG5dxAEXL1yhes3brB9+3aOHjmCZdsbBsonxqzLpNs0TYJEgpnZWQLfZ2BggIZE9asydgNC2kpTqhQpC8uuEnAIIrg9yXgZCJIBrVwWCbX0L47rrgptJ5MEvk9/fz83b96kblnkP0+Bcm5uDs91GZSipoauk0ilsBoNatUqWja7pvGekJmhIivutDtRs5MtgTbyxfiyh6nkYJQZuo4lv+Dx8XHy2SzLrrvKPxgtJ2paK9k5bVleIOaBCoUChUKBffv20Ww2mZub49Hjx4LM/cEk37n4HYb6ihwYP8jw0NAaRoylxUU+uHKFbCbD888/TzKVCndu6+aUG5U8gyB8eKNE7uVymabjMFQsks/l8H0fy7bDnqPv++G9i5km8UQC0zRFH0N+jirZqNLymvmpLueWTCaxm80wM2xIqjqC1TlYDcHh+/jRo/WuftO+wBYEAfNzcxR6ekL/kEqlhJqI54kZ4ExmDelHPB7HdpxQQaL9uVD9eGTSBqypQrkScKZQ6yDWZEyOuPX29FAoFKjX6zQsC8fzSGireq3RpF49fy29T/l7lXCPyd1muVxmenqaR48fc/PmTW7cuEEhnw/ZxXr7+tb0Z69eucLs3BwHDx5k9+7da569rvd3AyBNCxgyYktLSyLYZ7MisdV1QT1pGAJUKCtWumURSyREW0zXBQcvrWXX9QgXVKLdkgSZpkjom01BwymJ2eOyCtZ0HPr6+kACIQ8fOdL1+j6sfeKB8uHDhxim2SJDk0ql8GX5rVavr9lxxeNx0SiWr4m1AVk82b/QELvPqLmSKq19kSeSSRKyL3pncRFdDgurcQo19qDKgdF5xpCiSe1sNS0suQSs9j4VR+H4+DgDAwPUGw3+9ZX/g/+48G2Yh9G5UU4Gz7K3dy9DQ0OChQa4cPEiw8PDPPfcc6uQcnXuHRZzWNeXC6mltNRefu7w0CwtLYlg1NcXlmnjgZgnM00TV+72XdcVWZvrhiTywJqydFQmq91UL0hZMpGgjEh06vV62D9Np9Oh3p0vz+3uvXvYtv2xS+Zs2mffPM9jfn6eYxGUvKZpZDIZqpWK4IVuNATCMeLME/G4GFC3LPIdEJLKL8TbdjyaptGwbSHtFFnLpmkKUE0shq5pLC8vhwAZ9axGAXNrgDnih2t2tUSeXfU+lXAPj4yE/dj5+XkmJye5dPMSj41pMvkMr277MpmYQHbOz8+HLF3h8duqby0W9WERvxH1YdHXttvCwgJFObJlyAqQDuSyWeHTZWvLDwJsy8K2LGKxmMAlaFpLT7RbIG9JriObnGQ8Tt3zsBqNEHmva4LOVLXP0skk8VSKu5+nQBkEAdPT0+wcGmrJhDTEXJ1q2Fcl3Djckus68VgMx3GoVqtr2C9UjyFKlOy6LvVGo2WsxJCKAAnZi1C2tLhIb6EQfp4ppZ260uap845mhdHMDUI6Jk0uQC8IqNgVvjf3Fp4mvuyHwUN+X3vIIfsAR28dJetm8D2PVDrN2NgYnuuKjCtYHQEJ2kqY4edD597KE/Q1FhYXyRcK4aI1DUMovHsesViMWDxOLB7Hl2WVZrOJ7/vh7i+TybTsUNf7RLXolR5dTPZ/LcuiWq0STyRISfUGBSbQgoC+3l5u37nD1NQUu2TZftN+eGx+fh7XdVtIuzXEs5qJyLdpmtYC+EumUhilEo1GI9RhjJoCpKjnXKHnFTmI+px4PE5SJo7KGpZFvV4Pz0n9TlVh1muvtAegQFarlCnsBYjk0ozFyAxkuehd5k3rTS7MXxSVsWX48+XX+En3JwiCgOLQEMlUqiUh9Xx/dccYBC2BOdyBt7WoVEBfzyzLolat0i+ZzJT/8DyPwBeakEnDIJFI4DqOKFlL+rl6vY6m66TbqmkblV/VOas+Za3RoFSt0lsoiDiSSrWKYGsaA319PJicXPdaPqx94jtKr0PwUTNB2UyGSqWCJ4NlJpsNqdFS6XSocNEeKEPkpSwH1huNUINMQ2SLiUSi6yzVwuJii/ZkzDSFZuKHYLgJyQ1orfeHuz3fp+yURXNc0fVq4vyuNK5xhWtktBSn9OfZZ+zl/PnzYclxeGSEvr4+cf7BKqpMZVAKxBMGyQ+JjltcWKAYuX41Y9lOG6gbBqlUimQige041Ot1gah1XSqVColkck1mvuY+qT+jozuKUELTRAlHHSNY5ZBNplKi1/QJsGxs2mffLMtC07S11QRNIxaPkw7EAHqj0UBDlPR9IKZQ84hZ4Sjww5OAEhDPfFMGSDXupGuaSKyTyY6I08XFRYIgEOU9VrVdA9bhpu5m0Wc3EijmGwu8OfUW7y9c4O3SO0QbPzo6aLBCiXqiRqqRZn5+numZGeKxmCBxLxYFLaXs1Ybv1rRQ9SQKvnuS8YyW64cwUVDoWU8CfmIKKyK/o1g8jud5IQMZQN2ycFxXiCWoKtUGn6/O0zRNbFnq9lyXfC4X+g2Q1SvEWihHyBU+DvvEd5REAkr77zRdJ5vNUq5UcOUNTaVSmLEY6XSaleVlAcJx3ZbyqyrXOXIIVVk8HiclZ266mWVZVGs1noqohUQzw+hOqcNJr5ZR2gBG0fxMLUbXd/HpvghqWoNvGt8kWUzy0zt/kspSldnpaW7euIHrecTjcQYHBhgbHw+J3FX2pWDZ3RZat+toNBrUarWWTN2U/LqKYH1N+UjXMTSNdDqN47qY8jwassSdTCTEHGuH84gCJVT2HqjeaQdHqK7PUECNJ3yIN+2LZ2FCGDG1nuIRYd9avY7reYLuUBPUarbrirZOJFCq8YTA9ylXKqs7SF0nJZO+9Wx5aYlUKtVCq2hKNaRugTJ8niJBy48kpEEQMFub4c3pt3jz8WmuL12nj355/Z3XfkpL8aPP/gjfe+MtXnjxRQLfD0FBU1NTAGFvc3R0VAizR5DxLUQpHcrC3bzn4uJi5+t3XTxZjWo3xXyUTqdDuUDHdXGqVRKx2Jo51uh9iZqavzZ0XVBuRkBBnd7z/VD0dbJPPlBCOFgaNfVv3TDI5XJUqlXcZpOqLO3F4nExoO55LeVXPwho1OvULYuc3IGqL0IFPH+dneHi0hIEQQshuyFvuivnh8Jyi+ojyL8T+dNv/1LavtggCHB8t+tiX30zfG3qD/nzme/yN3b/df7Ssz+OqZnMzMzw+PFjlpaWePT4MRoik1Mw8lw+H+4kNVm+eJLF0Z4VgsiMNcMAOXTcPt8KhIjhTDpNQiJlFVCq1mhgaJrIxLss3iAIqDcauI6DrmnE2hd6JCsEgWD+eJf6pn2ebD1icBV8lMOu12phbzGbTgsS/mp1TfnVaTap1WpomkZarr1kKhUm1wF07bWD8B19bfqNZiwGHapRYbkzCNY4/SAIeFR7zJuP3+T1h29ya+XW6vEwokdo/azAYG9qD3//+V8i42XC+9Pb309ffz9PHTiAZVncu3+fxYUFbt+9y42bN0nE4wxLPtpisSjOOZL0r/mkdpyDuv7FxTX6lYous1s1zo/Q1uWz2RBk6bgutsRCKMBg1KIB3JGalEEQoJsmyUhS3r6jDDQNo0u76vuxTzxQqp1ju0VvhC6b9A3E2EetWiWRSpFOpURdXJZf/SBguVSiblmhtmUqnV5b2pX9sE621CErAtmnk4P3H3pQtdOXEgQ4vkNA5/Not7JT5l9d/Q3+6P4f849P/iN6Je3VU4kEBEGom3f9xg2uSBWD4uAgQyMjDA0OrnUoWutsZSAdxsLCAulkcg2Rg2EYeJqG57priSB8H0fxu8oyaVICHJrNJpaEz1erVZKpVJiZhxm07wuRaNnLyeVy2LLv6codqrqHKssPof+bO8ofSlPthnaHrdo2yhKJhJDgqlZxHYeKbOG0l1+bjsPyyoqYAUwmScjeeHT8SVWGOiVonu+ztLTEgba5XjUz6TqOSNDXSVYny5O8/uh7vD71BndL97q8Srzfl34jZaTYk9xFsTLIX9j9Fzh28ChoGivLyx3fnUgkGBkeZmR4mFwux/Lycig5OPngARrQ09vLkOSkzXUgJVjDZiap7paXlxmfmGj5VViN61KNciJz17oumlBmOi2QxZaF6/tYzSaO65JKpdb4Xtu2aciqoaHrZNNpkXC3Beb2ttHnKlCCCFqeu5ZLNAqlVk48k82iWxZWo4HVaIRqII5tU2s0aEqiAhA7GyXGvObYbUEiaotLS2GPgcg5GKaJ1mziyFLiRrbR1xAEAd6T7CjbbLo+zW9f+zf84v6fB8S1JFMptm/fzvbt24Vs2MIC0zMzzExPc//+fTRdp7e3N9TbzGWzax2MvCczs7MUh4dFv1P1MQJBR4f6rtquX6H6jDbUmq7rYtA4HqcuWUoacteYlLtLu9mkYVnhws1msxiS1Uf1dlTJJgiCcMGr0uymcPMPpykkeiffEYJUJODNNE2y+Ty1alX0xMpl8Ty7LtVaDV3XsSwLR1Yzent7uyKp9S49u5VSCd/z6OvrW215yNcrH+RE1jKI9XyndJc3H73JG4/fZKoyhR/4+H53n6CjkTJSHBw8wDPjxwkmfRbmFjl2/Bjbtm3b+MZFzl3XdQYGBhgYGODgwYM06nVmZmeZfvyYG9evc/WDD0gkEgwWi2K3OTgoktY1J6UzNzND4PsMFYthhVCNcehSMsv3/TXPq5p3by/Lqrl1u9kUPkNWDlOplMCe+L74zmQAjsVipJLJELfSHihD3Io8lw/DQ/0k9okGSsMwGCwWmV9c7I4Ka9v6p5JJQRlXrYLccdQbDebm5sjn8wRBQCaTIZfNrl9q7FIOXVlZYfeePWsY92OxGMgSwkaM+Oq81/ssX+4o1+tRdjNRshXWDirQDYPi0JBg4Dh0iFq1yrRc/FeuXOHy5cuCWk9mlQMDA+HsUrVSoVatcvDAgdbehGyUa1pnPT/FWdtt8Rmy16w3GliyrNKsVMIMPZDl3FQ6HV6PYZq4ti14JRVSWPWMNI3lhQUM02SiLYPdtB8OGxkZoW7bLCwuUpQz2Mo0CEm+VcAydJ1cLke9VhPrVdOwGg1KpRIx6Xhj8TipRGLdcaNu4JbS8jIBtLB5KYvHYjSkIohpmtxcvskbj9/ke4/eZLrWSprRbaeTj+d4fuQUpwZPsTO1EwK4fOkStVqNLz3/fAv4bj1TLaFO1JmpdJrt27axdcsWPF/Ihs3OzPDw0SORcGtaSKvXnnDPzMyQzmTIyJ5v1HcYsk/rSTWS8FzkzwJYM+KnTI3sVapV0cap11fp8DSNQPaeVdVQHScMlG2VKNM0WVxa4qk2Ye/v1z7RQKlpGmNjY1w6d45qtbpmrqljfRw5QFoo0KjXAQQ7hm3TUyiQSibxZRa50We3L0qFjs3lcmsCm6HrYnhWlhk3QrCtC/pBBIfJR1NsvPdstWwsy9/e+zMtC77j8eWfmWyWXdksO3bsCCm2pmWp5d7du6E80NDQEHazKVhF2hwPEM5JtvdowrJrEKyrEqBg+rquUyqVsJpN8H0SySTZTGYV2SpNIY09RchOK4/s3MICQyMjHUtDm/bFt2QySa5QYGFhoePvA98nkBURZZqsSpnNJn6lIipQts3y8jLFwUF0w+jqsCMHaf0cRGAul8trFECUGabB3dm7nJ9/j9cXXmOuPt/18FFv0Jvo5Uujz/PC6PMc7j+EoYtnYm5+nssXL6LpOi+99BKFQmH9c44efwO/QaRSUywWKRaL7HvqKeq1Wqi12Z5wDxWLTM/MMDo62vGQagPkR5JeEAm2GulZr52l6zqZTIZ6vU6pXBYJkK4LZZS2GXuF0A8U0jYyAw+iRF6pVJ5s9/0h7BMvvY6Pj3P6jTeYm59vCZQbhQ81BpHL5ahVKjhBQLlSCftjxkaBktW5RhV0KpUKBEFnUmXEjsnzvA0DZacgGZ0Hch2HixcvsryyiK89WY8S4Ej/Yf7+sV9iMDVIRdLX0W2BdchMDdMUC3t4GAJBXqykfy5fvhzu6q9evcrw8DAD/f1hj0apGASa0PTTpORPUxI7KM269e6J4zg0Gg0M00RvNiHC6dh+vwzTDHfwmq6LPogMlIZpsry0xLOSRH/TfvjMMAyGR0d5PDPTGYm9TntF8ZVmpSi57bpUJIjnSdoqUZ8RSIBIpS3R9wOfSwuXeePh93jz0VtgifNbpnPvUNlAqp8XR17gxbEXONB3AEPXW6o4c3NzvPfee6TTaV588cU1LF4b2ZOw8rSbSjB27trFzl278Fx3TcIdBAGLi4vcuXOH4aGhcGcJhDqW4XVogqRFzbtvlJwEQRBWomKxGJZlEVdgvg5+1pAsQJ4EArVUopaW0GMxduzY8cTX/yT2iQfKdDpNOpdjfnaWXTt3hj8PkIu9Q6nP932hl+h5JBMJhkdHWVlZEbN7cri2Uq2KQfVuX4KmicZ8JKBUKhU0wwjlsdotHouJL+yj6CDKTMpqNHjrrbeo1esMj48QPAELm6mZ/D/2/9/5iR1/BU2T2VkE6NTJon0S6ABA0DRyuRy5XI5du3djNRp885vfpFAo8OjhQ+7cvh1mlQpJq0sAhOf7IlND8GIG0BU6HwRCjaFp22K+STq1vr6+kIux0WhAELQkH4pzVu0oYbV80mw2qTcabN++feObt2lfSDMMg9HRUaZu32alVApR7wGRnUsH32FLRhtN0ygWi+i6TrVW4/78fVacEkf1I2i6LgjRuxF4E2GUks9YuVSiODrMudl3+d6j7/HWo9Ms2yvhe/Lkicv/GrQKBw9nhnhh9Eu8OPYiewq76cYkfe/ePS5cuEBfXx/Hjx370EESVueVN2wdRay9+taecF/+4ANu3bpFzDS5fPkyly5eJJvNCkDQ8DA9hYLwt5Hvw3Fd4Qug66bG831sy6LpOEIiMAhCbd6GZYlSbLVKJkJGA6Li5LguTc8jqWktPLLz8/P0DwyIkZiP0T7xQGmaJhNbtvDg0SOONBqhDmEQXYiRL8mX6Em1ULPZLOl0WtAhyXKeHo9j2zZN2xZ9h2SytYkuvzBDa2V9qFQqZBU/ZJdzVYFCzep0sk6ZrAaUIsTmx48f553lcxuCeXqDXn71+K9wZOzI6vEjkPKuUjsdUK7r2crKCp7n8fTTT5PJZqmUy8zMzjIzM8OFixfhwgWyuRw9hULILempQMYq5Zc6L18ihJtSEzTwfTH2EY+v9hNiMSxNawH0qP6QEtp2/VXtTBA727v37pGQAKZN++E0wzAYGhrC1zRu37rFs88+G/6u2/Nr27ZIyhAz1el0mqbj8M6j87z24A3KXoVvTP0R/5/n/yHJWJKkRL5qkXEC5ZdURavpNTk/fZ4/rP4Rk7enqN+od/xsB6clUI5lx3hp7AVeGH2B3T27wnP2JLlBu33wwQfcunmTiYkJduzc+ZHBKCG2YYPfR03r8nPxS7FLGxoa4tSpU7hSNnFmZobHjx6FCXdfby+F3l62bt1KOpOhadsh+YuhqlWq4ibZehypVRz4PoYc+zCkXzAMg2qthh8EVGu1FuY20zTRIm0blWB7QcDDqSle+ot/8SPdu/XsEw+UhmFw8OBBvjc9zbWrV3n66afFTk8unPYvqVavrwbJXE70DiVDTLVexw8CoXIdBDQlvZrTbGIaRkemmOgAbaVS2bDnZZqmAOI4TtdA2U6UDqLZffbsWbLZLM+dOIHjONgLa3XxovbjY/8JA3f72ZrZ2vqLdqDQx2Azs7NkZDNe0zTyhQL5QoE9e/bgRInc5+a4/+ABpmky0N9Pb18fQzIzF0heAVqwJHEAcvwnmUwSj8dbeC9hVXTVkv0iTdITGoYhSjSS29V1XdA0HMfhzp07vPLlL3+kjHrTvhimaYK0/ODBgzyYnGTPnj3kC4UWqraWdofrrgbJRCJMyF9//BoX599HDwzqWp3Hjce8M3uOF0a/REMi7OOSjceUDt3ybN6ZPsfrU69zevosdaeOE3joXvdn0cZmV2YXRweP8MLO59me3945oLcFSc/3OXfuHA+npjh46BCjo6OiovURn3t/ox1lhyC9XirvNJssLC5yRIJjzFiMkdFRRkZHCYKASrnM7OwsDx8/5saNG1y/fp1sLkd/by+9AwOMy76mas3YzWbI0xoEATHTJJFOh4IM4QZBls5rtVo4XqY2OaF8GoQ+CeDunTv4msYLL7zw4W/cBvapBMpYLMau3buZvHuXXbt2kVXUQxDWs9VAupKHUUFSWT6XY2lpSQy36zqpVArP84Siudy+N11XyPHIXU3MNDGC1UnGcrnMli1b1j3feCwWlgzbZw1Da9sFq5LJ4OAgzz73nKjPOw6P6p1lovqTvfzysb/PzsRO/uzun635/XrINaDz3OZ6FgTMTE8zPDzc8XixeDxk/6nWalQqFUqlEtPT00xfu8bVK1fIFwoM9PfT09sr0MeI7zYRjwugjjyWLgFRUVMqDnazidVohKwa4YiQ7AsD3L5zB9M0OfWlL324a9y0L5wZhsGuPXsozc1x9epVTp46tWb9BohdYE1SlsXj8TBI/vur/54/vPWHDDNExkiScTPMMMNbC2/xn+75MRqNhmgNWBYr1RWuLF/l7PzbnJ49S8Nt3TlqLSn3qu3q2clLYy/y0viLFIICjuuSSXUG/ajzVb+xm03OnjnD8vIyJ06cYHRsLLyOj2ph6bXb53dQDVmPxm5ubo4gCBgeHl7zu2jCPTI6Sr1epypxEdOzs9x/8IDLFy+KhLu/n76+vlBaL2aaJBSNHatBL2pqvl5VGBuWRTqVElU22bZTMluO43Dn3j2OHDnSFYPy/dinEigBtm7bxuzjx1y9epUTbcr1GqIX1pS8nul0eg1wJCH7kbqmUa3VSKVSGIZBWnKRWrI063meyBQlKUE8Hg93iY1GY8MdZSwWA8lO322kJco2c+XKFW7evMnOnTs5ePCgAKhIpx8Ea3soXxo5xS8e/QUKiQIrKysdz2HD/mSHn6lko9MDsry8TK1WC1UPupkuwTfZbJbevj6KxSJN26ZUqbC4uMjkgwfcvnuXmGkyODjI6MgIxeHhJ2LQSSQSodh2rU2lXqFq65bF1NQUhw8d6qj8sGk/XGaaJrppsnfvXi5cuMDCwkLIDKN69FoQUJUcxIZhCKo04P/3we/xR7e+AUCVOkWzSNpNYWBwfu49bGy0hM75+Xc5O/U2V+eu0/QFX3RaSxHDxMbGpgltQXJf314RHMdeZDS7+kypQfim43QHA8rzrlarnD59mqbj8OJLL4U9tXWVP57Auo2Vhcf8kDvVqYcPKeTzpOR97WaGrmPGYgwODZHL59mybRu2ZbG0tMTCwgIzV6/iI8CZwxITsdEx1XWkUynq9boQ7m5TLlKja/fu3cPUdY4dP/6hru9J7VPpUarRg6f27+fcuXNsmZ5ucdqe71OXmVSird+oLAgCwdRj21RrtZCCTpMIt3Q6TSqVEjdTCkO7nocne2PValUcY4MvRzH++LK0263853ke58+f59GjRxw+fJhdu3aFElFqx/eXd/znvLbwOm7goaHxd/b/LH9rz/9t48X6ERry6l50sqmpKRKJBAMRfttu7/ckybxfrRLI8Y5iscjI8DCmaVKt1Zifm2Nmdpbz588Dgsh9aHiYoaGhrlB2TRMcnCo7tCSZdYAA72iaxs1r10gmk+zeswfTNBkfH+fRo0e8+uqr/Pmf//m65/7BBx9w9OhRPM/jK1/5Cr/8y7+84f3atM+2xeNx6vU6g8UiPYUCFy5c4JVXXmmZ1bMsK6xCKdm6/+uDf8cf3/qT8DUuDh4eCSNOj9fDor/IL37nl5isPMDxle6rRlJLkCCJFhjoGKTJkNWyNHHoM3v5sad+lJfHX6SYXjteBaIaZSsdyw6jJCqRXVxc5MzZsyTicV599VUy6fSa+eWPylW6Xun1w050u47DzPQ0+/fvf+LX12o1fDk7mY2IVAeS2Wh2dpb79+9z6+ZNzFiM4aEhBotFhoeHQ+WkdlNSZ5ZtC25veW9c18U0TcqVCg+mpjh88CD5XO4T8RufPDOPJoivG64rHO7ICOfeeYdXX31V8JVC2FswTbNrudP3PBFEDQN8n5WVlRaNS/VZquwaqB6m3KmWy+UQWbW8soJpmkJSSmqqRU1JfHULlJZlcebsWUorK5w4eZIxWYdXYw4qKxzNjvJ7/+m/4/TMGZ4ePE5fqn/NsTpe63oQ77ZB67YbsJZkwfeZeviQ8fHxNQ+Pmj9yXVckFVKwtmFZAphjmqRTKWKqp4joOQ7097N//34s22Z2dpbZmRlu377N1atXBZG7nNssDg21oGWj2WFTKpX7ssdw/949FhYW+NILL4T3/MSJE3z1q1/lvffe23Bu9e///b+P53ns3LmTn//5n3+i+7xpn21TwC/X9zly9Civv/467733Hs888wwgklUl7p6RVajfvfx/8s3bf9pyHAOdGlVSRoKCV2CZZW6X7ra8JiCggUUDC0MzSJLkcN8hnh44jvfQY6QwzP7BfeiuQb3RIGaaIUmHMlXx0mSvvdOu8uGjR5w/f56+3l5Onjy59jUfYbyj9e0fYTyky88fP36M5/uMR7QulSn6SfW/EqhoWJbwG5kMaVkFVOeSyWSYmJggQFS5ZuXc5oP33oMgoFAoCBT+8DC9PT0t15CQJPiOqjwGAY7ngW1z4cIFegsFduzcSSKZ/ET8xiceKEFcZKNWw3Ucnn76ad54/XXeOn2aL7/6Kpqu4zgOUZLjTubJkkUml8OyLFZKJbJSoqmTqQCdSCTw02keP34stBBNk0AiNh05EKtJYnW1+KMsPe1sE9VqlTfeeAPXdXnppZfWBGtYzdw0TSMTz/IjW37kQ92v9UqvgThw52tmbda4sLCAZVligUrORrW4Pc8LmZFUj8CQ85OJRIJCPr8ui0kykWDrli1s3bKFQH7WzPQ0j6enQ17JKJF7Pp8XItHxuGjqy/s7vbzM5OQkR44coVgshoHy5MmTfPWrX6VUKnHz5k327t3b8Ty+8Y1v8B//438E4J/8k3/y4eSONu0zawrf4Lku2VyOZ595hnfOnSOXy7F3795wd5GIxYjFYvzOpX/Ln9351prjaBjU/QYZdDJ6igF/gDnm1n6ebnB88BgvT7zIC2NfojfZi+s4fP3eN0glkyHFoud5WBCOPsRME1PqrMYTCVxJbBJdh0EQcOPGDS5fvsyWLVs4dvz4Go1e9RyKH3zEHeVGvuND2NTUFP19faHepeu6eNJ3hOpFyOAsKSl1XSeTzVLI57sGKA3o6+2lr7c3TLhnpqeZlgn3tevXV4ncIwl3MpkUPUnlwzyPa9euYWgaJ06eFD4/mfxE/ManFihBlFhTsRjPf+lL/Pl3v8vZt9/miFShTiQSYcmzkyk6pGwmIxy+ZbG0ssKQVNtezxTAJJ1K0VMohKQCruOI/pjnYXveqqalpmHLOZ5KpUImk8EwDJaXlzl79iyGafLKiy8KdfUOtiEhb2QGstNr15uFWq/xHv18XyqBTE5Oin6uaVIql9fIXqlSsyn/r1Qq2M0mutydP6lpwKDkldz/1FPU6/WQ6ePGzZtcuXqVVDIZckqm02k8z6NUKnHv3j22bdvG9h07RFUgEiiVnT9/vuOCdxyH//q//q8BeOmll/jJn/zJJz7nTfvsWyKREL0/12VsfJz9lQpXPviAdCYTzkMnk0l++8K/4dv3/mPng8iq5grL9Jp9WE2bFVZo0iSmmzwz/Awvj7/I86PPU0i09sZ1ObPX09NDT09Pi9/wlR9xXbCskOSk3mig9BPNWAxD07hw8SJ37txh37597N+/vzOBQiT4bCT150cqV2rXFERGTzq2bboIRbS+RIxqNRoN5ubn2bN7N+VKRVTK1CnI8zAifkMDrEYD3zBIJhJPvqPVBAnEtm3b2LJ1K47rsry0FPqOloR7eDjcmFiWxePpaeq1Gi+99BLpVIoAwkCp7OPyG59KoDQMg1giQeC6eI5DOp3m1MmTvPHGG3xw+TL7n3pKBFPZnG8PAwGCnV4LAnTDoKenh+bcHLVqFSuXe6IxgmazSVx+gerLRWaJruuGD0DI9appYvTEcfCDgLm5Oa5du0ZPTw+HDx0KCb81TQvnhELgT1tDXi0sFaQ09Zq2soBa8NGZwlBGRr5OPSCK6zL8U85+uvIBVrONjx8/ZmR0NORcNOTu2ZQ6cVH1BCR5ALCGcm49i6q1qHek0+lVInffZ0HySs7OzjJ5/z66rpNKp7Fsm1yhwJHDh0XZClGiAXjmmWdCvbtz587xMz/zM2s++5/9s3/GzZs30TSNf/pP/+kTne+mfX4skUhQ1XVcyRC1b/9+KtUq5955h2eefpq+/n6+cvYrXJ693PH9vu+jBWJVNrBIY5M10hS9Irm+LF95+f9LNt4dJdlsNtEhlJBLxOMkZAIZTbjVLkuTn+l6HivlMoamceXqVZaWljh44ABj4+PYckzK0PWQAUv5jBbfJ31h1I8o3xFFxKs/w02G9EXRsqMKwr4MeH7Ud8g2led54TEeP3yI7/v0DQyEqihKW1L5juiu15FqQH4QPPEMaEArIYyaXx0YGKC/v58DBw7QaDSYlfPeN27cwHNdEsmk8FWex7Fjx0IUvmmaJJPJT8RvfCqBElYzQ8dxiMXjDPT3c/DgQS5evEhAZPfQoc/mR4Knhli0qVQKr15ncXmZsQ3QnCAykEyH0q6a14rFYiB/r/p1QRDQdF3u37vHvXv3KA4NsX//fgE+kmwzLecrF6+a7YzF4y2LOcr0oUZIkH/aEvEbBIEAKHieECmVQ7kq8Hm+L2i1iJRa5f1x5RxSgCi9LC8vYzsOExMTq9JD6wCEmrKsAXRWEehia9iV5D2JKgwUBwcZKhYFurVW49atW0xOTeED+/fubTmvHgnUSqVSHD58mPfee49z586t+dzFxUX+h//hfwDg7/ydv8PxTwjxtmk/OIvLZ8iPtEGOHj3K8soK777/PjOD03ww94F4TeChRUbtPd9HFw8IGhoBAcssM2qMUPfTzK7MYerru0DLskDOCbebYRiiLSMrZqo0qxsGtXod27K4fu0ajUaDI4cPkysUhGSUCjBtQUKDcDxEzY8rnxJFrHbzHU0pbqzrOvVaLfQFfhAQyApTJ41gz/NwPK9lxGt2dpa+/n56e3pChZD1ysG2bYsy+IfYTWodfP0aIvdUim3btrFj+3Zc32dhfp73338fy7ZJJBKMjo6G7ylI5PAn4Tc+1UBZ1XVc+aUCQgHj8GGuXb3KG6+/zqnnnw8XZMgAI3de7eXG3t5eGlJ660mIBGzLorf/ycA0pmFgGgbpTIY7ly7x+PFj9u3bx+49e/BcVwQUmZ35KkuTZY8AsXjVzsxaJzDVLQtfBkbFhxhomniYJFuF0a67FtmJKk5LtfNMIB84w8DQNG7euEE+m2XgCcrTBAG2ZYnjfBhWkA6LXf1bjde0f3cLi4vcu3+flCRdViQIAWKRR53SyZMnee+997hw4cKafvF/99/9d6ysrJDJZPi1X/u1Jz/nTfvcmKZpJFIpgSlwXXRJgv300aNcvX6dP5v+ZkhDEw2SQaDKkK2O18OjQpW8mcF2mpx9/DavbHm56+dbUgtxPfxE9FxN0ySXzVIqlbh86RK6rvPyK6+QlSxBjqxYhZUhlfhqgjxBjUrZzWZ3InFNoyaFjKO+w3FdmraNbhhY7bRxQRDSSyrAkabrGJpGPBYjIQO8YRg0LIvF5WWePnbsiRJmR+5GNUQlqqtSVNs1hJqj4Smu+okomYTi3nVdl+s3btCwLAaHhihKv6Y2DD0RvMjH7Tc+tUAZj8eF00TAepUDLQ4OUnz5ZU6fPs1r3/0up55/nkI+H5IERG9ewGrGYZgmuXyeUqnEsrzo9b6chmUxLLPTJxH1bDoO773/Pgtzc+zbt499+/eH1EqduAvD0obnhYsxHo8Lpy9/F939qTIocscVLWWYhoFmGKEah8om1fXpmtYZ/i13nOr8Hz16JPoh6j6uk+k1m82Qhk6Px7sKX3e67vajqoWrvm9lvu9z7do1rl+/zvDICD2FArrsbyjriWiFgljw/+Jf/Avq9TpXrlzhsGQIuXr1Kv/yX/5LAH71V3+1q7LBpn3+LZFIYMtKTSKRwHVdjFiMp48f59r5a7y2+BqGZkiH6qOh4fliF6mx9nkvUWJEGyGlJzl3//y6gdKWCMsnIVMH8TzMzc/z7rvvkkwmefbZZwWTGJDQdWIdfI8qgXqeJwSgfb+VWk/5jEhPUrGG6YYRBrMAEahM5XcgBCsq39GNxMSVwD6ABw8eoOs6ox3Qrh0uWLB0QbibfFLQ0Bq/EW1DsdrSUVWot06fxrIs9u7dixcINSPP80ICgr7I+NvH7Tc+tUCpaRrpbJa6ZNJRkk2maZLL5Xj11Vc5c/o0r7/2Gs+dOEGxWGyZLeqEBuspFKjXalhSvby/zckq830/HPVYL1Cqn9ZqNU5LYvNjx49TyOfFQxqPd2XFUQtQl6Vc3/dJJhLr9k9duetMp9MhG78vIdAgstj2Rd3OetN2EuFfH0xOQhCwbevW8PzC62wPmkGALRd7MpkUoxtPkExAZ2h5ENllqiDvui7vvvsuD6em2L13L0NDQ5RKJdD1ls/qaUMRRxvz586dCxf8L//yL+O6LuPj42FTftO+mJZOp6mYJr5lhYhtEO2Bn3v55+g718tbD95CjxtoCY3p8nQr8bimtZB/BASUWKFgFmjWBfq9W1/Ntm1MOUKmdoCdAo0KZHfv3OHCxYsUi0X27N0bokE1Wp+LqOmaJpR2dD08j6QMlN0s9B2pVNjTV2N2iQ5+JwoUWs/8IODe3btsnZgId6prELkRazabYnOAaIk1Za9yXetyH9pNYUUWFhY4e/YsumHw9DPP4MqKnaESCU0w+EQR+h+33/jUAiUIkEZ9eVnAjGWpUn0Z6XSal195hXfeeYe33nyTLVu3cuDAgXU1ENE0enp6WFxcpFQqkUmnOwYm9eWpG9lOs6YWuRJ2Pn36NLqu88orrxCLxWhY1mqg3Kj+rmmd//6EFqWg+n5mqe7evcvI2BjxDplwtMGPpokgKRdlPJEIZxzXtXUWezsga1ZKB1mNBk8/8wz5QgFH3k/HF1qUSpW8PVDu3r2bvr4+lpaWOH/+PH/37/5d/uRP/oRvfvObAPzar/3ahiQSm/b5Nk3TSOdy1G2buuSCBkLloJ9+9q/x4paXOHv2LGbT4MBzBzELMWaq00yXpplbmmWuvsCkNclyYxmAGnXyFDg18hzzCwuMdsE52LIXps5Di2hgRnd4frDK0rVr504OHTpEqVIRyFjHEfPEGwSHj/a0r1oIAuwUyJ/gswNgdmaGRqPB9ohMVRQfEqJzxUHD/mgimQy1bDesRm2wUVHmeR5Xr17l1q1b9PX1cfjwYTRdp+p5QspPJuDxeHxNJerj9hufaqA0DINENktzZYVmsylgxVH5FNPk1KlT3L17l0uyN3j4yBHGx8a6wqbTUvDTq9eZm59nbGRkTWk0nLeKBlHp6KPzQLMzM7z99tvk8nmeP3WKRDIpWGRkJusp7cRP0MI5qO/jcxYWFqhUqxw7dmzd16lFb0sFkHQiIcrB2ipUvStnZIeSa+TA4iFqNrl08SIPpqYY6Ovj+VOnQsSdbhjosgervoN8odDxuk+cOMGf/umfcu7cOVzXDdkznnnmGX72Z3/2yW/Mpn1uLZPJUF9awpWAMzMWa1krQ0ND/MiP/Ajvvfce77x9jrHRUY4cOcKhwcNUZOUin89jORaztVmWrCWGEkW8iiAtWF5ZCaW8omZbVstORQfcCLoVTbBZvXv+PA8jLF0AiViMhu9j23ZXmbqoRQPFR0mSw57e9+E77ty7R6G3t6tMVZRiz7btcIediMWwg1Vkf1dbL8GO/H1mZob3L1zAbjQ4ePAgW7ZsoSFHcAzDwA3EeIq65vYEGz5ev/HJev0Ols3nCTTBXNFp16JpGtu2b+dHfuRH6B8Y4O233+bMmTNYjUaHownr6+8nbpr4vs/i8vKa36vB+hAwI0soURTY3bt3OX3mDMWhIV588cUwqOq6LtCrgCXnLD9JWy8r3HCXJ+3O3bvkczn6N6CsA5lEyJ5HdCRk3QdV09bNfoMgYPLBA771rW8xPT3N8WPHeOGll4jF4yJIaloIyohFuBt7u5TOVRnl8uXL/G//2//G9evXAfin//SffuRd96Z9vswwDBJyB+BIyrp2S6VSnDx5kpMnTrC4uMiffetboeiwsmQsydaerRwbPsZo7xg9vb2YpikQ4hGgoTLX81Z7gJFeoR+pxrz55pvMzMxw8uTJMEgC4RhDWEHbyKIB5KMEyshY2Yc2TaNWrzM3M8OOJ5C3830fS96vpGoRRStV3WyDna1lWbz9zju8dfo0mXSav/AX/yK79uxp2bmq6zQkfsMwjBDxGrWP0298qjtKkM3mVArqdZxmEy2bxQ+CMDCo5nUqleLkiRM8mpjg/fff56233mLrtm3s2bNnTT9B13V6+/pYmJ+nWquRTqVaSLeju59oIApkNviBFCZVJZP2jCwRj4cjH0/a1IePOSt8gpq+hlho048fc/DQoQ1f70qUXIBc7IYRzneKj+ywo9ygv1CuVHjv/feZnZ1lbGyMw4cPk0wm8SOEDslkkmq12vJwGbrO4NBQx2OqBd9sNvlv/9v/FoCf/umf/kTkdDbts2vpQoHGyspqkt3Wa/fleh0bG2NwcJAPPviAixcvUujpETJdHYj2c5Lpy5cD9mOjoy2BJpC+qUUjVoJMKtUqp996C9d1efHFF9ckeirJdppN7Damno6mnocnxAe020bKIet+NHDv7l3MWKwjZV27NRqNcLay5bo+YuKqyFEuXrwoUM3HjzOxZQuaptFoNELwoyEF5RVICaA4NNQxOfg4/canHihBLPjywkIIhV4DNInY2OgoxcFB3nv/fW7euMHU1BR79uxhx/btLSXWVCpFLpejVKmwsLgomH5kQPV9X4xVtJknB1IfPnrEkSNH2LlzZ8fzVVynnuvSbDY3Hqj9iAsdBAMRdMgKn+ABCjSN+/fvo+n6hnJiAQIJjNSHVP0eha7V2sZSwvd1KbmurKxw/fp1Hj16RCwe5/lTp4RCunxPTSo8mKYpnIfjgCyfAAwOD3d1JCdOnAjLxI7jkEgk+Cf/5J+se32b9sWzRCKBIZPsZrO5OmKgAlkEaBOPxzl+/Dgjo6O8++67vPP220xOTrJv375QgURZf38/zvQ0tuOwtLTUIh6gxjiifkkDFpaWOHPmDPF4nFdeeSUkZG+3pFzrTdsWYuXrBRJVuvw+dpOw1nc8EYjH97k/OcnWLVvWcF+3myMJFoIgaLluRRjSsfLVxX95nsf9yUlu3rxJtVplZHSUY0eOEJMbEsW5DSLBdmU1QSF5NU1jdGKi43l+nH7jBxMo02kwTQLPw7IsEvF4OPrR6UuNxWIcOHCA0dFRHj58yOXLl7lx/Tq7du9m186dYWmkp6eHhmVh2zYLi4uMDA+vziq1BeSQ2LxU4uTJkxvChBPxOHWpzL1RoAxgw/Jk1/d+Hz3KIAi4e+8eE+PjG56jbVn4ritElzvtkruMoLRf08LiItevX2d2ZoZsJsOx48cZHRtrKR1bjUZYcs1kMqHcVoBALmqaxsjYWNdzLRQK7Nu3j2vXrgHwC7/wC2x/gvLQpn3xLN3TQ2lhIWSCCYFpdN5JDQ4OcurECWbm5piamuL1115jYHCQffv2iTk8mRiqilS5UiGZSgmqzEAQCLQfd+rhQ86fP09vXx8nn3tuXcChGYth6DqelN9KrPPaJwloXd/bDQT4hGjXhw8fYts22yIgnm7n2JBE9IlkspXZS5oiSggDY4cg6boud+/d4/atWzQsi7HRUU6cOEEulwt7nL7n0agLXdBEIoEZi1Gr19GAuEywe/v7u864fpx+4wcSKAFyAwMsP3xIo9Egm8lgmOa6ABJdijUfOnSIAwcOcOvmTa5fu8aNGzfYvWsXu3btIp5IMDgwwPT0NFajwdLKCoVcTjxQrG7VK5UKb50+jee6vPzSSxR6ejZcTIl4XAhLSxTbeoHooy93wl5Ge6B8knGNh1NTNBoNdnTZGYfHkgAlIJzXarHI/Q/p6SKLPQDm5+a4fuMG83Nz5HI5nnn2WcbHxgTJveuGx2jadki+kEqn0TWNhswQdUnfpcSg17Nisci1a9cYHBzkH/7Df7jhvdi0L6blcjlm4nF8x6FSLoveVKRd0G6GrqMZBsWBAXbv3s3MzAzXr1/ne9/7Hn39/ezbu5eR4WFSqRTZXI5yuczCwkIokuBHZhYVsfnVq1eZmJjg+PHjGz7rStGoYVkCGPQE/MkfJcHu5jeeqBIVBNy8fZvi4CC5DUSPLYmQ1zsl2NGkRf479OnyJU3H4e6dO9y6fRvHcdgyMcGePXvI5nIiMZHXEQSBIFVAzJUnIjvMIAjCXe9Gs54fl9/4gQXKQqFAaW4Oz3Wp1ethJrEe47yGyDLSmQxHjh5l37593Lp9m1u3bnHz1i1GR0eZmJggXyiwtLzM0tISpmGEqEpd05hfWODsmTMkk0lefOUVMjJz3GggX9N1UpKGz7KsDXdsaqF8WOvaZ3iSxX7jxrqakMoUabMhy6Dtpu51iHCTwbLeaDA1NcWDBw8ol0r09PRw8uRJhkdGWs43pMZyXVHeRSiNmKZJgEDLBZoWOqDRsbF1S1Lnzp3j9ddfB+Af/aN/tOH1bdoX2wqDg5QePcKWvb/kOgQZarbZl2Mdo6OjjI6MMDs3x43r1zlz+jSZbJYtW7YwPj4uNDAbDebn50VFSlZCPN/nwoULTN6/z779+9m/b184XL8RyE4Jy/tK1LmL7wjHML4Pv/FRKlGzs7OUl5d5foPencI0+EFANpVa499Cnyd9aRAEaLqO73nMzc8z9eABDx89IvB9tm3bxu49e1pGNKKbFavRwJdkAmmp7el7HnYkyc7m82vK6FH7OP3GDyxQxmIx0vk81cVFXNfFbjRIpFJdA5bepmwNYut/8OBB9uzZw+TkJA8mJzkzNYUZizEwMEAun2d+fj4sRzx+/JiLly4x0N/PiZMnwwWrSRTmRgs+kUxSjww9mx0YeoCP3KNcr8+wkU1PT1Mulzdc7E3HwXMcAk3rqv0ZNddxePjoEQ8ePGBudhbNMBgbGeHQoUMMDg6uCZDhbJniwwViphmiiDWJFFT9yWw+T98G1IK/+qu/CsDBgwf5uZ/7uQ3PedO+2JbJZKhJySWrXhdo9nV2ToqnNMpzOjQ0xNDQEIuLi9y/f58bN25w5epVegoFCoUC+UKBufn5kGf69OnTLMzPc/zpp0MSD4gkleucrya5Yh3ZanqSUZEPa93Gyp5Eaej6jRv09vWtK+weYhoQ1bWuvi9ilXKZyclJpqamxGYom2XPnj1s3bq1pVwaVhHld9hehVIVL9u2W5iGhorFdQFSH6ff+IEFSk3TSGYyuBL9auk6ZoRirj0oKpoihZCNliLj8Ti7d+9m9+7drKysMHn/PpOTkzx89EgQqCcS+DIj3LJ1K8eOHWvRgoMnW/BKPcD3PBqWtWGZ4sPuKKPq5B8mqwyCgOvXrzMwMEBflxELdfxGvS5QrolEx/6Cet3i4iLXrl9nenoaz/MYHBjgmWeeYWR0tOtDohDLIFBxivNRPRQaIvB6nhf2LIeKxXU1L3/jN36D1157DRCM/xsBDTbti2+JRIJENkt9eRnf96nXaqSz2a5BQTnhKPBHWX9/P/39/Rw9ckQkhFNT3Lt3DxBVr3q9zsryMmgaX3rhhZBftOX4cte03jObSCSo1Wp4rrth6+YjoeU7jZUF3ZmElC0sLrK0uMiJEyfWPb7aEaNp67KNWZYl1D6mpymVSsTicSbGx5nYsoVCobDmXALfX0Xb07kKhfzebAngMkyTdDpN/+Bg1w3Fx+03fmCBEgSKycpksJaX8T2PWq1GNpttYb9QFs0q/l//4B+wsrLCwOAgX/nKV8KbEAQB+VyOQ4cOsXvPHv7xP/7HNJtNbMdh9549jA4PYxgGszMzDAwOrsnsonJR656zZYWSXGa3YCPnp4gQp/tBEOq6BUFAVSoF1KpVdMPAdRwaloUZixFrNDAkoEZJeHVb8HNzc6ysrPCldXaTAVCTjXHDNFuDUxBQKZeZnZ9nfnaW+YUFLNsmm8mwb+9eJiYmVkskcqSm204SRJB0pCxSOpVq6YGq3qiaferp62txGvV6ncePH1OpVPj617/O//Q//U8A/L2/9/d4+eWXu17fpv3wmGmaxJJJEul0KFnVXAdkp+s6TrPJr/73/z0LCwv0Dwy0+A3liCfGxykODfFr/+P/yMzMDD29vWzbvp3enh4Gi0WWl5cFe1Sbw1ezfOtVpHRdJ55IYNn2uq2bANFvdJpNvCBoIVBXwJwAgbMAQbepGwb1Wi3EYviIgKnIQ9YLlDeuXydfKDA8PNx11tNxXZoSwNP+PLuuy+LCAnNzc8zOzlIqlfCB4WKR/fv3UxwaWt2UaFrLPVKl2TBIeh516aOiVSjFC9607bBNNjI+3hKwP2m/8QMNlKlUimo8TjyTodloEEc40mQHFJOuCa1K0zT5z//yX+Z3/u2/ZWF+nu9973u88sorAKsLJQj49V//de5PThKPxfgrf+Wv0LAsCoUCjx4/5s7t2+iaRm9/vyBlLxbp6+/HkFv6Tki38DzkbJQvF3w2kwmDolIAL1er4d+jw8rhMeXCUKMgARAoJKjvE3geTrOJw+pwcxAEmLouqJukuokhy9E3btygp6eH4sAAzYhcTtQsiXINNI10KoVlWczPzTE7P8/c7CyWZaHpOgN9fWzdto1CPs/Q8PDaRCAIMNr4WUOwD6L/qeDcqXQ6HP9Q59SQiikx02Ri61aRGEXu9e/+7u+uKZM899xzm1qTm9ZiuVwOx7Zxm02RYErf0Om51XSdeDzOj/3Yj/G7v/u7LC4utvoN9TwGAf/in/9zbt+9i65p/Ozf/tssr6wIxY8g4OqVK1y+fJlEPE5xaIhisUhxcJBMJtNC79bNEokETdtuad24kgjdk/23SrWKjtxptW0Yokf2iFBvSh1aBYaxJYNNwOpsqaHrq1q0khFteXmZubk5nn322a7nHASBQJ5KUFLMNFlaXGRubo752VkWlpYIfJ9kKsXAwADj4+P0DwzQ06kf2Gnzo+6971OtVkXF0DDCKpSaYXWkZrDjukxs2UJPT0/IcQufvN/4gQZKTdPI5XIsN5tozSae79OwLCH03EZArmka6Dp4Hq+88gp/+id/wuLiIn/4ta/x4osvhqVTgN/5nd/h/LvvAvA3/sbf4MiRI7z15psUi0UGi0VSiQTz8/PMzs1x+84drl27hmGa9Pf30yP7E/l8nnwu1xERmkwmaTQaVCuVcB4wakpySy1MJYeleqWqFOTKQJlKJoXUVL2OjujfJiSLTSCDsK9pQpPSdcF1seT1VioVFhYWeO7Eia6l3lq1yuz8PLVqlUajQWllRaiWBwE9vb1MTExQLBbp7+/HMAxKpZKQNFoP3NTW8wGxk7QjZM2xWCxEyIHITO1mE9fz2Ll7N6lUag3f4nvvvQcIp7Jt2zb++l//6/zKr/zKE8kcbdoPjyWTSSEGn8ngVKugaVSqVfLZbEuZFVbLkadOneKb3/wmi4uLfP3rX+fFF18U7Qe5jqN+42d+5md48YUXeP2NN6hbFtu2b2fw2WepVavMSd/xcGqKIAjI5HL09/WRz+fJ5fP0FAoddRkNqfRh1WosLS8TlyAktQv0lGi8IkfXWmX0VPtJtTA0hO9Ip9MCaR4EIe4gZB6TOzhf7kybMqAaus7Vq1fJZDJiNK7Dsx74PnNzc5TKZarVKnV53o7jYJomxYEBDh8+TLFYJJPJ0LRt6o1G15YOrPJsR/1HGCQltWVW9iXVpkcDqtUqBAGJRIKxiYk1CfYn7Td+oIES5K4ykRD19Hod33VFCVbXxW5Ggns0iZK0ZW/rJ37iJ/iN3/gNFhcX+e53v8uXX30VgD/+0z/lz771LQD+sx//cf6TH/sxKvJBCnyfaqWCYRhs27aNbdu2EQQBpVKJ2fl5lhcXefjoEfWbN8UXpOvkczl6enooFApks1niiQQBAiatqKlSyWSo+h0tA2czmTVK4FFTuzUFRTfkA5JKpcLSaEiZJWV4fN8PM1I/CLh9+zaZTIZMOk2lUqFWq1Gv1ymVy5RXVlgqlWhK8Iyu6+QLBQGL37ePwQ7N8Cice6Ph6Kg1Go1Q+DmdSoVoWqW6AFCVwTmbyzEyOkoul1vzGb/+67/Or//6r6+/aDZt04B8Ps+i42AkEgSy91epVsN1pYKl2mlqEPqNhfl53njjDV566SU0OvsNgEw2S61WQ0MI/g4NDTE4OMiBp56i6TgsLCwwPz/P8vIyjx89CklUEokEPT095PN5CoWC2HXK0SlLljFBlBgN0yQhx+N0TbDdZHO5dUGBCidgmqaockXEJZR5kSDpSeFr5bNK5TKzs7Ps27+figxStWqVarVKqVxmZXmZcqUSSoAlEgl6e3rYvWsXg8Uivb29Xec1NyRVaAuStVpN7CR1PQySsDpm4nketWoVx/PYt28f8Xh8TYL9SfuNH3igBFFGWXIctHgcXYqAVisV8vl8S7PWNE2asjf40ksv8Ud//MdMP37MN77+dV56+WXOnzvHv/s//08Anj91ir/5N/8mQBgMEsmk2DGtrBD4Pn3yy+7p6REkwLt3A2JWp1Qus7KyQmllhaXlZSanpsLyqJqNisViJJJJ8tks2VyOVDJJMpXC9/3V/keHfms3C2eh2jIyNfjcaDSwGg0alkWj0WBxYYHlpSWSqRRvvvWWoNmTmWYimSSfzzM+OkoqnaZQKDAwMLAumradVaMrIToScCTLwg3LCsWsE4lEGCT1yAPheh61eh3HdXlq9+4wIdi0TfuolkgkhFal7xM0GqGoeq1eD8uhQNii8D2PF154gT/64z9mZnqar33ta3zphRc49847Hf0GEFZ24rEYTcdhZnaWYZlgxmMxRkdGQuWRIAgE+KdUYmVlhZWVFR4+fMjNGzfwNQ3PdYmZpvAdiQSpZJJCoUA6nSaVTIb6iu1Aw43M7+I3NNkTbDabLb6jVqsx9eABhmkyef8+N2/eFD1RudPL5/Pk83kG5U5xsFgks57ShtzMKM+xXiVK7YgDCHEpKkhGZ7q1yOurtRpeEJArFBgaGuqYYH/S9pkIlMlkUkC+ZalAl1lPpVIRoqcSNqwWvOu66KkUP/VTP8X//r//7ywsLvLbv/VbvPHGGwRBwFMHDvD3fu7nwputGudmLEahUKBcKlEulwHo68A6H4vFGOjvJ5/PUxsYYIssiTQaDeqSPsu27XD39mhmhubkJJ4EsETnoQzDEMLMsqdoGIZQEpfMRADvX7iApgmieEXg7nmeaOrLXVo7vD0Wi4k+h2GEyNF4PI6m66TTaVHikcCZmGlS6KLMoUzNTW6UFbbTDaqdJIgykOpJ6vL36rur12o0m036ZTbaTZ1g0zbtw1ihUGDBcfATCXQJmLMaDXRNI6WcexCE1Sjf9/mpn/op/tk/+2csLCzw27/1W7z15psd/QaIJNt1HIrFInPz8zSbTWbm5sJgGTVNE8xTqXSanp4eLKmu4cpZ8Ua9jitRnZVymVK5zII8pmLzUuer/IbyF6b6t2liGkbYtnnv/fdFe8bzCGQv1ZUJveu6aOoZRDyPavdp2TaDg4MUZJlYlYUzmYzwdbZN3DRJptOk10lowxJ3BGzUUa9TAXeURXeSmpiVDOS1h++XyY3qXW7bvr1ju+bTsM9EoARRRnEcB8vzCBxHaI15HqVKRfQKVQklCPBkeePkiRP84ZYtTD54EEKBJ7Zs4b/6xV9sGWHQ5Xsd2xaINQQ3ablcxg8CBtpGKnzfp1avrwoYy9KDgjdHSxrlUokgCMSXpwkC3+XFRYFeNU3RT5AL1/d9PCnX5ct+rMqmkskk8UQiXDSGfChUydk0TZKpFKlUimQyyeTkJO9fuMALL78cBh3Vz1QlKNW3MAwD13Vb1EGipsmytDqG2jF2eGEY/BSVlRsJkrFYDFcOCasHX5FXr5RKmIkEW7ZupaenZ2O+3E3btCcw0zTp7e1laWmJoNnEkL25er0e0jNq6lmS1aiTJ0/yh1/7Wovf2Lp1K7/0S7+0ZvQpHovhuC6GYYhgOTdHs9lkenaWoWJxDTtNs9kUDF7yPAwp79Xf39+CKrUkcYmmaWSyWWzLolqrsbyygu+6xBOJ0Fd4rourWi8ygVaasYo7WQsCzFiMZDIpAqqui4TcMEjE46HvME2T73znO+TzeV548cXwfFRAtyyLlXJZsHc1m8TlaF23JDsMkqySHrS3mnzZE1UbCM91qUaCZDaTEVzcQes8peKIrjcajIyOMjg4+ANLsD8zgVLTNHp7e1mQ7BXIJrfrulQrFTK5nKjfmyae3HkZpskrr77Kb//2bwMiu/xvfvVXQ7ad9sxQoTFVwFteWaFWrRL4PoNy2NaS4rABhLX5VDIZfvntpADJVCosaRRyORL5PKbsRaQzGRKxWFf6uZWVFaanpzl08KDohVSrGIZBLpcDCDOsdnNdl6tXr7JlYmLtwpH9XN0wSCeTIQWUJcWn0+l0y6LXoGUkJlQvaVvsWiRI+tIReVJpPpVMEo9IaClT2WW5XMZuNhmbmGB0dHSz5LppH6slEgny+TzLrotXqwkBAzlqoEfQmg3Es6MBr375y/zWb/0WIPzBr/zKr4idU9vzFpM81IqntVgsMj8/j2XbzM7NMTQ4KNRxfJ9qrSawA4iKSjad7soDm0wmsZtNAt/HdRwy6bSoCsViaLpOj5Qj7DautrSywn/81rc4eOAAZiyG6zik02kBEIKu7Z47d+9SqVZ5rg3pqljR/EAoNzm2jS4p/CqVColEomUcI8rcFR5D/ru99BoNknaziaXG1GT1S5MgTRUko7Ofi4uLJJNJRsbG6O/v/9RLrso+dT3K9cwwDPr6+jCU5pi88U0ZLD2Z2Shl65npab761a+G77dtO8wI229oPJEIAyWIHWxfXx+6rlOXos/lSkUoqCvgSz5Ppi2wtGdLKmMNgiCkVwrtSZrb6qURsoGN7MbNmziuy4EDB9b8zpO9QBABbKCvTwQmuQArCqkbnmLbA6WAPJEfaZEdouu6VKtVESQ1jXQmI9CtwSoNYMBq+dlpNllYXCSVTjM2Pr5JP7dpn4hlMhmyuRyaaYbD/2pWudFoCL8BeI7D9PQ0//4//IfwvVG/0f58x6UWrfIdpmEwODgY7iRnZmepVKuUKxUcCbBLysCdSCRan6PogbXVwX1LVpZCU3+XM9cbmf+EvsNxXa5du8aWiYk1+o0aYnTLlclvb18fvYWCUDzRdZrNJjXpG8Uprj0zn9WAq64x9AeyTaOCpBmLkctmV31r5Ljqu1tYXMRxXXr6+9m2bdsTsQF9UvaZCpQg+oN9AwPo8Xg4ZIuco1FDtn4QsLS0xP/8P//PVCqVUHvSsiy+8Y1vrB4ssuhzuZxAv0Ysl83S39eHpmksLS8zMzeH67qkkknyuVwLm0NXFKgmqOA0JBtNtCfwIa7bkz2HlkZ+h8VYbzS4dfs2e+R4RdRUcxxESUqVgxOJBPlsNpyfUv3CTsf3ZJ9Hlxy5YZBEOBS1A9cNg2w2S0wpzSukWuSYjuznBEHA8OgoOzZQJti0Tft+rFAokOrpWeVflcmb4mfWdJ1qrcZX/pf/hepGfkOue/Ua5XuAEBeQSiaFjuKDB1SkvmpegvqUr1DjYJ2oORPxuBAwZ5WII2qapm3ooBUiXp1XeP4d7Pr167ie1zHBtixL7HCBjCzR6oZBJpMhLQO657rUqtXQV7WcB2IWPBwHi5yDYk9qRsSXM5lMeG88hcFQx5IJfWllhXQ6ze7du1tmJn8Q9pkLlCDKEgMjI60orkAO09o2dqPB//Gbv8n03ByJeJx/8A/+AU8//TQA3/72t1leXm49oKaRy2bDfmLUFOLMlxJatUajI91ROJPVIbjEZTNckz3K6DmHf93gmtsRr9006S5dukTMMNizZ0/Lz1VfVe2GM22kxbphkM1kRGnHMLDq9Y6K7r4EE+mGEZZMQmcjr001/ZWIqjyBlmu0bJuVlRXsRoNCby+HDh3a7Etu2idqmqbR399Pup0qLQjClsq/+bf/NmTY2chvaJpGSo46VST4T5mu6yHeAYRguSd7mWvOC5kAt/sOTZB/aIhAFfYwo6/boBoVbiZUQAboUK4tVyrcvn2b3bt2rUmwm81mi5pQe7k4nkiQy+Uw5ahXTbIARc2XQCJNApDUNXiyAuVGKlBhCVcGyahP9j1P9GqXl0HX2b5r14baup+GfSYDJUAylaJ/dLR14clxhK9+7WvMzc6STaf5+V/4BbZs2cJP/uRPhsjRr/3BH6y+Ry60QqEQolVXDxdQrVYxJdlAPpuFIODx9HRIpRQ1jdWxiHZTCLtmsxmWL6LvWxcyTQTi3VaKiNqjx495/PgxR44caSlDKFi6J5vjmcgsUuuJCKBQMpEAw8Cy7ZZyNKwGbBUkPblLddqywfB6IvNQ6lwaEuFXrVbJ5PMcOnJks+S6aZ+KaZpG//AwmTbZNs/z+L3f/31WVlZIpVL8/C/8AhMTE/xEN78ROV4+nxcEHRFToJ2enh56CgUyqRSVapXZ2dmOOy51rHYzYzFi8Ti6rtNoNEIw3ZNa9Hnt9hkB8O5775FOpdjblmC7riswGZpGIh7vyrusKlSKFq8aKcOq8/Alyl+1aWzbplqrhXyuWdmmEScVhGQL4blIX1OXY2Rbtmxh3759H0kR5eO2H/wZrGOpbJb+4eGWof1vfP3r3L51i3Q6zV/7a3+NQ4cOQRAwPj7OsePHCYKA115/nbm5uZZj5fN5dMNoKaHU63UxfgH09fUxMjJCQhKzz83Ps1IqdTyvTly0puRP1TRtbc9hAwuCIKSzM9VCa3t/03G4cOECIyMjjEU02MIg6Xng+yKIdWLGiDxAyWQy7K0qjU2Qau6q9KrrAonX1o9MJhKCZo/VMqvqSar+ZdNxqNdqxJNJdu7ezfgGmnGbtmkfp2maRu/wMNl8PnTE3/jGN7h75w4a8J/9pb/E7t270TSNLePjHD16FM/3O/oNgN5CgUqptIralDgANV85OjoqsBW6jmXbTM/MdKzWQOeEOZVKgb4q7txyLRtcq8I2RIlO2u3OnTssLS3x9NNPh+NbsPq8IqcCOqoJRXqGqhSrS1SqFameqVK3LoFU1WpV/D4Q1IJKc1iVw0NUvDxny7KoVau4EoQ1PDzM7r17fyCjIJ3sMx0oAZL5PD0DAyTicf78u9/l/Lvvouk6zz33HHv27mV5eTnspf3kT/4kfhDQdBx+7/d/v+U4uWwWQ9fF/KSm0XQcIUIaBGSzWTFHZJoMDQ2RkZlTaWWF2fn5jhlip8wtlUq1EPi2BLt1Amd0djGkuGuzixcv4nseR48ebXlfTSLtgiAgLcuhHc+17fOTySQx2YeoNxoEEvGmgl6tVhPlmEDKYWWzq0G87fwUGUJNZo+KnWR8yxa2b9/+A23Cb9oPp+m6Tr5YJJvP893vfpd3330XPwg4efIk+6XfsG0bNI2f+umfFjgIx+H3fu/31jwruXxeCBjIn6vxD8MwQkeezWYpFotC7NnzmJ6dDfECysK+ZYdzTUucg23ba8qR64EBuwo2S6vV61y5coUd27fTH5HRcmW/ETl+1t6qiZxcy7moYImmCbJ0x2kZmXOaTQG8lMl1Qs49atEAKS0IAvH6ahXbttEROI+enh62bN/O0NBQ1+v+tO0zHygBEvk8p8+e5Rvf+Aae53HwwAGefe45XFn+KJfL2LbNlokJTjz3HBpw9swZJh88aBnSz+VyYQnFkmWOuJJyQb1MY2BggN7eXgzDwG40mOmQISruxZYyrLYqMmo7TksJdt3FLgOxWuztkPCZ2VmmpqY4dOhQWN8Pg6TsKWaz2ZDGqv08uxE1Kzi8LwO767pYto1tWeKcNE0MHKfT4lo7XIPjOJRKJZrNpigxS6WG4fFxRsfGyLeVwDZt0z4tM2Mx/uhb3+I/fPWr2LbNkSNHePmVV0IB4nK5TKVSYWxsjJMnTwJw9uxZJh88CIUIQFSj1E5HzSkHvh+C5ZQlEgmGh4eFhB0wv7DAkpQCg9YA2b6zjCvCEFmRetJ6lDpHo0MlKkBwoMZjMQ4ePBj+3HGc1iDZDSij+p9tZhhGWJGypJBzU5ZZlc8zYzGymQyJeFzco/ZALlGwKrnWDQNHznqPjI8zMTHxmSi5KvvsnMk69md/9mf8rb/7d1laXma7JLxNp9PEEwka9brYttdqVCoV/upf/ash8e6//73fC1Fhvu+LXkOpJNj65axOt619LpdjcHAQ0zTxfJ9pKSETZa+BtWVYMxYjHo+jaxo1GYyjFkT+j/4bTcyItmddruvy/nvvMTg4yNZt2wBWZ7akUkhGIlpbPklbHdrtZpqcA9U0jXq9TrlSEQFP04jJXWRckRREUGkgmu71el30IALBfJJIJKjWavQNDlIcGhJky5u2aT8g+5M/+RP+n//lf8n7V66wa+dOfvZnf1aUAbNZAk2jItd7pVzmL/2lvxRWg37/938/fHY83xevDwJWVlawZKUoJekw280wDIpDQ+TzeQxdp1KpMD0725JoRxGxUUun0yG3qR1FwbYFv7DtEQRhQqt3aAdN3r/P/Pw8x44fDzcDTccRO91IkGxJphU6twNKN3o+yWRSEIt4HqVyWZSiPQ/dMEjKXWTHQBcENJtNyuVyCHyMx+MgCRVGt2xhYsuWz0zJVdnnoib24z/+42L0wnWpLS+D75N0HGxJEWVLAE0sHieXy/Gv/tW/Ek1pTQv5SzVNo7evj8kHD0Ky3ygFVaedVzKZDFXQbctipVSiWq/T09MjMiVpepvsVCqVCgfya40GqVRq7UJEDvcHkmlIjlloui5Qa/I1ly5fxmo2een4cfEeSf2kdqEqSEatGxy9k+maRkP2aj15jtlsNlyoUUo+EAHSsm0cCQIK5ENjGgYLi4v09PUxPDLCzp07N0uum/YDtR//8R8PZ4btahW7WiURjws6O+kzarUapmmSz+f55//8n4dobpAzfYidYjaTYXp2NuRyjssZyU5pqCJPicViLC8v4zkOMzMzZLNZchH+ak28eHVQ3zBISL3bWqOBGYuJ8ZEgWOufIv4kgJaRDA2oNRpcunyZiYmJsITZbDYFY5HsSarqV+grogC9Lr5D0zTRpvE8AqCq8BFBQCweJ5/LrQbINuRxU/ls+V5NovMVd/XYli1MTEwwECkRf1bsc7GjVKabJpneXsE2E4sxVCwKeLWmEYvHw+Z0qVymXKmE9GqaXEQjw8MEvs/8/Dy+5xE3zZZ5q06LXvUte2Wz3nMcZqenRW80ytIT6QMq0nRfNqmb0WyyQ5alApSh+gFygT148IDJ+/c5dvQomUxmNUjKwJ9rD5IKXNNtFxl54NRcak1qzQXyGtKpVAstlzqS2kFWKpUwSBqxGJl0mrhpsrC4SK5QCOclN4Pkpn2WLJHNEs9mxZxgNktvby9xGYgM0xTVkWqVlVJJJOWqXCpbDiMjI8zOzBDInr0iHF8Pe5DNZhkZGQl3V+VqlZnp6ZaZyRZyDwkOUpSS1Wp1VbN2nc8xIkESxI707TNnSMTjHD16VLSC5HgMCN+pgmR4Hh1wDC0mNx2e59Go1ymXyyELkeu6JJLJVgIBZXIHWalWachdJ5pGLJEgn8uFyNjRLVsYiwT1z5p97ryZbpqk+/upLy6iGwY9PT3ockEl0ulwBKRp2zQajVCvLRaLkc5kyBcKzM/PC1YeOfsYre2HS6Ut8OVyOVKpFMvLy4KJo1ymUa/T199PMplsKYX48mGKy8VVazTISd7FTgtekaPrkeBSKpV4//332bJ1K9u2bg2JlQNJExfNfOmUcYYHDwgiM1ZN28ay7RaAUlJmx45UN9Ajx3VdN1QlUWbG4yFCznUc5hcXyeRyjIyNsXPnzjVk0Zu2aZ8FS2azgtO0Xiefy4lqlG2HrQZLorwtyyIRj5OSM9a6rjM8PMytW7eoVav0KG7oiO9QCW77Psw0TQYHB6lJLcdms8ns7CxZGaxVYPGl3wggrEB5vk+90Qh7iN12sIZhtPiri5cuUa5UePmll4iZphBTl9dpyuQ2alEE++oPW0uwnvQDtm2H52CaJulkkrp8TRQjEUjVkqbjhMFezY0aUqe2VqtRrlYZnZhgdGyMEanC8lm0z12gBPkF9fZSW1oSUjvNJs1mU/CyplKCKknu5FTGkkwmyWazDA0NcefuXfbt3bsuwCaIlD8VJZau6/T39xNPJFheXsb1fWZnZ8lkMquSYKpfAGF5xnVd6rWaEBtVvYS2z1bUfCCa7W+//Ta5XI6jR49iN5s0pGq5aZrhnKQqDXkQosqipRxFRgwCTWdHhpo1BI9lMh7HCwLqliVIlmMxfAlTd5rNll2zGYuRlsheReq+vLxMKptlbGKCHTt2bAbJTftMWzqfpxEE2PW64DSV3K+ZbJZEIkG9XseWdG2NRoOYJNfo7+/HNE3mFxZa0KPKOvkS1VrREMFvJJFgYWGBWr0ujm9ZFAoFkhLxqp5/TRP0dpZtC7Fz2w5bSd3ANapd8+DBA+7fu8exY8co9PSI8S75DIc6t8GqyoeviELURkHTwmNpCFSt3WzSjARIQ9eFnF4sFqow+Z4nxBccR5S1I4m1IqePy/E513VZKZWo1euMTkyIkbexsY/4jX469rkMlCB2NbmBAeqlEslmk6brYlsWuUKBnkRCkO9aVth/UwrdScnKX65UKPT0hOri7cu8pSwRYagBBNl5PM7S8jL1Wo2SlMzJZbPkc7lVJQ7PIyORttHsMEoLpyzajH/3/Hls2+b5558XD4ss3caSyVXJGxkUFaAnYFUNXJVRA8+jLvuJIdk5onmeSCRC5XRXcjyqHkJ0PkqVtZPy9SrAVyoVVsplBoeG6B8cZNu2bS2kyZu2aZ9VSxUKGLEYtZUV4qZJU+6WMpkMyVQKW/bMLNvGbjaxm00MwxCSXouLT/w5msJIgAiYuk5ffz+pdJqlpSWazSZzc3PETJOenp6Qk5lAKP6kk0nqUtpPja+1fQCwWnpVVaiJiQnGxscFwl8GvWwmg6mG/eUomGLwUW0nlXgHmoYjq0hOBLlv6DqJZDIsD2sIkgDPddE1jYqktwxfL7U3Q+QrgrFraWkJzTDYsm0bQ8PDn/kgCZ/jQAmiVJnt78eMx7FkSbEmFc4Vy0Q2kxG7Sjmrk0wmMU2TycnJ8MFQQaBTwFSmGu8ASDjzwMAAlUSCUrlM07apVCpUqlWS6TQ6rKqOp1JiEF8iSpMyO/R9n8DzBKOOBATdunWLR48fc+LECTFP5boEmuCTTSaTq7tRuVBNXRevg3CnZzeboRBr9PyVZqUq2Xqeh+s4IRl8VG7LVAKzEsGrArvruiwsLuL7PhNbtzI4NMT4+PhmT3LTPlcWT6cx4nECTaO5sIAlZfES8ThpORLVlJWcmpSsS2cyzC8sMD09TZ8UG1BMMwEdkm35pw4tlJSpVIqhoSFWVlZCkYL5+Xli8TimaQqsgu+Lf7tuOGuYlbPgAazK9knfYds2Z86cIZPJsO+pp6hUq+iaUBHKpNNrELqG9BVBIBlyZNLdtO2QhCV8rRwHicVi6DLIqiCq0KuGaYrj6DrxWIx4LIYpxRKU36xVqywsLdHT28vA0BATExP0dtAD/izaF8K7JXM5BicmmJmcFIuqVgtVPwzDIJ3JkE6nRUmlWqUnn2dxaYlyuUy1Wg31IFPJJMlUCtMwOu8y5Z+6XMiO65KSOm/1ep1SqYQjP8O2LEEonMkI1gtZErYtC8MwRFYGYBiCC9I0efz4MVeuXGHnzp1kstmw/JvLZFYJj9tNBjFbJgrt9Hkx0yQmabI0ucBtWdJRQVHRTCVlMI6r3aMq5cpjWbbN3MICmWyW4tAQY2NjDA4Ofhxf4aZt2qduhmnSMzSE5/usLCxQrVbRcjniMvip3VAum6VhWXiuy4MHD3j0+DG6rrOyshK2I5LJZAvSvt2ivsOTqM+enh7yuRylclnox0odWV3ThNSWlPjzXVe0R1T7RiW0ss3jBwFvv/02drPJsePHcaSeb6wDaCdquq7jOA4NiemIIvd1WUmKx2JiRE7OnjquG/oYx3VDqbCM0ruUwbSFfUeO1tRrNUbGxugbGGDr1q2fqwrUFyJQAiTTaYa3b+fx/fui4RwE5OSiUiXNRDxOoq+Pffv3870336RUKjE4MBAOE9frdXRdD0uTiuxcqYsrU7V7WC3Rqiy0VqtRWlmh4fuiFDEzQzadFoQA8TiOhGjrUjMTRDa6tLjIuXPnGBoaYmLLFhE85ZxTVM9N7UR9z8PxPDwpRqskfkDQ4MVisTDLc12XZq0W6kdGTUOUXGKxmGAWiRKXy2trNpuUymWsRoOBoSEGi0W2fAZnnTZt0z6s6brO4NgYmmmyNDtLuVQil8+H8loB4hnPptMkt25lenqa6ZkZduzYges4oiLjOJTLZSGuLrVZFaJW1/U1vgNW+5G6adLb0xOSoTgSADO/uIht22SyWZKpVMgGVK3VhNCxYuQB3nnnHRYXFzl27BgJqUepkt528z0PVwpBu1LXtyn9goZQbzLlqJov+6M1OSsdNU3XV0fystmQyzk6F+7L4F6uVDBMk/Ht2xkeHmZkZOQzRSbwJPaFCZQgFsfotm1MT03RlA1zhVqD1aDW39/P0NCQEE0+fBjHtsUsj2XhOg6WZYXq47qmoZumGKiPxzFlhqWYO9qHh7PZrCBI17QQ3l2t1ajUaiJ4yRmmarUa6lfWajXeu3GDnt5e9j/1VNjMVwtdlTrC4NgW8FQJxkBkyT6E4J9203VdEDGbJqZpUi6VMGRgNWOxFpCRCpB2o4ERizG6dSvDw8OMj49/7hb6pm3aetZfLOIHAaWFBcFaIyXkNAgxBYZhsGPHDqYePqRWrbJ9+/ZQtN2Wff6qlPLTdB1D/h+LxUIGMF3XBa5AItFVTzAWi9Hf10cyHmd+YUEgRpVogWzXBL4P8Tg1OaMdBAG379xhcXGRw4cPiwkAwyAtZbJAtEo86TPcSDKtTCFSDcPAkECbKMJdmQISmqYZllSrtRq6TCLaqekUAYzreWSy2ZBt5/MqjvCFCpQgSQLGxph7/BhLci2mkskQ4KJmHLdv387Zs2eZevBAAFFSKXrkzI/VaIg+n+sSyD6e02zSaDRC9GsYKHVdiJvKAKjktpKJBAn5cKjA69g2DkKI2jSMEGp948YNctksT+3bJ7I608SV9X/f9wUzv5zZ8iVpuaZpGBKMY5ommuw3uJHsUNMEm3/0/yi61vU8KvU6nu9TUNJEmkbTsihXq0JkVZZgdu3fz/j4+OYuctO+kKZpGoNDQwRAZXGRWrW6SuStrXIw9/X1MToywu3bt9mxYweZbJZsNovn+wIn0WiInabn4clqjt1sQq0W7i6bjoNhmujy+dTbqlZRdLxivGnIHaVXrZJIJKhVq2gImryn9u+np6dHlGI1IfXnSdkrL9KHVAhXQ56HputohgGuK8ZTIvdDta0UiEiXQV/ZSrmM6ziYhkFKcr+q2c9qRLOyf2CAvU89xcDAwOc6uf7CBUoQZdD+oSGW5uex5GBsJp0miBD8FotF+vr6uHX7NhPj4yLAsYoIDQLBgep5nmhcyxEUz/NE+UL+HCDEiMoApktVjpDqyTAEL6LMPH3fx3YclldWALEoi0NDVOt14lF+WES2qThU1cJNyMC8+rEBOiLjM+QcpCFfvx43T6lcxpf8imYsxkq5jC0DuuJm7O3r4+gzz2xytm7aF940TWOwWBSiAMvLlCoVMhLhHgQBPmJEauu2bUyfPcv9yUl2bt8OiOCTSaXIpFKhPJ3anTXluIQrWyau47SqhEgsgC7bKpZlYeg6qUwGQ9PwJHGJLVWJ5ubmmF9YINA0enp70Q2Dar3eKvrOKgDRlKQKMQkUivoO3/dDAFE0oVa7XXljWkqvrusK4vMgoCeXoyF31ZZlhdJZhq6zc98+9n5GZLK+X/tCBkoQXK2GYbBomtiVCpVKhbTSQwuE9Mv2bdt45/x5rt+4wb79+zHU4pAwaUPTwgVGhIfRdV0c1w0zN9/3BQrNdUN1dQWddj0Px7KYm5lhdm6O+bk5SpVKyLOox2JsnZgI1cOb8XgIIkgmk2Hm+dv/5t/w1unTHD16lF/+pV8Ks1PFT6mEUddl15AWICTGSktLVCTF3tzMTAhEUKXf3Xv3sm3nznXnTTdt075Ipus6xWKR5ViM6soKdQmySWcyAr0aBAwPDdHf18fVK1cYHBggl8u1JKQaAidgSrSo6tt5sgxabzZxbTtErrquC7JSpPyHHwR4lQpzs7Oh31hYXBQAnVSKTC4nUPuxWAjii0vfkZTodl3X+be/8zu8efo0x44e5Zd+4RfCpN2UIyWu563OjK/H6BX+NWBmfp6KIkBXiHv5O90wGOjv59DRo2Q/p2XWTvaFDZQgdpbx0VGWl5eplkpUKhVSEqGmaRpbt21jdnaWGzdv0tPby3CxiGYYQhEkklGp4AkiUzJkIIvH4+FA/h989av8wde+xle+8pWQiaPZbJJMJvmvfvEX0eSQrpop0mXPc9v27Wzbtg3P88IegDLLtonLjO/IkSOcPnuWy5cvCxYi+SAAOIr5osNC92UQdaSaieM41BoNlpeWcDyPRCwmHhoI2Uj6+vvZsWcP6W6qApu2aV9gU8QiiUSClXgcq1ymUiqRkQh20zQ5cvQor7/2Gu9fuMCzzzwT4gladmLSFE2dLpPuWDyOI2ki/+CrX+Wrf/AH/K//6//KYF8fvu+zIitN/+C/+W8IEK2YpJT+04B4MsmWZJJju3eHLD7xeDykx1Sye7FYjMOHDnH27bf54MoVPM8jIQGKIHyDSuo7+Q5VNfNcl6b0HcsyeXB9n55CQWw6DIOUJEKf2LaN0c+Y8sfHYV/oQAmiHDkwMEA8HqcUj9OsVGiWSqGszbFjx1gplbh06RLJ554TDDuy3q7puiDDVYCdtmOHZOgRJhwFy1YL2Pd9EhGlAaXWsbCwgCNLvONjYyFJszIldeXIBbp1yxa2jI/TdBzePndOkI7LYyr9R2VRNK0nd7nq3BXgwJV90oH+ftLptNCnjMcZGhlhaHR0cxe5aT/0ls1micfjrCQS1OUIhxJo7+3t5fCRI5x/913u3LnDjp07BZVlVFJLW5Wmiz5NuiyHuorHFUKsAYh5Z8dxwrlKgKwUTX8wNUXctonHYuzbt0/oV8rKlRr3cOTIRrPZZOvWrYyPjdF0HM699x47t28PK1Ge7KNGTfkKtdOM+g5FfuB5Hj09PfT29JBOpYgnEqQzGSa2b//CJtdf+EAJYhEWCgUSiQTlZJJGrUZTynPF43GOHz/Om2++ya1bt9izZw+ZdFosUNmXaJHVYjVrVLV4hSRTIBnbtqnXauGD9SN/8S8yNDyMbVmUymXGRkf5P37zN0EeOyUp6ZRQshmL0dfbu6qMIneDO7ZtY3JyksePHrF71y6R7Ul5mtDa6PHU+ZqGEYKC4nKoenRsTACRDIPBYpHiyEjreMimbdoPucXjcQYGBijH41STSZx6nZoE5oyNjjI/P8/dO3coyMCRkomwj6CVbJ9NVIFTqWeon4OgrnQdh7osa/7oj/4o4+Pj5HI57t+7R8OyuH3nTsjOlZCzm9VqNQT/ZHt6iMfjLX5j29at3L93j0cPHrB7xw4C38eOAnhUYh1B8SszDQNdEyLNOqJK11Mo0N/fLwjmMxmGRkdX+W+/oPZDESiVqaFgO5+nWq1SK5dx6nVisRi7d+/mxo0bBEHA9m3byGazYYm2fW+lhml9mbV5sqeQTqcpV6sYUsNS9SaOHTvG1WvX8HyfZ599NuRJBMLmdyqVwjAManK3VyqVxGxmKoUmkab79+/n9OnTVGs1/tpP/zSO7Hn4bVmhMk3Xw11nXYqkmrpOIpulr6eHZCJBf7HI0OjoJrPOpm1aF9N1nR4566gUdOxqlYZlsXvXLpaWlrh44QL79u+nt6dHzEzL5zvqO5SWbSBBgq6s9sQTCSqVSgu5eQC88MILTN6/z41r1xgYHOTo0aP8yR//sTgWq7vWTDZLvVbDcRzq9TpNxwlbTARB6DcajQZ/82/9LSHSrhLsLn1JwzAwY7FQdcT1fdGayWQE3V46zdDYGL1f8ACp7IfOO0ZnFPP5vJj3KZXYKgd1b1y/Hs5IxePxkNswcgChEuL7LZBrXZVOJFAoaZrYts2tmzdZWFhgbGyMI0eOkEqlmJmZEY17WTJRepkx0ySXzwt+Wt+nXq9j2XZIQXXs+HGCf/2vWVpa4v6DB+zcuTOcp+pkfhAI3srIjGgilWJgcJDR8XH6BgaIbZKYb9qmPZEZhkEulyObzYYB06pWeebZZ7nw/vtc/uADdmzbJvRqFWFJtFcnWzoKrKPGvFIqIZejWIau8+jRIy5cuADA0ePH2bp1KwuLi5jxuKgiOU7I7axByDymxlMqjkNC+rnjx4/zm7/5mywuLXHn7l127dhBLAhCnuhO5jiOYBizbar1OqZhkC0UGJuYEMLUPT2f7M3+jNkPXaCMmkKJFQoFHMdhcGyMwsAAZ998kxs3brB92zah/CHZ7zvtuszInJVlWeQl2vbu3bvcun0b0zR59tln2bJlC0DIng+it6hFyjEgkLbZbFYohtTrorlfLou+ZzLJjh07uHPnDu+/9x47d+xY7Z8q1FoEYm4pAgXbxjRNRsbG2Lp9O/2btHObtmkf2TRNyNxlMpkQIDc4Ps5r3/42t+/cYWx0lMFiEcu2iUnO5HZwi+Jh1RB4hFQqRaFQEODC69dZWFxkaHiYZ59+moSU8QsksA9WBRCi56T4WBuNRjj3bcv20vbt27l9+zbvv/ceu3buFOfQAXDjSMIVp9kM0bSFfJ6h0VG2/RBL6P1QB0plukKkJhI8c+IEW7Zv5//6d/+Ody9dYnhggLHxcaE6Ivt7ivBXsfYrcuGmbXP+3XexGg1M02TrxAQTW7aEenKq7KICZcsslTI5sxSPxTBkqceTxMiObXPs2DEePX7MhQsX+Imf+IkwSAdBIIgR5EJXOpJmPM7Yli0MDA2FoKZN27RN+3hMoWBTqRR/7W/9Lb7753/O22fO8Gh6mvHRUUbHxvB9P6TGVKIEUQF3y7K4f/8+77//Po1Gg55CgaNHj4bIW1ViVX6jExUlrIIJ0+k0zViMuhR59yyLo0eOMD0zw8WLF/nJn/iJkEwdBDtPlAPatm1cx6HQ18fg8DADg4P09PT8UAP8NgNlBysWi/y/f/7nuXr1KqdPn+ad996jL58nJ/uWSveyKXsC1XKZ6zduhKMYx55+mvHxcTzXFfV9qXmHpgkSYdWjcByBLIsiVtWfsiyTyWRIJZNCE67Z5KmnnuLb3/42y8vL3L17l56eHkFxp8gQJAo3lckwsWMHfQMDYfb7RYNsb9qmfZZM0zS+/Bf+Ak8/8wxvv/02F957j7uTkwz295OSfiOZSgkxZQkKun37Nn4QcPfuXfbv28f2HTvo6emhXCrhSeGFeDwO8hknCEIu6yi6XZkCD8VMk3w+L5iBbJunDhzg29/5DisrK9y7d498oRCi4l3XFQHV9zF0nZ6BAYaHh8nm8yFW44fdNgNlF9N1nYMHD3LgwAGmpqa4ePEiiwsLzM3NUZO6a8lYjEIuRy6bpVgscuvWLZ577jmGhoYAUUZtaFoLfNuyLADBfiMp46LWiQ1Dl3NKiUSCuOSELFcqXL12jeNPP00ikSCdz4cw7WwuRzKZFOol66gHbNqmbdrHb4VCgR/90R/l5Zdf5v333+fBgwcsLi9TmZ4W6kG6Ti6TIS+BMclEgpdeeomx0dFwpxmLx/Esi6bjEIvFaEY0ZR3HadXLjX54xG9oclQtFouxQwVg6TcOHT4sQIXJJMlYjFQ6TTaXC+cho4CkTdsMlBuapmls2bIl7DGCWKilUkmUW5tNmpbFnQcPcH2fWq3G0vJySBvlSnSbJlFtniy3KkJ0ZQGEu8sAwlEOT84zKXLjWDzOtl27+MY3vsHZd9/lZ/6L/0LQ2iUSpOVYi6Kg2rRN27QfnCUSCU6ePMnJkyeBVbJwS85IN22bBzMz1GTJc2l5GUPSyaFp2LYdtmeati2wB5IfWllUUN6XAENP9jM9Kc/lSc7qPfv+/+3dzU9aaRTH8R+30HToRfCltBPQNmkXs2VlMhsxNS5lObvGvf+OXdi40D9BzdSFiXEBm4mRpBvSBCWti7EJA0hIBhF6Z3FfRhu9sRWRO/P9rEAIPpDLOeR5OecX/f7+vf4oFvXbmzderIhGo15damadrkai/AGRSEQTExOS/j0ictbrqXR4qMdjY4o5FSt6lqWHlqX26alOWy1ZTh+6TqejmFM71TAM/VWrSZK3sccwDPsLEw7r4aNHduEDp4jxSCKhmdev9XZlRUefP8s0TbsgMoChFnI26pmmKcku/nH+9as+Hh0pnkwqbpr22UbnR3Lo7Exn7bbaTqP0v9ttuyJYJCJDUq1et5do7Be3myBEIna91nDY7ivrHA/7KRrVrzMzevvunQ4/fdKKaWrsf3K0ox9IlLfkNn2WpGq1qifJpNLptF0MoNdTr9dTq9VSo9GQ5Zy1bDQa+lAqKWQYSr98qdSLF5KbDN0L/puuH+4UimEYymazXo+4/f19zc3N3e+HAOC7uTtY6/W6RkdHNTU15ZWa7Ha7etLtqlar2UXSHzxQtNVSsVSSISn96pWePX9+qd/lVXHDa6EXDiv59KmazaYsy9LBwQFx4zuQKPvs4rqAK5FIKJVKedOhlUpFf375olAopE6no5+dx749KnKdfD7v1Xecnp6+s/cCYHAu7r53jY+Pexv7KpWKTk5OvLiRIm4MDIlyQC4tvjtHSlxuHdib2tjYkCTNzs4qFov1Z4AAhtLF5vAXd7sSNwaHldsA2trakiQtLCzc80gABAVx48eRKAPG3W4uccEDuBnixu2QKAPGnT7JZDJKp9P3PBoAQUDcuB3WKAcgn8+rXC5796vVqne7XC5rbW3t0vMXFxevfa3NzU1JUi6X6+sYAQwX4sbwIFEOwOrqqtbX1698rFAoqFAoXPrbdRf88fGxisWiJKZPgP864sbwIFH2STablaQ7Pfzv/iqcnJxUJpO5s/8DYDCIG8EQsq5rZoihMz8/r52dHS0tLWl5efm+hwMgAIgbt8dmnoBoNpva29uTxPQJgJshbvQHiTIgtre3dX5+rpGREW+6BgD8EDf6gzXKgNjd3VU8Hlcul6P5MoAbIW70B2uUAAD4YOoVAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8PEPy2bqg9i4nDQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +230,7 @@ "rng = np.random.default_rng(seed=47)\n", "blochSphere = qutip.Bloch()\n", "for _ in range(10):\n", - " angleList = rng.random(3) * 2 * np.pi\n", + " angleList = rng.random(4) * 2 * np.pi\n", " sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList), blochSphere)\n" ] }, @@ -243,12 +243,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk2Vkmir/hI32W7a42M+3djMbP9DhJM3IYrSRk8AKWBZb9YZZ7l3svF8GywkgICS0/AVoWgdCuYHeBFcghJCRkkDTTMxqrGc2076621V02XfiIc+4fcU5UZKTPyqqZnon3eeqpqjQRJyIj47zn+97v/QRKKUWKFClSpEiRIgWD+EIPIEWKFClSpEjx4kJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKZpw7tw5/PIv/zIOHDiAXC6H8fFx3HnnnfjABz4A0zS7vvcnfuInIAgC3vrWt27QaFOkSLEeECil9IUeRIoUKTYG7373u/Gbv/mbOHv2LHbs2NHy/Gc/+1m8853vRK1Wa/v+ffv24XOf+xz27NnT9vm///u/x9vf/nbkcjksLi5C1/VRDj9FihQbhDRykCJFCgDAU089hR/8wR9ErVZDPp/He97zHjz88MP48pe/jJ/5mZ8BAJw4cQJvfOMbUa/X227ju77ru6BpGgzDwJe//OWNHH6KFClGiJQcpEiRAgDwS7/0S7AsC7Is44tf/CLe9a534Z577sFrXvMafOQjH8H73/9+ACFB+OAHP9h2G7lcDq997WsBAJ/5zGc2bOwpUqQYLVJykCJFCnzrW9/CN77xDQDAT/3UT+Gee+5pec0v//Iv4+DBgwCAD33oQ/A8r+223vzmNwMIUxRp1jJFimsTKTlIkSIFPvWpT0V//+RP/mTb14iiiB//8R8HAFQqFXz1q19t+7o3velNEAQBc3NzeOyxx0Y+1hQpUqw/UnKQIkUKfPOb3wQQpgVuv/32jq979atfHf390EMPtX3Nli1bcOeddwJIUwspUlyrSMlBihQpcPToUQDAnj17IMtyx9cdOHCg5T3twFMLKTlIkeLaREoOUqR4mcO2bSwuLgIAtm3b1vW1Y2NjyOVyAIALFy50fN1b3vIWAMCzzz6Ls2fPjmikKVKk2Cik5CBFipc54mWJ+Xy+5+s5OWg0Gh1fc+ONN2LXrl0A0uhBihTXIlJykCLFyxy2bUd/q6ra8/WapgEALMvq+ro0tZAixbWLlBykSPEyR9zF0HXdnq93HAcAkMlkur6Opxa+/vWvo1KpDD/AFClSbDhScpAixcschUIh+rtbqoDDMAwAvVMQhw8fhiAI8H0fjz/++NoGmSJFig1FSg5SpHiZQ9d1TExMAAAuXrzY9bUrKysROdi+fXvX137zm98EpRSqquLw4cOjGWyKFCk2BCk5SJEiBQ4dOgQAOHXqFHzf7/i6Y8eORX9zt8RO+PSnPw0AePDBB5uiEylSpHjxIyUHKVKkwP333w8gTBk88cQTHV/3L//yL9Hf9913X9dtfvaznwWwKkxMkSLFtYOUHKRIkQLf933fF/39sY99rO1rCCH4+Mc/DgAol8t48MEHO27vqaeewvnz5wGk5CBFimsRKTlIkSIF7rrrLrzyla8EAHz0ox/FkSNHWl7zwQ9+MHJF/KVf+iUoitJxezylcOutt/Y0VkqRIsWLD519UlOkSPGywoc+9CHcd999sCwLb3jDG/Cud70LDz74ICzLwl//9V/jIx/5CABg3759+OVf/uWu2+LeBrycMUWKFNcWUnKQIkUKAOEq/2/+5m/wzne+E7VaDe9617taXrNv3z587nOf6yowvHDhAp566ikAaUohRYprFSk5SJHiZYQHHngAQKgZaIc3velNeOaZZ/ChD30In/vc53Dx4kWoqoo9e/bg+7//+/ELv/ALyGazXffBowbbt2/HrbfeOsrhp0iRYoMgUErpCz2IFClSvHTwhje8AV/60pfw8z//8/jjP/7jF3o4KVKkGAKpIDFFihQjQ61Ww9e+9jUAaUohRYprGSk5SJEixcjw+c9/Hp7noVgsRimMFClSXHtINQcpUqQYGb7yla+gVCrhLW95S18dHlOkSPHiRKo5SJEiRYoUKVI0IU0rpEiRIkWKFCmakJKDFClSpEiRIkUTUs1BihQpRgbDMOB5HkRRhCRJ0DQNspzeZlKkuNaQfmtTpHgZgBAC4vsIggCEEFD2w58DAErp6g9/jL+GPyaKEAAIggBBDAOPIvvdMAzYtg2w5yGKEEURU5OT0LPZlCSkSHENIRUkpkhxjYIQAt/zEHheOOn7fkQAqCAg8H2QIAAlBCQI1rQvCnTdRsMwYDsOACCj66CUwg8C+L4PSRRRKhYhShJESYIkSRBFERSAKMuQJQmyooR/yzJkRYGSVjqkSPGCIiUHKVK8iMFX/L7nwXddBOzvwPcR+D56fX3584RSCGsYRzdyUDcMOIwY5HM56JoWjb1aqyEgBJqqopDPIxptl3FTABCEkCQoChRNW/2dpilSpNgQpOQgRYoXEJRSBEEAz3Xh2DbAw/08KuD77d4Ewn632x6lNCQV7DelFAFPJbDnATYJ8zQC3y4jESS2bcoeRyKtAACe58GwLAgActksNFUF2HOCIMD3fRiGAQogm80iq+sQWUpCFASIohhtq+k4YvtOQmSRBkVVV380DXom099JT5EiRU+kFDxFinUGpRQ+C/f7vg/P8+BYFhzbhmvbcB0HNAjCSZVNxJIkQWKiPkmSALA8P1g0ITb5cz0A/z+xc8SnV0JItB+0mZS7Hke4gabVv2EYCCiFrmkQBAGu5zXtG4IACAIcx4HneSBBEJKB+KQvCE1EIfmbCgIkUQRl+2s0GjAaDTQaDTTqddQNA67jIJvLIV8ooDQ2hrGJCUxNTWFiagpjY2NQFGWgY02R4uWONHKQIsWIQSmFbdswTRO+78O1bXi+j8B1I40AhwAAggBJkkAJgef78HwfNAjgcxLAJn6+yheZ0E8SRciyDCUWZo9/mUW2OuerdE4uqCCENcxs4uZj6PZbEIQorcBvGZbjwDAMCABKxWI4kbN9x0kIpRQr1SoIIchnsxAlqemY2EZB2fmwHAdGowHDsmCZJkzThBFLXQCAoijIZ7PIFwoo5PNQNQ22aaJhmhF5CAgBQSiqzOTzKBaLGJucxOTkJHbu3ImtW7eO4NNOkeKliZQcpEgxIlBKYZomqtUqHNOEa9vwXTec0BkBEEQxmhAFQYgmyCAImvQBJAgQ8N+EhGkBFl0Q2A+AaMWtaxoyug5FUZqe7zjWYY4vFpWglKJSrSIgBNlMBtlYSJ9P8nFwXYKuacjnck3bIYTAIwSXL13CudlZLCwtAQAkUUQmm0Uum4WeyUDXdWQzGWSy2baRAImTJhZ18TwPlm3DMAxYjDQ0Gg3UmXhyZts23PfKV2Lv3r09z1eKFC83pOQgRYo1wvd91CoVVJaX4VoWAt+HIIrQVBWiKEarf9/3W8P+CXA1fzylwKMKoiBEFQABIQiCAI7jIGCrdEopNEWBpmlQGUnoBj6J93sDiJMD23HQMAyIgoCxcjnaFxcTConbiut5qNXrLa83TBNnz57FudlZOK6LKbaqn5yagqZp0fi4biKIHTthv4Mg6HkMsiSFlRDsfM7Pz+P48eNYXl5GaXwct915J266+WZout7n2UiR4qWNlBykSDEEAt+HbRioLC+jVq2CBAH8IAChFIosQ2KkoB0ENvHLbUhAckLnxCIgpG21AaUUrufBtm24XLzIIhW6pkHTtEiz0AmDkoN41CCXzSLDJ9QuOgZKKVYqFRBKkcvnsby0hLNnzuDq/DxURcH111+PnTt3olAodBkAjUhCEvwccbIQEYdOn4EgQJYkVKtVnDlzBovz88gVCjh48CAO3XgjimNj0LPZyMMhRYqXG1JykCJFn/BdF7ZpwqrXUalUYBhGtJKnwOqKPfYeUZKgsPp9RZajGv9uiCoOmNCw369oEASwHQe246yaGQHQFAU6KwfsFk3otRdODqKogShirFRq0hp0i1UsLC3h7OwsrszNwfc8jI+PY+fOndi2dSukAcoTXebr4HteGI3pcH54xIGwtE3ARKHtIg2GYeDK3ByWlpagaRp279qFvfv2oTw2hnyhgHypBLEHyUqR4qWElBykSNEFhBDYjQaseh1Go4GVSgWGaUZRAUmWo1y/CES1+ZwMtCUCHb5yhJcMskmdstWwOGhVAaVwXRe244TRBLY/rk3QNa39uFhqouN22TFXqlX4QRBFDdppDOLHdPXKFZw9exaXr1yBKIrYPDODQwcOoFwu9zwOn03mUbUH12bEUil8Px020hLN4DoHThh8bhIlCLBtG3NXrmBpcRGiKGJm82bs3r0buXwe45OTmJyaQjaf7zruFCleCkjJQYoUCVBK4Zom6tUqjFoNjuvC9bwwUsCEgaqiIJ/Ph8SAO/sNac4T9yOIj6FJzQ80TYZtUwz88VipoMd0CVE0AYBAKbLZLDKs/LBFe8AnVPabMl8FGgSwz/wLzC/9OkAJcg/8KvRDb24aoxAby6WLF/HMc8/BMowoSpAvFCCIIkqFQpOokBCyqqdgJCCImS7FtysKQqjNEEXIPBLDjq0dSWg5VwmywH0dXM+D4zhwXRf1RgOX5+YwPz+PbCaDPXv3QmWfcTafx+TUFCamp5Fl4shU0JjipYaUHKRIweBYFmorKzBqNdi2vboqJQT1RgOCIEBVVYyPjSGr62ueENqRgvhzXb+asYmbv16gtOOYKKVwXBe2bcMLAoBSyLKMfC4HOR4uZ9tMboUCCBwDK39yGCBM2yCIKP/swxD1YtNrLcvC008/jbkrV7B1Zgb7DxzAGIsS1BsN2I4TOh7K8ioRICQsr+TVHLFqDJmlYxRJgsj0HEKnKAcjCQH3U1gDXM/DwsICHn/8cUAUsWfv3sj9kZefZnM5lMpljE9OQtf16CdFimsdKTlI8bIFpRSO46BeqaBRqcC2rKYJhfsCWI4TTk6yjHKx2FPg13O/WBUaUjYRxqcxHk4fOJ3Q8kD7r7Zl2zBMM9pXNpNBJk52kiZFbNvGkT+BdeRDTY/rd/w0svf/h+g1s7OzePaZZyDJMm695RZs3bIFYMfLKxbqjQYUWUYum23aV9RngYkz5W5pGe6hwH63EAFOvLqesf5gmCYefvhhGIaBW2+7DZlMJtI9cOdJUZJQKBZRGhtDeWwMhUIBmUwmFTSmuGaRkoMULzu4rot6rYZ6pQLbMJomQlmWoSoKNFWF5/uoGwYoq0AoFQpdb/a8XNHz/ShE7rO/A88LUxJAOJnFjIm4qRFfOccf590PJWZbHL22z0mHkw+eo+cIggCGacL1PFBKIUsScrlcZKiU1BEETgMrf/5aUKfatH1BL6P8U1+G4QR46sknsbC4iOt37MArbrwRqqKEbpAsLQPmFNmwLCiKgvFyOSQCjBQMs9JvV8VB2fnl0YV4embYWILreXjkkUewuLiI22+/HVu3bg0Nq1gqgn/enutC1jQUymWMj49jjBGFtB9EimsNKTlI8bJAEASwLAvVlRVY9Tp8x4kMhVRFgaqqUFUVEpt0Dea2RwmBoijI6no4AcQm/SD+fxCsWgPH3AijqECsBC/e2yCarHiYnFcpsPdEoKs2yJEBUsJmWJZlaKoKTVWjY1p9O23aD9+v4zjhcbI0RoYZDcW1CABgHPkwzCN/1PbcNg79NJ40dyGTyeDWW2/F+Ph4mLv3vCZvBJERL8M0IYkixsrl/khObOw8SsDHxtMvQuy4KHeCZI9HFtOx7URGUezxfqI0ASF48sknce7cOdxwww3Yt29ftF8/COB5HlzXhWXbcF0XgiAgk8uhND6O8fFxlMtlZNL+DymuEaTkIMVLFtzG2DAMNKpVuJYF4nkQBAEaU+3HxWSu76PRaGBpeRmmZSEIAkiyDJWv+tjEL2JV+BeRAAa+qpdZblxibYoF1j8AQHMvBEpBWWkdYSFqrsiPlzLyv/lxAe1LD3kondKwP4MaM0XSGAGKr9A5KTBME7brApRCEsVQi6CqECgFsVaw/NHXgbpG2/NsS0Us3P9h7Nq7PyoVjM4PM4PSVDVaPa8wX4hCoQAt6XTYJqXRCx0rFWLg57CbCRUndmK7tEqMWBx9/nk8f/Qodu7YgZtvuaWF4BBC4LguTNOEaVnwfR9aJoNCqYTy2BgmJiZQ6BGFSpHihUYa60rxkoPneaEff70OyzTh23YYAZBl5AqFyLnQ933UGw2YlgXDsuDaNhzPA2Ghal3Twi6DLDTPhXESC/PzcHj0eKxJEgcXx/XLwVsqFJLPx7QK8d88peF4HjzXjdwYPd+H67phF0eWWuBRBR5h0DQNhXwemuuiYZoICEG1XoeuachmszAf+2hHYgAAelDDNvc5eO7OJkKgqioUWW7q4ggAiiTBYWWESJKDdVqrCIIAiRG5TsZIPHIT8HHEIwx8/JTi0MGDyOVyeOKJJ2CYJg4fPtxUeSGKIjK6joyuo+T7sCwLDcPA4pUrqCwtYeHqVRTLZYyNjWF8fLwpwpMixYsFaeQgxUsChBCYpgmLNevxTBO+64aTPLtRC4IQEgG2onMcJ5w02ArOtu0oUlAulaBnMk1WxoOCInRSHOQL1steeZDtuK4b/rBwt8cIQ5S+wGrkgGstVEWBT0hUzUCtJdBPvAPw7e47LGyD/P3/G7qegcrIVy9BpKqqKI7IM6Cf6AFHwJwsh4XA9B/zV6/i0UcfRTabxT333ruaMujgreC6LuqGAcMwQADk8nnkCgWUSiWMj4+jVCoNPaYUKUaNlBykuKYRBEHUUMdnLZCJ74crY0VBQGlEGmzbDuvkea6eraJ1TQuFbaw8rZDPj0RA5g8QMYgfT9SboE+BXpRnj+kSkuF5no93fT9qn+y6LjzmMshfydMSge/D9jwUn/sIsuf+sa9xZN7wPih7v6fz+LBaiVGr1yOHxXbHyT8f/lkBzRoN7tfAxx20Kb/shCjaMoJbX61Ww0MPPQRV0/DgAw+0kMh2vSsIITAMA9V6HY7rIsO6S+aLRWzduhW5XC71TUjxgiMlBymuSfhMH2BZVmhr3GhAQriq85g7oGlZkdiMTzaSJK1298tkoCgKLBZNAIBiobDmUkUAUSfFuOAQSExuib879U9YD8TFjx7rzeA4TmQC5LguaH0O41//OQg06L1BABjbDbz5470bPlGKar0OACjm8z1z77w9Ne+4GP+fkwfKtRacJMXOd1Lcyf/3fb9vAtYNlUoFX/3KV7Brzx7cdOONYefN+OcdK1flehB+jmzbRrVWg2GayBYKUbphcnISGSYMTZHihUCqOUhxTcH3fdTrdViWBQAwazWYtVpk8sM7IoqCAFkUIUoSMpoGjRECjZvYxLZnmiYogBxLIwyM5MTfhwJeaPP3qKYBXr4YiR5ZGJ3/5rbMNGZBzA2eFNYJ0fc82N/5cP/EAABWTkOeewTi9a9qGgufrHnkAABURYmEi3Kbcx5vsMQ1FZ3AyQJYpCFJIJo0A1gVk8rMhAnov/lUO5TLZdz4ilfgmWeewabpaUxPTzeNLQkhRhR0XYemafA8D4vLy1i6ehU+0ykUi0UUi0Vks9mUJKTYcKSRgxTXBDzPiyIFQOjCt3z1KlzLgijLYVSATQ6apoU6g0wGuqqGK7k2oISgWqvBDwLIsoxCP/nvBBFoh2Fy2pxQ9HpN3DCJxCb5gNk6B7FKiH4cFiPvBEmKJk3PdeEtnYL3dz8CAYNpIMRNr8Dkj/7vllLIJGqNBlzXDW2cOzgKRkSGd1mMdajkvRFazk8bCIlIQ/zvgFLEr45kRKdvUIpvPvwwKisreN1rXws1QUIBNIsb48ZN7O+AEDRME/VGA5lsFrliEYVCAbquI5/PpyQhxYYiJQcpXtRwXReNRgO2HQriTNNEZWUFTqMRlhgKAjRFQYa5/A3iStcwDNi2DQFAiXUXbEIfRCAJijAaMSg6tndGGCoHK3EMgiA0WfL9vvUMUmw1LcbD87x0TxRDH4hYff7yP/4q9PP/NPBxAID94B8gc91dyOVyyOg6JFGMJlqufTBME5ZtQ9c05HO5nttMHikPz9MYWeDnJ97mulf1A68O4Y2yZEWJBKrxffVDGGzbxj9/+csol0q49957ex6TyISNAJoiG67rolavQ5AkZAoFZLNZZLNZSJKEfD6fahJSbAjStEKKFyV830e1WoXjOCCENIkOZQAZVQ1LxUqlUCU+YH284zhR/wTeDAhYe2h/0GqDyMEQq/lx/jtyWGSui+0gCQIESYp+x5sS8VB7ciKJ57wJIbBME5bjRMd+5swZ6EvnMGyHAKlyGsbkjag3GhBFEdlsFvlsFllG3CjCVtYQhDDSwVfSXbaZfC4iTbHyUQpE3RU5OFFoF3kgQQCB0rArI6vsABD5VLQjC900I7qu447bb8fDDz2E06dPY/fu3V3PE79WKMLPkftoqKqKcrmMhmHAqtUgiSIIIchms6jVamg0GilJSLHuSCMHKV5UoJSuEgFGECzLgkgp4PuQBAG5bBaFYjH0IBgCQRCgWquBEBLV8o8K/VQoxMPJ8ffFyYAftOb6uQuiHPNXiDsxdkPkisiV/8wgyrLtaDySKOLo0aOYu3wZt05bkL/5n4BBNAcAIGeQ+8G/hqNOw7LtcCJmaRZBFJHVdeRzOSiKgoZhQJIkjJVKffeF6HqMWC1pjLslgokV202khBDYrhumUnw/9F5IQBTFsA23JLWNLMT3LwB4+tvfxukzZ/DgAw+gWCoNTDjjkS/TNGHaNvLFInKFQtQSHAAURUG5XG7yWEiRYlRIyUGKFw1c10WlUoFt21hZWYFlWVBlGSJb4RWLRRQLhdXc7SCIrdBrtRp834coSSgWCiM9hvgKv4kEJMYb78Pgum5L/hxY7UjIV7ESW223bL8DeIQgHpEglK5GTdjrFNbf4LHHHkOlUsFdd92FLTMz8CoXUT3zCIjvIvAdXPj2VzFT+cbq/pUcpFt+AiA+BBBomQIye18PeWpfpKGwbRumZYVVJcximvDjDwJkMxls27y5belodGNiJYv9fOLcu6Ht+cBq+WMkjhSEKBUBdn4C9rn0JAvss0mShYAQfPWrX4UfBHjNgw9C4v0qBii3BBujIAhwPS90WgyC0BchYZyUz+dRYN+LFClGhZQcpHjBQQhBrVbD8vIyVlZWYBgGsooCWRQhS1JICphYcNDLlfvn8xsnt7QllKJcKo3EwpYCoaiN3cjb3aQD3piHRQZIjAzw1a7EwtnRpCNJ4bZ5ymQA3wM+rvjfDosU8HMoyzIyug7X9/HwN78J1/Nw3733YmxsLJrcq7Va9P4nP/1H2H/5L6L9SMWtmPiZr6DRaIDwzoT5fKgx4Cv42BisGFHwPA+1RgOEhl0hc9ksCvk88tls288k/ql3m2Tj0YO+QCkCRgjagbCSR79PsqCwTpK1eh1f+cpXsH37dtxy663RvuKRm76ncjZGx3FgMe1NLp/H2OQkFEYSJElCqVRK20WnGBlSzUGKFxSWZeHy5ctYWlqCZVnQJAlFZkxULBaRy+WilWO/xCAqDeSTKfvtsRUYpRT5XG7txIBrBeK6AVGMxIPxNEE7LYIky1BY7wWZ/Y70AKxeP3kM7dCpbJJHDFw2qRBWuigxUqCpKlYqFTz80EOQZRkPPvBAeL6xumIFwoknLDtMHIMoRVUeDcNAEASo1+thXwYeCeBllZRGlsIYG4PjuhCvXoVl25BFEa7jYN62sSRJKBeLLR0wm44ufqyJa2LglQ5LO7ToMhBWs3CjLJWF7iOy4HkhWWBRB+4RAayShUOHDuGZZ5/FpulpzGzd2lpOOcAYRaZFEEUx9OWo12HU68gVCiiOjUHPZLC8vIxMJoPiCNqKp0iRkoMULwg8z8P58+cxPz8P13UhE4IC8/gvsvKtqGQPPYhBbEJtKhGLgRCChmGAAlEHxqEgCK03djb5Oa4brYrbjTcucpMlCQJbYXO/Ab7tfggBsJo26OSn4LLxBDwywQygNNZ8aY7Z/5aKRdx7772RhoOv9n1GDhTuB0CbyYEghhOmJMsoFAqhToQRhFwu19zkiX02fNuaqmKsXEbB96EoCnzPQ50RjKWVFaxUKigxkpBMOSSJQrISgiRf0wPtPiuuz+AlmZyEDEIWJiYmMDU5iceeeAL3ZzIoFAqr+oB2n1mXa1xA+PmBUuRyubCyxHHQqNfhWhb0bBZqJhNeh44T+SOkSDEsUnKQYsNx/vx5XLhwAYHrQiAEWVXF+MQExsfGohsgR9PkGUe85j+uQegwUVqsy6IgCNHquBcoE9EJsf0ln/didsTAqiBREISQCMR+2hnx8H2sPjFA6qAdUUGYwjBMMxI1ioIQRgo0LTpPZ2dn8eSTT2LLzAzuuuuuppVm5HfAQuiyogCO02qIJErReRFFEcVCAQ3DiMpPs7kcdFbvnxRNUkIgSRJ834+iD6VyGfV6HfVGA57nYaVWw0qlgkKhgLFisSOhi0eKeIqHp0X6ycN39EdIVpGw7cdTAr3Iwv6DB/GtRx/Fd557DjfeeGPkw8GbfyV22JsgyDKo7yPLDLtM1k1TkCRQQlCvVJAtFKLmY2P8O5UixYBIyUGKDYNlWThx4gSqKyuA50FXVUxOT2N8bCxyyYuH33mb3aY8bYwI9CvAIoTAchwQAIU+VlNxotGuDt33fTis9C0+sUiSBF3TIDCtRNNkyCaUbmWFPZEgKO3eZds2DMuKIgq6pkHTtGgiogCOPv88jh47ht27duHmW25p2k5k5RzzUVDYyj2ZVhDEZsIDQUA+l4MhCFHLYkIIsrwhUXzMzG8BWP3MRUFAiRn/mKz3gOt5MAwjjEZksxjrkVePn+NIb9Fl0u07VRXbZvzzImBpJX5YCbJQoBQHDxzA0888A8s0kclmw+ZglgWFtdGOtw1PpkySkQseQQiCIOoYynUcQNhJ1G40UF1eRrFchud5mJiYSDs/phgYKTlIsSGYn5/HqVOn4FsWJABTmzZh8/T06qTFIwQMXFgWV9w3VSkMoMy2HQegFBLLBXdEYhKJ7yHKK7tuE4ERBCFaCfIVWryREX9NJwLQFzGIp006gBACwzTh+T4EAKosI5vLNSnpKYCnnnwSZ2dn8Yobb8Teffva+gc0RQ1iEY+WyIEkr56v2OeSy+VWV7W2DUIp8glSJmC1ZC8p8hMFAfl8Hvl8HqZloVavR2WXhmFA13WMlcvIdSB6AovIxP0jkp8t/2utXTBFJKIKCf2CKAjYtWsXTpw4gbnLl/GKm26Cw1pqe54Hz/MgimLUQrtplR9LmfD/wfUlooiAEGiaBkppJPYUGDlRFAX1SgVGowHHtrFp8+bVrpEpUvSBlBykWFe4rotz587h6twcqOtCVxRct3078nGr4iQx4KQAWA3rDwlCSKjQB5BNrjg76Afi4+Btj5MmRPxmzr0G4u8RJWm1GqHb5N9l1RqPKPQiEK7rwjDNaBWci4Xz4/jOd76Ds+fO4c477sB1113XdZvc5TFOpoSk5kCQorElj0TXdYiCEKYZHAeWILRMTpIkra6MOyCbySCbycBxXVSrVZhM0zF39SoURcFYudxS4SB0Oq/xqAuLSvlB0LUHRj8QEiSEV8jwUUiiiH179+KZZ5/FDYcOoVgoIAgCOKzBFSEEtm3Dtm0osgxV06DGownxsXOCIIoRedZ1HYRSuI4D0zQhZLNQVRW5bBambePi7CyMWg3bduxI20Kn6BspOUixblheXsa5c+fQqFQgEILxYhFbtmyJyq8AhGVaTAsAoGMefVg4jhOu5oBmgVwHUJYzdmKOeRyKLEdixm6RAAEA2M27177aPca7SPYCoWE7aodZHkuyHFYKsBJIAYi6FJ48fRrHjx/HzTffjOuuu67jhMxX3Z7ngRASbotNQi2GSKLcVEWS9HVQNQ1ZAIZhwLRtCKIITdcjN0RBFEEFIWwKxc9dh3OmqSqmp6bCEsh6HXXDACEE84uLbSscouhBB1CExDGydh5Ao9ANSQEmn9R37NyJY8eP48TJk7j5llsgSVLYGVTX4XkeHNY+m/srmKIITVGgalprYyq2TUmSQl0JKwcFE8UaphlqXhQF2UwGlm1jeWkJhmniuuuvx6aZmTUfZ4qXPlJykGLk8H0fFy9exML8POx6HaosY3rTJkyMjYW2uRw07LwXle6xh4MBzWI6gYdbKcIVaLcbYrSSc5ymSUUURWiq2pS37weiKDZ5GbQdX2KsycqDyNWP0tVWxOw5j7Ws5mPVWbMpgU220fYpxcVLl/Dtp57Cvv37sWfPnrbEIH7MQczRkH9e4cTdhhwkxKOxfwCEkzphfRsMwwhJg6Ks+h/wVsu80iCe1kl8XgIARVUxMT6OUqmEWr2ORqPRtsJBkuWuEQlKyCqpCXcWXYOjsn6Jj19VFOzZswdHjx3Dgf37obEoCu+GqaoqAkLgxlJXtuPAdhzIsgytDSkVBAESSy8AQIZVK7ieh4ZhoJDPQ5blJvHi6ePHUatWsWf//pF4fKR46SIlBylGikqlgkuXLqG+sgLfcVDK5zE5MRE6ESbEVgFb0QvrQAz4KoqwlXiyVTPAdAQsQhB3KBQEIboZt3Xu63OFKUlSmE9v99qYrz4/B1FJXmJf/Hj4ZG9aFhzbBgQBkiQhl822HScALC4s4LHHHsN111+PV9x4Y9fx8mPiKQUe9o+ep60+B3F0Oi+ZTCbSbBiNBkRWnigIQhg94O2jE2mG5CTdVFIoiiiVSigVi2g0GqjFKhyWKxUUWUlsu+6IUVOm5PGvngg+gNaTtAbs3r0bJ06cwOkzZ3DDDTdEpI9DEsWwk6iuh86ZjgM35pVhWlZTOgsINQ3RkYgicrkcKLMerzcaKBYKkCQpqo4wDANXLl9GvVbD/kOHkB+xQ2iKlw5ScpBiJPB9H5cvX8bK8jLMahUCpdg0OYlSqdS23jpgBjNJpXxS0DUImloaC0LUWCkTixrwkLnjOC06AkVRoGkalISOID6+dhUHncBLzyLiwev8BQGUh70TE0S36cj3fRiGETUX0pmpUKfx1Go1PHzkCCYnJ3H77bf3LeLkJZDJEjgBzZED7nMQ/d9l+9lstmVVyztDBmAhfh6lWN1gGMHosE3+ORcKhVC8aJqo1uvwXBcNw8BKpYJcPo9SoRB26xTCtsg+T2N1IDNJkhAnJWuBpqrYvXs3zpw+jX37969eZ7GIULjb1YoHTmAd1wUJgshsSZIkaJoWGSMRRrS5IJSLUxuGgTwTiCoxwyqj0cAzTz6J3fv2YdPMzJqPLcVLDyk5SLFm1Go1XLx4EZ5pwjFNZJm7YTGfD3PMMfAJUWo3+Q6Z823yI2DvdxwnmgQ0TYPneXDZTTYOmekItF56hC75cP58uwlEQNiBsElXEQ569X29DzBU61sWIIRdF3PZbNfKC9Oy8M2HHkIul8M9d9/dPYScOO+8eiCZ6+4VOegG7i9BGg34nCDEokmdzqzYQzuQ3D43CKrValG1hGGaYQfPYjE6Z/GITFJQ2OnxpMfBMNizZw9OnTqFs4wgxEsUgdbzIIpi5CzJtQmu5yEIApimCcuyQnMt1hSKvyefy6FWr4feByyCwFt1F/L50AfD93Hi6FE0qlVs37UrLXdM0YSUHKQYGoQQXLp0CcuLi4Dvg/o+yqUSNFVFLpdrJgb8Ztup3pxtbxBy0EQKgKaJ1rKsUNUtSajV601pA64jUDWtc4e9HkQl3jOAvaHja0UAkKSw/wB7rN8CusD3YXJDI5afzmazXRX2rufh4W9+E6Ig4P77748mjY7HEovgUKbgB9DGmTBRrSANdvsQhNAHoV6vI2BtuPl+u5UUtjMf6gY+mVq2jWq9DsswYFkW6mwVPVYqNR1bvA9EUylrLBLFIz7xCNQwJCGj69hx/fU4deoUdu/Z0xqdiUWUksRRYSWKhBC4LPoVBEFIfD0Pgm0jk8lEEYlCPo96owESBGgYBnLZbBitYeShzvQaV69ehWVZ2LJ9O8YnJ4c4qhQvRaSKlBRDodFo4Pjx41ienwccB1lNi4iBruurRjV01bioq3p8kKgBX23xiT3xPs91Ydl25LTHiYGmqijk8yiXSshkMm2JAWXbaxlLYuz9Tgz8XSLCnHIURu5jNezYNmr1ehQByedyYU+ILueJEIJHjhyBbdu4//77ezbiSZKcIOaq2DJxJQWJwuBrC1EUkWfNmQLfjwSjtAs5ABvjoCWHuq5jcnwcU9PTYaRFFGGZJi7NzaFWr/d8PyckvGSQEALC9REISVW8WqNf7N23D67nYXZ2ts1OV1trC+z/JERRhK5pKLEupZqmQUT42TUajajPhSiKUfqGEALTNFdJlhC2PhdEEb7vo1Gv4+LsLGZPnoTLekSkeHkjJQcpBgKPFpw+dQpOowGJEGyang6dAVn5FDenEQShyeRoLXlbGs/LimLHcLznuri6sACThVt5WHasXEYul2sNxTOVetNNfgT55abx8l0hnOCELuMHEK706nWYzPVOlmWUutgHx/f52OOPY2V5Gffed18Ytu+B5CgivUEbgWOLz0GbtEK7405CkiTk8vlQU8Bq/Ac543wl3wuEEHjMnnlychLT09ORMG+pUsHlK1dgsy6Hg4BfK7zigbDHCDv2XmPL53K4bvt2nDhxoiOx4J9LFK3o8DpZlpHLZlFixBxAVO5pmma0P0EIW1ObrGIECElGLpsFhLDJlu04qNdqOHX0KCrLywOdkxQvPaTkIEXfIITgzJkzWLp6FbBtFDMZbNu6Neo6KEkS8vl8VH0QD1X3mnA7eQJEIkO+6u5CCqrVKpYrlUhXUCwUMFYuNwkSk9tuMlwSRuOxEEUf0D7CwEvQxHAQTc+5rotavR6JJbPZbJQv7r5TimeefRaXLl3CXYcPY2Jiovc420QwglilQsu4kXRIbE1X9HsOZZb7FgQBnufBYhNZL0Rlr93IFUuNBIk0la7r2LRpE8rFIhRJgs/MlBaXluCvwSkxXv7IIwwBIU1kIXl179u/H45t48KFC713EIu+dTpqniooxpo7Oexacj0PuWwWlJEA3lALQtj/I8OiS7ZtR5U7F86exbnTp6PKlRQvP6SagxR9wfd9nD17Fma1CpEQTE9PI5/Ph/ljFvYuFgqrofMYuAlRJ7Tk7xEjBT1CyZ7rwrSs6CbmOg40VY3sd+P7aNnfiMhA0z56CReBprSIBETGS5ZlhcZLghCtCPttmnPi1CmcPnUKt916K7Zs2dL3mJPn1+8gRgTaCBKFzmPrJ02kKAryuRwcZo1sO05bZ8e24wZWqzxiE3NAY26bbXL3vAQyn8thuVKBZZowLAumZYVdIuPOnUOiqfdCvGRVEKLVWLFYxMyWLTh2/Di2b9/eX0qNXzfx1FS81JSlgvK5XFT6GAQBbNuGyHpZ0CCAaVkoxipydE0DZb4KhmVBFEXIsoxapQLLsrBj927oqfXyyw5p5CBFT/i+j7OnT8NmxGBm82bk8/loMuPEoJ2VMOlBDPjrmtBHpMD3PNRqtTAnz7wEVE2DnsmEor1MpuOqTYj9jALxUHpPYoA29fs0dDp02YpO1/UoV9wPLly4gO88+ywOHjiAnbt2DTT2OOL1/+18EwYRJParH9E0DZquh4ZVsXPQD/hnSBHm2/0gaNIudOtpIckypiYnMTU9DY1ZFS+urODylSstFS1rQVMUjekXCPte7NmzB41aDYuLi4NtNEYShMT/HLIso1goIMespQkhkRmVx7QecWQymSji0IhZcXuOgzPHjqFWqw1x9CmuZaTkIEVX+L6P0ydPwqnVAEYMdF0HJQSWZUVNctrlw/utD+fhV3QhA9F4GCmo1mrwPA8Cq/cvl0qRSltWlCYnxvhkPEpSAPROIfSC7/thNQUh4Q29VAqFYn1Orlfn5/H4E09gx44dOHTo0AADb13ZczGiFOuYGEc7h8S1IqocYdePwUSkvcBz/H4QgATBQJqFODK6js2bNqFcKESphstXrmBpeXnNTZkidEgJjE9MIJPN4uKlS6HQcUitS7KKIg5VVVEsFJDRdYis8ZhpmqhUq3ASwsNcNhvaSbN+JBwBITh38iSW5ueHGl+KaxMpOUjREZwY+PU6KKURMQANbYm5yU+7UHCyy2In0D5yyEB7UqBpGkqlUtQFkLdQVpVWc571IAWRKdKA7+WTju95qNfrIEEASRRRzOejhjuiKEY9FjpNGZVKBY8+8gg2TU/j1ltv7dvkCECT8RJHlFLo4LbYrvHSWsE/d1VRQoIgCDCY2r4dKA2dNX3fD82gYj4Bw5pniaKIUrmMmU2boqqGhmHg0twcGo3GUNtsC36dx/wTtszMYO7y5ShNEK+IGIgqxKuCWnYbEuhioRCJcn3fxwLrt8CvR0EQIv1BsvsoAFw6fx6X+9FIpHhJICUHKdrCdV2cPnEiJAaCgK0zM1FZHKU0tO9F2LOgHXrVgcdX3N1K1DzfRz1GChAjBflY6J0QAs/zQBH67zdNGoMdek/Q2M19KAgCHMdBvV4HBSArCgqFQnPfCfa6SLyYIFCmYeCbDz2EQqGAw4cPD+ST307jAcQiB53IQdKdYUCfg7bb5OdSCLs2ynLYr6HRaESracIIgRcECFjqoK3Qk28vkYfvF4qiYGpqCpOTk1BVFZRSLCwvY+7q1ZYmXGsBHycFMLNlCyzLQqVabXoNL++MyEKfUYUoQtGmdFgURWQzGUxNTER+CfVGA7V6PSwppRSKooTkkNKw1TlWoxGCIGBpfh5nT55sabOd4qWHlBykaIHrujhz4gS8RgNUELBl8+aok6IARCFHma/2EuhWnRAnBRztbt883F6tVuHESEE5QQqiMTNiILHJdNRiQz52ilBXsJZtW5YVtlgWhMh7oefkzsgBzx8/dOQIFFnGvffe23Gl33FTHR7vZJscvY8m7ZO777efskbeX4GD58j9IAitkFmEgBLSl55DQHhTW8vnk81mMbNpU+ioKIrwPA+XrlzB0srK6FINCEnx1OQkFFXF3Nxc19f2HVXglTcsktDudYqiYGJ8HLlsFr7vR6LFWr0Ox3WjSKDDKheSpZT1Wg2njh9vSUukeGkhJQcpmmDbNmaPH4dvmgAjBtxJUGR16VHUoE3PBC66ageu2AbQtLqLv9r3fdTrdVSq1UjsyA1f2pECDtd1o6jBiymFkNxOvdEIyRWl0HUdOVaDPgi+8+yzsAwD9957b5TmoYmfjmPo8HwQBNHE165SAWhTrdCDHPRT1sjHwz0JKKXhdSUI8Fnt/TBoMt4aIpcviiLGymXMzMwgo2lhqqHRwKW5ORh9ll32tR9Jwszmzbh8+XLf74lHFYKY3iL5uXKi1O453mmUeyBw0mmaZpQybIoeYPV7KgBwLAunjx6F0YeZVIprEyk5SBHBNE2cP3ECrmVBEEVs27IFmqY13eC5sYqiqlDarFgJWhX70U2l3STIViVxUsDV4nFS0G11zJspgdLICGbUWCvZIJSGKzPHAShFLpfrmJLphkuXLuH06dO4+eabUSwW2eCE1Tr4NqQrMu1po2rniEcNOpGVlrRCn4LEOGnhFRG8uoBXRxCuURFY7wjmTWFbVkuDrH4hoHMUpF8oioJNmzZhYmICKkt5zC8u4sr8PNwRhda3btmCer0Oy7IGFlYKgtBMFNoQocjDI/G5ZjOZ6DlN0yI/EP7ZWLYN27Yjh87It4S9JwgCnDlxArVKZfCDTvGiR0oOUgAIIwYXTp2Ca9sQJSlMJTBxHL+p+L4f5V7bTWyU0qgVMf+fJkRYSQRBgLphNJGCePqgKylgP57nRXX1g4bYu257rdoCBp8Q1LiQEkCBWd4OCtMw8MQTT2Drtm3YsWNHx9cJiXHHJ4fICphP2GClgOwc8qhBUyQCrO9FS7WC1PI6vu14yR4nAZExUCLdwMcbjzgpbGXL2wwHwyr5gVYtxxDI5XKYmZlBqVCAIopwHQeX5+awMoJUw6bNmyFJEuYuXw5vyEMKK/nnGzdgip4DopQDhyRJ0DkJcxyoihLZMXPdiWGaWKlUOkajKKU4f/YsLMMYaswpXrxIyUEKmKaJ2ZMn4dk2JFnGzObNUNt0KeQ5RlXTWiZhHuqM/98rrGw7DqrVKrwEKSj0ESngBjcCENXGKyOIGjSFT4eckOLwmaDSZxUJ+ZiD3UDjIgSPPf44FFkeuDJhdSM0En8KscdAaVPkoGUi4P+39FZIkAMunIv/AD31FFEZXuLxTCYTjcdcw+TTScU/KERRxNjYGDZt3oyMrkMWBFTrdVy+cqXFN2AQyLKMqakpXJ6ba9LKtKso6RdNTo0J8sIFi0CYXpAkKapA4qLFYj6PQi4HINTIVGPNy5KjIkGA2dOno+9xipcGUnLwModpmuEX27IgSRK2bt4cldMlwcO7yVJBYJUYRILDbtECQlCr19EwDBBKIStKX6Qgvv14+aPHSxjXSA7iOdVRaBYc5nEfEAKFmdIMG+Y+evQoFhcXcefhw0MfZ7fJkYf3u42vtbfCAFGaLkQrmgyTOXNBiDQZvucN1QcBWCV5gzZu6gRNVbFp0yaMj49DY6r/K1evYiVRcTAItmzZgqWlpSgyx90UB9GjdNP68MhNkvgKghBFAV3XjTwmJElCoVBAPpcDBAGe66LeaLRUbfAFgO95mD19umMJaoprDyk5eBnDNE2cPnkSAScGW7ZA7kAMKKVR+VJSa8DDzjRJCNrcrHi0wGVeBblMJgzV9mor3KE00fP9cGIThLYaiH4QpT8wGlIAhGmaRr0OwnwXCvl8kyp/ECwsLODY0aO44dAhTIyPDz2mTqFhEltddlvlD6s56OVBED3XZnySJCHLTKFMlv8GgBVnBT/y1Z/Eqz/3XfirU3/ddf/xFfgohar5fB6bN21CPpuFIkmo1Gq4Mj8/VJ+GmZkZgFJcuXKl5bl+Ih/cJbIX4tEEfr3LihJqiwQBpmU1XSe6piHPBKKUUhimGXZ3jL2GE3bLMHDx7Nl+DznFixwpOXiZotFo4PTJk6COA0WWsW3Llq6rdh41EESxxX2QBEFod4xEKD52Uw4IQT0eLWCdBrkIKlKWJxA1RuowufCVjKooQ934o0jHCFIIHAYrVQTYzZURg2HG5zoOHnvsMUxOT2Pfvn1rGlencxi1ae7gjBi9v43mYCTgaYUOn4GmaVBZW+KGYcD2Hbzxi2/Hw/OP4FzjPH79id/Es8vPdd58Yl+jarAFhJ4Qk5OTGBsbgyIIcB0Hc3NzA0c5dF3H2Ph416qFbpGPgVqeYzWa4DMjqYyuQ2AVC/EUicRcR3krdiAscaw3GqtpBiYqFgQBlUoFcxcv9j2OFC9epOTgZQjXdXH29GkQ14WqqmHEoMeqm3dyi6/wCc/7x2+2bW5QNuuY6CSiBfGSueTqsqlfQZebHhcjDpXHj+17FOClinxiyGQyTaWKA9MPSvHEk08iCALccccdQ0cewk113ns/KQWgNXIgCP1HavqJHHQbYzaTgShJIEGAX3n013HZbPYF+NS5z/Y9FrbTjoR0GBQKBWzatAmKqoJQirn5eVQH7EewdetWzM/Pd40AdOoXMawoUmDlyZRSZJhI1naclrLWgJCQ6OZyEEQxFBJ3SDMsXr2KpYWFocaT4sWDlBy8zEAIwblz50BdF7osY9vMTF95cC+WUojsVtE7j12v10O3uzbRgiSSk2ivcHQQBPB9P/Q3GJAcjJoY8FJF13UBSpHP55FZYye706dP4/Lly7jjjjvWtK1eZkTxngrd0BI5GIFDItBZkNj0GlFELpfDR8/+N3z64j+0PJ8kC/1CFMWREQRN07B5agr5TAaKKGK5UsH8wkLfE/eWLVsQBAHm++hhEGl6+vC26BeROyJCggBKIUlSGE2iFEEQQFEUFJk2qF2agX+fLl+4gHrarOmaRkoOXma4evUqnFoNIqXYNDXVl+0ubylMEa4uuZVvt5VsMlqQbRMt6LSvXqSAg69aFEXpW2w2atEhEHoExO2dC4VCe9HgADfwSqWCZ599Fnt278bmzZvXPMZux8q1JJ1sk6NttAgSB0srdPZPCNGrF8c/XPw8PnzyI22fO1490Xm/QNdzzye/UUBilQelUgmKKMKybVy+cqUv++V8Po9isdjTLZFDQEiaRkVuAETXreM48JhvAl888N4boigin8t1TDMAACjFhTNnYI3QMCrFxiIlBy8jNBoNLF+5AhoEmJyYgNpnrb3v+wATMKmqGpGCdiuiTtGCbIdoAQcvfRykRwBfpbernui0j1HDY+ZNQRBAkqTQcneIFEccge/jsW99C4ViETe+4hUjGmmX/fVwRuRoFSQOdpydPv1+iOC35h/H//3or3Z8/kx9FivOSud999iHIIojvT5KpRKmp6ehyjJIEODy1auo99HEaWZmBnNzc31P+NxXQhSEkRAcRZYhsnSLzxwrJXZuvNjkz5s0dUszcJMkMyUI1yRScvAyge/7mJudBQ0C5LLZVXe9LuA3KAoAbYSIyZvRMNECHvLmK/lkg6FO4Ha7pE+9wagMjeJwPQ/1Wi0qVSytoVQxjqe//W2Ypok777xzILLUDr1CzkGsqU9PP4IW++TBj7WjSyY6Rw7O1M7iZ77x83BJ91bOTy8/223HPcc2qlJHDp21g87oOiRBwOLyMhaWlrqmGWZmZuB6Hip9uA7yDpV81KIoDmzFnQR3S4QgNJVVgvlYxK8XAO3TDLGKB9/3cerYMZij7G6ZYkOQkoOXCeZmZxE4DiQhbPbSDUkhIM9FN5Uvxf5eS7QgbvrC0c8NLq6w75Yrj/oi0LU1S0rC8/2wVBFhNKVQKPQUDPazGrxw4QJmZ2dx8623olAojGSsXXUbPKXQxTY52g4SjZdG0LIZQHTe2p2dZWcZ//pf/i0qbqXndp5a+nbnffQ5aY6WHqymGYqsiZNhGF2tl8fKZYhM9d8LnfpGrJUgqIoSaQx49CC+Xe7AyNGSZnCcKM0gCqG988ljx0bb/jrFuiMlBy9xUEqxdPEi7EYDXhBg0/Q0JEkCCYD/9Tcy/vJ/yODmc/F8fPyGkFST09jfQ2sLYvtKgkcQuoHXu/eyV+60j7WA94HgxCDfZ/OkXuTAMAw8+eSTuG77dly/ffuIRtsdnGT1+ryANpEDafD0SafPG2glB3bg4Ke//nM41zjf17a7kYO+McIyRw7exGlychKqLIdRvA4NnERJQiGf70kOuDV1EjwCt5bKFlEUoTGHVIc1NANWDY/4hM+bdfEyyk5pBt6w7fTRo2ikjZquGYxGbpziRQlCCKxKBSuLi3A8D+PlcsTuf/Rf65g9F95A/uufKbj/vgCvf22A++4JoOu0iRS0lBiycKZpGGE7ZYSTdD6X60tw2M8NWGDeA52m06APcgCsAzEIAtRYhERVlL6JAdhxdwIhBI8++ig0TcMtt9zSVxi85y7Ru/6d6w366T/QUso4pM9BsoSwXSkjoQT/1yP/L55YfKrv7T699AwIJRCF1olxoLPJrs9RCv2AsIupoihYWlqC7bqYX1xEsVDAWKnUlNIZGx/vSg64t0g3RC2be1SqdIKmaXA9Dy4rd27dweo54teYKAhhmkGSYJgmfN8PfwcBdF1HEAQ4fewYdu3bh0KpNMSoUmwk0sjBSxSEEPiNBhbm5uAHATRVxdjYGADA94HZc0LstQK+/g0Z//HdGr77X2XwH9+t4atfk8G9UOI3LkJI5HI4VLRggJVZt9VPpJxO7LPJH6HP/fQLn6VPCNMY5PP5vkO4vW7Qzz//PCrVKu66807IaxQ0xtFrfP2WMQLtNAfDry2ayMHqg9HjHzn2F/js+X8caJt1r44z9fYOfcNMkKPox5CEoiiYnp5GIZeDIoqo1+uhq2IszVAqlVCr1bo2O+oX3QzGukGSpDDVJIpRQ7T4tcT/4ueILxgIIRAEoSXN0Gg0QndG38fp48dRW4PVdIqNQRo5eAmCEILAMLC8sADXdRFQipmpqeh5SQJkCfCD5PsEuB7wla8p+MrXgEyG4r57Arz2NQH27xMhSX5Yyz9gtAAYLsQvAFGf+aZtsXwoobRp34OSj0EQEBKJD2VZDu2QB1jdd3NgvHr1Kk4cP44bbrwRY2uwR25BjwmBn0egdxkj0M4hcbjbR7JUtYkEsgjLX538X0Nt+/H5J7GnuHuo97aDiNVo18i2KYqYmJiApmlYrlTgex4uX7mCqclJZHQd5XIZhBHRpHA4IKRnyWcSAkLy16n3QidomgbfNOG6bpRmaLt9Rj7ikQRRFKFrGmRJgmFZCIIAlmlCUVWogoDTx49j1759KJXLA40pxcYhJQcvMXBiYNRqqNfrcIMA0xMTkaKfhwDvvy/A177OPn5KQaiIcJ5dvQFYloB//oqMf/6KjIw+g1tvreMNrzNw661hfjGj6z0nyH7TCJ3QjiDwvvWiIKyKJbmF65D76QZCaViuyGq+h+mT0Om27DoOHn/sMUxPT2Pf3r1rHmukCyFkNQlAY22SY6tz3/fDHhcInSZdJnBrqlJh7zEtqyWt4Lg+Asta/XzbpKLiRCC6Vvhvfm0kDH0EAFtzW3DBGNyG97H5J/EDu9/RolkZ+rrgK2/Wv2OUyOfzUFQ1bLjkebgyP49yqYRyqQRBEFCtVJrIwTDEII5+nCjjiMoaCYHv+119KpLRichhUZZRzOejNIPjOAgIQUbTcObECezcuxdlFtFM8eJCSg5eQiCEIGg04Nk2lpeX4fk+ivk88vl89Br+BX/r9/khOaAAAScGnWHZIh4+UsLDR0r49z9v4gfe0bvJy6hW8pwgUNZVLt5emO9nlL0R4uDEgLdcLhYKw5UXdqhDf+bZZ0EoxR133NF28uGCr+g3yzdHza6YcjxZstg0ASRXvux/l3U6lCSpay06Rdj5UkpEDlyfwGO5p7hbZvJvoJkcCQAIQgLDr8e4kl2WZbz7Fb+G3/3O7+Ph+SPwaHtlfzs8s/Id2LYddRocFQQhpEajJp+aqmLzpk1YWl6GZZqo1GpwHAcZXUelWgWXpZI1EgMgNnYmEOxZnSKEPRXqhhE1SuvxhhatRkAIRFFELpuF4ziwHAeObUNA2HeEE4SRRsxSjAQpOXiJgBMD4nlR61dZljE+Ph75CMRx+60ExQJBrSZCGnCu+9KXNfzAO7obm4w67y8AgCgCLG8JhHqDdsc2KvBeCb7vQxRFFIYlBkATMeAT/cLCAs7NzuIVN92EgBAYptk04cejJe0mWX7s0c04RgL4ChzMyTK5sgcA0fMgSRI0RQnL12IRgGif7D1hv4jmyUnRMpBUdTXSENN7xMfEIxbJ1/BJCmzVGTDjHQDYrGzCh279AKzAxrdXnsGjS4/hv539K/SS112151E3DIiiGDpn8oZgifMzMISwhXI/k+qgEEURU5OTqNVqqFQqcBwHSiaD5ZXQ1CneNXMUGCTNIElSSMpjfgrdtgswIsWuPwGr/hW6rkOUJNTrddi2HfZz0HWcPXkSdM8ejE9MrOGoUowaKTl4CYCLD+GHmgDbcUKdwfR0VH6UhCRSPPhqgs98bnDF+Z7dnaMGa00jdAMnCD5LK8iyvP7EgOkrCvl83wZH3CyGC7ACFpYNYjd5SgieevppFIpFjE9MhF72aDPhA5FVtRj/LQhRF8W4s2Q8dNxrEqsLAiRZRi6bDY1vukBTZDiJx/RsDnI229c5aQdOgoCwPM4PAuQyGYiyHE1IClVw/+Z7ocs6Pnb2L5vef6CwHyfqJxFLoODOsdthWxY8x0E2l4tC3lw4JzEzL/5b5CmNPiHyiW/EBAEAisUiNE3D4uIiCrkcLl66hGq1ilwuN/J9AYicELtRBD8IILN+Kq7n9e3+GdchcHAhbyabhcW0DACQ0XXMnjoFSggmYtqoFC8sUnJwjYMQAr9eB4IgrCKoVOD4PibHx6GqarQy4+CThiCKePCBAJ/53GDK+N07Xfybf10H0FretJ7EoGk/hACE9CWEHGr7AIxGI+yVgLDjXruSScJqvYMgCCd+34ffIfwb+H6ki4Ag4MKFC2g0Grjn7ruhqmq0wk1O+J268PUafz/viIyk+jmPpDW0L6yhWiHcgLDqjCmKkBjhazcBPTPb7H54oLQPn33t/0bNa+Cxhcfx7PJ3UFSKeMu2N8M3PQRBEEXPonA3IWg5ClGEJAghYWBNhqL+Ie2iRKxkbz0iCABr3rRpE2q1GmbPncPlq1exaWoKxREZYiXBFw9Bh+PxPC9stkYpPNcF0fW+omftdAhAeI/QVBWUENi23UQQzp05A0opJqenR3FoKdaIlBxcw4gTg4AQLC8twQsC5DMZlEqlUKCXJAY8xAzgjtsJigWKWr2/m9zevR7+069fgabJSJKD9awUiCNgDaBE3kFuHbQGBvdvoDQqV3RdN4oCBIwUtN03W4kJggBZkqJVKhCq8kVRhG3bOHv2LPbu2YMtW7aMfPz9nJN42qKviEiyUgEYyj45jujajGslOrz2yPy3mv6/Z/owFEXBhDKG777+9fju618fPWdnHJimGZbUMb0NYZ+b7/sgQYCAewUEAQJBQEBISAbjERv22bVEG0Qx7MWwTgRBEEVs37YNzzzzDGzLwkq1CkopSn1Yng+Ldt0pfXZfkWUZoigiIASu60Ylin2hg2eErCjQANiWBZdFzTK6jvOMIExt2rTGI0qxVqTk4BpFnBgAwMrKCmzXhSCE9shc9MWRJAYAIMvAK+8P8LnP974M8nmC97/HhCDRqKeBGKsDX29SAIQTR7xJEL+hdbKRHQR80m80GjBNE8T3oWcyHS1fI+MXNnlIMSLQzoo4iEUTnn32WSiKgoMHD65pzGsBifkb9NVToE3kYC0+B0l0G4EdOHhy6emmx+7ZdLjj6zVVhcPInOM4yGazYd0+pVBiESAu6iSEgAQBfPabPyYEAWgQhNGG+DkSBEg8xcOuQ5n9vRaywK9lQgi0TAa6poH4PiRRRKVWA6EUY+tkHhSt9LE6kXuxrqeKLMOwLDiuC03T+j7OuAgynmYQ2HYppbBtO0qrZXQdF86eBSEEm2ZmRnV4KYZASg6uQZAgCDUG7AbveR4Mw4BPCLZs2rRasx4ThXXSHrz2Ab8vctBoiPjPf5jFf/g/GgDCmy5fQWwUMQBWzY/4ajcZGel3W4Hvw2c/nu+DEALHcZjwDshkMhH5SEYBpEREYBBcuXIFFy9exF133rnm7o3t0O854FGDvgWWpDVysOa0AlYrFyIhZZvXPL30bTiBE3uPgMNTd3TepiAgq+uoGwZsx4Gqqm3TQlyYJ4kiIMuIqy54VUgQIw+RZoQQBIIAEALqeU1W45IsQ5IkyJIUrbj7QbwihY+tVC7Dtm2UikVUWWkyIQQT61j6x0WolNLIz4STA9G2o4Zn/XZCbbddAYgiL6qqggJwbBtOjCBcOncOoBSb1iOylqIvpOTgGkMkPozZp1aqVQSEIJvJIMsEYvxmw0OgnXD77QHyeYJGo/dN7BvfVECCSfyf/8eViBxsJDEAWFohYX7UVCffLt9PCHzWRMb3/cgnAZSGOgAWLnVdF7IkIZfPh6vNDlGAoY6BfR7ffvppTE9NYeu2bWve5lqQLAftibZphRHcPgQhsvoN99NKD5IphRvGDqKkdl9BK4oSRRBMywq9KdC/U6IoCBBlueUG2S7aEMTEptTz4HseHHY9iqIYEQVOHJLXU6dqhHK5jPPnz6NULEIQBFSqVRimCUoIxsfG1tyxsxMEIGq4JCD0OxCE0BrZcRz4Q5ADvl2uQxCxGtnUVBUgBLbrNhOE82FPjZQgvDBIycE1hsAwImJAAfieB8s04ROCzTG3MUppGObssq0wpFfH4TuBL3+1VRG9YwfBlSsCbHt1K998WEVAJvF//4fFkCD0ULmvBe2c6XilQjtHP04SPN+H73nwgwCe563eePlqD+GKWVYUyJIUPk/DXgnZbHawnGqfEAQBJ44fh2EYuOfee9clVz1IYiWKHPRLDtqmFUbUlTEe/Wnz/JH5R5v+v2e6c0ohDj2Tged5CHwfrutCadcjYEB0ijZQIOpiGPh+SEYJAWVpCr4Kj0cXOPnshFK5DOv4cTiuG/prCAKWKxWYtg2yvIzJ8fF1IQg0Mr0ClFgKQZZlOK7bZPU8FLjINkaINGaoZiUjCBcuIJPLoZj2YthwpL0VriEElgXKbjJckV6r1+ETgqyur05qsRrjjtsKAlSrVbieh/vutVqev/EQwZ/9Fxsf/D0LmcxqjTqogEcfzeH3/2AKtbo10vrrONoRAxIrfYsMkNiq3zRN1Go1rFSraNTr0U0mclMURWiKglwuh3KphLFyGYV8PhIIQhCgZzLrQgyA0OTn2LFj2Ld//8haMbdgAN3FoGkF2q5aQViHtUXiGGzfxtOJbov3TN/V16YkQQijW6IIy7bXbCLUDZw0qKqKTDaLQqGAcrGIXD4PTdOiqglCCDzXhWVZqNXrWKlUUKvXYZjm6vXKtlkulwFBiPoQ5PN5TIyPQxQEWI6DhaWldfn+2Sx9IIoisjEXVK7X4LqMYSEkfnOoihLqLFiKz7JtgFKcO3UqqmpIsXFIycE1AuJ5oVUtVldXnufBaDTgszBj+CSNjG86wfd9VGs1+EEAQRTx6lep2L1z9ct+4yGCP/h9G/k8cPNNAd7/uxZ0LSQGfLOPPJLFB/9gHJVadzOkYcArH5IIYqsywzBQqVSwsrKCRqMB27Lgex5oEACCAIXV75dKJYyPjaFcKiGXy0HTtIhYuEyrAUGApmkjd9WL4+mnn4aeyeDAgQPrto9BMEirZgDtIwfSiMhBlyjKE0tPwSVe9L8oiLhj8va+N62paniMTPi2nkhGgwRRhCLL0HUduVwOxUIBuVwOqqpGZZO8v4XL0h+1eh3VahX1RgMSS0msMDMkAMhls5gcH4cihO2U5xcXR0oQfFYSDQDZTCYSq/KSWlmSQq+RtUYP2pU9iyJ0XYeeyYBQCpsRBM/zMHvq1Nr2l2JgpGmFawCEEPiG0fSYIAitUYPYF66jl7/rot5ohKF5SUIxn4cky/jjD9n4h3+UkcsCb/xeH6qKSLl8y80B3v8+C7/yq5mmFMPDD+fwex8AfuPXbeQyaw/Zot24mTDK9TzU63WYpglZliHHSq8kltONcrvtJjxmPczh+T4a9ToowhVLbg1mPr1w6dIlXLl6Fffec0//Of4Bwc1s+klWcOEbzwH3hTaCRAijO5ZOmoNkSuEVYzegqPYfeeFdQ2uNBhzXhSTLTRULo0an/gW8a6EoitA0LUpHxL0yuC6GEgKfUvgAcrkcFpeWsKXRgKwoUFjqSxRFLC4uwvM8XF1YwKapqTWnGCilkY22qqqRYDZecSDLcpiu8/32rZz7Rey6a/JDoBQa2y+vYuBncu7iRcy8wFqdlxNScnANIDCMKFcOhF8mz3WjqMHmsbH2TDwB27bRYCRDUZQorA4A5TLwzh9psxpgX+Lbbgnwvvfa+JVf1eE4zQThd94j4Lfe7UOR15ZH58dHWKrA8zx4ntdSqaCqKnRdjwhBX02QmP0t7xPQaDRAmCFLvPfEqOEHAZ769rexZfNmzKxzaVa/Zz9uftQ3OWjTkXGUugn+GSbJ4ZGrzWLEu/tMKcQhyzI0TYNt27AsC3KhsG5C2iQx50JU/lwS3PQqXrniB0EUIctms2iYZkgcggC2bUMUBMiKgrGxMaywro5X5ucxPTnZtiqjX9gsrSGIIjJt0mu8/NBmosS1IG6hzaupKBMI854OQHjP4hqEuUuXkCsUUv3BBiFNK7zIEVgWiOtGXxp+Q26KGmhaKzFIrFwahhERA03T+moglLyp3X6rj9/7XRua1rztbz6UxW/+thIvoBgYnu/DNE1UazWsVCowTBMuKxMTWdg/l82iWCigWCggk8lAUZTBuiOyG5FpWSCUQpXldSUGAHDs6FG4roubbr55XfcziAVwZH40yLlLphVGJEaMNgc09WAAAMMz8O3lZmfEfsWISWR0PXQ2DILIdGe9wCMywZC5eVmSous9n8/Dd13omhb2Q2Alla7rwvN96JqGIAjgOA6uLiwMPWkH8XRCFxdEhblHUm4ENiSartYYQQAQXgOMuOu6HnkhmJaV6g82ECk5eBGDeB58y2rxKPBcN/I1GGOipZapIRbe5I1OgDCPWGCuf93Ab9TJV91+q4/3vdeGqjYThH/5ega/+R61b4JAsZrzX1lZQbVahWXb4c2NpTyyuo4SEw/ms9lIWd+XaU/bnVI0DCNyfSsUiyG5WIfKAQCo1+s4efIkDuzfv27++BEGECNyQ6a+KxWAlrSCMMKUAttgZMLD8fjiU/BjHRllQcadk7cNtXlREJDJZCAIAkzLajKlGhUoQn8EXtYoJo5nGOi6Dod5NeRyOZRKJWQzmcgdVJRlFItFEEJQbzRw9vx51BuNgSZuSikMywIohaIoXdMFXHcgjEJ30Lzh8BcQLoQYOeEEAQijCLV6HedOnx7dflN0RJpWeJGCEALPMJq65HHU6nUEQYCsroc3vC7bqNXr0Ze4kMtB60ON38tI547bfPzee238yrt0uO7q3r/6VQ2iIOA3fs1Bu4UHL+nymIYANNZmWBCgyjIUlutst6qlrORwoGhBDJZth61ngaaUSpQnBqJucqPAk089hVwuh317945oi6MBnzjWFDmQRm/glDzvjyw0pxRuGr8ROWV4kqWpKmxFgcdaVY9KZ8K1OS39Fngqaw3unbquR/4ccsxvQFEU0EwGATPxEgQhsk+/fOUKxkqlKPWmKkpHvw5KKQzTRMC20Y8oV5HlcExBAHXIJlQ9zwl3PU2kGCzLwvzVq8gXCqn+YJ2RRg5epAgMA0KiaRKwGjXwCMHY2FjHiSzgFQnsS18qFkdCDDjuuN3H+95jQ0lEEL78FRW//V4tKmH2gwCmba+mCwwjDAuym4qmaSgUChgvl1EoFKLwaTsQJrobRnjluS4s0wSlFLlcrlUYyFauEmt2tFZcuHABi4uLuOWWW9ZNhDgsBnZHBECTmoN1iBwAaArDH7k6nL9Bt33w6AEPyw8LTggi86MOk+QwjbPi0DUNAhDl3Zu2jVBPkdF1jJXLuO6668KulqKIpUoFJutb0Gg0UGXlkq7rRt9xTgw8zwMEATkmdOwFWVEioyTuejgy8POVqLiKIgiCAMuycPb06ajEM8X6ICUHL0IElgXCvrBJxKMG2Q6TfRAEqLLXSZKEcrHYl1VvXPDYT5j6zjt8vO93WgnCP39Zxbt/R8LSciVMF5hmk+2xnsmgWCyiXC4jn8tBVZSeN1AS658waFohIAQN0wRFuBLrpbJOtkMe9NbneR6eeeYZbN+2DVMb0GFukPHx0jlgAHdEoCVyIIyqjJFvD1idGAA0PAPPrjzX9Jp+/Q06gVfo6MzYx7SsgT9bHl2Ke26sJzRdBxWEvsowFUXBlpkZFPN55HQ9FDISAioIkU7BNE1UajXUGw1UqtWQqAsC8tls33bekiiChwZJEIQlmWs6yg5I9EyJEwTTsnCS6XlSrA9ScvAiA/E8BLbddrKMaw3GO/irB4SgWq9HeftSsdjWTTAJbifM99vvje+uO338bhuC8NWvZvEHHyojIIjKr8qlEkqlEjK6HoY5+9pDiEgcOahGgFIYjQYIIZAVBbkBvQwEIWyyIw6wAnzuuefg+z5ecdNNA+1rGCRFfL0QnUdGgPp/Y2KVPWIDpHi5HAA8tvA4gli0QhEV3D5560j2obHoFCUETo9JN0oZJKIEA+13DdEDblFu9ymilCQJkxMTIQlWFDQMI9TXMH8FiGKkT6g1GmiYZth8a4BrIdIdCEJE+gfVV/Q8h4IAtIniaaoaWTdXqlWcOXFigL2mGAQpOXgRoZ2fQRw8apDR9balRoSJDymrpy6XSn196XlItFONdjf4QYAbb6jhXb+yCFlOihQL+MifbUYuW4Cu6xAlqamxzCCgMdvjQWCYZpSTzedyw4kPeZgzEVFot62VSgWnz5zBoRtuiIRUIw27JjHgtrkQb+BUR9LnYMTVChHY8ST7Kdw6cRMy8tpMqnhETBDFSKtj2XaLODFOCHiEYK2fIb92Bt2OoigQRbEniYlDkiRMTU4iw0jQ0vIyHNdFhomRuVsjT+sFQYBavY4684LoZ4yKLEMAmlIzfbttAn1XcbSLYuqsmoJSiitXruDShQt9bSvFYEjJwYsIgWF0tHjlUYOgQ9SAIlTH8zrlYrHYd/h90FUNRbiSqdZqqFarsG0bt95i4ld/ZRGy0vxF/qcvanjf+1VQ0rkCoh8E7H2DpBSiLouUopDLjdSHXmDRBDGRG3366adRLhaxZ/fuke2rx0AGejkZRowItKYVRtiuOdxg83EkzY/unlpbSiG5H0VVIatqaEXM0gvJlMF6kLqBKkQQXmd6JjOwu6MgCJicmAijdKKIpZUV1BsNmJYFPwigaxqmJidRZpFFglBDwMuJ+es6QZblKEUVNzDqJw3Xzhq942uFsAFW8ti4cNL3fcyeOZPqD9YBKTl4kcA3TRDP6zhR12o1EEKgt4kaUAD1RiMSCBXz+f6EdR1ufh0Jiu+jYRiRsJCXHSqKgnw+j9e9VsPv/KbVQhC+8EUN73mfChqQocOrPHLQb6WC7/swDQMUQCabhbwO7ZEBRGWkoiji4sWLWFpexs233rpu5ZFx0CEmsGAIMWK4s1YTpFEifraqbg3PVY42PX/3WsWI0Y5Wa+l1TQvbBTsObMcZKmUw8O7jY+gTuq4PZf0sCAImxseRzWQgAbh85Qoq1SoEANlsFhqrDMrncigVCtA0DYIoIqAUjuOgXq+jVq/DcZyW88LtnwG0lDT2IvAD6zx4Kiw2BkmSovugZVk4eexYqj8YMVJy8CJA0EVnACBq1OIHQduogWEY8NgXo1AoNLmkdfyadmDv3IaXg1AKy7ZRqVZRq9XCGwVLW2QyGZRZlYGqqhAEAffeE+B3ftNuSjEEBPinL2l43wdUkCHvvbxzYj+RA0oIGoYRGh2patsUzKhBKcXR55/Hti1bMDU5GUYUgKb0w3pMPINSkKHEiECrz8GoIwcxPLb4BAhdJaiqqOK2yVvWtM3ouqZhW29CadQoSRCEgcL2a8Wgglpd0/rWHCQhCALGyuUwFYYwNQmgpeWyyPoaFAsF5BmZ5p0mTctClbWLjhMBXlrZzu9AEISwHXoCFJ0XH10OIiQiCUIbt3iuVCqp/mDESMnBC4wgCMKyxQ43DAFhusAPgrZRA9OyojKnfD4PtYf4MO4r0A2e76PeaGBlZQWmaUbhQ1VVw45z5TIymUzbMOm99/j4bUYQAgIIQrjPz/9TBu/9PQm+P7gBDek3csCNjoIAoiSFOoMNwLlz51A3DBw6dCh6LG5exXPOccKwZqowRHRimDJGoE1XxvXSHKA1pXDb5C3QpcFag1MABCxNwIgBZcQAWCVVOus6GLD23huFQQR8w0YOgLBypt5oIJfLIZfJIKvrqNXrsLusshXWa6RYKIStlEURBKwvi2GE73ecKDXVqSS03RWWXHz0i6RgmiMT1x/MzaX6gxEiJQcvMIhpdhWVEWb36wdB6IYYg+04sFinxhwLEyYR/zLxZjudQAmBZVlRlICH6SRRRDabxfjYGPL5fF8lT/fd6+O33m1BUZq/0P/0xRze9wEZtjPYjThq1dxjUksaHY3S/7/j2AjB0WPHsG3rVpR6+b7HnODiFRDxcHPfEYYBIxE8nw4Mnvte77RCHMl+Ct1KGCOtAFaJQMDTA+3OT+J6EAUhLG3krbs3Ckyv0g90XR84skERhtsN5u0hSxJmNm9GPpeDJAhYWlrq6XAoiiJ0ZrWez+UgK0oomg4CWJYF07JgWRYc1+0oMGwR7g4bPYtpe+IixSb9QRBg9vRp1CqV4faRogkpOXgB4ZsmaKcvKJvILcsCCQLIstzkXuYwgSIA6JlMpIxvBwGrFQltUwmEwDQMLK+sRKtuICwbKhaLKJXL4QprINMcivvu9fHb77YgSQmR4pfy+P3/rKJuWH1PhPESvE6IGx1l2xkdrRPOzc7CNE0cjEUNBkFk+oJVoWP0WILcxf4ZeD9cjCiK4uAW1BskSKy4VRytHGt66p7pw1H1ANdZkMT/8fMxKCHUWLkgb528Uei3xFHTtDCd1+d2gyBAg1UeAGFaIseqFMbHxkJ3RUIGavcssxboZVaKLIgiqCCAEALbtlGp1TpGXvh1zQWfwyL+TkEUo8+8SX9g2zhx9OhorZ1fpkjJwQuEIAhAuuQR+eRgmiYCSpuIARcGAuGNo1ftfif3tjgpsGwbFOEXLZvNYqxcjm4ogyJervjK+3z81n9qRxAK+MM/zqBSq/flc8+tkzuFw5NGR+2iKOuBKGqwbRuKhf5bCXdFPJqA1UmEl1BGinAeaWCv46HzbmMFhnOYXM/GS/EJ/vHFJxAPPOuSjhvLNzYf48j2HKIperDOTZmGAW8+1E/DKJd1HA2YOVE+l4u8EoDw+z0xMQFZlhEEARaWlgZqDsXLH4uFAgr5PFRNA6U07HRqmqg3Gl3TM2v67JIkMHYdq6oateKu1mq4ODu7lj2lQEoOXjBQlg5oBx5i5iYtQRBEjXt83w9FRaxKoGdDHzahxqlBO1IgShKK+TxKzJN92P4FTcfA8Kr7ffzmb7QShC/8UxF/8qdFVKrVaJXT/hBWc8ZtV7xrNDpaC86cPQvLsnDo4MEN2yfAzm/CMyLSMyTAz3oQixwkn49+OpGLFp+DMLXUtHKP/dD4qh7NBKbd8xyPLj3e9P/tk7dClwfTGwwDLd618UUWPeBdV9tZKHNwK2Tu+qjI8qqnQQKKLGNyfBySENpIrwxZBihLEvLZbLiIkCSAEPi+35EkUELW1rckUTYMNIs7M8w6mlKK8+fORSnXFMMhJQcvAALfR9DhBhTPPduMGHAlcUAIao0GQGnoetZPX3qeSmBkwzTNFlJQyOdRLpX6tk/thk66hle/0se7/6MFUWyeDD7/hSI+8mdjqDeMsJtcm1UMDx8LbW4OwIiMjoZAEAQ4fuwYrr/++nVv/RwHpRSDSDr52SDsHCbTLUL8JxGNiPbZJnIQV53TxE9yvIiRiG6rx8cS5GBk/gY9wNuCC0JoVbzeJY1x9DJI0nQdoLTjZOcy0aHHtDYZXUcul+tKOlRVxfj4OCSE1U7VWm2osfMUlaqqoYBRUUKSEAQwOEnw/Yjgj1oDFN9mXH/gel5avbBGpOTgBQDpULaYrIG2LAuEUmRZ97harRaVEfZFDNj2CCEwmdCQG77ESUGvXgP9opfg8YFXtScI//iFIv78o2NwXA8VVjIVz03yFUc7YrCeRke9cOb0adiOgwMHDmzYPoHmKohBwMPH/RggJbcv0DaljCO+0S+7KzhZb27Hu+ZmSwl0G7GmaRCZvfBGVi5wdBKJ8oqKZOTAZxVFpmmCEAJJFJHP56Fp/UVaspkMSqUSZFFEtVaDYZqDj5nl/oNYeXOxUIAqy6CMJDQajagJHICozHcotBOaJvwPuP5q7vJlrCwvD7unlz1ScrDBCDwPpM+wJfc2yGYyqNfrYUvYAdwPCYsUrFQqsPsgBWtZK3VUhyfw4Kt9vPvXWwnC5z5fxMf+2wQoDaswKpVKGN2gFAHbbvKYN8zoqA1838fx48exc8eO3qmdEWPYz4l0SCv09+b1LWUUADy+/GTTY1k5ixvHhhN5dkK3iADXHogvQPQA6GyQJEkSVFWNqimCIIBhGJF4WBAE6LqOfKEwsAi3UCiEXUqZzXK3Esd24NcSjRlIiaKIbIwkBDGS0GDmaf02d0uCtoseJio/NFWNLKJPHDu24Z/jSwUpOdhgBJbVGjVoU0nAUwoA67mQcD/shogUVKthDpLSkBTkchgrl1sMUNYK/tXrN2T44AM+/tOvtRKEz/xDHn/5V9MQhbDLm2lZqNRqcFgKJH5TeCGMjuI4ffo0PM/D/v37N3S/wBAmMli1BgaGJQfrX8r42NITTf/fMXkbVGnEwtIe16imaRAk6YWLHnQYn6ZpsGwblmVFoXqBPV5krc6HXY2XS6WwVXqfJY5N4405sSaFjTwdWsjlQv8VSuF7XkQSBhFCxtFuqk+mLDIs2lKvVnE+FScOhZQcbCAC1wXa+JW3m1QtywpDdVi1Jy0m3A+T4BPqSrUK07ZBeAoilwsjBSyn2klsOAzDjsxJBnzfax708RvvsiAKzfv8+09l8Ff/cxrZTDYUiDES0Gg0opXvC2V0xOF7Ho4fP44dO3dGKZ+uGOHKZWgTmdiNeChy0C6tMGI8vtxMDu7ZdHhDfCriEHj0gPkevBCrzqRBEmUaI+4pAIQOh4VCIZoE1wJBEFZLHINgoBJHAJF7YfI9FKstnTOZTOikqihNJMHkNuyDoMvY+Jng0QsIAs6zUuMUgyElBxsEQgiCNoKiTqFEyzRh2XbUbjmfz0elOklQhPW9yysroekJJwU8fdBnDnJQDNthkeO1r/Hx67/WShD+9hMa/vwvilF7Z4GGDV4aRiharJvmhhsdxXHy5EmQINhwrQEwvN5g6J4KHOucVpi3FnDWONf02Kj1BkB/0S1NVSPtgfsCRA94mJzSsMdBrVaLKkkkRoaz2exI9TVRiaOiDFziyHUHydcTQprubXGSoHCS4PswDCNsKtel0VNihx2fiqcrZFmGzjwiZs+eTb0PBkRKDjYI1HW7Mt44XOZ86DgOtEymo/shEEYVqtUqTBamkyQJeUYKuPo6iU7lU8OsktY6Lb/+NT5+vU0E4W8/oeFP/lRHRs8gXypFqRDLsrC4uAjTsqBq2oYZHXG4rosTJ09i5+7dXY2n1gvDrmTXpDcAQNc5rfCtxeYqhbycw41jhyIDr40Er+XnrZI3ev+EkMivwOJpQVZl0qk8cRQYtsSRpznj5KBbUzC+qk+ShEa93ne0phPJS6YfNU2DLEmYv3IFS0tLqf5gAKyfB2qKCIQQBEn70y6OhdVaDZZtQ9O0yMQkCQrAZNEFAIAghLk91kimFzjDps0P9n1MvSoTBsHrX+uDUhvv+V0dhK5u9a//VoMgAD/xYxYyLERosrbWXL0d+D40XQ9LqDYggnDy5EkQAPv27ev7PXRI8VXbbQ35vn7tpztvYH0dEh9ZeKzp/7um74DM9jHSyFCfn4OmqnBcF4Hvw3XdvisA1oIgCOA4Thit4JMrszBeL0KQBC9xXF5agmEYkCUJpWKx63tEUYyqooDwGg36OM+cJGiaBtuy4HoeHMeB5/vI6HrPFGo3CCzyAoT+Bw3DwJXLl6Hrem+L8xQAUnKwISCu23JT6kQMfN9HpVKBTwgmx8baGvp4vh+6oDHXQEVVkc9mB+8Vz8KB/VYacIySGHC84XUeKAXe87s64lv/X3+jIfDz+KEfshD4PlRdh6pp0FQVnufBDwL4hgGT5Yr5im894LguTp46hT27doXGNBsMvhobqoyRRQ6GNrdKphWE0UZsHl1sJgfxlEL8Rr9R4NEDi03Y/ZLuQUEphed5cF23KewtiiI0XYciy+FnLopDCVGHQTaTQVAqoVqroVqrRdbJncC/b7ynRTDg/UQSReRyOSieF5Yxs1SDqqpRGedawNMZywsLmNq0CdlsdiSeLi91pORgA0CTzmaUduxxUKtW4fs+RFHE9ORk0/OEUpimGZU0CexLpanqmlbNAvpfkUZEYh1ulN/1eg+EAr/7vmaC8Ld/l4Pnu3j72y5D17QoHEkphe04cBwHhJBQzW3bUBQFuqaN/AZw4vhxAMDevXsHe+MIJ7Zhz3oUORg2DZNsvCSN7tZxxbyK2cb66w0GhaYocCRpXaIHPHXgJpoWKYoCVdOa9EWUhu2lh1X3D4NCoRCWHxoGlpaXIbHKg3aIk4O1jFFVFMiFAkzLgsfOue/7yGQybaMIvUijKAjRda/IMjxRRGV5GbquY3x8fOhxvlyQkoN1RuA4IKwWGUCYTuiweuOdzighKBWLTV8I1/PQYCF1IMylZTu0TB4EkU9/HxPYoCWLw+B73uABFPjd32smCJ/89Bg838e//Sk7mvQFQUBG15HRNHi+D9u24fk+PM+D53mQJAmaqnbUXgwC27Zx+vRp7N27d+BJYhDy1Q1r2UZknTzseUimFYTR3TqSLZqLShEHy6tiTwGr7o5rxgApHl65YPo+7BFFD3w26fHUARCSfFVRuke9YhPdRqFcKsFn36ullRVsmppqO0nHBYncDGlYiKKIXDYL1/NgsYorwzCgsHLljo3I2oCi+bunaRoW5udRGhuD67ojM397qSIVJK4jeIVC/ILudHPxXBeO68KxbciqGpXnEUpDhX69HpIMUUShWER+hG6A/RCEYUsWh8H3fJeH//f/sREv6AoCis/+wyT++m/HW2dJQYDCSrtKxWJY8y0ICIIg9EqoVGCYJvzYDXlQnDhxAqIoDh41eBEg3jNh6MhBiyBxdGmFI1ebycHh6TshxbffR/+B9YKqKBBZjX633gbdQAiB47qo1+toNBph7wZWeZDNZlEsFKK+AO0gCAJkSdqwtEJ8v/10ceSfDEWr18Gw+1UVBYVcLkyrEALPdVv7NQx4TUiSBIFSLC0uojakXfTLCWnkYB1BE1qDTmWLvOcBJSQy88jn82FbZv44pdB1Hdlsdl1ulNxXn7ZJGay1ZHEYfO93eyAEeP/v6yB0dd//439lIYoC/s1P2G0HxG+4mUwmJFuOEwm9HMeJbjxRF7c+zqVlWThz+jT2HzgwVKpiJFGDNegN4pNKP9cOZe8JCAEJgtCEy3Oam3cJ4WS11gZdQGvk4O7p1n4KI9MdDLgNHp0yGo1Ie9APKecmSq7rNpfoxa6/QUSGSe+DjQIvcVxYXITn+1hYWsLUxMTqOaA0iurwCM+oIIgiMkx3Ydl2dJ9UFAW6rkcN5brukY2LXzuaqmJxfh7jExOwbfsFqTi6VpCSg3UCIQQkWaHQASbrJeC4LmRZBkUYxnZdN7Q8ZkZG6ymiiTuMtfuyvRDrtjd+jwvLsvAHfzjWVNr8l/8jA0EAfvInOp9fHhLWNQ2+58FhN2rKzrPjuhDAcryqCkVROk6cx44fhyTL2LNnz4iPcDDEV2gu6ynBe0v4vh8KwghBEARhS3D2t+f7cB0HhOWu+aQf/Y69lv+dxN7FeUzE/j927ATOX/kkBFGEJIoQZRkS/1uSIEkSRFGEJEnRY/x/kT0mSRLm/UVcMC427euQfgCGYUDX9SjSMTJyMETliCLLkGQZPruGOk0oQRDAZSktkqjZ5xbIiqIMFfETRBECI4cbTRJ4ieP8wkJU4jgxNgYgJAMklkoYlS4icl1kBlD5XC681l03FCL7PnRd79vtlV8/oiSFTpDz89A0LSUHXZCSg3UCdZym1V6n6gSXlS7xL4PjOJAkCQ6byLKZDDKZTJNmYT1L9iKCwG6g61GZ0C9sx8GDD4ZtaP/so1uanvv4X2UgCsBP/HhvAiYrStTK2fd9uJ4H1/MikxtuqCQrSrSq4+fBNE2cPXsWNxw6NHw5WT+fGaWRbsK2bTi2Dcd1o78N0wzFl+x5oDmnykPPgiCsTsaSBJmVmVGEE5Qiy1BUFaIgNE3SYmwSb3lMFOF98RNAzGRuy/brMbH3tlVSwcRohJGUIAjCiSMIojbISVJCCMFDziNNpyGLLC4+fgGXcTH8TGQZuq5D03WoTD+i63r0mK5pYSmrpg1fptkDvHeBEatc4JOhH9O4NE2MggBZlqEoChRZXnMKUBDFqIZ/o9MLQKLEsdGAzDwX+DEnyxlHAQGIyCz/DBRFiXRZlmXB8zxkWBSh5/YYQdA0DYsLCxifmoJlsTLpFC1IycE6gBACwvKTkaNdu3RCEERtWBVZxkKjAcOyMDU5GXVYa5qQ1kmQlFyR8fE2CSk3GH4QhJanlOJ7v9eDLC/iT/60uXrjv/1lGEH48R/rL0IDQYiIQharN3bX88IVNrvJG6YZTqKKgueffx6qomDXrl1DHQfviBmt8tnfvMqCkwGbia/iE74kiuFkqGlQNQ1j5fLqxMgmSY1NjnIXLYFpWXBsG6qmdS1J64arktDUJro8PoHMjh1DbSuOLz36NWB29f/D03fi9be/PiRBMTLkOE7UWpgTJwBRJID3GdD5eWlDIHgkaZgGXaqiwJak6PqQRBG+77cQAn7dyCMgBHEICK8lbmD2Qpj5xEscVyqVpgoGLnRdj4oKMUaIuEMkTxn6vo+6YSDTTxSBXSeSKEbGSPx79ELd517MSMnBOoAm0wkdLjzemlgURZiGAddxIAoCyuVyq2c6vxls0EUcRTteIJimGXrKKwpEQcDrX1eHLCv4ow83G5h87OMhQfixd/ZJEGKQZRmyLCOTyYQhYR6yZKH4Wr2O2XPnsHfvXti2Hb2+XQSBt8+t12qo1+uo1Wphg5lGAy5rksMRn/Dz+TwmJyebV8Tsb1mWo4mATwzDYJBWzZ03khAkjsDngFKKR+a/1fTY3VN3haY7bYx3KMtvAyGxdlwXNk+vJMiE0WhgaWkJDvtMwzELoEEARVVRLBZRKBRQyOfD38UisvEIHT9sShH4PvwgQMDq7wkhyOXzYethJoblUYL1+s7ECcEgFUajRr5QgO048IIAy5UKNk9PQ2TRpXYWyqOAAAAxgsBThlyLQFgUgRDS3X8k9tmoqorlpSVMTk/DNM0N76x6LSAlByMGIWS1JXOX8ivuBEaYkZHDUgtj5XLYMCSOdSYGLbcYSptao1JKQ+vnDSILtuNEN/RcNhtFV773u03IkoI/+MPm1e9f/PcMIAI/9iODEwQOSZKQYSkcXoN++tQpyLKMmZmZSKfgslC/ZVmwTBOmYaDWaIShfuY4ya1hJ6emsHPXLuiZTLRq5c2vBsIay/iaQr9DgiZLGUfgc3DBuIjL5lzTY3dO3N75DTG9gCBJ4XntIyQcBEFTeqbGCNzy8jLOnTvXRJ7yhQLy+Txy2Sx0dj1ksllIjAiIsgzq+xAFAblcLiJw6w1RFJvIgYjRiv/6ASdn5XI5vH8FQaQ/iDQHPJU64nPCo5nxiIkkSchls7AdBy6LJBBCejaj4qk3VVGwOD+/rkLvaxkpORgxKJvUItV/mwuOsHQCL60TWamQquvtb3YbfNHSxP4EQQBlK4P1Bjd6IgiJQVO4XBDw5jc5oBT4//9RgiB8LAMBwDvXQBA4RCG0Zr58+TLGx8Ywe/ZsOKGwVrnhUARkMhnkMhlMT00hn8+jVC6jWCy25ED9fhvKdMBaz3pEDtbiiZE0QRqBz0GySmFcHcPufI/0zRCaG0mSkMvlkMvlUB4bw5Ytq/qVIAjQqNdRrdVQq9VgsA6gC/PzkRYF7LPOFwrIZ7NQNQ2EkI2dUAShpepkI9MLlNIo9y+KIsbGxrC4sADLsmCwdFUU5aIU0npUVCX0UPwxTgb4ooIQEnrAdCLD7P2qoqBWrSIIAhiGgXw+P/IxX8tIycGIQXnUAB3C8pTCMIywxM7zkMlmoagqZEWB7XkvjDFHHzeYjQplGoYRKpQlqUVJzM/mW97sgFDgD/+4mSB89GMZCALFj/5w//XojUYDKysraNTrqDcaUTqAG7osLS2hUCyiWCxiy5YtyBcKyLEeFoQQ+L7fdLPiJZOiKEKJpSAEHnrdYFBKo0llaAMkoDWtMILIwZFESuH28du6jjEqtx1iX/w8+L4Pz/cR+H4kmgSAIvuMgZBMSLIMynwyDMOIUkVX5uZg2nZkXa5nMijk86tpikIBY8wbYJRoV8ooiCLoGolnL/Cy1ng1EwDouo58oYB6o4FKtdrcGG497xEdqk00TYMoSbBMEwHClG02m22fSuNRUUIgiSIa9XrY52HEnS6vdaTkYIQghIRf1i4Kf8uy0Gg04Ps+cqypUkbXUalUAEqbRTUbrDMId9l5ZcYrLtYrzeCyUjFQinw221S6l8Rb3xISgCRB+PO/yEIUgB/+oVaCQAjBysoKlpeWsLS0hKXl5cjYRtN1FPJ5TExM4Prrr8eJEydQHhvD3YcP91wdBkEA3/ejiYcw5T5PRRDmUyEIYWe9pvI+9ncnRBUvQ55r3qp5zeSkxSFxbZqDUG/QHDm4c/y2ntdUr9Uy12fwqoiAVUsEbIIDIU3heAGAxEgc/2zi5ymXz2NqaqppH0ajgaVKBZZphuY89ToWFhdx9uzZSBtSKpUwOTmJ8fFxTExMIDukEJRDbFMJIGB9qxd6mRoVi8WQDHseViqV0Dl0nRcPSf1B9DgTg4q5HEzLAmHRgGwn62UgIvCNeh35QgGNRiMiiClScjBS0LiCug08z8PKygp8zwtD0rkcNE2LSrsAtEYONoIYMDZO+9zfeqQZCIuoUAB6hy90cmxvfYsDUOAPP9x84/3IR7OAALztrfVVIrC0hJWVlait9fjYGHbu3Inx8XGMjY+HXR0Z5q5cgWVZuPOuu/qalPmkwm2VgyAIG0Kx1Wm8yx4nEc2H1b6sUJKklhXboOA39zWHv5NphTV2ZTzbmMVVa77psTvGu+gNOPi1GjNp4mWU3KOh01UpAIAkQeUkjRGCQc9NJpNBwfeRy2ZRyOebXCcbjQYWFxexvLyMK1eu4NSpU4AgIJvJYGJiAhMTExgfH0epVBqIrAkxzUEcoiCArEN6IZ5G6ARRFDFWLmN+YQEOE/JmNsA3QAA6djrlOgSTtbo2DKN9o6XY+93Ya3O53Ia3gX+xIiUHIwTl9rwddAaLCwvwPQ+KoqAcCz16nhc2V0msWjYsYkDpwKHaUacZTMuKfNlbBJl8n20ee+v3OSAE+OM/SRCEP8/iueeexW23fAcZXcf45CRu3LoVExMT4Y25y7k9ffo0xsplTAzZnCUiC4zoBbGJK2405AdB5H4Z+D5aAsQsUsNV8VwVzv8X2N/dJplIbLfWG16yK+MaycEjV5tTClP6FK7PXhc57lHum8D/jv32PK+rGI+fk6Q5E59g1zqRipIETVFgM4FqvE4+n88jn89jByvzdF03IqdLy8u4dOkSKCGQZDmKKkxMTIQ2xV1Sit0iJoIQ9l0Yxd2iUxqhE1RNQ7FYRLVWg9FoRA3R1hsigADt7wm8P4NphZ1cTdOMSlkjsPu0yM6rY1nQs1k0Go20pTNDSg5GhCil0EYo5Ps+lpaW4DIHxMnp6aauax5zr4vY7UanE+hwnRab0gxruCF4ngeHqf3zuVzLF77dzSYIAqxUKlhaWsKWzYt44FXT+NrX72x6zUNHDuPAgQN421v7z8vWGw1cuXIFt99++0jFZnxiT0ZEKDMK8uPkgXe34yZCvTaeIA/8b0EQ4Ng2/CCAzMgIF9jx/H3fx5jQHAhdeitEBlrx/9ljhE3+37xypOk9t5VuhmEYoZdAIrLSafvcyElOmD51s3QeVQhe1TS4ngfHcbrWyauqipmZGczMzACIpbaWl7G4tIQzp0/j6LFjAKUol0oYZ2SBpyL4dnuRA3FE6YVhShGLxSJsx4Fl26jX6yhsRFkgn9j5eJNeLSxa07GSgX9e7H2ObUPPZqOyxqENz15CSM/AiEAdp+0E6zkOqrUabMuCJMuYnJxsIgYA4DFRW1Po60WiM+gHTSKxAbUIlFI0TBMUoagoeW44XNdFvVZDtVqNUgQ82jI+Po7vf7uL67bP4+P/Y7rpfR/9WAmaauL7395fFcOp06ehaRq2bdvW9zGsBYIghOHtNqQh8H14TMMS5dLZb766o4xE8DBwkgaZlhWlN5LpjNggmia3uKPnqiGW10TaTMeDXa+vRo949KmPKBSlFN9aeKzpsVvLt0bXIc+lRyRHFCEC0d9ASAxG0ddhWHCNArc971pfH4MoitHkz5t4NZgnw/LyMhYWFnDmzBlACGv5JycnMTExAdM0m3s0JNAt1N4L8WjBsBgrl1Gr1eAxU6KJDRBWx4+Zsusu2eSOVw7Zth1VMuRieiZ+vTVqNUxu2gTP81Cv1zHG7KFfzkjJwYjASxjjF6dt27AMA5ZlQZZllMrltu1+Pd8HQVhas972yG0xAv1AVGYkSSFB6BOmbSMIAoiC0CLaWqlUMDc3h/Pnz6NSq0GgFNlsFpMTE9h+3XVh7rZYjFIEhw4C2ZyJ//qR5u38lz8NNQjf/7buBMH1fcyePYu9e/e+4HlHThp6lR9y0hAnDzwkTymFyConJFlezVsnP+tEqL3tlZBIKxAIfSnlm8y0GOE42ziLJXe56XWv3HIvcnJYBVLoUVLWSyi3UdBUFT4zz+qXHLQDT0Vcf/31AEIivLy8HKUjvvOd74TaCkpx5JFHsHXLFmzevLlJnzSM9wHF6vWz1igZ74paqVRQbzRQYBU96w1REBDQ1cZP7Y5eY3bX3HG1YRjIJVKXPqtgAULReD6fX9deNtcCUnIwApAgiFIKHLZpwmLubbKiIJvNIt9Bsex7XuhzsNFljOuQG4zUxH2kGnzfh21ZAKXIsglhfmEBly9fxtzlyzAsC6qiYGx8HFu3bcPMzAzKPdTEP/gOG5QCf/pnCYLwX7MQBOAdb+1MEM7NzoIQgp1DWiWPGv18OrwCohO4rqFQKDSFSuO5dxpf7ccfi/1t0+bJOJPJQc7nWyb/KAweG18Sz175TtP/M5nN2Fm4HjYjMuuJUV7xiqpCYmkbj2mJRgFVVbF582Zs3rwZvu/jW9/6Fq5evQpREGCaJh57/HGIgoDJyUnMzMxgy5YtUQqiH+8DHuHhRGJU6bMsC8tTAMuVCqYnJzekNLCflIrCmjcZpgkSBKizSgY+PlEUUa9UMLl5MyzLQr1ex/iQmqOXClJyMAJQ1226MfKOeb7vQ5RlqIoSetq3+RJysRoQsu8NjxoA60MSeugReDrB833UqlWcOX0ac1euwPM8ZDMZbGY3vYmJiag3QLuoSzv80PeHBOEjf95MED78J2GZ49u+r5UgEEpx6vRpbNu2beSK66HNatb4ucQn+OQEMJDeAGipVpBVvWMKqBeS/gZ3T9/VHF3ogbV8QzqtLofaliBA1TQErPfDqFeatm3j4YcfhmEY2Lp1K1YqFTz44IOwLAtzc3OYu3wZzzz7LJ555hmUSiVs2bIFMzMzYeSlw3lcz6iLAKBUKKBhGAiCANV6HWMbIe7j6ShB6EoSeF8GwzRBCYFhmqHGiaUmVlZWsH3nzqjXieu6L4zvzIsEKTkYAeLGRz5Tx3Lhlcp6j3cSuPBKBVEQNlYEswGKYqC9HsGyLJw7fx6XLl7EMvN3KJfL2LNnD2ZmZlAqlVpy4IOO+Yd/wAYoK2uM4Y/+SxhBeOtbmgnC1atXYTQauOOOOwY+xl4YVr1NsbaJkMSI2ZpXcCOqViCU4NGFZnJwz/Thgbcz7CQ/6qteVVVYLHoQBMHI0lHVahUPP/wwRFHEAw88gFOnT0dkLJPJYNeuXdi1axc8z8PVq1dx+fJlnDh5Es8fPYqMrociyC1bMDkxEX2XCF17pUY3CAgrOYrFImr1OhqNBjIb0BY5Smn2QXp4JUOD9cgwLSvqqUGYW2Ymk4FpmqjX65iYmOi5zZcqUnKwRhAmJhQEAcT3YTQaYbOWIICqKJAlqetKlJdlyS9ESiG+Wlvnm0a9VsPly5dx8fJlLC8vgwAoF4u44dAhbN++vWvjk+jLP+B+f/gHbRAC/PnHmgnCH3441CC89c2rBOHU6dMoj40NXb7YDcNEDkbRKjuKGjBx39o2lqxWGO7WcaJ6CsvOStNj92w6HH22/Y7yhepMmIQoih3LGofF/Pw8Hn30UeTzedxzzz3QdR2+77ftJqkoCrZt24Zt27aBEILFhQXMXbmCixcv4tTp05AlKUxRzMxgetOmoaM9g0DX9bBJlWVhpVLBJtacaT3BhbP9XBPcDbFeq4WpTccJqxgALC0sYM/+/TBNM3SxHSHhu9aQkoM1gkcNCCFhOI1dnDwKkMnluoZKfUYOMhtFDjaoTJISguXl5Ug/0DAMSOxGtXXrVuSLReSyWRQLhd4b4+RgiMngR3/YBgXw0SRB+OMwgvB9b7JRq9dx9cqVdYkaDItRTHvcWGskN+aWyMFwN8xkP4Vtua3YltsKK9nJtBfWmdAOAlXTog6Ra23/Ozs7i6effhqbNm/GXXfeGU1Mnuv2nNhFUcT0pk2Y3rQJN914IxaXlnBpbg5zc3OYPX8ekihiemoKMyz9MPIVfey4i6USHNYCnTdnWm8IggCBkJbeMO0giSIymQwsy4LjumEjJlVFrVIBpRSqqsJ13Uic+HJESg7WCMIUrqZhICAkbDgiCAiYwFDuwTp598GevcjXEyO6yVJCcOXqVcxdvozLc3NwHQeapmFmZgavuPlmTE9PgwQBarUaCKXIZbOROKqrExvXLwyZK33nD9ugBPiL/95MED70R1mIAsX2bU9D03VsXa/yxSHOr9BHSWAvkFGlFIDW3gpDRg6SlslRSmGYErwe1027168HeBtv6vsDlTUm8Z3vfAcnT57Erl27cPPNNzc95/t+f1EJdt0QAGPj4yiNjeHQoUMwDQNzc3O4fPkynnrqKTz11FMYHxvDzMwMtm/fjuwIvAnidueSJKFcKmFxaSnsXqppa7aQ7oXZWR1HvlWGIBCUSj5KJQ+loo9SyUe55EHXScRfuK8Mtzm3bDv0IZEkLC8tIZfPRx1YU3KQYmAQzwNYL3E+yWssX8W79nUFpWEZY9LjYL3Q4ea41lumZZqYnZ3F7OwsLMtCoVDA9ddfjy1btmB8bKxpRdFoNEKL5JgOI26W0+5mzwVDaxnnj/1oGEH4WIIg/MEf5vDgqzS87W07u/Y4WBOGWOWOJHIwioZLACgJWkY0TFoh1Bs83vTY3dN3hfsYcFvcC2GQ87qesbK1lDUSQvD444/j0qVLuOmmm7B79+6W13ieh0KHSp22VSfco4I9l83lsHvPHuzesweu4+DqlSu4NDeHY8eO4bnnn8fmTZuwY+dObJ6ZWfP1wveps34l9UYDlVotXCytU1rj1OksfuKnb4TjdF6MqSpBqeihVPJRLHhQFALTkrBpuoF/97PPAggFiksLC5iYnES1WoXrumFK52VoivTyO+IRgrouXMeBY4cTTz6fh83Co5qq9vySUSCsraW0byX+8IMd7aqJEoKr8/M4e/YsrszNQRRFXHfdddixcyfK5XLb93iuG5GouA4jSQiSJCFyNFvjMfz4j4ZVDP/t480E4UtfuReHbljBoYMvjjA1MPiquB0icjBqMSIwVFrhaOUYqm616TFODjgGOeJBRYnrqVEYtqzRdV088sgjqFQquPvuuyMnxSTaTVDJksQWCAIk5gMQh6pp2H799dh+/fUIfB8XLl7E2bNn8ciRI9CzWezcsQM7duwYXD/R5notFgqhSyFLL0ytk8DvGw+VuxIDAHBdEQuLGhYWm++1z6KEZ78zhv/+F1+FaVnA0hIsy4KmaXAcJ1rwvNyQkoMhQX0fnmXBsixQIKoz9n0fgiCE+bweE5rruqAIb97XiujFtu0oSmAYBsqlEm6++WZs3769rWAqDpORKF3X25r7JK1iI/e9mNp6rfiJd9ogVMDH/zK88VFCIYoUf/ThMlTVwL/6XrfHFobAgJP8KIgBsKreXuu2aDKlAAyVVkiWMF6fvw5bsonJcICxDlyxsI46hWHKGhuNBo4cOQLf9/GqV72qI6kGwshBpDngqYN+3EhFEUIQdDxPkixjByMDlUoFs2fO4MSJEzh67BhmNm/Gzp07Mb1p00DRhPi+BNacaWFhAY7joNForEuY/vrrBtSsJHB1PgMgTAfbjoOLs7O4bteulBykGByeacIwDBBKoasqNE1DvV4HEEYNulq7shsUTymse8hqrTdESjF/9SrOnj2LyyxKsG3bNtx1552hzWgfNw7HdeF7XmRp2gtxxzMxZpE6Cvzkj1kABT7+VxmQWNHGB/8gB0EA3vg9oyUIwguQUgDWO3IwDDlo1hskowaDQhhwsl9vB5FByhqXlpbwyCOPQNM0vPrVr+6Zj/c8D6IkNXed7HPCFkUxat3dDeVyGbfcdhtufMUrcPHCBZydncVDDz2EXC4XEYiuIsYOET5VVVEsFFCt18P0gq5DHfE975X3rWB8zMXyynDC7okJF7lsBoZhwPd9XLlyBZu3bo0WfKM0ubpWkJKDIRC4LhqVCgI2sWeyWXie1xw16Ab2pfaYZkFdzzrgfm6eHSybHdvGuXPnMHv2LBqGgUKxiJtuugnbt2/v2kGu3fajCAvzOu8XUUMhQQgbEI1o9fevf9zC7Lnz+Oq/7G16nBOE7/3u0RGEFypZMTJBYhtyIAiDRboCEuCxhN4g7m8waCnjMFjv0sd4WaPjuh27i168eBFPPPEExsfHcffdd/ecdHgLcJm18B4YfToncsiKgh27dmHHzp2orKzgzNmzOHbsGI4ePYotMzPYuXMnpqanW421gI7fzXw+D4s1QaqsrGByYmKk5Y2KQvGWN83jYx8fXFScy/r4r3/8NCRJQiabhWWacFwXZ06dwo7du0MbfMtKyUGK7qCUor60BN/3Q8ct5kYWaQ00rTlq0GUy81lPhY2oPe6K+JecUiwsLmL2zBlcvHwZAoBt27bh9jvvbBEX9gvbdRH4PkRRHKp8KmoCxGr/aWK8w6Ber+PGg19HsVDEZ/5hU9Pmfv8/5yAKwHd/12gIwqBh/VF4HPCujsDayQFtFzmQBrtmn6scRd1rND12TzxyMOTnOJDfgSgCffSDWAt4WaPDa+cTn/2JEyfw3HPP4brrrsNtt93W8dqgWHW4dJlOp1farht4D4KBIAgoj4/jtvFx3HTTTTh//jzOzs7iGw89hHwuh507duD666+Hxr/TXa5zQRQxXi7j6uJi2NzIMFAaYaieUuDQgQYGtQ7L5Xz86YefxtYtDoDwXkx0HY7jYGlxERPT01AUBZZlodjDuv2lhpQcDAizVoPvOBAEAbl8HoIgNEcNBhAW8rz6uukN+rgZ8Fe4joNz589j9syZsHFKoYAbb7wR11933WBRgjZjsC0LlFJkh6wBj5dIxf8HhicKp0+dgqZr+Pe/IKOQt/E//nqVtFAKvP+DOUAAvvsNaycIg6xYI7vptYoRR2mA1I4cCIPdOpIphV2FnZjOTLe8btCxDqQ72ABfBFmWISsKqOc1lTVSSvH0009jdnYWBw8exIEDB1rGxjsMkhg5FBB6oQBY28p1wOhBErKiYNfu3di1axeWl5dx5swZPPf883ju+eexdcsW7Ny1K1oodTrPsqKgVCyGzZmYE+Fa0wumKeILX5zE331qE46fGEzLIMsEv/s7z2PXTrPpcU1VQQiB53m4MDuLXXv3ImCVKC8nO+WUHAwAQgjsWi0SIPJJ3bYsAG2iBn1sb63tkjuiz5vA8vIyTp48iYuXLoFSim1bt+KW227D5MTESMZlsxysJElDV2QIohj5HCTXBW2JQo8J1vE8zJ47h33790OSRPzUv7FAKfA//yZBEH4/TDF81+vXQaTYBS8mMWK4rdbVtjBg5KDV3yChN9iAiXu9NQccmqrC9/2orJE3T5qfn8ftt9+O6667DgBb41IKAhYt4oQusT1e4bNWbdJQ0YMkBAHjExMYn5jAzTffjPPnz+PMmTO48I1vIJ/LYcuWLbjuuuvQKT6Yz+XCpnSui1qthskhHUlPn8ngE5/cjH/8wiQMY7jz8q5fOYE7bqu0fY5/bqZhYGVlBWNjY7AsKyUHKdqjUakAhERuWkD4xfWDoLfWoMtkNaquaINgpVLB0eefxxcvfhkncBIT+UlsH9+GWfEcvj77TZCzhPWHCBBQAkIJAkpAKQEBwXX57fiRQz+MnNLZPIUSEjrfUYoM8y8fBvEqBsLOf9vXrb6hK1E4NzsLQil27tjBX46f/ikLBMBfJwjC730gB1GgeP3rvKHGHh9/PxjVFBmMSowIdIgc9B/t8oiHxxaeaHrs7kQ/hUFFdqvj6F+DslHaD0VRIIkifN9HrVbDY489BtM0cf/992NycjJKGcS9O7odtc+M1taSVgh3srboQRKKqobeCbt3Y3FxEadOn8bJU6dwdnYWB/btw85du9pGRYulEuyFBViWFbpK9rlocF0BX/naOP7uk5vx1LfXFuL/mZ+axXe/Yb7j8zwKbNk2rl6+jFKpBNu2USwWX5D79QuBlBz0iSAI4BoGgLDxCb+JNUUNOl00nfKKIzKpad1w5y9/rV7H0aNHcfHiRTwnPY8v+v8MAJitnMMTlSc6vq8dZmvn8J5X/nbH5y3bBiEEsiyvmXHzBk793tg6EQVCCE6fOYPt27Y1kTlBAP7tT4URhL/522aC8L4P5CGggdetgSD0jVG5VXK9wUgiB2urVvjO8nMw/ObQbbJSIfpch0grvNggCAJUVUWlWsUz3/42BFHEqx94APlcbqiOiDxyMAptkiiKobfKKO85goDJqSnk83lUd+7E+XPn8Oxzz+HkyZM4cOAAduzY0RRRVVUV2UwGhmWhVq/3JAeX5zT8/ac24dOfncZKpTtB2jJj47rrbDzyaLnja970xjn86x873/OwFEUJLaBdFysrK5iYmIDruuvvSfMiQUoO+kS9WgUIgSxJEYPvO2oAhF/GfuqS1wmGaeLo0aM4f+4c9EwGt912G/7x2BcAY/htPrd8tONzhJDQHGqNUQMOXto4lBXx6kawsLCARqOBO+68s43ZEvCzP22BEuBvP7H6eRIC/O4H8oDQwOteu74EYTA5VWesa18FQRro80z6G+wr7sGk3t4MZ5hjH9jvYJ1BKcXK8jKefOIJaJkM7r3nno6VC/3A931QrD2twCGK4kg8Q5IgzMztFa94BQ4ePIijzz+Pp55+GidOnsTBgwexffv26LopFgowLQuu60adEeMIAuDhR8r4xN9vxsOPlEFpF7GjQHH/vSt4+1uv4p7DFVSrMr73+26H77de+4fvWsb//R9O9X0b1lUVpmmiurKCcrkcmSO9HJCSgz7g+z5sw4CCMGrAr6u+ogZxJOxeo655oyQMiTC6ZVk4duwYZmdnoWgaXnHzzdixYwdkUcTh6t04unx86F3dMnVzx+cs2448HEaRp+Mr4LXe0i5evIhiodC2EQz/PP7dvw0jCP/77xIE4f15CEIDr33N+hCEUVQpxLcFYCANTEe09FUYTECbFCMebuNvEI13sJGF7xlhqHwoxMSElFKcPXsW3/72tzE1NYX9+/evOXrj+z4EjE64LKzTQoWTbUEUkcvlcMedd2L/gQN4/vnn8fjjj+P48eM4ePAgtm3bBllRImtlHj0QRRFLywo+/dlpfPLT05i70n3BNT7m4i1vmsfb3nIVMzOruqDxcR+veWAZX/znyabX793TwO/85jHIcv/XiqwokGQZFvO1URRlZCZlL3ak5KAP1Go1iDTsfyDLMgilUdSgZ3lePN+duIFF+cZRe/oLAmzXxYljx3D6zBlIkoSDN9yA3bt2NTWC+umbfhJPXH0czy4+N9Ru3nnwh9s+HhACh1cojKrZCicHa5gEfGYVu2/fvg67WP3C//9+1kJAgL//ZDNBeO/v5SGIDbzmgf4JQr+3kVFOb6PUHLSkFQZIKbiBiycWn2p67J6E3qAJw9x019H5sB1oG4LP9//ss8/i1KlT2LNnD/bv3w/DsuB63po6IHq8XfOoJiTmHTLq6AGvvoqPslAo4PDhw6isrOC5o0fx2Le+heMnTuCGgwcxOT0N0zTh+gEefkTD5z6/A1/9l/G2K/44bru1ine89SoefPUyFKX9MfzA9881kYPpaQcffP/zKOQJBsrsUApd02CYJqrVKjKZDBzWffOljpQc9IDrurANAzoLj/NLse+oQfw59rfpGjhTm8Vjl57AqcpZLJ1exrnGeZypzsIObPzA3rfhvfe9G6Iw4I2d1USfPHkSJ0+dAgDs27cPe/fubZuvFAB88MEP4Ke/8O9wvt47BxfHPTP3YM/YnrbPWaYZ+jeo6siMQ/g5XssNbW5uDoHvY/v27X3sD/jFn7MgAPjE32fYvZ+CUuC97ws1CA8OQBD6wSg6MXJEmoN1SCsM0nTp28vPwgqspscOT9/Z8rq1miCt52quLRlIIAgCPPHEE83Nk5j5l0/Impr3+L4/ci+UQd0l+wFl3hrtrrny2Bjuu/deLC0t4bnnn8fDR44gk92MM7Ovxhf/eQ8uXOwuMMzlfPyr71nA2996Fbt2Wl1fC0HAza9o4P/897P4n38zg5nNNn71/zmF6Sk3er5vESs7HkWWYbPogWVZKTlIEYsaqCokxrY9142iBt3yT49cehSPXX0Sdb+Bs9VzOF05gzPVWVw25rru80NP/xc8sO2V+O4dr+97nH4Q4OTJkzh14gT8IMCePXuwd+9eaD1C+jk5i9++/9342S/+HOygf3/yrfktsH0LutycK/SDAK7jAJSuKc+aRHTjH7JtMwCcv3gRYxMTyA3QnvYXfs4ChYBPfkoHn7qCAPjt9+YBGHjg1U7z+NaAURKDUYpdWyMH/Ye3kymFA6X9GNdaUzr8Zj2sD0ZfHRr7dAvlr6J9vsd1XRw5cgTVarW5eZIgQFFVENZ4aFhy4K3hvR0hCKHr6AgJQrStLp/hxMQEpqa+C1/4Uglf/doMXK/7/enA/gbe8dar+K7XLyKT6e+7zzUoP/JDc/ihH7jUQugGOW5+PWqahlq9DiOfR61WQ7lcfsmnFlJy0AWWZcG1bWiUQmcTHQWa3RA7XCA/+LmfwCdPfWbofa84K329LgiC0N706FH4vo8dO3fiwL59AzHbXaWd+L/u/A/4nUfe2/d7PnHy7/DP57+MH9j3Dnzf3rdEJY08aqBq2khvaCLWJjyzHQdXLl/GTbfcMvB7f/HnTIAAn/xMeE7Dj1zAe96XgygBr35lqw9CUk/ST158VKvfSBHPwsdr3+DwaYVH5x9r+r/F34BjjZPUoNdGy2cxZNSmUa/j4SNHEPg+XvXKV6Kc0LKosgyHdSOlQ5qArVfLYIG5jo6EHsTOZ7tjtG0BX/zyJD7x95vw3PPdzYo0leANr1vE2992FTccbAycTYlaWKN9pGfg42XfI13TsLK0hGw2C8uyRpcyfZEiJQcdQClFvV6H5PvQMxlIrJSun6gBpRSfOvXZNe3/lVvv7/o8IQSz587h2NGjsGwb1113HQ4dPDjcal0Q8PrrX4dnF7+DTw9AaCpOBR959s/xv479Dd6x7214y643g7pk5FEDAKGYE8OnFS5eugQqCNi2detQ7//FXzBBAXzqM3ENgoDffk8Owq8Br0oQhHa+86TLDXSUYfFRC12TJkj9phWcwMUTS816g7s3tdcbDO1zwN+G9jd9fl4pcx4cppSwE5aWlnDkyBHouo5XPvhg2xbHsixDEkV4QRCmB4ZIs3muuz6+/iP0PYhvIx6tOndex999chM++7kp1Ordr5vJiUXcctMRvOG1F3HHnbtRHNJemfuh0A6ftQAAotjx+RawY1NVFY1KBY16HSsrKyk5eLnCNE34rgtVECLv8H6jBoIgQJNU2IEz1L7vmTmMbfktHZ+vVqt4/LHHUK1WsW3bNhw4dAiFAULlnfCLt/4cji0dx/GVwSoY6l4dH3vuv+Pzx76A12x9Df7VvjeO3BJaZDbAfX+hE7hw/jw2bdq0psqJf/8LJigFPv3ZBEF4bw6/8WvAK+/v4qTIbsQtYCs3wqtMsPZJPWBljJ3MogbGkJGDp5aehhP7DggQcHjqjvYvXsMEFYng4qvgmDguWkmOkBhcvHABTzz5JCYmJnD34cOdDYoEAYoshz4pQ3b2W09f/1FpDyLLZ0GA5wv4+jfG8Im/34RvPV7q+j5JonjgVct48xsv4PrrT2N+cQGXL8/hy/98Fvv378eBAwcGjn7RxO92EICowqQn2OtEUUQ2k8HCwgLyhQI2b968ftb3LwKk5KADDMOAHATIZjLgl2a/WgNQig+/5j/jp7/0CxgmaPeOPd/X9nFCCI4fP45jx44hXyjggQcfxFiXHvD9gk9Fiqjit+77T/jpf/pZ1L1629f+4i0/j8evPoEjc480Pa5Ahev5+PzsF/B3Fz6JN+15I35o/w9gMjvZdjuDgq9G+mk9m0TDMLC0tIQ77mwVwg2KX/rFMILwmRhBCAIBv/WeHH7j1yleed+AIkXm39BkAx0r66PJCETcVa+TudYoyxgxvObgkYS/wQ1jB1FS208WyWOKf2viE3y79/GoQbwnAX9fu32sFcePH8fzzz/fs3kSh6qqcBwHvueBUDqwDsQwTUxv3ryWIXeGIEAaga0ypRTzCxo+9/lt+NwXtmFxsTsJn55y8Na3zOOtb57H1FT4nVlc0jE9PY2tW7dicX4ex06cwNzcHO644w6USt1JRtNYgL4iRH1HTWJlnxldR63RQK1SQaVSwcREe7+OlwJSctAGvu+HUQNm6gGEF5w1gK/Bjx36EWzNb8VbPvMDcILBvPn/5Nk/x4qzgnfsfSv2j4UthWvVKh5//HFUqtVmRj1ixfHm3Gb8+t3vwq9841dbnjs4fgDv2Pc2vGP/23Fi+QQ+/vxf4RuXvgkAyCMHAgIHDqzAwt8e/wQ+derT+N6d34MfOfBD2Jxf282NM/RhVn8XLlyAJEnYwoVia8Qv/YIJSgR89nOrBDEIBPzW7+Tx7v/YwH33thKEntGADimHlndxMyigbV8OgYfOKY3IQYuwLrZi6itKkaxW6GGdzMeVFCPePXVX08o+Xp4are5p2GugiSx12VcTGVjnkkZKKZ566imcO3euffOkDpAkCZIkRSXQvUTCcQRBAMdxRp+mi2MN2gNCgEe/VcTffmIK33hoDIR0J6R3H67gHW+9ilfet4KkjKJQKMB2HLiOg527d2PLli144okn8JWvfhUH9u8PPSP6ILz93iMEoOVaa//CuFGagIymod5owDCMlBy83OA4/x977xknx3ldef8rdO7JGWGQQQQCBAECBECCABNIijmKkiztOry21+v1WvJatmXLsrJkb/QG2Ss5rCRSlJiTmAlGBCIRgcg5Tffkmc5d6f1QYbp7Os70ACCJox81mJ7qquququc5z73nnptCtAx87NtCUdWyowY2buhcyzN3/ZJ7n/tcRZUARwaP8p0P/pbvfPC3LGycz7qGa5kZncbc+lmsW7eOBlv0NEED4cpJV/PF+V/gZ/sfyXr9Swu+6Dwocxvn8p1rv8XxoeM8svcxdp7eiYZOghGb3LSm8MyR53j+2IvcOn09X5j/OabUVN5vHazIgZ1LpDLvgFOnTjF58uQqmsjAH/9RDMOAF36dTRC+aRGE1atyCMIEiBHzbm99R/aKEHDCvaM+RMaxC+3fMAwMLeeziHLemvbMcsSkkuDDvl1Zb1vZenX295BBCDKPOdakSjFR4nifFFVR2PLBB/T09HDVVVeVVQ6bCZfLhappFZMDe0EyofltS3BXSVRucEjmueebeeLpVs6cKS5+rqtTuOv2Hu6/J8zUqYVTrR63G5/PRyIeZ3h4mNbmZq5ft44DBw6w/8ABzp07VzKKYFDZAkIsV3uQQTxdskzUKmn8JOMSOciDdDqNYBjIGQ9xOm2u/t1ud/m+BsCNnet46s5Huff5z2XlX8vFR/37HZviK7RFPHD8Hu4T72JG3fQJNX/5rct/k8MDR9gcMld/y9uvYvWklaO2m1E7nT+8/A84M+UML5x+kZfPvDLqnDRd48VjL/HS8Ze5sfMGvrjg80yvm1HR+YgZE3ux5ku5GBgYYDgSYfHixRUdrxQEAb78H2PoBvz6pRGCoKoCf/PtIN/8epRVmQShyD1jUF2XzEoFicW2M1fjOYOnpTnIfVfm79v7dpLWRz6/KIgsb1lW+lxKblHkvRPklJhIJNi4cSOJRMJpnlQp3G43yVQKpcLUQtyagPKJHauKMsSJhgG79wZ54slWXnujkXS6+DO4+PIID9wX5qYb+vB4yrsutcEgyUQCJcNWef6CBXR0dDhRhPnz5jF37txRUQTDMNB0fcIjSG63GzUSIRaLoYxRR/JxwCVykAPDMMzIga47vcbtKgUAd7EboUCd703TrufJOx/h/ue/MCaCYGNX7x529e7h65u+zbLWK7l/1l3cP/tupo5xNW7DFnNlnrcoinxvzXd4+/Q7qIbKdVPW5J3gkuk0mqoyqaaDr67+T3wx9hv8Yv9j/Pr4yyh69opTNwxeO/kGr598k7VT1/DFBV9gjpU2KQeSKKLrekXk4PTp03g9HlpaWso+TrkQBPiTPzYjCC+9nE0QvvHtIN/86yirVprfQdGpoMoDmV5Fd0Rzh5ULEnP1Bpc3LKTGVaCErcrVFdXE4OAgmzZuRJJl1q1dS3CMCnpRFJElCV3XUSpo3pOImxqXCScHFG7pHI+L/PrlJp54qpVDh4sLn31ejc/c2ssD94WZOydedNt8cLlcBAOBUbbK9Q0NXH/DDRw8cIB9+/dz7tw5li1b5kQRDEw9UqV3UMWVC5hpIlkUiUYixOPxivQQHydU2bf34w9VVdFVFUkQkCxyoCiK2fhEkpzX8sIKfefD+mk38vgdP8MtFQ4prpuyhudv/RV3Nd5GvVhcnby9eydf2/RNLvvZUtY9eRv/a9c/cjZa3FypKPKctyRK3DDtetZPvxmvnCd0aBgkLZtku7nSpGAHf7L8y/zijp/xwNz78OT5vAYGb51+h99+5ff4i3f/kn29hRs4ZcKe7MotR9MNg9OnTzNlypQJm3gEAf7Tl2Pcdks26bMjCJu3mGRy4tYxo1H1UkYt1yGxdHomlxysbCngb0C2AHNcqPI1DoVCvPvOO/j8ftaOgxjYsKOOdhSyHMTjcbxeb1bkbMKQU1Fz5KiP7//tNG65/Uq+98MZRYnBzBlR/uMf7ue5JzfxtT87PiZiYCMYDCJZ3SPjGaF7URSZv2AB69auRdM0NmzYwIGDB50S1fFc/ZLPZ07qS3K5iMdixONj/5wXOy6Rgxw4egOXy7nZ0oqCYb1WEGWs/m6dfjOP316YIKypXcXwniF+u/mL7H5wM6/c8wy/e/lv0uorvur9ILydr77/deb89ApuevpOfrTnn+iKhUuez3iRVhQ0TUOUpFEroVZ/K3+09A/55Z2P8vl5n8Un51/5vH92E7//+r/nKxv+lF3du4seTxRFU0RUJjno7u4mkUwytbOzrO3HCkGA//SVGLeszyYIiiLwjW8F2fJB8bBjNUPhmeK+qkUOjMoiBzElxq7+PVmvFTQ/ysQ4J/dqRmeOHTvG5s2baW1rY82aNVXpxOeyxhRV18vO78cTCXzn0apXUUReeqWJ3/rd+Tz0+UU8/mQbsXh+YuJy6dx2Sy//9I/7+NefbOWeu84QrBn/vSxJEsFgEFEQiEQio553O4owe84cPvroI15/4w2GhofHfDyBMp6VnPvH7XKRTCSIx+MXtunXBEIwPqmfbIzo6+tDjUap8fnwejwYwNDgIJphUFNTUxVR24vHXuahF7+UFXYXEfk/7f+ZpfOWMn/evKzjqLrKe+c28cThZ3j22Av0JftLHkNAYM2k1dw3+y7umXkHrf7iBEOzhH6VYHh4GMVqKlNKMDWUHOKJw0/x5KGniCqF+0Rf0bKYLy38Ale1XTVq5RuPx4nH47jdbgJlCLS2bdtGb18fN99cvg31eKDr8Hf/JcArr2VPJC6Xwbf+JsqypflFqZrV9rsa0HSd4aEhEISqlLkCRLf+M5ENI+6Zcudqau/7ScHt3wm9x79953dHthdkdt6zyXHRzIWqqkSiUSRRHHc9v67rBV3xbP+HojAM9uzd6zRPWnT55VWNSMRiMVLpNB63uywX0/feew9JklixcrTep5o4c9bNE0+18MxzTQwMFCezkycluf/eHu6+s4eGBpM4RqNRNFXF5/NVJQevGwbd3d0omkbA76euwH3R19/Ptq1bicfjzJs/n7lz5pgiwzFMa5WkJVKpFP2Dg8ycPZv5CxZ8Its4XyIHGTAMg1AohCudpq62FkkUSSsKsVgMAagplFvKU1JWCk8feJbfePV3UKxV2XU1q/nFnf9KY2MjduvXfPtU1DRvn32PJ48+x3PHXmQgNVjyWKIgsm7ytdw3+27umvEZmn2jy2+0jBVnOVBVleGhIXTDoKG+vuywZzQd5anDT/P4oScZShVm+wua5vPFBb/B6kkrnYkzlUwSjcWQJImaYHELVlVVeeHFF5k9Zw7zyyw5qwZ0Hf72vwR4NQ9B+OY3hrlqWXZI2bBDolWagFRVJRKJIAgC9dUiB1t+TOTtHzq/u6avoeaefyy4/d/u/q/8w4ER8rC0aQlP3Pho8XOORpEkacyueDYMQM9DAsohB5qmsW3bNrq6uli8eDEzZ84c17nkg6IoRONxMIyyPuurr75KW1sbl1dZUAtmj5B336/j8SdaeH9TLYZR+B4URYNrrxnkwfu6WbVyiNyFdmR4GE3XCQYCVasKisXjDAwMoBkG7a2toyykbSKo6zr79+/n8OHD1NfXs/yqq8aUAqqk0kFVVfosn4MlS5dSM8779mLEJUFiBtLpNIamIQqCI3iz84OucTjr5cOa5mv4evNXeSnyOlNrJ/OD9d+isb7R/KNVzjVqqjYMXJKLmzqv56bO6/kf1/2QN8+8w1NHnuX54y8xlM4/2eqGzptn3uHNM+/wH9/+KtdPuY77LaLQ4K0f0/mnUimnh0Il+dCgO8iXFn6RB+bez/NHXuAXB39Jf3Jg1Hb7+vbzF+/+JXPqZ/OlhV9gzZQ1CJIEliK5FLq6ulAVpeKSs/FCFOGrf2KKFF97fYQgKIrAN75Zy7f+ZphlS0cIgkB1hXh6tVMKUHFaYZTeoERK4XysTkoR31QqxaZNm4gMD7Py6qtpr5InRi5csowIZXdqjCcS+KpcxtjbK/P0s808+XQzXaHiK96mxjT33N3Dfff00NFeWCtRTtOlShHw+4lGoxiKQiQSGSnhJjtCJIoiCxcupGPSJHZs387rr7/OkiuvZPr06RUdr1gprLnBSBWELTCNRiIkk8lPJDm4FDnIwPDwMPHBQQIuFwG/Hx0YHhxENwyCVUopgBlafPfdd4nFYqYDnqaBINDY0EB7ezttHR3U1dYWJAj5kNJSvH76LZ48/AwvnHi5aOjehkt0cePUddw/6y4+M/1Watzl3eCGrjM4OIim69TW1o4rjJhSk7xw7CV+ceAxuuM9BbebXjeNL1z2ea6sXYJI6ZD5+5s2kUgmuX7t2jGf23ig6/CDvw3y+pvZpNLtNvjWN4ZZahEEo8KITSmkUini8Tiyy1U8upJpQkQeN0HbgwCIbfyfRN//e+dvrtk3U3PH/8jbZjmqxLjymZVoxsgq/adrf8KattXO/sh4n4FJwGPxOLIsl4wIlULByEERUpnZPGnV6tVVi7gUQjyRIJVKIctyUXOjVDrNCy+8wNUrVtAxxp4gNgwDtm4P8vgTLby5oQFVKz6JX7VsmAfu6+b6tQO4XCXuT8NgaHgYQ9epqa2tSidQG8lkkt6+PnSgtaUFlyw70YJ80DSN3Xv2cOLECebNm8f8efMqIt+VRA+GhoeJJxIsXb6czs7O6hLyiwCXIgcZsMWI9mSnpNMYmDX2BYlBhSmFgf5+Nm7ahCRJLLr8ckRZpr2tjVAoRDgcdqxZvT4fba2ttLW302I9FMXgkTzcPv0Wbp9+Cwk1waun3uTJI8/y6xOvElfzK2oVXeHlk6/x8snXcItubuq8nvtm3c1t09ZT4y48SKfSaXTLJGq8+UWP7OX+ufdy56zbeeX4qzyy/xd5W1qfGDrJ9z74AfP987h12npuCa7HLec/djKVoisUYvGiReM6t/FAFOHPvxrFMIK8sSHTL0Pgr79Zy7e+McTSpUphW+AyTJHsfgyZ22WaRJUkHRl/L7SlAKMaLyFIWdtn/vuD3m1ZxMAlyixtupJ8w62R8zPz30LG75VMNTbhKNc6ube3l82bN+Pz+VizZs15KRl0yzJpy/OgWKfGhKWEH0/kYDgi8fwLTTz+ZDPHTxT/bDVBlTvv6OPB+3uZOSNZnkaDjFW8IFSVGAB4vV68Xi+JZJLh4WEaGxuLCpIlSeLKJUsI+P3s/egj4rEYS5curc7EnTPWy7KMIAgMDw2RTqcr6oT7ccAlcmBB13WUVAqPYWSVMALjataTiVBXF1u2bKGuvp6VV19NuLubdDqN2+1mxowZzJgxA03T6OvrIxwKEQqHOXnypCkua2igo6OD9vZ2ampqig6YPtnH3TNv5+6ZtxNX4rx88nWePPosL598nYSa39Urraf59YlX+PWJV/BKXtZ33sh9s+7ilmk3ZQvJDINkMolhGHirKMJxS27unH0Ht824lddPvcHP9z3KqcjprG0MDMLxMD/d/wi/OPErPjvvAW6dfsuocskzZ8+Cro+5A2O14BAEgrw5iiDU8e1vDnPF4hGRYuZkXk40IZ/zoR3erVZfBXOnOaWMUuFhIzelsKTxioKVKg4KCAjz/TsXuWTAMZQqww74zOnTbNu+nZaWFq5esaJ4NVIVIcuy6UioqkU7NY7HAGnffj+/eqKFl15uJJkqfi8sXBDjwft7uPWWfnze7JK9cu7Dapt45cK2VU4mkyQTibLG4zlz5+L1+dixfTvJZJKrr766rIWMABiiaIb+cpFjVy+JIpIoMjQ0RCqVukQOPqnQNM1chUkSkiCgY1qmQhHjowqiBsePHePDnTvpmDyZq666ClmSTDYrCGiq6kQmJEmitbWV1tZWFmGmIELhMOfOnWPfRx+xd+9e/D4fbW1ttLW309rSUjRv6Xf5uW/2Xdw3+y6iSpSXTrzGE0ee4dVTbxY0ZEpqSZ47/iLPHX8Rv+zj1mk3c++su1jfeSOSLpnli6KIewIUurIkc+uMW1g/7SY2nH6Hn+37OceGjjt/19CREelL9PLfd/5Pfn7gUT4790HumPEZx4vh9KlTtLW3XxQKYkkaiSBseCuHIHyjhr/5a5UlS8bQi6EA7JBoNVdwoxovCeWTg1J6AxifL0O+6EPu75miT/v1A/v3s3/fPqZNn86VV155fg2YBAGXy4Wm60U7NSbicbPDa7mGSUmBl19p5PEnW/hoX3GzIq9H55b1/Tz0QA+XL8wfWSxkipQLw1L5T9R36HG78brdxBIJYrFYaXJgkcOpU6fi9XrZsnkz77z7LtesWoW3DKIlQt5IV2YDJjDHalEUiUUiZUdZPk64RA4yIGZM9nZKIbNpyphgGOzbt48DBw4wc9YsFi9e7AzcktWGWNU0Ct3ugUCAWTNmMHPGDDRVpae3l1A4TCgU4viJE4iiSHNzM+0WWSiWsw26gjw4514enHMvw+kILx5/mSeOPMvrpzeMcjO0EVcTPHX0OZ46+hxBV4CbJl3PbZNv4ebpN07ogCqKEjdOu57rO9ey8exG/t++n3Gw/zCG9diKSIBCb6KP/73rH3jkwC94cM793NRxY9U6MI4FBqNTApIEf/HVKLoe4O13Rgb6RErk639Tx7f/ZigvQRgL9HFMtIV3mjPwFYgcDKeH2TeYbWi1svXqkrt3UgnVOucc+1whwxpY13V2fvghp06cYP6CBcy77DJnReh0hDwPMiyXy1WyU2M8HjdLhEt8L8dPeHj8yRaee6GJSKT4kD59WpIH7+/hrjv6qK2tzoSmapozVlYb9vMUCAaJJRIkUilqSgk5M65fS0sL1113HRs3beKtt95i9bXXllcRUyh6kLWJGZFJJsvvm/NxwiVBogVFUejr6sItCNTX1hKJRlFV1cl5jSIHZUQNDF1n+44dnDx5ksWLFjF79uysATAUDhONxWhuaiqqdh11iSwRWzQWM9MPoZAp2tF1AsEgbW1ttLe10dzcjFzGAzuYGuL54y/xxOFn2HD2HdTclWIe1LhquH36Ldw76y5umLK2qPNjNWAYBh+EtvLYnl9ysv80CeLEGL3iCUg+FmgL+Optf0qDr37izofydAGZUNIa3/1hDe++a0Y4NM0AdDweg29/c4glV4yfIAwND6NbJWXV8nwffv2bxHf+3PndveizBG78xqjtXj/7Jr/3/h+ObCe6+fDeLXik4ivfhCXQ87jdVVHm5xOsaVbTo81btpjkcelSphSrZLGurZHZCKqMVEUliEQiKNYYk68Z0wdbt5JIJrn22mtH/U1RYcNb9fzqiRa2bivuDSFLBjdcP8CDD/SwfFm0ooKCYuI/G/F43GkoVc1onUG24Vl3dzcpVaUmECgpXM29TolEgo3vv08ymWTVqlVl9cco9bkNw6B/YIBUOs3Vq1czZcr4bOwvNlyKHGRA1HUQRXRAU80JsmAIq8QTploDUW9PDytWrGBqnhtHstIKqlp6Ms49tgDUBIPUzJ7N7NmzUVWV7p4ewqEQXWfPcuzoUURRpKW1lfb2dtrb2goaB9V76vjivIf5/GWfpTfRx4vHX+bJo8/yztn3ssRlmYgoER47/ASPHX6COncdd864jXtn3snayWtwSdXP3QqCwNUdK1hUdzk7z37IsyeeY3PfB6O2i6oxthhb+Y1X/g33zrqbB+beR72nfkzHdELWBUhApStdSRb4iz8dBkPg3fc8Dr9MpQS+/o06vvOtIa5YPD6CUHV3REanFQrZJ+emFK5sWlKSGJgHqG4ZXL69xONxs3lSMsm111xTenKwUxD5CEFu58gxkoZSnRrj8TiBQHZ6IBRy8cTTLTz9TDO9fcWfs/a2NPff28O99/TS0lzhGGMhX9+VXOhWSraq9xyjJ2e/3096aIhYPF6UHOS7Fj6fj+vWrmXz5s289957LL/qKiaXmMxHCVtzvgfB6mYJEB2HQ+PFikvkwIJhGGZagZyUgijmf/CLPDBJq4tbLBYr2sVNkmUzr1ckX1UwsGOHTq2fsiwzqaODSR0dGJhlmaFwmHAoxO5du9hlGNQEg7S1t9Pe0UFTU5PT0jcTTd5GvjT/83xp/ufpTfTy3PFf89SRZ3mvaxN6bnc+C0PpIX5+8DF+fvAxGjwN3DnjNu6bdTdrJq1GLqNJTyWQJIl5jZexoPnPOJU+zc/3P8KW0Fbn77qhIyCSUBM8evAxnjryNHfMvJ3PXvYQTd7Ggvu1J4J817SaIXpZhr/46hCGUceGt0csulMpgb/66zq+++0hFi8aG0HIKoucyLSCmH9S2tyzJev3siyTmaC0QgYG+vt57/33kWWZ66vQI6EYGRCscHQ5ZKFUp8Z4PE5zczO6Dps21/KrJ1p45706dL1YF02D1auGeej+Hq69ZogSRU6lYU2ABdOqVomoXdU1Xhj2f3lW7X6/n+FIBE3XSSaTFQsAXS4X115zDdu2b2fL1q0sSiSYM6dw4zcxR5CZrwrGIQfRaEXn8nHApbSChXQyyXBXl1O2qFpWoLaFctbDUYQYRIaHef/99wFYfc01RfNbg0NDDAwM4PZ4aG9rG71BEafEUedS5DKmVZXucNgkC+EwqWQSWZZpbWmhrb2dtvZ2/F4vOoVDaSf7T/Hk4Wd56cwrfNCznXLWSs3eJu6aeTv3zbqb1e1XI5XRsKcUFEVhOBIBw6Decqw8OHiYn+9/hPfObkTTNYQ8a0eX5OK26bfyucs+S5u/FTCv6fkUohmG4dTgqyp867tB3t+YvbL2eg2+++0hFl1eOUHQdJ1hawVTX1dXtc82+Ouvkvzoaed3z7Lfwr/mP2VvkxrkqmevybovHrv+pyxvuark/u3Wtz6vF0+VFN92eV1XVxcffPABwWCQVatWnT+RqmFkVYwUGmaj0ShpRcHr8WSdm24YPPLIK4R67uSNDXM5c7b4eTfUK9x9Vx8P3tfDlCnlN3YqC0U8InRNIxKNYhhGQYvjSo6jU1zzMTA46IgSmxrzk/2SI5Nh8NFHH3H48GFmzZ7N4kWL8j4ro0hKnrE4EosRiURobG7m+htuKHXkjxUukQML6Xic4XA464GutSyUS92wNnp7e9m0cSM+v59rVq8uWYIUjUbp7e1FkmUmTZo06u8VX5oyy46GhoYIWVqFgf5+DKC2ro621lZaWltpamwcVQo3ODSEqigEAgH6tQGeO/YiTx19ji3hrXmPk4s2fyt3z7iDe2fdycr2FYjC2EKQuqYxYBlTNdTXZ5Ww/ezXP2MHH/JhdHdB8iKJEus7b+bheZ9lSvD8ljpmkgOAVErjuz+oy0sQvvftIS6vkCBomsawbZ1cxTaygy98heT+50fOb/nv4rvmj7O2eeXM6/zBxj8a2UbysuOezXm7cuYiaul7/D5f1SpgdF3nyOHD7Nq9m0mTJrF06dIJEcyVDXtiySHyqVSKeCKBKIoEAwEMA3buCvDoLxt47Y1GNK340n/J4igPPdjDTTcM4PFM3FCuW6LDXCjptHn+gkBwnAZW5TifKopCd08Pmq7Tlq9Sq8zySzAryHbt3s3kSZO46qqrRt0f5RgixeNxBoeH8fp83H7nnWUd9+OCS+TAghKNMtTTg6rruGQ5y+d9FDnIwyDPnT3LB1u30tzUVHZNbSKRINzdDYKQV5MwpktT4XtSikK3lX4IhcMkEglcLhetbW1muWRbG5IkmStSq5lPJss+HTnDs8df4Kmjz7G9e2dZx5wU6OCemXdw78y7WN62rDIHM0sEpOu60/8CTCHeK6+9xjWrVpEOKDx64DFeP/VGwVSIIAjcOPUGPj/vYabVTiv7+ONBJjkwDAPdMFAU+O73a9m4KXtS9PnMCMLlC8snCIqiEI3FEEVx/Ku4DAw+90ckD77k/O69+t/hW/Ufsrb55o7v8tMjjzi/X9O2ip+u/aey9u+QA7+/Kp4ihq6za/duDh8+zJw5c7j88svL7uR53mAYIIoYVrRnaNjgnfen86snWjl8pPiiwu/XuOMzplnR3Dn5fUuqf7r5hYnJZLIst8ei+6ay5mM9PT2kFAW/zzfqPhcEoaLKsq5z59i6dSsNDQ2sXr161LhtG40VQiqVom9gAEEUueOuu6rmiXMx4BI5sKAMDzPU10cylcLn8zkpBcghB3lyuv39/bzzzjtM6uhg2VVXORNWKaTSaUKhEIqqMiPXB3ysyuhxXE4D6LUNmEIhBgYGAKipraWuro6Ojg46OjoKCo9ORk7z9NHneProc3zYW7z9so2pwcncPfNO7pt1N0tbrihrgBgYHERVVWqCQWRZxgAOHTrE3r17ufOOOxwTq3PRLh47+EteOflqwQoMAYE1k6/lC/M/z+z6WWWd81hh6LozwOoZ+gBFge98r5ZNm0cThO99Z4iFC8ojCPYqtBo2xJkYeOYPSB1+zfndu+o/4Lv632Vtc9srd3No6LDz+59c/h/5gwW/V9b+I1adeKAKFRaqqrJt61bOnTvHokWLmDlrVlmK+wuFg4e8/PSRWl56tYVEoniUYO6cOA/e38Ptt/UTCJznz2N9h7mjSzwWQ1HVMVUqFNMXFEM8Hqd/cBBBEGhtbs4ajyolB2BqUt5//32aW1pYuXLlKO1HsXsnnU7TOzCAIAisue46WlpbKzr2xYxL5MCCMjjIQH8/iXicYE0NtXV1jmCvWFohmUjw5ptvEggGufbaa8smBmCG0c6cOUNaUZgxbVpZOcqyMI73qhlMOZVK0dXVxanTp+mzQnket9sUNba309raWnBAODp0nGeOPc/TR59jT99HZR17Wk0n9866i3tn3skVzaPzgLb+YnhoyFk52Md/9513QBC45pprRu23O97Nrw4+zosnXiKtFc7HrupYyW/M+xzzmuaXdb6VIjNykDvQKgp8+7u1bN6S/X36/SZBWDC/NEFIJpMkkkncLtcolft4MPDU75E6+qbzu++aL+Nd/v85v/cl+1nxXHa53eM3PMrS5iVl7d/u6BcIBkvahBdDMpl0mictX76cltZWx/goX7+FC4VUSuCV1+t47FfN7NxV/Dq5XDq33GSWIV6xOFZVnWmlMHR91MQbtYidz++v6No5Oq4xjFW6rhMOh9E0jbq6uqx28WMhBwDdoRAbN2/msrlzWbhwYdZ5FtMdpNJpBq3utIsXL2b23LkVH/tixSVygHmzaUND9PT2oqRS1Dc0ZK28CpEDTdN49+23SaZSrLv++jHZCZ8+fZpkOs3UKVNGVk3VrKeu8PJqZD8M8XicRCJhijQVxdQqhMMMDQ0hWGmGdqsCoq6ACO7w4BEzonDsefb1HyjrPGbWzuDeWXdy78y7WNg433wgLYeyeDxuToJuN36/H0VReP6551i0aBGzZs8uuM++ZD+PH3qCF46+QEIrbFxyVdsyvjD/8yxurn5vBlVVETBbZOdem3Qavv29WrbkIQjf/84g8+cXL0ezG/p4PJ4xh3jzof+J3yZ9/B3nd9+a/4R32W85v//69Mv8h01fGTlf2ceOezbjKlDVkAu79XfQigSNBbYQWDcMVlvNk+w8eb5J7ULg1Gk3v3yiiaeebWRwsPjnbGke4ppVu/njP6qhoV7NKp+8YJ/EMMzKKvsZN0YaLgVraspaGNnnXkkaIR+GhoaIRKO4XC6am0Za0I+VHAAcPnyYvXv3cvXy5VkeGMVITCqdZnh4GFXXmTVzJlcsXTqmY1+MuFTKCGZXREZ6KRQMbWamFAyDnTt2MDg8zLp168bcZ0AQRQRMlzH7uFV9+DMe5LI2zzy+YZBKpTAMA5/Ph7uujqbmZhZefrmpl7CaRR06fJh9+/fj9XpNnUJrK61tbU7+bU79bL667Ct8ddlX2N9/kKePPsdTx57l8ODRgudxbPg4/2Xn3/Nfdv49c+tnc89MkyjMa5jrCIfsEtCe7m40w6Ctvb3oZ2vyNvL7i3+Xh+c+xNNHnuGpo88QV0YbKW0Lb2dbeDuLmhfxxflfYGlr9ex1Hd9/wxhVU+F2w9e/Nsy3vlvHBx+M5C7jcYG/+Ho9P/jOIPPmFSYIE2GdDIzqrZBbypjrb3BV87KyiQFklDKO5dwwr//mLVvw+3ysXr16xEjJ/q5LVPNMJFQV3n63lsceb+K9jcV1IKJosPbaQR5+sJehoSeYNKmdhnqLoGYuGDIqIc7rp8opa3QEhFaPgVLI9C4Y7/Pk9/uJxmKkFIW0ooxY3I/jOs+ZPZuhwUG279hBsKbG6c5ZsseE9VlisdKdcD9OuBQ5APRUinQ0yrmzZxFFkclTpmR5AOj2g5kRUjp86BB79uxhxYoV43LGCoVCRONxWpqbTbVvOeWLY0GZl9lg5KFPpVJEo1FEUSzaxlbXNPr6+83OkqGQo5hvampy3Bprc6IKhmHwUf9+kygcfY5jw8fLOr95DZdxz/TbubFlHTNqZlBfX8+O7dvp7u5m/S23lLUPG9F0lGeOPssTh58iko4U3G5+4zx+Y/7nubr96nEPapqmlcyBp9Pwre/U8cHWbHGTP2AUJQiRDNV/NUv2+h77AsrpEQLgu/6v8F7xeef39S/dwdHIMef3ry76Cr83/3fK3v/g4CAAtTU1FdfKnzpxgh07d9LS0sKKHCGwHTG4EL733T0yTzzdyONPNhEKFxepNTcr3HNHiM/cdobOqSBLEs889xxLr7ySadPKEMuez6hCRlmjkk4Tj8cRJYlgkTTWeFIIxdDX10cimcTr89GQUZ0znqNoqso7775LOpXi+uuvd7wUCj2vqXSaSCSCqmnU1tZy4/r14zj6xYVL5ADQ4nGUWIxQKIQgSXS0t2fZDmuQdWOHw2Hef+89Lps3j4ULFozr2N3d3QxHozQ2NFBXV1fdlEIhFLnkmeRgaHgYRVHw+/34Kqg/j8VihC1fhZ7ubjMnaTWLsrUKtpDQFjrt6fuIp46ZYsZT0dOlDgHAvLrLuG/WXTScquXKaUtYvHhx2eeYibia4Lmjz/PEoScYSA0W3G523Sy+MP/zXDv5mjGXYmq6niVMLIRUCr757Tq2bc+eWAIBg+9/d5B5l40mCLZ1ciAQKNwsbAzoe/RhlLPbnd/9N3wDz+LPAtCd6GHV82uztn/qxse4oqm8a2EYBkNDQwDU1daW3U3SMAwOHDjA/v37mT5tGlcuWYKQW4pm3VuFyvCqDcOALVuDPParJt54qw5VLU4kV66I8PCDfdywbgjDSBOLxxEFgbSi8OaGDVy/bl1RUp4XglC4cVCVYH+fyWSSdCqFVKBSwRYc6uNMIRRCIpmkv68PQxBoa2lxhInjvdaJRIK3NmwgGAhw7Zo1I7118njKxBMJYvE4umEQ8Pu55rrrsjQQH2dcIgeAFo2SjMfp7+0FUaSpsTErTaCB04QjGo2yYcMGmpubWbly5bhv+r7+fgaHh6kJBGhqajovTV+AogRB1XVURWHIKl+sr6sbszWqrmlmsygrBRGJRBCsZlFtlrVzTTDoREoMw2Bn7y5Ho3A2dq6s4yyoncf9c+/l7um301lTxDO/CFJqkl8ff4nHDj1Ob6K34HbTajv5/LzPc/2UtRUbO+m67kQPSp5PEYLwg+8NctncbIIwZOXua2pqyuqpUS76fv4AStcu53f/zd/Gs/B+AJ479SJf3vynzt+CcoDt92wq2xnT0HXzPoOCmpVR79E0tu/YwanTp1m4YAFzL7ss//usVe5ERw6GhiWeea6BXz7RxPETxUl0bY3KPXcN8PCDfcyYPtIVVdd1hiMRVFVlcGCA7Tt2cNddd43dm8EqlZyQiIKuoxkG8VgMVVVxezyj7J/tUt2JRigcRlFVamtqTJ+IKu13oL+fd959l86pU1m6dKmpZcgh9IZhEIlGSaXTCIKA1+PhiqVLac1naPcxxKeeHOi6jhGJEIvHiUWjGEDA788SJNriMUVR2PDWWwjAunXrqtLYZnBwkP7BQXw+H63Nzec3h1jg0quGQTQSIZlK4fV4xqV8t1MkhmGArhONx02tQihEd28vhqbhDwRob2+nra2NlpYWZ0DUDZ1t3Tt4+thzPHvsRbriobKOubR5CXfPuIO7pt/O5OBoc6lSSGtpXj35Gr84+BihWLjgdpODk/n8ZZ/lps6bkAt0KsxFJeQATILwN9+uY3sOQQgGTYIwd84IQRiww/MZ/g/VQO9P70ENj1Sc+Nd/H8+CuwH42rZv8Mtjjzt/u75jLT9Z86Oy951JDspZJSvpNJu3bKG/r49lV11VMqWnqCpGpoiuitiz18djjzfz61fqSSaLf9+LFsZ5+MFebrtlEJ8v/7WPRiKkVZVjR48SCodZX80QtZV6qErK0orIDNslqH5/lpA0n9h2ojA8PEwkGkWUpKqPn6dOnmT7jh0sueIKZs2aZZKDjMiBqmnE4nHSioIkirhcLubMncuMWRNbEn2+cIkcqCpGLMawFUI3DAOXLFOX4b6nWTqAjRs30t/Xx/XXXz9uNzAbkUiE3t5eXIUslM8Hcm4BVdPo7+9HNwzq6urGpCC3b6tit5emaU6zqHA4TDwWQ5QkWpqbTbLQ3u4QE93Q2RzayjPHnue54y8STnSXdR7LW5dx9/Q7uGvG7bT7K/t+VU3ljdNv8uiBxzgTPVNwuzZ/Kw9f9llunX5Lye6UumGYjbYqeOxSKfjGt+rYsSN73zVBgx98f5A5s1X0zEm2itbJAL3/eidqz0iVSeDWv8M973YAbvz1bZyInnT+9hdX/Cm/c9lvlr1v3XZ1BOpKkINYNMrGTZtIJ5OsXLWKpjI662maVtXIQSIh8OLLDTz2eBMf7SsePvZ6dW6/bYDPPdjHwgWlzYqSVkviHTt24HK7WXl16XbXFcMSM4530Dd0nYHBQQwrUiUCuiBU7FkwXmiaRigcRjcMmhobq25CtGf3bo4eO8a111xDS0vLiPYMU5OVTKediIIsSUyaPJnLr7iiqudwoXCJHKRSGImEs+qylanBmhrc1qSo6Tp79u7l8KFDXHPttbRV0eginkjQ3d2NIAhMnjRpQlY4ZcO6FaLxOLFYDFmWqa3Qac+wNRM2y67g2JFIhJClVejr7TVLpOwW1B0dNFuGJ5qu8c6Z9/nVwSd58eTLRIzSTU8EBK5uW87dM+7gzumfodXXUvapabrG22ff4dEDv+D40ImC2zV5m/jsZQ9x+4zb8Mr5w8uGYZBWlIqV+akUfOObdezYOZog/PAHg8yYnpoQ62SAnn++Fa1vpLIk8Jn/invurYTiYa554fqsbZ+9+Qkubyhfh6OpKpFoFEEQTM1NAQz097Np0yZkWWb1NdeUTc51TUOtAjk4eszDLx9v4pnnG4lEi4f6Z85I8vCDfdx9Rz+1teVPlqqqEonFeOftt5kxfTrz5k+M34aDcQgZNVV1tCI1NTUXtFS0v7+feCKB1+OhvqGhqvs2DION77/P0NAQ69atwx8IOONkLBZD0XUkQUDVNCRJoqG+nhWrV1f1HC4UPvXkQEsk0BIJhoeHEUQRt8tFKpXC6/U6IptjJ06wfds20+SiSB39WOC4JGoa0zs7q7rvscDQdfoHBkirKjU1NXlbyY56D4wIKat0OymKQm9Pj+OrkLS8Flra2mhvbaW5pYUzZ86wfddOGpY28krX67xw8qWigkIboiCyuu1q7p5xJ7dPv5Vmb1PJ94AZvdh4bhM/3/8ohwcPF9yu3lPHg3Pu585ZdxFwZa8uDV03ycEYSGAyJfCNv6ll54fZ16S2xuC73+mjtXUAscQkOxb0/ORmtIETzu+BO/4e9+ybeObkc/zJlj8fOQ9XLdvufr8iHYaqqk5FTCEieu7sWbZt3UpdfT0rV66sqDmTruuVt0S3kFYE3nizlsceb+aDbcXJiCwb3HTDEJ97sJflV43RrMgw6O3rY8OGDSxdtoypU8emnRkL7Pux3Kc3nU4TjUYxBIHgBRbgpdNpunt60A2D1nz9FsYJJZ1mw4YNiJLEurVrTTG1YTAcjaLrOl6Ph2QqhSRJBPx+Vqxe/YmwUb5EDqJR0omEuVJ2ufC63USjUSSXi7qaGvoHB3n9jTeY1tnJMkuYUk2oqsrZc+dIplLMnD69bLX2REFRFAaHhjB03WThub3rM+CQgkqjBJXCMBiKRAh3dREKhejr78fQdURZRtU0Vl59NS3NzWiCzrtdG3n2+PP8+uQrDKVL91iXBIlrO1Zz94zbuX3abTR46ss4HYMPwlv5+f5H2Ne3v+B2Ne4a7pt9D/fOvocat9WnYxyTFZgE4a+/UcuHu3IiCDU6X//aaWbO0op2Ah0Lev7v9WhDI2mVwF3/B/fMdfz51r/i8eNPOa/fNOkG/vHa/1XRvhVFIRaLIUkSNTnnbRgGR48eZffu3UyZPJlly5Y51tjlYizf97kuF796soknn26kt6+4rqijI81D9/Vx/739tDSP/braOHX6NFs2b+baNWtoaiqPtFYVtjah0N+t6SKeSJBMJhFFsWSDufOB7u5u0qpKIBCoqnW4jcjwMG+99ZYjRFdVlXjSNFLzejxZzbMWLlpEw4W4dlXGJXIwPEwiFjPFd14vXq+XQcsru7aujjc3bADDYO26dVUVeWXi9OnTJFMp2js6KioZnAjEYjHiVktnu3bZvkWyzEDOR8llASjpNOHubrZ88IEj8HPbzaKsCgjRLfH2uXd55vgLvHTqVaJK6dSDLMisnXQtd8+4g9s611PnKb4CNwyDnT0f8sj+R/mwZ1fB7fwuP/fMvJv759xLrbt2XOQATILw9W/UsWtX9sRVU6PxN3/dxaLLR3scGJZuJjO645C7jNez+tdbrw//y00Y0RFhpvsz/xOp8xpuef1OzsTPOq9/bdFX+dKc30BgxNBIEIQRQp35bwtK2izhk3L6QRi6zp7duzly7BiXzZ3LgoULx0TMyyUHug7vbazhscebePvdWnS98LEEweDa1RE+91Af1107TDWbPR44eJB9+/axdu3aUWTpfMN53jNEeIauYwgCsVgMVVGQZPn8tcEugmg0ylDE9CqpZto3E11dXWzauJEVK1bQ1NxMWlGQJQnZ5TL9Hixy0Dl9Op25vXI+hvhUkwO7UiFilRAFAgHcbrfz+8DgIDu2b2ft9dfTVOVcViZC4TCRWIz6+vosM48LgYGBAdR8TXCsicIRHF1IbQRmDvq1N95gyZIl+Hw+BgcGCIVC9FvNourq6kxb57Y2fHUB3j73Ls+eeIFXTr1OTC3tZOYSXVw/+TrunnEHt0692Vn5F8Le3r38fP+jbA1vK7iNV/Jw2/TbuH/WvTSVmcrIhF23bxgG8bjBN7/dyJ692WQyGFT5xl93Ma0z5bxnvEj9/FZI9I28sP7vCTVM5o5378/a7rFVP2VOTXlpN3uiVxWFZCqFS5YJBoMIooiuaXy4axfd3d0sXrSImTNnjjmiZlhVRoXQ3y/x5LON/OqJJs6cLT7JNTSo3H9PPw/d38fUKYV7dIwH27Zvp7+/nyVLllTk+zBRMAxjpIwv45m3+2F4vd4L2wrbgq7rhMJhVF2nob5+whZZG99/n0g0yqqVK9Et51hBEByPimAwSHNrK/PG6X9zMeDTTQ4UBSMed8LotbW1SJJEIpkkHo/zwZYtZp5zIlTDNgyDgcFBBgYHcV/IigXMEG+m4j1TS2Do+ui85EQ4OZaJ/fv3c+DAAVZfey1ul8sRqKVSKcLhsPlfKORYq7a1tdHW3k5tYy3v9m7kueMv8tqZN4irpVXkHsnDDZPXcfeM21k/9SaCrsKlnQf6D/LIgUfZeG5T3r+rmopH8nDrtPU8NOchWv0tWZO+/dMxS8p4LfdRTaYEfvjDyezbnx3Wra3V+Ku/PMO0zvwTmADZ6SJrRS/k/tv6PfpPazGSg877XXf8I8+pZ/n67m85r9W76njzxpcRMRsdGVY5W6nBJa0opKxIlc/nI51MsmvPHhKJBAsXLMiqSBBFEUEUEQUBURCcfzuvWX/PhKHrKDmRA8OAHR8GeOxXTbzyeh2KUnwCXnZllIcf7GP9TUO43RM7XG7YsAGvx8Ocyy7D6/VeuNx1ZkTJRkY55ODQkFmpEAxeuF4PORgcHCQai+Fyu2lqbJyQYwwPDfH6a68xb+FCOjo6qAkG0XWdWDyOIAjUBIP4/X6WrlgxIcc/n/h091awnOrsic9OG7hkma5z54jF46xetWqUK1Y1YQBujwdBEEinJ2Y1Ui7SioIBeFyurAEesr3QsxTOF4gghEIhWltbEQUhq1TN4/HQ2dlJZ2cnuq6bEYVwmFAoxOlt5qq+saGBP2n/Q76x8Gtsi+7g2RMv8MaZDSS1VN5jpbQUL516hZdOvYJX8nDTlBu4Z8ad3DT1Bvxy9sQ8r/Eyvr36mxwdPMYjBx7lnTPvYmAgWf9z40HWJd4+/i4bj29mdfsqbulcT7O/dFmeDXtCrAmKfP2vevjO91r56KORldLwsMR3vjeVH36vn+nT1KzQ/lhC81EjW+3v9QfYcTo7jXJ16wrqagtHvTLvpUyik0wmEQUBWZZRFIVtO3eCYbB8+XKCgUBW90pd100DnhLnK9hEIYPkCKJIIuHi+V838tjjTRw+UjxPHgho3HW7aVY0d07hJl1VhWEwPDxMy+zZZr8VRTm/5MBeCFj/LvR3xWoeZn/P6gQ5IFYCQRCcfgvJZBJVVasuTAQzIjlpyhROHDvGpEmTstNmGSWOnwR8uskBI817JFEccekDjh8/Tnt7O/4JELfkwmORAyWdRrNKYi4E0uk0hmEgu1xmvrFEzXJWr4SJPrkMpFIp+vv6WGJ1QNOslXXuACWKIo1NTTQ2NbFgwQKSySRhq/rh8OHDKPtVPB4P/77t/+PP13yFD9N7ePHMK7x55i3Sen6iltRSvHDyJV44+RJ+2cf6qTdx94w7uGHyOrySxyyd03U6PB185fI/5qHOB3jp2MtsCW3FwEBFJVPiuTG0ic2hLVzVtoxbp9/C5OAkZ2LL/Jn570wEA/C9b0f5i7+EffszCMKQyJ9/rZG/++Eg06eNs5RPz36/IUhs7tmS9drK1uIrJUEQnOcr8yqJkoQsy0SiUT7cuZOA38+q1auzRG6GJXrV7Z+Z/7aIhh1dsbe3n2vdMDhw0MuTz7Tz6mutxBPFh7x5cxM8/FAvd9w2SCBwfmv2o7EYmqZRX1+PIAgjfhgTPfFa31u55Yj2dyvKMoIkIVG498D5hMvlwu12k1IUYvE4dRWWYZeCPcbMmj2brlCIs6dPZ5WbGhnbfRLw6SYHuu7UQGeqoI8dPYqiKMyYMYN0KjXS5a3KsG8hSRTNlZOqkkylCFyA0iBFVZ3BaCzOj6PqpSdwUAuHQhhAR3s78UTCdGzTtJJKdq/Xy7Tp05k2fTq6ptE/MECoq4tQOMypU6dwCxK/3fgb/NGy32evvo9Xw2/y9rl3UfT8Oeu4muCZ48/zzPHnCch+bmhfx22T13Nt62rHDKnV18a/Wfhv+MzM23n55Mu8eXoDCgoaGnrG/34dfomXwi+zZtIaPn/ZZ5lZN7Ps78PnM/jaX4T4znfbOHBwZFIdGhL56p/X87c/GB9BMHI+/+l03yi3ylLkoPDODc51dXHowAFaW1tZvmLFqPtPEAQESaJU9j2TRCQTBi+9WscvftXErj3FCb7brXPj9T08cG+YJYvjSJKIJEkYhnReV8SRSAQD0ylSVRQ0y6NhIlbAQMWkwIZmpWlcsuzYytu6hAsVQbA/gd/nI51Ok5qAKKxofUavx0N7ezuHjxxh1qxZSJnNvoziTdU+Tvh0kwNGGK/dDS6dTnPw4EFmzJiBz+MhlUrh9ngmplIh46F0u90kUilS55kc2CHEZCqFAbjc7qwQdKUs2CEJEzhIhLu7aaivx+v1kkqnTdfBMshBJkRJorm5mebmZi5ftIh4PO7oFM4ePUOtFuA3PA/w/132JfYaB3hr4F02dm9GM/JPsjE1zvNnfs3zZ35NjauG9ZNv5M5pn2HtpGvxurw0NjQwt2M2D17+AL88+DgvnXhpFOkwMHjn3Du8c+4dVrWv5HOXPcy8hsvK+jwej8af/9lZ/vbvOtm3fyQUPTgo8md/YRKEaZ1jJAg5kYMPhrLLN5s8Tcyprdz/wzAMDh46xLFjx5g6dSpXLVs2LgGeIAicPOPlF79q4Mmn6xgYLH4/TJmc4L67Q9x2Sxf19eaEl1aAjMtiaxkkSXJ+StLEkIbBwUHcLhc+n4+EFf2YkPC4lR4Yy2RuWA6fumE45yXYqT07OnQhVs7WMb1eLwwNoaTTE/LdJa0W9nNmz+bc2bMcOnyYBXnEhxcyAlwtfOrJgc2C7Qt58NAhdMNg3vz5aFav8EQiUbQl6ZiR8SC53W4kzBzs+YBNCnTDQMAsKcMw8GSw4LGQA+e99nFySqHGG00wdJ1zoRCzZswAQJZlVFUdt0Wu3+9n2rRpTJ48mXQ6TW9PD909PfT19dERb+ULwgP8xuTPsl84yKbYFrb270Av0PsuokR48sQzPHniGerddXxm2i3cPeNOVrevpM3fyn9Y8gc8PPdBnjjyNC8cf4FUHq3DptBmNoU2c1XrMj5/2ee4vGlhiS/GwOcz+NY3+/nrv2li376R6zgwYEYQ/u6Hg3ROrex7MgwdjOzPuWXwo6zfr25dXvEko1vNk06fPs3s2bO5bO7cMRMDVYU33wry6C8bePf94lECUTS4fu0wn3uwl1Uro4giYPjRrHSFpmnmv+2fVlQq12VRFEVkiyjIspyVlhwrIpEINTU1CJj3dcqa4KoBw3rOM6MEYyE4TkohQ6MlYH4fWRolUTyvVsr2OCVJEi6XC8OKHlSTHKiqalrs6zp1tbXMnj2bo0ePMtMai8AcVwUw+3lcIgcfX2TmJmVJIpFIcPToUebOno3X40FzuVAsFppyucpyC6zg4Fm/etxuREmacFFibs8DAbImV1fGZ7RFieNZJWXWuGd6JNivVYr+gQGUVIq29nZghNRpYxiI7LCtqijmd5Cxj9r6emrr65kzdy6pZJKB/n56+/pY0DuHy/RZfLHlIQ56jrI5vpVt/TsppMsfTA/x6OFf8ejhX9HoaeAznbdy17TbWNGynN+7/Hd4eM6DPH30GZ459jzxPCWW27q3s617O4ubF/OFuZ9jScsVea+H/d0G/PDdbw3xl1+vY9/+0QThb39QIUHQc5T+wOaBPVmvrWqpLKWgpNNs2ryZgf5+Fi9e7NhiV4pwt8yvnqjnsSfqCYWKp8JaWhQevLePB+/vp70tJ00kCE5EILd8tyBp0HXSug5WmaQgCCZZkGWz9l2SKr6/h4aGaLaqM2RZdp5NQ9fHRpxy0gbVWM/bZCV30s1dSGRVN01wJCH32B63G0VRqh6FtVMVLpcLSZKYO3cux48d4+ChQ8y0my1ZiyFV1z/2k+vH/fzHBdV6sEUrTHhg/34kSWLOnDmAqQXw+HwkLTcwtyXUqwaMnPCb2+NxclrpdLrqKuViYhm7SsGV8/lsAVy1Hu68RME8qbIH0lAohMftpsFq0mOvXrQyVlh2mNbWV+TLDYqW/sMly+aK0CIf7RYZ0VSVnt5ewqEQdeF6FmrzeLD2bg55jrE1tZ1dw3sLHr8/NcDPD/+Cnx/+Bc3eJj4z9RbunPYZvjjvN3hg9v08c+w5njn6DMNKZNR7d/fuZnfvbhY0zOdz8x5mRcZqPbPkTBAEAgGD7357iK/9VT37D4w84v39IxGEqVPKJAg5KYVTEnSn+rJeW9lafqlvLBpl48aNpFMprr32Wtwez0hIugwYBmzc7OfRXzbw2hs1aFrx962+OsrnPtvP2usGcckV3sdFSINqE0uLWBuGgWLdW2CSbocoWD+LfUZN14lEIs4kY9+Huq6jKAruco2G7IqDCZqQVU3DgFEpvGKEVRCEqlqrl4LH6yUWi5kpR10fc7v5TCiWBkTXdTw+HwgCLllm7mWXsW/fPiZNmoQ30ynyEyBK/FSTA3tCEUWRSDTK8RMnWLRoEXLGQOD1eEinUmiaRiqdxlstN7Ccm0cUBFwuFymL8VaLHJTTHdGuUsh7zAnKIRasdChBFEKhEG3t7c4Dnxk5yB0INIsEOGQgz+eww8I2GSg1kEiybJortbez2DCIRaOEQiFmh2axovdK+moG+EjYzw5tF/tiBwvupzfZx08PP8pPDz9Km6+Vz3Tewl2dt/OvM/+ZF0+8xJNHnmIwPTjqffsG9vP1Td9gTt1sPnfZw6zuWIWhj3wu+/wDAYPvfWeQv/jLeg4czCYIf/rn9fznHw4yZXJpgmDkRA625dz+rd4WZtRML7kfgIG+PjZu2oTL7Wbd9dcTCAYZtpr3lCLdg4MiTz1bz6O/rOf4ieLPYF2txv33DvK5hwaY3mmm6TS9irexVXopyzJ4PE6EQVVVVE1Ds+411Rb5WqVtmURBkuWsz2yLEesyXBFll8u5d0uRAyOj5HOiYOsNjAy9gQ27tDHfOJPXYbXK55UJj6WbspucjXfMNixNlm4YeN3urAXTrJkzOXr0KMeOHWPBwoXO69XsBHqh8KkmB2pGSmHPnj34vF5mzMxWiQuCgNfrdepn3W434gSJ7VxuN2IySTKVqop1aq5dbj7YLW0FwD2GKoVqoFyikLC6Z2Y2v7LL/DQr4gI4g3I+MiBnrubKIAOlzjtYU8Psmhpmz5mDqqr0dHezNHwlN4du4Ix4lp3qbnYZezmcPFpwP+FEN/9y8Gf8y8Gf0eFv547O2/jysi8Tipzl8SNP0pvsG/Wew0NH+NYH32F6zTQ+N/thFtUswiVlP86BgMH3vzvIn/9lPQczCUKfyJ/+WT1/98MBpkwukY4pQQ5Wtq4oK5p29swZtm/bRn19PStXrXImu8z0Vi4MA3bv8fLIYw288FItqVTxa3XFogSff3iAO24bxus1KxdGMlgTMzFZO3ciDPbXo+m6Q05Va8Wp5mgXZFE0owuyzNDgIBgGNRkOqS5ZJolZSTSKNGc82+drjapa44QginkF2oIomrn2ArD9Laot5swVVgqCgNvjQU8mzSZ64yQH6XTaTJNkLKBsMiRJEvPnzWP3nj10TpvmpDEukYOPOezIQTQa5fTp02Zjlzw3vdvjQU4mUTWNVDI57kYjhR5mj9uNyPhNNJxBo4zBMGWlFGSXK29e0xYxna8SpWJEIRwOg2HQZrlI2r75qVSKeDJphl8zoh/2w2tHBeSc1Vq1IcsyHZMm0TFpEoZlaLM2tIZwdzf7w/vZmtrJh8YeTiqnC+6jKx7ixwf+hR8f+Bcm+yfxmc5buMbdyKazm+hOdo/a/kTkJP95539ljm8Ot05bz001NyKLI491IGDw/e+YBOHQoZHX+/pEvvpnDfzdDweYXIQgGNoIOTCAHTnBpVIpBcMwOHL4MHv27mXqlCksW7bMqQzKTIdkkrR4XOD5X9fxyGP1fLSv+LPm8+ncefsQX3h4kMsXnCezojIgiSKS2+3cj/a9aqe2NF1H1XVUSzjX09eHz+dDU1VT7GeRDVEUHWIh5/nezidUVTXTjwVEfkIZ401mKqwaKcssE6IMeD0eksnkuEsadV0nZVUo+LzeUSTEMAw6p03j0JEjHD92jFarr8MnwevgU00OVMvpq+vcObxeL512y+Qcli4APr+fSCRiRg/GW9pY4MZxezwIomhqAMYgQrJvSLsCoRwo1o1fMGpQ4OE7H8glCuFwmLr6enTDIBKNmsphu67Y+ulyubL0Ahfy3Ovq6qirq2PuZZdxdWoFt4ZvJRQKsfvcHjZGt7BT281ZvavgPs7Gz/HjA/8CQGdwKpc3zKc/1sdQajDHsVKkO9HNPx34Fx45+Qs+O/ch1nfe5HgtBIMGP/juaILQ2yfyp6UIgjFCDo7L0JcjwL66ZXnB8zd0nV27dnHs+PH8zZMynwNB4PARN4/+soGnn6sjEimu9J49M8XnHx7gvruHqKnJf+6ZA/SFdvATRTGLuNohelVV0VSVyNAQgWCQlFXOLIiiOQlb+XolnUa8wE3ZHDFiARW+7UhZzrSYFcmZgNRltUoabXIhWhqDTNj3lCgITOvs5OChQ6jpNLLPh34pcvDxhW34IwgCvb29tLS0ZAnmcuFyuXC5XCgTWNrodrmQRBHBMEim0xU1D8kUIZU7DNpqfQGKVmKc77KkXOiGQTqVorunh5bWVmKxEVW/KIoE/H5TO+ByTUi71mpAdruZPHkykydPZunSpdw9cBddXV1sP7OTt/rfZYe6i7AxOjJg41T0NKeiZsSh3ddKQPBj6BoeYSTNZWAQToT5+13/k0cPPspDcx7g1um34ZU8BIMjEYTDh7MJgi1SnDRp9DU2MgSJ23JukXZfO9OCnXnPV1VVPvjgA8LhMFdeeSUzMsq9nH0bBooisOHtRp55fjJbthZ/plyywfqbh/nCw4OsuCpeUsOYFcK+yFZygqUxcrlc6LrO0NAQs+fMcczQdDsloSgk02nSsuykIC4EDKtiw2B0pUIm7BRfpfseaxSh0DuqUdKoaRqK5aMSyBMtzhR5NzQ0gGHQ39/PpMmTPxFGSJ9ucoAZNhoYHGSGXYpSBD6fD0VRSKfTqB7P2B7UEg+Ay+MhaXWqK4cclCM4LIR0iZSCDUdtfB6hWSrtdDqNoqqkkkmSySR1tbWmgNAqLZUkyVR0WyFbO/94oVeKo5Cziq1vaKCuro558+bxYPp+uru72XJyK690vc629A66jd6CuwolRkhEUA5QIwSYLEuI4shn7k328X/2/COPHvwlD8y5nzumf4aaGr8ZQfhaPYePjNy7Pb2SQxA6OnIGtQzNQbl6g2QiwcaNG4nGYqxetcopO83E2bMyj/6yiV89OZf+geLi20kdCp97aICH7h+kubm8Fdmo3La1Ur3o7gtgYHAQRVVpaWnB5/PhtaIKdk09hkEymTRTDaKIbJEKSZJQz+1APfYOYm0H7jnrEfwT03DIXkTYplAFMYbvNzOKULE2pMi24y1pTOYISXOPJWSMvV6vF4/XS29v7yVy8HGHTQ4GBwcBnFxRIQiYbNTjdpNKp0kkEmMSDeaWMObC43IRFwRSySSUaN9cbue7QnCqFMoQIp6PgVXTddNTwvIdyEQkEgHDYOqUKfhzHnTRCsEqVj7X7XaPEmJebJNCZvjV7XYzZcoUpkyZwn3GPfT397PpxBZePPMyG2Nb6DP6C+4nqsaIEqNL6cYneAnKfmrlIB7RnHAH04P85KN/4leHfsU9s+7hnpl38f3vwp9/rZ4jR0ce/+4eyRIp5hAEixzowPacOXxVHsvk4cFBNm4yO1Kuu+46aq2SUwBNg3feC/DoLxvY8HYQwyh8TQTBYO2aGF94eIC1a6KV+8nkXG97YrsY4geZhF4QBPp6e5FE0Vx9kh1V8Pl8GEA8mTStoQWzQVs6nUYYPgNvfQ8s187UnidwzVyHZ+E9iHVTqnrOhfwNciGYH2DMkRpd1xElqexIZTEiYZc0psdQ0mine3Rdx19CY2YLnxsbGuju6TFfu0QOPr6wb6q+vj4CwWDJG8AO23u9Xmc1mxyLErbEQ+Pxek3dQQkhTb4WvpXALr0qt0pBEMUJCc2quo6SSpG2y74yIMsybpcLl9vN6dOnCVrtUPNBlmWn7tztdo8MUhayvitBKDv1Ui2Ue60EQaCpqYk7mj7DHcs+QzKZ5O2j7/L8yZd4Z/A9+o2Bgu9NGEkSSpIepR+v6KZWClIr1+AWXQwrEX564Gc8ceQp7pl5J1/75v189xtTOZpLEOwIQrs5uNmCxGMyDOVM0LlixO5wmM1bthAMBLKaJ/X2STzxVD2/+FU9Z84WjxI0Nqo8dN8gDz80yNQp+XtajBkXyNo3lwyMnI75796+Purr6/NWQQmCYDZmMwxcXi+SKKIqCoqqYvQfQsi089ZVlCOvoxx5HXnqCtwL7kVumz9qn2NBIX+DfBAFoeJ+DTbshm/lRBBK6RvskkbN8qAo18TOsCI1BiZxL0YqBFHEsPxympqaOHvmDMlE4lK1wscdAiY5KBU1sLdFEBAlCa/PRyKRIBGPm0KjKpYA2hObbbqR6889njRCJpR02skfimUsy6pZCqbpOulUipT1GTMhyzIeixBkij77e3tpamoquE/Z5YJUqqDdbG7k4HyTBYPytSCZ8Hq93LLwZm5ZeDOapvHOifd4+uhzvNX3Lv16YaKQ1NMk9X66lX68osciCkFQYzx66DGeOvoM6794P+q//jtOnhhJX3V3S44PQnub7qxKc1MKUwKTmRKY7Px+4sQJdu7cSVtbG8uXL0eWXWzd5uORXzbw8iu1KGrxT798WZzPPzzALTdH8LgnZgKf0HLGDJQiA7nb9vX20jltWsH9SZIEooiuqngDAVwuF17DIOnxUog+qac/QD39AVLLPNwL70WeuhxBGJuI2rAb1BlGQTFiJqrxLNmLn2JRhFJXMrOkMZlMlkUODMMgnkg4ImdHRFqAWGZaUjc2NWEAPT09l6oVPs4wDINUKkUsFqOlpaWs99g3vdfrRbdMkeLRKGJtbVkPTTm3iySKpvBRVUkmkwQyhI/jjRZkImUp/c9nv3jVirakLWICOD7ybrfbzKPmYemqpjE4NMSUzvziNxgJd6qWW12pNEJBsmArrjNyoOOF7Ws/6vi5teslIEkS189ay/Wz1qIbOpvObuHxQ0/xRvdbDGiDBd+X1FMk9RTdSh8+0UOtXEOtHuS5rkdwr3uV2lf+leGuNmf77vBIiqHRSivkihFXWpbJhmGw76OPOHjoEDNmzGDWzCt57PEGHnmsnsNHimtmAgGN22/t4bMP9LLkiir70BcYyKu6/wyyYaexSpGBXMRiMVKpVHHiK0kIZNfOC4KA7CpMDmxoPQdIvPV9hNrJeBbeg2vmWgSpsmdeVVVEMDtjlhGatzU/1ShTHK8QutKSxmQy6aQTAn5/WZ429jn6PB5qa2ro6e29FDn4OMOwlKUALZmRgyIDdmYYy+f3oxsGiqIQjUapqakpXd5Y5sPidrtJWGZIgUCg6n3CNV1HVZSKjI8EQUCn8gHWMAzT9dHyibAhyzIeqw681AM4ODCApus0FxlAJcsMyW6SU6gWuxByB/JcX/jcwa4apEEYR523KIhcM2UV10xZxcDQIB/0bOflM6/wWvhNBtWhgu9L6CkS6RRhevGJXurkQWpuehDXr/8Z+kbMpcI2QfhPGjqwY5QY8WqzedL27Zw+cwaf/xoef/oKnn+xjnii+HOwYF6Szz88wPqbupHEuHUPTkBjs1yM45rZBM/2GBByVpK5aaxy0dfXh2EYNDUWFhJmuYBqGgIG6OksD4qS5z98luSm/01y6z/hmno13pW/j+Aqz6/FTilU8kxVO0qTzxehnP1XUtKYTKVQFMXRGWRFbQuQlMzIgSCKtLS20tXVdUlz8HGGYRgM9vdTW1ubHW4q8oBnigkFQSDg9xONRlE1jVgsRjAYrIp7otvtRhIE03wDoMrWqIrFoiVJKiulYEOs4IHXLPOQlGU7CuaD5Ha78VZY6dHf348kiiUFoC7Li15V1YrJQSEUWgna3SYzowy522RtO4EQEFjRvIybZqwDATZ3f8BTR5/j5TOvMVSUKCRJpJOE6MV/2zpq9/57ag/8NnLSJMvhsMQ//MjHutkwnDPfL6tfwptvbuKtdzvYtfdu9h2oL3qObrfO7bcN84WHB1iyOIkgQCKhkUpNkFh0jGVxmdczNwJlgBNeNjQFQ0uD9dNQzX+j2/9OZ2yTNn+qadCt7bU0qAp0n+MKLYay8TBK5j51BdQUhqaAliZp+EkraTSlH5c+DrMnNYly/G3U3kME7/k/ZX33tvlROdFRG9W+pjbZqJR0lFvSmFYU0qkUuq7j9XpHb1cgrWAwEjkQBYGWlhaOHj1qOl5+zPGpJQe6qtI/OMikjo6y35MrgBFEkUAgQCQaRVVV4rEYgUAg/4NRwQ3tscyQ7Jat4zJcygMnpVCpmLIMQZdilWGmlZGApySKeNxuPF7vmMhTX38/jU1NZfU9oIptboshH2nIaoCU8e+JJgeZKRFJFLmmfRXXtK/ih/q32RjezLMnXuSlU68wrI5u6GQjTpT45T8ktPDv8Ieupe7kfdScvpOhAX2U3qDD3cl3/7KZjVuuIx4vvvqc1pnm858d4P57h2iozwm12uc9hvvbMAxzMrYmYXtSNtQ0hq6gp5MjE7OumBOzliadioOWBlVF11NZEznWBG7Y79HSGOrIBE/GZF8tYWOt9VM9WXw7SUojGDLV6vWnR7qIDA/j8XrNhnIFroHdhdI8hwrIAaUFg2OB/YyJFey7VEmjaqVwdSvNmjeaWuB6C+A0bhdEkZbmZgTg9JkzXLF0aZlneHHiU0sOBgYGSCWTTovUsUKUJILBIJHhYdKKgpBI5L0BS5UwZsLujqjruqk7qGLbUd0wUC1/A/cYQu/5PoFhGKTSaTNflxFOc8myOfiMw7a4HMFW5vGA80IO8iG3rt7+LbesMnN7280yX866HGSGL3OJlyzKXNdxLdd1XMv3V3yT90KbeOHUr3np1KtE1GiBD6ET73iHeMc7dK34EwZ7r+TqnNuka9MtdG1YVvCcJEnnhtVdPHzHIVYtPo1gpDF60yTDStYqOp2MoytJ0oKGhu6smu1tDHVk0nYm+ozXMqeHzO9YwBj5ugX7b+YvmqZSZfXBeYGoKyC60YQqRcTctRiYOXa746zb4xlFAGx/AzttV9ExJsg8zZmQyxxTPVZvnHwljZqmEY/HzbSJJOWtPit2txiG4SwEREFAkGXqGxo4c+ZMhZ/q4sOnlhycOXMGAVNhWgnyid0kSSIQCBC1xEWiIIzuv1AmMbC38vp8pFWVWCxWVXJgiwHtznAVIeczqJrmpA4yBYZuj8dMHVRcnD4asXicZDJZ1nWy7ZJ1q+lNxZ9vgiBgkcNc5PGpyK2icN6f8TOTRGS6YhYjFm7JzQ2T13LD5LV8f8W3eKfrPZ4/+RKvnnmdqBrL/yZRo7t1G29oI2tAwRAwtv1e3s1bgiHuXvRL7ln0GK01YeiG6OsFT8mBav2XD1kpm1GT/oioM/OTGwhZI7rg/N/HF6KhmPe2II+58sXZV+NMfNf9GZrXZ7Y11jQzrK4ojpeLbC1QtDL9DfJhor7yLEJchm7HY+ma1JySRl3XiScSzsTuLWQ6V4SE6Lru3H/289fa2srZc+cuWtOtcnFxjJ4XAGfPnaOpvj67T3sJFBuAXW43fsMgHo+TSCYRrYesUthhM7/fTzwaNctqDKNqnSAVK9zvGkuVgqVCtqMESsYKXRJFvB4Pbo+nql0r+/v6MKCoYGvk9MxWurplonSxkIMxh1YzlfA5+8nso2EYhrlKs/4m2Er6jH1kDnAeycNNk2/gpsk3kNTTvHX2bZ4/9WteO/MmCS3hHGyhAjNUeNdr8NnBlRwYltj1xnegKztqsKLzPe5b8ghrZr6BLCqZp55x5oJ1XjnfRybrMRP+OLUdZU36ld1rE2p1IAggeRBkF0husypAcmX89CBI5t+Q3AwORRmMJZg+aw6CaG6X9V7RBbLHeq8LUgaqIeD3B5E8XvRIN/FX/7Ls05MnL8Vz5ReRGmcAIGFqgFRNI22J8TRNI55IICaTuNxux0V1LM/SRE2Mkig6OiZbqFhMAJivpNEuWTR03eyd4/ON6Xzt88iMRrS0tHD02DHC4TDtedxBPy64OEbPC4DBgQFmtLRUzm6LjC4ej8dJBcRjMbNZh8tV1uRgMMJCwSzBESUJQ9NIJpMlTZrKhd1TYiyCvVQqRTyRyArbu+3UwQS1e+7v7ycYDJZdcinLMoplEjO+Rq1VRIUli5XtOqPk0iYM9jHJmEtzVd7W+XhEN7dOvZlbp95MQk3w+rm32fTRI6w68gErUgauGBj9AhuvWM2Vp2WOh5YwDNR6Brl94RPcu/gROhtPlHiOrChHvu9AyP05Ts8JUTYnUtGakGWXOWFLLgTRjSiIGKI5OSNbE3LGJJ45eQuy9VN0ITiTtLmtPYELsnks872VPVPb334bV7Mb39LRTpP54InHIZVC93hweTxQZrWC2DQb79IvIXcszvt3WZKQ/X4MXSelKCiWiDiRSBCLx5FkOaukuhKUmrjHgtwUrW41qSuWwvBYJY22K2zCNioyjKIli06krtC5WOQik1g01NdjGAbd3d2XyMHHEcYYB+xSIhufz4eu66TTabOCoYwSRwOLgWaK3EQxK7VQDXKg6brzoFYSJlQUhXg87jReETDzeB6PB7nKYslc9PX1Fa0Bz0Wm38HFgFL32XhDxHaJlZAZKchV2Oc/sVHbuNMJ1h7czIp9W8Ew8PXB3BdAThlc/vr/INHWwUPtr7J7UTONM0/hkQvUjouyNYlmTLr2ili0JmDZjWoIILiQvQEk2W1NwOZ7RMkNcsYKWjInaMF+zZrIBckDzmrbhSDKZvStwEShG8ZFUWamahr9/f0sWLiw7PdIkgR2qN/jKelXINS0473yi8jTVpVlgCRY0T+P241qlWgLALpONBbDa5ceV/DMV5sS6xn3eyZKuSr6vF6GhoZIp9MjY5ntZVDk85T6pLoV6ZVyBMof32TCCD615MBeaY3lIpbKJfn9fqekLhqNEgwGCxKE3IhB7n5i0SixeJymKqQW7JKkclsZq6pqRgrsygNBwOf14j1PxkmqqjIwNMS06dPLfo+tc9A1La/D5EWFPINIJlnIDr/nJxla7mA4hnvE0NIkdv6c2Kb/jZGKOAfvfA9ks/cMkqLhisVorpO5LiRx5j98m4FIjN7+Ibp7+0koOpLsobmtg7aOSbS1tRXO4VoYHBoyV241NWWX1Nr6jcyAQ0HNxkWMwcFBNF2viPhKuWZIrvzfr+Ctw7P4s7jm3GwSsQohCAIutxvZ7cabMdYlrZ4ObotAXIh8emZKIRfFSh0lScIly6QTCWKxGG63G1+ul0E+iGJBjwMYiRyMun8/xloDG59acgBWeKrSnCWlc2mCIBAMBIhEImiaRjQSyRtBMDBX84X257XUw0qVUgtOvXKJqIFu5R0z+zt4PB78Pp9j3HM+Wjj3DwxgGEZFolFRFJ3UgnoRkANnmLIn95wVe97qj3w7KhT2zEwrVHpuhkH66JtE3/oB2mB2LV3taQiGs7fXrftG7u2jrkfBt2QFk8wdMTg4SCgcJhwKsWPHDgDq6+tpa22lvb2dhsbG0T4RYzh3OzqST4fhbGPfmxnft026LhaBWF9fH5IoUl+iuVomJElCEEU0RUHXNER3AGnSErRzH5obyF7cC+/Bs+AuBNf4RMy6ppnHkGVqg0E0TSOZSqHpuuNy6vV4zqvDKpSu+ipGEARBMMsWBYHampqqeKHYRKXa5eYXAz7V5GAsgibs95RYoQiiSDAYZDgSQdN1IpEIgUDAuSHtVEKxwaraqYVSegND101nxuSIyYrL7cbv9WYJks5XC+f+vj5cskxthd0vZVlGtRo5jUUUOh7kTtaGYYyYWOW5Z8bTpCYTlU56as9BIhu+h3Jq0+g/GjBpa/ZLmteLmlE143vlFdJLltgHp76hgfqGBubNm0c6lSIcDhPu7ub48eMcPHQIt8tFa1sb7W1ttLW1jQiBBaFou/CxIt/3PdZU4kSgr69vFGEqBUEw2yULgoCmaYiShH/tV1GOvAmGjmvGdQi++qqcX9quUrAsk23SnbbcTnXDIG7l8POaBmWcc7XcEgulFHKRdZ0twW4ymcSwUkqCIJRFagzzoEWjy845XSIHnzyMZSVRSndgQ5QkampqiFkuitFoFJ/Ph9vjKfthsVML461aMCjcdtXuMxFPJJwBVZZl/H5/4SjDhMq+TfT399PQ0FDxNXLJMklwyrAmDBmVALkNsTJ/Fv2Wxvk92scp977QY31EN/4Pkrt/BUb+6I+3dy6BvkNZrw3ceiueDz90fvds3ow4NISeZ+Xr9niY2tnJ1M5ODMNgoL+fUChEuLubbVb9d319PQ0NDTQ3N1NfW1u9SbvY920dIx8pH5XemcAyNNu7Y8aMGRW/V5YkVEEwLcIBweXHPf+Oqp+jYnuhZAiNBUEwLc9dLlLpNKlUClXXicbjyJJkkoQ8kbpqkYNiKYVRyCgTjsXjaKqKYDXJE61y51LaiVLTfWavm2pWaF0suEQOxvi+cgcP0bL9jcXjZqMny03R5/OVNSDaVQtKKjWu1IKdUhBFMSs/ZpMCxwJUFPH7/SWZ9UR3uDMMg96+PmbOnFnxe+UMM6RqDPJZ+zCM0QNUiTBnMYx3SMkKoRfbTkuT2PEzU1eQzm+AFPFMJb3wd7j+h/+a9boyaxZd/+7fMeUP/gDZyncLioJ3wwbi99xT9LiCINDY1ERjUxMLFi4klUoRDoU419XFqdOnOX78OLt37aKtrY32jg5aW1rGVmY7csCSZEvME/ka9Q57P3YEyH557GfmIBqNkkqnK9Ib2JAtQ7GJFNxqll7HMIy8iwNBEMyUgstl+pxYKbxoLOZUL01EmL0SIzkwU7bxeNwRDdbU1Jh27pYwu6SwspTeINODQ8huwvVJoAqfenIwFlScuxQERxWbiMdJWU6CAb+/ZDhKEEV8Ph/KOFMLSk7UILMCwTmOVYFQzmdz3P0miDFHo1FSqVTFJlVgEhxJkkw3SFWtyMsCLDLAyIQwrm6YExxdyTRBKvT39NE3iL71w1G6Ahuqu5Gj9etpX/kbLNuzB9fx41l/H/rjP8aor+f49OnMOXrUed332mvE7767olW/x+Ohc9o0Ojo6iMZiRKNRhoeHCVlkQcA0Jmtva6OtvZ26akYVbJQ5yeQrvazGwN/X14cANJTh3ZELu2JBL7P76FigWE3ZZJeruJLfGpvcVpmgoqqkVZV0NJpV2VCNc9SLaLMKfQa79bIgCE7fG1mSSFvjwliMnTKRmUIURXFkLLXO82LRt4wVn0pykHlRx3wBK2SxBubAKIoi8VgMJZ0momkEgsGSojm/z0csEhlXasHWGwjAcCSSVYHg9Xrxeb0VfxfluJONFX0DA2AYNDQ0jOn9siyjaVpZ5CBzkLXFlnlr8seAkpPJOL8/Z0Wb53zVngOWrmBz/jfLPnpab+aY72qWrVjNpJYW6n4v2/0wvXAhifXrYXCQ/XPnZpED+eRJXAcPosybV/l5W995Y2MjU6dOZeHChSTicVOrEA5z4OBBPtq3D6/XS1tbGx1tbbS0tY17QK8GcqtIKn1uevv6qK2tHZMgThRFM7xure4n4vuwUwrlnp8kigT8flRLOK1q2ujKBspLxRZCuWONnSJNpdPolr7K6/M5vR4kWQZVRVFVitXSVKI3mMhx8ELiwj9pFwB5L2SFYqVybnbnOBkrT5fLRbC2llg0iqZpRIaHTaFikVCq1+tFlOVxpRYURSGRSKBqmpMXzKxAGBNEESYovNnf20ttXd2YzZVkSSJFkT4LhlE4MlAtYmAr8ovtTxCymjSN6RhkkwM91kf0/f9Ocs/jBXUF0pzPsEdaRYwA16xeTWNjI8Gf/xz57Nms7Ya+/GXn/Ls6Oki3teEOj5Qx+F59dUzkILNTp7Mvv5/pM2YwfcYMdE2jr6/P0SqcPHkSQRBobm42UxBtbWaXztx69zKOXdWUWG6KIpNokp8Y9vb20trSMuZDSpKEoqoTQg60jEZLlUbcZEkiGAg4zdfsygYlnTabrk2waM82N0orCrph4HW7R0VCXS6XQ2CKwSYTxeC4I+bqVz7mEQMbl8jBOPdT8kYwDLQcPwW7/XAsFkNRFGLRKF6fD2+BSX+8qYVUOu2UVXq93rwVCGOCNalOxMPQ399P4xjCrjYyzZDs/KJTBne+WP54IlNlIpMcGGqa+I6fEt/8fwrqCuSOJehL/z2bjkbweDysW7WKQDCIkEhQ+6MfZW2bWraM5Jo1I8cSBIbWraPll790XvO88w7C7/wORoX9P5zzLjBhiJJES2srLa2tLALisRihUIhQOMz+ffvYu3cvfp+PtvZ22tvbaWluNu/nC72CyyELuc9HMpkkFo3SNAZCZUOSJERhxAypmkhbKQVpHM3SXC5XVmWDZhjE4nFcLteY/BHKeV51XScWj5vpFl03dVM55CazjLuUWDnTcbQQ7DTCKNJzoe/BKuFTSQ4cZJipTITfAeB03Rt9aDMPFk8kSCWTJKz8mN/vz2+IlJFaqATJZJKBoSFzlWFVT1SrNlkQBNPiucqeB2lFYXBwkJmzZo15H7bRk13SeCHC0WWTkHFULNhRj/TRN0i895/RBk/l3U6s6SB43Z/SG7yCbdu309TYyMqVK52IVfDnP0fq6cl6z9BXvjLqXhxas4bmJ55AsAfGZBLPu++SvOWWis8byl9l+QMBZs6axcxZs9A0jd7eXsKhEKFQiOPHjyMKAi0tLbS0tNDe3k4gGCy4r/O6ssshC729vehAc3PzmPULdhpyIkSJajqNDvjGaYduVza4ZJlkMknKapmsqip+n6+iKEIpC2bbrM3eJlgkVSvLMpQj6CzDT8EmB3IOkboUOfgYo2oh5CI3kF1TWwp+y6UrEYuRTqXQNI1gIICQc3NnphbiyST+Eu5zmsWkFUVxOhQ21NdX37RkAh6EgYEBDBhT5CAzRSDLMpquo1wgclBuukAUhNFOh2VC6z2Itvm/oXRtz7+B7CNw9e/iX/abHD5+mo+2bmXq1KksXbrUqVoRIhFqfvzjrLcl1qwhtXz56OPV15Navhzv5hEdg/+VVyacHGRCkiTaLL+ExYsXE43FCIdCdIVC7Nm7l927dxMIBmlvb6etvZ3mpqbsyeICruy6QiHqamrw+nwjUQWrtK7cb8I2iXiw1wAAzXBJREFUQzJU1TQqqpLRl6qqzmKmWs+LXf0kp9NEYjHTFC4axev1VmUsSqfTJBMJNMNAkiT8RfokgPW5rOey2KJB1/WipYy6rjvXTxTFrHvqkxE3+BSTAwMc68uxXsyi761gAPK43ciiSDQWQ1NVhqNRgoFAtvFQZmohGi1KDlKKQiwWy9I5eCVpQtzMBMNAp7qlO/19fbhdLoJFVn+ZKFRN4JJl0uk0iqLgK0GmJgLl3gFjuf/0WC/R9/476p7HC+7Bu+AeAmu+ghBo5cMPP+TEiRPMmzeP+fPnZ5G6mn/+Z6TBwaz3Dv3xHxc8dnL9+ixy4Dp0CPn4cdQK6vYL5WsrhhWBC86ezazZs1HSabp7esxyybNnOXrkCJIs09Lc7KQgfFVsgV4RDINwOEzn1KnWqed0zrReK6XMFwQBSRTRMsyQqoFMIWK1V79ut5taQSBmNTxKJJOoqmoueopEEQo927axUUpRMAwDl8tVlqjaqViwxMqFSjWFEuO3HXmwI5SZW+uadl5SihONTyU5EEWR+oYGc4VaoRAxF/ly7iWNb/JAkmVHh6CpKpFIBJ/Ph8fjcc6vVGrBwMzNJi3bY1mS8Pn9RIaHzQdoIlbPgmDWjVdxNdbX309jU1PBhyvXaKgQXC6XGUJUVZMIXqQuZpXcfaau4P9ZuoJY3m1ck5YSvP5ruDoWoyoKmzdupKenh6XLljFt2rSsbcX+fmr+9V+zXouvX4+yaFHBc0gtW4bW1ITU1+e85n31VaI5lQ7FP4h17ap8TSRZpqOjg46ODjAMhiMRU9QYDrN79252ffghNbW1NDU3097WRlNTU9Um11IYHBwkmUjQlqdTX6aIMfP3QkRBkmUEVXXMkMYLwzDG1869DEiyTMDvN1f7qRSKqqJGo/j8/oJjU76Ugq7rTndYwzDMZlEVaC8kWUbUtMKphTLSfI6hnH3vZFyj/oEBJFn+WHdkhE8pOZAkiUmTJnF8/36Slkf4WJBPdzCevgNihlAxnU6TiMdJp9P4/X4kWS6aWlBV1Yw8WMf2er34fT6nH7soihM2OVbbEKm/v3+U+dFYxISiKCJLkjnwqer594Ev91zLqGowDIP0kdeIvPVD9KHTebcRayYRXPuneC77DIIgkEwkeP/994knElxzzTW0tLaOek/Nj3+MGBshGYYgMPQf/2Px85UkEjfdRDBDmOjbsIHov/23ZQvkHNOtiVxdCQK1tbXU1tYyd+5cFEWhu7ubUCjEmdOnOXL4MLIs09raakYV2toKioKrgVAohOxy0VQiXSbY4lnnY4yOMMi5TZjGCVXTRlIKE0SW7PHS4/Egy7JjUBSPx3G73XhLeKxklika1u+BYi6uBeCSZVKplOmamG/sKvHcZuoNRom6BYHucJj6+voxmVxdTPhUkgOAzs5O9u7YQU84zNTOzopLGfPBIQb2fsY4YQYCAWSXi6TFjiPDw3g8Hrw+36jUggEkLEEjmINtMBh0mLjNcCckamDDGryqMcyn0mlS6TQ1tbVVqS5wuVyoqoqiKOedHJQNK+9cCEp4H9EN30M580H+DWQvgat/H/9Vv4VgdeobGhxk46ZNCMDa666jNo/NsRgOE/z5z7Nei995J+qcOSVPOXnzzVnkQIxG8WzaRGrdupLvBbDpczWpQTmRpMmTJzN58mSWLFnCwOCgI2r8cOdODMOgrq7OLJVsb6exsbGqhDoUCtHa2lrRPkcRBSu/LYqiY4ZUDahWtNHlck1cONyaiAVBQJIkgsEgyWSStKKQTqcdsaKtD8lMKSiKQtLq6aDruulfUKLdciFIGaJEwzDM7zhjQacbRlG9QabZke0EaachBEGgt6+PRVdeeSmt8HFFfX09uFx09/SY5GCMF9Jmnrk17eNdSdse5olEgnQqZXZCs3JkEhC3cnfReNwhAB6XC38gkLUas0NvEy3Iq1ZqIRKJoOs6gUCgKlUQLlkmIQhmPnWCyi4LoRLClE+/YuoK/hvJPU/k+asJcc7tuFb8IYGOkcqOUCjE1g8+IBgMsmr16oKtk+t+9CPEVGrkfGWZoT/6o7LOV2tvJ7VkSVa/Bd9rr5VFDrI6Ml6oVI8gUF9fT319PZdZzaK6u7sJhcOcOHGCQ4cO4XK5aLW6Sra1teEZh24llUzS19/PsqVLx3XOjpe/1QxJK9cKuAjslIJB5d4GlUBghNyAOXb6fD5kWXaqtaKxGD5LrGg3mEomk875gZleHc95yrKctfrXdd0ZvyrRG+QbU9OpFNFYbEx9My42fGrJgSRJtLW3EwqHxz1pZHpqVxOCIOD3+/G43U6ODcMglU6jqCrhnh7H5CNgbZd1XhRutlR1jNcQyRI2Dg4OIkDZYsRSkGXZDL9ag8H5qlqwLZjLRZY3u5oivv3/Ed/yo8K6gslL8a75M1LBGVk58+PHjvHhrl20t7ezfPnygp9XOnWKwK9+lfVa7IEH0Do7yz7nxM03Zzdj2rULqasLraOj6Psy+0FUlaxVQE5zw8luj4cpU6cyZepUDF03W1BbWoXt281KkIaGBqdKoqGhoSJi093dDUBbW1vZ7yl6/pYtsYC50pXGQc6dvisw4S3O84XxXS4XkiQ5FswJq9ujJEmkUikMQcDQdTyWtmC894zLGhOyPFDsc6pAb5D5Xdnv6O7pQZLlMfWEudjwqSYHkydPZv/OncQTCQJjVDDbt+lEGuvYYsVMP4S4pS+YPGkSNTU1eRudaLZlsiCM3/CoBMZS9ZGPVEWjUfyBQFUbt7hcLnTDIK0oF4X9biEYhkHq8KtE3/4h+tCZvNuItZMJXveneC67zRSQxeOOYcvevXs5fPgwM2fNYvGiRUUnr7r/9b8QMoxgDLeb4T/4g4rON7VyJVpNDVIk4rzmfe01Yl/6UvHPaX+Wio5WHJWKgItNL4Io0tDYSENjI/MXLCCVTBIOhwmFQhw9epQDBw7gdrtpsyIKra2tJQVxXV1d1NfVjSv6kAtRkhAUxTT+kWVzgs+jTygFR4g4kSkFC6IgkG8JYZc8ptNpotEosVTKIQRutxtfTU3VHBZtEykdc6K3043lGB/ZaQ3Ir83o7u6m3RqTP+64eEfKCYYtSvzAUnIHclTc5eJ81rR6vF7SqorH4yEWjTrlQKqqIuXJpyvWimBC9QYZyM3dFYQ1kOcrgYxEIlV/sNwuF2lFMftJTKDgLBOV3hdq9z6G3vgOypmtef8uuPz4r/49/Mt+09EV2N+1rml88MEHnD17lkWLFzN79uyix5KPHMH/3HNZr0W/8AW0StXVHg/JG24g8Oyzzku+118n9oUvQJEVqD24VjOlMJFdQj1eL53TptE5bRqGrtNvt6AOhzl96hSCINDQ0OD4KtTX1WWlKQ1dJxwOV301KQoCWKkFyBAuklH9UIa4zkkpXGBNjq7rqLZIEGsiNgynJ001IcsymqJkkYNyIsiZroj5zqm3r49V115b1XO9UPhUkwOPx4MvGKQ7HGb6GMmBjfORz45Fo2iqauolgGgsRiQSQRAEUm43gQwxD5zHlIKF3HrfXNh/s7s55vu2hoeH6Zg0qarnZecnM8OIE41yDZC0aA+Rd/8LiT1PUtCvYOF9BNZ8GSmYHZI2ME1g9u7dSyQSYeXKlWV9d3X/438gZAqwAgGGKylDzEBi/fosciD19+PZto3U1VcXflNmCPdCYawaI1GkqbmZpuZmFl5+udksqrubcCjEoUOH2LdvHx6vlzZLq9Da2srw8DBpRal6aZtkVSzkEyXmVjsUKom0G7AJVv3/RKPQt55Opx3BoSEI1AaD6LrutF32j6EqoRhkWSZllYI655ZBMAud56gSRvu9mONxKp3+RKQU4FNODgDaOzo409XFcipXThuM1CFPZGcuwzCIxWLOjRkIBBzLzmQqZYbM02mUdBqf32+agXD+xIgZJ5r33O32zjYKkSjN6h1R7ciBPfDplltirjZjIlDqTjDUFLFt/0J0048wlEK6gmUEr/9LXO2X5/17JBpl+/btaJrGdWvWlNUC2PXRR/hfeSV7P//236KPsY+FNm0a6XnzcB844LzmffXVouSgagZIGRjLs1cNQu/z+5k+fTrTp08faRYVDhMOhThlRRW8Xi+StdKs5iLC1poUdWK1K4lEcST1l/Fd2VEDzwQKEXOR6V2gaZrTEM4wDKfDo/1d2VqreDyO1+cbcyO2XMguF4Kt48qBIIpQ4DstWMKImVJwuVxMnz69Kud4ofGpJweTJ09m+6lTDA8NUZen3KsU8j7oVSQJhmEQtTo4CoLgEANZlhkaGkLWdbOCQRRJK4rpjZBK4fF4HEvW80YOLIFZZv5Xh5LqXxuRaBTDMCYkX+fOKGk8H+SgEAzDIHnoZSJv/RCtmK5g7VfxzL214ETS29vL5k2bcLlcrFq1qixiAFD33/5b1u9aXR2R3/qtyj5EDhLr12eRA8/WrYh9fegF6rzHY51cLZTTda9SZDWLWrSIeCxGOBxm7969aLrOm2++ic9uFtXWRktr67ieTcn6/jRdL8vka5TBkqaRthcQ55Ec2HbRqVSKtNXLAcMwLZVdLic9KQgCfp+PhFWtYJdrV4MgOKXeduQgUxCs645AMxO6VRkC+fUGPT09TJsxoyJDposZn1pyYNfatre3k0inCYfDFZGDzKiBvT/n5ipD2FIOdF0nGo06x8lsKGL/rg4MEI1GmTJ5Mul0mng8jqppxIeGUBUFv99//hvN6HrR1EEhRCxh20SQA6fhynkqacx39ZXQXobf/C7pYrqClb9v6grkwgPM6dOn2b59O/X19SxcuJBAIFDWObm3bcP3zjtZr0V+53cwxvl9p9asQf/xjxGtwVvQdXxvvEHsoYfybj8h5GAsz1uOJ3614Q8E6OjoYMfOnSxbuhSvz2d2luzq4sTx44iiaLagtshCIBis6DsRRBHJWoVruo5cZrrM/sSKrbq3zMLOB2yNQywWc8R9bpcry0Y5U7ckCIJjfW4TBFuoOB7Y46hmpRolScp6ZsU8Y3iuZXLW58J0RlxWLJ32McOnlhyAeZElSaKhuZnu7m7mzp1b0ftzb5BqiqI0XScaiTgTWTBPRUKwpoah4WHzoYnHHRvSuFXVkLZq2G3f8YmOINgmUAZjG/gjEbONcLVCh5mQZRlREFANA1VVJ7SeG8gaWLRoN5F3/2sRXYGAb9H9BK/9MkKgpeg+Dx48yL59++js7GTOZZehWxGlcs5nVNSguZnoF79Y3ucptmufj+R112WlK7yvvkrsgQfy2iPbg381ycFYnrrx9FUpF+FwGDDTl263m9bWVrNZVCRiahXCYT7au5c9u3cTCAQcA6bmlpayygpFSQJrgqsUqXQaAc6LOZhhVQulrOZyqq4jWZHQTMF0vmtiRxCSgkDKsl42rEjDWGFXZhi6jppHh5RPe6DlKWG0MTQ4iK7rnxi9AVwiBwBMnTqVU0ePoul6WSV0uVGDrL9VgRzYncsMywktGAzmFdFJokggECAyPMzQ8DA+vx/Bytkp6TSqpiGKohm+S6Vwud34vN7qT4zWCkCw0goiZGkMykU0EqGmtra655YBl92lUVEmnBwYAGqK2LZ/JrrpHwrqCtxTllN7g6krsO+rfNB1nQ8//JCTJ04wb/585s+bZ0aVKC9373n/fbxbsyMWw7//+xhVakKUXL8+ixzIoRDuPXtIX3HFqG2dUsYL7SBXpQhfMXSFQjQ2NIyagIM1NQRraphltaDusQyYQqEQx44dQ5IkmltaaLfIgr9AdEi0tASVkgPV6uhoGIZDxvPZNI8Xuq6bDoiWNsq+X31WiWLmGGpY1QmFSKPXaqyUtC2ULYIwVpIpy7LTtZYCDZgyvwvH/CgPOQh1d+P1+5kyZcqYzuVixCVyAMycOZPDe/dy4vhxZs2aVeJdhYVMgmA2IRrLxGhDs3okGIbZgjQQCBRV19fW1JhljYkE6XR6ZBASBIJ+Pz6fD03TSKfTjmhRlmWTJOQ8nBXB0hXYZj/5wmyV7nloeHhMbZrLhcvtJmXZtE4kDMMgeeDXpq5g+GzebaS6KdSs+zO8GbqCQt+Xoihs2bKF3p4eli1bRqdVWVN2eN4wqP+v/zXrJXXSJKIPP1z+hyoBZe5c1OnTkU+ccF7zvfpqXnJQ9VLGMT5vEx050DWN7nCYOSXsqCVJor2jg/aODlNjlNksas8edu3aRU1NDa1tbXS0t2c1ixKLVCwUgx1V9LjdznWopqBa03XSOZoCURTxud243W7ytbQvZyzyeDwIomiOd5aYspxujPkgyzJpVXUiArnIjB5oFpGC0ZEDVdc5fuwYl1955YSbSJ1PXCIHQF1dHbNmz2b//v1MmzatZPh9onLWqqoSjUbNc5NlgoFAyeO4XC58Ph+qpjE0NERLixmWtgcLt9uNZCn1E8kkKcsbIRKNIkkSXq+3ctcxw8gbdrMhCAKStUooF7quE4lERnUNrCZctu6gCpazhZDu2sPg698ifWZb3r8LrgDBVf+OwFV5dAV5BudEPM7GjRvN5knXXutcX3Pz8koCfa+9hnvv3qzXhv/wD6Ga4WRBIHHzzdT8+MfOS56NGxGHh9FzokFV1xychwjAWNDf34+iqnm7MBaCIAjU1NZSU1vLnLlzURWF7p4eQqEQZ8+cMVtQS5LTLKq5qQkEwfE6KAe6ppG2ShjdRXL3gihiWO2Hy4WqaSYpsCZuwzCQRRG3FbF0TONy3lcJMbEjHclEwjRwMgx8Pl/F95Msy4iGgVKEWNmVC8X0BseOHSOZTHLTTTdVdPyLHZfIASYrXLFyJa8+9xyHDh9mwfz5Bd+jU2JQG+NAlVYU4lZ3PFmWK7IPrq2pIZFMEotGaaivNz+XYYAw0hhEtNINfp+PZDJJMplE0zRisRjxRAKf12t2RSs2YdpVCOV8PiufV+4DG4/H0XR9Qp3FBEHAJUkYVmqhmqpiLRJm6O3/TLyoruABatZ8BSlYQFeQc+8MDg6yaeNGRFFk3dq1o1IupWqyzRPTqPvv/z3rJWXGDGL33FPqI1WM5PXXE/zXf0Wwa+cVBe9bbxG/666s7apdyjhWWjDRotSuUAiPxzOmKigbssvFpEmTmDRpEoZhEBkeNtMPXV18+OGHYBgEg0Hq6+uZ0tlJc2MjQonVq601kCSpKEHOtLkux1LYtnXHSg/IlpdMPhO23G++Ur2W2+VCFATi8bhp9mZpriq5p0RBcKyZC8H+m13CmLtwTCkKBw4cYM7cuR/7Loy5uEQOMC98TUMDs2bN4tChQ8yaMaOgzWk5E16l4UpNVR1i4HK5ylaf2/B4vXisUr3hSIRaq6OhIIzu9mc3O/F5vSRTKRLJpNMfPZFI4PV4TOVwzgBjiw3LHVAr9X6YyEqFTLhcLhS7pLEK5MBQkkQ++AmRTT/CUOJ5t8nUFZSCfe90hUJs3bKFmtpaVq1alVd8lVualg/+F17AdeRI1mtDf/RHeXOs44VeW0tq9Wq8b7/tvOZ79VXid9450pBM152J5kKnFSYaoVCI9ra2qpEQQRCoraujtq7ObEGdTtPd3c3pM2c4Gwpx4uRJZJfLNGBqa6OtvX3UOGYYBorV8riskt5MYpCHJCiWyFC1rqtuGLhcLvxud/EKiCp8J7Is4/f7TS8Eyy+hYhv8cszKBKGg+dGhgwfRNY2l42modZHiEjnADGkbgsBll13GiRMn2H/gAEuWLBm1fcmoATi1/nZv9FIwDIPoOIiBjWBNDclUiuFIBL/fj0GJvuyWOYvX4yGlKGZ7aE0jkUqRTCZxezz4vF4nJWGLDStBJauBSCSCS5LwTbC9scvlQrAavIwnPWQYBokDLzK04QdoQ4V0BVMtXcEtFZGqo0ePsmvXLjqs5kkl+2IU2reiUPf3f5/1UnrePBK33VbWuYwFifXrs8iBfOIE8qFDqJddBmSnQqq2cr8IyUE8FiMyPMz8efMm7Bgut5vJU6ZQW1/PHCuU39fbazaL2rEDMLvPtrW10d7WRkNjo9OdVBSEyr0N7FJtQEmnzcoDqzrJ0HXcHg8et3tMfVHGqneQZZmA3++YxKUsj5dyYC+ASh1bVVXzfiVbbxBPJDhy9Chz5syhznKt/SThU00ObH9s29zC7fFw2WWXsfejj5g9e3ZWaN9+AMoRfyEIiGXa58Ys8aFoVR6MFba9qJpOm+ZIslxeTl0Q8LjdeNxusyQymUS1yoUSySQetxuv1zum/gyVehwEJ7BSwUZmznCsJY3prt0Mvv7twroCd4Dgqj8gsOzfFvUryIVhGOzevZvDhw8za9YsFhVrnpTpOFlgf4Enn0Q+fTrrtaEvfzlveWG1kF60CLW9HTkUcl7zvfoqEYscVN0dsczn7HwjZH3+TI3IREEWRRRRpLamhpaWFubNn086lSIcDhMOhzl+7BgHDx7E7XLR1NxMQ0MDk0p0zswHI0/lAZjuim6PZ+zXdJzkTpIkvD4fiUSCZCqFJEnll22XmTKxj5OJffv3I8syl82dO66yyosVn2pyADgrY03TkEWRWbNnc/ToUT7at4+rV6zI2rYig5IyVs124ySAwDhbFAuCQE1NDerAAMORCA0NDRUzeJfLZYbdLZKQtkqG0pkVDhV2biu3emM4EqGmSm2aS8Hlco2ppNHUFfydpSvIB4HAFQ8RvPbLiIHmis5J0zS2btvGubNnWbx4MbNKNE/KvLfyXo9Uitr//b+zX1qyhOS6dRWdV8UQRZLr1xP86U+dl7xvv030t38bw++vvsfBRSpGDIXDNDY1nZdmRk7FQkbu3O3xMLWzk6mdnRi6zkB/P2e7ugiHw5wLhfjoo49oaGw0SyXb2sx+LQWuia7rTrWT7X4qYJICj2XVXimEjJ+VOzSMRqYDajyRIFiiyss5hwxxdT5kNabKGCuGIhFOnTrFokWLkK3v4ZOGS+RAksxaV01DtvLkCxYsYNv27cyZPdsprav28KMoCqlkEqBqLYoDwSDDw8OOF/lY2lDbvRhqgkE0r9escEilzDx9NIokiritcqRyowmlyhptoVVba2vF5zsWuF2uEfFUGTB1BT8msukfCusKOq+m/qa/xt22wExTVTBhpVIpNm3axNDwMCtXraKtra3ke7L2n2dQDz76KLJlwGNj6MtfPi/NjhI33kjg5z93mjuJySSe994juX79SOTgPDS/KoWJ+iY0VaU7HGZ+EWFzNSGKIoJVhZMPgijS2NyMx+dj2tSpaLrO4NAQ3eEwhw8fZv/+/XjsFtTt7bS1tiJLkqPNsRcwutX7wGM9/87+K0ijZp0X1XOTBbOkUdc0s1mTpT8oREIz06TFjm6nH0VRzIpG7N27F5/Px4zp08EwLpGDTyIyRYmCFXKeOnUqhw8fZu/evay57jqHYVYEK0eVb5KwO42ByfCr5QgoWYZJQ5EI0ViM9nIn24xcYtb+rKoJn89H0qpZ1jSNhFXtINoDhcdTUN9gmyIVmyxtj/Xz1QPd5XKBYaBZEaNCtcmGYZDY/yJDG76PNnwu7zZSfSf1N3wN79z1Y3aFfH/jRnS7eVJDQ1llacW+TyEapfYf/iHrteSqVaRWrar4/MYCvamJ1PLleLdscV7zvfoqyfXrq17GePHFDMwGPJqmVb0LYyE42qkiJXm6pqEqCrphUFtbS319PdOnTUO3W1BbFRB2s6i6ujqamppoaGx0+rkEPJ684XpjDMQAcCqaqgVBEPD7/URjMTRNI5lM5tUwlVsCDKa2AiytklXW2NvXRygU4qqrrjL1QJfIwScT9oOlqirYTmGiyMLLL2fjxo2Eu7pos8xJKhbkkX/witsmR7KMv8oCvGAwiCwIRNNp0opSWnRURs5WkiSnDFJRFDPEqCiomoaWTJJIJpFk2ck95kZBirWMBatSwZiYhkuF4HK5MNJpUul03muQPrfL1BWc3Z73/YI7SO01/55gHr+Ccies3t5eNm/ejNfrZdWaNU6kp5xql2KVCjU//SnSwEDWa0Nf+UqZZ1UdJG++OYscuA8cQDp5EsMirJ9kMeLp06eptbwKzgecVbBhoGvaqEojMMsXwbzvM6M2oiBQX1eH3++nc+pUEokEvX199PX2cuzECbQjR/B4vXRYEYXWUs2irHRqOVc3sztjtSCKIj6vl7hlkiTJ8qjFl11FJdrVXAXuIc2KQsDIgsIA9uzZY5aO2m6Ilrj7k4ZPPTmww2PpdBosQaAgCGbXtJYW9n70Ea3t7WMbzPLcePF4fKTDYpWsazMhiiJujweXohCxKhfywhJOFrMrzYUgCE5KwTAMhySkUylUK/wYTySQZdlULlsDkYBVU1xgv5FIBERx3LqLSuDxeJywKRnkQIuEGHrr74jvfarAOwUCSz5L7XVfQSrUB6GMCevUqVPs2LGD5uZmrr766qx8ZiVVHrlXThwcpOYnP8l6LXHDDXmdCicSqeXL0Robkfr7ndd8r77K8Oc/b55nldIK43X1q2Y/FDBTCl1dXcy1BJjnA3bZsG2GNKoM2XIrzCxfVFUVVVFIW9EEc0MDrxUqnztnDggCfX19hEMhQuEwJ44fRxCErGZRowi9TQzKSBdMVIt7l8uFR9PMPgyJBHIhPwebUBXYTzqTUFnj19lz5+gfGOCaa64x9Ref0KgBXCIHDpPWdR1F05DAmTgvX7iQDW+9xamTJx3L2pLIeSgyBXm2uA8oaYs8Vui6jj8QIJFMmvW/+aIHGWZGY13BCYKAx+MxW0P7/SP2zIri5CnjmN+v2+0uKvyLRCLm93Ee8uE23JZbm6ZpqKqKaChEt/yYyOZ/wFASed/j6VxJ3U1fx922oOi+i2ksDGOkedK0adO48sorR98H5eRhC4Tna37yE0TLZdPG0B//cfF9TQQkicSNNxJ8/HHnJe+bb8IDD5jVPNW41hdh1KCrqwtV05h6nj32JUlCVNW8K3F7zAGTFCQSCVMXw4jbq9vlQna5RqUHW1taaG1pYdGiRcTicUKhEN3hMPv27WPvnj34/X6nWVRLZrMow3BaL18IeDwe89nWNGLxeNb4Uo55mG4YjibJjjzous5He/fS2tpKa0uLmWYwjE9Mi+ZcfOrJgT3JJSwrTufRMAwaGhuZMnkyH330EZOnTCnPN7tIiCph6Qy8E9ghUbNboHo86MDg8LBpsZpxfoZFfqoFURRNzwSv1+zjYHdfU1UzsqAoZl21JOGyiELmpDYciVB7HlMKNlwuF7phENnzNMmN/72IrmAa9Td+De+cm8sjUwW+X13X2blzJydPnmTBwoVcNnfuuHwWIJsciD09BH/2s6ztYrffjjKBtfbFkLz55ixyIEUi+D/4gKGrr65OOWUVxGzVjhycPn2ahvr6go2SJgq2KDGXHGiWVbqSSiG7XOZnte5PlyzjcrnKHosCfj+zZs5k1syZZrOo3l6HLBw/fhxBFGltaaHNMmAKBgLmdc45p/NB6QRBwOf3Oy3vk8kkfp8vbyoj3/VXLJdPu3MvwMkTJ4hEoyy3qtjs9F8xC+qPMz715ABwyEEqlcLrdmcN7AsWLuTVV19l+/btLF++vPLB3Bp8YrbRkSxPaH7KsJTyNbW1xKJRorFYlqWyYZ3TREGSJHyShM/rRVNVUlbaQdM0UoZhWreKIm4roiDLMpGhISZPnTph51QIQt9+4q99Cz20K//fPTXUXvOHBJf9m7L9CgppU5zmSb29XHXVVXR2dhY+rzImK2eLjGPV/sM/ICZGoh6GJDH8R39U1nlPBLRJk0gtXoxn927ntZoNGxi6+uoL35FxApBOpQiFwyxcuPC8H9uOPuma5vgR2BVRyWQSDAO3pbh3V0AICkGSJKcMEiAajRKy0g979u5l9+7dBIJB2tvbaWtro6W52TlHe1Kd6DtAtFK3sVjM1EpJUlaVRaHIre0iCSPli0NDQ+zes4fOzk7qLTts+xm8FDn4BMO+uGlVxXC7s3JmwUCA5VddxQdbt1JTUzOm8iQ7jCcIwoSvKGxWHAwETFtTyzWxfhz+7mOFJMv4LdGlqqpmq9VUCl3TSOm6+W+rcmMi9BeFoA53MfjW3xLbU0BXIIgErrB1BZX5FeRDLB5n08aNJJNJrr32WpqbS+xzDPla6dw5go89ln3ce+9FnTFjTOdcLSTWr88iB4G9e3F1dyNWQaxXjRV/NSeoc11dGIbBlMmTq7jX8qFYUbrMEt1UKoUoivj9/rIauY0VwWCQ2bNnM3v2bFRVpae3l3AoxNmzZzl65Aii3SyqrY221lZzHLTy+BNJEuzmcolk0jFIyhcBzmzEpmqao8VyyTLJZJJNmzYRDARGnHMzntFL5OATDEmSHPMfVVVxyTKCtco2gClTphCJRNj30UfU1NRU1LNbVVWHhQaDwQlv9mKrawVRpKamhlQ6zeDgIDWBQGkb3gmELMsELaLgCBnTabPsSNdBEBgYHDRTD9bKptqpF11JMLz5/zK86UeFdQXTVlF341+V1BWUi4GBATZt2oQoSaxdu7bsioxS4e7ctELt//pfTsMjAMPlMjsvXmCkVq1CDwazdBC177yDWqKN8ccRZ06fprmpCe8EW4CDOZmpVrthVVVRLbKtqCqyy4VLlk1PAo/HFPsWqfmvNmRZpqO9nY72dpZgpg3t9MOuXbvQdZ3a2lozotDSQmNT04RGktxuN6qlLUomk44TbSH30Uwhoq7rbNq8GU3XWbNqFZIkYQCZ7/Sch+t9IXCJHFjweDwm89Y0p7UvGU1i5s2fTzQaZdvWrQT8fhosc6RSSFhhXo/Hc156fetW33HJGhCGhobQNI2BoaFs7cEFgigIjhNjwOczW1QLAl6fzwyHZgiBBEFAlmVcFlEYK1kwDIP4R88y8OYP0CJdebcRaqfScNNf4Ztbpq6gDHR1dfHB1q3UWc2TKllhlNu8SwDk48cJPP101uvRz30ObdKkis53QuDxkLj+egLPP++8VP/22/T95m/COJ4HuxHYuFNkVbrWyUSCcHc3V155ZVX2lwvDIgP2JKdleBrY4mJRknCLIsFAAJfLRSIeR7SshC+k6VRtTQ21NTXMnTMHRVUJW54Kp0+f5sCBA0iyTJsVVWhvb5+QtKvX4yFqlV+rqmp+J/a1tyoWRHC8T8AkB9u2bWNocJA1113neCY4pMKaG7yXIgefbHg8HqLRqClEsS92Rs2uACxdupRoLMbGjRu54YYb8JUIhasWqxesOthqi5/ywakxtkJ29fX19Pb0MDw8TG1tbdUMl8YMq+xKtwZ2TdMQMVXRhmE4JZGKqmblTs23jpAFl8tVFtlKnd1J/2vfJH12Z/7T8dTguep3ERc+hKumfvzEwLq+R44eZc/u3XRMmsTyq66qnBiWSi1kRA5q//7vETImC93nY/j3f7/iU58oJNevzyIH8sAAnu3bSeXYk1cCx13vIsHZs2cRBYHJVSJkhq47E9koMmBFNW3CLNsEQJJIK4o5zljPjmEYF/6Zz4BLlpkyeTKTJ08Gw6B/YIBz587R3d3Nzp07nTGrrbWV9vZ2Ghobxx1VMAzD7LdgRYdTlh08WBE6MBeCouhEeWVZ5tChQ5w9c4YVV19NQ0ND5g6z0iGXShk/4XC73QhWnbDjmpdj5iFJEqtWrmTDW2+xceNG1q5bV3Q1a0cN3G63sz+dCbRttcSImVpcn8+Hx+tFSyTo7+93BEQXC1LJJK4M46TMUip7YFSsn1lkIZEwc4JWCsIly1kTsDp8jsENPyS295n8BxZEgks+R/3ar5ASzdLPlKKM2wvfAHbv3s2RI0eYM2cOl19++YSEc22S6Tl0iMCLL2b9LfqlL6GX0jWcR6gzZqDMnYvr0CHnNe+rr46LHFxsPRVOnz5NS2vrmO8fwzAcEpC5qLAbvtldVm1CIEnSqLC4YLuy6jppTTP9RXJsfy8W2AuYxsZGamtrmTdvHmlFoTscJhQKceLECQ4eOoTb5TJ1CtZ/Y8nvi5KEoet4PR5n8WFHD4ARh9iMqGV3Tw/79+1j/oIFTMohfI6BEqau6mL8fquBT+anGgPsksakZTMqSVJety+v18uqVat45+232bp1KytXrsw7+Gc+4J6MSEQpK+HxwNB1dMsHPBONDQ2kLN+DeDxe2BjpPEHIcCZLplIF+8rbA6EX8zuzB07FEl0Zuu54RwiY4T7ZUEjt/H/EPvi/GGoy736901fTcNNf424zxaVuSyyZTqcxxpGb1TSNLVu2cO7cOa5YsoRZM2eOaT8w0hSmUNjbvoeacpor6TU1DP/O74z5uBOFxPr1WeTAs3UrYn8/epnpuYmCbXE+HgIXi0bp7+9n2VVXlf2ezPvZiQxk6JwMw0C2JnabFBTs0GlBtJwSNcNASaUwDOPice4rQObs796OcEyZMoUpU6agGwaDg4OmAVMoxOkzZwBoqK83KyDa22moLx3pMwzDKaUURXFU9MBO39mdeQ3DIBKN8uHOnUyZOpW5c+eO2qdo+RvAJ1eMCJfIQRY8Hg/JeBxFVbEveb5br76ujuUrVrBp40b27t3LokWLRm0zKmqQsb+JWu/Yq2spJ4wou1wEa2oYGh6mf2AAr9d7wRvf2OZQqWSyrLCcnVKQrVJQwzDMsKtFFBQljbr/RYY3/z1GLJx3H3LDdFNXMOemrEFFlmUkQUAXBBRFySp3KhepVIqNGzcyMDjIqlWrquKr74Q888AAfHv2EHz77azXI7/92xgXoDKlFJLXXUfwJz9BtJqNCZqG7403iD344Jj2V02CPd64zpkzZxBFkY4ibZANw+rlYQsIrZLDzL+LomhGwCxCkM8GuRhs8qCk06bxmhVZuyhQ4HoVmtxFQaCxoYHGhgbmz59PMpmku7ubUDjM0aNH2X/ggNksytIptLa15U2f2FbJNnKjB5nkO60oJFMpdu7cSV1dHUuXLs17fpkLxouGfE0ALpGDDNgsUFXVrJs5X7lNR3s7ixYtYs+ePdTU1DB9+nTnb3mjBjas6EE5bYwrgW6tRCB//W5dXR2xWIx0On3BShszYUcPkqnUmB4wu8zIJcuIZ3cQe/WbpM99mH9jdxDPVb+He/Hn0NxeEomEKdSyypoEQcDt8aAmEqTT6YrJwfDwMJs2bULTNNauXVu977ZI6NwwDNp/9KOs17TGRiJf+lJ1jl1lGH4/sVWrqNmwwXnN++qrxCzHxAuKjJXgWHD69GnaOzqQZdmx1NVUFc1ajWqa5jgSAk6EQBQEhwjYmoHxQMiIxrldro/dqraYJsvr9dLZ2UlnZye6YTDQ308oFCLc3c2p06cRgKamJocs1NbW5t1fbvTAjrYomoaiKOzevRtJFFm5cmXecTSXLLgvkYNPB2RZRnK5MKzVqCzLzgOXD7PnzCESjbJjxw4CgQAtLabXftJaHeVGDSYK9sBjh8XyCXhEUaSutpb+gQGGhoYueGkjmINjMpEgOMaeCurwOQbe/AHxj57Nv4Eg4l30IO4Vf4DhrgPDIK2qZsmf9R3Z6QgBqzukReica18CPT09bN68Gb/fz5o1a6o6IBeLMvk/+IDgtm1Zrw3/3u9hFPou7Xt4PI6MVgjYfiYyIxu56bd85z18ww1Z5EDu6sK9Zw/pxYsrPZnqVCpYGGs0T9d1BgcGGB4eZtasWUQsNz4yiEDm9yOKoklIbVJb5bFBFAQUO0Xhdn8syIGtPRCwvAYsfUAxiIJAU1MTTU1NLFy4kEQiQTgcJhwOc/DQIT7atw+v1+uYNLW0tmZFUDKjB3YZdTqV4qOPPiIejbJ27dq8352Rc//DpbTCpwoej4e0ZaWcKTTJFz0QgCuuuIJoJMLmzZu5/vrr8bjdKJZiuOCNIxRu51wpdGOkq6JtgFSIkNTU1BCNxUimUhdFaaMgCKTS6YpLgfR0nOFN/8Dw5n8srCuYcS0NN30dd6tpHWzneJ3/rNIwQ9cxNA3DSilolgGKx+1GEkXHNMX+L3M1YTdPamlpYcWKFbhcrixV+bhRiJgaBi05WgO1rY2o1dRo9OYZE/d47jlrJWbft7n3b6k9J2bNIjllCl4rfwxmMyZl8WLns5ZzdhPt8jnqeBn3jh0JsO+T4ydPIsoywdpaVNtnQhDM+0UUEUURyfIcKKUZGC8E6x42dP1jNWnZ5Ey0ejFUWtXl+//Z+/MwOa7zPBR/a6/qdfYFgxns4AIuALiBlACCokjKcq4dKXbixI6vY1/Lsa0othzbebL5Z99EN5F9I1/Hy1Uib4kdxzeyYkuJJZEURUokuGIhCZAAsQ/W2afX2uv8/qhzaqp7qrure7oHAFnv88wDTE91bV19znu+7/3eT9OwefNmbN68GR4hWJifxzXqq3Dx4kVwlEyEm0WJIV8bcBzOnD2L+fl5PHD//Q27afJUVB7GejaLW28k5KAOqqrC4Hn/i87qWps8rALP46F9+/D888/j5UOHcD8VJbWKGrChbS30oCZUiZVURcMVL8fVlDZmM5kbOoiwPgxxS4EI8VA5/pdYfu7fwi030BUMbEH/4/8C2o7Ha+5DWLMQhud5QS4YhKBSrcK1bRBBgE3LyQLBGl398TyPCxcu4MyZM5jatAl7du8OPutuOr41WkGpzz2H1Ntv17xW/NmfBWQ5cvK/WQr+CCEoHjwI9U/+JHhNeekl4B/+w1URj5qWukBgPMPEes3Emu2CTU6EkJo0QJgQ1N9Vdg7Xr1/H6MgINE0LyCTrkLjeYMQAQEOR73oi7iQf3o79v9N2zjzHYXh4GCMjI76/SbXq+ypcv46T776LE8ePI6VpGB4d9dN/HIeFxUVcvnIFt+3cifEmpajMGI99xwRBQL6vr+1zvFWQkIM6yLIMIghwLcsPc7Hwc5P0giLLeOSRR/Dcc8/hyNGjuOeee1pPumuMHrjN3tdkYNI0Daqmwa1WsbS01BXhXKewLAs84ol6zMuHsfjMrzXUFXBKDn37/zGy9/8oOCH+wMgme+adAPiEIZvN1kYbQpPF8RMncP3aNWzdtg2bN21CoVCAQE1VCBCsEnnq6RC01I2JYHVO69VrPk3PQ/43f7Nme2dyEpVPfjL2/m8EWIlt8UMfwvCf/3ng5sjZNtTnn4f+N/5GzfZByiL0nHuhv616xtkE06LCg5UGsrJf5idg2zY8160pA2bHZ6ZiPI0GMAJQLBRQrVSwd/fuGy5MY2W+ANZcjtstxB7b6rZjBKFTX5jwuJpKpbBlyxZs2bIFnudhnjaLuj4zg+kLF8CLIgh8n5WtTaqLuLCwkc4F2Xz+hgu7e4mEHNSB53lIigLPsuCElOut8pLZTAZ79uzBG4cP48jhw/jw/v2tSwY7rNX22CBYh6hOfVHo7+uDoeuoGobfzvQGlTYahuGr7jWtYTmZU7iCpW//W1RPfDV6JxyPzN4fRt+Bz0JIra0sThAESKIIizqpqYpSk6u0LAuvvPIKFhcXsXvPHoyOjPiiMypA9cK58NBAwoGWmVGiINCVJSMmXIhEBPegASnVvv51yKdO1Zx34TOfAW4WVXoj0GfWzWZh7tsH9bvfDf6kfeMb0L/3e2OvtqMmjKAUzfPggXoDeB5cQkBcFy57LeK9LiHwaDqIeQOwVAD7f5SO5/KVK1BVNdAa3UiYtJyX53kIdCJbL7vktYI0KXPsJnie99stj4zgbkJw4sQJnD13DhzPY9OmTU0rO6LG/7guubcqEnIQAUVR/E5ejhNbue4Rgmw2iwfuvx9vv/02nvv2t/HIww9joMUD1G74LAirRv0t5peJlTYWi0UsLS1Bu0GljaZpAoRAVZSgNzqDZ1VCugIz8v3qlv1UV3Bb185JlmVfuVynhahWq3jp0CFYprmqeVKNB4Pj1NRME6ZYhz85cYTAZoNhxODN0QkpHHVggz7necj/1m/VbG9t347q935v166/V2ApL57joD/1VA05kC5cgHj6NJyImvLgHtJ/WQQn/LoXnvRD95RpLWpEkzwPHtQwiN5n5iYqCEKgXm8FQgguXb7sN1m6watH4nkwKdFm7YNvKDloc9EThOtX7ab9yEGc93iE4M1jx3D+/HkMjYygv78fiqI0vF/MWKr++zpwE9jR9xIJOYiAqqoo87wvWKv7kjXKKTvUWSubzeIjjz2GQy+/jBdeeAEPPPBAy0ZN7ailPddtucKKMyjk83lUq1WYN7C0kVV1qKrqq5WJbwFTeft/YPnb/66JrmCr71ew/SNdHwAlSQJ03e/MRju1seZJoijiwIEDq5onMT2DIIqQ2MQV+rsXIgksrx1+jU1woKtcj5II9jkz8jjwta9BunCh5tjXfvInUaFukeHz4bASfg8rwoO/1/0NwMp7wts0AQvjBwJFrITuWaSAbWc7jp9GEgQUdu4Ev2kThIUFEDoxO889h/LExEpqgBD/HoUGejbZu+FJnx6P47hgYg+ndMKRGUYE2HUF32VCAm1J3OjF/Pw8DMNoqwlbr2CaPnkWeR68JMGiBPWWCXk3IRPBZxWDJNRXzESBtU6fm5vDrl274NHPXmwWNajzSmDRzm412Nq4cSOuXLmCxx57DM8991zTbY8fP47du3fDdV38xm/8Bn7hF36hK+cQhYQcRECSJHCCAELV62EfbgCRDzIjB5IoQlFVHNi/H4ePHMGrr76KcrmM22+7reHAw3G+IVCrB9uNYK81YGmFFvsB/JVoLpfD0uLiDSttNAwDkiQFg5h55QiWnv5VWNfejNyeV3PI7/85ZO/7+23pCtqBIAiQRTFwXlxaWsLrr7+OfD6Pffv2rWhJQhMJGzg8OqGtOm+OAxq0ig0jvDpmJIK4LhzPAwwDo7//+zXbl3buxNL+/TXdGDtCxOAcJgkAUCqVACBolBWe+IPtQqv38GDKcRxM24ZlGBAkCQLPY+nAAWj/63+tPKtHjsD5xCdAWKSOkCDczCZ8trIXgWCy50IEoF2iuEoUHCJVrDS40T4vXbrUVgO2XsFzXRiUHCiq6rdoxtqEzmtCJ6nSGJ8bRysZmu+msWkYAFQrFbx06BB0w8DDDz8MSZIwPz8PUZabOmXWPwcc0FUh4kMPPYSvfOUrOHLkSMuIz2c/+1m4rott27bhH/2jf9S1c4hCQg4aQNE0WKa5qqQRiI4esBI2NsEKoogHHngAmUwGx48fR7lcxp49e6InCI4D3yC0xtAy9dBBfi6byaBcLsMwDCwtL9eEytcDJjVAspcvY+lbn0Plna9Fb8gJyO79YeQP/PyadQVxIMkyLMfB6TNncOa99zCxcSPuu+++lYoEdq+7nRNtQCI8QpD9ylcgX79e8/q1f/gPkUqng4nZj7sgWHmHBXXh0HrwL3sPm4hD18QGYvY+FknxXHclPx8exBhZYhMs9Y5gUQzHdSFIEmRJgqwo4D70IaT+4i/As0hBpQIcOwbz4MEgqsFjJc1Scz86ULHHQUAWQimQ8MrVowO357q4cvkytmzZckOqEsIwTTPQsUii6LcbpkLWG4JOvhNxogItShxbTaoLCwt45ZVXIIgiDj76KARRRLlchiBJEOnzFV4IMjTaZzdJ4b59+/CVr3wFhUIB7733Hm67LTpN+rWvfQ3PPPMMAODzn/98R06u7SAhBw2gKAoMnodl20GrTiB6VU4AvxQOqHm4OI7DnXfeiUw2i8NvvIFKpYKHH3448kNt+uCjRysBLlTaWCohm82ua2mjWVnG8NWv4srv/XRjXcHWA76uYHh1PrpXEAUB7506helLl7Bj+/bAHrvXHTUbga9Wkf/iF2teK+/ZA/3hh9Eny92foEitlwEBYLsuOI5DKp0O3OeAeOkHAEC1CoHnoaqqr+yfmIB4551QXn892ER85hksPflk0930ihg0QvgzZ6LEmdlZWLaNycnJdT2XeniuC5N2EWTVEuwc1/s+AehYYB1v1833XW+THMb0pUs4cvgw+vr6sG/fvoAYeJ5X07OinhyEO9zWn0s+3KVxjdi3b1/w/zfeeCOSHNi2jX/yT/4JAODAgQP45DpUJ90iSan1h6qqgCDAo2VOzeA4TpD3jIoMTE1OYv/+/SgUi3juueeCEG0NmgyybKXWFA0qGFqB5c4EmltfDxDPQ/HY/4f88z+D/PRfRhIDcXAbRv7OH2Lkh/7zuhEDlht/5dVXcfnyZdx2223Yun17/Pf36Lyyf/InEObna167/lM/1btVK6usYOV7oWhG2AyKhfNjgU5W4e31OiIgvfsuhOnphruo13J0DW3ex3Pnz6O/vx+5fN6fjG8QaTQMAzwQNGcCViI2N+KMek6e6XMZdZxGr73z7rt44/XXsXHjRuzfvx+yokCnWiee4yDSCiXAj26FwdPme/XI5nJd7cR4//33B/t7PUSWw/jt3/5tvPfee+A4Dl/4whe6duxmSMhBA/A8j1QmA4IV4RxDfW7LCUUNGnkXDA0N4bGDB8HzPL797W9jdnZ21TZRQ1RLnQFFzRHbHOz6+/og8HxQ2thL6BdfxeX/9HHM/uXPQbBWkxFezaP/yV/Bhp/8Zk8Eh/UI6wV0Xcfzzz+PudlZ7HvoIUxs2ADLNOP3wejB4MgVi8h+6Us1r1X370dl9266wa1RrhZUK4RSBNYDD8Cry91qTz/dcB8sRdFttLPPSrWK2evXg5p4Fs7msb6Dqes4sGwbHlBTVcNSMuueVljLZ9POM0xWd51tpBN4/Y03cPLdd3HnnXf6TZR4HrZlwXUccPDHawKs+JswUWroWFHo62LUAPAXaPdQC/EocrCwsIBf+7VfAwD86I/+KPbu3dvV4zdCQg6aIJPNAoIQdFELI/w4OvUphQYPeyaTwaOPPor+/n68+OKLOF+nPK+PHnQUGuxgsmCljSLPY3FxsSchSXvpEq7/95/ClT/8BMxrb63egBOQe+DHsPFnv4v8Q/8HIPSubp+ZDLE8sut5KBQK+Pbzz8M0TRx49FFsmJiAQMmeTUO3rdALIpP9gz+AUCjUvLb0mc+wA3b9eL0Ce6Zq/AJEEfpHP1qznfrtbwMx73e30M6K98L58xBpa+GafWBFi8SjPcLRCQzDAAdfAC2GopU3JK2w1uhJm++t1xfUX6tpGPjOd76Dq1eu4MEHH8ROKgYnnhcs9BRV9TUkhPh9LuiCz43S09Qdu68HIlSWWjh27NgqC/Zf+ZVfwfLyMtLpND73uc91/diNkJCDJhAEATI1CGLlQgwsehDWG0gxQk0ydVPcvHkzjrzxBt5+660als/Rn3ZDqGzbTieofD4PURThOA6KxWJH+4iCZ1aw8K1/i+nfPoDyiWjBobbtUUz81NMY/Nj/CSHVH5gG9QJMhR6uLJidncULL7wAWZJw8OBB9NHVrKIoAMfBiDtZdVuguLiI7B//cc1rlaeegnnnnV09Tq8R7sdQ31/AeOKJmt/5QgHKq6+u27kBrVXuDK7n4fyFC9g0NdW08iT4LoZ/uvhssK6vBKvdRdn9Xde0whqvre0qkxAZqde8FItFfPv551GuVHBg/35smJgI/mbSVtYCz0ORZd8aO5Q6A1qTA0VRVpUydwOMHFSrVZw4cSJ4/Z133sEXqd7ol37pl7Chib1zt5GQgxbQ6INgWZYf4g+Bg08M2IohGDBafFl4nsfu3btxz7334r3Tp/HKq68G0QdmyLLegiJW2ijyPJYLhYDwdArieSge/XNc/A8fwtJ3fwvEXa0rMJRRSE/9Jsb+3p9E6wq6MKASIIgOsBa64RX39PQ0Dh06hMGBARw4cKBGfKrQcCOhBkdxjtVN5L74RfCVysr+eR7LLGqA3q9Ou4Xws1wfEnYnJmBRwSdDo9RCL3Pace7l1StXYJomNjex2W18gO6lHoLVLy0LrT0Mt2Lasw7oRrSso0+Vpk/Cz9bMzAyef/55CKKIxw4erFnhe64Liy7wVFUN3stRshCQgxZVEd0UIoYRFiWGUwu/8Au/AMdxsHHjxkCQuF5IyEELaJoGgTa0sczVE5zdoEqhFTiOw/bt2/Hwww9jZmYGLzz/PJaXl1f+3qaBSVzr5GbIZjKBL/tcnQCuHfi6gu/B7F/9PNzyam0Fr/YhffCf4d3t/xTpHR+J3Aerbe8ELOoSdiqM2uadd97BG2+8gU1TU3j44YdXGaFwPB9UbxgRn30vIVy/jsyf/mnNa5Xv+z4427at63l0A42iBgz1wkT56FHwdWWbwA1S4Idw7vx5DA0NIdthJ75upB4c24ZHFyRRlUXM6KneQKpX6MYxOrkPHu05wvM8PEJw8uRJvPTSSxgcHMSjBw5Aq7OEZ1btoihClCTfT8R1/YZeorgqctAI/T0iBzt27AjcdN+grdj/+q//Gt/4xjcAAJ/73Oda2/F3GQk5iAEtnQbgpxbC4jSO44KHqVP16vj4OB599FG4nofnvvUtvP3WW3CoYKYtdGMg4PzWpiLPQzcMLNflulvBXprG9f+P6QreXr0BJyD/0E9g02deAnf7DwDgu1s6SfzmPoGlboPNPM/D4cOHcfLkSdy1axd279nTcOJi3e1s244vTOwCcr/7u+BC6QwiSSh8+tP+/7tABNcTkXqDEMxHHgGh3zEG7dlnV23X0+ttse9CsYj5+Xls3bKlK4djTxLfppDPMAx48J/LKAfEsDvmjSq9bRednCebzBcWFvCtb30L77zzDnbu3ImH9+1bRfKZrTkHQKNpmCB9AN9ZUhAE/56x6GID9NL06qGHHgLgRw4cxwncD++//378yI/8SM+O2wgJOYgBNZMBLwgghPgmIyE4tNXvWkpb+vr68JGPfAR37NqFk++9h2eeeQYzMzMdlUmtdfiUZRn5vj6IgoClpaVVWosoeGYZC8/+X5j+7UdRbmBklNr+EUz9zHMY/h5fVxC2Tm6EuDX0YWFhq3CqbVl48cUXcSUkVmp2DNbmmQMiI0d1J9LyXONAmJ5G+stfrnmt8oM/COcmsOrtBGFToUgoCozHHqt5SX3mGSBOCe864fy5c1BUtes53+De0J9mz5BtWcGk1qwlMxcRcu86ukjU2iZ9HAfLNHHs2DE/jcDz+MhHPoI7d+1a3eeCkGCskRXFL08EfNdRjgt+B3zCwVHb/ChkstmedrxkqYW3334bv/mbv4mTJ08CAL7whS/ckIVAYoIUA5woQpFl6LoOwzCgyHLth7WGEDiDIAh+P/GxMRw9ehTfffFFbNq0CXfffXcsJywWSu/GQ5TL5YKujXPz89gwPh65SiGeh9KxP8fCt/4t3Mpc5L6koR0YeupXVqUPTNOssU5uhFYrICYujGzjWwdmn2pZFj784Q9jMGbjFFVVUa5UYFgWFNoHIgqNusu1i/xv/Ra40ADlKQoKP/3ToQPRyMGaj7Q+8FqkFQA/taD9z/8Z/C4sLEA+ehTW/fcD6H0NfbPnzHYcXJyexvZt29b8PW+EcCQBAFZN64QEqS1VUZp+b3jaXKpnd4zeqxvx/BFCcPXqVRw7dgyObeOee+7B1iapNpMSKp7jagiVR79f4fvIA36DtHUqYawHIweWZeGf/bN/BgD4gR/4AXz4wx/u6XEbISEHMcDzPNRMxs9beR7sUCvnbsLzPGQyGXz4wx/GpUuX8NZbb+H6tWu46+67sWlqal1L1wYHB2FeuwbbcbC0tLRqItUvvIL5b/wrmNePR76f1/oxcPAXkL//74OLKEs0DCN2SiHsq86a49Qo4GPcl8XFRbz88suQJAmPPvooMm3kjSVJCkKOtuNAbhQl6sIEJp4+jdTXaqMv5R/5EXijo373uvAxbrW0QpMJzdm6FfaOHZBOnw5e0775zYAc9BxNPrtLly7BdRxs7lJKoelp0H9ZlQMjCZZlBWZocov23D33OugyMYj7rdGrVRw7dgxXr1/H2Ogodu/evaItiKjuIp4XRD4VVa0hdq7r+iLy0GucIDSNVvW6j8ZDDz0UkFTbtqEoCj7/+c/39JjNkJCDmOBF0bdUNgyYpllDDliOL/x7sJqNifpGNVNTUxgZHcXbb7+NN954A9PT09izZ09bk9paIIgiBgcGsLCwgEKxCC2VQkrTYC9NY/6Zf43KO/8z+o28iPwDP4aBR38eQqox03ZdN1bpJ4DA8S3oA9DmJHz16lW88frrvn1qA/vqpsenqw7DMGAZBuRGn0EXIgf53/zNmrI3L51G6Sd/MjiPdknRzQA2SbU6X+PJJ2vIgfzaa+AWF0H6+9fFfS/qsyOE4Ny5cxgdH6+pZFkPMPEigJpJrmW0DaixwO4qeuAI2arM0/M8nD9/HsePH4cginjwgQewYWJiVfS2/rwM0wQhxC9Jr/vOu54HEna0DZOpiOdUEISuNluKQj6fx+233453330XAPCZz3zG799xg5BoDmKCkyQotASG1RnXoJ65tjlwR4ndVEXBA/ffj/3796NSreKZZ5/FqZMnI1cEvRgIUuk0Uuk0REHA3NULmHv6X+Pibx9oSAxSOx7H1E9/C8Pf82tNiQEQnzwF3QkJCdTFcUEIwZnTp/HKK69gbHwcH96/v+OID/M8sB1nVUlr6IAd7ZtBevttpGhjFYbSP/gH8NiK5RYRmNUjyh0xCsaBAyBhtz/XhfrccytNoXqIRkdYXFpCoVDAths4SOuGAUKdAZtpDQLESLF1hF6JHJuca6FQwAsvvICjR49i4+QknvjoRzGxceOqsaPeGMl13UAfFkXqXNcFR+8pIcSfCJucR69TCgwjIyMAgOHhYfzzf/7P1+WYjZBEDmJCkCS4lIFapgndMJDNZGp8zNn/GXOP+wUlhARdx6IwOjKCJz76Ubx74gROnDiBS5cuYe999wWlL2F0ezXZl8+h8uafw3r1d1AwFiO38XUF/z+kdzwW+fdIeF7L/K1HVvpFsL4VcUVWxPPw5ltv4dy5c7jttttw5513runeCNSD3XYcmJaFVISQMrzS6wT53/zNmt/dvj6UfvzHI49zK4G0qFYItkunYezfX1OpoD3zDPQf+IGeX3Oj/Z87exbpVAojo6M9PoNouK4Li5bhpVKpoHeCRxthRYG92s17RuCv8NcrVuW6Lk6ePIn33nsPqVQKjz76KAabdI2tvxesf4IsSZGGVZ7nwQPtFcLzK91MG2A9WnO//vrreOGFFwAAv/qrv4p8Pt/zYzZDQg7aACdJUBUFlmnCse1VNbGtOoc1Qqt2o4DfKfDuu+/GxslJHD5yBM8/9xy2bt+Ou3bt8ut2w+fQJVQvHML813+lua7gsX+C/H1/H5zQ3qPkEVKjFA6jk9RBGI7j4LXXXsPMzAz27NnTtdCcoiiwHQeWaUKLECau5c4rr78O7bvfrXmt9KlPgYRTGOyzZffmFkgrNHNHjILx1FM15EC8cgXS8eM9d4UMk3wG07Jw5coV3HGDHCkJgKquAxzn2yQzUy74+fFWJKGbkaZOx7ZOMDs7i6NHj6JareK222/HbS0qihiYSNIK9U9oVA3FIgcBMQih/kgCz2NweLiTS2kLv/RLvwQAuOuuu/CpT32q58drhYQctAFeVcGbJkRJgmPbQbtUYPXAEneSZmHzWNtzfovlxw4exLlz53DinXdw9epV7Ln33qasul3Yixcx9/SvofLuX0dvwIvIP/gPfF2B1tfRMSIJEfUpaKSEDkxPmkQPDMPAoUOHUC6X8cgjj2C0iys+Vl3BOnWGhWFrGjYJQf7f//ual9zhYZR/+IejN6f/3vzUoLk7YhTs22+HMzkJ8dKl4DX1G99YF3JQj4sXL4IA2LRpU0+P3QiWaQaGR1GhcQK/c2DP3RDXiRiYloXjb7+NCxcuYHBwEPsefhi5bDa2vwjT5IT7J0QR0sAAieNilaCPjI8HzZl6hS996Ut4/vnnAfgdGJvZc68XEnLQBgRBgCfLUBUFZduO9AAIfNpjPtDtChc5jgPP89i2fTvGN2zAm2++iUOvvILxsTFs3bJl1UNMPBfEMcHLrd21XKOEpe/8P1h+5T+BuNH9BLjJD0F+5LMYvO2hWIN9I3ieF4SZw50RmUq7ETj44emoAaNYLOLQoUMghODRRx/teliOCRN1Jkrt0oChfuc7UA4frnmt+NM/DRIxIdxqIqF2ogb+hhz0J59E9vd/P3hJPXQIxfooSpdRr2sghOD8uXOYmJjoSWVSK3i0SRAjBo3uHwEA1qaZpeG6HVHqNTEgBNPT03jr7bfhuS727t2LqU2bgsm+nfHRMIya/glRcF0XrMldq0mY5zhMTE62dTlxUK1WcfXqVZRKJXz1q1/Fv/k3/wYA8FM/9VN49NFHu368TpCQgzYhqCpEy4IgikHb1PpJIipEGQVCiN/nvsMvcyqVwsP79uHKlSs4dvQoZq5fx+atW3HHHXdAlmWUTz2Dma98GsQ20H/gH2Pw4Gejz8NzUTz636hfQbRtsjy8E/0f/ZcopHbCdl0UCoU1WYmyL31N2Dnme6NCnLOzs3j11VeRTqXw8COP9ExZzipWHMeB67qx+2k0BCGrtAbOxo0o/+2/3fgt9N9bKXJQ3wOgGYzHHkPmj/848HrgLAvaCy+g+r3f25NzBFbfy9nZWVQqFdy3XqWUddANA6CTlxyj5JcAwTjS1eeih1EDAmBudhbvvPsuZmZnMbFhA+65994gFcBhNWlrBtu2YVkWeI4L+idEwfE8gFYx1J9PPQaGh5satXWKP/3TP12VOnjwwQfxhS98oevH6hQJOWgTvCgCoghVUVBxHFiW1TDkFIv1dkAMmEUqayI0sXEj+vr6cOLECZw/dw4XLlzAttEU1Gf/IYhdBQAsfvvXoW3ah9SWR2r2VT1/CHPf+Fewrp+IOBLAp/ox+NgvIX/fj4ATRPDlMhYXF7G0vAxN0zr+4niUvXeqLQinFy5cuIBjx45hZHgYDz744Cr71G6C53lIkgTLsnxhIiMhHRI87emnIZ+ovfeFT38aaLZavYU0B17MMsYwSF8fzH37oL74YvCa9vTTqH784z275vqn8Ny5c8jlcpGi317Ddhw4tg1CyKoeAS1BKxX4LlQW9MqCmQC4fu0aTp46hcWFBeTzeTzy8MMYHRtbOTbaS9V5rgtd1wH4TojNxgDbNMHxPIRGKQVGsjgOG3sQNQCAI0eOAPAXG5s3b8bf/tt/G7/4i7+47uWyzZCQgw4gaRqIbfuhPmpYUc+ueY5DK/PXrnx56f9lRcGOHTuwZetWXL92Fc43PxMQA4b5b/wKJn/qG+B4AdbiBcw//WuovPv16J3zIvoe+vFVuoJMJgND11HWdczNz2Niw4a20wuEEDietybLaRZGffedd3Dy1Cls2bIFu++9t2cOdmEoigLLsmBZlh/yRYefpeuuihrYW7ag+n3f1/g9dX4aNzsCA6Q2c6j6k0/WkAPp/HmIZ8/C2b69q+fHEL6XVV3H9evXcc+99/bkWM1ACAkmOUVVG09gzRCa3Nay8mdpvm7BIwRXr1zByZMnsVwoYGhwEI986EMYGRmpKQ8mbZJfQgiquh54GrQq9zQtC/C8htuxo+b6+pDpQXtmAPi93/s9/N7v/V5P9t0tJOSgA/CSBE4QoCgKSsCqfgsMHMc1TRuslZOHmT3L34uiiI36EcyVTq3a3rx+HMuv/zHcwhUsv/KlhrqC9M4nMPTUr0AeirYlHRgchHXtGkzbxsLiIoZjiiFZDwTQ0s1WpW3N4LguDh8+jOnpadx1113YsWPHupkCSZK0klayrHi15xFIffWrkM6erXmt8HM/B7SaEG6BiAFD3DLGeti7d8MdGYEwu9LVM/X00yj2iByEceHCBXCCgMkerRqbwTBNv6yZ56F22JSspry6TtcTfydcS3OiuHA9D5emp/HeqVMolssYGRnBgQMHMETHjfpz40OLnjgwDCOwSE7Tcs9G10s8z4/KcNxqzVCd++jGW7SXSbeQkIMOIWgaZMcBx/NwXReGaSJTN6hzAFj71MiJqwtfvsBbgYqS7OVLWH76/2y4/dxf/ws0+urJI7dh6GO/ivS25oIYnufRPzCA+bk5lMplaKra0rkxTAwAuirpcJVvmiZeeeUVLC4tYd++fV1vhhMHiiyj6rowTbMzcmBZyP+H/1D70h13QH/qqdi7uBUcEt2YBkirwPPQn3iipm219p3voPTjPw7Sgxwwg0cIzp8/j6nJyTVFtjqBQ8tkCSG+j0a3Pl+aZojdiKlLOgPHdXHxwgW8d/o0KpUKxsfHcd/996/2DKiLhrVzZJtG8ABApcQAaCxaZt1VeZ5fJTQNb51OpdAfs/fK+xUJOegQoqLAqVSQSqVQKpVQqVSgaVqt8KqJzW23cnkcY/gcBwKC8jP/YlU6oWb7iK+ekBrAwEd+Cfm9Pxzbr0DTNGSyWRSLRSwsLkJRlKbai/qBqZnpUzOUy2UcevllWKaJ/fv3Y3BwEKRJe+ZegTXicl0XjuO0HTZPf/nLEC9frnmt8PM/v7qrXBRuIc0BoV4gnUSJjCeeQPrP/gwc0y1Uq1Bfegn644939RyBlVDytWvXYBhG11ozxwXBighRkqSu6GZI3f9blQED/niy1nSC7Tg4f+4cTp8+DcM0MTExgYcffhi5XK7Bia6caTvfY9dxVlIwilJjx95oPwa9x6uIAXVgBfyqtF5UKNxqSMjBGiBqGjTDQKVSgW3b0HUdmVBfei7EXuvFiV2dzOh+jbf+HPbl12K/jYBHderjGH/qn6JvYmvbk01/X1/Qa2J+YQHjIUERgGDSjiJCXgdphfmFBbzy8suQZBkHDx5ciVaEGjOtFzieh6woME0Thmki1YZwjDMM5H/3d2teM/fuhXGTlDB1C16ItLVLngDAGxqCtWdPTZmn9swzPSEHhKboTp8+jcHBQeTW2Z3OMs1ApKutNTJCBcv1YBFGEorgrdpmDcTAsiycPXsWZ86cge042DQ1hR07d7aOKmL1+NgKxPN8nQEASRRXCaOjxhye43y9ASGron1uiMSmNA1D1Mb4g4yEHKwBPF0ta6qKarUaNGQK57KCxz2ijrqbcJYuovzd34i9vZAZgfQ9v4tL13WcffUYBgYv4fbbbvMn+LhfUo7D4OAgZq5fh2EYWF5eRh9tThKkERqg3bTC5cuX8fobb2Cgvx/79u2r6ejIoXfK6mZQFQWmYcC2bd+RLeb1ZP70T2ty6QCNGsQVYAG3RtQgVKnQSZTIIwTVJ5+sIQfyO+9AuHwZbg/ywfMLC1hYWMDDDz/c9X03A/M0APxnaq2iWpbObPj3TnUIDWAYBs6cOYOz587B9Txs3bIFO7Zvj19pQUjbOgNd1/0FBs9HKvzrxwOO83vi2LYNAqyKHDgsaiCKGN+4cU0eLu8XJORgDeB5HlI6DbFUgiTLcF0X1WoVYi63siqm+btVubQuTmTE83D9L3++aTqhHm55FmNpDh/5yEcwMzuLUydP4uVDh5DP53Hb7bdj48RErAlIlmX09fVhaXk5KG+UZLnlSj6uIJEQgvdOn8aJ48excXISe/fuhRixCuXQvqHUWsG6vVm2DT2q34LnrUoTcOUysl/8Ys1rxoc+BPOhh+IfmK3ubnKCELfhUkMQAvOBB+Dl8+ALheDl1NNPR/acWCtOnTyJfD6PsboIWK+hU4tknkajuoJW4wslbGuJuFWqVZx+7z2cP38evCBg69at2L59e+xW7MGpor1IqmkYsKkHRqqJQVRAEOi4wLQJgiiu0pO4juNHFBQFo+PjbZ3/+xUJPVojBFpupMhy0ECJ5cEAoL5bIzP96eYqd/n1P0b1/KG23zf/jV8BIR5GR0dx4NFHceDAASiqitdefRVPP/MMLly4EEvElM3loKoqOI7DzOwsHNtu+R4PrQV1nufh2LFjOHH8OHbu3IkH7r8/khiA7utGWI6qquqXs1rWyr0iBLn/8B8wcd99GGOiOjowZf/ojyAsL9fso/BzP7e+J71O8DqsVKiBKK5KI2jf/jYQ4xlrB0uLi5iZncVtO3d2db+tYNs2HMcB8bwVz4y1gkUGYm3aflSnVC7j8OHD+OY3v4npS5dw2+2342NPPYVdu3a1TQz8E40/FjqOA4M602otSj3ZVXG0f4JhWQDHQanTc3iEwKUVIhMbN667EPVmRXIX1gie56Gk0zVmSBa11pUkqSa81bJ6oQOYMycx8786a+1pXj+O8tt/iey9fwsAMDg0hA8NDWF5aQknT53C4TfewPG338bExo3YtGkTBvr7G65WB/r7YZomLNvG3Pw8RkdGml9jC0Gibdt47fXXMTszgz1792LL5s0tr4dZL69nckEURUiSBM+yfO2BpkE8fz6oROArFfT/6q8i+/u/j9KP/ziyX/pSzfurjz8Oq8N6+ps7bhAyQFojaas+8QTSX/lK8DtfKEB57TWYH/rQmvYbxqmTJ5HJZLBhYqJr+2wFQkjQPVBR1Y50GVEIokoxJt1gixbbW5aFy1euYPriRSwsLEBVVezatQtbtmxZ82RKYlo+E8+DXvWjo7IktYyysHGX6RlYd0upXm9AmzQJgoDJG9RH42ZEQg66ADWXQ3HRb2csyTIc20ZV15ETxcDNsAZdjBpc/rN/AJBWdkuNUTnz7YAcMPTRvH6pVML0xYuYnp7GuXPnkMlkMDU1hampKaRDwksQAl4UMTQ0hJmZGRhUoNjM/4DlC6NQ1XW8/PLLqHTQPImjjZHWM72gqqrvmGgYUFUV4vnzq7YRL19G/6/9Ws1rhONQXEPU4GYvZQyskzs4z3BkzZ2YgLVrV42TZOqZZ7pGDorFIq5ev4577rlnXe+pQcsW+TV4GqwFhOX6WSSzjiC4rovrMzOYnp7G9WvX4BGCkZER3P/AA7752RrITI0AMWZ6sVqtBmWIaowoC8HKd8R1HDiu6+sN6u6147rwAIyNjt6QPho3KxJy0AWIkgRRVeEYBgRBgOu68FwXhmGsEssEX4MuNUhxSjNrer+6ofGqNZvNYtddd2HXrl2Ym5/H9PQ0Tp06hXfeeQeDg4PYNDWFiYkJiLIc5OsGBwcxv7CASqUCSZLQ10D13agT5XKhgEOHDoEDcODRRxu+vxE4+D7+cTu5dQOBKRIVlqVpPrQVzAcegL2GMPbNTQ1WNAedCOzqn4/qk0/WkAP56FEIs7Nwu6AqP3nqFFKahql1LF9zHAcmXcmmMpmeNEtq9Q0IWyyHI5wLCwuYvnQJly9dgmlZ6O/rw6677sLGjRu70meAeJ4fTWrjO2qaJhzXBQffgyAOieOpgy2h7wfHQRYEiHXl5qx98+Z1Ll+92ZGQgy5BTqfhGAYc24amaahWKjBME5IsQxSEmtphjuOC0qm1rlRyd/9NFA7/afONOB68kgOvZMArWf9fNYfUtkeRfzCGsIvjMDw8jOHhYezevRvXrl3D9PQ0jhw7hsNHj2J8bAxTk5MYGx9HOp2G4zhYLhSwVChAFMWa8k6GKHJw/fp1vPbaa0hnMnjkkUc6L+nqkolLO9BC0QMSkxyor72Gkb/7d1H47GdhPvhg+we9RSIHnQgS658N85FHQP7jfwRXqfh/JwTas8+i/Pf+3prOsVKp4Mrly7jr7rvXxXobWPE04KhLX7dz3HHGlHoxYrlcxqVLlzA9PY1yuQxFUbBp82ZsmppCtpE/QQcgrEopFPJvBTvUAVfTtFgRC87feUCQmE5BqosaEELguS5yfX1d7+J6qyMhB12Clk6jurQEx3WREkWIkuSnF6pVZKPqfBvUIreL8b/575HZ+VHolw5DGrkDJp8CL2eQGxyjRCALImldW2UKgoCNGzdiYmICuq7j8uXLuDQ9jZdfeQWyLGPjxo2YmppCJp1GuVTC/Pw8REFYXYeM2tr38+fP+82TRkfx0IMPrrnvgsBxgTvfekCig7xj23DCgtQWUI4cwciP/Aj0j3wEC7/xG+21JWb16jchSWDiXGAN1Qrh/SkK9EcfReqv/zp4TXv2WZR/6IfiGUc1wKlTpyDJMjZv3rxupbCWaQZN03rR8Y+h0dWwpm12SEewuLgIURSxYcMG7Nm7F0NDQz25H2Fi4L/QQpQcbqgky6v0ApHHAE0phF4zLQsEWCVGZFUPE5OTSfliHRJy0CXIsgxOluEZBjzX9bs20vp3wzQDVXsNurTCzd75cWTv/Dg8z0NheRkeAJn6DTB0O8xOPA+qomD7tm3Yvm0bSuUypqenMT09jfPnzkFLpTA0NIR8Po/ZuTmMj43VOCgSzwsaFh0/cQKn33sPW7Zswb333tudL2kXSrXahaqqqLguHLpKaQfac88h9zu/g8Iv/3L8N3FcUx/5G4lwlUu70bFG11N98skaciDMz0M5dgzm3r0dnaOu67h48SLu3LULgiDAiRnxWQsCTwNCaux+u41wU7b641+7etXXEVy/DgAYGRnBAw88gPHx8dqKny57h0R6kTTZf31DpbhEqp4Y2LYdGEwxTQErfXYdB6l0OujzkGAFCTnoEjiOg5xKwbQs2LYNVVWhaBoMXYdhGH5emg4EvRrKgy5snrcqZdFNkyDPXS2AzGYy2HXnnbjzzjsxPz8fhCinp6eRSqcxMzuLXXfcETgJMrLy2uuv48rly7j77ruxffv2rgrCGPlYr5W1LEnQeR5ch5OMMDfX9ntuhPlTHAS5bJ5v7zOlVttR73G2boW9bVtNsyrt6ac7JgenT5+GIIrYGqMSphsg8L0BQMtueyZ+Y8QgFLpfWFjApelpXL58GZZto7+vD3fffTc2btzYsPyQAxX4doNgN3hOmz254YZKKU1r+RwxcWdw3fT1QG8gScHCg6V5HdfFhtHRzkow3+dIyEEXoSgKTEnyO/UpCmRZhm1ZcF0XerWKdCazutyORQ+6MImFa5Zdz6vxBGDlTaRJl8g4iCIGNecAYHhoCMNDQ7jn3ntx9coVnDlzBhcvXMCFCxewYXwcmzZtAvE8nD13Doau48EHH+xJBzQOfurCXa/qBWp9y3UwmHqqitL//r/H2rZXZlrdRKd6g1Z19/qTT0IKtbpVXn0V/PIyvLpIWSuYponz589jx44dECVpXcpfDRpVBMe1ZbfdEQhBpVrFpUuXcInqCFKahi1bt2JqchLZuK2I6YS7ZoLQ6Dlt8HpNQ6WYOgO+PhJLx1STlosGZIwSA9u2oWgaBoeGGvaF+SAjIQddRCqVQrlchkttOmVZhqZpKJfLvjrZNKNLlkJ2pmudxHhBgON5kV+6YCXQ4YTSihjUQ+R5TE1OYnR0FFeuXMHs3ByWlpbw6iuvwPM8VCsV7Ni5E319fV259iisd/WCLMvg27xP1s6dWPz3/35NlQs3Gzo1QGr1KekHDiD7B38AjqZuONeF9txzqHzyk20d5wyNPmzdFt2WvNuwacdFjxBkepROcB0HCwsLmJmZwbVr11AoFCCIIiY2bMB9992HgcHBzrRH9LvZaYSq2Xc7ao+rGirFmLgj904XQ5ZtgxBSozcghMCybWy77Tak0+mbviz4RiAhB10Ez/PIZDIoOg50mkrgBQGKosAwzSC9EPkgshXTGicxFploxvQ7+aKvJXStyDLGxsYgiCJGhochSRJefvllSJKEU6dOBQY0wyMjGBkZwfDQUNeFWusWfuc4SG0MNKUf/mEUfvmXO2tDTNNIQfqkF6A18Ox5inucTiMHrfZO0mkYH/4wtG99K3hNe+YZVD7xidgRMdu2cfbsWWzZsmWlAU8Pnw1GhAG/d0I3Oi7SHWO5UMDs7CxmZ2cxPz8Pz3Uhqyr6+/owNTWFzVu2QBSEG5N6oiv3phNv3Xl51IKeABDp2BnrUIgmCLZt+2kqnvfvOz2ebdsYGhlBJpNp2Rjqg4qEHHQZ6XQalUoFruf5kQJVhawosKgopkrTC70ajIKcWjNyALQnNgopzztFStPQl89juVCA5TiQFQVbaIOW+YUFf4CbmcG5c+fAAejv7/eJwvAwhoaG1la9QElXT4fHELGLM/S7fX1Y/NznYHz0o2s/NBpPqsTz4NHPzwv/n90PmtIiod8Dr/tQzrpcLoPAL3ljg33gxEcJChf6v67rfl06x4Gnwkme6g/4JjoEjwpVm0F/4okaciBeuQL5nXdg7doV427BbxDkutixfXvwWq9WjgRAlbr68W2I6qJ3RlCpVDA3O4uZ2VnMzc3BsiwIgoDhoSHs2rULIyMjvjC2WgXHcV0jBuzz9WKmJetLFhtuF/q/57qoVCq+0ZEgIBXDz4AZOTU6Z6Y3UGQ52I5Q07axDRuQzWaTqEEDJOSgy+A4DtlsFsuuG3Rp5HkeqVQKpVIJtm3DMs3Gq4c1Rg8YOYgzIMS1Gu6KIAlAPpeD4zgolUrgOA66rkOSJIyPjQXtnnXD8FdBc3O4OD2NU++9B57nMTg4iJHhYYyOjqKvr6+jXDYPX4vRk8EgfL9bpBWMffuw+PnPw+20wU/oWJ7nwXFduNSf36Vi1IAIhELCNZEpdg9CpIndlYAYsO3DBCB8GvD9BsKEgq3gLNsG8Tw4tg095PERHIuShHriwHpkNPuMrDvugDMxAfHKleA17ZlnYpEDx3Fw5vRpbNq0KZbL3lrBRHWEEL93QpvPnmkYmJufx9zMDGZmZ1Glk/7AwAC2bt2KkZER9Pf313wfLMtamcxJ5y2YoxCnOmbVs9Z8Y4DjVhGDOKmXZsQA8J+1wN8gtLiwHQdT1Pa559qPWxgJOegBAp2B58G0LL9BCA2R6YaBarWKXDbbvD67Q4EiG1RbTegcfPtertmKmjRvu9wJ+vv74bguZElCqVSCZds1La41VcWmqSlsmpoCIQSlchlzs7OYnZvDqVOncOLECUiyjJHhYYyMjmJkZASZmDlDjuPWRX8gTk9Hvk4EAYXPfAalT30KaNN61qNmLa7rQjcMWJYF23EgiaKfRmLHCE/EoWdIYBNweCIGalb9QbULVlaKQG1KJpPJIJ/LrVjusmP5BwwiECzPq6pqEKXyPM+vpKHbetS2NrhG9johEHkevChC4HkIggBBEFYmQI6D/uSTyP7hHwbvVV96CcWf/EmQCMOtMC5cuADLsiIbLDUKTXcK23ECP/90Oh1LVOc4Dhbm5zE3N4eZmRkUCgWAEGTzeYyPj2OERdKapCYIIf53G9130Wy1oGAVA7GjFYwYhKyR42oy+BaRCce2YVF/A2aZTAhBvr8fqXQauVwuiRo0QUIOegCO45DL5bC4uAjTdaHQPgLMg9+xbZQrFWQaKYZDq7p2CQLH87Fz0K3SC2yw7iZ4jvM1BYoC07Z9D4TR0ciOihzHIZfNIpfNYtu2bfAIwdLSEmZnZzE3O4tjx4753exSKYyMjmKUpiFahW7jRkw6BU/7bIThTExg4QtfgLV7d8v3h6MBrufBc93AOhbwV4aO6/ohY6xM/DzHgaerbiFGCL8TsH22On9G+KLEXh5NcRBCaiMdnue3zqWleI7jwMUK8eHoqlLkeTgf+hAy//k/g6NRGs40ob3wAqof/3jT83rvvfcwOTnZ8xUjIQR6tQpCQ9oNJ3PP85/puTnMzsxgfmEBxPOgaBpGR0awfccOjAwNtRXlIIQAnge+Rwr8ZtULbREDShAr1WrQayWTTsciBswBsRnK1SoIIZBlGTKNHHA0nSBJUk8NqN4PSMhBj6CqKmRZ9i11HQeaLIPjOKTTaRSLRZiWBaFahdZokOqwgkEQBIDj2jJ04Wn4MQzmcNcLXs1zHNKZDKrz83BdF7NzcxgdHW2pbOc5DoMDAxgcGMAdt98Ox3EwPz/v6xXm5nD+/HlwHId8LofR0VEMj4xgoL+/RtTEVsfdNkcK373KD/0Q1GefDe5d+d57MffFL0IcGIh8r0cIHMfx3RVpg5j68D1oDlcQBCiSBInaUqu0/jusEbjRCLoxNiAmPCUzwIo+I9A8YIU8uDRS4rouXJrr9jwPtufBUlWU9+5F9vXXg/1qzzyDyvd8T8Pvy8WLF2EYBm677bbIv3frWSfwbZkJsNq8x/NQKpUwNz+P2ZkZzM3Pw7ZtiKKI4cFB3HPPPRgeHkYmk+mI1BEW7etR9Q89SOSYwY4fF67ndU4M4uy7XAY4Dmk6xhIAG8bHg9RvEjVojoQc9BDZbBYLCwswCQmiB6zXQLFY9POHNKIQCa59i2W2YmSDa9SKPAo1X/YeEgMGmQqEBI6DaVlYaNHFMQqiKGJsbAxjNHdvGAbm5uYwOzeHS5cu4dR774HjOGhUDJnL5/1/czlkaWi8FzAPHsTi7/0e0v/1v6K0bx9mfuAHwIkimEN9QAbojxsicuyMBEEIQuq8IEAUhJqB03aclrn5GwWXdWNsRxcSylEz8hAWobLoAiMLnueh+NhjNeRAOnsW5ttvw92+HaIgQBTF4PknhOD0e+9hAxWh9RIm1RlYtg3PcXD9+nUUCwUsLy2hWCoFJk8DAwPYsX07hqluYK2fZbCQYOSsGxfTBOEIQrvVQIRO3owYpGOmEljUr+m1cRwqlYpvNhUaX/sGB6Gl05BlOYkaxEBCDnoIRVF8YyTThAmABQZlRYGWSqGq66iUyxA4blVDkABtChSZQtmioem45ACgBIEK2XoNWZZhOw6GhoYwNz+PSqUCUZLQv4bmJ6qqYnJyEpOTkyDEN4FZXl5GoVBAoVDA9MWLOEXrp3lBQC6bRZ6Shjz96ZZrnfHEEzCeeML3higUYJsmSkAQLq8X/7HJTJSkVUQgFkLiwxsNEoocxEWrVA8TKtY8z488And4uMZZMv/885jbvBmO48AzDAgcB1EUMXP9OsqVCh7opMFVC7BqjkKhgKWlJSwtLqJULgc2yTzP+89YXx+mNm1CPpdDX39/1xsu8TwPQtM0BL2rwGCo0Zy0SQzKlQrsEDFop/1zK2LguS7K1SrARKAAZFXFwOAgACDXxUZS72ck5KDHyGazME0ThuNAUVXwdOBUNQ2O68KyLJTKZWR5vmsuXaIowqIhaqXNyY7QkHuvpxhJkmBbFlKpVFDiuFwoBOHytYLjOGTSaWTSaWycmAhet2wbheVlFItFv3Pk0hKmL14MmjRpmoZ8Po8+2qUtl8shm8l0ZFrjOA5sy4JpWb7PhWUFgxVPJy3WsGmtpjg3AylgcKkOoJ3IQUd0VBCgP/EEMv/1vwYv5V9+GaUf+zHYouhXcMD/zN87fRoDg4MQJQmmZfkeJB3cM9u2fbK5vIxCsRg8Sy41HlNUFel0GhMbNmBgcBD5fL7jFEE74LBCyoJW2etwTHa8uMdixMClY0xsYtDqGKxcmRDfidJxwHFcUCEyPjEBjuOCdG+C1kjIQY/BXBJ1XYfueUjTh5j5hRPPg+04KJdKyGaz0cIl9qWIWWMsiiI4jqsJV8dGuPSt/XfHhizLgfAun8/7JY7lMubm5/3Szx6VmcmSFLSfBvxJyfM8lMtlLBcKKNJB/+LFi6jqeuCwmM3n0R9KTeTz+cgOcR4lfKZlwXNdEEoCOFpvLYoiUjHtYFui7lm4WfoseKH0QBwQdG7ipD/+ONJ/9md+SSUAvlJB/o03YDz+uC94dF2cO3cOFV3HnXfeGTQ+0qtViLIMmeo36iceQgjKlYo/+VPiWigUoFPPAo7nkc/lkOvrw+TkJPL5PARRDASg60EIGFgaMRyNImgvctPhgYMOqHGijcTzUGZVCRyHVMwKDv9QzYlB+Pkp05SCqmngeR4jo6MQaJSm1yml9xMScrAOyGazMGj5mZpKQaCsluN5pNNplMpluK6LcrmMbC7nr7iivgzhuvMmEEURXEgJHpvVY2WQ7oZbYzMw9m5bFkRNQ39/P1zXRVXXMTs7i5GRkZ4RhDA4+JNYNpv1B45QjwfTNIMIQ5FGGS5evBgYCKVTqSC6oNByVUkUIStKMFBLkgQplYKqabAMI3Brez+DRQ7ikoO1VI94IyOw9u6Fcvhw8Jr2zDMwHn88eO5Pnz6NKdpm3LJt2JYFB75Nb7FahWlZcBwHlXIZpVIJxWIRhUJhJRqgaejL5TC5cSPyfX3I53L+5B+6PpM6oBIgdmltt7DKOIqedy/PIPBQiDlOkLD4EH6L+9jHan4iNcTAMk2/fJHjkNY0KJqG/MAAXNeFpmlJD4U2kJCDdYAoikin0yiXyyjpOnKKAp6KkggNf5fKZbh0BZvJZKK1AjErGDiOg0DDqo7jxP5CrGL/PSQI7Jxs24ZGGT7TH+i6jpm5OYwMDiLdhRRDKzSanBRFqYkyAP4gV6L55cXFRSwtL+PcuXN+jjO0P0VRoKoq0qkUNE2Dqqp+vTVtzJXP54MIT7to+ol06I/RLRCqlAfaixysBfoTT9SQA/nECfCXL6MyOIh33nkHtm0jnU7jnXfe8aMGuo5qteobFNHKCA6A7XnIpNPI53LYsGED+vr6kOvra5macxzHJwaEBM/yeqA+YsDAPCh6RVBYdUyw/xbjBCMGLiUGaWpXHCfa0OwKohwbS9TBU6E21aMbNvidHXk+0Rq0iYQcrBOy2Sxs24ZpmiiZJrKSBB7UiEgQkMlkUC6V4DgOqtUqUuk0BI5bPdDHrGAQRBFcG+SAANHlfWwg6DJJYJEDy7aD13iex/DQEBYWFlCpVjG7sIBhoCsahFaIHZLn/J7w2WwWqUwGG6n40aVugI7rwqQTEJuI5hcWoOu633gntCtJEKBR8qCpKlRN8//Pfk+loMpye5GGGJa1vQSLGvinEpMctHm+Dm3Mw+6v3teHfek05EoFzA768u/8Dl554IFgojx58iQ0TUMqlYKqqsjn80hpGlS6mhRF0fdeCKXwRFluqZvwPC+wR5ZkeV3z2VHaIBbVatXdsqPj0XLaqE+rkfdBPTFIpdPgeR5OjOZkPHyPi0ZX4dURYdd1fREogLSmoW9gIBB99vf3tyXOTpCQg3UDx3Ho7+/H/Py8H8K0LKRFMVCrC4LgRxcqFViWBZ7mzBpGENgKrcEAIFLnPDfGl9AwTfzjf/yPUSwWMTw8jF//9V+vOS5zUbRsG//X5z6H02fOQBJF/PIv/zLuuP32ju4Ha0Bl07asDMwqGQAq1Srm5udBCEG2x81RWhpC0V4ZhmkGHhDgeSiqGqwsW62EWNe8arUKx3VBqNuhrusolcuYnZuDbhiBiyBzKVRTKWiqGkxmHC3zS2man84IuQiy8kYh5C64XitZINRwqcFATICackSX+jq4ET+MKBuGAUPXUdV1v2eD46y4PxICSZIwuGMH7jhyJPCxuPPCBZz56EexXKngscceixWBsqmI16Tuky79ngqSBEWWI0m2ruvBuaxXeRzXzKcj9Ax2kxx4hEBoQAz8w0Z4HkQQA0EQYpFXvoXuKWoPZeprIEkStEwG+f5+AEA+n4/dwCnBChJysI7geR4DAwM+QfA8mI4DRRSD1aQoSdA0zR8QTRO8IPh+AIKw+kvSSndAzZBsqthutrWiKPi+7/s+/Mmf/Anm5ubw3e9+FwcPHqw9FiH43d/5HZw+cwY8x+Gnf+ZnOiYGgL/KAiFBz/YwGEHgeB7lchnzi4sghPiW0z1EFEFgqxGT2rDC8/wGOuk05FCHzTj9JwRRRP/AAGRZBvE85PL5VStTQohf3UAnw2B1TP8tFAqo6Hqt2JTjgsgOqzZhzwdHCLiQZ0LUj0i9FMI2xfV/Yy10L126hOszM4GVM5vYScjIyaJ9Hgh1wHMoEXAcBy41eAqsu0Mr3cDsCSuDP0vJaJqG4eHh4HdGlFRVhSgIEHbvBvczPxPcErlUQubYMUz8zb8ZixiwCV6UJIiSBJf2RrEsy9fCVCr+91FRgs/dNE2/ZJIQZNPpjqofOkGz5lQ1mqEuohkxYMcLwvz0PCq6HlQlBMQArdNITR1eGxB44nmB8ZSqqhgaHoZAmzetR2ry/YiEHKwzRFFEX18fFhcXYXgeQMuqGBRFAfG8YDLgOb8FMIHPpmtIQZMIgiAI4DkOLjWOEZuF1AjB448/jq9//etYWFjAV7/6Vezfv78mevAn/+W/4MiRI4Dn4Yd/9Efx0AMPrO0+UO/8cFohDJ7nMcQiCOUyFpaWQDwP+TX4IMQBu4s2zSOblhU4KoqiCFXTIEa03Y4rzJLo5GPbNnRdX5Uy4TgOqqJAVRT09fVF7qNcLsOwLKg0ahCsxEMTtsN+pxbM9W6DruPUmArZphm81wttE7zXtuERgtNnzkAQRYh1Bk2CIPipLJ737YJFEbIsBwRDqCMgjIQwT4eo1wUa/YoDd+NGWHfcAfndd4PX7j53DvzmzTH3UAs2saiKElSfsDI50zAgiCJs0wzK5dYjZM0iBs3uSZBW6Fa0iOmcYmzK9CYEfidKRgTTIWIQbNcAfIPJPyAFDd5boVbJPM+jf2AA6UwGsiz3fLx4PyMhBzcAqqoil8uhWCzCcBzwjhOU2gC+B4LrebAsC5VqFVk6aLqEgEfdqqDJCkEURT8X7jhNyYFLJ75PfOIT+NKXvoS5uTl854UX8NhHPgIA+Ppf/zWefuYZAMDf+N/+N3zsYx/rSl5bppNkMwwNDoLnOJRKJSwWCiAA+nr4hfdoKNQ0zaB6QxJFqOl0U9OadvLmmqb5K2waxm7bDIfznd8kUYwUy62lNLARFhYX8eyzz+Lgo482JC2AX0bm2DZSqVTL/HsQNejSOepPPVVDDjZMT2Nufh5eSFDaLnhBgKppvpkZ7ajqeR4Ky8sg8FuRr4fOIOxj0AzdjBy0+9lwHAfwPCrlcmABXk8MgOj0G2FpiwbPbavnuUSjBpqqYnxiAoIgdMV18oOM93dN1U2MTCYDTdMAUURZ130nvRBSqRQkUQzc1zwWjiURnRLZF6DudfalbOZ3EH7HgQMHAivir37ta3BdF6+++ir+7L/9NwDAww8/jL/7Qz8UHHOt048sy7BoS9VmGBgY8NX9PB8YF3UbhBDouo7lQgG2bYNwHCRZRo6WrbWcwNsYhASWLuI4VGm4vqNz7sK5xEXckHlb7oi0SVi3YDzyCLxQ+StHCLRnn+3Kvjmeh6ooyGYyQTkqu8IynQx7iXaaGXFYO+HqRNDoeR6qlQps6gCaSqViRVSI50UTAzrGtLpyXdfh0ZTVps2bIYoiBgYGEgHiGpGQgxuIvr4+X5gnSShXKjVfDtakSRCEwKQnWDlQc5eaL1NEZQMzd2nWhCmcK+c4Dn/rB34AADA/P48/+qM/whe/+EUQQnDnHXfgU5/6VM0xuDUSBGahHAd9tL5c5HkUikUsdpEgWLaNYrEInZa28TyPfDaLbMSqp1tgXfaYB39HaDRhUEHjeoNVbQDx3BG7TmFUFTN79tS8lHr2WaBbEzchqOq6Lx5OpdA3MABeEOARgkqphKqud916nKPHjX+KXShj7MBMy3UcnyQ5DgSOQyqViiTU9ftt2OK5jXNg5CydzWJgaCgYVxOsDQk5uIFgzVdEVYUHv5Nbzd9ppzKe5/0uYyECwUrvaoRw9boDaobEutzVIyr8vO/BBzE1NQUAeP7552HbNiYnJ/FzP//zkV/2tQxCsiy3TCuE0dfXF4j4isUi5iNaI7cDl3oWlMtl2HRCTafTyGazASngEW/V1m6pJ8/zQUfFQPEeFy3uORez3LXbCHLCMVed3U592I6DV0dHa14T5uYgv/lmV/YfrpRIp9NIaRry2awvUBQEvxV7qeSb8HTh2jpxvAzGhw41B4F2po3vtWVZ/uLG84Ky7EaRtvDVMGJQdwJtpcUs0/Q/F9vGlq1bVyKyCdaMhBzcYLDcmKCqcCwrsGdl4OmXjaOVB9W6vwOojSKEIggcx0GQJJAW0YMacBwee+yx4Nd8Po9f/MVfbP6F6zCCIMVMK4TRl8/794vmNucXFto+LqErwEKh4HfOIwSKLCOfy63O4dP8fkt0QJJURfHrxmmFQjdxI3KtLGrALISbgVUmdBMnT57EzOAgzC1bal5PPf30mvdtmCZM2w6cMdnkx/E8UqkUMul0UCGkG4avvejEvpwirsagHmvqq8C+x3FTSFSgqdMmR6zjrNBMmxO6Jj4s4qXjVrtkqESjFfn+fmzYsCExOuoiEnJwE0CWZfQNDoKTZRimuWrCFAQhsGS1IghETRQh/GXDit9B3JzozMwMvvKVrwS/m6YZSzDXyWAkS1JHA2gul8PAwAB4nkelUsHs3FzscK7jOL4Q1DDgUn+JXDaLFF3FN0JPplqOg0Zr4/U2QtLBudxAs6MokBA5aIkuk5dKtYozZ85g544dMJ58suZvymuvgVte7njftmUF5jqaqkb21BBFEZlMBilVDb6P1XK57agQq+3vOPJAozft3t1O9QUmvS+KqgYGR81PL+L86P3qxAxruVCASwh27NzZVCiboH0k5OAmQSqVQqa/HzyAaqWyiiAwDwTAX8VU6jQKDK7n+YM0q9tuYoZU//5SqYTP/7t/h1KphAw1HTIMA1/72tfiXUSbA4wsSTDbjBwwZLNZDA4MQOB56Ibhq9JbDC6maaJYKsGm9yKTSiHbyKq6Dr0K1TMfC3BcMAHFRdO687WdVkdopxtjtx03jx8/DkVRfHLw6KPwQjlnznGgffvbTd/f6Gwcx0GFikYVWW5upsNxkBUF+WwWiiQBggDbcVCpVGL5YBBCGpfyxUS77ZpZpKCdI7qOsxIZ4Tho1HUyfMxIL4L6qAbn28d3cr3E8zA3Nwd4Hvr7+7F9x451Nfv6ICC5mzcR8v39kNNpgONQoc5wYSiKglQqBcDP81XCIkUKJhJ0KUOXWOSAmiGFEf5SmqaJ3/j1X8fs3BxUVcU//af/FPfddx8A4Nlnn41fIdAGQUil0zBNsy3dQRiZTAYDg4MQaN5+rkEEgRCCSqXiN34hvqNeNpttuwStGyrw1Tv16+Q5+J9BrAhPg+qU1ZutL0UIQtoxBuluUoOFxUVcuXIFd95xBwRRBMlkYH74wzXbpJ55pun9irpTruv6Hf7gi3u1mA6IHM9DS6WQod9Vj5DWaYYuEAOALg4QL3rTDolgsG3b1xe4bqCJivoeNSKI7HhB2qSD6/VcF8vLy/74x/PYc9997ZcDJ2iJhBzcROA4DoPj41BoVz+9Wl0VIVAUJUgx2LTNcX0ZJOB/+VzqlMdTy9Lw4ESwEgb2PA+/9Vu/hXPnz4PneXzmH/0jbNq0CX/rb/0t/zi2jb/8H/+j3YtpuQnLD5ZKpfb2HUImncbQ0BBEGkGoTzG4nodiqQTTsuB6HjRVDUSebYNGD6KubC3TMHPl42JGD+Iea93JQRuRg26lRAiAt95+G7lcDlObNgWvV594omY78fJlSCEPhKj91PxOBcAcfLfRdCrVdmRMlCTkMhmI9H5UKpXISBmrLlgrMfBoapHQiptm6IQYGIaBKu1fwdIoDfUFESZh4SiFF7FNHLDutUvLy+AEAZs3b8bGUCfVBN1DQg5uMgiiiPzQEDS6mrRZhCA0cEi08Q9P3fFYy+d6sAGH53kQjoNbHz2gX84/+IM/wFtvvQUA+Imf+Ancfc89AIDJyUncf//9AIDnX3gBs7Oz8S4iHF5sslk2kwEHoLgGcgD4KZmh4WGIPA/TMDAzMwOPEFi2jUKh4PcxoMdbs/99RMkogJWGPR2CpYxs2+44klIPFmJeLwRljK3SNF0kLVeuXMHS4iLuvvvumsnO3rULzvh4zbZaM2FieGKmkSaPruY7IQYMTFAsSxI4+nxWaQTLP1R3IgZAqK8FzzclB+16GHiUKDF9gawoLfUF4b0HxIeQjkSWDLbjoFqpoFgu+wZU6TT20vEpQfeRkIObEFIqBS2VQiqTAWiEoFwXIRAEwc+X025opVJpVRMjBlGSAEJqVy10MPofX/kKXnjhBQDAJz/xCRw4cKDmvZ/4xCcCz/S/+PKX27sQOgg1GvZEUUQ6k0GpWGxvvxFIaRpGRkYg8Dws28b09DQKhYI/wPM8stls12qfOUSYAq1xcBeobz9H1e6tjg/E86hfr9iBF9K5tKxUWMMEEYbreTj+9tsYHR3FyMhI7R85DtU6YaL60kvgyuXmOyUElWoVDmsvnE6v3YqY1v2nVBWgHQmZJ0A3IgYMnusCVGTb+FS4trwYXNdFhbpeAvCbgLUQ7wKrXRA9Zt7WIcmyTBM6jbzYpglZUbBz586kb0IPkZCDmxC8IECitqwsBO7YNsp1EQJeEPxJjzopMtvfesi09azjurAtCx4hcFwXL7zwAr5C0wUHDhzAJz75yVXvnZycxAO0j8Irr7yCS5cutX09zQaSfD6PYhfIAeDbUo+MjMCxbVQqFcwtLIDnuIBEdRvhFV83QviaqgKc3w/D7FL0YL1SC2ExYrNjdtPb4Ny5c6jqOu6+++7Iv+sf+QhIaKLkTRPqd7/bdJ+6rgfGXKl0umF3yU4gU4dFRiyrayx3rEczvQFLI7STTrDpmOMxfUEmE2nX3QjsOGv9zA3DgG4Yfs8GXYesqshls7j9jjvWtN8EzZGQg5sUYirlN6CRJD+3JwhwPQ/lUqlmQOF4PmgyQghBtVqNLHVkOW3WBfHNN9/Ef/xP/wmu5+Geu+/GT/zETzQ8l09+8pPg6Yrjy//9v3d2QayOue7lbDbbNXIA+JMUS7kwu+W1WBS3Qs1AvMZBkON5X/WNFqWNbNBd09G6i1atmhm61RDIMAycfPddbNmyBdkG3TpJfz/MBx+sea1RaoHArwKybBsgpMbLoJsQKKEXRdHvQ1CpxGqrHgce9TuJMhbi0N7zEtYXCK30BSEEWqYQcV5l1hYThBDo1Sos0wQHP3ogiiJ4nscdd97pR0QT9AyJxPMmBc/zUPv6oC8tBQMKUzyXy2W/4QstqwqslqkozzBNeIQglUoF7F1RlKAFrZZKYffu3fiT//Jfgi9zs0F7YmICf/yf/3NXritYvdCBI5fLBc5zax2Mq7TCQxQETE5OolgswrQszM3Pw8rl0N+DOmgOoVBtF1bpqqIEzX10Xffz3RHHBBCLjMRNQawV4Xx3M3QjckAAHD12zJ8kWqweq088AfXll4Pf5bNnIZ49C2fbtprtrLCXgab1zn6XTtSZVMr/PsP3aEjH7EPQDCxyEG6NzNIWcaMF7LljaQRJUaDVlSlGgX2qxPNWXBbXAOJ5qNIojgCAF0XYtLnSps2bsanO6CpB95FEDm5iCJIEha2KaHhckiRfSV2tBgIhBlXTkKaEwLKsmn4MoigGk69F2xADNH/O8yDUYnk9VqPhYYZVLKw1elDVdT/0SIiv10ilMDo66ju2cRyKhQJmZme7tkqrR9fC9xyHFM2jrqXMs3aXvU8tBGmFVhNcF8jBlStXcO3qVdy7e3dz3wEA1p49cIeGal7TaIdRBsdxoFer4ACorbwMOgWboEMmZelUyq9koKXLnayuGaIqFYKywZif/yp9gaa1NAcDNS9iZYlR27bbb8JzXZSrVTiO4y+SUimUy2WA45DP57G7rn9Ggt4gIQc3OSRNg8wiAByHTDodDF5VXUeV9jFnkGmpI8/5lsmlUikYuBVFATgu0qqX7T8gCb1236PH60bFgq7rMHQdxPOg0fa6/iE4DA4O+nbLggDTMHD9+vWOjZeaoZviP1EUISsKeJ5HNcph7yZMK8RquNQFkmJaFo4dO4bxDRswMTHR+g2CAP3xx2te0p5/Hhx9BljDIHCc35q7F778hAARzYU4nkc6nQ4IQjmmWVIUwpGbTiIQ9fqCdCbTnCTRa2lq18wqFDoQQLqu62uqUino1Spc14Uoitj3oQ8lngbrhIQc3AKQMxmITAhEV5apVCqoQKjWeSGIkoRMNguBNmxiOgWZ6g5cx4ls48xC5MBKnrDXJEGUpDVVLBiGAV3XfQ8DTYMSUaqYzWYxPDwMURThui6uz8ygEtGjYq3opouipqpB34WG1Qs3iX1ysHJE87RCN56lt956C8TzsGf37tjvqX70ozWlpny1CuXQIb/bKX0OBEEIDMa6jiZhdkYQBEYQOowgML2BIAht9UcA4JdX1ukLmjVOIvBJASvDbIg2KzFs20alXIZHCGRRRCaV8is7KhWA57F7796G+pIE3UdCDm4BcBwHJZ8HLwjBl01RFL8hE/yWw+EIAVArfPII8TsP2jZkWa4RJjY6HgOhJUhBx70eIJ/Po1QqtT15mJbl14w3IQYMqqpidHTUN5jiOMzNz2NpDX77UQiTqzXvi+cDvYFhmmtWtfcytcCeO65JpQLB2snB9evXcenSJdx9zz1NP+t6eKOjsOrIhPb0034XVELAM2LQ7XsUc3/MaVCg21eq1bajQkGlQhtRA9d1USmXA62FJMtIN/AvYJ9fkD5gYsMm+yeE+E6tLcAaOFXpdUuSFOillpaWAI7zdQabN8e+tgRrR0IObhHwPA+VEgQGSZaRyWbBc5xvhlQqQQ+lGVj5kSxJQakjUxLHaStbY17SQ5KQy+VQLBZ9UWTMfbuuG5jJKKoay9xIFEWMjo76pY0ch2KxiJmZma7rEDigK/dIlCRIsgye41AJpxfW2fmwFbyYKYW1nLXtODh69ChGRkawKeSEGBf1jonKiRMQrlwB4HdZbLoC7gRtivJYBIGVx7bTZ4Pj+cADJZZtMt1/UPnEcb6+ICRgDm1cExkK/t6lqhMWGTBNEwT+oidNK7VKxSIc10VfX1+iM7gBSMjBLQRBkqDUtSQVRRG5XC4oZTRM0/9S0ZUmR9MQKs0f2o4TEINmYrdAzFQ3CNSQhC4hXLHQyIGwHlVdh+u6EAQhtuc94F/XwMAABmjTJsM0u6dDCAnAeJ7vSnOhlKYFgz+bMNqpVgjQwxREHDHiWu/F8ePHYTsO9nQ4SZgPPgi37ruTf+EFf8XOQvHdQL3wsA3wgoCUpvnkPUa0iACBlsGl38lWegNW7cTEzMwGOawvYB0S2Xcd6Czy1Cw5wtJlFapz4HkemVQqEECapolSuQxFVbE76Z1wQ5CQg1sMkqJATqdrJme26mBCRJc6JjKxIsdxgYKfQY9o7BSFYEioGxyYJqEbRIHlEcul0spxmjgrspJMAB2HgzOZDEZGRiBRHcK1mRk/zNxFtBMJabYPNmDqhuE3Zurgetu1zG0HccoY13IX5ubncf78eezatatzXYAsQz94sOalvpdeAptKu0F2OaDtPHs9REmCIkngBAFVavwTeSz2WdIJvKHHAYVHSwPZZAzaHCod7kpKSKApiDpOu2jkhMkICus8K8uyH+GkuirP87C0tARRknDbnXdicHCw7WMnWDsScnALQslkIEasliVZRpZGEQDaorhYDEqTWNMmWRT9hkSFQqwVMxPaNVIkE0L8nGeHRCGbzfoVC3WixKjjOTSdQAiBqqprqg1XFAVjY2NQFQU8/EloaWmpY8V41NTbjTaykiz76QWeR7VaDQbqnleUxEQrckCAjkmS4zg4fPgwBgcHsXXr1g7P0D/HhbpOjcLyMpTXX+8OMeiiDbKqqn6aI0KMSuATxrDToccarDXoqcAqEWz6XZdkGVlmnIaQngDwIx/RF9jWNUS2bKYeCqyFNc9xyGQySKVSNSmpUrEIlxBMbNqELYmfwQ1DQg5uUai5HPiIUBtPhWyZTAY867tQLvvdHT0Pkiwj39cHRZbhUobeVo11g0GCw0o4MqhyiDlYiqKIdDod7XXASizpvnR6roIgrL2JEvxQ+MjoKHK5HASeR7FUwtzcXFd1CHyHYeYwUpoG0EZbjNB1ssdu0wlGDIEYHgcd4J1334VuGNi7d2/H+2Ctl43xcVR37Kj5W6pZM6aYCIhBF8WoLCJmmWZg5xwQg7pniX3f6jUfrCywSr/7nCAgnclA0zTf2yQkMIwCaUQUYqC+UyzrD8MifrIoBtbv4WOwdMLI2Bi2bt2apBNuIBJycIuCCRQjByRas53LZoNcomVZKNLmTIIgYGBwEKqqwrZtmIaBEq1maAV2tJaOaSzcGbMcMkcrFhoel+dhGAZs2/Y7snWx7IzjOPT399foEK512Q9hrbbBHM8jRZ3qLNp+ut2JvheNmMINl7oRJQljYXERZ86cwa4770Qmk+loH2yCZEJc82Mfq/m7fOQI+Lm5zk6whxEcURShyDJ4QYCu6z4xCB0zDNdxgqoLdj6mafrNnVjUUFWRpSWK4Qhfs+8x3yS11xQhokQ8D3q1iirrckkXLym6eKm/jqWlJfQNDWFi40YMDAx0cvQEXUJCDm5hCKIIra+vIUFgK5BMqHtjuVJBpVKBJIpI0Q5rBNSVjEYYWkUR2nVeI4TAdV2QJhMaq1hoshOY1BZaW2M6oRHCOgSP6hDKbegQmt2PYGJew0QiK0rQI8MwjI66G3Zbd9CqUqHT6hbX83Dk8GH09/Vh+/btHZ0bixgw3U0mnYa1fz+8kNERRwi0b30r+F28dg3pv/xLpP/qr8A1++xjCmfXAk1Vg/JG0zQbHo85m/I8D9dxUKlUYOh64FuQzmaDhkntWCl3+qS6rgvP84J0hkUJCtMWSLK8iqR6nof5hQVomUx8g6sEPUUSs7nFIcoy1L4+GIuLDQcPSRQhZrMwaN8Fy7Lg2DYEQYAgCJAkCYIgwDAM/2+OA412hWwFpsxuNZAErZs9Dx78VUl4kMrlcqhSy9SoUCIjBoIgtFXj3i6YDmF+bg6GaWJ+fh6WZaEvn1/zyrjGP6LDfaRSKVim6acXmnhVNAT9rLo1rbWqVOCoNXe7OHnyJMrlMj7y+OMdERrXcQJix3wEeJ4HEQToBw4g/c1vBtumvvlNmCMjSD3zDOS33gpeV15/HYv/+l9HH4BGInoGOomrqoqKrsOy7cCjox4uFQY7tu07hQLBeyVKJuMesxvXxMSPLB3C87w/njToV+F5Hubn5yGrKsYnJrB58+ZYY0+C3iKJHLwPIMkylL6+xuFNOhFrqRSy2SwEQYBHCGzHganrsCwLiqKs/M3zUKERhlhahDaV8Eyf4IX6OWSzWRDQioUIWJYFz3Wh0FUHU4b3AvU6hFKphNm5Odhd0CE0FXfGAM/zSKXTQfTAbXPi5TiuqzX9LcWIHUQNlpeXcerUKdx+xx1B74124DoOSuVycF6ZOmMf48kna7bnZ2fR93//3zXEAADkt94CVycIDD63HhKDwMocviEQ8z6wI0obPUJgWxYq5TJMmnJj5YnM8CzWMf0Dr/ncLdNEqVIJzpWJoJVmxGBxEYIkYXzjRmzZsqV3TpUJ2kJCDt4nkFUVaj7flCCAEIhUCKSpKkRBADgOlUoFpXI5cFXUaOmcZVkolUqxV6idDjDE8wI76MXFxVVhaIfaPRMg6EQJrL12vhnqdQiWZeHqlStNe0DEVqyvkSAosgxBEMDRz64T1JeskYgfDysNfVjJavA+OoG5rgvCcYFXAGERIvZvm5+RRwgOHz2KXC6HnTt3tn1dDo0YcBwHXhBWOf5x1SrEc+fgxVyZEhbFWscKkZpjcNyKq2mdBsaj1ujMWVCgacRGLodNj7nGc2bpjDLVd/CCgEwmE6QAo/bPShZ5nseGyUls2bKlY21Jgu4jSSu8jyBrml/+VChEDw5MKwBfoCTJMhzHgVUooFgo1DQukiQpaIBSrVRgWxZS1LmsIUIueKRNhb4kSRgaGsK169execuWmg5vpmnCJQSqoqwKhwfHi32k9pChnTAXFxdhWRYWFxdRrVYxODAQ2da3nek+jgVt5PtoyLhKV2iGaQYmV/UITzSEkpcgzB9XcBZ6bmr2SwgcZqfLnov6STScm4+hP3jvvfdQWF7GY4891vYEZ9u2r8znOIjUEpntQ7h2Dekvfxnqd78LPqb7oJfLAZSE9ZQU0PvX6BiKLAdRIocaf1mW5Tcco14IqqoGFUpxwaE7pMAwTTg0akEIgayqfoSvRURxeXkZHsdhIyUGnUSJEvQOCTl4n0FOpeB5HsxSqfGXk07iAs9joL8/sCI2aMtjwzShUPEQ63Nv2zaKxWJN18OGYCSBKZZjDqxj4+M4ceKE75hG+0gQz/MHRteFROuyo4abmokr1tHig+kQisUiisUiTNPElWvX0J/PI5vN1q5M21F4c1xnBIGu1BVKlnRd93UjrDwN/v3wUHfvwxN2F+CGKhWaWifXrYQb/b1YKuHdkyexY8cO9PX1tXUutm0HURSRRgwC4eziIgZ/7ufA63qD04vOtXt9fV0vU1yFulLdiJMDx/OQJQkmJQQAAvdEQnz78PrUSUsQUtOMql2ESQEDLwhByqtV6mppeRmO62Ji0yZs2rwZ+Xy+43NJ0BskaYX3IdRMBko264eCm21Iy8/6+vqCUCShbmu6rgelhayBEyEE1WoV5XK5rVx33PD5+Pg4PM/D3Px88JpJrZ5FSQrOz/VaOzN2eyjnOL+X/NjYGDRFgQBguVDAzOxsTclj28SEEri2dQAc5xsj0bB3uVKB43lwaQmp2+r+dEl4BiBoOdwxKKE6/MYbSGka7rj99rbebllWQAwkSaohBgCgvPlmQ2IAoOEk6fX19SwixXQFq6Ip4UgPS+PQqgPLsrC8vAybeQXIsl/uyHGt/QDqPQs6/LyC9EGoTFKiC4k07c3Q6lkuUPO1DZOTmJqaQn9/f0fnkqC3SMjB+xRqJgMlnQ5sVZtBFMUglSCKIlLpNHgqTNR1HeVyGZIkBVoE27ZRKhaDSENctJqQsnSAmbl+PXjNpuRACeWIg7bSwCovhVWRhS6v+CRJwujYGPqpFsG2bVy/fh1Ly8vwPK/jSbedErPQm6CIIlwqVjOaTIBRx1urMRNr+x1lxtUu3nrrLRSKRTzwwAN+qVvMUL5pmr5rJMfVdPMLw96xY0U70Aa8NqMXsRCOFESQgsCtkP7ueR502pac9R7hOM6PWFHNkCiKraMG7US0IuA0IAXZbDYQEBKgJTEolkrQdR0TU1OYnJrC0NDQGs4qQS+RkIP3MbRcDnIqFVgbR4JGDzSan2WlablsdhVJME0TkiwHUQRGHOK4CQYhXjQmCRzHYWxsDNeuXw8GSBYlaLoyogNfmCgEJi89yhVns1mMj48jRd3misUirs3MBA1t2kWsKgY6oXiuC+K68AgBJ4p+a2eaDnJiGFmFj7kWNHRGbJN4XL50CefOnsW9996LgYGB4LPjeb6pcZNpmjB0HRwAuQExAAB340Ysf/azIA0U843O1O0mOSChhkws6kZWGhwxUsDAvnOlUinoWChJEjTagVTgeTiO40fVmnw31kqNGSmohEiBHCIFvCDAdV1wPN+UGBBCUKaCxQ1TU5jYuBEjIyNrPLsEvURCDt7nSPX1QdE035ikwYDN0dWHRjvCsbbPiiyvIgmWafq+6HRCcBwHpVIpfhSBkYQGudbx8fFgheJ5nq985uK777GcPxtsA2LUA5IgiiKGh4cxODgIURDgOg6uz85icXFxTf0ZIidtz4PruoEzYlgAKMuyL9bkOJSr1VXWtY0P1iVyUP/ZhEWILVAqlXDk6FFflLZ5c/Q50tVyjc0uXU178JuRNSIGwfYf/jAW/9W/qjFAAprrYboVOeCAoHtimAhEKvhdF1VGCiyrpgohl8tBkqTgmXYcB8TzmpKDTp96x3FQKZcjSYFGSQG7Nmbu1exeVnUdxWIRGyYnsWFiAuPj4x2eWYL1QkIOPgDQ+vogaxo86lwWBR60goFGBYL2wBwXSRLYBMRW67quo8hWOTEnYg4rq0OGoaEhiIKAmZmZ4BhrcUMMpyCYtwJoXp79rFWJnk6n/ShCKgWB41CuVHD12jVU2wjz15wzQv0YPA+u48CtE8XVd8tTNc0vbwRqmjM1w1qum2lTgNWfT9yIhGPbeOWVV5BKpfxWzK3ex6pXDCN4PlVV9ftOxIB9771Y/NznaiMCzchBJ7nwutx+QFBb2Ih7VBRcpP0HCPz7mqbeJDI1KgN84ykWNeB4foUc1OsKOkANKaBpoyhSAPifc/1zGYVqtYrlQgHjk5MYHx9P3A9vESTk4AMAjuOg9fVBUtXa1XTtRsEKhfVTD6cLwiQhTUkC4E9iruvCsm24juMPcG2ShLCJkiiKGBkdxfXr1+FQvUQ3rZLD1QT1ZkxBLX8HhEEQBAwPDWFoeBiiIIB4HuZmZzE/Px/k5uMi3JfCaeHEF/bIZ4Iwh64+Y6FTYRp9Nnha6hc6oXiOiITgyNGjMHQd+x56KFaDHUIIKtWq77tByzm1Nt0ynW3bsPD5z8OJsXKNFTlgWoFQVIAJgeP0L6ghBXSFLooiMuk0srSMliEsGLYdB/A8iJJUU4XSlUhBC1LAI1QGGdJK1IPjOBi67hODiQmMjY1h48aNHZ5hgvVGQg4+IOB5Hqn+fgh0MGH+5+FJkMOKOBGgK1CgZtDhqClLmCSIoghJFOG6LmzbhsNIAhUtthtiHxsbC2yLWVi122DDNcdxQQvcYFJmiv8I0tAKqVQKY2NjQfVHtVrF1evXY5sVeXTwZ6vyRsK8ICIS+lu4lMyyrFWmOZHoMHoQ2CZ3mFI4c/Ysrly+jPvuuw+ZbDbW8UrlcmCGlU6nkaIC2XbhjY1h4d/9O1jbtjW9/ijNAUtRRWkFakSlLe4r8w+JIgWZdDqSLPE8D4HnA/JOCPEtiTtNDxHfcrkckxQA/oRBuBUDrGYwDAOLS0sYGRvD6NgYpqamut6cK0HvkHxSHyDwPI/04CAE6rde014Z8MWJHOdXJVDBk2lZkeHKepIgiCJE+uM6DkzTDJTkTJMQp6ETx3EYHxsDIQSzs7M+Oehh21aWM23kCVFPGsKEoV78yPYn8DwGBwYwOjICSZJACMH8woJvwdwgihBEMFy3ZhUWpBjqzzuULglDEkWotHtjlfpDxLkH7WItbZoXFhZw/PhxbN+xAxtihJht20apXAYhfle/XDbre++zMlA6YbYD0teHpX/zb2Ds2bPqbxwh4DzPL2WM+Jzr7znzQYhTYcFIQalchkWfBakFKQiDp9bnjuMEZk/twqWVLcVSyTc6i0MK2PWFSCm74149OSIElmliYWEBQ2NjGB0fx+bNmxNicIsh+bQ+YAgTBAYmVmQ5TJ7n/TwuDQu2qpeXZRn5XA7pdBqyLEOSpKBxSlXXA2+EYrHoi8hakIR0Oo1cLof5+fnOSvw6QCuSEEZYUFZPGICVsLKsKBgfH0c+mwVP7+W1a9dWt6YORXJanWP9/6M+G1VVIYoiOGClXXHTHXew+qYTSg05iBGFMAwDr736KgYGBnDXXXc135j4FTGVSsWPagkCsplMJCEJIkAR5xA1mRMAnqZh8V/+S+j79wMhAuABcDkOLnXsa/g8hJ+VFtfOVP9hUiCLol++G4MUMAi086LnuoH9eRwQzwvaOJfLZT/y4HngeD7oqxJFCpgQtP7qws8qF/qXVSXMLyxgcHQUY+Pj2Lp1a0IMbkEkDokfQDCCYBSLsKpVf0UQavvK0wHDsizYtg1d12uaoTASUT8gyrIMWZb9qgbLgmlZfiTBdWGYJkC7QsqSBJWWZDUaNDaMj+PcuXPgdu7suqFRMwTHigjbN3wPt9JHgPkshFeZuXweqqZhYXERtmVhYXERlUoFgwMD/v2JkXapGYBD59doUkqnUijRio+qriOdTjfcd9vCREJtk1FHDiKeifrjvP7aayAAHnzwwaYkjBAS2Hdz8MWyaoOuhAxM4Op6XqCgryEMoTQA248nCFj+7GfhKQpSzzyzcnxFARpN2KF7T9BcU+AwJ8FQxEgWRShtth0Pdz91aDQojvGR4zjB9zgMUZKg0LLkKILBiHLNs0YRfl6ZtwcjVsuLi7BsG+PUwyCJGNy6SMjBBxQ8zyPV1wdRlqEXi8Hq0qXWxRzHIZVKBXbBiqIEg1l4oIoaFnmeDyZ/lpqQJAm2bcO0LD/doOtQZBmpVMpX2tcNIGNjYzh16hTK5TJyUTnpGCrptaCeJLDrjfdmLpgk2X5kWcbY6ChKxSIK9J5eunoVaU0LHChX3s4F+wl8GuquNYgcNDoFnkc6lUKxXPYNkgwDahPxXtTqsBHCtsk1A38LknHixAnMz89j//79Tc+FaVbY85VKpyExEyz2ObAVLXsOWOSLpsaCUDd9rmtSNXUCSvA8ip/+NMBx0L71LRBRROHTn649qRAhjkOmIkmBJNV8j1qC48DDt8Fmv5NQfwWpATlwHQe2bcOy7ZqokSCKflRPklZKYesPSY8DRD8PYRFiOHJiWxYWlpagqiqmJicxNj6O0dHRhBjcwkjIwQcccioFQZZRXVqCa9srUQRCwFP/fsMwUK1Wka2bpONMzUyHQDTNH7BorwaDEgRd1yHLMrRUCplMJiAJg4ODEEURi/PzGB8bW73jdUg1ALUkgU2gpEUFQaOJluM45PJ5aKkU5ubn4dB0S7lSQYamUgTaUwJADSEhbDXMrfStYGkNNlGTOkLCCwJSqur3zdD14LOIQjuxgxrb5GAHzcnatatX8d577+Guu+7C0PBww+1M00TVMHxFPM/7ehae9w2fak44RNbqqgICghBDbxGQC45D8dOf9klCHQLvjBakgBASEOCw1kOWJKiKsipkHwlKCILPHbXfM9u2QQiByPM1+yOeB8u2YdOqoWB3tC+DJEnNtTsx03dME8OqlDiOC1KGA8PDGB4dxcaNG5MmSu8DJOQgAQRR9NMMpRIsqqpnJEFRVZh0BWRaVo2NcRhhMVJkmJJqE2QaLbAsC9VqFbph+NEEy0KpWESK1nVLkoTBoSHMLy42NG8K9g0Exke9pgzM0AZoMlmEIgdREAQBI8PD0HUdhWIRlmkG7nGZbBa5iLx6eOAOUhdhrUPoeOEjS7IMyXFgUVFfJp1eiQCx7TnOd+1jnhN1n2FwLHocm1YMcIzIRIjxCHxhH+E4lEslvP766xgfH8f27dujdQGEoKrrcCwLHMdBkKTAfTJ8rnHB0fscRDmi0ITQhAleM1JAqF6Ehe7DZbKSLEOV5XikAI1FpmFY1N9AolVHnaYNao4LBM90MwSfNdPIuC6WCwU4joMNU1MYGh7Gpk2bYusnEtzcSD7FBABomiGfh6go0JeXfWdCngcoQdB1HYau+yHJJur5mlx4g0GpPu1QrVZRqVSCCaxULkNVVfT39eHq1aswDcMv2WqA8IDMfu8lSVilS6iLJDQ7NpvQAUDTNGiahmqlgkKxCNuyUC6VUCmXkc1k/EhKg4kluN8s59skmpGiDpmu40CvVpHJZGo+Qy78WYWiFsE5o3Yl67kuQEgQ5WF6Fa7+HtDV+6uvvgpFUXDfffdFPjusK6hHr4E9G7FASWmjCZUJ+KLuTZRQkXkJtIqkhAlBmLzynN8QS5HlWCH1dsW2jm37Jkiui2Kp1HbaoB58k3tXj4CEEhKkEbRUCuPU9XB0dLSta0lwcyMhBwlqIKsqxKEhVGiaged5KKoKi0YPSqUSstls60Et5qAniiJyuRyy2SwMw0CpVIJOHfAEqsaevngRO3bsCDoztkL4yL0kCsF+W0US2LnQyoZ6pNJppNJpVCoVFAoF2I6DQrGIUqWCbCaDXCazarBn94EN2I2U+v6Jckin0ygWi3BpI5+4roJRYII4Rlz4BscmhODo0aOolMs4+NhjNYY+DLbjoMo8IDjfyClqu6h9x1lpA/6k2aykk5GCcGomCp7rwnIc2JZV8zlyQFChE2fVHIj9YgpBWXTCMAxUqlVYluUbXqGNtEH4+HT1T+ISA47z/SXo+ZbKZRRLJQwOD2N4ZARTU1PIZDKxjp3g1kFCDhKsAk/TDGapBLNSgchxSGcyKJVKsCzLD09nMm23GW5WlshxXLCStm0bpVIJruMgpWm4fPUqcvl8ECpVNQ0y7SDZCmwgXkvHxDjHYNcA+AKyqGuNU8KppVK+gRTtd18sFn1RJo0kMJIQTIyhJj7s9ahJh+d5ZNJplMtlWKYJURRXR2NiTFae5wX1z3wochBFBi9evIjp6Wncf999yOfzq/5umiZ0Xfc1AtQqOK5Yb1WkqtX2PL+qpDOOP4HneXBsG5bj1IgLAb/qQJRlSKLYuvyVEhAOK74Azc6dWSQ7th04heq67osRaYpOVZRYaQOGIO0HNGxTXfcGP4rCrNI9D0uLi3A9DxNTUxgZGcHk5GSSRnifIvlUE0SC53lo+TwEmmaQAZ8gFIs+QQhFEOJOuTU97JtAkiQMDAwglUqhVCrh3ZMnUdV1aDScWalW/clNFCGrqj9Ih7zn68Em6nYU+WsBz/lW1GHxYpzW2ey9mXQaqVTKTzcUCnBdF8vFIkrlMrLZLDLUBRFYEUhyIb1AozSDSEtImcCUj6qvb/H5eDTdxAuCTw4apI8WFhZw7NgxbNmyBVObNtX8jRCCarUa5MkbtVquf89ayB3PcT5pA2rV+A0iHrbjwLGswJOAgT13caNYTLwX/ryirsOjVQgOdRiNIpK2bUMUBOT6+uKt1MP3rB0yxcgSWXGCNKmpUSqTwYbxcWzYsCHpqvg+R0IOEjQFSzNUl5ehEgJCV5+2ZUGvVqFQr4LYJCG8amoxWSqKgsnJSVy8eBFLCwuYvPde6NVqsIqzLQtVw6gZsCVJ8v+NWM3VlLPBX+H3LOXAro/qNlqJKuvBcxwymQxS6TTKpZIfSfE8LBcKKJVKvhqcVSmg7jpYmiGCIKiqCsfz4FiWL4DMZGpd9pqUqAL+ilYUxRVRY0RKYXl5GYdeegmDg4O45557Vr2/Uq0G56ZpGlRq1x2FgNh1IerD1wkU6887LO4L/0XgeUiyDFkUY4sLWVVJs7N2HccnIRFRCWCl0kcURViWBUEQoMiy3z21GZh2ot17RkkBRytDCPH7ZJRKJRSKRQyPjmKIRguSNML7Hwk5SNASvCgiMzQEo1gEKZXAGuDohuE7rMkyPKAzksB+xeqBlOM4KIqCTZs3491338U999yDwaEh357ZtmEaBmzLWmk0FCIKQc8HShTq87HseOFKh7jlXHHA9ssBcLF6tRg3zcFzHHK5HDLZ7ApJcF0sLS3BtG2kNA2ZVAp8fRVJI0EoxyGTSqFMle4VShDCPhNcE+LGcvcirVSoX9GXSiW8+OKLyGSzeHjfvppojmma/jNDzyMbwxlwrZ9H2MEwqKCgv7PrsWwbtmWtFhZSHUHbqY4G8Dwv6D3ihHL4wTFph0VRkiCyyAx9HyMtMk1jNAITGLZFRetIAbBSlrm4uAgPwOSmTUGZYpJG+GAg+ZQTxIaay0GUZWBpCR4h0GmVAc/zfqtnz2ufJFCwCaN+UhIlCRs2bMDZs2dx+swZ3HvvvRBEESlRRErT/NWebQeCSYca/hAgaAjFiIFEyUI4JEzqj0+xZiEjvRbmzb/qz6FW1atq+CMQJgklmmLwDMMXGbouBgYGkA65WLJrIlFRBCr8K1MHQuazEK4+aDTRBR4HEZGZarWKF198Eaqq4pFHHvE7BoJWI+g6XMfxyxRFEelUKjIs3w277JqmVKHniYMfPXBo7w/dMBoKC4X6bpMNzjOqAVZ4G/ZM2tTyuP48RUHwyUAoGlMPmxIDjkYw6oluOGUWTpu0RAQpYKhWq1hcXEQqk8EIbbM83MSfIsH7Dwk5SNAWRFVFbngYPM/Dc93Arz2byQR+/h2ThIgBVqKD5tTGjTh7/jzuuP12yKEwNAu7BkSBDqSs3Mu0bRDD8BXroug3PtJ1f5VGV2gC/Qmj/pw7nbQareDCe2LCzkY5cNRtm8/nkc1kMDM7i2KxCMe2sbiwgGKxiHwuV2N1zaIAQdMcJlykAkVmscwiCOH8eOT1hER8YZimiRdffBEcx+FDH/oQFEUBIQQGbcDFhKGqqkKJsEFea/qgpscBu8bQvh0m8KN+HV6ItDHSKDUo0408TsT/Pc/zS0ZDx6qHQAkrIwNxhIyGacKy7SBtVnN8liJpupdVF9GQFOiGgaXlZdiWheHRUQyPjmJqaqrmmUrwwUBCDhK0DUEUkR0eBngeS7S1coUa+LDV55pIQvhYND0wMTmJ8xcvBgQhCmEHQJu6xTFHOVbnbzkOePgRCc/zYNUdSxCEgDDwocE7fP5eDKIQ+M230a46HL1gjnyNjsILAnK5HBRZDiY8x7axsLCA5UIBaeY4GSI9NSF1zm9UlMlkUGYEoVxGmlWhNEktsPvDVsuWZeHFF1+EY9t49OBBv+KEeiqwSUiUJGiatoqEdUoKaiI9dRGC8IqdkYKa93IcRJ6HKMuthYVcrWMhQ5gIeJSINmqtLdHIgCiKbdsJW5blixUdB6qq+gSm7vxiowkpME0TxWLRF/sKAjZMTmJi40aMj48naYQPKJJPPUFH4Hke+eFhCKKI+WvXYNG+8FnagZBhrSSB9ay3ZRkbN27EmTNnsHP79pY13VJolWXTnLJF1fEeNSKybNvP0RISTFqu69YQBp7nIfA8BLrSE0K54OAcEZ2CaKeWfdV7UbsybTTxcDyPbC6HIVlGgZY9utQgp1gsQlFVZNJpaKq6ksoI+TLw1KK4XKnAZRGEdLrpZyQIQpCmcF0Xh15+GXq1iv0HDkDTNFSqVdjU6RCc36NDjnDWrE/lxLknNaSF/ssmT0YEojwNGMkUBSEQUUaKRJmYL/iVRh0YEfA8v+a/wTnyPB8QzGYVNHFhsqgBJRbtlC4GiEEKDNqlUZIk3H7XXdi8eXPkZ5bgg4OEHCRYEzL9/eAFAdenp/38NSUIq8SFqHXSC6/IW0FRFJimGVQuXLh4Edu3bYttmcyIQgqAZdt+iVqd3Swb9OlJ1ZyX53l+OoJdC8f5RIERBjohrAIX330uDurz21xII8ALAvr7+5Hv60OVWjFblgXTMGAaBjhBQFrTgrbawIpoUhAEP8VAxY6VatU32WnQZZGZU7mui5dfeQWF5WXs378fmqYF7ag5+M2mwp0361Mzce5NVIQgCNvTaFCUsZTIyAD9qfk8gZrPn/3N9Ty/R4FlwaGRgUb9GTj4Ql322bOfbgpaHXpthmkipWmR6Zhm7yfNSIFloVgowDQM/zn1PPQPDOD+ffuSSoQEABJykKALSOVyGNu0CdcuXvQnFxqebjSMMZU7AQJjmGaDHstVu66LDePjeO/0aWzdti0w4wlyyzHOVab2sowosIkGjrPKX55FGKLOLSqnLNRNFsyBrhvTRVSumxGS8NTISiAzmQws20alXEa1Wg2Eh+VKBZIkIZ1O+70LBMHvQxBKMTiOg6quI6Vptat1elyJpmTeeOMNzM/N4eGHH4asKKjS9t88zyOVStV2mmT7aeNa2TPiUUGfS+95/Yqfg3/vAzLQZJImgF9a6rpwGQFwHDiUGDQ6nzABYNGjbhEBAvjPcl0qRzcM37CKRjuUJiWfoZMNKjMQgxSA46CpKjZMTuL2XbuSFEKCAMmTkKArSGWzGN+yBVfPnQsscdPpdNP3hKMJwIqCP2rQlWUZpmliatMmXL12DVcuX8bkxo01g1/4/3GJAkICr7CYrJHdbn14P5w6cB0H4XcxYxs2kbCVJcfz4OkkuhYRXiAeZILDlZMMrk+m0QRD11GuVGAYBmzbxvLyMpaXl6HRaIKmqhBF0XdRrFRg2zZ0jgtslh06cbJzPXL0KK5euYK9990HRVWD/gWB4LD+vrW6GKa4JyQwAmLRgah7LtRHBsLHoqkARkI92mXUC5EC07IQhfo0Et8oKtQFBJ/dyokHf2NVOLquQ0unoTaJGgT6liYaFdOy/Pbr1JGSOZJms1mMT0xgauvWrpGdBO8PJOQgQdeQSqexYetWXLtwAZZlgeN5aGz1GQPN0g4sepDPZjE0NIT3Tp3CxjpyEAYLmbPwaiDGawK2KmRh97CQkZGG+rUlm7gCEd/KH+BhJfoAYFXnvOBc6YQE+JNT/U8jAhHYNdep8+tX6DwhSKVSSKVS8FwXpXIZlUoFDhUN6tWqXx6aSiFNfyqVCixaZaBpGjwaJREEASeOH8f0xYvYtWsX8n19geBQpQQjDth98Wgen/24tCVw/XWyiAAjWMwZ0nGcQHTK9tGq6oOlIZjoVKRkgN3vXmHVJ9jkHFmVh0QraqL6TYRJAfu9HowUGLoekElV09CXz0MURYxPTGB8cnItl5XgfYqEHCToKlLpNEY3bcLM9DRM04TrukilUismO01U8Aw1aQc6oHGc7ydvShI2b9qENw4fxuzsLEabWLiyoZKLCEPHynezSSk04dWXq7l0hVrfNpnj/O58zMMgfLzg+uhERjwvWJk3OxeO822ZudAkxo7vum4gAKyPvoSbNgmiiHxfH/L5PAzTRLVc9j0IXBelYtEXMSoKZEUBoaWqHM/7+XhCcOXKFUxPT2Pnzp0YGxsDAF9wWBfyZikXz3X9ssG6f8Ngk1vYVIln0RUmFKVEIJziaFrNwSI0IYIl0H9dstq8qduoSRVgdcSpGRx63w3D8B0kVXXlXMPli032aVKLc4OlekKkQKKixqmtWzGYeBckaACOdCqnTpCgCarVKmYvX4al6+DgkwbW6KfTPDxH2++WSiW8+tprkCQJB/bv7/gcg8hCx3vwEVbLs0gDg1XnvMfAAeAEYSWXX1eKR//T9NwIISgWiwDHrRKB1lSF1JGGmr9R0WFV11GtVODYdmC767oueEGApigoV6s4evQoAGBqaspvuENXtIwcea7rT7yhVABbxQf/hq4zPHEH/4bz+Q1IQLOJP/xaI1gNehesFTX3ew3DakXXsby0BNfzkMlkkKa9NOKYZZmmiVK5DKNaDT7zgBRIkp/GEARs3bEDub6+js8xwfsfSeQgQU+QSqUwuW0bZq5cQWV5GeVyGaqqRqYZ4pIF1mBIkmVs3rwZbx47hoWlJQz293d0jlzdv4G7XGgQjkMgeJ6HLMsIF36xVIQoir4RE+2vQGjYnABBt7tOwM6VhZY9FjkIk4yaN5Aam+hVawJCoCoKbEGAaRjQDcMv93QczNs25hcWQADks1m/vbauQxBF6IYRvD+czuAQmvxpo6ZwRCCIZpCVXg4s8sGHJvmwNiPQbKxhxc/aZne6h1Xvi4pgrIEYuJ6HMu1+qqhq0HeiUZTE87ygu6VumoDjgNB7q2ka8tlsENUhhEBLp7Fl2zaoialRghZIIgcJegpCCJYXF7E4MwPXtiEIAtIhq96O9gmgWCjgxUOHQAjBRz/6UUg9Eo2Fj9mIODRr4EQIgVUnfvNA9RWUMIQFc+F/w2LNRqiUy3AJQUrTIIriqsk/6K5Xd07s3/ooRTgNohsGyqUSrl+7hsXlZQDA6NgY8rkcJEmCoihQVBWaLPsTuShCoKt/tpJnhCE8+Yf/X/O3dYBHyKoy1npEEYC1TPhxwPa+tLQURIMGBgehRHgNeJ4H3TBg6HrgTxB+NtU6UgBCAJ7H2MQExjZsSISHCWIhIQcJ1gWmaWLmyhWYpRII4NfbR4iswlGEZhEF1/Nw9epVvPLKK9g4OYn79u4NyuW40KSzHgh/gQIhJB2sPfiphU4mF7bSZ+2eA9JAV7/wvKD0UFFVX0hZd+0sshAYU7GUQrjSgZoCMaGfRx0XbdvGuXPnMDMzg1wuh2w267v0yTJkWV7ZN89DVhRotFIhXHIXHl6a9WxYL9g09XMjCEA96qNSlUoFC4uLcFwXffl8jd+A67p+dIASAkaomMeFpqpIaRpUTau9x4RAy2SweevWJFqQoC0k5CDBusF1XSzMz6O0sACXdphLpVKNV91oPsE7joN33n0X77z7Lh64/35MhlTXTMwYrFS7dxltgQCBFqEmPRHKqYf/ZdUV9VqESLdFQlA1DFiGAVVVoWpa7XvY8epC/vX7YETBdhwYuu5XZbgujh8/jsXlZdy2cyc2bNgAjudhGcbK9XDcKk0Fc5tkJEGjlr81CF1fOPIShM7D19/o/EOvcYTUVqREbMvO0LCsVQLV9QIjjfUNoQDfc2N2bg62bSOVTqMvn/erSXTd9zuwrMDXA4RAEEVomgYtlYJCiVo9eJ7HKI0WJEjQLhJykGBdQQhBuVzG4uwszErFN+1Jp2PVkgd+CKHXTNPEoZdfxuLSEg4ePIhsE3e3mhLJNVxDu3Cp30EvvmqmaUKvViErSuzmOPW2zI5tw6CTPjgOpmHg7bfegm6aeOjBB6EqCgiATDYL13FQLpd9Z0Weh5ZKwXUcP8xNW2izShNGTERRhKwoUOlPVFneesClLZPXEwFpCWkros5rdnYWpmWBwNfrmKYJh5YDM9IkUkKQ0rRV1SG1ByVI5XLYtHUrVFXtzYUleN8jIQcJbghM08Ti/Dyqy8twHQcpugKKi/BAu7i8jO9+5ztIpdP40COPtKy1Z22M63tA9AosDeCsQYDYCDZ1QRRFEZlstuF29VbIhBDYlBSEBXqGruPIkSMQRREPP/IIVOp8yNPOl4AfCamUy0HEIEM7cgIIOnWapul3E7SsmnbRhFBPBEYWVLVnJkNhEEJgN7FD7tpxsBKxaVZqyeC4Lq7PzvquhZa1QpRpmkeWZZ8QpNMQY9wnnucxvnEjRsbHu3A1CT7ISMhBghsGz/OwvLyM0tISzEoFsihCS6VqJu04IITgwsWLeO3117Fjxw7cftttbdvABuV94TK/LsL1PLghQ6Su7Zf6E3A8j3w+DwArofkIJT0TSDIPClZVICsK5ufnceTwYfT19WHfww9DkeWgiZKiKJBC5M3zPFSq1cDPYNVqlhICQggMwwhMfSzTXCWOFOusj1k7Y6kLjYuC+8SiN12+/0E0i+b/o+BRImaHnR+peVOlWg3srbPZLBTaj0KlEYJ2rj+Ty2Fy82Y/vZQgwRqRlDImuGHgeR4DAwOQZRnLS0swSiWUikWoqgo5woK3ETiOw6ZNmzA3N4czZ88in8thdGzMFzzS/DXhOHChFWw9WNg3nOPnuhhZ4OBrIFgznG6A1feD42omqQDhygpqGWyaZtAvgmkDZEnC6TNncOL4cUxOTeG+vXsD8yE2+YeJAQGCds/VSgWWbaNarcIjZCWMHWrdrWkaNDphua7rEwXDgGmasG0bLvUdME0zdOqE7sYvgwwTB/YjxWyBzEyP1koM6sWy4TJM1qfBtm3YjABQMhAYVFGwyEK1WoWh6+AIwdDgIIYGB1cLCmOA53lsmJrC8Ojomq4vQYIwkshBgpsClmVhaWkJeqUCu1oF53mQqagtbiTBcRx861vfguN52Lt3L9Kp1Kqc66q8L1vxxYgYRHWSjDuMs5JFgPYpaPW1o6mP4JybqOkLhQI8z0Mul1u10gyTAnadPM/7BEyWQTwPR44exfT0NO644w7cfvvtwfWxqAQ4Dvl8vmG/CVZWByAQmUaSsIjzd13X74IYsqgOui3S49W/q8ZIibVHpl0yGYlgUQcC/7lg/Rbign1WNQJCek3h1X/4J/BrwOpKBNZumREay7Jg0OhNJpNBX39/2wSU4zgMDg1hbGICUpymTAkStIGEHCS4aUAIQbVaRblchlEuw6pWQTwvaP0bxxuhUCjgW889h7HxcWyjgqwa+9kmxw6X99XY1K7eOPhvDWFoJnZk5Yd0f2ziY++Lk59uhFKxCIdOMsyx0LFtWLbt97ig5yVQUiBRdbtlmnjllVewuLSEvXv3YmpqauW64Pv769UqJFlGOp1e1YUyTLQsy0KlWgXgt0tOp9M1ts319yIOCCFB+D1MGGzaTTPoo8DOg97HcIUG0xiwlE7UcxD0JgACd8hm7pRs0mdXF74PoihClCRIoghBFIN24ezZZd0xdV2HaRiQVRX9fX1tpQ84nsfA0BBGN2yI16kxQYIOkJCDBDcdWJ66UqmgUijA0nV4rgtZFKGoqu8N3wRnzp7FsWPHcPfdd6Ovv99vUZxKrVuNfZDzR4g8YHXEwO1S/ps1SRJFEbwg1BACVvbGIgUM5VIJLx06BMe2se/hhzE4OLhqv+VyGY5tB70T6slBTWkmANtxUKGVDDzH+WZX9Z9VyE9hrb4C4UhDOIQfJhRBFISRA4RKRYHA3yF8Ta0QdISkJECkJKCVzsWmlR6ObUM3DMiKgmw63bzyIASe59GfkIIE64SEHCS4qWFZFsrlMopLS7B1HcRxgslOkqTIwZwAePnQIcwtLOCB+++HJEngeR7pTKZtsWM3wRTsAIKa/Ki+C7H353mwbBulUgnVahWyLEOhaRSR5/1VqyyvmrTm5ubw6quvQlEUPPLII6tba3Mc4HlYLhQAQpCl6Yp6csCuKXxHPWrMxIhPJp2G2Kh0sd7LoAtg95SExJ8stYC6c11PQyYWWWHEl0UUWrU1J4SAFwQMDg1hdGKihuAlSNBLJOQgwS0Bx3FQqVSwPD/vRxIcBwLPBx0E6yd90zTxzLPPQtM03HXXXb5wjeOQ0rQbVmcPQuDWfd3YCtoLWeCGXQxRt7JlGgKmfOfgG+iYhgFFVZHL5SDLcmSY2rZtvPPOOzh75gyGR0bw0EMPNZxsHMdBuVSqqYKIIgfRl0lQpi2hAUCi7aAbphlW7yD65YjfmXkSO26U8DCs91hvEEL8FIJp+pUith2QtVwu15igUG1I/8AARicmkkhBgnVHQg4S3FLwPA+VSgVL8/Mwy2V4ngeB4yArij8phiaghcVFvPTSS5AkCffeey9kWYbruivOjDcgihDOkzMwglCvag+/x7IsWJYVbMO2E0XRJwiWBUmSkMvnV4XKAeDq1as4dvQobMfBrjvvxLZt2yIna5YqMKjIUJZlpOjqNi45YNdkUGMkBmavXCNWDA8/IXJE4EdXPLpNqxbLQS+KiOHMoz0s1hu2baNKU2IO1UiIogjX85DNZhv6FvCC4JOCDRuCSFCCBOuNhBwkuCXBVmSLc3PQSyVfeEYIBKoKZ7XyumHgpZdegmmauP/++6GqahDyTqVSkf0denreQMNVLAGCcDgjBEx8xyZGQghkli6gQjfX81AsFMDRqoJAYc9xMKpVHHvzTVy9ehXjGzbg3nvvRZo6Ka6abEO5+FKxCNd1/Vbbshz0dqgXatbrDurhOg6q1JKZ0MlRS6X8Dosd3r96sHbRjVJMjaosegVC/BbYFi3NZJELnpKeTCazOrJDy1LzAwMYS0hBgpsACTlIcMtD13UUFhZQLhbh0g6ITPTGwxejvXnsGJaWl7Fnzx4MDAzApv0DJBpFWC8tQniSZa2WA4MkWu/v0JUmh5UJnOkHGtX2F5aX4RHir0hFEZ7n4fz58zh+4gQkQcC9u3f7/RFarL45joPreSgVCkEJY9CQqcNJlhAC07Jg6HqwsldYFUkH+2OExKUCz2ZD2HqnFJjnA+uoyfM8XGqdzfN8UMXBnjcOvodE/9AQBoaGElKQ4KZBQg4SvG/geR5MXUe5UEClVIJlGCstiD0P777zDq7NzmL7tm2YmJjwc/Z0oE7TFXIvQGjKwGNGObQu3qO9DCLeAHCcXwIX0+ynXC77TXtSKRiGgaNHjmBxaQlbtmzBXXfd1VRnUR+yZykFVsIIYE3kgMH1POjVatDfgBeEoNV0u2AdKutTFOEeBusZNfBoGa5t20HzKZ7nA2MnJj4MOlkKAnJ9fRgYHESur29dzjFBgnaQkIME71vYpony8jKq5TJsarRz+vRpnDt/Hhs2bMCO7duDhkMcx/nWtZpWmwuOKHNbZYZU528QJgKu50U687HUBnMq5HkegiBA4PnAFTCs5Pdct6mgT9d1VKtVTE9P48KFC8hms9izZ09kiWI96lMDxWIRnutCS6eDfhexyAFzomxxvPrVdavunGF4LSIFtacT8pZguoVY74wPZkdd1fXAG0GjqSvLsuB5Xo3XhpZOo39wEP2Dgx2RogQJ1gsJOUjwvofneTCrVd9YyTBw7tw5HDt2DIODg7jzzjvhOI7fEY8K1yRJWiVuDBB2KmzkWhjxepgAMGtigecDm+GWYEK9BtGGK1ev4s2jR2FaFu684w7s2LkzlrVwPepdEQOtA9YeOQjDoyV9pmEEvgiqpjVsvtUOKWBwXTfSXTFcCQKEtBO0g2LkZ8xsuLFCpizaXMr1PMDz/IZSqgrTMGDRyFAqlUKKEoKBoSFoMTtnJkhwo5GQgwQfKDi2DaNcxsVz53DopZegahoe3rcPoiiiUqn4YWH4E4skSVBkGYIorkxMobK58L9h8HT1z4gA638QBiGkcwU9tfP16Kr1rbfewqXpafT19+O222/HhrGx+GWDdYhKKQDdJwcMDhUsutR+WKIeFqIodkQIGHqVUggaV9FuloBPbJg5Fyvh9AjB2Pg4xjZsQK6vryOiliDBjURCDhJ8YHHl0iX89Ve/Cp4Q7N69G+Pj4/A8D4Zh+K2GgRr7Zr4Ni9tWCErvOhFCEoKFhQWcO3cOly9fhiiKgRuk57rIZjKNjYdagKUUUnUajHbIQWBFHfOYhBCYpumX/RECeB54QfB7a0hSR0Sn2+WLhBDYlhW0uCa0MkZRVciS5PevMAwIkoRcfz+2bNkCrYXBUYIENzMScpDgA41yuYz/8ZWv4NqlSxgaGMBtO3Zg06ZNANBzktBu9MA2TVy8dAnnz51DuVRCKp3Gli1bsGnTJiiyjDJtr6ypakeq90YpBaCzyEEcbwIGD4DnOH6qgVacsDC+rChQIpweG+4X3YsaNCMFkijCNE2YlgUtlULfwABy/f0YGBjoWqvpBAluFBJykCABgCtXruDQiy/i3JkzyKVS2LFjB7Zv2wZRFCNJgkx9BtYKz3WbRw8IwfzCAs6fP48rly+DEIINGzZgy5YtGB4eXlVloOs6JElCJp2uSWWwjowMUf4Es7OzOHf+PC5fvozz587h7LlzKJfLAIAPPfIIPvWpT7W8nv/3i1/Eiy++iPvuuw8//3M/F7oMEhwz+GnUCInaQodD98TzIIhirGhCN6IGHm3wZJomHM8DR0sRFVWFIAhBu+lMLof84CAymQzS6TS0DlouJ0hwMyKRyyZIAGBiYgI/+Hf+DhYXF/HKK6/g8Jtv4sS772Lb5s3YsWMHstksDMOAbduwHQeWZYHn+YAodBpN4AUhsgFTVJTgzjvvxNSmTVAbWOmylbUbIVpkk+mXv/xl/MVf/AX+n9/6LQwPDdVs86u/+qvgeB7VchlWG26IYdy3dy+++93v4u233gqsgsPlhTXn1GAS5agttkKbPVl0de55HoxqFToaRxOY/0EnE3TQzdKyYNk2OPhCSIHjoKRSEHgeumGAEIJsPo/84CDS6TQymUxib5zgfYeEHCRIEMLAwAA+/vGP4+DBg3j99dfxxmuv4b2zZ7Fpago7t29HPp+HZduwLSvIlRuGAZGuamVJivYuaAKe44Jc+/zi4qoowb333rsqShAFQRDAcVxQRlkf2mZBQl4QVlVTWJYFjueDVfvgwADGJyZw/K232JtX9sH0BGSlrTGb/O+++26INNx+4vhx7N69u3FVRwwwt0tN02qiCbZlwTIMP5ogyxBpNYgXspaOC9d1YZmmX3rIrpNWHyiyDI5+zhzHIT8wgPzAAFKpVNAiO0GC9yMScpAgQQRSqRQeffRRPPLII3jzzTfx8ssv49yFC9gwMoJ8Po9UOg1FUSDRyYnjOFQrFegcB4mlHRrkyC3LQrlUQrlcRqlUQqlYRIH+TjwvVpQgChzHQRRF2HT1q2la8LdWNf6GYeCxgwcxNTWFnTt3Ip/PY25uDj//2c+ynddUbNRP9WzfiqLgrl27cOzYMRw+cgS7d+8OSgfXksFsGk0wDIAQvyU2/GoRRhZ4nocgiuA5riYVEaQuTBOObcOjRlUAAgtu13VhV6uQFQWDo6PI5HLIZDLR9scJErzPkJCDBAmaQJIk3H///di7dy9OnTqFt996C5cXFlA6dw6ubfuTD3UzTGsaNE2DqmlQFQXpVAqCKMKgBkXlUgmFchkO1S8AgKZpyGYyGBkZwebNm9HX14fBwcGO89ayLK8iB0wY2GhyZv0bHn/8ceRyuTWX3e3ZuxfHjh3D0SNHQH78x4MoQ7NzaAf10QTbcfzPgqx0ZbTD5kfs+DQy4rqu72tBVppdqaqKVCYDVVV9jwvqdSFSopdOp32b7aQkMcEHBAk5SJAgBniexx133IE77rgDgD/pGIaBpaUlLC8vB/8uzs/j8uwsKuUy4LoQeB6yJCGXySCTzWLLpk3I5fPI0VVo2I1xLXX9DBIV63meB8e2IdDoRbP9ss6JiqJ0ZfLbu3cv/vAP/xDLy8s4d/as3wGyS8QgjCCaQLttsqZWruf5nRAdx9eI0DSQw8SkioJMKhUQAtaPgjXrEgSh5v9JlCDBBxEJOUiQoANwHAeNRgo2bNiw6u+u62JhYQGWZUEQBFimCdswYOq6HzmgeWxPFCFKUtCGma1y13Jekij6Rj2WhVSL8j/btv0eExzXNVFdf18ftm3dirNnz+LIkSPYtm1bcG7MYnkt11gPj9k2MxdJ2rzKpuSoP5eDlk5DUhQIggBJkpCi5IBN/kmFQYIEtUjIQYIEPYAgCBgZGQFAa+Vt26/hN02/DM40YVarqOg6SKUCURCCJksc7asQTFd0Io07gSmKErR7buU1wBoDybLc1ZD5nr17cfbsWRw+cgQ/+IM/GLwe2DG3SxDC2zISBd9h0aEEx6FdLRVNQyaXg5bNQlXVQKugUHKQIEGC1kjIQYIEPQbHcUHJI+BHFRhJME3TV8obBixdh0kbEvGCAJ7jILDwNrVgZuI+rvYAK/8nBKIoBlULtm037DbJQu4s595N3Hffffjyf//vuHzpEmbn5jAyPLxyuvQHrEojdO7hkscwdWCGUa7rwmUpA8cBoW231VQK+XQaKo0IMDIg0ahMggQJ2kNCDhIkWGcIguA35KFNeMJRBdu2/ZWwZfnRBcNAtVIBx3GB8l4QBD/SwPO+Ap91HAzl9SVJgmEYqFarEAXB345Oxh7tFlmpVkEAv1yPrejr2yA3QLgBUTCZ09A+AbBx40YMDQ9jZmYGhw8fxsc+9rFI46WoNApzOKz5oVEBjud94WA67ZeOUgGhLMsBIUhEgwkSrB0JOUiQ4AZDkiRIkoRsNhso6Nmq3rIsFBYXUV5c9Cd2Kq5jhICnzZ04joPAceBYxIG+5rouiuUysplMQAB4nke1UoFERXiKogQtjQEEkzXzSwAAJ+w6yHL79PyDqb2uxHHv3r34xje+gSOHD+Opp56q2c4jxHcyrPtxXdevKIgovZRUFWMTE0hRfwH2k5CBBAm6j4QcJEhwE4F5FbBSPQAYGhrya/tZNMG2YZsmHMfx/f49D65t+5MrLe3zXBeO60KvVgEApmEE6YX+/v5Aj6CoalDOV5OuoEQiIBThaEKofXGYVBDaLZK9vvvee/Htb38bFy5exPz8PFRFCc6X43m/Y6UkQZQkSFRzIYgiOBohkSUJkiz73TFpVCBJESRIsD5IyEGCBLcAGGEATUUACDQFbMUd9WMYBpYXF32dg+vCdl04hMADICkKLEoS2MTuhXoZlMtl9PX1ATRCsby87B+YRRBohQX7AU19sP9PbdkCy3FQ1nVcnZ3Fnr17IdDqDFYlwFpb1/8w3USCBAluDBJykCDBLQqe1vk3AktRDA4OolQq+TbBhODdM2cwNjWFicnJgBjU/wCAd+UK3jp1CjzPY2r7doxNTgI870cRQkSghiAAwf8PHTqE0xcugOd57D94EPl8voYMJEiQ4OZFQg4SJHifgqUo+vr6/AgAxcWLF9Hf34+husZLYTCTp+vXrwMATNvGho0bVxGAZqv7p59+GktLS3jqqacwOjranYtKkCDBuiAhBwkSJFgFVh3BBImElki2g6997WsAgO/7vu/r+vklSJCgt0hkvgkSJOg6jh49iunpaQAJOUiQ4FZEQg4SJEjQdfzVX/0VAGDPnj3YuHHjDT6bBAkStIskrZAgQQIAwIsvvogzZ84Ev8/Pzwf/P3PmDP7oj/6oZvsf+7Efa7ivr371qwCA7//+7+/qOSZIkGB9kJCDBAkSAAC+9KUv4Y//+I8j//bSSy/hpZdeqnmtETm4dOkSjh49CiBJKSRIcKsiIQcJEnyAcPDgQQCoqV7oNljUYHJyEnv27OnZcRIkSNA7cKTbTdYTJEjwgcaTTz6JZ555Bj/7sz+L3/7t377Rp5MgQYIOkAgSEyRI0DUUi0U8//zzAJKUQoIEtzIScpAgQYKu4etf/zps20YulwtSGAkSJLj1kGgOEiRI0DU899xzyOfz+P7v//6g0VOCBAluPSSagwQJEiRIkCBBDZK0QoIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSPD/b7eOBQAAAAAG+VvvnkNRBMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwAQSkOXSibj1iAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgk2Vkeir8ntozcs7auqt6mt+ll9hlNzyohJIzwNQiBEbtYBEjCgI2Nrjd8uQb/zL0/jLEtLywCIcBGV1hIFwQyCCGxSLP29PTsM71W9VrdXVtusUecc/+Ic6IisnKvrO7qmXifp56qyoyMLSPivOf73u/9CGOMIUWKFClSpEiRgkO62TuQIkWKFClSpNhaSMlBihQpUqRIkSKBlBykSJEiRYoUKRJIyUGKFClSpEiRIoGUHKRIkSJFihQpEkjJQYoUKVKkSJEigZQcpEiRIkWKFCkSSMlBihQpUqRIkSKBlBykSJEigfPnz+OjH/0oDh8+jHw+j/HxcRw9ehS//Mu/DNM0u372h37oh0AIwbd/+7ffoL1NkSLFZoCkDokpUrx18PM///P4hV/4BczNzWHPnj3r3v+TP/kTfOADH0C9Xm/7+YMHD+ILX/gCDhw40Pb9z33uc/iO7/gO5PN5LC0tQdf1Ue5+ihQpbhDSyEGKFCkAACdOnMB3f/d3o16vo1Ao4Bd/8Rfx5JNP4stf/jI+9KEPAQBOnTqFb/7mb0aj0Wi7jm/6pm9CJpOBYRj48pe/fCN3P0WKFCNESg5SpEgBAPjpn/5pWJYFRVHwF3/xF/jZn/1ZPProo3j3u9+Nj3/84/h3/+7fAQgJwq/8yq+0XUc+n8c3fMM3AAA+//nP37B9T5EixWiRkoMUKVLg2WefxVe/+lUAwI/+6I/i0UcfXbfMRz/6URw5cgQA8LGPfQye57Vd17d+67cCCFMUadYyRYpbEyk5SJEiBf7oj/4o+vuDH/xg22UkScIP/uAPAgCq1Sr+6q/+qu1y733ve0EIwcLCAo4dOzbyfU2RIsXmIyUHKVKkwNe+9jUAYVrgbW97W8fl3vnOd0Z/P/HEE22X2b59O44ePQogTS2kSHGrIiUHKVKkwOuvvw4AOHDgABRF6bjc4cOH132mHURqISUHKVLcmkjJQYoUb3HYto2lpSUAwM6dO7suOzY2hnw+DwC4ePFix+Xe9773AQBefvllzM3NjWhPU6RIcaOQkoMUKd7iiJclFgqFnssLctBsNjsuc9ddd2Hfvn0A0uhBihS3IlJykCLFWxy2bUd/a5rWc/lMJgMAsCyr63JpaiFFilsXKTlIkeItjriLoeu6PZd3HAcAkM1muy4nUgt/+7d/i2q1OvwOpkiR4oYjJQcpUrzFUSwWo7+7pQoEDMMA0DsF8fDDD4MQAt/38dxzz21sJ1OkSHFDkZKDFCne4tB1HRMTEwCAS5cudV12dXU1Ige7du3quuzXvvY1MMagaRoefvjh0exsihQpbghScpAiRQrccccdAIAzZ87A9/2Oy73xxhvR38ItsRP++I//GADwrne9KxGdSJEixdZHSg5SpEiBt7/97QDClMHx48c7Lvc3f/M30d+PP/5413X+yZ/8CYA1YWKKFCluHaTkIEWKFPi2b/u26O9PfvKTbZehlOL3fu/3AACVSgXvete7Oq7vxIkTuHDhAoCUHKRIcSsiJQcpUqTAQw89hHe84x0AgE984hN46qmn1i3zK7/yK5Er4k//9E9DVdWO6xMphfvvv7+nsVKKFCm2Hjr7pKZIkeIthY997GN4/PHHYVkW3vOe9+Bnf/Zn8a53vQuWZeHTn/40Pv7xjwMADh48iI9+9KNd1yW8DUQ5Y4oUKW4tpOQgRYoUAMJZ/h/8wR/gAx/4AOr1On72Z3923TIHDx7EF77wha4Cw4sXL+LEiRMA0pRCihS3KlJykCLFWwhf//VfDyDUDLTDe9/7Xrz00kv42Mc+hi984Qu4dOkSNE3DgQMH8J3f+Z34qZ/6KeRyua7bEFGDXbt24f777x/l7qdIkeIGgTDG2M3eiRQpUrx58J73vAdf+tKX8JM/+ZP4r//1v97s3UmRIsUQSAWJKVKkGBnq9Tr++q//GkCaUkiR4lZGSg5SpEgxMvzZn/0ZPM9DqVSKUhgpUqS49ZBqDlKkSDEyfOUrX0G5XMb73ve+vjo8pkiRYmsi1RykSJEiRYoUKRJI0wopUqRIkSJFigRScpAiRYoUKVKkSCAlBylSpEiRIkWKBFJykCJFipHC8zz4vo9UzpQixa2LtFohRYoUCVBKE78ZpWCUAoSAEAIiSSAAiCRBktbmF4wxrK6uwrZtAAAhBLIso1QqQdf1G34cKVKkGB5ptUKKFG8S+L6PwPPAGAMhBIHvI6AU1PdBgwA0CBD4PhgAUArG2NrfCAd3xhjQ5pHAANAgaL9hThrqjQY83wchBJIkgRECAkCWZUxOTkLVNMiyDElRIEsSJEUB9X3IqgpV0xJEI0WKFDcXKTlIkeIWAQ0C+J6HwPPgex5cxwELAgT8Jz6oi9t6VLd3N3JAKUW92YTPiUGpUICiKKCUomma8DwPiqKgXCyCEBKtjzEGEluPJMuQFQWyqkJRFCiaBlXToGUyUFQ1+myKFCk2Hyk5SJFiC4FSCt91QX0/JALit+ethfnFDL8PiKUY/2zH5VrIBGMMNPwj2i9GKYgkgTEGSQzUhKDBIwaSJKFULEJV1rKVQRCgWq+DMYZcLoesrreNTHRCIAgEIVBVNSQMqgqVE4ZMJgMlNVtKkWLkSMlBihQ3EJRS+L4P3/fhWBYs0wwjAFzAJ8LwsiRBluXEZztFAxhjoJSCMgZGafR3/LWAUoCx8P/4egQJCF8AOszORfqhFZ7nwbAsEEJQyOWgyHK0DkmSAMaiZcCjCpqqQpKkMP3AUxAk9jseIRARhk5gAGzLgu04MEwTiqZhcts2zGzfjmIsUpEiRYrBkAoSU6QYMSilCIIgIgG+78N1HNiWBddxQF03oeYXw1c0y29DAiRCwkGX6wnE+7Q1iiB0BPH9iYXvu84EYgOpmK2L3/H3hFaBMQbbcQAAGa4nYHwfgDBqAPB0gSzD9TwYpgmWzSa32zL4E0mCxIWPEiFghMCxbVimCZMTqmazCdM00TQMsCCI9k+siTAGSVVRLBZRGh/HxOQkJqemMDk5iYmJCWRb9yFFihQJpJGDFClGBNd10Ww2YVkWfNcNf3wf1HXDsDzCQVeKRQbE7NoVJMJ14XkePN8PqwT4uqm4TWO3q6Io4aCsKNEgLouBlc/E4zPz+GBPgEgwKMhG6+842kUOHMdBwzAAAJVyORzIY2kIEvvf831U63UAQLlYjJYREQ7G/wYAy7JwZWEBjUYDlmnCtu2QBPHjz+ZyyOk6cvk88vk8CoUCioUCCvk8iCzDNk0YzSYazSaazWb0t1hPAEDLZFAZG8Ou227DI488gnK5PMQ3niLFmxcpOUiRYoNwHAfVlRU0Gw34jgPPdcNBWpahyHI06yfgwj4eWQgo7SjyE8uB0ij3TxlDwKsMAETlhIosI5vJIJPJrEtFdMKgN30rOWCMoVqrIaAUuWwWudhMnIETjJZHy2q1ioBSFAsFZFp0AgFjWLhyBXNzc7h2/To0RcHY2BiyhQL0TAb5XA56Ngs1kwEVFRcd0ErAxHfBGAujDTHScGVhAZbr4tCRI3jHO9+JqampAc9MihRvTqTkIEWKIUApRaNaRXV5GZZpRiWCWV2HpmlglMITaYWWSoJWEElaG8gEoeCDGgOiWTXjs3EgLFt0XBe240QCRQYgo6rQMxmofaj7RSSjnwdAKzmwHQdNw4BECMYqlUQVAggBaXO8hmnCsm1kNA3FQiF6bX5+HnNzc3BdF+Pj49i7dy927NgBJSZsFOmSuIaCcoIVBEGCcHWDRAgURQnPs6IAhODC/DxOnTwJy3Gwc9cuPPjQQ7ht715k0tRDircwUnKQIkWf8F0XjmWhUa2iXquFVQSUwg8CqKoKWVHAgqC9gI4QKHzwjwsOo9RCDNFgL4SEXcAYg8tJguv74kVIhEDvM5owKDmIRw3yogKBb7eToBEIUwu1eh0MgGNZmJ+bw7XFRWiKgt27d2PP3r19hffFuYlXU0TnjKcpEuSB/007nEuJR3euXr2Kc+fOwTAMzM7O4s4778Su225DvlhErlCA1GdUJkWKNwNScpAiRRf4jgPbMOBYFoxmE/V6HS7XBFBKw3K6FgMfglAPoCgKVP67n3B/ZEQkHAo7GBJ13NcggOM4a9EEvr4ML/nTukQTem0lTg5s20bTNCFJEsbK5VBbwJfrFqtoGgZee+MNXLl8GYHvY3JiAnv27sXOHTsgK/1ro31u5uT7Pjzfj3weeh4DT8sEMW+IVsLAGMPKygquXr0KyzQxNjaGQwcPYvuOHSgUCsiXyyiWy32nb1KkuFWRkoMUKVpAfR+2acJuNmGbJurNJmr1elRhQCQpnJVzUhAnAionAv2W0ImKg1YiwBgD5QPeoOV4jDG4ngfbtttGE3Rdb+tG2O1BECcHVX4uRNRApCfaIdISnDuH60tLkGUZ09PT2LNnD2ZnZroeB40N5D7/CXhkhqClCkMIIQd8nIkoQzvCUK1WsXD1KoxmE/lcDnv27MH0tm3I5nIYGxvD2NQUiqmQMcWbFCk5SJEC4SDh2jbMeh1GvQ7HdeF7HizHgWnbYEEAWZaRy+WQz+VCIqCqUBVlqFr6iBS0CXWL0LgoXUyE6nlEoK8tEoIgCGDbNmzXjaofJEKQz+WQyWSigTZeRrnueES+nw+k1WoVADBWqUCWpI6phKWlJTz//PNoNhqYmJzEvr17sW16Gk3TBCEE4zGtQhAb/P1YNCA8jKTvgcSrMmRFCclZPD0T29dh4fk+HMeB47pwXBeLS0u4fPEiGs0mdu3ahenp6YgUZnM5jE9MYGJqCvlCASr3cEiR4lZHSg5SvKXh2Tbq1SqatRocxwkHFT7AmJYF1/OgyDKKhQIq5XJo8rNBUMaiga8VcXFhP4hu3x6kQUQTTMuKQvCaoqCQzyebJ/HfresR9smWbcO0LKiKghIvSWwlB57n4ZVXX8XcuXMYHx/H/fffj0pshr28ugrX88IKB8bgiwhJm3VJkgQ1rtVQFCiiNBNI6A7aHTONeSAMC8ZLTV966SWcm5vD7MwMdu7atVY1wgWluVwOpbExjE1MQNf16Cc1YkpxKyIlBynecnBdF/WVlZAQWNa6gVhRFLiui4AxyISgkM8nSvWGRVTT3+WWE34IkdAOfUYJkDRN6lSFwBiDZVkwbDtappDNJrsmtilDFOSgWq8jCIKwtLBNp8WFhQWcOHECvu/jrrvuwr59+8LtcKdEx3WxUq3CDwLkeGWHgKggEBUb7cSabY8bXc6RECmO6DF39uxZvPDCC5jmgkXXdeGJplY8JSHLMgrFIirj4yiPjaFQKCCXy6URhRS3FFJykOItAd/30ajVUF9dhWUYicFPkiRoqgpN06DIMurNZmRCVCoWoWcyHdcr7JA9XrLox8oXg9hrDDwkztsdSzGzosiwiA8eUstrok2yJD4X++kGJlISbaIKvu+jaZqRjkJVFOTz+Sgy0ro8Q0iqatzIqCJSChy2beOlF17ApYUFzE5P47777kMul4PHjZ0cntYAAMtx4Hke8vk8SsViRASGnWG39poQqQcAa/4SXIw4ijn8lStX8Oyzz6JcqeDRRx6BpCihcZXnwfW8sEFWEMB1XciqivLYGMbGxzHGiYKqqiPYixQpNhcpOUjxpgWlFLZto7a6CqNWg++60XuqokDTNGiaFjUKCoIA1VoNXhCABUHkze95XpQPj//t8xmjAIkN9sDa7L1dCoG1iQwwQkB9H4ip/xMz+Fi6IdoGJw0yd0vUNA2ZTAZ6SwVFgihwXYGwPzZMM1oml82GpYnCTVF8HgjdH20bGrclFq+fn5/Hyy+/DEmScO+992J2djYiBEEQrLkyEgJN00AIgW3bkBUFlVKp+5cojj9mHR33ZyAIUwvCAyLSUHCvhbghk1iOApDEOmNILN8DyysreOrJJ6GoKh5//HHk83kAYXTI5yTB5Z0zXd5GO5vPY3xiAmMTE6hUKshkMmnKIcWWRUoOUrzp4DhO6IJXrcKxrHDABaCpKnRdjxr/AOEM2rQs1BsNrNbr8DwPoBRaJrMmtiMEEpAY5CLbYV69IARqMv8tyTIU3hdAlL1FjZBEnT5PMYjfQaxpEhPvtfkbWBvs4yQDWCt/ZIxB5dGQDP8R0REhcqQIB8QgCKLWyowxKLKMfD6f6K7IEA6IlFIU8nlkNA1Nw8CJEyewuLiI3bt34+DBg2D8nMZ7Mmi83FMYMwkSBgDjlcoaiWmTzugXUffGPiCEle0QJ3atBAlAgqAZhoGvPfEEfM/Do489hrGxsXXr830/6inh2Da8IEBG11GuVFDh0YRisZimHFJsOaTkIMWbAr7vw7IsNBsNWI0GPNsGoxSyokTle7IkgVIK07Jg8CY+juOABgFsHlVQZDlcVoT2Y/lvoZBXhDAuJpRrBWMMPhc39gOhsO9ngKOCWCDUATDGIsdEEdoWJX9ieeF5IMtyOFhz3wNBHgghIakyzShMn9V15LJZEELg+n5UpVApl3H27Fm8+uqr0HUdh48cQalUSggKVU4IRKQASKYpVlZXQRlDpVRKOiFuAIPoCihjCHiUpiM48WsVSsY/4TgOnnjySdRqNTz08MMdyzPFd2TaNgzDgOM4UFQV+WIRpUoF4+PjGB8fT1MOKbYMUnKQ4paFSBuYpgnTMOCZZpg6YCxUinMbYZN39DN4E58o908IAl42p2kadF1HqViMvAqihkYDgnEF/qCfGeWtGJEF14XjefBEEyhKAUlacxjkJZOqqkJTVaiqGi7HIwiSJKGQz8N1XZiWBdu28dprr6Feq2Hnrl3Yu29fpFNQFCUyXIq6SHZAvdGA63kodBA2DoNBogdA96qRXohIA0JfjGeOHcPCwgLuu+8+7N27t2sXTMoYXN60yjJNUAC5QgH5YhFjY2OYmJhAgdtLp0hxs5CSgxS3HHzfDxvnGAZ824Zn2wh8HyrvK0CAtegAjyBEIj8e5s9ls5AkCQFXl2c0DdlcbsOCNaExGPS2iqoYRF+CPnPRIr8ebjyZn4/2KWYaFEUXYlGGaNsiLw9EAjshfHRcF4vXrmHx+nXkCwUcPHQI5UIhoXWQu4TG410gGWNhSaRtQ9c0FHi+Ptr36E8SdZWMjgXJFtdCJyCOc9CHmUjlbAj8fL/00ks4e+YM7r73Xtx+4IDYqXXtruM6gyAIYDSbqBkGXNdFNpdDoVRCvlDAzMwMytyBMkWKG42UHKS4ZeB5XtQS2XMc2I1GmOPng7ztODAtKxzUWloW67qOLC/Z0zMZBEGAVR4m1zMZZEfUZMfnPv5xPULroL9ugEM4SNyoQSAu2mOUhpbLtg3HtuFw4uC6LgJKYdo26vU6Lly5AgZg2/g4duzYgXKxiGw2m/R9GEAz4HkeDMuCLElRE6ZOEJUbcqxKQ5Q5itcE4q2xgZgwsYVARWLGmJ5jw2AML738Ms6cOYN3vetdGBsfD/e/zXJxy+nwJQbHtlGr19G0LOjZLMpjYyhXKti2bRvy+XxKElLcUKTkIMWWh+d5aDQaYUqAMVj1OlzDAAVCFzvHAeGueSJCkMlkkM1kkOVOgAnBF2Oo1evwfB+yLIdVCUPsF0NS9U55E6Zh7I5HfRvG9QZCgCdEkEL0KAyfhLCRxH47nGitVKuYP3cuFEwyhu2zs8gVCpBlGSrXc2Sz2XUtmDvuk6gcoBR1XhZZLpXanrNBnA4FWSCSBDlWBhovB+0EUY4KSVqLRAwQvWld11/99V/D8zx8w7veFaWmSMxJsu1aY9vzggCrKyswbRvl8XEUikWUy2WUy+WUJKS4YUjJQYotC9d10Ww2Yds2AMBoNLCyuAjPdaMZowg9a6qKLI8OZDKZriI3yzRhWBYYY6iUywMZ7XRsXMTz1wPfTEPMWsUeBKLSQbQt5v8LkWK39YroQeShwMWXjDF4vARxZXUVr732GorFIvbs3YsTJ07grjvvhCLLYAg1BgELXQhVVUU+l0Mhn4eu69H6u2G5D1GiqOLwgyAiN1GL5jYpgbiBVBySJEVtsKPoQ+xv2rKuqFySrLWf7vdbajYa+PJXvoKdO3fi/vvvb7svAu2uJ5F6MW0bq9Uq1EwGhXIZxWIRuVwuNVVKcUMwGplwihQjhChFdBwHQFhfX1tehmvb4WxVVSPdgM4V9Yqq9hXW9nk4G4ytsw4WELXu8cd2r4FOmBwNCtbOjVCkIfh+iMhCZLDEzZX6hSRm04oS/uaz7Di5oix0TnS4zmBhYQEnT53Czu3bceD222GYJiRCUC4WoWezUVMoPwiiLpCNZhO1Wg0yt2XO5XLIZ7MJTQCwdi5lWQbjIslO5zdeMbLu3LG1Fs1RAyUeBaCctIgBXyzjd9mOMINSVDXcXowYRMth7Tvr5EJZKBZx7z334Pnnn8f09DS2b9+eeD9OQuK+GJFhE/87p+tQp6ZQr9fRrFbBKIXHK1GazSby+TzyHa7hFCk2ipQcpNgysG0bzWYTruuCUopGo4Fms4nAtqFIUihey2ZRKpfbK9x7EANGKZqGAQBQuYhuGCLQDkOL2sTnYiSBcC2AGyMDneryI22FCKnzH8Lz8onBhyMuiqOUwrJtWLYdvkYI5s6dw/z8PA4dPIhDhw/DNIwoZZPL5aBlMrAdB2AMuVwOkxMTsCwrqmaglIZEoV6HJElRRCEb6wbJAEiyDPj+WvfJLqep3XuE+0hEgyNPCQTcEEkca5w8JP6OkQdReurbNmDbACFQeOpEkIWoJLMPwrBnzx5cvXoVJ06cwNj4eGgs1QbxlFLcR4MfIFRFwXilgqZpwqzXQQgBpRS5XA6U0gRJSNtIpxglUnKQ4qbD933UeOOjIAhQq9Vg2zYkSiH5PjQesi6L8POQOdemYSAIAkgk7JfQSgqGhRiAuuWCxYAc1cwLIyL+WiAsmPlPu5SALEnhYKUokLnhUiKP3cf2w8W4O2KMFAjNxhtvvIHLV67gvvvuw4H9+8MoC0IHRvHZPK/0ME0TDo8aFAsFFIvFqDmTYRiwOFEwTBONZhOSJCGXzUa9KhRJgsejFq2uku0sn9sh8b44v7K8Fo3ggzyTJKgdzo9IVYhujMI6W3wXEVngLbkV7nERv37WEQZC8MDb3oYv/eVf4vixY3j7O97R40gQeVEIkkFi1tnFfB6qqsKo1UBzOaiqGhldNZtNmKYZpR1STUKKUSAlByluGhhjMAwDjUYDrutidXUVtm1DUxQovg+JEJQqFRTy+WhwGmIjkcDO8zwwAMVCYeQP0La545ayvPg++Xwwcrn/QDvpj8IbEYmfyDugT1IT5f3JmqsjZSyqThBRE7Gd5557Dqurq3j0kUewfXY2TBt4Xrgv8fNPCHQeBTB4CZ5wThSRglwut1ayaJqwLCusfjBNNLldsyzLUfvldZGbdtGOPo55bReT4r94JCGeDmCMJSog4lbagqwJ50jf86LzEScLwhejdZsZTcNDR4/iq1/9Kk6dPo2DBw/2fSwMiNwwBVHIaBqUSgWGYeDa5cthc6exMWSyWVBKUavVYFkWyuVyaqaUYsNIyUGKmwLXdVGr1dBoNCJSkFVV6IRAYQyV8fHIr35QJAYaSYLP7YEZEM5YR+TIJ9DTj5/rBTzPi/QCoiY/TgoECRCzUyCW8uiTzLRGKOIlkyJSILYpKwpyug7P9/HEE0/AcRx83TvegfHx8UQ+H0DbnL/G+zc0m034vo96s4lioRBGNHgZZy6bRT6bBRWRCp5+8HmfCsOyUK3VYNk28rkc8rnc2rHHtpUo/euRPuqkBRDria87XqFBJAngAs/I+ZI33fKDICQHfL/jZMHi57odWdg2NYVDhw7htVdfxbapKVTGxpLfZx9iVEEUGMLoUTGfh2LbMOp1NOt1ZHM5bJuZgaJpcF0XS0tLyOfzUW+QFCmGQVqtkOKGQmgJrl27hmq1CsuykFNVaJIUes7z0KhYdlC0VhQwXrbox8oWR4LYwNvqtMcoTaQIfH+9DE7MVgUhiGaeLSV0gzzc2y3JALiOE4X4wWfqovxwtVrFE088AVVR8Pjjjyec+RzXhWmakGUZQRDgy1/+Mt79rnehUqlE5Ea4TEYpG+6oKAb4eA+I+P7Zto2mYWBpZQW+7yOXzSLgj6JysYhysZho59zuuPgG2qYfAv7eIBCiz6iss8s6BFkQ33PrY5RwsiD6bHz1q1+F73l497vfnYyCxSIZ/aRR4nA9DxYnWmAsdFicnITKz5ssy1GDpxQpBkUaOUhxw2AYBi5evIjV1VW4jgNNllHiDnnlYhEZIdrqt7xP5Kq7hNlNy4py+KUhIxGMxTz229S/U0pDx0EhHuxABhRVjWaXsixHLYQZeIthxoBBlOexfWl3/K7rhuF8ESngfSNEL4WFa9fwzDPPoFwq4bHHHou8CsQgJULoqqKssxmOiAzCCESxWAwjCEGARqOBfD6f6KsgdBZi3bquR/4Tnu9DUZTQ3Mr3IzFjIZ9HpVRqKz4lazvSckp4vh6DV49EwsAW/UNUMRLbrsIrKMSetSMLwmUSAA4fPoxnjx3D8eefxwMPPLBGBmMRkUi30IZMtYOiKMhms3AcB47rwmg0YBkGCqUSMrkc8oUClpeXkc1mUSqVUsFiioGQkoMUmw7HcTA/P4+lpSUErgsJQCmTQaVSQaVUiursAW5800fYGODGMl3g8ZkV61K22HU7LSVm4m8A0cPf4S15W6MDEs9fq5wQtJowRTqAmBivb6FljBS1g+v7sEwzqnCQCEGWD8ZiW3Pz83j++eexfft2PHT0aGLgEGFvjx+TqqphdcL6ExQdiyRJKBWLaHINQtMwkGMMOp+1tqZGRItlsd1SsYiJsbGwQ2a9HrldNptNZHM5VEol5HlEad1utO4Tf43xSMlGEBdxxtckOloKxMmC8LyIR49y2SwO3n47Xn/jDZTLZUzPzERNr6JzH48Yxf7vRBQkrhchug5FUWCYJnzfR6NeB4IARrUKLZtFMDYGx3FQKpWiqFyKFL2QkoMUm4oLFy7g/PnzYJ4HQinyuo7JiQmUy+Wwzj1uPMM6OwW25tD7gcGFbxovW+wbsVlxtG0Oz/PgcHvhtcVJQjioKkp74tKiHxhES5BcTfvPMIQGT5bjgACRbbQeIwUMwKuvvoqTJ0/iwP79uOfeexPHF9k5x0LlnTQaBFizJebHUsjnYUpSOLibJmgQJAakBMmKle0FlEJBqAnJZbNwXDfUIlgWXMfBwrVrUFUVY5UKCl0MgFr1JuFBsTV3xi4YJI0lIRZVwBrZAZLXQ7j5kCzouo7VlRWcPn0ak5OTsHnjMFVRoPEume2IoiAm7e4NSZIiQ6pioYCmYUT6j1KhgMBxcOX8eWTzeTi2jQJv7pR6I6TohZQcpNgUuK6LkydPYnV5GcTzkM1kMLNtG8qVSvhgapM6SDTO4SF20hLqHWT7Ip3Qc7bUjnTEthcEAVxu0xzfZ4kryDXe7KmdF0HHgbzPgYgxFkVVusH3fRiGEdX465lMwlcACAe/4ydO4ML587jnnntw4MCBdcfdGjXoWToaC4WL38K9zzRN2Pyc5VtK7MTfsizDE90iY8hoGqanpuB5HmqNBpqGAUopri8tYVmWUSmVUC4Wu5IEkQ6IkxCR2mhtgDSMhTVpIXki1dK6ljhZuO+++/DFv/gLrK6sYHp2Nkw98DJWk5DoemoVgApjpMT55n+L+wlc79FoNkGDIBKI5nM5uI6DS/PzKI+NwfM8TE5OjlyYm+LNhfTqSDFyLC0t4czp03BNEzKAqelpbJ+ZSeTI19necrIQN+0ZdmYNIFTlA4lZs9hON/1AfDmRy23Nt2f4LC9eLiYGl3amQ+1A0V18JtbVixgwhMdqWRYIwsE2l8tBayllo4zh2WPHcHVhAQ8/9BB27tzZdb1+LKXQDfGIRBy6rkMiBIZpRlGWQhvNhyxaZ3cgS6qqYnJ8HGPlMur1Ohpc+Li8uorVahVlThLaDXRtdQecCEbvEQKMoDNjq7ZCbKeVcBQLBezauRPnzp3Dgf37EQBrxJM3D7MdJ2x/zSNeieup5W/xn8TdJoUgVJynpmGgwD0SFEVBo1qF2WzCtizMbt+eihVTdERKDlKMDL7vY35+HlevXgWzbeiqil07dqxVCPAHZ2vEgHLjFyk+sG4gV+zFatMjMRvP7yNeU99GzCZ0BF6LhkBVFGQyGajx0G8MIn/e7+yz29H1m0IJgiDKMxM+6xStqBPHBeDFF1/ElcuX8ehjj2F2ZqbDhtdm1348ctADnUL2GhccNrjrpUHIOt2AJMvhcQqnQrQ/N7IsY4x3KWw0Gmg0m/A8D6v1OlarVRSLRYyVSsn0UUt6qPVYxXYYIQmnxI2W/7VGSFqrHw4dPIgvf+UruHT5Mnbu2oUsT/34vh+mrETJq+/DtKxIm9Duu4jEjAiFoaIqp5DPRyWmhmlGkZtcLgfLtnF5fh5Gs4nb9u5NVKikSCGQkoMUI0G1WsX58+dRW1mBRCkqpRK2z8ysVSAAa7nf+AObP8BHWY9tcVe/jKaFFr1xM6A2y3ueB5eTgjhkWUZG0xJCvm6QRQOfXgShDwLRa2u2bcOwLIh2xrlcLpxlrlsRwck33sC5s2fxwNvehhlODKJWxoip8vkg7/MmTiISIb4z0Q653Wy8ExRVRS6XQ5OnGIQOQsyqRc48iF8DXc6PRAjKpRKKxSJM00StXofreaGZVr2OfD6PMWGvLa61Lvsn9ADr+huMsMI7Uf1ACCqVCrZNT+PUqVNhBIeTYpVHoyilYbdR1wUNgjCC5ThQZDnUJmja+ogS32+JtwhXFAX5fB5Nw4iEuSLdk8tmYVoWVpeWYDab2L1vH7Zt2zbSezDFrY+UHKTYEHzfx5UrV3Dt6lXYjQY0RcHU1BSmJibCgTmGhI88WXPsG+UjyQ8CuNwJMZvNdkxNBJTC5WmDeEhZImG7Zy2uIm85hm4PUUmSQHs0RWolD53Wlhi4Y/ttmOZaJYGihA99slZuF8f58+fxyiuv4I477sCePXui9cZz44kBP1br386VslNuXqyz3bnRNA05SmFaFkzTBCEkmuGLPL3otBjXLkQivxiRERAW2IV8Pqxw4C29LcuCYRjQdR2VSiVyauwERmni/XVRpRGShGj9hODIoUP4m7/9W1y/dg3bpqcT16gkSWGHUV1fE8ByAyafu01qqgotk4kcHQVkXhoKAJqiIJ/LwTAMOK4b6kGyWRAewbEdB5Zp4swbb6BRq2HfgQOpUDFFhJQcpBga9Xodly5dQmN1FZ5to5jPY2piAqVicZ1aP3oIEwLxjihb3Cg5iIvORHtnlXdubF3O5TOy1tLDeOi23QAnBui+IgjcNKjDzoJSuvYQbiNii4fp4wO4wysAxGw4n8t1zRlfu3oVx48fx769e3Hk8OGOy7WmBaKUwgB18W3z+zHouh7m1HnfBTFTjg/CiZQCWzNPaifyi2s2stkssroOx/NQr9Vg2jY838fVa9cgqyoqpVLbUlbRgKnT8YR/xL6HERKFyclJTExM4OSpU5iemVk71hbEowkiuhUEQRRZENEt4VYJnt4ShFeQsKZhwHEcSIREqTY9k4EsSTBME1cuXkSjVsOhO+9Myx1TAEjJQYohQCnF5cuXsbK8DKteBwsCTI2Po1KphDnlNrn8yOgnvp4NEoOE7S3C8jvHdcEYi7rgCdc7m/dWiKOXjiCC0Cv0CYK1FAOLD35szVWw1eGvdXuJ4xTRAj77U1S1p2/D6uoqnnnmGWyfncV9993XXcPRkm4ZRG+QXE33b1PM4kVL7mKpFLVGFucnka8HT39gfZg/viXxnqaqmJycDI2U6nU0uR7j2uIilldWUCmXowqHgDEEXKvR17GFB7hW6dDXp7qsjxAcOnQITz35JJaXlzExMZGIErVeE5IkQc9kktoELpY1LQumbUNTVWQ0DaqiQFAegjC9xkTkhqeiBKlUVTUqgazX63jh2DEcOHQI2zrpUlK8ZZCSgxQDodls4uLFi3BNE65pIqMoqExOolgotG+jjDCX3fowba0NHwSRCIuHnAVs3jdA5bN/0zQjsiAgyg+FO1/b9beGx4eYMRJCIMlyaG3L/xemR8EAx+y5LgzTjGb3WV0Pc/Zd1tFsNvHkE0+gXKng6NGjPc2i4muKz6aHctTrkeMXrYY934fRbKLIB2vRPrn1OxkmzK8qCsbHx1Eul1FrNNBoNKIKh5XVVRSLxTVyFfuuW1NQ7Y5CRI9GQRJmZ2ZQKpdx8uRJPPbYY4ltRmSkjZGTKIvMZrPwYpEwlxMGSZbD5mUx8y1d1xE1wrIsgAtYgfB7LhYKkbj11Ouvw2g0sOu226AM4g+S4k2FlByk6AuUUly9ehWL16+Deh6I50Wtd/O53DpiIGZ7nR6gG1GFt/scDQLYrgufVynU6vXE8iL02m023DV1MGQOWoR4xRr7soXm2zFME67jRKHieFOiTnBsG1/72teQyWTw6KOP9ly+9XsQ6RDRpXBQiJl+JxBCkOe1+AG3ShbntNu5SZQe9nkOZVnGeKUSzoybTdSbTTiOg5XVVdQbDYyPjSGXzUbksTV1EM3kW0pfCWIkYQOpBkIIDh08iGePHUO9XkepVEouwMtuO21D6GMymQx8Llx0uYjRCgJQ00SGRxsk3k+DMRb1zJBEageIumk2mk1QSrFw5Qps08T23btRHhsb+hhT3LpI1ScpesI0TZw+fRqLCwuA4yCnqiiXy8hls+HDJ5sNF2Rrvvbhv51nVv0OkgmRXUukIA7DNGEYBiyuOQDWQqaVchm5PgbWtiRmbUeGiiBIABRey9+v0Y7v+6EKn6cRdF1HqUMtf+JznocnnnwSlFI8/vjjQ9Wwi0jHsAY5/Sj9JUlCoVCIiJPwpOh1fuOD8iCQJQmFYhHbJicxPjYGTVFAKcW1xUVcW1xs2xgLiOk9uA8C5XqRgP9QESURosnYZ/rFzp07kS8U8MbJk+0XiN1T3Y5a4eSxUi4jn8tB5VEDx3FCsabjhOm2bDZMowGRm6K4p4RHAiEkugbPnz2Li3NzbfuFpHhzIyUHKTqCUopr167h9KlTsBsNSEGAyYmJqJZe5bnv6AFG1nwK4rPlVnSqZU8sE69q6EIKfN9HvV7H0vIyXNeNKg3KpRKKhUJvPUHLfrVi0NhGXPkf/6xESO+ZOGOwTBONej0KsRcLhUhh3g2UMTz97LMwDANvf/vbkeujyVS7QTwYQozYin7LPguFQpj/pzRsENWjymPQbQDhd+FTGpYr8m3OzsyE14YkwbFtXFpYwGqtNrARkmhpTWPkAYSAxTUlPSBJEm6//XZcuXQJhmH0XL4XSRB6ghJPnYhSVItXdHieF0ag+H0hIjgCsiyHrdIJgeu6sB0H1ZUVnHrtNTRqtT6PKsWbASk5SNEWlFLMzc1h4fJlMMdBTtOwc/v2aBYljFaiXDr/iZwOu6y724NznZ6gwyAQ+D6azSZqtVporcsYMpkMJicmoofiOsQe2u0Gxg2JI4FIfNhtPVKsyVQcASc5tm1H+eBSqdTToTDcOMOJ48extLiIRx99FOVyua99bufmKCIH7coY+4XIx/eCuIYUPlM1uT9Fv2jtati6D5SLDlsjErKiYGJ8HNPT09AzGSiEoFar4crVq4nI06AQOhpRmUMZA+X70a7MVGDPbbcho+s4ffp039tKRBM6nOuMpoXkkvsbUC5sbTSbYaUC7wxptZx3RVGQ49FA27ZDK3LPw9zp07h84UIaRXiLICUHKdbB932cPXsWzdVVSL6PbRMTmJ2ehs3LqAghKBWL0cNlnT1xr4GhR265H1JQrdXgOE44CFCKfC6HifHx9t4EWD9gjdLwJSI0PUhRJDYjBDJZs0a2bRv1eh0BjxYUCgXk8/m+eioAwCuvvooLFy7gwaNHMTU11d8+txmsIq8BbDByAHSvjohBURTkCwUQIKy7H5QggFfBxLZHuW9CEARrOoU2yGQymJmZwRhPNQSU4ur167i+tNQx1TAwhJ4C4fkNKAVFMsKkyDIOHDiA8+fPR6W4gyDSRKx7g0R6m1KxGAlZha0yYwyUd49MNBJDSCyEYNHgbc8JIVhZXMTZkyfhbIBEpbg1kJKDFAn4vo+5s2dh12qQKMX2mRmUSiWYvDseAVAqldr6AaxzP+yA+CC9Tk/QJykAwhrurK4jo+tQuSkMi83SxA9p+RkV4umDftabODM8R21xUxtwcVipVFrXF6Ebzp45g1OnTuGee+/Frh79EhJoIxwUYX3R72AjGOTTmqaFAxdjsG17nVNlX2AMAaXwBSmIX4c9rslisRhWDuTzUCUJtmXh8sICajy9MwoQhFEjwisQRCpCaBf27tsHIkk4e/bs4CsXKTh0Pu+EV7qUisXI+4BSCo97Jhimue5Yc7kcVFUFYwzN2PuObePsG2+g2WgMvq8pbhmk5CBFBEEMnHodoBSzMzPQdR2B74eNfSQJxWKx7eDVr9hOhFsFuukJgLAKodlsolavR4OGqmkol8soFovRgCZmOa0EY5RkIH4MQ2nU46SIsbDngOdBIgTFQgElXtbXrwL+8uXLePHFF3Hw4EEcOHBgoF1pd16G9TfoiD6Pg0jSWlttXoLqtnhSdN4EJwWURttb54nQjwZCUTAxMYFt27aFZa6EYLVaxcK1a0PN5ruhXbRNkWXs2rkTFy5c6LtjZ8f1i20gJHpxiKoEIXDVVBW+SNHV6+vOXT6Xg8Jbq8fPQxAEmDt1CsuLixva1xRbFyk5SAGApxJOn4bLHxCCGIjaaFH21FUB32MwYIyBiXB6H6TAiKcPGAuFhuVy9GCjlEYNllRODtpa4Y4QLKZMH0asCIQztnqjAc/3QRDOXEX/BkmSQtvpHudncXERx44dw+7bbsPdd9011H60YqOVCuvQZ/RBpE+0eCibNw1qB8YYWDxKQOlaa2/EWhjHd6XPXdZ1HdPbtmGsUglTDb6PhWvXsLi8PHCqgTEG54X/DvPPfgb+1ZfXvd9KEmZnZ6N+ESKyMHSppCBKHb4D4W0gWjozAI1mEyurq8kUAyFr+gPXXac3uHz+PK5cvDjcPqbY0kh9DlLA932cO30afqMBCkTEACInyR8WrR31BIRqu5cIMRKQ9SAFlmWFPQ+4+ltTVWR5eVYcHu+hEK/JFzOmUSNKT2ygrp1RGs3SKGNRNUKrTiJerhfPTQvTqHq9jqeeegpTU1N429ve1vcg3HXfeJ4eGCE5QH9+FlGFC2ORi6LreaGLIte2iGgN5cSgp7ajNQIzgD+CJEkolUrI53JYrVZhmmb0M1apoCS6jHYBc02Yn/8w6NWXAADW2S8j932fgzy+v+3xM8awbWoKqqJgYWEh8jxojch11Bd0OhYkr6FWqKqKsUoFEiFoGEYYISQEqusiq+uR4ZKqqvA8D6Zto1gorLmTEoKl69fh2DZ27927ISFriq2FNHLwFofrujh38iT8RgOMEOyYnY265hFCIgW5lsl0HDS6+RkIQViUPujwgKZcJLVaq8FyHFDGoKoqysViqNpvs23X8wARNRhyNt8LQ6cQ2sBxXTQajbDaQ5JQakMMWkF4pEXiUQXXdfHVr30NxUIBjzz88MCNcjrpQsQsVUQvRoV+Qvqt3RjzvNokoBQ1HmEJgiBsaNWDGETrRPtqjEEgKwomJyexbds26Lx3wXK1iitXr3ZNNQSrczA/870RMeAHB+/lT3feX0IgKwq2bduGhYWFjssJvcI6XUUP9NIjlMvlsLxT0+DxltGNZhOGYSAIgsiOXLSSbrW5btbrOHPy5HB6kRRbEik5eAvDtm2cP3UKvmGAEoLtMzNh21/+UPV8Hz7P/YrQYis6mdeIFELrw5m0EAQaBDA5KYjsj1UV5VIJ5S6lfIwxeK6LgDFkVHVDM/pOiIgNNk46bNuG0WyCgZszFYvrulb2AgHw/PPPgzCGxx5/HIqiJCox+hks4lGJOETIXFSgjAr9lDWKts2UpwooN+shhCDw/b7q/9shXh2ykSPSdR3T09OolEpQZRm+52Hh2jUsLS+HWocYvNNfhPk/vxd0dW79irTeEYcdO3ZgZXW1p84hKhuOiRs7dsuMfw7tr2WRPhC9GUS1iut5obOk60ZaI1Hu2dqwy7FtnOHWyylufaTk4C0K27Zx8dQpuKa5RgwymUTY0jJNAEBG19vPcHnaYd3L6BH+5A82wzSxyrvoiR70pWKxKykINxs2U6KMQZakkYbBxf6zEZEChtC9sWkYYLysTJj/DIozZ85gYWEBDz74YJj2IUkr38T+A4Co3IgJ9TqldIbpxNgPWssaxf7E1fqiRbQoQWQ85ZLnPhoub1s87PY7EaJBIEkSyuUydszMhA6EsgzDsnD58mXUGw2wwIP91X8H+4v/FPDM9uvIjvXczuzsLBRZxtWrVwfex/h5jV8DHUGS9s+apkFV1UjzUioWw4gdC5tlOZ4H1/Pg+T48z0sQfRE9DIIAZ0+dwsrS0sD7n2JrIU0QvQUhiIHDDXdmp6cjQZyA6ziRtWquQ0OleNtcYE1X0I0UCCMWESUA1kxXtH6avPDPCNGUsIIdBeIzoVFEIhjCJkgi/SFaCw+D6uoqXnrlFdx+4EDY4rcNEg2EwhfW7Ix5eoSwFjtqfpzeBs2PxOAgyEf0P5AgJx12fE1jEVtGNBeyLAuGYUCW5aHJi0RIZEi00VTD1NQULNvG6uoqPN/H6sIZ0OO/BHn5te4fpr0dIFVNw+TkJK4sLGDPnj1RhGBQiIoH0USr9YgJEH73hCS2kctmUedpBT8IUCgU4HkeLNuOxJ+GYYBRivGxsbVrjpC1jpKM4dL8PCRJQmV8fOB9T7E1kJKDtxhEKsGzbRBJwvbZ2bUywBhMHjrM6nrb8DdjDIiFVCPBYQcIkZnZbMKNlcz1SwpY7EFGEIY7GRBVKWwU8RTCKEB5qaJIy+S5lfMw8D0Pzz77LCqlEu4csDIBiJGG1kEmNmgLFbosSWulprGBNGETzGemiW1g/Uw17gPRq5dGq+5AIJPJwPM8eJ4HwzRRKhaH/o6EfoMO2Q00jqyuIzM9jcbJr4D+7b+G5NR6foax/uyhZ2dn8fLLLyMIgoSfyFD7HSsdjio5YhAkQfgvSJIEnRMy0zShcjGioihwebTAbTRgmCZkWUa5VEp+dzGid3FuDqqqIt+HgDPF1kOaVngLoZUY7JidbetZQCmNBot2bZiFTaz4O/5AaAfKGJqGEbbO5emDYrGISrnckxi0K00UJWwABjIMart+JI2SRgE/CFCr18PQaxdviH7xwosvwrQsPDSEAFGgW+5fmNsQEvZ/aBuKb9WOtPz0Qs9BrU3kQHwun89DkuWokmVYiH1oV+o4KBijcI9/AvjLn+mLGIQf6p8cUEpx/fr1xOsDi0+RJGUMSDaNSizMInKsqeo6a2XhtFgulVAoFAAAlmWFvRlibcmTq2SYP3s2dVO8RZGSg7cIbNvG3OnT8GwbkiRh5/btkfiwFWK2K8f6wccRKfj7UIM7nodatRrljLPZLMYqlbbRinXbiIf54ykPkVJQlA33QwBGW+Hg+T7qjQaCIIAsy2HeVlWHrni4cP48zp8/jwfuvz9siLMBdPquon4KI6xSaIdu4XHhddDO/kcY9xBCQq//mEHS8rKEf/zPZvG//+wMVle7739CYb+BY2XUh/mFfwznqY8BbADDoj7SCkBYrVEul7Fw5cq696IeJv3sZ5fzLcyjgpiQUZwdSZbDVtYII3Re7HwTQqJW7UIj0uCCxcT6+bKB72P+zJnR2VGnuGFI0wpvAZimifPnziGwLMiyjNnZ2a4hbq+LU55Qla/z/W9RLlPGYBhG9NAQTXZESWLQb5i53f65bqT6HxabQQwc14XRbIIiJC7FQiEchIacpTabTZw4cQK33XYbdu3evbGd67IPUUphE2vUe4kCo3c67KeqqtAzGVi2DdM0IReLMAwF7/y7+9Fshmmvrz6RxzN/09l+eF0qhGsuBv123Fc/C//cVwb8FAYiEtu3b8eZM2ei7pytEOeLofM13K/1M+WaFJF2IIxBVRRkdR22bcO0LJRi6Q1FliHLMrJcqBwEAUzThO/7UQfReKWIbds4f+YM9h48ONIy2RSbi/SbepPDNE3MnT2LwDQhKwp27tjRM8QtyEGrt4BwpouIQavJDIfbJlpQafEqaDdQdDNrEQh4oxhGaX8CxjbbAEabRgDC8q4mJwaapqFYLK7NTocgBzQI8MwzzyCbzeK+e+/d0L71ErQJ0VrPltIbRLfz3U6Q2Ao9m4WqKGCMoVq38CM/vjMiBgBw7bqKq9c6E5yOdf7ddroNmLk84Cc4aP+z5+3bt8PzfSwvt9+WiCBI4T/r9xG9v/d2nxH9KRiALLeRFi2fBYTpGCEEuq6HIlsStniOpxmi5QmBaRi4fP78QPuT4uYiJQdvYvi+j/lz5xDYdkgMtm/vOQDE9QZiMI+aGbU+bFoeSpQxNAwjDKszFgmW8nw2kfgoWlTssdlLN4gQp6KqfXctFBi9EwKvSDAMmLzsM6vrYcQgXr43hPjtlVdeQb1ex9GHHtp017mo4dImk4PW0rnW9wB0JVJCfwAQ/F///5147vn1jp0vvDhgNQghfaXH4tCOfBtIcXaw7QBwnf5z75VKBTld72qIBCAhoo1fZxvpz0C4aJMyFmmOHNdNRCJE1Yjv+9B1HcV8HpIkdU4zMIbV5WVca5MqSbE1kZKDNzEuXbgAattQCOmLGABr9e6Ee/zHbVK7IYoWcIe0rK6vixbEkcidDvCAdnlKYVCBn3hwjjJaICoSxIMwl8sh18FiehBcvXoVZ86cwd13341KpbLh9XWDqD4ANl9zQICOhC5uodwNkizjU3+wG5/94+m27594sb1ZV1/712fZoFTajuL3fRaZR/8hiF7pe/2WaWBpebltuL+dceXs9u0hOejH3IpHEeKVDaOAqqpRMzDbcUKCh7WUY9xyu1goRJEd0zRhmOaanoHf39cXFrCaeiDcEkjJwZsUS4uLMKpVMEoxPT3d96zQb4kaSD0EUB2jBVxA1gmRJ0If0YJoW/FGS32Sg6gaYYDt9INANE9yXYAxFAuFtpUdg8KyLDz37LOYmZ3F/n37RrCn3SFSCpIk3Zh8cA9y0Atf+LMCfvk/dZ61b4QcAOH13k+EiWRK0I9+BMUf/gtod31Xf+sGRdMwcPX69aicNwiAf/N/zeLOB+7CnfffhX//H9dIj2jEVB/GcXCDpZpxZDIZgBA4joOAp/Rk7s7px2ycJUlCIXYfdEozXL5wAfVanxUeKW4aUnLwJoRpmli6fBnU91GpVAYy3hFhe1VVEW+n3G5GNWi0QECsSSJkINW4aLQkS1JfZjibIToEQgJVr9fhBwEIb9IzCr8FRimOHTsGIssjbajUDfQGVSr0gjjSbpGD4yd0/JN/1t4ASuClV3V06vYcGf903RGex+8zX0+0HILqfF/LZjMaNEWB7/tYWFjAq69TfNf378fvf3oSQUAQUILf/OQULCs8G1OTk1BVFVcGCMWLBlqjcIUUUBUlIk3i+RBFgRhbN/hndT1yAW2XZmCM4fy5c6hVqyPZvxSbg5QcvMng+z6uzs8j8H3omQwmxsb6+pyoiRaEIB7+bW3W0zZaUCz2jhYIlz4goWbuF6KEbRAh4qYQg0YDAaVQJAnlUqm3fXOfA83JU6eweP06Hjp6dCix5frN9lbi+zdKb8BBgLakp5MJksD5Cyp+7B9sh+N2f2TZtoSTp7q0Fe/nehtAg+AvnEBw6dnEa8rhb4VUXl9doo3vxvT0NBRJw1e+PI5/8k/Hcf5igKQahqDeCI9RkmVMT0/31h3EEE8nRARhgyRBeBwQYN0gT4UWqeV7E9U6SizNYMbSDCwIMH/6NGqrqxvatxSbh7SU8U0ESikWL16Ex01Htk1N9fxMdEszlggt03bLIBygjWYzKkXM6npUvtRzO20cCEX5FA2Cng+xgKuolR59F8R2Rk4M+CyI8lKvqFSxB/qhBsvLy3jttddw+MgRTPbxvfWLXucgEiPewFa7kZti4sXOEapqVcIHP7wDK6v97eOJl7K468723QHbbrvtgiQhmu0E59jHkx/Lb0Pu3T8PSDK801+Ec/y3QZdOQt75ELS7vhNn5rP4D//pCBaXXEyNmwAYNM3F6uoYKA2vpbGxtbtvanISly9f7ljSGEc0ULccrzieYWyYBTRNg83TCr7vR4RYrD/gBEGK9VSRJAmFfB6248C2bTiuCz8IkM/lQjJKCM6dOoW9Bw+i0uckJsWNQ0oO3iSglKJx/TqatRoc38f01FT35kWIzd7jA6p4SMccEBlXLhumGaUQZH7j95P77xXeJwgFkL1MW3yR7+zwkBy1BXIcPqWhwyOlAxEDoPeA5Lounn32WUyMj+PI4cMj2d9+EQnKblDkAIhVqsRNiTqQA8cl+PBPbcfZuf4jKSdezOIHvrfaftsDDpIE63uICATXX4M//9XEa5kHPgiihPuqHfp70A79PTDfhRto+OSnCvjs53IIKAGgQc+omJ5oIKMFUBQfq6tjkCUFmrq2f+VKBQxAo9FAuVzuuJ+MtW+CJo4h/GN4giBJElRVjZpgiYhAuFoSXeNBEETtxcV7WV2HoigwTDNKMwjbdCJJIUG4/XaMpX0YthRScvAmAKUUbq2GlaUlOL6PYqGAIrc4bUWcFESVCPFBruUhLXoiGIYRidf6jhbESEcv9Hpoi/C3JEltyQHj+c/NIAZBjBgoAxIDoMfskzE8//zz8HwfDx49uiHnvtZtiu+3E+LueDfanKaVDEbkoGW5n/uFbXjm2GAVIAOXM3YD1yAwStdFtuzWqEF2HNpd37FuFa+8kcd/+lgJl68kH7e2k4HvKygVa8hoDchyAE1NCirL5TIIgFqt1pUc9KryANbSDMN4IABARtNCx0TXRZBZn7qJ1i90CDw9SQiBqigoFQowuFmS+J3RdTDGMHf6NNiBAxifmBh4v1JsDlLNwS0OSin8ZhNL16/DtW3IkoSpNjdYPH0gfrcrUYzP4CgfFEWOXZakvrQF0fYGmMWL9EKnnHM3F7/NqEYQEOWKwg55UGLQy4Hv3NwcLl+6hLc98MBIyiAj9JE3j84pN7S5mYgTVoErCwr+4A87D4idcG4+09FKedjjbP3Og+Uz8M/+ZeI17f4fBFHXvkPDAP7rfyvin/7z8XXEQMAPZFSrY5CJhNmpBrbPLuLq9evwORFXFAWFfB7VLuI9ys3JBjqeIc6DoihhhEmSEtqDdesS1x5jiVJZkWaIeycYhhHVcc6fOYPlxcWB9yvF5iAlB7cwKKXwGw3UV1dhWRY8xjC9bdu6WaAYPIG1mUMn7wIhRHQ9D9VaLaxtRtiAqVIujySN0AkEoQirHUFoF/6OyhQH3E6/oIyh0WjA931IvIHSKGfYtVoNL734Ivbt34/t27ePbL1AfzNDEQm6kSkFgVZNSFyQuNbKm0GShguDP//SCKMHHPH0kPPcbybfzJSQuft7on8bDeBnPjqBP/1fvQkfA0GjWYJt57BrhwHHcbCwsACba4cqY2MdyQHtkk7odhxRCnHACIIQyjqOk0grtK5fvC6iFEGs5DGr6yjk8yC8msEwzbC0k1cxLLc0nEpxc5CSg1sUghi4loXq6ipc38dYpQK9Q7gv7kDXq8wp3m1NRAsK/UQL2lQjDIqIILTA9/2wjJG/t1lligIMCFsuc2JQKhZHWu4XBAGefeYZFIpF3HPPPSNbL4B1rZM7QQwq7c53tC4x++Pf7UZEbV0Rv7b4NrZNBfg/f3YR2ezghj7PPqeM3hGTh8mD1fPwTv1Z4q3Mvd8HkllL5T35lI7zFwfL2tp2Fhm1Ao3n8xeuX0edaw1qtdq675RSOjAxSBwOeLRuEHdI7kxKuc1yr2dC3CMlavfNfUpKvJoBABzbDskQYzg/N4fFa9eGPKoUo0KqObgFIYgB830sLS/DDwJkMhmMtbjp9dQXtCAIAjR5syRZlqFqWl+kQGxrVGLAqIJBiCIZC81WKIUsyzeEGDSbzag7ZbFQGHmp38mTJ9E0DHzDu989VDRCPGTFb0EIxADOKE28hpb3EUuXMEpD58mYziT+G4yhUa8DCAkTgGhASUSgYt9/vIwuIqct74MPMuL4fT579DwPiqKASBI++ANVfM/7azh+Iosnn8niK3+Vx+sne0cF5uc1OI7TlixvFO7zv41EEyU1B+3eDySWiVccDIJCQcbM9DSWVldhWxaWV1dBAbi+D9OyotRTPFy/UYjvoh/iRwiBFtMe9OquGtchCFBKQSQJosOjbduwHQeW44Ayhlw2i4tzcwBjmJrp7muRYvOQkoNbDIIYIAiwsroa5v4IwTQvf4sPnOuIQTdxmu+jxp3YCCHIZDLI6nr/xACjHazjBEEMgIQQyLFSqc0AA2A0m5GnQrFY7O1j0GN9rWg2mzh18iQO3n47iqVS9HrrgB8/9ug3/3ttA3wLMcV4/EEszptILYmUkhCain0MeGQmufNrFQVivZTSsMw1RhwE4mH36NrD+usi/h6NaUUsywqX5419wP8mAO69u47775WQ1bfh9ZM7onVlMhSeR0Bpciu3H7Bg2zZUTYM8Qj0FrV+B+/ofJ17T7v5uSNlK4rWjD7r4rvcb+Mwf5jCIGqZQYJAVBdNTU6hVq6jV6/D59be0tITdu3ePlBgAse9HkvrSLmQ0DavVami21O+5bSkNFeSVSBJ03t2xYRhRO/ZcNouL8/OgjGF6dvA+Fik2jpQc3EKgQQC/2QR4i9RmswkvCDAzNZXI2Saa/qCzvkDA9Tw0Gg0wxqAoCsYqFXi+D891oWQ729EOUo0wDAhCDYQTEyNutnDOMAw4ngcwhmKxuKG20ED4nQX8YU4pBaMUx48fh5LJYPvOnajX68kBv6XET7wmqjHiIIRAkuVQJyIevvHZuZjdx//n7weUwvN9SABKxWL0fvSZlmiAeKgXi0VUSqVEdEHsVTzSEEUtxHKIpTti78dr82VZDlX3nLyICAcBIvX7U8/kE+fgW//eIn76py7i+ReKeO54CfMXsrjziInvfv95mJYPPwhQ4E2BIkdOSoEhU0T2859MdleUM8jc/0PrliME+JEPNvHOd9j41V8v4tXX+yvFLBTWBudypQJN17G8tISMpuHSlSsYm5hAdhOiIcBaSXMvEW3UkrlH+XHiM7HPxgmhIAmapiHPWPhME1GSbDbs5MgYpkesyUnRGyk5uEUQJwa+72N5ZQWe74fVA/l8V3FQtwHVsW00DANAqEYuFYtwXBdeowHbdZHtQA4201MgDkJIKJxjbNNd/AzLinwcCoVC//0buOCKUopAkIEgiFIh8TKz69eu4fr167jn3nvDZddWEua0ebhV1IqL8KvMf5PYMm3bXvf5sHZdF6qiQFGUvo4zThrIKKM3nCAIAkApjZz1ItLEl3EcihMvFhMff/BtDRRyPt7+6Are8diq2FkEgYSmGRJcyr0p4rlvYfgl8wZj4ne3FA81FuG+8tnEa9pd3wEpP9nxM/sP+Pj3v7yKX/g3ZTz9bO90SLGYnLlndR2zMzMoFgowm01cv34d42NjHUuVNwqRYhAEst015vk+FFWFz6/zXiWzrZBaCAIQliprqoqsrsOy7UQE4fKFC6CMYXbHjvYrTLEpSMnBLYA4MWCMYXl5OcrLjo+PdxwQet2whmlGfdozmUyoIOY1yYQQBHyAa1Wzb3bOv3VbLAhCE5ZNdPGzbBs2Pxf5fL6tfXHr4B/wn9YQb1wQKB6cEiHwgwCnT5/G9MwMdu7c2feAvxkQvhE3o1IhAUEw4ykMfu4kHhkReOVVHaaZ3N93v5OhUqlEEQhBxiilkAiBbdvwfR+aqoJwkgERySEEfjwiwyMrCcLAUxyyJME58btAEHNelBTob/uRnod4ZUHG8ef7m+0XCuvvZUmSMD42hvkLFyBLElaqVTDGoojPZkGWpLb+CeLZk2EMkCS4rhs2ZxoArXbZBGGKSZFlZHUdpmUlCMLCxYsAY5jduXNDx5Sif6TkYIsjTgwAoN5ohDamjGF227bwBo4NTv3oCxhjofAw1jApn88nPq8qClzPgxtLLWx2GmHdfvLfPrdNFs2gRq2Yt20bpmkCALLZLGRZhuu666IA7SoABBEghEDhM09ZliGLWWjse3jppZfg+z4euP/+gZphbQb6qVS40eh1XT31bLIs8Pb9DqYm+XHwgT2eLtA0DfV6HQGl0DQtqq/3gwCB76+le2KpH1CKgFIEvg8vThzsGvDipxPbVw69F8hPJ7xB2uHjHy/C89eOTpYY7rjDxcuvrB9QK+UWosn3Z2x8HKdOn0Ymk4Hjulit1UApRaWLMdIo0HpsjAtGASCfy0WOiQOTA6xFH+MEAZyIZRmD3RJBWLh0CZQx7Ni1awRHlqIXUnKwhUF9PyQGfPD3fT/sguj7mJqYQCaTSTjh9aMvoLzVsGjNHDclAdYGZC2TiW78XDZ7w9IIrfsRldHxtIKozW7X7GXQ9fs8t9lsNBAEQdRZUURTov2IpWxaQ9GCCHQ652Lfa9Uqzpw5gzvvvHO0ZkdDQngc3OxujEBSyIiWv+N4uoUcPPqw2XW9EiHIZrNRhExT1UijQRRl3cOPIaYRadWKvPEZEH/tugCR4B/+HtTr9SjaQMS1Ebsunj2m4ZljyYHzfd9q4sMfauKZZzX8xseLuLIQ7sm2qQB33MFFokKPwb+ncqUSlVKWi0XUuDkZoxRjm9iXILqqeWWJJ0qKJQm5bBae50Wt1AfV5yTWzdMMEiEIGIOiadAYg+04cF0XBCFxv3b5Mhhj2Ll7fWOrFKNFSg62KFqJAYBQuRwE0DMZlGMq97jwrFdFQp2XrxFCUCwUEuFzEcIHIWEYVqQWfD8UA478KNsjPjgIFz8lNgALAsRi9r+94PPZoM9/giCA67phpzgAeiYDVVUjotUuCjCM5kGQtxMvvIBCPo8DBw4MvI5BttXvclGr5q0QOWgRTraD6wLPPT8YOQC45a/rwvU8mLaNQj7fcVkCRN83YgMdcxqon0xqDci+bwTKuxLRBgCIfAMZQxBI+LVf35P43FglwPd/X1gO+vBDLu6/bxlfe0LHyoqEr3+nDU1DQmshUMjnocoyqtUqbr/9doAQ1Op1NAwDFOi7++qwIAgJgcFn8iKKp2kaHH5+NyLejXQIseeXxqMRtuPA5tvNZrO4fuUKQCl27tkz9PZS9EZKDrYghCVynBj4vg+j2YTPGLbF/Aw6CRFb4Xke6s0mGBdjldqU6MWb4UiEQFMUOPyhWtokAVQrWoe3qKVwG70B4XbLrVEEERWI/1Dhjc+V2L7vw7IsyIqCrK5HXgabYSV84fx5LC0v4+ve8Y5N62HQTy+FxLKImeBsFcTKJlvx0itZWFZyXx8+2pscAOGA4vk+PJEmU9WBok7Oy38AOI3Ea/lH/gHkYnF9tIGxiHx+4c8qWLia1K587/csgRATjhtaEWuajHe/K3RCDEtF2ToNCxDe36VyGfVaDQBQLpVACEG1VoNhmqCUYmJsbFO/T9/3Efg+CEIzJCAkCY7rRpHIjSAyTIo9h7RMBuDakQRBuHoVsqqmIsVNREoOtiACw0gQAwagXqshoBR6JrMWlu6TGDiOE5nXKLKMYrHYc8bIGEM2l4Nbr8NzXTiOM3BecRC0dukT8LkIs1NLYUIIaBBED3/xYI7WJ4gDD/0KAZ4VBCgWi9BUFYVNJD6u4+Cll1/Gbbt3Y2qErZjXYYCUz81o09wPov1vM3A/9UwyanD4kI3xsf7cARVZRjaTgeU4sCwLxQGOm3km3BO/l1zf/m+EPL4/2ufWaAMDsLhE8Ed/lKxiOLDfxOOPrcJxCeA4UZpAkWWQWHSq0/dYrlSwuLQU/V8qFiERgpVqFZZtY2llBZPj45tCEBhjMHm6TdO0qCujwvdXVOxsJBIljltqEUJqmgZQCtt1o54OWa5BKBaLKMSiqClGh631dEiBwLLAYuY0AHcuNE14lGJSRA36FAealhWJ7TRNCxsHdSATUZtmvm5FlpHLZmGaJgzLgqqqm/bgaUcMAG6bHCtjFK2bfZ7u8H0/SoWAUgT8OCRJChvFiB8eEfB9H41GI0qdbCYxAIBXXnkFlDHcddddm7qdQWbCIgQujThCshEQQkIvB7SPHLSKER99qL+ogYCu63A8D0EQwLbtvomu++pnwezV5LqOfqjrZwiA3/3dEkxTAondLj/xD5oo5LPRtRtQCo/SyIxKfFbm16v4Le65SrmMubNnoyZoQFhySyQJyysrsG0bi8vLmJqYGPl9ajtOmI6UJOS4Rkk8R2RZju7Fjaap4n4I8TSZpusAIbAsKzJ+y+o65s6cwZF77tmQUVmK9kjP6BYC9TwEnJ1HznKEhIrrIICuacjncgli0GlIYIzBMIxE46Rhuinqug6Xhw0N0xx5fXWkWG73HqXwPS+smnAc2JYVWexGKQK25pyo8BmNzEVnraRD9JIPKL0hxGBlZQXn5udx/333JUSfNxtbsVIBiDV6aSE6jktw/ETSb6MfvUEchBDkslk0m03Yth1dJ93AAhfO87+TeE257R2Qp450/dyrr2v4q7/OQZIAygBCGN7zd0wcPhQA0KBiTfwYJ7oBJ8JioAW/dyUe8cpms2CEoF6tYmx8PNqeuK9XlpfhuC6uLy1h2+TkyAhCEATRcySn68n18somcQyjiC7GS6WjK4GxKJVhxfxIAGD+zBkcOHx4w9tNkURKDrYIKKXw+Qw/uiH4TLfZbIZRAyE66hExoJSi0WyulRzl8z1L5+JOd/F1E4QPn1qjAdd14XgeMht0DYy22X5H4AuxoGUlZvnR/hGSiAqostyWYIhwpygHE62nVUXZdGIAACdOnMBYpYK9e/du+rYGwc3sxtgVHQazEy/ocJy19whhePjBwcgBEObJNU0Lffwtq+c14L7+R2BGskNg5uiHu34moMCv/3qJ72dIeLJZih/+oVCzwICEkFZcw+CDqvDOaC23dCmFqmkgABauXYOWyUBRVaiKAolXDkiTk1jiHijXFhcxNTGx4Rk1YwyGaQIsbJbU6v9BEOoOLMeBN4QhUju0nfRwEbKmaWAIy48jglCt4tqVK6mL4oiRkoMtgsA0Iy8DYC1kty5qgO6q7iAIwjbDPNReLBR6NkcBgCBea9wCRVGg6zpsy4JpGFDL5Q2HpBOla7xESjRzEflGQW4URUEmk4kepIPMiES4WkQMhOZis82Gzp49i9VqFV/3zndu+rYG9X0QkYNuTbhuBkiHEtWnnk1WGNxx2EG5PFxvgWw2GzqABgFcz4tmo61ggQfn+G8nXpN3PgRl9r6u6//iF3M4e25tnYQAP/D9BirlAJSF577b9SD0C+KOFbl8MTNXM5mwPTuPLpiMRS6XqqpiamoKS0tL8D0viiBshCA4Ip3AIy/toPBInTAG2zAhEX/EDLIY1q5z8TwTDZsYgMsXLyJfLKKwycZQbyWk5GALILAsMNdNzIwBJKIGE1xr0PpYibNs3/dRbzQie9h2FQntwMB91bsgl83C48ZApml2LQnrZ3uU0lDl7LpR7bSAmI3IsgyFd4fciDeAYZpgjK1FDDZ5sLZtG6+++ir27duH8U0uMRsUjLE1j4MtFjkQVtGtV2KrGHHQlEIcsiQhm83CNAxYlhWSzTbXg3fqf4HVLyde0x/sHjWoNyX83v9IDk67dnr45m9uRuWJgxLFeJQMmQzyug7KrYY93w+jYkEAGgRwwg+gUCigVqsh8H1cW1zE9NTUUAN2PJ2QzWY7knJhmubxqN9GyUHHdClZ6/MRJwiOHVZ7zJ85g8N3353qD0aE9CzeZFDPg29ZbVMFwt1NV9WwdXKX9TiuG1YkcAVxPxUJAPo2EyII0xP1eh2O40BV1b4iEtF2EJIX13VD98GWci1JksKwr6qG7XoJgcE1BhuJUgifdoKwVlyJCRvjBkejxMsvvwwiSbjzzjtHvu6NQpTJCUvnrQShsYl/J7ZN8MKLyZTYow8ZG9qOnsnAtu1o8Mu1pNwYDeA891uJ1+SZeyDvfKjrev/H/yigXpcABviUAWD48IerkOVQQSTJcl9dD7sho+twXBe6rkPHmmOh53lrlT18lr9aq4G5Li5duYKZ6emB2lczxmBYFkQztl73uqIo8Ljgc6OphXUCZfFsFG3IORIRBNtGFcD5s2ex/9ChobedYg0pObiJoJTC402PWm+lKGoQBJicnOx6s1m2DYOvR1VVFAuFvkLvUTi65YHcCapIL9g2moYBENJVf0BjDy7X86JwttiewsmAqqpt89801tZ1GHieB8swwBASm/iMIuosx81X2BCzunZYXFzEhYsXcfTBB6FpWlQ2uFWwVaMGANqKbI+fyML11r5/SWI4+qC17qMDbQZhJKxpGHBsGxkepRLwzn4JtDqf+EzmwY90vT7m5hX86Rdy8AOAIAzDP/6YhfvujWyRoq6ZGyGkuq5jZXWtekLk4UUu3vd9+J4HhrC6oVarwXFdzF+4gKmJCeRyOWgtx9sKYa8e+D4IIVE6sxtURYHFt094t8ah76YO5zlygUWHFINtY+HKFRRKpbTN8wiQkoObiMA0gQ6DkogaZHjUoB0YgGaseZKeySDPmyf1QjyFMchsJpfLhQIp10Wz2QQpFBJ524DncgUpiLYnejaoKlRNC61se1VOcJe4YVTXlFI0OTHQdb2riloiBJDlSCw2LCileOGFFzAxOYldN8jedVC9QeRxsBXJAbCOqLZaJt99p41ScWOzbxASivlUNRK+iiocxhicY7+ZWFyaPAxlzzvaroohJMH/5b8VEVAGQsLhS1MpfuxH6us3jY0RhEwmE4XR261bVRSoioIswu9az2RwfXERjudhcWkJ45UKNE0DkaTwXuQpi3gPhaZhhIM8IVG7614QLqIBpaE2QlXDNMqAx9ftrDBCIHFb6ThaNQhnT58O9Qc3yLjtzYqUHNwkBLYN5rptB3IaBFFf89np6Y7rMAwDNn9Q5HK5joKhVrS6KrbrvNYJBGFtdbPZhMtTGblsFoyxqFlRHBJ/CMXTBf1CWMgOHP5mYV94SikURUG+z/NCsOa6SIGBZz+nT59Go9HA33n44cH2d0jEnQ77hUgrbLWUAoA1h8TYvrX6GzwyoL9BO4jrX/QG8H0/bB6kafDn/wZ0+VRief3oh9Zdt0IgxxjD3/ytjldfS4bdv/P9Bqan2zsdApyEDvEd6LoOh4vwen1almXk83ns1nVcX1qCZVlYqddRKpWQ0TQwx4HLzZiEqDEuQCy0RNt6QVEUUF72rHItx6ibpDFetRA5o3LECYJpWTj1+uu45/77U/3BBrC15MpvEVDfD8sWOzwcarxCIaNpHYV/Jq/1JQCK+fxAxCDenGmYm1foD0AIms0mriwshGWCvHOhoijI5nIol0ool8vI5XKRF/sgEGmFQSMHBldzEy7OGvghzPPxMv/dz36bponX33gDt99+O4o3yrFtAFdEga3qjgjEDHD4b9MkePHljfkbdN0OFydKhMC2LASUwjn28cSy0tg+KPv/TkgGEBJpUV7IGINtE3zik8nve3oqwPvf31kXQQAQWR7q3svoelj2HIvK9YIsy9g2OYlCoYCcrsOxbcg8esJI2OjI9TwsLS+jytMQWV0feGBVeP+VuJVyO4HpKNBuvRkekQRjqK6s4Nzp05uw5bcOUnJwgxH1Tej0Pi9FDCjtqHQXddpAKLLLDGCws26gG/AB5QcBDNNEtVYL8/T8dcdxoGkaxsbGUCqVkNX10GRnyNxjXDA4CKlwXBe2ZQGM9R0S7QhCovpqiXfbI/y1Vrzw4ovIaBoOH1kzyBn1rGkdhli/iBxshW6M3cAAPHciC89bO9eKwnD0gY2TgzgymgZZUcAAmGf/FsG1lxPvaw/+GBjIWnfGlnP+B58pYGkpmaL5sR+rIaN1/24IhutroXOnQLtDaqETZFnG1MREOOjLMqr1OhjCHg2FfD4sleRkXJbl0GOk2YTjun1fx6qigAJr9uUc0gAEoV1fiXZgABQe5YtD5yZNlDEsXL6MxatX+9xyilZsvenDmxyBYXQVv9XqdVBuONIuauC4biQ+1LNZ6LqeMDDqiA4Wxf3ctJSnDBzHScwKJFnGxMREpFJ2eV93VZKGGthbtylu/H5D4L7vw2w2wRCGjDfSJa4TSGy2LkLLCwsLWFhYwCOPPLKlw5hRtz9ssYZLHNG3zK+bp55JXv/33GUhn9844RJhaf4Pstls2Lb7xCeSBmClnZAPfFPHwfHKgozPfS65j/fd6+CxR522y3faj0GOSM9kABa2Mi4OWNNPCMHkxASWV1Zg2TaWV1YQBEHU06GQyyGTyYQTGNG91Pdhca1QhjuQdoJoZx7XHUTv9ZFiECXO/Ub6KGI2y/wzkROmYcDzfZw5dQr5QgG5VH8wMLbeE+JNDN+2QT2v44AptAa+72Ms1nlRwPP9sEoAoTCp31w6gPbEoCVv12l7q6urMLhICYxB1TQUCgVUeMqgVCqFne4ANLiTItloOROlYX5Rkvp6WDAuQAwYg6ZpyA5yboaBiCgQgldfeQXT09PYvn37ulzoVkLUpllEQLYoRD59lP4G3SDLMuSVV0GuvZB4XXvgR0CkzoPhb/5WCZ6/dh5lieHHP1wfKIs1aCWOrusgschBwAL8+ZW/wN/9yrfi6P96O37q2X/S9fojhGBifBz5XA4yIVi4ehW1Wi0q9c1lsyjk8ygVi6GIV5KitEOz2US90YDtOB1n+KqqQkL47Gi37W4np1uPlS4HtO4cyrIcOcIapolTr78+kq6RbzVs3WnOmwyB54GaZteHskgniHLExOeDAPVGI7IxzceiCq1NSgQiQd0gIkDG4DhOJEwSkCQJGV2HzpXOcRASOjEKy+ZGswld15HjD7JhQPm+9zvDbZpm1BVuIwZNg+LCxYuoN5t48KGHwghH7LsQj89BRYP9YBgCspWjBgAS12mjSfDyq63+BiMQI/Kf1pp5vPS7yV0pTEM5/N6O63nuuIZnnk3u37d8i4nduwcfhIgk9a3sF4ZIC82r+LPTX8Rnzn8OV+1r0ft/c/2r+O9zn8IP7vv+ztsjBOVSCRZ/HtWbTeQLheRMX5JCLwVdD91LuT8JDQIElgXLsqISSjUWTVBkGS7QcTDuWq0xLKnmE5FEoyZNg+/78HwfyysrmDt9Grcf6d4TI0USKTm4AaCUhm2YuwyUlDcF8n0f21pa+waUosaJgaIoof1vy+db68MHJQau58FxHLium3hd07QwVdAjRC/UzaZhwPE82LYNz/NQLBSGym+L/G4/A5llWQmjoxs1K2aM4bXXXsOOHTsSkR6xfQkAbUlDbIbpUr/wt3oZYwzHns8jCNa+R1VleNv9g/kbxJv2tJ71+P/+tVcRXHgy8b563w+ByO2NfzwP+I3fLCdeq1QCfOD7GgPtn4Agwb3KaBljeGbpGD4tfRavnHkNAdp7aMw15ruux3VdWJaFfKEAivC6qNfr0DWtbYOwqDxS1+F5HhxuYiYIgyRJoRhQtHIGIo1Gu/u3nQOiEHsODB7BY20IQjabRWAYoJTiyuXLKI+NYdvMzODbeIsiJQc3AAFvXNIJhJCwtjgI1kUNKGNoNBpRG+J2xKAV/TqU+dwhzrHttTAhY5B5L4NMmyhBr20WCgWoXBcRBAFqtRry+fxAborAmt9AL3LgeR4s0wyNjgqFG5rznz9/Hk3DwKOPPtr2/dZvvJWstRq69BthGJZeRJGDW4AcPPV0Mi103z0WstnOR06RtAAXepCO90Fs9uo8l6xQYPoYcPBbO27r85/P4/Ll5HX2Qz/Y2JAeotuMuupW8UcX/gT/c/6zmDfO91zX+3a1j3gwxmBaVuQ/oioKts/MYGV1FbZtY3l1tavVsiRJ4XMhk4maowm3U9txYNo2NFWNon6+769r1BQdb5tqqWHPXsJ6PUYQCNeTGDH9QS6fT/sv9ImUHGwyfNsG61J2JG4Sy7JAKU3MQBl4qoH3US+VSh3FeeKm6Kc23/M8WJYV+abzFSDDowSDDrDRzcj/z2gaZFkONQBBEImD8tls37P6gB9LNzHiOqOjAQnIRkApxRtvvIFdu3ah1Kl0scdMKCqpE2Kq2OcYIQni0Pq5YR6kWz6tEMM6vcFDZiLy0hoVaFfa1s+1Fiydgn/uK4nX2B3fDccH2l1NKysSPvXpZMrv4O0uvvEbNubaCKwnCCdWXsAfzP0h/vzKl+BSt/uHOUpqEfeM3bXudd/3YfFyTYKkMdj42BgWl5bg8mZNM9u29bxGFFmGks0iq+thS3XXBQuCqIGaz9tP9yxh5sc7VNQgvhq0GLvx9SmyHNplOw5M08SZN97AXan/QV9Iz9AmIggCUKvDQyM2q/F9Hy4X+QgtAQOiNAMIQamf8HyPVILn+7BMM6wuEDcPjxJomjZUOL6VGAgosoxysQiT25o6jgPf81AoFPpqFSwiBx0jF0MaHY0K8/PzMA0Djz/2WMdlhh3E4/4F7cx3xMwsijwAfVWGCA3JlmvVzCHOVb0h49XXk46WDx9tttdZDOH1EIdzPNlDAZkSyKG/H1XftM58P/k7RVh28pr8Bx+pd+o2PRDiBkn/9uVfwqfm/mDgdTw6+QgksrYzDIDDnQOBUIyay+USqSWZVx0tLi3B830sLi9jamKiLxJJxKSCW4W73ATJsW0YlgUiSdB5tKHd9SkIEePPuaHREnWJEwQR6fB9Hyurq7h8/jxu279/+G29RbD1pxC3MFgvYiCiBqYJysJOY0LcYxgGPJ7/L/bZXbHT4OD5Pur1Ouq1WtjjAGFJVLlUCt3SOty4/aLTJwkhyGezKBYKIODaiXodltO71EvMJDo9oDZsdLQBBEGA1994A7t37x64nGzDYCwKn8dNg+LfXztCQkVDHKzNskXofbS7F2u7HPthbX4nfoQgjzEcP1EApWvHo2kUD9w/WF1/PwhW5+Gd/mLitcy9H0CmMBZWBLRcp6+9ruHLf5WMaHzj3zFx6FD/hkS9QAAsONeHIgYA8PDk0ehvxljoosqPQ1NVFAqFtpoTVVEwOT4OmRC4rovVWm3gbcuyjGw2i3KpBD2bjb5ny3HCKgfb7ny9bZBdtVtr/J7IcnE0pRTnz5+PfGJSdEZKDjYJge8jcNuHAltLekS4T0QNhPshEFoVa32GwIgkJWba7UhBJpPBWLmMYj6/YZe8fu2FNVVFuVyOiI9pmlFlRicI6+R2pGWkRkdDYG5uDrZl4fDhw90X3ATC0g+Ja7dEwM+lJMuRV0OcVHSjCAy8tJSLRFsH9fjfic/EftDmd8uBRX8+eywZtn/gPguZzOiFnM7xTwAsdg2qeWj3fh8ymUxopMNnwgBAKfDrv5EkgvkcxQ//4HAixG7IyTpUaTiPjkcmw86Rrueh0WhEPRJyuRxyuVzX60fTNIyPj0MGYDSbqNXX94boB7IsQ1VV5LJZ6JoWCnMp7UgSgiCIrscNoQvRlSQpcpF1XRfnTp3quGyKECk52CRQ2+4YRos/CGkQwOEphVwul3A/zOVy/efRY+vsRgoK+TxkWd5wjm/QvgOyJKFULEbtcV3fR7VWg8GjJuvW36HpUtzoKLtJRkfd4AcB3jh5Env27LkpjV2GFm310Bt0+y4JOPFsN7DEXxsRGXr2ueQg/MjRjbVobgdavwLv5J8mXsvc/d2Q9DIkQqDzaJoYyP7iSzmcOZu8F7/vexsYG9tgE6g2GMuM4V/d888G/tyO7HbMZGbQaDZh8vtKluVwgtHnfZLLZlEul6HIMmr1Ogxz8PJR4f9BJCmsruK2ze1IQnyCQAhJiEoHRrvKiFi6QaRQAWDhyhWsxrpbpliPlBxsAgLPA+0QNWiFECIqigIQsuZ+qOuRkUdP8Iey5/toNBpoxEmBpiVIwSgQhY2HQDabRTmWJrEdB9VqFVZsNiEcHxmS7og33OioDc6ePQvXdXtHDTD6kD2AobtGBreIGLFWk3HydPJ7fWQTzI+c478N0FgtvqJDu/8Ho3+1TAaSLINSitVVH7/7e0kiuHunh/d+y+aYMgHA9+z9LvzHo/9uoAjCA5X7oyohQgh0XQ/TCAN+58ViEfl8HrIkYXllZWCrZoBfZzyML9pKtyMJ1VoNtuOsaZfaWCJvFPFrXoilQQhOv/76ljUs2wrY2k+KWxRBB7Ojdg5hpmUhYAy6rqPJey5omtZXD3UBX0QKqtVQNUzIWqSgQ45x6BlorExoWCiKgnKxGHkgMITnoVqvRzXUYhvxNMnNMjoS8D0Pp06exN49e5Ab4PsZFfqyye6AW6VS4fiJEhhbu7Z0neK+e/uzI+4X1FiE+9rnEq9pd74fUm4i+l8iJAyJE4LP/b8yavXkefvwh+vYbMH7/7bzm/Bbj/0aFNLfhh4o3QeCMEpYKhbD6MeQ266Uy9AzGciEYHl1dWCHQXGd0ZbIgCAJWV0HDQJQSuHYNuqNRthtkrHh+350GOhFNYvYhxyvmqrXargwPz/ctt4C2NpPilsQgeOABevNSdrdpIxS2LYdzvJ5R0OVi4b6ge/7qDcaqHFSEKUPKpVw4B2xKr1TZcKw0FQV5VIJuVwOEp9lNA0DtXodvucliMHNMjqK4/SZMwh8v6+owWYg3tdhUNwqDZeOHU+WhT74gNWzidGgsI9/EghikT1JQeaBH1q3XCaTwcJVDV99QoWurxGUxx6x8cD9/UUGNwLGGL545UvwWX8D8yNTD6FYLEbiu42AEILxsTGoqgpGKa4vLfXdFAlYu87apQwJCTtCikgCEF6fNicJNu82O8ROd05txfZDkqQwKksIzs/NwRwidfJWwNZ+UtxioJQi6KA1aAfbtiMzEeEu1o/Jke95qNfrqNVq8OKagkolihTE2zKPAqMmBgKEEGQzGVTK5SiN4vOeDhaPFERGR4whN2CP+VHB8zycPn0ae/fvb+sidyOwkRCo6Kuw1SMHx55PkoNHHzI72oMPA2qtwn4pWQmgHfk2SIV2znkEn/p/pgAmI5c1ADBoKsWP/dhwQr1B8dunfxefOtdf1cLthf3YWdkx0u9XlDgqioIgCLC4vNw3QWgXORBgjIHy1Ec83QCEEybLslBvNOAN0BFSoOPziesgBFRVhaZpcF0Xc2fPJqziU4TY2k+KWwzMcUJZc+LFzt4DTcOAaRiROroXMQiCAPVmE9V6HZ7vgyJMQcRJQRwdZ5oD3nCbRQziEOG+SrkMjRun+L6P1WoVS0tL8Cm94UZHcZw+fRoBYzh48OBN2T6wMQe5XqWhWwErKzLOnE2max7h/RRGRXTtE78H+LEyNiIj87Yfabvs157QceKFEgAZksSg6zbe/x0GZqY3fyD5wqU/wy+/+h8TrylEwZ2lO9ou/8jUw5uyH+tKHKvVvj4nrrPWiiTGWFQ5I9CabiCERCSh2WjA6VO/JdbfNb0Q+1/PZCDLMq5fu4alpaVUf9CCrfukuMUgogat6NSJjHFrYdfzkMtmu7ofMgCWbaNaq8F1HDAAahdS0LID626WYW6BGxXElyUJ+XweRR4hsLiBi21ZoDyKcKPhuC5OnT6NA/v2hS1zbwJ6ddDs+tnYA3ork4NnnkvqSHI5invuDu+pUZADatfhvPD7idfUg38PUnnXumVtm+C3fjvUP5hmmKPeubOB939Hc8P70QvPLj2Hf3H859a9/q8P/0v86n3/Gd86+y3r3nt0k8gB0FLiyNN+vSBxYaEodRXo1l+kHUmgjMG2rMhttScI6e6Z0GIwls1mQYMAVy5dQqMx+rLUWxlb90lxi6Gd4VFHt0LGsFqtwuN59ampqY65YCE2FKVJqqoOpCmIRH3DDiwDliyOAgyh/7+iadB4Fzo9lwurMZrNUOHczVBlxDh18iQA4Pbbb78h22uHjegNbpVKhWeeTWptHnzAwigrVZ2XPgXmxgd3gsyDP9Z22c98No/FxfD+sm0djMn4++9rgpDRiiNbcaZ+Fj/19D+GR5Mk+Cf3fQTv2f4eFPNF/OLbfh7fRL4BMsL9e3jyITw+1b6/x6gwaImjFCt9FakFBvQ1wCdIAhdVBr6PZrOZqGwYGrEJk8z1BytLS1hdXV3XeO6tjNQ+eQSglHY0PGoHy7LQbDbhBwHGx8bamhwxvpwpSAc3/Bkm3004m2aUto0kdMLNIAYCQsWs6zomSyWoqhq2knZdUEphiraxmUwUHtwM2LaNs2fP4vbbb49qpG8G3gp6g6ePJSMHj8ZKGAm4bfSQEQTmGrCf/73Ea+qBb4Q8vm/dsgtXZfzhZ+NEhWDvHgX33+/CdsjQVuO9cM26jg89+ROoe8kZ7Pt3fjs+fPhHo+0yxvAN8rvwvp3firGdFdxRPpKwTN4sFItF+LxXyvLKCmTe1rkTJElCwFjYnVGW4XOdQb8gvOpKVVWYlhXZMns82trxnu/jXpEkKUq1qaoKz/exurKCfD6PycnJvvfxzYyt/bS4RUDbhLo7RQ08z4s6ISqKgnKbpj2e76NWq4VmSIxBVRSMVSobEsLFywL7GWZuav6NMVi2HUVKxOCfy+UwVi5H3vAMgOM4qNXraDQaIesf8X6fOnUKkiTd1KgBMLzeAFjTG2zlSoXrizLOzSWv7zg5wAYFtvYrnwGzq4nXMg9+qO2yv/WJEjxvbVuSxPCjP2KHjqKMRe6lowKlFEuNJXz4iZ/AgnU18d67Zt6JX3jw55IW51xcN6lM4K7KnTeEGAgMUuIovA4CSiMXxGEgSRIK+XzocMjFjM1udsx9XCft9AeNWg2u6w7l6/BmxNZ9WtwiYIyta67UiRgwSmGaJnzXBSQJiqpGlslAeMEaphmW8vFGJMV8PtQjjGBmLELTvQb+GyFA7AbHdeFywpXP5da58EV9IbjzG0FIqJqGgVVOqgYpu+oEy7JwjkcNbrQTYxwb0RsAt0bk4Olnk0LEQj7AXXckH9JDRw18B/Zzv514TdnzTshT60tSj5/I4KmnkyTlW77ZxN49QeQbIKJXG4XneTAMAyvVFfzvz/9LnGycTrx/z9hd+A9HfwkyaREag7fdvgkEfpASR6E78Ab0SOgEkWpQ+HodxwkjsCNYvyRJQBBgdXk51R5wbN2nxS0COsBsVQxajudBkWVkM5lIhOj6fuQUCISliZVSCdqoQ9mczXfCzSYGlLGw7pgx6MLNrAMU7glR5mWQIuRq2TZqtRoazWZkrDIM3jh5ErKi4MCBA8Mezsiwke8jqlTYot0YgfUtmh960BqZyZDz6ufAzKXEa5mjH163nOcBv/EbyUheqUTxge8LBwtNVcPoAaVD56ZF6+R6vQ7DMOC6Ln7p1H/A0yvPJpbbld+JX3v0PyOrtHcBlWNh8RuNfkscZULCzrQjIFICEhcsZ0UUgVIYhgHLspL3eT9EsiUaldF1LF6/Dtd108ZMSDUHGwKlFAG/KIWHd6cWw57rrpXk8HKeSqEQDYaObYfhQklCPpcLW8UytinNeySuAm7FzSYGQBg5oUEASZb7TqNIkoRsrLe84zjwfB+e54WzM9OEqihRbXM/M2jTNDE3N4c777hjeF+FET28N7oWIQLrVA2zFfB0Czl4tI1l8jC6AxZ4sJ9LtmVWdj0CZfbedd/P5/80j0uXk9/1D/9QA4XCmiuorusweD+Ufq4lxhh8fi36vr/OMfD3Lv0+/mThC4nPVLQKfvOxX8VEZqJ1dQnczG9TlDheX1yMShwnxsfXFmAsfMZwc7NRQXQUVVUViqJEJnKu68LzfWR1feAon5hUEEKgEILlpaUwnTkCM6lbGSk52AAYjxrErTnbLscFdEBoHUx5eY+qKKjWamG5DwBd05DN5aJw3GYQA0EAOhGEm3kruJ4XlWrmstnBj5+rnLVYb3nP8+AHQUgWfB+mZUGRZaiaFs4EO8ym33jjDWiqin371gvWtgoYAN914QdBNEMLKAXl/weUIuD9NkRLcMpztpTngSlfjvKfIAjCjqKxdVFKwwgMgKefeQaaokBSFMgk7PIo8x9JkiBJEmRJCt+XpOh18ZokSVAkKfwc/724rGPufNK/oh05GEZ34L7xJ6CNhcRr2Yd+fJ2x0sqqhE/9P8lqidtvd/Geb0zuh6aqsGUZnu/DcZy2/T0YYxEZ8DwvsR1CSDSwfWHhz/Grpz+e+GxGyuDXHvnP2FO4retxif2XJGmkg+8g0DQNE+PjWF5ehmEYkYaKMYaA0ug5NuoIBwHCCCilUfM1y7ajtK0Y2GVOJPpdJ+PHtHz9OsbGx2GaZiLt+1ZDSg6GBKUUNCZc6Vi2iLBvAKU0DAXyh27ATT4YY5BkGcV8fo3x3qBwoUQIKN/ezaxMCHch7D3PEIqDNvpAEb3ls9lsOLi5LnzPg+f78IMAPq92kGUZmqpGD2wAaDabmJ+bw1333LMhN8Zhj8D3fdi2DYf7O0ReD7Yd/bi2nWxWxT/b+h3Ghw2ZkLVBXJbDQVoM5ISAyDIUWYaiqtD432JZUbUh8s1xYuH5PlzeE0OQCV/8HSMincRjx0/cCeD+6KWsbuHs2c9h4XL4kNezWeiZDDK6DlXToGsaMroOXde7zt4ZDWAd+83Ea8rs/VB2Hl333Xzyd4qwrOR6fvzDdUhtbgpd1+EbBmzHWWvvTGlEBjzfT9zDRJKiyJWiKCCE4MnrT+PnTvxC8lSA4N8f/b9x/8S9bY8nDlmSEpG+myUfzvISx1q9jlq9DkVE/NhaR1UGrEVXRwTxvKWMQVEUFPJ52I6zNiHw/fD66DOKEEUP+D2xsrgITdN6trl+MyMlB0OCCcVyjxm+xy9YQgjyhQIWFhbQaDaRy+dBGUOOD2DRBSgeKpt1QbY8oCUgdCzbnK31DcOywtmGCN2a5sj2KfJS13VQSuHxMKTv+wiCAFYQwLJtSJIETVXx6muvQctksG/v3o1tOFY2SoMADldCJwZ5x1k38MdrwQPe1U7PZKLBsFwqITM1FTpG6joURQln7/EZuSRBVhTQIAijJYqCSrk89KGsrK5GJZ2VSmWodYioRRAjDj6l+Nsn9ySWu++eKg4dOhCRINM0sbq6GpayOk4UrhZRu4ymRQRCnBM9k0F+8Wno1fOJdesPfSRy4BN4/Q0VX/5KMq3xDe82ceRwe8MtTVWhyjKcIECj2YQsy6EorsW/X1HVKDoVH2BO1k7hHz7zM+t6JvzLe/4pvnH7N/R3MvnAKMqUKaU37R4WJY6NZhOLy8vYtm0bNE6CJEmKIlOjLjcWraEZv0dESsGyrMhh0fM8ZHW9d/oHawRBz2SwtLiI8akpGIZxU1qzbwWk5GAIUEpB421GgY4uiCKdoGcycGwbDe5vUMjnUSmXkzPTTUol9IIkwm/CB+EGQ9QvgzHkC4VIXb8pegtJQiaTQSaTicK/YrZBKcXK6iouXLyIQwcPRqFS8dPtASMiH41mE81GI+ySWa+HA77jrHN2ZAjbx4oZcS6Xw/jY2NrgputhjTdPfww7e7EdB7IkQdkCYkSJEEiKsu6h8/wLlcT/b3/cw6EONtWB78O0bTiCTPGyYPG70WhgcWkJjmXigSufSHy2oW3HM683kZn/K2iqikKxiEK+iP/6q/cklstmKT74w+sV634QhCkc34fr+zANA5RfsxIfCHulq65a1/DhJ38Shm8kXv/hAz+AH9z//W0/0w5SLC0iBuFh23mPAuVSCZbjhPfQygq2TU5GRkgEIcndDC8S8ewV50LhHVsd14XjOFGfljwvf+65Pk44VFXF9atXoapq2BhuC1f6bBZScjAEWDyd0MEeGeDiOsag8JmFaZpglCKjaZicmEg+8G9QKqF1K4wTEgKAbUIv9Z77wxiaPJ2gZTLQVBUWJwebTVOEE5sQf3q+j7NnzkBTFMzMzEQ6BQERknf4bNYwDDQ4EWg2m6GWBOEDqlgsIpvNolQuIyNmtPx3VtehxevWu2Cj+eSt3qr50mUFFy8l9QYPP9gA0P5BLisK8rlcz5bZ7tkvwzx/Pfni3T+IXWO7Yds2moaBSxcv4sSLezA3l1zX17/zJJaXl2DbeeRyufD+5V1To/0gBLKqgvB0YU8bcwANr4EPPfkTuGYn9+vv7ngP/tldP9P1s61odT0lANgABmejBEX4XBmvVHD9+nX43Mm0XCpBlqQwpbTJxIW0kCU9k4GqKDBtO+r2msvloPaZJlQVBdWVFWybmUGz2USpjR/Nmx0pORgCkelRl5m+UMyLchtKKXzPC2cWnRzWNnnW3uprzlq2KZTAaFluM2HxzpSEkNDT4GaBE6TLV67g4O23I5/LoVqrhSWRjQaMZhNN0wwNUvi50TQNhUIBlUoFu3fvRqlcRomTAsLNXzbiTyD8DTaS89zq5ODpZ5OCr0rZw+0HLACdQ7m9ujQyxuA8+xuJ16Tx/dj5+PeDcMMgRinqDeB3/8c2vk4KRfExva2K/fuewysvNyK9hizLyOdyyOfzKBQKKBWLKJXLGKtUIkOkXufXpR7+0TMfxen6mcTrb5u4H7/0tn87sJERaakCIIRAQvsWyZsFhiR5VVUV5XIZq9Uq6o0G9Fg4fzNFk9H10EKOxPdmmiYCSmEaBvRstmfzNkmSQCiFpqpYXVmBoijI5/Ob5sK6VZGSgwFBPS+8ALtoA2gQRJ4GlFIoCJm+putwXHe9SOYGpRPWbaHNdsVAdCPSDD4/T2BhK+Z1pXY34JyYpolGo4FGo4GLly4h8DycOXMGr73+erRMPp9HIZ/Hzu3bkc3lovx2a8kU4XXdtm2HDxKurh/avAcbbzi01clBq7/BA/fXIck9jrnHDNm/8ASC668mXtOPfjhBDDzfx6c/nQOlJsbGPMhyGK364A/XcejQ28CASPRpmiZMw0Cz2cTS4iI83wcBn6HmcsjqOsrlMiq8EVqxWExcG4wx/NzzP4+nFp9J7NPewh78t0c+how8uJdJgsjHXiM3ML3QbsAvFAqhgNa2sVqtolwsAth8x9Woj0OLfooQglwuB4vbLts8kqB3idwxhPeLqqowmk1MTk2h2WyivAHNzq2IlBwMiChq0OmhzxgM0wwVs64LnXuA5wsFrCwvgwLJQeUGM/3E310GHkLIpqYZ4ukEoUBP7NsmbLfZbGJ5eRkry8tYWV1Fs9kMQ55AlLPN5nK4bc8eFItFFAuFjuFiUb8e/XA1fjwVIdIMopRPpCUUWYbUIlJrixGcg4gcbMFZD2PrnREffKDeM51ExIc7nD+7JWpASjvh7/w6OM1mKIRkDFcuEzzxVAa6vpYivPMOH3ffDShyNtSYdBBeCu1QvV5HtVpFrVbDxYsXcfr06ahyQKj4x8fH8bnm5/HHl/40sY7JzAR+87H/hoo23IBDOhCkdqRh1KBAVwIyXqng2uJiJFLUNO2GVFMQYJ32QmgSctksbJ4SdLnDZS4uBO+AgOuRRFnjRqqXbjW8dY50RBDeBh0fTI4DyzThOE54MakqCvk8CCGR6E1rDWvdYBFg37W/m5hmsLlYiADr0wmMhfnTDYBSitXVVawsL2N5eRnLKytRrX6pVML4+Dh279qFYqmEYrGIWq2GJ558Eg899BDG42YuHSDq1QXRY4whCIKIKAR8EEJMmd8qSiSCKHDiEPcKANb7vw8Kxlj0oNyKBkgXL6m4spCMvhx9W+92wEB47kTahcXKg/2LzyK48nxiWXrXB+D4FFFhJwM++7kiHCeDIFDgeSrAZPzAB5Z6ahmA0Ekvo+uYnJwEpRS1ej0abEzTRJMTh1qthv9+8lP4HPt84vO6lMF/uv+XsSO3o69jbXv8HcyFxAC5GWH81jRCJ8i8MmZlZQVGzN/lRqCd9kIQNp2XnVqmCR+IhIrtomoiMqQoCizDgKqqaDabQ1fq3IpIycEAaI0atIbKfG6B7Np2GHrW9cjMRwweANbIwU2qThhku5uRZgi4WQkYC5sotdycnWr2u8FxHCyvrGB5aQkry8tYrVaj8qnxsTHs3bsX4+PjGJ+YaNsF8/jzz4fv90EM2kE8SOIPwYDXvrcaE1EeZWCUwmv3gOfqc+GYKUlSpIYHV1P3kyYQrZpJjHBsJbSmFCbGPezbawFYI1wM4SyVUgrKzxnl91Lg+whYS9+J5z+RvG7y01APvReymolKPZ98Kounnk5+z9/9XXXMzPRuJ9wKSZKQUVXY3IyqUqlEA8jfXPsq/ngx6X5IQPCd/rfj/FPncV2/honJSUyMj2NiYgLlcrnv74l0sU/ejPQCG9DMKJfLwbZtePV6pD+4USCizDP2v7hGNFWFlM9H3jMdKxkIAbhmyDZNlCqVKHpwM/us3Eik5GAARHqDdmWLlGJ5eRku77ZYLJXC2noO3/cTLUJvStMU/rAdZoAfZZrBMAwwxqBwJ7O22ws32nEdjUYDSzxFsLy8jGazCQDI6jrGJydx186daw/cHsdbq9dx/do1HH3ooWEPqSNERAAtD5R4rb/oWieMgkTKomuelhNUQR7E3yRGHkSqQ95iUQMxyD/5dNJd8IH7a7BsC57vJe6XdojPYgl4x8nlNxAsHEsslz36o8iUKtH/jkPwW59IhvKnJgN81/ubQx+PlslEpXOix8er1dfwM8f+OQKWJBz/+t5/hW/b/t4wmsUjWlcuXwajFLKiYGxsDJOTkxgfH8fE+DjUDuI5mQteO2FU1QtM/AyxnkqlAsMw4Hgeao0GijfIL6BdeiEOITA0TXOtkoE7LUbgz3mJENiWFTnKNhqNoScQtxpSctAnKKVhSqGN1oAFAZaWl6OLaGJyEpmWhknCRjUqpbkJD+yNioJGkWaI1/x3rE7ggk9xhvwgQHV1de2BurwcraNSqWDb9DSOHDmCiYmJMFIzIM6ePYuMrmP79u3DHNJQkLkOoZU0CBGr5/uJGbN4HeD5Xk4iAkrRab4rBixFUSIzJQFRfy6qNOIlue1eF6p8hzelEd8+i4lzxUwfYsbP/4Z4TbzPX26NHNx/3yoC319n7d2O/IhjkWUZhL/e/JvfS6yP5Cag3fkdidf+52dyWFxMzhJ/5IM1ZDYwsVUUBYqqgvG+HkvBMn786X8EK0g27/nw7T+K79oT7s/s7CxmZ2cBhN95tVrFysoKlpaWcO7sWbz+xhsAYyiXShifmMAkjzDkeIqSSBJol26Eo6heYC3f2aCQJAmVSgXWwgJsLuzsJ20zEsSqF9o992TeBjqqZDDNqNy4HRzbhprJhMZcrrs+NfwmREoO+oWoc24Z1IMgQK1ahWmakCQJk22IARA+VBml0Li16A0nB21KfYZBIs0ADJRqEE2mKEJi0MmYx/N9LF6/jkaziVqtFvWfUBQFE+PjOHDgACYmJzFeqWw4l+l4Hubn53H48OF16Y2NolfJXTtEaYQehkuiP0ci3C5eE+/H1tn6kBz0KojIgePAHsGD8dKlLBaXkut57KG1B3Qhnw8HfXSu2IjPnIPFN+Cf+6vE+5kHPgiirI36V69K+MwfJksn777bwdvfnmwNPQwymgbf97FoLuPHT/wUlp3lxPvv3fnN+OkjP9n2s5IkRSkt0QHUMIwosrC0vIy5uTmA1+9PjI+jWqtFpbKdzo+olBn0GuxXW9APMpkM9FwOjm2jWq9D07Qboj+IVy90et6KSgZbVDJw9009k0ncH4QQ1FZXsXvfvqi6aWKie1OsNwNSctAnqOOsixp4rotmswnDNCHJMirlcttGLABPKwA3J1+1CSmMiCQMkGowuKOcIknr0gmmZeHKlStYWFjA9evX4fk+crkcpiYncdttt2F8YgLlUmnkxkjz8/NgAPZu1Cq5DTbqcdDtod9PzbWiKHB56iYTf+DFZ4Qx0hCf6be+r/DrVlNVZDKZRFQhngKKmpDF/xbHIUo7AfzZF8cS+7ptysPB2xlsR4XSxWGw9TyIfbdbeigQvYzM3d+VeO03f6sIz1s7p5LE8JEP1UbC01VVhc88/LOX/iXmmvOJ9x6efAj/v/v/9UBlqfl8Hvl8Hrt37wYQRh5XVlawsrKChYUFGIaBIAjw53/+55iZncX22VlMTU2tI5VEksCC/rQU4vseqVcCISgWClGabLVWw9QNGlgJ1txfO3XzJIQgm81G5maikkGPT/AYg9lsQuVOpcLGu1OU4c2ClBz0AUopWEsIz/M8NJtN2LYNiRDkuEFKJ/ieB8pYGI66WTngzSIJ4iHdZf2irSoYC2eFAFarVVxdWMCVhQVUq1UQQjA1NYUjR46gWCqhVCohP0SaoF9QxnD27Fns2rlzU270YWZtQHdiMNB6eCoh0j1sAKLdeCSy3SBaUwqPPGRGt0W/Ry5U6MHqHLzTX0y8l7nvB0C0tSjB88+rePKpJCH95r9nYM+ezqH5QcDA8G/e+L/xYu3lxOu3Fw/gPz/076FJG5sUqKqK6elp+L6PU6dOQVEUlEolTExMYGFhAXNnz0LVNGzbtg3bt2/HzMxMOJgBfYkTRRRq1M8mwn/KxWLYmt5x0Gw2b1i/gnj3ym73omigZVoWfN+HRelay2ZOaqvLyyiUy5EzakoOUkTEIApVcV91IfjK5XIoFApdH+iCOWdudOQgfkOMIK3QCd1IAmVh34GAUlimiYsXL2JhYQGmaULhVsUHDx4MG7ZoGizLCkWLm2zmsrCwANMwsH8ThIgbwai+IRF232rObowBTx9bTw6GPe4wahD7tFaAdt9anwLfB37940n722KR4vu/b33/hGHxy6/8B/zFwl8mXpvWt+HXH/0vKKrFkWzj9OnTeOWVV7Br1y4YhoFcPo977r0X99xzD2r1OhYWFrBw5QqePXYMEiGYnJzE9u3bMTs7C13X2w6OiRTCJkxaRKRIVVWUikXUGo0wvaDrbauGNgOkBzEQUFUVeUkKI5yUAlxgCgBgDMuLi5jZsQOmacLlTdRuZBXGjUZKDvoA47MmAJG6NaAUrusil82GDXK6XOiR8joWnr0huBkVEUK0yI/X933MXbiAhcuXsbS8jCAIkMvlMDs7i+3bt2NiYmLd4BWlLDZ5/8+cPYvxiQmMjY31XngY3ITzn9x8uP2t1nL2zFkNS0vJ++XRh82BzxchBEH1Irw3kgZDmXu+F1JmjQx8/k+zuHgxub0f+oE6CoXRfD///eyn8Nunk2LIvJzDrz/yXzCbnRnJNl544QXMzc3h8OHDOHLkCP7yy19ey90TgnK5jHK5jMOHD8M0zSgi9+JLL+HFF19EqVzGzPQ0tm/fjhJ3+mMxXcpmghECwljonsi71FZXVzE5MXFDSmxF2quf54kiy8hlszAMA67rhqWqPNprWRYcx0GhUECj0UCz2UzJwVsZlFIw7v3PGIsiBi5nlTK/mLohqlRQ1Ztbb36DBivbtsOH05UrWLh6FUEQIJ/PY//+/di1axfK5XLXAatbM6tRoVqvY/H6dTz08MObt5EhIzWMbbyFNuUVDcDWs05uTSnMzni4bbcHawhdoHP8t4F4uaCiI3P/D0T/rq4S/P7vJ0PYB/Z7eM83moNvrA2+dPnL+MUXfynxmkxk/Ns7fgEHS7dveP2+7+PYsWO4du0aHnjgAdx2223h657XcUKSy+Wwb/9+7Nu/H57n4dq1a7hy5QpOc1twXdexfXYWs5ycb/r1wUJTMyJJoXvi0hI8z0PDMCJ75U3HAPehqqqh1b1tw7assKupogCMYenaNezYvRuNRgOu6yIIgi0XmRsVUnLQAyzmbWBxW2RQGkYAuNq110AWVSrcyBxVu5ths9IKjKHOw5pXFhawurICEIKpyUkcOnQIpXIZlXIZeV6G1QsJpfEmQZQvinKyrYIoLbNBciTOnSjz20pol1KI72K/exs0r8F97XOJ1zJ3fxek3Jrg7ZO/W4BpJge/f/CROqQRPM9PLL+Ijx77F2gt9vu5O/4lHpl8CI7jbGhmads2nnzySRiGgccffxxTU1PRe57n9RWFVFUVO3fuxM4dO+BTGkUULl2+jNNnz0JT1VDQODODbTMzfXct7BfRd8mvR0VVUS6VUK1W0Wg0kM1kbkhZIOHNlPqNRmZUNXI1NSwLBW6UtLq6it1790LTNLi8rPdG6SduNFJy0APM80AIgW3b4SAPQFIUgFKoqtq7LIex0DYZN7BS4UZECBjD6uoqLl28iCtcPS3LMmZmZrD/wQcxMzMDhtCsCAhLF+Ppgp6RA2xeWsFxXZzfpPLFBIYclEcxmEc9FbYYMaAUeKaln8KjD7fM4vvcZ/u53waCmCW1rCLzwAejf0+eVPGlLyW39e53WThyh4eNylnmm+fx40/9QzjUSbz+j478JL5j77fBME24njc0OajVanjyySdBCMHXf/3Xo9gyw/Z9v+dAHlWh8MoTQghmZmexbXoauPdeVKvVUKewsIALFy5AliRsm5rCzPbt2LVz56Y9rwr5PGze1GqlWsW2yckbEr0gANCPOJP/1jMZUG5QZloW8rkcbF7KmM1mU3LwVgb1PDDfh+95sEwz8ue2ec13th/PAkIin/1Obmc3CqMYbD3Pw6WLF3Hu3DlUazXomUyojp6dxbZt29ZucsZQrdfDc6brbRv/dCIJm00ONrN8MQ5yEzUHW7Ub46kzGaysttEbDAhqrsB++X8mXtPu+PuQCmELZkaBX/215EM7m6X40Q82NpyyWbaX8aEnfgJVt5p4/Tv3/H38xOEPAwhNdnzfh+d5Aw+y165dw7PPPotCoYBHH310HcEQzcI6RQ66lSQKgSAjBJWxMVTGxnDkjjtgGkZEFF44cQIvv/QSdu3ciT1792JsbGx4wtrqi8IxVqnAu34dfhCg1mhg7EZ0PBTRgz4XJ4Qgq+swTDNBEC6fP4+Dd9yBer0eNtjz/TdlQ6Y33xGNEMx1QYMgVM4jJAaRR7emQeZ5qF7webXDulbNm4Eu+zP0Q5FHCebn53HhwgXQIMDM7CzuuPNOTG/bBtJmAHJcF4HvRzdYYj9i9e/xevrWuvjNIAeUMZw5exa7du3a9FKkYfZ+VMcsZkftvpubiVa9wc4dLnbuaGlI1cd67Od/F/BjIgUiI/Pgj0b/funLWZw6nSTj3/c9BsYnGBgd/hxbvoUff+of4oJxMfH6O6Yfx7++719F166maQgoheM4A5GD+fl5vPDCC5iemcFDR4+2zWf7vg9wDVMC/F7qVZIoSdI66+VcPo/9Bw5g/4EDsG0b5+fnMT8/j7nz51EplbB33z7s2r174LSD2IvWMy5zX5hl3h01m8lsurhPkCJCSNfoQfw9SZIigWIQBLBsG6hW0Ww0oGkaHMeBZVnrIjtvBqTkoAOY7yPgJkeU34iapqHOw+T9XsjCNx/C42Cz0S2SMaDmwPc8XLx4EXNzc6hWq8hmszh48CD27NkDvZsIk7HQYpcx5LjBSCdEM5noo2xNkCjCoX3vcW9cuXIFlmniwP79I1xrewwz2xrV8W7VyMHTz3ROKfR7ZVK7BvvF30+8ph7+FsilsMuhYRB88neSUYMdO3y87318W5IUOp4OiIAF+Oixf4GXVl9JvH5H+TD+00P/HmrMy0DTNFi2DZ936uxnZvnKK6/g9OnT2LdvH+69996Oy3meBxASDdTrbI57XXct91wrdF3HocOHcejgQVy7fh1zc3N44YUX8PLLL2PXrl3Yy6MJG0U2l0PetmFYFlarVUzHI4+bAaHDAbr2nYg3bQJCIpPL5WBwzZkkSbh4/jz2HjiQkoO3IqhlodloIKAUiiwjn8/DMsOHS0bT+laoujwFIVrzbhrEhd7twdAnMahWq5g7dw4XL15E4PuYnp3Fo0eOYHp6uq+ZqO04CIIAkiz3TaJaB1IC3qBnRIZAAmfOnMHExMQNab06sG3tCKoUBERIeStpDigFnnluvRgxQp/ny37h98FcI/YKgX70Q9F/v/+pAqrV5HX64x9prLWxGLKC5Bdf/CV8eSFp0bwjtx2/8dh/Q0FN2jKLEjibl+51IwdBEOD48eO4fPky7r777shCuROEZwqR5a7Nl7qhXfSgzUKYnpnB9MwMbMvC/PnzmJ+bw9z8PMYqFezZuxe7du3qHk0Q11+Hc14ql+E4DrwgwGqthonNKitG0pRMQtTAO4FO5FxRFGR1HbbjwLZtrK6sYNayQAgZOn201ZGSgzZgngej0QgHOEKQz+dBKY1c4jLxAa8dA43N3n3fB6UUyhZo1NHtkRj4Pi5euoS5uTmsrqxA13XcfvvtuO2225AdoFkKoxS2iBoIh7EBIPzgo4jCCJT7AqvVKpaWlja3fDGGQfd6lEmUrRg5eP2NDGq1JKlOkAOBLt83cw3YJ5KeAtrBvwt5LNSPXDgv4/N/koxqPfyQgwfftuZVMszV9InTv4PfP/fpxGsltYjffOxXsS071fYzGU0Lm1+5LrLZbNt7wXVdPP3006hWq3jkkUd6Vs8whCk7yictQ4OQdQ2uukHPZnH48GEcPngQV69fx9y5c6E2gUcT9u3d25twt7mXZVlGZWwMS8vLMC0L2Uxm05ozJcg66dCYqsv50DQNlFK4ngfTNHFhfh679+4NxZWWlZKDtwKM1dWo0UyhUIAkyzCNcKbSV9Qg3n+Bs/xNvXA2UP5Wq9UwNzeHC+fPw/c8zMzO4tFHH+07StAK23EQUApZljeU05cIARXbjx/XBnLyZ8+di2q8bwTYoN/HCDUWkQHSFiIHT7VUKdy228X22Zh9cSzs2wn2S58Gs2uJ17IPfYSnoAh+7TdKCIK1Nagqw0c+VE8sP+hZ/sLFP8Mvv/IfE6+pkopfffRj2F/a1/FzsqJAVRQwxtqWNTabTTz11FPwPA/veMc7OofquU+AKHMVHUk3WnZIhiltliTMzMxgZmYGlmlifn4e58+fx9zcHMYrFezdtw87d+4cSKCn6zoKhQKazeamNmeKV20AaBvVCCjtev1lMhlQxuAHARavX8f41BQURYFlWSiVSl0+eeshJQctcEwTjmmCMYZ8Pg9ZURAEQfuoQR8Q3fE2rWSun3RCCwLfx6VLlzA3P4+V5WVkMhns378fe/bu3RBrZ5TCtm0wxjrOlPoFid248bWwIYmC7Ti4cP48jhw5csNm0zcroM8Yi0RVWymt8NQzydB726gB0PFaZr4N6/jvJF5T970bytQhBJTiyScyeOHFZITu73+7idntw9ctPrv4HP758f9j3eu/9LZ/i6OTD/b8vKZp8HhfkTg5WF5extNPP41MJoOv//qvb3vfCS0B/yd63ff9rtUKfYMM17VRIJvL4cgdd+DI4cNYuHoVc3NzOP7883jppZewe/du7N2zJ3JjDA+hc4qwXCzC4SmYWqOxKemFdtuWCEHAnzH96H3iFQyUUlyan8fe229HEARvulbOKTlogVWtgpGwNaowLXLsUBXdNWrQYZBmfcyGbhRqtRrOnTuHCxcuwHVdTM/M4OGHH8bM7OxIBkzLtsNwp6JsuBIgMkJqfT329yBEYW5uDgCwZ8+eDe3XQBhGczBCjwMQsmXSCr4PHHsuGe5vLWHsNUjZr3wWzFxKvJZ9+CMAANeT8PHfSorCJiYCfM93G1iHPs/xmfpZ/OTTPw2PJqsp/uld/wTfvOt/62sdKu8w6ccGj0uXLuH48eMYHx/HI488kogqMqBnHb7neZAIaVsePCgi5f5GrjtJwuz27Zjdvh2WYWB+fh7z58/j3LlzGKtUMLN9O7ZNTnbfD0lCpVLB4uIiTNNEMZ+/YQOtLNIrfd6vhBDkslk0DSOMdqyuolypwLKslBy8WWE3Ggi4I6JQ4/cVNeghugEQKqRHjX4FhrUaXnj1RXzx4pegKSp2Tu3ExOQEGloTLzgvgc69gIAFoIzy3wyU/z+WqeAdO78OBS3fdRs0pjXo1LZ6IPRRzph4nImeDuGHEssFjOHc3Bx27d59YzupDfDAHaXwcisaIL36uo5GMzmYPfpQcuAW31q788ACF/ax30q8pu5+DOrMPQCAP/xMHtevJ9f/oR9tQNfbXD993DfXrUV86ImfQN1LNmf6/n3fgx+9/Yd7fl6AEBKWNfJ2wPPz83j11Vexe/du3HfffVG3wEFm777vjyxNSbit8ahKaLP5PI7ceScOHzmCqwsLODc/j9dffx2nZRmHDh3Cvn37Ok6wMpqGrK7Dsm1U6/WehGJUYED4/BhA3ClJEjRFgev7WLh8GaVyGbZto1QqbTlH0mGRkgMOxhjMepib1LPZKFdr9xM1EGh3UcTUsTcajUYDr7/+Os5eOItfdz8BDx4QALjEf/rEZ0//v/j4N/5611moZVlRqHMU7DnyOhjgho3OPok1fwJw5fLlsPviDShfHBaj9HTYimLEVn+DfXsdbNvWUk7Y5Rw4r38etHk18Vr24R8HAFy7LuMzf5hHXE1w910uvu7rku6F/aLpGfjIkz+JK9ZC4vVvmH0X/tW9/3zgh7+maTBNE6++8QauXLmCQ4cO4ciRIwOTAgHf80aak5cICSsXRjioEUnC7I4dmJmdxbXr1zE/P49XXnkFZ86cweHDh7Hnttva6mHKpRJs24brOLBse51HymYg8lsZ8LvQMhm4vg/PdbG6uorx8XG4rvumaeW8dZ4eNxlmswnKTXvE4CbySEAfvgYdLizGf0bOJruEwQzTxHPHj+NLX/oSlpaXsTS7GhKDIXG6egYXGhc6vh8EARyuNejVhKpfSP1EY7qAYK3y4f9j77zD47rq9P+5ZfpIsqzuKhe5lzh2XBIndjrpCQSSQGCBhaX3XfZHrwvLshWWvpQFEgJkIaQHEhJS3GLHXW5ylctIVtf0ueX3xy2aGc2MZkYzkuLwPo8eSXduOXPvuee851ve7/ETJ6iprWVSVVXZVBeztSH/nUvXPyZiMOIwyeQM8Qa25SB9u6YQ2fajlG3y1JU4pl0CwI/+x088IWBpGwmCznvfM1jULU1oCT667e9p7T+Ysn159VL+7ZJ/RhIKN+WrqsrevXs5c+4cCxctYsGCBaPqhyVPmyuj+8myJC5YuJBrrrmGmpoadu7cyR//9CdOnTo17D7IDgc+rxdRFOkfGMhy1uKRrUtY0sqFQBRF25rc092Nbuq7XCj4q+UAY6UVGhhAxCAB1kSebDUY0b8nihknMs0q9lEOU1PaOSORCAcPHuTEiRM4XC6WLl9Oc3MzdZ27+NXJXxd9GbfkptHXkPXzSCRi1I5wOktr7kx2FRSJcDTK+c5OVlx8sX1eMAmbGQU+EYyAJdU4mGCWg0QCXt6RShrXZpBMzibiEz/8JFp/Kjn1rDasBjt3OXnxJYu4G2FlN98UYfZshazIRuR1nS/u/CovdLyUsn2Gbzrfv/TbeOSRia/1HK1FQTgUYvPmzYTDYS5evpyq6upRu5BUVS15NH9RmQt5wLL7iRiZX5dccgnzFyzgQGsr27dv59ChQyxcuJBp06bZx1RUVhKORFAUhVA4jK+UqY0ZvqelKikKQkbtg1xwOhyGlSMUIhwOI0lSybVZxgt/JQdAKBRCUBQkScJpSiQXbDVIUvXLhHJ2lmgsxqFDhzh29CiSLLNw8WLmzJ5t50GvaryYdU1r2Hxua1Hnv3XOLbizDIyKohhCTyW0GgD2BDHayoyn29tBFJk6dWrq6c1rJMu75huxXAhyKdFZKFUlRgu2ANIEIQf79rsJhfPQNzCREnSqa0S2fj/lc6lhCY6Zl6Eo8IMfViQdJ1BRofLWe4NFtfO7B3/Igyd/n7Kt2lnNjy77LpNdkzMek7LyNVPlrC19fX1s3rwZURTZuHEjOsb7klCUUUmpJ0rsVgAK1j3IG2ZqYPL4V1lRwZo1a+jr7aX1wAFe3raNQ4cPs3jhQhqbmpAkiQq/n/7BQQYGBvC43SXry+mWCl1PqkFhvYMF3AMBQ1Y/HI3S292Nx+MZdTXOiYLXPDlQVZVgfz8OMNLvMF7ugqwG2QZ1RUFqb8d3+DCevj7ks2chHEa7+Wa0jRuLb7TZeeOJBIcPH6bt6FEEYP6CBcydOzdj/vPXr/gn3venD3Gg50BBl3KITu5e8Kasn1tWA5fLVdIBq1T1FU6eOsWUPErRCmm/Ldgm+jKvBEp5/okWkJiubzBvbozamgzyxRnudbztadSeoym7ede8F0EQePQxLydODj1XQYC3vy1IRUXhfeb3J//Atw58J2WbS3Tx/Uu/RbN/ZkobdfvP7Nfp6Ohg29atVFRWsm7dOlwuF9FoFNUsAzxaclCO8u+CIBjWtBKeM7l0eDomVVdz6aWX0t3dTWtrK5s3b2bS5MksXrSI2tpaQqEQCU0jGApRWSJ54vTUTQFSyIAgiugFSms7HA6keJywaT2IRCJ/JQcXAgYHBxE1DYcs45RlNAqMNYhG4eRJhGPHEE6cgGPHEI4fRzh+HE6dYoqSwbz5s58R+9Of0FesKLzBuk5CUWhra+PIkSOomsbcOXNomTcPV44BxyHK/NP6L/GOJ99Nf7w/637pWFa3lEmuSRk/UxIJEvE4lCpDIQmitaofBTnoHxigr6+PhQsWFH2O9EnbCnScyGZDmxyUINWtFBimb5CtCmOGVV1k2w9Stkk1LThmX0lfn8gv70utn9AyN8H114cZyfaT3qNe6tjMZ1/5Uso2AYF/u+SfWV69zJ5MkoNcc+H48ePs3r2bxsZGLkkqnuRwOGw5ZY/HUzR5UxQFry939lBRGKXuQSbkQ65ramq4/PLLOX/+PPtbW3nxxRepq61l1uzZCILAYDCI3+criyUsXULacjXmPe6Y1ga3y0UwHCYUCuHxeJg0adKEHiPywWuaHCQSCcLBIE5dT4mKzctq8PvfI3/oQxAKFWWGFl9+GbVAcqAqCm1Hj3L48GGURILZc+Ywb9483HmuIup99Xxu7Wf4h+f/kXzXBzs6dnDvE2/n3gX3cP2sa5GTisuEzQwFt9udd62JfGGb+0cxULW3t+OQZaN+fYlguSMsJLsjMpKGPAaaUg/GdkXGCTA4xeOwY2eavsHqDNoDDI85SJx4AbWzNWUfz5r3IAgiP/u5n2Ao9fu9/32DyNLIcSrJq+ODfYf40NaPo+ipJP7TSz/J1U1XFvxs9u7dS1tbG3PmzGHZ0qUpfUWSJGRRRBVFEokEriKzeuKJxOgFkLKg1LEHw1QJc6Curo6NV1xBoKPDcDe8/DKTJk+mqampZGWdk59ntmdbkPXA/F6yubjs7+3F4/EQjUZLvmAaa7ymycHAwACipqXIdSqKkpfVQP7gBxHChdeht6AvWpT3vpqqcvz4cVoPHiQRj9M8cybzFy7EW6DpSgAuaVrFO5a8nZ/s+2nex50NnuFftv8r/9v6C9684G5unH0DqNgyrmVJNzJXCcX6QHXgVHs706ZNK586JWnuiAykAUbWMChlnEOyAFI5v3e+2L3XQySS2o41l+S2HFir1/RYA3HSTJwtr+PQEQdP/TF14L3qyiiLFyXQ9ewrXytYUDWvdS4c4N2b3k9ISSUr75j7Nu6dc0/e3xFSiyctW7Ysa9qsw+kkoaok4vGiyYGSSIxaOjkrBAHJVA0sBXQz5iBvK4kgGPLMDQ2cOXeO/fv2cbC1lbNVVSxdsoSamppRtceKq7CCEDM2oVDrgbmvy+Wib2CAUChEf3//X8nBqxWxWIxYJIJT0+zJTQeiZirKiLEG8Xj2z0aAXl+Ptm7dyPsB7adOsW//fiLhMNOnT2fhwoX4R2NSFATetugt7Ovaz7bAtoIO7Qh38B+v/Bc/b/0ldzW/ifVNl1HlqyqL+doaTArROUhGd1cXoWCQ6WaWwljDGgrFDAIz6ebpUq7vxypGIl+k6xssmB+lunr4M00pOQwop19GObczZR/P6r9DFyS+972KlHHb7db523cYYkW6KWaTHFyafm5d0xhMDPJ3mz9AZ/R8yjVeN/U6/n7xRwv6jvF4nM2bN9Pf3z9i8SSHw4EQiZBQFKMGSYEETtf1URGLvCCKCKpaktgD+94X2h8FgalTpjClqYkDBw9y8uRJ/vLCC0ybMoWlS5cWPfHa8SIjjCvFuFckScLlcNB9/jxer5f6cpegLjNevS0fJQYGBpBVFbfLZb+gqqoSN1fDI8UaaPcUtrJIhnrrrTDChBqJRNi8aRPbX36ZydXVXHvttVyyatXoiAFW/r/IZ9d+mnpPfdb9Lqpbzvzq+Rk/C0aDPND6a/7x+U/z++O/J5QoLjo8F8RRWg5Otbfj8XioHSOVtUKQrMFgia8ki7AkR7wXKs4y0dIYt+Shb5AOAYhs/V7KNrGiCef8m3nmaTcHDjrQNMwfgXvuCjJ5sjrkUrHuWdK9ExgiYXE1zoe2fpwjA20p11hZczH/fPFXEIX8711wcJDnnnuOcCjEFZdfPmJVRVEUkR0OREmyLW+FIBqNoup6QZVSi0Gp+s9oS4cLgsCcOXNYumQJzc3NdJ4/z5+efpqTJ08WTV7yfqeKaLPX6yUcDDI4OEhfX1/hjZtAmBgjyBhDURQSsRiiruNOesksAQv3SFYDXUf7r/9C/cAHimtAby/Crl0ZzVY6cOrkSf709NP09vaydt061qxeTYXfP2zf0aDKVcmXL/sCsjDceCQg8PFVH+WH136Xb17xDZbWLkn53IsPHTif6OSHe3/Mmx55Mz/Z+zMGYoPDzlUsRFG0lQ4LrVmv6jqnT59m+owZJWtPsRjR/80QUbBW+8kTWTqJsM5p/1jEwvxfnUDkIBYThsUbZNM3sL+DrpM4t5tE+5aUfdyr3k046uTHP/ObZmrjZ9q0BLffPuQWGEkbQ9N1PrvzS2ztejll+2z/LP57zX/gkvLPAuju7ua5v/zFSFW88kom5VksyOlwIIDtviwEYXOMKmnacCYk9cdRweyfozmXy+nE4/VS39DAiosvpqmpiR07drDppZeKEh3K5k5IRnr6ZU4kjeOiKOJ2u+nr6WFwsHTj4Xhg/EeQcUDMJAayw2HfACXJapBX5UVBQPvqV1E/9amCry//3//huuYanKtXI3/1qwj79oGprrV50ya2b99OU1MT11xzjbESKaWsadK5FtYs5IMr3j9sn43TrmBm5UwQBFY3XcJ/X/Vf/NfGf2dl/cV48Fh2cSIYgZuD8SA/2/9z7nrkbn6w+0f0RftK0k5RFA2zcIHkoCMQIBaLMWP69FG3Y7QY6cnlu/rJRB5SiAVDJnQrMDKZOJBGIpL/ttQ2MxKOpBV4ikUj7WfYNl3nld0e4vGhIUYQdFavDKVYSrSka2PGBETTMhQEXx2uxXdw/wM++npTSft73j2IMyk2b6RB/T/3f5tHTj+Wsq3WVcMP1v03k5z5B7ydbm/nxRdfpKqqio0bNhRk5naY5EDTNNQC0+Yi4TA6lN1yAKVJhc2VylgIKisqEDHirxYtXszadevo6+8v2IpQsCWyCILgcjhsUaSxVGQtNV675EDTUtT8YrEYOnnEGqQ9bO2Tn0T9x38sqh3i8ePI//mfuDZuRFy1irMf+ADK3r2sXbeOVStXDtUoKGMHu2PubVwz42r7f4fo5G+WvC11J0HgooaL+PeN3+Srq7/M0slLCBEelvEQUiLcd+BXvPGRe/jvnd+lK62CXqGwBqdCX+j29naqqqpeFfXVSz14aKZGviSKKcSBNBKR/Lcl4JWRcFifJclZ26JNST/DtgGbt6ROmIsXRqmqSksdG7oRxq+ewySOP5eyj3vlO2g/5+MPD6e61C65JMrqS4bXT8g2nD9w7Ld871CqDLNX8vD9dd9mmm9qlqOG49ChQ7y8fTvTpk1j/fr1BWcOWBLtgiAUbD0IRyI4ZLls2QopGK31INmtM0qi4XA48Hq9iJLE4MAAjY2NXHP11QVZEXRdRyuAjBVkPUgiPw6nE0XTCIVCRVmHJgpecwGJuq4Ti8WQdd2O+NUxI+91PT9xkbQOo/3jP4KmIX3zm0W3y3nyJItPnmTxww+j/fznqLffjnrbbehz5xZ9zoxIn4wEgU+t+UfmTprDyYFT3DDremZVzcp4aCQapbmymY9f8hE61A5+0Xofz595cdh+MTXGbw49yENtf+DGWTfw5gV30+hvLLipoiRBImG80HkOhnFF4cyZMywsIBtkvFAOmVWbbEyAgMStL6eubnOpItoukz3/m7JdcE/CtfRN/ODLflRl6DvJDp33vidLrEuGSPNnzz3PF3Z+NWWbJEj8+yX/wuJJ+fUVXdfZuXMnJ0+eZOHChSwYhX6Gw+EgHo8TVxTcBfSDSDhcfpdCEsRRZC7oSUSxFL2xsqKCSCRCXFVtWeWVK1cydepUdu7cyZ+efprly5YxY+bMjNdTNa3gQEMBQwJ6xPYnnVOSJCRJIhQMEg6HX7WFmF5zloN4PI6uqoiCYMsLK4qCrutGsFABVgMbgoD2qU+hfvzjOa+tNzSgfOQjaM3NOfcTDx3C8Y1v4L70UlwbNyL/x38gHDuW85i8kWEQkkWZexbezf9b80mW1y/PeJiuaYb+g24IHs2vmc9XL/8yP3vdj7l65lUZTZBxNcFDbQ9zz+Nv5RvbvsnpwQJKQWL474QCB6ezZ86gqirTJ4BLYSSUY/rWJ0jMQTQqsGv3yPEGydD7TsCJ51K2uS9+G1t3VPPKK6muvtffHmJKU+b6CekT7d7e/Xxk69+jpSnnf375p9nQeHnONllQEgk2bdrEqVOnWLVq1aiIAYBDlo18+gJdC+FweGxT5EZhPbBqygijtUCYkCQJv9+PCAwMDtqxAyNaEXRDDj893Thf5PUupZ3XKcuEQyFCocyaHq8GvObIQSaXQjweR9d1Q9I0V+cxTazZPtM++1nUj3406+HqnXeifO5z9D//PC//+7/Tet11ROuzZwwAiK2tOL7+ddxr1+K6+mrkb30L4eTJnMfkQrGvaDQWQ9M0ZFlOYcKzJ83iC+s+y89v+Bk3zLoeKUOkt6qpPHbsCe59/G/4yuZ/4kT/8byuKZnFrAqJOTjV3k5tXd2YlHrNB7nudzmcRRNFOnnHTg/xxFBfkCSdS1aOYDnY+3OS74rgrEBYeC8//FGqdG5NjcLdd2cfdJO/eXvoNO9+6f1E1FST83vmvYs3Nb8hr+8SiUT4y/PP09vby/r160tDPAXBCEwUBDvWKR+EIxE85VBHzIFiiaZmxpCUsif6/X5kk1QFkyZeh9PJypUrM8YipAQ0l8tFmzZGOZ1OItEo4XA4rwDIiYjXHDmIx+Mp5MByKegYHSwrkkxkWSEIaJ//POqHP5zxY/X222k/dYo/Pf00p2pqcP/rv6Lv20f0ySdJvO99aFOm5Dy9uHcvjq9+Ffcll+C6/nrk734X4XRhq/GiYLpidF3PqsY4o3I6n1rzj9x30y+4bc4tyOJwj5Wm6/zp5DP8zRPv4vMvfZEjvUdyXlawLAd5vlzhaJTOjo4JEYiYD8oxTFnnHG+dgy3bUiewJYuiVPizP0e1/zQc+1PKNtdFb+F3jzUSCKT2pb99ZxCPO/fd04HeWB/vevF9dMd6Uj67dfrNfGRhfplGfX19PPfss6iqysYNG0qaGutwOBBMtcR8Td1j7VawUFR/MgNNS1k6XBQEKisrEQSBYCg0bOK1rAiNjY1s376dF154YZgVoVAIjPwd0s/qkGXQdQYHB1+1cQevKXKgaRrxaBQR7ICehOlSkJLcDBmRy2qQtp/2xS+ifvCDKZvV2bPZFImwfft2pkyZwjXXXmtnIugrV6J8+cvEdu4k9uijKO9+N/oIkr/izp04vvhF3BdfjPPGG5F+8AM4d27k9hWBeCKBqqqIojhiTMYUfxOfuORjPHDzL3nDvDtwScMJl47Oc+3P87dPvYdPvfAZWrsyF4OSrHTGPMmBXYExqfzrhEY5ghGtvPJxdiuk6xusXZPbvBp/5SegJ5nXZQ/B6X/Dr3+Tep7Fi+Ns3Bgd8fpxLc77Nn+YY8ETKdvX1a3hKyu+kNdkFzh3jheefx6P18uGDRvwl6j4jwVZlm2NlUSmGixpUFWVWDw+LuSgGEuUlqEiYyng8Xrtybc/Q7qgw+lk1apVrFm71rYinLAyGkbRllxva/p3FEURWRQZ6O8nFhseNPtqwGuKHMTM0sKyJCFZ+u0mq5Odzuwdp4j0F+3LXybxmc+g+XxEGhv5yz330NvXZ2QirFplFElKP68ooq1ZQ+JrXyO6axexP/wB5R3vQB9htSJt347zc5/Ds3w5zltuQfrxj6Gjo7A250DMqjXhcuX9otd76/nIxR/i17fczz0L7sKTpeTzS2c2896nP8DHn/0HdnfuSflMNN0KltzpSDjV3p5XBcaJgrJkKkDJfLzFIhQS2L03vZ5CdpeCNhggceChlG3uZXfxP/fNJB5LSoUUdd733oERzdSarvEPL3+aHd2pCovzK1v49rr/wCmOHNx67NgxtmzdSn1DA5dffnnZgsos10I+gkhhU659LNIYh6GI/mSltZa6L4qCQEVFBQIQCoVQMhArXddpaGjgatOK8Morr7Bp06aidBHAsB6MSLjT6mhIkkQ4GCz6muONV8coWiLY+gbmi25nKWAEkGRFMZ1bEAi97338cfZsovE4DXV1XL5q1ZCYkZkqNmx6sCYMSUJbtw5t3ToSX/sa4qZNSA89hPTYYwg9PelH2ZC2bkXauhX9059Gu/RS1NtuQ73pJqirMy5rXSPP76SYJWZzuRRyYbJ7Mu+76D28ecHdPHjkd/zf4d8RTAxfRW7v2MH2jh0sr1vG2xa/hVUNq4yARFEEVUXVNOQcL2f/wAC9vb3Mnzev4DaOB8oxaE4U6eQdO70oyZkFss7KFdnJQWTHT0FLGuAlJ0c9f8cLL6TGjdx4Q4Q5s0deYX999zd54vRTKdsaPPX86LLvUiH7c/uAdZ29+/bR1tbG3LlzWbpkSVkzPwqp1DhmAkhZIIliQYJkBddVKABej4eQ00k0Hqd/cJCaJAEqTdPsd8HpcLBq1SqmTZvGzl27+NOf/sSqVatGVLLMhLwzFzDeQVmWCZlBiaqqlrw4XbnxmrMciEkpjJZLQRAEpGypckWu7mKxGFu3bEHVdRwOBz09PTz9xz/y7HPPceDAAXp7evIvuCNJaJdfTuLf/o3o3r3Efv1rlLe8BX3SpKyHCLqO9NJLOD/5SdxLl+K8806kX/wCchCLjN8jGkUDnC7XqGooVLmr+Nul7+DXt/yKdy19B1WuzBoEu8/v4RPP/SPve/qDvHRmsz3RjeRasCowNjQWnjJZbmR8xqW0Gpjnsi0HhboUktqSqVWWWFG6EFI2bE5zKSxbEsHny5zSpoW6iO37bco256I38N2fpRYu8leovO2tI8t0/+zwL/jx4dR0SL/s538u+y5N3sacE72qqmzdto2jR4+yfPlylqZVVSwHrEqNVuxBLkRMy4F7PAv6FNBvC6nIWAwqq6oQBIFoJGL79bNJIzc2NnL11VdTW1vLli1bOFZk9lch7jpZlhFFkb6+vlela+E1YzlQFAU1HscFdgVGy6XgKLGgSHBwkJc2bSIRj7Nk0SIkWaahoYGuri46Ojpoa2vj4IEDOJ1OGhobqW9ooKG+3siWGAkOB9qVV6JdeSWJb3wD8YUXDIvCE08gDAxkPETQNKTnn0d6/nn0T34S9YorSNx6K8oNN0AOgqFrGnHTFVOM1SATKpx+3rb4rdw57w083PYIDxz6DT3R3mH7tXYf4FMvfIZllUu5pflmLvOsy+ou0BmbCoxFI0PefV7Qjepw2YZWO4/cPL81GItFFI0ZiSAIaefLdfYtW1ODEdesDqeoKCYjsvPnoCTFEAgSL/a9nxMnUt+Ft78tSGVFboL41Omn+cquf07ZJgsy31n3HyyoMuuEZLkvsViMzZs3MzgwwNo1a2gsYmVZLPKt1BiORHC73SUN8CsIpmppvqJkpVJHzAaX04nH7SYcjdI/MEBtTU1Oq5DT4WDN2rXs3bOHXbt3EwmHWbR4cUHkJaO1NwtEUUSSJAZNcuAdD3fQKPCaIQe2S0GW7QdsuxRyZSkUyHq7u7vZvGkTbpeLy6++mu7ubkN0SZaZOXMmM2fORNc0unt6CAQCdHR00H7qFACTqquNcqWNjVRVVY1sVXA60a6+Gu3qq41aEc89h/SHPyA9+SRCMPMqS1BV5GefRX72WYMobNhA4rbbUK6/HtIUBWPxOJp5z0pNoLwOL3cvvIs7Wm7j0WNP8KuDD9AZPj9sv2MDx/nBnh/x22MP8sZFr2fj9I3IQqoFo7u7e1wrMI6EYcIrWVY3FixJYcGa9HOf3P5TTYo5GC8MBkX2taa6A9atzhyMqEX7iO2+P2Wb0nwzP75/Ycq2WbMTvO76SOb7YN6nHV27+OjWfxim2vm1lV/i0vq1OdscHBxk0+bNqIrC5VdcwaQchLkcyLdSYyQcHvcJRiiA6NqWgzK2p7Kigmg0SjweJxwOj1gwTxQEli5bhsfrZd/evYTCYVauXFmQyd/SpxgJkkkOgsHgXy0HExmKoiAAUrpLQRSRZDnzYF2Abx7gzJkzvLxtG5MnT2btunU4HQ76JAkEAUVR7KAmQRSpra2ltraWJUuWEIlECAQCnD13jsOHDtHa2orb7aahoYHGxkbq6+tHDrJzudCuvx7t+utJRCKIf/4z0sMPIz31FEI4s79XSCSQn34a+emn0Z1OlKuuQrn1VpTrrgOfj+gI6YulgEt284Z5d3DLnJt46vgfue/ArzgbGsq60DAi2M8Gz/FP277Bz1p/wZvn3811M6+x0yXbT52asBUYIanQS/LqPMcAW6xYi16sW6GE2L7Di6oOtd0h61y8InNAVmzXfZBI6puCyB+OfZRgMLX973vPAGK2sVsQODZ4gr978f3E1NQB+KOLP8TtM28dqh9hkjRLElrXNLrOn2fL1q14PB4uv/zysRUYMmFVatR0nUQigZTlfQuHw+MTjJiMbLFSGWBVyCxn5ozD4cDjdjMYDhMyLSs522T+njt3Ll6Ph5e3bycWi7F27dq8F0BZi3ulvdOSJCGKIpFwmGg0iqZp455FVAheM+QAQEx6eJaPyul0FmQqyghdp62tjT179jB9+nQuXrnSZv8WI82lgubxeJjV3ExzczOaqtLV00Pg3Dk6AgFOnjyJIAjU1NTYVgUrUjfHCdFuugntpptIhMOIzzyD/NBDiE8/jZAlclaIx3E8+SSOJ59Ed7tJXHklrmuuQduwAefkycXembzhlJzcMvdmbpj1Op4+9Qy/bL2fU4PtqKaqnWSGx5wJnuWbO/6dnx/4JffMv4vrZl5L++nTzBxBdXIsYBUcSl+52wWRrP300Veqy3h9K41xHC0Hm7emTl4XLY/g8Qx/u/R4iNjOX6RsC9Zdy+/uX5aybcOGCEuWZPfFd0W7eecL76E33pey/U2z7uQDC98zTE7a/l/XaW9vZ/v27dTW1bFuzRpb5yTFXTNGcDocJBIJEvF4VjIeikRoGmOrRibks3LWNa3sbgXrffN4vQTNCVhRFNttnPmgob44ZepU1rtcbNmyheeee47L1q/PL9hT141aCun3IM2qkkwEBrO4fCcyXlPkwPKb6oBikYNsHSnfwUHX2bNnD21tbcybN4/FaT4sybQcjCSRanUpUZKor6ujvrYWli4lGArR0dlJIBCgtbWVffv24fV4aGhspKGhgfq6utwvg9eLdsstxG+5BYJBpD/9CfGhh5D+/GeELKYuIRrF+cQT1D/xBJrHg3rttUaMwlVXQZlXVrIk87pZ13PdzGt4tv157m/9Fb39fYikLh07wp38585v87/7f8nC2DxWT1ld1nYlI1f9gkwTviCK6GnPvxym/6IDEkuI4fUUMrsUYnseQI+lDpj/u/MfQB+6L263xt++M3vZ24gS4e9efD+ngu0p269oXM+XV34uu46+rnPg4EEOHjjAjOZmVlx0EaIoZrXmJD+rclXZsyo1qqacciYzdyQUGrdMhWTk03OTXVzlIKs6Q/3d6XTicDjQEwnCkQiVOfQo0p9eTW0tV2zYwKaXXuK5Z5/lsksvpSoPAiYCw+hRhr5hPcdwFjfvRMZrhxxYnRXTpYAxiMqynNlqkEeHVlWVl19+mbNnznDRRRcxe/bsYftIoogoCCi5yEGmAcdkoX6fD/+sWcyZNQtFVenq6iLQ0UEgEOD48eOIpouisaGBhsbGoVTJTPD7Ue+4A+WOO1D7+5GfegrHww8jPfssQpZIaTESQXz4YRwPP4zu86Fcd51BFDZuhDJKFIuixNUzr+SKqZfz/JHnefTYY+wYHB642BPv4QV9E/tebOWN8+7ktjm34s2iqVAoks3RKRjlYFcmAddxtxwMDIi0HkjtE5nqKeiJCNFXfpayrcd/NZtaU2NG7r4rRG1t5hWqqql8dMs/sLtnb8r2xZMW8u11/4FDdAybyHVNQ9M0du7axakTJ1i4aBEL5s/P/DzzIASWe8KOCxkFcbAqNSanNSYjGo2i6fq4xxwARmCiIOQMTNTMWgajyXDKhmRiYMHv89Hb20s4EsHv82U032d7nysqKti4cSObNm/mL88/z5o1a2gYQYTOOl/KmTKc2yIHoSyu3YmM1xw5gFSXQrGIx+Ns2rSJvv5+1q5bx5Qs0c2iJBkrghzkIOsrlmamkiWJxoYGGhsaYNkyBoNBOgIBAh0d7Nu/nz179+Lz+41YhYYGauvqsmsD+P0od96Jcued0N+P/OSTOP7wB6Tnn0fIotYmhEI4fv97HL//PXpFBYnrr0e57TaUK66AUdzLXJAliYsaLmJJzRLaYkf55cH72N/dan9u6LcL9MX6+dHeH/PAod/whpY7uGPu7VQ4chClNGjZzPzjrBlQCGwz7ji1edt2L5o2dG2nU2PF8uFurNi+B9HD3SnbfrQ1tex5Y5PCHbdntjrous5Xdn2dp8/+OWX7VO8U/ufy7+N3GNkSluXAuh8JRWHT5s10d3ez6pJLRl0jIbnqYAqs+18gWchVqdHSOBiPmIhMEATBGFOz9DVV04zMmRJasazJPRMpcbvdiKKIqqpEY7GMFhYR0LK01+V2c8Xll7Nt61Ze2rSJlStWjOiqHJYVlOHclns5/CoswPSaIQeldCmEQiFeeukl4vE4V1x+OZOTBDjSIZnkIJOKl32tXNfLER1c4fdTMXcuc+fORVEUOs+fN8jC2bMcO3oUURSpr6+nobGRxoYGfOaqY1jAW1UVyl13odx1F3p3N4nf/Q7PE0/g2boVIQupEQYHcT74IM4HH0SvqiJxww0kbr0Vdf36vMsr5wPBTJ8SRZFVdStY03QJu87v4pcH7ueVzl3mvRn6LoPxQX62/+f8+tBvuWPObdw57/VMck1KOaee4X6P5YRaDtN08kpqvIKe0iWTL14RweVKW70rcaI7fpqyLSBtZM/ZVSnb3vt3Aziy8M0fHfoJv2hLzXKodFTykyt+QL2nLmW79VxDoRCbNm0iFA6z/tJLqa1L3a+kSIprSK5qONJztys1Kgqqqqa4CyNhIx10QlgOYMS0Rqs/lkr4R2coiycTRFHE6/UyGAoRLrL+hCTLrL30Unbv2sWOV14hHImwYMGCrGNDpiyk9HHFspzEYjFbgv7VgtcMObAsB1aRJVGSsvvqc0wUfb29vLRpEw5ZZuPGjfhHqJAmS5Ihi5wlgEcf4XrD2pPl5ZBlmSlNTUxpakIHBgcHCQQCBAIB9uzezW5dp8LvN4hCU5NBaDJcN+b3E3r96wndeSfVioL8+OM4HnkEadMmhCzfQejvx/nAAzgfeACtuhrlxhsNonDppVACKWPLTK7pOjKwou4iVtRdxP3P/Zpnep+hLTFc0CSiRLj/0AP8ru333Dz7Jt44743UemrMBo+vNaAc6V3J6ojjZTlI1zdYm0EyOX7gD+jBQMq2/3n5H1L+X7UqyurVmYvVPHLqcb6x599StjlFBz9Y/9/MrZwzbH9BEOjp6WHTpk1IosiVZaiRkBUZgiCtGi3WyltP29/pcKCqKvFEImV8CofDyJJU8pTi0SBXWqOqqkbNmhJNhvlUNvR6vQwGg8QSicyBiXmkYQqCwEUXXYTX62X/gQOEw2FWrFiR1U2R8i7nsBxous7gwACTa2pG/B4TBa8ZcmBZDhKJBJIo5n7JsqzkA+fOsXXbNqqqqli3bl1OwRILllshY8xBMSvIfDo4Rv5vZUUF81paSCgKnWZQY/vp07S1tRmxCnV1RgZEQ4OtuhaNRtExzHS6203ibW8j8ba3IXR2GkThD39A2rp1mCiO/X17e3Hedx/O++5Dq6lBuekmErfdhrpmDRS5ihAlCSGRQFNV2yqhqCqeXid/v+gT6HXwy9b7eOnspmHHRtUYDx75HX849gg3Nr+Ou+a9iQbfyP7EcqFced9aUkzNeKC3T+LAodz6BrqmEN3+Pynb2hPrONC9zv5flnXe8+7MQYhbO1/mk9s+NWz7v6z+OqvrVmU4wnhnt2zdSlVlJevWrbMLro0LktwNySvOZMuCLMtGjFKapTEciRguhYnk5jJJTqbYjlKlMWq6bhRwyuN7OxwO3G430WiUUChEVVVVcRcVBObNn4/H4+GVV14hGo2yevXqYXOGJQ1tff+MmUoWEdR1+vv6/koOJho0TUMwWbpi5hEnqxGmdO0cxGDz5s00TZnCqlWrcldwTILFXvUcUcjlhkOWmTplClOnTEEH+vv7OXfuHGfPnWPXzp3ouk5lVRV1dXX4/H6qKiuHxWPo9fUk3v52Em9/O0IggOPRR5Effhj55ZezXlfs7sb585/j/PnP0errUW6+mcQtt6CuXm2kAuUJa4BRk1xDXV1dJBSF+vp6Kisr+fKlX+RY33HuP/Qrnmv/yzAxnISa4A9HH+HR449z3YxruWfB3Uz15y6RXSpYedHlHNbtYMRxMltuS8tScLs1li5NrZ4YP/Q4Wn9qZsEv9qRaDW67dZCp04YT6SP9bbz3pQ8R11IDZ/9x2Se4ZcaNGdt0tK2NXbt309jYyCWrViFKUl4r0LFG8uQqyzIIApqmoeq6XSAuYpGDCYZM5EA1J/PRWLGs+IJCU369Xi+xaJRwNEpFRcWo3ofpM2bg9njYumULm156ifWXXz58/E5arGVrp1WTov9Vls74miAHlkvBYuOiJGWf3DM84MGBAbZt20ZTUxOrV68uKBpcNH1zCAKqoqR0rqI9zwWolA07FJhUVUVVVRUt8+aRiMfp6Oyko6ODkydOEInFcDocNDY10WjGK6QLi+iNjcTf9S7i73oXwpkzOB55BPmRR5BfeSXrdcXOTpw/+QnOn/wEramJxM03o9x6K+rKlSOuhqwBUtM0O30ocO4cHq/Xru0OMHvSLD675tO8bdFb+dXBB3j61DNoeupkoGoqT5x4kidPPsXV06/izQvuZmblzMJuYhGwvmG5UuHGmxyk6xusXBHG5UzWdtCIbvthyj4nwxezv2eD/f+kSQne9KZBSEtb7Yyc550vvIeBROrg+ta5b+bd8985rC26prF3717ajh5lXksLCxctyp7WOMFgFezR4nGUeBzR6UQURYKhENUTQOMgHQLDJYVVVUWn+HiDkeILcsFt1oBRVJVINGrHWRWLuro6Llu/nuf/8hd27drFxRdfnEICBFKLMWUiM9Y7GXyVpTO+NsiBadJXEgmkkfx2aZaDeDzOps2b8Xq9rFq1qqg0MUkUEcx0Rns9PtqBqsiIaPtw81iH08m0adOYMmUKzc3N9Pf3Ew6HOd/ZyQ5zsq+urqahoYGGhgaqq6tTJiB96lTi730v8fe+F6G9Hccjjxiuhz17Ml8YEM+dw/WjH+H60Y/Qpk4lccstJG67DW358lQ/bVJEtM4QudN1nbOBAI2NjRnZ+oyK6fzjJf/A2xbey68O/ZqnTv4RRUs10+q6ztOnnuGZU3/miqnrefPCNzN30nCfdalRrgnKXhGPV7zBtnR9g9R4g0Tbn9B6U2NDfnvo70m2p7z5nvP40sbyYCLEu154L2fD51K2XzPlKj530aeGPX9FUdj+8sucCwS4aPlyZs+Zg5rUb14NcMiyIYhkqqqqmkZwYMDIrjAnn6xptmMNQRgmiqSNIt7AKvBVLERRxGfGHoTC4RRyUOx5q6urufjii9m+YweVlZW0tLSkfC4kCSJlehrWeBkazK7ZMRHxmiAHumro7Cnmyn1YgaPkgKHkzZrGtq1bSSQSrL/yytxiQzkgZlBJLNkwNQorAqJoHxuNGibgmtpaZlVUwOLFxKJRAh0ddHR0cPToUQ4ePIjT4TCCGk1Z5+Q69/r06cTf/37i738/wokTOB5+2Ahm3LcvexPOnMH1/e/j+v730WbMIH7LLSRuvRVt0SLb9WDdd9UsxRoKBgmGQkY53Rxo8jfx8ZUf5a0L38KvD/2Wx048TlxNDXTT0fnLmRf4y5kXWDdlHffOv5sFNQuznHEUyKSoVkJY5GA8LAdd3RJH2rLrG+i6TnTbD1I+PxVcws6u6+3/W+aFueyyAQRhqL5HQkvwoc0fY3/fgZRjL5q8jP9c+02kNE3laDRqF09at3atXTxJyCFwNBEhOxwIptqf1d8VTaPKDKRMiVcwf4/nt7MWGhZRUa1SzQVYDkZjLUiHz+djMBhEURTi8fioUtYtTJ8xg4GBAfbt20dlZWWKDkKyIFIu96GqqkQjkfGtqlkAXhPkAE2zX7SMLgVrgk1j4bv37KGrq4vLLrtsVOYpyXQr2EFGpZZnLdKKYAuZ6Dpxs45C8mTvcrvtYlGaptHb22tnQLS3tyMIAtWTJhlBjU1NRrEoa+Xf3Ez8wx8m/uEPI7a1IVtE4eDB7O05dQr3d76D+zvfQW1uJnHrrYay48KFRlvNuI1AIIAA1NXX5/U967x1fHDF+7ln4d08ePj/eOToI0TU6LD9Np/dzOazm1nVsJJ7F76ZpbVLC7qfI6FcssnWuWF8BJC2plkNvB6NpYuH9A2UE8+jnk997g8d+xj2MCrovP1tHWlJOTqf3/Flng+8mHLcDP90frj+u3jShK4GBwZ46aWX0HSdKzZsSCmeZJm99Rx5+RMJkigimRlOCUVhwPRVV2YIsEsPbLTM3GMKy3pgtkWz3Ar5EFVdRxOEvAoZ5QtJkoxqjZEIoXDYJgejpR2LFi9moL+frdu2ceXGjVRYZC1pn2xaKda9CQWDfyUHEwW6roOqGhOzIOT2gyVN2CeOH+fo0aNcvGIFdaPMiZbMCOQUIaRyDFJFkoRYPI6qaYiZrComRFGkpqaGmpoaFi9eTCQSodNUajx85AitBw4MFYtqaKCuvt5+KbW5c4l//OPEP/5xxEOHDKLw8MNIbW1Z2ySdOIH0rW/h/ta3UOfORbjuOvquvRZ16VICgQB1I8lGZ0CNezLvWfZu7p7/Jn535Pf87uhDhBPD0+22d+xge8cOltUu5d6Fb+Hi+hWjntCtCapcaYbjKYC0ZVtqCuOqlWFb6kLXdSJbv5/y+dlQC9s6brX/f931YWbNMqW8zfb/d+v3+c3x/0s5brKrmp9c/gNq3Km1Ps53drJl61a8Hg+XXnrp8OJEo7GujRNkWSahKCiKQv/AAC6HI4W4Z4JVBRGSMiDK3E4LoiCg6rpNDCC3FStF0KgMz8br8xGORkta8EgQBC5Zs4bnnn2WzVu2sHHDhqHaPFn6WHoW0eDgIDXl1NgoIS58cmBOyJbpK6t5MWl7V1cXu3btYs7s2cyaNWvUbRBFMSWdsewvbLIlJI8XLxqLoQMetzvvycXj8TCzuZmZZrEoqwR1Z0dHSrEoiyxYqx6lpQXlE58g+vGPIx48iNMiCidOZL2W1NZGVVsbVd/9LvGWFqa2tCC98Y15tTMTqlxVvGPJ23njvDt56OgfePDI7xiMD/cH7unayydf+H8srFnIvQvuYU3jmuInXyFLJbcSQR9Ht8KwegprhlIYldNbUQO7Uz7/w/GPoZtBh36/ylvvHQo0FASB/zvxEP+5/9spx7gkFz9c/11mVTSnbD914gSv7NxJXW0tq5OKJ6Ujk/DVRIZDlokJgmE56O+nosC0vIypkiVtYRosq4XVD3NkKlhWnHK2x+1y4ZBl4okEoXA4t6x8AZBlmXXr1vHsc8/x8ssvs+7SS+3vmmlusRaEohl3Fn4VyShf8OQAM9/WMrmh6ykpQpjbADAf3pYtW6ipqWHpsmWZzlgwZFPrQFPVsVvBJH+/LCRBwAjSVBIJBMhLtyETREmirq7OsLAsXUo4HObcuXN0dHZyoLWVvXv34vF4DOnnxkbq6uuNiOyFC4kuXEj0k59E2r9/KEbh1Kms13IeOcKqI0fg8cdRFi0idtNNRG+5BW1m4RkHfqefexe+hde3vJ5Hjj7Kbw8/SG+sd9h+B7oP8JmXPs/cSXO5d8E9XDb1MkShsEnY9suWCfo4WQ46z8scPZa6ol2XFIwY3Zoaa9AZmcHmwBvs/996b5DKCpXBoNH2FwOb+PTLn085RkDgP9Z8kxU1y+1tuq5z8OBBDhw4QPPMmay46CKEcUgTLhdkWTYmHFWlr78/L63/bEiX+C1XnIJopuwJgJjBqqcz5FobC/i8XhL9/UTCYcMFUKLr+vx+1qxezUsvvcS+fftYtnRp1sq+iqoiWBZrXX9VFWC68MmBqtoVwmRZRhRFI2shaSLUzQFVURQ2b9qELMusXrOmZOpedmXGMrPljLAmiwwuBwGImFYDt5kyNVroum6UoJ41i1mzZqFpmlEs6tw5Ojo6OHHiBIIkUVtbS0N9vVGC2u9HXbIEdckSop/6FNLu3TgeeQTnI48gnjmT9Vpyaytyayu+b36TxNKlxG6+mdhNN6EVqJnvlT3cNf+N3D7nFh4//gQPHP4tXZGuYfu19bXxxS1fYWblDN684M1cOW3DsKC4nPemoFblDy2pX4215SA9S8HvV1m00IjnUM7uRDm9NeXzR45/FFU3fA7NzQluvCFit/3wwBE+8PJHUPTUzJLPrfgU10+7xv5fV1V2vPIKp9rbWbxoEfPmz89JisZLMXJUMFMa44pCMBSipbJy5GPyQSbXQwmtKtZKOXnstK431hoTHo+HgYEBFE0jFongLGGhuLr6epYtW8aevXupqqgw6jBkGGMVRUE3XbY65FdWeoJg4rdwlNA1zVixA07TZ5dQlNRVsq6DprF9+3ZCoRAbNm4sehWdCZK5CkgoyvinHyVZEVRNM+pM6Dqu0bw45oCTaUVg1XeoN4MHg6EQHYEAHVYJ6r178fp8NJolqOvq6uCii1AvuojoZz+L9MorOB5+GOejjyIGAsPOb8Gxdy+OvXvxf/3rJC66aIgoTMlf6Mglu7mj5Q5umn0Tfzz5J3516AECoY5h+50cOMXXt/0zP2/9BW+efxfXzLgGWRq/V8m2GjD2E2E6OVi9KmwrZkfSMhR6ok08f/Ye+//3vncASYaEAoFoBx965RMElVRVxb+d93b+puVe+/9EPM6WrVvp6e7mkgKKJwllzhYpBxwOB5HubgQoXu0vB0qe9WCa1rUkZUSdsScFFiRJwuPxEIpECEajTC5xFdnZs2fTPzDAKzt34q+ooKamJuW7WhLSgiDYlmor+ySfstDjjQueHKCqtq/f5XSiKApKenliXaf1wAHOnjnDunXrqCoVSzchJaUylitavRhYUsmyw1EUk01WMcsXfp8P/5w5zJkzB1VVOX/+PB1mYOOxo0cNF0VtrUEWGhvxrVyJunIl0S98gZ4nniD085+z4MABHN3dWa/h2LULx65d+L/6VRIrVxK75RZiN96Ilqdp1ik5uXn2Tbxu5vU80/5n7j/4AKeDp4ftdyZ4hm/u+Hd+fuCX3D3/Ll7XfD1OKTupLHemwrgEI2app6B0tqKceD7ls8dOfhBFNwj6FVdEWLbUeA8HYv18+JVPcD52PmX/G6e/jv+3/O/t/0PBIJs2byYejXLZ+vXU1tbm39BXWUAiGJbOoFnNz18in3k22O+w6XYo9m5ZsS+SJBmKpuN8330+H+FIhGgkguL3l3bFLghctHw5wcFBtmzZwpVXXmlkIliLryQxKDWJNPyVHEwAaGa8gUUOHC6XEVGraSiqaqc0nj59moMHD7J4yRKaspReHg0kUTRSzEzrQSnybkcFcxKJxWJGjfgRoqCTYZkgS5F6JEmSkQbZ2MhyswR1wCxBvWfvXvTdu/H7/fY+56ZN4+Cdd1J59dVU7d+P69FHcT3xBGIuorBjB44dO/B96UskVq8mdtNNxG68ET2PiGFZkrm++TqumXE1fznzPPcf/BXH+08M268j3Ml/7fw2vzxwP3fNfxM3zboBt5ymKlnGQXK8MhXOBWROnkrty2vNegrpaoj98VqePf02AFxujb99pxEAGlfjfGjrxzkaTBVIuqR2Jf+6+ut2bEdvTw+bN29GlmU2XHllwZPlRCHkhUAURSLhsCGbPFaTbJrboZCrWpkKlmbBRKg/6HQ6cTgc6PE44UiEyhIX3RJEkTWrV/Pn555j85YtXJEksWzNO7LDgRozsnF0DHLwasAFTQ4sZUTL1COblRgT8bjh95Ek+np72b59O9OnT2demvJVKSGYBEGZCOQAw7Wi6bohCuV0jrz6tFwH5coVFwQqKiqoqKigpaWFRCJB1/nzBAIBTp85Q1tbm1GVUZY5deYMM5Yvx7tuHcEvfQnHli1DRKGvL/PpdR3n1q04t27F/8UvklizxrAovO516CMUQ5FEiaumX8nGaRvYdHYzvzxwP0f6jgzbrzvazXd3f49fHfwVd7a8gVvm3ILPYZbJHoXO/EiwiJowzvEGlZUqC+bHULuPkGj7Y8pnT5x8PzHNsDLc9cYQdXWGoNWntn+OrV2p9TnmVMzm+5d9G5dkkNazZ86w/eWXqZo0ibVr147OBfYqQygUwu/3oyhK1kyMciE94yFnbIK5CLPSBsdDbyMb/D4fvSY58Pt8JY/LcbrdXLpuHX/5y1/YsWMHl1xyCWDEG2iahixJxKyddZ1wKJT1XBMJFzY5MBX1rJgDWZIMadJ4nEQigcvl4pVdu/BXVrIiTTO71HA4HERiMWKx2ISoyZ6IG0qBTjMeAlIjiVO2gS1jPFbxEg6Hg6YpU2iaMgV0ne6eHp597jmcssz+AwdoPXCAyspKGhsaaJg/n5p16xC/8hUcmzbheuQRXE89hZil0ImgaTg3b8a5eTP+z32OxKWXGhaFG25Az2HuEwWR9VMv47Ipl7Kt42V+eeA+WrsPDNuvN9bHj/b9mAcO/4bXz72d18+9A6/sLbu+/0gDsvV8beldUl1DmdxE1nZLQTMeixGLRkEQ2LQ5dZK+ZGUQXVeIbk21GoQSVTzdbtRAaGxUeP0dxuD4b/v+i4dOPpKyb627hp9c8QMmuSah6zpHjx5lz549TJs6lZUrVyIVaRaeOFNVYRgYHKSxsXFYlcaxRnJci576gd1HVEVBxLAITiT3qdtM0dZUlWgshrcMIkSVVVWsXLmSLVu3Mn36dFsbx8pUSH73Xy3pjBc0OdCT4g2sjAGHw2GkMyoKZ86cobunh8svvzzvKovFwulwIAkCsXjmOvVjjVg8PqSIaK4IbEKgaejproNxDqKMRqPomsZFK1YgSRKxWIyOQICTp05x+MgRHLJMfUMDDTNm0PiVr+D+2tdwvvACrscew/nHPyJm0TUXVBXnCy/gfOEF/J/9LPH164ndfDPx665DzxIEJggCaxpXs7rhEnae38V9B+5n1/ndw/YbjA/yv62/4LdH/o9bmm/mjjm3U+UsPp5FN11iyb9VTSMciRCLRkk4HLafc9jkX/RVDcTNOJ1YPE7EJArp4kcXLeth8OxBOPJEyvanTv0dEdX43m95S4BINMR9Rx7iewdSSYRH8vCdVf9JrVRDNBqltbWVEydO0NLSwpIlSybMZDNWiMVixGMx/BUVaLo+blVdk2ERAYGhccKClY0lShLiBJKsFkURr9dLMBQiHA6XhRwATJkyhfr6evbt38/69euNeK6056WbzzEcDk+IRWIuXNDkAFNuF4Z0vkVRRJRlFEVh3/79Rt59IYFNRUA3swEEUSQWi418QJmhKAqamX/rdDiMYifWh9bLb+YrTxTxmEAgQEVlJR6PB1XTaJo8mWnTpqHrOn19fXSYss6v7NwJwKRJk4waEJ/+NNX/9E+4X3gB16OP4nz6acQsZj1BUXA99xyu555DdziIX3GFQRSuvRY9g69SEAQurl/BxfUr2Ne1j18euJ+XO7YP2y+cCHPfofv5XdvvuGnWzdw59w5q3EOujOQJ3/5b141MmyQikG2wTcTjKObEoeYZCyIYX2BoRW3+LZjWofTMB6tYmexw4HQ4OH3GwdlzqZaDNasGEfb9Ej2pEmZE8fNU+3sAWL48yMUrgjzf+RJfa/1myrEiIl9e+DnmeucQCgbZ39pKd3c38+fPZ+rUqfT39xtiM6bJWhRF++/kbckkNxmaro8q0G48MDAwgA5MqqxEwHAFjis5SMpKsuMS7I/0oQA883moE4QcADY5iFku5XKkEgoCixcv5rlnn6W9vZ36xkbb0pXe90KDg38lB+OKpDTG5JfKIcu0nzrF4MAAa9asKa+8qnleS2ZTVRQSiUTuypBlRjweRwdbKlk3xVYsJA+tKepqSRHNYwpdJxAIMH36dCRJSllFCYJAdXU11dXVLFi4kFgsRmdnJ4FAgOPHjnHo0CGjWFRDAw1///c0fPnLVGzebMQoPPMMQiSS8ZJCIoHrmWdwPfMMustFfONGIz3y6qvB5xu2/5LaJfzz5V/jYM8h7jt4P5vObrY/ExFx6k4EVeTJtid59uhzbJx6OddPfx3VrqqCJyx7QjRV11TTz+v1eOzy2ukxDtbfxcY+WKTW43bj9fnYsy/VqlI9SWH53C4GX3o8Zfszp99BMDEZWdZ533tDnFJP8ak9n0NLqwDwyfkf5+qpV6JrGjt37SIcDrN8+XJqamqGNPt13dAtGaGtgkUekkiE1Xet7a8G9Pf3I2KYrKORiJFlVUDwcCmhm2Q1/d23no3lvrUsB1Za40S414JpMXa5XMRiMUKhUNlSQ6urq2maMoW2o0epqa1FtqwU5hxjveuWm24i48ImB6b7AFLNO4IgcPz4cbtYUDnNX9aZJVHE4XCQUBRisdj4koNEAl3XkR0OoxZ5HmZna6U5HmuBvv5+IpEIDQ0NSJKEoihZV8gul4vp06czffp0NE2jr7eXgJkq2b7dWNVPrq6m8YMfpOHTn6bhlVdwP/YYzj//GSGLVUeIxXA99RSup55Cd7uJX3UV0ZtvJn7VVWC+/NbKf7Z/Fp+++FMcn32ch488ys4Ow5KhoA6RLh2eP/0iL53ezJrG1Vw/4zrqfHX2ZJa8Gra3JU126dA0DUUU7cjsscDmtGDENavDxHf+BJJKY8dVN4+ffD8At90WQpjczruf+cCwolfvnvtO3jjz9cTjcXZs344ObLjiCjvdS0+yotjWFOvvNDeLtX9KBVTT6qKZx1r3UxJFJNMEbhHNiYSBgQEqKitxOhwGOTAFdcYs8DRdvyTH/bGsBgKGrgsmYZ0IrgWrDT6vl1gsRjgapaKiouSBiZYK74IFC3j2uec4c/o0kxYvTm9MSpsmMi58cpCUd2vhxMmTxONxZs+ejaqqY6Yq53Q6icRiRONxypu1nB2KWYRKx7CgQGGm1mQz4lhZEAKBALIsU1NTY69g1TwCtERRZHJNDZNrali0aBHRaNQQYOro4MiRI7QqCi6Xi4Z3vYspH/sY0/ftw/fkkzifew4hS2yIEI3ievxxXI8/jubxEN64kcHrrye4bh1a0qqu0dXI3y15F4FZAZ44/iQvndtMnDgqGjqa/fvRwOM8GnicK6dt5J75dzHDX5i6I4x9toKuw9a0eIM1yzuI7X0wZduzZ95Gf7yB6mqVG+44zd+88B66Y6lpp7fPvJUPtLyH811d7Nu7F7/Px7pLLzXS90wIgoAgSSOmxulmXr2WRiR0s7phQlXBjCDXNI30HjTRSEN/fz9VVVVGO2QZTdfLn7WQNHkVMi4oioKAWV7dJGqSJJFIJMaVdCVPwm6328gY03Xi8bhtZSsVrG/pcjqZ0tTEiRMnmNfSgsO0GicjpQjfBMUFSw40TTMCZEzTlkUA4vE4Rw4fZsaMGbhdLiJmestY8DiXy4U0OEh8nExKOkPaBrIs25OJ5WcuhM0mv/DlvnfnAgHqGxrswRqKe7ncbvdQsShNo6enx5Z1PnXqFFtFkcn33suU976X2a2tTHrmGVwvvoiQLpplQoxE8D/xBP4nnkDzeglu3Ejwda8jdvnlSF4vkigyv3Ie85vm8abQG/nVwQf448k/DZMHBnjm9DP8+fSfuXzK5bx5/l3Mrpqd9/ca63LNp9odnAukWihWeP8X+ocsL4rm4NETHwTgre/o4qM7P8ixweMpx1xav5avr/oyx9uOc6C1lZraWtauXVu09cPqx5IokuKZ13Vc5ligqCqqmXKnqSqKSRSSfyYEadB1BgYGjGwdDCKvJBIkykUOLFKQFmSYLxQr3sDysVsBzaYVrJQlmQtBcpaAIAi43G7USIRYGcgBGCQpoSjMmjWL06dPc/jIERYvXmwvpKyx8q+Wg3FGpniDQ4cOoek6ixYvJh6NGmmNTmdZAlTSH7/T6TSCEuPxMTUPWvECmq4Tj8WMAMn0AXgUcRfDpFdLaFWIx+P0dHVx8cqVAPZzSiZ+xUAURWpra6mtrWXJ0qUEg0HOnjtHZyDA/vZ2dnu9uN/wBhre/GbmHjxI0+bN+LdtQ8hisRDDYSoff5zKxx9Hq6wkft11xG66ifj69WiyzBRfE5+4+KO8ed49/PbIgzxx8kniWqp1Qkfn+bPP8/zZ51nXuJZ75t/Ngur5I36XsVZITM9SqK2JM/X8f6Rse+Hs3fTEpjF/QZRHPR9lx+lXUj6fXzWP71z6n7QdPMLBQ4eYMmUKF190UXncImmxF5nedcsVUQxpkCUJWZJsmfRSIBgKoaqqrdZqFWJSSinBnpTRommaTa4KP41h0dDNRYcFQRAQLZKg60MkYQwtCenpw9aCsByB4YIgEDXP6/f5mDt3Lm1tbcyZPTvJpTiknjjRcUGTA1uhyiQHkXCYtqNHmd/SgtfjQRAEIpEIkUgEn99f+pVX2mTrcDgMC4auE0+v71AGJPtgwSBLimr4vocJMZXguydHvpeKKHR0dKAD9ab0sR1QZgZAFZP3bk0EiqLYP5qu22RBU1X6+vro7e2lu7ubU1OnIr7xjTS85S0sOnyYqVu34tm2DSHLakgcGMD94IO4H3wQraqK2PXXE7npJmJr1lDnqeUDy9/HPfPv4sG23/Ho8ceIqsMtSZsDW9gc2MKq+pW8ef49LKlZnOFKaZHjY0UOtqbGG6yavQdBGcrd1nSRh098FAQd+ZbP8PDpp1L2b/Q08KNLv8Oh3Ydob29nbksL06dNy1jJrxTIhzyNijQkEUZZFJFlGUmW7Qm9GAwODqKDXepckiQjA0DTUExhnaKQpGehJZHr0fQda0wRTOtKMuyshSQRpXLrfeSCy6qvk0iUPGshHo/bfcXl8dDS0sLxEyc4cPAg8xcsANIWUBMcFzQ5sOINrDTG1gMHkGWZFlMJ0e1yEY/FUFTV8EGVOhI4bTUumlGzsUSCaDRaNnKQScwGzEBEjHS0dKuFkDZYjBYZiUIRCAQCVFVV4UkyAVoZC0qe5MAyJyeTgfR7Y4mVyLKMLElUV1czZ84cBEEgGAzS2dFBoKOD52bPRmtuZvLrX8+SY8eYvm0bvp07EbK87GJ/P57f/AbPb36DVl1N5LrrCN90E5NXr+bvlryLu1reyO+PPsRDxx4hrAxPsdzeuYPtnTtYVruMt8y7h4vqlqc8Iy3pumNBDnR9uDLixf5fpvy/KfAGOiOzaLzj2/yu86cpn/kdfn6w9tsc3XmU3p4eVq9eTYXfbwezlRuFTkz5kAZFVVHNIFnFKmZmxqxIJlmQZdl2SeSD/v5+nA5HSvaJLMvGNRKJosiBbgVtloAQJCNT0LeNDNfQxzCtNP1ZS5KE0+EgFo8TjcXwl4gc6LpO1MwCsyrcupxO5s+bx/79+5k+Y4axILMsB6+CImAXLjlIiliWJImBgQFOnjjB0uXLkU3TpSAIuN1uwuEw0WgUp9NZOutBlgHI5XIZojVlMGulWwrSETeFj5yZTLdmXEY5GH3yHS3k7LqmEQgEaG5uTtkumzoV2UxzlpkzYRIBq+BVSpvMwdb+yeFD9vv9+P1+Zs+Zg6oonO/qoiMQYMekSTw/fz6+229n6dGjzNqxg8p9+7J+H7G3F9+vf43v179Grakh8rrX4bzhBt6+6l7unPsGHjr2MA8dfYiBxHDBpj1de9jTtYdF1Qu5Z8HdrK6/xLagWN9nLMjByVNuOs+n9p+L61JFjx4+/jES8x7m+covpmyXBZl/X/HPnNt5lngsxvr166mpraXPlLwuW2BwMoGiNJNSMmmwKL5m6qooioKqKChm3JMaj9viZ6JFFkw3RLay8AODg1RUVKS8O7K5sChELXFYCmIZ+kjCDHDORKKsLKf08dD+r5xp5JDRjeF0OoknEsTj8YxpycUgnkgY2jG6bltlBYzKjUfb2jhy+DCLlywZ+t5/JQfjB11VU2IO9re24vF6mT1rVoqp2+lyEY3FUBSFWDSaEiU9qutn6fQWASk1ORhJCU81zZ8CZLdYlPlFhcKIQm9fH7FYjMa0Ylh2UKL5glmmXfsnA2kQ08hAsQFlkiwPFYsCgoODRkXJOXPYtmIF7t5eFh44wNzdu5l06FD283R347/vPvz33YdaX0/k+ut550038fprfsKjp57kwSP/R1+8b9hxrb0H+NzmL9BSNZd75t/N6jpDx32svLjbX0nND6/1nWNm1WH7/20dt9Dm7efcuveQ3hs/u/CTRPeFcTiddvGksVDhTGlFGfu4FYNgxU1YJFW1+qXphojH48STjpElybZaWX27v7eX2rTiYLIsI0D2lMakGIJyEwL7kiYhSo83SIYoCCkWrtQTGBbOcixMBMgYXOnxeAiZgkhWLYjRQNM0O9Db43INjStmcOzCRYvYtWsXM2bMwGU+079aDsYRCTPCXJIkenp6OHvmDJdccsmwjiAAXo+HwcFBYtEoTpcrK5svCNksB04ngiDY/qnRKp7ZA8EIsISPkrMU0lFoFbbRYiSi0BEI4HQ4qE6rdyAKAolEgkg0iqaqGV80iww4LDJQJn+2v6KCuRUVzG1pQVEUznd2ElixgkeuugrxzBnm7NnDvL17mXzsWNZzSJ2d+H/xC/y/+AXVjY28+4YbeOP1H+MPVWf4Tdv/0RUdXnXySH8bX972Veb45/D66bezuvGSsny/dGx/JVX+eVXTn1PmnvvOv4lz176FBKnk92+nv42qNj8Vk/ysXbcOp+nCSy/uUw7oVrDdGMMS30kmC6pJXi0Sq2kacU0Dc7yyLECDwSCzZqdmrFhWB81MzUw2U6foERgnGpPvaMUbWMQoE0a695arR9M0ezwsCVHIQgQdDod9zXgiMWp3cjweB11HEgQ7PRyGxrcZM2Zw5PBhQxjJLPL212yFcYTlBxMlicOtrVRVVTFt2rSM+zocDmSHg4QZC+Aro6ylvWo1pZSLldAcyYWQDkv4aKSKkOOlapaJKJw5d476xkZEUbStA3HTRBuORNA1zQ7ytAZOR5JlYKwhy7JdLEo3U9ECl13GMx0dxA8dYvauXczbt4+aU6eynyMQwP/Tn+L/6U95z9SpvOV11/HMisl8R99MR7Rz2P5ngmf46YH/5Q8nHuaWBbdw9fQrkcVyBfbBjnRyMOVZ+++/9G5g27rPkXD0pOzzusnXMv9sC43Tp7Bq5Uo7Bsg4Z5kzLdL683jm3AuCgGyONQBYsTCWK8JcgQ+aBcNkWWZwcNAmGJIkITscxBMJW2V1vCcZy8WRK7DPkuIeqa3J1oOc1oZ8keV4K6VRM927oyEHmqYZY6um4TGD3O3LW9cD5s2bx67du+kfGMDtdv/VcjCeSFjkQBA439FBy/z5OQcGj8dDIpEgHovhcrlGVYhppC7tcrmImgExxZCDXDr7mWAFMQmQOd4gCclSs+MFAcPy09fby7Tp0xkcHDT8mkntkmUZURBwu1x4vd4xE7LKF4IgUFVVRUVlJXPnzSOxdi2dN97IlnPnCO7axYzt22nZs4fac+eynkM+c4ZJP/4pbwBunT6dA5ct4nuzu3h+Up+9MhRNaaBzkQD/tvPf+eXB+7hr3pu4bsY1OKXSBrx2dNbS05t6ToscRAT4SlOARMWJlM9XeJexsX89C+bPZ9HixcPewXJnWhSTsz9mSHJ1YRZAUzWNjo4OBMEoYa5pGtFolGg0mlL23Q4uHGek6xtkQ6GBoFYtjEL1V1LOkeMzl9NppDSOshBeNBq1XSrpBCm559XU1iJJEt3d3TTU19su74mMC5YcKKaZbsCcWOrr63Pu75BlI1AlHicaieD3j0LDcITO7HQ6kaDguINsWQgjwSrPLElSyqotE8YzzQiMQSEej3Pu3Dl0XcfjdtsVAWVJwmEW/nG5XESj0ZzmzAkB8146HA6mTpnClKYm1OXLGbjjDnafO0d41y7qn3+eubt3U9M53DJgwdHezrIH2vkeMDC9gceWenhgocrZBi8I2LUKOiIdfGv3t7n/0P28qeVOXtd8A26pNFk4R483p/zf4DvF1IpjqMCHfZPpq0yNsZjpmMEb4rez6uJVzJo1K+M5x1qjYQJTBcNHLUkM9PVRWVVFVVWVsWAxC2vpqoqq68SiURRNQ5QkQ1htnFQcdTNTA10fcTFVTPssV4lY7JiU4xi32w39/UbRsiJTGu3MJzN1MROSx9NJkybRdf48LFw47guwfHDBkgNVUZCAnq4uHLI8zG+dDh2jqEwiHjciWROJEVfZWTFC0JPL6UQ0yw7nC0satpguFbNcCnmYz8Y67gAMy4Z13y2LT3dPD5IsU1FRgcvpNAhVcvEsTSNmraLGOJ2vEGS6l5ZVoaqqChYsIP7619PW2cnul1+m6umnmf3KK1R3dWU9Z2V7B/e0wz2Pw+nGXv64dBJPLPfS2jC0T1e0m+/u/QH3H/o1b5j7em6ZdRNex+jcZW3HZqb8v2rKsyDAv1bBTl+qK6FGnMw7xHu5as1GGhobs55zrMmBda2JsOpOh9Wmzq4uplrKiKZLwc7AMWNtBE0jYtZbEE13heV6GKt7qSgKIhjS1iMQdIHiMkUEhlydWgGxIyM9Y8lcaOimm7IYchCLxewCdlY9iWzt0DSN6upq2o4cQTVVOic6LkhykGx27zh/nrqGhqFOlUWUR8Do5C63m2g0SiQSwVGMiEkeg47T5TJ8ambkcq44gEJjC9Kh6TqKqW/gzPMFGIucc9WK2s6QmiVLEuFgkNqaGiZlqZ6WrJQIQ5NLelDWuFOFDCmU6X3Q6XQa8TDTpqHffjune3o4tHUr/iefZPrWrVT19KSf1ca0QJB3BoK8809wqNHJU8v9PLHcz6k6o0/1xfv4cetP+O2R33L7nNu5ffat+J2FW8U0DY6dmJGybdWUZ/m5H36blg3mwcP73e/itvU3UzkSKbfIQcEtyhMZ3puxyrEfCcnvttV/w+EwkXDYDlyzkBzcKAgCwVDIiKdgyNoWj8eN/WTZiG0ooWJjJqTXaBkJo5FRtrQRSknsXE4niUSCWCxWcJxZIpEwYkQ0DWeODDervbquM7mmBvXQIbq7u/GVKIWynLhgyQEYEpU93d1cdNFFQx/mUknDFEYyMwki0SjeAlMbs6UwJiNZDCkWi2UlB7b63SheBjtLwcyrzgdFm/FGgKKqtoUgPd1QlmWcDoed6tnb38+cOXOynssSlLG08i2yMMynPY5kIes9zNUHBcEoFnXjjXDjjXRHo5x44QU8TzxB04svUtHbm/XY+YE48wM9fPipHg5McfLk8gqeXO7ndI2DgcQgPz/4Cx5s+x23z76FO+bcTpUrM/HKhLajHsLh1AE0NP9Rvp0an4iExAcr/467NtyVV1rweFgOxiJlNxMykQGjOUN/d3d3owOT08hBMqzAW10Q8Pt8RkBjPG7H5ViWTwFsi0I5iIIVb5BvfNaor16A9SCf8cvldhMMhYgXmNJoxYHoum5YgXPEaekMCZX5vF7cbjcdHR1MnTo1r2uNJy5octDb22tI744Qb2BBABBFvB4PwVDI9mkXFM2a56DjcDoRo1GisRgVFRUZ21+KCTqeSEAeWQopKOHgadVziJqEKxkOkxA4nM6U9NGBwUES8Tg1kyfnPLeV1pXLZ5iTLGTZp9woZPXjcrtxXXstXHstfapK4MUXcTz8MHUvvIAvB1FYeDbOwrPdfOyJbvZNc/HEcj9PLfdzrjrE/Ycf4HdHH+LmWTdx59zXM9md+z4DbNuRygJqF/6K/2oanmL5nup38rcb35l3jYSxyFYYDyST+lxkIB1d5qoyl3qqJEnGRGm+Tw6TLLh1Q/gtkUigJBJouk7CzGwAw0XhHGWwtYXkFOJ8M4Ps2g2jeCbp9zHbe5QXOTAXIoquk8hTzl7TNELhsFH6WxCGxtVsmRG6bltLREGgvq6O8+fPj3idiYALnhz4PJ68TTjWqt/hdOIxfXrhcBhRFIuPP8gCl9OJyPCgRKuLlYIYaLpOwrQcFNL+UsQdKKpKNBYzCj1Z58W0EJgxBNnUKHu6u9F1nerq6pzXkGXZCNYqQDEuE1mw25cW0zHaCavU05IoSXg3bIANG+jTNHq3bUP7zW+oe/55PP39WY9bcjrGktMx/uGxbnbNcPHU8gqeWubnQfX/ePjYI9ww83W8seVO6r11Wc/xcjI5qGul/453kUi7PW+tvYePb/xIYQXFrH5epqDSjGSw9Bexx45MLrlC+lF3Vxe1tbU597EqRGoZrGZ21LzHM6QSGo+nEAVRknA5nbaLohhY+gZSgQHBJUlRNGGt9tNVEPN1GwmCgNPlQjOzQUYiB7quEzFTqAVdx+P1pgge5bIegOFWqauvp729nXA4nHHfiYQLkhyA0UF6e3upT443yOMY60G63W50TSMaixEOBhErKkYMWimkyztdLgRRtHNkBTPHt5TmfIsYyGY9+LxRZBt03SgoFYtG7cBCMAYQt9udtzx1d08PlVVVI64+rRVQIeQgHSl9I8ntkPws7H5RoFuirL5tUURYu5aBBQsY0DRqDh1CfughKp95BlcOonDRqRgXnYrxj4908UqzmyeW+/njst/x2InHuW7GNdw17000+VIVKVUVtu80rVsVZ+EtN5Bwpg5ut9TeyOc3fqbgSqPljDmwnuGw938UpM9+P9Njl0rwPeLxOH0DA8xOEz/KBEmSSJjaCNnGJZsouN2GSy8Ws2V+I5GILRnvdDhGzGJKh5qHvkEmlPI5W5YDO95o6IO8xzAr6ymeR0pjJBo16mnoOr709Okc10vWbqivq0PHKCg30XFBkgOL4QWDQRYtWlT0edwejxFJn0gQDIWoqKjIrZ5YwKTqdDiQRBFBNwp2uF2ukvv5rRTAguu/C4VVTtPM9KpYPJ4i7uF0OHC7XAWX4e3u6hoWkJUJlh9VNQvflFIFMX1CSSYNydtykYZs969UQVWada9FEXXtWrR16+hSVZzbtuF4+GF8f/oTjhxE4eITUS4+EeVTD3exfZabJ5f/mk8se4KLFl7D3fPuYkbFdABaD7oYHJTBOQhvvgkmpYo4rZ+8jn/b+I2iUkq1pIGzHMi0MLDy5zO+r0lWAOv/jGSiDO3t6elB0LS8+r4ky4im1cyVh9tTliRkrxe3KdoTN+V+Y7EYsVjMcPG5XHlP9lYwYqHvXDncR3bKYxELLI/bTX9/v22BzPb9o7GY4arRNLweT0EqujYBNosxVfj9dHZ2lkS6uZy4YMmB5depyzPeIBMEQcDn9RIMBlFUlWAwSEVFRckGMocphhQOh0teoVEzA5PyUUXMiDzYt6IohuvAtFCAMci7XC4j/7qIjh9PJBgYGGDuvHl5NNHIC7eqLpZLIjn9min/m7+HkQbLfJpp5VoiZEzhlCTi69YRX7eO0Fe+gmvLFtyPPYb7qaeQB4cXdAIQdVh9LMrqY1E+89B5ts05y1PLf0/o2mu5bdXfsGnLChA0eOOboGlXyrFLKhfx/Y3/jSQW58e2Ta5jGPeRHuQ7bDJJC2IdK3R3d+NwufDlobFixR0UmhIniCIulwun02krjlruh4Si2NUEHabMeyZopt5CIcGI6W0oNmsh6zmTrAhaAeeWJMkI7jT1JDKRg3g8bpMpt9s9fJ8RxkotKeYAjPLz586eRVXVv5KDsYau65zv7LRz5As9NiXoRRTx+XwMBoOoqko4FMLn8w1/cYpYCbqcTkKCQDgSGVGHoVAkTGJglYwtFNlM4lY0tFWsyoJspoG6RuHHBGP1pMOIwYgWHGaFxkSeK6hyIRtpyKXwlqlSZCFIJmQZIcvE1q8ntn49/V/+Mq5Nm/A8/jjuP/4RKRjMeIikw7q2COvaIii/v4/NLb/npal/gLlxaHkyZd/p3mn8ZOMP8cijKFZm3YNSTcLJfv+0GBI9jaxNNK2D7u5uJk+enJfpXRLFoRx6VS3YLZCcGqmpKjEzFVLTNCKmD97hdNqaLMmwJZOL1FQQgXJl+RfzTF0uF3FzoZOuWKsoylBmginAlo4R70CS5QCgvq6Oo0eP0tXVRVNaUbmJhIlLW0YBTdM4f/48k/OcYCxYebTpECUJv9+PgLGyDUciw/YpVKZVA0P2VxCG+ehLAcuHVpTVAIaxYVXTCEci9PX3EwyFUio8VlVUUFVZiTvHaiNf9HR343Q68w4itYjPaOIOyobkiS/5BzIGZWmmSdQKkkwOTk3+sU9vrZDyuecOB7ENG+j7xjcIbNlC9/e/T/i229By3GdZg8sPhXnrpu+BN1WUqVKaxE83/JCaPDIdcsH6DiP2G+u7mz+WfLBu/q1Z/1u7k5RWbJGCpOtMNLEsVVXp7u6mNg+XAgxZzQRByFiFtBCIkoTH46GyogK3222Y5zHGkMFgkFAoZC82APvdL2bRYbW9XEgOEMz3Oi6Xyxjb0+IOVFUlHA6j64YCZNbFxwjXSbcc1NbWIggCx3IUY5sIuCDJQVdXF/F4PC/f3TBkedCSJBkWA4wMg0gGgpAPdAxioOs6kunnkySJUChU1Pmywcp5LpocYIhCJRIJgsEg/f39RhVEM4XH63ZTVVWF3+crepDIhO7eXibX1OT9YttiSGaFu4kCPZuvGrIOXClbrEkwB4mwfttCK6Sl0EEq2bDO53IRueoqer75Tc5u3Ur3v/4r0csuQ3Nmjg15e/R3vLU5QGW3EShXI9bz043fY1ZFc/qXtn8nT+T2/Ujaz2qPlrZPyk+2Sd+8hyPdz/FKYywG/f39qJpGzQiZCsmQJAmxCNdCNlguh4qKCrxJ77WiKITDYYLBILFYjISioFGcSyH5WuWAltQH89VEcJmidLqm2bUWNHMxBEZ2iNvtznisDjldJFoS+bXaIssykydP5vjRo/l+rXHBBelWOH/+PAIY8rQFIleEucPpxKPrhopZNGpM7kkV1kaCPUAnbfN6PESjUULhcFY1wEJhKXcJ5J+DnI64WfnQypEGo1O7XS6co3QdZIOm63R3dTEvj3gDC6IoIksSOsYgNhoyVEqM1BtGk8mQHudgP4kMBCH5MwChvx+5rQ3p6FHkI0eM34EAOhCbNh0xFEIKBpHCYQTzmFCtxOrl3XjFFZxiFtfUXk1lr4+QO2QLHVmrohTLRtq1U8z85jZrAM/YnwrMDknHq4caGC4FSRSZVIB7UZYkYjBqy0EmWNoJmqoSSyRIxGLGhBkKEY5EjGDgUdSfKVsmT1ocjmZmguUanwVTryBqBmc6HQ676iswrNpiMkaiONb7YLmBLFRXV9OZQyJ9IuCCJAeaOTEOSzXJc0LLmP5kwuVy2QpZoWAQwe8fKsGa65wMJwYAXp+Pvr4+27WQrxRpLiSS0owKncStVYKiKLYp1ul04i4gkrlYDAwOkkgkCnYHybJsl72dKORgRIxSDAZzpWP/nWEXsbt7iAi0tRl/5xqQRBGtogKtooKOxl4ivm4EDfpmqpyOfI8f+IyAxm3nt/O+rr+jcncllRUVNDY10dDQQM3kyTlXhOlttNo/LM7H3HfUE0iOFd3EcioY4keTJk0qKNhZlmUjKNEs/lOO1bgoSXgkCbfLRcJ0M4BB5IPBoBF8XIQ7sRyLi0xZQJZc+UgZQi63m2gsRjQaRZYkNLN8ts90/WaFKObsZ7blIO3ZCOS2OEwEXJDkwO4EaabHfJAt7iAZHo/HrosQCofx+/05I/OzEQPAdi0omkYoFCqJ9UA104wKmcxVRSGSlu/rdrvtOhBjgZ6uLgRBGFH8KB2ywwFpAZLjjhEm/vSJzw6iy/B3tvMnWw7Ezk6DABw9imQRgRwKirnQM7WPwPxU9cNn5KEAxm69n00NL/O55v9HZ0cHJ0+c4PDhw8iyTEN9PQ2NjTQ0NGQ1xQ59hdT31FYGtT7PcpyViphMIlKOS5oMsr7LEyjmQDctZjNmzizoOEEQDDEkQUDRNBxljHy3BIOcZp0W0SSkltCZy+0uyKJYjrufS1zJSnXM5nq0AtfD4bAhDgXDtQxG0SYpPWC5ROnM5cQFSQ4sFD2p5bGq83q9tnTv4OBgVg0EHZM95mhLqV0LCXPVnw850E3fWrJSo9PpxOvxIJppgmPFcHt6e6mqqirYQmH7Rk22PyGCzdJ87DbMvpUccGjvluXv9PNKgQBSWxv6sWNIZ87gP3KEilGKqugOB2pzM92zwnQrbcM+X6y52c5QnM2fA89xe/Mt3LDyetB1+vr6CHR00BEI8MorrwBGidqG+noaGxupnjx5uDql+bvQ99Rym2QjESlZCUnvcjKREMhtIRxLhEIhYrFYUTFSkiyTMJUSS2F1zAWrmqAkSVRWVNipzJquGwuLWAy32523rknJJ8gRzmW5GDKNZ1bWhqqqxKJRqidNGtElqxsnzUl09GyWgwnQ70bCBUkOrE5Q7APIx5wpCEbRk8HBQYMgDAzg9flSUl10TOY4QjtK6VrQdN0OUMp1Hl3XjeqT0aj9UskOB16PJ2VyFsx8/bHozN3d3dTVZZfwzQZLwlVTVZQxGCSzIblOgO33T7cYpccC5IKmIZ09i3zkyJBF4NgxRNO0O1hRQdTlQiowmFV3OlHmzEGZMwd1zhyUlhaUGTMI7/sNwae/OGx/32Uf4a0HnuRh7Qi94tDA+qWd/8S6+rVMclYxqbqaSdXVLFiwgHgsRkdnJx0dHRw/fpxDhw/jdDgMi0J9PQ0NDYZsbb6ZCgUiJVUxfcJIeh8tX/R4k4Suri50Xc87fTcZkiQZqYGKAmVO5U0kFXMSRRGnKcEci8eJxWKouk4oEkGOxw09gBEm11KSg3zPlYkY6Ca5sV0QopgXwREY+T3WksaEFJiCTRMZFyQ5SJE4HcU5RhowBFGkoqKCwWAQJZEgFAyieTyG9DIjWwwslNK1YCmXiaKY0Qep64YqWiQatV8UyUxlyuavF8egI8ficQYHBpg/f35RxztkGdW05IwJOTAnfZsIaFqKWXukzIlhd1NRkE+fTo0POHYMMUdWjHUFIcez0Twe1NmzUebORZk71yAD06ZB2j2K7H4gMzFY/zF8a99H9UAfn2jv4bPeoaIx3bEevr77m3zjkq+mHON0uZg+fTrTp09H13X6ens5FwjQ0dFBe3s7YARk1dXVUVlZWXKNj1xITzm2Mh+SrQr2Z2NIiisqKwtWHbA0KQAA6DxJREFUEgUzY8CMOyg3EqZLwZG2eLCClOPxOLF43BCMC4WMYlBud1aXaynvbaH1GqwFoKZpRoyVqhqkwKqymM858rAw22mMmWIO/koOxh72Cq7ISP184g6Gdhao8PsN03w0SjgSQVFV3G53QQFCpXItJAcjpiNuqjEmB8l4PZ6RxYNE0RDYLyMs8aNCgxEtyLKMUGARpnygm0GZ1uSRPghlFTgix6pCUZBOnsRx+DDy0aP2j5CHvnvKNcz+ZZEDze8fsgaYFgF1ypQRixpFdv+awT99fth232Ufxbf2fQCI0y/lmuPP8VTCwwuOIcLyu5MPccuMG1nfcGnGcwuCQPXkyVRPnsyiRYuIxWJ0BAIEAgGOHjuGqii4TKtCY1MT9XV1hct9F4u0wX3Yk7Q+TycUJSYN3d3dxaVdYy4CTHJTjBhSvlCTqjBmIjFWup/D6SQWjRK3VBeDQVwOh5EumN4PSzQ5JmfnFHKMpWNgfa/Kigr6+vtLlhpqNMto11jFbZUSFzQ5GBUKiSYXBLxer61XEItGUVQVv9ebN0EplWtBMfUNkslBSgaC2V6Px4Pb5cpvkBsD02t3dzcul2uYQlm+KJkYUvJkkRYbkG+vsggFAPE40okTSG1tSEeOGBaBEycQklJEi4FWUUF80SLizc0IM2cSaWlBbWwsONAuvPs3BP/0uWHbfZd+GN+699v/C/VLSAge/iFaww75DGFh6G58bseXeOy63+OVR352LpeLGTNnMmPmTCLhMJ2dnfT29dHT3c2p9nYEYHJNDY0NDTQ0NlJVWVlU8GA+zyq9CmfG8+QjzkTxq+BYLMbg4GBB6bvJEAQBWZJQrWydMpGDuOVSGCEDShJFvF4vTlW1NRFiiQTxRGJYZoOVwjra8bqYrJZ4ImFUWNRN3Rav12iHSQ7yqXug6XrOVMaU4m0ZrK9/tRyMA0rB1orpcFbHD4VCKIkEg8EgPr8/L62BUrgWdIYmR4csoyoK4WiURFoGgqdAq4YgCEZwYhkDE3t6eqgpQPwoHZZanKZphRVhMleGdjbJaF7YaBTp+HGkI0fg0CGDCJw8iTDKlYhaXW24BObOtS0CWm0twYEBNF1H9vuHuQnyweDOBwg/84VhFg7vug/gu/SDKdsESea8o5mp8YN8MFrNv3h67M9Oh8/wn/v/m08v/2RhDRAEqiZNor6hAY/HQyQSocN0Pxw8dIj9ra243W4aGhpoamigrqEh/2DVPPpqPmbhbO3Wk/7OZH3Itxd39/QY8QYFiB+lQ5IkBCjpijcdSjyORmarQSZYhZ4s+WHFrHCbntlQCr2DQo63Yq3iZhlrh8NhjIdJhMUKNM+VFi0IQk53HqTGG4iCgJqswVBAm8cLFyw5EAVh1Hm/ha6WVXPF7q+oIGTWYhgcGMDn8+VlKvWM0rWgJmkTWIIeFpIzEIpCGa0Gmq7T3d3NggULij6HVcteSyRQRiIH+pBCn/V/wdcLh5GOHTOCBI8cQWprQzx1yliNalrRNevVujqDACSRAS2LyXmYCFIB6NvxK2LPfpF0hQTv2vfju/TDGY8575zD1PhB7khU8EdHiF3yUP/63yO/5KbpN7B88tK826Cn+WM9Hg/Ns2bRPGsWmiknHAgE6Ojs5OTJkwiCQG1tLQ0NDTQ2NFBRUZG1X47pmixNZ0JIc0XkGke6u7txezy2mFQxKJWMcjYoimIEJVO4ZLIsy/j9fiMewQxatDIbPNZ4NJrYMMj7eF3XDbevWV3R7XbbLlXLgiGbRZgUVSXniJ0HscwpDf7XVMbxwWgGTQsFxR3ouv3ygGFaq6iosDXJQ8Egbo8H9wgDgM/no38UrgVFUYxKa8mqhhkyEIqBgBEAVw6KMNDfj6IoRftdLciyTCKRMIowmduSc96HZQ7kCSEYRDp6dMgt0NaGeOZM9pVDni+92tRkZw1YhEAvIDjPXqUWSNzOb/0F2gtfHU4M1rwX32UfyXq+frkBPDWIkW4+Ha3lXt8Z4uauGhqf2fF5fnf1b3CK+a0uc62yRUmirr6euvp6lgLhUIhARweBQIADra3s27cPn8dDfWMjjY2N1NXWjklVznwwzBWRgyx0d3UZ4lGjuF65xZCSAxGLtexZmQ3xRIJYNIqq6wTDYWP7KM6br+VB0zRC4bCtHuvxelMzy8xnYo0hIwZ45vGOq1mCEZOvOZExMd6mEqNk6THk7nj2hJPheoIg4Pf7jQpnkQiRSARVVY2CQllehNG4FnRgMBgkGAoZhUREEZ/XW1LFQLFMbLe7pwehQOnYTEiOO0h2ExTSZqG/34gPMDMG5LY2xHPnCmtIhiA2ZepU1LlzUVtajN9z5hhqhMW6apJNlAUMrGdf/CnSln8eTgxW/x2+9R/LfS5BQJi2Fv3IY8zUHPxtbBLfc/fZHx/qP8KPDv2EDyx8T15tKSSV0evzMXv2bGbPnm0UKerqImAGNh4/fhxREKirq7MFmPKKXRmrIDGzkFE6FFWlp7eXxYsXj+r0lhiSKoolF0PSdd2WUB9toKggCEY5aFk2XAxmmWTLilCM1Hs+77aiKITMAkqAIVqX4Vq6ruOQZSKMLEmdEleUBZabx7qWvUgR8i8KNZ64cMlBKR5APqYjchMIj1nlLBIKGfKjmobf58saqFiMa0FVVYLhsP0CuD0eJlVWlnwFUS5Vr57ubqqrqoquA6FjmHJlU7TJSmkc6XxCT49tCbCsAuL58zmPGbEtgoAycyYJiwSYREDPMFmNpnfqhZIDXef4n3+Id+e/DycGl7wb3+WfyO8809fBkccAuDdexdOOEEekIUvVdw58n+unXsPcyjl5f4dC+6kkSdQ3NFDf0MCyZcsIhkJ2BsS+vXvZvWsXXp+PxsZGGhobqa2pydgXxm14Nt0QXefPo6kqDfX19j3QVLWocUu2xJBKnMprC4sxukJLyRDNLCmHLBOJRFB0nWAohMftLmgxk89IFDMlkTVAFkU8I8ghW/0kV2BzPk9H1/WU0tbDzvFXt8L4wK7GVQJ2NlLcQT4P2OV0IosiwVAIVVEYCAbx+3wZzaCFuhZisRihSMQwKeo6Xo+H6qqq8jDTMrHdrp4eGurrCzrGltq1fpvbHQ4HWiJBIpEYmhB0HbGrC8mMDbCsAmJPT4YzF9AGSUKbMWMoPqClBXX2bFSns2RpWlmvnXz+EZ6Lpmkcfuq7VO//9nBisOpv8V3x9/n3l6qZiJXT0AZOIyPwmUgt7/QHsFQeElqCz+74Ivdv/F9EIfeknywaVTRMC51/7lzmzJ2Lqih0dnRwLhDg7JkzHG1rQ5Jl6mprjXTJxsZUq0KxQYklwLlAAK/Ph7+iYuh5JsVKFUIUbDGkEscdKPE4OpSl2JrD4UCSJMLhMLFEgkg0SiKRMGIR8iCMuSy7duBhIpEx8DBXm2DIJZD5wiP3GTXJKpZOTFNEuiYwLkhy4Ha7URWFeDw+an9WtmOtFWq+Z5Zk2Y5DUE3JZa/XizNNYyDZtRAOhbJWltR0nVAoZMcXCIKAz+s1dMHLaLIqNeONRqMEg0EWLVqU1/52IGGWNjhkGf3MGRwnT+I+fXooWLC/f1TttOSFLWuAMncu6qxZkGmlU8AAXWy0dlbltTQoiQT7H/s2jW0/GEYMPCvfgW/DJwvqL4Ig4Jp9OZFdvwJgoebizWodv5Q67X12dO/k/qO/5t659+Q8VzlywCVZpnHKFBqamkDXGRgcNIIaOzrYs2cPu3ftoqKy0ghqbGw06niMh4lX1wkEAjQ0NKTc/5T3y1zg2NUFc5xOShJDKlXaseVS0Mk/S6FQiKKIz+dDjEaNrAZVJWjGaDlHuGZWjRHdqJxrla0vxCIhmfOFZq78M8Zq5enKgOzWlpjpSpnIuCDJwfTp09m+aRNd58/jb24e1bkyDd5W/mqhr5+YFKgYj8cJmwGLXo8nxc1guRaC4XBGchBPJAiFQvYE4fV40FSVSCxW9sqJpV5p9fT0gK4zOUexpeR84bQPEM+eRTxyBPnIEcS2NvxtbYiDg6Nqk+50oppiQmpLi0EEZsyAPAdInQJM1sXezzzIQTQSYe9j32bGiZ9kIAZvx7/x/xU1iTjnbLDJAcC7Q27+UtdAe2yovsO/7vsPrpqykSnepszNT16ZlWtyFgQqKyuprKxk3rx5JBIJOjs7CQQCtLe303bkCIIo2rEKjQ0NIwYNlwqDwSDhUIjGhoYczU9dYVrW0ExEIUUMSdOKdtElw1ZbpfAshULhcDiQZdkWJYqYWQVu0y2bjmxvTCKRIBqNomoaVlXFQtoumit9zRR9ynRkPu+3HW+Q4doCRpbKsosvzrtd44ELkhxUVVUhOJ10dXXRPEpyMCyPOceqNV/4fD4kSSIaiRCPx21TmsvlAkHI6lrQMaqGRc0URUkU8ft8yLJM/8DAMPGjcsCWCy4R+gcGcDocwwLIhhECTUM8fdpwDRw5gmhaBIQc8sL5QHe77foCdozA9OlQbPxDEaSx2OtAdnLQ39dH61PfY3b7/yKQaiL1XPw2/Bs/VbymRNU0pMlzUHuOAuBG5LPeVbwn9pi9T0gJ8/lXvsyPLvtuxuukmNFLTA70LLLlDoeDqVOnMnXqVNB1+vr7OXv2LOfOnWPXzp3ouk5VVZVtVZg8Qgnq0aAjEDCISZ7utJR6HUMbjewE8x5KphiSZhZHGi1KFYg4EgRBsCXafT4fsViMWDxOQlFQQyE8GbKtRHN1b0GzCEVS8TW/z1dUVUVZkgx1x0QCt8s1PL5npDg0fai+TbLlwFpoRmMxgqEQs2bNKrhtY4kLkhxIZhpU5/nzpRHZSDPTjVosB+zqZVbebTgcJh6PG0qLGVwLiqoSCgZRzBWX21QTtL6fFV07FnUFslU2KwbBwUEqKiuBJEKgKEinTiG2tSEdPmy4BY4eRUjSbSgGms9nBwjaWQNTp44oL1xOFOumyUUOAoEAbc/8mJZzvxhODFbci//Kz4x6QnbOuYKISQ4AVpw7yZ3zb+PBk3+wt/0l8AKPtD/OrTNuGna8NbCXRVY2n3MKApMmTaJq0iTmzZ9PPBYzrAodHZwwS1A7HA7qzaqSDQ0NuEYoQV0IAh0dRvplEZN4yrNLIleiKBpiSJrGaJ0AY+FSSEZyiW23221YESIRw30aDuNyOo0sLPO7WpkuVq2YmBkboZvS9c4kJcZCIcsyglkCXiuC7FtjsWgWhLOgm8Sis6MDSZb/Sg7GA5IkMXXqVA7u2kU4EhmVbyc57iBlNVsC87okSVT4/cTicaKRiF3d0eVy4XK7bdeC0+UibK6QLUac7I+zUvdEUSybtnoySmU90IGB7m6aIhGkRx+1swbEY8dGLS+sVlQY0sILF9oBg1pTU9n9ywXflyL7UDYtj+PHjnFq0/0s6LhvODG46M34r/pcSVbqrlmXE3n5p0PtiQf5+OSr+EvHS5yPdtnbv7rrn1nfcCmTXaluo5IEI5YCZjucLhfTpk9n2vTpoOv09vbasQo7duwAjGJRpYhVUBWFrvPnWbxkyaibn/wuioIAolh8emwSFPP9EwWhZFkKuZB+J2VZxu/zETWtpzGzborX67WtOZYLQTNFxxyyjNvrLcpakH5ta8FVzBO2NBKyEb+uri4ampoMEa8JjAuSHMiyzJQpU9ixeTOd588zc8aMUZ3PClCxsyAorQKby+nE6XAQiUSIx2JEYzGDuSsKkWAQWZaRZRmnw2EE76Tn0OcotlQWFEuKYjHEY8eQjhxBOHIE6fBhbjp6FGGUg5lWXY1mWQLM3z1OJ4quU1VRURITa77IR68/Zf8iSeYwASRdZ9++fXTv+gMLOu9D0FODIj3L34z/6i+UbDIW/fXI9YtROvfb29ztO/j8RZ/hQ1s+Zm/rjffytd3f4F9X/3PaFygujXEkFGyFyXQ/hKFiUQsXLSIWjdLR0UFHRwdHjx7l4MGDOJ1OW1Ohob5+WGBxLnR0dqKpas54g2IgmSte1XSrCFDUyheSXApjYDUAMj4H0azTEE8kiEYiqJpGMBjE5XKhmGZ/62l7PZ6StdUK6s4khJSP29CyHKSPx5ZyZndvL6vXrStJW8uJC5Ic2BXCvF7Od3aOmhzouo6enlZU4jQUQTCKf7icTqPCo2lNiMVihIJBpkyZgjvLAJQwZZPHpFSx0diRzeGRCOLRo0iHDyO2tRk/J04MIwKaqo5c3CZ5/9pa1JaWFDKgZ1BWlINBNDOeYyzJwVglJyVrBKiKwo4dOwgffpqFnfcPIwbuZXfhv+bzJV+lO+dckUIOEqe2cf1lH+baKVfzp7PP2Nv/cOpRbp1xM1c0rre3aVksH6NFoW4agZHTlV1ut10sStc0enp6bKtC+6lTCIJAdXW1raswqaoqp1WhIxDA6/fj8/sL+WojIrnGQrrWSyGxMLqmEbcKuI0RORAgqzXW6XAgmymPkWiUgcFBHA4HDlk2rKz5FpDLE5Ip6ayaC0LbEiHkUU9B02zLTSaLSyQSIRKNTniXAlyg5MAKzmlobORsIDD61J4xNH1KsozX4yESjeJ0uYjF40M6Bi5XxhfciioeM8sBpL7IoZARH2AGCopHjiC2t4/4IgEZ1QQtaI2NBhGwAgVbWvKWF3Y4HCTManDuEvqKJwqsmI94PM62rVvh7BYWnr8fQU9d7biXvpGKa7+EMILmQDFwNV9GeMsPwSIjSpT4qS18YcVn2HJ+G4OJoayRz73yJR679iH8Dh9QvpiDYmJhCmmBIIrU1NZSU1vL4iVLiITDdHR20hEIcPjwYVpbW3G53TSYsQr19fWpAX26TqCjg6amzFkco4EoinZ5dV3ThgmtZQxqzICEoiCY5xsLl4KFXMTOVjw1J9+Eoti1EUpNeiVJQhRFNKvSpfX8zDbkupqSpIo4rF2CwPnz55FlefSB8mOAC5IcwFDcwZ6XXyYUDOIfhX/H0isfC9EKRVEIhUI4HQ7q6+oQgXA0SldPD5WJBF6fD1cSm7e0wgWy+7hKiv5+2y0gHDpkZA2cPTvq02qWvPC8eTYZ0EfxzJwOB2FBGLo/YxR0WEwPSY+8zus6ps7F3r178ffvY17gF6Clxmm4l9xJxXVfKQsxABA8k3A0LSNxdqe9LX78BRrmbOT/LfsEn9nxRXv72fA5/n3/f/H5iz5tbLAm8XEMBrUxisnF4/XS3NxMc3MzmqraVoVAIMAp06pQU1Njxyrouk4kHKaxsbGEX2AIopnuqGpaSvxRSpzQCC6HscpSSEem4HHNquZoVpZ1OJ043W5UVUVVVSLRaF7iRoVCNtMZEyY5sEjBSG7AkeINOs+fZ9r06RNe4wAucHLQ1NTE5miUzvPniyYHmj5UuKdU4iLZkDD1C8CwAvh8xiqru7ubcCSCz+cjODhI3Ok0shpE0XApMHKd9WIg9PYiHjpkxAccOYJw+DBiR8fIB+aALgho06ejtrRwyuOh3efjorvugny08AuAKIpIZnBWQsldfrWkGCPVs57eXnbt2kVt/Chzzv5sODFY/Hoqrv9q2YiBBeecDSnkIHF6B3pskDc2v4FHTj3OlvPb7M9+2fYrbpl+IytqLiqLABIMSacXgmLIWcbzSBK1dXXU1tWxZOlSwqEQHWaxqIMHD7J//37DTC8IKGb10FJb+yRJQlAUNFXNqcuhY0x0llvF3m6+L7qpKjiWSB+/4vE40WjUGHs1DdnhMHQPBIFEIkEkEjHiDnRDGbaU458sy8QUZSjzIHkOyHGckiGF0YKOUUfm8mXLStbOcuKCJQeyLONwOPBXVnK+q4vZs2cXdR6LEFg1ucs19McTCcImMXDIsu2PrKisZGBwMMWcFYvH7bRHtRQuBV1H6OpCNAmATQS6ukY+NtdpRRHNVBXUWlqMYMHZs8FkzQf/8hcjkKvExMCCw+FASWL/Y4GiCGSBQYnt7e1s37GDqcIZmk/9D6jxlM/di++g4vp/KjsxAHDOWEdI/M4QOdEUYic24Z5/PV9d+UVu+uMdxDQjBVVH51PbP88frnnQzqMoKTUoghgYjSitsJcFr8/HrNmzmTV7tpGh0N3Njh07UBWFrVu3IoqiUYLaFGDy+f2jnuCsdMZ8MxZ088ca2xKJhG2FlMbYqmN9c8sioJqphJaKoizLNpGxggbD4bBdWMk7Qt2EQiA7HAimO3d4QzP3FzvWg8yWg+DgIPF4vOi5aKxxwZID6+FMmTaN02fOsJrCB6JhA73VKUo8kMRiMSJmqqLTtApYkMwXQ9U04vE4tXV1hrKiohAOhwlHInbaT17QdYSODsTDh43YgMOHEUpRZ0CW0WbNsrMFNEteOIe/v39goKyBOU6Hg2gsZptJy41iLUt5H6HrHDp0iNbWVmZ5uply8PvDicGi26i4/msI4tj4igWXD8e0VSRObba3JY49j3v+9cz0z+Ajiz/Av+z9d/uzo4PH+P7BH/LOGX9jHF/KCahMk3wpIMkyk6uriUajLF+2jPr6egJmBsT+ffvYu2cPPp/Pdj/U1tUV5SaUTKXEnLUB0pDscrAtkWNsNQCD0MRiMSLRKGBYMSzNAjLEI1jWVasUczgUwpshm6sYWMHdVjpj8rUtd0z6VdRc8QYYLgWn282MUQbIjxUufHIwZQpb2toY6O/PWqcgG7RMg72u22IWBUPX4cgRY+U8fTpg1BaImi+D0+XCm8EXVVlRQSgYJBKJoKkqlZWVRhaDWVshGovhMlfGzrTgJ+HMmaEgwUOHENvaEAYGCm978tdwOtHmzBnKGJg7F7W5OW95YYB4LEYsFrMFkMoBWZbtVZSiqmMaXFUI8ulJmqaxa9cuTp44wZK6OFXbvwVqqiiUa+GtVLzun8eMGNjXnbMhlRyc24MW7kH0TuYdLW/jsfYn2d/Xan/+g4P/w+WTLmO2b9b46xyMITo7O9F1ncbGRjxeL3P8fubMmYOqqpw3BZgCgQDHjh1DMl0UjSZZ8OZJ/q04A62IAkyKohjCP2CPJ2MBzVz4xOJxFFUd0izw+WzrhZDF9SNJEj6v1yAImkYoGDTSvUdJOq35QzXbk1L/gsyxB9lSGC10dXUxs7l57Fyco8QFTw7q6uqImprqhZADyyeXDEvbvKi1SXc3fPvbcNRUlbv7bsJXXUXcVP1zu91Zo+odDgdujwdFVRkYGKC2thaXy4UoCHbao5pIMHj4MI7Tp/EdP47Hcg+YropioXs8BhGYNw+tpQW9pcWoM2DeX13Xi/LXDpquknILgciyjGaqvZWbHBS7ZhUgp0k8kUiwdetWus6fZ9V0EddLX8tADG6h8oZvjDkxAHBMvwTB4UFPWFLWOvHjL+BefBuyKPO1VV/m9c/chWpmNSR0ha+0fp3/WfW9ksYcFBswPFb0JBAIUFlRgSfNjSZJEo1NTTQ2NaHrOsHkYlF797J7924qKiqob2igqbGRmpqarGJnVo0FzfTTF2KZsYL+XFb8kq6XNRBbNS0F1nU1XUcSRdwuV0q8g5ak25AJkiTh9/nsejPBUAif1zuqAG3LbaFrGglVxZk24Wu6bvRd896MVKJZx4gTWnHJJUW3aaxxwZMDURRpmDKFYydOMHfu3LxWKjo5BhpBGK55MBL27oXvfheCQXtT+I9/JL5uHYjiUF2FHKioqLArGFZXVuI4fRrx0CH8x45RdeIEnqNHiQlGUZaIIBAHPJqGJ4/cXAu612uTAK2lBW3ePPRp0wwioGcufpQpqCkfDA4OIgD+Eud6p8PpcBA3Szh7ypzSWKgAUurBmftTJBxm06ZNhCMRLp3rhWf+AZRoyj6uBTeNGzEAEGQXjhlriR991t4WP/Y87sW3AbBo0gLeNe/t/ODQj+3P9/W38pv2/+O9S9415u0dF+hGFcbppsUwGwRBoKKykorKSlrmzUNJJDh//jyBQIAzp08bJaglifr6ejtWIZlsWHUKRNO1IOdJDnRNIxGPo8GQoJOQWiGyVHVDFFUlluTu0zUNSZbxuFzIsjys7LQoSSOmqIqiiM/vJxwKGRaEcBhvhpoMhUCWZRKJhBF3kC5olLZvrhLNAO2nT6OoKvPmzSu6PWONC5YcJBciWb9+PS8+9RSnTp1i5syZIx6ba6IrKDBR1+Ghh+B3v0vZHPJ6SWgadHfjbW7OXZpUUeDMGTzHj+M/ehT9yBHE1lbc/f1oHg+yx4MzHsc/OIgXiHo8RDweVCDo8RD2evFEIniiUcSkF0yvrESbO9cgA5ZVYMqUjKllIxWbstOiCiBMg8EgHjPjopywVgCKopQ/pXEUPu9MEfN9fX1s3rQJQRC4fF4F8Sc+MpwYzLuByhu/iSCO76vsmr0hhRwo5w+hDgSQKo2UvQ8ueh9PnXmaE8GT9j7fbfsht8y5iWm+qaVpRLEr3DFwbfT19RGNRgtOYZQdDpqmTKFpyhR0XWdwYMBwP5w7x65du0DXqayqorGhgYbGRmomT0aUJIREwnAt5Dk5xszVuyxJmVfcSe+3VeypUCQUhZhZs8BagDlkGVfSJJ7xCeb5XEVBwOvzEQmHUVSVsBmkWCxBkGWZuOlqydws3baw5LIaqLrOgdZWmpubjaJfrxJcsOQAsMlBfX09U6dNY39rK9OmTctpbsqnG+alwhYMwve+B3v2pJw75PejmJ3VFwjgaGkZOiaRgPZ2OH4cTpwwftrbwWTSfqeTsCwTlWW8goAmSei6jmSl2wDeSARPJELM7SZskYS6OoIzZ+KcORPnnDmI8+ejNzTkHBSt75fPQJBcVS1fDAwOUlnGeAMLlpCLJUddTn/fqMyvacTiXCDAy1u3UlFZySUznUQe+QAoqRUoxVlXU3nzv407MQCQp1yE4KpEjw3Fs8SPP49n+ZsAcEtu/mnll3jLX95ufx7VonzulS/xk/U/GH3sgWXZKjIgtNxpyoFAANnhoCaDmme+EASByqoqKquqjBLU8TidnZ10dHRw8uRJDh8+jOxwUFtbS9WkSXnLOuu6TtwsXJQz1iBJlTP5/5HOnVAU4rGYUTHR3OZ0OHA6ncMmU0vrwHoSgmkNzReiqTQbNmvVhMNh3B5P7gVYFkiiiKDrecVv5CrRfOLECULBIBs2bCi4DeOJ8R9VygiLBCiKwrLly/njk09y7NgxWpIn5DSMNMDnNQEcOwbf+pYRZ5AEixgIuo4vGETeswei0SEycObMkDhMBjjjcSJuN6rbTczlQrNcJ0nHaLW16C0tSC0teOfNIzZrFmGvF0VViZsuBqfLhVtVszJqXdeNdgj5l9PNJGCSCwMDAzSVSQgmHQ5ZtrXYJ2owULLr59ixY+zevZumxkYumiIy+NB70BPh1P2br0K68isTghgACJKMs/lSYoeetLfFjw2RA4DVdau4e/YbeeDYb+1tL3Zs4qFTD3PHzNtG2QBhVBaAcgdGBgIB6uvrS2q5cjidTJ02janTpqHrOn19fXQEApwLBDjX2krr/v1DJagbGqjOUoI6kUgYJdEFIT8J9iRXQzaCoOs68USCuFnrwdIIcLlcOJ3OnBZDkaGxpBjCLQiCrTJr6SEIFF4nIp86OpZyY6YSzWC4UA4dOMC0GTOYNm1aQdcfb0yMkaVMSI44rZw0iebmZg4eOEBzc3PGjpJ3N8zlZ3/mGfjFL+zVvoWIx2MTA38waKz2t2wxfgqAOxol4vMRDoehpgZ15ky0GTOIWTEC1dUp+zuAKowqa9bLEovHicViOJxOPGbpaAu2b6/AwVIwiUc+91A1y0+PVVUyh8NBxPRxlnOFOKqwLUEATWPv3r20tbUxZ84cFtQk6P+/dw8jBs4516Bv+DLiBCEGFpyzN6SQA7X3BGrvSaTqIVfeJ5d+nD+ffY7O6Hl729d2/wtXNKynxl38qnq0KJTcFoJYLEZ3Tw8Xr1hRpitg13eorq5mbksLvb29nO/qYqC/n+PHjnHo0CGcDsdQsaiGBtuqEEu2GhTybljuRlG0SYKmaTYp0BiyPFqkIJ8AVLsk/ChieARBsGOMEubYZ8ki5/fVhqxQI7XBIgbpJZoB2traiMRiLFq4ENerQBUxGRNrdCkxksmB4HKxcOFCTp06xeHDh1m8ePGw/Qsu2JK8IR6Hn/wEXnpp2L4Jh4OY+SJ6wmHbDVAQ6uuhuRm5uZnIpEn0VFcjV1XhcrnQqqpQR4jMlR0OKhwOFEUxSIIppJSIx5ElCZfbPer0pXyL3gTNwMxypjEmw05p1HXUHBaTUWMUbgVVVdmydSvnzp1j2bJlzPAO0vfgu9ETqdkmzrlX47vhXwlF4hMuDVBuXIzgrUUPD4lnxY8+j2fVW+3/KxwVfHbJ/+PD2z9hb+uL9/OVXV/nP9f+a9HXHvXEXkaNhE5TVbShxFUYs0ESRRwOB/X19YaVVNfp7emxdRXa29sBmDx5MnV1dVRWVuL3+4syvVv3zSIFUTP7yorvsXQKiuqpopjTkjpy0wyCoGmaoYMQDuPz+fJ6b1Im+RH6hZJIQIZAxFg8zuHDh5kzZw7+iooJa7XMhtcMObCyAlrmzuXIkSPMmTNndAV5kgeTY8fgX/4FMqQNqqJI2IwmdsViOPMR5JkyBZqbh35mzrRVBCXA3dtLpK+PwVAIl9tdUFCfLMtU+P22ClksGjWYvqIQliQ8JkkoauLJc4AdHBxE1/UxrWfucDiGUhrHskBVHojFYmzevJnevj7Wrl1Lrd5B34PvRI+nEYM5V1F1y3+hagIw8ciBIIi4Zq0nuv8he1vs+F9wr7w3pa0bG67gmoareLrjz/a2x04/yS1nb+bqKRuLu/goJ/ZyWg46OjqYVFWFe4xWjoK5ghVUFU1VDQGm2lom19ayaPFiowR1IECgo4Ojx46RUBRcsmxYFRobaaivz9sEr6WlI+qmoqHbLKFcTA+1rbIlIGuWiyFoZjFEotGMWjLZjoXci0YrpgIY5pI5dPgwuq6zYP78EbPRJiIm1ihZYqSTA4CWlhaOHzvGgQMHWDFKM58dYf6Nb0A4nHGfsM+HLghIioInEhm+w+TJsHjxEBGYMSOnqiAYokj9/f32yr8YX6skSXi9XtwuF7FYjGgshqooBEMhIpEILqcTp8tVkDaAQH469QODg7hdruJWKkXCkZzSWKZBOjmQKl8MDg7y0qZNqIrCFVdcgS9yMjMxmH0lVbd8C0FyoltSxROMHIBRayGZHGiDAdSuw8h18+1tuqbx9/M+yrae7QwkhgIYv7DzK6yuW0mFowjSOMqJpFzEQNc0AoEAzWNcotfWO9A00t9gl9vNjOZmpk2fTn9/P30DAwz299PZ2cmpU6cAqKmpsUtQV1VUpPY1K8jQrA9h1T6QZBmfmY6YTbQoLwh5lIQvAKIo4vV4CIXDRqVWWR5x7LHdjyNkplmuSkmSUhYd4UiEo0ePMm/ePMOl8ldyMLFgkQNN02wtd4fTybz589m3fz8tLS12nn3eHTnT6jgLMQh5vaiShKBp+LKJEa1bB3ffnd+1TUhmHXPJ1BYvGKZwkZXu6fV6cbvdxMxCJ4qqokajhp9Olg2iMEIQUerpc/v1g6OsklkMnA4HIYwAoZQa7SVEoVN1V1cXW7Zswe12c/nll+Pob6PnwXeix4Mp+zlnbaDq1m8jyIZZ0ho0J5rlAECqmYtYOQVtYKhSZ/zo8ynkQANqXJP55OKP8dldX7K3d0Q6+Obe/+DLF3++sIuORl/CRCkno2T09PQQi8dpHCOXgoVkGeVs02A8kUASRepqamg2JX0j4bBRLKqz0y4W5Xa7aWhooK62lknV1XZwYXI6ojNNUyA5za9QWOcvJWRZxu1yEY3FiEYiSKKYNWvN6gv5WDDiVgVLWU6ZG1oPHMDhcNjB769Gy8EEqJdaPiQHiCQPqLPnzMHjdrO/dUjStajOaEXzZ9DKjjmdJEwfkz8UQsx2/uPHC78uGIVIJMmYzAupHWC+1OkTiyiKeNxuJlVVUWH6H3VdR0kkCIXD9PX10T8wQDQWy5laZOlA5MJAf/+YuhTAaJfD1Dy3TKClRKH959SpU7z44otMmjSJDRs24Og/Ss9v/gY9Npiyn3PWFVTd9t82MSjmWmMJQRBwzboiZVvsxAvo2lCcjRX0eseM27isfl3Kvr869hu2nd9e6EWLa+wYoP30adxuN9VpgcLlhmjF2WSJb9J1nXgsNix90eP10jxrFmvXrOGmm29m3bp1NDY20tXdzfZXXuHpZ55h+44dnDx1ingsht/ny64lkJzVUADKRXpdLhcOWUYHwuFw1gWhPVeYRayyvW2KothjYbIbpn9wkFOnTjF//nx7u6vMAmzlwAVNDmBI5zqRSNhpPJIksXDRItrb2+np7QUK6JBpHUoA+OpX4Q1vgPnzoaICVZKImDECIwYgnjhRyNexITscOBwOZIeDvnxqJZhBQyNNK1ZkcUVFBdXV1SnV0KyS0r19fQwODhpRzllUE7M3wxByGWtyAIbVqFzkIF/ous7BgwfZvn0706dP59JLL4XuQ5mJQfPlVN32HQTZlX4SYOxkfwuFc3YqOdDDPSiBfUP/mwOqJEl8ZeUX8Eipbp7P7vgisTR56HKjHBOSrmmcOX2aqVOnlld8KwNE0ySerQBTwnx3BUEYNrFrmkY0GiUcCuHxepk9ezaXXHIJa9euZf78+TgdDo4ePcoLL7zA008/za5duwgEAsOUDW0UoD9RbtrrNks7a7pONJObN72dOawfltXAaQqtWcfu27cPj8fDrObmoeu+CsnBBe1WAIMtxs3UPUsfWwBmTp/OkcOH2b9vH5etX1/8BaxOcfvtcPvt6JpG8MgROHwYx+HDuPbuzX18OGxoHRTYeTRVxWemNAZDIaonTcqqbAZktBaMBNGMNna73aiqSjyRIGbGJsQSCWKJhJEb7XTiMsmKVd462wsVDoVQNG1cyIHL6TTEUcrgWshnUNM0jZ07d3Ly5EkWLVrE/PnzUTpb6f7N36SIBwE4m9dTdft3hxODpGtNRLcCgFQ9A2lyM2rPCXtb/NgLOKYsB7BdfKIgMN03jY8t/hBf2/Mv9r7Hgyf4zoHv8/ElH8nreiWZUMpgjek8f55oLMb0cchvlyQJBAHNjAlI7yvp6YuappEwY3JUU6wIAF1HdjjwOBxUVVbSUF8PGHFc57u66OjooCMQ4Pjx4wiiSH1dnZEq2diYWik2D20ESAoMLVP2iCgIRqEms7JtLBZLMfknWwqsmieZFkCaptmqiLbVQNPo6u4mEAiwauVKOyVTEIRXpeXgNUEOBgcHjQqAyUEoosjixYvZvGULnR0d1I/CJ5jsrwyFw+gNDYhNTXhvvtlQPTxwwFBK3LcPzp5NPbihAYrwR2mahsvlIqEoJBSFgcFBqidNSt1J19EozQpTkiQ8ZjaDqijEzFRI1dRJj8ViRgqVSRSkpNrryRgcNFbH40EOBFPkRdd1YvF4SWstjBTtbhdP6upi1apVzJgxg0TnAbp//Tfo0f6UfR0zL6XqtszEACjaXDuWcM7aQCSZHJx4Ee+694AgDWv/21rewqPtT7Cnd4hI/+jQT7lh2vUsnLRg5ItNUDfL6fZ2fF4vk8bYpQBDAYkIRvEgIWnhoCgKuqoaP7pRqEg1JY2teCSnw4HD6cwqiiRJklExsqEBli0jGAwSMDMg9u7bx549e/D5/TSa9R9qamuNmCWTqFhlj9ORTHzL5T6TJAm3x0MkEiEaiw0FE6bFruQSQbLqQkhJctMasG//fiorK5k2fbpddwb+ajmYkHA4HIiiaDC95MhdXaepqYmayZPZu3cvG2tri67iZU0M0WjUZpN2Pq3TCcuXGz9gqCbu3QsHDxoFjW65pahBXtM0BIzMhT7TzD+pqipl1V5ovYN8IckyXlnG6/WimOw7bq44VDM9UhRFZDOYMVlSdDAYRBZFvGmV6cYKTqfTWCGVmBzkQigcZvOmTUSjUdavX09tbS2JzoN0//pt6NG+1PbNuJSq27+H4MjetoluOQBwzb6CyI7/tf/X40GUMzsRp64EGLIwAZIg8bVVX+L2p9+Eohvvj6IrfHrH5/ntlfcjjyD2pJtqnhMJqqJw9swZZs2ZM27PSTR95qqm2VUcdV0nGAzaZeIFUbR977Ik4UiyABYCv9/P3LlzmTt3LoqiGFaFQIAzZ84YxaJkmbq6OiMDor5+xPe/nKmlYLgCLNXUcCSC3+dDMmXWhxqR+R5Y6o/WeSycPXOG7q4uLr3sstSyzoLw12yFiQjLhx6JREgkEra5zcKy5ct59s9/ZtfOnVy8cmXR+f1KImG/cF6zo2VETQ1s3Gj8FAnNVA9DFKmoqGAwGESJxwmaqoNjOXnIsowsy3iTNNTjiQSKqpJQVaKmMpnT5cLlcDA4OIhvjMSPMsHpcBAWBBRNQ1HVkpVxzrbK6e3tZfPmzYiSxIYNG6ioqCBx/hA9v34reqQ3tW0z1lL9hh+gS7kHEjtgqiQtLw/Eigbk+gUonQftbbFjz+OacrHxeVrfnF81j/cseBffOfB9e9u+3lZ+duQXvGv+O3JfrAT9vNTvSkdnJ/FEYlxcChYkUSQhCHYsQMJ0CwZDIdB1PKb/3e102ouoUkCWZZoaGw35b4zU5UAgQGdHB7t37bI1ThrMfaonTx6WCTUWY5fH7UZTVbuKo8/nS+mXVtxGumVKSXLVWPEaAwMDbN+xg8amJupN14sFp9NZluyocuOCJweATQ5iioI7bTKonjSJlatW8fLLL1NplkktFLqm2SmFzjHI39fNwEJREBAlCb/fj9LbS//gYNlLIP9/9t48TI6rPBd/T+29z75ImpFGluRFkq3VljdZArMlNwuEBEggCZdcchOSkJWQEMKShCwkIZebjcCPJCyB3AC5gYsNxtiWN1m2bMuSLGvfl9l7Znqr/fz+qHNqqvfqnp6RhPt9Hj2SqrurqqurznnP973f+1UDIcRrpsKqHEzT9Gyadd0zXMrnUQCQnp5GLBKBbdtXxYyIEOIZIrG0iLSIxjRXrlzBs889h1QyiTvvvNNLA00cx/RX3wm3lBgM3YHOt/wTiByp2572ekgrAF5qIUgOrPPPQDGZCKzCYPlLN70X37n4EE5lTvvb/teRv8Prlr8WK+PlFUHXMi6cP49UKrVkLqCloMwV0DAM6LrujUmEeFE9AEokglQyuSSTVjKRQDKRwLq1a2HZNsbHxzE6OoqLFy7g5IkTkCQJvX196Ovrw+Dg4JKF4AnxmjRlcznP4dEwio/N3R9LPlcqRDRME08//TSikQi2bds23zyKPafXYxkj8CqoVgDmfxzTsvyBlw+rlFIMDw3hxhtvxMGDB3HlypXaO6swIOu67hlhSFJo962FwGbfgYcKE4kEIAgwDcPP6V9N8GhNMpFAV1fXfKkTpZjLZiEpCuYyGa/qgYU4qyqdFwEKq1qwGikBbRAnT53CM888g/7+ftx7770eMZg8jul/r0AMVmxH5098FoISLWrAVA3XQ+QAAJSRewAyP8RQW4d18TkA5ZEDAFBFBZ/Y+jGQwDfTHR0ffv5j13T5Zikc28aVK1ewYmhoyY5JmaCwUCggk81idm7Oa49sml6lFlvlyrIMLRpFMh6/KqtZWZKwfNkybN2yBW9605uwe/durF23Drph4MCBA3jggQfwyCOP4OXDhzE1NdW8kVJIcNE1AWCaZtHxKj1fjuP4YxV3Xd23dy9s28add93lL3iC97dyHeoNgFdJ5EBkuTSL9RKXeYMRXvMPYP369chkMnj22Wexa9cupFKpyjsruVmp6/q90COa1pRLXqOgrMsZvwEFQpBKJpFOpzE9M+OFx66RMJYgCFBVFaqqwrZtOLaNGAtnUubHblkWSKEAwnQKsiRBkuWGbKEbgcJsXR3HaVkEg98VlFK/edKaNWuwceNGj4hMnsD0V98FNz9dfC4rtqPzrZ+DoLAcbAiV9vWgOQAAIdoJefBWWJcP+NusM08AfVuqemFs6dmMd97wDnzx1L/52/ZO7MPXzn4DPznyE2XvvxZJw+XLl+G47qJ24aOsT4ht2/4fLuLj5kSCKEJiIe14IuGZHjGvj2vFQryjowMdnZ246cYbYZgmxsbHMTY6irPnzuHI0aNesyjWKKq/v39RVuGqovjdI8uiByi+x4KmR0QQ8MILL2AqncY999wzr6MoSUdcr5GDa+MOWQKoquoJ0RynyDGMBP7evm0b9uzZg6effhqvec1rQv2oPGogiaLXWIOpfRcT3HiDMKElpRTJRALZTAaGZSE9M4Purq5FPYew4MIzSqmXqwOQ6uhARyoFx3Fg2TZsy4LFFNSG48A0TU/QIwiQ2WpHkqSWEh5FlmHAWy20ZKBkg/Vz+/fjyuXLuG3TJtywejUAwJ46hel/fxfcfHELb3n5VkYMYkXbw4qxrnVyAHidGoPkwL3yIoiZq1m6+5sb3o+HLz+CK4VRf9ufHvxL3DewE32R3kU711Yp5C9cuICuzs6Wim6DZID/HTxXSqn/vHAdEKUUc/AEiYSQiqZH1xJURcHQihUYXrECjutiipUFjo6O4sLFiwC8NDC3de7s6GjNM0C9VtL5QgGmaUJRVS9lWzLe8N4sgOeZcurkSZw7exZbt25Fd3f1jqLXKzm4NpaXSwD+Axk1QsmSJOHOu+6C7TjYu3dv3VB3MGqwlKUqbiBy4A8QhKCjowOiIGBubm5RQ+aNgj/Ahmn6DyJfvUQ0zTNc6uhAIpFAJBKBJIqg8LwcuIBqdnYWs3NzyOfzXnpogYO4Ekw1tWBCMAwDjz/+OMbGxnDnnXcGiMFpTH31nXBzk0Xvl5dvQddb/78yYgDUn/SDv/m1DmXlnYAQoOOuDVx+rqaLZlyOlVkoZ6wMPn7gE0XbuKd/y9CC62kYBsbGxxecUuBkwDAM5PJ5zGUyyOZy0FnbdZdN+LIsQ4tEkEgkvOcnGvXMvngpo7czWKbpLyquqe6AJZEyToxFQUBXVxduvvlm7N69Gz/0pjdh29atiMXjOHXqFB577DE88MAD2L9/Py5evOiv6Bs+PDuezCKVFIBplBtwcR8IwIuGTk5M4ODBg1i7bh2GShxy3RLL5eutVTPHqyZywPPMvG0vryYoTQNEIxHcuWMHHt+zBy+++CK21qhgCEYNZP7AEQLSAq/3WnAcp2KZYjQWg5rJwNV1TKfTvmHJtQJD10EBaBWYNB/oZFkGIhG/2xmPKjhsxeQ4DmAYXpMnXnrFVkqNrCJkZi/rMDOTsF3oKmFubg5PPPkkXMfBfTt3ooP5TdjTZxgxmCg+9rJNHjFQq4hH66QWrhfNAQAQNQ55xVZY55/xt9GLz0C45Ydqfm7X4E78yNAP41sXvu1v++6l7+GhSw/j9cvv9/ZNCGgLCVIryueuXL4M6rpYsXx5w591Xde/123b9oXHwTSSFIgMCHUqbYIEgVdSLWWzs1Co5LAKVoYtCKBsgaZpGoaHhzE8PAyXshbUo6MYGx/H+QsXQOA1i+rv78fAwACSyWQ4kh14T2n0oNTVkpMDwzCw79ln0T8wgFtuuaVsv2LJca9HjwPgVUQOuEjOtCzYvKQRgVrUALq7uuYrGBIJrLvxxrL91YoaLKaBB4U3oYHlFEvR2dUFc3QUuVwO+UJhSQSS9cD7Lei67kcOwnyGVz8A845kFqtNdhlRcBwHOrwBRQzoFaqZtwShKgooK71slhxMTEzgmWeegaKquOvee/1Qsj19lhGD8aL3y4O3oesn/xmCWt0Eqt50dz1FDgDP8yBIDjBxBDDmAKWn5uc+tOl38eTYU0ibM/62j734J9jRezuSytUrh62FCxcuoKe3N5QjHr+nuRaHrzhdwDcLEiUJEjPpEZtIfwnM/dBmXgfXctQgCIEQPx1SOpYKhKC7uxvd3d1Yv349CoWC59Q4NoZjx4/j5SNHoGkaBphOoa9KC2pBEIr2LcsyxID2gEcX+UKFRw+ee/ZZRKNRbN++vYyAVCIkbXJwHUBVVZjZLEzLmn94A6LEIIaHhpDJZHDo0CEkEgkMLltW9HrFqAEHIRDQQKfHBsDdzfymTyVQFAXRWAxOLofp6WlEm1jBLAoEAYauQ2L6gcY/LkBh3SEBJiZ0HFiM7PFVl23bgK57hIR1XpOYi5koikV5REVRoLO215SJJBvB+fPn8cILL6Cnpwfbtm3zByA7fRZTX/0ZuNmxovfLg7eh66f+pSYx8FHLj/46ihwAgDx8B4ikgdre6hXUhXX+Kcjrf6zm57rVLnxo0wfx289+0N82rk/gzw/9Ff5k68dafp4LvZ6FfB7jExPYUtIKnlIKx3V9QuuyMkN/fGCkgBLiaZcYEZBKPFmaAREET1cjilBa6GXQCvDOh9XAW07XW2xFIhGsWrUKq1atgksppiYnvajC2BjOnjvnk4l+5taYSCSq7rM0esDPw2AN5w4fOgTbcXDvvfdWHceC84msKE2b611tvOrIwawgeFahzFWtVh+AW265BZlMBvuefRa7d+/2KxiuhtaAwiMbvMtaLSV/RyqFPOtdPjc3h+RVNB3iIPA0B60S5/DJXg2QhSJxo+vCoRS244C3WSIAwAZgURQhiCJc5iNvW1Y5yasC3jzplVdewapVq7Bp0yZ/oLHT57yIQSkxGNhYN2IQBCHV+8g3VK1QjWTUIh8VdzPfzTPMcf2BnxAQWYM8vAPm6cf8160zTwJ1yAEA/OjQD+Nb57+NPaNP+Nv+z5mv40eGfhh39G4Pff5LgYsXL0IQBPT19UHX9XkSwNIDwXQjv1/EQJqgFWSgFJyQEEGomM67amDp19pvmb/XeJ+CehAIQW9vL3p7e7Fx40bk83mMsv4PR195BYcPH0Y0EvFEjf396O3tLZrkS6MHnKDYto0TJ09iOp3Gvffei0glsSlPhQS+1zUVqWkQrypy4Kt4mYNfUf9xlK8cCIBtW7f6FQy7d++Gqqq1owb+h1sbPeAPhssGmForAFGSkEqlkJ6ZQXp2FvGrVNNcCtM0F41M+R7nbADkKQfHdb0cLhuk4bowKQWxLM8UxjRhGgZ0w/BqvwORBiEo6mKgrosXWPOk9evXYx0zzaKUwp457xGDzGjRZ+T+DV7EQGsdSSvNl1Z5U/Hf1V4PA0L8/vZhU2bcqx/wUgtBcuCMvwKaG4cQ758/l0B58fxhCT6+5Q/xQw/9GHJ23t/+oec/gm/d/3VoYgvvpwYmZn/idxzYLCpw7tw5dHd2+guHIBEQBQFCgJSKLKq12Kkh07JA4GlsroUxAGgy7crSLI1+LhqNYvXICFaPjMB1XUyyqMIoaxYlCAJ6enp8rUIsFiuKHvC29ZcmJ3H50iVs2bwZXVUqwYRS+2V4OrDrFa8qcgB4ylFD12EFSthqRQ94BcMjjzyCvXv34p577gkfNWiRODHYapkrjut5ACQTCeSyWeimiXQ6XbPUZqlgGMaSaSCCDVE4uAI8SBxc1/W7dhqK4q92vb+IP4iLogjXdbF//36k02ls374dQ0yRTl0X9uxFz/kwU2yiJfWvR9fb/hWCVsU3o0Fwjwv2ha7ZpkOlkJZvBlHioGbW36afehyRW986/6Yq4rTl0UH81sZfx8dfnK9WOJ+7gE8f+Xt8YONvLuZpg7JonR1IBxSlBNh5FwoFzMzOYsOGDf7kz8mAKAhL3rIZ8KJhYJGxa0mIuBA9Fu+T0+xn+/r60N/fj1tZsyjeVfLll1/GoUOHEIvFMDAw4Ltb2raNmZkZnD59GjesXl1WmRBEpe91NZputQqvPnKgqigIgt8gKQyikQjuuusu7NmzB8/t34+b1q3zzHrChIxCmNrUQlk/9rBiNFbaODk5iVmWWliIIr8V0AuFq/qwBNXeHIl4HKIowjBNyCzXyysjqOPAYj0YCoUCDh48CNM0cetttyHV0YF8Pu+RhswVpP/9nXDnijtuSn03o/unqhODsla6ATEagn+XfCb4fa4XEFGGNHwnrJPf87eZp/cUk4MK4N/2Z1a/Hd869228OP2S/9o/n/gCfmjFG7Gx85b554FHNhq8NjxlZ9r2vNiVRQSKfoUA2eeaFlEQcOnSJYiiiFUjI9eMwZCu6wDT6lwz4tUGxsNKZ8xLuJuOyAaiD/F4HPF4HDfccANs2/ajClcuX8apU6cgShI0TUNe19HV1YVb1q+vuluhUhqQEHRdA4uyZnFt3MVLCFVVQUURDqv7FQKrxFqMtquzE1u3bsW+fftgmSa2b9sW6nh+288mbuaqD0DIfUWiUaiq6hmKTE977VWvIgzmPhY2f7hUUFXVLw0NRjb4SnF6ehovPP88RFHE1q1bEYlEPCGkbcOZuwzjm+8FssXEQOheB+1HPgMDKgTT9POngiBAJMT3a694X9QYQINljNcTOQAAceXdReTAmT4DZ+YCxI76ngACEfAn2z6OH3v4rbBcr6TMhYsPvfARfH33v0EOeCnwVsUAW/lTCsome0opXNf1tpX8DQCmbRcN9NR156MAjAxwUhD0Ebh86RIGBgauGWJgsXbqYFU/za62W44Gx8EyAg342pemIhA1IsQDAwMYGBgApRSZbBZHjx7F6JUroJRi/YYNNdMypakwUIp4IgHpGorYNIpr405eQhBCoCgKHOY5HnQLq3fD9fX24rZNm/Dy4cN4eu9e3HXnnZWFKaXHhNfru5Gh3K2S2/Unh5ATQ0dnJwzDQD6fv6qljZRS6IbhGSBh4fXkrYQiyyjouidkDAxGgiBgbGwMzz33HFKpFHbs2AFVUTwdg+PAnLmIwv/7xTJiQLrWQHzT38IkGsxCofyAjCQIhIAIghd2Ztv434IgVCQJNLCP6w2k52ZA6wACbarNU3sQ2frOUJ9fm7wBv3TTe/HpI3/nbzs6ewz/dPTz+IU17y6e9PmEX5rWY1UBhEUXqON4Xgms3FYKpAIEQYAoSTUNmwDP52Iuk6m5slxSsGeNe4pYJW6KVwtNTehVrr3rumWliKH2FeL9hBBMTkzg4oULiCcS6BsYQKxGQ7tqY/H1nFIAXoXkAPB0Bzmm5g+SA1+RXeVztm2ju7sbd911F57fvx+PPPoo7r77bt/0piqYOLERIVerHmZFURCLx+Fks5ienoY2OHhVhEm8FIiXkF5L0QOuFDeZ/oBXVJw8eRKHDh7E8hUrsHXrVl/DIIoikBtH9hv/HXTuUtG+xJ51iL/l84DW4TtZuixHzSctsNI2B97AYtUIg5eSBt5gRwymxphY0Fd2h6woWGpQAGT5DtBT3/G3GWf2QN30Dv91YP45RIXV/c8sfxu+ff5BnMrOd278h+OfxT0dd2EoWh6B4GFogRAQUfT+LiFnhBEBAvgW343gwoULkCXpmjEdM00TruOA4NoiB26d0sVKqPZ+gbkZNoQQ1yDYG2XF8uWIxGIQZbnM2Kj0HCvtuZpw8XrBq5IcaJqGLCFFfbmB2sJEwBs4CLwffdfu3di7dy8ee+wx3HH77WU+CKUIu1qm8MqP6q0MG3nIOjo6kMvlYJkmMtksUlehtNFglqRcxHmtRQ9URfHKHk0TqqLg4KFDOHXyJNauW4cN69cX/R5OZhQT//bTcGbOF+1D7F6Lzp/6AoRo9UGBq/2Dq9xguDs4GQIstWHb/vFtx0G+UJgXuVW4Z/372ftP8TY2ORa9VuF1lOyDu8NZluX/lsFJnP8/uFIvqmygFLlCAW7PJmgBcuDOXcHsuQMgXTf47wPgrea5Qj2wnYDg92/6AH5h/y+BH8l0TfzpsU/is9v/DqIkzxMAUYQANCYGZFEFfty6kyqluHjxIpYvXw5yLdSzU+r/Pqqm+aTnqpODEKWLDe+S7TfMdwujU7AtC8/u34/RK1dwyy23oLOrC5NTU5AVpchVtxSV9irJMhLVmvc1gRUrVuDSpUvYvXs3HnnkkZrvPXz4MDZt2gTHcfCXf/mX+K3f+q2mjvmqJAeSJIHIsic4s+0yJW+l6IHDhEmEEM9YR5Jw386deG7/fjz19NPYtGkT1txwQ/VJPVAKVgvcf6Hq6008YIIgeKWN6TRmZmYQj0abcltbCAzDAAgpTuNcQ9EDWZaBQgG6YeDwoUMYHRvDps2bMbJqVZHYzc6MYfIrPw1n5lzR58XuNXWJATA/+daL3vCJ1WbObDxvTpi7p98YhoXJa03S7MDBnTeclsgVCl5qSNd990k+gYcC9VzmaHwIjtYDkh/3wvsAyIW9EDpXzxMWFmnj9r98Zc+/812JHXjX9E/jC6e/7O/+hfQBfGv8Qbx95Ccb+l6l4KS11KLaJymuW2TZPD09jWw+j81L2J65FniEjhACVZaLiB4PxV8VLCI5qTeOUC70rYFCoYCnn34a2WwWO3bsQDQaRUHXoSoKBEJgOw4qyc+rpTZSLU4p3HHHHfjGN76BF154oaIOI4jf/M3fhOM4uOGGG/Crv/qrTR/zVUkOgPmSRruEHFSLHlgshCsFhEiiJOGOO+7A4cOHceCll5DJZLDpttuqrlTqrZbd0gG9CjhJaQTB0saZ2dklL200DAOgtKj881qKHojMEOnAiy8in8/jzjvvxEB/f9Gk62THMfnVn4GTPlv82e4bPGIQa9015av7UoGbzBpFiaKIRKKCoVJgtU5puekOf90P29d7jf1bYve0wNpqByMSfAIiqB2tcBhpUW7YCfPw1+cn3svPInXvL4GQ8BPXr6//FXx/9FFcys/rPf7y8N9g98BO9EcWILyt8vwHLauDQsQL589D0zT0XAOqdG7OxrUGvnaG/TYupddfp70QBJTWcVGsN1am02ns3bsXBMB9990HWZbnWzMril8CXfHYVY7Z2WJysGPHDnzjG9/A7Owsjh8/jhsrWPoDwLe+9S1873ue6Pcv/uIvFmTCdN3dK62CpmlwBcFrY1oalkX5pMXzu7Isl5WTbdy4EVs2b8bp06fx9NNPV++IyFZElRBWZ9D0ZEoIOjo7IQkCZufmmu5i1ix0XfcjLkE0LCpaBFBKMTM7i3379sE0TWzZuhX9nBgwONkJTH3lZ+BMnyn6rNR1Azp+6gsQYrX7BDSFwKoveK7eSzUiVDyPHrCN9l34ZBkys6FWVBWqqkLTNO9PJIJINIpoNIpoLIZYLIZ4LIZ4PO73jIhGo4jF44ix16PRKCKRCCJsH6qmQWX75XbXsiz7Ij9RFKHdsKvolN38FOzRl0NfFgogKkXxsU0fLtqetbP42IFPLP79xEiO4zi4cOkShoaGvD4nV/k+NkzTq65gFQocAr+PrsL5LVj7ElJAWHsX1fdx+coVPPH441BVFbt270Y0FvPHRomJUUVmblRKEGoJVTtbTBZ37Njh/3v//v0V32NZFn77t38bALBz50685S1vWdAxX7XkQFVVCGyi56ZGPir86Hbghqn0+sjICO6++25MTE7iscceQz6fL3tPtX0D8G2RQ6OJhy4SiUDVNIiiiOnp6YY/vxAYul7VOvlqGMQA8C2pR8fG8Nhjj0FRFGzbvh2xWMyPFAGAk5vE1Fd+Bvb06aLPi10j6H7HlyDGF0+Idu3JCptDsJRO7h6B1Lmy6HXz9J7wO2OD/T39d+HHh3+06KVHRh/Ddy491PR5NnK9L166BNM0sXrVKj/UK/CUyBJPxNR1/a6nqqYVT5js+boa5YwLdohtYJyrNFlXE+dSSnHixAk8s3cvevr6sPO++3z3W2De9ph7owAojx5UObd4PN5y2+Rt27b55/Hcc89VfM/f/u3f4vjx4yCE4FOf+tSCj/mqJQeEEMRZWNaoEj3g8PUGQM1cfX9/P3bv3g3btvHIo49WnoDZABKEW0dnEESjpYyl6OjogEgI8oVCdQKzCNBNs6q3+2J2sSwFj9C4rHLg3LlzePrpp9Hd1YX7du5EMpHw+kAwUZdHDN4Je/pU0X7EzlXoefuXPWKwmPnUCud/PcK/b9lEpYzcV/S6cfZpUCeEMRn77Tg+uPG30a0W6zz++OCfIW3MLOyEQ+D06dPo6+srKnPz0zIlFSSLDa7pkQShTEMlsPNYjEZw9bDQb98IyaIoXmhUG1dcSnHgwAEcOnQIa9etw4477oAoijAty+tDQQg0VfWcMANRmCA5qDVmJetVrzWBSCSCW2+9FUBlcjA1NYWPf/zjAICf/dmfxZYtWxZ8zFctOQCAaDwOIklwWXe/IIIPNV9FipLk3ew1bthkMondu3YhFo1iz549uHTpUvmbuFocxXnhpQAvbRQFAdPp9JKtJgxdr9rGlqB2r4iFgl9jbpfsUs8Y58iRI9i/fz9WDg/jzjvvhCTLfnTDsixY2UlMffWdsKdOFO1P7FyJnnd8GWLCy20v6ZAbyH1fT+D3Gf+dldU7i16nxhysywfq7qd0JdihpPAHt36w6D1TxjT+/PBfLfCMa2NmZgbT09NYvXp17Tey34tHFBaDSLqO4y9wKj1jvGLhaqc9mkKD9znXH3j/qaAdsyw8/dRTOHv2LDZt3oz1rBKJR14AptdgNs2E0vluq0FyUOMcOhaphJGnFg4cOFAWxfjIRz6CmZkZxGIxfOITn6j08YbxqiYHhBBorDEGXylWAtcbFPViqAFV03DvPfdg2bJleOaZZ3Ds2LHyG5Wpnxtm8yUq6mbQ0dEBSRRhmSbmMpkF7Ck89BppBY5WDl2lJYNBEuS6Lp5//nkcPXoUG9avx6bNm/0VhyiKnqtZIe0Rg8kSYtAx7EUMEgP+cZZymubX6PqiBvDV5DxqJiYHIPUWi6rCpBYq3SNvXP567B4ojkT83/PfxJNjTzd+oiEno9NnziCiaRgYGKi/SwQ8VFjkkABAi4g5H7skUfQrSYrA0wpLSQ5aRF4bPWNfUE7K7YzzuRwe27MH0+k07r77bqxatcp/zTAMuEzoqyiKV2LMIsayoviRAof5lFSLGkis6d1igJODfD6Pl1+e1+gcOXIEn/nMZwAAH/jAB7CsTll9WLyqyQEARFhqwbbtiv0WKMrJQRiIkoTt27fjxhtvxOHDh/H8Cy8UTVAETegMgJawf0EQkEomIYoiZmdnqwsoWwi9UKjZqKoVxj1cXR+MDpReLcs08eSTT+LSpUu4/fbbse7GG8uOqzg56P/vf8ItjRh0DHsRg+Rg8MQXdM51UUGUeD2CT0zBsK86Uhw9MM8/A2rrNfdTaVAmhOAjmz6EmFTcAe8jB/6oqJNjKIR4vizLwoULF7BqZKSpezaYYlnoAOw6TlGFQiUIgL86XjK0iIg0c+dTlKcjpqen8ehjj8G2bey67z709Pb6rznM3wRgPiyE+CtzQphrJrtvHdv2xKdVfvdUKrVoUdCgKDGYWvit3/ot2LaNFStW+ILEVuBVTw5kVYXCJq2CXjww8V7efHXYqG86IQTr16/Htm3bcO7cOex57DHMzs4CYM5tonjVVoCJRMITzVCKyampRT0WpRS6aVZNK3A0ey14BIbrCKoNS3zlkMlkcM8992DFihVl73Hyacx87d2g0yeLtoupIXS/48sQkyWsfAlWY8Hrcr1GDvxuooFBVV59LxAoX6RWAeaFykps/z1Vtg9E+vE7G369aNul/OUiq+UwCHNdz1+4AMe2i1aezYJrmfy0Q4PQdd0fm6qNT3yyutpVQUuFoAmYSymOHz+Oxx9/HNFYDLt37fK1Zhw6E3LKgWtol6TBuAGS4zg1r+NiWiavXbvWd13kFQsPPPAAvvMdz1TsE5/4hF9V1Aq86skBAESYoMhmgpQgbNsGKJ3XGwANTwjDw8PYuXMnLNvG97//fRw+fBgmi0bUc2UsRSWDpqZACHp7eiAKAnRdx8zMTCv2WhEmK7GqtrKZP6XGV8mcFNQb+PjKgVKK++67r6LPg5NPY/Kr74Q9cbRou5hage53fBlSKTFYIpR2bmQbr8q5NItSQSIAiNEuyAMbi95nnn685j5qrX5/atVbsa17a9G2L576NxycPhT+REOUxZ05dQqDg4P1W7Y3gKB1e1h9gGPbMC2rZtQAYGZSWJq0wtW27faFgoQgnU7j0UceweHDh7F69Wrce889UEquE2+gRoCi39NlrqRiCTmodw1bXcJYijvuuAOAFzmwbdt3P9y2bRve+c5wPUrCok0OAMia5nfP0ku0B7ySoMg6s4kHoLu7G6/ZvRs33XQTjr7yCr7/8MOYGB8vNlUJiWZMkCpBkmXP+0AUMZ1O19RdLAS+WKoOOQDCGyO5LP8XZjV0+fJlPPnEE0jE49i1axfiFZqouIUZTH71XbDGjhSfT3wQnW/7IqTU8or7pksxGFYKpS/+UVsKHjkoLVstFSaaF56Da2Qr7kOo86wIRMAfbf5DKMJ8GZkLFx968aMw3dakzqampjCbyWD1DTe0ZH/VQEJEEnTDAAFb8dawbg6KnxcTS1l1VA3cVfSlgwfx/UceAQWwa/dubNi40UsHFL95vnRRVYted1hvCr6Nj/9+f5QKiEaj0Ba5sR1PLRw6dAh/8zd/g6NHvYXMpz71qZYTszY5AEBk2WfepmkWscNKpYMEzT1ooiThpptuwu7XvhaKquLxJ57AC/v3w7Ks0IN9qx+9RCKBSCQCURQxMTm5KNUL/AEMs9Ligq1SBAWGYUkBpRQnT5zAM888g4HBQdxz770V64/dwiwmvvouWGPFRjwkMQj1Rz4DW+st+0zgIHXPoyUIuBhej/AFiSXblZV3AyQQDnctWOefqbyPEMcZSazC+276n0XbTsydxOeOf76Bs62O02fOIB6Po7e3xj3RIvgpB5STQdu2YfOoQZ3nyu/wicX1OlgMYtDohDd65QoefvhhnDl1Chs3bsRrdu+u2hjPME3fUro08sLFiDxy4Dc+q3HsVlsmVwInB6Zp4vd///cBAG9961txzz33tPxYbXIA7+GRNc3LN1Hql7RwVLw9m2RpLqVIJZO4b+dObN60CRcuXsT3vvc9XLx0qbGBv4UssauzE7IkwbLtRTFHMllEohljEF9kWEVgWPVzrouDBw/i4KFDuPHGG7F9+/aKQiFXn8PEV38W1ujhou1ichm6fuqLEFIrvLRIw2feQjDXQyCgObiO0grBct3SyIGgxSGvKE4FGDVSC2Hw39f+LG5OFVdC/MOxz+LU3OkqnwgH3TBw6eJFjIyMLGg/jYJfuyBJ8Fe8suxPYLXAP7toK/vFuh9Dnq9hGNj37LN4au9exGIxvPb++7F23bqq73cdZ750kYkQg3BYGaNPDlD/2nUuQRfGO+64w3/2LcuCqqr4i7/4i0U5VpscMAiBGvd6pkjNIpgzJYRgZGQEr3vd69Dd3Y19+/bh6b17UahjTLRQE6RKECUJXV1dkAUBc5kMci02R+I5PbnEnKUauPYgaFbU6PGe2bcPp0+fxmZWy1zpennE4F2wRg8WbRcTA+j96X+D1rvaGxwo9dXMVwv+3Xgdag6Cv18lgqauvrfo/9bll+AWZmrupxZkQcYfbf4ogrUAlmvhD178GFxaex+1ruq5s2dBCMHKlStrvGvxwO8B27LgsNbSYVJ1wPx4sWjkYJH2Wy9tRynF2TNn8N3vfhdjY2PYtnUr7r7nHt+YijfvKoVuGKDwhJyVxiXHcUCD6eQ65yEIwqKKETlSqRRuuukm//+/9mu/tmhktU0OGIgsQ5ZlCMxHm1sql95YZYN0A6ikFYhEIrjjjjtw1513YnZmBt996CGcOnmyag30Yj3ckUgEsXgckihicmrKaxPcIrhMIBSK0AQEhs0IqHRdx+OPP46JiQncddddVR8cV5/D5L//HKwrxcRAiPej96e/AqlzJQghXrSDkKrkYKkiCtfzg1pJjBiEMrwDkAKTHHVgnn1qQcfc0HkL3r32Z4u2vTh9AP92+t9rn2s1e3NKcfrMGawYGgpNchcDlFIUdN138avWRrgM1xGZDKLWWWczGTz+xBN4/oUXMDg4iNe/7nUYGh4uH7NLxhHbtv3y7WopGV5mzruB1kNyEUsYS9HX59m19/b24kMf+tCiHed6HnNaClGWQUSxdvQg4GzY6KNGKa3pa8Bv7lWrVuHAgQN4NFD2WAmLEVbu6uz0DUAmWljeGMYoiJMBJ2Dy1GhTprm5OTz22GMwDAP33Xcf+vsrd+dzjQwm//3nYZY48gnxPvT+9L9B6lrlb1NVFQTegFKxM9tSaQAWe+W3iPDLGKt1K5U1KEN3FG0zTi0stQAAv3LT/8RwrLiV8l8f+TQu569U/Uy1+3R8bAyFfH7JUwql0A3DcwEUBD8cTurkwgEUdcu83uG4Lo4ePYqHH34Y+Xwed999N7Zu21ZWicBRpGMKiBBVRalIrmhA1yRIUqgFwGK5Ipbiueeew549nlnYxz72sUUzXALa5KAIRJahMjcs13GKmu8Ewb3TG0G9HtyAVz2wedMm7Nq92yt7fPhhvPzyy8WT0mJODoSgu7sbkiCgUChgdm6uJbvlg1nV18EmvRISQYDQK6Px8XHs2bMHiixj165dVR8a18gyYvBi0XZODOTuYjtcQRA8hzR4/SFKsWS5f3Z9/F//Ohrog6m0alBKUgv2+MtwsuPz+2jiuBEpgo9vLu7cmLfz+NiBP2mYZJ06fRqpjo6Wt+JtBLZt+11kI4E8OQWLyix1A7OrcA9OTU/j0UcewZEjR7D6hhtw/2tfi74qi4AgeBTSNE04jgOBkKopGV6pQAQBcqXxp+R7i6KI/hBOma3ABz7wAQDAhg0b8N73vndRj9UmBwEIqgoEbppSYSJQHD0Ii3r12aXo6e7Ga1/7Wtxy8804fuwYHuZlj4EBbbEeS0VRkOrogCQImJ6ebklrZ5fSiiE3Hi2od23qfddg86SdO3ciUqWcyDWymPw/74Z56YWi7UKslxGDyuVpKkstWMxiteRL1Dm7FoGQosH/+qEG8wNzrbCrsnwriFLscGieeWL+P01e5x29d+CtK99ctG3P2BP4fxcfrPqZ0iPl8nmMjY5e1agBBTNpIwSyovil12VglQkVnSRbeUIN+rMsFJZl4aUDB/DYo48ChOC+XbuwcePGmo3wguDElJeqq6x/QiXYrFJBYHqjeujt71+SVNPnPvc5PPbYYwC8DoyhU0pNok0OAhAlCQLrcw9CvFByhehBw8ZFLOfeCCRBwI0334zX3n8/NE3DE088gf3PP78kVsfJRAKapkEgBBMTEwsufyqNmtCAvXG968gZfLX9Hnn5ZTz//PNYuXKl3zypElwz5xGDi8UOfEKspyYxADwhJX8QrZLowVIG+UujKtcL/KZLNZ4BIilQVt5VtM0MphYWMBH9zobfRK/aU7TtEwf/AmkjXflcSv5/9uxZiJKEoQqOmksF0zC8tCSPGtQCr24JXu9AlGHBWGJicOXyZXzv4Ydx5uxZbNi4Ebt37UJXZ2fD30UvFEAD/ROqwXEcgNkm10vnCYRg2SLdF/l8HidPnsSLL76Ij33sY/jlX/5lAMAv/uIv4r777luUYwbRJgclEFQVAheiAb4wsQwNGH40lSdmEYpEPI6d996LzZs349KlS3hm3z5cvnJlcd3OWHpBFEWYpon0At0Tg53S/LK2EDoE/3RQHpJ2XRf79+/H0WPHsGHDBmzatKkqiahKDKLdHjHoWVP3HFRGGCulFpYKpEIzmesB1QyQSqGsLh7w7OlTcGYuAljYpJZSkvjwbb9XtC1tpvGJQ/VLwFxKcebsWawcHg69Sm01XNct8gqpdx0BgPfkCPXeRrFExCCbzXpVXM88g0Q8jvvvvx9r166t6zdQCZZpwrQsCIRULF0MwmVphzLTJIbgJzu7u1tqWRzEl7/8ZaxduxZbtmzBRz/6UViWhdtvvx2f+tSnFuV4pWiTgxKIsgwETJEs0/Q6cZUgjIIVWJiAzG9GRAhWjYzg9a9/PTo7OvDKkSN46LvfxenTpyuL5FoAUZLQ3dUFmTVnyhcKTe+LV2mEsTmuhmCdsWmaePKJJ3D58mXccccdWLduXdV8tmvmMfkf74F5obgH+jwxWBvq+CqLSFDHqdiga8lwHZcy1qvHlwc3Qoh0FG0zQnRqDIPXL78fr1v22qJt37rwAB4ffbL8zYFre/nSJRi6jpF6rZkXEYVCAWCTVTXRXTVwfZRPLBc6sS/BfTczO4t9+/bhoYcewvjEBLZt24a77r4bUdZBt9Fv4Ni2dw3hOSHW65FjWhZcSmu6TnIsHxqq+55m8cILXvpTVVXceOON+PCHP4yHH364atq01WiTgwoQVRWCIPgh6tJQciNoBcfmj6OmaVi/YQNu37EDnV1dePHAATz44IM4ceJES0sPOaKxGKKxmFfeODnZ1DG4nelCVfaE1Rzncjns2bMHmWwW9957L5Yvr2xrDACuVcDUf7wH5vl9RduFSBd6f/rLkHurm6SUHV8Q5qMHQZvpJa4e8M2ElvSozYM7WwL1IwdEEKGsKhYmmqcfb1mFxodv+z0k5eKmOx858EfIWrmqnzl95gy6e3qQKGnWs1Tg3v/UdRFtdlLgUQT2d9NYZHvk6XQaT+/di+8//DCmpqZw22234U1vfCOGhoaKmik1Auq6yBcKnqdBoBqt1vt56latY9qW6uhAchGrBf7hH/7Ba1qn6zh69Cg+/vGPL+l92CYHFSCpKiBJXvSAEFiMSZZCILXzUfVeC4PSVsYCIYhHo9i6ZQve8PrXY3BwEIcOHcKDDz6Io0ePtlyT0MncE13XxWS6co62GnwToxCVGmEwNTWFPax50q5du/wOZZXgEYNfgFFixStEOhkxuLHKJ6uDDxbB+2FJeisE4A+S10nkoJ4BUilKey04c5dgT51qybn0ab34wIbfLNp2pTCKTx35dNE2fm1nMxlMTExg9VUSInJPAwBQNa1qmLtRNLOfRlOBjWBychJPPPkkHn3kEWTm5rBl61a8/g1vwMjq1UX3DEHji62CrvsWydFotO5z49g2XFZdVS/CsJhRg2sBbXJQBSJrxiSKIihQuSkR0wXUvOFa5GXOfyhe0+y4LmKxGLZs2YI3vOENWLFiBY6+8goeeOABvPzyy75l8YKPKwh+eWMul0M2W7kpTik4MQA8Nr5Qg5CLFy/iySeeQDKZxH333YdYLFb1vdTSMfW1/wHj3NNF2wWtAz3v+BLkvpuqfLI2JNbghmDeEnrJex1cZz4HYSoVgpD6boIQLy5NM0+1JrUAAD+x8s3Y0Xt70bZ/O/3veGHqwPwGds5nT5+GqqpYvuzqdOPUWdkiqeD93yiCIxTfZ0OfbzEZpQBGx8bw2J492LNnD4xCAdtvvx33338/Vq5cOd9mOvCZRnVWhq77i6VoJOJ/56rfhVIvKkgIFFmuec/GYjF0LXIHxquNNjmoAklV4QJ+fqdQKMAuye8HmWyl2zboKb9gMCIi8FLKwIMSjUZx26ZNeOMb34jVq1fj5IkTeODBB3Ho4EE/17YQqJqGRDIJSRAwMTlZMzpRyfI4jMdDrf0dO34czz77LJYtX46777mnplqbWjomv/Y/YJQ47BEthZ6f/jKU/luaOg8OnlrwhapLvYLnx7teIgcBp7kwIISUeR6YZ54ArWN7HBaEEHxs04ehCvOTLQXFh1/8GExn/je1bRvnzp/HqpUrF0fUVwe2bcNgq95IJNKS37tU0CqUVjTUQotIKQVw6fJlPPLII3jqySfhOg527NiB3a99LVasWFF+rV03lE9GKWzb9tN/EU0rEpNW24sgCP5nSqsZuLaLR3IHr2LlylKhTQ5qQI5EEIlEIMsyHNtGLpcrTxPwSbvC5yvZJS8EJFCiVEkkqWoaNmzYgDe+6U1Yt24dzpw9i+88+CBefOEF5HPV86ph0JFKQWNajGrdG33fgpJr5FLalEGL67o4cOAAXj58GOvWrcP2bduKyovKjm8bmPz6L8I4WywyI1oKve/40oKJAeANGoQQUNdtiQdEw2A12NcLwuoNglBLqhbc/CSc8aMtO6eV8WH82s2/XLTtVOY0/vH45wB4k8f5CxdgW9ZV8TbgngaEEKiKUje8HQoVnhk+Pi0F+XEpxYWLF/Hwww9j7969EEUR99xzD+7btQuDy5ZVHSd9v4EGQF3X71GjyHKZiLMSzeSCadM0AUrLPsPJgcTKIMMYL13vaJODGhCYUUYkEgEhBKZhFIvRUBKuK93BIoSAeSOgWsZBiqLg5ptvxpve+EbcfMstuHTpEh787nexf/9+ZDKZ5g7MyxsJgaHrZdbOfhqhwnemrhuqc1wQlmVh7zPP4OzZs9i8ZQs2bNhQJEoSS/3TOTE4U2y7S7Qket/+RSgDGxo6fjVwT/syYeISgVZpJHOtwglZqRCE2LkKYsdw0Taz5HddKH5uzTuxvqOYLH722P+H43Mn4FKKY8eOYdmKFYgsUplaLZiG4T1LvOyuBfCjjdXq9RfJUMdxXZw9exbfe+gh7Nu3D5qm4b777sPOnTvR29dX/15usHyXUop8Pu8br2kVRJykynXgZcqCKEIpIWQ8aixJEpatWLFkfRSuJn7wv+ECIAgCJE2DzNinbdvQdb3MzjioIA+umhdjhSeIYuh6d0mWceONN+KNb3oTbtu4EeNjY/jeQw/h2WefxUwT3gWSLKOjsxOSJCE9MwNd1/1oQS2jpEbTCvlCAY8/8QSmJie95kmrVpW/KbDiobaBqW/8UlnZG1ETHjEY3Bj62GGgqioIIXBse0GVLE2Br8SvE4LQTEjYSy0UCxPNs0+Buq0r25UECX+8+SMQyfykaFEbH37hYzh7/izy+TxuqtHyd7Hgexq4bnhPg7Co8RvwZ7ToeAu4x2zHwalTp/Dd734X+59/HolkErt378bdd9+N7pC5+mbE3IZhwGb2x7FqAsSS78mF5SYTf8olKQVKqT/mK4qCgaukQVlqtMlBHYiRCCRJgiLLvjNYPtDSOHjzBcWJjVomh4XAcl6V0grVIIoiblizBm94wxuwefNmTE9P45Hvfx9PP/00pqenGzp+IpFAJBKBKEmYmJiAZVl1v2cj5GBmdhaPPfYYTMPAzhrNkwBGxmwDU9/4ZeinHi1+zScGt4Y6biMQBMHvwaFXsNheTFBcP2WMQMAdscFJTh0pJgdUn4V95aWWnRcA3NxxE96z9ueLtr2UPoTPvfx5DAwMLGqZWjVwjZAoSTVd/JqB38OkGlip4kLaO1u2jePHj+O73/kODrz0Erq7u/G6++/Hjh07GupL0dSxLcsXjkcikZrRkEoRX/5ZtcRllRMDURCwbMWK1qR5rgO0yUEdCIIAJRaDSylkWQYFEwsFVoylgzVdxNWdb4vaRFmRIIqemdLrXodt27Yhm83i0UcfxRNPPIGx0dHQaZDu7m7IogjLsjAxOVn3QXYDDom1MDo6isf37IGqqti1ezc66g3Ojonp//sr0E89UrSZqAn0vO1foSy7re4xm4WmaX63xqtqinSNI4x1ciWIqWWQeopX7ubpJ6q8u3m876ZfxKr4yqJt3za/i9TKZMuPVQ+WZcFmZbItN7oh4XrC+FFJQWhofCnoOl555RV858EHcfjllzEwMIDXve512L59OxLJxq9lQ2JJeMJX3+hIUcpW/9XAxyXHtmHaNijKxYg2s60WJekHvnwxiFcHBVoglGgUAiGghECWJNi2jUI+D0mSvFxqwGucAAATtywGBEJAKIWL5tMWRBAwNDyMoaEhXL58GUePHsVTTz0FVdMwPDSE4ZUrkUomqz6cAiHo6OzExPg4DMPA1PQ0emqECmmVxktBnDlzBgcOHEBffz/uuP32uuycOiYmvvE+FE48XPzdlDh63vavUJdvrvn5hUIQBCiqCstxoOs64vH4oh7vekSRx0ETOW1l9b2wJ4/7/7fO7wV1fglEbN2KWhVV/NHmj+BdT/z3+eMQC//r/N/jHwf/dsnSN76nAdO0tFoDEPZb+JEDSj0PjxrE37ZtXLp8GefPn8f4+DiIIGBk1SqsW7t2wVoNWkUXUO29+UDfhDA6jVLvFcM0PWG5JJWNPY5tA4Sgf2Cg5dGcaxltchACgiRBjkSg53K+OYZt28jn80jE477ugN9qizmc+C5nruunMZrus0AIli1fjmXLlmFmZgbnzp/H2XPncPzECaRSKawcHsaKoaHiVQylcFwXEU1Dd3c3JqemkM1mIUlS1ZU+pbTqypFSisMvv4wTx49jZGQEt912W10iQR0LE9/4FRSOP1T8dZTYkhADjoimIZfLwbIsOI6z6F3Sgmh0JX41ENQbNDPJyqvuBZ79PDgNplYe9sX9kEsaNC0U23u24u0jP4mvnvkPf9veyX345sVv48eG/ltLj1UNumH4fiAL9TSoihDjhBBwQSQAIAhFaUOXUkxMTODC+fO4eOkSbNtGT08PNm/ejOXLloVesVcDCRw/7KjGdWACIZ6fQRP3mmEYoKw6JIhgg7hVV9FC+2qgTQ5CQksmoedysEwTiUQCmWwWtmXBNE0oitIa3/IQCA60jutCEkUICyEI3k7R0dmJjs5ObNy4EePj4zh//jwOv/wyDh06hP7+fgwPD2NwcBAkoJaPxWKwbRszMzNIz8xAlqSK5kRuFdMV23Hw/PPP49LFi9iwcSPWrllT98GmjoXJ//wVFI5/t/gryFH0vO1foK7Y0vx1aBCCIEBRFJimCV3XaxoztRzXATlo1ACpFEK0C9LABtijh/xtxuknWk4OAOC31r8f3zn7EGbofBXOJ4/8Ne7puxPd6uKa3di2DVPXQQFPXb9Yv20I++Oy19mzm56exoWLF3H+/HkUCgUk4nGsW7cOw8PDLWs8xMsJ/TEgxJhmmaZXfghAi0ZDRVz8SGZATG4YBkBpOTlg1tWd3d1XzUL7aqFNDkJCi0YBQfCFgJqqQtd15PN5SLJcPqnxkBxtvF1zPQiiCLukbJDX3i/0WIIgYGBgAAMDA7AsC5cuXcL58+ex79lnIQgCli9fjuHhYfT29kIQBKRSKdi2jWwmg4nJSYjcdjoAyqIcQRiGgb3PPIOZdBq33347VoQwFaGOhcn/+6vIH/tO0XYiR9H79n+FMrR9yR0EI5rmD1Capi1d9GAR7qtWo1m9QRDK6p1F5MC6+ByomQdRWltiaMwa+BH3Tfgi+aq/bc6aw5+//Jf4iy1/2tJjBcE9Dbgr36KJ3er8Bv7EHNhW0HVcvHAB586dw+zsLGRZxooVKzA8PIyOzs6Wp1zCapM4gg2VVFWFHPLaCTxtwv7PI38gpCxtYDE90dDwMF5taJODkBAEAWI0CiebhWXbUDQNlm37N2jFpigB1W9LzZDYH8d1/R/QDwG2cHKUZRmrVq3CypUrkclkcJGtHM6dOwctEvH1CZ0dHZ4OQ9cxMTGBgf5+yAHFb6nmIJPN4umnn4Zlmrh350501+iR4O/DtTH5X+9H/uiDRduJHEHf2/8F2vDtXllly759OIiiCJlHDwwDsaWqi+fppWvYTtlv1bwAwqSsvBP5vf8IUFbG6JiwLuyDcsPuVpyij2PHjuGO5HZMJKbxncvz6arvXP4efmj5m7Crf2eNTzcP0zA8F8kWehpUQ60RyHUcEEJgOw4uX76Mc+fOYWJiAoQQDPT345ZbbvGNf1pupczE1aX7rdmzpsGGShwCipuXcWt8CkCWpPlximkuHMdBNBZDT29vY1/qBwBtctAAIrEYsvk8bNuGoiiIaBqy2SxMw4DMWH9Qd+C3S0VrCYIgikCFEkIuhmwlQeDmRvFYDDfdeCNuvPFGT59w7hzOnTuH48ePI5VKYXhoCKqmgVKKcUYQ+CrapdQ3wZmcnMTevXuhahp27doVSsjnEYPfQP6Vbxd/XzmCvrf9C7ThO7z/EwIBjXuwLxSapsGyLJiGgYimLYlBCuH31aIfqXn4rZqbuO/5b0jUJOTlm2Fd3O+/Zp5+vKXkIJ1OY2xsDNu3b8dtPZvw9MQzmLPm/Nf/+NCfYWvXFiTk1opOHaawJ/BK766GTTPgTbQTExM4f+ECLjEdQXd3NzZv2oRly5d7ZdwcbMJs1Vjmj1VVHByrodGGShwu5klSUUohqDdgUTnqOHBdF32vMiEiR5scNABVVZGVZb+3AG/jaxiGL06s+ICHLCMKCx6mrTQJlt74CwEFykKNBEBnRwc6Ozrm9QkXLuDlI0dAXRfJjg50dXQAAJYNDvrpDgLgwsWL2L9/P7q7unDHjh11W6ICjBh88zeQP/LN4u8paej7qc9DW7mjBd90YZAkCbIkwbQs6IbRfGvdBkFaTARbDX+Cb2bSC3wvZWRnETmwLh8A1edAtNaUGx47dgyxWAzLly8HIQS/u+G38KEXP+K/Pq6P42+O/m98eOPvteR4gPds5QsFEEHwo0+LCZ9IBq7r7Owszp87hwsXLqCg64jHYli3bh2GhoaqR8BYFLDRFEDV86ohVK62oKrWUKkWKomiCVBkmcyjD4SJMB3Hgapp6Ovvf1U4IpaiTQ4agKIoEGQZbkCIqKiq18LXdWtPDC0MAfsmJdXKJQPRimZBwUKNNd4jCgIGBwYwODAAc9MmXLp0CWfOnsWZs2dx+tw59PX2Yt3atbAdB2YmgwsXLmBoaAibt2zxeiTUOwfXwdS3fgv5l0uJgYret30e2qpyYRohBEKLVzdh4EcPdB2api1eNcE1TAZK0awBUinkodsBUQF4YyTqwDz3FNQb37TQU0Rmbg6XL1/G5s2b/fvlR1f8N3z74oN4emK+3fd/nPs63rTsDdjW3RrBq14o+KH8pSKTgKfsv3jxIs6eO4fM3BxkRcHQihUYGh5GZ2dnOC8EeM++swCCQFlb5JrHqbDvWg2Vqh6LUogVXGUp4I/dwRbNfFw1TBPDIyOhUxY/aGiTgwZACEEsHkeG1bbLTIioaRry+TwMw1hcURGDwAxKqk3+ldy/GgJLJTTy2CuyjJFVqzCyahUmp6Zw4sQJjE1O4vHHH/fKowAsX74ct956a3hi8P9+G7nD/7doO5FU9P7U5xFZdXfVz/LBaynTCxL73S1msb0kA/41TBSCDqELJQdEiUIZ2g4z0GnTPP14S8jB0WPHoGkahgOCM0IIPrzx9/HmPT8F3Zl3wPzYwT/G13Z+Baq4sMnCZIsLSimisdjiphMoxezsLK5cvozLo6OYnJrydQTrmY6g0b4nHKIoNu3nIohiw4sX13FqNlSqhkrEAPDGCSPQopmPGQQeaUikUujq7l7aKqRrCG1y0CBisRhyuZznq29ZUBTFmxhkGbZlIZfPI1nNEaxFFQwCE6PVezCbDTs3SgxK0dPdDVmWMTgzg7lMBkdfeQUAcOHCBVy8eBGdXV3o6+1FX38/urq6ysiCRwx+B7lD3yjesaii9yf/P0RG7ql7DoSZRS369Bn4HTVNg53NwjCMxY0eBI690AgRJxg8jOu3IOf7ZNu5C6TN7nuuefDPg31XXmpbZIDUaFe9Ct9HGdlZRA7ssSNwc5MQYj0N7TuIXD6Pi6yMtvQcl0eX4Vdv/GV88shf+9vO5c7jH098Du+/6X1NH9PlHQMphappi7KQKOTzGB8f9/5MTMDQdQiEIJVKYf0tt2D16tWhCHpdBFIMjSDMuFQmTnRd5Oo0VKoEocaxKDx/CVAKRVF8YkAphUMphlauRCwWe1WmFIA2OWgYgiAgHo9jzrZRYEJEHj3I2rbfOKVqKIpN7HQBITm+0gjzUAp8oA4r2GmRs2MqmYRl2yCUoqOjA5IkYeuWLRgfH8fY+DhOnz6No0ePQhRF9DKi0Nvbi1Qygelv/y5yh75evENRRd9PfhaR1feGPgeeO1wqyIoCUZJAbRsGEycuNiqKEplRFaUUruN4bbRdd/5v1/WqOkoGzaCKuxRcGV7QdciSNE8iqnyGi+0EUfSEuoRAEAQv6lXy76LngJa3/AYAacVWEDkKavG+JhTmmSehbfjxGlenNo4fOwaJVeQUgZ3PT4+8Dd+5/BAOzRz2X/qXU1/AG5e9DjcmG2/KROEREgAVS36bhW2aGJ+YwPjEBCbGx73Oq5Sio7MTq4aH0dvXh1gsBsMwvHu0heW2jRLTZhYs1HWRzeV8AWLVhkqlx6pzfrSkRTPfo2XbGFy+HIqivKqdT9vkoAn40QMApmlCVVWPzWoa8oUCdF33BsQajHMh+XBBEIoslOvtiYQtcWzAsjQMujo74TgOZFlGNpfzSyNXrVoFSilm5+b8Fc7Lhw7BcR3cMP51dKX3Fu9IVND3k/+EyA33NXR8Au9aLaX+QFNVZBk50Fj3xsWA4ziwHQeO48BhfvxugAD4IlgerQqW1SIgTqMUYPep/36gLBIgi6KfrhFE0a8TL7W55f9yXNe7Nyn17GcDCBILXsImCIJnDc5MvQRBgCgI/jNERAXyyjthnvy+vx/rzONNk4NCoYBz587hpptvrrqKFomIj976B3jbE++ETb3v4FAHH3npj/Clu/8ZktDY8KkzhT0I8YyDmrw3XMfB9PS0/+ykp6e9FEU8jr7eXtxy883o6esrqjLIMz8A/vu3Cr5La4gFSCPEgKcEKxGDVllL6yylQAQBCtsnpRSRWAydXV1IJBJLqlu61tAmB02AEIJEIoGZmRnotg2FqWoVRYFlGLBsG7l8HvFYrPoDswCBIiHEG9AdJ5ywhx2vpkkSW222uqqiu7sbqqJgZna2qMSREIKOVAodqRQTLdoY+6/fhltCDFwiIbf5A5C0tei1rOKyqhAgWFhutBYqhr8VBSKzc+XphYXAZat/x3HgsNCq4zi+ktuf5PnAyysE2KTOJ12BTbT+v0sm/3qDIFeHx6JRJKs4xfHUBOBNRpIgQJJlaKoKv7U3O3fHdefTPjzCAYCy5jdg75cEAQLrYSIM3wUEyIE9dRLO3GWIycZb6J44cQKCIGD1yEjZa8ErsTa5Bu9Z82585sRn/W1HZl/Bl858BT9/w7tCH8+yLBisg2esUZ0BpZhjz8/42BgmJyf9cure/n6sXLkSfb29iNbIjVNmmrZYqS4hxDPWVMQgn2+KGIT5lrzlfDDKSwEsW7ECoii2zPnxekWbHDSJSCSCbDYL23VhWBY0VooUicVgzc7Ctizoul47N7YAgiAQAhfwH5x6qGmS1IQAMSwkQUAymcTo+Dhsx8HE5CT6+vqKBilKXcw99GG4x/6r+MOChMymD+ASHcLRvXtBCEFnVxf6+/rQ19eHzgp6hUrgq5slKftjKaZcLgfDMKA2ED1wWW7fsW04ruuTgiBsRggppX7jL25pLTDSxQnAUiNIMjgpUxWlaoqNkwmXpzrYv23H8WxrAb8Lqg3ATd4AqCnAmPX3UTj5KLRb3+YTzjAwTRNnz5zBDWvWFJl1VcP/WPNufO/KwzidPeNv+/tj/4jXDuzGUKy+s6frusjn894CQlUhhThmqW7A1HUQQtDT3Y0bb74Zfb29SKVSob5zsFfBoq2EOVmt9ow1qLNyOTFgPRPCEgMacjy0bduPpnDxMKUUvczA7dUeNQDa5KBp8OhBOp2GQSkUdlNyU45MNos8y7nWNdBoQqDIW5oGXRLrnrN34mUP8GJn5bVIBI5tQ4AXypuamkJvjycko9RF+rsfRu7AV4s/JMjoecvfY2jt/dgAIM8Gy7HxcZw6dQqvvPIKRElCX28vevv60Nvbi44ag2Wr7KXDQFUUvxkMTztVAicD/E/F8DsTYImiCFEUEbEsCIKAjlTKHyyXqq9HIwjTVyEY3QAwn6bg+2CkweGRE0eAvWw76Jn5TpzWmSdhrf5hCKwUTRJFSEx5Xg0nT54EBXDDmjWhvosiKvjorX+An3v6F8Alm7pr4GMH/wSf3fH3NSeRoM5AEMWqOgPbNDExOekTgkq6ge7u7qbEnb7uCE16ToRETXLQwHNHXRe5XG6eGMRioSMGYsgqiFw+77sicr+VWCKBVGcnJElqfcvs6xBtcrAA8OiBZVmwAPDHXlFVaI6DfC6HXDYLIZGovlpgAkU0OHFJzHTHtu1QZkL+4dgx/dUEy1Ev5pSpKgpAKTo7O5GemUGO6Q9SySTS3/0Ici/+W/EHBAk9b/5bRNbe72+KRqNleoWx8XFMcL0CpdBUFd3d3Uh1dKAjlUIymfRCuCz/LiywNjs0CIHKylt1w4CiKP7AGSQDlm0Xm1ZRComRAFEUPTGfKBYN6LzGeylIzkLAIx4LiWBwsh1U9Fs3349MgBwgcwlC5iJoahgOu66urkMkxCML7A8/D8u2cer0aYyMjDT03Gzqug1vX/WT+MrZ/+Nve3bqOfznhf/CW4Z/vOrndF33oyBR1lTJtm1kZmcxOzuLmbk5zKTToXQDzYCr9WuZCrUMJdULlLKGaw0QV16VYNk2xAaJgYAQqQvieaBwcsBTB4IoondgAADaUQOGNjlYIBKJBKanp1GwLCiaBsJuzlg06nVbM01ks1nEE4naZUvsIQ57U3IFeOlqMyy4knexiQEA/3tLsoyOVAozs7NIz8zAfPLPYRz8SvGbBQndP/63iKx7fdX9BfUKN65dC8d1MTU1hYnxcUyn0zhx4gQs1qlNVhSkUimkkkl0dHQgkUwiUe+3aAE0Fj2wDAOZbNb/rUoHL4FNYr79dhOTqa/KvkYGtKD2oRFyEMYOWuq7GUKsF25uwt+mjD8PZdnNsB3Hj8DwdITFrjknC2fOnoVt21hTK2pQZYL5tZveh0dH92BUH/O3/dWRv8G9ffegVysvqbQsC7MzM8hkszB1HZlsFrNzc8jNzYGy3yqeSKAzlQqlG2gUfrQM85Pmot8hbAzzHRSbIAa240Bkos3QGgNC/FLEGm8CpRR5pmOQAu2xB5cv95wqZbkdNWBok4MFQtM0v22vASAoP4vFYqCuC8u2kclkkEomq9/spDGLZUmSPCU4yz83wnQJAErq+yS0CjytYpomOlIpWJaF7GOfgHGspFyRiOj+8f+N6I1vaGj/oiB4vgmsOQqlFLphYHZmBrNzc5idncX42BhOnT7tC90SySQ6kkmkUikkGdHQmuwFXwqXpRNM0/QscgPtnIXAilaWpJYpr9HgCm0xEdRJNEIOwtyNhAhQVu+EHih1Nc88gcjWn/MIHxM/OowoWLYNh4kddV3H6TNnMDAwAJdSWJblk+ySg1Q8dkyK4cO3/j7e9+z7/W0ZO4tPHP5z/OXmP8Mcu9dmZ2f9e8+yLFBK/UhZf18fUmvXevddMrlo2hBuDRysTFn0yAEHI2ONjC6cGHBRdCQaDeV+OH/IcMQAALLZLECp3welo7sbWjQKSml1j5pXIdrkoAVIJBKYmpqCbpqIxGKgbNVKBAGxWAyZTAaO62KOEYSqq8MGmDYhBKIk+aHUMMKqos8DSzaZ8LC6xVzhyPN/C1KRGHwa0RvfuODjEUIQ0TREWOtpDsdx/AF8Op3G7NwcRsfGvFpn4jVeSTGikEyl/AE8TF246zgwbduvVuFlf4BHCESmtm5kwGvoO6NJN8xFgG+b3CjxCXk/KiPF5MDNjsMZPwqp/2YA3u/PCZjGzsdxHBx55RU4to2RVatgO47/O8my7DnkhRA13tt3N9448Hp8Z3S+c+P3Rx/Fn33zz3EzvQkEQDQWQzyRwNDwMBLxOPoHBhDRtKULVZPi9svc3CpMVcpCQRHQNYRcfFBKkSsUiohB2AhapZ4JZQjojQpMCwQmcpRkGf2Dg76h3avVKrkS2uSgBVBV1W/AlLMsxEQR1HG8FAMhiMfjyGSzcBwHmUzGy2m1YMUgShJIk+TA5WHo4N+LBB45MAwD6Yf/CNn9/1z0OiUiOn74rxC96YcW7RwAT6zU2dmJzs5OrGTaBUopCoWCF2FghOHK2BiOnzjhD6bxRAIdjCxw4qCxDpSmYfh2uFxXQCmFKMuIKAo0TfNKpkKqqMOidDi8VogB0LqeCtUgdo1ATK2AM3vR32ae2eOTg1IIggDDMHD29GmsWbMGvb29MC0LlmnChadDME3Tq3eXJF8f5LquTybnZmcxw6ICG81b8Lj8BPKk4B/jocijeOfmn8Hy7uXz9siui0QisfSVI6WpwsCzvZjkoKgagqeW6hyPUuqX5xKwaGvoA1bumVDpGPw8spkMCEsnCIKA4VWrfPfPdtSgGG1y0CIkk0lMTEx4/RViMUiOA4GVDlJR9AhCJgPLtpHN5ZCIxys/OHxbCIEibxFtl5S71QNFwAmRH2MRCYIsywClsJ/9NDKv/Hvxi0QA7v4DpDu2QGPNrJYCQcOfaDSKaDSKwUCUwbZtZObm/AlhdnYWV65c8UmAoiiIRqNQNQ0qa8AVjUYRj8WQTCa978HIgmVZcBwHumEsWj7zWowcNOvZXw+EECir70PhxS/724wzTyJy+/8AESpHK44cOQJJkrBu3Tqv6kMUoSkKsrkcstkssrkcDF2HbprI53LIzM0hm836IflYPI5UKoUbVq9GqqMDMT2Ojx75Y3//aTuNfx79An6/83dh6joovBXwUhIDAlTMu/vdMRczalCaFmVVKLX6m/D8f5AYiIIAO2TEgYQhBoF/m4bhkTZ4mrDO7m5IigLbtv30cBvzaJODFkGWZSSTSczNzSGbzyOpaRBY+Iq6LkRRRCwaRTaX83LRuRwiTElfESEeZF7jbzMBVthHv1a5Uasd1ADvvIYmvw0y8XDJCwI6f+Svke3ZAcM0cWVsDP29vQs2DmoFJElCZ1cXOru6AHjXzDAMpGdmMDc3h0wmg0w2i5mZGRiG4QsgCSGghEASBESiUUQiEd9BU1EUdHV2IhqNQotGoSlKa0vLFjkCFBaNRg6CPR3CQhm5t4gcUH0W9pWDkJdvBuA9EwXmVjo1NYVz586hp6cHzz//PAq6jjzzoQiegyAIUDXN0wd0dGDZ8uWIxePo6uhANBYrSi/9OP1RfH/iUTwxMd/v4RsX/gs7O+7FltQmP1WxZKjx7PpixMUiKtXE1DWqsDgxsIPEQBRD3QehUgkoJ8vZXA6AJxZWNQ3dfX2wbRuiKKKDtZlvYx5tctBCxONxWJaFQqGATKGApKp6pUTsRpYVBVH2UBQMA0QUoVXLRfKBvkZoThRF3x7Yse1QCvyiqEEFkBYTBEopph/5M/RWIAbdP/rXiG94M6KOg4mJCeiGgbGJCfT19i5ZXwI/P1vlGruuC8M0Yeg6XOo1aOnp7cXyZcsgMS0F4GkOdF1HQddRyOf9iUkvFJDL5ZDL5/30Aj82IQQaIxBRTYMWiSDC/mia5v+bT0pLYuLUAjSqOWjEoIpSCtM0UaAx0ORKkLlz/msXnvkPnEpOolAoeISZFjtH6roOQRCQTCS8yoBoFBFNg8auPc83244DQ9dhspQdhReOlmQZqqr6IsYPbfwg3rLnbcg7ef8cPnnir/EvWz6LhFbZRXLRUOOZ5qmuxYhi8IqIasSjknNiKTGIRqPz93i9qEE9YsDGzdK7yXEcz/SIlUf2L1vmP/ddXV2v2uZKtdAmBy1GR0eH37kuY5qIlwyQqqp6E4lhoFAoQGQWs7zTYhHCRA8kCY7rwg5BDnTDwK+///2YnZtDb28vPvnJT1YU21mWhU984hM4cfIkZEnC7/7u7+Lmm26q/+VLQClF+tE/x+zTf1/yCkH3j/wV4hve7H0H1nxpcnISBV3H2NgY+vr6lqTtMZ+kS8Htj7mvAHVdEFFEhIUf+Wd4SkcQRURjMa8Urbu7bH+24yAzNwfDMCCJojfBMfJQ0HUUCgXMzM5CLxR8oRyPBimq6hEFTYMgih7JjEaLPBFEUfTC+IJQcbsoir4N8aLmnZnLIQB/EHdZ9QD/w50feW8Il92/wffwagOHkS5d1z1SXSh4oWpKsULvwVr3jO+kmMgcQ+/IWxCJDUPTNEQjEWSyWbz4wgvYceedGBwcDPUdBOI5GSqq6t0HnCg4DuxcDiIzNhvQ+vFrN70Pf/byJ/3PXtIv44tX/g2/2fH+GkdoLeqR+cUilT6pqzGxlh6ba3yCxCA4btVslBSCGFT7fJaVE0uShK6eHt+5tqOjo2G91qsFbXLQYnAmOjk56Q1sjgNNFItyb5FoFC5bAeVyOcQTCUAUIXg7KN1hzVCxJEkwTNMX1dSCqqr4kR/7MXzpi1/ExMQEnnjiCezatav4TZTiH/7hH3Dy5EkQQvBLv/zLzRODxz6Jmaf+ruQVgu4f+UvEN76l+HuIIvp6ezExMYGCrmN8fHzJCILAaqQBLxyt89wkm4QEUUQkFvM7cBYhpL+AxCYUXsXQU4FAcFjMejvPSINeKKDA/szOzXm/NXcOpBTUcYpbLQeFpuwceX6WH58bLAnMVVAQBIj83+w1/j5RFP0Q/PETJyDLsmfxzPo92KwbKZ/MbW7/7LqeARClfvSsqI02X+WVhJ5FUYTIiIwkilBZFKWzs9OPqkSjUaju7dD/63kA3uRIHAM3d5lQhtd6XxvAiy++iJ7e3tDEoBQiI30aI4umZcFxXY/Y6Tp+fPBH8cCl7+DgzCH/M1868xW8cdnrcUuqskCyVaimMSiFn1ZoISn08/119smPGRT/cvJbiRhUG+n8yEedlGjFzzL7agogHouhi5U8x+PxtqdBDbTJwSKAq+KnpqZgsKoFuWSFHo1GfQ+EbDaLRDwOyghC1brrCje/b4YUUpT42te8Bg8+8ACmpqbwzW9+E/fee29R9OCLX/wi9u/fD0IIfuad78Qd27c39N050nv+GjNP/u+ibRQEPf/tk4jf+taKnxEEAb29vZiY9ELDYxMT6Ovu9j0CFhPc/95g2gHeu0BjOeiqaGDAjWgaLNOE7TgwazSRkmXZ93cvRXpmBgCQTKUgBlbmLpuo/cmZTdBFq3H2f5et2t2SlXpwFW8aht/jwHFdGIYB13UxPTkJibX95X8U/n9m6e0yjQ0PF/P0VyX3R4F1YRQlyS8lDH9FO2AP3AJ79GV/i3n6cSjDOwAAZ86cwVw2i9c0eA9XmmQEUUQkGoXG00yMLBkFHb88+D/xq7Pvh8U6N7pw8dGDf4wv3/2vkBvs3BgWvtFQiPfySbdVofMwQsDS97uu6xMDwFsglUY6a30XodoiiRPMGguoXD7vkShCMLhihf9cV3q+2phHmxwsEhRWMz8zM4O8ZSHqukWTDGG5L+6BwCsYqCB4D3ItHUIAfEDlA32tmnzXdSFJEt785jfjc5/7HCYmJvD4nj3Y/ZrXAAAefOABPPS97wEAfuiHfghvfAMzI2owLJne8ynMPPE3Zdsnbvh5rLrtJ2t+VhAE9Pb0YGpqyuunMDWFXniMfzHgsly0zjQFlOkKeG65lRCYxkRnEQG5kgFPWAQiAwIhXgQA5f0JWoV0Oo2Hvvc93H7HHTXFW6ZpIp/PQ5LlUL8Z5aK1JqGM7CwmBxeehWvrcCHhyJEjGB4aalxsViNaR1hrdk1VoRsGZmZnMaytwNsHfgpfvDJvA348cwJfPPNl/Pcbfq6Zr1UXjTibtipywEsVG727KKV+ugzwFkZyhWerWlO4WqLtUH0UcjmAUqRSKa9ZmySho6Nj6XwnrlO0VRiLiGg06nmDyzIKplm2uieCgHg87osKc7mcH8rmbXnLUHJDE0IgiSJonehBcNLYuXOnbw70zW99C47jYN++ffjKV73mR3feeSfe8fa3Fx8z5IOUfvxvkH78r8u2G5vfj6nOO0PtQxAEdHd3eytPQjAxOYlMNhvqs43ANE3Mzc2hoOtwGXnrSKUQi8UWzV5ZVVUQ5j/PoxSNoO6vcJVFi/weDF3GuMDzVVbd5ZXDctgmrPP7cPTYMVi2jfXr1ze8TxLynBzHgaaq0FQVPzfyLoxER4pe/8cTn8W57Lkqn24OzXQXbQVZLPIwaAAua6LE057RSKQiMQAqOGTWIgYI9724ONV2HKwcGYEgCG0BYki0r9Aiw695l2Vks1m4JRO4wDwQCCGwbBt51sGNDwIu68NehEAeDwjndxB8kAgh+Im3eqH9yclJ/Mu//As+85nPgFKKW26+Ge9973vLyUCIBzH9xKeR3vNXZdt7fvjPIKz7UViB0rF64AQhHo9DFARMTk9jLpMJ/flacBwHc5kMsrkcbLYCi8XjiLNyKqGBAbjR4ZKvPAkhfrSisR2Ey/FeLfg19UtEDgQtBXn5pqJthROP4sTJk1i3dm1TOWUa4hoWdN2b8AhBR0cHeju68eFbfhdCYEg1XRMfO/QJuLR1NuXNtFZfaNOlZomBzVKmDrtO0TopurJKhSrRU7eB0tdsNgvbddHZ2emZmXV0LHpflR8UtMnBIoMLFCVFAUTRE8ZUSA3EWHcw0zShFwpFr/P+CSU79gkETy3UFCWWfH7H7bdjeHgYAPDYY4/BsiwMDQ3h13/jNyo/PHWiB+kn/xbpxz5Ztr3nh/4UyS0/A0WW/SY4YSEw4V48HodECKbSacwugCC4lCJfKGCGed671OvkmEwmy/L/YtjBsIlBU1UUv8xP1/WGPw/UXjVdTYLgNhA5aFX6Qx7ZWfR/+8oBRAUb69ata2p/9c7LMAwY3EwnEvEbZm0b2IZ3rHpb0XtfSL+I/zj79co7agC8iVEzvyylFKTZUkbSnOWyYZrIZbOeMyhbAMk1rImD4kZ+tFJTpap+ClVgsoow27IwsmYNksnkNeGhcr2gTQ6WAH4oS9PgMHOWUvDyNMBblQQNWqpGEQgBYSpzQmnFrn8cZVsJwe7du/3/plIp/M7v/E79lRaPWgQ2zTz190g/+udlb+15058gufWdALyOjBSAaVm1918BPd3dXidFQjCdTmNmdrbhfZSmECRZRjKRqO55H3ZQbGaCI8S/zoauw2kk536N50kbMUBqlSmPsnIHIM2TO4G6WN9tNL1CrHWFLdP0CV1E0yCXuOr96k2/jGWRZUXbPn3873Aufa7xKFHgfOrW/9dAsLdCYwduLoVRKBSgswioJMu+wVGYcstgCW/peTR6LtyRtqe3F729vYjH4w19/tWONjlYIsiy7LntKYpn41khxK6y/CXg5cqsCjlpP4oQeFBEQYAgSaBARd1BJZHa2NgYvvGNb/j/N4wGBlMetQAw8/Q/YvqRPy17S/cb/wjJbT/r/19h38tqghwAQFdXF1KpFCRB8Fo+p9OhPkcpRS6X81IIrLY6EUgh1AJBFWFo8D1NTtayLEOSZRBBqEgWF4KrRR+CA3gYctAqdYQgR6Gs2Fa0LTn7cpV310e187JtG7lCARRe9KdSk56oFMEf3vr7RdtyTh5/cexTyGQyoUqOy85ngRGWpj9fwxys8ttd5HM5f2xTNc3TXIWMIgkoIQbEM5Br5vwt08QMa429Zt26tgNiE2iTgyVEJBJBnNnxltq3+u+JRqEoCiilnt97yXv8KEKQIDBRYtXUQsnDlclk8Bd//ufIZDI+m9Z1Hd/61rca+j6zz/wTpr//J2Xbu9/wcaS2/3zRNkWWQYCKpCgsOjo6kEomIQkCZufmMF2HIPBOmIZpwnFdaJqGZDLZmOlJPVFU+D2VgUcPTMsKPWn4Z1JnwLwaqQUeNSBhjZZa2DJcHrmv6P/26GE4uamW7d9xHN9+V5akmg6ed/XuwI+u+G9F256afhqPTu5BLvBMu9TFoZmXcTJzquJ+CLBgTQZl+2gkHO+/r4HIjsP0BVyHEY3FykL49Y5fRgwq6a1CgDoOJqamQClFb08PRkZGrroW53pEmxwsMTo6OqAlkwAhyOdyFVeN0WjUX5Xk8/mKOgWgOIogscm30iQT/KRhGPjLT34S4xMT0DQNH/zgB7F161YAwMMPPxx6RT7zzGcx/b0/Ktve/fqPIHX7uyt+JxCCXD5f9loj6Ojo8Gr8BQFzc3OYmp6u+D7TsjA7OwubGQQl4vHm2uYS4qnXqw1SCxi8uUeAQIhn7dpCXI2hsJGUQqtrKqTlW+CQIOmjsM4+2ZJ9U7YiJvDMrGLsXq6F37nlN9CldBVt+1+n/hZzTgaGruPg+CG86+n/jnc9/W689Yl34HMn/7novc1UJVSCy+5/Qki4VE9Ic6MgTNNENpfzXUTj8XhFAl4tNcL1FODH5d+9meoIx0F6Zgb5bBaSIGDL1q2hWq63UY42ObgK6B4YgBaJeIp15r1fWk0QjUZ9d0DDMJAveQ9/H6UUTlCUGHDL4+D/d10Xn/70p3H6zBkIgoBf+9VfxcqVK/ETP/ETXrWEZeH//ud/1j3/2X2fw/RDHyvb3vW6P0Tqjl+o+BlVURDRNGTm5uruvx46Uil0dnZCFARks1lMTs2vECkTHWazWbhMhJVIJBZmkcq0HdVeWwi4javDjJHCnAtQP1TcTDOjhcIvYwwxGLd6JXfm/CVMyMNF28zTjze3s+C1pdQ30REICUUMACClpPB7G36naFvaSuMfzn0Gnzv/r3j38+/Fy7NH/Nf++fQX4FDv+i1UYxCE47qgCP+bNHLPcH1BIZ/3Fyi10nWVIkq8c62/z0ri65BwHAfZbBazMzMgoojV69ahr7+/qX210SYHVwWCICDV24toJOKF2pmNculDoWoaYtEoCCEwLQuZTKasFBIIqHtZKK70PXyg+fznP4+DBw8CAN7znvdg4623AgCGhoawbZuXs31szx6Mj49XPffZZz+Pqe9+tGx71+s+jI4731vzeydY18pWIJlM+vXKuVwO4xMTcBwHmWwWBSbyUxQFCVYKuVBU0x8sdIoTBMEnioVCoe7AGPZ4hJBQnetaiYYiBy30YzAtC0dfeQVYvqNouzN5As7clYb3558ZIwa8pXA0FmtIRPn6wfuxq7+4kuKBK9/FFy58yScCHDk7hyl9umURAw7XcTwL8Drn3SgxqKQviIZoUe2TA5bmCOpUGo1YBGFZFvL5POYyGVBCkEgksHnLlqb21YaHNjm4SpA0DVoshhj3ODDNipO/oqqeURIzOcpksxVFh9wbn1IKPSBk5A/8f37jG9izZw8A4C1vfjN27iwetN785jf7Nqdf/9rXKp7z7HP/gqnv/GHZ9q77P4SOO3/R+0+NQSaZTCLTIq8CAEgkEuju6oIoCMjkcjh7/rxXYkYpYtGoT6xaCQGtdyDUmDESpTS0MdLVtTqqjLAGSDwP3iocO3YMtuti1fYfBtGSRa+ZZ55ofIfs3PzujkBZy+YwIITgQxs+iJgYDfX+cX28ZREDDl7hVPXceRi/gX06tu0JfJm+IBKNVu8uWwHBLo6UUj+60SxMw4BeKHgNskwTiqLglvXrPX+ZNppGmxxcJQiCADkahawo3uQvilUnf0mSEE8kIDJnvWwmA7tCCFqRZUAQYLKVswtvcNizZw++wdIFO3fuxJvf8payzw4NDWE786B/5plncOHChaLXZ5/7V0w9+Adln+t67e+h465fKtpWbZBIJZPeuYfsAxEG8XgcqVQKtmEgVyhgOp1GNNB+t+UgpCWRiNJ9cvGW33WwRVhKEsFLMutWgbSQsOXyeZw8eRI3rluHSCwOedXdRa83lVogxPMysKwiL4NmcGzuOEQhHKm4MHex5b8X1yWVts/2BYoN3mu+vsBxPH1BLNbQJOw6DgRR9CMGCyXaOiv7th0H+Xweiqqis7MTN6xdu6D9ttEmB1cVciTidcKTJN8J0HXdiiVPoih6uXNJglulkkGSZW8fYCWDlOLAgQP4zD/9EyiluHXjRrznPe+pej5vectb/A6FX/uP//C3z+3/IqYe/FDZ+ztf80F03P2+yjurYJqUSCRA4bmWtQq248ClFMlUCqokQRZFjE9ONm0uFBatjkj4xkgsvVD1uA3sk2DpHnDfgyOEP0SrIi8UwEsvvQRVVbF2zRoAgDJyb/F5zZyHM302/D4phcXaaQOVvQzCYMqYxgde+H38ynO/jjkrXLRsND/a0rJWCm8ydiktIrQULNcPhA7jU+r1IPH1BZLk6QsaJE2lGoNm4ySUUuTzeZiG4f9mkixDEkVsuPXWtj1yC9D2kbyKIIRATSahs057iUTCD9dlMhnEolHfHwDwBD2xeNx7KFiDG9dxEGHmSYQQqIoCp1CAaRhQFAWbNm3Cl7/0Jb9MqHTgNi6/hMkHPgTXyqNz52/gX7/whaLX557/EiYf+L2yc+/c/QF03vMrYb4keL/5ZCoFEIJMJoOOVKqRS1URNhMgOY6DaDSKzs5OTE5OwrZtjI2NobOrC8lF6rzGryVtYvVVeYeeCDWbyXihUdaZsdL7gPARgVbnsKshmFKoW/rZovO5ePEiRkdHcccdd/iTlNR/C4RYD9zcpP8+48zjiHatCrVP7mUAVPcyqIdJfRI/89TP40phtKHPjZuTsC0LeWY1vFBUqlTw8/yN7Md1Ucjn/QWLoqqNpREo9dJmJSkTiuaEl9R1kS8UPFtmeISDN3UaWb0aA8uW1fp4GyHRpldXGaIsQ2ETGBEEJOJxLz3AxFBGyQqYd3Pkdda6YRSJGXmIz7LtIv0Cf4zdgBqYUhfj//mrMC4fgDVxHONf/yXMPf8l/zNzL34Fk9/+YNk5d+76bXTe+2uhvyMfRFRZRkTTMNeEw2EpODGwbRsia2ClKAr6+/sRiUYhMDfFyakpXyjXcrR40pUkyWvMRIhntlNh/2F9Dvy3te70aiKsGLFVERfdMPDSSy9h2bJlWBaYDAgRIJdED6zTT4QiSI14GdTCw6OPNEwMACDtpAFCYFuWH7lYCPxKBRZt5KLDRn6DSvqCCBPQ1gWl/uRfiQQ0Q1pdx0E2n4dj2yDwfGFyuRxACLp6enDr5s0N77ONymiTg2sAsqZBYe1tKYBYLAaVDUz5QqGiz4EWiSDKKxlME9mAj7kiyyCEVBS38YfacRzoF1+ENXW66PXJb38Qc/u/gLkXv4rJb32g7POd9/0mOnf+enNflBAkU6kFN1AqIwaJhP+9RFFEb08PUh0dEAlBLpfD2Pg4rBbqHHwQ4kUQWrjLSCTiibUorTxBNDi5LlW9QuhKhRYRqoMHD4JSik233Vb2WllqITsGZ+JYzf25rG0673IatmSxEvq15srnJs1Jv3w5aNPcLHilgiiKEHkaoQFYljWvLxCEhvQFfnSiVhSpQdLOO9e6/HziceRyOb8y6fYdO9rphBaifSWvEajxOCS2auQh5no+B6qqIh6LQWDOiJlMBo7jzEcPaijfBUKQe+XbFV+bfOD3Mfmt30bpurPj3vej877fbO4LskEitcByRsdxkGOpBKGEGASRSqXQ29sLURBgWRZGR0cXT4fQSv0Br6WHtzqu5pzYyEC/FO5wYTwOKtl4N4Mro6O4ePEibrvtNp9EByF23wAhVRxaNk9Xr1rgFttgFr4LIQYAsKt/J35x7f+ASBqrbhjTx6GoqvfcCwIM04S+AEdR13WLrM4bga7ryLNr4muiQugLaCBaUAn8qlI0dg/bto0c8y4RmRDSsm0/arBt+/Z274QWo00OriGoyWSRqph7kxN4tdyVWj5LsuxXMjiskkEQBO//lPq5uFJQALlXHgh9bh33/Bo6d/12M1+rCMlkEvl8vrFmQwyUUj9iQAjxW11XQyQSwcDAgJemcV2MjY21zGchiDA9GBqBJMu+c2K19EKrUxoLhRMmctCCa2TZNg68+CL6+/sxNDRU5TAESkmnRuvsk6Buhb4jlCKfy/mRj1iDXgbVjv++G38R/+feL2N797b6H2AY08dBKYWiqp6bJ6s8MkOWtwZB4f0mrus2VGnBjYR4OlNRVUTr9EcoqzyopzkBKvq1VIPJUqeA15MkHouBEIL0zAyIIOCGdeuwbMWK0PtrIxza5OAagiAI0Do6ikRkiqIgkUhAYA6GmUymrEqBVzJIgUoGwkLe1XoZmFdegjN7MdR5ddz9K+jc/TstWYEmk0mAUmQzmYa7vhW4CIkRgzAhRFmWMTAwMK9DmJlpqQ4heE0EoGWTNk8vuI5THPFo4jdY7LhBcLVYK3LQivM4dOgQLNvGpk2bar6vlBy4hTTs0cNF27jDn+04njdGLFZW8rcQrE2uwed2/AM+ufVP0a/11X2/6ZqYsTw9jt+ETRT9TqKhwe4Rri8Ka0ql6zqymYz/jGl19AWlpYiN9III89y7LI3A02uyoiDGjJa4NXpndzc2bNgQ6phtNIY2ObjGIEoS1FSq6IEUmc+BLMtwXBf5fB7ZEsMkEhDlUUph2jZM04RlmhUHltyR8FEDIdrVstB0ivWV4LoDEjIXalkWdF2HywfxBlZ3hJDKOoQmO0QGUXTu3Ga5BQSBCILnoEkICrrue0M0+yssZmqBpxRqNVyqF24Og/GJCZw9exYbNmzw25tXg9ixAmL36qJt5pl5zwNeCmdZFlxKEY3FILHOpi0Dm5jfMPg6/Neur+E9a94NWaht4z2anxcyaqrqNVQThFC9N3iOn7d351UC9Z4VmzVN4tECSZYRj8eh1tAXFE3urBopbGmkG6JvgmkYfpRQYNUb3NRM13VkczlEIhFs2bq1aQ+KNmqjTQ6uQciqCqUkfyaKIhLxuPeAwAuvzpVEEXglg6aqXlrBcVAwjLKwJKUUuaOV9QaVMP29j2Nm7z+1ZNKTZBnRSKSox0K9ict1Xd/fXlHVpgeDoA7BNE2Mjo0tWIdQeuYELLTegmslKwpkRYEgCOWi1GsorcDJZ01zqAWSE9u28cILL6C7uxsjIyOhPqOsLkktnNsL6lje/XThJZgvfgHus38PLXPaSz21GoGa/qgUxftveh++sfPfcU/vXVU/cmgmEN0gxLdYdx2nYhfXIPhzRAiZr1So8Zu4bKGRY+lKIgiIRKOIVXKDpNTv7li26m9Q01ArahCMFrjwqkbi8bivLXFdF+mZGciqips3bGi3Yl5EtMnBNQo1FoOkacUPEiFQNQ2JZNK3SuZRhKCrYiQaRTQahSLLsC0L6XS6KMdvjh6GnT7f0PlMf+/jmNn/xZYIylIdHeW5f26aVGH/hULBFyBykWaz4DoElUVYFkuH0CqCwMVpjuMUidMa3vMikolGGi41iyOvvIKCrmNrA3758qp7iv5PjSxye/4Ss1/7BVjf/0PgxIPAxb3QH/0TOBm2Ym/ldaqwr5XxYfzd7f8Ln97+1xiMDJZ/pOT/gih6JZUsglQpCliJXPs9Far8JrzCiYuWuVNrsBphvuSZlgsIWbSgGVQbQ4xAtIDAc6YsJSqzs7NwKcXQ8DCGh4cr7qeN1qBNDq5hqIkExAorGlEUkUwk/FJGi1UqGLruP3iqqqKjowOiKMIyTaSnp2EwN7FqVQr1kH7kT/2QZdAvoVEk4/Hq5YwlKx3TNL3zdl2/7fNCwXUI0YAOYWJysikdQq2oRytC+UQQEGWGM3pwcmjw2i9mWiFUGeMCJt2p6WmcPHkS62+5BbEGFOlivA9CT3FqwTq3FwgYJAEAHMt3UWyJYVSdfRBCsKt/J76562t4y9CP+dv71N6i/3MoqgpJlucjSPwwCDRMKvl9q0UOeDlgIZ/3S59j8XhZ06Ra9sa8nXIzV6qSNbjL/CV0Xfd9GRLJpO/5wcHTCb0DA1izdm07nbDIaF/daxiCIEBLpZCfnq444KgsxJ5n7mX5QgGmZSEajUIURciKgs6ODkyn076jomEYyB1pjhwQQZr3ZAd8okAEYb7eP8QklEgmkT1+HI5tVy6P4l4M7Du5lELVtJYOBlyHMCvLmJ2d9VwnLQt9PT0La+9ccgzefpcuYHJWVBWmZfnmOJIoNjUw+3nhFqMeOVjIMR3XxQvPP4/Ojg6sYRbJdT+TnYR19gmYZ56AO3m6/gcACLxhU7OOl5R6xDZEPp1DFVV89LYP4zdvfj8u5i/hlo6bq743Folg1rbhUgrDMLxeHDWcDh0msuSrbkopTO6dwBcQmjY/AfMoQWAf1Qhl03cypUU6KX5OBiMFBF5kr5IrJU8ndPb0YOXKlZ6wuY1FRZscXOMQJQmRVAqFdLrioMO1CIZpQmdd5DKZDCKa5pVERaOIWRZ0Jmgyx16BnT7b8HkQNYnuH/6zsgGDDywUnk+6gPokIcWskzPZbM2coWmacGwbgiA07VZXD6lUCoqiYGpqCrZlYXRsDN3d3Q2lL+pNur517AIIQjQSwZxtw3VdWJRCbWICWwxiwLvqAYuTVjh69Ciy2Sxe89rXhop+5Pf/K4xD30Cj35bEmXFRs8RgATbaSSWJW5Takx0RBMQiEc811TCgyHLVlAFlkzCvVHBsG3ldh8vKmkVJQiQSgcAEpA1HS5q8j4OpCddxPAtkRhYkSara8tl1XUxNT0NVVQyWOGK2sXhok4PrAJKqQuvoQGF2tjJrJwSqqkKWJBRY9CBfKMAwTcRiMciiCEeWoWka0i99MfRxiaQhsva1iN/y3xBZ+1oIcsSLFNRYUQR92yv1cgC8HhKEEGTm5qqTA7ZCooBvCrRY4DqEiYkJmJaFifFxdHR0+CSmFRAEYUHdFgVRRCQSgWEY0HW9KbIksFBwK3stBBsutdqdbmZ2FseOHcPNN98caqXopM/COPT1xg8kyhCinQCaIFBLYDDFIasqJMuCbdswTBORKgSWR3II8bpL+uXMxOv+yXUFS9Fzo/S8eFtyXhlBAGia5nclrfSZ9PQ0iCBgcGgIw8PD7XTCEqF9la8TyJoG6rrQM5mqYT2BNWaSWH9zx3GQyWR810XLsmCefqTmcYioIrJmF2K3/Aii6+6HoMTKjhFqUOHRhGDagQ2kkiQhFo3WFAJyfYQkipADJWbBtEYrIUkSBgYGMDk1hUI+j/TsLEzTRHd3d/1JL+SqUSDEd61rBpwAGoQgr+uL1lSqEdSrVGi20ZJLKZ5/4QUkEgmsW7cu3IeanOuEeB8I8c6/oQlzAdGCRsFX+JqiIGtZsCyravMjx3Vh2bZHCtj5SbLskYnA++s+R6wUslUkwmFNrYLRgkiddGE6nYYrCFgxPIzVq1e3XRCXEG1ycB1BiUZBARhzc5UfbLaNaxF0FkWgrgujUIAsy55uoPRzggR55T1IbPhRJG5+IwS1/qQTNhxZlHag1HcSTNXqscCiBi6lfnc6EtjfYg3HXIcwNzeHmZkZ5HUd5pUr6O7urrqyafgYCxxso7EYcqwRjm6a0JpoJ8zzu6Xbgih93WWlbH5VCbyJ1HYcUEIgMh1EWWlnM2FrAMePH8fszAx27doVOiIhdq2CsuY1ME/WJsBln0t4KYVrjhjQ+W6G/EiSJPluqJZllfU6cKnnIqrrupc2YCk5qRkdTZO/XaXvkS8UfK8Gri2QVbWmIn56ehoOpVgxNIRVq1a1dQZLjDY5uM6gRqPeZJ/N1rTsFUXRSymYJgqFAgRRRC6fh7r7oyh89wOAY0DqGkF8xy8Bw/cCUgwuAN0REamzOg/WUwPhB1WedgC81MLpM2dAeZoicDzbtv3VhVxh8iNA61olV0AymYQsy97gZNsYHRtDPB5HJ6v+qHg+Iffte8s3IFwLQhRFKKoKy7ZRyOchs8miHnyFeYnwjAYn/eD7y3fgvz/4e/O0Arcc9pXzwTw8mW/bHQaZbBavHD2KtWvXorOzM+SnPETv/hVQx4YVMDyqB5JoQG/Av9MiE4OiZyv42xACRVVR0HVPexB4Pkz2rOuGAcd1oWlaXYvxisdG6/QpXETLDcdkrneoo09Jz8zAdhwsX7kSK1etavsZXAW0ycF1CC0e91bX2WzdVZWiqp76nhAYug6zdxuS//NZaKrqi5Jc10VB12EaBgzDgGXbiEYioVX7fDVPa+gRStHX14dXjh5FemYGHamU5y7o7Qw6Symoqlp1QiE1lNqtANchpNNp5PN55PN56LqOrs7Ouu589RC8Ro1+BwLPUptrPwqFAuKx4tRP0OPer1Gvlc5YQJrGDxEHB3t+/MAEGlTE+6r+SmVyAJ5//nlENQ0333RTw+fjuoCz6T2AS4Fz1ZstBSHGB/hJVn9Ti0Ps9VDrOIos+54HNhPs5gsFbwJmFUQRTfO1PWHBSUErvqFtWR5JsW2f4EQ1DbIk1SUGMzMzMEwTK5iXQVdXVwvOqI1G0SYH1ym0RMIrBcrlqhMENiATQpBKpeA4Dubm5rxIAtMgKIoCjVmTKrLslQ6y5iu8AUyYsK5foRByRd/d0wNFljE6OuqvCigA17Zh6Doc10WsDjkJDnuLMWSLooienh4UCgVMT0/DdhyMT0wgFouhq7NzQep8UrKqbuCDnoiLlXtZlgXDsqAEdBluhcm5bOJrMnJRug+/4VKla1F6L/DjBchL6f5OnTqFqelp3HfvvaG6AAbhMBtgEAHitvdCVCMwjz9U93NCvI8dvsrv0GCErFmETsEIAhRZhq7rmJmbm48cEa/dNK+0CXV/Bu6DVpMCDklRoCiKpzuqM5bMZTLQdR3LV67EiqEh9PT0tOCs2mgGbROk6xiRZBJyJFLbkCgQsk+lUogxz3QeHjYMA3Nzc8jn835ZJK8zNg0DmWw2dA8CXtcfxu9AIAT9AwMYvXKlaLvBHduY6YvjunDpvENbtQFsMTXjkUgEy5YtQyIeh8iMaC5fuYIs6xTXtEAyeL1Cf4SldEQRmqbBBZDNZmGyGviwFREL7TwIsE6MjHxWJJANTqYzs7M4fPgwbrjhhoYnBdu2vd+DEAiiiHg8gehd74Ny8w/X/azAyxgrkBUSkuw2jeDkXOs47Hl1qdejgrujFnI5UNZ5MRGPQ2Daj7qKftcN7UsSBjbrGpvL5fzGTaqmIZ5IQGMLDIEJk6shxz6/bHgYy1esQH9/f0vOrY3m0CYH1zmiHR2QNc2fQGtBIASRSASSLEOUJMR4s5kASdB1HRoLSQqi6EcRcoG2tnXBJ706A8/AwACm0+kiz3ibTXI8lxrMvfrujFW+Kwn8afWATghBV1cX+vr6oMgyKKWYnJryGjg10H624r7RGEGg8FbJkiz7q8N8Pt/Qd27F1WmlbbJlWdj37LNIJpPYuGFD6HsI8O6ZXDbrueuJot+5jxCC6B3vhbrhx2t+XkiwtEJpGqRVgrwqIITMp1hKwdIuvlMhvGfAMgxkMhmYluWRMlGEommIx2JeNNC2QV23fkowZMOzeqhGCpKMFFBK571PaiCXz2Mmk8Hg0BCWLV+OwcFya+k2lhZtcvADgGhnp0cQmPFJNXDlsixJcBwHtm0jkUggHo+XkQTTNBGPx32Vvmma3qDURG/5agP8QH8/CCEYG/V87SmlnrMbqk84Re6MfCVViSwQsiglj5qmYXBwEKlkEpIgwDAMXLl8uaiRVMOoF0FgE4XrOKDMupojziy0eROd0GhBy2q3VeSAUuzfvx+mYWDHHXfM7y8gfK32W1qW5RMDiYlwg1EMQggi294N9da3Vj62JENQy8vjFl1bwIlHyXF498pglIw/l5lMxjMzYlU/fpMkdm0c123db1IH9UgBIcRr5hSiuqhQKGB2dhbLhoawbNkyLF++fFHPvY1waJODHxBEUilIqup5qtcY2ARB8ISIzCDFcRzIslyRJGTm5sD73Iui6HWzy+UaiiL4gzob4IPnpqoquru7McrJAW8zizo+/SXgqyo/BRFQ1i8GCCHo6OjwowgEwHQ6jdGxsebbQLPrUzQJsonCYX/8SoDA60QQEGOCRNOy6nbuKz3eQmBXc0Zs8LqfOHECo1euYPu2bYiWiCuDKL0vTMtCjqUSZFlGLBar+J0IIYhseRe0ze8of02YNwRaCqmhf36B58cnuCVaDNd1obPnsBAgBVEW2eMtvbnuw2b3niRJ5dehlemDTKY6KWC/D4+81LrHKKXQCwVMz8xgcPlyLFu2DENDQy05zzYWjjY5+AGBIAheBEFR4DhO1dwzYaVQXFcQXG1WIwn5fB6iJEFhPuymafo6hdAkgf8tCEUD1eDAAMbGx71JMLDqaWbi8qMKgJ+CCE5UrSYLqqpiYGDAb3BlGgYuX7nidY5rdmUeEBPaFX7HokoH9pokSf5qraDrRR06ax6quTP0wY9TSuQa0TNMTkzg8MsvY92NN2KgXiiZl0Sye7DANB/cerde+W1k0zvKNAhC1yr/ddqCaEpF8Px+QC/A79FKJZ6u60LXdWSYOM8FikgBfw75defRAovZa3NPg6J9L/DeLyIFjlOTFBAuVKWVGzfxczMMA9PpNAaWLUP/4CBWrFixoHNso7VoVyv8AEEQBES7upCbmoJjWXAIgVCBvQvwRHaGaXpWrIbh9UtnD7Isy5BlGZZlQdd12MxtjRACSZL88KVhGDBNEzKreAhTb+/X+TOhV39/Pw4fPozJqSkkEgmA0paFRP2QZmCAcigFCazQguZKzR4jlUpB1TRMTU7CMAyvkVOhgO7OTigVmsjUAic1tYZyv+Qs8L00TYNj27BsG7lcDol4vP4kvYAJg4e/gZIyRoQnYXqhgGeffRY9PT1Yf8stYQ/sNxgjguBV25R076uF2I5fBJEiME9+H0JqEInX/eH8i60QH3KBYWA/Lpsw68F1XRimCZPZhgOs+ZqiQFaUsu/Ijadc14XtOH6zJZn9Hq3wK7DZGMCJoL+4UJSi+8tvMoaAB0mN62mZJqanp9E3OIj+gQGsXLmy5fbbbSwMbXLwAwZBEBDr7kZuchKObcOhXvOVIsMkNslHWSMXXde9UqOSUsRKJMFiQihJkrycv+PAZP7tvCwyzOTOldKdnZ2IRCIYHR1FNBqF20JyUAkC5o16gis4AgCCUBRKa4QwyLKM/v5+ZDIZzMzOwrIsjI6OIpFKIZVM1h34+GTLIwVcjOfSckOqaiVv0WgUmWzW0x8UCn66oRaadTDkpWqiKDZVJum6LvY9+ywIIbh9+/ZQYW+e1uJRmWAHP37twvxm0W0/i+i2ny1zdGzoOgS/I09JVJkQ652R67o+0eafFAXBs8uW5arfSRAEiABseJogXrUglGg2GgalngNnGFKAeRLul9Ky36f0evpRH8PA5PQ0evr70TcwgJGRkTYxuAbRJgc/gBAEAbGuLmSnp+Ey9bJLiN/jAIBfK2+aJizLQqFQ8Mx9Avl6PihVIgk2mxy4iRJvv2qaJhRF8S2c64EQgsHBQYxeuYKVw8OgAIRFbqwS1EEAKBrUiwLLnDRwYRzqEwaeC55Kp1HQdS9fXCigu6urYitaHlp2eOi5BLxZUtn5V8iRE0HwelZks7DY4F7P9rmaQ2I9VPM3CGtv/fLLL2N6eho7d+70olZ1YFsWsvm8Xysfj0aL7i8iCBBqhLF9sPu6lEjUKyMMTvql0aj5k5iP0rkV0gWlcB0HOntmOERBgKppUEIakAmSBGJZ3j4YaW8WruPAtCxYplnUvKkSKeB6l9L70KmRmiHE81aZnJ5GV08PBpYtaxODaxhtcvADCkGSEO/qQnZqyq9icB1nPorAyqCirAGSYRhQVdVftXNxXNBZL0gSDMOAZVlFuXX+b04SZNYJst6ANTA4iNNnziCXz3vleYtQZVAJ/lG49W+FAT84EVDAyx8HRZaBffmrPklCX28vcrkcZmZmvFbQo6NIJBLo6OjwB0M/hRBiIikKEQcqNkohShJikYjv6CiJYn1f/Saut68PKRnYw6y+L1++jJMnTmDjxo3o7u6u+35d16HrOgjxejjEY7GKKRMSIHvVzoIGKiAqv6ECEeDbiw82/xEwEhcgJ7WuqOs40A0DZkC8KooiNO5mGhKUUoiCAJNSWKYJURAgN9BqHPAiLpZlwbSsIuOiqqSAvx4wXvL35Z2Uf27+e9lrhULBc0Tt6vKJQbvD4rWL9i/zAwxBkhDv7UU+nYZtGN5DWhJFkCQJqqpC13Xk83kv788Q9HWvFElwXBeWacIwTb9syaXUH/QopbAsyxfMVRv4+np7IQoCpqenMTAwMF/C5e1kUUoSgyjae42Jl78enDCCuf+i0DK8JkmapmE6nUahUEA2m0W+UEBXVxeimhZaOFga+g5OgpWgqCpsx4Fpmsjl8745TtX9N5FaqGibHALZTAbP79+PZcuXY82aNTXfy41+LMsCAaAqCjSm0K+GYJ+OYCldUJjnV30EdQGuO0+EQ14LylJ2tYR3QThcpxMgBZIkQQsZZQtCIASU/W6+RkUQQrtK2rbtRw2D31eSZSjs+a5EGitFsjgcxyknRZTCodQTMBcK6BsYQE9fX5sYXAdo/zo/4BAEAfHubujZLIy5uXklv+NAYIrnInGiaUKt1OyowkAhCgJETYOqqkWDjcBMgkwWnuTRBok1XSklCbIso7evD5OTkxgcGPAHq2BIvzQ/vBgIfkc+YYaZJkjJqjE42BJBQHd3N/L5PNIzM3BtG2Ojo1A1DSmmPK90/IrHKXlPrQkpEonAYSK1fD7vtbqtsv+GUwu0jm1yFTiOg2f27YOmadi6ZUvN4/Hz5i2uo9FoWQfC0nMqLfPkJl48XVSXWDXw/UmNaFOl72LoOsygpXATpKBI9Bc4F77il+vsq1LaAPB+Q0WWPd1RlRC/wIh/tW8bTKMEr4ll20in0yCShKFVq9A/MIDly5e3UwnXAdrk4FUCLR6HpCjIp9PeigrzD7FAyLw4sVDwavcbWK0TQvxoghvoJc8nTdM0YRgGJEmCZVl+uiEothocGMBLBw/65XulU87SJBpKjhkcjOtMAvy7Vrtu0WgUmqoiPTOD2dlZFPJ55AsFRDQNqWQSCrO0DuywYvtj/+86q1VCiKc/yGRgs8ZakRoh57BaAaCKbXKgAqQiKMWLL76IfD6P3bt21Ux1WJaFHNMXcPLKCaUfTQLKIjiVVq2CIMC2bT9NtiAEVPhhSAGvBLICpEBmkbpGSQFH6VFddhxRFCtH5lgkzzTNsrSBrCiQZbnmufDSRIra5NX3KAlco3w+j5mZGaQ6O9HT34+hoaGGu2y2cfXQJgevIkiKgnhvLwqzs7BYb3W+OlYUpVycWA1s5eS65V0YBUGAqihQFQWO68I0DIiSBMe2YVoW8vk8iCCgoOvQVBVaJAJFljE4OIgDBw4gnU4jEbZvexNCumbAIxgE3mBcLexcd+UvikimUohEox5BKBSg67p/vVOsVTTYMUqP4lvp0oCNdHDVX3I9uEAxk81C13WIguBFKngahA38aIAYAFVsk+t899Nnz+LcuXPYvn07EsmkP5EEJxQXXnmjbhheVIvpJwRRLFe+F13YciIVhCRJsCuFvIP7q/KbBvUEYdINTnB1Hni/IklQQ1byAPA0QQDqOS/wiiQRxf0UbNuGZZpeCiOYNpAkKIwU1PvNfN+QOu/jBl1EEPyqkdmZGeiGgYHly9HV04OVK1fWFce2cW2hTQ5eZRAEAbHOTpiqisLsbNFqV1FVWGy1oyhK9RVFnVUyh8hWfZqm+WkHnnM1DQOGriOXy0FVVcRiMURjMUxNTWE4rEvaEgkXgflVqYD5wbJ0QqmVu+fW0ARey93enh6YhoGZuTnohQIKhQIK+TyisRiSiURVfQYhxBeUUm6XHTxmyfFFpvfQCwVvNS4I8zoBSotEZEDxpMtJEYXnD8Htqm1WAUMEwZsA2Qq92ndPp9N46cABjIyMYGhoaF6jEfibl186tu3pC1TVN3YKhTpEURJFP4JQCWWTMCPAJISewOWiPtMsUusTeCmzoNC3JhghCGpu6n17y7Y962gWtTMtyxMKB/QsAosqKLIcKg3kr/5DIPguLm6cnp6GJMsYGhnBwMAABgcH22mE6xBtcvAqhRKNQpBlFNJpb0AmBKqieJO2afrixLCDc2llQ+lrPO0QiUS8kkjDgK7rsEwT2VwO+XweyUQCo+PjsF0XNbLLlY+P+VzsomsT/H/UES8y8FLFUiiqir7eXo8kzM76otB8LodYLIZUKlVxUuF5YZefC1uxVZscNaYJsW3b1x8Ild5LKpj1sBB+sCrDYccSmaiVAhWjSIDX2XPfvn1IpVK49dZbK56f4zheR0V27GgsVlH3UhMh7lNRkoomzSAoO38/UoDav6vrurAtC2agrJdDliT/fm/k+QHK0wb1YJomLMOAJYrIBO8xQjxhYS2SHzx++QnV/QzvbwL2J5fLYXZ2Fh3d3egbGMCKFSuQSqUa+0JtXDNok4NXMSRZRqynB/rcHMx8HoQQRGMx3+wok816TnshBwpe512vt4PK7JvjsRgMw0Aul4NhGIgnEnAuX8aZU6fQPzCAaCQCLRIJtergRySB/y8ZSQD80Halb14vJK2oKvr6+qAbBmZnZrxrks8jl8shHo8jmUwWkQQ+sft2v3zVXG3Fx/UH2Sxcx0G+UEC8UtqIrZLr/d48d80nnWrvp5Tiuf37Yds27r333opExzRN5AsF378gVuJfUAuNVllwQWelFIXAuhTWihRQFjWxTNNfsXNITNQnsVbjYc+/2j1TC47jwLYsGKwZmmVZiDPDK5GlDZQQaQN+Ds2m51xKAdeFQylm0mmYponBFSvQ3duLlStX1haQtnHNo00OXuUQBAHRjg5IioLC7CwkUUQ8HsdcJgPTMDAHeKVwIQePaq5olSAynwUeTZBkGWdOn8b4xAQSyaSvT1CZ82K0kYkj8LeLxSUKQaEgAYr0An6PhxDQVBVaf7/XpW5uDqauI5vNIpvLIR6L+STBX2UGqyLY/6tNNnzizWazviVupRxwXWLgOL4rYr1J8Ogrr2BsbAx333VXmVsjpRQFXS+y5Y6yVsth0YyzoyAIvv6A0oCRT4198ZSYbVlF6QdBEDyVf8hwvf+5AEEJ8w1c1/UjP7wlMwDkCgVQeKmLaCzW0HkUpQ4aIQYsQki9E4NhWZiamoKmaRhavRqDg4Po7+9vpxF+ANAmB20A8NIMIqtmUChFPB73ViWmiVwuhyhbwTes+Ob5cVrd6IcQAkVR0Nfbi5HVq/HKK694JIAQfyLTdR2zs7OQZBkRTfNaTytKfVtiVF8xthpc2e3X2QeaSTWCSCSCSCQyTxIMA9lcziMJiQSibFIv0zwE/q70TXkpaYEZJHHi1Qhc14Uoil5Koca9cPr0abxy9CjW33IL+gcGyvaRz+fn9QWa1lB/hIVCZFEC1GgO5DiOryMICgsFQiDJMlRFCS0u9P0QMC8ArjUhc30KJwNOSdoC8CIE1HEgyTI6k8n6Yr8gSS/9OwwYKfDTd8zKemZ2Fl29vejt78eKFSuQDCsmbuOaR5sctOFDlCTEuruhZzJANgsaiyGbzcLQdQiE+ANQIySBr6S5uK1WeF0QBKwcHsbp06cxPjaGTZs3e9UT+TwKrNmOZZqwWDhVZLXivOKhVlQh6Fy3WNqEIp8E9v/gtjCWukFwkpDP5zE7O+vpMzIZZOfmAEL8UHK1c6mkQ1BVFZS1Ai6wVFJYq15g3gVTDKQUSifXixcu4MCBA7jhhhuw7sYbi16zbBt51k0xrH9BI2WWtVD0W1Qgbb6w0LKKSB0B0xGw/H2oe59FkQiK1f7VPsvJAP9Tek0FQYAky5AlCZIkwTQMgFJIolibGHCxKDunhsGJfaC6xLYspNNp2LaNZcPD6GFphLap0Q8W2r9mG0UQBAHRVAqSqgLpNBzXRaFQ8PLCbKXJJ4iGIwkVcr2ln45EIhgeGsKZM2dwy4YNnqgqlUIylYJj2yjoOvKFAizD8Pz2LQu5XM5zdmPlYrVyv6XahPlTa40TY3DVXjoBBVMzjUQxotEootGoL/jiPgD5QgFEFJGq1IGxhgZEi0Q8J0smPCXRaHF1RA0SZzsOVHg5dr/lcOB7jY6OYv/+/RgeHsatt97qv+YyrwXTNH3zrVppouB+F0IMikyPAgQx2BOENz2yFigs9Akw5jU41c7d1y/YtpeuKEk98VQL/xOMUlBKkSsUYLnuvJthrXMJ/Ds0gqSAHxdAQdeRnpqCGo1i2fAwBpctQ39/f2P7buO6QJsctFERiqZB6u0FYYN3gQnkBEHwndi4e12lttBhUCmaICsKhoaGcPrMGZw+dQo33XST/5ooSYjH44jH474VLY8ocKFYvlDwV1h8YOf/r2u7i+oh+fBfivg1+7X2E5z4wvRWAIBYLIZINIp8Pg/j8mXYto3ZmRnkslkk2XUp7ZiHwIoviGgkAgqvdW4un0c8FvMnap7TrnS9/MiBKJaVL05OTuKZZ55B/8AAtm7Z4n/eNE0UCgX/e/LunRXJGzvfshB4SBRVklQRgvKJWdd1WJblkQJ2HJEJC+UQwkJe2VDxPCpsdwK6gdIKB8C7v+UAGah2v1osggYAEU0rukZ+Cm3+RGp+h0rn7ZaQAsDTXczNzSGTy6Gnrw89vb0YHh72nDfb+IFEmxy0URWCJCHZ0+O1Zx4bg2EYyLIKBn/Fx8uZmiUJpeFTQqBFIli+bBlOnjyJtWvXVsztcjFjNBr1DJZsG3qhAIvZQBcsCwVdhxQccNm/RVH0J7ey0yn5PxeuhR5k2aREG+ibULRCrlGSCHjXJx6L+Y2dHMeB67qYmZtDJptFLB5HPBYrvmbBlEqgsiEWiSDLSvKyrDJC4pNStegBnXdGDBKDmZkZ7H36aXR3d+P2228HEQQ4juNPwLxpUrVoQRkpaAAVPxE4N9d1YQfC9jxlwH0bBEHwjYHq6gjIvBdBrTPlFuU2/2NZ5RoRRrR5dCCsiE83DBiW5ZcqeqdF6kYran8t4pclBr+X4zh+G3JJlrFsaAj9zO2wnUb4wUb7122jJgghiHV2AoKAyStX/NLDeCJR3JFvoSQhcDxFlrFy1SpcvHgR586dw+rVq2t+RpQkRCQJEU2DY9swuDaBRRR0XfeMYiQJCut3zyciURQhMsIgVSAMzeZqmxE/8vx0pWqEUvCwfCwahW4YyGQycFwXc7OzmJudhRaJIB6NekZCwVbdJavKeCyGbC4H27b90klREADuelfhu/OJjJ9fNpPBk08+iXgigTt37IAgCF5UR9d9gabGenCU7S+Q/mj0WvHQdyl4Twku5qvkMSGJIiAIoTQEpSWHpUd0XdcTn9o2bMeB47oVNQ0EmE8VhCEiFcCjBo5tQ2V6jeBv2yhqkYJsNotMNgvbcaAoCkbWrMHyFSvaFsivErTJQRuhEGOGPFfOn4dl28hmMkgkk+Vh1RaQBFmWEY1E0D8wgOMnTmBkZMQXeNWDKEmIShIQifhEwTZNfwVn2jaoYfileEIFUuCTBUHwyUM1lK4gg4LHZlDa/Cl4nOBqWGArcwBIJpOIJxLIZjLI5XKeyZSuQy8UvLbcsRjiJbqC4EozFo0im8vBcV1kczm/dLWaU16QGOTzeTz51FPQNA133XUXiCAgm816pkgARFZdUstts9FrU9rgqlTM55au0OH9ppIkeS2sGSGg8MLlZeQhEB0oLTl0ApO/Y9uweTfHKufLo1Q8KrFQXYtpGNCZg6miKAsi4bVIQTaX8yIrto1UKoXbtm5Fb2/vgs69jesLbXLQRmho8TiWjYzg8pkznnI+m63uthcgCQQoWr3WA28jvWpkBPv27sWlS5ewYsWKImFUGASJgs16O1im6QvpXNf1+j8EytVEQiCylXGQMAjMdjgYaeArSr6K5ftYjJJJTjqKmi9h3vZXIATJZBLJZNIvfcwXCnAdB9lMBplMBqqiIMaiDeC/ByGAICAeiyHDTJL837U0ncL+zUmGYRh46qmnAAB33XUXXNfFXCbj3w+RSARqoOtkM5UHRYSAlQE6ASJgcwvpks+IjATwP9XuPZ9IlJBPl6UFHFaOyv9U+20FQfC6lLJ7Q2DEciGg8Oy6OSzWNdU0Ta+RV4O9CoLiUABVSQGlFNR1IQoCVq1Zg1s3b277FrwK0SYHbTQENRLBICMINqsU4KKkarlfCoA6TlFOud6KR4tE0JFMoqu7G8eOHcOKFSv814KfDDvR8EkCkUhRDtphK0DvVKkfIrZM0594RTbwOyUrP6EkLRHUMTRKZMKg6NiC4DW6qVAxoKgqulQVHZR6QtJsFrphwGR/ZmZnEY1EEI3FPH8Bb4eet0U2C5dS5Jh+gU8JwdWxIIqwLAtPPfUUTNPEPffc44n62CpUYpGfsgklJDEIEgIuHgzqBSqRgWBUQKxBBvh58FJPTrocfi/wyECJA2IQAvutJUYGSonkQsEjNqXfgQtwG+3XABS7dAbvlSJSwHwfZFFEvLMTI2vXYmjlylZ9rTauM7TJQRsNQ4tEsGxkBJcYQcjncohEo/6qsNrA7HcVxHwZZLX3ikwkNjIygv3792N8fBz9fX1l7/NX1GD15LRK+94ABEGAwtztODhJsAOrRI4gYZg/sEcMHNcFKWmFS9lnREHw3scmclEUW0YaBO7sxxogFe2XTQICIYjFYogxS+xsNot8LgfbcZDL5ZDN5yEzZ8IYq1bgGgTHdZEPED8eehdYH4enn34auVwO22+/fb7kTRD8/XAiWLfVNbuW3ml738cX8THNQOkeBFJc5icErisHj7L4aR72G7oBAug6DvK6XtXBkqcjBGb6JImir1dpJcr2VuGa2Y7jV+ZEWTOz2jstrtYoPUZppACuC1mSkEilEIlEMLRqFfoHB5v+Tm1c/2iTgzaaAicIV86ehWmaQEmb51oTNAHmLVgxn3IoHXQjkQi6u7qQSqVw9NixiuSA7w9AUdOghlMQbDXI7Xi4Sx1fUdq2DTeQN3dZrpnXxpPAfig84Vi1cyWiCJEQELbi5GFwwrZVuhZl++Gvl6ww/cm2RLkuShI6OjrQ0dGBQqGAbC6HQj7vlagFRYyxmFfFwEhENptFLBbzyZJACPbt24d0Oo0tW7Z4pXTwyhOjkUhRGqIiMaBeEyruHsmvM1f3V/q9RCYclAIRGn93CER8ghM/+1PLvtoNvEYI8Sd/MfCn1ShNFYS9Pw3DQMEwIEkStCo205yM1SqN5U2ustlsMSno7EQsGoUgili5ejU6u7sb/GZt/KChTQ7aaBqRSAT9w8MYu3ABpmHAcRzEYrGiKoZ6q3hgniiUph0I8Rz0RkZGcODAAUzPzKCro6PueZVNloFzCYugCQ0Hn9CcQEpCDEyA/iRVEnkoimYwsZuD2uRJEEVPFMiiDgI8EiUKAkggfVEqvgt8gaLvHyQbvASUVyiUihiJKELVNLi2Dcgy8roOh020x0+cQDqdxsaNG5FKpTzBYyQy75EQnOxZJIAL+PhkXfO6s+8uBXL3BKxlNA/5m6ZHJGpM/JXALZ/5taXEs+2uVtbaSlRLFYSJQbiUetEcy0IkGoUW1HF4O/fusQppA44yUsDSB5wUEHily6vXrUOibYHcBgBCF9twvo0feOi6jvFLl6BnswA8sx4esvdD/gg3EPLPBCsdZmdn8eSTTyKWSODuO+9c0LlWOo+FPADV9AsGEz6WHoeHt/1tAc0Afz+fEDkxqHTdHNdFIZ+HKIqIJxJlJICTq6C5E4LbSsSUlmUhl80ix0SMhDUoch0HmqYhk8ngpYMHQSnF+vXr0dvTA1VRIEiS950cx5vAgwQgqPQPiDUFdnxBEPx/+1GUwHUpIj51himeuuH7FIL/58cpgVVK4hYI36uhZXv0kMvnMTU9Ddd10d3d7VcphBm6q5KCVMojBey6SLKMtTfdBK1St842XpVoRw7aWDA0TcPyVaswfvkycjMz3kpUURBlK5JGQTA/aQJAJBrFqpUrcejIEaRnZtAZInpQa98Vj1fy77BpiWr6BYX5LPDVLeVhb1K7m2FRftxx4PL0RGCi5edomqbnWCnL/rXiE2pZxCQwYfv1+qXkhVKIguBFEVjKwbZtjE1MYGJiAhRAV3c3REFArlBAQdfLrqFfwRGIfIiEeKkULtbkE3WwVJJFBiohGC0JO/HXA49wNPO5IsLFUWlbC+C4Lmbn5mDbNqKxmPdbeydS9TOGafrNyizT9K9zJVIAShFLJrFqzZp2i+U2itAmB220BKIoYmDFCswlEpi8csVrcWvbvltf2aAZUjwIeIY1K4aGcOLkSbz00ku4++67fQvnVqFaKqKUOADFE3QliKwZjliFBATz5KV/81A8/7vS6pAC/uqef85fSZas1otq9QPEgIvV+P+5LwEI8dsQc0fM2XQaZqEAkRAokoQ8E8YpqgpVUaCqKmRWteGnQgKTpR+p4KvqkteCkQz+2kIm/lCosV/u/1D269UiADXy/M2CAkjPzMAyTRBBQDKZrJgycFk5bqFQgK7rXvSKpzEIgSzLiMfjZaRAkCQsHxpCT7s3QhsV0E4rtNFyGIaBidFRFGZnQSlFtLTePQC/dr8OUaAAzp49i+eeew5r1q7F+vXri1IPizSF1EU14uBSCtOy6obDw+w/KNZzHMf3kJibnYXjul6FgCjOT3gV9AZl4e7Ae4L+CRSAzVaepmXh2NGjmJmbw+DAAGRZhhaJAPAEiMEIiCTLXodM1n6ZlxMWpRT4d1qEibRROI4D03EqE4CrPSQyopfJZJBOp2E5Dnq6uxFh1x6Yb2TFIwS8LJNDVVWvq2c06t0bQVCKeCqFlSMjUBr0Smjj1YM2OWhjUeC6LqanpjA7OQnHMDzXw1is5kowKNqrNEBTAPufew5nzp/HHdu3Y2BgwC8dFAKrz6s98XCYtu3pC9hKFCiejMsePUJAKPUslIOrfPaabyLEPpfJZODYNmLxuNc5EPPlnMFj1gIBAFaeyLsT8p4Ihw4ehGFZ2Lh+PTo6OyHJMgxW+mfZNkRBgGkYsErKDSmlXvSBEQWtRk0+JQQC+85VUeG7lBIP/tuX3TWcdAbuKcqI27Uw9AWjUEHSpBsGJiYmYDsO4okEUskkHFbOWNB1mIbhv5+yMlJe4hgNRghKIEoSlg0NoadK5U8bbXC0yUEbi4pcLoepsTEYuRwIpX4dfD0Eb8rgMGfZNh555BGYpom77roLiUSi4ueL+gk0ffYLg8PEiov1iOXzeZiGgUg0WjUyUxE84sJSF4ZpwjAMPz2RmZvDwUOHIEsS7rzzTt/jIJ5IgLouMpmMr22Ix2IQBAGFQgGGYcAwDE9rAW9C5ha9iqL4kQVVVa+q457DS1Cv8tBXSgg4bNvG+MQETMuCIAiIRKNeJMc0vUgHIYDrQhBFLzrASEHN8ldKkejsxPDISFtb0EYotMlBG4sOy7IwNTmJ3MwMHNP0Qs+a1tCkHYwqTE9P47HHHkNPby82bdpUXtr1/7d3J79xXVcawL83v5pYHCXbomhRaluy47REylPiNBAngJ2Vvco+yCKbbJL8EZ1dpwNk0QECJFnHCZBk4XbbCOy0ZcsTKSmmY9kSZYtqWTNZrPGNtxfv3sf3SqzioKIG+/sBBXEQySJL4vvq3nPPyX6cEGtdC3egkryfWJ7pH2RFfJY6emg7Tq7HRLf1piyKOE6m+3leGsRMXceN5WXMz89jdHQU33j6aQgk47p1y0LRddNn641mE2EQAJqGYqEAWz0GQiCUKw+dTgeePOKavGttNcRxnGTp23Fu2qLYSQLITWa8bbIrRX1+5cZC4NLly6jVavCDAKViMemdIUOEaZooFAr5n/kGDMPAngcfxBhnI9AWMBzQbRHHMWq1GlZv3IDfbMI0DBSKxZ5Fexv55NNPcfLkSTx66FCyd7qVZ0Oalm5v7GRYUDUCMdCzEv9W+L6PVrMJUxacKdkw0N1aWcRxcuH2vLXGTaYJ13GweO4cPlpYwN6pKRydnYVuGMnJE9+H6zgwMz9jAaDVbKZ1FW53177Mr5UwitBpt5Mw0ukkF+Zswx7Vb0D2lbDUXATLunm//BZlGzDtNJF9DLrep8Y4h2GIQJ4K8YMA9Xo9mYkRxxiS20W2bSeBQNWWbPoOCFRHRzG5bx9XC2jLGA7otmq1Wrhx/Tq8RgNCNnXJHgPcLAHgrbfewuUrV3D06FEMDw8nBVtyf3rTRW+qKn0Hj6IJuYIwsP9q8nuMogj1eh26rqNarfb9kFiGAk9OpIQQaY9+0zAwPz+Pz8+fxyOPPIJDhw6lgWJlZSVZkq5U8nUFSH5Wbbl6AcguicXi2ipFpjI+KwiCdN+843lJcMo8s86eqNC0ZBCWmptgGkYSGuTLW+limHssttA8aSMCWKt5yIQB1YpbjQ7P3rL/FjQAYRzD73TQarcRhSFGRkcxOjaGgutuq1OjaZq4f2oK41wtoG1iOKDbLgxDLC8vo1mvw280oGsaXMeBrYYAbZIfBHj11VdhWRYOHz6cVmjnJvllj8ipwje5t97LekfutksdTwSSC8CW9rm77nt36BFxjJVaDZqmoVqt9uyMp/ar1fst04TjurAsC77n4fg77+DGjRuYnZ3F1NRU+rGhHM2tyfARZmdIYO0i7vs+mq0WgOTYablcXr8Yssf37smixjAIcjMVup/ddxc9ArKbomyvnB3LrEYkZztJquZTQRTlWm1vlQoDkJ8zvfjLIKCmRnZ3b+zunWEYRnIkVzah8uUWT6lUwsjo6Lb/3Q2PjWHP1BRXC+iWMBzQHSGEQKPRQL1eh99qwW+1oCOZKGjb9qa3G65du4bX33gD+/btw9TUFAw5PGij2QS9Tkasd5xSvU3T9eSisoXQkL0opUcRM9QWQHrR3+JRupWVFQghklbG8mcm4jhdpvY9L+2HYNs2XNdNC0IbjQbeOnYMfhDg6aefxvj4ePaOJVsB7XayIiCHN/UShCGajQYEkqZFpVIJeq9nvJv8/ronMoaZ4VhhGOZmMaifXVrXIB8nU86syI7T7vd9dH99yM+rjo/mtmiAdHpjr38LugwultwmsdTWiWVBk6Gg0WymJ0Uc10V1aGjLqwWapqE6MoL79uxBgV0OaQAYDuiOEkKg1WqhXq+j02ggaLXWLmSbHEv70T//iY8WFjB79CjKlUpycSqXB9JAp9d/jmwb4Gyh403BQi5jZ0XylMAgpvutrq4iiiKUS6V04JMvp0eqEwm2PCWQ/Vlev34db7/9NmzbxjPPPINSqXTT51ZHJYvFImzH2fCiGscxGo3G2umGcnnjkym38OtHzbhQ+/fp65nRzunPX/6sY7F+J8buINArJKLr7SqUqO0OFQJUAOgXcj3PQ6vVQhhF8Dod2I6z/uyEPtJQ8MADKKzzGBJtF8MB3RWEEPA8D6urq2jVavDb7SQkmGaymtCnLiEWAn//+9/RaDTw5JNPphds1Z3xdsvNN8D62wndgWE7RBxjZWUF7U4nvSipi6Ap2yo7jnPTM/ilpSV88MEHGB0ZwdPf+MZNy89q73ylVgOEwNDQEHTD2NQzbqFOMsi/u+mq+h34NeTLoCQy4SANDV19D3rFNG2DFSxVC7FVqpthLASCIIAhB01VMoWl/XClgHYawwHddXzfR71eR315GX6zmS5Vu66bDJ1Z52OarRZee+01TExM4NChQ2nRWUn2o7+T1Fl/RS1zCwDITKTcDBHH6UUvDMO15Wi59K+q29cLRUEQYGFhAYtnz2LqwQcxOzvb8wihqjfQdR1Dsthx08vxyJ9ksCwracyz2ZMpt1IPIJf+IyEgMisEAmvHGO9kkywhBJqtFgLfT7cp1JCpoUplw7kbuqahOjyM3Xv2oMiVAtpBDAd011LV+LXr1+E1m4BcyrflGfnubYMLFy7g+DvvYHp6GgcOHEAg96VVFf0glvG3QwDrjhZW4SDuCg65joryVILv+2nBHjLbGHEcIwpDuIUChvqM2r148SJOzM8jCEM89thj2L9/f9+fR7vdTpa6ZegANh8O0s8hex0oBdeFs512vZln+KlM0Wm2wyA0LZlJ0ePnfdv7G2QEQZAcU5S1EhrWalJK5XLPeSECgKFpKFeruH9ykqGAbguGA7rrqb3s5atX4TUa6cXTtu20Kl3t7S6eO4f5+XlMTEzg8OHDyf6zvFAUt3lsciDfgxDo9V9NDU/KUkfgfFn9nl7GNS1dHTAtC3EYotlqwZCDebKtmTVNQ7vdxokTJ3Dx4kXcd999mJmZ6dkwKdeaWdYyFEuldNuhXzjoVZQXRRFa7XbSMAlrTXxuWtnILvMjfxoiWwPQ75eVqifoFXkGepx0C4QQybAqeRohDXbycS/0mj0iQ2ClWsV9e/agtMktB6JBYDige4YqXly+ehWtWi33dkPXYcj93xvLy3j33XdRLBbx1FNPQQiRW0UoFIs7N+2vz32Pe4UD2WY5iqLckb5soaNlmrBkIMgWuUVRhNXV1ZuOMwohcO7cOXy4sABD03B4ZgZ79uzJDWO6qUGSEICuIw5D1FdXAbmErQNJI6ds7UQmSPS8aIu1joie56HdaqWvq1WELT8Kme9P3X/1cr/eBXdq1cAPArRarWQ1A8njqB7rOI5Rlo2OUvIx1zQN5UoF901OMhTQHcFwQPekTqeD2vIy2qur6LRa6eRBdYyt2Wzi1KlTCMMQTzzxBEqlUjIgSP6SvhOrCL4MKLG8MIRxnL4OefIhfVnu1Vu2Dcs0++5F11ZWkj1reQRudXUVc3NzuHHjBh7ctw9ff+yxvmfeu0OCasts2XZ6ikFgE10eNziGGcUx2q1WUouA5Jx/sVDYVkGfuk8CgFBHGvt87Xid1ZmdFAuBdma1wDAM2LaNTruNSNaglMvldHqlYts2hsfGMDoxke84SXSbMRzQPS8MAtRlU6Wg00m2EoRA4Ps49Y9/oL66ikcffRTj4+PpMT8AcF13YEceFbVCEGeeHUZRlM5YyFbOZz4Iuq5Dlx3/1LG4zWrU6wjCEI7j4LPPPsPp06dRKpUwOzOzqQ553RMi1ZZCoVSCI0PFpsIBem8vZGWfTQOApWpCNvzsa18D6FHHkQ06cuVCCHFbVw26vz9HDkVqt9tJUaGupwOrAACahqFqFaMTExjq0cyK6HZjOKAvFa/dRqfRSHomhCF838fJkyfxxRdfYP/+/dg7NYUwCNDxvPSXt+u6aXfGdX8xZ96WHlPMvVtL6wbUUbn1ZDvjGTIMqA5/6FelvsEz3na7jUuXLuH06dNot9s4ePAgDh46tK25FVEUrW0pZLcpMNj5EOqZtSdnPGi6jkKh0Hc1p18o6Pu1gKRuI/vYqq0IDK5ldhiGaMtwKoSAaZooFosIgiBdMbBNE0XZpMstFJJVgrExWOxmSHcZhgP6UorjOAkJzSYCz8NHCwv4+OOPMbl3Lw498giiMES90UAkf5Gr4T8DaTmraWsBQNZC6PL1GOgZHvrKHH3MhhVfro6c/+wzDA8P4/Ennuh7aiH/KcVNYWi9LQVgi+FgC10eQ1lQqZ7Z25a1bk1Iv4LOjUSZToo3yZwM2a4oDNMW1ULToAmRjqZuq8mUcQzXcVAqlZJAMD7OWgK6qzEc0Jde4PvoNBo4vbCA995/H2NjY3jqqadgmWY6WjhtjgMkcx5sOz+jAev39s9eBFUvf13Xe15w+hUmbppcJl9aWsKHH36IKIpw4MABPHD//RgeHt50P4Hu7QQg6bgYd51SAAa/cpAlhEgnRar74zhOsqVxixfu9TpUDkokp036QZDWPDiOA9dxoGlaOtY6FgLjExO4f3IS1ZGRO9KYi2irGA7oKyOOYyx++in+5+WXUS4UcPjIEeySe/K+76chIY5j6LqeXKAc55YvUOvdj+3+p2s2Gjh37hw++/xzeJ0OHtizB0cOH4bneYjjGJVyeUv1Clm9thSA7YWD9VYm+gmjCK1WC77npV/Tsiw48pTGdvbid6IQMRsKgGTbx3HdJBToOnzfh9fpQNN1lKtV7JueRmWDqZlEdxuGA/rKuX79Ov74xz+idu0a7hsfx8MPP4zJyUno8hd7u91OLuBxDE3X4bjuQJ7FKltdPRBRhC8uXcK5xUVcuXIFpmXhwakp7JueTrcQGnL7RPXm7/vZeyyl99pSAHZm5SC7IpP9NRQEQTKpUV58IUTyONg2bMfpe3Kj+/OrI6GDoEKB5/tpi2nbcVCQBYedTgee78N1XVRHRzE0MoLR0dE73qGTaDsYDugrSfUBePvYMSx9/jlGhoZw8KGHMD09DcuyEARBEhLkyQNd12HbNhz57PBWbWapu91qJasEn32GTqeD0dFRTE9PY8/kJMyupelOp4N2uw3LspKRyV0BQABrw5561ARcvHgR55eWcOHCBZxbXMTZxUU0Gg0AwDPf/CZ+9KMfbXif/+vXv8abb76Jo0eP4qc/+cna11f3J3OCYKOVhTiK4Pk+fNlqGPJmWhZcx9lwhUQNuLoVQgiEsl21J8deizhOQ4EA4HU6CMIQxXIZw6OjKFUqKJVKd7QrJ9Gt2t4BY6J7nKZp2L9/P/bv348rV67g+PHjeGd+HqcWFvAv+/bhoYcfRmVoKK00j+MYnueh0+nANE04jpM8I9zmL389M0Y4J45x6fJlnFtcxKXLl2EYBqampjA9PY1qn6Vp1SsgPbLXdb/UiYCXXnoJf/rTn/Cfv/wlJiYm0hARhSH+/ec/B4RArVbb8raHutDPzs7if994A6dOnYIfBDBNc936jOQu9v/Z6YaBQqEA13URBgE830cQBAjDEPUgSHsH2LZ902qCCkPbFUdRunoRqeZPMpgUCwVEckZCHMdJB8PRURTLZZTL5SRAMhTQPY7hgL7ydu3ahRdeeAHf+c538N577+GD997Dx2fO4MG9e/HQQw9hdHQUQRCktziO0Ww2kxMOsnhxq0VmmqYlnQflBbPTauHz8+exuLiIdruN4WoVR44cwd69ezfVJMgwjGSgkzxO2e/+aLqeXuwAALIgEEIkTXuEwNjYGO5/4AH849Sp5K+oD850PUzfhLVJjv/69a/DtG34noeFDz/EkSNHct0Ut0PTtKQZlG2nF21fPg5qxUS10tZlUeh26gxEHCdbGnKOhVrp0DQNthz6FYYhGvKxr46MYGh0FKVSCaWuAk6iex3DAZFULpfx7LPP4lvf+hZOnjyJ48ePY/G11/DArl3YtXs3SsUiXNeFaVmwDAOxpsH3PHidDgzTTLYd+tUmyM6N9XodjUYDq6urqNVqWG004HseDMPA3slJTO/fj5GRkS3dd03TYJpmEmB8H0ahsM6XX/8CHcUxfN/Hs88+mw6tqlaruHr1Kn76s58ln7/Px2e/W8dx8NjXvoYTJ07gg7k5HDlyJHn/LQYERTeMpK5CNrny5HRK9X0DyYhsXdNyjaXUsdLu8dVAcpzSl4FDxDGiOEYcxzB1HbppwpTjqn3Pg+U4GNu9G5VqNQ0F2+3wSHQ3479qoi6WZeHxxx/H0aNH8cknn+Dd48fxj9On4XU6yUVH02BoWrKvXCjAtW04cniO47rJ6F3ZEa/eaKDRaKC+uop6o5E+ozUMA5VKBZVyGbsmJlCpVrFrYuKWmuGoWgnf9+F2hYN+F2Y1OfF7zz8/kLP3M7OzOHHiBObn5iB++MNkSwMYWEBIPpVctXGcZGql56UzCyAHLEXydR9IVzx0TUsDQhxF6HheMlBK/n1N0+C4bjL+Wq5GmPJmybkcqp5gs4WRRPcihgOiHjRNS7oNHjwIIKmir9VqqNVqWFlZwcrKSvLy8jIuLC2h3W5DR3IhNGQjJNdxUKlUMDIyggf37UsCQaWCQqGwNp0Pt7Y/rti2jXa7jSiOEYZh+oy23wU5juP0Gfe2ximvY3Z2Fr/97W+xsrKCxbNnceDAAQCDDwiKIVcTAKRHUdX2ivozDEP4QQBP1ixAblWYtg23XEaxWES5UoErZz0YasVBtbSWbzNNk/UE9JXAcEC0SZZlYXx8HOPj4+u+P4oi3LhxA1euXEEURSiXyxBRBL/TQdBuQwNgyvoEEceArkMDoAOIttBVsBdNjnP2fR+e5+WLAXvodDoQcsjToJbHR4aHcWD/fpw9exZzc3NpOAB2LiAg089A13Voug5N09LaBAGgWCrBLRZhuW5Sn6DrKMqVgGwg4IoAEcMB0cAYhoGJiYnkFACSvWzP89Kb3+nAl70EGvU6dFltb1kWTMNAJERupPJ2OLYN3/eTEdXq6GIPsaw1AJJagUGamZ3F2bNn8cHcHL7//e/n3jfQgCBPW8RAumLi+T6iMIRuGHALBZSHh+HKehHHcZJZGpkOmER0M4YDoh1imiZM00SpVIIQIn1Gr25Buw2v00Gz2YRQkxmzRXSGsTYMap2VhfUuboZpQtN1xFGEIAj6VtB78mSCYRgDb9Rz9OhRvPSHP+DC0hKuXL2adqJM77u8/wLoHWLW6dWgCiNjGQTiKEIQhsnLQsBxXZSrVRRLpbU6EBkI2LaYaPMYDohuA03T1toxI9mCyK0qeB5CeYQukP0URByv7XubJgw5xCk38yE7JVL2TrAsC54stjMta92R1GpYEAAUBlRrkLV3chK7du/GlcuXMTc3h+89/3z6vu5JiJquQ8tMSVTFg5oMRGrcdRRFiMIwHYFtySLBUqkEx3Vhy5UBdePqANH2MRwQ3QGGYaBYLKJYLCZd+NRxPHnzPA+N5WW0G42kAt/300ZDuq6nYUHT9WQ0s6alI5pty0q69vk+ms0mioVCepGM4xgagGarBUteRA3LWlviz6xQCNkdUn2c2gpQl1s1gfCmzQEZWo4cPoyXX3kF77//Pp5/7rn84KqbPkSkRwizhYSR3B5JVxA0DaZlYWxiApWhoSQgZG6sFyAaDIYDojtMFRJ2L+2Hu3ejUa+jUaslnQGDAHEUQZ1rEHGMMAjQiePkIp4JDwDWmgVFUdLKV4aIsjyuaJtmsmqQvcBnti6yKxOQDZaA/g2RMh+Mo48/jv9+5RWcPn0a9Xodruumg5DUUUP1J4RItlNMM2lkZJow5JaIruvpFo0j+ww4W5ixQERbx3BAdJcyTRPDIyMYzjREimQtgWojnC63Z5fdwxBxGEK3rKTZUrOJZquFKAwBAJVKBZ7nIYxjNBoNaJqWbktA09LXfc+D6zhp6FA1CtlQoGYkqLcDa4OUdu3aheHhYQDA6U8+wcFHHoFpGNAtKzkWaFkw5EVf7zo+qMKACk3cHiC6vRgOiO4h6uLpdtUJqCK97rCwsrKChmy+FMcxmmGIM0tLGNm9G8MTExBqfHQcJysScYxYDizSLAtN2fgpjCJAFkxqKkCoVQpdh67eJp/Na7qO+bk5fHLuHISm4cl/+zdUKpVcANBlDQWPEBLdfRgOiL4ENNl0qbsif2hoKC08VM++P1xYwPiuXXhgcjL3zL/7FmkaTi8uQtM0fG1mBpPT07lg0H1TX0Pd/uMXv8D/ffEFvvvd7+Z6HRDR3Y/hgOhLTNM0FLpaKQdBAMuyNuxtUCqVUKvVACQ9G7Y67+Gvf/0rwjDECy+8sLU7TUR3HNfxiGjg5ufncf78eQBgOCC6BzEcENHA/fnPfwYAzMzMYHJy8g7fGyLaKm4rEBEA4M0338SZM2fS169du5a+fObMGfzud7/L/f0f/OAHPT/XX/7yFwDAiy++OND7SES3B8MBEQEAfvOb3+D3v//9uu87duwYjh07lntbr3CwtLSE+fl5ANxSILpXMRwQfYV8+9vfBoC0/8BOUKsGe/fuxczMzI59HSLaOZoY+OxUIvoqe+655/Dqq6/ixz/+MX71q1/d6btDRNvAgkQiGpjV1VW8/vrrALilQHQvYzggooF5+eWXEQQBhoaG0i0MIrr3sOaAiAbmb3/7G6rVKl588UXYcnASEd17WHNAREREOdxWICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiyvl/jrR3kg7NE1MAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -279,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -328,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -367,7 +367,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -382,11 +382,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" - }, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } } }, "nbformat": 4, diff --git a/pr-2491/searchindex.js b/pr-2491/searchindex.js index 825ef11afc..0cd575afe7 100644 --- a/pr-2491/searchindex.js +++ b/pr-2491/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api/api", "api/default_ops", "api/languages/cpp_api", "api/languages/python_api", "applications/python/afqmc", "applications/python/bernstein_vazirani", "applications/python/cost_minimization", "applications/python/deutschs_algorithm", "applications/python/digitized_counterdiabatic_qaoa", "applications/python/divisive_clustering_coresets", "applications/python/hadamard_test", "applications/python/hybrid_qnns", "applications/python/krylov", "applications/python/logical_aim_sqale", "applications/python/qaoa", "applications/python/quantum_fourier_transform", "applications/python/quantum_teleportation", "applications/python/quantum_volume", "applications/python/readout_error_mitigation", "applications/python/shors", "applications/python/trotter", "applications/python/unitary_compilation_diffusion_models", "applications/python/vqe", "applications/python/vqe_advanced", "examples/python/executing_kernels", "examples/python/measuring_kernels", "examples/python/noisy_simulations", "examples/python/operators", "examples/python/optimizers_gradients", "examples/python/performance_optimizations", "examples/python/visualization", "index", "releases", "specification/cudaq", "specification/cudaq/algorithmic_primitives", "specification/cudaq/control_flow", "specification/cudaq/dynamic_kernels", "specification/cudaq/examples", "specification/cudaq/kernels", "specification/cudaq/machine_model", "specification/cudaq/namespace", "specification/cudaq/operations", "specification/cudaq/operators", "specification/cudaq/patterns", "specification/cudaq/platform", "specification/cudaq/synthesis", "specification/cudaq/types", "specification/index", "specification/quake-dialect", "using/applications", "using/backends/backends", "using/backends/dynamics", "using/backends/hardware", "using/backends/nvqc", "using/backends/platform", "using/backends/simulators", "using/basics/basics", "using/basics/build_kernel", "using/basics/kernel_intro", "using/basics/run_kernel", "using/basics/troubleshooting", "using/examples/building_kernels", "using/examples/examples", "using/examples/expectation_values", "using/examples/hardware_providers", "using/examples/introduction", "using/examples/multi_control", "using/examples/multi_gpu_workflows", "using/examples/quantum_operations", "using/extending/cudaq_ir", "using/extending/extending", "using/extending/mlir_pass", "using/extending/nvqir_simulator", "using/install/data_center_install", "using/install/install", "using/install/local_installation", "using/integration/cmake_app", "using/integration/cuda_gpu", "using/integration/integration", "using/integration/libraries", "using/quick_start", "versions"], "filenames": ["api/api.rst", "api/default_ops.rst", "api/languages/cpp_api.rst", "api/languages/python_api.rst", "applications/python/afqmc.ipynb", "applications/python/bernstein_vazirani.ipynb", "applications/python/cost_minimization.ipynb", "applications/python/deutschs_algorithm.ipynb", "applications/python/digitized_counterdiabatic_qaoa.ipynb", "applications/python/divisive_clustering_coresets.ipynb", "applications/python/hadamard_test.ipynb", "applications/python/hybrid_qnns.ipynb", "applications/python/krylov.ipynb", "applications/python/logical_aim_sqale.ipynb", "applications/python/qaoa.ipynb", "applications/python/quantum_fourier_transform.ipynb", "applications/python/quantum_teleportation.ipynb", "applications/python/quantum_volume.ipynb", "applications/python/readout_error_mitigation.ipynb", "applications/python/shors.ipynb", "applications/python/trotter.ipynb", "applications/python/unitary_compilation_diffusion_models.ipynb", "applications/python/vqe.ipynb", "applications/python/vqe_advanced.ipynb", "examples/python/executing_kernels.ipynb", "examples/python/measuring_kernels.ipynb", "examples/python/noisy_simulations.ipynb", "examples/python/operators.ipynb", "examples/python/optimizers_gradients.ipynb", "examples/python/performance_optimizations.ipynb", "examples/python/visualization.ipynb", "index.rst", "releases.rst", "specification/cudaq.rst", "specification/cudaq/algorithmic_primitives.rst", "specification/cudaq/control_flow.rst", "specification/cudaq/dynamic_kernels.rst", "specification/cudaq/examples.rst", "specification/cudaq/kernels.rst", "specification/cudaq/machine_model.rst", "specification/cudaq/namespace.rst", "specification/cudaq/operations.rst", "specification/cudaq/operators.rst", "specification/cudaq/patterns.rst", "specification/cudaq/platform.rst", "specification/cudaq/synthesis.rst", "specification/cudaq/types.rst", "specification/index.rst", "specification/quake-dialect.md", "using/applications.rst", "using/backends/backends.rst", "using/backends/dynamics.rst", "using/backends/hardware.rst", "using/backends/nvqc.rst", "using/backends/platform.rst", "using/backends/simulators.rst", "using/basics/basics.rst", "using/basics/build_kernel.rst", "using/basics/kernel_intro.rst", "using/basics/run_kernel.rst", "using/basics/troubleshooting.rst", "using/examples/building_kernels.rst", "using/examples/examples.rst", "using/examples/expectation_values.rst", "using/examples/hardware_providers.rst", "using/examples/introduction.rst", "using/examples/multi_control.rst", "using/examples/multi_gpu_workflows.rst", "using/examples/quantum_operations.rst", "using/extending/cudaq_ir.rst", "using/extending/extending.rst", "using/extending/mlir_pass.rst", "using/extending/nvqir_simulator.rst", "using/install/data_center_install.rst", "using/install/install.rst", "using/install/local_installation.rst", "using/integration/cmake_app.rst", "using/integration/cuda_gpu.rst", "using/integration/integration.rst", "using/integration/libraries.rst", "using/quick_start.rst", "versions.rst"], "titles": ["Code documentation", "Quantum Operations", "CUDA-Q C++ API", "CUDA-Q Python API", "Quantum Enhanced Auxiliary Field Quantum Monte Carlo", "Bernstein-Vazirani Algorithm", "Cost Minimization", "Deutsch\u2019s Algorithm", "Molecular docking via DC-QAOA", "Divisive Clustering With Coresets Using CUDA-Q", "Using the Hadamard Test to Determine Quantum Krylov Subspace Decomposition Matrix Elements", "Hybrid Quantum Neural Networks", "Multi-reference Quantum Krylov Algorithm - \\(H_2\\) Molecule", "Anderson Impurity Model ground state solver on Infleqtion\u2019s Sqale", "Max-Cut with QAOA", "Quantum Fourier Transform", "Quantum Teleporation", "Quantum Volume", "Readout Error Mitigation", "Factoring Integers With Shor\u2019s Algorithm", "Computing Magnetization With The Suzuki-Trotter Approximation", "Compiling Unitaries Using Diffusion Models", "Variational Quantum Eigensolver", "VQE with gradients, active spaces, and gate fusion", "Executing Quantum Circuits", "Measurements", "Noisy Simulation", "Operators", "Optimizers and Gradients", "Optimizing Performance", "Visualization", "CUDA-Q", "CUDA-Q Releases", "Language Specification", "12. Quantum Algorithmic Primitives", "8. Control Flow", "9. Just-in-Time Kernel Creation", "13. Example Programs", "6. Quantum Kernels", "1. Machine Model", "2. Namespace and Standard", "5. Quantum Intrinsic Operations", "4. Quantum Operators", "10. Common Quantum Programming Patterns", "11. Quantum Platform", "7. Sub-circuit Synthesis", "3. Quantum Types", "Specifications", "Quake Dialect", "CUDA-Q Applications", "CUDA-Q Backends", "CUDA-Q Dynamics", "CUDA-Q Hardware Backends", "NVIDIA Quantum Cloud", "Multi-Processor Platforms", "CUDA-Q Simulation Backends", "CUDA-Q Basics", "Building your first CUDA-Q Program", "What is a CUDA-Q kernel?", "Running your first CUDA-Q Program", "Troubleshooting", "Building Kernels", "CUDA-Q by Example", "Computing Expectation Values", "Using Quantum Hardware Providers", "Introduction", "Multi-control Synthesis", "Multi-GPU Workflows", "Quantum Computing 101", "Working with the CUDA-Q IR", "Extending CUDA-Q", "Create your own CUDA-Q Compiler Pass", "Extending CUDA-Q with a new Simulator", "Installation from Source", "Installation Guide", "Local Installation", "CUDA-Q and CMake", "Using CUDA and CUDA-Q in a Project", "Integration with other Software Tools", "Integrating with Third-Party Libraries", "Quick Start", "CUDA-Q Versions"], "terms": {"c": [0, 1, 3, 4, 9, 12, 14, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 75, 76, 77, 80, 81], "python": [0, 1, 2, 9, 23, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72, 79, 80, 81], "quantum": [0, 3, 8, 14, 18, 20, 21, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 45, 47, 48, 50, 51, 52, 55, 57, 58, 59, 61, 62, 63, 65, 67, 69, 72, 73, 75, 76, 77, 79, 80, 81], "oper": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 43, 45, 46, 47, 48, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73, 75, 80, 81], "cuda": [1, 6, 7, 10, 11, 12, 14, 15, 17, 20, 24, 26, 29, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 60, 61, 63, 64, 65, 66, 67, 68, 78], "q": [1, 6, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20, 24, 25, 26, 27, 29, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 60, 61, 63, 64, 65, 66, 67, 68, 78], "provid": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 26, 27, 28, 31, 33, 34, 36, 39, 41, 42, 44, 45, 46, 48, 51, 52, 53, 54, 55, 58, 62, 63, 65, 66, 69, 71, 72, 73, 75, 76, 79], "default": [1, 2, 3, 20, 23, 24, 25, 30, 34, 38, 41, 46, 51, 52, 53, 54, 59, 64, 65, 69, 72, 73, 75, 77, 79, 80], "set": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 17, 18, 21, 23, 24, 29, 30, 31, 34, 36, 38, 41, 48, 51, 53, 54, 55, 57, 59, 64, 73, 75, 79, 80], "These": [1, 2, 8, 12, 13, 14, 17, 19, 21, 23, 26, 28, 33, 38, 41, 45, 46, 48, 50, 53, 54, 55, 69, 73, 75], "can": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81], "us": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 44, 45, 48, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 76, 79, 80, 81], "kernel": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 57, 59, 62, 63, 64, 65, 66, 67, 68, 69, 77, 79, 80, 81], "librari": [1, 2, 8, 11, 13, 19, 22, 30, 31, 32, 33, 37, 38, 40, 45, 46, 51, 55, 63, 69, 71, 72, 75, 77, 78, 81], "sinc": [1, 2, 4, 5, 7, 13, 14, 15, 16, 18, 19, 21, 24, 46, 50, 54, 55, 58, 63, 64, 67, 69, 75, 76, 79], "intrins": [1, 38, 45, 46, 48], "nativ": [1, 33, 39, 41, 42, 76], "support": [1, 2, 3, 4, 18, 24, 30, 31, 32, 33, 38, 39, 41, 43, 46, 51, 52, 58, 59, 64, 65, 68, 71, 79, 80, 81], "specif": [1, 2, 3, 9, 12, 21, 25, 31, 34, 38, 40, 41, 42, 43, 46, 48, 51, 52, 53, 54, 55, 58, 59, 61, 65, 68, 69, 72, 73, 75, 77, 79], "target": [1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 23, 24, 26, 29, 30, 32, 34, 41, 44, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 68, 69, 71, 72, 73, 75, 80, 81], "depend": [1, 3, 7, 9, 12, 14, 16, 19, 20, 21, 25, 29, 31, 34, 39, 48, 53, 54, 55, 79, 80], "backend": [1, 2, 5, 6, 8, 9, 10, 13, 17, 23, 28, 29, 31, 32, 34, 51, 54, 59, 64, 67, 69, 72, 73, 75, 79, 80, 81], "architectur": [1, 2, 11, 31, 33, 39, 48, 52, 54, 64, 67, 68, 72, 73, 75, 80], "nvq": [1, 32, 34, 37, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 72, 75, 76, 77, 79, 80, 81], "compil": [1, 2, 3, 9, 13, 31, 32, 33, 34, 37, 38, 39, 43, 45, 46, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 72, 73, 75, 76, 77, 80, 81], "automat": [1, 3, 13, 23, 39, 52, 54, 55, 64, 73, 75, 79], "decompos": [1, 4, 17, 21], "appropri": [1, 2, 7, 8, 9, 15, 16, 33, 41, 54, 61, 73, 75], "The": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 59, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 77, 79, 80, 81], "section": [1, 7, 8, 10, 13, 15, 19, 21, 23, 27, 29, 36, 54, 55, 61, 73, 75, 79, 80], "list": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 27, 28, 30, 32, 34, 38, 50, 51, 52, 53, 55, 61, 64, 67, 68, 73, 75, 79, 80, 81], "implement": [1, 2, 3, 4, 7, 10, 12, 14, 15, 16, 17, 19, 20, 21, 26, 33, 34, 39, 40, 41, 43, 45, 46, 48, 52, 55, 64, 65, 69, 71, 72, 73, 75, 79], "transform": [1, 4, 7, 11, 12, 21, 23, 31, 33, 37, 69, 71], "state": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 30, 31, 32, 34, 38, 39, 41, 46, 48, 51, 52, 53, 57, 59, 61, 63, 64, 65, 67, 72, 73, 79, 80, 81], "ar": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 77, 79, 80, 81], "templat": [1, 2, 22, 34, 36, 37, 38, 41, 45, 46, 65, 69, 71, 72, 77, 79], "argument": [1, 2, 3, 7, 9, 14, 16, 18, 24, 25, 30, 34, 36, 38, 45, 46, 51, 52, 57, 59, 63, 66, 67, 69, 72, 75, 79], "allow": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 21, 23, 24, 28, 32, 34, 36, 38, 39, 51, 55, 57, 58, 59, 66, 67, 68, 69, 71, 75, 76, 81], "invok": [1, 2, 3, 34, 36, 38, 43, 52, 55, 65, 69, 79], "version": [1, 3, 4, 5, 11, 13, 14, 15, 19, 21, 24, 31, 32, 34, 43, 50, 51, 52, 53, 54, 55, 59, 69, 72, 73, 75, 76, 79, 80], "see": [1, 2, 3, 5, 6, 7, 8, 9, 15, 16, 17, 19, 21, 23, 29, 30, 32, 34, 36, 38, 46, 48, 50, 51, 52, 53, 54, 55, 57, 59, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81], "addition": [1, 19, 32, 52, 75, 81], "overload": [1, 2, 3, 34, 41, 42, 46, 48], "broadcast": [1, 2, 3, 12, 14, 41], "singl": [1, 2, 3, 4, 5, 9, 12, 13, 15, 16, 17, 20, 22, 23, 29, 30, 34, 37, 38, 39, 41, 46, 51, 52, 53, 54, 59, 61, 63, 64, 65, 67, 68, 69, 79], "across": [1, 2, 3, 7, 10, 21, 23, 32, 41, 53, 54, 55, 64, 73, 75, 81], "vector": [1, 2, 3, 4, 6, 9, 10, 11, 12, 16, 17, 21, 30, 34, 36, 37, 38, 41, 44, 46, 48, 52, 53, 54, 61, 64, 65, 66, 67, 72, 73], "For": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 21, 27, 30, 32, 34, 36, 41, 48, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 66, 67, 68, 72, 73, 75, 77, 79, 80, 81], "exampl": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 41, 47, 48, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 81], "cudaq": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 35, 36, 37, 38, 40, 43, 44, 45, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80], "qvector": [1, 2, 3, 5, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 34, 37, 38, 41, 45, 53, 54, 57, 59, 61, 63, 64, 66, 67, 68, 69, 79, 80], "flip": [1, 2, 3, 6, 13, 17, 18, 26, 68], "each": [1, 2, 3, 5, 7, 8, 9, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 28, 30, 32, 34, 36, 39, 44, 48, 51, 52, 53, 54, 55, 59, 64, 67, 68, 69, 73, 75, 79, 80, 81], "thi": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81], "pauli": [1, 2, 3, 8, 9, 10, 12, 14, 16, 20, 24, 34, 42, 51, 59, 68], "matrix": [1, 2, 3, 4, 13, 14, 16, 17, 20, 21, 24, 26, 30, 31, 32, 50, 51, 53, 61, 68, 72, 81], "It": [1, 2, 4, 7, 9, 15, 16, 17, 18, 20, 23, 31, 32, 34, 41, 46, 48, 51, 54, 59, 61, 64, 68, 69, 72, 75, 77, 80, 81], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "also": [1, 2, 3, 7, 9, 13, 15, 18, 19, 21, 22, 24, 26, 28, 30, 32, 34, 38, 42, 51, 52, 53, 54, 55, 57, 58, 59, 61, 64, 67, 68, 69, 71, 72, 73, 75, 77, 80, 81], "known": [1, 2, 19, 21, 23, 38, 65, 69], "NOT": [1, 34, 41, 68], "gate": [1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 30, 31, 32, 41, 45, 46, 48, 52, 55, 57, 61, 65, 66, 72, 81], "appli": [1, 2, 3, 5, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26, 27, 34, 37, 38, 41, 45, 48, 53, 54, 57, 61, 64, 65, 66, 68, 69, 72], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 37, 38, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 79, 80, 81], "1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 79, 80, 81], "rotat": [1, 3, 9, 10, 13, 14, 15, 18, 19, 26, 30, 41, 42, 57, 63, 72], "\u03c0": 1, "about": [1, 2, 3, 7, 9, 18, 19, 20, 21, 22, 30, 32, 34, 48, 51, 52, 53, 54, 55, 58, 59, 64, 67, 73, 75, 77, 78, 79, 80, 81], "axi": [1, 11, 21, 22, 30], "enabl": [1, 2, 3, 5, 9, 13, 15, 24, 33, 34, 36, 38, 39, 41, 43, 44, 45, 46, 50, 51, 52, 54, 55, 58, 59, 63, 64, 67, 69, 72, 73, 75, 79, 80], "one": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 30, 32, 34, 36, 37, 39, 41, 44, 48, 51, 52, 53, 54, 55, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 75, 79, 80, 81], "superposit": [1, 5, 7, 14, 30, 34, 37, 46, 54, 57, 59, 68], "comput": [1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 44, 46, 48, 53, 54, 55, 58, 59, 62, 67, 72, 73, 77, 79, 80, 81], "basi": [1, 2, 3, 4, 10, 12, 13, 15, 18, 21, 23, 24, 25, 26, 46, 53, 54, 68], "sqrt": [1, 3, 5, 7, 10, 12, 13, 15, 16, 18, 26, 30, 37, 51, 64, 68, 80], "2": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 79, 80, 81], "an": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 80, 81], "arbitrari": [1, 2, 3, 21, 32, 51, 52, 66, 79, 81], "\u03bb": 1, "exp": [1, 2, 12, 19, 37, 42, 51], "i\u03bb": 1, "math": [1, 4, 7, 19, 53], "pi": [1, 8, 9, 11, 14, 15, 17, 19, 20, 22, 23, 28, 30, 37, 38, 43, 45, 51, 52, 53, 64], "std": [1, 2, 3, 34, 36, 37, 38, 41, 42, 44, 45, 46, 53, 54, 59, 64, 65, 67, 71, 72, 77, 79], "number": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 30, 34, 37, 42, 44, 46, 48, 51, 52, 53, 54, 55, 57, 59, 63, 64, 65, 66, 67, 68, 69, 72, 75, 80], "\u03b8": 1, "co": [1, 15, 20, 30, 51], "isin": 1, "sin": [1, 15, 30], "its": [1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 26, 32, 33, 34, 44, 46, 48, 49, 53, 54, 55, 59, 61, 64, 65, 68, 69, 72, 73, 75, 79, 80, 81], "4": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 52, 53, 54, 55, 61, 64, 67, 69, 73, 75, 79, 81], "i\u03c0": 1, "two": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 28, 30, 39, 48, 51, 52, 54, 55, 59, 61, 63, 64, 66, 68, 75, 79], "qubit_1": [1, 7, 14, 61], "qubit_2": [1, 16], "univers": [1, 2, 9, 16, 21, 53, 68], "three": [1, 10, 18, 19, 21, 23, 39, 52, 53, 63], "paramet": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14, 17, 19, 21, 22, 24, 34, 38, 41, 46, 51, 52, 53, 55, 57, 61, 63, 64, 65, 67, 72, 73], "euler": [1, 51], "angl": [1, 2, 3, 6, 10, 13, 15, 18, 19, 28, 30, 37, 38, 41, 54, 57, 63, 64], "theta": [1, 8, 9, 10, 11, 14, 15, 22, 23, 26, 28, 30, 34, 36, 37, 53, 54, 61, 63], "phi": [1, 3, 4, 10, 34, 36, 52, 64, 69], "\u03c6": 1, "lambda": [1, 2, 8, 9, 12, 13, 14, 18, 19, 20, 23, 28, 34, 37, 38, 43, 51, 64, 66, 67, 69], "i\u03c6": 1, "np": [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 37, 38, 43, 45, 51, 52, 54, 55, 61, 64, 67, 73], "m_pi": [1, 37, 45, 64], "m_pi_2": [1, 37, 38, 53], "adj": [1, 41, 61], "method": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 27, 28, 34, 36, 41, 46, 51, 52, 54, 55, 59, 61, 64, 65], "ani": [1, 2, 3, 9, 12, 14, 19, 20, 21, 23, 24, 26, 28, 30, 34, 38, 40, 41, 43, 45, 46, 51, 52, 53, 55, 57, 59, 60, 61, 64, 65, 66, 72, 73, 75, 79, 80], "alloc": [1, 2, 3, 6, 14, 21, 34, 36, 37, 38, 39, 46, 54, 55, 57, 59, 65, 66, 72], "now": [1, 4, 5, 7, 9, 13, 14, 15, 16, 19, 21, 22, 23, 32, 48, 52, 59, 64, 65, 66, 67, 75, 80, 81], "again": [1, 5, 23, 24, 34, 48, 75, 77], "initi": [1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 19, 20, 22, 23, 28, 34, 51, 52, 54, 61, 64, 67, 68, 73, 75], "ctrl": [1, 2, 5, 7, 14, 17, 19, 24, 28, 30, 34, 36, 37, 41, 53, 54, 57, 61, 63, 64, 65, 66, 68, 69, 75, 80], "condit": [1, 2, 15, 16, 21, 26, 34, 35, 36, 38, 39, 55, 58, 68, 69], "more": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 18, 19, 21, 23, 27, 30, 32, 36, 39, 41, 42, 48, 52, 53, 54, 55, 58, 59, 61, 64, 67, 68, 73, 75, 77, 79, 80, 81], "wikipedia": [1, 51], "entri": [1, 3, 12, 34, 38, 54, 61, 64, 69, 75, 79], "ctrl_1": 1, "ctrl_2": 1, "00": [1, 4, 9, 13, 16, 24, 26, 28, 59, 67, 68, 79, 80], "11": [1, 3, 4, 9, 11, 13, 16, 17, 18, 20, 21, 23, 24, 26, 28, 30, 34, 59, 67, 68, 69, 73, 75, 79, 80], "onli": [1, 2, 3, 5, 7, 9, 16, 18, 19, 21, 23, 24, 25, 30, 32, 34, 38, 39, 43, 46, 48, 51, 52, 53, 54, 58, 64, 68, 69, 71, 73, 75, 79, 80, 81], "both": [1, 3, 4, 5, 7, 11, 13, 19, 39, 48, 52, 54, 55, 68, 73, 75, 77], "000": [1, 15, 16, 18, 19, 53, 59], "111": [1, 9, 15, 16, 18, 19], "follow": [1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 30, 32, 34, 36, 38, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "common": [1, 3, 9, 10, 18, 19, 21, 22, 23, 34, 38, 41, 42, 69, 73], "convent": [1, 8, 11, 14, 24], "all": [1, 2, 3, 9, 13, 16, 17, 18, 19, 20, 21, 23, 24, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 48, 52, 53, 54, 55, 59, 61, 63, 64, 67, 68, 69, 73, 75, 76, 77, 79, 80, 81], "howev": [1, 4, 9, 13, 15, 16, 18, 21, 23, 24, 32, 48, 51, 52, 54, 79, 81], "behavior": [1, 2, 3, 9, 23, 32, 55, 81], "chang": [1, 2, 5, 9, 13, 15, 19, 29, 32, 34, 38, 51, 59, 75, 80, 81], "instead": [1, 2, 4, 9, 26, 40, 43, 52, 54, 55, 59, 73, 75, 79], "when": [1, 2, 3, 9, 12, 13, 14, 18, 19, 21, 32, 34, 39, 46, 48, 53, 54, 55, 59, 63, 64, 65, 69, 72, 73, 75, 79, 80, 81], "negat": [1, 2, 3, 41, 45, 46], "polar": [1, 41, 45, 55], "syntax": [1, 9, 32, 33, 38, 39, 41, 43, 52, 61, 64, 77, 81], "preced": [1, 41, 52], "01": [1, 4, 7, 13, 16, 21, 26, 28, 68], "10": [1, 4, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 23, 26, 28, 30, 34, 37, 38, 55, 59, 61, 64, 65, 67, 68, 69, 73, 75, 77], "notat": [1, 16, 68], "context": [1, 2, 11, 39, 54, 55, 72], "valid": [1, 2, 3, 31, 38, 52, 55, 61, 64, 73, 75, 79], "either": [1, 7, 11, 14, 19, 39, 52, 54, 55, 64, 68, 73, 75, 80], "similarli": [1, 7, 23, 54, 60, 68], "condition": 1, "respect": [1, 2, 3, 4, 8, 13, 14, 19, 23, 28, 34, 51, 52, 54, 59, 63, 67, 68, 73, 75, 80], "e": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 27, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 48, 51, 52, 53, 54, 55, 64, 69, 72, 73, 75, 79, 80], "project": [1, 55, 72, 73, 75, 76, 79], "onto": [1, 68], "eigenvector": [1, 2, 10, 12], "non": [1, 2, 3, 8, 10, 12, 18, 19, 32, 34, 38, 39, 46, 54, 55, 59, 63, 65, 81], "linear": [1, 5, 9, 11, 12, 15, 22, 26, 53, 59, 64, 68], "avail": [1, 2, 3, 8, 9, 10, 21, 23, 28, 31, 32, 33, 34, 38, 39, 41, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 69, 73, 75, 80, 81], "first": [1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 28, 30, 31, 34, 46, 52, 53, 54, 55, 56, 61, 63, 64, 65, 66, 69, 75, 80], "api": [1, 13, 24, 27, 30, 31, 32, 34, 36, 40, 41, 44, 46, 51, 52, 53, 54, 55, 59, 61, 64, 65, 72, 73, 75, 77, 79, 81], "regist": [1, 2, 3, 5, 10, 13, 15, 19, 22, 25, 34, 37, 39, 46, 52, 54, 61, 64, 65, 66, 69, 72], "outsid": [1, 9, 32, 75, 79, 81], "Then": [1, 7, 18, 21, 25, 52, 64, 71, 72], "within": [1, 2, 3, 13, 22, 32, 34, 38, 40, 42, 46, 52, 54, 55, 58, 59, 61, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 81], "like": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 21, 22, 23, 24, 28, 29, 32, 34, 38, 46, 52, 54, 59, 61, 64, 65, 67, 68, 69, 73, 75, 76, 79, 80, 81], "built": [1, 2, 4, 6, 8, 9, 12, 15, 23, 24, 26, 32, 52, 55, 58, 59, 73, 79, 80, 81], "abov": [1, 2, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 24, 34, 36, 41, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 68, 69, 72, 73, 75, 77, 79, 80], "level": [1, 2, 3, 13, 23, 29, 32, 33, 34, 39, 41, 51, 52, 53, 54, 55, 69, 72, 76, 81], "register_oper": [1, 13, 61], "accept": [1, 2, 3, 23, 24, 57, 73, 75, 80], "identifi": [1, 2, 3, 4, 13, 14, 19, 21, 73, 75], "string": [1, 2, 3, 5, 19, 27, 30, 34, 36, 37, 44, 51, 55, 59, 65, 69, 75, 79], "numpi": [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 37, 51, 61, 64, 67, 73], "arrai": [1, 2, 3, 4, 7, 10, 12, 13, 15, 16, 17, 18, 21, 24, 26, 28, 46, 48, 51, 52, 54, 55, 61, 64, 65, 67, 69], "complex": [1, 2, 3, 4, 7, 8, 12, 16, 20, 26, 42, 48, 51, 54, 59, 61, 67, 68, 79], "A": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 28, 29, 30, 34, 37, 38, 41, 48, 51, 52, 59, 61, 64, 66, 67, 68, 71, 72, 73, 75], "1d": [1, 2], "interpret": [1, 8, 58, 64, 73], "row": [1, 2, 3, 30, 61], "major": [1, 73], "import": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 37, 42, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 69, 73, 79, 80], "custom_h": 1, "custom_x": [1, 61], "def": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 34, 37, 38, 43, 45, 51, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 68, 75, 80], "bell": [1, 13, 16, 34, 79], "sampl": [1, 2, 3, 5, 7, 8, 9, 13, 14, 17, 18, 19, 21, 26, 36, 52, 53, 54, 55, 56, 58, 61, 64, 65, 66, 67, 68, 72, 75, 79, 80], "dump": [1, 2, 3, 26, 34, 37, 53, 54, 59, 64, 65, 67, 79, 80], "macro": [1, 72], "cudaq_register_oper": 1, "uniqu": [1, 2, 3, 9, 14, 18, 21, 34, 39, 41, 46, 54, 77], "name": [1, 2, 3, 9, 13, 14, 16, 19, 34, 36, 41, 44, 50, 51, 52, 53, 54, 55, 63, 67, 68, 69, 72, 73, 75, 76, 79, 80], "represent": [1, 2, 3, 15, 16, 21, 24, 30, 34, 38, 48, 51, 55, 69, 71, 72], "includ": [1, 2, 3, 4, 12, 13, 14, 17, 23, 32, 34, 37, 46, 51, 53, 57, 58, 59, 61, 63, 64, 65, 66, 69, 71, 72, 73, 75, 77, 79, 80, 81], "m_sqrt1_2": 1, "__qpu__": [1, 2, 34, 37, 38, 45, 53, 54, 57, 59, 63, 64, 65, 66, 69, 79, 80], "void": [1, 2, 3, 34, 36, 37, 38, 41, 42, 44, 45, 46, 57, 59, 64, 66, 69, 71, 72, 77, 79, 80], "bell_pair": [1, 2, 3], "r": [1, 4, 13, 18, 19, 41, 46, 52, 53, 54, 55, 63, 64, 69, 75], "int": [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 26, 34, 37, 38, 45, 46, 51, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 69, 72, 73, 77, 79, 80], "main": [1, 4, 5, 9, 19, 21, 32, 34, 37, 48, 53, 59, 63, 64, 65, 66, 69, 73, 75, 77, 79, 80, 81], "auto": [1, 2, 34, 36, 37, 38, 42, 45, 46, 53, 54, 55, 57, 59, 63, 64, 65, 66, 69, 71, 79, 80], "count": [1, 2, 3, 5, 8, 9, 10, 12, 13, 14, 18, 19, 24, 34, 36, 37, 46, 52, 53, 54, 55, 59, 64, 65, 66, 67, 69, 72], "bit": [1, 2, 3, 4, 5, 7, 13, 16, 17, 18, 19, 24, 26, 34, 37, 39, 46, 48, 54, 55, 64, 65, 66, 68, 72], "printf": [1, 34, 37, 46, 54, 63, 65, 66, 73], "n": [1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 34, 36, 37, 38, 41, 42, 45, 53, 54, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 77, 80], "data": [1, 2, 8, 11, 12, 13, 14, 15, 22, 31, 34, 38, 40, 42, 48, 54, 55, 63, 65, 66, 69, 72, 74, 75, 77, 79], "multi": [1, 4, 15, 16, 24, 30, 31, 32, 33, 36, 39, 41, 45, 50, 51, 52, 53, 59, 61, 62, 63, 68, 72, 73, 79, 80, 81], "msb": 1, "order": [1, 2, 3, 4, 9, 12, 13, 14, 16, 30, 34, 42, 51, 52, 55, 59, 63], "big": [1, 8, 17, 24], "endian": [1, 17, 24], "show": [1, 8, 9, 11, 13, 14, 15, 16, 18, 21, 22, 23, 30, 51, 54, 61, 63, 64, 73, 75], "differ": [1, 2, 3, 7, 9, 10, 11, 12, 13, 15, 16, 18, 19, 23, 24, 28, 30, 48, 52, 53, 54, 58, 59, 64, 67, 73, 75, 77, 80], "test": [1, 9, 11, 12, 17, 18, 19, 23, 31, 36, 67, 73, 75], "cnot": [1, 5, 9, 41, 57, 61, 68, 79], "my_cnot": 1, "print": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 34, 37, 46, 51, 53, 54, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 79, 80], "500": [1, 23, 68, 80], "exact": [1, 9, 10, 13, 17, 21, 55], "random": [1, 2, 3, 4, 5, 8, 9, 13, 14, 16, 17, 18, 19, 21, 22, 23, 28, 30, 54, 55, 67], "construct": [1, 2, 8, 9, 10, 12, 17, 18, 20, 23, 28, 30, 31, 32, 34, 35, 36, 38, 46, 48, 51, 54, 57, 58, 59, 61, 62, 65, 69, 81], "second": [1, 2, 3, 4, 7, 8, 9, 12, 14, 18, 20, 46, 51, 53, 55, 59, 61, 64], "1j": [1, 12, 13], "xy": [1, 30], "kron": [1, 18], "my_xi": 1, "custom_xy_test": 1, "undo": 1, "prior": [1, 55, 64, 68, 73, 75, 80], "1000": [1, 3, 9, 11, 13, 17, 18, 21, 24, 26, 34, 52, 59, 65, 67, 68, 80], "mycnot": 1, "myxi": 1, "hardwar": [1, 9, 15, 19, 21, 24, 31, 32, 50, 55, 59, 62, 79, 81], "synthes": [1, 3, 21, 41, 45, 69], "current": [1, 2, 3, 9, 30, 32, 34, 44, 52, 54, 55, 72, 75, 79, 81], "orca": [1, 2, 32, 50, 81], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 32, 34, 36, 39, 42, 46, 48, 51, 52, 54, 55, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 79, 81], "doe": [1, 2, 3, 7, 9, 15, 16, 21, 30, 32, 34, 38, 46, 51, 53, 54, 73, 75, 77, 79, 80, 81], "increment": [1, 2, 67], "qumod": 1, "up": [1, 2, 3, 7, 9, 14, 15, 17, 21, 30, 36, 42, 51, 52, 55, 58, 63, 64, 67, 69, 72, 75], "maximum": [1, 3, 8, 9, 21, 55], "valu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 28, 30, 31, 34, 36, 38, 42, 46, 48, 51, 53, 54, 55, 59, 62, 64, 67, 68, 69, 73, 79, 80], "repres": [1, 2, 3, 4, 7, 8, 9, 14, 15, 16, 21, 26, 30, 34, 48, 51, 52, 55, 64, 68, 69], "If": [1, 2, 3, 5, 7, 9, 11, 15, 16, 17, 18, 19, 20, 24, 25, 30, 34, 48, 51, 52, 53, 55, 59, 64, 67, 68, 73, 75, 79, 80], "where": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 29, 30, 33, 39, 41, 42, 46, 48, 51, 52, 55, 59, 61, 64, 67, 68, 72, 73, 75, 77, 80], "alreadi": [1, 2, 3, 13, 19, 30, 73, 75, 80], "ha": [1, 2, 3, 4, 5, 7, 9, 13, 14, 16, 17, 18, 19, 21, 24, 26, 28, 34, 41, 48, 52, 53, 55, 58, 59, 64, 67, 68, 73, 75, 79], "effect": [1, 13, 21, 48, 55, 59, 67, 68, 80], "u": [1, 2, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 21, 22, 24, 30, 37, 38, 42, 43, 51, 52, 57, 58, 59, 64, 66, 67, 68, 69], "rangl": [1, 4, 15, 18, 19, 21, 34, 80], "3": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 59, 61, 64, 66, 67, 69, 72, 73, 75, 76, 80, 81], "cdot": [1, 5, 9, 12, 19], "d": [1, 2, 3, 9, 12, 16, 37, 38, 39, 46, 52, 64, 73, 75], "reduc": [1, 2, 10, 13, 18, 19, 55], "minimum": [1, 14, 22, 53], "vacuum": [1, 64], "phase": [1, 2, 3, 5, 12, 15, 21, 41, 52, 64], "shifter": [1, 64], "add": [1, 2, 3, 9, 12, 14, 22, 26, 30, 32, 43, 51, 55, 64, 65, 69, 71, 72, 73, 75, 81], "a_1": [1, 18, 19], "creation": [1, 2, 4, 9, 33, 47, 51, 72], "dagger": [1, 4, 10, 12, 21, 26, 43, 51, 68], "shift": [1, 11, 53, 75], "p": [1, 4, 8, 9, 10, 18, 26, 73, 75], "left": [1, 2, 4, 5, 7, 10, 12, 13, 14, 15, 16, 24, 64, 72, 75], "right": [1, 4, 10, 13, 14, 15], "17": [1, 9, 13, 16, 17, 18, 21, 30, 61, 69, 77], "beam": [1, 52, 64], "splitter": [1, 52, 64], "act": [1, 2, 3, 6, 7, 9, 14, 27, 48, 51, 68], "togeth": [1, 18, 31, 55, 69, 80], "parameter": [1, 2, 3, 8, 9, 10, 13, 14, 20, 22, 23, 34, 36, 38, 41, 51, 53, 58, 61, 63, 65, 67], "relat": [1, 2, 9, 14, 19, 21, 69], "reflect": [1, 37, 55], "a_2": [1, 19], "b": [1, 9, 23, 28, 34, 61, 64], "_": [1, 4, 7, 11, 13, 18, 19, 21, 30, 51], "rang": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 32, 37, 38, 45, 46, 51, 53, 54, 57, 61, 67, 75, 80, 81], "34": [1, 9, 18], "return": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 28, 30, 34, 36, 37, 38, 41, 46, 48, 51, 53, 54, 55, 59, 63, 64, 65, 67, 69, 71, 72, 73, 77, 79], "result": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 34, 35, 36, 37, 39, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 79, 80], "input": [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 16, 21, 23, 27, 28, 34, 36, 37, 38, 45, 46, 54, 59, 61, 63, 64, 67], "class": [2, 3, 4, 9, 11, 21, 34, 36, 38, 42, 44, 46, 54, 55, 71, 72], "spin_op": [2, 8, 27, 34, 37, 41, 53, 54, 59, 63], "gener": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 22, 24, 27, 30, 34, 36, 37, 38, 39, 41, 42, 45, 47, 52, 53, 55, 58, 63, 64, 65, 66, 68, 69, 71, 75, 79], "sum": [2, 3, 4, 11, 12, 13, 14, 17, 18, 21, 27, 42, 46, 64, 68], "tensor": [2, 3, 11, 18, 27, 32, 42, 53, 54, 72, 81], "product": [2, 3, 5, 18, 27, 31, 32, 42, 53, 80, 81], "expos": [2, 3, 9, 13, 34, 36, 42, 44, 48, 54, 72], "typic": [2, 21, 34, 46, 53, 57, 58, 63, 69, 76, 77], "algebra": [2, 42, 63, 68], "programm": [2, 3, 34, 35, 36, 38, 39, 41, 43, 44, 46, 52, 54, 65], "defin": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 51, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 68, 69, 72, 73, 75, 77, 79, 81], "primit": [2, 14, 33, 36, 39, 42, 46, 47, 54, 58, 79], "them": [2, 3, 8, 9, 10, 13, 16, 18, 21, 30, 32, 48, 51, 57, 68, 69, 73, 75, 77, 79, 80, 81], "compos": [2, 3, 11, 14, 21, 38, 39, 52, 64, 69], "larger": [2, 3, 7, 9, 10, 14, 21, 53, 55], "thereof": [2, 39, 42], "public": [2, 9, 34, 36, 42, 44, 46, 54, 71, 72, 75], "type": [2, 4, 5, 6, 7, 9, 13, 14, 15, 18, 20, 27, 33, 34, 36, 38, 39, 41, 42, 47, 51, 52, 54, 55, 57, 61, 63, 65, 68, 69, 72, 75, 79], "spin_op_term": 2, "bool": [2, 3, 13, 34, 38, 41, 42, 44, 54, 72, 79], "we": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 24, 26, 30, 32, 34, 37, 41, 43, 48, 51, 52, 54, 55, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "term": [2, 3, 4, 5, 8, 12, 13, 14, 16, 19, 20, 23, 24, 34, 41, 51, 52, 54, 59, 63, 75], "binari": [2, 3, 5, 9, 11, 14, 15, 19, 24, 32, 52, 73, 77, 80, 81], "symplect": 2, "form": [2, 3, 9, 21, 23, 24, 30, 32, 34, 41, 46, 48, 51, 55, 69, 81], "size": [2, 3, 5, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 34, 36, 37, 38, 39, 46, 53, 54, 55, 64, 65, 67, 75, 79], "nqubit": [2, 36, 37, 72], "element": [2, 3, 4, 15, 18, 19, 21, 28, 31, 34, 46, 54, 68], "x": [2, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 34, 36, 37, 38, 41, 42, 43, 45, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 68, 69, 73, 75, 77, 80], "next": [2, 4, 5, 8, 9, 10, 12, 13, 17, 19, 20, 21, 23, 28, 30, 48, 64, 65, 69, 73], "z": [2, 3, 6, 8, 9, 11, 12, 13, 14, 16, 20, 21, 22, 24, 25, 26, 27, 28, 30, 34, 37, 41, 42, 51, 53, 54, 59, 63, 65, 67, 73], "y": [2, 3, 5, 7, 8, 9, 11, 12, 13, 15, 18, 19, 20, 24, 25, 27, 28, 30, 34, 37, 41, 42, 51, 53, 54, 59, 63, 65, 73, 75, 77, 80], "site": [2, 3, 8, 13, 64, 80], "csr_spmatrix": 2, "tupl": [2, 3, 9, 13, 28, 34, 38, 64], "doubl": [2, 3, 22, 23, 34, 36, 37, 38, 41, 42, 45, 53, 54, 55, 59, 63, 64, 72, 73, 75], "size_t": [2, 34, 36, 38, 42, 44, 46, 54, 64, 65, 72, 77, 79], "typedef": 2, "zero": [2, 3, 5, 6, 10, 11, 12, 18, 19, 21, 39, 51, 54, 59, 68], "spars": 2, "function": [2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 32, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 57, 58, 59, 63, 65, 67, 69, 72, 77, 79, 81], "pair": [2, 3, 8, 12, 14, 16, 17, 38, 44, 48, 75], "const": [2, 34, 36, 37, 38, 41, 42, 44, 46, 53, 64, 71, 72, 77, 79], "termdata": 2, "constructor": [2, 3], "take": [2, 3, 4, 5, 7, 9, 12, 13, 14, 15, 17, 18, 20, 23, 28, 29, 32, 34, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 52, 55, 58, 59, 61, 63, 64, 65, 66, 67, 69, 73, 75, 80, 81], "coeffici": [2, 3, 8, 12, 20, 27, 51, 68], "constant": [2, 7, 20, 46, 48, 69], "id": [2, 3, 34, 44, 46, 52, 54, 55, 73, 75], "coeff": 2, "qubit": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 37, 38, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 80], "unordered_map": [2, 34], "_term": 2, "full": [2, 3, 4, 13, 19, 29, 32, 53, 54, 55, 67, 68, 69, 71, 73, 75, 76, 81], "composit": [2, 51], "spin": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 20, 23, 24, 26, 28, 34, 37, 42, 48, 51, 53, 54, 59, 63, 64, 67, 69], "op": [2, 3, 12, 13, 20, 48, 63, 69], "map": [2, 3, 5, 7, 8, 9, 13, 18, 21, 23, 26, 34, 46, 51, 69, 75], "individu": [2, 3, 39, 46, 54, 61], "bsf": 2, "from": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 35, 37, 38, 39, 42, 46, 48, 51, 53, 54, 55, 58, 59, 61, 63, 64, 67, 69, 72, 75, 76, 77, 80, 81], "creat": [2, 3, 5, 8, 9, 13, 14, 15, 16, 18, 19, 21, 22, 26, 30, 31, 34, 36, 42, 45, 51, 52, 53, 54, 58, 59, 64, 65, 67, 69, 70, 72, 73, 75, 76, 77, 79, 80], "ident": [2, 12, 13, 14, 18, 19, 21, 48, 51, 63], "numqubit": [2, 37], "given": [2, 3, 4, 7, 8, 9, 10, 14, 18, 19, 20, 21, 23, 24, 34, 46, 51, 52, 54, 55, 59, 63, 72], "o": [2, 9, 10, 13, 15, 23, 37, 52, 53, 54, 55, 63, 64, 65, 66, 69, 73, 75, 77, 79, 80], "copi": [2, 16, 21, 30, 46, 48, 73, 75], "data_rep": 2, "serial": [2, 3, 12], "encod": [2, 3, 5, 9, 14, 19, 21, 34, 42, 54, 65, 68, 72], "via": [2, 3, 4, 5, 11, 13, 16, 21, 24, 26, 31, 33, 34, 36, 39, 41, 43, 45, 46, 48, 51, 52, 54, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "real": [2, 8, 10, 12, 13, 15, 17, 20, 21, 30, 58], "imaginari": [2, 4, 12], "part": [2, 3, 4, 12, 17, 19, 23, 34, 46, 69, 71, 73, 75], "append": [2, 3, 6, 8, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 28, 30, 38, 52, 54, 55, 61, 64, 67], "larg": [2, 4, 5, 12, 18, 23, 29, 32, 41, 54, 55, 58, 68, 81], "end": [2, 3, 4, 7, 10, 13, 15, 16, 17, 18, 20, 21, 24, 26, 30, 34, 46, 52, 54, 55, 59, 61, 64, 68, 73, 75], "total": [2, 3, 4, 8, 9, 11, 12, 13, 15, 21, 23, 53, 54, 55, 59, 64, 67, 75], "destructor": 2, "iter": [2, 3, 4, 9, 12, 19, 21, 23, 24, 27, 28, 34, 46], "begin": [2, 3, 4, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 30, 34, 46, 57, 64, 65, 68], "start": [2, 3, 4, 6, 13, 15, 16, 19, 21, 24, 31, 32, 41, 46, 52, 54, 59, 61, 64, 69, 71, 77, 81], "equal": [2, 10, 21, 24, 30, 48, 54, 55, 59, 68], "v": [2, 3, 4, 8, 10, 12, 13, 14, 19, 34, 37, 38, 43, 48, 53, 67, 69, 73], "noexcept": [2, 41], "subtract": 2, "multipli": [2, 12, 13, 19], "true": [2, 3, 4, 5, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 28, 34, 38, 51, 52, 67, 73, 75, 80], "here": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 18, 19, 21, 22, 23, 26, 27, 31, 32, 34, 36, 37, 38, 41, 43, 51, 52, 53, 54, 61, 63, 64, 65, 66, 69, 71, 73, 75, 79, 80, 81], "consid": [2, 4, 5, 7, 9, 13, 17, 18, 19, 20, 21, 37, 39, 48, 53, 54, 69, 75], "num_qubit": [2, 3, 13, 20, 42, 53], "num_term": [2, 42], "get_coeffici": [2, 8, 12, 20, 42], "get": [2, 3, 10, 12, 13, 15, 17, 18, 19, 21, 23, 26, 28, 30, 32, 34, 36, 37, 46, 52, 53, 54, 59, 63, 64, 67, 72, 73, 77, 80, 81], "throw": [2, 30], "except": [2, 3, 9, 12, 13, 21, 30, 79], "get_raw_data": 2, "is_ident": [2, 42], "standard": [2, 3, 10, 21, 23, 28, 33, 34, 35, 36, 38, 41, 47, 54, 57, 58, 69, 71, 73, 75, 77, 79], "out": [2, 3, 7, 8, 9, 11, 12, 14, 15, 16, 19, 21, 23, 26, 28, 32, 34, 39, 46, 48, 54, 55, 59, 60, 61, 63, 64, 72, 75, 76, 79, 81], "to_str": [2, 8, 12, 20, 59], "printcoeffici": 2, "getdatarepresent": 2, "getdatatupl": 2, "fulli": [2, 3, 9, 11, 13, 21, 32, 33, 52, 54, 65, 69, 73, 75, 79, 81], "distribute_term": 2, "numchunk": 2, "distribut": [2, 10, 17, 18, 21, 23, 24, 26, 32, 39, 53, 55, 59, 63, 65, 73, 79, 80, 81], "chunk": [2, 39], "for_each_term": [2, 8, 12, 20, 42], "give": [2, 14, 15, 18, 24, 32, 34, 49, 54, 55, 73, 75, 81], "functor": 2, "reduct": 2, "captur": [2, 14, 19, 23, 30, 32, 38, 51, 61, 81], "variabl": [2, 9, 12, 14, 16, 19, 23, 29, 32, 38, 39, 51, 52, 53, 54, 60, 64, 67, 73, 75, 80, 81], "for_each_pauli": [2, 42], "thrown": [2, 79], "than": [2, 3, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 30, 41, 48, 53, 55, 59, 61, 68, 73, 75, 79], "user": [2, 3, 4, 5, 8, 9, 13, 18, 21, 29, 32, 34, 36, 37, 39, 40, 43, 46, 51, 52, 53, 54, 55, 64, 67, 69, 72, 73, 75, 81], "should": [2, 3, 13, 15, 19, 20, 23, 33, 34, 39, 41, 42, 44, 46, 52, 54, 55, 59, 72, 73, 75, 79, 80], "pass": [2, 3, 8, 9, 11, 12, 13, 17, 20, 23, 30, 31, 32, 34, 38, 39, 42, 46, 52, 54, 55, 61, 64, 66, 69, 70, 75, 79, 81], "index": [2, 3, 5, 9, 11, 12, 17, 42, 44, 46, 48, 51, 54, 55, 72], "complex_matrix": 2, "to_matrix": [2, 10, 12, 51], "dens": 2, "to_sparse_matrix": 2, "col": 2, "static": [2, 3, 34, 41, 46, 51, 69, 73, 79], "nterm": 2, "unsign": 2, "seed": [2, 3, 4, 8, 9, 13, 14, 18, 21, 22, 23, 30, 55, 67], "random_devic": 2, "specifi": [2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 34, 37, 38, 39, 41, 42, 43, 44, 46, 51, 52, 53, 54, 55, 59, 61, 64, 65, 67, 69, 72, 73, 75], "overrid": [2, 3, 34, 55, 71, 73], "repeat": [2, 17, 18, 19, 23, 34], "from_word": 2, "pauliword": 2, "word": [2, 3, 8, 12, 19, 20], "g": [2, 3, 9, 14, 19, 20, 21, 27, 33, 34, 35, 38, 39, 40, 41, 42, 48, 51, 52, 53, 54, 55, 64, 69, 72, 73, 75, 76, 79, 80], "xyx": 2, "3rd": 2, "typenam": [2, 34, 36, 37, 38, 41, 45, 46, 77, 79], "qualifiedspinop": 2, "struct": [2, 34, 36, 37, 38, 41, 45, 53, 54, 63, 64, 65, 66, 69, 71, 79], "constexpr": [2, 36, 46, 53], "dyn": [2, 46], "qudit": [2, 35, 39, 41], "system": [2, 3, 4, 9, 12, 13, 16, 20, 22, 23, 24, 29, 32, 34, 39, 44, 46, 48, 51, 52, 54, 55, 58, 59, 63, 64, 67, 68, 71, 73, 76, 77, 79, 80, 81], "inlin": [2, 34, 69], "new": [2, 3, 4, 8, 9, 12, 15, 21, 31, 32, 34, 36, 48, 58, 69, 70, 73, 75, 79, 80, 81], "enable_if_t": 2, "qreg": [2, 3, 12, 14, 53], "contain": [2, 3, 4, 9, 10, 13, 14, 18, 21, 31, 32, 34, 39, 41, 44, 48, 53, 55, 58, 59, 63, 64, 69, 72, 73, 79, 80, 81], "dynam": [2, 13, 31, 32, 36, 38, 39, 46, 52, 57, 58, 69, 79, 81], "time": [2, 3, 4, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 26, 30, 31, 32, 33, 34, 37, 39, 46, 47, 52, 53, 54, 55, 59, 64, 65, 67, 68, 69, 73, 75, 80, 81], "By": [2, 9, 10, 23, 29, 34, 41, 51, 52, 53, 54, 55, 59, 64, 77], "value_typ": 2, "indic": [2, 3, 4, 8, 21, 38, 41, 42, 46, 51, 72], "underli": [2, 3, 9, 23, 34, 44, 46, 52, 54, 72], "interfac": [2, 3, 46, 55, 72, 73, 75, 77], "idx": [2, 3, 11, 13, 19, 21, 46, 51, 54], "qspan": 2, "front": [2, 37, 45, 46, 66], "back": [2, 21, 37, 46, 48, 54, 64, 65, 75], "last": [2, 18, 19, 21, 37, 46, 54, 61, 63], "slice": [2, 3, 46], "clear": [2, 3, 16, 34, 46, 72], "destroi": [2, 46], "postcondit": [2, 46], "own": [2, 3, 9, 18, 26, 39, 44, 46, 55, 69, 72, 73, 75, 79], "semant": [2, 3, 33, 38, 39, 40, 43, 45, 46, 48, 69], "held": 2, "explicit": [2, 10, 34, 45, 51, 55, 64, 79], "determin": [2, 4, 5, 7, 8, 9, 17, 20, 23, 31, 55, 59], "check": [2, 9, 19, 21, 32, 52, 53, 64, 68, 73, 75, 80, 81], "norm": [2, 18], "pre": [2, 3, 13, 21, 32, 34, 52, 55, 64, 66, 73, 79, 81], "exist": [2, 3, 8, 16, 21, 30, 32, 33, 34, 39, 40, 59, 71, 73, 75, 79, 80, 81], "could": [2, 9, 10, 12, 19, 23, 30, 32, 53, 57, 68, 73, 81], "from_data": [2, 3, 51], "retriev": [2, 3, 13, 24, 34, 51, 54, 64], "get_stat": [2, 3, 10, 15, 16, 17, 20, 21, 24, 30, 54, 61], "delet": [2, 46, 52, 75, 79], "cannot": [2, 3, 15, 30, 37, 38, 46, 48, 68, 75], "move": [2, 11, 46, 71, 73, 75, 80], "assign": [2, 9, 14, 44, 54, 55, 73], "qview": [2, 5, 10, 12, 15, 19, 37, 38, 45], "observe_result": [2, 3, 12, 34, 63], "encapsul": [2, 11, 34, 46, 54, 79], "observ": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22, 23, 26, 28, 37, 51, 52, 54, 55, 56, 58, 63, 65, 66, 67, 68, 72, 80], "call": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 19, 21, 22, 23, 24, 26, 28, 30, 36, 37, 38, 41, 45, 51, 54, 55, 58, 59, 61, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77], "measur": [2, 3, 5, 7, 9, 10, 11, 12, 13, 15, 16, 18, 23, 24, 26, 31, 34, 35, 37, 38, 39, 41, 48, 51, 52, 54, 55, 57, 58, 59, 62, 64, 65, 69, 72, 80], "execut": [2, 4, 9, 13, 15, 21, 30, 31, 32, 33, 34, 36, 38, 39, 44, 45, 51, 52, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 75, 76, 77, 79, 80, 81], "ansatz": [2, 4, 6, 9, 13, 14, 22, 23, 34, 37, 53, 54, 63], "circuit": [2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 28, 33, 34, 38, 39, 42, 43, 47, 48, 52, 53, 54, 55, 58, 59, 61, 63, 64, 69, 71], "global": [2, 3, 9, 14, 21, 34, 38, 53, 59, 64, 73], "expect": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 24, 26, 28, 31, 34, 51, 53, 54, 55, 59, 62, 67, 73, 75, 79, 80], "h": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 30, 34, 36, 37, 41, 42, 43, 45, 46, 48, 51, 52, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 77, 79, 80], "precomput": 2, "psi": [2, 6, 7, 10, 12, 16, 24, 30, 34, 37, 59, 68], "sample_result": [2, 3, 19, 24, 34, 64, 79], "wa": [2, 3, 4, 7, 9, 12, 21, 34, 54, 65, 69, 73, 76, 80], "shot": [2, 3, 8, 9, 10, 17, 18, 19, 24, 34, 37, 52, 55, 59, 64, 65, 68, 72], "base": [2, 3, 8, 9, 11, 13, 15, 18, 19, 21, 23, 27, 32, 33, 34, 36, 40, 41, 46, 51, 52, 53, 54, 55, 59, 67, 69, 72, 73, 75, 77, 81], "raw_data": [2, 9, 34], "raw": [2, 3, 9], "convers": [2, 34], "simpli": [2, 30, 68, 75, 80], "ignor": [2, 9, 19, 55], "fine": [2, 34, 65, 66, 68], "grain": [2, 34, 65, 66], "explicitli": [2, 9, 10, 48, 52, 55, 69, 77, 79], "request": [2, 3, 34, 52, 53, 54, 55, 64, 75], "oppos": [2, 79], "observe_data": 2, "spinoptyp": [2, 34], "sub": [2, 3, 33, 34, 37, 38, 46, 47, 51, 75], "id_coeffici": [2, 34], "observe_opt": [2, 34], "option": [2, 3, 4, 7, 9, 10, 12, 13, 17, 18, 22, 23, 24, 28, 29, 34, 36, 41, 44, 51, 52, 53, 54, 59, 63, 64, 66, 67, 72, 73, 75], "async_observ": 2, "param": [2, 4, 13, 14, 17, 37, 38, 41, 53, 67], "run": [2, 3, 5, 7, 8, 9, 11, 12, 17, 18, 23, 24, 31, 32, 33, 34, 37, 51, 52, 53, 54, 55, 56, 58, 63, 64, 65, 66, 67, 69, 72, 73, 75, 76, 79, 80, 81], "applic": [2, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 27, 31, 34, 41, 45, 52, 55, 58, 59, 61, 62, 75, 76, 79, 80], "num_trajectori": 2, "trajectori": 2, "presenc": 2, "simul": [2, 4, 6, 8, 10, 12, 17, 18, 19, 23, 24, 28, 29, 30, 31, 32, 33, 34, 50, 51, 52, 56, 58, 59, 62, 64, 65, 67, 69, 70, 73, 80, 81], "noisi": [2, 17, 18, 21, 31, 62, 64], "quantumkernel": [2, 34, 45], "arg": [2, 3, 9, 11, 15, 18, 34, 36, 41, 45, 51, 54, 59, 69, 75], "is_invocable_r_v": 2, "member": [2, 3, 14, 38], "conveni": [2, 15, 27, 42, 48, 73, 75], "what": [2, 3, 4, 8, 9, 10, 14, 16, 18, 19, 23, 30, 31, 32, 56, 67, 72, 79, 81], "": [2, 3, 4, 5, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 28, 30, 31, 32, 34, 41, 44, 48, 51, 52, 53, 54, 57, 58, 59, 63, 64, 65, 66, 67, 69, 71, 73, 75, 76, 77, 80, 81], "spinopcontain": 2, "termlist": 2, "everi": [2, 3, 14, 17, 18, 20, 32, 53, 54, 58, 59, 64, 65, 73, 80, 81], "concept": [2, 33, 34, 38, 40], "executioncontext": 2, "abstract": [2, 3, 27, 33, 34, 36, 41, 42, 44, 46, 54, 58], "how": [2, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 30, 32, 34, 36, 41, 51, 53, 54, 55, 58, 59, 61, 62, 64, 65, 66, 67, 69, 72, 73, 75, 76, 79, 80, 81], "shots_": 2, "basic": [2, 6, 31, 53, 61, 75, 80], "invoc": [2, 3, 36, 38, 44, 46, 54, 55, 72], "expectationvalu": 2, "nullopt": 2, "optimization_result": [2, 34], "optresult": 2, "optim": [2, 4, 6, 8, 9, 11, 12, 13, 14, 18, 19, 23, 31, 32, 33, 43, 46, 48, 51, 52, 53, 55, 62, 69, 71, 73, 75, 81], "hasconditionalsonmeasureresult": 2, "fals": [2, 3, 4, 8, 9, 12, 13, 16, 17, 19, 20, 21, 73, 75], "being": [2, 3, 5, 6, 16, 26, 33, 34, 48, 55, 64, 79], "statement": [2, 7, 25, 34, 35, 58], "noise_model": [2, 3, 13, 17, 18, 26], "noisemodel": [2, 3, 13, 17, 18, 26], "nullptr": 2, "canhandleobserv": 2, "flag": [2, 13, 32, 38, 51, 52, 54, 55, 64, 69, 71, 75, 79, 81], "handl": [2, 3, 7, 9, 20, 52, 53, 54, 55, 64, 72, 75, 79], "task": [2, 5, 9, 13, 21, 24, 30, 34, 42, 54, 55, 59, 69, 72], "under": [2, 3, 13, 18, 21, 32, 51, 52, 71, 72, 73, 75, 79, 81], "asyncexec": 2, "occur": [2, 3, 7, 9, 12, 18, 25, 34, 39, 64, 68, 75], "asynchron": [2, 3, 10, 12, 13, 24, 34, 44, 54, 59, 64, 67], "detail": [2, 3, 4, 8, 10, 13, 14, 17, 32, 33, 39, 51, 52, 53, 55, 72, 73, 75, 80, 81], "futur": [2, 3, 34, 50, 52, 54, 55, 64, 73, 75], "futureresult": 2, "store": [2, 3, 4, 12, 13, 16, 20, 39, 46, 54, 59, 64, 67, 68, 69], "async_result": [2, 64], "asyncresult": [2, 67], "async_sample_result": [2, 34, 54], "so": [2, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23, 28, 30, 32, 34, 51, 52, 54, 55, 65, 68, 69, 71, 72, 73, 75, 79, 80, 81], "boundari": [2, 11], "unique_ptr": 2, "simulationst": 2, "pointer": [2, 3, 79], "amplitudemap": 2, "amplitud": [2, 3, 5, 15, 17, 21, 51, 52, 54, 61, 64, 67, 68], "overlapcomputest": 2, "overlap": [2, 3, 12, 54], "overlapresult": 2, "trace": [2, 3, 16, 21, 26, 53], "kerneltrac": 2, "tracer": 2, "persist": [2, 34, 39, 53, 75], "resourc": [2, 4, 19, 23, 28, 44, 53, 54, 55, 59, 73, 75], "kernelnam": [2, 3], "batchiter": 2, "batch": [2, 28, 39], "observe_n": 2, "sample_n": 2, "totaliter": 2, "registernam": [2, 34], "mid": [2, 3, 55], "mode": [2, 3, 9, 24, 32, 37, 39, 51, 52, 64, 69, 73, 81], "keep": [2, 5, 18, 34, 55], "track": [2, 34, 68], "reorderidx": 2, "inform": [2, 3, 5, 7, 9, 12, 13, 16, 19, 21, 23, 27, 32, 34, 39, 41, 44, 46, 52, 53, 54, 55, 59, 64, 67, 68, 69, 73, 75, 77, 78, 80, 81], "reorder": 2, "after": [2, 3, 4, 7, 9, 13, 16, 30, 34, 52, 59, 61, 64, 69, 73, 75], "empti": [2, 3, 12, 36, 42, 55, 64, 75], "mean": [2, 3, 5, 13, 15, 16, 17, 21, 23, 41, 48, 55, 64, 67, 75, 80], "char": [2, 37, 54, 59, 73, 79, 80], "invocationresultbuff": 2, "buffer": [2, 54, 79], "note": [2, 3, 9, 10, 14, 16, 18, 19, 20, 21, 24, 30, 32, 37, 39, 48, 52, 53, 54, 59, 61, 64, 68, 69, 73, 75, 79, 81], "need": [2, 3, 4, 5, 9, 13, 14, 15, 18, 19, 23, 24, 26, 30, 48, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72, 73, 75, 76, 79], "abl": [2, 9, 13, 24, 34, 52, 53, 54, 59, 75, 79, 80], "numbertrajectori": 2, "calcul": [2, 3, 5, 6, 7, 9, 11, 16, 19, 21, 24, 28, 53, 54, 59, 64, 67], "job": [2, 13, 14, 34, 52, 53, 54, 64, 75], "qpu": [2, 3, 10, 12, 13, 23, 24, 28, 31, 32, 33, 34, 39, 44, 52, 54, 55, 58, 59, 63, 64, 67, 72, 79, 80, 81], "extra": [2, 11, 12, 41, 48, 52], "configur": [2, 8, 9, 13, 22, 44, 52, 53, 54, 55, 64, 67, 69, 72, 73, 75, 76, 79, 80], "later": [2, 7, 9, 12, 13, 16, 17, 34, 38, 54, 64, 73, 75], "server": [2, 52, 54, 64, 75], "file": [2, 4, 9, 13, 34, 41, 52, 53, 54, 59, 60, 64, 67, 69, 71, 72, 73, 75, 76, 77, 79, 80], "read": [2, 3, 13, 14, 19, 61, 64], "wrap": [2, 34, 36, 48, 51], "t": [2, 3, 4, 7, 10, 15, 20, 21, 30, 32, 34, 37, 38, 41, 42, 51, 53, 55, 61, 64, 65, 68, 73, 75, 81], "case": [2, 3, 7, 8, 9, 12, 14, 15, 16, 17, 18, 23, 25, 26, 28, 34, 48, 51, 57, 61, 63, 73, 77, 79], "must": [2, 3, 7, 13, 17, 18, 19, 23, 24, 33, 34, 38, 40, 43, 46, 48, 51, 52, 55, 64, 68, 71, 72, 73, 75, 79, 80], "some": [2, 4, 8, 9, 11, 13, 15, 16, 17, 19, 20, 23, 25, 29, 32, 34, 48, 53, 54, 55, 68, 69, 71, 72, 73, 75, 76, 79, 80, 81], "point": [2, 3, 9, 15, 30, 34, 38, 41, 54, 55, 69, 72, 73, 75], "same": [2, 3, 7, 9, 12, 13, 14, 15, 16, 17, 18, 21, 23, 28, 30, 34, 48, 52, 54, 59, 64, 66, 67, 69, 72, 73, 75, 79], "runtim": [2, 9, 33, 34, 36, 39, 52, 53, 54, 55, 63, 69, 72, 75, 77], "_job": 2, "qpunamein": 2, "config": [2, 4, 55, 72, 73, 75, 80], "info": [2, 21, 53, 55, 60, 69], "requir": [2, 3, 4, 7, 8, 9, 10, 11, 13, 15, 16, 19, 21, 23, 28, 30, 34, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 55, 64, 67, 68, 73, 76, 80], "date": 2, "even": [2, 7, 9, 14, 17, 19, 24, 32, 55, 73, 75, 79, 81], "face": [2, 21, 40], "itself": [2, 45, 48, 54, 73, 75], "collect": [2, 3, 4, 8, 12, 13, 16, 59], "pertin": [2, 34, 40, 45, 46], "remot": [2, 3, 34, 39, 50, 53, 55, 60, 67], "rest": [2, 3, 5, 13, 16, 17, 33, 52, 54, 55, 64, 73, 75, 79], "wait": [2, 3, 9, 13, 24, 53, 54, 59, 64], "until": [2, 3, 9, 13, 17, 21, 24, 59, 64], "readi": [2, 19, 22, 64, 75], "executionresult": 2, "correspond": [2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 20, 21, 23, 27, 28, 34, 52, 64, 65, 73, 75, 77], "well": [2, 3, 5, 10, 12, 13, 18, 19, 20, 27, 32, 34, 37, 39, 51, 55, 72, 75, 76, 79, 81], "integ": [2, 3, 12, 14, 17, 24, 31, 38, 44, 54, 55, 59, 61, 67], "1st": [2, 16, 26], "bitstr": [2, 3, 5, 9, 14, 17, 34], "m": [2, 4, 8, 9, 10, 12, 18, 30, 37, 42, 54, 55, 64, 67, 69, 73, 75, 79, 80], "tripl": [2, 69], "long": [2, 24, 34, 37, 59, 73, 75, 79, 80], "length": [2, 5, 18, 64], "deseri": [2, 3], "discuss": [2, 9, 16, 28, 71], "brief": [2, 72], "countsdictionari": [2, 34], "assum": [2, 3, 7, 8, 9, 13, 14, 16, 17, 18, 19, 39, 41, 46, 51, 54, 55, 59, 64, 72, 73, 75, 77], "expval": [2, 34], "other": [2, 3, 4, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 30, 31, 33, 36, 38, 41, 46, 48, 51, 52, 53, 54, 55, 57, 58, 59, 64, 73, 75, 79, 80], "appendresult": 2, "globalregisternam": [2, 34], "classic": [2, 4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23, 33, 35, 38, 39, 41, 42, 46, 48, 54, 58, 59, 64, 68, 69, 72, 73, 76, 79], "sequentialdata": 2, "sequenti": [2, 3, 34, 53, 59], "collat": [2, 3], "holist": 2, "nullari": 2, "precomputedexp": 2, "__global__": [2, 3, 34, 53, 64, 77], "has_expect": 2, "string_view": [2, 34, 72], "anoth": [2, 5, 9, 16, 17, 19, 37, 38, 48, 55, 61, 64, 66, 73], "register_nam": [2, 3, 34], "tandem": [2, 67], "to_map": [2, 34], "regnam": 2, "merg": [2, 3, 69], "necessari": [2, 12, 19, 52, 54, 55, 64, 69, 73, 75, 79], "document": [2, 3, 23, 30, 31, 32, 33, 41, 50, 52, 53, 55, 71, 72, 73, 75, 79, 81], "exp_val_z": 2, "deprec": [2, 3, 23, 50, 54, 55], "probabl": [2, 3, 17, 18, 19, 26, 34, 59, 68, 79], "most_prob": [2, 3, 5, 8, 19, 37, 59, 68], "most": [2, 3, 8, 9, 13, 14, 16, 19, 23, 24, 32, 34, 48, 53, 59, 61, 64, 69, 73, 75, 76, 79, 81], "ostream": [2, 79], "output": [2, 3, 4, 7, 11, 16, 19, 21, 30, 38, 51, 52, 56, 59, 69, 75, 79, 80], "stream": [2, 9, 39], "extract": [2, 3, 4, 7, 9, 10, 12, 16, 19, 27, 34, 36, 37, 46, 48, 59, 69, 73, 75], "unord": 2, "get_margin": [2, 34], "marginalindic": [2, 34], "margin": [2, 18], "those": [2, 19, 32, 34, 38, 48, 51, 54, 55, 69, 81], "subset": [2, 3, 9, 11, 21, 34, 38, 46, 48], "rvalu": 2, "refer": [2, 13, 14, 16, 19, 23, 31, 34, 38, 39, 46, 48, 52, 53, 54, 55, 64, 73, 75], "newbitstr": 2, "oldbitstr": 2, "process": [2, 3, 9, 10, 15, 17, 21, 23, 24, 25, 32, 33, 34, 39, 44, 52, 53, 54, 55, 58, 64, 67, 68, 69, 73, 79, 81], "const_iter": 2, "cbegin": 2, "cend": 2, "has_even_par": 2, "pariti": [2, 51], "sample_opt": [2, 34], "async_sampl": 2, "express": [2, 3, 13, 16, 21, 28, 32, 34, 35, 36, 37, 39, 42, 51, 54, 58, 65, 66, 69, 79, 81], "final": [2, 3, 4, 6, 9, 12, 13, 16, 20, 23, 28, 51, 54, 63, 65, 67, 69, 72, 73], "variad": [2, 34], "concret": [2, 3, 14, 34, 59, 63], "evalu": [2, 3, 7, 9, 12, 23, 28, 34, 53, 54, 55, 63], "dictionari": [2, 3, 13, 18, 34, 59, 65], "extens": [2, 30, 33, 34, 40, 46, 50, 72, 75, 77, 80], "describ": [2, 3, 5, 10, 12, 13, 16, 18, 19, 26, 44, 46, 51, 52, 66, 68, 72, 73, 75, 79], "effici": [2, 9, 13, 19, 21, 23, 29, 55], "manner": [2, 34, 54, 72], "client": [2, 34, 53, 73], "remain": [2, 3, 4, 45, 64, 73], "gpu": [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 20, 21, 23, 24, 28, 31, 32, 33, 39, 51, 54, 56, 58, 62, 72, 73, 77, 79, 80, 81], "devic": [2, 3, 9, 11, 13, 17, 18, 21, 23, 24, 26, 28, 34, 37, 38, 41, 45, 52, 53, 54, 55, 59, 64, 69, 72, 75], "cpu": [2, 4, 5, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 24, 26, 30, 31, 50, 53, 54, 58, 59, 67, 69, 73, 75, 79, 80], "memori": [2, 9, 11, 20, 21, 35, 38, 39, 46, 48, 53, 54, 55, 58, 67, 69, 75], "primari": [2, 3, 5, 8, 34, 46, 72], "goal": [2, 5, 7, 9, 14, 19, 20, 23], "minim": [2, 8, 9, 13, 14, 18, 21, 22, 23, 28, 30, 31, 73, 75, 80], "transfer": [2, 54, 55], "subclass": [2, 34, 72], "cusvstat": 2, "scalartyp": [2, 79], "remotesimulationst": 2, "nvqir": [2, 31, 69, 70, 72], "mpssimulationst": 2, "tensornetsimulationst": 2, "made": [2, 14, 19, 20, 59, 75], "extent": [2, 3, 55], "enum": [2, 4], "precis": [2, 3, 15, 22, 23, 53, 55, 61, 68], "enumer": [2, 3, 5, 13, 18, 21, 37], "fp32": [2, 3, 23, 53, 54, 55], "fp64": [2, 3, 12, 13, 22, 29, 50, 53, 54, 55], "simulation_precis": 2, "possibl": [2, 7, 8, 9, 13, 16, 17, 18, 21, 30, 33, 48, 68, 75, 77, 79], "float": [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 27, 28, 34, 37, 38, 41, 45, 53, 54, 55, 61, 63, 72], "tensorstatedata": 2, "dimens": [2, 3, 6, 8, 9, 12, 14, 16, 21, 28, 34, 51, 55], "state_data": 2, "variant": [2, 13, 41], "custatevec": [2, 53, 54, 55, 72], "attempt": [2, 19, 79], "care": [2, 34, 79], "taken": [2, 9], "ensur": [2, 3, 12, 13, 69, 71, 73, 75, 79], "comparison": [2, 7], "compat": [2, 3, 40, 55, 73], "registeredtyp": 2, "declar": [2, 13, 34, 38, 39, 41, 69, 72, 77, 79], "themselv": [2, 52, 57], "plugin": [2, 32, 71, 73, 75, 81], "myinterfac": 2, "column": [2, 3, 30], "upon": [2, 6, 16, 24, 48, 59, 64, 68, 75], "destruct": 2, "rawdata": 2, "intern": [2, 3, 54], "modifi": [2, 37, 38, 41, 45, 48, 55, 75], "correct": [2, 5, 15, 16, 18, 21, 37, 58, 64, 73, 75], "j": [2, 3, 8, 9, 10, 12, 14, 15, 18, 19, 20, 21, 24, 37, 38, 42, 67, 73], "minimal_eigenvalu": [2, 3], "eigenvalu": [2, 3, 10, 12, 14, 55], "thei": [2, 3, 4, 6, 9, 12, 13, 14, 16, 17, 19, 32, 38, 46, 48, 58, 68, 73, 75, 81], "set_zero": 2, "seen": [2, 7, 13, 19, 21], "manag": [2, 4, 52, 53, 54, 73, 75], "instruct": [2, 13, 19, 21, 32, 39, 41, 43, 48, 52, 53, 55, 64, 65, 69, 73, 75, 79, 80, 81], "control": [2, 3, 10, 12, 14, 15, 19, 31, 32, 33, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 57, 58, 61, 62, 64, 65, 68, 69, 72, 75, 81], "flow": [2, 11, 33, 34, 38, 47, 55, 58, 69], "path": [2, 3, 30, 52, 69, 72, 73, 75], "thu": [2, 13, 16, 51, 53, 54, 55, 68, 69], "might": [2, 4, 7, 9, 12, 17, 21, 36, 41, 48, 50, 53, 54, 66], "produc": [2, 3, 4, 5, 8, 9, 10, 12, 14, 17, 19, 24, 28, 34, 37, 42, 43, 48, 57, 59, 65, 69, 72, 79], "elementtyp": 2, "is_integral_v": 2, "is_signed_v": 2, "exclus": [2, 7], "stop": [2, 13, 59, 75], "step": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 28, 37, 51, 64, 69, 73, 77, 80], "reach": [2, 17, 21, 67], "is_invocable_v": 2, "draw": [2, 3, 5, 6, 7, 9, 15, 18, 19, 21, 24, 26, 30, 59], "utf": [2, 3], "8": [2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 32, 34, 37, 38, 39, 50, 51, 52, 53, 54, 55, 64, 67, 69, 73, 75, 80, 81], "usag": [2, 3, 54, 67], "iostream": [2, 53, 57, 59, 64, 79], "mz": [2, 3, 5, 7, 10, 13, 16, 18, 19, 24, 25, 34, 36, 37, 48, 52, 53, 54, 57, 59, 61, 64, 65, 66, 67, 68, 69, 79, 80], "cout": [2, 53, 59, 64, 79], "q0": [2, 3, 5, 6, 7, 9, 15, 17, 19, 21, 24, 26, 30, 48], "q1": [2, 3, 5, 7, 9, 15, 17, 19, 21, 24, 26, 30, 48], "ry": [2, 3, 6, 8, 9, 10, 11, 16, 28, 34, 37, 38, 41, 43, 53, 54, 61, 63], "59": [2, 3, 14, 34, 37, 54, 63], "callabl": [2, 3, 33, 34, 36, 37, 38, 57, 63, 65], "trivial": [2, 9, 17, 19, 34, 54, 63, 76], "signatur": [2, 3, 34, 36, 38, 66, 69], "without": [2, 3, 12, 21, 23, 34, 38, 45, 52, 55, 64, 73, 75, 79, 80], "regard": 2, "depth": [2, 9, 49], "etc": [2, 3, 38, 39, 51, 54, 55, 58, 64, 72, 73, 75, 80], "kraus_op": 2, "krau": [2, 3, 26], "initializer_list": 2, "initlist": 2, "adjoint": [2, 15, 19, 36, 37, 41, 45, 48, 61, 69], "flatten": [2, 21, 79], "nrow": [2, 11, 30], "ncol": [2, 30], "kraus_channel": [2, 13], "channel": [2, 3, 13, 16, 18, 26, 75], "action": [2, 4, 34, 37, 38, 75], "matric": [2, 3, 4, 12, 55], "amplitude_damping_channel": 2, "bit_flip_channel": 2, "depolarization_channel": [2, 26], "phase_flip_channel": 2, "inputlist": 2, "inop": 2, "lvalu": 2, "make": [2, 3, 7, 8, 13, 15, 16, 23, 30, 34, 54, 55, 69, 72, 73, 75, 77, 80], "get_op": 2, "push_back": [2, 38], "noise_model_typ": 2, "noise_typ": 2, "unknown": [2, 16, 69, 75], "autom": [2, 72], "damp": 2, "error": [2, 9, 10, 13, 17, 26, 30, 31, 32, 41, 48, 52, 53, 55, 58, 64, 73, 75, 79, 81], "depolar": [2, 3, 13, 26], "densiti": [2, 3, 13, 16, 17, 18, 26, 30, 50, 53, 55], "predicatefuncti": 2, "callback": [2, 3, 22, 23], "operand": [2, 3, 41, 54], "add_channel": [2, 3, 17, 18, 26], "quantumop": 2, "pred": [2, 69], "add_all_qubit_channel": [2, 3, 13], "numcontrol": 2, "get_channel": [2, 3], "targetqubit": 2, "controlqubit": 2, "relev": [2, 4, 6, 9, 11, 18, 44, 55], "downstream": [2, 31, 72, 76, 78], "object": [2, 3, 4, 8, 9, 13, 14, 18, 20, 24, 28, 30, 34, 48, 54, 59, 69], "logic": [2, 7, 44, 46, 54], "kernel_build": [2, 36], "kernel_builder_bas": 2, "kernelbuildertyp": 2, "mlir": [2, 3, 13, 31, 54, 69, 70, 71, 73], "getargu": [2, 36, 71], "quakevalu": [2, 3, 36], "isargstdvec": 2, "otherwis": [2, 3, 7, 16, 17, 19, 55, 59], "getnumparam": [2, 36], "qalloc": [2, 3, 13, 36, 52, 53, 54, 67], "qvec": [2, 48, 52], "veq": [2, 3, 48, 69], "blockargu": 2, "simplic": [2, 4, 13, 17], "impli": [2, 3, 55], "goe": [2, 39], "scope": [2, 38, 39, 46, 69, 71], "befor": [2, 10, 13, 14, 20, 30, 52, 60, 64, 73, 75], "mai": [2, 3, 7, 9, 12, 13, 14, 18, 32, 34, 36, 38, 39, 41, 45, 46, 51, 52, 53, 54, 55, 58, 59, 60, 64, 66, 73, 75, 77, 79, 80, 81], "garbag": 2, "constantv": 2, "val": [2, 13, 18], "swap": [2, 4, 8, 19, 21, 30, 37, 64], "mod": [2, 5, 19, 41], "is_same_v": 2, "perform": [2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 25, 31, 32, 34, 37, 51, 52, 54, 55, 59, 61, 62, 64, 66, 67, 68, 71, 72, 73, 75, 79, 80, 81], "fredkin": 2, "between": [2, 3, 5, 7, 8, 9, 10, 14, 16, 17, 18, 19, 21, 22, 24, 30, 38, 48, 51, 53, 57, 58, 59, 64, 67, 75, 77], "meant": [2, 33], "thin": [2, 3], "wrapper": [2, 3, 54], "around": [2, 3, 4, 5, 7, 18, 20, 34, 80], "instanc": [2, 3, 7, 9, 16, 21, 34, 36, 41, 46, 53, 54, 55, 58, 75], "quak": [2, 3, 14, 31, 47, 69, 71], "dialect": [2, 3, 69, 71], "arithmet": [2, 38, 39], "getvalu": 2, "actual": [2, 18, 21, 34, 59, 72], "implicitlocopbuild": 2, "arith": [2, 48, 69], "constantfloatop": 2, "canvalidatenumel": 2, "stdvectyp": 2, "do": [2, 3, 4, 9, 13, 15, 16, 18, 19, 21, 32, 41, 43, 46, 48, 53, 54, 55, 57, 58, 61, 65, 68, 69, 73, 75, 76, 77, 80, 81], "loop": [2, 4, 5, 8, 9, 12, 14, 17, 20, 28, 35, 46, 57, 64, 67, 69], "know": [2, 4, 5, 16, 19, 30, 32, 48, 81], "bound": [2, 3, 8, 16, 18], "startidx": [2, 3], "subscript": [2, 3, 52, 53], "stdvec": [2, 48, 69], "constants": 2, "isstdvec": 2, "getrequiredel": 2, "veqtyp": 2, "divid": [2, 14, 19], "invers": [2, 15, 21, 37, 51], "friend": [2, 16], "write": [2, 3, 13, 60, 64, 68, 71, 75, 77], "wai": [2, 3, 7, 12, 19, 23, 24, 28, 34, 45, 48, 51, 52, 59, 61, 73], "code": [2, 3, 5, 7, 8, 9, 10, 13, 14, 15, 16, 19, 22, 23, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 52, 53, 54, 55, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 77, 79, 80, 81], "mlircontext": 2, "ctx": [2, 11, 71], "f": [2, 5, 7, 9, 13, 16, 18, 19, 20, 21, 28, 37, 38, 51, 73, 80], "high": [2, 13, 18, 52, 67, 69, 79], "serv": [2, 3, 9, 38, 46, 53, 71, 73], "work": [2, 4, 7, 8, 9, 10, 12, 15, 18, 19, 21, 23, 31, 34, 53, 54, 67, 70, 73, 75, 76, 79, 80], "subtyp": 2, "possibli": [2, 4, 38], "deleg": [2, 53, 72, 75], "third": [2, 31, 78], "parti": [2, 16, 31, 78], "immut": 2, "mutabl": [2, 34], "gradient": [2, 6, 11, 31, 53, 62], "df": [2, 18], "dx_i": 2, "scalar": [2, 3, 34], "queri": [2, 3, 5, 7, 34, 44, 54, 63], "whether": [2, 3, 7, 19, 21, 32, 73, 75, 81], "strategi": [2, 34, 39, 45, 72], "thing": [2, 66], "max": [2, 7, 9, 13, 21, 31, 53, 55], "cobyla": [2, 3, 6, 9, 22, 23, 28, 34], "opt": [2, 38, 69, 71, 73, 75], "assert": [2, 5, 13, 19, 21, 23, 37, 38], "requiresgradi": [2, 34], "algo": 2, "opt_val": [2, 53], "opt_param": [2, 13, 34, 53], "dx": [2, 34], "virtual": [2, 4, 32, 34, 53, 54, 59, 63, 67, 72, 73, 81], "achiev": [2, 4, 13, 14, 15, 19, 34, 52, 53, 66], "dim": [2, 3, 21, 53, 55], "optimizable_funct": [2, 34], "opt_funct": [2, 34, 53], "variat": [2, 4, 6, 9, 11, 12, 14, 23, 24, 28, 31, 34], "custom": [2, 3, 13, 23, 26, 32, 34, 38, 51, 54, 55, 61, 65, 71, 73, 75, 78, 79, 81], "ptrtoown": 2, "jdx": 2, "tensoridx": 2, "get_tensor": 2, "just": [2, 7, 9, 13, 14, 19, 24, 33, 47, 54, 59, 60, 65, 68, 69, 75], "rank": [2, 3, 54, 65, 67], "get_num_tensor": 2, "get_num_qubit": [2, 44], "get_precis": [2, 3], "is_on_gpu": [2, 3], "to_host": 2, "hostptr": 2, "numel": 2, "pure": [2, 26, 37, 38, 45], "basisst": 2, "host": [2, 35, 37, 38, 39, 42, 46, 53, 54, 55, 63, 79, 80], "leverag": [2, 3, 9, 12, 21, 34, 36, 38, 41, 45, 46, 55, 65, 69, 72, 76], "separ": [2, 9, 21, 55, 73, 75], "mapper": 2, "inherit": [2, 35, 39, 54], "updat": [2, 9, 23, 32, 34, 52, 64, 73, 80, 81], "protect": [2, 46, 72], "getexpectedvalu": 2, "central_differ": [2, 34], "forward_differ": 2, "parameter_shift": 2, "prescrib": 2, "kernelt": 2, "argsmapp": [2, 34], "setarg": 2, "save": [2, 3, 10, 11, 16, 17, 20, 28, 51, 53, 54, 59, 67, 69, 75, 77], "nvqc": [2, 50, 53], "setkernel": 2, "been": [2, 3, 16, 19, 21, 30, 52, 53, 58, 59, 64, 73, 75], "have": [2, 5, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 29, 30, 32, 34, 48, 51, 53, 54, 55, 59, 64, 67, 68, 71, 73, 75, 76, 77, 79, 80, 81], "funcatx": [2, 3], "func": [2, 34, 48, 69, 71], "clone": [2, 11, 16, 46, 71, 73], "deriv": [2, 7, 9, 10, 19, 34, 68], "exp_h": [2, 34], "forward": [2, 11, 23, 28], "approxim": [2, 8, 9, 12, 13, 14, 17, 23, 31, 55, 59], "registri": [2, 75], "unit": [2, 3, 13, 24, 30, 33, 38, 39, 41, 44, 46, 52, 58, 68], "certain": [2, 3, 7, 8, 13, 21, 25, 29, 46, 53, 54, 55, 72, 75], "connect": [2, 9, 11, 14, 32, 39, 44, 46, 48, 64, 73, 81], "queue": [2, 13, 34, 53, 64], "enqueu": 2, "quantum_platform": [2, 3, 44, 54, 63, 69], "baseremoterestqpu": 2, "baseremotesimulatorqpu": 2, "orcaremoterestqpu": 2, "_qpuid": 2, "setid": 2, "thread": [2, 3, 39, 54, 55, 63, 64, 67, 72], "getexecutionthreadid": 2, "getnumqubit": 2, "getconnect": 2, "issimul": 2, "supportsconditionalfeedback": 2, "feedback": [2, 39, 58, 75], "remotecap": 2, "getremotecap": 2, "capabl": [2, 19, 20, 21, 53, 55, 67, 73, 75], "setshot": 2, "_nshot": 2, "noth": [2, 16], "wish": [2, 9, 53, 54, 63, 75], "isemul": 2, "local": [2, 3, 4, 13, 31, 52, 53, 54, 59, 64, 69, 73, 74, 76], "emul": [2, 3, 13, 24, 52, 55, 64], "quantumtask": 2, "setexecutioncontext": 2, "resetexecutioncontext": 2, "reset": [2, 3, 34, 37, 39, 55, 72], "kernelthunkresulttyp": 2, "launchkernel": 2, "kernelthunktyp": 2, "kernelfunc": 2, "uint64_t": 2, "rawarg": 2, "launch": [2, 34, 54, 55, 75, 80], "pack": [2, 79], "launchserializedcodeexecut": 2, "serializedcodeexecutioncontext": 2, "serializecodeexecutionobject": 2, "onrandomseedset": 2, "notifi": 2, "let": [2, 5, 7, 10, 13, 14, 15, 16, 18, 19, 21, 22, 26, 30, 41, 48, 51, 57, 58, 59, 63, 65, 66, 67, 68, 69, 75, 76, 77, 80], "fermioniqbaseqpu": 2, "querabaseqpu": 2, "basenvcfsimulatorqpu": 2, "submit": [2, 3, 13, 52, 53, 55, 64, 75], "nvcf": 2, "servic": [2, 52, 53, 54, 64, 75], "interact": [2, 3, 4, 8, 13, 44, 51, 75], "enough": [2, 5, 9], "moreov": [2, 16, 34, 39, 52, 54, 58, 72], "synchron": [2, 13, 38, 54, 64], "realiz": [2, 4, 20, 21, 68], "intend": [2, 33, 34, 36, 73, 77], "popul": [2, 3, 12], "platformqpu": 2, "qubitconnect": [2, 44], "fetch": [2, 9], "supports_task_distribut": 2, "multipl": [2, 3, 9, 10, 12, 18, 19, 23, 24, 28, 30, 32, 41, 51, 52, 54, 55, 58, 59, 64, 66, 68, 75, 81], "parallel": [2, 10, 12, 33, 39, 55, 59, 75, 80], "qpu_id": [2, 3, 10, 12, 23, 24, 28, 34, 44, 53, 54, 59, 67], "get_shot": 2, "getter": 2, "onc": [2, 4, 9, 12, 15, 18, 21, 24, 36, 51, 52, 53, 55, 58, 59, 64, 73, 75, 77, 80], "set_shot": 2, "clear_shot": 2, "remov": [2, 9, 21, 48, 50, 53, 54, 55, 75], "numshot": 2, "setter": 2, "set_exec_ctx": 2, "get_exec_ctx": 2, "reset_exec_ctx": 2, "num_qpu": [2, 3, 10, 23, 28, 44, 53, 54, 63], "is_simul": [2, 44], "supports_conditional_feedback": 2, "get_current_qpu": [2, 44], "set_current_qpu": [2, 44], "device_id": [2, 44], "is_remot": [2, 3, 44], "qpuid": [2, 44, 54], "is_emul": [2, 3, 44], "set_nois": [2, 3], "get_remote_cap": 2, "reset_nois": 2, "turn": [2, 11, 15, 53, 60, 72], "off": [2, 3, 9, 11, 12, 15, 19, 53, 54, 73], "enqueueasynctask": 2, "kernelexecutiontask": 2, "launchvq": 2, "kernelarg": 2, "n_param": 2, "vqe": [2, 3, 9, 14, 22, 28, 29, 31, 53, 61], "settargetbackend": 2, "resetlogstream": 2, "log": [2, 3, 32, 53, 73, 75, 81], "getlogstream": 2, "setlogstream": 2, "logstream": 2, "list_platform": 2, "structur": [2, 3, 4, 8, 9, 11, 14, 21, 23, 34, 36, 40, 42, 44, 46, 54, 55, 69, 71, 72, 77], "boolean": [2, 19, 36], "field": [2, 13, 14, 31, 51, 52, 54], "initvalu": 2, "stateoverlap": 2, "serializedcodeexec": 2, "command": [2, 8, 9, 10, 12, 23, 24, 28, 29, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72, 73, 75, 76, 77, 79, 80], "entir": [2, 5, 13, 17, 25, 30, 48, 65, 72], "forth": [2, 54], "commun": [2, 16, 34, 52, 54, 55, 73], "isremotesimul": 2, "ir": [2, 31, 36, 60, 70, 71, 72], "synthesi": [2, 21, 31, 33, 36, 42, 46, 47, 62, 69], "ultim": [2, 69, 72], "ad": [2, 4, 18, 23, 32, 34, 52, 53, 61, 65, 69, 73, 75, 77, 80, 81], "promis": [2, 5, 7, 12], "qubitedg": [2, 44], "thunk": 2, "num_available_gpu": [2, 3, 13, 59, 67], "set_random_se": [2, 3, 8, 11, 14, 16, 18, 19, 55], "caller": [2, 38], "unset_nois": [2, 3], "dealloc": [2, 39, 46, 72], "mpi": [2, 32, 54, 55, 65, 67, 80, 81], "against": [2, 3, 13, 32, 52, 73, 75, 77, 81], "argc": [2, 37, 59, 73, 80], "argv": [2, 37, 59, 73, 80], "program": [2, 10, 23, 24, 31, 33, 36, 38, 41, 46, 47, 52, 53, 54, 55, 56, 58, 64, 65, 67, 69, 73, 75, 77, 80], "is_initi": [2, 3, 65], "num_rank": [2, 3, 67], "all_gath": [2, 3], "gather": [2, 3, 16, 24, 37, 59, 68], "fit": [2, 73], "come": [2, 4, 16, 39, 53, 64, 79], "all_reduc": 2, "binaryfunct": 2, "localvalu": 2, "rootrank": [2, 3], "input_st": [2, 3, 15, 21, 52, 64], "loop_length": [2, 3, 52, 64], "bs_angl": [2, 3, 52, 64], "n_sampl": [2, 3, 64], "10000": [2, 3, 14, 19, 52, 59, 64, 67], "ps_angl": [2, 3, 64], "sample_async": [2, 3, 10, 13, 24, 34, 54, 59, 64], "make_kernel": [3, 13, 36, 52, 53, 54, 67], "els": [3, 9, 11, 12, 13, 17, 19, 21, 30, 36, 54, 55, 59, 64, 73, 77, 80], "int_valu": 3, "float_valu": 3, "pykernel": 3, "argtypelist": 3, "programmat": 3, "str": [3, 5, 8, 9, 12, 13, 17, 18, 19, 20, 52, 54, 59, 64, 68, 79], "argument_count": 3, "alia": [3, 46], "pykerneldecor": 3, "verbos": [3, 4, 56, 69, 73, 76], "modul": [3, 4, 11, 51, 55, 59, 69, 73], "none": [3, 11, 13, 16, 19, 21, 37, 38, 51, 55], "funcsrc": 3, "locat": [3, 52, 54, 73, 75, 79], "overrideglobalscopedvar": 3, "decor": [3, 9, 38, 57], "lower": [3, 13, 23, 51, 69, 72], "ast": 3, "jit": [3, 9], "executionengin": 3, "__call__": 3, "__str__": 3, "extract_c_function_point": 3, "from_json": 3, "jstr": 3, "overridedict": 3, "convert": [3, 4, 9, 10, 12, 17, 19, 23, 27, 34, 51, 63, 69], "json": [3, 52, 54, 64, 75], "merge_kernel": 3, "othermod": 3, "moduleop": 3, "synthesize_callable_argu": 3, "funcnam": 3, "block": [3, 4, 8, 14, 19, 43, 61], "awai": [3, 13, 16, 48], "funcop": [3, 71], "to_json": 3, "self": [3, 9, 11, 14, 73, 75], "reconstruct": 3, "elsewher": [3, 21], "type_to_str": 3, "clean": [3, 4, 21], "kwarg": [3, 9], "languag": [3, 21, 31, 32, 35, 38, 39, 40, 41, 46, 47, 54, 58, 65, 68, 69, 72, 76, 81], "attribut": [3, 38, 65, 69], "coprocessor": [3, 34, 38], "shots_count": [3, 7, 8, 9, 10, 13, 17, 18, 19, 24, 26, 52, 59, 64, 65, 67], "over": [3, 5, 12, 13, 16, 17, 23, 24, 26, 28, 34, 46, 52, 59, 64, 72, 75], "ndarrai": [3, 11, 16, 26, 30, 51], "leav": [3, 16, 26, 52, 64, 75], "doesn": 3, "firstfloat": 3, "secondfloat": 3, "kei": [3, 8, 10, 13, 14, 15, 18, 19, 20, 21, 23, 29, 43, 51, 52, 53, 72, 75, 80], "nois": [3, 9, 13, 17, 21, 26, 34, 44, 52, 55, 64], "model": [3, 9, 17, 20, 23, 26, 31, 32, 33, 34, 36, 38, 41, 46, 47, 48, 51, 52, 54, 64, 69, 72, 75, 80, 81], "sampleresult": [3, 9, 59, 65, 72], "_mlir_lib": [3, 13], "_quakedialect": [3, 13], "cudaq_runtim": [3, 13], "asyncsampleresult": [3, 13, 64], "platform": [3, 13, 23, 24, 31, 32, 33, 41, 47, 50, 51, 52, 53, 55, 59, 63, 67, 69, 72, 73, 75, 80, 81], "Will": [3, 43, 59], "whose": [3, 4, 11, 14, 19, 22, 34, 39, 51, 53, 54, 63, 68], "identif": 3, "spin_oper": [3, 14, 59], "spinoper": [3, 8, 9, 11, 12, 13, 14, 20, 23, 59, 67], "nest": [3, 12, 54], "hermitian": [3, 12], "observeresult": [3, 59], "observe_async": [3, 12, 23, 24, 28, 34, 53, 67], "asyncobserveresult": 3, "arg0": [3, 69], "prepar": [3, 5, 9, 10, 11, 12, 13, 15, 18, 20, 22, 24, 28, 61, 63, 65, 67], "select": [3, 8, 9, 11, 12, 13, 17, 19, 20, 21, 22, 23, 29, 55, 59, 63, 75, 79], "get_state_async": [3, 54], "asyncstateresult": 3, "parameter_count": [3, 8, 9, 14, 22, 23, 67], "argument_mapp": [3, 14], "gradient_strategi": [3, 28], "arg1": 3, "format": [3, 11, 19, 21, 30, 34, 37, 46, 73], "ascii": [3, 30], "latex": [3, 30], "cx": [3, 9, 13, 16, 18, 21, 36, 52, 53, 67, 80], "translat": [3, 16, 19, 21, 24, 34, 68, 69], "qir": [3, 69, 72], "adapt": [3, 14, 21, 32, 81], "openqasm2": 3, "openqasm": 3, "moduleid": [3, 69], "llvmdialectmodul": [3, 69], "source_filenam": [3, 69], "opaqu": [3, 46, 69], "__nvqpp__mlirgen__function_variable_qreg": 3, "_z13variable_qregv": 3, "local_unnamed_addr": [3, 69], "tail": [3, 69], "__quantum__rt__qubit_allocate_arrai": [3, 69], "i64": [3, 69], "__quantum__qis__mz": [3, 69], "9": [3, 4, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 23, 24, 28, 32, 34, 38, 39, 64, 69, 73, 75, 81], "7": [3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 32, 34, 38, 39, 41, 46, 54, 64, 67, 69, 73, 75, 81], "__quantum__rt__qubit_release_arrai": [3, 69], "ret": [3, 69], "evolv": [3, 4, 16, 39, 51, 52, 68], "hamiltonian": [3, 6, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 28, 37, 51, 52, 53, 54, 55, 59, 63], "operatorsum": 3, "productoper": 3, "elementaryoper": [3, 51], "scalaroper": [3, 51, 64], "schedul": [3, 14, 21, 51, 52, 59, 64], "initial_st": [3, 51], "union": [3, 18], "sequenc": [3, 7, 13, 14, 19, 21, 48, 51, 58], "collapse_oper": [3, 51], "store_intermediate_result": [3, 51], "integr": [3, 4, 13, 23, 31, 33, 39, 46, 52, 54, 75, 76], "baseintegr": 3, "evolveresult": 3, "evolut": [3, 4, 16, 20, 30, 32, 37, 39, 48, 51, 64, 72, 81], "degre": [3, 8, 23, 29, 51], "freedom": [3, 8, 51], "keyword": [3, 13], "access": [3, 4, 5, 7, 10, 12, 13, 15, 20, 23, 24, 28, 32, 34, 39, 52, 53, 55, 65, 66, 67, 68, 72, 81], "properti": [3, 4, 7, 9, 13, 19, 48], "influenc": [3, 13, 29, 39], "dure": [3, 4, 6, 20, 21, 26, 34, 52, 55, 73, 75, 79], "evolve_async": [3, 52, 64], "asyncevolveresult": 3, "has_target": 3, "get_target": [3, 10, 23, 53, 54, 63, 80], "rais": [3, 12, 13, 51], "set_target": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 28, 30, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72], "reset_target": [3, 13], "initialize_cudaq": 3, "environ": [3, 4, 9, 13, 23, 26, 29, 32, 52, 53, 54, 60, 64, 71, 73, 75, 80, 81], "detect": [3, 13, 59, 67, 73, 75, 79], "simulationprecis": 3, "underyl": 3, "noindex": 3, "infrastructur": [3, 32, 54, 71, 73, 81], "descript": [3, 21, 51, 53, 55, 72, 73, 75], "featur": [3, 4, 9, 15, 29, 32, 38, 73, 75, 79, 80, 81], "activ": [3, 4, 8, 11, 31, 54, 55, 73, 75, 80], "consist": [3, 4, 9, 17, 19, 21, 23, 28, 51, 59, 61], "physic": [3, 4, 13, 14, 16, 21, 23, 32, 33, 39, 46, 48, 52, 54, 55, 64, 68, 81], "0101": [3, 13, 17], "1010": [3, 13, 17], "consol": [3, 53, 60, 73], "cupi": [3, 51, 75], "gettensor": 3, "compris": [3, 51], "tensori": 3, "mlirvalu": 3, "As": [3, 13, 14, 21, 33, 39, 40, 46, 51, 52, 54, 55, 57, 68, 71], "hold": [3, 12], "__add__": 3, "runtimeerror": [3, 9], "new_valu": 3, "5": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 37, 38, 39, 41, 42, 45, 46, 51, 53, 54, 55, 61, 63, 64, 67, 69, 73, 75, 77, 81], "__radd__": 3, "__sub__": 3, "__rsub__": 3, "__neg__": 3, "__mul__": 3, "__rmul__": 3, "__getitem__": 3, "you": [3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 23, 29, 30, 31, 32, 34, 51, 52, 53, 55, 59, 61, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "complexmatrix": 3, "lowest": [3, 4, 21, 23], "num_column": 3, "num_row": 3, "to_numpi": 3, "get_valu": 3, "complexflo": [3, 51], "od": [3, 19], "master": 3, "equat": [3, 4, 5, 13, 14, 15, 19, 21, 51], "solver": [3, 12, 31, 51, 52], "expectation_valu": [3, 6, 51, 63], "intermedi": [3, 16, 51, 69], "were": [3, 5, 9, 13, 19, 23, 30, 51, 75], "final_expectation_valu": 3, "trigger": 3, "final_st": 3, "intermediate_st": 3, "elementari": 3, "operator_id": 3, "further": [3, 7, 8, 41, 48, 57, 59, 69, 72, 80], "simplifi": [3, 55], "classmethod": 3, "op_id": 3, "expected_dimens": 3, "dtype": [3, 10, 12, 13, 18, 21, 26, 51, 61], "definit": [3, 13, 15, 21, 34, 36, 38, 51, 61, 72], "instanti": [3, 30, 34, 39, 45, 46, 51, 53, 54, 79], "To": [3, 9, 13, 14, 15, 18, 19, 21, 26, 34, 38, 41, 46, 51, 52, 53, 54, 55, 58, 59, 63, 64, 65, 69, 71, 72, 73, 75, 76, 77, 79, 80], "addit": [3, 7, 8, 9, 13, 15, 19, 27, 34, 53, 57, 58, 67, 73, 79, 80], "canon": 3, "sort": [3, 8, 12, 19, 76], "neg": [3, 13, 18, 30, 41, 55], "short": [3, 10, 13, 48], "atomic_oper": 3, "rydberghamiltonian": [3, 52, 64], "atom_sit": [3, 52, 64], "delta_glob": [3, 52, 64], "atom_fil": 3, "delta_loc": 3, "quera": [3, 32, 50, 81], "aquila": [3, 52, 64], "machin": [3, 9, 13, 14, 21, 33, 47, 52, 54, 64, 75], "ref": [3, 21, 48, 69], "http": [3, 4, 5, 9, 11, 14, 15, 19, 21, 23, 24, 51, 52, 54, 61, 64, 73, 75], "doc": [3, 9, 24, 32, 54, 64, 81], "aw": [3, 52, 64, 73], "amazon": [3, 32, 81], "com": [3, 4, 5, 9, 11, 13, 14, 15, 21, 24, 52, 55, 64, 73, 75], "braket": [3, 4, 12, 32, 50, 81], "latest": [3, 4, 5, 14, 15, 23, 32, 54, 64, 73, 75, 81], "developerguid": [3, 64], "analog": [3, 52, 68], "html": [3, 64], "ah": [3, 64], "schema": 3, "__init__": [3, 4, 9, 11], "consum": [3, 48, 79], "suppli": [3, 24, 52, 64], "coordin": [3, 30], "tweezer": 3, "trap": [3, 68], "atom": [3, 4, 13, 22, 51, 52, 64, 68], "drive": [3, 4, 8, 39, 51], "omega": [3, 20, 51, 52, 64], "detun": [3, 64], "mark": [3, 9, 79], "occupi": [3, 23, 54], "fill": [3, 38, 64, 72], "factor": [3, 15, 18, 31], "magnitud": [3, 11, 21], "h_k": 3, "dimensionless": 3, "parameter_info": 3, "cudm_stat": 3, "cudensitymatst": 3, "to_cupy_arrai": 3, "termin": [3, 28, 64, 67, 75], "At": [3, 4, 20, 73, 75], "directli": [3, 33, 34, 39, 46, 48, 55, 69, 75, 79, 80], "through": [3, 5, 7, 9, 11, 12, 16, 19, 20, 23, 26, 27, 34, 52, 57, 60, 61, 65, 72, 73, 75, 80], "c_if": [3, 36], "__iter__": 3, "__len__": 3, "equival": [3, 14, 51, 54, 55, 59, 61], "metadata": [3, 22, 69], "experi": [3, 9, 18, 29, 52, 64, 73, 75], "adher": [3, 11, 16, 38, 40, 46, 68, 72], "implicit": [3, 34, 46, 48, 51], "expectation_z": 3, "get_marginal_count": [3, 18], "marginal_indic": 3, "get_register_count": 3, "get_sequential_data": 3, "item": [3, 4, 11, 13, 18, 19, 79], "frequent": 3, "proport": 3, "kick": [3, 54], "pattern": [3, 9, 21, 33, 34, 38, 47, 69, 71], "sub_term": 3, "favor": 3, "get_spin": 3, "accessor": [3, 54], "optimizationresult": 3, "gradientdesc": 3, "initial_paramet": [3, 6, 8, 9, 14], "lower_bound": 3, "max_iter": [3, 9], "requires_gradi": 3, "upper_bound": 3, "upper": [3, 13], "neldermead": [3, 8, 14], "lbfg": [3, 34, 53], "centraldiffer": [3, 28], "parameter_vector": [3, 9, 14, 23, 28, 53], "loss": 3, "forwarddiffer": 3, "parametershift": 3, "krauschannel": [3, 13, 26], "num_control": 3, "bitflipchannel": [3, 13, 17, 18, 26], "decoher": [3, 26, 51], "Its": [3, 46, 55, 68, 69], "vice": 3, "versa": 3, "180": 3, "therebi": [3, 34, 54, 69], "k_0": [3, 26], "k_1": [3, 26], "therefor": [3, 4, 8, 12, 14, 15, 16, 19, 21, 23, 46, 69, 71], "phaseflipchannel": [3, 26], "untouch": 3, "depolarizationchannel": [3, 13, 26], "mixtur": 3, "k_2": 3, "k_3": 3, "2x2": [3, 55], "decai": [3, 26], "And": [3, 13, 14, 48], "behav": 3, "free": [3, 6, 9, 14, 21, 34, 36, 37, 38, 39, 41, 43, 45, 52, 53, 57, 65, 69, 72, 75], "75": [3, 9, 15], "uniform": [3, 8, 9, 14, 17, 18, 34, 37, 59, 67], "amplitudedampingchannel": [3, 26], "dissip": 3, "energi": [3, 4, 9, 10, 13, 22, 23, 28, 34, 53, 63], "due": [3, 9, 13, 22, 26, 30, 34, 52, 55, 59, 79], "ii": [3, 12, 14], "ground": [3, 4, 8, 9, 10, 22, 23, 31, 51, 52, 53, 64, 68], "krausoper": 3, "ki": [3, 12], "dag": [3, 30, 43], "col_count": 3, "row_count": 3, "scatter": [3, 9], "concaten": 3, "arg2": 3, "bin": [3, 17, 21, 52, 54, 64, 73, 75], "interferomet": [3, 52, 64], "tbi": [3, 4, 52, 64], "boson": [3, 51, 52, 64], "done": [4, 9, 12, 13, 19, 23, 30, 46, 60, 73, 75], "collabor": 4, "team": [4, 9], "basf": 4, "In": [4, 5, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 26, 28, 30, 34, 38, 48, 51, 52, 54, 55, 57, 59, 61, 63, 64, 65, 71, 72, 73, 79], "tutori": [4, 8, 9, 10, 12, 13, 14, 17, 18, 20, 21, 23, 75], "hybrid": [4, 6, 13, 23, 31, 52, 76, 80], "workflow": [4, 6, 8, 11, 31, 34, 51, 52, 62, 69, 73, 76], "strongli": [4, 8, 13, 73], "algorithm": [4, 6, 8, 9, 10, 13, 14, 15, 20, 22, 23, 28, 31, 33, 36, 38, 47, 48, 53, 54, 55, 59, 61, 63, 66, 75], "eigensolv": [4, 23, 31], "preserv": [4, 16, 26], "propos": [4, 21], "anselmetti": 4, "et": [4, 14, 21], "al": [4, 14, 21], "2021": 4, "psi_t": 4, "estim": [4, 10, 12, 13, 18, 19, 20, 22, 23, 28, 59], "packag": [4, 6, 7, 9, 11, 12, 13, 18, 51, 73, 75, 79, 80], "instal": [4, 9, 11, 12, 13, 18, 19, 21, 22, 30, 31, 32, 51, 52, 55, 69, 71, 72, 76, 77, 79, 81], "pip": [4, 9, 11, 12, 13, 18, 19, 21, 22, 23, 30, 51, 54, 55, 73, 75, 80], "pyscf": [4, 12, 23], "6": [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 32, 34, 37, 38, 39, 41, 42, 46, 52, 53, 54, 55, 63, 64, 69, 73, 75, 81], "openfermion": [4, 12, 23], "ipi": 4, "warn": [4, 9, 23, 52], "39": [4, 6, 8, 13, 16, 17, 18, 19, 23, 73, 75], "root": [4, 73, 75], "broken": 4, "permiss": [4, 73, 75], "conflict": [4, 73, 75, 80], "behaviour": 4, "render": [4, 30], "your": [4, 5, 8, 9, 23, 24, 30, 31, 34, 51, 52, 53, 54, 55, 56, 63, 64, 67, 72, 73, 75, 79], "unus": 4, "recommend": [4, 13, 21, 34, 64, 73, 75, 80], "pypa": 4, "io": [4, 23, 61, 75], "venv": 4, "want": [4, 9, 10, 13, 14, 16, 18, 19, 21, 30, 48, 51, 53, 54, 69, 72, 73, 75, 77, 80], "suppress": 4, "matplotlib": [4, 6, 8, 9, 11, 13, 18, 19, 22, 23, 30, 51], "pyplot": [4, 6, 8, 9, 11, 13, 18, 19, 22, 23, 30, 51], "plt": [4, 6, 8, 9, 11, 13, 18, 19, 21, 22, 23, 30, 51], "gto": 4, "scf": 4, "ao2mo": 4, "mcscf": 4, "afqmc_src": 4, "vqe_cudaq_qnp": 4, "get_cudaq_hamiltonian": 4, "utils_ipi": 4, "get_coeff_wf": 4, "gen_ipie_input_from_pyscf_chk": 4, "hamgener": 4, "qmc": 4, "trial_wavefunct": 4, "particle_hol": 4, "particlehol": 4, "analysi": [4, 8, 9, 48, 69], "extract_observ": 4, "nvidia": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 23, 24, 28, 29, 31, 32, 33, 39, 50, 51, 55, 59, 61, 63, 67, 72, 73, 75, 77, 80, 81], "recent": [4, 9, 19, 21], "tricki": 4, "manual": [4, 24, 52, 54, 73, 75], "sever": [4, 9, 65], "streamlin": [4, 31, 80], "update_opt": 4, "use_gpu": 4, "usr": [4, 69, 73, 75, 79], "lib": [4, 69, 71, 72, 73, 75, 76, 79, 80], "python3": [4, 9, 51, 54, 55, 59, 60, 67, 73, 75, 80], "dist": [4, 9, 18, 79], "qutip": [4, 30], "py": [4, 9, 29, 54, 55, 59, 60, 67, 75, 80], "66": [4, 8, 9], "userwarn": 4, "cython": 4, "gt": [4, 16, 21, 24, 28, 73, 75], "molecul": [4, 22, 23, 31], "build": [4, 6, 9, 10, 12, 13, 14, 17, 18, 22, 23, 28, 30, 31, 32, 36, 41, 42, 51, 56, 58, 59, 62, 63, 68, 71, 72, 75, 76, 77, 79, 81], "preliminari": [4, 19], "hartre": [4, 12, 22, 23], "fock": [4, 12, 22, 23, 51], "choos": [4, 17, 19, 26, 59, 64, 75], "chelat": 4, "agent": [4, 73], "substanc": 4, "industri": [4, 13], "scale": [4, 5, 18, 19, 21, 41, 51, 55, 67, 68], "Their": [4, 52, 73], "among": [4, 14, 54], "water": [4, 23], "soften": 4, "redox": 4, "oxid": 4, "bleach": 4, "soil": 4, "remedi": 4, "ligand": [4, 8], "catalyst": 4, "particular": [4, 5, 14, 17, 30, 32, 51, 52, 75, 79, 81], "focu": [4, 19, 21, 29], "fe": 4, "iii": 4, "nta": 4, "below": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 34, 51, 52, 53, 54, 55, 59, 61, 64, 67, 69, 73, 75, 79, 80, 81], "fenta": 4, "geo_fenta": 4, "xyz": [4, 27], "cc": [4, 48, 69, 73], "pvtz": 4, "num_active_orbit": 4, "num_active_electron": 4, "o3": 4, "smaller": [4, 8, 9, 10, 12, 55], "less": [4, 9, 19, 73], "geo_o3": 4, "12": [4, 9, 11, 13, 16, 17, 18, 21, 23, 28, 34, 53, 69, 73, 75, 80], "help": [4, 8, 12, 13, 17, 18, 24, 25, 30, 60, 61, 75], "restric": 4, "open": [4, 13, 52, 54, 64, 69, 73, 75], "shell": [4, 30, 73, 75, 80], "hf": 4, "hartee_fock": 4, "rohf": 4, "chkfile": 4, "chk": 4, "224": [4, 18], "34048064812222": 4, "600": [4, 75], "orbit": [4, 23], "would": [4, 5, 9, 12, 13, 14, 15, 16, 17, 19, 23, 24, 29, 32, 48, 51, 67, 68, 73, 75, 77, 79, 81], "1200": 4, "143": 4, "electron": [4, 13, 22, 23], "imposs": 4, "statevector": [4, 6, 15, 16, 24, 67, 68, 80], "space": [4, 5, 10, 12, 30, 31, 39, 46, 51, 54, 64], "fewer": [4, 8, 9, 19, 20, 23, 55], "contribut": [4, 23, 28, 32, 75, 81], "whole": 4, "post": [4, 13, 21, 34, 52, 75], "casci": 4, "obtain": [4, 9, 12, 13, 17, 18, 22, 23, 30, 32, 52, 53, 73, 81], "bodi": [4, 38], "t_": 4, "pq": 4, "v_": [4, 12], "prq": 4, "sum_": [4, 5, 8, 12, 14, 15, 20, 26, 42, 68], "hat": [4, 12, 80], "pqr": 4, "a_": 4, "tag": [4, 7, 15, 19, 73, 75], "jordan_wign": [4, 23], "generate_hamiltonian": 4, "fix_spin_": 4, "ss": 4, "h1": [4, 51, 52, 64], "shown": [4, 7, 10, 12, 13, 16, 52, 54, 55], "energy_cor": 4, "get_h1eff": 4, "h2": [4, 12], "get_h2eff": 4, "h2_no_symmetri": 4, "restor": 4, "v_pqr": 4, "asarrai": 4, "transpos": [4, 12], "mol_ham": 4, "jw_hamiltonian": 4, "constant_term": 4, "guess": [4, 5, 12, 19], "n_vqe_lay": 4, "maxit": [4, 18, 22, 23, 28], "100": [4, 5, 9, 11, 16, 17, 18, 19, 20, 26, 37, 51, 52], "return_final_state_vec": 4, "n_qubit": [4, 13, 16, 18, 37], "best": [4, 8, 9, 15, 21, 23, 73, 75], "optimized_energi": 4, "energy_optim": 4, "final_state_vector": 4, "state_vec": 4, "vqe_energi": 4, "callback_energi": 4, "num": [4, 10], "16": [4, 8, 9, 13, 17, 18, 19, 21, 23, 24, 28, 30, 53, 61, 69], "18": [4, 9, 13, 17, 18, 21, 30, 61, 69], "n_layer": 4, "3881035525103": 4, "numer": [4, 19, 31], "combin": [4, 5, 10, 12, 18, 19, 23, 27, 29, 31, 58, 59, 68, 78, 79], "walk": [4, 9, 23, 72, 73, 75], "accur": [4, 18, 55], "wide": [4, 14, 21, 48, 69, 79], "solid": 4, "summar": [4, 15, 75], "while": [4, 17, 19, 21, 23, 24, 32, 38, 58, 59, 61, 64, 69, 73, 75, 79, 81], "introduct": [4, 31, 47, 62, 77, 80], "found": [4, 8, 9, 10, 12, 13, 19, 24, 30, 32, 34, 37, 41, 51, 52, 59, 61, 72, 73, 75, 77, 78, 80, 81], "quantiz": [4, 15], "_1": [4, 18], "_2": 4, "h_": [4, 12, 13, 16], "frac": [4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 30, 51], "_r": 4, "fermion": 4, "annihil": [4, 51], "h_1": [4, 51], "h_2": [4, 22, 31], "omit": [4, 73], "propag": 4, "chosen": [4, 23, 55, 67, 73], "slater": [4, 12], "ket": [4, 5, 6, 7, 10, 12, 15, 16, 24, 30, 59, 68], "psi_": [4, 7, 12, 16], "toward": [4, 10, 13], "psi_0": [4, 7, 16], "sim": [4, 13, 52, 64], "lim_": 4, "infti": 4, "delta": [4, 52, 64], "tau": 4, "reli": [4, 21, 41, 69, 75, 77, 79], "squar": [4, 17, 18, 46, 68], "gamma": 4, "becom": [4, 5, 9, 18, 23, 55, 63, 75, 76], "v_0": [4, 14], "n_": 4, "nbsphinx": [4, 19], "l": [4, 9, 19, 23, 28, 34, 69, 77, 79], "choleski": 4, "decomposit": [4, 17, 31, 55], "pr": [4, 31], "ensembl": [4, 59], "walker": 4, "mathcal": [4, 12], "text": [4, 6, 7, 15, 18, 21, 24, 30], "loc": [4, 13], "bra": [4, 6, 10, 24, 59], "mathrm": 4, "mix": [4, 26, 64], "wavefunct": [4, 23, 68], "checkpoint": 4, "ipie_hamiltonian": 4, "chol_cut": 4, "1e": [4, 12, 13, 23, 28, 55, 64], "h1e": 4, "cholesky_vector": 4, "e0": 4, "num_basi": 4, "shape": [4, 11, 16, 21, 23, 28, 67], "num_chol": 4, "nelec": 4, "afqmc_hamiltonian": 4, "reshap": [4, 11, 16], "n_active_elec": 4, "num_dets_for_prop": 4, "len": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 27, 28, 37, 46, 51, 54, 59, 64, 67, 80], "compute_trial_energi": 4, "half_rot": 4, "timestep": 4, "num_walk": 4, "num_block": 4, "afqmc_msd": 4, "num_steps_per_block": 4, "25": [4, 9, 11, 13, 15, 18, 19, 20, 25, 37, 53, 54, 55, 59, 61, 67, 75], "005": 4, "stabilize_freq": 4, "96264512": 4, "pop_control_freq": 4, "estimator_filenam": 4, "h5": 4, "finalis": 4, "qmc_data": 4, "filenam": [4, 67], "weight": [4, 8, 9, 21], "weightfactor": 4, "hybridenergi": 4, "edenom": 4, "etot": 4, "e1bodi": 4, "e2bodi": 4, "0000000000000000e": 4, "02": [4, 13, 73, 75], "2437583763935545e": 4, "04": [4, 73, 75], "2437583763935547e": 4, "7639365190228011e": 4, "5201781426292453e": 4, "2276634193515412e": 4, "4127560668989827e": 4, "03": [4, 9, 53], "1711742028818304e": 4, "2473358126540003e": 4, "9999999999999986e": 4, "2473358126540006e": 4, "7646854013277283e": 4, "5173495886737268e": 4, "0031922288872407e": 4, "8320523739865604e": 4, "1743088014788954e": 4, "2489226882493567e": 4, "0000000000000001e": 4, "2489226882493563e": 4, "7650504938463922e": 4, "5161278055970348e": 4, "9900990681040355e": 4, "0008400623205630e": 4, "1736864885170948e": 4, "2495677577437204e": 4, "9999999999999972e": 4, "2495677577437212e": 4, "7659644834889821e": 4, "5163967257452603e": 4, "0009188692360159e": 4, "0005173726372723e": 4, "1748969527283802e": 4, "2495531836556856e": 4, "2495531836556853e": 4, "7675907314082951e": 4, "5180375477526098e": 4, "9997269300807844e": 4, "0010618465796188e": 4, "1752703012577417e": 4, "2502732667629320e": 4, "2502732667629317e": 4, "7663343013337044e": 4, "5160610345707727e": 4, "0012131352337956e": 4, "0019003056579172e": 4, "1770170647504112e": 4, "2513369839216481e": 4, "2513369839216480e": 4, "7660812717909516e": 4, "5147442878693036e": 4, "9936984461419740e": 4, "9929966800671224e": 4, "1765353928750643e": 4, "2516138533920657e": 4, "2516138533920659e": 4, "7660292355465600e": 4, "5144153821544941e": 4, "9902337463172714e": 4, "9910800755312891e": 4, "1761532255317621e": 4, "2518524275281430e": 4, "2518524275281433e": 4, "7674246483479845e": 4, "5155722208198404e": 4, "0012943675389775e": 4, "0013880643723378e": 4, "1780913595074867e": 4, "2512465963277762e": 4, "7677999264623367e": 4, "5165533301345607e": 4, "9628730363609819e": 4, "9223106824565718e": 4, "1749814144939067e": 4, "2517668156221851e": 4, "2517668156221850e": 4, "7688306341863290e": 4, "5170638185641434e": 4, "plot": [4, 6, 8, 9, 11, 13, 18, 20, 21, 22, 23, 51], "vqe_i": 4, "vqe_x": 4, "label": [4, 8, 9, 11, 13, 18, 21, 69, 73, 80], "afqmc_i": 4, "afqmc_x": 4, "xlabel": [4, 6, 8, 9, 11, 21, 22, 23, 51], "ylabel": [4, 6, 8, 9, 11, 21, 22, 23, 51], "legend": [4, 9, 11, 13, 51], "lt": [4, 9, 24, 28], "0x7fea847f35e0": 4, "__version__": [4, 5, 11, 14, 15, 21, 24], "github": [4, 5, 9, 11, 14, 15, 21, 23, 24, 32, 52, 55, 61, 73, 75, 80, 81], "176f1e7df8a58c2dc3d6b1b47bf7f63b4b8d3b63": [4, 5], "bv": 5, "demonstr": [5, 6, 7, 8, 10, 12, 13, 15, 17, 19, 20, 21, 22, 27, 28, 33, 34, 36, 51, 54, 59, 66, 69], "exponenti": [5, 10, 12, 15, 18, 20, 42, 67], "speedup": [5, 20, 23, 53, 67], "suppos": [5, 7, 76], "oracl": [5, 37], "longrightarrow": [5, 7], "dot": [5, 10, 12, 14, 18], "secret": [5, 37, 75], "x_1s_1": 5, "x_2s_2": 5, "x_ns_n": 5, "our": [5, 6, 7, 9, 13, 14, 16, 19, 21, 26, 30, 32, 48, 51, 52, 57, 59, 64, 65, 66, 67, 69, 73, 75, 76, 77, 80, 81], "find": [5, 7, 8, 9, 12, 14, 18, 21, 22, 23, 31, 52, 53, 54, 68, 69, 73, 75], "101": [5, 9, 15, 16, 18, 19, 37], "henc": [5, 15, 16, 24, 48, 51, 52, 54, 59, 67, 68, 73, 75, 79], "dont": [5, 24], "x_3s_3": 5, "strateg": 5, "st": 5, "001": [5, 11, 15, 16, 18, 19, 75], "nd": 5, "010": [5, 15, 16, 18, 19], "rd": 5, "rememb": [5, 7, 9, 24], "perspect": 5, "inner": [5, 16, 46, 54], "mechan": [5, 7, 16, 34, 36, 42, 46, 48, 51, 54, 60, 68, 71], "hidden": [5, 39], "why": [5, 15], "did": [5, 19, 73, 75], "011": [5, 16, 18, 19, 37], "s_3": 5, "isol": [5, 59], "s_2": 5, "difficult": [5, 8, 34], "speak": 5, "advantag": [5, 7, 20, 21, 23, 29, 75], "entangl": [5, 16, 26, 30, 39, 53, 57, 64], "problem": [5, 7, 9, 10, 12, 14, 15, 22, 23, 48, 51, 58], "answer": [5, 15], "black": [5, 7, 9, 13], "box": [5, 7, 26, 79], "setup": [5, 8, 32, 51, 55, 64, 75, 81], "auxiliari": [5, 31], "kickback": 5, "hadamard": [5, 12, 15, 16, 19, 25, 31, 36, 41, 46, 48, 65, 68, 71], "sum_x": 5, "u_f": [5, 7], "oplu": 5, "neq": [5, 7, 8, 19], "chanc": [5, 17, 19, 79], "cell": [5, 8, 12, 13, 16, 17, 23, 27, 30], "small": [5, 9, 10, 18, 19, 23, 55, 79], "increas": [5, 8, 10, 12, 20, 29, 32, 51, 55, 59, 67, 75, 80, 81], "30": [5, 9, 11, 13, 16, 18, 21, 54, 67], "qpp": [5, 9, 11, 13, 14, 15, 16, 21, 24, 50, 53, 55, 59, 67, 69, 72, 75, 80], "qubit_count": [5, 7, 11, 14, 15, 19, 22, 23, 24, 26, 54, 57, 59, 67, 80], "secret_str": 5, "whatev": 5, "prefer": [5, 73, 75], "insid": [5, 9, 13, 54, 75], "auxiliary_qubit": 5, "verifi": [5, 7, 15, 19, 25, 51, 68], "procedur": [5, 6, 8, 9, 12, 17, 21, 22, 23, 28], "bernstein_vazirani": [5, 75], "auxillari": [5, 9, 12, 17], "place": [5, 14, 16, 23, 24, 29, 54, 57, 59], "success": [5, 28, 64, 71], "join": [5, 13, 18, 19], "q2": [5, 9, 15, 19, 21, 30], "q3": [5, 9, 19, 30], "q4": [5, 9, 19], "q5": [5, 19], "11010": [5, 14, 19], "involv": [6, 8, 19, 55, 67, 69, 79], "bloch": [6, 30], "rx": [6, 8, 9, 10, 11, 13, 14, 16, 18, 30, 41, 45, 61, 67], "intial": 6, "cost_valu": [6, 8], "initial_cost_valu": 6, "suit": [6, 21, 75], "alogrithm": 6, "decreas": [6, 51], "x_valu": [6, 8], "y_valu": [6, 8], "epoch": [6, 8, 11, 22, 23], "concis": 7, "desutch": 7, "balanc": 7, "regardless": [7, 12, 16, 32, 79, 81], "ouput": 7, "carri": [7, 19], "treat": [7, 54], "snippet": [7, 51, 53, 54, 63, 69, 75], "don": [7, 15, 32, 34, 53, 81], "elif": [7, 13], "notic": [7, 9, 14, 16, 19, 21, 23, 48, 67, 69, 76], "That": [7, 13, 24, 34, 80], "twice": [7, 23], "claim": [7, 17], "evalul": 7, "outlin": [7, 13, 19, 79], "symbol": [7, 73, 79], "OR": [7, 64], "rule": [7, 19, 23, 51], "modulo": [7, 19], "oplus5": 7, "8_": 7, "oplus4": 7, "9_": 7, "quick": [7, 16, 31, 52, 77], "yield": [7, 16, 24, 55, 68, 80], "align": [7, 15, 16, 69, 79], "remark": [7, 21], "becaus": [7, 18, 19, 21, 48, 55, 64, 73, 75, 80], "overlin": 7, "bar": [7, 14, 15, 18, 30], "top": [7, 9, 13, 18, 19, 54, 61, 72, 76], "denot": [7, 15, 17, 38, 40], "prove": [7, 68], "shall": [7, 16, 68], "tfrac": [7, 16, 68], "summari": 7, "unchang": [7, 26, 69], "simultan": [7, 53], "exploit": [7, 55], "abil": [7, 17, 20, 21, 39, 69], "aim": [7, 9, 14, 19], "diagram": [7, 8, 14, 15, 16, 19, 52, 64], "psi_1": 7, "h_1h_0": 7, "psi_2": 7, "drop": [7, 13], "figur": [7, 8, 9, 10, 11, 15, 16, 17, 19, 20, 21, 23, 29, 69], "pm": 7, "practic": [7, 9, 10, 12, 17, 18, 21, 23], "fx": 7, "qubit_0": [7, 14, 16, 61], "half": [7, 64], "neither": 7, "nor": 7, "b_0": 7, "b_1": 7, "hint": 7, "approach": [7, 8, 9, 15, 18, 19, 34, 38, 55, 69], "solv": [7, 8, 12, 14, 15, 51, 58], "drug": 8, "often": [8, 19, 23, 34, 48, 61, 73, 75], "bind": [8, 33, 36, 38, 41, 73], "protein": [8, 21], "inhibit": 8, "therapeut": 8, "purpos": [8, 12, 19, 39, 48, 51, 75], "candid": 8, "extrem": [8, 34], "studi": [8, 16, 21], "guid": [8, 32, 52, 73, 75, 77, 80, 81], "search": [8, 19, 21, 73, 75], "predict": [8, 13, 68], "usual": [8, 9, 73, 75, 79], "One": [8, 15, 19, 21, 23, 24, 34, 48, 52, 54, 55, 60, 63], "challeng": [8, 9, 19], "aris": [8, 21, 26], "mani": [8, 9, 15, 16, 17, 19, 21, 23, 24, 27, 28, 32, 41, 44, 54, 55, 59, 61, 67, 80, 81], "geometr": 8, "present": [8, 9, 14, 18, 21, 24, 28, 59, 73, 76], "orient": 8, "assess": [8, 13], "good": [8, 12, 23], "solut": [8, 14, 19], "formul": [8, 48], "mathemat": [8, 16, 51, 68], "paper": [8, 9, 10, 12, 13, 17, 19], "digit": [8, 11], "counteradiabat": 8, "understand": [8, 9, 12, 13, 16, 18, 33, 75], "pleas": [8, 9, 12, 23, 30, 32, 53, 54, 55, 64, 67, 71, 73, 75, 80, 81], "maxcut": 8, "There": [8, 9, 16, 24, 27, 34, 36, 52, 53, 54, 61, 67, 75], "experiment": [8, 13, 32, 75, 81], "pharmacor": 8, "chemic": [8, 13, 22], "group": [8, 9, 46, 55], "govern": [8, 20], "distanc": [8, 9, 16, 18, 22], "graph": [8, 9, 14], "lag": 8, "node": [8, 9, 12, 14, 33, 54, 67, 73], "edg": [8, 9, 14], "feesibli": 8, "coexist": 8, "cliqu": 8, "mutual": 8, "comment": [8, 14], "discret": [8, 21, 46], "natur": [8, 9, 16, 30, 52, 55, 68], "qubit_num": [8, 10, 23], "non_edg": 8, "6686": 8, "1453": 8, "penalti": [8, 9], "num_lay": 8, "expens": [8, 23, 55], "6886": 8, "1091": 8, "0770": 8, "w_i": 8, "sigma": [8, 12, 20, 51], "z_i": 8, "notin": 8, "z_j": [8, 20], "concern": [8, 68, 73], "vertic": [8, 14], "penal": 8, "ham_cliqu": 8, "spin_ham": [8, 23], "wt": 8, "zip": [8, 12, 73], "strip": [8, 12, 20, 73], "term_coeffici": 8, "ham": [8, 10, 12, 20], "term_word": 8, "coef": [8, 12], "0j": [8, 10, 14, 59, 61], "iiziiz": 8, "ziizii": 8, "1657": 8, "iziiii": 8, "iziizi": 8, "42735": 8, "iiizii": 8, "2791499999999996": 8, "iiiiii": 8, "iiziii": 8, "iiiiiz": 8, "ziiiii": 8, "iiiizi": 8, "inclus": [8, 23], "better": [8, 9, 13, 14, 18, 21, 53, 55, 73], "layer": [8, 9, 11, 13, 14, 17, 38, 52], "hopefulli": 8, "offset": 8, "dc_qaoa": 8, "pauli_word": [8, 12, 20, 27, 54], "exp_pauli": [8, 12, 20, 27], "k": [8, 10, 12, 13, 15, 19, 38], "nelder": 8, "mead": 8, "line": [8, 9, 10, 14, 19, 23, 29, 30, 52, 54, 55, 64, 69, 72, 73, 75], "13": [8, 9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 28, 30, 67, 69, 75], "21810696323572243": [8, 14], "20613464375211488": [8, 14], "2546877639814583": [8, 14], "3657985647468064": [8, 14], "37118004688049144": 8, "03656087558321203": 8, "08564174998504231": 8, "21639801853794682": 8, "11122286088634259": 8, "1743727097033635": 8, "36518146001762486": 8, "15829741539542244": 8, "3467434780387345": 8, "28043500852894776": 8, "09986021299050934": 8, "14125225086023052": 8, "19141728018199775": 8, "11970943368650361": 8, "3853063093646483": 8, "1112643868789806": 8, "3527177454825464": 8, "22156160012057186": 8, "1418496891385843": 8, "32811766468303116": 8, "367642000671186": 8, "34158180583996006": 8, "10196745745501312": 8, "29359239180502594": 8, "3858537615546677": 8, "19366130907065582": 8, "24570488114056754": 8, "3332307385378807": 8, "12287973244618389": 8, "007274514934614895": 8, "015799547372526146": 8, "3578070967202224": 8, "39268963055535144": 8, "19872246354138554": 8, "16668715544467982": 8, "13777293592446055": 8, "17514665212709513": 8, "15350249947988204": 8, "32872977428061945": 8, "20068831419712105": 8, "032919322131134854": 8, "19399909325771983": 8, "09477141125241506": 8, "08210460401106645": 8, "21392577760158515": 8, "3393568044538389": 8, "14615087942938465": 8, "03790339186006314": 8, "2843250892879255": 8, "3151384847055956": 8, "19983741137121905": 8, "27348611567665115": 8, "33457528180906904": 8, "14145414847455462": 8, "20604220093940323": 8, "05410235084309195": 8, "04447870918600966": 8, "3355714098595045": 8, "266806440171265": 8, "07436189654442632": 8, "2789176729721685": 8, "2427508182662484": 8, "cost": [8, 9, 11, 12, 14, 22, 23, 28, 31, 34, 53, 64], "optimal_expect": [8, 14], "optimal_paramet": [8, 9, 14, 53], "0057493966746804": 8, "0508763934174787": 8, "013930789730781493": 8, "5793211220774144": 8, "878009560684498": 8, "5277129177248182": 8, "4404810513078178": 8, "5755552245467919": 8, "14125558672355468": 8, "3724262117066903": 8, "1318978057007808": 8, "1228708513911436": 8, "932342804955409": 8, "8478237950658537": 8, "46345886313018125": 8, "5809397306340341": 8, "2408342488137229": 8, "11216088888484882": 8, "009704173265255175": 8, "4757346661223584": 8, "7281211610985926": 8, "06051951319169091": 8, "7794512146826196": 8, "09249435261907034": 8, "09998378319110682": 8, "255349350720572": 8, "2607038244228248": 8, "2060124032311757": 8, "13991934581192997": 8, "9874814082082164": 8, "1591291464755939": 8, "30815482837046393": 8, "9701804681517978": 8, "002609462845755913": 8, "43533533568363353": 8, "642630110681613": 8, "6137063363954748": 8, "7204687246344496": 8, "08390768435524378": 8, "5480630700433249": 8, "38905723227347905": 8, "6837811162838194": 8, "17239016898719284": 8, "1649341118754853": 8, "46771209183422724": 8, "008565327035838663": 8, "982230359328883": 8, "4232972687799105": 8, "22765896988428905": 8, "04207923928239914": 8, "36758378917672285": 8, "01825447063622079": 8, "059755059728027485": 8, "6849697218162497": 8, "2711684382411018": 8, "2904257415666667": 8, "16359529445017368": 8, "09168623367396612": 8, "5786087806926155": 8, "3476755367718726": 8, "1209273564533628": 8, "605136043801364": 8, "19128215816141694": 8, "16756583092588012": 8, "0715488214105267": 8, "5269641128095075": 8, "3029128369198704": 8, "reveal": 8, "bitst": 8, "ideal": [8, 13, 17, 26, 52, 53, 64], "partit": [8, 9, 14, 53, 54, 75], "200000": 8, "mvwcp": 8, "110001": 8, "011100": 8, "111000": 8, "199979": 8, "011000": 8, "converg": [8, 10, 19, 23], "explor": [9, 13, 17, 19, 23, 67, 68, 75], "research": [9, 13, 53], "arxiv": [9, 19], "org": [9, 11, 19, 51, 73, 75], "pdf": [9, 19, 30], "2402": 9, "01529": 9, "edinburgh": 9, "jointli": [9, 21], "develop": [9, 11, 12, 21, 31, 38, 39, 52, 53, 55, 62, 68, 71, 72, 73, 76, 80], "author": 9, "barrier": 9, "mit": 9, "licens": [9, 73, 75], "boniface316": 9, "bigdata_vqa": 9, "unsupervis": 9, "learn": [9, 11, 14, 19, 21, 30, 32, 52, 53, 58, 59, 79, 80, 81], "techniqu": [9, 19, 23, 28, 29, 55, 59], "similar": [9, 24, 34, 54, 59, 73], "characterist": 9, "enhanc": [9, 13, 16, 31], "reliabl": [9, 79], "todai": 9, "limit": [9, 16, 54, 55, 59, 67, 79], "far": [9, 13, 16], "too": [9, 30, 68], "extend": [9, 15, 17, 31, 32, 33, 78, 81], "harrow": 9, "emphas": 9, "util": [9, 11, 21, 26, 34, 46, 53, 54, 55, 67, 69, 72], "bipartit": 9, "branch": [9, 32, 36, 73, 75, 81], "directori": [9, 13, 71, 73, 75, 79], "tree": 9, "uncom": [9, 12, 14, 73, 75], "skip": [9, 30, 73], "mkdir": [9, 72, 73, 76], "divisive_clustering_src": 9, "wget": [9, 73, 75], "githubusercont": 9, "sphinx": 9, "divisive_clust": 9, "main_divisive_clust": 9, "mpi4pi": [9, 55, 80], "networkx": 9, "panda": [9, 18], "scikit": [9, 11], "tqdm": [9, 21], "nx": 9, "pd": [9, 18], "divisiveclust": 9, "dendrogram": 9, "voironi_tessal": 9, "filterwarn": 9, "toggl": 9, "circuit_depth": 9, "max_shot": 9, "x_1": 9, "x_2": [9, 13], "x_n": 9, "much": [9, 10, 13, 23, 72], "w": [9, 13, 43, 55, 64], "reason": [9, 17, 48], "conclus": 9, "variou": [9, 13, 24, 32, 52, 54, 57, 65, 69, 72, 81], "1703": 9, "06476": 9, "essenti": 9, "boil": 9, "down": [9, 16, 54, 64], "toler": [9, 13], "constraint": [9, 18, 21, 38, 39, 40, 55, 59, 64, 68], "priori": 9, "load": [9, 11, 34, 39, 52, 53, 64, 69, 71], "frame": 9, "imag": [9, 11, 12, 14, 16, 19, 21, 30, 32, 51, 64, 73, 80, 81], "star": 9, "create_dataset": 9, "number_of_sampling_for_centroid": 9, "coreset_s": 9, "number_of_coresets_to_evalu": 9, "coreset_method": 9, "bfl2": 9, "coreset_vector": 9, "coreset_weight": 9, "get_best_coreset": 9, "coreset_df": 9, "datafram": [9, 18], "chr": 9, "65": [9, 14, 18, 19, 26], "028364": 9, "669787": 9, "234": [9, 18], "230716": 9, "167441": 9, "354792": 9, "319288": 9, "022889": 9, "921443": 9, "125": [9, 28, 34, 37, 42, 53, 54, 63], "158339": 9, "706134": 9, "636852": 9, "650774": 9, "998497": 9, "455847": 9, "116": 9, "758239": 9, "507918": 9, "630311": 9, "120": [9, 19, 75], "727176": 9, "102508": 9, "297727": 9, "53": [9, 18], "294127": 9, "722463": 9, "400433": 9, "77": [9, 18], "415840": 9, "425868": 9, "341136": 9, "42": [9, 11, 13, 18, 19, 22, 23], "847985": 9, "985373": 9, "063209": 9, "240": 9, "116237": 9, "7eba00": 9, "color": [9, 13, 14], "marker": 9, "titl": [9, 21, 22, 23, 52, 75, 80], "cast": 9, "routin": [9, 14, 34], "e_": 9, "ij": [9, 21], "w_iw_jd_": 9, "d_": [9, 12], "euclidean": 9, "coreset_to_graph": 9, "vqa": 9, "src": [9, 52, 55, 73], "motiv": [9, 47, 73], "cut": [9, 31, 73, 75], "get_k2_hamiltonian": 9, "k2": [9, 13], "r_z": 9, "r_y": 9, "cascad": 9, "benefit": [9, 13, 17, 32, 59, 80, 81], "get_vqe_circuit": 9, "number_of_qubit": 9, "theta_posit": 9, "rz": [9, 13, 14, 16, 30, 37, 41], "visual": [9, 13, 14, 31, 48, 62], "rand": 9, "8904": 9, "7335": 9, "4343": 9, "2236": 9, "7937": 9, "9981": 9, "3945": 9, "696": 9, "3352": 9, "6658": 9, "05277": 9, "791": 9, "003569": 9, "4119": 9, "3205": 9, "3504": 9, "3913": 9, "7392": 9, "3171": 9, "0008056": 9, "proper": 9, "get_optim": 9, "initial_param": [9, 28], "divisiveclusteringvqa": 9, "run_divisive_clust": 9, "get_counts_from_simul": 9, "acceler": [9, 11, 12, 13, 23, 31, 32, 53, 55, 59, 67, 72, 73, 75, 80, 81], "associ": [9, 13, 14, 17, 24, 39, 54, 68], "super": [9, 11, 23], "coreset_vectors_df_for_iter": 9, "coreset_vectors_for_iteration_np": 9, "coreset_weights_for_iteration_np": 9, "_get_iteration_coreset_vectors_and_weight": 9, "metric": [9, 13, 17], "coreset_to_graph_metr": 9, "_get_best_bitstr": 9, "create_hamiltonian": 9, "optimizer_funct": 9, "create_circuit": 9, "objective_funct": [9, 23, 28], "get_result": [9, 23, 28, 51], "mostli": 9, "previous": [9, 28, 32, 52, 75, 81], "threshold_for_max_cut": 9, "percent": [9, 17], "advanc": [9, 19, 23, 29], "normal": [9, 11, 16, 22, 23, 28, 68], "get_divisive_sequ": 9, "analyz": [9, 13, 21, 71], "postprocess": 9, "sourc": [9, 10, 13, 14, 18, 26, 32, 48, 51, 55, 69, 72, 75, 76, 77, 80, 81], "normalize_vector": 9, "sort_by_descend": 9, "hierarchial_clustering_sequ": 9, "129": [9, 19], "12075": 9, "19it": 9, "35025": 9, "50it": 9, "44254": 9, "09it": 9, "15827": 9, "56it": 9, "13617": 9, "87it": 9, "nice": 9, "earli": [9, 53, 75], "split": [9, 13, 67], "least": [9, 14, 19, 20, 21, 24, 54, 73], "dendo": 9, "plot_dendrogram": 9, "plot_titl": 9, "complic": [9, 42], "occasion": 9, "especi": 9, "puzzl": 9, "glanc": [9, 16], "seem": [9, 68, 75, 80], "strai": 9, "belong": 9, "wrong": 9, "explan": 9, "stochast": [9, 34], "few": [9, 14, 19, 21, 23, 61], "pai": [9, 15], "exclud": [9, 53, 59, 73], "proxim": 9, "impact": [9, 23, 26], "look": [9, 16, 29, 30, 32, 48, 51, 52, 54, 58, 59, 63, 64, 65, 66, 67, 69, 73, 75, 81], "unusu": 9, "go": [9, 21, 30, 46, 54, 65, 73, 75], "origin": [9, 12, 16, 26, 48, 69], "14": [9, 10, 11, 13, 16, 17, 18, 19, 21, 23, 30, 53, 61, 64, 69], "plot_hierarchial_split": 9, "hierarch": 9, "flat": [9, 54], "perpendicular": 9, "intersect": 9, "threshold": [9, 12, 13, 19, 55], "height": 9, "get_clusters_using_k": 9, "desir": [9, 19, 21, 44, 51, 54, 59, 72, 73, 75, 77], "15": [9, 11, 13, 17, 18, 21, 23, 30, 61, 67, 69, 73, 75], "threshold_height": 9, "get_clusters_using_height": 9, "red": [9, 18, 24], "blue": [9, 24], "green": [9, 14], "purpl": 9, "orang": 9, "yellow": 9, "color_threshold": 9, "plot_clust": 9, "show_annot": 9, "get_voronoi_tessal": 9, "region": [9, 52], "accord": 9, "centroid": 9, "tesslation_by_clust": 9, "complet": [9, 10, 12, 13, 16, 20, 26, 34, 51, 52, 73, 75, 79, 80], "plot_voironi": 9, "overlai": 9, "vt": 9, "voironi": 9, "tessal": 9, "design": [9, 14, 23, 29, 31, 33, 51, 54, 61, 80], "flexibl": [9, 57, 73], "tool": [9, 13, 18, 24, 27, 28, 30, 32, 48, 69, 71, 73, 77, 79, 81], "get_qaoa_circuit": 9, "3527": 9, "19": [9, 13, 17, 18, 19, 21, 30, 53, 61, 69], "20": [9, 12, 13, 17, 18, 19, 21, 30, 40, 46, 61, 69, 77, 80], "484": 9, "12163": 9, "89it": 9, "52703": 9, "30it": 9, "48": 9, "31987": 9, "07it": 9, "36393": 9, "37957": 9, "42473": 9, "96it": 9, "quickli": [9, 10, 34, 75], "encount": [9, 53, 55, 64, 73, 75, 80], "port": [9, 54, 75], "hpc": [9, 32, 75, 81], "becam": 9, "massiv": [9, 20], "compar": [9, 13, 23, 27, 58, 59, 75, 80], "100000": [9, 10, 67], "try": [9, 10, 13, 15, 17, 19, 21, 23, 30, 67, 75], "slightli": [9, 23], "751": 9, "3460": 9, "26it": 9, "42771": 9, "74it": 9, "4064": 9, "6862": 9, "37it": 9, "56871": 9, "92it": 9, "44979": 9, "13it": 9, "128": [9, 11, 21, 69], "19366": 9, "94it": 9, "53773": 9, "54648": 9, "91it": 9, "51941": 9, "85it": 9, "56111": 9, "461": 9, "866833317": 9, "spent": 9, "452308367999706": 9, "oner": 9, "feel": 9, "interrupt": 9, "patienc": 9, "worn": 9, "still": [9, 16, 17, 20, 24, 38, 48, 59, 64, 68, 75, 79], "easili": [9, 10, 13, 14, 20, 59, 73, 75, 79], "27": [9, 13, 18, 19, 59], "7352": 9, "2063": 9, "82it": 9, "16492": 9, "4739": 9, "44it": 9, "256": [9, 11, 52], "15185": 9, "58it": 9, "64": [9, 11, 54, 55, 69, 73, 75], "23728": 9, "05it": 9, "15437": 9, "97it": 9, "50840": 9, "32": [9, 11, 18, 52, 55, 69, 75], "33562": 9, "54120": 9, "54560": 9, "55924": 9, "42717": 9, "29it": 9, "55007": 9, "27it": 9, "53601": 9, "33it": 9, "47127": 9, "01it": 9, "67": 9, "61674502899999": 9, "21": [9, 13, 17, 18, 21, 30, 61, 69], "439895901": 9, "push": [9, 79], "a100": 9, "yourself": [9, 73], "28": [9, 11, 13, 18, 32, 54, 73, 75, 80, 81], "nlopt": [9, 69], "failur": [9, 79], "pool": [9, 53, 67], "finish": [9, 13, 24, 59, 69], "fail": [9, 17, 55, 71, 75, 79], "immedi": [9, 54, 72], "issu": [9, 34, 55, 73, 75, 79, 80], "mgpu": [9, 12, 15, 23, 29, 32, 50, 53, 54, 55, 67, 81], "gpu_count": 9, "smi": [9, 73, 75], "wc": 9, "mpirun": [9, 54, 55, 67], "Not": [9, 38, 52, 53, 75], "subroutin": [10, 23, 58, 61], "molecular": [10, 13, 22, 23, 31], "semidefinit": 10, "briefli": 10, "introduc": [10, 14, 17, 19, 34], "ancilla": [10, 12, 34, 36], "insight": 10, "re": [10, 13, 18, 19, 34, 48, 51, 65, 67, 73, 75], "x_1x_2": 10, "fact": [10, 15, 19, 48, 79], "u_": [10, 21], "qquad": 10, "repeatedli": [10, 17, 19, 59], "pmatrix": [10, 26], "functool": [10, 18], "psi_stat": 10, "phi_stat": 10, "sv": [10, 17, 77], "707107": 10, "ham_matrix": 10, "exp_val": [10, 11, 22, 23, 28, 51, 54, 63], "conj": [10, 12, 16, 21], "7071067690849304": 10, "fourth": [10, 51], "u_psi": 10, "u_phi": 10, "ham_cir": 10, "mean_val": 10, "qc": [10, 52], "85281": 10, "14719": 10, "70562": 10, "0015844563982640861": 10, "hilbert": [10, 46, 51], "orthogon": [10, 12], "easi": [10, 14, 19, 51, 77], "mqpu": [10, 12, 23, 24, 28, 50, 55, 59, 63, 67], "sake": 10, "qpu_count": [10, 23, 28, 54], "four": [10, 13, 17, 28, 54, 63, 68], "i_result": 10, "49865": 10, "50135": 10, "0027": 10, "0022360598270171573": 10, "49796": 10, "50204": 10, "00408": 10, "002236049366181346": 10, "49695": 10, "50305": 10, "0061": 10, "002236026375068058": 10, "49972": 10, "50028": 10, "00056": 10, "002236067626884303": 10, "my_mat": 10, "linalg": [10, 12, 18, 51], "eigh": 10, "00782313": 10, "00456313": 10, "76575845": 10, "64312829": 10, "highlight": [11, 29, 32, 81], "pytorch": 11, "maximis": 11, "classif": 11, "mnist": 11, "dataset": 11, "classifi": [11, 21], "hand": [11, 16, 53, 54, 55, 75, 79], "written": [11, 18, 30, 34, 68, 73, 77], "torch": [11, 21, 51], "cu118": 11, "torchvis": 11, "url": [11, 52, 54, 64, 73, 75], "download": [11, 21, 73, 75, 80], "whl": [11, 73], "autograd": 11, "nn": 11, "sklearn": 11, "model_select": 11, "train_test_split": 11, "manual_se": [11, 21], "22": [11, 13, 18, 19, 21, 30, 59, 61, 69, 73, 75], "44": [11, 18], "prepare_data": 11, "target_digit": 11, "sample_count": [11, 67], "test_siz": 11, "percentag": 11, "remaind": [11, 14], "train": [11, 13, 21], "totensor": 11, "1307": 11, "3081": 11, "filter": 11, "datapoint": 11, "subset_indic": 11, "randperm": 11, "unsqueez": 11, "relabel": 11, "min": [11, 12, 19], "x_train": 11, "x_test": 11, "y_train": 11, "y_test": 11, "shuffl": 11, "random_st": 11, "classification_threshold": 11, "accuraci": [11, 13, 19, 21, 55], "parmet": 11, "visualis": 11, "sample_to_plot": 11, "grid_img": 11, "make_grid": 11, "pad": 11, "imshow": 11, "permut": [11, 17], "quantumfunct": 11, "finit": [11, 23, 28], "theta_v": 11, "excetut": 11, "live": 11, "tolist": [11, 17], "staticmethod": 11, "quantum_circuit": 11, "backward": [11, 23, 28, 40], "save_for_backward": 11, "grad_output": 11, "saved_tensor": 11, "thetas_plu": 11, "exp_vals_plu": 11, "thetas_minu": 11, "exp_vals_minu": 11, "mul": 11, "quantumlay": 11, "hybrid_qnn": 11, "fc1": 11, "fc2": 11, "dropout": 11, "fc3": 11, "fc4": 11, "fc5": 11, "feed": [11, 14], "view": [11, 39, 49, 52, 75], "relu": 11, "fed": 11, "sigmoid": 11, "accuracy_scor": 11, "y_hat": 11, "hybrid_model": 11, "adadelta": 11, "lr": [11, 69], "weight_decai": 11, "loss_funct": 11, "bceloss": 11, "training_cost": 11, "testing_cost": 11, "training_accuraci": 11, "testing_accuraci": 11, "zero_grad": 11, "y_hat_train": 11, "train_cost": 11, "eval": [11, 12], "no_grad": 11, "y_hat_test": 11, "test_cost": 11, "figsiz": [11, 13, 18, 21], "subplot": [11, 13, 18], "tight_layout": [11, 13], "proto": [11, 21], "018ba9130a0e5800b93e86d0096a22daf7a132f8": [11, 21], "multirefer": 12, "mrsqk": 12, "low": [12, 13, 18, 41, 52, 67], "altern": [12, 14, 20, 52, 64, 66, 73, 75, 80], "background": [12, 54], "trotter": [12, 31, 42], "diagon": [12, 55], "heurist": 12, "cisd": 12, "veri": [12, 21, 32, 54, 65, 71, 79, 81], "unitari": [12, 15, 22, 23, 31, 37, 41, 48, 61, 66, 68], "lcu": 12, "avoid": [12, 21, 73, 79, 80], "dimension": [12, 13, 16, 21, 30, 46, 51, 61, 64], "phi_0": 12, "phi_d": 12, "phi_i": 12, "mu": 12, "phi_": 12, "famili": 12, "alpha": [12, 14, 16, 51, 68], "equiv": [12, 19, 68], "psi_i": 12, "_n": 12, "c_": 12, "c_i": 12, "boldsymbol": 12, "hc": 12, "sc": [12, 52], "s_": 12, "beta": [12, 16, 68, 69], "_m": 12, "phi_j": 12, "sigma_": [12, 51], "question": 12, "scipi": [12, 13, 18, 22, 23, 28, 51], "openfermionpyscf": [12, 22, 23], "multi_gpu": 12, "geometri": [12, 22, 23], "7474": [12, 22], "chemistri": [12, 13, 22, 23], "create_molecular_hamiltonian": [12, 22], "sto": [12, 22, 23], "3g": [12, 22, 23], "electron_count": [12, 22, 23], "n_electron": [12, 22], "qubits_num": 12, "n_orbit": [12, 22], "spin_ham_matrix": 12, "eig": 12, "argmin": [12, 21], "min_indic": 12, "vec": [12, 61], "termcoeffici": [12, 20], "termword": [12, 20], "pauli_str": 12, "potenti": [12, 16, 19, 23, 24, 34, 59], "improv": [12, 19, 23, 29, 32, 55, 67, 75, 81], "higher": [12, 33], "receiv": [12, 34], "compon": [12, 14, 19, 21, 51, 73, 75, 79, 80], "um": 12, "u_m": 12, "dt": [12, 20], "un": 12, "u_n": 12, "apply_pauli": 12, "qfd_kernel": 12, "dt_alpha": 12, "dt_beta": 12, "word_list": 12, "my_list": 12, "x_0": [12, 13], "y_0": 12, "m_qfd": 12, "wf_overlap": 12, "accomplish": [12, 25], "along": [12, 22, 27, 34, 52, 53, 55, 59, 61, 79], "observe_op": 12, "identity_word": 12, "pauli_list": 12, "dt_m": 12, "dt_n": 12, "temp": [12, 69], "collect_overlap_r": 12, "collect_overlap_img": 12, "sent": [12, 52, 54, 64], "count_id": 12, "tot_dim": 12, "real_val": 12, "img_val": 12, "ham_matrx": 12, "tot_": 12, "accumul": [12, 64], "ham_matrix_r": 12, "ham_matrix_imag": 12, "enter": [12, 64, 75], "eigenvaulu": 12, "sum_k": 12, "s_k": 12, "kj": 12, "hx": 12, "sce": 12, "s_diag": 12, "s_prime": 12, "sii": 12, "valueerror": [12, 13, 51], "x_prime": 12, "h_prime": 12, "conjug": [12, 17, 51], "e_prim": 12, "c_prime": 12, "eigen_valu": 12, "eigen_vect": 12, "qfd": 12, "perhap": 13, "highli": [13, 73, 75], "tout": 13, "fault": [13, 80], "correl": [13, 18], "materi": [13, 64, 68], "particularli": [13, 19, 21, 23, 55, 58, 61], "interest": [13, 15, 16, 17, 19, 21, 22, 23, 63, 65], "theori": [13, 68], "dmft": 13, "account": [13, 19, 52, 53, 64, 75], "strong": 13, "bath": 13, "encompass": 13, "tough": 13, "notebook": [13, 16, 21, 30, 32, 52, 81], "showcas": [13, 30], "siam": 13, "realist": 13, "neutral": [13, 52], "appar": 13, "demo": [13, 52], "cudaq_solv": 13, "importerror": [13, 30], "quiet": 13, "restart": [13, 30], "newli": [13, 55, 75], "abc": 13, "restrict": [13, 14, 16, 21, 23, 54], "z_0": 13, "z_2": 13, "coulomb": 13, "strength": [13, 51], "grid": 13, "ev": 13, "trainabl": 13, "absenc": 13, "paramterized_ansatz": 13, "variational_angl": 13, "run_logical_vq": 13, "cudaq_hamiltonian": 13, "easier": [13, 15, 34, 69, 72], "reproduct": 13, "init_angl": 13, "get_qubit_count": 13, "variational_kernel": 13, "slsqp": [13, 18], "tol": [13, 23, 28], "bare": 13, "unencod": 13, "earlier": [13, 14, 21, 55, 59], "gateset": [13, 21], "readout": [13, 31], "meas_id": 13, "aim_physical_circuit": 13, "ignore_meas_id": 13, "prep": [13, 38], "zz": 13, "z_basi": 13, "for_loop": 13, "q_idx": 13, "getattr": 13, "x_basi": 13, "unsupport": 13, "aim_logical_circuit": 13, "teleport": 13, "With": [13, 31, 32, 54, 59, 69, 76, 81], "noisili": [13, 52], "generate_circuit_set": 13, "u_val": 13, "v_val": 13, "circuit_dict": 13, "qubit_hamiltonian": [13, 23], "tmp_physical_dict": 13, "tmp_logical_dict": 13, "nfinish": 13, "sim_circuit_dict": 13, "circuit_lay": 13, "5846845738799267": 13, "5707961678256028": 13, "588033710930825": 13, "712388365176642": 13, "588651490745171": 13, "5707962742876598": 13, "64012940802256": 13, "5707963354922125": 13, "1293956916868737": 13, "5707963294715355": 13, "6598458659836037": 13, "570796331040382": 13, "695151467539617": 13, "5707960973500679": 13, "4149519241823376": 13, "5707928509325972": 13, "7301462729177735": 13, "570796033796985": 13, "helper": [13, 64], "plai": [13, 15], "role": [13, 15], "_num_qubit": 13, "isdecim": 13, "process_count": 13, "data_qubit": 13, "flag_qubit": 13, "dict": [13, 18, 19], "new_data": 13, "continu": [13, 15, 16, 19, 21, 59, 64, 69], "new_kei": 13, "issuperset": 13, "setdefault": 13, "physical_to_log": 13, "0000": [13, 17, 54], "1111": [13, 54], "0011": [13, 17], "1100": 13, "0110": 13, "1001": 13, "physical_kei": 13, "logical_kei": 13, "ev_x": 13, "ev_xx": 13, "ev_zz": 13, "aim_logical_energi": 13, "data_ord": 13, "counts_list": 13, "counts_data": 13, "_aim_energi": 13, "aim_physical_energi": 13, "evx": 13, "evxx": 13, "evzz": 13, "h_param": 13, "key_a": 13, "key_b": 13, "startswith": 13, "uncertainti": 13, "string_kei": 13, "uncertainty_xx": 13, "uncertainty_zz": 13, "_get_energy_diff": 13, "bf_energi": 13, "physical_energi": 13, "logical_energi": 13, "physical_energy_diff": 13, "logical_energy_diff": 13, "physical_sim_energi": 13, "logical_sim_energi": 13, "true_energi": 13, "brute": 13, "forc": [13, 22, 32, 54, 79, 81], "got": 13, "72": 13, "submit_aim_circuit": 13, "folder_path": 13, "future_aim_result": 13, "run_async": 13, "makedir": 13, "exist_ok": 13, "aim_result": 13, "tmp_physical_result": 13, "physical_": 13, "_job_u": 13, "_v": 13, "_result": 13, "txt": [13, 64, 71, 72, 75, 76], "close": [13, 16, 21, 59, 64], "tmp_logical_result": 13, "logical_": 13, "ncomplet": 13, "nall": 13, "async": 13, "_get_async_result": 13, "physical_count": 13, "logical_count": 13, "nobtain": 13, "domin": 13, "Such": [13, 48, 59], "get_device_nois": 13, "depolar_prob_1q": 13, "depolar_prob_2q": 13, "readout_error_prob": 13, "custom_g": 13, "depolar_nois": 13, "noisy_op": 13, "custom_depolar_channel": 13, "p_0": 13, "p_1": 13, "k0": 13, "complex128": [13, 21, 26, 51], "k1": 13, "k3": 13, "cz": 13, "bit_flip": [13, 18, 26], "cudaq_noise_model": 13, "rate": [13, 17, 53], "fidel": 13, "99": [13, 18], "98": 13, "002": 13, "aim_sim_data": 13, "sim_physical_energi": 13, "sim_physical_uncertainti": 13, "sim_logical_energi": 13, "sim_logical_uncertainti": 13, "251736027394713": 13, "265564437074638": 13, "252231964940428": 13, "293350575766127": 13, "608495283014149": 13, "305692796870582": 13, "39007993367173": 13, "260398644698076": 13, "429650912487233": 13, "deviat": [13, 73], "sim_physical_energy_diff": 13, "sim_logical_energy_diff": 13, "929": 13, "46016175277361": 13, "97": 13, "176531948420889": 13, "268": 13, "26321740664324": 13, "8495": 13, "46681284816878": 13, "1965000000000003": 13, "4531715120183297": 13, "336": 13, "341784541550897": 13, "802": 13, "339249509416753": 13, "8580000000000005": 13, "1227150992242025": 13, "3635": 13, "448422736181264": 13, "subject": 13, "overcom": 13, "preview": 13, "offer": [13, 31, 53, 55, 80], "fig": [13, 18], "ax": [13, 16, 18, 19], "dpi": 13, "200": [13, 19, 34], "layer_label": 13, "plot_label": 13, "errorbar": 13, "yerr": 13, "ecolor": 13, "255": 13, "26": [13, 18, 19, 53, 61], "94": [13, 18], "capsiz": 13, "elinewidth": 13, "fmt": 13, "markers": 13, "markeredgewidth": 13, "177": 13, "152": [13, 18], "set_xlabel": [13, 18], "fontsiz": [13, 18, 21], "set_ylabel": [13, 18], "set_titl": [13, 18], "xtick": 13, "ytick": 13, "axhlin": 13, "linestyl": 13, "linewidth": [13, 21], "ylim": 13, "bottom": [13, 61], "ve": [13, 32, 65, 77, 81], "seamlessli": 13, "cross": [13, 52], "superstaq": [13, 32, 52, 64, 81], "hood": [13, 79], "inde": [13, 21, 73], "gain": 13, "registr": [13, 52, 71, 72], "reproduc": [13, 21], "23": [13, 16, 18, 19, 21, 30, 61], "device_circuit_dict": 13, "7301462945564499": 13, "570796044872433": 13, "24": [13, 18, 29, 30, 61, 72, 73, 75, 76, 80], "superstaq_api_kei": [13, 52], "api_kei": [13, 53], "cq_sqale_qpu": [13, 52, 64], "dry": [13, 52, 64], "simpl": [13, 26, 28, 36, 39, 51, 53, 54, 57, 59, 63, 64, 65, 69, 71, 75, 76, 80], "meantim": [13, 64, 75], "hardware_aim_future_result": 13, "aim_device_data": 13, "physical_uncertainti": 13, "29": [13, 18, 19, 54], "logical_uncertainti": 13, "626499999999997": 13, "69666562801761": 13, "1415": 13, "2032104443266585": 13, "9955": 13, "76919450035401": 13, "331": 13, "85730052910377": 13, "476": [13, 18], "5425689231532203": 13, "043500000000002": 13, "795918428433312": 13, "4715": 13, "96524696701215": 13, "973": 13, "207315773582224": 13, "182": 13, "241375689575516": 13, "yet": [13, 18, 23, 24, 32, 52, 54, 75, 81], "afford": 13, "closer": [13, 58, 65, 69], "outperform": 13, "power": [13, 17, 21, 30, 32, 53, 55, 67, 81], "31": [13, 18, 53, 67], "farhi": 14, "dive": [14, 30, 32, 75, 81], "ll": [14, 15, 19, 65, 69, 72, 76], "maxim": [14, 16, 53, 55, 57, 64, 67], "although": [14, 68], "rel": [14, 55], "hard": 14, "statist": [14, 24, 34, 37, 59, 68], "furthermor": [14, 32, 81], "wider": [14, 54], "portfolio": 14, "shop": 14, "vertex": 14, "subseteq": 14, "mathbb": [14, 26, 68], "interchang": [14, 55], "undirect": 14, "v_1": 14, "exactli": [14, 21], "bigcup": 14, "bigcap": 14, "emptyset": 14, "illustr": [14, 21, 34, 52, 54, 62, 64, 65], "disjoint": 14, "grai": 14, "depict": [14, 16, 19, 30], "distinct": [14, 21, 30, 48], "substack": 14, "sometim": [14, 16, 52], "01100": [14, 19, 54], "01011": [14, 19], "v1": [14, 52], "v2": 14, "v0": 14, "v3": [14, 73, 75], "v4": [14, 75], "10100": [14, 19], "01010": [14, 19], "10101": [14, 19], "edges_src": 14, "edges_tgt": 14, "algortihm": 14, "hamilitonian": 14, "distinguish": [14, 48], "mixer": 14, "posit": [14, 18, 19, 21, 23, 26, 41, 51, 55], "deeper": [14, 30], "layer_count": 14, "qaoaproblem": 14, "subcircuit": [14, 58], "kernel_qaoa": 14, "plaehold": 14, "qubitu": 14, "qubitv": 14, "mention": [14, 21], "z_v": 14, "vale": 14, "arbirtrari": 14, "formula": 14, "z_uz_v": 14, "refram": 14, "promot": [14, 31, 80], "replac": [14, 19, 52, 53, 69, 71, 73, 75], "lead": [14, 16, 26, 32, 81], "reformul": 14, "hamiltonian_max_cut": 14, "inititi": 14, "iiziz": 14, "izzii": 14, "iiiii": 14, "zziii": 14, "iiizz": 14, "iizzi": 14, "ziizi": 14, "495973826282007": 14, "51349181993727": 14, "21299416361632417": 14, "3250526425808945": 14, "886630847343767": 14, "outcom": [14, 16, 17, 19], "max_cut": 14, "11111": [14, 19], "11110": [14, 19], "01101": [14, 19], "148": 14, "01110": [14, 19], "47": [14, 18, 19, 30], "01000": [14, 19], "00110": [14, 19], "54": [14, 18], "165": 14, "00101": [14, 19], "154": 14, "00100": [14, 19], "01001": [14, 19], "41": [14, 19], "00000": [14, 19], "00011": [14, 19], "10011": [14, 19, 54], "00010": [14, 19], "01111": [14, 19], "11011": [14, 19], "00111": [14, 19], "11100": [14, 19], "10001": [14, 19], "10010": [14, 19], "144": [14, 18], "10110": [14, 19], "40": [14, 16, 18, 21, 22, 28, 67], "10111": [14, 19], "11000": [14, 19], "11101": [14, 19], "11001": [14, 19], "a726804916fd397408cbf595ce6fe5f33dcd8b4c": [14, 15], "aid": [15, 33], "area": [15, 54], "signal": [15, 39, 51], "compress": 15, "qft": 15, "ingredi": 15, "shor": [15, 31], "faster": [15, 16, 19, 21, 23, 55], "prime": [15, 19], "vital": 15, "idea": [15, 19], "frequenc": [15, 64], "domain": 15, "analogi": 15, "ixi": 15, "5i": 15, "35": [15, 16, 18, 19], "0i": 15, "25i": 15, "35i": 15, "r_k": 15, "bmatrix": [15, 18, 68], "ciruit": 15, "quantum_fourier_transform": [15, 19], "cr1": [15, 19, 37], "zeroth": 15, "decim": 15, "round": [15, 21, 28, 37], "r1": [15, 19, 30, 37, 41, 48], "571": [15, 19], "7854": [15, 19], "25j": 15, "35j": 15, "seri": [15, 52, 64], "fast": [15, 21, 39, 55, 58], "n2": 15, "life": [15, 53], "li": [15, 19, 69], "invert": [15, 21], "revers": [15, 19, 45], "quantum_fourier_transform2": 15, "attent": 15, "inverse_qft": [15, 19], "verification_exampl": 15, "phenomena": [16, 68], "implic": 16, "initialis": 16, "unless": [16, 73, 75], "0th": [16, 26], "arbitari": 16, "2nd": 16, "beta_": 16, "replic": 16, "stage": 16, "psi0": 16, "psi4": 16, "71": 16, "62": [16, 23], "psi1": 16, "psi2": 16, "psi3": 16, "m1": 16, "m2": 16, "psi_4": 16, "multipartit": 16, "partial": 16, "subsystem": 16, "partial_trac": 16, "state_vector": 16, "trace_system": 16, "particl": [16, 48], "log2": [16, 19], "rho": 16, "tensordot": 16, "prod": 16, "state_of_q0": 16, "state_of_q2": 16, "allclos": [16, 21], "happen": [16, 19, 48, 75], "portion": 16, "lab": [16, 75], "infinit": [16, 21, 39, 46, 59], "apart": 16, "obei": [16, 68], "theorem": [16, 46], "longer": [16, 26, 73], "violat": 16, "travel": 16, "speed": 16, "light": [16, 51], "experimentalist": 16, "cx_": 16, "alic": 16, "bob": 16, "safekeep": 16, "moon": 16, "posess": 16, "she": 16, "send": 16, "who": 16, "mile": 16, "entail": 16, "collaps": [16, 24, 59, 68, 72], "seper": [16, 22], "poss": 16, "expand": [16, 69], "bracket": 16, "110": [16, 18, 19], "whilst": 16, "maintain": 16, "break": [16, 19, 32, 81], "ask": [16, 75], "her": 16, "unmeasur": 16, "determinist": [16, 59], "tell": [16, 18, 68], "summaris": 16, "psi_3": 16, "nearli": 16, "pend": 16, "minor": 16, "fulfil": 16, "protocol": [16, 73], "m1m2": 16, "recov": 16, "ambit": 16, "instantli": 16, "appear": [16, 21, 34, 75], "he": 16, "rather": [16, 20, 24, 25, 53, 55, 59, 68, 79], "transmit": 16, "courtesei": 16, "textbook": 16, "nielsen": 16, "chuang": 16, "qv": 17, "greatest": [17, 19], "score": 17, "though": [17, 73], "imperfect": [17, 18], "usabl": 17, "special": [17, 18, 38, 43, 69, 77], "median": 17, "greater": [17, 19, 48, 53, 55, 68], "heavi": 17, "averag": [17, 20, 80], "su4": 17, "kak": 17, "conclud": 17, "su4_per_circuit": 17, "n_params_in_su4": 17, "su4_gat": 17, "u3": 17, "reg": [17, 61], "param_index": 17, "randomli": [17, 19], "generate_random_param": 17, "params_list": 17, "generate_random_permut": 17, "circuit_permut": 17, "astyp": 17, "int64": 17, "make_bitstr": 17, "zfill": 17, "percent_heavy_sampl": 17, "error_r": 17, "noiseless": [17, 26], "circuit_param": 17, "layer_permut": 17, "print_output": 17, "bf": 17, "clean_result": 17, "noisy_result": [17, 26], "prob": [17, 18], "cutoff": [17, 55], "circuit_prob": 17, "outcome_prob": 17, "havi": 17, "prob_heavy_in_noisi": 17, "heavy_bitstr": 17, "04363711": 17, "0100": 17, "0010": 17, "1101": 17, "0111": 17, "8153219893574715": 17, "488": 17, "detemin": 17, "_heavy_sampl": 17, "n_circuit": 17, "calc_qv": 17, "circuit_s": 17, "prob_of_error": 17, "number_of_circuit": 17, "counter": 17, "circuit_result": 17, "7280300000000003": 17, "affect": [17, 18, 55, 72], "relationship": 17, "caus": [18, 80], "properli": [18, 59, 73, 75, 79], "character": [18, 26], "independ": [18, 23, 34, 39, 51, 54, 55, 73], "pseudoinvers": 18, "p_": 18, "adjust": [18, 55, 73, 79], "quasi": 18, "impract": 18, "seaborn": 18, "sn": 18, "itertool": 18, "set_styl": 18, "dark": 18, "bitflip": [18, 23, 26], "principl": 18, "get_nois": 18, "isinst": 18, "state_label": 18, "ghz": [18, 24, 53, 54, 57, 59, 64, 65, 67, 69, 76], "ghz_kernel": 18, "plot_cmat": 18, "mat": 18, "im2": 18, "matshow": 18, "cmap": 18, "cm": 18, "vmin": 18, "vmax": 18, "set_ytick": 18, "arang": 18, "set_xtick": 18, "set_yticklabel": 18, "set_xticklabel": 18, "xaxi": 18, "set_label_posit": 18, "colorbar": 18, "closest": 18, "min_": 18, "rm": [18, 73, 75], "find_closest_distribut": 18, "empirical_dist": 18, "empir": 18, "l1": 18, "ord": 18, "con": 18, "ineq": 18, "fun": [18, 23, 28], "eq": [18, 69], "bnd": 18, "initial_valu": 18, "get_counts_from_distribut": 18, "drawn": [18, 19], "choic": [18, 19, 23, 55], "return_count": 18, "1024": 18, "noise_1": 18, "ghz_result": 18, "noisy_dict_1": 18, "noisy_res_1": 18, "352": 18, "43": 18, "367": 18, "61": [18, 19], "noise_2": 18, "noisy_dict_2": 18, "noisy_res_2": 18, "149816047538945": 18, "3802857225639665": 18, "292797576724562": 18, "212": 18, "122": 18, "189": 18, "87": 18, "78": 18, "131": [18, 19], "otim": 18, "single_qubit_label": 18, "single_qubit_st": 18, "924": 18, "104": 18, "920": 18, "true_stat": 18, "observed_st": 18, "90234375": 18, "1015625": 18, "09765625": 18, "8984375": 18, "joint": [18, 64], "a_pinv": 18, "pinv": 18, "positive_dist": 18, "ncorrect": [18, 37], "501": [18, 34], "mitigated_sg": 18, "kind": [18, 59], "bar_label": 18, "assumpt": 18, "a_n": 18, "local_label": 18, "local_st": 18, "388": 18, "235": 18, "174": 18, "79": [18, 19, 53], "58": 18, "38": [18, 19, 73, 75], "370": 18, "60": [18, 75], "107": 18, "162": 18, "marginalized_count": 18, "total_shot": 18, "marginal_ct": 18, "85546875": 18, "15722656": 18, "14453125": 18, "84277344": 18, "6328125": 18, "38476562": 18, "3671875": 18, "61523438": 18, "70800781": 18, "32226562": 18, "29199219": 18, "67773438": 18, "pinv_confusion_matric": 18, "a_joint": 18, "559": 18, "510": [18, 67], "521": 18, "446": 18, "mitigated_k_loc": 18, "248": 18, "159": [18, 19], "83": 18, "68": 18, "161": [18, 19], "93": 18, "46": 18, "363": 18, "253": 18, "76": 18, "378": 18, "150": [18, 68], "36": [18, 67], "74": [18, 23], "106": 18, "145": 18, "251": 18, "386": 18, "229": 18, "247": 18, "70": [18, 23], "163": 18, "371": 18, "95": 18, "157": [18, 19], "233": 18, "85": [18, 67], "396": 18, "393": 18, "160": [18, 19], "a_ful": 18, "09734490298929": 18, "714": 18, "211": 18, "49": 18, "63": 18, "422": 18, "683": 18, "302": 18, "mitigated_ful": 18, "famou": 19, "signific": [19, 20, 23, 24, 29, 32, 81], "modern": 19, "asymmetr": 19, "encrypt": [19, 75], "scheme": [19, 55], "rsa": [19, 75], "proce": [19, 20, 75, 80], "explain": [19, 21, 54, 68], "contfrac": 19, "156": 19, "gcd": 19, "ceil": 19, "fraction": [19, 55], "satisfi": [19, 26, 46, 64, 73], "share": [19, 32, 55, 72, 75, 79, 81], "divisor": 19, "smallest": 19, "shors_algorithm": 19, "investig": 19, "terminologi": 19, "literatur": 19, "period": 19, "recast": 19, "a1": 19, "a2": 19, "divisor1": 19, "divisor2": 19, "find_order_quantum": 19, "find_order_class": 19, "test_ord": 19, "retri": [19, 30], "establish": 19, "rewritten": [19, 30], "rewrit": [19, 71], "peter": 19, "50": [19, 23, 59, 68, 79], "possible_factor": 19, "test_factor": 19, "No": [19, 64, 67, 75], "straightforward": 19, "notabl": 19, "ineffici": 19, "158": 19, "naiv": [19, 48], "interv": [19, 22], "my_integ": 19, "123": 19, "edit": [19, 75], "initial_value_to_start": 19, "central": 19, "lceil": 19, "rceil": 19, "phase_kernel": 19, "ai": 19, "exponent": 19, "provabl": 19, "hefti": 19, "5l": 19, "algoirthm": 19, "72l": 19, "exponentiaion": 19, "beckman": 19, "chari": 19, "devabhaktuni": 19, "preskil": 19, "1996": 19, "beyond": [19, 53, 55, 67, 71], "difficulti": 19, "report": 19, "modular_mult_5_21": 19, "physlab": 19, "wp": 19, "content": [19, 34, 52, 64, 72, 75], "upload": 19, "2023": 19, "05": [19, 20, 53], "shor_s_algorithm_23100113_fin": 19, "modif": [19, 23, 55, 59, 65], "modular_exp_5_21": 19, "expon": 19, "control_s": 19, "ctrl_qubit": [19, 45], "198": 19, "5y": 19, "demonstrate_mod_exponenti": 19, "init": 19, "integer_result": 19, "previou": [19, 20, 23, 25, 32, 40, 46, 51, 75, 81], "199": 19, "modular_exp_4_21": 19, "ab": [19, 21], "2103": 19, "13855": 19, "control_register_s": 19, "work_register_s": 19, "control_regist": 19, "work_regist": 19, "201": 19, "values_for_a": 19, "15000": 19, "q6": 19, "q7": 19, "2843": 19, "913": 19, "1850": 19, "1935": 19, "1830": 19, "2846": 19, "1861": 19, "922": 19, "top_result": 19, "202": 19, "results_dictionari": 19, "pop": [19, 75, 79], "sorted_result": 19, "top_kei": 19, "max_valu": 19, "top_results_dictionari": 19, "203": 19, "750": 19, "lectur": 19, "scott": 19, "aaronson": 19, "204": 19, "get_order_from_phas": 19, "phase_nbit": 19, "eigenphas": 19, "from_float": 19, "limit_denomin": 19, "denomin": 19, "coefficients_continued_fract": 19, "continued_fract": 19, "convergents_continued_fract": 19, "algoithm": 19, "205": 19, "zero_result": 19, "elem": 19, "most_probable_bitpattern": 19, "reverse_result": 19, "nonzero": 19, "bitpattern": 19, "206": 19, "452": 19, "92": 19, "2485": 19, "96": 19, "1747": 19, "1654": 19, "1736": 19, "475": [19, 67], "420": 19, "00001": 19, "1710": 19, "113": 19, "467": 19, "2536": 19, "81": 19, "8125": 19, "8421052631578947": 19, "regev": 19, "heisenberg": 20, "chain": [20, 22, 48], "recurs": [20, 38], "fo": 20, "iht": 20, "approx": [20, 68], "prod_": [20, 42], "predefin": [20, 36, 61], "jx": 20, "jy": 20, "n_step": [20, 51], "n_spin": 20, "j_x": 20, "x_j": 20, "x_": 20, "y_j": 20, "y_": 20, "z_": 20, "jz": 20, "heisenbergmodelham": 20, "tdop": 20, "getinitst": 20, "numspin": 20, "qid": 20, "average_magnet": 20, "start_tim": [20, 23], "magnetization_exp_v": 20, "steptim": 20, "03444695472717285": 20, "09042024163828166": 20, "0026793479919433594": 20, "08898564687193886": 20, "002758026123046875": 20, "08698024360923415": 20, "002524852752685547": 20, "08507694741170907": 20, "0026259422302246094": 20, "08394118068746997": 20, "002542734146118164": 20, "08394076573115139": 20, "0027430057525634766": 20, "08502222139504187": 20, "0025305747985839844": 20, "08677832064885871": 20, "003045797348022461": 20, "08863390649349775": 20, "0025949478149414062": 20, "09005513983609514": 20, "boost": [20, 29], "resimul": 20, "24x": 20, "florian": 21, "f\u00fcrrutter": 21, "gorka": 21, "mu\u00f1oz": 21, "gil": 21, "han": 21, "briegel": 21, "nat": 21, "mach": 21, "intel": [21, 80], "515": 21, "524": 21, "2024": [21, 53], "viabl": 21, "commonli": [21, 26, 51, 73, 75], "dm": [21, 53], "deliv": [21, 53], "fold": 21, "prompt": [21, 75], "thoroughli": 21, "overview": 21, "neural": [21, 31], "network": [21, 31, 32, 52, 53, 54, 64, 72, 75, 81], "crucial": 21, "emploi": [21, 26], "de": 21, "genqc": 21, "diffusion_pipelin": 21, "diffusionpipelin": 21, "infer": [21, 68], "export_cudaq": 21, "genqc_to_cudaq": 21, "infer_compil": 21, "infer_comp": 21, "fix": [21, 22, 32, 55, 81], "infer_torch_devic": 21, "memoryclean": 21, "purge_mem": 21, "tf32": 21, "matmul": 21, "from_pretrain": 21, "floki00": 21, "qc_unitary_3qubit": 21, "hug": 21, "set_timestep": 21, "vocab": 21, "gate_pool": 21, "decod": 21, "num_of_qubit": 21, "max_gat": 21, "nonetheless": 21, "stai": 21, "tune": [21, 55], "bigger": 21, "70710678": [21, 24, 61], "ccx": 21, "scenario": [21, 32, 66, 75, 81], "miss": [21, 48, 55, 73], "u_r": 21, "u_i": 21, "u_tensor": 21, "stack": [21, 38], "out_tensor": 21, "generate_comp_tensor": 21, "system_s": 21, "guidanc": [21, 75], "cfg": [21, 69], "kernel_list": 21, "valid_tensor": 21, "invalid_tensor": 21, "out_tensors_i": 21, "catch": [21, 79], "invalid": [21, 55], "rapidli": 21, "successfulli": [21, 28], "transit": 21, "langl": [21, 34], "th": [21, 42], "got_unitari": 21, "basis_state_j": 21, "set_printopt": 21, "7071": 21, "infidel": 21, "ones": [21, 34, 51], "want_unitari": 21, "histogram": 21, "hist": 21, "almost": [21, 73], "min_index": 21, "4e": [21, 64], "09": 21, "valuabl": 21, "deal": [21, 46], "fewest": 21, "toffoli": [21, 45, 55], "token": [21, 52, 75], "duplic": 21, "pick": [21, 72, 73], "idx_uniqu": 21, "return_index": 21, "unique_tensor": 21, "unique_infidel": 21, "unique_kernel": 21, "idx_correct": 21, "argwher": 21, "correct_tensor": 21, "num_ccx": 21, "correct_kernel": 21, "correct_kernels_ccx1": 21, "preprocess": [22, 23], "uccsd": [22, 23], "hydrogen": 22, "bond": [22, 55], "interatom": 22, "electrostat": 22, "proton": 22, "shield": 22, "neutron": 22, "minimis": 22, "stabl": [22, 75], "hydrogen_count": 22, "angstrom": 22, "bond_dist": 22, "coupl": [22, 23, 39, 55, 64, 75], "cluster": [22, 23, 31, 54, 55], "uccsd_num_paramet": [22, 23], "builtin": [22, 69], "1371744305855906": 22, "popular": [22, 75], "xk": [22, 23], "x0": [22, 23, 34], "aspect": [23, 33, 34, 55, 79], "topic": [23, 61], "tradit": 23, "variation": 23, "elabor": 23, "get_fermion_oper": 23, "timeit": [23, 59, 67], "charg": 23, "1173": 23, "4691": 23, "7570": 23, "sto3g": 23, "run_pyscf": 23, "moleculardata": 23, "get_molecular_hamiltonian": 23, "jordan": 23, "wigner": 23, "molecular_hamiltonian": 23, "fermion_hamiltonian": 23, "spatial": 23, "theoret": 23, "excit": [23, 32, 68, 81], "hate": 23, "electron_num": 23, "molecuul": 23, "140": 23, "default_tim": 23, "end_tim": 23, "get_term_count": 23, "elaps": 23, "21455023422772": 23, "1086": 23, "9171073289999185": 23, "perfect": 23, "greatli": [23, 32, 81], "minut": [23, 75], "drastic": 23, "side": [23, 30, 48, 75], "ith": [23, 28], "prohibit": 23, "observe_asynch": 23, "epsilon": [23, 26, 28], "batched_gradient_funct": [23, 28], "tile": [23, 28], "xplu": [23, 28], "ey": [23, 28], "xminu": [23, 28], "g_plu": [23, 28], "g_minu": [23, 28], "bfg": [23, 28, 34], "gradient_vector": [23, 28], "init_param": 23, "result_vq": [23, 28], "jac": [23, 28], "73": 23, "19471262288755": 23, "57": [23, 73, 75], "27010986900132": 23, "thank": [23, 32, 55, 81], "unnecessari": 23, "highest": 23, "unoccupi": 23, "shallow": 23, "nele_ca": 23, "norb_ca": 23, "ncore": 23, "constrcut": 23, "occupied_indic": 23, "active_indic": 23, "96341992791962": 23, "754178541001238": 23, "consecut": [23, 29], "cudaq_mgpu_fus": [23, 29, 32, 55, 81], "506": 24, "494": 24, "subtl": [24, 59], "rebuilt": [24, 59], "feasibl": [24, 68], "signinific": 24, "textcolor": 24, "intens": [24, 59], "respons": [24, 59], "event": [24, 59, 73], "hamiltonian_1": 24, "hamiltonian_2": 24, "result_1": [24, 59], "result_2": [24, 59], "220446049250313e": 24, "obver": 24, "0eb6b444eb5b3a687e6fd64529ee9223aaa2870": 24, "mx": 25, "my": [25, 53, 72, 75], "qubits_a": 25, "qubit_b": 25, "savig": 25, "b0": 25, "coher": [26, 38, 52], "incoher": 26, "systemat": 26, "miscalibr": 26, "formal": 26, "k_i": 26, "ideal_count": 26, "error_prob": 26, "phase_flip": 26, "amplitude_damp": 26, "kraus_0": 26, "kraus_1": 26, "bitflip_channel": 26, "uniformli": 26, "noisy_count": 26, "844": 26, "88": 26, "8666666666666666": 26, "cover": [27, 61], "sophist": 27, "2xyx": 27, "3zzy": 27, "referenc": 27, "xyxz": 27, "432xzy": 27, "324ixx": 27, "ixx": 27, "432": 27, "324": 27, "907": [28, 34, 37, 42, 53, 54, 63], "1433": [28, 34, 37, 42, 53, 54, 63], "21829": [28, 34, 37, 42, 53, 54, 63], "adam": [28, 51], "nminim": 28, "748382901613712": 28, "58409164053813": 28, "accomplis": 28, "fucntion": 28, "messag": [28, 39, 53, 73, 75], "statu": 28, "7488646919931474": 28, "944e": 28, "288e": 28, "nfev": 28, "33": [28, 54, 75], "maxcv": 28, "plu": [28, 51], "minu": [28, 30, 51], "situat": 29, "c2h2vqe": 29, "cue": 30, "sens": [30, 69], "2d": 30, "plane": 30, "3d": 30, "varphi": 30, "direct": [30, 69, 79], "spheric": 30, "sphere": 30, "sure": [30, 54, 73, 75, 77, 80], "jupyt": [30, 52, 75], "menu": 30, "vscode": [30, 75], "click": [30, 75], "button": 30, "toolbar": 30, "misunderstand": 30, "qualifi": 30, "bash": [30, 53, 73, 75, 80], "pipe": [30, 69], "sy": [30, 59, 80], "nnew": 30, "subsequ": [30, 34, 39, 42, 44, 73, 75], "add_to_bloch_spher": 30, "rng": 30, "default_rng": [30, 67], "blochspherelist": 30, "anglelist": 30, "sph": 30, "displai": [30, 33], "accordingli": [30, 55, 79], "absolut": [30, 46, 69], "had": 30, "toolbox": 30, "blochspher": 30, "unfortun": 30, "handi": 30, "kernel_to_draw": 30, "14159": 30, "tdg": [30, 41], "142": 30, "documentclass": 30, "usepackag": 30, "quantikz": 30, "lstick": 30, "q_0": 30, "amp": 30, "r_1": 30, "qw": 30, "q_1": 30, "targx": 30, "q_2": 30, "q_3": 30, "editor": 30, "export": [30, 52, 53, 54, 72, 73, 80], "welcom": [31, 53, 65, 75], "page": [31, 59, 63, 65, 73, 75, 80], "scalabl": [31, 53, 80], "unifi": [31, 50, 80], "brows": 31, "amd64": [31, 32, 81], "2491": 31, "releas": [31, 50, 54, 55, 69, 75, 80, 81], "toolchain": [31, 47, 52, 59, 69, 75, 76, 77, 78, 80], "heterogen": [31, 33, 58, 73], "troubleshoot": [31, 56], "bernstein": [31, 75], "vazirani": [31, 75], "diffus": 31, "magnet": 31, "suzuki": 31, "deutsch": 31, "divis": 31, "coreset": 31, "qaoa": 31, "dock": 31, "dc": 31, "krylov": 31, "mont": 31, "carlo": 31, "fourier": [31, 37], "telepor": 31, "volum": 31, "mitig": 31, "fusion": [31, 32, 55, 81], "subspac": 31, "anderson": [31, 52], "impur": [31, 52], "infleqt": [31, 50], "sqale": [31, 52], "cloud": [31, 32, 50, 52, 55, 64, 81], "processor": [31, 32, 34, 39, 50, 59, 75, 79, 80, 81], "center": [31, 74, 75], "cmake": [31, 71, 72, 78], "repositori": [32, 71, 72, 73, 75, 81], "docker": [32, 51, 73, 80, 81], "nightli": [32, 75, 81], "infeqt": [32, 81], "offici": [32, 41, 73, 75, 81], "wherea": [32, 79, 81], "never": [32, 46, 81], "wheel": [32, 54, 55, 73, 81], "toolset": [32, 73, 79, 81], "manipul": [32, 68, 81], "anyon": [32, 50, 81], "technologi": [32, 81], "ferimioniq": [32, 81], "oqc": [32, 50, 81], "hope": [32, 81], "enjoi": [32, 81], "eas": [32, 81], "think": [32, 54, 68, 81], "great": [32, 81], "extern": [32, 55, 69, 71, 73, 79, 81], "contributor": [32, 81], "bug": [32, 81], "frontend": [32, 81], "blog": [32, 81], "workload": [32, 54, 75, 81], "gnu": [32, 69, 73, 75, 79, 81], "older": [32, 73, 75, 81], "glibc": [32, 73, 75, 81], "iqm": [32, 50, 81], "publish": [32, 75, 81], "arm": [32, 73, 75, 80, 81], "aarch64": [32, 51, 80, 81], "pypi": [32, 73, 80, 81], "quantinuum": [32, 50, 81], "ionq": [32, 50, 81], "linux": [32, 69, 73, 75, 81], "coprocess": 33, "annot": [33, 38, 57, 65], "core": [33, 34, 55, 67, 69], "namespac": [33, 34, 36, 37, 38, 41, 42, 44, 46, 47, 53, 54, 59, 63, 64, 71, 72, 77, 79], "philosophi": 34, "stand": 34, "alon": 34, "adaptor": 34, "returntyp": 34, "hasvoidreturntyp": 34, "is_void_v": 34, "bel": 34, "lu": [34, 37, 46, 65, 66], "sequential_data": 34, "reg1": 34, "499": 34, "alwai": [34, 55, 75], "middl": 34, "implicitli": [34, 39, 48], "discern": 34, "silent": 34, "discard": 34, "ancillari": 34, "varieti": [34, 59], "enforc": 34, "sample_async_result": 34, "\ud835\udeb9": 34, "retain": [34, 40], "measurecount": 34, "spinop": 34, "x0x1exp": 34, "x0x1data": 34, "qarrai": [34, 37, 38, 45, 65, 69], "lf": [34, 37, 54, 63], "analyt": 34, "async_observe_result": 34, "broader": [34, 54], "dictat": 34, "safe": 34, "providesgradi": 34, "_providesgradi": 34, "someth": [34, 46, 73, 75, 79], "max_ev": 34, "opt_energi": 34, "grad_vec": 34, "\ud835\udeb9_i": 34, "address": [34, 54, 73], "overal": [34, 69, 72], "deuteron_n3_ansatz": 34, "x1": 34, "vctrl": 34, "h3": 34, "625": 34, "913119": 34, "make_tupl": 34, "min_val": 34, "permit": 35, "facilit": [36, 75], "privat": [36, 46], "thenfunctor": 36, "otherkernelbuild": 36, "kerneltocal": 36, "kerneltocontrol": 36, "kerneltoadjoint": 36, "argsarrai": 36, "decltyp": 36, "tuple_s": 36, "integral_const": 36, "sizeof": [36, 77], "tuple_el": 36, "conditional_t": [36, 46], "factori": 36, "xprep": 36, "qubitin": 36, "hadamardtest": 36, "num_it": 37, "c_str": [37, 79], "phase_estim": 37, "cpp": [37, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 71, 72, 73, 75, 76, 77, 79, 80], "qpe": 37, "stdio": [37, 73], "cmath": 37, "iqft": 37, "denom": 37, "1ul": 37, "eigenst": 37, "stateprep": [37, 38], "ncountingqubit": 37, "state_prep": 37, "counting_qubit": 37, "state_regist": 37, "put": [37, 46, 68], "r1pigat": 37, "mostprob": 37, "to_integ": 37, "piestim": 37, "tgate": 37, "xgate": 37, "eigen": [37, 72], "nc": 37, "nq": 37, "countingqubit": 37, "stateregist": 37, "deuteron_n2_ansatz": 37, "param_spac": 37, "linspac": [37, 51, 64], "energy_at_param": 37, "energyatparam": 37, "reflect_about_uniform": 37, "ctrlqubit": 37, "lastqubit": 37, "compute_act": [37, 43], "run_grov": 37, "callablekernel": 37, "n_iter": 37, "target_st": 37, "target_bit_set": 37, "strtol": 37, "null": [37, 51, 75], "0b1011": 37, "compute_oracl": 37, "iterative_qp": 37, "iqp": 37, "cr0": 37, "cr2": 37, "m_pi_4": 37, "differenti": [38, 51], "former": 38, "latter": [38, 51, 69], "my_first_entry_point_kernel": 38, "my_second_entry_point_kernel": 38, "my_first_pure_device_kernel": 38, "parent": 38, "boolexprfromqubitmeasur": 38, "another_qubit": 38, "uncomput": [38, 39], "is_arithmetic_v": 38, "span": [38, 46], "mycustomsimplestruct": 38, "recursivevec": 38, "var": [38, 80], "kernelthatreturn": 38, "dataclass": 38, "mysimplestruct": 38, "recursivelist": 38, "1415926": 38, "kernellambda": 38, "mystateprep": 38, "mygenericalgorithm": 38, "placehold": 38, "mygenericalgorithm2": 38, "callkernel": 38, "anothervers": 38, "constrain": [38, 66], "is_convertible_v": 38, "takes_qubit": [38, 66], "mygenericalgorithmonqarrai": 38, "mygenericalgorithmonqubit": 38, "presum": 39, "graphic": 39, "fpga": 39, "concurr": [39, 53], "inter": [39, 55], "fabric": 39, "novel": 39, "placement": 39, "copyabl": [39, 46], "flavor": 39, "tightli": 39, "modal": 39, "sfina": 40, "foundat": 41, "inst_nam": 41, "header": [41, 73, 75, 77, 79], "qubitarg": 41, "qr": [41, 55], "scalarangl": 41, "rotation_nam": 41, "measure_op": 41, "convei": 41, "p_i": 42, "sigma_j": 42, "intent": 43, "u_cod": 43, "v_code": 43, "computef": 43, "actionf": 43, "computel": 43, "segment": [43, 80], "effort": 44, "get_platform": [44, 54, 63], "quantumregist": 45, "x_gate": 45, "ctrl_bit": 45, "rx_and_h_gat": 45, "kerneltestcontrol": 45, "kerneltestadjoint": 45, "aggreg": [45, 64], "qubit0": [45, 55], "qubit1": [45, 55], "kernel_arg": 45, "fundament": [46, 68, 75, 80], "movabl": 46, "n_level": 46, "adl": 46, "familiar": 46, "stride": 46, "first_5": 46, "qb": 46, "knowledg": 46, "ahead": 46, "storag": [46, 68], "fivecompiletimequbit": 46, "conceptu": 48, "sai": [48, 51], "embodi": 48, "behind": 48, "dataflow": 48, "contrast": 48, "truli": 48, "ssa": 48, "clarifi": 48, "toi": 48, "foo": 48, "boilerpl": [48, 72], "c0": 48, "c1": 48, "extract_ref": [48, 69], "bunch": 48, "decid": 48, "i1": [48, 69], "imagin": 48, "adjac": [48, 52], "Of": 48, "cours": 48, "correctli": [48, 73, 77, 79], "quit": [48, 59], "prone": 48, "analys": 48, "q0_1": 48, "q0_0": 48, "wire": 48, "q0_z": 48, "elimin": [48, 54], "r0": 48, "qref": 48, "unwrap": 48, "misc": 48, "q0_m": 48, "q0_l": 48, "q1_x": 48, "q0_p": 48, "q0_y": 48, "straightforwardli": 48, "cancel": [48, 75, 80], "mmeori": 48, "comprehens": [50, 52, 55], "fermioniq": 50, "stim": 50, "tensornet": [50, 53, 54, 55], "mp": [50, 53, 55], "cuquantum": [51, 55, 67, 72, 73], "superconduct": [51, 68], "transmon": 51, "omega_z": 51, "sigma_z": 51, "omega_x": 51, "omega_d": 51, "sigma_x": 51, "cp": [51, 75], "rho0": 51, "t_final": 51, "evolution_result": [51, 52], "photon": [51, 52, 64, 68], "aka": [51, 55], "ladder": 51, "harmon": 51, "oscil": 51, "displac": 51, "squeez": 51, "momentum": 51, "sigma_i": 51, "jayn": 51, "cum": 51, "omega_c": 51, "omega_a": 51, "caviti": 51, "consider": 51, "h_0": 51, "drift": 51, "h0": 51, "displacement_matrix": 51, "numerictyp": 51, "en": 51, "wiki": 51, "displacement_oper": 51, "term1": 51, "term2": 51, "expm": 51, "system_dimens": 51, "system_oper": 51, "linearli": [51, 68], "time_depend": 51, "vari": 51, "parameter_valu": 51, "time_step": 51, "compute_valu": 51, "param_nam": 51, "step_idx": 51, "match": [51, 52, 73, 75, 79], "undefin": [51, 79], "rungekuttaintegr": 51, "4th": 51, "rung": 51, "kutta": 51, "scipyzvodeintegr": 51, "ordinari": 51, "cudatorchdiffeqdopri5integr": 51, "dormand": 51, "princ": 51, "shampin": 51, "torchdiffeq": 51, "cudatorchdiffeqadaptiveheunintegr": 51, "cudatorchdiffeqbosh3integr": 51, "bogacki": 51, "cudatorchdiffeqdopri8integr": 51, "cudatorchdiffeqeulerintegr": 51, "cudatorchdiffeqexplicitadamsintegr": 51, "bashforth": 51, "cudatorchdiffeqimplicitadamsintegr": 51, "moulton": 51, "cudatorchdiffeqmidpointintegr": 51, "midpoint": 51, "cudatorchdiffeqrk4integr": 51, "secur": [52, 54, 75], "demand": [52, 54], "simplest": 52, "cli": [52, 75], "aws_default_region": 52, "aws_access_key_id": 52, "key_id": 52, "aws_secret_access_kei": 52, "access_kei": 52, "aws_session_token": 52, "sv1": [52, 64], "arn": [52, 64], "eu": [52, 64], "north": [52, 64], "garnet": [52, 64], "device_arn": 52, "softwar": [52, 73, 75], "authent": [52, 54, 55, 75], "emit": [52, 69], "diagnost": 52, "ionq_api_kei": 52, "ionq_generated_api_kei": 52, "aria": [52, 64], "login": [52, 75], "usernam": 52, "password": [52, 75], "refresh": 52, "echo": [52, 53, 73, 75, 79], "home": [52, 53, 75], "anyon_config": 52, "apt": [52, 75], "curl": [52, 73], "jq": 52, "5000": 52, "id_token": 52, "cat": [52, 75], "refresh_token": 52, "cudaq_anyon_credenti": 52, "telegraph": 52, "8q": 52, "berkelei": 52, "25q": 52, "inject": [52, 64, 69, 75], "cortex": 52, "cach": 52, "iqm_tokens_fil": 52, "mandatori": 52, "coco": [52, 64], "adoni": [52, 64], "iqm_server_url": 52, "fi": [52, 73, 75], "apollo": 52, "oxford": 52, "ring": 52, "topologi": 52, "luci": 52, "kagom": 52, "lattic": 52, "toshiko": 52, "contact": [52, 55, 64], "oqc_qcaas_support": [52, 64], "oxfordquantumcircuit": [52, 64], "email": [52, 53], "oqc_url": [52, 64], "oqc_email": [52, 64], "oqc_password": [52, 64], "qcaa": 52, "assembli": 52, "qat": 52, "pt": [52, 64, 75], "interf": [52, 64], "detector": [52, 64], "delai": [52, 64], "orca_access_url": [52, 64], "orca_auth_token": 52, "abcdef123456": 52, "orca_url": [52, 64], "getenv": [52, 64], "localhost": [52, 54, 64, 75], "your_alia": 52, "your_password": 52, "qapi": 52, "quantinuum_config": 52, "cudaq_quantinuum_credenti": 52, "checker": [52, 64], "mere": [52, 73], "2e": [52, 64], "1sc": 52, "navig": [52, 75], "tab": [52, 75], "tabl": [52, 53, 54, 72, 75], "east": 52, "whitepap": 52, "world": [53, 58, 65], "visit": [53, 59], "link": [53, 69, 73, 75, 76, 77, 79], "approv": 53, "nvqc_api_kei": 53, "session": [53, 54, 75], "bashrc": [53, 75], "438": 53, "3600": 53, "h100": 53, "80gb": 53, "hbm3": 53, "driver": [53, 73, 75], "gb": [53, 55, 67], "clock": 53, "mhz": 53, "2619": 53, "1980": 53, "1111111111111111111111111": [53, 67], "486": 53, "0000000000000000000000000": [53, 67], "514": 53, "nvqc_intro": 53, "545": 53, "487": 53, "513": 53, "nvqc_sampl": 53, "grow": [53, 72], "ngpu": 53, "unabl": [53, 75], "deploy": 53, "ye": [53, 75], "cutensornet": [53, 55], "contract": [53, 55], "wherebi": [53, 54, 55], "worker": 53, "nqpu": 53, "opt_gradi": 53, "submiss": [53, 60, 64], "energy_futur": 53, "plus_futur": 53, "minus_futur": 53, "optimal_valu": 53, "grad": 53, "paramshift": 53, "74886": 53, "nvqc_vqe": 53, "incom": [53, 66], "attain": 53, "On": [53, 54, 55, 65, 75, 80], "busi": 53, "substanti": 53, "nvqc_log_level": 53, "disabl": [53, 55, 73], "credenti": [53, 55, 64], "lieu": 53, "nvqc_config": 53, "elucid": 54, "unlik": [54, 59], "opportun": 54, "count_futur": 54, "kerneltobesampl": 54, "runtimeparam": 54, "singleton": [54, 63], "zu": [54, 63], "countfutur": 54, "emplace_back": 54, "gpuemulatedqpu": 54, "37": 54, "cudaq_mqpu_ngpu": 54, "bellow": 54, "state_futur": 54, "kerneltorun": 54, "async_state_result": 54, "statefutur": 54, "suffici": [54, 73, 75, 80], "mpiexec": [54, 55, 73], "script": [54, 59, 73, 75], "srun": 54, "controls_count": 54, "auto_launch": 54, "isdigit": 54, "nrcontrol": 54, "tidx": 54, "daemon": 54, "qpud": 54, "shut": 54, "cudaq_loc": 54, "grep": [54, 73], "qpud_pi": 54, "cuda_visible_devic": [54, 55], "tcp": [54, 75], "ip": 54, "ld_library_path": [54, 73, 80], "launcher": 54, "app": 54, "firewal": 54, "port1": 54, "port2": 54, "port3": 54, "port4": 54, "per": [54, 55, 67], "resolv": 54, "contigu": 54, "byte": [54, 67, 79], "memcpi": 54, "ixiz": 54, "charact": 54, "incur": 54, "overhead": 54, "defer": 54, "rtti": 54, "standalon": [54, 72], "accommod": 55, "switch": [55, 67], "cudaq_fusion_max_qubit": 55, "cudaq_fusion_diagonal_gate_max_qubit": 55, "cudaq_fusion_num_host_thread": 55, "cudaq_max_cpu_memory_gb": 55, "migrat": [55, 73], "unlimit": 55, "0gb": 55, "cudaq_max_gpu_memory_gb": 55, "exce": 55, "cudaq_mgpu_lib_mpi": 55, "libmpi": [55, 75], "cudaq_mgpu_comm_plugin_typ": 55, "openmpi": [55, 73, 75, 80], "mpich": [55, 73], "commplugin": 55, "cudaq_mgpu_nqubits_thresh": 55, "cudaq_mgpu_p2p_device_bit": 55, "gpudirect": 55, "p2p": 55, "cudaq_gpu_fabr": 55, "mnnvl": 55, "nvl": 55, "nvlink": 55, "cudaq_global_index_bit": 55, "comma": 55, "slower": 55, "cudaq_host_device_migration_level": 55, "insert": [55, 71], "interconnect": 55, "infiniband": 55, "fuse": 55, "4x4": 55, "bandwidth": 55, "significantli": 55, "suitabl": [55, 73, 75, 79], "despit": [55, 64], "poor": 55, "visibl": [55, 75], "cutensornet_comm_lib": 55, "libcutensornet_distributed_interface_mpi": 55, "dedic": 55, "dgx": 55, "omp_plac": 55, "omp_num_thread": 55, "number_of_cores_per_nod": 55, "number_of_gpus_per_nod": 55, "wave": 55, "sparsiti": 55, "svd": 55, "singular": [55, 73], "truncat": 55, "tractabl": 55, "footprint": 55, "cudaq_mps_max_bond": 55, "cudaq_mps_abs_cutoff": 55, "largest": 55, "trim": 55, "cudaq_mps_relative_cutoff": 55, "cudaq_mps_svd_algo": 55, "gesvd": 55, "gesvdj": 55, "jacobi": 55, "gesvdp": 55, "gesvdr": 55, "medium": 55, "ava": 55, "onlin": [55, 73, 75], "fermioniq_access_token_id": 55, "fermioniq_access_token_secret": 55, "remote_config": 55, "remote_config_id": 55, "organ": 55, "project_id": 55, "bond_dim": 55, "overridden": [55, 72], "cudaq_default_simul": 55, "debug": [56, 69, 73, 75], "amongst": 57, "roughli": [59, 67, 68], "505": 59, "495": 59, "result_0": 59, "5005": 59, "4995": 59, "most_probable_result": 59, "kernel2": 59, "num_gpu": [59, 67], "confirm": [59, 64, 73, 75, 80], "025": 59, "million": 59, "35x": 59, "code_to_tim": 59, "1000000": 59, "57462": 59, "stmt": 59, "773286": 59, "atoi": [59, 80], "chrono": [59, 64], "high_resolution_clock": 59, "durat": 59, "took": 59, "8337": 59, "18988": 59, "cudaq_log_level": 60, "prepend": 60, "cudaq_dump_jit_ir": 60, "output_filenam": 60, "agnost": 61, "707": 61, "707j": 61, "kernel_initi": 61, "state_to_pass": 61, "default_op": 61, "Or": 61, "x_kernel": [61, 66], "control_vector": [61, 66], "blow": 61, "kernel_a": 61, "kernel_b": 61, "024": 61, "543": 61, "d2": 63, "observe_mqpu": 63, "async_count": 64, "fstream": 64, "proceed": [64, 73], "redefin": 64, "same_fil": 64, "retrieved_async_result": 64, "cq_sqale_simul": 64, "ofstream": 64, "savem": 64, "readin": 64, "ifstream": 64, "flight": 64, "mimic": 64, "dashboard": 64, "qb1": 64, "qb2": 64, "qb3": 64, "qb4": 64, "qb5": 64, "adonis_ghz": 64, "transpar": 64, "worri": 64, "schemat": 64, "optic": 64, "reconfigur": 64, "indistinguish": 64, "interfer": [64, 73, 75], "exit": [64, 67, 75], "n_beam_splitt": 64, "sleep": 64, "this_thread": 64, "sleep_for": 64, "sleep_until": 64, "chrono_liter": 64, "sum_loop_length": 64, "static_cast": [64, 77], "n_loop": 64, "n_mode": 64, "endl": [64, 79], "200m": 64, "endpoint": 64, "syntax_check": 64, "hello": [64, 65, 75], "arrang": 64, "7e": 64, "time_max": 64, "time_ramp": 64, "omega_max": 64, "6300000": 64, "rad": 64, "sec": 64, "delta_start": 64, "delta_end": 64, "piec": [64, 73], "wise": 64, "waveform": 64, "rabi": 64, "12121222": 64, "21202221": 64, "21212121": 64, "21212122": 64, "21221212": 64, "21221221": 64, "22121221": 64, "22221221": 64, "post_sequ": 64, "01010111": 64, "10101010": 64, "10101011": 64, "10101110": 64, "10110101": 64, "10110110": 64, "11010110": 64, "11110110": 64, "pre_sequ": 64, "11101111": 64, "11111111": 64, "rydberg": 64, "gotten": 65, "static_kernel": 65, "multi_controlled_oper": 66, "ccnot": 66, "applyx": 66, "ccnot_test": 66, "apply_x": 66, "counts2": 66, "seamless": [67, 75], "multithread": 67, "ghz_state": 67, "sample_ghz_st": 67, "cpu_result": 67, "525": [67, 75], "2500x": 67, "gpu_result": 67, "490": 67, "8700": 67, "freeli": [67, 73, 75], "term_count": 67, "qubits_list": 67, "990": 67, "dev": [67, 73, 75], "xi": 67, "2500": 67, "4x": 67, "transmiss": 68, "counterpart": 68, "transistor": 68, "alter": 68, "ion": 68, "ourselv": 68, "law": 68, "physicist": 68, "logarithm": 68, "dirac": 68, "correspondingli": [68, 79], "art": [68, 79], "offload": 68, "lvert": 68, "rvert": 68, "502": 68, "498": 68, "modulu": 68, "conserv": 68, "uphold": 68, "probabilist": 68, "devis": 68, "postul": 68, "alpha_": 68, "llvm": [69, 71, 72, 73, 77], "qke": [69, 71], "pipelin": 69, "canonic": 69, "lift": 69, "indirect": 69, "loader": 69, "cse": 69, "lpsxpu": 69, "p3de4l": 69, "fixup": 69, "linkag": 69, "pl": [69, 73], "llc": [69, 73], "reloc": 69, "pic": 69, "filetyp": 69, "obj": 69, "o2": 69, "clang": [69, 73, 79], "gcc": [69, 73, 75, 79], "x86_64": [69, 73, 75, 80], "lib64": [69, 75, 77], "stub": 69, "wl": [69, 73, 79], "rpath": [69, 79], "llib": 69, "lcudaq": 69, "builder": 69, "ensmallen": 69, "em": 69, "lnvqir": 69, "orchestr": 69, "qtx": 69, "mangled_name_map": 69, "__nvqpp__mlirgen__ghz": 69, "_zn3ghzclei": 69, "i32": 69, "entrypoint": 69, "alloca": 69, "memref": 69, "extsi": 69, "c0_i32": 69, "c0_i32_0": 69, "alloca_1": 69, "c1_i32": 69, "subi": 69, "cmpi": 69, "slt": 69, "addi": 69, "unoptim": 69, "mangl": 69, "introspect": 69, "overwrit": 69, "libcudaq": 69, "libnvqir": [69, 72], "robust": 69, "depart": 69, "recal": 69, "datalayout": 69, "p270": 69, "p271": 69, "p272": 69, "f80": 69, "n8": 69, "s128": 69, "invokewithcontrolqubit": 69, "__quantum__qis__x__ctl": 69, "__quantum__rt__array_get_size_1d": 69, "__quantum__qis__h": 69, "i8": 69, "__quantum__rt__array_get_element_ptr_1d": 69, "sext": 69, "bitcast": 69, "icmp": 69, "sgt": 69, "br": 69, "ph": 69, "prehead": 69, "_crit_edg": 69, "trip": 69, "zext": 69, "indvar": 69, "iv": 69, "nuw": 69, "nsw": 69, "nonnul": 69, "exitcond": 69, "ph3": 69, "_crit_edge4": 69, "exitcond5": 69, "mycustomplugin": 71, "cmakelist": [71, 72, 76], "add_llvm_pass_plugin": 71, "operationpass": 71, "quakedialect": 71, "quakeop": 71, "frozenrewritepatternset": 71, "dialectconvers": 71, "replaceh": 71, "oprewritepattern": 71, "hop": 71, "logicalresult": 71, "matchandrewrit": 71, "patternrewrit": 71, "replaceopwithnewop": 71, "sop": 71, "isadj": 71, "getparamet": 71, "getcontrol": 71, "gettarget": 71, "custompassplugin": 71, "passwrapp": 71, "mlir_define_explicit_internal_inline_type_id": 71, "stringref": 71, "runonoper": 71, "getoper": 71, "getcontext": 71, "rewritepatternset": 71, "conversiontarget": 71, "addlegaldialect": 71, "addillegalop": 71, "applypartialconvers": 71, "emitoperror": 71, "signalpassfailur": 71, "cudaq_register_mlir_pass": 71, "add_subdirectori": 71, "circuitsimulatorbas": 72, "lot": 72, "qppcircuitsimul": 72, "custateveccircuitsimul": 72, "openmp": [72, 73, 80], "addqubittost": 72, "addqubitstost": 72, "resetqubit": 72, "qubitidx": 72, "resetqubitstateimpl": 72, "applyg": 72, "gateapplicationtask": 72, "measurequbit": 72, "floattyp": 72, "mysimul": 72, "nvqir_register_simul": 72, "mysimulatorclassnam": 72, "dylib": 72, "nvqir_simulation_backend": 72, "cuda_quantum_path": [72, 73, 75, 76], "find_packag": [72, 76], "nvqir_add_backend": 72, "folder": [72, 73, 75, 76], "cmake_minimum_requir": [72, 76], "fatal_error": [72, 76], "democreatenvqirbackend": 72, "cxx": [72, 73, 76, 80], "measuredbit": 72, "cuda_quantum": [72, 73], "cd": [72, 73, 75, 76], "ninja": [72, 76], "dnvqir_dir": 72, "rootless": 73, "admin": [73, 75], "meet": 73, "carefulli": 73, "requisit": 73, "almalinux": 73, "manylinux_2_28": 73, "cento": [73, 75], "debian": [73, 75], "fedora": [73, 75], "opensus": [73, 75], "sled": [73, 75], "sle": [73, 75], "rhel": [73, 75], "rocki": [73, 75], "ubuntu": [73, 75], "newer": [73, 75, 80], "x86": [73, 75], "arm64": [73, 75, 80], "v8": [73, 75], "volta": [73, 75], "ture": [73, 75], "amper": [73, 75], "ada": [73, 75], "hopper": [73, 75], "470": [73, 75], "git": 73, "unzip": 73, "web": [73, 75], "cudaq_install_prefix": 73, "cuquantum_install_prefix": 73, "cutensor_install_prefix": 73, "cutensor": 73, "llvm_install_prefix": 73, "blas_install_prefix": 73, "bla": 73, "zlib_install_prefix": 73, "zlib": 73, "openssl_install_prefix": 73, "openssl": 73, "curl_install_prefix": 73, "aws_install_prefix": 73, "toolkit": [73, 75, 77, 80], "cuda_vers": [73, 75, 80], "cuda_download_url": [73, 75], "repo": [73, 75], "subfold": [73, 75], "rhel8": [73, 75], "cuda_arch_fold": [73, 75], "dnf": [73, 75], "nobest": [73, 75], "setopt": [73, 75], "install_weak_dep": [73, 75], "tr": [73, 75], "gcc_version": 73, "assembl": 73, "enable_script": 73, "gcc_toolchain": 73, "rh": 73, "cudacxx": 73, "nvcc": [73, 75, 77], "cudahostcxx": 73, "commit": 73, "checkout": 73, "archiv": [73, 75, 79], "subsect": 73, "devel": [73, 75], "suffix": [73, 80], "conda": [73, 80], "auditwheel": 73, "patchelf": 73, "pyproject": 73, "toml": 73, "llvm_project": 73, "flang": 73, "lld": 73, "install_prerequisit": [73, 75], "sh": [73, 75, 80], "fc": 73, "histori": 73, "setuptools_scm_pretend_vers": 73, "cudaq_wheel": 73, "manylinux_platform": 73, "linux_": 73, "sed": [73, 75], "manylinux_2_28_": 73, "pwd": [73, 79], "_skbuild": 73, "repair": 73, "plat": 73, "libcubla": [73, 75], "libcublaslt": 73, "libcusolv": [73, 75], "libcutensor": 73, "libcutensornet": 73, "libcustatevec": 73, "libcudart": 73, "libnvtoolsext": 73, "libnvidia": 73, "ml": 73, "libcuda": 73, "wheelhous": 73, "cudaq_enable_static_link": 73, "cudaq_require_openmp": 73, "cudaq_werror": 73, "cudaq_python_support": 73, "build_cudaq": 73, "primarili": 73, "linker": [73, 79], "makeself": 73, "cuda_quantum_asset": 73, "mv": 73, "ld": 73, "build_config": 73, "xml": 73, "gzip": [73, 75], "sha256": 73, "install_cuda_quantum": [73, 75, 80], "unam": [73, 75, 80], "migrate_asset": 73, "libc6": [73, 75], "sudo": [73, 75, 80], "set_env": [73, 75], "asset": [73, 75, 80], "profil": [73, 75, 80], "version_suffix": [73, 75], "cudart": [73, 75], "nvrtc": [73, 75], "f1": [73, 75], "libnvjitlink": [73, 75], "awar": 73, "autoconf": 73, "libtool": 73, "flex": 73, "openmpi_vers": 73, "openmpi_download_url": 73, "ompi": 73, "tar": [73, 75], "gz": [73, 75], "tmp": 73, "xf": 73, "rf": [73, 75], "autogen": 73, "ldflag": 73, "prefix": [73, 75], "getpwuid": 73, "mem": 73, "memcheck": 73, "verb": 73, "nproc": 73, "mpic": 73, "mpi_cuda_check": 73, "__has_includ": 73, "ext": 73, "endif": 73, "mpi_init": 73, "exit_cod": 73, "mpix_query_cuda_support": 73, "mpi_fin": 73, "mca": 73, "plm_rsh_agent": 73, "ssh": 73, "rsh": 73, "slurm": 73, "mpi_path": [73, 75, 80], "distributed_interfac": [73, 75, 80], "activate_custom_mpi": [73, 75, 80], "bundl": 75, "deploi": 75, "unsur": 75, "engin": 75, "desktop": 75, "administr": 75, "ngc": 75, "whenev": 75, "pull": 75, "nvcr": 75, "cu12": [75, 80], "prototyp": 75, "tri": 75, "readm": 75, "appreci": 75, "insuffici": 75, "hover": 75, "id_rsa": 75, "pub": 75, "itd": 75, "2222": 75, "exec": 75, "openssh": 75, "usepam": 75, "sshd_config": 75, "authorized_kei": 75, "sbin": 75, "sshd": 75, "stricthostkeycheck": 75, "userknownhostsfil": 75, "globalknownhostsfil": 75, "relocat": 75, "wsl": 75, "prerequisit": 75, "sylab": 75, "ce": 75, "xzf": 75, "mconfig": 75, "suid": 75, "builddir": 75, "bootstrap": 75, "runscript": 75, "mount": 75, "devpt": 75, "fakeroot": 75, "sif": 75, "writabl": 75, "nv": 75, "conf": 75, "ldd": [75, 79], "privileg": 75, "revis": 75, "upvot": 75, "posix": 75, "browser": 75, "palett": 75, "attach": 75, "window": 75, "reload": 75, "microsoft": 75, "sandbox": 75, "portmap": 75, "sshd_output": 75, "listen": 75, "1025": 75, "65535": 75, "ui": 75, "aren": 75, "icon": 75, "sidebar": 75, "workspac": 75, "remotecommand": 75, "requesttti": 75, "hostnam": 75, "enableremotecommand": 75, "uselocalserv": 75, "remoteserverlistenonsocket": 75, "connecttimeout": 75, "serverinstallpath": 75, "sign": 75, "upgrad": 75, "ac": 75, "ace_nam": 75, "instance_nam": 75, "commandlin": 75, "job_id": 75, "8888": 75, "portal": 75, "404": 75, "patient": 75, "happi": 75, "cuda12x": 75, "ship": 75, "vendor": 75, "prebuilt": 75, "guarante": 75, "libcudaq_distributed_interface_mpi": 75, "cudaq_mpi_comm_lib": 75, "cu11": [75, 80], "uninstal": [75, 80], "supersed": 75, "dsize": 75, "fairli": 75, "succe": 75, "hang": [75, 80], "imper": 76, "mycudaqapp": 76, "add_execut": 76, "ghz_ex": 76, "dcudaq_dir": 76, "cu": 77, "my_proj": 77, "conform": 77, "my_proj_quantum": 77, "libc": 77, "cudadatatyp": [77, 79], "cudasetfirstnel": 77, "__restrict__": 77, "sv2": 77, "int64_t": 77, "blockidx": 77, "blockdim": 77, "threadidx": 77, "setfirstnel": 77, "uint32_t": [77, 79], "n_block": [77, 79], "int32_t": [77, 79], "threads_per_block": [77, 79], "newdevicestatevector": 77, "devicestatevector": [77, 79], "previousstatedimens": 77, "reinterpret_cast": [77, 79], "cufloatcomplex": [77, 79], "cudoublecomplex": [77, 79], "cucomplex": 77, "cuda_runtim": 77, "device_launch_paramet": 77, "my_kernel": 77, "cudamalloc": 77, "xcompil": 77, "fpic": [77, 79], "cuda_hom": 77, "lcudart": 77, "my_execut": 77, "quantum_kernel": 79, "sstream": 79, "bell_distribut": 79, "stringbuf": 79, "ptr": 79, "strcpy": 79, "libstdc": 79, "libquantum_kernel": 79, "bell_dist": 79, "lquantum_kernel": 79, "abi": 79, "incompat": 79, "watch": 79, "surround": 79, "third_party_librari": 79, "libexternal_librari": 79, "my_cod": 79, "bstatic": 79, "lexternal_librari": 79, "bdynam": 79, "crut": 79, "libexternal_library_complet": 79, "naddlib": 79, "nsave": 79, "nend": 79, "lexternal_library_complet": 79, "shim": 79, "pragma": 79, "is_integr": 79, "initializedevicestatevector": 79, "statedimens": 79, "cudainitializedevicestatevector": 79, "cumbersom": 79, "necessarili": 79, "recogn": 79, "env": 80, "forg": 80, "conda_prefix": 80, "ompi_mca_opal_cuda_support": 80, "ompi_mca_btl": 80, "openib": 80, "bash_profil": 80, "bash_login": 80, "_cu11": 80, "_cu12": 80, "amd": 80}, "objects": {"": [[2, 0, 1, "_CPPv45cudaq", "cudaq"], [2, 1, 1, "_CPPv4N5cudaq20BaseNvcfSimulatorQPUE", "cudaq::BaseNvcfSimulatorQPU"], [2, 1, 1, "_CPPv4N5cudaq17BaseRemoteRESTQPUE", "cudaq::BaseRemoteRESTQPU"], [2, 1, 1, "_CPPv4N5cudaq22BaseRemoteSimulatorQPUE", "cudaq::BaseRemoteSimulatorQPU"], [2, 1, 1, "_CPPv4I0EN5cudaq9CusvStateE", "cudaq::CusvState"], [2, 2, 1, "_CPPv4I0EN5cudaq9CusvStateE", "cudaq::CusvState::ScalarType"], [2, 1, 1, "_CPPv4N5cudaq16ExecutionContextE", "cudaq::ExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE", "cudaq::ExecutionContext::ExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE", "cudaq::ExecutionContext::ExecutionContext::n"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext::n"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext::shots_"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13amplitudeMapsE", "cudaq::ExecutionContext::amplitudeMaps"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext9asyncExecE", "cudaq::ExecutionContext::asyncExec"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext11asyncResultE", "cudaq::ExecutionContext::asyncResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext14batchIterationE", "cudaq::ExecutionContext::batchIteration"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext16canHandleObserveE", "cudaq::ExecutionContext::canHandleObserve"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext16expectationValueE", "cudaq::ExecutionContext::expectationValue"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext12futureResultE", "cudaq::ExecutionContext::futureResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext31hasConditionalsOnMeasureResultsE", "cudaq::ExecutionContext::hasConditionalsOnMeasureResults"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext22invocationResultBufferE", "cudaq::ExecutionContext::invocationResultBuffer"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10kernelNameE", "cudaq::ExecutionContext::kernelName"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext11kernelTraceE", "cudaq::ExecutionContext::kernelTrace"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext4nameE", "cudaq::ExecutionContext::name"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10noiseModelE", "cudaq::ExecutionContext::noiseModel"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext18numberTrajectoriesE", "cudaq::ExecutionContext::numberTrajectories"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext9optResultE", "cudaq::ExecutionContext::optResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext20overlapComputeStatesE", "cudaq::ExecutionContext::overlapComputeStates"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13overlapResultE", "cudaq::ExecutionContext::overlapResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13registerNamesE", "cudaq::ExecutionContext::registerNames"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10reorderIdxE", "cudaq::ExecutionContext::reorderIdx"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext6resultE", "cudaq::ExecutionContext::result"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext5shotsE", "cudaq::ExecutionContext::shots"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext15simulationStateE", "cudaq::ExecutionContext::simulationState"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext4spinE", "cudaq::ExecutionContext::spin"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext15totalIterationsE", "cudaq::ExecutionContext::totalIterations"], [2, 1, 1, "_CPPv4N5cudaq15ExecutionResultE", "cudaq::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEv", "cudaq::ExecutionResult::ExecutionResult"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult::e"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd", "cudaq::ExecutionResult::ExecutionResult::expVal"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult::name"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE", "cudaq::ExecutionResult::ExecutionResult::name"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult", "cudaq::ExecutionResult::ExecutionResult::other"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult::bitString"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult::count"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::ExecutionResult::deserialize"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::ExecutionResult::deserialize::data"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult", "cudaq::ExecutionResult::operator="], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult", "cudaq::ExecutionResult::operator=::other"], [2, 3, 1, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult", "cudaq::ExecutionResult::operator=="], [2, 4, 1, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult", "cudaq::ExecutionResult::operator==::result"], [2, 5, 1, "_CPPv4N5cudaq15ExecutionResult12registerNameE", "cudaq::ExecutionResult::registerName"], [2, 5, 1, "_CPPv4N5cudaq15ExecutionResult14sequentialDataE", "cudaq::ExecutionResult::sequentialData"], [2, 3, 1, "_CPPv4NK5cudaq15ExecutionResult9serializeEv", "cudaq::ExecutionResult::serialize"], [2, 1, 1, "_CPPv4N5cudaq16FermioniqBaseQPUE", "cudaq::FermioniqBaseQPU"], [2, 0, 1, "_CPPv4N5cudaq19KernelExecutionTaskE", "cudaq::KernelExecutionTask"], [2, 1, 1, "_CPPv4N5cudaq21KernelThunkResultTypeE", "cudaq::KernelThunkResultType"], [2, 0, 1, "_CPPv4N5cudaq15KernelThunkTypeE", "cudaq::KernelThunkType"], [2, 1, 1, "_CPPv4N5cudaq17OrcaRemoteRESTQPUE", "cudaq::OrcaRemoteRESTQPU"], [2, 1, 1, "_CPPv4N5cudaq3QPUE", "cudaq::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE", "cudaq::QPU::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUERR3QPU", "cudaq::QPU::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUEv", "cudaq::QPU::QPU"], [2, 4, 1, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE", "cudaq::QPU::QPU::_qpuId"], [2, 3, 1, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask", "cudaq::QPU::enqueue"], [2, 4, 1, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask", "cudaq::QPU::enqueue::task"], [2, 3, 1, "_CPPv4N5cudaq3QPU15getConnectivityEv", "cudaq::QPU::getConnectivity"], [2, 3, 1, "_CPPv4NK5cudaq3QPU20getExecutionThreadIdEv", "cudaq::QPU::getExecutionThreadId"], [2, 3, 1, "_CPPv4N5cudaq3QPU12getNumQubitsEv", "cudaq::QPU::getNumQubits"], [2, 3, 1, "_CPPv4NK5cudaq3QPU21getRemoteCapabilitiesEv", "cudaq::QPU::getRemoteCapabilities"], [2, 3, 1, "_CPPv4N5cudaq3QPU10isEmulatedEv", "cudaq::QPU::isEmulated"], [2, 3, 1, "_CPPv4N5cudaq3QPU11isSimulatorEv", "cudaq::QPU::isSimulator"], [2, 3, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel"], [2, 3, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::args"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::kernelFunc"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::rawArgs"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::rawArgs"], [2, 3, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution"], [2, 4, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution::serializeCodeExecutionObject"], [2, 3, 1, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE", "cudaq::QPU::onRandomSeedSet"], [2, 4, 1, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE", "cudaq::QPU::onRandomSeedSet::seed"], [2, 3, 1, "_CPPv4N5cudaq3QPU21resetExecutionContextEv", "cudaq::QPU::resetExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext", "cudaq::QPU::setExecutionContext"], [2, 4, 1, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext", "cudaq::QPU::setExecutionContext::context"], [2, 3, 1, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE", "cudaq::QPU::setId"], [2, 4, 1, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE", "cudaq::QPU::setId::_qpuId"], [2, 3, 1, "_CPPv4N5cudaq3QPU8setShotsEi", "cudaq::QPU::setShots"], [2, 4, 1, "_CPPv4N5cudaq3QPU8setShotsEi", "cudaq::QPU::setShots::_nShots"], [2, 3, 1, "_CPPv4N5cudaq3QPU27supportsConditionalFeedbackEv", "cudaq::QPU::supportsConditionalFeedback"], [2, 3, 1, "_CPPv4N5cudaq3QPUD0Ev", "cudaq::QPU::~QPU"], [2, 1, 1, "_CPPv4N5cudaq12QuEraBaseQPUE", "cudaq::QuEraBaseQPU"], [2, 1, 1, "_CPPv4N5cudaq10QuakeValueE", "cudaq::QuakeValue"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue::builder"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue::builder"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue::v"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue::v"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue22canValidateNumElementsEv", "cudaq::QuakeValue::canValidateNumElements"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue12constantSizeEv", "cudaq::QuakeValue::constantSize"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4dumpERNSt7ostreamE", "cudaq::QuakeValue::dump"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4dumpEv", "cudaq::QuakeValue::dump"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue19getRequiredElementsEv", "cudaq::QuakeValue::getRequiredElements"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValue8getValueEv", "cudaq::QuakeValue::getValue"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValue7inverseEv", "cudaq::QuakeValue::inverse"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue8isStdVecEv", "cudaq::QuakeValue::isStdVec"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue", "cudaq::QuakeValue::operator*"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemlEKd", "cudaq::QuakeValue::operator*"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue", "cudaq::QuakeValue::operator*::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue", "cudaq::QuakeValue::operator+"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplEKd", "cudaq::QuakeValue::operator+"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplEKi", "cudaq::QuakeValue::operator+"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue", "cudaq::QuakeValue::operator+::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiEKd", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiEKi", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValuemiEv", "cudaq::QuakeValue::operator-"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue", "cudaq::QuakeValue::operator-::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue", "cudaq::QuakeValue::operator/"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuedvEKd", "cudaq::QuakeValue::operator/"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue", "cudaq::QuakeValue::operator/::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE", "cudaq::QuakeValue::operator[]"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue", "cudaq::QuakeValue::operator[]"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE", "cudaq::QuakeValue::operator[]::idx"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue", "cudaq::QuakeValue::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4sizeEv", "cudaq::QuakeValue::size"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice::count"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice::startIdx"], [2, 0, 1, "_CPPv4N5cudaq11QuantumTaskE", "cudaq::QuantumTask"], [2, 0, 1, "_CPPv4N5cudaq17QubitConnectivityE", "cudaq::QubitConnectivity"], [2, 0, 1, "_CPPv4N5cudaq9QubitEdgeE", "cudaq::QubitEdge"], [2, 1, 1, "_CPPv4N5cudaq18RemoteCapabilitiesE", "cudaq::RemoteCapabilities"], [2, 3, 1, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb", "cudaq::RemoteCapabilities::RemoteCapabilities"], [2, 4, 1, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb", "cudaq::RemoteCapabilities::RemoteCapabilities::initValue"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities17isRemoteSimulatorE", "cudaq::RemoteCapabilities::isRemoteSimulator"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities18serializedCodeExecE", "cudaq::RemoteCapabilities::serializedCodeExec"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities12stateOverlapE", "cudaq::RemoteCapabilities::stateOverlap"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities3vqeE", "cudaq::RemoteCapabilities::vqe"], [2, 1, 1, "_CPPv4N5cudaq21RemoteSimulationStateE", "cudaq::RemoteSimulationState"], [2, 1, 1, "_CPPv4N5cudaq9ResourcesE", "cudaq::Resources"], [2, 1, 1, "_CPPv4N5cudaq30SerializedCodeExecutionContextE", "cudaq::SerializedCodeExecutionContext"], [2, 1, 1, "_CPPv4N5cudaq15SimulationStateE", "cudaq::SimulationState"], [2, 1, 1, "_CPPv4N5cudaq15SimulationState6TensorE", "cudaq::SimulationState::Tensor"], [2, 6, 1, "_CPPv4N5cudaq15SimulationState9precisionE", "cudaq::SimulationState::precision"], [2, 7, 1, "_CPPv4N5cudaq15SimulationState9precision4fp32E", "cudaq::SimulationState::precision::fp32"], [2, 7, 1, "_CPPv4N5cudaq15SimulationState9precision4fp64E", "cudaq::SimulationState::precision::fp64"], [2, 0, 1, "_CPPv4N5cudaq15TensorStateDataE", "cudaq::TensorStateData"], [2, 1, 1, "_CPPv4N5cudaq5TraceE", "cudaq::Trace"], [2, 1, 1, "_CPPv4N5cudaq25amplitude_damping_channelE", "cudaq::amplitude_damping_channel"], [2, 1, 1, "_CPPv4I0EN5cudaq12async_resultE", "cudaq::async_result"], [2, 2, 1, "_CPPv4I0EN5cudaq12async_resultE", "cudaq::async_result::T"], [2, 3, 1, "_CPPv4N5cudaq12async_result3getEv", "cudaq::async_result::get"], [2, 0, 1, "_CPPv4N5cudaq19async_sample_resultE", "cudaq::async_sample_result"], [2, 1, 1, "_CPPv4N5cudaq16bit_flip_channelE", "cudaq::bit_flip_channel"], [2, 0, 1, "_CPPv4N5cudaq7complexE", "cudaq::complex"], [2, 1, 1, "_CPPv4N5cudaq14complex_matrixE", "cudaq::complex_matrix"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4colsEv", "cudaq::complex_matrix::cols"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::cols"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::cols"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rawData"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rows"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rows"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4dataEv", "cudaq::complex_matrix::data"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE", "cudaq::complex_matrix::dump"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix4dumpEv", "cudaq::complex_matrix::dump"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE", "cudaq::complex_matrix::dump::os"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix11eigenvaluesEv", "cudaq::complex_matrix::eigenvalues"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix12eigenvectorsEv", "cudaq::complex_matrix::eigenvectors"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix18minimal_eigenvalueEv", "cudaq::complex_matrix::minimal_eigenvalue"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()::i"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()::j"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix", "cudaq::complex_matrix::operator*"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE", "cudaq::complex_matrix::operator*"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix", "cudaq::complex_matrix::operator*::other"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE", "cudaq::complex_matrix::operator*::other"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4rowsEv", "cudaq::complex_matrix::rows"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix8set_zeroEv", "cudaq::complex_matrix::set_zero"], [2, 0, 1, "_CPPv4N5cudaq14complex_matrix10value_typeE", "cudaq::complex_matrix::value_type"], [2, 1, 1, "_CPPv4N5cudaq22depolarization_channelE", "cudaq::depolarization_channel"], [2, 0, 1, "_CPPv4N5cudaq7detailsE", "cudaq::details"], [2, 1, 1, "_CPPv4N5cudaq7details17KernelBuilderTypeE", "cudaq::details::KernelBuilderType"], [2, 3, 1, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE", "cudaq::details::KernelBuilderType::KernelBuilderType"], [2, 4, 1, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE", "cudaq::details::KernelBuilderType::KernelBuilderType::f"], [2, 3, 1, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE", "cudaq::details::KernelBuilderType::create"], [2, 4, 1, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE", "cudaq::details::KernelBuilderType::create::ctx"], [2, 1, 1, "_CPPv4N5cudaq7details6futureE", "cudaq::details::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureERR6future", "cudaq::details::future::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureEv", "cudaq::details::future::future"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::_jobs"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::config"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::qpuNameIn"], [2, 1, 1, "_CPPv4N5cudaq7details19kernel_builder_baseE", "cudaq::details::kernel_builder_base"], [2, 3, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<"], [2, 4, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<::builder"], [2, 4, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<::stream"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::QuantumKernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::kernel"], [2, 5, 1, "_CPPv4N5cudaq3dynE", "cudaq::dyn"], [2, 3, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state"], [2, 2, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::Args"], [2, 2, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::QuantumKernel"], [2, 4, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::args"], [2, 4, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::kernel"], [2, 1, 1, "_CPPv4N5cudaq8gradientE", "cudaq::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient5cloneEv", "cudaq::gradient::clone"], [2, 3, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute"], [2, 3, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::func"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::h"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::x"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient8gradientEv", "cudaq::gradient::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradient::gradient::kernel"], [2, 3, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs"], [2, 2, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::Args"], [2, 2, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::QuantumKernel"], [2, 4, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::args"], [2, 4, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::kernel"], [2, 3, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel"], [2, 2, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel::QuantumKernel"], [2, 4, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients18central_differenceE", "cudaq::gradients::central_difference"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference5cloneEv", "cudaq::gradients::central_difference::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::exp_h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientEv", "cudaq::gradients::central_difference::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::central_difference::gradient::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients18forward_differenceE", "cudaq::gradients::forward_difference"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference5cloneEv", "cudaq::gradients::forward_difference::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientEv", "cudaq::gradients::forward_difference::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients15parameter_shiftE", "cudaq::gradients::parameter_shift"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift5cloneEv", "cudaq::gradients::parameter_shift::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::exp_h"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientEv", "cudaq::gradients::parameter_shift::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 1, 1, "_CPPv4IDpEN5cudaq14kernel_builderE", "cudaq::kernel_builder"], [2, 2, 1, "_CPPv4IDpEN5cudaq14kernel_builderE", "cudaq::kernel_builder::Args"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder11constantValEd", "cudaq::kernel_builder::constantVal"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder11constantValEd", "cudaq::kernel_builder::constantVal::val"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder12getArgumentsEv", "cudaq::kernel_builder::getArguments"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder12getNumParamsEv", "cudaq::kernel_builder::getNumParams"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE", "cudaq::kernel_builder::isArgStdVec"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE", "cudaq::kernel_builder::isArgStdVec::idx"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE", "cudaq::kernel_builder::kernel_builder"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE", "cudaq::kernel_builder::kernel_builder::types"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder4nameEv", "cudaq::kernel_builder::name"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocEv", "cudaq::kernel_builder::qalloc"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE", "cudaq::kernel_builder::qalloc::nQubits"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue", "cudaq::kernel_builder::qalloc::size"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE", "cudaq::kernel_builder::qalloc::state"], [2, 3, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 3, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::control"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::controls"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 2, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::mod"], [2, 2, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::mod"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 1, 1, "_CPPv4N5cudaq13kraus_channelE", "cudaq::kraus_channel"], [2, 3, 1, "_CPPv4NK5cudaq13kraus_channel5emptyEv", "cudaq::kraus_channel::empty"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel7get_opsEv", "cudaq::kraus_channel::get_ops"], [2, 3, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelEv", "cudaq::kraus_channel::kraus_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel::T"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel::inOps"], [2, 4, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel::inputLists"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel::ops"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel", "cudaq::kraus_channel::kraus_channel::other"], [2, 5, 1, "_CPPv4N5cudaq13kraus_channel10noise_typeE", "cudaq::kraus_channel::noise_type"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel", "cudaq::kraus_channel::operator="], [2, 4, 1, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel", "cudaq::kraus_channel::operator=::other"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE", "cudaq::kraus_channel::operator[]"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE", "cudaq::kraus_channel::operator[]::idx"], [2, 5, 1, "_CPPv4N5cudaq13kraus_channel10parametersE", "cudaq::kraus_channel::parameters"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op", "cudaq::kraus_channel::push_back"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op", "cudaq::kraus_channel::push_back::op"], [2, 3, 1, "_CPPv4NK5cudaq13kraus_channel4sizeEv", "cudaq::kraus_channel::size"], [2, 1, 1, "_CPPv4N5cudaq8kraus_opE", "cudaq::kraus_op"], [2, 3, 1, "_CPPv4NK5cudaq8kraus_op7adjointEv", "cudaq::kraus_op::adjoint"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op4dataE", "cudaq::kraus_op::data"], [2, 3, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op"], [2, 3, 1, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE", "cudaq::kraus_op::kraus_op"], [2, 3, 1, "_CPPv4N5cudaq8kraus_op8kraus_opERK8kraus_op", "cudaq::kraus_op::kraus_op"], [2, 2, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op::T"], [2, 4, 1, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE", "cudaq::kraus_op::kraus_op::d"], [2, 4, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op::initList"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op5nColsE", "cudaq::kraus_op::nCols"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op5nRowsE", "cudaq::kraus_op::nRows"], [2, 3, 1, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op", "cudaq::kraus_op::operator="], [2, 4, 1, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op", "cudaq::kraus_op::operator=::other"], [2, 0, 1, "_CPPv4N5cudaq3mpiE", "cudaq::mpi"], [2, 3, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather"], [2, 3, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather::global"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather::global"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather::local"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather::local"], [2, 3, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce"], [2, 3, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::BinaryFunction"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce::Func"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::T"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce::T"], [2, 4, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::function"], [2, 4, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::localValue"], [2, 3, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast"], [2, 3, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast::data"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast::data"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast::rootRank"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast::rootRank"], [2, 3, 1, "_CPPv4N5cudaq3mpi8finalizeEv", "cudaq::mpi::finalize"], [2, 3, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize"], [2, 3, 1, "_CPPv4N5cudaq3mpi10initializeEv", "cudaq::mpi::initialize"], [2, 4, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize::argc"], [2, 4, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize::argv"], [2, 3, 1, "_CPPv4N5cudaq3mpi14is_initializedEv", "cudaq::mpi::is_initialized"], [2, 3, 1, "_CPPv4N5cudaq3mpi9num_ranksEv", "cudaq::mpi::num_ranks"], [2, 3, 1, "_CPPv4N5cudaq3mpi4rankEv", "cudaq::mpi::rank"], [2, 1, 1, "_CPPv4N5cudaq11noise_modelE", "cudaq::noise_model"], [2, 0, 1, "_CPPv4N5cudaq11noise_model15PredicateFuncTyE", "cudaq::noise_model::PredicateFuncTy"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::QuantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::channel"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::channel"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::numControls"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::numControls"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::quantumOp"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel::QuantumOp"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::QuantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::channel"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::channel"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel::pred"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel::pred"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel::quantumOp"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::quantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::qubits"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::qubits"], [2, 3, 1, "_CPPv4NK5cudaq11noise_model5emptyEv", "cudaq::noise_model::empty"], [2, 3, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels"], [2, 3, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels"], [2, 2, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::QuantumOp"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::controlQubits"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::controlQubits"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::params"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::params"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::quantumOp"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::targetQubits"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::targetQubits"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11noise_modelEv", "cudaq::noise_model::noise_model"], [2, 6, 1, "_CPPv4N5cudaq16noise_model_typeE", "cudaq::noise_model_type"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type25amplitude_damping_channelE", "cudaq::noise_model_type::amplitude_damping_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type16bit_flip_channelE", "cudaq::noise_model_type::bit_flip_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type22depolarization_channelE", "cudaq::noise_model_type::depolarization_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type18phase_flip_channelE", "cudaq::noise_model_type::phase_flip_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type7unknownE", "cudaq::noise_model_type::unknown"], [2, 3, 1, "_CPPv4N5cudaq18num_available_gpusEv", "cudaq::num_available_gpus"], [2, 3, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::SpinOpContainer"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::options"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::shots"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::termList"], [2, 1, 1, "_CPPv4N5cudaq15observe_optionsE", "cudaq::observe_options"], [2, 1, 1, "_CPPv4N5cudaq14observe_resultE", "cudaq::observe_result"], [2, 3, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts"], [2, 2, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts::SpinOpType"], [2, 4, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts::term"], [2, 3, 1, "_CPPv4N5cudaq14observe_result4dumpEv", "cudaq::observe_result::dump"], [2, 3, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation"], [2, 3, 1, "_CPPv4N5cudaq14observe_result11expectationEv", "cudaq::observe_result::expectation"], [2, 2, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation::SpinOpType"], [2, 4, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation::term"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14id_coefficientEv", "cudaq::observe_result::id_coefficient"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result::H"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::H"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::counts"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result::e"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::e"], [2, 3, 1, "_CPPv4N5cudaq14observe_resultcvdEv", "cudaq::observe_result::operator double"], [2, 3, 1, "_CPPv4N5cudaq14observe_result8raw_dataEv", "cudaq::observe_result::raw_data"], [2, 1, 1, "_CPPv4N5cudaq20optimizable_functionE", "cudaq::optimizable_function"], [2, 0, 1, "_CPPv4N5cudaq19optimization_resultE", "cudaq::optimization_result"], [2, 1, 1, "_CPPv4N5cudaq9optimizerE", "cudaq::optimizer"], [2, 3, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize"], [2, 4, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize::dim"], [2, 4, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize::opt_function"], [2, 3, 1, "_CPPv4N5cudaq9optimizer17requiresGradientsEv", "cudaq::optimizer::requiresGradients"], [2, 0, 1, "_CPPv4N5cudaq4orcaE", "cudaq::orca"], [2, 3, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample"], [2, 3, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::ps_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async"], [2, 3, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::ps_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::qpu_id"], [2, 1, 1, "_CPPv4N5cudaq18phase_flip_channelE", "cudaq::phase_flip_channel"], [2, 1, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg::Levels"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg::N"], [2, 3, 1, "_CPPv4N5cudaq4qreg4backENSt6size_tE", "cudaq::qreg::back"], [2, 3, 1, "_CPPv4N5cudaq4qreg4backEv", "cudaq::qreg::back"], [2, 4, 1, "_CPPv4N5cudaq4qreg4backENSt6size_tE", "cudaq::qreg::back::count"], [2, 3, 1, "_CPPv4N5cudaq4qreg5beginEv", "cudaq::qreg::begin"], [2, 3, 1, "_CPPv4N5cudaq4qreg5clearEv", "cudaq::qreg::clear"], [2, 3, 1, "_CPPv4N5cudaq4qreg5frontENSt6size_tE", "cudaq::qreg::front"], [2, 3, 1, "_CPPv4N5cudaq4qreg5frontEv", "cudaq::qreg::front"], [2, 4, 1, "_CPPv4N5cudaq4qreg5frontENSt6size_tE", "cudaq::qreg::front::count"], [2, 3, 1, "_CPPv4N5cudaq4qregixEKNSt6size_tE", "cudaq::qreg::operator[]"], [2, 4, 1, "_CPPv4N5cudaq4qregixEKNSt6size_tE", "cudaq::qreg::operator[]::idx"], [2, 3, 1, "_CPPv4NK5cudaq4qreg4sizeEv", "cudaq::qreg::size"], [2, 3, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice"], [2, 4, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice::size"], [2, 4, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice::start"], [2, 0, 1, "_CPPv4N5cudaq4qreg10value_typeE", "cudaq::qreg::value_type"], [2, 1, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan::Levels"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan::N"], [2, 1, 1, "_CPPv4N5cudaq16quantum_platformE", "cudaq::quantum_platform"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform11clear_shotsEv", "cudaq::quantum_platform::clear_shots"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12connectivityEv", "cudaq::quantum_platform::connectivity"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask::f"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask::t"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12getLogStreamEv", "cudaq::quantum_platform::getLogStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15get_current_qpuEv", "cudaq::quantum_platform::get_current_qpu"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform12get_exec_ctxEv", "cudaq::quantum_platform::get_exec_ctx"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE", "cudaq::quantum_platform::get_num_qubits"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsEv", "cudaq::quantum_platform::get_num_qubits"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE", "cudaq::quantum_platform::get_num_qubits::qpu_id"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE", "cudaq::quantum_platform::get_remote_capabilities"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE", "cudaq::quantum_platform::get_remote_capabilities::qpuId"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9get_shotsEv", "cudaq::quantum_platform::get_shots"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE", "cudaq::quantum_platform::is_emulated"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE", "cudaq::quantum_platform::is_emulated::qpuId"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE", "cudaq::quantum_platform::is_remote"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE", "cudaq::quantum_platform::is_remote::qpuId"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE", "cudaq::quantum_platform::is_simulator"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE", "cudaq::quantum_platform::is_simulator::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::H"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::gradient"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::kernelArgs"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::kernelName"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::n_params"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::optimizer"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::shots"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14list_platformsEv", "cudaq::quantum_platform::list_platforms"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform4nameEv", "cudaq::quantum_platform::name"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform8num_qpusEv", "cudaq::quantum_platform::num_qpus"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE", "cudaq::quantum_platform::onRandomSeedSet"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE", "cudaq::quantum_platform::onRandomSeedSet::seed"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14resetLogStreamEv", "cudaq::quantum_platform::resetLogStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE", "cudaq::quantum_platform::reset_exec_ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE", "cudaq::quantum_platform::reset_exec_ctx::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform11reset_noiseEv", "cudaq::quantum_platform::reset_noise"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE", "cudaq::quantum_platform::setLogStream"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE", "cudaq::quantum_platform::setLogStream::logStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE", "cudaq::quantum_platform::setTargetBackend"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE", "cudaq::quantum_platform::setTargetBackend::name"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE", "cudaq::quantum_platform::set_current_qpu"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE", "cudaq::quantum_platform::set_current_qpu::device_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx::ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model", "cudaq::quantum_platform::set_noise"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model", "cudaq::quantum_platform::set_noise::model"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9set_shotsEi", "cudaq::quantum_platform::set_shots"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9set_shotsEi", "cudaq::quantum_platform::set_shots::numShots"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE", "cudaq::quantum_platform::supports_conditional_feedback"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE", "cudaq::quantum_platform::supports_conditional_feedback::qpu_id"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform26supports_task_distributionEv", "cudaq::quantum_platform::supports_task_distribution"], [2, 0, 1, "_CPPv4N5cudaq5qubitE", "cudaq::qubit"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq5quditE", "cudaq::qudit"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq5quditE", "cudaq::qudit::Levels"], [2, 3, 1, "_CPPv4N5cudaq5qudit5quditEv", "cudaq::qudit::qudit"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE", "cudaq::qvector"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE", "cudaq::qvector::Levels"], [2, 3, 1, "_CPPv4N5cudaq7qvector4backENSt6size_tE", "cudaq::qvector::back"], [2, 3, 1, "_CPPv4N5cudaq7qvector4backEv", "cudaq::qvector::back"], [2, 4, 1, "_CPPv4N5cudaq7qvector4backENSt6size_tE", "cudaq::qvector::back::count"], [2, 3, 1, "_CPPv4N5cudaq7qvector5beginEv", "cudaq::qvector::begin"], [2, 3, 1, "_CPPv4N5cudaq7qvector5clearEv", "cudaq::qvector::clear"], [2, 3, 1, "_CPPv4N5cudaq7qvector3endEv", "cudaq::qvector::end"], [2, 3, 1, "_CPPv4N5cudaq7qvector5frontENSt6size_tE", "cudaq::qvector::front"], [2, 3, 1, "_CPPv4N5cudaq7qvector5frontEv", "cudaq::qvector::front"], [2, 4, 1, "_CPPv4N5cudaq7qvector5frontENSt6size_tE", "cudaq::qvector::front::count"], [2, 3, 1, "_CPPv4N5cudaq7qvectoraSERK7qvector", "cudaq::qvector::operator="], [2, 3, 1, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE", "cudaq::qvector::operator[]"], [2, 4, 1, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE", "cudaq::qvector::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERK5state", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERK7qvector", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERR7qvector", "cudaq::qvector::qvector"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE", "cudaq::qvector::qvector::size"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERK5state", "cudaq::qvector::qvector::state"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector::validate"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector::vector"], [2, 3, 1, "_CPPv4NK5cudaq7qvector4sizeEv", "cudaq::qvector::size"], [2, 3, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice"], [2, 4, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice::size"], [2, 4, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice::start"], [2, 0, 1, "_CPPv4N5cudaq7qvector10value_typeE", "cudaq::qvector::value_type"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE", "cudaq::qview"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE", "cudaq::qview::Levels"], [2, 0, 1, "_CPPv4N5cudaq5qview10value_typeE", "cudaq::qview::value_type"], [2, 3, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range"], [2, 3, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range"], [2, 3, 1, "_CPPv4N5cudaq5rangeENSt6size_tE", "cudaq::range"], [2, 2, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range::ElementType"], [2, 2, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::ElementType"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range::N"], [2, 4, 1, "_CPPv4N5cudaq5rangeENSt6size_tE", "cudaq::range::N"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::start"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::step"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::stop"], [2, 0, 1, "_CPPv4N5cudaq4realE", "cudaq::real"], [2, 0, 1, "_CPPv4N5cudaq8registryE", "cudaq::registry"], [2, 1, 1, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE", "cudaq::registry::RegisteredType"], [2, 2, 1, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE", "cudaq::registry::RegisteredType::T"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::options"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::shots"], [2, 1, 1, "_CPPv4N5cudaq14sample_optionsE", "cudaq::sample_options"], [2, 1, 1, "_CPPv4N5cudaq13sample_resultE", "cudaq::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult", "cudaq::sample_result::append"], [2, 4, 1, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult", "cudaq::sample_result::append::result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5beginEv", "cudaq::sample_result::begin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result5beginEv", "cudaq::sample_result::begin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result6cbeginEv", "cudaq::sample_result::cbegin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4cendEv", "cudaq::sample_result::cend"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5clearEv", "cudaq::sample_result::clear"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count"], [2, 4, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count::bitString"], [2, 4, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::sample_result::deserialize"], [2, 4, 1, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::sample_result::deserialize::data"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE", "cudaq::sample_result::dump"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4dumpEv", "cudaq::sample_result::dump"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE", "cudaq::sample_result::dump::os"], [2, 3, 1, "_CPPv4N5cudaq13sample_result3endEv", "cudaq::sample_result::end"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result3endEv", "cudaq::sample_result::end"], [2, 3, 1, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE", "cudaq::sample_result::exp_val_z"], [2, 4, 1, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE", "cudaq::sample_result::exp_val_z::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE", "cudaq::sample_result::expectation"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE", "cudaq::sample_result::expectation::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal"], [2, 3, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::marginalIndices"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::marginalIndices"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::registerName"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE", "cudaq::sample_result::has_even_parity"], [2, 4, 1, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE", "cudaq::sample_result::has_even_parity::bitString"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE", "cudaq::sample_result::has_expectation"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE", "cudaq::sample_result::has_expectation::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE", "cudaq::sample_result::most_probable"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE", "cudaq::sample_result::most_probable::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultpLERK13sample_result", "cudaq::sample_result::operator+="], [2, 4, 1, "_CPPv4N5cudaq13sample_resultpLERK13sample_result", "cudaq::sample_result::operator+=::other"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultaSER13sample_result", "cudaq::sample_result::operator="], [2, 4, 1, "_CPPv4N5cudaq13sample_resultaSER13sample_result", "cudaq::sample_result::operator=::counts"], [2, 3, 1, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result", "cudaq::sample_result::operator=="], [2, 4, 1, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result", "cudaq::sample_result::operator==::counts"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability::bitString"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result14register_namesEv", "cudaq::sample_result::register_names"], [2, 3, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder"], [2, 4, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder::index"], [2, 4, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERK13sample_result", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultEv", "cudaq::sample_result::sample_result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::preComputedExp"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult", "cudaq::sample_result::sample_result::result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult", "cudaq::sample_result::sample_result::result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::results"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::results"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result9serializeEv", "cudaq::sample_result::serialize"], [2, 3, 1, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE", "cudaq::sample_result::size"], [2, 4, 1, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE", "cudaq::sample_result::size::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE", "cudaq::sample_result::to_map"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE", "cudaq::sample_result::to_map::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultD0Ev", "cudaq::sample_result::~sample_result"], [2, 3, 1, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE", "cudaq::set_noise"], [2, 4, 1, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE", "cudaq::set_noise::model"], [2, 3, 1, "_CPPv4N5cudaq15set_random_seedENSt6size_tE", "cudaq::set_random_seed"], [2, 4, 1, "_CPPv4N5cudaq15set_random_seedENSt6size_tE", "cudaq::set_random_seed::seed"], [2, 6, 1, "_CPPv4N5cudaq20simulation_precisionE", "cudaq::simulation_precision"], [2, 7, 1, "_CPPv4N5cudaq20simulation_precision4fp32E", "cudaq::simulation_precision::fp32"], [2, 7, 1, "_CPPv4N5cudaq20simulation_precision4fp64E", "cudaq::simulation_precision::fp64"], [2, 1, 1, "_CPPv4N5cudaq7spin_opE", "cudaq::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op5beginEv", "cudaq::spin_op::begin"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op5beginEv", "cudaq::spin_op::begin"], [2, 0, 1, "_CPPv4N5cudaq7spin_op12csr_spmatrixE", "cudaq::spin_op::csr_spmatrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE", "cudaq::spin_op::distribute_terms"], [2, 4, 1, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE", "cudaq::spin_op::distribute_terms::numChunks"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op4dumpEv", "cudaq::spin_op::dump"], [2, 3, 1, "_CPPv4N5cudaq7spin_op3endEv", "cudaq::spin_op::end"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op3endEv", "cudaq::spin_op::end"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op14for_each_pauliERRNSt8functionIFv5pauliNSt6size_tEEEE", "cudaq::spin_op::for_each_pauli"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op13for_each_termERRNSt8functionIFvR7spin_opEEE", "cudaq::spin_op::for_each_term"], [2, 3, 1, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE", "cudaq::spin_op::from_word"], [2, 4, 1, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE", "cudaq::spin_op::from_word::pauliWord"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op21getDataRepresentationEv", "cudaq::spin_op::getDataRepresentation"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op12getDataTupleEv", "cudaq::spin_op::getDataTuple"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op15get_coefficientEv", "cudaq::spin_op::get_coefficient"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op12get_raw_dataEv", "cudaq::spin_op::get_raw_data"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op11is_identityEv", "cudaq::spin_op::is_identity"], [2, 1, 1, "_CPPv4I0EN5cudaq7spin_op8iteratorE", "cudaq::spin_op::iterator"], [2, 2, 1, "_CPPv4I0EN5cudaq7spin_op8iteratorE", "cudaq::spin_op::iterator::QualifiedSpinOp"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op10num_qubitsEv", "cudaq::spin_op::num_qubits"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9num_termsEv", "cudaq::spin_op::num_terms"], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE", "cudaq::spin_op::operator*="], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLEKd", "cudaq::spin_op::operator*="], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLERK7spin_op", "cudaq::spin_op::operator*="], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE", "cudaq::spin_op::operator*=::v"], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLEKd", "cudaq::spin_op::operator*=::v"], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLERK7spin_op", "cudaq::spin_op::operator*=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_oppLERK7spin_op", "cudaq::spin_op::operator+="], [2, 4, 1, "_CPPv4N5cudaq7spin_oppLERK7spin_op", "cudaq::spin_op::operator+=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_opmIERK7spin_op", "cudaq::spin_op::operator-="], [2, 4, 1, "_CPPv4N5cudaq7spin_opmIERK7spin_op", "cudaq::spin_op::operator-=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_opaSERK7spin_op", "cudaq::spin_op::operator="], [2, 3, 1, "_CPPv4NK5cudaq7spin_opeqERK7spin_op", "cudaq::spin_op::operator=="], [2, 4, 1, "_CPPv4NK5cudaq7spin_opeqERK7spin_op", "cudaq::spin_op::operator==::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::nQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::nTerms"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::seed"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opEv", "cudaq::spin_op::spin_op"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::_terms"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op::bsf"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op::coeff"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op::coeff"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op::coeffs"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op::data_rep"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op::id"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op::nQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE", "cudaq::spin_op::spin_op::numQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op", "cudaq::spin_op::spin_op::o"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op::term"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::termData"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::termData"], [2, 0, 1, "_CPPv4N5cudaq7spin_op12spin_op_termE", "cudaq::spin_op::spin_op_term"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9to_matrixEv", "cudaq::spin_op::to_matrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op16to_sparse_matrixEv", "cudaq::spin_op::to_sparse_matrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9to_stringEb", "cudaq::spin_op::to_string"], [2, 4, 1, "_CPPv4NK5cudaq7spin_op9to_stringEb", "cudaq::spin_op::to_string::printCoefficients"], [2, 3, 1, "_CPPv4N5cudaq7spin_opD0Ev", "cudaq::spin_op::~spin_op"], [2, 1, 1, "_CPPv4N5cudaq5stateE", "cudaq::state"], [2, 3, 1, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE", "cudaq::state::amplitude"], [2, 4, 1, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE", "cudaq::state::amplitude::basisState"], [2, 3, 1, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE", "cudaq::state::amplitudes"], [2, 4, 1, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE", "cudaq::state::amplitudes::basisStates"], [2, 3, 1, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE", "cudaq::state::dump"], [2, 3, 1, "_CPPv4NK5cudaq5state4dumpEv", "cudaq::state::dump"], [2, 4, 1, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE", "cudaq::state::dump::os"], [2, 3, 1, "_CPPv4N5cudaq5state9from_dataERK10state_data", "cudaq::state::from_data"], [2, 4, 1, "_CPPv4N5cudaq5state9from_dataERK10state_data", "cudaq::state::from_data::data"], [2, 3, 1, "_CPPv4NK5cudaq5state14get_num_qubitsEv", "cudaq::state::get_num_qubits"], [2, 3, 1, "_CPPv4NK5cudaq5state15get_num_tensorsEv", "cudaq::state::get_num_tensors"], [2, 3, 1, "_CPPv4NK5cudaq5state13get_precisionEv", "cudaq::state::get_precision"], [2, 3, 1, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE", "cudaq::state::get_tensor"], [2, 4, 1, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE", "cudaq::state::get_tensor::tensorIdx"], [2, 3, 1, "_CPPv4NK5cudaq5state11get_tensorsEv", "cudaq::state::get_tensors"], [2, 3, 1, "_CPPv4NK5cudaq5state9is_on_gpuEv", "cudaq::state::is_on_gpu"], [2, 3, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()"], [2, 3, 1, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE", "cudaq::state::operator()"], [2, 4, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()::idx"], [2, 4, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()::jdx"], [2, 4, 1, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE", "cudaq::state::operator()::tensorIdx"], [2, 3, 1, "_CPPv4N5cudaq5stateaSERR5state", "cudaq::state::operator="], [2, 4, 1, "_CPPv4N5cudaq5stateaSERR5state", "cudaq::state::operator=::other"], [2, 3, 1, "_CPPv4NK5cudaq5stateixENSt6size_tE", "cudaq::state::operator[]"], [2, 4, 1, "_CPPv4NK5cudaq5stateixENSt6size_tE", "cudaq::state::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq5state7overlapERK5state", "cudaq::state::overlap"], [2, 4, 1, "_CPPv4N5cudaq5state7overlapERK5state", "cudaq::state::overlap::other"], [2, 3, 1, "_CPPv4N5cudaq5state5stateEP15SimulationState", "cudaq::state::state"], [2, 3, 1, "_CPPv4N5cudaq5state5stateERK5state", "cudaq::state::state"], [2, 4, 1, "_CPPv4N5cudaq5state5stateERK5state", "cudaq::state::state::other"], [2, 4, 1, "_CPPv4N5cudaq5state5stateEP15SimulationState", "cudaq::state::state::ptrToOwn"], [2, 3, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host"], [2, 2, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::ScalarType"], [2, 4, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::hostPtr"], [2, 4, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::numElements"], [2, 0, 1, "_CPPv4N5cudaq10state_dataE", "cudaq::state_data"], [2, 0, 1, "_CPPv4N5cudaq6tensorE", "cudaq::tensor"], [2, 3, 1, "_CPPv4N5cudaq11unset_noiseEv", "cudaq::unset_noise"], [2, 1, 1, "_CPPv4N5nvqir18MPSSimulationStateE", "nvqir::MPSSimulationState"], [2, 1, 1, "_CPPv4N5nvqir24TensorNetSimulationStateE", "nvqir::TensorNetSimulationState"], [3, 8, 0, "-", "cudaq"]], "cudaq": [[3, 9, 1, "", "AmplitudeDampingChannel"], [3, 9, 1, "", "AsyncEvolveResult"], [3, 9, 1, "", "AsyncObserveResult"], [3, 9, 1, "", "AsyncSampleResult"], [3, 9, 1, "", "AsyncStateResult"], [3, 9, 1, "", "BitFlipChannel"], [3, 9, 1, "", "ComplexMatrix"], [3, 9, 1, "", "DepolarizationChannel"], [3, 9, 1, "", "EvolveResult"], [3, 11, 1, "", "Kernel"], [3, 9, 1, "", "KrausChannel"], [3, 9, 1, "", "KrausOperator"], [3, 9, 1, "", "NoiseModel"], [3, 9, 1, "", "ObserveResult"], [3, 9, 1, "", "OptimizationResult"], [3, 9, 1, "", "PhaseFlipChannel"], [3, 9, 1, "", "PyKernel"], [3, 9, 1, "", "PyKernelDecorator"], [3, 9, 1, "", "QuakeValue"], [3, 9, 1, "", "SampleResult"], [3, 9, 1, "", "Schedule"], [3, 9, 1, "", "SimulationPrecision"], [3, 9, 1, "", "SpinOperator"], [3, 9, 1, "", "State"], [3, 9, 1, "", "Target"], [3, 9, 1, "", "Tensor"], [3, 13, 1, "", "draw"], [3, 13, 1, "", "evolve"], [3, 13, 1, "", "evolve_async"], [3, 13, 1, "", "get_state"], [3, 13, 1, "", "get_state_async"], [3, 13, 1, "", "get_target"], [3, 13, 1, "", "get_targets"], [3, 13, 1, "", "has_target"], [3, 10, 1, "", "initialize_cudaq"], [3, 13, 1, "", "kernel"], [3, 13, 1, "", "make_kernel"], [3, 10, 1, "", "num_available_gpus"], [3, 13, 1, "", "observe"], [3, 13, 1, "", "observe_async"], [3, 11, 1, "", "qreg"], [3, 9, 1, "", "qubit"], [3, 9, 1, "", "qvector"], [3, 13, 1, "", "reset_target"], [3, 13, 1, "", "sample"], [3, 13, 1, "", "sample_async"], [3, 13, 1, "", "set_noise"], [3, 10, 1, "", "set_random_seed"], [3, 13, 1, "", "set_target"], [3, 13, 1, "", "translate"], [3, 13, 1, "", "unset_noise"], [3, 13, 1, "", "vqe"]], "cudaq.AmplitudeDampingChannel": [[3, 10, 1, "", "__init__"]], "cudaq.AsyncEvolveResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncObserveResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncSampleResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncStateResult": [[3, 10, 1, "", "get"]], "cudaq.BitFlipChannel": [[3, 10, 1, "", "__init__"]], "cudaq.ComplexMatrix": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__str__"], [3, 10, 1, "", "minimal_eigenvalue"], [3, 10, 1, "", "num_columns"], [3, 10, 1, "", "num_rows"], [3, 10, 1, "", "to_numpy"]], "cudaq.DepolarizationChannel": [[3, 10, 1, "", "__init__"]], "cudaq.EvolveResult": [[3, 10, 1, "", "expectation_values"], [3, 10, 1, "", "final_expectation_values"], [3, 10, 1, "", "final_state"], [3, 10, 1, "", "intermediate_states"]], "cudaq.KrausChannel": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "append"]], "cudaq.KrausOperator": [[3, 12, 1, "", "col_count"], [3, 12, 1, "", "row_count"]], "cudaq.NoiseModel": [[3, 10, 1, "", "__init__"], [3, 10, 1, "", "add_all_qubit_channel"], [3, 10, 1, "", "add_channel"], [3, 10, 1, "", "get_channels"]], "cudaq.ObserveResult": [[3, 10, 1, "", "counts"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "expectation"], [3, 10, 1, "", "expectation_z"], [3, 10, 1, "", "get_spin"]], "cudaq.PhaseFlipChannel": [[3, 10, 1, "", "__init__"]], "cudaq.PyKernel": [[3, 11, 1, "", "argument_count"], [3, 11, 1, "", "arguments"], [3, 11, 1, "", "name"]], "cudaq.PyKernelDecorator": [[3, 10, 1, "", "__call__"], [3, 10, 1, "", "__str__"], [3, 10, 1, "", "compile"], [3, 10, 1, "", "extract_c_function_pointer"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "merge_kernel"], [3, 10, 1, "", "synthesize_callable_arguments"], [3, 10, 1, "", "to_json"], [3, 10, 1, "", "type_to_str"]], "cudaq.QuakeValue": [[3, 10, 1, "", "__add__"], [3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__mul__"], [3, 10, 1, "", "__neg__"], [3, 10, 1, "", "__radd__"], [3, 10, 1, "", "__rmul__"], [3, 10, 1, "", "__rsub__"], [3, 10, 1, "", "__sub__"], [3, 10, 1, "", "slice"]], "cudaq.SampleResult": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__iter__"], [3, 10, 1, "", "__len__"], [3, 10, 1, "", "clear"], [3, 10, 1, "", "count"], [3, 10, 1, "", "deserialize"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "expectation"], [3, 10, 1, "", "expectation_z"], [3, 10, 1, "", "get_marginal_counts"], [3, 10, 1, "", "get_register_counts"], [3, 10, 1, "", "get_sequential_data"], [3, 10, 1, "", "items"], [3, 10, 1, "", "most_probable"], [3, 10, 1, "", "probability"], [3, 11, 1, "", "register_names"], [3, 10, 1, "", "serialize"], [3, 10, 1, "", "values"]], "cudaq.SimulationPrecision": [[3, 12, 1, "", "name"]], "cudaq.State": [[3, 10, 1, "", "amplitude"], [3, 10, 1, "", "amplitudes"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "from_data"], [3, 10, 1, "", "getTensor"], [3, 10, 1, "", "getTensors"], [3, 10, 1, "", "is_on_gpu"], [3, 10, 1, "", "num_qubits"], [3, 10, 1, "", "overlap"]], "cudaq.Target": [[3, 12, 1, "", "description"], [3, 10, 1, "", "get_precision"], [3, 10, 1, "", "is_emulated"], [3, 10, 1, "", "is_remote"], [3, 12, 1, "", "name"], [3, 10, 1, "", "num_qpus"], [3, 12, 1, "", "platform"], [3, 12, 1, "", "simulator"]], "cudaq.gradients": [[3, 9, 1, "", "CentralDifference"], [3, 9, 1, "", "ForwardDifference"], [3, 9, 1, "", "ParameterShift"], [3, 9, 1, "", "gradient"]], "cudaq.gradients.CentralDifference": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.gradients.ForwardDifference": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.gradients.ParameterShift": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.mpi": [[3, 10, 1, "", "all_gather"], [3, 10, 1, "", "broadcast"], [3, 10, 1, "", "finalize"], [3, 10, 1, "", "initialize"], [3, 10, 1, "", "is_initialized"], [3, 10, 1, "", "num_ranks"], [3, 10, 1, "", "rank"]], "cudaq.operator.cudm_state": [[3, 9, 1, "", "CuDensityMatState"], [3, 13, 1, "", "to_cupy_array"]], "cudaq.operator.definitions": [[3, 9, 1, "", "SpinOperator"]], "cudaq.operator.expressions": [[3, 9, 1, "", "ElementaryOperator"], [3, 9, 1, "", "OperatorSum"], [3, 9, 1, "", "ProductOperator"], [3, 9, 1, "", "RydbergHamiltonian"], [3, 9, 1, "", "ScalarOperator"]], "cudaq.operator.expressions.ElementaryOperator": [[3, 10, 1, "", "define"]], "cudaq.operator.expressions.RydbergHamiltonian": [[3, 10, 1, "", "__init__"]], "cudaq.operator.integrator": [[3, 9, 1, "", "BaseIntegrator"]], "cudaq.optimizers": [[3, 9, 1, "", "COBYLA"], [3, 9, 1, "", "GradientDescent"], [3, 9, 1, "", "LBFGS"], [3, 9, 1, "", "NelderMead"], [3, 9, 1, "", "optimizer"]], "cudaq.optimizers.COBYLA": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.GradientDescent": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.LBFGS": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.NelderMead": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.orca": [[3, 10, 1, "", "sample"]], "cudaq.spin": [[3, 13, 1, "", "i"], [3, 13, 1, "", "x"], [3, 13, 1, "", "y"], [3, 13, 1, "", "z"]]}, "objtypes": {"0": "cpp:type", "1": "cpp:class", "2": "cpp:templateParam", "3": "cpp:function", "4": "cpp:functionParam", "5": "cpp:member", "6": "cpp:enum", "7": "cpp:enumerator", "8": "py:module", "9": "py:class", "10": "py:method", "11": "py:attribute", "12": "py:property", "13": "py:function"}, "objnames": {"0": ["cpp", "type", "C++ type"], "1": ["cpp", "class", "C++ class"], "2": ["cpp", "templateParam", "C++ template parameter"], "3": ["cpp", "function", "C++ function"], "4": ["cpp", "functionParam", "C++ function parameter"], "5": ["cpp", "member", "C++ member"], "6": ["cpp", "enum", "C++ enum"], "7": ["cpp", "enumerator", "C++ enumerator"], "8": ["py", "module", "Python module"], "9": ["py", "class", "Python class"], "10": ["py", "method", "Python method"], "11": ["py", "attribute", "Python attribute"], "12": ["py", "property", "Python property"], "13": ["py", "function", "Python function"]}, "titleterms": {"code": [0, 75], "document": 0, "cuda": [0, 2, 3, 4, 5, 8, 9, 13, 21, 22, 23, 28, 31, 32, 33, 34, 49, 50, 51, 52, 55, 56, 57, 58, 59, 62, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81], "q": [0, 2, 3, 4, 5, 8, 9, 13, 21, 22, 23, 28, 31, 32, 33, 34, 49, 50, 51, 52, 55, 56, 57, 58, 59, 62, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81], "api": [0, 2, 3], "quantum": [1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 22, 24, 34, 37, 38, 41, 42, 43, 44, 46, 53, 54, 64, 68], "oper": [1, 2, 27, 41, 42, 51], "unitari": [1, 21], "qubit": [1, 18, 30, 41, 46], "x": 1, "y": 1, "z": 1, "h": 1, "r1": 1, "rx": 1, "ry": 1, "rz": 1, "": [1, 7, 13, 19, 37, 72], "t": 1, "swap": 1, "u3": 1, "adjoint": 1, "control": [1, 35, 66], "measur": [1, 19, 25, 68], "mz": 1, "mx": 1, "my": 1, "user": 1, "defin": 1, "custom": 1, "photon": 1, "qudit": [1, 46], "creat": [1, 71], "annihil": 1, "phase_shift": 1, "beam_splitt": 1, "c": [2, 52, 73, 79], "common": [2, 43], "nois": [2, 18], "model": [2, 13, 18, 21, 39], "kernel": [2, 3, 19, 21, 30, 36, 38, 54, 58, 61], "builder": 2, "algorithm": [2, 5, 7, 12, 19, 34, 37], "platform": [2, 44, 54], "util": 2, "namespac": [2, 40], "python": [3, 52, 73, 75], "program": [3, 37, 43, 57, 59], "construct": [3, 13, 27], "execut": [3, 24, 53], "dynam": [3, 51], "backend": [3, 50, 52, 53, 55], "configur": 3, "data": [3, 9], "type": [3, 46], "optim": [3, 22, 28, 29, 34], "gradient": [3, 23, 28, 34], "noisi": [3, 13, 26], "simul": [3, 9, 13, 20, 21, 26, 53, 54, 55, 60, 72, 75], "mpi": [3, 73, 75], "submodul": 3, "orca": [3, 52, 64], "enhanc": 4, "auxiliari": 4, "field": 4, "mont": 4, "carlo": 4, "hamiltonian": [4, 67], "prepar": [4, 37], "vqe": [4, 13, 23], "run": [4, 13, 20, 59], "afqmc": 4, "molecular": [4, 8], "trial": 4, "wave": 4, "function": [4, 9, 34], "setup": [4, 12, 20, 21], "paramet": [4, 23, 28, 37], "bernstein": 5, "vazirani": 5, "classic": [5, 10, 19], "case": [5, 19], "implement": [5, 8, 9, 23], "cost": 6, "minim": 6, "deutsch": 7, "xor": 7, "oplu": 7, "oracl": 7, "phase": [7, 19, 37], "parallel": [7, 23, 24, 28, 54, 63, 67], "dock": 8, "via": [8, 75], "dc": 8, "qaoa": [8, 9, 14], "set": [8, 13, 52], "up": [8, 13], "problem": [8, 19, 20], "divis": 9, "cluster": 9, "With": [9, 19, 20], "coreset": 9, "us": [9, 10, 21, 22, 23, 46, 64, 75, 77], "preprocess": 9, "scale": 9, "hadamard": 10, "test": 10, "determin": [10, 12, 19], "krylov": [10, 12], "subspac": [10, 12], "decomposit": 10, "matrix": [10, 12, 18, 55], "element": [10, 12], "numer": [10, 51], "result": [10, 19], "refer": [10, 12], "sampl": [10, 24, 34, 37, 59], "perform": [10, 13, 29], "multi": [10, 12, 54, 55, 66, 67], "gpu": [10, 53, 55, 59, 67, 75], "evalu": [10, 21], "qksd": 10, "diagon": 10, "hybrid": 11, "neural": 11, "network": [11, 55], "h_2": 12, "molecul": 12, "comput": [12, 20, 43, 52, 63, 64, 68, 75], "ground": [12, 13], "state": [12, 13, 24, 37, 54, 55, 68], "energi": [12, 37], "anderson": 13, "impur": 13, "solver": 13, "infleqt": [13, 52, 64], "sqale": 13, "logic": [13, 25], "variat": [13, 22], "eigensolv": [13, 22], "qx": 13, "circuit": [13, 21, 23, 24, 45, 67, 72], "4": [13, 19], "2": [13, 46], "encod": 13, "submiss": [13, 52], "decod": 13, "workflow": [13, 67], "aim": 13, "hardwar": [13, 52, 64], "max": 14, "cut": 14, "fourier": [15, 19], "transform": [15, 19], "revisit": 15, "telepor": 16, "teleport": 16, "explain": 16, "volum": 17, "readout": 18, "error": 18, "mitig": 18, "invers": [18, 19], "confus": 18, "from": [18, 19, 52, 73, 79], "singl": [18, 55], "k": 18, "local": [18, 75], "matric": 18, "full": 18, "factor": 19, "integ": 19, "shor": 19, "solv": 19, "order": 19, "find": 19, "modular": 19, "exponenti": [19, 27], "The": [19, 20, 23], "n": [19, 46], "21": 19, "5": 19, "postscript": 19, "magnet": 20, "suzuki": 20, "trotter": 20, "approxim": 20, "compil": [21, 71, 79], "diffus": 21, "pipelin": 21, "load": [21, 23], "convert": 21, "tensor": [21, 55], "gener": [21, 48], "compar": 21, "choos": 21, "you": 21, "need": 21, "integr": [22, 51, 78, 79], "third": [22, 28, 79], "parti": [22, 28, 79], "activ": 23, "space": 23, "gate": [23, 29, 68], "fusion": [23, 29], "basic": [23, 56], "instal": [23, 73, 74, 75, 80], "relev": 23, "packag": 23, "shift": [23, 28], "an": [23, 79], "larger": 23, "observ": [24, 34, 59], "get": [24, 75], "techniqu": 24, "async": 24, "midcircuit": 25, "condit": 25, "spin": 27, "pauli": 27, "word": 27, "built": [28, 75], "visual": 30, "content": [31, 56, 74], "releas": 32, "languag": 33, "specif": [33, 47], "primit": 34, "cudaq": [34, 41, 42, 46], "deprec": [34, 46], "move": 34, "librari": [34, 73, 79], "flow": 35, "just": 36, "time": [36, 51], "creation": 36, "exampl": [37, 62], "hello": 37, "world": 37, "simpl": 37, "bell": 37, "ghz": 37, "estim": 37, "deuteron": 37, "bind": 37, "sweep": 37, "grover": 37, "iter": 37, "machin": 39, "standard": 40, "intrins": 41, "spin_op": 42, "pattern": 43, "action": [43, 72], "uncomput": 43, "sub": 45, "synthesi": [45, 66], "level": 46, "contain": [46, 75], "qview": 46, "qvector": 46, "qarrai": 46, "qspan": 46, "instead": 46, "qreg": 46, "quak": 48, "dialect": 48, "introduct": [48, 65, 75], "motiv": 48, "applic": 49, "target": [50, 67], "quick": [51, 53, 80], "start": [51, 53, 75, 80], "builtin": 51, "depend": [51, 73, 75], "amazon": [52, 64], "braket": [52, 64], "credenti": 52, "ionq": [52, 64], "anyon": 52, "technologi": 52, "iqm": [52, 64], "oqc": [52, 64], "quantinuum": [52, 64], "quera": [52, 64], "nvidia": [53, 54], "cloud": [53, 75], "select": 53, "multipl": [53, 63, 67], "qpu": 53, "asynchron": 53, "faq": 53, "processor": [54, 63, 67], "mqpu": 54, "distribut": [54, 75], "mode": [54, 55], "remot": [54, 75], "support": [54, 55, 73, 75], "argument": 54, "serial": 54, "access": [54, 75], "vector": 55, "featur": 55, "environ": 55, "variabl": 55, "option": 55, "node": 55, "addit": [55, 75], "openmp": 55, "cpu": 55, "onli": 55, "product": 55, "clifford": 55, "stim": 55, "fermioniq": 55, "default": 55, "build": [57, 61, 73], "your": [57, 59, 71, 80], "first": [57, 59], "what": 58, "i": 58, "troubleshoot": 60, "debug": 60, "verbos": 60, "output": 60, "expect": 63, "valu": 63, "across": [63, 67], "provid": 64, "avail": 67, "batch": 67, "term": 67, "101": 68, "work": 69, "ir": 69, "extend": [70, 72], "own": 71, "pass": 71, "new": 72, "circuitsimul": 72, "requir": [72, 75], "subtyp": 72, "method": 72, "overrid": 72, "let": 72, "see": 72, "thi": 72, "sourc": 73, "prerequisit": 73, "toolchain": [73, 79], "host": [73, 75], "runtim": 73, "guid": 74, "docker": 75, "singular": 75, "wheel": 75, "pre": 75, "binari": [75, 79], "develop": 75, "v": 75, "connect": 75, "tunnel": 75, "ssh": 75, "dgx": 75, "jupyterlab": 75, "tool": [75, 78], "pypi": 75, "In": 75, "imag": 75, "updat": 75, "compat": 75, "system": 75, "next": 75, "step": 75, "cmake": 76, "project": 77, "other": 78, "softwar": 78, "call": 79, "interfac": 79, "between": 79, "differ": 79, "valid": 80, "version": 81}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Namespace and Standard": [[40, "namespace-and-standard"]], "Quantum Types": [[46, "quantum-types"]], "cudaq::qudit": [[46, "cudaq-qudit-levels"]], "cudaq::qubit": [[46, "cudaq-qubit"]], "Quantum Containers": [[46, "quantum-containers"]], "cudaq::qview": [[46, "cudaq-qview-levels-2"]], "cudaq::qvector": [[46, "cudaq-qvector-levels-2"]], "cudaq::qarray": [[46, "cudaq-qarray-n-levels-2"]], "cudaq::qspan (Deprecated. Use cudaq::qview instead.)": [[46, "cudaq-qspan-n-levels-deprecated-use-cudaq-qview-levels-instead"]], "cudaq::qreg (Deprecated. Use cudaq::qvector instead.)": [[46, "cudaq-qreg-n-levels-deprecated-use-cudaq-qvector-levels-instead"]], "Specifications": [[47, "specifications"]], "Quake Dialect": [[48, "quake-dialect"]], "General Introduction": [[48, "general-introduction"]], "Motivation": [[48, "motivation"]], "Quantum Operators": [[42, "quantum-operators"]], "cudaq::spin_op": [[42, "cudaq-spin-op"]], "Quantum Platform": [[44, "quantum-platform"]], "CUDA-Q Applications": [[49, "cuda-q-applications"]], "Sub-circuit Synthesis": [[45, "sub-circuit-synthesis"]], "Quantum Intrinsic Operations": [[41, "quantum-intrinsic-operations"]], "Operations on cudaq::qubit": [[41, "operations-on-cudaq-qubit"]], "Common Quantum Programming Patterns": [[43, "common-quantum-programming-patterns"]], "Compute-Action-Uncompute": [[43, "compute-action-uncompute"]], "Quantum Computing 101": [[68, "quantum-computing-101"]], "Quantum States": [[68, "quantum-states"]], "Quantum Gates": [[68, "quantum-gates"]], "Measurements": [[68, "measurements"], [25, "Measurements"]], "Troubleshooting": [[60, "troubleshooting"]], "Debugging and Verbose Simulation Output": [[60, "debugging-and-verbose-simulation-output"]], "Computing Expectation Values": [[63, "computing-expectation-values"]], "Parallelizing across Multiple Processors": [[63, "parallelizing-across-multiple-processors"]], "Multi-GPU Workflows": [[67, "multi-gpu-workflows"]], "Available Targets": [[67, "available-targets"]], "Parallelization across Multiple Processors": [[67, "parallelization-across-multiple-processors"]], "Batching Hamiltonian Terms": [[67, "batching-hamiltonian-terms"]], "Circuit Batching": [[67, "circuit-batching"]], "Working with the CUDA-Q IR": [[69, "working-with-the-cuda-q-ir"]], "Multi-control Synthesis": [[66, "multi-control-synthesis"]], "Using Quantum Hardware Providers": [[64, "using-quantum-hardware-providers"]], "Amazon Braket": [[64, "amazon-braket"], [52, "amazon-braket"]], "Infleqtion": [[64, "infleqtion"], [52, "infleqtion"]], "IonQ": [[64, "ionq"], [52, "ionq"]], "IQM": [[64, "iqm"], [52, "iqm"]], "OQC": [[64, "oqc"], [52, "oqc"]], "ORCA Computing": [[64, "orca-computing"], [52, "orca-computing"]], "Quantinuum": [[64, "quantinuum"], [52, "quantinuum"]], "QuEra Computing": [[64, "quera-computing"], [52, "quera-computing"]], "Introduction": [[65, "introduction"], [75, "introduction"]], "Building Kernels": [[61, "building-kernels"]], "CUDA-Q by Example": [[62, "cuda-q-by-example"]], "Quick Start": [[80, "quick-start"], [53, "quick-start"], [51, "quick-start"]], "Install CUDA-Q": [[80, "install-cuda-q"]], "Validate your Installation": [[80, "validate-your-installation"]], "CUDA-Q Versions": [[81, "cuda-q-versions"]], "Installation Guide": [[74, "installation-guide"]], "Contents": [[74, null], [56, null], [31, null]], "Integration with other Software Tools": [[78, "integration-with-other-software-tools"]], "Local Installation": [[75, "local-installation"]], "Docker": [[75, "docker"]], "Singularity": [[75, "singularity"]], "Python wheels": [[75, "python-wheels"]], "Pre-built binaries": [[75, "pre-built-binaries"]], "Development with VS Code": [[75, "development-with-vs-code"]], "Using a Docker container": [[75, "using-a-docker-container"]], "Using a Singularity container": [[75, "using-a-singularity-container"]], "Connecting to a Remote Host": [[75, "connecting-to-a-remote-host"]], "Developing with Remote Tunnels": [[75, "developing-with-remote-tunnels"]], "Remote Access via SSH": [[75, "remote-access-via-ssh"]], "DGX Cloud": [[75, "dgx-cloud"]], "Get Started": [[75, "get-started"]], "Use JupyterLab": [[75, "use-jupyterlab"]], "Use VS Code": [[75, "use-vs-code"]], "Additional CUDA Tools": [[75, "additional-cuda-tools"]], "Installation via PyPI": [[75, "installation-via-pypi"]], "Installation In Container Images": [[75, "installation-in-container-images"]], "Installing Pre-built Binaries": [[75, "installing-pre-built-binaries"]], "Distributed Computing with MPI": [[75, "distributed-computing-with-mpi"]], "Updating CUDA-Q": [[75, "updating-cuda-q"]], "Dependencies and Compatibility": [[75, "dependencies-and-compatibility"]], "Supported Systems": [[75, "id10"]], "Requirements for GPU Simulation": [[75, "id11"]], "Next Steps": [[75, "next-steps"]], "Extending CUDA-Q with a new Simulator": [[72, "extending-cuda-q-with-a-new-simulator"]], "CircuitSimulator": [[72, "circuitsimulator"]], "Required Circuit Simulator Subtype Method Overrides": [[72, "id1"]], "Let\u2019s see this in action": [[72, "let-s-see-this-in-action"]], "Installation from Source": [[73, "installation-from-source"]], "Prerequisites": [[73, "prerequisites"]], "Build Dependencies": [[73, "build-dependencies"]], "CUDA": [[73, "cuda"]], "Toolchain": [[73, "toolchain"]], "Building CUDA-Q": [[73, "building-cuda-q"]], "Python Support": [[73, "python-support"]], "C++ Support": [[73, "c-support"]], "Installation on the Host": [[73, "installation-on-the-host"]], "CUDA Runtime Libraries": [[73, "cuda-runtime-libraries"]], "MPI": [[73, "mpi"]], "CUDA-Q and CMake": [[76, "cuda-q-and-cmake"]], "Extending CUDA-Q": [[70, "extending-cuda-q"]], "Create your own CUDA-Q Compiler Pass": [[71, "create-your-own-cuda-q-compiler-pass"]], "Using CUDA and CUDA-Q in a Project": [[77, "using-cuda-and-cuda-q-in-a-project"]], "Integrating with Third-Party Libraries": [[79, "integrating-with-third-party-libraries"]], "Calling a CUDA-Q library from C++": [[79, "calling-a-cuda-q-library-from-c"]], "Calling an C++ library from CUDA-Q": [[79, "calling-an-c-library-from-cuda-q"]], "Interfacing between binaries compiled with a different toolchains": [[79, "interfacing-between-binaries-compiled-with-a-different-toolchains"]], "NVIDIA Quantum Cloud": [[53, "nvidia-quantum-cloud"]], "Simulator Backend Selection": [[53, "simulator-backend-selection"]], "Multiple GPUs": [[53, "multiple-gpus"]], "Simulator Backends": [[53, "id1"]], "Multiple QPUs Asynchronous Execution": [[53, "multiple-qpus-asynchronous-execution"]], "FAQ": [[53, "faq"]], "CUDA-Q Dynamics": [[51, "cuda-q-dynamics"]], "Operator": [[51, "operator"]], "Builtin Operators": [[51, "id1"]], "Time-Dependent Dynamics": [[51, "time-dependent-dynamics"]], "Numerical Integrators": [[51, "numerical-integrators"], [51, "id2"]], "Multi-Processor Platforms": [[54, "multi-processor-platforms"]], "NVIDIA MQPU Platform": [[54, "nvidia-mqpu-platform"]], "Parallel distribution mode": [[54, "parallel-distribution-mode"]], "Remote MQPU Platform": [[54, "remote-mqpu-platform"]], "Supported Kernel Arguments": [[54, "supported-kernel-arguments"]], "Kernel argument serialization": [[54, "id4"]], "Accessing Simulated Quantum State": [[54, "accessing-simulated-quantum-state"]], "CUDA-Q Simulation Backends": [[55, "cuda-q-simulation-backends"]], "State Vector Simulators": [[55, "state-vector-simulators"]], "Features": [[55, "features"]], "Single-GPU": [[55, "single-gpu"]], "Environment variable options supported in single-GPU mode": [[55, "id4"]], "Multi-node multi-GPU": [[55, "multi-node-multi-gpu"], [55, "id2"]], "Additional environment variable options for multi-node multi-GPU mode": [[55, "id5"]], "OpenMP CPU-only": [[55, "openmp-cpu-only"]], "Tensor Network Simulators": [[55, "tensor-network-simulators"]], "Matrix product state": [[55, "matrix-product-state"]], "Clifford-Only Simulator": [[55, "clifford-only-simulator"]], "Stim (CPU)": [[55, "stim-cpu"]], "Fermioniq": [[55, "fermioniq"]], "Default Simulator": [[55, "default-simulator"]], "Building your first CUDA-Q Program": [[57, "building-your-first-cuda-q-program"]], "Running your first CUDA-Q Program": [[59, "running-your-first-cuda-q-program"]], "Sample": [[59, "sample"], [24, "Sample"]], "Observe": [[59, "observe"], [24, "Observe"]], "Running on a GPU": [[59, "running-on-a-gpu"]], "CUDA-Q Backends": [[50, "cuda-q-backends"]], "Backend Targets": [[50, null]], "CUDA-Q Hardware Backends": [[52, "cuda-q-hardware-backends"]], "Setting Credentials": [[52, "setting-credentials"], [52, "id1"], [52, "ionq-backend"], [52, "anyon-backend"], [52, "id10"], [52, "id13"], [52, "id16"], [52, "quantinuum-backend"], [52, "quera-backend"]], "Submission from C++": [[52, "submission-from-c"], [52, "id2"], [52, "id5"], [52, "id8"], [52, "id11"], [52, "id14"], [52, "id17"], [52, "id20"], [52, "id23"]], "Submission from Python": [[52, "submission-from-python"], [52, "id3"], [52, "id6"], [52, "id9"], [52, "id12"], [52, "id15"], [52, "id18"], [52, "id21"], [52, "id24"]], "Anyon Technologies/Anyon Computing": [[52, "anyon-technologies-anyon-computing"]], "CUDA-Q Basics": [[56, "cuda-q-basics"]], "What is a CUDA-Q kernel?": [[58, "what-is-a-cuda-q-kernel"]], "Quantum Algorithmic Primitives": [[34, "quantum-algorithmic-primitives"]], "cudaq::sample": [[34, "cudaq-sample"]], "cudaq::observe": [[34, "cudaq-observe"]], "cudaq::optimizer (deprecated, functionality moved to CUDA-Q libraries)": [[34, "cudaq-optimizer-deprecated-functionality-moved-to-cuda-q-libraries"]], "cudaq::gradient (deprecated, functionality moved to CUDA-Q libraries)": [[34, "cudaq-gradient-deprecated-functionality-moved-to-cuda-q-libraries"]], "Just-in-Time Kernel Creation": [[36, "just-in-time-kernel-creation"]], "Quantum Kernels": [[38, "quantum-kernels"]], "Control Flow": [[35, "control-flow"]], "Visualization": [[30, "Visualization"]], "Qubit Visualization": [[30, "Qubit-Visualization"]], "Kernel Visualization": [[30, "Kernel-Visualization"]], "Machine Model": [[39, "machine-model"]], "Language Specification": [[33, "language-specification"]], "CUDA-Q": [[33, null], [31, "cuda-q"]], "Example Programs": [[37, "example-programs"]], "Hello World - Simple Bell State": [[37, "hello-world-simple-bell-state"]], "GHZ State Preparation and Sampling": [[37, "ghz-state-preparation-and-sampling"]], "Quantum Phase Estimation": [[37, "quantum-phase-estimation"]], "Deuteron Binding Energy Parameter Sweep": [[37, "deuteron-binding-energy-parameter-sweep"]], "Grover\u2019s Algorithm": [[37, "grover-s-algorithm"]], "Iterative Phase Estimation": [[37, "iterative-phase-estimation"]], "CUDA-Q Releases": [[32, "cuda-q-releases"]], "VQE with gradients, active spaces, and gate fusion": [[23, "VQE-with-gradients,-active-spaces,-and-gate-fusion"]], "The Basics of VQE": [[23, "The-Basics-of-VQE"]], "Installing/Loading Relevant Packages": [[23, "Installing/Loading-Relevant-Packages"]], "Implementing VQE in CUDA-Q": [[23, "Implementing-VQE-in-CUDA-Q"]], "Parallel Parameter Shift Gradients": [[23, "Parallel-Parameter-Shift-Gradients"], [28, "Parallel-Parameter-Shift-Gradients"]], "Using an Active Space": [[23, "Using-an-Active-Space"]], "Gate Fusion for Larger Circuits": [[23, "Gate-Fusion-for-Larger-Circuits"]], "Operators": [[27, "Operators"], [2, "operators"]], "Constructing Spin Operators": [[27, "Constructing-Spin-Operators"]], "Pauli Words and Exponentiating Pauli Words": [[27, "Pauli-Words-and-Exponentiating-Pauli-Words"]], "Optimizing Performance": [[29, "Optimizing-Performance"]], "Gate Fusion": [[29, "Gate-Fusion"]], "Noisy Simulation": [[26, "Noisy-Simulation"], [3, "noisy-simulation"]], "Computing Magnetization With The Suzuki-Trotter Approximation": [[20, "Computing-Magnetization-With-The-Suzuki-Trotter-Approximation"]], "Problem Setup": [[20, "Problem-Setup"]], "Running the Simulation": [[20, "Running-the-Simulation"]], "Compiling Unitaries Using Diffusion Models": [[21, "Compiling-Unitaries-Using-Diffusion-Models"]], "Diffusion model pipeline": [[21, "Diffusion-model-pipeline"]], "Setup and compilation": [[21, "Setup-and-compilation"]], "Load model": [[21, "Load-model"]], "Unitary compilation": [[21, "Unitary-compilation"]], "Convert tensors to CUDA-Q": [[21, "Convert-tensors-to-CUDA-Q"]], "Evaluate generated circuits": [[21, "Evaluate-generated-circuits"]], "Simulate kernels": [[21, "Simulate-kernels"]], "Compare unitaries": [[21, "Compare-unitaries"]], "Choosing the circuit you need": [[21, "Choosing-the-circuit-you-need"]], "Midcircuit Measurement and Conditional Logic": [[25, "Midcircuit-Measurement-and-Conditional-Logic"]], "Executing Quantum Circuits": [[24, "Executing-Quantum-Circuits"]], "Get state": [[24, "Get-state"]], "Parallelization Techniques": [[24, "Parallelization-Techniques"]], "Observe Async": [[24, "Observe-Async"]], "Sample Async": [[24, "Sample-Async"]], "Get State Async": [[24, "Get-State-Async"]], "Variational Quantum Eigensolver": [[22, "Variational-Quantum-Eigensolver"]], "Using CUDA-Q Optimizers": [[22, "Using-CUDA-Q-Optimizers"]], "Integration with Third-Party Optimizers": [[22, "Integration-with-Third-Party-Optimizers"]], "Optimizers and Gradients": [[28, "Optimizers-and-Gradients"]], "Built in CUDA-Q Optimizers and Gradients": [[28, "Built-in-CUDA-Q-Optimizers-and-Gradients"]], "Third-Party Optimizers": [[28, "Third-Party-Optimizers"]], "Anderson Impurity Model ground state solver on Infleqtion\u2019s Sqale": [[13, "Anderson-Impurity-Model-ground-state-solver-on-Infleqtion's-Sqale"]], "Performing logical Variational Quantum Eigensolver (VQE) with CUDA-QX": [[13, "Performing-logical-Variational-Quantum-Eigensolver-(VQE)-with-CUDA-QX"]], "Constructing circuits in the [[4,2,2]] encoding": [[13, "Constructing-circuits-in-the-[[4,2,2]]-encoding"]], "Setting up submission and decoding workflow": [[13, "Setting-up-submission-and-decoding-workflow"]], "Running a CUDA-Q noisy simulation": [[13, "Running-a-CUDA-Q-noisy-simulation"]], "Running logical AIM on Infleqtion\u2019s hardware": [[13, "Running-logical-AIM-on-Infleqtion's-hardware"]], "Hybrid Quantum Neural Networks": [[11, "Hybrid-Quantum-Neural-Networks"]], "Multi-reference Quantum Krylov Algorithm - H_2 Molecule": [[12, "Multi-reference-Quantum-Krylov-Algorithm---H_2-Molecule"]], "Setup": [[12, "Setup"]], "Computing the matrix elements": [[12, "Computing-the-matrix-elements"]], "Determining the ground state energy of the subspace": [[12, "Determining-the-ground-state-energy-of-the-subspace"]], "Readout Error Mitigation": [[18, "Readout-Error-Mitigation"]], "Inverse confusion matrix from single-qubit noise model": [[18, "Inverse-confusion-matrix-from-single-qubit-noise-model"]], "Inverse confusion matrix from k local confusion matrices": [[18, "Inverse-confusion-matrix-from-k-local-confusion-matrices"]], "Inverse of full confusion matrix": [[18, "Inverse-of-full-confusion-matrix"]], "Factoring Integers With Shor\u2019s Algorithm": [[19, "Factoring-Integers-With-Shor's-Algorithm"]], "Shor\u2019s algorithm": [[19, "Shor's-algorithm"]], "Solving the order-finding problem classically": [[19, "Solving-the-order-finding-problem-classically"]], "Solving the order-finding problem with a quantum algorithm": [[19, "Solving-the-order-finding-problem-with-a-quantum-algorithm"]], "Inverse quantum Fourier transform": [[19, "Inverse-quantum-Fourier-transform"]], "Quantum kernels for modular exponentiation": [[19, "Quantum-kernels-for-modular-exponentiation"]], "The case N = 21 and a = 5:": [[19, "The-case-N-=-21-and-a-=-5:"]], "The case N = 21 and a = 4:": [[19, "The-case-N-=-21-and-a-=-4:"]], "Determining the order from the measurement results of the phase kernel": [[19, "Determining-the-order-from-the-measurement-results-of-the-phase-kernel"]], "Postscript": [[19, "Postscript"]], "Quantum Fourier Transform": [[15, "Quantum-Fourier-Transform"]], "Quantum Fourier Transform revisited": [[15, "Quantum-Fourier-Transform-revisited"]], "Quantum Teleporation": [[16, "Quantum-Teleporation"]], "Teleportation explained": [[16, "Teleportation-explained"]], "Using the Hadamard Test to Determine Quantum Krylov Subspace Decomposition Matrix Elements": [[10, "Using-the-Hadamard-Test-to-Determine-Quantum-Krylov-Subspace-Decomposition-Matrix-Elements"]], "Numerical result as a reference:": [[10, "Numerical-result-as-a-reference:"]], "Using Sample to perform the Hadamard test": [[10, "Using-Sample-to-perform-the-Hadamard-test"]], "Multi-GPU evaluation of QKSD matrix elements using the Hadamard Test": [[10, "Multi-GPU-evaluation-of-QKSD-matrix-elements-using-the-Hadamard-Test"]], "Classically Diagonalize the Subspace Matrix": [[10, "Classically-Diagonalize-the-Subspace-Matrix"]], "Max-Cut with QAOA": [[14, "Max-Cut-with-QAOA"]], "Quantum Volume": [[17, "Quantum-Volume"]], "Divisive Clustering With Coresets Using CUDA-Q": [[9, "Divisive-Clustering-With-Coresets-Using-CUDA-Q"]], "Data preprocessing": [[9, "Data-preprocessing"]], "Quantum functions": [[9, "Quantum-functions"]], "Divisive Clustering Function": [[9, "Divisive-Clustering-Function"]], "QAOA Implementation": [[9, "QAOA-Implementation"]], "Scaling simulations with CUDA-Q": [[9, "Scaling-simulations-with-CUDA-Q"]], "Deutsch\u2019s Algorithm": [[7, "Deutsch's-Algorithm"]], "XOR \\oplus": [[7, "XOR-\\oplus"]], "Quantum oracles": [[7, "Quantum-oracles"]], "Phase oracle": [[7, "Phase-oracle"]], "Quantum parallelism": [[7, "Quantum-parallelism"]], "Deutsch\u2019s Algorithm:": [[7, "Deutsch's-Algorithm:"]], "Quantum Enhanced Auxiliary Field Quantum Monte Carlo": [[4, "Quantum-Enhanced-Auxiliary-Field-Quantum-Monte-Carlo"]], "Hamiltonian preparation for VQE": [[4, "Hamiltonian-preparation-for-VQE"]], "Run VQE with CUDA-Q": [[4, "Run-VQE-with-CUDA-Q"]], "Auxiliary Field Quantum Monte Carlo (AFQMC)": [[4, "Auxiliary-Field-Quantum-Monte-Carlo-(AFQMC)"]], "Preparation of the molecular Hamiltonian": [[4, "Preparation-of-the-molecular-Hamiltonian"]], "Preparation of the trial wave function": [[4, "Preparation-of-the-trial-wave-function"]], "Setup of the AFQMC parameters": [[4, "Setup-of-the-AFQMC-parameters"]], "Bernstein-Vazirani Algorithm": [[5, "Bernstein-Vazirani-Algorithm"]], "Classical case": [[5, "Classical-case"]], "Quantum case": [[5, "Quantum-case"]], "Implementing in CUDA-Q": [[5, "Implementing-in-CUDA-Q"]], "CUDA-Q Python API": [[3, "module-cudaq"]], "Program Construction": [[3, "program-construction"]], "Kernel Execution": [[3, "kernel-execution"]], "Dynamics": [[3, "dynamics"]], "Backend Configuration": [[3, "backend-configuration"]], "Data Types": [[3, "data-types"]], "Optimizers": [[3, "optimizers"]], "Gradients": [[3, "gradients"]], "MPI Submodule": [[3, "mpi-submodule"]], "ORCA Submodule": [[3, "orca-submodule"]], "Molecular docking via DC-QAOA": [[8, "Molecular-docking-via-DC-QAOA"]], "Setting up the Molecular Docking Problem": [[8, "Setting-up-the-Molecular-Docking-Problem"]], "CUDA-Q Implementation": [[8, "CUDA-Q-Implementation"]], "Cost Minimization": [[6, "Cost-Minimization"]], "CUDA-Q C++ API": [[2, "cuda-q-c-api"]], "Quantum": [[2, "quantum"]], "Common": [[2, "common"]], "Noise Modeling": [[2, "noise-modeling"]], "Kernel Builder": [[2, "kernel-builder"]], "Algorithms": [[2, "algorithms"]], "Platform": [[2, "platform"]], "Utilities": [[2, "utilities"]], "Namespaces": [[2, "namespaces"]], "Code documentation": [[0, "code-documentation"]], "CUDA-Q API": [[0, null]], "Quantum Operations": [[1, "quantum-operations"]], "Unitary Operations on Qubits": [[1, "unitary-operations-on-qubits"]], "x": [[1, "x"]], "y": [[1, "y"]], "z": [[1, "z"]], "h": [[1, "h"]], "r1": [[1, "r1"]], "rx": [[1, "rx"]], "ry": [[1, "ry"]], "rz": [[1, "rz"]], "s": [[1, "s"]], "t": [[1, "t"]], "swap": [[1, "swap"]], "u3": [[1, "u3"]], "Adjoint and Controlled Operations": [[1, "adjoint-and-controlled-operations"]], "Measurements on Qubits": [[1, "measurements-on-qubits"]], "mz": [[1, "mz"], [1, "id1"]], "mx": [[1, "mx"]], "my": [[1, "my"]], "User-Defined Custom Operations": [[1, "user-defined-custom-operations"]], "Photonic Operations on Qudits": [[1, "photonic-operations-on-qudits"]], "create": [[1, "create"]], "annihilate": [[1, "annihilate"]], "phase_shift": [[1, "phase-shift"]], "beam_splitter": [[1, "beam-splitter"]]}, "indexentries": {"cudaq (c++ type)": [[2, "_CPPv45cudaq"]], "cudaq::basenvcfsimulatorqpu (c++ class)": [[2, "_CPPv4N5cudaq20BaseNvcfSimulatorQPUE"]], "cudaq::baseremoterestqpu (c++ class)": [[2, "_CPPv4N5cudaq17BaseRemoteRESTQPUE"]], "cudaq::baseremotesimulatorqpu (c++ class)": [[2, "_CPPv4N5cudaq22BaseRemoteSimulatorQPUE"]], "cudaq::cusvstate (c++ class)": [[2, "_CPPv4I0EN5cudaq9CusvStateE"]], "cudaq::executioncontext (c++ class)": [[2, "_CPPv4N5cudaq16ExecutionContextE"]], "cudaq::executioncontext::executioncontext (c++ function)": [[2, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE"], [2, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE"]], "cudaq::executioncontext::amplitudemaps (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13amplitudeMapsE"]], "cudaq::executioncontext::asyncexec (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext9asyncExecE"]], "cudaq::executioncontext::asyncresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext11asyncResultE"]], "cudaq::executioncontext::batchiteration (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext14batchIterationE"]], "cudaq::executioncontext::canhandleobserve (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext16canHandleObserveE"]], "cudaq::executioncontext::expectationvalue (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext16expectationValueE"]], "cudaq::executioncontext::futureresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext12futureResultE"]], "cudaq::executioncontext::hasconditionalsonmeasureresults (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext31hasConditionalsOnMeasureResultsE"]], "cudaq::executioncontext::invocationresultbuffer (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext22invocationResultBufferE"]], "cudaq::executioncontext::kernelname (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10kernelNameE"]], "cudaq::executioncontext::kerneltrace (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext11kernelTraceE"]], "cudaq::executioncontext::name (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext4nameE"]], "cudaq::executioncontext::noisemodel (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10noiseModelE"]], "cudaq::executioncontext::numbertrajectories (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext18numberTrajectoriesE"]], "cudaq::executioncontext::optresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext9optResultE"]], "cudaq::executioncontext::overlapcomputestates (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext20overlapComputeStatesE"]], "cudaq::executioncontext::overlapresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13overlapResultE"]], "cudaq::executioncontext::registernames (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13registerNamesE"]], "cudaq::executioncontext::reorderidx (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10reorderIdxE"]], "cudaq::executioncontext::result (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext6resultE"]], "cudaq::executioncontext::shots (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext5shotsE"]], "cudaq::executioncontext::simulationstate (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext15simulationStateE"]], "cudaq::executioncontext::spin (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext4spinE"]], "cudaq::executioncontext::totaliterations (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext15totalIterationsE"]], "cudaq::executionresult (c++ struct)": [[2, "_CPPv4N5cudaq15ExecutionResultE"]], "cudaq::executionresult::executionresult (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEv"]], "cudaq::executionresult::appendresult (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE"]], "cudaq::executionresult::deserialize (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE"]], "cudaq::executionresult::operator= (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult"]], "cudaq::executionresult::operator== (c++ function)": [[2, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult"]], "cudaq::executionresult::registername (c++ member)": [[2, "_CPPv4N5cudaq15ExecutionResult12registerNameE"]], "cudaq::executionresult::sequentialdata (c++ member)": [[2, "_CPPv4N5cudaq15ExecutionResult14sequentialDataE"]], "cudaq::executionresult::serialize (c++ function)": [[2, "_CPPv4NK5cudaq15ExecutionResult9serializeEv"]], "cudaq::fermioniqbaseqpu (c++ class)": [[2, "_CPPv4N5cudaq16FermioniqBaseQPUE"]], "cudaq::kernelexecutiontask (c++ type)": [[2, "_CPPv4N5cudaq19KernelExecutionTaskE"]], "cudaq::kernelthunkresulttype (c++ struct)": [[2, "_CPPv4N5cudaq21KernelThunkResultTypeE"]], "cudaq::kernelthunktype (c++ type)": [[2, "_CPPv4N5cudaq15KernelThunkTypeE"]], "cudaq::orcaremoterestqpu (c++ class)": [[2, "_CPPv4N5cudaq17OrcaRemoteRESTQPUE"]], "cudaq::qpu (c++ class)": [[2, "_CPPv4N5cudaq3QPUE"]], "cudaq::qpu::qpu (c++ function)": [[2, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE"], [2, "_CPPv4N5cudaq3QPU3QPUERR3QPU"], [2, "_CPPv4N5cudaq3QPU3QPUEv"]], "cudaq::qpu::enqueue (c++ function)": [[2, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask"]], "cudaq::qpu::getconnectivity (c++ function)": [[2, "_CPPv4N5cudaq3QPU15getConnectivityEv"]], "cudaq::qpu::getexecutionthreadid (c++ function)": [[2, "_CPPv4NK5cudaq3QPU20getExecutionThreadIdEv"]], "cudaq::qpu::getnumqubits (c++ function)": [[2, "_CPPv4N5cudaq3QPU12getNumQubitsEv"]], "cudaq::qpu::getremotecapabilities (c++ function)": [[2, "_CPPv4NK5cudaq3QPU21getRemoteCapabilitiesEv"]], "cudaq::qpu::isemulated (c++ function)": [[2, "_CPPv4N5cudaq3QPU10isEmulatedEv"]], "cudaq::qpu::issimulator (c++ function)": [[2, "_CPPv4N5cudaq3QPU11isSimulatorEv"]], "cudaq::qpu::launchkernel (c++ function)": [[2, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE"], [2, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE"]], "cudaq::qpu::launchserializedcodeexecution (c++ function)": [[2, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE"]], "cudaq::qpu::onrandomseedset (c++ function)": [[2, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE"]], "cudaq::qpu::resetexecutioncontext (c++ function)": [[2, "_CPPv4N5cudaq3QPU21resetExecutionContextEv"]], "cudaq::qpu::setexecutioncontext (c++ function)": [[2, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext"]], "cudaq::qpu::setid (c++ function)": [[2, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE"]], "cudaq::qpu::setshots (c++ function)": [[2, "_CPPv4N5cudaq3QPU8setShotsEi"]], "cudaq::qpu::supportsconditionalfeedback (c++ function)": [[2, "_CPPv4N5cudaq3QPU27supportsConditionalFeedbackEv"]], "cudaq::qpu::~qpu (c++ function)": [[2, "_CPPv4N5cudaq3QPUD0Ev"]], "cudaq::querabaseqpu (c++ class)": [[2, "_CPPv4N5cudaq12QuEraBaseQPUE"]], "cudaq::quakevalue (c++ class)": [[2, "_CPPv4N5cudaq10QuakeValueE"]], "cudaq::quakevalue::quakevalue (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE"], [2, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd"]], "cudaq::quakevalue::canvalidatenumelements (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue22canValidateNumElementsEv"]], "cudaq::quakevalue::constantsize (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue12constantSizeEv"]], "cudaq::quakevalue::dump (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue4dumpERNSt7ostreamE"], [2, "_CPPv4N5cudaq10QuakeValue4dumpEv"]], "cudaq::quakevalue::getrequiredelements (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue19getRequiredElementsEv"]], "cudaq::quakevalue::getvalue (c++ function)": [[2, "_CPPv4NK5cudaq10QuakeValue8getValueEv"]], "cudaq::quakevalue::inverse (c++ function)": [[2, "_CPPv4NK5cudaq10QuakeValue7inverseEv"]], "cudaq::quakevalue::isstdvec (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue8isStdVecEv"]], "cudaq::quakevalue::operator* (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuemlEKd"]], "cudaq::quakevalue::operator+ (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValueplEKd"], [2, "_CPPv4N5cudaq10QuakeValueplEKi"]], "cudaq::quakevalue::operator- (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuemiEKd"], [2, "_CPPv4N5cudaq10QuakeValuemiEKi"], [2, "_CPPv4NK5cudaq10QuakeValuemiEv"]], "cudaq::quakevalue::operator/ (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuedvEKd"]], "cudaq::quakevalue::operator[] (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE"], [2, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue"]], "cudaq::quakevalue::size (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue4sizeEv"]], "cudaq::quakevalue::slice (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE"]], "cudaq::quantumtask (c++ type)": [[2, "_CPPv4N5cudaq11QuantumTaskE"]], "cudaq::qubitconnectivity (c++ type)": [[2, "_CPPv4N5cudaq17QubitConnectivityE"]], "cudaq::qubitedge (c++ type)": [[2, "_CPPv4N5cudaq9QubitEdgeE"]], "cudaq::remotecapabilities (c++ struct)": [[2, "_CPPv4N5cudaq18RemoteCapabilitiesE"]], "cudaq::remotecapabilities::remotecapabilities (c++ function)": [[2, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb"]], "cudaq::remotecapabilities::isremotesimulator (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities17isRemoteSimulatorE"]], "cudaq::remotecapabilities::serializedcodeexec (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities18serializedCodeExecE"]], "cudaq::remotecapabilities::stateoverlap (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities12stateOverlapE"]], "cudaq::remotecapabilities::vqe (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities3vqeE"]], "cudaq::remotesimulationstate (c++ class)": [[2, "_CPPv4N5cudaq21RemoteSimulationStateE"]], "cudaq::resources (c++ class)": [[2, "_CPPv4N5cudaq9ResourcesE"]], "cudaq::serializedcodeexecutioncontext (c++ class)": [[2, "_CPPv4N5cudaq30SerializedCodeExecutionContextE"]], "cudaq::simulationstate (c++ class)": [[2, "_CPPv4N5cudaq15SimulationStateE"]], "cudaq::simulationstate::tensor (c++ struct)": [[2, "_CPPv4N5cudaq15SimulationState6TensorE"]], "cudaq::simulationstate::precision (c++ enum)": [[2, "_CPPv4N5cudaq15SimulationState9precisionE"]], "cudaq::simulationstate::precision::fp32 (c++ enumerator)": [[2, "_CPPv4N5cudaq15SimulationState9precision4fp32E"]], "cudaq::simulationstate::precision::fp64 (c++ enumerator)": [[2, "_CPPv4N5cudaq15SimulationState9precision4fp64E"]], "cudaq::tensorstatedata (c++ type)": [[2, "_CPPv4N5cudaq15TensorStateDataE"]], "cudaq::trace (c++ class)": [[2, "_CPPv4N5cudaq5TraceE"]], "cudaq::amplitude_damping_channel (c++ class)": [[2, "_CPPv4N5cudaq25amplitude_damping_channelE"]], "cudaq::async_result (c++ class)": [[2, "_CPPv4I0EN5cudaq12async_resultE"]], "cudaq::async_result::get (c++ function)": [[2, "_CPPv4N5cudaq12async_result3getEv"]], "cudaq::async_sample_result (c++ type)": [[2, "_CPPv4N5cudaq19async_sample_resultE"]], "cudaq::bit_flip_channel (c++ class)": [[2, "_CPPv4N5cudaq16bit_flip_channelE"]], "cudaq::complex (c++ type)": [[2, "_CPPv4N5cudaq7complexE"]], "cudaq::complex_matrix (c++ class)": [[2, "_CPPv4N5cudaq14complex_matrixE"]], "cudaq::complex_matrix::cols (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4colsEv"]], "cudaq::complex_matrix::complex_matrix (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE"], [2, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE"]], "cudaq::complex_matrix::data (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4dataEv"]], "cudaq::complex_matrix::dump (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE"], [2, "_CPPv4N5cudaq14complex_matrix4dumpEv"]], "cudaq::complex_matrix::eigenvalues (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix11eigenvaluesEv"]], "cudaq::complex_matrix::eigenvectors (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix12eigenvectorsEv"]], "cudaq::complex_matrix::minimal_eigenvalue (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix18minimal_eigenvalueEv"]], "cudaq::complex_matrix::operator() (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE"]], "cudaq::complex_matrix::operator* (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix"], [2, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE"]], "cudaq::complex_matrix::rows (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4rowsEv"]], "cudaq::complex_matrix::set_zero (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix8set_zeroEv"]], "cudaq::complex_matrix::value_type (c++ type)": [[2, "_CPPv4N5cudaq14complex_matrix10value_typeE"]], "cudaq::depolarization_channel (c++ class)": [[2, "_CPPv4N5cudaq22depolarization_channelE"]], "cudaq::details (c++ type)": [[2, "_CPPv4N5cudaq7detailsE"]], "cudaq::details::kernelbuildertype (c++ class)": [[2, "_CPPv4N5cudaq7details17KernelBuilderTypeE"]], "cudaq::details::kernelbuildertype::kernelbuildertype (c++ function)": [[2, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE"]], "cudaq::details::kernelbuildertype::create (c++ function)": [[2, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE"]], "cudaq::details::future (c++ class)": [[2, "_CPPv4N5cudaq7details6futureE"]], "cudaq::details::future::future (c++ function)": [[2, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE"], [2, "_CPPv4N5cudaq7details6future6futureERR6future"], [2, "_CPPv4N5cudaq7details6future6futureEv"]], "cudaq::details::kernel_builder_base (c++ class)": [[2, "_CPPv4N5cudaq7details19kernel_builder_baseE"]], "cudaq::details::kernel_builder_base::operator<< (c++ function)": [[2, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base"]], "cudaq::draw (c++ function)": [[2, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args"]], "cudaq::dyn (c++ member)": [[2, "_CPPv4N5cudaq3dynE"]], "cudaq::get_state (c++ function)": [[2, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args"]], "cudaq::gradient (c++ class)": [[2, "_CPPv4N5cudaq8gradientE"]], "cudaq::gradient::clone (c++ function)": [[2, "_CPPv4N5cudaq8gradient5cloneEv"]], "cudaq::gradient::compute (c++ function)": [[2, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradient::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq8gradient8gradientEv"]], "cudaq::gradient::setargs (c++ function)": [[2, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args"]], "cudaq::gradient::setkernel (c++ function)": [[2, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel"]], "cudaq::gradients::central_difference (c++ class)": [[2, "_CPPv4N5cudaq9gradients18central_differenceE"]], "cudaq::gradients::central_difference::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients18central_difference5cloneEv"]], "cudaq::gradients::central_difference::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::central_difference::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients18central_difference8gradientEv"]], "cudaq::gradients::forward_difference (c++ class)": [[2, "_CPPv4N5cudaq9gradients18forward_differenceE"]], "cudaq::gradients::forward_difference::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients18forward_difference5cloneEv"]], "cudaq::gradients::forward_difference::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::forward_difference::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients18forward_difference8gradientEv"]], "cudaq::gradients::parameter_shift (c++ class)": [[2, "_CPPv4N5cudaq9gradients15parameter_shiftE"]], "cudaq::gradients::parameter_shift::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients15parameter_shift5cloneEv"]], "cudaq::gradients::parameter_shift::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::parameter_shift::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients15parameter_shift8gradientEv"]], "cudaq::kernel_builder (c++ class)": [[2, "_CPPv4IDpEN5cudaq14kernel_builderE"]], "cudaq::kernel_builder::constantval (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder11constantValEd"]], "cudaq::kernel_builder::getarguments (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder12getArgumentsEv"]], "cudaq::kernel_builder::getnumparams (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder12getNumParamsEv"]], "cudaq::kernel_builder::isargstdvec (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE"]], "cudaq::kernel_builder::kernel_builder (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE"]], "cudaq::kernel_builder::name (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder4nameEv"]], "cudaq::kernel_builder::qalloc (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue"], [2, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE"], [2, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE"], [2, "_CPPv4N5cudaq14kernel_builder6qallocEv"]], "cudaq::kernel_builder::swap (c++ function)": [[2, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue"], [2, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue"], [2, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue"]], "cudaq::kraus_channel (c++ class)": [[2, "_CPPv4N5cudaq13kraus_channelE"]], "cudaq::kraus_channel::empty (c++ function)": [[2, "_CPPv4NK5cudaq13kraus_channel5emptyEv"]], "cudaq::kraus_channel::get_ops (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channel7get_opsEv"]], "cudaq::kraus_channel::kraus_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelEv"]], "cudaq::kraus_channel::noise_type (c++ member)": [[2, "_CPPv4N5cudaq13kraus_channel10noise_typeE"]], "cudaq::kraus_channel::operator= (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel"]], "cudaq::kraus_channel::operator[] (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE"]], "cudaq::kraus_channel::parameters (c++ member)": [[2, "_CPPv4N5cudaq13kraus_channel10parametersE"]], "cudaq::kraus_channel::push_back (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op"]], "cudaq::kraus_channel::size (c++ function)": [[2, "_CPPv4NK5cudaq13kraus_channel4sizeEv"]], "cudaq::kraus_op (c++ struct)": [[2, "_CPPv4N5cudaq8kraus_opE"]], "cudaq::kraus_op::adjoint (c++ function)": [[2, "_CPPv4NK5cudaq8kraus_op7adjointEv"]], "cudaq::kraus_op::data (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op4dataE"]], "cudaq::kraus_op::kraus_op (c++ function)": [[2, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE"], [2, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE"], [2, "_CPPv4N5cudaq8kraus_op8kraus_opERK8kraus_op"]], "cudaq::kraus_op::ncols (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op5nColsE"]], "cudaq::kraus_op::nrows (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op5nRowsE"]], "cudaq::kraus_op::operator= (c++ function)": [[2, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op"]], "cudaq::mpi (c++ type)": [[2, "_CPPv4N5cudaq3mpiE"]], "cudaq::mpi::all_gather (c++ function)": [[2, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE"], [2, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE"]], "cudaq::mpi::all_reduce (c++ function)": [[2, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction"], [2, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func"]], "cudaq::mpi::broadcast (c++ function)": [[2, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi"], [2, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi"]], "cudaq::mpi::finalize (c++ function)": [[2, "_CPPv4N5cudaq3mpi8finalizeEv"]], "cudaq::mpi::initialize (c++ function)": [[2, "_CPPv4N5cudaq3mpi10initializeEiPPc"], [2, "_CPPv4N5cudaq3mpi10initializeEv"]], "cudaq::mpi::is_initialized (c++ function)": [[2, "_CPPv4N5cudaq3mpi14is_initializedEv"]], "cudaq::mpi::num_ranks (c++ function)": [[2, "_CPPv4N5cudaq3mpi9num_ranksEv"]], "cudaq::mpi::rank (c++ function)": [[2, "_CPPv4N5cudaq3mpi4rankEv"]], "cudaq::noise_model (c++ class)": [[2, "_CPPv4N5cudaq11noise_modelE"]], "cudaq::noise_model::predicatefuncty (c++ type)": [[2, "_CPPv4N5cudaq11noise_model15PredicateFuncTyE"]], "cudaq::noise_model::add_all_qubit_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli"], [2, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli"]], "cudaq::noise_model::add_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy"], [2, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel"], [2, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy"], [2, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel"]], "cudaq::noise_model::empty (c++ function)": [[2, "_CPPv4NK5cudaq11noise_model5emptyEv"]], "cudaq::noise_model::get_channels (c++ function)": [[2, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE"], [2, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE"]], "cudaq::noise_model::noise_model (c++ function)": [[2, "_CPPv4N5cudaq11noise_model11noise_modelEv"]], "cudaq::noise_model_type (c++ enum)": [[2, "_CPPv4N5cudaq16noise_model_typeE"]], "cudaq::noise_model_type::amplitude_damping_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type25amplitude_damping_channelE"]], "cudaq::noise_model_type::bit_flip_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type16bit_flip_channelE"]], "cudaq::noise_model_type::depolarization_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type22depolarization_channelE"]], "cudaq::noise_model_type::phase_flip_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type18phase_flip_channelE"]], "cudaq::noise_model_type::unknown (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type7unknownE"]], "cudaq::num_available_gpus (c++ function)": [[2, "_CPPv4N5cudaq18num_available_gpusEv"]], "cudaq::observe (c++ function)": [[2, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args"]], "cudaq::observe_options (c++ struct)": [[2, "_CPPv4N5cudaq15observe_optionsE"]], "cudaq::observe_result (c++ class)": [[2, "_CPPv4N5cudaq14observe_resultE"]], "cudaq::observe_result::counts (c++ function)": [[2, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType"]], "cudaq::observe_result::dump (c++ function)": [[2, "_CPPv4N5cudaq14observe_result4dumpEv"]], "cudaq::observe_result::expectation (c++ function)": [[2, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType"], [2, "_CPPv4N5cudaq14observe_result11expectationEv"]], "cudaq::observe_result::id_coefficient (c++ function)": [[2, "_CPPv4N5cudaq14observe_result14id_coefficientEv"]], "cudaq::observe_result::observe_result (c++ function)": [[2, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op"], [2, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result"]], "cudaq::observe_result::operator double (c++ function)": [[2, "_CPPv4N5cudaq14observe_resultcvdEv"]], "cudaq::observe_result::raw_data (c++ function)": [[2, "_CPPv4N5cudaq14observe_result8raw_dataEv"]], "cudaq::optimizable_function (c++ class)": [[2, "_CPPv4N5cudaq20optimizable_functionE"]], "cudaq::optimization_result (c++ type)": [[2, "_CPPv4N5cudaq19optimization_resultE"]], "cudaq::optimizer (c++ class)": [[2, "_CPPv4N5cudaq9optimizerE"]], "cudaq::optimizer::optimize (c++ function)": [[2, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function"]], "cudaq::optimizer::requiresgradients (c++ function)": [[2, "_CPPv4N5cudaq9optimizer17requiresGradientsEv"]], "cudaq::orca (c++ type)": [[2, "_CPPv4N5cudaq4orcaE"]], "cudaq::orca::sample (c++ function)": [[2, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE"], [2, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE"]], "cudaq::orca::sample_async (c++ function)": [[2, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE"], [2, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE"]], "cudaq::phase_flip_channel (c++ class)": [[2, "_CPPv4N5cudaq18phase_flip_channelE"]], "cudaq::qreg (c++ class)": [[2, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE"]], "cudaq::qreg::back (c++ function)": [[2, "_CPPv4N5cudaq4qreg4backENSt6size_tE"], [2, "_CPPv4N5cudaq4qreg4backEv"]], "cudaq::qreg::begin (c++ function)": [[2, "_CPPv4N5cudaq4qreg5beginEv"]], "cudaq::qreg::clear (c++ function)": [[2, "_CPPv4N5cudaq4qreg5clearEv"]], "cudaq::qreg::front (c++ function)": [[2, "_CPPv4N5cudaq4qreg5frontENSt6size_tE"], [2, "_CPPv4N5cudaq4qreg5frontEv"]], "cudaq::qreg::operator[] (c++ function)": [[2, "_CPPv4N5cudaq4qregixEKNSt6size_tE"]], "cudaq::qreg::size (c++ function)": [[2, "_CPPv4NK5cudaq4qreg4sizeEv"]], "cudaq::qreg::slice (c++ function)": [[2, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE"]], "cudaq::qreg::value_type (c++ type)": [[2, "_CPPv4N5cudaq4qreg10value_typeE"]], "cudaq::qspan (c++ class)": [[2, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE"]], "cudaq::quantum_platform (c++ class)": [[2, "_CPPv4N5cudaq16quantum_platformE"]], "cudaq::quantum_platform::clear_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform11clear_shotsEv"]], "cudaq::quantum_platform::connectivity (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12connectivityEv"]], "cudaq::quantum_platform::enqueueasynctask (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask"], [2, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE"]], "cudaq::quantum_platform::getlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12getLogStreamEv"]], "cudaq::quantum_platform::get_current_qpu (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15get_current_qpuEv"]], "cudaq::quantum_platform::get_exec_ctx (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform12get_exec_ctxEv"]], "cudaq::quantum_platform::get_num_qubits (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE"], [2, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsEv"]], "cudaq::quantum_platform::get_remote_capabilities (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE"]], "cudaq::quantum_platform::get_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9get_shotsEv"]], "cudaq::quantum_platform::is_emulated (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE"]], "cudaq::quantum_platform::is_remote (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE"]], "cudaq::quantum_platform::is_simulator (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE"]], "cudaq::quantum_platform::launchvqe (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE"]], "cudaq::quantum_platform::list_platforms (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14list_platformsEv"]], "cudaq::quantum_platform::name (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform4nameEv"]], "cudaq::quantum_platform::num_qpus (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform8num_qpusEv"]], "cudaq::quantum_platform::onrandomseedset (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE"]], "cudaq::quantum_platform::resetlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14resetLogStreamEv"]], "cudaq::quantum_platform::reset_exec_ctx (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE"]], "cudaq::quantum_platform::reset_noise (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform11reset_noiseEv"]], "cudaq::quantum_platform::setlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE"]], "cudaq::quantum_platform::settargetbackend (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE"]], "cudaq::quantum_platform::set_current_qpu (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE"]], "cudaq::quantum_platform::set_exec_ctx (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE"]], "cudaq::quantum_platform::set_noise (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model"]], "cudaq::quantum_platform::set_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9set_shotsEi"]], "cudaq::quantum_platform::supports_conditional_feedback (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE"]], "cudaq::quantum_platform::supports_task_distribution (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform26supports_task_distributionEv"]], "cudaq::qubit (c++ type)": [[2, "_CPPv4N5cudaq5qubitE"]], "cudaq::qudit (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq5quditE"]], "cudaq::qudit::qudit (c++ function)": [[2, "_CPPv4N5cudaq5qudit5quditEv"]], "cudaq::qvector (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE"]], "cudaq::qvector::back (c++ function)": [[2, "_CPPv4N5cudaq7qvector4backENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector4backEv"]], "cudaq::qvector::begin (c++ function)": [[2, "_CPPv4N5cudaq7qvector5beginEv"]], "cudaq::qvector::clear (c++ function)": [[2, "_CPPv4N5cudaq7qvector5clearEv"]], "cudaq::qvector::end (c++ function)": [[2, "_CPPv4N5cudaq7qvector3endEv"]], "cudaq::qvector::front (c++ function)": [[2, "_CPPv4N5cudaq7qvector5frontENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector5frontEv"]], "cudaq::qvector::operator= (c++ function)": [[2, "_CPPv4N5cudaq7qvectoraSERK7qvector"]], "cudaq::qvector::operator[] (c++ function)": [[2, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE"]], "cudaq::qvector::qvector (c++ function)": [[2, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector7qvectorERK5state"], [2, "_CPPv4N5cudaq7qvector7qvectorERK7qvector"], [2, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb"], [2, "_CPPv4N5cudaq7qvector7qvectorERR7qvector"]], "cudaq::qvector::size (c++ function)": [[2, "_CPPv4NK5cudaq7qvector4sizeEv"]], "cudaq::qvector::slice (c++ function)": [[2, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE"]], "cudaq::qvector::value_type (c++ type)": [[2, "_CPPv4N5cudaq7qvector10value_typeE"]], "cudaq::qview (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE"]], "cudaq::qview::value_type (c++ type)": [[2, "_CPPv4N5cudaq5qview10value_typeE"]], "cudaq::range (c++ function)": [[2, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType"], [2, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType"], [2, "_CPPv4N5cudaq5rangeENSt6size_tE"]], "cudaq::real (c++ type)": [[2, "_CPPv4N5cudaq4realE"]], "cudaq::registry (c++ type)": [[2, "_CPPv4N5cudaq8registryE"]], "cudaq::registry::registeredtype (c++ class)": [[2, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE"]], "cudaq::sample (c++ function)": [[2, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args"]], "cudaq::sample_options (c++ struct)": [[2, "_CPPv4N5cudaq14sample_optionsE"]], "cudaq::sample_result (c++ class)": [[2, "_CPPv4N5cudaq13sample_resultE"]], "cudaq::sample_result::append (c++ function)": [[2, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult"]], "cudaq::sample_result::begin (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5beginEv"], [2, "_CPPv4NK5cudaq13sample_result5beginEv"]], "cudaq::sample_result::cbegin (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result6cbeginEv"]], "cudaq::sample_result::cend (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result4cendEv"]], "cudaq::sample_result::clear (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5clearEv"]], "cudaq::sample_result::count (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE"]], "cudaq::sample_result::deserialize (c++ function)": [[2, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE"]], "cudaq::sample_result::dump (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE"], [2, "_CPPv4NK5cudaq13sample_result4dumpEv"]], "cudaq::sample_result::end (c++ function)": [[2, "_CPPv4N5cudaq13sample_result3endEv"], [2, "_CPPv4NK5cudaq13sample_result3endEv"]], "cudaq::sample_result::exp_val_z (c++ function)": [[2, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE"]], "cudaq::sample_result::expectation (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE"]], "cudaq::sample_result::get_marginal (c++ function)": [[2, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE"], [2, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE"]], "cudaq::sample_result::has_even_parity (c++ function)": [[2, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE"]], "cudaq::sample_result::has_expectation (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE"]], "cudaq::sample_result::most_probable (c++ function)": [[2, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE"]], "cudaq::sample_result::operator+= (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultpLERK13sample_result"]], "cudaq::sample_result::operator= (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultaSER13sample_result"]], "cudaq::sample_result::operator== (c++ function)": [[2, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result"]], "cudaq::sample_result::probability (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE"]], "cudaq::sample_result::register_names (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result14register_namesEv"]], "cudaq::sample_result::reorder (c++ function)": [[2, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE"]], "cudaq::sample_result::sample_result (c++ function)": [[2, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERK13sample_result"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult"], [2, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE"], [2, "_CPPv4N5cudaq13sample_result13sample_resultEv"]], "cudaq::sample_result::serialize (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result9serializeEv"]], "cudaq::sample_result::size (c++ function)": [[2, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE"]], "cudaq::sample_result::to_map (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE"]], "cudaq::sample_result::~sample_result (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultD0Ev"]], "cudaq::set_noise (c++ function)": [[2, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE"]], "cudaq::set_random_seed (c++ function)": [[2, "_CPPv4N5cudaq15set_random_seedENSt6size_tE"]], "cudaq::simulation_precision (c++ enum)": [[2, "_CPPv4N5cudaq20simulation_precisionE"]], "cudaq::simulation_precision::fp32 (c++ enumerator)": [[2, "_CPPv4N5cudaq20simulation_precision4fp32E"]], "cudaq::simulation_precision::fp64 (c++ enumerator)": [[2, "_CPPv4N5cudaq20simulation_precision4fp64E"]], "cudaq::spin_op (c++ class)": [[2, "_CPPv4N5cudaq7spin_opE"]], "cudaq::spin_op::begin (c++ function)": [[2, "_CPPv4N5cudaq7spin_op5beginEv"], [2, "_CPPv4NK5cudaq7spin_op5beginEv"]], "cudaq::spin_op::csr_spmatrix (c++ type)": [[2, "_CPPv4N5cudaq7spin_op12csr_spmatrixE"]], "cudaq::spin_op::distribute_terms (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE"]], "cudaq::spin_op::dump (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op4dumpEv"]], "cudaq::spin_op::end (c++ function)": [[2, "_CPPv4N5cudaq7spin_op3endEv"], [2, "_CPPv4NK5cudaq7spin_op3endEv"]], "cudaq::spin_op::for_each_pauli (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op14for_each_pauliERRNSt8functionIFv5pauliNSt6size_tEEEE"]], "cudaq::spin_op::for_each_term (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op13for_each_termERRNSt8functionIFvR7spin_opEEE"]], "cudaq::spin_op::from_word (c++ function)": [[2, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE"]], "cudaq::spin_op::getdatarepresentation (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op21getDataRepresentationEv"]], "cudaq::spin_op::getdatatuple (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op12getDataTupleEv"]], "cudaq::spin_op::get_coefficient (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op15get_coefficientEv"]], "cudaq::spin_op::get_raw_data (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op12get_raw_dataEv"]], "cudaq::spin_op::is_identity (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op11is_identityEv"]], "cudaq::spin_op::iterator (c++ struct)": [[2, "_CPPv4I0EN5cudaq7spin_op8iteratorE"]], "cudaq::spin_op::num_qubits (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op10num_qubitsEv"]], "cudaq::spin_op::num_terms (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9num_termsEv"]], "cudaq::spin_op::operator*= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_opmLEKd"], [2, "_CPPv4N5cudaq7spin_opmLERK7spin_op"]], "cudaq::spin_op::operator+= (c++ function)": [[2, "_CPPv4N5cudaq7spin_oppLERK7spin_op"]], "cudaq::spin_op::operator-= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opmIERK7spin_op"]], "cudaq::spin_op::operator= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opaSERK7spin_op"]], "cudaq::spin_op::operator== (c++ function)": [[2, "_CPPv4NK5cudaq7spin_opeqERK7spin_op"]], "cudaq::spin_op::random (c++ function)": [[2, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj"]], "cudaq::spin_op::spin_op (c++ function)": [[2, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opEv"]], "cudaq::spin_op::spin_op_term (c++ type)": [[2, "_CPPv4N5cudaq7spin_op12spin_op_termE"]], "cudaq::spin_op::to_matrix (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9to_matrixEv"]], "cudaq::spin_op::to_sparse_matrix (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op16to_sparse_matrixEv"]], "cudaq::spin_op::to_string (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9to_stringEb"]], "cudaq::spin_op::~spin_op (c++ function)": [[2, "_CPPv4N5cudaq7spin_opD0Ev"]], "cudaq::state (c++ class)": [[2, "_CPPv4N5cudaq5stateE"]], "cudaq::state::amplitude (c++ function)": [[2, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE"]], "cudaq::state::amplitudes (c++ function)": [[2, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE"]], "cudaq::state::dump (c++ function)": [[2, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE"], [2, "_CPPv4NK5cudaq5state4dumpEv"]], "cudaq::state::from_data (c++ function)": [[2, "_CPPv4N5cudaq5state9from_dataERK10state_data"]], "cudaq::state::get_num_qubits (c++ function)": [[2, "_CPPv4NK5cudaq5state14get_num_qubitsEv"]], "cudaq::state::get_num_tensors (c++ function)": [[2, "_CPPv4NK5cudaq5state15get_num_tensorsEv"]], "cudaq::state::get_precision (c++ function)": [[2, "_CPPv4NK5cudaq5state13get_precisionEv"]], "cudaq::state::get_tensor (c++ function)": [[2, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE"]], "cudaq::state::get_tensors (c++ function)": [[2, "_CPPv4NK5cudaq5state11get_tensorsEv"]], "cudaq::state::is_on_gpu (c++ function)": [[2, "_CPPv4NK5cudaq5state9is_on_gpuEv"]], "cudaq::state::operator() (c++ function)": [[2, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE"], [2, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE"]], "cudaq::state::operator= (c++ function)": [[2, "_CPPv4N5cudaq5stateaSERR5state"]], "cudaq::state::operator[] (c++ function)": [[2, "_CPPv4NK5cudaq5stateixENSt6size_tE"]], "cudaq::state::overlap (c++ function)": [[2, "_CPPv4N5cudaq5state7overlapERK5state"]], "cudaq::state::state (c++ function)": [[2, "_CPPv4N5cudaq5state5stateEP15SimulationState"], [2, "_CPPv4N5cudaq5state5stateERK5state"]], "cudaq::state::to_host (c++ function)": [[2, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE"]], "cudaq::state_data (c++ type)": [[2, "_CPPv4N5cudaq10state_dataE"]], "cudaq::tensor (c++ type)": [[2, "_CPPv4N5cudaq6tensorE"]], "cudaq::unset_noise (c++ function)": [[2, "_CPPv4N5cudaq11unset_noiseEv"]], "nvqir::mpssimulationstate (c++ class)": [[2, "_CPPv4N5nvqir18MPSSimulationStateE"]], "nvqir::tensornetsimulationstate (c++ class)": [[2, "_CPPv4N5nvqir24TensorNetSimulationStateE"]], "amplitudedampingchannel (class in cudaq)": [[3, "cudaq.AmplitudeDampingChannel"]], "asyncevolveresult (class in cudaq)": [[3, "cudaq.AsyncEvolveResult"]], "asyncobserveresult (class in cudaq)": [[3, "cudaq.AsyncObserveResult"]], "asyncsampleresult (class in cudaq)": [[3, "cudaq.AsyncSampleResult"]], "asyncstateresult (class in cudaq)": [[3, "cudaq.AsyncStateResult"]], "baseintegrator (class in cudaq.operator.integrator)": [[3, "cudaq.operator.integrator.BaseIntegrator"]], "bitflipchannel (class in cudaq)": [[3, "cudaq.BitFlipChannel"]], "cobyla (class in cudaq.optimizers)": [[3, "cudaq.optimizers.COBYLA"]], "centraldifference (class in cudaq.gradients)": [[3, "cudaq.gradients.CentralDifference"]], "complexmatrix (class in cudaq)": [[3, "cudaq.ComplexMatrix"]], "cudensitymatstate (class in cudaq.operator.cudm_state)": [[3, "cudaq.operator.cudm_state.CuDensityMatState"]], "depolarizationchannel (class in cudaq)": [[3, "cudaq.DepolarizationChannel"]], "elementaryoperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ElementaryOperator"]], "evolveresult (class in cudaq)": [[3, "cudaq.EvolveResult"]], "forwarddifference (class in cudaq.gradients)": [[3, "cudaq.gradients.ForwardDifference"]], "gradientdescent (class in cudaq.optimizers)": [[3, "cudaq.optimizers.GradientDescent"]], "kernel (in module cudaq)": [[3, "cudaq.Kernel"]], "krauschannel (class in cudaq)": [[3, "cudaq.KrausChannel"]], "krausoperator (class in cudaq)": [[3, "cudaq.KrausOperator"]], "lbfgs (class in cudaq.optimizers)": [[3, "cudaq.optimizers.LBFGS"]], "neldermead (class in cudaq.optimizers)": [[3, "cudaq.optimizers.NelderMead"]], "noisemodel (class in cudaq)": [[3, "cudaq.NoiseModel"]], "observeresult (class in cudaq)": [[3, "cudaq.ObserveResult"]], "operatorsum (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.OperatorSum"]], "optimizationresult (class in cudaq)": [[3, "cudaq.OptimizationResult"]], "parametershift (class in cudaq.gradients)": [[3, "cudaq.gradients.ParameterShift"]], "phaseflipchannel (class in cudaq)": [[3, "cudaq.PhaseFlipChannel"]], "productoperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ProductOperator"]], "pykernel (class in cudaq)": [[3, "cudaq.PyKernel"]], "pykerneldecorator (class in cudaq)": [[3, "cudaq.PyKernelDecorator"]], "quakevalue (class in cudaq)": [[3, "cudaq.QuakeValue"]], "rydberghamiltonian (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.RydbergHamiltonian"]], "sampleresult (class in cudaq)": [[3, "cudaq.SampleResult"]], "scalaroperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ScalarOperator"]], "schedule (class in cudaq)": [[3, "cudaq.Schedule"]], "simulationprecision (class in cudaq)": [[3, "cudaq.SimulationPrecision"]], "spinoperator (class in cudaq)": [[3, "cudaq.SpinOperator"]], "spinoperator (class in cudaq.operator.definitions)": [[3, "cudaq.operator.definitions.SpinOperator"]], "state (class in cudaq)": [[3, "cudaq.State"]], "target (class in cudaq)": [[3, "cudaq.Target"]], "tensor (class in cudaq)": [[3, "cudaq.Tensor"]], "__add__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__add__"]], "__call__() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.__call__"]], "__getitem__() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.__getitem__"]], "__getitem__() (cudaq.krauschannel method)": [[3, "cudaq.KrausChannel.__getitem__"]], "__getitem__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__getitem__"]], "__getitem__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__getitem__"]], "__init__() (cudaq.amplitudedampingchannel method)": [[3, "cudaq.AmplitudeDampingChannel.__init__"]], "__init__() (cudaq.bitflipchannel method)": [[3, "cudaq.BitFlipChannel.__init__"]], "__init__() (cudaq.depolarizationchannel method)": [[3, "cudaq.DepolarizationChannel.__init__"]], "__init__() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.__init__"]], "__init__() (cudaq.phaseflipchannel method)": [[3, "cudaq.PhaseFlipChannel.__init__"]], "__init__() (cudaq.operator.expressions.rydberghamiltonian method)": [[3, "cudaq.operator.expressions.RydbergHamiltonian.__init__"]], "__iter__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__iter__"]], "__len__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__len__"]], "__mul__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__mul__"]], "__neg__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__neg__"]], "__radd__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__radd__"]], "__rmul__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__rmul__"]], "__rsub__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__rsub__"]], "__str__() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.__str__"]], "__str__() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.__str__"]], "__sub__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__sub__"]], "add_all_qubit_channel() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.add_all_qubit_channel"]], "add_channel() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.add_channel"]], "all_gather() (in module cudaq.mpi)": [[3, "cudaq.mpi.all_gather"]], "amplitude() (cudaq.state method)": [[3, "cudaq.State.amplitude"]], "amplitudes() (cudaq.state method)": [[3, "cudaq.State.amplitudes"]], "append() (cudaq.krauschannel method)": [[3, "cudaq.KrausChannel.append"]], "argument_count (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.argument_count"]], "arguments (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.arguments"]], "broadcast() (in module cudaq.mpi)": [[3, "cudaq.mpi.broadcast"]], "clear() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.clear"]], "col_count (cudaq.krausoperator property)": [[3, "cudaq.KrausOperator.col_count"]], "compile() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.compile"]], "compute() (cudaq.gradients.centraldifference method)": [[3, "cudaq.gradients.CentralDifference.compute"]], "compute() (cudaq.gradients.forwarddifference method)": [[3, "cudaq.gradients.ForwardDifference.compute"]], "compute() (cudaq.gradients.parametershift method)": [[3, "cudaq.gradients.ParameterShift.compute"]], "count() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.count"]], "counts() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.counts"]], "cudaq": [[3, "module-cudaq"]], "define() (cudaq.operator.expressions.elementaryoperator class method)": [[3, "cudaq.operator.expressions.ElementaryOperator.define"]], "description (cudaq.target property)": [[3, "cudaq.Target.description"]], "deserialize() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.deserialize"]], "draw() (in module cudaq)": [[3, "cudaq.draw"]], "dump() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.dump"]], "dump() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.dump"]], "dump() (cudaq.state method)": [[3, "cudaq.State.dump"]], "evolve() (in module cudaq)": [[3, "cudaq.evolve"]], "evolve_async() (in module cudaq)": [[3, "cudaq.evolve_async"]], "expectation() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.expectation"]], "expectation() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.expectation"]], "expectation_values() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.expectation_values"]], "expectation_z() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.expectation_z"]], "expectation_z() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.expectation_z"]], "extract_c_function_pointer() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.extract_c_function_pointer"]], "final_expectation_values() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.final_expectation_values"]], "final_state() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.final_state"]], "finalize() (in module cudaq.mpi)": [[3, "cudaq.mpi.finalize"]], "from_data() (cudaq.state static method)": [[3, "cudaq.State.from_data"]], "from_json() (cudaq.pykerneldecorator static method)": [[3, "cudaq.PyKernelDecorator.from_json"]], "from_json() (cudaq.gradients.centraldifference static method)": [[3, "cudaq.gradients.CentralDifference.from_json"]], "from_json() (cudaq.gradients.forwarddifference static method)": [[3, "cudaq.gradients.ForwardDifference.from_json"]], "from_json() (cudaq.gradients.parametershift static method)": [[3, "cudaq.gradients.ParameterShift.from_json"]], "from_json() (cudaq.optimizers.cobyla static method)": [[3, "cudaq.optimizers.COBYLA.from_json"]], "from_json() (cudaq.optimizers.gradientdescent static method)": [[3, "cudaq.optimizers.GradientDescent.from_json"]], "from_json() (cudaq.optimizers.lbfgs static method)": [[3, "cudaq.optimizers.LBFGS.from_json"]], "from_json() (cudaq.optimizers.neldermead static method)": [[3, "cudaq.optimizers.NelderMead.from_json"]], "get() (cudaq.asyncevolveresult method)": [[3, "cudaq.AsyncEvolveResult.get"]], "get() (cudaq.asyncobserveresult method)": [[3, "cudaq.AsyncObserveResult.get"]], "get() (cudaq.asyncsampleresult method)": [[3, "cudaq.AsyncSampleResult.get"]], "get() (cudaq.asyncstateresult method)": [[3, "cudaq.AsyncStateResult.get"]], "gettensor() (cudaq.state method)": [[3, "cudaq.State.getTensor"]], "gettensors() (cudaq.state method)": [[3, "cudaq.State.getTensors"]], "get_channels() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.get_channels"]], "get_marginal_counts() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_marginal_counts"]], "get_precision() (cudaq.target method)": [[3, "cudaq.Target.get_precision"]], "get_register_counts() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_register_counts"]], "get_sequential_data() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_sequential_data"]], "get_spin() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.get_spin"]], "get_state() (in module cudaq)": [[3, "cudaq.get_state"]], "get_state_async() (in module cudaq)": [[3, "cudaq.get_state_async"]], "get_target() (in module cudaq)": [[3, "cudaq.get_target"]], "get_targets() (in module cudaq)": [[3, "cudaq.get_targets"]], "gradient (class in cudaq.gradients)": [[3, "cudaq.gradients.gradient"]], "has_target() (in module cudaq)": [[3, "cudaq.has_target"]], "initial_parameters (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.initial_parameters"]], "initial_parameters (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.initial_parameters"]], "initial_parameters (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.initial_parameters"]], "initial_parameters (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.initial_parameters"]], "initialize() (in module cudaq.mpi)": [[3, "cudaq.mpi.initialize"]], "initialize_cudaq() (in module cudaq)": [[3, "cudaq.initialize_cudaq"]], "intermediate_states() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.intermediate_states"]], "is_emulated() (cudaq.target method)": [[3, "cudaq.Target.is_emulated"]], "is_initialized() (in module cudaq.mpi)": [[3, "cudaq.mpi.is_initialized"]], "is_on_gpu() (cudaq.state method)": [[3, "cudaq.State.is_on_gpu"]], "is_remote() (cudaq.target method)": [[3, "cudaq.Target.is_remote"]], "items() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.items"]], "kernel() (in module cudaq)": [[3, "cudaq.kernel"]], "lower_bounds (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.lower_bounds"]], "lower_bounds (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.lower_bounds"]], "lower_bounds (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.lower_bounds"]], "lower_bounds (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.lower_bounds"]], "make_kernel() (in module cudaq)": [[3, "cudaq.make_kernel"]], "max_iterations (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.max_iterations"]], "max_iterations (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.max_iterations"]], "max_iterations (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.max_iterations"]], "max_iterations (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.max_iterations"]], "merge_kernel() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.merge_kernel"]], "minimal_eigenvalue() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.minimal_eigenvalue"]], "module": [[3, "module-cudaq"]], "most_probable() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.most_probable"]], "name (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.name"]], "name (cudaq.simulationprecision property)": [[3, "cudaq.SimulationPrecision.name"]], "name (cudaq.target property)": [[3, "cudaq.Target.name"]], "num_available_gpus() (in module cudaq)": [[3, "cudaq.num_available_gpus"]], "num_columns() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.num_columns"]], "num_qpus() (cudaq.target method)": [[3, "cudaq.Target.num_qpus"]], "num_qubits() (cudaq.state method)": [[3, "cudaq.State.num_qubits"]], "num_ranks() (in module cudaq.mpi)": [[3, "cudaq.mpi.num_ranks"]], "num_rows() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.num_rows"]], "observe() (in module cudaq)": [[3, "cudaq.observe"]], "observe_async() (in module cudaq)": [[3, "cudaq.observe_async"]], "optimize() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.optimize"]], "optimize() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.optimize"]], "optimize() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.optimize"]], "optimize() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.optimize"]], "optimizer (class in cudaq.optimizers)": [[3, "cudaq.optimizers.optimizer"]], "overlap() (cudaq.state method)": [[3, "cudaq.State.overlap"]], "platform (cudaq.target property)": [[3, "cudaq.Target.platform"]], "probability() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.probability"]], "qreg (in module cudaq)": [[3, "cudaq.qreg"]], "qubit (class in cudaq)": [[3, "cudaq.qubit"]], "qvector (class in cudaq)": [[3, "cudaq.qvector"]], "rank() (in module cudaq.mpi)": [[3, "cudaq.mpi.rank"]], "register_names (cudaq.sampleresult attribute)": [[3, "cudaq.SampleResult.register_names"]], "requires_gradients() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.requires_gradients"]], "requires_gradients() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.requires_gradients"]], "requires_gradients() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.requires_gradients"]], "requires_gradients() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.requires_gradients"]], "reset_target() (in module cudaq)": [[3, "cudaq.reset_target"]], "row_count (cudaq.krausoperator property)": [[3, "cudaq.KrausOperator.row_count"]], "sample() (in module cudaq)": [[3, "cudaq.sample"]], "sample() (in module cudaq.orca)": [[3, "cudaq.orca.sample"]], "sample_async() (in module cudaq)": [[3, "cudaq.sample_async"]], "serialize() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.serialize"]], "set_noise() (in module cudaq)": [[3, "cudaq.set_noise"]], "set_random_seed() (in module cudaq)": [[3, "cudaq.set_random_seed"]], "set_target() (in module cudaq)": [[3, "cudaq.set_target"]], "simulator (cudaq.target property)": [[3, "cudaq.Target.simulator"]], "slice() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.slice"]], "spin.i() (in module cudaq)": [[3, "cudaq.spin.i"]], "spin.x() (in module cudaq)": [[3, "cudaq.spin.x"]], "spin.y() (in module cudaq)": [[3, "cudaq.spin.y"]], "spin.z() (in module cudaq)": [[3, "cudaq.spin.z"]], "synthesize_callable_arguments() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.synthesize_callable_arguments"]], "to_cupy_array() (in module cudaq.operator.cudm_state)": [[3, "cudaq.operator.cudm_state.to_cupy_array"]], "to_json() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.to_json"]], "to_json() (cudaq.gradients.centraldifference method)": [[3, "cudaq.gradients.CentralDifference.to_json"]], "to_json() (cudaq.gradients.forwarddifference method)": [[3, "cudaq.gradients.ForwardDifference.to_json"]], "to_json() (cudaq.gradients.parametershift method)": [[3, "cudaq.gradients.ParameterShift.to_json"]], "to_json() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.to_json"]], "to_json() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.to_json"]], "to_json() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.to_json"]], "to_json() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.to_json"]], "to_numpy() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.to_numpy"]], "translate() (in module cudaq)": [[3, "cudaq.translate"]], "type_to_str() (cudaq.pykerneldecorator static method)": [[3, "cudaq.PyKernelDecorator.type_to_str"]], "unset_noise() (in module cudaq)": [[3, "cudaq.unset_noise"]], "upper_bounds (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.upper_bounds"]], "upper_bounds (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.upper_bounds"]], "upper_bounds (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.upper_bounds"]], "upper_bounds (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.upper_bounds"]], "values() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.values"]], "vqe() (in module cudaq)": [[3, "cudaq.vqe"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api/api", "api/default_ops", "api/languages/cpp_api", "api/languages/python_api", "applications/python/afqmc", "applications/python/bernstein_vazirani", "applications/python/cost_minimization", "applications/python/deutschs_algorithm", "applications/python/digitized_counterdiabatic_qaoa", "applications/python/divisive_clustering_coresets", "applications/python/hadamard_test", "applications/python/hybrid_qnns", "applications/python/krylov", "applications/python/logical_aim_sqale", "applications/python/qaoa", "applications/python/quantum_fourier_transform", "applications/python/quantum_teleportation", "applications/python/quantum_volume", "applications/python/readout_error_mitigation", "applications/python/shors", "applications/python/trotter", "applications/python/unitary_compilation_diffusion_models", "applications/python/vqe", "applications/python/vqe_advanced", "examples/python/executing_kernels", "examples/python/measuring_kernels", "examples/python/noisy_simulations", "examples/python/operators", "examples/python/optimizers_gradients", "examples/python/performance_optimizations", "examples/python/visualization", "index", "releases", "specification/cudaq", "specification/cudaq/algorithmic_primitives", "specification/cudaq/control_flow", "specification/cudaq/dynamic_kernels", "specification/cudaq/examples", "specification/cudaq/kernels", "specification/cudaq/machine_model", "specification/cudaq/namespace", "specification/cudaq/operations", "specification/cudaq/operators", "specification/cudaq/patterns", "specification/cudaq/platform", "specification/cudaq/synthesis", "specification/cudaq/types", "specification/index", "specification/quake-dialect", "using/applications", "using/backends/backends", "using/backends/dynamics", "using/backends/hardware", "using/backends/nvqc", "using/backends/platform", "using/backends/simulators", "using/basics/basics", "using/basics/build_kernel", "using/basics/kernel_intro", "using/basics/run_kernel", "using/basics/troubleshooting", "using/examples/building_kernels", "using/examples/examples", "using/examples/expectation_values", "using/examples/hardware_providers", "using/examples/introduction", "using/examples/multi_control", "using/examples/multi_gpu_workflows", "using/examples/quantum_operations", "using/extending/cudaq_ir", "using/extending/extending", "using/extending/mlir_pass", "using/extending/nvqir_simulator", "using/install/data_center_install", "using/install/install", "using/install/local_installation", "using/integration/cmake_app", "using/integration/cuda_gpu", "using/integration/integration", "using/integration/libraries", "using/quick_start", "versions"], "filenames": ["api/api.rst", "api/default_ops.rst", "api/languages/cpp_api.rst", "api/languages/python_api.rst", "applications/python/afqmc.ipynb", "applications/python/bernstein_vazirani.ipynb", "applications/python/cost_minimization.ipynb", "applications/python/deutschs_algorithm.ipynb", "applications/python/digitized_counterdiabatic_qaoa.ipynb", "applications/python/divisive_clustering_coresets.ipynb", "applications/python/hadamard_test.ipynb", "applications/python/hybrid_qnns.ipynb", "applications/python/krylov.ipynb", "applications/python/logical_aim_sqale.ipynb", "applications/python/qaoa.ipynb", "applications/python/quantum_fourier_transform.ipynb", "applications/python/quantum_teleportation.ipynb", "applications/python/quantum_volume.ipynb", "applications/python/readout_error_mitigation.ipynb", "applications/python/shors.ipynb", "applications/python/trotter.ipynb", "applications/python/unitary_compilation_diffusion_models.ipynb", "applications/python/vqe.ipynb", "applications/python/vqe_advanced.ipynb", "examples/python/executing_kernels.ipynb", "examples/python/measuring_kernels.ipynb", "examples/python/noisy_simulations.ipynb", "examples/python/operators.ipynb", "examples/python/optimizers_gradients.ipynb", "examples/python/performance_optimizations.ipynb", "examples/python/visualization.ipynb", "index.rst", "releases.rst", "specification/cudaq.rst", "specification/cudaq/algorithmic_primitives.rst", "specification/cudaq/control_flow.rst", "specification/cudaq/dynamic_kernels.rst", "specification/cudaq/examples.rst", "specification/cudaq/kernels.rst", "specification/cudaq/machine_model.rst", "specification/cudaq/namespace.rst", "specification/cudaq/operations.rst", "specification/cudaq/operators.rst", "specification/cudaq/patterns.rst", "specification/cudaq/platform.rst", "specification/cudaq/synthesis.rst", "specification/cudaq/types.rst", "specification/index.rst", "specification/quake-dialect.md", "using/applications.rst", "using/backends/backends.rst", "using/backends/dynamics.rst", "using/backends/hardware.rst", "using/backends/nvqc.rst", "using/backends/platform.rst", "using/backends/simulators.rst", "using/basics/basics.rst", "using/basics/build_kernel.rst", "using/basics/kernel_intro.rst", "using/basics/run_kernel.rst", "using/basics/troubleshooting.rst", "using/examples/building_kernels.rst", "using/examples/examples.rst", "using/examples/expectation_values.rst", "using/examples/hardware_providers.rst", "using/examples/introduction.rst", "using/examples/multi_control.rst", "using/examples/multi_gpu_workflows.rst", "using/examples/quantum_operations.rst", "using/extending/cudaq_ir.rst", "using/extending/extending.rst", "using/extending/mlir_pass.rst", "using/extending/nvqir_simulator.rst", "using/install/data_center_install.rst", "using/install/install.rst", "using/install/local_installation.rst", "using/integration/cmake_app.rst", "using/integration/cuda_gpu.rst", "using/integration/integration.rst", "using/integration/libraries.rst", "using/quick_start.rst", "versions.rst"], "titles": ["Code documentation", "Quantum Operations", "CUDA-Q C++ API", "CUDA-Q Python API", "Quantum Enhanced Auxiliary Field Quantum Monte Carlo", "Bernstein-Vazirani Algorithm", "Cost Minimization", "Deutsch\u2019s Algorithm", "Molecular docking via DC-QAOA", "Divisive Clustering With Coresets Using CUDA-Q", "Using the Hadamard Test to Determine Quantum Krylov Subspace Decomposition Matrix Elements", "Hybrid Quantum Neural Networks", "Multi-reference Quantum Krylov Algorithm - \\(H_2\\) Molecule", "Anderson Impurity Model ground state solver on Infleqtion\u2019s Sqale", "Max-Cut with QAOA", "Quantum Fourier Transform", "Quantum Teleporation", "Quantum Volume", "Readout Error Mitigation", "Factoring Integers With Shor\u2019s Algorithm", "Computing Magnetization With The Suzuki-Trotter Approximation", "Compiling Unitaries Using Diffusion Models", "Variational Quantum Eigensolver", "VQE with gradients, active spaces, and gate fusion", "Executing Quantum Circuits", "Measurements", "Noisy Simulation", "Operators", "Optimizers and Gradients", "Optimizing Performance", "Visualization", "CUDA-Q", "CUDA-Q Releases", "Language Specification", "12. Quantum Algorithmic Primitives", "8. Control Flow", "9. Just-in-Time Kernel Creation", "13. Example Programs", "6. Quantum Kernels", "1. Machine Model", "2. Namespace and Standard", "5. Quantum Intrinsic Operations", "4. Quantum Operators", "10. Common Quantum Programming Patterns", "11. Quantum Platform", "7. Sub-circuit Synthesis", "3. Quantum Types", "Specifications", "Quake Dialect", "CUDA-Q Applications", "CUDA-Q Backends", "CUDA-Q Dynamics", "CUDA-Q Hardware Backends", "NVIDIA Quantum Cloud", "Multi-Processor Platforms", "CUDA-Q Simulation Backends", "CUDA-Q Basics", "Building your first CUDA-Q Program", "What is a CUDA-Q kernel?", "Running your first CUDA-Q Program", "Troubleshooting", "Building Kernels", "CUDA-Q by Example", "Computing Expectation Values", "Using Quantum Hardware Providers", "Introduction", "Multi-control Synthesis", "Multi-GPU Workflows", "Quantum Computing 101", "Working with the CUDA-Q IR", "Extending CUDA-Q", "Create your own CUDA-Q Compiler Pass", "Extending CUDA-Q with a new Simulator", "Installation from Source", "Installation Guide", "Local Installation", "CUDA-Q and CMake", "Using CUDA and CUDA-Q in a Project", "Integration with other Software Tools", "Integrating with Third-Party Libraries", "Quick Start", "CUDA-Q Versions"], "terms": {"c": [0, 1, 3, 4, 9, 12, 14, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 75, 76, 77, 80, 81], "python": [0, 1, 2, 9, 23, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72, 79, 80, 81], "quantum": [0, 3, 8, 14, 18, 20, 21, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 45, 47, 48, 50, 51, 52, 55, 57, 58, 59, 61, 62, 63, 65, 67, 69, 72, 73, 75, 76, 77, 79, 80, 81], "oper": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 43, 45, 46, 47, 48, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73, 75, 80, 81], "cuda": [1, 6, 7, 10, 11, 12, 14, 15, 17, 20, 24, 26, 29, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 60, 61, 63, 64, 65, 66, 67, 68, 78], "q": [1, 6, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20, 24, 25, 26, 27, 29, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 60, 61, 63, 64, 65, 66, 67, 68, 78], "provid": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 26, 27, 28, 31, 33, 34, 36, 39, 41, 42, 44, 45, 46, 48, 51, 52, 53, 54, 55, 58, 62, 63, 65, 66, 69, 71, 72, 73, 75, 76, 79], "default": [1, 2, 3, 20, 23, 24, 25, 30, 34, 38, 41, 46, 51, 52, 53, 54, 59, 64, 65, 69, 72, 73, 75, 77, 79, 80], "set": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 17, 18, 21, 23, 24, 29, 30, 31, 34, 36, 38, 41, 48, 51, 53, 54, 55, 57, 59, 64, 73, 75, 79, 80], "These": [1, 2, 8, 12, 13, 14, 17, 19, 21, 23, 26, 28, 33, 38, 41, 45, 46, 48, 50, 53, 54, 55, 69, 73, 75], "can": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81], "us": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 44, 45, 48, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 76, 79, 80, 81], "kernel": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 57, 59, 62, 63, 64, 65, 66, 67, 68, 69, 77, 79, 80, 81], "librari": [1, 2, 8, 11, 13, 19, 22, 30, 31, 32, 33, 37, 38, 40, 45, 46, 51, 55, 63, 69, 71, 72, 75, 77, 78, 81], "sinc": [1, 2, 4, 5, 7, 13, 14, 15, 16, 18, 19, 21, 24, 46, 50, 54, 55, 58, 63, 64, 67, 69, 75, 76, 79], "intrins": [1, 38, 45, 46, 48], "nativ": [1, 33, 39, 41, 42, 76], "support": [1, 2, 3, 4, 18, 24, 30, 31, 32, 33, 38, 39, 41, 43, 46, 51, 52, 58, 59, 64, 65, 68, 71, 79, 80, 81], "specif": [1, 2, 3, 9, 12, 21, 25, 31, 34, 38, 40, 41, 42, 43, 46, 48, 51, 52, 53, 54, 55, 58, 59, 61, 65, 68, 69, 72, 73, 75, 77, 79], "target": [1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 23, 24, 26, 29, 30, 32, 34, 41, 44, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 68, 69, 71, 72, 73, 75, 80, 81], "depend": [1, 3, 7, 9, 12, 14, 16, 19, 20, 21, 25, 29, 31, 34, 39, 48, 53, 54, 55, 79, 80], "backend": [1, 2, 5, 6, 8, 9, 10, 13, 17, 23, 28, 29, 31, 32, 34, 51, 54, 59, 64, 67, 69, 72, 73, 75, 79, 80, 81], "architectur": [1, 2, 11, 31, 33, 39, 48, 52, 54, 64, 67, 68, 72, 73, 75, 80], "nvq": [1, 32, 34, 37, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 72, 75, 76, 77, 79, 80, 81], "compil": [1, 2, 3, 9, 13, 31, 32, 33, 34, 37, 38, 39, 43, 45, 46, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 72, 73, 75, 76, 77, 80, 81], "automat": [1, 3, 13, 23, 39, 52, 54, 55, 64, 73, 75, 79], "decompos": [1, 4, 17, 21], "appropri": [1, 2, 7, 8, 9, 15, 16, 33, 41, 54, 61, 73, 75], "The": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 59, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 77, 79, 80, 81], "section": [1, 7, 8, 10, 13, 15, 19, 21, 23, 27, 29, 36, 54, 55, 61, 73, 75, 79, 80], "list": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 27, 28, 30, 32, 34, 38, 50, 51, 52, 53, 55, 61, 64, 67, 68, 73, 75, 79, 80, 81], "implement": [1, 2, 3, 4, 7, 10, 12, 14, 15, 16, 17, 19, 20, 21, 26, 33, 34, 39, 40, 41, 43, 45, 46, 48, 52, 55, 64, 65, 69, 71, 72, 73, 75, 79], "transform": [1, 4, 7, 11, 12, 21, 23, 31, 33, 37, 69, 71], "state": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 30, 31, 32, 34, 38, 39, 41, 46, 48, 51, 52, 53, 57, 59, 61, 63, 64, 65, 67, 72, 73, 79, 80, 81], "ar": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 77, 79, 80, 81], "templat": [1, 2, 22, 34, 36, 37, 38, 41, 45, 46, 65, 69, 71, 72, 77, 79], "argument": [1, 2, 3, 7, 9, 14, 16, 18, 24, 25, 30, 34, 36, 38, 45, 46, 51, 52, 57, 59, 63, 66, 67, 69, 72, 75, 79], "allow": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 21, 23, 24, 28, 32, 34, 36, 38, 39, 51, 55, 57, 58, 59, 66, 67, 68, 69, 71, 75, 76, 81], "invok": [1, 2, 3, 34, 36, 38, 43, 52, 55, 65, 69, 79], "version": [1, 3, 4, 5, 11, 13, 14, 15, 19, 21, 24, 31, 32, 34, 43, 50, 51, 52, 53, 54, 55, 59, 69, 72, 73, 75, 76, 79, 80], "see": [1, 2, 3, 5, 6, 7, 8, 9, 15, 16, 17, 19, 21, 23, 29, 30, 32, 34, 36, 38, 46, 48, 50, 51, 52, 53, 54, 55, 57, 59, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81], "addition": [1, 19, 32, 52, 75, 81], "overload": [1, 2, 3, 34, 41, 42, 46, 48], "broadcast": [1, 2, 3, 12, 14, 41], "singl": [1, 2, 3, 4, 5, 9, 12, 13, 15, 16, 17, 20, 22, 23, 29, 30, 34, 37, 38, 39, 41, 46, 51, 52, 53, 54, 59, 61, 63, 64, 65, 67, 68, 69, 79], "across": [1, 2, 3, 7, 10, 21, 23, 32, 41, 53, 54, 55, 64, 73, 75, 81], "vector": [1, 2, 3, 4, 6, 9, 10, 11, 12, 16, 17, 21, 30, 34, 36, 37, 38, 41, 44, 46, 48, 52, 53, 54, 61, 64, 65, 66, 67, 72, 73], "For": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 21, 27, 30, 32, 34, 36, 41, 48, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 66, 67, 68, 72, 73, 75, 77, 79, 80, 81], "exampl": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 41, 47, 48, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 81], "cudaq": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 35, 36, 37, 38, 40, 43, 44, 45, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80], "qvector": [1, 2, 3, 5, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 34, 37, 38, 41, 45, 53, 54, 57, 59, 61, 63, 64, 66, 67, 68, 69, 79, 80], "flip": [1, 2, 3, 6, 13, 17, 18, 26, 68], "each": [1, 2, 3, 5, 7, 8, 9, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 28, 30, 32, 34, 36, 39, 44, 48, 51, 52, 53, 54, 55, 59, 64, 67, 68, 69, 73, 75, 79, 80, 81], "thi": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81], "pauli": [1, 2, 3, 8, 9, 10, 12, 14, 16, 20, 24, 34, 42, 51, 59, 68], "matrix": [1, 2, 3, 4, 13, 14, 16, 17, 20, 21, 24, 26, 30, 31, 32, 50, 51, 53, 61, 68, 72, 81], "It": [1, 2, 4, 7, 9, 15, 16, 17, 18, 20, 23, 31, 32, 34, 41, 46, 48, 51, 54, 59, 61, 64, 68, 69, 72, 75, 77, 80, 81], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "also": [1, 2, 3, 7, 9, 13, 15, 18, 19, 21, 22, 24, 26, 28, 30, 32, 34, 38, 42, 51, 52, 53, 54, 55, 57, 58, 59, 61, 64, 67, 68, 69, 71, 72, 73, 75, 77, 80, 81], "known": [1, 2, 19, 21, 23, 38, 65, 69], "NOT": [1, 34, 41, 68], "gate": [1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 30, 31, 32, 41, 45, 46, 48, 52, 55, 57, 61, 65, 66, 72, 81], "appli": [1, 2, 3, 5, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26, 27, 34, 37, 38, 41, 45, 48, 53, 54, 57, 61, 64, 65, 66, 68, 69, 72], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 37, 38, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 79, 80, 81], "1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 79, 80, 81], "rotat": [1, 3, 9, 10, 13, 14, 15, 18, 19, 26, 30, 41, 42, 57, 63, 72], "\u03c0": 1, "about": [1, 2, 3, 7, 9, 18, 19, 20, 21, 22, 30, 32, 34, 48, 51, 52, 53, 54, 55, 58, 59, 64, 67, 73, 75, 77, 78, 79, 80, 81], "axi": [1, 11, 21, 22, 30], "enabl": [1, 2, 3, 5, 9, 13, 15, 24, 33, 34, 36, 38, 39, 41, 43, 44, 45, 46, 50, 51, 52, 54, 55, 58, 59, 63, 64, 67, 69, 72, 73, 75, 79, 80], "one": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 30, 32, 34, 36, 37, 39, 41, 44, 48, 51, 52, 53, 54, 55, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 75, 79, 80, 81], "superposit": [1, 5, 7, 14, 30, 34, 37, 46, 54, 57, 59, 68], "comput": [1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 44, 46, 48, 53, 54, 55, 58, 59, 62, 67, 72, 73, 77, 79, 80, 81], "basi": [1, 2, 3, 4, 10, 12, 13, 15, 18, 21, 23, 24, 25, 26, 46, 53, 54, 68], "sqrt": [1, 3, 5, 7, 10, 12, 13, 15, 16, 18, 26, 30, 37, 51, 64, 68, 80], "2": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 79, 80, 81], "an": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 80, 81], "arbitrari": [1, 2, 3, 21, 32, 51, 52, 66, 79, 81], "\u03bb": 1, "exp": [1, 2, 12, 19, 37, 42, 51], "i\u03bb": 1, "math": [1, 4, 7, 19, 53], "pi": [1, 8, 9, 11, 14, 15, 17, 19, 20, 22, 23, 28, 30, 37, 38, 43, 45, 51, 52, 53, 64], "std": [1, 2, 3, 34, 36, 37, 38, 41, 42, 44, 45, 46, 53, 54, 59, 64, 65, 67, 71, 72, 77, 79], "number": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24, 27, 28, 30, 34, 37, 42, 44, 46, 48, 51, 52, 53, 54, 55, 57, 59, 63, 64, 65, 66, 67, 68, 69, 72, 75, 80], "\u03b8": 1, "co": [1, 15, 20, 30, 51], "isin": 1, "sin": [1, 15, 30], "its": [1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 26, 32, 33, 34, 44, 46, 48, 49, 53, 54, 55, 59, 61, 64, 65, 68, 69, 72, 73, 75, 79, 80, 81], "4": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 52, 53, 54, 55, 61, 64, 67, 69, 73, 75, 79, 81], "i\u03c0": 1, "two": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 28, 30, 39, 48, 51, 52, 54, 55, 59, 61, 63, 64, 66, 68, 75, 79], "qubit_1": [1, 7, 14, 61], "qubit_2": [1, 16], "univers": [1, 2, 9, 16, 21, 53, 68], "three": [1, 10, 18, 19, 21, 23, 39, 52, 53, 63], "paramet": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14, 17, 19, 21, 22, 24, 34, 38, 41, 46, 51, 52, 53, 55, 57, 61, 63, 64, 65, 67, 72, 73], "euler": [1, 51], "angl": [1, 2, 3, 6, 10, 13, 15, 18, 19, 28, 30, 37, 38, 41, 54, 57, 63, 64], "theta": [1, 8, 9, 10, 11, 14, 15, 22, 23, 26, 28, 30, 34, 36, 37, 53, 54, 61, 63], "phi": [1, 3, 4, 10, 34, 36, 52, 64, 69], "\u03c6": 1, "lambda": [1, 2, 8, 9, 12, 13, 14, 18, 19, 20, 23, 28, 34, 37, 38, 43, 51, 64, 66, 67, 69], "i\u03c6": 1, "np": [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 37, 38, 43, 45, 51, 52, 54, 55, 61, 64, 67, 73], "m_pi": [1, 37, 45, 64], "m_pi_2": [1, 37, 38, 53], "adj": [1, 41, 61], "method": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 27, 28, 34, 36, 41, 46, 51, 52, 54, 55, 59, 61, 64, 65], "ani": [1, 2, 3, 9, 12, 14, 19, 20, 21, 23, 24, 26, 28, 30, 34, 38, 40, 41, 43, 45, 46, 51, 52, 53, 55, 57, 59, 60, 61, 64, 65, 66, 72, 73, 75, 79, 80], "alloc": [1, 2, 3, 6, 14, 21, 34, 36, 37, 38, 39, 46, 54, 55, 57, 59, 65, 66, 72], "now": [1, 4, 5, 7, 9, 13, 14, 15, 16, 19, 21, 22, 23, 32, 48, 52, 59, 64, 65, 66, 67, 75, 80, 81], "again": [1, 5, 23, 24, 34, 48, 75, 77], "initi": [1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 19, 20, 22, 23, 28, 34, 51, 52, 54, 61, 64, 67, 68, 73, 75], "ctrl": [1, 2, 5, 7, 14, 17, 19, 24, 28, 30, 34, 36, 37, 41, 53, 54, 57, 61, 63, 64, 65, 66, 68, 69, 75, 80], "condit": [1, 2, 15, 16, 21, 26, 34, 35, 36, 38, 39, 55, 58, 68, 69], "more": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 18, 19, 21, 23, 27, 30, 32, 36, 39, 41, 42, 48, 52, 53, 54, 55, 58, 59, 61, 64, 67, 68, 73, 75, 77, 79, 80, 81], "wikipedia": [1, 51], "entri": [1, 3, 12, 34, 38, 54, 61, 64, 69, 75, 79], "ctrl_1": 1, "ctrl_2": 1, "00": [1, 4, 9, 13, 16, 24, 26, 28, 59, 67, 68, 79, 80], "11": [1, 3, 4, 9, 11, 13, 16, 17, 18, 20, 21, 23, 24, 26, 28, 30, 34, 59, 67, 68, 69, 73, 75, 79, 80], "onli": [1, 2, 3, 5, 7, 9, 16, 18, 19, 21, 23, 24, 25, 30, 32, 34, 38, 39, 43, 46, 48, 51, 52, 53, 54, 58, 64, 68, 69, 71, 73, 75, 79, 80, 81], "both": [1, 3, 4, 5, 7, 11, 13, 19, 39, 48, 52, 54, 55, 68, 73, 75, 77], "000": [1, 15, 16, 18, 19, 53, 59], "111": [1, 9, 15, 16, 18, 19], "follow": [1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 30, 32, 34, 36, 38, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "common": [1, 3, 9, 10, 18, 19, 21, 22, 23, 34, 38, 41, 42, 69, 73], "convent": [1, 8, 11, 14, 24], "all": [1, 2, 3, 9, 13, 16, 17, 18, 19, 20, 21, 23, 24, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 48, 52, 53, 54, 55, 59, 61, 63, 64, 67, 68, 69, 73, 75, 76, 77, 79, 80, 81], "howev": [1, 4, 9, 13, 15, 16, 18, 21, 23, 24, 32, 48, 51, 52, 54, 79, 81], "behavior": [1, 2, 3, 9, 23, 32, 55, 81], "chang": [1, 2, 5, 9, 13, 15, 19, 29, 32, 34, 38, 51, 59, 75, 80, 81], "instead": [1, 2, 4, 9, 26, 40, 43, 52, 54, 55, 59, 73, 75, 79], "when": [1, 2, 3, 9, 12, 13, 14, 18, 19, 21, 32, 34, 39, 46, 48, 53, 54, 55, 59, 63, 64, 65, 69, 72, 73, 75, 79, 80, 81], "negat": [1, 2, 3, 41, 45, 46], "polar": [1, 41, 45, 55], "syntax": [1, 9, 32, 33, 38, 39, 41, 43, 52, 61, 64, 77, 81], "preced": [1, 41, 52], "01": [1, 4, 7, 13, 16, 21, 26, 28, 68], "10": [1, 4, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 23, 26, 28, 30, 34, 37, 38, 55, 59, 61, 64, 65, 67, 68, 69, 73, 75, 77], "notat": [1, 16, 68], "context": [1, 2, 11, 39, 54, 55, 72], "valid": [1, 2, 3, 31, 38, 52, 55, 61, 64, 73, 75, 79], "either": [1, 7, 11, 14, 19, 39, 52, 54, 55, 64, 68, 73, 75, 80], "similarli": [1, 7, 23, 54, 60, 68], "condition": 1, "respect": [1, 2, 3, 4, 8, 13, 14, 19, 23, 28, 34, 51, 52, 54, 59, 63, 67, 68, 73, 75, 80], "e": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 27, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 48, 51, 52, 53, 54, 55, 64, 69, 72, 73, 75, 79, 80], "project": [1, 55, 72, 73, 75, 76, 79], "onto": [1, 68], "eigenvector": [1, 2, 10, 12], "non": [1, 2, 3, 8, 10, 12, 18, 19, 32, 34, 38, 39, 46, 54, 55, 59, 63, 65, 81], "linear": [1, 5, 9, 11, 12, 15, 22, 26, 53, 59, 64, 68], "avail": [1, 2, 3, 8, 9, 10, 21, 23, 28, 31, 32, 33, 34, 38, 39, 41, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 69, 73, 75, 80, 81], "first": [1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 28, 30, 31, 34, 46, 52, 53, 54, 55, 56, 61, 63, 64, 65, 66, 69, 75, 80], "api": [1, 13, 24, 27, 30, 31, 32, 34, 36, 40, 41, 44, 46, 51, 52, 53, 54, 55, 59, 61, 64, 65, 72, 73, 75, 77, 79, 81], "regist": [1, 2, 3, 5, 10, 13, 15, 19, 22, 25, 34, 37, 39, 46, 52, 54, 61, 64, 65, 66, 69, 72], "outsid": [1, 9, 32, 75, 79, 81], "Then": [1, 7, 18, 21, 25, 52, 64, 71, 72], "within": [1, 2, 3, 13, 22, 32, 34, 38, 40, 42, 46, 52, 54, 55, 58, 59, 61, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 81], "like": [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 21, 22, 23, 24, 28, 29, 32, 34, 38, 46, 52, 54, 59, 61, 64, 65, 67, 68, 69, 73, 75, 76, 79, 80, 81], "built": [1, 2, 4, 6, 8, 9, 12, 15, 23, 24, 26, 32, 52, 55, 58, 59, 73, 79, 80, 81], "abov": [1, 2, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 24, 34, 36, 41, 51, 52, 53, 54, 55, 59, 61, 63, 64, 66, 68, 69, 72, 73, 75, 77, 79, 80], "level": [1, 2, 3, 13, 23, 29, 32, 33, 34, 39, 41, 51, 52, 53, 54, 55, 69, 72, 76, 81], "register_oper": [1, 13, 61], "accept": [1, 2, 3, 23, 24, 57, 73, 75, 80], "identifi": [1, 2, 3, 4, 13, 14, 19, 21, 73, 75], "string": [1, 2, 3, 5, 19, 27, 30, 34, 36, 37, 44, 51, 55, 59, 65, 69, 75, 79], "numpi": [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 37, 51, 61, 64, 67, 73], "arrai": [1, 2, 3, 4, 7, 10, 12, 13, 15, 16, 17, 18, 21, 24, 26, 28, 46, 48, 51, 52, 54, 55, 61, 64, 65, 67, 69], "complex": [1, 2, 3, 4, 7, 8, 12, 16, 20, 26, 42, 48, 51, 54, 59, 61, 67, 68, 79], "A": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 28, 29, 30, 34, 37, 38, 41, 48, 51, 52, 59, 61, 64, 66, 67, 68, 71, 72, 73, 75], "1d": [1, 2], "interpret": [1, 8, 58, 64, 73], "row": [1, 2, 3, 30, 61], "major": [1, 73], "import": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 37, 42, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 69, 73, 79, 80], "custom_h": 1, "custom_x": [1, 61], "def": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 34, 37, 38, 43, 45, 51, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 68, 75, 80], "bell": [1, 13, 16, 34, 79], "sampl": [1, 2, 3, 5, 7, 8, 9, 13, 14, 17, 18, 19, 21, 26, 36, 52, 53, 54, 55, 56, 58, 61, 64, 65, 66, 67, 68, 72, 75, 79, 80], "dump": [1, 2, 3, 26, 34, 37, 53, 54, 59, 64, 65, 67, 79, 80], "macro": [1, 72], "cudaq_register_oper": 1, "uniqu": [1, 2, 3, 9, 14, 18, 21, 34, 39, 41, 46, 54, 77], "name": [1, 2, 3, 9, 13, 14, 16, 19, 34, 36, 41, 44, 50, 51, 52, 53, 54, 55, 63, 67, 68, 69, 72, 73, 75, 76, 79, 80], "represent": [1, 2, 3, 15, 16, 21, 24, 30, 34, 38, 48, 51, 55, 69, 71, 72], "includ": [1, 2, 3, 4, 12, 13, 14, 17, 23, 32, 34, 37, 46, 51, 53, 57, 58, 59, 61, 63, 64, 65, 66, 69, 71, 72, 73, 75, 77, 79, 80, 81], "m_sqrt1_2": 1, "__qpu__": [1, 2, 34, 37, 38, 45, 53, 54, 57, 59, 63, 64, 65, 66, 69, 79, 80], "void": [1, 2, 3, 34, 36, 37, 38, 41, 42, 44, 45, 46, 57, 59, 64, 66, 69, 71, 72, 77, 79, 80], "bell_pair": [1, 2, 3], "r": [1, 4, 13, 18, 19, 41, 46, 52, 53, 54, 55, 63, 64, 69, 75], "int": [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 26, 34, 37, 38, 45, 46, 51, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 69, 72, 73, 77, 79, 80], "main": [1, 4, 5, 9, 19, 21, 32, 34, 37, 48, 53, 59, 63, 64, 65, 66, 69, 73, 75, 77, 79, 80, 81], "auto": [1, 2, 34, 36, 37, 38, 42, 45, 46, 53, 54, 55, 57, 59, 63, 64, 65, 66, 69, 71, 79, 80], "count": [1, 2, 3, 5, 8, 9, 10, 12, 13, 14, 18, 19, 24, 34, 36, 37, 46, 52, 53, 54, 55, 59, 64, 65, 66, 67, 69, 72], "bit": [1, 2, 3, 4, 5, 7, 13, 16, 17, 18, 19, 24, 26, 34, 37, 39, 46, 48, 54, 55, 64, 65, 66, 68, 72], "printf": [1, 34, 37, 46, 54, 63, 65, 66, 73], "n": [1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 34, 36, 37, 38, 41, 42, 45, 53, 54, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 77, 80], "data": [1, 2, 8, 11, 12, 13, 14, 15, 22, 31, 34, 38, 40, 42, 48, 54, 55, 63, 65, 66, 69, 72, 74, 75, 77, 79], "multi": [1, 4, 15, 16, 24, 30, 31, 32, 33, 36, 39, 41, 45, 50, 51, 52, 53, 59, 61, 62, 63, 68, 72, 73, 79, 80, 81], "msb": 1, "order": [1, 2, 3, 4, 9, 12, 13, 14, 16, 30, 34, 42, 51, 52, 55, 59, 63], "big": [1, 8, 17, 24], "endian": [1, 17, 24], "show": [1, 8, 9, 11, 13, 14, 15, 16, 18, 21, 22, 23, 30, 51, 54, 61, 63, 64, 73, 75], "differ": [1, 2, 3, 7, 9, 10, 11, 12, 13, 15, 16, 18, 19, 23, 24, 28, 30, 48, 52, 53, 54, 58, 59, 64, 67, 73, 75, 77, 80], "test": [1, 9, 11, 12, 17, 18, 19, 23, 31, 36, 67, 73, 75], "cnot": [1, 5, 9, 41, 57, 61, 68, 79], "my_cnot": 1, "print": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 34, 37, 46, 51, 53, 54, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 79, 80], "500": [1, 23, 68, 80], "exact": [1, 9, 10, 13, 17, 21, 55], "random": [1, 2, 3, 4, 5, 8, 9, 13, 14, 16, 17, 18, 19, 21, 22, 23, 28, 30, 54, 55, 67], "construct": [1, 2, 8, 9, 10, 12, 17, 18, 20, 23, 28, 30, 31, 32, 34, 35, 36, 38, 46, 48, 51, 54, 57, 58, 59, 61, 62, 65, 69, 81], "second": [1, 2, 3, 4, 7, 8, 9, 12, 14, 18, 20, 46, 51, 53, 55, 59, 61, 64], "1j": [1, 12, 13], "xy": [1, 30], "kron": [1, 18], "my_xi": 1, "custom_xy_test": 1, "undo": 1, "prior": [1, 55, 64, 68, 73, 75, 80], "1000": [1, 3, 9, 11, 13, 17, 18, 21, 24, 26, 34, 52, 59, 65, 67, 68, 80], "mycnot": 1, "myxi": 1, "hardwar": [1, 9, 15, 19, 21, 24, 31, 32, 50, 55, 59, 62, 79, 81], "synthes": [1, 3, 21, 41, 45, 69], "current": [1, 2, 3, 9, 30, 32, 34, 44, 52, 54, 55, 72, 75, 79, 81], "orca": [1, 2, 32, 50, 81], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 32, 34, 36, 39, 42, 46, 48, 51, 52, 54, 55, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 79, 81], "doe": [1, 2, 3, 7, 9, 15, 16, 21, 30, 32, 34, 38, 46, 51, 53, 54, 73, 75, 77, 79, 80, 81], "increment": [1, 2, 67], "qumod": 1, "up": [1, 2, 3, 7, 9, 14, 15, 17, 21, 30, 36, 42, 51, 52, 55, 58, 63, 64, 67, 69, 72, 75], "maximum": [1, 3, 8, 9, 21, 55], "valu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 28, 30, 31, 34, 36, 38, 42, 46, 48, 51, 53, 54, 55, 59, 62, 64, 67, 68, 69, 73, 79, 80], "repres": [1, 2, 3, 4, 7, 8, 9, 14, 15, 16, 21, 26, 30, 34, 48, 51, 52, 55, 64, 68, 69], "If": [1, 2, 3, 5, 7, 9, 11, 15, 16, 17, 18, 19, 20, 24, 25, 30, 34, 48, 51, 52, 53, 55, 59, 64, 67, 68, 73, 75, 79, 80], "where": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 29, 30, 33, 39, 41, 42, 46, 48, 51, 52, 55, 59, 61, 64, 67, 68, 72, 73, 75, 77, 80], "alreadi": [1, 2, 3, 13, 19, 30, 73, 75, 80], "ha": [1, 2, 3, 4, 5, 7, 9, 13, 14, 16, 17, 18, 19, 21, 24, 26, 28, 34, 41, 48, 52, 53, 55, 58, 59, 64, 67, 68, 73, 75, 79], "effect": [1, 13, 21, 48, 55, 59, 67, 68, 80], "u": [1, 2, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 21, 22, 24, 30, 37, 38, 42, 43, 51, 52, 57, 58, 59, 64, 66, 67, 68, 69], "rangl": [1, 4, 15, 18, 19, 21, 34, 80], "3": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 59, 61, 64, 66, 67, 69, 72, 73, 75, 76, 80, 81], "cdot": [1, 5, 9, 12, 19], "d": [1, 2, 3, 9, 12, 16, 37, 38, 39, 46, 52, 64, 73, 75], "reduc": [1, 2, 10, 13, 18, 19, 55], "minimum": [1, 14, 22, 53], "vacuum": [1, 64], "phase": [1, 2, 3, 5, 12, 15, 21, 41, 52, 64], "shifter": [1, 64], "add": [1, 2, 3, 9, 12, 14, 22, 26, 30, 32, 43, 51, 55, 64, 65, 69, 71, 72, 73, 75, 81], "a_1": [1, 18, 19], "creation": [1, 2, 4, 9, 33, 47, 51, 72], "dagger": [1, 4, 10, 12, 21, 26, 43, 51, 68], "shift": [1, 11, 53, 75], "p": [1, 4, 8, 9, 10, 18, 26, 73, 75], "left": [1, 2, 4, 5, 7, 10, 12, 13, 14, 15, 16, 24, 64, 72, 75], "right": [1, 4, 10, 13, 14, 15], "17": [1, 9, 13, 16, 17, 18, 21, 30, 61, 69, 77], "beam": [1, 52, 64], "splitter": [1, 52, 64], "act": [1, 2, 3, 6, 7, 9, 14, 27, 48, 51, 68], "togeth": [1, 18, 31, 55, 69, 80], "parameter": [1, 2, 3, 8, 9, 10, 13, 14, 20, 22, 23, 34, 36, 38, 41, 51, 53, 58, 61, 63, 65, 67], "relat": [1, 2, 9, 14, 19, 21, 69], "reflect": [1, 37, 55], "a_2": [1, 19], "b": [1, 9, 23, 28, 34, 61, 64], "_": [1, 4, 7, 11, 13, 18, 19, 21, 30, 51], "rang": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 32, 37, 38, 45, 46, 51, 53, 54, 57, 61, 67, 75, 80, 81], "34": [1, 9, 18], "return": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 28, 30, 34, 36, 37, 38, 41, 46, 48, 51, 53, 54, 55, 59, 63, 64, 65, 67, 69, 71, 72, 73, 77, 79], "result": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 34, 35, 36, 37, 39, 48, 51, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 79, 80], "input": [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 16, 21, 23, 27, 28, 34, 36, 37, 38, 45, 46, 54, 59, 61, 63, 64, 67], "class": [2, 3, 4, 9, 11, 21, 34, 36, 38, 42, 44, 46, 54, 55, 71, 72], "spin_op": [2, 8, 27, 34, 37, 41, 53, 54, 59, 63], "gener": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 22, 24, 27, 30, 34, 36, 37, 38, 39, 41, 42, 45, 47, 52, 53, 55, 58, 63, 64, 65, 66, 68, 69, 71, 75, 79], "sum": [2, 3, 4, 11, 12, 13, 14, 17, 18, 21, 27, 42, 46, 64, 68], "tensor": [2, 3, 11, 18, 27, 32, 42, 53, 54, 72, 81], "product": [2, 3, 5, 18, 27, 31, 32, 42, 53, 80, 81], "expos": [2, 3, 9, 13, 34, 36, 42, 44, 48, 54, 72], "typic": [2, 21, 34, 46, 53, 57, 58, 63, 69, 76, 77], "algebra": [2, 42, 63, 68], "programm": [2, 3, 34, 35, 36, 38, 39, 41, 43, 44, 46, 52, 54, 65], "defin": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 51, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 68, 69, 72, 73, 75, 77, 79, 81], "primit": [2, 14, 33, 36, 39, 42, 46, 47, 54, 58, 79], "them": [2, 3, 8, 9, 10, 13, 16, 18, 21, 30, 32, 48, 51, 57, 68, 69, 73, 75, 77, 79, 80, 81], "compos": [2, 3, 11, 14, 21, 38, 39, 52, 64, 69], "larger": [2, 3, 7, 9, 10, 14, 21, 53, 55], "thereof": [2, 39, 42], "public": [2, 9, 34, 36, 42, 44, 46, 54, 71, 72, 75], "type": [2, 4, 5, 6, 7, 9, 13, 14, 15, 18, 20, 27, 33, 34, 36, 38, 39, 41, 42, 47, 51, 52, 54, 55, 57, 61, 63, 65, 68, 69, 72, 75, 79], "spin_op_term": 2, "bool": [2, 3, 13, 34, 38, 41, 42, 44, 54, 72, 79], "we": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 24, 26, 30, 32, 34, 37, 41, 43, 48, 51, 52, 54, 55, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "term": [2, 3, 4, 5, 8, 12, 13, 14, 16, 19, 20, 23, 24, 34, 41, 51, 52, 54, 59, 63, 75], "binari": [2, 3, 5, 9, 11, 14, 15, 19, 24, 32, 52, 73, 77, 80, 81], "symplect": 2, "form": [2, 3, 9, 21, 23, 24, 30, 32, 34, 41, 46, 48, 51, 55, 69, 81], "size": [2, 3, 5, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 34, 36, 37, 38, 39, 46, 53, 54, 55, 64, 65, 67, 75, 79], "nqubit": [2, 36, 37, 72], "element": [2, 3, 4, 15, 18, 19, 21, 28, 31, 34, 46, 54, 68], "x": [2, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 34, 36, 37, 38, 41, 42, 43, 45, 51, 52, 53, 54, 55, 57, 59, 61, 63, 64, 65, 66, 68, 69, 73, 75, 77, 80], "next": [2, 4, 5, 8, 9, 10, 12, 13, 17, 19, 20, 21, 23, 28, 30, 48, 64, 65, 69, 73], "z": [2, 3, 6, 8, 9, 11, 12, 13, 14, 16, 20, 21, 22, 24, 25, 26, 27, 28, 30, 34, 37, 41, 42, 51, 53, 54, 59, 63, 65, 67, 73], "y": [2, 3, 5, 7, 8, 9, 11, 12, 13, 15, 18, 19, 20, 24, 25, 27, 28, 30, 34, 37, 41, 42, 51, 53, 54, 59, 63, 65, 73, 75, 77, 80], "site": [2, 3, 8, 13, 64, 80], "csr_spmatrix": 2, "tupl": [2, 3, 9, 13, 28, 34, 38, 64], "doubl": [2, 3, 22, 23, 34, 36, 37, 38, 41, 42, 45, 53, 54, 55, 59, 63, 64, 72, 73, 75], "size_t": [2, 34, 36, 38, 42, 44, 46, 54, 64, 65, 72, 77, 79], "typedef": 2, "zero": [2, 3, 5, 6, 10, 11, 12, 18, 19, 21, 39, 51, 54, 59, 68], "spars": 2, "function": [2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 32, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 57, 58, 59, 63, 65, 67, 69, 72, 77, 79, 81], "pair": [2, 3, 8, 12, 14, 16, 17, 38, 44, 48, 75], "const": [2, 34, 36, 37, 38, 41, 42, 44, 46, 53, 64, 71, 72, 77, 79], "termdata": 2, "constructor": [2, 3], "take": [2, 3, 4, 5, 7, 9, 12, 13, 14, 15, 17, 18, 20, 23, 28, 29, 32, 34, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 52, 55, 58, 59, 61, 63, 64, 65, 66, 67, 69, 73, 75, 80, 81], "coeffici": [2, 3, 8, 12, 20, 27, 51, 68], "constant": [2, 7, 20, 46, 48, 69], "id": [2, 3, 34, 44, 46, 52, 54, 55, 73, 75], "coeff": 2, "qubit": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 37, 38, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 80], "unordered_map": [2, 34], "_term": 2, "full": [2, 3, 4, 13, 19, 29, 32, 53, 54, 55, 67, 68, 69, 71, 73, 75, 76, 81], "composit": [2, 51], "spin": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 20, 23, 24, 26, 28, 34, 37, 42, 48, 51, 53, 54, 59, 63, 64, 67, 69], "op": [2, 3, 12, 13, 20, 48, 63, 69], "map": [2, 3, 5, 7, 8, 9, 13, 18, 21, 23, 26, 34, 46, 51, 69, 75], "individu": [2, 3, 39, 46, 54, 61], "bsf": 2, "from": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 35, 37, 38, 39, 42, 46, 48, 51, 53, 54, 55, 58, 59, 61, 63, 64, 67, 69, 72, 75, 76, 77, 80, 81], "creat": [2, 3, 5, 8, 9, 13, 14, 15, 16, 18, 19, 21, 22, 26, 30, 31, 34, 36, 42, 45, 51, 52, 53, 54, 58, 59, 64, 65, 67, 69, 70, 72, 73, 75, 76, 77, 79, 80], "ident": [2, 12, 13, 14, 18, 19, 21, 48, 51, 63], "numqubit": [2, 37], "given": [2, 3, 4, 7, 8, 9, 10, 14, 18, 19, 20, 21, 23, 24, 34, 46, 51, 52, 54, 55, 59, 63, 72], "o": [2, 9, 10, 13, 15, 23, 37, 52, 53, 54, 55, 63, 64, 65, 66, 69, 73, 75, 77, 79, 80], "copi": [2, 16, 21, 30, 46, 48, 73, 75], "data_rep": 2, "serial": [2, 3, 12], "encod": [2, 3, 5, 9, 14, 19, 21, 34, 42, 54, 65, 68, 72], "via": [2, 3, 4, 5, 11, 13, 16, 21, 24, 26, 31, 33, 34, 36, 39, 41, 43, 45, 46, 48, 51, 52, 54, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "real": [2, 8, 10, 12, 13, 15, 17, 20, 21, 30, 58], "imaginari": [2, 4, 12], "part": [2, 3, 4, 12, 17, 19, 23, 34, 46, 69, 71, 73, 75], "append": [2, 3, 6, 8, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 28, 30, 38, 52, 54, 55, 61, 64, 67], "larg": [2, 4, 5, 12, 18, 23, 29, 32, 41, 54, 55, 58, 68, 81], "end": [2, 3, 4, 7, 10, 13, 15, 16, 17, 18, 20, 21, 24, 26, 30, 34, 46, 52, 54, 55, 59, 61, 64, 68, 73, 75], "total": [2, 3, 4, 8, 9, 11, 12, 13, 15, 21, 23, 53, 54, 55, 59, 64, 67, 75], "destructor": 2, "iter": [2, 3, 4, 9, 12, 19, 21, 23, 24, 27, 28, 34, 46], "begin": [2, 3, 4, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 30, 34, 46, 57, 64, 65, 68], "start": [2, 3, 4, 6, 13, 15, 16, 19, 21, 24, 31, 32, 41, 46, 52, 54, 59, 61, 64, 69, 71, 77, 81], "equal": [2, 10, 21, 24, 30, 48, 54, 55, 59, 68], "v": [2, 3, 4, 8, 10, 12, 13, 14, 19, 34, 37, 38, 43, 48, 53, 67, 69, 73], "noexcept": [2, 41], "subtract": 2, "multipli": [2, 12, 13, 19], "true": [2, 3, 4, 5, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 28, 34, 38, 51, 52, 67, 73, 75, 80], "here": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 18, 19, 21, 22, 23, 26, 27, 31, 32, 34, 36, 37, 38, 41, 43, 51, 52, 53, 54, 61, 63, 64, 65, 66, 69, 71, 73, 75, 79, 80, 81], "consid": [2, 4, 5, 7, 9, 13, 17, 18, 19, 20, 21, 37, 39, 48, 53, 54, 69, 75], "num_qubit": [2, 3, 13, 20, 42, 53], "num_term": [2, 42], "get_coeffici": [2, 8, 12, 20, 42], "get": [2, 3, 10, 12, 13, 15, 17, 18, 19, 21, 23, 26, 28, 30, 32, 34, 36, 37, 46, 52, 53, 54, 59, 63, 64, 67, 72, 73, 77, 80, 81], "throw": [2, 30], "except": [2, 3, 9, 12, 13, 21, 30, 79], "get_raw_data": 2, "is_ident": [2, 42], "standard": [2, 3, 10, 21, 23, 28, 33, 34, 35, 36, 38, 41, 47, 54, 57, 58, 69, 71, 73, 75, 77, 79], "out": [2, 3, 7, 8, 9, 11, 12, 14, 15, 16, 19, 21, 23, 26, 28, 32, 34, 39, 46, 48, 54, 55, 59, 60, 61, 63, 64, 72, 75, 76, 79, 81], "to_str": [2, 8, 12, 20, 59], "printcoeffici": 2, "getdatarepresent": 2, "getdatatupl": 2, "fulli": [2, 3, 9, 11, 13, 21, 32, 33, 52, 54, 65, 69, 73, 75, 79, 81], "distribute_term": 2, "numchunk": 2, "distribut": [2, 10, 17, 18, 21, 23, 24, 26, 32, 39, 53, 55, 59, 63, 65, 73, 79, 80, 81], "chunk": [2, 39], "for_each_term": [2, 8, 12, 20, 42], "give": [2, 14, 15, 18, 24, 32, 34, 49, 54, 55, 73, 75, 81], "functor": 2, "reduct": 2, "captur": [2, 14, 19, 23, 30, 32, 38, 51, 61, 81], "variabl": [2, 9, 12, 14, 16, 19, 23, 29, 32, 38, 39, 51, 52, 53, 54, 60, 64, 67, 73, 75, 80, 81], "for_each_pauli": [2, 42], "thrown": [2, 79], "than": [2, 3, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 30, 41, 48, 53, 55, 59, 61, 68, 73, 75, 79], "user": [2, 3, 4, 5, 8, 9, 13, 18, 21, 29, 32, 34, 36, 37, 39, 40, 43, 46, 51, 52, 53, 54, 55, 64, 67, 69, 72, 73, 75, 81], "should": [2, 3, 13, 15, 19, 20, 23, 33, 34, 39, 41, 42, 44, 46, 52, 54, 55, 59, 72, 73, 75, 79, 80], "pass": [2, 3, 8, 9, 11, 12, 13, 17, 20, 23, 30, 31, 32, 34, 38, 39, 42, 46, 52, 54, 55, 61, 64, 66, 69, 70, 75, 79, 81], "index": [2, 3, 5, 9, 11, 12, 17, 42, 44, 46, 48, 51, 54, 55, 72], "complex_matrix": 2, "to_matrix": [2, 10, 12, 51], "dens": 2, "to_sparse_matrix": 2, "col": 2, "static": [2, 3, 34, 41, 46, 51, 69, 73, 79], "nterm": 2, "unsign": 2, "seed": [2, 3, 4, 8, 9, 13, 14, 18, 21, 22, 23, 30, 55, 67], "random_devic": 2, "specifi": [2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 34, 37, 38, 39, 41, 42, 43, 44, 46, 51, 52, 53, 54, 55, 59, 61, 64, 65, 67, 69, 72, 73, 75], "overrid": [2, 3, 34, 55, 71, 73], "repeat": [2, 17, 18, 19, 23, 34], "from_word": 2, "pauliword": 2, "word": [2, 3, 8, 12, 19, 20], "g": [2, 3, 9, 14, 19, 20, 21, 27, 33, 34, 35, 38, 39, 40, 41, 42, 48, 51, 52, 53, 54, 55, 64, 69, 72, 73, 75, 76, 79, 80], "xyx": 2, "3rd": 2, "typenam": [2, 34, 36, 37, 38, 41, 45, 46, 77, 79], "qualifiedspinop": 2, "struct": [2, 34, 36, 37, 38, 41, 45, 53, 54, 63, 64, 65, 66, 69, 71, 79], "constexpr": [2, 36, 46, 53], "dyn": [2, 46], "qudit": [2, 35, 39, 41], "system": [2, 3, 4, 9, 12, 13, 16, 20, 22, 23, 24, 29, 32, 34, 39, 44, 46, 48, 51, 52, 54, 55, 58, 59, 63, 64, 67, 68, 71, 73, 76, 77, 79, 80, 81], "inlin": [2, 34, 69], "new": [2, 3, 4, 8, 9, 12, 15, 21, 31, 32, 34, 36, 48, 58, 69, 70, 73, 75, 79, 80, 81], "enable_if_t": 2, "qreg": [2, 3, 12, 14, 53], "contain": [2, 3, 4, 9, 10, 13, 14, 18, 21, 31, 32, 34, 39, 41, 44, 48, 53, 55, 58, 59, 63, 64, 69, 72, 73, 79, 80, 81], "dynam": [2, 13, 31, 32, 36, 38, 39, 46, 52, 57, 58, 69, 79, 81], "time": [2, 3, 4, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 26, 30, 31, 32, 33, 34, 37, 39, 46, 47, 52, 53, 54, 55, 59, 64, 65, 67, 68, 69, 73, 75, 80, 81], "By": [2, 9, 10, 23, 29, 34, 41, 51, 52, 53, 54, 55, 59, 64, 77], "value_typ": 2, "indic": [2, 3, 4, 8, 21, 38, 41, 42, 46, 51, 72], "underli": [2, 3, 9, 23, 34, 44, 46, 52, 54, 72], "interfac": [2, 3, 46, 55, 72, 73, 75, 77], "idx": [2, 3, 11, 13, 19, 21, 46, 51, 54], "qspan": 2, "front": [2, 37, 45, 46, 66], "back": [2, 21, 37, 46, 48, 54, 64, 65, 75], "last": [2, 18, 19, 21, 37, 46, 54, 61, 63], "slice": [2, 3, 46], "clear": [2, 3, 16, 34, 46, 72], "destroi": [2, 46], "postcondit": [2, 46], "own": [2, 3, 9, 18, 26, 39, 44, 46, 55, 69, 72, 73, 75, 79], "semant": [2, 3, 33, 38, 39, 40, 43, 45, 46, 48, 69], "held": 2, "explicit": [2, 10, 34, 45, 51, 55, 64, 79], "determin": [2, 4, 5, 7, 8, 9, 17, 20, 23, 31, 55, 59], "check": [2, 9, 19, 21, 32, 52, 53, 64, 68, 73, 75, 80, 81], "norm": [2, 18], "pre": [2, 3, 13, 21, 32, 34, 52, 55, 64, 66, 73, 79, 81], "exist": [2, 3, 8, 16, 21, 30, 32, 33, 34, 39, 40, 59, 71, 73, 75, 79, 80, 81], "could": [2, 9, 10, 12, 19, 23, 30, 32, 53, 57, 68, 73, 81], "from_data": [2, 3, 51], "retriev": [2, 3, 13, 24, 34, 51, 54, 64], "get_stat": [2, 3, 10, 15, 16, 17, 20, 21, 24, 30, 54, 61], "delet": [2, 46, 52, 75, 79], "cannot": [2, 3, 15, 30, 37, 38, 46, 48, 68, 75], "move": [2, 11, 46, 71, 73, 75, 80], "assign": [2, 9, 14, 44, 54, 55, 73], "qview": [2, 5, 10, 12, 15, 19, 37, 38, 45], "observe_result": [2, 3, 12, 34, 63], "encapsul": [2, 11, 34, 46, 54, 79], "observ": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22, 23, 26, 28, 37, 51, 52, 54, 55, 56, 58, 63, 65, 66, 67, 68, 72, 80], "call": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 19, 21, 22, 23, 24, 26, 28, 30, 36, 37, 38, 41, 45, 51, 54, 55, 58, 59, 61, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77], "measur": [2, 3, 5, 7, 9, 10, 11, 12, 13, 15, 16, 18, 23, 24, 26, 31, 34, 35, 37, 38, 39, 41, 48, 51, 52, 54, 55, 57, 58, 59, 62, 64, 65, 69, 72, 80], "execut": [2, 4, 9, 13, 15, 21, 30, 31, 32, 33, 34, 36, 38, 39, 44, 45, 51, 52, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 75, 76, 77, 79, 80, 81], "ansatz": [2, 4, 6, 9, 13, 14, 22, 23, 34, 37, 53, 54, 63], "circuit": [2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 28, 33, 34, 38, 39, 42, 43, 47, 48, 52, 53, 54, 55, 58, 59, 61, 63, 64, 69, 71], "global": [2, 3, 9, 14, 21, 34, 38, 53, 59, 64, 73], "expect": [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 24, 26, 28, 31, 34, 51, 53, 54, 55, 59, 62, 67, 73, 75, 79, 80], "h": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 30, 34, 36, 37, 41, 42, 43, 45, 46, 48, 51, 52, 53, 54, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 77, 79, 80], "precomput": 2, "psi": [2, 6, 7, 10, 12, 16, 24, 30, 34, 37, 59, 68], "sample_result": [2, 3, 19, 24, 34, 64, 79], "wa": [2, 3, 4, 7, 9, 12, 21, 34, 54, 65, 69, 73, 76, 80], "shot": [2, 3, 8, 9, 10, 17, 18, 19, 24, 34, 37, 52, 55, 59, 64, 65, 68, 72], "base": [2, 3, 8, 9, 11, 13, 15, 18, 19, 21, 23, 27, 32, 33, 34, 36, 40, 41, 46, 51, 52, 53, 54, 55, 59, 67, 69, 72, 73, 75, 77, 81], "raw_data": [2, 9, 34], "raw": [2, 3, 9], "convers": [2, 34], "simpli": [2, 30, 68, 75, 80], "ignor": [2, 9, 19, 55], "fine": [2, 34, 65, 66, 68], "grain": [2, 34, 65, 66], "explicitli": [2, 9, 10, 48, 52, 55, 69, 77, 79], "request": [2, 3, 34, 52, 53, 54, 55, 64, 75], "oppos": [2, 79], "observe_data": 2, "spinoptyp": [2, 34], "sub": [2, 3, 33, 34, 37, 38, 46, 47, 51, 75], "id_coeffici": [2, 34], "observe_opt": [2, 34], "option": [2, 3, 4, 7, 9, 10, 12, 13, 17, 18, 22, 23, 24, 28, 29, 34, 36, 41, 44, 51, 52, 53, 54, 59, 63, 64, 66, 67, 72, 73, 75], "async_observ": 2, "param": [2, 4, 13, 14, 17, 37, 38, 41, 53, 67], "run": [2, 3, 5, 7, 8, 9, 11, 12, 17, 18, 23, 24, 31, 32, 33, 34, 37, 51, 52, 53, 54, 55, 56, 58, 63, 64, 65, 66, 67, 69, 72, 73, 75, 76, 79, 80, 81], "applic": [2, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 27, 31, 34, 41, 45, 52, 55, 58, 59, 61, 62, 75, 76, 79, 80], "num_trajectori": 2, "trajectori": 2, "presenc": 2, "simul": [2, 4, 6, 8, 10, 12, 17, 18, 19, 23, 24, 28, 29, 30, 31, 32, 33, 34, 50, 51, 52, 56, 58, 59, 62, 64, 65, 67, 69, 70, 73, 80, 81], "noisi": [2, 17, 18, 21, 31, 62, 64], "quantumkernel": [2, 34, 45], "arg": [2, 3, 9, 11, 15, 18, 34, 36, 41, 45, 51, 54, 59, 69, 75], "is_invocable_r_v": 2, "member": [2, 3, 14, 38], "conveni": [2, 15, 27, 42, 48, 73, 75], "what": [2, 3, 4, 8, 9, 10, 14, 16, 18, 19, 23, 30, 31, 32, 56, 67, 72, 79, 81], "": [2, 3, 4, 5, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 28, 30, 31, 32, 34, 41, 44, 48, 51, 52, 53, 54, 57, 58, 59, 63, 64, 65, 66, 67, 69, 71, 73, 75, 76, 77, 80, 81], "spinopcontain": 2, "termlist": 2, "everi": [2, 3, 14, 17, 18, 20, 32, 53, 54, 58, 59, 64, 65, 73, 80, 81], "concept": [2, 33, 34, 38, 40], "executioncontext": 2, "abstract": [2, 3, 27, 33, 34, 36, 41, 42, 44, 46, 54, 58], "how": [2, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 30, 32, 34, 36, 41, 51, 53, 54, 55, 58, 59, 61, 62, 64, 65, 66, 67, 69, 72, 73, 75, 76, 79, 80, 81], "shots_": 2, "basic": [2, 6, 31, 53, 61, 75, 80], "invoc": [2, 3, 36, 38, 44, 46, 54, 55, 72], "expectationvalu": 2, "nullopt": 2, "optimization_result": [2, 34], "optresult": 2, "optim": [2, 4, 6, 8, 9, 11, 12, 13, 14, 18, 19, 23, 31, 32, 33, 43, 46, 48, 51, 52, 53, 55, 62, 69, 71, 73, 75, 81], "hasconditionalsonmeasureresult": 2, "fals": [2, 3, 4, 8, 9, 12, 13, 16, 17, 19, 20, 21, 73, 75], "being": [2, 3, 5, 6, 16, 26, 33, 34, 48, 55, 64, 79], "statement": [2, 7, 25, 34, 35, 58], "noise_model": [2, 3, 13, 17, 18, 26], "noisemodel": [2, 3, 13, 17, 18, 26], "nullptr": 2, "canhandleobserv": 2, "flag": [2, 13, 32, 38, 51, 52, 54, 55, 64, 69, 71, 75, 79, 81], "handl": [2, 3, 7, 9, 20, 52, 53, 54, 55, 64, 72, 75, 79], "task": [2, 5, 9, 13, 21, 24, 30, 34, 42, 54, 55, 59, 69, 72], "under": [2, 3, 13, 18, 21, 32, 51, 52, 71, 72, 73, 75, 79, 81], "asyncexec": 2, "occur": [2, 3, 7, 9, 12, 18, 25, 34, 39, 64, 68, 75], "asynchron": [2, 3, 10, 12, 13, 24, 34, 44, 54, 59, 64, 67], "detail": [2, 3, 4, 8, 10, 13, 14, 17, 32, 33, 39, 51, 52, 53, 55, 72, 73, 75, 80, 81], "futur": [2, 3, 34, 50, 52, 54, 55, 64, 73, 75], "futureresult": 2, "store": [2, 3, 4, 12, 13, 16, 20, 39, 46, 54, 59, 64, 67, 68, 69], "async_result": [2, 64], "asyncresult": [2, 67], "async_sample_result": [2, 34, 54], "so": [2, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23, 28, 30, 32, 34, 51, 52, 54, 55, 65, 68, 69, 71, 72, 73, 75, 79, 80, 81], "boundari": [2, 11], "unique_ptr": 2, "simulationst": 2, "pointer": [2, 3, 79], "amplitudemap": 2, "amplitud": [2, 3, 5, 15, 17, 21, 51, 52, 54, 61, 64, 67, 68], "overlapcomputest": 2, "overlap": [2, 3, 12, 54], "overlapresult": 2, "trace": [2, 3, 16, 21, 26, 53], "kerneltrac": 2, "tracer": 2, "persist": [2, 34, 39, 53, 75], "resourc": [2, 4, 19, 23, 28, 44, 53, 54, 55, 59, 73, 75], "kernelnam": [2, 3], "batchiter": 2, "batch": [2, 28, 39], "observe_n": 2, "sample_n": 2, "totaliter": 2, "registernam": [2, 34], "mid": [2, 3, 55], "mode": [2, 3, 9, 24, 32, 37, 39, 51, 52, 64, 69, 73, 81], "keep": [2, 5, 18, 34, 55], "track": [2, 34, 68], "reorderidx": 2, "inform": [2, 3, 5, 7, 9, 12, 13, 16, 19, 21, 23, 27, 32, 34, 39, 41, 44, 46, 52, 53, 54, 55, 59, 64, 67, 68, 69, 73, 75, 77, 78, 80, 81], "reorder": 2, "after": [2, 3, 4, 7, 9, 13, 16, 30, 34, 52, 59, 61, 64, 69, 73, 75], "empti": [2, 3, 12, 36, 42, 55, 64, 75], "mean": [2, 3, 5, 13, 15, 16, 17, 21, 23, 41, 48, 55, 64, 67, 75, 80], "char": [2, 37, 54, 59, 73, 79, 80], "invocationresultbuff": 2, "buffer": [2, 54, 79], "note": [2, 3, 9, 10, 14, 16, 18, 19, 20, 21, 24, 30, 32, 37, 39, 48, 52, 53, 54, 59, 61, 64, 68, 69, 73, 75, 79, 81], "need": [2, 3, 4, 5, 9, 13, 14, 15, 18, 19, 23, 24, 26, 30, 48, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72, 73, 75, 76, 79], "abl": [2, 9, 13, 24, 34, 52, 53, 54, 59, 75, 79, 80], "numbertrajectori": 2, "calcul": [2, 3, 5, 6, 7, 9, 11, 16, 19, 21, 24, 28, 53, 54, 59, 64, 67], "job": [2, 13, 14, 34, 52, 53, 54, 64, 75], "qpu": [2, 3, 10, 12, 13, 23, 24, 28, 31, 32, 33, 34, 39, 44, 52, 54, 55, 58, 59, 63, 64, 67, 72, 79, 80, 81], "extra": [2, 11, 12, 41, 48, 52], "configur": [2, 8, 9, 13, 22, 44, 52, 53, 54, 55, 64, 67, 69, 72, 73, 75, 76, 79, 80], "later": [2, 7, 9, 12, 13, 16, 17, 34, 38, 54, 64, 73, 75], "server": [2, 52, 54, 64, 75], "file": [2, 4, 9, 13, 34, 41, 52, 53, 54, 59, 60, 64, 67, 69, 71, 72, 73, 75, 76, 77, 79, 80], "read": [2, 3, 13, 14, 19, 61, 64], "wrap": [2, 34, 36, 48, 51], "t": [2, 3, 4, 7, 10, 15, 20, 21, 30, 32, 34, 37, 38, 41, 42, 51, 53, 55, 61, 64, 65, 68, 73, 75, 81], "case": [2, 3, 7, 8, 9, 12, 14, 15, 16, 17, 18, 23, 25, 26, 28, 34, 48, 51, 57, 61, 63, 73, 77, 79], "must": [2, 3, 7, 13, 17, 18, 19, 23, 24, 33, 34, 38, 40, 43, 46, 48, 51, 52, 55, 64, 68, 71, 72, 73, 75, 79, 80], "some": [2, 4, 8, 9, 11, 13, 15, 16, 17, 19, 20, 23, 25, 29, 32, 34, 48, 53, 54, 55, 68, 69, 71, 72, 73, 75, 76, 79, 80, 81], "point": [2, 3, 9, 15, 30, 34, 38, 41, 54, 55, 69, 72, 73, 75], "same": [2, 3, 7, 9, 12, 13, 14, 15, 16, 17, 18, 21, 23, 28, 30, 34, 48, 52, 54, 59, 64, 66, 67, 69, 72, 73, 75, 79], "runtim": [2, 9, 33, 34, 36, 39, 52, 53, 54, 55, 63, 69, 72, 75, 77], "_job": 2, "qpunamein": 2, "config": [2, 4, 55, 72, 73, 75, 80], "info": [2, 21, 53, 55, 60, 69], "requir": [2, 3, 4, 7, 8, 9, 10, 11, 13, 15, 16, 19, 21, 23, 28, 30, 34, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 55, 64, 67, 68, 73, 76, 80], "date": 2, "even": [2, 7, 9, 14, 17, 19, 24, 32, 55, 73, 75, 79, 81], "face": [2, 21, 40], "itself": [2, 45, 48, 54, 73, 75], "collect": [2, 3, 4, 8, 12, 13, 16, 59], "pertin": [2, 34, 40, 45, 46], "remot": [2, 3, 34, 39, 50, 53, 55, 60, 67], "rest": [2, 3, 5, 13, 16, 17, 33, 52, 54, 55, 64, 73, 75, 79], "wait": [2, 3, 9, 13, 24, 53, 54, 59, 64], "until": [2, 3, 9, 13, 17, 21, 24, 59, 64], "readi": [2, 19, 22, 64, 75], "executionresult": 2, "correspond": [2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 20, 21, 23, 27, 28, 34, 52, 64, 65, 73, 75, 77], "well": [2, 3, 5, 10, 12, 13, 18, 19, 20, 27, 32, 34, 37, 39, 51, 55, 72, 75, 76, 79, 81], "integ": [2, 3, 12, 14, 17, 24, 31, 38, 44, 54, 55, 59, 61, 67], "1st": [2, 16, 26], "bitstr": [2, 3, 5, 9, 14, 17, 34], "m": [2, 4, 8, 9, 10, 12, 18, 30, 37, 42, 54, 55, 64, 67, 69, 73, 75, 79, 80], "tripl": [2, 69], "long": [2, 24, 34, 37, 59, 73, 75, 79, 80], "length": [2, 5, 18, 64], "deseri": [2, 3], "discuss": [2, 9, 16, 28, 71], "brief": [2, 72], "countsdictionari": [2, 34], "assum": [2, 3, 7, 8, 9, 13, 14, 16, 17, 18, 19, 39, 41, 46, 51, 54, 55, 59, 64, 72, 73, 75, 77], "expval": [2, 34], "other": [2, 3, 4, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 30, 31, 33, 36, 38, 41, 46, 48, 51, 52, 53, 54, 55, 57, 58, 59, 64, 73, 75, 79, 80], "appendresult": 2, "globalregisternam": [2, 34], "classic": [2, 4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23, 33, 35, 38, 39, 41, 42, 46, 48, 54, 58, 59, 64, 68, 69, 72, 73, 76, 79], "sequentialdata": 2, "sequenti": [2, 3, 34, 53, 59], "collat": [2, 3], "holist": 2, "nullari": 2, "precomputedexp": 2, "__global__": [2, 3, 34, 53, 64, 77], "has_expect": 2, "string_view": [2, 34, 72], "anoth": [2, 5, 9, 16, 17, 19, 37, 38, 48, 55, 61, 64, 66, 73], "register_nam": [2, 3, 34], "tandem": [2, 67], "to_map": [2, 34], "regnam": 2, "merg": [2, 3, 69], "necessari": [2, 12, 19, 52, 54, 55, 64, 69, 73, 75, 79], "document": [2, 3, 23, 30, 31, 32, 33, 41, 50, 52, 53, 55, 71, 72, 73, 75, 79, 81], "exp_val_z": 2, "deprec": [2, 3, 23, 50, 54, 55], "probabl": [2, 3, 17, 18, 19, 26, 34, 59, 68, 79], "most_prob": [2, 3, 5, 8, 19, 37, 59, 68], "most": [2, 3, 8, 9, 13, 14, 16, 19, 23, 24, 32, 34, 48, 53, 59, 61, 64, 69, 73, 75, 76, 79, 81], "ostream": [2, 79], "output": [2, 3, 4, 7, 11, 16, 19, 21, 30, 38, 51, 52, 56, 59, 69, 75, 79, 80], "stream": [2, 9, 39], "extract": [2, 3, 4, 7, 9, 10, 12, 16, 19, 27, 34, 36, 37, 46, 48, 59, 69, 73, 75], "unord": 2, "get_margin": [2, 34], "marginalindic": [2, 34], "margin": [2, 18], "those": [2, 19, 32, 34, 38, 48, 51, 54, 55, 69, 81], "subset": [2, 3, 9, 11, 21, 34, 38, 46, 48], "rvalu": 2, "refer": [2, 13, 14, 16, 19, 23, 31, 34, 38, 39, 46, 48, 52, 53, 54, 55, 64, 73, 75], "newbitstr": 2, "oldbitstr": 2, "process": [2, 3, 9, 10, 15, 17, 21, 23, 24, 25, 32, 33, 34, 39, 44, 52, 53, 54, 55, 58, 64, 67, 68, 69, 73, 79, 81], "const_iter": 2, "cbegin": 2, "cend": 2, "has_even_par": 2, "pariti": [2, 51], "sample_opt": [2, 34], "async_sampl": 2, "express": [2, 3, 13, 16, 21, 28, 32, 34, 35, 36, 37, 39, 42, 51, 54, 58, 65, 66, 69, 79, 81], "final": [2, 3, 4, 6, 9, 12, 13, 16, 20, 23, 28, 51, 54, 63, 65, 67, 69, 72, 73], "variad": [2, 34], "concret": [2, 3, 14, 34, 59, 63], "evalu": [2, 3, 7, 9, 12, 23, 28, 34, 53, 54, 55, 63], "dictionari": [2, 3, 13, 18, 34, 59, 65], "extens": [2, 30, 33, 34, 40, 46, 50, 72, 75, 77, 80], "describ": [2, 3, 5, 10, 12, 13, 16, 18, 19, 26, 44, 46, 51, 52, 66, 68, 72, 73, 75, 79], "effici": [2, 9, 13, 19, 21, 23, 29, 55], "manner": [2, 34, 54, 72], "client": [2, 34, 53, 73], "remain": [2, 3, 4, 45, 64, 73], "gpu": [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 20, 21, 23, 24, 28, 31, 32, 33, 39, 51, 54, 56, 58, 62, 72, 73, 77, 79, 80, 81], "devic": [2, 3, 9, 11, 13, 17, 18, 21, 23, 24, 26, 28, 34, 37, 38, 41, 45, 52, 53, 54, 55, 59, 64, 69, 72, 75], "cpu": [2, 4, 5, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 24, 26, 30, 31, 50, 53, 54, 58, 59, 67, 69, 73, 75, 79, 80], "memori": [2, 9, 11, 20, 21, 35, 38, 39, 46, 48, 53, 54, 55, 58, 67, 69, 75], "primari": [2, 3, 5, 8, 34, 46, 72], "goal": [2, 5, 7, 9, 14, 19, 20, 23], "minim": [2, 8, 9, 13, 14, 18, 21, 22, 23, 28, 30, 31, 73, 75, 80], "transfer": [2, 54, 55], "subclass": [2, 34, 72], "cusvstat": 2, "scalartyp": [2, 79], "remotesimulationst": 2, "nvqir": [2, 31, 69, 70, 72], "mpssimulationst": 2, "tensornetsimulationst": 2, "made": [2, 14, 19, 20, 59, 75], "extent": [2, 3, 55], "enum": [2, 4], "precis": [2, 3, 15, 22, 23, 53, 55, 61, 68], "enumer": [2, 3, 5, 13, 18, 21, 37], "fp32": [2, 3, 23, 53, 54, 55], "fp64": [2, 3, 12, 13, 22, 29, 50, 53, 54, 55], "simulation_precis": 2, "possibl": [2, 7, 8, 9, 13, 16, 17, 18, 21, 30, 33, 48, 68, 75, 77, 79], "float": [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 27, 28, 34, 37, 38, 41, 45, 53, 54, 55, 61, 63, 72], "tensorstatedata": 2, "dimens": [2, 3, 6, 8, 9, 12, 14, 16, 21, 28, 34, 51, 55], "state_data": 2, "variant": [2, 13, 41], "custatevec": [2, 53, 54, 55, 72], "attempt": [2, 19, 79], "care": [2, 34, 79], "taken": [2, 9], "ensur": [2, 3, 12, 13, 69, 71, 73, 75, 79], "comparison": [2, 7], "compat": [2, 3, 40, 55, 73], "registeredtyp": 2, "declar": [2, 13, 34, 38, 39, 41, 69, 72, 77, 79], "themselv": [2, 52, 57], "plugin": [2, 32, 71, 73, 75, 81], "myinterfac": 2, "column": [2, 3, 30], "upon": [2, 6, 16, 24, 48, 59, 64, 68, 75], "destruct": 2, "rawdata": 2, "intern": [2, 3, 54], "modifi": [2, 37, 38, 41, 45, 48, 55, 75], "correct": [2, 5, 15, 16, 18, 21, 37, 58, 64, 73, 75], "j": [2, 3, 8, 9, 10, 12, 14, 15, 18, 19, 20, 21, 24, 37, 38, 42, 67, 73], "minimal_eigenvalu": [2, 3], "eigenvalu": [2, 3, 10, 12, 14, 55], "thei": [2, 3, 4, 6, 9, 12, 13, 14, 16, 17, 19, 32, 38, 46, 48, 58, 68, 73, 75, 81], "set_zero": 2, "seen": [2, 7, 13, 19, 21], "manag": [2, 4, 52, 53, 54, 73, 75], "instruct": [2, 13, 19, 21, 32, 39, 41, 43, 48, 52, 53, 55, 64, 65, 69, 73, 75, 79, 80, 81], "control": [2, 3, 10, 12, 14, 15, 19, 31, 32, 33, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 57, 58, 61, 62, 64, 65, 68, 69, 72, 75, 81], "flow": [2, 11, 33, 34, 38, 47, 55, 58, 69], "path": [2, 3, 30, 52, 69, 72, 73, 75], "thu": [2, 13, 16, 51, 53, 54, 55, 68, 69], "might": [2, 4, 7, 9, 12, 17, 21, 36, 41, 48, 50, 53, 54, 66], "produc": [2, 3, 4, 5, 8, 9, 10, 12, 14, 17, 19, 24, 28, 34, 37, 42, 43, 48, 57, 59, 65, 69, 72, 79], "elementtyp": 2, "is_integral_v": 2, "is_signed_v": 2, "exclus": [2, 7], "stop": [2, 13, 59, 75], "step": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 28, 37, 51, 64, 69, 73, 77, 80], "reach": [2, 17, 21, 67], "is_invocable_v": 2, "draw": [2, 3, 5, 6, 7, 9, 15, 18, 19, 21, 24, 26, 30, 59], "utf": [2, 3], "8": [2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 32, 34, 37, 38, 39, 50, 51, 52, 53, 54, 55, 64, 67, 69, 73, 75, 80, 81], "usag": [2, 3, 54, 67], "iostream": [2, 53, 57, 59, 64, 79], "mz": [2, 3, 5, 7, 10, 13, 16, 18, 19, 24, 25, 34, 36, 37, 48, 52, 53, 54, 57, 59, 61, 64, 65, 66, 67, 68, 69, 79, 80], "cout": [2, 53, 59, 64, 79], "q0": [2, 3, 5, 6, 7, 9, 15, 17, 19, 21, 24, 26, 30, 48], "q1": [2, 3, 5, 7, 9, 15, 17, 19, 21, 24, 26, 30, 48], "ry": [2, 3, 6, 8, 9, 10, 11, 16, 28, 34, 37, 38, 41, 43, 53, 54, 61, 63], "59": [2, 3, 14, 34, 37, 54, 63], "callabl": [2, 3, 33, 34, 36, 37, 38, 57, 63, 65], "trivial": [2, 9, 17, 19, 34, 54, 63, 76], "signatur": [2, 3, 34, 36, 38, 66, 69], "without": [2, 3, 12, 21, 23, 34, 38, 45, 52, 55, 64, 73, 75, 79, 80], "regard": 2, "depth": [2, 9, 49], "etc": [2, 3, 38, 39, 51, 54, 55, 58, 64, 72, 73, 75, 80], "kraus_op": 2, "krau": [2, 3, 26], "initializer_list": 2, "initlist": 2, "adjoint": [2, 15, 19, 36, 37, 41, 45, 48, 61, 69], "flatten": [2, 21, 79], "nrow": [2, 11, 30], "ncol": [2, 30], "kraus_channel": [2, 13], "channel": [2, 3, 13, 16, 18, 26, 75], "action": [2, 4, 34, 37, 38, 75], "matric": [2, 3, 4, 12, 55], "amplitude_damping_channel": 2, "bit_flip_channel": 2, "depolarization_channel": [2, 26], "phase_flip_channel": 2, "inputlist": 2, "inop": 2, "lvalu": 2, "make": [2, 3, 7, 8, 13, 15, 16, 23, 30, 34, 54, 55, 69, 72, 73, 75, 77, 80], "get_op": 2, "push_back": [2, 38], "noise_model_typ": 2, "noise_typ": 2, "unknown": [2, 16, 69, 75], "autom": [2, 72], "damp": 2, "error": [2, 9, 10, 13, 17, 26, 30, 31, 32, 41, 48, 52, 53, 55, 58, 64, 73, 75, 79, 81], "depolar": [2, 3, 13, 26], "densiti": [2, 3, 13, 16, 17, 18, 26, 30, 50, 53, 55], "predicatefuncti": 2, "callback": [2, 3, 22, 23], "operand": [2, 3, 41, 54], "add_channel": [2, 3, 17, 18, 26], "quantumop": 2, "pred": [2, 69], "add_all_qubit_channel": [2, 3, 13], "numcontrol": 2, "get_channel": [2, 3], "targetqubit": 2, "controlqubit": 2, "relev": [2, 4, 6, 9, 11, 18, 44, 55], "downstream": [2, 31, 72, 76, 78], "object": [2, 3, 4, 8, 9, 13, 14, 18, 20, 24, 28, 30, 34, 48, 54, 59, 69], "logic": [2, 7, 44, 46, 54], "kernel_build": [2, 36], "kernel_builder_bas": 2, "kernelbuildertyp": 2, "mlir": [2, 3, 13, 31, 54, 69, 70, 71, 73], "getargu": [2, 36, 71], "quakevalu": [2, 3, 36], "isargstdvec": 2, "otherwis": [2, 3, 7, 16, 17, 19, 55, 59], "getnumparam": [2, 36], "qalloc": [2, 3, 13, 36, 52, 53, 54, 67], "qvec": [2, 48, 52], "veq": [2, 3, 48, 69], "blockargu": 2, "simplic": [2, 4, 13, 17], "impli": [2, 3, 55], "goe": [2, 39], "scope": [2, 38, 39, 46, 69, 71], "befor": [2, 10, 13, 14, 20, 30, 52, 60, 64, 73, 75], "mai": [2, 3, 7, 9, 12, 13, 14, 18, 32, 34, 36, 38, 39, 41, 45, 46, 51, 52, 53, 54, 55, 58, 59, 60, 64, 66, 73, 75, 77, 79, 80, 81], "garbag": 2, "constantv": 2, "val": [2, 13, 18], "swap": [2, 4, 8, 19, 21, 30, 37, 64], "mod": [2, 5, 19, 41], "is_same_v": 2, "perform": [2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 25, 31, 32, 34, 37, 51, 52, 54, 55, 59, 61, 62, 64, 66, 67, 68, 71, 72, 73, 75, 79, 80, 81], "fredkin": 2, "between": [2, 3, 5, 7, 8, 9, 10, 14, 16, 17, 18, 19, 21, 22, 24, 30, 38, 48, 51, 53, 57, 58, 59, 64, 67, 75, 77], "meant": [2, 33], "thin": [2, 3], "wrapper": [2, 3, 54], "around": [2, 3, 4, 5, 7, 18, 20, 34, 80], "instanc": [2, 3, 7, 9, 16, 21, 34, 36, 41, 46, 53, 54, 55, 58, 75], "quak": [2, 3, 14, 31, 47, 69, 71], "dialect": [2, 3, 69, 71], "arithmet": [2, 38, 39], "getvalu": 2, "actual": [2, 18, 21, 34, 59, 72], "implicitlocopbuild": 2, "arith": [2, 48, 69], "constantfloatop": 2, "canvalidatenumel": 2, "stdvectyp": 2, "do": [2, 3, 4, 9, 13, 15, 16, 18, 19, 21, 32, 41, 43, 46, 48, 53, 54, 55, 57, 58, 61, 65, 68, 69, 73, 75, 76, 77, 80, 81], "loop": [2, 4, 5, 8, 9, 12, 14, 17, 20, 28, 35, 46, 57, 64, 67, 69], "know": [2, 4, 5, 16, 19, 30, 32, 48, 81], "bound": [2, 3, 8, 16, 18], "startidx": [2, 3], "subscript": [2, 3, 52, 53], "stdvec": [2, 48, 69], "constants": 2, "isstdvec": 2, "getrequiredel": 2, "veqtyp": 2, "divid": [2, 14, 19], "invers": [2, 15, 21, 37, 51], "friend": [2, 16], "write": [2, 3, 13, 60, 64, 68, 71, 75, 77], "wai": [2, 3, 7, 12, 19, 23, 24, 28, 34, 45, 48, 51, 52, 59, 61, 73], "code": [2, 3, 5, 7, 8, 9, 10, 13, 14, 15, 16, 19, 22, 23, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 52, 53, 54, 55, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 77, 79, 80, 81], "mlircontext": 2, "ctx": [2, 11, 71], "f": [2, 5, 7, 9, 13, 16, 18, 19, 20, 21, 28, 37, 38, 51, 73, 80], "high": [2, 13, 18, 52, 67, 69, 79], "serv": [2, 3, 9, 38, 46, 53, 71, 73], "work": [2, 4, 7, 8, 9, 10, 12, 15, 18, 19, 21, 23, 31, 34, 53, 54, 67, 70, 73, 75, 76, 79, 80], "subtyp": 2, "possibli": [2, 4, 38], "deleg": [2, 53, 72, 75], "third": [2, 31, 78], "parti": [2, 16, 31, 78], "immut": 2, "mutabl": [2, 34], "gradient": [2, 6, 11, 31, 53, 62], "df": [2, 18], "dx_i": 2, "scalar": [2, 3, 34], "queri": [2, 3, 5, 7, 34, 44, 54, 63], "whether": [2, 3, 7, 19, 21, 32, 73, 75, 81], "strategi": [2, 34, 39, 45, 72], "thing": [2, 66], "max": [2, 7, 9, 13, 21, 31, 53, 55], "cobyla": [2, 3, 6, 9, 22, 23, 28, 34], "opt": [2, 38, 69, 71, 73, 75], "assert": [2, 5, 13, 19, 21, 23, 37, 38], "requiresgradi": [2, 34], "algo": 2, "opt_val": [2, 53], "opt_param": [2, 13, 34, 53], "dx": [2, 34], "virtual": [2, 4, 32, 34, 53, 54, 59, 63, 67, 72, 73, 81], "achiev": [2, 4, 13, 14, 15, 19, 34, 52, 53, 66], "dim": [2, 3, 21, 53, 55], "optimizable_funct": [2, 34], "opt_funct": [2, 34, 53], "variat": [2, 4, 6, 9, 11, 12, 14, 23, 24, 28, 31, 34], "custom": [2, 3, 13, 23, 26, 32, 34, 38, 51, 54, 55, 61, 65, 71, 73, 75, 78, 79, 81], "ptrtoown": 2, "jdx": 2, "tensoridx": 2, "get_tensor": 2, "just": [2, 7, 9, 13, 14, 19, 24, 33, 47, 54, 59, 60, 65, 68, 69, 75], "rank": [2, 3, 54, 65, 67], "get_num_tensor": 2, "get_num_qubit": [2, 44], "get_precis": [2, 3], "is_on_gpu": [2, 3], "to_host": 2, "hostptr": 2, "numel": 2, "pure": [2, 26, 37, 38, 45], "basisst": 2, "host": [2, 35, 37, 38, 39, 42, 46, 53, 54, 55, 63, 79, 80], "leverag": [2, 3, 9, 12, 21, 34, 36, 38, 41, 45, 46, 55, 65, 69, 72, 76], "separ": [2, 9, 21, 55, 73, 75], "mapper": 2, "inherit": [2, 35, 39, 54], "updat": [2, 9, 23, 32, 34, 52, 64, 73, 80, 81], "protect": [2, 46, 72], "getexpectedvalu": 2, "central_differ": [2, 34], "forward_differ": 2, "parameter_shift": 2, "prescrib": 2, "kernelt": 2, "argsmapp": [2, 34], "setarg": 2, "save": [2, 3, 10, 11, 16, 17, 20, 28, 51, 53, 54, 59, 67, 69, 75, 77], "nvqc": [2, 50, 53], "setkernel": 2, "been": [2, 3, 16, 19, 21, 30, 52, 53, 58, 59, 64, 73, 75], "have": [2, 5, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 29, 30, 32, 34, 48, 51, 53, 54, 55, 59, 64, 67, 68, 71, 73, 75, 76, 77, 79, 80, 81], "funcatx": [2, 3], "func": [2, 34, 48, 69, 71], "clone": [2, 11, 16, 46, 71, 73], "deriv": [2, 7, 9, 10, 19, 34, 68], "exp_h": [2, 34], "forward": [2, 11, 23, 28], "approxim": [2, 8, 9, 12, 13, 14, 17, 23, 31, 55, 59], "registri": [2, 75], "unit": [2, 3, 13, 24, 30, 33, 38, 39, 41, 44, 46, 52, 58, 68], "certain": [2, 3, 7, 8, 13, 21, 25, 29, 46, 53, 54, 55, 72, 75], "connect": [2, 9, 11, 14, 32, 39, 44, 46, 48, 64, 73, 81], "queue": [2, 13, 34, 53, 64], "enqueu": 2, "quantum_platform": [2, 3, 44, 54, 63, 69], "baseremoterestqpu": 2, "baseremotesimulatorqpu": 2, "orcaremoterestqpu": 2, "_qpuid": 2, "setid": 2, "thread": [2, 3, 39, 54, 55, 63, 64, 67, 72], "getexecutionthreadid": 2, "getnumqubit": 2, "getconnect": 2, "issimul": 2, "supportsconditionalfeedback": 2, "feedback": [2, 39, 58, 75], "remotecap": 2, "getremotecap": 2, "capabl": [2, 19, 20, 21, 53, 55, 67, 73, 75], "setshot": 2, "_nshot": 2, "noth": [2, 16], "wish": [2, 9, 53, 54, 63, 75], "isemul": 2, "local": [2, 3, 4, 13, 31, 52, 53, 54, 59, 64, 69, 73, 74, 76], "emul": [2, 3, 13, 24, 52, 55, 64], "quantumtask": 2, "setexecutioncontext": 2, "resetexecutioncontext": 2, "reset": [2, 3, 34, 37, 39, 55, 72], "kernelthunkresulttyp": 2, "launchkernel": 2, "kernelthunktyp": 2, "kernelfunc": 2, "uint64_t": 2, "rawarg": 2, "launch": [2, 34, 54, 55, 75, 80], "pack": [2, 79], "launchserializedcodeexecut": 2, "serializedcodeexecutioncontext": 2, "serializecodeexecutionobject": 2, "onrandomseedset": 2, "notifi": 2, "let": [2, 5, 7, 10, 13, 14, 15, 16, 18, 19, 21, 22, 26, 30, 41, 48, 51, 57, 58, 59, 63, 65, 66, 67, 68, 69, 75, 76, 77, 80], "fermioniqbaseqpu": 2, "querabaseqpu": 2, "basenvcfsimulatorqpu": 2, "submit": [2, 3, 13, 52, 53, 55, 64, 75], "nvcf": 2, "servic": [2, 52, 53, 54, 64, 75], "interact": [2, 3, 4, 8, 13, 44, 51, 75], "enough": [2, 5, 9], "moreov": [2, 16, 34, 39, 52, 54, 58, 72], "synchron": [2, 13, 38, 54, 64], "realiz": [2, 4, 20, 21, 68], "intend": [2, 33, 34, 36, 73, 77], "popul": [2, 3, 12], "platformqpu": 2, "qubitconnect": [2, 44], "fetch": [2, 9], "supports_task_distribut": 2, "multipl": [2, 3, 9, 10, 12, 18, 19, 23, 24, 28, 30, 32, 41, 51, 52, 54, 55, 58, 59, 64, 66, 68, 75, 81], "parallel": [2, 10, 12, 33, 39, 55, 59, 75, 80], "qpu_id": [2, 3, 10, 12, 23, 24, 28, 34, 44, 53, 54, 59, 67], "get_shot": 2, "getter": 2, "onc": [2, 4, 9, 12, 15, 18, 21, 24, 36, 51, 52, 53, 55, 58, 59, 64, 73, 75, 77, 80], "set_shot": 2, "clear_shot": 2, "remov": [2, 9, 21, 48, 50, 53, 54, 55, 75], "numshot": 2, "setter": 2, "set_exec_ctx": 2, "get_exec_ctx": 2, "reset_exec_ctx": 2, "num_qpu": [2, 3, 10, 23, 28, 44, 53, 54, 63], "is_simul": [2, 44], "supports_conditional_feedback": 2, "get_current_qpu": [2, 44], "set_current_qpu": [2, 44], "device_id": [2, 44], "is_remot": [2, 3, 44], "qpuid": [2, 44, 54], "is_emul": [2, 3, 44], "set_nois": [2, 3], "get_remote_cap": 2, "reset_nois": 2, "turn": [2, 11, 15, 53, 60, 72], "off": [2, 3, 9, 11, 12, 15, 19, 53, 54, 73], "enqueueasynctask": 2, "kernelexecutiontask": 2, "launchvq": 2, "kernelarg": 2, "n_param": 2, "vqe": [2, 3, 9, 14, 22, 28, 29, 31, 53, 61], "settargetbackend": 2, "resetlogstream": 2, "log": [2, 3, 32, 53, 73, 75, 81], "getlogstream": 2, "setlogstream": 2, "logstream": 2, "list_platform": 2, "structur": [2, 3, 4, 8, 9, 11, 14, 21, 23, 34, 36, 40, 42, 44, 46, 54, 55, 69, 71, 72, 77], "boolean": [2, 19, 36], "field": [2, 13, 14, 31, 51, 52, 54], "initvalu": 2, "stateoverlap": 2, "serializedcodeexec": 2, "command": [2, 8, 9, 10, 12, 23, 24, 28, 29, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72, 73, 75, 76, 77, 79, 80], "entir": [2, 5, 13, 17, 25, 30, 48, 65, 72], "forth": [2, 54], "commun": [2, 16, 34, 52, 54, 55, 73], "isremotesimul": 2, "ir": [2, 31, 36, 60, 70, 71, 72], "synthesi": [2, 21, 31, 33, 36, 42, 46, 47, 62, 69], "ultim": [2, 69, 72], "ad": [2, 4, 18, 23, 32, 34, 52, 53, 61, 65, 69, 73, 75, 77, 80, 81], "promis": [2, 5, 7, 12], "qubitedg": [2, 44], "thunk": 2, "num_available_gpu": [2, 3, 13, 59, 67], "set_random_se": [2, 3, 8, 11, 14, 16, 18, 19, 55], "caller": [2, 38], "unset_nois": [2, 3], "dealloc": [2, 39, 46, 72], "mpi": [2, 32, 54, 55, 65, 67, 80, 81], "against": [2, 3, 13, 32, 52, 73, 75, 77, 81], "argc": [2, 37, 59, 73, 80], "argv": [2, 37, 59, 73, 80], "program": [2, 10, 23, 24, 31, 33, 36, 38, 41, 46, 47, 52, 53, 54, 55, 56, 58, 64, 65, 67, 69, 73, 75, 77, 80], "is_initi": [2, 3, 65], "num_rank": [2, 3, 67], "all_gath": [2, 3], "gather": [2, 3, 16, 24, 37, 59, 68], "fit": [2, 73], "come": [2, 4, 16, 39, 53, 64, 79], "all_reduc": 2, "binaryfunct": 2, "localvalu": 2, "rootrank": [2, 3], "input_st": [2, 3, 15, 21, 52, 64], "loop_length": [2, 3, 52, 64], "bs_angl": [2, 3, 52, 64], "n_sampl": [2, 3, 64], "10000": [2, 3, 14, 19, 52, 59, 64, 67], "ps_angl": [2, 3, 64], "sample_async": [2, 3, 10, 13, 24, 34, 54, 59, 64], "make_kernel": [3, 13, 36, 52, 53, 54, 67], "els": [3, 9, 11, 12, 13, 17, 19, 21, 30, 36, 54, 55, 59, 64, 73, 77, 80], "int_valu": 3, "float_valu": 3, "pykernel": 3, "argtypelist": 3, "programmat": 3, "str": [3, 5, 8, 9, 12, 13, 17, 18, 19, 20, 52, 54, 59, 64, 68, 79], "argument_count": 3, "alia": [3, 46], "pykerneldecor": 3, "verbos": [3, 4, 56, 69, 73, 76], "modul": [3, 4, 11, 51, 55, 59, 69, 73], "none": [3, 11, 13, 16, 19, 21, 37, 38, 51, 55], "funcsrc": 3, "locat": [3, 52, 54, 73, 75, 79], "overrideglobalscopedvar": 3, "decor": [3, 9, 38, 57], "lower": [3, 13, 23, 51, 69, 72], "ast": 3, "jit": [3, 9], "executionengin": 3, "__call__": 3, "__str__": 3, "extract_c_function_point": 3, "from_json": 3, "jstr": 3, "overridedict": 3, "convert": [3, 4, 9, 10, 12, 17, 19, 23, 27, 34, 51, 63, 69], "json": [3, 52, 54, 64, 75], "merge_kernel": 3, "othermod": 3, "moduleop": 3, "synthesize_callable_argu": 3, "funcnam": 3, "block": [3, 4, 8, 14, 19, 43, 61], "awai": [3, 13, 16, 48], "funcop": [3, 71], "to_json": 3, "self": [3, 9, 11, 14, 73, 75], "reconstruct": 3, "elsewher": [3, 21], "type_to_str": 3, "clean": [3, 4, 21], "kwarg": [3, 9], "languag": [3, 21, 31, 32, 35, 38, 39, 40, 41, 46, 47, 54, 58, 65, 68, 69, 72, 76, 81], "attribut": [3, 38, 65, 69], "coprocessor": [3, 34, 38], "shots_count": [3, 7, 8, 9, 10, 13, 17, 18, 19, 24, 26, 52, 59, 64, 65, 67], "over": [3, 5, 12, 13, 16, 17, 23, 24, 26, 28, 34, 46, 52, 59, 64, 72, 75], "ndarrai": [3, 11, 16, 26, 30, 51], "leav": [3, 16, 26, 52, 64, 75], "doesn": 3, "firstfloat": 3, "secondfloat": 3, "kei": [3, 8, 10, 13, 14, 15, 18, 19, 20, 21, 23, 29, 43, 51, 52, 53, 72, 75, 80], "nois": [3, 9, 13, 17, 21, 26, 34, 44, 52, 55, 64], "model": [3, 9, 17, 20, 23, 26, 31, 32, 33, 34, 36, 38, 41, 46, 47, 48, 51, 52, 54, 64, 69, 72, 75, 80, 81], "sampleresult": [3, 9, 59, 65, 72], "_mlir_lib": [3, 13], "_quakedialect": [3, 13], "cudaq_runtim": [3, 13], "asyncsampleresult": [3, 13, 64], "platform": [3, 13, 23, 24, 31, 32, 33, 41, 47, 50, 51, 52, 53, 55, 59, 63, 67, 69, 72, 73, 75, 80, 81], "Will": [3, 43, 59], "whose": [3, 4, 11, 14, 19, 22, 34, 39, 51, 53, 54, 63, 68], "identif": 3, "spin_oper": [3, 14, 59], "spinoper": [3, 8, 9, 11, 12, 13, 14, 20, 23, 59, 67], "nest": [3, 12, 54], "hermitian": [3, 12], "observeresult": [3, 59], "observe_async": [3, 12, 23, 24, 28, 34, 53, 67], "asyncobserveresult": 3, "arg0": [3, 69], "prepar": [3, 5, 9, 10, 11, 12, 13, 15, 18, 20, 22, 24, 28, 61, 63, 65, 67], "select": [3, 8, 9, 11, 12, 13, 17, 19, 20, 21, 22, 23, 29, 55, 59, 63, 75, 79], "get_state_async": [3, 54], "asyncstateresult": 3, "parameter_count": [3, 8, 9, 14, 22, 23, 67], "argument_mapp": [3, 14], "gradient_strategi": [3, 28], "arg1": 3, "format": [3, 11, 19, 21, 30, 34, 37, 46, 73], "ascii": [3, 30], "latex": [3, 30], "cx": [3, 9, 13, 16, 18, 21, 36, 52, 53, 67, 80], "translat": [3, 16, 19, 21, 24, 34, 68, 69], "qir": [3, 69, 72], "adapt": [3, 14, 21, 32, 81], "openqasm2": 3, "openqasm": 3, "moduleid": [3, 69], "llvmdialectmodul": [3, 69], "source_filenam": [3, 69], "opaqu": [3, 46, 69], "__nvqpp__mlirgen__function_variable_qreg": 3, "_z13variable_qregv": 3, "local_unnamed_addr": [3, 69], "tail": [3, 69], "__quantum__rt__qubit_allocate_arrai": [3, 69], "i64": [3, 69], "__quantum__qis__mz": [3, 69], "9": [3, 4, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 23, 24, 28, 30, 32, 34, 38, 39, 64, 69, 73, 75, 81], "7": [3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 32, 34, 38, 39, 41, 46, 54, 64, 67, 69, 73, 75, 81], "__quantum__rt__qubit_release_arrai": [3, 69], "ret": [3, 69], "evolv": [3, 4, 16, 39, 51, 52, 68], "hamiltonian": [3, 6, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 28, 37, 51, 52, 53, 54, 55, 59, 63], "operatorsum": 3, "productoper": 3, "elementaryoper": [3, 51], "scalaroper": [3, 51, 64], "schedul": [3, 14, 21, 51, 52, 59, 64], "initial_st": [3, 51], "union": [3, 18], "sequenc": [3, 7, 13, 14, 19, 21, 48, 51, 58], "collapse_oper": [3, 51], "store_intermediate_result": [3, 51], "integr": [3, 4, 13, 23, 31, 33, 39, 46, 52, 54, 75, 76], "baseintegr": 3, "evolveresult": 3, "evolut": [3, 4, 16, 20, 30, 32, 37, 39, 48, 51, 64, 72, 81], "degre": [3, 8, 23, 29, 51], "freedom": [3, 8, 51], "keyword": [3, 13], "access": [3, 4, 5, 7, 10, 12, 13, 15, 20, 23, 24, 28, 32, 34, 39, 52, 53, 55, 65, 66, 67, 68, 72, 81], "properti": [3, 4, 7, 9, 13, 19, 48], "influenc": [3, 13, 29, 39], "dure": [3, 4, 6, 20, 21, 26, 34, 52, 55, 73, 75, 79], "evolve_async": [3, 52, 64], "asyncevolveresult": 3, "has_target": 3, "get_target": [3, 10, 23, 53, 54, 63, 80], "rais": [3, 12, 13, 51], "set_target": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 28, 30, 51, 52, 53, 54, 55, 59, 63, 64, 67, 72], "reset_target": [3, 13], "initialize_cudaq": 3, "environ": [3, 4, 9, 13, 23, 26, 29, 32, 52, 53, 54, 60, 64, 71, 73, 75, 80, 81], "detect": [3, 13, 59, 67, 73, 75, 79], "simulationprecis": 3, "underyl": 3, "noindex": 3, "infrastructur": [3, 32, 54, 71, 73, 81], "descript": [3, 21, 51, 53, 55, 72, 73, 75], "featur": [3, 4, 9, 15, 29, 32, 38, 73, 75, 79, 80, 81], "activ": [3, 4, 8, 11, 31, 54, 55, 73, 75, 80], "consist": [3, 4, 9, 17, 19, 21, 23, 28, 51, 59, 61], "physic": [3, 4, 13, 14, 16, 21, 23, 32, 33, 39, 46, 48, 52, 54, 55, 64, 68, 81], "0101": [3, 13, 17], "1010": [3, 13, 17], "consol": [3, 53, 60, 73], "cupi": [3, 51, 75], "gettensor": 3, "compris": [3, 51], "tensori": 3, "mlirvalu": 3, "As": [3, 13, 14, 21, 33, 39, 40, 46, 51, 52, 54, 55, 57, 68, 71], "hold": [3, 12], "__add__": 3, "runtimeerror": [3, 9], "new_valu": 3, "5": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 37, 38, 39, 41, 42, 45, 46, 51, 53, 54, 55, 61, 63, 64, 67, 69, 73, 75, 77, 81], "__radd__": 3, "__sub__": 3, "__rsub__": 3, "__neg__": 3, "__mul__": 3, "__rmul__": 3, "__getitem__": 3, "you": [3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 23, 29, 30, 31, 32, 34, 51, 52, 53, 55, 59, 61, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81], "complexmatrix": 3, "lowest": [3, 4, 21, 23], "num_column": 3, "num_row": 3, "to_numpi": 3, "get_valu": 3, "complexflo": [3, 51], "od": [3, 19], "master": 3, "equat": [3, 4, 5, 13, 14, 15, 19, 21, 51], "solver": [3, 12, 31, 51, 52], "expectation_valu": [3, 6, 51, 63], "intermedi": [3, 16, 51, 69], "were": [3, 5, 9, 13, 19, 23, 30, 51, 75], "final_expectation_valu": 3, "trigger": 3, "final_st": 3, "intermediate_st": 3, "elementari": 3, "operator_id": 3, "further": [3, 7, 8, 41, 48, 57, 59, 69, 72, 80], "simplifi": [3, 55], "classmethod": 3, "op_id": 3, "expected_dimens": 3, "dtype": [3, 10, 12, 13, 18, 21, 26, 51, 61], "definit": [3, 13, 15, 21, 34, 36, 38, 51, 61, 72], "instanti": [3, 30, 34, 39, 45, 46, 51, 53, 54, 79], "To": [3, 9, 13, 14, 15, 18, 19, 21, 26, 34, 38, 41, 46, 51, 52, 53, 54, 55, 58, 59, 63, 64, 65, 69, 71, 72, 73, 75, 76, 77, 79, 80], "addit": [3, 7, 8, 9, 13, 15, 19, 27, 34, 53, 57, 58, 67, 73, 79, 80], "canon": 3, "sort": [3, 8, 12, 19, 76], "neg": [3, 13, 18, 30, 41, 55], "short": [3, 10, 13, 48], "atomic_oper": 3, "rydberghamiltonian": [3, 52, 64], "atom_sit": [3, 52, 64], "delta_glob": [3, 52, 64], "atom_fil": 3, "delta_loc": 3, "quera": [3, 32, 50, 81], "aquila": [3, 52, 64], "machin": [3, 9, 13, 14, 21, 33, 47, 52, 54, 64, 75], "ref": [3, 21, 48, 69], "http": [3, 4, 5, 9, 11, 14, 15, 19, 21, 23, 24, 51, 52, 54, 61, 64, 73, 75], "doc": [3, 9, 24, 32, 54, 64, 81], "aw": [3, 52, 64, 73], "amazon": [3, 32, 81], "com": [3, 4, 5, 9, 11, 13, 14, 15, 21, 24, 52, 55, 64, 73, 75], "braket": [3, 4, 12, 32, 50, 81], "latest": [3, 4, 5, 14, 15, 23, 32, 54, 64, 73, 75, 81], "developerguid": [3, 64], "analog": [3, 52, 68], "html": [3, 64], "ah": [3, 64], "schema": 3, "__init__": [3, 4, 9, 11], "consum": [3, 48, 79], "suppli": [3, 24, 52, 64], "coordin": [3, 30], "tweezer": 3, "trap": [3, 68], "atom": [3, 4, 13, 22, 51, 52, 64, 68], "drive": [3, 4, 8, 39, 51], "omega": [3, 20, 51, 52, 64], "detun": [3, 64], "mark": [3, 9, 79], "occupi": [3, 23, 54], "fill": [3, 38, 64, 72], "factor": [3, 15, 18, 31], "magnitud": [3, 11, 21], "h_k": 3, "dimensionless": 3, "parameter_info": 3, "cudm_stat": 3, "cudensitymatst": 3, "to_cupy_arrai": 3, "termin": [3, 28, 64, 67, 75], "At": [3, 4, 20, 73, 75], "directli": [3, 33, 34, 39, 46, 48, 55, 69, 75, 79, 80], "through": [3, 5, 7, 9, 11, 12, 16, 19, 20, 23, 26, 27, 34, 52, 57, 60, 61, 65, 72, 73, 75, 80], "c_if": [3, 36], "__iter__": 3, "__len__": 3, "equival": [3, 14, 51, 54, 55, 59, 61], "metadata": [3, 22, 69], "experi": [3, 9, 18, 29, 52, 64, 73, 75], "adher": [3, 11, 16, 38, 40, 46, 68, 72], "implicit": [3, 34, 46, 48, 51], "expectation_z": 3, "get_marginal_count": [3, 18], "marginal_indic": 3, "get_register_count": 3, "get_sequential_data": 3, "item": [3, 4, 11, 13, 18, 19, 79], "frequent": 3, "proport": 3, "kick": [3, 54], "pattern": [3, 9, 21, 33, 34, 38, 47, 69, 71], "sub_term": 3, "favor": 3, "get_spin": 3, "accessor": [3, 54], "optimizationresult": 3, "gradientdesc": 3, "initial_paramet": [3, 6, 8, 9, 14], "lower_bound": 3, "max_iter": [3, 9], "requires_gradi": 3, "upper_bound": 3, "upper": [3, 13], "neldermead": [3, 8, 14], "lbfg": [3, 34, 53], "centraldiffer": [3, 28], "parameter_vector": [3, 9, 14, 23, 28, 53], "loss": 3, "forwarddiffer": 3, "parametershift": 3, "krauschannel": [3, 13, 26], "num_control": 3, "bitflipchannel": [3, 13, 17, 18, 26], "decoher": [3, 26, 51], "Its": [3, 46, 55, 68, 69], "vice": 3, "versa": 3, "180": 3, "therebi": [3, 34, 54, 69], "k_0": [3, 26], "k_1": [3, 26], "therefor": [3, 4, 8, 12, 14, 15, 16, 19, 21, 23, 46, 69, 71], "phaseflipchannel": [3, 26], "untouch": 3, "depolarizationchannel": [3, 13, 26], "mixtur": 3, "k_2": 3, "k_3": 3, "2x2": [3, 55], "decai": [3, 26], "And": [3, 13, 14, 48], "behav": 3, "free": [3, 6, 9, 14, 21, 34, 36, 37, 38, 39, 41, 43, 45, 52, 53, 57, 65, 69, 72, 75], "75": [3, 9, 15], "uniform": [3, 8, 9, 14, 17, 18, 34, 37, 59, 67], "amplitudedampingchannel": [3, 26], "dissip": 3, "energi": [3, 4, 9, 10, 13, 22, 23, 28, 34, 53, 63], "due": [3, 9, 13, 22, 26, 30, 34, 52, 55, 59, 79], "ii": [3, 12, 14], "ground": [3, 4, 8, 9, 10, 22, 23, 31, 51, 52, 53, 64, 68], "krausoper": 3, "ki": [3, 12], "dag": [3, 30, 43], "col_count": 3, "row_count": 3, "scatter": [3, 9], "concaten": 3, "arg2": 3, "bin": [3, 17, 21, 52, 54, 64, 73, 75], "interferomet": [3, 52, 64], "tbi": [3, 4, 52, 64], "boson": [3, 51, 52, 64], "done": [4, 9, 12, 13, 19, 23, 30, 46, 60, 73, 75], "collabor": 4, "team": [4, 9], "basf": 4, "In": [4, 5, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 26, 28, 30, 34, 38, 48, 51, 52, 54, 55, 57, 59, 61, 63, 64, 65, 71, 72, 73, 79], "tutori": [4, 8, 9, 10, 12, 13, 14, 17, 18, 20, 21, 23, 75], "hybrid": [4, 6, 13, 23, 31, 52, 76, 80], "workflow": [4, 6, 8, 11, 31, 34, 51, 52, 62, 69, 73, 76], "strongli": [4, 8, 13, 73], "algorithm": [4, 6, 8, 9, 10, 13, 14, 15, 20, 22, 23, 28, 31, 33, 36, 38, 47, 48, 53, 54, 55, 59, 61, 63, 66, 75], "eigensolv": [4, 23, 31], "preserv": [4, 16, 26], "propos": [4, 21], "anselmetti": 4, "et": [4, 14, 21], "al": [4, 14, 21], "2021": 4, "psi_t": 4, "estim": [4, 10, 12, 13, 18, 19, 20, 22, 23, 28, 59], "packag": [4, 6, 7, 9, 11, 12, 13, 18, 51, 73, 75, 79, 80], "instal": [4, 9, 11, 12, 13, 18, 19, 21, 22, 30, 31, 32, 51, 52, 55, 69, 71, 72, 76, 77, 79, 81], "pip": [4, 9, 11, 12, 13, 18, 19, 21, 22, 23, 30, 51, 54, 55, 73, 75, 80], "pyscf": [4, 12, 23], "6": [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 32, 34, 37, 38, 39, 41, 42, 46, 52, 53, 54, 55, 63, 64, 69, 73, 75, 81], "openfermion": [4, 12, 23], "ipi": 4, "warn": [4, 9, 23, 52], "39": [4, 6, 8, 13, 16, 17, 18, 19, 23, 73, 75], "root": [4, 73, 75], "broken": 4, "permiss": [4, 73, 75], "conflict": [4, 73, 75, 80], "behaviour": 4, "render": [4, 30], "your": [4, 5, 8, 9, 23, 24, 30, 31, 34, 51, 52, 53, 54, 55, 56, 63, 64, 67, 72, 73, 75, 79], "unus": 4, "recommend": [4, 13, 21, 34, 64, 73, 75, 80], "pypa": 4, "io": [4, 23, 61, 75], "venv": 4, "want": [4, 9, 10, 13, 14, 16, 18, 19, 21, 30, 48, 51, 53, 54, 69, 72, 73, 75, 77, 80], "suppress": 4, "matplotlib": [4, 6, 8, 9, 11, 13, 18, 19, 22, 23, 30, 51], "pyplot": [4, 6, 8, 9, 11, 13, 18, 19, 22, 23, 30, 51], "plt": [4, 6, 8, 9, 11, 13, 18, 19, 21, 22, 23, 30, 51], "gto": 4, "scf": 4, "ao2mo": 4, "mcscf": 4, "afqmc_src": 4, "vqe_cudaq_qnp": 4, "get_cudaq_hamiltonian": 4, "utils_ipi": 4, "get_coeff_wf": 4, "gen_ipie_input_from_pyscf_chk": 4, "hamgener": 4, "qmc": 4, "trial_wavefunct": 4, "particle_hol": 4, "particlehol": 4, "analysi": [4, 8, 9, 48, 69], "extract_observ": 4, "nvidia": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 23, 24, 28, 29, 31, 32, 33, 39, 50, 51, 55, 59, 61, 63, 67, 72, 73, 75, 77, 80, 81], "recent": [4, 9, 19, 21], "tricki": 4, "manual": [4, 24, 52, 54, 73, 75], "sever": [4, 9, 65], "streamlin": [4, 31, 80], "update_opt": 4, "use_gpu": 4, "usr": [4, 69, 73, 75, 79], "lib": [4, 69, 71, 72, 73, 75, 76, 79, 80], "python3": [4, 9, 51, 54, 55, 59, 60, 67, 73, 75, 80], "dist": [4, 9, 18, 79], "qutip": [4, 30], "py": [4, 9, 29, 54, 55, 59, 60, 67, 75, 80], "66": [4, 8, 9], "userwarn": 4, "cython": 4, "gt": [4, 16, 21, 24, 28, 73, 75], "molecul": [4, 22, 23, 31], "build": [4, 6, 9, 10, 12, 13, 14, 17, 18, 22, 23, 28, 30, 31, 32, 36, 41, 42, 51, 56, 58, 59, 62, 63, 68, 71, 72, 75, 76, 77, 79, 81], "preliminari": [4, 19], "hartre": [4, 12, 22, 23], "fock": [4, 12, 22, 23, 51], "choos": [4, 17, 19, 26, 59, 64, 75], "chelat": 4, "agent": [4, 73], "substanc": 4, "industri": [4, 13], "scale": [4, 5, 18, 19, 21, 41, 51, 55, 67, 68], "Their": [4, 52, 73], "among": [4, 14, 54], "water": [4, 23], "soften": 4, "redox": 4, "oxid": 4, "bleach": 4, "soil": 4, "remedi": 4, "ligand": [4, 8], "catalyst": 4, "particular": [4, 5, 14, 17, 30, 32, 51, 52, 75, 79, 81], "focu": [4, 19, 21, 29], "fe": 4, "iii": 4, "nta": 4, "below": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 34, 51, 52, 53, 54, 55, 59, 61, 64, 67, 69, 73, 75, 79, 80, 81], "fenta": 4, "geo_fenta": 4, "xyz": [4, 27], "cc": [4, 48, 69, 73], "pvtz": 4, "num_active_orbit": 4, "num_active_electron": 4, "o3": 4, "smaller": [4, 8, 9, 10, 12, 55], "less": [4, 9, 19, 73], "geo_o3": 4, "12": [4, 9, 11, 13, 16, 17, 18, 21, 23, 28, 30, 34, 53, 69, 73, 75, 80], "help": [4, 8, 12, 13, 17, 18, 24, 25, 30, 60, 61, 75], "restric": 4, "open": [4, 13, 52, 54, 64, 69, 73, 75], "shell": [4, 30, 73, 75, 80], "hf": 4, "hartee_fock": 4, "rohf": 4, "chkfile": 4, "chk": 4, "224": [4, 18], "34048064812222": 4, "600": [4, 75], "orbit": [4, 23], "would": [4, 5, 9, 12, 13, 14, 15, 16, 17, 19, 23, 24, 29, 32, 48, 51, 67, 68, 73, 75, 77, 79, 81], "1200": 4, "143": 4, "electron": [4, 13, 22, 23], "imposs": 4, "statevector": [4, 6, 15, 16, 24, 67, 68, 80], "space": [4, 5, 10, 12, 30, 31, 39, 46, 51, 54, 64], "fewer": [4, 8, 9, 19, 20, 23, 55], "contribut": [4, 23, 28, 32, 75, 81], "whole": 4, "post": [4, 13, 21, 34, 52, 75], "casci": 4, "obtain": [4, 9, 12, 13, 17, 18, 22, 23, 30, 32, 52, 53, 73, 81], "bodi": [4, 38], "t_": 4, "pq": 4, "v_": [4, 12], "prq": 4, "sum_": [4, 5, 8, 12, 14, 15, 20, 26, 42, 68], "hat": [4, 12, 80], "pqr": 4, "a_": 4, "tag": [4, 7, 15, 19, 73, 75], "jordan_wign": [4, 23], "generate_hamiltonian": 4, "fix_spin_": 4, "ss": 4, "h1": [4, 51, 52, 64], "shown": [4, 7, 10, 12, 13, 16, 52, 54, 55], "energy_cor": 4, "get_h1eff": 4, "h2": [4, 12], "get_h2eff": 4, "h2_no_symmetri": 4, "restor": 4, "v_pqr": 4, "asarrai": 4, "transpos": [4, 12], "mol_ham": 4, "jw_hamiltonian": 4, "constant_term": 4, "guess": [4, 5, 12, 19], "n_vqe_lay": 4, "maxit": [4, 18, 22, 23, 28], "100": [4, 5, 9, 11, 16, 17, 18, 19, 20, 26, 37, 51, 52], "return_final_state_vec": 4, "n_qubit": [4, 13, 16, 18, 37], "best": [4, 8, 9, 15, 21, 23, 73, 75], "optimized_energi": 4, "energy_optim": 4, "final_state_vector": 4, "state_vec": 4, "vqe_energi": 4, "callback_energi": 4, "num": [4, 10], "16": [4, 8, 9, 13, 17, 18, 19, 21, 23, 24, 28, 30, 53, 61, 69], "18": [4, 9, 13, 17, 18, 21, 30, 61, 69], "n_layer": 4, "3881035525103": 4, "numer": [4, 19, 31], "combin": [4, 5, 10, 12, 18, 19, 23, 27, 29, 31, 58, 59, 68, 78, 79], "walk": [4, 9, 23, 72, 73, 75], "accur": [4, 18, 55], "wide": [4, 14, 21, 48, 69, 79], "solid": 4, "summar": [4, 15, 75], "while": [4, 17, 19, 21, 23, 24, 32, 38, 58, 59, 61, 64, 69, 73, 75, 79, 81], "introduct": [4, 31, 47, 62, 77, 80], "found": [4, 8, 9, 10, 12, 13, 19, 24, 30, 32, 34, 37, 41, 51, 52, 59, 61, 72, 73, 75, 77, 78, 80, 81], "quantiz": [4, 15], "_1": [4, 18], "_2": 4, "h_": [4, 12, 13, 16], "frac": [4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 30, 51], "_r": 4, "fermion": 4, "annihil": [4, 51], "h_1": [4, 51], "h_2": [4, 22, 31], "omit": [4, 73], "propag": 4, "chosen": [4, 23, 55, 67, 73], "slater": [4, 12], "ket": [4, 5, 6, 7, 10, 12, 15, 16, 24, 30, 59, 68], "psi_": [4, 7, 12, 16], "toward": [4, 10, 13], "psi_0": [4, 7, 16], "sim": [4, 13, 52, 64], "lim_": 4, "infti": 4, "delta": [4, 52, 64], "tau": 4, "reli": [4, 21, 41, 69, 75, 77, 79], "squar": [4, 17, 18, 46, 68], "gamma": 4, "becom": [4, 5, 9, 18, 23, 55, 63, 75, 76], "v_0": [4, 14], "n_": 4, "nbsphinx": [4, 19], "l": [4, 9, 19, 23, 28, 34, 69, 77, 79], "choleski": 4, "decomposit": [4, 17, 31, 55], "pr": [4, 31], "ensembl": [4, 59], "walker": 4, "mathcal": [4, 12], "text": [4, 6, 7, 15, 18, 21, 24, 30], "loc": [4, 13], "bra": [4, 6, 10, 24, 59], "mathrm": 4, "mix": [4, 26, 64], "wavefunct": [4, 23, 68], "checkpoint": 4, "ipie_hamiltonian": 4, "chol_cut": 4, "1e": [4, 12, 13, 23, 28, 55, 64], "h1e": 4, "cholesky_vector": 4, "e0": 4, "num_basi": 4, "shape": [4, 11, 16, 21, 23, 28, 67], "num_chol": 4, "nelec": 4, "afqmc_hamiltonian": 4, "reshap": [4, 11, 16], "n_active_elec": 4, "num_dets_for_prop": 4, "len": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 27, 28, 37, 46, 51, 54, 59, 64, 67, 80], "compute_trial_energi": 4, "half_rot": 4, "timestep": 4, "num_walk": 4, "num_block": 4, "afqmc_msd": 4, "num_steps_per_block": 4, "25": [4, 9, 11, 13, 15, 18, 19, 20, 25, 37, 53, 54, 55, 59, 61, 67, 75], "005": 4, "stabilize_freq": 4, "96264512": 4, "pop_control_freq": 4, "estimator_filenam": 4, "h5": 4, "finalis": 4, "qmc_data": 4, "filenam": [4, 67], "weight": [4, 8, 9, 21], "weightfactor": 4, "hybridenergi": 4, "edenom": 4, "etot": 4, "e1bodi": 4, "e2bodi": 4, "0000000000000000e": 4, "02": [4, 13, 73, 75], "2437583763935545e": 4, "04": [4, 73, 75], "2437583763935547e": 4, "7639365190228011e": 4, "5201781426292453e": 4, "2276634193515412e": 4, "4127560668989827e": 4, "03": [4, 9, 53], "1711742028818304e": 4, "2473358126540003e": 4, "9999999999999986e": 4, "2473358126540006e": 4, "7646854013277283e": 4, "5173495886737268e": 4, "0031922288872407e": 4, "8320523739865604e": 4, "1743088014788954e": 4, "2489226882493567e": 4, "0000000000000001e": 4, "2489226882493563e": 4, "7650504938463922e": 4, "5161278055970348e": 4, "9900990681040355e": 4, "0008400623205630e": 4, "1736864885170948e": 4, "2495677577437204e": 4, "9999999999999972e": 4, "2495677577437212e": 4, "7659644834889821e": 4, "5163967257452603e": 4, "0009188692360159e": 4, "0005173726372723e": 4, "1748969527283802e": 4, "2495531836556856e": 4, "2495531836556853e": 4, "7675907314082951e": 4, "5180375477526098e": 4, "9997269300807844e": 4, "0010618465796188e": 4, "1752703012577417e": 4, "2502732667629320e": 4, "2502732667629317e": 4, "7663343013337044e": 4, "5160610345707727e": 4, "0012131352337956e": 4, "0019003056579172e": 4, "1770170647504112e": 4, "2513369839216481e": 4, "2513369839216480e": 4, "7660812717909516e": 4, "5147442878693036e": 4, "9936984461419740e": 4, "9929966800671224e": 4, "1765353928750643e": 4, "2516138533920657e": 4, "2516138533920659e": 4, "7660292355465600e": 4, "5144153821544941e": 4, "9902337463172714e": 4, "9910800755312891e": 4, "1761532255317621e": 4, "2518524275281430e": 4, "2518524275281433e": 4, "7674246483479845e": 4, "5155722208198404e": 4, "0012943675389775e": 4, "0013880643723378e": 4, "1780913595074867e": 4, "2512465963277762e": 4, "7677999264623367e": 4, "5165533301345607e": 4, "9628730363609819e": 4, "9223106824565718e": 4, "1749814144939067e": 4, "2517668156221851e": 4, "2517668156221850e": 4, "7688306341863290e": 4, "5170638185641434e": 4, "plot": [4, 6, 8, 9, 11, 13, 18, 20, 21, 22, 23, 51], "vqe_i": 4, "vqe_x": 4, "label": [4, 8, 9, 11, 13, 18, 21, 69, 73, 80], "afqmc_i": 4, "afqmc_x": 4, "xlabel": [4, 6, 8, 9, 11, 21, 22, 23, 51], "ylabel": [4, 6, 8, 9, 11, 21, 22, 23, 51], "legend": [4, 9, 11, 13, 51], "lt": [4, 9, 24, 28], "0x7fea847f35e0": 4, "__version__": [4, 5, 11, 14, 15, 21, 24], "github": [4, 5, 9, 11, 14, 15, 21, 23, 24, 32, 52, 55, 61, 73, 75, 80, 81], "176f1e7df8a58c2dc3d6b1b47bf7f63b4b8d3b63": [4, 5], "bv": 5, "demonstr": [5, 6, 7, 8, 10, 12, 13, 15, 17, 19, 20, 21, 22, 27, 28, 33, 34, 36, 51, 54, 59, 66, 69], "exponenti": [5, 10, 12, 15, 18, 20, 42, 67], "speedup": [5, 20, 23, 53, 67], "suppos": [5, 7, 76], "oracl": [5, 37], "longrightarrow": [5, 7], "dot": [5, 10, 12, 14, 18], "secret": [5, 37, 75], "x_1s_1": 5, "x_2s_2": 5, "x_ns_n": 5, "our": [5, 6, 7, 9, 13, 14, 16, 19, 21, 26, 30, 32, 48, 51, 52, 57, 59, 64, 65, 66, 67, 69, 73, 75, 76, 77, 80, 81], "find": [5, 7, 8, 9, 12, 14, 18, 21, 22, 23, 31, 52, 53, 54, 68, 69, 73, 75], "101": [5, 9, 15, 16, 18, 19, 37], "henc": [5, 15, 16, 24, 48, 51, 52, 54, 59, 67, 68, 73, 75, 79], "dont": [5, 24], "x_3s_3": 5, "strateg": 5, "st": 5, "001": [5, 11, 15, 16, 18, 19, 75], "nd": 5, "010": [5, 15, 16, 18, 19], "rd": 5, "rememb": [5, 7, 9, 24], "perspect": 5, "inner": [5, 16, 46, 54], "mechan": [5, 7, 16, 34, 36, 42, 46, 48, 51, 54, 60, 68, 71], "hidden": [5, 39], "why": [5, 15], "did": [5, 19, 73, 75], "011": [5, 16, 18, 19, 37], "s_3": 5, "isol": [5, 59], "s_2": 5, "difficult": [5, 8, 34], "speak": 5, "advantag": [5, 7, 20, 21, 23, 29, 75], "entangl": [5, 16, 26, 30, 39, 53, 57, 64], "problem": [5, 7, 9, 10, 12, 14, 15, 22, 23, 48, 51, 58], "answer": [5, 15], "black": [5, 7, 9, 13], "box": [5, 7, 26, 79], "setup": [5, 8, 32, 51, 55, 64, 75, 81], "auxiliari": [5, 31], "kickback": 5, "hadamard": [5, 12, 15, 16, 19, 25, 31, 36, 41, 46, 48, 65, 68, 71], "sum_x": 5, "u_f": [5, 7], "oplu": 5, "neq": [5, 7, 8, 19], "chanc": [5, 17, 19, 79], "cell": [5, 8, 12, 13, 16, 17, 23, 27, 30], "small": [5, 9, 10, 18, 19, 23, 55, 79], "increas": [5, 8, 10, 12, 20, 29, 32, 51, 55, 59, 67, 75, 80, 81], "30": [5, 9, 11, 13, 16, 18, 21, 54, 67], "qpp": [5, 9, 11, 13, 14, 15, 16, 21, 24, 50, 53, 55, 59, 67, 69, 72, 75, 80], "qubit_count": [5, 7, 11, 14, 15, 19, 22, 23, 24, 26, 54, 57, 59, 67, 80], "secret_str": 5, "whatev": 5, "prefer": [5, 73, 75], "insid": [5, 9, 13, 54, 75], "auxiliary_qubit": 5, "verifi": [5, 7, 15, 19, 25, 51, 68], "procedur": [5, 6, 8, 9, 12, 17, 21, 22, 23, 28], "bernstein_vazirani": [5, 75], "auxillari": [5, 9, 12, 17], "place": [5, 14, 16, 23, 24, 29, 54, 57, 59], "success": [5, 28, 64, 71], "join": [5, 13, 18, 19], "q2": [5, 9, 15, 19, 21, 30], "q3": [5, 9, 19, 30], "q4": [5, 9, 19], "q5": [5, 19], "11010": [5, 14, 19], "involv": [6, 8, 19, 55, 67, 69, 79], "bloch": [6, 30], "rx": [6, 8, 9, 10, 11, 13, 14, 16, 18, 30, 41, 45, 61, 67], "intial": 6, "cost_valu": [6, 8], "initial_cost_valu": 6, "suit": [6, 21, 75], "alogrithm": 6, "decreas": [6, 51], "x_valu": [6, 8], "y_valu": [6, 8], "epoch": [6, 8, 11, 22, 23], "concis": 7, "desutch": 7, "balanc": 7, "regardless": [7, 12, 16, 32, 79, 81], "ouput": 7, "carri": [7, 19], "treat": [7, 54], "snippet": [7, 51, 53, 54, 63, 69, 75], "don": [7, 15, 32, 34, 53, 81], "elif": [7, 13], "notic": [7, 9, 14, 16, 19, 21, 23, 48, 67, 69, 76], "That": [7, 13, 24, 34, 80], "twice": [7, 23], "claim": [7, 17], "evalul": 7, "outlin": [7, 13, 19, 79], "symbol": [7, 73, 79], "OR": [7, 64], "rule": [7, 19, 23, 51], "modulo": [7, 19], "oplus5": 7, "8_": 7, "oplus4": 7, "9_": 7, "quick": [7, 16, 31, 52, 77], "yield": [7, 16, 24, 55, 68, 80], "align": [7, 15, 16, 69, 79], "remark": [7, 21], "becaus": [7, 18, 19, 21, 48, 55, 64, 73, 75, 80], "overlin": 7, "bar": [7, 14, 15, 18, 30], "top": [7, 9, 13, 18, 19, 54, 61, 72, 76], "denot": [7, 15, 17, 38, 40], "prove": [7, 68], "shall": [7, 16, 68], "tfrac": [7, 16, 68], "summari": 7, "unchang": [7, 26, 69], "simultan": [7, 53], "exploit": [7, 55], "abil": [7, 17, 20, 21, 39, 69], "aim": [7, 9, 14, 19], "diagram": [7, 8, 14, 15, 16, 19, 52, 64], "psi_1": 7, "h_1h_0": 7, "psi_2": 7, "drop": [7, 13], "figur": [7, 8, 9, 10, 11, 15, 16, 17, 19, 20, 21, 23, 29, 69], "pm": 7, "practic": [7, 9, 10, 12, 17, 18, 21, 23], "fx": 7, "qubit_0": [7, 14, 16, 61], "half": [7, 64], "neither": 7, "nor": 7, "b_0": 7, "b_1": 7, "hint": 7, "approach": [7, 8, 9, 15, 18, 19, 34, 38, 55, 69], "solv": [7, 8, 12, 14, 15, 51, 58], "drug": 8, "often": [8, 19, 23, 34, 48, 61, 73, 75], "bind": [8, 33, 36, 38, 41, 73], "protein": [8, 21], "inhibit": 8, "therapeut": 8, "purpos": [8, 12, 19, 39, 48, 51, 75], "candid": 8, "extrem": [8, 34], "studi": [8, 16, 21], "guid": [8, 32, 52, 73, 75, 77, 80, 81], "search": [8, 19, 21, 73, 75], "predict": [8, 13, 68], "usual": [8, 9, 73, 75, 79], "One": [8, 15, 19, 21, 23, 24, 34, 48, 52, 54, 55, 60, 63], "challeng": [8, 9, 19], "aris": [8, 21, 26], "mani": [8, 9, 15, 16, 17, 19, 21, 23, 24, 27, 28, 32, 41, 44, 54, 55, 59, 61, 67, 80, 81], "geometr": 8, "present": [8, 9, 14, 18, 21, 24, 28, 59, 73, 76], "orient": 8, "assess": [8, 13], "good": [8, 12, 23], "solut": [8, 14, 19], "formul": [8, 48], "mathemat": [8, 16, 51, 68], "paper": [8, 9, 10, 12, 13, 17, 19], "digit": [8, 11], "counteradiabat": 8, "understand": [8, 9, 12, 13, 16, 18, 33, 75], "pleas": [8, 9, 12, 23, 30, 32, 53, 54, 55, 64, 67, 71, 73, 75, 80, 81], "maxcut": 8, "There": [8, 9, 16, 24, 27, 34, 36, 52, 53, 54, 61, 67, 75], "experiment": [8, 13, 32, 75, 81], "pharmacor": 8, "chemic": [8, 13, 22], "group": [8, 9, 46, 55], "govern": [8, 20], "distanc": [8, 9, 16, 18, 22], "graph": [8, 9, 14], "lag": 8, "node": [8, 9, 12, 14, 33, 54, 67, 73], "edg": [8, 9, 14], "feesibli": 8, "coexist": 8, "cliqu": 8, "mutual": 8, "comment": [8, 14], "discret": [8, 21, 46], "natur": [8, 9, 16, 30, 52, 55, 68], "qubit_num": [8, 10, 23], "non_edg": 8, "6686": 8, "1453": 8, "penalti": [8, 9], "num_lay": 8, "expens": [8, 23, 55], "6886": 8, "1091": 8, "0770": 8, "w_i": 8, "sigma": [8, 12, 20, 51], "z_i": 8, "notin": 8, "z_j": [8, 20], "concern": [8, 68, 73], "vertic": [8, 14], "penal": 8, "ham_cliqu": 8, "spin_ham": [8, 23], "wt": 8, "zip": [8, 12, 73], "strip": [8, 12, 20, 73], "term_coeffici": 8, "ham": [8, 10, 12, 20], "term_word": 8, "coef": [8, 12], "0j": [8, 10, 14, 59, 61], "iiziiz": 8, "ziizii": 8, "1657": 8, "iziiii": 8, "iziizi": 8, "42735": 8, "iiizii": 8, "2791499999999996": 8, "iiiiii": 8, "iiziii": 8, "iiiiiz": 8, "ziiiii": 8, "iiiizi": 8, "inclus": [8, 23], "better": [8, 9, 13, 14, 18, 21, 53, 55, 73], "layer": [8, 9, 11, 13, 14, 17, 38, 52], "hopefulli": 8, "offset": 8, "dc_qaoa": 8, "pauli_word": [8, 12, 20, 27, 54], "exp_pauli": [8, 12, 20, 27], "k": [8, 10, 12, 13, 15, 19, 38], "nelder": 8, "mead": 8, "line": [8, 9, 10, 14, 19, 23, 29, 30, 52, 54, 55, 64, 69, 72, 73, 75], "13": [8, 9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 28, 30, 67, 69, 75], "21810696323572243": [8, 14], "20613464375211488": [8, 14], "2546877639814583": [8, 14], "3657985647468064": [8, 14], "37118004688049144": 8, "03656087558321203": 8, "08564174998504231": 8, "21639801853794682": 8, "11122286088634259": 8, "1743727097033635": 8, "36518146001762486": 8, "15829741539542244": 8, "3467434780387345": 8, "28043500852894776": 8, "09986021299050934": 8, "14125225086023052": 8, "19141728018199775": 8, "11970943368650361": 8, "3853063093646483": 8, "1112643868789806": 8, "3527177454825464": 8, "22156160012057186": 8, "1418496891385843": 8, "32811766468303116": 8, "367642000671186": 8, "34158180583996006": 8, "10196745745501312": 8, "29359239180502594": 8, "3858537615546677": 8, "19366130907065582": 8, "24570488114056754": 8, "3332307385378807": 8, "12287973244618389": 8, "007274514934614895": 8, "015799547372526146": 8, "3578070967202224": 8, "39268963055535144": 8, "19872246354138554": 8, "16668715544467982": 8, "13777293592446055": 8, "17514665212709513": 8, "15350249947988204": 8, "32872977428061945": 8, "20068831419712105": 8, "032919322131134854": 8, "19399909325771983": 8, "09477141125241506": 8, "08210460401106645": 8, "21392577760158515": 8, "3393568044538389": 8, "14615087942938465": 8, "03790339186006314": 8, "2843250892879255": 8, "3151384847055956": 8, "19983741137121905": 8, "27348611567665115": 8, "33457528180906904": 8, "14145414847455462": 8, "20604220093940323": 8, "05410235084309195": 8, "04447870918600966": 8, "3355714098595045": 8, "266806440171265": 8, "07436189654442632": 8, "2789176729721685": 8, "2427508182662484": 8, "cost": [8, 9, 11, 12, 14, 22, 23, 28, 31, 34, 53, 64], "optimal_expect": [8, 14], "optimal_paramet": [8, 9, 14, 53], "0057493966746804": 8, "0508763934174787": 8, "013930789730781493": 8, "5793211220774144": 8, "878009560684498": 8, "5277129177248182": 8, "4404810513078178": 8, "5755552245467919": 8, "14125558672355468": 8, "3724262117066903": 8, "1318978057007808": 8, "1228708513911436": 8, "932342804955409": 8, "8478237950658537": 8, "46345886313018125": 8, "5809397306340341": 8, "2408342488137229": 8, "11216088888484882": 8, "009704173265255175": 8, "4757346661223584": 8, "7281211610985926": 8, "06051951319169091": 8, "7794512146826196": 8, "09249435261907034": 8, "09998378319110682": 8, "255349350720572": 8, "2607038244228248": 8, "2060124032311757": 8, "13991934581192997": 8, "9874814082082164": 8, "1591291464755939": 8, "30815482837046393": 8, "9701804681517978": 8, "002609462845755913": 8, "43533533568363353": 8, "642630110681613": 8, "6137063363954748": 8, "7204687246344496": 8, "08390768435524378": 8, "5480630700433249": 8, "38905723227347905": 8, "6837811162838194": 8, "17239016898719284": 8, "1649341118754853": 8, "46771209183422724": 8, "008565327035838663": 8, "982230359328883": 8, "4232972687799105": 8, "22765896988428905": 8, "04207923928239914": 8, "36758378917672285": 8, "01825447063622079": 8, "059755059728027485": 8, "6849697218162497": 8, "2711684382411018": 8, "2904257415666667": 8, "16359529445017368": 8, "09168623367396612": 8, "5786087806926155": 8, "3476755367718726": 8, "1209273564533628": 8, "605136043801364": 8, "19128215816141694": 8, "16756583092588012": 8, "0715488214105267": 8, "5269641128095075": 8, "3029128369198704": 8, "reveal": 8, "bitst": 8, "ideal": [8, 13, 17, 26, 52, 53, 64], "partit": [8, 9, 14, 53, 54, 75], "200000": 8, "mvwcp": 8, "110001": 8, "011100": 8, "111000": 8, "199979": 8, "011000": 8, "converg": [8, 10, 19, 23], "explor": [9, 13, 17, 19, 23, 67, 68, 75], "research": [9, 13, 53], "arxiv": [9, 19], "org": [9, 11, 19, 51, 73, 75], "pdf": [9, 19, 30], "2402": 9, "01529": 9, "edinburgh": 9, "jointli": [9, 21], "develop": [9, 11, 12, 21, 31, 38, 39, 52, 53, 55, 62, 68, 71, 72, 73, 76, 80], "author": 9, "barrier": 9, "mit": 9, "licens": [9, 73, 75], "boniface316": 9, "bigdata_vqa": 9, "unsupervis": 9, "learn": [9, 11, 14, 19, 21, 30, 32, 52, 53, 58, 59, 79, 80, 81], "techniqu": [9, 19, 23, 28, 29, 55, 59], "similar": [9, 24, 34, 54, 59, 73], "characterist": 9, "enhanc": [9, 13, 16, 31], "reliabl": [9, 79], "todai": 9, "limit": [9, 16, 54, 55, 59, 67, 79], "far": [9, 13, 16], "too": [9, 30, 68], "extend": [9, 15, 17, 31, 32, 33, 78, 81], "harrow": 9, "emphas": 9, "util": [9, 11, 21, 26, 34, 46, 53, 54, 55, 67, 69, 72], "bipartit": 9, "branch": [9, 32, 36, 73, 75, 81], "directori": [9, 13, 71, 73, 75, 79], "tree": 9, "uncom": [9, 12, 14, 73, 75], "skip": [9, 30, 73], "mkdir": [9, 72, 73, 76], "divisive_clustering_src": 9, "wget": [9, 73, 75], "githubusercont": 9, "sphinx": 9, "divisive_clust": 9, "main_divisive_clust": 9, "mpi4pi": [9, 55, 80], "networkx": 9, "panda": [9, 18], "scikit": [9, 11], "tqdm": [9, 21], "nx": 9, "pd": [9, 18], "divisiveclust": 9, "dendrogram": 9, "voironi_tessal": 9, "filterwarn": 9, "toggl": 9, "circuit_depth": 9, "max_shot": 9, "x_1": 9, "x_2": [9, 13], "x_n": 9, "much": [9, 10, 13, 23, 72], "w": [9, 13, 43, 55, 64], "reason": [9, 17, 48], "conclus": 9, "variou": [9, 13, 24, 32, 52, 54, 57, 65, 69, 72, 81], "1703": 9, "06476": 9, "essenti": 9, "boil": 9, "down": [9, 16, 54, 64], "toler": [9, 13], "constraint": [9, 18, 21, 38, 39, 40, 55, 59, 64, 68], "priori": 9, "load": [9, 11, 34, 39, 52, 53, 64, 69, 71], "frame": 9, "imag": [9, 11, 12, 14, 16, 19, 21, 30, 32, 51, 64, 73, 80, 81], "star": 9, "create_dataset": 9, "number_of_sampling_for_centroid": 9, "coreset_s": 9, "number_of_coresets_to_evalu": 9, "coreset_method": 9, "bfl2": 9, "coreset_vector": 9, "coreset_weight": 9, "get_best_coreset": 9, "coreset_df": 9, "datafram": [9, 18], "chr": 9, "65": [9, 14, 18, 19, 26], "028364": 9, "669787": 9, "234": [9, 18], "230716": 9, "167441": 9, "354792": 9, "319288": 9, "022889": 9, "921443": 9, "125": [9, 28, 34, 37, 42, 53, 54, 63], "158339": 9, "706134": 9, "636852": 9, "650774": 9, "998497": 9, "455847": 9, "116": 9, "758239": 9, "507918": 9, "630311": 9, "120": [9, 19, 75], "727176": 9, "102508": 9, "297727": 9, "53": [9, 18], "294127": 9, "722463": 9, "400433": 9, "77": [9, 18], "415840": 9, "425868": 9, "341136": 9, "42": [9, 11, 13, 18, 19, 22, 23], "847985": 9, "985373": 9, "063209": 9, "240": 9, "116237": 9, "7eba00": 9, "color": [9, 13, 14], "marker": 9, "titl": [9, 21, 22, 23, 52, 75, 80], "cast": 9, "routin": [9, 14, 34], "e_": 9, "ij": [9, 21], "w_iw_jd_": 9, "d_": [9, 12], "euclidean": 9, "coreset_to_graph": 9, "vqa": 9, "src": [9, 52, 55, 73], "motiv": [9, 47, 73], "cut": [9, 31, 73, 75], "get_k2_hamiltonian": 9, "k2": [9, 13], "r_z": 9, "r_y": 9, "cascad": 9, "benefit": [9, 13, 17, 32, 59, 80, 81], "get_vqe_circuit": 9, "number_of_qubit": 9, "theta_posit": 9, "rz": [9, 13, 14, 16, 30, 37, 41], "visual": [9, 13, 14, 31, 48, 62], "rand": 9, "8904": 9, "7335": 9, "4343": 9, "2236": 9, "7937": 9, "9981": 9, "3945": 9, "696": 9, "3352": 9, "6658": 9, "05277": 9, "791": 9, "003569": 9, "4119": 9, "3205": 9, "3504": 9, "3913": 9, "7392": 9, "3171": 9, "0008056": 9, "proper": 9, "get_optim": 9, "initial_param": [9, 28], "divisiveclusteringvqa": 9, "run_divisive_clust": 9, "get_counts_from_simul": 9, "acceler": [9, 11, 12, 13, 23, 31, 32, 53, 55, 59, 67, 72, 73, 75, 80, 81], "associ": [9, 13, 14, 17, 24, 39, 54, 68], "super": [9, 11, 23], "coreset_vectors_df_for_iter": 9, "coreset_vectors_for_iteration_np": 9, "coreset_weights_for_iteration_np": 9, "_get_iteration_coreset_vectors_and_weight": 9, "metric": [9, 13, 17], "coreset_to_graph_metr": 9, "_get_best_bitstr": 9, "create_hamiltonian": 9, "optimizer_funct": 9, "create_circuit": 9, "objective_funct": [9, 23, 28], "get_result": [9, 23, 28, 51], "mostli": 9, "previous": [9, 28, 32, 52, 75, 81], "threshold_for_max_cut": 9, "percent": [9, 17], "advanc": [9, 19, 23, 29], "normal": [9, 11, 16, 22, 23, 28, 68], "get_divisive_sequ": 9, "analyz": [9, 13, 21, 71], "postprocess": 9, "sourc": [9, 10, 13, 14, 18, 26, 32, 48, 51, 55, 69, 72, 75, 76, 77, 80, 81], "normalize_vector": 9, "sort_by_descend": 9, "hierarchial_clustering_sequ": 9, "129": [9, 19], "12075": 9, "19it": 9, "35025": 9, "50it": 9, "44254": 9, "09it": 9, "15827": 9, "56it": 9, "13617": 9, "87it": 9, "nice": 9, "earli": [9, 53, 75], "split": [9, 13, 67], "least": [9, 14, 19, 20, 21, 24, 54, 73], "dendo": 9, "plot_dendrogram": 9, "plot_titl": 9, "complic": [9, 42], "occasion": 9, "especi": 9, "puzzl": 9, "glanc": [9, 16], "seem": [9, 68, 75, 80], "strai": 9, "belong": 9, "wrong": 9, "explan": 9, "stochast": [9, 34], "few": [9, 14, 19, 21, 23, 61], "pai": [9, 15], "exclud": [9, 53, 59, 73], "proxim": 9, "impact": [9, 23, 26], "look": [9, 16, 29, 30, 32, 48, 51, 52, 54, 58, 59, 63, 64, 65, 66, 67, 69, 73, 75, 81], "unusu": 9, "go": [9, 21, 30, 46, 54, 65, 73, 75], "origin": [9, 12, 16, 26, 48, 69], "14": [9, 10, 11, 13, 16, 17, 18, 19, 21, 23, 30, 53, 61, 64, 69], "plot_hierarchial_split": 9, "hierarch": 9, "flat": [9, 54], "perpendicular": 9, "intersect": 9, "threshold": [9, 12, 13, 19, 55], "height": 9, "get_clusters_using_k": 9, "desir": [9, 19, 21, 44, 51, 54, 59, 72, 73, 75, 77], "15": [9, 11, 13, 17, 18, 21, 23, 30, 61, 67, 69, 73, 75], "threshold_height": 9, "get_clusters_using_height": 9, "red": [9, 18, 24], "blue": [9, 24], "green": [9, 14], "purpl": 9, "orang": 9, "yellow": 9, "color_threshold": 9, "plot_clust": 9, "show_annot": 9, "get_voronoi_tessal": 9, "region": [9, 52], "accord": 9, "centroid": 9, "tesslation_by_clust": 9, "complet": [9, 10, 12, 13, 16, 20, 26, 34, 51, 52, 73, 75, 79, 80], "plot_voironi": 9, "overlai": 9, "vt": 9, "voironi": 9, "tessal": 9, "design": [9, 14, 23, 29, 31, 33, 51, 54, 61, 80], "flexibl": [9, 57, 73], "tool": [9, 13, 18, 24, 27, 28, 30, 32, 48, 69, 71, 73, 77, 79, 81], "get_qaoa_circuit": 9, "3527": 9, "19": [9, 13, 17, 18, 19, 21, 30, 53, 61, 69], "20": [9, 12, 13, 17, 18, 19, 21, 30, 40, 46, 61, 69, 77, 80], "484": 9, "12163": 9, "89it": 9, "52703": 9, "30it": 9, "48": 9, "31987": 9, "07it": 9, "36393": 9, "37957": 9, "42473": 9, "96it": 9, "quickli": [9, 10, 34, 75], "encount": [9, 53, 55, 64, 73, 75, 80], "port": [9, 54, 75], "hpc": [9, 32, 75, 81], "becam": 9, "massiv": [9, 20], "compar": [9, 13, 23, 27, 58, 59, 75, 80], "100000": [9, 10, 67], "try": [9, 10, 13, 15, 17, 19, 21, 23, 30, 67, 75], "slightli": [9, 23], "751": 9, "3460": 9, "26it": 9, "42771": 9, "74it": 9, "4064": 9, "6862": 9, "37it": 9, "56871": 9, "92it": 9, "44979": 9, "13it": 9, "128": [9, 11, 21, 69], "19366": 9, "94it": 9, "53773": 9, "54648": 9, "91it": 9, "51941": 9, "85it": 9, "56111": 9, "461": 9, "866833317": 9, "spent": 9, "452308367999706": 9, "oner": 9, "feel": 9, "interrupt": 9, "patienc": 9, "worn": 9, "still": [9, 16, 17, 20, 24, 38, 48, 59, 64, 68, 75, 79], "easili": [9, 10, 13, 14, 20, 59, 73, 75, 79], "27": [9, 13, 18, 19, 59], "7352": 9, "2063": 9, "82it": 9, "16492": 9, "4739": 9, "44it": 9, "256": [9, 11, 52], "15185": 9, "58it": 9, "64": [9, 11, 54, 55, 69, 73, 75], "23728": 9, "05it": 9, "15437": 9, "97it": 9, "50840": 9, "32": [9, 11, 18, 52, 55, 69, 75], "33562": 9, "54120": 9, "54560": 9, "55924": 9, "42717": 9, "29it": 9, "55007": 9, "27it": 9, "53601": 9, "33it": 9, "47127": 9, "01it": 9, "67": 9, "61674502899999": 9, "21": [9, 13, 17, 18, 21, 61, 69], "439895901": 9, "push": [9, 79], "a100": 9, "yourself": [9, 73], "28": [9, 11, 13, 18, 32, 54, 73, 75, 80, 81], "nlopt": [9, 69], "failur": [9, 79], "pool": [9, 53, 67], "finish": [9, 13, 24, 59, 69], "fail": [9, 17, 55, 71, 75, 79], "immedi": [9, 54, 72], "issu": [9, 34, 55, 73, 75, 79, 80], "mgpu": [9, 12, 15, 23, 29, 32, 50, 53, 54, 55, 67, 81], "gpu_count": 9, "smi": [9, 73, 75], "wc": 9, "mpirun": [9, 54, 55, 67], "Not": [9, 38, 52, 53, 75], "subroutin": [10, 23, 58, 61], "molecular": [10, 13, 22, 23, 31], "semidefinit": 10, "briefli": 10, "introduc": [10, 14, 17, 19, 34], "ancilla": [10, 12, 34, 36], "insight": 10, "re": [10, 13, 18, 19, 34, 48, 51, 65, 67, 73, 75], "x_1x_2": 10, "fact": [10, 15, 19, 48, 79], "u_": [10, 21], "qquad": 10, "repeatedli": [10, 17, 19, 59], "pmatrix": [10, 26], "functool": [10, 18], "psi_stat": 10, "phi_stat": 10, "sv": [10, 17, 77], "707107": 10, "ham_matrix": 10, "exp_val": [10, 11, 22, 23, 28, 51, 54, 63], "conj": [10, 12, 16, 21], "7071067690849304": 10, "fourth": [10, 51], "u_psi": 10, "u_phi": 10, "ham_cir": 10, "mean_val": 10, "qc": [10, 52], "85281": 10, "14719": 10, "70562": 10, "0015844563982640861": 10, "hilbert": [10, 46, 51], "orthogon": [10, 12], "easi": [10, 14, 19, 51, 77], "mqpu": [10, 12, 23, 24, 28, 50, 55, 59, 63, 67], "sake": 10, "qpu_count": [10, 23, 28, 54], "four": [10, 13, 17, 28, 54, 63, 68], "i_result": 10, "49865": 10, "50135": 10, "0027": 10, "0022360598270171573": 10, "49796": 10, "50204": 10, "00408": 10, "002236049366181346": 10, "49695": 10, "50305": 10, "0061": 10, "002236026375068058": 10, "49972": 10, "50028": 10, "00056": 10, "002236067626884303": 10, "my_mat": 10, "linalg": [10, 12, 18, 51], "eigh": 10, "00782313": 10, "00456313": 10, "76575845": 10, "64312829": 10, "highlight": [11, 29, 32, 81], "pytorch": 11, "maximis": 11, "classif": 11, "mnist": 11, "dataset": 11, "classifi": [11, 21], "hand": [11, 16, 53, 54, 55, 75, 79], "written": [11, 18, 30, 34, 68, 73, 77], "torch": [11, 21, 51], "cu118": 11, "torchvis": 11, "url": [11, 52, 54, 64, 73, 75], "download": [11, 21, 73, 75, 80], "whl": [11, 73], "autograd": 11, "nn": 11, "sklearn": 11, "model_select": 11, "train_test_split": 11, "manual_se": [11, 21], "22": [11, 13, 18, 19, 21, 59, 61, 69, 73, 75], "44": [11, 18], "prepare_data": 11, "target_digit": 11, "sample_count": [11, 67], "test_siz": 11, "percentag": 11, "remaind": [11, 14], "train": [11, 13, 21], "totensor": 11, "1307": 11, "3081": 11, "filter": 11, "datapoint": 11, "subset_indic": 11, "randperm": 11, "unsqueez": 11, "relabel": 11, "min": [11, 12, 19], "x_train": 11, "x_test": 11, "y_train": 11, "y_test": 11, "shuffl": 11, "random_st": 11, "classification_threshold": 11, "accuraci": [11, 13, 19, 21, 55], "parmet": 11, "visualis": 11, "sample_to_plot": 11, "grid_img": 11, "make_grid": 11, "pad": 11, "imshow": 11, "permut": [11, 17], "quantumfunct": 11, "finit": [11, 23, 28], "theta_v": 11, "excetut": 11, "live": 11, "tolist": [11, 17], "staticmethod": 11, "quantum_circuit": 11, "backward": [11, 23, 28, 40], "save_for_backward": 11, "grad_output": 11, "saved_tensor": 11, "thetas_plu": 11, "exp_vals_plu": 11, "thetas_minu": 11, "exp_vals_minu": 11, "mul": 11, "quantumlay": 11, "hybrid_qnn": 11, "fc1": 11, "fc2": 11, "dropout": 11, "fc3": 11, "fc4": 11, "fc5": 11, "feed": [11, 14], "view": [11, 39, 49, 52, 75], "relu": 11, "fed": 11, "sigmoid": 11, "accuracy_scor": 11, "y_hat": 11, "hybrid_model": 11, "adadelta": 11, "lr": [11, 69], "weight_decai": 11, "loss_funct": 11, "bceloss": 11, "training_cost": 11, "testing_cost": 11, "training_accuraci": 11, "testing_accuraci": 11, "zero_grad": 11, "y_hat_train": 11, "train_cost": 11, "eval": [11, 12], "no_grad": 11, "y_hat_test": 11, "test_cost": 11, "figsiz": [11, 13, 18, 21], "subplot": [11, 13, 18], "tight_layout": [11, 13], "proto": [11, 21], "018ba9130a0e5800b93e86d0096a22daf7a132f8": [11, 21], "multirefer": 12, "mrsqk": 12, "low": [12, 13, 18, 41, 52, 67], "altern": [12, 14, 20, 52, 64, 66, 73, 75, 80], "background": [12, 54], "trotter": [12, 31, 42], "diagon": [12, 55], "heurist": 12, "cisd": 12, "veri": [12, 21, 32, 54, 65, 71, 79, 81], "unitari": [12, 15, 22, 23, 31, 37, 41, 48, 61, 66, 68], "lcu": 12, "avoid": [12, 21, 73, 79, 80], "dimension": [12, 13, 16, 21, 30, 46, 51, 61, 64], "phi_0": 12, "phi_d": 12, "phi_i": 12, "mu": 12, "phi_": 12, "famili": 12, "alpha": [12, 14, 16, 51, 68], "equiv": [12, 19, 68], "psi_i": 12, "_n": 12, "c_": 12, "c_i": 12, "boldsymbol": 12, "hc": 12, "sc": [12, 52], "s_": 12, "beta": [12, 16, 68, 69], "_m": 12, "phi_j": 12, "sigma_": [12, 51], "question": 12, "scipi": [12, 13, 18, 22, 23, 28, 51], "openfermionpyscf": [12, 22, 23], "multi_gpu": 12, "geometri": [12, 22, 23], "7474": [12, 22], "chemistri": [12, 13, 22, 23], "create_molecular_hamiltonian": [12, 22], "sto": [12, 22, 23], "3g": [12, 22, 23], "electron_count": [12, 22, 23], "n_electron": [12, 22], "qubits_num": 12, "n_orbit": [12, 22], "spin_ham_matrix": 12, "eig": 12, "argmin": [12, 21], "min_indic": 12, "vec": [12, 61], "termcoeffici": [12, 20], "termword": [12, 20], "pauli_str": 12, "potenti": [12, 16, 19, 23, 24, 34, 59], "improv": [12, 19, 23, 29, 32, 55, 67, 75, 81], "higher": [12, 33], "receiv": [12, 34], "compon": [12, 14, 19, 21, 51, 73, 75, 79, 80], "um": 12, "u_m": 12, "dt": [12, 20], "un": 12, "u_n": 12, "apply_pauli": 12, "qfd_kernel": 12, "dt_alpha": 12, "dt_beta": 12, "word_list": 12, "my_list": 12, "x_0": [12, 13], "y_0": 12, "m_qfd": 12, "wf_overlap": 12, "accomplish": [12, 25], "along": [12, 22, 27, 34, 52, 53, 55, 59, 61, 79], "observe_op": 12, "identity_word": 12, "pauli_list": 12, "dt_m": 12, "dt_n": 12, "temp": [12, 69], "collect_overlap_r": 12, "collect_overlap_img": 12, "sent": [12, 52, 54, 64], "count_id": 12, "tot_dim": 12, "real_val": 12, "img_val": 12, "ham_matrx": 12, "tot_": 12, "accumul": [12, 64], "ham_matrix_r": 12, "ham_matrix_imag": 12, "enter": [12, 64, 75], "eigenvaulu": 12, "sum_k": 12, "s_k": 12, "kj": 12, "hx": 12, "sce": 12, "s_diag": 12, "s_prime": 12, "sii": 12, "valueerror": [12, 13, 51], "x_prime": 12, "h_prime": 12, "conjug": [12, 17, 51], "e_prim": 12, "c_prime": 12, "eigen_valu": 12, "eigen_vect": 12, "qfd": 12, "perhap": 13, "highli": [13, 73, 75], "tout": 13, "fault": [13, 80], "correl": [13, 18], "materi": [13, 64, 68], "particularli": [13, 19, 21, 23, 55, 58, 61], "interest": [13, 15, 16, 17, 19, 21, 22, 23, 63, 65], "theori": [13, 68], "dmft": 13, "account": [13, 19, 52, 53, 64, 75], "strong": 13, "bath": 13, "encompass": 13, "tough": 13, "notebook": [13, 16, 21, 30, 32, 52, 81], "showcas": [13, 30], "siam": 13, "realist": 13, "neutral": [13, 52], "appar": 13, "demo": [13, 52], "cudaq_solv": 13, "importerror": [13, 30], "quiet": 13, "restart": [13, 30], "newli": [13, 55, 75], "abc": 13, "restrict": [13, 14, 16, 21, 23, 54], "z_0": 13, "z_2": 13, "coulomb": 13, "strength": [13, 51], "grid": 13, "ev": 13, "trainabl": 13, "absenc": 13, "paramterized_ansatz": 13, "variational_angl": 13, "run_logical_vq": 13, "cudaq_hamiltonian": 13, "easier": [13, 15, 34, 69, 72], "reproduct": 13, "init_angl": 13, "get_qubit_count": 13, "variational_kernel": 13, "slsqp": [13, 18], "tol": [13, 23, 28], "bare": 13, "unencod": 13, "earlier": [13, 14, 21, 55, 59], "gateset": [13, 21], "readout": [13, 31], "meas_id": 13, "aim_physical_circuit": 13, "ignore_meas_id": 13, "prep": [13, 38], "zz": 13, "z_basi": 13, "for_loop": 13, "q_idx": 13, "getattr": 13, "x_basi": 13, "unsupport": 13, "aim_logical_circuit": 13, "teleport": 13, "With": [13, 31, 32, 54, 59, 69, 76, 81], "noisili": [13, 52], "generate_circuit_set": 13, "u_val": 13, "v_val": 13, "circuit_dict": 13, "qubit_hamiltonian": [13, 23], "tmp_physical_dict": 13, "tmp_logical_dict": 13, "nfinish": 13, "sim_circuit_dict": 13, "circuit_lay": 13, "5846845738799267": 13, "5707961678256028": 13, "588033710930825": 13, "712388365176642": 13, "588651490745171": 13, "5707962742876598": 13, "64012940802256": 13, "5707963354922125": 13, "1293956916868737": 13, "5707963294715355": 13, "6598458659836037": 13, "570796331040382": 13, "695151467539617": 13, "5707960973500679": 13, "4149519241823376": 13, "5707928509325972": 13, "7301462729177735": 13, "570796033796985": 13, "helper": [13, 64], "plai": [13, 15], "role": [13, 15], "_num_qubit": 13, "isdecim": 13, "process_count": 13, "data_qubit": 13, "flag_qubit": 13, "dict": [13, 18, 19], "new_data": 13, "continu": [13, 15, 16, 19, 21, 59, 64, 69], "new_kei": 13, "issuperset": 13, "setdefault": 13, "physical_to_log": 13, "0000": [13, 17, 54], "1111": [13, 54], "0011": [13, 17], "1100": 13, "0110": 13, "1001": 13, "physical_kei": 13, "logical_kei": 13, "ev_x": 13, "ev_xx": 13, "ev_zz": 13, "aim_logical_energi": 13, "data_ord": 13, "counts_list": 13, "counts_data": 13, "_aim_energi": 13, "aim_physical_energi": 13, "evx": 13, "evxx": 13, "evzz": 13, "h_param": 13, "key_a": 13, "key_b": 13, "startswith": 13, "uncertainti": 13, "string_kei": 13, "uncertainty_xx": 13, "uncertainty_zz": 13, "_get_energy_diff": 13, "bf_energi": 13, "physical_energi": 13, "logical_energi": 13, "physical_energy_diff": 13, "logical_energy_diff": 13, "physical_sim_energi": 13, "logical_sim_energi": 13, "true_energi": 13, "brute": 13, "forc": [13, 22, 32, 54, 79, 81], "got": 13, "72": 13, "submit_aim_circuit": 13, "folder_path": 13, "future_aim_result": 13, "run_async": 13, "makedir": 13, "exist_ok": 13, "aim_result": 13, "tmp_physical_result": 13, "physical_": 13, "_job_u": 13, "_v": 13, "_result": 13, "txt": [13, 64, 71, 72, 75, 76], "close": [13, 16, 21, 59, 64], "tmp_logical_result": 13, "logical_": 13, "ncomplet": 13, "nall": 13, "async": 13, "_get_async_result": 13, "physical_count": 13, "logical_count": 13, "nobtain": 13, "domin": 13, "Such": [13, 48, 59], "get_device_nois": 13, "depolar_prob_1q": 13, "depolar_prob_2q": 13, "readout_error_prob": 13, "custom_g": 13, "depolar_nois": 13, "noisy_op": 13, "custom_depolar_channel": 13, "p_0": 13, "p_1": 13, "k0": 13, "complex128": [13, 21, 26, 51], "k1": 13, "k3": 13, "cz": 13, "bit_flip": [13, 18, 26], "cudaq_noise_model": 13, "rate": [13, 17, 53], "fidel": 13, "99": [13, 18], "98": 13, "002": 13, "aim_sim_data": 13, "sim_physical_energi": 13, "sim_physical_uncertainti": 13, "sim_logical_energi": 13, "sim_logical_uncertainti": 13, "251736027394713": 13, "265564437074638": 13, "252231964940428": 13, "293350575766127": 13, "608495283014149": 13, "305692796870582": 13, "39007993367173": 13, "260398644698076": 13, "429650912487233": 13, "deviat": [13, 73], "sim_physical_energy_diff": 13, "sim_logical_energy_diff": 13, "929": 13, "46016175277361": 13, "97": 13, "176531948420889": 13, "268": 13, "26321740664324": 13, "8495": 13, "46681284816878": 13, "1965000000000003": 13, "4531715120183297": 13, "336": 13, "341784541550897": 13, "802": 13, "339249509416753": 13, "8580000000000005": 13, "1227150992242025": 13, "3635": 13, "448422736181264": 13, "subject": 13, "overcom": 13, "preview": 13, "offer": [13, 31, 53, 55, 80], "fig": [13, 18], "ax": [13, 16, 18, 19], "dpi": 13, "200": [13, 19, 34], "layer_label": 13, "plot_label": 13, "errorbar": 13, "yerr": 13, "ecolor": 13, "255": 13, "26": [13, 18, 19, 53, 61], "94": [13, 18], "capsiz": 13, "elinewidth": 13, "fmt": 13, "markers": 13, "markeredgewidth": 13, "177": 13, "152": [13, 18], "set_xlabel": [13, 18], "fontsiz": [13, 18, 21], "set_ylabel": [13, 18], "set_titl": [13, 18], "xtick": 13, "ytick": 13, "axhlin": 13, "linestyl": 13, "linewidth": [13, 21], "ylim": 13, "bottom": [13, 61], "ve": [13, 32, 65, 77, 81], "seamlessli": 13, "cross": [13, 52], "superstaq": [13, 32, 52, 64, 81], "hood": [13, 79], "inde": [13, 21, 73], "gain": 13, "registr": [13, 52, 71, 72], "reproduc": [13, 21], "23": [13, 16, 18, 19, 21, 61], "device_circuit_dict": 13, "7301462945564499": 13, "570796044872433": 13, "24": [13, 18, 29, 61, 72, 73, 75, 76, 80], "superstaq_api_kei": [13, 52], "api_kei": [13, 53], "cq_sqale_qpu": [13, 52, 64], "dry": [13, 52, 64], "simpl": [13, 26, 28, 36, 39, 51, 53, 54, 57, 59, 63, 64, 65, 69, 71, 75, 76, 80], "meantim": [13, 64, 75], "hardware_aim_future_result": 13, "aim_device_data": 13, "physical_uncertainti": 13, "29": [13, 18, 19, 54], "logical_uncertainti": 13, "626499999999997": 13, "69666562801761": 13, "1415": 13, "2032104443266585": 13, "9955": 13, "76919450035401": 13, "331": 13, "85730052910377": 13, "476": [13, 18], "5425689231532203": 13, "043500000000002": 13, "795918428433312": 13, "4715": 13, "96524696701215": 13, "973": 13, "207315773582224": 13, "182": 13, "241375689575516": 13, "yet": [13, 18, 23, 24, 32, 52, 54, 75, 81], "afford": 13, "closer": [13, 58, 65, 69], "outperform": 13, "power": [13, 17, 21, 30, 32, 53, 55, 67, 81], "31": [13, 18, 53, 67], "farhi": 14, "dive": [14, 30, 32, 75, 81], "ll": [14, 15, 19, 65, 69, 72, 76], "maxim": [14, 16, 53, 55, 57, 64, 67], "although": [14, 68], "rel": [14, 55], "hard": 14, "statist": [14, 24, 34, 37, 59, 68], "furthermor": [14, 32, 81], "wider": [14, 54], "portfolio": 14, "shop": 14, "vertex": 14, "subseteq": 14, "mathbb": [14, 26, 68], "interchang": [14, 55], "undirect": 14, "v_1": 14, "exactli": [14, 21], "bigcup": 14, "bigcap": 14, "emptyset": 14, "illustr": [14, 21, 34, 52, 54, 62, 64, 65], "disjoint": 14, "grai": 14, "depict": [14, 16, 19, 30], "distinct": [14, 21, 30, 48], "substack": 14, "sometim": [14, 16, 52], "01100": [14, 19, 54], "01011": [14, 19], "v1": [14, 52], "v2": 14, "v0": 14, "v3": [14, 73, 75], "v4": [14, 75], "10100": [14, 19], "01010": [14, 19], "10101": [14, 19], "edges_src": 14, "edges_tgt": 14, "algortihm": 14, "hamilitonian": 14, "distinguish": [14, 48], "mixer": 14, "posit": [14, 18, 19, 21, 23, 26, 41, 51, 55], "deeper": [14, 30], "layer_count": 14, "qaoaproblem": 14, "subcircuit": [14, 58], "kernel_qaoa": 14, "plaehold": 14, "qubitu": 14, "qubitv": 14, "mention": [14, 21], "z_v": 14, "vale": 14, "arbirtrari": 14, "formula": 14, "z_uz_v": 14, "refram": 14, "promot": [14, 31, 80], "replac": [14, 19, 52, 53, 69, 71, 73, 75], "lead": [14, 16, 26, 32, 81], "reformul": 14, "hamiltonian_max_cut": 14, "inititi": 14, "iiziz": 14, "izzii": 14, "iiiii": 14, "zziii": 14, "iiizz": 14, "iizzi": 14, "ziizi": 14, "495973826282007": 14, "51349181993727": 14, "21299416361632417": 14, "3250526425808945": 14, "886630847343767": 14, "outcom": [14, 16, 17, 19], "max_cut": 14, "11111": [14, 19], "11110": [14, 19], "01101": [14, 19], "148": 14, "01110": [14, 19], "47": [14, 18, 19, 30], "01000": [14, 19], "00110": [14, 19], "54": [14, 18], "165": 14, "00101": [14, 19], "154": 14, "00100": [14, 19], "01001": [14, 19], "41": [14, 19], "00000": [14, 19], "00011": [14, 19], "10011": [14, 19, 54], "00010": [14, 19], "01111": [14, 19], "11011": [14, 19], "00111": [14, 19], "11100": [14, 19], "10001": [14, 19], "10010": [14, 19], "144": [14, 18], "10110": [14, 19], "40": [14, 16, 18, 21, 22, 28, 67], "10111": [14, 19], "11000": [14, 19], "11101": [14, 19], "11001": [14, 19], "a726804916fd397408cbf595ce6fe5f33dcd8b4c": [14, 15], "aid": [15, 33], "area": [15, 54], "signal": [15, 39, 51], "compress": 15, "qft": 15, "ingredi": 15, "shor": [15, 31], "faster": [15, 16, 19, 21, 23, 55], "prime": [15, 19], "vital": 15, "idea": [15, 19], "frequenc": [15, 64], "domain": 15, "analogi": 15, "ixi": 15, "5i": 15, "35": [15, 16, 18, 19], "0i": 15, "25i": 15, "35i": 15, "r_k": 15, "bmatrix": [15, 18, 68], "ciruit": 15, "quantum_fourier_transform": [15, 19], "cr1": [15, 19, 37], "zeroth": 15, "decim": 15, "round": [15, 21, 28, 37], "r1": [15, 19, 30, 37, 41, 48], "571": [15, 19], "7854": [15, 19], "25j": 15, "35j": 15, "seri": [15, 52, 64], "fast": [15, 21, 39, 55, 58], "n2": 15, "life": [15, 53], "li": [15, 19, 69], "invert": [15, 21], "revers": [15, 19, 45], "quantum_fourier_transform2": 15, "attent": 15, "inverse_qft": [15, 19], "verification_exampl": 15, "phenomena": [16, 68], "implic": 16, "initialis": 16, "unless": [16, 73, 75], "0th": [16, 26], "arbitari": 16, "2nd": 16, "beta_": 16, "replic": 16, "stage": 16, "psi0": 16, "psi4": 16, "71": 16, "62": [16, 23], "psi1": 16, "psi2": 16, "psi3": 16, "m1": 16, "m2": 16, "psi_4": 16, "multipartit": 16, "partial": 16, "subsystem": 16, "partial_trac": 16, "state_vector": 16, "trace_system": 16, "particl": [16, 48], "log2": [16, 19], "rho": 16, "tensordot": 16, "prod": 16, "state_of_q0": 16, "state_of_q2": 16, "allclos": [16, 21], "happen": [16, 19, 48, 75], "portion": 16, "lab": [16, 75], "infinit": [16, 21, 39, 46, 59], "apart": 16, "obei": [16, 68], "theorem": [16, 46], "longer": [16, 26, 73], "violat": 16, "travel": 16, "speed": 16, "light": [16, 51], "experimentalist": 16, "cx_": 16, "alic": 16, "bob": 16, "safekeep": 16, "moon": 16, "posess": 16, "she": 16, "send": 16, "who": 16, "mile": 16, "entail": 16, "collaps": [16, 24, 59, 68, 72], "seper": [16, 22], "poss": 16, "expand": [16, 69], "bracket": 16, "110": [16, 18, 19], "whilst": 16, "maintain": 16, "break": [16, 19, 32, 81], "ask": [16, 75], "her": 16, "unmeasur": 16, "determinist": [16, 59], "tell": [16, 18, 68], "summaris": 16, "psi_3": 16, "nearli": 16, "pend": 16, "minor": 16, "fulfil": 16, "protocol": [16, 73], "m1m2": 16, "recov": 16, "ambit": 16, "instantli": 16, "appear": [16, 21, 34, 75], "he": 16, "rather": [16, 20, 24, 25, 53, 55, 59, 68, 79], "transmit": 16, "courtesei": 16, "textbook": 16, "nielsen": 16, "chuang": 16, "qv": 17, "greatest": [17, 19], "score": 17, "though": [17, 73], "imperfect": [17, 18], "usabl": 17, "special": [17, 18, 38, 43, 69, 77], "median": 17, "greater": [17, 19, 48, 53, 55, 68], "heavi": 17, "averag": [17, 20, 80], "su4": 17, "kak": 17, "conclud": 17, "su4_per_circuit": 17, "n_params_in_su4": 17, "su4_gat": 17, "u3": 17, "reg": [17, 61], "param_index": 17, "randomli": [17, 19], "generate_random_param": 17, "params_list": 17, "generate_random_permut": 17, "circuit_permut": 17, "astyp": 17, "int64": 17, "make_bitstr": 17, "zfill": 17, "percent_heavy_sampl": 17, "error_r": 17, "noiseless": [17, 26], "circuit_param": 17, "layer_permut": 17, "print_output": 17, "bf": 17, "clean_result": 17, "noisy_result": [17, 26], "prob": [17, 18], "cutoff": [17, 55], "circuit_prob": 17, "outcome_prob": 17, "havi": 17, "prob_heavy_in_noisi": 17, "heavy_bitstr": 17, "04363711": 17, "0100": 17, "0010": 17, "1101": 17, "0111": 17, "8153219893574715": 17, "488": 17, "detemin": 17, "_heavy_sampl": 17, "n_circuit": 17, "calc_qv": 17, "circuit_s": 17, "prob_of_error": 17, "number_of_circuit": 17, "counter": 17, "circuit_result": 17, "7280300000000003": 17, "affect": [17, 18, 55, 72], "relationship": 17, "caus": [18, 80], "properli": [18, 59, 73, 75, 79], "character": [18, 26], "independ": [18, 23, 34, 39, 51, 54, 55, 73], "pseudoinvers": 18, "p_": 18, "adjust": [18, 55, 73, 79], "quasi": 18, "impract": 18, "seaborn": 18, "sn": 18, "itertool": 18, "set_styl": 18, "dark": 18, "bitflip": [18, 23, 26], "principl": 18, "get_nois": 18, "isinst": 18, "state_label": 18, "ghz": [18, 24, 53, 54, 57, 59, 64, 65, 67, 69, 76], "ghz_kernel": 18, "plot_cmat": 18, "mat": 18, "im2": 18, "matshow": 18, "cmap": 18, "cm": 18, "vmin": 18, "vmax": 18, "set_ytick": 18, "arang": 18, "set_xtick": 18, "set_yticklabel": 18, "set_xticklabel": 18, "xaxi": 18, "set_label_posit": 18, "colorbar": 18, "closest": 18, "min_": 18, "rm": [18, 73, 75], "find_closest_distribut": 18, "empirical_dist": 18, "empir": 18, "l1": 18, "ord": 18, "con": 18, "ineq": 18, "fun": [18, 23, 28], "eq": [18, 69], "bnd": 18, "initial_valu": 18, "get_counts_from_distribut": 18, "drawn": [18, 19], "choic": [18, 19, 23, 55], "return_count": 18, "1024": 18, "noise_1": 18, "ghz_result": 18, "noisy_dict_1": 18, "noisy_res_1": 18, "352": 18, "43": 18, "367": 18, "61": [18, 19], "noise_2": 18, "noisy_dict_2": 18, "noisy_res_2": 18, "149816047538945": 18, "3802857225639665": 18, "292797576724562": 18, "212": 18, "122": 18, "189": 18, "87": 18, "78": 18, "131": [18, 19], "otim": 18, "single_qubit_label": 18, "single_qubit_st": 18, "924": 18, "104": 18, "920": 18, "true_stat": 18, "observed_st": 18, "90234375": 18, "1015625": 18, "09765625": 18, "8984375": 18, "joint": [18, 64], "a_pinv": 18, "pinv": 18, "positive_dist": 18, "ncorrect": [18, 37], "501": [18, 34], "mitigated_sg": 18, "kind": [18, 59], "bar_label": 18, "assumpt": 18, "a_n": 18, "local_label": 18, "local_st": 18, "388": 18, "235": 18, "174": 18, "79": [18, 19, 53], "58": 18, "38": [18, 19, 73, 75], "370": 18, "60": [18, 75], "107": 18, "162": 18, "marginalized_count": 18, "total_shot": 18, "marginal_ct": 18, "85546875": 18, "15722656": 18, "14453125": 18, "84277344": 18, "6328125": 18, "38476562": 18, "3671875": 18, "61523438": 18, "70800781": 18, "32226562": 18, "29199219": 18, "67773438": 18, "pinv_confusion_matric": 18, "a_joint": 18, "559": 18, "510": [18, 67], "521": 18, "446": 18, "mitigated_k_loc": 18, "248": 18, "159": [18, 19], "83": 18, "68": 18, "161": [18, 19], "93": 18, "46": 18, "363": 18, "253": 18, "76": 18, "378": 18, "150": [18, 68], "36": [18, 67], "74": [18, 23], "106": 18, "145": 18, "251": 18, "386": 18, "229": 18, "247": 18, "70": [18, 23], "163": 18, "371": 18, "95": 18, "157": [18, 19], "233": 18, "85": [18, 67], "396": 18, "393": 18, "160": [18, 19], "a_ful": 18, "09734490298929": 18, "714": 18, "211": 18, "49": 18, "63": 18, "422": 18, "683": 18, "302": 18, "mitigated_ful": 18, "famou": 19, "signific": [19, 20, 23, 24, 29, 32, 81], "modern": 19, "asymmetr": 19, "encrypt": [19, 75], "scheme": [19, 55], "rsa": [19, 75], "proce": [19, 20, 75, 80], "explain": [19, 21, 54, 68], "contfrac": 19, "156": 19, "gcd": 19, "ceil": 19, "fraction": [19, 55], "satisfi": [19, 26, 46, 64, 73], "share": [19, 32, 55, 72, 75, 79, 81], "divisor": 19, "smallest": 19, "shors_algorithm": 19, "investig": 19, "terminologi": 19, "literatur": 19, "period": 19, "recast": 19, "a1": 19, "a2": 19, "divisor1": 19, "divisor2": 19, "find_order_quantum": 19, "find_order_class": 19, "test_ord": 19, "retri": [19, 30], "establish": 19, "rewritten": [19, 30], "rewrit": [19, 71], "peter": 19, "50": [19, 23, 59, 68, 79], "possible_factor": 19, "test_factor": 19, "No": [19, 64, 67, 75], "straightforward": 19, "notabl": 19, "ineffici": 19, "158": 19, "naiv": [19, 48], "interv": [19, 22], "my_integ": 19, "123": 19, "edit": [19, 75], "initial_value_to_start": 19, "central": 19, "lceil": 19, "rceil": 19, "phase_kernel": 19, "ai": 19, "exponent": 19, "provabl": 19, "hefti": 19, "5l": 19, "algoirthm": 19, "72l": 19, "exponentiaion": 19, "beckman": 19, "chari": 19, "devabhaktuni": 19, "preskil": 19, "1996": 19, "beyond": [19, 53, 55, 67, 71], "difficulti": 19, "report": 19, "modular_mult_5_21": 19, "physlab": 19, "wp": 19, "content": [19, 34, 52, 64, 72, 75], "upload": 19, "2023": 19, "05": [19, 20, 53], "shor_s_algorithm_23100113_fin": 19, "modif": [19, 23, 55, 59, 65], "modular_exp_5_21": 19, "expon": 19, "control_s": 19, "ctrl_qubit": [19, 45], "198": 19, "5y": 19, "demonstrate_mod_exponenti": 19, "init": 19, "integer_result": 19, "previou": [19, 20, 23, 25, 32, 40, 46, 51, 75, 81], "199": 19, "modular_exp_4_21": 19, "ab": [19, 21], "2103": 19, "13855": 19, "control_register_s": 19, "work_register_s": 19, "control_regist": 19, "work_regist": 19, "201": 19, "values_for_a": 19, "15000": 19, "q6": 19, "q7": 19, "2843": 19, "913": 19, "1850": 19, "1935": 19, "1830": 19, "2846": 19, "1861": 19, "922": 19, "top_result": 19, "202": 19, "results_dictionari": 19, "pop": [19, 75, 79], "sorted_result": 19, "top_kei": 19, "max_valu": 19, "top_results_dictionari": 19, "203": 19, "750": 19, "lectur": 19, "scott": 19, "aaronson": 19, "204": 19, "get_order_from_phas": 19, "phase_nbit": 19, "eigenphas": 19, "from_float": 19, "limit_denomin": 19, "denomin": 19, "coefficients_continued_fract": 19, "continued_fract": 19, "convergents_continued_fract": 19, "algoithm": 19, "205": 19, "zero_result": 19, "elem": 19, "most_probable_bitpattern": 19, "reverse_result": 19, "nonzero": 19, "bitpattern": 19, "206": 19, "452": 19, "92": 19, "2485": 19, "96": 19, "1747": 19, "1654": 19, "1736": 19, "475": [19, 67], "420": 19, "00001": 19, "1710": 19, "113": 19, "467": 19, "2536": 19, "81": 19, "8125": 19, "8421052631578947": 19, "regev": 19, "heisenberg": 20, "chain": [20, 22, 48], "recurs": [20, 38], "fo": 20, "iht": 20, "approx": [20, 68], "prod_": [20, 42], "predefin": [20, 36, 61], "jx": 20, "jy": 20, "n_step": [20, 51], "n_spin": 20, "j_x": 20, "x_j": 20, "x_": 20, "y_j": 20, "y_": 20, "z_": 20, "jz": 20, "heisenbergmodelham": 20, "tdop": 20, "getinitst": 20, "numspin": 20, "qid": 20, "average_magnet": 20, "start_tim": [20, 23], "magnetization_exp_v": 20, "steptim": 20, "03444695472717285": 20, "09042024163828166": 20, "0026793479919433594": 20, "08898564687193886": 20, "002758026123046875": 20, "08698024360923415": 20, "002524852752685547": 20, "08507694741170907": 20, "0026259422302246094": 20, "08394118068746997": 20, "002542734146118164": 20, "08394076573115139": 20, "0027430057525634766": 20, "08502222139504187": 20, "0025305747985839844": 20, "08677832064885871": 20, "003045797348022461": 20, "08863390649349775": 20, "0025949478149414062": 20, "09005513983609514": 20, "boost": [20, 29], "resimul": 20, "24x": 20, "florian": 21, "f\u00fcrrutter": 21, "gorka": 21, "mu\u00f1oz": 21, "gil": 21, "han": 21, "briegel": 21, "nat": 21, "mach": 21, "intel": [21, 80], "515": 21, "524": 21, "2024": [21, 53], "viabl": 21, "commonli": [21, 26, 51, 73, 75], "dm": [21, 53], "deliv": [21, 53], "fold": 21, "prompt": [21, 75], "thoroughli": 21, "overview": 21, "neural": [21, 31], "network": [21, 31, 32, 52, 53, 54, 64, 72, 75, 81], "crucial": 21, "emploi": [21, 26], "de": 21, "genqc": 21, "diffusion_pipelin": 21, "diffusionpipelin": 21, "infer": [21, 68], "export_cudaq": 21, "genqc_to_cudaq": 21, "infer_compil": 21, "infer_comp": 21, "fix": [21, 22, 32, 55, 81], "infer_torch_devic": 21, "memoryclean": 21, "purge_mem": 21, "tf32": 21, "matmul": 21, "from_pretrain": 21, "floki00": 21, "qc_unitary_3qubit": 21, "hug": 21, "set_timestep": 21, "vocab": 21, "gate_pool": 21, "decod": 21, "num_of_qubit": 21, "max_gat": 21, "nonetheless": 21, "stai": 21, "tune": [21, 55], "bigger": 21, "70710678": [21, 24, 61], "ccx": 21, "scenario": [21, 32, 66, 75, 81], "miss": [21, 48, 55, 73], "u_r": 21, "u_i": 21, "u_tensor": 21, "stack": [21, 38], "out_tensor": 21, "generate_comp_tensor": 21, "system_s": 21, "guidanc": [21, 75], "cfg": [21, 69], "kernel_list": 21, "valid_tensor": 21, "invalid_tensor": 21, "out_tensors_i": 21, "catch": [21, 79], "invalid": [21, 55], "rapidli": 21, "successfulli": [21, 28], "transit": 21, "langl": [21, 34], "th": [21, 42], "got_unitari": 21, "basis_state_j": 21, "set_printopt": 21, "7071": 21, "infidel": 21, "ones": [21, 34, 51], "want_unitari": 21, "histogram": 21, "hist": 21, "almost": [21, 73], "min_index": 21, "4e": [21, 64], "09": 21, "valuabl": 21, "deal": [21, 46], "fewest": 21, "toffoli": [21, 45, 55], "token": [21, 52, 75], "duplic": 21, "pick": [21, 72, 73], "idx_uniqu": 21, "return_index": 21, "unique_tensor": 21, "unique_infidel": 21, "unique_kernel": 21, "idx_correct": 21, "argwher": 21, "correct_tensor": 21, "num_ccx": 21, "correct_kernel": 21, "correct_kernels_ccx1": 21, "preprocess": [22, 23], "uccsd": [22, 23], "hydrogen": 22, "bond": [22, 55], "interatom": 22, "electrostat": 22, "proton": 22, "shield": 22, "neutron": 22, "minimis": 22, "stabl": [22, 75], "hydrogen_count": 22, "angstrom": 22, "bond_dist": 22, "coupl": [22, 23, 39, 55, 64, 75], "cluster": [22, 23, 31, 54, 55], "uccsd_num_paramet": [22, 23], "builtin": [22, 69], "1371744305855906": 22, "popular": [22, 75], "xk": [22, 23], "x0": [22, 23, 34], "aspect": [23, 33, 34, 55, 79], "topic": [23, 61], "tradit": 23, "variation": 23, "elabor": 23, "get_fermion_oper": 23, "timeit": [23, 59, 67], "charg": 23, "1173": 23, "4691": 23, "7570": 23, "sto3g": 23, "run_pyscf": 23, "moleculardata": 23, "get_molecular_hamiltonian": 23, "jordan": 23, "wigner": 23, "molecular_hamiltonian": 23, "fermion_hamiltonian": 23, "spatial": 23, "theoret": 23, "excit": [23, 32, 68, 81], "hate": 23, "electron_num": 23, "molecuul": 23, "140": 23, "default_tim": 23, "end_tim": 23, "get_term_count": 23, "elaps": 23, "21455023422772": 23, "1086": 23, "9171073289999185": 23, "perfect": 23, "greatli": [23, 32, 81], "minut": [23, 75], "drastic": 23, "side": [23, 30, 48, 75], "ith": [23, 28], "prohibit": 23, "observe_asynch": 23, "epsilon": [23, 26, 28], "batched_gradient_funct": [23, 28], "tile": [23, 28], "xplu": [23, 28], "ey": [23, 28], "xminu": [23, 28], "g_plu": [23, 28], "g_minu": [23, 28], "bfg": [23, 28, 34], "gradient_vector": [23, 28], "init_param": 23, "result_vq": [23, 28], "jac": [23, 28], "73": 23, "19471262288755": 23, "57": [23, 73, 75], "27010986900132": 23, "thank": [23, 32, 55, 81], "unnecessari": 23, "highest": 23, "unoccupi": 23, "shallow": 23, "nele_ca": 23, "norb_ca": 23, "ncore": 23, "constrcut": 23, "occupied_indic": 23, "active_indic": 23, "96341992791962": 23, "754178541001238": 23, "consecut": [23, 29], "cudaq_mgpu_fus": [23, 29, 32, 55, 81], "506": 24, "494": 24, "subtl": [24, 59], "rebuilt": [24, 59], "feasibl": [24, 68], "signinific": 24, "textcolor": 24, "intens": [24, 59], "respons": [24, 59], "event": [24, 59, 73], "hamiltonian_1": 24, "hamiltonian_2": 24, "result_1": [24, 59], "result_2": [24, 59], "220446049250313e": 24, "obver": 24, "0eb6b444eb5b3a687e6fd64529ee9223aaa2870": 24, "mx": 25, "my": [25, 53, 72, 75], "qubits_a": 25, "qubit_b": 25, "savig": 25, "b0": 25, "coher": [26, 38, 52], "incoher": 26, "systemat": 26, "miscalibr": 26, "formal": 26, "k_i": 26, "ideal_count": 26, "error_prob": 26, "phase_flip": 26, "amplitude_damp": 26, "kraus_0": 26, "kraus_1": 26, "bitflip_channel": 26, "uniformli": 26, "noisy_count": 26, "844": 26, "88": 26, "8666666666666666": 26, "cover": [27, 61], "sophist": 27, "2xyx": 27, "3zzy": 27, "referenc": 27, "xyxz": 27, "432xzy": 27, "324ixx": 27, "ixx": 27, "432": 27, "324": 27, "907": [28, 34, 37, 42, 53, 54, 63], "1433": [28, 34, 37, 42, 53, 54, 63], "21829": [28, 34, 37, 42, 53, 54, 63], "adam": [28, 51], "nminim": 28, "748382901613712": 28, "58409164053813": 28, "accomplis": 28, "fucntion": 28, "messag": [28, 39, 53, 73, 75], "statu": 28, "7488646919931474": 28, "944e": 28, "288e": 28, "nfev": 28, "33": [28, 54, 75], "maxcv": 28, "plu": [28, 51], "minu": [28, 30, 51], "situat": 29, "c2h2vqe": 29, "cue": 30, "sens": [30, 69], "2d": 30, "plane": 30, "3d": 30, "varphi": 30, "direct": [30, 69, 79], "spheric": 30, "sphere": 30, "sure": [30, 54, 73, 75, 77, 80], "jupyt": [30, 52, 75], "menu": 30, "vscode": [30, 75], "click": [30, 75], "button": 30, "toolbar": 30, "misunderstand": 30, "qualifi": 30, "bash": [30, 53, 73, 75, 80], "pipe": [30, 69], "sy": [30, 59, 80], "nnew": 30, "subsequ": [30, 34, 39, 42, 44, 73, 75], "add_to_bloch_spher": 30, "rng": 30, "default_rng": [30, 67], "blochspherelist": 30, "anglelist": 30, "sph": 30, "displai": [30, 33], "accordingli": [30, 55, 79], "absolut": [30, 46, 69], "had": 30, "toolbox": 30, "blochspher": 30, "unfortun": 30, "handi": 30, "kernel_to_draw": 30, "14159": 30, "tdg": [30, 41], "142": 30, "documentclass": 30, "usepackag": 30, "quantikz": 30, "lstick": 30, "q_0": 30, "amp": 30, "r_1": 30, "qw": 30, "q_1": 30, "targx": 30, "q_2": 30, "q_3": 30, "editor": 30, "export": [30, 52, 53, 54, 72, 73, 80], "welcom": [31, 53, 65, 75], "page": [31, 59, 63, 65, 73, 75, 80], "scalabl": [31, 53, 80], "unifi": [31, 50, 80], "brows": 31, "amd64": [31, 32, 81], "2491": 31, "releas": [31, 50, 54, 55, 69, 75, 80, 81], "toolchain": [31, 47, 52, 59, 69, 75, 76, 77, 78, 80], "heterogen": [31, 33, 58, 73], "troubleshoot": [31, 56], "bernstein": [31, 75], "vazirani": [31, 75], "diffus": 31, "magnet": 31, "suzuki": 31, "deutsch": 31, "divis": 31, "coreset": 31, "qaoa": 31, "dock": 31, "dc": 31, "krylov": 31, "mont": 31, "carlo": 31, "fourier": [31, 37], "telepor": 31, "volum": 31, "mitig": 31, "fusion": [31, 32, 55, 81], "subspac": 31, "anderson": [31, 52], "impur": [31, 52], "infleqt": [31, 50], "sqale": [31, 52], "cloud": [31, 32, 50, 52, 55, 64, 81], "processor": [31, 32, 34, 39, 50, 59, 75, 79, 80, 81], "center": [31, 74, 75], "cmake": [31, 71, 72, 78], "repositori": [32, 71, 72, 73, 75, 81], "docker": [32, 51, 73, 80, 81], "nightli": [32, 75, 81], "infeqt": [32, 81], "offici": [32, 41, 73, 75, 81], "wherea": [32, 79, 81], "never": [32, 46, 81], "wheel": [32, 54, 55, 73, 81], "toolset": [32, 73, 79, 81], "manipul": [32, 68, 81], "anyon": [32, 50, 81], "technologi": [32, 81], "ferimioniq": [32, 81], "oqc": [32, 50, 81], "hope": [32, 81], "enjoi": [32, 81], "eas": [32, 81], "think": [32, 54, 68, 81], "great": [32, 81], "extern": [32, 55, 69, 71, 73, 79, 81], "contributor": [32, 81], "bug": [32, 81], "frontend": [32, 81], "blog": [32, 81], "workload": [32, 54, 75, 81], "gnu": [32, 69, 73, 75, 79, 81], "older": [32, 73, 75, 81], "glibc": [32, 73, 75, 81], "iqm": [32, 50, 81], "publish": [32, 75, 81], "arm": [32, 73, 75, 80, 81], "aarch64": [32, 51, 80, 81], "pypi": [32, 73, 80, 81], "quantinuum": [32, 50, 81], "ionq": [32, 50, 81], "linux": [32, 69, 73, 75, 81], "coprocess": 33, "annot": [33, 38, 57, 65], "core": [33, 34, 55, 67, 69], "namespac": [33, 34, 36, 37, 38, 41, 42, 44, 46, 47, 53, 54, 59, 63, 64, 71, 72, 77, 79], "philosophi": 34, "stand": 34, "alon": 34, "adaptor": 34, "returntyp": 34, "hasvoidreturntyp": 34, "is_void_v": 34, "bel": 34, "lu": [34, 37, 46, 65, 66], "sequential_data": 34, "reg1": 34, "499": 34, "alwai": [34, 55, 75], "middl": 34, "implicitli": [34, 39, 48], "discern": 34, "silent": 34, "discard": 34, "ancillari": 34, "varieti": [34, 59], "enforc": 34, "sample_async_result": 34, "\ud835\udeb9": 34, "retain": [34, 40], "measurecount": 34, "spinop": 34, "x0x1exp": 34, "x0x1data": 34, "qarrai": [34, 37, 38, 45, 65, 69], "lf": [34, 37, 54, 63], "analyt": 34, "async_observe_result": 34, "broader": [34, 54], "dictat": 34, "safe": 34, "providesgradi": 34, "_providesgradi": 34, "someth": [34, 46, 73, 75, 79], "max_ev": 34, "opt_energi": 34, "grad_vec": 34, "\ud835\udeb9_i": 34, "address": [34, 54, 73], "overal": [34, 69, 72], "deuteron_n3_ansatz": 34, "x1": 34, "vctrl": 34, "h3": 34, "625": 34, "913119": 34, "make_tupl": 34, "min_val": 34, "permit": 35, "facilit": [36, 75], "privat": [36, 46], "thenfunctor": 36, "otherkernelbuild": 36, "kerneltocal": 36, "kerneltocontrol": 36, "kerneltoadjoint": 36, "argsarrai": 36, "decltyp": 36, "tuple_s": 36, "integral_const": 36, "sizeof": [36, 77], "tuple_el": 36, "conditional_t": [36, 46], "factori": 36, "xprep": 36, "qubitin": 36, "hadamardtest": 36, "num_it": 37, "c_str": [37, 79], "phase_estim": 37, "cpp": [37, 52, 53, 54, 55, 59, 63, 64, 65, 66, 69, 71, 72, 73, 75, 76, 77, 79, 80], "qpe": 37, "stdio": [37, 73], "cmath": 37, "iqft": 37, "denom": 37, "1ul": 37, "eigenst": 37, "stateprep": [37, 38], "ncountingqubit": 37, "state_prep": 37, "counting_qubit": 37, "state_regist": 37, "put": [37, 46, 68], "r1pigat": 37, "mostprob": 37, "to_integ": 37, "piestim": 37, "tgate": 37, "xgate": 37, "eigen": [37, 72], "nc": 37, "nq": 37, "countingqubit": 37, "stateregist": 37, "deuteron_n2_ansatz": 37, "param_spac": 37, "linspac": [37, 51, 64], "energy_at_param": 37, "energyatparam": 37, "reflect_about_uniform": 37, "ctrlqubit": 37, "lastqubit": 37, "compute_act": [37, 43], "run_grov": 37, "callablekernel": 37, "n_iter": 37, "target_st": 37, "target_bit_set": 37, "strtol": 37, "null": [37, 51, 75], "0b1011": 37, "compute_oracl": 37, "iterative_qp": 37, "iqp": 37, "cr0": 37, "cr2": 37, "m_pi_4": 37, "differenti": [38, 51], "former": 38, "latter": [38, 51, 69], "my_first_entry_point_kernel": 38, "my_second_entry_point_kernel": 38, "my_first_pure_device_kernel": 38, "parent": 38, "boolexprfromqubitmeasur": 38, "another_qubit": 38, "uncomput": [38, 39], "is_arithmetic_v": 38, "span": [38, 46], "mycustomsimplestruct": 38, "recursivevec": 38, "var": [38, 80], "kernelthatreturn": 38, "dataclass": 38, "mysimplestruct": 38, "recursivelist": 38, "1415926": 38, "kernellambda": 38, "mystateprep": 38, "mygenericalgorithm": 38, "placehold": 38, "mygenericalgorithm2": 38, "callkernel": 38, "anothervers": 38, "constrain": [38, 66], "is_convertible_v": 38, "takes_qubit": [38, 66], "mygenericalgorithmonqarrai": 38, "mygenericalgorithmonqubit": 38, "presum": 39, "graphic": 39, "fpga": 39, "concurr": [39, 53], "inter": [39, 55], "fabric": 39, "novel": 39, "placement": 39, "copyabl": [39, 46], "flavor": 39, "tightli": 39, "modal": 39, "sfina": 40, "foundat": 41, "inst_nam": 41, "header": [41, 73, 75, 77, 79], "qubitarg": 41, "qr": [41, 55], "scalarangl": 41, "rotation_nam": 41, "measure_op": 41, "convei": 41, "p_i": 42, "sigma_j": 42, "intent": 43, "u_cod": 43, "v_code": 43, "computef": 43, "actionf": 43, "computel": 43, "segment": [43, 80], "effort": 44, "get_platform": [44, 54, 63], "quantumregist": 45, "x_gate": 45, "ctrl_bit": 45, "rx_and_h_gat": 45, "kerneltestcontrol": 45, "kerneltestadjoint": 45, "aggreg": [45, 64], "qubit0": [45, 55], "qubit1": [45, 55], "kernel_arg": 45, "fundament": [46, 68, 75, 80], "movabl": 46, "n_level": 46, "adl": 46, "familiar": 46, "stride": 46, "first_5": 46, "qb": 46, "knowledg": 46, "ahead": 46, "storag": [46, 68], "fivecompiletimequbit": 46, "conceptu": 48, "sai": [48, 51], "embodi": 48, "behind": 48, "dataflow": 48, "contrast": 48, "truli": 48, "ssa": 48, "clarifi": 48, "toi": 48, "foo": 48, "boilerpl": [48, 72], "c0": 48, "c1": 48, "extract_ref": [48, 69], "bunch": 48, "decid": 48, "i1": [48, 69], "imagin": 48, "adjac": [48, 52], "Of": 48, "cours": 48, "correctli": [48, 73, 77, 79], "quit": [48, 59], "prone": 48, "analys": 48, "q0_1": 48, "q0_0": 48, "wire": 48, "q0_z": 48, "elimin": [48, 54], "r0": 48, "qref": 48, "unwrap": 48, "misc": 48, "q0_m": 48, "q0_l": 48, "q1_x": 48, "q0_p": 48, "q0_y": 48, "straightforwardli": 48, "cancel": [48, 75, 80], "mmeori": 48, "comprehens": [50, 52, 55], "fermioniq": 50, "stim": 50, "tensornet": [50, 53, 54, 55], "mp": [50, 53, 55], "cuquantum": [51, 55, 67, 72, 73], "superconduct": [51, 68], "transmon": 51, "omega_z": 51, "sigma_z": 51, "omega_x": 51, "omega_d": 51, "sigma_x": 51, "cp": [51, 75], "rho0": 51, "t_final": 51, "evolution_result": [51, 52], "photon": [51, 52, 64, 68], "aka": [51, 55], "ladder": 51, "harmon": 51, "oscil": 51, "displac": 51, "squeez": 51, "momentum": 51, "sigma_i": 51, "jayn": 51, "cum": 51, "omega_c": 51, "omega_a": 51, "caviti": 51, "consider": 51, "h_0": 51, "drift": 51, "h0": 51, "displacement_matrix": 51, "numerictyp": 51, "en": 51, "wiki": 51, "displacement_oper": 51, "term1": 51, "term2": 51, "expm": 51, "system_dimens": 51, "system_oper": 51, "linearli": [51, 68], "time_depend": 51, "vari": 51, "parameter_valu": 51, "time_step": 51, "compute_valu": 51, "param_nam": 51, "step_idx": 51, "match": [51, 52, 73, 75, 79], "undefin": [51, 79], "rungekuttaintegr": 51, "4th": 51, "rung": 51, "kutta": 51, "scipyzvodeintegr": 51, "ordinari": 51, "cudatorchdiffeqdopri5integr": 51, "dormand": 51, "princ": 51, "shampin": 51, "torchdiffeq": 51, "cudatorchdiffeqadaptiveheunintegr": 51, "cudatorchdiffeqbosh3integr": 51, "bogacki": 51, "cudatorchdiffeqdopri8integr": 51, "cudatorchdiffeqeulerintegr": 51, "cudatorchdiffeqexplicitadamsintegr": 51, "bashforth": 51, "cudatorchdiffeqimplicitadamsintegr": 51, "moulton": 51, "cudatorchdiffeqmidpointintegr": 51, "midpoint": 51, "cudatorchdiffeqrk4integr": 51, "secur": [52, 54, 75], "demand": [52, 54], "simplest": 52, "cli": [52, 75], "aws_default_region": 52, "aws_access_key_id": 52, "key_id": 52, "aws_secret_access_kei": 52, "access_kei": 52, "aws_session_token": 52, "sv1": [52, 64], "arn": [52, 64], "eu": [52, 64], "north": [52, 64], "garnet": [52, 64], "device_arn": 52, "softwar": [52, 73, 75], "authent": [52, 54, 55, 75], "emit": [52, 69], "diagnost": 52, "ionq_api_kei": 52, "ionq_generated_api_kei": 52, "aria": [52, 64], "login": [52, 75], "usernam": 52, "password": [52, 75], "refresh": 52, "echo": [52, 53, 73, 75, 79], "home": [52, 53, 75], "anyon_config": 52, "apt": [52, 75], "curl": [52, 73], "jq": 52, "5000": 52, "id_token": 52, "cat": [52, 75], "refresh_token": 52, "cudaq_anyon_credenti": 52, "telegraph": 52, "8q": 52, "berkelei": 52, "25q": 52, "inject": [52, 64, 69, 75], "cortex": 52, "cach": 52, "iqm_tokens_fil": 52, "mandatori": 52, "coco": [52, 64], "adoni": [52, 64], "iqm_server_url": 52, "fi": [52, 73, 75], "apollo": 52, "oxford": 52, "ring": 52, "topologi": 52, "luci": 52, "kagom": 52, "lattic": 52, "toshiko": 52, "contact": [52, 55, 64], "oqc_qcaas_support": [52, 64], "oxfordquantumcircuit": [52, 64], "email": [52, 53], "oqc_url": [52, 64], "oqc_email": [52, 64], "oqc_password": [52, 64], "qcaa": 52, "assembli": 52, "qat": 52, "pt": [52, 64, 75], "interf": [52, 64], "detector": [52, 64], "delai": [52, 64], "orca_access_url": [52, 64], "orca_auth_token": 52, "abcdef123456": 52, "orca_url": [52, 64], "getenv": [52, 64], "localhost": [52, 54, 64, 75], "your_alia": 52, "your_password": 52, "qapi": 52, "quantinuum_config": 52, "cudaq_quantinuum_credenti": 52, "checker": [52, 64], "mere": [52, 73], "2e": [52, 64], "1sc": 52, "navig": [52, 75], "tab": [52, 75], "tabl": [52, 53, 54, 72, 75], "east": 52, "whitepap": 52, "world": [53, 58, 65], "visit": [53, 59], "link": [53, 69, 73, 75, 76, 77, 79], "approv": 53, "nvqc_api_kei": 53, "session": [53, 54, 75], "bashrc": [53, 75], "438": 53, "3600": 53, "h100": 53, "80gb": 53, "hbm3": 53, "driver": [53, 73, 75], "gb": [53, 55, 67], "clock": 53, "mhz": 53, "2619": 53, "1980": 53, "1111111111111111111111111": [53, 67], "486": 53, "0000000000000000000000000": [53, 67], "514": 53, "nvqc_intro": 53, "545": 53, "487": 53, "513": 53, "nvqc_sampl": 53, "grow": [53, 72], "ngpu": 53, "unabl": [53, 75], "deploy": 53, "ye": [53, 75], "cutensornet": [53, 55], "contract": [53, 55], "wherebi": [53, 54, 55], "worker": 53, "nqpu": 53, "opt_gradi": 53, "submiss": [53, 60, 64], "energy_futur": 53, "plus_futur": 53, "minus_futur": 53, "optimal_valu": 53, "grad": 53, "paramshift": 53, "74886": 53, "nvqc_vqe": 53, "incom": [53, 66], "attain": 53, "On": [53, 54, 55, 65, 75, 80], "busi": 53, "substanti": 53, "nvqc_log_level": 53, "disabl": [53, 55, 73], "credenti": [53, 55, 64], "lieu": 53, "nvqc_config": 53, "elucid": 54, "unlik": [54, 59], "opportun": 54, "count_futur": 54, "kerneltobesampl": 54, "runtimeparam": 54, "singleton": [54, 63], "zu": [54, 63], "countfutur": 54, "emplace_back": 54, "gpuemulatedqpu": 54, "37": 54, "cudaq_mqpu_ngpu": 54, "bellow": 54, "state_futur": 54, "kerneltorun": 54, "async_state_result": 54, "statefutur": 54, "suffici": [54, 73, 75, 80], "mpiexec": [54, 55, 73], "script": [54, 59, 73, 75], "srun": 54, "controls_count": 54, "auto_launch": 54, "isdigit": 54, "nrcontrol": 54, "tidx": 54, "daemon": 54, "qpud": 54, "shut": 54, "cudaq_loc": 54, "grep": [54, 73], "qpud_pi": 54, "cuda_visible_devic": [54, 55], "tcp": [54, 75], "ip": 54, "ld_library_path": [54, 73, 80], "launcher": 54, "app": 54, "firewal": 54, "port1": 54, "port2": 54, "port3": 54, "port4": 54, "per": [54, 55, 67], "resolv": 54, "contigu": 54, "byte": [54, 67, 79], "memcpi": 54, "ixiz": 54, "charact": 54, "incur": 54, "overhead": 54, "defer": 54, "rtti": 54, "standalon": [54, 72], "accommod": 55, "switch": [55, 67], "cudaq_fusion_max_qubit": 55, "cudaq_fusion_diagonal_gate_max_qubit": 55, "cudaq_fusion_num_host_thread": 55, "cudaq_max_cpu_memory_gb": 55, "migrat": [55, 73], "unlimit": 55, "0gb": 55, "cudaq_max_gpu_memory_gb": 55, "exce": 55, "cudaq_mgpu_lib_mpi": 55, "libmpi": [55, 75], "cudaq_mgpu_comm_plugin_typ": 55, "openmpi": [55, 73, 75, 80], "mpich": [55, 73], "commplugin": 55, "cudaq_mgpu_nqubits_thresh": 55, "cudaq_mgpu_p2p_device_bit": 55, "gpudirect": 55, "p2p": 55, "cudaq_gpu_fabr": 55, "mnnvl": 55, "nvl": 55, "nvlink": 55, "cudaq_global_index_bit": 55, "comma": 55, "slower": 55, "cudaq_host_device_migration_level": 55, "insert": [55, 71], "interconnect": 55, "infiniband": 55, "fuse": 55, "4x4": 55, "bandwidth": 55, "significantli": 55, "suitabl": [55, 73, 75, 79], "despit": [55, 64], "poor": 55, "visibl": [55, 75], "cutensornet_comm_lib": 55, "libcutensornet_distributed_interface_mpi": 55, "dedic": 55, "dgx": 55, "omp_plac": 55, "omp_num_thread": 55, "number_of_cores_per_nod": 55, "number_of_gpus_per_nod": 55, "wave": 55, "sparsiti": 55, "svd": 55, "singular": [55, 73], "truncat": 55, "tractabl": 55, "footprint": 55, "cudaq_mps_max_bond": 55, "cudaq_mps_abs_cutoff": 55, "largest": 55, "trim": 55, "cudaq_mps_relative_cutoff": 55, "cudaq_mps_svd_algo": 55, "gesvd": 55, "gesvdj": 55, "jacobi": 55, "gesvdp": 55, "gesvdr": 55, "medium": 55, "ava": 55, "onlin": [55, 73, 75], "fermioniq_access_token_id": 55, "fermioniq_access_token_secret": 55, "remote_config": 55, "remote_config_id": 55, "organ": 55, "project_id": 55, "bond_dim": 55, "overridden": [55, 72], "cudaq_default_simul": 55, "debug": [56, 69, 73, 75], "amongst": 57, "roughli": [59, 67, 68], "505": 59, "495": 59, "result_0": 59, "5005": 59, "4995": 59, "most_probable_result": 59, "kernel2": 59, "num_gpu": [59, 67], "confirm": [59, 64, 73, 75, 80], "025": 59, "million": 59, "35x": 59, "code_to_tim": 59, "1000000": 59, "57462": 59, "stmt": 59, "773286": 59, "atoi": [59, 80], "chrono": [59, 64], "high_resolution_clock": 59, "durat": 59, "took": 59, "8337": 59, "18988": 59, "cudaq_log_level": 60, "prepend": 60, "cudaq_dump_jit_ir": 60, "output_filenam": 60, "agnost": 61, "707": 61, "707j": 61, "kernel_initi": 61, "state_to_pass": 61, "default_op": 61, "Or": 61, "x_kernel": [61, 66], "control_vector": [61, 66], "blow": 61, "kernel_a": 61, "kernel_b": 61, "024": 61, "543": 61, "d2": 63, "observe_mqpu": 63, "async_count": 64, "fstream": 64, "proceed": [64, 73], "redefin": 64, "same_fil": 64, "retrieved_async_result": 64, "cq_sqale_simul": 64, "ofstream": 64, "savem": 64, "readin": 64, "ifstream": 64, "flight": 64, "mimic": 64, "dashboard": 64, "qb1": 64, "qb2": 64, "qb3": 64, "qb4": 64, "qb5": 64, "adonis_ghz": 64, "transpar": 64, "worri": 64, "schemat": 64, "optic": 64, "reconfigur": 64, "indistinguish": 64, "interfer": [64, 73, 75], "exit": [64, 67, 75], "n_beam_splitt": 64, "sleep": 64, "this_thread": 64, "sleep_for": 64, "sleep_until": 64, "chrono_liter": 64, "sum_loop_length": 64, "static_cast": [64, 77], "n_loop": 64, "n_mode": 64, "endl": [64, 79], "200m": 64, "endpoint": 64, "syntax_check": 64, "hello": [64, 65, 75], "arrang": 64, "7e": 64, "time_max": 64, "time_ramp": 64, "omega_max": 64, "6300000": 64, "rad": 64, "sec": 64, "delta_start": 64, "delta_end": 64, "piec": [64, 73], "wise": 64, "waveform": 64, "rabi": 64, "12121222": 64, "21202221": 64, "21212121": 64, "21212122": 64, "21221212": 64, "21221221": 64, "22121221": 64, "22221221": 64, "post_sequ": 64, "01010111": 64, "10101010": 64, "10101011": 64, "10101110": 64, "10110101": 64, "10110110": 64, "11010110": 64, "11110110": 64, "pre_sequ": 64, "11101111": 64, "11111111": 64, "rydberg": 64, "gotten": 65, "static_kernel": 65, "multi_controlled_oper": 66, "ccnot": 66, "applyx": 66, "ccnot_test": 66, "apply_x": 66, "counts2": 66, "seamless": [67, 75], "multithread": 67, "ghz_state": 67, "sample_ghz_st": 67, "cpu_result": 67, "525": [67, 75], "2500x": 67, "gpu_result": 67, "490": 67, "8700": 67, "freeli": [67, 73, 75], "term_count": 67, "qubits_list": 67, "990": 67, "dev": [67, 73, 75], "xi": 67, "2500": 67, "4x": 67, "transmiss": 68, "counterpart": 68, "transistor": 68, "alter": 68, "ion": 68, "ourselv": 68, "law": 68, "physicist": 68, "logarithm": 68, "dirac": 68, "correspondingli": [68, 79], "art": [68, 79], "offload": 68, "lvert": 68, "rvert": 68, "502": 68, "498": 68, "modulu": 68, "conserv": 68, "uphold": 68, "probabilist": 68, "devis": 68, "postul": 68, "alpha_": 68, "llvm": [69, 71, 72, 73, 77], "qke": [69, 71], "pipelin": 69, "canonic": 69, "lift": 69, "indirect": 69, "loader": 69, "cse": 69, "lpsxpu": 69, "p3de4l": 69, "fixup": 69, "linkag": 69, "pl": [69, 73], "llc": [69, 73], "reloc": 69, "pic": 69, "filetyp": 69, "obj": 69, "o2": 69, "clang": [69, 73, 79], "gcc": [69, 73, 75, 79], "x86_64": [69, 73, 75, 80], "lib64": [69, 75, 77], "stub": 69, "wl": [69, 73, 79], "rpath": [69, 79], "llib": 69, "lcudaq": 69, "builder": 69, "ensmallen": 69, "em": 69, "lnvqir": 69, "orchestr": 69, "qtx": 69, "mangled_name_map": 69, "__nvqpp__mlirgen__ghz": 69, "_zn3ghzclei": 69, "i32": 69, "entrypoint": 69, "alloca": 69, "memref": 69, "extsi": 69, "c0_i32": 69, "c0_i32_0": 69, "alloca_1": 69, "c1_i32": 69, "subi": 69, "cmpi": 69, "slt": 69, "addi": 69, "unoptim": 69, "mangl": 69, "introspect": 69, "overwrit": 69, "libcudaq": 69, "libnvqir": [69, 72], "robust": 69, "depart": 69, "recal": 69, "datalayout": 69, "p270": 69, "p271": 69, "p272": 69, "f80": 69, "n8": 69, "s128": 69, "invokewithcontrolqubit": 69, "__quantum__qis__x__ctl": 69, "__quantum__rt__array_get_size_1d": 69, "__quantum__qis__h": 69, "i8": 69, "__quantum__rt__array_get_element_ptr_1d": 69, "sext": 69, "bitcast": 69, "icmp": 69, "sgt": 69, "br": 69, "ph": 69, "prehead": 69, "_crit_edg": 69, "trip": 69, "zext": 69, "indvar": 69, "iv": 69, "nuw": 69, "nsw": 69, "nonnul": 69, "exitcond": 69, "ph3": 69, "_crit_edge4": 69, "exitcond5": 69, "mycustomplugin": 71, "cmakelist": [71, 72, 76], "add_llvm_pass_plugin": 71, "operationpass": 71, "quakedialect": 71, "quakeop": 71, "frozenrewritepatternset": 71, "dialectconvers": 71, "replaceh": 71, "oprewritepattern": 71, "hop": 71, "logicalresult": 71, "matchandrewrit": 71, "patternrewrit": 71, "replaceopwithnewop": 71, "sop": 71, "isadj": 71, "getparamet": 71, "getcontrol": 71, "gettarget": 71, "custompassplugin": 71, "passwrapp": 71, "mlir_define_explicit_internal_inline_type_id": 71, "stringref": 71, "runonoper": 71, "getoper": 71, "getcontext": 71, "rewritepatternset": 71, "conversiontarget": 71, "addlegaldialect": 71, "addillegalop": 71, "applypartialconvers": 71, "emitoperror": 71, "signalpassfailur": 71, "cudaq_register_mlir_pass": 71, "add_subdirectori": 71, "circuitsimulatorbas": 72, "lot": 72, "qppcircuitsimul": 72, "custateveccircuitsimul": 72, "openmp": [72, 73, 80], "addqubittost": 72, "addqubitstost": 72, "resetqubit": 72, "qubitidx": 72, "resetqubitstateimpl": 72, "applyg": 72, "gateapplicationtask": 72, "measurequbit": 72, "floattyp": 72, "mysimul": 72, "nvqir_register_simul": 72, "mysimulatorclassnam": 72, "dylib": 72, "nvqir_simulation_backend": 72, "cuda_quantum_path": [72, 73, 75, 76], "find_packag": [72, 76], "nvqir_add_backend": 72, "folder": [72, 73, 75, 76], "cmake_minimum_requir": [72, 76], "fatal_error": [72, 76], "democreatenvqirbackend": 72, "cxx": [72, 73, 76, 80], "measuredbit": 72, "cuda_quantum": [72, 73], "cd": [72, 73, 75, 76], "ninja": [72, 76], "dnvqir_dir": 72, "rootless": 73, "admin": [73, 75], "meet": 73, "carefulli": 73, "requisit": 73, "almalinux": 73, "manylinux_2_28": 73, "cento": [73, 75], "debian": [73, 75], "fedora": [73, 75], "opensus": [73, 75], "sled": [73, 75], "sle": [73, 75], "rhel": [73, 75], "rocki": [73, 75], "ubuntu": [73, 75], "newer": [73, 75, 80], "x86": [73, 75], "arm64": [73, 75, 80], "v8": [73, 75], "volta": [73, 75], "ture": [73, 75], "amper": [73, 75], "ada": [73, 75], "hopper": [73, 75], "470": [73, 75], "git": 73, "unzip": 73, "web": [73, 75], "cudaq_install_prefix": 73, "cuquantum_install_prefix": 73, "cutensor_install_prefix": 73, "cutensor": 73, "llvm_install_prefix": 73, "blas_install_prefix": 73, "bla": 73, "zlib_install_prefix": 73, "zlib": 73, "openssl_install_prefix": 73, "openssl": 73, "curl_install_prefix": 73, "aws_install_prefix": 73, "toolkit": [73, 75, 77, 80], "cuda_vers": [73, 75, 80], "cuda_download_url": [73, 75], "repo": [73, 75], "subfold": [73, 75], "rhel8": [73, 75], "cuda_arch_fold": [73, 75], "dnf": [73, 75], "nobest": [73, 75], "setopt": [73, 75], "install_weak_dep": [73, 75], "tr": [73, 75], "gcc_version": 73, "assembl": 73, "enable_script": 73, "gcc_toolchain": 73, "rh": 73, "cudacxx": 73, "nvcc": [73, 75, 77], "cudahostcxx": 73, "commit": 73, "checkout": 73, "archiv": [73, 75, 79], "subsect": 73, "devel": [73, 75], "suffix": [73, 80], "conda": [73, 80], "auditwheel": 73, "patchelf": 73, "pyproject": 73, "toml": 73, "llvm_project": 73, "flang": 73, "lld": 73, "install_prerequisit": [73, 75], "sh": [73, 75, 80], "fc": 73, "histori": 73, "setuptools_scm_pretend_vers": 73, "cudaq_wheel": 73, "manylinux_platform": 73, "linux_": 73, "sed": [73, 75], "manylinux_2_28_": 73, "pwd": [73, 79], "_skbuild": 73, "repair": 73, "plat": 73, "libcubla": [73, 75], "libcublaslt": 73, "libcusolv": [73, 75], "libcutensor": 73, "libcutensornet": 73, "libcustatevec": 73, "libcudart": 73, "libnvtoolsext": 73, "libnvidia": 73, "ml": 73, "libcuda": 73, "wheelhous": 73, "cudaq_enable_static_link": 73, "cudaq_require_openmp": 73, "cudaq_werror": 73, "cudaq_python_support": 73, "build_cudaq": 73, "primarili": 73, "linker": [73, 79], "makeself": 73, "cuda_quantum_asset": 73, "mv": 73, "ld": 73, "build_config": 73, "xml": 73, "gzip": [73, 75], "sha256": 73, "install_cuda_quantum": [73, 75, 80], "unam": [73, 75, 80], "migrate_asset": 73, "libc6": [73, 75], "sudo": [73, 75, 80], "set_env": [73, 75], "asset": [73, 75, 80], "profil": [73, 75, 80], "version_suffix": [73, 75], "cudart": [73, 75], "nvrtc": [73, 75], "f1": [73, 75], "libnvjitlink": [73, 75], "awar": 73, "autoconf": 73, "libtool": 73, "flex": 73, "openmpi_vers": 73, "openmpi_download_url": 73, "ompi": 73, "tar": [73, 75], "gz": [73, 75], "tmp": 73, "xf": 73, "rf": [73, 75], "autogen": 73, "ldflag": 73, "prefix": [73, 75], "getpwuid": 73, "mem": 73, "memcheck": 73, "verb": 73, "nproc": 73, "mpic": 73, "mpi_cuda_check": 73, "__has_includ": 73, "ext": 73, "endif": 73, "mpi_init": 73, "exit_cod": 73, "mpix_query_cuda_support": 73, "mpi_fin": 73, "mca": 73, "plm_rsh_agent": 73, "ssh": 73, "rsh": 73, "slurm": 73, "mpi_path": [73, 75, 80], "distributed_interfac": [73, 75, 80], "activate_custom_mpi": [73, 75, 80], "bundl": 75, "deploi": 75, "unsur": 75, "engin": 75, "desktop": 75, "administr": 75, "ngc": 75, "whenev": 75, "pull": 75, "nvcr": 75, "cu12": [75, 80], "prototyp": 75, "tri": 75, "readm": 75, "appreci": 75, "insuffici": 75, "hover": 75, "id_rsa": 75, "pub": 75, "itd": 75, "2222": 75, "exec": 75, "openssh": 75, "usepam": 75, "sshd_config": 75, "authorized_kei": 75, "sbin": 75, "sshd": 75, "stricthostkeycheck": 75, "userknownhostsfil": 75, "globalknownhostsfil": 75, "relocat": 75, "wsl": 75, "prerequisit": 75, "sylab": 75, "ce": 75, "xzf": 75, "mconfig": 75, "suid": 75, "builddir": 75, "bootstrap": 75, "runscript": 75, "mount": 75, "devpt": 75, "fakeroot": 75, "sif": 75, "writabl": 75, "nv": 75, "conf": 75, "ldd": [75, 79], "privileg": 75, "revis": 75, "upvot": 75, "posix": 75, "browser": 75, "palett": 75, "attach": 75, "window": 75, "reload": 75, "microsoft": 75, "sandbox": 75, "portmap": 75, "sshd_output": 75, "listen": 75, "1025": 75, "65535": 75, "ui": 75, "aren": 75, "icon": 75, "sidebar": 75, "workspac": 75, "remotecommand": 75, "requesttti": 75, "hostnam": 75, "enableremotecommand": 75, "uselocalserv": 75, "remoteserverlistenonsocket": 75, "connecttimeout": 75, "serverinstallpath": 75, "sign": 75, "upgrad": 75, "ac": 75, "ace_nam": 75, "instance_nam": 75, "commandlin": 75, "job_id": 75, "8888": 75, "portal": 75, "404": 75, "patient": 75, "happi": 75, "cuda12x": 75, "ship": 75, "vendor": 75, "prebuilt": 75, "guarante": 75, "libcudaq_distributed_interface_mpi": 75, "cudaq_mpi_comm_lib": 75, "cu11": [75, 80], "uninstal": [75, 80], "supersed": 75, "dsize": 75, "fairli": 75, "succe": 75, "hang": [75, 80], "imper": 76, "mycudaqapp": 76, "add_execut": 76, "ghz_ex": 76, "dcudaq_dir": 76, "cu": 77, "my_proj": 77, "conform": 77, "my_proj_quantum": 77, "libc": 77, "cudadatatyp": [77, 79], "cudasetfirstnel": 77, "__restrict__": 77, "sv2": 77, "int64_t": 77, "blockidx": 77, "blockdim": 77, "threadidx": 77, "setfirstnel": 77, "uint32_t": [77, 79], "n_block": [77, 79], "int32_t": [77, 79], "threads_per_block": [77, 79], "newdevicestatevector": 77, "devicestatevector": [77, 79], "previousstatedimens": 77, "reinterpret_cast": [77, 79], "cufloatcomplex": [77, 79], "cudoublecomplex": [77, 79], "cucomplex": 77, "cuda_runtim": 77, "device_launch_paramet": 77, "my_kernel": 77, "cudamalloc": 77, "xcompil": 77, "fpic": [77, 79], "cuda_hom": 77, "lcudart": 77, "my_execut": 77, "quantum_kernel": 79, "sstream": 79, "bell_distribut": 79, "stringbuf": 79, "ptr": 79, "strcpy": 79, "libstdc": 79, "libquantum_kernel": 79, "bell_dist": 79, "lquantum_kernel": 79, "abi": 79, "incompat": 79, "watch": 79, "surround": 79, "third_party_librari": 79, "libexternal_librari": 79, "my_cod": 79, "bstatic": 79, "lexternal_librari": 79, "bdynam": 79, "crut": 79, "libexternal_library_complet": 79, "naddlib": 79, "nsave": 79, "nend": 79, "lexternal_library_complet": 79, "shim": 79, "pragma": 79, "is_integr": 79, "initializedevicestatevector": 79, "statedimens": 79, "cudainitializedevicestatevector": 79, "cumbersom": 79, "necessarili": 79, "recogn": 79, "env": 80, "forg": 80, "conda_prefix": 80, "ompi_mca_opal_cuda_support": 80, "ompi_mca_btl": 80, "openib": 80, "bash_profil": 80, "bash_login": 80, "_cu11": 80, "_cu12": 80, "amd": 80}, "objects": {"": [[2, 0, 1, "_CPPv45cudaq", "cudaq"], [2, 1, 1, "_CPPv4N5cudaq20BaseNvcfSimulatorQPUE", "cudaq::BaseNvcfSimulatorQPU"], [2, 1, 1, "_CPPv4N5cudaq17BaseRemoteRESTQPUE", "cudaq::BaseRemoteRESTQPU"], [2, 1, 1, "_CPPv4N5cudaq22BaseRemoteSimulatorQPUE", "cudaq::BaseRemoteSimulatorQPU"], [2, 1, 1, "_CPPv4I0EN5cudaq9CusvStateE", "cudaq::CusvState"], [2, 2, 1, "_CPPv4I0EN5cudaq9CusvStateE", "cudaq::CusvState::ScalarType"], [2, 1, 1, "_CPPv4N5cudaq16ExecutionContextE", "cudaq::ExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE", "cudaq::ExecutionContext::ExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE", "cudaq::ExecutionContext::ExecutionContext::n"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext::n"], [2, 4, 1, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE", "cudaq::ExecutionContext::ExecutionContext::shots_"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13amplitudeMapsE", "cudaq::ExecutionContext::amplitudeMaps"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext9asyncExecE", "cudaq::ExecutionContext::asyncExec"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext11asyncResultE", "cudaq::ExecutionContext::asyncResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext14batchIterationE", "cudaq::ExecutionContext::batchIteration"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext16canHandleObserveE", "cudaq::ExecutionContext::canHandleObserve"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext16expectationValueE", "cudaq::ExecutionContext::expectationValue"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext12futureResultE", "cudaq::ExecutionContext::futureResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext31hasConditionalsOnMeasureResultsE", "cudaq::ExecutionContext::hasConditionalsOnMeasureResults"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext22invocationResultBufferE", "cudaq::ExecutionContext::invocationResultBuffer"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10kernelNameE", "cudaq::ExecutionContext::kernelName"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext11kernelTraceE", "cudaq::ExecutionContext::kernelTrace"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext4nameE", "cudaq::ExecutionContext::name"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10noiseModelE", "cudaq::ExecutionContext::noiseModel"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext18numberTrajectoriesE", "cudaq::ExecutionContext::numberTrajectories"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext9optResultE", "cudaq::ExecutionContext::optResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext20overlapComputeStatesE", "cudaq::ExecutionContext::overlapComputeStates"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13overlapResultE", "cudaq::ExecutionContext::overlapResult"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext13registerNamesE", "cudaq::ExecutionContext::registerNames"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext10reorderIdxE", "cudaq::ExecutionContext::reorderIdx"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext6resultE", "cudaq::ExecutionContext::result"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext5shotsE", "cudaq::ExecutionContext::shots"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext15simulationStateE", "cudaq::ExecutionContext::simulationState"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext4spinE", "cudaq::ExecutionContext::spin"], [2, 5, 1, "_CPPv4N5cudaq16ExecutionContext15totalIterationsE", "cudaq::ExecutionContext::totalIterations"], [2, 1, 1, "_CPPv4N5cudaq15ExecutionResultE", "cudaq::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd", "cudaq::ExecutionResult::ExecutionResult"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEv", "cudaq::ExecutionResult::ExecutionResult"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult::c"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd", "cudaq::ExecutionResult::ExecutionResult::e"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd", "cudaq::ExecutionResult::ExecutionResult::expVal"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE", "cudaq::ExecutionResult::ExecutionResult::name"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE", "cudaq::ExecutionResult::ExecutionResult::name"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult", "cudaq::ExecutionResult::ExecutionResult::other"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult::bitString"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE", "cudaq::ExecutionResult::appendResult::count"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::ExecutionResult::deserialize"], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::ExecutionResult::deserialize::data"], [2, 3, 1, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult", "cudaq::ExecutionResult::operator="], [2, 4, 1, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult", "cudaq::ExecutionResult::operator=::other"], [2, 3, 1, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult", "cudaq::ExecutionResult::operator=="], [2, 4, 1, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult", "cudaq::ExecutionResult::operator==::result"], [2, 5, 1, "_CPPv4N5cudaq15ExecutionResult12registerNameE", "cudaq::ExecutionResult::registerName"], [2, 5, 1, "_CPPv4N5cudaq15ExecutionResult14sequentialDataE", "cudaq::ExecutionResult::sequentialData"], [2, 3, 1, "_CPPv4NK5cudaq15ExecutionResult9serializeEv", "cudaq::ExecutionResult::serialize"], [2, 1, 1, "_CPPv4N5cudaq16FermioniqBaseQPUE", "cudaq::FermioniqBaseQPU"], [2, 0, 1, "_CPPv4N5cudaq19KernelExecutionTaskE", "cudaq::KernelExecutionTask"], [2, 1, 1, "_CPPv4N5cudaq21KernelThunkResultTypeE", "cudaq::KernelThunkResultType"], [2, 0, 1, "_CPPv4N5cudaq15KernelThunkTypeE", "cudaq::KernelThunkType"], [2, 1, 1, "_CPPv4N5cudaq17OrcaRemoteRESTQPUE", "cudaq::OrcaRemoteRESTQPU"], [2, 1, 1, "_CPPv4N5cudaq3QPUE", "cudaq::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE", "cudaq::QPU::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUERR3QPU", "cudaq::QPU::QPU"], [2, 3, 1, "_CPPv4N5cudaq3QPU3QPUEv", "cudaq::QPU::QPU"], [2, 4, 1, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE", "cudaq::QPU::QPU::_qpuId"], [2, 3, 1, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask", "cudaq::QPU::enqueue"], [2, 4, 1, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask", "cudaq::QPU::enqueue::task"], [2, 3, 1, "_CPPv4N5cudaq3QPU15getConnectivityEv", "cudaq::QPU::getConnectivity"], [2, 3, 1, "_CPPv4NK5cudaq3QPU20getExecutionThreadIdEv", "cudaq::QPU::getExecutionThreadId"], [2, 3, 1, "_CPPv4N5cudaq3QPU12getNumQubitsEv", "cudaq::QPU::getNumQubits"], [2, 3, 1, "_CPPv4NK5cudaq3QPU21getRemoteCapabilitiesEv", "cudaq::QPU::getRemoteCapabilities"], [2, 3, 1, "_CPPv4N5cudaq3QPU10isEmulatedEv", "cudaq::QPU::isEmulated"], [2, 3, 1, "_CPPv4N5cudaq3QPU11isSimulatorEv", "cudaq::QPU::isSimulator"], [2, 3, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel"], [2, 3, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::args"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::kernelFunc"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::rawArgs"], [2, 4, 1, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE", "cudaq::QPU::launchKernel::rawArgs"], [2, 3, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution"], [2, 4, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution::name"], [2, 4, 1, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE", "cudaq::QPU::launchSerializedCodeExecution::serializeCodeExecutionObject"], [2, 3, 1, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE", "cudaq::QPU::onRandomSeedSet"], [2, 4, 1, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE", "cudaq::QPU::onRandomSeedSet::seed"], [2, 3, 1, "_CPPv4N5cudaq3QPU21resetExecutionContextEv", "cudaq::QPU::resetExecutionContext"], [2, 3, 1, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext", "cudaq::QPU::setExecutionContext"], [2, 4, 1, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext", "cudaq::QPU::setExecutionContext::context"], [2, 3, 1, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE", "cudaq::QPU::setId"], [2, 4, 1, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE", "cudaq::QPU::setId::_qpuId"], [2, 3, 1, "_CPPv4N5cudaq3QPU8setShotsEi", "cudaq::QPU::setShots"], [2, 4, 1, "_CPPv4N5cudaq3QPU8setShotsEi", "cudaq::QPU::setShots::_nShots"], [2, 3, 1, "_CPPv4N5cudaq3QPU27supportsConditionalFeedbackEv", "cudaq::QPU::supportsConditionalFeedback"], [2, 3, 1, "_CPPv4N5cudaq3QPUD0Ev", "cudaq::QPU::~QPU"], [2, 1, 1, "_CPPv4N5cudaq12QuEraBaseQPUE", "cudaq::QuEraBaseQPU"], [2, 1, 1, "_CPPv4N5cudaq10QuakeValueE", "cudaq::QuakeValue"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue::builder"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue::builder"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE", "cudaq::QuakeValue::QuakeValue::v"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd", "cudaq::QuakeValue::QuakeValue::v"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue22canValidateNumElementsEv", "cudaq::QuakeValue::canValidateNumElements"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue12constantSizeEv", "cudaq::QuakeValue::constantSize"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4dumpERNSt7ostreamE", "cudaq::QuakeValue::dump"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4dumpEv", "cudaq::QuakeValue::dump"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue19getRequiredElementsEv", "cudaq::QuakeValue::getRequiredElements"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValue8getValueEv", "cudaq::QuakeValue::getValue"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValue7inverseEv", "cudaq::QuakeValue::inverse"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue8isStdVecEv", "cudaq::QuakeValue::isStdVec"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue", "cudaq::QuakeValue::operator*"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemlEKd", "cudaq::QuakeValue::operator*"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue", "cudaq::QuakeValue::operator*::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue", "cudaq::QuakeValue::operator+"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplEKd", "cudaq::QuakeValue::operator+"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueplEKi", "cudaq::QuakeValue::operator+"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue", "cudaq::QuakeValue::operator+::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiEKd", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuemiEKi", "cudaq::QuakeValue::operator-"], [2, 3, 1, "_CPPv4NK5cudaq10QuakeValuemiEv", "cudaq::QuakeValue::operator-"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue", "cudaq::QuakeValue::operator-::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue", "cudaq::QuakeValue::operator/"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValuedvEKd", "cudaq::QuakeValue::operator/"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue", "cudaq::QuakeValue::operator/::other"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE", "cudaq::QuakeValue::operator[]"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue", "cudaq::QuakeValue::operator[]"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE", "cudaq::QuakeValue::operator[]::idx"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue", "cudaq::QuakeValue::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue4sizeEv", "cudaq::QuakeValue::size"], [2, 3, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice::count"], [2, 4, 1, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE", "cudaq::QuakeValue::slice::startIdx"], [2, 0, 1, "_CPPv4N5cudaq11QuantumTaskE", "cudaq::QuantumTask"], [2, 0, 1, "_CPPv4N5cudaq17QubitConnectivityE", "cudaq::QubitConnectivity"], [2, 0, 1, "_CPPv4N5cudaq9QubitEdgeE", "cudaq::QubitEdge"], [2, 1, 1, "_CPPv4N5cudaq18RemoteCapabilitiesE", "cudaq::RemoteCapabilities"], [2, 3, 1, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb", "cudaq::RemoteCapabilities::RemoteCapabilities"], [2, 4, 1, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb", "cudaq::RemoteCapabilities::RemoteCapabilities::initValue"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities17isRemoteSimulatorE", "cudaq::RemoteCapabilities::isRemoteSimulator"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities18serializedCodeExecE", "cudaq::RemoteCapabilities::serializedCodeExec"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities12stateOverlapE", "cudaq::RemoteCapabilities::stateOverlap"], [2, 5, 1, "_CPPv4N5cudaq18RemoteCapabilities3vqeE", "cudaq::RemoteCapabilities::vqe"], [2, 1, 1, "_CPPv4N5cudaq21RemoteSimulationStateE", "cudaq::RemoteSimulationState"], [2, 1, 1, "_CPPv4N5cudaq9ResourcesE", "cudaq::Resources"], [2, 1, 1, "_CPPv4N5cudaq30SerializedCodeExecutionContextE", "cudaq::SerializedCodeExecutionContext"], [2, 1, 1, "_CPPv4N5cudaq15SimulationStateE", "cudaq::SimulationState"], [2, 1, 1, "_CPPv4N5cudaq15SimulationState6TensorE", "cudaq::SimulationState::Tensor"], [2, 6, 1, "_CPPv4N5cudaq15SimulationState9precisionE", "cudaq::SimulationState::precision"], [2, 7, 1, "_CPPv4N5cudaq15SimulationState9precision4fp32E", "cudaq::SimulationState::precision::fp32"], [2, 7, 1, "_CPPv4N5cudaq15SimulationState9precision4fp64E", "cudaq::SimulationState::precision::fp64"], [2, 0, 1, "_CPPv4N5cudaq15TensorStateDataE", "cudaq::TensorStateData"], [2, 1, 1, "_CPPv4N5cudaq5TraceE", "cudaq::Trace"], [2, 1, 1, "_CPPv4N5cudaq25amplitude_damping_channelE", "cudaq::amplitude_damping_channel"], [2, 1, 1, "_CPPv4I0EN5cudaq12async_resultE", "cudaq::async_result"], [2, 2, 1, "_CPPv4I0EN5cudaq12async_resultE", "cudaq::async_result::T"], [2, 3, 1, "_CPPv4N5cudaq12async_result3getEv", "cudaq::async_result::get"], [2, 0, 1, "_CPPv4N5cudaq19async_sample_resultE", "cudaq::async_sample_result"], [2, 1, 1, "_CPPv4N5cudaq16bit_flip_channelE", "cudaq::bit_flip_channel"], [2, 0, 1, "_CPPv4N5cudaq7complexE", "cudaq::complex"], [2, 1, 1, "_CPPv4N5cudaq14complex_matrixE", "cudaq::complex_matrix"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4colsEv", "cudaq::complex_matrix::cols"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::cols"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::cols"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rawData"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rows"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE", "cudaq::complex_matrix::complex_matrix::rows"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4dataEv", "cudaq::complex_matrix::data"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE", "cudaq::complex_matrix::dump"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix4dumpEv", "cudaq::complex_matrix::dump"], [2, 4, 1, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE", "cudaq::complex_matrix::dump::os"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix11eigenvaluesEv", "cudaq::complex_matrix::eigenvalues"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix12eigenvectorsEv", "cudaq::complex_matrix::eigenvectors"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix18minimal_eigenvalueEv", "cudaq::complex_matrix::minimal_eigenvalue"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()::i"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE", "cudaq::complex_matrix::operator()::j"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix", "cudaq::complex_matrix::operator*"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE", "cudaq::complex_matrix::operator*"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix", "cudaq::complex_matrix::operator*::other"], [2, 4, 1, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE", "cudaq::complex_matrix::operator*::other"], [2, 3, 1, "_CPPv4NK5cudaq14complex_matrix4rowsEv", "cudaq::complex_matrix::rows"], [2, 3, 1, "_CPPv4N5cudaq14complex_matrix8set_zeroEv", "cudaq::complex_matrix::set_zero"], [2, 0, 1, "_CPPv4N5cudaq14complex_matrix10value_typeE", "cudaq::complex_matrix::value_type"], [2, 1, 1, "_CPPv4N5cudaq22depolarization_channelE", "cudaq::depolarization_channel"], [2, 0, 1, "_CPPv4N5cudaq7detailsE", "cudaq::details"], [2, 1, 1, "_CPPv4N5cudaq7details17KernelBuilderTypeE", "cudaq::details::KernelBuilderType"], [2, 3, 1, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE", "cudaq::details::KernelBuilderType::KernelBuilderType"], [2, 4, 1, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE", "cudaq::details::KernelBuilderType::KernelBuilderType::f"], [2, 3, 1, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE", "cudaq::details::KernelBuilderType::create"], [2, 4, 1, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE", "cudaq::details::KernelBuilderType::create::ctx"], [2, 1, 1, "_CPPv4N5cudaq7details6futureE", "cudaq::details::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureERR6future", "cudaq::details::future::future"], [2, 3, 1, "_CPPv4N5cudaq7details6future6futureEv", "cudaq::details::future::future"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::_jobs"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::config"], [2, 4, 1, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE", "cudaq::details::future::future::qpuNameIn"], [2, 1, 1, "_CPPv4N5cudaq7details19kernel_builder_baseE", "cudaq::details::kernel_builder_base"], [2, 3, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<"], [2, 4, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<::builder"], [2, 4, 1, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base", "cudaq::details::kernel_builder_base::operator<<::stream"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::QuantumKernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args", "cudaq::draw::kernel"], [2, 5, 1, "_CPPv4N5cudaq3dynE", "cudaq::dyn"], [2, 3, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state"], [2, 2, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::Args"], [2, 2, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::QuantumKernel"], [2, 4, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::args"], [2, 4, 1, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args", "cudaq::get_state::kernel"], [2, 1, 1, "_CPPv4N5cudaq8gradientE", "cudaq::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient5cloneEv", "cudaq::gradient::clone"], [2, 3, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute"], [2, 3, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::func"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::h"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradient::compute::x"], [2, 4, 1, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradient::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradient::gradient"], [2, 3, 1, "_CPPv4N5cudaq8gradient8gradientEv", "cudaq::gradient::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradient::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradient::gradient::kernel"], [2, 3, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs"], [2, 2, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::Args"], [2, 2, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::QuantumKernel"], [2, 4, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::args"], [2, 4, 1, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args", "cudaq::gradient::setArgs::kernel"], [2, 3, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel"], [2, 2, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel::QuantumKernel"], [2, 4, 1, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel", "cudaq::gradient::setKernel::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients18central_differenceE", "cudaq::gradients::central_difference"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference5cloneEv", "cudaq::gradients::central_difference::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::exp_h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::central_difference::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::central_difference::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::central_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientEv", "cudaq::gradients::central_difference::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::central_difference::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::central_difference::gradient::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients18forward_differenceE", "cudaq::gradients::forward_difference"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference5cloneEv", "cudaq::gradients::forward_difference::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::forward_difference::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::forward_difference::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::forward_difference::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientEv", "cudaq::gradients::forward_difference::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::forward_difference::gradient::kernel"], [2, 1, 1, "_CPPv4N5cudaq9gradients15parameter_shiftE", "cudaq::gradients::parameter_shift"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift5cloneEv", "cudaq::gradients::parameter_shift::clone"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::dx"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::exp_h"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::func"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::funcAtX"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::h"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd", "cudaq::gradients::parameter_shift::compute::x"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd", "cudaq::gradients::parameter_shift::compute::x"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::parameter_shift::gradient"], [2, 3, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientEv", "cudaq::gradients::parameter_shift::gradient"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::ArgsMapper"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::KernelT"], [2, 2, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::QuantumKernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::argsMapper"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 4, 1, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE", "cudaq::gradients::parameter_shift::gradient::kernel"], [2, 1, 1, "_CPPv4IDpEN5cudaq14kernel_builderE", "cudaq::kernel_builder"], [2, 2, 1, "_CPPv4IDpEN5cudaq14kernel_builderE", "cudaq::kernel_builder::Args"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder11constantValEd", "cudaq::kernel_builder::constantVal"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder11constantValEd", "cudaq::kernel_builder::constantVal::val"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder12getArgumentsEv", "cudaq::kernel_builder::getArguments"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder12getNumParamsEv", "cudaq::kernel_builder::getNumParams"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE", "cudaq::kernel_builder::isArgStdVec"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE", "cudaq::kernel_builder::isArgStdVec::idx"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE", "cudaq::kernel_builder::kernel_builder"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE", "cudaq::kernel_builder::kernel_builder::types"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder4nameEv", "cudaq::kernel_builder::name"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE", "cudaq::kernel_builder::qalloc"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder6qallocEv", "cudaq::kernel_builder::qalloc"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE", "cudaq::kernel_builder::qalloc::nQubits"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue", "cudaq::kernel_builder::qalloc::size"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE", "cudaq::kernel_builder::qalloc::state"], [2, 3, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 3, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 3, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::control"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::controls"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::first"], [2, 2, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::mod"], [2, 2, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::mod"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 4, 1, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 4, 1, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue", "cudaq::kernel_builder::swap::second"], [2, 1, 1, "_CPPv4N5cudaq13kraus_channelE", "cudaq::kraus_channel"], [2, 3, 1, "_CPPv4NK5cudaq13kraus_channel5emptyEv", "cudaq::kraus_channel::empty"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel7get_opsEv", "cudaq::kraus_channel::get_ops"], [2, 3, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelEv", "cudaq::kraus_channel::kraus_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel::T"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel::inOps"], [2, 4, 1, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE", "cudaq::kraus_channel::kraus_channel::inputLists"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE", "cudaq::kraus_channel::kraus_channel::ops"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel", "cudaq::kraus_channel::kraus_channel::other"], [2, 5, 1, "_CPPv4N5cudaq13kraus_channel10noise_typeE", "cudaq::kraus_channel::noise_type"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel", "cudaq::kraus_channel::operator="], [2, 4, 1, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel", "cudaq::kraus_channel::operator=::other"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE", "cudaq::kraus_channel::operator[]"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE", "cudaq::kraus_channel::operator[]::idx"], [2, 5, 1, "_CPPv4N5cudaq13kraus_channel10parametersE", "cudaq::kraus_channel::parameters"], [2, 3, 1, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op", "cudaq::kraus_channel::push_back"], [2, 4, 1, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op", "cudaq::kraus_channel::push_back::op"], [2, 3, 1, "_CPPv4NK5cudaq13kraus_channel4sizeEv", "cudaq::kraus_channel::size"], [2, 1, 1, "_CPPv4N5cudaq8kraus_opE", "cudaq::kraus_op"], [2, 3, 1, "_CPPv4NK5cudaq8kraus_op7adjointEv", "cudaq::kraus_op::adjoint"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op4dataE", "cudaq::kraus_op::data"], [2, 3, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op"], [2, 3, 1, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE", "cudaq::kraus_op::kraus_op"], [2, 3, 1, "_CPPv4N5cudaq8kraus_op8kraus_opERK8kraus_op", "cudaq::kraus_op::kraus_op"], [2, 2, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op::T"], [2, 4, 1, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE", "cudaq::kraus_op::kraus_op::d"], [2, 4, 1, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE", "cudaq::kraus_op::kraus_op::initList"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op5nColsE", "cudaq::kraus_op::nCols"], [2, 5, 1, "_CPPv4N5cudaq8kraus_op5nRowsE", "cudaq::kraus_op::nRows"], [2, 3, 1, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op", "cudaq::kraus_op::operator="], [2, 4, 1, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op", "cudaq::kraus_op::operator=::other"], [2, 0, 1, "_CPPv4N5cudaq3mpiE", "cudaq::mpi"], [2, 3, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather"], [2, 3, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather::global"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather::global"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE", "cudaq::mpi::all_gather::local"], [2, 4, 1, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE", "cudaq::mpi::all_gather::local"], [2, 3, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce"], [2, 3, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::BinaryFunction"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce::Func"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::T"], [2, 2, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func", "cudaq::mpi::all_reduce::T"], [2, 4, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::function"], [2, 4, 1, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction", "cudaq::mpi::all_reduce::localValue"], [2, 3, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast"], [2, 3, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast::data"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast::data"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi", "cudaq::mpi::broadcast::rootRank"], [2, 4, 1, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi", "cudaq::mpi::broadcast::rootRank"], [2, 3, 1, "_CPPv4N5cudaq3mpi8finalizeEv", "cudaq::mpi::finalize"], [2, 3, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize"], [2, 3, 1, "_CPPv4N5cudaq3mpi10initializeEv", "cudaq::mpi::initialize"], [2, 4, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize::argc"], [2, 4, 1, "_CPPv4N5cudaq3mpi10initializeEiPPc", "cudaq::mpi::initialize::argv"], [2, 3, 1, "_CPPv4N5cudaq3mpi14is_initializedEv", "cudaq::mpi::is_initialized"], [2, 3, 1, "_CPPv4N5cudaq3mpi9num_ranksEv", "cudaq::mpi::num_ranks"], [2, 3, 1, "_CPPv4N5cudaq3mpi4rankEv", "cudaq::mpi::rank"], [2, 1, 1, "_CPPv4N5cudaq11noise_modelE", "cudaq::noise_model"], [2, 0, 1, "_CPPv4N5cudaq11noise_model15PredicateFuncTyE", "cudaq::noise_model::PredicateFuncTy"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::QuantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::channel"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::channel"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::numControls"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::numControls"], [2, 4, 1, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli", "cudaq::noise_model::add_all_qubit_channel::quantumOp"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel::QuantumOp"], [2, 2, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::QuantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::channel"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::channel"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy", "cudaq::noise_model::add_channel::pred"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel::pred"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy", "cudaq::noise_model::add_channel::quantumOp"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::quantumOp"], [2, 4, 1, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::qubits"], [2, 4, 1, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel", "cudaq::noise_model::add_channel::qubits"], [2, 3, 1, "_CPPv4NK5cudaq11noise_model5emptyEv", "cudaq::noise_model::empty"], [2, 3, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels"], [2, 3, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels"], [2, 2, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::QuantumOp"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::controlQubits"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::controlQubits"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::params"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::params"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::quantumOp"], [2, 4, 1, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::targetQubits"], [2, 4, 1, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE", "cudaq::noise_model::get_channels::targetQubits"], [2, 3, 1, "_CPPv4N5cudaq11noise_model11noise_modelEv", "cudaq::noise_model::noise_model"], [2, 6, 1, "_CPPv4N5cudaq16noise_model_typeE", "cudaq::noise_model_type"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type25amplitude_damping_channelE", "cudaq::noise_model_type::amplitude_damping_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type16bit_flip_channelE", "cudaq::noise_model_type::bit_flip_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type22depolarization_channelE", "cudaq::noise_model_type::depolarization_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type18phase_flip_channelE", "cudaq::noise_model_type::phase_flip_channel"], [2, 7, 1, "_CPPv4N5cudaq16noise_model_type7unknownE", "cudaq::noise_model_type::unknown"], [2, 3, 1, "_CPPv4N5cudaq18num_available_gpusEv", "cudaq::num_available_gpus"], [2, 3, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::Args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::H"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::QuantumKernel"], [2, 2, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::SpinOpContainer"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::args"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::options"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args", "cudaq::observe::shots"], [2, 4, 1, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args", "cudaq::observe::termList"], [2, 1, 1, "_CPPv4N5cudaq15observe_optionsE", "cudaq::observe_options"], [2, 1, 1, "_CPPv4N5cudaq14observe_resultE", "cudaq::observe_result"], [2, 3, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts"], [2, 2, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts::SpinOpType"], [2, 4, 1, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType", "cudaq::observe_result::counts::term"], [2, 3, 1, "_CPPv4N5cudaq14observe_result4dumpEv", "cudaq::observe_result::dump"], [2, 3, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation"], [2, 3, 1, "_CPPv4N5cudaq14observe_result11expectationEv", "cudaq::observe_result::expectation"], [2, 2, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation::SpinOpType"], [2, 4, 1, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType", "cudaq::observe_result::expectation::term"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14id_coefficientEv", "cudaq::observe_result::id_coefficient"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result"], [2, 3, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result::H"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::H"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::counts"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op", "cudaq::observe_result::observe_result::e"], [2, 4, 1, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result", "cudaq::observe_result::observe_result::e"], [2, 3, 1, "_CPPv4N5cudaq14observe_resultcvdEv", "cudaq::observe_result::operator double"], [2, 3, 1, "_CPPv4N5cudaq14observe_result8raw_dataEv", "cudaq::observe_result::raw_data"], [2, 1, 1, "_CPPv4N5cudaq20optimizable_functionE", "cudaq::optimizable_function"], [2, 0, 1, "_CPPv4N5cudaq19optimization_resultE", "cudaq::optimization_result"], [2, 1, 1, "_CPPv4N5cudaq9optimizerE", "cudaq::optimizer"], [2, 3, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize"], [2, 4, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize::dim"], [2, 4, 1, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function", "cudaq::optimizer::optimize::opt_function"], [2, 3, 1, "_CPPv4N5cudaq9optimizer17requiresGradientsEv", "cudaq::optimizer::requiresGradients"], [2, 0, 1, "_CPPv4N5cudaq4orcaE", "cudaq::orca"], [2, 3, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample"], [2, 3, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::ps_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async"], [2, 3, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::bs_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::input_state"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::loop_lengths"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::n_samples"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::ps_angles"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE", "cudaq::orca::sample_async::qpu_id"], [2, 1, 1, "_CPPv4N5cudaq18phase_flip_channelE", "cudaq::phase_flip_channel"], [2, 1, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg::Levels"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE", "cudaq::qreg::N"], [2, 3, 1, "_CPPv4N5cudaq4qreg4backENSt6size_tE", "cudaq::qreg::back"], [2, 3, 1, "_CPPv4N5cudaq4qreg4backEv", "cudaq::qreg::back"], [2, 4, 1, "_CPPv4N5cudaq4qreg4backENSt6size_tE", "cudaq::qreg::back::count"], [2, 3, 1, "_CPPv4N5cudaq4qreg5beginEv", "cudaq::qreg::begin"], [2, 3, 1, "_CPPv4N5cudaq4qreg5clearEv", "cudaq::qreg::clear"], [2, 3, 1, "_CPPv4N5cudaq4qreg5frontENSt6size_tE", "cudaq::qreg::front"], [2, 3, 1, "_CPPv4N5cudaq4qreg5frontEv", "cudaq::qreg::front"], [2, 4, 1, "_CPPv4N5cudaq4qreg5frontENSt6size_tE", "cudaq::qreg::front::count"], [2, 3, 1, "_CPPv4N5cudaq4qregixEKNSt6size_tE", "cudaq::qreg::operator[]"], [2, 4, 1, "_CPPv4N5cudaq4qregixEKNSt6size_tE", "cudaq::qreg::operator[]::idx"], [2, 3, 1, "_CPPv4NK5cudaq4qreg4sizeEv", "cudaq::qreg::size"], [2, 3, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice"], [2, 4, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice::size"], [2, 4, 1, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE", "cudaq::qreg::slice::start"], [2, 0, 1, "_CPPv4N5cudaq4qreg10value_typeE", "cudaq::qreg::value_type"], [2, 1, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan::Levels"], [2, 2, 1, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE", "cudaq::qspan::N"], [2, 1, 1, "_CPPv4N5cudaq16quantum_platformE", "cudaq::quantum_platform"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform11clear_shotsEv", "cudaq::quantum_platform::clear_shots"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12connectivityEv", "cudaq::quantum_platform::connectivity"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask::f"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE", "cudaq::quantum_platform::enqueueAsyncTask::qpu_id"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask", "cudaq::quantum_platform::enqueueAsyncTask::t"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12getLogStreamEv", "cudaq::quantum_platform::getLogStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15get_current_qpuEv", "cudaq::quantum_platform::get_current_qpu"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform12get_exec_ctxEv", "cudaq::quantum_platform::get_exec_ctx"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE", "cudaq::quantum_platform::get_num_qubits"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsEv", "cudaq::quantum_platform::get_num_qubits"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE", "cudaq::quantum_platform::get_num_qubits::qpu_id"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE", "cudaq::quantum_platform::get_remote_capabilities"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE", "cudaq::quantum_platform::get_remote_capabilities::qpuId"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9get_shotsEv", "cudaq::quantum_platform::get_shots"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE", "cudaq::quantum_platform::is_emulated"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE", "cudaq::quantum_platform::is_emulated::qpuId"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE", "cudaq::quantum_platform::is_remote"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE", "cudaq::quantum_platform::is_remote::qpuId"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE", "cudaq::quantum_platform::is_simulator"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE", "cudaq::quantum_platform::is_simulator::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::H"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::gradient"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::kernelArgs"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::kernelName"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::n_params"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::optimizer"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE", "cudaq::quantum_platform::launchVQE::shots"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14list_platformsEv", "cudaq::quantum_platform::list_platforms"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform4nameEv", "cudaq::quantum_platform::name"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform8num_qpusEv", "cudaq::quantum_platform::num_qpus"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE", "cudaq::quantum_platform::onRandomSeedSet"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE", "cudaq::quantum_platform::onRandomSeedSet::seed"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14resetLogStreamEv", "cudaq::quantum_platform::resetLogStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE", "cudaq::quantum_platform::reset_exec_ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE", "cudaq::quantum_platform::reset_exec_ctx::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform11reset_noiseEv", "cudaq::quantum_platform::reset_noise"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE", "cudaq::quantum_platform::setLogStream"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE", "cudaq::quantum_platform::setLogStream::logStream"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE", "cudaq::quantum_platform::setTargetBackend"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE", "cudaq::quantum_platform::setTargetBackend::name"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE", "cudaq::quantum_platform::set_current_qpu"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE", "cudaq::quantum_platform::set_current_qpu::device_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx::ctx"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE", "cudaq::quantum_platform::set_exec_ctx::qpu_id"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model", "cudaq::quantum_platform::set_noise"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model", "cudaq::quantum_platform::set_noise::model"], [2, 3, 1, "_CPPv4N5cudaq16quantum_platform9set_shotsEi", "cudaq::quantum_platform::set_shots"], [2, 4, 1, "_CPPv4N5cudaq16quantum_platform9set_shotsEi", "cudaq::quantum_platform::set_shots::numShots"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE", "cudaq::quantum_platform::supports_conditional_feedback"], [2, 4, 1, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE", "cudaq::quantum_platform::supports_conditional_feedback::qpu_id"], [2, 3, 1, "_CPPv4NK5cudaq16quantum_platform26supports_task_distributionEv", "cudaq::quantum_platform::supports_task_distribution"], [2, 0, 1, "_CPPv4N5cudaq5qubitE", "cudaq::qubit"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq5quditE", "cudaq::qudit"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq5quditE", "cudaq::qudit::Levels"], [2, 3, 1, "_CPPv4N5cudaq5qudit5quditEv", "cudaq::qudit::qudit"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE", "cudaq::qvector"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE", "cudaq::qvector::Levels"], [2, 3, 1, "_CPPv4N5cudaq7qvector4backENSt6size_tE", "cudaq::qvector::back"], [2, 3, 1, "_CPPv4N5cudaq7qvector4backEv", "cudaq::qvector::back"], [2, 4, 1, "_CPPv4N5cudaq7qvector4backENSt6size_tE", "cudaq::qvector::back::count"], [2, 3, 1, "_CPPv4N5cudaq7qvector5beginEv", "cudaq::qvector::begin"], [2, 3, 1, "_CPPv4N5cudaq7qvector5clearEv", "cudaq::qvector::clear"], [2, 3, 1, "_CPPv4N5cudaq7qvector3endEv", "cudaq::qvector::end"], [2, 3, 1, "_CPPv4N5cudaq7qvector5frontENSt6size_tE", "cudaq::qvector::front"], [2, 3, 1, "_CPPv4N5cudaq7qvector5frontEv", "cudaq::qvector::front"], [2, 4, 1, "_CPPv4N5cudaq7qvector5frontENSt6size_tE", "cudaq::qvector::front::count"], [2, 3, 1, "_CPPv4N5cudaq7qvectoraSERK7qvector", "cudaq::qvector::operator="], [2, 3, 1, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE", "cudaq::qvector::operator[]"], [2, 4, 1, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE", "cudaq::qvector::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERK5state", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERK7qvector", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector"], [2, 3, 1, "_CPPv4N5cudaq7qvector7qvectorERR7qvector", "cudaq::qvector::qvector"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE", "cudaq::qvector::qvector::size"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERK5state", "cudaq::qvector::qvector::state"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector::validate"], [2, 4, 1, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb", "cudaq::qvector::qvector::vector"], [2, 3, 1, "_CPPv4NK5cudaq7qvector4sizeEv", "cudaq::qvector::size"], [2, 3, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice"], [2, 4, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice::size"], [2, 4, 1, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE", "cudaq::qvector::slice::start"], [2, 0, 1, "_CPPv4N5cudaq7qvector10value_typeE", "cudaq::qvector::value_type"], [2, 1, 1, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE", "cudaq::qview"], [2, 2, 1, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE", "cudaq::qview::Levels"], [2, 0, 1, "_CPPv4N5cudaq5qview10value_typeE", "cudaq::qview::value_type"], [2, 3, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range"], [2, 3, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range"], [2, 3, 1, "_CPPv4N5cudaq5rangeENSt6size_tE", "cudaq::range"], [2, 2, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range::ElementType"], [2, 2, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::ElementType"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType", "cudaq::range::N"], [2, 4, 1, "_CPPv4N5cudaq5rangeENSt6size_tE", "cudaq::range::N"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::start"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::step"], [2, 4, 1, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType", "cudaq::range::stop"], [2, 0, 1, "_CPPv4N5cudaq4realE", "cudaq::real"], [2, 0, 1, "_CPPv4N5cudaq8registryE", "cudaq::registry"], [2, 1, 1, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE", "cudaq::registry::RegisteredType"], [2, 2, 1, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE", "cudaq::registry::RegisteredType::T"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 3, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::Args"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 2, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::QuantumKernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::args"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::kernel"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args", "cudaq::sample::options"], [2, 4, 1, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args", "cudaq::sample::shots"], [2, 1, 1, "_CPPv4N5cudaq14sample_optionsE", "cudaq::sample_options"], [2, 1, 1, "_CPPv4N5cudaq13sample_resultE", "cudaq::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult", "cudaq::sample_result::append"], [2, 4, 1, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult", "cudaq::sample_result::append::result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5beginEv", "cudaq::sample_result::begin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result5beginEv", "cudaq::sample_result::begin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result6cbeginEv", "cudaq::sample_result::cbegin"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4cendEv", "cudaq::sample_result::cend"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5clearEv", "cudaq::sample_result::clear"], [2, 3, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count"], [2, 4, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count::bitString"], [2, 4, 1, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::count::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::sample_result::deserialize"], [2, 4, 1, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE", "cudaq::sample_result::deserialize::data"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE", "cudaq::sample_result::dump"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result4dumpEv", "cudaq::sample_result::dump"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE", "cudaq::sample_result::dump::os"], [2, 3, 1, "_CPPv4N5cudaq13sample_result3endEv", "cudaq::sample_result::end"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result3endEv", "cudaq::sample_result::end"], [2, 3, 1, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE", "cudaq::sample_result::exp_val_z"], [2, 4, 1, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE", "cudaq::sample_result::exp_val_z::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE", "cudaq::sample_result::expectation"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE", "cudaq::sample_result::expectation::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal"], [2, 3, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::marginalIndices"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::marginalIndices"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::registerName"], [2, 4, 1, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::get_marginal::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE", "cudaq::sample_result::has_even_parity"], [2, 4, 1, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE", "cudaq::sample_result::has_even_parity::bitString"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE", "cudaq::sample_result::has_expectation"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE", "cudaq::sample_result::has_expectation::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE", "cudaq::sample_result::most_probable"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE", "cudaq::sample_result::most_probable::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultpLERK13sample_result", "cudaq::sample_result::operator+="], [2, 4, 1, "_CPPv4N5cudaq13sample_resultpLERK13sample_result", "cudaq::sample_result::operator+=::other"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultaSER13sample_result", "cudaq::sample_result::operator="], [2, 4, 1, "_CPPv4N5cudaq13sample_resultaSER13sample_result", "cudaq::sample_result::operator=::counts"], [2, 3, 1, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result", "cudaq::sample_result::operator=="], [2, 4, 1, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result", "cudaq::sample_result::operator==::counts"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability::bitString"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE", "cudaq::sample_result::probability::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result14register_namesEv", "cudaq::sample_result::register_names"], [2, 3, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder"], [2, 4, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder::index"], [2, 4, 1, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE", "cudaq::sample_result::reorder::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERK13sample_result", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result"], [2, 3, 1, "_CPPv4N5cudaq13sample_result13sample_resultEv", "cudaq::sample_result::sample_result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::preComputedExp"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult", "cudaq::sample_result::sample_result::result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult", "cudaq::sample_result::sample_result::result"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::results"], [2, 4, 1, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE", "cudaq::sample_result::sample_result::results"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result9serializeEv", "cudaq::sample_result::serialize"], [2, 3, 1, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE", "cudaq::sample_result::size"], [2, 4, 1, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE", "cudaq::sample_result::size::registerName"], [2, 3, 1, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE", "cudaq::sample_result::to_map"], [2, 4, 1, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE", "cudaq::sample_result::to_map::registerName"], [2, 3, 1, "_CPPv4N5cudaq13sample_resultD0Ev", "cudaq::sample_result::~sample_result"], [2, 3, 1, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE", "cudaq::set_noise"], [2, 4, 1, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE", "cudaq::set_noise::model"], [2, 3, 1, "_CPPv4N5cudaq15set_random_seedENSt6size_tE", "cudaq::set_random_seed"], [2, 4, 1, "_CPPv4N5cudaq15set_random_seedENSt6size_tE", "cudaq::set_random_seed::seed"], [2, 6, 1, "_CPPv4N5cudaq20simulation_precisionE", "cudaq::simulation_precision"], [2, 7, 1, "_CPPv4N5cudaq20simulation_precision4fp32E", "cudaq::simulation_precision::fp32"], [2, 7, 1, "_CPPv4N5cudaq20simulation_precision4fp64E", "cudaq::simulation_precision::fp64"], [2, 1, 1, "_CPPv4N5cudaq7spin_opE", "cudaq::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op5beginEv", "cudaq::spin_op::begin"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op5beginEv", "cudaq::spin_op::begin"], [2, 0, 1, "_CPPv4N5cudaq7spin_op12csr_spmatrixE", "cudaq::spin_op::csr_spmatrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE", "cudaq::spin_op::distribute_terms"], [2, 4, 1, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE", "cudaq::spin_op::distribute_terms::numChunks"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op4dumpEv", "cudaq::spin_op::dump"], [2, 3, 1, "_CPPv4N5cudaq7spin_op3endEv", "cudaq::spin_op::end"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op3endEv", "cudaq::spin_op::end"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op14for_each_pauliERRNSt8functionIFv5pauliNSt6size_tEEEE", "cudaq::spin_op::for_each_pauli"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op13for_each_termERRNSt8functionIFvR7spin_opEEE", "cudaq::spin_op::for_each_term"], [2, 3, 1, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE", "cudaq::spin_op::from_word"], [2, 4, 1, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE", "cudaq::spin_op::from_word::pauliWord"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op21getDataRepresentationEv", "cudaq::spin_op::getDataRepresentation"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op12getDataTupleEv", "cudaq::spin_op::getDataTuple"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op15get_coefficientEv", "cudaq::spin_op::get_coefficient"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op12get_raw_dataEv", "cudaq::spin_op::get_raw_data"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op11is_identityEv", "cudaq::spin_op::is_identity"], [2, 1, 1, "_CPPv4I0EN5cudaq7spin_op8iteratorE", "cudaq::spin_op::iterator"], [2, 2, 1, "_CPPv4I0EN5cudaq7spin_op8iteratorE", "cudaq::spin_op::iterator::QualifiedSpinOp"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op10num_qubitsEv", "cudaq::spin_op::num_qubits"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9num_termsEv", "cudaq::spin_op::num_terms"], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE", "cudaq::spin_op::operator*="], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLEKd", "cudaq::spin_op::operator*="], [2, 3, 1, "_CPPv4N5cudaq7spin_opmLERK7spin_op", "cudaq::spin_op::operator*="], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE", "cudaq::spin_op::operator*=::v"], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLEKd", "cudaq::spin_op::operator*=::v"], [2, 4, 1, "_CPPv4N5cudaq7spin_opmLERK7spin_op", "cudaq::spin_op::operator*=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_oppLERK7spin_op", "cudaq::spin_op::operator+="], [2, 4, 1, "_CPPv4N5cudaq7spin_oppLERK7spin_op", "cudaq::spin_op::operator+=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_opmIERK7spin_op", "cudaq::spin_op::operator-="], [2, 4, 1, "_CPPv4N5cudaq7spin_opmIERK7spin_op", "cudaq::spin_op::operator-=::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_opaSERK7spin_op", "cudaq::spin_op::operator="], [2, 3, 1, "_CPPv4NK5cudaq7spin_opeqERK7spin_op", "cudaq::spin_op::operator=="], [2, 4, 1, "_CPPv4NK5cudaq7spin_opeqERK7spin_op", "cudaq::spin_op::operator==::v"], [2, 3, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::nQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::nTerms"], [2, 4, 1, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj", "cudaq::spin_op::random::seed"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op"], [2, 3, 1, "_CPPv4N5cudaq7spin_op7spin_opEv", "cudaq::spin_op::spin_op"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::_terms"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op::bsf"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op::coeff"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op::coeff"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE", "cudaq::spin_op::spin_op::coeffs"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op::data_rep"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE", "cudaq::spin_op::spin_op::id"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE", "cudaq::spin_op::spin_op::nQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE", "cudaq::spin_op::spin_op::numQubits"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op", "cudaq::spin_op::spin_op::o"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE", "cudaq::spin_op::spin_op::term"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::termData"], [2, 4, 1, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE", "cudaq::spin_op::spin_op::termData"], [2, 0, 1, "_CPPv4N5cudaq7spin_op12spin_op_termE", "cudaq::spin_op::spin_op_term"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9to_matrixEv", "cudaq::spin_op::to_matrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op16to_sparse_matrixEv", "cudaq::spin_op::to_sparse_matrix"], [2, 3, 1, "_CPPv4NK5cudaq7spin_op9to_stringEb", "cudaq::spin_op::to_string"], [2, 4, 1, "_CPPv4NK5cudaq7spin_op9to_stringEb", "cudaq::spin_op::to_string::printCoefficients"], [2, 3, 1, "_CPPv4N5cudaq7spin_opD0Ev", "cudaq::spin_op::~spin_op"], [2, 1, 1, "_CPPv4N5cudaq5stateE", "cudaq::state"], [2, 3, 1, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE", "cudaq::state::amplitude"], [2, 4, 1, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE", "cudaq::state::amplitude::basisState"], [2, 3, 1, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE", "cudaq::state::amplitudes"], [2, 4, 1, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE", "cudaq::state::amplitudes::basisStates"], [2, 3, 1, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE", "cudaq::state::dump"], [2, 3, 1, "_CPPv4NK5cudaq5state4dumpEv", "cudaq::state::dump"], [2, 4, 1, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE", "cudaq::state::dump::os"], [2, 3, 1, "_CPPv4N5cudaq5state9from_dataERK10state_data", "cudaq::state::from_data"], [2, 4, 1, "_CPPv4N5cudaq5state9from_dataERK10state_data", "cudaq::state::from_data::data"], [2, 3, 1, "_CPPv4NK5cudaq5state14get_num_qubitsEv", "cudaq::state::get_num_qubits"], [2, 3, 1, "_CPPv4NK5cudaq5state15get_num_tensorsEv", "cudaq::state::get_num_tensors"], [2, 3, 1, "_CPPv4NK5cudaq5state13get_precisionEv", "cudaq::state::get_precision"], [2, 3, 1, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE", "cudaq::state::get_tensor"], [2, 4, 1, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE", "cudaq::state::get_tensor::tensorIdx"], [2, 3, 1, "_CPPv4NK5cudaq5state11get_tensorsEv", "cudaq::state::get_tensors"], [2, 3, 1, "_CPPv4NK5cudaq5state9is_on_gpuEv", "cudaq::state::is_on_gpu"], [2, 3, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()"], [2, 3, 1, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE", "cudaq::state::operator()"], [2, 4, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()::idx"], [2, 4, 1, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE", "cudaq::state::operator()::jdx"], [2, 4, 1, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE", "cudaq::state::operator()::tensorIdx"], [2, 3, 1, "_CPPv4N5cudaq5stateaSERR5state", "cudaq::state::operator="], [2, 4, 1, "_CPPv4N5cudaq5stateaSERR5state", "cudaq::state::operator=::other"], [2, 3, 1, "_CPPv4NK5cudaq5stateixENSt6size_tE", "cudaq::state::operator[]"], [2, 4, 1, "_CPPv4NK5cudaq5stateixENSt6size_tE", "cudaq::state::operator[]::idx"], [2, 3, 1, "_CPPv4N5cudaq5state7overlapERK5state", "cudaq::state::overlap"], [2, 4, 1, "_CPPv4N5cudaq5state7overlapERK5state", "cudaq::state::overlap::other"], [2, 3, 1, "_CPPv4N5cudaq5state5stateEP15SimulationState", "cudaq::state::state"], [2, 3, 1, "_CPPv4N5cudaq5state5stateERK5state", "cudaq::state::state"], [2, 4, 1, "_CPPv4N5cudaq5state5stateERK5state", "cudaq::state::state::other"], [2, 4, 1, "_CPPv4N5cudaq5state5stateEP15SimulationState", "cudaq::state::state::ptrToOwn"], [2, 3, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host"], [2, 2, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::ScalarType"], [2, 4, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::hostPtr"], [2, 4, 1, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE", "cudaq::state::to_host::numElements"], [2, 0, 1, "_CPPv4N5cudaq10state_dataE", "cudaq::state_data"], [2, 0, 1, "_CPPv4N5cudaq6tensorE", "cudaq::tensor"], [2, 3, 1, "_CPPv4N5cudaq11unset_noiseEv", "cudaq::unset_noise"], [2, 1, 1, "_CPPv4N5nvqir18MPSSimulationStateE", "nvqir::MPSSimulationState"], [2, 1, 1, "_CPPv4N5nvqir24TensorNetSimulationStateE", "nvqir::TensorNetSimulationState"], [3, 8, 0, "-", "cudaq"]], "cudaq": [[3, 9, 1, "", "AmplitudeDampingChannel"], [3, 9, 1, "", "AsyncEvolveResult"], [3, 9, 1, "", "AsyncObserveResult"], [3, 9, 1, "", "AsyncSampleResult"], [3, 9, 1, "", "AsyncStateResult"], [3, 9, 1, "", "BitFlipChannel"], [3, 9, 1, "", "ComplexMatrix"], [3, 9, 1, "", "DepolarizationChannel"], [3, 9, 1, "", "EvolveResult"], [3, 11, 1, "", "Kernel"], [3, 9, 1, "", "KrausChannel"], [3, 9, 1, "", "KrausOperator"], [3, 9, 1, "", "NoiseModel"], [3, 9, 1, "", "ObserveResult"], [3, 9, 1, "", "OptimizationResult"], [3, 9, 1, "", "PhaseFlipChannel"], [3, 9, 1, "", "PyKernel"], [3, 9, 1, "", "PyKernelDecorator"], [3, 9, 1, "", "QuakeValue"], [3, 9, 1, "", "SampleResult"], [3, 9, 1, "", "Schedule"], [3, 9, 1, "", "SimulationPrecision"], [3, 9, 1, "", "SpinOperator"], [3, 9, 1, "", "State"], [3, 9, 1, "", "Target"], [3, 9, 1, "", "Tensor"], [3, 13, 1, "", "draw"], [3, 13, 1, "", "evolve"], [3, 13, 1, "", "evolve_async"], [3, 13, 1, "", "get_state"], [3, 13, 1, "", "get_state_async"], [3, 13, 1, "", "get_target"], [3, 13, 1, "", "get_targets"], [3, 13, 1, "", "has_target"], [3, 10, 1, "", "initialize_cudaq"], [3, 13, 1, "", "kernel"], [3, 13, 1, "", "make_kernel"], [3, 10, 1, "", "num_available_gpus"], [3, 13, 1, "", "observe"], [3, 13, 1, "", "observe_async"], [3, 11, 1, "", "qreg"], [3, 9, 1, "", "qubit"], [3, 9, 1, "", "qvector"], [3, 13, 1, "", "reset_target"], [3, 13, 1, "", "sample"], [3, 13, 1, "", "sample_async"], [3, 13, 1, "", "set_noise"], [3, 10, 1, "", "set_random_seed"], [3, 13, 1, "", "set_target"], [3, 13, 1, "", "translate"], [3, 13, 1, "", "unset_noise"], [3, 13, 1, "", "vqe"]], "cudaq.AmplitudeDampingChannel": [[3, 10, 1, "", "__init__"]], "cudaq.AsyncEvolveResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncObserveResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncSampleResult": [[3, 10, 1, "", "get"]], "cudaq.AsyncStateResult": [[3, 10, 1, "", "get"]], "cudaq.BitFlipChannel": [[3, 10, 1, "", "__init__"]], "cudaq.ComplexMatrix": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__str__"], [3, 10, 1, "", "minimal_eigenvalue"], [3, 10, 1, "", "num_columns"], [3, 10, 1, "", "num_rows"], [3, 10, 1, "", "to_numpy"]], "cudaq.DepolarizationChannel": [[3, 10, 1, "", "__init__"]], "cudaq.EvolveResult": [[3, 10, 1, "", "expectation_values"], [3, 10, 1, "", "final_expectation_values"], [3, 10, 1, "", "final_state"], [3, 10, 1, "", "intermediate_states"]], "cudaq.KrausChannel": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "append"]], "cudaq.KrausOperator": [[3, 12, 1, "", "col_count"], [3, 12, 1, "", "row_count"]], "cudaq.NoiseModel": [[3, 10, 1, "", "__init__"], [3, 10, 1, "", "add_all_qubit_channel"], [3, 10, 1, "", "add_channel"], [3, 10, 1, "", "get_channels"]], "cudaq.ObserveResult": [[3, 10, 1, "", "counts"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "expectation"], [3, 10, 1, "", "expectation_z"], [3, 10, 1, "", "get_spin"]], "cudaq.PhaseFlipChannel": [[3, 10, 1, "", "__init__"]], "cudaq.PyKernel": [[3, 11, 1, "", "argument_count"], [3, 11, 1, "", "arguments"], [3, 11, 1, "", "name"]], "cudaq.PyKernelDecorator": [[3, 10, 1, "", "__call__"], [3, 10, 1, "", "__str__"], [3, 10, 1, "", "compile"], [3, 10, 1, "", "extract_c_function_pointer"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "merge_kernel"], [3, 10, 1, "", "synthesize_callable_arguments"], [3, 10, 1, "", "to_json"], [3, 10, 1, "", "type_to_str"]], "cudaq.QuakeValue": [[3, 10, 1, "", "__add__"], [3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__mul__"], [3, 10, 1, "", "__neg__"], [3, 10, 1, "", "__radd__"], [3, 10, 1, "", "__rmul__"], [3, 10, 1, "", "__rsub__"], [3, 10, 1, "", "__sub__"], [3, 10, 1, "", "slice"]], "cudaq.SampleResult": [[3, 10, 1, "", "__getitem__"], [3, 10, 1, "", "__iter__"], [3, 10, 1, "", "__len__"], [3, 10, 1, "", "clear"], [3, 10, 1, "", "count"], [3, 10, 1, "", "deserialize"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "expectation"], [3, 10, 1, "", "expectation_z"], [3, 10, 1, "", "get_marginal_counts"], [3, 10, 1, "", "get_register_counts"], [3, 10, 1, "", "get_sequential_data"], [3, 10, 1, "", "items"], [3, 10, 1, "", "most_probable"], [3, 10, 1, "", "probability"], [3, 11, 1, "", "register_names"], [3, 10, 1, "", "serialize"], [3, 10, 1, "", "values"]], "cudaq.SimulationPrecision": [[3, 12, 1, "", "name"]], "cudaq.State": [[3, 10, 1, "", "amplitude"], [3, 10, 1, "", "amplitudes"], [3, 10, 1, "", "dump"], [3, 10, 1, "", "from_data"], [3, 10, 1, "", "getTensor"], [3, 10, 1, "", "getTensors"], [3, 10, 1, "", "is_on_gpu"], [3, 10, 1, "", "num_qubits"], [3, 10, 1, "", "overlap"]], "cudaq.Target": [[3, 12, 1, "", "description"], [3, 10, 1, "", "get_precision"], [3, 10, 1, "", "is_emulated"], [3, 10, 1, "", "is_remote"], [3, 12, 1, "", "name"], [3, 10, 1, "", "num_qpus"], [3, 12, 1, "", "platform"], [3, 12, 1, "", "simulator"]], "cudaq.gradients": [[3, 9, 1, "", "CentralDifference"], [3, 9, 1, "", "ForwardDifference"], [3, 9, 1, "", "ParameterShift"], [3, 9, 1, "", "gradient"]], "cudaq.gradients.CentralDifference": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.gradients.ForwardDifference": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.gradients.ParameterShift": [[3, 10, 1, "", "compute"], [3, 10, 1, "", "from_json"], [3, 10, 1, "", "to_json"]], "cudaq.mpi": [[3, 10, 1, "", "all_gather"], [3, 10, 1, "", "broadcast"], [3, 10, 1, "", "finalize"], [3, 10, 1, "", "initialize"], [3, 10, 1, "", "is_initialized"], [3, 10, 1, "", "num_ranks"], [3, 10, 1, "", "rank"]], "cudaq.operator.cudm_state": [[3, 9, 1, "", "CuDensityMatState"], [3, 13, 1, "", "to_cupy_array"]], "cudaq.operator.definitions": [[3, 9, 1, "", "SpinOperator"]], "cudaq.operator.expressions": [[3, 9, 1, "", "ElementaryOperator"], [3, 9, 1, "", "OperatorSum"], [3, 9, 1, "", "ProductOperator"], [3, 9, 1, "", "RydbergHamiltonian"], [3, 9, 1, "", "ScalarOperator"]], "cudaq.operator.expressions.ElementaryOperator": [[3, 10, 1, "", "define"]], "cudaq.operator.expressions.RydbergHamiltonian": [[3, 10, 1, "", "__init__"]], "cudaq.operator.integrator": [[3, 9, 1, "", "BaseIntegrator"]], "cudaq.optimizers": [[3, 9, 1, "", "COBYLA"], [3, 9, 1, "", "GradientDescent"], [3, 9, 1, "", "LBFGS"], [3, 9, 1, "", "NelderMead"], [3, 9, 1, "", "optimizer"]], "cudaq.optimizers.COBYLA": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.GradientDescent": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.LBFGS": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.optimizers.NelderMead": [[3, 10, 1, "", "from_json"], [3, 12, 1, "", "initial_parameters"], [3, 12, 1, "", "lower_bounds"], [3, 12, 1, "", "max_iterations"], [3, 10, 1, "", "optimize"], [3, 10, 1, "", "requires_gradients"], [3, 10, 1, "", "to_json"], [3, 12, 1, "", "upper_bounds"]], "cudaq.orca": [[3, 10, 1, "", "sample"]], "cudaq.spin": [[3, 13, 1, "", "i"], [3, 13, 1, "", "x"], [3, 13, 1, "", "y"], [3, 13, 1, "", "z"]]}, "objtypes": {"0": "cpp:type", "1": "cpp:class", "2": "cpp:templateParam", "3": "cpp:function", "4": "cpp:functionParam", "5": "cpp:member", "6": "cpp:enum", "7": "cpp:enumerator", "8": "py:module", "9": "py:class", "10": "py:method", "11": "py:attribute", "12": "py:property", "13": "py:function"}, "objnames": {"0": ["cpp", "type", "C++ type"], "1": ["cpp", "class", "C++ class"], "2": ["cpp", "templateParam", "C++ template parameter"], "3": ["cpp", "function", "C++ function"], "4": ["cpp", "functionParam", "C++ function parameter"], "5": ["cpp", "member", "C++ member"], "6": ["cpp", "enum", "C++ enum"], "7": ["cpp", "enumerator", "C++ enumerator"], "8": ["py", "module", "Python module"], "9": ["py", "class", "Python class"], "10": ["py", "method", "Python method"], "11": ["py", "attribute", "Python attribute"], "12": ["py", "property", "Python property"], "13": ["py", "function", "Python function"]}, "titleterms": {"code": [0, 75], "document": 0, "cuda": [0, 2, 3, 4, 5, 8, 9, 13, 21, 22, 23, 28, 31, 32, 33, 34, 49, 50, 51, 52, 55, 56, 57, 58, 59, 62, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81], "q": [0, 2, 3, 4, 5, 8, 9, 13, 21, 22, 23, 28, 31, 32, 33, 34, 49, 50, 51, 52, 55, 56, 57, 58, 59, 62, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81], "api": [0, 2, 3], "quantum": [1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 22, 24, 34, 37, 38, 41, 42, 43, 44, 46, 53, 54, 64, 68], "oper": [1, 2, 27, 41, 42, 51], "unitari": [1, 21], "qubit": [1, 18, 30, 41, 46], "x": 1, "y": 1, "z": 1, "h": 1, "r1": 1, "rx": 1, "ry": 1, "rz": 1, "": [1, 7, 13, 19, 37, 72], "t": 1, "swap": 1, "u3": 1, "adjoint": 1, "control": [1, 35, 66], "measur": [1, 19, 25, 68], "mz": 1, "mx": 1, "my": 1, "user": 1, "defin": 1, "custom": 1, "photon": 1, "qudit": [1, 46], "creat": [1, 71], "annihil": 1, "phase_shift": 1, "beam_splitt": 1, "c": [2, 52, 73, 79], "common": [2, 43], "nois": [2, 18], "model": [2, 13, 18, 21, 39], "kernel": [2, 3, 19, 21, 30, 36, 38, 54, 58, 61], "builder": 2, "algorithm": [2, 5, 7, 12, 19, 34, 37], "platform": [2, 44, 54], "util": 2, "namespac": [2, 40], "python": [3, 52, 73, 75], "program": [3, 37, 43, 57, 59], "construct": [3, 13, 27], "execut": [3, 24, 53], "dynam": [3, 51], "backend": [3, 50, 52, 53, 55], "configur": 3, "data": [3, 9], "type": [3, 46], "optim": [3, 22, 28, 29, 34], "gradient": [3, 23, 28, 34], "noisi": [3, 13, 26], "simul": [3, 9, 13, 20, 21, 26, 53, 54, 55, 60, 72, 75], "mpi": [3, 73, 75], "submodul": 3, "orca": [3, 52, 64], "enhanc": 4, "auxiliari": 4, "field": 4, "mont": 4, "carlo": 4, "hamiltonian": [4, 67], "prepar": [4, 37], "vqe": [4, 13, 23], "run": [4, 13, 20, 59], "afqmc": 4, "molecular": [4, 8], "trial": 4, "wave": 4, "function": [4, 9, 34], "setup": [4, 12, 20, 21], "paramet": [4, 23, 28, 37], "bernstein": 5, "vazirani": 5, "classic": [5, 10, 19], "case": [5, 19], "implement": [5, 8, 9, 23], "cost": 6, "minim": 6, "deutsch": 7, "xor": 7, "oplu": 7, "oracl": 7, "phase": [7, 19, 37], "parallel": [7, 23, 24, 28, 54, 63, 67], "dock": 8, "via": [8, 75], "dc": 8, "qaoa": [8, 9, 14], "set": [8, 13, 52], "up": [8, 13], "problem": [8, 19, 20], "divis": 9, "cluster": 9, "With": [9, 19, 20], "coreset": 9, "us": [9, 10, 21, 22, 23, 46, 64, 75, 77], "preprocess": 9, "scale": 9, "hadamard": 10, "test": 10, "determin": [10, 12, 19], "krylov": [10, 12], "subspac": [10, 12], "decomposit": 10, "matrix": [10, 12, 18, 55], "element": [10, 12], "numer": [10, 51], "result": [10, 19], "refer": [10, 12], "sampl": [10, 24, 34, 37, 59], "perform": [10, 13, 29], "multi": [10, 12, 54, 55, 66, 67], "gpu": [10, 53, 55, 59, 67, 75], "evalu": [10, 21], "qksd": 10, "diagon": 10, "hybrid": 11, "neural": 11, "network": [11, 55], "h_2": 12, "molecul": 12, "comput": [12, 20, 43, 52, 63, 64, 68, 75], "ground": [12, 13], "state": [12, 13, 24, 37, 54, 55, 68], "energi": [12, 37], "anderson": 13, "impur": 13, "solver": 13, "infleqt": [13, 52, 64], "sqale": 13, "logic": [13, 25], "variat": [13, 22], "eigensolv": [13, 22], "qx": 13, "circuit": [13, 21, 23, 24, 45, 67, 72], "4": [13, 19], "2": [13, 46], "encod": 13, "submiss": [13, 52], "decod": 13, "workflow": [13, 67], "aim": 13, "hardwar": [13, 52, 64], "max": 14, "cut": 14, "fourier": [15, 19], "transform": [15, 19], "revisit": 15, "telepor": 16, "teleport": 16, "explain": 16, "volum": 17, "readout": 18, "error": 18, "mitig": 18, "invers": [18, 19], "confus": 18, "from": [18, 19, 52, 73, 79], "singl": [18, 55], "k": 18, "local": [18, 75], "matric": 18, "full": 18, "factor": 19, "integ": 19, "shor": 19, "solv": 19, "order": 19, "find": 19, "modular": 19, "exponenti": [19, 27], "The": [19, 20, 23], "n": [19, 46], "21": 19, "5": 19, "postscript": 19, "magnet": 20, "suzuki": 20, "trotter": 20, "approxim": 20, "compil": [21, 71, 79], "diffus": 21, "pipelin": 21, "load": [21, 23], "convert": 21, "tensor": [21, 55], "gener": [21, 48], "compar": 21, "choos": 21, "you": 21, "need": 21, "integr": [22, 51, 78, 79], "third": [22, 28, 79], "parti": [22, 28, 79], "activ": 23, "space": 23, "gate": [23, 29, 68], "fusion": [23, 29], "basic": [23, 56], "instal": [23, 73, 74, 75, 80], "relev": 23, "packag": 23, "shift": [23, 28], "an": [23, 79], "larger": 23, "observ": [24, 34, 59], "get": [24, 75], "techniqu": 24, "async": 24, "midcircuit": 25, "condit": 25, "spin": 27, "pauli": 27, "word": 27, "built": [28, 75], "visual": 30, "content": [31, 56, 74], "releas": 32, "languag": 33, "specif": [33, 47], "primit": 34, "cudaq": [34, 41, 42, 46], "deprec": [34, 46], "move": 34, "librari": [34, 73, 79], "flow": 35, "just": 36, "time": [36, 51], "creation": 36, "exampl": [37, 62], "hello": 37, "world": 37, "simpl": 37, "bell": 37, "ghz": 37, "estim": 37, "deuteron": 37, "bind": 37, "sweep": 37, "grover": 37, "iter": 37, "machin": 39, "standard": 40, "intrins": 41, "spin_op": 42, "pattern": 43, "action": [43, 72], "uncomput": 43, "sub": 45, "synthesi": [45, 66], "level": 46, "contain": [46, 75], "qview": 46, "qvector": 46, "qarrai": 46, "qspan": 46, "instead": 46, "qreg": 46, "quak": 48, "dialect": 48, "introduct": [48, 65, 75], "motiv": 48, "applic": 49, "target": [50, 67], "quick": [51, 53, 80], "start": [51, 53, 75, 80], "builtin": 51, "depend": [51, 73, 75], "amazon": [52, 64], "braket": [52, 64], "credenti": 52, "ionq": [52, 64], "anyon": 52, "technologi": 52, "iqm": [52, 64], "oqc": [52, 64], "quantinuum": [52, 64], "quera": [52, 64], "nvidia": [53, 54], "cloud": [53, 75], "select": 53, "multipl": [53, 63, 67], "qpu": 53, "asynchron": 53, "faq": 53, "processor": [54, 63, 67], "mqpu": 54, "distribut": [54, 75], "mode": [54, 55], "remot": [54, 75], "support": [54, 55, 73, 75], "argument": 54, "serial": 54, "access": [54, 75], "vector": 55, "featur": 55, "environ": 55, "variabl": 55, "option": 55, "node": 55, "addit": [55, 75], "openmp": 55, "cpu": 55, "onli": 55, "product": 55, "clifford": 55, "stim": 55, "fermioniq": 55, "default": 55, "build": [57, 61, 73], "your": [57, 59, 71, 80], "first": [57, 59], "what": 58, "i": 58, "troubleshoot": 60, "debug": 60, "verbos": 60, "output": 60, "expect": 63, "valu": 63, "across": [63, 67], "provid": 64, "avail": 67, "batch": 67, "term": 67, "101": 68, "work": 69, "ir": 69, "extend": [70, 72], "own": 71, "pass": 71, "new": 72, "circuitsimul": 72, "requir": [72, 75], "subtyp": 72, "method": 72, "overrid": 72, "let": 72, "see": 72, "thi": 72, "sourc": 73, "prerequisit": 73, "toolchain": [73, 79], "host": [73, 75], "runtim": 73, "guid": 74, "docker": 75, "singular": 75, "wheel": 75, "pre": 75, "binari": [75, 79], "develop": 75, "v": 75, "connect": 75, "tunnel": 75, "ssh": 75, "dgx": 75, "jupyterlab": 75, "tool": [75, 78], "pypi": 75, "In": 75, "imag": 75, "updat": 75, "compat": 75, "system": 75, "next": 75, "step": 75, "cmake": 76, "project": 77, "other": 78, "softwar": 78, "call": 79, "interfac": 79, "between": 79, "differ": 79, "valid": 80, "version": 81}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Common Quantum Programming Patterns": [[43, "common-quantum-programming-patterns"]], "Compute-Action-Uncompute": [[43, "compute-action-uncompute"]], "Quantum Types": [[46, "quantum-types"]], "cudaq::qudit": [[46, "cudaq-qudit-levels"]], "cudaq::qubit": [[46, "cudaq-qubit"]], "Quantum Containers": [[46, "quantum-containers"]], "cudaq::qview": [[46, "cudaq-qview-levels-2"]], "cudaq::qvector": [[46, "cudaq-qvector-levels-2"]], "cudaq::qarray": [[46, "cudaq-qarray-n-levels-2"]], "cudaq::qspan (Deprecated. Use cudaq::qview instead.)": [[46, "cudaq-qspan-n-levels-deprecated-use-cudaq-qview-levels-instead"]], "cudaq::qreg (Deprecated. Use cudaq::qvector instead.)": [[46, "cudaq-qreg-n-levels-deprecated-use-cudaq-qvector-levels-instead"]], "Quantum Platform": [[44, "quantum-platform"]], "CUDA-Q Applications": [[49, "cuda-q-applications"]], "Sub-circuit Synthesis": [[45, "sub-circuit-synthesis"]], "Quake Dialect": [[48, "quake-dialect"]], "General Introduction": [[48, "general-introduction"]], "Motivation": [[48, "motivation"]], "Quantum Operators": [[42, "quantum-operators"]], "cudaq::spin_op": [[42, "cudaq-spin-op"]], "Quantum Intrinsic Operations": [[41, "quantum-intrinsic-operations"]], "Operations on cudaq::qubit": [[41, "operations-on-cudaq-qubit"]], "Specifications": [[47, "specifications"]], "Namespace and Standard": [[40, "namespace-and-standard"]], "Working with the CUDA-Q IR": [[69, "working-with-the-cuda-q-ir"]], "Multi-control Synthesis": [[66, "multi-control-synthesis"]], "Multi-GPU Workflows": [[67, "multi-gpu-workflows"]], "Available Targets": [[67, "available-targets"]], "Parallelization across Multiple Processors": [[67, "parallelization-across-multiple-processors"]], "Batching Hamiltonian Terms": [[67, "batching-hamiltonian-terms"]], "Circuit Batching": [[67, "circuit-batching"]], "Building Kernels": [[61, "building-kernels"]], "Introduction": [[65, "introduction"], [75, "introduction"]], "Quantum Computing 101": [[68, "quantum-computing-101"]], "Quantum States": [[68, "quantum-states"]], "Quantum Gates": [[68, "quantum-gates"]], "Measurements": [[68, "measurements"], [25, "Measurements"]], "CUDA-Q by Example": [[62, "cuda-q-by-example"]], "Computing Expectation Values": [[63, "computing-expectation-values"]], "Parallelizing across Multiple Processors": [[63, "parallelizing-across-multiple-processors"]], "Troubleshooting": [[60, "troubleshooting"]], "Debugging and Verbose Simulation Output": [[60, "debugging-and-verbose-simulation-output"]], "Using Quantum Hardware Providers": [[64, "using-quantum-hardware-providers"]], "Amazon Braket": [[64, "amazon-braket"], [52, "amazon-braket"]], "Infleqtion": [[64, "infleqtion"], [52, "infleqtion"]], "IonQ": [[64, "ionq"], [52, "ionq"]], "IQM": [[64, "iqm"], [52, "iqm"]], "OQC": [[64, "oqc"], [52, "oqc"]], "ORCA Computing": [[64, "orca-computing"], [52, "orca-computing"]], "Quantinuum": [[64, "quantinuum"], [52, "quantinuum"]], "QuEra Computing": [[64, "quera-computing"], [52, "quera-computing"]], "Quick Start": [[80, "quick-start"], [53, "quick-start"], [51, "quick-start"]], "Install CUDA-Q": [[80, "install-cuda-q"]], "Validate your Installation": [[80, "validate-your-installation"]], "CUDA-Q Versions": [[81, "cuda-q-versions"]], "CUDA-Q and CMake": [[76, "cuda-q-and-cmake"]], "Extending CUDA-Q with a new Simulator": [[72, "extending-cuda-q-with-a-new-simulator"]], "CircuitSimulator": [[72, "circuitsimulator"]], "Required Circuit Simulator Subtype Method Overrides": [[72, "id1"]], "Let\u2019s see this in action": [[72, "let-s-see-this-in-action"]], "Installation from Source": [[73, "installation-from-source"]], "Prerequisites": [[73, "prerequisites"]], "Build Dependencies": [[73, "build-dependencies"]], "CUDA": [[73, "cuda"]], "Toolchain": [[73, "toolchain"]], "Building CUDA-Q": [[73, "building-cuda-q"]], "Python Support": [[73, "python-support"]], "C++ Support": [[73, "c-support"]], "Installation on the Host": [[73, "installation-on-the-host"]], "CUDA Runtime Libraries": [[73, "cuda-runtime-libraries"]], "MPI": [[73, "mpi"]], "Integration with other Software Tools": [[78, "integration-with-other-software-tools"]], "Installation Guide": [[74, "installation-guide"]], "Contents": [[74, null], [56, null], [31, null]], "Using CUDA and CUDA-Q in a Project": [[77, "using-cuda-and-cuda-q-in-a-project"]], "Extending CUDA-Q": [[70, "extending-cuda-q"]], "Create your own CUDA-Q Compiler Pass": [[71, "create-your-own-cuda-q-compiler-pass"]], "Local Installation": [[75, "local-installation"]], "Docker": [[75, "docker"]], "Singularity": [[75, "singularity"]], "Python wheels": [[75, "python-wheels"]], "Pre-built binaries": [[75, "pre-built-binaries"]], "Development with VS Code": [[75, "development-with-vs-code"]], "Using a Docker container": [[75, "using-a-docker-container"]], "Using a Singularity container": [[75, "using-a-singularity-container"]], "Connecting to a Remote Host": [[75, "connecting-to-a-remote-host"]], "Developing with Remote Tunnels": [[75, "developing-with-remote-tunnels"]], "Remote Access via SSH": [[75, "remote-access-via-ssh"]], "DGX Cloud": [[75, "dgx-cloud"]], "Get Started": [[75, "get-started"]], "Use JupyterLab": [[75, "use-jupyterlab"]], "Use VS Code": [[75, "use-vs-code"]], "Additional CUDA Tools": [[75, "additional-cuda-tools"]], "Installation via PyPI": [[75, "installation-via-pypi"]], "Installation In Container Images": [[75, "installation-in-container-images"]], "Installing Pre-built Binaries": [[75, "installing-pre-built-binaries"]], "Distributed Computing with MPI": [[75, "distributed-computing-with-mpi"]], "Updating CUDA-Q": [[75, "updating-cuda-q"]], "Dependencies and Compatibility": [[75, "dependencies-and-compatibility"]], "Supported Systems": [[75, "id10"]], "Requirements for GPU Simulation": [[75, "id11"]], "Next Steps": [[75, "next-steps"]], "Integrating with Third-Party Libraries": [[79, "integrating-with-third-party-libraries"]], "Calling a CUDA-Q library from C++": [[79, "calling-a-cuda-q-library-from-c"]], "Calling an C++ library from CUDA-Q": [[79, "calling-an-c-library-from-cuda-q"]], "Interfacing between binaries compiled with a different toolchains": [[79, "interfacing-between-binaries-compiled-with-a-different-toolchains"]], "Running your first CUDA-Q Program": [[59, "running-your-first-cuda-q-program"]], "Sample": [[59, "sample"], [24, "Sample"]], "Observe": [[59, "observe"], [24, "Observe"]], "Running on a GPU": [[59, "running-on-a-gpu"]], "What is a CUDA-Q kernel?": [[58, "what-is-a-cuda-q-kernel"]], "CUDA-Q Basics": [[56, "cuda-q-basics"]], "CUDA-Q Backends": [[50, "cuda-q-backends"]], "Backend Targets": [[50, null]], "CUDA-Q Hardware Backends": [[52, "cuda-q-hardware-backends"]], "Setting Credentials": [[52, "setting-credentials"], [52, "id1"], [52, "ionq-backend"], [52, "anyon-backend"], [52, "id10"], [52, "id13"], [52, "id16"], [52, "quantinuum-backend"], [52, "quera-backend"]], "Submission from C++": [[52, "submission-from-c"], [52, "id2"], [52, "id5"], [52, "id8"], [52, "id11"], [52, "id14"], [52, "id17"], [52, "id20"], [52, "id23"]], "Submission from Python": [[52, "submission-from-python"], [52, "id3"], [52, "id6"], [52, "id9"], [52, "id12"], [52, "id15"], [52, "id18"], [52, "id21"], [52, "id24"]], "Anyon Technologies/Anyon Computing": [[52, "anyon-technologies-anyon-computing"]], "Building your first CUDA-Q Program": [[57, "building-your-first-cuda-q-program"]], "CUDA-Q Simulation Backends": [[55, "cuda-q-simulation-backends"]], "State Vector Simulators": [[55, "state-vector-simulators"]], "Features": [[55, "features"]], "Single-GPU": [[55, "single-gpu"]], "Environment variable options supported in single-GPU mode": [[55, "id4"]], "Multi-node multi-GPU": [[55, "multi-node-multi-gpu"], [55, "id2"]], "Additional environment variable options for multi-node multi-GPU mode": [[55, "id5"]], "OpenMP CPU-only": [[55, "openmp-cpu-only"]], "Tensor Network Simulators": [[55, "tensor-network-simulators"]], "Matrix product state": [[55, "matrix-product-state"]], "Clifford-Only Simulator": [[55, "clifford-only-simulator"]], "Stim (CPU)": [[55, "stim-cpu"]], "Fermioniq": [[55, "fermioniq"]], "Default Simulator": [[55, "default-simulator"]], "NVIDIA Quantum Cloud": [[53, "nvidia-quantum-cloud"]], "Simulator Backend Selection": [[53, "simulator-backend-selection"]], "Multiple GPUs": [[53, "multiple-gpus"]], "Simulator Backends": [[53, "id1"]], "Multiple QPUs Asynchronous Execution": [[53, "multiple-qpus-asynchronous-execution"]], "FAQ": [[53, "faq"]], "CUDA-Q Dynamics": [[51, "cuda-q-dynamics"]], "Operator": [[51, "operator"]], "Builtin Operators": [[51, "id1"]], "Time-Dependent Dynamics": [[51, "time-dependent-dynamics"]], "Numerical Integrators": [[51, "numerical-integrators"], [51, "id2"]], "Multi-Processor Platforms": [[54, "multi-processor-platforms"]], "NVIDIA MQPU Platform": [[54, "nvidia-mqpu-platform"]], "Parallel distribution mode": [[54, "parallel-distribution-mode"]], "Remote MQPU Platform": [[54, "remote-mqpu-platform"]], "Supported Kernel Arguments": [[54, "supported-kernel-arguments"]], "Kernel argument serialization": [[54, "id4"]], "Accessing Simulated Quantum State": [[54, "accessing-simulated-quantum-state"]], "Visualization": [[30, "Visualization"]], "Qubit Visualization": [[30, "Qubit-Visualization"]], "Kernel Visualization": [[30, "Kernel-Visualization"]], "CUDA-Q": [[31, "cuda-q"], [33, null]], "Control Flow": [[35, "control-flow"]], "Example Programs": [[37, "example-programs"]], "Hello World - Simple Bell State": [[37, "hello-world-simple-bell-state"]], "GHZ State Preparation and Sampling": [[37, "ghz-state-preparation-and-sampling"]], "Quantum Phase Estimation": [[37, "quantum-phase-estimation"]], "Deuteron Binding Energy Parameter Sweep": [[37, "deuteron-binding-energy-parameter-sweep"]], "Grover\u2019s Algorithm": [[37, "grover-s-algorithm"]], "Iterative Phase Estimation": [[37, "iterative-phase-estimation"]], "Language Specification": [[33, "language-specification"]], "Quantum Kernels": [[38, "quantum-kernels"]], "Just-in-Time Kernel Creation": [[36, "just-in-time-kernel-creation"]], "Quantum Algorithmic Primitives": [[34, "quantum-algorithmic-primitives"]], "cudaq::sample": [[34, "cudaq-sample"]], "cudaq::observe": [[34, "cudaq-observe"]], "cudaq::optimizer (deprecated, functionality moved to CUDA-Q libraries)": [[34, "cudaq-optimizer-deprecated-functionality-moved-to-cuda-q-libraries"]], "cudaq::gradient (deprecated, functionality moved to CUDA-Q libraries)": [[34, "cudaq-gradient-deprecated-functionality-moved-to-cuda-q-libraries"]], "CUDA-Q Releases": [[32, "cuda-q-releases"]], "Machine Model": [[39, "machine-model"]], "Midcircuit Measurement and Conditional Logic": [[25, "Midcircuit-Measurement-and-Conditional-Logic"]], "Operators": [[27, "Operators"], [2, "operators"]], "Constructing Spin Operators": [[27, "Constructing-Spin-Operators"]], "Pauli Words and Exponentiating Pauli Words": [[27, "Pauli-Words-and-Exponentiating-Pauli-Words"]], "Compiling Unitaries Using Diffusion Models": [[21, "Compiling-Unitaries-Using-Diffusion-Models"]], "Diffusion model pipeline": [[21, "Diffusion-model-pipeline"]], "Setup and compilation": [[21, "Setup-and-compilation"]], "Load model": [[21, "Load-model"]], "Unitary compilation": [[21, "Unitary-compilation"]], "Convert tensors to CUDA-Q": [[21, "Convert-tensors-to-CUDA-Q"]], "Evaluate generated circuits": [[21, "Evaluate-generated-circuits"]], "Simulate kernels": [[21, "Simulate-kernels"]], "Compare unitaries": [[21, "Compare-unitaries"]], "Choosing the circuit you need": [[21, "Choosing-the-circuit-you-need"]], "Variational Quantum Eigensolver": [[22, "Variational-Quantum-Eigensolver"]], "Using CUDA-Q Optimizers": [[22, "Using-CUDA-Q-Optimizers"]], "Integration with Third-Party Optimizers": [[22, "Integration-with-Third-Party-Optimizers"]], "VQE with gradients, active spaces, and gate fusion": [[23, "VQE-with-gradients,-active-spaces,-and-gate-fusion"]], "The Basics of VQE": [[23, "The-Basics-of-VQE"]], "Installing/Loading Relevant Packages": [[23, "Installing/Loading-Relevant-Packages"]], "Implementing VQE in CUDA-Q": [[23, "Implementing-VQE-in-CUDA-Q"]], "Parallel Parameter Shift Gradients": [[23, "Parallel-Parameter-Shift-Gradients"], [28, "Parallel-Parameter-Shift-Gradients"]], "Using an Active Space": [[23, "Using-an-Active-Space"]], "Gate Fusion for Larger Circuits": [[23, "Gate-Fusion-for-Larger-Circuits"]], "Noisy Simulation": [[26, "Noisy-Simulation"], [3, "noisy-simulation"]], "Executing Quantum Circuits": [[24, "Executing-Quantum-Circuits"]], "Get state": [[24, "Get-state"]], "Parallelization Techniques": [[24, "Parallelization-Techniques"]], "Observe Async": [[24, "Observe-Async"]], "Sample Async": [[24, "Sample-Async"]], "Get State Async": [[24, "Get-State-Async"]], "Optimizing Performance": [[29, "Optimizing-Performance"]], "Gate Fusion": [[29, "Gate-Fusion"]], "Optimizers and Gradients": [[28, "Optimizers-and-Gradients"]], "Built in CUDA-Q Optimizers and Gradients": [[28, "Built-in-CUDA-Q-Optimizers-and-Gradients"]], "Third-Party Optimizers": [[28, "Third-Party-Optimizers"]], "Computing Magnetization With The Suzuki-Trotter Approximation": [[20, "Computing-Magnetization-With-The-Suzuki-Trotter-Approximation"]], "Problem Setup": [[20, "Problem-Setup"]], "Running the Simulation": [[20, "Running-the-Simulation"]], "Multi-reference Quantum Krylov Algorithm - H_2 Molecule": [[12, "Multi-reference-Quantum-Krylov-Algorithm---H_2-Molecule"]], "Setup": [[12, "Setup"]], "Computing the matrix elements": [[12, "Computing-the-matrix-elements"]], "Determining the ground state energy of the subspace": [[12, "Determining-the-ground-state-energy-of-the-subspace"]], "Quantum Fourier Transform": [[15, "Quantum-Fourier-Transform"]], "Quantum Fourier Transform revisited": [[15, "Quantum-Fourier-Transform-revisited"]], "Using the Hadamard Test to Determine Quantum Krylov Subspace Decomposition Matrix Elements": [[10, "Using-the-Hadamard-Test-to-Determine-Quantum-Krylov-Subspace-Decomposition-Matrix-Elements"]], "Numerical result as a reference:": [[10, "Numerical-result-as-a-reference:"]], "Using Sample to perform the Hadamard test": [[10, "Using-Sample-to-perform-the-Hadamard-test"]], "Multi-GPU evaluation of QKSD matrix elements using the Hadamard Test": [[10, "Multi-GPU-evaluation-of-QKSD-matrix-elements-using-the-Hadamard-Test"]], "Classically Diagonalize the Subspace Matrix": [[10, "Classically-Diagonalize-the-Subspace-Matrix"]], "Factoring Integers With Shor\u2019s Algorithm": [[19, "Factoring-Integers-With-Shor's-Algorithm"]], "Shor\u2019s algorithm": [[19, "Shor's-algorithm"]], "Solving the order-finding problem classically": [[19, "Solving-the-order-finding-problem-classically"]], "Solving the order-finding problem with a quantum algorithm": [[19, "Solving-the-order-finding-problem-with-a-quantum-algorithm"]], "Inverse quantum Fourier transform": [[19, "Inverse-quantum-Fourier-transform"]], "Quantum kernels for modular exponentiation": [[19, "Quantum-kernels-for-modular-exponentiation"]], "The case N = 21 and a = 5:": [[19, "The-case-N-=-21-and-a-=-5:"]], "The case N = 21 and a = 4:": [[19, "The-case-N-=-21-and-a-=-4:"]], "Determining the order from the measurement results of the phase kernel": [[19, "Determining-the-order-from-the-measurement-results-of-the-phase-kernel"]], "Postscript": [[19, "Postscript"]], "Quantum Teleporation": [[16, "Quantum-Teleporation"]], "Teleportation explained": [[16, "Teleportation-explained"]], "Quantum Volume": [[17, "Quantum-Volume"]], "Readout Error Mitigation": [[18, "Readout-Error-Mitigation"]], "Inverse confusion matrix from single-qubit noise model": [[18, "Inverse-confusion-matrix-from-single-qubit-noise-model"]], "Inverse confusion matrix from k local confusion matrices": [[18, "Inverse-confusion-matrix-from-k-local-confusion-matrices"]], "Inverse of full confusion matrix": [[18, "Inverse-of-full-confusion-matrix"]], "Hybrid Quantum Neural Networks": [[11, "Hybrid-Quantum-Neural-Networks"]], "Anderson Impurity Model ground state solver on Infleqtion\u2019s Sqale": [[13, "Anderson-Impurity-Model-ground-state-solver-on-Infleqtion's-Sqale"]], "Performing logical Variational Quantum Eigensolver (VQE) with CUDA-QX": [[13, "Performing-logical-Variational-Quantum-Eigensolver-(VQE)-with-CUDA-QX"]], "Constructing circuits in the [[4,2,2]] encoding": [[13, "Constructing-circuits-in-the-[[4,2,2]]-encoding"]], "Setting up submission and decoding workflow": [[13, "Setting-up-submission-and-decoding-workflow"]], "Running a CUDA-Q noisy simulation": [[13, "Running-a-CUDA-Q-noisy-simulation"]], "Running logical AIM on Infleqtion\u2019s hardware": [[13, "Running-logical-AIM-on-Infleqtion's-hardware"]], "Max-Cut with QAOA": [[14, "Max-Cut-with-QAOA"]], "Divisive Clustering With Coresets Using CUDA-Q": [[9, "Divisive-Clustering-With-Coresets-Using-CUDA-Q"]], "Data preprocessing": [[9, "Data-preprocessing"]], "Quantum functions": [[9, "Quantum-functions"]], "Divisive Clustering Function": [[9, "Divisive-Clustering-Function"]], "QAOA Implementation": [[9, "QAOA-Implementation"]], "Scaling simulations with CUDA-Q": [[9, "Scaling-simulations-with-CUDA-Q"]], "CUDA-Q Python API": [[3, "module-cudaq"]], "Program Construction": [[3, "program-construction"]], "Kernel Execution": [[3, "kernel-execution"]], "Dynamics": [[3, "dynamics"]], "Backend Configuration": [[3, "backend-configuration"]], "Data Types": [[3, "data-types"]], "Optimizers": [[3, "optimizers"]], "Gradients": [[3, "gradients"]], "MPI Submodule": [[3, "mpi-submodule"]], "ORCA Submodule": [[3, "orca-submodule"]], "Deutsch\u2019s Algorithm": [[7, "Deutsch's-Algorithm"]], "XOR \\oplus": [[7, "XOR-\\oplus"]], "Quantum oracles": [[7, "Quantum-oracles"]], "Phase oracle": [[7, "Phase-oracle"]], "Quantum parallelism": [[7, "Quantum-parallelism"]], "Deutsch\u2019s Algorithm:": [[7, "Deutsch's-Algorithm:"]], "Cost Minimization": [[6, "Cost-Minimization"]], "Molecular docking via DC-QAOA": [[8, "Molecular-docking-via-DC-QAOA"]], "Setting up the Molecular Docking Problem": [[8, "Setting-up-the-Molecular-Docking-Problem"]], "CUDA-Q Implementation": [[8, "CUDA-Q-Implementation"]], "Quantum Enhanced Auxiliary Field Quantum Monte Carlo": [[4, "Quantum-Enhanced-Auxiliary-Field-Quantum-Monte-Carlo"]], "Hamiltonian preparation for VQE": [[4, "Hamiltonian-preparation-for-VQE"]], "Run VQE with CUDA-Q": [[4, "Run-VQE-with-CUDA-Q"]], "Auxiliary Field Quantum Monte Carlo (AFQMC)": [[4, "Auxiliary-Field-Quantum-Monte-Carlo-(AFQMC)"]], "Preparation of the molecular Hamiltonian": [[4, "Preparation-of-the-molecular-Hamiltonian"]], "Preparation of the trial wave function": [[4, "Preparation-of-the-trial-wave-function"]], "Setup of the AFQMC parameters": [[4, "Setup-of-the-AFQMC-parameters"]], "Bernstein-Vazirani Algorithm": [[5, "Bernstein-Vazirani-Algorithm"]], "Classical case": [[5, "Classical-case"]], "Quantum case": [[5, "Quantum-case"]], "Implementing in CUDA-Q": [[5, "Implementing-in-CUDA-Q"]], "Code documentation": [[0, "code-documentation"]], "CUDA-Q API": [[0, null]], "CUDA-Q C++ API": [[2, "cuda-q-c-api"]], "Quantum": [[2, "quantum"]], "Common": [[2, "common"]], "Noise Modeling": [[2, "noise-modeling"]], "Kernel Builder": [[2, "kernel-builder"]], "Algorithms": [[2, "algorithms"]], "Platform": [[2, "platform"]], "Utilities": [[2, "utilities"]], "Namespaces": [[2, "namespaces"]], "Quantum Operations": [[1, "quantum-operations"]], "Unitary Operations on Qubits": [[1, "unitary-operations-on-qubits"]], "x": [[1, "x"]], "y": [[1, "y"]], "z": [[1, "z"]], "h": [[1, "h"]], "r1": [[1, "r1"]], "rx": [[1, "rx"]], "ry": [[1, "ry"]], "rz": [[1, "rz"]], "s": [[1, "s"]], "t": [[1, "t"]], "swap": [[1, "swap"]], "u3": [[1, "u3"]], "Adjoint and Controlled Operations": [[1, "adjoint-and-controlled-operations"]], "Measurements on Qubits": [[1, "measurements-on-qubits"]], "mz": [[1, "mz"], [1, "id1"]], "mx": [[1, "mx"]], "my": [[1, "my"]], "User-Defined Custom Operations": [[1, "user-defined-custom-operations"]], "Photonic Operations on Qudits": [[1, "photonic-operations-on-qudits"]], "create": [[1, "create"]], "annihilate": [[1, "annihilate"]], "phase_shift": [[1, "phase-shift"]], "beam_splitter": [[1, "beam-splitter"]]}, "indexentries": {"cudaq (c++ type)": [[2, "_CPPv45cudaq"]], "cudaq::basenvcfsimulatorqpu (c++ class)": [[2, "_CPPv4N5cudaq20BaseNvcfSimulatorQPUE"]], "cudaq::baseremoterestqpu (c++ class)": [[2, "_CPPv4N5cudaq17BaseRemoteRESTQPUE"]], "cudaq::baseremotesimulatorqpu (c++ class)": [[2, "_CPPv4N5cudaq22BaseRemoteSimulatorQPUE"]], "cudaq::cusvstate (c++ class)": [[2, "_CPPv4I0EN5cudaq9CusvStateE"]], "cudaq::executioncontext (c++ class)": [[2, "_CPPv4N5cudaq16ExecutionContextE"]], "cudaq::executioncontext::executioncontext (c++ function)": [[2, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringE"], [2, "_CPPv4N5cudaq16ExecutionContext16ExecutionContextEKNSt6stringENSt6size_tE"]], "cudaq::executioncontext::amplitudemaps (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13amplitudeMapsE"]], "cudaq::executioncontext::asyncexec (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext9asyncExecE"]], "cudaq::executioncontext::asyncresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext11asyncResultE"]], "cudaq::executioncontext::batchiteration (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext14batchIterationE"]], "cudaq::executioncontext::canhandleobserve (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext16canHandleObserveE"]], "cudaq::executioncontext::expectationvalue (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext16expectationValueE"]], "cudaq::executioncontext::futureresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext12futureResultE"]], "cudaq::executioncontext::hasconditionalsonmeasureresults (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext31hasConditionalsOnMeasureResultsE"]], "cudaq::executioncontext::invocationresultbuffer (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext22invocationResultBufferE"]], "cudaq::executioncontext::kernelname (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10kernelNameE"]], "cudaq::executioncontext::kerneltrace (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext11kernelTraceE"]], "cudaq::executioncontext::name (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext4nameE"]], "cudaq::executioncontext::noisemodel (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10noiseModelE"]], "cudaq::executioncontext::numbertrajectories (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext18numberTrajectoriesE"]], "cudaq::executioncontext::optresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext9optResultE"]], "cudaq::executioncontext::overlapcomputestates (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext20overlapComputeStatesE"]], "cudaq::executioncontext::overlapresult (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13overlapResultE"]], "cudaq::executioncontext::registernames (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext13registerNamesE"]], "cudaq::executioncontext::reorderidx (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext10reorderIdxE"]], "cudaq::executioncontext::result (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext6resultE"]], "cudaq::executioncontext::shots (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext5shotsE"]], "cudaq::executioncontext::simulationstate (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext15simulationStateE"]], "cudaq::executioncontext::spin (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext4spinE"]], "cudaq::executioncontext::totaliterations (c++ member)": [[2, "_CPPv4N5cudaq16ExecutionContext15totalIterationsE"]], "cudaq::executionresult (c++ struct)": [[2, "_CPPv4N5cudaq15ExecutionResultE"]], "cudaq::executionresult::executionresult (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionary"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryNSt6stringE"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultE16CountsDictionaryd"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultENSt6stringE"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultERK15ExecutionResult"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEd"], [2, "_CPPv4N5cudaq15ExecutionResult15ExecutionResultEv"]], "cudaq::executionresult::appendresult (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult12appendResultENSt6stringENSt6size_tE"]], "cudaq::executionresult::deserialize (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResult11deserializeERNSt6vectorINSt6size_tEEE"]], "cudaq::executionresult::operator= (c++ function)": [[2, "_CPPv4N5cudaq15ExecutionResultaSERK15ExecutionResult"]], "cudaq::executionresult::operator== (c++ function)": [[2, "_CPPv4NK5cudaq15ExecutionResulteqERK15ExecutionResult"]], "cudaq::executionresult::registername (c++ member)": [[2, "_CPPv4N5cudaq15ExecutionResult12registerNameE"]], "cudaq::executionresult::sequentialdata (c++ member)": [[2, "_CPPv4N5cudaq15ExecutionResult14sequentialDataE"]], "cudaq::executionresult::serialize (c++ function)": [[2, "_CPPv4NK5cudaq15ExecutionResult9serializeEv"]], "cudaq::fermioniqbaseqpu (c++ class)": [[2, "_CPPv4N5cudaq16FermioniqBaseQPUE"]], "cudaq::kernelexecutiontask (c++ type)": [[2, "_CPPv4N5cudaq19KernelExecutionTaskE"]], "cudaq::kernelthunkresulttype (c++ struct)": [[2, "_CPPv4N5cudaq21KernelThunkResultTypeE"]], "cudaq::kernelthunktype (c++ type)": [[2, "_CPPv4N5cudaq15KernelThunkTypeE"]], "cudaq::orcaremoterestqpu (c++ class)": [[2, "_CPPv4N5cudaq17OrcaRemoteRESTQPUE"]], "cudaq::qpu (c++ class)": [[2, "_CPPv4N5cudaq3QPUE"]], "cudaq::qpu::qpu (c++ function)": [[2, "_CPPv4N5cudaq3QPU3QPUENSt6size_tE"], [2, "_CPPv4N5cudaq3QPU3QPUERR3QPU"], [2, "_CPPv4N5cudaq3QPU3QPUEv"]], "cudaq::qpu::enqueue (c++ function)": [[2, "_CPPv4N5cudaq3QPU7enqueueER11QuantumTask"]], "cudaq::qpu::getconnectivity (c++ function)": [[2, "_CPPv4N5cudaq3QPU15getConnectivityEv"]], "cudaq::qpu::getexecutionthreadid (c++ function)": [[2, "_CPPv4NK5cudaq3QPU20getExecutionThreadIdEv"]], "cudaq::qpu::getnumqubits (c++ function)": [[2, "_CPPv4N5cudaq3QPU12getNumQubitsEv"]], "cudaq::qpu::getremotecapabilities (c++ function)": [[2, "_CPPv4NK5cudaq3QPU21getRemoteCapabilitiesEv"]], "cudaq::qpu::isemulated (c++ function)": [[2, "_CPPv4N5cudaq3QPU10isEmulatedEv"]], "cudaq::qpu::issimulator (c++ function)": [[2, "_CPPv4N5cudaq3QPU11isSimulatorEv"]], "cudaq::qpu::launchkernel (c++ function)": [[2, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringE15KernelThunkTypePvNSt8uint64_tENSt8uint64_tERKNSt6vectorIPvEE"], [2, "_CPPv4N5cudaq3QPU12launchKernelERKNSt6stringERKNSt6vectorIPvEE"]], "cudaq::qpu::launchserializedcodeexecution (c++ function)": [[2, "_CPPv4N5cudaq3QPU29launchSerializedCodeExecutionERKNSt6stringERN5cudaq30SerializedCodeExecutionContextE"]], "cudaq::qpu::onrandomseedset (c++ function)": [[2, "_CPPv4N5cudaq3QPU15onRandomSeedSetENSt6size_tE"]], "cudaq::qpu::resetexecutioncontext (c++ function)": [[2, "_CPPv4N5cudaq3QPU21resetExecutionContextEv"]], "cudaq::qpu::setexecutioncontext (c++ function)": [[2, "_CPPv4N5cudaq3QPU19setExecutionContextEP16ExecutionContext"]], "cudaq::qpu::setid (c++ function)": [[2, "_CPPv4N5cudaq3QPU5setIdENSt6size_tE"]], "cudaq::qpu::setshots (c++ function)": [[2, "_CPPv4N5cudaq3QPU8setShotsEi"]], "cudaq::qpu::supportsconditionalfeedback (c++ function)": [[2, "_CPPv4N5cudaq3QPU27supportsConditionalFeedbackEv"]], "cudaq::qpu::~qpu (c++ function)": [[2, "_CPPv4N5cudaq3QPUD0Ev"]], "cudaq::querabaseqpu (c++ class)": [[2, "_CPPv4N5cudaq12QuEraBaseQPUE"]], "cudaq::quakevalue (c++ class)": [[2, "_CPPv4N5cudaq10QuakeValueE"]], "cudaq::quakevalue::quakevalue (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEN4mlir5ValueE"], [2, "_CPPv4N5cudaq10QuakeValue10QuakeValueERN4mlir20ImplicitLocOpBuilderEd"]], "cudaq::quakevalue::canvalidatenumelements (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue22canValidateNumElementsEv"]], "cudaq::quakevalue::constantsize (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue12constantSizeEv"]], "cudaq::quakevalue::dump (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue4dumpERNSt7ostreamE"], [2, "_CPPv4N5cudaq10QuakeValue4dumpEv"]], "cudaq::quakevalue::getrequiredelements (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue19getRequiredElementsEv"]], "cudaq::quakevalue::getvalue (c++ function)": [[2, "_CPPv4NK5cudaq10QuakeValue8getValueEv"]], "cudaq::quakevalue::inverse (c++ function)": [[2, "_CPPv4NK5cudaq10QuakeValue7inverseEv"]], "cudaq::quakevalue::isstdvec (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue8isStdVecEv"]], "cudaq::quakevalue::operator* (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuemlE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuemlEKd"]], "cudaq::quakevalue::operator+ (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValueplE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValueplEKd"], [2, "_CPPv4N5cudaq10QuakeValueplEKi"]], "cudaq::quakevalue::operator- (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuemiE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuemiEKd"], [2, "_CPPv4N5cudaq10QuakeValuemiEKi"], [2, "_CPPv4NK5cudaq10QuakeValuemiEv"]], "cudaq::quakevalue::operator/ (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValuedvE10QuakeValue"], [2, "_CPPv4N5cudaq10QuakeValuedvEKd"]], "cudaq::quakevalue::operator[] (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValueixEKNSt6size_tE"], [2, "_CPPv4N5cudaq10QuakeValueixERK10QuakeValue"]], "cudaq::quakevalue::size (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue4sizeEv"]], "cudaq::quakevalue::slice (c++ function)": [[2, "_CPPv4N5cudaq10QuakeValue5sliceEKNSt6size_tEKNSt6size_tE"]], "cudaq::quantumtask (c++ type)": [[2, "_CPPv4N5cudaq11QuantumTaskE"]], "cudaq::qubitconnectivity (c++ type)": [[2, "_CPPv4N5cudaq17QubitConnectivityE"]], "cudaq::qubitedge (c++ type)": [[2, "_CPPv4N5cudaq9QubitEdgeE"]], "cudaq::remotecapabilities (c++ struct)": [[2, "_CPPv4N5cudaq18RemoteCapabilitiesE"]], "cudaq::remotecapabilities::remotecapabilities (c++ function)": [[2, "_CPPv4N5cudaq18RemoteCapabilities18RemoteCapabilitiesEb"]], "cudaq::remotecapabilities::isremotesimulator (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities17isRemoteSimulatorE"]], "cudaq::remotecapabilities::serializedcodeexec (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities18serializedCodeExecE"]], "cudaq::remotecapabilities::stateoverlap (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities12stateOverlapE"]], "cudaq::remotecapabilities::vqe (c++ member)": [[2, "_CPPv4N5cudaq18RemoteCapabilities3vqeE"]], "cudaq::remotesimulationstate (c++ class)": [[2, "_CPPv4N5cudaq21RemoteSimulationStateE"]], "cudaq::resources (c++ class)": [[2, "_CPPv4N5cudaq9ResourcesE"]], "cudaq::serializedcodeexecutioncontext (c++ class)": [[2, "_CPPv4N5cudaq30SerializedCodeExecutionContextE"]], "cudaq::simulationstate (c++ class)": [[2, "_CPPv4N5cudaq15SimulationStateE"]], "cudaq::simulationstate::tensor (c++ struct)": [[2, "_CPPv4N5cudaq15SimulationState6TensorE"]], "cudaq::simulationstate::precision (c++ enum)": [[2, "_CPPv4N5cudaq15SimulationState9precisionE"]], "cudaq::simulationstate::precision::fp32 (c++ enumerator)": [[2, "_CPPv4N5cudaq15SimulationState9precision4fp32E"]], "cudaq::simulationstate::precision::fp64 (c++ enumerator)": [[2, "_CPPv4N5cudaq15SimulationState9precision4fp64E"]], "cudaq::tensorstatedata (c++ type)": [[2, "_CPPv4N5cudaq15TensorStateDataE"]], "cudaq::trace (c++ class)": [[2, "_CPPv4N5cudaq5TraceE"]], "cudaq::amplitude_damping_channel (c++ class)": [[2, "_CPPv4N5cudaq25amplitude_damping_channelE"]], "cudaq::async_result (c++ class)": [[2, "_CPPv4I0EN5cudaq12async_resultE"]], "cudaq::async_result::get (c++ function)": [[2, "_CPPv4N5cudaq12async_result3getEv"]], "cudaq::async_sample_result (c++ type)": [[2, "_CPPv4N5cudaq19async_sample_resultE"]], "cudaq::bit_flip_channel (c++ class)": [[2, "_CPPv4N5cudaq16bit_flip_channelE"]], "cudaq::complex (c++ type)": [[2, "_CPPv4N5cudaq7complexE"]], "cudaq::complex_matrix (c++ class)": [[2, "_CPPv4N5cudaq14complex_matrixE"]], "cudaq::complex_matrix::cols (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4colsEv"]], "cudaq::complex_matrix::complex_matrix (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix14complex_matrixEKNSt6size_tEKNSt6size_tE"], [2, "_CPPv4N5cudaq14complex_matrix14complex_matrixEP10value_typeKNSt6size_tEKNSt6size_tE"]], "cudaq::complex_matrix::data (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4dataEv"]], "cudaq::complex_matrix::dump (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix4dumpERNSt7ostreamE"], [2, "_CPPv4N5cudaq14complex_matrix4dumpEv"]], "cudaq::complex_matrix::eigenvalues (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix11eigenvaluesEv"]], "cudaq::complex_matrix::eigenvectors (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix12eigenvectorsEv"]], "cudaq::complex_matrix::minimal_eigenvalue (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix18minimal_eigenvalueEv"]], "cudaq::complex_matrix::operator() (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrixclENSt6size_tENSt6size_tE"]], "cudaq::complex_matrix::operator* (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrixmlER14complex_matrix"], [2, "_CPPv4NK5cudaq14complex_matrixmlERNSt6vectorI10value_typeEE"]], "cudaq::complex_matrix::rows (c++ function)": [[2, "_CPPv4NK5cudaq14complex_matrix4rowsEv"]], "cudaq::complex_matrix::set_zero (c++ function)": [[2, "_CPPv4N5cudaq14complex_matrix8set_zeroEv"]], "cudaq::complex_matrix::value_type (c++ type)": [[2, "_CPPv4N5cudaq14complex_matrix10value_typeE"]], "cudaq::depolarization_channel (c++ class)": [[2, "_CPPv4N5cudaq22depolarization_channelE"]], "cudaq::details (c++ type)": [[2, "_CPPv4N5cudaq7detailsE"]], "cudaq::details::kernelbuildertype (c++ class)": [[2, "_CPPv4N5cudaq7details17KernelBuilderTypeE"]], "cudaq::details::kernelbuildertype::kernelbuildertype (c++ function)": [[2, "_CPPv4N5cudaq7details17KernelBuilderType17KernelBuilderTypeERRNSt8functionIFN4mlir4TypeEPN4mlir11MLIRContextEEEE"]], "cudaq::details::kernelbuildertype::create (c++ function)": [[2, "_CPPv4N5cudaq7details17KernelBuilderType6createEPN4mlir11MLIRContextE"]], "cudaq::details::future (c++ class)": [[2, "_CPPv4N5cudaq7details6futureE"]], "cudaq::details::future::future (c++ function)": [[2, "_CPPv4N5cudaq7details6future6futureERNSt6vectorI3JobEERNSt6stringERNSt3mapINSt6stringENSt6stringEEE"], [2, "_CPPv4N5cudaq7details6future6futureERR6future"], [2, "_CPPv4N5cudaq7details6future6futureEv"]], "cudaq::details::kernel_builder_base (c++ class)": [[2, "_CPPv4N5cudaq7details19kernel_builder_baseE"]], "cudaq::details::kernel_builder_base::operator<< (c++ function)": [[2, "_CPPv4N5cudaq7details19kernel_builder_baselsERNSt7ostreamERK19kernel_builder_base"]], "cudaq::draw (c++ function)": [[2, "_CPPv4I0Dp0EN5cudaq4drawENSt6stringERR13QuantumKernelDpRR4Args"]], "cudaq::dyn (c++ member)": [[2, "_CPPv4N5cudaq3dynE"]], "cudaq::get_state (c++ function)": [[2, "_CPPv4I0DpEN5cudaq9get_stateEDaRR13QuantumKernelDpRR4Args"]], "cudaq::gradient (c++ class)": [[2, "_CPPv4N5cudaq8gradientE"]], "cudaq::gradient::clone (c++ function)": [[2, "_CPPv4N5cudaq8gradient5cloneEv"]], "cudaq::gradient::compute (c++ function)": [[2, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq8gradient7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradient::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq8gradient8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq8gradient8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq8gradient8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq8gradient8gradientEv"]], "cudaq::gradient::setargs (c++ function)": [[2, "_CPPv4I0DpEN5cudaq8gradient7setArgsEvR13QuantumKernelDpRR4Args"]], "cudaq::gradient::setkernel (c++ function)": [[2, "_CPPv4I0EN5cudaq8gradient9setKernelEvR13QuantumKernel"]], "cudaq::gradients::central_difference (c++ class)": [[2, "_CPPv4N5cudaq9gradients18central_differenceE"]], "cudaq::gradients::central_difference::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients18central_difference5cloneEv"]], "cudaq::gradients::central_difference::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients18central_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::central_difference::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients18central_difference8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients18central_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients18central_difference8gradientEv"]], "cudaq::gradients::forward_difference (c++ class)": [[2, "_CPPv4N5cudaq9gradients18forward_differenceE"]], "cudaq::gradients::forward_difference::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients18forward_difference5cloneEv"]], "cudaq::gradients::forward_difference::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients18forward_difference7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::forward_difference::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients18forward_difference8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients18forward_difference8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients18forward_difference8gradientEv"]], "cudaq::gradients::parameter_shift (c++ class)": [[2, "_CPPv4N5cudaq9gradients15parameter_shiftE"]], "cudaq::gradients::parameter_shift::clone (c++ function)": [[2, "_CPPv4N5cudaq9gradients15parameter_shift5cloneEv"]], "cudaq::gradients::parameter_shift::compute (c++ function)": [[2, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERKNSt8functionIFdNSt6vectorIdEEEEEd"], [2, "_CPPv4N5cudaq9gradients15parameter_shift7computeERKNSt6vectorIdEERNSt6vectorIdEERK7spin_opd"]], "cudaq::gradients::parameter_shift::gradient (c++ function)": [[2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelT"], [2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientER7KernelTRR10ArgsMapper"], [2, "_CPPv4I00EN5cudaq9gradients15parameter_shift8gradientERR13QuantumKernelRR10ArgsMapper"], [2, "_CPPv4N5cudaq9gradients15parameter_shift8gradientERRNSt8functionIFvNSt6vectorIdEEEEE"], [2, "_CPPv4N5cudaq9gradients15parameter_shift8gradientEv"]], "cudaq::kernel_builder (c++ class)": [[2, "_CPPv4IDpEN5cudaq14kernel_builderE"]], "cudaq::kernel_builder::constantval (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder11constantValEd"]], "cudaq::kernel_builder::getarguments (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder12getArgumentsEv"]], "cudaq::kernel_builder::getnumparams (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder12getNumParamsEv"]], "cudaq::kernel_builder::isargstdvec (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder11isArgStdVecENSt6size_tE"]], "cudaq::kernel_builder::kernel_builder (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder14kernel_builderERNSt6vectorIN7details17KernelBuilderTypeEEE"]], "cudaq::kernel_builder::name (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder4nameEv"]], "cudaq::kernel_builder::qalloc (c++ function)": [[2, "_CPPv4N5cudaq14kernel_builder6qallocE10QuakeValue"], [2, "_CPPv4N5cudaq14kernel_builder6qallocEKNSt6size_tE"], [2, "_CPPv4N5cudaq14kernel_builder6qallocERNSt6vectorINSt7complexIdEEEE"], [2, "_CPPv4N5cudaq14kernel_builder6qallocEv"]], "cudaq::kernel_builder::swap (c++ function)": [[2, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRK10QuakeValueRK10QuakeValueRK10QuakeValue"], [2, "_CPPv4I00EN5cudaq14kernel_builder4swapEvRKNSt6vectorI10QuakeValueEERK10QuakeValueRK10QuakeValue"], [2, "_CPPv4N5cudaq14kernel_builder4swapERK10QuakeValueRK10QuakeValue"]], "cudaq::kraus_channel (c++ class)": [[2, "_CPPv4N5cudaq13kraus_channelE"]], "cudaq::kraus_channel::empty (c++ function)": [[2, "_CPPv4NK5cudaq13kraus_channel5emptyEv"]], "cudaq::kraus_channel::get_ops (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channel7get_opsEv"]], "cudaq::kraus_channel::kraus_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq13kraus_channel13kraus_channelEDpRRNSt16initializer_listI1TEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERK13kraus_channel"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERKNSt6vectorI8kraus_opEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelERRNSt6vectorI8kraus_opEE"], [2, "_CPPv4N5cudaq13kraus_channel13kraus_channelEv"]], "cudaq::kraus_channel::noise_type (c++ member)": [[2, "_CPPv4N5cudaq13kraus_channel10noise_typeE"]], "cudaq::kraus_channel::operator= (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channelaSERK13kraus_channel"]], "cudaq::kraus_channel::operator[] (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channelixEKNSt6size_tE"]], "cudaq::kraus_channel::parameters (c++ member)": [[2, "_CPPv4N5cudaq13kraus_channel10parametersE"]], "cudaq::kraus_channel::push_back (c++ function)": [[2, "_CPPv4N5cudaq13kraus_channel9push_backE8kraus_op"]], "cudaq::kraus_channel::size (c++ function)": [[2, "_CPPv4NK5cudaq13kraus_channel4sizeEv"]], "cudaq::kraus_op (c++ struct)": [[2, "_CPPv4N5cudaq8kraus_opE"]], "cudaq::kraus_op::adjoint (c++ function)": [[2, "_CPPv4NK5cudaq8kraus_op7adjointEv"]], "cudaq::kraus_op::data (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op4dataE"]], "cudaq::kraus_op::kraus_op (c++ function)": [[2, "_CPPv4I0EN5cudaq8kraus_op8kraus_opERRNSt16initializer_listI1TEE"], [2, "_CPPv4N5cudaq8kraus_op8kraus_opENSt6vectorIN5cudaq7complexEEE"], [2, "_CPPv4N5cudaq8kraus_op8kraus_opERK8kraus_op"]], "cudaq::kraus_op::ncols (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op5nColsE"]], "cudaq::kraus_op::nrows (c++ member)": [[2, "_CPPv4N5cudaq8kraus_op5nRowsE"]], "cudaq::kraus_op::operator= (c++ function)": [[2, "_CPPv4N5cudaq8kraus_opaSERK8kraus_op"]], "cudaq::mpi (c++ type)": [[2, "_CPPv4N5cudaq3mpiE"]], "cudaq::mpi::all_gather (c++ function)": [[2, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIdEERKNSt6vectorIdEE"], [2, "_CPPv4N5cudaq3mpi10all_gatherERNSt6vectorIiEERKNSt6vectorIiEE"]], "cudaq::mpi::all_reduce (c++ function)": [[2, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK14BinaryFunction"], [2, "_CPPv4I00EN5cudaq3mpi10all_reduceE1TRK1TRK4Func"]], "cudaq::mpi::broadcast (c++ function)": [[2, "_CPPv4N5cudaq3mpi9broadcastERNSt6stringEi"], [2, "_CPPv4N5cudaq3mpi9broadcastERNSt6vectorIdEEi"]], "cudaq::mpi::finalize (c++ function)": [[2, "_CPPv4N5cudaq3mpi8finalizeEv"]], "cudaq::mpi::initialize (c++ function)": [[2, "_CPPv4N5cudaq3mpi10initializeEiPPc"], [2, "_CPPv4N5cudaq3mpi10initializeEv"]], "cudaq::mpi::is_initialized (c++ function)": [[2, "_CPPv4N5cudaq3mpi14is_initializedEv"]], "cudaq::mpi::num_ranks (c++ function)": [[2, "_CPPv4N5cudaq3mpi9num_ranksEv"]], "cudaq::mpi::rank (c++ function)": [[2, "_CPPv4N5cudaq3mpi4rankEv"]], "cudaq::noise_model (c++ class)": [[2, "_CPPv4N5cudaq11noise_modelE"]], "cudaq::noise_model::predicatefuncty (c++ type)": [[2, "_CPPv4N5cudaq11noise_model15PredicateFuncTyE"]], "cudaq::noise_model::add_all_qubit_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq11noise_model21add_all_qubit_channelEvRK13kraus_channeli"], [2, "_CPPv4N5cudaq11noise_model21add_all_qubit_channelERKNSt6stringERK13kraus_channeli"]], "cudaq::noise_model::add_channel (c++ function)": [[2, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRK15PredicateFuncTy"], [2, "_CPPv4IDpEN5cudaq11noise_model11add_channelEvRKNSt6vectorINSt6size_tEEERK13kraus_channel"], [2, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERK15PredicateFuncTy"], [2, "_CPPv4N5cudaq11noise_model11add_channelERKNSt6stringERKNSt6vectorINSt6size_tEEERK13kraus_channel"]], "cudaq::noise_model::empty (c++ function)": [[2, "_CPPv4NK5cudaq11noise_model5emptyEv"]], "cudaq::noise_model::get_channels (c++ function)": [[2, "_CPPv4I0ENK5cudaq11noise_model12get_channelsENSt6vectorI13kraus_channelEERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE"], [2, "_CPPv4NK5cudaq11noise_model12get_channelsERKNSt6stringERKNSt6vectorINSt6size_tEEERKNSt6vectorINSt6size_tEEERKNSt6vectorIdEE"]], "cudaq::noise_model::noise_model (c++ function)": [[2, "_CPPv4N5cudaq11noise_model11noise_modelEv"]], "cudaq::noise_model_type (c++ enum)": [[2, "_CPPv4N5cudaq16noise_model_typeE"]], "cudaq::noise_model_type::amplitude_damping_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type25amplitude_damping_channelE"]], "cudaq::noise_model_type::bit_flip_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type16bit_flip_channelE"]], "cudaq::noise_model_type::depolarization_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type22depolarization_channelE"]], "cudaq::noise_model_type::phase_flip_channel (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type18phase_flip_channelE"]], "cudaq::noise_model_type::unknown (c++ enumerator)": [[2, "_CPPv4N5cudaq16noise_model_type7unknownE"]], "cudaq::num_available_gpus (c++ function)": [[2, "_CPPv4N5cudaq18num_available_gpusEv"]], "cudaq::observe (c++ function)": [[2, "_CPPv4I00Dp0EN5cudaq7observeENSt6vectorI14observe_resultEERR13QuantumKernelRK15SpinOpContainerDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultNSt6size_tERR13QuantumKernel7spin_opDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRK15observe_optionsRR13QuantumKernel7spin_opDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq7observeE14observe_resultRR13QuantumKernel7spin_opDpRR4Args"]], "cudaq::observe_options (c++ struct)": [[2, "_CPPv4N5cudaq15observe_optionsE"]], "cudaq::observe_result (c++ class)": [[2, "_CPPv4N5cudaq14observe_resultE"]], "cudaq::observe_result::counts (c++ function)": [[2, "_CPPv4I0EN5cudaq14observe_result6countsE13sample_result10SpinOpType"]], "cudaq::observe_result::dump (c++ function)": [[2, "_CPPv4N5cudaq14observe_result4dumpEv"]], "cudaq::observe_result::expectation (c++ function)": [[2, "_CPPv4I0EN5cudaq14observe_result11expectationEd10SpinOpType"], [2, "_CPPv4N5cudaq14observe_result11expectationEv"]], "cudaq::observe_result::id_coefficient (c++ function)": [[2, "_CPPv4N5cudaq14observe_result14id_coefficientEv"]], "cudaq::observe_result::observe_result (c++ function)": [[2, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op"], [2, "_CPPv4N5cudaq14observe_result14observe_resultEdRK7spin_op13sample_result"]], "cudaq::observe_result::operator double (c++ function)": [[2, "_CPPv4N5cudaq14observe_resultcvdEv"]], "cudaq::observe_result::raw_data (c++ function)": [[2, "_CPPv4N5cudaq14observe_result8raw_dataEv"]], "cudaq::optimizable_function (c++ class)": [[2, "_CPPv4N5cudaq20optimizable_functionE"]], "cudaq::optimization_result (c++ type)": [[2, "_CPPv4N5cudaq19optimization_resultE"]], "cudaq::optimizer (c++ class)": [[2, "_CPPv4N5cudaq9optimizerE"]], "cudaq::optimizer::optimize (c++ function)": [[2, "_CPPv4N5cudaq9optimizer8optimizeEKiRR20optimizable_function"]], "cudaq::optimizer::requiresgradients (c++ function)": [[2, "_CPPv4N5cudaq9optimizer17requiresGradientsEv"]], "cudaq::orca (c++ type)": [[2, "_CPPv4N5cudaq4orcaE"]], "cudaq::orca::sample (c++ function)": [[2, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE"], [2, "_CPPv4N5cudaq4orca6sampleERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE"]], "cudaq::orca::sample_async (c++ function)": [[2, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEERNSt6vectorIdEEiNSt6size_tE"], [2, "_CPPv4N5cudaq4orca12sample_asyncERNSt6vectorINSt6size_tEEERNSt6vectorINSt6size_tEEERNSt6vectorIdEEiNSt6size_tE"]], "cudaq::phase_flip_channel (c++ class)": [[2, "_CPPv4N5cudaq18phase_flip_channelE"]], "cudaq::qreg (c++ class)": [[2, "_CPPv4I_NSt6size_tE_NSt6size_tE0EN5cudaq4qregE"]], "cudaq::qreg::back (c++ function)": [[2, "_CPPv4N5cudaq4qreg4backENSt6size_tE"], [2, "_CPPv4N5cudaq4qreg4backEv"]], "cudaq::qreg::begin (c++ function)": [[2, "_CPPv4N5cudaq4qreg5beginEv"]], "cudaq::qreg::clear (c++ function)": [[2, "_CPPv4N5cudaq4qreg5clearEv"]], "cudaq::qreg::front (c++ function)": [[2, "_CPPv4N5cudaq4qreg5frontENSt6size_tE"], [2, "_CPPv4N5cudaq4qreg5frontEv"]], "cudaq::qreg::operator[] (c++ function)": [[2, "_CPPv4N5cudaq4qregixEKNSt6size_tE"]], "cudaq::qreg::size (c++ function)": [[2, "_CPPv4NK5cudaq4qreg4sizeEv"]], "cudaq::qreg::slice (c++ function)": [[2, "_CPPv4N5cudaq4qreg5sliceENSt6size_tENSt6size_tE"]], "cudaq::qreg::value_type (c++ type)": [[2, "_CPPv4N5cudaq4qreg10value_typeE"]], "cudaq::qspan (c++ class)": [[2, "_CPPv4I_NSt6size_tE_NSt6size_tEEN5cudaq5qspanE"]], "cudaq::quantum_platform (c++ class)": [[2, "_CPPv4N5cudaq16quantum_platformE"]], "cudaq::quantum_platform::clear_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform11clear_shotsEv"]], "cudaq::quantum_platform::connectivity (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12connectivityEv"]], "cudaq::quantum_platform::enqueueasynctask (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tER19KernelExecutionTask"], [2, "_CPPv4N5cudaq16quantum_platform16enqueueAsyncTaskEKNSt6size_tERNSt8functionIFvvEEE"]], "cudaq::quantum_platform::getlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12getLogStreamEv"]], "cudaq::quantum_platform::get_current_qpu (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15get_current_qpuEv"]], "cudaq::quantum_platform::get_exec_ctx (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform12get_exec_ctxEv"]], "cudaq::quantum_platform::get_num_qubits (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsENSt6size_tE"], [2, "_CPPv4N5cudaq16quantum_platform14get_num_qubitsEv"]], "cudaq::quantum_platform::get_remote_capabilities (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform23get_remote_capabilitiesEKNSt6size_tE"]], "cudaq::quantum_platform::get_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9get_shotsEv"]], "cudaq::quantum_platform::is_emulated (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform11is_emulatedEKNSt6size_tE"]], "cudaq::quantum_platform::is_remote (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9is_remoteEKNSt6size_tE"]], "cudaq::quantum_platform::is_simulator (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform12is_simulatorEKNSt6size_tE"]], "cudaq::quantum_platform::launchvqe (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9launchVQEEKNSt6stringEPKvPN5cudaq8gradientEN5cudaq7spin_opERN5cudaq9optimizerEKiKNSt6size_tE"]], "cudaq::quantum_platform::list_platforms (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14list_platformsEv"]], "cudaq::quantum_platform::name (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform4nameEv"]], "cudaq::quantum_platform::num_qpus (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform8num_qpusEv"]], "cudaq::quantum_platform::onrandomseedset (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15onRandomSeedSetENSt6size_tE"]], "cudaq::quantum_platform::resetlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14resetLogStreamEv"]], "cudaq::quantum_platform::reset_exec_ctx (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform14reset_exec_ctxENSt6size_tE"]], "cudaq::quantum_platform::reset_noise (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform11reset_noiseEv"]], "cudaq::quantum_platform::setlogstream (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12setLogStreamERNSt7ostreamE"]], "cudaq::quantum_platform::settargetbackend (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform16setTargetBackendERKNSt6stringE"]], "cudaq::quantum_platform::set_current_qpu (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform15set_current_qpuEKNSt6size_tE"]], "cudaq::quantum_platform::set_exec_ctx (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform12set_exec_ctxEPN5cudaq16ExecutionContextENSt6size_tE"]], "cudaq::quantum_platform::set_noise (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9set_noiseEPK11noise_model"]], "cudaq::quantum_platform::set_shots (c++ function)": [[2, "_CPPv4N5cudaq16quantum_platform9set_shotsEi"]], "cudaq::quantum_platform::supports_conditional_feedback (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform29supports_conditional_feedbackEKNSt6size_tE"]], "cudaq::quantum_platform::supports_task_distribution (c++ function)": [[2, "_CPPv4NK5cudaq16quantum_platform26supports_task_distributionEv"]], "cudaq::qubit (c++ type)": [[2, "_CPPv4N5cudaq5qubitE"]], "cudaq::qudit (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq5quditE"]], "cudaq::qudit::qudit (c++ function)": [[2, "_CPPv4N5cudaq5qudit5quditEv"]], "cudaq::qvector (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq7qvectorE"]], "cudaq::qvector::back (c++ function)": [[2, "_CPPv4N5cudaq7qvector4backENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector4backEv"]], "cudaq::qvector::begin (c++ function)": [[2, "_CPPv4N5cudaq7qvector5beginEv"]], "cudaq::qvector::clear (c++ function)": [[2, "_CPPv4N5cudaq7qvector5clearEv"]], "cudaq::qvector::end (c++ function)": [[2, "_CPPv4N5cudaq7qvector3endEv"]], "cudaq::qvector::front (c++ function)": [[2, "_CPPv4N5cudaq7qvector5frontENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector5frontEv"]], "cudaq::qvector::operator= (c++ function)": [[2, "_CPPv4N5cudaq7qvectoraSERK7qvector"]], "cudaq::qvector::operator[] (c++ function)": [[2, "_CPPv4N5cudaq7qvectorixEKNSt6size_tE"]], "cudaq::qvector::qvector (c++ function)": [[2, "_CPPv4N5cudaq7qvector7qvectorENSt6size_tE"], [2, "_CPPv4N5cudaq7qvector7qvectorERK5state"], [2, "_CPPv4N5cudaq7qvector7qvectorERK7qvector"], [2, "_CPPv4N5cudaq7qvector7qvectorERKNSt6vectorI7complexEEb"], [2, "_CPPv4N5cudaq7qvector7qvectorERR7qvector"]], "cudaq::qvector::size (c++ function)": [[2, "_CPPv4NK5cudaq7qvector4sizeEv"]], "cudaq::qvector::slice (c++ function)": [[2, "_CPPv4N5cudaq7qvector5sliceENSt6size_tENSt6size_tE"]], "cudaq::qvector::value_type (c++ type)": [[2, "_CPPv4N5cudaq7qvector10value_typeE"]], "cudaq::qview (c++ class)": [[2, "_CPPv4I_NSt6size_tEEN5cudaq5qviewE"]], "cudaq::qview::value_type (c++ type)": [[2, "_CPPv4N5cudaq5qview10value_typeE"]], "cudaq::range (c++ function)": [[2, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType"], [2, "_CPPv4I00EN5cudaq5rangeENSt6vectorI11ElementTypeEE11ElementType11ElementType11ElementType"], [2, "_CPPv4N5cudaq5rangeENSt6size_tE"]], "cudaq::real (c++ type)": [[2, "_CPPv4N5cudaq4realE"]], "cudaq::registry (c++ type)": [[2, "_CPPv4N5cudaq8registryE"]], "cudaq::registry::registeredtype (c++ class)": [[2, "_CPPv4I0EN5cudaq8registry14RegisteredTypeE"]], "cudaq::sample (c++ function)": [[2, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRK14sample_optionsRR13QuantumKernelDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq6sampleE13sample_resultRR13QuantumKernelDpRR4Args"], [2, "_CPPv4I0Dp0EN5cudaq6sampleEDaNSt6size_tERR13QuantumKernelDpRR4Args"]], "cudaq::sample_options (c++ struct)": [[2, "_CPPv4N5cudaq14sample_optionsE"]], "cudaq::sample_result (c++ class)": [[2, "_CPPv4N5cudaq13sample_resultE"]], "cudaq::sample_result::append (c++ function)": [[2, "_CPPv4N5cudaq13sample_result6appendER15ExecutionResult"]], "cudaq::sample_result::begin (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5beginEv"], [2, "_CPPv4NK5cudaq13sample_result5beginEv"]], "cudaq::sample_result::cbegin (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result6cbeginEv"]], "cudaq::sample_result::cend (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result4cendEv"]], "cudaq::sample_result::clear (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5clearEv"]], "cudaq::sample_result::count (c++ function)": [[2, "_CPPv4N5cudaq13sample_result5countENSt11string_viewEKNSt11string_viewE"]], "cudaq::sample_result::deserialize (c++ function)": [[2, "_CPPv4N5cudaq13sample_result11deserializeERNSt6vectorINSt6size_tEEE"]], "cudaq::sample_result::dump (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result4dumpERNSt7ostreamE"], [2, "_CPPv4NK5cudaq13sample_result4dumpEv"]], "cudaq::sample_result::end (c++ function)": [[2, "_CPPv4N5cudaq13sample_result3endEv"], [2, "_CPPv4NK5cudaq13sample_result3endEv"]], "cudaq::sample_result::exp_val_z (c++ function)": [[2, "_CPPv4N5cudaq13sample_result9exp_val_zEKNSt11string_viewE"]], "cudaq::sample_result::expectation (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result11expectationEKNSt11string_viewE"]], "cudaq::sample_result::get_marginal (c++ function)": [[2, "_CPPv4N5cudaq13sample_result12get_marginalERKNSt6vectorINSt6size_tEEEKNSt11string_viewE"], [2, "_CPPv4N5cudaq13sample_result12get_marginalERRKNSt6vectorINSt6size_tEEEKNSt11string_viewE"]], "cudaq::sample_result::has_even_parity (c++ function)": [[2, "_CPPv4N5cudaq13sample_result15has_even_parityENSt11string_viewE"]], "cudaq::sample_result::has_expectation (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result15has_expectationEKNSt11string_viewE"]], "cudaq::sample_result::most_probable (c++ function)": [[2, "_CPPv4N5cudaq13sample_result13most_probableEKNSt11string_viewE"]], "cudaq::sample_result::operator+= (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultpLERK13sample_result"]], "cudaq::sample_result::operator= (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultaSER13sample_result"]], "cudaq::sample_result::operator== (c++ function)": [[2, "_CPPv4NK5cudaq13sample_resulteqERK13sample_result"]], "cudaq::sample_result::probability (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result11probabilityENSt11string_viewEKNSt11string_viewE"]], "cudaq::sample_result::register_names (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result14register_namesEv"]], "cudaq::sample_result::reorder (c++ function)": [[2, "_CPPv4N5cudaq13sample_result7reorderERKNSt6vectorINSt6size_tEEEKNSt11string_viewE"]], "cudaq::sample_result::sample_result (c++ function)": [[2, "_CPPv4N5cudaq13sample_result13sample_resultER15ExecutionResult"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERK13sample_result"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERNSt6vectorI15ExecutionResultEE"], [2, "_CPPv4N5cudaq13sample_result13sample_resultERR15ExecutionResult"], [2, "_CPPv4N5cudaq13sample_result13sample_resultEdRNSt6vectorI15ExecutionResultEE"], [2, "_CPPv4N5cudaq13sample_result13sample_resultEv"]], "cudaq::sample_result::serialize (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result9serializeEv"]], "cudaq::sample_result::size (c++ function)": [[2, "_CPPv4N5cudaq13sample_result4sizeEKNSt11string_viewE"]], "cudaq::sample_result::to_map (c++ function)": [[2, "_CPPv4NK5cudaq13sample_result6to_mapEKNSt11string_viewE"]], "cudaq::sample_result::~sample_result (c++ function)": [[2, "_CPPv4N5cudaq13sample_resultD0Ev"]], "cudaq::set_noise (c++ function)": [[2, "_CPPv4N5cudaq9set_noiseERKN5cudaq11noise_modelE"]], "cudaq::set_random_seed (c++ function)": [[2, "_CPPv4N5cudaq15set_random_seedENSt6size_tE"]], "cudaq::simulation_precision (c++ enum)": [[2, "_CPPv4N5cudaq20simulation_precisionE"]], "cudaq::simulation_precision::fp32 (c++ enumerator)": [[2, "_CPPv4N5cudaq20simulation_precision4fp32E"]], "cudaq::simulation_precision::fp64 (c++ enumerator)": [[2, "_CPPv4N5cudaq20simulation_precision4fp64E"]], "cudaq::spin_op (c++ class)": [[2, "_CPPv4N5cudaq7spin_opE"]], "cudaq::spin_op::begin (c++ function)": [[2, "_CPPv4N5cudaq7spin_op5beginEv"], [2, "_CPPv4NK5cudaq7spin_op5beginEv"]], "cudaq::spin_op::csr_spmatrix (c++ type)": [[2, "_CPPv4N5cudaq7spin_op12csr_spmatrixE"]], "cudaq::spin_op::distribute_terms (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op16distribute_termsENSt6size_tE"]], "cudaq::spin_op::dump (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op4dumpEv"]], "cudaq::spin_op::end (c++ function)": [[2, "_CPPv4N5cudaq7spin_op3endEv"], [2, "_CPPv4NK5cudaq7spin_op3endEv"]], "cudaq::spin_op::for_each_pauli (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op14for_each_pauliERRNSt8functionIFv5pauliNSt6size_tEEEE"]], "cudaq::spin_op::for_each_term (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op13for_each_termERRNSt8functionIFvR7spin_opEEE"]], "cudaq::spin_op::from_word (c++ function)": [[2, "_CPPv4N5cudaq7spin_op9from_wordERKNSt6stringE"]], "cudaq::spin_op::getdatarepresentation (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op21getDataRepresentationEv"]], "cudaq::spin_op::getdatatuple (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op12getDataTupleEv"]], "cudaq::spin_op::get_coefficient (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op15get_coefficientEv"]], "cudaq::spin_op::get_raw_data (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op12get_raw_dataEv"]], "cudaq::spin_op::is_identity (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op11is_identityEv"]], "cudaq::spin_op::iterator (c++ struct)": [[2, "_CPPv4I0EN5cudaq7spin_op8iteratorE"]], "cudaq::spin_op::num_qubits (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op10num_qubitsEv"]], "cudaq::spin_op::num_terms (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9num_termsEv"]], "cudaq::spin_op::operator*= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opmLEKNSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_opmLEKd"], [2, "_CPPv4N5cudaq7spin_opmLERK7spin_op"]], "cudaq::spin_op::operator+= (c++ function)": [[2, "_CPPv4N5cudaq7spin_oppLERK7spin_op"]], "cudaq::spin_op::operator-= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opmIERK7spin_op"]], "cudaq::spin_op::operator= (c++ function)": [[2, "_CPPv4N5cudaq7spin_opaSERK7spin_op"]], "cudaq::spin_op::operator== (c++ function)": [[2, "_CPPv4NK5cudaq7spin_opeqERK7spin_op"]], "cudaq::spin_op::random (c++ function)": [[2, "_CPPv4N5cudaq7spin_op6randomENSt6size_tENSt6size_tEj"]], "cudaq::spin_op::spin_op (c++ function)": [[2, "_CPPv4N5cudaq7spin_op7spin_opE5pauliKNSt6size_tENSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opENSt6size_tE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERK12spin_op_termRKNSt7complexIdEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERK7spin_op"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt13unordered_mapI12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt4pairIK12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorI12spin_op_termEERKNSt6vectorINSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERKNSt6vectorIdEENSt6size_tE"], [2, "_CPPv4N5cudaq7spin_op7spin_opERNSt4pairIK12spin_op_termNSt7complexIdEEEE"], [2, "_CPPv4N5cudaq7spin_op7spin_opEv"]], "cudaq::spin_op::spin_op_term (c++ type)": [[2, "_CPPv4N5cudaq7spin_op12spin_op_termE"]], "cudaq::spin_op::to_matrix (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9to_matrixEv"]], "cudaq::spin_op::to_sparse_matrix (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op16to_sparse_matrixEv"]], "cudaq::spin_op::to_string (c++ function)": [[2, "_CPPv4NK5cudaq7spin_op9to_stringEb"]], "cudaq::spin_op::~spin_op (c++ function)": [[2, "_CPPv4N5cudaq7spin_opD0Ev"]], "cudaq::state (c++ class)": [[2, "_CPPv4N5cudaq5stateE"]], "cudaq::state::amplitude (c++ function)": [[2, "_CPPv4N5cudaq5state9amplitudeERKNSt6vectorIiEE"]], "cudaq::state::amplitudes (c++ function)": [[2, "_CPPv4N5cudaq5state10amplitudesERKNSt6vectorINSt6vectorIiEEEE"]], "cudaq::state::dump (c++ function)": [[2, "_CPPv4NK5cudaq5state4dumpERNSt7ostreamE"], [2, "_CPPv4NK5cudaq5state4dumpEv"]], "cudaq::state::from_data (c++ function)": [[2, "_CPPv4N5cudaq5state9from_dataERK10state_data"]], "cudaq::state::get_num_qubits (c++ function)": [[2, "_CPPv4NK5cudaq5state14get_num_qubitsEv"]], "cudaq::state::get_num_tensors (c++ function)": [[2, "_CPPv4NK5cudaq5state15get_num_tensorsEv"]], "cudaq::state::get_precision (c++ function)": [[2, "_CPPv4NK5cudaq5state13get_precisionEv"]], "cudaq::state::get_tensor (c++ function)": [[2, "_CPPv4NK5cudaq5state10get_tensorENSt6size_tE"]], "cudaq::state::get_tensors (c++ function)": [[2, "_CPPv4NK5cudaq5state11get_tensorsEv"]], "cudaq::state::is_on_gpu (c++ function)": [[2, "_CPPv4NK5cudaq5state9is_on_gpuEv"]], "cudaq::state::operator() (c++ function)": [[2, "_CPPv4NK5cudaq5stateclENSt6size_tENSt6size_tE"], [2, "_CPPv4NK5cudaq5stateclERKNSt16initializer_listINSt6size_tEEENSt6size_tE"]], "cudaq::state::operator= (c++ function)": [[2, "_CPPv4N5cudaq5stateaSERR5state"]], "cudaq::state::operator[] (c++ function)": [[2, "_CPPv4NK5cudaq5stateixENSt6size_tE"]], "cudaq::state::overlap (c++ function)": [[2, "_CPPv4N5cudaq5state7overlapERK5state"]], "cudaq::state::state (c++ function)": [[2, "_CPPv4N5cudaq5state5stateEP15SimulationState"], [2, "_CPPv4N5cudaq5state5stateERK5state"]], "cudaq::state::to_host (c++ function)": [[2, "_CPPv4I0ENK5cudaq5state7to_hostEvPNSt7complexI10ScalarTypeEENSt6size_tE"]], "cudaq::state_data (c++ type)": [[2, "_CPPv4N5cudaq10state_dataE"]], "cudaq::tensor (c++ type)": [[2, "_CPPv4N5cudaq6tensorE"]], "cudaq::unset_noise (c++ function)": [[2, "_CPPv4N5cudaq11unset_noiseEv"]], "nvqir::mpssimulationstate (c++ class)": [[2, "_CPPv4N5nvqir18MPSSimulationStateE"]], "nvqir::tensornetsimulationstate (c++ class)": [[2, "_CPPv4N5nvqir24TensorNetSimulationStateE"]], "amplitudedampingchannel (class in cudaq)": [[3, "cudaq.AmplitudeDampingChannel"]], "asyncevolveresult (class in cudaq)": [[3, "cudaq.AsyncEvolveResult"]], "asyncobserveresult (class in cudaq)": [[3, "cudaq.AsyncObserveResult"]], "asyncsampleresult (class in cudaq)": [[3, "cudaq.AsyncSampleResult"]], "asyncstateresult (class in cudaq)": [[3, "cudaq.AsyncStateResult"]], "baseintegrator (class in cudaq.operator.integrator)": [[3, "cudaq.operator.integrator.BaseIntegrator"]], "bitflipchannel (class in cudaq)": [[3, "cudaq.BitFlipChannel"]], "cobyla (class in cudaq.optimizers)": [[3, "cudaq.optimizers.COBYLA"]], "centraldifference (class in cudaq.gradients)": [[3, "cudaq.gradients.CentralDifference"]], "complexmatrix (class in cudaq)": [[3, "cudaq.ComplexMatrix"]], "cudensitymatstate (class in cudaq.operator.cudm_state)": [[3, "cudaq.operator.cudm_state.CuDensityMatState"]], "depolarizationchannel (class in cudaq)": [[3, "cudaq.DepolarizationChannel"]], "elementaryoperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ElementaryOperator"]], "evolveresult (class in cudaq)": [[3, "cudaq.EvolveResult"]], "forwarddifference (class in cudaq.gradients)": [[3, "cudaq.gradients.ForwardDifference"]], "gradientdescent (class in cudaq.optimizers)": [[3, "cudaq.optimizers.GradientDescent"]], "kernel (in module cudaq)": [[3, "cudaq.Kernel"]], "krauschannel (class in cudaq)": [[3, "cudaq.KrausChannel"]], "krausoperator (class in cudaq)": [[3, "cudaq.KrausOperator"]], "lbfgs (class in cudaq.optimizers)": [[3, "cudaq.optimizers.LBFGS"]], "neldermead (class in cudaq.optimizers)": [[3, "cudaq.optimizers.NelderMead"]], "noisemodel (class in cudaq)": [[3, "cudaq.NoiseModel"]], "observeresult (class in cudaq)": [[3, "cudaq.ObserveResult"]], "operatorsum (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.OperatorSum"]], "optimizationresult (class in cudaq)": [[3, "cudaq.OptimizationResult"]], "parametershift (class in cudaq.gradients)": [[3, "cudaq.gradients.ParameterShift"]], "phaseflipchannel (class in cudaq)": [[3, "cudaq.PhaseFlipChannel"]], "productoperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ProductOperator"]], "pykernel (class in cudaq)": [[3, "cudaq.PyKernel"]], "pykerneldecorator (class in cudaq)": [[3, "cudaq.PyKernelDecorator"]], "quakevalue (class in cudaq)": [[3, "cudaq.QuakeValue"]], "rydberghamiltonian (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.RydbergHamiltonian"]], "sampleresult (class in cudaq)": [[3, "cudaq.SampleResult"]], "scalaroperator (class in cudaq.operator.expressions)": [[3, "cudaq.operator.expressions.ScalarOperator"]], "schedule (class in cudaq)": [[3, "cudaq.Schedule"]], "simulationprecision (class in cudaq)": [[3, "cudaq.SimulationPrecision"]], "spinoperator (class in cudaq)": [[3, "cudaq.SpinOperator"]], "spinoperator (class in cudaq.operator.definitions)": [[3, "cudaq.operator.definitions.SpinOperator"]], "state (class in cudaq)": [[3, "cudaq.State"]], "target (class in cudaq)": [[3, "cudaq.Target"]], "tensor (class in cudaq)": [[3, "cudaq.Tensor"]], "__add__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__add__"]], "__call__() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.__call__"]], "__getitem__() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.__getitem__"]], "__getitem__() (cudaq.krauschannel method)": [[3, "cudaq.KrausChannel.__getitem__"]], "__getitem__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__getitem__"]], "__getitem__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__getitem__"]], "__init__() (cudaq.amplitudedampingchannel method)": [[3, "cudaq.AmplitudeDampingChannel.__init__"]], "__init__() (cudaq.bitflipchannel method)": [[3, "cudaq.BitFlipChannel.__init__"]], "__init__() (cudaq.depolarizationchannel method)": [[3, "cudaq.DepolarizationChannel.__init__"]], "__init__() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.__init__"]], "__init__() (cudaq.phaseflipchannel method)": [[3, "cudaq.PhaseFlipChannel.__init__"]], "__init__() (cudaq.operator.expressions.rydberghamiltonian method)": [[3, "cudaq.operator.expressions.RydbergHamiltonian.__init__"]], "__iter__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__iter__"]], "__len__() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.__len__"]], "__mul__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__mul__"]], "__neg__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__neg__"]], "__radd__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__radd__"]], "__rmul__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__rmul__"]], "__rsub__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__rsub__"]], "__str__() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.__str__"]], "__str__() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.__str__"]], "__sub__() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.__sub__"]], "add_all_qubit_channel() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.add_all_qubit_channel"]], "add_channel() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.add_channel"]], "all_gather() (in module cudaq.mpi)": [[3, "cudaq.mpi.all_gather"]], "amplitude() (cudaq.state method)": [[3, "cudaq.State.amplitude"]], "amplitudes() (cudaq.state method)": [[3, "cudaq.State.amplitudes"]], "append() (cudaq.krauschannel method)": [[3, "cudaq.KrausChannel.append"]], "argument_count (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.argument_count"]], "arguments (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.arguments"]], "broadcast() (in module cudaq.mpi)": [[3, "cudaq.mpi.broadcast"]], "clear() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.clear"]], "col_count (cudaq.krausoperator property)": [[3, "cudaq.KrausOperator.col_count"]], "compile() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.compile"]], "compute() (cudaq.gradients.centraldifference method)": [[3, "cudaq.gradients.CentralDifference.compute"]], "compute() (cudaq.gradients.forwarddifference method)": [[3, "cudaq.gradients.ForwardDifference.compute"]], "compute() (cudaq.gradients.parametershift method)": [[3, "cudaq.gradients.ParameterShift.compute"]], "count() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.count"]], "counts() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.counts"]], "cudaq": [[3, "module-cudaq"]], "define() (cudaq.operator.expressions.elementaryoperator class method)": [[3, "cudaq.operator.expressions.ElementaryOperator.define"]], "description (cudaq.target property)": [[3, "cudaq.Target.description"]], "deserialize() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.deserialize"]], "draw() (in module cudaq)": [[3, "cudaq.draw"]], "dump() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.dump"]], "dump() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.dump"]], "dump() (cudaq.state method)": [[3, "cudaq.State.dump"]], "evolve() (in module cudaq)": [[3, "cudaq.evolve"]], "evolve_async() (in module cudaq)": [[3, "cudaq.evolve_async"]], "expectation() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.expectation"]], "expectation() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.expectation"]], "expectation_values() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.expectation_values"]], "expectation_z() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.expectation_z"]], "expectation_z() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.expectation_z"]], "extract_c_function_pointer() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.extract_c_function_pointer"]], "final_expectation_values() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.final_expectation_values"]], "final_state() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.final_state"]], "finalize() (in module cudaq.mpi)": [[3, "cudaq.mpi.finalize"]], "from_data() (cudaq.state static method)": [[3, "cudaq.State.from_data"]], "from_json() (cudaq.pykerneldecorator static method)": [[3, "cudaq.PyKernelDecorator.from_json"]], "from_json() (cudaq.gradients.centraldifference static method)": [[3, "cudaq.gradients.CentralDifference.from_json"]], "from_json() (cudaq.gradients.forwarddifference static method)": [[3, "cudaq.gradients.ForwardDifference.from_json"]], "from_json() (cudaq.gradients.parametershift static method)": [[3, "cudaq.gradients.ParameterShift.from_json"]], "from_json() (cudaq.optimizers.cobyla static method)": [[3, "cudaq.optimizers.COBYLA.from_json"]], "from_json() (cudaq.optimizers.gradientdescent static method)": [[3, "cudaq.optimizers.GradientDescent.from_json"]], "from_json() (cudaq.optimizers.lbfgs static method)": [[3, "cudaq.optimizers.LBFGS.from_json"]], "from_json() (cudaq.optimizers.neldermead static method)": [[3, "cudaq.optimizers.NelderMead.from_json"]], "get() (cudaq.asyncevolveresult method)": [[3, "cudaq.AsyncEvolveResult.get"]], "get() (cudaq.asyncobserveresult method)": [[3, "cudaq.AsyncObserveResult.get"]], "get() (cudaq.asyncsampleresult method)": [[3, "cudaq.AsyncSampleResult.get"]], "get() (cudaq.asyncstateresult method)": [[3, "cudaq.AsyncStateResult.get"]], "gettensor() (cudaq.state method)": [[3, "cudaq.State.getTensor"]], "gettensors() (cudaq.state method)": [[3, "cudaq.State.getTensors"]], "get_channels() (cudaq.noisemodel method)": [[3, "cudaq.NoiseModel.get_channels"]], "get_marginal_counts() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_marginal_counts"]], "get_precision() (cudaq.target method)": [[3, "cudaq.Target.get_precision"]], "get_register_counts() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_register_counts"]], "get_sequential_data() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.get_sequential_data"]], "get_spin() (cudaq.observeresult method)": [[3, "cudaq.ObserveResult.get_spin"]], "get_state() (in module cudaq)": [[3, "cudaq.get_state"]], "get_state_async() (in module cudaq)": [[3, "cudaq.get_state_async"]], "get_target() (in module cudaq)": [[3, "cudaq.get_target"]], "get_targets() (in module cudaq)": [[3, "cudaq.get_targets"]], "gradient (class in cudaq.gradients)": [[3, "cudaq.gradients.gradient"]], "has_target() (in module cudaq)": [[3, "cudaq.has_target"]], "initial_parameters (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.initial_parameters"]], "initial_parameters (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.initial_parameters"]], "initial_parameters (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.initial_parameters"]], "initial_parameters (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.initial_parameters"]], "initialize() (in module cudaq.mpi)": [[3, "cudaq.mpi.initialize"]], "initialize_cudaq() (in module cudaq)": [[3, "cudaq.initialize_cudaq"]], "intermediate_states() (cudaq.evolveresult method)": [[3, "cudaq.EvolveResult.intermediate_states"]], "is_emulated() (cudaq.target method)": [[3, "cudaq.Target.is_emulated"]], "is_initialized() (in module cudaq.mpi)": [[3, "cudaq.mpi.is_initialized"]], "is_on_gpu() (cudaq.state method)": [[3, "cudaq.State.is_on_gpu"]], "is_remote() (cudaq.target method)": [[3, "cudaq.Target.is_remote"]], "items() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.items"]], "kernel() (in module cudaq)": [[3, "cudaq.kernel"]], "lower_bounds (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.lower_bounds"]], "lower_bounds (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.lower_bounds"]], "lower_bounds (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.lower_bounds"]], "lower_bounds (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.lower_bounds"]], "make_kernel() (in module cudaq)": [[3, "cudaq.make_kernel"]], "max_iterations (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.max_iterations"]], "max_iterations (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.max_iterations"]], "max_iterations (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.max_iterations"]], "max_iterations (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.max_iterations"]], "merge_kernel() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.merge_kernel"]], "minimal_eigenvalue() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.minimal_eigenvalue"]], "module": [[3, "module-cudaq"]], "most_probable() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.most_probable"]], "name (cudaq.pykernel attribute)": [[3, "cudaq.PyKernel.name"]], "name (cudaq.simulationprecision property)": [[3, "cudaq.SimulationPrecision.name"]], "name (cudaq.target property)": [[3, "cudaq.Target.name"]], "num_available_gpus() (in module cudaq)": [[3, "cudaq.num_available_gpus"]], "num_columns() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.num_columns"]], "num_qpus() (cudaq.target method)": [[3, "cudaq.Target.num_qpus"]], "num_qubits() (cudaq.state method)": [[3, "cudaq.State.num_qubits"]], "num_ranks() (in module cudaq.mpi)": [[3, "cudaq.mpi.num_ranks"]], "num_rows() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.num_rows"]], "observe() (in module cudaq)": [[3, "cudaq.observe"]], "observe_async() (in module cudaq)": [[3, "cudaq.observe_async"]], "optimize() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.optimize"]], "optimize() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.optimize"]], "optimize() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.optimize"]], "optimize() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.optimize"]], "optimizer (class in cudaq.optimizers)": [[3, "cudaq.optimizers.optimizer"]], "overlap() (cudaq.state method)": [[3, "cudaq.State.overlap"]], "platform (cudaq.target property)": [[3, "cudaq.Target.platform"]], "probability() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.probability"]], "qreg (in module cudaq)": [[3, "cudaq.qreg"]], "qubit (class in cudaq)": [[3, "cudaq.qubit"]], "qvector (class in cudaq)": [[3, "cudaq.qvector"]], "rank() (in module cudaq.mpi)": [[3, "cudaq.mpi.rank"]], "register_names (cudaq.sampleresult attribute)": [[3, "cudaq.SampleResult.register_names"]], "requires_gradients() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.requires_gradients"]], "requires_gradients() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.requires_gradients"]], "requires_gradients() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.requires_gradients"]], "requires_gradients() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.requires_gradients"]], "reset_target() (in module cudaq)": [[3, "cudaq.reset_target"]], "row_count (cudaq.krausoperator property)": [[3, "cudaq.KrausOperator.row_count"]], "sample() (in module cudaq)": [[3, "cudaq.sample"]], "sample() (in module cudaq.orca)": [[3, "cudaq.orca.sample"]], "sample_async() (in module cudaq)": [[3, "cudaq.sample_async"]], "serialize() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.serialize"]], "set_noise() (in module cudaq)": [[3, "cudaq.set_noise"]], "set_random_seed() (in module cudaq)": [[3, "cudaq.set_random_seed"]], "set_target() (in module cudaq)": [[3, "cudaq.set_target"]], "simulator (cudaq.target property)": [[3, "cudaq.Target.simulator"]], "slice() (cudaq.quakevalue method)": [[3, "cudaq.QuakeValue.slice"]], "spin.i() (in module cudaq)": [[3, "cudaq.spin.i"]], "spin.x() (in module cudaq)": [[3, "cudaq.spin.x"]], "spin.y() (in module cudaq)": [[3, "cudaq.spin.y"]], "spin.z() (in module cudaq)": [[3, "cudaq.spin.z"]], "synthesize_callable_arguments() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.synthesize_callable_arguments"]], "to_cupy_array() (in module cudaq.operator.cudm_state)": [[3, "cudaq.operator.cudm_state.to_cupy_array"]], "to_json() (cudaq.pykerneldecorator method)": [[3, "cudaq.PyKernelDecorator.to_json"]], "to_json() (cudaq.gradients.centraldifference method)": [[3, "cudaq.gradients.CentralDifference.to_json"]], "to_json() (cudaq.gradients.forwarddifference method)": [[3, "cudaq.gradients.ForwardDifference.to_json"]], "to_json() (cudaq.gradients.parametershift method)": [[3, "cudaq.gradients.ParameterShift.to_json"]], "to_json() (cudaq.optimizers.cobyla method)": [[3, "cudaq.optimizers.COBYLA.to_json"]], "to_json() (cudaq.optimizers.gradientdescent method)": [[3, "cudaq.optimizers.GradientDescent.to_json"]], "to_json() (cudaq.optimizers.lbfgs method)": [[3, "cudaq.optimizers.LBFGS.to_json"]], "to_json() (cudaq.optimizers.neldermead method)": [[3, "cudaq.optimizers.NelderMead.to_json"]], "to_numpy() (cudaq.complexmatrix method)": [[3, "cudaq.ComplexMatrix.to_numpy"]], "translate() (in module cudaq)": [[3, "cudaq.translate"]], "type_to_str() (cudaq.pykerneldecorator static method)": [[3, "cudaq.PyKernelDecorator.type_to_str"]], "unset_noise() (in module cudaq)": [[3, "cudaq.unset_noise"]], "upper_bounds (cudaq.optimizers.cobyla property)": [[3, "cudaq.optimizers.COBYLA.upper_bounds"]], "upper_bounds (cudaq.optimizers.gradientdescent property)": [[3, "cudaq.optimizers.GradientDescent.upper_bounds"]], "upper_bounds (cudaq.optimizers.lbfgs property)": [[3, "cudaq.optimizers.LBFGS.upper_bounds"]], "upper_bounds (cudaq.optimizers.neldermead property)": [[3, "cudaq.optimizers.NelderMead.upper_bounds"]], "values() (cudaq.sampleresult method)": [[3, "cudaq.SampleResult.values"]], "vqe() (in module cudaq)": [[3, "cudaq.vqe"]]}}) \ No newline at end of file diff --git a/pr-2491/sphinx/examples/python/visualization.ipynb b/pr-2491/sphinx/examples/python/visualization.ipynb index 76347fe487..213d889f97 100644 --- a/pr-2491/sphinx/examples/python/visualization.ipynb +++ b/pr-2491/sphinx/examples/python/visualization.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": { "scrolled": true }, @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -92,14 +92,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "rng = np.random.default_rng(seed=11)\n", "blochSphereList = []\n", "for _ in range(4):\n", - " angleList = rng.random(3) * 2 * np.pi\n", + " angleList = rng.random(4) * 2 * np.pi\n", " sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList))\n", " blochSphereList.append(sph)\n" ] @@ -113,12 +113,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zHTq1KNFduquq1XRP9/R0T8909/CP5YFYLgmC4GVBgiB4IoE97G1P5IEXEntYgKcFCAI8kReCAgsS/O2I3ZkW03palBZZKkVVisiIcC3sf3AzS4/I0CKrssoeUMiszEh3cw8Ps2ff9773EUophYSEhISEhIQEg/K4ByAhISEhISHxZEGSAwkJCQkJCYkmSHIgISEhISEh0QRJDiQkJCQkJCSaIMmBhISEhISERBMkOZCQkJCQkJBogiQHEhISEhISEk2Q5EBCQkJCQkKiCZIcSEhISEhISDRBkgMJCQkJCQmJJkhyICEhISEhIdEESQ4kJCQkJCQkmiDJgYSEhISEhEQTJDmQkJCQkJCQaIIkBxISEhISEhJNkORAQkJCQkJCogmSHEhISEhISEg0QZIDCQkJCQkJiSZIciAhIdGEO3fu4E//9E9x/vx5FAoFzMzM4M0338R/+A//AY7jdP3bf/bP/hkIIfiH//AfHtBoJSQkJgFCKaWPexASEhIHg3/zb/4N/u2//be4ffs2Tpw4se/3//t//2/88R//MWq1Wtu/P3fuHP7qr/4KZ86cafv7//7f/zv+0T/6RygUCtjc3IRlWeMcvoSExAFBRg4kJCQAAF999RX+yT/5J6jVaigWi/h3/+7f4aOPPsIvfvEL/Mt/+S8BANeuXcPf+3t/D/V6ve0x/u7f/bswTRO2beMXv/jFQQ5fQkJijJDkQEJCAgDwJ3/yJ3BdF5qm4f/9v/+HP/uzP8Pbb7+Nn//85/jLv/xL/Pt//+8BpAThz//8z9seo1Ao4O/8nb8DAPhf/+t/HdjYJSQkxgtJDiQkJPDpp5/iN7/5DQDgX/yLf4G3335732v+9E//FBcuXAAA/MVf/AXCMGx7rL//9/8+gDRFIbOWEhKHE5IcSEhI4H/8j/8hvv/n//yft32Noij4p//0nwIAqtUqfvWrX7V93R/+4R+CEIK1tTV89tlnYx+rhITE5CHJgYSEBH77298CSNMCP/zhDzu+7r333hPff/jhh21fc+TIEbz55psAZGpBQuKwQpIDCQkJXL58GQBw5swZaJrW8XXnz5/f9zftwFMLkhxISBxOSHIgIfGMw/M8bG5uAgCOHTvW9bXT09MoFAoAgHv37nV83R/90R8BAL799lvcvn17TCOVkJA4KEhyICHxjCNbllgsFnu+npODRqPR8TUvvfQSTp06BUBGDyQkDiMkOZCQeMbheZ743jCMnq83TRMA4Lpu19fJ1IKExOGFJAcSEs84si6GQRD0fL3v+wCAXC7X9XU8tfC3f/u3qFarww9QQkLiwCHJgYTEM45SqSS+75Yq4LBtG0DvFMRbb70FQgiiKMLnn38+2iAlJCQOFJIcSEg847AsC7OzswCA+/fvd33tzs6OIAfHjx/v+trf/va3oJTCMAy89dZb4xmshITEgUCSAwkJCVy8eBEAcOPGDURR1PF1V65cEd9zt8RO+J//838CAD744IOm6ISEhMSTD0kOJCQk8O677wJIUwZffPFFx9f9zd/8jfj+Jz/5Sddj/u///b8B7AkTJSQkDg8kOZCQkMA/+Af/QHz/n//zf277miRJ8F/+y38BAExNTeGDDz7oeLyvvvoKd+/eBSDJgYTEYYQkBxISEvjRj36En/70pwCA//Sf/hM+/vjjfa/58z//c+GK+Cd/8ifQdb3j8XhK4bXXXutprCQhIfHkobNPqoSExDOFv/iLv8BPfvITuK6LP/iDP8Cf/dmf4YMPPoDruviv//W/4i//8i8BAOfOncOf/umfdj0W9zbg5YwSEhKHC5IcSEhIAEh3+f/tv/03/PEf/zFqtRr+7M/+bN9rzp07h7/6q7/qKjC8d+8evvrqKwAypSAhcVghyYGExDOE999/H0CqGWiHP/zDP8Q333yDv/iLv8Bf/dVf4f79+zAMA2fOnME//sf/GP/6X/9r5PP5rufgUYPjx4/jtddeG+fwJSQkDgiEUkof9yAkJCSeHvzBH/wB/r//7//Dv/pX/wr/8T/+x8c9HAkJiSEgBYkSEhJjQ61Ww69//WsAMqUgIXGYIcmBhITE2PB//s//QRiGKJfLIoUhISFx+CA1BxISEmPDL3/5S1QqFfzRH/1RXx0eJSQknkxIzYGEhISEhIREE2RaQUJCQkJCQqIJkhxISEhISEhINEFqDiQkJMYG27YRhiEURYGqqjBNE5ompxkJicMG+amVkHgGkCQJkihCHMdIkgSU/eO/AwBK6d4//jP+Gv4zRQEBQAgBUdLAo8K+NmwbnucB7PdQFCiKgvm5OVj5vCQJEhKHCFKQKCFxSJEkCaIwRByG6aIfRYIAUEIQRxGSOAZNEiRxPNK5KND1GA3bhuf7AICcZYFSiiiOEUURVEVBpVyGoqpQVBWqqkJRFFAAiqZBU1Voup5+r2nQdB26rHSQkHiskORAQuIJBt/xR2GIKAgQs+/jKEIcRej18eW/TygFGWEc3chB3bbhM2JQLBRgmaYY+26thjhJYBoGSsUixGi7jJsCACEpSdB16Ka591WmKSQkDgSSHEhIPEZQShHHMcIggO95AA/386hAFLX7IyTsa7vjUUpTUsG+UkoR81QC+z3AFmGeRuDHZSQiyRybsp+jJa0AAGEYwnZdEACFfB6mYQDsd4QQRFEE27ZBAeTzeeQtCwpLSSiEQFEUcaym68icuxUKizTohrH3zzRh5XL93XQJCYmekBRcQmLCoJQiYuH+KIoQhiF814XveQg8D4Hvg8ZxuqiyhVhVVahM1KeqKgCW5weLJmQWf64H4P9vOTmyy2uSJOI8aLMod72O9ABNu3/bthFTCss0QQhBEIZN5wYhACHwfR9hGCKJ45QMZBd9QpqIQutXSghURQFl52s0GrAbDTQaDTTqddRtG4HvI18ooFgqoTI9jenZWczPz2N2fh7T09PQdX2ga5WQeNYhIwcSEmMGpRSe58FxHERRhMDzEEYR4iAQGgEOAgCEQFVV0CRBGEUIowg0jhFxEsAWfr7LV5jQT1UUaJoGPRNmz36YFbY757t0Ti4oIWkNM1u4+Ri6fSWEiLQCnzJc34dt2yAAKuVyupCzc2dJCKUUO7u7SJIExXweiqo2XRM7KCi7H67vw240YLsuXMeB4ziwM6kLANB1HcV8HsVSCaViEYZpwnMcNBxHkIc4SZAgFVXmikWUy2VMz81hbm4OJ0+exNGjR8fwbktIPJ2Q5EBCYkyglMJxHOzu7sJ3HASehygI0gWdEQCiKGJBJISIBTKO4yZ9QBLHiPnXJEnTAiy6QNg/AGLHbZkmcpYFXdebft9xrMNcXyYqQSlFdXcXcZIgn8shnwnp80U+C65LsEwTxUKh6ThJkiBMEqw+eIA7Kyt4tLUFAFAVBbl8HoV8HlYuB8uykM/lkMvn20YCVE6aWNQlDEO4ngfbtuEy0tBoNFBn4snlY8fwk5/+FGfPnu15vyQknjVIciAhMSKiKEKtWkV1exuB6yKOIhBFgWkYUBRF7P6jKNof9m8BV/NnUwo8qqAQIioA4iRBHMfwfR8x26VTSmHqOkzThMFIQjfwRbzfCSBLDjzfR8O2oRCC6akpcS4uJiQt00oQhqjV6/tebzsObt++jTsrK/CDAPNsVz83Pw/TNMX4uG4izlx7wr7GcdzzGjRVTSsh2P18+PAhrl69iu3tbVRmZvD6m2/ilVdfhWlZfd4NCYmnG5IcSEgMgTiK4Nk2qtvbqO3uIoljRHGMhFLomgaVkYJ2IGzh19qQgNYFnROLOEnaVhtQShGEITzPQ8DFiyxSYZkmTNMUmoVOGJQcZKMGhXweOb6gdtExUEqxU60ioRSFYhHbW1u4fesWNh4+hKHreP7553Hy5EmUSqUuA6CCJLSC3yNOFgRx6PQeEAJNVbG7u4tbt25h8+FDFEolXLhwARdfegnl6WlY+bzwcJCQeNYgyYGERJ+IggCe48Ct11GtVmHbttjJU2Bvx575G0VVobP6fV3TRI1/N4iKAyY07PcjGscxPN+H5/t7ZkYATF2HxcoBu0UTep2FkwMRNVAUTFcqTVqDbrGKR1tbuL2ygvW1NURhiJmZGZw8eRLHjh6FOkB5YsB8HaIwTKMxHe4PjzgkLG0TM1Fou0iDbdtYX1vD1tYWTNPE6VOncPbcOUxNT6NYKqFYqUDpQbIkJJ4mSHIgIdEFSZLAazTg1uuwGw3sVKuwHUdEBVRNE7l+BRC1+ZwMtCUCHT5yCS8ZZIs6ZbthZdCqAkoRBAE830+jCex8XJtgmWb7cbHURMfjsmuu7u4iimMRNWinMche08b6Om7fvo3V9XUoioKl5WVcPH8eU1NTPa8jYou5qPbg2oxMKoWfp8NB9kUzuM6BE4aIm0QRAs/zsLa+jq3NTSiKguWlJZw+fRqFYhEzc3OYm59HvljsOm4JiacBkhxISLSAUorAcVDf3YVdq8EPAgRhmEYKmDDQ0HUUi8WUGHBnvyHNebJ+BNkxNKn5gabFsG2Kgf88UyoYMl2CiCYAIJQin88jx8oP92kP+ILKvlLmq0DZ4lyr1QBCMM1305kxksxYHty/j2++/x6ubYsoQbFUAlEUVEqlJlFhkiR7egp2njhjupQ9rkJIqs1QFGg8EsOurR1J2HevWsgC93UIwhC+7yMIAtQbDayureHhw4fI53I4c/YsDPYe54tFzM3PY3ZhAXkmjpSCRomnDZIcSEgw+K6L2s4O7FoNnuft7UqTBPVGA4QQGIaBmelp5C1r5AWhHSnI/q7rRzOzcPPXE0o7jolSCj8I4HkewjgGKIWmaSgWCtCy4XJ2zNajcIdEx3Xheh50XUe5WGxKKXC4rouvv/4aa+vrOLq8jBfOn8c0ixLUGw14vp86HmraHhFIkrS8kldzZKoxNJaO0VUVCtNzkE5RDkYSYu6nMAKCMMSjR4/w+eefA4qCM2fPCvdHXn6aLxRQmZrCzNwcLMsS/yQkDjskOZB4ZkEphe/7qFeraFSr8Fy3aUHhvgCu76eLk6ZhqlzuKfDreV7sCQ0pWwizyxgPpw+cTtj3g/YfbdfzYDuOOFc+l0MuS3ZaTYqwRw6EX0GhkLoh8tez16ysrODbb76Bqml47Qc/wNEjRwB2vbxiod5oQNc0FPL5pnOJPgtMnKl1S8twDwX2dR8R4MSrnxvXA7bj4KOPPoJt23jt9deRy+WE7oE7TyqqilK5jMr0NKamp1EqlZDL5aSgUeLQQpIDiWcOQRCgXquhXq3Cs+2mhVDTNBi6DtMwEEYR6rYNyioQKqVS18melyuGUSRC5BH7Pg7DNCUBpItZxpiImxrxnXP257z7ocpsi8Vr+1x0OPngOXqOOI5hOw6CMASlFJqqolAoCEOlVh0BBRD4PnbrdQDA9NRU0xgajQa++vJLPNrcxPMnTuDll16CoeupGyRLy4A5RTZcF7quY2ZqKiUCjBQMs9NvV8VB2f3l0YVsembYWEIQhvjkk0+wubmJH/7whzh69GhqWMVSEfz9DoMAmmmiNDWFmZkZTDOiIPtBSBw2SHIg8UwgjmO4rovdnR249Toi3xeGQoauwzAMGIYBlS14NnPbo0kCXdeRt6x0Acgs+nH2/3G8Zw2ccSMUUYFMCV62t4FYrHiYnFcpsL8RoHs2yMIAqcVmWNM0mIYB0zDENe39OW06Dz+v7/vpdbI0Ro4ZDWW1CHys9Xodnu/D0HWUikVxrOvXr+PSpUvI5XJ47bXXMDMzk+buw7DJG0FhxMt2HKiKso9gdERm7DxKwMfG0y8kc12UO0GynwuL6cxxhFEU+3k/UZo4SfDll1/izp07ePHFF3Hu3Dlx3iiOEYYhgiCA63kIggCEEOQKBVRmZjAzM4OpqSnkZP8HiUMCSQ4knlpwG2PbttHY3UXgukjCEIQQmEy1nxWTBVGERqOBre1tOK6LOI6hahoMvutjC7+CPeGfIAEMfFevsdy4ytoUE9Y/AEBzLwRKQVlpXcJC1FyRny1l5N/z6wLalx7yUDqlaX8GI2OKZDIClN2hc1JgOw68IAAohaooqRbBMISZEQWwtb2NJElSu2LDQLVaxZdffYXdnR2cOn0ap06fFqWC4v4wMyjTMMTueYf5QpRKJZitTodtUhq90LFSIQN+D7uZUHFip7RLq2SIxeVLl3Dp8mWcPHECr/7gB/sITpIk8IMAjuPAcV1EUQQzl0OpUsHU9DRmZ2dR6hGFkpB43JDkQOKpQxiGqR9/vQ7XcRB5XhoB0DRYliWcC6MoguO6cFwXtusi8Dz4YYiEhapN00zz6iw0z4VxKgvz83C4+HmmSRIHF8f1+zHbV6HQ+vuMViH7lac0/DBEGAR7boyKkhKR9I+BTKSERxi4UVIQBGg4ThrhoGkzpXw+D4WkDZWqu7sghKBUKuHa1au4euUKCuUyLly4gEI+v1cpQYggIrqmNXVxBFJRoh8E+2yXh0U/5CB7/zoZIzWBa0FarahZdOLO3bv44osvMDc/j7feeqtjY6coiuC6LhrMslnTdRRKJZSnpjA9PY2ZmZmmCI+ExJMCSQ4kngokSQLHceCyZj2h4yAKAhAAlmUJwZ3jurDZjs73fRBCRCrB8zwRKZiqVGDlck1WxoOCInVSHOQD1steeZDjBEGQ/mPh7pARBpG+wF7kgGstDF1HxMiBpmkAISjk82mfAteFbdu4dOkSbNvG8ydO4MTzz4sdsJ6JTvDywnbggkjDMFAek2fAIAQhZk6Ww4Iw/cfDjQ387ne/Qz6fx9vvvLOXMujgrRAEAeq2Ddu2kQAoFIsolEqoVCqYmZlBpVIZekwSEuOGJAcShxpxHIuGOhFrgZxEUboz1nXElArS4HleWifPc/VsF22ZZipsY+VppWJxLAKyaICIQfZ6RG+CPgV6Is+e0SW0hud5Pj6IItE+OQgChMxlkL+SpyXiKIIXhlCQagVcx8HDhw+xvbWFSqWCcy+8gEIuJ3QOhq53DJO36gCiOE77LDCHxXbXyd8f/l4B2KeByF5v3Kb8shNEtGUMU1+tVsOHH34IwzTxwfvv7yOR7XpXJEkC27axW6/DDwLkWHfJYrmMo0ePolAoSN8EiccOSQ4kDiUipg9wXTe1NW40oCLd1YXMHdBxXSE244uNqqp73f1yOei6nu6IWWlfuVQauVQRgOikmBUcAi2LW8v3nfonTAJZ8WPIejP4vi9MgPwgSEWcvo/q7i7ura2BAliYncXRI0dQKpVQzOdF1GXQc/Oqh3Kx2DP3zttT846L2f9z8kC51oKTpMz9bhV38v9HUdQ3AeuGarWKX/3ylzh15gxeeemltPNm9v3OlKtyPQhf/D3Pw26tBttxkM+kG+bm5pBjwlAJiccBWV8jcagQRRHq9Tpc1wUAOLUanFpNmPzwjogKIdAUBYqqImeaMBkhMLmJTeZ4juOAAiiwNMLAaF34+1DAkzbfj2sZ4OWLQvTIwuj8K7dlphkLYm7wpLNOiFEYomHbaTlnrYbpfB5hkmC6UoGmKHAcB4HvI29ZaTvllvuaHQtfrHnkAAAMXRfCRa3NPc82WOKaik7gZAEs0tBKILjQkINrIzRmwgT033yqHaampvDSyy/jm2++weLCAhYWFprG1gqSIQqWZcE0TYRhiM3tbWxtbAidQrlcRrlcRj6flyRB4sAhyYHEoUAYhiJSAKQufNsbGwhcF4qmpVEBQqAZRlqJYFnI5XKwDCPdybUBTRI0Gg1QALqm7SMObdFCBNphGN1APwG8VsOkJLPIx8zWOc5UQvTjsEiAvYoKACAEYRCAKAqCIMD9u3cxOzWF50+cwBdffYXFubmUQFEKVddTrUejAd/3UcjnUSgUkGf3sVvPBU3TEARBauPcwVFQEBneZTHToZL3RuD3oZPTJADhE8EjDdnvE2Cv+gT7Izr94uyZM9h4+BCff/45/n9/5+/AYPcg+ywIcWOGkIGdzzQMLC0soOE4qO/sIMqkfizLQrFYlCRB4kAhyYHEE40gCNBoNOB5HgDAcRxUd3bgNxowNA2GacLUdeSYy98grnS26yJiu9diobD/BX0QgVZ08vfv+XedFjakoXJk2hGHzGeh34ygmtlNK9nwPC/dU5Q0hcDr8xUF6w8e4Mb16zj+3HM4c/o06o0GVEJQLpVgWdaeNiGO4XkeEkrRaDRQq9WgKIogCjnLgqooYqHl2geejkh42WO7cRMCMMfE1ivl4XmaIQu8H0O2zTXYa6IOhI1Xh/BGWZqui7ENRBgIwRs//CH++he/wOdffIF33nln30toC2FTmLCRH1dRFJSLRViGgVq9jka1ijiOkc/nRcSsWCxKTYLEgUCSA4knElEUYXd3F77vI2E7fC461ADkDAM5y0KlUklV4gPWx/u+L/on8GZAwOih/UGjBsLBEHv5cf5VOCwy18V2UAkBUVXxNduUiIfaWxeS7K41SRK4jgPX98W137p1C3fu3MGF8+dx5tw5OLad7rYJEakZl5G1fC6H+dlZ2KxKxPW8VHDnOKg3GlAUBfl8HsV8HnlG3CjSVtYgJI10cHOjLvep9XeCNGXKR7nFczaFwIlCu8hDEscglKZdGVllBwDhU9FKFrLjaKcZsSwLb/zwh/joww9x8+ZNnD59ussV7T0rlL2PvAzUMAxMTU2hYdtwazWoioIkSZDP51Gr1dBoNCRJkJg4JDmQeKJA2Q600WgIguC6LhRKQaIIlqqikM+jVC7vefunf9j3Obh1MADkLAtGhxr1YcffC2JCzyzSEaUiIsAdF9v9He/+yP0Vsk6MvcaVNW7iBlGu54lwt6oouHz5MtZWV/H6a6/h1MmT4j6prHqDMIJAmO6Ak7dSoYBSoZCSDd+HY9twPQ9xksCxbTQaDRBFQd6yUCwUUvMppKkdBRACwsyAe9/Hdj9jCzm/XoURJqqqMNrcoyRJ4AUBQlbqGbNyz6CFLOi6nt5zRhbaaUYApC2ez5zBt999h7m5OZQrlZ6Ekzs9ih4TjNhVSiU4joPa9jaK5bI4v67rqNVqcF0XU1NTHT0WJCRGgSQHEk8MgiBAtVqF53nY2dmB67owNA16koBQivLUFMql0n5jmn6Q2aHbrJ+CpmnI5/NjvYYsOciSgNbFO9uHIWCVAa1QMmRAZ0ZLTcK6fggBabZxTijdi5qwY+isv8Fnn32GarWKH7/9No4sL4voBYDm0k5CYLF0QcO2EYYh6o0GioUCVEbe8rmcICCO66ZVJczC2nZdkQbI53IoFQr7S0dJptsjK1nsZ5EVNsrZlBBbzLPlj1wcqSgKTF2HzqIPCaWI2fuSJQu+78Pn7wsnC+y9aU1DvPzyy9jc3MSnn32Gn3/wgSBW7bpdtgOPKBCkkRlN01KCVaulvgjMOClkXSOLxSJK7HMhITEuyFJGiceOJElQq9Wwvb2NnZ0d2LaNvK5DUxRoqpqqtplZzqCPK/fP5xMnt7RNKMVUpTIWC1uKVNQG5iTYbpKOeWMeFhlIMmSAaxRUFs4Wiw7LtQs73wF8D/i4st/7LFLA76GmachZFoIowke//S2CMMRP3nkH09PTIj++W6uJv//lL36Bn3/wAaampsTCzUtKE96ZsFhMNQYZ22U+BjdDFMIwRK3RQELTrpCFfB6lYhHFfL7te5J917stsgNrPihFzAhBOySs5DHKkIVWZMmCzjpJ1up1/PKXv8Tx48fxg9deE+fi72G/RCE7Rt/3RTqnUCxiem4OOoueqaqKSqUi20VLjA0yciDxWOG6LlZXV7G1tQXXdWGqKsrMmKhcLqNQKIidY7/EQJQG8sWUfQ3DUHgfFAuF0YkB351mdQOKArBdcVYz0E6LoGoadFYpoLGvYtfL6vVbr6EdOpVN8t1ywBaVhJUuqowUmIaBnWoVH334ITRNwwfvv5/eb6T3LgjDdJyquj+ywd4TTdNQKhbRsG3EcZyK5rKRAF5WSdOmTjnLAqan4QcBlI0NuJ4HTVEQ+D4eeh62VBVT5fK+DphNV9diZ9w0rI53qQOY2HOfLgMs5cGMsnjqSZCFMEzJAhNAco8IYI8sXLx4Ed98+y0WFxawfPTo/nLKAcaoMC2Coihp9KVeh12vp1bM09Owcjlsb28jl8uhPIa24hISkhxIPBaEYYi7d+/i4cOHCIIAWpKgZJooFYtCES9K9tCDGGQW1GyUIIskSdCwbVBAdGAcCoTsn9jZ4ucHgdgVtxtvVuSmqSoI22FzvwF+7H4IAbCXNujkpxCw8cQ8MsEMoEzWfGmN2f9WymW88847QsPBd/sRIwd6xg9g75L3BKCqpqFUKqU6EUYQCoVCc5Mn9np+bNMwMD01hVIUQdd1RGGIOiMYWzs72KlWUWEkoTXl0EoUWishktbX9EC796pJn5G+CAAGIguzs7OYn5vDZ198gXdzOZRKpT19QLv3rMszzktOQSkKhUJaWeL7aNTrCFwXVj4Pg6VyfN8X/ggSEsNCkgOJA8fdu3dx7949xEEAkiTIGwZmZmcxMz0tJkCOpsUzi2zNf1aD0GGhdFmXRUKI2B33AqVU+Oh38ssPM3bEwJ5lMiEkJQKZf+2MePg59n4xQOqgHVHBnuCSixoVQtJIgWmK+3R7ZQVffvkljiwv40c/+lHTTpMfm1dIaLoO+H7rafYqRFg5ZLlUQsO2RflpvlAQ5kitokmaJFBVFVEUiehDZWoK9Xod9UYDYRhip1bDTrWKUqmE6XK5I6HLRop4ioenRfrJw3csI22tImHHz6YEepGFFy5cwKe/+x2++/57vPTSS6nGgTX02he56lFxQ5ASMRpFyDPDLod10ySqCpokqFeryJdKovnYNP9MSUgMCEkOJA4Mruvi2rVr2N3ZAcIQlmFgbmEBM9PTwiUvG37nbXab8rQZItCvAIsr6BMApT52U1miQfZ+KH4fRRF8pmbPLiyqqsIyTRCmlWhaDNmC0q2ssCdaCEq7v/I8D7brioiCZZowTVMsRBTA5UuXcPnKFZw+dQqv/uAHTccRVs4ZHwW9Q58JgpYqA0JQLBRgEyJaFidJ0tR5Ubya+S0Ae++5Qggq5TJKpRIc1nsgCEPYtp1GI/J5TPfIq2fvsdBbdFl0+05VZY6Zfb8SQLS15teQJQslSnHh/Hl8/c03cB0HuXw+bQ7muqJRVbZteGvKpDVywSMIcRyLjqFcxwEAlmnCazSwu72N8tQUwjDE7Oys7PwoMTAkOZA4EDx8+BA3btxA5LpQAcwvLmJpYWFv0eIRAgYuLMsq7puqFAZQZnu+nzr6sVxwR7QsItkziLxyEOxzveM7Qb5DyzYy4q/pRAD6IgbZtEkHcG+BMIpAABiahnyh0FSjTwF89eWXuL2ygpdfeglnz51r6x/QFDVoiXi0Gxu7EPG1wKoWHMcRBknFFlJGsGct3CryUwhBsVhEsViE47qo1eui7NK2bViWhempKRQ6ED1esYAsSWh5b/l3o3bBVNASVWjRLyiE4NSpU7h27RrWVlfx8iuvwGcttcMwRBiGUBRFtNBu2uVnKzYy16AQAigK4iSBaZqglAqxJ2HkRNd11KtV2I0GfM/D4tLSXtdICYk+IMmBxEQRBAHu3LmDjbU10CCApet47vhxFLOteluJAScFwF5Yf0gkSZIq9AHkW3ecHfQD2XHwevdWEyI+mXOvgezfKKq6V43Qz8La9leZcrweBCIIAtiOI3bBhUw4P4vvvvsOt+/cwZtvvIHnnnuu6zF5CWOvGvpsx8QsLMuCQkiaZvB9uITsW5xUVd3bGXdAPpdDPpeDHwTY3d2FwzQdaxsb0HUd01NT+yocSKf7mo26sKhUFMdde2D0A9JCQrgeg49CVRScO3sW33z7LV68eBHlUglxHMNnDa6SJIHnefA8Dzpz/TSy0YTs2DlBUBRBni3LQkIpAt+H4zgg+TwMw0Ahn4fjebi/sgK7VsOxEydkW2iJviHJgcTEsL29jTt37qBRrYIkCWbKZRw5ckSUXwFIy7SYFgBAxzz6sPB9P93NAc0CuQ6gLGfsZ0xwOHRNE2LGbpEAAgBs8u51rnY/410keyGhaTtqPwhASFqFUCwUhN0wD/sTSnH95k1cvXoVr776Kp577rmOCzLfdYdhiCRJ0mOxRYi3Oc5el9ilI0Ni2K7dME3kkfpKOJ4HoigwLUu4IRJFASUkPSa/dx3umWkYWJifT0sg63XUbRtJkuDh5mbbCofsuNqBIiWOwtp5AI1CN7QKMPmifuLkSVy5ehXXrl/Hqz/4AVRVTTuDWhbCMITP2mdzfwWH+S8Yprm/MRU7pqqqqa6ElYOCiWJtx0k1L7qOfC4H1/OwvbUF23Hw3PPPY3F5eeTrlHj6IcmBxNgRRRHu37+PRw8fwqvXYWgaFhYXMTs9ndrmctC0854o3WM/jgepAe8CHm6lSHeg3SZEsZPz/X3+9yZr5jRI6aOiKE1eBm3H1zLW1soDHq4GpXutiNnvQuYvwMdqsWZThC224viU4v6DB/j9V1/h3Asv4MyZM22JQfaaY9a9kbCulkDn6EX275oWY/a9aRhIWN8G27ZT0qDre/4HvNUyrzRoIR5ZEAC6YWB2ZgaVSiXtP9BotK1wUDWta0SCZho1ibQDae4cOSqy4zd0HWfOnMHlK1dw/oUXYLIoCu+GaRgG4iRBkEldeb4Pz/ehaRrMNqSUu1ry7pU5Vq0QsI6apWIxNfrKiBdvXr2K2u4uzrzwwlg8PiSeXkhyIDFWVKtVPHjwQHSWqxSLmJudRblU2ie2itmOnkyAGPBdVMJ24u06LiZJIiIE2VI9QoiYjPc596F/EaGqqmk+vd1rM776/B6IkryWc/Hr4Yu947rwPQ8gRDgSthsnAGw+eoTPPvsMzz3/PF5+6aWu4xVWziylwMP+/aLTfcnlckKzYTcaUFh5IiEkjR7w9tEtaYbWRbqppFBRUKlUUCmX04ZPmQqH7WoVZVYSa3R43+M2WoN94tMxkQSO06dP49q1a7h56xZefPFFQfo4VEVJO4laVuqc6fsIMl4Zjus2pbOAVNMgrkRRUCgUQJn1eL3RQLlUgqqqojrCtm2sr66iXqvhhYsXUSyVxnqNEk8PJDmQGAuiKMLq6ip2trfh7O6CUIrFuTlUKpW29dYxM5hpVcq3CroGQVNLY0JEY6VcJmrAQ+a+7+/TEei6DtM0obfoCLLja1dx0Am89EwQD17nTwgoD3u3LBDdlqMoimDbtmguZDFToU7jqdVq+OjjjzE3N4cf/vCHfYs4eQnkoCVw3e5LPp/ft6vlnSFjsBA/j1LsHTCNYHQ6H3tNqVRKxYuOg916HWEQoGHb2KlWUSgWUSmV0m6dhCBmBlWtzpn7jsuODTSTklFgGgZOnz6NWzdv4twLL+w9Z5mIUHravYoHTmD9IEASx8JsSVVVmKYpjJESRrS5IJSLUxu2LWyt9Yxhld1o4Jsvv8Tpc+ewuLw88rVJPH2Q5EBiZNRqNdy/fx+h48B3HOSZu2G5WExzzBnwBVFtt/gOmfNt8iNgf+/7vlgETNNEGIYI2CSbhcZ0BGYvPUKXfDj/fbsFhCBt/tOkq0gHvfd3vS8wVeu7buopwKIF3cSCjuvitx9+iEKhgLd//OPuIeSW+86rB/blukcA95dIGg1EnCBkokmd7qzSQzvQenxuEFSr1US1hO04aQfPclncs2xEplVQ2OnnrR4Hw+DMmTO4ceMGbjOCkC1RBPbfB0VRhLMk1yYEYYg4juE4DlzXTc21WFMm/jfFQgG1ej31PmARBN6qu1Qspj4YUYRrly+jsbuL46dOyXJHiSZIciAxNJIkwYMHD7C9uQlEEWgUYapSgWkYKBQKzcSAT7ad6s3Z8QYOY2erGTJ/67puqupWVdTq9aa0AdcRGKbZVOq379hdxpLtGcD+oONrFQBQ1bT/APtZvwV0cRTB4YZGLD+dz+e7KuyDMMRHv/0tFELw7rvvikWj47VkIjiUKfgBdExVDAtCUh+Eer2OmLXh5uftVlLYznyoG/hi6noedut1uLYN13VRZ7vo6Uql6dqyfSCaSlkzkSge8clGoIYhCTnLwonnn8eNGzdw+syZfdEZIaTMiBk5dFaimCQJAhb9iuM4Jb5hCOJ5yOVyIiJRKhZRbzSQxDEato1CPp9Gaxh5qDO9xsbGBlzXxZHjxzEzNzfEVUk8jZCKFImh0Gg0cPXqVWw/fAj4PvKmKYiBZVl7RjV0z7ioq3p8kKgB323xhb3l78IggOt5wmmPEwPTMFAqFjFVqSCXy7UlBpQdb99YWsbe78LA/0pBmlMWYeQ+dsO+56FWr4sISLFQSHtCdLlPSZLgk48/hud5ePfdd3s24mklOXHGVXESznqKoqDImjPFUSQEo7QLOQAb46Alh5ZlYW5mBvMLC2mkRVHgOg4erK2hVq/3/HtOSHjJYJIkSLg+Aimp4q8ZBGfPnUMQhlhZWWlz0kxrbfb/ViiKAss0USmXUS6VUrEs0veu0WiIPheKooj0TZIkcBxnj2QRgkI+D6IoafOseh33V1awcv06gnZumBLPHCQ5kBgIPFpw88YN+I0G1CTB4sJC6gzIyqe4OQ0hpMnkaJS8Lc3mZRWlYzg+DAJsPHoEh4VbeVh2emoKhUJhfyieqdSbJvkx5JebxstPhXSBI13GDyDd6dXrcJjrnaZpqHSxD86e87PPP8fO9jbe+clP0rB9D7SOQugNhowatLvuVqiqikKxmGoKWI3/IHec7+R7IUkShMyeeW5uDgsLC0KYt1WtYnV9HR7rcjgI+LPCKx4S9rOEXXuvsRULBTx3/DiuXbvWkVjw90VEKzq8TtM0FPJ5VBgxByDKPR3HEecjhKSpCFYxAqQko5DPAyRtsuX5Puq1Gm5cvozq9vZA90Ti6YMkBxJ9I0kS3Lp1C1sbG4DnoZzL4djRo6LroKqqKBaLovogG6ruteB28gQQIkO+6+5CCnZ3d7FdrQpdQblUwvTUVJMgsfXYTYZLZDweCyL6gPYRBl6CpqSDaPpdEASo1etCLJnP50W+uPtJKb759ls8ePAAP3rrLczOzvYeZ5sIRpypVBgG/d5DjeW+CSEIwxAuW8j6OX7byE4G3NwobklTWZaFxcVFTJXL0FUVETNT2tzaQjSCU2K2/JFHGGLmCcHJQuvTfe6FF+B7Hu7du9f7BJnoW6er5qmCcqa5k8+epSAMUcjnQRkJ4A21QNL+HzkWXfI8T1Tu3Lt9G3du3hSVKxLPHqTmQKIvRFGE27dvw9ndhZIkWFhYQLFYTPPHLOxdLpX2QucZcBOiTtiXv0eGFPQIJYdBAMd1xSQW+D5MwxD2u9lz7DvfmMhA0zl6CReBprSICgjjJdd1U+MlQsSOsN9F+tqNG7h54wZef+01HDlypO8xt97faExixH7SRLquo1gowGfWyJ7vt3V2bAcC7FV5ZBbmmGbcNtvk7nkJZLFQwHa1CtdxYLsuHNdNu0RmnTuHRFPvhWzJKiFiN1Yul7F85AiuXL2K48eP95dS489NNjWV+TvCUkHFQkGUPsZxDM/zoLBeFjSO4bguypmKHMs0QZmvgu26UBQFmqahVq3CdV2cOH0alrRefuYgIwcSPRFFEW7fvAmPEYPlpSUUi0WxmHFi0M5KOOlBDPjrmtBHpCAKQ9RqtTQnz7wEDNOElculor1cruOujWT+jQPZUHpPYoA29fs0dToM2I7OsiyRK+4H9+7dw3fffosL58/j5KlTA409i2z9/6hixH71I6ZpwrSs1LAqcw/6Ogf2UgxxHKcdMVv6XnQah6ppmJ+bw/zCAkxmVby5s4PV9fV9FS2joCmKxvQLCftcnDlzBo1aDZubm4MdNEMSSMv/OTRNQ7lUQoFZSydJIsyoQqb1yCKXy4mIQyNjxR36Pm5duYJarTbE1UscZkhyINEVURTh5vXr8Gs1gBEDy7JAkwSu64omOe3y4f3Wh/PwK7qQATEeRgp2azWEYQjC6v2nKhWh0tZ0vcmJMbsYj5MUAL1TCL0QRVFaTZEk6YReqaRCsT4X142HD/H5F1/gxIkTuHjx4gAD37+z52JENdMxcdIQlSPs+bGZiLQXeI4/imMkcTyQZiGLnGVhaXERU6WSSDWsrq9ja3t75KZMAh1SAjOzs8jl87j/4EEqdBxS69JaRZGFYRgol0rIWRYU1njMcRxUd3fhtwgPC/l8aifN+pFwxEmCO9evY+vhw6HGJ3E4IcmBREdwYhDV66CUCmIAmtoSc5OfdqHg1i6LnUD7yCED7UmBaZqoVCqiCyBvoWy0iA5bNRDjAI9IDHNcvuhEYYh6vY4kjqEqCsrFomi4oyiK6LHQacmoVqv43SefYHFhAa+99lrfJkcAmlstM4iUwphLGLuBv++GrqcEgRDYTG3fDpSmzppRFKVmUBmfgGHNsxRFQWVqCsuLi6KqoWHbeLC2hkajMdQx24I/5xn/hCPLy1hbXRVpgmxFxEBUIVsVtO+0KYEul0pClBtFER6xfgv8eSSECP1Ba/dRAHhw9y5W+9FISDwVkORAoi2CIMDNa9dSYkAIji4vi7I4Smlq34u0Z0E79KoDz+64u5WohVGEeoYUIEMKipnQe5IkCMMQFKn/ftOiMdil9wTNTO5DgRD4vo96vQ4KQNN1lEql5r4T7HVCvNhCoBzbxm8//BClUglvvfXWQDv9dhoPIBM5eAzkgJC0a6OmaaCUotFoiN10wghBGMeIWeqgrdCTH68lD98vdF3H/Pw85ubmYBgGKKV4tL2NtY2NfU24RgEfJwWwfOQIXNdFdXe36TW8vFOQhT6jCiJC0aZ0WFEU5HM5zM/OCr+EeqOBWr2elpRSCl3XU3JIadrqHHvRCEIIth4+xO3r1/e12ZZ4+iDJgcQ+BEGAW9euIWw0QAnBkaUl0UmRACLkqPHdXgu6VSdkSQFHu+mbh9t3d3fhZ0jBVAspEGNmxEBli+m4xYZ87BSprmCUY7uum7ZYJkR4L/Rc3Bk54PnjDz/+GLqm4Z133hl4p99p7MPaJndCP2WNvL8CB8+RR3GcWiGzCAFNkr70HATppDbK+5PP57G8uJg6KioKwjDEg/V1bO3sjC/VgJQUz8/NQTcMrK2tdX1t31EFXnnDIgntXqfrOmZnZlDI5xFFkRAt1up1+EEgIoE+q1xoLaWs12q4cfXqvrSExNMFSQ4kmuB5HlauXkXkOAAjBtxJUGF16SJq0KZnAhddtQNXbANo2t1lXx1FEer1Oqq7u0LsyA1f2pECjiAIRNTgSUohtB6n3mik5IpSWJaFAqtBHwTfffstXNvGO++8I9I8tOVfxzF0+H0cx2LhG5dtcj9ljdl20GEUgVKaPleEIGK190Ofm5CuRLUbFEXB9NQUlpeXkTPNNNXQaODB2hrsPssu+zqPqmJ5aQmrq6t9/002qhBn9Bat7ysnSu1+xzuNcg8ETjodxxEpw6boAfY+pwSA77q4efky7D7MpCQOJyQ5kBBwHAd3r11D4LogioJjR47ANM2mCZ4bq+iGAb3NjjXBfsW+mFTaLYJsV5IlBVwtniUF3XbHvJkSKBVGMOPGqGQjoTTdmfk+QCkKhULHlEw3PHjwADdv3sSrr76KcrnMBkf26uDbkC5h2tNG1c6RjRoMm7vvhCxp4RURvLqAV0ckXKNCWO8I5k3hue6+Bln9gmD0KIiu61hcXMTs7CwMlvJ4uLmJ9YcPEYwptH70yBHU63W4rjuwsJIQ0kwU2hAh4eHR8r7mcznxO9M0hR8If29cz4PnecKhU/iWsL+J4xi3rl1DrVod/KIlnnhIciABII0Y3LtxA4HnQVHVNJXAxHF8UomiSORe2y1slFLRipj/n7aIsFoRxzHqtt1ECrLpg66kgP0Lw1DU1Y9LTEcxBm0BQ5QkqHEhJYASs7wdFI5t44svvsDRY8dw4sSJjq8jLePOLg7CCpgv2GClgOwe8qhBUyQCzfX6wlegzev4sbMle5wECGOglnQDH2824qSznS1vMxwPq+QH9ms5hkChUMDy8jIqpRJ0RUHg+1hdW8POGFINi0tLUFUVa6ur6YQ8JDnj72/WgEn8DhApBw5VVWFxEub7MHRd2DFz3YntONipVjtGoyiluHv7NlzbHmrMEk8uJDmQgOM4WLl+HaHnQdU0LC8twWjTpZDnGA3T3LcI81Bn9v+9wsqe72N3dxdhCyko9REp4AY3BBC18foYogZN4dMhF6QsIiaojFhFQjHjYDfQuJIEn33+OXRNG7gyYe8gVIg/SeZnoLQpcrBvIWD/5/luvuhz+2Dxjwvnsv+AnnoKUYbX8vNcLifG44yw+HRS8Q8KRVEwPT2NxaUl5CwLGiHYrdexur6+zzdgEGiahvn5eayurTVpZdpVlPSLJqfGFvLCBYtAml5QVVVUIHHRYrlYRKlQAJBqZHYzzctaR5XEMVZu3hSfY4mnA5IcPONwHCf9YLsuVFXF0aUlUU7XCh7ebS0VBPaIgRAcdosWJAlq9Toato2EUmi63hcpyB4/W/4Y8hLGEclBNqc6jsC6zzzu4ySBzkxphg1zX758GZubm3jzrbeGvs5uiyMP70+i2VJ68s5nF4tha86cEKHJiMJwqD4IwB7JG7RxUyeYhoHFxUXMzMzAZKr/9Y0N7LRUHAyCI0eOYGtrS0TmuJviICmeblofHrlpJb6EEBEFDIJAeEyoqopSqYRioQAQgjAIUG809lVt8A1AFIZYuXmzYwmqxOGDJAfPMBzHwc3r1xFzYnDkCLQOxIBSKsqXWrUGPOxMWwlBm8mKRwsC5lVQyOXSUG2vtsIdShPDKEoXNkLaaiD6gUh/YDykAEjTNI16HQnzXSgVi02q/EHw6NEjXLl8GS9evIjZmZmhx9QpNJxkdpeTMD/q5UEgftdmfKqqIs9MoRyW/x4U2R34ONUUxWIRS4uLKObz0FUV1VoN6w8fDtWnYXl5GaAU6+vr+37XT+SDu0T2QjaawJ93TddTbREhcFy36TmxTBNFJhCllMJ2nLS7Y+Y1nLC7to37t2/3e8kSTzgkOXhG0Wg0cPP6dVDfh65pOHbkSNddO48aEEXZ5z6YxHFqd4yWUHxmUo6TBPVstIB1GuQiKKEsb4FojNRhceE7GUPXh5r4RaRjDCkEDpuVKgJscmXEYJjxBb6Pzz77DHMLCzh37txI4+p0D0Wb5gN0RmwCTyt0eA9M04TB2hLz52egw7eca1wNtoDUE2Jubg7T09PQCUHg+1hbWxs4ymFZFqZnZrpWLXSLfAzU8hx70YSIGUnlLAuEVSxkUyQqcx3lrdiBtMSx3mjspRmYqJgQgmq1irX79/seh8STC0kOnkEEQYDbN28iCQIYhpFGDHrsunknt+wOP+F5/+xk22aC8ljHRL8lWpAtmWvdXTb1K+gy6XEx4lB5/My5xwFeqsgXhlwu11SqODD9oBRffPkl4jjGG2+8MXTkIT1U57NPPKWA/iIH3caYz+WgqCooK7cbw4A6EtJhUCqVsLi4CN0wkFCKtYcPsTtgP4KjR4/i4cOHXSMAnfpFDCuKJKw8mVKKHBPJer6/r6w1TpKU6BYKIIqSCok7pBk2Nzaw9ejRUOOReHIgycEzhiRJcOfOHdAggKVpOLa83NeiEGZSCsJuFb3z2PV6PXW7axMtaEXrItorHB3HMaIoSv0NBiQH4yYGvFQxCAKAUhSLReRG7GR38+ZNrK6u4o033hjpWL3MiLI9FR4H+iFPRFEE0QrCcGzNkRRFGRtBME0TS/PzKOZy0BUF29UqHj561PfCfeTIEcRxjId99DAQmp4+vC36hXBHREoQQClUVU2jSZQijmPouo4y0wa1SzPwz9PqvXuoy2ZNhxqSHDxj2NjYgF+rQaEUi/PzfYWReUthinR3ya18u+1kW6MF+TbRgk7n6kUKOPiuRdf1vsVm4xYdAqlHQNbeuVQqtRcNDjCBV6tVfPvttzhz+jSWlpZGHmO3a+VakknbJnd6T4UgscciqmmaKL2zbbtv/QEv4+sEvviNAyqrPKhUKtAVBa7nYXV9vS/75WKxiHK53NMtkYMgJU3jIjcAxHPr+z5C5pvANw+894aiKCgWCh3TDAAASnHv1i24YzSMkjhYSHLwDKHRaGB7fR00jjE3Owujz1r7KIoAJmAyDEOQgnY7ok7RgnyHaAEHL30cJOfNd+ntqic6nWPcCJl5UxzHUFU1tdwdIsWRRRxF+OzTT1Eql/HSyy+PaaRdzjdmZ8RO6PTuD5Irt0xTdN90HKfv97TXOYiijPX5qFQqWFhYgKFpSOIYqxsbqPfRxGl5eRlra2t9L/jcV0IhZCwER9c0KCzdEjHHSpXdmzCz+PMmTd3SDNwkaSxpIIkDhyQHzwiiKMLaygpoHKOQz++563UBn6AoALQRIrZORsNEC3jIm+/kWxsMdQK320361BuMy9AoiyAMUa/VRKliZYRSxSy+/v3v4TgO3nzzzZEFgr1CznGmqc9BiBE7umSid+SA/32hUICiqojjGK7r9nvini8ZV6kjh8XaQecsCyoh2NzexqOtra5phuXlZQRhiGofroO8QyUftaIoI7tbcrdEENJUVgnmY5F9XgC0TzNkKh6iKMKNK1fgjLO7pcSBQJKDZwRrKyuIfR8qSZu9dEOrEJDnopvKlzLfjxItyJq+cPQzwWUV9t1y5aIvAh2tWVIrwihKSxWRRlNKpVJPwWA/u8F79+5hZWUFr772Gkql0ljG2lW3wVMKE7BN7hf8vvW771UUBQVW3uh5Xl82xv1e27jvAE8zlFkTJ9u2u1ovT09NQWGq/17o1Ddi1PfR0HWhMeDRg+xxuQMjx740g++LNINCUnvn61eujLf9tcTEIcnBUw5KKbbu34fXaCCMYywuLHTc3Wbz8dkJoVVNTjPfD60tyJyrFTyC0A0839zLXrnTOUYB7wPBiUGxz+ZJvciBbdv48ssv8dzx43j++PExjbY7OMmadEqBo9P7DQyW9tF1HRavzR/BXnn/YMbfzZM3cZqbm4OhaWkUr0MDJ0VVUSoWe5ID7lLZCh6BG6WyRVEUmMwh1WcNzYA9wyO+4PNmXbyMslOagTdsu3n5MhqyUdOhgSQHTzGSJIGzs4OdzU34YYiZqSnB7rPIWgYDezXTwqO/tcSQhReHiha0pBE6oVctetwHOUCPcwyDKI5RY9ds6HrfxACUdg1tJ0mC3/3udzBNEz/4wQ+G9tdvOiV6ExKuNxhH/4F+0Xq/+illbAcrl4OuaaBI+050rXYYbIATiaLk83ksLi7CYgvvw83Ntm2gp2dmupID7i3SDYTpEIa9Ct77I2Btm/efYK8UVJhosRRfuzSDoiiIkwQ3r1xBfQQnSYmDgyQHTymSJEHUaODR2hqiOIZpGJienm56TXYy5ou16ImQmRyzuegkSYTL4VDRggEmrG67H6Gcbjlnkz9Cn+fpFxEjRAnTGBSLxb4XkV7L3qVLl1Dd3cWP3nwT2oiCxix6je9xlTG2PnvshwMRBEII8oWCsO/1uxgPDRNXGEc/hlbouo6FhQWUCgXoioJ6vZ66KmbSDJVKBbVarWuzo37RzWCsG1RVTVNNiiLKRrPPEv+O3yOuf0iSBISQfWmGRqORujNGEW5evYqaJAhPPCQ5eAqRJAli28b2o0cp86cUC/PzTa+hmZ1sdnLuVEbIzVJq9TrqA0YLgOFC/ATtRXKU5UMTSpsIyaDkYxDESSLEh5qmpXbIA+wuuzkwbmxs4NrVq3jx4kVMj2CPvA89FgR+H4HJlzFm0fqMNZHAIRaxQtZeeUxtlDmUIcbU85iKgtnZWczMzEDTNERh2NS8aWpqCgkjoq1o10ipFwiGI3/Z6EE3B8YsieKRBAD7TJNcx0EQRWmK4epV7MpWz080Dm5GkDgQcGJg12qo1+sI4hgLs7NC0Z/9kItcL08j9NipN2wb+VwOqqYhZ1mp5WovUsBIyLALNicI2QmR961XCNkTS3IL1yHP0w0JpWm5Iqv5HqZPQqflJfB9fP7ZZ1hYWMC5s2dHHqvQhSQJkr0f7kVUMrvzKIrSHhdInSYDJnBrqlJhf+O4LijSDn16pmMnAfbe3zapqCwREM8K/8qfjRZDn0HfQ8M0EUYRAt9Hw3FQLpX2aVaGfi74zpv17xgnisUidMNIGy6FIdYfPsRUpYKpSgWEEOxWq01VRTHrhDksBk3fiLLGJEEURV19KlqjE8JhUdNQLhZhOw6iKILv+4iTBDnTxK1r13Dy7FlMtUQ0JZ4MSHLwFCFJEsSNBkLPw/b2NsIoQrlYRLFYFK9pnahb9QXt4Lgu3Ex5UqVU6pnrB8a3k+cEgbKuctn2wvw84+yNkAUnBrzlcrlUGq7kr0Md+jfffouEUrzxxhttFx8u+BJfWb5ZNLtiyvHWksWmBaBV78D+H7BOh6qqdq1Fp9jrfOmzCX7f5aFF0Jr5HmgmRwRAgpTA8Ocuq2TXNC3t88AIK/e/IIqSdipsU7KXz+UQRRHiOIbneaLT4LhACEGCEUhGB5iGgaXFRWxtb8N1HFRrNfi+j5xlobq7Cy5LTUYkBkBm7CwK2NP7gaQ9Feq2LRql9fiDJjEzkBIaXl3i+z5c34fveSBIIwucIIw1YiYxFkhy8JSAE4MkDEXrV03TMDMzIwSAraBA14ZAlFLYtg3P99MJW1VhWVb/xKDDeYcBAQBFAVjeEkj1Bp2ubRzgvRKiKIKiKCgNSwyAJmLAF/pHjx7hzsoKXn7lFcRJAttxmhb8bLSk3SLLr11MxhkSIHbgfIHl32e1JGEIVVVh6npavpaJAIhzsr/hhMDSdZiWtXc92UhDRu+RHROPWLS+hi9SYLvOmBnv9IMsUeBEQlEUuL6PgL1fuq6npIJfSw9RaPcTpi2U+1lUB4WiKJifm0OtVkO1WoXv+9BzOWzv7ABo7po5DvA0Qz8NrFTWz4Jm/BS6HRdgRIqnKLHnX2FZFhRVRb1eh+d5aT8Hy8Lt69dBz5zBzOzsCFclMW5IcvAUgIsPEUWo1evwfB8xpVheWOis+qe08+/YMeuNhujvXq5U4LquMB7qVGo4ahqhGzhBiFhaQdO0yRMDdv2lYrFvgyNezcEFWDELy2bzxTRJ8NXXX6NULmNmdjb1skebBR8QKR8l+5UthkpmZ81fCzSnjzqhTghUTUMhnxf55U4wma2uYZrItal4GQacBAFpeVwUxyjkclA0TSxIPCqS8O+5CQ+l6U6+ZdGMowhhGCL0fSFWFKI8pIuioqriq8JTGn1C4QvfBKoZyuUyTNPE5uYmSoUC7j94gN3dXRQKhbGfC4BwQuxGEaI4hsb6qQRh2Lf7J08zZO8SF/Lm8vlUf8CEjjnLwsqNG6BJgtkWbZTE44MkB4ccSZIgqteBOE6rCKpV+FGEuZkZGIYhdmYc/egL4jgWoXQQglKxCF3XRVlTEASw2iwmkyQGTedJEiBJJlabTwHYGWJU6pBGSVitdxzH6cIfRYg6hH/jKBK6CBCCe/fuodFo4O0f/xiGYYgdbuuC3yvl02n8/fyFMJI6wDLGJrBnhV+3yghfrwWIR1W4riJLJAqsAoA/p5qm7YW7kwT74hKKApWQlDCwJkOif0i7zwghom5/EgTBNE0sLS6iVqth5c4drG5sYHF+HuUxGWK1gm8Q4g7XE4Zh2myNUoRBgMSy+oqetdMhAOkcYRoGaJKkBlYZgnDn1i1QSjG3sDCOS5MYEZIcHGJkiUGcJNje2kIYxyjmcqhUKiI6wEEp7ZpGAFKRWo2V6yksx65pGmJWDum4bltyMMlKgSxi1gBK4R3kJqA1sG0bfhgClIpyxSAIRBQgZqSg7bm5jwMh0FRV7FKBvRC453m4ffs2zp45gyNHjox9/P3ck2zaYpKtmrtBPJtZrUQff6ewxRwdxm0aBhzHSUvqmN4mYe9bFEVI4hgx9wqIY8SEIE6SlAxmIzbsvdsXbWD6BzohgkAUBcePHcM333wDz3Wxs7sLSikqfVieD4t23SkjNq9wDUicJOlnf5DIURsdAgBoug4TgOe6CFjULGdZuMsIwvzi4ohXJDEqJDk4pMgSAwDY2dmBFwQgJLVH5qIvjn6Ige/7qNs2wEoES6xXAP9gG4wcZFMLk/IUaAeK5iZBfELrZCM7CPii32g04DgOkiiClct1tHzlERhu36xmiEA7K+I4E0349ttvoes6Lly4MNKYR0GS8TcYd0+BYTDOEZiGAZ+ROd/3kc/n07p9SqFnIkBc1JkkCZI4RsS+8p+ROAaN4zTakL1HhEDlKR72HGrs+1HIAn+WkySBmcvBMk0kUQRVUVCt1ZBQiulKZejjd4PY6WNvIQ8zXU91TYPtuvCDACZzpuz3uOk3zWkGwo5LKYXneSKtlrMs3Lt9G0mSYHF5eVyXJzEEJDk4hEjiONUYsAk+DMO0hW2S4Mji4l7NekYU1stx0PU82LYNIP3QlopFET7kk4WmqmldNpt0+Q7ioIgBsGd+xHe7rZGRfo8VRxEi9i9ktde+78Njtea5XE6Qj9YogNoSERgE6+vruH//Pn705psjd29sh37vAY8aHESzpW4QJJZrJcZxTEKQtyzUmZjWMIy2aSEuzFMVBdA0ZGNhvCokzpAHoRlJEsSEAEkCGoZNVuOqpkFVVfFZ6ff+ZitS+NgqU1PwPA+Vchm7rDQ5SRLMTrD0j4tQKaUIWFqNkwPF80TDs347obY7LgFE5MUwDFAAvucJ0WvOsvDgzh2AUixOIrIm0RckOThkEOLDjKVpdXcXcZIgn8shn88D2JtseAi0E7jFKV8ULdNEIWMJ3FoiZ+p6Ezk4SGIAsLQCbTY/aqqTb5fvTxJErIkML3fj0QbKJvkgCNIctaqiUCymu80OUYChroG9H7//+msszM/j6LFjIx9zFLSWgz42EJI2xWqTYhgFuq6LCILjuqk3BfonHwohUDRt3wTZLtoQZ8SmNAxTt0b2PCqKIogCJw6tz1OnaoSpqSncvXsXlXIZhBBUd3dhOw5okmBmenpixI4AouESAUSLbF3X4fs+oiHIAT8u1yEo2ItsmoYBJAm8IGgmCHfvAoAkCI8JkhwcMsS2LYgBRWob6zoOoiTB0tSUeB2lNA1zdjkWZTX8fIeQz+f314e3TGQ8tRDHcUoQeqjcR0HWxZGDVyq0c/TjJCGMIkRhiCiOEYbh3sTLd3tId8yarkNTVeELb+g68vn8YDnVPkEIwbWrV2HbNt5+552J5KoHWVZF5OBxkwO0RH/GeFwrl0MYhoijCEEQQGcVF6OgU7SBAqKLYRxFKRlNElCWpuCfsWx0gZPPTqhMTcG9ehV+EAhjp+1qFY7nIdnextzMzEQIAqWp6RUBoGdSCJqmwQ+C0V0oucg2Q4hMZqjmtkYQ7t1DrlBAeULpFInOkOTgECF2XVA2yXBFeq1eR5QkyFvW3qJGe7vM7atIKBTalrNld+KccOTzeTisoYrBasnHjXbEgJezARkDJBbm5FGBKI4FAciGaVVVha5p0Ng//ve+76cGQITAyt7DMaPRaODKlSs498ILY2vFvA8D7LqflLTCPoxRYKqy99RxXbie15c/x7DgpEExDICREJoke5GFOEbE9QxBgAB77wHvYyBSEYzUT01NAYSgtruL+fn5VByrKKlhku/j0dYW5mdnx/4eeix9oCgK8mzRphm9BtdlDHteHsFpjeQYGQ1CliDcuXEDL7z8MowxkDuJ/iHJwSFBEoaIXRfA3gcqDEPYjUYaNeB5SF5O2KaMiCNbkUBYRYLeYeLMGtxw5bFlWQjYDqLhOChnHBjHAV750IqY7cpiZs7EledZ90EuvNSzodw2jnoAEDCtBgiBaZpjd9XL4uuvv4aVy+H8+fMTO8cgOOhWzV0xQUGkaRjiWfU8b2LkD9hfukcUBbqiiM8WZSZPIYtqAdgrhY1jBJnj8MiCpqrY2dnBPKv/L+TzIAC2t7fhBwEebm5iYW5ubAQhYiXRQOo6yUXHInqgqoiQziEjLdZ8Psn6LChK+v4Q0iRSBICVGzdw7uLF4c8nMTAkOTgESJIEERMLchBC9kcNMgt4Ry//IEC90UhD86qKcrHYsemOUC6zcH1WaVwoFLBbqyEMglTBPCZWv2/cTBgVhCHq9Tocx0l3/5nSK5URAZHbbbfgUdrkCBdGERr1OijSHUuBaTUmgQcPHmB9YwPvvP32xHL82VbYvcAjKjwH/CRg3JqD7HHzuRxqjQb8IICqaR2J8LjOB+wXhvKuhYqiwDRNkY7IemVwXQxNEkSUIkL6Odvc2sKRRgOarkNnqS9FUbC5uYkwDLHx6BEW5+dHJgiUUmGjbRiGEMxmKw40TUvTdaOSg8xz10SqKIXJzssJAr+Ta/fvY/kxa3WeJUhycAgQ27YIlQPphykMguaoQR8GRJ7nodGhIqEjSMZKNwNNVZHL5eA6DmzHSa1qR1xo+PUlTCAYhiHCMNxXqWAYhrBx1lhb2Z4gqf0t7xPQYJ0lTcNo6j0xbkRxjK9+/3scWVrC8oRLs/q9+1nzoyeGHPDKmAkcW9M0mKYJz/Pgui60UmliQtpWYp7tUtjunNz0Klu5EsWx0C3k83k0HCclDqxvhEIINF3H9PQ0dqpVRKxp08Lc3EipE8/3EccxiKK0dcHk5YceEyWOgqyFNq+mokwgzHs6AGhKMaw9eIBCqST1BweEJyzhKNGK2HWRBIH40PDJvClqYJr7iUHLzqVh24IYmKbZVwOhbpMakOYDufe63RLZGBRhFMFxHOzWatipVmE7DgJWJqawsH8hn0e5VEK5VEIul4Ou64N1R2QTkeO6SCiFoWkTJQYAcOXyZQRBgFdefXWi5xkkNC9y3U+Q3oATt0mYWgHps6oQgiSOhenOpMAjMjHLzQ8KTVXF814sFhEx0zFVUURJZRAECKMIlmkKcfDGo0dDL9pxNp3QxQVRZ+6RlBuBDYmmpzVDEACkzwAj7pZlCR2C47q4c+OGcFWUmCxk5OAJRhKGiFx33+4uDALha7DIREv7lgZe2kcpGiykCqCp3LEb+ETdbckhAIqFAnbrdQQDphcoUs1EyEoI46zNM6tGMHUdumGIvHiVCbuGjlBQioZtC9e3UqmU1luPwUSpHer1Oq5fv47z589PzB9fYIDxc0OmJ6FSQYDs9T+YBBRCkGOmVo7rQtP1sZMjnobjIXKFEMR9iIO7wbIs+MyrwTCMPd0Cq8hRNA3lchk71Srq7NqWFhbS1ur99gKhFLbrApRC1/Wu6QLu+RGycYwtTZaJUPKNELdaBliKgXVzvHPzJs4+RgOxZwWSHDyhSJIEoW03dcnjqDHv+LxlIZfLdW2eVKvXxW6iVCikHfV6oF8jHSAN2VqWBc910bDtNETaIbTJS7pCpiFAZiIFITA0DTrLdbabuCkrORwoWpCB63lp61mgKaUi8sSA6CY3Dnz51VcoFAo4d/bsmI44HvAd35MUOQAmb6ZlGgY8XUfIWlWPS2fCScG+fgs8lTUC8bQsS1TiaBm/AV3XQXO5tNFUFIEQIuzTV9fXMV2piNSboesd/Tq4z0nMjtGPKFdnRmhRHMOgwzWh6nlPOGFvSTG4rouHGxsolkpSfzBhSHLwhCK27bTjXIeoQZgkWJie7jihxlGEXUYiCCFpRUIfxiXDTGT5XA5xHCMMAtTq9abqhyiOU0LQpj6aECJ2RNxopRsSJrobRngVBgFcxwEFUGzXYZFFX1Se+xwxknDv3j1sbm7ip+++C1VVm+yTHzeeyDJG9t6PszVxu3PkcjlEzPeAP3fDgEfWsiLXds9vJ4Fiv7BMEwRpyW2rnoAAojQ3Z1koFgpY39iAFwTYqlZTgmAYaRqFkXadNbbiO3PbcdKeEoSgwISOvaDpOojnpZ9n7no4Lu1KVvicESq2EoTbN29K/cGEIcnBE4jYdZGEYdsPXDZqkO8QBYjjWBCDXhUJWWQFj+2cBjuB78TrjQbCIEC1WoVhmqIeOgtVVaEbxt5ups9zJJnQ/6BphThJ0GDEwLKsnirrrLaDsgVgkDOGYYhvvvkGx48dw/zCwsTy6ByDHJ1Suhc5eILSCjxCNkmBJK/QsUwTLsthlwcUJ7amDiYN07JAWWlfr9SUrus4sryMza0t+L6PBqvsUZnRFw0ChEy/pKnqnguioqCYz/dt560qCqAoAHOJ1FjXxrG/c5noAdBMEBzXxfXLl/Hy669L/4MJ4QnaOkgAzM/A89pOklmtwUwHf/U4SbBbr6d5e1VFpVzujxiwDyI/bzLE5GfoOjwWPdja2hLCIV5+NVWpoFKpCCHjIJOJEEcqymB18ZTCbjSQJAk0XUdhQC8DQtImO8oAC9f333+PKIrw8iuvDHSuYTCoiE/cR0KeqMhBtlxu0ucwmbiPJgl8ZhveCSJlwEoRs8ZafZ93BNLDLcq9PkWUqqpibnY2JcG6joZtp/qaQiFdRBUFSZKg3mig1mig4TipedMAzwLXHRBCRDQw24StH/S8h4QAbfxJTLaxAFLb+FvXrg1wVolB8OTMDhJt/Qyy4FGDnGW1LTVKmB0yZfXUU5VKXx96HhYcJgQaxTFsx0krDGwbJmulzLs5lkollEolWJYFJdPhcdCpkmZsjweB7TgiJ1ssFIZbfLjPA1tQFT5ptTnWTrWKm7du4eKLLwrDnYnuMgc8Nk9vPElRgyZM8F4RropXFKHVcT1vX8onSwi4K+eo7yF/dgY9js4cSHuRmCxUVcX83BxyjARtMcOkXC6HUrGYpid4ySCrdqjV66gz4XI/Y9Q1DQRplRFH302m0H/6iL9nWVismoJSivX1dTy4d6+vY0kMBplWeIIQ23bHHvE8ahAnCRbbRA0oUnU8r1Mul8t9s/lBdzUUaQ7Ub6l3JooCyzAwVanAdhxEUYR6o4FyqQRN0/YqIIZYoLnqe5CUQrbLYl+eDgMg2+WSZtIwX3/9NabKZZw5fXps5+oxkMEiB0+oGHGSEYN259ENA1oYIgoCuK4rQvaTThkorPS3XxBCYOVy4jke5O/mZmdTq2XPw9bOjrA8juIYlmkiNzUFhRD4rCySCx/djBaok4OmpmkpgWK9TgTxIqRniqGdNXrH15K0AVaSKZvkwskGc0lduXULpXJZ6g/GjCdshnh2ETlOR50BANRqNSRJAqtN1IACqDcaQiBULhY7WgY3/2H7SbDT5BVGERq2LaIEURSJ8qdisYipSiXtZsjKBDVNAyhFrV5Pe8N3ID79gEcO+q1UiKIIjm2DAsjl89Am0B4ZgBBQKYqC+/fvY2t7G6++9tqBLHbDLGTxkyhGxOQrFfZOtFcua5mmILqe7w+VMhj49Nkx9AnLsgYmB+lpCGZnZtKyRgCr6+uo7u6CIG2yZrLKoGKhgEqpBNM0QRQFMaXwfR/1eh21eh2+7++7L6qqimeoVWjci8APeof5fEQyY1BVVcyDruvi+pUr0v9gzHiyZohnFHEXnQHAlPauiyiO22oNbNtOF19gb1Fm6Pgx7cDeuQ0vR0IpXM9DdXcXtVotnSjYDiSXy2FqagqlUgmGYTSNnxAixkIpRa3R6Dtv2g68c2I/kQOaJGjYdmp0ZBhtUzDjBqUUly9dwrEjRzA/N5dqFICm9MMkFp5BF9UnUYzYiol0rOTPNU3beieUQlUU8dwOErYfFYMKai3THPqzQwjB9NRUmgpDmpoEsK/lssL6GpRLJRQZmeadJh3XxS5rF50lAry0sp3xEiEkbYfeAorOm48uF5ESkRZCm7V4rlarUn8wZsi0wmNGHMdp2WKHCYMAontiu6iB47rCXrRYLMLoIT4UIcAeE1TIGtVk2TilNPWFN82+lM2EEBSLRdiNBoIoguO6CMMQhUJh4LB20m/kgBsdxTEUVU11BgeAO3fuoG7beOvHPxY/ayVLIn/K0j20R/i1JwZMKQBPaBljK3h53AiHoGgj1mTEANgjVdxkKGbtvftV7I+KQQySLMvC5tbWUOcJwxAOS5skSYKI6QusXA5WB5U/91HgviRBEAhL8yAMBanin+EwitBO5itcLzNo3Xz0i6xgOkuyc5YlnCjX19ZQqlRw9PjxIc4g0YoneIZ4NpA4TtcJPqGp3W8Ux5iemmr6nef7cFmnxgILE7Yiu0D1mnBpksB1XREl4MRAVRTk83nMTE+jWCz2PYHybm6lUkm4MoZRlB6btZ7uF6JVc49FrdXo6CB6ByRJgstXruDY0aOo9Mp7kj0nuGwFRDbc3HeEYVBiQPd8/p8od8Q26Pdd4yQgAbs+VlXQ0fWy5XlQCEm9BBRlqND90GAVMP3AsqyBIxsUabjddhxQSqGpKpaXllAsFKASgq2trZ5Wy4qiwGJW68VCARojDFEcw3XdtBW268Jn5KH9ZbZsRIaNnhEiNgZZkWLWuCmKY6zcvIlatTrcOSSaIMnBY0TkOKCdPqBsIXddV9QSZ93LfCZQBJDuArqEzgm6RwxoksCxbWzv7IhdN5CWDZXLZVSmptKSqgF2m4Lps//nTDMtq1SUtKqi0YDtun0vhNkSvE4QRkeUIl8oHFjo/M7KChzHwYUhW8ry94WnIQRpaCmBoy274EHBRV2KoozcJGvsaB1Py/959QDXWSQt/8/ej0EJocnKBeM4PtC8db8ljqZppum8Po8bx3GTZbplmiiwKoWZ6enUXTFJ8HBzs++qAU3TUGDlyDk2F1BCkCQJPM9DtVZLzZTaXSe7Vu5AOiyyf0kURbznTfoDz8O1y5dHbgwlIcnBY0Mcx0i65BH54uA4DmJKm4gBFwYC6cTRq3a/k4NZlhS4ngeK9IOWz+cxPTUlJpRB0alcUWO+C1kzk916vS/3QG6d3Ckc3mp0NK4W0r0gogbHjqFcKo3noNloAvYWEV5CKXoQ8EgDex1PVXQbK/DkpRSaFviMyDJm2oA405FUpAvGiKbowYSbMg0D3nyon4ZRAes4GscxFEVBsVAQXglA+vmenZ2FpmmI4xiPtrYGcqXk5Y/lUgmlYhGGaYJSmnY6dZzUCK1LVHCk966VBGae46zb5W6thvsrK6OcSQKSHDw2UJYOaAceYuYmLXEci1KrKIpSURGrEujZ0IctqNmFuh0pUJiTYoV5sg/bv6DpGtr9nPkNFAsFsVvb3d0Vu5z2l0DFwtd2xzui0dEouHX7NlzXxcUDbgRDgL3QauZnbUkg+xpnIgetvxf/BtzZtS7s2QU+W02RXdzb/b51rMhcy0Gkhsxs18YnLHrAu676XcgBt0J2XBcUqQ9BqQO51zUNczMzUAlBEATY2d0dauyaqqKYz6ebCFUFkgRRFHUkCTRJRtbYtM5L2fkgl8sJ/4O7d+6IlKvEcJDk4DEgjiLEHSagbO7ZY8SAK4njJEGt0QAo3esq2OtkPJXAyIbjOPtIQYmVIY5DjNWvkIynLFRVBUXaUrreaLSNIvDwMWkzOQBjMjoaAnEc4+qVK3j++ecn3vo5C0opBtF787uRsHvYmm4h2X8t0YjsOff9y7xXtOVf698iQyL6pR8HQQo4eFtwQlKr4oOyRwZ6GySZlgVQ2nGxC8JQLMYEqUivUCh0vX+GYWBmZgYq0mqn3VptqLHzFJVhGCiXSjB1PSUJzByt3mggZDbNXIM0TmSPmdUfBGEoqxdGhCQHjwFJh7LF1hpo13WRUCrEfLVaTZQR9kUM2PGSJIHDhIYu21lkScG4vMkHVZhrqooKc08E0g90lZVMZXOTfMfRjhgIoyNKUSoUDjRkfuvmTXi+j/Pnzx/YOYFmA6ZBwMPH/VSKtB5faXfOJ0230Ae6jdg0TSjMXrhbaHxS6CQStSwrLbdsiRxwkzHHcZAkCVRFQbFYhGmafZ0vn8uhUqlAUxTs1mqwHWfwMbPcf5wpby6XSjA0DZSRhEajgd1arclqeegnp53QtMX/gM8na6ur2NneHvZMzzwkOThgxGGIpM+wJfc2yOdyqNfraUvYjPthLyQsUrBTrcLrgxSMslfqqA7vAUIICrkcKhl/Bs/3Ua1W0+gGpYjZcVuv+cCMjtogiiJcvXoVJ0+c6J3aGTOGfZ+SDmmFJwHtnubWsrVxoNvxuPZAeQzRA6CzQZKqqjAMQ1RTxHEM27aFeJgQAsuyUCyVBhbhlkolUVq8tb0Nb8CUCn+WaMZASlEU5DMkIc6QBO5q2M4WuR/QdtHDlsoP0zCERfS1K1cO/H18WvDkzRJPOWLX3R81aFNJwFMKAOu50OJ+2A2CFOzupjlISlNSUChgempqnwHKqOAfvVFChpqmocJETqqigCL1cKjWavBZCiQ7KTwOo6Msbt68iTAM8cILLxzoeYEhTGSAJqX4k0gOOmHsqYUexzNNE4R1MXws0YMO4zNZJ0nXdUWonrCfl0sl0dp5GExVKrBMs+8Sx6bxZpxYW4WNPB1aKhRS/xVKEYWhIAnDtudut9S3pixyLNpS393FXSlOHAqHZ5Z4ChAHAZDxCOdoNwG6rpuG6rBnT1pucT9sBV9Qd3Z34Xie8FIvFQpppIDlVDuJDYdh2K0li6PC0HVUymXk8/lUIMZIQKPR2PNXf0xGRxxRGOLq1as4cfKkSPl0xRh3LkObyGQm4ieaHLTcq4PUHfDzWSy98DiiB8D+DoeUaYy4pwCQfk5KpZJYBEcBIWSvxDGOBypxBCDcC1v/hiKNVvF0Q6lUSjcmGZLgcBv2QdBlbPxO8OgFCMFdVmosMRie4Fni6UKSJIjbCIo6hRJdx4HreaLdcrFYFKU6raBI63u3d3ZS0xNOCnj6oM8c5KAYtsNiLxBCkDPNvZpqStPabSZarDvOgRsdZXH9+nUkcXzgWgNgeL3Bk9pT4aDRl6+AYQjtwaBmXWMBC5NTmvY4qNVqopJEZWQ4n8+P9b0UJY66PnCJI9cdtL4+SZKmuS1LEnROEqIItm2nTeXabJw6nLDjr7LpCk3TYDGPiJXbt6X3wYB4tmeKAwRljYf6QcCcD33fh5nLdXQ/BNKowu7uLhwWplNVVTRB4urrVnQqnxpmlzTJZZmrj4uVikiFuK6Lzc1NOK4LwzQPvEdAEAS4dv06Tp4+3dV4alIYdif7JOsNuoEbeB3oOVnlAm+VfNDn51bFjUYjFRCzEl6V6YWG8R7pB8OWOPI0Z5YcdGsKxnf1rSShUa/3Ha3pRPJa04+maUJTVTxcX8fW1pbUHwyAwzVTHFIkSYK41f6Uh+LbPOS7tRpcz4NpmsLEpBUUaQlftVZDFMeghIhIQSdSkEXbHegAO/CR+wIMAJUQ5HI5FAoFRGEo2lrzXZUfBGMN3XfD9evXkQA4d+5c33/TrgHNsBhajMjd5A4ZOWh1iRwZfT4npmGk7ZUpPTDfgziO4TgOavV6WqmUJICiwMrlJkYIWjFMiaOiKKIqCkif0biP+9xEEti99n1fiBa7odfRm/QHuRziKML66ipqQ5ZsPouQjZcOAEmbxauTlXEURahWq4iSBHPT020NfcIoSl3QmGugbhgo5vMD++VzC9JBKw0OkhiIcxKCOIpgWBYM04RpGAjDEFEcI7JtOCxXzHd8k4AfBLh+4wbOnDqVGtMcMPhubKgyRhY5GNXc6nFgElUL/ZzTNE24cQzf9/d1HR0XKKUIWXOj7IKoKApMy4LOupoSRRlKiDoM8rkc4koFu7Uadms1YZ3cCfzzxntaxAPOJ6qioFAoQA/DtIyZpRoMwxBlnKOApzO2Hz3C/OIi8vn8gTXYOsyQ5OAAQFudzSjt2OOgtruLKIqgKAoW5uaafp9QCsdxREkTYR8q0zBGqjkn6H9HKojEAeb5ubAp8H2YpinCkZRSeL4P3/eRJEmq5vY86LoOq8/OkYPg2tWrAICzZ88OeAHjW9iGvesicvCEN1x6koK+pq7DV1XEUYQgCPr2D+gHosthS9MiXddhmGaTvojStL30sOr+YVAqldLyQ9vG1vY2VFZ50A5ZcjDKGA1dh1Yqpd1b2T2Pogi5DpGTXqRRIUQ897qmIVQUVLe3YVkWZmZmhh7nswJJDiaM2PeRsFpkAGk6ocPujXc6o0mCSrnc9IEIwhAN2xa7B9M0kc/lRu6uJ3z6+1jAxlGyOAy4s6OqKE3togkhyFkWcqYpWkyHUYQwDBGGIVRVhWkYfaVZesHzPNy8eRNnz54deJEYhHx1wyjHENbJh9S4iLs7jn6w/uvreeWCE0XwxhQ9iNiiF4Thnv21osDQ9e5Rr8xCd1CYqlQQsc/V1s4OFufn2y7SWUEiN0MaFoqioJDPIwhDuKziyrZt6KxcuWMjsjagaP7smaaJRw8fojI9jSAIxmb+9rRCkoMJglcoZB/oTpNLGATwgwC+50EzDFGel1AK27YRBIHwKyjyuuExgRCS2vF2iQhMqjKhH7i+jziORVOofSBE9KCPWRjYD4I0h8vayhqmCVPXhTnKoLh27RoURRk8avAEINsz4UmPHLTFuHUHA8DQdXiahjiK4Pv+UCLUJEnSnTB7jjlUVRVkt9v1EUKgqSrCA+z5wM87Mz2NR5ubCMIQDzc3sbSwsG/x5yOngCifHvW8hq5DU1V4vo8gCBDyKIJl7UUEBzRSUlUVJAiwtbkJ0zQx1xKZlWiGJAcTBG3RGnQSIPKdMWXd5wghKBaLaVtm/nNKYVkW8vn8RCZK7qtP2xCEx0kMojiGz0pA+7l2TiByuVxKttiE7LP0A594RBe3Pu6l67q4dfMmXjh/fqhUxViiBiPoDbK56n6eHcr+Jk4SJHGc7t5YnbjPJmtVVVMb3HFpGPoQ0I5FdzDgMXh0ym40hPagn8WPmygFjKRmDiiev0FEhq3eBwcFXuL4aHMTYRTh0dYW5mdn9+4BpSKqwyM84wJRlJQMaFrqlsrmSV3XYVmWaCjX9YxsXPzZMQ0Dmw8fYmZ2Fp7nPZaKo8MCSQ4mhCRJkLRWKHSAw3oJ+EEATdNAkYaxgyBILY+ZkdEkRTRZh7F2H7bHQQwoMztKAGi6PpCzIw8JW6aJKAzhs4masvvsBwEIWI7XMLru3q5cvQpV03DmzJnxXNiQyO7QAtZTgveWiKIoFYQlCeI4TluCs+/5rjVhuWu+6Iuvmdfy71sRxzESSvHb3/626VkgigJVUaBoGlT+vaqm5EFRoKqq+Bn/v8J+pqqq+HsgFdpapokgDNP3zrJEpGNs5GAI215d06BqGiL2DHVaUOI4RsBSWklLzT63QNZ1faidNVEUEEYOD5ok8BLHh48eiRLH2elpACkZyEYLxqWLEK6LzACqWCikz3oQpELkKIJlWX3PCfz5UVQ1dYJ8+BAme8Yk2kOSgwmB+n7Tbq9TdULg+6mhD/ud7/tQVRU+W8jyuRxyuVyTZmGSYkBBENgE+jgqEzg830/FmWCd6Ya8bk3XRSvnKIoQhCGCMBQmN9xQiROQbG7ZcRzcvn0bL168OHw5WT/vGaVCN+F5HnzPgx8E4nvbcVLxJfs90JxT5aFnQsjeYqyq0FiZGUW6QOmaBt0woBDStEgrmUV8388UBbZt49PPPsMrr76KXC63n1QwMVrCSAonE0kcizbIraSE56h5gx6xoLIFnIAZ2VgWTMuCwfQjlmWJn1mmCdOyYJrmxMo0ee8CO1O5wBfDKKNxaVoYCYGmaWm6S9NGD7UzS/GDrFrIgpc4bm9twW40oDHPBX7NreWM4wABBJnl74Gu60KX5bouwjBEjkUReh6PEQTTNLH56BFm5ufhui5yB9ji/TBBkoMJIEkSJKxCQfgJtEsnxLFow6prGh41GrBdF/Nzc6LDWtOCNCFBUuuOjI+3SUh5wIhYzTcohZnLjW3XyIlCHnsTexCG6Q6bTfK246SLqK7j0qVLMHQdp06dGuqUvCOm2OWz73mVBScDHhNfZRd8LsC0TBOGaWJ6ampvYWSLpMkWR62LlsBxXfieB8M0u5akdcPOzg4AYG52FlNTU0MdoxuCMITdaIidos/vESdLvi/q7jlxAtBEJPi9EsShhUDwSNIwDboMXYenquL5UBUFURTtIwT8udHGQAiyIEifJW5g9jjMfLIljjvValMFAxe6TqKiQskQIu4QyVOGURShbtvI9RNFYM+JqijCGIl/jh7XPPckQ5KDCYC2phM6PHi8NbGiKHBsG4HvQyEEU1NT+z3T+WRwQA+xiHY8JjiOk3rK63raJa+1HHQM0DQNmqalJilsd8u9E8IoQq1ex8qdOzh79iw8zxOvbxdB4O1z67Ua6vU6arVa2mCm0UDAmuRwZBf8YrGIubm55h0x+17TNLEQ8IVhGAzSqvmxguXjS8UiUC7v+zVl+W0gJdZ+EMDj6ZUWMmE3Gtja2oLP3lN+fBrH0A0D5XIZJdboq1QqoVQuI5+N0DEklCKOIkRxjJjV3ydJgkKxmGoumBiWRwkm9ZnJEoJBKozGjWKpBM/3EcYxtqtVIVDsZKE8DhAAyBAEnjLkWoSERRGSJOnuP5J5bwzDwPbWFuYWFuA4zoF3Vj0MkORgzEiSZK8lc5fyK9/3EfKdB6XwWWphemoqbRiSxYSJwb4phtKm1qiU0tT6+YDIguf7YkIv5PMiujLJs6uqihxL4fAa9Js3bkDTNCwvLwudQsBC/a7rwnUcOLaNWqORhvpZUyTu+jY3P4+Tp07ByuXErpU3vxoII5bxNYV+DzMyegGiqul97SMkHMdxU3qmxgjc9vY27ty500SeiqUSisUiCvk8LPY85PJ5qIwIKJoGGkVQCEGhUBAEbtJQFKWJHCgYr/ivH3ByNjU1lc5fcSz0B0JzwFOpY74nPJqZjZioqopCPi8qGrjfSa9mVDz1Zug6Nh8+nKjQ+zBDkoMxg7JFTaj+2zxwCUsnRKzWWdF10CSBYVntJ7uD9hVoOR8hBJTtDCYNbvSUICUGTeHyA7oPCkmtmVdXVzEzPY2V27fTBYW1yk2HwiydczkszM+jWCyiMjWFcrm8Lwca9dtQpgNGveuCHDzBZYx9X+MQmhtVVVEoFFAoFDA1PY0jR46I38VxjEa9jt1aDbVaDTbrAPro4UOhRQF7r4ulEor5PAzTRJIkB7ugELKv6uQg0wuUUpH7VxQF09PT2Hz0CK7rwmbpKhHlohTqJCqqWvRQ/GecDPBNRZIkqQdMJzLM/t7QddR2dxHHMWzbRrFYHPuYDzMkORgzaKYWue3EwXwLfN9HHIbI5fPQDQOarsMLw8djzNFno5ODCGXatp3mnVV1n5J4EtNwo9HAzs4OGvU66o2GSAdwsdzW1hZK5TLK5TKOHDmCYqmEQqEAwzCQJAmiKGqarHjJpKIo0DMpCMJDrwcMSqlYVJ5oA6Q+ymVFue1Qh0/vQxRFCKMIcRQJ0SQAlNl7DKRkQtU0UOaTYdu2SBWtr63B8TxhXW7lcigVi3tpilIJ06z98TjRrpSRKAroiMSzF3hZa7aaCQAsy0KxVEK90UB1d7e5Mdwk54gO1SamaUJRVbiOgxhpyjafz7dPpfGoaJJAVRQ06vW0z8OYO10edkhyMEYkSZJ+WLso/F3XRaPRQBRFKLCmSjnLQrVaBShtFtUcsM4gPWXnnRmvuJhUmiFgpWKgFMV8vql0bxxIkgQ7OzvY3trC1tYWtra34TMtg2lZKBWLmJ2dxfPPP49r165hanoaP37rrZ67wziOEUWRWHgSptznqYiE+VQQknbWayrvY993gqh4GfJe81bNj4ucDIwR/Q64PoNXRcSsCiJmCxySpCkcTwCojMTx9yZ7nwrFIubn55vOYTca2KpW4ToOwiBAvV7Ho81N3L59W2hDKpUK5ubmMDMzg9nZ2fbmXQNAaVMJQDDZ6gVuatQJ5XI5JcNhiJ1qNXUOnfDmoVV/IH7OxKBKoQDHdZGwaEC+k/UyIAh8o15HsVRCo9EQBFFCkoOxgmYV1G0QhiF2dnYQhaHoMmiapijtArA/cnAQxICxcdrn+SaRZuBOkBTo3IVuwHvhB8EeEdjaws7OjmhrPTM9jZMnT2JmZgbTMzMwM6RsbX0druvizR/9qK9FmS8q3FY5juO0IRTbnXKrXEqpIBHNl9W+rFBV1X07tkHBJ/enJp/Kn9WMSRMvo+SllZ2eSgIAqgqDkzRGCAa9N7lcDqUoQiGfR6lYbHKdbDQa2NzcxPb2NtbX13Hjxg2ApK3HZ2dnMTs7i5mZGVQqlYHIGsloDrJQCEEygfRCNo3QCYqiYHpqCg8fPYLPhLy5A/ANIGCpzzbXzHUIDmt1bdt2+0ZLmb8PMq8tFAqH00V0ApDkYIyg3C+9g85g89EjRGEIXdcxlQk9hmGYNldp2bUcWMSAE4MBMO40g+O6wpd9nyCTn7PHMer1Ora2trC9vY3NzU00Gg0AQM6yMDM3h5eOHsXs7Gw6MXe5tzdv3sT01BRmh2zOIsgCI3pxZuHKGg1FcSzcL+Mowr4AMYvUcFU8V4Xz/xP2fbdFRojtnvQJjz9HLGdNuW8C/z7zNQzDrmI8fk9azZn4AjvqQqqoKkxdh8cEqtk6+WKxiGKxiBMnTgAAgiAQ5HRrexsPHjwATRKomiaiCrOzs5iZnobeJaXYLWJCSNp3YRyzRac0QicYpolyuYzdWg12oyEaok0aCoAY7ecE3p/BcV3EUQTHcUQpqwCbpxV2X33XhZXPo9FooFKpTHz8hwGSHIwJIqXQRigURRG2trYQMAfEuYWFpq5rIXOvE+z2oNMJdLhOi01phhEmhDAM4TO1f7FQ2PeBbzfZxHGMnWo1JQObm9ja3k5TEgAqU1OYX1jAhfPnMTs315FstEO90cD6+jp++MMfjnW3zRf21ogIZUZBURtDIXAToV4HbyEP/HtCCHzPQxTH0BgZ4QI7nr+fVBtiYC8dlH0+kpbFn2sBPN+H67pQVVWIPnsdnxs5aS2mT90snccVgjeYkyPvt9DpPhqGgeXlZSwvLwPIpLa2t7G5tYVbN2/i8pUrAKWYqlQww8gCT0Xw4/YiB8qY0gvDlCKWy+X0/fM81Ot1lA6iLJAv7Hy8rV4tLFrTsZKBv1/s73zPg5XPi7LGoQ3PniLIOzAmUN9vu8CGvo/dWg2e60LVNMzNzTURAyC1jaVZcgA8MTqDftAkEhtQi0ApRcNxQJGKilrvDUcQBKjXatjd3RUpAh5tmZmZwalTpzA7N5fuwEb4YN+4eROmaeLYsWNDH2MQEELS8HYb0hBHEUKmYRG5dPaV7+4oIxE8DNwafXBcV6Q3WtMZmUE0LW5ZR09OJnhvBYc9x00EgC3+/PthaGLMiIIgLlmSoyhQAPE9gPH2dRgCXKPAbc+71tdnoCiKWPx5E68G82TY3t7Go0ePcOvWLYCktfxzc3OYnZ2F4zjNPRpa0C3U3gvZaMGwmJ6aQq1WQ8hMiWYPQFidvWbKnrvWJne8csjzPFHJUMjomfjz1qjVMLe4iDAMUa/XMc3soZ9lSHIwJvASxuzD6XkeXNuG67rQNA2Vqam27X7DKEKCtLRm0vbIbTEG/YAoM1LVlCD0CcfzEMcxFEL2ibZ2qlWsra3h7t27qNZqIJQin89jbnYWx597Ls3dlstjU+EHUYSV27dx9uzZxx6G56ShV/khJw1Z8pDdlSusckLVtL28det73RJqb/ck8IWpnWai63Ug85nIpElEhIMt8noYQmP9B0o9Ssp6CeUOCqZhIGLmWf2Sg3bgqYjnn38eQEqEt7e3RTriu+++S7UVlOLjTz7B0SNHsLS01KRPGsb7gGLv+Rk1gqTrOkqlEqrVKuqNBkqsomfSUAhBTPcaP7W7epPZXXPH1YZto9ASTYxYBQuQisaLxeJEe9kcBkhyMAYkcSxSChye48Bl7m2ariOfz6PYQbEchWHqc3DQZYwTyA0KNXEfqYYoiuC5LkAp8mxBePjoEVZXV7G2ugrbdWHoOqZnZnD02DEsLy9jaoJq4jsrK0iSBCeHtEoeN/p5d3gFRCdwXUOpVGoKlWZz7zS728/+LPM9T9nkLAsFnvrJpCfA/8/D4Jnx9QOaJAgPoKJinE+8bhhQWdomZFqiccAwDCwtLWFpaQlRFOHTTz/FxsYGFELgOA4++/xzKIRgbm4Oy8vLOHLkiEhB9ON9wCM8nEiMK7WUZ2F5CmC7WsXC3NyBVMj0k1LRWfMm23GQxDHqrJKBj09RFNSrVcwtLcF1XdTrdcwMqTl6WiDJwRhAg6BpYuQd86IogqJpMHQ99bRv8yHkYjUgZd8HHjUAJkMSeugReDohjCLUdndx6+ZNrK2vIwxD5HM5LLFJb3Z2VvQGaBd1GRcSSnHj5k0cO3Zs7Irroc1qRnxfsgt86wIwqN6AE1d9wO6YA6OfaplRDo/xEQRCCAzTRMx6P4x7p+l5Hj766CPYto2jR49ip1rFBx98ANd1sba2hrXVVXzz7bf45ptvUKlUcOTIESwvL6eRlw73cZJRFwKgUiqhYduI4xi79TqmD0Lcx9NRhHQlCbwvg+04oEnahrxYKKSfA0qxs7OD4ydPil4nQRA8Ht+ZJwSSHIwBWeOjiKljufDKYL3HOwlceKWCQsjBimAOQFEMtNcjuK6LO3fv4sH9+9hm/g5TU1M4c+YMlpeXUalU9uXAJz3mjY0N2I0G3njjjbEfe1j1NsVoC2GSIWaHwuNgAAy7yI/7CTIMAy6LHsRxPLZ01O7uLj766CMoioL3338fN27eFFqaXC6HU6dO4dSpUwjDEBsbG1hdXcW169dx6fJl5CwrFUEeOYK52VnxWUro6JUa3UCQVnKUy2XU6nU0Gg3kDqAtskhp9kF6eCVDg/XIcFxX9NRImFtmLpeD4zio1+uYnZ2d6NifZEhyMCISJiYkhCCJItFZLo5jGLoOTVW77kR5WZb2OFIK2VzwhCeNeq2G1dVV3F9dxfb2NhIAU+UyXrx4EcePH+/a+ER8+Cc2wlSIODU9PXT5YjcMEzkYR6tsETVg+f0nGfzu9DvKx9WZsBWKonQsaxwWDx8+xO9+9zsUi0W8/fbbsCwLURS17Sap6zqOHTuGY8eOIUkSbD56hLX1ddy/fx83bt6EpqppimJ5GQuLiyOJdfuFZVlpkyrXxU61ikXWnGmS4Gmufp4J7oZYr9XS1Kbvp1UMALYePcKZF16A4zipi+0YCd9hgyQHI4JHDZIkScNp7OHkUYBcodA1VBoxcpA7KHJwQGWSNEmwvb0t9AMN24bKJqqjR4+iWC6jkM+jXCr1PhgnBxNaDGr1OjbW1ycSNRgW47hSbqz1tEUNAEyc0A4CwzRFh8hR2/+urKzg66+/xuLSEn705ptiYQqDoOfCrigKFhYXsbC4iFdeegmbW1t4sLaGtbU1rNy9C1VRsDA/j2WWfhj7jj5z3eVKBT5rgc6bM00ahBCQJNnXG6YdVEVBLpeD67rwgyBtxGQYqFWroJTCMAwEQSDEic8iJDkYEQlTuDq2jThJ0oYjhCBmAkOtB+vk3QcnmsfthTFNsjRJsL6xgbXVVayurSHwfZimieXlZbz86qtYWFhAEseo1WpIKEUhnxfiqK5ObFy/MKFc6c2bN2FaFo5OqnxxiPtLhiwJzCI5TCmFYUrwejw37V4/CfA23jSKBiprbMV3332H69ev49SpU3j11VebfhdFUX9RCfbcJACmZ2ZQmZ7GxYsX4dg21tbWsLq6iq+++gpfffUVZqansby8jOPHjyM/Bm+CrN25qqqYqlSwubWVdi81zZEtpPsag6r2NU9wXxluc+56XupDoqrY3tpCoVgUHVglOZAYGEkYAqyXOF/kTZav4l37uoLStIyx1eNgUugwOY46ZbqOg5WVFaysrMB1XZRKJTz//PM4cuQIZqanm3YUjUYjtUjO6DCyZjntJnsuGJrE1B5EEVZWVnD23LmuPQ5GwhC73LFEDg5DwyWGgR06kaZLBrmvk7wLo5Q1JkmCzz//HA8ePMArr7yC06dP73tNGIYodajUaVt1wj0q2O/yhQJOnzmD02fOIPB9bKyv48HaGq5cuYLvL13C0uIiTpw8iaXl5dGfF3ZOi/UrqTcaqNZq6WZpwmkNAmYp3eu5YL/n9vVRFAmB4tajR5idm8Pu7i6CIEhTOs+gKdKzd8VjBA0CBL4P3/NAkdYre54HgNXW9viQUSCtraV0okr89GTjXVppkmDj4UPcvn0b62trUBQFzz33HE6cPImpqam2fxMGgSBRWR1GKyFoJQnC0WwCO787rFnOqZMnx37sUTBKsyUOQQ4OQ+SAYZArHlSUOEmNwrBljUEQ4JNPPkG1WsWPf/xj4aTYinYLVGtJ4j4QApX5AGRhmCaOP/88jj//POIowr3793H79m188vHHsPJ5nDxxAidOnBhcP9HmeS2XSqlLIUsvzE9Y4Ef6IAatv81ZVmoyxQSK2NqC67owTRM+c+4s9ZP+fMogycGQoFGE0HXhui4oIOqMoygCISTN5/VY0IIgAEU6eR8W0YvneSJKYNs2pioVvPrqqzh+/HhbwVQWDiNRlmW1NfdptYoV7nsZtfU4kVCKG7du4fjx45NVVA+4yI+DGAB76u0nXYzYhAHGOnDFwgR1CsOUNTYaDXz88ceIogg/+9nPOpJqII0cCM0BTx3040aqKCBx3PE+qZqGE4wMVKtVrNy6hWvXruHylStYXlrCyZMnsbC4OFA0IXsuwpozPXr0CL7vo9FoTDRMn3VJ7EQGW3/Oo7w2Iwie7+P+ygqeO3VKkgOJwRE6DmzbRkIpLMOAaZqo1+sA0qhBV2tX9nDylMLEQ1ajToiU4uHGBm7fvo1VFiU4duwYfvTmm6nNaB8Thx8EiMJQWJr2QtbxTMlYpI4T6xsbaDQaeHPCQkTyGFIKwOGMHAwCMuBiP2mKNEhZ49bWFj755BOYpon33nuvZz4+DEMoqtrcdbLPBVtRFNG6uxumpqbwg9dfx0svv4z79+7h9soKPvzwQxQKBUEgupLoDhE+wzBQLpWwW6+n6QXLgjHp9EIHnZKwHG8Bb/hm2zaiKML6+jqWjh4VG75xmlwdFkhyMATiIECjWkXMFvZcPo8wDJujBt3APtQh0ywYk9y19jN5drBs9j0Pd+7cwcrt22jYNkrlMl555RUcP368awe5dscXERbmdd4vREMhQtIGRGPc/d28eRPT09MTd0J7XJr6wyRIHLSUcahzTLi6IVvW6AdBx4Zf9+/fxxdffIGZmRn8+Mc/7rno8BbgGmvhPTD6dE7k0HQdJ06dwomTJ1Hd2cGt27dx5coVXL58GUeWl3Hy5EnMLyzsN9YCOn42i8UiXNYEqbqzg7nZ2Yk8l9z4ixACQikSND9T3Z4vVVWRy+fhOg78IMCtGzdw4vTp1AbfdSU5kOgOSinqW1uIoih13GJuZEJrYJrNUYMui1nEeiocRO1xV2Q/5JTi0eYmVm7dwv3VVRAAx44dww/ffHOfuLBfeEGAOIqgKMpQ4XvRBIjV/tOW8Q4DXr745ptvDvX3g2DQsP44PA54V0fgcJCDYd/HgfwOFAXo0rxoHOBljT6vnW95769du4bvv/8ezz33HF5//fWOzwbve0ApRcB0Or3Sdt3AexAMBEIwNTOD12dm8Morr+Du3bu4vbKC33z4IYqFAk6eOIHnn38eJv9Md3nOiaJgZmoKG5ubaXMj20ZlAqF67nfAx6O0RA96pSZ1TUNiWfB9H1ubm5hdWICu63BdF+UJWrc/iZDkYEA4tRoi3wchBIViEYSQ5qjBAMJCnlefmN6gj8mAvyLwfdy5excrt26ljVNKJbz00kt4/rnnBosStBmD57qglCI/ZA14tkQq+39geKJw88YNGKaJI0ePDjyeQTHIjlXYTY8qRjxEBkhZDDrWgXQHB+CLoGkaNF0HDcOmskZKKb7++musrKzgwoULOH/+/L6x8Q6DSYYcEqReKABG27kOGD1ohabrOHX6NE6dOoXt7W3cunUL31+6hO8vXcLRI0dw8tQpsVHqdJ81XUelXE6bMzEnwkmkF7LPhNhMZCo6esE0DCRJgjAMcW9lBafOnkXMKlGeJTtlSQ4GQJIk8Go1IUDki7rnugDaRA36ON6o7ZI7os9JYHt7G9evX8f9Bw9AKcWxo0fxg9dfx9zs7FjG5bEcrKqqQ1dkEEUR+cNWS+G2RKHHAuuHIVbu3MG5F16YXPniCHgmxYgHsHAf1J0wDQNRFImyRt486eHDh/jhD3+I5557DgATz7HQN6VUaFNax8krfEbVJg0VPWgFIZiZncXM7CxeffVV3L17F7du3cK93/wGxUIBR44cwXPPPYdO8cFioZA2pQsC1Go1zE0gpdd6hU2ljX1eP3/fHNvGzs4Opqen4bquJAcS7dGoVoEkEW5aQPrBjeK4t9agy2L1OCbwnWoVly9dwur6OnKWhYsXLuD5EyfG+vDTJIHreQClyDH/8mGQrWJI2P1v+7q9P+hKFO6srCChFCdPnBhqPINiIKOeMZ0zPmRixEFFdgIDaFAOSvuh6zpURUEURajVavjss8/gOA7effddzM3NiZRB1ruj21XzFtmjpBXSk4wWPWiFbhipd8Lp09jc3MSNmzdx/cYN3F5Zwflz53Dy1Km2UdFypQLv0SO4rpu6So65jLtdNKlfUaY4BosCu56HjdVVVCoVeJ6Hcrl8eAj3iJDkoE/EcYzAtgGkjU/4JNYUNej00HTKK07KpKbLh79Wr+Py5cu4f/8+isUifvTmm1haWhoo4tEvXM9DkiTQNG1k0sEbOPU7sXUiCkmS4OatWzh+7NjEG8IMhXG5VXK9wSGZyMT7OkRa4UkDIQSGYaC6u4tvfv97EEXBe++/j2KhMFRHRB45GIc2SVGU1FtlnM8FIZibn0exWMTuyZO4e+cOvv3+e1y/fh3nz5/HiRMnmuYXwzDSygDXRa1eHzs56EQYB733uq6nFtBBgJ2dHczOziIIgsl70jwhkOSgT9R3d4EkgaaqgsH3HTUA0ge2n7rkCcF2HFy+fBl379yBlcvh9ddfx3PPPQeFEEQTEGklSZKaQ40YNeDgpY1DWRHvHQSPHj1Co9HAG2++OTY/gXGiNW0yLA5rX4Vhrn1gv4MJg1KKne1tfPnFFzBzObzz9tsdKxf6QRRFoBg9rcChKMrYPUOAVOdimiZefvllXLhwAZcvXcJXX3+Na9ev48KFCzh+/Lj4vJVLJTiuiyAIRGfEsaHDtfXlnNgCyzDgOA52d3YwNTUlzJGeBUhy0AeiKIJn29CRRg34BNZX1CCLFrtX0TVvnAtUSxjddV1cuXIFKysr0E0TL7/6Kk6cOAGttaJizHA9T3g4jCNVwXfAo05p9+/fR7lUatsIZiLvxwAYR5VC9lgAJhIRmgTEeIf428feoTEjJqSU4vbt2/j973+P+fl5vPDCCyNHb6IoAsH4hMtkQhsVUUKoKCgUCnjjzTfxwvnzuHTpEj7//HNcvXoVFy5cwLFjx6DpurBW5tGDSRJZkVIYsBRa03WomgaX+drouv5EbiomAUkO+kCtVoNC0/4HmqYhoVREDXqW52Xz3S0Ppcg3jvtDQQi8IMC1K1dw89YtqKqKCy++iNOnTrVtBDXunVecJPB5hcK4mq30cD3rBxGzij137lyHUzR/4LlD48hRjz5fN+73ADh8kYOhFqwJOh+2A21D8Pn5v/32W9y4cQNnzpzBCy+8ANt1EYThSCmskLdrHteCxLxDxh094NVX2VGWSiW89dZbqO7s4PvLl/HZp5/i6rVrePHCBcwtLMBxHIRxDMdxJuacKCqAMET0gFJYpgnbcbC7u4tcLgefdd982iHJQQ8EQQDPtmGx8Dh/rPqOGmR/14EkjI2Dspro69ev4/qNGwCAc+fO4ezZs93zlWOeXF3HSf0bDGNsxiH8Ho8yoa2trSGOIhw/fry/c6YnbvrZJHcN4+jEyCE0B4eEHIxqgjTJ96UtGWhBHMf44osvmpsnMfOviDX2GTYtEEXR2L1QBnWX7AeUeWu0e+ampqfxk3fewdbWFr6/dAkfffwxZmZmcOLkSWiahlqjgXw+P57nNXttlCJOkubnahARK7seXdPgseiB67qSHEhkogaGAZWx7TAIRNSga/6ph8hqnF3zojjG9evXcePaNURxjDNnzuDs2bMwD7j0JopjBL4PUDrWPKKY+Edo23z3/n1Mz86iMEJ7WuHbDhZxGWMqYpzEYGJi10lhhPtIgP46NPazIGQIGo8c9UIQBPj444+xu7vb3DyJEOiGgYQ1HhqWHIQj/G1HMIOgcUYPkh7zHQDMzs7iZ+++i41Hj3D50iV8+cUXmJqawtKRIyjk86iMwWgoGwnNekZwDHLd/Hk0TRO1eh12sYharYapqamnPrUgyUEXuK6LwPNgUgqLLXQUaHZD7Ddq0PpzHuoa0ecgjuPU3vTyZURRhBMnT+L8uXMDMdtxphV41MAwzbFOaApGG6fn+1hfXcUrP/jBWMYjTGo6VaK0LHb95MXHtftNMvnVwxI5GHUXO+izse+9GDJq06jX8dHHHyOOIvzspz/FVIuWxdA0+KwbKR3SBGxSLYO5xfBYPvuZ+9nzGgnB4sICFufnsba+ju+++w5Xr1zB6toafvDyyyPbmYsW1mjzPmOIOYR9jizTxM7WFvL5PFzXHV/K9AmFJAcdQClFvV6HGkWwcjmorJRuXFGDLIaZMJIkwcqdO7hy+TJcz8Nzzz2HixcuDLdbH1OIMWJlP+OOGgBIxZwYPq1w/8EDUEJw7AAcEYH97ylB89h7takeBY9bWDkMhvY54H+G9pM+v6+Ups6Dw5QSdsLW1hY+/vhjWJaFn37wQdsWx5qmQVUUhHGcpgeGSLOFQTAZX/8x+h5kj9F3tIoQLC8vY3lpCd9fuYK7d+7g13/7tzi6vIwLFy+iPKS9MvdDaddgCWDEXlE6/n4f2LUZhoFGtYpGvY6dnR1JDp5VOI6DKAhgECK8wweKGgDdJzpKh26Ms7u7i88/+wy7u7s4duwYzl+8iNIIofJxwWHNlSzTHLsltMJsgPv+QLfg3t27WFxcfHwOZ2wi3ge2c0syoqlRF/WYlTE+ie6PHTHCAiVEcNldcEYcJ3aSYyQG9+/dwxdffonZ2Vn8+K23OhsUEQJd01KflCE7+03S139c2gMRvh9SUHr65ElUymVsPHqE1dVVrP71X+OFF17A+fPnB54facvXtqcEmmyVe42PaynyuRwePXqEYqmEpaWlyVnfPwGQ5KADbNuGFsfI53Lgj+bAUYNuGDJacPXqVVy5cgXFUgnvf/ABprv0gO8X49hfhix0CqDtDmpU8N3IIC5nHA3bxtbWFt44gCZLA4P5N2Tfg2xZH22NQGRd9XqlNA4ROWi9puwnKLvAt/s7HjVozS+33p1xpc6uXr2KS5cu9WyexGEYBnzfRxSGSCgdWAdiOw4WlpZGGXJnEAKVjG6rLCoVhiS2lmXBsiwsLCzg6NGj2Hz4EFeuXcPa2hreeOMNVCqV/seC/gyP+o6aZMo+c5aFWqOBWrWKarWK2dnZvsd12CDJQRtEUZRGDZipB5A+cO4gvgY9fs8niX7DybXdXXz++eeo7u42M+rHWd+dgeN5adTAsqBMgE1zhj7M7u/evXtQVRVHuFDsMaDne9wh5bDvr7gZFNC2LwfhoXNKBTnYJ6zL7JgmkXpoGhf7nnT4OX+92N3T/W12e+0AxfcTLmmklOKrr77CnTt32jdP6gBVVaGqqiiBHkQkHMcxfN8ff5ouizFoDyirCBjleSqVSvB8H4Hv4+Tp0zhy5Ai++OIL/PJXv8L5F15IPSP6ILz9zhEE2PestX9h5vNICHKmiXqjAdu2JTl41uD7PhSaGvjwxyKMovFFDQDRRIirhjshSRJcu3YNly9fRqlYxPvvv49pLnp6QoiBHwSIwjD94EyoxEchBOC5RAzmHXD37l0cPXr08YYAJyBGbPt6do/4jhBoX5KZ/X+n3VN2Z0VZk7CmhRztF3Ee4s+coCncj5bvaQsxGnZ56SZKHPWTEoUhfvfpp3j06BHeeOONvsthOXRdRxTHA5MDviGZaH6bCe6Gicpx8MjBKNUxpmEgl8vBdRzUajUszM3hg/ffx5UrV3D5yhWsrq72jCJQDLaBUPrVHmSIp65paLCSxqcZhyfueIAIggCE0qY8YhAEANIQYc8KhQE+IEqnXDTSaMGvf/1rXPr+e5w7exbv//zne8SAn+txg9Vyi6jBhELZ2WjEIKKynZ0d1Or1gSfzsaPLezVKOLbt8QaMChD2DLb+a/od64zZ9Hetx2nzs0Exyt9PSoDpui7+5m//Fjs7O3j33XeHepb4vBGy1EK/cNgCNIlUXRO6zEP9gKd0Rn0PysViep+YrTJRFFy4eBHvv/cekiTBL3/1K1y5cqXtHEApTfU2E54XDcNAFMewbVukUp9GSHLQAkopfN8HSRLRa5xXKQCA0U1QlBGV9XMegTbK9StXruAXv/wl4jjG+x98gIsvvrhfYDamyMG+nd4A8IIAcRRBmWDUgINf/yDk4N69e7BME/Pz85MaVl/oOl2NOQIk/DMOi+bgCa6uqFar+PWvfpV+Dt97D3Nzc0MdR1EUaKoKRVHEXNIPXMcBxQGQA4zoiTGGyAGQRliKhQIUQlCr18WzPDU9jQ9+/nOcO3sWly5fxq9//Wvs7u7unR7Yb3bUBwgG1+aoqgpNUdCo1+E4zoBnPDw4JLPHwSGKIiRRBJUQqIwchGGYNj5RVfGzthggatBaqcDzpbVaTUQLzp49iw9aowUc404pDPOhphQes0keR3OlXlAGJAcJpbh37x6OHTv22Beeg0wAHbZSxlH6KjRhzNe7vr6O3/zt3yKXz+O9995DccjSOg4ePQgGIAeO40xMx7MPI0QPkjE+c8ViESrrHulkQvdKJooQxzF+9atf4crVq6JEdZQz9/x8tqS+VF2HY9tPNTmQmoMWCL2BrouHLQhDUEqhdcsVDmNmlMkzU0px7fp1fPf99ygWCqm2oJMZyBOiNQjCEHEcQ1HVA+lUpihKKiLqkxw8fPgQrufh+HPPTXZgI2KcTYOymoBDEzngGHFhGWd05tatW/jmm2+wvLyMN954Yyx6FZ3NKVGSIE6SvkpNHdedeEQui2F9D8ZZIaOqatr+uVZDvV5PK8Yyx+VRhCtXruD777/H3Xv3Ui3CsL4I6EN70DK/G7oOx3HgOM5ErbsfJyQ5aAFPKeiZKoUoozfoiAEfjuxuqVav44vPP8fOzg7Onj2LC+fPd5+MJqDK7ibm6gTh+dBLhzEmDBo5uH/vHkrF4ljKPSeJcU4uWQvbw0IOxhY5QJfFrd/7Sym+/e470Tzp5ZdeGltEghACXdeRBAHCIIDax6LvOs5kKxVaMOxzyJsbjWsWKBSLsFlTpnqjsc9WWVEUXLx4EYtLS/j8s8/wq1/+EucvXMC5s2eHSm30rFxoOaahaWgkCeq1GoIgeCrbOB+O2eOAQClFEARQAWFWwlMKKiGdF+xhmDbbPayuruIXf/3XCIMA7733Hl5+6aW0c2KnYw6gaxgIA36goihCxCIq1gF9MFRmhNQPOYiiCPcfPMCxxy1EZOh0d8fdapjvfg7lPmYMi/AoO9c4jvG7Tz/FzZs38eqrr+Lll18ee6rCMAwQRUHQp5DNcZwDd+IbZnHl1VfjIqQKISiVSiCUot5oIIqifa9JkgRTlQp+/vOf4/Tp07j0/ff49a9/jXqtNtw5Bxi7qqpQVFWQg6cRkhxkEAQBaBxDIUSE/Pgbr4/ZWa9h2/jiyy9x5+5dLCws4N2f/nTPU7xT7u8JSScAaYSF91A4kHwoAMJIUz8lV2tra4jC8PFXKfTAOBTeWQzruvk4cRBPdS8S5vs+fvOb3+DhxgZ+/NZbOHXq1ETGoWsaFKQLW7sFrxWO6yJ3wORgGL+IfpouDYpCPg9d16EQgnq93nw+VloLpM/6iy++iJ+99x6iKMJf//VfY2VlZeDzDeJ3wAWmjXpdRFCfNhyeGeQA4Ps+lCQRUYMEELvjruRgUMcz28bnn38OgpR0bKyv4//+3/+Lv/n1r3H1yhVUd3fb1/JPMHQ/yJFpkojOiwcVNQDS6A1IfxbKd+/fx9TsLIpPgK10N4x7YRSRg17kIDP5txsD1y4k7Gscx8LrIPt3/YyfP8vtSh+bxvyYnu9GvY6/+Zu/ges4+OnPfoalSZplkbRTo9JH9MAPAsTMpfVAMWhKij8TE8i9V8plEKQmayEjU1ldTRYz09P44IMP8NyJE/jyq69w6fLlgSNzXT83mWNxcuC6LmzbHmvPjicFUnOQARcjipRCEKShMuZw1hYDChF3trfx0ccfQ1VVvPzSS1A0DUuLi1hfX8fGxoawZrVyubRz2dIS5ufnx97PfR8G2C34QYCEmURNpCFMB/AIRcIWrU7hT8/3sba+jldefvnAxjYsOtoC9zHR8n4M2ddlTaJ6Tow9CAKwt6gSXolDyL7X9vPUtJs6acvX7Pck8/9BlhuunWn9m05j3NzcxCeffIJcLoef/vSnB1IyaGgaAt/v2anRZUr4g44cAGyRZD06ekHs4nsYug0Dbqvseh5qtRpmZma6LsSqquK1H/wAhXwe333/PRzbxuuvvz6eSFrLXK9pGgghqO3uIgiCgTrhHgZIcsCQJAlC34dJaVMJI9BDiDgA1tfW8Lvf/Q6VqSn8+K23sPHwIYIggGEYOHnyJE6ePIk4jrG1tYWN9XWsb2zgzp07ACGYnp7G8vIylpaW0lzcWEY0BCiF53kHqjXgIGxHw0uXOqUz7j94ACTJgXVg7BuENPm0t/O3aPd9x8O1OYYoKTtEaYV2pLQdYWiHVjIgDKX6sAO+f+8ePv/iC8zPz+OtH/2oc/OkMUPTtNSRMIq6dmo8MAOkDui3cmHcJl6t4LbKnufBc92+5uOz587ByuXw5RdfwPM8vPXWW31tZAgAqijp57QVLXb1qqJAVRTs7u7C931JDp5WxHGc7sJUFSohIqUAdDE+GiBqcPvWLXz91VdYPnoUb7zxhjBEASGIo0hEJlRVxcLCAhYWFvAy0hTE+sYGVldXcen77/Hdd98hn8thcXERi0tLWJifn0iv904Q5YuKAuMxKHQVtqNJkgToQA7u3b2LxaWlJ0ZBLBYvPuFkwrCtzYI4hlaNcwOkQ1RaNYovQ7voQ+v/Ka+Dz0Q9rly+jMuXLuH5Eyfw2muvHWwpGqtaiJOka6dG13FACHlsz7FC+mvINI6+Ct1gGgYsw4DNQvg9yQEjh8ePH4dlWfjdJ5/gb3/zG/zk7bdh9UG0FLSPdDURezBRoqLArtdFJ9SnCZIcZKBkFnueUsg2TRkKlOLSpUu4cuUKTp0+jVdeeUVM3Fx9H8UxOj3uhUIBp0+exKmTJxFHER5tbmJ9YwPr6+u4vbICRVEwNzeHJUYWSsXicOPsE77vA0iFiI+jtpf08Dp43B0YKdqnBCiwL3UzaMi8H4zTjOagIFIJ4xpzy33mFtCcJHz19de4u7KCCxcv4vwLL4gdYdZzZNLQdb1np0ZRqfCEv5dRHIu5ctzgn6dCsQjbdeH6PkpR1H1DlHn/5ufn8bOf/Qwfffwxfv3rX+Odd99FuR8/hE7Rg6aXpNG5p1WQKMlBB4gqhRGiBjRJ0oqEO3fwyssv48yZM00TIA+L92Kd/FFXNQ1LS0tYWlwEffllNGw7TT+sr+O777/HN99+i0KxiMXFRSwtLmJubi4ti+wDCtjC0uWa4jhOSROlyD2m3UwvC+V79+5BVRQsT6rFLUMnEgB0XuSG8ZIYFIfOOhnj9Tngx9kXSaBpR8RPfvc7bG1t4c0339wrc2XnbyIF7L2lJNMIqo9URb/QNK1np0bX8x6L3kCAp/F6LJL89/2YOg0Cmjm2YRgwdB1+FMH1vIE2QeVKBe+99x4++vBD/M2vf4233367pw122+hBy+eaf8biOIbjOHvVZk8JJDnIQEkSQFGQAIiZMrZjCKsHMYjYRLT56BF+9KMf4fixY/teo7K0Qj8lTa3nJgBKxSJKZ87gzJkziKIIDx89wsb6OtYePMCtmzehKArmFxYEoSj0mGiIonTdNXm+D4qDLV9shdLF64Ai7cB45OjRsaRaRMh6QBLQEa2RgwnsUA+lO+KYy+DaHcVxHHz00UdwPQ/v/uQnvXsk8BREO0JAWjpHDkkaenVqdBwHhcdcbUOAnhuhhKVkx/nMZYkBRz6fR7C7C9txupKDdu9FLpfDz957D5988gl++9vf4s033sDRNnNy63Fa3+fsfeAaKABoDOmt8CRDkgMGSmmaVkBLSkFR2n/wu3xgPNfFRx99BNu28e6773aciFRNS/N6XSIHHRcQvtCwr5qm4cjyMo4sL4MCqNVqWN/YwMb6Or75/e/xe0pRKhaxuLSEpeVlzM7Oipa+/YCXLz4OIWIW3VwSq9Uq6vV6al4zIPhC0O49nVSIfuxljNkSryc8FJ3FRNIKGexsb+O3H34ITdPwwRh6JHQjA4SFo/t5bw3DgMeqFtqlFhzHGbrR09iQEQG3BfMd4VVdo4KXx7YrV87n86jV64iTBJ7nDSwA1HUd7/7kJ/j8iy/wu88+w8uui7Nnz3Z8vdIiyGyXBhTkoNEYaCyHAZIccGQexqCXXXIXYlCv1fDhhx8CAN57//2u+S3eKyDqRA64G2KnSbOFIIgfI60PrpTLeOHsWQRRhIcbG1jf2MC9+/dx48YNaJqGhfl5LC4tYXFpCXlWUtWJjPhBkPrBq+qBli+2gos425GDu3fvwjRNLCws9HWspDUiMOEFNSuIAzB2U6vsBH4oBYljPCZ/ltfW1vDpp5+iWCzi7bffnri4j2ZEp9mKkXafK14rnyQJwhYL3oSmTc0ea1qBoZspUvZzOHJagZGuTnOQoijI5XKwbRs2a0g1KIii4M033kA+l8O3334Lx3XxyssvtyembebVfWNihKguycFTDPaQU0pFmJ8vgu3Ciu2wubmJjz/6CLl8Hj95552eJUiaqqbiug7kQIjYuiFbFtfhQ2VoGo4dPYpjR4+CAtjd3cU60yp8/dVXoEjzcosLC5hfWMDszMy+UjiPmx495nIdlYnHEjaRZEvYVldXceTIkbYf9Ha+6Y9btDf2hi0ZMeLjvrZBMKkukjdv3MDvv/kGR44cweuvvz4RwVxHtBJtTuJbPqe6riOMIoRR1EQOPM8DBQ7eAKkdWBql3ezCo57j0Bv0UxlRLBTgOA4830fUTpjYj18LIXjxpZeQz+fx+2++gee6/TXXavN88uirY9s9x37YIMkBA2HkIIwi6Ews1PGBb7ObX33wAJ9+9hnmZmf7rqlVVTUtZRyXu1YfHwwCYKpSwVSlgvMvvAA/DPGQpR/u3LmDK1euQNd1LCwupuWSi4tQVRVxFIEoymMvDyQscgCmPOfvUa1WQ9228QoTIrbehSdtqZxEJze+iztMxKAJYxo3TRJ88803uH79Os6ePYuXXnrp8TvY8WvLlLFCUdLUguftSy1wA6SD7qvQCaRD10I+d42SUqBISUY/z62u66kwMQxhO86+hkyDiH5PnjoFy7Lw2Wef4be//S3eeeedpnmbAKA95lROKHzfF541TwskOeBgD3kUhtA1rXtKoQXb29v49LPPcGR5GT98442+WbSiqiCECFvQXueZBExdx/Fjx3D82DFQAJvcgGl9HV9+8QUAoFQuo1KpYHl5GVOVymNdfIQRUpKkRkhME7K2vg6FEMzNzR2IV/9Q6MORcBQcxkoFYLyRgyiK8Plnn2F1dRU/ePVVnDp9+kBKEwcGW3T486woCqIogmkYoJTCdhxQPD4DpFYQtF94kxEiB1l9wSDvfaFQgF+tiqqFUZ735SNH8NOf/hQffvghPvv8c/z4xz9uSskphHQtYxfOoQB2q1XM95nSPAyQ5IAjSZBQKqoUOvZSaHmIPdfFJx9/jOnp6YGIAQAREqOUph+QbI5ywOE3jW/IyZAAmJ6ZwfT0NM5fuADf97G2toa79+7h/r17uHPnDkzDSEWNS0tYWFg40EhC1qKVItVqcDfLjfV1zM/Pi/8/kcg+O5OsVDhskYMxiSg9z8PHH3+Meq2Gt99+e2+ifsLvh6ZpCOMYURQJw7VGowHTMPbmiMc5QCBNLbTRJCVJklYqDBg5oNiz/x4UlmVBZUJuz/NGjq5Mz8zgR2++iY8++QSXL13Ciy++2DTO5oE3R40pUmKUUCrJwdMI/oBzYaCmaX0p+eM4xicffwxFUfDWW28NzJ5VRRETeRT//9n70xg5sjU7EDzXdl/DY/OIIGPhElySTDKTmUkmmZWZzHyqBtTAtICSBKEHI2h+CChhGpA0rVKVBOmHRgJUgy4JKEFQT6GAgiCgJXT/6HkaVAElQa/qvcyqVyQzk/uWXINkcHOPPcI32+/8sHstzD18MXc39wiScQCCZIS7mbn5tXvP/b7znc+BzN/f7cLRxSIUnAC4uC+VSkEURdiW5WkV8nk8f/4chBAMZjJeqeTEBAZ6EFXg10IB36FMFEUQ5tQIeDbXi4uLHVUp9BNckBgmXNkJ3kjrZEQjSORCYJdSfHn+PDKZDFxmztPKzGa7IUsSDMOoiiCur60hnU5XVZ8E9TXbAUJItUsgr1Roo4yRX3vYNEI9CIKAeDyOQrGIcqUSSeolOz6O48eP4/bt2xhIp30PjC3Pap1r5tGF0lsmStwlB4DfYIT3UmhqfAT4u/NrV69ibWMDX331Vcflfdzxz3acxgLIblCb62z18uD5KYXByhdjsRiUgQEMj4zg+Pvvo1KpIM+aRT14+BB3f/wRmqZ5OoVsFtmxsY7zbz4hqL1m9lnEGvOoxYUFOJRirMfGR1HA9/2n9W2Tu8GbaJ0MBEoZO3z/4sICLn33HeKxGD777LNNhT+/1z0gYlGCN/ChjgPHcSCKItY3NjAeHM/B8slAJURfP1VNWaOvlWI9Bloh6F3Q7SYiHo+jWCrBsCyYlrVpcd/F93xodhbra2u4cvUqkqkUMpmMf61NU1Pss5TeMlHiLjkAANeF47pwbBuCIGxNKQQHBhsIDx8+xPz8PM6cOYPMwEDHp5a4KJHvGlqVL/YYwbMapumJ/kRxy0Ifi8Wwb/9+7Nu/H67jYHllxessyYSNhBAMDw/7bo3pEFGFRvXNtRBZlQcnB7lcDqlEAskeW0dHhXr10lHgTbROBrrTHMw/fYqr165hdHQUZ2qEwJzohhlT2wpCIEkSHNeFZduglKJYKiFdI7YLvp7WzEn9iioEyxq5+VErlX83KYRGkGUZmqqiousolctQ2Bzc1RkIwalTp1AoFnHx4kV8/fXX0DStpciR6zEqrFHW24JdcgCAOg7guhAI2VTlBga8v/Ngk1c+n8etW7dw5OhRTLZw2WqFoAWnj15M7h2kGrgjotqifFEQRYyOjmJ0dBQnTpxAqVRCnvkq3Lt3D3fu3EGMNYviWgVJkjYd6NqcNLgxleu6cB0HuVwOe3ZaB8ZG6OEu1t+VvUFpheB33w45oJTi3r17+PHHH7FvZganPvwQpHaR4qI/7ICcfQvIsgzTsmBbFsqsUmEg7KYjGFUgpHHjoCgQKGt0mJCwUUqBCw7dLlIIzRBPJLxOjboON5WKRIgrShLOnj2Lb37xC3x36RI+/+ILv6qsnqeMw1JXhImk/X4YbwF2yQHgRQ44A2aq4S09CdiAKBaL+P677zAxMYFj773X9alFSQJh5wT6NIk1WaD4I2yziYoQUtfatRkSiQQOHDiAAwcOwHUcr1kUS0E8efIEhDWLGmPWzqlksi1CRATB96VfXV1FuVLB+NhYW9e4XSBA5028WoELEt8gclAvKtfyLY6DK1evYv75cxw/dgyHjxypb2/NXx/BZfYaPLVg2TbW19YASpHqxMmRUo8YsFLJXtwD3q3Rr1SoEzmgzIsE6F0kK6ZpECUJlm2jXKkgmUhE8jljsRjOnj2LP/vzP8f169fx0UcfbVYtBCuOAp443H+lWCjskoO3Ba7rAizXJ8kyKDztQZWGgA0Iy7Jw4eJFaJqGTz75JJJBL7IH2GGiyL6h2Q6WED9qoClKV4sNEQRkx8Ywms3ihOuiWC57WoVcDnfu3sXtW7cQTyQwPj6OsbExr+IghPJZFATYhOBVLgdREDA8PNzxNb4teFPTChxhrtsyTVz67jusLC/jzJkzzSN3wQl9h98TQRAgCQJcQcDa2hoSiUR3pk1cbxH4P8FmxU9XIASEiRFdSrfoDZyIUwjNEI/FfGFiMsI+FINDQzj14Ye4cvUqMpkMDh486P0iMG9y22iuxaCAJ0p8QzYqrfDOkwOuZHZsG6IogrJyxtq8MAXw/Q8/wNB1fP3115FZCIui6D1oXFndTzQSK7I+CqC041LFKlFhQMiZTCSQPHgQBw8ehOM4frOoXC7nNYsSRYyOjHhkYXy8YeMZSRRhWhby+TyyY2M7u4QxCEJ68j0HTX7eJEFiO5UKpWIRFy5ehKnr+PzzzzEcou+AQAicN+R+8JLG9Y0NpLvQMdUFJwrMW6Hb3Hyw+Zkgil7EgpC+6zsSiQQKxSJs24YRsQnR9MwM1tfXcePmTaRSKYyOjlbdN64T86PMb1nFwhsyo/YQTFTjOM5mxz9KYdk2FL7gUIrbt28jn8vhVz7/PFLhG08rOLa9fTucGpLAowayLLfd3ZDySShY8tQAoihiYnzca69MKQqFAnJMq3Dz1i3QGzeQ5C2oJyYwMjLiRzFESYJt21hdXcWpU6fa/MDbB757i7xSIRA1eJMiB2EbRa2urODixYuQJAnnv/469DP45twJQJJlwDRRLBaxf9++3pwkKGbsQsjIy7+5GK+f0YIgRFFETNNQrlRQLpUidyh8/8QJbGxs4Pvvv8dXX32FeGCzYrNNpCSKsNnm7m2yUX7nyQFllQqAFwJXZBmGYcC2LJ8cPJufx8MHD3Dy5EmMRWxyIXKXRMfZ/tAnY/6GrsOltKUQkcMXFrK/+bHaPXcqnUYqncahQ4dgWRaWFheRy+Xw8tUrPH78GKIoYnRsDOPZLEZGR7GyvAyXUoy9SWG8HoW5e9G8qB/wyxib3I9XL1/i8g8/YCCTwdmzZ0OPS3bg7i6wj5BEEY5lwTQMJPpReRNIO/D7H3Z5dxj5py0cBPuBZDLpkQNdR7Jev4UuQAjBmTNn8Itf/AIXLl7EV+fPe2JqSmG7LqjrQlJV3yPHNM23xkb5nScHXG8AeAu1LEkwdN03JFlZW8PlK1cwMzOzmXeKEDxf59j2FpfE7YDtOF4ekRAoTIPRaHr1SUGIKEG7kGUZE3v2YGLPHoBSrBcKyL9+7TWLunED1HUhSBJkWUahUICmqpG0jO01KHqjCXgTKxWA5mWMlFI8fvwYN2/exOTevfj444/fnPRRJyAEZVYO129RW200oeFyz17nC/F2APlSFAWKLMO0bd9SOUrIioJz587hm2++wQ8//ICzZ8/6n59bXwOb97BUKEB5CzRQb/GTFhLM3wDwmLvEtASubcNxXVy5cgWDAwM4depUTyZ1SZIgEM8SWDdNxLa566FpmgAhkFV1czcRmMD9SaRG7NRTEOK3oD585Ags00R+YQHfff89qOvil7/8JRTeLIpVQGg7xJO+X2jlFUBZyWgwuhMsJa1XVsp/TilFRdcBeA1mdPZvwsPSgb/5v/lVVKU56qU8GkSaqOvi1s2beDQ3hyOHD+PY8eNvVLqkU5TLZYjNerv0GjXRBF/AyMeM64ISz7qYYOdUxsTjcViFAsrlcuTkAPD6y3xy+jQuXriAly9f+noX7lMTRKFQwOAuOXizUWubzEP8kizDtm08ffYMa6urOP/115G0JG0EWVGgWxZ0w9gZ5IDSqvLFoKufLzjaxolaVhQk4nE4joMPP/wQsVgMa6urXrOoa9cAeDXi4+PjGB8bw+DQ0I6ZxLq5b5R6nShr/3ZdFxVW7y1J0qZtMOq4THYI7h5qmqZPDroBX+htNu5lZllOBAGu4+D6jRtYWFjABydP4sCBAx0TgzeNUBSLRSSTSU+gvM2RRE4oCdhcycgfAH+MRRnC7wbxeBwbhQJs9iz0Yh6dmJjA+Pg47ty9i3Nnz4JSCklVNyOr7FnjPhVvOnbGN7tdYKSAaw546ZDEDEnu37uHPXv3YnhwsHfXwBbicrkMQ9eBqFXKbcCyLN/YhKcU+E6Cd06rUjpvY4lYLp+HLEkYyGSgyDLGx8f9ZlH5fN7zVJibw/3796HIsmfrPD6OsWy2vZx11Kij5q636Dssn+kGftZsobdZpEsM1Jc3QtVun/87GAWo/R3g29PKsuztaoMRB2xGIRCINlRFl+p8ZsATsrlM92NaFkxdx41bt1CpVHDyxAkMj4xgfWMDgLdLJawfCTcsC/7Nf19zoqb3YqehsLGBVCIBQRA8UfR2RhCC3yUDF9TyngqSKO4IHwlBEBCPxVAslVAul3u2yXr//ffxJz/7GV68eoWJiQnPb4U90/w+lN+SioV3mxywXRdf+Hh0QJYkvH71CqVyGZ+dO9dTVzsKQGEhfNM0e3KOsDAty3NEZMQgWIYY3IFVKZy3iSDkcjlks1mvVC3gLqmqKqanpzE9PQ3Xdb2IQj6PXC6H55cvAwCGBgc9p8axMQwODvZ8d0mZYYzturBME5ZlhV7068FfEFl1DY+KCKKIuKZ5lq/B7ysQzu/0s/JogaZpHeXDg2Mp+Jl1XYdAPPtgy7Jw+do1gFKcPn0ayUTCu0fsGK7remnAFufi9yRIcrhx1o6OJFCKjY0NjM7Oev1WLKu/5ICTAfbvRr+3bNtLHbH7bPfIAbEdEEL8fgu6rntGdj2IagwMDGDP5CSezs1hz5491Wkzds8Mw4j8vNuBd5scYNO2WBQEf5GjAJ48eYLx8XHE+6AaVhk5sEzTb7yyHTBN09sNyLIXIWhRsxycEPq5ezAMAyvLy/jwo48AwN/F1E5QgiBgaHgYQ8PDOHbsGHRd9zwV8nk8ZM2iVFX1+z9ks1koXbSgDpIAx3G8fztOlQcBDxfX3q/gZBtc9Ov9rB64W10n5af9QLDvffBbEkQRkiShUCzi+rVrSMTjOPfZZ4gFNCM8neXyv4P/ZkSDEy3+ev5cu9xDhP2ORxhEUfT/3imkoVgqwXEcZDIZEEI80Vs/yDe7N2GrDvi9FSQJRBQhotpnY7vAo1qGZaFULmOgUW+KDsHnmIOzs3idy+Hl8+c4GnDJjTqVt93YebNIP+G6m3qDwIQ69/gxLMvC/v37YRrGZpe3iMGHkCgI3s7JtqEbBhLbYL9p2bY/GXVi8LSlXrqHk1o+lwMFMDE+7qm72aLcSsmuaRpm9u3DzL59cB0HK6uryL1+jVw+j/n5eRBCMDQ05PeAaNSCOgwJqAVhoXApsBCFWfTDYrvLyToGpXj1+jUe3LuHbDaL02fObBl/hBAQUUSrO7SFRDC/Etu24bC0i8u/O6c6/rATSEOhUAAFkMlkYLOW5Lbj9I7stUkKOLiAW5YkP03GTZG2i2TxTxCPxWCaJoweRGEF9hk1VcX4+DgePnqEgwcPQgyMV05U3wa82+QAm4yXl8GZpon79+9j//79iKkqDMOAoqq9ESQGHkpFUVAxDBh9Jgc8hOgbHylKVQi6XRbsk4QeThL5hQUMZjLQNM3rHMlEpe2UuQmiiJGREYyMjOD9EydQLpc9rUIuh/v37+Pu3bvQVBXZbBaj2awnaiQkFAkQBcHbEbMFhi82voAwKOyMCP443inCyxCglOL+gweYm5vD1NQUPvn4464EeFtIBKWQJclP4YDlyl1G6hz2Xe4U0rC2tgZFlhGLxVBhEY+ehMdZeqCTxZz3E3Ap9a+L8NQejw5tB1Fl59Q0DVhfh2WaPbl3Omthf2h2Fq9evsSDhw9x7NixLa/bzghwVHjnyQFnwfyLvP/gAVxKcfS99zxDEstCJWLfbh+BB0lRFIhAJErwMOCkwGVqZItXKQRb3nZADvz38vPUlEJ1G02grotXuRwO7t8PwFNL27Zd3dWyA8TjcczMzGDv3r0wTRNLi4tYWFzE4tISns7PQyAEA5kMhoeGMDwygkQiAUkU65KAhtfO/m5aR94puDbkDSEHLmue9Pz5c8zOzuLI4cM9u/aguJIv7lXRiVrSwLp9NiUNguB/75IkVaUlO0WhUEAqlQKBN64NtsBFAb/qICgu7OB6/ZRCQKPFSxqrNEq8u22fwOcp/t1SFj2IkhzYtg3LskBdFwPpNGZnZ/H48WMcYHMRAN8XhjpOVWffNxHvNDkI5iYlUUSlUsHjx49xeHYWmqrCkWVYjIUastx2d8IWJ6/6r6ooEESx56LEqp4H8AZycHGVA5+RixK72SUFa9yDHgn8Z+1iZXUVlmFgbHwcwCapczqYiHjY1rYsX+3Pkc5kkM5kcOjwYRi6jtWVFSwtL+Ppkyd4/PgxEvG4Vyo5Po6R0dFQkxAnBb2IqbxJDomWaeLipUtYXVnByZMnq2yxowQNjL2m6IQ0uC5M1wVYiSdhKSNRkjy/lDr1762wvr6OEV4/L0n+s9lxSWNN2iAKQsrJSu14r91I0EBUotc5+Npzq4oCy7Iij8LyVIUsyxBFEYcPH/Yqoh48wAFukMc2Q7brvvGL65t+/V3BZg+2wMKE9378EaIo4tChQwA8LYAai0GvVKDrOhQm1IsCtCb8pqiqn9Pqhf1mM7EMr1KQaz4fz4VH9XDXJQreRYWeSHO5HFRFwWAmA6DaYbIVeJiW56HrpQcEpv+QJcnbETLyMc7IiGPbWFxa8oWNc0+eQCAEI6OjGGdahWSDVrs0wkm69rhB45qdjFKxiAsXLsA0DHz++edQVHUzJB01goSpk3B3E9Jgc2LJiDVl+gburEqATaLA/m72GR3XRaFQ8BcZPg5d14VlWeGFsnXKD6ME7yFQm8JrpM3hv2tYAdEDqJqGUqnkpRxdNxLiaTENiOu6UGMxzyhOknD4yBHcvXsXe/bsqTZee1M1QAG80+SALyiCIKBQLOLJ06c4ceKE75IIAJqqwjQMOI4DwzSrWzl3g5rBIxACWZZhMMYbFTmojRTUA69SqHvOHuUQG1Y6tCAKuVwOY+Pjmw2YApGD2onAYSTAJwN1PgcPC3My0GoiESXJjxicpF4XthzrKnn79m3cvHULyUTC91UYHRnxJ9Lg2buNyARR1ZFxB6cVVpeXceHiRciKgq++/hqJZBIb6+sAek9qIk3lsNJLSZIAVfUjDLZtw3YcOGys2Vzky0rbgkRBlKSqz8zFiAMBYinJsj92W5GDehUwUYPrDWhAb8DBq23qzTN1HVYjvq4gVKabopTCtKyu52zKNFkupX4Le37OgwcO4PHjx5ibm8Ox48c3/Tu6THPuBLzT5MAOpBRu3bqFmKZh/4EDVa8hhEDTNL9+VlGUnrXElRUFgq5DNwykGuw+20GtXW49cGFW0Oim3whLFCqVClbX1jA7O+v/jCv+HRZxAeBPyvXIgBTczYUgA62uO5lKYTaVwuyhQ7BtG4sLC8jl83j1+jUez81BEASMZbMYGxvD6Ogo4olEdW10BOCfcie3an754gWuXL6MTCaDs+fO+YtdT9MhNfn1noW3AxEGvgw5zJadEwaXVUYFtQuSIHjRBUnC+toaQClSARM0WZKgw6sk2kKaA892v/aoNpsniCDUFWgTQfBy7Q3gOy5GPE5rhZWEECiqClfXYRhG1+TANE0vTRLYQHEyJIoi3jt6FDdv3cL0zIyfxtglB284eOSgWCzi+fPnXmOXOoNeUVVIug7bcWDoelUNdido9DCrigIB3Zto+JNGiMnQYCkFSZbr5jW5iKlf4epmRCGfzwN0swujy3ZrhmGgrOte+LXG9pk30+JkoJefQ5Ikv1kUpZ6hTT6XQ35hATdu3IDtOEin0z5RGBoejqQKZidYWjcCpRSPHj7Erdu3MTU5iY8//tivDAqmQ3ZyxKMTiIIAUVH88cjHKk9tOa4L23VhM+Hc4vIyYrEYHNv2xH4BkSsnFlKd+9ZP8BbFcgN9DQkx3wR1CFGkLBsRbU1Voet61yWNruvCYBUKsTrmYpRSTM/M4MGjR3gyN4cs69r7NngdvNPkwGZOX69fvYKmaZienvZ+UcPSCYBYPI5CoeBFD7otbWwwcBRVBREETwPQgQiJD0hegRAGFhv4DaMGEe9y20EtUcjn8xjIZOBSikKx6CmHA2VqrutCluUqvcB2XvvAwAAGBgZw+MgRmIax6dT4/Dnu378PURSRZY2ixsbGOiadQYOfnQTqurhx4wbmnjyp3zwp+Bz04NqrbH+3+d4IglBFXHmInnswFNbXkUgmYbByZiII3iLM8vWWaULY5r4rvhixgQqfO1KGWRarIjk9SF1GVdLIyYXANAZB+H4lhGBmehr3HzyAbZqQYjHflOxNxjtLDrjhDyEES0tLGB0drRLM1UKWZciyDKuHpY2KLEMUBBBK2+7QGBQhhZ0GuVqfAE0rMfpdllQLl1KYhoGFxUWMZrMolUr+7wRBQCIe97QDstyTjmxRQFIU7N27F3v37gWlFKurq3jNDJiuXbsGSikGBgY8A6aJCQwNDobeTfvf+w7afdu2je+//x75fB6nTp3C/kC5F0evF++qEPYO28kRpjGSZRmu62J9fR2zhw75ZmguT0lYFnTThClJfgpiO0BZxQZF82ZLPMXX7rE7jSI0ekcUJY2O48BiPiqJOsQ9KPIeHBwEKMXKygr27N37VhghvdvkAF7YaHVtDft5KUoTxGIxWJYF0zRhq2pnD2qLB0BW1bY6NIYRHDaC2SKlwFHVbKlPcJhK2zRNWLYNg3UdHEinPQEhKy3ljU8sFrLl+cft3iluQc1CmBkcxMDAAI4ePQrTNLGwsIBcLoenT5/iwYMHkBUFY9kssszaWWsyFtw2SWGvoVcquHDhAoqlEj47d84vO61FqzbT3WBLbpvtVHfcuACwurYGy7YxOjqKWCwGjUUVeE09KIWu616qQRAgMVLRz8gY30RwU6iG6OB6glGEtrUhTV7bbUmjXiMkrT0XCcy9mqZB1TQsLS3tkoM3HZwcrK2tAYCfK2oEAo+NqooCwzRRqVQ6Eg3WljDWQpVllAkJ1aGxVee7VvCrFEIIEfsxsTqsMZHBfAeCKBQKAKWYmpzc0vhHYCFYi+VzFUXZIsTcaYtCMPyqKAomJycxOTnpRxXyLAVx9coVAMDg4KBfATGYyVRN0DspcrCxtoYLFy8CAL768kukWclpPfS0/LLmmHxh2wnxgyChJ4RgeWkJoiB4u09URxVisRgogLKue5bQxGvQZpqm9zpJgqQoVbbcvUAjf4NadFw2yuC6LgRRDB2pbEYkeEmj2UFJI0/3uK6LeIt0HyfnQ4ODWFhc9H62Sw7eXPBBtby8jEQy2XIA8LC9pmn+blbvRAnb4qFRNc3THbQQ0nTSzS8IXnoVtkqBCEJPQrO268IyDJi87CsASZKgyDJkRcHz58+RTCYbdgSUJMmvO1cUZXOSYqi6V4T0fZcd9rvi/R2GhobwHmtBnWOixsdzc7h37x4URfF1Ctls1p9It1tzsJDP49J33yGZSGxpnlQPvYwc1EWPynJboZYMbF6O9++l5WVkMpm63x8hxGvMRilkTYMoCLAtCxYrKTSZiysBa7rFGm9FfU8b+RvUg0BIx70+eMO3MBGEVvoGXtLoUM+DIqyJHWWRGgqPuDcjFUQQQJlfzvDwMF6+eAG9UtmtVnjTQeCRg1ZRA/5aEAJBFKHFYqhUKqiUy57QKMISQL6wcdONWjvebtIIQVim6ecPhQYCoyCiLAVzXBemYcBgnzEISZKgMkIQFH2uLC1heHi44TElWQYMo6HdbO1k2W+yQNFZ2F9VVczMzGBmZgau6/rNovILC36zqPTAAIaGhrB3zx6/w2e/8fTpU1y7dg1jY2M4ffp0qOZd/SYHPS1nDKAVGah97fLSEqZnZhoeTxRFQBDg2ja0RAKyLEOjnrurZVmwWQtwThQAr6JAVpSOmqhtuUbeoI7ShmLEIKL4Nvnmp1kUodU3GSxp1HU9FDmglKJcqfgiZ19E2oBYBi2ph4aHQQEsLi7uViu8yaCUwjAMlEoljI6OhnoPH/SapsFlpkjlYhFCOh3qoQkzXERB8ISPtg1d15EICB+7jRYEYTClfz/7xdss2mIyYgLA95FX2ERWrwrEdhysra9jkleT1AEPd9rMra7VgtOQLHDFdYQLF/e133L+2tr1FhAEASPDwxgZHsb78Hwf8vk8Xrx4gWfPnmFubg4xTfPTD9lstufeFZRS3L1zB/cfPMD+/fvx4QcfhE5v9MvjgCPS87Dvrsr1MgQZqEWpVIJhGM2JryiCoLp2ngSMmKimbSEK3K2RV0koLXRFzWDbNgTAa2oV4hhc8xNFmWK3Quh2Sxp1XffTCYl4PFQ0jl9jTFWRTqWwuLS0Gzl4k0GZshQARoORgyYTdjCMFYvHvYfQslAsFpFKpVqXN4Z8WBRFQYWZISUSicj7hDuuC5uFIsMuHoQQuGh/gqWUeq6PzCeCQ5IkqKwOvNUDuLa6Csd1MdJkAhWZGRJvktOoFrsRaifyWl/42skuCtJAuqzzjsVi2LdvHwaHhjwnPdPE0tIScrkcnj17BkEQMDQ05Kcg0ul0pLt013Fw5coVPH/xAifefx+zhw61dfxtSSt0CE7wuMcAqdlJ1qaxwmJ5eRmUUgwPDTV8TdAFtF6Jc5AoIBaDzVT2Fsu162znrLDnrd1ugTyl0M4zFXWUpp4vQpjjt1PSqBsGLMvydQZV96kBSQlGDoggYDSbxevXr3c1B28yKKVYW1lBOp2uDjc1ecCDYkJCCBLxOIrFImzHQalUQjKZjCTvqygKREI88w0AiNga1WIsWmRdBcNCaOOBd5h5iMFsRwHvQVIUBVqblR4rKysQBaGlAFRmXvS2bbdNDhqh0U6QMhIZjDLUvqbqtT0EpdQTtI2OYnx8HO+//z5KpZLXgjqfx48//ojbt28jFo9jjPkqZLPZrsriTMPApUuXsLa6ik/PnMHeycmOrhvoETnosCwu+H3WRqAoEHkKanl5Gal0umn4nxACMTi2W0T7JFGEFItB0zRf4Os6ji9k5JG6sNoEbn4UJjoavOYowclGu6QjbEmjaVkwDQOu60LTtK2va5BWoECV5md0dBSPHz/2HC/fcLyz5MC1baysrWHPxETo99QKYIggIJFIoFAswrZtlEslJJg97ha0MaBVZobEW7ZG4aIXhJ9SaFdMGULQZbEyTJ77BFgDK0WBqmkdkafllRUMDQ+H6nuACNvcNkM90lDVACnw736QA3Yh/s8SiQQOHDiAAwcOwHEcP6KQX1jA06dPvRTFyIjnqzA+jmQyGXpCLxWL+IsLF2CZJj7/4gsMNYnotLhw7+9edGRskFbwF3xKfbIf1INUPd99iGgsLy83TSlwSKIIm3jd/sIminjOXVFV2LYN0zD8Xg02c2JUVLVpyoF3oQTQVsSBoLVgsBPwZ0xo49itShptlsJ1WZq1bjS1wTNMAPAYAREEjI6MgAB4/uIFPvjoo5BXuDPxzpKD1dVVGLrut0jtFIIoIplMorCx4amGK5W6A7BVCWMQvDsiDwlG2XbUpRQ28zdQOgi91/sElFIYpunl6wLhNFmSoGoalC7U02EEW8HzAegLOaiH2rr6qgWn3mLFVN0k8Jp271NV06UG7xVF0dMhMNvpYqnkEYVcDnfu3MGtW7eQYM2ixsfHMTo62nAhWF9bw+3bt6EoCr766iskujCdilRzwBZ7QqnXhCgYfkb1QuX/rpeahxAwTBMbGxt+F9hmEJlbYpjuo/XA0w6u43i7ZGbu46ccZNlzfq353rm/AU/btYNemaf5C3LIOVVlvXHqlTQ6joNyueylTUSxbvVZs/FBKfU3AgIhIJKEzOAgXrx40ean2nl4Z8nBixcvQIC2dz31xG6iKCKRSKDIxEUCIVvLuEISA/4qLRaDadsolUqRkgMuBuSd4dpCzWewHcdPHQQFhoqqeqmDNnOb9VAql6HreqjviZvCuKzpTdufr0cgYOSwFnSrT0VtFYX//sDfQRIRXGDDEotkIoHZgwcxe/AgHMfBwuKi14I6l8Pc3BwEUcToyIjffTIoir127RqGhoZw9uzZ9iNPNeDppqbRpMCiD6BqnAXFgCQQBYAgAEHxXs3fOwUrTG8QZmxLoggB4QW3jSCIIjRRhKqq3m7aNDcJg2X5Xi4S26BwMtJJCqpX97u2C2mryJzKdE12TUmj67ooVyr+wt7QaKwJCXFd198I8O8km83i5atXffGG6SV2xuy5DXj56hWGM5m2Sn2aTcCyoiBOKcrlMiq6DoE9ZO2Ch83i8TjKxaJXVkNpZDXsFi916qRKgamQeZTACuxiREGAxkKYUdbbrywvgwJNBVubl+cJs1xmorRTyEHHodWaBbEeiXBZBQsRhKqUBniUJ5hyqCOuFEQR48yF8YMPPkChUEAun8dCPo9bt27hxo0bSCaTPlEZHRnBuc8+26JV8Ssy6oTqt7gTsgWfV99Q1JCiRot+8Hz8XKizCDVZLPpVzhgGy8vLUDWtoXdHEIIggIgiiOvCcd2uiTchxBco2o7jpRxYaXG5UoGg65AVxXdR7eRZ6tXCKAqCTyy5ULGZALBeSSMvWaSu6/XOicU6ul6f4AaiEaOjo3g8N4d8Po/xBu6gbwJ2xuy5DVhbXcX+0dH22W0TFqmqqp8KKJdKXrMOWQ61OFBsslDAK8ERRBHUcaDrekuTprDgPSU6EewZhoFypVIVtld46qBHJXMrKytIJpOhSy4lSYLFTGK629dGiDZLFts7dEDUxwkDPycCC2etyjsQeQheWYK1oD40OwvLtrGQy+HO3btYWVmBSykWFhdx6dIljI+NYWxiwo+QCYHj+eepPXdwkad0U6hae28aLfph0eRe7zRyMDw8HPpzSqIIhzn3RRGVCx5XisdBXReGZcFiIuJKpYJSuQxRkqqiR+2g1cLdCWpTtC6r4GiWwlBZSSN3ha1woyJKm5Ys+pG6RtfCyEVwDA9mMqCUYmFhYZccvImgHU7YrUQ2sVgMruvCNE2vgiFEiSMFY6BBkZsgVKUWoiAHjuv6D2o7YULLslAul/3GKwReHk9VVUg9tuwNK9jiCPod7AS0GmdVO+xOwL5PEowU1Crs619Y3dfU6iSePnuGb0p/huvqTWi2hv/7xN+EWbFw/cYN0Bs3kE6lMD4xgbGxMQwPDTWtpd+y+2fagHqeD1XPGQ2UD4bATln8m8F2HKysrODY8eOh3yOK4qbuoMuUTj0QFv1TFQU2K9EmAOC6KJZK0HjpcRvPfNSU2A2M9yBauSrGNA3r6+swTXNzLuNeBk0+T6tP6rKxKdYIlN/cZMIm3llywCekTr7EVrmkeDzulx0Vi0Ukk8mGBKE2YlB7nFKxiFK5jOEIUgu8JClswxbbtr1IAa88IAQxTYPWJ+Mk27axur6OmX37Qr+H76hcx6nrMLmjUGcSaaScbxR9cGonw4giFLx50svSK1wmV+FSBzrR8RfmJfyLL/9fsEzT1yo8Y82iJEnCWDaLMear0KxZFFDdMKpWtNlI+Mr1G0EdQUPNxg7G2toaHNdti/iKdcyQegFCCGRFgaQo0AJznc5KIRVGILYjnx5MKdSiWamjKIqQJQlmpYJSqQRFURCr9TKoB0Fo6HEAbEYOtpSEv8FaA453lhwALDzV5pcYRvhFCEEykUChUIDjOCgWCnUjCBTebr7R8TSmHrYiSi349cotogYuyzsG+zuoqop4LOYb9/SjhfPK6mpowRaHIAh+asHeAeSgKrReEw6laLAI1jtQo7Bno9B8F1gPNE8aPzYB3N783YvycwCeZoW3oAalWFtbQy6fRz6Xw9WrVwEAmUzG91UYHBra6hPRwbVzElFPh+G/ho/NwP3mpGunCMSWl5chCgIyLZqrBSGKIoggwGG+Be14lLQL13G8c0gS0skkHMeBbhhwXNd3OdVUta8Oq0Drqq9mBIEQ4pUtEoJ0KhWJFwonKlGXm+8EvNPkwBdQtf3G1iU0RBCQTCaxUSjAcV0UCgUkEgl/QPJUQrPJKurUQiu9AXVdz5lR1/2fyYqCuKZVCZL61cJ5ZXkZsiQh3Wb3S0mS/FruTkSh3aB2saaUbppY1Rkz3TSpCSKqRS+fy+H7779HMpnEuc8+w7XVa1W/r9sDlHgtqDODg14LasPwDJgWFvDkyRPcf/AAiiz77afHxsY2hcCE9KSbZL373WkqsRdYXl7eQphagRCvXTIhBE6PyYHJqxSYZTIn3SZzO3UpRZnl8OuaBgWuOSqdR6OUQi2qvmcmetV1HZRSv6V7GFJDvZM2jS7717RLDt4+dDKpttIdcAiiiFQqhRJzUSwWi4jFYlBUNfTDwlML3VYtUDRuu8r7TJQrFX9ClSQJ8Xi8cZQhZI1xN1hZWcHg4GDb35EsSdCBjmvCQyNQCVDbECv4d9O71OV99KsOIlj0njx5guvXr2N8bAynz5yp+92HuVJFVTE1PY2p6WlQSrG6suIbMF1m9d+ZTAaDg4MYGRlBJp2ObtFudr/ZOeqR8i3pnR6WoXHvjv3797f9Xt8MyXFCmyF1Aot7oQSExoQQz/JclmGYJgzDgO26KJbLkETRIwl1CEtU5KBZSmELWGSKwiuHdmwbhDXJE1i5cyvtRKvlPtjrZrs7ovYCu+Sgw/eFnTwEZvtbKpe9Rk/MTTEWi4WaEHnVgmUYXaUWeEpBEISqHQcnBb4FqCAgHo+3ZNa9Vn1TSrG0vIwDBw60/V5flMja2nY7ydeW4W2ZoFqEOZuh2ymlKoTe8UEobt+5g4cPHuDAgQM4efKkvxMSSE0qrM3vnBCCoeFhDA0P49jx4zAMA/lcDq9ev8b88+d48uQJbt644RkwTUwgOzraWZnt5glbki2hTuRryztqRJL891EsAcViEYZptqU34OCWx70U3DpMr0MprUsQCSFeSkGWPZ8TlsIrlkp+9VIvwuztGMkBXsq2XC77osFUKuXZuTNhdkthZSu9QeBagvNh1yLjHYJ3nhx0grZzl4T4qthKuQyDOQkm4vGW4SgiCIjFYrC6TC1YNVGDYAWCfx5WgRDms/nufj1izMViEYZhdGTNKwgCRFH03CBtu+22tb7wLfD/jolQj6Mr3boM8uZJL168wPsnTuDQ7GxN1UCNKrzLhJKqqpiemcHExASKpRKKxSI2NjaQY2SBwDMmG2edJQeijCpwhFxk6hlXRTHxLy8vgwAYDOHdUQteseB2aYbUDBZryibJcnMlP5ubFFYmaNk2TNuGWSxWVTZEcY1uE21Wo8/AWy8TQvy+N5IowmTzQje9RYDqFKIgCJtzKS/FfcOjCe8kOQh+qR1/gW2yWApvYhQEAeVSCZZpouA4SCSTLUVz8VgMpUKhq9QC1xsQABuFQlUFgqZpiGla2/cijDtZp1heXQUoxeDgYEfvlyQJjuOEIgfBSZaLLes6GnaAlotJl/fP39F2cL2mYeDipUtYW1vDp59+ij179255zZZ6ioi+b37Ph4aGMDU1hePHj6NSLvvNou7dv487d+9CYy2oJ8bGMDo21vWEHsm1V/2n/QV6aXkZ6XS6I0GcIAheeJ3t7ntxP3hKIez1iYKARDwOmwmnbcfZWtmAcCmpRgg71/AUqcHsoWVJghaL+b0eREkCWDvrZrU07egNejkPbie2/0nbBtT9ItsUK4UZ7EEPd/5vWZaRTKdRKhbhOA4KGxueULFJKFXTNAiS1FVqwbIsVCoV2I7j5wWDFQgdocamNkqsLC0hPTDQsbmSJIow0KTPQlDxXhsZiIoYcEV+s+MRUtWkqaNzoH1yUCwWcfHCBZimiS+++AJDjXaxtdygk4usg2AZI0csHse+/fuxb/9+uI6D5eVlX6vw7NkzEEI2m0WNjXldOmvr3UOcO9KUWG2KIkg0UZ8YLi0tITs62vEpRVGEZds9IQdOoNFSuxE3SRSRTCT85mu8ssEyTa/pWo9Fe9zcyLQsuJRCU5QtkVBZln0C0wycTDRDI/vvNz1iwLFLDro8TsuBQCkcWu2nwNsPl0olWJaFUrEILRaD1mDR7za1YJimX1apaVrdCoSOwBbVXjwMKysrjResEAiaIfH8ol8G1y+W301kKiQ6IQfLS0u4eOkSVFXFV181b55UGzlwaTQlrP51N1gwBFHEaDaL0WwWJwCUWbOoXD6PH+/exe3btxGPxTDG+j+Mjox443m7d3A1ZKH2+dB1HaViEcNHj3Z8ClEUIZDemCGZLKUgdtEsTZblqsoGh1KUymXIstyRP0KY59V1XZTKZS/d4rqebqqG3ATLuFuJlYOOo43A0whbSM92j8GI8E6SAx8BM5Ve+B0A8LvubT21lwcrVyowdB0Vlh+Lx+P1DZECqYV2oOs6VtfXvV0Gq56IqjaZEOJZPEfseWBaFtbW1nDg4MGOj8GNnnhJ43aEo0OTkC4qFuq1a26GFy9e4PLlyxhmzZNaif+i1hz4x2mT1MQTCRw4eBAHWLOopaUlv1nUkydPIBCC0dFRjI6Oes2imhGefu7sasjC0tISXAAjIyMd6xd4GrIXokTbNOECiHVph84rG2RJgq7rMFjLZNu2EY/F2ooitLJg5mZt/DXJJqlaiXW3bHnvQvgpcHIg1RCp3cjBG4zIQshNBhCvqW2FOHPpqpRKMA0DjuMgmUiA1AzuYGqhrOuIt3CfcxiTtizL71A4mMlEb1rSgwdhdXUVFOgochBMEUiSBMd1YW0TOQibLhAI2ep0GBKhS6koxYMHD3Dnzh1MTU3ho48+ClUnX1utEBW6MW8KtqA+efIkiqUS8rkcXudyuHX7Nm7evIlEMonx8XGMjY9jZHi4erHYxp3d61wOA6kUtFhsM6rASuvC3gluhkRtO1IzJNu2/c1MVM8Lr36STBOFUskzhSsWoWlaJHORaZrQKxU4lEIURcSb9EkA2Odiz2WzTYPruk1LGd2A9bcgCFVj6u2IG7zD5IACvvVlp19m0/e2MQGpigJJEFAsleDYNjaKRSQTiWrjoWBqoVhsSg4My0KpVKrSOWii2BM3M0IpXERburOyvAxFlr1ugCHQqJpAliSYpgnLshBrQaZ6gbAjoOPJpKaUqhFc18WN69fx9OlTHD16FO+99154UrdFcxDN1BeqXXMYsAhccnYWB2dnq2ydX718icePHkGUJIyOjPgpiFiELdDbAqXI5/OYnppil17TOZP9rJUynxACURDgRGyGFBQiRr37VRQFaUJQYg2PKroO27a9TU+zfhwNnm1ubGRYFiilkGU5lKjar1hgYuVGpZqkxfzNIw88Qhl8tes4fUkp9hrvJDkQBAGZwUFvh9qmELEW9XLuLY1v6kCUJF+H4Ng2CoUCYrEYVFX1r69VaoHCy83qzPZYEkXE4nEUNja8B6gXu2dCvLrxCHdjyysrGBoebvhw1RoNNYIsy14I0bY9IrhDXcy68drwj9HgXtmWhe+++w6Li4v46OOPMTMz0+a19Sat4C+IEX8noiRhYmICExMTAKXYKBQ8UWM+j5s3b+LG9etIpdMYHhnB+NgYhoeHe+o0GMTa2hr0SgVjdTr1BUWMwf83IgqiJIHYdmRmSJTS7tq5h4AoSUjE495u3zBg2TbsYhGxeLzh3FQvpeC6rt8dllLqNYtqQ3shShIEx2mcWgiR5vMN5fjYCXxHK6urECXpje7ICLyj5EAURezZswdPfvwROvMI7wT1dAfd9B0QAkJF0zRRKZdhmibi8ThESWqaWrBt24s8sHNrmoZ4LOb3YxcEoWeLY9SGSCsrK1vMjzoREwqCAEkUvYnPtvvvAx/2WsNUNbQ6fp336pUK/uIv/gLlSgW/8iu/gtFstq3jA3VMkKLSHPAysF7urghBOp1GOp3G4cOHYVkWFhYWkMvl8OL5czx6+BCSJCHLmkWNj401FAVHgVwuB0mWMdwiXUa4eNb/GFsjDFLETZhsx9lMKfSILPH5UlVVSJLkGxSVy2UoigKthcdKsEyRsv8nmrm4NoAsSTAMw3NNrDd3tXhug3qDLaJuQrCQzyOTyXRkcrWT8E6SAwCYnp7G7atXsZjPY2p6uqPJuRY+MeDH6XDBTCQSkGQZOmPHhY0NqKoKLRbbklqgACpM0Ah4k20ymfSZOGe4PYkacLDJK4pp3jBNGKaJVDodSXWBLMuwbRuWZfWdHIQGyzu3C78csM57efMkAuD8l18i3UaDn2aIigRy+hwlNQgTSeLNoj788EOsrq35osbr166BUoqBgQGvVHJ8HEMtWlC3i1wuh2w229YxtxAFlt8WBME3Q4oCNos2yrLcu3A4W4gJIRBFEclkErquw7QsmKbpixW5PiSYUrAsCzrr6eC6rudf0KLdciOIAVEipdS7x4ENnUtpU71B0OyIO0GSwLO4tLyME6dO7aYV3lRkMhlAlrGwuOiRgw6/SM48a2vau51EuYd5pVKBaRheJzSWIxMBlFnurlgu+wRAlWXEE4mq3RgPvfVakBdVaqFQKMB1XSQSiUiqIGRJQoUQL5/ao7LLRmiHMHWlfan5TLlcDj8Emie1ap3c/Lqiv19VHRm3K9VDCDKZDDKZDI6wZlELCwvI5fN4ylpQy7KMLOsqOTY2BrWL+2joOpZXVvDxRx91dc2+AJU1Q3LCWgE3AU8pULTvbdAOCDbJDeCN21gsBkmS/GqtYqmEGBMr8gZTuq771wd46dVurlOSpKrdv+u6/vzVjt6g3pxqGgaKpVJHfTN2Gt5ZciCKIsbGx5HL57teNIKe2lGCEIJ4PA5VUfwcGyiFYZqwbBv5xUXf5CPBXld1XWjcbClydGuIxISNa2trIEBoMWIrSJLkhV/ZZNCvqgVuwRwWnaRm6in+n8zN4fqNGxgfH8fp06e7/ry90BwE+0FEStbauH+191tRVUxOTWFyagrUdb0W1EyrcOXKFQDA4OCgXyUxODjYFrFZWFgAAIyNjYV+T9PrZ7bEBN5OV+yCnPt9V4CetzivN85lWYYoir4Fc4V1exRFEYZhgBIC6rpQmbag2zEjszmhygMlWBIcUm8QvFf8HQuLixAlqaOeMDsN7zQ52Lt3L368dg3lSgWJDhXMfJj20liHixWDfghlpi/Yu2cPUqlU3UYnDrdMJqR7w6MW6GTnW49UFYtFxBOJSBu3yLIMl1KYlrUj7HejQhU5oBS3b9/Gw4cPceDgQZw8cSKSXflWTU330Rz+fUcZM2hXBNxseSGCgMGhIQwODeG9Y8dg6Dry+TxyuRweP36Me/fuQVEUjLGIQjabbSmIe/36NTIDA11FH2ohiCKIZXnGP5LkLfB19Amt4AsRe5lSYBAIQb0tBC95NE0TxWIRJcPwCYGiKIilUpE5LHITKRfeQs/TjWGMj3haA6ivzVhYWMA4m5PfdLw9M2Wb4KLE7y9cwOLiIhJtqrg5+lnTqmoaTNuGqqooFYt+OZBt2xDr5NMttiPoqd4ggNrcXUOwibxeCWShUIj8wVJkGaZlef0keig4C6LdcRFmYtpyDnavXcfB999/j5cvX+LEyZOYnZ1t8+xNrmtL5KB78Mk1ypRCL7uEqpqG6ZkZTM/MgLouVngL6nwez+fnQQjB4OCg76uQGRioSlNS10U+n498NykQArDUAhAQLiJQ/RBCXOenFLZZk+O6LmwuEgRbiCn1e9JECUmS4FhWFTkIE0EOuiLWu6al5WWc+/zzSK91u/BOkwNVVRFLJrGQz2Nfh+SAox/57FKxCMe2Pb0EgGKphEKhAEIIDEVBIiDmAfqYUmCorfetBf8d7+ZY725tbGxgYs+eSK+L5yeDYcReo+1+CR0sbBSeCczt27dRKBRw9uzZyO9dvWqcrhEM4W4XOtUYCQKGR0YwPDKC4++/7zWLWlhAPpfDgwcPcPfuXaiahjGmVchms9jY2IBpWZGXtomsYqGeKLG22qFRSSRvwEZY/X+v0eium6bpCw4pIUgnk3Bd12+7HO+gKqEZJEmCwUpB/WsLEMxG17mlhJG/F958bJjmW5FSAN5xcgAA4xMTePH6NU6jfeU0xWYdci87c1FKUSqV/IGZSCR8y07dMLyQuWnCMk3E4nHPDAT9EyMGLrTutfP2zhyNSJTDekdEHTngE5/L3BJrtRm9QNsjgRCvd3wbi1ahWMSVK1fgOA6+/OKLjloAt7ysHmgOIjNACqCTZy8KQh+Lx7Fv3z7s27dvs1lUPo98Lod5FlXQNA0i22lGuYng/gxNnVh5JZEgbKb+AveKRw3UHgoRaxH0LnAcx28IRyn1Ozzye8W1VuVyGVos1nEjtlpIsgzCdVw1IILgPYt10LCEEV5KQZZl7Nu3L5Jr3G688+Rg7969uDI/j431dQx0UO5V90GPkCRQSlFkHRwJIT4xkCQJ6+vrkFzXq2AQBJiW5XkjGAZUVfUtWftGDpjALJj/dYGW6l+OQrEISmlP8nVKoKSxH+SgI7SxaCwtLeHSxYuQZRnnzp3rCTGoe0kRjO1urJOjAkG0ZZRATbOoEydQLpWQz+dx+/ZtOK6Ln//854jxZlFjYxjNZrt6NkV2/xzXDWXytcVgyXFg8g1EH8kBt4s2DAMm6+UASj1LZVn205OEEMRjMVRYtQIv146CIPil3jxyEIgaUNf1BZpBuKwyBKivN1hcXMTM/v1tGTLtZLyz5IDX2o6Pj6Nimsjn822Rg2DUgB/PH1wd5I/rwXVdFItF/zzBhiL8//bqKorFIib37oVpmiiXy7AdB+X1ddiWhXg83t9JmCmLm6UOGqFQKABAT8iB33ClTyWNnXz7YUWdz58/x5UrV5DJZHD8+HEkEokOzhb2mmpNkLpHT8hBJ89bjSd+1IgnEpiYmMDVa9fw8UcfQYvFvM6Sr1/j6ZMnEATBa0HNyEIimWzrnhBBgMh24Y7rQgqZLuOf2OKqe2YW1g9wjUOpVPLFfYosV9koB3VLhBDf+pwTBC5U7AZ8HnVYqlEUxaqxLdSZw2stk6s+FzxnxI8//bSr69pJeGfJAeB9yaIoYnBkBAsLCzh8+HBb768dIFGKohzXRbFQ8BeyZJ2KhGQqhfWNDe+hKZd9G9Iyq2owDQMAfN/xXkcQuAkURWcTf6FQ8NTJPdjFSJIEgRDYlMK27Z7WcwPoaNFpOX4oxf3793H37l1MT0/j0JEjcFlEqVeoPbaLCKoVAgK6qNBLMtYN8vk8AC99qSgKstms1yyqUPC0Cvk87ty+jVs3byKRSPgGTCOjo6HKCgVRBNgC1y4M0wQB+mIORlm1kMGay9muC5FFQoOC6XrfCY8g6ITAYNbLlEUaOgWvzKCuC7uODqme9sCpU8LIsb62Btd13xq9AbBLDgAAU1NTmH/8GI7rhiqhq40aVP0uAnLAO5dR5oSWTCbriuhEQUAikUBhYwPrGxuIxeMgLGdnmSZsx4EgCF74zjAgKwpimhb9wsh2AISlFQSgSmMQFsVCAal0OtprC0DmXRotq+fkoCPHyCYRJ9d1cf36dTx7+hRH33sP7x096kWV0GML4l6YILG/e3vdIRBRhK8ZXudyGBoc3LIAJ1MpJFMpHGQtqBeZAVMul8Pc3BxEUcTI6CjGGVmIN4gOCUxL0C45sFlHR0qpT8br2TR3C9d1PQdEpo3i4zXGShSDcyhl1QmNSKPGGivp3EKZEYROSaYkSX7XWjRowBS8F775UR1ykFtYgBaPY3JysqNr2YnYJQcADhw4gIe3b+Ppkyc4ePBgy/c1CksT4jUh6mRh5HBYjwRKvRakiUSiqbo+nUp5ZY2VCkzT3JyECEEyHkcsFoPjODBN0xctSpLkkYSah7MtMF0BN/upF2Zr98jrGxsdtWkOC1lRYDCb1p4j4JYZFo1ebbHmSUuLi/j4448xzSpr+pG7F7ZcVTTpMiDCUsYOn7deRw5cx8FCPo9Dhw41fZ0oihifmMD4xISnMQo2i7p1Czdu3EAqlUJ2bAwT4+NVzaKEJhULzcCjiqqi+N9DlIJqx3Vh1mgKBEFATFGgKArqtbQPM45VVQURBG++Y2LKMN0Y60GSJJi27UcEahGMHjiMSAFbIwe26+LJ3BzeP3Wq5yZS/cQuOQAwMDCAg7Oz+PHHHzEzM9My/N6rnLVt2ygWi961SRKSiUTL88iyjFgsBttxsL6+jtHRUQCbk4WiKBCZUr+i6zCYN0KhWIQoitA0rX3XMUrrht04CCEQ2S4hLFzXRaFQaLtrYDuQue4gAsvZZuh4fNSZnCvlMi5cuOA1T/r8c//75ecB0NOSwFrVSDfElyNyUtOHCEAnWFlZgWXbdbswNgIhBKl0Gql0GocOH4ZtWVhYXEQul8PLFy+8FtSi6DeLGhkeBgjxvQ7CwHUcmKyEUWmSuyeCAMraD4eF7TgeKWALN6UUkiBAYRFL3zSu5n3tEBMe6dArFc/AiVLEYrG2x5MkSRAohdWEWPHKhWZ6g7m5Oei6jl/91V9t6/w7HbvkAB4rPHP2LP7bH/4hHjx8iGPvvdfwPS5aTGodTlSmZaFcKgHwBm079sHpVAoVXUepWMRgJuN9LrZz5WkSgaUb4rEYdF2HrutwHAelUgnlSgUxTfO6ojVbMHkVQpjPx/J5YR/YcrkMx3V76ixGCIEsiqAstbDjVMU1Y2dtbQ0XL1yAIAj46vz5LSmXVjXZ0VzSzi9l7PSKei1KfZ3LQVXVjqqgOCRZxp49e7Bnzx5QSlHY2PDSD69f4/r16wClSCaTyGQymJyexsjQEEiL3SvXGoii2JQgB22uw1gKc1t3sPSAxLxk6pmw1d75dvVaiixDIATlctkze2Oaq3bGlECIb83cCPx3vISxduNoWBbu3buHQ4cPv/FdGGuxSw7gffGpwUEcPHgQDx48wMH9+xvanIZZ8NoNVzq27RMDWZbbVp+rmgaVleptFApIs46GhJAtrJ83O4lpGnTDQEXX/f7olUoFmqp6yuGaCYaLDcNOqO16P/SyUiEIWZZh8ZLGHpGDbpZPPnZe53L44bvvkEqnce7cubriq9rStF4gap8D6rr+QrPdaYVeI5fLYXxsLLLvhxCC9MAA0gMDXgtq08TCwgKev3iBl7kcnj57BkmWPQOmsTGMjY9vmccopbBYy+NQJb1BYlCHJFhMZGiz79WlFLIsI64ozSsgIrgnkiQhHo97XgjML6FtG/wwZmWENDQ/enD/PlzHwUfdNNTaodglB/BC2pQQHDlyBE+fPsWP9+7hww8/3PL6llEDwK/1573RW4FSimIXxIAjmUpBNwxsFAqIx+OgaNGXnZmzaKoKw7K89tCOg4phQNd1KKqKmKb5KQkuNmwH7ewGCoUCZFFErMf2xrIsg7AGL71KD3WTyyaE4PHjx7hx4wYmWPOkln0xelqtsPVn3dy3YCoksnu/A8lBuVRCYWMD7x092rNzyIqCvZOTSGcyOMRC+ctLS16zqKtXAXjdZ8fGxjA+NobBoSG/O6lASPveBrxUG4Blml7lAatOoq4LRVWhKkpHfVE61TtIkoREPO6bxBnM4yUM+Aao1blt2/bGK6r1BuVKBY8eP8ahQ4cwwFxr3ya80+SA+2NzcwtFVXHkyBHcvnMHs7OzVaF9/gC0nNBYOF8IaZ9bYuJDgVUedApuL2qbpmeOJEnhcuqEQFUUqIrilUTqOmxWLlTRdaiKAk3TOurP0K7HQbKHlQocwZxhz0oaO5zoKKW4efMmHj58iIMHD+JEs+ZJQcfJjs4WFvWO3lEtBoAeuCOGfM76jVwuBwBVGpFeQRIEWIKAdCqF0dFRHH3vPZiGgXw+j3w+jydzc7h//z4UWcbwyAgGBwexZ2Ki7fPQOpUHgOeuqKhq599pl+ROFEVosRgqlQp0w4AoiuHLtkOmTPh5grj744+QJAlHDh/uqqxyp+KdJgcA/J2x4ziQBAEHZ2fx+PFj3Ll7F5+eOVP12rYMSkLsmnnjJABIdNmimBCCVCoFe3UVG4UCBgcH22bwsix7YXdGEkxWMmQGKxza7NwWtnpjo1BAKqI2za0gy3JPSxo7meocx8EPly/j1cuXOHnyJA62aJ4UHFs9rVYgW8eQFzno7HiRexzsUDFiLp/H0PBwX5oZ+RULgdy5oqqYmp7G1PQ0qOtidWUFL1+/Rj6fx6tcDnfu3MHg0JBXKjk25vVrafCduK7rVztx91MCjxSozKq9XZDA3907Z1Q7oJYrFSRbVHn51xAQV9dDVWOqwFyxXihgfn4eJ06cgMTuw9uGXXIgil6tq+NAYnnyY8eO4fKVKzg0O+uX1kU9/ViWBUPXASCyFsWJZBIbGxu+F3knbah5L4ZUMglH07wKB8Pw8vTFIkRBgMLKkcJGE1rtM7nQaiybbft6O4Eiy5viqR0AwzBw8eJFrG9s4Oy5cxgbG2v5nqoJrc8+By5ox+2W/chBH5pftUKv7ppj21jI5/FeE2FzlBAEAYRV4dQDEQQMjYxAjcUwMzUFx3Wxtr6OhXweDx8+xI8//giVt6AeH8dYNgtJFH1tDt/AuNTrfaCy598/fhtp1KrrQnRusoBX0ug6jtesiekPGpHQYJq02dl5+lEQhKpoxO3btxGLxbB/3z6A0l1y8DYiKEokLOQ8NTWFhw8f4vbt2/jiyy99htkWWI6qHivlncYAj+FH5QgoMsOk9UIBxVIJ42EX20Ausep4rGoiFotBZzXLjuOgwqodBD5RqGpDfQM3RWrGzrnHer96oMuyDFAKh0WMtrM2uVAo4C8uXIDLmycNDoYqS+tVk69aNNIcdIqoyxh3XszAa8DjOE7kXRgbwddONSnJcx0HtmXBpRTpdBqZTAb7Zmbg8hbUrAKCN4saGBjA8PAwBoeG/H4uCVWtG66nHRADAH5FU1QghCAej6NYKsFxHOi6XlfD1E4JsGWaAJhWiZU1Li0vI5fL4ZNPPvH0QLvk4O0Ef7Bs2wa4U5gg4Pj77+PChQvIv36NMWZO0rYgD/UnrzI3OZIkxCMW4CWTSUiEoGiaMC2rtegoRM5WFEW/DNKyLC/EaFmwHQeOrqOi6xAlyc891kZBmrWMBVilAu1Nw6VGkGUZ1DRhmGbk30HYBWtpaQmXLl2Cpmk498UXfqQnjKCxH5UKQD0TpODZ20fkHgc7MKXw/PlzpJlXQT/g74Iphes4WyqNAK98EfDGfTBqIxCCzMAA4vE4pqemUKlUsLS8jOWlJcw9fQrn0SOomoYJFlHItmoWxdKpYb7dYHfGqCAIAmKahjIzSRIlacvmi1dRCbyaq8EYclgUAtjcUFAAt27d8kpHuRsiE3e/bXjnyQEPj5mmCTBBICHE65o2Oorbd+4gOz7e2WRWZ+CVy+XNDosdhP1bQRAEKKoK2bJQYJULdcGEk83sSmtBCPFTCpRSnySYhgGbhR/LlQokSfKUy2wiImA1xQ2OWygUAEHoWnfRDlRV9cOmiLpCIsSCNT8/j6tXr2JkZASffvppVT6znSqPXhsQ12ud5XZBDvhiEFVaodsISpT9UAAvpfD69WscPnIksmO2Ai8b5mZIW8qQmVthsHzRtm3YlgWTRRO8F1JoLFR++NAhgBAsLy8jn8shl8/j6ZMnIIRUNYvaQug5MQiRLuhV9EuWZaiO4/VhqFQgNfJz4ISqwXHMIKFi89fLV6+wsrqKX/mVX/H0F29p1ADYJQc+k3ZdF5bjQAT8hfP948fxi2++wfyzZ75lbUvUPBRBQR4X9wFoaYvcKVzXRTyRQEXXvfrfetGDgJlRpzs4QghUVfVaQ8fjm/bMluXnKcvw7q+iKE2Ff4VCwbsfPd4FB6EwtzbHcWDbdqRNqZppLCjdbJ40MzODU6dObR0HYfKwUe/AGyLa4/MFIZLvegdGDV6/fg3bcTDVZ499URQh2HbdnTifcwCPFFQqFa98G5tlqYosQ5LlLenB7OgosqOjOHHiBErlMnK5HBbyedy9exe3b91CPB73m0WNBptFUeq3Xt4OqKrqPduOg1K5XDW/hDEPcyn1NUk88uC6Lu7cvo1sNovs6KiXZqB055mpRYR3nhzwRa7CrDj9R4NSDA4NYXLvXty5cwd7JyfD5aabhKgqTGeg9bBDosNboKoqXABrGxuexWrg+iht3/e/GQRB8DwTNM3r48C7r9m2F1mwLK+uWhQhM6IQXNQ2CgWk+5hS4JBlGRTwqzEiQ4P767ourl27hmfPnuHY8eM4cvhw134BPU8r1Dl+V5oDvlhEQYwjELNFHTl4/vw5BjOZho2SegUuSqwlBw6zSrcMA5Ise5+VjU9ZkiDLcuixn4jHcfDAARw8cMBrFrW05JOFJ0+egAgCsqOjGGMGTMlEwvuea66pH5SOEIJYPO63vNd1HfFYrG4qo973bzF7ad65FwCePX2KQrGI06yKjaf/mllQv8l458kBAJ8cGIYBTVGqJvZjx4/jv/23/4YrV67g9OnT7U/GbPIpcaMjSeppfoq6LiilSKXTKBWLKJZKVZbKlF1TryCKImKiiJimwbFtGCzt4DgODEo961ZBgMIiCpIkobC+jr1TUz27pkZQFcUnL7GIDJEaaVP85klLS/jkk08wPT3d8BgkxGLlv2IbIgftdc2oRuQ+BzsIpmEgl8/j+PHjfT83jz65juP7EfCKKF3XAUqhMMW90gYhaARRFP0ySAAoFovIsfTDrdu3cfPmTSSSSYyPj2NsbAyjIyP+NfJFtdcjQGCp21Kp5GmlRLGqyqJR5Ja7SAKb5Yvr6+u4eesWpqenkWF22PwZ3I0cvMXgX65p26CKUpUzSyYSOP3JJ/j+hx+QSqU6Kk/iYTxCSM93FJwVJxMJz9aUuSZmuvB37xSiJCHORJe2bXutVg0DruPAcF3v36xyoxf6i1bgjWAcSntniASgVC7j4oUL0HUdn3/+OUZGRpq/YRvztVsvJbrIAc/RAtGQgyjuQZQL1KvXr0EpxeTevREeNTwsRnSDJbqGYUAQBMTj8VCN3DpFMpnE7OwsZmdnYds2FpeWkM/l8PLlSzx+9AgCbxY1NoaxbNabB1kev5ckgTeXq+i6b5BULwIcbMRmO46vxZIlCbqu4+LFi0gmEpvOuYFndJccvMUQRdE3/7FtG7IkgbBdNgUwOTmJQqGAu3fuIJVKtdWz27Ztn4Umk8meh4G5upYIAlKpFAzTxNraGlKJRGsb3h5CkiQkGVHwhYym6ZUduS5ACFbX1rzUA9vZ9Cr1EoSiKKBMK9ELcrC6uoqLFy9CEEWcP38+dEVGq3B3v9IKpJ4JUqcH65s3w/bgxfPnGBkehtZjC3DAW8xs1m7Ytm3YjGxbtg1JliFLkudJoKqe2LdJzX/UkCQJE+PjmBgfx4fw0oY8/XDjxg24rot0Ou1FFEZHMTQ83NNIkqIosJm2SNd134m2kftoUIjoui4uXroEx3XxxblzEEURFKjy+VD78H1vB3bJAYOqqh7zdhy/tS8CTWKOvvceisUiLv/wAxLxOAaZOVIrVCoV//j9qKd3Wd9xkU0I6+vrcBwHq+vr1dqDbYJAiO/EmIjFvBbVhECLxbxwaEAIRAiBJEmQGVHoBVlQFcUXinbS9rUZXr9+je9/+AEDrHlSOzuMsP0ZtkOO2GnbZjdAaLq9z7wRWNckI6LvW69UkF9YwKlTpyI5Xi0oIwN8kXMCngZcXCyIIhRBQDKRgCzLqJTLEJiV8HaaTqVTKaRTKRw+dAiWbSPPPBWeP3+Oe/fuQZQkjLGowvj4eE/SrpqqosjKr7kA2SckrGJBAHzvE8AjB5cvX8b62hq++PJL3zPBJxVsPGu7kYO3G6qqolgsekIU/mUHanYJgI8++gjFUgkXLlzAT37yE8RahMJtxuoJq4ONWvxUD36NMQvZZTIZLC0uYmNjA+l0OjLDpY7Byq5cNrE7jgMBniqaUuqXRFq2XZU79d66SRZkWY6EbPFJwgZgW1b3drfs+330+DFu3byJiT17cPqTT9q/1laphX5FDuqfvKNjRVnG6Lvr7RC8fPkSAiHYu2dPJMejrusvZFvIAItqcsIscQIgijAty5tn2LNDKd3+Zz4AWZIwuXcv9u7dC1CKldVVvHr1CgsLC7h27Zo/Z41lsxgfH8fg0FDXUQVKqddvgUWHjYAAmfASa9cFBMGP8kqShAcPHuDlixc48+mnGBwcDB6wKh2yW8r4lkNRFBBWJ+y75tWYeYiiiHNnz+IX33yDCxcu4PxXXzXdzfKogaIo/vFc9NC2lYkRg3KxWCwGVdPgVCpYWVnxBUQ7BYauQw4YJwVLqfjEaLG/q8hCpeLlBFkKQpakjsmCoihwdB1GBOSAArh58yYePXqEQ4cO4f333+/JAt6/aoU6C3mnBDfKa95hPRWeP3+O0Wy24/FDme7FCRACvnBRVnbISYDExnptWJxwV1bXhek4nr9Ije3vTgHfwAwNDSGdTuPo0aMwLQsL+TxyuRyePn2K+w8eQJFlT6fA/nSS3xdEEdR1oamqv/moKl/mDrGBqOXC4iJ+vHsX7x07hj01hM83UIKnq9qJ9zcKvJ2fqgPwkkad2YyKoljX7UvTNJw7dw5/9u23+OGHH3D27Nm6k13wAVcDkYhWVsLdgLouXOYDHsTQ4CAM5ntQLpcbGyP1CSTgTKYbRsO+8nwi1ODdMz5xWkx0RV3XTwkQeOE+WZL8nGvYHaoiy749NO0iN+s4Dr777ju8evUKH3z4IQ4eONDRcYDNpjCNwt7tWMB2gyhNkNw+EZp2wC3Ou7mmUrGIlZUVfPzJJ6HfExzPfmQgoHOilEJiCzsnBQ07dDIILF3jUArLMEAp3TnOfQ3IHL/3PMIxOTmJyclJuJRibW3NM2DK5fD8xQsAwGAm41VAjI9jMJNp+b1RSv1SSkEQtkQPePqOd+allKJQLOL6tWuYnJrC4cOHtxxTYP4GwNsrRgR2yUEVVFWFXi7Dsm3wr7ze0MsMDOD0mTO4eOECbt++jRMnTmx5zZaoQeB4vdrv8N21WBNGlGQZyVQK6xsbWFldhaZp2974hptDGboeKizHUwoSKwWllHphV0YUbNsGdRzojgPCyAKfDLhmodFnliQJIiFwCYFlWVXlTmFhGAYuXLiA1bU1nDt3LhJffT/kWQf92zPXK2Xc/rRClAS7W6ry4sULCIKAiSZtkCllvTy4gJCVHAZ/LzByKzJCUM8GuRk4ebBM0yNiLLK2I9Dg+2q0uAuEYGhwEEODg3jvvfeg6zoWFhaQy+fx+PFj/HjvntcsiukUsmNjddMn3CqZozZ6ECTXpmVBNwxcu3YNAwMD+OijjxpW6/Cf7hjy1QPskoMAOAu0bbtqMNcrt5kYH8eJEydw69YtpFIp7Nu3z/9d3agBB4sedCrqagSX7USA+pPvwMAASqUSTNPcttLGIHj0QDeMjh4wXmYkSxJi2AzL8qiCY9veZKzrMFi4FcyISWQTL/83IQSKqsKuVGCaZtvkYGNjAxcvXoTjODh//nx097ZJ6DyMy1s0lxAdOehXKqRtBHaCneD58+cYn5iAJEl+uSYff7wdPHckBOBHCARCfCLANQPdgPdX0A0Diiy/cbvaZposTdMwPT2N6elpuJRidWUFuVwO+YUFzD9/DgJgeHjYJwvpdLru8WqjBzzaYjkOLMvCzZs3IQoCzp49W3cerR27yi45eDcgSRJEWQZlC4wkSf4DVw+zhw6hUCzi6tWrSCQSGB0dBQDPdARbowa9Ap94eFisnoBHEAQMpNNYWV3F+vr6tpc2At7kqFcqSEbQU4HrD/hOiZd6WcGwLauGIJbl7xh4OoKAdYdkhM7/7ltgcXERly5dQjwexxdffBHphBwmytQq1OyjwzREvbQCwES6gchGbfqt3nVH5nEQVaUCQ6fRPNd1sba6io2NDRw8eBAF5saHABEI3h9BEDxCykhtt2SgFgIhHjF2HEBR3ghywEk7AfMaYPqAZhAIwfDwMIaHh3H8+HFUKhXk83nk83ncf/AAd+7ehaZpvknTaDZbFUEJRg94GbVpGLhz5w7KxSLOnz9f997xFEhwTXgT7nGn2CUHNVBVFSazUg4KTepFDwiADz74AMVCAZcuXcLXX38NVVFgMcVww4FDGrdzbhcu3dzH8bBtI0KSSqVQLJWgG8aOKG0khMAwzZ6UAgmC4DeJAjZzvP4fRh6o64I6DihLKTjMAEVVFIiC4Jum8D/B3QRvnjQ6OoozZ85AluUqVXnXaCa6q40ctNAnVL2uS/AxVzt+Wx2Zj88tpYz82mm4mESvXT63nC8wdngkgI+TJ8+eQZAkJNNp2KyqBoR440UQIAgCROY5EJrIdQjCxjB13Tdq0eLkTGC9GNqt6orFYti3bx/27dsHl1IsLy3hNfNVePbsGQgjE8FmUVLA1waE4NHjx1haWsLpTz5p2E1TYKLyIPrZLK7f2CUHNdA0DbogeA86r2ttMlhFQcCnZ8/im2++wcULF/AJEyW1ihrwqa2bqboqVIkQgi9CqkobU8nktk4ivA9DP0qBgpqFIFzX9XPBoBSlchmOZYGKIixWTuYL1tjuTxAEPH36FI8ePcL0zAxOffih/11H6fjWcAdFKVz2h/+/6u8adHM99Vo2d1yswDUHorj1eaolGjTQUhfwjWd8UtKEDLULvjhRSqvSAEFCUPuR+TXkcjmMZbOIxWI+meQdEvsNTgwANBT59hNhF/ng6/i/O23nLBCC0dFRZLNZUEpRLpc9X4VcDvd+/BF3bt9GPBbD6NiYl/4jBMsrK3jx8iWOHD6MiSalqNwYj49VURQxkMm0fY1vCnbJQQ0URQEVRTim6YW5ePi5yS5OVRR89tln+PnPf46r167h5MmTrRfdLqMHTrP3NZmYYrEYtFgMTrmM1dXVSIRzncI0TQjYXlEPX+y5dwLgEYZUKlUdbQgsFrfv3EHu9WscOHgQ+2ZmsL6+DpH5JVDA3yUKzNPBb6kbEr7NMKtXrxvYp5uh/Z6iruag/Uk7WGIbJq3gpywC49wN/G7LdfEFpkUEhZcG8rJf7idgWRZcx6n6ZPz83FRMYNEATgA21tdRLpXw0YcfbrswjZf5AujeqyMihJ7bal7HCUKnvjDBeTUej2P//v3Yv38/XNfFEmsWlcvnMf/0KQRJAoXns3KgSXURCQob2VqQGhjYdmF3L7FLDmogCAJkVYVrmrADyvVWeclUMolTp07h8pUruHrlCj7/4ovWJYMd1mq7fBKsQVjB12AmA71SQVnXvXam21TaqOs6KDzC0m05WRQQRRGyJMFkTmqaqlblKk3TxKVLl7CysoIPT53CWDbric6YrsEN5sIDEwkBKzNjREFkO0tOTEiARPj3oAUp7V8pYx10QmiDY7bLa663YPilaK4LF8wbwHXhUArqOHD4z+q816EULksH8SoXngrg/65HaF68fAlN03yt0XbCCFToiGwh2+7nKSxoqzEeEQRB8NotZ7M4QSnu3LmDx3NzIIKAmZmZppUd9eb/sC65byp2yUEdqKrqdfKy7dDKdZdSpFIpnP7kE9y6dQs//8Uv8Nm5cxhqMYDaDZ/Vy/X6vwv5MPHSxo2NDayuriK2TaWNhmEAlEJTVb83+nZDURRPuVyjhSiXy/iLCxdgGsaW5klVHgy2XVUzTbliHd7iRCiFxSfDOpM3YQtSMOrAJ/1gNKJfqGeC1Em1QrAbYzuLln8P2d88ghP8uRtc9APH5tGVKtGkIEAA0z2w+8ndREVRDH19lFI8f/HCa7K0zbtH6rowGNHm7YO3lRy0uenxw/VbDtN+5CDMe1xKceP6dTx58gQj2SwGBwehqmrD+8WNpWqf16EdYEffS+ySgzrQNA1FQfAEazUPWaOcss2ctVKpFH7y9de4cPEivv32W5w+fbplo6Z21NKu47TceYWZFAYGBlAul2FsY2kjr+rQNM1TK++A3Y4sy0Cl4nVmY53aePMkSZLw5ZdfbmmexPUMoiRB5gtX4PdugCTwvHbwZ3yBA9vluoxE8O/ZJ49c90AICqwFOGHit+B944SCh9+DinD/9zW/A1CVpuCvqWuC5EscqB92BzaJq58O4D+nnvOcaZoQRBEV1kJ4y3sDx+S6iuBEzxd7J7jos/MRQvyFPUiigpEZTgT4Z/SfZUp9bUnYqMbS0hJ0XW+rCVuvYBgGAEASBAiyDJMR1Dcm5N2ETPjfVQiSUFsxUw+8dfri4iKOHz8Ol333UrOoQY1XAo92RtVga3JyEi9fvsTXX3+Nn//8501fe/v2bXz44YdwHAf/+l//a/zGb/xGJNdQD7vkoA5kWQYRRVCmXg/6cAOoO5A5OZAlCaqm4csvvsCVq1fx3XffoVgs4uiRIw0nHkI8Q6BWA9upw16rwNMKLY4DeDvRdDqN1ZWVbStt1HUdsixv9nnfAdEDURShSJLvvLi6uooffvgBAwMDOHv27KaWJLCQ8ImjSiQYgEAI0KBVbBDB3TEnEdRxYPNweaBk1bFtUEJ8wVxXqDM587FuOiaGMQQHLigoCAiKhSLWrM0dqv/6wO49OJkSQmBYFkxdhyjLvlV2U1Dqh5v5gs939hLgL/YkQADaJZZbRMEBUsXvc6NjPn/+vK0GbL2C6zjQGTlQNc1r0YzuhM5doZNUaRgNCqtkaH6YxqZhAFAulfAXFy6gous4d+4cZFnG0tISJEVp6pRZOw4IEKkQ8dNPP8VPf/pTXL16tWXE5x/8g38Ax3Fw8OBB/N2/+3cju4Z62CUHDaDGYjANY0tJI1A/esBL2PgCK0oSTp8+jWQyidu3b6NYLOLUqVP1FwhCIDQIrXG0XAA6WFRTySSKxSJ0Xcfq2lpVqLwfMGoMkAjQ094TYSErCkzbxsNHj/DowQPsnZzExx9/vFmRwO911DnRBiSiSmNCPac9m0Ua4tzumYvt+HUFdvDBSIa/Uw+8hvKFOPCZ/ImYUu9HLgV1vZSC67hbF05OlvgCy7wjeBTDdhyIsgxFlqGoalU0oyp6EYhqCNhMs1Tdj27JUAP4ZKFOCoQy4kcIges4ePniBfbv378tVQlBGIbh61hkSfLaDTMh67agUz1Kq5e0KHFstaguLy/j0qVLECUJX50/D1GSUCwWIcoyJDa+ghtBjkbHjJIUnj17Fj/96U+xvr6OBw8e4MiRI3Vf90d/9Ef42c9+BgD4nd/5nY6cXNvBLjloAFVVoQsCTMvyW3UC9RcuCnilcEDV4CKE4NixY0imUrhy+TJKpRLOnTtX90ttOvDRo50ACZQ2FgpIpVJ9LW00DKPqfIT0tvdEWEiiiAf372P++XMcmp317bG367qq0k4sfM4bVKmKEv0CFQjnG46JNazBJRQu8QhwLKVhIDHALifkjr1chigI0DStK2V/r4hBIwS/cy5KzC8swLQsTE1N9fVaauE6DgzWRZDfU36N/b5PADoWWIc7dPNj19okBzH//DmuXrmCTCaDs2fP+sTAdd2qnhW15CDY4bb2WgaCXRq7xNmzZ/1/X758uS45sCwL//Af/kMAwJdffom/+lf/amTnb4Q3JCnVf2iaBogiXFbm1Ay2bft5z3qRgempKXzxxRdY39jAz3/+cxQKha0HaTLJciV1UwR3l22A585EllvvJ/SQfRX6BZ4bv/Tdd3jx4gWOHDmCA7Oz4d/fo+vq+96UheuJIEASRDhw4MBmfzsgBFX5/FAIGCB1ilotR2Ro85rmnjzB4OAg0gMD3mK8TaRR13UIgN+cCdiM2GzHFfWcPLNxWe88jX5298cfcfmHHzA5OYkvvvgCiqp6mhfAJ9kyIwR2zTwrsOZ7tUil05F2YvzkbXe3gQAAjCVJREFUk0/84/3www91X/Pv/t2/w4MHD0AIwe/+7u9Gdu5m2CUHDSAIAuLJJCg2hXMctbktOxA1CNbYBjEyMoKvv/oKgiDgF7/4BRYWFra8pt4U1VJnwFB1xjYnu8FMBqIg+KWN/YKu61vcEevWsPcQQb1ApVLBN998g8WFBZz99FPs3bMHpmGE74PRq8mx2f3o8b0idasV2odfrdCFSI6nKKJGO8cslctYyOX8mngezhbQ38nUsW2YlgUXqHqG+PPT97RCN99NO2OYbu0620gn8MPly7j34484duyY10RJEGCZJhzbBoE3X1Ng09+Ei1ID56qHTIRRA8DboJ08eRJAfXKwvLyMf/Ev/gUA4G/9rb+Fjz76KNLzN8IuOWiCZCoFiKLfRS2I4HC0a1MKDQZ7MpnE+fPnMTg4iF/+8pd48vRp9QtqogcdhQY7WCx4aaMkCFhZWelbSFLX9boh5lbCom7BTYZ4HtlxXayvr+MX33wDwzDw5fnz2LN3L0RG9iwWum2FnlVa1ExS/fI4AOovnJ00DfM7Mm5zjr4e2tnxPn3yBBJrLVx1DGxqkQT0Ptqj6zoIPAG0FIhWbktaodvoSZvvrdUX1H5WQ9fxZ3/2Z3j18iXOnDmDw0wMTl3X3+ipmuZpSCj1+lywOYdrxxo9y5RSZHogQuWphevXr2+xYP9n/+yfYW1tDYlEAr/9278d+bkbYZccNIEoilCYQRAvF+LgC1hQbyCHCDUpzE1x3759uHr5Mm7dvFnF8rlAq90QKn9tpwvUwMAAJEmCbdvY2Njo6BjtwHEcmKZZV+NA0LtFhKvQg5UFCwsL+Pbbb6HIMr766itkmBJZVVWAEOghyUG/Igf9DBlH0ZXRd3wEet5foBOEJaOO6+LJ06eYmZ5uWnniP4vBPxGODd71lWKruyi/v31NK3T52dquMgmQkVrNy8bGBn7xzTcolkr48osvsGfvXv93BmtlLQoCVEXxKn248yX7PluRA1VVt5QyRwFODsrlMu7cueP//O7du/j93/99AMBv/dZvYU8Te+eosfOe1B2GGBsIpml6If4ACDxiwHcM/oTR4mERBAEffvghTn7wAR48fIhL333nRx8QKKPqJ3hpoyQIWFtf9wlPr2CyBbepADKCCdUT2nvRAd5CN7jYzs/P48KFCxgeGsKXX35ZJT5VWbiRMoOjMOfqFepNVv3Yg9cNFrf5vQTHcjdphV7mtMPcy1cvX8IwDOxrYrPb+ATRpR783W+dslCeeulXWiGKaFlH3ypLnwTHVj6fxzfffANRkvD1V19V7fBdx4HJNniapvnvJYws+OSgRVVElELEIIKixGBq4Td+4zdg2zYmJyd9QWK/sEsOWiAWi0FUFIBSf3AFYTWoUmgFQghmZ2dx7tw55PN5fPvNN1hbW9v8fZuTaFjr5GZIJZO+L/vi0lLHxwkDwzDq7nw4eG17J+BRl6BTYb3X3L17F5cvX8bM9DTOnTu3xQiFCIJPXvQ6330/sW3B+Hr53A4iB0D3UYNtUeAHMPfkCUZGRpDqsBNfFKkH27Lgsg1JPWLNjZ5qDaR6hSjO0cl9cFnPEUEQ4FKKe/fu4S/+4i8wPDyM819+iViNJTy3apckCZIse34ijuM19JKkLZGDRhjsETk4dOiQ76Z7+fJlAMAf//Ef47/+1/8KAPjt3/7t1nb8EWOXHIRALJEA4C1owXwrIcQfTJ2qVycmJnD+/Hk4rouf/+mf4tbNm7CZYKYtRDEREK+1qSQIqOg61tbXuz9mA+jMJS/S0knqNffxLXUbvMx1XVy5cgX37t3D+8eP48NTpxouXLy7nWVZHeXae4EoiGA72BI96DBy0G2qqKeft8Wx1zc2sLS0hAP790dyOn4HhTaFfLquw4U3LutFYYLumNtdEhwWnVwnX8yXl5fxp3/6p7h79y4OHz6Mc2fPbiH53NacAIixzYifPoDnLMldRrnZWCP00vTq008/BeBFDmzb9t0PP/nkE/zNv/k3e3beRtglByGgJZN+m1mzJv9ss1a/3ZS2ZDIZ/OQnP8F7x4/j3oMH+NnPfoZ8Pt9RmVS306eiKBjIZCCJIlZXV7doLaJC0Dq5EcLW0AeFha3CqZZp4pe//CVeBsRKzc7B2zwToG7kqOZCWl5rx9hGIV/tot6J5qDecd4kPJmbg6ppked8/XvD/jQbQ5Zp+otas5bMpE7IPXJE+F22TfoIgWkYuH79updGEAT85Cc/wbHjx7f2uaDUn2sUVfXKEwHPRIwQ//+ARzgIs82vh2Qq1dOOlzy1cOvWLfybf/NvcO/ePQDA7/7u7/ZtIxDErglSCBBJgqooqFQqXm2+olR/WV2EwDlEUfT6iY+P49q1a/jzX/4SMzMzOHHiRCgnLB5Kj2IQpdNpv2vj4tIS9kxMRO7TbhhGlXVyI7TaAXFxYZgSSG6fapomPv/8cwyHbJyiaRqKpRJ004TK+kDUQ6PucpGDRw56fyaGGnJA21t03AjSCr3eBTcbZ5Zt49n8PGYPHuyZoDIYSQCwtSk2pX5qS1PVps+NwJpL9eyOsXu1HVSPUopXr17h+vXrsC0LJ0+exIGDBxu+3mCESiCkilC5jAAE76MAeA3S+lTCWAtODkzTxD/5J/8EAPDX//pfx+eff97T8zbCLjkIAUEQoCWTXt7KdWEFWjlHCdd1kUwm8fnnn+P58+e4efMmcq9f4/0TJzAzPd3X3ePw8DCM169h2TZWV1dDL6Rhoet66JRC0FedN8epUsCHuC8rKyu4ePEiZFnG+fPnkWwjbyzLsh9ytGwbSqMoUb8XsH6lFbqslvDTCjuwUsFHk+/u+fPncGwb+yJKKTS9DPY3r3LgJME0Td8MTWnSJAjog9dBxMQg7HiqlMu4fv06XuVyGB8bw4cffripLahT3UVd1498qppWRewcx/FE5IGfEVEEmmgOet1H49NPP/WfccuyoKoqfud3fqen52yGXXIQEoIkeZbKug7DMKrIAc/xBf/fbofB2kY109PTyI6N4datW7h8+TLm5+dx6tSptha1biBKEoaHhrC8vIz1jQ3E4nHEI+pCBngPZ5jSTwC+4xtFdVlcWLx69QqXf/jBs09tYF/d9Pxs16HrOkxdh9LoO+hx5IB0QIqiwNa0Qnvgi1TH19sPcV2D745Sirm5OYxNTFRVsvQDXLwIoGqRaxltA3p3z3owxluVebquiydPnuD27dsQJQlnTp/Gnr17t0Rva69LNwxQSr2S9Jpn3nFdUBJwtA2SqTrjVBTFSJst1cPAwACOHj2KH3/8EQDw9/7e3/P6d2wTdjCV31kgsuxZ/RLi1xlXoZa5tjkR1hO7aaqK0598gi+++AKlchk/+5M/wf179+ruCHoxEcQTCcQTCUiiiKWlpUjLG8OSJ787IaW+ujgsKKV49PAhLl26hPGJCXz+xRcdR3y454Fl21tKWgMn7OjYobFNArPab8ndGvRuim7dEWkfSFCjM6ysrmJ9fR0Ht3GSrug6KHMGbKY18NErl9FeiRybXOv6+jq+/fZbXLt2DZNTU/jvfvVXsXdycms0q2Y+4T4qAOqSOsdxQNg9pZR6C2GT6+h1SoEjm80CAEZHR/FP/+k/7cs5G2GXHISEKMsQAgyU+3MHhxPf4QJoayKnlDYNAY5ls/jvfvVXcejAAdy5cwd/+qd/ipWVlbqvjXo3OTg4CEWW4ToOlhqcsyO4bsv8rVuzS27V8jgI6rq4ceMGbt66hSNHjuD06dNdhbVF5sFOCPGb3Ww5Z8dHbw/9pwhbJ+J2QLusVuhHfKTRJ5p7/BiJeBzZsbE+XMVWOI4Dk5GDWCzm97xo9h3w+xXlOKFA5OmEZnAcB3fu3MHPf/5zmKaJ8+fP49SpUw0FgbXzHp+fFVmuO2+4rkdxRVGEKAib3UwboB+tuX/44Qd8++23AIB//s//OQYGBnp+zmbYTSu0ASLL0FQVpmHAtqwtNbGtOoc1Qqt2o4DXKfDEiROYnJrClatX8c3Pf44Ds7N4//hxr243eA0RQhAEDA0NYWFhAaVyGQXWvbFbuJRWKYWD6CR1EIRt2/j++++Rz+dx6tSpyEJzqqrCsm2YhoFYHWFizydO/t320T4ZAMiWPUSbxHcHuyNyVBF7BsM08fLlS7x37Nh2XBIogHKlAhDi2SRzUy54+XECz9yn4TMf4S6/07mtEywsLODatWsol8s4cvQojrSoKOLgIkkz0D+hUTUUjxz4xCCA2jOJgoDh0dFOPkpb+K3f+i0AwPvvv49f//Vf7/n5WmGXHLQBQdMgGAYkWYZtWVU7yC0DLOTEzcPmoV5PvBbLX3/1Febm5nDn7l28evUKpz74AMMjI218kvagahpS6TTW19extLwMTdP8ZiWdoi4hYj4FjZTQvulJkyiLruu4cOECisUiPvvsM4xFuOPj1RW8U2dQGNbP3XxQtNYP1Fbit0PconBH7Ee9fr17+ezZM1AAMzMzPT9/PZiG4Rse1QuNU3idA3vuhtgnYmCYJm7fuoWnT59ieHgYZ8+dQzqVCu0vwjU5wf4J9Qipb4BESKgS9OzERNfzXSv8wR/8Ab755hsAXgfGdqKkvcIuOWgDoijCVRRoqoqiZdX1APB92kMO6HaFi4QQCIKAg7OzmNizBzdu3MCFS5cwMT6OA/v392wQZwYGYOg6KoaBhaUlTIyNdRWmd13XDzMHOyNylXYjEHjh6XoTxsbGBi5cuABKKc6fPx95WI4LEytclNrjCaMetmPvvYXDtfHerqMG/XL6q5PDfjI3h7179/akMqkVXNYkiBODRvePAgBv00ypN+9EHVHqg5Zmfn4eN2/dgus4+OijjzA9M+Mv9u3Mj7quV/VPqAfHccCb3LVahAVCsHdqqq2PEwblchmvXr1CoVDAH/7hH+Jf/st/CQD4O3/n7+D8+fORn68T7JKDNiFqGiTThChJftvU2kWiXoiyHiilXp/7Dh/meDyOc2fP4uXLl7h+7RryuRz2HTiA9957L/oJjbknvn79GqZhYH19vSsrUf7QV4WdQ1/K1p3MwsICvvvuOyTicZz77LOeKct5xYpt23AcJ3Q/jSjR98hBTdvmTiIHtT0A2jh5X+5t7b1cWFhAqVTCx5980vNz10NF1wG2eCkhSn4p4M8jkY6LHt5/CmBxYQF3f/wR+YUF7N2zByc/+MBPBRC0J0a1LAumaUIgxO+fUA+26wKsiqH2emoxNDra1KitU/yn//SftqQOzpw5g9/93d+N/FydYpcctAlBkgBJgqaqKNk2TNNsuFsPxXo7IAbcIpU3Edo7OYlMJoM7d+7gydwcnj59igMHDuDQoUORDmxJljE4NISVlRWsrq0hFot1fHyXsfdOd4XB9MLTp09x/fp1ZEdHcebMmS32qVFCEATIsgzTNGGY5mZ5Zz8dzPquOag5fRvVCm63ZYx9Qu0onJubQzqd9v3u+wnLtmFblidCbNdPn1UqCBFUFvTKgpkCyL1+jXv372NleRkDAwP47Nw5jI2Pb54b7UWoXMdBpVIB4DkhNpsDLMMAEQSIjVIKnGQRgskeRA0A4OrVqwC8zca+ffvwN/7G38Bv/uZv9r1cthl2yUEHkGMxUMvyQn3MsKKWXQuEoHkLj+5zqcFWs4qq4tChQ9h/4AByuRzmHj/G48ePsW/fPhw5fLj9SaYBkskk9EoFxUoFi0tL2LtnT9vpBUopbNftynKah1F/vHsX9+7fx/79+/HhBx/0RfSmqipM04Rpml7IF/3JiwOoIgTbpzkI/17fAKnDHGq/4jHBT1iuVJDL5XDygw/6dPZNUEr9RU7VtMYLWDMEFrdudv48zRcVXErx6uVL3Lt3D2vr6xgZHsZnv/IryGazVeXBtE3ySylFuVLxPQ1alXsapgm4bsPX8bOmMxkke9CeGQB+7/d+D7/3e7/Xk2NHhV1y0AEEWQYRRaiqigKwpd8CByGkadqg24kvyOx5/l6SJBw/fhyHDx/G3OPHePjoER7PzWHfzAwOHz4cSaXB0PAwzNevYVgWlldWMBpSDMl7IICVbnbjtW87Dq5cuYL5+Xm8//77OHToUN92p7Isb6aVTDNc7XmU6PMufKtDYhvVCl2WMfLue/3E06dPQUQRUz3aNTaDbhigrMxX67ApWXDXzb+7tskrIS3NicLCcV08n5/Hg/v3sVEsIpvN4ssvv8QImzdqr00IbHrCQNd13yI5EY83LfWkrutFZQjZqhmqcR+dnJxs4yrePuySgw4hxmJQbBtEEOA4DnTDQLKG5RMAYOK5ugtXBA8fnwgIEyVxoZ4syzhy9ChmZ2fx9OlTPHjwAM+ePsXk1BQOHz6MTBduX4IgYHBoCEuLiygUi4hpWkvnxiAxALvOTnf5hmHg0qVLWFldxdmzZyNvhhMGqqKg7DgwDKP/5IChb10Zt5CD8GkFp0sDpH4TA5dSPHnyBNNTU11FtjqBzcpkKaWIN8mZtw2WZgjdiCkinYHtOHj29CkePHyIUqmEiYkJfPzJJ1s9A2qiYe2c2WIRPADQGDEAGouWeXdVQRC26LKCr07E4xiM2DL+TcMuOegQkqrCLpUQj8dRKBRQKpUQi8WqhVdNbG6jCkMTzvB5CNFx/J0H4NkgH5ydxf79+zE/P4/7Dx7g53/6pxifmMDRo0c7zqnGYjEkUylsbGxgeWUFqqo21V7UTkw0bPlmDYrFIi5cvAjTMPDFF19geHgYtEl75l6BN+JyHAe2bXccNu8IfdYcbDFBauOdlHmB7PSOjPzqXr9+DV3XI2vNHBYUmyJEWZYj0c3Qmn+3KgMGvPmk23SCZdt4MjeHhw8fQjcM7N27F+fOnUM6nW5woZtX2s7Ycmx7MwWjqlV27I2Oo7N7vIUYMAdWwKtK60WFwpuGXXLQBaRYDDFdR6lUgmVZqFQqSCYS/u9JgL3WihMjXcxqcoz1fAIEUcS+/fsxMzODFy9e4N79+/jFL36BbDaLo0ePeqmBNifwwUzG7zWxtLyMiYCgCIC/aNcjQm4HaYWl5WVcungRsqLgq6++2oxWBBoz9QtEEKCoKgzDgG4YiEek6diJEGoLKMOW6QZIW1/JUweg7Ll5+PAhhoeHke6zO51pGL5IN9atiJjUqkQ88AgjDUTwtrymC2JgmiYeP36MR48ewbJtzExP49Dhw62jitg6P7YCdV1PZwBAlqQtwuh6c47A3U0p3RLtcwIkNh6LYYTZGL/L2CUHXUBgu+WYpqFcLvsNmYK5LH+416mjjvRasBmhcF234WRMBAFT09OYmprCq1evcO/ePfzZn/0ZhoaHcfTIEW+BD/uQsvLGfC4HXdextrbmpyv8NEIDtJtWePHiBX64fBlDg4M4e/ZsVUdHgt4pq5tBU1UYug7LsjxHtj45AAbL1vqB2jOFjdMEGy51EiUKa34TFZaWl7G8vIxz58719bzc0wDwxlS344inMxv+vlMdQgPouo5HTNvkuC4O7N+PQ7Oz4UXQlLatM6hUKt48Jwh1Ff618wEhXk8cy7JAgS2RA5tHDSQJE5OTO7uDaJ+wSw66gCAIkBMJSIUCZEWB4zgol8uQ0unNXTHL323JpUU98bGaaJ5TC/P6PXv3Ys+ePcgvLOD+vXu4eOECBgYGcOToUUzu3RtqAVIUBZlMBqtra355o6woLXfyYQWJlFI8ePgQd27fxuTUFD766CNIdYgP11v0s2SOd3szLQsV0/TyxP0A391tVyljGwZfQBetmvtMDu7fu4eBgQGM10TAeo0Ks0gWWDQqErS6d4ywdRNxK5XLePjgAZ48eQJBFHHgwAHMzs6GbsXuXyrai6Qaug6LNYGLNzGI8gkCmxe4NkGUpC16Ese2vYiCqmJsYqKt639bsUsOuoTIyo1URYFl26Cui0qlgkRNn3E+wfKJtd0wWhgIrClLW5MqIRgbG8PY2BiWl5Zw7/59fP/dd7ibSuHw4cOYnp5uObmn0mlUdB2lchn5hQWMj421dB5z0VpQ57LmSU+ePMHhw4dx/Pjxhu/hbmehRVcRQdM0mKYJyzThKspbuePYaoIU7h67XVYq9BOrKyvILyzgzOnTfT2vZVmwbdsTIQZSkl2BRwZCvbT9KEKhWMSD+/fxbH4ekiThyNGjOHjgQMOmSC3Rxrlt24bOnGljLUo9g2JtCkA3TYAQqDV6DpdSOEyntXdysu9C1J2K3bvQJQRBgJpIVJkhmcxaV5blqvBWy+qFLkEEoUrn0C6GR0bwKyMjWFtdxb3793Hl8mXcvnULeycnMTMzg6HBwYa71aHBQRiGAdOysLi0hLFstvlnbCFItCwL3//wAxbyeZz66CPs37ev5fVz6+V+7jclSYIsy3BN09Me9NHEpG9LbhdliABAdrjeAPCiBslkEnv27u3bOSmlfvdAVdMi02X4UaUQ84D/ihavN00TL16+xPyzZ1hm/VWOHz+O/fv3d72Y0pCWz9R1USmXAXjdFltFWWo3Yiazo64lMbxJkyiKmNqmPho7EbvkIAJo6TQ2WDtjWVFgWxbKlQrSrMXvlmHfo3BpsFdBNzn4DMvrFwoFzD97hvn5eczNzSGZTGJ6ehrT09NIBHc5lEKQJIyMjCCfz0NnAsVm/gc8X1gP5UoFFy9eRKmD5kmENUbqZ3qBRw8MXYemaX3bKfetlLHDagXfOrmD6+ynfmRjYwOvcjmcPHmyr+NGZ2WLQheeBt2A8lw/tzCvIQiO4yCXz2N+fh6516/hUopsNotPTp/2zM+6IDNVkdOQ6cVyueyXIWohSDjF5jPi2DZsx/H0BjX32nYcuADGx8a2pY/GTsUuOYgAkixD0jTYug5RFOE4DlzHga7rW8Qy/mMQki23A+51EBSCdTPJplIpHH//fRw/fhyLS0teKeT9+7h79y6Gh4cxMz2NvXv3QlIUP183PDyMpeVllEolyLKMTAPVd6NOlGvr67hw4QIIgC/Pn2/4/kYg8Hz8+ylm802RmLCsX9GDfi1jtWSnXc1BJwK70J1KI8C9+/cRj8Uw3cfyNdu2YbCdbDyZjF4/QltbVQUtloNzxfLyMuafP8eL589hmCYGMxkcf/99TE5ORmLHTl3Xiya18YwahgHbcUDgeRCEGRsCS7FS9n4QAkUUIdWUm/P2zfv6XL6607FLDiKCkkjA1nXYloVYLIZyqQTdMCArCiRRrKodJoT4pVNRToACK2Xk5+LMuetdGCEYHR3F6OgoPvzwQ7x+/Rrz8/O4ev06rly7honxcUxPTWF8YgKJRAK2bWNtfR2r6+uQJKmqvJOj3uSfy+Xw/fffI5FM4rPPPuu8pCsiE5d2ENuO6ME2+Ry4IU2QfM1BB+SgX8SgVCrh5YsXeP/Eib5Wm1R0HYS59EWd4w5z72rFiMViEc+fP8f8/DyKxSJUVcXMvn2YmZ5GqpE/QQegvEopEPJvBSvQATcWi4WKWBDv4D5B4joFuSZqQCmF6zhIZzKRd3F907FLDiJCLJFAeXUVtuMgLkmQZNlLL5TLSNWr821Qi9wN+OTmRw7Yz2mEi6UoipicnMTevXtRqVTw4sULPJ+fx8VLl6AoCiYnJzE9PY1kIoFioYClpSVIori1DhnVte9PnjzxmieNjeHTM2e67rsgEuK78/UDMpvkbcuCUSdi1BPwevUeL6R1LLxavocyi2ygi2qFPuD+/fuQFQX79u3rWyrDNAy/aVovOv5xNPo0BB5xswI6gpWVFUiShD179uDURx9hZGSkJ/dji2C6lSg52FBJUUKJHv2NUeBnhmmCAlvEiLzqYe/U1I4ep9uBXXIQERRFAVEUuLoO13G8ro2s/l03DG8SqH3YIt7hCswtsXZfJwBtGN6GA3VdaKqK2YMHMXvwIArFIubn5zE/P48nc3OIxeMYGRnBwMAAFhYXMTE+XuWgSJlnPqUUt+/cwcMHD7B//3588MEH0TykEZRqtQtN01ByHBim6QnMer37JaSpj3xUEGqrFUKQg2DVSLtRgH4t0pVKBc+ePcOx48chiiJstlD0Er6nAaVVdr9RI9iUrfb8r1+98nQEuRwAIJvN4vTp05iYmKiuMorYO6RuFLPJ8WsbKoUlUrXEwLIs32CKawp46bNj24gnEn6fh11sYpccRARCCJR4HIZpwrIsaJoGNRaDXqlA13UvL8139j28BhACuO6WlEWUJkGus7XfZCqZxPFjx3Ds2DEsLS35Icr5+XnEEwnkFxZw/L33fCdBno/+/ocf8PLFC5w4cQKzs7ORhpM5+ehX+F2RZVRYrw2TE8Ieox/mT1tMkMKo4AN6g7a+U2a13Y+0wsOHDyFKEg6EqISJAhSeNwD3JOmZ+I0Tg0Dofnl5Gc/n5/HixQuYloXBTAYnTpzA5ORkQ18CAibwjYJgNxinzUZSsKFSPBZrOSa4uNP/3Oznvt5Alv2NB0+92o6DPWNjbXszvAvYJQcRQlVVGLLsdepTVSiKAss04TgOKuUyEsnk1nI7Hj2IYBELOtE5rltlFsTLm2iTLpFhUI8YVF0DgNGREYyOjODkBx/g1cuXePToEZ49fYqnT59iz8QEZmZmQF0Xj+fmoFcqOHPmTE86oBF4qQunX9ULxLO+LTG3TFVVe3Lenppp1UUH7oYdphQ6dVNsF4Zh4MmTJzh06BAkWe5L+avOooogpPd225SiVC7j+fPneM50BPFYDPsPHMD01FT47qxswe2aIDQapw1+XtVQKaTOQKiNxLI51WDloj4ZY8TAsiyosRiGR0Ya9oV5l7FLDiJEPB5HsViEw2w6FUVBLBZDsVj01MmGUb9kqaYEsRsIogjbdes+dP5OoMMFpRUxqIUkCJiemsLY2BhevnyJhcVFrK6u4rtLl+C6LsqlEg6xDpG9MIUC+l+9oCgKKmzHw0nim46tJkjh0wrtplb6pRJ59PgxAODAwYN9OZ/FOi66lCLZo3SCY9tYXl5GPp/H69evsb6+DlGSsHfPHnz88ccYGh7uTOfUZWl0s2e73hG3NFQKsXDXPTrbDJmWBUppld6AUgrTsnDwyBEkEom+lrC+KdglBxFCEAQkk0ls2DYqLJUgiCJUVYVuGH56oe5A5DumLhcxHploxvQ7edC7CV2rioLx8XGIkoTs6ChkWcbFixchyzLu37/vG9CMZrPIZrMYHRmJPCTft94LTGRWLpehs14bPZt4WBrJT5/0ApRCoAQEBAIEUNBQLZs7jRz0gxxYloXHjx9j//79mw14ejg2OBEGvN4JUXRcZAfG2vo6FhYWsLCwgKWlJbiOA0XTMJjJYHp6Gvv274ckin3vOwLA37k3Hf811+UyC3oKQGJzZ6hToT5BsCzLS1MJgnff2fksy8JINotkMtmyMdS7il1yEDESiQRKpRIc1/UiBZoGRVVhMlFMmaUXemaExHNqzcgB0J7YKKA87xTxWAyZgQGsra/DtG0oqor9rEHL0vKyN8Hl85ibmwMBMDg46BGF0VGMjIx0V73ASFdPp8cAsVNZ9MANRJB6emo0XlSp68Jl358b/De/HyylRQP/973u2edJ0zSGMeyXMFolG2tra5tOfIygkMC/K5WKV5dOiCeUFQTP3psQ/+96cJlQtZd4PDcHx3FwaHbW/1mvCBwFUGaufkIborr6B6MolUpYXFhAfmEBi4uLME0ToihidGQEx48fRzab9YSx5TIIIZERA/79uiHTkrUliw1fF/i36zgolUqe0ZEoIh7Cz4AbOTW6Zq43UBWlyiROkCSM79mDVCq1GzVogF1yEDEIIUilUlhzHL9LoyAIiMfjKBQKsCwLpmE03j10GT3g5CDMhBDWajiqfgUD6TRs20ahUAAhBJVKBbIsY2J83G/3XNF1bxe0uIhn8/O4/+ABBEHA8PAwsqOjGBsbQyaT6SiXLcDTYvRkMqgpz9JUFRVmhNUwWhTBuVzXhe04cFhfD4eJUX0iEAgJV0Wm+PUESJNf+srPwV7fyCGRAiCcXLD/8x2caVmgrgvbslAJeHz452IkoZY48B4ZvZqwbdvGo4cPMTMzE8plr1twUR2l1DPHavNzGbqOxaUlLObzyC8soMwW/aGhIRw4cADZbBaDg4NVz4NpmpuLOe28BXM9hKmO2TLWmr/Y82apIQZhUi/NiAHgjTXf3yCwubBsG9PM9vltbrXeLXbJQQ/g6wxcF4Zpeg1CWIisousol8tIp1JAs8HfoUAx2La56evg+R+QZjtq2rztcicYHByE7ThQZBmFQgGmZVW1uI5pGmampzEzPQ1KKQrFIhYXFrCwuIj79+/jzp07kBUF2dFRZMfGkM1mkQyZMySE9E1/oCqKL0CzbLvqM3YCl5m1OI6Diq57zZ5sG7IkeWkk9joaXIgDY0jkC3BwIQaqdv1+tQs2d4oAUBALWMISXLggIBBjQDqVqlok/KgDG088z6tpmh+lcl3Xq6Rhr3WZba3/GfnPKYUkCBAkCaIgQBRFiKIYSYnr06dPYZomjhw+vOV3jULTncKybd/PP5FIhBLV2baN5aUlLC4uIp/PY319HaAUqYEBTExMIMsjaU3GE6XUe7YRvYtmqw0FrxgIHa3gxCBgjRxWkyG0iEzYlgWT+Rtwy2RKKQYGBxFPJJBOp3ejBk2wSw56AEII0uk0VlZWYDgOVNZHgHvw25aFYqmEZCPFcGBX1y5B8C2UQ0YOmqUX+GQdJQRCPE2BqsKwLM8DoUEXR0II0qkU0qkUDh48CJdSrK6uYmFhAYsLC7h+/Tqo6yIejyM7NoYxloZoFboNGzHpBoT55VdYKWs75CAYDXBcF67j+NaxgLcztB3HCxljc+EXCIHAdt1iiBB+6M8SeD/vMdqs66bruv7nrSf2clmKg1JaHelwXa91LivFs20bDjaJD2G7SkkQIEoSBEYcwn4+13Xx4MEDTE1N9XzHSClFpVwGZSHthou563pjenERC/k8lpaXQV0XaiyGsWwWs4cOITsy0laUg1IKuC6EHinwm1UvtEUMGEEslct+r5VkIhGKGBD2/mYolsuglEJRFCgsckBYOkGW5b6UGr/J2CUHPYKmaVAUxbPUtW3EmDAtkUhgY2MDhmlCLJcRazRJdVjBIIoiQEhbhi4C2drJkTvc9YJXC4QgkUyivLQEx3GwsLiIsbGxlsp2gRAMDw1heGgI7x09Ctu2sbS05OkVFhfx5MkTEEIwkE5jbGwMo9kshgYHq0RNfHcctTlSvWmKR4oc294SIQnCpRS2bcNm7XuDRMA/NsvhiqIIVZYhM1tqjdV/BzUCUaN2/LVSb/jdGBsQE4GRGQDgd8TXPGCTPDgsUuI4DhyW63ZdF5brwrRt//OKkgRJkiCxCEOj5+XZs2fQdR1Hjhyp/zmbfqrwoPBsmSmw1bzHdVEoFLC4tISFfB6LS0uwLAuSJGF0eBgnT57E6OgokslkR6SO8mhfj6p/2Enqzhn8/GHhuG7nxCDMsYtFgBAk2BxLAeyZmPBTv7tRg+bYJQc9RCqVwvLyMgxK/egB7zWwsbHh5Q9ZRKEuSPsWy3zHyCfXZju8IKoe9h4SAw6FCYREQmCYJpZbdHGsB0mSMD4+jnGmV9B1HYuLi1hYXMTz589x/8EDEEIQY2LI9MCA93c6jVQ63XvzIBY90HW9KnrgkwH2xwkQOX5Foij6IXVBFCGJYtXEadl2T3PzVZ9jS2+F5vfN4d0Y20kDBHLUnDwERag8usDJAo8y8HSL6TiosEWLEwVJkvzxTynFwwcPsIeJ0HoJg5eyWhZc20Yul8PG+jrWVlexUSj4Jk9DQ0M4NDuLUaYb6Pa79DcSNfbpvUIwgtBuNRBlizcnBomQqQQe9Wv62QhBqVTyzKYC82tmeBixRAKKouxGDUJglxz0EKqqesZIhgEDAA8MKqqKWDyOcqWCUrEIkZAtDUF8tClQ5Aplk4Wmw5IDgBEEJmTrNRRFgWXbGBkZweLSEkqlEiRZxmAXzU80TcPU1BSmpqZAqWcCs7a2hvX1dayvr2P+2TPcZ/XTgiginUphgJGGAfYn6soClZEDyzBQAPxwea34jy9mkixvIQKhEBAfRo+aY7YSpAUiB+2codlRuVCxdjw7juOTLNg2XLD2vLYNV9chMrKQz+VQLJVw+syZ0NcUFpRSFItFrK+vY3V1FasrKygUi75NsiAI3hjLZDA9M4OBdBqZwcHIGy4JggDK0jQUvavA4KjSnLRJDIqlEqwAMWin/XMrYuA6DorlMsBFoAAUTcPQ8DAAIB1hI6m3GbvkoMdIpVIwDAO6bXt++2zi1GIx2Mwop1AsIiUIkbl0SZIEk4Wo1TYXO8pC7r3edciyDMs0EY/H/RLHtfV1P1zeLQghSCYSSCYSmNy71/+5aVlYX1vDxsaG1zlydRXzz575TZpisRgGBgaQYV3a0uk0UslkR6Y1tm3DMk0Ypun5XJimP1nxHS5v2NStKU4vFwJhS7VCi8gBM8tqJ3LQKR3lhEFVVU/DwPQZPCLDxZEPHj7E0PAwJFmGYZqeB0kH98yyLI9srq1hfWPDH0sOMx5TNQ2JRAJ79+zB0PAwBgYGOk4RtAOCTVLmt8ruwzn5+cKeixMDh80xoYlBq3PwcmVKPSGwbYMQ4leITOzdC0KIn+7dRWvskoMeg7skVioVVFwXCTaIuV84dV1Yto1ioYBUKlVfuMQfipA1xpIkgRBSFa4OjWDpW/vvDg1FUXzh3cDAgFfiWCxicWnJK/3sUZmZIst++2nAW5Rc10WxWMTa+jo22KT/7NkzlCsV32ExNTCAwUBqYmBgoG6HOJcRPsM04ToOKCMBhNVbS5KEeEg72JaoGQu9MnraojlocQ6+OIWtLqAhjhkGhKcUJAkIkIW5uTmUKhUcO3bMb3xUKZchKQoUpt+o9xmLpZK3+DPiur6+jgrzLCCCgIF0GulMBlNTUxgYGPBFkoSQvhCC4OcO+kP4JaW97jLI0p5iA/1BLajrosirEghBPGQFh3eq5sQgOH6KLKWgxWIQBAHZsTGILErT65TS24RdctAHpFIp6Kz8TIvHITJWSwQBiUQChWIRjuOgWCwilU57O656DwNPMbSYdCRJAgkowUOzemxO0lG4NTYDZ++WaUKKxTA4OAjHcVCuVLCwsIBsNtszghAEgbeIpVIpb+II9HgwDMOPMGywKMOzZ898A6FEPO5HF1RWripLEhRV9SdqWZYhx+PQYjGYuu67tb1JqB09rUYFjxyEJQe9qh7h4/7hw4eYZm3GTcuCZZqw4aUfNsplGKYJ27ZRKhZRKBSwsbGB9fX1zWhALIZMOo2pyUkMZDIYSKe9xT/w+QzmgEqB0KW1UWGLcRS77l5ege+hEHKeoEHxIbwW96HP1fxCqoiBaRhe+SIhSMRiUGMxDAwNwXEcxGKx3R4KbWCXHPQBkiQhkUigWCyiUKkgraoQmCiJsvB3oViEw3awyWSyvlYgZAUDIQSiJPm517APxBb230OCwK/JsizEGMPn+oNKpYL84iKyw8NIRJBiaIVGi5OqqlVRBsCb5Aosv7yysoLVtTXMzc15Oc7A8VRVhaZpSMTjiMVi0DTNq7dmjbkGBgb8CE+7aPqNdOiP0RRt9FagTCkPtBc5iBo8vHz37l1YloVEIoG7d+96UYNKxbO31nWvVJQtrpbrIplIYCCdxp49e5DJZJDOZFqm5mzb9ogBpf5Y7gdqIwYctKf6E/jVMf7xW8wTnBg4jBgkmF1xmGhDs09Qz7GxUCyCEAKV2VSP7dnjdXYUhF2tQZvYJQd9QiqVgmVZMAwDBcNASpYhgBkRiSKSySSKhQJs20a5XEY8kYBIyNaJPmQFgyhJIG2QAwrUL+/jE0HEJIFHDkzL8n8mCAJGR0awvLyMUrmMheVljAKRaBBaIXRInng94VOpFOLJJCaZ+NFhboC248BgCxBfiJaWl1GpVLzGO4FDyaKIGCMPMU2DFot5/+b/j8ehKUp7kYYQlrXtYqtDYuMyUB418C4lJDlo83pt1piH31/+b71SQalSQYV1xeTHppTi3r17iMViiMfj0DQNAwMDiMdi0NhuUpIkz3shkMKTFKWlbsJ1Xd8eWVaUvuaz62mDeFSrF90tuSVyvW+rkfdBLTGIJxIQBAF2iCZuAjyPi0afwq0hwg5zJAWARCyGzNCQL/ocHBxsS5y9i11y0DcQQjA4OIilpSUvhGmaSEiSr1YXRdGLLpRKME0TAsuZNYwg8B1agwlAYs55ToiHUDcM/P2///exsbGB0dFR/Kt/9a+qzstdFE3Lwv/7t38bDx89gixJ+Ef/6B/hvaNHO7of3FLYYm1ZObhVMgCUymUsLi2BUopUj5ujtDSEYr0ydMPwPSAgCFA1zd9ZttoJ8a555XIZtuOAMrfDSqWCQrGIhcVFVHTddxHkLoVaPI6YpvmLGWFlfvFYzEtnBFwEeXmjGHAX7HYn247mwG+41GAipsCWckQ76GcQ+MOJMl/4y4wI2La96f5IqWdoE4shHothIJ3G+NgYNE3D8+fPsb6+jq+//jpUBMpiIl6DuU867DkVZRmqotQl2ZVKxb+WfpXHkWY+HYHvJkpy4FIKsQEx8E5bx/OgDjEQRTEUeRVa6J7qHaHIfA1kWUYsmcTA4CAAYGBg4K3ojtpv7JKDPkIQBAwNDXkEwXVh2DZUSfL3YZIsIxaL+R39BFH0/ABEcetD0kp3wMyQLKbYbvZqVVXxV/7KX8F//I//EYuLi/jzP/9zfPXVV9XnohT/n//1f8XDR48gEIL/x//0P3VMDABvlwVK/Z7tQXCCQAQBxWIRSysroJR6ltM9RD2CwHcjBrNhhet6DXQSCSiBnglh+k+IkoTBoSEoigLqukgPDGzZmVJKveoGthj6u2P29/r6OkqVSrXYlBA/ssOrTfj4IJSCBDwT6v2RmJdC0KY4+DuT7cY4cvk87pbv+pUBvHcAN3IyWZ8HyjwIbEYEbNuGwwyefOvuwE7XN3vC5uTPUzKxWAyjo6P+/zlR0jTNG+s1WF1bw7Vr1/Dhhx+GIgZ8gZdkGZIsw2G9UUzT9LQwpZL3PKqq/70bhuGVTFKKVCLRUfVDJ2jWnKpKMxQhmhEDfj4/zM+uo1Sp+FUJPjFA6zRSU4fXBgSeuq5vPKVpGkZGRyGy5k39SE2+jdglB32GJEnIZDJYWVmB7roAK6viUFUV1HX9xUAgBDKbOIXaNEOTCIIoihAIgcOMY+pNoD4oxV/6S38J/+W//BcsLy/jD//wD/HFF19URQ/+4//2v+Hq1auA6+L/9rf+Fj49fbq7+8C884NphSAEQcAIjyAUi1heXQV1XQx04YMQBvwuWiyPbJim76goSRK0WAxSnUZKYYVZMlt8LMtCpVLZkjIhxGvapKkqMplM3WMUi0XopgmNRQ38nTjfcfMFOWDBXOs26Nh2lamQZRj+e93AaxzXRcEtwqEOXJeCgOJ1/jWeLD2pMmgSRdFLZQmCZxcsSVAUxScYYg0B4SSEezrU+7nIol/tggK4desWUqkU9u3b18ER4C8smqr61Sdcx2DoOkRJgmUYfrlcP0LWPGLQ7J74aYWodA9c5xTipVxvQuF1ouREMBEgBv7rGkBosPj7pKDBe0vMKlkQBAwODSGRTEJRlJ7PF28zdsnBNkDTNKTTaWxsbEC3bQi27ZfaAJ4HguO6ME0TpXIZKTZpOpRCQM2uoMkOQZIkLxdu203JgcMWvl/7tV/DH/zBH2BxcRF/9u23+PonPwEA/Jc//mP8t5/9DADwf/kf/gf85b/8lyPJaytskWyGkeFhCISgUChgZX0dFECmhw+8y0KhhmH41RuyJEFLJJqa1rSTN4/FYt4Om4Wx2zbDIZ7zmyxJdcVyUZUGcvz5L3+JV8uv4S03BCfeP4H/ft9/X/e1xVIJtmUhHo+3zL/7UYPIrtTD69evsbS0hM/Onet6By2IIrRYzDMzYx1VXdfF+toaKLxW5P3QGQR9DJohyshBu98NIQQQBJSKRd8CvJYYAPXTb5SnLRqM21bjucCiBjFNw8TevRBFMRLXyXcZb1ZN1VuEZDKJWCwGSBKKlQrcGm1APB6HLEm++5rLw7G0TqdE/gDU/Jw/lM38DoLv+PLLL30r4j/8oz+C4zj47rvv8L//H/8HAODcuXP4v/6P/6N/zm6XH0VRYDLhWDMMDQ156n5B8I2LogalFJVKBWvr67AsC5QQyIqCNCtba7mAtzEJiTxdRAjKzLGxo2uO4FrCoB3NQVvuiEKtvVL3cCnF7du3MTo6ijE2lqMAt8JOJZN+OSr/hEW2GPYS7TQzIuiecHUiaHRdF+VSCRZzAI3H46EiKtR16xMDNse0+uSVSgUuS1nN7NsHSZIwNDS0K0DsErvkYBuRyWQ8YZ4so1gqVT0cvEmTKIq+SY+/c2DmLlUPU53KBm7u0qwJUzBXTgjBX/vrfx0AsLS0hP/wH/4Dfv/3fx+UUhx77z38+q//etU5SJcEgVsoh0GG1ZdLgoD1jQ2sREgQTMvCxsaG1ySJWboOpFJI1dn1RAXeZY978HeERguG26r7QbsIV63AqzaAcO6IvdjTzc3NoVAs4sT770d/cEpRrlQ88XA8jszQEARRhEspSoUCypVK5NbjhJ03/CVGUMYYtnInAMe2PZJk2xAJQTwer0uoa4/bsMVzG9fAyVkilcLQyIg/r+6iO+ySg20Eb74iaRpceJ3cqn7POpUJguB1GQsQCF56VyWEq9UdMDMk3uWuFvXCz2fPnMH09DQA4JtvvoFlWZiamsL/83/+n+s+7N1MQoqitEwrBJHJZHwR38bGBpZWVjo+N+ClUwrFIorFIiy2oCYSCaRSKZ8UCAi3a2u31FMQBL+joq94D4sW95yELHcNf7pw9sl+TjjkrjNqN0fLtnHvxx8xMz2NgQZ6jW4QrJRIJBJedUQq5QkURdFrxV4oeCY8EXy2Thwv/fmhQ82Br51p47k2TdPb3LiuX5bdKNIW/DScGNRcQFtpMdMwvO/FsrD/wIHNiOwuusYuOdhm8NyYqGmwTdO3Z+UQ2MNGWOVBueb3AKqjCIEIAiEEoiyDtogeVIEQfP311/5/BwYG8Ju/+ZvNH7gOIwhyyLRCEJmBAe9+sdzm0vJy2+elbAe4vr7udc6jFKqiYCCd3prDZ/n9luiAJGmq6tWNswqFKBFlrnVrb4X64FEDbiHcDLwyIUrcu3cPtuvi+PHjkR4X8Mp9DcvynTH54kcEAfF4HMlEwq8Qqui6p73oxL6cIazGoBZd9VXgz3HI93KBZoU1OeIdZ8Vm2pzAZxKCIl42b7VLhgosWjEwOIg9e/bsGh1FiF1ysAOgKAoyw8MgigLdMLYsmKIo+pasZh0CURVFCD5s2PQ7CJsTzefz+OlPf+r/3zCMUIK5TiYjRZY7mkDT6TSGhoYgCAJKpRIWFhdDh3Nt2/aEoLoOh/lLpFMpxNkuvhF6ImsiBDFWG19pIyTtX0vEi2vrE/LTNkgrBMhB62NGe0dL5TIePXqEw4cORe43YJmmb64T07S6PTUkSUIymURc0/znsVwsth0V4rX9HUceWPSm3bvbqb7AYPdF1TTf4Kj55dW5Pna/OjHDWltfh0MpDh0+3LC6ZxedYZcc7BDE43EkBwchACiXSlsIAvdAALxdTKlGo8DhuK43SfO67SZmSLXvLxQK+J3/5X9BoVBAkpkO6bqOP/qjPwr3IdqcYBRZ9p3s2kUqlcLw0BBEQUBF17G4tNRycTUMAxuFAix2L5LxOFKNrKprEHWonoP7WIAQfwEKi6Z1591dVs2xQkYO2ujGGLXj5u3bt6GqKg4fOtTR+xtdjW3bKDHRqKoozc10CIGiqhhIpaDKMiCKsGwbpVIplA8GpbRxKV9ItNuumUcK2jmjY9ubkRFCEGOuk8Fz1vUiqI1qEM8+vpPPS10Xi4uLgOticHAQs4cO9c22+l3B7t3cQRgYHISSSACEoMSc4YJQVRXxeByAl+crBUWKDFwk6DCGLvPIATNDCiL4UBqGgX/9r/4VFhYXoWka/vE//sf4+OOPAQB/8id/Er5CoA2CEE8kYBhGW7qDIJLJJIaGhyGyvP1igwgCpRSlUslr/EI9R71UKtV2CVoUKvCtB/Xq5Am87yBUhKdBdcrWl0VztULtNNHgvH5IO8QkHSU1WF5ZwcuXL3HsvfeahrSbod6dchzH6/AHT9wbCxmRIIKAWDyOJHtWXUpbpxkiIAYA2xwgXPSmHRLBYVmWpy9wHF8TVe85akQQ+fn8tEkHn9d1HKytrXnznyDg1Mcft18OvIuW2CUHOwiEEAxPTEBlXf0q5fKWCIGqqn6KwWJtjmvLIAHv4XOYU57ALEuDkxPFZhjYdV3823/7bzH35AkEQcDf+7t/FzMzM/hrf+2veeexLPz//vN/bvfDtHwJzw8WCoX2jh1AMpHAyMgIJBZBqE0xOK6LjUIBhmnCcV3ENM0XebYNFj2o98m6WYa5Kx8JGT0Ie66oyEFt5KBRLYTbRuQgqpQIBXDz1i2k02lMz8x0dZyq/zMBMIHnNpqIx9uOjEmyjHQyCYndj1KpVDdSxqsLuiUGLkstUlZx0wydEANd11EulTb1BclkYzJWxyQsGKVw67wmDHj32tW1NRBRxL59+zAZ6KS6i+iwSw52GERJwsDICGJsN2nxCEFg4pBZ4x+BuePxls+14BOOIAighMCpjR6wh/Pf//t/j5s3bwIA/vbf/ts4cfIkAGBqagqffPIJAOCbb7/FwsJCuA8RDC82eVkqmQQBsNEFOQC8lMzI6CgkQYCh68jn83AphWlZWF9f9/oYsPN1nY+uUzIKYLNhT4fgKSPLsjqOpNSCh5i7xhbNQf2j+mWMrdI0EeoNXr58idWVFZw4caI7MhT8TCzS5LLdfCfEgIMLihVZBmHjs8wiWN6pookYAIG+FoLQlBy062HgMqLE9QWKqrbUFwSP7hMfSjsSWXJYto1yqYSNYtEzoEok8BGbn3YRPXbJwQ6EHI8jFo8jnkwCLEJQrIkQiKLo5ctZN7RCobCliRGHJMsApdW7FjYZ/eef/hTffvstAOCv/tqv4csvv6x676/92q/5nun/3//z/2zvg7BJqNG0J0kSEskkChsb7R23DuKxGLLZLERBgGlZmJ+fx/r6ujfBCwJSqVRktc8E2Oqj3+XkLjLffsLU7q3OD4TzqI9iGQ5TyugGdC4tKxW6WCCCcFwXt2/dwtjYGLLZbCTHBKUolcuweXvhRKJ7K2JW9x/XNIB1JOSeAFFEDDhcxwGYyLbxpZC2vBgcx0GJuV4C8JqAtRDvAltdEF1u3tYhyTINAxUWebEMA4qq4vDhw7t9E3qIXXKwAyGIImRmy8pD4LZloVgTIRBE0Vv0mJNiKdCqNgiFtZ61HQeWacKl///23uzJjuu+8/zmvtylVqA2VGEjKa4iCFISRYUkOqy2FG63NdZY7nl02BF+8UxEd8fMy8S8+E+YDj9MTzvGdtvR7QjLbluOaDvstmW3SYoSTQKkSVGUAJAACBBLrXfJPfPMQ55zKvPuW4EE+PsoSgXWcjPz3lt5vue3fH8MSZriH/7hH/CnPF3wla98Bb/0rW91/e7m5iY+x+covPrqq7h+/frY1zPoRjI3N4fGDMQBkNtSHz9+HEkco91u4+7ODlRFkSJq1hR3fLMI4Tu2DSj5PIxwRtGDWZxXVylmj26FYjHioGPO0tvgypUr8HwfTz311Mwe0/d9aczlVip9p0tOgskdFoWw9KZsd+xkUL2BSCOMk06I+T0nE/UF1WpPu+5+iONM+5oHQQA/CPKZDb4P07ZRr9Xw6GOPTfW4xGBIHHxC0V03H0BjGHluT9OQZhlazWbphqKoqhwywhiD53k9Wx1FTltMQXzzzTfx//7H/4g0y/DZp57Cr//6r/c9l29961tQ+Y7jO3/8x5NdkOhj7vhyrVabmTgA8kVKpFyE3fI0FsXDKN2Ip7wJKqqaV31jSGujuOlOdbQxzmuEboVho5rlY81IpAVBgB+/+y5Onz6N2gymdTLkXUBRHAOMlbwMZonGBb2u6/kcgnZ7pLHqo5Bxv5NexkIKxnu/FOsLtGH1BQVkLVNBOHeZtY0IYwy+5yEKQyjIowe6rkNVVTz2+ON5RJQ4MqjE8xOKqqqw5+fh7+3JG4qoeG61WvnAF95WJa2WeVFeEIbIGIPrulK9W5YlR9A6rotz587hD//gD+Qf86Cb9sbGBn7/P/2nmVyX3L3wG0e9XpfOc9PejD3e4aFrGjY3N9FoNBBGEe5ubyOq17FwBH3QCgqh2hns0m3LksN9fN/P8909jglgJDEyagpi4GN0pRW6Kea7BzGLyAEDcOHixXyRmNHuMSp6GTjO0dnv8oW66rr53zNyj4bKiHMIBiEiB8XRyCJtMWq0QLzvRBrBsCw4HW2KvRCvKsuyQ5fFKWBZBo9HcTQAqq4j5sOVTp46hZOnT0/1+MRwKHLwCUYzDFhiV8TD44Zh5JXUnicLhAS246DCBUEURaV5DLquy8U34mOIAZ4/V1UwbrF8L3ajxduM6FiYNnrg+X4eemQsr9dwXaysrOSObYqCxsEBbt+5M7NdWiczcyRUFLg8jzpNm2f5Iac7t+5uhQFphWEL3AzEwY0bN/DRzZt4+ty5wb4DI5IkCXzPgwLAHuZlMCligS6YlFVcN+9k4K3Lk+yuBb06FWTb4Iivf1d9geMMNQcDNy8SbYm9fnbceRNZmqLleUiSJN8kuS5arRagKJibm8O5Z54Z6/GIySBx8AnHcByYIgKgKKhWKvLm5fk+PD7HXGDyVkdVyS2Tm82mvHFblgUoSk+rXvH4UiQctfseP94sOhZ830fg+2BZBoeP180PoWBpaSm3W9Y0hEGAW7duTWy8NIhZeiDoug7TsqCqKrxeDnv3Oq0wQvHlSAOXZiCgwijCxYsXsba+jo2NjakfTwwMgqLko7mPwpefMaDHcCFFVVGpVKRAaI1oltSLYuRmkghEZ31BpVodLJL4tQy0axYdChMUQKZpmtdUuS58z0OaptB1Hc9/6UvkaXCPIHFwH2BWq9BFIRDfWbquKzsQvA4vBN0wUK3VoPGBTaJOweR1B2mS9BzjLELkwGGe8KhFgm4YU3UsBEEA3/dzDwPHgdWjVbFWq+HYsWPQdR1pmuLW7dto95hRMS2zdFF0bFvOXejbvXCP7JO7aw7Kx5U7RwxOK8zivfTWW2+BZRmeOXdu6sfKsgwt/j7QNE0ajM2cAWF2IRA0IRAmjCCIegNN08aajwAgb6/sqC8YNDiJIRcFog2zL2N2YsRxjHarhYwxmLqOquvmnR3tNqCqOHf+/EzqS4jRIHFwH6AoCqy5OaiaJv/YLMvKBzIhHzlcjBAA5cKnjLF88mAcwzTNUmFiv+MJGG9BkhP3joC5uTk0m82xF48wivKe8QHCQGDbNlZWVnKDKUXB3e1t7O3vT3nmZYriaurHUlVZbxCE4dRV7dOcV1daoeN1Eu87ZUCnAsP04uDWrVu4fv06nvrsZwe+1qMgevfBGFQhDGbovwBg5McTToMa//m2540dFZKdCmNEDdI0RbvVkrUWhmmi0se/QLx+Mn0gig0HPD5jLHdqHYIY4OTx6zYMQ9ZL7e3tAYqS1xmcOjXytRHTQ+LgPkFVVdhcIAgM00S1VoOqKLkZUrMJv5BmEO1HpmHIVkdRSTzKWNmSeckRioR6vY5Go5EXRY742GmaSjMZy7ZHMjfSdR0rKyt5a6OioNFo4Pbt2zOvQ1CAmTxHumHAME2oioJ2Mb0w60VsTDqvLBsxpTDNWcdJggsXLuD48eM4OYUTIgDZ1SPOu+K6g3fAkzBmUZ6IIIj22HHmbCiqKj1QRrJN5o8vO58UJa8vKBQwF364FBmS359R14mIDIRhCIZ801PhnVrNRgNJmmJ+fp7qDD4GSBzcR2iGAatjJKmu66jX67KVMQjD/I+K7zQVnoawef4wThIpDAYVu8lipo6bQEkkzIhix0I/B8JOPN9HmqbQNG1kz3sgv67FxUUs8qFNQRjOrg6hUACmqupMhgu5jiNv/mLBGKdbQTLFuajK4NkKoxQjTvtcvP3224iTBM9MuUiIiEHKDYOqlcphKH4WdBYejoGqaXAdJxfvI0SLGCBrGVL+Nzms3kB0O4liZmGDXKwvEBMSxd86MFnkaVByRKTL2rzOQVVVVF1XFkCGYYhmqwXLtnGOZid8LJA4uM8wLAtmpVJanMWuQxQiptwxURQrKooiK/gFfo/BTr2Qt4TOdjZekzALoSDyiK1m8/A4A5wVRUsmgInDwdVqFcePH4fB6xA+un07DzPPkHEiIYMeQ9ww/SDIBzNNcL3jWuaWfrer5qB82x+ljXGaZ+Hu9jbef/99PPHEE1PVBRSFAWMMlULv/izErgKMnWfvRDcMWIYBRdPgceOfnscSryVfwPt6HHAy3hooFmPw4VCV4lRSxmRNQa/jjEs/J0whUMTkWdM08wgnr6vKsgx7e3vQDQOfefxxLC0tjX1sYnpIHNyHWNUq9B67ZcM0UeNRBICPKG40ZGuSGNpk6no+kOjgYKQdsyi061eRzBjLc54TCoVarZZ3LHQUJfY6XsLTCYwx2LY9VW+4ZVlYXV2FbVlQkS9Ce3t7E1eM91p6ZzFG1jDNPL2gqvA8T96oj7yjhNPlc9Bx2GHigPX6pRFJkgSvv/46lpaWcObMmYkeAzgUBuJca4Wiu5kIgxnaINu2nac5ehSjMuSCseh0mIkBa31mKohOhJj/rRumiZowTkOhngDIIx+9L3Csa+g5spl7KIjXQVUUVKtVuK5bSkk1Gw2kjGHj5EmcJj+Djw0SB/cpdr0OtUeoTeWFbNVqFaqYu9Bq5dMdswyGaWJufh6WaSLlCn2sHus+NwkFh+FI2eUw4s1S13VUKpXeXgeixZI/ls/PVdO06YcoIQ+FH19ZQb1eh6aqaDSbuHv37kzrENQJw8xFXMcB+KAtIegmecRJfmfQbAUhDIERPA4m4Efvvgs/CHD+/PmJH0OMXhaLaLVSmXi0cy+kMJhhMaqIiEVhKO2cpTDoeC+Jv7fOmg/RFujxv31F01CpVuE4Tu5tUigw7AXrJxRGoHNSrJgPIyJ+pq5L6/fiMUQ64fjqKs6cOUPphI8REgf3KaJAsecNifds12s1mUuMoggNPpxJ0zQsLi3Btm3EcYwwCNDk3QzDEEcb6pgmwp0jtkPWecdC3+OqKoIgQBzH+US2GbadKYqChYWFUh3CRzP2Q5jWNlhRVbjcqS7i46fHXehn5cVQTCsUBy7NIkpSZGd3F5cuXcITjz+OarU60WOIBZIdhTA4wgiOruuwTBOqpsH3/VwYFI5ZJE0S2XUhzicMw3y4k4ga2raMlhQjfIP+jtUBqb2BFIQSyzL4ngdPTLnkmxeXb146r2Nvbw/zy8vYOHECi4uLkxydmBEkDu5jNF2HMz/fVyCIHUi1ML2x1W6j3W7D0HW4fMIaA3cl4xGGYVGEcZ3XGGN5nnfAgiY6FgY8CEJuC+1MmU7oR7EOIeN1CK0x6hAGPR9yYZ5iITEtS87ICIJgoumGk9QdDJqtMKxTYdLuljTL8Mbrr2Nhfh4PPfTQ2L8PHEYMRN2NKD6cCSMWzk6DY9uyvTEMw77HE86mqqoiTRK0220Evi99Cyq1mhyYNI6V8qTv1DRNkWWZTGdEXKCI2gLDNLtEapZl2N7ZgVOtzszgipgOEgf3Obppwp6fH3gDNngIzy5EEZrNJjRNg6ZpsExThujF9wb5IBQZ1fhHzFRgWSbrE4rU63V43DK1F0IYaJo2dY/7IDrrELa3t7E7RR1CEVEUOM2SItrN0jTt6XQ5FNZr4PJgOrsViq/dsE6FSSMmP/7xj9FqtXD+2WcnEjTS+ZAx2dLb7xwn2vnPaOx0X/gibvNJnVEc9z3PlBcGi8mtne2JwmBplGPOgizL4HmebDVWecF0hZ9LT2GwvQ3TtrG2sYFTp07Juini44PEwQOAYZqw5uf73+T4ouS4Lmq1GjRNQ8YY4iRB6PuIogiWZR1+jxdvjRJFKD7+qIj6hKwwz6FWq4GBdyz0IIoiZGkKi+86RGX4UdBZh9BsNnHn7l3EM6hDGFjcOQKqqsKtVGT0IB1zkVIUZeqe/qK8GFqMOMGCs7+/j/feew+PPvaYnL0xDmmSoNlqyfOq9jH2mQT5uh1h1EBamSM3BBLeB3EP4ZwxhjiK0G61EPKUm2hPFIZnIx0zP/DU5x6FIZrttjxXUQRt9RlklWUZtnd3oRkG1k6cwOnTp4/OqZIYCxIHDwimbcOemxsoEMAYdB5FcGwbuqYBioJ2u41mqyVdFR3eOieiCKPuUCe9wbAsk3bQu7u7XTuYhNs9M0BOogSm750fRGcdQhRFuHnjxsAZECNXrE8pECzThKZpUPhrNwmdLWusx0eG3kNzZPEdj2AwRZFeAUzkqcXnMV+jjDG8fuEC6vU6HnnkkbGvK0kStNrtXARpWl/Hv7G5hx0ipWMoyqGraUcNTMat0YWzoMbTiJNc87RXJdIZLV7foWoaqtWqTAH2enzRsqiqKtY3N3H69OmJa0uI2UPi4AHCdBzY9Xr/3b6oFQAvUKrV4LguGGNoHBzg4OCgZxTBa7fzoSzDdqli0Ssca1QMw8Dy8jI+unWrVMgoiqtSxmBbVldIcpYDj3oh6hBMw4ACYHd3F7du3+5bvDnOuSgTVoOLcLOCvAo8GFA4WTK0AZAW6z9E0WjhZ4ofYkFUO24TDIeueYmw0xWLUeciqii5m96Ioe2f/OQnONjfx7PPPjv2Aie8+Rny6I9w2hvKoAV/jBz9xAw5hmWaAH/dkjQFQ24d3mg288FcyNsfq3xq66jM4qqkKOAFzYwxmLYt6zsGXdf+/j4yRcEGFwaTRImIo4P6RB4wTNdFlmUIm83+xjd8EddUFYsLC9KKOOAjj4MwhMWLh8Sc+ziO0Wg0SlMP+yLy6qJiecTd1uraGt55553cMY3PkWBZlofP0xQG78vudbspfm3WeztRh9BoNNBoNBCGIW589BEW5uZQq9VKC5CorRgJRRnJo77X72mals+JQD6V0jAMaKI9DfnzkaHjuS8u2OMcrrMgkT9OWuhUGGid3LET7vf9RrOJd3/8Yzz88MOYn58f6xzjOJZRFJ1HDEZd1AdJ3lm3KfY4wGDjJC68TMNAGEXwfR8AZG0OY7l9+NipE8bAprimlIvSpCCSVU2TKa9hqau9/X0kaYqNkydx8tQpzM3NTXwuxNFAkYMHELtahVWr5TvCQT/I28/m5+dlKJKx3G3N933ZWigGOAlP+larNVaue9Sb9NraGrIsw93tbfm1kFs964Yhz08UYA0SHbO+lStKPkt+dXUVjmVBA7B/cIDbd+6UWh7HFiZcwI1dB6AouTESb8trtdtIsgwpjwSkw56fcWpEunwOckQkSR+14K3/AcAAvP5P/wTXcfDYo4+O9etRFElhYBjGWMIAQHfkoNiKN9aZjI6oK0BnN0fh30LoMd51EEUR9vf3EQuvANPM2x0VZbgfQGeUasLXqxgpEMLA4BuJCi+WHfZePuDma+ubm9ja2sLCwsJE50IcLSQOHlDsahVWpSJtVQeh6zosy4JhGNB1HW6lApWnFHzfR6vVgmEYshYhjmM0Gw0ZaRiVYTfsGr/B3L51S34t5uLAKlQvK4Ubd6eXQldkYcY7PsMwsLK6igVeixDHMW7duoW9/X1kWTZxCHqcFrPCL8HSdaS8WC3gu8pRjzdqPUDnWcnIAd+99jLjGpe33noLB40GPve5z+WtbiPWb4RhmLtGKkppmt9UiEX7KChGCnqIAulWyP87yzL4fCy56EJQFCWPWPGaIV3Xh0cNJvUs4CR9REGtVpMFhAwYKgwazSZ838fG1hY2t7awvLw8xVkRRwmJgwcYp16H6bo9WwclPHrg8PysaE2r12pdIiEMQximKaMIQjiM4iYovRHQXyQoioLV1VV8dOuWvEGKKMHAnRG/8XXWKgBHV7RYq9WwtrYGl7vNNRoNfHT7thxoMy4jdTHwBSVLU7A0RcYYFF3PRzvzdFAygpFV8Zgj/mD5NHggvq8z4hjCAwA+vH4dVy5fxtNPP43FxUX52qm87a3fWYZhiMD3oQAwpxAGYqGedGDSiAc5fHwRdSvWeAClv1HxN9dsNuXEQsMw4PAJpJqqIkmSPKo24G9jWmksREG7IArMgihQNQ1pmkJR1YHCgDGGFi9YXN/awsaJEzh+/PiUZ0ccJSQOHnDc+XlYjpMbk/S58Sl89+HwiXBi7LNlml0iIQrD3BedLwhJkqDZbI4eRRAioU+udW1tTe5QsizLK5+V0d33pJ8CDq19j2LMNJBHXI4dO4alpSXomoY0SXDrzh3s7u5ONZ+h5wKXZUjTVDojFgsATdPMizUVBS3P67Ku7X+wUdvcOsVBoeYAPQyQRMh8BJrNJt64cAEnNjdx+tSp3ueodPtDhHw3nSEfRjaNMFB4WuSoagsUQE5PLAqBnhX8aQpPiIIoKnUh1Ot1GIYh39NJkoBl2UBxMOm7PkkStFutnqLA4aJAXJsw9xr09+/5PhqNBtY3N7G+sYG1tbUJz4y4V1BB4qcAh3sgRL4P9BnOoiLvYIiiCHEcIwgCecO1TBOmYSDiXy8uPhljUHgUIYwi2JY1cn+1AsjJheK2sry8DF3TcPv2bZzc2gIwnWd/MQUhbmCqopSK0KZpKwSASqUC27axu7eHdquFVrsNz/exuLiYz0QY95z5+Qhr4pRb/xYXrs5pebbjIElTWVxarVaHLnSjpoS6TJD472Z9DJBGTQkkcYxXX30Vruvmo5iHvQZ85x0GgZwoatv2WCO7S9fBxcBM2xN5hIDJ/8xrQIa9v7I0RRCG0k0QyJ9Xm6f7gMMixDRNZdRAUdVDcdBx7ElIkgRhEJTMyEzThGVZUhAIFEU5fG8OEgaeh/2DA6xvbmJtbY3cD+8TKHLwKUBRFDjz8zBsu7ybLv+Q3KGIeerFdIEQCfVaLS9e5DcKlfe6R3GMNEngeR4aIhQ66k230FWh6zqOr6zg1q1bedsWGz6jfhyKN89OM6bOlr5x0DQNx5aXsXzsGHRNA8sy3L1zB9vb2zI3PyrFuRSJuPkO+FlxXaIgLOG7z5GYaLedyfeG2tmuxjtMRngQvHHhAgLfx/Nf+MJIA3YYY2h7Xu67wds5JxUGxR3vVIhagUJUQBQCjzK/IONirlGwGdZ1HdVKBbWO1sRiwXCcJECWQTeMUhfKTCIF/P3aK1IA5IuGgkPBDfSOUCiKgsD3sX9wgLWNDayuruLEiRMTniFxr6HIwacEVVXhLiygvbODNI6RZlme0y0szAoOixODIIDneajVanJ3JXa0pmnCMAzEcQw/CKCDh/DFYs4YvDRFEASweCRhnDar1dVVXLx4EVEhrDprxO26lN7oDPWKCu9CSHvYDtB1XRiGgf39/XwinufBDwIsLiygUqkMPa+MMTDeyy6O16tYUUZECoubaCVr8+l3uqaVTKN6MsLi2OuapW1yr5TCCFy6fBk3PvwQX/jCF1Ct1Yb+fJqmaHuenM9RqVRgGkZXrn5UhFHTuOJA/B10vk/E98QCPuxx0zRFGASICsJR13XYltVXKKmqCk1VkTImxbdpGJOnQnhqIgjDkoDtFykAcmEgWiDTNB1Y0xAEAXb39nB8bQ0rq6vY2tqa+XAu4uggcfApQlVVVJaWpEAQux0hEsDbkBzHQRhFeYgxiqRlcZFeIkEsZEmSIObiQ4wYHkUkiEVobXUVFxjDnTt38q6AIxzbKq+rx2ILFNIR8guHggGFRbsosDRVxdLiIqqVCnZ2dxEnCbZ3dtD2PCwsLMDocT3SqKhj1y0EWedSU0qXFDB0HbZt5+IuCKDp+tDIS9di10GnG76IPgGTpXx2dnbw9ttv46GHH8b6CCHmOI7R9ry8TY779GvFnDd/300kEjp/p7gLLyz6RYHUeRQR3heRqEH0EgUGF+SjRE9UTUOcJEiSBKqm5S6nY5ImCeI4zuc1FN5vA0VBoZYHOBRJAE8toiCOsgxRFGFnZwfLq6tYWVvDqVOnSBjcZ5A4+JTRKRCA/IalapqsAVAZg+s4aHseAt/P3QEHdBiYpgnTNBFFEaIoKokEz/dly5+ISliWNfBGUalUUK/Xsb29jfmFhelb00ZgmEgoUgqnFuoYRIRB5JhNy8La2hoO9vfRaDYR+D4+CgIszM/nERn5gGy0jg+glBLpd562bSPhC0i73UatWh08AGnYDrrj+c/AkPHFrSQORijoC4IAP/zBD7C4uIgnn3xy4M+CMfhBgDAM86JZ7nrY61qEuM3StOv90tneKgsPC6kAIQCVwx8qP3Yv+Os9SqQgSRKEYViaj2DqOqwxJ4xqfPJilqb5cKIR/zZYliGKY8Q8/ScvgRssmXw8dCeiw6Lz6ooiVil8Fl0JjUYDSysrWF1bw5kzZ0gY3IeQOPgUIgRC0Ggg4jsyEa5VecGiZVmyONH3/dIwFFnh3XFDFCIh4zuHMIqg6zpSXmyFIEAQhjANAzZvyep301hfW8OVK1egPPLIkdojdzKOSDj8UaVrgSn6LtTn5mA7Th5FiCLs7O6i3W5jaXExf35GyNGXbsCF8+u3KFVcF03e8eH5/sCURuc13vFu47Z3O7dJBnDXu1v6/l3vLt7afjtvMfU1LDtLODt3tud7ovM4r/3wh2AAPv/5zw8UfYwxtNttGbq2bFt2ZPRDAR9bnGWynkARYX7+3yINIR4nKyzsI7/PCs89w+BUkwjbJ1OKguIinXAhOYrxUZIk8u+4iG4YsHhbci+BUYpYdXy/+H4V3h5CJO/v7iKKY6xxDwOKGNy/kDj4lKKqKtz5eeimCb/RkOFFGUVQFLiuK+2CLcs6DOUWblS9bouqqsrFX6QmRPohjKLcuMb3YZkmXNeF7ThduevV1VW89957aLVaqPfKSY+wS52GTpHQa/fU/5eVrgXHNE2srqyg2WjggD+n12/eRMVxpAPl4a8r8nGkT0NnzQH/3O+cFFVFxXXRaLVyg6QgkGO5e/48f6w/eO8P8Uc/+aOBl/fP2/+MD7c/BAPDDnYAAC+e+Cr+j2f+94G/984772B7extf/vKXB55LwgtbxfvLrVRgCBMs8ToUd+2FKIBw6BNtu+J9XXyeOgsoR6IgiEfqxOglCgyj9Hc0FEWBioK9MxfxSZpC07Se6Smgf9pA03UYhpFHAvss2DJlht7vrWLUrFhIHEcRdvb2YNs2tjY3sbq2hpWVFRIG9zEkDj7lmK4LzTTh7e0hjePDKAJjULl/f6k4scAoS7Ou67lpkuPkNyw+qyHgAsH3fZimCcd1Ua1WpUhYWlqCruvY3d7G2upq9wPfg1QDUBYJYgFlQzoI+uXwFUVBfW4Ojuvi7vY2Em5F3Wq3UeWpFI3PlABQEiRM7IaVw7kVojJeCCXWIUhUTYNr2/ncDN+Xr0UvGIAoDfGdn/7J0OdEQ764pThMhfz9h/+AX3vs17BkL/b8nY9u3sRPfvITPPnkk1g+dqzvY4dhCC8I8op4UV+gqjKvfXjC5ToQoFD3IQTCCKmaUbwNpHfGEFHAGJMCuJgmMg0Ddp9cfo+D5UV/4jFR/jsTw410VS093rC0gWEYg2t3ehS99iLjxbKiS0lRFLRaLTQaDSweO4ZjKys4ceIEDVF6ACBxQEDT9TzN0Gwi4h71QiRYto2Q74BEcWIvZKi2z822WJvgui6iKJKV/CFPQTQbDbiui1qtBsMwsLS8jO3d3b7mTfKxAVksddSSQQHyCYMYsFgMyeFrmobjx47B930cNBqIwlC6x1VrNdSr1Z7eAQKZuii0YBaPVzyyYZowkgRRHKPZaslpefJawKvPswyaYsDUTIRRCAYGBQo/FkPGMvk6qFCRsgyhEiFBHvY3NRNVvVJKpygsH+7Tajbx2muvYW1tDQ899FDP540xBs/3kfCaFc0wpPtk8VxHReHPsxwO1YsBwqAo8AbWn/B6ERG6L9aEGKYJu08uv+cxB+zYBRH3NzB4C+OkaYPScQH5nh6EEFIKv+YsTbF/cIAkSbC+tYXlY8dw8uTJkQoriU8+9CoSAHiaYW4OumXB39/PnQlVFeACwff9gcWJxVA4gIE33s60g+d5aLfbcgFrtlqwbRsL8/O4efMmwiDIW7b60FWkh6MVCV11CR2RhEHHFgs6ADiOA8dx4LXbOGg0EEcRWs0m2q0WatVqHknps7DI51vkfAdEM1zukJkmCXxukFR8DRVx01cU/KtTv4D/8pM/kq6Ih/9/uHPXYUBRgBSJ7GT4xubXYWqF+Rf8+cnSFD/4wQ9gWRaeffbZvm2Rnuflz4uiyPfGSLDBxj+igK/Xc9Or60C0Ig5LHBQFQVG8qko+EMsasX133GLbJI7l6OZGszl22qATdcBz14kUoYzJNILjuljjrocrKytjXQvxyYYSQkQJ07ZRW16GxhdjVVXz4inu5d5sNkdrGRvxpqfrOur1OlZXV3H82DFpahMEQb4wKgquXb0qbZtHoVSZPtJvTIYiPkQr6BCKLYBF3EoFa2trWOLukFmW4YDPajgo1IMUEQuPuGEP60aoVCqAkjva+QPmP/zSmW+iort9vw8AekdawVAMfPuhX+55vRcuXEC71cIXnn++ZOgjiJNEWmWL8xxFGLA+kZJeDGuFFVGvUvFiD4SLYbPZRLPVQhhFMt1hGoZMDTkDCm0BXjipdJpSDz6/hD9PbT5aXViLK7x4uMrFpGVZQ4WBwlMXI7sp8hSCSDc2Wi3c3d3FwvIyNk+dwsOPPELC4AGEIgdEFypPM4TNJsJ2G7qioFKtotlsIoqiPDxdrY49ZriXmY9AURS5k47jGM1mE2mSwHUcfHjzJupzczJUajsOTD5Bchii6nqaiYmjHENcA5AXkPW61mHiplKpwHHd3DGPz7tvNBp5USa/+YsbvwxBF4b4iK/3WuBUVUW1UkGr1UIUhtB1vTsawxiqRhW/dPZ/wh++9597nqPK/wcACfLc9r/Y+hdYdrqn6129ehXXrl3Dc88+i7m5ua7vh2EI3/fzxYq3KY5arNcVqRr287z/vggrREz6iYIsy5DEMSLeGlrE1HXopglD14e+t6SfCHAYaRjwO8IiOYlj6RTq+35ejMhTdNIwadTnoJDuYqP8juhC4PUTWZZhb3cXaZZhY2sLx48fx+bmJqURHlDoVSV6oqoqnLk5aDzNYAK5QGg0coHQbKJWq6FzIM4gRC/6sApxwzDyuQSui2aziXd//GN4vg+HhzPbnpcvbroO07bzm7Rh9F1Y5M4QRxtJEKhKbkVdLF4cZXS2+N1qpQLXdfN0w8EB0jTFfqOBZquFWq2GaqVSyk+LHaRs3+uTZtB5C6koMFUrle4bu6LgF0//Iv7synfRiltd56cjFxQpUjAw6IqOX+kRNdjZ2cHFixdx+vRpbJ08WfoeYwye58k8+SijlgcJy1EQ8zSKrXmlyvuOY8VJgiSKSmZFAOT7TjeMkdIGoniv+Hr1uo6MdyEkcYwkSXoKyTiOoWsa6vPz+eyMoQdn3SJqDFEgfSBY7si4s7MDt1rF+toa1tfXaariAw6JA2Igpm1DX16Gt78PmzEwvvuMowi+58HiIdSRRUJx1zRksbQsC5ubm7h69Sr2dnaw+fTT8D1P7uLiKIIXBKUbtmEY+eceu7lSOxvyHf5R1SbIXRqv2xhWVNmJqiioVqtwKxW0ms08kpJl2D84QLPZzKvBRZcCOq5D9Pf3EAi2bSPJMiRRlBdAVqtllz3GUDEq+KWzv4Q/+PEfdJ2Xzm8ZMfKF/WubX8Nxt7xI7O/v45WXX8bS0hI++9nPlr5XtEEGjxbZAyyepbCbQdRH7ShQ7BRrxeK+4nc0VYVhmjB1feTiQtFVMuis0ySRboedUQngsNNH13VEUQRN02CZZj49dRCidmLc54yLAoUdOh6yLEOz2cRBo4FjKytY5tGCkcQJcV9D4oAYiqrrqC4vI2g0wHjNQZt3GiiqCss0kQGTiQTxn+i+kSqKAsuycPLUKbz77rv47Gc/i6XlZaRJgjCOEQYB4ig6HDRUEAqqpkHnBVqGrnflncXxip0Oo7ZzjYJ4XAVAiu7d4qhpDlVRUK/XUa3VDkVCmmJvbw9hHMN1HFRdF2pnF0m/glBFQdV10eJ57DYXCEWfCUVR8M3T/wp/duXP0IyapV83eOQgQQJN0btqDZrNJl566SVUazV88fnnS9GcMAzz9ww/j1qvyEXX6U73ehSnV8oOCv7fAOTQsJjXDwhURcmL+0xz/FRHH7IsQ8wjA2KqYhGVT1jUDQO6ph3WlXBTsTiOc8vyAc9Zp83xiCdeEgXAYVvm7u4uMgCbJ0/KNkVKI3w6oFeZGBm7XodumsDeHjLG4PMuA1VVYeh6XomPMUUCR5qvdNwwdcPA+vo6Ll++jJ9euoSnn34amq7D1XW4jpPv9uIYEW+3TLjhD0O+8yoKA4OLhWJImHUenzN1xwO/ll7zEgAcpgGA7h7+HhRFQpOnGLIgQKPRQJqmWFxcRMUtFxKK3V9XFEHJJzi2uAOh8FkQAoFlGVzdwS+f/RZ+993fLz3mYeQgwc9u/gzWKoceFJ7n4aWXXoJt23jhhRfyiYHg3Qi+jzRJ8jZFXUfFdXuG5adNH+SXp8jHKr6fFOTRA2Fl7AdBqUBUAUqCYJQ0R68BWMWfEe/JmFsed56nrmm5GBgwAyPmwkDhEYxOoVtMmfVyNOxLD1Eg8DwPu7u7cKtVHOdjlo8N8KcgHjxIHBBjods26seOQVVVZHyoUou33um6fth/jwlEQo8brMFvmlsnTuDy++/jsUcfLU0aFGFXKRT4jVS0e4VxDMYHEKW6nnvb+36+S+M7NI1/FOk850kXrb4OhoV/i8LOfjlwdPzs3NwcatUqbt+5g0ajgSSOsbuzg0ajgbl6vWR1LdIbiqLkYWZRuMgLFIXFsoggFPPjv3DqX+JPLv9XNKIGAECDXliEGH7loV+RxwnDEC+99BIURcGXvvQlWJYFxhiCMMxnI/BzsW07r6jvTPlMmT4oRgg63SkZY3k+ny/UostAiDYhGo0BM0S6jtPj31mWj7JOC8fqROOCVYiBUQoZgzBEFMcybVY6fsFXYmQGiAI/CLC3v484inBsZQXHVlawtbVVek8Rnw5IHBBjo+k6aseOAaqKve1tRFGULy61mtx9TiUSisfi6YGNzU28f/WqFAi9KDoAxtwtTjjKiT7/KEmgIo9IZFmGqONYGp90p2matJEGUDr/bAShIP3mR2y/BMrRC+HI1+8oqqahXq/DMk254CVxjJ2dHewfHKAiHCcLoqcUUuete9VqVbYStlstVEQXiqLA0R388kP/M/6/H/0uAMDgt4sECX7mxItYr6wBAKIowksvvYQkjvHVF1/MO064p4JYhHTDgOM4XSJsUlFQivR0mkAVduxCFJR+V1Ggqyp00xxeWKiUHQsFRSGQcSHaK3qg8PSEeG+OayccRVFerJgksG07FzAd5zcyA0RBGIZoNBp5sa+mYX1zExsnTmBtbY3SCJ9S6FUnJkJVVcwdOwZN17H90UeI4jiPINRqpRbHaUWCmFkfmyZOnDiBS5cu4ZGHHhrau24UdlkxzylHvDo+40ZEURznOVrG5KKVpmlJMKiqCk1V5ehjrZALlueI3imIQS1ywxA7bXmMPguPoqqo1etYNk0c8LbHlBvkNBoNWLaNaqUCx7YPUxkFh0cxArnVbiMVEYRKRV7PL5z6l/jP7/0XtJN2qRjxf3no2/L5euX734fvefjyV74Ch0/zjLnTIZR8RofZw1mzM5UzynNSSj3xz2LxFEKg14RLITJ1TZN+Bj2LREUxn/xPHnUQQiDLkCZJ3526qqpSYA7qoBmVUEQNuLAYp3VRMoIoCMIQLMtgGAYeffJJnDp1qudrRnx6IHFATEV1YQGqpuHWtWt5/poLhK7iQkBOfizuFEfZMVqWhTAMZefCB1ev4qGzZ0e2TBZCwQUQxXHeotZhNytu+vykSueVZVlp1K6iKLlQEIKBLwhdKKO7z41CZ35bKdQIqJqGhYUFzM3Pw+NWzFEUIQwChEEARdNQcRxUKhV50xcpAk3T8hQDL3Zse54cjWxrFr668RX8t6t/KYsR16tr2KidQJqm+P6rr+Jgfx9f/vKX4TgOms2mfGzTNEuTNztTM6M8N70iBDJsz6NBvYyldCEG+Efp9QRKr7/4XsqNhaIoQsIjA/3mMyjIC3XFay8+ZlnQmvBrC8IQruP0TMcM+n02SBREERoHBwiDIH+fZhkWFhfx3PPPUycCAQBQ2KRbG4Io4DWb+OjqVaRpCkPXUalWhy7aDJDGMMNuemEYot1u4+2338bu/j6+8Y1vyHCvzC2Pec6RqE1IktKwGoHISXeeW79z1ToWC6YoSJLkyNolwyhCu9WCYZqo9hjJHMUx2q0WPM/Ld9P8vA3DQKVSyWcXaJosXEy4uBM/4zoOFABhFuN//d7/hnbTQ0Wv4v/6yv+JNXcVr732Gj766CN88YtfRKVaRcIHd6mqCtd1y5MmMfrr0ymCsjRFzF+jJEm6dvwK8udeioEBi7TwhQiiCKkQAEmChAuDfudTFAAiejQrIcDArWo7CnKbrRba7TaSNIVl26h12F73OdmBdSudogAAHNvG+uYmHn3iCUohEBISB8TM8Npt3LxyBVmWweQL0DgoA4QCYwzNZhO7e3t49dVX8bnPfQ6bJ070faxJ3tTFYjLx717n0VmINtBdL03lQiJ2loqqQuWL6DRFeDFP5ei6jlqt1jWlUJ4HYwh8H612G0GHdbLDowmObYMh9+5v8eFbpmnC5T31d7a38b2//x6+8LnPY2NjA6+/8QauX72K888+i7n5ebn4O6LgMH9yRr8YUXHPmBQBIjrQ+fyK57IUGSh8X9hUCwOfjP87yzJkaYo0yxBGEXrRmUZS+0WFZoAyYCFPkgQHzSYaBwdwKhVU+qRmxOOIa+33XgqjKB+/zh0pgfy1r9VqWNvYwNaZMzMTO8SDAclEYma4lQrWz5zBRx98gCiKoKgqHL77HIVBaQdR6T5Xq2F5eRk/ee89nDhxou9ji8VKhFdlMd4AxK5Q3ISLhYxCNHTuLcXCJYr4Ct9AhsP6BgBdk/PkufIFCcgXp86PfgJC2jV3VOd3LsoqY3BdF67rIkvTwx0pLxr0PS9vD3VdVPhHu91GxLsMHMdBliRQkC/K77z9Nq5dvYonnngiFwa84NC27ZF3nuJ5yXgeX3ykfCRw53WKiIAQWCICkCSJLDoVjzGs60OkIUTRqc7FgHi+j4quV3DAOYouD4N31PSaS1EUBeK/OxGiIPB92YliOw7m5+ag6zrWNjawtrk5zWURDygkDoiZ4lYqWDl5ErevXUMYhkjTFK7rHprsDAl7ApA3vKL1rKLkfvKhYeDUyZP4p9dfx507d7AywMJV3CqVHmHokfLdYlEqLHid7Wop39l2jk1WlHw6n/AwKB5PXh9fyFiWIRnS1SCeA01V88gDfz7F8dM0lQWAndGX4iAeTdcxNz+Pubk5BGEIr9XKPQjSFM1GIy9itCyYlgXGW1UVVZU78Rs3buDatWt45JFHsLqaexy4rltqLwUgOwSyNM3bBjs+F5Fjngu7X1VEV0ShKBcC8v0j8ul9ni9VRGgKAkvjn9Mhu+xZUEoVFK5xFBL+vAdBkDtI2vbhuRbbF4ekD5rNJgLPy5/PgigweFHj1pkzWCLvAqIPlFYgjgTP83Dnww8R+T4U5KJBDPqZ1GBI4eN3m80mfvDDH8IwDHzly1+e+BxlZGHiR8gpVsuLSIMg6nDeEygAFE07dDLsaMXj/xh4bowxNBoNQFG6ikBLXSEdoqH0PVUFGIPn+/DabSRxLG130zSFqmlwLAstz8OFCxcAAFtbW/nAHb6jFeIoS9N84S2kAsQuXn4uXGdx4Zafi/n8PiJg0MJf/Fo/oj6zC6al9HxPcVtt+z729/aQZhmq1SoqfJbGKGZZYRii2Woh8Dz5mktRYBi554Wm4czDD6M+Pz/xORIPPhQ5II4E13WxefYsbt+4gfb+PlqtFmzb7plmGFUsiAFDhmni1KlTePPiRezs7WFpYWGic1Q6Pkt3ucJNeBQBoaoqTNNEMSMsUhG6rudGTHy+AuNhcwbIaXeTIM5VhJYzETkoiozSL7CSTXTXnoAx2JaFWNMQBgF8PhY4ShJsxzG2d3bAAMzVaqjVagh8H5quH45/FiKHo6Cw+Kuq9IwQEQEZzeDnJaMdfJcr0yoF4SBrNqbY8Yt6hEkfoev3ekUwphAGaZahxaefWrYt5070i5JkWSanW/phCCQJGH9uHcfBXK0mozqMMTiVCk6fPQubTI2IIVDkgDhSGGPY393F7u3bSOMYmqahUrDqnegxATQODvDSK6+AMYavfe1rMI6oaKx4zH7CYdAAJ8YYoo7itwy8voILhmLBXPGzSDsMot1qIWUMruNA1/WuxV9O1+s4J/G5M0pRTIP4QYBWs4lbH32E3f19AMDK6irm6nUYhgHLsmDZNhzTzBdyXYfGd/9iJy8EQ3HxL/679L17QMZYVxtrJ70EwDQL/iiIR9/b25PRoMWlJVg9ihCzLIMfBAh8X/oTFN+bdocoAGOAqmJ1YwOr6+tUeEiMBIkD4p4QhiFu37iBsNkEA/J++x5FVp2tif1uY2mW4ebNm3j11VdxYnMTz54/LyvklcKicy8o/gHJQkh+s86QpxYmWVzETl+Me5aige9+kWVotVpIkgSWbeeFlB3XLiIL0phKpBTE88SYNAUShX4Zd1yM4xhXrlzB7du3Ua/XUavVcpc+04RpmoePraowLUt2KliF+oPi7YWNOGzqKIl56ufjEACddEal2u02dnZ3kaQp5ufmSn4DaZrm0QEuCISgEh4Xjm3DdRzYjlN+jhmDU63i1JkzFC0gxoLEAXHPSNMUO9vbaO7sIOUT5lzX7b/rxuAFPkkS/Ojdd/Gjd9/F5557DpuFqmtRzCh3qrO7jLFggKxFKKUnCjn14mfRXdFZi9CzZZIxeEGAKAhg2zZsxyn/jjheR8i/8zGEUIiTBIHv510ZaSo9JT7zyCNYX1+HoqqIguDwehSlq6ZCuE0KkeBwy98ShesrRl5k6Lx4/f3Ov/A1hbFyR0qPnxVnGERRV4HqvUKIxs6BUEDuSXHn7l3EcQy3UsH83FzeTeL78IMAURRBxtoYg6brcBwHjuvC4kKtE1VVscKjBQQxLiQOiHsKYwytVgu7d+4gbLehKko+EXCEtIB4oxZvg2EY4pXvfx+7e3t48cUXURvg7lZqkZziGsYl5X4HR/GnFoYhfM+DaVkjD8fptGVO4hgBX/ShKAiDAP/81lvwwxBf+PznYVsWGIBqrYY0SdBqtXJnRVWF47pIkyQPc/MR2qLTRAgTXddhWhZs/tGrLe9ekPKRyfcSKVoKtRW9zuvOnTsIowgMeb1OGIZIeDuwEE06FwSu43R1h5QPyuDW6zh55gxs2z6aCyMeeEgcEB8LYRhid3sb3v4+0iSBy3dAo1K80e7u7+Mf/8f/gFup4EsvvDC0116MMe6cAXFUiDRAMkUBYj9i7oKo6zqqtVrfn1N4V0LxnGIuCooFeoHv44033oCu6/jiCy/Atix4ngeVT74E8khIu9WSEYMqn8gJQE7qDMMwnyYYRaVx0YxxTwQhFmz7yEyGijDGEA+wQ57ZcXAYsRnUailI0hS37tzJXQuj6FAo8zSPaZq5IKhUoI/wPKmqirUTJ3B8bW0GV0N8miFxQHxsZFmG/f19NPf2ELbbMHUdjuuWFu1RYIzhg6tX8cPXXsPDDz+MRz/zmbFtYGV7X7HNb4akWYa0YIg0s8fl/gSKqmJubg4ADkPzPSrpRYGk8KAQXQWmZWF7extvvP465ufn8fwXvwjLNOUQJcuyYBTEW5ZlaHue9DPo2s1yQcAYQxAE0tQnCsOu4ki9w/pYjDM2ZjC4SD5PInoz4+dfRrN4/r8XGRdicRwfOj9y86a250l761qtBovPo7B5hGCc66/W69g8dSpPLxHElFArI/GxoaoqFhcXYZom9vf2EDSbaDYasG0bprDgHQFFUXDy5EncvXsXly5fxly9jpXV1bzgkeevmaJAKexgOxFh32KOX5lhZEFBXgMhhuHMAtHfD0UpLVKSYmcFtwwOwxAZLwwUtQGmYeCnly7hnbffxubWFp49f16aD4nFvygMGCDHPXvtNqI4hud5yBg7DGMXRnc7jgOHL1hpmuZCIQgQhiHiOEbKfQfCMCycOuMPk7dBFoWD+DBGHIEsTI+mFQadxbLFNkwxpyGOY8RCAHAxIA2qOCKy4HkeAt+HwhiWl5awvLTUXVA4AqqqYn1rC8dWVqa6PoIoQpED4hNBFEXY29uD324j9jwoWQaTF7WNGklIkgR/+7d/iyTLcP78eVRctyvn2pX3FTu+ESIGvSZJjnobFy2LAHI3xGF/djz1Ic95QDX9wcEBsixDvV7v2mkWRYG4TlVVcwFmmmBZhjcuXMC1a9fw2GOP4dFHH5XXJ6ISUBTMzc31nDUBQLbVAZBFpj1FWI/zT9M0n4JYsKiW0xb58Tp/q2SkJMYj8ymZQkSIqAND/r4Qg6VGpTh0SxYQ8msq7v6LH9KvAd2dCGLcshA0URQh4NGbarWK+YWFsQWooihYWl7G6sYGjEE1CAQxASQOiE8MjDF4nodWq4Wg1ULkeWBZJkf/juKNcHBwgL/9u7/D6toazvKCrJL97IBjF9v7Sja13T8s/1kSDIOKHUX7IX88sfCJ3xslP92PZqOBhC8ywrEwiWNEcZzPuODnpXFRYPDq9igM8eqrr2J3bw/nz5/H1tbW4XUh9/f3PQ+GaaJSqcgogrykwrVGUYS25wHIxyVXKpWSbXPnczEKjDEZfi8KhphP05RzFMR58Oex2KEhagxESqffUC/xGMIdcpA7pVj0xdUVnwdd16EbBgxdh6brcly4eO+maYpWuw3f9xEGAUzbxsL8/FjpA0VVsbi8jJX19VLbKEHMEhIHxCcOkadut9toHxwg8n1kaQpT12HZdu4NP4BLly/j4sWLeOqppzC/sJCPKHbde9ZjL3P+KIgHdEcM0hnlv8WQJF3XoWpaSRCItjcRKRC0mk28/MorSOIYz3/xi1haWup63FarhSSO5eyETnFQas0EECcJ2ryTQVWU3Oyq87Uq+ClM6ytQjDQUQ/hFQSGjIEIcoNAqCkh/h+I1DUNOhOQiQOciYFidS8w7PZI4hh8EMC0LtUplcOdBAVVVsUCigLhHkDggPtFEUYRWq4XG3h5i3wdLErnYGYbR82bOAHz/lVdwd2cHn3vuORiGAVVVUalWxy52nCWigh2A7MnvNXdh5MfLMkRxjGazCc/zYJomLJ5G0VU137WaZteidffuXfzgBz+AZVl44YUXukdrKwqQZdg/OAAYQ42nKzrFgbim4jOacWMmIXyqlQr0fq2LnV4GM0A8p6xQ/ClSC+g413tpyCQiK0L4iojCsLHmjDGomoal5WWsbGz0HdtMELOGxAFxX5AkCdrtNva3t/NIQpJAU1U5QbBz0Q/DEH/z3/87HMfBk08+mReuKQpcx/nY+uzBGNKOPzexg84KFrhFF0N07GxFDYGofFeQG+iEQQDLtlGv12GaZs8wdRzH+NGPfoTLly7h2PHj+MIXvtB3sUmSBK1ms9QF0Usc9L5MhhYfCQ0ABh8H3TfN0P0Avb/c47+FeZI4bq/Cw2K9x72GMZanEMIw7xSJYynW6vV6f4HCa0MWFhexsrFBkQLinkPigLivyLIM7XYbe9vbCFstZFkGTVFgWla+KBYWoJ3dXbz88sswDANPP/00TNNEmqaHzowfQxShmCcXCIHQWdVe/J0oihBFkfwZ8XO6rucCIYpgGAbqc3NdoXIAuHnzJi5euIA4SfDE44/j7NmzPRdrkSoIeJGhaZpw+e52VHEgringxkgCYa9cKlYs3n4K4oghj65k/GeGjViWsyh63M4yPsPiXhPHMTyeEkt4jYSu60izDLVara9vgappuShYX5eRIIK415A4IO5LxI5s9+5d+M1mXnjGGDReFS565f0gwMsvv4wwDPHcc8/Btm0Z8nZdt+d8hyM9b6DvLpYBMhwuBIEovhMLI2MMpkgX8EK3NMvQODiAwrsKZIW9oiDwPFx8803cvHkTa+vrePrpp1HhTopdi20hF99sNJCmaT5q2zTlbIfOQs3OuoNO0iSBxy2ZGV8cHdfNJyxO+Px1IsZF90sx9euyOCoYy0dgR7w1U0QuVC56qtVqd2SHt6XOLS5ilUQB8QmAxAFx3+P7Pg52dtBqNJDyCYii6E1FXoz25sWL2NvfxzPPPIPFxUXEfH6AwaMI96oWobjIilHL0iCJ9/snfKep4HABF/UD/Xr7D/b3kTGW70h1HVmW4f3338fb77wDQ9Pw9Llz+XyEIbtvRVGQZhmaBweyhVEOZJpwkWWMIYwiBL4vd/aW6CKZ4PGEIEl5geegW9i9TikIzwcxUVNVVaTcOltVVdnFId5vCnIPiYXlZSwuL5MoID4xkDggHhiyLEPo+2gdHKDdbCIKgsMRxFmGd3/0I3x05w4eOnsWGxsbec6e36grfId8FDCeMsiEUQ7vi8/4LIMevwAoSt4CN6LZT6vVyof2uC6CIMCFN97A7t4eTp8+jSeffHJgnUVnyF6kFEQLI4CpxIEgzTL4nifnG6iaJkdNj4uYUNmZoijOMLiXUYOMt+HGcSyHT6mqKo2dRPGhnGSpaajPz2NxaQn1+fl7co4EMQ4kDogHljgM0drfh9dqIeZGOz/96U9x5f33sb6+jocfekgOHFIUJbeudZxyLrhHm1uXGVKHv0FRCKRZ1tOZT6Q2hFOhqqrQNA2aqkpXwGIlf5amAwv6fN+H53m4du0aPvjgA9RqNTzzzDM9WxQ76UwNNBoNZGkKp1KR8y5GEgfCiXLI8Tp318OmcxbJhkQKyqdT8JYQdQsj/eboCDtqz/elN4LDU1dRFCHLspLXhlOpYGFpCQtLSxOJIoK4V5A4IB54sixD6Hm5sVIQ4MqVK7h48SKWlpbw+OOPI0mSfCIeL1wzDKOruFFSdCrs51rY4+tFASCsiTVVlTbDQxGFen2iDTdu3sSbFy4gjCI8/thjePiRR0ayFu6k0xVR1jpg+shBkYy39IVBIH0RbMfpO3xrHFEgSNO0p7tisRMEKNRO8AmKPV9jYcONQzEV8eFSaZYBWZYPlLJthEGAiEeGXNeFywXB4vIynBEnZxLExw2JA+JTRRLHCFotXL1yBa+8/DJsx8EXn38euq6j3W7nYWHkC4thGLBME5quHy5Mhba54uciKt/9CyEg5h8UYYxNXkHP7Xwzvmt96623cP3aNcwvLOAzjz6K9dXV0dsGO+iVUgBmLw4ECS9YTLn9sME9LHRdn0gQCI4qpSAHV/FplkAubIQ5l2jhzBjD6toaVtfXUZ+fn0ioEcTHCYkD4lPLjevX8d+++12ojOHcuXNYW1tDlmUIgiAfNQyU7JvVMSxuhyFb7yYphGQMOzs7uHLlCj788EPoui7dILM0Ra1a7W88NASRUnA7ajDGEQfSinrEYzLGEIZh3vbHGJBlUDUtn61hGBMJnVm3LzLGEEeRHHHNeGeMZdswDSOfXxEE0AwD9YUFnD59Gs4QgyOC+CRD4oD4VNNqtfBf//RP8dH161heXMRnHn4YJ0+eBIAjFwnjRg/iMMTV69fx/pUraDWbcCsVnD59GidPnoRlmmjx8cqObU9U9d4vpQBMFjkYxZtAkAHIkiRPNfCOExHGNy0LVg+nx76Pi9lFDQaJAkPXEYYhwiiC47qYX1xEfWEBi4uLMxs1TRAfFyQOCALAjRs38MpLL+HKpUuouy4efvhhPHT2LHRd7ykSTO4zMC1Zmg6OHjCG7Z0dvP/++7jx4YdgjGF9fR2nT5/GsWPHuroMfN+HYRioViqlVIaYyCjo5U9w584dXHn/fXz44Yd4/8oVXL5yBa1WCwDwpRdewG/8xm8MvZ7/5z/8B7z00kt49tln8W//zb8pXAaTx5Qf/QYhcVvoYuieZRk0XR8pmjCLqEHGBzyFYYgky6DwVkTLtqFpmhw3Xa3XMbe0hGq1ikqlAmeCkcsE8UmEymUJAsDGxga+/a//NXZ3d/Hqq6/i9TffxDvvvouzp07h4YcfRq1WQxAEiOMYcZIgiiKoqiqFwqTRBFXTeg5g6hUlePzxx7F18iTsPla6Ymed9ihaFIvpd77zHfzJn/wJ/u9//+9xbHm59DO/9Vu/BUVV4bVaiMZwQyzy7Pnz+Md//Ef881tvSavgYnth6Zz6LKIKt8W2+LCniO/OsyxD4Hnw0T+aIPwPJlmg5TTLKEIUx1CQF0JqigLLdaGpKvwgAGMMtbk5zC0toVKpoFqtkr0x8cBB4oAgCiwuLuLnf/7n8eKLL+K1117DP/3wh/jJ5cs4ubWFRx56CHNzc4jiGHEUyVx5EATQ+a7WNIze3gUDUBVF5tq3d3e7ogRPP/10V5SgF5qmQVEU2UbZGdoWQUJV07q6KaIogqKqcte+tLiItY0NvP3WW+KXDx9D1BOww7HGYvF/6qmnoPNw+ztvv41z58717+oYAeF26ThOKZoQRxGiIMijCaYJnXeDZAVr6VFJ0xRRGOath+I6efeBZZpQ+OusKArmFhcxt7gI13XliGyCeBAhcUAQPXBdF1/96lfxwgsv4M0338T3v/99XPngA6wfP465uTm4lQosy4LBFydFUeC12/AVBYZIO/TJkUdRhFaziVarhWaziWajgQP+3yzLRooS9EJRFOi6jpjvfh3Hkd8b1uMfBAF+5sUXsbW1hUceeQRzc3O4e/cu/u2/+3fiwUsdG51LvXhsy7Lw5BNP4OLFi3j9jTdw7tw52To4TQZzYDQhCADG8pHYyLtFhFhQVRWarkNVlFIqQqYuwhBJHCPjRlUApAV3mqaIPQ+mZWFpZQXVeh3VarW3/TFBPGCQOCCIARiGgeeeew7nz5/He++9h39+6y18uLOD5pUrSOM4X3y4m2HFceA4DmzHgW1ZqLguNF1HwA2KWs0mDlotJLx+AQAcx0GtWsXx48dx6tQpzM/PY2lpaeK8tWmaXeJAFAb2W5zF/Iaf/dmfRb1en7rt7pnz53Hx4kVceOMNsF/7NRllGHQO49AZTYiTJH8t2OFUxrhofiSOzyMjaZrmvhbscNiVbdtwq1XYtp17XHCvC50LvUqlkttsU0si8SmBxAFBjICqqnjsscfw2GOPAcgXnSAIsLe3h/39ffl5d3sbH965g3arBaQpNFWFaRioV6uo1mo4ffIk6nNzqPNdaNGNcZq+foHBi/WyLEMSx9B49GLQ44rJiZZlzWTxO3/+PH73d38X+/v7uHL5cj4BckbCoIiMJvBpm2KoVZpl+STEJMlrRHgaKBHFpJaFqutKQSDmUYhhXZqmlf5NUQLi0wiJA4KYAEVR4PBIwfr6etf30zTFzs4OoiiCpmmIwhBxECD0/TxywPPYma5DNww5hlnscqc5L0PXc6OeKII7pP0vjuN8xoSizKyobmF+HmfPnMHly5fxxhtv4OzZs/LchMXyNNfYSSZsm4WLJB9eFXNxtFCvw6lUYFgWNE2DYRhwuTgQiz91GBBEGRIHBHEEaJqG48ePA+C98nGc9/CHYd4GF4YIPQ9t3wdrt6FrmhyypPC5CnK54gvpqAuYZVly3PMwrwExGMg0zZmGzJ85fx6XL1/G62+8gW9/+9vy69KOeVyBUPxZIaKQOywmXOAkfKql5Tio1utwajXYti1rFSwuDgiCGA6JA4I4YhRFkS2PQB5VECIhDMO8Uj4IEPk+Qj6QSNU0qIoCTYS3uQWzKO5Tygc4/Ddj0HVddi3Ecdx32qQIuYuc+yx59tln8Z0//mN8eP067ty9i+PHjh2eLv+A6NIonHux5bEoHYRhVJqmSEXKIEnA+Nht23UxV6nA5hEBIQYMHpUhCGI8SBwQxD1G07R8IA8fwlOMKsRxnO+EoyiPLgQBvHYbiqLIyntN0/JIg6rmFfhi4mAhr28YBoIggOd50DUt/zm+GGd8WmTb88CAvF1P7Og7xyD3oTiASC7mPLTPAJw4cQLLx47h9u3beP311/GNb3yjp/FSrzSKcDgsffCogKKqeeFgpZK3jvICQtM0pSCgokGCmB4SBwTxMWMYBgzDQK1WkxX0YlcfRREOdnfR2t3NF3ZeXCcEgcqHOymKAk1RoIiIA/9amqZotFqoVatSAKiqCq/dhsGL8CzLkiONAcjFWvglAEBSdB0UuX1+/nJp72hxPH/+PP7qr/4Kb7z+Or7+9a+Xfi5jLHcy7PhI0zTvKOjRemnYNlY3NuByfwHxQWKAIGYPiQOC+AQhvApEqx4ALC8v5739IpoQx4jDEEmS5H7/WYY0jvPFlbf2ZWmKJE3hex4AIAwCmV5YWFiQ9QiWbct2vlK6ggsJKSiK0YTC+OKiqGB8WqT4+rmnn8b3vvc9fHD1Kra3t2FbljxfRVXziZWGAd0wYPCaC03XofAIiWkYMEwzn47JowKUIiCIewOJA4K4DxCCATwVAUDWFIgdd6+PIAiwv7ub1zmkKeI0RcIYMgCGZSHiIkEs7FlhlkGr1cL8/DzAIxT7+/v5gUUEgXdYiA/w1If499bp04iSBC3fx807d/DM+fPQeHeG6BIQo607P0TdBEEQHw8kDgjiPkXlff79ECmKpaUlNJvN3CaYMbx76RJWt7awsbkphUHnBwBkN27grffeg6qq2HroIaxubgKqmkcRCkKgJBAA+e9XXnkFP/3gA6iqii+/+CLm5uZKYoAgiE8uJA4I4gFFpCjm5+fzCADn6tWrWFhYwHLH4KUiwuTp1q1bAIAwjrF+4kSXABi0u//rv/5r7O3t4etf/zpWVlZmc1EEQdwTSBwQBNGF6I4QBYmMt0iOw1/8xV8AAH7xF39x5udHEMTRQmW+BEHMnAsXLuDatWsASBwQxP0IiQOCIGbOn//5nwMAnnnmGZw4ceJjPhuCIMaF0goEQQAAXnrpJVy6dEn+9/b2tvz3pUuX8Hu/93uln//VX/3Vvo/13e9+FwDwzW9+c6bnSBDEvYHEAUEQAIDf+Z3fwe///u/3/N7LL7+Ml19+ufS1fuLg+vXruHDhAgBKKRDE/QqJA4L4FPHiiy8CQKl7YdaIqMHm5iaeeeaZIzsOQRBHh8JmPWSdIIhPNT/3cz+Hv/mbv8Fv/uZv4rd/+7c/7tMhCGICqCCRIIiZ0Wg08Pd///cAKKVAEPczJA4IgpgZf/mXf4k4jlGv12UKgyCI+w+qOSAIYmb83d/9Hebm5vDNb35TDnoiCOL+g2oOCIIgCIIoQWkFgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKIEiQOCIAiCIEqQOCAIgiAIogSJA4IgCIIgSpA4IAiCIAiiBIkDgiAIgiBKkDggCIIgCKLE/w9l88NEAIl3NAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R4wkSZodjj9zFR46UlWKrqquqq6urmrd03p6emdmZ3/LA7FcEgTBy4IEQfBEAnvY257IAy8k9rAATwsQBHgiLwQFFuR/Z2d3dkT3dPe0VqUzS2aJFKFcu5v9D25m6REZwkNlZXb5AxKpIlyFu9mz73vf+whjjCFDhgwZMmTIkIFDedQHkCFDhgwZMmQ4XMjIQYYMGTJkyJChAxk5yJAhQ4YMGTJ0ICMHGTJkyJAhQ4YOZOQgQ4YMGTJkyNCBjBxkyJAhQ4YMGTqQkYMMGTJkyJAhQwcycpAhQ4YMGTJk6EBGDjJkyNCBGzdu4E/+5E9w/vx5FItFzM/P4/XXX8d//I//EbZtD3zvP//n/xyEEPyjf/SPDuhoM2TIMAuQzCExQ4bHB//23/5b/Lt/9++wvr6OU6dO7fv///k//wd/9Ed/hGaz2fP9586dw1/+5V/i7NmzPf//P/7H/8A//sf/GMViEVtbWzBNc5qHnyFDhgNCFjnIkCEDAODTTz/FP/2n/xTNZhOlUgn//t//e7z33nv42c9+hn/1r/4VAODy5cv4+3//76PVavXcxt/7e38PuVwOlmXhZz/72UEefoYMGaaIjBxkyJABAPDHf/zHcBwHmqbhr/7qr/Cnf/qnePvtt/G7v/u7+Iu/+Av8h//wHwDEBOHP/uzPem6jWCziJz/5CQDgf//v/31gx54hQ4bpIiMHGTJkwIcffohf/vKXAIB/+S//Jd5+++19r/mTP/kTXLhwAQDw53/+5wiCoOe2/sE/+AcA4hRFlrXMkOFoIiMHGTJkwP/8n/9T/vwv/sW/6PkaRVHwz/7ZPwMA1Ot1/O3f/m3P1/3BH/wBCCHY3NzERx99NPVjzZAhw+yRkYMMGTLgV7/6FYA4LfDqq6/2fd0Pf/hD+fOvf/3rnq9ZW1vD66+/DiBLLWTIcFSRkYMMGTLg22+/BQCcPXsWmqb1fd358+f3vacXRGohIwcZMhxNZOQgQ4bHHK7rYmtrCwBw/Pjxga+dm5tDsVgEANy6davv6/7wD/8QAPDll19ifX19SkeaIUOGg0JGDjJkeMyRLEsslUpDXy/IQbvd7vua559/HmfOnAGQRQ8yZDiKyMhBhgyPOVzXlT8bhjH09blcDgDgOM7A12WphQwZji4ycpAhw2OOpIuh7/tDX+95HgAgn88PfJ1ILfziF79AvV4f/wAzZMhw4MjIQYYMjznK5bL8eVCqQMCyLADDUxBvvvkmCCEIwxC//e1vJzvIDBkyHCgycpAhw2MO0zSxsLAAALh9+/bA1+7u7kpycOLEiYGv/dWvfgXGGAzDwJtvvjmdg82QIcOBICMHGTJkwLPPPgsAuHr1KsIw7Pu6ixcvyp+FW2I//K//9b8AAD/+8Y87ohMZMmQ4/MjIQYYMGfCDH/wAQJwy+Pjjj/u+7u/+7u/kz++8887Abf6f//N/AOwJEzNkyHB0kJGDDBky4B/+w38of/4v/+W/9HwNpRT/9b/+VwBArVbDj3/8477b+/TTT3Hz5k0AGTnIkOEoIiMHGTJkwBtvvIF3330XAPCf//N/xvvvv7/vNX/2Z38mXRH/+I//GLqu992eSCm88sorQ42VMmTIcPjQ3yc1Q4YMjxX+/M//HO+88w4cx8Hv//7v40//9E/x4x//GI7j4L/9t/+Gv/iLvwAAnDt3Dn/yJ38ycFvC20CUM2bIkOFoISMHGTJkABCv8v/7f//v+KM/+iM0m0386Z/+6b7XnDt3Dn/5l385UGB469YtfPrppwCylEKGDEcVGTnIkOExwo9+9CMAsWagF/7gD/4AX3zxBf78z/8cf/mXf4nbt2/DMAycPXsW/+Sf/BP8m3/zb1AoFAbuQ0QNTpw4gVdeeWWah58hQ4YDAmGMsUd9EBkyZPju4Pd///fx05/+FP/6X/9r/Kf/9J8e9eFkyJBhDGSCxAwZMkwNzWYTP//5zwFkKYUMGY4yMnKQIUOGqeH//t//iyAIUKlUZAojQ4YMRw+Z5iBDhgxTw9/8zd+gWq3iD//wD1N1eMyQIcPhRKY5yJAhQ4YMGTJ0IEsrZMiQIUOGDBk6kJGDDBkyZMiQIUMHMnKQIUOGDBkyZOhARg4yZMgwVQRBgDAMkcmZMmQ4usiqFTJkyNABSmnHd0YpGKUAISCEgCgKCACiKFCUvfUFYwy7u7twXRcAQAiBqqqoVCowTfPAzyNDhgzjI6tWyJDhO4IwDBEFARhjIIQgCkNElIKGIWgUgUYRojAEAwBKwRjb+xnx5M4YA3oMCQwAjaLeO+akodlqIQhDEEKgKAoYISAAVFXF4uIidMOAqqpQNA2qokDRNNAwhKrr0A2jg2hkyJDh0SIjBxkyHBHQKEIYBIiCAGEQwPc8sChCxL+Sk7p4rKf1eA8iB5RSNNtthJwYVEolaJoGSinato0gCKBpGqrlMgghcnuMMZDEdhRVhappUHUdmqZBMwzohgEjl4Om6/K9GTJkmD0ycpAhwyECpRSh74OGYUwExPcg2AvzixV+CohXMf7evq/rIhOMMdD4B3lcjFIQRQFjDIqYqAlBi0cMFEVBpVyGru1lK6MoQr3ZBGMMhUIBedPsGZnoh0gQCEKg63pMGHQdOicMuVwOWma2lCHD1JGRgwwZDhCUUoRhiDAM4TkOHNuOIwBcwCfC8KqiQFXVjvf2iwYwxkApBWUMjFL5c/JvEaUAY/Hvye0IEhD/AeizOhfph24EQQDLcUAIQalQgKaqchuKogCMydeARxUMXYeiKHH6gacgSOJ7MkIgIgz9wAC4jgPX82DZNjTDwOKxY1hZW0M5EanIkCHDaMgEiRkyTBmUUkRRJElAGIbwPQ+u48D3PFDf71Dzi+lLrvJ7kACFkHjS5XoC8X/aHUUQOoLk8STC9wNXAomJVKzWxffk/4RWgTEG1/MAADmuJ2D8GIA4agDwdIGqwg8CWLYNls937rdr8ieKAoULHxVCwAiB57pwbBs2J1Ttdhu2baNtWWBRJI9PbIkwBkXXUS6XUZmfx8LiIhaXlrC4uIiFhQXku48hQ4YMHcgiBxkyTAm+76PdbsNxHIS+H3+FIajvx2F5xJOukogMiNW1L0iE7yMIAgRhGFcJ8G1T8ZgmHldN0+JJWdPkJK6KiZWvxJMr8+RkTwApGBRko/t7Er0iB57noWVZAIBatRpP5Ik0BEn8HoQh6s0mAKBaLsvXiAgH4z8DgOM4uLu5iVarBce24bpuTIL4+ecLBRRME4ViEcViEaVSCeVSCaViEURV4do2rHYbrXYb7XZb/iy2EwEwcjnU5uZw4skn8dZbb6FarY7xiWfI8N1FRg4yZJgQnuehvrODdquF0PMQ+H48SasqNFWVq34CLuzjkYWI0r4iP/E6UCpz/5QxRLzKAIAsJ9RUFflcDrlcbl8qoh9Gfei7yQFjDPVGAxGlKOTzKCRW4gycYHQNLbv1OiJKUS6VkOvSCUSMYfPuXayvr+P+gwcwNA1zc3PIl0owczkUCwWY+Tz0XA5UVFz0QTcBE58FYyyONiRIw93NTTi+j2cuXMC7P/whlpaWRrwyGTJ8N5GRgwwZxgClFK16HfXtbTi2LUsE86YJwzDAKEUg0gpdlQTdIIqyN5EJQsEnNQbIVTXjq3EgLlv0fB+u50mBIgOQ03WYuRz0FOp+EclIMwB0kwPX89C2LCiEYK5W66hCACEgPc7Xsm04roucYaBcKsm/bWxsYH19Hb7vY35+HqdPn8YTTzwBLSFsFOmSpIaCcoIVRVEH4RoEhRBomhZfZ00DCMHNjQ1cvnQJjufh+IkTeO2NN/Dk6dPIZamHDI8xMnKQIUNKhL4Pz3HQqtfRbDTiKgJKEUYRdF2HqmlgUdRbQEcIND75JwWHMrWQgJzshZBwABhj8DlJ8MNQ/BEKITBTRhNGJQfJqEFRVCDw/fYTNAJxaqHRbIIB8BwHG+vruP/wIQxNw8mTJ3Hq9OlU4X1xbZLVFPKa8TRFB3ngP9M+11Lh0Z179+7h+vXrsCwLq6ureO6553DiySdRLJdRKJWgpIzKZMjwXUBGDjJkGIDQ8+BaFjzHgdVuo9lswueaAEppXE7XZeBDEOsBNE2Dzr+nCfdLIyLhUNjHkKjvsUYRPM/biybw7eV4yZ8xIJowbC9JcuC6Ltq2DUVRMFetxtoC/rpBsYq2ZeGbixdx984dRGGIxYUFnDp9GsefeAKqll4bHXIzpzAMEYSh9HkYeg48LRMlvCG6CQNjDDs7O7h37x4c28bc3ByeOXcOa088gVKphGK1inK1mjp9kyHDUUVGDjJk6AINQ7i2DbfdhmvbaLbbaDSbssKAKEq8KuekIEkEdE4E0pbQiYqDbiLAGAPlE96o5XiMMfhBANd1e0YTTNPs6UY4aCBIkoM6vxYiaiDSE70gtQTXr+PB1hZUVcXy8jJOnTqF1ZWVgedBExN5yL8iHpkh6KrCEELIEYczEWXoRRjq9To2792D1W6jWCjg1KlTWD52DPlCAXNzc5hbWkI5EzJm+I4iIwcZMiCeJHzXhd1swmo24fk+wiCA43mwXRcsiqCqKgqFAoqFQkwEdB26po1VSy9JQY9QtwiNi9LFjlA9jwik2iMhiKIIruvC9X1Z/aAQgmKhgFwuJyfaZBnlvvMR+X4+kdbrdQDAXK0GVVH6phK2trbwySefoN1qYWFxEWdOn8ax5WW0bRuEEMwntApRYvIPE9GA+DQ6fQ8UXpWhalpMzpLpmcSxjosgDOF5Hjzfh+f7eLi1hTu3bqHVbuPEiRNYXl6WpDBfKGB+YQELS0solkrQuYdDhgxHHRk5yPBYI3BdNOt1tBsNeJ4XTyp8grEdB34QQFNVlEsl1KrV2ORnQlDG5MTXjaS4MA3k4zuENIhogu04MgRvaBpKxWJn8yT+vXs7wj7ZcV3YjgNd01DhJYnd5CAIAnz19ddYv34d8/PzeOWVV1BLrLC3d3fhB0Fc4cAYQhEh6bEtRVGgJ7UamgZNlGYCHbqDXudMEx4I44LxUtMvvvgC19fXsbqyguMnTuxVjXBBaaFQQGVuDnMLCzBNU35lRkwZjiIycpDhsYPv+2ju7MSEwHH2TcSapsH3fUSMQSUEpWKxo1RvXMia/gGPnPBDkEI7pIwSoNM0qV8VAmMMjuPAcl35mlI+39k1sUcZoiAH9WYTURTFpYU9Oi1ubm7i008/RRiGeP7553HmzJl4P9wp0fN97NTrCKMIBV7ZISAqCETFRi+xZs/zxoBrJESKUxrmrl27hs8++wzLXLDo+z4C0dSKpyRUVUWpXEZtfh7VuTmUSiUUCoUsopDhSCEjBxkeC4RhiFajgebuLhzL6pj8FEWBoeswDAOaqqLZbksTokq5DDOX67tdYYcc8JLFMFG+GCX+xsBD4rzdsZIwK5KGRXzyULr+JtokK+J9ia9BYCIl0SOqEIYh2rYtdRS6pqFYLMrISPfrGWJS1eBGRjWRUuBwXRdffPYZbm9uYnV5GS+//DIKhQICbuzk8bQGADiehyAIUCwWUSmXJREYd4Xd3WtCpB4A7PlLcDHiNNbwd+/exYcffohqrYa333oLiqbFxlVBAD8I4gZZUQTf96HqOqpzc5ibn8ccJwq6rk/hKDJkmC0ycpDhOwtKKVzXRWN3F1ajgdD35f90TYNhGDAMQzYKiqII9UYDQRSBRZH05g+CQObDkz+HfMUoQBKTPbC3eu+VQmA9IgOMENAwBBLq/44VfCLdIPfBSYPK3RINw0Aul4PZVUHRQRS4rkDYH1u2LV9TyOfj0kThpijeD8Tuj64Lg9sSi7/f2NjAl19+CUVR8NJLL2F1dVUSgiiK9lwZCYFhGCCEwHVdqJqGWqUy+EMU55+wjk76MxDEqQXhASE1FNxrIWnIJF5HAShimwl0vH4Itnd28P5770HTdbzzzjsoFosA4uhQyEmCzztn+ryNdr5YxPzCAuYWFlCr1ZDL5bKUQ4ZDi4wcZPjOwfO82AWvXofnOPGEC8DQdZimKRv/APEK2nYcNFst7DabCIIAoBRGLrcntiMECtAxyUnbYV69IARqKv+uqCo03hdAlL3JRkiiTp+nGMT3KNE0iYn/9fgZ2JvskyQD2Ct/ZIxB59GQHP8S0REhcqSIJ8QoimRrZcYYNFVFsVjs6K7IEE+IlFKUikXkDANty8Knn36Khw8f4uTJkzh37hwYv6bJngwGL/cUxkyChAHAfK22R2J6pDPSQnZvTAEhrOyFJLHrJkgAOgiaZVn41a9/jTAI8Pb3v4+5ubl92wvDUPaU8FwXQRQhZ5qo1mqo8WhCuVzOUg4ZDh0ycpDhO4EwDOE4DtqtFpxWC4HrglEKVdNk+Z6qKKCUwnYcWLyJj+d5oFEEl0cVNFWNXytC+4n8t1DIa0IYlxDKdYMxhpCLG9NAKOzTTHBUEAvEOgDGmHRMFKFtUfInXi88D1RVjSdr7nsgyAMhJCZVti3D9HnTRCGfByEEfhjKKoVatYpr167h66+/hmmaOH/hAiqVSoegUOeEQEQKgM40xc7uLihjqFUqnU6IE2AUXQFlDBGP0vQFJ37dQsnkOzzPw6/few+NRgNvvPlm3/JM8RnZrgvLsuB5HjRdR7FcRqVWw/z8PObn57OUQ4ZDg4wcZDiyEGkD27ZhWxYC245TB4zFSnFuI2zzjn4Wb+Ijc/+EIOJlc4ZhwDRNVMpl6VUgGxqNCMYV+KO+Z5qPoiQLvg8vCBCIJlCUAoqy5zDISyZ1XYeh69B1PX4djyAoioJSsQjf92E7DlzXxTfffINmo4HjJ07g9JkzUqegaZo0XJJdJPug2WrBDwKU+ggbx8Eo0QNgcNXIMEjSgNgX44OPPsLm5iZefvllnD59emAXTMoYfN60yrFtUACFUgnFchlzc3NYWFhAidtLZ8jwqJCRgwxHDmEYxo1zLAuh6yJwXURhCJ33FSDAXnSARxCkyI+H+Qv5PBRFQcTV5TnDQL5QmFiwJjQGoz5WsopB9CVImYsW+fV45535eXlMCdMgGV1IRBnkvkVeHpACOyF89HwfD+/fx8MHD1AslXDumWdQLZU6tA7qgNB4sgskYywuiXRdmIaBEs/Xy2OXPxLZVVKeCzpbXAudgDjPUQczkcqZCPx6f/HFF7h29SpeeOklPH32rDiofe2ukzqDKIpgtdtoWBZ830e+UECpUkGxVMLKygqq3IEyQ4aDRkYOMhwZBEEgWyIHnge31Ypz/HySdz0PtuPEk1pXy2LTNJHnJXtmLocoirDLw+RmLof8lJrshNzHP6lH6J70901wiCeJg5oEkqI9Rmlsuey68FwXHicOvu8johS266LZbOLm3btgAI7Nz+OJJ55AtVxGPp/v9H0YQTMQBAEsx4GqKLIJUz+Iyg01UaUhyhzF3wSSrbGBhDCxi0BJMWNCzzExGMMXX36Jq1ev4sc//jHm5ufj4+/xuqTldPwnBs910Wg20XYcmPk8qnNzqNZqOHbsGIrFYkYSMhwoMnKQ4dAjCAK0Wq04JcAYnGYTvmWBArGLneeBcNc8ESHI5XLI53LIcyfADsEXY2g0mwjCEKqqxlUJYxwXQ6fqnfImTOPYHU/7MUzqDYQAT4gghehRGD4JYSNJfPc40dqp17Fx/XosmGQMa6urKJRKUFUVOtdz5PP5fS2Y+x6TqBygFE1eFlmtVHpes1GcDgVZIIoCNVEGmiwH7QdRjgpF2YtEjBC96d7W3/785wiCAD/58Y9laooknCR7bjWxvyCKsLuzA9t1UZ2fR6lcRrVaRbVazUhChgNDRg4yHFr4vo92uw3XdQEAVquFnYcPEfi+XDGK0LOh68jz6EAulxsocnNsG5bjgDGGWrU6ktFO38ZFPH898sM0xqpVHEEkKh1E22L+uxApDtquiB5IDwUuvmSMIeAliDu7u/jmm29QLpdx6vRpfPrpp3j+ueegqSoYYo1BxGIXQl3XUSwUUCoWYZqm3P4gbKcQJYoqjjCKJLmRLZp7pASSBlJJKIoi22DL6EPiZ9q1LVkuSfbaT6f9lNqtFn72N3+D48eP45VXXul5LAK97ieRerFdF7v1OvRcDqVqFeVyGYVCITNVynAgmI5MOEOGKUKUInqeByCur29sb8N33Xi1qutSN2ByRb2m66nC2iEPZ4OxfdbBAqLWPTlsD5vohMnRqGC93AhFGoIfh4gsSIMlbq6UFopYTWta/J2vspPkirLYOdHjOoPNzU1cunwZx9fWcPbpp2HZNhRCUC2XYebzsilUGEWyC2Sr3Uaj0YDKbZkLhQKK+XyHJgDYu5aqqoJxkWS/65usGNl37dhei2bZQIlHASgnLWLCF68JB+xHmEFpuh7vL0EM5Ouw95n1c6Eslct46cUX8cknn2B5eRlra2sd/0+SkKQvhjRs4j8XTBP60hKazSba9ToYpQh4JUq73UaxWESxzz2cIcOkyMhBhkMD13XRbrfh+z4opWi1Wmi324hcF5qixOK1fB6VarW3wn0IMWCUom1ZAACdi+jGIQK9MLaoTbwvQRII1wL4CTLQry5faitESJ1/EZ6X75h8OJKiOEopHNeF47rx3wjB+vXr2NjYwDPnzuGZ8+dhW5ZM2RQKBRi5HFzPAxhDoVDA4sICHMeR1QyU0pgoNJtQFEVGFPKJbpAMgKKqQBjudZ8ccJl6/Y9wHwk5OfKUQMQNkcS5JslDx88J8iBKT0PXBVwXIAQaT50IsiBLMlMQhlOnTuHevXv49NNPMTc/HxtL9UAypZT00eAnCF3TMF+roW3bsJtNEEJAKUWhUACltIMkZG2kM0wTGTnI8MgRhiEavPFRFEVoNBpwXRcKpVDCEAYPWVdF+HnMnGvbshBFERQS90voJgXjQkxAg3LBYkKWNfPCiIj/LRIWzPyrV0pAVZR4stI0qNxwqSOPnWL/8cu4O2KCFAjNxsWLF3Hn7l28/PLLOPvUU3GUBbEDo3hvkVd62LYNj0cNyqUSyuWybM5kWRYcThQs20ar3YaiKCjk87JXhaYoCHjUottVspflcy90/F9cX1Xdi0bwSZ4pCvQ+10ekKkQ3RmGdLT4LSRZ4S26Ne1wk7599hIEQfO/VV/HTv/5rfPzRR/jBu+8OORNILwpBMkjCOrtcLELXdViNBmihAF3XpdFVu92Gbdsy7ZBpEjJMAxk5yPDIwBiDZVlotVrwfR+7u7twXReGpkELQyiEoFKroVQsyslpjJ1IgV0QBGAAyqXS1AfQnrnjrrK85DGFfDLyuf9AL+mPxhsRiS/pHZCS1Mi8P9lzdaSMyeoEETUR+/ntb3+L3d1dvP3WW1hbXY3TBkEQH0vy+hMCk0cBLF6CJ5wTRaSgUCjslSzaNhzHiasfbBttbtesqqpsv7wvctMr2pHinPcOsVP8l4wkJNMBjLGOCoiklbYga8I5MgwCeT2SZEH4YnTvM2cYeOP11/HLX/4Sl69cwblz51KfCwOkG6YgCjnDgFarwbIs3L9zJ27uNDeHXD4PSikajQYcx0G1Ws3MlDJMjIwcZHgk8H0fjUYDrVZLkoK8rsMkBBpjqM3PS7/6UdEx0SgKQm4PzIB4xTolRz6BoX78XC8QBIHUC4ia/CQpECRArE6BRMojJZnpjlAkSyZFpEDsU9U0FEwTQRji17/+NTzPw++8+y7m5+c78vkAeub8Dd6/od1uIwxDNNttlEulOKLByzgL+TyK+TyoiFTw9EPI+1RYjoN6owHHdVEsFFAsFPbOPbGvjtK/IemjfloAsZ3ktpMVGkRRAC7wlM6XvOlWGEUxOeDHnSQLDr/WvcjCsaUlPPPMM/jm669xbGkJtbm5zs8zhRhVEAWGOHpULhahuS6sZhPtZhP5QgHHVlagGQZ838fW1haKxaLsDZIhwzjIqhUyHCiEluD+/fuo1+twHAcFXYehKLHnPA+NiteOiu6KAsbLFsNE2eJUkJh4u532GKUdKYIw3C+DE6tVQQjkyrOrhG6Uwb3XKxkA3/NkiB98pS7KD3frdfz617+Grml45513Opz5PN+HbdtQVRVRFOFnP/sZfvfHP0atVpPkRrhMypQNd1QUE3yyB0Ty+FzXRduysLWzgzAMUcjnEfGhqFouo1oud7Rz7nVefAc90w8R/98oEKJPWdY5YBuCLIjPuXsYJZwsiD4bv/zlLxEGAX73d3+3MwqWiGSkSaMk4QcBHE60wFjssLi4CJ1fN1VVZYOnDBlGRRY5yHBgsCwLt27dwu7uLnzPg6GqqHCHvGq5jJwQbaUt7xO56gFhdttxZA6/MmYkgrGEx36P+ndKaew4KMSDfciAputydamqqmwhzMBbDDMGjKI8TxxLr/P3fT8O54tIAe8bIXopbN6/jw8++ADVSgXf//73pVeBmKRECF3XtH02w5LIII5AlMvlOIIQRWi1WigWix19FYTOQmzbNE3pPxGEITRNi82twlCKGUvFImqVSk/xKdk7kK5LwvP1GL16RAoDu/QPsmIksV+NV1CII+tFFoTLJACcP38eH370ET7+5BN873vf2yODiYiI1C30IFO9oGka8vk8PM+D5/uwWi04loVSpYJcoYBiqYTt7W3k83lUKpVMsJhhJGTkIMPM4XkeNjY2sLW1hcj3oQCo5HKo1WqoVSqyzh7gxjcpwsYAN5YZgICvrNiAssWB++kqMRM/A5CDv8db8nZHBxSev9Y5Ieg2YZI6gIQYL7XQMkGKesEPQzi2LSscFEKQ55Ox2Nf6xgY++eQTrK2t4Y3XX++YOETYO+DnpOt6XJ2w/wLJc1EUBZVyGW2uQWhbFgqMweSr1u7UiGixLPZbKZexMDcXd8hsNqXbZbvdRr5QQK1SQZFHlPYdRvcx8b8xHimZBEkRZ3JLoqOlQJIsCM+LZPSokM/j3NNP49uLF1GtVrG8siKbXslrn4wYJX7vRxQUrhchpglN02DZNsIwRKvZBKIIVr0OI59HNDcHz/NQqVRkVC5DhmHIyEGGmeLmzZu4ceMGWBCAUIqiaWJxYQHVajWuc08az7D+ToHdOfQ0sLjwzeBli6mRWBXLfXMEQQCP2wvvvZx0CAd1TetNXLr0A6NoCTo30/s9DLHBk+N5IIC0jTYTpIAB+Prrr3Hp0iWcfeopvPjSSx3nJ+2cE6HyfhoNAuzZEvNzKRWLsBUlntxtGzSKOiakDpKVKNuLKIWGWBNSyOfh+X6sRXAc+J6Hzfv3oes65mo1lAYYAHXrTeKTYnvujAMwShpLQSKqgD2yA3TeD/HuY7JgmiZ2d3Zw5coVLC4uwuWNw3RNg8G7ZPYiioKY9Ho2FEWRhlTlUglty5L6j0qphMjzcPfGDeSLRXiuixJv7pR5I2QYhowcZJgJfN/HpUuXsLu9DRIEyOdyWDl2DNVaLR6YeqQOOhrn8BA76Qr1jrJ/kU4YulrqRToS+4uiCD63aU4es8IV5AZv9tTLi6DvRJ5yImKMyajKIIRhCMuyZI2/mct1+AoA8eT38aef4uaNG3jxxRdx9uzZfefdHTUYWjqaCIWL78K9z7ZtuPyaFbtK7MTPqqoiEN0iE8gZBpaXlhAEARqtFtqWBUopHmxtYVtVUatUUC2XB5IEkQ5IkhCR2uhugDSOhTXpInki1dK9lSRZePnll/H/+6u/wu7ODpZXV+PUAy9jtQmR91O3AFQYI3Vcb/6zeJ7A9R6tdhs0iqRAtFgowPc83N7YQHVuDkEQYHFxcerC3AzfLWR3R4apY2trC1evXIFv21ABLC0vY21lpSNHvs/2lpOFpGnPuCtrALEqH+hYNYv9DNIPJF8ncrnd+fYcX+Uly8XE5NLLdKgXKAaLz8S2hhEDhvhcHccBQTzZFgoFGF2lbJQxfPjRR7i3uYk333gDx48fH7jdMJFSGIRkRCIJ0zShEALLtmWUpdRD86GK1tl9yJKu61icn8dctYpms4kWFz5u7+5it15HlZOEXhNdT90BJ4Lyf4QAU+jM2K2tEPvpJhzlUgknjh/H9evXcfappxABe8STNw9zPS9uf80jXh33U9fP4jeFu00KQai4Tm3LQol7JGiahla9Drvdhus4WF1by8SKGfoiIwcZpoYwDLGxsYF79+6BuS5MXceJJ57YqxDgA2d3xIBy4xclObFOkCsOErXpUszG8/tI1tT3ELMJHUHQpSHQNQ25XA56MvSbgMifp119Djq7tCmUKIpknpnwVadoRd1xXgA+//xz3L1zB29///tYXVnps+O91XWYjBwMQb+QvcEFhy3uemkRsk83oKhqfJ7CqRC9r42qqpjjXQpbrRZa7TaCIMBus4ndeh3lchlzlUpn+qgrPdR9rmI/jJAOp8RJy/+6IyTd1Q/PnDuHn/3N3+D2nTs4fuIE8jz1E4ZhnLISJa9hCNtxpDah12chxYyIhaGiKqdULMoSU8u2ZeSmUCjAcV3c2diA1W7jydOnOypUMmQQyMhBhqmgXq/jxo0baOzsQKEUtUoFaysrexUIwF7uNzlg8wF8mvXYDnf1yxlGbNGbNAPq8fogCOBzUpCEqqrIGUaHkG8QVNHAZxhBSEEghu3NdV1YjgPRzrhQKMSrzH0bIrh08SKuX7uG7736KlY4MZCtjJFQ5fNJPuRNnEQkQnxmoh1yr9V4P2i6jkKhgDZPMQgdhFhVi5x5lLwHBlwfhRBUKxWUy2XYto1Gswk/CGIzrWYTxWIRc8JeW9xrA45P6AH29TeYYoV3R/UDIajVaji2vIzLly/HERxOinUejaKUxt1GfR80iuIIludBU9VYm2AY+yNK/LgV3iJc0zQUi0W0LUsKc0W6p5DPw3Yc7G5twW63cfLMGRw7dmyqz2CGo4+MHGSYCGEY4u7du7h/7x7cVguGpmFpaQlLCwvxxJxAh4882XPsm+aQFEYRfO6EmM/n+6YmIkrh87RBMqSskLjds5FUkXedw6BBVFEU0CFNkbrJQ7+tdUzcieO2bHuvkkDT4kGf7JXbJXHjxg189dVXePbZZ3Hq1Cm53WRuvGPCT9T693Kl7JebF9vsdW0Mw0CBUtiOA9u2QQiRK3yRpxedFpPaBSnySxAZAWGBXSoW4woH3tLbcRxYlgXTNFGr1aRTYz8wSjv+vy+qNEWSILdPCC488wz+7he/wIP793FsebnjHlUUJe4wapp7AlhuwBRyt0lD12HkctLRUUDlpaEAYGgaioUCLMuC5/uxHiSfB+ERHNfz4Ng2rl68iFajgTNnz2ZCxQwSGTnIMDaazSZu376N1u4uAtdFuVjE0sICKuXyPrW+HIQJgfiPKFuclBwkRWeivbPOOzd2v87nK7Lu0sNk6LbXBCcm6FQRBG4a1OdgQSndG4R7iNiSYfrkBO7xCgCxGi4WCgNzxvfv3cPHH3+MM6dP48L5831f150WkCmFEerie+b3EzBNM86p874LYqWcnIQ7Ugpszzypl8gvqdnI5/PImya8IECz0YDtugjCEPfu34eq66hVKj1LWUUDpn7nE/+Q+BymSBQWFxexsLCAS5cvY3llZe9cu5CMJojoVhRFMrIgolvCrRI8vSUIryBhbcuC53lQCJGpNjOXg6oosGwbd2/dQqvRwDPPPZeVO2YAkJGDDGOAUoo7d+5gZ3sbTrMJFkVYmp9HrVaLc8o9cvnS6Ce5nQmJQYftLeLyO8/3wRiTXfCE653LeyskMUxHICH0CilBsJdiYMnJj+25CnY7/HXvr+M8RbSAr/40XR/q27C7u4sPPvgAa6urePnllwdrOLrSLaPoDTo3M/jTFKt40ZK7XKnI1sji+nTk68HTH9gf5k/uSfzP0HUsLi7GRkrNJtpcj3H/4UNs7+ygVq3KCoeIMURcq5Hq3OIT3Kt0SPWuAdsjBM888wzef+89bG9vY2FhoSNK1H1PKIoCM5fr1CZwsaztOLBdF4auI2cY0DUNgvIQxOk1JiI3PBUlSKWu67IEstls4rOPPsLZZ57BsX66lAyPDTJykGEktNtt3Lp1C75tw7dt5DQNtcVFlEul3m2UEeeyuwfT7trwUSBFWDzkLODyvgE6X/3bti3JgoAoPxTufD233x0eH2PFSAiBoqqxtS3/XZgeRSOcc+D7sGxbru7zphnn7Adso91u471f/xrVWg2vv/76ULOo5JaSq+mxHPWG5PhFq+EgDGG12yjzyVq0T+7+TMYJ8+uahvn5eVSrVTRaLbRaLVnhsLO7i3K5vEeuEp91dwqq11mI6NE0SMLqygoq1SouXbqE73//+x37lGSkh5GTKIvM5/MIEpEwnxMGRVXj5mUJ8y3TNCEbYTkOwAWsQPw5l0slKW69/O23sFotnHjySWij+INk+E4hIwcZUoFSinv37uHhgwegQQASBLL1brFQ2EcMxGqv3wA6iSq81/toFMH1fYS8SqHRbHa8XoReB62GB6YOxsxBixCv2GIqW2i+H8u24XueDBUnmxL1g+e6+NWvfoVcLoe333576Ou7PweRDhFdCkeFWOn3AyEERV6LH3GrZHFNB12bjtLDlNdQVVXM12rxyrjdRrPdhud52NndRbPVwvzcHAr5vCSP3akDuZLvKn0lSJCECVINhBA8c+4cPvzoIzSbTVQqlc4X8LLbfvsQ+phcLoeQCxd9LmJ0ogjUtpHj0QaF99NgjMmeGYpI7QCym2ar3QalFJt378K1baydPInq3NzY55jh6CJTn2QYCtu2ceXKFTzc3AQ8DwVdR7VaRSGfjweffD5+IdvztY9/7b+ySjtJdojsuiIFSVi2Dcuy4HDNAbAXMq1VqyikmFh7kpi9AxkrgqAA0Hgtf1qjnTAMYxU+TyOYpolKn1r+jvcFAX793nuglOKdd94Zq4ZdRDrGNchJo/RXFAWlUkkSJ+FJMez6JiflUaAqCkrlMo4tLmJ+bg6GpoFSivsPH+L+w4c9G2MBCb0H90GgXC8S8S8qoiRCNJl4T1ocP34cxVIJFy9d6v2CxDM16Kw1Th5r1SqKhQJ0HjXwPC8Wa3penG7L5+M0GiDdFMUzJTwSCCHyHrxx7Rpura/37BeS4buNjBxk6AtKKe7fv48rly/DbbWgRBEWFxZkLb3Oc99yACN7PgXJ1XI3+tWyd7wmWdUwgBSEYYhms4mt7W34vi8rDaqVCsql0nA9QddxdWPU2EZS+Z98r0LI8JU4Y3BsG61mU4bYy6WSVJgPAmUMv/nwQ1iWhR/84AcopGgy1WsSj8YQI3YjbdlnqVSK8/+Uxg2ihlR5jLoPIP4sQkrjckW+z9WVlfjeUBR4rovbm5vYbTRGNkISLa1pgjyAELCkpmQIFEXB008/jbu3b8OyrKGvH0YShJ6gwlMnohTV4RUdQRDEESj+XIgIjoCqqnGrdELg+z5cz0N9ZweXv/kGrUYj5Vll+C4gIwcZeoJSivX1dWzeuQPmeSgYBo6vrclVlDBakbl0/iWdDgdse9DAuU9P0GcSiMIQ7XYbjUYjttZlDLlcDosLC3JQ3IfEoN1rYpxIHAlI8eGg7SiJJlNJRJzkuK4r88GVSmWoQ2G8c4ZPP/4YWw8f4u2330a1Wk11zL3cHEXkoFcZY1qIfPwwiHtI4ytVm/tTpEV3V8PuY6BcdNgdkVA1DQvz81heXoaZy0EjBI1GA3fv3euIPI0KoaMRlTmUMVB+HL3KTAVOPfkkcqaJK1eupN5XRzShz7XOGUZMLrm/AeXC1la7HVcq8M6QTtd11zQNBR4NdF03tiIPAqxfuYI7N29mUYTHBBk5yLAPYRji2rVraO/uQglDHFtYwOryMlxeRkUIQaVcloPLPnviYRPDkNxyGlJQbzTgeV48CVCKYqGAhfn53t4E2D9hTdPwRRKaIaRIis0IgUr2rJFd10Wz2UTEowWlUgnFYjFVTwUA+Orrr3Hz5k289vrrWFpaSnfMPSYr6TWACSMHwODqiAQ0TUOxVAIB4rr7UQkCeBVMYn+U+yZEUbSnU+iBXC6HlZUVzPFUQ0Qp7j14gAdbW31TDSND6CkQX9+IUlB0Rpg0VcXZs2dx48YNWYo7CqQmYt8/iNTbVMplKWQVtsqMMVDePbKjkRhiYiEEixZve04Iwc7Dh7h26RK8CUhUhqOBjBxk6EAYhli/dg1uowGFUqytrKBSqcDm3fEIgEql0tMPYJ/7YR8kJ+l9eoKUpACIa7jzpomcaULnpjAssUoTX6Tra1pIpg/SbLfjyvActcNNbcDFYZVKZV9fhEG4dvUqLl++jBdfegknhvRL6EAP4aAI64t+B5NglHcbhhFPXIzBdd19TpWpwBgiShEKUpC8D4fck+VyOa4cKBahKwpcx8GdzU00eHpnGiCIo0aEVyCIVITQLpw+cwZEUXDt2rXRNy5ScOh/3QmvdKmUy9L7gFKKgHsmWLa971wLhQJ0XQdjDO3E/z3XxbWLF9FutUY/1gxHBhk5yCAhiIHXbAKUYnVlBaZpIgrDuLGPoqBcLvecvNKK7US4VWCQngCIqxDa7TYazaacNHTDQLVaRblclhOaWOV0E4xpkoHkOYylUU+SIsbingNBAIUQlEslVHhZX1oF/J07d/D555/j3LlzOHv27EiH0uu6jOtv0Bcpz4Moyl5bbV6C6nd5UvTfBScFlMr97fNESKOB0DQsLCzg2LFjcZkrIdit17F5//5Yq/lB6BVt01QVJ44fx82bN1N37Oy7fbEPxEQvCVGVIASuhq4jFCm6ZnPftSsWCtB4a/XkdYiiCOuXL2P74cOJjjXD4UVGDjIA4KmEK1fg8wFCEANRGy3KngYq4IdMBowxMBFOT0EKrGT6gLFYaFityoGNUiobLOmcHPS0wp0iWEKZPo5YEYhXbM1WC0EYgiBeuYr+DYqixLbTQ67Pw4cP8dFHH+Hkk0/iheefH+s4ujFppcI+pIw+iPSJkQxl86ZBvcAYA0tGCSjda+2NRAvj5KGkPGTTNLF87BjmarU41RCG2Lx/Hw+3t6eXahDH1EUSVldXZb8IEVkYu1RSEKU+n4HwNhAtnRmAVruNnd3dzhQDIXv6A9/fpze4c+MG7t66Nd4xZjjUyHwOMiAMQ1y/cgVhqwUKSGIAkZPkg0V3Rz0BodoeJkKUArIhpMBxnLjnAVd/G7qOPC/PSiLgPRSSNflixTRtyPTEBHXtjFK5SqOMyWqEbp1EslwvmZsWplHNZhPvv/8+lpaW8Oqrr6aehAceG8/TA1MkB0jnZyErXBiTLop+EMQuilzbIqI1lBODodqO7gjMCP4IiqKgUqmgWChgt16Hbdvya65WQ0V0GZ0ShJD32NISdE3D5uam9Dzojsj11Rf0Oxd03kPd0HUdc7UaFELQsqw4QkgIdN9H3jSl4ZKu6wiCALbrolwq7bmTEoKtBw/guS5Onj49kZA1w+FCFjl4zOH7Pq5fuoSw1QIjBE+srsqueYQQqSA3crm+k8YgPwMhCJPpgz4DNOUiqd1GA47ngTIGXddRLZdj1X6PfftBAIiowZir+WEYO4XQA57vo9VqxdUeioJKD2LQDcIjLQqPKvi+j1/+6lcol0p46803R26U008XIlapInoxLaQJ6Xd3YyzyapOIUjR4hCWKorih1RBiILeJ3tUYo0DVNCwuLuLYsWMwee+C7Xodd+/dm0mqQdU0HDt2DJubm31fJ/QK+3QVw7aPwXqEarUal3caBgLeMrrVbsOyLERRJO3IRSvpbpvrdrOJq5cujacXyXAokZGDxxiu6+LG5csILQuUEKytrMRtf/mgGoQhQp77FaHFbvQzrxEphO7BmXQRBBpFsDkpkPbHuo5qpYLqgFI+xhgC30fEGHK6PtGKvh8kscHkpMN1XVjtNhi4OVO5vK9r5TAQAJ988gkIY/j+O+9A07SOSow0k0UyKpGECJmLCpRpIU1Zo2jbTHmqgHKzHkIIojBMVf/fC8nqkEnOyDRNLC8vo1apQFdVhEGAzfv3sbW9HWsdpognnngCO7u7Q8mHLBtOiBv7dstMvg+972WRPhC9GUS1ih8EsbOk70utkSj37G7Y5bkurnLr5QxHHxk5eEzhui5uXb4M37b3iEEu1xG2dGwbAJAzzd4rXJ522PdnDAl/8oHNsm3s8i56ogd9pVweSAri3cbNlChjUBVlqmFwcfxsSqSAIXZvbFsWGC8rE+Y/o+Lq1avY3NzEa6+9Fqd9SKeVb8fxA4Co3EgI9fqldMbpxJgG3WWN4niSan3RIlqUIDKecilyHw2fty0ed//9CNEoUBQF1WoVT6ysxA6EqgrLcXDnzh00pzgZrq6uQlNV3Lt3b+T3Jq9r8h7oC9Jp/2wYBnRdl5qXSrkcR+xY3CzLCwL4QYAgDBEEQQfRF9HDKIpw7fJl7GxtjXz8GQ4XMnLwGEIQA891wQjB6vKyVGiLIdT3PGmtWujTUCnZNhfoSiH0AiGgnBTs7O7CcZwOUlCrVmWZVV/wwUiIpoQV7DSQTCFMIxLBEDdBcj0P4KthMeGNivruLr746is8ffZs3OK3B5INhMSknAzZdxOGZMQhmND8KNlaWWoD+IQvSQCv8xfle+I1yeNMTlaiuZBCCCzLkoLJcSDu7Ul6IQDx9VlaWsLSsWPI6XpHqmFcApOEbhhYXFzEXZ5aGJfUCDOmiBOFbgj9THfqpZDPg4CnD6IIpVJJmooRvl3LstBstfb5hkjnU8Zwe2MD9Z2dsY49w+FARg4eM4hUgue6IIqCJ9bWZAg3CZuHDvOm2TP8zRgDEiFVKTjsA9HwpVGvj0UK5MTNBzOfixH1KXWNm2YKAYgnx2arFZMYxlAslWTedlSEQYAPP/wQtUoFz41YmQDsCUH3nVdi1Rfx1buqKHLiFqHqfTbBif4C4ksQATEpCRICvqIcNil36w4EclzrQgiJu1OOfPad+xilVHQQ8qaJleVl1MplmWq4e+8etnd2Jk41rK6uYuvhQykQTbqPjowEOevl2SAmcxEFUBQFJh8PbO5tIHqUFHiDNRH121f6KCpG+PHeWl/PUgxHGBk5eIwgiEEgiMHqak/PAkqpLFnq1YZZ2MSKnwdGCxBPlG3LilvnclJQHoEUCIg9iBI2ACMZBvXcPjqNkqaBMIrQaDbj0OsAb4i0+Ozzz2E7Dt4YQ4AoMCj3LyYNQohcIe4LxXdrR7q+hmHoCrhH5EC8r1gsQlFVWckyLsQx9Cp1HAeKoqBaq2F1eTlONSgK2paFzc3NiQSLq6uroJTiwYMH+/Y3CkQEJ/l7R9OojhczSSANXd9nrSycFquVCkqlEgDAcZy4N0OCxHRukmHj2rXMTfGIIiMHjwlc18X6lSsIXBeKouD42poUH3ZDiBDVRD/4JLpX8YPgBQEa9boMuebzeczVanumRX0gc+UiVJ7Yj0wpaNrE/RCA6VY4BGGIZquFKIqgqmqct9X1sVe8N2/cwI0bN/C9V16JG+JMgH6fleynMMUqhV4YtPIVXge91tzCuIcQEnv9pzRI6kaHwn6K56rrOpaWlrC4uAhD08AYw+aDB2NrEYrFIqrVKjbv3t33PxlFSLGdQddbmEeJqA+w9xwoqhq3skYsSAwS15sQIlu1C41IiwsWO7bPXxuFITauXp26R0SG2SMjB48BbNvG+tWriBwHqqpibW1toOAvGOCUJ1Tl+yaaroGIstgBUEQLVFVFtVJBkeeQh0E2c+p1fL4vVf/jYhbEwPN92VFR1zRUeY3+uKvUdruNTz/9FE8++SROnDw52cENOAYRJZpljfowUaD8T5/j1HUdJjeKsm0b0Rih+33K/Sl7YhQKBawsLyOfz0NTFGzv7uLB1tZYFsxra2vYvHev73vFcQ+6s9Lul3KiICNIjEHXNOR5LwabpwEFNFWFqqrIc6EyYwy2bcdpny6iIQjdjatXp2ZFneFgkJGD7zhs28b6tWuIbBuqpuH4E08MDXELctDtLSCc6eTknhzIkyv7HtGCWpdXQa+JYpBZi0DEG8UwSoeLF3sgSQqmOTE4rhubGyFWfZfL5b3V6RjkgEYRPvjgA+Tzebz80ksTHduwXLWYaIe2lJ4QA42L+qQVkjDzeeh8ZT6O/qBvnf+I2xkEVdOwvLQU3++KAsdxcPfevQ7XwTRYW1tDEIbY3t7u+X9BnpX4l33/T1NC2us9QjjKAOS5SFm0fBYQpmOEEJimGWtpSNziOZlmkK8nBLZl4c6NGyMdT4ZHi4wcfIcRhiE2rl9H5LoxMVhbGzoBJPUGYjKX6vbuwaZrUKKMocWVzN3Rgn1+B9gbvKQxDxvc1RCADHFqup66a6HA9J0QeEWCZcHmZZ9500S5VOosLRxDcf7VV1+h2Wzi9TfemLnrnGy4NGNy0F061/0/AAOJlNAfEEIQBcF0jIiEWHOK3g4AUK3VsHTsGAxNA40i3L1/H+12O/X7a7UaCqY50BAJQIfQNHmfTdKfgRASC08Zk5ojz/c7Vv6i5DUMQ5imiXKxCEVR+qcZGMPu9jbu90iVZDicyMjBdxi3b94EdV1ohKQiBsBevTvhHv9Jm9RBkNEC7pCWN8190YIkOnKnIwzQPk8pjCrwEwPnNKcAkToRA2GhUEChj8X0KLh37x6uXr2KF154AbVabeLtDQJNhJNnrTkgQF9Cl7RQHgRFVaX+wHEcGeWayvGNWxHQB6KiIW+aUBUFD3d2sLW9nTq8vrq2FpODFMckogjyOk4phK/zck3GWFySy59ZkXJMWm6XSyUZ2dmXZuDP94PNTexmHghHAhk5+I5i6+FDWPU6GKVYXl5OvSoMu6IGyhABVN9oAR/A+0EIlkiKaIHcV7LRUkpyIKsRRthPGkSieRIvVSyXSj0rO0aF4zj47YcfYmV1FU+dOTOFIx0MkVJQFGWqtsl9MYQcpIGRy8HI5aAoCizLGkooRoGSUuyXFsIXoVIqyWqGew8ewE9BakQjprGEjVOMhORyOYAQeJ4Xl7xSCpW7c4YJG2dFUVBKPAf90gx3bt5Es9GY2vFlmA0ycvAdhG3b2LpzBzQMUavVRqqvF2F7XddlfTzQO385arRAQGxJIWQk1bhotKQqSionv1mIDoGYQDWbTYRRBMKb9EzDb4FRio8++ghEVafaUGkQ6AFVKgyDONO0E32hUIDKV7R2SntlUdM/+EU8jz9NwqEomJubk9UMYRhic3NTpqL6YWlxEbqu4+4IoXjRQGsarpACuqZJ0iTGBxkFYmzf5J83TekC2ivNwBjDjevX0ajXp3J8GWaDjBx8xxCGIe5tbCAKQ5i5HBbm5lK9T9REC0KQDP92N+vpGS0ol4dHC3gJZFIMOMoAJkrYRhEizoQYtFqIKIWmKKhWKsPtm1NONJcuX8bDBw/wxuuvjyW23L/b4U2jwoPSG3B02ynLv6fQHHS/vsC1HUEQxCHvdG9M9ZppaxCAmNAsLy8jx0uI729tYXt3t28KQFFVLC8vD9cdJJDcliQIE56L8DggwL5JXrpcdn1uOk8zaIk0g51IM7AowsaVK2js7k50bBlmh4wcfIdAKcXDW7cQcKHWsaWloe9JerAnQ8u06zUCfaMFQ8L8SQfCJAjSm9JEXEWtDem7MLOIAV8FUV7qVSmXU4Xi00x329vb+Oabb3D+wgUspvjc0mLYNYgmtE0eBz2PKUW1Qjc0VUWeE1LbcVLZK6e+J2ZEEHRdx/KxYygXi9AVBa1WC/cePOjrA7C0uIhGo5FKQyAn6gR6GlqNAUFWI96VMbl9AIh4OWRy74qioFQsdogaRZqB8Kjh9cuXUc8IwqFERg6+I6CUovXgAdqNBrwwxOLCwuDmRYmfpcc6EiVlCQdExpXLHdECRUkVLUjua1Ap2bD0gmi2xHi74777mXLtukBIaezZwD0MyqVS6pTIsOPxfR8ffvghFubnceH8+ckPdgRIQdkBRQ6A3uH9NKWMvWDmctBzOSgALMsaSsRGnSQJpl/loigKFhYWMD8/D03TpPWy06P6olqrgQFoDdEdMNa7CRowHYKgKEo8niiKjB50iA3566Io6oxeECLTDCSRZvB9Xz731y9fxm7Wh+HQISMH3wFQSuE3GtjZ2oIXhiiXSihzi9NuJAc60UmNKMrewNE1SDPG4mhBo9EZLahWh0cLeqQR+mHYwCVWhYqi9CQHs6hGEIgSxEAbkRgAQyY8xvDJJ58gCEO89vrrU3PuS9PCOemOdyBixAS6z1OSgzG2VcznY3tlSmENyeOPDJFim6IGQaBUKmH52DG5Kr/34AF2u4R61WoVBEBjiIAvjVZD6ATGJQnC1TTw/X06g+T2he4heX/pmoZKIs1g8TQDEN+r61euYKePp0OGR4OMHBxxUEoRttvYevAAvutCVRQsLSzse50cOsQg0qdEMbmCo3xSFDn2kaMFI6zih6UXBrn4zaIaQUCUKwo75FGJgehU2A/X19dx5/ZtvPq9702lDFIixSQgryk3tHmUkLX6Y0zCRFFQ4Pek7/sDuyOOe57TtFtOImcYWEn0Zqg3m3Gaga++NU1DqVhEfYB4TzS8GgXjXAdN0+IIUyJ60HNb4t5jrKNUtleawbIs6XGycfUqth8+HPm4MswGGTk4wqCUImy10OTtjwPGsHzs2L5VoJg8AciyxH7eBUKI6AcB6o2GFHqZKaMFYn/A6Kt4gliE1Ysg9Ap/yzLFEfeTFpQxtFothGEIhTdQmuYKu9Fo4IvPP8eZp57C2tra1LYLpJtkRRnjQaYUBLqjSR2tpccgCLquw+R2v5ZljWWvPAyzSDEA8aS5tLiIWq0GnZcMJps31ebm+pIDOiCd0A8daYYRr7WIcnie15FW6N6++LtwaowSJY9500SpWJRpBsu249JOXsWw3dVwKsOjQUYOjigEMfAdB/XdXfhhiLlaDWYut++1HQpxkUoYsHJIdlsT0YJSmmjBCGmEfpAEoQthGMZljPx/sxIdCjAArXZbEoNKuTzVcr8oivDhBx+gVC7jxRdfnNp2gT2B6TCISaXX9ZbbEqs//tlO0ySoA8l7a8x9mKYZN+Mik7d37gmeYpjVNahUKlheXt7XvKlarcZpha79UkpHJgZJyGjdKB4T3JmUcpvlYWNC0iNFRBGET4lIMwCA57oxGWIMN9bX8fD+/THPKsO0cHAS5QxTgyAGLAyxtb2NMIqQy+Uw1+Wml1xVS6fDARNcFEVoWxY834eqqtANIxUpEPualhhQDFoiHMkYi81WKI0bvSReNwswxE2PRHfKcqk09VK/S5cuoW1Z+Mnv/u5Y0QgxyIrvghCICZwJ5XgyrZGc4BPpEkZp7DyZtLNOfAdjaDWbAGLCBEBOKB0RqMTnnyyjk+S06//gk4w4/5CvHoMggKZpnVqYFCCEoFgooNluIwoCeJ7XkyxPCoWQvbLfKSOXy2FleRlbu7twHScudQTghyFsx5Gpp2S4flKIzyIN6SGEwDCMuFuj7w/trirug+S2KaXysy0Vi3BdF67nwfE8UMZQyOdxa30dYAxLKyuTnVyGsZGRgyMGQQwQRdjZ3Y1zf4RgmZe/JSfOfcRgwGAWhSEaXBFNCEEul5Nd2YZhFpN1kiCICZAQAlVRZkYKgPhcrHZbeiqUy+XhPgZDtteNdruNy5cu4dzTT6Ncqci/d0/4yXOX3/nPezvge+ATb/fqXlw3kVoSKSUhNBXHGPHITOfBsz2BKhJRhOR+E/tKht3lvYf990XyfzShFXEcJ349b+wD/rO4FxQ+oRBFgcJX8eJnMdkovFugbdtwXRe6YUCd9iTO992zO+kUIJo3Nep1NJpNhPz+29rawsmTJ6dKDIDE56MoqbQLOcPAbr0uSxLT7YR09lPh5JUoCkze3bFlWbJBVSGfx62NDVDGsLy6OvI5ZZgcGTk4QqBRhLDdBqIItm2j3W4jiCKsLC115Gw7mv6gv75AwA8CtFotMMagaRrmajUEYYjA96Hl833fx/jkMavJWqifvYQYcdbCOcuy4AVBbIlcLk/UFhqIPzPRDpdSCkYpPv74Y2i5HNaOH0ez2eyc8BMTsgRjcTVGj/I/RVVjnYgYfJOr864KjuRKPqIUQRhCAVApl+X/5Xu6ogFiUC+Xy6hVKh3RBXFUyUiDjFqI1yGR7kj8P1mbr6pqrLrn5EVEOAi45mTYvSYIAyHwuKI+jCKUeFMg6chJKTCFFJEgr7O6J6u1GgzTxPbWFnKGgdt372JuYQH5GURDAK5L4vfZoBiCLF3kDpWptp14b5IQCpJgGAaKjMVjmoiS5PNxJ0fGsDxlTU6G4cjIwRFBkhiEYYjtnR0EYRhXDxSLA8VBgwYvz3XR4vazGjf28XwfQasF1/eR70MOZukpkAQhJBaXMTZzFz/LcWS5ZqlUSt+/gQuuKKWyhIvyiUl4RAg8uH8fDx48wIsvvRS/dm8j8eQmVsDiZ/67KlbNidf0bHudcrD2fR+6pkHTtFTnmSQNZJrRG04QBAGglEpnPUmaEhETcT2TWgjw74SQ+HoSAlVV4XgeAt5NUOe9AADIVIYoi1VUVX4fNcUz7V4M3cibJlZXVlAulWC323jw4AHm5+b6lipPCpFiEASy1z0WhCE0XUfI73MRnUoLpYsgAHGpsqHryJsmHNftiCDcuXkTlDGsPvHEROeWYTRk5OAIIEkMGGPY3t6Wedn5+fm+E8KwB9aybdmnPZfLxQpiQqSoS6y8utXss875d++LRVFswjJDFz/HdeHya1EsFnvaF3dP/hH/6g7xJgWBYuBUCEEYRbhy5QqWV1Zw/Pjx1BP+LCB8Ix5FpUIHBMFMpjD4tVN4ZCQNBGEQ5IFSCoUQuK6LMAxh6DoIJxkQkRxCECYjMjyy0kEYeIpD7SfcG0PxPyoURcH83Bw2bt6EqijYqdfBGJMRn1lBVZSe/gli7MkxBigKfN+PmzONgG67bIL4M9REWshxOgjC5q1bAGNYPX58onPKkB4ZOTjkSBIDAGi2WnA9DxFjWD12LH6AE5NTGn0BYywWHiZMjYrFYsf7dU2DHwTwE6mFWacR9h0n/x5y22TRDGraanHXdaUhSz6fh6qq8HlYOhkF6DUJCCJACIHGV56qqkIVq9DE5/DFF18gDEN875VXRmqGNQukqVQ4aExyX4nUSjJdYBgGms0mIkphGIasrw+jCFEY7qV7EqkfUIqIUkRhiKBr4heRhX7RhllUMTB+PHPz87h85QpyuRw838cut1SuVatT32cS3c6VjAtGAaBYKMAPAnjjkAPsRR+TBAH8uuYZg9sVQdi8fRuUMTxx4sQUzizDMGTk4BCDhmFMDPjkH4Zh3NcgDLG0sIBcLidzs8P8C+Q2eath4Y+eNCUB9iZkI5eTD34hnz+wNEL3cdBEGFma9bDezV5G3X7Ic5vtVgtRFMnOiiKaIo8jkbLpnhwEEeh3zcWxN+p1XL16Fc8999x0zY7GhPABeNTdGIH9/gHTmmIVQpDP52WEzNB1qdEgmrZv8GNIaES6tCKUUiAMB0YbiLg3EvfFuJBNjfjnVK3VpKaiWi6jwc3JGKWYS9lcbRzIu5oLMANRUqwoKOTzCIJAtlIfVZ/TsW2eZlAIQcQYNMOAwRhcz5NWy/l8Hvfv3AFjDMdPnpzWKWbog4wcHFJ0EwMAsXI5imDmcqgmVO5J4dmwioRmovFJuVTqCJ+LED4IicOwIrUQhrEYcOpn2RvJyUG4+GmJCVgQIJawZx2GkK8GQ/4VRRF83487xYF79Ou6JFq9ogDjDPaCvH362WcoFYs4e/bsyNsYZV9pXydbNR+GyEGXcHKayBkGfN+HHwSwXRclHiHreRjA3qTeNdEJs6FB0QYAkL6BjEEhBJqmQeXajrROlEmthUCpWISuqqjX63j66acBQtBoNtGyLFAgdffVcUEQEwKLr+RFFM8wDHj8+k4i3u1VHmrwaITreXD5fvP5PB7cvQtQiuOnTo29vwzDkZGDQwhhiZwkBmEYwmq3ETKGYwk/g35CxG4EQYBmuw3GxViVHiV6Im0AxA+roWnw+KBamZEAqhvd05tsKdxDb0C43XJ3FEFEBZJflNIOJXYYhnAcB6qmIW+a0stgFlbCN2/cwNb2Nn7n3Xdn1sMgGUFK9VokTHAOC0QIe8qbzefzcfWNSJPp+shRJ4UQKGmiDYxJ8hkxBhoEQBDIe0/lFsTye9LxMyG07AYhBJVqFU3eY6FaqYAQgnqjAcu2QSnFwtzcTD/PMAwRhSEIYjMkICYJnu/37So5CqRhUmIcMnI5gGtHOgjCvXtQdT0TKc4QGTk4hIgsq4MYMADNRgMRpTBzub2wdEpi4HmeNK/RVBXlcnnoipExhnyhAL/ZROD78Dxv5LziKEgSkyRCLsLs11KYEAIaRXLwFwOz3J4gDjz0KwR4ThShXC7D0HWUZkh8fM/DF19+iSdPnsTSFFsx78MIKZ9H0aY5DeTxTzl3r6kq8rkcHM+D4zgoT/G8e0UbhCeEuBeFxoEyFmsdogjwPJkm0FQVJBGd6vc5Vms1PNzakr9XymUohGCnXofjutja2cHi/PxMCAJjDDZPtxmGIRsoafx4RcXOJJEocd5KlxDSMAyAUriJvhl5rkEol8soJaKoGaaHwzU6ZEDkOGAJcxqAOxfaNgJKsSiiBinFgbbjSLGdYRhx46A+ZEK2aebb1lQVhXwetm3Dchzouj6zgaenEhzcNjlRxigG3ZCnO8IwlKkQUIqIn4eiKHGjGPHFIwJhGMbtb3nqZJbEAAC++uorUMbw/PPPz3Q/o0yoIgSuTDlCMgkIIbKz5iy0/6ZpwgsCRFEE13VnSnRFOaC498SeqEht8Xs3ohQBpdKMSry3O7ognrlatYr1a9dkEzQAshXy9s4OXNfFw+1tLC0sTP05dT0vTkcqCgpcoyTGEVVV5bM4aZoq6YeQTJMZpgkQAsdxpPFb3jSxfvUqLrz44kRGZRl6I7uihwg0CBBxdi6d5QiJFddRBNMwUCwUOohBv4GUMQbLsjoaJ43TTdE0Tfg8bGjZ9tTrq6Viudf/KEUYBHHVhOfBdRxpsStTBGzPOVHjKxqVi866SYfoJR9ReiDEYGdnB9c3NvDKyy93iD4fNQ5jpQKQaPQyA9U/IQSFfB7tdhuu68r7ZFYQz25S0KooChTDgI69dESS6EacCIuJFvzZVXjEK5/PgxGCZr2Oufl5uS/xXO9sb8PzfTzY2sKxxcWpEYQoiuQ4UjDNzu3yyiZxDtMgXclSaXknMCZTGU7CjwQANq5exdnz5yfeb4ZOZOTgkIBSilD0Nxd/5CvddrsdRw2E6GhIxIBSila7vVdyVCwOLZ1LOt0lt00QDz6NVituhxsEyE3oGij32ftAEAqxoON0rPLl8SVWZZqmQVfVngRDhDtFOZhoPa1r2syJAQB8+umnmKvVcPr06ZnvaxQ8ym6MAzFj/YOh6zAMI/bxd5yZ3wMEexOcdJEEOoS04h4Gn1SFd0Z3uaVPKXTDAAGwef8+jFwOmq5D1zQovHJAWVzEFvdAuf/wIZYWFiZeUTPGYNk2wOJmSd3+HwSx7sDxPARjGCL1Qs9FDxchG4YBhrj8WBKEeh33797NXBSnjIwcHBJEti29DIC9kN2+qAEGq7qjKIrbDPNQe7lUGtocBQCiZK1xFzRNg2macB0HtmVBr1YnDkl3lK7xEinRzEXkGwW50TQNuVxODqSjrIhEuFpEDITmYtZmQ9euXcNuvY7f+eEPZ76vUevrReRgUBOuRwEyhRLVYcjn87EDaBTBDwK5Gp0lRGUNRXztB90PQr8gnliRyxcrcz2Xi9uz8+iCzZh0udR1HUtLS9ja2kIYBDKCMAlB8EQ6gUdeekHjkTphDDYxIRE/JAyyhI4DgBzPRMMmBuDOrVsolssozdgY6nFCRg4OASLHAfP9jpUxgI6owQLXGnQPK0mWHYYhmq2WtIftVZHQCwzcV30ACvk8Am4MZNv2wJKwNPujlMYqZ9+XtdMCYjWiqio03h1yEm8Ay7bBGNuLGMx4snZdF19//TXOnDmD+RmXmI0Kxtiex8EhixwIq+hZ+g2qioJ8Pg/bsuA4Tkw2Z3g/MKDD7nlUopiMkiGXQ9E0QbnVcBCGcVQsikCjCF78BpRKJTQaDURhiPsPH2J5aWmsCTuZTsjn831JuTBNC3jUb1Jy0DddSvb6fCQJgue6AOL0wvkXXsj0B1NCdhUfMWgQIHScnqkC4e5m6nrcOnnAdjzfjysSuII4TUUCgNQrNYI4PdFsNuF5HnRdTxWRkPtBTF5834/dB7vKtRRFicO+uh636yUEFtcYTDJ4C592grhWXEsIG5P54Gniyy+/BFEUPPfcc1Pf9qQQZXLC0vkwQeTpZ21HbOZycF1XTn6FKetBxH2VVNyLJllpuh4OQs404fk+TNOEiT3HwiAI9ip7+Cp/t9EA833cvnsXK8vLI7WvZozBchyIZmzDnnVN0xBwweekqYV9AmUxNvImTQIdEQTXRR3AjWvX8NQzz4y97wx7yMjBIwSlFAFvetT9KMmoQRRhcXFx4MPmuC4svh1d11EulVKF3mU4OuWArIv0guuibVkAIQP1BzQxcPlBIMPZYn8aJwO6rvfMf9NEW9dxEAQBHMsCQ0xskisK2VmOm6+wKXXXe/jwIW7euoXXX3sNhmHIssHDgsMaNQAwVGQ7td0gjoS1LQue6yLHo1STQoS++/Y6AXp21xwFpmliZ3d3b5s8Dy9y8WEYIgwCMMTVDY1GA57vY+PmTSwtLKBQKMAYcr7CXj0KQxBCZDpzEHRNg8P3T3i3xrGfpj7PoXSBRZ8Ug+ti8+5dlCqVrM3zFJCRg0eIyLaBPpOSiBrkeNSgFxiAdqJ5kpnLocibJw1DMoUxymqmUCjEAinfR7vdBimVOvK2Ec/lClIg98dXE7quQzeM2Mp2WOUEd4kbR3VNKUWbEwPTNAeqqBVCAFWVYrFxQSnFZ599hoXFRZw4IHvXUfUG0uPgMJID4EAiByAkFvPpuhS+jluFI3PhbHCbY7lrTEYQcrmcDKP32rauadA1DXnEn7WZy+HBw4fwggAPt7YwX6vBMAwQRYmfRZ6ySPZQaFtWPMkTIttdD4NwEY0ojbURuh6nUUY8v0FXhRECpSsiA+zXIFy7ciXWHxyQcdt3FRk5eESIXBfM93tO5DSKZF/z1eXlvtuwLAsuHygKhUJfwVA3ul0Ve3Ve6weCuLa63W7D56mMQj4PxphsVpSEwgehZLogLYSF7Mjhbxb3haeUQtM0FFNeF4I910UKjLz6uXLlClqtFn7vzTdHO94xkXQ6TAuRVjhsKQUAew6JByTgFL0BwjCMmweNmCYbFCXoBzkJC8fOEWGaJjwuwhv2blVVUSwWcdI08WBrC47jYKfZRKVSQc4wwDwPPjdjEqLGpACx1BVtGwZN00B52bPOtRzTbkbFeNUCuq59kiDYjoPL336LF195JdMfTIDDJVd+TEDDMC5b7DM4NHiFQs4w+gr/bF7rSwCUi8WRiEGyOdM4D6/QH4AQtNtt3N3cjMsEeedCTdOQLxRQrVRQrVZRKBSkF/soEGmFUSMHFldzEy7OGnkQ5vl4lX9Pc9y2bePbixfx9NNPo3xQjm0juCIKHFZ3RCBhgHNQ++HiRIUQuI4zkCSLckTKBZ10hL4evfZPVHWs9+dMMy57TkTlhkFVVRxbXESpVELBNOG5LlQePWEkbnTkBwG2trdR52mIvGmOPLFqvP9K0kp5VgLTXtvN8YgkGEN9ZwfXr1yZwZ4fH2Tk4IAh+yb0+z8vRYwo7at0F3XaQCyyy40gqNo30Y04QIVRBMu2UW804jw9/7vneTAMA3Nzc6hUKsibZmyyM2buMSkYHIVUeL4P13EAxlKHRPuCEFlfrfBue4T/rRufff45coaB8xcudJzDTDHG9kXk4DB0YxyEWesOBHKGAVXTwBBrd7qPgfIwNp2QEHSDYLy+FiZ3CnT7pBb6QVVVLC0sxJO+qqLebIIh7tFQKhbjUklOxlVVjT1G2m14vp/6nHVNAwX27Ms5lBEIQq++Er3AAGg8ypeEyU2aKGPYvHMHD+/dS7nnDN04fMuH7zgiyxoofms0m6DccKRX1MDzfSk+NPN5mKbZYWDUF30sitM8tJSnDDzP61gVKKqKhYUFqVL2eV93XVHGmti79ymd5VJuIwxD2O02GOKQ8SRd4vqBJFbrIrS8ubmJzc1NvPXWW4c6jCm7/eGQNVzikJ+yuG9mRK46tk3its7tVgu+58HgOXgKTE2kOuw4RjlLM5cDWNzKuDxiTT8hBIsLC9je2YHjutje2UEURbKnQ6lQQC6XixcwontpGMLhWqEcdyDtB9HOPKk7kP9LkWIQJc5pI30UCZtl/h7phGlZCMIQVy9fRrFUQiHTH4yMwzdCfIcRui5oEPQdcITWIAxDzCU6LwoEYRhXCSAWJqXNpQPoTQyG5EzF/nZ3d2FxkRIYg24YKJVKqPGUQaVSiTvdAWhxJ0UyaTkTpXF+UVFSDRaMCxAjxmAYBvKjXJtxICIKhODrr77C8vIy1tbW9uVCDxNkm2YRATmkGFVHMSlU7qUhyvcEMT2IazRqJY5pmiBjRA7k/gjBwvw8ioUCVEKwee8eGo2GLPUt5PMoFYuolMuxiFdRZNqh3W6j2WrB9by+K3xd16EgHjt67XvQszyox8qAE9p3DVVVlY6wlm3j8rffTqVr5OOGjBwcEKIgALXtgQOOSCeIcsSO90cRmq2WtDEtJqIKfRspjeE2RxmD47qoNxrS0wCIVwX5QgFzc3Mol0qx4jnB1sulUpzDBNBqt2WN9LigPB2RNvzdtm3ZFW4Sg6ZRcfPWLTTbbTz//PNxW19FiXUK6LTMnTbGubaHOWoAoGNiSFoOTxMM8YoTlMYElItexaQb8e6eBwkiIm0pIAyRxiUHQPy8VisVqadptttxj4TkSl9RYJomKuWyFCZG3OTIcRw0mk1Ytr2PBIiS5H6TsfSy6IVxx4seRM4wDOg8yrG9s4P1TH8wMg5vDPQ7BEpp3IZ5ADGgvClQGIY41tXaN6IUDU4MNE2L7X+73t9dHy6V9imZuB8E8DwPPm+JKmAYRpwqGBKiF+pm27LgBQFc10UQBCiXSmPlt0V+N81E5jhOh9HRQa2KGWP45ptv8MQTT3REesT+FQC0Kw0x8zK9AQgPexljAvIznOB6yXf2CN13/64Qghw3R3JddyYpqX4Q+oO0ZbQmFxWOC9/34TgOiqUSKOL7otlswjSMng3CZHmkaSIIAnjcxEwYmimKEosBRStnQGo0ej2/vbwshL5jZHCCI4TWSdKcz+cRWRYopbh75w6qc3M4trIy+j4eUxzSJcR3CxFvXNIPhJC4tjiK9kUNKGNotVqyDXEvYtAN6VA2ZJIMowi262K3XpfpALC4PXKhUMBcrYZSqZRqoBT7LJVK8QSNONohTFhGBUu5yg2CAA63Ry6MWHo1KTZu3EDbsvBsQoSYRPcnTgBZKSI+H9K1Wk6DcadLGTk4AuRgVIjSU/El9BV99Tg9ng0ZPYiig48e9DmmXhBGZKNCNFGyHQcM8aS/trKCEk8xbO/uDgy/K4qCXC6HSrmMcqkUp2IQL15cz0O92YTN0zKEsYHbImR/FdC493WH9Xpim4TrSQBI/UG71RpzL48fMnIwY4SuCzZgoBE3s+M4oJSikhAZMfBUA++jXuGhwEHbSVObHwQBms0mdnd34di2FAHlcjlUqlVUq9V4oEy54pe+Cfz3nGGgUqlA5cZCbctCm0/gaRHxQX6QGHGf0dEIdeqTglKKixcv4sSJE6j0K10ccr6ypC6hX0g6N/aLgIwbFzn0aYUudJ9n0lsgWUUQ8dSASEUkDb5GgUIIzFwORFEmCtuPi7QEYRxyIB1XgwAEQN40USwWoaoq5ufmoOs6GKV4sLWVqmJAU1UU8nlUKxXk83mZGhEN1CzHgWVZw595MrrXSs/NdGxy7zdNVaVttG3buHrxYqY/SImjMUocUURRBMpLDvchMYmHYQifi3yElkDk7sMwBAhBJU14fkgqIQhDNJtNNJtNuHw1r2kaisUi5mq1fRbDadBNDAQ0VUW1XJZhSs/z0Gg2ZWh76HZFD4B+5zym0dG0sLGxAduycGFAH/lJ7GO7iUMy2iCG7qSmIQ3xEh4Hh65VM0fHGfDzoT2iAB2vS+lDkRY504TCowfdKbZZQ37GQz7LHDdCSgMGSLvziFKoioJSqdThGKryqiNN0xBFER5ub6cuKSSEIGcYKJdKqHC3VE1VEYUhLK5NcF13oKU0CAGb1Ga86x5I3hOioysA7Ozu4s6NG5Pt6zFBRg5mCDaIGCTC/o5tg7K405gQ0ViWhYAPTuWU3RX7DZKSFDQacY8DxCVR1UoldkvL5SYaYPu9kxCCYj6PcqkUpxkoRaPZhJNiYBMriX6r3ImNjiZAFEX49uJFnDx5cuRysonBQ7ZAp2nQsPQEFQ1xsGcgk5ZUjHZ4ibbLiS/W43vHl/DM6IoAyPM6oM9XaA8IIbIj4UEijUGSmculIgeMsdhFlb/W0HWUSqWemhNd07A4Pw+VEPi+j91GY+RjV1UVeR5NMPN5+Tk7nhdXOQwgCZgwmtVrq8lnIs9TRpRS3LhxQ/rEZOiPjBzMCFEYIuqz8ujWAziOgygRNRDuh0BsVWykXM0TRelYafciBblcDnPVKsrF4sQueWnthQ1dR7ValcTHtm1ZmdEPwjq5F2mZqtHRGFhfX4frODg/IGoAYCYTWhoS1+sVEb+WiqrK1EWSVAyiCAyQyv5ek3ry5473JL7Q43vXiSV2+GhLQXO5XGyk8wiiB8BwgyRpoTzgOvlBgFarJXskFAoFFAqFgfePYRiYn5+HCsBqt9FoNsc6flVVoes6Cvk8TMOIhbmU9iUJURTJ+3EiDLgeiqJIF1nf93H98uVJ9/adR0YOZgTquj0fxO6wP40ieDylUCgUOtwPC4VC+jx6YpuDSEGJ5xknzfGN2ndAVRRUymXZHtcPQ9QbDVg8arJv+32aLiWNjvIzMjoahDCKcPHSJZw6deqRNHYZW7Q1RG8w6LMk4MSz18SS/NuMyNBB+0ZI7QH3E3gUvhWDBMVmLgcC9IweBGGIVrsNmz9XqqrGC4yUz0khn0e1WoWmqrJccZxjV7j/gKZpKHPb5l4kIblAIITIqNhY6FUZkUjTaJom0ymbd+9iN9HdMsN+ZORgBoiCADTlikMIETVNAwjZcz80TWnkMRR8EAnCEK1WC60kKTCMDlIwDYzjnyCQz+dRTaRJXM9DvV6HkxiEk7nlpCDxwI2OeuDatWvwfX941ADTD9kDGLtrZHTExIhJPArDJiOXg6KqcVv1A65cEOgnxs2ZJhjpNEKKogiWZcGyLNk4yTTNOI0w4mdeLpdjsaKiYHtnZyxxpsLNyyh3mTS4LqGbJNQbDbiJKIhofDZNJO/5nGHE4yAhuPLtt4fWsOww4OiNFEcAUR+zo16rAdtxEHETljbvuWAYRqoe6gKhiBTU6/B9H4znTeeq1b45xrFXoOIhnmDA1jQNVV4OpXKVs+04qDebsoZa7COZJnlURkcCYRDg8qVLOH3qFAojfD7TQiqb7D44apUKSTwKcqAQEofEH2H0AOhtkGSaJgggJ1WH90EIwhAEkOWGIsIwDmrVKsxcLlWJYy+I+4x2RQYEScibJmgUgVIKz3XRbLVkqmTsvh99PqOkdkXYKxNC0Gw0cHNjY7x9PQY4eiPFIUfkeT2Vt70eUkYpXNeNV/m8o6HORUNpEIYhmq0WGpwUyPRBrRZPvFNWpferTBgXhq6jWqmgUChA4auMtmXFVQ1B0EEMHpXRURJXrl5FFIapogazQLKvw6g4Kg2XDhNyuRzII44e9NIfiFRju9WKJ1UepTR0HeVyWYrvJtovIWOVOAqI+6xXypCQuCOkiCQA8f3pcpLg8m6zYxx0KvdFRVHiqCwhuLG+DnuM1MnjgGykmCIopYj6aA16wXVdhFz0JNzF0pgchdynoNFoIEhqCrhpkSpEZ1OcQKdNDAQIIcjncqhVqzKNEvKeDg6PFDxKoyOBIAhw5coVnH7qqZ4ucgeBieyoOWE9qpGDqa/cU2yPcO2Bwn0PHln0ID4YAPE94IchFFWVHRM1HkkrFApT/XwnKXHsFTkQYIyB8tRHMt0AxAsmx3HQbLUQjNARUqDv+MR1EAK6rsMwDPi+j/Vr12SZb4Y9HL2R4hCDeR7Q/TAM8B5oWxZsy5Lq6GHEIIoiNNtt1JtNBGEIijgFkSQFSfRdaY74wM2KGCQhwn21ahWGroMQgjAMsVuvY2trCyGlB250lMSVK1cQMYZz5849kv0DkznIDSsNPeyYeqQo5fZyhhFbG7O4+dCjAkFMUFutFlzHkWWfxWIRpVJpZoR5X4ljvZ7qfeI+665IYozJyhmB7nQDIUSShHYiMpIGg/RQDJ1jmJnLQVVVPLh/H1tbW5n+oAtHc6Q4hBBRg270Ux0zbi3sBwEK+fxA90MGyGZIvufF1qcDSEHXAex7WMZ5BA4qiK8qCorFIso8QuC4LlzPg+s4oI/A1haISycvX7mCs2fOSLe1g8awDpoD35sYoDNyMPp+c3zC8h5B9ECE21utVhxJ426mRFE6mgvNEh0ljjztNwwKFxaKUleBQf1FepEEyhhcx4mFyGlW94QM9kzoMhjL5/OgUYS7t2+jlVkrdyBrvDQl9DI86utWyBh26/XYylRRsLS01DcXHIYhLNtGGIagjMHgHRnT6gkIf1jYCH3SOw91tJLFaYAh9v/XDAMKbxOdM00EYYig3Y47xuVyE5s3pcXlS5cAAE8//fTM99UPk5R5HeVKhcOAnK7D465/vu93uAvOCiHflx8EcjIlqoq8YcDQNCgHXOJZyOcRVatoNJtoNJuxK+kAUa7CS18Zd7cUVuqikmIQBEnQdR2+78P1PETc/jnHo4cTPfeExBFeQqBy/cHO1hbmFxdhmiaMRxSdPGzIyMEUQCnta3jUC47joN1uI4wizM/N9TQ5Yvx1tiAd3PBnnHz3PoKQclB5FMRAQKiYTdPEYqUCXdfheR483welFLbjwHEcGLmcDA/OAq7r4tq1a3j66acPZFLoh8dBbzDMa4H2McUad19pr6jQHthhCNfzOtqVTxOMsbjroed1rJJVVZWdUWUHQkWZ2KtkVJTLZYRRhLZlYXtnBypv69wPiqIg4uRAUVWEKYhBEoRXXem6DttxEIYhPN7ttZDP93/mU1wXJXH9dF1HEIbY3dlBsVjE4uJi6mP8LiMjB1MA7RHq7hc1CIIArufBc924pK9H054gDGW9sqxgKBYn6qYnCULKcrhHmn9jDI7rgvJzN3M5QLi85fNwfV8OoJ7nwfM86NzgxND1qZrxXL58GYqiPNKoATC+3gDY0xsc6UqFKQtsR4Wh63A1DVEYwvO8qYpSKaVxu/Qg2EsBEQJD15HrRXy5uO5RPKO1ahVhGMJ1XWzv7mJ5aamv3kFRFES8MRbhLojjQFEUlIpF+L4fd32MIrRbrTiK0Ct6mGIBJPQH4lVmLhf7wywvw+WLkscdGTmYEIyxfc2V+hEDRils20bo+4CiQOP5dfl/xNbCjuvGQkZFQblQgDGlG1W4hTHGBk6gByFAHASPh1MVRYlDl10ufCaPFoScaAVBEKccuFWsSDlMulJ2HAfXr13DM+fPH7gTYxJCbzB2GeMRiRxIDMhJT2tCHHUryeiBx6uLJr2eQRDA9/0OHY3CtQSDtk/A224/IufG+bk5PNzagh8EeLC1hZVjx3oeq9AdBGE4FcGkwQ2MHBFF4M9+Pp+fePuKogBRhN3t7XhBkpGDjBxMCur7qR9S4YboBQE0VYXOTVaA2E7YardlfjiXy6GQz09/QFeU/RUVCTxqYkAZi+uOGYMp3Mz6QNN1lHRdrrykKYzrwnVdaLoOg5csjbPqvHjpElRNw9mzZyc5palgks9DVioc0m6MRwWGrsPTNIR8Uh9nAgnDMCazQdBR5qfpOnK8nDnNvao+grSC3DcvcXy4tYUgDPFwextLCwv7xiqVkFQag1Gg8AWV7/txdJFSWJYFwzBicyixrzTpUy5OFGNezjTx8MED1Obn4TjOI3FgPUzIyMEEoJQicpx4Vcdvxn4thgPf3yvJ4eU8tVJJToae68bhQr5aNgwjvrlnEEpVuAq4G4+aGACIey1EERRVTT34KoqCfD6PvGnC5znbIDEIW7YNXdNkbXMawmXbNtbX1/Hcs8+Ovyp5RKvcboj8db9qmKOCaesORt4/tyS2eDorzb3EGJOEIAzDfY6BumHsWfqOejwjv2N6ECWODx4+lCWOC/Pzey9gcattYaE8LYiOorquQ9M0aSLn+z6CMETeNEeO8kkdByHQCMH21paMHjzKVNajRkYOJgDjUYOkNWfP13EBHRBbB4ve9Lqmod5oxOU+AEzDQF4YmcyIGAgC0I8gPMpHwQ8CWapZyOdHP3+ucjYMAxE3lwqCAGEUybSD7TgyamPoet9B+eLFizB0HWfOnJn8xGYEBiD0fYRRhIhb0UaUgvLfI0oR8X4boiU45QY0lNL4Pfx1lH9FURR3FE1sS0RmGIDffPBBrJbXNKgk7vKo8i9FUaAoClRFif+vKPLv4m8KT6cpqhr/TVXjyhRFQRhFcH2/f0+RKeoOxk1RGLoOV1UR8LB2r9WlEBYKUpDcDyFETmxCYDjJ8SuKMtXJdxQYhoGF+Xlsb2/DsiypoWKMIaJUjmPTjnAQQEZARfM1x3Vl2lZM7ConEmm3yfg5bT94gLn5edi23ZH2fdyQkYMxQSkFTfga9C1bRNw3gFIahwL5oBtxkw/GGBRVRblY3GO8BxQuVAgB5ft7lJUJ8SHEvecZYnHQpAOK6C2fz+fjyc33EXJtQhhFCHm1g6qqMHRdDtgA0G63sbG+judffHGiXOa4ZyAEXx73d5BeDzxd4roufNftbFbF39v9GSanDZWQvUmcT8iKmMgJAVFVaKoap2P4z+K1ompDWOomiUXAy+6SZCIUPyeISM/JOPnMJCJXei4Hk4eKzXw+1pGYJnTDgGkYyJmmLDs7aC2FaZoILQuu5+21d6Z0L2XAy2/lKSqKjFylTRsMg8rFxcBolRfTRp53cZQljiLix/Y6qjJgL7o6JYjxljIGTdNQKhbhet7egiAM4/sjZRQhWQWiKAp2Hj6EYRhD21x/l5GRgzHBRLvUISv8gN+whBAUSyVsbm6i1W6jUCyCMoYCn8DkDSgGlVndkF0DtALEjmWz2VtqWI4TrzZE6Na2p3ZM0kvdNKVPvu/7CMMQURTBiSI4rhuLwXQdX3/zDYxcDmdOn55sx4m8J40ieL7fMcG7rgufayWSf0uWsUW8q52Zy8nJsFqpILe0FDtGmiY0TYtX78kVuaJA1TTQKIqjJZqGWrU69qns7O7Kks5arTbWNkTUIkoQh7ArOmFbljT6ESTItm3s7u7KyhQRrhZRu5xhSAIhrkn3zzk+Uex7zsaAoevQVRVeFKHVbkNV1bgxUWKbiqJIzYuwM58q+MQoqpAopY/sGRYljq12Gw+3t3Hs2DEYnASJigXhdTBNiNbQjD8jIqXgOI50WAyCAHnTHJ7+wR5BMHM5bD18iPmlJViW9Uhasx8GZORgDFBKQZNtRoG+LoginWDmcvBcFy3ub1AqFlGrVjtXpjNKJQyDIsJvYxolTQpRvwzGUCyVpLp+JnoLRUGOVzOI8K9YbVBKsbO7i5u3buGZc+dkqFR8DRpgROSj1W7HDXGaTTSbzXjC56rqjtcjtuYVE1ehUMD83NzehMbLtET6Y9zJxfU8qIoC7RCIERVCoGha30HHCwLkC4W4x0ifATkKQ9iuC0+QKV4WLL63Wi083NqCx/uWAIjTEXxVmOfX19B1lMpllMtlVPj3YbnqMIriFE4Ywg9D2JYFyu9ZhU+Ew9JV00KylFFMwuO2854GqpUKHM+Ln6GdHRxbXJRGSAQxyZ3FNRFjr7gWos+Ex8udRZ+WYqGQav+CcOi6jgf37kHX9an3rDgqyMjBGGDJdALp3wnMsu047MVXFrZtg1GKnGFgcWGhc8A/oFRC915EWSMBwGbQS33o8TCGNk8nGNynwOGD+qxpinBiE+LPIAxx7epVGJqGlZUVqVMQECF5j69mLctCixOBdrsda0kQD1Dlchn5fB6VahU5sYrl3/OmCSOlu+Ok+eSj2Kp50FVRuTNfmpbZgnSKyIyXiM60LQu3b92CzfsUMMTpgnKphHKlglKphCJvZqRxA5/ks6ESAlXXQXi6cKiN+ZRBup5VAoCNYHA2TVDE12++VsODBw8QhiFa7TaqlQpURYlTSjMmLqSLLJm5HHRNg80rGtqWhUKhkNpuWtc01Hd2cGxlBe12G5UefjTfdWTkYAxI06MBK32hmAd3CKOUIgyCeGXRr7Ruxqv2bl9z1rVPoQRG1+tmCYev8AghA+1YZw5OkO7cvYtzTz+NYqGAeqOBRqOBVqsFq91G27bh8ggHEIuXSqUSarUaTp48iUq1igonBYQQRF2+8qNC+htMcF8cKXKQ8lqlFRNqmgatVEKxRxSCUQrKWCzYbLdlpKfZauHBgwfYWF+Xeg1VVVEsFGSTo0q5jEq1irlaDR5PLx709SVdVQCEECjo3SJ5VmDoJK+6rqNarWK3Xkez1YKZCOfPUjQp74cuciQ+N5v3pLAtC2Y+P7R5m6IoIJTC0HXs7uzEVtEjWNZ/V5CRgxFBhdf5AG0AjSLpaUAphYaY6RumGRuodIcvDyidsG8PPfYrJqKDSDOE/DqBxa2Y95XaHcA1sW0brVYLrVYLt27fRhQEuHr1Kr759lv5mmKxiFKxiONra8gXCjK/3R2GJryu23XdeCDh6vpxJ3eRB50ER4ocCAw75wlXyIyLKCMuTlVUFZVKpWN1yAAp+rRtG7Zlod1uY+vhw9hsC3yFWiggb5qoVquo8UZoaVIUk6KDyCf+Rg4wvdBrwi+VStJnZLdeR7VcBjB7x1XxnNAu/RQhsbOqw22XXR5JMAdE7hji50XXdVjtNhaXltBut1GdQLNzFJGRgxEhowb9Bn3GYNl2rJj1fZjcA7xYKmFnexsU6Bw4Dpjpd/w8YBAmhMw0zZBMJwgFesexzWC/7XYb29vb2Nnexs7uLtrtdhzyBGTONl8o4MlTp1Aul1EulfqGi0X9uvziavxkKkKkGUQpn0hLaLx8b+jEP4VrIMnBEVr1DKNDBEhFqFlX1YT8me3vFgjwZl/iS9Og9BFeCu1Qs9lEvV5Ho9HArVu3cOXKFZmiECr++fl5LCwsYI5XeUwLpA9B6kUapg0KDCQg87Ua7j98KEWKhmEcSDUFAfZpL4QmoZDPw+UpQZ/3ZykkheB9EHE9kihrnFVr7MOIx+dMpwThbdBvYHI9D45tw/O8+GbifREIIVL0tq/r1wGLAEdpODOrNIPLxUIE2J9OYCzOn04ASil2d3exs72N7e1tbO/syFr9SqWC+fl5nDxxAuVKBeVyGY1GA79+7z288cYbmE+aufSBqFcXAz5jDFEUSaIQ8UkIicmpW5RIBFHgxCHpFQDs+b+PC8YnQeCIGCCNcI8R0SeEn6P0ZeAeDZSnDfpB4aWbqqpC1TT5OaRBjosaFxcXQSlFo9mUk41t22hz4tBoNHDlyhV88803IISgWq1icXFREoZ8ismp7/n3MRcSE+QswvjdaYR+UHllzM7ODqyEv8tBoJf2QmpKeNmpY9sIASlU7PW5i8iQpmlwLAu6rqPdbo9dqXMUkZGDEdAdNeheeYRhiHq9Dt9149CzaUozHzF5ANgjB4+oOmGU/c4izRBxsxIwhkKhsK8hUL+a/UHwPA/bOzvY3trCzvY2dut1WT41PzeH06dPY35+HvMLCz27YH78ySfx/1MQg14QA0lyEIx47Xu3MRHlUQZGKYJeAzxXnwvHTEVRpBoeXE2dZiITVtwkQTiOEkSTMJaY7KVWQJg1cYLQD/uMmHip57Ry84qiIKfrcLkZVa1W2zeBtNttbG1tYWdnB/fu3cPVq1cBXnq3sLiIBU4WqtVq6s9pUFfGWaQX2IhmRoVCAa7rIuA6joPsVUBEmWfid3GPGLoOpViU3jN9KxkIAXh0ybVtVGo1GT14lH1WDhIZORgBUm/Qq2yRUmxvb8Pn3RbLlUqH01sYhh0tQh9J0xQ+2I4zwU8zzWBZFhhj0AY0OBlkKgUArVYLWzxFsL29jXa7DQDImybmFxfx/PHjewPukPNtNJt4cP8+Xn/jjXFPqS9ERABdA0qy1j8SzoSCNPCUxcA8LSeogjyIn0mCPIhUh3rIogbJSV6G+CmFw3P8vrAaHnD+yVUsAfYm/qTzIr8evUB4OmkaMHI5WTqX72G5W+LpqVOnTgEAfN+Po1k8onX3zh0wSqFqGubm5vaiC/Pz0PuI51QueO2HaVUvMPE1xnZqtRosy4IXBGi0Wn3LU6eNXumFJITA0LbtvUoG7rQowcd5hRC4jiMdZVut1tgLiKOGjBykBKU0Tin00BqwKMLW9ra8iRYWF5HL5TpeI2xUZSnNIxiwJxUFTSPNkKz571udwAWf4gqFUYT67u7egLq9LbdRq9VwbHkZFy5cwMLCQhypGRHXrl1DzjSxtrY2zimNBZWvZLtJgxCxBmHYsWIWfwd4vpeTiIhSRL12AMgJS9M0aaYkIOrPRZVGsiS319+FKt/z/dhkhm+HJcS5sh24WPHznyH+xga3CxciwW5r717kR5yLqqogA0hAP0yTmmuaBk3XwXhfj2GrZMMwsLq6itXVVQDxZ16v17Gzs4OtrS1cv3YN3168CDCGaqWC+YUFLPIIQ4GnKImigCbKbLsxjeoFluIzGwRFUVCr1eBsbsLlws40JahTQaJ6ode4p/I20LKSwbZluXEveK4LPZeLjbl4V87vOjJykBaizrlrEIqiCI16HbZtQ1EULPYgBkA8qDJK4/bLjyKd0KPUZxx0pBmAkVINoskURUwM+hnzBGGIhw8eoNVuo9FoyP4TmqZhYX4eZ8+excLiIuZrtYlzmV4QYGNjA+fPn9+X3pgU4/j3yzTCEMMl0Z+jI9wu/ib+n9hm9yA56l0gyYHnwZ3CwKiQ2NlP6Z70EXckLRWL8aSP/hUbg1bOwzBty+GcYSAMQ/hBMHIIXVEUmdISHUAty5KRha3tbayvrwO8fn9hfh71RkOWyvaNjvRJfw5DWm1BGuRyOZiFAjzXRb3ZhME7T84ayeqFfuOtqGRwRSUDd980c7mOe4MQgsbuLk6eOSOrmxYWFmZ+Do8aGTlICep5+6IGge+j3W7Dsm0oqopatdq3zWcYhvsrFQ4KM0hhSJIwQqrB4o5ymqLsG0Btx8Hdu3exubmJBw8eIAhDFAoFLC0u4sknn8T8wgKqlcrUjZE2NjbAAJye1Cq5Byb1OBg06KepudY0DT5P3eSSA15yRZggDcmVfvf/NX7fGrqOXC7XEVVIpoBkE7Lkz+I8RGknek/4Lo8YaCkdBsdtniTPdYrQdR2qosj+CpM+58ViEcViESdPngQQRx53dnaws7ODzc1NWJaFKIrw//7f/8PK6irWVlextLS0j1QSRQGL+sWWOiE+76l6JRCCcqkk02S7jQaWDmhiJdhzf+3XzZMQgnw+L83NRCWDmVzgMQa73ZaNsoSNd78ow3cFGTlIAUopWFcILwgCtNttuK4LhRAUuEFKP4RBAMpYHI56VDngWZEEMUgP2L5oqwrG4lUhgN16Hfc2N3F3cxP1eh2EECwtLeHChQso87rz4gx7qlPGcO3aNZw4fnwmD/q4k9e0mtQIz3mpe5gAot24FNnOEGnPfNqr/0kg3DYj3iNi2osAXdexvLyMMAxx+fJlaJqGSqWChYUFbG5uYv3aNeiGgWPHjmFtbQ0rKyvxZAakEieKKNS0xybCv6rlctya3vPQbrcPrF9BsnvloGdRNNCyHQdhGMKhdK9lMye19e1tlKpV6YyakYMMkhjIUBX3VReCr0KhgFKpNHBAF8w5d9CRg+QDMYW0Qj8MIgmUxX0HIkrh2DZu3bqFzc1N2LYNjVsVnzt3Lm7YYhhwHCcWLc7YzGVzcxO2ZeGpGQgRJ8G0PiERdj8qzm6HZaIfF4ZhSMfPMAynHj6/cuUKvvrqK5w4cQKWZaFQLOLFl17Ciy++iEazic3NTWzevYsPP/oICiFYXFzE2toaVldXYZpmz8mxI4Uwg0WLiBTpuo5KuYxGqxWnF0yzZ9XQLECGEAMBXddRVJQ4wkkpwAWmAADGsP3wIVaeeAK2bcPnTdQOsgrjoJGRgxRgfNUEQKpbI0rh+z4K+XzcIGfAjS6V14nw7IHgUVRECNEiP98wDLF+8yY279zB1vY2oihCoVDA6uoq1tbWsLCwsG/ykimLGR//1WvXMM8NamaCR3D9O3cf7//ItJwd8Xr1MwIavpvZfC6KoiBnGLJ18DTJwWeffYb19XWcP38eFy5cwF//7Gd72yexh0K1WsX58+dh27aMyH3+xRf4/PPPUalWsbK8jLW1NVS40x9L6FJmCUbixlelUgkOvzb13V0sLiwcSImtSHulstxWVRTyeViWBd/35WcKQuA4DjzPQ6lUQqvVQrvdzsjB4wxKKRj3/meMyYiBz1mlym+mQZCVCrr+aOvND2iycl03Hpzu3sXmvXuIogjFYhFPPfUUTpw4gWq1OnDCGtTMalqoN5t4+OAB3njzzdntZILJa9Kzp7yiATg61snj3J3jpG5meWcZhhHnpH1/IpMjgTAM8dFHH+H+/fv43ve+hyeffDL+exD0XZAUCgWceeopnHnqKQRBgPv37+Pu3bu4wm3BTdPE2uoqVjk5n/n9wWJTM6IosXvi1haCIEDLsqS98swxwj2i63psde+6cB0n7mqqaQBj2Lp/H0+cPIlWqwXf9xFF0ZGJzI2KjBwMAUt4GzjcFhmUxhEArnYdNpHJSoWDzFH1ehhmlVZgDE0e1ry7uYndnR2AECwtLuKZZ55BpVpFrVpFkZdhDUOH0nhGEOWLopzssECmZSacVMS1G6fM71FjlKMdR3cwy4jUqGWNg+C6Lt577z1YloV33nkHS0tL8n9BEKSKQuq6juPHj+P4E08gpFRGFG7fuYMr167B0PVY0LiygmMrK6m7FqaF/Cz5Ndd0HdVKBfV6Ha1WC/lc7kDKAglvppT2s8/punQ1tRwHJW6UtLu7i5OnT8MwDPi8rPeg9BMHjYwcDAELAhBC4pavvh975WsaQCl0XR8eOmQstk3GAVYqHESEgDHs7u7i9q1buMvV06qqYmVlBU+99hpWVlbAEJsVAXHpYjJdMDRygNkN4p7v48aMyhc7MOakPI3JXPZUOGLEAMDsBbsz1N4Ak5U1CjQaDbz33nsghOBHP/oRyl0r7DAMh07ksgqFV54QQrCyuopjy8vASy+hXq/HOoXNTdy8eROqouDY0hJW1tZw4vjxmY1XpWIRLje82qnXcWxx8UCiFwQA0ogz+XczlwPlBmW246BYKMDlpYz5fD4jB48zaBCAhSHCIIBj29Kf2+U13/k0ngWESJ/9fm5nB4VpTLZBEOD2rVu4fv066o0GzFwuVkevruLYsWN7DzljqDeb8TUzzZ6Nf/qRhFmTg1mWLyZBHqHm4Eh2YxwHhMiqjNRvmeHhAJOXNd6/fx8ffvghSqUS3n777X0EQzQL6xc5GFSSKASCjBDU5uZQm5vDhWefhW1Zkih89umn+PKLL3Di+HGcOn0ac3Nz4xPWbl8UjrlaDcGDBwijCI1WC3MH0fFQRA9SvpyQ2OLasu0OgnDnxg2ce/ZZNJvNuMHeDMSnhwHfvTOaIpjvg0ZRrJxHTAykR7dhQOV5qGEIebXDvlbNs8CA4xl7UORRgo2NDdy8eRM0irCyuopnn3sOy8eOgfSYgDzfRxSG8gHrOI5E/Xuynr67Ln4W5IAyhqvXruHEiRMzL0Ua5+indc5iddTrsznsGDWtIGrZ0+Ig2gePW9a4sbGBzz77DMsrK3jj9dd75rPDMAS4hqkD/FkaVpKoKMo+A6lCsYinzp7FU2fPwnVd3NjYwMbGBtZv3ECtUsHpM2dw4uTJkdMO4ii6r7jKfWG2eXfUfC43c3GfIEWEE8p+SP5PURQpUIyiCI7rAvU62q2W1Jc4jrMvsvNdQEYO+oCFISJuckT5g2gYBpo8TJ72Rha++RAeB7PGoEjGiOHUMAhw69YtrK+vo16vI5/P49y5czh16hTMQSJMxmKLXcZQ4AYj/SBXMvKtbE+QKMKhqY94OO7evQvHtnH2qaemuNXeGGe1Na3zPYqRg7Gn7FHTBIoSO57OEOOUNX711Ve4cuUKzpw5g5deeqnv64IgAAiRE/U+m+Nh913XM9cN0zTxzPnzeObcOdx/8ADr6+v47LPP8OWXX+LEiRM4zaMJkyJfKKDourAcB7v1OpaTkcdZQOhwgIF9J5JNm4CYyBQKBVhcc6YoCm7duIHTZ89m5OBxBHUctFstRJRCU1UUi0U4tg0gzimmVaj6PAUxSkvYsSBu9EEDQ8oBtF6vY/36ddy6dQtRGGJ5dRVvX7iA5eXlVCtR1/MQRREUVU1NoronUgLeoGdKhkACV69excLCwoG0Xh3ZtnYKVQoCIqR8pDQHB5WGOYD9jFLWGEURPv74Y9y5cwcvvPCCtFDuB+GZQlR1bAvpXtGDHi/C8soKlldW4DoONm7cwMb6OtY3NjBXq+HU6dM4ceLE4GiCuP/6XPNKtQrP8xBEEXYbDSzMqqwYnZUtCoBeZ9+PnGuahrxpwvU8uK6L3Z0drDoOCCFTc8U8bMjIQQ+wIIDVasUTHCEoFouglEqXuFxywuvFQBOr9zAMQSmFdggadQwaEqMwxK3bt7G+vo7dnR2Ypomnn34aTz75JPIjNEthlMIVUYMeHeqGQfjBy4jCFJT7Arv1Ora2tmZbvpjAqEc9zSnrKEYOJEa9ZzDatTsoupQzjLj51YCyRt/38Zvf/Ab1eh1vvfXW0OoZhjhlR/miZWwQsq/B1SCY+TzOnz+P8+fO4d6DB1i/fj3WJvBowpnTp4cT7h7PsqqqqM3NYWt7G7bjIJ/Lzaw5UwdZJ30aUw24HoZhgFIKPwhg2zZubmzg5OnTsbjScTJy8DjA2t2VjWZKpRIUVYVtWQBSRg0SD0DAWf5Mb5wJyt8ajQbW19dx88YNhEGAldVVvP3226mjBN1wPQ8RpVBVdaKcvkIIqNh/8rwmWPVdu35d1ngfBNion8cUV7TSAOkokYNE2HcUEEJGagB2UDJRVdOgaxoYYz3LGtvtNt5//30EQYB33323f6ie+wSIMlfRkXTSssOxTKQUBSsrK1hZWYFj29jY2MCNGzewvr6O+VoNp8+cwfHjx0cS6JmmiVKphHa7PdPmTMmqDQA9oxoRpQPvv1wuB8oYwijCwwcPML+0BE3T4DgOKpXK1I/5USIjB13wbBuebYMxhmKxCFXTEEVR76hBCojueDMrmUuTTuhCFIa4ffs21jc2sLO9jVwuh6eeegqnTp+eiLUzSuG6LhhjExvAkMSDm9wKG5MouJ6Hmzdu4MKFCwe2mn5UAX3GmBRVHam0gsA4x3xIz9MwDAS8r0iSHGxvb+M3v/kNcrkcfvSjH/V87oSWgP8i/x6G4cBqhdQg43VtFMgXCrjw7LO4cP48Nu/dw/r6Oj7+5BN88cUXOHnyJE6fOiXdGONT6J8irJbL8HgKptFqzSS90GvfCiGI+BiTRu+TrGCglOL2xgZOP/00oij6zrVyzshBF5x6HYzErVGFaZHnugCGRA36TNJszNXQLNBoNHD9+nXcvHkTvu9jeWUFb775JlZWV6cyYTquG4c7NW3iSgBphNT998TPoxCF9fV1AMCpU6cmOq6RMI7mYIoeByDkSKUVJqkiGGmSO0AiofMOk2Fi8rh9+zY+/vhjzM/P46233uqIKjJgaB1+EARxq+spOPNJ5f4k10RRsLq2htW1NTiWhY2NDWzcuIHr169jrlbDytoaji0uDj4ORUGtVsPDhw9h2zbKxeKBTbSqSK+kvH8IISjk82hbVhzt2N1FtVaD4zgZOfiuwm21EHFHRKHGTxU1GCK6ARArpKeNtALDRgPffvMNbt+5A90wcPrMGZw6dQrFYnFqh0ITWoN+batHQopyxo7hLFnO1vWeiDFcX1/HiZMnD7aT2ggD7jSFl0fVAEl8auNch5F0BwfoPyHLGnk74I2NDXz99dc4efIkXn75ZdktcBRiFIbh1NKUhNsaT6u8M18s4sJzz+H8hQu4t7mJ6xsb+Pbbb3FFVfHMM8/gzJkzfRdYOcNA3jThuC7qzeZQQjEtMED6ZaSFoigwNA1+GGLzzh1UqlW4rotKpXLkHEn7ISMHHIwx2M0mgFh8I3K1bpqogUCvmyKhjj1otFotfPvtt7h1+zaKxSJee+01rD3xxExWk47jyFDnNNiz9DoY4YGVV58kmj8BuHvnTtx98QDKF8fFNGvvj6wY8RGaRs0ShmHAtm18ffEi7t69i2eeeQYXLlwYmRQIhEEw1Zy8QkhcuTDFSY0oClafeAIrq6u4/+ABNjY28NVXX+Hq1as4f/48Tj35ZE89TLVSgeu68D0Pjuvu80iZBaTfyoifhZHLwQ9DBL6P3d1dzM/Pw/f970wr54wccNjtNmgYQuFMH4DMIwEpfA36CAIZ/5o6mxwgQrRsG99++y1u3rgBM5/HK6+8gpNPPglCyF7IeYqIogge1xoMa0KVFkqaaMwAEEBem/WNDSwsLqJWrU69NHLoMaR+8fQsfY+kGBGJyMEY7x23Q+NBIIoifPnll3iwtYVnn30W555+eiIyOPWyOZ5+mkUvExFJPH/hAp579ll8++23+PTTT3H58mVcuHABJ06c6HgeNV1HsVBA27bRaDanTg76RZiEtTJGjB7keIOmne1tzM3NwXGcjBx8l0AphdVsQkFMAsTNmowaDM3vKUrPwYmKZh+zmJC6tuk4Di5evIiNjQ3ouRxeeOklnDp1ChqfJKZPC/b2SwHohjHdcOeIzne9YLsuHj54gFe+9z25XYATNq4CPwxBwKl6HBzRyEFqE58+SK07mCGJEJ+jWBTYloX3338ftm3jey+9hOrc3MQENYqiqav5Z0WuxJijIK78ev311/HM+fP49ptv8Nvf/haXLl3ChQsXcPz4cfmecqUC23EQhiEs20ZxmqWNPc5TuEoqhIw8Rhq6Hkc5LAu2bUNV1QNdgMwSGTkAYFkWSBhCVVUY3CJ5rKjBgAdsljeL63m4dOkSrl+7BlXTcOG55/DUmTOT1UGnRBiGsdHTFKMGAOQEMelq5vatW4Ci4IknnujcPN9H0t41rWJ5FKTJhU+rE6OANEA6YuRAYNyrMKrfwTTQQUZ4qZz4S71ex/vvvw9FUfCjH/0IDPHzEoThRFbqwZTTCgBG9j1IDV4amBz/KuUy3nzzTdR3d/HNt9/iow8/xKXLl/HchQtYWV2Fqqool0potFpo8ujBtO7lbvLIWKIHhXgGR7gGBLGtvu262N3eRj6fn7gb52HBY08OoihCu9GADsTld4gf7pGiBikG9amKw/jN6wcBLl++jKvXroEAeOb8eZw9e3bqbVcHQUQNcrncVAesafVXuHHzJtZStKIlXd8FZIh+xiuBaW7/qAoScUDXeiIkbIoH3Zv379/Hhx98gHKlgrfffhu5XA6u6yLibYAnJQezaP9OCImjaVPcZrJ1eDdqc3P4/ve/j+3tbXzzzTd4//33UZufx3PPPovFxUVYloWAUrQtC5Up2RN3R5cI0EEGiKKAjWitres6VN+HzaMHjuNk5OC7gFarBYVS6JoGQ9NAMaLWoBtdzHMUQV0qMIYgDHH16lVcuXIFEaU4+9RTePrcOeSGDDjTHnLDIEDg+8C0KhQSUMSqfgJy0Gg2Ua/XceH8+bG30T1RCaHjYZ7AJDk4gMjRVDHpqpWk69A4yl6SE0lS5DoI6+vr+Pzzz7GysoLXE82TdF2Xdsr5fH5s8haGIQpTrDSSmND3oBfSkOuFhQW8++67ePjwIb7+5hv86le/wtLiIk6fOQNCCFrtNkrF4kwiYd0W0iLVmPpe5NEGM5dD27ZhWRby+TxqtdqhHiPS4LEmB0EQwG63YTDWIXwZKWowBNNceUZhiKvXruHy5csIgwBnnnoK586dgznKKmKK4WubVyiYppm610RayHD/BAPVrVu3oGta3L9+SkgKHYHOdERP0pBioJn2YCw7Mh6xwWlizQHSdWjsXh3vu/4TrJ6//PJLXL16FU899RRefOGFjnNRVRWaoiBSFARBgNyYVT1+EExugNQH09Ye7HMlHIClpSX86Hd+B/fu34/TDR99hNr8PFZXV6fW1rmD7PVLAY8SPeDnpfHFZWN3F/l8Hq7rTn3BdNB4rMlBs9mEQmmHXWcYhuNHDQQSD5hUYE/AemkUYX19Hd9cvIjA93HqySfxzIULKIx4fN0T2yTwfV/auM6k3EiIKMccqBiAm7du4fjx47Nzp0RXOqIHaQCGexhMU+eQNECa5XnPBFMg0oNWvkIsGCX2NS1ilmye9OKLL/Ytm9UNA0EUIfD9sclBGASzSx0SApW7Bk4DjGsOUkdJCIntmZeXcWdzE19/9RUufvMN7lareOH557GwsDDR8QhdhRAh9jyEUaMH/LW5XA71ZhOWZaHRaGTk4KjC8zx4jgODUjm5MQCu4wBIETXo44go0XVzjTPcMQC3bt7EV19/Dce2ceLECVy4cAGlSUKK01gZMAbHdWXUYBbhazGYjJuW2d7agtVu4wSvUjhoiM9b6WEw0x2enub6/qA0EtMGm2C13rEdkVpAIqrTHSmYcqrP9328//77aDQaQ5sn6boO4jgIwjDuQTIigWOMTUQsUkFRQKJoOp+HuPaj3o+E4Im1NaytruLbixdx48YN/N0vf4nja2t44YUXxp54pV5kyD0wTnpFVVXkdB3bDx+iUCjg2KxbUM8Yjy05aDab0KIIZi4nH9AoiuDz1fDQqEGamz15g434cDiOg08//RT3Njex9sQTePadd1AulUbaRs9DwuSKbs/3EQaB9BmfBZQJIwc3b91CPp/H4gG5rI2CZJRBlrqK/yXC4mJiE39Pg6NaxphEvzPtFpL1ujNE5YecBHptc4qptXarhffefx9RGOJ33n0XtSE9ARRFgabroIjTmuqIwkLXdRExNlKn1HGQqqVzCkzaOpwQgqeeegqVchn3Hz7E3Tt38NO//mu89OKLsXfLGNtMbXg0xkKqUCjg4dYWWq0W6vU65ufnxzjCw4HHkhyEYYjA82AwBjPxkDk8amBOGjXoeOloDwcDcOvGDXz2xRdQFQVvvf02VldWUr33QMCYdEMsTLHEqBuKokhyNeoKK2IMt2/fxpMH2UehD4bmv4F991Hyt+6qjX3eD133YnQEyQFDYoXZI4IgPCm6/9YLhNeq9yUY8YvGPtYktre38f7778M0Tbz74x+nXs0aur7XjGlEcmDzMWqqZcO9MC1xIp+IJ4lk5QwD+UIBx5aXsby8jLt37uDjjz/G7du38b3vfW/kKEIaIzjxXI7qm6EoCkzTRH1nB61WKyMHRw2e50FhDJquS1vjMBE1SNV5cYSbPe3DkYwWnHjySbz4wgt7VsRTygFO+sC7nocoiuRDMCsQ4dpGaRwCHGGyu3/vHjzPw8kTJ2Z2fGkx7FNP+0kk7x/S+Y/O7fGVM+mKWkkRXtJ5kv8sJl6W/J94rTD16arh7z7ufSv57prxPquwfYJOcX5jpl1kTX0/sdkI2xqE27du4eNPPsH8/DzefuutkQSCuq7H2gdKEUXRSGJex7bBgJlHDoC9joWTYFAp4yiolMuyFPTZ557DE088gU8//XTkKMLIkci00YPE85TTdTTbbdi8u+9RS/EJPL7kgFLoCdbueR4YRtAapEXSYKPfS9AjWpDMW07bmGRcMCabKxUSTpKzgoi2jPpA37p1C9Vq9Uj0V5/24EG5R76qKJ3b7XaC7PofkJg4e/0vQRx6kcuen1DydcMm6zHTb/222e+OmYYA8dKlS/jmm29w8uRJfO973xv58xPNmJJljWlhOw50TZtZtUIHJo0eJO6VSe9xXddRKBRg2TZazSZWVlbwez/5Cb748svUUQTG2Ej28SNFDxIOubphIKQUlmUd6V4LRyf2OCUwxuB5HghjUvHLEOf/wFg6c5G0N3oipaCoas8B0nEcvP/ee/jtb3+L1dVV/N7v/d5sicEE23NcFyGlsfDmAG54QdLoCKYkfhjizp07OHHy5KwOa2qYxapiXI3Lo8ZUW5sPOvcJrgtjDJ988gm++eYbXLhwAa+++urYn5+u61AIgR+GI02+jm3PPqWQwCRGWtL5E9P5XCvlcnzNogiWbUM3DLz66qt46+23UW808NO//mvcuHGjLzGMUnhgdCO1RivxGaqqClVVYfHowVHFYxc58H0fLIqgECLthUP+gCqKMthyeIKJVeEruWRYdmC0YFYYs1qBURr7P7DY8OggQmXimo0S2rx75w6iKMKJQ5BSGIZpiEO7wY6g5qAD04gcpPA6GBVhEOCDDz/Ew4cP8dprr018f+maFtfTh+FIvRJs2z7YErkJogeip4xM9UwIVVVRKpXQaDbRbLWkrfLQKALXLUl9z4jnoijK8AqXru0amgbbsmBZFuaGiFQPK47oCDI+ZEohEZbzfR+MsdjSdNiqY4SbfF84nL93aLRAYAbphHEfUdfzQCmFpmkHFiZTeahulNKzm7duYXFp6UBavabBoOs9i2TRUbVOnmYJ5rTP3HEc/N0vfoHd3V384Ac/mA7xJASGroMQIrVOaWA7DvKzcEccgHGJJk1qSKaEUqkEjU/WbcuSfx8UReiouphVirZrjDIMA47rwrbtmXTCPQg8duTA9/0OciBSCgzxDdYXiRBZWjBK5QSgKIr0LfjpT3+K3d1dvPX223jt1Vf3RIfd+zss4KkYxtjI6upJQETkIOXDZbsuHty/fyiEiGkwi09Ylu4dNXJwQNsbdQVcr9fx87/9W0RRhB/98IdTLY3VdR2EuyWmPa6DTisIjHU/cRHrNFuHK4SgUqmAEIK2Ze2beEUUYWVlBb/97W/xy1/+UlahiWMaFQTDz6F7q7qmAYyh1WpJU72jhseKHFBK4bsuFEAKegKeUlATaYaeGDFq0I1ktGBtbQ2/9//9f/3TCIeJGCC2axUVCrNo+NIPqihnTEkOZAfGRPvXQ40pf86U0j2dy2OcVog303s7o0xy9zY38ctf/AL5QgE//OEPUZpS8x8BTdNkiW4QhkNfH0URPN9/JORgnEgU7dGRcRrIFwpy8m20Wvv+rxsGXnvtNbz51lsyirAhtAiTaCgG/K/7HBVFgaYoaDYa8Dxv7H0+ShzREWQ8eLy1sKaqUPmHGXBWpxlG/xtnzEFc+NxvbW3hp3/913vRgtdei5sk9dvuIVv1eaLXRC53oCtShacVhN3pMNy8dStVB8bDgmn2VAD2UgqE54mPEqYqSBywnbRX/Pr16/jNBx/g2PIy3n333Zml0kRqIUiRWhDitoMoY9yHMe4nUfo67XtRIQTlchkEgGVZCHsQK8YYlpeX8RMeRfjkk0/w3nvvdUYRRgBBCsKdOE8hSrTb7bH3+ajx2JEDhbGYCCBRpYBYQNIXY97cnu/jk08+wfr6OiqlEt79nd/Zixb0G8DHSF+Mgu4a8mEIeYvZg04pAFyQKNwrh0QPGs0mdnd3j4QQEZjNoHlUrZNngb7XYNi9zxi+/PJLfP7553jqqafw5htvTL2pWBK60B34/tCS3QMzQOqDka2eR+2rMAIK+Xxcdk7IvugBpVQSZUPX8dprr+EtEUX46U+xubk51j5HERATQqBpGjzXhWVZiEZsA30Y8FiSA7GyFCkFQgjUfnXDY07Unufhg9/8BhFj0HUdOzs7+Ou/+iv87c9/jm+//Ra7OztTbbgzK3iuCwrAyOUeSQvgtD0WRAfG5cPkJsnR8zOeJgHk25KRg1FTColj6XVUTERvuoyQBm4S6ClG63u/Tzty0G9CGjBRRVGEDz78ENeuXcNLL72EF7q6Ks4ColOj0B4MgsMjB+ajbOgzwn07SkfGcVCpVkEIges4Mq/fzxp5ZWUFP/nJT7C4uIjf/OY3uH79+lj7HCVdp2kaFEVBvV4/kqmFoxF/nQLCMETk+8gBsmxIpBT0KRuKtFst/Pq99xD4Pp5/9lmomobl5WVsbW3h/v37uHr1Ki5++y0Mw8DyykpsC3rsWFwtcRBIa+VMKXyeijnoqIGAoqoAb1LT7+owHEwHxrExZvkoWNwdrm+IXESZ+PbFYKyMU3o2hCCktS9Oohed6/c+sWpOkg+xUiMYbdU28Pj6XBfP8/D++++j1WzirTffxMpBlBVzpO3UaDsOTNOcqsBvJAjX0pT31rTcEfshZxjImyZs10Wj2cTiwsLAygBD1/HmW2/hyy++wGeffw7HtvHsc8+NRF5GuQ8VRYGqqmhxclB4FOmgCfDYkAOZUtA0+QHLlMKgKoURWe/29jbef+89mLkc3v3JT7C9vQ3P86BpGp588kk8+eSTYJRie2cH9+7dw/3793Hr5k0AQG1uLm5XurKCarU6s6hC2hvc46FOTdOmTqDSQuWT46DIwfb29iPtwDgM++rE+6xuBCif9IUN8MDPKnF/RgnNwVFDrx4kSU+QQZO98DVIkohRatqTzZPe/Z3fQa1WG+8kxkTaTo2ObT/yCWaQNXU3ZORghscjbJV934dt20Mt3RVC8MKLLyJfKOCrL7+EZdt49dVXR0odkTS+B4jTMKqqot1uZ5GDw4wwDEEAqN0pBUWBqmm9B2uxKkuJO3fu4KMPP8T8/DzeevttGLqOuqoChCAMQylqIoqCxcVFLC4u4vnnn4fjOLh37x7ubm7iMrdmNU0Ty8vLWFlZwbFjx6YrskvzgDMG9xGUL3aD8Os3SHNw6+bNQ9uBEUg0ekmuzgdcfzmxjQg2blrhEGDsEswuY7Huqyp/58+ydKXkVTBbDx/iNx98gHw+j3ffffdgDYY4ZKdGxgZ2arRt+9GIEZMQZD3FSxmvnpll5Yyu68ibJlq2DYtHVgYeE/9+9uxZFPJ5fPTb38LzPLz11lupF0B9Tba6nmlVVaEoChzbhuu6oJQeqSqix4YcAICS+PBEjsowjMmd6hjD1atX8cUXX+DEiRP43quvSvYvGOkgQUo+n8fpU6dw6tQp0CjC1s4O7m1u4v69e7hx4wYIIVhYWJBRBaHUHRspyEEQBIjCEOSAyxe7oRLeNKgPOYgYw61D1IGxlyUyQScZEHnRWQkSj5oBEoC9+3GKx97dfCreDZP7u3XrFn77299icWkJb7/5pvQ56UjXHBBEp8ZgQKdGy3GwesBRjV5Is3JmlM48rSCet3yhgDafgMMwHOw2mXgO1554Aj/I5fCb3/wGP//5z/HOD36QTuzJWNxLofsadI2rSSLQajbTntahwWNFDmT3OQChIAf9bqS0gwNj+OKLL3D16lWcO3cOz3XlsFSx8h2iVpVmSaqKY0tLOLa4CLzwAtqWhfsPHuDevXv45ptv8NVXX6GQz2N5ZQXLy8s4trSU2npVIA0ZcnkY7KDLF7uhDIkcPIoOjIP6F/S6VkRRwLo+/1lc07EFiYcBB1lpwRi+vXgRF7/9FidPncIrL78cm5T1IczJY5p2+alAmk6NjmU9skqFJNJ8QskU1yzIKsPe/W4YBnRdBwsC2I6DygA/iu5Pb2FxEb/zwx/ivV//Gj//27/FO9//PqopCJiCHpqaHveG+BztdnvoNg8bHh9yIG5W8JQC4kFU07TeE2WKGzqKInz00Ue4e+cOXn75ZZw5c2bfa1RFgUIIwkHkoNeAw1loqVhE6fRpPHX6NMIowtbWFu7dv4979+5hfX0dCk9RrCwvY3llBeVSaehxDzuziIujHnVKAdhj3/2ERrdu3UKlVptJB0YG9CaJEw52sypUPcqRg1lNuh374CVun372GW5ubODCs8/i/DPP9P48UxACkZ6QupAJzmFYp0bXdUEZe+SaAwCxMJGQgcJEGkVxGeMMKpySxECgVCxid3cXtuOgVCz2DN/3e57L5TJ+9KMf4b3338ff/eIXePPNN7G8vJzqODq21GPbghxYR7AB02NHDoDOlMK48H0f7733HuqNBt56+22s9VE3K6oarwgGkIO+j1hXmEpTVawsL2NleRl48UW02v9/9v4sRo6rzQ5F144x56wpswZWkVUcJZKSSImiRImaus+5bxcHMAy/3Ibvm417APtcuO02YD/42oD7oW2g/WCgYcBvvn7thzbg66n/X/r/FklJpEiK8zwUycqsuXKMed+H2DsqMiqHyMzIrCLFJRCkqjIjIiN37L32961vfRUUCwUUikXcvHULv9y4gWQq5WoVJicxkctBarWLbBMZ4e2rZUUZaI13GAg+l0SH0oaFz7QsvHr5Eu8cP973eZxWYf7XaKF1hrn7jhiD8GjgaQV+TNOycOHiRaytreHMxx/37Ynh7zoYODF/QVfHk2UZhmHAsCzEAuORexzshiaiGQgh7pza4vuymXV8lDl2vrg3IyUx1oTJtm1out40wiIAcFpcrxqL4csvvsCPP/yA7y9cwEenT3dMVe6oCmpybJ5ervn6QLwu+NWQgyhTCtVqFd9//z0Mw8CXX3yBsTZdt0RGDpq5eHnnane+NvqAdCqF9OHDOHz4MCzLwvLKiksWXr3C40ePIAgC8vk8JqemMDU5iSTbdbQTvFHH2e6jsAeaFxFePuU4cGwbgu87e/nqFaweOjDSJvd7mAvqIHbJ/p3U6yR64vCXL0YJ/r1Wq1VcuHAB1VoN5z/7DBO5XMRn8sGna/CbnXX63tt1aqzXaqDA3ogcAB3LGvl4jGpzQbFdxdMMgiAgkUigXK2i1mP/CVGS8Olnn+H6tWu48vPPqNXreOedd9pacQerkILzCo+c6LruWdC/LvjVkAMeOeBNlgRRbJ2rb7NQbG5s4PsLFyBLEr7++mukOnRIk0QRYItbM9AO59txPS0eDkmSMDM9jZnpaVAA5XIZhUIBhUIBv1y/juuUIp1KuURhetolNE3Oq5smHMeBKIrD813oAB4tCE5EL1++xPj4eMcOjDuiAru8sx5EeZd/5/1aRg7Y31FfOyEE6+vruHDhAkRBwDcD6JHQ5uQAGkWQvEcL33nTwOsVWYZt2zBMs2F+qtVqkERx10qKm6FdWaNt227PmogWwzCdDROJBMqVCnTTbC5MDCHEJoTg1KlTSCQSuHXnDmq1Gk6fPt0yTdHwLLeJHDiUolwqYWx8vOPn2Cv41ZADHjkwTROiILR/yFrs5AtLS/jhxx+RzWZx7ty5toYlHDyt0FRz0MsOMswAh1v/m0mncfTIEZiWhWUmalx88QIPHz50tQq5nFsBMTnpua5pmgYK7ImoAYcgiiCmCce2Afa9WbaN5UKhaUohGBnYS4vloOq+HZ+m5rXEAKoVAPeZvfTDD8hmMjh37pzXcG1X4Es3+Hec/siCJEmuRikQaazV625KYQ+NZU5yghER6jiRlTE6lLoNnEJ8blmWEYvFoDHL4mw229tJCcHRY8cQj8fx888/Q9M0nD17dseaQdCYWmhaqcSJIKXY2tx8Sw72GhzHAWEs3WJ1xP5dccPQbkMMLl68iOmZGZw5c6Z9B0cfOHulbVTIg4YsSdg3M4N9MzOgALa2trC0tIRXS0u4dvUqKKXIZLPI5XJIplLIZjJ96TGiBp9gbF9qaHV1FaZlIZ/P77nIQBB+k55BwRMjvkZhSz8GoTl49PAhrl2/jqmpKXx85gwEUQy1Ax02/IurJEkAIXAcBzalXoO4OicHewzNyIHNFvN+olhcX9BtyW8ikYCuaahpGtLpdF/Pw9z+/YjF4/jh0iVc+P57nP/ii53zt2+z1uo6RUGA7TjYes3KGX8V5ICnFDgbF0Sx9eLe5Asul0r48ccfMT09jbNnz3alBhdYbg6EwLashsHVc+Y5RPSg5VsBjGSzyGazOHL0KEzDQHF5GcViEc+ePkVd16HIMqampzHF9Aq7HUXgE6TjOF75UGFpCfFEwuvtvtfBr3BQqvw3hhxEcSzHwY0bN/Dw0SMcPXIE7x4/3nQR24vgDXscw4BlGBAUBYIgoFKtYnQPeBwEQbCzNNq2bVD0rjfopC9ohxjrAWPZNuqa5umsekUul8Pn58/jd999h2vXruHDDz9smG8I3JJG//PdrH0zAFRes3LGXwc5YCF9yzQhdsrbBSIHhmHgwsWLSCQSOHPmTE9lYqIggLByRm8/3u9E1aMi2ns7e6+sKJidncXMzAzm5+extbWFWq2GleVlXPn5ZwDA6OgoJicnMTk5idHR0aEsQF5qgCmiKbbJHaUUrwoFTE1NvRbEwI9BLVDejvg1ux8eIoocWJaFyz/9hKVCAac++AAHDx2C7Rs3rwNkSXINkZirqu04qJRKrvCWbttFD9uoqSkI2WGK5PShN+ANvnqFIAhIMu1BtVZrIAe9Hnd0dBQffvghLl+5gkwmgyNHjjT8nvgMkZp9G3y+rAa6R+51/CrIAbVtOHAnjqZCO79gyP9jx8GPP/wA0zRx/ptvujYb4uCKVX85Y2TTVB9RBAiC915N0wC4piAL6TRw4gR0TUOhWESxWMSjR49w9+5dKLLsihqZrXOkfe6pr+ufr0yK33fbcUApRbVSQaVaxXsnT0Z37kGjmaNahODk4LWNHLC/+yEHmqZ5zZPOffqp1zyJtDE42ouQZBmEuf3x8W45DrJMSNmgV2B/7+an4xsN/rzavFVzF5GDfqIFQSSTSZQrFViWBcMwIkmRzu3fj1KphJs3byKTyTT4IPgNkdqlD23bhlav725XzS7wqyAHcBzvQWuaUuALbGBiuv7LL1hdXcXnn3/eV3hKZGkFT2TUqXyxW/QYRfCMTCiFwcoX/Yu9Got5zaIcx8HGxoZXAbG4uAhCCEZHRlxR4/S02yyqy8/kiXmC1+87jsCMpBym2ygUCiAAcvl8V+fabQzKNpkfG/j1GiCVSyV8//33cCjFl1991dA8iYe9aZu6/L0EURAgsgon07JQYrnqTBOBXVDYyMPcQwWPHrBrcXhaIQxRpRQO8zGJCqIout0a63VUazWPHPQ7yo6fOIHS1hZ++PFHfPP110hzsuZ7TSuvFH5vqpXKW3KwV0ApBWzbXZgJaZ8H8y3YT588waNHj/Dh6dPI9VkTLTIFcoMR0iAmqR5Jgm4YsB0HQpvyRUEQMD4+jvHxcZw4cQL1eh3LzKnx/oMHuH3nznazqMlJ5PL5lozdr+4NC1EUPWvZQqGAXA+20bsJvkANKg3yOhsgtSKFYbGyvIxLP/yARDyOzz77bGdzon6ia7sESZJgWhYsy8JWqQRVljtG6XgXRMBXATHg6+QQCIFNqUcMgPZRLL4ZiCpaEEQimURN0yJteEQIwceffIJvf/tbXLx0CV9/9dV2b54WYyxYRVQulzE+SI+NCPH6zK49gnva89BXywXJ9/PV1VVcu3YNhw4exMLCQt/XIAhCQznjwB9YfyQkxIOnMUfEeCwWenGJx+M4MD+PA6xZFG9BvVwsNjSL4mSB73p63SWKkgRiWdANAysrKzhx4kRPx9k1kBad3CICfY3TCs3K+sLi+dOn+PnqVeQmJnDW1zyp6TleI+IkSxJ0QtzIwdYW0l2W5TUtlYz0CgPgUQs+DttUKvAoziCvJ6aqkCUJhmmiWquFspUPA0mScO7cOfz222/x008/4dxnn3mftdncxjeEAtOd1V4jG+U3nhyA1dvykBsobSgRAvsZAIB9eZcuXcL4+Djee//9SC5BYl4Hjm0PbwcTLO1rcl4CV6RpmSYIEMq3oRkEUUQul3MjLO+9h1qthqWlJRSXl3Hn9m3cuHED8XjctX6emkIun+96188jPqvLy7AcB1NTUz1d627By8sOCIMoBRwWerl2Sinu3r2LO3fuYP7AAZw+dcpt7/2GQJIkd8GxbWxubYXy+m+FoMXvoHQKAivZI0CDk6l3HdhOrQ0DyUQC5tYW6rWamwKI6LzJVAqfnD2L77//Hjdv3sT7773XspmdZdsgPGJN6WvVgOnNJwe27XUIkyQJgiC4VQu+hZCyScmyLFy8cAGSJOHsJ59E5u7ldWYcMFtuCj7hNkk5EAB1FjWIsZKpfkEpdVtQLyxgYWEBjuO4zaKWllAsFvH06VMQUcTExAQm83m3BXUq1XFXx7+L5ZUVpBOJ4bncRYhBffeOb1y9lpED9ndYakBtG1d+/hnPFxdx4vhxHD12rC2xeB0JE1hJo2FZqFSrOBJVY7FmqYcIoyp8p+yfO/n5hu0xEY/HUSqVYDkO9HodSoQl2bl8Hu+//z5+uXED2XTa7cPQZI61LAuUpWwpEK6t9B7B3r/CPkGZJz8AKCxnZ1pW4y6ZUsBxcPnyZVSrVXz19dc976KbQWS7ANOydr/8yBdFsB3H7TNBKdR+HhxeZdCEmfP+DnkmHqxUqygWCijyFtQ3biCRTGKKtaDO5XJNdSFcRLqysoJ9MzO9X+sbCL9HwOu4EHqLVQhiYxoGLv3wA9bX1vBxF82TyICrRQYBWZZRX1sDAXp3+2uDyKseWGjd8TkjUgyfFHCIooh4PI5qvY6KpmEsYr+WgwcPYqtUws9XryKVTmN8fLzhs3ILaUKIF6nm1Sdh2kLvNt54cgDb9nL9qqLAsixYptn4Gkpx+84dvHr5EufOnUM24va/oq+UcVBq9V7ArZIlWe6JyfpdzMIilUwidegQDh06BNu2sbKygiITNj5+9MhNUUxMuGRhagpJ1ruCCALq9TrqmoZ8HyHW3cSgKxX2yrjqGiHHT7VSwYWLF2FoGj4/fx4TExORn2MvQZIkVFg3v1REOfNW8J5hlnbo9W5x7Ysoiq6j6S7f92QyiVq9Dq1eh5VKRbtjJwSnPvgAlXIZly5dwjfffONWIvDNl88MyvaRhrfkYA/AYXoDTg5kVXUVtY4Dy7a93eiLFy9w9+5dnDh5EtMtWi/3A5GV4oFFD3bdmpgtIrquuz3iu/Aq4CHIKEqPRFF0yyCnpvABa0FdYC2of7lxA/T6daRSKe8166urEAUBIwPYRQ0ag8yzvtaVCghHbjbW13Hx4kVIkoSvvvmm68Xydbw3giCgXqu5tsnDWmQDaYduzsorFbhnwV5IcCmKAlmWQQ0DtXodmYjTkUQQ8MnZs/jNt9/i4qVL+NJnsczXHUmWYes6APfeVF8T3cEbTQ64MyIP9UisE6NpGG7eRxSxubGBy5cvY25uDkcDzldRgjCCYO0FcgA3teJQ6ppCKUrnCZqnDgZVK04I0uk00uk0jhw5AtM0sbqygkKhgBcvX+Lhw4dwqNuY5vnz59h/4MDeaV8bAoPslsiJWpiw/J5Eh4Xv1cuXuPzTT8iOjODTTz/tLwX2mqFarSKVSsGyrJaVGINCsOKhrTaBbcJ42eBe8ttIJZPYYOQglUxGrstRYjF8du4cvvvuO1y5cgUff/wxAFdv4DgOJFGEzl9MKWosGrTX8WaTA+aoxzUHkii61qSGAdM0oaoqfr52DalMBqcDntlRQ5Zl1HUduq7viUXNNAwAgML0EECjkrjhZ8C2Y+GQHnpZljE9M4PpmRmAUqytr+O3334LRZJw684d3L5zB5lMBlOTk5icmsL42FhXjmzDBk8pDDKC0GlC5t+v33DKnxpqlibiP+cOmoauQ9c0L/zsPTM+8uP/OfGNmZalbS0MnCilePToEX755RfM7tuHjz76CGKPYeG9s1R1h1K5jKmpqR1dGocNv66FNv7CGyO2ZUGAGxHcS+nTGCvRdmwbmq4jMQATokw2i48++giXfvgBc3NznjcOr1TwP/uvSznjG00OqE9vwCsGZFl2yxktCy9fvsTa+jq++OKL0F0We4UiyxAJgc4W5d2GbhjbjohsR+ARAscBDaYOdllEqWkaqOPg1OnTEEURuq6jWCjg2fPnuP/gAWRJQn5y0quAeF1cyLoBZSkx/9+246BWr0PXNJiy7OU5dyz+fZ7bYDod3TBQZ0ShV3hlxWzM6bruRvMUxf0d29ndvn0bT58+xZEjR3Dy5Mk9s9gMC7quw9B1pNJpOJTuWldXPzgRINieJzh4NZYgihD2kGW1IAhIJBKoVKuo1WoDIQcAMDMzg3w+j5u3buH8+fOunivwfVH2PdZqtT2xSWyHN5ocgDnqAds+34IgQJAkWJaFm7duuXX33QibegBl1QBEEKDreuc3DBiWZcFh9beKLLvNTvgv+cPP6pX3inlMoVBAOpNBPB6H7TiYHhvD7OwsKKXY3NxEkdk6/3z1KgBgZGTEM2AaHRvb9RK/dhOlf8H3/k2pW2njIwKtjmEaBiy2cNghtSDe4uz9wBcJCEYFAK9ZmSTLUGS5wY3Pu65gBKLFuYPRC9uy3HpwZnJlWxZu3b6NtbU1HDt2DPv27cPW1pZrNsNC1oIgeP/2/8xPchvuMaV9Ce12A6VSCRTASCYDAjcVuKvkwFeVFCw/5YsexbbGyt4j5ACARw50nlIeRCkhIThx4gS+/e1vsbi4iPzUlBfpCo69arn8lhzsKnxljP6HSpYkLD5/jnKphE8++WSw9qrsuNxm07YsmKbZvjPkgGEYBijgWSVTZrbC4Z9aG9zVfIrmoYJSFAoFzM3NQRTFhl0UIQSjo6MYHR3FO+++C13Xsby8jEKhgCePH+PevXtusyiWfpjM54eas+aLvsHMpnjFip8IdDvyvAWRua7ZLM+biMe99tpBjYM/zN/LDpyT2ngshgSrIAkDP3Hg/+/vp0HBCLuuu9oXx8HVa9dQq9XwwQcfYHx83Hu9Q6nrW9LhnISTBx+J4OfnP38dsLW1BQFuyFqr190qqygbnXUByshq8Nn3W6FzQaLAorR7JbVAWMRYVVXouo5qtTqw0tDR0VFMz8zg4aNHGJ+YgMSjFGyN4c+61mf0bRh4s8kBSx8AjeEdQgiePHniNQsaZPiLH1kUBMiyDNOyoOv67pID0wSlFJIsu73IQyxQfKe5G3uBza0t1Ot1TE5OQhRFWJbVcoesqirm5uYwNzcHx3GwubGBAiuVXLx8GQAwNjrqdpVkLaijmMD4gm8z0y2bXaMX/mekoNVY44u2ENgNez/zLXZBOI4DSxA8ZfZegl+TADTP/ZuiCEeWYRgGrly+DArgqy+/9Mq9+MLUEE3h/w6kWfjrGzqgsvvusPfy+ykKAkQWAudEcy+hVCohnclAkWWXHDBDnaEJT32RAgBtNwU8akDg+rqAEda9kFrg15BMJKDrOmqahnQ6HXk0kafL3nnnHfz222/x8sULjARt3n1jdK/jzScHvrpbjqfPnsEwDBw8eBC2bQ8t5KwoCuq6Ds0wMNiq5dawWBMqCjeCAnQXavWHEYcVQSgUCpAkCePj494O1g4h0BIEAWPj4xgbH8fx48ehaZprwFQs4gFrFqWqqpd+yOfznlFWK3QiAa0g8TwsXKK4Y3fbx7183asVHEqxvrGBmzduIJVM4txnn7nlewyEEBBR7FgaR6lbV+8EiARl3Q1N2waYgtxxHARH0F4jDVtbW8hms+51SBIcSgdfteCP8HTxNsuyQMDaq7NnQRRFmKa5q6TL/0zGYjG3YoxSGIbhRdmiAv+UqqJgZnoaT58+xdEjRyCzqLEfDU349ijeWHLgOI4rkGGhLU4ADMPAg/v3sX//fsRUFXVW3jIMHqeqKsRyGcYuhZQotr0NJEnyFhOeZ+6Gzfof+EHfu6VCAfnJSW+yBnp7uGKx2HazKMfB+vq6Z+v8/PlzEEIwNjbmkYV0Ou0SgJAkgI8zkU3mou96gW1iETVe53bNAPDy5UvcuX0b4xMT+PTTT3uOfvBxLAoCGjLzlEJl35tl27BZyZ1j27DYd+r/sydIA6UolUputQ5cIm+ZJsxBkQNOCgIiw7CwuN6A59i5oJlFwaJsydwN/FUChBCosRjseh36AMgB4JIk07KwsLCAFy9e4P6DB26TOH96Fm8jB7uOZnqDe/fuwaEUx0+cgKFpblmjogxEoBL8+hVFcUWJhjHU8CDXCziUwtB1VyAZnID70F3ssF6NMKpgGAbWV1fx4UcfAYD3PfmJXy8QBAETExOYmJjAyffeQ6VSwaulJSwXCrh79y5u3rqFmKJgjLWpHh0b887digS0igBwQjGopeR1dUiklOLO7du4e+8eZmZm8OGpU4NJiwS0F82edZ6K6IU0SKIISRQ9m/QoUKlWYdu259bKGzFZUVqw+7QfjuM0lJ12dxg3okHZpoODEAKBkwRKt0nCEMdpsHyYbwgHIQwnhEBjx00lkzh8+DAePnyIQwcPbj/7XIT7NnKwu/Acqhg5qNdqePjoEY4dOYJEPA5CiGvJW68jmUpFv/MKLLayLLsRDEphBPs7DAD+HCzgkiXLtkGAnUZMEXx2v/I9KqJQLBZBAc8y2VuAmQCql7p3vhBYluX9cSj1yIJj29jc3MTGxgbW1tawtLQEgRCMjo9jenISU9PTyKTTXS8EPH8b5SLeoBx/jciBw5onLS4u4vCRI5ibnW3ayS8KhCFPfZEGX4pLEgRIkgRRkrwFvReUy2VQwGt1LoqiWwHgOLCYsU5P8FWKOL6x2M/Y4XMKYYTZD69qgWybKA3a76MdVN5fxzQjr1owDMMbK2o8jiNHjuDJ06e4c/cujr3zDoDABmqP440mB1xvwMsYb9+5A0mScIQ5IcZUFYauw7JtNwcVtRI4sBsXmGpWN01omjYwctDMzAZgQkS45WjBqAUJTBb9oilR6AGFQgHZbBZxXwiQVyxYIckBDyf7yUDw3nCzEkmSIIkiRkdHcejQIRBCUKlUsFwsolAs4s7du7h1+zYS8bhn6zyRy7WdZPyLU9QLuOP7HK8LOTANAxcvXcLG+jrOnj2LdCrlidkGjW4XpjCkwbJtL+1k8WZmzM9EZGRBkiQvuhQGW1tbUGS5ofpEkiT3HKbZEzmgPCUWASHwo5no20OTc/Ao2jCWx+B3LYoiFFmGbhjQdB2piMgBpRQaqwLjHW5VRcGxo0dx69YtzO3f727IeOTgNWgC9uaSA59iWRRFlEolPHv6FO998AEkFrokhCAWi6FWq0HTNCiKEl30oMUEpKqqa1ozgLBWMFIQhMGMj5RmoVsWKh8Eo/ff0W6OTh0HhUIB8/PzDT+XmE9Fq9AcD3OajAjwSoGGa2KTrfenTQ45lUohlUrh4KFDsC0LK6urrq9CsYjHT55AIAQTuRymJicxNTXVtp105LumARKPQaBaqeDChQswdB3nz5/H+MQENjc3AQyw3bSfQCGaRclPGjjF50JVy7Jc7wauVzEMz/xM4GSBpSFatYUvlctIp9MNz47ENhbduCXuKEEcwBgxmcC5GYniVU7B+dD7v0GWkQNN0xiKosAwTRiGAXRRltsOhmm63jGUelFZArdz46OHD/Hg/n2cOHly+3O/JQe7B2rbDZqDW7dvI55I4ODCQkOoW1FVaLoOy7Kga1qDSrqv87cY9JyARE0OOhnP2Cz8SYDWEYsBP6hAd0RhY3MTuq5jKtAMyxMlsgeMh3a9P01IgxAgA70KykRJ2m4WBaBSLnvNom7evIlfmOKe+ypMjI+3NOaJAn5b272OjbU1XLh4EbKieM2ThuHC2TDOBjjGuQaB6yY4SbX5uGRpCMMwYPjeI4miF7XiY3trYwMTzIKXQ5IkEKB1SaNPQzBoQuCdkhGioN7AD4GQhghX4wHcCOcgNiYEaCqujMfjqDJDJN4Loh84juMJveOq2lC+KwoC3j1+HNeuXcP+/fuhsu/0beRgF2Eyu1dRFLG+vo5XL1/i448/3jEQCIBEPI5yuQxd06Coaks23xVaRQ6YRSzPT/XreOZNBB3AjY/8VQpBdNuFrV90IgrFQgGKLGM00N5UIASmaaKuaXBYSWEQnAzInAwMKJ+dSqdxOJ3G4SNHYFkWVpaXUSgWsbS0hEePH7vCx/FxTDJCEbVCmlc/7PUyxpcvXuDK5csYGRnBp+fOeSWjweY+gwDlYrshg5vv+MkCd4PkJNZxHBiOA7D5ikeAypUKFg4ebDgejzo4rDTTH6Zu8CNwDzSUz8j1BpwYNUOne8+jaY7jePNhJEShBRGUZdk7p2GafaeTDcMAKIVIiFceDmzPb/v378eD+/ddY6TxcQBvqxV2FTwPJogi7t++jWw2i9nZ2aavlWUZkizDZFqA5ABtLb1dK7NS7tVCs1MKIQhufNSpI+RuuZo1Iwovl5aQn5qCIAhedMBgIdpavQ7qOJ7Ik0+csi8yMGxIkuQ1i6KsFK3w6hWWikX8cv06rl27hlQqhXw+7zaLGh/vm4ju9TJGSikePniAGzdvYnZ2Fmc++qihQdbAKy0C43k3Uy+EEEhsrgEAcC0MT0WwHXi5VALgjqdyuewRDFEUIckyDNP0XFZ3e5HhKY52mhtuxd3pWv3Rg7bRhrBoU3KsxmJwWHq3H3LA3U+p4yDORO7e6fn5ABw9ehTXrl/HVqmEWCz2NnKwmzA5OSAEK8Uijhw71nZiiMfjME0Thq5DVdW+GjF1GtKqqkJjgpheyEE7p71m4CImAjTXG/jgt5rdLRC4kZ/NjQ3Mzs2hXC67eU3fdUmSBIEQxFQViURi13snBEEIQTabRTqTweGjR2GaJpZXVlBYWsLi4iIePHgASZKQZ42iJicne0pp7eUyRuo4uH79Oh4/eYJjR4/i+IkTO65z0JUWvdTsDw2+VBdYAzTbcVAsFkGI28LccRxomgZN0xravnviwl1G0N+gFbrV2vBeGN36rzQco83vVEVxSxr7bISnaZqXUgkSJP/IG5+YgCiKWFtbw2Q+76W89zLeWHJgsTBdiS0s+Xy+7etlSXKFKoYBrV5HKtWHh2GHwawoCkSga91BqyqETuDtmUVR7NjWeDfLjAB3UjAMA0tLS6CUIh6LeR0BJVGEzBr/qKoKTdPahjP3BNi9lGUZ+2ZmMDM9jQ8++AClUglLS0soFIu4evUqKKXIZrOuAdP0NMZGR0N9LmePkgPLsvDjjz+iWCzi9OnTWFhYaPq6YZObvXWXAmAVM6XNTWSyWWSzWXfDwhprUduGTSl0TYPlOBBE0TVW2yUXR8oqNUBpx81UL9fHUyVCr3NSm/fEYjFga8ttWtZjSaNX+cRKF5vBP5+OjIxgdWUFePfdXd+AhcEbSw5sy4IIYH11FbIk7chbB0HhNpUxDcNVsppmx112S3QQPamKAoG1HQ4Lbg3by5DSeUohRPhs2LoDwI1s8PvOIz5r6+sQJQnpdBqqoriEyt88y3Gg813UHi7na3YveVQhm83inXfegWEYXrOop0+f4v79+5AVBZP5vEsWpqa8+uwdx9+DmgOtXseFCxdQqVbx2blzmJyaavna3Yh87DYBbgV+Tcurq9jHnRFZSsGrwGFaG+I4qLN+CwJLV/DUw7DupWVZEADX2rrD+CPorVKEYDvV6XShHen0HYtso0FZmrIXcqDrutfAjveTaHUdjuNgdHQUDx88cK3X30YOdgf+sHtxZQW5ycntQeWrVPCDwB3kaiwGTdNQr9ch92JiEmLSUVTVzakx5XI7HUC32oIgHEphMX8DJeQDMIyac5urtpuUZkmiiFqlgonxcYy06J7md0oEtheXoChr16lCkxLK4BhUFAWzs7NeC+qNjQ0Ui0UUi0VcuXIFADA6OupVQIyOjHiTMT/6XtEclDY3ceHiRQDA119+iUwnUj7oaosmz82wauw7wf9s8/Fbq9VQr9U84RqHX9xICEGlWnX1FNiOthmG4b5OklxtQ4SOjc0Q7NHSCf3YKHNvhCiJnaooME0Tuq53rTMzeYdVx4HSJh3Ir5dSirHxcdj37mFtbQ3JiEooB4k3lhwArkXl+toaTp06tf3LNg8LATNGYpUEdU1Doss8cKsSRj/8Zkg6a1Xb6nPwVEKv8KoUWF11GPQcxusAy7a9CEGw3FCSJCiy7JV6bmxt4dChQy2PxQ1luFe+39rYj90kCy3vYbsxSNz+DmNjY3iXtaAuFAooLi/j0ePHuHv3LhRF8XQKiUQCwh7pKLhcLOLSDz80bZ7UCruimRhCyW4zNCMD7uVs/3ttbQ0UwFiAHPjBhbeUEKSSSVfQaBieLodHPgngRRQGQRS43iCsPqvvs3cRPQgzf6mxGCrVKowuSxq5DoRS6kaB2+i0KLZTf8lEArFYDMViEfv27Qt1rt3EG00ONjY2XOvdDnoDDgIAgoBEPI5KterltLtSs4acdGRFgaBp0HQd6YBpTr/RAj8M0wRCVCk0IMLJk/dz0Bjh8kNmhEBWlAbVfqlchmkYGB8ba3tsXtbVLmfYliy0eM2g0c3uR1VVHDhwAAcOHHCbRW1suM2ilpfx/PlzgBBkMhlMT01h3759yGazu0IUnj59iqtXr2Iyn8fHZ8+G7pEwjGqF3YCf1LcjA0Gssl1lO/dUURTdhZI9TzIjCzHqGr+ZpgnLNOFQCpNVNgBuikLpU2zN4S8hDlsZ5PVu6OM7Cd7HVs9RKHLANiIWpTBD2tk7joNqrea2/iZke15tVRlBqRctEQhBPpfDyspKx/PsBbzx5CAZj4cO4fBdv6woiLOcXq1WgyAIvesPWkBVFAjYKUrkQywKYuBQCpNFDrq5/ih0B5ZtQ9N1t9ETPy5YhIBpCFqFwtfX1kApxejoaNtzSJLkirW6cIxrRha86wtoOvpdsKJelrhnwsT4OE4CqGsanj59itWVFTx8+BD37t1DLBbz0g/5fD7ycRsEpRS3b93Cvfv3sbCwgFMffNCd/oGP8wFpJpqSwehP4s0dzVJy3YyjtdVVTExMtH0Nb/rlNImaear5eHzbJdQwGoiCIIpQFcVLUfQC7m8gdikIjqREkYHv9oMuiGHTRoQQKKoKh1WDdCIHlFLUWQk1oRTxRKLB8Khd9ABw0yq5fB6Li4uo1WohrnB38UaSA8AdIBsbG8j79QYh3sO/yFgsBuo40HQdtUoFQjrdUbTSzZBXVBVEELwaWcJqfKMM53NiILHugaHR4zVQ6jaU0jXNExYC7gQSi8VC21Ovra8jk8123H3yHVA35CCIhrHhSzv4vwtvXHSZlhh0bjsei3lujalUCptMq1AoFPDs2TMIgoCxsTEvBZHJZCLdoTu2jStXrmDxxQucPHkSR44c6fr4g9Qc8O9wxzX1cQ+85zOoXYrgcxiGgc1SCQcD5kfNIIoiTOaN0Gpe8ohCLOam9HTds/mt1+ueZbwiyx2rmIKwQ/gbNEOU3zOPHHh6o+1fhJ7DeNWTEaKksa5pbj8NSpEMlk+3OZ/fuyGfy4HCbSi31/FGkgPO8CqVCo4fP97zcWLxuKukN01UqlWk0+n2pjVdLKqKLEMUBBDqNuyIqWrkeX5eAth1/3fSXec0h5VX6YbRYO6hyDJiqtp1G9611dUdgqxm4HlUmzW+idIFMbig+EmD/2ftSEOr+xeVqMrx3WtJFJHL5ZDL5XDy5ElUq1VP1Hjnzh3cvHkT8UTC6/+Q69AsqhMMXcelS5ewubGBT86exb4WBmMdP4Nv4hwEmpEVXj/f9Hn1RQH4/zclEwO43vX1dRDHCTX2RUmCwKJmrSpZ/JBEEVIigRgz7TGY3a+u69B13U3xqWroMcHFiN0+c4NIH3kljz1ssOKxGLa2trwIZKvPr+m6m6pxHCTi8a7MyzwCzJoxpVMpLC8vR2LdPEi8seSA53VyIfUGzUAIQTKRQKVSgWXbqFQqSKfTkU1kMjNDqtVqkXdodJgwKYwrYlOEYN+WZbmpAxahANxJXlVVt/66h4FvmCZKpRIOHz0a4hLdunBKw3do7BehSQMPnzbbuUaEdiWcyWQSBw8exMGDB2HbNlZXVz1h45MnT9wUxcSEVyqZSqVCX2e1UsH3Fy7ANAyc/+KLtuK5jp+hxfUPEkGR747FJCBiHRbW1tYgqyqSITxWuO6g25I4IghQVRWKoniOozz9YFqW101QZjbvzeAwv4VuxIjBa+i1aqHlMX1RBKeLY4ui6Io7mZ9EM3JgGIZHpmKx2M7XdJgrHZ/mAHDbzy+9egXbtt+Sg2GDUoqV5WWvRr7b9zaIXgQByWQS5UoFtm2jVq0imUzufHB62AmqioIqIajV6x19GLqFyYgBbxnbLVqFxLkamjer4pBYGajaRx4TcHdPFOgoRuSQWYdGM+QOalBoRRraObw16xTZDcKWMYqi6OoQJicBAJVq1SUKhQJu3bqFGzduIMmaRfGoQiuR2dbmJm7evAlFUfD111+HWsjafwj2KaJahP15/4CGhAbI2l7zOlhbW8PY2Fio0LsoCNs19LbddVrAXxrp2DZ0VgrpOA7qLAcvK4rnyeKHZ5ncY5WMAGBQVf69fKeqqsJgG52gY61lWduVCcyALYiOd8AXOQCAfC6HR48eYXV1FdOBpnJ7CW8kOXAcBysrK3inTSlcM/A62iAEUUQqlUK5VHJLhOr1HXWxYUoYG64RQCKRwObGhpejD1svHAY8h9ZT1ADYZsPsftis8xjvPga490tRFMS6CEd2wvraGhRFCS0i5eftR3cwMPD714RIevawPjT8jL2HoDWJ8HZfXU7QqWQShw8dwuFDh2DbNpZXVtwW1IUCHj9+DEEUkc/lPLLg/y6uXr2KsbExfPrpp6FMtTqBBnwqWr+wUexH/eF+/jvfMSjYM+nbRXrpBERbLx8FbNvG2toa3n333VCv51Ezm/VmUPqoQBBEEfF43C3jZjtor3sk200riuKl8Xh3116f+UFGibzvlaX6QlUtqKpX0uiHbduo1Wqg1HWAbLn56DJyMDExAUIIHj9+/JYcDBurq6swDCNU7m4HWnzRoigimUy6rT51HQIhvXnh8z+UQmR5PstxUK1WWxr+9AJe89wzOYBrCmUwQmAwIyUAXk+DyDpY+rC2sYGx8fHQE4hnhsQ63O2VMF3D4hUE03QEx1nDq3kZXJO3cxLh+AR3/vMR9u+G8LnvfP6FURBFV4cwOYkPPvgAlUrFjSoUi7hx4wauX7/uWomzY+cmJnDus8+a71T5NQRV+wHhmD+vz1Mv3j0LHK/Zou99Hv/9bHKfdquMsRdsbW3BdhyMd6hU8EMURQg9pBZagaccVFWFaVkwWHSQ/xEEAYqiwLQsOOgtpeA/V9SpBWBbw8LHVphW0CozpbMdB7phQFUUOI6DWr0OwK0OadVNlQKA47SMHjg+8svHsSRJGBsbw5NHj/D55593+xGHhjeSHKysrIAAyPaw2LZTmMuKgjilrouZprmLu6/DWidwUuB/ZSIeh6ZpqNZqkZED7txFEL4GOQiDdT7kNdKAO6hjqgqlz9RBKziUYm11FUdD6A04BEGAJIqgcKMH/ZChKNFpNPRTyRDUOXjfBBtbflLg/x387/OF1v3fZCKVwqHDh3H48GGYloXlQgG3bt/Gxvo6HEqxvLKCS5cuYWpyEpPT0x5BFnzH884TPLd/7LOfcVObpuOpy+qQIF4fauCmFERBwEgX6UVJFKEDOwzFogD3TnBsG7ppwtR1d8GsVlGr190oQh8ppYFV8gR0OA6rBGs3PxPi+hVobCOkyLLX9RXAjm6LfnTaivDngaeBOEZHR7G8uhryQ+0O3khy4LCFcUepScgFrWn5E4Oqqp5DVrVSAUmltluwtjsmdhIDAEgkk9jc3Iw0tWD6yoy6XcQty0KtVnPD9GzhiDp10AqlchmmaWIspN6AQ5Ikr+3tXiEHHdFlGqrZ+/1phVZHanmGZos4fMSDvebps2f4tvodriq/IG7H8f+c/iMYdRPXrl8HvX4dmXQaU9PTmJycxPjYWFuPg+C18OvfofNhr+17AWmzMx2ezDAcVtfWMDIy0pXYWZIkV5TImv8Mor+GIIqIiyJiqgrTMFCuVAC4RL5SqbiRhjbixVYYxOaiWaqIR+g6pZHUWAyarkPTNEiiCIe1z04mEu2/E0FoO868yEHguyHAQCInUeKNJAfeIAiEHsOgle7Aj3g87uXkqrUaUqlU2/B6K2IAYCCpBZuVGXWzmNuWhXqg3jcWi3l9IIaB9dVVEEI6mh8FIckyEBBI7jo6LPzBha8hnx74d6vjD9JdkDdPell9hcvkKmxqQyc6vjcu4V99+f9xW1AvL6NYKOAZaxYlSZLbLIr5KrQKxW5/hMbn1HMG5b9v8T6uHfCTiIb3+RaDlvdmiFUInUBZxGz/gQNdvY8Q4pohEQLLcSAPMKXGDYMUll4UGCHlRmdqLNZVRHEQd7+duRIvdWxVycCF67VazTWHAnZ6GfRxTWJQsLzHNC/N8EaSA46eF7UQu7pEIuFZ95bL5ZYeCBSMPba5lqhTCybb9YchB5Tl1vxOjYqiIBGPQ2BlgsNiuOsbG8hms11HKDxRImP7e6HPQMP4CZbG+cP//re0+HfrUzDdQMSfd8vXPGnq+DRwc/t3L2qLAFgL6n37XI94SrG5uYlCsYhioYCff/4ZgNuidjKfx9TUFEbHxnZ8L2GrLYLgUY1WJKKhKsH3LPuJBBer7YWxwnVMvWikREmCyZwSoxQ0NwPvJiiKIjLptFfK7FDqbix0HbFYLLSvSeQLZIdj8RRDs/mMV23Ytg1d0zA6MtIxJdtJbwCgZdfUvTDuOuGNJAd8EPT6BYQJZxLiNj0pl8suQSiVkEgmG0pdKBhz7HAdUaYWHEo9gVK741BK3e6TmuY9VJIsIxGPNyzOhLj1+sMYzGtra8jlcl2/j1u4Oky5PehJshX8O3kv7x+MGAW1ABGcL8pdcLFQwI8//ohUKoVzn32GqxtXG8/Z7MkgBCOjoxgZHXVbUOs6isvLKBaLePLkCe7dvw9Flt2IAmtDrbD0nPv2aMdWQ6liE5GjJ9xkuejdJgmrq6uglIYu3/VDFEW3NNCygAGX8pq+Zk5cnCjLMnTDgK7rsClFtV6HZBiuH0CHxTVKchD2WM2IAWXkxktBCEIogkPQ+Tl2fHNCA0IIJXcbbyQ5aLA47eMYnSYMIghIp9MoVyqwTBPVSgVOPO5aL6NzxIAjytQCdy4TBKFpDpJS1xWtrmnegyKyUqZW+fowit9+oRsGyqUSjh071tP7ZUmCzSI5QyEHPiU930H4w9qdjFiiuJtOhEQDAJ48eYJr165hanISH5892zSCE+a6FVXF3Nwc5ubmQCnF5sYGllgFxOKiG3kYHR1FLpdDJpOJ3OOjHWiz6AX7DoP3cVikYW1tDelMpmsnUYBVDDDdwaBhspSCHNg8cJGyYRjQDcM1jKtW3WZQsVjLlGukVt5dzk98A+g4jquxsm2XFPAui2GOESLC7JUxNtMcvCUHw4e3g+tRqR9Gd7D9YoJ0KuWG5jUNtXodlm0jFot1JRCKKrXgFyMGYTA3Rr9IJhGPdzYPEgRgAIpoP7j5UbdiRA5JkkC6bMIUBlzNzxeP4CTU0uAIHRZtvquNYILsW4hGKW7euoUHrHnSB77mSQIRAi/tchImBKNjYxgdG8Px48eh67rnqfDo8WPYlgWVRRWmpqeRz+W6t/vuFYHJfccn478PEoqIScPa2lpvZddgmwBGbnoxQwoL29eFsRmJ4eV+sqJA1zQY3HWxUoEqy265YHCcRrQ4+qtzunkP9zHgnyuTTmNzayuy0lD3sgaT+hsG3mhy0Be6UZMTgkQiAVEU3fyhpsGybaQSidAEJarUgsX8DfzkoKECgV0vNz0JNckNIfS6trYGVVV3OJSFRWRmSIGSP782IOyoCpYHNoOXD+8DUQgSefOkFy9e4OR77+HI4cMN1xUsJmwuqw0PVVWx/8AB7D9wAPVaDcvLy9jY3MT62hqeLy6CABgbH3dLJaemkM1kerpPYa4y2IWz6XE6nbuJF0M30HUd5XK5q/JdPwghkLgZkmX1ZYbUDgZPKXSogBIFAYlEAoptQ9d1mJYF3TRhmOaOygZewtrvfN1LVYthmm6HReq2Xk4kEu51MHIQxjPFobRtKWND87Ym0de3kYNdQBRsrZcBxwd+tVqFZZooVypIplKhvAaiSC1QbC+OsiTBtizUNA1moAIh3mVUgxDiihMHKExcX1/HeBfmR0GIzMrVcZzumjCxnaFXTTLEB7bfUr3Q7oItYOg6Ll66hM3NTXzyySeY2bevyTUGjh3l/SEE2ZER5CcnEY/HUa/XUWTph7v37uHW7dteC+rpyUnkJifDi1VDjNUwYeFW1019/24WfQj7jaytr7t6gy7Mj4IQRREEiHTHG4RlGHDQPGrQDLzRE7cftliH22BlQxR+B928n2utDNbGWpZldz70ERYuNG9XFk0Icc3G2sCvNxAIge33YOjimncLbyw5EAjpO9za7W7ZZjv2VDqNKuvFUC6VkEwmQ4VK432mFmyfNwE39ODwVyD0hAFGDRxKsba2hnfeeafnY/Be9o5pwupEDnhEIAJtStPDh3xdv7umftodVyoVXLxwAYZh4Isvvmidzglygx7O1Qo0kI+Nx+OYX1jA/MICHGYnzJtFPXv2DISQ7WZRk5NIp9Mtx+VQ92QBnwnuUOldS5t5ZG1tDbF4vCe3VQ5OjAdhhgS4Gw7uytlLJVEqlXL1CEy0yCsb4nw+6ucZAEK/n1Lqpn1Zd8VYLOalVPmzKLEmTJZto+2MHYJYtiXvb0sZdwdR9IjvSndAG73yRSZUrFarMJlQMRaPI9ZhAkgmk9jqI7XAbU4Nv6thkwqEXkDg9oMYBEUobW3Bsqye864ckiTBNE23CRP7WYO9cIgwchQIE66OAt4utUvitra6iouXLkFVVXz9dfvmScHIgUOjix6122ULoohcPo9cPo/3ANSqVRSKRRQKBdy5fRs3b95EMh5HfmrKbRY1MTGUrpxhsCMV0YYsrK2uuuZRfZxv0GZIfiFir1EqXtlgmCZ0TYNNKSq1mvvzPo4bNvLgOA6qtZrnHhtPJBory9h3wueQjgLPEAu73UKM6D/nXsbeeJoiRmTlMWg/8LwFp8n5CCFIpVJuh7N6HfV6HbZtu01sWjwI/aQWKIBypYJKtQpVVd1ukolEpI6BwoDY7tr6OkiX1rHN4Ncd+NMEw34IQ5+t17A20PC+bibWFy9e4PLlyxhnzZM6RbSi1hz40U0pYyLQgnqNtaAuFApuC2pCkMvlPAOmUNqVYYnEBKHpXbNsG+sbGzhx4kRfh+dmSLYgRG6GRCn1LNT7FYoSQtx20JLkphhYkyceRejF6j3Ms21ZFqqsgRIA17SuybkopZAlCXV0tqQOoyviaR5+roamUK+BQPHNJQdRfAFhQkdovxjEYzEIgoB6terajzoOUslkS6FiL6kF27ZRqdW8ByAWj2Mkk4l8BzEoV6/1tTWMZrM994GgcHfrEjNt4iWNvR5vWOhndNJuyQGluH//Pm7duoXZuTl89OGHoVJMwWqFKOEXa3UDURSRn5xEfnIS77//PirVqlcBcfPGDVy/dg2JZBJTU1OYnJrCxPh407Gwa9MzS0OsrqzAsW1M5vPePXBsu6d5S+JmSBGX8nrGYuiv0ZIfAquSkiUJ9XodFqWoVKuIx2JdbWbCzEQ6s0R2AEiCgHgHO2Q+TtoJm8N8O5TShtbWO47xNq2wO+DNXKLYGXTSHYRqCaookAQBlWoVtmWhVKkglUw2DYN2m1rQdR3Vet0NKVKKRDyO0Wx2MMx0QGx3dX0dk/l8V+/xrHb53+znsizDMU2Yprlr5GAoKQX/uOvwvTiOg+vXruHp06d455133LbAoUt1A+eN8NNFYv/MInSpw4dx6PBh2JaF5WIRS4UCXr18iUcPH0KUJOQmJtxyyampxqhCP9GbPrFUKCCRTCKVTjcYWvVCFDwzpIh1B5ZhgAIDabYmyzJEUUStVoNumqhrGkzTdLUIIQhju8iuJzw0zabCw3bXBGynBJqfuPOYsX1RseA81GDStYfxRpKDWCwG27JgGEbf+axW7+U71LBHFiXJ0yHYzHI5kUhACXgM+FMLtWq1ZWdJh1JUq1VPX0AIQTKRcH3BBxiyiprxapqGSqWC48ePh3q9JyRscQ2yJLn11ZaF9s7+A0QX96dXtXZL57UALNPEDz/8gJWVFXz40Uc40KV/vxAo1hoEOYiyBlyUJEzNzGByehqgFKVy2WtB/csvv+D6tWtIZzKuqHFqyu3jsRshXkpRKBQwOTnZ8B02PF9sg+N1F2xzONFnhhRV2TFPKVCEr1LoFoIgIJlMQtA0t6rBtlFhGi2lwzlbeoxQt3Mub1vfTURCZOuFw3b+TbVaIVMZQOtoi85SKXsZbyQ5mJubw+ULF7C6soLU/Hxfx2o2efP61W4fP8EnVDQMAzUmWEzE4w1pBp5aqNRqTcmBYZqoVqveApGIx+HYNuq6PvDOiVHvtNbX1wFKMdam2ZK/XrgTZFkG2A5kt2xxKboIWfd6P0OQA61ex/fff49avY7PP/8cuS6jM82OHxU5aCiLHdR3RAgymQwymQyOHj3qNYsqFApYXFzEwwcPQATB0ypMTU52FA1HhXKlglq1iqnJyTaX37jD5NHQZkShwQzJcSKJmnluq+i+SqFbyLIMSZI8U6I6qyqIsbRsEK1GoWma0DQNtuOAd1Xs5toFttN3mOlTs3eGeb49vUGTcxO4VSrvf/hh6OvaDbyR5CCbzYIoClZXVzHfJznYUcfcZtcaFslkEqIoQqvXYRiGF0pTVRUgpGVqgcLtGqaxEkVREJBKJiFJErZKpR3mR4OAZxccEbZKJSiyvENA1g0h8EMURYiEwIG7ax6a2x5DL6Sx1/MArckBb55EAHz15ZfIRNDQy3/eyI4zAHEWbWFbvqNZ1NYWXr16haWlJVy7ehWUUmSzWS+qMNahBXU/KBYKLjEJSdga+nVs/9CtTmD3UGRmSA5rjtQvohIidgIhxLNoTyaT0HUdumHAtCzY1SriTaqtBLa753A4ofA1X0slkz11VZRE0Y0+miZiqrpT39NJh0a3+9v4Iwd8o6npOirVKhYWFrq+tmHijSQHIiuDWl5ZicZkI7AD7aa2thV49zJed1ur1WAYhuu02CS1YNk2qpUKLLbjijE3Qf75uLp2GH0FWnU26wWVchnpTAZA74QgCFlRYFPqEqshk4Nu0Wuaph05KBQK+MnXPKlT6+S21zcgqsMn9oHYyoY5JiEYGRlBdmQER48dg6HrblShWMRT1oJalmXkWVfJyclJqH3cxyAKxaJbftnDIt7wnfvIlSAIrhmS46DfJMAwUgp++Ftsx2IxN4pQr7vp01oNqqK4VVjss/JKF94rRmfaCMqs6xWfE2O3kCQJhLWAd3og+3wuFlhDOA7KiMVysQhRkt6Sg92AKIrYt28f7l67hlq93ldux687aFi8Igivi6KIdCoF3TCg1eted0dVVaHGYl5qQVFV1Op1dlqXEfvzcbx0TxCEgXmr+xFV9IAC2NraQiab7dioqBvIsgyNWbcOG13flx7HUCsvjyePH+Pa9euYmprCxx9/HIG/xYDSClGIEaO5EABus6jZuTnMzs0BlGJjY8PTKly5cgWA2ywqCq2CbVlYXVnBiZMn+758/7MoEAIIQiTPksWiBgIhkVUptEPwTkqShFQyCY1FT3XWNyWRSHjRHJ5CcBzHFR1KEmKJRE/RguC5+Yarl2+YeyS0In6rq6uYnJ52Tbz2MN5IciBJEmZmZnDl4kUsr6zgwP79fR2PC1S8KghEq0hXFQWKLKNer8PQdWi67jJ3y0K9UoEkSZAkCYosu+KdwKTkiV+GZQITwe6edy4slUpNbXv7gSxJIAAsx/H6zw8L3Rog9Wrhu8MAiVLcvHkTDx48wMFDh/D+e+9FEhLfoTmIygSpxzLGzoft8l62cK/jzaLePX4cuqahWCyiWCzi0aNHuHv3LhRF8TwVJvP5HcLidiguL8Ox7bZ6g14gsh2vzdIqBOhp5wv4UgpDiBoAaPo9CKxPg2Ga0Op12I6DSqUCVVVhsbA//7YT8Xhk18pF3c2MkMKkDXnkIDgfc+fMtY0NnD13LpJrHSTeSHLgdQhLJLCyvNw3OaCUggbLiiIuQyHEbf6hKorb4ZFFE3RdR7VSwczMDGItJiCT2SYPpVWxe7E9hcO9RkYsfMhzhINg0JIkwWF6jmGSg2EVJ/k9AmzLwpUrV/Dy5Uu89/77OHz4cGTn2VmtEA2ibjfN0e24JOhcrqzGYl6zKOo4WF9f96IKi8+fgxCC0dFRz1dhJJttG1UoFgpIpFJtnSl7gb/HQtDrpRstDHUcGLyB25DIAQFaRmMVWYbESh7rmoZSuQxZliFLkhtlDdtALiREZulssw2MF4kgIfopOI4XuWkWcanX66hr2p5PKQBvKDng4pzJqSm8KhT6V60PMfQpShIS8TjqmgZFVaEbxraPgao2fcC5qnhokQMgdFol6EPgvtX9FOVyGaB0IORAlmWYrBtcPzn3vQqu+TAMAz/+8AM2t7bw6aefYnpmJtoTBX0OIiLFg9Ic9KKF6eYKiCBgfGIC4xMTOHHyJOq1GorLyygWCrh//z5u374NNRbDJNMq5PP5Rt0LpSgUi5ienu76OjtBEASvvTp1nB1Ga01FjU1gWhYIO94wUgoc7Yid53jKFl/TsrzeCFGnpkRRhCAIcHinS/79sWtodzbL54q447oIwcrKCiRJ6l8oPwS8keQA2NYd/PLTT6hWKkj1sQBxv/JhmFZYloVqtQpFlpHP5SAAqGkaVtfXkTFNJJJJqD42z73CCVrnuAYBwioCWj4otLHdcTOUy2UIouhaSkcMRZZRI2T7/gxIdR5ELyMkqLwOdR7mc3Hjxg04to0vv/gCo62aJ/WBgdkn80V8SN9LW/SxuMQTCczPz2N+fh6ObXtRhUKhgOcsqjA+Pu5pFSilqNdqmJqaivADbENg5Y624zTojxp0Qh1SDsOqUgiimXjc4d0cWWdZWVGgxGKwbRu2baOuaaHMjbqFxMoZTUYOOCnolAbspDdYXlnB7Nzcnvc4AN5wcjA9PY2LmobllZWeyYFDtxv3DLpu3mT+BYAbBeCL5traGmr1OpLJJCrlMgxFcasaBMET3XXqsz4ICM2qFiiFg86hWgAolctIDkiUIwgCRCbOMq327VcjxZBcz9Y3NnDt2jWoqoovzp+PPETNsWNnH3EpY+SRAxZO7wa9kLOmxxFFTORymMjlcPK991CrVlFkzaLu3r2LW7duuWF6QmCx7qFRR/tEUQSxLDi2DbRJCVC4Cx1Pq3g/Z88LpXR4egOG4HxhGAY0TXPnXseBJMuu7wEhME0T9Xrd8zNJxOORzn+SJEG3rO3KA/8a0OZ9VpMSRg4Kt4/MF++/H9l1DhJvLDmQJAmyLCOVyWBldRUHDx7s6Th8keM9uQc19RumiRojBrIkeZN9OpNBqVxuCGfphuGVPdq7kVJg4LuRdqmDdqiUy8gOULEryzIsH/sfBnoikF2KEhcXF3H5yhWMZLM4e/bsQCIvvotr+L/INAdNj94neiAG7kVEa+zFkUgmsXDwIBYOHnQrFNbWcOXKFdiWhR9++AGCILgtqJkBUzKV6nuB4+WMYSsWeHSPz22maXpRSHHIUR3+yXlEwGalhNxFUZIkb67hosFareY1Vkp06JvQDSRZBmHp3J0X2ny8eFoPNI8cVMplGIbR81o0bLyx5IB/OTOzs3jx8iXOovuJaMdEzwdFxBOJruuos1JFhUUFOET2YNiOA8MwMJHLuc6KloVarYZave6V/QwdLHXQayvnrVJpoMIchZc0+lpYDxK9RpZCv4NS3Lt3D7dv38bU9DSOHTsGdQgGNX44iKZawet1H+UCNKBFPgqIkoSx0VFomoYP3n8f+XweBVYBcevmTdz45Rckk0kv/TCRy/WUJhSZU2Lb3gAB+FMOXiRyyFEDwCU0uq6jrmkA3DHCPQvQRI/Ao6u8FXOtWkWiSTVXL+Dibl7O6D83T8cEz2K30xvATSkosRj29ymQHxbefHIwM4NLDx+itLXVsk9BKzjNJntKPTOLKKAxT3HArbVONMlFZdJpVCsV1Ot1OLaNTCbjVjGw3gqarnuLxDDD594E38PbDV2HruueAdIgILGSRsdxYNn2UMVV3SDMSHIcB9euXcOzp0/xzrvvYmZ62n3fgFNJgzJB2jM+B0PE8vIyKKWYmppCPJHAoVQKhw4dgm3bWGEGTIVCAY8fP4bIUhRTjCwkQpJ/rjNwemjAZFmWa/wDDJx0+uGwjY9uGLBse9uzIJn0ohe8nDwIURSRTCRcguA4qFYqbrl3n6STrx82u56G/hdorj1oVcLIsbq6igPz88Obo/vEG08OcrkcNOap3g054Dk5P7i3eVR7kxrzNQBcx8RWqnpZlhGLx2HZNkqlEiYmJqCqKgRCvLJH27ZRLpchiqLbaGQAKl4ALinwW992WdfPUWapkkEbgUiSBIe5vQ2aHPQ6LgjQNiRusuZJq77mSZubmwAG5DDYcG3B4+/daoVeBcPDoieFQgGZdBrxgFW4KIqYmp7G1PQ0KKWo+JtF3biB69evI51OIz85iempKYyPj7c0O+M9FhxG3ruJzHDRn8r1S5QOVIhts0gBP69DKURBQExVG/QOjs+3oRlEUUQqmfT6zVSqVSQTib4E2jxtQR0Hpm1DCSz4DqXu2OUpVdq+RTOFqxM6/fHHPV/TsPHGkwNBEDA5M4PHT5/i8OHDoRZMfx59BwjZ6XnQA7hdMoDtvgptkE6nvQ6Go6OjEEURFEA8FvPer2sabNtGpVqFoGku4YiKJNDm1sbNRE1hUC6XQQCkBiSk41BkGQZr4RwfcEljr0TJfXPz76heq+HChQtu86Tz55HL5Xb46w8SwSk5CuGevz/JryZyQN0ujHNzc21fRghBOpNBOpPBkaNHYZkmVlZWUCgU8PLFC7cFtSgin897WgU/2eB9CgSWWpBCkgPqODANAw6wbehEGjtERtU3xLJt6L50H3UciJKEuKpCkqQdbacFUexYoioIApKpFGrVqhtBqNWQaNKToRtIkgTTNF3dQdDQKPDadi2aAWDxxQtYto2jR4/2fD3DxhtLDvyNSM6fP4+/+e//Hc+fPw/VsrbdQheFMLFaqXi5vUTACrkV4rEYZEmCZVnYKpUwNjq6bbbBvBHizHJZ03XYto1qrYZ6vY6YqrrlPj2G2jo1m/LKorqY6MuVCuKs4mKQ4DsAy7IGX9LYR7qpmWJ+c3MTFy9cACEEX3/1VUMPCv/7BolBdGX0JnpCov0+eiUuQyAom5ub0DSt6xJGSZYxPTOD6ZkZUEpRLpXc9MPSEq5duwZQikw2i6nJSUxOTWF8bAyCKIKYpptaCLk46myjIoli8x237/nmzZ66hWlZ0FnPAr4BkyUJqm8Rb/oNhvxeBUKQSCZRr9Vg2TZqTKTYK0GQJAkGS7U0vyzqRVjaRQ1sSnHn9m3Mz8+7Tb9eE7yx5ACARw7y+Tz2zc7i1u3bmJ2dbRtuCjMM+2mWU61WvYGUTCa7KhfKpNMwDAOlUgmj2azblhTbURJCCOKcJLAyIK781ep1qCyS0KyNaLNrBcJNBP6uamFRKpeRGaDegIMbuXA76kHm+/oKvwaIxVKhgJ9++AHpTAbnzp1rSDnR4PsGiEH4HAzEAIlHtnoUhA66TLlQKECSZYyPj/d8DEIIMtksMtms24LaMLC8vIxisYhnz57h/v37kGQZExMTyI6MhLZ1ppTCYI2L2moNeLSHE7qQJmimZcHQdbdjIvuZIstQFGXHYsq9Dvg3QQjpqleEQFyn2RrrVVOr1RCLx0NtwIIQBQGE0lD6jXYtmp8+fYpqpYKvvvqq62vYTbzx5ABwhTbvf/AB/sd/+294/Pgxjhw50vI9nSb4fhYATgwIIV5pTjdIJJOQtrZgGQZKlYqX89oxyRKCmKoipigwTBN1TYNlWdB0HTpzXuSdz5qBUuqa1JDw7XSbGZi0Q6lUwvSAjGCC4BEX0zT3rBjIb8v6+PFjXL9+HdOsedKOCWeIivxmX3+/C+lAxIhMD9T72wdLsgqFAvL5fKSREllRsG92FvtmZ0EpxebmJoqFApYKBSzdvo3bt25tt6CenMRoixbUpmkCjgOBkHAW7L5UQ6uxSCmFYZowWK8H7hGgqioURWkbMRSwPZf0Mt8SQjyXWe6HQNB9n4gwfXS4c2OzFs2Am0K5d+cOZvfvx+zsbFfn3238KsiBbdvIjIxgfn4ed+/cwfz8fNOBEnoY9pBn5ws0IQSpVKrnVq2pVArW5iZKpRIyTMzX8liEQFEUKIoCi5EE0zShGwZ0XYesKG66wncv/CHfbq8tbM7dZu2nh9WVTJZl1FmOc5A7xL6WbEIAx8GNGzfw8OFDHDp0CO+1aJ7UqiPjIEBIs0m8k4lse/Ax1q+iPEp0S267ga7rWFtfx4enTw/oDPD6O4yOjuLwkSPY2NjAyuoqSltbePL4Me7duwdFlrebRU1OelEF3R816ObZ4OlGQfBIguM4HilwsB155KQgTLTIawnfh4aHEOJpjEw293Fb5HAfbTsK1ekaODEItmgGgIcPH6Ku6zj+7rtQXwNXRD9+NeSAqCreffddPH/+HPfv38eJEyd2vL7rhi0hX2uaJnRWrhjvU0WbSqdRLpehm6bXoSzMgJdkGWlZhmVZLklgRkqmYUASRaixWN/lS2HTLZVKBQAGWsboh1fSSCls2x6cYVQfO3rbtnHphx+wtLSE999/H4faNE/iZxmGmK+ZRtwlWL0fcxBNl/pe2AfokbBcLAIAJiPuwtgKoiBAlmXk83k3SkopNtbXPV+FxcVFAMDY2BhyuRwymQxSqVRPoXd+3zgp0Fj1Fdf3cJ+Cnr5rQdi22e4BnCA4rDtrrVZDMpkM9dw0zKkdxoVlmkATIaJuGLh//z4OHTqEVDq9Z6OWrfCrIQcQBMTjcRw5fBgPHjzAoUOH+mvIE3IysR0HtVoNgNvdracH0AduimRsbqJcrUKNxboS9UmShHQq5WkRdE1zmb5locbKIFVF6W3hCXlPyuUyKB1Mw6VWkGV5u6RxF9wk20HXdVy8eBEbm5tu86ROTXmGqvTfeQ4HFP3s+f0dJSNDnwv7ICMHxWIRI9ksYkPaORK2gyW2Dce2XQOmiQmMTUzg+IkTbgvqQgGFYhGPHj+GaVlQJcmNKkxNYTKfDx2CdwLliJQ5GsZYC+VeRqgXlY2ArPEUQ4VVMdQ1ramXTKv3Au03jVxTAWBHSube/fuglOKdY8c6VqPtReytWTJiBMkBABw5cgRPHj/GnTt3cLrPMF8YT/ZatQpKqVuqE1EpXSadxtbWlrfz72UbJ4oiEokEYqoKXdfdCgfLQqVaRb1eh6ooUFS1K28AgnD3pFQuI6aqfROlbiD7SxoHNEn3Emwvl8v4/sIF2JaFL7/8EiMjI6HOA2AoKvtmYeB+694Hklbo95oiuowdx3UcFAoFzA+5Ra/nd+A4CD7BaiyG/fPzmJ2bw9bWFjZLJZS3trC8vIznz58DAMbHx70W1Nl0unGscZEh6w/Bex+IkoQkK0dsZVoUCqS3lvCtIAgCEvE4qrWa26lVkjrOPV76sUNlGk9ViqLYsOmo1et49OgRjh496qZU3pKDvQVODhxn2/RVVhQcPXYMN2/dwpEjR7w6+9ADuYvwY7VadVMahCAZMD7pByLrYy4S4kUlugKlXumhRxJiMeiswsGybdia5ubpJMklCh1ERI2Hb5/Xr/TZJbMXKLKMKlyBUEOP9gjR7VK9urqKS5cuIRaL4YsvvkAikQilzB6mu2DzM/Q3aUfeV6EffwmGKBcjP9bX16EbBqaGlFLg8Nsot1oGDdOEKAjIjY9jnln61ms1t1nU8rLXLCoWi2FychK5iQmMjI564kJ/OaIS8BTwl/l1C378KCFJEmKqCk3XodXrEAWhZXqXj4UwEQyDd7CUpIa14fadO5Bl2RO/v40c7DFwgYjD1LKA+8UfPHQIjx49wq3bt/HJ2bMAelRgtxEm+k0+UhHYeQaRTCaxsbHhLuamGd4LnT3Uwc8qCALirNTRYHoEwzC87nG1Wg0SIyWKLLf8PGF8IEpbW6F2yFGCEAJZFD2r1r5SSk3Q7WT2/Plz/Pzzz5iYmMAnn3wCWZZDL3DDaB3O0Uxz4PS5FEfeV2GAeoF+sfjiBWKxGEZHR4d6XkGSQHS9ZRkepRSGru8oX4wnEphfWMD8wgJsx8HK8jKWlpawsrqKZyyqkM1mMTEx4VZAMEO2Fidx/+7y+xkU6VVVFTZrxFar1ZBMpdpGxghrYtXqyi3L8si8Pw2zVS7j+fPneO+999yfUwp1wAZsg8AbTQ4AZmRhGG4ZG1PBiqKId48fx5UrV3DkyBGMjY6GH5CBQd5s8NiW5TVSisdioXwFuoUky+7AEwRslkqY6FQ/7YsWtANXFquq2uh5zkLylmWhCncnrjCi0MxmutUCxo1cOjnFDQKyosCwrIGQg7CgdLt50oEDB3D69GmPaIWeEne9WqE/7MlqhQEsSNRx8PLFC+ybnR2s+VYTCCwk3qoBk2kY3oYoqMHhz71pmognEjh48CDmFxagaRo2NjawvraGR48e4cH9+0gkEl6zqFyrZlFc+R/GF6GnTxsesXgcVqUCh1Jo9XpDkzsAO6+zzXXzqIE3B7LX3rx5E/F4HAvz89vnfUsO9h5UthPWdd3zxyYADszN4cH9+7h18yY+P3++9xMEBg+lrrc34LLJQTFGx7aRTCZRq9VQqVYxOjLS+sEEmkYLOkFgauNYLAbbtmGYJnSmTdBNE7ppurXRigKVkRXe3rrVA1WrVmE5zlDFiByqorjmKANILYSZ1BzHwdWrV/Hs2TMcP34cx44d62lRGm61QpPz97lL58tVVCZIkSwoA4g8LK+sQNN1zO1CfbsoigAhcJgmIDhWguWLjuPAZBsAm5kVAQAohSTLiMsyspkMJvN5AK6Oa2V1FcViEcVCAU+ePAERBORzObdUcmqqsVNsyCiCt9kaUDRIYCneKutsq+t6Q8jfv9kj7LqbjXfHcTwzOy9q4DhYXVtDoVDAmY8+8koyCSFvIwd7EaqquqV/uo60P/QuCDhx4gQuXrqE5WIR+T5ygv6dcpUJEAVB2MlKI4TjOFBVFaZlwbQslMpljAZD9ZT23E45CFEUEWfVDLZlQWdpB5v5pOu67pZQMaIg+nqv+1EulwEMvuFSMxBm8kIphW4YkfZa6KR295onra7izJkzLdu2hlLN+yfagaNJ2LWPts28ft09dETXv0dTCi8WF5FMJDAy5JQCsC1IBHGbBxHfxsGyLFDbdv+wzYzNLI15hFGRZciK0tIUSRRFt2Pk5CTw/vuoVCoosAqIGzdv4pdffkEylcIU6/8wPjHhapYYUeFtj4PwE99Bpc9EUUQsHke9Xoem69tiwoB2pZ0JEk8Ziz67aQfAzVu3kMlkMDs3B953BngbOdiTkFl+3HEcWH7lLqWYnp7G+NgYbty4ga8nJnr2H+ATusaMjgCErqftFY7jgMCtXNjc3ES5XMZINtuwa++230FYiJKEhCQhkUjAYuzbYDsOm5VHCoLgahQUpSGtUq5UIA2YOLWDoijuDilictAO1VoNFy9cgKZpOH/+PCYmJlq+NsykOMzIgdAkrdDPpO15HHThvtkJlLl57iXYloVXL19i4dChIZWc7oTAcua243hdHCmlqFQqXpt4IgjedyKJImRfBLAbpFIpHD58GIcPH4ZlWW5UoVDAy5cv3WZRkoRcLudWQOTzHZ//QZaWAm4qgLum1up1pJJJt5ldMKXQBNz9kR+H49XLl1hbXcVnn3/e2NaZkLfVCnsRPIder9dhmqYXbuN4/4MP8Nvf/AbXrl7Fhx991HN9v2Wa3gOXYANtUHD47ksQkE6nUa5UYBkGKsx1cJiLhyRJbuMnuu2hbpgmLNuGadvQmDOZoqpQZRnlchnJIZkfNYMiy6gRAstxYNl2ZG2cWy2YGxsbuHjxIgRRxFdffdU5YhIinDpMh8RmE2Q/k/ZA+ipEcKyon5Xi8jIM09yVlAKHKAgwCfEc/EyWFqxUqwCliMfjIIQgpijeJioKSJKE6akpTE9N4RTc0uVCoYDlYhHXr13zPE4m2WtGx8Z2VEINY+6Kx2JwbNvr4phMJhvGJddtBJ9Hy5eq4XqNUqmEy1euYGp6GnmWeuFQFGVP6WvC4o0nBwA8cqBbFmKBxWB0ZAQfnTmDn376CRnWJrVbUJ/RkTKE+n3KGi4JhEAQRddSeWMDW+XywFsgtwIhxBUpyjJ4IxfdMLw20vVaDXUAG+vrSMbjsCxrV8yICCGuIRJLi0gDNKZZWlrCjz/9hCxrnhRZOdMQ0wqRaw64QO41nCy7weLz58hms0NzAQ2CMldAXdehaZo7JxHiRvUAKPE4spnMUBatTDqNTDqNo0eOwLQsLC8vo1Ao4MXiIh4+eABJkpDL55HP5zE9PT20EDwhbpOmSrXqijB1vfHc3P0x8L6gEFE3DFy4cAGJeBxnzpzZbh7FnpPXsYwR+BWRA8D9UqksN5SoUEqxf24OpVIJv/zyC1LpdHuHuiZMUtM0z+gorPtWP7C42psRnXQ6jc2tLRi6jnK5vCv5fD/8FQ92IuE5qFmmiVKlglQ2i1K57DFvWZIgy/JAoy1+KKwhlWmawIC+r4ePHuHGL79gemYGH585E/qzkRAL7zAjB01LvfqIHQwkcrDHYFsWlpaW8M677w7tnJRFwizLcn1KWKthyzDgAF56T5ZlyKqKVCKxK7tZWZKwb2YG+2ZmALitrAvFIgrFIq5du4arV69iZGQE+VwOuXweo2NjAx0rXHSt1eswDAOKqnrna3ZW27a9SAx3Xf3h4kVYloXzX3zhbXj816y8hnoD4FdCDkSWSzNZL3GZNxjhNf8ATpw4gXK5jB9//BFff/01stls84MFJm/qOF4v9Hgs1mdLmnCgzLeBD0CBEGQzGbfMaHPTDY/tkZ2ZIAgeUbAsC7ZlIcnCmZT5sZumCVKvgzCdgixJkGS5K1vobqAwW1ebTaZRRDD4qKCUes2TDh8+7DZP6mZyC5NW8F46jMhBk3NEoDmIrFJhD4oRX716BdtxBtqFj1LqjV/+h+tV+KZHEEVILKSdSqdd0yNRbFq+uFsYGRnByOgo3jl2DLphoLi8jGKhgKfPnuH23btusyjWKGpycnIgu3BVUbzukTuiB2gcY37TIyII+Pnnn7G2sYHz589v6ygC6Yi3kYM9DlVVXSGabTc4hhHf3x+fOYPvvvsOFy5cwB/8wR+E+lJ51EASRbexBlP7DhLceIP4DJ4y6TQqrCHTxuYmxsfGBnoNYcGFZ5RSN1cHIDsygpFs1jMksUwTJlNQ67YNwzBcQY8geFEFSZIiJTyKLEMH3NRCFBMlm6x/unwZS69e4YNTp3Do4MGeDhVWjLVrjZf6UR3s4bRCVAr5xcVFjI2ORiq69ZMB/rf/Wiml3vPCdUCUUpTgChIJIU1Nj/YSVEXB3Ows9s/OwnYcrLGywEKhgMUXLwC4aWBu6zw6MhLNM0DdVtK1QPQgON/w3iyA65ny6OFDPHv6FB999BHG2/jMvCUHexyqqqJSqUA3zZahf0mScO6zz/Cb3/4WFy9exBdffNE2HOyPGgyzVMXxRQ68CYIQjIyMYHVtzWvn3G3/8kGBT7q6YXgPIt+9SJIExGIeeeBkwWKlVrptQ2dkQRBFL6ogM//2XqGoKnTThGGaiEdQ1aHrOi5cuIBSuYxz585hamqq52N1WqT83/ngEa1DYpSRA+7pH9l9iKC2Xtd1FJeXcfLkyb6OQyn1auktPxngviWsXFqSJIiSBEkUvTSjB07EKIVpGN6mYk91Bwzcc06MRUHA2NgYRkdH8e6770LTNFerUCzi0aNHuHP3LlRF8QyY8pOTPWm9+PlkWYbYJnrgOI7XYEkQBKyurOCXX37BkaNHMRcoS3Yobehn8bq1aub41ZADhXUa5G17+aIfTAMk4nGc+/RT/O6773D16lV81KaCwR81kPkDRwgI7d/rvR1s225apphIJqGWy3A0DesbG55hyV6BrmmgAGJNmDQXCsqyDMTj4N3OeFTBZjsm27YBXd8mC4woSF2SBZm1cbbZBNwPkSqVSvj93/wNHNvGVyGbJ7VFh0VqmJqDZvd0r2gOCCGgERKkKMrnll69AnUczO7b1/V7+QLE9QJceOxPI0m+yMAOMhAA4V4HgFdJNcxmZ6HQZJwTsDJsQQBl+f1YLIb9+/dj//79cChrQV0ooLi8jOeLiyBwm0VxspDJZDrOB5Q7NzIEowdBV0seNdB1HT/8+CMmp6Zw/PjxHccVA+d9HT0OgF8ROeAiOcM0YfGSRvhqUX0YHxvbrmBIp3H02LEdx2sXNRikgQeFu6CB5RSDGB0bg1EooFqtolavD0Ug2Qm834KmaV7kIMx7ePUDsO1IZrLaZIcRBdu2ocGdUESfXqGVeYsfqqKAstLLXsnBysoKLl26BEVV8RlrntQvOi13w4wcRK05gBNxX4U9hsXFRUzkcqEc8bzIACMEDosMOIBnFsSjAjxC0C0E5n5oMa+DvRw18EMgxEuHBOdSgRCMj49jfHwcJ06cQL1ed50ai0Xcu38ft27fRiwWwxTTKeRbtKAWBKHh2MHoAfcm4BsV7iL5048/IpFI4OOPP25qHR/EW3LwGkBVVRiVCgzT3H54faJEP/bPzaFcLuPGjRtIp9OYZupajqZRAw5CIKCLTo9dgLuboYWJjKIoSCSTsKtVrK+vI9HDDmYgEATomgaJ6Qe6f7sAhXWHBJiY0Lbdfg+m6e26LMsCNM0lJKzzmsRczERRbMgjKooCjbW9pkwk2Q38zZPOnDkTbRonsKvZ8TvsXrVCFGmF3TIGaod+r6heq2F5ZQUfBlrBU0phO45HaB1WZujND4wUUEJc7ZIvVdAvASSC4OpqRLFtw7TdAO982Aq85XSnzVY8Hsf8/Dzm5+fhUIq11VU3qlAs4umzZx6ZmGRujel0uuUxg9EDfh26rsNxHNy8cQOWbeMLX2XCjs+F7bEkK8rQqrCixq+OHGwJgmsVynKV7foAHD9+HOVyGT/8+CO++eYbr4JhN7QGFO7EyrustVPyj2SzqLHe5aVSCZldNB3iIHD93KMS5/DFXvWRhQZxo+PAphSWbcPwXQPYBCyyHK3DfOQt09xJ8lqAUoq7d+/izp07mJ+fx6lTpyKPFBHSurNlV9UKrUhGO/LReCUtr6/9aal3v/n/+1v9RqU52Et48eIFBEFAPp+HpmnbJIClB/zpRn7toi9NEAUZCIITEiIITdN5uwaWfm3/ku0NEO9T0AkCIcjlcsjlcnjvvfdQq9VQYP0f7t65g5s3byIRj7uixslJ5HK5hkU+GD3gBMWyLDx4+BDrGxv44osvEG8WIeSpEN/n2lORmi7xqyIHnoqXCd4a+o9j5zRIAJz56COvguGbb76Bqqrtowbem6ONHvAHw+GTaxtyIEoSstksNjY3sbG1hVQqtSd2DIPshuh5nLMJkKccbMdxc7hskobjwKAUxDRdUxjDgKHr0HQdmVTKLf/yRRmCiyB1HPzMmiedOHECR5lp1rAXqmC+tMWLGv9u9fsezh3m83Kvfu//eUqBkIZ8uHctvvLiXUEXC7O38Ns2LBYVePbsGcZHR72Ng58IiIIAwUdKRRbVGnRqyDBNELgam70wBwA9Svgj9wAAnEFJREFUpl1ZmqXb9yUSCRxcWMDBhQU4joNVFlUosGZRgiBgYmLC0yokk8mG6AGlFJZp4uXqKl69fIkPT5/GWItKMCFovwxXB/a64ldFDgBXOaprGkxfCVu76IFXwfCb3+DixYs4f/58+KhBROJEvvPg/wbaRw4A15WsWqlAMwxsbGy0LbUZFnRdH5oGwt8QhYOXg/mJg9eWWtehK0rDbpcQ4k3ioijCcRxcvnwZGxsb+Pjjj72202F2NFGBe1ywD9S3ur4Tmve77+3zBsWIOyb6FuI09x+kgcA7jjOUngqURessXzqgISXArrter2NzawsnT570Fn9OBkRB2BWNhWWaAIuM7SUhYj9EmvfJ6fW9+Xwek5OTeJ81i+JdJW/duoUbN24gmUxiamrKc7e0LAubm5t4/PgxDh08uKMywY9mn2s3mm5FhV8fOVBV1AXBa5AUBol4HJ999hm+++47/HT5Mt45etQ16wkTMuqzPGpHP/awYjRe2ri6ii2WWtjt0katXt/Vh6WhfJIhnUpBFEXohgGZ5Xp5ZQS1bZjMea5er+OXX36BYRh4/4MPkB0ZQa1Wc01l2MQvtNCBtMKOVro+MRr8fwfe4/88g0aUPgf+yEHo93j/oA3/73UcBBoIHXhUo8t7w1N2hmVti11ZRKDh0/rIPte0iIKAly9fQhRFzC8s7BmDIU3TAKbVGU7Zawh0MR+2su4WWNVZr+fnz1AqlUIqlcKhQ4dgWZYXVVh69QqPHj2CKEmIxWKoaRrGxsZw/MSJlocVmqUBCcHYHtiU9Yq9MYqHCFVVQUURNqv7FXy7xHaMdmx0FB999BF++OEHmIaBj8+cCXU+0mqXFAItH4CQx4onEq6FseNgbX3dba+6i9BZ/XDY/OGwoKqqVxrqj2zwneL6+jp+vnIFoijio48+Qjwed4WQrPbcyylju1Uu3y3y/hc8fyoIAkRCPL/2puOizQTqL2PcNXLQ47zsRQ6i2EXz57bJRXHi4P7YNSWjbLHn35dDXY8E/98AYFhWw0RPHWc7CsDIACcFxEdIXr18iampqT1DDEzWTh2s6qfX3Xbk6HLw7CDQYCngXivC2kSIp6amMDU1BUopypUK7t69i8LSEiilOHHyZNtx6z8qj0Sn0mlIeyhi0y32xkgeIgghUBQFtmHANM0Gt7BOAy6fy+GDU6dw6+ZNXLh4EZ+dO9dcmBI8J9xe391M5U6LvK63OIRcGEZGR6HrOmq12q6WNlJKoem6a4CE/uvJo4Qiy6hrmitk9E1GgiCgWCzip59+QjabxaeffgpVUVwdgy89YbBqCS6CBIC2cSlGEgSWexcZoRB8fwuC0JQkUN8xhoIIqxX4AhUFOeALusNC/DsWfb7gB9N6rCqAsOgCtW3XK4GV20q+VIAgCBAlqaN4slQqoVQut91ZDhXsWeOeInxc7zZ6WtBb3HvHcXaUIoY6VojXE0KwurKCF4uLSKXTyE9NIdmmoV2rufh1TikAv0JyALi6gypT8/vJAVdSt5oKLMvC+Pg4PvvsM1y5fBm/+e1v8fnnn3c2vWHixLADmXbx2k5QFAXJVAp2pYL19XXEpqd3RZjES4F4Celeih5wpbjB9Ae8ouLhw4e48csv2Dc7i48++sjTMAT1DNyxkmsY+MLEf+4tYOx3YK+14U4sZpsweJA0UFZrLfpTY4Q0RBL8Ku9+0fwo0aQVgo5/fgEfFzMGd/d+EuZ/f6ur4mFogRAQUfRSP35yRhgRIIBn8d0NFhcXIUvSnjEdMwwDjm2DYG+RA4e2L11shlavFwSh+1EYRkRLt3ujzO7bh3gyCVGWdxgbBa+x2ZFbCRdfF/wqyUEsFkOFkIa+3EB7YSLgThwE7pf+9Tff4OLFi/j222/xydmzO3wQggi7W6Zwy4867Qy7echGRkZQrVZhGgbKlQqyu1DaqOs6gG0R516LHqiK4pY9GgZURcEvN27g0cOHOHL0KE6eONHy+/DC1mwcNRNCBl8f3OX6w93+xRBgqQ3L8s5v2TZq9fq2yK3JmPXGs/s/jT9ji2PD75r83jufYyIGFRZsUFAQEFfAKekNizj/bAgu8j79RLVe94ysNF1veJ8/RA/A3c1zhbrv5wB7Rlj9O1/gBUGAADQSAFF0f9YNGWZRBX7ejosqpXjx4gX27dsHshfq2Sn1njU1FvNIz66TgxCli10fkh03zGcLo1OwTBM/Xr6MwtISjh8/jtGxMayurUFWlAZX3SCaHVWSZaRbNe/rAbOzs3j58iW++eYb/OY3v2n72ps3b+LUqVOwbRv/9t/+W/zxH/9xT+f8VZIDSZJAZNkVnFnWDiVvs+iBzYRJfAGQJAlfffklfrp8Gd9fuIBTp07h8KFDrRd1NiF3GsidFNi9POSCILiljRsb2NzcRCqR6MltrR/oug4Q0pjG2UPRA1mWgXodmq7j5o0bKBSLOHX6NBbm5xvFbk3e28034tcetANfWC3mzMbz5oS5e3qNYViYvN0izU7sP3jotIRFbSRoEjZ1AOomFPSahjpq3gIeCtR1maOWBaoonl+HP4rgERYWaePljt7i70+5sM8Qte6Ck9agRbVHUhynwbJ5fX0dlVoNp1nlym6DR+gIIVBluYHo8VD8rmCA5KTTPEIpRadZpl6v48KFC6hUKvj000+RSCRQ1zSoigKBEFi2jWby81apjWzEKYVPPvkEf/mXf4mff/65qQ7Dj3/0j/4RbNvGoUOH8A/+wT/o+Zy/SnIAbJc0WgFy0Cp6wJtuSD4hkihJ+OSTT3Dz5k1cu34d5XIZpz74oOVOpdNu2Wmx+ATBSUo38Jc2bm5tDb20UWc7RX/5516KHojMEOna1auo1Wpu86TJyR271mGB7+6DAjfZNEEphSiKSKfTO9/o260HQ/X+33th+w6/ExwCCxYc9h8FIEiCJ7TyRxoI2kcrbEZa0ul0QxlxLwv8wAR2LZ5/v2W1P8qx+Pw5YrEYJvaAKp2bs3GtgaedYd+NQyn2htNBFwhBQGkHF8VO42tjYwMXL14EAfDVV19BluXt1syKAl4C3fTcLc45GjE5+PTTT/GXf/mX2Nrawv3793GsiaU/APyX//Jf8D//5/8EAPzZn/1ZXyZMv1pyEIvFUBcEGLqOeCzWMICaCQh5fleW5R2piPfeew+pVApXr15FrVrF2U8+aV42SAiEFiw2rM6g52WKEIyMjmJ1ZQVbpRLSmcxQa581TfMiLn4IguA6uA1LYNcElFJslUr44YcfYNs2PvzoI0xyYhDuAIO5sECo3f1nB0Gqb/GK4o46jo0tbHnkAACUuIpkl+Yu3AgIQN/tt3edULLvwLZtLL58if0HDrhum0PwXWgH3TDc6gpCGp5tgUcPdonk9pXSCCkgbH+I1jvtV0tLuPzjj0imUvjss88gShKq1SoAd5xalgWw6EAwtdC0fJFhNGKy+Omnn3r/vnz5clNyYJom/vE//scAgC+//BJ/62/9rb7O+doRyaigqioEttBzUyMPTQaSxZikJElNf7+wsIDPP/8cK6ur+Pbbb1Gr1ZqfuJX6tgUzbYkeJqF4PA41FoMoilhfX+/6/f1A17SW1sm71YSHwt1NFYpFfPvtt1AUBWc+/hjJZNKLFIXCABeE3a5OF8jO76aXagX/Tr/v0PYgQ9RdvPbFy5cwDAMH5+e9BUjgKZEhL8TUcbyup2pgswN2v3ejnLFvh9gunq1mVSWtIlOUUjx48ACXLl7ERD6PL7/6ynO/BbZtj7k3CoCd0YMW15ZKpSK3TT5z5ox3HT/99FPT1/z7f//vcf/+fRBC8Od//ud9n/NXSw4IIUixsKyu6zvYrf9r9/QGQNtc/eTkJL755htYloXf/Pa3zRdgNoH40c2Oo9tSxiBGRkYgEoJavd6awAwAmmG09HYfZBfLIHiEhlcVPHv2DBcuXMD42Bi++vJLZNJptw8EE3WFO+jwFquh7/2ajbMePq83biMgBnulZv/x48fI5/MNZW5eWoY0VpAMGlzTIwnCjoigwK5jEI3gOqHfT98NyaJoHF+t5hWHUly7dg03btzAkaNH8eknn0AURRim6UUxY6rqOmH6ojB+ctBuzsr027K9CeLxON5//30AzcnB2toa/tW/+lcAgL/7d/8uPvzww77P+aslBwCQSKVAJAkO6+7nh/+h5rtIUZLcwd5mwGYyGXzz9ddIJhL47rvv8PLly50v4mpxNOaFhwFe2igKAtY3NoY20eqa1rKNLUFExjgtwO+xV2rIKgxu376Ny5cv48D+/Th37hwkWfaiG6Zpep4FHY8/sCtvdrLt3PduoZcRG5XHQZRlmv1gc3MT6+vrOHjwYPsXsu+LRxQGQSQd2/Y2OM2eMV6xsBtphb7R5XfN9Qfu/zTRjpkmLnz/PZ4+fYpTp0/jBKtE4pEXgOk1mE0zodRLEVt+ctDmGkYGVMLIUwvXrl3bEcX4F//iX2BzcxPJZBJ/+qd/Gsn5ftXkgBCCGMudttspcr1BQy+GNlBjMXxx/jxmZmZw6dIl3Lt3b+dAZfmqrtl8QEXdC0ZGRiCJIkzDQKlc7uNI4aG1SStwRDl1BUsG/STIcRxcuXIFd+/exckTJ3Dq9GlvxyGKIiRZBgFghIgedGo7GzX4PRrmOYORrl6iPFxN3m83xoEvbyGv7/GTJ4jHYpiamup8SGwTVK/8EgAiIuZ87pJEEXKzyCZPKwyTHERE4Lq9Yk9Q3kQPUKtW8e1332F9YwOff/455ufnvd/pug6HCX0VRXFLjFnEWFYUL1JgM5+SVs+AxJreDQKcHNRqNdy6dcv7+e3bt/Ef/sN/AAD8yZ/8CWY6lNWHxa+aHABAnKUWLMtq2m+BYic5CANRkvDxxx/j2LFjuHnzJq78/HPDAkXQg84AiIT9C4KAbCYDURSxtbW1I2oyCGj1ettGVVHsCCm2a+B5dCB4t0zDwN/8zd/g5cuXOHv2LI4eO7bjvDz9wZXfbTHoXayvFG23ELRQ7ilyEFFaYeDppxDHN00Ti4uLmF9Y6GnM+lMs/U7Ajm03VCg0gwB4u+OhIaLvqZeRT7EzHbG+vo7ffvstLMvC1199hYlczvudzfxNAObDQoi3MyeEuWaycWtbFoQ23TSz2ezAoqB+UaI/tfDHf/zHsCwLs7OzniAxCvzqyYGsqlDYolVnYSUO3sub7w679U0nhODEiRM4c+YMnj17hu++/RZbW1sA3AlCEMVdE5yl02lXNEMpVtfWBnouSik0w2iZVuDo9V7wCAzXEbSalvjOoVwu4/z585idnW36OlmW3QmAuRG2P/ngd2P++7IbkYPg2XrqE8K7ie7xyEGYq3u+uAjbshp2nr2Ca5m8tEOX0DTNm5tazU98sdp1I6QhwV+t41CK+/fv43e/+x0SySS++fprT2vGoTEhp+y7h1YgDcarFGzbbnsfB2mZfOTIEc918fLlywCA//pf/yv+23/7bwCAP/3TP0UihJ1/WPzqyQEAxJmgyGKCFD8sywIo3dYbAF0vCPv378eXX34J07Lw13/917h58yYMFo3o5MoYBJ9M+gYhyE1MQBQEaJqGzc3NKI7aFAYrsWq1s9m+pO53yX6b4nbgOwdKKb766qu2Pg/cQAaEdCdMHBCCnRvZD4d2/mDFQi+RgygEiZTSwe9+Q5TFPXn0CNPT051btncBv3V7WH2AbVkwTLNt1ABgZlIYTlpht/UgnlCQEGxsbOC3v/kNbt68iYMHD+KL8+ehBO4Tb6BGgIbv02GupGKAHHS6h1GXMAbxySefAHAjB5Zlee6HZ86cwR/90R9Feq635ACAHIt5pi5aYDHglQQN1pk9PADj4+P4g2++wTvvvIO7d+7gr//X/8LK8nKjqUpI9GKC1AySLGNkdBSSKGJ9Y2NgC6EnlupADoDwxkgOy/+F2Q29evUKf/P73yOdSuHrr79Gqk0TFQ41FgOo61C4o222D3QYk2GTzzjMKTj4EXtZYnjkoB9y0G1L7EFgbW0NW+UyDh46NNDzkBCRBE3XQcB2vG2sm/3i50FimFVHrcBdRa//8gv++je/AQXw9Tff4OR777nRwMYXb5cuqmrD723Wm4L/jM//Xn+UJkgkEogNuLEdTy3cuHED/+7f/TvcvXsXAPDnf/7nkT8bv1oTJD+ILCOmqqiYJgzDQDwe94RTzUoHOQvv9ssQJQnvvPMOJqemcPXqVfzu97/HwoEDOPnee665UohjRP3opdNpaJoGp1bDyuoqZgbQmIk/gGF2WnxSDE4yzVz/OoFSikcPH+KXGzcwOzuLM2fOhP5sgiBAVhSYhgFd11t3sxzWZMh2Q7tiZBO8lF4iBzxM28d17IWg+OMnT5BKpZDz5awHBX8kgetpOCzLgsWjBh2eK6/DJwZroTwIYtAt4SgsLeHqtWvQNQ3vvfceDh8+3HIzpxuGdz+CkRcuRuSRA6/xWZtridoyuRk4OTAMA//sn/0zAMDf/tt/G+fPn4/8XG/JAdhCEItBYnbKuqYh7lsMmg6tHlmaQymymQy++vJLPH36FDdu3MBSoYD3P/gA+2Zmwh83QpY4NjrqNtMxTayvr2NiYiKyYwPbqv9ejEH4o9htSJQ6jts86dEjHDt2DMePH++azMUUBaaPMO7anpW4/QX8xGi4O+jGxcSh3YX2G657t7z9I4Cm63j54gVOnDw51PPyeydgmyR4O15Z9hawdhCwXTUxEAyKuIY8pq7ruHb9Ol68eIHcxATOnz+PZCrVMg3l2PZ26SITIfphszJGjxyg870bHUIXxk8++cQjTKZpQlVV/Nmf/dlAzvWWHDAIrMbdsizouo5YE0vlfsFzplyZv7CwgKmpKfzyyy/44YcfMDU1hdOnTiHeRlTSrwlSM4iShLGxMayurKBULiOeSCAZobCF5/SaWko3gdcRj1Ud9HK+n376CYVCAadPn8bCwkLXxwDctIvI7J15t8bdgncXdkFzEKxW6HYPH5U74jA8Odrd1WdPn4IQggMHDgz8OpqB33XLNGGz1tJhUnXA9nwxMHIwoON2au5FKcWzp0/xy40bACE489FHmJ2b2xYlthBjaroOClfI2Wxesm0b1J9O7vC8CYIwUDEiRzabxTvvvIM7d+4AAP7hP/yHPc9vnfD60viIQWTZU6n7LZWDi/COSboLNNMKxONxfPLJJ/js3DlsbW7iv/+P/4FHDx+2rIEe1MMdj8eRTKUgiSJW19bcNsERwWEh8VCExicw7IUYaJqG3/3ud1hZWcFnn33W14NDCHGjHYR4pU47Lrfno3eH3XxQd5CDrq05oiljHAZaaUgcSvH4yRPMzs2FJrmDAKUUdU3zXPzatQdvwB4wjuoF7a66Ui7jd7//Pa78/DOmp6fxf/vf/3fM7d+/c84OzCOWZXlVSK1SMrzMnHcD7YTMAEsYg8jn8wCAXC6Hf/7P//nAzvM2csAgyjJsUYSqqqjXatB1fcdO0V9Z0O2jRimF06bB0PT0NHITE7hx6xauXbuG58+f48OPPmppqDGIsPLY6Ch0XYem61hZW8PU5GQkxw1jFMRDz/y13DWxm6ZMpVIJFy5c8CoSojAj4X7rlmU17+k+LA0AG3u7IfjaYffdY+QgTPh7t9FqpC0Xi6jXagPbpYWFputu9FEQvHA4L7lu95QQ4LUlCEHYjoMH9+/j7p07UONxfP7558i3mat4h1OH0gYRoqooTckVdRxX7AxAkKRQo31QrohB/PTTT/juu+8AAP/yX/7LgRkuAW8jBw0gsgyVuWE5tt2y+Q4Furf1DCFglGQZp0+dwtfffOOWPf6v/4Vbt241llcOcnEgBOPj45AEAfV6HVulUiSH5ZNZy9+DsfsAiSBA6J3R8vIyvvvuOyiyjK+//jqyh4YLEwnc/hBBDC33z+6P9+0Pc6Lv0yGR5337uVe7LUZ89PgxsiMjkbfi7QaWZcFglT9xX56cgkVlhk2+doFsrK2v47e/+Q1u376Ng4cO4X/7wz9sSww4eBTSMAzYtg2BkJYpGV6pQAQBcrP5J/C5RVHEZAinzCjwJ3/yJwCAkydP4u/9vb830HO9JQc+CKoK+AaNHjBFArZZaDfotj57Ynwcf/iHf4jj776L+/fu4X/xskffpDyox1JRFGRHRiAJAtbX172+5v3AobRpyI2nDjrdm06f1d886csvv2wQk0YBlaUWTGax2oBhRg78TWWGc9am5+q2WoHfs77CrkOMmATPVK3VUCwUdjVqQMFM2giBrChe6fUOsMqEZgQu0jEz5MoZ0zRx/do1fPvb3wKE4Kuvv8Z7773XthGeH5yY8lJ1lfVPaAaLVSoIghDqM+YmJ4eSavqP//E/4ttvvwXgdmAMnVLqEW/TCj6IkgRHUaA4DjRdb2qnDDDBXLedFLtk2ZIg4Ni772JmdhZXr17F73//e+w/cAAH9u8f+KDIpNPQ6nXU6nWsrKxgemqqr4k9GDWhjgPKJrBOd4UAbj/1JgSCUoo7t2/j7r17WFhYwKkPPhhIXluWZYiiCNuyYBpGw45jmDvaYFRlWNhhgtTlouA1XepnpznEhSh4lU+fPoUoSZhr4ag5DBi67uXB451Kgll1C4AdAtZI7uKQicHSq1e4ev06DF3Hyffew+FDh9yywi6Po9XroHS7f0Ir2LYNMNtk7761+LwCIZgZ0Lio1Wp49eoVyuUy/uqv/gr/+l//awDA3//7fx9fffXVQM7px1tyEICgqhB0HYqiwNB16IbRPFfKF7cQE15PeWJCQChFOpXCl198gadMkbu0tISFhQVXADOosB5LL+hLSzAMAxubmxjvI6fm75TmlbWFIAbe5WBnvTNvnrS4uIiTJ0/iyJEjAw3xq6qKmm27NtAhFeJRg1dx7Da6jhxEYIC0W5/boRRPnj51SXmX9umRXYPjNHiFhLqPXK1PBtBTYUjEoFKp4MbNm3i+uIh8LofTX3yBRDIZ2ijND9MwYJgmBEKali764bC0ww7TJAb/O0fHxyO1LPbjP//n/7wjdXD27Fn8+Z//+UDOF8RbchCAKMuwZBkxx4Gh6zANA2jCMgVCQrX07UdARnxsf35hAVPT07hy+TLu3L6N58+e4eixYzhw4MBAIgmiJGF8bMx1hNvaQjweb20E1AG8SqOfUjS/8ZRhGLh08SI2NjfxySefYN++fT0fNyxUWUYNALVtWJbVdZ+NyLAbpYw7zvXmChIBNOyMX718CV3TsNCpNfMAUa/XAWbCE7T/7QSuj/KIZb8L+xCiBptbW7h39y5evnwJUZZx5swZzM7ONsyH3cC2LPcewnVC7PTsGqYJh9K2rpMc++bmurya8Pj5558BuBuT+fl5/J2/83fwT/7JP4k8bdoKb8lBE4iqCpimm9fTNJcg9MgOo3iMOFOOxWI4cfIk5g4cwKuXL3H12jXcvn0bx44dw8GFhch3NolkEnVNg1OpYHV1Ffump7s+B7cz7VdlT1jNcblcxoULF2AYBr744guvEcmgQQQBqqp61Rwpfh+GXD3gmQkN8ZxBI99uqhV462zg9ShlDOLxkycYn5hAOtCsZ1jg3v+UUiRYe/muQch2KXE/pDJkKrBXrG9s4O7du1h69QrxeBwffPAB5vbvb7jmbqMG1HFQq9ddTwNWjdbp9bzMsZOvSXZkBJkBVgv8xV/8Bf7iL/5iYMfvhLfkoAkkVYWtaa6lcqUC0zCa1twL3KynTXohikXRfxyBEKQSCXz04Yc4ceIE7t27hxs3buDe3bs4fOQIDh06FKk4ZnR0FLqmQTdNrG5sYLIL21jKPAt6sZpuhrW1NVy8cAESq0hI9jpZ9ghVUaDrOky2sxAI6WjSEjU8c5fdNEHq4vNGYYA07PJNnsLaKpexsrKCjz/+eKjn5+CeBoDb66NVmLtbCKLYdbt4CoAMiBisrq7izt27WC4WkUql8OFHH2Fubg6CIHjzB9A9MQBcESe3SE4kEh3tmG3LcstCBaFjhGGQUYO9gLfkoAXEWAxgde0GXHvOHa6BTBfQlo13IVxsBwGAA3f3ReHW+iaTSXz44Yd45513vLrfe/fu4fDhwzhy+HDXIcim5xUEjI+PY3l5GdVqFZV4PFTjIk4MAJeN92sQ8uLFC1y+fBmjo6P4+OzZXcn7S6zBDS8pi7HmTEPFnuitEB59VyrshrcDO9/Tx4+hqqpra74L0FjZImni/d8t/N8hP2Y3WoRuu8d2AgVQLBZx9+5drK2uIpvJ4OOzZ7FvZqYhwuQ/Y7ebDF3TvChAIh73jtuSIFDqVjMQAkWW247ZZDKJsQF3YNxtvCUHLSCpKsxqFfF4HPV6HfV6HVYm05CHInAXbABNWyn727D2DUZEBF5K6RvciUQCH5w65ZKEhw/x8MEDPHjwAIcOHsThI0f6zlGpsRjSmQy2trawsroKVVVbRid4GNn/8IUVbrY63v0HD3Dr5k3Mzs3hww8/hCgIQ2k/2wyqqsKybeiGsS1sGua18Pu4i5qDbgSJfqe5Hk8+fEJECCzTxLPnz3FwYWFX0iG8xwsFXDIewfcdFLQK/DkKc38j+g4o3C6pd+/exebGBkZHR/Hpp59ianq6+RzB3FKJIHQ1h1iW5ZUtxmOxhnRoqwiEIAjee4LVDNxrhlvfT+9i5cqw8JYctIEcjyNu25BlGZZpolqtIpNONw5Stmg3G3DN7JL7AeElSoQ0bSOsxmI4efIkjh49ikePHuHhw4d4+PAh5ufncezYsd5zlgBGslnomoa6rmNldRVTk5M7JnzP8jgwkTiU9mTQ4jgOrl+/jidPnuDo0aM4ceJEdMKqHqEoipvDdBxX/TzgstIdYDXYw0QwrdBN46XXUW9AADxfXIRlmrvibcA9DQjbwUYifm0yD3nz0yAqGgJwKMXLly9x9+5dbG1tYYI1R5rI5drOkdxvoFudQb1WA+A2pgpGUJt9Ui6Y5jbpwfdwciCxMsgwxkuvO96SgzYQVBWkVkM8HkeFhZI1RWmoM24I1wX+fxALmMiMOdo9zIqi4N1338WRw4fx6PFjPHzwAI9ZOdaxY8d6E1ex8salpSXomoatra0Gtzh/GiEI6jhdK9VN08SPP/2E5WIRpz/8EAvz89uXAkAMWS0SNbinfV3ToOn6wMqYWoEKgpvKGiaCk3cX57f7rFTYDbtoh1Lcu3cPM7OzbZugDQqGrrvPEi+7iwBetLFVvX4POoQwsB0Hi8+f4969eyhXKpicnMSpU6cwHjYk32X5LqUUtVrNM16LNYmaEh7ZDIxr7oAqiCKUACGzODmQJMzMzg6tj8Ju4i05aANBECDFYpBrNSisY6OmaW6bVL5j9KUOCBpD6IOY1gRRDF3vLskyjh07hsOHD+Ppkye4f/8+nj97htm5ORw9ehQjIyNdnVuSZYyMjmJjYwMbm5uIx+NQVdXroNgK3aYVavU6Ll68iGqlgs8++wyTzVg6L88aQqe+IFRVhabrninSUBvx8J34ENMKQh+JsX6sk3kkatgmvYuLi6jVajj36adDPrPP04BSxBKJaCMu7Xbo/Bn1P1N9pHQs28azp09x7/591Go1zMzM4MzHH3dlP90LMdR1HRazP04yAeIO8LnDJ/KmAAwm/pQDKQVKqRc5UBQFU7ukQRk23pKDDhDjcUiSBEWWoTkOwJgp3337B5m/uYm/PXOUENjAbpZWaPkZRBGHDh/GwsICnj9/jnv37+M3f/3XmJqexjvvvNNVOWA6nYamaXCYe+Lk5GRHn4VuyMHm1hYuXLgAAuDLr77CSJtSoV7Uy1FAEASoigJN16Fp2lDJQWQali4Q/O660Xt47og9LHKEC36HCEop7t29i6mpqYGWqbUCr8cXJamti18v4JVVLeEzduO6oW7HmmlZePL4MR48eABN1zE7O4vPP/sM6Uymu2vt4Xs3TRM61xnE421Tfv65g//N36sGnmdODERBwMzs7O55nAwZv45P2QcEQYCSTKJarUKWZVAwsZBheHWwzYSIwGB2d1xzwB0Gu3mEBFHE/MICDhw4gBcvXuDuvXv47W9/i3w+j6NHjrg79BDXPD4+DmNpCZqmYWV1FZP5fNvP6oQkSYVCAT/++COSqRQ+++yzjjaxBPDKnYaNWCzmljVa1u6aIg0FfQgSo7BOHiJeLS2hVC7j9OnTQz+3aZqwTBMOgFTURjckXE8Yb7MjCCBdPFd1TcPTJ0/w8OFDmJaFA/v348jRo6Eqm5pB6FJ07Nj2ttGRouzY/bcCn5dsy4LB7PKDpMyybYBSiJL0xpcv+vEmz2iRQUkkvJp2WZJgWRbqtRokSXJzqb7wG48eDGrBEthuykHvu2YiCJjbvx9zc3Oecvj777+HGoth/9wc9h84gGwm05IoCIRgZHQUK8vL0HUda+vrmGiTQ6S0eeMlP548eYJr164hPzmJT86eDb3YNrNWHga4W51p29A0redJ8HVAcGEPSw4aPA56EG4O+zvlUYNcLofRIZlr+c/NGyvFVDVyoWtYauZF+Sjt6OFhWRZevnqF58+fY3l5GUQQsDA/j6NHjvSt1eBdWsO+tubrmxBGpxEsi9QNw91sSNKOuce2LIAQTE5NRR7N2ct4Sw5CQJAkyPE4tGrVM8ewLMtNL6RSDboDYLBhX8/ljPVvJ4T0XtZHCGb27cPMzAw2Nzfx7PlzPH32DPcfPEA2m8WB/fsxOzfXWApJKWzHQTwWw/j4OFbX1lCpVCBJUssUAGUlmK1+d/PWLTy4fx8LCwv44IMPug5Be/3sh7w7jcdiqFarME0TNvPEGBaGuRMP7jlpU733Tvj1Bj1pDrp+R38oLi9jc3MT586dG/KZmacB8wPp19OgJULME0IwTRrwQ3AoxcrKChafP8eLly9hWRYmJiZw+vRp7JuZCb1jbwU/0Q/7/Wua5rVhTsTjPY01XddBCdnhiuj4KrDmd9FCezfwlhyERCyTgVatwjQMpNNplCsVWKYJwzCgKMrQyuv8E63tOJBEEUI/BME9KEZGRzEyOor33nsPy8vLeP78OW7euoUbN25gcnIS+/fvx/T0dEO9cTKZhGVZ2NzcxMbmJmRJaupa6LA65SAs28aVK1fw8sULnHzvPRw5fLinB5sAu+J9IAiC26DLMKBp2nAdG4dKDhoR9jZHYYA0TNy/excjo6PI5/NdaXr6hWVZMJinQSweH9x3GyLCtuP37NndWF/H4osXeP78Oer1OtKpFI4ePYr9+/dHVrGzg+SH+P5Nw/DKD2OJRKiIixfJpLRRb0DpTnJgWaCOg9Hx8V2z0N4tvCUHIRFLJABB8CaNmKpC0zTUajVIsrxzUeMhuU4Oij1AEEVYTBy5fbru2ki3PLYgYGpqClNTUzBNEy9fvsTz58/xw48/QhAE7Nu3D/v370cul4MgCMhms7AsC5VyGSurqxAlacfOh7Iohx+6ruPipUvY3NjA2bNnMduvqUgXE0qUiMdi3gQVi8WGFz0YwLhqjYCfRZdphddBb7C6uorVtTV8+umnQyVe3NOAu/INTLvS4TN5C7PvZ3VNw4vFRTx79gxbW1uQZRmzs7PYv38/RkZHI4/UdRv98zdUUlUVcsh7J/C0Cft/HvkDITvSBibTIczt3x/6ut4UvCUHISEIAsREAnalAtOyoMRiMC3LG6BNOxb6KhciNUNif2zH8b5ALwQY4eIoyzLm5+dx4MABlMtlvGA7h2fPniEWj3v6hNGREVeHoWlYWVnB1ORkg4I/qDkoVyq4cOECTMPAF19+2Vc7aA6CbYvpYUIURcg8etDMYntQ4OmlIUWr/Ag7xrxWzcM2iuoB9+7dQyaTwfTUFKKv9m8NQ9ddf4EIPQ1aod0M5Ng2CCGwbBuvXr3Cs2fPsLKyAkIIpiYncfz4cc/4J2pSwKsiuhln3TZU4hCwna7ggm5d10EByJK0PU8xzYVt20gkk5jooqfMm4K35KALxJNJVGo1WJYFhZkhVSoVGLoOmbF+v+6AAp5KOEqCIIgiYJo7avy5GDJKgsDNjVLJJN45dgzHjh1z9QnPnuHZs2e4f/8+stks9s/NQY3FQCnFMiMIfBftUOqZ4KyuruLixYtQYzF8/fXXkQr5CHH7Bw47vRCLxWCaJgxdRzwWG4pBCuHjauBn2qk5CHtWr1VzD+N+mN/hxsYGisWi22BpSIQLcEvk6vU6CNzSu91ykaSOg5WVFTxfXMRLpiMYHx/H6VOnMLNvHxR/aR9bMKOay7y5qoWDYys0a6gUBg62SVJDSsGvN2BROWrbcBwH+V+ZEJHjLTnoAqqqoiLLXjMPfxtfLk5s+oCHLCMKCx6mbTaBBgd+P6DAjlAjATA6MoLRkZFtfcLiIm7dvg3qOMiMjGCMmSvNML90nlZYZM2TxsfG8Mmnn3Zsifq6QJIkyJIEwzRd18Qh9VsfVpWGEDRIDEsO+rFOHiI5uHfvHpLJJPbt2ze0c1K4Zl9EELzo0yDhEUnffd3a2sLzZ8+wuLiIuqYhlUzi6NGjmJubax0BY1HAqATA7brZttpQtWqo1A7NRNEE2LZMptSLPvCmVLZtQ43FkG9iFf9rwFty0AUURYEgy3B8QkRFVd0Wvo7TfmGIcEfiOTC2Ek35ohW9goKFGtu8RhQETE9NYXpqCsapU3j58iWePH2KJ0+f4vGzZ8jncjh65Ags24ZRLmNxcRFzc3M4/eGHDQ2sogQhBELEu5sw8KIHmoZYLDa4PPuu9JTozQSpHwOkYaFcKuHVq1c4ffp0V0K4fqHV614of1hkEnCV/S9evMDTZ89QLpUgKwrmZmcxt38/RkdHw3khwH327T4IAmVtkduep8mx2zVUankuSiGSna6yFPDmbn+LZj6v6oaB/QsLu9IBdi/gLTnoAoQQJFMplFltu8yEiLFYDLVaDbquD1ZUxCAIQtvF3/9I9TTNsVRCN4+9IstYmJ/Hwvw8VtfW8ODBAxRXV/G73/3Osyfdt28f3n///YERA47dqF6Q2PduMovtoUz4Q/p8vWgOuEMosLfJwd179xCLxbB/iIIzg20uKKVIJJODTSdQiq2tLSy9eoVXhQJW19Y8HcEJpiPote+FKIo9+7kIotj15sWx7bYNlVqhGTEA3HlC97Vo5nMGgUsa0tksxsbHh1uFtIfwlhx0iSRzS7QtC6ZpQlEUd2HgnRtrNWRaWYVGVMEgMDFapwez17Bzt8QgiInxcciyjOnNTZTKZdy9cweA61n/4sULjI6NIZ/LIT85ibGxsYGQBW69O/Dl0/c9xmIxWJUKdF0fbPTAd+5+I0ScYHittr0fU+/3iqNAgQKH/daxHViWtT1GfOW1vNS2wQCpy8VnWOZH1VoNL1gZ7bAIjMM7BlIKNRYbyEaiXqtheXnZ/bOyAl3TIBCCbDaLE8eP4+DBg9E8c74UQzcIMy/tIKSOg2qHhkrNILQ5F4XrLwFKoSiKRwwopbApxdyBA0gmk3ua3A4Sb8lBlxAEAalUCiXLQp0JEXn0oGJZXuOUlqEotrD303eB7zTCPJQCn6jDCnYiqu/OZjIwLQuEUoyMjECSJHz04YdYXl5GcXkZjx8/xt27dyGKInKMKORyOYxks5GlA3jucFiQFQWiJIFaFnQmThw0mooSmVEVpRSObcNhu3jvb8dxqzoCk6Zfxe1HnCaQQQbsXXB0G5VKpe17uNhOEEVXqEsIBEFwo16Bfzd834ykDAP3792DxCpyGjAgUkfhEhIATUt+e4VlGFheWcHyygpWlpdRLpcBSjEyOor5/fuRy+eRTCah67o7RiMk491+V71sWKjjoFKtegLElg2VgufqcH3UpzdQVNUbw6ZlYXrfPiiK8kY7n3bCW3LQA7zoAQDDMKCqqstmYzHU6nVomuZOiG0YZz8LoMDa9nIL5U5HImFLHLuwLA2DsdFR2LYNWZZRYb0p5ufnMT8/D0optkolb4dz68YN2MyEZHJqCrlcDpP5fF8GKwTuvRqm/iCmqqgwchBT1YGd17ZtWLYN27Zhm6br5OYjAJ4Ilker/GW18InTqOujD2xXu7h/bf9tExsGDFBQt3KBuGkbr5GPb8zwf9mOG2cglLr2sz74G97wEjZBEFxrcGbqJQgCREEYWMi9Xq/j2bNneOfddwee5uLQmMIehLjjusex4dg21tfXvWdnY33dTVGkUsjncjj+7ruYyOcbqgxqzA+gl2ZK7cC/vzAbkG6IAU8JNiMGUVlLayylQAQBCjsmpRTxZBKjY2NIp9NDd13dS3hLDnoAIQTpdBqbm5vQLAsKU9UqigKTNeOp1mpIJZOtH5g+BIqEEHdCt+1wwh52vrYmSWy3GXVVxfj4OFRFwebWVkOJIyEEI9ksRrJZHD1yBLbjYG1tDSsssvD82TOAEKRSKUzm88jn88gFJrwwIOgvN9oOzSY6RVEgMjtXnl7oBw7b/du2DZuFVm3b3u6e517IdgkrrxBgO3K+6ApsofX+HUgDtJsENbGOEkpe5IDESNPUGU9NAO5iJAkCJFlGTFXB2y877Nptx9lO+/AIBwBqWds/oxSSIEBgPUxEUYQoipGEeR88eABBEHBwYWHH7waxHJimCZ21BE52qzOgFCX2/CwXi1hdXfXKqXOTkzhw4ADyuRwSbXLjlJmmDSrVJYR4xnqKGNRqPRGDMJ9S0zRQX5UC4BLWmdlZiKIYmfPj64q35KBHxONxVCoVWI4D3TQRY6VI8WQS5tYWLNOEpmntc2N9EASBEDiA9+B0QluTpB4EiGEhCQIymQwKy8uwbBsrq6vI5/M7JilREFwdQi6HEydOwDBNrLDJsFAs4tGjRyCEYHRszCMLoyH1Cnx3M5RwNUsxVatV6LoOtYvogUMpLGasZTuORwr8sBghpJR6jb+4pbXASBcnAJF9pJBdGf0kg5MyVVFaptg4mXB4qoP927Jt17YW8LqgWvClMCh10xWCAJEZ13DCGQaGYeDpkyc4dPjwUNptO46DWq3mbiBUFVKIcwZ1A4amgRCCifFxHHv3XeRzOWRDpuD8vQoGthOmtP0z1qXOyuHEgPVMCEsMaMj50LIsL5rCxcOUUuSYgduvPWoAvCUHPYNHDzY2NqBTCoUNSm7KUa5UUGM5144GGj0IFAXWDdLvktjxmt0L3/EADzorH4vHYVsWBLihvLW1NeQmJtq+R5Fl7JuZwb6ZGQBAjU2WxeVlPHr0CHfu3IEoScjncsjl8x31ClHZS4eBqiheMxiedmoGTgb4n6bhdybA4rvmuGlCEASMZLPeZBmsX48aO+5piHOF6avgj24A2E5T8GMw0mDzyAkzpaEsjG04DmBZrkiNEEiSBEkUITHleSs8fPgQFMChw4c7fo5+4dcZCKLYUmdgGQZWVlc9QtBMNzA+Pt6TuNPTHaFHz4mQaEsOunjuqOOgWq1uE4NkMnTEQAxZBVGt1TxXRO63kkynkR0dhSRJjc3mfqV4Sw76AI8emKYJEwB/7BVVRcy2UatWUa1UIKTTrXcLTKCILhcuiZnuWJbVlZlQkCDwkrNBLpmqogCUYnR0FBubm6gy/UGrLo7NkEgkdugVisvLWPHpFWKqivHxcWRHRjCSzSKTybghXJZ/F/qszQ4NQqCy8lZN16Eoijdx+smA6VP88wVeYiRAFEV3dyyKDRM6r/EeBsnxPk7Q5yDEe3jEo58IBifbfkU/jzRwomDbNizLggPXa9+yLDiaBpGTBfaHX4dpWXj0+DEWFhaGYsKlaZoXBUmwpkqWZaG8tYWtrS1slkrY3NgIpRvoBVyt385UKDIEqhcoZQ3XuiCuvCrBtCyIXRIDASFSF8T1QOHkgKcOBFFEbmoKAN5GDRjekoM+kU6nsb6+jrppQonFQNjgTCYSbrc1w0ClUkEqnW5ftsQe4rCDkivAg7vNsOBK3kETAwDe55YYIdjc2sLG1hYkSXJ1GV3Cr1c4FtArrG9s4MGDBzBZpzZZUZDNZpHNZDAyMoJ0JoN0p+8iAsRY9MDUdZQrFe+7Ck5efMfr2W/3sJh6quxBTWjBsrIOE7Bf+9ANOWhaebHjUohHnvzn4wJNHoHh6QiT3XNOFp48fQrLsnC4XdQgoiiMaZrY2txEuVKBoWkoVyrYKpVQLZVA2T1NpdMYzWZD6Qa6hRctw/Z3NvAlj81hnoNiD8TAsm2ITLQZWmNAiFeK2OZFoJSixnQMkq899vS+fa5TpSy/jRowvCUHfSIWi3lte3UAfvlZMpkEdRyYloVyuYxsJtN6sJPuLJYlSXKV4Cz/3A3TJYAXmh0GeFrFMAyMsC6O5UoFq6urkESxb9GeX68AuBOhpuvY2tzEVqmEra0tLBeLePT4sSd0S2cyGMlkkM1mkWFEI9ZjL/ggHJZOMAzDtcj1tXMWfDtaWZIiU16jyx1aNwirOeDw6yS6IQe9jkbiu6dg4kceUTAty40ywN3FP37yBFNTU3AohWmaHskOHLDra7BtGyU21ra2tryxZ5omKKWQZRnZTAaT+TyyR4644y6TGVgNPbcG9lemDDxywMHIWDffJycGXBQdTyRCuR9unzIcMQDgluFS6vVBGRkfRyyRAKW0tUfNrxBvyUEESKfTWFtbg2YYiCeToGzXSgQByWQS5XIZtuOgxAhCy91hF0ybEAJRkrxQarfCKgIMzWGPh9X5bn50dBSWbaNWr6O4soLpqam+w6d+EEIQj8UQZ62nOfwT+PrGBrZKJRSKRbfWmbiNV7KMKGSyWW8CD1MX7tg2DMvyqlW4SyPgEgKRqa27mfC6+szo0Q0zBILiUUrbT/uebXK3xCei8egnCzF2PbZt4/adO7AtCwvz87Bs2/ueZFl2HfJCihrrmoatzU2UWFpga2MDlUrFK81MJJNIpdOY278f6VQKk1NTiMdiwwtVk8b2y9zcqlNVShSg8OkaQm4+KKWo1usNxCBsBK1Zz4Qd8OmN6kwLBCZylGQZk9PTnqHdr9UquRnekoMIoKqq14CpappIiiKobbspBlaOV65UYNs2yuWym9OKYMcgShJIj+TA4WFo/98Dgj9yALi7ydzEhLcwF4pFTOXzA+98JooiRkdHMTo6igNMu0ApRb1edyMMjDAsFYu4/+CBN5mm0mmMMLLAiUOMdaA0dN2zw+W6AkopRFlGXFEQi8XckqmQKuqwCE6Hg6R53S4ne62ngiAI0HUdTx8/xuHDh5HL5WCYJkzDgANXh2AYhlvvLkmePshxHI9Mlra2sMmiAtz6mEcDcvk8Dh85gmwmg0w2u22P7DhIp9PDvw/BVKHv2R4kOWiohuCppQ7no5R65bkELNoa+oTNeyY0Owe/jkq5DMLSCYIgYP/8PCyWmn0bNWjEW3IQETKZDFZWVtz+CskkJNuGwEoHqSi6BKFchmlZqFSrSKdSzR8c/rMQAkXeItqyu+tAT+FzQuTnGCBB4MTF8OkjBEFAPp/H8vIyDMPAUrGI6cnJobVG9Rv+JBIJJBIJTPuiDJZloVwqeQvC1tYWlpaWPBKgKAoSiQTUWAwqa8CVSCSQSiaRyWTcz8HIgmmasG0bmq4PLJ85yMjBDs1BhzN5rZr3CDkAgNu3b0OSJBw9etSt+hBFxBQFlWoVlUoFlWoVuqZBMwzUqlWUSyUvGgBKkUylkM1mcejgQWRHRpDNZj2BoR+8+RaFuwMeJjEgQNO8u9cdc5BRg2BalFWhtOtvwvP/fmIgCgKskBEHEoYY+P5t6LpL2uBqwkbHxyEpCizL8tLDb7GNt+QgIsiyjEwmg1KphEqthkwsBoGFr6jjQBRFJBMJVKpVNxddrSLOlPRNEeJB5jX+FhNghX3025UbRe2gBrhhaVmSYHKlPYMkih5B0BlBmMzl+tYgRAFJkjA6NobRsTEA7j3TdR0bm5solUool8soVyrY3NyEruteyoQQAkoIJEFAPJFAPB73HDQVRcHY6CgSiQRiiQRiihJtadmACJ6Axmt0QpKDsAujv6dDVLAsC3XmVrq2toZnz55hYmICV65cQV3TUGM+FP5rEAQBaizmRgRGRjCzbx+SqRTGRkaQSCY7ppccx3Fr5wnxUhVDQ5tn1xMjDoqotBJTt6nC4sTA8hMDUQw1DkKlErCTLFeqVQCuWFiNxTCez8OyLIiiiBHWZv4ttvGWHESIVCoF0zRRr9dRrteRUVW3lIgNZFlRkGAPRV3XQZgYrylB4BN9m9Acd4uzbRu2ZYVS4DdEDZqADIggyEy0GQQnCCsrK9B0HcWVFeRzuaH1JfDysy3useM40A0DuqbBoW6DlolcDvtmZiAxLQXgag40TUNd01Cv1byFSavXUa1WUa3VvPQCPzchBDFGIBKxGGLxOOLsTywW8/7NF6Vh9RwIYodUtsN1dKs56MagilIKwzC8+1uv192SUU2Dpmnus1Wvu4SZNjpHapoGQRCQSafdyoBEAvFYDDF273m+2bJt6JoGg6XsKNxwtCTLUFW16XNGKfVMdbjmZaho80zzVNcgohi8IqIV8WjmnBgkBolEYnuMd4oadCIGbN4MjiabaZzAyiMnZ2a8535sbGzPpMD2Et6Sg4gxMjLiqqRNE2XDQCowQaqq6i4kuo56vQ6RWczyTosNCBM9kCTYjtslrxM50HQd/+//6//CVqmEXC6Hf/Nv/k3T3ZBpmvjTP/1TPHj4ELIk4Z/+03+Kd995p/OHbwNVUWC2KLuUWPOl1dVV1DUNxWIR+Xx+KG2P+SIdBLc/5r4C1HFARBFxFn7k7+EpHUEUkUgm3VK08fEdx7NsG+VSCbquQxJFd4Fj5KHOFrnNrS1o9bonlOPRIEVVXaIQi0EQRZdkJhINngiiKLphfEFo+nNRFD0b4n7Dy+32+dyHANgWMjqsesAzMmJ/894QDhu//tfwagObkS7/wu/4SiUBNBCpXC7nkatEPI5ypYKrP/+MT8+dw/T0dKjPJxDXyVBRVXcccKJg27CqVYjM2Iw3XQPc1r+2aYIyjdEw6+Q7kflBkUqP1LVZWIPn5hofPzEI+li0O1YnYtDq/RVWTixJEsYmJjzn2pGRkaG4ZL6OeEsOIgZnoqurq+7EZtuIiWJD7i2eSMBhO6BqtYpUOg2Iohu8bUYQ2jwwkiRBNwxPVNMOqqri//5//B/4//6n/4SVlRX8/ve/x9dff934IkrxF3/xF3j48CEIIfh//Z//Z9/EAABkVW0aOeCQRBH5XA4rKyuoaxqWl5eHRhAEViMNuOFojecm2SIkiCLiyWTDYuAhpL+AxBYUXsUw0YRAcJjMervGSINWr6PO/myVSu53zZ0DKQW17cZWy36hKbtGnp/l5+cGSwJzFRSYFbHkM1/ir6tVaw3Xt/jiBS6vXfb6PVisGylfzC1u/+w4rgEQpV70rKGNNt/lBULPoihCZERGEkWobPEfHR3dXvjZrl+NxVoujBTA1atXMZHLhSYGQYiM9MUYWTRME7bjuMRO06Cy1ty6rrs6g3h8aLvQVhqDILy0QoSExcv3dzgmP6df/MvJbzNi0Gqm8yIfHVKiTd/L7KspgFQyiTFW8pxKpd56GrTBW3IwAHBV/NraGnRWtSAHduiJRMLzQKhUKkinUqCMILSsu24y+D0zpJCixD/8gz/A/++//lesra3hr/7qr/DFF180RA/+03/6T7h8+TIIIfh//NEf4ZOPP+7qs7eCIssNOd5mEAQBuVwOK6urqLMyx/z4uOcRMEhw/3udERjeuyDGctAt0cWEG4/FYBoGLNuGYZotc9KyLHv+7kFsbG4CADLZLETfztxhC7W3OLMFumE3zp0F2a7dCezU/bt4Q9e9Hgd1rQ7LcUBtB4QA5UoZZbviRSYU1gZYZJbeDtPY8HAxT3/9/9t7sxjJrvS+83/OXWPPtTKrKjOrssjivlY1ySapptQtQO2xPa1hSwJkzzwYFqAXwwPLgAEP5t2GRp6xrdGDZQi2ZNiwPGq1x2qP23I35KZEqsnmUmQ1q7lXkSx27blGxN2XeThL3rhxI+JGZGQt5PkBgVwi4q4R53znW/5fkfoj5V0YNV2XpYTTmsIuXLiA3U4HXxvzM1w0yVBNQ6VahS3CTPyz7DoOuq4LU9dRrVZvWp6BFBoq8Vox6U7LaCmTCJh/fZIk0jAA2AIp7+kcdi500CJJGJhDFlBdx2FGFCE4vLIiv9dF3y/FHso4OCBMXjO/vb0NJwxRTZKeSYbw2JfQQBAVDClvhVvoPiv4gogBVQz0w5KmkiSBrut4/vnn8Xu/93u4fv06/vyFF/DVr30NAPDd//Jf8N++9z0AwF/9q38Vf+XrX2dvnIJb0jRNphc/AlHmuLGxwfopbGxgEZhISbEMCY9FezynIOV5BYNiy/uB8hwTESs3igR4ypLxDFBCmAcA/f0JpsH3f/jf8fHVT+Sx3nPyJH72xHOFrw2CAI7jQDeMUvcsFUlrUyaKIvzkJz/B2urq+MlmQ7x1hLdmty0Lnu9je2cH4BUpQqHxoNU3AYylbDotz4EoVRz305WmqQyXAWxhZAzI2yj459Ck7VJ9FLpdIE3RarVYszZdx8zMzE0N/dyJqCyMA6RarTJtcMOAGwR9q3tCKer1ukwq7Ha70pUt2vL2kftAE0KgaxrSEd6D7KTx3HPPSXGgP/nOdxDHMV555RX8+z/8QwDA008/jb/xq7/au899fpEMw0AQhqVeSynF/Pw8W3kSgus3bqDd6exr/0UEQYDd3V24noeEG28zrRZqtdqBDfCWZYFw/Xl/SJhlECPvwi2uVhCfwdJljAcUD3/3vfcQRhEefPDBsd9LSh5THMewLQu2ZUnZ4263C0fkRRwAk3QXnYax2KNhMAYJb6Ikwp7VSqXQMAAKFDKHGQYod14iOTWKYxxbXwelVCUglkRdoQNG1rwbBjqdDpLcBE65BgIhBGEUweEd3MQgkPA+7D1k4nhAOb2D7BeJEIJf+uVfBgDcuHEDv//7v4/f/d3fRZqmeOD++/Hrv/7r/cbAPgcY0zT7ShmHIQyEer0OjVLc2NzEbgnPQxniOMZuu41Ot4uIr8Bq9TrqvJyKjjEAjztcipUnIUR6K8bbQLkY7zQZp1pB1tTfQuPAcV188OGHuOfkyYliymmJa+h6HpvwCMHMzAxmmk1YPCdFaGT4vj91L84krdX323RpUsMg4iHTmF+n6ogQXV+lwgDvaTJG6Wun00GUJJidnWViZjMzN8Wz83lAGQcHjEhQ1E0T0DSWGFMQGqjx7mBBEMDjJVEC0T8ht2FpQIjQwtCkxNz7v/zkk1hbWwMA/OAHP0AYhlhdXcXf+43fKP7y7NN7YBqGbIJTFsoT9+r1OnRCsLG1hZ19GAgJLzfb5pr3Sco6OTabzb5YsVb2XCe4JpZpyjI/z/PGfj8wfNU0bQNhnN4KyRieg4PKoj937hxMLng0CaOOy/d9+EJMp1KRDbMq1Spr6sU7afq+L7u27hfRxGiSO5umKcikpYxkMsllPwjQ7XSYMihfABlDpImzyY1ib3lRpYF6CgMIeEVYFIZYv/tuNJvN20JD5U5BGQc3AenKsm3EXJwljyhPA9iqJJu8N9CLQAgIzzInaVrY9U/Q919C8NWvflX+2Wq18A/+wT8YvdISXovhr+pDNwykQOnQQpaF+Xk26BKCza0tFucdk3wIQTcMNBuNwZr3ZQfFSSY4QuR19j0P8Tgx91sRJ83tc5i3YxwBpIMQ5dna3sbFixfxwIMPTrxCHHaFwyCQBl3FtmHkVPU0PhFWeRVDCsBxHNYJcEJjiKBE/f8Qsr0VxtvxZCEM13XhcQ+obhhS4KhMuWW2hDd/HOMei1CkXVhcxOLiIur1+ljv/6KjjIObhGEYTG3PNJmMZ4GL3eLxS4DFysKCmLT0ImS+KBqloLqOFCjMOyhKUrt69Sq+/e1vy7993y8/mAqvRblXA2C1+gAmXkXNzc2h1WpBp5S1fN7aKvW+NE3R7XZZCIHXVjcyIYRhEAxIDM2+ZsLJ2jAM6IYBQmmhsbgfpm0+9EWYBtz57ABexjiYtt8gBXD27Fk0Gg0cO3ZsX9spIooidF0XKZj3Z1iTHtOy0Gg0YHFNjCiOmYt7ghbr+/WwTPz+IeJgxS9P4HS7cmyzbJvlXJX0IlHkDAPCBOQmOf4wCLDNW2Pffc89SgFxApRxcBOpVCqocznevHyrfE21CtM0kaYp03vPvUZ6EbIGAk9KHBhayH252u02/o/f/E20221pTXueh+985ztjnc84BoJpGCBAoVFUlpmZGbSaTeiUYmd3F5sjDATRCdMPAsRJAtu20Ww2xxM9GZUUVX5LfQjvQRCGpScNeSQjBsyp1rSXzDkQXgNSVmhpylUKly5dwsbGBh5++OGph1biOJbyu4aul1JAJJSiUqkwrxefILsDvveF7wf2nZOR8m2M446XrxvDsxPz/AKRh1Gt1fpc+KP232cYFOVblSCNY1zf2ECaplhcWMD6+rqqTJgAZRzcZGZmZmA3mwAhcLrdwlVjtVqVqxLhkiyynrNeBJ1PvkWTTPadvu/jn/zWb+Ha9euwbRv/8B/+Q5w+fRoA8P3vf7/0ilxQ1kCoVqsAIeg6zugXD2FmZobV+FOK3d1dbGxuFr4uCEPs7Owg4gJBjXp9sra5hLDs9UGD1D4Gb6ERQAmR0rvTYppDISW9w8Qgz8E4IYVpew2SNMW5t9/G4uIilpaWprrtlK+ICZiYVY1/lssiQg0m9xT5XO1xWJhhkqqEIhL++SeElAv1lBQ3yhIEATrdrlQRrdfrhQb4oNCIyKeA2K8490mqI+IYW9vbcDod6JTi1OnTpVquK/pRxsEtYH55GXalwjLWufZ+vpqgWq1KdUDf9+HkXiNel6Yp4mxSYkYtTyD+TpIEv/3bv43zFy6AUor/9e/+XRw7dgy/9Eu/xKolwhD/73/8j2OfT5kJ1zJNVGwb7d3dsbefZ6bVwuzsLDRK0el0cGNjQz4nNO47nQ4SnoTVaDT2J5HKczsGPbcfhIxrzIWRyhwLMNpVfBDNjOS2B/xfljGWGIynvZI7f/48Ot0uHn744f1vLHtt01SK6FBCxjYMJOI7bdsApTLMUBQG3G+OQZY4YYWnZe/JOJ8ZkV/gOo5coAwL1xV5lETnWrnNouTrksT8mu5sb4NoGk7ccw8OTdlQ/CKhjINbAKUUrcVFVCsV5mrnMsr5L4Vl26hVqyCEIAhDtNvtvlJIIJPdy11x+deIgeZf/at/hbNnzwIAfu3Xfg0PP/IIAGB1dRVf+tKXAAA/eOEFXLt2bfyTKlHN0OBdK6dBs9mU9crdbhfXrl9HHMdodzpweZKfaZpo8FLI/TIo/2C/UxylVBqKruuOHBjL7o8QUqpzXaltlaxWGMtzMMVKhSAM8e477+DYsWNotVr73p48Mm4YiJbC1Vpt30mUpmWhUa/Le9Npt6VRKFz/07w2SRwzCfARxz2uYVCUX1At0aJaGgeZcxXnO67HIksYhnAcB7vtNlJC0Gg08PipUxNtS8FQxsEtQrdt2LUaakLjIAgKJ3/TsphQEhc5ag9YbQht/DRN4WUSGcUX/j9++9t44YUXAADffP55PPdcr8Ld888/L2VO//hb35r8xIYMMs1ms5RKYlkajQbm5+agUYp2t4uPP/2UlZilKWrVqjSspgnF9EvwbC6MlKZpaWGkg/IKFJG/hmlavKotK4Ak4uDT4r333kOUJHjggQems0F+bLK7I1CqZXNZNE1Do15nJZCaBs9x4LjuVD0GAlHhNPDYhRt/jG3GUcQSfHl+QaVaHdxdtoBsF8c0TaV3Y1IC34fnuqxBVhDANE088OCDTF9GMTHKOLhFUEphVKswTJNN/po2cPLXdR31RgMaV9brtNuIClzQpmEAlCLgK+cEbHB44YUX8G0eLnjuuefw/De/2ffe1dVVPME16F9++WVcvHhx4nMbNEi0mk127CX7QJShXq+j1Woh8n10XRebW1uoZtrvTh1CpuKJyG9TJG+5U1bXm8aWynoOREnmyCqQKRpsXcfBhx9+iHvvuWd6NeyENVLyw7BHy2CaEEpRr9VYdRIhiIIADq+EmCYiLynfPlsmKI75WZP5BXHM8gtqtbEm4SSOQTVNegz2a2h7vOw7imM4jgPTsjA7O4u7Tp7c13YVyji4pRiVCuuEp+tSCTBJErTb7b7EQk3TWOxc15EMqGTQDYNtA7xkME3x5ptv4nf/5b9EmqZ45OGH8Wu/9msDj+eb3/ym7FD4rT/6o/2dXEGYodFoIAVTLZsWURwjSVM0Wy1Yug5D03Dtxo2JxYXKMm2PhBRG4uGFgfsdY5sE0/mC9xkHBeO51OAooQ8xLc9LCuCtt96CZVk4effd09lmmiLk7bSBYi2DaWLzcj8QgigMp1rWmoJNxkma9hi0KXisHyjtxk9T1oNE5hfoOssvGNNoyucYTOonSdMUjuMg4CqUYRBANwzomoaHHnlEySNPAaUjeQshhMBqNuHxTnuNRkO669rtNmrVqtQHANhqo1avsy8Fb3CTxDEqXDyJEALLNBG7LgLfh2maeOyxx/Dv/u2/lWVCwwbuo0eP4g/+zb+Z9klC9JtvtloAIWi325iZQmw4m9RVrVYxOzuLGzduIIoiXL16FbNzc2geUOc1cS3TCVZfxRtkCWuddpu5RnlnxqLXAeU9AtOOYQPFvRWyIYWRpZ9TOp7PPvsMV65cwVNPPTX2JDUIoWUAjNYymBYGFwrqdruIwhAOYVLD+6WoUkHG+cfZTpLAdRy5YDEta7wwQpqysFkuZJJisjBKmiRwXJfJMoMZHKKp0/qJE1g+cmTsbSr6UebVLUYzDJh8AiOUosFLnkQylJ9bAYtujqLO2vP9nmRG4eILo6gnf0F8jZN9ZANPihhELMNAxbaxO4HCYZ6sqIzGG1iZpomlpSVUqlVQrqZ4Y2NDJspNnSlfR13XWWMmQpjYTsH2y+ocyJdN4bjypYxF+y6bjDgtj4vn+3jrrbdw5MgRHJnSZDCJlsGk5F36hmHISogoDKXnYj/ISgXubRRJh+Pcg6L8ggpPoB1JmsrJv8gImGQcSuIYHcdBHEUgYLow3W4XIARzCwt45PHHx96mohhlHNwGGLYNk3d1SwHUajVYfGByXLdQ58CuVFAVlQxBgE5Gx9zkDWCKktvEl3pg18eDhBA0W619N1DqMwwaDXlemqZhcWEBrZkZaISg2+3i6rVrCKeY5yAhzOE+zQBDpVJhyVppWjxBjDm5TuPY+kSQCkyO0pUKU/rMnT17Fmma4rFHH53K9hLeNl10OZ24ZHEUIjO/oI7fME1ZvpyVaZ4UUamgaRo0EUYYgzAM9/ILeI5E2fwC6Z0Y5kUa02gXnWsTcTz1OrrdrqxMevLLX1bhhCmiruRtglWvQ+erRlkTPULnwLIs1Gs1UK6M2G63EcfxnvdgSOa7KKUqbOp0EPD9tfZZzhjHMbo8lEBzhkGWVquFxcVFaJQiDENcuXLl4PIQpjmJiFp6sNXxIOXEce7Yflfr+fcXJUyW0ThIMZ18g8tXruCzzz7Do48+Ko3o/SAktsElfA/MMABGqg6alsW+95TCDwJ4+1AUTZJkIqlzgCX6OfyayJyoEqGbNOMtKEJc1RTjfYajKEKXa5doPBEyjCLpNfjSE0+o3glTRhkHtxFWs9mTVSy0yQlYLXdRy2fdMGQlQ8wrGSil7O80lbG4PnjskYINIjfLSGg2m3AcZ7xmQ5w0TaXHgBAiW10PolKpYHl5mYVpkgRXr16dms5CljI9GMZBNwypnDgovDDtkMYw+koZi3IOyngOpnCNwijCm2fOYGlpCaurq/veXpqmcLpd6fmoTUHLoAgZRihx30zLYmqevPIoKFnemiUFuydJkoxVaSGEhEQ407QsVEf0R+irPBiVcwIU6rUMIuChU4CFX+q1Gggh2NreBqEUd91zD46srJTenqIcyji4jaCUwp6Z6UkiM00TjUYDlCsYttvtvioFUcmgZyoZCHd5D+tlILwUlFJWY52mBx5uaDabQJqi027vyaSWxBVJSNwwKONCNAwDy8vLe3kI29tTzUPITpwUmNqkLcILSRz3ejwmmGCnvQbOGwfZ1eIwz8E0juPHP/4xwijCY489tu9tCYW/iH/ma7VaX8nfNBDiZOPcO9mETdNkJ9ExdghgL7+orCiV53notNvyO2aPyC/IlyKO0wuizPc+4WEEEV4zTBM1LrQkpNFn5+fx0EMPldqnYjyUcXCboek6rFar5wupcZ0DwzAQJwkcx0EnJ5hEMkl5aZoiiCIEQYAwCEoNLCL7XkoyH5CR0OJ9JUTeASkZCw3DEJ7nIRGD+BirO0JIcR7ChB0is/QcOyEyX2C/EEqZgiYhcD1PakNMOsHuJ7QwSudAhBSGNVwa5W4uw7Xr1/Hxxx/joYceku3NJ0WUwoVhiCRNUa3VoPPOplMjq3g4wfW3LYs1VKO0VO8NEeMX7d1FlcCo70rEmyYJb4FuGKjX67CG5Bf0jA28GqlsaWRS4noEvi+9hJRXbwhRM8/z0Ol2UalUcOr06alrUCgYyji4DTEsC2YufiZU1WrVKgiYe3U350UQlQy2ZbGwQhzD9f1ybkn+ZSWZn8JISERy0RQmPd0wUK1UenosjJq4kiSR+vamZU08GGTzEIIgwJWrV/edh5A/cgLuWp/CtTJME4ZpglLan5R6E8MKfY2XcvsWxudQcah9hhSiKMIbb7yB+fl5rK+v72tbwjCIokiqaZr76b0xiFxN/9gQIiXWkzge2c0x+92VlQpD7knCFxpdHq4klKJSraJWpAbJQyKFwkVj5jQMuyZZb0ECVjVSr9dlbkmSJNja3oZhWbj/oYdUK+YDRBkHtylWrQbdtnu/SITAsm00mk0plSy8CFlVxUq1iiof8KIwxNbW1lgx/uxkLWKlaZIgnoKiGQC0Zmb6Y/9CNKlg+67rygREkaQ5KSIPweIeloPKQ5iWgSCS0+I47klOG3vLB2hMjNNwaVJ+8s47cD0Pp/eply9yDIRhUM1n4E/zOk1hW1TTWEkl9yAVeQGLjGvZU2HAPREVTiJpWSi1Zq+F7HnAFwc9Z8O9BZMwaAzxM94CAqZMmTdUdnZ2kKQpVtfWsLa2NuERKMqgjIPbGKvRgFawotE0Dc1GQ5YyhrxSwfc8+cWzLAszMzPQNA1hEGBrcxM+VxMrTW7QEXkJCU90mtRQaNbrg8sZcyudIAjYcSeJbPu8X0QeQjWTh3D9xo2J8hCGeT2mUdNPKEWVC8542clhzGs/zbBCkuutUKqMcR8T5cbmJj788EM8+MADqO0jI11UJYSZHIO8x2AqobQpG2KmZUE3jD0PktgNsFeJkLu/gzwHohzQdRxZ+lyr1/uaJg2TNxZhkknOsqjSJeH6Ep7nSV2GRrMpNT8EIpywuLyMu0+eVOGEA0YZB7cxlFLYXFWwCMuyZCJitlWxWMkZponZmRkYpikVFTudTikvgkhoHDal9IQdSmZiA6w7Y6fTkQpnBTsHCGs05fBeA5ZtT3UwyOchOI6Dy1evTiUPIbsPSgjIPicLMTmI/INJ2zFPah70iSDl9j7KONjP2cdJgjdefx2zMzO4ex8SyUmSsJr4OAZJU9Tr9aEKlGOTjaMfQBlkrVIBCJM2931/pFKmyBkSq+6Uv6/T6ci+LJZto84bQBWFDQYZlBOfXZr25Ellj0mIGlUrFTQLOqmKcMLswgKOHTvGEpsVB4oyDm5zNF1HpdUaOPGKXASxCo5yXoRKtYqaGADAYrft3V1mpZeZtIS7f9BAIcIOaboXdhixXdFWtz2ix0IQBIijCJTSA1OrE3kIuqYhCkNcuXq1VPJXllGD5TSSFKtickgShNwlPi6THkGfBFJm36KrHnAwYYV3330XnU4Hp06fntj7kTUM0jTt+T70Mcl9EobBAYZuCKXMQABzvydxPDT5M+HnSimVKoee6zJRJJ7gLFbmhWGDoQcz2X3I7kPkFghvgc69BWaBXHWSJNjY3IRlWTg8RUVMxXCUcXAHoFsW7JmZwV9eQqQXwTQM6UUQ7ZENTYNhGLBtW1YzuPz5ovbPfZsXjxGlhzLswB+DXtvgwkXtYbF+vqpIgX1npo8in4dw/do17ExB4jnLfpXbqKbJsjLP80rdt75tkNFNkYrJhRWyv2caLk1bnW57Zwfvvfce7rv//olXisIwEN6NxjDDABMYUEMM52ljCA8SF0gahDhXQohcmSeiPJHH8UUDpJupkipCkZ7vy+6zBKy5VYN7C/JXMkkSbG1uglCKw6urWFtbU+GEm4QyDu4QDNuGzbsaDoLyxkzCixDHMdrttoxJhmGIWq0mRU3E8+4goZ0B+yiF8CZkww4cXddRq1aHJgKK/Ahd02Do+p4b9YAGM13X9/IQKMXWzg6uX79eLg+h5ORA97m6tCwLhq6DEALngLtOZukTQcqcw6hKhUmrXJI0xetvvIFGo4F77rln7PcDe70ShFJgGZW/sXNybtLkKjx0tmkCaYowDAcea8y9Sx5vwAawKqFGo9HTYXKkochLMadFzBUNZckkr0QY1mp7a2sLCaU4uraGEydOKBXEm4gyDu4gzGoVVqMxeADjX2TLslDPeBGSOIbvugiDAFEUweLCSsKL4HkedgvaRA+j7KDRE3bgK4c0TdEa1mOBew2SNJVd8YT3YppKhEXHuriwwBI5+QR8+fLlqcou71d9r8oVM6MogjeBch5QvDpOc48s/fd6LyEtimOkhEDTtMLtTjq5vP/++9jZ3sbp06cn8kiIxDshPlQvKs/LcdsZBmJyzhjXuq5LQ6woPyZJmYqo53lSd6PKq5dEHlFpxhQpG3YejuNgN+MtqFYqw8M7ADY3NxGnKY6urOD48eMqz+Amo4yDOwyrWoVZrxdm/WbRNA21Wk0qilFNQ9dxsLO7iyRJmJehVmNKg5qGhHsRipo85cnWU48z+IuwQ5qmaDQa2NjYYIN3bn9RFPUkVRZt5yBduc1mE4uLizD4dbly9SpubGwMdOWPcyQyyXPCQVfTNBmXdceQoZZxZVGexh9JuieYk30kmUd+1k+wV6kiwgrC6EkBpNxwSDMCQOOcbbvTwTvvvouTJ09idnZ2jHcyhMcg5ZNrGcOAHXzJHJyyr90HWUGyns86Iez+85BBliAIWD6R78tmRPV6HfqYGg7T/GZFYYi2MFbAdAsajQZMyxq6n63tbURxjKNrazh2/LjSM7gFKOPgDsSu12HVaqVc3qZlodlssj4EALqdDra2t+E4DpIkgWEYrE00n3B838duuz1W1r6QYR5nlXHo0CH4vo+t7e290shMTDLlXoNBA8h+KwBGIfIQqrUaNF5CdvnKFTiOs+9ti4F/0ui/aZosPksI3ILkSTnJg03+MffaxEkiQzxltfCBAhGkzO/CYNKzk6/YbuYe9RiRlA7cZwrg9ddfR9W2cf999w09riJirvYnDJZ6vV4+UXLYdcis4m8GwypSRPllkiSIokh2lOzy73SSJCyOP6Ap2SDEK6dxhhHvBdPtdqUcc7VSQbVSgaZpQyuhtre34QcBjvAcg7m5uSkckWJcVGbHHYrNwwtBtzvY7coHM0IIWq0W4jjG7u4uXNcFJazVs2masLk0qWkYrHSQN18RDWDKuHXlar7kADq/sADTMHDlyhW5KkgBJFEE3/MQJwlqI1Y82cHlIIZsTdOwsLAA13WxubmJKI5x7fp11Go1zM3O7is7X04047puuVFhc2MuDEP4YQgzI/2bFEzOfRNffkU6Dpnty4ZLRdci/1nIr7oLjumjjz7CxuYmfvYrXynVBTCLNAx4cuS4MtujwnUHnbw3KuFXQilMw4Dnedje3d3L9yCs3bQQCivtLRlRFjkOURgyz0UmRKmbJkzTZAbBiPux227D8zwcPXYMK6urWFhYmMJRKSZBeQ7uYCrNJoxKZbggUSabutVqocY108XK0fd97O7uwnEcWRYp4vwBzyou60Xo0UYYuRolWFpexpXLl3v+L7KwDS76Ile7KI6Hy32XOsLJqFQqOHLkiMyodhwHly5fRod3ips4aauElkT/W3hIR9Ng2zYSAJ1OB0EU7YUBymxnzN4UWcSaNhYhhUGVCmNOpts7O3j77bdx1113jT0pRLxcD4QwYZ8xDQMAhcbKgXsLspPzsP1kwj3Cw+Y4DlyeV6HrOho8RChKA4eSJFMNzxV5CizbRr3RgM0XGLSgGiFLl7//yNoajq6sYGlpaSrHppgMZRzc4VRnZmDY9l7/gyFQQlCpVKAbBjRdR000m8kYCZ7nweYuSZGLIL70pRUExaQ3YuBZXl7G5tZWT+w04pOckHElmYFTqjMOOFeSeUx7QCeEYG5uDocOHZKJnjc2NlgDpwnKCnu2jfEMhBRslawbhlwdOo4z1jmPc3XyQ7qYxKYpmxyGIV750Y/QbDbx8EMPlf4MAewz0+10mLqepsk8m7HJh0GmlZA3AEIIC7EU7SPtFSUS+SKh76PdbiMIQ2aUaRpM20a9VmOdW6MIKQ8XDqVkw7NRDDIKmtwoSFPWFn7UXew6DrbbbRxeXcWRo0dx+PDhKRydYj8o4+BzQHV2lhkIIzopEi4mZOg64jhGFEVoNBpSJS1rJARB0FNmFAQBG5QmyJAfNMAvLy2BEIKrV64A2FNcFIP8sG3l9RT6znrimv7h2LaNw4cPo9VsQqcUvu/j8qVLwzUbRjHKg8AniiSOkfKYsqDOs9BFE53STNACWB4Ov9rJtIyDNMVrr72GwPfx5aee2tteicTXMAylYaBP6jEoPKQDzi0QhkduP6nwDGDPgBPfy3a7DYd3JqWE7DVJ4tcmTpLp3ZMRjDIKCCFSqGnUlXRdFzs7OziyuoojR47g6NGjB3rsinIo4+BzQqXVgm5ZslxwEJRSVCoVUJ7tHMcxS0osMBLau7sQGvSapklBmXG8CHJQz2ZfcyzLwvz8PK4I40C0mcV4okFiVZVNuAMOboAnhGBmZkZ6EQiAza0tXNmP/LJIUsxOgnyiEMmEQq8i+zzhsXUACMJwZOe+/P5KvbSvtwK7rtEgZcQxr/sHH3yAK5cv44kvfQlVfi7Fx9H7uQjCEF0eSjAMA7VabWKDcFJJ6nGRx5f5/mSTRPmL+EsSJhi0u8uaLnGjoMo9e6Klt8j7ELLIOtfCyO14KscfhSE67fZgo4DfH+F5GXY/0jSF57rY3N7G4aNHceTIEayurk7lOBX7RxkHnxMopcyDYJpSeKgIwkuhRF5BdrU5yEhwHAearrPyI57IKPIUShsJ4mcuU/3w8jKuXrvGJsHMqmeSQV56FQAZgshOVNM2FizLwvLysmxwFfg+Ll2+zDrHTdDEiR+k/BkV3MfsdcnWvovVmjuGemLZq9FfV9EbVsgbcuPkM9y4fh1vnzuHe+69F8ujXMncuBSfQZfnfOi6Luv4J4UQwspqDwIR38/kC4jPqDCGe1+ewPM8tHlyXgL0GAXieyiuu/AWhLxyQZQu9mx7n5/9HqMgjocaBUQkqmYNnhxibNnc2sLykSNYOnwYKysr+zpGxXRRxsHnCEopqnNz0E1TrjiLvpwULMmOUIooinoauQDFRkLg+wiDALqus6SnTAiiO0a9fT5hcWlpCVEYMh0BPqAM60E/DsKlmV2VxeleV8m+FduE+2i1Wjh8+DBsywIFayt79do1qU43DkK0atj1JJnXCmweLiLAnvjP6J2VOqa8cSDj4Hwfes5zUPZ6eq6LH/3oR1hYWMCDDzxQ6j0QiXieB0IpLNue2DBIkQt5TWN1na0UEeEgQnqSageRJAlcYRRw6XDKu3JmjQKBEJ6KkwRRHMveEQa/H2TE/sqQNwrIEKNACJSlGW/hIMIgwObmJg4dPoyl5WUcO3Zs6vLbiv2hShk/Z1BKUZufR/fGDcRRhDhlzVdobhDUdR3VSgVdx4HneazUKFeKaBgGDMNAGIbwPA9RFCHkiVC6rrOYfxwj8H0Evi/LIsvEO4WBMDs7i0qlgitXrqBarSJJ0wONl1JAuuezKzgCAJT2WMvjTDiGYWBpaQntdhvbOzsIwxBXrlxBo9VCq9kcOfCJyVZ4CkQyXpL2S9gOKnmrVqtodzos/8B1ZbhhGGXK54qqFUSpmqZpE5VJJkmCV370IxBC8OQTT5SamPN9EiqVivSAiWs3rpGQbyI1xht7SjPT7P/y3p4Rm0qSBL7vIwgCOZlrlDK5bN6NswhKKTQAEVhOkKhaoLmcjbFJU6bAmfFCSY+jafZ4hsTnNGv4iPuTv57S6+P7uLG5iYWlJRxaXsb6+royDG5DlHHwOYRSitrcHDqbm0h49nJCmJSqdO+D1coHQYAwDOG6LmtwlInXi0GpyEgQUsuUUllKGQSB1E6wLKtUgxRCCA4fPowrly/j2NoaWy0dcGMVkl/ZZAb1nvW2MBpEYhxGGwwiFryxtcVWgVxXYn5uTk5kvbvYk5Yu2jItSOiSkrr5/1PKelZ0Okxbn1eeDEMmxQ05rz7PATBQ36BMAhoAnDt3Dpubm3juuedglei4GYUhOo4ja+Xr1WrP54tQClrGC8Q/13lDYlQZYXbSl4ZAnkyMPSkIF+RJ4hge/84INO4NMUuqGlJdBwlDtg1utE9KEscIwhBhEPQ0byoyCkS+S/5zONTjRVh/lxubm5hbWMDykSPKMLiNUcbB5xSq66jPzaGzsSGrGJI43vMi8DKoKm+A5Ps+LMuSq3Yp38q16YFeI8H3fYRh2BNbF78LI0F0ghw1YC0fPozzFy6g6zisPO8AqgyKkHsR0r8FA352IkgBFj/OJllmtiVXfbqOQ4uL6Ha72N7eZq2gr1xBo9HAzMyMHAxFXkRR3LnoWOXRZSo28mi6jlqlAod7hHRNGy2fO+J69zkGkO7lh+QG9jKr70uXLuHDDz7Aww8/jPn5+ZGv9zwPnueBENbDoV6rFeY1kIyxN+gohMt7oJFXZAiI//fubO8t4EZcxjgZdkWTOIbn+wgyyauapsHmnoKypDwEF6QpwiCARikMLoBUehtJgjAMEYRhj3DRQKNAPJ8RXpLbYgclj02+lj/nui62trcxMzcnDQPVYfH2Rd2ZzzFU11FfXISztYXI99mXNOdF0HUdlmXB8zw4joNGoyHfn9V1L/IkxEmCMAjgB4EsW0rSVA56acq6x4mEuUED36HFRWiUYnNzE8vLy3slXGwjB1KSmKVn60MmXvF8dsJIM6/tcS2DNUmybRubW1twXRedTgeO62Jubg5V2y6dOJg9vux9GJQzYFoWojhGEAToOo4Uxxm4/ZGhhXzOQVIsm1yCTruN1197DUeOHsXdd9899LVC6CcMQxAAlmnC5hn6A49UhMaAnlK6bGKerPrInLOQ7y4KCww7PipWzyXeE8cxCx9kjAJd12GX9LJloYTI3hWJqGShtLSqZBRF0muYPV/dMGDy73eR0VjkyRKIpko9pEy+e3d3F47r4tDyMhYOHVKGwR2AujufcyilqM/Pw+t04O/u7mXyxzEoz3iuVCrwecdGPwhgFTU7KhgoNEqh2TYsy+oZbCgXCQq4e1J4G3RdR6VS6TMSDMPA4qFDuHHjBg4vL8vBKuvS7xngD4jsOYoJs8w0QXKrxuxgSyjF/Pw8HMdhfSSiCFevXIFl22jxJLOi/RfuJ/eaYRNSpVJBzJPUHMdhrW4HbD8bWoiTGG9cP4PL3UtIUjbpvL/9Qc/rP9n9FP/14z9lHgQzwVxlFs8efgZ1Y3g73TiO8fIrr8C2bZw+dWqox0Ict2i3XK1WpTDWgJPoK/MUIl4iXDTSsCprhKaZRlNljQLPQ5CVFJ7AKBAKpD2Jjele/ocxYltFYQOAhYZMw2B5RwNc/DSTVFm47Yz3K3tNwijC1tYWiK5j9fhxLC0v4+jRoyqUcAegjIMvCHa9Dt004WxtsRUV9r7ElJC95ETXZbX7Y6zWCSHSm5DwXvKB78tJMwgC+L4PXdcRhqEMN2STrQ4vL+Ots2dl+V5+PXpzAg25fWYH4xJJez2TT45qtQrbsrC1vY2dnR24jgPHdVGxbbSaTdk+O7PBvnPOdsMctVolhLD8g3YbEc+CrwxxOYsV9v999nfwvYvfG3quF9sX8Z/b/x9SpNjABgDgP3/8n/HbX/lnIGTAoJ+mOHPmDBzHwVd/7ueGhjrCMESX5xcI41UYlNKbBPR5cIpWrZRX5IzbQbQQ4VUokcQJQFYChRmjwOCeunGNAkF+rwnfj6ZpxZ457skLgqAvbGCYJgzDGHosojSxr7IjvxsRHstcI8dxsL29jdbsLBaWlrC6ujpRl03FrUEZB18gdNNEfXER7s4OQt7NT6yOTdPsT04cBF85Jdn4O4dSCss0YZkm4iRB4PvQdB1xFCEIQziOA0IpXM+DbVmwKxWYhoHDhw/jzTffxNbWFhpl+7aXyIqfBsKDQcAG40Fu55Erf01Ds9VCpVplBoLrwvM8eb1bzebeAF+wSst2U8yWYvbEybPeD56gKFrmapQyT4UIg/CBX4RK4iTGf//sv4+8HjofNiLsTTbndy7gs85PsdooFrE5//HH+OSTT/DEE0+g0WzKiSQ7oSRg5Y2e7zOvFs+fEKWzPdei58IO73Cp6zqiIpd3dnsD7mk2n6BMuCHOrs4zrzd1HVbJSh4ALCcIwKiCVFGRpKG3n0IURQiDgIUwsmEDXYfJjYLRuSa50sRBx8DDGoRSWTWys70Nz/exfPQo5hYWcOzYsZHJsYrbC2UcfMGglKI2O4vAsuDu7PSsdk3LQshXO6ZpDl5RjFglCzS+6rNtW4YdRMw18H34nodutwvLslCr1VCt1bCxsYG1sippNylxEdhblVLsDZb5CWVY7F5IQxOwlruLCwsIfB/bu7vwXBeu68J1HFRrNTQbjYH5GbKenBCkQi47u8/c/jWe7+G5LluNU7qXJ5BmSvDAeigsV5fxSfvTPruLJU6Cr9opYsTwSYCYT181vYrFymLh+W9tbeGtN9/E+vo6VldX93I0Mj9F+WUcRSy/wLKksFMpRhiKuqZJD0IRfZMwN4BJiXyCRCT1BUFPtj4BC5llE32Hwg2CbM7NqLMPo4hJR3OvXRCGLFE4k89CuVfBNIyhuSd7hzFG3kX2d34dNjc3oRsGVtfXsby8jMOHD6swwh2IMg6+oJjVKqhhwN3aYgMyIbBMk03aQSCTE0tL7OYqG/LPibBDpVJhJZG+D8/zEAYBOt0uHMdBs9HAlWvXECUJhkSXi/ePvVjsgecmyF9GJC9yRKliHtOycGhxkRkJOzsyKdTpdlGr1dBqtQonFREXTsSx8BXboMnR5jkhURTJ/ANa9FpC8M27nsc/e/O3+zaVdRfr0EFAkGBvNf7Xj/81WFp/qWbg+3jllVfQarXwyCOPFB5fHMesoyK/jtVarTDvZSglPqearvdMmllS7gWTngIMv69JkiAKQwSZsl6Boevy8z7O9wfoDxuMIggChL6PUNPQzn7GCGGJhcOM/Oz++w9o5HtEfxPwR7fbxc7ODmbm53FoeRkrKytotVrjnZDitkGZc19gdMNAbWEBJg8hEEJQrdWgUYowDNHudErFVoG9yoZRgyHl4i6tZhML8/Msc59noNcbDcRRhAsffYQbN27AGaOHgzhKkvv7ICHZxxDX9iiXtGlZOHToEA4tLclJses4uHTpEra2tvqqGqQSnbg2YtU86Nrz/ANCKZI4hsNDSgUHiq8d/SoO14bLGOfDCrZm4/kT/1PB5lK8+tpriKIITz75ZKGhEwQB2p2OXKnXeUvxMoybQ5BP6JTHCS4BLXJMhnh/wjCE0+3KJkjCMNA1DVWuHFir1fZExUYcP50gF0IkOO7u7kqJZbENTddR4SGqSk4LYtAxyMTfYZ+hApI0BbgS6+bmJtrtNg6vrGBlbQ0nT55UhsEdjvIcfMGhlKI6MwPdNOHu7EDXNNTrdey22wh8H7sAK4UrOWgMUkUrQuM6C8KboBsGLpw/j2vXr6PRbMr8BIsrL1ZLDHYCkvmZoGBlNEWyiYIE6MkXkD0eSmBbFuylJdalbncXgeeh0+mg0+2iXquh2Wz29J3oqyXPJ+plj5HnH3Q6HURczKooBqxTHX/znl/F/3nmnxYeI4UmWzgL4+CvH/9raFn9E8G777yDq1ev4tlnnulTa0zTFK7nycRV0R9hrIZbJQ3XnuOnVOYfpGlGyGfItkRILArDnvADpZRl+Zd018v3ZcJPZc4gSRLp+REtmQGg67pIwUIX1VptrOPoCR2MY5xwD2HKDgx+GGJjYwO2bWP1xAkcPnwYS0tLKozwOUAZBwoALMyg8WoGM01Rr9fRbrcRBgG63S6qlQoopeNnfIv4eDpY6IcQAtM0cWhxEesnTuCdd95hRgAhciLzPA87OzvQDQMV22atp01ztCwx9laMB9WlMXseIsEPYIN6WS2DLJVKBZVKZc9I8H10ul1mJDQaqPJJvS/nIfOz6ExFKanLBZKE4ZXnZ4/+LP7w/f8HP+3+tO85AywXQhgGlmbjm3c93/e68+fP451338WDDzyApeXlnudEe2mZX2DbsHN9Aw4SjVI5uQ0yDOI4lnkE2cRCSgh0w4BlmqWTC6UeAvYSgIdNyCI/RRgDcS5sATAPQRrH0A0Ds83m6GS/rJGe/1kGbhTI8B2Xst7e2cHc4iIWl5awsrKCZtlkYsVtjzIOFBJN11Gbn4fXbgOdDtJaDZ1OB77ngRIiB6BxjASxkpauyyETNKUUx9bWcP78eVy7ehWPPf44q55wHLiuK7PAwyBAu91myXaZiodhXoWsct1B5Sb06CTwv7P/KyOpm0UYCY7jYGdnh+VntNvo7O4ChKA+rL3xgBwQy7KQ8lbAruMwwyyX/KgTDX/z3r+B33rjn/RtV4QUQm4c/LVj/wNmrJme13x28SLefPNN3HXXXbjn3nt7ngujCA7vplhWv6CsJPMoeu5FgdEmEwvDsMeoI+B5BDx+X+qzz71IBL3Z/oPeK4wB8cgbLJRS6IYBQ9eh6zpr6pWm0DVtuGHADZNRBsmw80jTFCRTXRKFIba2thBFEY6srWFhcRHHjh1TokafM9TdVPRAKUW11YJuWcDWFuIkgeu6cFxXrjSFm3xsT0JBOVr+3ZVKBWurq7hw4QIeeOghllTVaqHZaiGOIrieB8d1Efo+09sPQ3S7XabsxsvFTMOAbhiFXoV8bsLeoU1HiTG7as9PQNnQzDhejGq1imq1KhO+hA6A47ogmoZWvd4vXpPJAcnvy65UmJIlTzwl1WpvdQQheO7IV/CH7/8HXOxc7Hmvkck3MKmJ53NegytXruC1117D2toaHnnkEXlNRcfBIAik+NawMFH2fuzHMOgRPcoYiNmeIKLpUbjPxEJpAGMvB2fQsadpKj0DUU6GXBy3zg0BXdd7vBRpmqLrugiTZE/NcNixZH4vTdYoEPsF4HoetjY2YFWrOLK2hsNHjmBpaWm8bSvuCJRxoCjEtG3oi4sgfPB2HQfdbheUUqnEJtTrJkmqAlDoTTBME6urqzh/4QLOf/QR7rvvPvmcpuuo1+uo1+tSilZ4FERdt+O6coUlBnbx90jZXQx2yZc/KSJr9odtJzvxlemtAAC1Wg2VahWO48C/dAlRFGFnexvdTgdNfl3yHfOQWfFlqVYqSMFa53YdB/VaTU7UaZKAguBv3vur+M3XfyuzPZLxHIT4xvH/EfP2nHz+xo0bePnll7G0vIzTp07JcwyCAK7ryvMU3TsLjTd+vH0u8JL0VJIMSAQVE7PneQjDkBkFIqGPqwUaA4zLnu0AA3Nxij5rcSZvIF/hALDPt5ExBgZ9XkPuQQOAim33alvwfcuzHvf6Ed6UKveZjKKIJUB2u1g4dAgLi4tYW1tjypuKzyXKOFAMhOo6mgsLrD3z1avwfR+dTgeNen1vxSfKmSY1EvLuU0JgVyo4euQIPvzwQ5w8ebIwtiuSGavVKhNYiiJ4rouQy0C7YQjX86BnB1z+u6Zp0DRtqGdBILPXy54Xn5TSMfom9KyQh5QkAuz61Gs12dgpjmMkSYLt3V20Ox3U6nXUa7Xea5YNqWQqG2qVCjq8JK/T7aJer0MXkxIh+Mrhr+DfN/4DPm1/CgDQuG5lghQ6ofiljNdge3sbP/zLv8T8/DyefPJJEEoRx7GcgEXTpEHegj6jYAwK35H5XCVJgijjthchg4R/dimlUhhoZB4B2dMiGHakQqI8Eo8w7M8R4Ya28A6UTeLzfB9+GMpSRXZYZKS3YvhpEVmWmD2vOI5lG3LdMHBkdRVLXO1QhRE+36i7qxgKIQS12VmAUty4fBm+76PLE+N6OvLt10jI7M80DBw7fhyfffYZPvnkE5w4cWLoezRdR0XXUbFtxFEEX+QmcI+C53lMKEbXYfJ+92Ii0jQNGjcY9AKDYdJY7STJjyI+XVSNkEe45WvVKjzfR7vdRpwk2N3Zwe7ODuxKBfVqlQkJZVt151aV9VoNnW4XURSx+1qvs/vKk8/+l3v/Z/yj1/4xgN5kxK8f/zrmbdZRsdNu48UXX0S90cDTX/4yKKXMq+N5MkHT5j04+j4XJUtgi66VcH3nET0lRDJfkcaErmkApaVyCLIy2kC/AZkkCUs+jSJEcYw4SQpzGgiwFyooY4gUILwGcRTB4vka2Xs7LsOMgk6ng3angyiOYZom1u++G0dXVpQE8hcEZRwoSlHjgjyXP/0UYRSh026j0Wz2u1WnYCQYhoFqpYKl5WW8/8EHWF9flwleo9B0HVVdByoVaShEQSBXcEEUIfV9dnyUghYYBdJYoFQaD4PIryCzCY+TkG/+lN1PdjVM+cocAJrNJuqNBjrtNrrdLhOZ8jx4rsvactdqqOfyCrIrzVq1ik63izhJ0Ol2ZekqIQTPLD+NOWsW170bPfoGv3LXLwMAHMfBiy+9BNu28cwzz4BQik6nw6S1AWi8umSY2ua41ybf4CqfzJfkV+hg91TXddbCmhsEKZi7vM94yHgH8iWHcWbyj6MIkejmOOB4hZdKeCX2m9cS+D48rmBaRkthEKOMgk63yzwrUYRWq4VHT5/G4uLivo5dcWehjANFaex6HUfW13HpwgWWOd/pDFbbyxgJBOhZvY5CtJE+vr6OV374Q/z0pz/FysrK2AJHWUMh4r0dwiBAtj9BnCQ95WoaIdC4izdrMFAuO5z1NIgVpVjFim0cRMmkMDp6mi9hT/aXEoJms4lmsylLHx3XRRLH6LTbaLfbsEwTNe5tgLgfhACUol6rod3psNeL+5qmoITgl+7+ZfyLt/+F9BycaK1jobIA3/fx0ksvAQCeeeYZJEmC3XZbfh4qlQqsTNfJSSoPegwCXgYYZwyBSEhI596jcSNAPAZ99qQhkTM+Ex4WiHk5qngMureUUtallH82KDcs90OKXpW6kHdNDYKANfIas1dBNjkUwECjIE1TpEkCjVIcv/tuPPL440q34AsISQ+6+FvxucNzXVy6cAERb8MskpJGTf7ZmPKoFU+cJGjv7uLV115DGIb4+Z//+cLtT/LhzcagY74CBPYEixK+MhQTr8YHfppb+dFcWEJMCtm49kF9uRzHYe21LWugRkCSpiyRtNOB5/vy/4RSVCsVVGs12HzyTsGui1DF1AhBLWP4/ebLv4WfXH4Hh6pL+N+f+99gERN/8Rd/Add18TM/8zN7uRZpCsM0pS7GJOQ9BFmvQNEELTP7uUGgDTEG+BvYypmXLiZcV0A+kgQJ71lQBOX3WufGQN6Q3C+Deht0ul1sb28jBVCv14c3R9vbGIDBSa89RgHXfTA0DfVmE+snT2L12LH9nYzijkUZB4qJ8FwXP71wATFPjKpUq1KTfpSRIORqh0kOA2wCvHT5Ml577TU8++yzWDp0aOD2ZD15OqB97wiEkRBlJglB1mCQcMMgX84pVsYJX3mBEGiUgvCV5Ljej0GIbo6maaJaq/Vut+ArHUUROp0OnG4XkTBcCIHBlQlrvFohiiI5UQi1TAC4dv06fvDCC3jqySexvLyMF198Ebu7u3jiySeZcQJudPCEQ2EIjmx1zS4aOx6+Yo1FEh/PGchvgZLeMj+aua4C4WWRYR5xD3MGoON5AxUsRTiCaho07jnKG4jToMzWojjG1tYW2p0OqpUKWjMzww2SAQaGIO8pQJLA0HU0Wi1UKhWsHj+OpcPDZbQVn29UWEExEXalgiPr67j88ccIggDItXkeNkETYE+CFXshh/ygW6lUMD83h1arhXffe2+gcSATsjKD4dghCL4aFHI8QqUu5qvVKIqQZOLmCY81i9p4ktlOCpY4NuhYiaZBIwSErziFG5zw/xVdi77tiOdzK0I52eYy1zVdx8zMDGZmZuC6LjrdLlzHYSVq2STGWo1VMXAjotPpoFarSWOJEoJXXnkFW1tbOHXqFCulAytPrFYqPTkEhYZByppQCfVIcZ1Fdn/R/dJ44qCe8dDIzSHj8clO/PwxTL46yTxHCJGTv5Z5TJt8qKDs59P3fbi+D13XYQ+QmRbG2LDSWNHkqiP6pgijYHYWtWoVVNNw7MQJzM7Pj3lmis8byjhQTEylUsHS2hquXryIwPcRxzFqvHGToJQnQfSDz4UdCGEKeuvr63jzzTexub2NuZmZkcfVN1lmjqUsWREagZjQ4kxIQstMgHKSynkeerwZPNktxnDjiWoaSwrkXgcKZkRplIJkEijzyXeZE+g5/6yxIUpARYVCPomRaBos20YSRYBhwPE8xHyiff+DD7C1tYWHH34YrVaLJTxWKnsaCdnJXngCRJiGb2Podefnrmdi9wRAnMkBSIKAGRJDJv4iNG6IiWubEibbPaisdZqIUEH+npfxGiRpyhJGwxCValWGgjIblyEdua8cfUYBDx8Io4CAlS6fuOceNJQEsgIqrKCYAp7n4dpPfwqv0wHAxHqEJK90+aO8q1+Iy4hBbmdnBy+++CJqjQaeffrpfR1r0XHs5wswKH/B54mP+f0I97b8n1jpZVzwYkIUhkFhrDhJ4DoONE1DvdHoMwKEcZUVd0L2f7lkyjAM0e100OVJjIQ3KEriGLZto91u462zZ5GmKR588EEsLizAMk1QXWfnFMdsAs8aANlM/0yyJuX7p5TK36UXJXNdegyfEcOUCN2IbdLs32I/OcK8EbdPpFbD1LbI6DoONjY3kSQJ5ufnZZVCmaF7oFHQajGjgF8X3TBw8r77YJfJY1B8IVCeA8W+sW0bR48fx7VLl9Dd3mYrUdNEla9IxoVgb9IEgEq1iuPHjuHHP/kJtra3MVvCezBs24X7y/1eNixBKYXJu/MJ4jiGyXUWxOo2FW5vPnENoic+HsdIRHgiM9GKYwyCgClWGoa8VmJC7fOYZCZsWa+fN17SVLbr9njIIYoiXL1+HdevX0cKYG5+Hhql6LouXM/ru4aygiPj+dAIYaEUft496oeZ4yrSBgDQ4y0pO/GPQng4Jnlfj8ElKPrfFIiTBDu7u4iiCNVajd1rdiAD3+MHgWxWFgaBvM5FRgHSFLVmE8fvvnt4jwvFFw5lHCimgqZpWF5ZwW6jgRuXL7MWt1Ek1fr6Bs0xkgd1TcPK6io++PBDvPXWW3j22WelhPO0GBSKyBsOQO8EXYTGm+FoA4yAbJw8/1O44sXPotVhCsjVvXifXEnmVus9tfoZw0BIC4u/hS4BCJFtiIUi5s7WFgLXhUYITF2HwyWrTcuCZZqwLAsGr9qQoZDMZCk9FWJVnXsu68kQz+1n4i/FkO0K/Ye+uzfMABgS55+UFMDW9jbCIAChFM1ms7gqhZfjuq4Lz/OY90qEMQiBYRio1+t9RgHVdRxdXcWC6o2gKECFFRRTx/d9XL9yBe7ODtI0RTVf755B1u6PMBRSAB9//DFeffVV3H3yJB588MGe0MMBTSEjGWQ4JGmKIAxHusPLbD+brBfHsdSQ2N3ZQZwkrNJA0/YmvIJ8gz53d+Y1Wf2EFEDEV55BGOK9d9/F9u4uDi8vwzAM2JUKAJaAmPWA6IbBOmTy9suinLAnpCDO6QAm0nGJ4xhBHBcbALd6SOSGXrvdxtbWFsI4xsL8PCr82gN7jayEh0C0UxZYlsW6elar7LORJU1Rb7VwbH0d5phaCYovDso4UBwISZJgc2MDOzduIPZ9pnpYqw1dCWaT9ooG6BTAa6++iguffoqnnngCy8vLsnSQZlaft3riEQRRxPIL+EoU6J2M+756hICkKZNQzq7y+XNSRIi/r91uI44i1Op11jkQe+Wc2X0OgwAApUiTRHYnFD0Rfnz2LPwwxMMPPoiZ2VnohgGfl/6FUQSNUgS+jzBXbpimKfM+cEPBtqyBmf8pIaD8nAdScC55w0Pc+75PjTA6M5+plBtut8PQl/VCZY0mz/dx/fp1RHGMeqOBVrOJOI7h8nBO4Pvy9WmaSu0K27ZZOG/A9dR0HUdWV7EwoPJHoRAo40BxoHS7XWxcvQq/2wVJU1lPP4rshzI7zIVRhD/7sz9DEAR45pln0Gg0Ct/f009g4qPfHzFPVjyor5jjOAh8H5VqdaBnphDhceGhCz8I4Pu+DE+0d3dx9sc/hqHrePrpp6W8cL3RQJokaLfbMrehXquBUgrXdeH7PnzfZ7kWQI9Er2ma0rNgWdYtVdyLRQnqLR768gaBIIoiXLt+HUEYglKKSrXKPDlBwDwdhABJAqppzDvAjYKh5a9pisbsLNbW11VugaIUyjhQHDhhGGLjxg10t7cRBwFzPdv2WJN21quwubmJH/zgB1hYXMRjjz3WX9qVfV+ayonoIDLJh5Hwmv5pZsRnEaWHpmUNVcsTMf3sZJgmCevu5/vSENMpxebWFs6cOYO5uTk8/eUvIwVr100NA1Xblqv1TreLKAwBQlCtVGCKe5CmiLjnwfM8+LzElT215w2xLIu5vi2rL0RxkKRAj4LlTSPrKRoy5CZpiitXr2JnZwdBGKJWrTLtDG5E6LqOSqXSe81HoGkajh47hnnVG0ExBso4UNwUkiTBzs4Odjc3EXS70DUNlWp1YNLeKN7/4AO89dZbeOC++1jsdJzVECEyvHGQxoLIEUiAgZn4+yEIAjjdLnSecCbIGgPZ7HqAGwWeB8/394SbdB22ZeH8hQv4yblzWF1bw+lTp0A1jVWeBAFsy4KeucYpAKfblXkVNl+97r1gb1iJ4hie6zJjxPPYxJwV7BF6A1xXwhB9EQyjP16+T7ICTAdNmr0HuedEG+coihDyqpAgDNFut1lPjCRBk4eLTNNkBoHILSl9AClac3NYOX5ceQsUY6OMA8VNxXEcbG5swO90kHJRl2wZYFlSAH/5l3+Jq9eu4fTp05iZmWEJWzw+XTrpTWSlH2ApWso9CFP7qvFzjOMY7XYblFK0Wq2hb0m4UeDzjpRIUxiGAcuyoGsazpw5g08+/RT3338/7rvvPmlQbG9vM5d0o9GbVwB2rVzuvQC4SmK1uuelyGTGZwnDUMbNPd9nhlNmZZ2tqCCENcISfRN0TWNGA/99HBXDnnsxhnjSKFJgL+chYwwIKW7ROjz7yH4WCIAoSRB4HhzXRRxFmJ2bw9z8PCq2PZFSo67rOLy2hgXlLVBMiDIOFDedKIqwtbWFbruNoNMBJQS2ZcHkGv1lCcIQ3/ve92AYBh599FGZod3TuCdbIicS33hsfRBFJXeTIsoTATYBjBXnzh173uhJkwTbOzsghKDVag1UxhPxavG8oeuwbBuGYSDwfbz8yivY3NzEqVOnsLa2Jt8b8dbchBsfERd4AnpLOYMgQNdxAGCvH0PR9R1w7j5PaozCsKenQn51n096BLiaIpdXzrZlFi2Ss0qSQnwqjOMeqe1xEcYA+Dbl5M8NAdE1Mq/emNfO0DSNleRyEaqAh3hqtRpm5+Ym/tzNzM/j6Nqa8hYo9oUyDhS3hDRN0el00G63ETgOAscBBWDyGHTZcMONGzfwgxdewPHjx7G2tgZN11Gv1Ub2JhhUGVFUTin+Ryhlk8oYRkN2UpKliBlECEBO+mOW0m1vbyNNUyZlzK9ZmiTSTR34vtRDME0Ttm3LhNBOp4O/fOklBGGIL3/5y1hYWMgeGAsFZJo7ZY2DPGEUodvpIAUTLarVaqCDVrwlzy9N094Vd6Y5VhRFPb0YxLWTeQ38Pum8Z0W2nfaw88jvH3y7ony0J0QDyO6Ngz4LlBsuBg+TGCJ0Yhgg3CjodLuyUsSybbSazbG9BYQQtGZnsXz0KCpK5VAxBZRxoLilpGkKx3HQbrfhdToIHWdvIhtSApflJ++8g5+cO4dTp0+j3miwySnTbnhfxzfkuGX5ZCbRsc+w4G7sLDGvEphGd7/d3V3EcYx6rSYbPgVBwI6FT2omrxLIXsuNjQ388Ic/hGmaePbZZ1Gr1fq2LUolq9UqTMsaOakmSYJOp7NX3VCvj65M2cfwI3pciPi9/DvT2llef36tk7RYiTFvCAwyEpH7vzBKRLhDGAHCABhm5Pq+D8dxEMUxfM+DaVnFvROGII2CI0dQKbiHCsWkKONAcVuQpil838fu7i6cnR0ErsuMBF1n3oQheQlJmuLP//zP0el08OSTT8oJW6gz3mx6+hugOJyQNxgmIU0SbG9vw/U8OSmJSVDnssqWZfWt4C9evIjXX38dc7Oz+PLTT/e5n0XsfHtnB0hTNJtNUE0rteJORSUDf23prPoDGIYCbiilGeNAGg053YNBZhoZ4cESuRDjItQMkzRFGIbQeKOpRiaxdBjKU6A4aJRxoLjtCIIA7XYb7a0tBN2udFXbts2azhS8p+s4+P73v4/FxUXcd999MumsxvXobyWi1l8g3NwpAGQ6UpYhTRI56UVRtOeO5q5/kd1eZBSFYYhz587h/EcfYe3YMZw6dWpgCaHIN6CUosmTHUu749FbyWAYBhPmKVuZsp98AO76j9MUacZDkGKvjPFWimSlaYqu4yAMAhmmEE2mmo3GyL4blBC0ZmawdPQoqspToDhAlHGguG0R2fg7Gxvwu12Au/JNXiOfDxt89tlnePmVV7C+vo677roLIY9Liyz6abjxJyEFClsLC+MgyRkOPYqKvCohCAKZsIdMGCNJEsRRBLtSQXNIq91Lly7hzTNnEEYRHnroIZw4cWLo9XBdl7m6udEBlDcO5Da41oGgYtuwJpHrzazwJZmk06zCIAhhPSkGXO+brm+QIQxDVqbIcyUI9nJSavX6wH4hKQCNENRbLRxeWVFGgeKmoIwDxW2PiGVvXb8Ov9ORk6dpmjIrXcR2z1+4gDNnzmBxcRGPPvooiz/ziaI6YdnkVM4hTTHoqyaaJ2URJXABz36X0zgh0jugGwaSKELXcaDxxjxZaWZCCFzXxZtvvolLly5heXkZjz/++EDBpB5pZp7LUK3VZNhhmHEwKCkvjmM4rssEk7An4tPn2ci6+dFbDZHNARg2WIl8gkEmz1TLSccgTVPWrIpXI0jDjt/3yqDeI9wIbLRaWD56FLWSIQeFYhoo40BxxyCSF7euX4ezs9Pzf41SaDz+u7m1hR/96EeoVqt46qmnkKZpjxehUq0eXLe/IceeDDIOuMxyHMc9JX3ZREdD12FwgyCb5BbHMXZ3d/vKGdM0xYULF/D2uXPQCMGjjz+Oo0eP9jRj6hNISlOAUiRRhPbuLsBd2BRgQk7Z3ImMITFw0k73FBF934frOPJv4UUY+y5kzk8cv/h9mHbBrfIaBGEIx3GYNwPsPop7nSQJ6lzoSMLvOSEE9UYDyysryihQ3BKUcaC4I/E8DztbW3B3d+E5juw8KMrYut0uzp49iyiK8MQTT6BWq7EGQXyQvhVehIAbKAmfGKIkkX+DVz7I33ms3jBNGLo+NBa9s73NYta8BG53dxdvvPEGNjc3cez4cTz80ENDa97zRoKQZTZMU1YxpCih8jiiDDNOEriOw3IRwOr8q5XKRAl94phSAKkoaRyy76TAO3OQJGkKN+Mt0DQNpmnCc13EPAelXq/L7pUC0zQxMz+PucXFXsVJheImo4wDxR1PFIZoc1Gl0PNYKCFNEQYBzv74x2jv7uKBBx7AwsKCLPMDANu2p1byKBAegiSzOozjWPZYyGbOZ94ESikoV/wTZXFl6bTbCKMIlmXh448/xnvvvYdarYZTjz9eSiEv3yFShBQqtRosblSUMg4wOLyQJbuaBgBD5ISM3PrePoABeRxZQ4d7LtI0valeg/z5Wbwpkuu6LKmQUtmwCgBACJqtFuYWF9EcIGalUNxslHGg+Fzhuy68TodpJkQRgiDAW2+9hcuXL+PEiRNYXVtDFIbwfF8O3rZtS3XGwoE58z9ZptjzNJF5A6JUroisMp7GjQGh8IdhWeojVryu6+LKlSt477334Lou7r33Xtx7330T9a2I43gvpJANU2C6/SHEytrnPR4IpahUKkO9OcOMgqH7AljeRvbeilAEpieZHUURXG6cpmkKXddRrVYRhqH0GJi6jioX6bIrFeYlmJ+HodQMFbcZyjhQfC5JkoQZCd0uQt/HT86dw7vvvouV1VXcd//9iKMI7U4HMR/IRfOfqUjOErJnAPBcCMr/ToCBxsNQMqWPWWMl4N6RTz/+GDMzM/jSE08MrVro3WTaZwwVhRSAMY2DMVQeI55QKVb2pmEU5oQMS+gcRZxRUuwjUxkyKXEUSYnqlBCQNJWtqV3RmTJJYFsWarUaMwgWFlQugeK2RhkHis89YRDA63Tw3rlzePW11zA/P4+nnnoKhq7L1sJSHAdgfR5Ms7dHA4q1/bOToNDyp5QOnHCGJSaWhrvJL168iLfffhtxHOOuu+7CkcOHMTMzU1pPIB9OAJjiYpKrUgCm7znIkqap7BQpjseyLBbS2OfEXaRQOS1i3m0yCEOZ82BZFmzLAiFEtrVO0hQLi4s4vLKC1uzsLRHmUijGRRkHii8MSZLg/Acf4L9997uoVyp49LHHcIjH5IMgkEZCkiSglLIJyrL2PUEVHcekX7pup4MLFy7g408+ge95OHL0KB579FH4vo8kSdCo18fKV8gyKKQATGYcFHkmhhHFMRzHQeD7cp+GYcDiVRqTxOIPIhExaxQALOxj2TYzCihFEATwPQ+EUtRbLRxfX0djRNdMheJ2QxkHii8cGxsb+OM//mPs3LiB5YUF3HPPPVhZWQHlA7vrumwCTxIQSmHZ9lRWsYJxvQdpHOPylSu4cP48rl27Bt0wcGxtDcfX12UIocPDJ0Kbf+jWB7jSB4UUgIPxHGQ9MtlhKAxD1qmRT75IU3YfTBOmZQ2t3MhvX5SETgNhFPhBICWmTctChSccep4HPwhg2zZac3Nozs5ibm7ulit0KhSToIwDxRcSoQPww5dewsVPPsFss4l7T57E+vo6DMNAGIbMSOCVB5RSmKYJi68O90sZV7frOMxL8PHH8DwPc3NzWF9fx9GVFeg517TneXBdF4ZhsJbJOQMgBfaaPQ3ICbh06RI+vXgRn332GS6cP4+Pzp9Hp9MBADz7zDP49V//9ZHH/C9+93fx4osv4vTp0/iNv/f39vYvjidTQTDKs5DEMfwgQMClhsEfumHAtqyRHhLR4Go/pGmKiMtV+7ztdZok0ihIAfiehzCKUK3XMTM3h1qjgVqtdktVORWK/TJZgbFCcYdDCMGJEydw4sQJXLt2DS+//DJeOXMGZ8+dw93Hj+PkPfeg0WzKTPMkSeD7PjzPg67rsCyLrQgnHPxppo1wD0mCK1ev4sL587hy9So0TcPa2hrW19fRGuKaFloBsmQvd1yiIuBb3/oWvv3tb+Of/fN/jsXFRWlExFGEf/SP/zGQptjZ2Rk77CEm+lOnTuEvXngBZ8+eRRCG0HW9MD+DHeLwa0c1DZVKBbZtIwpD+EGAMAwRRRHaYSi1A0zT7PMmCGNoUpI4lt6LWIg/ccOkWqkg5j0SkiRhCoZzc6jW66jX68yAVEaB4g5HGQeKLzyHDh3CN77xDXzta1/Dq6++itdffRXvfvghjq2u4uTJk5ibm0MYhvKRJAm63S6rcODJi+MmmRFCmPIgnzA9x8Enn36K8+fPw3VdzLRaeOyxx7C6ulpKJEjTNNbQiZdTDjseQqmc7AAAPCEQacpEe9IU8/PzOHzkCH589ix7iXhzRvVQ/gt7nRwfefhh6KaJwPdx7u238dhjj/WoKU4CIYSJQZmmnLQDfh+Ex0RIaVOeFDpJnkGaJCykwftYCE8HIQQmb/oVRRE6/N63ZmfRnJtDrVZDLZfAqVDc6SjjQKHg1Ot1fPWrX8XP/MzP4K233sLLL7+M89//Po4cOoRDS0uoVauwbRu6YcDQNCSEIPB9+J4HTddZ2GFYbgJXbmy32+h0Otjd3cXOzg52Ox0Evg9N07C6soL1EycwOzs71rETQqDrOjNgggBapVKw++IJOk4SBEGAr371q7JpVavVwvXr1/Ebf//vs+0PeX/2bC3LwkMPPog333wTr7/xBh577DH2/D4NBAHVNJZXwUWufN6dUpw3wFpkU0J6hKVEWWm+fTXAyikDbnCkSYI4SZAkCXRKQXUdOm9XHfg+DMvC/NISGq2WNAomVXhUKG5n1KdaochhGAa+9KUv4fTp03j//ffxo5dfxo/few++57FJhxBohLC4cqUC2zRh8eY5lm2z1rtcEa/d6aDT6aC9u4t2pyNXtJqmodFooFGv49DiIhqtFg4tLu5LDEfkSgRBADtnHAybmEXnxL/y9a9Ppfb+8VOn8Oabb+LMG28g/dt/m4U0gKkZCGxT3GtjWaxrpe/LngXgDZZi/ncASI8HJUQaCEkcw/N91lCKv54QAsu2Wftr7o3Q+cPgfTlEPkHZxEiF4k5EGQcKxQAIIUxt8N57AbAs+p2dHezs7GB7exvb29vs960tfHbxIlzXBQWbCDUuhGRbFhqNBmZnZ3Hs+HFmEDQaqFQqe935sL/4uMA0TbiuizhJEEWRXNEOm5CTJJEr7onaKRdw6tQp/Ot//a+xvb2N8x99hLvuugvA9A0Egca9CQBkKaoIr4ifURQhCEP4PGcBPFShmybseh3VahX1RgM27/WgCY+DkLTm/9N1XeUTKL4QKONAoSiJYRhYWFjAwsJC4fNxHGNzcxPXrl1DHMeo1+tI4xiB5yF0XRAAOs9PSJMEoBQEAAUQj6EqOAjC2zkHQQDf93uTAQfgeR5S3uRpWu7x2ZkZ3HXiBD766CO88cYb0jgADs5AQEbPgFIKQikIITI3IQVQrdVgV6swbJvlJ1CKKvcEZA0C5RFQKJRxoFBMDU3TsLi4yKoAwGLZvu/LR+B5CLiWQKfdBuXZ9oZhQNc0xGna01J5EizTRBAErEW1KF0cQMJzDQCWKzBNHj91Ch999BFef+MN/Mqv/ErPc1M1EHi1RQJIj4kfBIijCFTTYFcqqM/MwOb5IpZlsV4aGQVMhULRjzIOFIoDQtd16LqOWq2GNE3lil48QteF73nodrtIRWfGbBKdpu01gyrwLBRNbpqug1CKJI4RhuHQDHqfVyZomjZ1oZ7Tp0/jW3/0R/js4kVcu35dKlHKY+fHnwKDjZgCrQaRGJlwQyCJY4RRxH5PU1i2jXqrhWqttpcHwg0CJVusUJRHGQcKxU2AELInxwwWgujxKvg+Il5CF3I9hTRJ9uLeug6NN3Hq6fmQ7RLJtRMMw4DPk+10wyhsSS2aBQFAZUq5BllWV1ZwaGkJ165exRtvvIG/8vWvy+fynRAJpSCZLokieZBwg0i0u47jGHEUyRbYBk8SrNVqsGwbJvcMiIfyDigUk6OMA4XiFqBpGqrVKqrVKlPhE+V4/OH7PjpbW3A7HZaBHwRSaIhSKo0FQilrzUyIbNFsGgZT7QsCdLtdVCsVOUkmSQICoOs4MPgkqhnGnos/46FIuTqkeJ8IBYjpVnQg7AsOcKPlsUcfxXf/9E/x2muv4eu/8Au9jav63pLKEsJsImHMwyPSg0AIdMPA/OIiGs0mMxAyD5UvoFBMB2UcKBS3GJFImHftR0tL6LTb6OzsMGXAMEQSxxB1DWmSIApDeEnCJvGM8QBgTywojpmULzci6rxc0dR15jXITvCZ0EXWMwEusAQMF0TKvBmnv/Ql/Nc//VO89957aLfbsG1bNkISpYbiJ9KUhVN0nQkZ6To0HhKhlMoQjcV1BqwxeiwoFIrxUcaBQnGbous6ZmZnMZMRRIp5LoGQEZbu9qzbPYqQRBGoYTCxpW4XXcdBHEUAgEajAd/3ESUJOp0OCCEyLAFC5N+B78O2LGl0iByFrFEgeiSI/wN7jZQOHTqEmZkZAMB777+Pe++/H7qmgRoGKws0DGh80qe58kFhDAijSYUHFIqbizIOFIo7CDF52rk8AZGklzcWtre30eHiS0mSoBtF+PDiRcwuLWFmcRGpaB+dJMwjkSRIeMMiYhjocuGnKI4BnjBJhAEhvBSUgor/8dU8oRRn3ngD71+4gJQQPPmVr6DRaPQYAJTnUKgSQoXi9kMZBwrF5wDCRZfyGfnNZlMmHorV99vnzmHh0CEcWVnpWfnnHzEheO/8eRBC8ODjj2Nlfb3HMMg/xD7E4//6p/8UP718GT//8z/fo3WgUChuf5RxoFB8jiGEoJKTUg7DEIZhjNQ2qNVq2NnZAcA0G8bt9/Cd73wHURThG9/4xngHrVAobjnKj6dQKKbOmTNn8OmnnwKAMg4UijsQZRwoFIqp85/+038CADz++ONYWVm5xUejUCjGRYUVFAoFAODFF1/Ehx9+KP++ceOG/P3DDz/E7//+7/e8/m/9rb81cFt/8id/AgD4xV/8xakeo0KhuDko40ChUAAAfu/3fg9/8Ad/UPjcSy+9hJdeeqnnf4OMg4sXL+LMmTMAVEhBobhTUcaBQvEF4ud+7ucAQOoPHATCa7C6uorHH3/8wPajUCgODpJOvXeqQqH4IvMLv/AL+N73voe/83f+Dn7nd37nVh+OQqGYAJWQqFAopsbu7i5+8IMfAFAhBYXiTkYZBwqFYmp897vfRRiGaDabMoShUCjuPFTOgUKhmBp/9md/hlarhV/8xV+EyRsnKRSKOw+Vc6BQKBQKhaIHFVZQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9KCMA4VCoVAoFD0o40ChUCgUCkUPyjhQKBQKhULRgzIOFAqFQqFQ9PD/A/sYf30wPVYxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -140,12 +140,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZBcZ3oeCj7fWXPPrL0KBaBQ2AmATYILSDbJJtkt2ddaLNltW5YtS2ovMTMxMaG5o7n3ejo81zMxce8PaRQxuhMz4asZX1myr8fSbVntlmSpN7Kb3VyaC0CysBFAoRag9qrc8+znfPPjW+pkVmZWFgiSWPJhVKBYlXXynJPne793ed7nJZRSij766KOPPvro46GF8nmfQB999NFHH3308fmi7wz00UcfffTRx0OOvjPQRx999NFHHw85+s5AH3300UcffTzk6DsDffTRRx999PGQo+8M9NFHH3300cdDjr4z8IBjYWEBv/mbv4mTJ08inU5jcHAQTz/9NH77t38blmV1/dtf+7VfAyEEf+tv/a3P6Gz76KOPewV92/GQgfZx3+Jf/st/SQHQubm5tr//1re+RXO5HAXQ9uv48eP0+vXrHY//J3/yJxQATafT1LbtT+kq+uijj88afdvRRyv6mYEHFBcuXMAv/dIvoVqtIpPJ4L/77/47vPnmm/j+97+Pf/bP/hkA4Nq1a/jZn/1Z1Gq1tsf463/9r8M0TTQaDXz/+9//LE+/jz76+JzQtx0PJ/rOwAOK3/iN34Bt29A0Dd/5znfw9a9/Hc899xy+/OUv4/d+7/fwW7/1WwDYov6d3/mdtsdIp9P4yle+AgD41re+9Zmdex999PH5oW87Hk70nYEHEO+88w5+9KMfAQD+yT/5J3juued2vOY3f/M38cgjjwAAfvd3fxe+77c91t/8m38TAPBnf/ZnoH3l6j76eKDRtx0PL/rOwAOIb37zm/L7r33ta21foygKfvVXfxUAUC6X8dprr7V93c///M+DEIKVlRW8++67d/1c++ijj3sHfdvx8KLvDDyA+PGPfwyApeqefPLJjq976aWX5PdvvPFG29fs27cPTz/9NIB+uq+PPh509G3Hw4u+M/AA4sqVKwCAo0ePQtO0jq87efLkjr9pB5Hu6y/oPvp4sNG3HQ8v+s7AAwbHcbC5uQkA2L9/f9fXDgwMIJ1OAwBu3brV8XW/8Au/AACYmZnB3NzcXTrTPvro415C33Y83Og7Aw8Y4q0+mUxm19eLBV2v1zu+5syZMzh8+DCAvoffRx8PKvq24+FG3xl4wOA4jvzeMIxdX2+aJgDAtu2ur+un+/ro48FG33Y83Og7Aw8YEomE/N7zvF1f77ouACCZTHZ9nUj3vf766yiXy3d+gn300cc9ib7teLjRdwYeMGSzWfl9t/SdQKPRALB7WvCZZ54BIQRBEOC99977ZCfZRx993HPo246HG31n4AFDIpHA0NAQAOD27dtdX1sqleSCPnDgQNfX/vjHPwalFIZh4Jlnnrk7J9tHH33cM+jbjocbfWfgAcSpU6cAADdu3EAQBB1fd/XqVfm9UBTrhP/0n/4TAOCVV15piiD66KOPBwd92/Hwou8MPIB44YUXALA03vvvv9/xdT/84Q/l988//3zXY/7Zn/0ZgG0yUB999PHgoW87Hl70nYEHEL/4i78ov//93//9tq+Jogh/+Id/CAAoFAp45ZVXOh7vwoULWFxcBNBf0H308SCjbzseXvSdgQcQ586dw4svvggA+Nf/+l/jrbfe2vGa3/md35HKYb/xG78BXdc7Hk+k+c6ePburGEkfffRx/6JvOx5edNab7OO+xu/+7u/i+eefh23b+Gt/7a/h61//Ol555RXYto3/8B/+A37v934PAHD8+HH85m/+Ztdjif5g0SLURx99PLjo246HE31n4AHF2bNn8Ud/9Ef4lV/5FVSrVXz961/f8Zrjx4/jL/7iL2AYBorFIhRFQSqVahIcuXXrFi5cuACgn+bro4+HAb3ajj//8z8HpRTFYhG6riOTyYAQIl/Ttx33F/rOwH2Ml19+GQCr2wVBgND3EUURwiAAjSK8+Oyz+NGrr+Jf/d7v4Tvf/z5WlpdhmCamp6bwsz/zM/jHX/saNEIwe+0aQCkURYGiKBgZGYFhmgAh+I/f+AYA1j509uzZz/Fq++ijj7sFYTtyuRw815U2I4wiREGAF555Bq+/+ir+x9/7PXzne9/DysoKDNPEoakp/NzP/Ay+9uu/jigIcHt+HoQQEEVBMpnE4NAQVEUBURT86X/8jwD6tuN+AaGU0s/7JPrYiSiKEIYh2+T5v77rsnYf/rvI9xGGIVvIlCKKIkSUIowi0DAEpRQUgPiIKQACIKKUvT4MUWs0AEqh6zoopQjDEJqmIZvJQFUU/Jf//J/jJ++8g7/zt/82/s9f/zpUVYXn+7BsGw3LQjafx9DQEAYHB5sUzProo4/PB612IwgCeK4LhCGzG8Jm8H+jmO2IoghRFDHbwb/Ao30CIIwigFI4jgPH80AIQcI0mRohIUinUkgYBhRFwf/+v/6v8fY77+DvffWr+G//xb8ABeC4LuqNBiJKMTQ8jMHBQRQKBShKn772eaOfGbjHEAQB6vU6Go0GPMeB6zjwXBe+68IXkT9fkBQAjSIAgKZpMA0DqqqCECIdgVZQ/gVK4bguKKXQNA2pRAIRgGq9Ds/34bouXN/Hx9euIZvNYmxkBH/+Z3/WpENOxPGiCCEAwzRRKBRw7ORJnDt3DqlU6lO+W3300QfAHH7btlGv19nate0m2xGFIYIoAo2ibRsQhoCiwNR16IYBVVGkbYB4TZv/p5TC5XLF6UQCGg8kHNeFbVlQFQV128bH168jl8thcGAAf/KNbzTpFhBKEYEHJoQgm8theHQUTz/9NI4ePdpUbujjs0HfGbhH4Loutra2UNnagm3bcCwLNJa6VxWF1fK59x6GIfPkufdOAPjcy08mEkgmEmxxEwJCKQj3vAkhoABC3wcoRcI0kc/loKkqKABd0+A4DiqVCv7iL/8SlUoFyUQCx48eRS6TgWGaMBMJJEwTmmEg8H1pBGzHgWNZ+MmPfoS3f/xjHDtxAi++9BJGR0c/z1vbRx8PLCilqFar2NrcRKNWg91owOcRu6ooUFQVqqJA1zToPJAQ5QDKbQIFm0WQMAwkEgmYhgGiKDKoEBuz+FdMN9RUFdlsVmYMiuUyHNfF0tIS/vwv/xLVahWpZBKPPfoo0uk0TNNEIpGAwTMHjuvCsW04tg3btlFaW8Mf//t/j3w+j6effRZPPvUUNK2/RX1W6N/pzxG+76NWqWD59m3UKxUEYShT9ulkEpqmQVFVaKoKlX8RQqC0eM1BGMJ1XTiui4hSBEGAar0OU9eRSiahtllQDk/rJQwDJicMOq6L27dv4+b8PDzHwYczM6CU4sXnn8cXn3uOpRzDEIHnIYwiBGEIRVFgmiY7Z65RPr5vH9bX1nDj2jV8fOUKxsbG8PgTT2D/gQPI5nIwTROqqn76N7iPPh5AiCzA5vo6NlZXWbYuikAUBQnDQDKbhaIoTXZDUdUmu0H4cTzfh+M48HjU7rguPN9HwjSRTCRAVJVlH/nfhmEIjzsb6XRaBhFbxSKuffwx1tfXoSgK5hcWoCgKXnz+eTz5xBMIwxC+77OAJQwRRhHLSKbTSCSTyEURRicmUKvVsLqygu9/+9v48Q9/iKNHj+ILZ89iYHCQvZ+m9bMGnxL6nIHPEFEUwfM8WJaFeqmEeq2GaqWCkFIgimCaJrLpNBKJBDRNgx7fxAmRtTyRDQAgywUCnuvC5iUFcM8+mUgglUjIRRRyBjClFLlsFpquY35uDjMzMwjDEMOjoxgeGcHIyAgTomiz+AgAhacVRalC8BYCnrlwXBcry8tYWVmBoqo4cfw48oODyOZyKAwMIJ/PI5fL9b3/PvrYBUEQwHEcNKpV1KtVVMtlWLYN8KxfJp1GOpmEYRgsiCCEEfsIkVwAsT7jEGWBiFLYrgvHcWSJUVUUZFIpZocIAShF3bLQsCxomoZCLgfbcfDBhQtYWVlBKp1mdmN0FLlMpolvIEAAmaUEL1mwU6DSboRBgFK5jKWlJRRLJYyNjWF6ehqpTAb5gQHkcjkMDAwglUr1HYO7iL4z8CmDUrrtAFSrcC0LAY/iq7UaKHi6LZ2GoigIOMkn4OQfsfmDp+sUnuZXFAUKIVB4Oo8oCjRFYWl8wwAhBLbjyNqeyg2GrmlwPA/VahUKIVBVFRcuXMDm5ib27d+P6elpeJ6HIAyRMk2W0tM0aLEMhaaqgKKwDgRCQLnTIQxNfHmGUYRSuYyfvPMOHMfB0aNHkclkoGoaEuk0stksBgYHMTQ01OcY9NFHDGEYwrZtNBoN2LUaXNtG6Puo1etw+LpOmiZSySQjDscIg4JXFPI1qsT4AKqqMmeeZwsURWGcI9OErmkIggC2bTMHghCYhoF0MglFUVCqVOD7PpKpFFaXlzEzM8Mc/RMnUCgUULcsEAD5bBZEUZi90DRpN5RYuVI4GGEYAoSgdVv3PA/XbtzA5cuXURgYwOHDh0EIgZlIIJnNIp/PY3BwEAMDA/2A4i6g7wx8SgiCAJZlodFowLUsuNwZ8IMAtuuiYVlQCIGuaUhzD1fW5sRBCGGsX4CRePjiiTp8ZJEgB1EKRVVh6DoIPxdN06DpOpKJBMIogm3bWL59Gzfn5mCYJk6ePInBgQGAUnhBgCiKkE6lUMjltr1v/v7ANnFQnImIQMIgABSFRQAxr933fbz91lvY2NzEF77wBQwMDsKybfhBgEQqhXQmg2wuh8HBQQwODvbZxX08lKCUwnVdWJYFi9uORrXK0veeh3qjgTCKoCoKEsLxB7Y3U/5vGOsmEhBBBQVfm7H/j9ibg/IypaZp0qHQdR2GriORSKDRaKBWq2F2dhbFYhH7JiZw5OhR6JoGSghsy4Ku6xgaGGjSKwE/N/l+lILEzk+cr7CDgtsEAKsrK3j7Jz9BNpPBY48/jiCKYDsOFFVFKp1GOpNBYWAAQ0NDSKfTn9pn86Cj7wzcZbiui3q9DqteR61aRa1UguU4oFEEg6fbPNcFIQSGYciavtbKDeA1dU1VZdRNOR8g3gYkCIU0iuCFIXzPY6/hzgPltX3bdeF6HgilKJbL2NrYQBAEOLh/Pw4cPAiDL3jDMBCGIRqWBVVVkeNTxkgsE6FyUiONOQcCIkJpB0opLpw/j/mFBTx+9iwOT0/Dtm3UGg1YlgXNMJDJZpHKZDAiyhR9p6CPhwBRFLHsYb0Ou9FAZWsLtWoVQRgyW6Hr8HwfURhCIQSpVAqmaUpugIi+BRcn3lUkNnVf2A5uPyiloPz/Pd+H53nSzgBsg/bDEBYnM7ueh7X1dUYMTCRw/PhxFPJ56JoGwzBg6Dpq9TrCMEQ6lWJaJTESdNx2tAY04jx3bEeUAoqCcrmMt954A0RV8eVXXoGiqqzryrLghyGSqRQrI+TzGB8fR4bzl/roHX1n4C7BdV1UKhUUi0UUNzZQr1ah8rYdwZ5VFAVBEMDQNORyOWRzuR2pMeE9B8JTjv2q1aOWHIAw3F7kUQQ/COB5HhzPY61Fvg/f92E7DjY2NrC6uQkQgpHBQYyNjSGXySCbTjOiIU8t1up1ADzd16EuR3gGIL7IVU4oAtD+7yjFBx9+iLm5ObzyyisYKBRAwUiQ9Xod1XodIAQDg4PI5HIYGxtDNpvtEw77eCARRREajQZKpRK2NjdR3tqC53kwdR2mYTSl1ikAQ9cxMjS0Yx6A0BChUcQ4SLGfAdt8HmB7XQqtkTBmO4Td8D0Pjusi8H24noeGZWHx1i04rotkIoHJ/fuRzWSQzWSQTCTYORICy7Lg+T5Mw0Cyg+6IKBEIcSItVuqkwA6CtIBlWXj1tdcwUCjISYmipbFaq8GybaQyGeQKBQwODmJ4eBjJZPJOP5qHDn1n4BPCdV0Ui0VsbW2hVCzCtSyYqgrTNKFpmmzzSyQScDlTV1EU5GLp99ZHX2oJtIACrF+Yk2xEfbC1jCCMgIgMXN+H73lYXlnB4uIi0skkaraNA5OTSPP6PY0imalIJ5NMGATMGVB5diKMImk8pJBRm8eHcmdGkCB1TWM1PeG8RBFee+01hGEovXyFOxagFJV6nbU0ZrPIFwrIZrMo8H/7mYI+HgREUYR6vS5tR6VcBjiLX+f1e2E3DE1DtV4HpZTxfmKlAQHRHRCGYVt9EdGOHOcVBGHYbHtajheGIRzPg21ZuHrtGlzHQRhFOLB/PxLJJAxNQ8RT+slEAulkEiAEjutC58Jl4r3l+wuyMbAjqwhsC6JpmgZd16GrKrNP/LWrq6t484038IXHHsPhw4cBQJIlvSBAqVSC6/soDA8jwzMF+Xy+7xT0gL4zcIcIwxCbm5tYXV1FtVpF5PvQACQMA/l8HulUSvbrAoBl27AtCxRALp+H1mVTE1mBpnQdj/bjwh0AZJ1NJQQKZxELYlDg+3C5nsCNmzdx+/ZtTB04gJHRUbzzzjt44uxZqKqKIIpYtoEQFlWEIdwggKnrGB0eRjab3bFwQ+6wCLIjjSJZnoh4aYK2ODSapkHVNBiaJr38/QcO4IkWqdJ433IYRcjk88jmcshy0lCfaNjH/QzHcXD79m0Ui0XYtg2FZwvTqRSy2SzSqZTMhNEoQrlaRRRFrH03nd6ZTeQQTrhAFEXwfR8BLx8Kol4chJOIxb8iKvd4AOG6Lj744AMAwJEjRzBz8SLOPf00NE2D7TiMo0AIojBEBEgbkEmnMTk+zsqJsQynCCoCLpseDzBEEBS22DjCdRJUTYOh65i5eBGzN27glVdeQT6f33EfbNtGqVZDkvMJ8vk8MpkMCoVCP8PYBX0K5h1ga2sLi4uLqFarQBDA1DSWnspmkctktltnhBhQGMKxbVBCmH5AF0dAEIji0T+wTdgTi1nXdRh8gcR7byml8H0fjm1LgZGrH3+MjfV1nP3CFzA0PIwK7yQQUUa8Bci1bZYmDAI0bBu3l5cZ4z+f3ybn8Dqgqiigmta2/idqkB43QhF3FoIggMtfd+LECVy+cgUjQ0M4cPDg9t+DlR4GBwZg2TZq5TJrqcrnJdM5n8/3GcR93FfwfR+Li4tYW1tD4HlQoggpXUd2cBD5XK5JzltsnnXbBo0i1tefSrV1BChvLxQpfbHOolgULta4qiiSIKhzHROxWUecmOd6HgiAeq2GmZkZpNJpPHn2rOwUyIpuoEQClHcnBL4Py3HgEYJ6o4FiqQTP85DPZpHLZpvIhIIfFWjajjIoKIXlOAi4DQr4zATP8wDPgw0262BtdRU/eecdvPzyyzB1vSkbkkwmoRsGavU6iuvrqJbLGBkbg+d5zNlKp/stiW3Qt6Z7QKPRwPXr11GpVECCABohyOdyGCwUkBTRKl90JLbBNnj93dB1mKa547gUzKMWm6doKRRQFGWbZChS7uJvY153GARoWJZMxYVhiJmLF1GtVPDcc89haGgIFicGEkJgmCZSqRQajYZc1KNjY6BRhM1iEdVqlUUbvo/V9XXomoZCPo9si8OD2LUCLNrQVBVKrM0xDAJ4sdJGFEUYGxvDxsYGzn/4IRLJJNKZDOuTVlWAECiA7HOu1GoobWygUixi34ED8DwPuVyuzx7u477A0tIS5ubmEPk+SBQhqWkoDA+jEHdqhe3gHQGu68LjQmK5lomAwHYGTTjefhDsiKpVvuEb3HYoLZGxOKLjurBsWzL5i8UiZj76CCPDw3j2uefQsCz5N4qiIJvNMsl0TjrMZDIYGh6GbVlY29iA47pQCUGtXkelWkUmnUaBOzzCsimc4Bw/FwrA4NlD4cQEQYCACxYFQQAC4JHTp/Heu+/igw8+wMlHHmEcCz5cDZRCU1XkcznUGg3YloWF2VnkBwYwvm8fbNvutyO2Qf9u9Ijl5WXMzs4i8jwolGKgUMDw4CCSyaRkzzdxAPj3juvK36dTKenFE7BygMdTcfHNX+U1dF3ToInNsaWlUJQHhO6A4zhyMYsa2nsXLsD3fbz80ksoFApyQYtFQABJbqzX6wijCLV6HVmeWhMM5ZCT+8IowkaxiK1SCflcDvlsFpqmgfJUID8xANhBVlI1DQlVBXj0EwYB/CDAo1/4An7wwx9icXER00eOwHFdOWfB4I6EaRgYLBRQrlQQBAEW5+aQzWQwum8fBoeGkM/n+55+H/ckPM/Dxx9/jNLWFojvI2EYGB4dxUA+zwhzwpmPtRYL2I4DAEhyETLw11FK4fPAwY/r/YPJiau6zurtPPIOW4jIcYScwCi6FnRVxdr6Oj766CMcPHAATz75pOxKioPwzKLFZYUt20ZEKVKpFAYKBQRhCJ2XA8Xv6/U6krxdOZ1KQQFraRRdSfHSqLge0Umh6zqSYNlRPwiQSCRw5PBhXL9xAwenphAYBizHgWEYMHUdmq5DAZBLp6EqCizLQq1SgVWtYnBkBL7nYXhkZGf740OMvjOwCzzPw+zsLNbX1qAEAdLJJA7s34+kacrWHCW+kFsWtOM4oAASiQQUQhBGERsgImp4EH9G5IOs8B7fphRaSypeRA/xxQyxcAwDP3r9dQRhiJdeeonNGQdkyUFVlG1NAjDnI5vLoVavIwoC1Op1eb4EwMDAAAq5nGT7B2GIUrWKcrWKHHccZC2OEFmbbO2GiBs74WiIRT138yaOHD0q645BEMCybXZPuEOUz2ZRqdWgKAoaloWlhQXUazVMTE5iaGioTy7s457C5uYmrl+/Dt+yoAIYGR7G2NjYNvk2ijo+syJDGFGKBFcP9XkGQAiJCQiyXcIwZMeRROsajH3vcL0TkQ1IpVLY2NjAhx98gKPHj+OxL3wBFIDveYyUzIXG5NH534j1aLsua0FWFKaoahjIZrNwHQeVWg22bcNzXaysrcHg3KpUMsl4Ctw2BJwA2eq8iP8nfEaLYRg4deoU5ubmsLK8jOkjRxBxWXbXdaFyEreh64xjFAtSSsUirEYDjm1jfN++PgeJo+8MdMHW1hbmbt6EVa1CAzA4NITJiQlZ22pl9LbC5Up+QqmvVq83efIAq/0L5a/4Zkm4GqHoCIiwc4HYPBsgkOYKg2+88QZs28ZLX/qS7LcNYkxeTZCThOgIP79MKsUyAFwwSbQxEgBUUZDN5ZDJ5dCo11Gt1eDzGQilSgXpdBoDhQIMXUfIz1tcT9QhMhG/P3H8OG7OzmJ9dRVHjx2Dy2ufrYvbMAyk02nUGw1onKtQ2tyEVa/D2r8f+w8c6BOE+vjcEQQBFhYWsLK8jMh1kdB1HOCteEIwSKytdqC8bk7BMndiDcQ3eYUQZjdE5pBDtBfSKAIUZTuijwv+RBHrz/d9ACwYyKTTKG5t4d133sHBqSk89uijTdcjyoji/OLdRCYPjCzbhtVoyDJpxN9PNwyMDA+zmSm1Guo8eNnY2ICiKMjncsjlctJOSP4Tv5Z25RGAlV2PHT2K6zdu4PSZM6y04nnw+Gh3y7JgE8KyJLqOJGWjlyOeWbm9sIB6vY6p6em2RMSHDX1noA08z8PS0hK2NjZgV6tI6jrGx8dZOhrb6at27X9x2LYNx3F21NS1mEhHp8hATB0LeTkg7pFHYcjU+/hi1jQNmXQaCiF49733sFUs4sUXXkCOP+Ci5QhgWYF2KT+AGYV0JoNarSZnC6R4S450fChFJpNBJpOBZduoVKtSMa1WrSKRSmEwn4fOST1yYQseRRskEwlMHzqE2dlZHD12TLZj+twpEIvbtm3WdqQo8HhGBoTA9zwszM7Cqtdx/JFH+g5BH58bSqUSlpaWUN3aAgkCDORymJyYgGEYiCiFSohUAmyFKP0FYQjHcWA7DlLJJPyYjRDlM13XtxVBW8S/FEIQxmxGvI3P55oBYjNPJZNIJBKoVqt48623MDw8LEsDABs1HMRsxw7w1yW4sqnrOHBsG7qub2/uvByiaRoGBwaQz+WYU1CvIwgCbJRK2CiVMJjLIc35SNJaxrlJbXD02DFcn53FzdlZPHLypAxGvCCAy0u0goslSrSKaF9UVZS3tmDVajhy4gRGHvLpqn1noAWVSgW3b9+GW6/DrdeRz+UwygVwENtEWx/N+KhPSimqtRqK5TKiKEI2k2n25LlAR7eeTpGW04CmckK7xWyaJgghmJmZwe1bt/DMM89geHi46XiiRKBpGvyWNGMcGo8SqrUaG0/MjZcUAokZnlQyiVQyCcu2USyVYPGMgmVZGCgUkMtmd3AJwDdwyssg4p4dO34cN+fmMD8/jyNHjgCAdJgESUp0WYjWS8/zoHPDGIQhNtbWYFsWHjl1Csm+AlkfnyGiKMLi4iIqpRLsWg0qgMGREYwMD0PXNERRBLGVtpb8mnhEQYDNzU1YjgOdBwtCd0DT9WZBnta1JcDbBCmw3dfPFQ49zwM4wTedTkNVVVi2jR+/8QYymQyee/bZbZGjWGszgLZOdjxmTyWTUqnQsiymQNjy2ogfZ6BQQCGfR7laRalUghcEWC8WkWg0dkgZx4MKSbLkv0uYJqanp3FzdhbHjx6FyjuskqqKhGmy7iXuDMRF2VRCEBAmB+95Hq5cvAhrehoHpqYe2nLjw3nVHVAsFrEwNwe3WkXouhgZHsbw4CAyXJI3Dpkm4/8v0vm2baNUqaDCe4OTySRyfEpfMpmUTHlgZ9pfHFcek3+J2n2j0UCdi48ItqyoJ964fh3Xr1/HFx57DJP79zcdT0QbADoyaOPmRNd1mWnwPI+NSI2dk9jQxfENw8Dw8DBGx8aQ4ITErXIZy6urLDMSew/BswBYtkCIjKTTaRzYvx/Xrl3b4UCofGHncznk+EAnMau9wZ2PhGEAhKBeq+Hihx9iY3W17XX20cfdRhRFuHnzJipbW/BqNSQNA6MjIxgeHGQZslb+j/yGfSfaAmu1GnOq+eTAHBfbymSzTGhoF5KsyAKQ2JfKOTyVahUen2SaSCSkqqfn+3jzxz+GQgief/55aC3KhvGZAbtl3ET7o8haNOr1ZiJxC0kyohSpdJplXXM56IoC3/extLqKrVKpacKiKE0IGyJkkymA40ePwvd9zM3PN99XQM5+EcJDwrlyfR+2bTNFWF0HKMXi/Dw+vngRbsxmPUzoOwMcW1tbuLWwgMjzoKsqRoaGkE4mkeNyvK2pdRp74CilsB0HpUoFDduWSlsJ02SRga63VeprBQWk1xtf9kKy1Pd9EEVBMraYAeD27dv46KOPcPz4cRw9erTpmHHJYqCzMyDaegRM00QimQQBYPMWotjFS/EQn9cTCViqcGxsDIVcDjrvPV5ZW8Pm1haCdiWVmEMVUYrDR4/Ctiysr69v3w/+OnFPDO4UpFIpGIYBVVXhuC6K5bIc+Ww7DpYWF3F7fn7HyNY++ribCIIAs7OzaJTLoL6PHNfkyGUyrJbe8vw1kfs4L6jGybheEMD3fVhhA7998Xfwy9/9Ffzu+f9Brq+OYkNAUwCB2Pd+EMjWZlVV2eyPZJIJBUUR3n7zTTiOgxdeeKFJ56A1K6B1cQTidoMQwjKhvMRZbzR26JBElMLn2iMErFVxoFDA2Pg4kqYJXVFQq9WwtLLS1NLYBJ5ZjSiFmUhg3759mBfOQOtLwUocKW7PTdOUWYNqvS5VYWkUoVQqYfbqVdRrtY7X+6Ci7wyAsX6XFhcBz0OabzaqqiLDH+omBS1AerhNToBlIYoiaKoKwzSRzWSQSqWY/jY6L2RxzLhHH0cYRajVavB9HwpfaCK9RwjB1uYm3nvvPUxNTeHRM2eajys27Zh33y0F1vreiUQChmGAEiYk4vk+Uw8LQ0SCGMkZxiJToCgK8vk8JsfHWZSgqmjYNpaXl+W8g07vLWaULy0tyeFLO1woXrJImKY0vGLmQ50TNMMwZJ/L1hYWbtzYodrYRx93A0EQYG52Fk6lAiWKMMDZ8bquI5lMbov9cIh0t8jU1Wo1GbGLFlozkcC/uvL/wcf1j1H1a/jm7Lfwv3v1N1Byym3PoTWLGIftOKjzMemGriOfy8HUddmJ9O6776JUKuGLzz/PVEbjEOcpOpC69eTT5umIqqoyhwOshbheq0m10pCLCCnifGP8CdMwMDY2hqHBQSYkRCnWNzexur4Or8MaFqXGyclJVCoV1hHFywFNtiOW3UilUijERNSEQ+BxLQPXcTB3/Tq2NjY6X/MDiIfeGdjY2MDKrVugnicHbxBA1qJp7GEVi1kwZ8stToDQwhaLo3WYSDvQLiWDIAhQrVbhhyEUVUW2RcnL9zy8+957GBwcxBNPPimPFW/9aVrQ3IHoeC7YdiCEN29wSeWIM4HDFj1zQRBqPa6qaRgZGcHw8DAbpUwINkslLK+uNmcZWo61b/9+LC8vb9/z2BCVpuwKd0QSySRG+Ht4nFBp2TZq9Tob+VqrYfbq1Yc29dfHp4MgCDB7/TrcahU0ijA2MiLr+SmuJ0L5WokHEEEYMiGeSgUuJ7WZPAARkfmWtYWQbK+zi1uX8LVv/1O8vfqOfP9uTgAANGybiYlxJ0MENsIZuXnzJpaXlnDu3DkMDQ01rf24zZNcoy6ZAeFciPMS52aaJiMVcoJxu/bodsFJOpPB+NgYctksdEWB57pYXllBqVLpmOkbHx+HqqpYWVravkftbAcP7DRVxWChgGwmA01V4fPupUajwYalAVhaWMDK4mLH637Q8FA7A+vr61i9fRsRl80cGRqSDP1UMimFfpoWs++jXKnA4nK/aswJSJgmIsoU+0QtvRNkNoC2b7vzfJ+R+MIQqqIgl8k0p/gpxfvnzyMMQ5w7d2570A+2Sxc0YqNKfd9negI8yxGJ64pt/OL/RYlDLKCIUsYD4MOMrDZpu26Zj1QqhYmxMRSyWVk6aFcTFJicmIDH7/GOe8ZrhULeWCzspGmyDod0WrKWfd/HVqkkZzrcvH69K3Gyjz56hXAE/HodFMDk+LjMjIk2Nrm5xvg1lm2jyrtvKBj5rcB181X+zAKAaRqgLTmxklvCf/P6/wm/e+H/BTfs/BxTAPV6HY5tA5SyAUIt8ruVSgUzMzM4cvQo9k1OAtiOsEmM2CxnjFAqbUcYsxtiPYo1KbJywm4CTGiNECLr860QKfxWR0HlnQdjY2NMdIkQVCqVHTwkAU3TMDY2htXVValx0nRfKJVD3gQUzrtKpVLQdF0ORKo3GqhUqwCAjfV1rMUcjAcZD60zsLa2hpWlJUSeh4FcDqMjI1IDQEj+CuUu0RrTsCyUecpLVRQmscmdACmaEdt423nTwkB020Ad10WtVkMElt7LZrM7ZERnZ2exvLyMJ598su1ELrGwCSDnmctUH93WF5BRAP9q0jqIdRCkuRyq5/twXHfH+8UZvq1QFAX5QgETY2NIplKyJri6vr7DQAzxKH9lZWX7nsV+L0lE/LpEOlAMdzF0HSlOMgx8XxrGwPOwePNmn0PQxyeCECHz+KjtyYkJJJNJuZEnTFP28os1EQYBSjyAoGARs3QCxLrm3TGUUuSSubbvTSnFn1z7E/yvv/e/xVxlfsfvI8q6mIQoUTqd3mEbwiDAOz/5CTLZLB6NaQnE0cozEsPPALZhNGUQYn/TTnhN13UYpslUTrl2yY73E0JFbWCaJsbGxjA4OMimJEYRVtbXUW1T09+3bx+2ikX4ntf2eBG3b2IgUhSG0FQVKdNk5ykEisDawmv1OqIwxNrKCoqbm23P70HCQ+kMFItFrC4tAZ6HwXxetuGJBa3zKFjUtHzPQ7lalfKgpmliYGAAZiIhiSzi8Repar1NVoACgKJ07LcHWPTQaDSY0TAMScaJQ3r2R45gYmKi7XHiCzWuMbAb2joDvHshydXCLMtq8rCB7QeJdHEKdF3H2MgIBgcHoWkaAt/H8uqqvK/i7/ft24eVlRVpYBT2CwBoa0zEBm/yex4FAVLJJFSu5Gg7Dur1Ouq1Gm51IBn10cduiKIICwsLcPigr/3j4ywbyDcWAFB5f70oGTRsGxVeXlMIQZYP7tG49n782IKMq6jtNrIIBDzFX7mJ/9V3/zf4j9e/KY8RRBEq1aq0Ya0lRYEPPvwQlmXJbGIr4t0+0hnoUbdDZibj3UZgWVZB0GuXWWzqyOpw7Ewmg4nxcdaRpSjYKpWwvrnZ5NyPj48DYGOOxfHiAkbtAoEwimTLpmh7FC2SYRiixrlSS4uLDzyp8KFzBhzHwdKtW0AQYCCfx9DQkPxdEASgADROmqOUNi1mlRDksllk+RhRBZCpavYtS8lHlLJ2lRjkA9/BEaAA6o2GbONLJZPItBnCIzz7bC7X0bOPv18Yq5ftWYwn1j4IMEKhpusgXH60o0vDHYJOHRSZTAZjo6PSWK2ur6MUKwtMTEygWq2i0Wg0HS9+Lu0g5iwAkGlYMd/A5zLLW+vrWL51q5er76OPJqyursKuVKBSisnxcdlHL8qCiqKwNmDKhuuUq1UplGUaBgqFAkxhF2iz2p4UENN1aGozWY8phCpNqUQv8vC7F/6f+Oc/+jo26puoVavMRnECr97ibACs62h+fh6PPf74TsJgDOKcpNhQr3Yjlp6Pa64QRemaWYwHD006Ci1QNQ1jIyOsW0lRYNt2EwcpkUhgcHCQcY5a0JrJiENRFMbX4A6AoihSFZZSCsuy0Gg0sHDjRlOb9YOGh8oZiKIItxYWQHwfScPA4MBA8+/5AlV5v2trNiDP5XYlh6CFOBfwWrZCSPNkQf5vt9ager3eNb0nIDz7p59+umNqLd79EMUWdK/DfJo8fDSn6dO8Q0KoIDb9Xfz4nBzUaQGahoHxsTHWcaAoKFerrGwQRRgdHYWiKFhbW2v6m6jF0Ow4b8LmO4DrIwCMKJTl3RdRFKFuWbi1sMC6R/roo0dUq1UU19aAKGKEVe4IyIhTUaBxwrHVmg3gxGQxVIwQAtKywQpnwNB1aAqzHYKz023dvrfyPv6r7/5zzGxchK5pyPFOqFZYjQbOnz+PAwcOYCo2LrwbemkrjENooojvgW3bsVtmsfU43ZAvFDAyOsrKBmGI5bU11Dnpb2JiAutrazs5A13mQAAsGyxmzEjeWDqNJCd1ep6HcqWC61euwO7U7nif46FyBlaXlxE1GgClGOMbTjx9JB5kQSBpzQaIxQzEBIFEax0gx4dqfFrYboxf8Nc0eCoKlCLL+2DbQXr2Z8929ezj6KYe1gnC+LRTTFMUBSlOCnIdR5ZF4n8XRzeHQFEUjAwPo1AoQCcErutiZWUFQRAgn8+jXC7L14r0pRRU6WAgTcNgBCZOfiLsxNjcBi4u4rouFubmsDg31/M96ePhRRAEWLl1CyQMkU2nm9ce3VYP9H1/mxsQzwYYhuS6SLsB7AgkBPlVV3RElE0j6RYpa9CQRx4Vr4L/xwf/Azajrfa18ijCT955B7qu4+zjjzfV9ONobYWM7sB2tAqqxXUWmjKLvBTa6Ri7OQTJRALjnFyoKgo2ikVsbm2hkM8jjCLpHACxCapA81C5prck8nMSthhg5d4MJ2CGYYhyqYSLH33Uttxxv+OhcQYqpRLqm5vwggAjQ0PMi+e/Ey03URiiWq9LoYumbEDLYhYQBEOgOa22u8QQQ6PRYBkBSpHNZHa0I4rFaTUaeP/995lnf+BA0++jKELARwKLqWbiy7JteL6PwPflYCObs5ldz4PjOHBcV75e9NsGnBkcCvnf2KLWdV0qH1qWtT2joVPE3sUhAIBcLodR7ulTSrG6sYFkMokKLx3EZyvIY2JbmbHp52JRg0dbMSJlMpGQGRc/CHBzdhaz1693PK8++gCA23NzgG0z55WXFePpcEIIHMeRAUS7bEC7DU4O8uJsfFFqUIkChSidlhMAQIWKPPKgEUWIEMWoiItbM21fe+XyZZTKZTxz7lyTwqDoBAi42JHveXIeiO04cLg98LlanyPshusyu+E4bIhSi+3wfR+h6Ezi1yWQEZnFKJKZxbaWoQeHQLQv5zIZ6IqCeqMBlxO4he3Y0ZKMzsGEKFtG/LxlKUdRkEmlpKiZVa/jg/feQ+MB4xA8FLMJPMfB5tIS/CBAJpVClmvmiweC8Ki0zjUDACCXzcq6f6fFLCDIJ2HLdK/dHuaGbcPl9bNMJtNEOhSbvGAY/+Tdd6HqOo4fP876YEVbT5zRC6b9jdjPGpYltQHEgBTR3+y4LgzOcBZ/H182Pp81oKgqcwYIi1RE9BEEARMhiiLkMhl5j0hLdBLvyOiEBPf0N0slOLYNRdNQqlR2Fwxqw08Qym9iQcuXKgo0TUM6nYbtOAiDgGUHoghHTpzo/j59PJTYWFqC32jAoxT7Rkflcyzb8ChFo9GQdXCTT9YUEX23EqHILIq0tMJZ9braPjMoEHcEIhKhiip0VcfjI48D4M5FELBR46USrl69imMnTkA3DFSr1e22Yr6m4zoq4rz8IIDjOFAIgc3toJic6HgedL6RC5sRtx2izh7wTVVolSjYtg1iEqNowRbti00e0C7cI3HPBgYGYJomisUigiiCbhhY39zEvn37OnYPCYcgLv+uiA4wLmIm34MQUFVFIpmE4rrMSXIcfHD+PL7wxBM9Z2nvdTzwzkAUBFhbWEDgulAJwcjICAA0OQK2baNhWexBoGx+eJMjgN03dtGyQqMIKi8TdIPNp3tFUYREMomILyDZ58/nekdRhLW1NWxubODs2bMIogiE/y4Okd1oTegRsLJFIpFgvAEABudBiDno8QVBgSbBETkxUfQVA1BEWYUPOXH4xqrpOmgYArHZAWrs+90GgAiCUKVcZqpllGJ2bg7TXYaHyPtMyLZxwzajOQhDSNPKWd5EUZBOJtnglijCwvw8IgDH+g5BHzHUi0VUNjbgBQEGBwbY/AtsZwNCriIY8TG7QuZWEUS6HqJbAkjNDE3XmeCZ0tksK1CQQw6EEoAANmw8VvgCvnbm11BAAcVSSfb5R2GICx98gHQmg3379sHjRMfW9xfl0ni9P+BCapquy4hZ8KV0TdvmTsVth3AqROkkZsPAbQeJbc6u58EvFpHi+iCgVNoJaT9UVa7ZbkjxmQibW1vIZjJY39hApVpFdreBZZzwKe28ICDzrImwOwQAOLFQURSWcXVdzLz/Ph49exbZB2AE8gPtDERBgNLyMhzbhk8p9o2PNzkBlFLWhx6Lzl3Pk6I2TaM0d4HoRFA1jU0lbAEFyxwEQYCGbaPOe1hFD64XY9jGU5BRFOHatWsYn5jAxMSEVO0S/8qHVXi5sYxHGIZyQ8/FvFch2pFMJJBq07EgkEgk5HvkslkWUfBshPgeALu/vs/GlrI3ZvKjQQC/JR0nz1tVofHF3lqTzBcKgKLg4qVLqHI9gtHh4Y5zFYDt7EME1t5pGIYsd8TviTgHEIJUKgWvVgPCELcXFkCjCMdOnuyZaNnHgwu/Xsfmygr8METSNFHI5ZpsR8AVOaMoAlFVFAoFOSFP44N6erYdnMEunm+txRlQoEDn/xVQgEZ1KCBIJ1P4W8d/EY+NfEF2zACQTu/yygpq1Sqee+45JGNrGYSNR2/SBkALN8iyoBDSXFrzPDmDpJvdEPfI930kk0k2vpkHShHYRqvrOsBF1UKusBpFERAEiAAE4rxi/xJA2gtN03aQokXr8mI2i8qtWyhyYbN8rr1uAwDJKRLOXcQ7MjTDgOd5TfMaCKWAokA3DCQB1PjeMXPhAk4//jizW/cxHlhnIAoC+NUqk/0MAgxxIo9YAFEUoVavyxRdOp2GaRgolssI+aJOxh6EbqBgG6/QviaKIhW5Av4lamee67J2I7DWN3FOmqpuR9L8gSeE4PyFC4iiCE+cPduxw0CixQCJWv6eWwrl4bZTnYQQqIRszxfnSJgmKqrK0oG6DiOTYTU3nt0QwkBRrHYYhCGo70O4PyI9p2kaFH7/0qkUUskkXMdBGIZY39zc1SFgJ8vaOzWeBaG8zauViyGch2wmg1q9DhqGuM07DI4/8sgd3a8+HgwEjQaqxaLsSBkdHW1yBDzPY88MLwlmMxn43DlwPU/21fcCESSAEOhctluHhgQS0gFQOLUrgwwUqgKgqKOOx4cew5MTT0ibocRsh+04uDE7i+npaezbt2/382jJGNwJ8TiO+CYtRYtajqVpGmtRjiJkeATfajPE9+DiYpI71MY5ECqs+yYmMD83hygMUeZlkYHdIndKWZkXrNSj8ImOidY9gPMIdF1HMpWCZVmwuUPw6Nmz97VD8EA6A1EUIWg0UKvVEPo+NN57C6ApvReEIUAIsum09F4TpolGEMB2HPZQ7LKoxRJyXRee67LolD/IojYnUmlhGML3fZimyXQE4gpkbVAqlzF74wZOnzmzuyMANNXHgRgbuEfD1ApZD+xSsyOEIJVMsgyL40iPXVVVoGUDFqnLkJOWAl7XpDwT4/CZ48KpyhcKsHn5JghDrG1sYGRoqKvMs+u6rI1IVaHrOnxOrOw0J0LhJYOGbSMKQyzduoVEIoGD09N3csv6uM8Rui4Cx0GtWkUQRXIQltjcHMdBnetf6LrOZpmI7hsurGPbthyC0w0ULEp2PQ+e57EghVKkwhTSSCPu2ieRBKEENiyUUIIHD/9p+Vv46qO/iH3pnZv9zMwMCCE40zK8rNN5tEJ2WN2p7RDOQBfbYRoGPNeFD3ZfU8kkFE3bsSlRbDsJItspsrdRFCHwfVjc1qqKItd6FIbQdV2WcoZaWsmb3oOyoXMErH3a4bMK4qWCOBRCoGsaUtwh8DwPlz78EE8++2zHbrB7HQ9kN0FoWaBBgFq1Ci+KkBcLGiydX6lWZWqukMvBNE258ZlcmpLynvROEGz1RqOBUrnM5hUI0gxPTWuahmQigUw2i3QyyaQvUynkslnk8/ldve4PLlxANpfbMZa42zk13Ye7sKB7SZkboq7IhUA6QegvmIaBdCqFbC6HQj6PVDotPXuAGcggCJBMJlGr15nKWxDAc12sbWx0HHQUhqEs+aQTCSQMQ37mHa8RLLoQcsZhFGH2xg1sPQTyo300IwoCBFxgxg8CEEDaDoC1HAtHwORTMxXu/IN3EABMTtzv8sxFUQSbS45vbm2hwYdqRdwxPjZ4DJESwSY2KrQCTdXwU4e/gv/quf8DKkoFDhxEiBBGIX7/0h/sOP7m5iYWFhbw6JkzXR1nidYggpOTgd7VB9sftnXCwk4kufyv53kd75lYo4auM3uaySCXyyGbzTLtAs4rEF1HKuc6WCKQ4APfNra2OhIKLc7fUhUFyWSSdQ60EAlboRACQ9OQSiZZMOM4mPnggx2dT/cLHrjMQGBZiHwftXodQRAwXfxcDgSA43mocZ0BjU8BFBuyeEQU3pNeqVbhex5c15Wenhj64/EWHGEEALbxqpqGdDLJ+ml5uhtgi7/CFfsMXe8papibn8dmsYgvvfhiz5t567b9SVN98phdvHuBZDLJCEFhyGr2PUxsFEQnVVGgxtJxwvvP8PRrBCCXz6NULqNh25i7dQtjIyPIpFKybCBmR4BSpjPOMz2EH6+Thw9AzpJIJZOy++LSRx/hiXPnZPqyjwcbIpuIiI8MD0MM5POyDa4WEwVLJZNSwz7ecqxrGkzTZJ1J9TpzJLh9CIIAXhCw9r3YBhNwbpLBo0xN0/Di4POoKVX8ePlNHM8cxSvjryCtpZDJZPBzR38Gf3ztG/Lvv7/4Gv7+iV/CkcJheT4fXLiAgYEBHJya6u3iYx0FwHZGUSgq3glkP/8utkNTVSRMExZve85lsz1xLSj/EnNkAF4S5MFYIpGAbdtI8M+pVq9jc2sLtm1jZHi4KesrbDrAsgIKL9uKrGInh0qUVnQ+D8WyLFTKZVy9cgWnTp++77hHD5QzEPo+IscBKEWtVoMXhhgaGICqKHAcBzUuRCHSezISjQnaANtqWbZlMZIIf1ACzi+IE/x0w5CtMTQMkeIRpgQnKQqJYkHka20BjMP1PFycmcGhgweb5JK7oV37zSdN9QlHp5fRPqqiIJVIoGFZsG2bRfptFoMQNpH3EDszGqLMkM9mQaIIhqZJqeGtYhGe72NlZYUxvLnjJcSPRNlCXLfQfAg6LOp4F4Wqqsik06g3GvBcFxc/+ghPnTu3O0+hj/seYaMBykfY+r4PAqBQKCCilAUGfAPPptNsJgnQtmMglUrJQKFUKsEwDARBINeiUBQUka6QvVVVtSm9/DOH/wZ+ev9X5MCyTCYD0zDwDx/5+/jzm38OK2AkYAqKf33x9/Hfv/B/AwDcuHEDlVoNL7/0Uk+bUdyZERDneqflRQDMdvS4GSYSCbieh4C3M3biasWnrAoiclz/hPDUvUjfh1GEdCrFeFmKggofOR+sriKXy21LlfMSjWmacq3rus7OqVuUH+u+MHQdSCZh2TZWl5aQTqdx6D4rNT4wZYIoihBaFkCIJAaqqop8Pg/XddGwLMaEjaX3gM49rCpPEVWrVWxubkoJSqFjnc/lMFAoML5BTHGwdQNs2DZLORLCoky+SBT+RdosmksXLwIAznSZPbDr/bgLqb4407Zbr6+AmUgwTQKuYSBAY+fTKkJCuhzfTCRAOWFLzHw/sH8/cuk0NF3HVqmEeqOBcq2GGheLapVOFWqQQZt2zFYIomQ6lYKqaahXKvj4ypWerr2P+xeh4yDiqnNVnhXIFwoghEhuEeEZxrgjQACgTdpZ1zT2XFYqKJZKMtWsc42LQj6PQi7HauQ8em512ENepqRgm6UYwlVIDOCXH/llgFBEYHykt1bexszmRdi2jctXruDY0aN7IrJ1yih+khKBOG4vK0chBMlkkmVvHWdbxAzbDkBIt8fJk9gm3MnhSCYS8FwXOi/Vjo2OYmJiAgnDgB8EKFcqcGwbpVKJDSPyPBY48LUeJyCHbdZ/u+vSDUMOOZqfnW1SUL0f8MA4AyFP8dEoQpWPGS7k8wiCQNb5Erze1K7NDGAOheU4KJXLqNfrUDkJTVVVRJQimUwin88jzdN5soWPlwtISz+s67pyrniGj9VtAv8bIeRDCEGxWMTcwgJOnznziYgodyPVF/d8e4HCo3JCCGs3jJF+aMtCbn4b0jZ7kUgkmIGIORa6pmFiYgKFXA7pVAqlahWO57ESDF/olWqVRfe8qwBgmYHW+yAIXK3XLEoGRFGwuryM2/3BRg8sQt9HaFkghLCsgOdBIQSFXI45Avy5ycfUQaUjQLblyT1emiyVSnB5S5pY24J7kM1mkTTNpohbbHBNzyalaNTriCI2US/dQh7+u8e/isHEEDRFBVEVgFD8jzP/X3z44YfQVBWPnDrVU2kP/Bp23JO7mBno1ZE2dB2aYTCRIz7qOIy1MXe6nk62zUwkpKCbQJZPPkwnkwCl2CyV2HpXVeiGAcuyUK3VYAv+gKpCAXtGWu/Tjuvin7Wh60iYJoIgwOWPPtpxDvcyHghnILBt5tkDsoNAaOiL0oDBNaYlYgIZruOgWq+jVC6zB5Fv7olEAmPj42yWNiekWJa140GgXFQj7ggEQQCL628nk8mObPY4CCG4fOUKCrkcpg8d2j7+HdyTT1wiaD3eLos6AmSrlcpTbSKb0ku6sl2GRNd1KIrCHKqW1xYKBcboJQSOZaGQz7OMj6oiwja50+IyqqKfmRACGmM6d5JCjY8ynb1+/b7z8vvYHWEYsiCCMMGqSq2GgFLk8nnYXDsDhCCXy0kZX1EaAO9Katg2SuUyK0vycqKqqshls5jct49xCwhBNTZeOA4qZG9j67Qpm5hO71gXSS2Jf/TIPwAAEBAoRMWV4hW8ufw2Hn30UUZ+6zUA6FZe/ISZgZ7eHtsKrwnTREiZQmq7e9UJ8ZkxAolEArbj7Pi5mUggl83KsnAQhhgeHGSBFyEIeVdTtVaD67qMT8DLRnE71o6IKIIdUW6wLOu+yize985A6PsIbVuSVaxGAyFlA3/qgiyo680ZAb4JOK6LUrnMUoNiyh1P5Q0UCmy4Df9/8bA4rsuMRqyWFKG5RECjCHV+HoZh9NYWCGBjYwMbGxs4ffr09jhUQpqGmsRTY3HFrx335S6QByViXQVi8YraXdxzF2eRME2IcaV7Yda2evmEECSSyR0jTz3Pg9VoIJPJIGGaSKdSqFSrktGdy2TYVDneqiXUHaV2PL+mTlwIcR26rsM0DAS+j6sXL+4ujdzHfYWIZ+0AZgvCIAAohanr2zLh3AYQsj1jIApDlgVoCR5M00Qul0M+n2cqpoaBXC7HHFRKUa3X5RAjgZA7Fyp/9nfNJnL8/JGfw1h6TP4/BcVP8A72H9gvS2+tX9uvFd+036Sk7bgLgUTTBkq3lUyl/eCzAwST3+QKjkIYrcc32XGuCdNExInIAkI6OqIUBT5zRiEEtUYDSe4kCM5XBIASAtt1UalUmGPBnTbZMt4GwiFI8szQ+soKFhcW9nLLPjfc/84AT/GBM0mF0A+lFOCpnmwmsz1FizJt7VK5jEa9LlNiggeQE62GsQ2XgBmFDD9OGIaoVquwucEQKXnh3dc5I10Q0nrFpUuXUCgUMD4x0fwL4QjwiER4qa365wJxcQ7CpUbFBt70Orqtg9D6Rdt8Lxbubi1DmqpKwt+eFjV2evmJRAIuP0YURWhYFjOoYKnF/fv3M8IRpdjkrUOqqjYtbp1Lp7qeJwdRhUGws0QQg3imEqYJVVVRr9cxe+PGfePl99EdoeeBxqJPIQ2ua5p0BIQQGQApSlPnToDQ6W8NHppGl1PWtZTP5WR3jc2zkCKYiGcVm7KJ/LntBF3R8bVTv7p9PTTCerSB127/sOPfCKdABBk0tlGLbIcQByPYlimmbTa/drZDBiex14DX3IWdpbEvcU5xJLgTLwav7QXxYwmxIGF/fN+XZR9CCPL5PCbGx6Hx8lClWgXhaf5MOo18NosU39AjsOejWqvB5VoEHTMv/OciswhCMD872zRF8V7Ffe0MBI4jCTyE15qEYpV4mLPZrNxgHNdFtVpl7H4ubpNOpTAwMMA8whbWeJzxDgCmriOfz0PTNFAAlmWhXK2yYUL8/WzbZgIigBx92QvW1tawWSzi1KlTO2aBd0SHmr4gvhBCoHMiTGuaK764aZuv1uPthR0MbNf7hSRwz2jx8hOGAdtxYPNuEMH0TiYSSKfTUFUVw0ND0Pls8/XNze2RpXxxZzOZbbJWFMH3fVRrNVi23TFzIZniMR7E6tISSqVS79fSxz2LUJSe+MYnpvKJZzyZTLKNCcyxrvO1LhwFQ9fbBg8CklcAyCmGad7mJrRO6lyXRKzFOo9aDcPoSf30p6d+CodyU6CgbFYBgN+/+G/gh72ttyYxsdjGTQhTDCSxwENkRlqDilabEXcQhN1oHdfc9lzEJnqn2QG0cQYIQcOyUOcBQMTLmJlMBoauI8U5YJqioFKtymm1ALPlyWQSWd7FIfYVy7ZR5m3nHQMDfh467xbxfR9zs7P3fGbxvnUGwjBEGH9Y+AffaDRYipjr6SuKAtd1US6X0Wg0WJqYE8QGCgUk2yzkOFp/oyoKcnxzkVmCWo0Jh7gubM4pSLVECbvh8pUrGBocxNjY2O4vjqGTwxDGNsRWiEW+FwgHY/cTYq9RFQWGaULlpZW9QnQY6KYJ27LkhDONL+Y4uVJVVQwNDkIhTA+91FLfFy2GCdNElqs+hmHIlMvqdVZaanUKxD3i/IFkIgHf93FrcXHPRqqPewuB624HEYoiR3g7rsskwrlCaBhFqNfrKPJMgFCdy3PBG71DCa7TOknwjhgxCte2bdRrNTiuK4eUKXvIJipEwd89+FWEUST99KXGMv7z3F/u+redsnu0C9fojrvm9xBEANsbechHK+/trdh7iaFP1UqFdYNwTkImk2kKNrLZLAsqeNuy0yJopvIsZzqVQjKRYCWNMITNlSjdNk5B/GpFZnFzbQ3r6+v3dGbxvnUGqOcxz5Z7slEYol6rwQsC5vFlMqCUolKpoFavM2NP2HCaQZ4JiLOBdxw/5tm3QtSECoWC3JR838dmsYg6l+Q1e1H+4lhZWUFxawunY1mBT4K4935XOAMcu00OYy+Keeci5bfH7IAY3Sz030XqP81LNe2uyTAMDA0OQgVY2o/PMwe2a59CeCgZcwoiMBJRvVaDw+uC7a7F4HoSxfV1bGxs3LcqYw87oihiXAFsG+1GowHbspgjkEgwiVnHQalUgu26EP3rgg8gOlTabqYt2cRWaJxcmM1koClsHLIsPXgeMqlUz9lEAEitp3BAn2z62R9e+Xdwgu4Oa6f3+KSqpR3ebE8vVzj/gtxBdiCKItiOA4u3mYdhCNMwkMtmZbayFYV8nm3ahGBra6t5fHGsBV2UEMRxojCEw4fOtXIT5KUDSPOptKvLy6hWq3u6ns8S96UzEM8KiId6q1hkk/M0DYV8Hq7nsXQO/5CSqRTLBPCUL9B5wXZzBOJQCEEmlUI2m2Xtc2HIJvZxToHruj21+Fy+fBnDw8NyvHLsRLr+XbtaHrDNYQB6Y/L3ir0eKZ7ys3tY1GEYNrX3gJdyACa6ou+SaUkmk8gXCtBUFZVaTab9SCzKD/nAEyFBnE2nmXEnhCnHNRpyYTfdWUqR5M7Nxtpak7PRx/2DqGVN0jBEqVSCH4bIZDJIJhKMD8TbkYVQWI5H9HEy3g6uzi6OQByGriOXz7N2WN6CSwjTSGnEnsFuWF9fx+bWFv7xI7/e9PMtZwvfvPmtrn/bybLc7S4k4M4yCqI1U8xz6QZKqQweapwMLs7f5ATurtlfQjA4MCBl6OOlRnGcMIqYWiQhMA0DWf6siKF3jUaDDaCLlRf5wVlmMZlEaWsLZZ5luhdxXzoDlNfkhYH3fR+1ahU+H1dpWRbbfLg3NzAwIOu+AoKM13ZB7zGVE4YhNE1DKp1mYiVg0WbDslCqVGDZdsfFvby8jFKlglOnTu3pPeV1tPmZVBD7pFmBlgXU06Ju+RvZstMh5SeyAHW+kD3PAygTYUny1FzP7w3WS9yU9nMcCB2DiNIdn4NwCtK87BNxFTq5sMWzQJiGRMo0USkW0eBCJX3cP4iiSDoDwnZUajX5XGa4DLkQqMqk08wJaJ14yccAx7EXRyD+N2EUIcm7EFKJxDbRtVaTUxA7pZYvXb6MoYEBfPnkl/H02JNNv/sPV/8INb/W+b07kGfvivpgG+x2X1qvUOFpfdKFhBzydH2tVmNlFj790eCbdStPqhtUVcXQ0BA0TUMYhnKOgXAGAj6rQl4PdwpyXH8ins30BYE9dm2mrkPXNGyur6NW6/y5fJ6473RWoyhiksMclNf1XM9DGARyfDBRlO2WwA4QEaPw5joxXLueD29bo7wVKJfNQijwua4rB1g4jgNFUVi6WddlqvHypUsYGx3F8PDwjmPv5pJEUQTXdeE6jpTOjMIQruvCdhw5GEho84uxwiJivnbtGpKpFDRFYcM++L+qokDl31uOw8Yrx4R49nJ/RHZA3AOxcALuHPi8nUtA13UYXKIVgBR82gsK+TwCbig2i0WMjowwDgInAbWDruvI8tGvYoqcz0tOcVVDVdeh+j421taQTCbbfm593JuIxERLbuA910W9VkPg+9D4hEsRQKTT6a599m25OHs8H9txEIQhVEWR0xGDIGCDjrg8bxAEsMBannVuOxRFwerqKra2tvDiCy+AAPinZ/4J3l17Xx67HtTxRx//L/inZ/7xjvellMIPAmY3eC+9sA913jYtuh/CKEIUBAj5NEYAuPbxxyzajo1cV4TN4APHojBEEIZM619RoPOhYR3vJ3baO5PLFIdhCM/zpLSz7/vbs2E4pG2NzRwQ3KBeoWsahgcHsc6HoZUqFRSy2aZM647zJgTpZBKGpqFh26BRBKvRgK5pSJimfIYo70yqFItojIywtugeSKKfJe47Z4AKz55H9jYnDTqOA4XX6k3TRIo/hL1AjB0G9r6gG7yDIa4tLjgFSdOEzxd3wB9esSkSQrC5uYlytYqXz55tvkawVpZKtcpYzo4jN3zbtlkvsuMwUR/uxMQ7EMSiUgmBqmlskYpZ54rCnAZKUSyVgFJJjgelXC1wx4YpyircaUokEuzLNJFIJmHy700um5rJZJrIk6ZpwrJtuI7TdnEqfOyoaZo7PjOFkK4jlNuBECIXtet52NjcRIYzuTs5A+I8UqkUNF1nmQGeJdD5tDSxASQSCZS2tjB0jy7qPnZCZAVEO65wiuuNBhzfxyDXIcmkUjB6+DwppVAIkT3ne7UbQRjCsSwgimAmk/K51zQNGU1DlEyysehcq0MMzRGOwczMDIaGhjDMS4snBo/j5f0v4Qex1sL/eP1P8Sg9g0RowOE2w3VdlqlsydLF7YYCbG/w3GYofMYHjSI5pVUw7MWo37bZT0Kks6/rOpNWNk0kk0mY3GYI0mYylWrK4CqEzX7x63WUKxWmHRBfv5zLoes6dF3f4aApigLsMcNhGAYGBwdR5NMkRbAoeFidAiFd15HjwYQIJIIw3J6AyDs0dF3H2toakqlU2y6UzxP3lTMQRRFCx5FENt/z0Gg0UKtUAO6hZbNZ5tXu4SYT8NRfl42iHTzfh+e6rNWNR83NBybyQQX3xj3Pg+f7oJTixvXrKBQK2NjawuLt23AsS7bChJx7QMFIR6Zpyg13cGAAJhc1ERuzYRhQNQ2aqjL1tCBAKpWS7VFxFItFfOe738Uz586h0EbDXJD2giBAuVyGHwTQdR2+68JyHDi8Dcu2bdQ3N2UWRPwdwCa7pdNppNJpqcCoqioCw5DCHuLedCtnCJ0E0jKUZDcQQjA0OIjV9XV4vo9qo4FUItHVGQDYs2DqOlTeheJ5HnzPQxRFrD2RO1a6rmN9dZXd474zcM+DxrkCnLRnNRpwbBuqqm4rWO5x81AIF6+Koj3ZHMuyEIFlmtpN+BStbUne1SAmpQZBgLXVVZQrFRw/fhyXL1+GY9uwbRvHa0fxOn6EiMtpedTDH83+Mf5G+q8jwTskBgcGYHCnXWzM8Wi63miAEIKBNnahXC7jr77zHZzrYjfEGGHbcWDxVkkFrK27YVkyG1Gv1bDJbUfANT8owCa/ptPIpFKsTMidA40PFRI2Q+fTCrt9Xoqw6TGHpBekkkkEuRxK5TIq1SqSySTLUPKgr9v7pbitE5LGVqPBAiZOKE8kEigXi2iMjiKTycjpl/cC7itngPJ6MggBDUOUSyWWuuLp8MGBgd5G57YeFzxNJRZzDw+OULOiAGuhU5Su0YEfBNja2kKxWESlUmGiR40GaL2OYrEITVWRzmSQTKUwODiIdCaDDN9IDcOQnrpkt/LF0+167nQmAeGkF4W3BxqmKcexCuUwcQ8oTy8GQQDHtlGLDQ1qNBrY2NjYrr8DIKqKXCaDfD6PQqGAwcFBptLWYVELgo5CCCLSu9Y5BZNTHSgUsLm5ycRCFAXpHjduVVGQTCSkrGjIswTCkUmYJsqlEjyerelVZbKPzweRsB2KApuTVH2eelY0re3m1hUxgR1CCKii9LzhODw1D0p70hOwGg1scvJZjQ9OA6X4+No1JoyVTCKdSuHI8BF8Rf8y3i2/h5D/dz26gf/y3G9gMjspo9BODrHQ8LjTaFWKGvFSbZhIwDBNOVshitksYTeiMITr+7AbDVRrNdQbDViNBrMdm5vynCLwIXN8yNPA4CCGhoa6l4F5t4bI4PQKSinS6TQs20bkuqjV68jncrs6AwK6pkFNp2HzYMJxHERRJLOLCdNEcXMTqZizcy/g/nIGfB9CGW6zWIRl21B4H6iK7Va2vR+4mQFKgV09/YZtI+SbVIILS8RR55v81uYmNre2UKvVGJGE9xoL4Zwnn3qqufedp5fYKUSybiggNmoxFKl10JESK3l8Um1xIRcaUQqfZzNoFMELAtAwRNjazaAoyGSzSPPx0BofRUz4fIFN7ghZloVSqYSF+XlQSqFqGoaGhuTXAGf2iuuNX3vUY0o24q2kCS5OFFQqqFWrSPToLIr31TUN2UwGdS5aUm802KAqVYWp66iUyzL9ea8s6j6aEfk+60xRFHiui62tLakQapomdNOUNmAviG8vUq54l00njCKZFUgmk1KwTP6edzdsbW3JL2Fbsrkckjy7deToURw6dIj1vgPSTgxaQ7j45iX4dNse/fHMN/C107/eLHEesxeE//xuEY/FpD+h5eGqalPQEHHbEYduGBgYGMDAwIDMcKpcSKxWq2FjYwM1Pi9gfmEBVz/+GADrMhoeHsYgdw6y2eyObjFhK3vJLEqHhXcYrK2vw+HKkJkeonjxHBBCpIKhyDCK7KJpGKhVKrJ7Kr0HldpPE/eNMxDx1j0KsIxAo8FmjufzKJVKiHyfiQ3tAVJ4o5U1Twioqm5LbbYg4OQbUIp0JoOGZaFSqWB1dRWVchlFzmIH2AIeHhrC8ePHMTg0hEw6jXq9jm9/+9t44sknMTY62va8Au4Y+L7PJv9xhirljPhO3j0Fc0TEAlA4t0J6/IRIIpBl21JNEaIuJr7nTkCDt1hpMQZ1XJubALKmKEaAaqq6wxExDAOpdBq1QkFOlIyiCOVyWRq9Gzdu4PLlyxByoUNDQ5IYKep1rTPM2927qMWw5/N5dh2eh0qthnwu1/Hv20FRFKRTKRYp8DYikbGpVSooDAzcU4u6j2ZEfOCQ57pSI8JMJKDrOiqVSk9DxFrRLkMlO5Qo7RhMWHyWgaZpSCQSqNfrKJfLuLWwwKL/SgWU/35wYABHjx7F4NAQhgYGoGkaLly4AMM08eijjzYz/rnty2Yy+NLhF/Bns38Blf/37vp7+OmDX8H+zP6dDnwMDi+JGYYhFVrFdREwewH+r6br2/LDcQEjbjc8z4PrujA4YVi8Lh6hK7yOLmyL4Cg0OdXc0U6nUnA8D4auI5lMwrZtaTeKxSIWFhYASqEbBgaHhjA8NCTLFfKzQRdSNt05qljlbeoN20aDc7V6GjjH3lCSBhWejQrAOGapRAKqosBqNGQ56K7qOtwh7htngPKadLVSkTrPA0NDrDeUt6Ld8ajeNpAfKNDcl8yjQz8IUKtWcXN2FkvLy3BdF6qqYnBwEFNTUxgaGsLg0BCMNr3xszdvwjAMHNi/v/17c2KMqKsLRJywEwQBwiCQm3J84IcYFwzwVFyb4/s889CT/jfPPGiati1Ryr9UHlXEF2839q6macyI+D5c10UikZDZAIF6vY7NzU0Ui0Wsra0x6WhK8b3vfQ/79+/HxMQEMtnsjuxAq6GJQ1EUDPAN2+W1y3SPXn78GOlUCrZtIwhDWLbNmN08o1Ov15Hao2BMH58+KKWgfJMrFosIggCGYWB4eBilYpFxcvbIMRKtiZ02Flk2AJqcApdzjBqWhUathtXVVWxsbiLiaenhoSEc5LYjx2XU43B9H/MLCzh+4kTH1j9VVfHLp34Jf77wn1ELtlvY/mjxG/hvz/0LhEHASMLC4eeRsPyeb+ztGPSCdCiClF3vUYw0JwITOdmU247tl9OOAQ7ASrFezG4kk0ns378f+7kNDcOQZWK5g3D16lUEQYC5mzfhOg727duHsbGxHaqw4to7fZapdJpNU4wilCqVnonpQkGVgGlKKOm07OKqNRpImiaqlQpS6TQajQay2eyux/y0cd84AxFP1dT5Dc3m88im06jxzUI3jD0v6F5qfDL9B8CxLCzcuoWlpSUUSyXQKEI+n8fBgweRz+cxOjq6aw3QDwIszM/j8OHDe07HCc6AqqqgHRQOXU5oVBQFmUwGAHZ48EIeOJFIIJVOb2s2YLvuh1hUAKDpYe228e4Gk7cHeb7flniXyWSQyWQwMTGBt956ixkUsAzLtevXcfnKFaSSSYyPjWFichKDg4O9vS/vMLEsC+VKBaZh9CQXHU//EsIULB3e2eG4LpKJBOq1GvKFAhp8kmIf9w5oECDgQ2oc14VpGKyfXFXheR7CKEJiD2qhEruQ0mQkyjNZm5ubmF9YwNraGousVRVjY2N45NQpDAwMYLxNhrAVC/PziChtGm/eDnkzj79z9G/jD67+W/mzn6z/BNcqH+PUYHs9E0opCB+znOJZL5kl5HZDOAAJrtIoM478fojso9AGcF1XSjsLdJv41w0aD44iykYctxKjVVXFyMgIRkZGcOvWLWxsbAAABgYG0LAsvPvee1AIwcDQEPaNj2NiYgKJZJJlGXfZN/L5PFxe969UKhgYGOjpnMWEQ1A20CqTycjMkO26UHig12g0WCvr55wduC+cgSgImIa8ZSHwPGS4IhgIExyKKEVyLwt6Dw9jrVbDyvIyVlZWsLG5iTAMkS8UcOrkSew/cACZTAa1ep2VDXpwRhYWFuD7PqYPH+79fFtPf5ffq4oCTXQxtIFgthq6DrNL2qvjhk9Yz3674Sy7QedMfRFdtDvHer2ON954A1EU4eDBg1hbX8e5c+cQRRE2NzawsrqK24uL+Pj6dei6jomJCUxMTLT1/ONIpdPwuEErlssY3YNGQLytKMHrtI7jwHZd2PU68oUCLMvqOwP3GHzbZiJktg2dDxozDENm0UDp3soEMeJgN0RhiLX1dayurGBlZQUNywJRFIyNjeHxxx9n5UFCUCqXe1o3EaWYvXkTB/bv76l75avHvopv3vwWKt62Uua/vvT7+O0XfqttBlWUAsTE0Xb3xInbjR7tbes7dcuo7AbTMBBwzYF2XVIAcPXqVVy5cgVTU1NYXFzEgQMHcPjIEdi2jZWVFSwvLeHChx/i/IULyOfz2LdvH/ZNTCCXz3fM6qmKglwuh7ploW7bTLK6B8KwCMpElkXl2cVqvY4gimDzbpZEMgnHcT73zoL7whmwuLSv53lIp9NIp1IyTeYFAWP072EokEQH7z4MQyzfvo2bc3PY2tqCoqoYHx/Ho2fOIJvLIcUliHeoju2yqCmAGzduYHL//p4eps4H6vw+YgO/GyWTTqpqolOh9Sx6eUdCmEJYyAWTWo3O5uYm3nrrLaRSKXzxi1/E9evXpeiPoigYHR3F8MgIzpw+ja1iESvc2C4sLkLTNEwdPIjpQ4eQb8MOVwhBLpuVvcC1Wq2n9BwBI2PGuQpiGlkYhihubWGID5jq5OD08dkjDALUSyUp/yrY2wBrC47AoreeP68eNu1arYb5uTksLC7Cc11kMhlM7t+PbC6HdEzRkICz+rkNimuFtMPq6irq9Tqefuqpnk41pSXwD0/8Mv7fM/9K/mxmcwbvrr2LZ8bPtb88/m9PM0g+B+iGAZULNbWuM0opzp8/j8XFRZw6dQpHjx7F/MKCDA6SiQQOTU9j6tAh+J6H5ZUVrCwvy2xjIZ/H9OHDOHDgwA7ZcwLOeYoieL6PcqXChON62XN4ECFsqeAIWPU6PEqxtbmJyQMHYNt23xnYDY5lwa5UEHieVOGKe4UBZ7nf0YJuWdy1ahXzc3OYX1yE73kYGR3FuWeewfj4OCiAarmMiNIdtWGZEtzFWIgF/cSTT3Z9XezA7S8BnQ3Hp6Et3u484g94/Lx6gcHHEguSpFhUi4uLOH/+PEZHR3Hu3Dlomgbf9xnJMZauBAAoCgaHhlAYGMAjp07BajSwsLCA+fl53Lx5E4MDA5iensb+/fuhapq8X7qmwcjlUK5UUKnVZJ/1blAIQdjiPKaSSSY6RSmWbt/G1KFDMgLt4/MFpRSVzU2EERtZneLS1mKtCrtxJ63IrYjCEMsrK5ibm8Pm+jo0w8ChqSlMTU0hm8ux6XaOAy0WUYtME+Elt26CNgBwY3YWg4ODPZfFKICfnf4Z/MmNP8WavcbOk1D8T5f+DZ4eewoKabYPERcdA+5OICHReqxO5ZUeS7aGaSJsIfMFQYC33noLxWIRTz/9NPbv3y9lzYXtiGLlAF3XJd+ARhHW1tcxPzeHDy5cwMzMDMsmTE/vaDfNZbNy3k25WsVwj59FaxeUxh0C23FQ3NxEjr+P6HD5vHBPOwNBEKBWLMoatWGacrwlwG5exFN93fpNJVofOEIQBQGWlpcxPzeHjY0NGKaJQ4cO4dChQ00p31qthggsIhSbl1TK4iS63R7nmzdvopDPY6jXh6jNAtlN7Uws6E/bu6e71Ey7QVEUmAZTRfP4Zi/Se4cOHcLjjz8u763neVA6SBKLeiUFKwE8cuoUTp48idWVFdycn8d758/jo5kZTB08iANTU/K12UyGCSd5niwX7Oo80eZ+ZcG2TiWTqDcaqJbLKJVK0Ph0uz4+X1TLZYSOgzAIYCYSUFQVpkivU8rKRVHUewdS6/PHO23m5uawMD8P13UxPDyMp55+GvsmJ7c17cMQHp+GGc8Gxom40rHusAlXqlWsr63h6XPtI/p2IAAM1cCvPfIr+K3zv8PPGbhZvYkf3H4dXz7wctPrxXNNYlomdwPtsoqfBPFAQsgUv/HGG3AcBy+88IIkI4suLFXTdnQXgZOfQ95uOj4+jvHxcTi2jfn5eczPz2Nubg6DhQKmDx+WDhhRFAwODGBjYwOO4/RERBY2R3RBiadI13UpJrV8+zYOHz0Kx3E+146ke9oZqJRKAK/xCmEfWatqiRT36lE5rotr167h5twcPNfF8MgInj53Dvv27duxGALfh889zXbiMpJ01/rQxQxIrV7HysoKnnzyyZ4Z5+222l1rlXczM9ChTAAwR+VOygQChmHIuQqXL13CrVu3cPr0aRw7dow5aZx40zXt3qZ/mCgKJiYnMTE5CavRwNz8PBbm53Fjdhb5QgEHDhxAjouWrK2tIQwCNCwL2V1q/cJgCx0Hca1CdazeaGBtZQWZTEbqqPfx+cD3fTi1GkgYyj56Kf3K16iwHT3ZDUE25g7/2vo6rl69ivW1Nei6joMHD2J6ehrZNk6gY9uIwOxXu7SyGKAFoKPtmJ2dhZlIYN++fb3fBH6tXz7wZfzR9W9gobYgf/VvLv8BXtz3PHQ1lma/Qzn2TuiWJW3LG+gxuFAUBaauw/E8bGxs4MKFC1BVFS+99BIymYzMsoghYt1S+a3nkUgmcfKRR3DyxAmsrq1h7uZNvH/+PAxdx9jYGI4ePYpCoYBMNotarcbUCROJngIJQghoTMsBgJRXtup1lEolVgLvOwM74bouAsdhYxVjxC25YOKs1F42V/5az/dx7fp13LhxAzSKMDU1henpaWS61I4t2wbl79/OeIiNojVqp7HzujE7C9M0ZSvMnaLdJhyH5Ax8BmWC1l5q2qOTA0DqG3zw0UeolEp46qmnMDk5idapkb7vd1X36/aOqXQap0+fxqlHHsHS0hKu37iBmZkZLC4s4NTp08jxckGtXpcDVTqBdvheXEvCNFG3LFSrVQwMDPSdgc8R1XIZKqVSK0ThzgAA+WyJlrqeW0EJwcbWFi5fuoTNzU3kcjk8+eSTmNy/v6NDEQQBPC6DnOpA+ouXGNvZDtfzMD8/j5MnT97RJEFVUfG1U7+O/8tP/q8AJQABVqwV/NXCt/Hzh39Ovu5uCZW1ou1ApzYlxr3AME0sLS9jZmYG2VwOX/ziF2WLOcBsghBq0/YQSEgoCsYnJjA+MQG70cD1GzewcOsWbi8t4fD0NI4dOwZN0+DxLpV8Pt/1fIUSohiWFr8jQrBua32dBSkDA59bqeCedQaq1SoUnsahUQSVT6WSiKVse6lx+UGAGzdu4Pr16wijCEePHMFR/qF2/TuuCQ6gY9ugTPW1/pz/G1KK27du4eDUVNMUq10NUZvfd1tCQiEQuLsEwo7OVsvPexkoJI5pNRp47513YDkOHj97FpOTk21fHwRB5wXNzyGuutj2JXxxZ3M5VMpl3Jybw5tvvIGBwUFM7tuHRCq1+6KOs8jbXKdhGFAcB5VSCaVcDrlcrq858DnAdV14jgM99hk1qUO2yAbv+hlRilKphEuXL2NtbQ35QgFffO45DPfQCmhbFgsiTBNqBzvTSQxHnNXy0hKiKMIh3k4oN7w9PFtfnHgWJwrHcaV4Vf7s31399/jpqZ9GQjXv+Lhd0c0WtMsC9OIc8EBobm4OH83MYGhwEGefeKIt70PY7FYyYPNpkF27G5LpNI4ePYoD+/djeWUFN2/exNzcHKYOHkRhcBA13hbYbR8RxxfSyHFHSJRMa7aNRqMBy7I+N82Be9IZsCwLvusiQbdVoZqyAkDT990e4DAMMXvzJj7++GMEnofpw4dx4sQJJEwTFEwetOu5OI7MCnTymncjEK6trsJ1XUwdPNjUzw9skwHbkQI7cgY6XK/cEPkG+Umx2/Js9fDbljXotkCLeG25VMJbb70FRVVx7qmnoJtmE5EwDr/Dz1vPY9eWJf7eAwMDeGn/fqytr+Py5cu4ePEiCgMDGJ+Y6Lqo49kf/oMmAybLBfU6G6nNxVH6+GxRrVah8jUi5tEbsdIiAFkmANB1ql21UsGlK1ewvLSEbCaDc+fOYXJyEgToquQHsM1IDCTrOrdiF9uxuLiIsfFx+SztaOfl19XNBhJC8E9OfQ3/xx//N/JnRbeIP73xTfzyiV8CsG0H7yT70A7yajqRoHsJhmIOuMgYfjQzg9nZWRw+fBgHp6Y6jhf2fZ8JSu1mO3qQKY4ohaJpOHrsGI4dO4brPLN86/ZtjI6NwTCM7m3K/NwjEdy2nLOY6lqr1VAsFvvOgAClFLVaDVoYgqgqaBA0ZwXidfkuNW1KKebm53H1yhXYto1Dhw7h5MmTe2rpcz0PAZ+H0E1MaDdn4NatW8jn822JZaTlXyDmGHCj1ZRK7LKAPi3vvtPR4s6ATO/HyhjCUMXvysrKCt59910UCgU8++yzTNqZT3Js6wx0+PmOc9llUUdRxIymqgKEYGxsDGOjo1heWcHFS5dw9coVrK2t4ezjjyPXYTG2Zl5aSY2maaJWr6NSqWBra6tjtqOPTwe2bcN3HJixZ64pKxAvaYmsYpvjWJaFS5cuYWFxEelUCk8++SQOHDiwp2ybkO5NJJNdU+9ybbd5dhuWhc3NTTzVpZ1Q2IkmxNakOP5jo4/jyZEn8f7G+/Jlf3z9f8HPTf8MskasTfpuOQNdsopEvI94DSeISwGgNqXQMAzx7rvvYnV1FY8//jgOHTqESqUCn49fb3VigiBgUum7pNybCJydL0ZG9Zqm4dSpUzhy5AiuXL6MxVu3sLa2hsOHD+PkiRNtgzBCCCMr8mO1BhKEEKTSaWxtbCCbzX5unKN7zhmwbRuh78PEdqTblBVoWdC05WcAE615//33sbm5iQP79+ORU6eQ2Ssxg1I2bQ/YlSSidFnQXhBgaWkJp061V/5qh7iDEN/Yd2yuMadIRELA3eMLiPeRwzdiP2NvyxZwvLOgmzLh7OwsPvroI0xOTuKpp56SEtJiPCttGfYjhq/0EmHvlh0Qz0mTo0QI9u3bh4HBQVy/dg23l5bw6quv4pGTJ3Hs+PEm40+x8/PdYUQoRTqVQnFzE4VCARMTE5+7qtjDhFqtBi2KoKgqfN+XKVgATVkBgVbOAAUwd/MmZmZmoGkazj72GKamp6Huse7t8SACuwQRAKCK57bNsW7dugVVUTAxMdH1GG1OrjkdzTfbr53+dbzz2ru8C4eg5tXxR9e+gX965msywr7rz2ssg9K0PoXtED8Xdq3NfXBdF2+99RZq1Sqee+45jHFND03XEXFyt9pyn23HYd0jPThwCiE75hLEITstYscyTROPnz2LkfFxzM/N4eq1a1hZXsZTTz21o9woZJ4F2mYHDAO1ahUVPqRqz5/5XcA95ww4jgOVL+igXVYAaEqtNUXUlOLG7CwuXbyIRCKBL734Ioa7pG+aPLXW8/A8hEHARCJ2WdDC84/4ootvIstLSwjDEPsPHNj12tui9fy48Wi+ELbwhaKaFASK/a24Vsp/J1i3bZcA/zuRFhfM/nZ1TYrtckbH5UQpPvzoI9y8eRPHjx/H6dOn5a/ETPKQb/zxzgExUKnX8cAKbxdqewqCLd3ms04mEpicnERhYAArq6u4dOkSlvjCFlmCtvrligLEFjUhBAnDQKVaRaPRuCdUxR4WBEGAwPNgAMzQUtq1tNgauVqWhffPn8f62hqmp6dx5syZrvXmjqBUEo57YZqLTFXrc0sBLC4sYGLfvt7EbbqdEtgaPTFwDK9MvoTXl38kf/ens3+Kv3Xkb0KN1M62I7ZR09hXU4a25Xsx7XRHMCOuW5yX+F2HzbhWq+HNN99EFIZ48Utfaur9N3RdlmNaAwbbtnvPAnfLDsSdmTaf5ejwMEAphkZGsDA3h1dfew0nT5zACZ4liJdH5dtxO9yaHUgmk6hx2/F54J4KW0RLiBLzGs3WrEA7L11V0ajX8aPXX8dHH36IQ4cO4Stf+UpXR2D7j9t4jpTCsW1W7+thNG18JGgrkW3x1i0Mj4z0NLd81/Pr4r1KAqM4F2xHy2T7RfL/SXzxtn7Ff47uZMROi10gDEO89fbbmJubw9mzZ5scAXFOuq5DURQpFSwgUq09b6g8ImoH4Th2+n0ul4OqqpiYmMBzzz2HwPfx6quv4uOPP5ZO3o63a+NIKpoGQ9Ng85nsfXw2cF0XJIqggDm6pF0Q0QaEENycm8P3vvc91Go1vPDCCzj7+ON35giAlRbDIJCjzXeDzAy02I1KuYxqrYYDdxpExBBf779+6lehYDt17kUe/uer/347c9bOdpDteSVNT3sHe7FbeRH8mLthc2MDP/jBD6BpGl5+5ZUdIkBxJcfWAWm2ZfUcRACdMyJxnlC7M9Z1HalkEulUCo9+4Qs4fuwYrly9itdeew3lcrkjsXmHYxFFMHSdyZvz6aifNe4pZ8D3fURBIFW5QOn2oow/bBwidbu6soLvfu97aFgWXnzxRTz22GNSwvZO4HoewjBkQiU9ipKIhyn+IVqOg/W1NRw8ePCOz6WVS9ANd71M0MOiblJibPmd4zh4/fXXsbm5iS9+8YuSEd0KsagDPmdCwOZDqfbiSHUkV3YoKcXPIZVMMiOoqnjly1/G4cOHMXPxIl79/vdRq1Z7fj/dMGBZVt8Z+AzheV5TGlrX9R0loThoFMF1HLz/3ns4f/489k9O4qe+8hWM9tAl0A22IBz3OJZWZBVbMwO3bt2CrusY5SnxT4K43TiQPYD/4tBfa/r9X85/GxsWG+xzV9UH0d12dLNni4uL+PEbb2BoaAgvvfRSR30XwzBYIMF1BQQalrXnrFy7tRzPIHWyLblcDgohCIIAU4cO4eWXXkIYhvje97+Pq1eutM1Wkjb8L03TQKII9XodDh+9/FninnIGXNeFwkkkBGxoRhP5puXmVatVvHf+PG7evImJ8XF85ad+CiMiG9DjQ93uA3ZcV7YE9UrGU1R1W2+c4/atW4CifDIimSiJYBdPG58CgbDlHNr+qs37Ayy998Mf/hCO4+BLX/pSVyMrJpKBkKbRqJZts/TfXpybDouW9pDlEIva56NSz5w+jRdefBGu7+P73/8+bs7N9XQKhq7Dtu3PzcN/2EApZSPEucNHge12sw5ZgStXrmBmZgalSgXPnDuHs088wUpU3YhkMbR7igLfRxgEIIT0PMinXRARUYrFW7ewf4+kxU7n15qm/pUT/wCGsn1+FBR/PvcXkkx3V7CLLYpnK1rv+JUrV/D+++9jamoKzz33XNcyiQgkvCBous69ZgaA9rZBlDq6WSBVVZFJp6EQgmq9jlw+j5dfeQXHjh3D5StX8IMf/EBmOZvfMHZUntHVNO1zCyTuKWdAlgj4l9EiFBJHo9HAhfPnWZ1LUbC8vIzvfPvbeOfdd7G4uAin3c3vAYHvsw4CoOesALD9IMUX9eKtW9g3Pn7HKcc4eurhF4Qc/pBJpj//XvAEBHM3zvoXX4j/rCUz0K4k0G6xb/D0nq7reOXll3cV5QC2I7m4M2DfgXff6ZykKFQXY9e6qP0gwNDgIL7y5S9jamoKH3zwAS5dvNhMBkJLJoYyPXQC5qy2Rix93H34vo+IywsDkKUn8X1rqe3G9esolUqsVu/7eO/dd/Hqq6/i0qVL2NzauuPx3CKIMHm02gsURZH8HPG+G5ubsGz7E2UU24I7SyOpEfzC4Z/fPgcoeG/9fdyqLzXbBGErxPecCNdqK9Du/7vwiKTtaPk3iiK8//77uHr1Kk6fPo2zZ8/u6pzomiY7iYTQkMtHU+/ZdrTjY/UYYGUyGSZxHIaoNxoghODUqVN4+eWX4ToOfvDaa6iUyzuP3ZK9MgwDNp/Q+1njniIQ+r4PlT9wRFGaxSRiN61cKuGNN9+Eqqo48+ij0A0DuUwGq6urWFtbwzvvvgsFwMDgIMbHxzE2NoaBgYH2kXULkeNOFjTAMwMxzkC1VkOpVMKJ48f3dhNaIBZVFHOSdtMZ2NHyx9G0+Dp45fH/j1p+3hphRLFzE+zlhYUFXLhwoWnYUC8w+KwCMZJaIQQNy0LyTpwBtDCXEbs3u3ym2VwODcuC57qSAKiqKh4/exapTAYXZ2Zg2TaefPLJ5ucj9hypqgpFUdDo6w18JgiCQPKMFEVhznd8Xcf4MTMffYTrN25g//79GBweRobPqVhbW8PNuTlcvXoVhmGw1lP+1bH2HzPmURRJtcFeuAIChPNcIkIQhSEUTcOtW7eQTqUwODBwx/ckvlYjSrf5LXwz/3vH/h7+Yv6vYAUNKFBAQfGnN7+JM5OndhD9Om2IXW1HLJBo6ygIJ43bNN/38bYYNvTUU70TrgmBoetsTgEnIMvy4h3YjlYSspAe381uqKqKbDaLIlc0FeTRQqGAV155BW+8+SZ++PrreObZZ9n4amzb4fhnpes66pxv1JMWw13EPeUMUD7FTtU0NmmuRS0MYJP/fvKTnyCfy+Gpp57CVrEIPwjkRK9TjzwC27axur6OtdVVXL9+HVeuXIFpmnJxj46NweSORvxhbVrQezTgrZmBxcVF6JqGsfHx3q5dnEuLtyh+1ksJIL4A7wpajWkLxLmIqVyXLl3Cx1ev4tD0NBs2hG1io3RQOkRdiqJAU1VEUQTf86QQR7tRxLuCNEuNxoVJdku7EkLYeOIggNUyVvTo0aNIJhJ47/334TgOnn32WRmBxq9PGHgvpl7Zx6cHsTZ8bjuasgIcYRjivffew9Lt23j88ceRLxRQrlSgEIIDBw7gwIEDiMIQpVIJK6urWF9bw/u3bwNgQlVjY2MYHx+XQQVpOb7DuQK6rndUG+wEhXelRJQiCEPcvn0bR48c6f362U1oOh/xM1lebHnu82YOf/foV/EHV/8QCk8Qf7j1IS5uXcSZoTN7Ov8d59PCkm9FnLxMwbK8P/rxj+G6Ll548UU2yK0NWbFTvkbnswoC3p4sujk6SUDvBUK2erfAUPJEKhWEYQjX8yTXyTRNfOnFF/GTn/wEb77xBp548klMdcj6CL2Ehz4zoFAKly9oo82Cnp+bw/kLF7BvYgJPPf00FEXBVrEIytmkqqrKD+XQ1BQOHTyIiFIUt7awuraG1bU1LC4uggAYHBpiC3xsjM0lIAQuX9Bar7OqYxA1b/HwLN66xcbntnmIRJTd1tNu+Vm7ntR2iJcn7jqBcJcNVKT35ufncebRR3H86NHtzEObDIUEae6x1nUdfhDA832Ypgm70diTSFTTodmbys9ElJM6XYv4TCilSKfTLDvA25biGarJ/fuRSCTw1ttv44c//CGef/55JDnxUKRPCVimyHUcmbrs49NFxNX+CGJ69Pzz9zwPb731FkqlEp597jnsm5hAuVyGEIMRryWEYHBoCINDQzh9+jQcEVSsreHGjRsyayCyjSMjI+y9KIXnuqCUbk9G3AMUVQXxfURhiPX1dfi+3zYybrfpS7TaDbL7FNW/ffQX8Z9ufguexxzWECH+p0v/Br/z4m9/sog0vta7HYcQFDc38eabb0LVNLz88svbk2Lbbf6xjIKYjULBOUeKgiCK4AcBbMtiLel7yNDEzykuKCaVGbsQ0im2p5gmUykW2VtWE/FZ1TQ899xzOH/+PN577z04to3jx4/LLg1hA8X7NOr1hzwzEEUIufHUWwg4H1+9ikuXLuHw4cP4wmOPyQhP1NxCrknQBE78GB4exvDwMM6cPg3LcbC2soK1tTVcu3YNly5fhsFZu9lsFrl8/o4mRyk85RVRinK5jEajgcnHH++4IHv+kHsoD7CXbW/cn4m+OIfveXjjzTextbmJc+fO7W0Qk1jwvCxkivGkPCqPKL3zPn2RHaCUqX8R0lkJTtxj/r+6riNhmrD5mFKjhfMwNDyMl770Jbzx5pv4wQ9+gBdfeEE6lILboRICx/Pguu6dnX8fe4LI/miGwZ5//jk4joMfvf46XM/DiyLqBDO6hNLmlrSWdZNIJnHo4MHtoKJYxOrqqgwqoijCwOAghoeHkclmkc1k2urk7wZhy0JKsby8jHwuh2wm037z38PaJuguApbUkvgHJ/4+/u3M/wyAEQkvFi/hnfV38cxY7+OSu55Dl/NdWV7G22+/jXw+j3PPPLM7RyueUWjJPohSge/7sER58U7tYOz5CcMQlNKOMs3CERBIp1JoNBps0B6XUpccCUXBk08+iVQ6jYuXLsGxbXzhscea9EpEICcCic9SifCecgbC2NhJNTba89biIi5euoRTjzyCkydPNj1gKo/2gjBE29vWQh5KJRKYnp7G9PQ0QkqxtbWF5aUlLC8v4+bNmyCKgpHhYTnjOpvN9ra5ijIBpVhdWYGiqnK29idCLBXfDXG+wN3Cbgz8Rr2ON998E47j4MUXX0ThTmucwjMmBJqqIghD1KpV7KrrvguEspjYKDpladoZzFQ6Dcdx4DgOomx2R7Ylm8vh5Zdfxo9efx1vvv02Xnn5ZaaIhmZSYaeWxD7uHgilCDwPmqYx4xlzzN9++234vo+X+YhbAVGGFMHHbm6vQgiGh4YwPDQkg4rVlRUsr6zg+o0b8HhaeGJiAuPj4xgdHe08erv12DyjGQQBVlZWcGh6eldt/55AdpHZBfAzh/4G/ur6d1B1qog4S+j3L/0Bnh59Cgq5swzjbi3JlFLc4BNExycm9jTWvdPxNM4TCYIAtXqdZRQ7ZVF2gSjzhWHISo08q9j0nmgu3wroug5D1+F6HhqWhXyrBD0heOSRR5BMJHDhgw+QSqdx7NgxaTcA5qh63Jl4aJ2BgDsDce+6XCrh/fPnMTU1tcMRAGJ9utyD28uHrxKC0eFhDA4N4eDUFCrVKurVKoqlEq7wITapZJKlBcfHWVowVj6Qnjv/Uni0sbq6irHR0bs2DrQXbrPUGLibzoD4ps0xS1tbePOtt6AbBr78yitIJJO7Dn3qBZqmQQ0ClMtlgBBkuQEXZ7AnnjcvQ4QRM3NNzgCliNChfAGmbaBqmuQOtJOzTiQSeO6LX8QPXnsN77z7Lp579tltkibPWH0etb+HDZ7jyOdf1zTp3F24cAHlUglfanEEAJ4Z4EFE1wxYLBqNQwQV+/btQ6lcRqVSQaPRwPraGhYWFqAQgqHhYclTik+xlHaKbmveA0CpWITreRi/C9oC8tx3cQYM1cAvTv8C/vDKv5XOwM3qTfxw6XW8sv/lO3rbbnMJaBTho48+wuzNmzhx/DhOnjoFGkWfuAVXU1XW608pqtUqkyzm9/lObYfIKLZmW1uzAa1Ip9PwPA+WbSObybQlHx6anka90cDFixeRy+UwOjbW5ES5rvuZtyXfM86A2MxpzAtzbBtvvfUWCvl8xzYTlRtdoQXeFS1Zgvh7B76PZCKBfePjUFQVYRBgc3NTpgVvzs2x6GB4GGO8ZphJp7ePSQhUVYVlWSgWi3ji7NlPfE+AZjZvL7ib2uKdPPyl27fx/nvvoTAwgGeffRYGnzp4N6DrOmzHQaVaZW1+fCZ9E8OZ7JRM7QSFt/sIZ02SRXu4p6lkEjXe5tOpdJTJZHDu6afx5ttv48rly3jk1CnIgUaUwv0cxEMeNkScpCmUN8Ejz/n5eTz91FNtWfnCMYx4GWnXddNhY3Vcl43IHhtDmjscjUaDdTatrzcFFaNjYyyoGB5uCipEnXhjcxO6rmOAlzI+KQQfZ7eo+5mxp/Hdhe+hbJXlz/7gyh/ixX0vQFP2vkXItHjL+wZBIIcNnT17FtPT06CUItiDfesIQqBrGnzfR73RwLFcrql7QrymXXdD+8MxZ4CimS8gurq6QUy4DcIQdhdJ8tOnT6NWqeCdd97Byy+/jHQ6LR0ASiksy9rhxH6auHecAc9jKWJKpbzkW2+/DUopnnnmmY41G1XTmEe4Vy8q5vG7joMIjPUponmVdwKMjY/jC5SiVq9jlXMNZi5exEcffoh0JiNZxiMjI1AVBeVSCVEUYbzHLoLdQIEdOtbtEH4KZQKJWERz4/p1zFy8iAP797P2On6/7tb7qqoKlbfldRrl2a5dstPdaSJWEtJ+xkAHpNNp1Op1uag7KSGOjo/jzJkzuDgzg2wuh8nJSZmN8Ps6A586FEB2roSUYn1tDTMzMzh+7FjHXn3x3AqektJLOrYlSxDvPooTB9PpNI4cOYIjR44gDAJsbG5iZWUFa6urmLt5E0RVMcKzBuPj48hkMlAUBRsbGxgdHb2rBODe1iXBzx/+OVy6eFn+ZLmxgr9a+DZ+bvpn7+h9gWab4Ng23nzrLdTrdXzxueeauqzugisAgGUVG40GCNBe22SvjkGM/xPnHu0GRVGQSqVQq9VgddFKIYTgqXPn8IPXXsNbb7+Nl770JWavOL/JqteBT6iIuRfcM86AqPlFUQTP93Hp0iVUymV8qYMUpYCIBu40MqWcCYwo2tFOKEllUYRMOo2jR4/i6NGjCIIAGxsbWF1dxcrKCm7OzjKOwPAwrEYDmUwGiU9Q646D8A1st4dQDuL5NDID/Bw+/PBD3Jybw4njx3Hq9Onmc7qLToiqaag3GjjYA+eiXRtTfIGLPmFKdo4c3vU8VBVJ3qpk23ZXWeSjR46gXC7j/PnzMBMJSWTriw59+ojCkAUFioJyuYy33nkHo2NjOH2mc4ucQogMMMIowp5of/w5cz2vbfeRbOvjxNjR0VGmwPnYY6jX61IP5eKlS5j56COkMxlkcznUazUcnp7e8/Xvdp7dIJzlLww9ihOFY7hSvip/9+8+/v/hpw7+FBLqHln5LWWCarmMN996CxTAS1/6UlO78F4zn92g67pU7ts1oo45Bp2UEKMwZN1h3HbsJeDJpNOoc+GybiOJdV2XpcZ3330Xjz72GMAJi5+1CuG94wy4LosKNQ1rq6u4OT+Pcx1SfHFomsZSTXfoDHi+D0qI1DYQM7WbUkEtD4GmaZiYmGBjJilFtVbD2toaVpaXUa7VEAYBvvvd7zIS4tgYhoaG7hp/ANgeiRnxWhulbNyy5/uIYkpcTQSX2MNfrdUAsFHPsiYmrjNWY7MsS7bKzczMYGNzE48/9ljbGQN3Mx8RhSHCMNxzJ0GT88J+gICXn+402spkMrA4kVCwg9uCEDxx9qwcn33u3DmoXDeh0WjcUYdKH7sjDENEvB0ZhODC+fNIGAaefvrpXfkzQkLcDwLcSUe653kAYZMq4/aiWxo5k8k0BxWbm1hbXcWtxUVQQnDx4kWsb2xgnJcU7uZzE1cRFP8GQSCng/7K4X+I3zr/fwcAEBBQJ8I3L30Lf2Pqr4Fi227UhN0AZGsc+yP2M9/34TgOdF1HtVzG++fPI51K4Zlnn0W6ZU3frawA+LnYto1kKrVrKr/pHFoCChEECjvara2wE1RVRSKRYB1Jtt2VCChKjW+88QYKAwMYGh6GpqqwHlZnIPR9EM4mv3HjBsZGR3uS4zQMgwm8+D6LoPdo9D3PAyiFYRhNA5J6jnQJQS6XQy6Xw9DQEFa//30cOXwYYRDg1q1buH79OjRNw+jIiOxP3k0ZS4wjDrkIk8flNSkfC9oODh+upGlaz45R0zjSNvCDAL7rYuajj+A4Dh577DEMDg5KoyBY8yQ2qlNTFChcge9OYVkWCNjo4ogPjOoZfCHLPmGuFX8nCxpgz5ehaXB9H7ZtdyxdAGxzeeLsWbz66qtYWV7GKE+F1qrVvjPwKSHgrZu6rmNrcxOlchnPP/98Ty1+pmHAchy4riuJqr0iDEP2bPH3jrfJAujJfmiahonxcUyMj8NqNEDKZUxyQuJHH32E6MMPkc1m9xRUCLshMqw+DxA6rfMwDOHzKYtHc0fx2MCjuFzazg58b+F7eGHii0jrseeXxlpx2xzT5+PI1zc2MDc7i4HBQZw+fRpBEKDCu2sUwlp/FV6bVxQFiqJIYuedol6vI5NOI/D9O2Li0yhCyK9JED3v1JalUynYjgPHttt2JMUxOj6O/VNTuDk3h8GhISiKIpUUPyvcM86AaP/a3NyE1Wjgscce6+nvdF1nD1AQwImpPvUCyhdMRCl0Xd9RY9ur17q2ugpN03BwagqZdBqGYaBSqTAS4uoqLnzwASilyOdyGOOti7lcbnvz5/XL+IYfj/7jEBG9wheUp+vQVBWpVIrpdcdaEuPfA5DtVOlUSvYzxzsjKL83pVIJV69cAQjBuXPnkE6nmxwSCs5ViCJ27rGebQJG0lJ4+nYvTkK1WpV1tyAIYPSykYvzFs4cR+D7TBnOMO641SiTycArlXZ1BgAwHsnEBG7Oz0tnoM8b+PQQcvKgrmm4OTeHgYGBnmV8dcOACtzRhDjP8xCBlQjk+gJYVnGPx4qiCOsbG5icnMT+Awdw5tFH4fs+1rmK6u2WoEJ0NhmGITOBEV+DcTshnIJWyI2Yf5mGAU3TkEom8dVTX8Xbb/xzMNUBinJYxnfWvotfe+QfyVKksBvAdosd+5/t7oj5+XncvnULBw4cwMmTJ+V1xuXVEYYIYtk7eX7CMeDOwV6chFqthonxcRYQ9breRQAhugewvWY1VW2rhNsLEokENFVl2gcdOpLiOHb0KJaWlrCyvIxD09OfuXrpPeEMiE6CiFLMzs5idGICiUSie1pWgFLopgnH9+G4bs/OAKUUju8z5UJFgW4YO5T+mshpPTxYK6urGBkdlQMrCCEoFAooFAo4efIkXMfBysqK7E64+vHH0DUNg4ODGBoawuDgoFTNUjiJROHCOTIK5w5AO6ZuRKl8ALtBbMgKL8u0w+rqKmZmZpBMJvHC88/vyGaIdqCIf++LKCQMEXCSXhBFQMtGKKJ0TdOgqSo715ZrqVarklTlB8HuSmKUts2YRGGIkBsoTVVZluEOuANCDMXnmZpuz6Trujg8PY3l5WUsLS1hamqqP7nwU4TPHdu1tTXU63U8+dRTMkXdFZTCNAwQRYG/x6wipRQOb/1qZ29I7HW9bEZbW1tsKNbwMCOeRhF0Xcfk5CQmJycRRRFKxSJWeIfC+QsXQClFNpPB0OAgBoeH2cRNsa65tDe44I3YXEmbKFe0sGmaBtM08cjISTy77xm8vvy6fM2f3vwmfuHoz0NVmF3pZjeiMMTly5exvLKCEydO4NSpU80BFu+0EcPSQkrheZ50aOJfrflNlU/1E/aj3bV4rotMNstKIDxT2haxzEa77ocgDFkQwUtJvWg2tIIQggTvtPI8D+jiDIRhCEVRsG/fPiwsLGBy//67MuBuL7gnnAHhAS3fvg3XdXHuxAlQQmDZNnK7RGIgBKauwyJMThi7TMiLk3s81wUI2TWd1PQwxJn9cbas46BULDICCCAj5SAI4Ps+Au6l5woF5AoFHDt+HLVqFcViEcViEVeuXAEAFAoFjPPUYY4LVojF0Q13cy7B/Pw8Lly4gKGhIZw6daptWYMIz53/v6qq2waYUin2I6IT6STwOqUoZRAwwqBwDDRNQ6VSQS6f3yaGthrVeHTRBQFP44qOkyjmCJA9LG6FMIUzlzucmQ6LNAgCBGEI0zQxdfAgW9T79vWdgU8RAc/sXbt2DZOTkyhks1LSulupgIKXGHnU53rervNIxPMinl8CVmoAJ9i2YkeWsUMJYW1tDQnTRD6fRxCGCMIQhNsO8UwRVcW+yUnsm5yE73koFYsolstYWV3FwuIiDF3HCC9Fjk9MwDRNWTLoiQEfe82vn/pV/Hj5DURgwZEbufj3V/8D/tGhf9j1GJ7r4u2330axVMKZ06dxYGpqx3sTQkBUVY7L1QA5k4TdIipthsiWCvsXRpEUpgO2nR6N872q1SooWCeBoihtHXeROdyNECjsk3A6RMAqgrNekUwmmSKh5yHq0sIqlEqP8uzAwsICTp482fVv7jbuGWcgCALMzc9jenoaQ4ODqFSrCHwfrud1ng3OPxQzkdiVuS02crFoKTh5UPAFsHtZQD488Y2E/7u2toaIUgwODaHRaEhpzFYIr1bXNAwUCpKM5zoOVtfWsL62hrmbN/Hxxx/DMAyMjIxgdHQUw8PDHeU6dxsM0isopbh86RI+vnYNhw4dwvT0dM8PYtO7EgKVs7WbIjTK2nOCIJCOUtTiHCCKUK3VMD4xIQlJQRhC4xoBe1mIwrsXmZL48KJ4SWjXYxKCRCIBz/fhum7bdJ+IFkEpTF3HqVOnsHT7NhYWF/HI6dM9n3Mfe0MYhli+fRuO4+D06dPQ+Tx4y7Kgx4R+OsEwDLj8c+3kDLTO1/B46UkTw9TQg+0Atlt0tw8MEILVlRWMjo1JGe527HNCWB+9pmnQslmMjo5Kh7ZUKmGNdyicv3ABuHABhXweI6OjGBkZQaFQ6LiOozYOyv7MJP6LqZ/Gf174K/mz/zz/l/jpsa90vD6hRuq5Ls49/TRS6XRvgUnLpkwIaRvNU0oRxpwjEVx5vNQLMBusEIJUKiWzDfG/F+Rw8T4dT0mUXNBMHpTkQl4K2c2hoNgezU4phef7bSdaCvsXUYpcJoPD09OYm5vDIZ5VfKicgSAIsLG2Bs/3cfLECRBFQTKRQN2yYNs2jFhdLg7Rf2/wNi6fk+hayWKSPBMz+sIRUHjqCdhbtBhvR/E8D7eXlpDJZBBxJ4DyKFjntXyNL+ROH6yZSGBqakqmlUvFIlbX1qSXSCllI5l5b3I+n5fncDeGFEVhiPfffx+3bt/Go2fO4ND0NBqNRm+Khvye7ZqC5yWC+OcjeBJikdfqdURhCMM04TgOW9RRhGwms2cSYBjz7sX5xQtBcZErUS/cecrsmTBNE6hWWa24zQIVJRJQCsM0QQjBvslJLC0tNU1N7OPuQUSQt5eXceDAAcl/cVyXTY7rYXy0aRhoWFbbrGKrEyDgeZ4MIu4E4ikLogjVSgVbpRImeMQvInmFb4rCAeiUlieEyImtj5w6BddxsLa+jtXlZdycncXly5eh67rUNBgdHW0KKmRLcsuz/w9P/gN879ar8CIWYIUI8cdz38BxHNtxDsWtLbzF1UhffuUVycS/m2qohBDWwhnLPgYie8LJnLV6Hel0Gr7rosE7oQQnQiiC9gKZUeTlFfH+rd1KhH91tHjcWTATCUS2zZ7HFmdABBEUgMll+KenpzE/P4/l5eXPNKt4TzgDvuuiWC5joFCQ/flGIgHVcRBGERzHaa81wD8cEYH6QQDHcSRzu9NiFu8JQI4yBtBRZawVEffyfD6iloJJiQ5xZbFUIgEQwkiEprnn1L2iKBjiMsknTpyA4zhYXlnB6soKrl27hsuXLyORSDCp0/FxOQPhThefSO+VSyU8c+4cJvfv3ya99XLMWMZkr0QbVVGgGoY0rOtra2wATKHA7i2lsHl3gaIo0HRdOljdIPgCwLZ33+5KxCIXxKEdZ8+PYRgGU6YMQ3gtKWXK08wUXLiKH3NoeBi3bt3CVrG4p3vSR2/wfR+ObcNqNHCGZ19EF0q9Xofjuowk2MVBNvjn5bZk8TrZDpHZIsAdDSUKeAlDdAitb2xA4dwiQ9dBFQWGprFe/F0iz3YwEwkcPHgQBw4cQBAEKG5tMduxtoZbt26BEIKBgQE5e0Vsrq22YyQ5gr95+OfxjRt/In/2xvqbGESz9kc7NdJavQ6gxywl50PtGdxZEo5+RCmzwSMjjGtFCHzfl0ODhGOl6/qu3JAgCGTmR0DMOWk9h6hLMCGeHdMwYNs23DaZ69YgAmCZzEKhgGKx+JkGEveEMyAi4ampKfkzuagbDTiOwz7MLovP4G1Cjusy1nsXR4AC8IKARe4x7363sZ8iTSwcAAE/CGA7DsbHx1HI59HQNBmdkNg5xDeensBfm0gkMHXwIA5NTSGMIhS3trC2tobV1VUsLCyAKApyuRxGRkYwdfBgkw76bmjU63jjzTfh86luA9yxaKci1vk074yvIO6FiNAJISiWSsgXCsjncpIvIDZaofjmuS4UQqAbxrbX3wKfG2ylhYXcLXshFnY8nRj3yxOmCUt4+NwZEBoPQtxIbBAhpcjn81BVFctLS3u8M330Akop1tfXAQAjMaU20zDgcDlYIQLWqUvI5FkcL5ZV7FaO8oXQkKY1tfl1yypGlMJ1Xbiu2zS/gwBo1GpIplIY4+dfKpdlG3HcXuxlPYp7I4IK0dpnOw7W1tawtrqK69ev4/LlyzAMA4NDQ5jYtw+T+/Y1OTi/dOzv4T/P/xWsoMHvG8V7yvv4u/g76KZG2okb0ek8d7t/bf4IlLAJoaL86zoOLMvCqZEROVyu0WjIz1qk4m2+lxi8g6Ld/ZT6Am34Bu04EO2Cifj1JBIJoFKBz0sXwskIwxCO44BSigR3SgFmcwYGBjB74wbjstwlAbvdcE84A1ulEjzPw8jISNPPddOEwb3oRqOBTDYrI8LWx8bgbUIuT7l0e7BE763SWtMGdkS3EScaOi0LWVVVGLoOwzCwuroKAjCVMfB56q7LhqCgeQG3PvQE2+WOHZ5l7Ofid6qiYGRkBCMjIzhz5gwsy8LtpSWsrK7i5uwsbly/Lo2LSAt2YtRWymVcvHgRhmHg5ZdfltrqwN6cgZ4gOBstn0vr+2xubkopZ03TWOSmKEim00DE5pX7nDQmDKzOP4f4dbaWCARIl+yF/GziCzv2WpOrEcbHEotRpTSKkEylto/PnYNsLoel5eU7uWN97AJKKTY3NpDNZpt4RRRs6mS9VoMfBGhYVjPPI/aZCoa6HwSwXXd72l0HuL7POpja1PRbn+0gCOC4LisriNcB8nnVdR21eh3Dw8MyHS24Ma0T61qHHMWDjPjv4/egFclEAoemppqCisXFRWxyueQPzp/H0NCQLCnkcjn83aNfxR9c/UN5jNvkNvzAx4cffNBRjbRT6aEVO+xg5xdKWyg3ZMq7APh7bG1tgQIyS2qYJgsIFAWpREKSSqMYMVMhBIZpsjK0mFURhnL+gNbi7O1GHmwXTADb5GrqeXBjSruWbTNeQus+FLHR2GEU4dbiIvKPPtr1Pt4t3BPOwMrSEgghO0b+EgCpVEr20ta5Xr3apu/TNE0QRYHLPfxuKXNBNGyX5hOLOuA1R+FciPMxTROmaTY9KKViEclkUrYZiQ0o4NmHdt5k63W2bpTxLEVrdBBHKpXC1MGDcjaCbdtySMr8/DwURWHDlWI66AIXLlzA4OAgnnvuuR3GLe7h7gq+MOPnK68nfv27eP42T/nGnwOND42KOEtf52pvge/D9X2E3DnwfR+KqsLkRjYIAtYHfoftORHlg41iaTqx4YgWwzCKJIcgyVs6RRuoIBcNDQ1hYWGhtzbZPvaEKIqwsbGBR44ebfq5yAil0mk06nV4ngdbUVipsc0zaBgGbMeBbdusxNfp/fhzR9FSXuSIEwwd7iQKaKrKbAfnNwGs5FAqlXBmcnL7dZoma+HtOAmtgYV4X7le6bZOSLe1K4IKwzBw+MgRqIqCzc1NrK2v4+rVq7h06RKSqRSODE9jQC+g5JcBABmkcXFmBuVyBU888URbNdJeM4WEEDm6t8l2oE0UvktwsrW1xWwwj6I13rEQcIdA2O0oDGWZJqJUjik3dB2GaTYFEa3v1bZU0HI90laHYZNDYBoGfJ5ZTiWTTN2VBwzJZLIpSKGUIp1KwTAMzM/P48xD5QysrGCcp1RbQXjtvVarIeTSrtlMZkcEr+s6q91wec1W2cs44l0ErfB9H5Zlyf5lgC2chGnK+mIrtjhfIP56RVFAOeu1137RHU4C7+MHIYxIwjdZALLWRsFS0oL5Ojo2JjMUDctijsHqKi5dvoyZmRmkUinpBY8MD+O5L35xh6qZZN6Keh4/fjunBZQP8OC/j3dZxBnUvUB494OxqW0q1yEIgwDgNTXCSwS6YbAavutKr9+2bTQaDQS+D61NvVh4+LsRcwghTalacS6ixbDOyZURZeRC4dmLqxV/Ozw0hNnZWdy+fbut4ezjzlEsFuE6DgbbzLAQEXgqlULDsmA7DhT++bUikUigVqsxxbcugkUiwtdUte2acVwXjuM0tfkavJTVrsRZLpcRhWHT8y6zinuQV2+yG8Iu8mBCkqfjv49BRMGpVArT09OYnp5GFEXMMVhbw+raGv66+9N4W3kHiqrgjHsGtUp1x7Ch2I1gjjDQVL7bEcjQbVJ3qyOw45p6wNbWVlMQoSgKiKoCvD1RBG+KqiLBHTPf8+Byu+H5vvwihCDdjhzaY5mXUoqIkCZnSLQYOq6LeqMhCeZpkU2MQWSgh4eHMTc3t6f78EnwuTsDlFKUy2Ucm5xs60lSyoZ9ZDIZNkGOZwjSmUyTKBClFMlkEl4QMC34Ds5AEIbSI4tHakEQwLKs7b5ewnrLTZ5G6oQwilAsFnGmZSiKSAUFQXDH4hHx5SNr3fEShnwhj8Djiw9sBO/hw4dx+PBhhGGI9fV1XLp4EUU+WXFtfR1vvPkmJnhvcjrWDhTxY3TslRZoXRh3QCIU2NraQjqVahJyUbnoR9iBSKOqKpKpFBK8xchzXXg8JRhQioTrbveT7wE7sjQ89WcmEnBcF7VaDblsFoamyYxB3LsXmYFCoQACYGNjo+8M3GVsbm6CKAryXI8jDuHEGaYpSchWowGSyTStxwh85CzPKnZrZRYbdHxjF07A/7+9Pw2S40zPQ9En98zae9837AABkNgGnCFBDqkZSbZ1JHkkb0eyrAifa8c9vnLElSzZYUcch30lXXl8fKWwdaTwOYq48pXtYzmORtKMLVkac4bkkABJrCQWYutuAA2g1+ru2rJyz/vjWzqrOqu6GgOSAJEPgwGgu6pyqfze712e93nr9ToX0xEFgUei7ciLxWIRoig2TNjjWUXa1/5IZbqYDKMQ8zt2/kDjxi2IIm9LPHToECrVKo7PHsetW7dgBw6cwMP5CxcwODSEoYEB9NFJi3ydoDHSj70OWvpkmbfvpxjpeR7W1tcxOjbW8HNJkuCLInzP20Q4FliJgIkCMbtBMwZcGC3yrHAHZyv7FuEzsNezFkPHtmHV61AUBelUitulhowi/YyuQgH3PsUS4xPhDADUkMakz9lDJEoS0qwO6LqoUYcAoL2yggAjlUKtWoVZr/NF2YwoU1SgEadpWQ2SsYZhkFJABxvIeqmEwPfR1RRRyLK8qdd1u2Dp9qj3DEScBPr7KOO0VRQQBgFmZ2bw3eqbuKBegu7p+FvDP4PQCvHR5cv48KOPkMlkeOuibhg8/dhMuGuI+JtqeG1rf1ugWCxuivIkKgfqUw++lTY7SwWqqgqPOmGyKMJyHDiOA03XeYtqRyIskexBGIYArQXKksRbgQRq9DdOIuIM0D5lURCAT6lP+FnFVo6eYRgIgwC246BWqSCVyTTMExBppOh5Hqqm2d4ZCEM+HM2xbZiWxTdASZKQYjXoDp6x1dVVdHV3N5w/yyoG28wqRsGddnYO0RR05HdRoaTYdUsdCbNWw+zsLDLZLJzVVRw+fBjVahWL8/OYnZmBREuRg4OD6Ovv37Bb2LBHbDSvED1WxK6E3wc3aY0GN81lZlmS4DRlFePANn3FceA6DtctqJomZDpwiGcW0EgqjkVkTwuDgHQX0V+xsmY+l2vUMGBvZc+SIDzWCbSd4IlwBtjCiXscomlaWZaJQ1CtwnFd+JUKUobBNwhd03idt1WpgDNFRZG3nTCoqoqUYTSI02yFVRqdFCJjOQHwRex34Aw0k+hY+iwIQwiRlOOmM2pacK2Wk1Wv4/Tp03hYm8c54SKCMEBZqOB71jv41Zd/heg8LC1hYXER9x88wO3paUiShK6uLgwNDWFkeLhBhXDTQm4qG8Rd31bGkXn3zcOpWFpfEATCBdmipZCl53WaYXBsG34Yom5ZcGybOwXbRkjEkVzH4cdQIvVfgBg8kb+cfHePjYCZYBP4c9fiHkefO4Nyj2zHQbVSgW4Y0CIZKCOVQr1eR71WA5rWMkAcYpadCqk+AEvnMpKaqml87XZy7sWVFYzGDGNTZJm3MG7lDLCIkt2DhqFEzC40BRPNdiP6s2bMzs7i0qVLGBwYwO49e/DGG2+gp6cHO3fuBA4fRqVa5R0KH12+zEsOPT09GB8bI+TIpo6eMPJnQ2ATd33YOmtQLBYhSxJXbGXYKqvYDM/zoKgq9FQKkkDaTT3fR7VWIxlAKm7X9vsNG9UNBZrRNU2zoczQkHEQRYA+SyzwEjvJQDxmfObOAEOUGdoOiqoik82iWq3Cs21UfB+ZdBoSVQPbqlTgui7qlkVqyvQLkRUFKcNo+II6nV+9uraGrq6uTdEJG6zBBDGibSpsAceRZppf0wnakf1KdJY4AIwcHAE+2vjdfZO0vMmyjKHhYQwNDwNhiHK5jDv37qG4soIrly/j8uXLyGWzfLhST3d3a681zpGK1DHZ+TafaXF1Faw3vxmyJMGj93KrbdyhLYUyTd+rikJaQi0LfhgShTfb5l0KcWius4YhIRqxXnTWzhj4PsC4AjQ1yMAzA0lW4BNDO2Z3NKsI+vd0JgOBCpmZprkxJlsQkE6lsL621rJUwCbxsaiRfigMXYfONokOzovBrNdRr9fRE+ELMMiyDKFdVjEk7PqGlHwr5xzxnQ7R18XamTDE1atXcfPmTUxNTeH555/nEwcjH4xsNotsNstHMs/Pz+Phw4dYWl7G3Nwc4TH19xMCc/PE1phyxiYEQUNmLS6wWFlZQXdPz6br6DSryD6XtYzrtDOJCZ+5ngfH8+BWq1Cp8FGrvUEQRQgR++f7PkzTJIGCQKTvN9nO6HcX7cRo4h180vjMnYFOFk7zAyBLEtKZDMxajShPVSpIpVJQNa1tqcChIzQ9z4OWzZK0XioVS+7pRIM6DEOsrKxgdHR00++Y98fkdiU6NIQRZ7a86qaHjXv6MQ9hqzbAxYUFfPDBB8hkMvjil76Ey+uXtzoqIAjI5fOYHB/H+NgYdF1HsVjE4sIC7t29y6enDfT3Y2BwEP0DAw2Gs9UiaU4DNjsEq8UiFEWJnQrISzodePgunSanR1QlNVWFQss2NlU0dE0TCh3Osok13FQiME0Tru8j9H3ouk6evXq90Vg3lQi2uh8JHh9aGuaYTdCgmb96rUayRjSY2KpUUK3VUK3VuK3QNY1/1qZjdnDOqzFkWYZoN1LzJr9VJL0dtAoimBrp/fv3cfDQIezetaujQE2WZQwODCBLW8CDICAE5sVFfHjpEi4BDUHFJpnkuKhbFNvez4BytnY2dZSw6+o0q8jKxyI2RMokUUQ6lYJH9QA83+fS1UYqFUt4jz5vjIzObF2+UICzvMyVM+MCBWY7Posg4olxBlou6KbfMZKOJIrIZrOo1WpwHIc4Br7fslRgWRZK5TJ8Oskqm8221PqnJ7TlgmPtSHELGiCLw7Zt2K67qXVvK8R59+3Sofw1FDy9NziIEydOxLe1tbk+tp2pkelpCAnZc4GmBS9cuIAwCJDP5zEwOIiBgYFN3Im21xj5+9LSErq7uxtY/Ay8o2ALUhUbbMLqulGIoghd16GqKpE5pnMvPM9DKkLkaf480zT5aFjmONqOA5FmKjYuJmx4H0CMCRMjSfD4ERV76fANCEMyrVAWRVRpMFGuVpFJpzdKBabJSwV+EBBHoFIBABiaRuq932ebaHFtDelMZpMNCsOQb1qB78OJIb9teZlN/26V2o4jDzq2jTPvvYf19XV8gaqRbgdB5DNz2Sxy+Tz27N0L13VJKZIGFTdv3tyUNVA0raMgKfqa9fV12I6Dvt7e2Ixjp1lFNkdGiYn6ZUlCJp3eyCqDOIfNraJRsqRlWWQ4EbVFhmGQ0dGCwInlTEY/+t0wmyKyaYmfIj5zZwAgF+5GavfNYB5+XESdTqchSxKRe6Tem6qqvFSg6zpqpsknB0qyjEIu194RABp6xVthtVhEGIbcGYhG/sDGLGyPtjJuJ0rcVOdDa/W8htppGOLK1au4dfMmduzYgcOHD/PFvikCaLH0GuqN0fcIAgpdXSh0dWHfvn1wbBsLCwtYWFjAzMwMbly/DllROJmov7+/oS7bCq7jYKVYxPOHD5PDiBsjmgM62lOiaXnmzMV+TmRBt/KsRVFEKpWC5LqoVqvE2Fer3FEIw5AoHToOUQcDeRbYSGWAOHkhGvkgQRhyvgBb0IxECmDL5y3B9qHS1lLbsmIzSsCGwxCGZJIme5olGhDUajV4NLuoqiqRJqYOPMKQaNzTCXq6rqNQKGzpCHTCOVpdWUFvVO2TkXAj/KiApq636wx0mjVoDiKq1SrOnD4Nh6qRtgpytvOZDIqi8KmLLKh4OD+PhYUFXLxwAQCQzWbRPzCAgYEBEhh0EB0vLi5CURQeSEQ7zFhQsFVWMVoiaBe0KYoCie41luMQwTHX5cEEm5TIM4lBAE1VG7KPsiwjpHtR85ECansAsnfYjrP1+PbHiM/cGWC98YsrKx1tmHGPuabrECUJJu0vD4IAnuui5Dg8qgQIMYf1/W4JYWvFqfVSCZquQ9e02L51WZYJgYWSj7YjOrOdJGC0t//s2bMt03vNMVSra+OGbAtGq6ppGBsbw+jYGMKQTE9bWFzEg/v3ce7cOQBo0EEvFAqx2Y2lpSWEYdjQtxx1cARRhCTLGzrerZwBuvFuOcseRDRGzGZJO6nvE4+fCgPZNH3c7NUzyLIMhCHcyHjYKF+Ajz+VJDyYn4ckyw1S2wkeD0ZHR1GzLKysrKC3Sb0UIE4cc6DjODhiU3bRsW14ARmXu7K8vCEDSzkFUpuBQdtBEIZYL5UwPDKyiezHoNJZK67rNrTadoJY0l1MiTHqsKwWizh95gw0TcOrX/5ygzjZto69RaaX/hKFri7k8nns27cPtuNgaXGRqKjSia2bhiu1uAcLCwtkgiNr0Wv6fVT6txU8GkQIgrCl48WCCUEUYdHZOSyYCIKAdBqFIVckbSYry9SOxZ0PCy6YY1EsFrF7//625/M48Zk7A6IoYnR0FB+dPYtypRLbMwyg5aJhUBQF2VwO9XodCEPY9TpqlkVGBXd1IZ1KoVSpIAiCzjdlUQRivjTmyZdLJWSz2baT+hRF4YONvl8Futh0H/236zh459IllEolnDx5knjgce+PvrVVZoC9fovzaVA+Ezamp+3ZvRs2yxosLuLW7dv4+OOPoWka+mlKsL+/n3u9CwsLyGYyhMwVc85hSGQ+IYot77VHN28AHbdjSbRd1bZtmPU6KtUqfM+DqmlEv8AwYjsP+PfIWhijMsi0pMA+f2VlBf10ymSCxwtd15HN57FcLGJfi9eEgsCZ2q2QTqehqCrqtJVsbW0NlVoNo8PDZOiZIMAMw+2Jh7Ug7YFxUDwP2Wy2pUOuKApAeSlhEHTcZtaSeBzHNaJ/Li4u4vLly+ju6opVI90Owk5r3pHr1lSVBxXeCy/woGJpcbEhqGDOQVdXFyCQeQTF1VUcO3o0/hjMUads/VZ1epYViFOVbAUmf87kyavF4gY/SVGgp9Oxx2rggzR9Jw0ZRddFqVwmXRufEj5zZwAgHv7pt9/G4uJivIAIOiMaiqKIdDrNDbQAoFKtcp1n0MxDp949a+fjXxlj8dK/lyuV2IgkCsZm91wX2MbAibirjf0ZNS4ffvghfM9rm97rtEzB21selfwmEHGeiclJTExOIvB9ssBpSWHu3j3uPAwMDGB+YQFjTYIhzRBFkciB+j7v34+yqHlWoMXwkfanS17v0TKE4LpIp9MtWxBFGkE4dFx13EwE1k2ysryMky+/vK3zSdAZJEnC0MgIHs7Pt94wOyHrgqxTMZ2GSSdkMjXBTCbD1Ui35cw3Oe7sb0EYolQqAUDL0gYAXhoLwxBuC2ni7SBORyAMQ9y9exfT09MYGxvDsaNHt2zd3QodBxItAhtBFNHd04Punh4coCOZGQnx9vQ0rl+/DlVVMTA4yL+PgYGBlsdhJEIIAlFKpXaEl3TpvJMQ2BiPvAWiWiWCICDwPN7SqanqhrxwDBqcAXoODF7EdiwtL0OUZezYsaOjc3oceCKcAcMwkMnlsLS8jD27N8/LDtC6PaYZtWqVt6gJoog6JRfWajUEYYjMNidAsXG0ITuPCGO8Uq1iaosvi6WsvTYM0ljEXGvc47VSLOL8+fNQFAWvvfZaw7Chze/vLDPAI6ktzrXVd9LMbRAlCT29vejp7cVzBw+ibppc6vT69evwPA/37t6F67okLdjXt2lhclIVkwjeOAkAG9PkOikR8MukPcQsZZeOCC1Z9TqXtI0DG27DMhIiNW5R775qmqjbNqampjo+pwSdQ5IkjIyM4N7t21hbW9skWBWisYTWDj7lGBmGge7ublRNEyb9v2aapKVsG6lz1l8uNK0FQRBQqVYhs1kJbaAqCjzqcHbqDLS6ymZnIAwCXLl8GXP372Pnzp2Er/MYOl9YuXRLhzzu+4h5TzSoCGnnAAsqSqUSwjDE+++/TzoUBgaQy+c3HVuSJAh0w2a2I6S22GVk3w5KBBunHhLSOu0UkGQZGVXlwkqmacJIpWKDKYWWGD060ZY5jUEkoyhLEhYXFtDb17dJv+aTxBPhDMiyjMHhYTyYn4/lDfDaVpsFHYYhJwMBQKFQIN5euQzbtiFKEmzbJj3oisK7DtoiDHm9EWjcjGtUX7qddw9s1KEC6oF2xFdAfN2vub3w/v37OHvuHAr5PA4dOtTWESDn32GZoMPMQEvnbItODCOVwuTUFCanpvDxtWu4ceMGxsbGsLS0hLt37kAQRfRGpqdlsllI9Fz4eNeIo+K6Ls/gxLX7NMP1PD5tkMlTM/VCgAxMcumMixDxA60YMYkvano/mGMhSxLmHz6EoqqJDPEnBFmW0dfXB8t1STdKszMQsSUB+UHs57C59wAx7INDQ1hcWEDNNOHQIVgO1R4w6ACZtqBrtMEZiaBaqSDTohwahaIoEGybRK4dEpDjiMcAiGNP7ajnuvjggw+wuLSE/fv3E2f1MbXAxnUoxL6uabIfsJEBbtfDz4KKAwcO4L9861vo6umBJIq4ceMGrl29Cl3XeesiCypEUSRZ3kjJV6AtizZrRe4giAgikueMUySJItK5HOku8jzSckxHZ6fS6U02lOnhMNKiJMsNnUkso7i6uoqjJ09ueU6PE0+EMyBJEsbHx/H+7Cwezs9jZHiY/45lBQDEC9qAPECsTUgQBNJhQNnClmURz5pOsgtBWgKtep2T/+LKBowE0mpSVYUKcGQ7iBbYsV3X7cgZaFX34+2FYYibN2/i6tWrGB0dxc6dOztKYW5yssL4WipvD3pMBqIdFhcXMTAwgMPPPw+ASJ8uUjLRxx9/jCtXriCVSmFgcBD5XA7pTIYMHmlqhxIAzgaPc0ZYutWho6WZoVaouAhz2ACSqQJ9bhgHpXkDYB0FzPlkXQi83U0UMXv3LsYnJ7eMABM8GpiWR09/P2bv3sWevXs3tN7RfmNhcFwXJnUEFFnmDrVuGCTrQ7uTWDdSpVIhfBKqOLiZhwPy7FGeSxyxuFwuI7dFEAFsEJAD2s3QyRpvmRmg64GpkdZME8eOHUMul3usLWwdEQjJC1r8uLOzWV1dheN52L9vH7q6uxHS4Uqs7ZkFFT09Pejr7UWG2o4ofM8jZT2a3m+V6WTKlWxuAcIQEEXoETJ6SMnGaToYiw3VSze1LbMSIxOxai4byJKElWIRVdPErhjthE8ST4wz0N/fj67eXly9cgXDQ0MbvZvRnvMwjI2Yq9UqqfUKAjKZDI8ODV2HIsvwPA91Wv9LGQap4dNZ47ZlQdE0MoKWpnBYOilaF2p+SCqVCskwdMD0lWUZEARCVOnEw9/i9xcvXsSdO3ewb98+7Nq1CzXT7IhgtDkzEI+OF/T3Cdu2UVxdxdEjR/jPUuk0pnbswBQdrrSysoJFmha8MzsLPwzR092NoaEhMkOBzioPQZwB7ghEnh/uzUekWlkmgPX9Rr9fQRCQMgzUQTaLumUBgtCQIZAkiZRDIsY+6t3PLyxgdXUVf+Nv/s1P9B4+65AkCUePHsWl06dx5+5d7KAlmRBoWL9xEbMbdQQUhZAFKbLZLCw6ATOfzxOSoaIQJUtaXhItC7quQ6eqcpsIzk2ZPPIjovDZtwXXiIERkJu5KS3RKisnCCitrXE10ldfeQWiJPERv48DUeXOR+UbxXEb4rC4uAhVUXganQ9X6u/HoUOHYJomtxs3b96E7/tQVBWDQ0MYHBhAb18fXMchQYSi8O+PkZXDIIAfhrCpJgkAngnQ6L7CprVGy0AS1SSo1moImEOQyTTcDzEyTZF9LtcXkGVcuXoVff392Lt37yPdw0fFE+MMAMDhF17AxTNncOfOHTJKE5v73EU0pt6YrKggCCSd3PRg57JZOLaNdapSaOg6DMOAR408mzHtWBYkRSEef1PKKO4BrVQqHWUFgA0PHyFRI9yyrt2KMe95eO+997C4uIijx45hYmKCE+ce57bdiQoWy5zEOS6dnsvS0hKA1gQgSZIwQPuODx0+jGKxiIcPH6K4uoorly/jo48+QjqVQldPD/r7+hq+j5COJbVpqylzKjVVbRhFzQx43B1nRCDbcWDV65BEcaMMIQibHFNGNBMlCVevXMHg0NCnSgB6FiFJEnp6ejAyOopr165hfGyMZG2ahKua17AfBEQvHnQmSVMni6HrJE1fr6NSq6E/lULKMGDQqZUWdQpqtRrqpglVVaHreoP9YeS16Gbh2DZcx9mko98KiqLAcRzSYthJhqmF7VhYXMR7Z85wNVI2tpndm8eBTluS235Gh69bmJ/HwMBAy+OkUqmNoMLzcPfePT5DYXZmBqIgoKurC109PRgdHQX79gUatDFBMmbnJFmGoWmbOkriiJCiKCKTTnOemlWvNzxfIkBsDuOfscmNgoClxUWsrKzgr/71v/6pZGajeKKcgXyhgLGxMVy7dg1jY2MQYlSYoouapW4A0h4UNy40lU5DWFuDAFILZpuXrCjIUoJO3TRh2zYCWh+URBGqqkKlMrZxkUW5UkG2wwUNEO/TBolGtnIG4haEaZo4feYMzFoNL730Evr6+xtf20k9seluBi3KBJ1494IgtJ401uFDvLiwgHwut9HP3QaCICCby2FckjA5OQlV07C8uIh79+9jeXkZc/fu4dKlS6Sm2NODQj5PPpel9Gib4CYeBjvfFkaU9Q+7noeaaRLxIUHYuDf0fT7rRBBFPHzwAJVqFV9+/fWO7kOCRwezHfsPHMD33nwTt2/fxt59+zYb0qbv2KzVEIYhJFmObWkFSCBRrlR4hwH5GDKPwNA0PrrYpzoVFm1lVunkQlarjjqN5UoFYRhuyTViUBUFNVpT7oSAHPcUMzXSvv7+RjXSx5wBZMfeyg1ot+G3ElaLwqrXsVYqYWcM2TwOkiyjr7cXhUIBqXQaVr2O+w8eYGlxEdO3b+PWzZtIpdPo6+1Fd3c3cvk815hRZBlqOh07wZZlFWOvg+oR1Go1zlHiwmNNEssOzRiLkoSr166hr78fuz/lrADwhDgD0VnY+/fvxxtvvIHbt29jT5sb4tNNHMBGij8GgkAEQ8qlEmr09VFIoohMJgPDMLiEZHRxi5JEekdVlUsjh2GISqVCBvt0CEVVYbsujx7boTmKKZVKOH36NARRxJe//OWG2lcnHRYMotD8QLcnED4uUlEcfDrUZDuRM+MD+FQrorunB6l0msi2ui4WFxexUizi+rVr8AFk0mn09/VhaHgYmXQ6Vqehky4V3TDgV6sNXj77LGYKmPohwhDXP/4YIyMjGN7G85Hg0cCcAc0wsHPHDty4eRMTk5ObFR/DDSXCaDYxbpgZQ4oFGEGAejS6o4GBpmnQNI1kjujwM4eu8RrAA4qobapUKkTEqMOsIiMgs3KXvpUiXeRZDsONYUM7du7EoUOHml76eNc57yTYhsbApl91cJwHDx5AFAQMtmkpbAZLzQe+j3Qmg5HhYQz09wOUrLe8vIyFxUXcuXsXoiiiu7sbg4ODGB4aIo5AC9vRDpIkQTcMolho25AkiTyvjGBKCerMdiwtLqJSqeD4sWNbf8+fAJ4IZ0AQBJIOC0NoioIdU1P4+Pr1+EVNb2K1WgVASD9bSd4ahgFJkuDStF46nd6UGmYCNKlUitSYaWrO9zyYvg+hXocoy1BlGT5t9+nUuwfAo1Lf9zcJ1bTDwuIiPnj/fWSzWXzpS1+CqqoNnvN26vudcgY+jWEZi4uLcBwHo1voC0QhUzXJgI4SLpfLcKhkJ1NDHJ+YgACiWb64tISHDx9iZmYGsixzHfSBwcFtqbqJgrDJy4/emzAMeV1x7t491G0bBw8e7EiKOcH3B0bs9DwPe/ftw507d3D944/x/AsvNL6QZvcs227IJrZ7xgVBgEGNebVWQw/tVmjQHgERzdGoNDIbhuV7Hp+AKIDYKUXTUCmXN9WQt7xGSkB2HGfLTYJlIXzfx7lz5/DgwQMcPnyYiNc0RbKdhxGdIezQGWjnfHfinM/NzaGvv39b4kgsS8MmT7KW4nQqhe6uLhQKBRzYvx+2bWOlWMTS4iKZ2PrRR8hksxiiHQpd3d1E/yFyve0QJY+b9TpRdoxkFZkjEIYhrl+/jpHhYXR1dX0mtuOJcAYA4mU7tE6zb/9+zN69iw/efx8vvfTSRgsg9c7qpsmJHqkI6aclBIGMzqzXUSqXkTKMtmxWtriZRr3junAdB57rwnMcrK6uIggCqKq6rY2dlQocx2n7HrYYWHpvaGgIx48f35TeazjvTk6g6UVxi65TElDbBY2tmdz35uaQz+c7dqhCqvbn2jZMmsFxHIeweCWJjxZlvcKZTIZPk1wvlQiZaHERFy9eBADk8nnOR8jl81sa5wYv33G4WlkYWdDlchk3btzAzl27kEmnk3kEnwLYHAovCCBJEvbu3YvLly+jv79/U+bODwJY9TqA9tnEKHQaSHi0TGQ0jSuOgqlWGobBnQGHZhqZY7C6tkbGrFMb0InDraoqTCqXvWWpIAxhuy7eO3MG6+vrOPnii7w7q3nFxrVMfz/opEzw/R7LrNVQXF3F8WPHOn4PC8Asy4JH+UOsO0OSJCiKwgcUpdNprqLqeR6WlpawsLiIubk53Lp1CxINKgYHBtDX39+R/oOh62SuCuWpsOfHD0Ouj3Lt449h2TaeO3gQkix/32q1j4InZtg6Y+U7tJXniydPYml5GR9+9FGDcAjzsgDi2XcSEYe+jxRd1PV6HTVqELYCm3SXy2ZRKBSQoS2LJu0/D0OiQri2vo5KtcpJRa3AHhxWI2p5vmGIK1eu4OLFi9ixYwdOnjzZ8HA0bFzbyAw0b3ixtLnoebX7zC2893Zn47kuFubn26oOhkHAW/sqlQpK5TIZOEV1AWyadstls8jlctB1vaVoSCGfx969e/HqK6/gL/3Ij+DEiRPI53K4c+cO3n77bfzJn/wJPjh7Fvfu3YPdZmCWSo0GwpBHlwDtOKjXcenDD9HV3Y2DBw4goNoFUYyOjkIQBLzeAZfgypUrXMvgX/2rf7Xl659VCILA77Pruti1ezeGR0bw/gcfYH19veG1dbru5Q6yiQBxHlhWSJJlrK6udlyWY1yEQqHAn08IRHBIVVVUazWUSiWUymUiT9zGJoiiSLhLotjw3DWDaa289eabqFSrOHXqVEObdqs1+bg4A52UCba6f1udy9z9+5BEsW2JlgVxpmmiXC6jWqmQTC/dO8IwJMONurqI0mhk8mAUsixjeHgYR48cwV/4C38Br73+Ovbu2QPbtnHh4kX86Z/+Kb7zne/g6tWrWFlZacl1EOgzxAYm+b4PIQy5VsGdO3cw/+ABTpw4ERtEfFp244nJDDAPPwDZLPr6+nDkyBFcvHAB2WyW91yyBa11IhpE4QcBRElCJpOBaZpYXV2FoevbSoOzeo+maRBFkdcLmXY4EydBvc7LHrIsQ6HeJ7tGgZ5Pq64C3/fxwQcf4P79+zh8+HBsr2m09v39lAniNvSoxkC7z+ST1lodS2g91/3hw4fwg4BH7uzzPM/jXrxHNSNYpiIEKRMoqsqZuLKqNrSDdQJVUTA6OorR0VEiDbu+jrkHD7C4sIBz588DALoKhcaZ65HrNHQdHh00Evg+AhDp2o8++giyJOHFF1/kUxe1JmLkyZMn8Y1vfIOMft4ic/LzP//z8H0fO3fuxM/93M9t6xqfNWiahjoVHFNVFcePHcPbb7+NM6dP48uvvcYjddd1AUHoLJsIwvIOQbJM5UoFruOgUq22nJ/SCizyZM9OOp2GJEmkz51uDhbVymBRoUL/ZM+Iqihc/KhVO/NKsYjTp09D0zSiRtqGDxFd+4+NQNiJ+mAbsm4nuH/vHgaHhhqCIzYS2KO6AUwLgAtNUXusqSpC20Y6lYL8CNF3IZ8ngQWb2Lq4iIcPH+LOnTu4cfMmVEVpmL0S/Z5EUYSmqrBoNwlA9rnV1VXMTE9j/4EDGB4eRhiGmyYVflp244lxBgBwMo7reZAkCVOTk6hUKvjoo4+QyWTQ09PDNwnDMDruSfVpNNlVKPCaXrlSQeFRhscIAhzbhpFKIZvJgKnOsYyFS50DliIUQDxlTh4BSCrPcTY5A7Zt47333kOxWMSLL77YEQFteySgpm6CmLvX8VyCTn7fYtHfm5tDd1cXRElC3TTJpDjfb+BxhCHRKWdGUaaRkWSaWGMiQzGzx7cD1l6Uy+dxYN8+WLZN2o8WFzFDddA1VeXlBLbAFUXhHQZBGGL69m1YloVXXnkFqqpyTflmo/3iiy/iG9/4BkqlEm7evNmyj/hb3/oWvv3tbwMAvv71r3/fuvSfd2iaBogiPJrVkWUZL37xi/jud7+LM2fO4NVXX+VBhKqqkNsMvIoioA6frCjI5/NYW1vD+vo6MjRTsF0EYYjA95HLZpHP5fgmxiLWIOIIWyCrVaR2g0nnMj5As9Lm/fv3cfbsWXR1deHkyZMtnxlmM5t1NR4HWAX9UcuL9AUtf1WmmZRdu3fziYGB522IwkXahKMOlSxJnNfj1+vwgwCp72dNhUSEbGxsDENDQwjDEGvr61ikMxTigoquQoGQyGlZwPU8mJaFGx9/jOHhYezZswdAY6aL4dOyG0+eM1CpkKE+9IYcPHgQ1WoV77//Pk6cOMHnzoui2NCr2Qo+22hAHpBcLoe11VWUSiVk0+ltL2oBJC2s0xvNVNBkWYau6yTC9X141DHwPA8hrRcJVMWsVqsBdEKeRDMHddPE2bNn4XseXnnlFTKZqwPEXn2LqF1o6iYIEeNlUs/zcZAHmaPk07Yo3/dhWRaWl5exa9cuIuYT5SjQzV+iCzgu88PGU0u0y+NxQBAEIkmq6xgfH8f4+DiCMMQa1UFfXFrCvbk5CAB6mKZBLgfP8zC/uIi1tTWc/MIXOP8hDEMo7BmN4MUXX+R/P3fuXOyidl0X/+Af/AMAwCuvvIKvfe1rj+UaP89gdd+QEvdkWUbKMPClL30Jb731Fs6dPYvdu3cDgsDT9S1leyPgQjCiSJTlajVYto31UomTCbcD27ZJFwJ1EsVICzOwUdt2PY+PYmc/E2gQ4tKhZ0YqRdaIKGJmZgbXr1/H6OgoXjhyJLbFmoFn27Z99hSR4ENo+HHIo1a2bjuVUI5D1Gawv09PT0OUJKQzGViWxc8nxEZGhW3+zfaP6QeAcow6kS2PRSTIYYGeCKC7qwvdXV3YT0mIi0tLWFxYwMz0ND7++GMYdGJrd08PmVtSrWL2zh1kMhkcO3aM21wB2FTC+rTsxhPnDASiCN91+ZAPURDwhRMn8N3vfhfnz5/HsaNHNwQ7tljUQbihFS/Q9pBsJoMqre+vra+jt7d32+fpWFZLVq8gCIQ5LMswAO4csJSg7PuwqH61ZdtQggBra2u4cvkyVE3DETo5rFqtkgeN/c8eFrZRR9pTYoexdJiKa3amopK6cdcGbKQDA+poBfRnQbghyevSlF3zWSzOzyPwffT39/MNn4n5dFL2cT0PItCYaXkMaGYxi4KAnp4e9PT04LnnnoNZr2OJZg1u3r6NgDpyAYA9u3djYHCQvI8a4jhRGUYC9TwPZ8+exU/91E9tes1v/uZv4ubNmxAEAb/+67/+2K7v8w5N02DW63AihN6uQgEnTpzAe++9B0EUsX//fv7MbMVa56qUYchbWguFAlaWl1Eql5HN5VpOtWwF27YhCEJL2xEtRQIb2hX8f02D57qwHAcyLRvcuHEDD+fnMTU5iakdO2DWag12gk3pE6liJr/isEnNtRN7EQ0yYuxu6PsNtqP5zxAg8xHCkARp1GZEpbxZp1ZDxxR938OFBfTReQMStRuiJMVu/s1g9hfAo2fa4toLseH0MOVaTdMwPjaG8bExBGGI9fV1LMzPcyKiQM8bgoATx483BLYCfc6i+LTsxhPlDEiSBEXTENCWPlYflmUZR44exZn33sO5c+fwpZde4p55q0XdsEkikgqLLOpypYJsNrtt1rdl28h3OE0q6hzw65RlIiEsCFhbXcVHH32EfD6Pg4cOEeay68JrJglG/02dJEEQUDdN+LSzgs80iHjtvPYvCAi9ADJkBPARQIQUEo1sll4DANuyiEynIMCyrI1Rn5FFy4YFRe86WxQAWbweXexswbINf2llBT19feh5BCeM1wQFYduGeOPWbX5e2slOM6RTKUxOTmJychK+7/NyjijLGJ2YIC+KLuiYMdKGYeDw4cO4cOECzp49u+n3xWIR//yf/3MAwM/8zM/gaKs57Qk2QdM0VEWRZBV1nW90g4OD2L17N27evIkgCHD8+HHiENA1Evd9s7Qzi6DZ82EYBjRdh1+vY3V1dVt97sCGM9CpvWl2eFkrpEOliT+8eBErxSIO7N+Pwf5++J4Hj9mKVmQ2UYQQhlwzQxBF1CnPidmYqA1hP2flCWAjg8FsA+jn2Y7DybXRtcSkfRmLP1raZNwiphgZBAE83yf2TRR5wFApl2HWajj6wgukPW+bsG0bIuUOPHLWcwuHSYrMN2EQsJE1OHDgAJaWl/H+++8jCEP09fVx7QqRtitKsoxsU/n607IbT5QzAFAP3zThUmeALWpZlvGF48dx9do1vP3WWzh+4gRhowtEorjZk2TjJKMpHQbDMIiQTK2GtbU1DNKorlPUqSb5I1+jqsKyLMzMzmJ2Zgbj4+M4dvQoBIFMvrIp74B5y0E06maeNcgCsimZTaJM1Xaw6w7yYQ5+SKN/iHzkMwMTT2GCGHELwKc/Z5kblr1g0YgoEHVClkZDECAUBNTrdawUizgWmUWwHViWBYE6Ao+afgzC+CFQDDyKicmYsFTjB++/j6XlZTI8qVCAwqLNiJGJcwYAkvK7cOECLl26tKn2+0//6T/F+vo60uk0fvVXf/WRru9ZRXTOhE+dUIA4kGNjY9B1HVevXsXbb7+NL37xi9B1PZZzFH3m40x/d1cXbMuCWa/DNM2W6oVxYM/vo9oO1vZctyy8f+YMLNvGyy+/jL6+PlITdxyuVBjQzTdqQ8LIbA6Ptj6KokjKdY0Hil33VSqva5om4cVEicwgyoAQhE3jxznCEH7Ebgh0wxcFASLbpAUiPsccNiZ5fmthAZqmdTzTIQrG5wrDkLeMfxLgI5KjGUY2swJEcfX9Dz6AommcnMzA3tEqyPw07MYT6QxURZEwLilJkHmTqqbhlVOncOHiRXzw/vuoVirYv3//ps+Iaua3ivS6CgVY9TpMy0K1VkOmQ4Yxi0512m+8HQVABkEUcf3GDdy/fx979uzBc889R84VZFCFugUBh0fongefjUbWNKLJHjaS8OhfENJ0ZwiyGRKetN/AD2B/l2SZEK3opssihOhrmefeCowsxbIagiDg/v37EARhW8qNDJ7rIqDqjc3CS9tB3J2N+yQhMiGTOQhmrYZ3z5xB3TTx3MGDRGNCVfnAEfY8pFKplgb/xRdfxG/91m/BNE1cvXoVhw8fBgBcu3YN//bf/lsAwC/90i8l6oXbBOvecBwHruNAotkB5iCPDA+jp6cHZ06fxpvf/S6+9NJLyOVyDYFEM7Eu8uH8r7KiIJPNolQuY3VtDfo2upKYJG2raYadwKzXcf7cOUAQ8MqrryKXzfJzlmW5bamNOQi+5/EggrHco9cejfj5z5uzk3QTZ1mEwPf5OF7Ws8/WDbMVUTvTzpnn2YNIKfTe3BxGR0bIKOZtwrYsUovXNHKuj2g74hDdA+L2A/bv6elpfPjhh+jt68PIyAgs24ZKicgKnYAKtA8iPmm78cQ5A2wTCinrX1NVTuSRJQmSLOP48ePIZjK4eu0aqrUajh49CokyhIO4WhY2M2bZoi6Xy1hbW0PKMDpa1Iy48ijOQAjAdRy89/77WFpawoEDBzA8MtK4QW3xeXxTphuzSutnhmG09sgpDKyhiFUE9D9gc22blQDSmUzL1ptODFnzUg+DADMzMxgbHSVRHCLGt4Mo37JtBCAL2nVdeI/Ruxdi7nkY8fLDMMTq6irOnDkDUZJw4gtfAECmZUqSRIxq5FnItyF/RslAZ8+e5Yv6F37hF+B5HkZHRzkRKMH2YBgG7HIZtm3zyJ+PhlUUdKfTeO3113GaOgQnX3yRDLuhNqP5uW7VtpvP51Gr1eBssyvJtizeNhZ1NjtBGIZYWFzEmTNnkEqncfDgwU0O51aWSBQEgJIOAcDVNEiiSATZOgDbRDOZzKb2SiYAxpRcW11DJ/ayobwL4OH8PGzLwuTUFBfGCdFZJ5lHJ9SGYciF7TrlU22cROuyS2zJke5DzOn76KOPMD09jakdOzA5MYG19XVCMJYkeL7fUEJuRRz/NOzGEyM6xCAIAtLZLEJR5AIwTM8/Sv7Zt38/Tp48ifv37+Ptt9+GRZm629mc8/k8J2aUyuWO3mPbNqJtY1ulq0OAOynVahVvvvUW1tbW8NJLL2FocJDU+bZI78ciSsqJ/LvtW+LOr9mT7aRX+BGwtLQEs1bjswjYUQVa5ml3NJeyxAHS58+udVvRVbvrifkdW9RhGGJubg5vv/020uk0Xn75ZdI1EgRQqTENw5BnBwCSdWqF3bt3o5t6/+fOnQMA/Mmf/An+23/7bwCAX/3VX91W6jnBBnRdh6CqCGn9OkogZo5tKpXCq6++iu6eHrz7zju4PT3N1+gmtLAloigin8tBkiSUSiX+bG4FizopQPvnnR+enpcfBLg9PY13330XAwMDePHFF6GpaluBrHaIru3HpjFA79X31VbY4pxmpqfR3d2NfD7f4AQIWxwPIPccIKVZ1jm2rcxAG0eg3XsEQYDjODh9+jSmp6fxwvPPY+euXfx3ClWfDCLcq3Q63VIM69OwG0+cMwCQBStIEgLf56x0gHj30QdqdHQUp06dQq1axZ/9+Z/jzuwsYat2CFEUkcvlIEsS1tbWOlpc7DWMBNRqMUXT+WEYYm1tDW+++SY82jrYT6UshchnAmg9CTAG213IcQsnmkeJbq6Pey7BzMwMcrkcf6Abz4FAoP83d0WwBa3TFCtLT3a8qB9lQQOo2zY++OADnD17FkPDw3jp5Zc3VNZohMVKKdE2tHyLVB/DyZMnARAP3/M8/MIv/AIAwhr+6Z/+6W2fZwICQRCQzecRCgJs2yaOAI3Qos+zoij44he/iB07d+LDS5fwzjvvkHbfVp8b87NsNguVOh7LxWJH51e3rIaZGHHrl5X5ONs+CHD58mVcunQJO3fswMkvfIGLCUUZ8ttCNEJ/TM4AFyt7HHYjck7VahVLy8vYMTUV+1JGmo47qkeJ6CwrwLpCHidnIO7uBUGAhw8f4tvf/jaKxSK+9KUvYWR0lHdXSVRMShRFImzVQUYR+OTtxhPpDAiCAJ32bNuWxaPVuFaynp4efOWrX8Xg4CDOnz+Pd959lw8xAlqn+hiy2SwfZLS8srLlg8JJbJH2lOgmG80EsAWysLCAt996C4Zh4MuvvspT8yxl6NAohp5w2+NHEd04O3MM4oxPZHAJ2+jafN6jLCSzXsfCwgKmOpxQyLIFAL03rCWIlkHYou7oXj2CIxCGIWZnZvDtP/9zLC8v4/jx4zhx/HiDNrxEe4JlSeLENQB8/Gk7sJTf5cuX8Ru/8Ru4fv06AODXf/3XH3tG5llDNJCwLQsQhFi7IYoinn/+eXzxi19EqVTCf//2t3Hrxo3G1H2750YgracyZeN3klm0LauhkyD6XTMngBGFgQ010lu3buHw4cM4/PzzvPauqiogCITB/wTgkxpuNjM7C1VVMRJRK40DI5qzLGMYBBsl3UgQQV68DXuwxWubgzfTNPHee+/hvfffR6GrC1/5ylfQ19fHz0WWJKI0SVs9fdbCCqBriyDik7YbTxxngCGTy8FaWyOKXIw9GYaxBBJVVXHs6FGMjY7iwsWL+Pa3v40D+/djz549HdWVuru6iDKh62J1bQ29bQRFXNflBBkGdowg3FwTm5mZwYcffojhoSEcP3GiwTAxhSyPTuF7lME229rmYjMDG2Bm8LF49xHMzs5CkKS2swhiz4sypENsLGhygu3Jod8PyuUyLly4gGKxiMmJCRw8dIgPpLIjfBHLshAIAiRK2mTYakEDG4vacRz843/8jwEAP/mTP4mXX375sV/PswZBEKCn07BKJdiOsyHA04KbMjAwgK9+9au4du0aLl+9irn793H0yBFO5GpnYlVVRb5QwPr6OpE4N4y2La9OjOqoEN0QIs8RUyMtra/HqpGy+rfjONtSY6UH7fSVneMxlhfZtfi+j7t372J8YqJjJ4PdA8/zuJw0D9xoRtF/jHaDnWsQBJidncWVK1cgShJOfuELGBoaAgTSoh2EISTaKgkQZUkhYs9EUdyyXf2TthtPrDMgSRLUVApOrQbXdclNpNFYM9hX29/fj6985Sv4+No1XL1yBXNzczhEjXm7h1SSZXR3dxPtgXIZhmG01PUOm6aGRbXzWWsJ+/nly5dx+/Zt7Nq1C4cOHozdZDVN4wJE23YGhNb6/3GIu3vRjSx8nN49q+uHZBDH+NjYtrXALdsmi0iSSK11u6nNbWQFfN/HjRs3cOPGDRipFF4+dYq3MYX0XEJQmVNFIcNGaAtU9B52d6CfcPLkSU5OdF0Xmqbh61//emfXlGBLpPJ5WOUyZ6XLkRblKELKrpdlGYcPH8bY2BjOnzuH77z5Jnbv3InRsbFY8nEUuVyOdyUtLy9jaHBwy7HI7NhAfKmrUqngzOnT8DwPp06dinUwFUWBJMvw6WhjjWqydIrtcI06AZcxb3Ht2yVaA8D9Bw/gOA52TE5u61zCMOTy04ZhQJRlIGKbHydCAKVSiQcQUzt24OBzz/HxyqHvw2FlTl0nBEZB2KQS2dXdvaXd/aTtxhNZJmAwKEvXc10i54sYwhtd0AyyJOHQoUN4/StfgShJePedd3Djxo22074A8tCkMxnIkoSVYrElKYgpI0b5AAAxNOwLZuk9Rhw5fPhwy2ibRRJM6/5RfdaOigQxiyGIlAmCLbz77Zwb+4T5hw9hWVbLml8rsEg8CAIYbOQ0VVTjvc1bpHE7Yi4DWFpcxBtvvIEbN25gz549+IHXX2/oZ47yVhh50Pd9PpCIXW9Xdzc51y2Qz+exb98+/u+///f/Pqa2eX8StIaiKFDo9+C6LieabbIdQMNm2NXVhdd/4Adw8OBBTM/O4vTp01haXt7yOerp6YFEJwquNU1KjMKngQQPIGi9O7raVlZW8NZbb0EQRXz5tdfaZpp4qeARiITR5/ZxgJcJ4mxHh10EDOwTZmZm0N/fj/Q2RYaYIyDK8oZkObW/HZ1Fh06D47q4evky3njjDbiuiy+/+iqOHDnCHQEAqNEJt7IsQ2ZBRBg2tIAKAAZHRrY83idtN57YzABAZolXdR2gE8MQdq513VUo4LXXXsON69dx7do1zM/PY8eOHdi1e3dLg93d1QXbtmHZNpaLxViFMVa/jhWvEQTYloUzZ86gXCrhxRdfJKmiNhDoBETbsmDbNlKp1CM5BJ3cl61ewRd0i17l7bZCAcD0zAx6uruR28ZQqBCEbMUEhqIZhRBorP+1eL8Q9/00vWZhYQE3rl/HysoKcoUCXv/yl5FtStUFvg/LNImmvKpCkiQ+gCoEcT4dKgQ1vI0ySH9/Pz7++GP09fXhn/yTf9Lx+xJ0hlShgNr6OpG2bfHcxj3Poihi7549GB4exrmzZ/HRhx/i3t272Ld/P+lzj3nuJFlGT3c3isUiSqUSDMNAKsbGMLJYXDuaAODevXu4cOECenp6cPLkydipplHoqgqrXieKgI9CJHxMiF5TbNCzXd6OIPDSS7SlrhO4NFMCNHYekY8lLdlticcdnKvtOLh9+zamp6fhOA720ZJ0c2TPRtpLosiJo57nAVSRlSGTyXQ8i+aTtBtPtDMAAKlcDuvLy3xRy4rSsBG38zhFAFM7dqDQ1YUHDx5g9s4dTE9PY2JiAnv37t08ypSSghYXFjgpKNpPy1rI4lKOAFCtVPDOO+/A832c2sawIU1ViQxwJAPSKbZTKxRiE0ExZYIW3v12IAgCypUKJ+BtB45tcwXJlmptjEQY96s2nx2EIR4+eIDr16+TgTPd3fjSl76Enr6+Ru12kO/brNd5zzA7F8dxyERFReGvz2SzHX/fZ8+exVtvvQUA+Gf/7J8h/yjTMxO0hW4YEDUNsG3Yto1cNtugI88j81bE4kwGR48dw/LSEubu38cH77+Pa9ks9u7di/Hx8U3vS6XTqFsWgmoVKysrGBkaahiCxtoc41LBYRjixvXruHrtGsbHx3H0yJGOeDsCJRLa9BpVTevYdkQzmt8vWIAkIL5M8CjBzczsLHRd35Y6bAiigsgI3rFD6Oh3HqsRs4UjULcs3Lp1CzMzMwgB7JicxI5du2LL0K7n8YyNrus8wLIdB0EQkJHUVAp+pMMg4pO2G0++M5DNQlAUBK6LWq2GQqHARUK2FP0RBMh0Et6OqSkcfO45TM/M4PatW5i9cwfj4+PYu3cvnzYHREhBa2sNpKCopGfcZrm8vIz33nsPuq7j1KlTHQt5AODTtjzPg7MN7sB2CXRCzNKPThhgxJrHxQieZUzgDlJg/HwoCzgMQxip1JaRxibxlhYL2g8CzN27h5s3b6JcqaCvrw+nTp1Cb28vbw1sfhfz7AVBQJqeSxiGfPqcGpE27STNx/BLv/RLAMhEzr/zd/5Ox+9LsD2kcjnUSiUyGIwOlopiq2yaKJA5JsPDw6jVarhx8ybOnT2Lj69dw569ezExMdFACO7q6oJj27AcByurqxjo7weX9Wb95E3H9IMAFy9exL27d/HcgQPYvWfPtmrbqqbBtm1OTuyU/MvP5THU0Xlb4WMaHOY6Dubm5rB79+5t3QuLlhVbST7zGS3kH7y1j6OFPa3Warh16xbuzM5CkiTs3rULO6kTwKSfo2DZRIDYCIW2oLrUERAEMunW9Txouo6+DmdcfNJ244l3BgAg29WF0tIS6vU6Uuk06e2O1t3aPDCsFScIQ8iKgr1792LXrl24MzuLmzdv4u7duxgdHcXePXtQoJFdLptF3TQRWBaWlpYwODDAjxFgcyrs3r17OH/+PHp7e3HyxRf5vPvtQNd1VKtV4uFvQXhkiD6CHZUJ4gL+aGaA9cpv0XXQCWzbxuzsLHbv3r0t54LV+2QqiRyH5rNrIGU1LUzP93H3zh3cvHULtVoNg4ODOHbsWEMtNu67cl13I91oGIT9S1/L1NZURSEqmZq2ZesTw+/8zu/gzTffBEAmjT3OyYsJGpHv7sba4iJ810W1WkUun+cOdCeOtChJCGlauau7Gy+++CLKdKb8xUuXcO3aNezdswdTU1OQqbZ+d3c3lpaWUDNNlCsVTkQOyEEb1pbjunj//fexsryMY8eOYWJiYsN56BDRjiTbtjvirNAbsImv8Khoyxegv9/OcaZv30YYBJjaBnHQ9304dLBaKpXqyMkJae0+8P3YIKJcqeDmjRu4e+8eVFXF/gMHMDU11VC+af6motlETnymsCl5UI3sD0Ojox3Z7k/Dbjw1zkCNthmapolsNrtBgNnKu492IND2IkmSsHPXLkzt2IF7NFr8zne+g+6eHkyMj2NkdBS9vb14+PAhbNvGysrKBrM80k0QhiGuX7+Ojz/+GOMTEzgSmSW+ZW2qCZwd7DhcTrVjdOg9x5UJOKs5ooQVF11s1xmYnp4GAOzcubPj97BZ7QGAzFZGLZoVon+PKnqtrq5i7t49zN2/D8dxMDIyghdffHFTao3JDkcNQeD7qFPPXtO0hsXPZqKLdAojAPQNDrbslDBNEw8fPkSlUsE3v/lN/Mqv/AoA4O/+3b+LV199teN7k2D7EEUR6Xwe5ZUV2I5D+vyZTHEnzgCt5UedxVw+j+MnTmD/gQO4eeMGLl+5go+vX8fo6CjGx8bQ29uLbC6H9bU1LC8vQxoYgK7rCHy/IY1eq9Vw+vRpWJbFhw0xbFfm3NB1VKpV4pjq+paqfI8b7QSHWpVUW8H1PNyansbk5GRLNb64Y9TpkCSFEvXavRZoLBdFZ0W4nocH9+/j3twclpeWoOs6Dh8+jMnJydgNuPl7imYTU4bRsE+xrgKVSuxLktQya/pZ2I2nwhnQNA1qOo16qQTP82DV6zAo0W7LzABjoTPBmMgXKooiJicnMTE+jofz87h79y4uXLqES5cuYXBoCH20jlwzTcilErryebJ5iGJDem///v3Yt29fw3k0bzBbQRDInHOHOgOapnWcIut0sbVSPAMaBYeaI/m4iLsdXNfF7elpTE1NdTw7PAxDPj0tWmOLRcx1iIKAaq2Ge/fu4d6dO6hUq9B1HRPj45icmoode9oQGUR+VqOEQTkyWx4g0R1rMdQUhaSe2yxoAPgP/+E/bErpfeELX3jkmeMJtodUPg+rUiF2w7YhqypkOklzKyeaTdQDe/4jr0+n0zhy9Cj27d+P2dlZ3Lt3D7Ozs0inUhgZGUE6k4EoilheWWkkIgsC1tbWcPrMGUiiiFcjImTk1zQDuY1WOKZzD9rGtp1A4nFodbD109wuB2yP0wQAd2Zn4bkudu/Z0/F7HNvm6n7tMiOMqNkMPwiwuLCAu3fv4uH8PHzfR19vL44dP47R0dHW7ZK0m4x9T3HZxOhrHTo5kWUUBwYHW85x+CzsxlPhDIiiCCWVQmBZpK5O62OyoiCMtJq1giSK8LcoJYyMjGBkZASObWNubg537tzB3NwcFEVBoasLlUoFsiTxdN/pd9/FSrGI48ePY3x8PP68t5kdUClbnV3jo4gQtUfr9H+7ut92F/TMzAx838fu3bs7fo9FlSZFSYK+xXVHr8J1HNy/fx93793DarEIkW7Oz7/wAuEDtClR8Dav6HnU68RpFASiZhdpwWJ64wI2vPu+/v62muAXLlwAQBzayclJ/NW/+lfxi7/4i52ncxN8X9A0DUoqBatcBsIQddMkjmEHDoHERuoCvNTYDMMwcODAARzYvx/F1VXcvXMHt6en4bouZ4l7nofBgQHSk76+jgvnzyOXy/FRys0QQHRWtlNqNHQdrutyvZJOZqYArTuHtoOtVF47RRAEuHXrFsbHxzteH4xjBEGAoesdcSZYeXl9bQ335uYwNzcH27aRz2RwYP9+jI6Odsb5EjamL7bLJooALBqMsnZkURQxMDTUMqP4WdiNp8IZAEi06Ok6fNq3adbryHYoYsOJI8yLCzdPNmRQVBVTU1OYmppCpVrF3bt3cffOHSwtLmJmZgaqLMO0LEiShJdfeqntfG0mq9upQyAIAjRdh1erkRGXHXIHgK0zJAAgtuEMMMMjxWUPtpHl8H0ft27fxsTEBAw6RnYruK67wbxlmgJt4HkelpaXsTg/j6WlJfhBgP7+fhw/fhxDw8NEoEpor0Eel4p1bBuO6wLAJvJiCOrdU0VERVXhOA56+/vbOm2//du/jd/+7d/e4g4k+KSgKAoEWYaq65y9bds26QTZwiHgXJSmEdUtXoyu7m50FQo4ePgwjzTn5uZw59495HM5hGGImzdvYmhoCCdOnNhahGsb606hnAXf97cXSDyGkgIb0hXnWGwnGLp75w4sy8KevXs7en0Ikk5nx1a3uOYwDGGaJuYfPsT8wgJqtRo0TcPY2Bgmxsc32p/b7A9hGHKtk2hHG9MTkJqyiew8nQhfwPd9dHV3x2YrGT4Lu/HUOAOpVArVchkiTc/KkoR6vd5RXYmlh/wggEJ+EL+oaccA+5KzmQwOPvcc9u/fj5npadx/+BCLS0sIfB+GruPOnTuomSb6+/tj+4qjx+40HaerKur1OgLPg+u6HafZ2cYVUnZr4Psb8sj04bYtB1lkESKEDx8hQtTNOhRfJu1JjgNBEOB6HkRQycxtljtmZ2fh2Db2dpjmC4IApmmSaFvXYw1k6PtYpTXY5cVFFFdX4fo+spkM9h84gPHx8c3ZhEhNcNO9avp5COKQ1CNa5uw8WE0R4cbAJEmS4LsuhoaHkc1mH7see4LHB0EQYKTTMH0fQb2OAKS+LDE52GiQEPNehCHvshHID2OfqZB2DACALIoYGR7GyPAwKtUqrt+4gQcPHxLRIUFAvV7H9evX0T8wgO7ubi5R23BsgGvXd0YOJgx60zS3HUjQC+DMeM6QZ7aD2g9G7rUsi2zC1LZZlgUBgO55vMzIU/Id2o4wCHD95k2MjIwgk8l0NIDJsiwu5dzK/tpUGXJpaQmLi4tcGnh4aAjPP/88+vr7N3EsWgU/0WASAH8WzFoNAR1jno5kE4GNLKZtWUAYQpFlhACGRkaeuOmkT40zIMsyUpkMzCCAQPvQHcuCrCh8bkErsgr3WCNfsMgix8gXFyskBJIu3LlrF9LZLHzfx3qphPGJCSwvL+Pu3buAICCbzaK/vx8D/f3o7etr0CjfDiGIcQfqNP0V5wywNkfXdWHRQT5CpE2mue2S17Q8Dxo0hAjg00kEnufAgY26ZcGni5nzCEAlKinpkv/PlACbEAQBbt68ibGxMaRSKSKE0ua6Gzx7Wd7Y0MMQlXIZi8vLWF5awvLyMjzPg6Io6Ovtxb59+5DJZlEoFLaOgGIWdvN34ToOPw9VURocTClyH5nRE0URKm0JiralJngykc1mUa/XIXoeAs+DQHlAmUyGb2hxYJtatDbMo8HoC5uCiIZj09RzT3c33j97FgODg1AUBTMzM7h+/TokSUJfXx/6+vvR39+PQj7fUJraTrlAU1WideD7cFx3Q30vgiAMuYRx3bLgeh5Js4cb7drkkhodpDAM+Sh5NkuFZd9cWiev0/XB7DBLiTNNfpFO+oxzUubu30fdNLH3xRc74kC5ntfQPcBsvOd5KK6sYGlpCUuLi2SAVBgim89jeHgYmXQamVwOXYVCS2cpzuljQUHzz+qmCY+SQ1u1QgdhyAdKhQBGx8eRyWQ6DvQ+LTw1zgCwsahD34fo+/CCALVqFblslpAEY4g+wIaD4AcBLNvGL/z8z6NUKqGntxf/8l/+S8hs2Ezki7ZdF//vX/1V3Lp9G4os4x/+w3+I3bt24V46jXK5jL6+Phw8eBCe63LPc35hAdO3b0MQBHT19GCALvJ8Pg9VVTnLdCtoqko8WLqoFVmG7/uEbU8HN4G2IDHCChvKAYDXpKIeuiAI0KDCRA0+AgQIIECArCjQVA0udQRURYEUYdcGAIQwJAaApllDEGeK6SPIdDb33bt3YVkW9naY5mPM2yAMIVAdgMXlZSxRD14QRfR2d2PPnj3EUNIFXKvVtpSXZt+7AKKfwO970/Phui5q1BFQFIWUKSLvj3IqzHodPgBVkjA2OQnDMLZUiUvw2UOSJKTTaVR9HyLVCnFtG7YsE8evRSTIyosA2eh+8R/8A5RKJfT39+PrX/862YDoOuQRYIzd2L9vH3p6eqBIEmRZxoEDB3Di+HGUymUsLS1heWkJV69cweUwhK5p3DHo7urinVMdBRMskKjXYVsW0UcBkXN3PY8P7wFI66/recTRl2WSSYvUs5laHyL2g7PhFYXIclO7oMgyYfJLEslkUBsR0s4en9oxdg0SvQ8y/RMArt+4gcHBQeQj7Z+twDZhCAIkQUCpXMYKDRyKxSKCIIBuGBgYGMDuPXvQ39cHTdcRBAEqlEy6lR1udgjiHAGzVuN2M5VOb2QTGVGdvp5P0RUE5AsFFOj3+qThqXIGJElCKpVCjW6GkiDAdRyUazXkqJcPbPZqZTo/2vd9pFMp/A8/+qP497/3eyiurOCdd97Bq1/+coNnH4Qhfut/+99w6/ZtiIKA//v//D9jP9WEzuVyuP/gAWzHwcrKCvr7+jj5ECAtQ0tLS1haXsbt27fx8fXrQBgilUohl88jn8uRP/N5ZNLpWE9SEEWoioKybcMqFvnCY2Cet0QFlSRRRIY+XFILzxsAHNGBiTp1Bchmr2oKDN2A7ThQZBmZTIY/1Cxd6Pk+At+Hz/6ni5w5COx+36ALul0tzHVdlEslrK6vo1gsolapoFqtcgcnXyhgbGwM/f39RPO9KYUa7RPvNA3asJCjjoDnbTgCskymv0WjIWw4kmatRhY5gJHRURiG8UQu6ATxyGQyME0TgapCpnX1Wq1GyMltIjRZkmDTgVTMbiwtLeF73/sesRsAN/rt7EY+lyM8hTDEysoK5IEBFPJ5FPJ57Nm9G34QYLVYxNLyMpaWl3H//HlOXMzncsjmcshTu8GCizjomoZqrcb5L5Io8ueYkwZppk8NQ6R0nTDaqRPQDmwMr6ZpnPho2zZ834dMbQe5HaS0wOyG5/sI6DyPEBtaHTa9b8ViEdVyGUdeeIG8v8Xxa9Uq1tfXsVIsolKpoFypEKcgJBoy/b29OHT4MPr6+pDJZDbZB6bhsJ3ySfNgKfb3er0Oh2ZKjIgjAICXFUGvtWqaCMMQumFglJIjn8Qg4qlyBgCSHTBNE4EsQwfgex5c20ZNEMhAC8bwjHx5kiRBoOmxMAzxlR/4Afzpn/wJisUivvXNb+Lll15qWAj//t//e5w7fx4A8FM/9VM4eeIE/52RSnG2uWmaWF1bQ3dEhjadTnMCYhiGqFSrKK2vo1Quo1QqYfbOHZ5Ok0QRuXwehUIB+XweuWwWqqbxiN+2LASgaWnaPSHLMhRZJi1xEfUrpWmUbjziuwmiWZHofWAaDaIoAlGhjZBIq3o02nA9D/MPH8Ks1/Hcc8+hXK2SOe+WhVq1ilKphPVSCaVSCWatxj4cmXQauVwOY2NjyBUKKLQxcvycIsTATtXW4tJ+nudx9q8iyyTFF1n40TqiAKBMzzudzWJweBipVGrbUxgTfHYQRRHpdBoVmvLXNA11y0K1VkNWFDe+y6Y1JMsyHNeF7/sNduOb3/wmXj51qmFFtbMbAMn4CYIAQRSxuLyMoYEB/rxLokjKBX19eA5EkKi0vo5yuYx1un7m7t7l/AXDMJCntiOXyyGdTkOi4kOe68JxXbiui1Q6zYWJWDQuiCLq9Tos2yZtiTQz8CiI0xhgGRVZEABZRnRFB8xu+D4814UXhpiZnkZXTw9kWUa1UkEIoFKroVouE7u5vo5SqcQDBlVVkc5kMDw0tGE7c7ktN3ke8G3DbnD7SMEcAZd2B6RSKZIZibwnciNI9pPuO5O01fpJDSKeOmsmiiIymQwqlQoc1yWZAtPkaeU4UoYoinzcJ/Ni//Jf/sv4nd/5HSwtLeGtt97Ca6+/jjAM8Sd/+qf4sz//cwDAX/qLfxE//EM/1PBZjAuQyWRQq1ZRLpcRhiF6YqaLCYKAXDaLXDYLpj4dgnjY5XIZ6/QhXy0WMXvnDklfeh5EykjVVJWnrrsKBaQMA7phwDCM+Pa7Lch+8cqCYQNZp2E8M+KJj77vo16vE4NiWahWq7h16xZ0VcWNGzdgWxYsx+F1RVVVkc/lMDIyglwux+vykiyT7EiHnjrjM3SiPBl37cyQMvEqxv7Vdb2lIwBaXw48D34QYPfevRAEoW32I8GTCZYd8IMAou9DoZKwlXIZuVxuQ644UkpiWUXP85AyDG43lpeX8eabb+K1114DwhD/dQu7AQCarhPtCtqJMr+42OAQRKEqCncOGIIwRJlukOX1dayXSpidnSXE15DMTZFlmbS2qSo0TUM2k0E2m0WK2Q3DIJt0FI+wnvg5tdAYiGtHDsMQjutu2I56HfPz86hUq8jncnj/gw9gWxZxvjyPBAyZDLryeQwODfGspaqqMFKpBl5WOzTMo0DnLZD8dRHeiEUdgZBme6MRfpQvwYKPaq2GMAyRy+fR3dv7RAcRT+ZZbYFMJkP0uGm6Sdd18oCZ5sZAmebsgCxDoJGsLMt45ZVX8F/+63/FgwcP8M1vfQuvvPoqzp47h//0f/6fAIAvffGL+Bt/429sOraqqhBAe0llGevr66hWqwjDEL09PVueuwCSylN7e1Ho6oJlWVzetlaroVqtwqVevVWvo1qroVQu497cHJcL5hwAXYeqaVCpARAliaQAZZmT/cQI6c/G5jr73NwcimGRiOkEAeQHD0gdPwh45M9SfGwRe3Qx8HsrSfA9D4VCAalUihsjCAKymQxZMIIAjWp5u56HMAg2MW+3QrOU7JbvjDDFmRFwXZc7AjJtR4qegyRsHlZUrVbh0fbFVCqFQqGQyAg/hRAEMmugWCzC9X2oqsrLXZVKBfl8fiPCpQ5Bc1aR2Y35hw/xzW9+E6+88grOnTuH//gf/gMgCC3tBkDmCHieh/7+fiwtLcGmDsFAf/+W2hoAcWhzuRwymQz6ens5m95xXVTKZcIDcF04to1avU4GhS0tEdXMCPmROQxMN19TFEAUIVFVzShRWKJZSFmSYNFugsWlJZTKZQRBgJppwnNdvh6i9sKnGQA34gDwzTLcaN9TFAXpdBq6rkOlAkqqpiFNy3aSokBRFE50lBWlY0eAfe+sM4LxiNqBkwXZfQfgg2iQsNJAqklUiB0j6gg4dICU5/vYtWcPZFl+YrMCwFPqDAiCgK6uLqysrJABM54HXdNg2TapA9JoNOoQSFRb3qNfpiiK+ImvfQ3/+t/8G6ysrOB3f/d38e677yIMAhw4cAB/9+/8ndiHhklduo6D7u5uiKKI1bU11KgH2NPTs6UcqO/7MOt12FTaNqSpL9amFu3NtW0bdVZz0jTYjsMXVr1eR6lU4iNMfduG43kIaV2f1et8urE7ggNf8hH4AUKQ43740YfIClnuOCiSBIEufjFiHBRFQSaTgUEjDEPXOdnujTfewO49e3Dw4MGG62SKXLZtww+Jsl/dNKGoKgr5fMctec0dDh1FMmxxRl7j+36DI5BKpXiPNMsINDgCINoDLOu0Y9cufg8SPJ3QNA25XA7lchmWacJQVYRBAD8IUK5UyHRD2nIIuilIsgyflgpkWcZP/MRP4F//63/dYDcEQcD+/ftb2g2ARPtlKl7W39+P5eVlWLaNxaUl9Pf18TG3rRCGRCPBpMJYwEb2sbe7G0Hji1GmGzaLRK16HXXLQr1eR6VSgUkHglmOQ8qtkY2c1/ppYMA28SAIcPnyZX4YZiNEyl8SqRMhRpyKdDqN3t5ebjt0XYdhGJiensbNW7fw+uuvN2R0A+rgsAFMvu+jWi4jABFX2uo+MUTtBrt/vFW41T0GKXk024F6kyMgyXLDdxBGHQHapVapVuF6HoZHR5HJZPh+8aTiqXQGALK5d3V1oVgswnMcUlen6TdWB2QsV4QhWRAC6aFnD/YXTp7E+B//Me7du8eHQIxPTOD/+fM/Hz/+EuDtOkycJpvNAoKA1dVVskhXVtDX2xvrEAQ0zWTZNu/jVVWVyO/Sh6S5jUijI0oZ+YaRjtjnlUolgP6cRcCxfdAAanYV/78/+z1AFBH4pJvgh37oh5ATslwCObrRdcJgPnf+PCRJiu8gEASSuVBVWLaNtVqN1OtC0rMvCEJHRJpNCxpUv6FVa5AgbCIKOY7DOQLMEeCvR1NKMHK8SrUK23WxY+dO5HK5J9qzT9AZMpkMPM9DlTrlacOAaZrkZ9UqUun0Rto7JANnolnFF0+exB+NjzfajfFx/PzP/zwJFlqsG0VRSJQO8gz29fVtOASLi231Slh6nWXtRFEkmUFF4c9uQLsDAACCACOVQq1ahes4yFHCMgPjDGiahpRhtLQbALhuydraGr773e/i5VOnyMYmCNz+5CMtkcxhbwezXset27exe9euzaVdmpFJpVLQNY0EPBFCXt2yiM3cIuhqvp52MxTY68UmRyAIApINpd9bStehUOEgcqobGQF+3ZSsXqlWISsKxicm0NXV9cSWBxieXDelA6iqikKhAFHXYVsWJ9fx1C71dAGy+Fh6in2RYRiSmh9FPp/HL/7iLzYMmGgGS3mzRQ2QXuKenh5IlDCyvLKySXnLdhyUSiVYdGNXFQX5XA7pVKq9tyjQgRegzN0teo7b9c5KUtzDGPLPjKa+O6ETrZdKuHfvHvbt2xe/qUcWsOM4SKXTyKbT3ODVTRO1Wi22j3qTwEfTZwLx1xotCbDPYSUkgOpV0PJEtFsAMY6U53lYL5WQSqUwMjrKWxsTPP3I5/MksyWKMOt1/kzwTZelsWlmIJpVBBBrN7gj3ZRhYlBVlffkA8QmDfT3I0WDgaWlJZg0Fc8Q0Loz67gJAaRTKUK2jTgC7LhRMMl2Rhhsh3ZPNWsjZmucdTBFI+PtrourV69CaRVERNagQzlUKcNALpvlExor5TLv3e/0WraSTRaavjff91Gr1TYcAcPgnSc8E0A3/+bve319HZ7rYnBoCAMDA5+AtPzjx1PtDACEVZvN5yGqKk9BM6GOSrVKald0YSus75Yu6oWFBXzjG9/gn2XbdqP3FvPQsJ56Jp/LkEmnuUNQr9extLzMFQBrtRpqtRpxQgQiUJROp+PrznHHZIuafjZ/acz9aBfNx74eiGXnd6Jtfvmjj5DJZDA1NdXigCRlZtIyh0TbpHK5HKmRUg+6Wqs1OFcsPRvGOAlBiwUd5Qbw1wYBTNpmBRACVzpCWGSkIPb+hs8LAiwtLSEMQwwMDbUdWJLg6QMrNSrpNI822WZu2zZRlaPdOswmeDSruKXdwOaNBSD2h/GDGETaRWAYBkTaZcDaXT3PQ7lc5qlyRVGQy2b5xtLJ88iuyaEaJZETBNDo9G93Q+eji5vPY4uswNr6Oubm5rD/wIG20bLrOGRmCUiXFsvMsY4ImyohNgdeXD2xGRHeQCwi1+/SsddM0C2TyXCeAp902iITa9s21tbXoafTmJyaajmM6EnD58K6ZbNZGIUCV7STI55rpVKBTwUvmJiG57pYL5XwL7/+dVQqFc4MtywL3/rWtxo/nH7p/J8A0oaBGhOSiCCdTqO3rw8yfVDnFxZQoh6sT4UwctlsIwNVaFRAE1osJL6oHadxUVOwd7VbzoIQN8I42JhL0NRJ0A6LCwtYXl7GwYMHY40Sa1es1evw6OJJMYUugUin5ujCRkgEPBhBSGjhCAB01DJN3fKfxaT3fM9DtVYj94qmTHU6vpbcC2qsY4x2GAQorq3BrNWQyWaxb9++Jz7Fl2D7kCQJPb29kDQNPlXiYxut4zioVauEtMsMfxhifX0dv/Zrv7a13cBmhyCdyXDHIwpRFNHX20tq0YKApZUVFNfWUK5UeNYul89vyiIKaOoQirEdkiQRUp4gNGQdhDbv6RRxMwlCtLcdIYDLly8jm81icnKy5es8z0ONnq9OOyMAcj2ZTAYpShL3fB9VGvSx62llA5k+SoO9itgBBsuySAt0GJKOp0yGlI2ZfgCTfo+5d45tY3FhAQKA0bGxthNNnzR8LpwBQRDQ3d2NdD4PhCFsy4JE+2pZewfz3kNKZPsXX/86lpaXoes6/tE/+kc4duwYAOC///f/jrW1tcYDRMlrAPKFAsrlcuy5pAwDvbQdqFQuY2FpCa7nIZvJkKlaLVLbzQzbZvBFTdOa7H2t7kfsz2N+5gU+T3U1LJI25Qi2oHv7+jA0NNTydaZpconjdDq9aZCJSBe2pqoQJAlOEzkqDqyVic9iADY5Aow3EjKvPp3m7VucCNXCCPq+j3KlgnKpBFGW8dyhQ+jt7W15PgmebiiKgr6REUiKQspZtg2ddpi4nodKtQoEARRZhmXb+I3f+I3O7QYoiY2uxyx1HioxtkMURfT29iKdSiFwXTycnydkQ8pAj5tfwI9BP7/VumdEX6YE2BJt7E8c4jIDzcFNM+bn57GysoJDBw+2PF+PZgsFAKosN6iCMqiahkw6zZ2haq3W9tpYBpQFDuxco0TkIAhQq9XIHAEAiqYRuxXhj7Dx9XH3ybIsrK6vw3Zd5Lu6cPjw4aeq6+hz4QwANO03MECEh0A8NAGkTheGZFqV67oQBAH/8T/+R9ybm0MQBPi5n/s5TExM4Cd+4id469kf/eEfNn84ac2hXmQ2m0WlUml5LqqqEjU72pJUM80tB28wMZJ2izG6qK2mMkVHiziO1OjTbotoVmCLdOHt27dRrlZx6NChlq+pWxbpbACpcbZcFDRqT+k6IIpwPY+3IMWBLUQ2Xrb5TC3L2lAli3r12OgYCMIwNvPgeh5q1SppFQVRGtyxY0fbe5Hg6YeqqugZHCTBAgi/R6OONyOCQRDwn37/97G0tIQgDPH/+Ht/b2u7AWw8o4LAhYHKLWyHKIow6FoRaFCzVa0fwJbtcqIoQqc8KLNeJ45wizLBdgoFzKY1rO02mQbP8/DRRx+hr68PA4ODsa8JgoA7AlIT0bcZsiyT1mWqBVFnmcAY8PkS2BjAFuUWNfMDdMNo4I6xLEBcCYLtL/VaDbVqFZph4PALLzw15QGGz1XuUxRFFAYHISwuEhat5/GI2nEcWLaNP/qjP8LtW7dgaBr+2t/6Wzh48CDCMMTY2BiOHz+Os2fP4s233sJf+pEfQX9//6ZjCIKAfD7P9QGaBUNY2kqWZfT395Po2PexuLiIru5uMkehBVjaz2+xoJixqJsm6vV6I2kvssDZw/ru/Gm8O38aju8gCAME4eYN8N9e/t+RQQae6MKTPRzqOYSf2PmX0cosVKtVXL12Dbt27kShUIh9jW3bvE6f0nXejtnyugWBZz1Yar9er8cyq32qLc+7PSJefZT1q1LJ1IbBK9jICDQPqXIdByYVFHFsG909PThy7FhSHnhGoGcy6OrrQ2l5GY7rcqa9R4XK/vN//s+4MzsLAPif/vbfxuHnn0cQBBjt0G4AZP3mstnYzABAGPaObSOXyyGVTsM0TZimCcd10d/b27bzhm3krbZiXdPgUAIym9oIYNPG1vEcBGBTeXGrLoJrH3+MumXhpZdeavl5NZqeF0UR6VQqNoCJQpQkpFMpVE0THs36ptPpTZkUPwjI50YcAQamPcIifyYMFDKb2tTNFEUYBDCp9kq1VoOqqti5ezfGxsbwtOFzkxlgkBQFmZ4eZDIZsrFS2UtVUfDd73wHFy9cQCqVwg9+9as4depUg2f44z/+4zyd9Af/1//V8hi5XA4QhE0efhAEvItBEkUUCgUMDg7CSKUgCgJW19awQgdptIIoCG1bZjQ6XlcQBNTp6N9mCIKA88sX8MtnfwXfvf9dvDv/Ls4snMH7i+9veu3t9WlcX7+OD1c/wrml8/j/fvy7+MbMH8UeOwRw4eJF6JqG5w4ciH0NY2OHoOJKW7BoufERyNCkNI0EPNpn3Hz8MKbux8g+HhVXMVIpzrFgvcXs/ZEDk58FAeqmCZOes1mrIZPLYd+BA8iz+eYJnglo2SyyXV18aqVN21+/+53v4Pz581BkGT/w+us4TmWG2bP7Yz/+4yQFvYXdAEjnQVyJ0bZtWLREZhgGent70dfXB1mS4LkuFhYXN3UaNGMr3Y1UOs27klpF0EBnWcYwkl3ja7HN8Yurq7h9+zaeO3AgVr2TRddMMjjdYgJg5A0bbcCCgEwqxTsn4kiFnu8jFIRGrhElN2/iB0jSRudBMzkxYrtd2orq0QAiFAQMjIxg//79TyXZ+Ok74w6gGgaMQgGZbJYTCc+89x7eeOMNhGGI5w4exMkvfpEragGkBj06Oorjx4/D932cPnMGc3NzsZ+fzWYhCsLGNCoK1gcs0sFBAn34+np7kS8UIAlk4t7i0hLcNmWDrQR1jFQKCMlIUcbCb/ZYr6/e2PI+AYAMsjh8bJzPdGk69rWzs7NYWVnB0aNHY3UYHMfhswcUOtmsJaKLOQJFVUlGQBB4GyYAztoNgwCCKPIUbq1W40OEBCpwwgbCxJKJwo1WSuZE2K4LUSBDrxRNw/jkJMbHx9vctQSfR4iiCKNQQDqTIWRXAO+//z6+893vAgAOPPccTpw4gWqE2CcAGB8dxRe+8AV4vo93T59uaTcAEkiwEiN79pkYVhCSYTbMGTEMA4ODg9BoqXN5aYn39cdiizS/LMtQNQ0ibTWMywBsVXJgYOuSRdr0guJfGwS4cP48ugoF7Nq1a9PvWceVR6eiGpGRxLFgpO7o8ZhDQDfhhvKKsCEnzLIYjuMQUSDansj4AZu6lGL+zgOIWo07HY7rorurC3v27Glb2niS8bl0BgCS9lMNA7lcDtMzM/jjP/5jCKKIXbt24atf/SqCIMDa2hppXaGbhiAI+ImvfQ0CdSD+0+//fuyCEUUR2UyGePj0wWRKeyEdXtH8UOXzefT19UESRbiui4WFBT4FrBmsv75VhkCSJOj0GHUmYNSEQz2t6/kNnxXjDLzQ+/ym15n1Oq5cuYLJyckGvXQG27ZJqk0gQkKtxFMYYjUEKFRNg8K8/HqdD2vi3j1t7eTZAPqebCYTzxRuPDBJ7dVq3ADLsgxZUeC5LoaGhzE5NZWUB55RiJIEvVCApmmYvXMH3/iDPwDCELt37cL/8CM/AkmS4DgO1lZXN3hAgoCvfe1rRMEyDPGffv/3CS8F2PSM53I5eJ5HRLcoO52RZiVJ2iRLLMsyBgcHeSfBWqmE5eXlltlFPnq4BQxdJ/YNZM3GrcFOWgybyYPRYWfNuH79OqrVKo4eO7bps1lpwGNE48jU1Fi0sRssKwiQbiKHzkbh2jL0fbVajfCKaGCRpuRudh2trj8MQx5AOK4LEST76dO5FaOTkxgYGGh97k84PtcWT8vlUF9bw/Hjx3HkyBH+0IVhCMuyeOuh4zi87390dBT//vd+r6H/PKAPDfeaBQG5QmGj9hcSYZvA96EZRsuHmXn6KysrcF2X8Ai6ukjZoQnsgWSEt2bomgaXKi9aloV8Exfh+d6DONh9EFdWr7S8PwL9DwB8KmbaZ/ThtZHXGl4XArh48SJkWd4kOQxspDgFkIyAYRhb1h23SkWmDIO0hQYBuU5N42OUPc8jWvEgMyd0OgAGQGOUErOoLctCjeoeAICu65BEESvFInr6+zE0PNySC5Hg2YCsKNByObzwwgv4rd/6LVj0+Q4BLtlrWRYqlQp0XYemaRgdHcXv/d7vQRDoVE1angpAIi72XLK1Xi6VoOs6mUPiOAgBElG26Dbq7e3lw81My4KzuLiJRxDlDDBnu3mdCbQW79g26q4Lo025oB04eTBaIohZ8+vr67hx4wb279+/yc6x2QasQ4g5Aq1KGJ3wGSRJgm4YsCwLlm1DprNk/CCA7Tjw6MRZxlNiXKWtjsGIjQ7NJEiyDEPXYVIxqNHJSYyNjT2V5QGGp/fMO4AkSTAKBQhUPzuXzSJFPex0Ok1qxJT8UalUeJYAoIScaOsJXdw+/ZNnBkDSzQEln2ylW68oSiOPYH0dy8vLDfKWzQ9jrKdPa4AAMVDNalyCIOCn9/10+/tDfUGSFSDH/Ku7/goUsdGZmZubw+LiIo4cObKJxMQYzwFIqi2q7rf5lDvnKguMAS2KsB0HAY2gTDoDAiAbeaaJLBRVFIwioO1KzBGQZBm5TAayJKFYLKLQ3Y3B4WGMjo52fI4JPr9QDQNqNku4L7qObC4HWZJg6DoUSkhmc0LKlQqJbFmLX5MWAAso2MhbWZI438imjoCu61u2oeVyOcIjEEV4rov5hYVNpcrocVutN1lRoGoaJNpd0GxvWpUKeKkuUmprl84PwhDnL15ENpvFnj17Gn9HMwIBjdizkYxAqw2/I2JjSGa4MCfFc13SJWSasB2HDHKj9j8qA9/u8xzHQZkGjQB9HtJpomxqWRgeG8PY2NhTP8n0c+0MAMSDS3V1EaEIgYrd5HIwDIPMLqCbjO04ME0TFbqwGZjSFP83yEOZy+dRM03UqlVS2w4CaBFRm3YQBKGBR2DW63g4P88XdtxnxDkELK0oUjIhUzwMwxBBGOJw76G25QK5wRkAevVefHXiKw3pdcu28eGlSxgdHcVgUzuQZVm81KHreuvSQCTLsiUidX5VUSCAMP3X1tZ4Z4aqqshElNgAtNRpCGg9tlKpwKPiUwZdzACwUiwiWyhgcHgYU0l5IEEEejoNNZPhIldZyvJXFQWyLMOyLELGc11UKhVeh48KWzUjDEPkCwUsLS3BdRw49JnkglhbOMwsu6hrGhCGWFldxeLiYqOCZwSt2gVZ25xPsxzAxmYfhCEPD4KII8PZ9YLApZFFNtQp5txv3ryJ0vo6jh8/3rDpsiibdfQ0t/82fM42AggAXBBIVVWEApmdsL6+Dp+SunVdJ1yyrfr/qRNQqVaJbQ0CiJKEHC0p1Go1VGs1DI2NYXRsrGUHydOEz70zAAAidQjYRiFJEnJUFpd5tkyhq25ZKJfLGwubLqbmhTrQ3w9JFPHg4UM4to2AyoU29+22Qz6fR39/PycIsYXdKk0W5xAw75ZpmPs0e8Ecg5/e2zo7wMiDHsjxfnLXT0IRlIZzv3DhAgRRxOHDhxveW6dpOBbVbJokxjb+JmeqHaISn4wg6bgu6lSMCACMdJpPd4w6DiE7FkXUCWAkIVEUiRSyriPwfawUi0hnsxgaGcHOnTtj58oneLahZzJQ02nuyGqahv6+PjKwjGYDHdqWapomypUK1zMB4iP0wcFBLC0toU5LlRJtYwuxmb0eB1mWMTAwgHw+T9ROHQcP5+djtU+Y7Wo+B0GSOFHRtCxYrgs/CLjtYJlQ8uKmNRzpJIgy7/lrQcoDH1+/jt27dzeU3Xzaeh1QZccM1V7YBPaZnQQQ0eujjosXBKiWy7BsG7bjEJufzzfOCIizS81OAOUp6aqKXDYLSZZRq9VQrlYxPDaGkdHRtsJrTxOeCWcA2MgQMO9XEMhsc5aeEgQyECigDPVypcIXNgDO1GUpcFmW0dffj4WFBQAbMwt4ZN7sTbeArusYHBxEPpdrWNitFA7FaG2OLlpVUchcc6rlHcXBnufwQu8LsZ/FMgMePHRr3fih8a82/P76jRtYXFjAiRMneM9+yDIpVDrY0PWWXQPtSIINr6PXwhi/bDEy8REGnY4/bZgw2PRZvufBrNUanABZUZDOZIjhoeTQYrEILZXCyNgYduzYkTgCCVpCz2Yh6zrn7siKgu7ubmQyGYRBAE3ToCoK6vU6qtUqSqUSqYVHtCxYMBGGIQYGBuB7HorFItj4cmAjKg8p56Dd2mH2i3UbCIKAtbU1zC8sbM4SRAMaciAIIenlZxF7rVrdJMTVympFSwRxAY/runj/gw9QyOdx4MABzrdic0iYCmAmZj4Ld+o7CSAi9yeko5dZMOfYNiRFgSiKkCUJmqqS2QKRAKLh/oYhHNtucAIEmknIZjI862uaJkrlMoaoE/A0yQ1vhWcqJyqrKlJdXaitrpK+UiqHG4I8+JqmQZJlxL3xGAAAKBdJREFUOLbNhXPq9TqZw63rfNGyCH1wYAAfffQRPN+H3lRLjy4Srn7VtHkx54It7HQ6jWKxCN/3sb62hppporenZ7PYSKRmx0h0Km21s+j0xmi6+3/c8zdwaeXSpvsR7ST4K7t/Eqq0sSEuLS3h42vXsH//fs6QZb3AbGBLyjA2TeOKqvzFgt0HVjqghCum4hZtJwTAJZyZcpraIo3Pen2jhlCm7Y2yLMP3PAQg38VKsQhF1zE8OorJycn2LZAJEgBIFQqora7CcxwIIGQ/23EgShJRwKO8JMdxeH26rqpIpVLQKElVAOETFPJ5GIaBpeVlpGIEcqJObkj77sOmdD+zL4qiYGBgAJVKBevr63BpMMEGgkXT8yFIxiyqoqdpGiRJIm26pknGHEfT/i3IdJIkNYx55u8JQ5w9dw6e6+LUqVNksw9DMmuA8nWYIxBXr+8kgGABFsuksKmoNs1UAiQLmDYM2I5DMjXABich+llBAJdqmkQHtmmqCk3XN7RNKOl8fX0dg7Rk+nnjFz0zmQEGWVWRLhR45K7TNjYW0eeyWeRyOWQyGTJlzLZRWl/HysoKiqur5IGjD+vQ4CACAKurqw1yvnGIm7LHzoGl9JlqYVdXF0RJ4gt7fX2dZxnY65uJcgplxgoC0TKIevkHe57D0b6jDceXIEGAgBAhsloOPzT2g/x39XodZz/4AP0DA9i3bx8AcFlWPnkxk4ndRBscnqZFzVKhQWQxs3JApVLhss0CSM0vl82S2fKSRGqXdJ48/7wggE1Z3bVqlTsCiqIgk8lwARHmOAU0GpNlGUOjo5iamnpqe4ITfPpId3dD1jSyFkHmbQggkbCu68gXCsjmcsjQskLNNLG6uoqVlRXeGQOQzWZwcBDF5WUiMtbGdnDOEl1LAavpR20HiPbJ0NAQ5xCVy2UsLC5yJdAgCEjKG43lRpYRBcAja4ZWHJ9NMsSRz2PZxOMnTvC1ZVkWqhH9kTzVf4keh3VC8GNGeEZMX4SXUhihm6opVioVXrKURBEpwyD2yTAQBAH8IOCjhxk8z0OdlnXqtLWTZQIYp4y1IQdhiDr9LvuHhjA4NITx8fGnunMgDs9UZoBB1nVkentRW11FEARIp1IoUe9Q0zSS9lNVGKkU0bqv1+E6DqrVKsxaDZqmIZPJkNRzKoVisYjxiQmeYWiHhk2cPmxAo7eayWahqirWVldhOw5JO9IJemn6kG58DPl7GBKxDp9u2FEvn3AHfgoXli/w90WzAj+58yegySTCD4IA7733HiRZxokTJwAasddMk/QwUyZuVII0DBsnDUZHAzc4BJHoIYh45FEBF1XTuC48uz4/2JhUKAgCJ1550XSoQPQNNFUlSmSMTCgIQEAmxa2triKVzaJ/aAhTU1NPPfs3wacPI58nHS7VKmHlqyrJApgm0pkM0nQ6pk7JtdH/S+Uy0qkUstksBgYGMDM7u0HeC9sLjUU5CIiseb5pgg476u9HrVrF2vo6PBpMpNJpUu+OpPVZSZOv6VRqY6CbJPHNM9quyMCyfpIkNfy+OZvYPBNGU1XSIRR5DxdeotfCAqSGDAGzL/Q1vu/DchzekgkQJ0DTdT5mmP3M8zwEngdFURDQQU2u4zToNIhUsp6VW9j9ZM7W+vo66vU6BkZG0D8wgImJic+dIwA8o84AQDIE2f5+mGtrCC0LqqrCosI52WyWlA1onSmTTpP+dLpY6paFumVBkWUUCgUsLC0RAQvEL544bHIKIpsm69fvHxhAtVrF6urqhkFhETPzXOnxWDoxZRik1cl1YVJ9/xDA3q69ONZ/DGcXz8ELfGjQECCALCv4i5M/zI99+cMPsV4q4dVXXoGiKEQv3bIAQeCDQ9hApSjBMprab0jDhZHxwnQh244Dj7ZjsutlDljUCWDGwHMceL4Pn853j94rSZahKgoUWh9kmQk2bCnwPJQqFVSrVfQODKC3vx8TExNJRiDBI0EURaTyeciqinqpBD2SivZcF4qikNa1VAopw4BL5blrtRpcz0O5UkGFTiMURRErKysYHBxs2ITaBRQNDkPUKaD/FgFkKON9dW0NlWoVFXrMDCXfKrJMeATU7gRhSLQVNI2IeZkmsrTsIYgimWDKovGQDF/j5T56KnXTxPvvvYe+/n7s2buXlwUYUTBlGFAoUZp9ligICNA4QTSMXiN1Alh5z3UcOJ7XQLBmHVW8lErvQUDPk2mTWLZNzjtyHxVVhaIokCVp0+TTEKQtcWVlBZKiYHxqCgODgxgeHv5cOgLAM+wMAGRhZ3p6YFWrCMOQ8AQoCY+lwAVBIOTDdBqpVIorUJmmCdfzoOk6HNfFvbk5DA8Nkfpg1GPegkAYt7ijYPK6pXIZVZoKL66uoqKqyOdyRPWMlRDo4kkZBh/FKUkSVNrl8FO7/0ecXTgHEQKkkHz1Lw99EYpAFunc3Bxuz8zgyAsvIJ/Po8JYvwA0XeejXTedO3UUor3WLB0ZgqqBuS4c1230yEEyAdwJiCzkkNYZHddFuVqF7TgwNI07Fwp11Fg3SJzIiksXcygIGJ2YQF9/P0ZHR5P2wQTfN1TDgKwoqK2twaCBQq1WQzaXgxSJuhWaPchmsySlXa0SO+O6yKTTePjwIcbGxkirs6Jw53o7AQUfwRvh40iyjO7ubui6jhIl1FUpKTeTTiOXy/HBXSwS1+lgJs/zyLVkMiRrJwgk0xb9n2YUQurgn3nvPciKguPHj5PBP1SEjGUSY+v19NyjWUUWAAiUd+TSDIBLeUoMsixDo5t5gwMBMofA8zysl0rkPASBOwKyLEOl72PEyk3nFYao1GpYX11FvrsbfQMDGBsb+9yLkSVWEaR9SFZVeEGAUqmEaq2GENhol2M1elGEqqro7u5GoVAgNXTPgyJJePDgAVRVhUQ3KoNqjCuyzBd3px6/EPGYfUrW6e7qQi6bRblcJkpYto2llRVIosgJg+w4iqpCp2RC0zQh0sW4O78LI+kRzFXnIEOGCAl/Ze9f40zkCxcuYJz2zUbblFLpdEdse1mW4bFZAkEAmzoAXiRrIABQZBmKqpJzFkWI9Lx9z4NNjRHz/m2aFRBAOi90OqiJRTZNN5Efo1avEw2BbBZ9g4MYGRlBb2/vlteQIEGnEGUZ6Z4eSKoKd34etm2jUqkQ4h57FiNp+VQqhXQ6DdtxUCmXkc/ncffePSwsLiJlGCTK1XUyn0BRNlrutggoGARBIH32vs83bcMwYBgGYcGXSiSYoT3yLLUeBgFANVfSqRTK1SpXB0wzafUm/oDEsnBhiEuXLqFUKuGVU6cQBAEf8CTLMhd5azhH8peN+ygI8KgjE2AjePAcB9H+BlGgqoEsCGCOUxCQjIHrkrIA5XTU6nX4QYA07UJSmoKHOE2DwPextrqKumVhcHQUvX19mJiYeCa6jRJngEJWVfSOjhKhitVVVKtViKJIhG8iaSsGURSRz+WQMgysFIuYmZ3F5OQkAso6tSyLOAZU7Yux2iW6aW8Frn4IkvIOgwAy9fZzuRzK1GlxXBeVahWmZZGyBn1odV3nHnK1VkOGtlD+m1d+A//rB/8frMwX8dcP/DXk1DTK5TLeffdd5PN57Nu/H9VajROb2DjPLc8X4BMi65YFp6m9SZZlqHQGAEvnB0EAh05QYzLRzfeApV7TlNTJfh7HOBZA2p7K5TIqlQr6BgfR29eH8fHxpCyQ4BMBKxsMyjLm792D6zhYX19HgXILGtY6tSOqqqK3txeSJGF+YQErS0uYmJwka7VaRa1W4+UvnXYxyYrCM22t7Ec06PBotM/IxqlUCqlUCmathlK5TDhQlkWyf0GA3u5uCJT5n06l+NwPs15HOpXatDaZTbh65Qru3r1L1ElVFY5t87Jfp106zL5a9TpMy2ooG4ggtpkJPbF7GHge3KbAIQ6apqGnpweqpm3wLSLZB0R+Zts2JxiP7diBwcFBDA4Ofm7LAs1InIEIRFHEwNgYIAgor66iUqkgS7sKWAtgMxRFweTEBO7euYNqpYLde/agXq/DojLHlm3Dsm3UqlVSn6IPtSzLpFZF61XND5xAiW8AeEsSgyTL6O7pQS6fx+rqKhzLgmvbWFhchK5pZOqaYSCTTpNFTaU/s5kMdFnH/23X/4S3Hr6NofQgzHod77zzDnRdx6FDh8jURYGME04ZRvuFEIbwfB+u68L3PK5Kxlj9Es2ksHqe3/za5s0f4EODZFnmUwklSUKKjqRuEEKJvM8PyPjocrUKURAwQoeGjI6OPjOLOcFnBy2dxtDUFB7OzPBSopFKcdIe4xMB4JF+Kp3GxMQEbt++jaPHj3N2vO04ZJIh5RtIskyyaTRbIEsSae2jn90QeaMxCxntHAjCkJQ702k+PdWiffm24yBtGEil04QgnU6jWqvBdRyYkY4DBkmScOPGDdy8dQv79+9HV1cX11VIpVLcZrZCEARwPQ8+i+bDEC5te4xmD3knURCQ9mLKAWiGKIqQFQUKta3lcpmUPlS10RFo/pM6AZVKBWa1ikJvL/oHBzE2NhY7M+bzjMQZiEH/yAhCUUR5ZQW1ahUZWgdkbT7NSoDpTAYjY2OYuXMH+/btQz6fRy6XIzMDaJbA9TzYtI9eEIg+thRxBhgBTpJlcqwmQksUzLgoioKenh4IoohqpcJnlduOgzVRhKHrZAYDNS6VWg25TAYB9aT9IMD3vvc9iKKIw4cOcc/boMNXmhEEAd/IPc+LXZSCIECkPcgC5RHYltXyWiRJgswMXZOISbVahet5UGiUxLsDNg5GZg5Uq6jUagh9n4wgnprCyMgIurq6Wn7HCRI8bmi6jqEdO/Dwzh3S0kej6gCARG1HNKhQZBmjo6OYmZ7GzPQ0Djz3HFKpFHzKerdoF5PnebyrKWojJFGEKEmQKWlRpCXDVi2BUbuVTqcx0N+PUqlEeuypIFClWoWqqkin09BUleutRNPqIci8kqtXr2LHzp0YHh4m10MDCKHJ+Wa8Ah4MxAUCgkD0FkQRoiwjoKS/IMbG8NezoEqWG8SLPM8jGYYggEFHyTe9ucEJsEwToSCgb2gIo+PjGB4efibKAs1InIEYCIKAgaEhCIKA8vIyqpVKgwSuRx0Ctinruo7J8XHM3b2LmTt3sHvXLgiCAFVRSDdCJsOnkznME/Z9+GEIl4pdMNESmS5wUNKLQBc5iwBEutmKggCBbrqKLKPQ1YW0YcCkzGXf82CaJkzThCzLCMIQhqaRGd60pnbt6lX4vo9jx4+TthxNQ4oqrXmeR1r6mLyn7xPBEtpuw9qA2LlJ9JyZsInv+xAipQIBpMbKnKBoZNN875n2gElV3Jq1xAWBaKPXmBNAnZtsoYCDzz+P3t7eJBuQ4DOBrusYnpzEw3v34JgmREGAYRh8zUSdAVEUkclkMDY+jpnZWezbtw+yJPHI39B17hgwIp0fhghoOc5mLbd0A5UkCZIgwIvoGbByH7ch1HYwpyKVTiOfz0MAUDVN7oCsuy7hH1F1VgC8DXJ1dRUz09MYHR3F1MQEIBBZYVmWecDANvxoCZDppLC/N9gOULsRBEBT2p85ChLtwGC2gyE6DwIgw+ds2ybt4ZGMhgAgAJl1UimXyRhjGrTs3LMHO3bseKbLiYkz0AKCIKCP9spWV1dRLpeRymSgyvIGs5a+ThAE5AsFDA0N4fbt29i5cyeJBLDBmGXjMtMgEbZHI2xWZ/fpZuuHIVzLghcEpI8+Ek2IlHkrRBwRQZJQr9UIo59mGAqFAmzL4ovCcRwEvo/VtTWoioJKtYoQgOU4OHjgACHuUUelQlv3ogIgTPQDIJG8JMukN5cSAKOLkTGTo6lMFsFsEl5CTP2THrNG+RCMhAQamTC5aJYJEOg5Te3cif2HDiVOQILPHLquY3B0FEsPH8KqVuEHAVLpNCHKRmyHKJDBaRPj47h39y6mp6exl073Y+si6hjwCJtutqxmzgSFmIPg0uFHzCawFLkYsR0s2HAdh8h1p9PIUI0EyzRh1utkNghrA/Z9OHRTn56eRl9fH4aHh2HZNkRZxuraGo/iG1oFI5LsMs0CsrbKZjCZ4miwINHMaRwaUv8ULEgIgoALx7GuLot2VDAnACBtmM8fO5aQi5E4A20hiiL6BgYgSBKqq6uo0vnlBhXOADaEP1RVxfj4OB7Mz2N6ehp7du0CsHmzY+IgmqpCjbBhWeQddRLqlsUVsNiMdJ9G56yVEGFIVMNo/Z6JAfHam6KgTqeruY6DtdVVrCwtQQDQ090N1/Mg07ad6OJibUEi9ZxFuphZVCHQNKUQ+TdvNWrSOGcSxRwtCIAMjuuiTBXbcrkccQCqVUJMdBwumymJIvKFAvYeOID+pomKCRJ8lkilUugbGkJxaQl2tYpKqdTQYidgw9nO5fMYHBrCzVu3MDk5SYYgRcB4AGwzV2SZl91YP70XdRJcl4xGborEHdclg3yoM+L7Pmk/lmU4VLKXnZPEUvV0VLNjWSiurQEg5ZB8oUBU/8IQIh1DTE52I4MpiCIk2scvRH7G7IoYcVBEUYQTaU1uvv6NfzTZjqasABs1LEsSUroO0zTJqGHbJhlE6gxpqoqhkRHsO3AAaiJHDiBxBraEJEno7++HrutYLxbhUIW/VCrVIKkpCgIGBgcxMjSEK5cvo7enh9esow9rw98jrFZZliHIMiG7UBawYdukv7ZJipg7CNQxYLr+jGQUrccxmWND01CqVlGZnyd66iEZcBSGIWyamdA1DbqmcYGQqHMQLU9EHYaG9pww3FjQkXPYtMDZdUd/RP8MggAry8uwLQt+GBKnwHV5BkIEIRmm02kMjYxgcseOZDEneCKRTqehjo6iuLICc30dlWqV8HGaRp1rmoZdO3dicWEB58+fx8mTJzfEt+hrBKBh42N/SoIAkYpusZ95tN6+SfI88veAZhZY6UKnHKEwCIhgVxgSfX7XheM4eFirwbEsqIqCQj4PEeDlTlXXYdDugZRhQJQkHlwIwEZZk/EmsJEV5OueEpfJxW0QhVtlDht+RM+3VquhtL6OumVBNwwsLi8T+8junUjkhguFAiZ37ED/52Ta4OOCELZimyTYBMuysFosol4qIXBdPtsc2Hi4y5UK3n77bYiyjFdOnSKtiUBDX3wnrYUA8fqbW/Q2IQy5jCjLWrBjeNTz96jy2eXLlyEKAvbs3UsEk1QVnudxT52pGYI6ECqdxsZSe0qL9F7D+dJJgZ0gpO/xXJdwKjwPK8UiqlS/IZ/Pc4eL1f/YPR8ZG0Nvkg1I8BQgoPol5bU1ONUqiVrT6YZWwRDA9Y8/xuWrV3Ho4EHs2LGjgazMyoKdwm3Bum8+rzUa7efz+Y2x4KJIiMh0aNj09DTu37+PwcFBdHV1EdlzyimSRJGk3CMlRY1KijN2vyRJm4etNcGhjkUn4O2TlE/hU7n05ZUVWLYNTVX5fAim3ZCiJZBsLoexHTuS4WQxSJyBbcL3faytraFaLsOlC5uJCzHcv38fp8+cwcTEBJ47eJAz4VkkzVJjQHvHIAR4yaAdbNtG3TSh0YfedV0Ui0XcuXMHDx48wMzMDO7evYtqtYpsJoMXXngBP/U3/yYs6iiEVNiIaSQ4joMwCPDn3/42rly9iqmpKfz4j/0YAOLls9of6wSQKR/Ao+ShuOtgTobreaRWSeudfkRZzKSlAM/3kc/lkM1moRsGF2QBgGw+j/HJySQbkOCpg0mH3diVCkLX5eqbzOH1PA9nzpzB4tISvvilL6G3pyeWYNtczouDT8l7bc27IKBUKiH0feTyeYiCANtxUCwWMTc3h7m5Ody4cQMPHjyA67pIGQYOHDyIn/3Zn0W1WiWfEYYQ6bRG27K4rfpvf/ZnuHL1Knbs2EFsRxNnIGpDwjCE7Xm8lZohjPzJpgt6rguHERTp630qOe65LkRJQk93N4xUCoZh8IyHJEkYHB1NyoltkJQJtglJkoiIhaqirKpwTBPVapV7oIqiYGR0FHv27MHNmzfR1d2NwYGBBnlj9nDzVjmaqhPZv7GRYmP1tOaJXQDwjT/4A/zhH/0Rvv4v/gUUVUWtVuMtf/+vX/5liIIAx3FQr9d5uSDa1iRnMjApUS8IQ+iahkKhQPqdLQsH9u/HtatXsfDwIVn0VDbUDUM+fCQqUerR7oM4AxQlC0bTg+xnjm3D830oioLBwUH09vbycw3DEKlMBoMjI8h/ziVBE3x+wfrv1zUN9WoVrmnConNRmCjZsePH8cYbb+DKlSs4cuQI72LiBF1WKghDBAC3GcxWADQ1Dzqoh6XJm8Bsxy//8i8jZRioVCqcCPxrv/ZrCKgNcNnI5nQaAHiHQTaTQa1WIwqBYYiuQgGSLJMx5PU6Dhw4gBvXr2N5cZFE6JSwyBQKGcIwhE95D+zf7BqiVqRZP4GVJ4MggE05ArqmYWR0lDsAoPekZ2AAA4ODUGPapRNsIHEGHgGCICCXyyGVShFme6UCxzRRM02IIDXAQ4cOoVgs4vrHHyNlGJxnEN3M2aIG/TOI/JtnEoKAD/RAGPKhIWzRGIZBFi2t1TO9As9xSJ9uECCfy2F8YgK3bt2ih9o4fjqdhhiZrOb5PlKGgVQqhePHj+N//z/+D6Lzvb6OQ4cO8VYh9r/LZg6EIQTaIsk3/RgyEBNQYRECBAG2ZaFKWyRT2SxvdYIgIJ1OY3BkBLnECUjwOYCiKOjt7YVFN1OT2o5SuQxVlqHpOr5w4gS+9847mKWqpulIOTK6onjBrqn7h/8Y4A482zyZTQEIk96s13m5gon8mKZJdBIEAd1dXRgZGcHc/fvkQ+l7ZVlGNpslAYjvo1KpEAl2TYOSy+ELJ07gd5jtWFvDocOHSXuk68KnnVKu68J2XYhhiLCZI9GcEaH2QaITFWVJIp0DtRoJFlIpHqSBXndPfz8GhoY2jS9OEI/EGfg+IMsy8vk8XxTVahV1Oh/bsiwcOnQI77/3Hi5cuICDhw7xjXar+hnQqCDmUyIQ24BZ77FPa2JsKAprw5ufn8fE1BS6u7rw6quvYv+BA1heWsI//V/+Fz7vgCEEcSgkUeSZhVKpBCOVgqaqOPjcc7h46RLOnT+P5194AQpV+mIZjoAyiRk7uVOEYUhYvrSNKQgCGHTUqgAi5DQwPIx8IhyU4HMGgWoPGIYBJ5cjA4RKJZJlpB1Lu3fvxq1bt+C6Lnbv2gVHVYnOf4yD3Q5hEJD2Zdpt4FAFUJ9mJgUAoButqqq4cuUKJicnMTU1hR/8oR9Cf38/Fufn8cu/8iu8e4lfBx1CxMYU1+t1OI4DwzCgqioOPPccLn34Ic5duIAXjhyBqGlkFgI9L57mb5FNbAWmQVKnQkyqqiKbyfCBZ4kT8GhInIHHAFEUkc1mkclkUM/nUS6XYVUqgG3j+IkTuHjpEi5dvIidO3eiUChAo0Q/SRRb1v5YC6HP+nsjU73YVD8BZMymQevqNdPEmTNnsLK8jB94/XU8f/gwH0TiBwEEyvINmhTAwjCEoijI5nKomyacIIBpmrBtGy8cOYJLH36IixcvbugJ0PRcdJ56dBrhVnAihqNWq5GMQCaDfD6PQk8Penp7kc3nH/n7SJDgaQEbfJbL5VCr1VBeX4djmhgbH4coirhx/TrqtRp27NyJSrmMDN30GDMfaOrKYVoEEbXQ6NjgkHYfCYIAx7bJuGPDwPzCAm7fvg1BFPEzP/MzGBsbA5NEd5lcsONw28NBs3c2LUcysrKmaTh69Cg+/PBDXKK2g2U0WaYijJxzJ2ABhG1ZqNs2XNeFruvIZDIodHWhi9qOxAl4NCTOwGOEIAh8IIjX20vq9bUa0vk8zr73Hm7euIHxyUl09/SgUqlAVZSNNqMteu8BcPEeiUXnIGpboiTh7r17mJmZgaZpeOnllzEwMLBxXgCvybUb6iFRRTTHdYn6n+9j9549ZJJZuYyZmRlM7diBwPcbxEtY37IgCAgZwSlsHCcMEOUvRlpkgiYpOk51fHIS3X19yXjhBM8kWJYxl8sRMp5tI9fTg1Q2i0vnz+Pj69exa9cuUg4EKUXKkU6lVraDZQ2ZeE+U2W/bNizLwvXr11EqlTA+Po5Dhw836BwElB8EILZTiDkibJxwvV6HQzsR9uzZA1VVsb62hpnbtzG5Ywd904Zomk+7FyInTP6gn82GtFlUKyUMAph0CFwmm8XQyAiGR0eRyWYf+d4nIEgs7ycEVhNPpVLo6evD2I4d+NP/+l9x++ZNjJgmBgcHAUWBaZp82iDrzwXAtcYlKtjB0nlReL4PURTx9ptvQpIkjE1MYM+ePchHBmwwkp9LnQC3TesfMxyqokDO5VCv15EDMD45ibl793D27FmMDA9DbipzNJOX6IH5313HQd2ySKRC1Q4VRcHg8DAGh4e59HOCBM86BEEgrXmahlwuh6HRUQxPTOCbf/iHuPbxxxgbGUFPTw8vF2pspDd7P7Ah20vFwJpV+kAzfwKA02fOoLenB0deeAHjExONst8gNgY0A+i2CSQAUtJMp1JQFQVmvY5MJoMdO3fi/twczp4/j7Gmz2flgqYbwI8dBgGsep1oJlCioO/7yBUKKHR3Y2JiAik6yTTB94/EGfiUoKoqfvTHfxwXLlzAO9/7Hu7ev48ROh0rnUohoO19zMNuXsBMcTD0fcwvLGB2dha3bt1CEAQYGBzE4UOHADQScLhqIX0fsDFRsBWiKTvdMCDLMvbv24cH9+/j+vXrqH3lKxCogqKiqhBEkfAGms438H04jkPkTGm60rYsGIaB0clJFGhqNJt49AkStMX4xAT+1t/+2/j2n/0ZLl27hnwmg/HRUYyOjhJnPwi43LkY2WwZGEeobpq4e+cOZu/cwd179xAKAg4eOICdu3bx+SPMsWDiQywb0M5uRCeJhmEIkYqCWbaNA/v348GDB7h+/TrK5TLhJmgaacWOCQDCiO6I7TikW8CyEIYhCt3d6BsYQDqXQ1dXV0fcqwSdI3EGPkUIgoBjx47hhRdewNWrV3H69GnMnT2LnkKBiHkwFa9Uivf91ut1MpWvWkVpfR2ra2uwbRtdXV0YHhrC9evX8dyBAygUCiiVy1xxLDoEyK7XyWhhurjimMdRRLXFZVnG8ePH8Y1vfAO2ZWG9VEKhq4tMUaOzx9kURuaA2NQJ4IpnQYB0NoupPXuQ7+pCKpVCOp1uiBISJEjQGtlsFl/7yZ/E+vo63nvvPXx48SJuz8xgZHCQsPip+l8mk0E6k4Fj26jRtudKuYxSqYTVtTWSQRwdxY6pKdy4fh3j4+PQVJXoe7guwJQIQRwCh8oaR+WNyQsay4DNUb4gkOmnx44dwzf/+I/x8OFDlNbWUOjpgWua3DawCYwA+HRG3/M4aVoSRXT39aFvcBDpTAaZTAYaVWlN8HiROAOfASRJwuHDh3Ho0CHMzs7i3AcfYH5lBZVyGaAEH9YnzBZKKpVCNpPBxPg4RsfHUcjnsba6yj9ToONLXSofynQNArqgAcB2nFhvvBl8XCnF6Ogoent7sby0hBs3buAHXn+db/h+pM3Qp4tbUVVoug6dzk7PZLOc6GMYRjJMKEGCR0ShUMAP//AP49VXX8W5c+dw88YNPFhZgVWv83KdJIpEphikXTBD1+H4xATGRkchKwpmZ2f5Z8qqClAuD9vsBdryG1JRIY/JjDfZBgbGXWj+3djYGApdXcR23LqFV0dGyJwU14Xr++TvtPwgqyqZpJhKIZ3NIpVOw6AcLEacTPDJIXEGPkMIgoAdO3YQ6VGQaL1arWJpaQnLy8ukf9YwoCsKfDrGlM0IsCxr09Q/VVVJeo1KEwOEJBRd0B2dFzm5hoV99OhR/Nmf/RkuffghXn31VR4lyIqCVC4HVVWhaBpESYJhGMhms0Rdrc244gQJEjwaDMPAqVOncOrUKQAkqi4Wi1haWkKpVIKmaUgbBoQwhOc4ZMKnIBDZ36aonk1G9OnmrOs6z/AB6HgT5nYDaCA0Hj16FN/+8z/HpQ8/xKlTp4hdEUWkNA2qrkPVdUiKApW2T6ZSKc65aje1MMHjReIMPEEQBAHZbBbZbBY7d+4kxD+6uTM2rWvbRFDINBEEAbK5HMqVChlwJIqwbJuPNlaogAgoKZCl8VgyjzH/G1p9IkqCfDZ5EGD//v04c+YM5u7dg+W6yHd1oYfqfTPCk6ZpSeo/QYLPALIsY2BggHcRsY2d/e/QqaWuZaEWsR3VWg2arhNOD43YBVqe9H2fOAqyzAf+MBvSUCIIN6YjsrIga230fR/79u3DmdOnMT09DR9Az8AA9FSqwW7wdskEnxkSZ+AJhiAInBiUzWZ5yt+lBJu67+P23bswcjno2SwC34cehqhVKlhfX0dIe4xVOsY4n8/z2Qhr6+sbkX+EACRJEkRZJrU8TYOWSgGShOfzecz+838Os17H8toaDr7wAhQ2LS1ZxAkSPFGQJIlH2QC4zWDiQMx2qKkUtHQaEhUkslwX9aUlvvmnUilUymUUqO2QZBmrdLhR1G4INGMp0cFmGnUiRFHECz09mP5n/wylSgWLxSKee/55njVM8OQgcQaeIoh0BCcrAfhhiNuzs+ju68PwyAgXKSqXy6hUKrz1KJ1OY35+Hldu3oQoipjYswd9o6NkWiH5YJ6KY+2Mzf+/9dZbmJ6dhaqqePXVV5GmWuUJEiR48sEcd4BMKPTDELN376K7vx9DIyPwfR+9g4NYXV2F4zg8SylJEjA/jyu3b0MURYzv3o3BsTFiMyiHgA1eY7ai2Ya89dZbmL17F6qq4pVXXuGTVRM8WUicgaccAW0rim7OhUJhk8Kg4zh4uLBAiEGOg5GRES4cFP2/Ff7Lf/kvAIDXXnstaQdMkOBzAM/zoGkaMpFe/b6+Pq43wgaQOY6Dhw8fEs6B62Jom7bjW9/6FoDEdjzpSJyBzymii5NNPmSzA5j88HbAFvSP/uiPPr6TTJAgwRMHLiDG0v+J7XgmkNA0E2yJixcv4t69ewCSBZ0gQYLOkdiOpweJM5BgS/zxH/8xAODIkSMYHR39jM8mQYIETwsS2/H0ICkTfE7xzjvv4Pbt2/zfKysr/O+3b9/G7/7u7za8/md/9mdbftY3v/lNAMCP/diPPdZzTJAgwZOHxHY8m0icgc8pfud3fgf/7t/9u9jfvfvuu3j33XcbftZqQc/NzeHixYsAkjRfggTPAhLb8WwicQaeYnz5y18GQLoHPikwz35sbAxHjhz5xI6TIEGCTw+J7UjQDCFsN7EmwTOPH/zBH8S3v/1t/L2/9/fwm7/5m5/16SRIkOApQWI7ni4kBMIELVEul/Hmm28CSNJ8CRIk6ByJ7Xj6kDgDCVriT//0T+G6LnK5HE8rJkiQIMFWSGzH04eEM5CgJb7zne8gn8/jx37sx5LxoQkSJOgYie14+pBwBhIkSJAgQYJnHEmZIEGCBAkSJHjGkTgDCRIkSJAgwTOOxBlIkCBBggQJnnEkzkCCBAkSJEjwjCNxBhIkSJAgQYJnHIkzkCBBggQJEjzjSJyBBAkSJEiQ4BlH4gwkSJAgQYIEzzgSZyBBggQJEiR4xpE4AwkSJEiQIMEzjsQZSJAgQYIECZ5xJM5AggQJEiRI8IwjcQYSJEiQIEGCZxyJM5AgQYIECRI840icgQQJEiRIkOAZR+IMJEiQIEGCBM84EmcgQYIECRIkeMaROAMJEiRIkCDBM47EGUiQIEGCBAmecSTOQIIECRIkSPCMI3EGEiRIkCBBgmcc/3/cnOCF980SvQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD1CAYAAADNj/Z6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aYxc55oeCD5nP7FHRu4kkzspLiIlaqd23VttN8ZwLW20XZi2q7pcXdXT86PLjZpfBUy70YAbGBvGoGYw00a5ygY8Xsoe2FOL7Spf31v3Xl2JlESRlLgvSWYyM5l7ZKxnX7758S15IjIiMpKiRImM54KXVGbEiXNOnO/93uV5n1cihBAMMMAAAwwwwADPLOQnfQIDDDDAAAMMMMCTxcAZGGCAAQYYYIBnHANn4CnHgwcP8Nu//ds4duwYMpkMSqUSXn31VfyDf/APYNt2z/f+6q/+KiRJwi/90i99Q2c7wAADfFswsB3PGMgA31n83b/7dwkAMjMz0/H3f/Inf0Ly+TwB0PHP0aNHyd27d7se/9/+239LAJBMJkMcx/marmKAAQb4pjGwHQO0Y5AZeEpx+fJl/I2/8TdQr9eRzWbx9/7e38O5c+fwox/9CL/xG78BALhz5w7+yl/5K2g0Gh2P8Zf/8l+GYRiwLAs/+tGPvsnTH2CAAZ4QBrbj2cTAGXhK8Vu/9VtwHAeqquIHP/gBfud3fgdnz57F9773Pfze7/0e/v7f//sA6KL+h//wH3Y8RiaTwfe//30AwJ/8yZ98Y+c+wAADPDkMbMeziYEz8BTis88+w89+9jMAwK//+q/j7NmzW17z27/92zh+/DgA4Hd/93cRBEHHY/38z/88AOBP//RPQQZdqAMM8FRjYDueXQycgacQf/RHfyT+/Wu/9msdXyPLMn7lV34FAFCtVvHjH/+44+v+6l/9q5AkCUtLS7hw4cJjP9cBBhjg24OB7Xh2MXAGnkJ89NFHAGiq7uWXX+76uvfee0/8++OPP+74ml27duHVV18FMEj3DTDA046B7Xh2MXAGnkLcvHkTAHD48GGoqtr1dceOHdvynk7g6b7Bgh5ggKcbA9vx7GLgDDxlcF0X6+vrAIA9e/b0fO3Q0BAymQwAYH5+vuvrfuEXfgEAcPXqVczMzDymMx1ggAG+TRjYjmcbA2fgKUOy1SebzW77er6gm81m19c8//zzOHjwIICBhz/AAE8rBrbj2cbAGXjK4Lqu+Leu69u+3jAMAIDjOD1fN0j3DTDA042B7Xi2MXAGnjKYpin+7fv+tq/3PA8AkEqler6Op/s+/PBDVKvVRz/BAQYY4FuJge14tjFwBp4y5HI58e9e6TsOy7IAbJ8WfP311yFJEsIwxOeff/7VTnKAAQb41mFgO55tDJyBpwymaWJ4eBgAsLCw0PO1lUpFLOipqamer/3oo49ACIGu63j99dcfz8kOMMAA3xoMbMezjYEz8BTixIkTAIDp6WmEYdj1dbdu3RL/5opi3fDHf/zHAIAPPvigJYIYYIABnh4MbMezi4Ez8BTi7bffBkDTeBcvXuz6up/+9Kfi32+99VbPY/7pn/4pgE0y0AADDPD0YWA7nl0MnIGnEL/4i78o/v1P/+k/7fiaOI7xz/7ZPwMAFItFfPDBB12Pd/nyZczNzQEYLOgBBniaMbAdzy4GzsBTiNdeew3vvPMOAOAP/uAPcP78+S2v+Yf/8B8K5bDf+q3fgqZpXY/H03xnzpzZVoxkgAEG+O5iYDueXXTXmxzgO43f/d3fxVtvvQXHcfCX/tJfwu/8zu/ggw8+gOM4+MM//EP83u/9HgDg6NGj+O3f/u2ex+L9wbxFaIABBnh6MbAdzyYGzsBTijNnzuBf/+t/jb/5N/8m6vU6fud3fmfLa44ePYr/8B/+A9LptFAfMwyjRXBkfn4ely9fBjBI8w0wwLOAndgOTdNQq9WgqirS6TQkSRKvGdiO7xYGzsB3GO+//z4AWrcDgDAIAEIQxTHiMMT33n0X5372M/zv/+gf4T/94AdYXFqCpmk4cOAAfuGv/lX8d3/7byOVSmFmehqEEEiSBEmSMDI6ilQqBUmWRZpvamoKZ86ceUJXOsAAAzxOJG1HHMeIgwAxgDiKEEUR3u9mO/bvxy/8/M/jN3/910EkCXMzM8JuGKkURoaHoWgaZGBgO75jkAgh5EmfxACdEccxwjAUf+I4hsS+LhJFIHGMwPfhex7CIEAcx4iiCIQ5BCAEBAAhhG727N8x+28QgoZlIY5jKLIMWZYRRhFkWUYhn4cqy/gf/s7fwblPPsH/8Zd/GX/vf/1fYZgmNF2HrChwHAeu76NYLCKbzbZEBQMMMMCTASEEURQhDEPxN+IYBADiGBKA0PcRBAF810XIbEmc+ANAvD7ePDC1KwCCMIRlWZAkCbquIwxDEEKQTqVohgDA/+m3fgvnzp/Hf/PLv4z/2//2v0EzTfraOEa90YCu6yiVSj05BwN8cxhkBr5FIITAdV1YloUwDOF7Ht3sbZv+7fuIoghRHNPoP44hSRJURYGuaVtGjsZxDHTYoPki930fnu9DliSkTBOQJHieB58QSI0GoijCvfv3MTw8jCMHD+LHf/EXcGwbtuPAdRxwLzImBLKioDg0hOLwMEZGRvDcc88NCEMDDPANIYoiWJYF13URBAFCz4PnuvA9jwYLYShsRhRFAABZkqCpKjRdhyJJm+sZ1BZJhGyxH4QQII7RbDYREQJT16GpKgghsB0HAXMKbNfF/fv3MTIyggP79uHP/uzPYFsWbMdBxPQLYhaYpDIZDJVKGB4dxfj4OE6fPt0ijTzAN4OBM/AtACEEjuNgo1xGs16H6zjwHId69JIERZIgKwqNvFlKDiyyJ3EMP44RBAFUVYWp6zBNE6qqQgI2FzN/H//MKEIliqgnb5owDQMxAFVRYNs2AOAnP/0pbMdByjShKAqqtRrSqRRGR0eRTqXo5+g6XMeBY9twXBe1lRU8nJnB+Y8+wq7du/Hu++/j0KFDg6zBAAN8DQjDEPV6HdWNDdjNJlzHQeD7iOIYsiyLjB+Azawisx0hqBPh+j4MXYdpGDB0HbIsb9oOSRL/5plF13VhmCZkAIVCAQCQAWjGIYoQBAH+/M//HI7rImWayGQy8D0PmWxWlCBTpomIEGo3bBuO42B+ehrXL13CX/zgB3jx5ZfxzrvvismIA3z9GDgDTxBBEGB1eRkba2twLAu+70OSZbEwFZZuk2QZiqJAYX+DOQN8cfpBANfzRDnACwIAgMnIgASgzgPbkAkAx7ahKgoUTUM+n4fMfhdFEZaWlvBwaQl/9p/+E2zbxitnzuC/YmxgPwxpRsHzaKYijmGmUtANA4XEtVUqFSwtLeHf/It/gWwuhxOnTuH5U6dEWnDgHAwwwKOBEIJmvY6V5WXUKhV4jkNLfapK13wmA4Vt5LIs03Uuy5D4Jg9qA+Iogut58FmkTgiB7/swDAOGYUBWlC2fHccxLMuCrmnIpNMwTRMSaJTvuS5mZmdRLpfx0w8/hG3beOPVV/GLP//ztCTh+/CCQJQ1JUKQyWaRTmz4QRBgZXkZX168iC8+/xy7p6bw4pkz2HfgADKZDLV/A3wtGHAGvkHwxWY1GqhtbGB9bQ2+74PEMSRZhmkYyKTT0DQNmqrSRcwyAgRAxOp9cRyDf20E2HQKfB+u78NnzgAIgaZpyKbTUFRVpAEJIahUq4jCEOlUCqlUCn4Q4OqVK3jw4AEgSRgbG8PU3r0oDQ0hjCLEUbS5gUsSCOMkxKCGgLBzEmUM9netWsXi4iIazSaKxSKOnziBYrGI4dFRZHM5pLlBGTgHAwzQFVEUwXEcNGo1VNbWUK1UqPMPQFNVpEwTKZYRVBO2A9hMx4MQwQcAIEjDEXMKXN9HHEUi2ODZP5EdAOD5PuqNBiQAQ8UiJEnC6uoqLn/xBZqNBjLZLMbHx7F//37Iskw5Bm3lSm4riCQhjiJh23gJI4oi+J6H1dVVLK+sICYEhw4dwp6pKRRLJQyVSshkMkin01tKowM8OgbOwNcMnlZrNpuwajX4joPQ99GwbURhCEmSkMtmYRoGXZhsQQSM/MMJf4qiQAbb/FnqT2apf4n9jvMGwjCE53lwXFc4AJlUinr7koQgilCpVEAADBUKWFpawpdXriAMAhw5cgS5YhGB70PXNKTTaZFVkGVZGBtFUcQ58EcoYhyGxMUjYOfy8OFDXL95E6Zp4vCRI9B0HYZpIpfPo1AsolQqoVAoiJTmAAM86wjDkDoAjQacRgOB68JzXTQdBxIhMHQdmUxG1OwjRjgOwpA665JEMwZsrfLNX2b2Q5IkyJIERZah6TogSQh8H67rimyBqigimJAA1JtNWiYwDOiahqtXr2J2dhYjw8M4ePgwgigCCEEuk6GlTQBg2QlVUaCqKi1fMEeFZzOTm5AEakt834dl27h29SpW19exd+9ejI2NQVFVpDMZ5IeGUGS2Y7sxygNsj4Ez8DXB933Yto1mswnPsuDZNnzPg80cg5il+VOmCUWWAbYJyokanSAJ8oMyL55vzuKLS9QCVVWFrmkwdB2KosBnDgcAqLKMTCYDLwhgsy6CO7dvY2llBaMjIzhy9ChMw0AQBLBdF6ZhoFQotCxgnokAaMTR8vnsHFoeqMTjVa3V8NFHH0GWJDz/wgtQZBl+EEBWVWRyOWRzOZRKJQwPD8MwjMf4bQwwwHcDcRzDdV3Ytg2rXofnOPAdB47nwbZtOJ5HM36qCkPXxdrmJQCRRQzDlrVKJAkx4yC12w1uT3RNo066rossX0uWwDCwUa0iimPU63XcuHYNQRji8OHD2L1rFwCgaVmALCOfySCdyUBTFOEUiCwmaKaDOyj0AiTayZQIJqSEnbty5Qpu37mDffv3Y2rPHgRhiDCKkEqnkcpmabZxeBhFlq0YYOcYOAOPEXEcw7ZtumhtG1a1imajAY+n30BbcgC66adTKeoISJLw3lVVpQ4Bi7oBIGJpeBBCWwy5Nx3H4t+8DZEkzoWwdH7IUm88fRiEIdbLZTycm4Oiqjh69ChGhochyzJ0XYeuqmiwtqGhYlGcB48mWq657fHhEUrysRIGS5JgWRY++ugj+L6Ps2fPIpvJoGnbsGwbBICZSiGTy6HAFjcnKA0wwNMMj232tm3DbTZRq1TgOA7NDsYxIkJoqQ40A2gYBiRAEIv52pYSQQXnBfA1GXN7wdYn/3cUxyJdD0DYFJ5pAOs6kCUJtuNgbm4O1WoVY6OjOHrkCHRdh6ooMAwDURjCC0OYuo5MOg0AIhuRBA8cWn5GCEJmJzm4k0MIwb3paVz58kvs2rMHZ86cgR8EaLBMhW4YSGWzyOZyGBoawsjISIt42gDbY+AMPAZEUYRms4l6vY5KuYw6W8iyLMPQNOiMMOe6LlRNg2kYKObz0DQNCl/EiU02ZAs4CU7SadlkwbxtlqqPooiWB1hbkef7CHwfIXMIHMdBrdnE4sOHCAlBKZ/Hvr17UcjnYeo61ASxr95oICYE2UwGaoK0I7POBs5S5gRHOVG6IIRQB6bLo+X7Ps5/8gnq1Sq+/3M/h0wmQx0px0G90YDneTBME9liEcViEZOTk1QEaeDxD/CUwXVd1Ot11CoV1CsV1Ot1BEFA7QbbZLlegKHryGazyDIinZLgBQDUFiTHDnO7wDOKye4ikTFgpQOP2QyH6Zb4jFgYxzH8IEDTsrC2sYFypQJNkjC1Zw/Gx8eRSaeha5o4Dz8IYDsOFFlGLpttuVZuM2QW+IhOKUZulFlZg2sZbAEhWFxawqeffYZ9e/fipZdegiRJ9PwaDTQsC5AkpLNZ5AoFjI2NYXh4eMAr6BMDZ+ArIGTCG+vr6yiXy6iVy5AlCSZbyLIswzAMpE0TIYvsuaBPcmNLLtKYp+c6IEn+4WIiPFMQM8KeaDtkCwugDF3LslBvNDAzM4OAvWdyYgLZXI6ep67DZG2GiqLAsiwEQYCUacIwjI6ePEd7FiCZFtRUlToZ9IXiOoMgwA9/9COYpol3331XZEikOIYXRWjU62g0m8gNDSFfKKBYLGJoaGjgFAzwVMBxHNTrdWo7WDeRoWnUKVcUaKoK0zShGwZ834csyzAZSbAFic2d1+vbQRKOOWHZxSiKRMaQZxaltvdEcQzX82A1m1heWcHyygoAYHhkBLlcjgYzioK0acJIpZAyDERRRKXNJQn5XE5kKLgAWvt5JcEdBUII1UDQdWoX2jA7M4NLly7htddfx57duwGePYhjWI6Daq2GGEBxeBi5XA4jIyPI5/MDp2AbDJyBR0Acx6jValhbW8PGxgYcy4IURTANg7Lz2aJNM0lfz/PQaDZB4hj5QgFaj4cyjGNaEkiAsM3eD4IWNcIWQRC20XLHQmGLKowihL6PpmXhxrVrUFQVBw8dwtVr13Di2DEoCTJgxARFDNMU3no2k0GWtThydbIwwfzlBiVuKw0ANMPBjZPCyEMq65SQJQlr6+v48MMPcfzYMTx37Jh4H08pBkGA9Y0NQJZRGBpCLp9HJpNBsVgciJIM8J2E53lYX1/H+vo6qtUqYt+HLknUEWe2w2QOOAhBrV5HEIZQFAX5fB4A0MkVbs8KiJ+z1uMgCBAx20EPIonfSwmHgm/I3N5EUYQHDx5gfmEBE2NjeLiygheffx6yoiCMIuiaJsoRsqIglUohCEMYuo5SsQiV2SEe8UdttoOrH7afMw+IRAlEVaExgjSJY3xy/jzWymV87/vfb3GQZFkGAdCs11FtNpHN55HN55HL5ZDL5ZDP5wftiV0wcJV2CMuyMD8/j42NDQSeBw1ARtNQYGz4FuIbe6gtywIAwfzthZYWPd5VEIYisyBeB0BjGyxPF/I0PVhJwvM8KLKMSqOBGzduoJDP4+Tzz8NxXciShGKxSBdvEAhjEgQBwiCA5/twXBf1dBpjIyMo5HI04lcUqG2bfsTblth584XvM9XEZMuQ53kAAEVVkclkcOTIEdy4eROj4+MolUot7U+KomB8bIxmNSoVOJaFfLGIMAyRTqdRKBQGC3uA7wTiOMbq6ipts200IEURDEmCmc2iUCjQKDoZBRMC27YRspbeXDbb0QnYfDmL/OMYQRQhYl0FEcsCCrCAQWUbK9cukUDXJO9giFl0fnt6Gutrazh96hQyqRRWVlcxPDQERdOEfZJAyx0xoeJpdcuinURBgKGhIaRZcCETgmQVn4C1PbIAKOkoOFwmmR0nCAI4jgNJkqBpGk6eOoUPP/wQFy9cwNts5DK/zwCQyWZhmiaqjQYqa2uwm00EQQDP85DP52mX1AAtGDgDfcLzPMzMzGBtbQ0kDKEQgpxpIp/LIZfJQGdOQHLgDyFEOAI87dcO/npCCN2AmfJgp4SNqijUO9Y0qMyDbz+Gz1sK2fuXlpZw+9Yt7N6zBy++8AIc14XreZAlCZl0GmpCFzyfy0GRZTQdB1azSTf2MMRGpYJKtYp8Nosh1l2Q1CzgDGa5jShk6LqIBkKW1Qj4DAVmqHbt3o3llRV8+umnePvtt5FOp+kGn2A6Z1g/cb3RwMriIjbKZezeswe+7yPHtAoGpYMBvq1YXV3F3Nwc1fIPQxiqSqPUQgHZNoU9ntkLmJAYCBXm6dVyG4YhHNelkXyH7IAEQNN12mmkqlASAQln+HPekx8EtMU5CHD12jU0m028+eabyGYyqFSrADtWOpuF1WyKTEKpVKIdVExu2A8CWLYN13FgmCaG2LUmOxkI+3yZdVMl3Xpul6K2jCjXUwGAY8eP4/IXX+Da9es4woiMya4FRVUxVCigadtwGg3M1esolEqIogi2baNYLA5KBwkM7kQfmJ+fx+zsLEgQQI5jpFMplIaGUCwUWmphvLWHb0yu74uafr5dVpPV9rkyF+8y4A+8xBi8KiMZiqi/Ddx4xFGEpmWJdiBFVfFgZgbT9+7hyNGjOHXqFBzHAQCxACRJQjabpXKgnif6h4cKBRRyOZi6Dtf3IUkSgjBEvdlErV5HjjkFOutNBrrwCVj7pCrLUA0DhDlMURzTQSlsgZ88cQKfXriA6zdu4OjRo1BZ25SeIDQauo6hYhG1eh2+5+He7dsojYzQ+mWhgKGhoYFGwQDfKriui9u3b6NSqUCOIuiShHyxiFJbmYuvaimxlnh3jc76+VvA+EC+59FOpfaZA4pCs4aaJoYAdXOWeVRvs6hbkiREYYgvvvgCQRjivffeQ7FQQJU5Ahy6qkLOZoXNsW0bmUwGmUwGKcNAvdmkJcUoQhgEWF5dhaaqKOTzIgvCdVPAOA3J6xcdTKxEwH8ehCGiIEAQhiiVSti3dy/u3L2LoVIJ6XQaOmuN1HgbtCwjn81CUxTULQuVtTXUKhWMT07Cc13xvgEGzkBP+L5PF3O5DCkMkdI0TO7Zg2w2C5npAPAF1L7UuNgQAZBOp2kUz+r6IZfmZB4uh6qqlEHMUv9iAbMUfCcQtC5mWZaRSqVw88YN3J+ZwenTp3Hk8GEAmzXFZKlCApBKpyHJMmzbhud5IKAiRYqmIa2qKObzcD0PtXodHhMCaTQaSGcyKBYKSLUrCPKSQZsIEf+XKstQTBMGe202l8Nzhw/j5u3b2L9/vzhXW6IT0QzDgCrL0BQFQ4UCqvU6FEVBrVKB3WyiUCohCAKMjIwMPP0BvhVYW1vDnTt3ELkuVADDQ0MYHRmBrmlCDVDIirdt1B4bSCYBSKdSIrUfsxkkHgsykuBKgbqmUaeY9+jzaYVo3WQB6pRbliVKEfzczp87B13X8cEHHyCTTtNApYOdUxQF+VwOTctCEIZoNhrI5fOiY0pnwmL1ep1qq8Qx1isVbFSrKOTztPTIsoyC+AxsbS/kf0sSDE0DGE+BxDFOnz6NlZUVzM/N4ehzz9GuCM8TrY6apkGSZWHj6s0m4ijCysOHqG9swHUcjIyNId9G6n4WMbCcXbC+vo7pu3fh2zYUACOjo9g1MSH0AqI47hipcyQXtGkYWzx5DlmS6EPLWMScbJPc+tvVuTj4Yg4SizmTTuP2nTu4f/8+Xnr5ZRw4cABiMAk7H0mWxWdwz9w0TUiKgmajAd/zhMgQZxun0mlk0mnKI6jXabnBcbBoWTBME/l8fjPlySIXTuYh7cqEyeuQ6NTFo889h+n797G6soIjR4/C8zzEcdxxcedzOdTrdQC05lhjJE7HcTA5OTkgFw7wxBCGIe7fv4/l5WUgCJDSNOybmkIqnd5c10kHoIMNcR2HrjnWOROykkHAZcYZNFXd3PBYqU50IvEoG5ulvKS98jwPTdsWG3w6kwEIwU9/8hNoqor33n1XlD6546EwkSBhN5iDkM1maYkhDNFoNmEaBrUBhEBVFJpFzedp+3WziTAMUanXUWVZxlw2K7KMwnlJOAedwO1YyjDw3NGjuHr1Kk6ePAmJCZmFUYSQXR/PFhiGgWwcU2EkUBu9ND8Py7IwuXs3hpnWyrOKgTPQhjAMMTc3h8WHDxF7HkxNw9Tu3chms9SzZgtiu0fGdV0xBbDBFkASIp3VlgKUWCcA944JNkcRi7QaNrMBHOl0GoZh4MGDB7h+/TpOnDiB/fv3i7YiUX6QZaiJdBxf3BIh0FUVmXQaFhNN4iSiiBAooM6HYRgYGR1FGASo1utwHAcBSwPqbKPOMMMCQMiRsg/seK+4kMrhQ4cwPT2NE8ePI53Pww9DeGzWQnJxa0x0hTCHgcuoLszMwKrXceDw4cG0swG+cVSrVczOzqK+sQGZEAwVCti9a5fgwPA++m4RKCfLhZx5H0Wo1motJThFUagwWKK3n4N3A/Bgg7+Pf14MgEQRLDbZkHcdZTMZkDjGTz/6CH4Q4IP33xeOQMxS83xMOT9ue1kwnU4jajYRhSEs224hAvPNPZfPI8syCQ1G6Gs0m6hUq8hmsygyQnAyUBDv7+EYHDxwALdv38aDmRmcOn1a8Ax4QMYDCoVxrlKGAdf3qR1XFFTLZTjNJpypKeyZmnpmHYKBM5BAtVrFw4cPUSuXIQUBhvJ57JqcFG0+ElsEXEo4CS7uIQFwPQ9Ny4Ln+8hmMuLh4p48l/ftBb4Jt2gQgLbw2GwDBmhpgX/G8vIyLl28iIMHD+J4olWPS33y13dKw/HowWBZDB7565rWYlSEfoCmYXR4GGEU0TQgSxWurq1BqVQw3K4JwJ2OHh7/4UOHcPfuXdy/dw/PHTsmjB7vTOCL22cLGaAOCp/IpigKNtbXYVkWjp04gUKx2PMeDzDA40AYhlhcXMT62hqsSgW6qmJ8bAwjw8M0CxeG1BHoVupjTroEoNFsomlZmxNKAbEuDd53355VSByXjzknyY2YIWAlPm6r+CCimBB8+umnaDYaeO+995BhYkFijfHMQIcSHCfrybJMMwSNBp2i6rrCIedRPLcxPBtgM60Fx3HQbDZRqdWQz+VQKhY35xpsXtjmvWo7B03TcOjQIdy5e1fYjZSiwDRNBGFIBZRYmyTvdhKcLdYGGQQBZqen4VgWDj/33DPZpfRsukBtiOMYc3NzeDA7i+bGBhRCMDYygj27d9OUF6/xYfPh52jxvllrzeraGjw26EfTNKRSKRQLBWRzOeiGsa0jwIkvXJmQf0bAJoZxRyCdSiHHmMYblQo+/eQT7Nq1Cy++8EIrsS/Rt9vtIU9GK6lUiuqey3KL48ENTfK1PA04MTEh1AqjMMTSygpW19dFa2FSNhmgWuki3chgmiYO7N+Pe/fubc5gAE1PmqaJAusXNhhrOGbtlo7rbvIhNA2e4+Dq5ctYfviw530eYICvimaziTt37qC8sgKHddzs2bULoyMjdO0m9PY7ugISlR4PgwAblQqq9TrCIKCOsK4jxyLmNBsWBLm1/bC93RgSHTzU0jEQx7CaTTSbTRCWui/k87ScRgguX7qElbU1vPHGGygmHWiWyYgT63DL6SeuS2EOgcrKizbLLnZ7fTqVwsT4OEZHR2m5Q5bRbDaxsLiIRr0uiJH8Dx++BElCu0bhoUOHAAD37t9v+SydtTAX+D3kTgbLloZsJDsfFLeytISrly7Bse1O39ZTjWfeGYjjGLOzs6iurSFoNGBqGsZGRzFcKtGBHcDWBYdEJoBt1o7rolKrod5sImCRwHCphEI+Twl2fBPuke5q6UrApsetyDIcNvSofTFLkoRms4lzH32EYqmEV159VeiT04PRc+SbpdrFGWhXGEwzmVGw4ydVEUW2gjlAEduUC4UCVTVkA0ps28bDpSXUG43We04S+ujM2HBn4fCRI/CDgI5SToDfD86LKLBuBkVRoGsaJTU2m0KgJIpj3Lt7F3evX99Sax1ggMeBZrOJ+9PT8BoNhLaNkaEhDJdKKBYKtKTXFsWK0b38B2xdNup11Op10YaczWZRGhqi48y5vj7f+HvYD4CW+yRQw85V+Wr1Oh1rLkkwTRO5XE4EBddv3MCDBw/w6iuvYHx8fPNc28h8LYTm9s9M/FtRFORyOWFz+DXRy20NJgghCKIImq7TTMrICHQ2gXFtYwNLKyuijRCA4B/xICBpOwxdx4H9+3H/3r0t7ZUSqKOSMgwU8nlKAJdlmnVkmVbLtgVZs16v49oXX6C8utrzXj9teKadgTiOMTMzg2alAhKGomUul07DNE3x8CUhMgGyDMLS6ZVaDbZtiwc1nUqhVCpBZzK+wOYi7YQtk/6S58haBnn/b8o0kU0sZs918dFHH8E0Tbx59mwLmz6ZFeAReTe2ffu5SZK0Gemzc2jx8tli9FnqjS9wRVUxMjKCsbExmEySuVytYnF5Ga7rbv3chIEhoIOKJicmcD/h4bfdLEE6TKfTyGWzYpxqEARYL5dFG2bERjVP37r1THr6A3x9qNfruD89DRIEUCUJwyMjSGcyKOTztG4PuuY5ROcRG/YVMtneWq0GLwjo2mKp++LQEHXou3QbJJHMrrW/KghDKg0Mui5zuRxVRWXHuz8zg9u3b+P06dOYmppqfTMrCUbbBBHiHBLXqrJoXAIlKjoJbhN/LVcfRMIuptNpTE5OopDPQ5NlBEGAh8vLKFcqLaTr5Dkmj3vgwAF4rovFpaUOJ7mZwdV1HflcDimm+EgIoTyGRoN2K4DKRc/PzuLh3FzntumnEM+sMxDHMe5PT8OuVIAoommkVAqKqiKVTtMNmg/3QGLBsQfQcRxUajVYti1mhmcyGcoJYMx3oLN0aBKCldvhtVEc07KA70MCkGPkPIUZlCiK8PHHH4MQgrfefrvjlC7+OgDifd3Q/jtZlpEyTSpPGsdo1OtiJgKfpsYHjbTDNE2Mj4/TgUyKgjAIsLSygvVymaopdoEsSdi9ezdqtZrISHQa2sSvR9U0ZDMZlIaGoKkq4piOV+XqaJ7vw3dd3Lt9G/W2XukBBngU1Ot1PLh/H/B9GCxLp7H1z8d8I/GMC2EdnglgToDPSHymYSCdTtPyHLMfnexBEr2cAIDxlhoNwe8p8PIai8yXlpbwxaVLOHrkiGg9ToIfM8k16oYkr4lD0zRRhnAcB67riimIfPoizxQk3yvLMob4cLJE6eDh0hIlJvZALpdDsVTCwsOHQh5dZHL5ixiRU5JlOjCOqT8CQNNxYLuuEEZzPQ/l1VXM3r3bUer5acMz6QxwR8Ct1UDiGOOjo1DYA5lhnnPyISKJ1JbjOKhUq8IJUBUFWSYpKpi8EtXT7mcxd1v0nJgXsLnfuVxObPZ8QV9PKIRxB4Yfu+VY3Lvvpwc/QZLkMDRNTC/rtCD5wu7kTBQKBeyemKApT0WB5ThYXFzcUjpIYnJyErKiYGl5WZRhWmqH/FTjmGZc2OjlkZERmIaBgHVOcMJUw7JACMGDe/ewtry8/T0YYIAuqNfrmGOOgKnrGBoaEqOEDV0XQQRA7YYo08XxZibA90EAGIm0Ne/24Sp6vdBeTmyHzQh5RJJgMN4Bd9glSYLjOLh08SJ27dmDU6dOiWOK7iJuRxJco+1sRzJo4hlJRVUhqypiQgTXSWp7j8zOqd3h1zQN4+PjGC6VROlgdX0dy6ur8HtszLsnJ7GysiLGqPNsbXJEM2FkcIBmeAv5PIpsZoznupBlWZQd+eCle7duwUtkOJ5GPHPOQBiGuHf3LnUECMGu8XFK8CGEiv7wCX1s0+EM+jAMaTnAcSiDPeEEmGy2OK9Nb7egCds0u73GD0PU63WEUQRFotO/2hfjw4cPce/ePZw+fRrFYnHT08ZmdwCwmZIjgBheFAOCkJOs18eEICSbs88JINKXmUwGfAxzp8UoAcKhaoeiqhgdHcXo2BgM1hPNSwedjqUy3sby4mLHTIZY4NyAsFSjrmnIZDLIZbOI4xg6m6JWq9VE7XJpYQGrA4dggEdArVbD3P37IL4P0zSxa2JC1LRFEJGIRiW2KdqOg3q12uIEFAsFZLNZuiaZXDcI2dJqnMR2TgAB0GR6G1w7hK9b8Zo4xucXLkBVVbz80ksiMk869DE2HQGenuct1THL1HF7wWcLxHwmApueSti9MFn3lCRJQlWxHXLi+O3IZLO0dJDLQZNl+J6HxaUlVGq11msnBDcqtxAV6DmX19dbMg4S67CIE7ZDwmb5Np/LIcMyMxIrQ/q+j3KlQjuYPA/3p6dpS+ZTimeqtTAMQ8zcuwe30QAIHeGbTqVQZQ8Wn36VFMkhbDE7rN7Nme38oRERvkTnagPouqBbjEQXuJ4H27IQg25uqVRqSxretixcvHgRu/fswYEDB7a9bs7MV9pIjKT932hl+4p7wK7JNAw4rgvbsqDk81s3/0TrYSekTBPG+DglTDHthaWlJYwOD2+RBN01OYkvvvwSQRBQxUSptUebG6QoUQuUWc2VRzO8TdLzPFiWBRLHSKfTWHn4kEZlQ0Pb3rsBBgBo2/Hc7CyI7yPLSmCi5i3LIoiIsbluwjBEIyERbug6UqnUprwuADC7kewg6gTSoyUXoE57k5GXASoi1KlsePPWLaytr+O9997r+Psk6TFJHuQQDk+Hc5ETEb7IFBCCTCaDeqOBOIrgOA4l6nWAzByRdkdHlmU68CiTQbVSged5qNbr8DwPIyMjWHVW8Dd/9mt4aC8CAN5RzuLA0n6Mj493vG9xm+3gHKNUKoXYcYRzUGGlnGaziRQ755npaRw6erRjm+V3Hc9MZoCTBZ1GAxIh2D05iXQqJYbmAJuRM0cQhlRYhzkChmGgWCxuTiZknr8EbPawdvHue9X3OGzHgcUcAcMwWtJ74jhxjAuffw5NVXHmzJkttbpO152cArgd2jMM9DLp2ZupFDSWsrMtq3urVI9zkmUZhWIRk+Pjooa5sr6+hSQ0uWsXCCFUyY2fT+JetBsjwrsaQJ0OWZLgeR6yjAwaxzElVDGxk4XZWdgJpvMAA3RDvV4XjkAuncb4+Dhk1g4IUEeZp8dlQGQDao0GItZayMfnqmz9AJsRfjKj2A5RpuxBQA4ZT8Zn2YVcLtc6PZVhfW0Nt27cwIkTJzA8PNz5YNKm5HDSLvYLfm1ywmmXZRkZNkzMZQOVtn4szVDIPZweQ9cpD6lYhMaO9W+//CP80g/+hnAEAOBc9BmWl5ZayInJIKKdjMinrGpsABwIAZHoIDdFlkWbpGXbcG0b8zMzfd+P7xKeGWdgZWUFbr0OOY6xKyFZy+vpsqJQnWxWa7JsGzVGROOp+lyCvCfSa+wh4+lCXdNaZD+Fwh+6OwIt6T0AadOk0r4dNtWbN29ifX0dr77+ekfj0Y6kvsBOtbdbBIMYq5mnHUMmLNLrvZ1qgRyapmF8bAy5TAaaLKPRaGBlbU18HynWkZFkBicdlajLcQFa35SYFHIcx3TwkWFAYUTIpm3Dtm3M3rsHr8c1DDBAGIZYmJsDggC5VApjo6PCQefcFE1VRWAQsgDCZpLChq7TAIIFCMmBPPy/uYhW+3ruJ5PIWxPDKILCODqapm3ZUH3Pw2cXLmBkbAzPHT3a9XjJ9cqd616dBEkk1ycStgPYzCxKkgTbtsWxk+8V/97GTuXzeSh5Ff9u5t/hP8/9AHvJFIaRdG4IHM8Tw5VEcCNJokTbDVyEKQwCyIqCFAuAAGrjG80mqpUKHs7N9TzOdxHPhDNQr9dRXl4GiSKMMpIZRxhFQjZYAhBE0ZZsQKFYFEp8nBnc/kj5HWp+BAA6vDYJAtqvzIcWZTIZpLpM0VpbW8PNW7dw8uRJDJdK3Y/ZYUF3EgzpBnG+yYXDPX5FEV4+H7fc8r42I9StFsh/Nzw8jFKpBFVVEfg+FpeXxb2fnJzE6srK1iwA2gxPB/DIyA8CIVaS5alTQnUhatUqpm/f7unUDPBsY/7BAxDXhaYoGBsbE44Ar6lLrKOFlxNbsgFMaU9m5UQ+SCyJMAxbSMft6GU7gjBEvdFAxBzefD4voviWNUMILl66hCiK8Morr7TqkCD5slYdg+QUxH6R3HjbzyOZWWznD7SsZUnqHjgRgv/04Af4Hz/+Lfy4/mNIMsGIOoQpTGEv9kKChLyeh65pHVsMCZ8p08UmcZ0SApoZIaAcJp6ljaIIjWYTiwsLT51D8NQ7A2EYYml+HogiZNNp5FgbSbLWzxerZVkdswH898kWwPaUdRiG1KngEQD7XS+vngCw2Azxjum9xHt9z8Nnn32G0bExHD1ypPsxSatmwaMsaCCx2XZY1LphCCXFZrvKWIcNupdDAFCRlfHRUREZLa+uolKrYWRkRPRjJ6+PD4Di59jp2JqqihokZ2oT0IwDl0kOggDlchm3r10bOAQDbMHaygo8poQ3zjICScVRngEMfF+Qi1uyAex5TpYI5baNjtflNdZ91EJA7HFuvEUxJoTOBEmWFBnpl+PevXtYXFzEK6+8Imrf3SDmGCTLizvV6k98fvuGzzOL0TaZxU7lxjVnHf/zp/8L/u9f/C6s0EaEGA+xiIZUx5g2hHFpFEdwBJP6JEZGRlBpayXm4mgAC+i6BBP8e/N9nwYShM4wyGWzwplxHAdzs7O0s+QpwVPvDDycnQVxXSiShLHR0c1fsHqSIssIo4gqgLE0fTIbAHSu98uJ/+ZtLJIkQWXp6fbXd4JlWfASjkBXJjEh+PziRZA4xqs9PHuO5Oc+St2PHqTNw2/7dZoRG0kcw060G3ZbYHKXTZvDMAyMj47SFkRZpgQhxr6uJRZ1HMdb25M6yaQywhYIoYJN2MxccFEUPuq1Wq3i6uXLcAfCRAMwWM0mqsvLCIMApWJxcxJmwhkAq1tXWQDRKRvQqUSYXCPJMl4y4OiFkEWnMStRZLPZrjahWq3i6tWrOHzoECYmJvq+fp5RlGV5R4N7uIPO39G+5ntlFrsdD4TgBw/+M/6HH/+fcWHl8y2v2UAFS1hCQc1iVBnGQRyEmUqhVqmI13DV0y3H72CvNFbqjQkR4535955mHCSAcj1mZ2dx/969ntfwXcHTR4lMYH1xEX6ziSCKsGtiomVYBv/jeR6azSZlopsm0tlsS32v1+KUZRkxIZsbLu/l7ePcLMeB53kAaGTcq6Xo/swMlpaW8ObZs9B1XaQWeXtPUuaUS3XyToFavS7Yvw5zVBrNpvg7Gf23EAfZ5s3blFRVhabr1AliBiKdTtPRpWxCGJ8Z0I1YuJ1DoKgqRkdGUK/XUa1WEcYxdF3HermMqb17BXt7y6GRYDknfq7rOmBZiBMtUgBzTBhBiI+GtSwLX166hBdeeglmlzLNAM8GwjDE2oMHCIOAkoZZ14kYKMQ6WyzLgut5VDQolaIOZpvz3MkW8KxCzER4CCGCnb6d7YiYXkEUx9BUFblstqsDHkcRLnz2GXL5PE6cPClaBUVbIGs5Jm02BITA8304jrNZuiAE9Xqd2o1GozVyT9hI/rcfhnAdB0EYUr0Bds2SLFNbYhgIfB9N20Yhn+963evuBn73y/8HPl3+FFKP2NWGg3nMY0KexKQ2AgBw2DUYpimyiUkky6Fi7gHo96PrOpq2TQXf2u4vnxhpM62Zufv3gSjCwR5cjO8CnlpnwKpUUGUCFaVCQahhJcVxmmwxAxDCPqLtZxtHgIPL3gKdp3p1Ap8ICFCOAE+PkzimHIY4Fkp/juPgyytXMLlrF3TTFG2QIIQOLeGbI9vwOfOYL3Le1gRsevsh6xWOCOmoBpjc0MMoQhxFcD2voxfv+z48z4Nt28jnckJpTZFlyIrSOmUN3dP6SeTzeei6jnK5jGwmg9VyGdV6HdltNmmuCcHLFjwVKLHsT6fXp0yTzn5wXdi2jS8uXcLpl17a0uo4wLOBOIqw9uABHbAFYHR0VDjXfLJgFIaoN5ti7fHOH6B/u8Ed2IiXF9un9HUAVySNCJ1PkmMZAc6Q5x1NEZP6vX/vHqqNBl5/7TUh8sVLEVvS+AmiMyc1xlEEqKqwbzHr2IkSnTv8mPxY/N9BEMAPQ8iEQOsk1kMILMehSqG+j1QqRTsPFAUKsxvrbhl/52f/EzbcCmRJZtoA3e9SiAgLWMAJ85goB9+fncXBAwcECbATeNk3ZucF0A0/ZpyBLdZKoqOfeTDh+j4ezM4iBnD4O+wQPJXOQNBsYm1xEUEU0fod8+yTDHdO2pNlGdl0GpKiIAhDQR7pZ0FzcAELtY90muO6NMUXRTCYWp7neR2j3jAMcevWLUgADh48KHqAJbbRckKS3FZf49F+wEb+qqqKPBsewqMaAMiyqYdAIp3H/ubiRGEQIIwiaJoGhRueRCShqCok30cYhmhaFp2DnnQw+DmyBa4oCj3/DmSqJEzTxMT4OB4uLWHuwQOUy2WQOBbn2ws8A8E5ITzaieN4U4kNEMxi7ow1LAu2ZeHKpUs4feYM0mwE6wDPBuIoQn1lhY7hjSKMjYyIUiGw2QZYbzZBmKiV2pZF3Ind4KUFmZBt6/Ixi8w9Jk1uZDKUr8M2//bX2raNu9PTmNq9G2mmTsodY4X9ze0GdyjkRJYQYOPRs1noTCiMcwGy6TTy2Wzr0Db6DxGEqMyJkCWJtl6SzcFC3HaomoaADzNiQUwywPnw4YeIXYIccogQIZBCBHEAIsWds48MSkbB7slJXLt6FdVqFWvr6xgbGdlWRVEGtQncsVI1DWGH+8vvEJdrj8IQYRRhfnYWiGMcTo6P/w7hqXMGQstCdX1dpODH2ChRgHnirN7Go9xcJoMgimDZNjzPo5MAd/B5BEDEJoJpuk4XU2JTD1mEz6N8rhduMkEc3/NadbPZhikzTe6lpSW8+OKLGC6VepJe+Lm0s4FVVYWh6y0LgacyZUXZdoF4ug4lipAyzRbDSD+KOgaZdBo1JirCCTZCApRFEnEcI+QGMxGFKKoKRVWhsogg6SBIsozx0VHMsJHGG9UqYkJQYF5/T7Coiwu5qJoGPwhaOkmSaUJN12Eyx0yUDM6cQboP52OA7z7iMETQaKBSLiOIIuQzGSGOw9ec57poMG0KlaXoK9UqojiG7/vQmRJpP+BsdcgydD6qPJGqjllWj4/YFTNKWETqe95mOZA5IDwbJ8kyrl+9CkPXcfr0aaqI2oGQ13I+7bV9ls432GRQ/jMJ1G5slwVVZBk+C7YyHbJsXLmwqWnUwSEEumkijiKEcQwSRSjpJajsf+I8ZYI4JoilCCFCBOL/NzfslJqCmUohn8/D9zxEUYSVtTWMj472JassKwp82xbKib7n0cmzbfeP39NMNosaI5rOs8FGh48d23Er95PGU+UMhLaNyHXRaDQQxjFGhoeF585TcrVGg5LQZBn5bJZ+4WEIy7YRhiGCINiy6XUDr9HzOFiRZXGMgEXUnLQSBAGdbAiIwSSyokBlG6DCNkOOOI5x4/p1DA8P4+DBg9s+WEk9g+QxgM4Eu37B22k6QZIkKJIExTAQRpHol06n0+I8uFETMqBssSOKqJMQBEI1jbN2uVOgyDJKrIWSRBEUXUeVzZMoFgo9z1sC4LouJED0NwdtzkDL62UZBhth6rouHNvGl5cv48wrr8DchoE9wHcbcRwjbDZpv34QQJYklNqcb9u2YbN0t870/gkh0A0DDlMo1bs8W+0QJTgm+a2yAVtBGMIPAjoILAxFLdu2bQRhCIlF5bqui42f24/kGn+4uIjllRW8/vrrm8THndwPQr6y7SCJP50gSxJl6OdyILUaYlASpVCBBfB27m3M+wv403v/HhIkKOx/siwBRIEBFZt3nCBECDd2YcQ00CoNDeHh4iJUVUUYhlhZW8Po8PC2+iwR+w40FqQAtI2z274gyzIymQwVjItjLMzPQ1KU71zJ4KlxBiLfR+S6dGJdGNK52glyjR8EaDQaNLWtKMhns1BYFCtLElKGAZdFhWqh0CIc1Ak8CnccB7bjCOKeiHw5e5WlrKMwRCqVEmN3t8P09DTqjQa+98EHfXuY7a/aKZeh1zF7V/lpy17IFpHPyIQAW/QdPp+ApmUDljUJw1A4B8kZ5hKo8fU8D6XhYViWhXqjARLHGOohJ+yx0oXMPPdms9nS9bHlOtlzYGgaJDDjb9u4fuUKzrz66ldyqAb4diOyLJAoQqNeRxDHGCoW6Zph67hpWSLTaHJBMFAnImUY8Fj06bgu0ttsvtxuRHEM27LoRq/rLW12EZsbIisKfGbLTKZ+ul1kG0YRvvzyS4yPj2PXrl19XX97VqDfKae90F667AZFlmGmUnBcF47rQmVkQwmUR/G3Tvw3eH/ve/iDG/8En61coMdm/1OhQocOFSpiEkOKJaSQQpqkUa3VoBsG5TJlMmhYFoIwxCorGXRzCLhehARAY4Robkt6BYkKcwhs20bESgbZTAYTu3c/wt17MngqLFwcRQgtCyAEjWYTfhTRBc0MuMecBF7LKuTzYoMUc8RZq1kcx3B6tJjFcUzr/vU6NioVKgPqeaIOJrGUczqdRrFYpLV6AIZpItOnI+A4Dm7cvIlDhw6hUCz2dxM6LDzh3X+VdBWruW9H+lMkCaZpQpZluI7Tqj3Q6bCgkYDBsiS5bBbZTIaOcdV14ZETQqgmea1G0/2KIlTe1jc2Oh47jmOh5miaJk11qiqIJPVsZZIS318qnQaJY1SrVdy6ebPntQzw3UXkOIiZTHXIRIQKhQIlojLCnuj6yWQ2HQGyKUDG0+AOI8R1AgHLDloWKrUaqrUampbVMqiLjz4v5HIolUowdB3aDhwBALhz+zYc28YLL7zQ12bc3oEDQGQzd6pN0g7eFrgdTMOgfKQ4FoTuJKaye/C/vPY/47XxVwEAMWKEUghHclAmG1iOVrARV9BEEx48GKopMpQEQKVahcGGlvm+j6WVla4aBy5z7CRZRto0xT3frgWSgNrZdDot2hJv3byJettApW8zvvOZAUIIQsbsrTcaNCsgy2JGtWXbYmMwdJ325CaYtMnBHNlsFvV6Ha7nQdU0Ed3y9F3g+yJdJz4fNHLlG1oygiRxjCYjx+iMjNOeyu+EK1evQlVVHD9+fCc3ouU/k6m+HWsMtCHZZ9sLhq7DY6RFx3E61gqT4PefDw7h6U4tQcqK2HChJuur5m1/9WYTa+vrcGwbIyMjMHRdiMJYti3Ijfw75FyGIAx7DpIijNBlaBrAIpalhQVkczns3bu3/5s2wLcecRAgcl0Q1q4XhCGGSqUW7RHejZPLZjdFhDiRlx3H0HV4uo6AydXm83mxIQQs0xUEgVAaBKijoTDOTpFLCCfsiud58DwPkkTnGqgdJIbb0Wg2cfv2bRw7dgzZfrkunLiXQJjIDDwqhI3t0K3U6bXpVAphGMJzXRisdS+J2cYDfL56kR4TBDGJQcjmdxEhRIQQLlw6TTafpwEF+w4kSUIhn0e1WoXrupidn8fY6Chy2Szt5GBlRO6MpFlgw7sQeJmzZ4ZQos2P2WwWTctCGEW4+uWXePm11x6pXPNN4zvvDESOQ+eHsw4BP4owWipBliTaOsgcgRQb58nBpTeTG7OmqjBNkwqJ1Gqbm1Kid18CrfHprO/ecRy4nic2oySaLGWksNpY+8S9TlhZWcHCwgJee+21ntoDLehwrJgrD36FVB+w2a7X72vTponA9ymhSte3tPSILANpVVqTJAlR2/fBR4lm0mlUKhXk83mEYUg3allGvVajvcDLy7QdkZEEJdbayMfKAvS79X1/iyZ6J/A59Nz4O66L+3fuIJPJdB/wMsB3CnEcI2QZQMuyaElJllHM5+nYay4kxAKLZMuxIPslkE2nUWPlrrX1dRi6LrIESdVCTddpnzpj88dxTInHCYRhKAaBtUwfZA5GcqpqEl9cvox0JoOjzz3X/43oZDseR2aAraHtZgFwaJoGTdcRex5sx2nJoBIA//ja7yMiISISA0SCIev4YOp9/HD+LxDEfksdc9gsiTo+76zK53IIggCqomC9XIYfBFheWYHvuoITFIQhVEWBruvinsuMgMzbNfXtHCR2vZlUCpbjwLFt3Lh2DS+cOfOVg7KvG9/pMkHk+4hdF5Ik0Wl0vk/7b/P5VlGfTGaLI9BpMXHPz2NjKytsXCYAqLqOTDaLoaEhFHI5OopUUVp62pNwHAc+awPKts0UFy2ByaFHoLW6L774AuNjY9i9k1pTjxLBV/HugQRnoI/MAAAxFIgrjAkiEdmcfd4pNcm1CTrBNAx4jAyoqSpSqRQmxsYwOTkJU9cRBAEq1SrqjQYsNl2Mt1Dy8+bGPOLz2Dt8Tvs1cvER0zQRhiFuX78+kC1+ShBZFsBq8/V6HUEYolgogBCCGuOkqIpCI8ykI8De314Gi5jtaDQaaDabqNVqwp6YpolCPo+hYhG5TEY4mQC2rF2eTYwJHVyUaosoZUkS7bm8hAcA8wsLWF1bw4t9lgd64XHYDiFCtINzSTNlwjCKxKwWAuDT5U/x+epFxDEgERkSJPzXh/8afuuF/xH/6P3/F85OnBX34fjQMTxXpMQ9WZYp38h1Icsy1YPI5bB3agr5XA66pmGjVkOt0UC90RCBXbL9GkjYDtb90Y5OdoPrEMiyjI1yGTP37vVtQ58UvrOZgSiKENm2YNw2Gg2EhGBkaAi+54mMQDab3TLOs6VMAFrL8zxPENcMXReqghKYnn2XNA8nDiYf+iAI4LDOgQzrWOiGZOR9e3oalm3jzTff3NEi6vSQdZpF/sho6z/e7rWmaQrSjes4fbOs6du3ihIZbDMOmQ4ER47d2/X1dTRtG/VmE5l0WrRtWpZFZ83rumiRItzDZ73PHB1rp+y7MTQNEYvWbt24gdMvvjggFH6HEdk2YpZBarI2Y0VRkM/lKMmYpfBzXEQLCUcg8XzGcQzP9+G6rtg80pkMXNeFqmlUyCyb7bgGuTPRsuEysmIURZAVRfATOoFn0wC61q98+SV279qFsfFxoSz4yPfnUSXMu5xnt+CrHTKzHZy8KysKIhLi9679AZLF1WFzGH/t0F8DAOzO7sbffe3/igf1Oaw7azhROgFF3jxvM5Xa4sArioKJ8XGUNzZQbzRQq9eF3eBkZc/zoGkadMZf8kAzB2lChd1aMiod7C/PIqdTKTQtC3MPHqBQLGJ0bGwHd++bxXfSGSCEUM+efQmNZlNwBQxdh8XSf6lUCqZhbAqC8L9BnQmbZQ+SXiAntRULBdi2Dc/3YTMN7aTcqDgXPsiCLeqYefYEm+S1fhCEIe7evYsjhw/Tdhtgi2ZBx3uBzovtcbQVgp8DevMckvc3ZudkmCYc24breZSV229HRAdngGs/eL6/xbHipR3HdYVW+1CxCI+VKhDHcF0XrusK5cXA94WQSgwIxcZu1y9xcZE4xvrqKh7MzuLAwYN9Xc8A3y5EQYCQZRNJHKPOiIPFQkGU9SRWGpCZfHeLYh+h6nyO67Z0vQA0iMizoIETlmv1OjIJiXNxHqytMLk+HdcVczR6yQy3QJIwc/8+giDA6dOnhcOSVCHtdpxOQUTMzivpbHwl9NESzR0sQujUV0VREAYBfM/Dny/+Jzy0Hra859eO/ypMtTU425ffi335vVsInAbr9uh0XqlUCrZtw9A0BEEgdAg830cYRbQ9PAhAJAmu50HRNFH2FeeMrVkifnxJlqEy2+G4Lm5dv45cPv+t5Q98J8ObyHGAxJduN5sI4xjpTEY4AgbTC0+m4SFtig5VqlU4jkNr65IEwzCQz+dRYNLFsqIgk80K4RE/CFCr11tYpfxh4ExSzluI4xiqpiGzg/70u3fvIo5jHD16VIhZ8AWZ/ANsXaTdSh7AV2cEJ8GNi0j5k4SqWBsHwNA0yIoijOdO0H49hmGASBK8hIdPQHUEmpYFTdNQGhpC2jCoQlyjgXQqhUI+TwcqKQp1UggbXcwY4oQQsQC2637gs80BYHZ6GpXEEJQBvhuI4xihZYnny/M8KkwlSVBUFSETD8vzaF6SWpxyz/NQZWll/kwrioJ0Oo2hoSGRBVQUhY4TZmqmzWYTTUZq5SBtznrg+zSbSAgymUzfUXkYhrh9+zb279+/WSNnGyyfgcBtYDvxuROSU06/kjPQVhZNEoVbSobYdEq4HTVNE5Iso9zcwL+6/Ycth32ueATv736v68e227tUKrXFGYjiGM1mE0EQIJ/PI5fNIpVKYaNaFWTRfDYLndkdLqLm2DZqjYbIunaah9J6C+g9MAwDmqbB8zzcvHq1Jfj8NuE75wxEYYg48eWGYYiACf1wVqym6y0cAQAtToDneYhZm2Emm8VQsYhMJtMSdfK0YCqVouNBWR2p1miIUaV8A+GSnhYbzCFJEk3x9bmYfN/H3bt3cfDgwS3T0dqRdAi2sPwTn5fsFSZtvxMEPk5kTPwhHf4WQ0wSzk/yM1uMRuKemEyRzW3LvmyHpGw0sJkZ4Om+KIpgNZuC+WvoOoaHh1EaHobC+CN8CBMXiMmzBQ8wgpbjtLSN9crA8OvTVRWmYSCKY9y5eRNBEPR9TQM8ecSOI2yEBMrr4Qz/kH2XyfkkEgAwldBqrUa1KtjAm/bgIUkOBmibYCGXEyJXnuehVq+LZ0a0JkoS3Zy4IJlpbiuKk8S9e/cQBAGeS5IGk+uxLbPXHli0I0oQj7eUzbAZDLTYDnrhrfLEbRs/SR6j03kmwAcB/ccH/xFx2Go3fvPkb0CWum9bPDPCYRqGsBsEEIPpuFRyJpPB5MQETDbhdL1cFmWjlGkin8shnU5TSWX2/kazKco5vexG8jcp1p1QLpfx8OHDru95kvjOlQliPvSCpb8cltrjBB4uE8ofh5CJgfD2QoA+bKZhdBTDATbrPRyapqFQKMCyLPhBAMd1RU2JMDVDr42nsJP0/J07d0AAHH0UxaqkQ5CoZdJfUZWv9n7f9nGnnRZ98m/Ba+ijbJGErmlwVRUREyLaSXqMkywJI1LJjJBoM2Imf006lRJdF9lMhg6RaTRQqVahqqrgenBCj8/KB4QpR9quC5vxGrj8aDuSkYtpmnSEbL2Ohfl57D9w4PGkUwf4WhGFISJGDgMA8OfJ80QGL5vJQE+QBfnkvpANrOFRq65pHUcGk4SjQT+CTsbUNE2IXtWbTeiqSqW52eutR8wmhkGA27dv48DBg49tsBYvK3QanNSpdEDom/ibW2xJ8j7EXTog2o/P378WrOPc0nmYSMGBgxgE7+1+F8dL27db87ZOgK5Xl/HBPM8T3USaqgrCIgCMDA9jdW0NQRhifWMDYyMjguCtaxrtbpBlxEEAMLXIoNGArCgwdR3SNpkcWZY3+QMzMyiVSlsC1ieN71RmIAoC+mUAIvVl2Taatg2TEcRyTOQniiLUm01UWSZABtvU8/kW778dLd5uAnxWOecNxISgYVloWhYC3xetQCm2+PuF53mYnp7G4cOHtxAdt0WXc02KDT3ObWqnD4sk0amAErCFm9Hv+3mGQDdN1BPpWb5A2+91oVCgpQFJwtr6+pYShaIo0A0DmXQaKcYniaIIruPAsm0qINV+T5P3kRCkWSS4uLCA2ndIVORZBu864u3EPiOJcd35dDpNy1GgImXVWg0Wi/4kZsiHikVaeuzh6HdabzoLJjh/yA9D1Gs1KmP8iNlEgJUWo6g1K9Avujj1PDPQ6xof5bN2Soj+J3f+KUIppNlZpKDLGn7t2K/2fQyZlXhUTaNjn5kzxjflTFuHl6IoGGYaE4Hvo9xWBpTZgCc+oVJlWhRBEKDRbMLuJjiV+AyV85tsG/Nzc9+6zOJ3yxlwnJbUeBRFaLK2oHQmI3r5LdvGRrVKh3mAOQHFYmubUIfjt3v2nWDqOopsw5FAI45ypYI6q0Wmdrih3759G5Ik4cjhw62/6GPxdIvRvw6+QL9oX/QaG0QEFmntBDEj/9WbTTojgXUT5LJZqvTVxWCVSiWhara+sdHC85DZVDSuK89ZxAAdVsPTiFsUxxIRpaIoSLNFvby42JJ1GuDbhygIECeySZAk1Fm5jytgpkwTQRiiVquhwVPAkoRUOi2cgF5rMtl22AmKLCObyaCQzwsBLG6nHNelDuwONmDf93Hn7l0cPHTokQhp3drcOnY5PAb0pYbI/v587SIur12GBQuyJMOEib926K9hLN0/Ez8IQzhs3gxYzd9krYXdyjC6rqPEHALXcTbHxQNiNDsXi0ql08hlMlAVBQQ0S9NkTkHLvW0L2Ew2NG5laQnlcvlbxR/4zjgDke9T0iAhosd2Y31dKMqNlEqImHwsHyii6TryhYIQDUnWyrakxvtwBDh4xFtgrP+Y9SsTQlBhHn8/X7LjOLh/7x6OHj26ozrhduCpsMfR/tZyPx4hHS4lCEF+n9kBPta0Xq9TFTYwz1xVke2DXCVJEoZLJaoDEUVY39ho7Z1mddqY1Q25t8+dAsLaErcsbAYCajgMw8DK8rLoKR/g2wkeRPBSVxRFqFarCKNI1IQt26Y1fRalp9Jp4fTzjaAb2suKvaCyFsYMU9zjs1Es26YqiEHQVynuzp07iAEc6VRa3EEprx1JzsCTQEhC/ONrvw8ACBAgkiIU9CL+yu7/w7bvjeMYnuehXq9vCklJtLMinUr1NZE2ZZooFgpQZBn1RoMqyKL1fvDZEbz0yJ0CsE6lBiMnAtjals32jjAIsL66ikajsaP783XiO+MMxIwEkmQCNy0LISEoFYt0XkCthjiKhBxxPpfbooAHbF24O3EEkggZ+SiTTqM0NCRq3I7rosa0x8Mei/vW7dtQVBWH27MC6O659/Oax9ZW2AGPUnbghCBOwOmEloWcWEyqqiKTTkNhA0z6haIoGBkZoWm/IBBpP35PwrZebCnhFOhM+jW5sDs5j6auI2Yp32/Toh5gE1EYgiSzPISgVq0iCALIioJisYgqi85BCAxdR5FlAlrGafOSVZvTRwgBHsER9MIQpmkil8sJPYGAzUio1uu0VbbLcT3Pw/S9ezhy6FDXKZy90M2yJO3J484qdmoZ7oT/MPsfsZBoJbRg4RcP/jykSOp6P8IwhG3bQjiI8xMMwxCyzDspU2SzWWSzWSiShI1KhU4/ZZ0ZkCT4bel97hRkMxkxY4FrJXTiSiiKgnQqhUq5DJtnL74F+E4QCOMgoFEcQFM1UQTbsuD5PvXKJYm2igEi7ddtI+S95Vt+vsNzIoTAtm2AEJipFHK5HEAIfKZvzaf3+b4vSChCnleSYDsOZmZmcPLEib4GkHQ4ga0/Ao1qk58bhaEYIcz/rrD0V6VSQRTHUNi44JbxwYrScfOV2MO+U5imidCyqHSzYYihUEEQwA8CIXRCP4TeL8MwRBZAlbobg27QVBXDpRLWy2W4joNKtYosG0DUeZwMy/owUiKfRmnbNjRNa51pzoyDaRhYWVpCLp+nBuRbLjn6rCFmE+h4VsBhRjqKIui6DofNDuHTLXtl6ESbcrw5jVT8fAfw2KwCACjk86JDhYvd8EFbjuNAVZRNCWP2bN25fRsSgCNHjjzCHUFX28FHrxNCYLNxvFEUIWbjxhvMbmyw0psiy5BVtcV+yPzvDh+73X2qe3X8i9v/quVn+wv7cXbXG1TAzHXp8CFCxKj4MAw76sRoTEek2WhQm7XDbEmxUKBOhutSQuHoKGRJgh9F0LscS2WZS9fz4LiuuJ9p09wye4K3GlY3NpBKpVDsdyDd14jvhDMQsQUNAGC1Njch+qEydi+f9b0deMqQt8o9SrRru67QMxfqhKyVTdd1OnSDM9dZvdxj8sSapuHmjRvQVBUHe4nXEDpYh4vmeK4L1/PEf3P5TI/dC74oOj2qyWsMowgxIbh06VJrCqtThoQtdMMwqIgTe7BN06TMasOAaRhUYMk0u9YadU2jSl5hiHq9Tnv/2wg3CtMF15h6W8tpsL7nnX5fpmnS6K9SQaPZBIC+nApVVZHLZOC4LlxmvIMwRIqplAH0Pmu6DrfRQLVS+dYs6gEo4iAACUNBhuODaGw2zjbFptqZmoYUm1q6HTijnrck7tR2xITAYoJpyemcCiO2pZl6p8+GooVRhJA5BgpbM9PT03ju2LHuto6dn882JY/ZCG47bNum3U/sv3ldvb0TIKkbkjz/y5cvby2bdLAdkqpCZfocpmnC1HVobfbCNAwYrEPjX9z5l2gGzZbD/ubzv4FUKoV6vS7a+ZIy4/RypU21wLbASmIdAY8iBTxcKiFaW4Pn+1hfX0c6kxHTLLuBl5B1VYXFgwnXhRoESCWzTYQgZZpYWV5GnrW274R4/nXgW+8MRL5PFzTzyrkTUGMKXwaTCk6xunQ/4IM+CLBlYlc/4DK7AFp6jJNQVZWmuFlt0GcRMB+L+mB+HocOH0aj2aSjO9kitSwLDaaVbVlWi8NCALEx65oGkzGcTdOEpuvUQ1cUOI4j5ExVPhRFUejfsox6vY6ffvghzp49i3Qmg5gtMB4J8Hp6FEXifsdMxtd1XVRqNfjMuAAQLYcSNmvp+VwOWVaPTafTMEyTKrfZNmJCkGHtlzzy0VS1pzHm91h+hMxENpMRY49r9TpM5rRsN4VMkmWk02momkYlZwmhY2oZGYmfUyqVwsrSEgrFIrLbyE8P8M0hZql/sPS+bdtwHQeO5yEGkMlkaCmxLWrrBZ6JfBRHAKBTVGNCFUs7qpOy9LbBOl1834fPlPCiKMLdu3cBWcbI6CiqtRpdU44Dm3U2Ner1lq6b5HnzlmpN12Eyx9VgLbXcOQ/CELquU119ZjMURYGsKGg2m/jpT3+Ks2fPIpPNUnvBbUXCZkTMjli8TAqaDak3m3DW1uAxNVB+vRIhqMo1/Kn078X5ypDx+tDrmJQmhPPCJz+aLLOoqio0TevaEgy0lUoT5PN+IEkSRoaHsbKyAjcIEDUaSKVSfQUTnN/Ena6QUKnpdCpF7YMk0b9dF5VyGalUCqVSqe9z+zrwrbdaxPMECSOKIjSbTThMZRCShOGhIaESuFNIAMBTSHHcl0EghAiBEJ6K6vk+SYKqaVA1DcSyUK3VRJpvdWUFszMzCBIpcs5SHR0bw5RpIp1K0dkIzLtWWIQcxXFHYxRFEer1OiBJKBYKHRcJZ/WnmEpfL3DJZpM5XAA2lcRYatP1PJqlYDoAjUYD9WaTTgVj8qqcOGOkUlTuuVjEyPAwMqnUlqltnW8jbeeUgK3a4NuBEORyORElNZpNSv7s8xh8yhzP7nAiJFe45ETFeq2GVCqFoaGh/s9tgK8FcRgiTowbt9mG6bouVEWBKssYGR7eIlLTDwgg+EH0B/09Rz6T2AUhSKVS2z5/vO6tqCrqQYDy2hoWFhaQMk1cuHCBElzZxsRT1NlcDkOlkrAZ3G6I0lyXdmQAYtPlpdZ28I1dlEV7gBAi2PjcDhFQ+yRJkhhX7LguHNvG//PO/xumZUKFCg0aFKJg/+o+/HjtJ6ImbxgGzFQKo6OjKHKl2H4DQEbU3E5ptOU9oAFBsVjE2tqa4DspfeoD8O9PVVXYjANiWVaLiFHKNLG+tobSyIiY9Pqk8K12BuI4plkBACCEEn0sCwqT/DRTqW1bfjqCp43Y+yRJAmEtZ9uB8wE449hNljASiKIIlUoF5Y0NbKyvY71c3iSiEQKNtShOTkwgk8nQ6N4wRJ2ejyrl58ujdJnV8rnqoSxJLQsiWcd8HGI44o4QIli0URzTUgOLAiRJgplK0WiDtfGI+8DKHI7r0qxHvY7KxgZV4WLnWsjnURoexghTEWzvAebXw/uVZWwvH8zBZU8lScJQsYjV1VVRC0yOSd0OkizTdkVFgcVIP03LEpPJ0qaJ2sYG8oUCsh30Dwb4ZkFYSQ6SRBUEKxXamspKUQZrDd6J7UiuBbR3Jm3zPBJWHiCAyJKFCWclCdtxUF5fR7lcxsbGBmq1msgQcic0VyjQlkjmXCej44jNS6GXJyEIQ0RxLEoSXEynfby5mMD6GHgvybsRs2ArJgQhyx5w26GqKuaDBSxZS8hgc5P9uanv47+Y/D61G7YNu9lErV5HuVzG7MwMJACKpmG4VMLw8DCGh4cxNDS0Zd21DJqSWpVNtzt/bscM00Q2l0NQq6HRbPZN2hQdLMyZ4TNubMeBwTIcfHiaw4KoJzki/VvtDBDfF4u1UqnAajQASUI2m6XEszDc0US8zQNvfRi459prUYdRJEiDnMjC3gzXdbGxsYEy2/irtZpoPymVSjh06BBKpRIqlQquX7+O733wwRbvmwvg8Al9fhjSCWRkU8sbjODT8kBLmzrkYRjC9TzqjXLyVIL0JgGCvOSzaY38ugkSanvs83hmwPd96MwzTnr4SSiSJFQdFUWBytKL7dfYqNfhsZSfbVkob2xgvVzGzMwMwEh5YpGPjKBYLG7Wadn19ENk5BkMfp5CSdJx0LQsDCV0J7YDL9PomgZkMoIpzB0ChXn/hBDU6/UnuqgHgBAnC8MQa2triJitUBQFASMP7hi8rt7BUd3OdlisvCRLklDClEBLlpVGg2785TLK5bLQrchksxgeHsaB/fuRLxbx2aefolQq4dVXX91y/IiV8SJWkgyjSLQ7R2GICECArfVuSZZF627TtoE4piUD5kAnHSZeeuB2g14yabUfAMCChaZliUFu/Bhxm+2K4gj/7v7/DyFCRIgQIkTWyOKXTv4i0lqrffQ9D5bjiMxctVpFuVzG3bt3cePGDUiShEKhgJGREZSY/WhvJe/XGeAzazjy+Tzlqnke6o0GioXCtsdgH0jvL4BMKgXH8xAwNcQ4jpFi/IkaIxLyzMyTwLfbGWALulqtolGrgQAoDQ0JA66wyHhnB+2eJuMp/24qhBYvDzC1w7m5OTxcXESVtZ8ANM0/Uiph7759KJVKKOTz4hwJgCtffoldu3Z1TMNJrI6kqipiQmCyhdtejwvZRsq7B7iITgTA44xgoGWwTxLc2Liuu20EG3P9bfZQ82yEmmQSMxYxb73qFbVLkgTdMBCxtN3I8DD27t0LgDopGxsb2NjYwPr6Oq7fuEG7SJhxkmUZlUpFOAcdhaOS593h2cgyPYHYcVCp1fpONfKoImYRVpYNxSKsFshJQ/V6XXS3PKlF/awjZu28URRhjWWCNE3DyMgINjY26BpmddvHhZbnsa3kyFPiYFyZer2O2ZkZrK+vo95oIGYqh0PFIvbs2UPnbDDhLI6l5WU0LQuvdHAEAOp8K4oC6Dp0Vo8nhIgIXDgLSQIeyz7yKDhgZGeVdW+1g9u4fuwGLyOym0NtoCxDYfeK8xH+bO7PcN2+0fLe//7Yb2xxBABmd9l46Ewmg7HEOOBms4n19XVsbGxgeXkZ09PTlH+h6yCgMxwyp07BMIyegYRwVtqeDZmVC6xmEz5rOe43s5gMxviMApd1G8RRRCWT2b2t1+sYHR3t67iPG99aZyCOIhA2kKbJergLxSJyuRwa9TodV6vrj7agt6k5tyxs9jrH89BoNFBeX0etWsX6+jqdlJhOY3RsDJMTExgeHt7sLOiA1dVV1Ot1vHjmTB+nuHldvHWHL8AkX4BH8GJwEuNTmIzIl/Ta+fUozJlSVZVGum2EKDHMhBEOwzBEipdkkp/b6R72Uc/XdR0OIxGJkaCgkfv4+DjGx8fFZ1SrVVy7do1Gd1GEv/jxj5EyTUzu2oVdExMYHhlpTXUmDFA3FHI5uGxiXa3RwFC/Xj42WytlpijHZUh5LdCxLBQKBTQajYEz8IRAmJGtbGzAZ2OvR9l42iAIEMXxI2UGtiMbiyhUUYT2ACEEjWYTGxsbtGy4vg7LtiFJEvKFAp577jlaAy8WofZwSqfv3cPQ0BCG+yCZ8SyWJNFpjDw3184XEBNHWenPY84Al9tun8jX0W4krptnIfl/xzGd25LkLiXT7w2/gX9+51+2nPuhwiF8b8/3Ol+XJEEzDEQsW5nUkOHaAPv37wdAsxgLCwu4du0aSBxjbm4O8/PzGBkexuSuXRgfH0cmEZARVgbtVVo1dB2ZbBYWK1kYLADoBxIgWtoNXYcsy7Btmwqc2TYdc8yCNMdxxFC1bxLfWmeA+D5cx6Ga0lGEbC4nyG5BGG46Azs6KEuB9/FSXqOuNxqYX1jA3NwcavU6ZFnG+OgoTp0+jdLwMK1DahpyfZBKpu/dQ6FY7CuF3C2V1S57KklSS2+7z6KDVEJmtx1cNINrdPdCyFoW21sGd0ziS0CWZRiaBpcR8roRQOM4xu3bt1Eul5HJZFBiWYSlxUUsLS1h5t49yIoinLHxiYm+avWKqiKfzcJxXTSbTZGq6xfJ+mM6laL68mxR8+mWXOvhSRKCnlWEjCTquC5UVUWpVKKELZYtACE743QkyoH9PPMSqMO+srKCBw8eYHF5GSFrLdu1axcmJyeh6TriOEa+j+6TeqOBleVlvPLKK/2db7fzbPuZLMtUD0BRIEURDF2HJMtdbUK4A7sRsRJpS5kSra2H/+L2v0TDbxXr+s0Tv95zKqHBOntCpp/STdejXq/jxo0bVN8kDPHOO++g0WhgcXER165exZUvv0Q2m8XExATGJycxxLKN2yGTTiPwfciShEqlgtHh4f5IjJIEhXG/AJqZymYyol3S8314to1UKgXLsgbOQBJuswnbthF4Hh0jnM+LL8tnzkC/XhmAHW1ctVoNc7OzWFxagmVZkGQZ+WIRp/btw4F9+2CwjYMz0/s5dqPZxNLiIl56+eWvROzb7pO+TvXBJKS2qEH8vM/364ZBFwAbFNN+TzzPw/nz59FoNPDGG2/g6tWr0DUNo6OjGB0dxenTp1Gr1TC/sICHDx9ibn4esiRhdHQUu3fvxp6pqY7qkxx88/eDAJVqFeNjY333mcuKItKMXKQoZKUcy3HgWBYyuRwcxxk4A98wIs+DxTuOJAnZXE5k6/wgQAya3XkUgud2ay+KIiwuLGDh4UOsrK4iCkOkMhnsmpzEvn37MDY2Jp7zKpOw7qdJ9t69ezBME7v37OnzRHfupIvnecfv3AYdbJ0EYK4xj38/8x9afv7Orrdxcvj5noeTFUUEEr7vd9w05+fncfHiRYyOjmL//v349NNPKf9iZAT7DxxAGARYWVnB/MICpu/fx41bt2i2cXIS+/buxVCp1NFG85/kcjmqMxMEaFgWCtt0VgiwIIIHeoqiIJ1Oo9lswmcl0uLwMHzf7+nofF34VjoDbrMJx7LgeR50w6CTABOGnXuofZMH2xdHh8UShSEWFhYwMzuLjXIZhmFg1+7dmBgfh8oMR7590FGCFLMd7t+/D13XMdXngu7mMHTbhDkEI/jrdgYkqWM7JunT0VFVlbZbMjJSMjJvNBo4d+4c4jjGO++8g2KxiMuXL9PXs+uLCUE2n8fxEydw7PhxWM0mlpaWsLi0hMuXL+PKlSuY2rsXB/bv39Lqx88wn8+jWqshCAJUajUM99kSKEsSokT0xQdUWbaNKI6xtLiIQ0ePwnXdFid2gK8fjUoFISPQZZjGBX9GeU1cf5SsQK/PrNcxMzODB3NzCHwfw8PDOHniBArFolDzLBQKLWQ7kTbf5vh+GGJ2dhZHjh7tf3hQl8xAkkzbjm9yuJkkSfjH1/8AEdnkJWiKhl87/t/29X7dMASJsV3n5datW7h58yb279+PF198EQ8fPhQcEU68lmQZE7t2YWJyElEUYX19HUuLi1hcWsL9mRkU8nkcPHAAU3v3dnQaVUVBIZ+nXLZGo0WIrBd46Ya3SPNjmYYhxLA2ymWUhofhOI6QUv6m8K1zBsIwRHNjQ0wN0w0D6cRGwdtSsNNF3QX1Wg0zMzOYYwt5fGICb7zxBiYmJiDJMprNJlzPg6ZpLQ+GhM0Rwdst6IAt6AMHDvTt7XUtE2zzHu7h75hY2e2Y/B+djvcVP8NgSo1+EAhnYH19HefPn0c6ncabb74pPP8wCITud7vDIQFIp9M4eOgQDh46BNdxMDs7i9nZWczMzGCoWMSBAwcwNTXVkpKVWT1zvVymMrVd+qu3gLT2LPO+8zRL8Tm2jaXFRezavRu+7w+4A98Q6pUKAtuG7/tCiEsEEYSqeSKOH0sQEUcRHj58iBlGBNQNA/v378f+/fuRzWYRxTFqlQpi1nkEbLaa8U1BEIB74MHMDOI4xsEDB/o7566X0nuM8KNKK/c4ID1eh199vnoRF1YutPzslw7+IibS430FViprLY8Zz8FkAk2XLl3C3NwcTp48iaNsgBOXK06qRgq7JdH2ypHRUYyw0u/q6iruz8zgiy+/xNVr1zC1Zw/2HzyIoWJRvI8AyGUyomV6o1rF2MjItgEY/+6TwmmEEOisZOQHAZYePkQunx84A4QQVNbWQBixzDRN6LoORdMEIScMQ3FD+06jtLFDoyiiWYCZGZRZFuDAwYM4cOBAy2YQhqEQCelU1xYM+uTxOzzMD9js6oOHDvV9L7otyn68e/6QPxZsR7Rs+/1OFB01JubDdcaXlpZw6dIljI2N4bXXXoPKvHmACiUpqto588Cul09rNFMpHDt+HMeeew7LKyuYuX8fly5fxpWrV7F3agoTExPCyTBNE7lsVgyI6SRp2unzQIiYr5BM+6XSaTiOg/LqKopDQ1R9ceAMfO1wXRduvU6/F8asb0khS7TtNga+kgZEo9HALMsC+J6H0dFRvPraa9i1a1fLmnMcR3QetX+eJEmtnVBdIvmYEEzfv4+pqalHGlOcxHYBC187j3t08ZbPIRH+8fXfb5EVHzKG8MtH/3pfLX8chq4jjCL4vg9FlvHJJ59gY2MDr776Kvaw7CuXgVe72Q1scsPYf2BsfBxj4+NwXRcPeEDx4AGKhQL279uH4tCQ2HeGikWEq6sIoqhvIrIgfrPP5ddssPkUYRhiYX4e+/bvR8hGtn9T+FY5A7ZtA4l5AwA2SXBt/aJ9b3aJjdoPAty5cwd3p6fhex7Gxsfx2uuvY3JysuPxHMdBDAhRj3Z0Isa0PHQsLXhvehq79+zZkVJix7a5b9q7T55Hlxrao1EI+SHpLIcojnH9xg3M3L+Pffv24YUXX6SpeNY1wR1AdRsjvuV8ZBkTk5OYmJyEY9uYnZ3FgwcPcH92FoVcDkePHMGeqSnkmTphwGqAO+kuAFqjO01VEbOSwcryMtLpNApdlCAHeDwghKBRrdISWqI9V1XVllZivj76sh1tG9NauYwb169jdWUFmmFg39692H/gQMfoLYwi+ExzotuaTxLrJGy1GwCwvLKCZrOJV/slDvbCNuRHYTsetzPQ9tz/x9k/x1xzHki4A//t8V9BSk3TYKZPh4C3GTZtG599+ilc18Vbb7+N4eHhFi2FIAh6b6ic2Nf2uaZp4rljx/Dc0aNYWV3FzMwMvrxyBYqiYHJyEs8//zxM00ShUEC5UoFlWXSUcZ+bt9z2mZyM3LQsVMtljI6NwXGcbZUeHye+Nc5AHMdo1mqQEyQLXddFO4tY0H20jgmw9wRhiOnpady9exdRHGPfvn040GUhc4RBgMD3AUK6Mju5IEfL0Izkx0sSVldWUKvXcaaPdsKWY3eq+W3znq9lFnmPdF/Hl+/w8Kqq4uaNG1h4+BDHjx3Dc8eOidIL/0wuktSLENieHWhHKp3G8RMncPzYMcw+eICZmRl8duEC7t2/T+u7+TzKGxt9Leqk09Fpk9c1Db6qosaMRDsnYoDHC8uyqEAZIOyCWLOJ74e3w+7EMduoVHD9xg2srqwgl8/jlVdfxa7du3uuMZcFEXqXIAIAwBRP407ri5UQpqenURwa2rFmfaeMXXsXUjvix2w7koJsHI2ggf/PrX/e8rpDhUP4uanv05duw4dKQpIkWLaNzy9cgCTLeOedd5DL5baUXfqKriWp+2fLMsZZp5JlWbh79y7m5+bw8OFDHDp0CEePHoWp63DYvJx+Wj8F2rOqEhVc88MQq6uryOVyz6Yz0Gw2ASbPyT27ltY4Vush2D5CBgAQKn15/9493L5zByFL0x89ehSarm+bkrJZmo/PA+gE7kVzI9Nep5cALMzPo5DPb2kn3PYaHiGS3FHk0+8x+el0+J20TbTR9ZjsPb7vi/Te888/jz27d3f8HD7v+7GkzFiNsDg0hGaziTu3b+PDn/0MY2Nj2LVrFzTD2HZRC64A31zaREy4Jrlbq6FWq2FoaGjgDHxNiOMYzXodKssAxqxtsNOz0nf0S6iu/s0bN7C4tIRcNovXWQZxu5p2S2mxx3feInDWAa7rYm11dUsQ8SjZPyGi1uM9j5t43Mlu/Mvbf4h6UKc/Zx71bz7/G5BlpeU9XY+ZuFeLDx/iwuefI5PN4sSJE8h0CeyCINi+LLRNIMFhGAYOHjiAvVNTWFpawr3paczMzODA/v3IFQqwHQe5bdqJk44aAVrKJQAtYRm6DqteR71ex8jIyDcmbf6tcAaiKIJVr0MjhOrOA61ZAWAzzcUUs3oR5OIowszsLG7dugXP87B/3z48d/y4WJztKaF2BIl5471EhESar503wBCGIeYXFnD06NEtizcpwsHTm0mWcVc2cI/zjh8zeZCfHzvhjr/fVt6z7cHn/23bNs6dOwfP8/DGG2/AYB6x2cFJ4oOc+l3U200V4+c7PjaG3ZOTWFxexo3r1/HlF1+gWCphYtcu5HrMthfkQfankxqirmkwDAP1Wg0bGxst0qgDPD7wIEIGEPIgIrlm+brskr1rR6Nex42bN7GwsIB0Oo1XXnkFe/bsgSxtLzkMAA5TKTXZgKFu4OTjbsebn58HZHlLO2H7M9TenSB+1obtyouPm3jcfl0LzYf40/t/mjgfGW9OnsXpkVNdz4m9sKW2DtBWyytXrmD37t147tgxRFGEoAtRt++6u9TH3AKWPdA0DSdOnMChQ4dw584d3Lt/H7KiYILpnEwklBHbwZ0uXgKVO3ymaZqoVCqw2QTbb2qa4bfCGajX65CYqhuPAjsuaEkSfbmdHm4CYP7BA1y7cQOOZWHvvn04duwYsn1OmeKwXVdkBbZrtZHZOXV6iJaWlhCFIaamprq+n5ca+N/i59JWFcS+vfuvoT2o26eKlDlJaJSzTbLbsqpWKjh//jwUVcV7772HbCaDWqMBwoRE2hdvX2UCfj4JxnY3iJ5qWQYkCbsmJ7FrYgILDx/i2vXruHX9OlaWl/HymTMdxVV4dipOfC+dDEkmk0G5XIY1NIRGo4H8NhMiB9gZoiiC1WjQrIAsA3G8NSuQ3CQT2hDtcF0X169dw8yDB0iZJs6cOYO9+/ZB2cHmGLAx5aRHaVGcFj+nLpvP3Pw8dk1MbPvMt9sNHmmK8kMf5/91EI/by2i/f/0PQCckUOiyjv/u+N/ezHRgUyGx5Y4k7w8huHL1Ku7du4cjR47g+eefh+/7sFgHSSdnIPD9viPr7exGzDZwnlkyDAOnTp3CkSNHcPPmTczPz2NpeRmHDh3Cc0ePdnSsOBcKbc5OEqpEZZQ3ymWkM5lnxxmIogiOZUGPY0jswdeZ9r9A+03tED3ato3Lly5hZWUFk7t34+233uquHd0jve35PsIgoL3jfaR2hfRmh+PNLSxgiE3hexQk0/DcCeLlhWQaTvTefx2ZAZaJQftn0pMR8qL8E7s5RhxLS0u4cOECisUi3njjDRF965pGlbg6EH5c5pwZfabaew4xShiblmdIkrBnzx6MjY/j5s2bmFtYwA9/+EM8//zzOHjoUKszlOggaPnMNj13RZah6To21tcxVCoNnIHHjGazCSmKoCY7Sbo9I5LU0ZEmAObn5vDll18CkoQXXngB+/fv7ygNvN2qspmcrJlKbeuQ8w2lU2q63migUqngOdYetxOI4CJxraKlDmi1e9x29XCSHhXcYSaE4OLqJZxb/gTAZsDwXx/5rzCemRDZzu3sRhRFuHDhApaXl/Hiiy/iAGu11DSNkozZ/IX2kq7juhgZGenrnCVZhtRhbbdcE7beJ5M5j5OTk7g7PY2bN29idXkZL7300paaf4zWYVGdeGeQJGRSKaxubKDYbMKyrEfeQ3aCJ+4MeJ4HmUlXcgJcz/oqe3iSafbZ2VlcvXIFqqri7Ftv9UzTAD08QEJES1C6zwE2sqIAbLogEpuY63lYXlzE6Rdf3PYYXZHwHqW2rEDycUxqgbdEqUliTMIYkLY/Lb9rO7ZgY/M/2Hrv+jUh09PTuHr1Knbv3o1XXnml5f5qTFUsDAKQNiERx7ZhGkbfGY9eo0qTP+vkNOmahn379qFYLGJhcRFffPklHj58iJdfflksSCJJW52NDuloSBIdbdxoUB3yHZLXBugNz/Mgs6wAaecKdMqiJco6AHUyL1++jMXFRezduxenTp+G8Yj1WZ89u+gziBCjdTs4A3Nzc9BUFeMTE490Lp0g7kQnh4jfF3Yf6csS6ycZlHC7Qd/Y8jvC7RQgHGOCGP/42u9T2WN2FkVjCL989Jdbgp1eq0KokdbrOHv2rJhdws9T03XEngc/CJBqdwZsuz/tEIZ2ln8ShGcGuqzh0dFRxIRgeGQEs7Oz+NFf/AVOHD+Ow0eObA6r6/B9d7JViqpCU1U0G41nyxlIbs5cUKIr+CYnSS3ZgH379uHU6dN9pZK7wfV9RGEIWZb7Jnwp7FzaMwMLDx+CSBL27N79yOfTTjbZDnxjb5lTLkmtC41HDckHukc9tWMUnTzc1pPodGL48soV3L9/H0ePHsXJkye3vERlExDDOEYQhi2CUvYjDO7otqiF+lePTTmXzcK2beyZmsLuyUncuHFDZAkOHDrUcaIb0CE7ENN57XyQ0UCA6PEhDEOEvg8DdOMhQOu97bLp8QFccywbIMsyzp49i8l+N95OWUVCBOE41W8QwV4Tk1byMQHlC+zZs+ex9Pz344DyzAG3ZRztmTMgsd6TpUv+kg7r7cPFn2G2Mdvys189/itIq+lNHhG627cWNdJ330WxWNzyGl3T4LMSTdIR84MAARuy1je2CSQIumdeFUVBNptFTAieP3UK6ysruHrtGpaWlvDSSy8hk812z36wMlfyPHRNg21ZsCyr//P/CniizgAhZNO7Zx6nsY2sY0zfiOXlZXz66afQVBVvvvXWpre4DcGnF3g6Om1u1crvBok5Lu0bxNzcHMbHxx+fNv0215Xs0f06Wgt7djf0KLtEUYTPPvsMKysrOPPii9jfQ0mNlwqCIGh1BixrRxoN/Jy6tVhtyX60gS/qeqMB6Dq+98EHuHHzJi5/8QUezM21ZAlaPpKQlgFOhB1LVRSxqAfOwOOB7/uQWKRGQO+91taG3OmZDYIAFz//HMsrK9g7NYUXXniBrtGvYDeCIEDEOqG6DQdrhyzLNC1N6NRRnvUql8toNpt46aWXHvl8pLZ/b3dlX5fGgBM6+Hf3/qjlZwfyB/GX9v4XW17baT2ur63h/CefIJPJ4M2zZ2F2sQGaqkKWJIRR1EIYFFneHWQGgN6BBD3Z7tYjm83SVtc4xoFDhzC1dy8ufv45/vMPf4jjx4/jyOHDHd/PifNJGLqOSq0G27bFCPevE1/v0bdBEASIgwAyIeJGCLJHIi2dRK1axeeXLuHu3buYnJjAz/3czz0WRyC5oHeygSss8k5mBppMY7oXcbAftDCEt7m2ZErvcaWik557L3RjMruuiw8//BDr6+s4e/ZsT0cAYPU/SYLv+y33095hqo+jkwdP2khA3ZDNZqn8MSFwPA8vvPAC3nzrLdi2jR/+8IeYnZ3t+L4tkZUkQWMevs3GSw/w1eF5HmRsPqN6cpx5F37AzVu38OWXX2KjXMYbr7+OV199dcfOeqeV5XoeAJqZ2InBVhLZAY75uTmkUqm+69zboZ/1+3UMNyOE4M/nfoBG0DqV8L9//jdbphJ2ywzMzc3ho48/xvDwMN59992ujgAAscYkSRITWQFaIpBANUZ2hPZsKj/HbTIDYL/L53KQQPeBfD6PD773Pezfvx9Xr13DTz/8UHBLOn1u4sOociIoN8bnOhpfI56oM8CzAjxSUxRl00h3WNCWZeHK1atiNsHDhQV89LOf4fr16yiXy33pWgOdF7THFzSbNd0v5A6Zgfn5eSiKgl2Tk30fpxc6kVbaWbed+o9bfp/4m2cR+nWd2utkW8hzbecF0PTeT3/6U7iui3fffbelztcNiqJAZRFTkFjUtuPsfEF3gcgMbOMwtS9q3/cxOjKCn/v+9zE1NYVLly/j+rVrne9F26LWNQ2O4wgPf4CvhmRGkTPQxTjzTkEEIZi+exe1ahUE1PG/fOkSPv30U8zMznY3zp3Q9tzwtjZCSN9ZAXEoWaaBBLMdESGYX1jA1N69OzpOL/RdXsTWEkCnNH7yee917CVrGR8+/LDlVW9OvokXEq2E3ervN2/exMWLF7Fv3z6cPXu2r9ZAXVWF3eDnaDsOJGDH3wvQOVgQ3IptbIcYrEcIGs0mJEnCqVOn8N6778K2bfz0Jz9BrVrd8j65zW7IsgxVltFknKOvG0+0TBCwrACvdRvJBQ20LLxqpYKPz52DLEk4ffo0dF2HLElYXlnB7MwMbt68CdMwMDY+jnH2p+dDkCAYRXEM3/MeaUHLbd49AfDgwQPs3r37K4+gFMsosQDj5AOZ2NAjVjdt71vt5BAkU4e9FrQYptH+WsaR4G18aHMU1tbW8Ekf6b1O0HQdAe8b1nV4bJznjssE7LzadQc4Z6Cf7EkqnUaDeeWWbSOfy0FRVZw5cwbZXA7Xrl6F7Th46aWXWr7r5BAjEbUQgka9jiAIBqWCr4goimhGMYogKwpktLWdthnVK1euYHp6Grt278bIyAhMJiy1vLyMi59/DlmSUCgWMT4+jomJCZRKpe7RX5uj4XmemEGw0/XenhlYWV6G53nY+xUzii1gfABB+OuAiHUMtZTVOtiQdrGc5O/a8a/u/CEiEm5ywSQNv378b7coQG7hJ8UxLl66hPn5+ZZhQ/2Ac46CKBKcI8e2qe15hEyphK0lFtF1sU2wKEsScrkcyhsbaDabyGYykGUZpVIJH3zwAT4+dw4//fBDvP7GGxhvI7vz74B/H5qmwbVt2Lb9tbcYPnHOAHhLiCy3as8nvsDlpSV8+tlnKOTzOPPSS6gwr2pqzx5M7d2LOI5RqVSwuLSE1eVlLCwsAACGhobEAh8aGhIPX/sG5jGugNYudNQHZNarzvvOq9UqGs0mXnjhhZ3fEGCrXCpJsP47nPvmyx4/X6BXaSLZzZHsuZ+dncUXX3yB0dFRvP766y09vgToOPY4CV3X4TgOgihCFMd0Lj0eIdXHz5NeyGYbFXOa+iFnSZKEdDoN3/dhO45Y1BKAw4cPI2Wa+PziRbiuizfeeENcKzeW/Co5obP5DRGBnnYQQiARgjAMYSgKtRsdeCu8HW3x4UO8+OKLyLCBVOlMBpO7duHYsWPwPA8rKytYWlrC7MwM7ty5A03TREDRHlS0kHrjmDoDhDySwiR/LnhmYH5hAfliccctqMnNut12xOhM7Gt5/2MuE3yxdhmX1y7DhMmbCfGLB38Bk9nWTGnSofBcF+c/+QTljQ28+sormJqaot0JiWvpeRWSBJ2RdTnn6FHLi/x4yRblZOa3n9btVCpFO+TiGJZtizZ3wzTx7jvv4NNPP8W5jz/GSy+9hH379rV8Lu+YA2i21LYsob/zdeLJdhOwKU2SRIeLyMkSAcPM/fv44osvMLlrF1555RXEcYxqtSpU6ejLJZRKJeo5nTgBx3WxsrqK5eVlTE9P49atW9B1HRMTExhnU6nERDyWcnyUrAD/bB59xlGEufl5mIaB0dHRru/hG2in6LR9+BF/7Xb4WnqFO5QeOoFnCK7duIFbN25g/4EDePHFF7uycnkbE7DVQZAkCaqmIWazIXgKd6fdBImTo98POw8+ZXA7w8fLKalUCvV6nWog+D5lK7MFu3vPHpimifOffIKf/OQneOvtt5FOpaiyWMKQ8M/yHEe0zw7wFUGo3LgBtNb92XPkex7OnT+Paq2GN86exa7JSayXy4Akbfb2sxLO1NQUpvbsQUwIKtUqlpeXsbq8jIs8qCgWMT4xgYmJCRSHhsRHeUGAiLVFP8o49WRWMQhDLC4s4NiJE70vG/3ZDv7afqzB4xxwFscRfu/a74tPjhGjqBfxy0f/esfXS5KEZqOBj86dg+s4eIcNG+KZjC3WI5FVaLctmq7D9TyEQYCYEFiO8+jOAFoDCV5abenU6gD+/RBCkEmnEdRqcBLOAAiBoqo4++abuHzpEj6/eBGObdOZLJx/hk2nU2YzLL6JjoIn6wwQgjAIxJjPloeXEFy/cQO3bt3C4cOHcerUKcry5BFpHFMyGI8IEuShlGli/9692L93LyJCUCmXsbyyguWVFczNzUECaFpwYgKloSFIbOTpo2pAc08ximM8XFjA7j17WiLnlvMDP83+F15f7UE8M/A4nQH297afHUX4/PPP6SzxU6dwtAtjlh2MHrtHrV3XdQRBgCAIKAlIkr5Sal08I4SIjaCbZkFyMQPUYKfSaTQtC5Ztb+khHx4ZwXvvvotz587hpz/5Cd48exaFxOxz/vmSLMPzvBYuxACPDhKGIFEkAgkCiHtuWRY+/vhj+L6Pd995ByW2gauKQm0ICySS74EkQZYkDJdKGB4awsnjx+G6LpZXV7GystISVIyMjmJiYoJmAyTpkedO8KxiHEVYXl5GGEVbWpE7yZz3azv6CSJIYsN9HJmBP5/7AWYbs8iBZzcI/taxv4W01rlPvlKp4KOPPoKiKHj//fd7Do9jJ8yOuvnfEtswFdaWHrOskWPbGE44bztGIpCI2F7TS+tE8LEYeCARxjFc14Vpmi029aWXXkImk8H1W7dg2TbOvPQSZPYccpvPM5iNRmPrBz5mPFFnIA5DRGFInYHk8CBJwu07d3Dr1i2cZnKPHGIOuCQhCEO6gbcvjoSDoAAYGRnByMgInj95ErbrYmVpCUvLy7h96xYC1ooyPj5OFejGxnbsFMiKAgQBKtUqLNvGxMREq0f7FTbofhZ08nVfR5mgl/EJfB/nP/kE6+vrePX11x+NNNlW01QVBZJE589btk35Al/FyZFoh0XIo/LEImsBM4xbZIXTaTF9MOTPXAK5fB7vv/8+zp0/j48+/hgffO97m5kMdixl4Aw8VkSJeRWStCkC5QcBPvroIwCgm0uiBVRWFFpeYATkrmD2w0wEFTEh2GBBxeLiIuYePEBMCPL5PKb27MHk5CTyOxxVrbBNLCIEi0tLyBcKMFOpx2I7+n2XyCjiq2cGrKApphLyBP9Udi/+codWQoAOG/r8wgVkczm8niiz7QhtPAdVVRGyUoFt21+ZeMwDCV4m6FZebHcEAJriT6VSsBwHluNQBdW2wPW5Y8eQTqdx8dIlqKpKy8ucD5bIYDqW1VdQ+FXwRJ2BkDH4NU2jM6XZz5cWF3H92jUcP3asxRHgkNlmEUVR9weoy01LmyYOHDiA/QcOwHZdzM3NoVwuo1at4uHDhzQ6GBkRXINcLtfxC+ikZLe8sgJFlnc2xnI7SP21Cn4dZYLtWjWtZhPnzp2D73l4lwmCPA62PGfRRrKMWrWKNDPo/Mr6c49aIWqzhHRc0C2zBtqgaRp0TYPHiISFQmHLawzTxFtnz+IvfvITnD9/Hu+/9x5kRWlhIBOW7ntcbWPPKuIoQhQEkNBaIiCE4LNPP0Xg+3j/gw+2zCTh3UqPUqqRJUkEFcdPnMDa2hoWFxdRrVZx5+5d3Lh5E6ZpUrsxPo7RsbGubYvc8eXPRBxFWFpawv79+x/f+u1Woms/l8dYIvjDO/8GNb9Kj8dW66+e+BUxlTD5mVyNdM+ePThz5kzfQc924EqmtVoNBKD2m3/uoxyQpe6jOEaMrc5AeyaxHZlMBrbjwHVdxGEIuQMnbWrvXoRhiC+vXEGhUMC+/fvZR0sie+R5Xse5LY8TT9QZiELKNlUVRSyQeqOBC59/jl27d+P48eMd38e/kCAMsW2CrgOxiMP3PAwNDWFyfByZbBZWs4nllRWsrKzg5o0buHbtGtKplKgXjoyMbKYkE3VuziJeW1nB2Pj4jkmIvdBvu+TjJgEBvcsElXIZ586fh6breP+DD5DJZDYj78cAVdMQRBHqjQb2TE211g8fwXDxFq5Oqb6Ibdi9kMlkBJEwn81SxbA26KaJs2+8gQ8//BCfX7yI1159dctx7QGJ8Csj9DzErFafLBFcuXIFa2trePvttzsOJ1NYvTeKoo7p9xa0EfGSiKMIsiRh165dOHH8OCRJwnq5jJWVFSwvL+PBgwctQcX4+Dhy+fwmhyZhO1RVRbVahee6mHiM8sP9ol+G/HZYbC7ij+//sfhvCcCp4dM4Nfx8y+tIHOPKlSu4d/8+njt6FCdOngRhaf3HAV4K4mn1fC7XslGLuvx2338CMntmQIiwHXy/2s4+66wEHvs+LMfZMquA48DBg6jVarj8xRfI5XIYKpVEdkACI7k/JoepG56YM0AIHVec/Dp838f58+fp6NCXX+7qrSqKAiTTvtuBHydxM+M4RuD7ACFiAE4mm8WhbBaHDh1CFIZYX1/H0vIylpeWcP/ePUiyjNHRUZE14PUtRVEQhiEq1SrObCOssxP0M4GP43F6+ImD0mO2/fjhwgIufv45ikNDdNgQq+c/zodVVVUEYQjPdVFoX0DJz5Gk/jx/aXPipaIodCFLHWYMdAGfYBlGEWzX7UpMKhSLeOXll/HpZ5/hVj6P5557jnYwMOKi57p9fd4APUCofC+P8mVZxszMDKanp3HmxRe7knd5VBVG0c4cyraAoqWdkB1zbGwMY2NjOHXqlAgqlpeXcf36dVy9cgWpdFrYjdHRUXEusqKgvLEBTdcfe+tYP2nlx1Ve/IMb/wQh2dzQVUnDLxz8hZbPD8NQDBs6c+aMGDbE+TxfqRTIIUnQVBU2U/vU27hGnCMhpKmxvX1Nbvh8lPVOMqDZTAaB78NxHGRYR1InvPDCC2g0m/jkk0/w/gcfIGWaIosVxzECz3tkXls/eGLOQOT7wlOPowgxIfj0s88Q+D7e/t73eqZDkmWCHSHhFLiuCzDyUafPkhUFYyzdd/rUKTQtC8vLy1heWcE1tsAz2azw/CuVCmJCenYRPAr6dQT6JfvtBO1jUAmh4i1Xr13D1J49ePnll1ui7K7dA48AVVHobHhJQqYXqagtY9BJ1pMjZm2skiz3lQ1IQpZlpNNpNBoNymPoUYuc3L0bx44fx42bN5HP5yk7WpYhKwq8nQjcDNARke9DURTqnIUh6o0GvvziCxw6eBAHDx7s+j4R1XWZcNcTiTquy7qPOpFaCSFIZzI4cOAADhw4gCiKsL6+juXlZawsL2N2ZgaSomBkZAQT4+MYGhpCuVzGyPDwY5eb7au82MXh3wm+XP8S55fPt/zsgz3vYyw1Io7rOg7OnT+PZrOJN8+ebR3CxDhgjwuqqsKyrJ6j65M6Lbw2380acClg4UjssBRqsnkVURTB9byumimSLOP1117Dj3/8Y5w/dw7vvvuuCHgVRUHTspDejmD5FfDEnIEgsaBjQvDl5ctYX1/HO++8g8w2pA8e2YWPSsaSqGxlTAjSiQXNvcW4faOQJGSzWRw+fBiHDx9GGIZYW1vD8vIyFhcXcf/ePVHuWFxcxO7dux/blKm+PFc+dpMZK+4kJWtZyX9zacuAte8l2/r4kuSkLJ5OJXGML7/8EvdnZkR6r93YPFZqiyTBsW3IO2Frk01Za4mTEvmvWPdJLHWWGu0H2UwGzWaTzq33/Z5Stseeew71Wg0XPvsMb7z5JhRFgSLLA0nix4AoCIS2QLPRwPlz51AqlXDq9Ome75OlzSFeQRDsXBSMvY/EMSRZhp4MIpIbRWJdKIoiAga88AKazSZ1DFhQEYchwjiGIstYXl7G6MjIYykz9uvmkjgWUa6wG/x6uKPN/p20G77vs3R7jD+4+k+hQhWfmdNy+Mt7/pKwp/VaDefOnQMB8N6779Jum5aTeLzpb03TYDkOhopF8V31QnsQI/6bfY8RC1Y7tTP2AxFIMEnyXgJqumHgzTffxE9+8hNcuHgRJ48fByGEOgONBsb6UHJ9VDy5zAAjD+qGgaZlYXpmBi+cOoWR4eFt36szBvGjMrNDNnJYlmUYui4WcC8iSBKqqmJychKTk5MAIag1GvjRD38ITdNw/do1XLt2DblcDhMTE5gYH8fw8HDf43fbwTd3QojY9CO+sbGfhWGIpmWJFrbtwLXUXdeF1SPt5Lku/CCA4zj4fHoa5XIZJ0+exN6pKSoHyz6PG9nHLbRr2zYymcwjkRJblNQkiY5GjmMonJTzCFAUBaZpwmHs4J669pKEl19+GT/60Y9w6+ZNnDh5EoqiwA8ChL4P9XENsHrGwAl3PCC4c/cuCIDX33ijLyEpVVXB5188Skugx5xnk81CEDaDbx7bRLjtQcW169dx584dNJtNfPzxx1AUBWNjY5hgeijbttp1ASe9CbuRsBfJn1m2jSAM6Qa/jT1N2g2erj63fB7VRgVFFMXr/sa+v47IjdBEE5VKBdeuXUMqlcLLL70E3TDguq4Y1CTj8bZDA3Tzdh0H2T17qBrhDtdakvTLNSAk1qnwqEgzNVPP91uGKXVCLp/Hi2fO4PMLF7BrYgJmOg1Jkr52rYEn5wwwwoih67h+7Roy6TT290jxJWEYBmS2oHec7gONjAmoUyHqR/yXfBPp9wGVJNoiGUU4deoUikNDaDabWFlexvz8PO7evQtVVTHGepPHx8c7trvEzEOPwhARS2MGjDW9HUlFDBrpEOGLmjrrSpCwWTtVFYVGIYnsQTJ1RkAzODenp+F6Hk6fPo3h4WFqEDsgiiIquKMokGVZZH6UR0wDNhoNZLNZRNx528n33BapcclVPnzoUcspmUwGruPAdRzEuVxPx0JRVZw4cQKfX7yIarVKa8KE0I6EgTPwSIjCkDp1igLLsrCwsIBTp09vO+2UQ9d1yI4jZpHsBIQQMYdAb5+F8AjPk6qq8D0PBWb8AaC8vo7llRVcuXIFMSHI5XKiQ2FkZKTjGoiiiP5J2I8gCPoqowquEVPWRAfbwQduqeyzeWnVCWz88cyfIEQEif1vV3oX3ph4A7ZlY219HXOzsxgqlXDy5ElaJutw33mAI8syFG432N+Psk7r9ToIu3dhEOzMGeB2AwD4zAieqv8KzoCmaTBME57rwrKsjh1JSUzt2YPpu3dxh/FgAMD9mrOKT8wZ4LUQq9nE2tratim+JGRZFgQz1/O2LSu0w/N9xHFMvVvSppXdll7uB8srK9A0DXkmNrNnzx7s2bMHhBDUajUsLy1heWUFl7/4AnEco5DPY2R0FCMjI8jl88Jrb0fMNcOx2WbC05zJv8MwhCzL0DWtK1s1CZ7uS6XTm8pYHbCyvIxbN28CkoR33noL2VxOzF/n6UUeZfBzjeK4dS43g8pq5nyR8witKwhBvVbDXtZuFYYh9H6cgWR6E9hM9THnU9U0KhPKOgt2CtMwqLBJGMLtQSTkGB4dRS6fx8zMDEqlEiUfDVQIHxkBe3YVWcb9mRmkUilM7oCFzwMJ9xGcAZ8pDkpMOp2w77HbcLDtQOIYy8vLVKRMlpE2TZSOHsWRo0cRBAFWV1exwuTVp6enoSiKsBvDpRI0Xd8sEbYfm/0tsSBAZhk8iW24yZ9FcYxsJrPtpsnXUCqVQjabxb+58f/FfDDX8pr/ywv/E4YKRTyYfYDZ2Vns37cPp06dEqQ7wm1H0oYAoqOgvaeA27ykk6AyAnk31Ot1SKCOexiG/Tlr7B6222HOLyGgG3q/2eNOyKRS8FwXjuehtytAz+PQ4cO4cOECNjY2MDo29rUPOXsizgAhBHEYQgJw6/ZtFPJ5jI6MwLXtvhWodF2H43nwduAMENASAS8v6Kzu2E4IEez05EPU44FaXl7G2Pg4HVDDHni+CAuFArLZLPYdOADHtrG6uor1chlz8/OYvncPmqqiVCpheHgYwyMjSKdSkNn0PnDpyz4yAzzt9riwurKCTz/7DKlUCq+/9hry23iyhJUrgiBAyBZ5zKIUAiDs4CQozKlTmXJYMsp2XBdBGKJQKEBiDk87M7jl87dZpGEYIgZLE4M5V+z72klURwiBbhgImTxxL2cgiiKEQYCDBw7g888/x/raGsYnJvpuFx1gKzhPqNZoYHVlBcdPnKCbyDapV4Cuf0PXRZmgn3qyeC8h8FhG0dC0rlyeLZ0tPexGeWMDvu9jbGxMpPU5NE2j7cyjozh67BiqlQrW1tZQLpdxjU3LzGWzGC6VUBoZQWloSKwjhbVq9/tUi372HWDJWsYf3fvjlp+9Mf4GTpdO4/OLF7GwsCCUY/tRMPV9H2EUUQ2JOKZ9/Yk/SSdBAo3SVRZUtDsHtVpNTA4MggBht/58nhHFVq4HB295VBOO06MQpSXGfeLEd5/NT+gG3/dRLBYxPDyMe/fuYWRk5Ol0BvhmvL6+jo2NDZx9802a9g+CbRc1/wp0XYcC9JXuS5LoPM8TXQRSDwYp0MPjTyxwz/OwUS7jpVdeoQ9JFIlZBwErHySVFcfGxzE+MQFFltFsNlFeX8fq2hpu3rwJSZI2hyuNj9NMA9m+l7VliNFjwOzsLC5fvozhkRGcOH68v7kAzHMnkgQ1eb7s/OMoEk6CKIXEMSLfF2UHnvFRFQWVSgWEECpkxCaRoc05I8m/eyCOIto9AAjDQTjZkDltO1ncKdOEbdtdyyUc/DkYHR3FyPAw7t+/j7GxsUFm4CuAG+e7d+6gUChg79QUXM+D06OHW4DVfXn62ekjs8Ofi5gR6FpKBD2QTLV3e7KWV1ag6zqGSyVYtg2fkaoD5twkjX86k8G+TAYHDh4EiWNsbGygXC5TXYO5OeiahjFmN8bGx6H3yBq0XJ84zZ1Zj39y458gJJscA1VS8StH/xY++vhjbGxs4PmTJzExMdHXcfk8kvYSCOdL8bkvIY/SeRYhDAFm/5OOQa1WQ7FQgMoGF7XsKUkHoI0k3gkhC1p5iUCWZcHF4B0G/YJPIYx8H57ndXUGIuYcEULw/IkT+MnPfoalpSUU24mXjxlPxBkIwxCEEGEcJycmYDsOHPan56JmkbKh611rUBz8a0p+YbzmZ+ywX7ObY7CyvIyYbVqWZYmINmkw5EQLY9IY5fN57Nq1CwAl6y2vrGB1ZQX3793DrVu3KBN5bAyjrIe5mz6/aA/6ipkBQghuXL+O23fu4MCBAzh48GBrdqT3m+k5oM1xYhG4LMstDxtf0BFb1NxR8H0fPqijyO+XyzaAIAyhsQFTO/HLxYJO1CCTC5lzRvo9pmEYmx5+l66CMGHQ06kUnn/+efzso4+wuLT0yGnGAWggUSmXsbGxgbfefhupVAqB7wsCXNdoK3HPDcOAywxyN2dAbBbsfUEQiAwc31iSU+16Ibl6kt/88tISxsbH4fs+Gs0m3fTang0+zZVvdJwfNTQ0hEOHDoEQgkqlghXWoXDx0iUQQmWSx1lr9FCx2DHyT2bTduIM3KjexMdLH7f87L/c81/i7oU78D0Pb549C90w+s+6dPl8PneiHZwjEYYhzSbEMcIoEjLTtXode9jgqZgQBEFA5wI8Qoo/jCKaUeSOSoKXxY/Xj1PAf28aBjz27HUr0XoJByc3MoJdExOYnZ3FoUOHdnTuO8UTyww0Gw00m01BnEkxckUQhn0tap3V/vgG0m6Qk20xHBF7YJIyphLYlKgdnL/E0kWB72NhcRFpVpsSxDRCp6FpfPPvg3himCb27duHffv2IWae/+LiIpaXlzH74IHIGkwwNcRCQgddqA9+BVZuHEW4ePEi5hcWcOr553H4yBE06vWuC7XDTRH3pp8Fx71kMfaXEOoYsEVeq9eRzeXgs1IQZ+Fmczkxu6BfiFRf4ntoP08RIcmyUCrsdM78O9bZhDTP8zo6A7wmrWsaFFlGsVDAUKmE5eXllnTwAP2DR4orKysoFAoYGx2l6ddUChab+a4xpb8t7038m8ufd+INJB3EJIJkiSDBMdqxW8ec4GaziY1KBROTk/CZ7SCEiinpui4c4e3S95K0ObH1+IkT8FwXi8vLWFlawvT0NG7cuAFd14XgUTKoaG+n6+v0QfDP7/3zlp9l1SwmFsZADOD9Dz6AruuwbLvv8ttON2heCuHrjndUhVGEZrOJ0PeFYqhlWcKJ4wFkv4iZowFChBPGeWVIOFGkw7+7XaNpmqg3Gi3OZRIiiCAEGcOARAgOHDyIpfPn6dTNrxFPLDOwsbEBWVEwzFoJJUmiQx22WdQcMttMvCBoMcjdFjNACUAElESW9FrlPj38kDkAvJwBANVqFUOsXpfNZqG5LlRdRzaT6X8jbb82Wcbw8DCKxSJOnjyJpmVhZXkZy8vLuHPnDm7cuCF00McnJoSmwaMy5H3PwyeffIJqpYLXX3sNu/fsAbDD8sNXjHZ5qlDVNJA4RrVSwe7du6FpGnUQfR+u51FuBKhB5xHTdte9xbtH93slJmF24mq0RZfcSWnPY/lBIOYgcMMbE4LhUgn37t2D/wjktQEgyGAbGxstOv6GacJ1XURxDM/zOrcMJr5Pk0Wt7VnFbmUnAjquGIS0KMD1+8TzkqHPMhgxIVhfWwMAFItFej4sik2lUpuByiOsZ8M0sW/vXuydmkIcx0LwaHllBfPz8wCAUqmEcaaEmCQl94M70l3MWrMtP3vRfxEjQyNCjZQ/3/3aja9a3pRlGbquQycEa2trCOIYoyMjgiwZRxFsVoaR2XRaXVW3dQw4yV1t4zPJktSxdEsI6RhMJJ1GjZVDojDcHImeeL/L1C0NTROfmUqnYRgG1lZXH+0G9YknRiAsb2xgpFRq6Q02DAOO6yKOY1iWhUwm05Opq+k6ZNeF63nI5XLb1pBFza8969BjIRBC4AcBnZPdpp9N4hh2s4njx46hkM9veqjMsxPpI0mClDivfhcef106lcL+/fuxf/9+RHGMjTYddDCi4uTEBHbv3o38No5UElaziY/PnUPg+3jnnXcwlNB54Oe7E3LRoxiwZEujJElosgmBY+PjSKVSouvDY0InBHTD9dmwGk3Xu3r9vMbIywTiPLGNJ59QHePnGJPNzhPTMFAHfaaSHj7vcSa8lMWzN4RgqFRCdPcuFhcXse8xylY/K+DdOb7vUxEfBgk04rJsG47jdB5HnvieeVYxYNPttmOJh6ydkWezxOcyp7Hr+5hz4ntey+YhAWhaFkzTxMT4uGD1O66LMAxbI/e2KHQnkCWJEpOHh3Hy5Ek4rkvtxtIS7rKgQtd1jIyMYGpqCmNjYz1JbW7k4VP5QsvPimQI3598H6++8ppYf486Tn3HxLxk9pd9Vnl9HblsVpSa+b3mZxJHEbwoggfaAm1oGjRGKm1H1CGjyI/Z9ZTYc9JyLW2BhanrsBm3LOkMuK4rgoj2bGNpaAhr6+vb3ZGvhCeWGahWqzh54kTrLyQJmUwGzUYDfhBAdt1Wtaa2B8XQdcjYJGr1epAitlFL7H0tH4utjgaPMry2haypqhg+sbq6CkiSmELH2+Z4OrPF45YkoWAlnII2x6WfFiWFzUcYHR3F888/D8uyMPvgAdbX13GHjX1OpdMYHxsTacFuhMxatYpr165B13W8//77LbK/LZmSfhY1f32vxUwICFsYW9jO0mZ/c7lcBmGRNEAXIx9VzScYBkGAkEVZvu/D932o7LtJZgu4A9epZ1mSZdEe1o729F87NE2DysheXGI0jmPYjiP0DHTD2GxZimNkmIc/NzeHs2+91f0+DdARhBAsLy9DliSU2sTJdNMU0bdlWaKc1Amcw8OdfDEorQv8DiUCgQ4ZJD8IqGBXIniQJQmarovy4dVGg+oGMCdSzE1IvCdpO/j1i98BYi21n5NwYNuuI2Wa2L9vH/bv24cojrG6soKHDx+ivLHx/2fvP2MkS9PzUPA5/pzwkZHeVGZ512W6u7qq2kyboXhpJPJqhoIA7XAlcFcr4gqgsBhKlFb6QVCC5gpDCJTu1RUhgMASK1EC7/IOr4bLoTQz5HRzZtp3eZPlTVZV2sjwcfw5++MzcSLihMnq6unq7nwbjarKjIhj4nzv95rnfR68/957EGjwwFoKnUnF9cp1WIKJKIfn35j+JZw8cTrWdw0TvIQ9MujIxbQCLvZn5zVH/r6xscGrzQCd71dVMrppGIR1lSVsvg+TUgQrqkqy8cgzE51AitpQNM8dyUTUdF1Hs4PrgsmbM4yRSOWt2fXmR0bw6OFD1Gq1ocbHH8c+lWDg0aNHCIOgi8efZW/JZBL1RoMzVekRpxo1NVLu8zyvL/kQW9BsiqCXua4Lm24uPDMWBOhU9CJaySgWi9A0rQ2ExBCsbozuPYCuhzg6xhgtyzMq4EGPXTKZxMzMDKanp5FMJFAqlTjd6d27dyGKIkYjkszR0c2zZ89iZGQEL774IpQYzEXsOfcwHjp0RveRqJ3/G/2j62KxiHQm03b/JFpaC3wfqqaRBWoYhD3NtvkC9zyP9F01DaqikKwO3QsaIMHYMNZrYauaBi9S7ms2myQzAJnFbgOO0fcWCgUs3W+fzd624SwMQ6ytrmKko6IIkOcpkUi0GDnrdaTTaUIyFfNZmqahaVmE5XLARIFDBc061wg5MPmWgzCEY9uwbLt9RFCWoek61EiA6tNWx4GIKmtURCmul0wO1RHM0uNHM1CBnosYqVrErV9JFDEyMgLdMLBfljkd8uraGhYXF3H58mUYhtEmrpTTcm2fcSR9BF994Svd94Rd/5BJRLQCwq8lUilE5Ge8Zx9jtuOgUq1i9549reuke4LneQDzC5qGMAhIdZEmew6t4CiyDEXTIAkCn0CK21cGgUejlMadI4Es62f4KDblFgQBdOrbOKiZnkM+n0cI4PatWzhGSYietH0qwcDS0hI0Ve1WowMFlqkqjCCAaZpoNpsQRRFKjDNXKDhLEAQ0mLRsD3NcF73GglgrwDTNNiVEWZZJEBCXEQDY3NxEoVBo+50syzw42YrFLfRQEHgG7dNNhr649RqAz8pLVFxpfHwcANBoNIgkM1NPu3gRiUSCB0Njo6NkrDNmpIfrM3RkPmH7CwGgW8shGgA8RtugWCy2RfcAHe2hs8jRb1CRZSiyTGaVKWd6EBIhKsuyYNt2TzEqxsg4KCRgOgedZUxd08iIoWWhqSh8lCtJ6UOj9y6g5cOxsTFcuXKFcJRvkSzri24eVRLdu2NH7O8FQUAqmUStVoNPW429ENuapkEC0BwgHMVH/DpaBMwCz+NjgTwjpp+vaVpsdaJaLsPzPF75AuKrisNaW1ZON392LmHrF93nHtlwjUSCiytFsQara2s8qUin0/iS/woWxWvYO7oX//DU17tPJmyNQgv03yE5ya5KKDsH9r4w6muErWuIlDY3IYRhm+9g/CWMt4ADAUWRqBqqKjxaUfI8jyQXdCTcp5tznO8XBQFDDQizNjFaG7skSVAp3q1O9VcCujdFge0A9RsgviaTTuPm5y0YKJVKmM3nYzXhmcPVdR1hEMCybTTrdSRTqTaHHoI8SEYiAdt10Ww0egYDIVrlt86gwrFtNE2Tz6ILIJEbi9B6WRCGKBaLOHDgQNvP2efzXvVjgvo6F03bp7ANBmiLpKMVjxAkU9pFldwYCvvK5cvYLJUQBAFW19bw47ffxtTkJCanpghGgx+CLFxR6MPISK9NRAdz12NeM0Ci+2q1ir1797b9nJX5e1GsipIEXZKgaRqv7ri09Oa4Lqki6Xp3RjkkeJS9RhAETlDCSERMy4JCR0aTiQR35EEQgB2NPQsj+TzCkACd5ufnt3h3vthWqVQQ+H5PAiwG4EqlUqjV6/A8D416HYkO7FEAqiQny3Btm0hS99ApcGllSekAqoa0JWRHKgGSKELXdUJ53GcNbJZKEEQR+Xy+7eeDqopDWcemL4liLFlNiBZWp5PYTBBFjI2PY2xsDEcFAbV6HXfv3MGNGzewz9uLfcI+JCoJXL14DVN0fJG1RAWgLdvnQUkPUp9oMP5xgYQbGxtQNa1LJI5JzPsx1ePoVFNAicQcChJnmAHWFm7z5UNWFZm/6EwmdF2HZduoVavI0JaWTrEi0e+DBWyiKCKXz5PW9CdknxqAUBwi8tMNg/Ns16kkpSzLPBAAwGVlTdNslcc6zKcoZEEQ+Jif67poNputzUUUYSgKcRJDbGbVSoVE950ZLN20AjoL+7jiFm3AmF6ZOdC1kfUi0giDAHfv3MEP6m/hjHoOuqfj70z/bYRWiAsXL+L8hQtIUUnmyYkJZHO5NvBc1DqRskEkC47LoLdimxQv0NkTZhmW7/t9mePY2J+qqqgDvG/reh68eh0a/d2WMi+07nsn70JAMznbtjFaKLQyD5oJsfewYEAUxb6gs23rbTyziksi0HouRdZqpNijkApeAa1NUKDtR9d1ScDQIxjgY6mREViTVp3YumTPVD/wXdQ2i0Xks9muZ1B5zKpi1LjfANqes66KHgtq0aNXz94PoNlo4M6dO0il07BdF0ePHiX6K8vLuHP7NiTWiqRjzwF73tHuO6JVC550RP/8GEkEQCqKI4VC177CfHJnVbHTREni0xyO48ADSYaalgXJcaBrGg/SukCCPSyaJEXbjbKiwLEs+PSajR7PH2s7CnTq45O0Ty0Y6IvIDFt0vslEAvVaDS6dIdUNg4wG0puo0lKcS5X74qoD0eje9zw0TbNN8VDXdfJlRBbIICtubkIQxVhWKEWWEYThUBSp/HqBtsUbhCHZTOj/vR65Ycb/LNPE22+/jeXGMj4UziAIA1SFKn5o/RDfeOVfEknmtTWsUEDRrVu3IEkS8vk8xsbHMT831yauFDefH61QsJ8LHb8bpkpSLBahG0ZXCZ0FcoxgRBmwMMKQcJ/rug5NVTkpiUUjf1XTODXtIAs7AjL2+c1mkzs8prcQOeH2NkrkOtj7t21rNoiONeqcZVkmAUG9zic+oi0yAEgmEmg2Gn1bBaynK4kiLMuCaVncR0iShASlvd0KVexGsdg2DcFMfpyqYsfG3wakjgsE6GvJr8O2f8cZYyOdnJjAvn378L0//3MUCgVCgHP0KGr1Op9sunjxIi5cuIBEIoGRQgGz09OYmJhoa0N2BSdR3xYJmqOvH+Y++L6PzVIJByM4DGYSreoMI9zEPoslFCodIfaDAA3ThEzVLhnXycB13LH2Gb2yY9vcr3RVHSLGfIfU0Wr4JOxTCwaim0XUohE+QCKiVCaDOpV/bNRq0BIJvnkDGNgq8BgtMB0lYqZpGgxd5w/rVm50aXMTuUwmFlzCkMo9I/zogggjKlmRTLIN3Naj38Y/A7032kq5jLffeQcAMP3MDHCh9bsHzYf8fKempzE1PQ2EIarVKh48eICVtTUsXrmCq1euIJNO88i/MDLSnpnHVSOi5xs5/2iAEHfOxWIRIyMjsc+GLEnwaIQ/qIzKNMgB8j3rApG8tiwLfkjmeR0a7TMu917WGSCy0Vc/DCFS8pOua4kGTJEWw7Y9vrH+6bAZpKKqSKZSaDQacB0HNd9HMpnk1UHdMHirwLKsLn4CRoXruS4aFBwKkJKtYRjtjKAxAWOcWZaFeqOBQ3QCKWqsv+31qCp2Jg1dQF30qOL1OK+23n6nhSEuU3nlnTt34tixY6hUq+2vEQSk02mk02kuyby+toalpSWsr63hwdISl2RmFcc2xdZOn8aClI6fde4Vcb6jXC7D932MdlQUgeGrisy4do2mccyYTWnTPd9HvdGAKss9GWFbp94dLDiOA9OyuHqs2NHG6fy+gsgzx679k7KfeDAQzRJ7Oce4m5iifT/LsmCbJnzfJ0AtURzYKmiaJur1OpKJBGRRhKIoSBhGFzNgFHgzyNaLRUxQoF6nRceE2h7ccLDOwJaN3c+YB3x1ZQXvv/8+UqkUXnzpJVwsXxz8eYKATDaLnZqG6ZkZiLRnuLK8jPv37nFJ5onxcUxQSeZBiwIAHyGKlgWFjr6i7/vY3NzEocOHYz9jKxE+U7eLRt0KJSlio19BGKJpWWRaRNeHKsO5rkvGB+l9z2UyWKdiKG3XG6l+RRc0+/t2ZeDxTOzDPsmQ9NHfK7KMZCqFZqMBz/NQq9WQTCbJbHmkVVCr17uCAZcGAVzhVBCQoEFAF+B3yNZPcXMTCMM28GDUZEniExFSR0bNfckTfnY6fUfg+/jozBk8WFrCM0eOYO+ePUMFYCypMJJJ7KPnuLa6itXVVZw/dw7ngK6kovtk4o/TN1gHSSIkUUQ2plLLqop+GA6sKoZBQCrJYYtgShRFGBQLwkZGHcaUGwH9dVrU14chATUzrhtFUZBKpWCaJscmxJ5P1L9/wsnEp9cmYH3mIY2xc0myjGa9DtdxUPd9JFOpnq2CIAxRq9XQaDTAJgmSyWTfrHKYRW3ZNur1Og7FlKSA9h7VoJHHOOvVv4tzAr1K8Hfu3MG5c+cwOTmJF154oa9qV6zRTUvRNMxks5iZmQHCEOVymU8onDlzBgCQTqcxSQODkZGRoTLguMBrc3MTvu9jbHQ0tnIkSxIExARZXZdFGN8CoKuPKwgC6fGyaJ+WAOv1eovgqP0N/D7Ztg3TsgCQvjXLchgamLWFOs+K66GLIpFOxnYw8DgWRHrcvawT8BqC3PcUDQgcihHQDAOGYfRsFbieh2KpBMdxSGWJthL7YVU6A5E42ywWYdBjx5ksy7DoVExn+Xiollbnv/s8Z3G+g7GRlsplnIywkQ5rDJQIANlsFrlcDvv272+TZGZJhSRJGBsb41UD3TCGC6o6fUdIALn5kZGeeC9ZkuC5LvwBVUWXEplJktSFTZFo4qn6PizLguf7nCgqNpmIVGsajQafaGC4BNd1+T4RvTbeXqSvB1pB8OeuMsBKYYNexy4+WqZVFQUSbRt4vo9arYZEItHVKnDprDEjDUomEm18/j1tiMh7s1gEwhAj0ciWZrlBpJ/o0Shzq8FAXEtAFFpzr1HrqjSEIS5dvowb169j165dOHr0KHdgndce9Im3Y1nEBAG5fB65fB4HDhyAY9tYXV3Fo0ePcPv2bVxbXISiqhinSOTx8XFoPYAxcba2ugpN05DJZlsMgWhl2aIoQpAkgI799CKVYcGCiPgZYXYvGCCo2WzCoehwxfOga1qrLEeR0ZZl8fFURVHIxkDvjSRJCKPqaB3PEHvWJVlGSFUzP2kw0OfRWGWlb3Utcu/Zd0d+LCCZShHGUtOERSeIOlsFGuWLYIyjkigin8sNNQY6jGBNcXOzzW9woB1a2BMRJBh5LNtCm6CzfVWv1/HO22/DoWykIz2qF30PH+EYaKvQKApmZmbakopHKytYWV7GWZpUZHM57jdGOluRfcz3faytrRG8AO2td+K/WFVx0L7jdgBG40yWJKSSSTLpZpocnBxNJtjexVuT9FySFATPjhHSagVAA7nICDn3G5IEiV5nLNfFE7KfeDAgUga9tbU1UrKJm/9GZOOK2RglSUI6nUaj2YRPI332mmazSehsaZk4CEOkk8nW7PcA41lbn9eWy2WCNzCMFiAmEhEDpDzpeh5RzBqijB61ftiArp9HnB0TG3rw4EFsea9zfmOYrKHfZIWqaZibm8PM7CzCkBCprNKqwb179wCAiytNTEyQUao+n7e8vIyJiOwpx0MAbRuvLwgIPA/oFQzQnl8/YA4zSRSRSibRoJLELh0pSiQSkCSJtxSYbCkrF0ZNliTyvhgWxqiEtSRJKBaLkBUFU1NTfc9r27qtUCjA8TxsFouYnZnp+1qeRHR8/4auQ5IkNCmw0HVdAs4SBFSqVei2DS8IENKZ9IRhDL9+ByQSbI0cPHiwzW9E38HZM2mlaasjhnEVtV7TAlHw8WaxiHfeeQeqpuG1119vIyfb6vEBoO82TpOKbD6PA/v3w3Yc0k5YWcGdO3ewuLgIRVGI9gr9v19SsbGxAT8IMDk52ToH6sNZYMCSgr4l+ZgWQT9jeKM6FUNqmiZUWiXwgwCWZXGBK1EQkIiMHQOtMXS26XfeMz8SDABAuVTC8/v3Dzyvx7VPpU0wNzeHd27fRrlU6mIhZMaQl72WliiKSKdShFzGNCGAlLgapkmQxKkUdDrv621lxE8QIEhSz6mCMAxRrdWQSqX6bqaKogCWBZdmkx8XPNbz3fQcXNfFhx9+iHK5jFOnTmE6xll2nkM/IeBhkMb89/T6GA/6oUOHCOERFUi5cfMmrl69Ck3TWprr4+OErpdas9lEtVrF/riHPVIWFEURkKSeyn8sGg+AoR2pIBCRLFmWCedESGRQQatYAQia16ABQqexagADjEYdMhc7oe2D9fV1zM7OxovpbFtfUxQFudHRvuptDDcQhiFCSunaaay62DRNEjiKInn+6nXMTE+TqpFh8Ox2WKW7OMxC1JqmyZU3B/kOJr27lWCg15RWz2CA/vloeRkfffQRRvL5WDbSrVgQSU4GGn2tpqqYm5vDXFRciQYHDx48AECSCsaG2JlUrKyswNB1pGJI7FhgIIoiqTQEAXzfj13HTOtEooyMw1i0SuBQkGGT7keMw4QRUHXeE1atCMOwVemMVhRZlUKSCFumZWHnJ6hp8qkEA9PT07BcF+vr6z2DAYQhZ23rZ7quQ1FV1Gs1BDSy2yyVUCgUYBgGrFKJIzeHtbh+NnuoAhCE/kgMGjhqkiRBEgSEggDPdbe0wGLdBKs8dG7oIRlxu3jhAjzP61ve20pAMuw4YC+npuk65hcWML+wgMD3OU3y8soKlu7fhyAQ6VW2wDc3NwGAsyf2MoniBoJo1hddQFSZkvHPD2sCfX0qmUSlUkGz2UQQhpBlGdlMpu8YIjsOKzFGX9UZ3Rc3N/H6c88NfV7b1jJJkjA9PY3lu3f7j+0O0VeVJAnpVIqQzFByKtO2UavVMDs9zfkp4iqXPY22fzrXBMv+y+UyAAKi62cMz/Jx+AbajG6CHSeFMAxx//593Lp1C3Nzc3j+uee2JPEba+w4w2ymMd+TIIoYKRQwQpMK27I4vfrNW7ewuLhIJJknJ3lSsbK62lZRjLMox0cQhpBiqjhupKI4rDEgvEH5aUqlEp9kSiYSSKVSPVuVIq1YBL4P13EgR3AkfqTFJUkS1h89gqwon79gQFVVZPJ5rFMZzzhjDn0o9D19ALPZLCHtCENUajXYTFFOkh77IW+b+6d9qFq9PpTqnKIo8CmYbUvRdtw19wBcbm5u4szZs9BixIa6PqKzTbBVzEDsh8aXRqNgF1GSUBgdRWF0FIefeQbNZhNrdDb52rVruHLlChhZ0PrGBsbHxnr27KLsftFzYAGCS4OBYQlg+EeAOAPTsiBQSVTP86BSmuF+xtoRvARJ70lIS70Aie6rlC/jk1zQn2eTJAkzMzO4ceUKNksljMckEiHQeiaH8B2+53HWuhAEHFyt14l6HLaWRAAgm2CkNRQ9g3q9zsvF/UyWZdImoACyYfElva42ToPD931cu3YNjx49wv59+3D48OEnglYf2m/EtH/Zz6PWK6lYoUkFeUuIfC6HSrlM8EY9ji1JEkRGL82MPisB5SEJscUAkB7fpJMCrKqjDgn4Y8B31/ehR9o2zJcwMPr6+jqmZmY+UQrzTyUYkCQJU1NTeLi0FPuw89s3BJiPiZIAQCqdhiiKKFUqqNdqnM44lUwONV8aNUEQ2krR7AFjo0bDKEcpigLLcbYMBorr+wHd5b4HDx7ggw8/RDaTwcmTJ/sGAuT9wwUDUfzDwGpCj++n30JIJBJY2LkTCzt3wqd88+9QLoT33n0XgiiiUChgkokrpdMtzACTCmZCTh34gq30/Jh5nkcIZSIqYul0GgIAkxJUhWGIBEU7d5pEy3seK/dF5IzZvZAkCetra9A0DTt6cOtvW38T6XPhhSFWV1big4FI0D7IGo0GR3TPTE1hbX0dVSqQxkXSHqOd0yuBqdVqSPWgUo6aIBCK3IDS4g6LWejFRdIFaHVdvPfee1hbX8fBgwdjiXoe14auKPb4OfMbce/vTCrMZhMXLl7EwwcP8OjRIywtLUHXdT662JlUMMpkHgywYwgCHKpoK22B6S+gYkc2nSwIgwCariOTyRC8gOeh2WxCN4yeyYksyxBsu81XIAIqZIy7xWIRL7/22lDn9bj2qQQDsixjZmYGd65dQ7FY7GoVDDs+4dDpAfaZqVQKqizDdhyuDc3UqUqlEjRdJ6CPfpEf6zcCsQ9lrVYDgKGDAQHgJCLDTBX0Y2fkwUAY4vr167h8+TImp6awf9++nrOube/vajH0cJgRvMDAAKoH5/iwxrkDggCvv/IKZFnmWIOrV6/i0qVLSCQSvCw4OjZGFrXvI/D9tu/SoaBRxgYY9mkzsfFDhwLGEBIOCEPTCFgp4tSazSbhuafiQp1ZDyOLCYOA8J/TlgJf0PR7X11dxcKuXY/PO79tkGUZhbExLK+s4JkjR9rJaCJ/H5SV1al2AQAkkkmoioK0ZSFE6zliztylrHNqD9GatuMHQc+KZq1a7SumFjVFlonc7haCgZ5XGzkXxkbaaDRw7NixLjr1j2vDBgP9vp9hvYmRSMB1XYyOjeGlF19EsVjkWIN7d+92JRUMhMiqPtFzZrwkmqoOTEKDIGhTtvV9HxAEPikQhmQMnmHGTNMEwniRPEVR2rRzGJ9EtKJYq9fhuO4nXlH81CoDo6Oj0BMJXF1cxOjYWBdXNdDqx8Q9NLbjwGw2AZAbyrjHNV2HRqVr/SCAkUgQIg+QEqBtWYRZStdjGb74JoB4kZ56rQZJknpySXeaTKmJXdcdbsSw3yISRQSeh3PnzuHe3bs4cOAAZmZnh8JWAHGVgXjjpb5BH9grE8HW8Amrq6vQdR1pqp++a/du7Nq9G77vY2N9ndOd3rl9G6IoIj8ygmwuh+mpKeQpPiIMQ+7EdVXloEZBFBH4fquCEIZcupRVF8Iw5NMhnc8bo7VtUB2LZqOBRDLZFRDIksS5BlRVbRsZkmQZpXIZqxsb+Cs/93ND35dt6zZJkrBv3z5cPXMGqysrHEEOdCQRLMPseH8Yhqg3GrwMm4oIoKVTKTRNE6ZpIplMIgD4GHS90YBoWTB0PRYMxtkR+1i1VsPOXhipDmMA5EGcGkOZQBhAyxE20pdffrkvgdPjWpSl8bGtB/Cz03zPw8b6Og4dPgxRkoi40vg4jhw5gmajgdXVVSyvrPCkwjAM5EZGMJLPY0fE/3uuy78/RVG47+jcd/wggE2BggDxk5IocvK7KKkYwxEIIEmraVncz0RNlmUyNh6pHkdBmJIk4erVq0in05/fYEAQBDxz9ChuX7mCtdVVztXdRaeJ7k3L8zweCKiq2tVHSWcysKi29djYGNEPCAKYNFJjZDMKVSdUFCU2i4x7IGq12lBVAWZtEf4wAUSfReC5Lt555x2sr6/jueefx/z8PKqUIvRJLmn+QA9a0D1wDFu15eVlTE5MdKNtJYmwHE5O4sjRo2jU61ihvAa3bt7E9evXkUwkMDkxgcLoKN+ko5k3aw+FLJqnvBNsfFSj/OMsm4vDBzA1wkazCT8IYNIKQfR8JUkCKF4BIM8x+yxZknDx0iXkczkcO3bsY9+vL7JJkoTZ2Vk8unMHly9dIsAxxAe2YszPmzQQEAQidxytLLFEwrIsNE0To4UCUmxiiZZyG5SgSKdU5syiT27cbL9j27Bte2jfIUkST0YeZ8Sw01ZXV/Hee+9xNlJJktBoNJ54MMBWz6BP7Ve16fV9dtra2hp838dkjM5DIpnEzl27sJMqtm5sbGBleRnLKyt4sLSEixcuEE6DyUlk0mlomgZF07g/Y4mhIIpwPQ+2bZN2b0hGViVZhqFpUGgZPzpCzK+DTikJgkCq1bZN8EiR75LvMZHvgYGgZUlCuVzGgwcP8It//a9/4hXFTyUYYL2b2dlZlJeXceniRYzHfKEAeFTLbjPjhQfiAwEAZEyMbmSNRoNw6UsS0rRiYNL5T8e24VgWZKpWqFCu6Nahuxd1tVpFJpMZ+loVVSUR/pC82L0WQbPZxNvvvIN6vY6XX34ZYxR1P/QIILorA8GANsFWMBaPa416HfV6nQCY+pggCEil09iTTmNuxw7UqlWUKxWUSiU8Wl7G7Tt3OBJ5mvYME4kEkYSljG4haAYnitBUlWR40WP0Ob5ER4jqjQY8qlLYFtwJLYIkoCWOJYki1jc2sLa2hp/92Z/dJhv6mMYTiSNH8NE772BpaQk75uZiN5fOYN6mfVwAXYEAs3Qmg1q9jlqzidFCgTt0Q9dh0faj7/toNpswm02oVAirE3TW2Sqo1WoIMVx7kZmqKDApKHaYjaCX77hz5w7OnDmDiQgbKSuLP9lQoFUZGOg7hmwF97PV1VUkk8mBWClJkjhfwc5qFVX6/8b6Oi5fvIgAhH9iYnISU5OTGB0dhUSDACeC+QrCEIosQ6NjyMx4VbvHNTE/YTsOLNOETNuKUYu+16X4BVmW8dGZM0in03juJzCB9KkEA6z8EYYhDh8+jB/98Id4sLSEmbm5+Nej9aA3mk0wpq5eyErGNlaqVLpoRmVZRjqVIlSSpkkchOvC9TyeVTI5UkEQ2hZ1GBIRn2hpcpBJosg1xV1aQu57b2JK75VKBW+//TYEUcTrr72GdDQYibQ1BpkodC7Q+Id32DbBx1/OZEZYEITeI6YxxsYGC4UCFhYW4HkeVldWUCwWUS6VcOHCBZy/cAHJZBIjIyMYKRSQzWahRCRKezmjfhkL4yhvmiZsxyEiRZRFDAAvTQNUGyEMIakqLl++jJFCAXv27Rv+xmxbrLFWW75QwPT0NK5cvoyZ6WnOCdDLWBIAkF5zL9yQYRg8WWmaZmvzFghjpa6qsCgttU+Bp7ZlQZQkLmXMFO3QEQwIwJbIfBRFgcUy0mGs49kNwxCXr1zB9WvXsGv3bhx55hm+SW8lidiKDdsm6EfsNlRlIAyxvLKCqQEjhZ0mSRISySRGCgXs278ftWoVq2trKG1uYplKMouShJF8HiOFAgojI9B0HaqiQKUkQ71GIsM+7IaapsGnEwuNZpNr7XQ+hx6ddhAEAZulEtZWV3Hq9GkYtA3+SdqnEgwAlK7X85DP5zE1PY3LV65gamoqfgSQOlkm6iAIAhIDbo6RSECmYMJ6o4F0ZBGGQcCZ5wxd5+Vj3/e5OpVIR91UVSUIdkEgpSLX3VJ0D5AI3/d9LmzRzzrlcldWV/H+e+8hnU7jpZde4oAT/np+i54gZuAnGN0vLS1hbHy8L/1np0mSROaFaT/VdRwkk0leGrQsC6XNTWwUi1ihbIgy7SlOTkxgYnKS6Ap0tgSGuIeKokCjzwmL8tkGxSSnfUqXDADrq6solct47dVXe/LRb9vwxvu8vo/Dhw/j+9//Pu7cuYNdu3d3v5hWFf2OaqLWZw0KAhEjajSbPPGIbuwhwElkGPbEoayVTZpgSLIMTVUhKwrHllRrNRKEbKEyxEdWo1TXfSw6heQHAT768EM8ePAAR48exe7du7uEc4AnXxlgK2qokeSPYcViEc1mE9PT01t6nyiKfAw5DAL4QYBcLoeJiQns833U6nVsbGygWCzi+rVrCMIQqVQKU7RdOTIy0hUQMFB3PxMEQlpWr9cR0JZ1wjDafBCbTgDIc37lyhXk8nnMzc1tfcT1MexTCwY0qhPtRBb1rdu3sXfv3u4XCwIv6wNkNG3gogpD6IaBIAhQqVZJMMCy7o5eb8IwkDAMeJ7HUaKB78OybVi2zSsGlUoFCMNYpqt+pqoqn0MNDaP/Jht5qG7fvo3z589jamoKJ06c4EjV2Ox1mMXV8ZJeWfDQkruD+n4DgE+Neh3FzU2cOHGi/3E6jGVuIQg6ulKtwnVdTg8tSRImJyf5IqpWqwRlvLqKs2fPAgAy2WyXuNKwUyydUX46lSLXS8+JAYxEUcTVq1cxMT6OwujoNuvgEzBFUQhQy/OQSCYxPz+PK1evYnZ2to3RkpkAoE6FyvpVE6Om0zJwEAQkkaAcBJ2mKgrnoWCtKMdx4DH58jAkgYGioFarbam9GD2GDfJMDdwQaLZtOw7efecdwkZ6+jSpnDBwdMco7pPEDIR0Kod+8ON/0AA0PwAsPXgAXddRGED+1mmMtMylI4EmVSBlAOBkMol8LoeDBw4AILiEldVVLC0tccXWtqSCggSHuV6RBprNZpM8L7Lc9p0ytUp23FKphC+98spPzG98qsEAQJCW+UwGO3fuxMWLF5HP5zEa/YLpyBcDDGq6PlT/zA8CJA2DsIvZNhkLG5CZyfTL4YEBjfoD30fT87C+scGleB3XhcJ4xAeYRLPHEIDjeX0zE3LJIS5duoQbN25g9+7dRGwoMhPLF0pkwQyMxGNe05NnYJjP7DNJwGzQvXnw4AEkUdwSTz/LkmzbhmWaaDYanBBKkWXe5okeO5fLIZfL4cD+/XAchyzwlRXcvXsX169dg6wofIEXCoWBiy8a5YeUk5xlHH4QABQvcOniRTSbTZw6fRoIQ2jblYEnYpqmwaS6HwcPHcKDBw/w3nvvcYQ8AL5OTFrxE4eoJkbNMAy4nodKtTpQ10QURV4tCIKA09J6tP3ouS42SyVMjI/DsizuZ4YxVdNguy4c14XRJ7hmgXe9Xsfbb78N13Xx6quvEupedj/i3vsEg4EoCv5JAxOjFgYBHj54gJnZ2aGPEwYBwfo4DtmMaUnf933ouk4AgVTiPGrT09O8+lCuVLBKx57Pnj2LEEAmk+F4hGwuN9APy7IMXddhUi4LvifRKSeAcJucO3cO01NTGOugbf8k7VMLBhRFIRuk58HzPBw9ehTVSgXvvvsu3njjDT4qCBDgD0BGtIYd6QvpXH8ykUDTsrC5uYnEAHETZoz0Q6H9YEYsYZkmFCo9yaQuRUkir6ULvNfDqakqfNMkkqh9ggHP9/HhBx/g4cOHOHr0KPbs2dP7GrdYpu9sE/SKvodqEwwRvQ+ypaUlTE5N9XWMLFpm/4dUr4Jl5mEYQtc0pFKpoSJoVVUxOzuL2dlZThG7QtXTPvroI3i+j3wux4lLcj0WOI/yKb+9T7Miz3UhaRru3buHR48e4eSpU8jSjHC7MvBkTNd1TgaVTqfx4osv4i9/+EOcv3ABx48f52X9kI6CicDQJXo2bpqgwZ5D5cqHbQ0yoiJd10nbkSrbNZtNKKrKMUyM/poFsL3GjhWqaeHTddAvESoWi3jn3XehaRpef+MNJDuqIG2gxsjG/aRsWPbBQX5r0Bmtra/Dsm3M9cCYsWN4nseTB4+2l/1IUGBoGlTDQD6XG+o+5LJZ5LJZ7N+/H47rchbVu/fu4dq1a5AkqU17pdd6V1UVHgM2U9KrIAxhOw58z8PZM2eQSCTw/IkTseOIn5R9qtBmdpGe5wGCgFOnT0OUJB7ZAuA3CcDAzD5qbHwsnckQZKjr8jG8rZhAx88Yn3gykYBGJW5D2h+2LAu1eh3lchnVWg0mFSSJmkLJLFw60xpntm3jhz/8IVZWVnD69On4QCCm70dPdJiraftXLxmoYYlDBh6tz/urlQqq1SrmOvTSWWbVbDZRq1ZRq9VgNptwHIdwfoMEhTrlitBpRvY4G60AkJLgwYN444038Fd//udx4sQJJFMp3L51C2+++Sb+7DvfwYcffoilpSVe/mcmyzKv+LBxIM/zsLa2hps3buDgoUM8q1BUtQtUNUszmy9/+csDz/XSpUs82PzX//pfb/laP0/G/AbThx8dHcWzzz6L27du4fatW/x1Fp3tlmmpfhhjsseKLCOdTkMSRZTK5YGU1HHG2hKsspBJpzkOgJGhNWmbq1Quo95okBHGjmNpFLfEMsc4e/DgAX74ox8hm8ngtVdf7QoEOo1n8Vu+qn4fOqQuwcdMIh4sLSGZSJCRcf6RIWcSrdfrqFaraFI2Sc/zePVQU1UiNSzLUFV1aDXbTlMVBbOzs3j+xAn81Z//eXz5y1/G7t270Ww08OFHH+E7f/Zn+MEPfoArV69is1TqIqHSaULo0spzQAWULl26BM/38dKLLxIeCKBLsfGT8hufWmUAIIu6STdqjQJ7Xn7pJfzgBz/AB++/jxdPn4YdWdCMD2CYR8mnrH8pTUM2m0WpXEapUkEqlXq88S5BgOO6SBgGX2gs6mSlQDYxwJDLbGpCEkU+PcHKQZ2sYrVaDe+8/TYs224v73WdRgTMtMUFLXRME/Qq9A8T4X9c6ODS0hJkWUY+n+d634HnwWe9TYC3ImRZhkQrLzIFD1qWhXqjAQjCx9f4psfTdR27FhawY24OQRiitLlJRFLW1nB/aQkC0CaulMvloGsa6p4Hjz4LpmVh8epVTE9NYR+bHqBg1E47deoUvvWtb+HMmTMD8RVf//rX4fs+du/ejV/7tV/7eNf7GTdRFAldLwXuybKMnQsLqNVqOHf+PFLpNMZGR3kSoes6z74GrRUmMiNLEnKpFNlQXBflSgUjPdbkILNtm0wSpNNIU7VT3/e533BpxYvhlQSQqly0vejTDaOTEjsMQ9y4fh0XLl7E3Nwcnn3uuZ4VkLZr/wSmCYbyG0O0F/udk+95ePToEeYXFkgLl5LLcWGfiG8URREK8x0RfRrGCBiG8ayAwxrzxYIgIJ/PI5PJ4ODBg7Btm0i5r67iNhVX0lQV4+PjHKekqioURYHrusR3+D6W7t9HuVzGK6+8witZIcW+Re2T8hufejAA0I07DCHS6PnUqVN4++23ceHSJc7jzjK/YRa1T2lh2WhgJp1Go16H5TgoUUXDxzHbNJGNRKNssUavo3OBe2EIl35hruPANE2YloVMOk3eL8sol0p4//33oRsGXn/99bYWSZyx0Ru+qNjD0Gdch72v62cd7+X3ViDsfQxY1/XQDRHds/f6kcjXpzTC95eWMDo6CiuiB4CQqEKynmp08+80n95fRhz02NbR7ghpv1MEuCTz4cOHYZomX+DXb9wgksy6jsmJCeTyeSiKgnq9jrt37yKZTOLECy/w5w+IbxGcPn0a3/rWt1CpVHD9+vV4+WYAf/Inf4Lvfe97AIBvfvObH8uBfV5M13U0TBNuBGX/zDPPoFar4b1338Xp06chKwpkSeLBojjERuT5PkA3EggCcrkcNopFVCoVpFOpxyJ+YRwXLAFgLQJZlgFdB2Or5BgDz0NIJ1IEWg1oUk2UgPLfy5IEQRRx6eJF3Lt3DwcOHsSB/fuH76E/bmWA+oFOTRDmkwRB4ABfAF3sqMMAdRn4GAAXEAqCAIHvY2VlBa7rIj8ywnFkUTBk1Hf0EqfjipS0SvO4Fr0O7jMBrj+yY8eOrqRi6cMPeVIxPj6OdCYDl+qzrK6u4vixY0R1lmLlBHT7jk/Kb3yqwYAoilB1nUR3ngeJLrTJiQkcPXoU58+dgwBgYefO1iIUhL6LmhHLALTnTb/sXC6HjY0NMlmQyWxZ1Q4gi7qzZBM1FhyAtT/oxse0CQCQqQLKgigKAlZXV3F1cRG5bBZHjx1DGIZoNJsQKb1ldHFJotg+VhjdpGNAhYMsRMdkQkjUu8LIgo9j1QJIOVUAbccEAWHvY3+n/2aEP20jTQBqlQoa9Tr27t0Lkd4zSRTJ35nueN8Tp2CbMPzYC7rzfvFP6ggSDMPAwsICFhYWEAQB4UGn0qr37t0jdKQ0cDl98iTZTMKQBBcAMpEgktnp06f53z/88MPYRe26Lv7hP/yHAIBXX30VX/3qVx//Wj9Hpmka6rTtxpylKAg4efIkfvCDH+D9Dz7Ac889h9FI4D9oI/LpuBloYgIQJjutVkNgWRwEuFUbJHrEwa+yDAPgwYFPe96+70NRVS6mJYgiTN/HpYsXUSqVcPDgQUzPzBC/wfyFKJK/SxLpBTNfyDJnoAs/MNBowhA30RQCbb6jq9VI1wFneg1Dns0zfxFG/rRdFyFtC0aP/3B5GUYySaSBIz5DGlKZ1nUcrqfysSuKHcYCoigtsSgIbUmFbVlYoViDGzdvIqD7XhiGJICYnyfvo9ciiWLX9Non5Tc+1WAAIIu6QUctGKe7AGDXrl3Y3NzE9evXEYQhjh09yjf2XouaBQJxPW+D9vr9IMDm5mYshWU/C8MQlm1vaVZcliRAkhB95CRJgmnbkCUJ9+/fx40bNzA1NYX9+/e34SP4wo1uSnShM0cVUICSLMuwbZsvuDY0b/RnodAOIgxbPVJ2Nx1a8pZoJYNdO3MebIEGtA8XsghWaH1yAECgVRGmCyCIImfeuruxAUXTsDA/P5zueYc5kQW9FX6CYSyaMTHAURxN8tjYGMbGxnDkyBGsr6/jvfffhx8EGBsbIxwGIE6B3deRmGoUGxf1PA8ffPABvva1r3W95t/9u3+H69evQxAE/M7v/M4TvdbPsimKAkGSENKeq0RlfxVZxokTJ/D2j3+Mjz78EC+/8gryzOkLQk9lP+a848rY+ZEROCsraNAe9FbxKTZd78NOEESDA2aJRAKlSoVgU4IAZz/6CKZl4fjx48jmcmT9tz6gO8ilfoOtU5MKuTn0GNxnsHXMfC0iCUCkBB923K8wDPlIpe/7cB2n7XfRTd+nbKzs96wtwu+978Oj7WCRJkGszVpcX8e+/fu3zPVCT5ZQAj/haiL/eH6YeG0DVvKfn5/H/Pw8giDA2bNn8fDRI0AQOEaMtzsEAdkYcOMn5TeeimCgJorwaKbHLtv3fezZsweapuHGjRswTZPfhF6LmoN8ekS6uXyeoHubTTRNc0uARNu2yZf5MRHhmqrCcRxcuXoVK48ecQnRgC4mhzJQRTNs9ncWTftoLT7LtiF5HokkO6872gIAYDYsFFBAQP8TIKBcqbRVFlzPg0WJU9g4EtND5w872h2DSMvqQkc1gx0/itEIaXQ/NzPzWIEAwpD0YOmC3upEBbceC7qtHwuy8UfBY53H21hfx7vvvQdJkjA9M4OxyFgse6VuGF19P4BUG44ePYozZ87ggw8+6Pp9sVjEP//n/xwA8Lf/9t/+iVCSflZMEARohkHoYl0XEuWIF0DAXSdeeAEXL13CW2+9hZMnT3IgZ6yTRjcGJvocqKqKRDIJv9FAcXOTzO1vwWwaQAiCMLSoWKexyYN6vY6LFy5AlCS88cYbSKdSRECHBkV+xHewDZhtvAF95sMw5LTKAgA3LqCOWR9MKp79SV7Wel2j2eSKgI7jtOOb6OtDgOO+WBuN+Qsx0prUQbJi/n0JApaWluAFQd8pgn7G+GMY898wMtex1sPnsMoAeUnYdQ8Z6BwgidW5c+dw//59FMbGMDIywqvfIg18BBCmzU77pPzGpx4MMBKRMDI6w5ChgiBg165dGB0dxfvvv4+/fOstvPjSS7HqcnFo384lp6oqkqkU/Hodm5ub0KemhgYTRoMBURTJQnqc8rQg4PyFC9gsFvHs8eNY2LmTf/GyovQskXdF154HWxTh+j4kUSRBEo0o+WbN/h5dlGEIP/RJ4InWz9qyAQZeomNNvB/W0Q+MLuBe58zaI8zWNzZgNZuY7ZgiGNZs2+b6AoqqEmxGuHVVN37NMT/vel3kWYsu6Pv37+Ojjz5CPp/H7OwsbM/jv4+2dHIxLQJmp0+fxpkzZ3Du3Lkumevf/M3fRLlcRjKZxDe+8Y0tXd8XwTRNgyUIcD0PLNRiEx2qquJLr7yCs2fP4p133sHRI0cIoRkrV0fL5VSClv0bQBdOJZfNotlowHGcLYuVWbYNjXJfCEMq8sVZqVzG2TNnYCQS+NIrr0DTNF6WVhUFYY/KQ1v7jmJ3XNeFJwiQKX0y0OEzaIuL/oL8wZKTaNuPrT2BeBNWAWS+A0BXRTOaNPRat7xlQ98vgKy3Qj6/Jb6IyIny6gnjg3isb6FHEtH9Mlq9jakSOK6Ld999F8WNDezbt48EJ9HEJuKrc1SVtdM+Cb/xqQcDgiDASCZhUra/Tn1nRZYxPT2N119/HW//+Md48wc/wIsvvYRcLscXdWdpL1p+6rRcLodGowHXcVCr1/kM+CBjZXhWXtrqog7DEE3TxI9//GM0Gg08e/w4xjo0DvpluUJkMwaAkC62IAggKwpSQyyQslBGEUWECBEgQIgQ2Wy2bUGapklGsaikby97nFErgLAqZrNZjIyOclU5HkUPMDY3HgJIUOIOttC2Ggz0enXc50QDAnbdV69cweK1a5ibm8PuPXtQrlSg0B6tTwM0Zrk+gNXTp0/j3//7f49ms4nLly/j6NGjAIArV67gP/yH/wAA+I3f+I0t065+EUzXdVQkCT6lCZdlmfStQb5HVVVx6tQpXL58GRcuXkS9Xsex48e5GiDHFw3x7EiyjGwuh1KphE3qaLeSSLDKkAjA38LzytbGzZs3ce7cORQKBRw8eHBL7TFREACGZ6JtPddx4FO/MVT7ggYKAoi+QqffiLYO0plMz3sztN+I+EIBpOqwtrqKZ597jrcuOsf1+hlPIgQBqqbBNM3H8mG9kgggvurEKossSWg0Gnj77bdhWRaee/556LqOaq0GgUplR+9psg93yifhN54KCbVkMomQtgqYBjzTd2YPai6Xwxtf/jJUVcVbb76J5eXlVo+610MRs+BEUUQ2m4VE5SGjOtL9zLZtINImGAYVyza6IAyxWSrhL/7iL+B5Hl555RXkRkbgUjndxzGhx9/7GclWQ94mCOl/UYsCX3pZ5xx075Ns/wzLsrD86BEWdu5sK6nxNgPQN8CymfiPIHDgICu9Dm2PUc1hC5QFX++//z4WFxdx+PBh7N27l4M7JYqJ8CNZhyiKAysDzKIlv1//9V+H53mYnZ3lQKBtazdRFJFIpxEKAu8FM34ShYoFCYKAZ555Bs89+yxu373LOUyi1YGo9ePYyKTTJAMPApTK5aHP0zTNFnFMn0pa9BxYQuMHAc6fP49z585hz+7deO7ZZ1sYoce1mBbrQKPZP/lrd0YfXYNPRJmz4/Pv3L4Nmc72A61NWcAQgmp0bBMgVQGJVYG2GgwIQl9f2+t5Yj6qWCziB2++CT8I8NJLLyGTyZDpEMpbE8W7AWibXOu0T8JvPBXBgCzL0Ghma9t2K7oH2lSdDMPAq6+9hrHxcTJ6eOEC15jeimXSaQ5W3NjcHOo9lmVBioCABPR+6FkAwGaWl5eX8ZdvvQXDMPD6a6+1xC4ADtIjH7rFUveWXs3OuvNc2xcEJyPps6CHPUuh43u5e/cuBFHk46L8HNC6Ft5H7CzXBwFsy0KA1tw4owDe0n34GMHXZqmEH9BA9OSpU5ibm+NZKEdviyLvmwJEA6EXuxwA7N27l4wSgSCDAeA73/kO/tt/+28AgG984xtD8el/US2ZTCIUBJ5IsGRCjqpJgkwkvfLyyygWi/jzv/gLrK6vx39gv+dDIKOGsiiiUqnAosyog8y2rDYWuZ7PbKREH4QhXNfFB++/jxs3buDo0aM4euwYSUYEgY8r8rcOdSZoBSOPi7XpYeEQfmMrFvUxfhDg7r17mN+xI3Ytsb1CRLxvsh0HYRAQ8blIK3bLd2DAPevX8lhcXMRf/uVfIpVM4rXXXuP7mizLXIVVEAT+/AIE49bLPgm/8VQEAwCQymQQ0oecRfdx5StZlnHq1CkcPnwYN27exPe+9z2srq1t7WCCgJF8HrIoEqa7Wm3gW2zLih0rjAJGWNmR9dUEQcDt27fxzjvvYGJiAq+++ir/DE3TAEGAFQ0GtrJABeHxovse58+MVwaewKIOI8cLwhC379zB3OzswFltVhqNni0jbpEp4QwA3qsctjLwuCOIruvi3Llz+MEPfgABwOuvv46JyUnOSKgqCglcaWUgyj7Zb0EzO3XqFAAS4Xueh1//9V8HQFDDv/zLv/xY5/xFMVmWoVGnZ1MdAvbzThsfH8eXv/xlGIaBt958Ex99+GEXqySzXk+KkUjAMAxIkoS19fWBz15Ie9VR3xHln6AvIskDA/7Ra/nRj37UxUYqKwppQYVh+7lvwXdEg5GPNZYbsWEqilupgkZf+fDhQ9i2jYVdu4Z6D68WUNyBbVlEbZImEWyiYisVxaHOPOb6isUi/vzP/xzXFhexd+9evPLKK7wCIEkSaVlFggGWSIiiONB3PGm/8dQEA6qqQqY688zx98qURVHEvn378OWf+imkkkn8+Mc/xgcffMBVDfuV+phpus6pijeKRR6A9DLLcTiFJDMOEgF50KOglDAMceHCBZw7dw67d+/GyZMn26JaRo8aUuY64PEj1WGXsxhbGejOwIEn4ySin7CysgLTNLFzwIKO/QyKFQjQTs3JHM+w5b7HacksP3qE733/+7hz9y6OHD2KN954A5lsllDdgmBa+NQEXdzR57YXAChqrOR38eJF/Jt/82+wuLgIAPid3/mdJ+asP89mUNyPQzNAoBUodloqlcLLr7yC559/Ho8ePcL3vvtdPLh/v+XIh3hGRgoFqFTVcKNY7PtaxrPRyTgqAJybw2PlYXq+tVoNb735Jhr1Or70pS+19X0ZFgKC0BpDJr8YeN6P9dohjQNse302xRwMa9FPuX37NkZHR9tk6AeeD0iVwqYVFJmCLPk5Mt8x5DkNc8eiyY/jODh79izefPNNSJKE1994A4cOHWpTNdV1nTCuBkFLkZa+P5PLDUzInrTf+NQBhFEzMhnU19fhUDBQP3BYCCCdSuHll1/G0tISzl24gJX//t9x9NgxTHUA83pZLpslMpa2jbWNDUxNTPT+AoKgjdQi+sV1bka+7+PDDz/Eo0ePcPzYsVitdYEqndkUOJmigMAtbVeRHt5wL+9+XRBpEwzT93vcUb7bt28jn8/37Z/3sqZpgrGLRWevt+rUtvJq0zRx4cIFPHj4EONjY3j2S18iKGaakXmex9nBTMsChG5SKI0KKA0ytqgdx8E//af/FADwN/7G38Arr7yyhTP+4pphGGgoCnwq/KJSEHJPVxqGWFhYwOTkJC5cuID3P/gA9+7fx7PPPgtg8HMiiiLyIyPYWF9HvdFAwjB6fs8sC+wcr432kqPrcmNjA+9GxIbiSr2appHRQDrTL8WNFfeziO96UmHBwPbikCh8/nL6Z6VaRbFYxMkXXtjyOfm+D4cmlrphIAhDPsoIPL4v62XMfz989Ajnzp6F53k4duwYdu7cSUYmAdQpa6JKFRIDqsvT2f7oRUcftSftN56qYEBPJtHc3ERIVQE7pWiZRZGrgiBgx44dGJ+YwIXz5/HhBx9gbGwMu/fsGawfLhB2qOWVFTi23Zd/PAhD/qAHkSiXYQfYRmrbNt555x1UKxWcPn26rzyvpqqwKRL6cbLWrS7kQa/n9xS9UfXD8Lu3vQdAs9HA2urqY83Ju5TIJAhDpGi/FIKAsGNksa9twRGFYYg7d+7g4sWLgCDgxIkTXBiEXQ/LyFRNgyhJZHYZ6GJAGx+S2OrUqVM88HVdF5qm4Zvf/ObQl7dtgJHNor6xAcdxeBspLpGIrjNd13Hy5EnMzc3h7Nmz+O53v4s9e/ZgempqYIBtGAbS6TQqtRqKm5vQNC22/cXOgY1PhyzBIb9sAyIvLS3hzJkzKBQKOHXqVM92mkjHah3HgeU4SBpGz+mpWNvixjyMRcvbT8JYln3n9m1our7laZoQ4AqRiqq2T18MW/2MfldDWLPZxNmzZ/FoeRkTExN49vhxTkAGkE3bjyQRAAVj07YRO5YkSRgfIqF90n7jqQoGJEmClk7Dsiw4to1EIsHlOwc9ZLqm8YV95swZvPvuu5ifn8ehQ4f6EgXJioJ8Po/S5ibK5TIShhH7evZFRQMBZmzzrFarePvtt+H7Pr7UR2yIH5ty73ueB8e2t8w532smupcJsblS61p4dN8D8CbEAPsGHlMQcOfOHciKgpktcguEYUhERUAWT3SzFYahLSYnMJTjC0FaGVeuXMHGxgZ27NiBo8eOdTlki44kiaLIS79sJEim58MW9NSQ15vNZnHgwAFcvXoVAPAP/sE/wM6dO4d677YR01MpNEslgDrGngFtTEtpamoKY6OjuHT5Mq5fv477S0s4fOgQIbfps7ZyuRxMy4Jt29goFmMrkrzaxjA+kc2FtxmDANevXcPlK1cwPz+P5559duCzrakqHNuGY9swdH3rGT5dF0+qDTWoNbvV0EMAGS+/d/8+9uzevWVgosOA6GHYJXvPsnR23j3vwZCBgO04uEUFiURJwskXXsD09HTbOQe+D9OyCIhR0yBQrho22irR0UIAGJ+cHEoD40n7jacqGACAZC6Hyvo6Z+TjRB0R65dFT01O4rXXX8fVq1exdP8+7t+/j/n5eRzYv78tSotaKpWCZZrwm02sra9jdmamK/joVMXqtOLGBt5+5x3ouo4vfelLQyM5NU3j+tqKpm293LeFyDVuMCZKvcEcl/SEHARAFsHdu3cxPz/fF1UfZ0yCNrrxcmN9+kHnOsT458OHD7G4uIhKuYx8LodXXnkFYzEc9I5tcxlZwzD4ObisLynLfOxyYnJyS8Hd+Pg4rl69irGxMfyzf/bPhn7fthGTJAlaKgVUKnAoQZggCFzMCmgvz3earCg4RkVirl2/jg8++ACLV69i/8GDmJubi98wBAFjo6NYXl6GZZool8tdbTBOvNXjOQyCAGfPnMHde/dw6NAh7B9SbEhRFEiyDJ8mElvhHWA+40nWBthz31MfYItjfCGA+0tL8D0PC1vc4IIg4JMehmF07R/RkeZerYJhRsdNy8LNmzdx69YthCATK/v27uVkUPx4YYiGaXLQIOOqcR2npSMhigBNKqZmZoa+1ifpN566YECSJKjJJCzLam0Gnb21AeM/mqpi186d2LFjBzbW13Hj5k3cvnMHC/Pz2LdvXyx72EihAMdxYLsuNopFjI+N0UOR0njg+z2rE4yJrlAo4GSf8l6cqaqKpmkiDAK4jjM0fzm71l5AqR4v77IwrjLwhEp9AEUCO86WFzSrloQg/b5B1yjQMmz7D3tXBYIwxNLSEq5du4ZqtYqx0VG88sorGB0bi2Un86k8MUCqUAqlv/WZqhpIOdKnREiTW1jQH3zwAd566y0AwG/91m8hm80O/d5ta1kyn8f6o0dkM7BtpBWlVZanmXm/jVYQBOTyeTx7/Dhsx8Gd27fxwQcf4MqVK9i/bx/mFxa6fICsKMjl84SMqFSCYRh8jDAEOJNq3HEd18V7772HjfV1nDhxomvkdpBpmoam58FyHKQeU6PjiVUGBkwTPA44+vbt25iYmtqSHgwAvk5FSYLamURQY89DrwSlXzu00WzixvXruHPnDkRJwp49e7B7924SkIXdHA6WaZL9QxAIBT69R4w3RYmwD+YKhaETySftN566YAAAMoUCqhThb1oWKYNFIrVBjHNMrVCWZew/cAB79uzB3bt3cf36ddy7exezc3PYv39/282LAwUlk8k2AZPOY4ZhiMXFRVy9ehU75udxPMJuNqwxjn0W/AwDOIucwJZAdHFtgijPwKC+31ZxDWEY4vrNmxgfG9syEpiB8hjQJs46s5sodqNXIOBT+eTr166hVq9jcmICzz33HJ/ZDWIWcxgErf6jLLcmGsKQTLAIAlRGBw2gMDq6pRnf3/iN3wBAJHj/3t/7e0O/b9vaTZIkGOk0GpUKGnQNM657AENV3SRRRCgIyGWzOP3ii6hUKrh27RrOnjmDq4uL2Ld3L3bu3NnGf5Kmrc2g2cT6xgamJie5v+LViI411Ww28eO334Zlmm1B6FZMUxQ06Tia67pDJyHRiacnYU+ccAhE86NSqeCZZ57Z0vuYhHxceyDOQrTOOZpMxHnVer2Oa9eu4d79+3xv2b1rF1c/ZNMhUWurJiYSXHcAoJw61P+zFsFWAsIn7TeeymDASCSgJ5OwGg00Gg2oqsq5rIMBgQBAFrQIWroKQ0iyjN179mDnzp24d+8erl2/jj///vcxNT2Nffv2oTAyAggCDMNAKp1GtVrFRrFI0Ot0gQW0xMPMp4pT9+/dw8GDB3HgwAHuALYqRqLrOgESUi3zYasDWwINoRcoMPp3Oh7Ua0Fv0Xmsrq2hUi7j5Zdf3tL7bMtC4HkQxN6yr7GnB3D1s85zdVwX9+/dw/Xr19E0TczMzODkyZNdLF8igE6XbEZwAp1ZCitHKnRBCwDmFhaGPuff+73fw5tvvgmAKI1ttZWybe2WGR2FWa/D8zw0m02kUqkW1/4Q7xeZ76DOOZvN4uTJk6gdPIjr16/jwsWLuHbtGvbQoIC1ggq0smjZNjY2NjBKBavY5hDNmEvlMt5++21IoojXXnuNA52HKU1HTRBFGJqGJk0ktlKRZO9/EmOGUTD3k6o0XL12DblcDuNbkIxmGCPGKSD186MxEwVx9z8EUCmXce36dTx48ACapuHw4cPYuXNnl5/umirrqCay14uCQCqKnkfai4oCz/OQSqdRiAid9bNPwm88lcEAACRyOXi2zRd1MpkkD9oQi0UQBEAUIVASD9bHEiUJO3ftwvzCAh7QEvGbb76JVCpFtKR37EA+lyNZumlidX0dUxMThF/a9/lYm+O6eO/dd7FRLHaV9zhyeAuLWhRFqJpGFAPpmOGWbOgFGD+iyYz3/Z5QdH99cRG5XA5jtOUyjLX1+3R9qJZF551mFQM/CLC2uop79+9j+dEjBCHRDO/VKhIEgcz9RsyyLLgUAZyI9h9p+8p2HARhCFVR4LkukpkMCn20CJrNJh49eoRarYZvf/vb+Jf/8l8CAH71V38Vr7322sBr3bb+ZiQSUHUdVqMBx3VhOw7p0QoCEBEk6mW9Nsh0Oo3nn38eBw8cwPUbN3DlyhVcuXwZk1NT2LFjB6ampjAyMoKV1VXUGw3SPshmuUIf+8zllRW8/957yGQyePHFF9uC3cfp42u6DpNOJG0lkXiSNshvbLUCsbm5ifX1dZx4/vktvc+ybcI0GIcx6jAB3d6QtQ5Ag4r7S0u4f/8+qpUKDMPAsWPHsDA/34WLYK3sKFdEz2oiO1dW+ZQkjqeITi112k/Cbzy1wYCRTMLSdTh0ntZxHPIFCwLXsu9noiAQyc6434kidszPY8eOHVjf2MD9+/dx7do1XLlyBSMjI5iZmYFCwTlr6+uYnJjgFYmo0MQrL78cu9EJQNuDMYzpmsYFlHxdHy7S2+IiEwdgBp4k4dDGxgYJlrY4H8w4BSRJ4uW3nia0QyLZPS+XSrhPwaOWbSOXyeDQoUOYnZvr2X/k31nknnqexzng9Y5MQxAELn4iCgJkSYLrupicmOjrkP/gD/6gq6R38uTJoTXHt62/SZIENZVCQMe4LNOELEnEgQ9BwyvSZyqkf+8s+yaSSRw/fhyHDh7E0oMHuH//Pt59913IVFBttFCAJIooVSqESAZ0/FgQcOv2bVw4fx6Tk5N44YUXup4Txky4lXaBKIrQaGZpWtaW2nFPCiYc9gkGHqdSuri4iHQqhekt4G44xigMkWAjyFswQRDg2DYeLS/j/r17WFldhShJmJ6cxOHDhzExPh6bmETxKNFj9qomssDBon5F0TT4vg/dMDDWZxT5J+E3ntpgQFVVCKoKkWZelmlCkWVSBhYGK9VFXxe3qMmLBIyNjWFsbAzHjx/HA7q4z58/DwGESjaXz0OgvWjXdfHmW29BEkW8/vrrPWVMBYGo121lUUuS1CIhsiwkH0emc4DFTRMwzMCgvt9Wo/tr164hk8lganJy6GzHcRz4rouQtmwGmQDwBdhoNPBgaQn37t9HvVaDpmnYMT+Pubm5gcCaaEYWJZIyGUGIqrYBkdhdtB0HEAQuu20YBkbHx/s+l2fOnAFAwF8LCwv4m3/zb+If/aN/tGWQ1Lb1Nj2RgNdswqObg2lZRNVziGeYsdNFA+O4Z1/VNOzevRu7d+9GrVrF3bt3sfTgAe7euQPdMJDP52FbFrKpFCAIuHHjBu7fv489e/bgmWee6ZlFs4x1K6tNNwyYlsX1GeSfcKuJt0JirmmrrYNKpYKV5WU8u4WqAMcYIYZToJfRDTwIAmysr+P+0hIePnwI3/cxWijghRMnMDk11bf10rYHRZ4Rm1YTgY5qIsAxZYwZUZNlOL6P6dnZNv2KTvtJ+I2nNhiQZRmyrgOuS5CYkkTaBXRxDXq8WITPEfKdEwkdJggC5mZnMTc7C8uyyMK+exe3bt3Cndu3eYSbz+e7ynuxn4f4zKKf6bpOACeOA8Mwhi7XD90kiL12cn4sGGgDXEVsK9F9qVTC6uoqXnjhhaHn/H3fR5Nuvjol8xlkpmni4YMHeLS8jM1iEZIsY2ZmBkePHMHY+HhLqnaI8cLWPwjgq9FscpxI53fNsj1WNVAUBY7jYG5hoe+CBoDf/d3fxe/+7u8OvLZte3xTVRWCokCmQmEuZSYUIy2eXpkjJxbbgtRuMpnE4cOHcejwYWxsbODuvXt4+OABlh4+hKaqCHwf9+/fx9GjR7nGQD/bKnaAkRAFNJEYRs48crCPTUA0jC7BsHZtcRFGMom52dmhfadlWQT8LAjDgQZ9H+VSCY+Wl7G8vAzbtpFJp3Fg/37Mzc1x8G8ItI2mdloULM7+ZK1egLQ5o9VE1kpwPa8F1pYkaJKEfKHQN/D4SfiNpzYYAIBEIoGq40C0rDYBD4X1APs8LFyZKsKq16uX30kkpOs69u7Zg7179mB5ZQW3bt/G0tISAKBcLuODDz/E+Pg4xsfHkevQ9W4/ia0tNJmWxh3HgWVZW0Kke56HkIkkBQHnRWD/IwzRcJoooAAghAeiDFmr1QGbiOtYlsUpfxlgU6RqfFspu127dg3JZBIzMzNDyR2HoO0BKgMcJwgFAJ7jYG19HWvr61hfW0OtVkMAIJfJ4PkTJzAzM9OVFbHqwbDONQhDmM0mfDrzmzAM/v2yKhN7nes4/GfpTAaF0dHtDP8pMF3XIdHyq0BVTZuNBpKp1EAMiiiKEMIQAVpBH58M6HwxTRCYCQDGRkcxNjqKZ48dw9XFRdy6fRteEEAMQ9y4cQOVahXj4+MYGx3tmVA8TrtA13VCk72FNiPb7HzfR0ADp6gP4ddM/6zV6wAIqp6NNAsg/ewgCHjyJQoCn53fCv6oXq/jwcOHZCqrQ/2zl7muC5tWBZKJRPz3G4aoVatYXV/H+uoq1tfXCUBUkjA7M4P5+XnkcrluDAEAoUeFNy5g8zwPZqMBgNANd1YT2eutyKSU4zjYtXcvUqnUEwNfPq491cFAMplEo9GA73mQ6ENrmibRLRi0qCNOm1ncxsCojXt9DVOTk9A0DfV6HZ7vY3ZmBuVyGVcuX8bFixehqSrGJyYwTtsN0dHAx60OuK4L27YJ614n+ZHv89n2RrMJm46uyJLUJs0ZZdhimVAA0ioIEUIAU+6iwYPnIfR9hKLYLqsMgq4PwxAS3ayZOl/0mMxq1SoePXqEZ599lpcIB23EbA6Xbb78uL6Pzc1NrK2tYW1tDaXNTYRhiGQ6jfGxMezduxeJZBKqqiLZJ3ASAN7qYcZBP5HXhWGIZrPJdQcSdBSIWTTzcShYCaIISZYxOz+PVCr1xMCX2/b4JggC0uk0yq5L1jbd4EzTJPoSNEiPazUy8DHoBsk31ZjAvt+6lmUZBw8cgKppOHv2LOYXFiCLItbX13H79m3ehpygSUWhUGjDELBndlgRLkmSoCgKXNeFZdtd6yEIQ/iehyAI4DgOGmzNIYJvon/yPnjYmrXnWTIiPoUGCR4lVfKCAKDcIAJafkOkbdNO/9F5769fv87be+EQG2MQBGg2mxAEwuoXbQ9Ypom11VWsbWxgbXUVFuX/GC0UsP/AASQSCeiGgXQq1T9wCsMuHxYbCPg+mo0GmQ6QJMKN0sMYQFoQRYyMjSGTzW5tpPwTsqc6GOCL2vMQUrYm3/dRr9dJv549wDFlP0Y5Gfg+LNvGr3/966hUKhgbH8dvf/ObxMl3BAK26+J//sY3cOPmTSiyjH/8j/8xDh44gJF8HgnDQL3ZRCqdxt69eyHLMjaLRaytrWF1fR0Plpb4RjU5Po7RsTHyvkSiff59gLHM3KGLWqdTBp7rwqXZP1tsLuXsD8OQK+YJNJPnzFaRCB4OUEIJAQL4INdtJAyk9RSazSYpNyoKNE3jVJ5BGBIdALoAPM8j/TDqCCRRJC0d+v/itWvQdX3oeVnHdYnaXBhC0zRUymVsbGxgbW0NGxsb8DwPmqZhbHwc8/PzGB8f5xUT0zQJxecwG3AY8u+hDfTDf00qAiwQMJLJNucsor2dUK/XEVDg4PTMDHRd/0RwHtv2eGYYBuqqCi8IIPs+ec4oUx9T/eu13UjUz4Rh2O47xsbwzd/+bUiSxDNmZr18x/jYGCS6rqanpnD8+HGYloW1tTWsr63hLh11FiUJo4UCxsfGMDo2hlw2y0vMw6YSuq7DdRwOtg6CgK9X9lyz7J2xIrJxXClSCWR+g/f7WWJFM/VkIsE3L3aMMAy5RgJfY0EAzycVyIAmMaAcAFHhMUmW4VgW7t27h8OHD0MSxa7x3k4LQch/AFJqD4MAy48eYZ0mDtVaDQhD5PJ57Jibw9jEBAojI3zjr1QqZEpoyGycnXNcu9n3fTQigUCCTb5Rix7B9Tw+gaTrOqamp5FMJp+KJOKpDgYAuqjrdXhhCJVG667noV6vkwcyUsKNfgGyJAGCQOY3Uyn8wi/+Iv7Tf/yPWF9bww9/+EO8/sYbbSXsIAzx7/+3/w03bt6EKAj4n/7+38fBAwf475PJJGr1OgQAa2trmJqcxOjoKEZHR3EIZFNjm9jq6ipu3boFgKBFc9ksMuk0MtksstksMplMfDRKgxtZllGt1VCv1doeLBYEyDS6DsMQviwjmUySSHRABi4HEnz4COh/ACDKZFGKoghFlmHoelvfmy/uIIAXBHxR+7SsGIQh39CbpokHDx/iwIEDA9sKpmWhXCphfW0N9UYD9Xod9VqNo7hHR0dx4OBBjI+PI5PJdC1aTuaC4acfWAbU+Wo2n8zJQZLJNnXETkCX67qEHVMQMDIygnyh8FSU+batZYIgIJPJYNPz4AUBNE2D2Wyi2WhABIhceo82HstaPc+Drust37G+jh/98Id49bXXeFkc6O870sxHBQEadOQwn81ifscOzO/YgTAMUavXsb62htW1NSwuLsK7dAkAkEqnkc1kkM5kkMvlkM1mCb1uj+eMqWY2TROWZXXLJgtkSkcGYGgaRFFELpvti6Fo+3zqsyRJ4oEyH2eMAf0y38HaEFH/EYLM4bNZ+xvXrkFSFKIH0ceCIECtVsP6+jrK5TJq9ToatRpn8zOSSUyMj+PAgQMYGx+PpQTfqu8Q6DWHkUSCGQsEgiCA1BkIhJRsKvKM1et1QBAgCQLmd+6EoihPRVUA+AwEA6w6UCqV4AUBEskkatUqbMeBQPkHmIOPflGSJPEozvd9/JWf+in82Xe+g2KxiG9/+9t45UtfatsU/tN/+k/48KOPAABf+9rXcKpjJI5ly7Isw/U8rKytYXJ8nC8QlUb+01Sl0LQslMtlVCsVlCsVrK6u4saNG+RcBQGpdBo5Ghzkslkk02kgDGE7Dnza8/dpZpKiWaqiKPy6AFK2c2h/cah7GTtNQB5UFhjFBSmCIECQJDITGynFsayA/X/n9m0oioLx8XFUKxVetmuaJmqVCirVKiqVCsrlMqkGgAQ26VQKo6Oj2L17N3d6/SJl/j3TqtCwWzDTOYiWd8OQTKq4nodQEJBIJLoCgY6bQXqnkgRFFLGwezdkWd4SvmPbfjKm6zopnQcBhDCElkjAajZRazSQoQE1gK7NUJZlLlMNoMt3vPTyy23PZz/fIdFAW1VVSJKEcqUCSRSRoZNIgiCQRCGdxu7duxGEIfcZFfr/2q1bvM+sqSqy1G+wxELXdTieR8aSfZ9ssmEIjfatFVq1Yy2vwPfh0GsTBIGU5B8TRMj1THpNR9AKAGQZbFtmeg2e78NzXdTrdTx69Ag7FhZg2TZs14VCR3XrjQa/D+VyGbVajfssTdeRy2YxvmsXsrkcctnsUOuwjWlwKwF8x33igQD1K8nOikDM6+uNBhCGmJyZQTqdRjqdfmqSiKc+GABa1QE3COD6PpLpNOr1OizLaqG9OzI+gZZwHVqq0lQVX/nKV/B7v/d7WF9fx5tvvok33ngDAPCn3/kO/vt3vwsA+Ks///P42Z/5ma5zUFQVnudhbHQUa2tr8GICgrZz1nUYk5NtSmae76NcLvOHu1Kp4NGjR0Rljfb0DU2DRrNzWZZ5EJJMJiEK3brX/HoxBLdB7O9CjpsAtkg4FBIxqaZpolgsYnV1FYVCAdeuXoVFkc31RoNH1EYyiXwuh927dkE3DMLjrutIp9NbQiIzVC4DOA27mFjmFKWKtUyTO0ZD17tZxRAJCGi2aDab8IMA87t3Q1GUp2pBb1u7ZTIZFItF2J4HQ5LgyzJc30etWkU2m20jkWLrg2W6LBiQZZn7jrW1NfzlW2/hjS9/GWEY4jt/9md9fYcAQhss0qC3VquhWCohBJCNGU0WBQG5XK5N8IiNR5bKZVTKZVSrVSyvrJDkAmRDZuOvLABSFAWWZSGfy8EwjPgg/2PeW3ZsoNtvsKpAr3UR+D4cy4JpWbh85QoEQYBjWbh44QJM24ZlmlyxVBJFZLJZFEZGsDA/D1lVkUomYVAfMqyxFskghcXuNwo86WBbux/FCIgiNEqZ33pLJBCgf280GsTPyTLmd+4klYSnKIn4TAQDAJEL3djYgAsAQYBEIoFms4lGvc5lITuBQTLtvXueB01V8eqrr+L/96d/iuVHj/Dtb38br776Kj788EP85z/4A0AQ8NKLL+Jv/a2/FXt8VVHgeh7PfNfW10lAsLqKScpSOMhkSUJhZAT5fJ5Tl3p0FKVaqaDZbJIxKMeBaZpoNhow6ay0CCAUiNQlWwQK5e3XNA0aLftJokjAOjH/24HTdU6VSgVokGw3oJErq6b4tN/I/u26LunT0/8dOkLD+BxA++5GIoFUOo0R2qMzDAOJVAoyHYFihD0AmcMdNhBoY/rCFoSVIm0WoFX2jwYCiR7l1+hPwpCg0oMggKbrmKEkRtsTBE+vaZrGgci240BPJBDQaZFKtYpsJtP1/HRWFSVJ4r7jwYMH+Paf/Alefe21oX2HoihwHYfrX9RqNWyWSgiDgJTpB5hAS/C6rmN8bAyWZZEKIsVP1ep12JZFhNZsG5VyGY1mkzNnAuQ5VjWNJCmGAVGSICsKkokEv17WLpRkmWCBKFkT8x9slp9N/gS09WHbNiRRxGap1GohRqqGvu+TNmKzyX0Ho4rn91yW0Wg0oOs6CokE1PFxSDTQ1qnkr6ZpcByHBBlbpCrnlWO09EeGYTftpMAXQFojzUYDAUigYiQSbYBCEZFxZpZ4BAHqjQY8z8OuXbsgyzLy+fxTlUR8ZoIBRVGQz+exubkJx3WhSRJ0TYNl2wRQKAh85JB98bIsQxAE+NThi6KIX/qlX8K//bf/FhsbG/j93/99/PjHP4Yoith/4AB+9e/9vZ7RMus9uRTQNkEDAtfzsLy6ionx8bbyci9zXRd16owAAIKAbCbDVRKjJWzf91Etl2E5DiRRbG3GlC6ZVUeCMARoBcTz/TaQIa8GhCE8wYUv+QgCnzBgCsAPf/wjpIVMbJmQAYskigRWVBUGJVSZnp7mDqpWq+HChQt46eWXMdHBosUcgUXLrrbjoNloQJIkpDOZ4fnUY1C9YRiPCG97G2IyIEGA2Wy2BQKKLBM0NHtJzOeEQUDwK0GA/Xv2QFGULsnabXv6LJPJkGcvCGCaJpLJJOr1OnzfR61WI5Ud1ttliUSkqsjQ77/01a/i3/4v/0uX7zgwwHcomsbxKCMjIxBFEZVqFeVKBSHlLhlkYRhyLAB77hVFwdTkJGZluWuyodlswmw2iUyuJLWCeMuC2WyiWquRygcr2Xse0daIyWijfw/CEO+8/TZfV3EtBgFkJE+SJMg0uNA0DYZhIJfLkYAkkYCu67hw/jw838dP/dRPta1jJmFvOw5XL2WgP5XuBcNupCwAaJuwwuDKAAMZt50XrQiwQCCZSLSSIXTIIkf+3qStSCOZxNTUFLLZ7JYkzn8S9pkJBgDSA0yn06hRdrhUMkkAbI5DAIXpNNmQaUAgSRKEMOQz94Ig4NSpU5ifn8f9+/e50MPc3Bx+/etfh0yZ5OIeEUVRCIKfcp2rqorxsTEeEKyygKDH5ubTUUDP8+BTCltV06CpKo9QO2fyJUmCRhmsRFHkAQOzOl3shmFApxrarAzGQDu+7xP8geeh6TTx/373/4MQIkSEQAicPn0aBbUA13GgahrS6TSvLgiCMHC0KQhDnD93DmNjY12BAECDMkVBio49lTY3+diQa9uwaT91qIXdGbCwRd3j5b3Ik0zThEedc4KWVcPIZ4WtD2gLPpqmSeiNCwWMjo5iZGTkqYrsty3eBEFAPp/HOq10Ma2TRr3eAiN3tHo6q4oAevqOr3/9630pqDVNaxvXZQFktVpFpVpFCGCkR0AQhiFs2yYy5yABqUwnfrivCbvV8gzKOyDSUnTUd/hBgGq1CgDI03PhvoNJclOf4dOAKPB9VCoVfPTRRzh+/Dgy2SwkUeTqopl0GqqqknFjYThej4ePHqFULuOll17qWkcCwLN/nY52swkPQRDQNE0YhjGQbbEzEGD3i01WxFlIgX+dV+C6LuFUQCsQEOjkSVuywiqRkXtQrdXgBQF2LCwgnU4/Ve0BZp/+PMMWLZ1OQ08kIKgqLyvJNDKuU7Uy9oWIoghRlhFG+n8CwLECAFEli9I6do6cMWM8+U5kUbOAQJVl+EGAldVVngEwYxF9uVqF67oIQkJbm81moQ8hxGNQPITv+wQxG7HOh5k94KIgEHEMTUMikUA6lUIul0Oh0K2IlclmkEwkSCnfMKAykCIw1IK+ffs2ao0Gjhw5Ev+CSGXCtm2CEUgmkUomIUgSbNtGjX5vccZJkzp/jgGVgRiHxAA/bYEA/V55poNWENH5/lK5DEGSMDs3h0KhsK0w+BkyURRJ20rT4NNZewb4clyXt3+YdVYVAfJs9PQdgtATr6MqSpdfyOVyfEOtVqsobm52vc/zPFRrNTRNk5eqM5kMMul0W9IRN5PPNlIBZAS37VnucZ4CyJieqqpkVDaVQiaTwUg+j9HRUS7Alc/nURgZ4dMNBm0/KPSeDQNFDMIQly5dwvj4eM8kInofvCCAkUggm05DUVWEYYhG5N70srjkrp/fYGDATrMtC00K/pMlqUVwRFsA0c/q9FlsiiWTyWBycpKrVD5t9pkLBgCykLRkEgGARr2ORCJBZlNZGZf2uQGiGCWgJUm6vLKCb33rW/yzbNuOFQzpfLxYdtC5qFVVxcTEBDSaXa6srvKAwQ8C1Fgpn0b0mXSaqPExwGPkoYlbonxRCwJMWiLssuhn9MlUY+GDkawiugg4sUgfcz0Pi1evYmF+vjf/P/2cRrPJNbvT6TTSmQySEcrlBr1PWzlvtnHHEsd0gCldiloOfB+CKCKVSrWRlERLh4ztMmqVahWmaSKbz2N+fn4g7fC2PX3G2jqipsG2LPi+z5MAy7Y5MDQEDQZohY09a8vLywN9R9xGy+iqOy2XzSKfz0MSRdTrdWwUi/x3lm2TbJIeP2EYyKTT/Hhtz3yPdcp67ay6wE8x8pq2tlvsp/S2KKFZ1HcMUy27fesWGkMkEayiKgDQVZWMZ6fTUBUFgiTBo5Ud3nZlbycnGPvR/bBGUkdFIKTAv6hUeSrCZBmEhIytE5fE3x8E2NjYgCTLmNuxA+MDtEs+TftMBgOiKCKfz0PWdfhBgHqtxrn82b95OZ62CjzPQ7Vaxb/6V/8KtVqNz3ZaloU/+ZM/6TpG5xemahpE2mvuNFmWMc5mWsMQK3R2nvW4QgCpVAqpZLItm2QkH4M2XbaoEYac9zpqQy/imIcwRNjiyY4ujiEe2MXFRXhBgEOHDvV+UUhm+Fnmn4zcA0VVkU6loNGF7TgO1wQYNDYYMgBSRzDAA7nIz6xIVC/JMlKpFAdJAS3H0UsAyzRNbG5scHGaQcJH2/b0mmEYyIyMQJBlNE2TBAQUiGbZNqfWDUDJbGhVsVqp4Le/+c2hfEfn2jEMA2azGRvIZzIZjiNoNBpYW18n1QB6HrIsI5PJQNO0rgCAgwN7rVWBcPULIKPO/TJoVlHcirENuHOscFBr0XFdXL16FQsLC72z5JD4pQalQJZkuVW9FUUkEgmk6IQVQOb3WaI2qE3Bppvarpf6kei7GECTVRJ1w0Aikej2Nz0SiMD3sb6xAdt1kRsZwe7du58KcqFe9vSe2QCTZRnj09OQ6ehdo9kkwhCSxFsGruPwfzcaDfz2b/82NtbXoes6/sk/+Sd4nipjff/730epVOo+SKT0J9M5UtZriz0fGhC4joO79+5xdrx0KgW1D1Bu4AMitAQ4LMuCHwX1AO3BRJ9FELfYmY4B0M4xMMgtNJpN3Lx5E/v27u2L6mVzwyGApGF0V2EoGpfJjvo00h/E2MgzOHrOfGQw8hqOdmZRPUWW8/tNHQBDF3feO8ZKWNzchB+GmJ6Zwe7duwfcmW172i2dTiMzOsrFpnzf506e4Y8QEPlZUBT4N7/5Taxt0XewpylNAYxmj8pXOp1GgeJPNkslrK6vw6NVi1QPdjpWWRTifEDEVE3j0wLs+G2VgSHuVy+LGysc5vMWFxcRAjh08GDP14S0mhiC9udZKyZisiwjnUpxenqr2YRlmgODEb/zvGklMXrunueRySrfB0QRyVSKVwPbKN57tBzYtEqtVoOqqjhy9GhPldunxT6zwQBAHoax6WnIrIfUbELTNKi0ZN9oNuG5LkRJwn/+L/8F95eW4Ich/sGv/Rrm5+fxS7/0SxAEAa7r4v/84z/ufSC6sLO5XM9gACAbUzYS6VarVYSUmWqQDYrKVU2DRHtybP42tq0QUzbnv4t5R9Ajw+63qEMAFy5cgKZp2Ld3b8/XOY7DHZAR6c/HmapphCecVkDqHT3cTmNZidCjRNeJD9ApJiJK2MRwB3EZE9MpqDcasJpNpNNpHH/22b5AsW377Fg2n0cqn4cA8pw6jsPHXD3PQ61Wg6woCMIQv//7v49rN28CgrAl38GmedK0ktDPdyQouj7wfdiWhUazOdhvdKL9exhvhVgWb9X1sq0EB7EcAwP8WLVWwy2aRPQSJGOlecZTkEwme2KrBFFEKpEgbIuiCJuKvPWykJ43wwZ0gv4Agg9osIBQljnpW+sSBaJfQSsMneZ6Hhr1OqrVKgRBwM5duzA9Pd33vjwN9pkOBgCS7Y2Mj0OlX1aDjq2xKK5pmvjjP/5j3Lh+Hbqu4+/+3b+Lw0eOIAhDzM3N4cSJEwCAN996C2traz2Pw8A71Vqt52ss24Zt24RFL5OBoWkoVSpY39gYSptgIJiQLmrHcdqwC52PY090fcxveFWgUzikT4Xh4cOHWH70CEePHm2T6IyaR1HbEAhr2jA9dplSK7MeXJ21DGKMleVkWeZIXmad+IDOqF5gi59mA50LOqQVBdfzUKvXYSSTOHL8+FML/Nm2x7Ps2BjSuRwEUYRHKaYZ/sgPAlimiT/5kz/B9evXYWga/m+/8it4hva4h/Id9BlL0ey11iMYYFgnNj6dTiYJ1/7KCpf17mWCQBlI+6xXWVGgqCokUez6vOi7+iHs44y3CYasKIYAPvroIyRTKezpk0Q0I9iNfoFA66ACdF1HggKybUp4FnsObLIMxHd0AoYbzWY7PiDS1mR+glUG4nyT6zhoNBowKSZlfHISzxw9+lS3B5h9LtIcPZNBxvdRLZU4R76u60gYBv70T/8UZ+gDePLUKbzy8sstTvEgwF//ylfw4YcfIggC/B9/9Ef4n/7+3+95nEwmA5sSfmgdWS6bn2cCFPl8nrMMMiW80QGa1ULYznLVaYxgiI0a9eI1YGXvixuX8PbK27A9G0AIP+wOSP5g8T8jLabhCz58JcAzhcP42R3dDIzR6zx//jympqcxMzMT+xrWawvpVMNAjXE2yhMSwaVkMkkqAzRDSKVSXU6G8ZuL0cpAGMKyLE6GJFGaYJExD9KgIQiCtvdEzfN9mI0GqQzU69AUBTt37cL8/Hz/a9i2z5yJooh0oQAxDFGt1eBTFTzDMGA7Dr733e/i0sWLUBQFv/ALv4DXX3+9DSn+lWF8By3nZ7JZQvDVYSwLdmkrbXR0FGEYYmNjAzaV7M5Tiu6+10JL1r0y84RhoEIJgNpwRx3vGXYsEOgutw8CHd+6eRObpRJe+9KXelY9GL4oCIIujFWcRc9XpePVpmXBtm1OAx01jyo1crEp9nPPg0mVHAFSSeQJDPvOO+5NJ625TZNBhIQxMpfP45mjR5/KMcI4+1wEAwCgZ7MIqSM3KTnH2TNn8J0/+zPouo7Dhw/j1MmTsCyLA4AEALOzs3juuefw/gcf4N1338Vf+4Vf6CmWkc1mIQgC6rUa1MiMue/7BPAThlApMQ97vaqq2CgW4TgOVlZX++qYA73H2pgZhkFGFIMAlm13yfACxDFc3LyCf/LO/wthTAAQtQsbF6FDR5P+94MHP4Dj2/jFhV+If/2FCwh8H8ePH4/9PePfFgTClsioovtaxyITJQkpFhAEASzLagsoQlDMAOvrApyQifULGUES793SAKCzJMgqNiEFZzq2DRHgDmliaTEF7QAANFdJREFUehp79+/fbg98Tk1SFOi5HEKKM/KDAI1mE2c++gjf/d73oCoKnn/+ebz88svwg4CD5UIA09PTeO755/HhML4jk4kNBizL4oFAKiKnOzExgWKxiGaziRIlHhsrFHpnmLRCEA10234tikjoOpo0841ey+NYlMKcnXO/QKLRbOLS5cvYvWsXCqPdI84A3cSp4FAikRi45uKOp2kaTwqY3L0Y+c7CMCQ8AUynIQiIDDwLkCh/ADt2lECo8/qZ+b5PRhx9H6IgoN5oIJFIYOeePbFjk0+rPf21iyFNFEXo2Sx0Kq9588YN/J//9b9C13Xs3r0bP/dzP4cwCFAulVrz+jRq5/0/z8Mf/uEf9oxu2UhJtVZrK12xiFISRSQ6qGkNw8DkxAQ0imtYXV2NdQpRYxWC+F8KPNJ0KSlK3Ple3LgwMBAAAAlkUfho9RIvFS/HvnZldRVLS0s4cvRobEDDwH+g/TiuHf8YJkoSv5cOpW1mJT2f9hL5WCKd4w0pTamRSJB7JAhtUwddd4neNzae5NDgSpJlggAuFLCwa9d2e+BzbqphQEunOWr/2rVr+K/f/jYkScLOXbvwU3/lr8C2bZRLJR48MvDeV7/6VQCA43n4w//9f+/pOzKZTKtNQDcxz/f52HHn5icIRLkzn8tBEkXYloXl1VW4HaPN/PX0z37TSaqmQVYUCIIAi9Kcx33OMCuW34dIezGO7wAgm/CZjz6Crml45vDh2Nc0TROOZQFhSJRT+zGTxmTpUdN1nVwnbYuw6SJBEPioKGN0ZeseIEqWaYoPCMJ2efu462dBB2tJirS6CUHA1MwMFhYWPhPtAWafq3RHUhTomQzCchkvvPACnjlyhCDJ6YPgOA4830elXEaSCl2IoojZ2Vn8p//4H/nDxedQ0T62wyYDor0/27Z52a3X5qcoCiYnJ7FRLMJsNlGqVOC4Lgp0pKjLaA+wV8tApmpktuPAtqxYbvwD+QMx74y5ZzHBwDOF7gXreR7OnjmDsbGx2JI521DZJs0IXXqGI4LAs/VeJisKNFWFTcWQ0plMm146o5Nlzo8JtXAcQAzKt+2c6dgjmwEXJQkJXUe1WoWmaZienf1MAH+27eObnk4j8DwkBAEvnDiBgwcPwqf0vJ7rEkEuCuozEgnCHCoImJudxX+M+A4/JDoiDDzILJPJkBaUacJIJCAAaDYa8Cn/SC9q2nQmA0VVUSwW4XkeHi0vY2x0tG/pWaScK3FrK5FIoFqtcuXC2IBgiFZBFGvErQcu6u7du1jf2MBLL70UizFqNpt8DRq0PN8T6BjB+/SzJG2LBGEI13G4JgrTTbBoOR8ABEptr6hqG6YgNoGg5rK2Ag0YFMq+uFEsYnx6GnM7dnxm2gPMPjthy5Amaxq0dJpn0Ol0mkdsTLvAoWJANaaDHTG+EMIWrW+0T5jNZluoYBpgACQa7dffEgQBY6OjyGazkAQBzWazK9LvnF/tDEaixscogViwzLOjx4YICASI9BHwaDCQ03L4H+b+h65XXrx0CY7n4bnnnuv6nUfRs4JAVBXZ+F5fgqQ+/c2o6boOiX4njNLVoy0Bx3HacAasWiEAXe2ATnNcF1UqpQwQUqk0bU14QYCp2VnMzc1ttwe+QKZnsxBlGZIsEwCwrhPGOTq6xsS6mo1G9/grfdbYsxfQ/9kaYNUl5js8ShMuCEJXNbHrvHSdEJvRDW1tfR3lSiX2+K1/xj/7oijyJIgRLz2OdYIHe1UFTMvCxYsXMTc311UyZ3gJh7ZJjI4+/ccxgVVpBQEWXeOsr8/aj6FAKOFTySTBctHkoR9hEeiUEZt2YImPqigoFosYGR3FxMTEZ6o9wOxzFwwAgJpIQEulCNpcUZCl5T9FliGLIlHjc10uQ8kWNltAoii2EXqwYMAPAiRTKZTLZSAM28Q9GPXnoIc4m81ibGwMsiTBc108XF5GpXNhMxOEni0DQRShs5GhiPZ6660CfvnAL/c9F5lWBQjFCjnvr+76CnSpHfm/sbGBO3fu4PChQ13Rruu6ZAynIxDoaVsomwmCAEEUoVLSJSaLXKHUziKdGkkmkzzjYFF9L2cYUHxHVIc8lUohkUigVq3CcV1Mz81hx44d2+2BL5iJoggjn4cgSYTbI5FAOpPhz5koy7Adh2SbrotqtcqZ/doIgCIBL0soNF2HKEmolMsAyORRGATQKA/AIJNlGRMTE0RlUBRRqVSwurbWxiwYNTZlIMT4IyaPLtCkpNN6TfCwilsoCARoJwj8Xglh2JVFhwDOnj0LSZJw7Nix9t/RTZW1OZOJRO+Jo2iFb5i2I329oih80sKyLNRqNZ44MUphxu7KjFdjO48TEg2caq0Gi452a3QcWhQEbGxsIDsygsnpaezcufMz1R5g9tk74yFNS6WgMmlJWiXIZrNcd9qhwQCTDI4ubABdc/cAeVBGR0dhOw42SyVYtEykUhGjXu/rNMMwMDk5CUPTIAEo04XtUPBM+0GF1vhQ5zUqCqdbZmN4QRjCD0N4QYBnC8dwIN+b2EOmXSIPJJDIqBn81YWfI8ekKH3P9/HRmTMYoQxaUXNcF41GA6FAVN5YayDW2M+3EPFzlLCi8NlvxggmiiIy6TRfzFE64bgjsCCgVquRikJAZIgzVNyqWq3CtCzMzM5ix44dGO0Bctq2z7eJoogEHTcEyCaczWTIeKBASLE8z+P+gz1TfiSZYFwf0WeS+Y6VtTWioGjb8GkwAAzXq2c4gpGREd7zXllZQalc7km0w9UYO8wwDCK85nlc+ZT5DjaNxH7WVuWgm6tHy+kSrQCG7PwjvmNpaQkrKys4fvx4u5ZCSKTAmY5MIpnsapN0aikMO+HAOADCSEBgOQ42y2XCwkivPUnHPfn72HE7P5AGAbV6ndBVex4gCEglk0gYBsIgwFqxiHQ2i6mZGS5P/Fm0z20wAJA+oBzRmpZlGWOjozDolwiQ8TPbtmHT+VC2sKMW3eBGR0ehyDJWVlZgUwyCoqotFjv0ngSImizLmJicRL5jYXeV/yKf2RkQCLTMFdIqRb1ebytNQhDwf93/td7n0BEMfHXXX4cuG61rCEOcPXsWlmXxmWpmDh2lFAQyPpiICQT4XRiix0cP2v4ZkYXoui4CkABE1XUkEok2BzKoElCr1XibQZJlJFMpMpcsCKjV62iYJqZ37MAs5Q/fti+uibKMRD7fkqYVBKRSKYwUClBUFa7rEslrCgB0HAe1apXLC7PAl5HaMJuamsLGxgYBtVGq4TCy+QLDgfdSqRSmpqZg6DpEKnS0vLbWc7Y+LkuVaMUtCALUqbxu1Hf09WFhi8K8rarBgIRhiHqthnPnzmFubg4zEdwNaw0wzQVWYm//eHoPtwI+pgFXGARAECCgY6IMjxDQUWTDMIjIUASXBQwOAhhniabryFDpdd/zsFEsIplIYGp2Fjt37nzqZIm3Yp/rYAAAEpkMZF3npS9JlpHP55Gi1JCyJPFec9M00TRNVCuVFjikI9oXBQGTk5NYXl4GQMb4oqQUYRi2WP2GsHQ63bWwV1ZXuxZ29DwAtNEIR6sdTkfZ8PjoMTwz8kzssaPgwZSaxl/b+dfafn/7zh08WFrC888/TyYpaNRvUw53gLRhOvm66c1o/TlsNUAg6H827lOt1dCgBCSyJEGTZciyDEWS2kSG4iwuCJAVBZlMpk36tE4DwOnZWczMzn4me33b9uRNlGUkR0bastJUMsmFxkKQipWmaVzTgCUTDMvCjK2NqclJhGHICYpYqR6I4AyG9B2M/rxQKECWJPhURn1zczM2meDERHQjZ7oHMq0sNug0TtR6bcVRfoE4xlPP8/DOu+/CMAw8++yzbdXSeqPBJX9TqVRv3pVhEwhmkVZuwzRJpZdKOCuyTLBHtEoiU1XWXhNGcUGAbhhEMZdqRARBgOLmJvREAtM7dmDXrl19R8Y/C/a5DwYAIJHLQaFRcBiS0RVVUcjGQjczRlLEMuxKtYpyucwFQ5gJNBgoUYKjOHQsK1VHg4Mg8mcUkAi0FvbIyAhkWYbXY2Gz2d6QgY/oz6Pz/M1OUJAg4Gv7/y+x9yVaGfjKrr8OQ24BmUqlEi6cP49du3djdnaWnQCaVMFLEATSr48LBOhxe4L4ooFCx31iksZN0+TXqGsaafFoGpeB7qX1wJgPO4OAdDqNFJ32YA+92WyiUq1iem4O0zMz25MD29ZmkiwjUSjwtcwEckRJgkSrBZqmIUE1N5rNJvEdlQqqFJwcbRUkaDCxtrZGZt3jysmdvqOP3wAIQ9/U1BSSlFyrXq/j0fIymrSvzYz5Dsbsx9asTpOQMAy73tMrM+c0xJJENuFoEEGriaZp4vTp07xkztp8TO63s0zP3svBv3GBQIe/iP7d9zw0mk1UWTAGUrVIJhLIpFIAxTlIkgSJMg+2fXQQwKG+py0I0HVkMxnomsYpzIMgQLFYhKJpmJyZwc6dOz/zgQDwORst7GeJfB6NUgmuaZK+oGHwTDqdzSKjaXBsG5Isw3UcTkBjWRYnEtINA5IoYnJykoBGikXsYBtlH+PRP/03F7cAAFGESDfNZDIJTdMI2Yhpok43xZGRERiGQSJyughEoTW2F4aE9dD3PMKL3WggHZHZPDZ6FEcLR3GheIGfkwiR0xMbso5fWPir/HeO4+Ddd99FLp/H0aNHyTkHAenzMcCkYRB0M8g4FQPeRN1HGB1vYqVQ+qcoELUvFtGze87llEFGBVVV5c4qCAIy3UErBcwChv1wXV6+BEgQoNPZaoRUlZA61lq9zisCU9PTrYBn27YtYjKtEDRoYK6qKnRaDXAch0+xWJYFWZbhUFpjm0oia5rGW1qCIGBqchK379zB7t27hyL9iY4ost48IhVLgGToo4UCdF1HqVSC7/tYX19HMpEgks2UXjm6NqOVxmQigWq9zvEDbGPjm3xHUOAHARQQ8bbO37Fq4gsvvMCFeWzHgWmaYERkCcosyDbXyEm1AhXaMoy2XqPgYKZsGlBGxSg9u0wBn6zq4AcBAs+DFwRIRJMI2l51XJdMdbHATRQJhbquc1I3Rn/ueR42NzchKwqmZmexa9euz9wIYS/7wgQDAJDM52FJEqx6ncywU11zs9kkUb6uQ1VVOI7D/7SprK5pmryKkEwmkcvnsVksYseOHQC6N8I4a0OtRig8A/IX8m9BIJu/ZZGF7XlYWVmBpuvIZTLcqQDdvcBEIoEanYxomiaSySQ7ML62/2u48HYrGIhWBf7H3b+IpJLk5/P+++8jCAKcOnUKbM66YZqETEiSkEgkCBUy3WBFQeDViOiGH1ASIGZhGLZRlwZBANd1YXcGAbRyw17LSpFs9pi1CFwqMNM2SSEIUCkXe1sJkoK/fN/HZqmEMAgwMz+PiYmJ7UBg2/qarKpIjo7CLJXguS4SlK6Y+QmFymLrus4paVmiwfyHrmmk1z89jes3bqBWqyGXzwMAB7sNMgZEZEFtW5BAE4KJiQmUy2U0aNui3mwilUggk8kQgiD2YQz4FxJZ76RhcHZCmbXhBlQGmHAay9Lbqolzc6SSaFlwbZuD+RIR9D6f1CIXAXoxvHrR1mohb+DX63seHNuGE1n7siyT4L9TVAhklDOkrwl8nwQAjtNWeZUkCQrdF7h/ZtcMKmVeKiGby2F0YgI7d+7kbLafB/tCBQMA0TGQVRWNchmGrsN2HD5RwDZaTdMIuMb3udYB0ySw6XhJJpPB/fv3eSa6BahL98KPLChREBAIApm5VVVslkp8nGWZ8qZnMhmujcCcAvszkUiQUpnrQjJNrgz2zMghHCscx9mNswjDABJEBCClz/9x5y/yU1m8ehVrq6t4+ZVXYBgGLMsi+AWhRSbESE2iY1SSKHLeb35ZkUBAoIAgFgC4rgs3spBFdt+jwU4kMwiCgMxmUzR3tVptcxaSLENVVTLZEZNxhSBjkOvr60im0xifmsL09PQ2WHDbhjJZlpEsFGBVq3CoXDpLEuR0GghDSJQ1k1GGMw0RlwYEzWYTiqJAkiQUi0VCXRzppw+TUIC9hm7snCCNYZpEkVcSN4pFeI6DSrWKar2OTDKJdDrNdUCAFoGXoqpQfB+ObaPebBIFUdpbZ+OEoH8PKBto1A84to13330X2XweR44cQeD7ZMLJ8xAKAgxKCIaOzZ8FOJ2gbXYsVhUMAb6JO5SOnZlCNVt4EEBbgewVjFo8oIBPP+J3BEHgiYMsSbHTF67rokynESampzFKidc+D62BqH3hggEAkHUd6bExNMtlJBwH9UaDS4ZG0bGSLEOnAEPP8wjAkJJkJAwDge/j7t272EHZpuJ6YIMQsZ3zs9H+myBJyOZySCSTqFBQo2VZMCnrYI7OwTPgjEidQcIw0KQaDaIokgxZEPC1/X8LZ9fPAhAghTKAEC9MnEBCToJRJV+5ehWHDh3C2NgYH+MDwKsi/eZ9ZUnqwiswh+XRgIvxsPN7TEtyjCGMo4LZ/7SUZ1kW6jTISVIOCVEUodAAQKSOK260MASwWS6jUathdGICo+PjmJ+f/9yU97btJ2Ns7FCmgjiWZcGlfiHJniX6/Kp0g0kmk3AcB/V6nZez05kMVpaXsTE7yysKUW6TYYy9lk0YdXIDaJqGiYkJNBsNVCsVwrxaq6HWaCCTTvNJhmj/3dA0eK5L+u/1OgcNA+DYAIZjIJdKfuf7Pt57/314noeTL7wAj/K3sPvBSX3ov2OvRxS57+M4C0r05LkubDrKGb1+RZahMbI3GgDwtgJI8MASh6ZpQpVlHgjINHlgvpEBLDs5BizLQnFzE5IsY8fOnZiYnMT09PRnkkdgkH0hgwGAiuEUCpBUFe7Dh7Aoej2bybQWZqSvrygKsoqCdCrF+4OqpmF1bQ2ZTAblcpmI4+g6AShS1OmwxklLRBGgD71PM21VUTA2OgrHtlGuVmGZJizTxEqziTAkoh4IQwi0D6eqKu+FNWgLRJYkHMwdwHhiHCuNFchQIELE1w78LQBApVLB+++/j4mJCezZuxe1ep0sflql0IeQICa3qlV+9Fk/jhK18NfQaFylWVLnQmbZv0v/BIj+QBCGUGg/UFVVHnyJQCtzabuppMWxsb6OQBAwOz+PsfFxzM7OfmZngbft0zfVMCArCsIwxObmJu+HdzIJsmxdp1mxSymNc7kcNjY2sEbHAQVRhK5pMAyDMItGn80hEgqABgUUR8Qod0UKckwkk2jU66hWq/CDAOVKhY82ypFWXAgCSGSva5omEoYR68eY5HkYhrh06RLW1tbw8ssvQ5IkNBoNCCA+NplIEHzAgFaIKAiEA5Veg0sTh2j1EKCbuCxDjrQRWQXRp9VDj2q2sD6/SUHgCv0eVFXlmgosWekMAgQAtUYDm5ubyObzGJuYwNzcHHK53MDv4rNqX3iPaKTTmFxYwPK9e3AsC+VKBdlstj1Sj25kVAjHMAwsLCxg8epVBEEASZLIA0wJjGRJgqbrvNwv0hEeoH85kAHrgjDCj02Pr2oaxsfGSFBQqZASPi1FBkGAfD7P++kJwyCldQooTKVSkEQR/+ur/wb/8p3/GdWNGn5p3y9hJDGCRqOBH/34xzAMA0ePHiUaA/TYTLhjkLHXM0CPZdttC1kAqS6wTZyBCAGqHMY2f9ftQkwz3IKkKMhnMjyjF1nPMabtAhDu9+LmJlLpNMYmJzEzM7NNJrRtT8REWUZuagqQZRRXV8mobRgSMp8ez6OiKMhmszh08CCWHz0i9LUjI1w+1zRNwrgpyyQAp4I7UiT777ehCgJlAoyC70LCT5JOp5FMpVCv1cj4o+ehUq+jaVkQJAlJw4AgSYSRk9Jyu64LkwY5nWuSVVCvX7+Omzdv4siRI0gkk7BoYMQqidFz63fejKmRsYx2Vg9ZFs/Gm1ny4HsebJo0dLKwAmjxA6gqV32MUqVHJysAcCKmCk26JmdmeFvgs8whMIx94YMBgADWpnftwsPbt+FQ2sokRbxyruqIsWrBzp07cefOHRQ3N/Hs8eMwm02CL7BtEqE2Gmg0GnyEUVNVKJoGSRBaIy5xC5xuqq1/tn4fggYF4+OwbBurKyswTRP1RgO2bUNPJJCkqn2JRAINKoZSpxMGaSWNrx/4f+LNv/xL7MnsgmVZ+OGPfgRZFPHs8eNceEOWZTJGNaAc5tNSHMvmWZTt0vNXZJn05KiUKJsI8CmVs097eZ33l81Ay4rCGQcVWgVhmUBnNB8NAqq1GlzXRWF8HOM0qt9uC2zbkzRRFDEyMQFBllF8+BCNZpNs5qpKqIB7bICarmNhfh6Xr15FOpOBpihomiZMyyLshBSbJNRqUBgWhq4hif4fN70DoE0YrA10B0AIQ2QyGaTSaZTLZThrawg8D6ViEVVFQTKRQJLO/iep73BsGwIAo2PtyLKMW7du4fKlS9i3fz/Gxsc5RTGfNBpQ0WAZvEd9CNAC+kWrh6wFyJIb3/f5/51BiiiK3G9IoohSqcSnC1gS0uU36L89yqhardWgqCpmd+7E5OQkmR77HLYFOm07GKCmKApmdu3Cgzt34FJsQJIiRSXWy44+QBS9Ozc3h1u3buGZQ4eQTKWQTKW4KpZlmrBsm2yYkchfEkXIkgRRkgjfAS2XS/RnoH25uKUUXeC6rmN0dBQN2o+EIJBjNpsoSxISlDLTtCwC6KnXkUomW8j/MMSPfvQjBJ6HZ59/niOIWVmz01j0zmic4xYjEyuSJImMTglk0sBsNgmFaQ/aVEYOwolQIoClOg1otEhVofvGCDDZnLFtQ5AkTM/NYXZu7guzmLft07F8oUBaBsvLqDcayAgCqaYJLRrxqO+QRBGzc3O4cesWri0u4sSJE1A1DTkQsBrDBrFpGSamJYkiEVKibUtFUUhwQH2KJMu9aYnZOQgCJEFALpsFAN7b930f1VoNlWoVuq4jxUYm6XQEBx3S61heXsb58+exY36eTOOEIWRFgWEYsVoLAeU4YAFAnECSJEm8gipR/JHjOHw0MG7d88SB8sZEj82YZQOQYKaX32BBQI3KrxuJBHbs3ImZmZkvlD7JdjAQMUVRMD0/j+WlJTgUgGcYRosXoGNxq4qChfl53L17F9du3MDRI0dIr4yC+Fip3nEcsrjpBhr4PmzXRWjbaNLXs0UtiiJRIwwJ0p9lGKIkcYAgH80B2URVTUM6k4FESUcYYU+tWkW1WoWiaQAVS2k2mzz6vnz5MlzHwbPPP4+EYXBaYQCtmX46Asiy/+iCYtgAURQJEQs9N9/3YffQSwe7XhYwsCAoOnlAbjAQhnxGORQEpNLp9oCMvsY0TVIJiIwwHTxyBLNzc5/70t62PR02MjqKEEBpZQX1eh3pdJqv45BiYqJVxmQyiZ0LC7h+8yYOHz7MtQIUmhxkMhlSJaBTTJ7rwgsCwiUSBJz4S2JrrwP8zHyHSKubrDwe/b1ERboy6TQZRaTUvbZlwabtA0WWIQKwAK7wWqlUcPPmTUxOTmLPnj1ghEqqorQqf75PtA7oRt65+TNMg0B9gUgTB9u225RcoyYAPBiK+o7OMj+zeqMBz3WhKkpbcsPaEqyFWqvXARDw9ujEBJ45evRzjQ3oZdvBQIdpmoaJmRmsPXoEm87sJ5JJDihkZXCGKchkMpidncW9e/dw4MABaBHRIvY6Q9f5wxgtkbORxoCWy23P46Q4Pi25MWISIRIISCwwkCS4ngeXUhAnqMpaKpOBRdnQbNeFTTnTy7UadE1DtVJBGIYwLQtHnnkGMgX4uJ6HcrnczRkQ/R9oC1oYADAMAng0K/EjCGXmqGQa8HQ6JWbRMUXQ4wJArV4nqm+qSkRdWP+UjgnV6nUeBAiCgJHRURw/ceJzNf+7bZ8NGykUEIQhquvrqFSrSKVSZNQ1snZYhVFRVczPz+PW7du4fv06jlNVPw4kBs14Uykk0Zqq8X2frHnKr+GzAIFibXxK5839BWhgQP/OuAFkWYZNKc9tTYOmqgTkSBk8m40GXMchIGAaBDBGxZs3biA3MoJdu3bB933CvthooEanDRBZ/yyZYMmURMf3ZLaJR6qNAHi7oK3CGEkYOlumIr2nfBKAmkMrLH4YIhediqDHqNfrqDca5DyDAIqiYN+RI9izb98TfCI+W7YdDMSYYRgYm5pCcW0NVq2GWqWCZARIJwCcPUuSJCwsLODevXu4cf06Dh8+3Lago8YWoyxJYPlqEBIWrU4EfdOyWqM8tLwedDzwjKDDdRxIktSSI428ThQEDjT0XBfra2vYWF+HIAjIjYwQ1jEK9otm5KzEGQ1AOjN4oMVPzjZ5URThhyGgaTwr6bwHiByH9z1jqggmJYTyggAj6TTCsEWHzERhBOpkkqkUZufmsHv//u1JgW37VEwQBBQKBQBAfXMTjUYDrqK0RLwiG2UAIjg0NzuLe/fvY+/evXw8sdN/sMoCA+DqEY4A1m9nAQFjEWSJix+GCCmWp+1cQcbmgiCA7ThdbIiCIACU59+lrIolKr8sKwryIwR4HA3Qmf8QQMaimf9QVJVXDaPHF0WRVyhYMC/RNmHUzzAfEW2R8kkv+vfo/QKIEqzn+22THCbFZTiOw69PURRkR0dx8PBhjHzBwcXbXrOHJRIJKDMzKG5soEm5xg3DILrmUVAOgJF8HrMzM7h+/TomJiYwOjoaDzoEuL54dE5YpABDBvLxwxBJWhoM6Hwvi64ZSC+gfzp0Lph8aIuhjB1HkWVIySQUWUatXke9WiXlSFGERisLfr0ORVWh0+zbMAxyPnSjjRKaiKz8SMt6DMwnRFD9rusiZFSlUdRu9IbELGD+K5AKSnFzk4iNiCLHAjBK0jBssSHmR0awY+dOjG4TCG3bp2yiKGJ0dBS6rmNzYwNOrYZqtYoUBSQD4OtCkiTs2r0bS/fv48zZs3jx1CkODoxam8+IbIKiKEIVRWjUdwDgnBzMb/gRboCAVhJYKZ+ReIGW66NTCBIASddJBcG20Ww0YJsmVElCJp1GSFsVjufxMjzbeBnpF2+NsKQiuvGziie/SIFQJjO/Qa+17TWRn/WyECBy5BSjpSgKVlZX4bkuD0ZYYJVOpTA5PY0dCwtQP2cEQo9jQthXq3LbgiAgwiOlEpx6HbIkwUgkiI43Wg9qwzTx1ptvIgTwyssv8xGjaH9/K+bTsn3swx/ZYD06BoMw7O5zhSHnUDdNExfOn4fn+9izZw+CMISmqlwRkC1CBkBSFQWarnMUrkx7dYMspH3+xzGW6diWhfWNDdRozy+bzXJSEFGSyDy2YUDTdeRHRjC3c2dv9bNt27ZPyWzbJjwElQo820aCJhNRC0HG886fP4+DBw9i7759rWAbW/cbAJnkiQPotQ5KKhONep1MIEXamKwq6HkebAp+vn//Pu7euYORkRGMjIwgkUzyiiYD+zKCMFGSiJaLphFwtKq2dERowtDrmlwWnGzBOMlQ2FIbXKX8DYy7gR1PU1UyFp5IQFNVTM/NYXRbpZTbdjAwpDWbTWxubsKu1xE6DnTDIOQVkdesrKzghz/6EaZnZnD0yBFCPATKPU4zamaDFjnLjr1+ixoAwhBlWr7L5XIQJAm+65LSPxXfKJXLuHjpEgxNw9Fjx0h/kFINs+xAouxctm2Tvh0F2fDHg+IXZDraJNN2h8KQvAx3QAGS/YzhJXhbxHFa5c6A6JCzKYxcJgOd8jUkDAMqdaaSLGN2YQEjtCy7bdv2NFoQBCiXy6hXKrBqNSg0mI2C/YIwxLvvvIOHjx7h9IsvYnR0tC3w5tW5IY/pBwEZ7R3g2pmYkqrrSFK0PQMQ+kEABAGuLi5idXUVu3fvxo65OYiSxBUa2bEkSSI6DLZNaIIjk0Ds/Fl7lI8MMznyyMix0yv5idwnNzKO6NDqKcMceHQiIvA8yLKMdMR3GIypEEA6m92uBsTYdjCwBfM8D6VSCc16HU6jASEIuLIeW7yXLl/G1atXceToUUxOTMBIJLr75DQ44OM+7Ncdx/N9Hz6NwFn03cadTTfsWrUK3/OgahrZkCnT2dKDB1i8ehVXrlxBqVSC67rIpNM4duwY/s6v/AoAkh24ngcEAYmYKfWyZZr4wz/8Q1xdXMS+vXvxsz/7s23HBCJsf9FKRee4YQS/wGajEXEYQuRzgiCASXUgBJEosY2MjrYpFDKQ4NTc3HY1YNs+M9ZoNFAul2HX6/Asi/AH0OwZIBvzn//FXwCCgOefe45MI0RGbAHwtSSywKBH1ZHJHrNEgvsO9h66Pl1Kxc70WNi0U7PZxL27d/Hhhx9i6cED1Go1AKRaePCZZ/D/+Lt/F57rok7HErkSoSjykepvfetbWFxcxJ49e1q+A+0ModFEw6cTS20Awc6tKQgQCC0J8qi5jsPl5hVNw/TUVDt9Ogg4fHJ29guPDehl25iBLZgsy2Su3zDQSCRg1euwqdIXkzY9fPgwisUiFhcXkU6lEIQhkuyhjETKXCgk8sBHATigC1gUBAiyzMmAopHzt/7oj/CdP/sz/MZv/AaJgD2PsHQB+Bf/4l/ApiQmbEGwrJr33QEkUynCTWBZBH3r+0gkEkjRoOEvfvADlEol/O2/83cAoAVWokBHTgDCCIfo2CKzKKkSc0ihILSyBDofzABNEmV4zKTTXAKV3bP86CgmZ2a6Sq3btm1PuyWTSaiqijoj86GqgialIlY1DadOnsSbb72Fu3fvYmFhAUk6jRA1VmmMKp3y37G2JPUvsiRxAaAo2C4MQ/zxt76F733/+/i1X/s1pNNpvjYlScJv/uZvwqYTSux9WcpLAOqHFEVBJp1GnU771ClRG2s5HDl6FH/xF3+B4uYmvvbLvwxREAg+ifoK13X5JITnea0pBHaO9M+2NqsgQEKLV4CRMDHtApFWGwqFAlFVpfdK13VMTE9jZGxsIBHSF9m2g4EtmiAQvu9kMgkrk0Gj0UCjUoFjmrBrNaiyjOPHjuGtt97CxYsX8cwzz5ANloLy+Od0/MktshAAUobjin8063YdB67nIQCJdhmoSKR4hnq9jgaN2gVBQGF0FFNTU7h75w6AiNIZ/T3DN5imCcd14VWrMAwDR44cgaaqsC0LV69exfHjx4laYgTgwyhBPcqH7keykV4WnQ0Ow5CLL9m2TQKURIKPBgqiiHyhgMnpaa7AuG3b9lk0RVGQz+eRoX6jXqvBpLwglmUhkUxi//79WFxchKqqmJ6ehquqXRku0KPNGG3roUVfzDj62ZigR/lCJFplZJwpsizj9u3bbYFAYXQUU9PTeHD/frvUMMg6TqfTaDQa8Hwf9UaDcJUkEqRNqiiwLYuPTuoAr0wwUjXbdRFQTgKGV+rlOxgAkRkTj2OVTFVRkE6noVBiMl3XMTE1hfzo6Dbp2BC2HQw8prFNlEkK1+t1VEsleHS29dizz+LCuXP46KOPcODAATipFHTDQIqNGfUxNk7oU7lfn4pueDQLj0b5nu8T5i+KVr569SpuUa7wF198EUePHkUmk8H6+jp+67d+i7OAsUwgCAJAFIn6F50X9oMAtXqdlAUPHsS5c+dw5swZPgvNgoCAzTSDKBYGPTgEehmbaWZtDVGSoKsqUuk0yTzy+e0gYNs+dyZJEqEFTqVgmiZqlQoatRpM28b09DSsZhO3bt1CrVrFrt27Ydk20qnUUARajCXUZRThlO7b9zz4YdhS5wtD2LZNxNUMA/VaDefPn0e90cCLL72EUydPYs+ePchms3j48CG+8Y1vwGXTTWi19wRRJNVFOu7ruC6cchmGYeDAoUNtvoNVRAP6P4IAsigiFIk6IWKYC3tdIzueTTEObArKSCSg6zrGJye3g4At2nYw8ARMVVWMjIwgk8nANE0063WohoETL7yA8+fP4+LFi9i9ezcymQwqlUqbZG80LOCLhZF3UHR/QEtoANqAOABQr9XIGFOxiGvXr8P3PBw9ehRf+cpX2sZ3XNclvTnWNoj08kEjcplG+oyXwHFdHDt2DIuLizhz5gx+5Vd+hTuBIAgIup8eI6SRfbQF0st8NpZENRxsy4Km61AUBWNUSyA7MrLNF7Btn2sTRRHJZBKJRAL2yAgh+6nVsOfAAeiJBK5evQrLsrBz1y40qcaJFgHC8eoiTS78CN13VGqYvUah9OdMFbFJJc6vX7+ORw8fYmRkBF/+qZ9CllHw0qCB+Q7ODBi2850IAAy6fs1mk8s6Hz9+HJcuXuS+I4wkEQC4fwoZhmjQ2CA9F9OyiKiRaQKCACOZRCqZxOT0NArj45xGftu2Ztve9gmaLMtIs1731BQcx8HEjh146/vfx80bNzA3P4+x0VGYNKpVWVAQ81mcrUtVIdCZZEb72wkcunDhAur1OgqFAl544QUkKaUw/SAwOWEAXZKgccc1DAOKqsJsNrGPOibPdbG4uIi9e/bwRYzOCgc7rw6MANAKFkzLgmvbCEBYwsIgQDKdRmFsDAu7dnE65G3bti+KCYLAe+0jIyMIggDTCwsYGR/H2z/6Ea5fu4aFnTuh6zqcWo0rovYa9WXsoFzhjzKAgr0+UpL/4MMPoWkaDh46hAP797fWNvkgQkFOA/9eNMHMZElCKpUiFOLNJvbv38+Ti+vXrmE3pS7urIxyXFE0kYgkSqw1atEgwA8COLZNlBHTaczu2IGJqant5OFj2vbd+wRNVVVMTE3hb3zta/juf/tvuHDuHNbX1zE3N4exsTFeslM1jctzAuCUncyYNgIzz3GwtLSEO3fvAgDq9TqOHDmC8bGxtlJilKCH9fIZdXGsRaJzkfKWK4qCyclJPHzwAOfPn8fY2BhUTSP8A5Gynh8T1bPF7HkeHz1iPARhECCdy2FkdBSj4+PI5/Pb4J5t2zbQikEqhWMnTmB6fh7/3//yX3Dm/HnsmJ3F7MwMjEQCvu8T0iEq3gVEeuqRYJwpCTIrl8u4e/s2bt68CQDI53I4evQoknHtSzq7D4DjDHpZlKCMCYpJsozp6Wncf/AAZ8+dw/jEBPEditKqCnRWGaLTBEEAh9Kps9FB13GgyDLGp6aQGx3F5OTkNqD4Cdl2MPATMFEU8bM///M49MwzeOfHP8aH588jm0xifscOzExPkz6b4xCZY03rWpSiIMB2HFQqFdy/dw9LS0vwKZWmIAh47dVXkUgmuc4BIoEFBKG1oCmCt3NRs6ABaA88QgCKquLQwYO4desWFq9exU//9E/DtW04tg2Jlh0Zg1mUOzygXAKMt8D3fThUijhXKKAwOopkOo1UKrUtLbxt29bDxsbG8H//1V/F2bNn8f577+HO/fuYGh/H3NwcCoUCLMviQYEaBfeiBRBuNptYXVvDndu3USqVoBsGRgoFCIKAZ599FoqitIC/9L3MRzgUX2TZNgf+RUebo8a0Sdhxk8kkDhw8iNt37uDatWv46Z/+aVjNJkyQyaYoDbEYSSw86g8Z5bjr+/BcF7quY3rHDuQKBaLDkk5vVwOeoG3fyZ+g7dixAzt27MDm5ibeffddXDx/HovXryOVTMLQdRiU8Y9xE5iWhXqtRpQIm00EYQjDMLBv3z4sLCzgO9/5Dj744AMw4RHHceC4LnTD4McMgwCWaSJECzcAdM/wdiKFo3bixAn8H3/0R7hx4wYs20YmnYbjukSq2bKIE6DYBsZM5lBRE5+OODFQz8joKBKpFFKpVKxM8rZt27a1m6ZpOH36NE6ePImrV6/inbffxnsffQRD05DQdSQMA7quc4Y927bRNE3uO2wqbz4xMYEXX3wRkxMT+OM//mMAJNGQRJGU3l0Xmqq2AgGaXAgUaxStOJC/tPsLifIFRIME5juuX7+OZrOJTDrNM3yb+gqWgIQUMB3lKlEoOLqwYwdyIyNIJBJIRqmdt+2J2XYw8CnYyMgIfv7nfx5vvPEGrl69is3NTZRKJWxubqK+ugrLNKGIIrKZDOHPnppClqoRjuRy7X09aqqiwBQEXk5j/US2aQuRCkE/4xwHkYU+OzuLsfFxrK+t4cL58/iZn/kZJIKAMJhRLgOHso8pmgbVMGBkMjASCSRp5s/015PJ5DZZ0LZt22OYKIo4fPgwDh06hAcPHuD+/fsolUooFYt4sLGBJlNZ1TRkaMA9PjGBXCaDTD7PhZA6TVVVLuATbTOaVNWQ6aYMYyywYBXCqO+4dOkSfuZnfobrJ5imyeWZRUGAbBhIJBJQNQ2JZJLzFkg0mUgkEtvTAZ+gbQcDn6IZhoHnnnuu7WdhGBJSEsf5/7d3Pz9NpHEcxz+dTltsqyI/qkXKxXiQZA/1uGKCF4/yL3j3sJf14t/h0YP+CWqiMSJ4kGVvVU9iPKywgtklQunKdDr9sYeZZ3YgsMJmEYZ5v5ImpG1oL/320+f5zvP1Rxy7rn+GQdB4t76xITuYINgNuvm7wYmGdibjJ+5mU/l8PvzlLvnL/Xv9QEdPNzOhoFqtanp6WrXXrzUxMRGeLZC2bQ0MDytfKCgTmWOQz+eVy+V2nHQI4L9LpVKqVCqqVCpb7m+322o0Gv4kQtdVq9n0b47jb9d5Xjh9NLo1mM1m5QTTCbvdrizLkhusCliWte/wbgVzW8zKweVqVdMvXuh1raYfr1xRJ3idE8WiBgsF9eXzsjMZf9sxmw0nxEbPI8HBIwwcMeZQI8Psu7vBwCHzZb9Zr0u9ngrFohqNhr/vF3z5m4M4zF69ZVn+EZ7bzgeInvZlGnnMhERzzkG311PX83RpfFy/zs/r96UlOa6rs+WyssF8hlzQUJjL5fjiBw6Jbds6c+aMJIXnCERrR7vV0mYw0a8r6WRwqbOdyagZfPl77bZO9PXJaTbDSwbNjBJzM6cahr1F0ceCJf5OZELipfFx/TI/r98+fpQsS6WxMeWCpulcMOmQ1cLDRxg44szyerFYlBlh7Hme3FJJjSdP9ObdOxUGBtRfKqnT6WijXlfTcdTY3AwHBhXyeTmtlgrFor9HaNtar9f/GYASXNYTjhlNp/0Gn6AjOG3bGiiX9fOdO3KbTa1//arLY2PKBGkewNESvVxR8n8AeJ4nr1SS67r669kzvVlYUHFoSCcHB9XXaqm+vq6256neaKjX7cq2bXndrr5ubupksRj2JtWD2mHGmJs5K2nbVjq4ksCK1I7hkRH9dPu2Wp6nP7580Q9B0yK/+o8WwkCMpFKpMByYDvzl5WUNDQ+rfP68Op2OSufOaW1tLdweMPv1+vRJbxcW/CXGixc1euHCljAQvZmlxOhtdnZWKysrymazunr1Ks1/QIxYlhWu3pmVx+XlZQ0MDmpkdFSdTkdDZ89qbW1NnWA0sXleL5PR2/fvJelfa4fZEtxeO2ZmZvTn6qqy2awmJib2dJIivj/CwDGQTqe3XGsbHfBjOI6jz58/S/K7hMvl8r6S+aNHjyRJ165d2/H/A4iXXq8n27bDYF8oFDS4w0hwx3G0srIiya8dIyMj+3odakc8sMGbUPtdonv8+LEk6caNGwfxdgAcU9SOeCAM4JtqtZoWFxcl8YEGsHfUjvggDOCbHj58KMm/vHB0dPSQ3w2AuKB2xAc9A8fUq1evwvPHJWl1dTX8+8OHD7p///6W59+8eXPX/2X2/Kampv7X9wjg6KF2JBNh4Ji6d++eHjx4sONjc3Nzmpub23Lfbh/opaUl1Wo1SSzzAUlA7UgmwkCMTU5OSpL6+/sP7DVMsq9UKqpWqwf2OgC+H2oHtkv1tk+sASKuX7+u58+f69atW7p79+5hvx0AMUHtiBcaCLGrjY0NvXz5UhLLfAD2jtoRP4QB7Orp06fyPE+nTp0KlxUB4FuoHfFDzwB2NTMzo9OnT2tqaoojRAHsGbUjfugZAAAg4dgmAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4QgDAAAkHGEAAICEIwwAAJBwhAEAABKOMAAAQMIRBgAASDjCAAAACUcYAAAg4f4Gk4VU1boEKZcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -167,12 +167,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADX10lEQVR4nOz9eZQk53neC/5iy8g9s/at9x1Ad2NfGiAEgKZMmxRFitKV7COPZEkW5bGu5WvRkmfs4+HI91LnHso6snykke2rjbJlj62dHFOWuAHEjgbQ3ehu9IquXmuvyj0z9pg/4vuiMrOyqhsgeq+nT52uJTIyIvKNL97leZ9XCcMwZB3ruEug3uwDWMc6biTWDX4ddxXWDX4ddxXWDX4ddxXWDf4G4sKFC3z+859nz549ZDIZ+vv7efTRR/mVX/kVms3mmq/98R//cRRF4Qd+4Adu0NHeoQjX8aHgC1/4QgiEk5OTPf/+la98Jczn8yHQ82vXrl3hmTNnVt3/n/zJn4RAmMlkwlardZ3O4s7H+gp/A3Do0CF+5Ed+hGq1Sjab5Ytf/CKvvPIK3/zmN/npn/5pAE6fPs0nP/lJarVaz318/OMfxzRNGo0G3/zmN2/k4d9ZuNl33J2CtVb4p59+OgRCXdfDV155ZcXfv/SlL8Ur/Re+8IVV3+MTn/hECISf+9znPsQjv7uwvsJfZ7zxxhu8+OKLAPzUT/0UBw4cWLHN5z//ee655x4Afv3Xfx3XdXvu6/u///sB+OpXv0q4Xi/8QFg3+OuMP//zP4+//4mf+Ime26iqyo/92I8BUC6X+fa3v91zu0996lMoisL09DQHDx780I/1bsC6wV9nvPTSSwBkMhkefvjhVbd75pln4u9ffvnlntuMj4/z6KOPAvCVr3zlQzzKuwfrBn+dceLECQB27NiBruurbrdnz54Vr+kF6dasG/wHw7rBX0dYlsXCwgIAGzZsWHPbvr4+MpkMAJcuXVp1u09/+tMAHD16lMnJyQ/pSO8erBv8dUR7ijGbzV51e2nw9Xp91W327t3Ltm3bgPVV/oNg3eCvIyzLir9PJBJX3d40TQBardaa2627NR8c6wZ/HZFMJuPvHce56va2bQOQSqXW3E66Nd/5zncol8sf/ADvQqwb/HVELpeLv1/LTZFoNBrA1d2fxx9/HEVR8DyPN99887s7yLsM6wZ/HZFMJhkYGADg8uXLa25bKpVig9+4ceOa27700kuEYUgikeDxxx//cA72LsG6wV9n3HvvvQCcPXsWz/NW3e7kyZPx97Lquhr+4i/+AoDnnnuu4ymyjqtj3eCvMz7ykY8Akbvy1ltvrbrdCy+8EH//1FNPrbnPr371q8By8LqOa8e6wV9nfOYzn4m//73f+72e2wRBwB/8wR9gmiYjIyM8++yzq+7v0KFDXLx4EVg3+A+CdYO/znjsscfiVf53fud3+PY3v0mtXKZSKlFZXGRpYYH/43//35mdnWVgYIB/8FM/xdzMDK7j4Pv+iv1Jd+bBBx+8ajFrHSuxeq17HWvCtm0cYZSe5xH4Phs2bODiuXO0ajV83yf0PFAU/unP/iyXLl3CcRz+wec+xw9/9rPcv28ftuPw/Isv8p2XXmJiYoLhoSGefOwxTr37LufPniWTTqNqGoqqYtk2lmXxR3/0RxiGwf79+3nnnXfo7+9nYGDgqqnMdURYN/j3gTAMabValEol6tUqVrMZGb5l4VgWfX19LC0uRtRd3ycEFFVlbGyMf/7zP8+v/rt/R7PZ5Mt/+IeEYUgYhiiKQn9/P0NDQ/yjz32O/mKRRquF7TjUajWmrlxhcWmJMAyp1uuUSiWGh4cZHRjg//dnf0YI+MC27dv5nu/5HjZt2nSTr9KtDSVcJ1aviTAMcV2XSqXCzNQUjVoNz3UhCDASCTRVRVVVjp84wdFjx/jMpz5FOp0mDAI83wdFQQFQFMqlEv/tT/6Eb33720zPzmIYBrt37uRjH/0o3/+JTzA6Okqz0eD4yZNcuXIFz3Ho6+tjdHycVDLJ8y+9xB/96Z8yMDDAF/7Fv8APAmzbpl6vMzMzg2VZFPv7eeDBB9m5axeZTIZkMommaTf7Mt4yWDf4HgjDEMuysCyLWq1GrVSiXCpBGBL6PoZpYiYSqKqKCqi6jqaqsWFrigKqiqooeL6P7Ti4nhe9HkiaJul0GlVRWCyXCVyXVDrN5cuXOX70KIGiMDAwwNjYGIMDAyiKQgj8v37plzj0zjt84m/9LT73kz+J7/vxl+f7zC8sMD01hWVZbNu+nY2bN5PL58kXCvT19ZHL5VAU5aZe25uNdZemDY7j0Gq1aDQaNKpVqqUS5XKZZqtFCCQMg1QyCY6D53koikIgXBfpooQAYRgbt6Io6LqOpmn44vee6+I4DmYySeB5VGo13jp0iEq5zIaNG9mwYQOO66KLm0YzDCzL4jsvvUTLsnj6iSeiGyEMCcKQAFDCkInxcfbs2sWRI0d47+xZLMtibHSUpYUFZrNZ8vk8fX199Pf3YxjGzbzUNw13vcFLv7xWq1EulagsLVGr1SKDDkPCICBlmpimSdI0CcMwWtlVFUVRotU3DAmCgMD3CYThB2FIIFyaMAjwggDf93E9j8VWiyAMaVkWc3NzNOp1ctks9+3bRz6XQ1NVfM9D0zQSiQSKovDaa6/h+T75XI7HHnssfpooAEFAEIaoikImleLJAwc4efIkx48fx1BVtmzZQmVhgVq5TGlxkZlslr6+PsbGxu46w79rDV4a+tzcHHNzc1RKJULPI2EYpE0TxTTxPI9EIkEumyWbyaBpGqqqohsGge/jBwHtDoIXBCiKgu95eJ6H5/u4rovlOLiOQxAEqIChadQbDaYvX8ZyHFKpFCNjY5G7EYbouo5l2zieR7PVQtM0Dh89yoaJCR5/9FGarRaNZhNdVVHEzReI1+mahgLs3r0bM5Hg7bffZnBoiE0bN9JoNKjW69QqFaxmk1qtxtDQEH19fXeN4d+VPnyr1eLy5cssLi7SajRAGHoqmSSdSpE0zaiRWlFIJBJkMhm6PV/P82JXxvM8fM/Ddt3o9yL70g4F8D0PS7hNJ06exLZtAmDTxATJZBIjkYjcE1UlEDdbf18fSdPEDwIC8ZTwgyB6j7b9+0FAGAQgXCjDMNA0jUOHDjF15Qof/ehHyWazqKpKq9ViqVRC1XUK/f3k8nn6+/spFAqo6p1dmrmrDN7zPM6fP8/c3ByubaOGIQlVjYK6QgHTNFGAaq2G47qoqkohn+/YRxiGuJ6HZVl4vo/veZEbE/0x+lIUDF1H03VU4XbYwu9vNJscOXIETdPYsX07R44e5fFHHkHTdVq2HbspzWYTx/NIJhL09/fTVygsZ1vCEMf346dMGAQ4rotl29H7t8EPAt44eBBdVfmeZ54hIVbyIAioNxo0mk2MVIq+vj76+vvp6+u7o3P6d41LMzMzw+TkJI5lofg+KcOIVrVcLuo1Ff64bdu4rksYhmRFB1IIhEGA7TjRqhwEHUQwBSJ3Qqys0q2A6GnStG0URaFcLnP82DFy+TwPPvgg9XodhYgOrOk6yVSKMAjQNY2EYVCt1VAVhVq9Hok4ZTIUi0XMRAJDUQhVFcSTJBkEZNLp2I3yPA/XddFUlfvuvZc333yTY8ePs33bNsxkkoSuk8vlSCQSlCsVLl+4QLlUwtm4MQ5u78SMzh1v8J7ncfbsWWZnZ1Fcl6RhMDwyQrFQ6Az8BCzLilKHySSqquLYNlZXmV8Rro5hGLHfHHStrIHvU2808H0fRVGoVqscPXqU0dFRHn30URqNBvIViqqSy+VoNBo4wtcv5vOkksnIXfJ9LMeh2WpRr9dJpdMUC4UoiBb7kMenaxq6eBKEYYgfBKTTaTZv3sylS5fYuGEDfhDQVBQSuo6ZSDAwMECpVKJZr3P63XcZn5jA8zwGBgbuuBz+HW3w5XKZs2fP0qxU0ICB/n5GR0fRFIWgywcGsMTq7noehq5TrlQ6/m6IrEnCNKMGDGFkYRAA0UofArZl0RBteqqi4DgOhw8dYmR4mCeeeGLZFRHZHJnSTKZShIBj2zSaTRRFwUwmyeVy2JZFtVaj1WphWxbTzSZ6IkGxUCCTTkfvLzJGEoqixDfA3vvu49LFi8zNzbFh40Z838dx3ch10zSSyWRUtfV9pq5coVGvY7VajE9MrKm2cLvhzjmTNniex9TUFDPT01j1OglNY2JkhGJfH8AKY5cmUqvVqDca6LoeFYqIRJISiQSmaaJ1BXSKokS5dbEP3/dpNJuxu2MYBkoY8vLBgxQKBR4TnUq+uEG0NtdHEQWrTDodr8zNZjPi0gBmMsmgaeI6DtVaLX6f6ZkZ9ESCgf5+UolElAaFOJ6Qbkk6lWLrli1cvHCBPXv2EIYhtuNETxTfxyd6Kvm+H7lT1Sr22bM0Gw127dlzxwSzd5zBO47DuXPnqJVKuI0GhWyWsdFR0qnUckAnjVT8bztO5CfX65HvnkySMs2IOqDrHYYjEUJcafVEib/RJnmdSadRgOdfeAHDMHjywAF0XY+zOsCKGwgiw8+k0xH5DGg0mxSLxSj4Fa7U4MAAxUKBpXKZcrWK5zhMTU+Tz2bpKxaXjVO4awHR02fnrl1Mnj/PpYsX2bp1K4auE6bT2JaFLegSAM1WC8Mw8Hyfuelpmo0G9+3fHzeZ3864M25bAcdxeO/MGaxaDd+2GRoYYGR4OJK/aFuJpaG7rkulWqXeaGBZFiqQz+UoFosk02l0XUeBDmOXqqdK25dl2zSFC6NrGsVCAV3TePnVV3Fdl4889RRmW0O3dIV6+ceysJXLZiPXy/ep1WrxMYeAL7JCxUKBsZERMuk0hqpSbzS4PDW13D8rXCaEy5ROpRgfH+fs2bPx+8mnRyGXI5vJYArahKw6u65LrVrl2KFD1KvV7/Yjuum4YwzesizOnj6N22wSui7Dg4NkRMEolL62ooCi4Lou5UqFar2O5/txliWVyZDP5+NUYjdCYfjybyFRc3bLslAUhXQqRb5QQFNVDr75JtVqlY889RQZ0ZQtjVYGmGoPg5c3l6ZppNLpKHB2XeriWAPfB1HgCsMQwzAYGhpicHAwlgKZX1pienZ2hVKCoqps2LCBarVKrVYj6MrnJ0yTXC5HPp/HEH67ZdtRJbpa5b1Tp1gUwlK3K+4Il8ayLM6dPYvfaqEpCrl8Hl3XIzeG5RXZ8zzqzSaOkMNQVZVkMhkZj2igNnoEaHE2pS0gDMKQer2O47oQhmTE6gjw3nvvMT09zYEDByj29dGev/EF/UAhCmjl6ksYErbRFFRFieIHw8D3fVq2jaJpJIVRK0QukSuyQOl0mmQySaVapVat4rouV2ZmyOdy9LUVlEZGRjB0nampKXbu3BkHzPI8VSKZEF3XWVhcxJH1A99HUVWYnMRzHEbGxz+ET+7G47Zf4aWxe60WmqoyPDiIruuomkbCNOOgsimyHL7noaoq6VSKgkj9+TLI7BJLislgsKKqWRVGpRDJcUhjL5fLHD16lO3btzM2Nha/Vr7e830Iw4hdKQw8ztYEQRwvyDSnpuukkklURaHZaMTuULRjpcPdUlWVvmKRsbGxKAZRVWq1GjNzc3HcoOs6wyMjTE9Pxzn8+HyDIC5kGbpOf6FANpNB1zTCMKTZbFKr15m+cuW2Xelva4P3PI/JyUncVouEprFxYiL+myECxDAIqNRqEeMxDDENg2KxSDqdjrIkwsUJwzCuQoJY1YVro3S9Z7VajXgzIn8ueSi+53HwjTfI5fPs27ev5zHLm0u7hlSfNGYzkUA3DBRVpdFsdtyEMYGt7XWGYTAyMsJAfz+GruO5Llemp+M4Y3xsjKWlJVzxpJOZHZk9kk8ZXdATkqkUqqYREt2wtVqN82fOULsNffrb2uCnpqbwGg0MRWFifBxN02KOi6qqNJtNKtUqnuehKgrZbDaqagpXAiID9gUHRRpur1UdwPW86CkhqqGFfD4u8gAcPnKEZrPJo48+uiKNF/vvbSnJ1RC/rzD4MAyjdj9VJfD92HDbt1V7VEUz2SyjIyOYgnE5OzdHqVJhdGwMVVWZnpmJbhjxHiv4P4oS0S0UBUUEvXLbRrPJyWPHbrtA9rY1+KWlJeqLi4RBwPDQULQCCR5LEATU6vWOVb1QKGCKPLWqqijC4OKcuUg/hj1WdbldrVYjEE+CvCBiSVy6dInz589z/4MPrtCKaXeNZMDaKyXZjtjHJ0orqqoapToVBduyotgBOtySXoG2XO1zmQyGplGpVChVKmTSaZaWluLjCwTzs7t4lTAMVPE71/dJZzIkRIW31WrxzuHDt5Xc320ZtFqWxdzlywS+T1+hQCqdjnxfVY3SaPU6ZiJBMpkkncmQTCRWrNoqELRVS1XBS2kPTCU836dWr0fGrutks9l4NQzDkHqtxltvv83ExARjIyNYtt3RGCL98zAMI0VhsZrW6/U406PI95fHqCg0m814/E0o+O7yKVar1ykUCp2rcttq3Q5VVRkYGMA0TZbKZRzbJpFKsSR6ZaWxy+ujCbpxtMso9x8qCp7joAKJZBJNUeLK9JG33mLv/v0MDA19Nx/rDcFtZ/C+7zNz/jy4Loau01csxiX9RqMRC5KqmhbRXYV/2mv1U8XTIAxDNJFz74YXBNRqNVzfR1MUdMOg1WrFNF3XcThy5AiqqrJt27YOHxuIcuFEGR5PVDLlU0hmbDzZ/9p1nJ5oGFHa0ouyQup5HrZlkUylUBQFVdPQVDXqsRWxSbeLks1mMQyDhaUlMuk05xcWqAhSWq9rI59Mhq5DEOCL9yeMZP5UTcOyLFzX5eiRI+y7//5b3uhvK4MPgoD5y5dxWi38MGRiaCh2K+qCeKVrWsQmNIzoA18lpw7RTSK7ktp9cU9Ib7iuG1cyVVUlncnEUtayfD8/P8/CwgL79u/HSCSiHH57R5TYpyI4NWEYYug62VyOUKysmVRq2ejaqsCybpAQLEy5GieTSWr1OrbjoOo6uuiQcrsKZApRrKAJgpumaZimyejQEI16nXOTk1yemmJ8dJR8D8k+efye70dNL0EQ8YxErKNpGul0mnq9Hhn94cPsfeABBm9ho7+tDN6pVqmXSji+z3B/P4lEIvLXa7V4hezr66NWr0fkKNvukKzuhgxYJd231Wzi+j6h+F2z2cTzfVRNI5VKoakquqbFq2kYhpw5e5bR0VF27tjRk04b81oQhqPrmMlkxJcXPBlNGHQ3fN8n9H1M04xrChKpZDIOXpPJZJxSlK2G8skSCP6+PAZFVaPU5NAQmqLgWBalSoUwDFdw/6NDj3pwdV2PDN51QRyLdL0y2Wyc8j12ixv9bWPwfqtFeXERX+SIc/l8lCIUFUNFVeN+UDOZpNVs0rSs6NHbFSD6Qkmg0WhQq1ZRNA1dVeMiUCC4Mbquk0wmKRYKPQ3y2LFjOLbNAw88sDp3vM2fvtaANYaqxlSGbiSTSRzXxRM3aPeNLXtqPWGkvqAZh4IvD5BMpWg2m2RyORbLZfwgoL9Y7NiPZVn4vo9pGDHD0/P9+ImoQER6S6ViQtvxo0d56NFHb0mh19vC4APXxWk0ovJ6EDAyMIAjCF9hGKJpGnnRROH7PqlkElf4ufVGg2w2G634jhM1RwjDi10MTcNIJCIqra7Tajaj4FHeRD1SiLV6ndNnzrB79+54VM1Vz0OkJK+VeRgHsD0CaVVRSKVSMbVBauS0/13VdXTANAw8sfJLfr3n+6RSKTzPI2Wa1BsNZufmaDSbDA8MYAgXxhLxQzqdxnGcOH5odwGl4FQmnabZauE6DsffeYcHH3nkliOc3fIGHwQBXqNBtVrFDwIShkEikaAqCFWGYZATWROZnVCAbCbDYqlEq1qlWquRFPlkmX1IGAYkk2iCgiDb2lqWhSMUA3LZLJrwnbuN7tChQ6TSaXbv2nVN5xGKFRfWzsF3o7uo1A7TMLClYbZaHTdeu3SI3I+kOktks1kq5TJ9fX2oqkqlUokWFdclk07jel5M0UiI93HaFowVxyoq2I0wpF6tcvLdd7lv375bik9/y+fh/UaDQOTAPd8nm83GbEDTNMkLcSHpUARhJKJUbzQIhOti23a0Coqbo7+vj3wuR0L2nIqV0XVdWo0GYRiSSqej6ibEvBYZBF+6fJn5+XkefOCBngQwifb0oMx4SMO7FsROkngy9EJaZGkc140rxr7IAHU0g8AKKkHSNHEch1QyyejICKOjoyQTCVqtFrMLC7hSfcF1o4YUlpvRVz1mVY0UHnSdhbk5Ll64sCJNejNxSxu812wSilK+rG7Ki2eaZpzZkN1HtVotmqQhfElD1ykWi2TS6bjzX9O0uKDji0KVJtKEddF2lxQaNN2QMhrHjx9nYmKCkZERYGXeu+e5fIDVXbwprHKDSCpxQtQZ6s1mR/58xa7k/gSSqVTc0ghQyOcpFotRYE4U1KfTaUJFwRUths1WK3INhVAsLHd8tR1Y3IV1cXKS+fn593fO1xG3rMEHnodvWSDK2LHfGEb6K7lsNmZAVqtVKpVK1LVP5COn0ulIZauvL26K8H2farUa+6WSrIWi0KjXCYIATdfjD6sXzp8/T6vV4r777otz3bI5A5aNKmhzJ4DYnXlfnUOy0iqeDrHAkwisZUBrmmZUUxBxyuq7U+KbFqIbW6ofS7qAoijk83mSphlf72wmg2YYEctTUbAch1K5jC1ulu5+XkRaNp1ORz3Fp05ddTLhjcKt41x1wWs04jK653m0LItCPh/51rkcvuvSaLVwbDui1ULciteeUZGzkAq6Tr3RiKiuokAlsxVS9EgqCHQ/+iV83+fEyZNs3LiRfC637FtLY28zelVVO1Y+v0fAKo2lw9dmOSsj1RJUQYTrQDtLUlFImibNVgtLuG6rZY0UAE0j8P2IGg1Uq9W4G0sB+sRTsVKtUqnV0A2DTDpNOpWKegiEHHhLNLhruk6i6z0VJZIqSSYSNBsNLpw/z46dO2+6P39LGrxv21GTA0LmotkkYRgRVTaViopMQvoiUBSSiURccWxHHGwqCpqqks9maVlWFJg6DvV6HV+sYKqikBVpzdUwOTmJ1WpxT9uY+FXRZaCBaNpo37/Cykdst3N0VakMGYSbZqSuIApma82FlTekpmmEgkJcLBajQlIqFReoPKG8sLi0hCZ6B1LJZJzeVCBOeTqWRcI0Y2lAeYMmk0lc32d2epr+gQGGhoZuqvzHLefSBEGAL6uZYUipVMJxXVLJJLquU6vXo1WdiL/eXyySy2Y70mTQxnjsWnXSqRTFQiEqWoUhjXo9KlR1yeZ1w/N9Tp06xebNm5fHSq7hu3evyHFK8oPKXlzFSFRx46uKEvnlqxybrDHUhNiU5N6kU6mISdp2fFIKRFMUFpaWItapCN41TYtWfZH/b08WeG3+PYpCNp3Gc13mZmY6ppPfDNx6Bu84EbmKiC5gOw6e72OK3HoYhhiJBH3S0IWIUndGRO6jFzSZSdC0KFctyu7Vep1KtYplWbGBSpx77z0s22bPVSbsrXpekhb8Abv/r2VNNE0TRdOWK6Jt8DyPZrMZS30EQRBXi5NyZe5+T0VhcGAgelqEIXMLC/E2sggltTfTokkl8H0ajQattptOUVXSySSL8/OxUO3Nwi3l0gRBQGDbUeorCCiXy1iWFclNi6pjPpsl0ZVBUWQmQ3Dh4eoGYts2QRiSSiYZGR7G9Twc28YXfPNmq4Wh61EThKpy+tQptm7ZsnpAGy5L8LWEL22J+MPzfZrNZqQqJnzlIAjiDMnRo0dj4SdVEsDkdsLXzhcKJAwDM5nslAzpeoIlTZNWENASY+89kVpsv4FVTSNpmqRSqZgkthrkhJJ5kaacX1yMcvLiHGQTTSKRiERgLSuS/7BtPNclZZrohoGRSGA7DksLC6RFQuFm4JYy+FBIRUgabbVSwfF9BoULkslkVs1yKIIeHIoez7XgB0HEamxb3RKJBOlUKhphI6XqxNeF8+exXJexiQlm5+ZoNZvU63VqQh9GGrfMnEhCmiZ4K5J6rKlqx9QQmZv3fD9iYErJbSmvLWZHydXab3tyJQT92UwmSSaT0SqbTpNKpbBFTt627biLSxENLtIwAVzHuSZ/2tB1Bvv7mZufx7FtbMchk0rFBi8hMzOGrtMQ16PRamEGQXyDLczNUezvj5mbNxq3lMH7rRaKEmkp1qpVHFHpG+rvJ3M1Xkbb47P9515oNptRC5tgVkooikIymSRpmiyVSiwsLFAql7l06RKqovDiiy92pPTSmQxJIUSaTCbjRmppjHL1s22bZrOJpusdrMRyucz0zAwP3H8/xS4OC0R6Oc1mE13TMHSdZqsVBd3NJi3LwhJPksWlJS5durScCRKdSslkkr6+PorFIkNDQytEUuW1upaykJFIUCgWWVpcpGlZGOIpsdq2eV2PZD4EjTkIAlKCR19aWiKTydDf338N7/zh4pYx+EAEUK1mk/LSUuS3GwaaYZC6Bq5KqCgd8hW05ZvbYYvpGxBlEFAUPNdlqVRicWGBxcVFlkqleMKHaZoEQcCmzZspFIukxKqqiSJYt6+PWLkt244rtJJ/oqhqR0AnXysro7BckQ3DEFuspr7QgZdZKjOZpBif+PIxOI6DZVlRa2O5TK1e5+KFC5w5cwaIUq6Dg4Px5D9JRZAFrBXn0v75BAHpVIpWKoUl1M/W4hCpqhq5TI5DS3DmA7HSl0slBoeGcBxnzWzS9cCtY/COg91ssrC4GIn7GwZpRSG8llK8zGN35cPbqbkQZRKajUbk0ohBYEulEg1BVTAMg4GBAXbv3s3AwADFYpHnX3iBsVyORx55pO3twmWXx3VjVyQMoxlQXteNJj/whNRwF5AUiUaj0fMcHdfFsW0CIb3dXuTRRFpRVo2lUkP8nmL1l1TmxcVFlpaWWFxc5MKFC5FygnApzr33HoMDAyTb1dlYXvnbb4RioUCtXscVo3q6acvtUFQ1CqRVlVaziS+OKyS6OavVKoODg6u+/nrgljD4MAyxGw0WK5UoSEulIhnnUmlFgPp+0E688hyH85cuMXXlCguLi3iuS8I0KRaL7Nq1i8GBgah1r+31C4uLlEslnnzyyRX7NQwDXfjEEr7wuyWPRQZ2tuOgCiam0m7YbTeoKng67W1+YRgSGAYJMQRN3sgxr4eoMLWi0kmkdGDZdsSGzOXYsGFDPMjY931mZmY4cuQIbhiyVCrxV3/1V+QLBUZHRhgbG6NQKHT04kpouk6xUMCZm4trJOlVAnl5LQ1dR81kaIrGndD3qSwtkUgksCxrzZ6FDxu3hME7zSb1ahVXDPoa6O+nXKngQ4d0xqpYxV93XZcrly8zNTXF7OwstuuSzWTYvm0b4+PjsevQzQGXeO/cOdLZbMyZWfm2ne+rqSoInfh2+L6PKYhvHYGaeH0um6VQKKzYvyWKa4lEIo41uikLqCr0YC+qmkZC12MXLtVmVM1mk2PHjsU3zSOPPIKiKExNTXHq7FmOHT9OOp1mfGyMDRs20Nff3xHcmqZJKpnE8TzK1WpHINwTbXl7yVdaXFxkcGSEZrN5dxm8L+52S2QU8iK37gp+R7c4UgfkBy/8d7lilkslJicnuXjxIoHvMzA0xI6dOykWixQKBTKZDEEQsFQqRbthZRqzaVlcunSJ/fv2rV2m7zic5cruit9D5+p+LehxI7dTD1bbRiJhmnG6VdKj5+fnee2118hkMtx///288J3vYJomQ0NDjI+P86DvMzc/z9TUFJevXOHMe+9RyOfZtnUrGzdtim5YRSGTyxFUq4RBQLlSYXBgoOcxKIqCRpRhkn59vVbDsW0WFxcZGhqKlNZukDrxTTX4MAxZmp/HF0WKVDpNUigQeCIVZ15j6sr3fS5dusTk5CSlUolUKsWuXbvYsmULuq5TqVbjiqKk6CqqSiAotd1Gfe6999A1jc2bN69+/L0YiT2MPWzLnnwgrPG6tfZoGAaqGNbgOA4zMzMcOnSI4eFhHnvsMer1OoHvd6gUqJrG6PAwQ0ND3L9/P3Nzc0xOTnL4yBGOHjvGxg0bGBczqQqFArVaDcu2o0ab1YJYZXnaoTT6VqvF7PQ0mUwGy7JWdYs+bNxUg6/X64QioEuJYWJxt7xgMuqrGbz4gCzb5tSpU7z33nt4rsvo2BgHDhxgZGQkXlGrQiwomUzGgZ30m0OhqBVndcJIReDcuXNs2rx5zVzxtZhvHPC9Dx58fIq93keJxmB2BOZrIJlI0PB9Tpw4weTkJJu3bOGB++8HRcF2HEJA736KKpFcSagoDI+MMDwygmVZXDh/nvPnzzN54QL5XI5t27YxMDBAtVajKgLYVeskgkFKGMbdVLV6ncWFBfL5/J1v8L7vU69UQHTEyykU7Wm2tWA7DmfOnOHs2bMoisL27dvZunVrpFHTBtnWB6zMQ8uVU9IQRFboyqVLWJbF9m3b3tc59apYynP5QISpVVwaKT0idrzmLjRN49133+XylSvce8897Nm9O953rKnZ7X+Lm9Nv+xySySS79+xh965dXLp8mfcmJzl8+DA5ERCns1kqtRp9PWKRWImh7VemaWI7DqWlJfpEmvRGuDU3zeDr9Tqq4HwkhCa5IhqpacsOdF8Ez/M4ffo0Z8+exQ8Cdu7YwY6dO3s3VoRhPEU7JUr37VDizTo7gy5dvszw8HDchBxCvOK1m1e3gfeKBb4bDs1qNIkOdbDuYxA3r0z9vfbaaywtLbFv717G27Q3IQrqQ+gdcLa5IR1QVQaHhsgXCjREX++7775LLp9nbHycXCazcn8yxuraVzqVYqlcjqvWvQL3Dxs3xeA9z6NZr6OI+UKywtkRhLb/T/QBnjt7lndPnMB1XbZv386uXbviap8nA8Y22IIuq8r9d6FdPUyiZVnMzcxw/wMPLG8njmVNw6O3i/OBA9YexxnvU7hfscx19/9EmZiXX34Zx3E4cOAARiKB5ziEQh4cIq1MqV3T833p7TJJd7N/YIBnRkeZnZvj6NGjnD51itmZGR5++OFOnRuRolUgKsyJRUDXdRKJBEtLS+Tz+TvX4JvNJooQ99fFJLl4dW+vlAo0Gg3eevNN5hcW2LJ5M3vuvTempUr0yl60hLakHCzQDUVVo5EwbY/uy5cuEaoqEyJnvRYUlo0x6PHYJgxjt0ARFdiOCnCboba/Tp6LbAwJu/YrdXPat2tHqVTi1VdfxdB1nnnmGbLZbKSeJghuMtUb58BXy0KpKorgNnWclviSPb4jIyMUi0XOnD3LxYsX+da3vsW999zDjp07Y/ero8Gl7RpkUikWSyWq/f1RV9t1bhC5KQZv2zYIkpciGgu6K6LSmN47e5bjx4+TME2efvpphq6xMmcJ5qO6BudDuhnthZuLly4xNjJybfn/Nkjj6xVgQqTdonQ/udp98R4VznYjaf97x4rfZYxTU1O8+eabFItFnnjiibgwJmc2uY4Tn1trjaKRhKosD26L37JHXGKaJmNjY+Tzea5MT3P02DGmp6d58KGHVlAQ2p+MhqAlN5tNGo3GdV/lb7jBB0GAa9uEjhNpwXRXHwXm5ueZmZmhUa+zfccO9t5334omj3Z0+7WyCSLd9gjvhqxYyn7TWr1OaWmJxx5//NpPqMu9WHG+0mg/pKAV2p4sXU+Gs2fOcPTYMTZs2MDDDz/c8VQzROXVcV1SYSTM2mw2VwT5K99spS8vv+9Os+ZzOSzLYmJ8nI0TExx95x2+/td/zX333ce2HTvi7RWWB60RRmrMVqNxQwz+hjeA2GI8usx9JwwjDlQl5mZnOT85Sa1WY3BwkHwuF4ukXgsc141Wd8HlWA1q1wp/8eJFNMNgVEzuuBb0CnzbEa/wq3RkhYJS3C410r1Nz2xN1yp/+PBhjh47xq5du3rq02uqii5qDzJr1Wi1rmnMfLdhx0/Ert8bhkE6nY5Vjp/76EfZsm0bR44e5fXXXusY7txxMwqB2mbbFMTrhRu+wjuOg+K68QdsCM12icuXLvHGG2+QTCYZyOVQgoB33nkHz/MoFgqMjI4yOjpK/8BANNhAos0o5M0hBwivBslTl9LWFy9dYmJi4n1nVLorrDLfLHPP3S4KPX7uxYdpD3ilYkD32Xiex+uvvcbM7CwPPvggW7ZsWfU4jUQCVygbmIkErUZjTfJXjPbkQXsjSY9rm8/louHJQqVs/759jAwP8/rrr/Pid77DgSefXLEIJRIJavU6DTG5/HpO/77hBi+F9XUlkp5uz4WfOXOGo0ePsnHjRoaGh3Fdl82bN+P7PrNzc8zMzHDx4kXOnDkTCYIODzM6OsrIyEgcB/jCTw3DkNRViGeaCJSDMGRxaYl6rcaDDz64+rG3ncOKG0npVD6TP7crf32QayX33avQ1Gq1ePGll2jU6xw4cIDRkZGelV6JhBBZ8sQA5SAMr7ngo4qb1287n17npGla1I4p3iOVTDI6OsrTTz/Nq6++yvMvvMBHnnwymmwoMjayTbPZaKxoKvmwcVOC1sBxwDCWA8Mw5Mg77/De2bPs3rOHe++5h8uXL+MqCr7vYxgGGyYm2DAxEXM3ZmdmmJmd5e233wagUCgwODREoViMZo2a5lUbpuUQgjAMuXzpEslUqoMTsloVc4VRrXae7avhB0lLruI6AFQrFV566SU83+d7nnkm9n1XuFbiyaMQna9uGASuGzdTX4tLEx1ClEsPRCqz1/mEROecSadjKRRPyGsX+/p45plnePnll3n+hRc48OST9IsJh3JfUnf/enZC3XCD98Soc0UM6iIMeffddzl79iwPPvAA20R1U+bnuy+AokaT6vqKRfbs2YPtOMzNzjIzM8PkuXNYQst9bGSEsfHxaMbRKmw8SS/wg4Ar09OMjo52Zk6uAe3CRt2Ii2cfkEPT8cRow9zsLK+9/jqpZJKPPP742kbb/mQII21613VpCEnBa3JpxH5kk0hIp/qCTFNKd8cQi5ntODSazViGO53J8Mwzz/Dqq6/yyssv8+xzz5ESc6NURYmr4teTPXnDDV5OjtM0DUVVuXLpEidPnmTv3r2xscNyytD1PFacvjQyRcFMJNi4cSMbN27knkaDK9PTlEolqpUKb731FgD9fX2MCNenr69v2QgES6/VatGo1RhbZfLemlgrQ/Pd0AroXWk9f/48hw4dYmR4mIceeuh9y34YhoFiWVTLZRKmGacFu9+zFxSxOMDyqhyyHLO0I5PJ4Ah5vlw2G2fiEqbJk08+ybe//W1ee/VVnnn22WiEp6pGjfXXQCv5bnDjfXg52kVVKZdKvPXWW2zYsIFdO3d2bKdpGijKqkq1HY95cQPYrkshn2d8bIxkMollWZHrMzfHGVECTyQSjAjh0JHhYTRNY2FpCRTlg4n4K6uP1Anbik4fBO3+fxiGvHv8OKdOn2br1q08cP/9kU+92vVZBVIVodZskuuaEC7fC1YxfFFXCMMQXbAwV7vZJVHP831aXWxII5HgwIEDPP/887x58CCPPPwwhOHyGM3riBtu8DKzYlsWb771FtlslocefnjFKtju0qwJ8TrHdfFdN24rg6gYsmnzZjZu2kQYBCwuLTEzO8vszAyXLl4ERaFYLNJoNMgLGb/3C8ldWe1vsDxLqv13sCyw6nsevuih7fU0CMKQQwcPcunyZfbu3cvOnTujbT/gamjoOs1Gg4EeHPa1jF9WeGU3l7qKscOygoFUdugOjnP5PI88+iivvfoq72YyjIyOoqoqDTGs7Xrhhhp8EASoRBfj3Hvv4XkeBw4c6FlQ0jQNJYiGhl0LHNcF0eUDdGRIIFplBwcHGRwcZO9999FqtZiZmWFqaor5xUV83+cv//IvGRV02JHh4bWbT8R7BL6P47pxq11sEEFAq9nEEo3K8ZjJNsi8c7PVWjGoOAyj0fae7/P2W29Rq9V44P77GRsfx7btSOYj2vD9u0yKgtVqkb5Kc3xHlojoBpX++rUE4dlMJp7/1Kthe2xsjHvvvZd3T5wgm82SyWavey7+hhq867ooYYjrukzNzLB3795VA66kmBJ3LQWnMAyjGyMIogBX5r7XyHKkUim2bt2KmUhwZWqKe++5B9fzoqLXhQuoisLA4CAjw8MMj4zEU0Rkw7Yn9GN88X8vxCm8rt/LfHpceVylmmnZNmfOnMH3PB548EEKhULH9QgFN0ZqVmqaFrssmq6veiM0hUpwOpPpGF+z6vUVK7srlCVW0IlXgaZp8SyqRqvVU6Fg565dXLh4kQsXLrBv/35ad5TBiw/r0qVLpFKpqL1LlLm7IYtGUohorVSVVPdCUeIPI86FX+WYZmdnSaXTjI2Nkc1muX//fmq1GjPT08zMznL83Xd559ixqBAmeNt9/f2x+6MKApqkKUj1MJkBcoXybrIHxUEaeLarpzUMQxbm5zlx4gQJXeepp58mlU7HTw/5NPHF8LIQMXmwy/1TVTWWEdTFEDUgmp5C1EvbPb5GHED0H52rvOTP6+LG8q9B9CotmrdXW7hc12Xr1q0cO3YsmgPwPmOS94sbavCe51Eul5lfWGDfvn0oRIy9XqkxOW3OcV0s2+5p8HIVt4S4qmkYK2Sq18xAhCHTMzMMDQ7Gw341TcMXfbADQ0MEvk+5XGZxcZHFpSWmpqbQVDVa/UdGGBkZIZ3L9QzebNuOxkaKeORaMXXlCgfffJN8Ps/9+/dTWKXJPBRPS7/taSOfQHKinxMEINwpRYnGc5aWlkglkxiaFrVSmmZvI+96L8/zCCDuWEKQ/1YMRGiDVBOWM7baV3kpNzg4NEQmm2Xy3Dl2X4sy83eBG+7SXLhwgUI+z9YtW6jVatiW1amVKBGGmKaJZdvYth1nFKI/RSlJSZF1hACrIaWaV3n/dpMLwpCFhQXq9TqbNm+m2WqhC6EjEKujrkfDj/v62LFjBwD1Wo0ZUfR69/hxjhw5QiqZZFhQHoYGB+OV9P0Sx0JRbT527BgbxsfZsWvX2kUY4b/Lm6pbEUHOm/V8H180xbueR7lSIZ3JUBdyg1dVHYA4/y758zIVKbnxMf25CwqR0cvPsd3gbaHKYKgq9+zezcE332R2ZuaartUHxQ0z+DCM+OlLS0vs3bs31jm0HYdWs7ksQd0GM5FAJXoKxPthmbuiEOXp5WpztQqdbGZ2hBLYzOwsiqpGOiueh6ppZDKZ2A3ohWwux45cjh07d0b7mJ5manqamelpzr33HqqmMTw0xMjoaCy9dy1pyTAIOHzkCJOTk+zZvZsdO3bQFNKDa53Pak0aKAp6u2SIuAFc16VSLrNx06ZourbnUalUSAidHcMwehq/VPzVRWygtmfQRPyxoiFG/Jw0zVhFTbaF+OJYpKDtwNAQpmkyPT191Wv13eCGGvzs7CxhGDI8PAxEgaPjODiuS6uNuScvWUKoVkmZtl4tZ45oRO6eQNEOz/MiaqzYVqJarVLI5xkaGornvRriA+3+AFfjjYyNjzMyNkYgZkzJtOfRd97BF2X20dFRxsfHGRgc7ElM8zyPV199ldm5OR566CG2bNkS+7xrpjwlYW2N9GB78K6qajQq3vMYHx8naZrUBH+lfTGQc6MShhHfrJ5QZl4rdSszY2rXU1amiR3HiQN8OVTZMAx0TcNxHPr6+pidnV11/x8GbqjBz8zMkEgkyItSsypGlzeEOKgqxU3FB5SQPnkYrqpQJd2Z9kelItwd6f+365HrmkZCyDfXarUo/ShWNaka3L2v9o4kpQf7UfLT8/k8+XyeXTt3Yts25y9cYHFpiStXrnDu3LmY8CYLXxJvv/02tm3z1JNPMtw1KG0tTZwVtIYwXG7/o3d2aGFxEUVR6O/ri3x+3ydUIpltT6gOS9/aEoOdDcOI50DpbUmBXguQdCkVVY2nD0qjdsXoonbpEtmcE4Qhxb4+Tp06RaPRuObZt+8XN9SHn52eZuemTfGHKOnBSXGBm40GKnRIcxiJBLZt02i1Vhh8u+65dGfCIKAlVHaDNoNMJBLRoC7xgVmWRb1e514x4EDX9VhLvTt91mF0SueIzBXUX7GtpusMCX2XYrFItVKJff/Dhw8jWw8BHNvm6aefXlYQljWELmPqSFuKn1dUO1dJhUosLi5SLBQ6AmnZamkYBkmR4rVdNx6S1mq1sF2XhBge0X5drtYHILeRolDVapVMOk0YRpP+VHFjhEFAX18fYRBw/vx57rvvvlXO4LvDDV3ha7XaCl9dUaKJ0kEQRHOXGg2yuVw0opLI7Wk2GlF+tktEXz5m5Q1iWVb0qAyCaESlqpI0TUwxnaIdS0tLALFks7wR3s90ip7+s8x2CINVxQ2SLxTIFwrs3r0b27Y5ffo0J06foOk1SPhJXnj++ZjqPDI6GgeJCApz2PEWyz/JFrxrDYwXFxcZFw0uMoUqszzxcAPTJGGaeEK1zLHtaI4T0VSWZDKJrmlr6vIoEHP4IVrJy+UynvDZO4xd3LRJwe2Rn831wA01+PbVUUKuAGmRZ3Ych3qtRjKVwhBDCkpCctoWjQsSrjDOMAioVCodc5TymUzsj/fC0tJSNKRLxA2xwQsh1NVe1y6DIf3j7ibs+HyjE+w0VuDK1BSvnH2VvzK+QYkSjxYf5e8M/C/Mzc3zlqA75/N5+vr7mRgfxxweXpPnfq3G3mw2aTWbHYq9mq7jiydbt38ug17X86J6ieDG1BsNErq+KgsV6FBWkDUDz/cJwoixKblS7eS72E27jrihBt/rVOLmZ0WJStFE6apGvU4ylYq+ksnoQjebHQZv2zbVep20GHimqGqk3y78wrXywwuLiwy0iYTKqRxBEOD5/nI1sc2wupUJgh5aK+3nCytb8Y4dP86Z06c5kztLvRHJZb9ZfpMfufd/4dl7n8WxbWZnZ7l85QpXLl/mwvnzJAwjZnuODA/HisqxO9X+xkHQkRVqv3kXFxcJgf42Do2maSBW+V7wBZ3ATCbJZDLRuE/Pw/E8nHodQ0htrDBUce2DIJq2Evh+1PrXtgh1t0eqqoqyRgD+YeDGrvBXgaKqZNJpFFXFarXihoBkKhWtTo0GFIuR7kqjEWdWNE0jmUqRaq9mipWl14rhhyFLS0vce++9Hb83dB3fcfBcN5rFdDVyVo8UXPf5tvvJb731FpcvX2bvvn188/LzHbuabk5z38B9JEyTjZs2Uezri9KIts3CwgIzs7NcunQJiOjOQyMjjA4PUywW424kIOoiWuVwFxYWyGQyHYuGJlyT1cbJy0l/mvDf9XQaz/ej+VWCR+S4bjzuUl6XEKE/JAaoAWSyWRzXXUH5bpcy6UUD+TBxQ4NW2Zu58g+djz+pEtZqNCKOjPgQXTFNwnFdWm0zmvqKxZW8cFHm73WjVcplfN/vWOlCQNV1EPnitZq/21+zatqw7WZxbJtXX3uNcrnM448/zvjEBMqVbhel6/Xiidg/MMDwyAj33ndfRHeenWV2epozp05x4vhxzGSSQVH1He5FeJMuVRgyMzvLsJyTKjJZMgj1ReDYXTPwHIcASLUlEnRNI5vJ4LouzWYTLwioNxqkxLifkCiecmwbPwyj+a/pNKEgA8YUCHHS8maTBa3r6dbcMINXVZV0Lke5XF7xN4XlHK48WTORQFdV6jJPLFaVqZkZioVCtPInk+RzuVWbIOSQs25UxDEUCoUO4ldC12mKgkqvD78d3S7aihVe/N9qtXj1lVdwHIenn346DpK7P9LuKKCXS5RMJtm8eTObN23C832WFhcjxufMDBcuXEBRFAbEDTI6MhLxc8Tr6/U6zUaD0X37OnLziihQ+aIwZbSdsyd8d4XecnyGYZDN5eLZrC0xwRCWdewNw4ifvDKTFsixP+IY5A3Qajbxg4Cx96Ea8X5xwwxe0zQmJiaYvnJlZWf6KoGfpuvk83larVbk5ogp2rlsllQqhS8KRWuhfRWWRlSpViM1sm4OvmAaBkEQKXR9N/OHwpByuRyPpHz22WejxmUBRVlJpVj+djmQ69keKJ5eg0NDDA4Nce/evdTrdWZnZpidneXUyZO8e/w4qVQqzvrUarWIIt3W5CJvJlXTUNoq1vJYpJzHWsG/nHnbarWoVqtRXUSN5rKm0ukOQat4eqDvx766nJYCML+wgJlMsmnTpqtf3w+IG7rCT0xMcP7UKRaXlhhu7y5qe+x2Qz5+M5kMtWoVy3EislgQYLbl1dd630CMSZd7r1WrcfGrG7FC11UMvvtIu4Otqakpjhw9Sl+hwFNPPbXC1ejOV3Xc7u37uobHu6IopNNptm7bxtZt2/A9j4XFxfgGOH/+fFQ0MgzOT04yMjoajfeRBt8mOSgrpUEYxmKra/UFhGGI47rYjoNhGLiuuzytu+sJKdPHciyn1hYsa5rGwsICW7dtu3OauEdHR7F8n7mZmdjgQ5bztb387WazGbHsDIOR4WEqtRr1Wi3KEwu3JpVMrn6RgmBZ5UqgWq0y1qWkK5EwjKj83qNhox1K9xNJroxhyOnTpzl2/DgjIyM8+OCDPQ1mpfLBymzQah1QPRz+jh81XY+ZnBC5cN/61rdImibvvvsuR48eJZ3JMCoqvnnh+viSvgFxZVUyLLshK9mObeMJZqaqafQPDES+u8jOpFOpeFFSFQVV0wjFQDhdfIYQPWWWymWe+MhHel3uDw031OANw2B0fJzzFy5wz733xm7NagSohpgWBxGvOpfNRkN3PS8q6ggOhus4EdMxmexkTEoKa5tBeJ5Ho9lcdYWX5CjZ5LFac0Sv4w2CgCOHD3P+/Hm2bdvG5s2bV1fm7TLkoIfBr6Z2sOLp0sb96QU5BfzAgQMkUykWhIzhzOws586dQ9M0CsUifX19bN68OcqmSDEryVESN7Qc0iZ5SXI4QzKZxEwkYvpBq9mMJ5Cn0+nY6HVNi6jMnkdgGLGC8dSVK4RBwG6pX3+dcEMNXtM0Hn74YQ6+8AJnz55l1+7dHcKp7at8S5CcIOqAlyt4OpWiZVn4nsfgwEDUFSVGvNfq9YiPY5oxNx7omEFar9cJwzDWfu8FXdfjR/qq3UBdPBbP83jttdeYm53loYceYkBw7NfiwnSgfZWWgfRqQfNqrt8qmJ2dJZ3JxDHEyOgoI6Oj7A+jNsKZ6Wmmp6c5c+YMp06dIpPJ0DcwwEBf3/LkP8/DEZQDmfLVVJWkWMG9Nl9cFS6WHEzcbLXIiinqMnMWiGq4XFxOnTzJ7j17YmLh9cINN/hcLsemzZs5eeoUW7Zs6Xjcy5XedV1sQQlOtxk7RM2/pVKJpliBMuk06VQqphV4ggDWUpZHrbcHtlKAaC2DTwhf1HXdjul3HWgzularxcuvvEKj0eCpp55iaHg4fp/VzfDqLs2qK7yoWnfvrWf+PYyaXHplPhRFIZfLkcvlGB0dpSWu4fT0NPNzc1y6eJGjR4/SL7q8Bvr7o+yZYZDquq4rGm8EZSRsW+kzmUzc3ghiIEMYcvnKFSzb5unv+Z5Vr9aHhRsqpiof79u3bycMAk6ePNm5gcgNy0ZeM5lcIVttimYFVVGoi+0UIgpqX7FIOpOJMy2241Cr1ylXKjSbTVzXpVatYiaTa2Z35KQ62bfaC9K4KpUKzz//PJ7n8eyzzzIkV6heldY2qF2Xvr0+cTWD7xXIrlZsWlxcpNloMNbGzux5PLqObhgM9PezZcsWHnjgAR5++GG2bNmCY9ucOnmSl19+mYMHDzJ57lxUy2gvvPU8TIWUmC/rBwEty4qe4kok9+GKotV7773Htu3bGRkZYcOGDSiKwkc/+tE1jxfg2LFjsQv6q7/6q1fdHm7wCi+LOVoiwc6dOzlx4gTjExPLchFhGPmbYRiNWV9ldU2nUjSaTZoi/9vO/EuJINbzvNjXDHwf27ZptVosLi2RTqcjd2WVdJuqqhi6Tii67XsqYYlCzhuvv04ul4v842Qyrhp2sye7sWbyZQ2XZrWK9WpB/+XLl+Pi1GrwRWeUZVlURBeSXP37xODmUFGYn5tjdnZ2Wd/TMBgaGmJ0ZITB4eGOCq6Eqijx5yWfmgpRBddIJDh9+jRhGLJnzx5SqRSPP/44f/qnf8rbb7+9ZlwC8PM///P4vs/27dv5x//4H6+6XTtuqMGrqophGPiex5atW5mZneW1117juWefJS2UqmTVLbOGyKcpuDMA5UqFAVHMaYckPqVTqcj4RQW1Wq+Tz+ep1evLJXPRytd+A0i3ZjWDPzc5yZHDhxkdHeXRRx9dkR6N+fOrnMNaack1V/iu2GGt34dBwOXLl6NVs+3mCYIgpkJ7nkcoMi6uIOilTJNsJhO7IBJS3xOgXC4zIyQO33r7bYIgiCd5j46OUuzri49f1/Wo60l0mgW+jxuGXJmaYnZ6mkcee4xUMoluGDzxxBP86Z/+KZVKhdOnT68axH71q1/l61//OgBf+tKXrrlmcsOFmEzTpG7bBL7PgQMH+Na3v80rr7zCM888Q8uyQFF6DiCTkM3JGbFKVyoV8rncqmlJWeEzDIO0yA7I8YqB7Pn0PCzouAGk5iSC6SfdsTAMOX78OO+eOMGO7dvZv39/h1HETMqruDQrfPhw2XVa0+BXW+FZ6dbMz89j2TbjY2PxvCtfVE8l30XGA7quo+k6ZhiSyWR6tly2o1gsUiwWuWfPHizbZmZmhitXrjA5OcnJU6cwE4m42WVkZCTqaxCqzo7rUq/Xo6bt3bvZMD4eMy+feOKJ+D3efPPNngbvui7/7J/9MwC+53u+h89+9rNrHms7brjBJ5NJ6tUqnu+TTqd5SuoMvv469917b8eImtVSf34QkMlm41L04tISo6uMh2+Hoii4tk0+l4vpCZ7ICXui08cVNwBE6miuaIKWT5x3jh5lamqK+/fvjxu7u9+jw7VY1aXp+r2kKijK2hJ9a7AzfXGsUsHg3OQkKZFFifVehKFLA9cFKczzfRqNRrRAvI8KcxiGmIkEmzZtYsOGDXhC5WFmZiZSeLt8GYj6DgYHBjBNk2q9zuVLlxgZHWX3nj0danGPPPJI3Ixz8OBBfvRHf3TFe/7Gb/wGp0+fRlEUfu3Xfu2ajxVugsEbbVIavu+Tz+V4/LHHeOmVV9BUlQceeCAecNbLJ/VE3lZRFIp9fdi2TbPZpNlqXVUJV/aJShdFdvvLi+2LCqvvebFqsSM4IoHvc/ToUer1Onv37mVgYIBKtYrUomn/HyJ+iKxe9uJ5d7s0Acv8+vYAVtIMpMqZH4aEvo8nnj6yH9UX1zPeXxAwOz3N+MaNKJoW0Z+FPo0uuehd11VWWnv54j3R5UaFYYiuqvT39dHf18e999yDZVmRuvPsLJOTk1EqUghFPfzQQ/F1yYq6SCqVYv/+/bz99tscPHhwxVsuLi7yr//1vwbgx37sx3jooYeu7VgFbrjBK4pCIpmMpZFVTWNwcJD77rmHd0+cwPN9nnj88WiV6SJjtfPPFUUhkUiQyWbx63WWlpZIr1I9lbBtGxRl1cYFeQMgboBcLsfC0hLVapW3334b3/d5+OGHo/cUvqjk8tOWKvQ9j0ajER9nnIpTlnngKT9FH324OCiohFZItVLBF7nxuMtJnq84xva2wnaEYYgShqi6jqaqzC8s4Hge27dtWzMFK16MIyUz3scUvV49DiGddY9kMsnmLVvYtHkzU9PTHDx4EAWY2LChI2YqtnWzPfHEE7z99tscPnx4Be/qC1/4AuVymUwmwy//8i9f87FK3PAZTxD58aGixFU21/MYHRvj4UceYWlpieeff55Go9Hhw65oFhb/F4tFNEXBdZx4xPxqkAZ/rZroiqJgNZu8c/gwiqbx7HPPsWHDhqhZu1Agm8uREUS2hKjyapqG0rWCSqm6QIzq9IMAJVBQQgUCFSVQ8f2IX+J7XsTwFH5228FEK7RhYBoGSdMknUqRSafJZbMUxZzTXCZDOpViemqKgjjOq0H61rK975p6F5SV3Wvx+YbhiiD57JkzvPbKK+SyWTZv3Up/f3/8PpqmdRyn9OObzSbHjx+Pf//uu+/yH/7DfwDgF3/xFxkfH7/qcXbjpkwASSaTVDUNXygKyIrq6MgI/c89x8uvvMK3v/1tDhw4QH9fX0ejcjerUlVVCoUCpVKJUqVCJp1eIUwqYVkWhJHA06rZDoEwDLl46RJvvvkm+VyO+/btixVw2yX1esET1AcUhWI+3/PYHd2mRhVXEY0XZkg+m41cIUG8yuXzK/g0a9YFxN8s22Z6aop79+6NJDPk9euVvw+C2NWT1yUIgrXFUldJgXbvF6In0pHDh5mcnGTLtm0U+/qwHCfqWRb7KBSLHefYHrgePHiQ/fv3A/D5z38ez/PYsGFDHLS+X9yUFV7TNFLZLKGiYFlWxI8mCqRyuRzPPfssuVyOF77zHU6fObNCM7HbJ87nciQMgzAIWOrBt5ewbTtOV0oOfjvCMCQgygSdOHmSN954gw0bNvDgww9j6HpEfb0GrFA5EIL/qnCZNE0jVMHBxcHBxSVUg7j9TRU+bntMAKsbO3SyNS+cP4+iKGzZvLkjW9Qr62M7TsyHSYjhCFdf368ORVGo1+u89OKLnD9/nn3797N161YII468oihxcqDY1Zy/c+fOuG/gzTffBOBrX/sa//N//k8AfvmXf/maZ1N146YYPEQCoqGiROkyEdjJVcU0TZ566im2bd3KkSNHeOH55+PGkfjD6DKqYl8fuqpSq9epC/+5G1LWL3qJEj92Q5ZZm4Hn8fbbb3P8+HHuueceHn744agApijva3QmrEUr6NEAIk6s19Dfa4G8LkEYcm5ykg0bN65I1UqfWxX7D30/pnAkTXN5quH7aG3sBT8IOHXqFN/4xjdoNJs8+eSTDAl2rKpG4zMNXY+LdH09dOofF7NyDx48iOd5fP7znweiLM7f+3t/b+3jWwM3zeB1XSch7lLXcaKVsO1D1jSN/fv389xzzxEGAd/81rc4dvToqjIaqVQqkvdQVRYXF3vSex3X7aAqKET9rVKmwnVdXnn1VS5evMgjjzzCPffcg6JEY3UUliuSV1sBr8UHXo1LE+fg3+fUEHnt5mZnaTWb0Wq62vFFBxkRwYjSn+2N2Nd2/F3vL163uLTEt771LY4fO8b2HTv42Mc+Rk6IzSpEn2vIcso1JZr0uyHdmqNHj/Jv/+2/jWkov/Zrv/a+F4N23DSDB0jn8yAbDXpkHwIhzvPcRz/Kvvvu48zZs7z4ne9EI2p6oK9YjCpuYcji4uKKvwdh2MHWkwMaFEWh1Wzyne98h6WlJZ566qmOrpvYIADLcdZcuYE4w7LWB7Oa7EYsNfIBP9T3zp2Lqb5rwfM8bMsiRFS124PQD2Dwrudx5PBhnv/2t1GBZz/6Ufbu3RvTCGCZoyR17AEGV2FHSoN3HId/8S/+BQA/9EM/xEe+S778TQlaJVKpFFXTJBQ8i/aPuENsSFXZvXs34xMTvPXmmxw+dIiLFy5w3733RnRSaRxK1NM5OzNDy7IoVyoU23XXRTNIu18bAuVSiVdeeQVVVXnmmWd6cuUTQhDUdRyCqzV4K6s0brRvcpUVvrvodC2rbr3RYHZmhgfWmDUbvRcxkSthGHGQv6bo6ypBvuM4vPfee5w9ezYaRLx/P9u2bYtltNs1JIGOQRCqqjK6Sqbl8ccfj4t4rutimiZf+tKXrnIFro6bavAAqWKRytISjm2vMMRu5LJZHnvssXhixIsvvUR/fz97du+O6K8i8CoWi5TKZUqlUqxTEwrXpdsQZ2ZmeP3118lmszx54MCqOXrJtfEEL3zN9r+u3HkvdK/gscHLFb7b4NfYl8SFyUk0XWej4LCvBkdOy1OUnu7Eipu1h7FblsXZs2d579w5/CBgy+bNbN++PZYPhOimkiK4qWSSSqUS0xgABgYHV1WHKBQK7NmzhxMnTgDwcz/3c2u6adeKm27w2VyOUHTBNBoNMtlsRxNzNzRNY2hwkLGxMRqNBqdOneKVV16hIGTsNm7cSC6fj7nd8wsLMTVW9mtKvHfuHO8cOcLo6CiPPProVf1mU8jPtcSAhlXVyaCj0NQbK12adpHRFcdylRXe8zwmz59ny+bNq6ZlYXkIAWFIUmgALR+SEi82iqZF9YAuY2+2Wpw+dYrJ8+dRVJXt27axY8eO6Nq0ZdMc247jKKk1JOd1SdWxiY0b1zyn4eFhTpw4wdDQEP/yX/7LNbe9Vtx0g1dVlcLgINXZWZrNZqRbqOsgL3aP7RVRyZPEpMXFRU6dOsUbBw9y/PhxNm/ezNj4eNSh4zjMz88zNDQUl7XDMOTYsWOcOXOG7du3R9NI2qqDqyGRSETdVqJKfDWG3prmvoJKE35Xk7snz5/HdV12dI3/7IaU0dCEYtiK41o+oOgglUi2ZHZ2losXLjA1PY2u6+zevZvt27b15N1IyQ6I6NqarkcMSd8nIFI6KOTzy+KxPXDw4EFeeOEFAH7pl37pQ5vsd9MNHiBXKFAvlfA9LxqOkMutKnKkyNy0rEQKv/3JJ5+kXC5z7tw5Tp85w4kTJ8gJ+epCX1+sJKYoCq+//jpTU1Ps7yKAqVcxekVRMIUKrpSSXhNrrPDdDSDQprH4Po09CALOnD7Nhk2b1pzK7bpuRJIDslepNodhSLlU4vz581y6fBnbtikWCuzbt4/Nmzd30KGVNsJbGAQxUS1hGHHl1hJMWF3UGUbHxtZUJ/jFX/xFAPbu3cvnPve5a70UV8UtYfCJRIJULkdzaQnf97FbLYxVfDtViZqyA4SBtj1ui8UiDz30EPfv38+VqSkuXrzIhYsX4cIFcoUCnmgdDMOQJw4ciFV0Ja4lL5JMJCKtRM9bkeZcgbVcmq6/BSyv8N3yFj3V2tpw4cIFLMti965dq24ThtEEFpRIC3418apWq8XM7CxTU1PU63VSySRbtmxh48aNqza+h0LpOAyjBh6ZDUuKm0oT9RaIOqvS6TR9AwOruoS//du/zfPPPw9EzMgPMj93NdwSBm8YBkYyiZlKYQm+iyJZfV0lcUVRcDyPf/Nv/g3TU1P09fXxb371VzsuiqKqbJiYYGh4mF/+4hdZXFwkJXRb+otFBgYGqFWrlJJJCoVCh/vQodPYA4qqkkwkaAlfeC2DD0WjhWQ0hqLROQQSXoICBTyivL7iRJVJGRDLWayqcCtWjRfCkFOnTzMxMRHnu1dsAzQajYjY1Ua/hqgGMj83x9z8PLNzc9SqVRRVZWJ8nAceeIChoaGO6mvP2Eo8caXepILw25XlxnzbtmMe/tjEREew2mw2mZqaolar8ZWvfIUvfvGLAPzMz/wMzzzzzKrX94PgljB4iCqvnuNglUqRD9hsRiw/pVOCQhaCnnn6af7bf//vLC4u8tKLL/LMs88CnRTb/89v/iZn33sPVVH44R/+Yaq1GpZloRlGrM+SME2Gh4YYHh5meHiYTCYTN3+sZmTJZDJWTpAjNeMuIiEJWK/XI+31tpa/jsJaqGFgECcoAyWeQCLFZCGiDQdBgN5GN5AjKBVF4dKlSzQbDR5//PFVMzm2ZcUqwEnTZH5+nrm5Oebm5igvLRESJQ8GBwbYsnUrQ0ND5LomcLQ3tsSyIILGDVEwK6kXqXQ6foKEYTRgQdKXxzZvplAsdlAD/vAP/3CF2/LYY4+9b677teCWMfhUKkXDNAnzeVxBj202m6QzmRWuhqppPPb443zzW99idnaWr3zlKzz99NMomharjP3n//yfefOttwD40R/9UT7ykY/w8ssvE4YhW7du5fHHHqNWrTIrPvi3Dx2CMNKpL/b1Rb6/YBt2t7qpqoqZSFCv1ymVyyRNs4OL7olCmjQGaZztK7anedSo4eCiouDrXjTih+VG9SAMI0KYqkb1A1FltsSYH03TOHnyJMPDwxQLBdwuzpHneZRKJebm52nUatSbTapCSNY0TYaHh9m2dSuDw8OkU6lonmqrtSpFWFZKfc+LGKHi/FqtVuyypFOpjpw7LEujmKbJxMaN5HK5juv5ttDEN02TLVu28MM//MP8wi/8wprxyAfFLWPwsml4yXVREwkC34+LI6l0uiM1Jrt1PvnJT/K7v/u7zM/P850XX+R7nn4aBfgff/mX/NVf/zUAn/zEJ/hbH/84EK1ipVIJ3/dZWFhgZHiYgYGBaAq367KwuMjCwgKVSoXJ996jadsoYdRQXiwWKeTzZHO5uAxvt9EXZGOFJKfJwWDZXK5nSjHUQmxsXFwUFEI1iM5LVclms3FQGBBJbcezWEVHVqAoTE9PU6/X2bZ9O9PT07RaLeqNBtVKhXK1SqNWQ6oEZDIZ+opFNkxMMDw8vMLo5A26WrJAQsqTS7dPqjmHQRALYYVtbEtfqFB4nsfue+7BNM0Vhvxbv/Vb/NZv/da1msp3hVvG4CFyFRKJRDSypl6PK3WKqnb4nVLT/JFHHuFrf/mXzExP8xd//uc89dRTHDx4kP/6X/4LAE8eOMDf/bt/d3n/pokv3APX85iZm2N0eDiecTo2OtohZ2FZFqVymUqlwlKpxOzcHGcnJ/EdB1+U4nVdJ5lMkk2nSYkvwzCi+VVi5ZdUYk0YtDz+dgRhtCL7Ql7Esix84Sb5vo9j2zRbrXjYWKPRiEbDKApHjhwhDMN4kEMul2NkeJj0li2kBF++28DbEbspMkO1RrCtSf154bPLoXKpZDIa1BCG8TaKolCtVvGCgFyxyODQ0JrHcSNwSxk8RJmWhYUFwlQKX7AeG40GmlA8ADo0zX/ws5/lN3/zN5mdm+P3f//3Y7fl3vvu42c+97kOw0okEviuy9DwMPPz89Gc1Taj74ZpmvT19WGaJgNDQ3FLnS14/JZtU6lUaFkWnuuyuLSELUSF2lfKgID5cJGGUicUzvBx9TiBIuYbEfLGmTeonqqCEmCFNjlyDAfDaMqygalqNOEkJRrYfd9n165dFIvF5fmpoqhjiyqnkUh0CKf2guTMX1UtgeXgVapAQLRQaSLtqwqeuyTb1RsNAmDrtm1kMpnekic3ELecweti8vXS0hKB40R+q6JQq9XI5fPx0GA5jOvRRx9l0+bNTE5OxqmszZs380//6T9dIZ0hxfo1VWV4aIg5afSzs9Ewgbbt5fQKueoqStQaaIp9SOOwLCsKMBWFgli9LNumJAhuyWSSf3fiN3ll/pUV5yob/pQQppVpmloTD58yJQA+MvYR/u+7fwZN06K5qYLAZjsOf/1Xf8W2bdvYu3dvxzG7nke90cAVYqiaoEKYprnS6EUGLG5QEV8rhV6Xb16Z3pRVUymvIZ9k0n0LiHx3y7IYHR9neHh41bTmjcRNZUuuBtM0yefzKLLdTPiW9VotKl8rSiS9LJoInhUZGog4GL/wC78QtfF1cXLkE0KSkUaEkXu+z+zcXGwkzVaLaq0WD/NKp1IUCoWeU7VjHrksrkCcg85ks5Cmp7F3Q0OMq2c58Hxp7mXMjEkum40pygAnTpwgBO4RIzcl2s81LSQIE8kkjutSq9c7G2lkurc9vhA9wysazsXPkv7RbuyJRCJinQoXT6ZdA99nYWkJM5lkYsMGBtbIu99I3JIGD5GAaq5QQDUMQqLHYxCG1Gs1HMuKXJAw0k384z/+4/h1sqtJop2IJnO/sryeSCQYHhqKmhF8n+npaUrlcuw/G2IgQ1KMvez5cSlKHIRZQia6fbuskcXUrv4Ylwbvtxl80SyS1DtfW2vTc+kmXkkXAqJMz0B/fzQeUhhaQ+T5wx7GLlOO3SlgCc/zqNfrkVCWopDOZKInZrg81TAQ1yMMAuYXFiLB2+Fhtm7d+r6pEtcLt8ZRrIJ8Pk9GTNpTBacjCEPqIupv1Ov8x//4H6lWq7FwkGVZfPWrX+3Yj/zgZMBUrdfjvyUSCUZHRtA1LRISnZ3FsiwyQnmrveq5WuOyIdKIiqLEq3z8N9Xg+7Z+8qrn2svgP7P1+1e837Fjx0gmk2zfvr3j90EQ0BBqarqmxRx3wzDIZbPRFA9VpSUC3+7MUSDHdYoAO9bXUZR4qqL00bPZbAd5rr0YFfg+5UqFWq1GOpuNJfRuFdzSBq8oCv0DA+T6+uI8ti+k4er1Ov/lv/5XKuUy6VSKX/zn/5yHH34YgG984xuUSqXunUWGkMlQ71I3UJRIyUAVq16z1Yr10XsdU68shiyjy4AWll2MH97xg1dd5aXBe8Lgs4kcn9zyiY5tpoSs9d59+zqC7DCMpD1CooBTGnt8zKpKJpMhLVwyR2SB2uEHAWFb0Cv9+WarFRfBdMMgm81Gi4B4GshVHZafApVqFc0w2LVnzwdSFrieuKUNXqJvZIS80CrUNA3Hdflv/+2/MSN0z3/6c59jy+bNfOYHfiAebvznf/ZnK3ekKBQKhQ45j0DcPACDg4P09/WhaRqLpRILi4s9yWRKW1FJQtd1EsKfbwm+jtymaBb59LZPrXmOyyt8dLP8wLZPk9aXV0bX8zh86FCssCsRhiHNRiPW2c9kMj3JZ1KCQxq9HPQcXwcxd0k+0XwZ/LaJV2XS6Y6hzDKVKakDjUaDhhDD3bx1Kzuvwty8GbgtDB4gPzxMvlhEVVW+9j/+B5PnzqEqCt/7sY8xNjaG67ps2riRhx95BN/3+da3vsXc7OyK/RQKBapCux0if14Gwvl8npGREQr5PJqqRoPC5uZWVDBjxmYXUsKYAmEA7bfED27/LEmt96NdGnso/mWNDJ/a8n0d2xw5cgTP93mwrZtJGrscRpDOZFaSwroyMQnTjI9TzsGV/rckfbVaLer1ejxtL53JxKzH9nOSE7YbjUakPiFoFWMbNrBr166bnoLshdvG4FVVJTM4yNe//nVef+MNHMfhySefZMfOnbiex+LiIo7j8EM/+IMxh+W//9EfLWvaiA88n89jiXSjlIgOgyDi0IjVrVgsMjgwgK5puK7LzMxMhwugQBxXtK/08WBlUYVtpxsUzQKf2f79Pc+t23//zLZPk9GXuSazc3NcvHiRffv2xf5wGIY02ow90zZWpgPdmRii4N3QdVQRt8hslyt47NKdky5Mz/0K6kddZH8UovhpcHiYjRs3xioFtxpuG4MH+PKXv8wv/Kt/RaVS4cGHHuJvfOxjZLNZXNel0WxSbzQoFos88cQTKIrCq6++yqWLF6P2PmH4GUGKkjnikGjV6/5Q0+k0o6OjUW4+CJidnaVSqUT6i23bdY9L18XUEU1RaLVaHQHdZ3d8lpS+Uk+l3X/P6Gm+r21194RsyODgIFu2bAGW04O+UCiTQeT7QSqVitOIsorbarWim0NVSaXTpLtHe7b56tV6PaJ+ELU/2o5DMp1mZGysw+W61XDbGPzXvvY1/uE//IcslsukikV+4id+gnwuRzaTiZl9lXKZRqPBx773e6MgUlH4oz/6I2BZRiInmktmZ2ejbvowXPXRaxgGIyMj8UzXcqUSuThdgkzdPnNaTr0Qj3iZ8stqGT6zbeUqr4n6n4/H92//NLlELjau4+++i2XbPCRcmSCIpuPJ+aYZsQJ3rOFXyXfLimxCDBWbX1qKfXXTjPL+hnSNeqQmGyI9qaoqyWQSx7bRdJ3xjRvZunXrLenKSCjhBxEhuQXgNJtYQr23Ua9HVAFBbAqDIJoAnU6TzWQ6tN0BXnr5ZVzXZd/evaiaFt0wIjOxWnGkVqtRLpcjsSbfJ5PLUcjnO/LLsvoq89BymFc2k4lnlDbcBj/xjZ+k4UX5ctf36Qv70NFwNIf/+L3/npwRiZ9OT0/z6quvsn/fPrbv2BGv7DKQzmYycf9qEATLI2hW+0ilexOG2I5Do9mk1mjgWBaGYZDJZsn3EF6Vrp/fln3SdB3TNKNrAmzYuJGt27Z9aK141wu3zQrfjUQ6jZnLEQg3pa+/n7TohzVNE9d1qVYqzM/PU6vVlv1pRWFkZISlpSU8z4tG27QVp+JmjbYviHL4Y2NjpFMpNE2jVqkwI3L2EjJrEQjqrq7rUcqw2STwZboxyw9s+8zyawBduDR/a+vHY2NvNBq8+eabjI2NsUMau1jZUZQoPSjdMFksalNX7oDI4AS+T6vVolKtRqQ8RYl59mYiQaq9kBWGeGJwgVzRIXL/Mtks6VQqIob5PuMbNrB5y5Zb3tjhNjZ4ADOTwcxm4/K/kUhgJhLkcjny+Ty68C2XSiVmZmcpl8t4rsv42BhhGDK/uLiiw7+7uBSyPHVE1TQGBgfp7++PJTtmZ2cj3o/vx8YuXy9pBwpRVw9hpErwqa2fQleiFV/676Dw2e0/AEQV09dffx0zkeDRRx7BFSM55eyrfC7XSXZTOuXxYj15EW8ERDTeWrWKJTqPVCWSzpBPQD+I6Mky01Kt1aI4QRi6YZoUCoV4SNlSqYRt20xs3MimTZuuKvx0q+C2NniAZDZLqlBAFTRdFAXXdcnn8wwMDFAsFEgYRhRo1WrMzMzQarVIp9OUlpau2sfaLhwkDSmVTjMyOhoFfopCpVrlwqVLLJXLcV5aukZycogfBHFPaS6R5cBopKwlDX5X/w5yRlQtPnz4MPVajccefxxXDFIGMfYzm43pxSEsy3CHbSNsiG7cQLxnTTA6A3Eu6WSSbDZLMpmMXhcEhOIJUqvVor5fofBgCkPPpFJRJ5ZlMTszA8DGrVvZuGnTmgPTbjXccmzJD4JEOo0mmzJsG09M7UsKjnY2m8WyLGr1epyRyGQyLMzPUy6XyeXz0QRvVrbiSciVPyTy0XVNY3BggGYqxcLCAp7nUSmXqVWr5MVTByK/PpVKUa/XaYnGCNM0+d/u/zkmy+eZLc/Rn+rnc3s/RxiGTJ4/z/nz53nwwQejApFtQxhiplKkksllN0tRUCFKZApXSgbKckCZ37bqq0rUvG0kEjHT1LZtarUajWaTTCoVr+a6YWDIQhoQiutRq9UolUoUBwYYHh1ds7H7VsVtG7T2QhAElObmWJqbA6KgTqqOSSO2HYd6rcalS5c4eeoU27Zto7+/P5LwFsKeiUQCtUeThoRcSX0xnl7yWKrVamxkjuOQSiYZGBwkkUjEjRsgJotrGuVKhb/+xjd49JFHGB4ZoV6r8eKLL7Jx48YO+ZBMJrPqiE15HLLzqFts1tD1iOsj3BY5uFlqay4sLGB7HgN9fWQzmVh6r7vAtLS0hG1ZDE9MMDg4yKZNm655ct6thDtihZdQVZWB0VFQFJbm5qjVaihCmlnCTCQwBwZIJpNcmZpibm6OgYGBaHR9rUa9XkfT9SjLk0xGM6kkB1+yCFnmyShE/Ho5DaReq1Gr1QjCkIqgGPf39ZFKp6MZUq5Lo9EgJxTWEPuqV6u8/MorFItFtghJOVVVSfcoKEkjl/uTLE0J2VUllXpdx6HVQ3VZjhzKiIHEUmg2DuBFJbdaq2EYBhu2bmVsbIyRkZFbhv34fnFHGbzEwMgIoaJQnpujIlwMwzAiSoDYJplKsX3HDg6//TamaZLJZGg1m/F4R891aTWb0TAw0Zonx1/KG0BSgWXVNSSiLmSzWebn56lUKvieR7lSoVypxAQzXdepiSYNiAhn7xw+TDqdZt++fZF+umHE+Xwg7nDyhGS3zMaEIk3q+350nMJ3l/Lf7ZCKB7phRFoxth3HBYps3RM0hGazGWdh8oUCoxMT8bif2xl3pMEDDAwNEQKVhQXqYkWV6gHSQMdHRzmbzXLmzBmeevJJ0ul0NLVbGLvnuvHcJVfo0MQTOgTtQEr/aSK9pwiCWyqVQhUd/p7r4vl+LFLkex4JXcd2XULg5MmTGIbBvn37QFEiabowjJ4Ubdo2cfZF5NKlAUOUF5cxCBAfhyom+OmCSqBGf6TRaGA7TtQ2KNiV7YGrJ8hkQ8PD7Ni9m6Ghodt2VW/HHWvwiqIwMDgY8ecXF6lWq6TT6dinD4FkOs2mzZs5/u67sbS2pmmkdJ1UKhU1Rgtj9TwPV0yS9sVN4IgGayDOhccyHEKzRhPSIZevXGFeBMnlchlPVHgTpsnAwACbxsepNxqYphk3qLTjf3ztaxw6fJjdO3fyEz/+4x0kMamKLHVr4mmEsCzq2haq+b5PtVolCAJSqVTUOLK0FAspqYChaey69162bt/em0tzm+LOOZMeUFWVoaEhDMOgVirRbDRwXTdiFaoqGrBp0ybOvvceb771Fs8+80z0FJCrJJE+ohTyl03ccp6rFGsNPI9vv/ACL37nO/yjf/SPyOVysY8N8Nu/8zsdx5ROJslksyTFzNpiNosfRr2inutiihvBTCSi1VnTuO/ee/nGN7/JwUqFf/i5z2EmkzGV13HdzoC2mzDW1dlUKpWo1mrYth2zHeWrVUVhaGSEvfv3k7vN3ZdeuKMNHiID6+/vxzRNSktLWLUatWqVtMh8ZLNZ7t+/nzfeeIOjx45x3333xaoIMhWpwLKoknBfEoZBKpWK1bZUoLS0RKFQoL+/H9d1o6BZUVgS00gSpsng4CCZbJYrU1Nk02k2btrExo0bCYk6pxKy8uv7keyeoCTcs2cPZiJBs9nk2LvvckDMQOqpkCaO1WsLbD2hhVmr1ahUKni+H/nu4hqlkknSmQxbd+5k7BZr2vgwcccbvERG9GCWTJNmtRplYzSNZDLJxo0bWZif59x779FXLDI2Po7eJjakCr9fcsvj1ZBIBU1OIZSUAiORiKf+ea7L3/7bf5sJEfRVq1UOHzrE6VOn8ByHiU2b2LRpE7Zt4zgOmqriCwZjGATR/+K9n3jsMc6eO8c7R48yMT4exRGi0Vy+fztfJvA8wrb6gSPy7r7vk81kouyRSMXmi0U2bNlySxO/PgzcNQYPEftxcHCQmmlSSybxWi2azSYKsGfPHpZKJU68+y5JIbIq88xBGC5TgNuCQilfoYr0n/y7K/Tj67UaIfDss88ShiHnz5/n4sWL8YoOURFLulhSqzFlGCQHBnBlwCu4+/fccw8z09PMz8zEXUaeaNKQ2jXSZ5f/yyeSJxQZ0qJXd2RkJFJ7y+cZm5ggc7Vp3XcI7iqDh+VBxrlcjqYspdfrOK0W99xzD2+/9RZvv/UWe+65h0KxSC6XWyFfDcskM+kyoERydpVqNS7cyP7XcrnMqVOncByH+x94gLyg9Mp4QEFQilWVZquF63m4tRrJVCpuTg8VhccefZT/9J/+E75oS9y0eXNHk0nHeYog1hc8HN/3MQwDM5lkYGCAgkg13i2GLnHXGbyEKjQcM5lMxDep1UhkMjx24ABvvfkmR48eZdv27VH1MZFYFjKS/nIbmzIIApQwjPLbqhpzzQPf58SJE8zNzTEyOsqDDzxAJpNhZno6HvrVvg9TjK5vCVWGZrOJ4zgxQ7Ovr4/NmzZFo3reeYedu3dHbgsr9SBdz6PZaGDZNlarRagoFItFNm/bxvDY2B3vuqyGu9bgJRRFiUSL0mmCoSHcDRsY3rCBr331q5w8eTLSmR8awhYBZMI0l7uAFCUu+cvRlxkRCJ4+c4bJyUk0VeX+/fvZvmNHvJ0URHLaCkMyRpBiqrbjxIZfrlSiQDmZ5KGHH+bc5CRvv/02n/3BH4zdoPYClSXa9GzHwfd9Cv39jI6Ps2nLljsqxfhBcHeffRcksWt0bIwf+8mf5Jvf/CaHDh7kwuXLbJyYYGJiAt33MUwzXvVlwUaOtHz99dcjZbNkkh3btzMyMkJCPB0UIlfIE4YuDb69WCR+QULwX5qtFo7rRmzLRoN77r2XdCrFzMwM01NTjIyMEBJpwFuWhet5+K6LH4YUBwcZHR2l0NdHsVi8JZS/bjbWDX4V6LrOxz/+cZ5++mkOHjzIwddf59yFC2iqSjqVIpNOowlJjmajwXvnzhEIt+ahhx5ibHQURVWpVKuEwldXNS1S/iJqxpCBpET391JPJiWkR2zbZmR4mKGREcqlEm8fOsT9+/ZFQbUoNumGQV+xyPD4OLlc7gP1u97JWDf4qyCdTvPMM8/w5JNPcuHCBRYWFlhYWKBUKtFqtcj39zM2MUGtXufSxYvcd++9DPT3RzrqihKnJy3bJp1KxYxJexWhJwnJZwdiGoFkXe7ZvZs3Dh7kxOnTPPPRj6ILLlAmkyEt5Lp7kc7WsW7w1wzDMNixY0dM25UTom3bxrZt3jh8mPcuX0Y1TSzHwW+14g6opiChVQR5zXHdSMpaUJBbotEbof4lGzI80UUl+e9mKkXf0BCPPvkkv/2f/hOHjh/ni//n/xlXk9dxdawb/AeEoiixhHVOpPYuXr5Mn/CbZXXT930q5TIt2dcqmjmajoMKeMIdURUFxEgcVUwR0cRUEU3QG+TX6MQEc3NzhGHIu+++y8c+9rGbezFuI6wb/IcI27ZJp9P09/cDy7z14eHheEKfaZpMT09z+tw5AO578EEmtmyJMzgxy7GNBCbFTSW+/vWvE4rA9nFBMVjHtWHd4K8jFJG2lGNxJKTkB0QSGO+3Afov/uIvAHjuuefip8s6rg23P8H5LoSUA//+7+8t3beO1bFu8LcZDh06xMWLF4F1g/8gWDf42wzSnXnwwQdvaQ3HWxXrPvwNwEsvvcTZs2fjnxcWFuLvz549y+///u93bP/3//7fX3VfX/nKVwD49Kc//aEe492CdYO/Afjt3/5tvvzlL/f828svv8zLL7/c8bvVDP7SpUscOnQIWHdnPijWDf5DwrNikmCxWLxu7yFX940bN3YMRljHteOOEmK60/E3/+bf5Otf/zo/+7M/y2/8xm/c7MO5LbEetN4mqFar8eDldXfmg2Pd4G8T/OVf/mUsEivdp3W8f6z78LcJvvWtb1EoFPj0pz99W2o63ipY9+HXcVdh3aVZx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYNfx12FdYO/gbhw4QKf//zn2bNnD5lMhv7+fh599FF+5Vd+hWazueZrf/zHfxxFUfiBH/iBG3S0dyjCdXwo+MIXvhAC4eTkZM+/f+UrXwnz+XwI9PzatWtXeObMmVX3/yd/8ichEGYymbDVal2ns7jzsb7C3wAcOnSIH/mRH6FarZLNZvniF7/IK6+8wje/+U1++qd/GoDTp0/zyU9+klqt1nMfH//4xzFNk0ajwTe/+c0befh3Fm72HXenYK0V/umnnw6BUNf18JVXXlnx9y996UvxSv+FL3xh1ff4xCc+EQLh5z73uQ/xyO8urK/w1xlvvPEGL774IgA/9VM/xYEDB1Zs8/nPf5577rkHgF//9V/Hdd2e+5IDib/61a8Srg9f/EBYN/jrjD//8z+Pv/+Jn/iJntuoqsqP/diPAVAul/n2t7/dc7tPfepTKIrC9PQ0Bw8e/NCP9W7AusFfZ7z00ksAZDIZHn744VW3e+aZZ+LvX3755Z7bjI+P8+ijjwLwla985UM8yrsH6wZ/nXHixAkAduzYga6vPvh8z549K17TC9KtWTf4D4Z1g7+OsCyLhYUFADZs2LDmtn19fWQyGQAuXbq06naf/vSnATh69CiTk5Mf0pHePVg3+OuI9hRjNpu96vbS4Ov1+qrb7N27l23btgHrq/wHwbrBX0dYlhV/n0gkrrq9aZoAtFqtNbdbd2s+ONYN/joimUzG3zuOc9XtbdsGIJVKrbmddGu+853vUC6XP/gB3oVYN/jriFwuF3+/lpsi0Wg0gKu7P48//jiKouB5Hm+++eZ3d5B3GdYN/joimUwyMDAAwOXLl9fctlQqxQa/cePGNbd96aWXCMOQRCLB448//uEc7F2CdYO/zrj33nsBOHv2LJ7nrbrdyZMn4+9l1XU1/MVf/AUAzz33XMdTZB1Xx7rBX2d85CMfASJ35a233lp1uxdeeCH+/qmnnlpzn1/96leB5eB1HdeOdYO/zvjMZz4Tf/97v/d7PbcJgoA/+IM/AKBYLPLcc8+tur9Dhw5x8eJFYN3gPwjWDf4647HHHuPpp58G4Hd+53d49dVXV2zzq7/6q5w+fZq+vj7+yT/5J/i+v+r+pDvz4IMPXrWYtY6VWL3WvY5rQhiGsW+eTCbxfT/6cl1s28ZzHH7pX/0rfujv/B1s2+Yzn/kMP/2TP8kjDz2EZdv81V//NX/+1a+yadMmJsbH+dizz3Li6FEGBgYwk0mMRIKEYWCm0xiGEefeZWpyHe8P6wb/AeC6LvV6Hdu2aTWbWJaFY1ls2rSJd48cYer8eRRA1TQMw6Avn+eXf+mX+JV/+29pNpv87pe/zO9++cvx/oaHh9m4YQOf+8mfxLNtllotqpUK2VSKlmUxv7BAs9lkenqaixcvUigUqFUq/PZ/+A/0DQ4yOjrK/v371wPYa4ASrhOrrxn1ep2lpSWqpRKtZhPbsgiDAFVROH32LKdOn+ajzz0XVUyDgFBRUABNVUmaJuVKhT/+sz/jlddeY3Z+Hl3X2bRhA889+ywfe/ZZBvr7QVEoVyoslUqUFhdZWFqKX//Ou+/y9W99i75ikZ//X/9XLNvGarWoN5v4QcCW7dt56iMfYWJiYk2i2t2MdYNfA0EQYNs2zWaTmStXqJZKkX8dhiRMEzORwNB1DMNAVVUUQFHVqDkjDHE9D8u2CcMw+gJSpkk6lUJRo/CpVqth2TZGIkE2nebs2bOcOHkSx3UpFgps2rSJwYEBAuCXvvhFjp84wff+jb/Bj/7Ij+AHQexCzc3NMTM7i+u6jI6O8vBjjzEwOEgmkyGXy2EYxs28lLcM1peBLoRhSKvVotVq0ahWadbrlBYWaDoOge9jJhKYiQQqkWtj2zYKECoKQGz0qqahyu8VBd/3UQDLtrEdh0w6TcIwsB0nes9mk1dfeYVarcbQyAh9fX0UCwUy6TQQ8WsOv/MOrVaLxx99lP6+PgJxY/lBwEBfH9u2bOHS5cucv3CBl779bXbu3k02nyeTzVIoFhkYGCCXy6GIY70bsb7CCziOQ7PZpNlsUl1aolIu06jXqdXroCjomkYuncZIJGKDCYHA80BR4hUcYYTyosbNqkEAwvBVRcEwDBKmiee6TE5OcuXKFfL5PPfs2UMymaRpWZiJBP3FIrqm8T+//nV+7p/9M3LZLAdfeomEYUTvH4YEYYgi3KcQmJ2d5bXXXiNhGOzaswdVVUmmUqSyWbK5HAMDA/T399+Vbs/dd8ZdsG2bpaUllhYWqJRK1AWl1zQMwjAkn06j6joZkSUxdB1N0yKXJAzRNI0gDAmDgCAI8IMg+h4IfR/P87AdBycMCXyfMAhoWBYty2KxVGJ+cRENGBsfZ9PEBKqmxS6Q4zg0LQtVUXj7yBE2btzIU48/jh8E2I6DoqpoqorS5jIBDA8O8tFnn+XlV17h5IkTPP3009iOQ2lhgWq5TLlUYi6fZ3h4mIGBATRNu1mX/4bjrl3hLctifn6eubk5KuUyvm1j6DpJkQZErOKmaTI0MICiqvHKrgCeMN4Q4t97nofnebieh+95eG35dN/38T2PljD2+YUFpqem8BSFvkKB/mKRRCJBMpkklUrhOA6KopDJZDB0fUXTtvw5DMPoWMMQTdfRNQ1d3JTNZpNvfOMbDA0N8cTjjxMArUaDcq1GqCgUBwbI5/MMDQ2Rz+dR1Tu/LHPXrfC+73PlyhVmZmZotVqEjkNC08gPDJDOZEgnkyiKQqPZJAwCstnsihVQrsB+EOD5Pp7r4gpjVyA2QOlmKIoSBbWKQgqoVioszs3R39dHpVZj88RE/NTQdR3XdWlZFrquk1VV8rkcClEQ7fs+fhDg+j6h+B4gABzbRpKQVbGvffv38/ZbbzF5/jxbtmyJzjGToVqvU15cxHMcHMehXq/T399PWsQMdyruKoO/cuUKly5digJN38dUVfL9/fQVixF3XbgF5UoFiApJ3Y0bnlilbcuKgkYB6UerqkpCZm40DVVRovShZaEbBhcvXuTihQts276docFBXn/jDYYGBkgkk9E+29wix3EoLS1hNZvk83kKuRxJ01yOC8SNF/g+jnCdXM/Dd10C8fpiocDY+DhH3nmHdDpNv3Bh8tksKZEqnanVqJTLOI5DoVCgUCjcsf79nXlWXbBtmxMnTlAtl8H3Sagqxb4+Bvv6OtJ1iqrSaDSi3LqqxqudTE/ath37yYEwNiORiFwJsaJKt0AhyuLUGo3oxlAUTp08ycz0NA888AAjIyOUSiUgurGSqVQU8BJ1R+WyWcrlMp7I85erVcqVCrlslmI+j5FIEIZhlOfXdUxVRRdPIvkkcDwP13HYtXMnpXKZEydOsO/++9E0DdM0SRgGA/39VGs16tUqp8tlRkdHscfGokqv6MC6k3DHG/zc3Bxnz57FbbXQgcGBAQYGBiLjEKuyRBAEtGybIAzJpFLYto3juitovQnDIJVKoet6/PogCGKDDcMw9tUVRUFTVU6fPs3s9DRPPPEE4+PjcadSKI7BTCbRVJVas4ntOKiKQq5QQBOBabVWw3FdGo0GtVqNdDpNoVCIVnxh4BKqqqKqKoZhEIquq3vvuYe33n6bRr1OJpuNMlKKQkLXSadShIqCY1nMTE3RqNexmk1GxsbiPts7BXeswTuOw8WLF5mZmiJ0HNKJBBs3bIhW7TAkCIIOYw/DEMu2I1/cdVfkqg1NI2GaJNrSkn4QRC6F8KMRXUiNRiMyQEUhkUhw/vx5Ll68yKOPPML4+Diu50VPCLFvmeXRDINMOk29VsMRgW86nSabzZJOp7Esi3K1ius4tCyLWr1OKpUiXyhgtheW2lwteaxbN2/m9OnTTE9Nsf/++3EcB8/3cVwXR5xvGIYkUykajQYXJydpNBps3rqVfD7/4X9ANwl3pMGXy2UuX75MZXERPI/+QoHx8XE0XUcNQ3yWDUGusI7rsrC0hOM4pEVPqaZpJGShqUcGQ1GU5Xy7uGFazSYIXz6dyXDl8mVOnTjB3n372LR5cxTsiidG+z7l8SQMg0wmQ61Wo+k4qJpGXmybSqdJpVLYjkO1WqVWr9NoNKjW6+RFccloyyaFihJTH1RVZdfOnRw+dIi9e/dSKBTwXBdLBK2hSLG2bBtN0/A8j6X5eZr1Orv37KEoOrdud9xxeajFxUUuTE5SX1xEB0aGhpiYmMAQxg7EOeuQKAit1mosLi3hui6aqpLNZMjncuRzOZLJ5Apjl69VFQVdVQmBWr0eqQ0oCgnDIF8osLiwwOFDh9ixcye7d+2KXiyKT0DPwDAMQ0zTJJVKoSgKrVYrbgCXGSDpew8PDUX1AVWl3mgwNTVFrV6Pi1GheAL54ufNW7aQSCY5ffo0hGGUBUqn6RMVXd0wME1zefV3HGzL4uiRI0xfpUXxdsEdZfALCwtcvngRv9UiYRiMDg0x1N+PoevxY94XgZ7vedRqNSrCfXBcF8MwYv6J9M+7i/DtFAKI8vH1ej12kTKZDJlMhnKpxOuvv87ExAT79+2L8/oKxDGBtspTAyAtCl0oCvV6Hc/zosqqSIX6vk8ikWBoaIjBwcE4mzS/tMT07OzyTdJ2DoqisGXzZi5durTshonfJ02TQi5HOpUinUrh+z6249BstfB9n8n33uPy+fMdr7sdcccY/NzcHNOXLoHjYCYSDPX3kxR88kAUiCAy0Fq9TqVajX3XhGGQFinIL739Jb7vzz7DP/n252m4y1M55KquiBsGlp8Ovu+jqirFQoFUMonnurz66qv09fXxyKOPxsYOxPl7YM0Kp6IoJEUg6wVB5Lu7buyiKKoa7zedTjM2MkJfPo+hqriuy5WZGRZLpU7DBiYmJnA9j7m5OQJRHZZFLFVRSKVS9Pf1kc1mY2WEeqNBvV5nZnqaydOn1+zNvdVxRxj87Owss1euEDgO+WyWvJC5SKfTcSUyBOqtFrVqNdJ/EatasVCI3B1N42sXvsbzV75Dza1xeP4wf+d//CgnFk9Ghg4dq73turGxy7y2JjI/b731FoqicOCJJ6KCkihEBUGA63lx3KAoSkQ3kPl08eX5flSlDUOSpolKxMVpH4vTfTyqqlIoFhkbGyOVSkVuTr3OlenpDkGoYrFINp1meno6/p0MvP0gAHFD9ReL5LLZKNMjmJ+LpRKVcplzp0/Hccjthtve4Ofm5piZmiJwHPpF0QRAN4x4FfRdl0qlEn3wIgVYECxCTdNiPfaTlVMd+y7bZX72m/+YPzzxX/HD5ZXSsizqtRpBGJIwDHLZLKpYrc+cPcv0zAyPPPIIZpsQU5yREf67XN1ldkRSiml7giiKEt2Y6XQcWFtCrAmiFbnb5TIMg5GhIQYGBkjoOkEYMj03R6VajbcZHx9npt3g5bERZYxk9iknKs9JkY/3XJd6o0G5VOLiuXPX9PncaritDb5erzNz5Qo4Dv2C/uq6bhSQiUxDQ3BH/CBAUxTyuRy5bBZN1+Nyveu6BGHIcG4k3ncQBqiKik/A/3X0t/n55/8Zs815Gq0WDbHSJk2TbDYbB7XlUomjx46xc+dORkZGVhyvoigxv6aX/97jBQDoIkOjKgrNVquDo4N4UnSnUTOZDKMjI2TFar9UqTA3P08QBIyPj9OybSrlclQdRgTyXf65puvohhEV1zQNQ9fxfR/LspienubS+fNXP4dbDLetwXuex6ULF1B8n1wmE3ULiUezDCxrtRot8Tg3TTNK24lmDbVtPyGRSzCYEfsIQ1Sl89Icnj/Cz/3V/8bL5yPt9lQqRSaTWfbnXZfXX3+dQqHAfffdt+pxywyNtkbpPiapyaKWcG0Mw0BVlKgaLLdtfx3LpDL5HkNDQxQKBQxFoWVZTM3MkMvlSBgGs3Nz8g1jN6s9hy+vm3S9EqYZ/+x5HpPnzjF59uyq53Er4rY1+MsXLxJaFhowNDgIEPvaskDTvqpnhVsgfV/54crV0tB1dEWL043dyJDBcRz+/Tv/kd8+9Xugh/F7EoYcPnyYlmXx+GOPxSt+7BvLxm6R6pNMS1fcbJJl6XlevJ1MKSLdHSCTTqOqKkGbP9+xsitKz2MvFAoMDw9HLo7vMz0/T1ZQF2CZJqFATHKT0DUNXdOiSqxtYyYSpFOp6BzDkIsXLnDq3Xc/0Gd4M3BbFp4W5udxqlV832d8bCxulwvDkLoozScSCUzTJCMMHbpWQ0VB1TR84b+rmoauGT27gdKkSYaRP96gwdcufo2jS+/w/3j0F9ma3crU1BQXLlxg3/79+EFApVqNOPHtFN4wJADqQk5PU1WazSZhGNJotdA0jbDrfVuNBo7vY7suKdtGFSuxZdsRBSIIMESsosmsTY9VGiK+zujICAuLi1i2jZ5IsLC4GN18bXFD+/WRN5opeDuuTKfqOplMBsuycF2XqStX8IKA+/buvdaP8KbhtjP4Zr1O6coVXM+jmM+TFI9Y3/eptumxm6ZJLpPp+ein7XeBWIUNXcdQVvZ9ZsU/DQ0HhyRJMmRo1S1+6fn/g+/b/AlyU1n6BwfpHxzEc90Vhhu9mRIHrJKvLv142QrYzsUBUSkVx+eJTqloV0rEpCyXY6oERDetKoxfFdkhVVXjAFm6OJVqlVw2y5WpKS5PTTE+MhIvGh3XSlRq27upfN+PCmaKQjqdxhacodmpKQgC7tu/f+0P8CbjtjL4wPNYuHwZ3/cj+Yu+PhSRd67VanGVst1d0dfIdfsiD62KFj5N0TExMTDQ0UmTJh2mCAEbm5AQve2SuaHLH5//Ux7hYX5m3+dIi6qsNLTuCm3LstBUFTORIJPJRMYEZLLZnnwVM5Gg2WpFjSGmGactjUQCarXIDRLnGAQBoecRAJ5Y6WXPqyqYlJquo+s6hXyesdFRzpw5Q6VSQdc0hgcHVxyv7M91xfUOwhDXdaNrDBCGmMlklPJtNJiZniYE9t7CRn/bGHzg+9Tm57EtCz8MGR0YQFVVbMuK3QRd18lls1RFUanVapFbRXo6JCKYSZ+6Vq+j2gpZomYLA4NUmMbHx8KiRo2AAA8PX/wD8EOfhfwC/X19qx67XLFlEej9dhbJxpB2GLoeVXjDMC4SBaIhJAiC+HtPxBBBGILrEkQHgmmaEVe/0cDJ5ZiZm2N4cHDF+/i+jyuKeZ5oWYwD3OjkME0T3/No2jZz09OcUFXuuUXdm9vC4MMwxGs0qFYq+EFANpMhmUxSbzQ6sjDZTIYgDEmn07i1WsQFcd2YSSgDRMe2sV0XS6gTqCLdZqgGoRLghT5GmKBCGRubGr2nY4eEKCg8u/2Znn+Xxy4RZ2iutYdU+uU9fPKEYUSqB+LGzmYyqLq+4gMNiTJIjujKCl13OQjOZrFdF8eysBWFK9PTjI2MxDQFGV8QhpiJBJoIqD3P6+wjABKi5tC0LKauXCGdzbJ5y5ZrO88biNvC4P1Wi1ajEa3uvk9/sUitXo+LMKlUikw6HWcbdF0nmUxGIkX1Or6QwHM9L/ajUZQoi6PrpJJJctks6VySmlKlqPRh+zYuLlWqrCzvREiFKX5s1/+NT237vp5/lyQ1+er3u8LH2aRVkEqncQTlwHHdqBe3B1RNI6GqsSHLTFBa9M4WikUqlQot22by4kWGBgZIpVJR1sjzUBSFdCoVSYyI7FK7wcvbMWGahILwdu7sWdKZDENDQ9d0rjcKt7zB+46Db1nUqlW8ICCXyWA7DrYgR+UymciPFJkGaR4Jw6AmPsRqpUI6k4kzGQnRqG3oOrbjRJwbw0BXDHLkCYMQRYUmDVTUuOyvCNNP6kke5SE+PvFxHt+3xkACRUGR7kwbb169xhVens9qffZSkazh+7RarajjStAoYmmQ+FCWsy6apqFpGplMhmazSX+xSMo0mV9YwHIc5hYWyGQyBEGApqoU8nkUEefYRDdMh1vTdr6muKlarRanT5wgmUzeUhKAt3Qe3vd9/GYz0nBstaJsiqCvKkA+l4uNHaIP2LIsKtUq1Wo14r+LKqTnuhExqliMbpK2XtV4xfUUtEADBapUY5dFVVR0VUNVFVAgrWR4UHmAh/Y/tPYJtPe8iieLKoSZrhltnPtekPRlWQGVPnx31VQ+LdpvnqRpYgn+ezabZdPGjRRyOUJgQdClDcPA8zwqlQq2iHck+a1DOaHteFOmSTKRoNVscvb06Zi6cSvgll7h/UYDwpBqtYovXBX5QeZyuVi+IggCWpZFU/ibQES8SibJ53IxxVX6+ymhTCDb8lSR5lP8yKDr1OOgFEBVVIIwiFZ4RWHRXaCysRqrBUv0XPUEPmjACivdmnYNGhk0er5Ps9WKK8mr7UfVtPgamqJxPCbHKQqZdBrLtlHFsaZSqWVWpWgUD4MAQzwhZDN5x7mKzinP91mcm+PC+fNs37HjllA8u2VXeL/VAt8n8P24gVr6jel0GjORwA8CGo0GpXKZlmURCppuOp2mT1BcjUSCfD5PQo6EtCyq9Tqe78e04TAMadTrbMhuINQCHGTDhcLHNn2UL3/8d9nVt7Pj+L628D9xfCfmscRSHHSupCFErX9tK/xqaCeRhWEYUSRk0Up8+W1UZ4hy9WYigSHy7nYbuawX2uOClAg0LcvCcRxq9Toh0Fcskkml0DWNeqNBNpMhm8mgC2qDH4bUGg1q9Tqu667Usxdp0XQ6jaKqXJqcZHFxcc3julG4JQ3e9308y4IwxLKsSPfFdTGFUFEikaDWaFApl2mJD9jQdfKFAkUhuRGLmhJRBXKZTKzT6Hke5UolXvkbjQY+kE9m+X8//a94euIpvm/bJ/i/vvff8y8f/3+yITfBP9j7k9GxhT6KojBvLfAX7/WYk9rFg5H5alnAkRka6We3dyZJ9HJh5N97rfYgXBslkgS5WpOG3IeZTIKiUFpaotlqxQF/sVBgZHQUTdQ4FksldKG+ViwUosqroBM3mk0azWbcJtgOVVXJpNP4QcDF8+c76M03C7ekSxMKgVJFUaK+zVaLVJtGzJKQt1BUFVPTSCWT6LqO3yO4azePpGmi63qk6S5y8M1mM44FMpkM+3L72De0b8V+Hh15mG3JrZxpno13+l9O/n/525v/Fmmjh3hRj8c8tNGCxZcKHQ0iPdGDDdl+fiERLVgXsn+Wbcd9uavB8/3Yt7Ydh2w2G0l3iKKSoesM9PdHVIRWi1KlQl+hEEl8JBIg0qIty4roDpaF7TjxZyGhaxpJ06S0uMj8/PxNl/K+5VZ43/fxLSuWs6uWy3iie9/1PFqtVpT3NQzyuVzEBBTCou3oxQ+B6APICYqwLNnb4rHcbLVW7eap1es8YN/fYXgVp8IfnfnjFduGgjfTfV7Qm5h2LbgW/zeZSqES6fD0WuWlvk61WqXZaMSLiiauSVxBlftLJikWi2iKQq1Wi4pzooe3vRdAvi4QT0v5tJB8ftM0UVWV2enpmz5I+ZYz+FBouYRhSKlUinLnQUBCBKyqqpLL5cjn87FP397uBnTkvleDLlJzZiJBJpVC0zQcx6Faq1GpVmkJd0fixIkTbM9s46mxzgl7f3z2TynZ5Y7fdffCtgd2MqPiiicMRBVfT6iFdUhsXNMVW0asVa8ocZdTLMrabFKt1eJsl6IomEL8yTB6k+YAskJfXlMUSuVyJOLa1iEl+2Fz2Wz8GbkiHpBPEEVRyKbT1Mpl6uIYbhZuKZcm8H0C20ZRFCzHoVqp0LSsaDK1yJ+nBUV2NVyrNmyj2SQQJfahwcFopXccHNuOMjoiq6NpGlarxcVLl3jowQfZ07+HV6ZfQeZJWl6L33n7d/nhiR/Ctiwsy6JpWVitVhR/SNqvKPd3wwdefPHFznY9XY8IYIKXkzBNMqkUhohhTNMkaZpRPCN+lkS0ZDKJ7TjUG404MG+/iVRVjWZH6XqkhamqPY+rHYVCIWqmabVYWFzsyHLFSmsiSDUE/ycUCQVDiFYpgkM0NzNDWlTKb0bW5pYyeF/IXPhBQK1Sice1Z7PZqGmhS+exHbK5eq3UoITjuvEKmEqlQFHQBbFKVh8d18UTrs7xEycwDINyuYw1Y/FI4iGOOEfx8AgI+Pr0NxicHqBP7yNlmuiJRFS9FZM3QiKVBEmrlcbcsizeeust9u7bRyqVim8K+b/jOFjiBvQ9j1K5HPnK0mURbEbCkLQIytOZDJpY6bPZbEQ5UFV04XO3+8/tYq9XQ39/P97CAq1Wi0q1Sj6f7+k2GbpOPpulKeRFXM/DbzTIpNOYySTVapV6rRaLS91o3DIGHwQBoYj0l8SFhSiT0IvUtBqkvjrCILoRhmE84j0hWtfa0Ww2WRKzlRYXFqhVq7hiBZw8f550Os2zhWe4OH8ZH5+QEA+PhbElfuSBH45XvHa2pBRokkYoIf3ZoaEhisXiimO1hSti6DrpTCY2fE+kauNJJc0mzUaDRqPB7MxMXG/wxROsr1hkoL+fgYEB+toGIXQLQV3t6dhXKMT0jmajEac1uyGpCIZh0BQuVL3RIJ1KYSYSLC4skMlmY+2dG4lbxuBD141SZKVS5D8HQeS+iL7KqyFou3CKohC28cvb0RD7VjSNhKJQrVZZXFhgcXGRxcXFeOXPZrMMCL2XxcVFPvrRj5JOp2MX5fyxC3z70gsoKBgYvD39Nu9tmGQsPbJsOCK74rguruOQkPJ+YmWVXCDbtiM3AOK8e9zoIZpDpNpBu2JxMpWKAstCIab+yht4fm6OcrUa5derVU4JeQ1FUSiK/t8+wfD0/SjVGqwS6EtpEU3X6SsWsW2bRqtF1rbjBu9uKIqCoetkMxn+/+29eZAc+XXf+cnMus/u6vtE426cM8BgBpgbMyY5FrUrmqTWtpZaibsOHWuH7VhK4sbSsaGQY80IU3bQu9YRdDAoai15LZNLysMVr+HMYC4MKFwzg/sGuoHurr7rrqy89o/8/bKzqqu6gTkAzEy/iI4GqquysrLe7+X7vfd9329RENSWxCIpieGdUqlUFwDuht03Dm/XauRyOYqFAgquwxVLpdvDnTSJ6H4aPPk30zQpFYvMCLWPSSECFggEyLS1MSQExDKZjAuHNU3+5kc/YsOGDR4eRDLv/soD/4C/ufVDaraBhkaAAH997a/5x7v+Z6/uLh3XqNUwTdPbGEurSYev1Qg1aRhJ9gBpqlD7CGhaXZ7fLI3r7OwkKohQU+LcC4WCt7AnJye5LOZR33r7bYqlEn19faTTac/p/QvMI4iKx4mEw9Qsi1yh4DI2tNpTKS5/TiIeX+p2i89ZLBS8JuHdFGK4Lxzetm2Ki4sURdmrLZ32Rs9WytvrrMmtUX5J5WqVWxMTjI2NMTs3B45DW3s7w0NDtGUyDA8NoTV5/dj4OEatxoYNG5b9rT3Szue2fI6/OP+XmJjo6ByafYXPWL/E9vZtHuRBdk8NgeUJiXE5h6UIHxYDHv7oj6IQFNR/EvosN4p19y1nidjJb8FQCK1axRAo0WAg4JZjk0lGRkYYGxvj+PHjOEAykeDa1atcuHDBZWzr66O3t5eurq6mzphOp907pcDYtLeYBVAATVGwwENb1mo1bNtmYX6eRDJJuVy+q1H+vnD4wsIC5XIZ27LcjVYyyezsrNtQWc3hfdgZv9ObhsH4+DjXb9xgYX4eR1FIJpNs3ryZTRs2EIlGWVxcxHacps7uAFcuX6avv78lZfQ/2PLf8fyV58kbS3j5b536M/7wyX9d11VVRfoUi8Xq9iIywksuyeUfzSU4rRusbsDHt8q6FUUhGA5jVSouLMP3vufOneP8+fMMDg0xPj7Oju3b6e7uZnZ2lvFbt5i4dYsrly8TCAYZ6O9n/fr1tGcy3jmogQDpZJJ8qUSxXHYF01rk8/JcwIUy2I5DTddZnJujb2DAxfJ/nBy+XC6ji1wzGo0SF9M7eq2G7Tj1NNDNzFliFlNwuWGuXbvG2NgYtmXR29fHww8/TFiUweLxOOFweFkrv9Hlp2dmyOVy7HrggZZvHQvG+JWt/4BvnP6mexzb5u25dzgxfZKHepaQlK1gAatai85x3aMrHDMcDHqlUZmnnzx5krGxMXbs2EFfXx/j4+NogQAOeHO5u3fuZDGXY2JykrEbN7g+NkY6lWLDhg0MDQ15Ax8x28YU1aPgCoUFSRcI7uK2DAPLtrk5Ps7wunWYpnnXuq/31OENwyA/N+cKigWDbo1ZULvZgmqupaCub2NomCY3xsa4dvUqCwsLRKNRtmzZwsjICJFo1FOrlumBH/AluWwaiZGuXLlCMp32KECamaIo/Lfr/xu+d/mvmanOYisOiqPwrbN/xt7uPXWITHh3SEn5Gev+7V8IK+BmVE1znb5Wo1Qq8fbbbzM/P8/DDz/M4OAg8/Pzbrm0gTFBUVVS6TSpdJrRrVuZnp7m6rVrvPXWW5w6dYr+/n56e3tpb28nXyhgmCa5fN7lBmpx/pJeBMchGo1SKpdZmJ+nPZMhnU7fNcz8PXX4fD6PalnUBJQ3HA6Dqrrap8JWGoczLYtrV69y/uJFKqUSvX19PProo/T4pvAdAR2WF9ofZf1MAX5HKhaLTExMsOfBB1eMyg4QDkT41dEv8PW3/k8v9F5cvMRrE6/z1MCTS5u+Br6X27FWZEt+a0ae5LdQOEwun+fkW29Rq9V4/PHHyWQyrgaUqIwFG6Or4vLbSKme7p4eunt6qFarXL9+nWtXrzI2Pk5HJsPW0VEUoFypEF+hauM/f0VViUWj5HI5Zqanvb3F3bB75vC6rlMrl3EEuU9AiA94VBXiec2iom1ZXLt+nQvnz1OtVlk3MsLGTZua5toVIRQWCASWaRZ5EABZjhMOOSZu80PDwyumI3Ka6bl1n+Q7l7/LjfyY97dvn/1zHut7bAkH/y7qza3q4v60ZsXKueOQy+U4dvQoqCqPPvpo3bC5ZF1rWvZVlGWVr0gkwujoKOuGh7l16xbXrl7l8Ouv09nZSW9/P/lCYVWHl6ZpGpFolMLiIrlcziWKut0CxXuwe4alyefzqKKKoYhUw7u4Lb5ox3GZrn7y059y8q236Orq4pOf+hR79+xp6uy2bbsDDiK6N5p0wjp8OTA2NsbQ4CABgTFfBsmV/xCPa2qAL47+OjhLzxsv3uSFsRfe0+DH0tssH6VrNFkN8piIbZtbExO89tprxBMJHn744WXpocS6NMufJb6/lXV3d/PEk0/y0L59FEslzpw+zflz55iZmWl6bt5v3zEjYnClVCzeNVDZPXH4SqWCUa1i12oerNVb3f76uR+ZmMvx8ksv8bdHj9LW1sYnP/EJ9u3bR2IF0a2KkJYMBIPNo4c4vr+ZMzc/T7FYZGhoqOVxvbPyve7xgcfZ3L6pbvX8x/N/gW66jSzlXTh8Y0ojMfQSQiFx9P7yp/y5fPkyR44coa+vjyeeeIJQMFg3ngdg1Gruol5hQqpZ8JH6VIqqMjQ0xKeee44tW7ZQLJV4/fBhTp06VT8UIuAiUO9wsg4/OzNz1wZE7onDV6tVNNlU8Ud3P1JQ5pG2zblz53jppZewbJuDBw9yYP9+r5niPb/hPSzbRhcw1VbYcLlRdXxfzs2xMSLR6IqbVf85esdSVP7R9v8RvCElh2x5hp9cfwHwRXhnSW4HlpxHIirr/i0dWTxPdmHlcZqa4/D2229z6tQptmzZwsMPP+zihMTon+FrfJUrlaZ3Pt8HbNr48w/WyN9btmzhwd276R8c5PKVK7z08sssSO7KBgCbP8rHolEqlQrlUumuoCjvicPruo4tqgOajz6iLuI6DpVKhZdfeolz586xZcsWnn322RUrAX6rVCrYuHX8VpUeuZGUgyOW4zA2Pr5idG/1vg7wUPdeHuh8QEy4uQv2b67+kIpVraujy+EP97/KckducGr/86V5ObzPkSzL4s0jR7h27Rp79uypYzEOBYMouMA5aZXVHL7J+8r3bOzuappGMpVisK+PXbt3g+Pw8qFDnD5zZtkIoNrw72AgQLFUuisTUXfd4Q3DwBY/Uku00Vkt0+Sdd97xbo0HDx5k+/btt73xc2ybmqjMrDT5o4kqjYTHTmez1HT9zhze55yKovA/bf9i3Z/LZpkXx19814Mf0GLD3PBYtVrl1VdeYXZ2lscee4yRBhIkiZOXbMYA5VJpdcSispyRWA6BN6ZCCSEwEYlG2ffww2zdsoVz58/z4ksv1QkyyOOCu3BDwSDVctkD9X2QdtcdXtd1FNkeFxj3us6hbXPq1Cmv7V4qlTh54gSnz5xhdn6+Lt/2m/8rkYrZEvLbymQHUx5zfHycZDpNm1ARuR3zc7g7wPaObTzW+9jSe6Dys7GXyRlLX7i/wuI0QgV85o/efgd3fP93HJfV4dChQ1R1naeeeoru7u6m5ykZDSSnT7lcJno7EF2/wztLjAmNi05VFFKpFIrjMpZt2LCBZw4exLFtXnnllboNrZ8DPxgMUimXqYgU9IO0u+7wpmlim6bLaqsorjCA+PCmafLG4cOM37zJhvXrefDBB3nooYdIpdNcvXKFVw8d4od/8zf87dGjjI2P18m/+Cs8VV3HcZxVS2SqmJSyBd7k1s2bDN9BdK9LK3woxy9u/zWPrUxFpWbrfOfid7xUAN9v/7Eaf/wtJX+uD0sLJTs1xSuHDhEKhXjmmWc8yZ9mJtMaQyA+b2f2FeonuBpF0hotLuATpmlSrlRIp9M8ffAgbW1tvPHGG9wcH/deK50+FAy6eKpicTkDwvts96QObxoGQVUl4IvuVV3n8BtvUCwWeeKJJzzqiIHBQYbXrcO2LOYXFpjKZpmemuLYsWMAtLe309PTQ09vL+lUipoY2lBV1aPmaGWS1N8Bbt26hWlZDA4ONn2u3Eg2LVE2PD6SWscnhv4OPxt/0Xvs/7v+Qz67+bP0xpdL4bQ0f1OsyblfvXqVo8eP09PdzSMPP7xUTxfn48iSqlgcgUDAHTE0TW+45naHMBRVdTnvBeNxq0aaI46pGwblSoWUUBt5/LHHOH78OD8/doxKtcqmTZu8QoXc0JfFFNoHaXfd4R3LcjupoZC3Wa1UKrzy6qvYlsVTTz9NWzrNzZs3kdIqqqqiqCodHR10ZDLs2LaNarXK1PQ02WyWy5cvc+78eRfmm8mQbmtzhRJWyZvlcbEsbk5M0J7JuMp/NHfuprk0LBvYBvgfRn+VV8dfcz8zDgYGf3H+L/ndh750+9eqRdPLcRzOnTnDmXPnGFm3jgcbO8KytCvvJOLfiqp65cmCcPjVNq1Lh3SjvIQsN0r2eJUl0fPICQWWSrVKTIz47du3j1gsxjunTlHTdbYLhmHJ56OLIfoPsgF11x1eao1KCmipaYrj8Mwzz3hfgKppLoZdkoT60YK4ww8jw8OMDA9jOw7zc3OM3bzJxMQE4zdvcu7sWTo6Oujt6aG3t5dUOt00OquKQs00yU5NMTo62jI/bWWtJoV64z18euTv8tr1N7z515+Nv8gvb/48I6l1t3Vsz+F9j9mWxfHjxxm/eZMdO3awaePGFQFkvhNF8s6oijv44iAcvgFp2voQbvqnKEod9sihPtWR9fVisUipXF5CUioK23fsIBQOc/r0aRKJBEPr1nmv0Wu1D5yW7+47vCROCgZxbJvjJ06QLxY5+PTTddFGYmgMy1r5y1BcFbrOzk5CkQj9AwM4tk2hUCA7NcWFixc5c/YskUiEnp4eent66Orp8YQSVFUll89jmia9TZT33ot9fuPn+fnYMUq2G01tbP787P/N7x/432/vAA0RvqbrHDlyhIWFBfY/8gh9fX31in63YVK9oyAYxWRa5+HwWRlybNo2Nm6Fyx/VGy0ei1EqldB13R1+8d0RNm3cSKFQ4ORbbxFPJGjPZEBR0H16sh+U3XWHV8XFsW2bCxcucHN8nEf2719WGdFEhF9xE+OL+pJzBcchnU7T2dnJ+vXrsS2LWTHhMzU1xfVr17z0qLe3l7a2Nubm5giHw6TuoDrjnQLN0x+AdCjFs0MHef7GD7zH3pg6zPn584xmRlc9tv9uUyoWOXz4MLVajSeffJJMR4dbXbrTTZ7iDqyXi8UlHLrIpf0d7mUwZPG4bIh56McWFvTx1xfLZdJ+hRNF4cEHHqCQz3PkyBGefOopgLqS6Qdld7VK4zgOGq6TLMzNcer0aUZHRxkcGFj2XE3kdber+CwnaeTEvow+KAqdnZ3s2rWLT37yk3zquefYvXs3AU3j7NmzvPbqq9y8eZNAIMDU5OQdy6rbLE9/LEnwVKvxdM9TLpsBUVdChzj/8dRfUvKJOVSrVa8sVxFUH9VqFUPc4mdmZnj55ZdxHIeDBw+S6egAlsBrd2oBTaNULLYcbJG5v5Tk8T6XgGzb/sWxgsXjca+B2Lg4FFVl//79qJrG3x49Co6DpqoUCs3FJ94vu6sR3hLCXIqmcenyZTo7Oti2bVvT5wZFCU33tcJXslqt5nKuCDx9q3puPB5nw4YNbNiwAcuyGBsb4+ixYxiGweE330RTVTq7urzcP9EEtipJiGzTxDBNb7E1DllXq1WwFJ7r/yTfG/tr7/FrC9d5e+oUgyF3oRuGsexzyiHu+YUFrl29SiqVYteuXRimST6fR1FdrVnLtr2pKE/JbxXzBBFiMW8/1cy8/YnsRIuxS+02oc6RSATNR+XdWBEKRyLs37+fVw4dIjs9TW9vL2Wxmf6g7K46vCFSjsWFBYrFIrt27Wp54UKhkIv98G1yW5ljL6lpB4JBD+7ruV6LTZkmxMBQFA4cOEAoGGRmZoapbJbTp0/zzqlTxGMxOru66Ojs9NIuv1PbYuqnWUVHjvk9Mfw4P8m+wJw+521gv3P9u/yvO38PcGdaPeiyWKyWZTE9Pc2NGzfo7elh27Zt3jWwbRtsG9NZkpL0PpOqLi0ATSMQCCw7t2Kx6A3KW5ZFoNW1lZFe/FcqFAZFULmdKlgsHidfKFCuVJqWQFOpFN09Pdy4cYO+vr6P1qbVEHRyY2NjdPf0EIlGPdL9RgsKh8dxPJWOZuYA1VoNy7ZdEd1AoA6DAnjK3M0cf2pqikx7O4Fg0K38rF/P4NAQ1WqVmZkZZmdnmZya4tr162iqSnt7Ox0dHXR1dbnjiIATCrkRV0Q+KcJQFPQasWiUz237e+6QiLAzhTO8lTsJuEMa/g27Y9ucPHmSGzduMDIywp497vSUrIPb4jm2baMIvL8sF1ri334LqKpH4xEIBLw7RCwWc1kb/Nff5+CSkk+aaZoe0aof3LfSXSUWi1EoFLzvvhFyrOs6GzZsYOrwYSZu3bozWMe7sLvq8KboZlaqVfY9/DDgQnibgrscl7FANwx0XV/m8H6MtV6ruZM7oVDTMqH3dShKXdS3bJtsNsvI+vWUSyWq1WrdkEhHZyedXV1omkalXGZudpaZ2VkuX7rEpUuXSCaTdHV10dXVRaajY9mYoJ/i4lPD7pDIzeIt7+//+dp3+BSfqHuNYRgcPXqUbDbL6OgoQ4ODS214kbZI/KIc8paf16/eZ9k2lqD4M20b0ycTNDc350naGIZBVF5PmQr62v7e5RL7Eq8GL9M3sbhbpZBBTUPVNGwhpuAf9pYcP5FIhIGBAa5dv87uBx9sepz3y+56hL81McHw4CBdnZ3kcjlMcSH8EjQyQodDIXfIu1oFXwXFn6Pbjsv74jjuwHcdH00Tk82TWq3GxOQkNdMkkUxiWhYabl0+4IuGmhgCSSWT9IiypWEYTE9Pk52aYnx8nAsXLqBpGt3d3fT29tLT00M0GvVAVm5+rfHFbb/O/3H0q965TFQmuKhc4u8Ip69UKrx5+DDFUon9jzxCLB5fOScXm0r5eSXbmf9LdRxnid/SNDFtm3w+TyyRoFqpUBNVkbCguW6VppiW5UnTa6rq8drL92jl9I7jEAmFKFsWVV33HF7uUcAdNt+ydSu3RA/l0daf+D3bXXN4x3FcVt5ymb6dO1EUhUgkQklUJwKCWAiWvsCQGLjWRV7nRSHfcQ2RV2riti1f3/i12Y7jjhUKnSKAhYUFQsGgy6ZVraIGg7S1tTWFC/gtGAwyMDBAf38/u3bvJpfLMTExwVQ2y8mTJ3FEaTQtGL7kkMqT/U+wuW0zlxYvecd6Rz0NQH5xkcNvvgnAwaeeIhKNUq5UVsyTJQCvJTaeJXBWUNTfq9Uqi/k8Q0NDrnK3cERLLB45LNMIujMty83fxePL4MrybiYgCL4TIBKJuFyTPuxTzTCwJfeQmIdIJhJMT021/Czvh91Vh5+amMAGugSaLxyJeEJcpVKJpKDokCYZBqSTNoPYSiYvfzta9UUbU1QIarVa3UKRwr5dXV1k2ttZWFz00gBJW+Fv7TddBAIH0tbWRiqVYnR0lFqtxvT0NFNTU0xOTHDjxg1OnTpFrxiE/tVN/z2/f+wPvEMUKTA7O8vZs2dJxOM89thjRKJRrwnTyuFvB1XopScyz3ZcCnLVcejr60PTNErlsltXF6hRQ6itqILtV6aJslwrg0rL8xJ5vz/qS6Zgy7KoGYZbfRPTaFEhkGw5Du2ZDNPT07e1IX63dlcdPpvNkkokvPRFwRXHLRaLLg1eqVRXG9ZUVzK9hgssahznc3AjRTOGMl0w7/rr6ppQo5DPXVxYYMuWLSgijbENw+sKLqu6gNd4wfdvP9RXwV14g4OD9Pf3s5jLeeID09PTnDh+HAeHB8MP8JbxNgA7nO2888479Pb28sgjj3iRdUWIg9y/+K6t9/8mi9KfFs3NzREMh4knEpiGQUDTcIQggunjrZdCcdVqlUAg4JV9ZYcaaNl88s5H4uYVlxnBEoAyGZBCgYAHD3csi0x7O2NjY0xPT3vp4/ttd9Xhp7NZhnxTOICnF1osFKgZBqpvCsfBvQtUajVKTRzeEM6uCVyO47isViWfmIGCCz8Nh8N1m+NFIeibERNUgUDAjW6myUoYy7qNnD+dEJs4Dx8vvux0Os3w8DDbtm1Dr9WYmppiYGqAjVMbsUyLNiNFJBZmYGDAu7vgLPHyyE6u/zoum5KS5+ae4Apn7zp8JpNx0xexuCzLwpFVrmjU5Y40DM/xy9UqerVKIBSq569ZKd0S+yyZ70ve+oKg2pYcnf7np9vaUBSFGzdufPgdHlwHbYzE8sLHBctsRcgoRiMRD2oqVSNsx6lLa2QNOigiUKVcdkty4nnhcLhOLMBv87OzKIri8SLKL/9OO63S6oYy8NXqfdE3FAoxPDzsdpaPuZBkXTVQNY1jx46h4MKdewWpaURcA+/4LKEW/XH1dlMAy7KYm5vzmn2yT2A5DqZlEZTiBmLOOBwOuyRLuZz3PoVikbAIIFI4bqWJLEuQXAWCQZdqWyxUT1TBcVDE4lBVlVAgsKoS4Xuxuxrhm2adIloFQyFijisfWalUMEzTI9HXNA3DsqiUy3Upj6w8lC0LTXYqFYVoLLYqRd/8wgKpVMpzdHmrlniOVgRQ/txUdle9v9U/EVhOz1HTdd48coTFxUV27tzJ8ZMneeSRR4hEImSzWbKTk1y8cAHTsgiFQnR3d9Pf3093d7d3h/IPiTSmMCttuHO5HJZt0+EbUJfDGpZlNS0PBzTNrbuLKo4N6ELqPixE4lYySZso78aI9MZjf3Mcb6b4du5Q79XuqsO3+ijSieQtrlgoYNRqFC3LI87XTZOiz+Ftx6EoFodkrYqIBo6MPI1q1H6bm5ujq6vL+78q0iLDMNwNssDyIBo+fmeuy5mFNYKtmmHZi8Uib/oAYP7FEIlEWLduHevWrcOxbW7eusV0NsvCwoI7GwB0dHS4iM/e3iWmLkWp31vIc2Z5JWVubg5NbLKlybJrK9CWKSpkwWDQzfNN0+WrtG23rCjYxvyO7z8XXdc9zFAwFPKAft65+74nKZj2QdpddXhYnvf5R70kXjuZSrkbWcuiUCgQDIcJCOe2RX67mM+7itGKQjQSIRaN1lFKrFSPl7nkli1b6h4PBgKeeIEkYVqp5Of/W2Md2r+5BZibneXNI0cIh8McPHiQeCLRknxIEU6ZTCaJx+OYtRpTovJz/sIFzpw9SzgUcie9+vro7OhoTqfhP6bjMDMzQ1tb2xIkmCUYtikEFxq/H8Pn8ODeERKJxJIcj+1qtYZ8lN+SU9Orjjmu4l88HqdSrS5Bmp0ljA4sDYJ8kHZXc3gtGGyanzWClDRNI5VKUSyVsAwDQ1RbLFFWQ1EwajWvIdSKbnlZTVjY/Pw8Dm7ElHV92bVUFJecNXYbt9aVcmf/Ar958ybHjh2jI5PhwIEDq1OAQ13Ui8bjrF+/3oM7z8zOMjExwXQ2y/Xr17GBjkzGbXr19pIUInB+MwU2Z+voqHfeiqKgitzZElAFfyrn2DY1sRAa6fhCgv6kLCo5NSH6EBNS9V5wsm2PF1+qmEgHtx0HVZybvFaGaS6jRHw/7a45vKZpdHR1MTs72/TvjQhHRTQiypWKS7mhKBRzOXRdd8lSFYVEPL7iiFqrKJ/L5VBVlUg0WgcEkwhNU6AJVyJy9W9S5Xv5I75cRNeuXePSxYsMDg3x0N69t6dowtKmtHE5qZpGT0+Pl46VikUmJieZnJzk9OnTnDp1ilgsRk9vL329vXR2dqIFAszNzWFaFr3i2sFSnV7VNNQmexdDYGcay5H+zxyPRl2BtnIZ0zSZmZlx6VfEoo7H4166EwwEvOuLWGz+BbC4sICmaaxfv/62rtG7sbvq8AMDA1w6dYpqpUKkwVFtX3PEb7FolEAgQC6fx7ZtCsUiHe3tS5vNO+QVtx2HQqFAMplsLlwcCHgNmJUcfsVUB/c2ff78eSYnJxndupXt27ff9obMf7dbjaIvnkiwafNm1m/YgCUcbiqbJTs1xbWrV1FVla6uLlfgLBQi6R/EQFRqVBWDJbCYDDxeOrPKHSkYCGCGQpRzOTdYCEBaMpmsq6r5K2GyQWX5ovvs3Bzp9nY6b4P17d3aXXN4RVEYGhri5NGjZKenWSdmGcH9glVFaToMbdk2lXKZVCpFtVKhYhgUSyUQJaxUwxe47H1VV4fU755SdrGZeXm8YbREaDYz/93JNAyOHzvG3Pw8u3bvZvOmTbd9HFhKZyQw6zbeHHC7oL19ffT29YEoIWanppiammJmZgbHtvnZCy/Q09tLb2+vl/vL+WG/nI7E4NhOa45+x3HhydVqFUNUbfxBotYA+pMNPQlEkwPl4C6GmZkZdq5CUf5e7a7m8KlUikAoxFQ2u8zhvRa4zyzLolgsevl1X38/8/PzFIpFQuEwNSCfyxEMh4mKslmdOQ7Ydl1DyHEcCvl8y/nVYCiEUq26+eYqOHy/yZSmWqlw+PBhSqUSDzzwAAP9/bd/geRpi9+t3nkZrKCZgyiKx7ve19fHT37yE7Zs2UKtVuPWzZtcuXzZA7x1dnURTyaXeHwUxSXMgjqMk//9a4bhijiL6yshBCGxT6vquqfiImvuqqIQ0DQMx3En2YJBr+9RMwwKxeIHms7A3d60ahpbRke5ceMG27ZtI5VM1m38/KU9SxDzSGePC1GvQqHgMWiFw2EcBNe8rhMUgsDBYNAlSBUlO9WXy1d1HcMwWkZ4TaIBxWBHq9t5MyxLLpfj8OHDKMC+Rx7xvug7NVm2u+3Fxsob6KmpKRRFYevWrQTE8EYhn2cqm2VqcpJTp04BLhOEnPSSDcKIGKhB3Cmlo0tMvqIohIXereyqyqZUpVLx0iJJ+KRpGjWhNSsXC8DFixeJx+MtJ+DeL7vrDr9t2zaOTE1x9vRpDjz6aF309efw5VIJib2WCnbgTumUSiWqlQrdXV2EwmEX5iowIDVdRxPiB2GxMPx5aaFQAMdpOronLRgMYkn1u9vkSJnKZjly5AiJeJxHH3sMU9Tz343Dt+JuXHrC8sW20rtMTU3R0dHhVVoURfEkbbZs2YJRq3H9xg2y09OMjY9z+fJlAoEA7ZkMA/39dHZ1EVBVdNE8sm0bVdPciB4KuWxmwoHl5w2J95JOXwsEXOYzMYYoUyZwWYzHxsb45HPPfaAVGrgHDq9pGlu3buXs6dPMzs56A8mwFOHL5bInwhWPxeqcJpFMMj09jSHUqGOxGIl4HCsapVwuu+Uxw3A7sLgXPhQOu/kjblMLVW09wIzr8FVdp2YYRFtETr/LXRP6R909Pezbt49AIEBBjqq9G4cXv5u6e4uOdauKlCmGwLdv397y/YKhEL19fWQ6OohFo8zMzJDNZpmbn+fkW28BkIjHyWQydHV10dnVtYzGUBF3U7+FBBVLVdepVireLKwiNuVyjuHypUvEYjH27dvX8hzfL7urrAVy89PT10dbOs3b77yzrEMoIzW4Ja3G1rymqt5wcLFU8hxAVVUSiQRtbW3E4nFPgl4XuWFO6MAuLC4Sj8VWZPOV5TPbF4WameM4nD59mpMnT7J+wwYeffTRJbSjv11+h7ZiStPqvFs8Pjk5iWXbDDRhhvCbZFIulkooikJndzd79+zhiccfZ9voKPFEglsTExw9epSf/exndfyezbq60sLhMEEBty6Xy275WVRnLNtmcXGR7PQ0O3fsIJZIMCgmvJ599tkVzxfg9OnT3tDKv/23/3bV58NdjvAy93aAHTt38tprr3HmzBl2Cso127I8Uvymm1BhsWiUQj6PXq1SqVbrKgGqqhKNRIhGIlhimko2RWq1GouLi0SjUQrFIkHfZFOjhUMhHIEBaValME2T48eOcevWLXbv3s3GjRuB5ZDddxXhfbDa92pjY2N0ZDJNWYIdsU8xLYtypUKlXKYmxJA1QWUei8fdBh3uZ1tYWHArP9ksx48dwwHa2tro7u6mq7ubdoF49FskGsUsFr1yr4K7SVUsizNnztDe3s7g4CARwWLwve99jxMnTqwKivvSl76EZVls3LiRf/pP/+ltXY+76vCK4tJj12o10uk0u3ft4p1Tp0gmEqwbGfG6sFogQLjV0LbYxIaEyO38wgL9fX1Nn6sFAsQCAWKxmIcBqVSrtLe1eaVHeV6BQICg4LTRhARPVSyWRvU/Xdd5/fXXyeVy7D9woK4So8iU4z1EeC+lWSWV8lsjlkee5/TMDLtEQJHlQG/kz4efkQPgpmkSSSRoS6eXBQIFyLS3k2lvZ9u2bVR1nWw268nYS8iDHHPs7ukhJHjp47EYJdGcsm0bw3G4dOECjuNwYP9+b2j/wIEDfO973yOXy3Hx4kW2bt3a9PP+4Ac/4IUXXHWVr33ta7fNR3nXmcfC4TDVchnDMNi4aRP5QoHjJ04QjUa9DWIsGm15m7TFzj6VSlEsFNB1naKfRauFSQiyaRikUyni0ahHG+3Y9tICEGN1AU3zpo4qlYpbcVFVisUih994w+Nib5RdlxvkFQc4VrEVU5pVGl7SLMtifGwMx7Zpz2QoFArevkh2tR3wmB6CwaAXfSMr3F39FgmHGRkZYd3wMKZtMyPIbbPZLDfGxpYB3mT6UalWmZiYoFgo8KQYZ5QOe+DAAe/4x44da+rwhmHwu7/7uwA89dRTfO5zn7utawL3yOHBTV9QFB588EGXRu7NN3n44YdJJpMe70mz0p+MEBJklsvlmF9YIBaLraqUJ6f0Y7EYkUiECHitbcM0McUAiGPb1ARsVdd1aqZJLBKhUCjwzjvvEAyFeOzxx93NsnCixvf28OurlRZ9uBY/9Fh2QIF6JxUdacdxvEFqW9S1DcFSYJsmNq78Zlt7OyjKEuOAqtalcvL8TDHtZTmr8+o3XlMFdw/QJVgeduzYQaVSYWpqimw2y/nz5zkr+D3T6TTFSoVSscgDDz7oCigoipeWyk2/aZocPXqUL3zhC8ve84/+6I+4ePEiiqLw9a9//bbPFe6BwwcCAQKhELaopAQDAR7Zv5+XXnyRE8ePc+DRR722v019lPcPVqiq6mJtSiWqhkEul1sWbRtN1/VlvPEynQkEAhCJeAvAsiyCgQA5sRimslnOnT9PWyrFjp07sW2bvGTJEgAsKXSsKO6wtMLSXK6EGnvoUEXMiYrfcqOOI2hHbBtd0o7gpiOOwLvY+OYLxEKQQC0ZJGrVKvPz8+zcuZOI6IBqKyj26bWa67jietyWyYqL7/9ySisajS4B3hyH2dlZpiYnuXHjBrbjEE8mGRwc9IoLbWLyLBqNsnv3bk6cOMHRo0eXveXc3Bz/8l/+SwB+7dd+jb17997euQq7J4II4XCYsuACl7e5vQ89xNtvv83rr7/uMuP296NSjz33q8FJB0ql05jz8yzmciQSidZS9QjqO1YWAfAvgHA4jGVZXLl6lStXrjA8OMiuXbuwxJ3C8jmZZVkesaktSqYAIalM1wQnVCqVcGybcqnktveFE1crFZAIxYbXyQUv7wKqAH8F5WITVB1XslkURWFk3TpXeGIFsy3LY38IhkK3NUHVipbDm8jy4XJURSHT3s6Vy5exbJtUWxvDQ0Ned1pRFM/hwU1rTpw4wVtvvbUM0Pb7v//7LC4uEo/H+epXv7rs/Veze+bwJUXxsBaWZREOh3n0wAHOnD3L4TffZPeuXa5KhLBWTLWJRIJSsYhVrbKwuEi3b6ij0SS7cCQcdp1olS/VtCwuXLjA2NgYGzZs4MEHHnDPxXHq7hIy3ZD7i5quu9QijosD908n+Z+v+FIWiQW3xfCJJ/jm/7s4X1VVXXYzP0e7D3XoOA7jY2Nu3nwbm7mqD0YQDASWwYSb2UqsCQ5LNIaqqlIulzny5pvkCwXWr1/vzrOKu6miuPMM/krbgQMH+JM/+RPK5TJnzpxh9+7dAJw9e5ZvfOMbAHz5y1+m/13ANu6Zw2vBII4YFJazqaFwmP3793PmzBnePnXK5Z984IF62K2Igv4I1NbWRm16mmKxSCqZbAn60hvSjFZfmoNL//HzI0eYnplh27Zt9Pb2evOZjeZhy8XfVFV1UxRFccmUWphcxPFEwtOd9Xh2BJyi7rxa7GsabX5+nlw+z86dO70UyuP0aVjklmm6DSDcTahl26u+R6s5g8ZzBbeMefjNN3Ech4f27fOKA6pvQaQbpEj9G9ejR496Dv87v/M7mKbJ4OCgt2m9U7snOq2KopBIpXBUlWql4slGyvRm586dPLR3L1evX+elF19kbn7ee22z6k04EiEajaIFAszMzra8G1Sr1SXOyobOpMSvW447V/vKK68wv7DAE088wdDwMMAHOlwszZOqb3L3aaVgCNTdra5cvUo8FqNbAOT8PQFVUequn4zuQV8/YjWHX83Zwa0SnTt3jpdffplwKMSjBw549NnBQABNWeK6aW9w+M2bN3tsElLL64c//CE//vGPAfjqV79629pUjXZPHB7cPFrRNBdEJAYN/NFzZGSEZ595BoBDL7/MW2+95c1XAsvSkUxHByFNcyfzfQvEb1Vd93D4/sjnT0cWFxZ4+dAhDMPg6aefpquri4hICySZ02oxVmn4fSfmOVuzO8nKLwTcRTlx6xbrN2xY8fgKuHTfgnVZkiXJ/PtOzX9uMzMzvPjii1y4cIGtW7fy+OOPe3PGgUAABEucLTb7ad+MrbT9+/cDboQ3TZPf+Z3fAdwqzq/+6q/e8flJu2cOrygKEXEbl2SojU6cSqd55pln2P3AA1y/fp2fvvACU5OTTY+nqirtmQwB1SXVLzYRufVTQ8tbvHR0cEFWr77yCtFolGcOHvQQlQHRjMJx3FRltQj4HppOkvl3tRJrK7sxNoYDdfDrZuYAZV+Kp4l9QeOdz2+rbWR1Xef4iRO8+uqrBIJBnn32WY+NDdyav1T/k9WdVDrddL8g05pTp07x7/7dv+P8+fMAfP3rX39PHeh7ksNLS6RSlObmvDKg32TNWVEUNm/axMDAACdOnOD4iRN0dHaybXR02XhfNBolkUySz+eZm5sjKkBj/mPK37Yon8lc8urVq7z99tv09fV5tWBpiqIQCoeplMvotZrXJ1jRmizg27JWKc1qebXicrxcvXqVgYGBVTuPNV13KykCmyRRjCu9V6vPbNk242NjvH3qFKZp8uCePYyMjKAoikeppyiKx90fUFVv1LG3xcZTOnytVuMrX/kKAL/8y7/ME088seLnWs3uqcNrmkYgHodi0YsCrUpisWiUxx57jGtXr3L6zBleffVVBgcH2bpli9tcEdbe1uZKxug6M7Oz9Pb2en+zbBtHNnbkgwIAdvHiRTZt3OiKNDSJrpFQiGql4jV4mm1elw55e93QZiY5Wpo1slaz6elpyqXSqqhDySjgOA7RWMxNN8TfVgLVNZppWdy4fp2Lly5RKpXo6enhwQcf9GAhUvwY8NjMFE3zonskEqGzRVVt//79Xsopp6m+9rWv3fa5tbJ76vAAqfZ25icnwcfrCM2dRlUU+vv7SaXTTE9Pc/36dV566SV6ensZHR11QU6KQkdHB9mpKSrVKou5HOlUyq3ji5KfNNM0OXbsGLcmJti9e3ddGbTRFFV1+eoF5n41fVOvwXSH5kjKCv9rReq12vGuCmmcTMMmsNEkQC8guR3lOct0RqnnfG+syhimybWrV7l06RJVXWegv5/9+/fXzRg4YjQT3A1xKBRyxZAdB02iZn3BqNHS6TSjo6OcO3cOgH/2z/7Z+zINdc8dPhKJEIjFcCoV8vm82y1dIY/UNA1VURgYGGDL5s3cvHWL8+fP88rLL9PZ3c3WLVvo6ekh3dbG4uIi8wsLRASvpGyCgFuxefPIEXKLizx64AB9/f2rbtZC4TC6rqPrOuFIpGU09HA0d3gt/DOl/ruMLHuuZIV8nsnJyVU7j4ZhYBoGNpBoXLQN79FIaFWtVrl27RqXL1/GME2Gh4fZsmULiUTCA5+BG6zK5bK3KY3GYu7+RwyQBESPYWAVtY/u7m7OnTtHV1cX/+Jf/IsVn3u7ds8dHqCts5P5W7cwajX0apWIEBNo9iVLORnLslBUlaGhIYYGB5mYnOT8+fO88cYbRKJRhoaGvEmpqWyW3t5eN5cUm9o33ngDy7J46qmnvIi4Um0eROkuGMQSKUFslSh/p4mNBwumPqW5neOcv3CBaCTC8ApO5DiOywKmKETC4aaUId4VFxUb07KYELTf2WwWRVVZPzLCls2bPchxYxqq67onoCAHeCQxq1y8mc7OFYfkjx49yiuvvALAH/zBH5B+F5Kizey+cPh4PE4xFsMol9HFbGrLiCY3Vw0Yjv7+fvr7+lhYWGBsbIzr1665suexGO2ZjFf+NAyDQ4cOEYlEePLJJ+uaO6s5PLg4fV0uzBWivDzenZgnkdPgiKs5fKlc5ubNm4z6hM+aWbVa9TRWVwSIOQ7T09OMj49z69YtarUamfZ2HnzgAQYHB5eNPfppsw0hUQRuEUEuqpphuH0AQWnY29e3Imbny1/+MgA7d+7kN3/zN1e5Ardv94XDh8NhQtEoVrWKZVmUy+WWjQVNVT3MucRieA6hKLRnMrS3t7Njxw6mpqe5fu0aE7duMXbjBmgaioDLPv74497cpfdy8IQBWlkwGHQn720bvVpdOZdv5vC+bqlsuNmC9cuThWx4nUQktrKLFy4QCAZXzHGlvKbjOG4vovE9LIv52VluTU4yMTlJtVwmkUiwadMm926ZSLRM+fyfR+4PQkJMQaaRerXqVWjaOztXHLH85je/yaFDhwAXGbkazOFO7L5weFVVicRi2IZBpVhEVVW3SdQkCkk6tq/9m3/D1OQkmUyGP/zDP1y6KCKXVFVXbfs/fOMbjI+N0dPby7qREVLJJHOzs7z04ovelE53V5cHW5bNl5UifTQSwRTaqo25vOMsQXWl6p2/seVfoMVyGQcolkqoqupJ8oRCIY8aXNatJStAYwSvVCrcuHGD0W3b6gTO/GYLgBqO42k54Tgs5nLMTE8znc0yOzvrArWCQbq7u1m/fr3HIy+va6MAgv+OaFmWqybiuAM6Ml2RAaQmKDvk/Kw/oJXLZSYmJigUCjz//PP8q3/1rwD4rd/6LZ5++umW38O7sfvC4cHlrKlWq2hCgVrSN8tZS39ECofDPP3kk/yX//JfmJ2Z4fXXXnMvjKJ4kGLbcfiTP/5jLl2+jKoo/OIv/qI7LFIus3nTJkqlEtNTU1y9ehWAtvZ2egRHS1tb24p17FAohCq6urpQyJAOLqksKtWqV2+WZ9449icXl9qwyBRFwZYwYJaAZw7LRdcuXbqEqqpsXL++aerjnyWtVKvMzc8zOzvLdDaLXquhqSodnZ1s376dVDpNIBQiGAjUqe15x2pYTF5kt13JIomNkXm7Kt6/UqngAKZtM7JpE4lEou76/uVf/uWytOWRRx65Y6z77dh94/ABMYqHbVPL592B4kLBGxDwb4xUVWX/gQO8fOgQU5OTPP/88zz55JN1uf1f/MVfcOz4cQC+8IUv8Phjj3Hk5z+nVC4TCAbZvHkzD+zeTblSYWZmhpnpaa7fuMH5Cxe8UcR0Ou39tLW1uRpUonKhaRrFYpF8oUBC6LXCknOqisuDLscDPYSj/0e8JimGz9V8HtM0iQp6Qdu2scQdw7IsT/LdkArgus71a9dYNzJSB0Wo6Tq5fN4djpmfJ5/LUSgWveicyWQY2bCB7q4uMpmMt0GuVCpUq9WW+xIJyfbQnorLIlYqlTCFsyficfeuxNLeo1gsYto2nZkM6XR6iepb2IkTJwA3kI2MjPD3//7f5/d+7/dWLf2+G7tvHB4gmUxSqVQIxmJYAi+fLxRIJ5PecAXgyUl++hd+gW9961vMzMzw6muv8dTTT+M4Dj/80Y/4yU9/CsAvfvrT/N3nngNcKHF2ehpVUZienqa7u5tYNMq64WHWDQ/jOA6lcpnc4iK5XI7FXI6bN29y4eJFwI28yUSCSCTibdw0TaOm67S1tRGPx10tI8uiVKkQkLf222xEyTJeMBj0JHwcADklJnL9qq5TKha5eOkSNm4l5cTx4xQLBXLFoquWJ46VSKVIJJMMDg+TaW93Z1VbzAw0UhI2M1VRcBRBy2fbFEVk9yoyaj3ldVWQZFmOw+bRUWKx2LKZhT/90z/lT//0T2/rGr1Xu68cXtM0EokEBcdBNQwsUTMuCIU/cG+jUkFiz9699P7oR0xNTvL973+fxx9/nKPHjvH//Kf/BMBjjz7Kr/zKr3jHD4VCWCKCVioVsjMzdHd2Ehf5pKK4jMSJeNyjtbBFTXl2dpaciJS5XA59fp6qaM/Lzq2qKESERlIgFHJFuwSliCoAUwFVSMNrmteFnJyaYn5hgVKp5KVytu0qCpqWhS02yOVKhYoIBP652YlbtwiGQgSCQfr7+ojH47QLwlm5gFaLlv4JqpbVJWVpXtdzdvH8hKBGkZFd3g1kdB8cHiYajS6L7nfb7iuHBzcKG4ZB1bY9Ya9areYNaisyLxa31c9/7nP88R//MTOzs3z729/mjTfeAGD7tm381m/+Zl20CQryzo6ODubn5ihXKkzPztLd0dG0amCaJiVBXRFPJIjF44wItQs5oTQ3P0+5VHJnRkV9vlgsUhIlVkolt9EjUhNbMAdIVRHbtjlz5gzgNnoCYhQvoGmgad4CCYVCdHV1EY1GiUajXL16lVKpxLPPPks4HPbgArIGXhZsbKFweEWWNUVEa28P4ThNS5veBlXsL8o+za2or+rjr57VajWXGlH0Rdrb29/Xisu7sfvO4RVFoa2tjVnTxA6FsKpVF4RUq6EIWUsZLS3T5KGHHmJoeJjr1697pazh4WG+9KUvLavzyo2SZZp0dnYyNzdHqVxmZm4O23G8u4jtOFQqFXRJMiRy+nA47FUqpOx6Op32OBVTyaQrs2kYlEolV9ghmWxa5rQdh4X5eV586SWeeuopkskkZfEaGQX9U1J+m52dZW5ujn379nnVJVVVCQWDBEMh8rmcNzcbEHsNybnZeK0dX8lTRu/GHN4POZBBANtGxe2h1J2nOCaK4mpKWRbrhEbVB02jdzt2z+DBK5mqqmQyGTSJ4hORp6rrbjXAcTzqPMuyOChw8+BiMLwNj8g3pUkexJoQ3u3o6CCRSKAqLjd5vlBw9w35PLpgxg0KSu54AzeNtEAg4A6VKIo7i9rEWnWMZbTTBFEpLEnQtHJ2Bxcy29bWxlBDV9UR52DjNn06Mxlv0VfKZcqVSl2lpXGQo9WMqnxUF3sHbBtF04gnEkvyOeJ58i6g6zoLi4sk02mGhoZWrLvfTbsvHR5cR8p0dKCK8pglNknS6WUpb3Jykv/3u9/1Xqfrej201/clyjy2JLDyqqrSKZxeU1WmpqeZmJryOMtTQmNJE93dxoaQd1yxMa2Zpqc0fafmdVl9c67NbHx8nIXFRXbv2rXsb3q1SlXg9ePRKJFo1B15DIdBVTHFnafZqKDte0wVdyzF58Tlctlb0IFgkGQi4UkEeY4uzKjVmJyaIqBp9A8MMDg4+C6uyAdj963Dg1um6uztRRVVGUlFIQW1CoUC3/zmN8nl8x4RU7Va5Qc/+MHSQaTjKIpXISjk83Xv09nR4ebBpsmi2JgmEonlrW9FaerMqhhKVhXF05mte9ltfFarMcI3ibamaXLm9Gn6+vrqpCcBr/YPLrWd1/5XXM6XRCzm5t+2q6KyzOGlELJobmkCMixr7IaAb0cikbpo3dh9reo6c/PzruhzZyfbd+x4TwMb77fd1w4P7gXuGhhw+Q41DQc88NZ//qu/IpfPk06l+PKXv8yePXsA+NnPfuaKn0nz1e8TySS5BofXdZ1QKEQ0GnU5JW2b6ZkZjCZSjq2Qi3KIQlZUoB4Ds9qXLh1HOlozhz9z9izVWs2jzpNmmiZlQYIaDgabdqgDgQCpZNKrucvUUJolNtFSCdwRxy0Wi654geIOpIcikbpUyI+QrJTLVIpFSqUSybY2Hty7975JZaTd9w4PEI7F6BwYcCsYqgq2zXe+8x1u3bpFMpHg13/911m3bh2f+/zn3e6nrvPX3/9+02O1pdMuR7ww0zS9TmRnZycD/f2u5pFhMDU15XHZ+E1xlmvOKqpKLBpFAU/OsS4HX6EW74fgygHzxuPPzs1x5coVdu7YQdxHK2iZpptXiw5s0/KjyKtlY0gKREi8Orh3GDlXLDftpWLRBZuJcrGcWPIqMuIzmZZFsVRyVTzKZaLxOKNbt9Ld3d3yM98r+1A4PEA4Hqe9u5twKMTzzz/vAqYCAZ555hl6+/ooFosMDw3x8COP4DgOL770ElPZ7LLjSE5KcPPWUqnkbk5FrToWi9Hb20swEADbJpvNkvctEMAbkGiM2kEBmFJU1ZsoWnpJa4y/x1QgcmKlYXFYts2JEydob2vzWIrBXawF4eyypb/aWKHqo/+wRHqIr/IkZYZqokcQDIWICZh143nZtk2lWqVULLqQCl1HUxSGR0ZYNzLyrudyP0i7/85oBYukUnz/+ed57bXXME2TRw8cYOvoKEatRi6fp1Ao8NnPfhZFVbEsi+9+5zveFymdT6pJV0Sd2jBNFJHfSwsGg/T09HiwgPmFBWbn5pZITiUWpkmkjwoZR8uy3OF0n7W62LZdP7jduDDOnTtHqVTioX37vPc2RWSXwLJmzu4tyIbHNU1zN9qKQkXXscVMcVmUYm3HQdE0orGYew1YvmBNsd+pCZoPRTzWNzzM4ODgu6bR+KDtQ+Xw3/rWt/jHX/oSU7Oz7N27l7/7C7/gbS5LpRLlcplUMsmjBw6gahpvHjnC+Pi4B8m1bJukqIsv5nJerh1rUBkB1ym6BJBMUxRKpRKT2Wx9iiNSD/8rVZnaCEis6dsHeBUNlpxaIikdfNLrvki6uLjIxYsX2TY66tXnDcNw0w2WCJvqmkWyTLhCGhUOhwkIJGZBYIIkujMcCpEQMAkaPp9tWVTKZYqFggv9VVUCwSClcpkuQZPd00Iw7n6wD43D//CHP+S3f/u3cRyHVFcX/+g3foN4PE46nXbZgMNhyuUypVKJgwcPek2g7373u0sRGTcCx6JRJicnPYHcYGM1xmfpdJrOzk4CmoYlSFXn5ueXqhMitfE3a8LhsNspFQvFclyCJ8ng63HhiP6C3Php4jXyx3Ycjp04QSqVYvOWLQBeU8sR5y3F3hoHYlbaM3icjqpKqVxmcXERyRmTEMxtsnElj2eLOYVCoUCtVvNYhiPhMPlcjo6uLnr7+xm5T1MZafddp7WVffrTn/YEDMAlESotLBAIBOju6mJ6eppKterJ1n/lK18hGAp5gwv+L6G3t5epbJbhoSGCQgkQkZ44TTaMsViMcDjM/MICFbGoiqUSmUzGG/Oro7rGnX+tFYsYYlMsG2F+FKE0j4tGUVyaDuFob7/9NqVikYMHD6JpGrquUy6XkYSv/juT7AivyhrmON7ElmlZ2EIgIRKNkhR3S/852pblKh/60rNAMEhEgNtmZ2dp6+igt7+f9evX37FQ9N22+/vsVjA1ECDe3k5xfh4tEHBTDwGBjUQiLlVHterJWSbicY9Dvqe3lytXr1KuVunw5Zp+3LnjuDyMqq/C0dXZSblcZmFhAV3XmZmZIR6L0d7WhibRjbbtqdlFxWyuXqsR0LTWioDC4QOBgOfsN27c4Pq1a+zZu5e0EGWu6npTZ/fOXzq7rKQ4S5NhtqD9lh1kcBdYOBTy+Gkk9MBxXG0rXQjESQv4QGimYTA7P0+yre1D4+zwIXZ4cJ0+lslQmpsjLGZNDdMkGokQi8UolkoeJkYXGPF4LEZnRweaqjI3M0NXC5lz/4bPq4s7LiVdT08PswKHUyqXKVertKXT3oyr7AL7lTVKlQpJAQxr+lkEK5fjOOQWF3nrrbcYXreOdevWURQoSkVRCAsRZtmEU30NIsR5Oo7jbqhFCVfXdapiiBrw2MYkdUa1WkURmJpqpeKyC/hq7XKBqaqKJert8wsLpNJp+gYG2Lhx421Lztxr+1A7PLhfRrKri/LCgptGGAZ6tUpC8LPUajU3DRH6Qrl8nnw+TzKZZGZmhtEVhHAV32+/MIEicDjxeJy52Vl002QmmyUQDJJKp4nH49gAtk1INLIM06RUKnkwBm/TKn5U0QU1DIM3f/5zEokEO3fuJF8oeM4Xi8cJBYNL2rbiNe6BluDCqqq6LL3VKmathu37HOFwmFAw6PH/1AwD3TAIOI7LGyOfK8BooVCIgKa5GHixGAulEj29vXR0dTEyMvKhcXb4CDg8iA5qRweBcNjlZhd4m6QYJQuHw6RSKSqVCoVCAb1WIx6PM37zJuPj46RFdI5EIm7EbIEJV9w380YIw+EwPb29LC4uUhBVjvm5OfL5vCstI5w9KlTs5NxnQmhYOQJLLyeoHMfh2NGjGLrO/ocfplypeJQdsVjMuzvIc9NU1euCympPTVCQ+7uoquJSBYYER6Ysy5qmST6XQzcMb6A9EAwSFth62aBycBtT2dlZFMdhaGSEnp4eV8HjPt6gNrOPhMNLiyQSdA8PM3njBoauU1QUt4qB6zTxeJx4PO7msabJrYkJpqamvHG9gKYREimDFDNeBpUVv1VV9bjU0+k0yUSCfKHgOr5hUKhWPRmcNlFJKhaLmLUaZX/d3wd7eOedd5icmnLJlHxpUTQaXRFHrlerlHW9jp9TweXRkY0w27KoyuER8Rw5h6sKaLR/UXmlU0WhUi4zMztLKpWis7eXoaGhVdnN7lf7SDk8QCQWo2/9em5dv+7xsCSSyboZ0nA4zKAgb8pOTbFx0ybMWg3LtimXy5TLZVfdLhh0x+2CQYJi6COgaZ5ahySLkhiU9vZ2UgKrowtt2PnZWSrlMol4nHA4jF6tUqvVllVULl+6xJUrVxgdHfW0qsLh8DKogFQdNC0LQ0RyU4j8SkoMTZyrI0qJjSaJTWuGQVjg5BPJ5DLKk4pggzN13U1hurtZt27digRK97t95BweXCDXwMgIk2Nj1IQDy3RFOn4wGGRk3Tpu3rpFIZ9n/fr1br4vNrlS17UqBlBURUERDi8ZA2Q1RkrUqKqKGgiQyWQIBoPMzc25mqiGwcLiosvLEgx6U0ayiTWVzTI+NsbGjRsZGBhYSmFU1VXWE0PchpiUkrOtspYvp6ck6ZElXiNNwV2QUvRA1TRsy2JxcRHLcWiTAC9xt6nqOrlcDlPXUQIB+tato39ggL6+vg9dCtNoH0mHB9fpewYHmZmYoCIw4LKKIjd8mY4Oent6uHzpEhs2bvTyeNtxMIRcpSFKc5bjYJsmulgIkh9HUVW3e+fD12iBAKZQ8I4LaUuZM9fEAjAtyxNYuHHjBoP9/XR0dHi9hIq4O0E9r410Xk1MfQVFaiXTGY/DRv7IkciG/kK+WMQ0TUIiZbIdh2q1SqFYxKxWQexBtu7axeDg4IdqY7qSKc574Xb+EFixWGRuZoZaoeDl8ZLq2nYcbt68yc9//nOXPdgHzJIXRVEU16HEQLUpF4FAZZqm6W4QJWYHwHFcKo1azVW6sG2mhWDv/MICxUIBRVEICvaD7s5OBgYHicdihEKhJSpu4aSapvG973+fo8eOsX37dn77N37DU+tTFQXDJ4Sm+XhwvI5rQ+dVr9XITk+j12pEYjE03KjupWiOQ09vL7v37r1vMTHv1j6yEV6axNrMh0JURUkyFosRFmN5fb299Pb0cOr0aTIdHbQL+RU/45amKGjBoKfIB27dWzcMVxDMtvmbH/2In/74x/xvX/kKqVSKmq5Txt2M/l///t+7x1QUgqEQoWCQcCRCOBRCA9rTaTRFwTJNqo5DMBgkJu42smLywO7d/PDHP+bw4cP8L//8ny8JPNs2WgNIzTNfI0rOEei6zuTUlDd4Ljf0fhjw6I4d9AnWho+afeQdHkR609vLYiRCMZejXChg1Gouv0wwyAMPPsgrhw5x/PhxHnv0UW9T5udYafytqSpREY0dx0EFypUKiUSCTCaDZVnk83kU3KHrUDhMVGxCI5EIU1NTzM/NsWnTJjZt2uS1+WVqZNk2xWKRIoCiMDg8zNDgIOVKhZ8fPcreBx5AExyXlq/yIs2xLExR1zfFj2GaLm5dcEym02mPLCoai9HZ3c269evrJDk/avaxcHhw04JMJkMoFCIXClErlSgUiwQCASKRCHv27OHNn/+cCxcusHnLFrc60jD72QioUhTFo9zzTynJjaxhGFiWxWf/3t+jf3CQnq4url27RlaIOch8vLu7u06TKiBwM7ooNUok5e5du1x+9kuXGBke9io0dXyPAhIhF6H/jlQulzGE4nZvT49LKRgOE43H6e3vrxMH/qjax8bhQTCHCTRgqVRyBx0EGCyZSrF+ZIRrV696QyAxX74PS/AC7/8Ato0mHUxRPC4WUzSAcByefvppFnM5T83ikUce4VXBfe6I4ZNkIuGN3ZmmSSKRoKOjw90cC3WUrVu2cPbMGS5fvMhzzz0HhoEKTWv0isjnA2IsUg6kxGIx2tvbiYmeRM/HxNGlfawcXlowGHS5IpNJ1/ELBarFIhs2bKBULnP23Dny+Tx9/f3E43EiQshYRndJWmRZlruRNQw0VSUpCGFl7TwQCKDrOqfPnmVmZoa+vj727NlDsVBw7wySlMlxaUcS4nxMw6BULruiC/G4R860b98+vvVnf8b8/DzFQoENGzYsE4Pzm6QeL1cq7qCGqpJOpejp66Orp+dj5ejSPpYOL01CiZPJpEtDUa1yoL2dk0ePMnb9OpVqlSHRPg8L2RxgKa0R0d6fdoSCQXckDpianOTCpUsEAgEOHDhAf18fAAvz8yA2qZ6JYYpkIoEu8D+2bVMoFDygVzqdZuOGDVy5coWTJ06wfsMGD3DmN8uyPKRopVrFNE1iiQSDAowW/gBISj8s9rF2eGmKgCDE43Ho6KB/aIijf/u3HHrpJRYXF+nv76erq8vlfRR00pL9TJYDFSC3uIhpmlw4f56xsTFqtRr9g4Ns2bSpTlZHKlD78f2w1LkNh0IEAgFPJrNSqbjd30CAPXv2cPXqVY4fP85nP/9575iO43hplOSZ12s1kuk0nb29DA8P33cMAvfC1hy+iUk67pH163nj9dc5ff48ibExBgVRqRyWiESj6NUqxVKJbDaLA7z+xhtkOjrYsGEDw8PD7ticskT3bUpNWsfxat/S5PPkTzQWIxAMurBnsQEeHR0lnU4zL6R9Mu3tHlODaZpug8yySGcyjPT1kWprI5VK3Rc0d/eDrTn8CtbT08PnPv95crkcR44c4dyZM5TLZVTwmj4BATsoVypomsaePXvYvm2b1+bP53IuO4BhEA6FPDiBjPJNZ099XdGgwPNIAqre3l46MhnyhQLvvPMOe/budenDQyHiiQTxeJxUOk0qnSaRSKw5eoOtOfxtWDqd5rnnnuO5557Dsizm5+fJZrOUSiVisRjRcJjv/tVfcfrMGaKxGIVCwaXGFjOqpmlSrVRQwRuVa8Z3I80RUdoU9IJS/0kukvWbN/Pjn/6U4++8w+f+4T/0BjTi8XidOsiaLbe1q3KHJtkMuoSCtEwnqpbFmcuXSXR0EEkkXCiC42ArClVdp1gsMj8/73LW6DrhcJgwbhqzuLi4bLxQgry0QAAtGEQLhUhGoyRSKZ44eJA//sY3uHj5Mt/4D//BQ1eu2eq25vDv0TRN8/Am2WzWZS8bGMAwDC/vrlQqLIoNbVBQilwaG0NVFNaPjtLR37/EfCDq540/MrUJBAI8++yzFAU/5PHjx/nEJz5xj6/Ch8fWHP59NlnCbMyd5SLQNI3r169z89YtJO/9wOBgHZOZZOVtZa+//jqO4xAKhdi/f/8H+nk+arbm8HfJ5EIAtyElS5LSce/E/ut//a8APPPMM/dcQubDZh9uNP/H1CQd+C/90i/d4zP58Nmaw3/I7OTJk4yNjQFrDv9ubM3hP2Qm05k9e/bcV8oaHxZby+Hvgr3++utcvnzZ+//s7Kz378uXL/Ptb3+77vlf/OIXWx7r+eefB+Azn/nM+3qOHxdbc/i7YN/85jf58z//86Z/e+ONNzypTWmtHH58fJyTJ08Ca+nMu7U1h3+f7ODBgwC0iRHBD8JkdB8aGvLkfdbszuwjP8T9UbJPfepTvPDCC/yTf/JP+KM/+qN7fTofSlvbtH5ILJ/Pe8LLa+nMu7c1h/+Q2I9+9CMMwyCVSnnp05rdua3l8B8Se+mll0in03zmM5/5yJAi3Qtby+HX7GNlaynNmn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPla25vBr9rGyNYdfs4+VrTn8mn2sbM3h1+xjZWsOv2YfK1tz+DX7WNmaw6/Zx8rWHH7NPlb2/wPTTb42AUvIOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAAGFCAYAAABHS5l6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhnUlEQVR4nOz9d5gcaXbeif7CZEb6zPKFgvfobnSj0d1otDekREpDcmiXI11SpCiJI+3KcKWRqOeR/pjLvSJ3lxQvSS0lrrQ0Ii+1ekQtKU4PjciZ4bj2DkADaNiGL+/Sh4+4f3zfF5WVlVVA9zRco955elBARYbLEyfOd8573qPFcRyzjnXcI9Bv9wncS7h8+TKf+9zn2LdvH/l8nv7+fg4dOsQv/MIv0G631/zsj//4j6NpGt///d9/i872E4p4HR8LPv/5z8dAfPHixZ6/f+mll+JSqRQDPf/bs2dPfO7cuVX3//u///sxEOfz+di27Zt0FZ98rHv4W4AjR47wmc98hnq9TqFQ4Gd/9md59dVX+cpXvsJP/uRPAnD27Fm+67u+i0aj0XMf3/md34llWbRaLb7yla/cytP/ZOF2P3GfFKzl4Z999tkYiE3TjF999dUVv//5n//5xNN//vOfX/UYn/rUp2Ig/uxnP/sxnvm9hXUPf5Px5ptv8s1vfhOAv/23/zZPPvnkim0+97nPcd999wHwK7/yK/i+33Nfn/70pwH44he/SLyea/hIWDf4m4w//MM/TH7+iZ/4iZ7b6LrOj/3YjwFQrVb56le/2nO77/me70HTNCYnJ3nrrbc+9nO9F7Bu8DcZL7/8MgD5fJ5HH3101e2ef/755OdXXnml5zZjY2McOnQIgJdeeuljPMt7B+sGf5Nx6tQpAHbt2oVpmqtut2/fvhWf6QUV1qwb/EfDusHfRDiOw9zcHACbNm1ac9u+vj7y+TwAV69eXXW77/3e7wXg+PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc/pdPq621uWBYBt22tutx7WfHSsG/xNRCaTSX72PO+627uuC0A2m11zOxXWfOMb36BarX70E7wHsW7wNxHFYjH5ea0wRaHVagHXD38OHz6MpmkEQcDbb7/9rZ3kPYZ1g7+JyGQyDAwMAHDt2rU1t11cXEwMfvPmzWtu+/LLLxPHMel0msOHD388J3uPYN3gbzLuv/9+AM6fP08QBKtud/r06eRnVXVdDV/4whcAePHFF5e9RdZxfawb/E3GM888A4hw5Z133ll1u69//evJz08//fSa+/ziF78ILC1e13HjWDf4m4zv+77vS37+rd/6rZ7bRFHE7/zO7wBQqVR48cUXV93fkSNHuHLlCrBu8B8F6wZ/k/H444/z7LPPAvAbv/EbvPbaayu2+cVf/EVOnTqFYRj81E/91JoVWRXOHDx48LrFrHWsxOp3dh0fG37lV36Fp59+Gtu2+Y7v+A7++U//NM899xy2bfN7v/d7/OZv/Ra5XI4HH3yQv/aZzzA9NcXwyAi6vtIfqdy7Sk2u48Nh3eA/AuI4xvd9giBI/oujiIGBAaYnJ9GjiCgMiYKAKAzJ6jq/8gu/wM/KVr7/41d/lV/9t/8WTdMAQTvYvWsXf+/v/B2mrl5l6upVLp47R6lYxDBNUqkUZjrN+Pg4x48fR9M0du3axYULFxgYGKBUKiX7Wsfa0OJ1YvUNI45jWq0WjUaDZr2O4zj4rovnurx/6hRnz53jxeefJ5vNEoch6DqpVIq0aWIYBtPT03zhj/+Yt999l7n5eUzTZGx0lGeefppnn3qKfD5POpWi2WqBppHPZpmenWVqYoJms8k7R4/ytZdfplgo8Ld+9EeJ4pgQ0A2DoeFhnnn2Wfbt27du/Gtg3eBvAL7vMzczw8LcHK1WC89x0DQNwzAwDANd09B1nTAMieOYKIoIwxAQXHc0jZRpks1kSKfTaJomjFLT8FyXeqMBmkalXEYDrl67xrXxcUE8iyIGBgcplcv8n7/xG1y8dIlve+45fugHfgDX83BcF8dxWFxYoFavk8vnefChhzhw8CDlcplUKrX+AHRgPaTpgTiOcV0X27apLS4yNz2N6zjEcYxuGOSyWTKWhQaYpolpmuimianrSSeSCntc3xecGk3D9TyCMKSQy4mFqabRarUwDAMrk8FzHI4cOcLUzAypdJqNY2Ns2bqVdCpF27Y5dfo0QRDwyMGD5PN5rGyWYhgSRhEjw8PU63Ump6Z487XXOHn8OAcefpj+wUHKlQqlUolSqYRhGLf35t5mrBt8B5SRN+t17FaL2uIii7UaQRCgxTHZbBYdsB0H27aJwpBY04gALY6FsWsahq4nXjUlHwgNCMOQKIqoNhpkLItMOo3neQRRxOSFC5w5exbLsrj/gQfIZDJouk46lQLgnXffpdFoYKXTPP3EE6TTaWJESjOOY3RNIxwZYfu2bczMzHDsvfd45+232bN7N/lCgWyhQLFUoq+vj4GBgWU8n3sJ97zBh2FIu92m3W5TXVyktrBAq9EQ3tj3MQwD0zDIFwqJd9Q1jSiOiWQWJY4iACJl9FFELA3e8zwcxyHWNMIwxPd9ojgWHj6OaTQajI+PY7fbbN68ma1bt2LoOm3HIW2aZCyLdCrFW++8QxiGPP3kk+TyeeiIRKMoIowiTMMgZVkUCwVGhoZ4+eWXOXvmDA8+9BDtep1WrUZtYYHpqSlK5TKDg4NUKpVbe8NvM+7ZGD4MQ+r1OlNTU9QWFmjU60RhiJVOkzZN/CBAA6xMhmKhIDy1YWBIb60ZBoY0eA1h7J7vQxyLxWQYEsiQxnMc8afrEsQxvufRareZmpmh2miQNk22btnCQH8/xWyWlGXRtm3CMCSXzQpqsfyadE1DMww0xPpA13UMXSdSv+uI113X5bXXXqPZbPLt3/7tEMfUm03ajkMmk6FQqVCpVBgdHSWXy90Tsf49Z/BhGLK4uMjk5CSLi4t4to0JwtDTabLZLFEYouk6VipFqVRClwaW7COKiKRXV/B9H8/3E0NX4U3n7Y3iGLvVou26XLl8mcVqlTiOGRoeJl8okJYLzKxlJcaXzWbJZjLJ2yOGpX127DuWD5lhGKRSKQz5gAZBwJe//GUKhQLPPPMMuq4TBAG1ep1Gq0WxXKYkDb+vr49cLneT7vydgXvG4OM4ZmFhgatXr1Kr1SAM0cOQXCZDpVwmm8uRsSw836fZahFFEaVikZSMoTuRGHYQEMg/VVZGQQM06X1BvgE8jzAMOX3mDAtzc2zeupWLly7x8EMPYRoGfhBgmiZxHGN7Hq7nUSoUGBkeppDLiSxQFBHIECYIw2RdEIUhgfx9JwzTpFar8cYbb/DA/fezZ+/e5OENwpCFxUViTaNQKlGuVCiXy/T19a1Z7b2b8cm8qi7U63UuXLggDD0ISGkauWyWvr4+ivk8mlxkhmFIW3Yb5bLZZcYeI72454ltOr0rQBxjplKYqRQp08TQdQxpxO1WS3jnOObkiRO0220eO3QIQ9e5eukS/ZUKhmmKh0i+XfRGA6II13GYnp5mIZWiUi5TyOexUiniKKLbUzm+jy/XHp7vE0cRYRBQyOfZunUrJ0+dolAoMDQ4iJlOYxgGgwMDtFotavPz1BYXGRgcxPd9isUihULhExfmfKINPooirl27xqVLl4h9HwMoFQoMDQxgZTLo8stUX6rjOMRRhGEYSddREIa4rouvwhSE946BtDRwlY/XZAijaRrEMXa7je26aDLffuTIEaIw5Pnnn0c3DGqyWymVSpEvFGg2m0lcXtm4kYWFBRz5+TCKmJ2fZ2FxkYpMMWpdIZOhaRjpNMgMThhFBPIh2Ll7N/MLC5w6fZrso4+iOQ7pVArLsigWi6TSaaqLi0xNTFBdWGDTli14/f309fX1pDjcrfjEGrzjOJw9e5bF+Xn0MKSYyzG2YQOZTIYoikTI0eG9wjDEcRyiOCaXyeA4Dq7nLYvVNU0jnU5TzOehI/WoUoMgFo5BENBqtwnCEDQNXdN479gxdE3jhW//djLZLLVqVaQVZVxumibFYpFms0kgM0epdJpUOk1J/nuj2SSMIuZrNRZqNQqFApVSCdM0k2tS5q8Bpq5jWhYZy6IAPLR/P6++9hr1Wo1SuYwrwybDMLAsi3K5TKPVwvc8Lpw/z/DwML7nMTg09IkJcT4ZV9GF2dlZLnzwAW6rRQoYHh5meGgITaYT9a7XdBzHtB0nic27X+PpVIq0ZZEyzeR3cRwTdhi6pmnEiAZs27aFoes6mXSa1954A8/zeOHFF8lms0lqUtM0YaQy3NF1XXj6RiMJr3LZLGga5XKZYqlEq9Wi3mjgBwHNRoNqrUYhn6coF72oc+9ammnAxrEx+ioVJsbH2bRpE67rJtfcbrdBZnl0w0CPY+bm5pKU7ZatWz8RRn/3X0EHPM/j6tWrzM/O4jWbZNNpNm/cSLFQSIyqO7OBpuG4LvMLCwS+L3LciIJRKp0mnUr1fqVL41CZk1B69VB6dSudJpvJ8Mabb9Ko1Xj++ecpFArEiDAJSBa0nTB0nUKhQKPZJIoibNumWCigSQpDoVCgkM/Ttm1q9Tp2u029XqdWr9NXqVAuFpOHT3l8LTlljX179/Lmm2/Sajap9PURRhGe6+LKBbWh63hhSBBFpFMpHNvm2qVLtFst9t53X89F/N2ET0xw5nkeH3zwAdXZWfxWi75ymW1bt1IsFpfK/Z0f0DR836dWq7G4uJik9ErFIuVymUKxSDqdXmHsysCBZGHqeR71ej15OxQKBfK5HEePHWNqaoonnniCSl+fOGwcE8pWv+4yv9q3YRgU8nkMGR6phbSGzLXrOrlcjuGhIfoHBrDkec5Xq4xPTdG2bcHpkQ95FMdEQARs3LiRfKHA2bNnIY4xNI1sJiPWBfItkU6nMXQdu93GlW+jhdlZjr79Nu0baEa/k/GJMHjHcTh/9ixus0nguowMDTE0OEgul1u2qIujSBC2fJ9qtUpdxsSe75NOpRgcHCSTyQhqAKwMfUB4dpa8pgphNE0jLfP26VSK90+d4tKlSzz26KOMjI6Kz0uDTjx8V4igQhwQMX0+n0djicoAIuaPZCo0jmNy2SwjIyNUSiXShkHg+0xOTzM3P0/QmaJUbzdNY/v27Vy7dg2/SzoklUpRLBYpygfWME3CIMC2bZFtarc5deJEsti+G3HXG7zjOFw4f57QtiEIkgxMXhl7HIsyv6YRhCG1Wk0s/sIQXddJpdPkczmsTEbwV3ocIwbiLkOPgWarlXjfbDZLqVQiZZpMTExw+tQp9u/fz+YtW5btK+ooWvUKaWCpsJROp7EyGQhDmu02bcXfkesQtZ7QdZ1yuczY6Cj5fJ6UYdCybcbHxwUTswubNm0ijmMmJieXLbjlwRPD7+vrE1XcKBLp2HabRrPJ5fPnmZmcvNGv6I7CXR3DJ8bebmMYBsVyGUPXyWUyYoEqMxdhGGK32ziumywWs9kslmXheh6erpMyzZ6LWbUI1Loqps1mE182fuTz+UQ1rN1q8e4777B5yxb27tkjPi8fuiiORXEIYeyxLCAtq54i0okqFWkYhnhg45h2u41RLC6jNOi6LnL3moZhmgwNDmI7DouLi/hBwHy1SrPVYnBwkLR8o2SzWQYGBpicmGDz5s1L65uO69YQtQitv596s4njukk/gLonYRCw4TqSInca7loP7zgOH5w7R2DbopFiZEQYgqZhWZZgMOo6tu9Tr9dxfT8x9L5KhVw2KwpDnkcMKxZjvcIXEMZYbzTE0II4plAoJMYeRRFvvPkmqXSagwcPLmVMNA1NeuUgCESRSsbvmqaJIpKiDsgHMsnnI/g8KVmBbbXby9YimswGdSKbyTA6MkKlWCQl6QWTk5PLBqdt2LCBmZkZ8bbpeNATPn8UEUcR2UyGXCZDMZ9PHhjHtqk3GkxNTjI7Pf0Rv8Hbg7vS4KMo4uKFC4SOQ9ow2DQ2RiQ9lOKZR5Ic1mo2E3ZiuVwWJCn5YIRhmHjp7qoqsCK8CYKAer2eVENLcmGrcOr991lYXOTxxx/v/QABkYrfb4CX3pkezefzwusrfn2PbTsfBF3XKVcqbBgZwZJNJ9Nzc8wvLhJFEWMbNhBEEfNzc8lDrcl7m5yzXPBakvufTqWw0umEt9NsNrl84QL1xcXrXsudgrvS4K9dvUrYbmNqGhvHxjCkFwMwDQPHtqnVanjSq+ezWcrFomjU6FgYqtEyZiolQgy5qOz26gB+EFBvNBIabrlUWrbonJmZ4fSZMzxw//309/evOGcVMoQqfl/D4DVI0p4gHhbdMMhLRqNt2z1FnbpDMhBvrpHhYYr5PCldp9FoMD07Sy6fp5DLMaFicfnA9CJWmaYprlXXCeOYbCaTcH7a7TanTp68azQu7zqDX5ifp7mwQBRFDA8NiRg3jkHXRWzdatFst5e8eqkkmh2koXcavMqWpExTfNEyO9ONIAhoNBpEcUzaNCkVCsvCCM91eeuttxgeHhZxexc6w5Sk9e86Hn7ZAlk+JGnLIm1Z6LouCG49eH+9zl/XdQYGBujv78c0TXzPY2Jqiv7+fhYWFpLt1Jqnm2YMQtlY07QkBMzncmTlfXVdl5PHjrEwP7/mNd0JuKsWrY7jMDc+ThgEVEolsjITo171jWYT0zTJZrPkZNYlWXR27EdTC0aZ2lPGp/UwoCAMRREojkmZJgVZ2AGSVN/bb79NFEU8+sgjCXU4iuMkNldhgi9TfIqioOLxtm2LEKiL2+NJsloYRWQ8D03XyWQyolIbRbTbbQr5PEQRqAewo3rbjUKhQCqVYn5hQZDLgFq9npxf52fUWyaSC+hkUa9pBPLNmEqnxTrJtgmDgONHj3Lf/v0Mj4x8+C/3FuGuMfggCJi6eJHI87BSKforleRLcVw3KbbEQLlUwjSMVWNxxaMJwpAI4eF7ecYwimh0hDHZXI7A9wmkUYdBwLXxcSYmJ3nowAFs18WWktcKnUbkeR5+EIhqpusSBIGgDQcBjuctfyhB/Lvrovv+shSm4toAuL4vGlN0XVACJCVZk2+87uuyLIvRkRHmFxYolkqEwMVLl9i8adOKxa/KAqlrUAttPwiSh9I0TXLZrMh2+T4njx8njuOk9nCn4a4w+CiKmBsfx3McQmBkYCDxyq12G8dxhHZLEJCVufTOknovhEGAjnh9d+fDQ5l3rtZqSedTNpOhUa9Dx75dz+PM6dMMDA3R39+f8GF0VbiSi2OFZBGYTpPL5Zb2nU6Ty2SWYugOfo4vH0ZleHEUoUuP6wYBzWZTpGE7ryGOBcVYEtwMwxBxuGR06rrO0OAguq5z8sQJFhYXyWSzDA0M9DT6ZEGswkJdxw+CxFGYppmcn+e6nHzvPeI4ZnTDhhv+jm8V7niDj6IIr16nubiIF4YM9fWJYgzQaDaTQQO5fB7DNEUPqeuSX6NzJ0bk5tF10jLf7XkeYRDgy6aOdrtNEAQYhrGsC0h5UMM0+eCDDwjCkEcefjjJonTHvsvy6zJ+z+dyWLJXVUOEBlaPpupUKoUvC2SlDpVgRVyr1ev4vo9mGKRMk0gqGERxjCabQWLkMAZprIrKbEh2Zi6bxbFtXM9jZm6OYfkgrLxpooagVBo8zyPVsWjXdJ1sNps0xbx//DjAHWf0d77B2zbV+XnCKCJlmhRLJSIZaqhFZ7FQEHovQCAN3rKs5BXciRi5CG23aTabGLLlTSkARHGcNGxkLCuhCugdPawg5qleuniR+x944IYlq1WsfKP88mTh2s181DRMw6AoOfRhFGHJhg4gWT+EUh8nDEMRs0tagsvSg1goFnFcVzSbeB7Ts7MMDQysYEa2bRuiiEwmQxzHK7JEGqKYls/lEmr0mZMnyWYylCWP6E7AHZ2lCV0X37ZpNhoEUcRAfz9hGFLryIWXSyUsyxINGek0acsCWRFUZhIjYt1ms8ni4qJgGbZahDJtiaaJJgxZls/lchSLRYaHhsjncqJHtMtIjx49SqFQYNeuXTd0LcrY4MZy8AprdRwpopemadgduXldhjHpVIpsJkMhn6evXBZFMlnEUmnYfD5Pq9Uin8vhOw7NZpNrk5PJ+B1Y6vQCKOXzCd2gu60RhKfP5fMiGxSGnDh+fFnB63bjjvXwURgSSOprGMekUykylkWtViOKY8FsLBQwZD4YuUDLy9jY933mFxZIpVJJU3XMkgEZhkEmm6VcLpNRw8RkA4hpGBSLxaWUZxcuXrrE/MICzzz99JreelkDtwwvelVGV0Mn9341ZOWCUTWRp7sLXh2MSV3XhVOQxbI4jlkoFvFcl5RlUa5UqEsJwUtXrzI0MEDKNPF8H13XsSxLrJUMA+JYLMC7GZ/yvPPZLM12G1sSzh58+OEbGux2s3FHevgoigibTWJZzQvCkFKxSL3RSLqDOgs/nWk4xUNpNBrUajVq1WqiQpCRkhv9lQqZTIaU7D8F4cVsGcrkpDKYJruVtI7Fp+t5nDh+XMhqyHE2N4IbKTitgHz7sIaX7+QO2baddFBFcUyoKMKwTN5vafdastZJmyYD/f2MjoxgpVJEUcT0zAyzi4s0JQ9J8ZPUPQslL0ihc8GNrlOQnn5xYYGLFy6sUHq4HbgzDV72lqoyfso0RZFF5sLLpZLwkvLmRlGE7ThUazXqUl8mm8st9ZrKzxRyucQDqi9HfYlNGQJlLCvhxgDLCla6pnHm9GniOGb/gw/2LPysek1rNH2sBq3jz7W8fNqy0A1DLLZte4kBeQOFKUvWKhzHER1X+TybNm2ikMsRxUIoKpb0AtdxqCmRKqmavOJR7Ho4c9ksuq5z7coVpu4AhuUdF9KErkvoOBBFwrsHgVDjlczBUqkkNpSZirZtCyZfh/dIp9Oi8SOKaDSbEMfUZA9oOpVaZqgaJN1Fpmmumd2xHYeLly6xb98+spmMWLh1hR2rpUPDD7lg7Ybar5L1U/+G9OAZyyIIAjzXTRpCeiEJkyRpTFGiHRmzK3WGfD6P5/tEsjHGSqfxgyB5mGypl5lKpZI2xBUeXDqJfDZLo9Xig3PnKJZKt3Uu1R3l4cMwJJSVSFdWGF3PE8Kluk6xWBSMwzCk0WqxWK3iui6x/FJyuRx9lQqFQgFTtuiVy2URiyMMu9lqJVkZTUraqUJKvlBYM3w4ffo0pmmya+dO8Q9d4UESAkkqcMcvEw/fSSlQmaFOpqSq3naKLqk/wyhKDDzu2DeIBWxKXqfbVfzqhupbjWVNAMCV96HZaOB5HrquMzI0RC6fJ4oi6s3mUu+szAhFUZT02Hqum1zjsmPJFG42k8GVDFfFYboduKM8fOy6yeKzbdui5C7Zj+ViUWgxtlq4jkMot0unUqSlgS+DpOSahkG5WKRl27iyd7Mlc+x6hyEWCoU1w41Wq8WFixd5cP/+6zYzKz55xz8kJfrOY2iwvGBEF3mrYz9rZWtUYSiTyRC0Wkla9npvE13XiTWNVDpNvdGgLMdmGjKnbpom6XSamdlZPM9jsVZjoK8PM5sllrwltSBuyUaYdDq9TKJbvfksyyLwfeZnZ5mZmWHDhg23Rf7jjvHwYRiKUEaiJr13LpejkM9jOw4L8t8AMuk0Zfl67DbAOI6X8WI0TaOQy4msjvRM7Xab+cVFXM8TqbrrNCefPn0aK51m+/bt172WFcUnSDz+zfySVQZFk4Su6yEMQ1rtNqlUCtdxhJamZSVvSBAG3N/fj4F46Guy2mwYBul0mlw2KyjDUv3McV2aql8Ali26VYP85LVrQhTrNuCO8fCxbSeFllqthiurg+VSiVa7LTItCN5LNpcTDMce6lsrvGsHUqkUlVQKXdNYWFxM5OmUcVjpdE/v3Wg0uHzpEg8dOHBDUhXdC8zO9cVHNfikg2sNTw/Sy8sOpV5ePtGtd90ky6JSpcVisef55bJZwnKZmlRHMOUYHhAPckY+aJ7UuYkkbTiVSpHJZJJ9qqxQbWGBhYUFstnsLZftviMMPgxDQhk3Jk0WQZDop0dxLKp4SntFQusgNgFLMfB1jEJVJqNUikI+jxqA4LqukJyW8hwqhXj69Gky2Szbtm27sQvqMvhvdcEKS5yW3odbOl5KqqHFslFENbIHsjbRqaCGpmGlUqSkFMla51csFgnCkGarxfzCAoMDAwndQGW7LMsinU7jyHup5mBlMpnkezMNg7RlsTg3R7FYTGjHtwp3hMFHcoQMsqzflB5qUEpsZGRT9lo3plMQaS0EYYgjK3+lYpG+SoVAshJ9OaEjkEoEhmHgui6Xr1zh4MGDy3LoKkPiBwGO4wilMtfFdRzato3rODjSi/odg89APAChFGCN4pivf/3rgoBlGJgdrEf1QKdMk3yhgJVOk8lkRMO5ZWFlMj0NJpPJ4HsezVZLOBO52FXoLCLpui4ml9zA91Qpl8W9chwWFhcFZVguftU5aJqQ/UiZJm3HIQpDoXrg+2Slt89kMtSqVdrtNrZt31LF4ttu8FEYEktqbLvdpt5oCEqs5GWUSyXMteJrGcJcjx2p0Gq3iRBdTipDYZomBdMkzuXwPE9M5ZAGefr0adLSqE6fPo1t27TbbZqNBg2pMtwtemRZVmKYlmWRSqeJpLCRZVliLpSu43keJ0+dYtu2baTTaUH86lAEDsNQ0G49j/bMTDLPCUiawzXATKfJZ7MUCgWyuZzQxZT0giiKyMjQxpTeXMX5Cpqu39BiTtM0+vv6mJ2dxfY8HNumXKkQyZRxJ0zTpJjPJ+ccBAFNSWEwDIOMZTE9Pi7kwLPZW+blb7vBq8yMHwTUajVs207Civ7+/uvfCBnC6LKjiK6m5E7Y8jWr6L7d2ykF4Wq1yvz8PIsLC8zKjqC3334bIHnblCoVhkZGkjg0m82KCq1cI3Sed1PqNXbHrNVqlZOnTrFly5aekzgiWT8A4V1jRHeVI3VqbMfBkdmslkzTjk9MJOpnOqKwVOoYddPX17finiYShJIjsxYMw6BSqeDOzhJEEXa7TV42xHdDad2bhkFbzshqtlrJkIeapDG0223yckF7s3HbDT6SylZzc3Mi/6tpWJkMuULhhjx2dwd/bBjC6LsQyi8HGSKprvzFxUXm5+dZWFhgfm4uIWHl5fENXefgwYMUC4XEWP0gSLxxJxzHIZLhkqbrCS2h1W4nhbPkTaRpCSHLk4vIpHglc+1hGIp0n+TARyoXD6Qsi5RlUSqXRW4+ijBk76nv+zjtNnPz88KobJuzZ87gB4FQJq5U6B8YYLC/n/6BgSStqcnz7daYV/c5RizAVX3DdhwarZbQ41ntLSyLUwVdpyU7o9rttnASMrSxLEvMz7oFacrbavBREBAFQWLspmliZTK02m0hCXEj3r0LGiTzlTq9fVuGH67nsTA/z+TEBNV6XTRUGAZ95TKbtmxhUPZ+GobBn/zJn7Bzxw62bd268tzlvlTooai4SO8aRxEhQBjiSWM2pQa8ggpPVAPLysuLiSQNtzOtqcZkGpKyrHVkQUC8vUrFIpVKhZbMfhWLRer1uniw5fWfP3cuCY10XWdibIzh4eHeadWuh6BYKLAoM12L1WoSn68GXdcF99518V0XRyYImvU6g0NDtFqtW1KBva0GHzoOtWoVx7bRDYPBoSFxE+NY0Hw/IpKih+TbTM/McOnSpUQNV0lY7Nq1i7GxMSqVCkbXl3zx0iU8z2Onqqp2Qdf1lVIcssCUaDrKVkDX84hjMQVQxfpAkuJUBZ7Oc1fbBbIlsFQsJoMbuo2vs2+2E6l0GsNx8OXCWY2uVNmmVqvFW2+9JbQ1o4jXX39dDDkeGmLD6CgjIyOk1mA4VkqlZGHeaDQol8urbqv4SFmpy+86Dl4UiXPzfUFRzudvupe/bQYfxzGNhQWati266vv7BV9DNhd/Syq1cczs7CzXrl1jYmKCtqQrjI6NceDAAUryi1JNFCs+Dpw/f54NY2NrxpbdC2WVrUgeHsNIUqBommi47oBqhs5lsz05PGEU4UqWooqRP8yEIk3TSFkWoawyd3Youa7Lm2++SbPZJJvLMTIyws6dO5mcnGTi2jXeePNN0DQGBwYYGxtj8+bNK3Lmhrx/tm3TaLWS7NEqJyNGa0ZRkllqt9tEUhtndMOGJI16M3HbDL46N4cj49N8oUBOtodFUYQm+e+roounov7uuS6XL1/m0sWLNJpN8vk8oxs2UC6XqfT1UZGN3658pa5mOnNzc1RrNfY/+OCa19CTKbhK0elbyUIsa+7WtJUL8zUeAiuVSrIkSiG50Wjw6quvEkURzz33HK+//noi3rpz1y527NiB67qMT0wwOTHByRMnOHHiBGMbNrB9+3aGVNgjPbbK81drtdVbBMXJo+RK0uk0nqwLzE5P0z8wcEtSlLfF4JuNBn6rhet5ZHM5CrmcWMQpYSTZFHwjiKU3v3ThAtcmJgDYtHEjDz/yCP39/dRrNYIwJJ/NLo24kaFBr8UZCO9eKpUYHhpa89id4Yk6l26z/rBtfV0X1/u42nKVsV4PmoJuGMLoZXqz2Wzy+uuvk8/neeqpp8hkMrieh24YS4Q3mTjYtm0bW7duJfB9Ll+5wqWLF/nmK69QyOfZvm0bg8PD6JpGpVSiWq3iyUxb3xotfeqeKYZnLMOa8atX2bp9O1EU3dSw5pYbfBAEtGo1AscR3TdyugaxaIGLZLZhVSgOfBxz6dIlzpw5Q6PRoFAosP+BB8Sodhl32u12IkjauSZIJmV3V2Vjod04MTHBgQMHruuVr2fs6jzh4+XQdM92WsvDg+DLe77P5cuXOX36NMNDQzz++OPopkkYRfhdDdkKuq4TBgFmKsXOnTvZuWMH8wsLXLx4kffff5/4/fcZGhpiz549VPr6mJufpylTjL26m5Q4rc5So042myVqt1lcWKB/cBDbtm9qivKWG3yj0UALAiJIKofdnPJuBmECuRi8cvUq7586RavVYsPoKA8//DCDg4PLjDeOIjGkTC0Wu41X7mtZDK5pXLh4Ed0w2HwDqrjdHr4XElrwRwhpOikAyw+8ukfvBdM0uXjxIufPn2fT5s08cvBg0kCjFtm9DB6E0Xd6/oGBAQYGBvAfeogPzp/n0pUrfPMb32DTpk1sGBvD0HWq9TrDg4Mr9tXp3aOOUC+byeB4HvNzc1QqlU+OwXueh91sgucljdHJlOl4SbK5l2nECE3JU6dOUW822Tg2xpNPPEGhY8JHJ5L+VNNc3sHEkvH1MplrV66wdcuWnhmYFQ/NDRjex+LhezwsnefT6ww6Wx6PvPsuV65cYeeuXWzbunXZuSSanKusmXquGRAZoM1btzKyYQPzs7OcPX+eaxMTDA0OMjI2RrFQEMW97uuQNQbNMIg7mtqzlkWjXmdxcZHh4eEP1wr5IXBLDb5er2NEEaHM+3Z694RG2sOwpqemOHHiBNVqlZHRUR47dIg+WZkMexhcFEU4Uoks22sR1PkmYOkBm5ubo23bPb17rzeE+CNeGWJ0nUvPz98AVnMAKsWX9JB2sUbV53zf5/XXX2dhYYFDjz1GoVhMhhorXn7QsW7qCZnz79XOqEShtmzbxrYdO7h08SKnz55ldm6OmelpHnn44WXORq2ZkomDHQ4jY1m0FhZExXhxUbyxbwJumcF7nofnOOB5Yihup3eHpbCGpS/Y8zzee+89rly5Qn9/P889/7xg6XWgl7G1bTtJbfbK9iSKYPKVrr78K1evkpPDAq4LTVvGYFTU3STM6fh3Vdi5UahYV3U69QqdVOOFavtbcQ/abV555RU8z+OZZ55hQA4gjjwP3/MwpPdVxa9V04nqGnsZvPTWSr1t586dbNq0iRMnT3JtYoIvffnLHHz4YTZu3JjcM2Xsar/qvA3DIJvJsCDDmrve4F3XRevIiiTevWPhmPC9NY3JyUmOHDlCEAQcfOQRtm7ZckNUgzAM8WTsvlaKS2mrKIMPoohrV6+yY8eOD31tcZdBd+fmlZdM/r70S9E4IY132Wc7QrzEk3dA07Se4q8Ai4uLvPbaa6RMM5keCKKZwwsCPN9PcuptKeiakYOYe0Lm0Lu9fNTlrEAQ53bv3k3/wAAXL13i9TfeYNOmTTx84ABpqS2/GjLZLHPz80l+/mZka26pwauyu4aIAXt5jSAIuHT6NLOzs4yOjnLw4MGVsWAnuvbhOA4RIjOxVrOGupkq5JiemsLz/RtarCp0V0VXnlqcnF8nfbZjByJFytpMz+s96HFHjD05Oclbb71FpVLhiSeeWJYtSZkmOhBEEUEQYJpmoly8JiOVlV5+WVNLV7hWKBRoNZvs3rmT5ugo586e5c///M956MCBJW8vr0vrIKypYRZqNmyhR1HwW8UtafGLokh4Xc/D0MUgseSL77hZVy9f5sjRo8zMzLB7924OP/742sbe9fk4EjNHieM1X9FAIniqbvbVq1eplMsfic+xms9Kyv1ab/ElJY66+o5XydJ0/Ftn+HT+/Hlef/11NmzYwDPPPLMyNaiJ/lVd15Oah2I7Xhdd17BMWrvr/HRNo1Qqoek6hWKRF198kXJfH2+8+SZvv/32CsUytScNoY/TbrVumlrZLfHwnueJ+aTy1Z8yzRWeeXJigg8uXEAHtFSKD86f58IHHzA0PMzo6Cijo6NCDqILnbfalUPLOlvQVoOK46MowgsCJiYnuf+++z7S9a32mu6McTvj8e7PdPa8dhpPZ5jTTWPQOv+MY4699x4XLlxgz549PPDAA6uea9o0E6WyOJOhbdtrhzOrQK0bVluMZ3M5mq0WjtT6fPKJJ7hy5QrvHjmCbds88cQTyXdkdHj5dCqF3WqJ4Wk3AbfE4MMwJJIeRZNeptNrXfjgA44ePcrwyAgbxsZIp9MUcjkmp6eZnJjg6NGjgOhQGpHG3z8wgNFZcYzjZNLc9bw7kMxijaKIiWvXCIPgQ4UzyoA7Y+1e162umXh5zr8XJ33FMbppCt0baGIix+uvv87U9DQHDx5k+44dS5/rcV6m1JX05azXdrvdc0RPLygZkiiOiWWP8Wpxtpoa7i4s0JbTxLds2UIul+O111/na1/7Gk8/8wy5bDbJzWuI9Gij1Urm0n7cuGUxfBiG6JBI2AEQx5w4eZIzZ86we9cudu7axezsLFEYUiqXKZZK7Nm9G8/3mZmeZmp6mitXr3Lu3DlM02R4eJiRkRGGhobQDSOZvXojTEtN6iOGUcTlq1cZHhnp2VCceOYeBtnprdcy2G9FfAlWT2m6ts03Xn6ZZqPBU089xcjISM8QqTtfn5I0ZU/KC+Y2bbrhc1IPbyjXDatdm+LLqLGatuNQyOcZGBzk+eef59VXXuHrX/saTz35JOVKRUiGhGGSMWvfzR4eEE3aUtpBeZ4jR45w4eJFDjz0ELt27cL1PNRkDlWMQhMTrjdt3MimjRvFmJZqlampKaampzl65IjgyhQKVCoVxsbGKJfL1817GzIb5LouszMzPPzwwwDJHNdOrNo8zdqv9RWZlw+LNWL4erXKy6+8QhBFPPv881TWoOYu8/iS1ux6Ho7j4AVB71rFalAZNenhe4mpKlEpXdfJ5XI0Go2l8TwIbv4LL7zAq6+9xte/8Q2effZZKv39yx6gm5WpuSUG70t1MAwjyQacP3eOCxcv8thjj7FVTqs2OjInKwyvIyNSqVSoVCrs27cP1/MYHx/nytWrTExMcOXKFdLpNCMjI4yMjAhx0C7PHcdiQkYMzM7NEYSh8I58uALR9agF3xJxjI7CU9c5zUxP88abb5LLZnn28OEVleRVIb2zaRjomiY6seJYNMir493A9Suar1KTSM6XlY0ihXw+GeLseV7y/VuZDM89+yzffPllXn/9dV544YXkjaBpgi+v3tgfJ27ZohWEN9Bljv29995j7969ibFDhwxdLOimay485ZdnpdMMDQ2Rl9LZge8zPT3N9PQ077zzDgD9fX0Mywegr68veXPouk51YYFyufzhvFzXOayGbzWk6bXvy5cuceTIEYaHhzn0+OPLjnPD0DSRkpRTtYul0oqq7vX2GEpdTV22LSZSgV0wDINMJoNt27Rsm3LHd2qYJk888QRf/epXeeP113n22WeTfaimmY8bt8Tg9Y4Tr9dqvPnmm4yOjvLA/fcv307Tkr7PMAzX7JNUf3Z2FOWyWVKlEgMDA9x///04ti1Cn6kpzp07x6n33ydtWcLzj46Sy+WYnZv7UIvVbsRrGP23yoVPHhhZkTz1/vucPnOG7du38/CBA2iSzdiLXnE9pFIp2rKhunNSSq90Y/feo0gMeVOMx+s1fudzORwpfVLsGvmZyWR48okn+MY3vsE7R46wf/9+0MRUxrvW4LV4qSP+5VdfJZvJcOjQoZ6GoF5pvaZL9ILn++LVZxjLHhDVJrhl61a2bN1KHEUsLC4mD8DVK1eI4jhRHqtWqzcU+98IVMud7/tC50aOx+z8fSyzSiAbUmSJX9ETVH9AKFvgjh49yrXxcfbv38/u3bvXJI7dCEzTFAoC+TyRvH+9riNBR1VcTT+Mb8DYQRi1aZp4QUDbtld0flX6+jj4yCO8/dZbZLNZ+iWtwLHtGw/XbhA33eDjOCaWVb1r4+PY7TZ/+S//5VW9t6q2uZ53QzRRz3WF0oEsW6/mFTRdT6itDzzwALZt88677zIxMcHk5CTj4+NkMhlGR0ZE+DM8vGo/ZyQJWFEQJMKukTTyznNoyhhZNVyvOHelWiAXkN2w220cz+PY0aM0mk32P/AAIyMjNJtNlDxe8hYwjGQhfiPQNI12q8XQ8DBBEJC+HjtRLUSl91VrgRtFLpfDr9eXLV47sXnzZhbm5/ngwgUKxSKFQoFmo0G5h3zJt4KbbvDKu8VRxJXLl9m6deuaJeN0Oo3B9SWfQYQMvu8nwkoq172Me7JaYSSbxXUchoeH2bdvH1EYMjU9zfTUFJcuX0bXNPoHBhgeGmJgaCjRqFdqYeIQYrJ2r4dMQ5axZVZEvbmSs9G0pBKakrOaFHVW7c/zfc6cPi34RAcPUi6Xk2MqdIc0ncplaiBErzWE53m4risYlEGwdipXnZdkugZRJOgbN6CzqZDP5ag3GoRy8dqrQWT33r1clX3I+/btS96AHyduusEr4aPxiQk0XWfz5s1CsXcV75lOp9GlxN1aiONYaMjHMaY0qiRmhoRtKDdeYfiO47C4sMDe++5Dk8Y9ODTEvn37qNfrTE9NMTM7y6nTpwnff59MJsNAf78QM+rvT2TmTDmrVHlcZdiwFG6UOqd3d94b6eEzmcwKotvC/DzHjx8nnUrx/LPPUiyXE6JZQjiLIjzDQJNa+jGCJ9Oty6Pruhg3KcdVGrpOrVYjRqQI/SDoeY86dXJQ9zSOxYJVVrS1jn9fC4ZpYkndScd1Vxi8CgO3bNnC+Q8+YOuWLWvTLj4ibomHt9ttrl29ys7duzFNE9u2xYzSHkZgWZao5kXRqp5AlexdaTCrhR6d3rT765iZniYG+gcGcD2ParW6pO+i64yOjTE6NpaM3pmfn2dudpaJiQkMXWdwaIjh4WGRIerxik6qrHz4Rev4tWu8/fbbFEslHnzwwWTcvWYYK8hP6TAklN45kuJQalJ4FATJz57n4cnP6LrO3NwcOiLUiKWKsiLbJRyfHuetRoXquo5pGARS0KozvFoNViaTCK3SxVnyfZ8oiti0aROXL1/m4sWLPHjgwIe6bzeCW+Lhr169Ssqy2LdvH205gcNxHKGB2AHFO0mlUrhSjavT4FWoorjgavaoGt3Yq2ik0FkV9YOAq+PjFAoF8YqV0iAZ+bCZpklKDuA1TJOBgYFEF77ZaCRFrxPHjxOEIdlsNqE8DA0OLpv+92GMPY5jzp07x4kTJ9i0cSO7du9e9sbo8YFlRS31hjGXbSI8slo8B7JvuFqrkS8UcJWiQRSJoRAqLl/lmKHqkJLb6ZpGJD28Wq/0NPx4adqI0u7sfMBczwOZadu5axenT52i0Wjc8L27UdwSDz+/sMDoyEii7d5oNHAdh7RlLZ+6IW9UKp1Gl+q7xY4Wvs4bqWSfDfm6BuGZe6UIlZF7kjQVxTHz8/MMDQ1hmqaY8doxLG0tIy0Ui+wqFtm1e7eYXj09zeTkJFOTk1z44AN0w2B4aIjBoSEK+fwNU1zjKOLosWNcvHiRfXv3itBKfeGrnU8H5XjVxbqmYXbQf9UaoFqtUqlUxCJUTh4HsfhNy+mGvTI3alxQcs+7jrWs9bDje4shmZoYy7mvah+u5xHLFGc6lWJkZITTp08zPj7Oo4cO3dD9u1HcdIOv12rY7TbDw8OAYMOZpinUC1otCoWC4FN3fGFWOo2OWLgmXr1rvyrD0fkG6P7iozjGdZxkXpSCLxdso6OjDA4MUKvXxdulo0lDYynHvtoDYBoGGzZsYHh4mAMHDtBoNJKF78mTJ4miiHwux9jYGKOjowwMDvYcqxMEAa+9/jrT09M88sgjbNu2bZlu5fV04deq+MYdv1fXFQQBrWaTfXv3JgthVcuIwhAnDHGQimiWlTR4x1FEIBfpycjQVThESlE4qWrL+29ZFl4QJNNdfN8X86GiiJxstk+ZJsVikYmbMPXvphv81WvXiIGhDo2XQj5PvdEQbD0psdaJtBxi5nqeyLF3L6ZgWTijoPRalN6753mJIegyK5JOpZiankYDRoaHEzKbkqnubBrptSDrfBCUN1NvFiVlt2f3bprNJuMTEywuLnLt2jXOnz+/jPA2Ojqa7PPIu+/iuC5PP/UUwyMj4ho/REjUXfxSHlU9rJ18c4D5hQXiOGZgcJBUKoWVyYgWu1xOZL6knr36Tw00VlkmXdeXz6rqIcCqQptuDR3Lsmi2WrhyWIItu9OUI1Thal9fH5MTE2tylT4KbrrBT01M0CfF/BV0w6BQKNCo1/F8H00pTskvLZ1KYcib2ytvq8IZvSOcAeH1m+12EmeC8MJWJoPVsUheXFggl8sl7Eg1B7YzruzECjIZXRmMOF7hbXXDYGh4mE2bNpHNZqnXakxNTTE9Pc3Ro0fpbDB3XVcQqFTOWe1PfdkygxIjinjKgFS2pvP4nee4Wig0Pz9PRuqyq3sUStU3y7JIWxaR1Kb3pWCs4zjCgcRxMqtJQdc0VisTdj64cRwnMnuB71NrNDBl+lSlReNYzOfq7+vj6rVrTE1NsWHDhlX2/uFxUw0+jmPq9TpbevSJGoZBPp8XT7vrCs12xY2OYzK5HI4Ke3oYPCzlgX3fp91uJzlyDRHqZFZp85tbWFjWqG3K8epBx4Ny3WuDZRSH1RZqyiuWymVK5TJ79+7FdV3Onj3LqbOnaAVNrDDL17/2tcTzj4yOLklrS5KbFq9s5lbhyofF/NwcAwMDyWcNwxDl/CAAaXi6YSR69r6c3RTIrI/mOEkTvr7KumnpFiw5Bl0WxlKmKVSNHYd0Pr+kPBzHSU2hVCpBHLOwsHB3GXyCHjneVDpNLo5pNZuJjozqvsnlcjSbTTFZWt0sCRVHarpOo3NiHJDLZIRq7iqErTCKqC4usqmjt1I9FDdi8Cte0yqF1+GFgWUxeLeRjk9M8Or51/iz1Jepsshj5cf4a4M/zMzMLO+8+y4A5VKJSn8/I8PD5FYZ9xNH0TLZQPXmWSsECMKQxcXFZV1RhmGgQU86h6ZpIrkgdedj18XU9US6z5Lzm1ZbOHcuZFXxKpKpzMD3V4hkqdBILZg/bj7NrTF4bflEjM7ctCX1BVvtNo5tC257LifiStmV1BnWxIhFpy350sqwrXQ6EdVfi4dTrVaJwnBZl4+K45XGe6dSb6dXXZZ1UIZO7xi2Jxc+Fg0v586e5WzhPM12E4C3a+/www/8MC/c/wKe6zI9Pc3ExATj165x+dIlkbmQ8tUjw8NLVVGVDlS7l8dQv1P/1nkOVSmN3fmGMwxDENHk5O1e2Rnf95NJ6Gkp0BrGYiK357qk5KSPFejKrLXa7WT/vTRE1X1ba2but4JbwqXp5W86PYJlWSC5Hb7n0ZANHdlcDrcrrLFtm3qzCVFETlZYc9nsMj3KtYog8/PzQh++o2FCyVGrOF6X3VCdxtTjwnr/3H2diuMfhrzzzjtcu3aN/Q8+yFeufW3ZdlPtSfYPPEDasti8ZQuDQ0OiKtlus7i4yNT0NFevXgUk3Xl0lJGhIaGI3OnR9ZUDyjq9/vz8PIZhrLj+TtJeT4P3PCIgo+ZEyTBQcYkC28aQ4lq9JEkcmS1T6cmMZSX8+WSBy0rhqrvSw8drvGKB5CYUSiVazaYQ2JfzQE1Nw3YcQrlwqsmpHel0mmKx2JOEpsl2sV5YWFigr79/xZeSMk1RjfT9G9KmX0Gj7fpiOhdrnuvy2uuvU61WOXz4MGMbN6KNd4d4Kw4gml36+9kwNsb9DzyA4ziC6z85ybkzZ3j/xAmsTIaRkREGBwcZXo3w1hFqzczMMDAwsOL6TcMgkEzI7qsPOtZGqY50pCWzXq7rivlZQUCgKMcq+xVF2LaNJ6cYWuk0lmWJ7xkRRlpSTBeWwsq7UmpP0zTyxSKNWq1nbKk6bOKO11ixWKTVauH7flIFDYKA6ZkZLMsilI0hfZXKmoa52oJuYX6esY0bl6XuQIY1up5kgD50KixezkVRIU6r1eKtN9/E8zyeffbZJJRamWpdbvGJJmXHdplMhq1bt7J161aiKGJudlZUfWdmuHjhAmhC7HRYdnqVy+Vl5xT4PrNzczy4f//S0WS4qViqYbSSv6I4P6nOfuTk45qg/6ZSNBoNMYa+3cZKp9EAR87ZjcOQbC63NK/VNImCAD8IREdavMQ2BVHRNgzjxlTgPgRuqsEbhsHGjRu5cuYMructUxNQcXz3YDBNE93ujpxQB9BoNvGCgNHRUZHW0leOm+mG3iOu9n2fZqvVU4BVEaHUzKbrTdxe8UD1qBVUq1WOHz9OJpPhhRdeIL+s6tr1QK3yhlhNdVjTNAZlRXc/YlLg5MQE09PTnDl9mvdPnhR0Z5n1GR4aYmZmhjgMl9UA1LF0Ocoy4dB0rFcCyUhd656bhkGxWKRt28kcVxDhqmkYZDtpCwgyWSwpDb28+9zcHPliccW5fqu46TH85s2bef/YMebm5pZlRmDt+CyTyQgZZzkGst1qEXgesaZhsob4ZxeSsAqoNxrEcUxpFbGlVCpFFIvR7Gvtv9e6pFuKbmpqivdPnWKgr48nn3xyRaihsbaH71zw3whyuRzbd+xg+44dhEHA3Pw80zLvf+nSpSTbkrYswazseoupGD4IQ6IgQJfXHwZBEs7cyD3XWMrERFEk1lg9RtorBxN0ZNgUMc00Tebm5ti5a9fd19Pa399PBMzOzCwz+OstRVy5+i+VSqIU3m5TrdcxTJNMOn39nldYZoBAQkZaTV0slUolfJtuYtsNI445c+YMJ99/n5GREQ4fPtzTUK4X0lyv0rqWszBMM2liB2g1m0xNTXH8+HHCKOLLX/oSuXyeUZn3HxwaSnjzuqYRsSRJ1zlza1V1hihKFrB+GKLpOsVCIZkX22tgmRLjUiFUFC/n+S/Warz4EXQ+r4ebbvCmaTI0Osq4nKqhyyxCkpvtseCzHQdXdgBZ8rU8OztLtV4no+uEsqBlmqYYc94p3cdS9bM7N9xsNMjIBVUvpGQcqxiFq2qu9Pg3TdOIw5CjR49y8dIltm3bxvbt21fvCuoynugGYvg1j9/7KICYOTs4OEgYhjz55JNompYwPi9cuIAhJyj29fVRKpVEBdo0hXShjN97tdqpfmJF4VBV30KhkKiJtVotojheNoUb5NtCZsWUoSubmJ6eRtP1jyRsez3cdIM3DIMHH3yQd15+mUuXL7ND0mwVuquHToexZ+X4dlhi2qGJMSnqZjWazaQz3rKsZeGGDgQdr+5Go7GmdqTieEdSbLQXF7/XOYPwhK+99hqzs7McPHhwac7RajF49z90PJjqgQV6TkNZiyy2GqampjAMg+HhYXTDYGR0lIfimGazybTs8z1z5gyhpDtvGB2lb2CAfD4vGkdUr4BMXSquEpDIdeTUHC3paHRdJ18o0G61CGWtRZEFDbkAjuOYCDGzV1WWT73/Pjt27lzGv/q4cEs8/MDAABvGxjj1/vts2bx5eZ5X0xJ+iOLJg6AZdHoVNVjXtm3G5OLVcRxRAJGG35bZgbQqgmja0uAAxECG/uvojqdSKQKZHVrN4Fe8kWybV159lWazydNPP01/fz+NZvM6Zf/VPXyy2O4q2K29u7W3m5qeZkga+9JHNIrFIkVJd7bbba6NjzM3N8e18XE+uHABTdcZHBgQoc/gIIbMv+tI9QLTJNvBqFT9vgq6ppHL5xOjb7fb5HO55MGQHxKdcZrG1OQkzXabb/u2b7ux6/6QuCUeHmDP3r28+eqrnP/gA/bs2bN8I5mtUQKaaZmr7UShUBAaKLJFTI0ut6Tmieu6BGFI6DjYjiNaylKpJNyJoohGs8nWrjdMN1KmiQ1rpic7zb1Wq/Hqq6+i6TovPPccxXJ5iaKwhhHqXb1L3bRmWD1Ds1pIs9r5uo7D/Pw8B67TQZSSGj+Dg4NYlsXM7Cyzc3NUFxZ47/hxoliINvX194tm9+HhFQMnYl1f2WKoaYIq0mqJt0Nn808slCNC2Sd77swZNm3axJYe088/Dtx0uWxVgMjmcmzfvp3Tp06t7FeVMV4cxxiG0XOQgcr3GpI/g3wraIjBvpVymWKhkIjuB75Py7ap1WrUGw0xbToMBSnpOuerpLQ7OTq9MDU9zde//nWRdnz+eUodbEd1zqthLYd8XT2bVXo9V9v+2rVraLBMm70XVNjieR61RgNd09i4YQMPHzzI008/zf4HHqBcqTAzNcVbb77Jn/3Zn/H6G29w+coVbKW6sMpiWtf1RPq8k6gXy7+DmK/luC77H3yQdDrNpk2b0DTthrz9iRMnElv7xV/8xVW3u+keXo1o94KAnTt2cOXKFd544w2eefrp5PXquK7QKpSvv14Io4hcJkPTMJJR5Z3bapqGZVlYlkWUy4mqqcy4BEHA7Nxc4jlt28ZUa4IeSKfTgg67Rlhz8eJFjh49yujoKIcOHUq43DFLHnhNg+9OS8ZRx89xcu96YbX4fbXY/tq1awwND696LWrNEgQBtm3Tlhr7GiI9nE6lyOVyDHTwj6od+p7vvvMOMYLhqMRt+/r7V7yhUqkUltQBUh1WsUwDt5pNzp09y85du+iX65/Dhw/zB3/wB7z77rvXLQb+k3/yTwjDkJ07d/IP/+E/XHW7WyLEZFkWnuNgGIZQmfrmNzl27BgPHzxIHEUJPTiTza5KGorCEMM0yWazBHHMQrVKRpLFuqEGpmUyGULJ6/ZkjKjruvBGjiMqjFLvUvWwAkm53PM84mx22cIxjmOOHz/O2bNn2blzJw899NDSF6EyTr2IY13QtK6QhpUhTa8veK199jL2drvN3Pw8jz366NL+pYGH0sgTmQ9Z7Qx8n0w6TT6fX3WR36nv6Xke0zMzTE1NceHSJd4/dSpp1VP/qRDVsqykh1b96dg2x48fZ2BwkP379yfkuCeeeII/+IM/oFarcfbsWfbu3dvzXL74xS/ypS99CYCf//mfX33txS0y+EwmQ0NOxO4fGOCRRx7h3XfeoVgqMTY2RhwLyYeMzLL0ghJYLVcqVKtVQTJrNilfJ0QxDENwOzQxD7SQz+P7Pr7kdnix6He1IXkADMMgkAUX1/OSRpEwDHnn7be5fOUKD0nF4164kaLRSg8fr/j5euuHFfvsQdG9euUKhq7T39+f9Ax05rsVvcKQD3wUx4no6Y2OgU+n02zevJnNmzYRRRGz8/NLCm/XrgGC8KaMv1AsYtt2khy4dPEipmly+PHHMXQ9ycw98cQTyTHefvvtngbv+z7/9J/+UwCee+45fuAHfmDNc70lBp9KpdBNk0jyY7Zt3UqjXufYsWOAKE5lMpk1021BGBJHESnLolIus7C4SLVapZDLrT25W8LxPDIy86O8TRCGBDLk6XwANNV+5rq4jkOhWCQMAo4ePUqj0eDQoUMJH6eb9kwcryh49UQ3swBEVoalSq5aS6jfrRYfq7a4MAzxZf+uUka7cvUq/QMD4vo6tjelgZtSW0c9nHa7nbTw3SiBq/NB03Wd/r4++vv6uP+++3Achxnp/c+fP8/p06ex0mn6BwdJmSZz1SqO6/Lcs88mnllRUB577LGk//mtt97iR37kR1Yc+1d/9Vc5e/YsmqbxS7/0S9c911umD29ZFq7rJqPMH9i/n2qtxnvHjnHgwIEkb62zskKqxIeIRSNIsVgU41Rcl8VabcUoy17wOjy1gmkYywpDqgiiKLKu1Ias1escP3aMIIp4+OGHyeZyVGs1QStWimLakvSd7/tiwatpyeKsswdA0zT0HtSCWJb81XlEsr8USFS/YslcjGLRcK3uTSyJX2rBG8cx7VaLeq3Ggw89lKifKTWyXvl9FeKoyuqNYkV7obbU9JHJZNiyZQtbtmwhiiIWFhaYlkoP7XabSNPYu3s3xWIxOaeytIVsNstDDz3Eu+++y1tvvbXiuPPz8/wv/8v/AsCP/diP8cgjj1z3XG+ZwWcyGdxGAz8IyCBuyv79+zl27BjvHjlCBOzaubPnZ1eEOZpGpVJhbnaWer2eNCWsBUdOoFiNRQkkXg8gJ89xZmaGEydOYFkWjz/6KOlUSjA5pdKXIr8pinCsCW1zx3VJS3GhTs+sjD7n5xlkAJ8ADY3YFinOOI5pttsgQzhVT1Bef7VBzIauY+o6SHqAbpqMX7uGbppi+vYNvAVd10WpBvTixPdErzeP1h2wCRiGweDgIMVCgemZGdB1Cvk8I7KFL5K07049ySeeeIJ3332Xo0ePLmvOAfj85z9PtVoln8/zcz/3czd0urfUw0eyq0aNSwF48MEHuXr1KseOHKHZaHBALgKVkYcdHitmyWCy2SxWJkNo2yxI3Zu14No2gwMDifT0jWB2dpZjx45RLpd56qmnRMoTEj1JZfDKyypSlu/7S7J7dPQDxEvN2TFLAqw6og6REN1Um5s0YBXe6JI4p0mdfU0T+uw6okKpvL7CtWvX2Lhhww0ZexAESRrWSqdvSBVYXdNa/9ZJqouiiEajwSuvvkoYhmzatAkrm02uL47jZY0pIAz+3/27f0e73ebkyZM89NBDALz//vv8+3//7wH46Z/+acbGxm7odG+Zweu6TqYjXajibsMwOHDgAMVikaNHj9JutTh06BCGaS6r2PUy0f6+PlzHoW3btGQFrxfiOMZ23RuSXlZGd/r0aU6cOMHI6Ch79u5dNqwBxIOnQW9jkp7ZsqyVJDRp9G7KocoiviZ5JNmIUsdgAqCnfPdahti55fTMDK1Wi8cee+yGhhwoOkc6nV5G2V0Ta6wrFGKWjHl6epo33niDjAxVmo0GKFqy3E+lKzztXLi+9dZbicF/7nOfIwgCNm3alCxabwS3ZE6rQj6fJ9Z1XNcVTQVxnOTCd+zYwVNPP83M7Cxf+9rXmJ+f772TDgMwUykKxSKmrjM/P79MnqMTQRAQhaFYGK9RrlcLv7ffeYcTJ09y3/3389CBAxg3IO6aIO6Q7Oh1HE1LYtWQiJCAiHBJCKojpbmiYebGzgCAixcuUC6VlvXuavI/XZ6ngsrBx3GcFIduZOG92puy+6qDIODkyZO88sor9PX18egjjwiRJ6mH0zmJvK9rouDu3buTa3j77bcB+JM/+RP++3//7wD83M/93A1nk+AWG7xlWRiynctxHNA0jI7Ye3RkhBdffBFN1/mLv/gLjh07lvClV7u55XJZ6MpEEXOy6aAbrhxn2UuxVrH8QskMfPW117hy5QqPPfYY9913n8gYyFRdJGP0NXHD/JfeXBrlv3stKm/I6yIKa5OTk2xfhW2oQkNdnoXiL1npdKJgcN2wb5U4Xf1OYXZ2lq985SucOXOGvXv3cvDgwaTZRI3QVI1AuXy+51v48OHDgPDwQRDwuc99DhBZnB/90R9d+zy7cEsNHiAvCxmJKljXjS2VSrzwwgs8dOAAly5d4stf+hJTHZJr3cak62LQganrtFotms3mimN6ngeyEtuJOF5qK7Pbbb7xjW+wsLDA008/zRY5eyqVSglmHyRvpeviBrbRuwpPSYdRZ/z+EfYLcPHSJTTDuO4onxhxb1Tcb1lWMrBZHG6V410nlFH7fffdd/nGN76BmUrx7S++yO49e5Ksk2oAURVqEJNAekGFNcePH+eXf/mXOX36NAC/9Eu/9KFbMW9ZDK+Qy+dpyosMfB8tl1uWz1aLut27djE2NsbRI0d45ZVX2DA6yo6dO+klTWplMhSLRWr1OrNzc1iWtSyt1smPV5xtIPniqtUqr776Krqu8/zzz6/g21iWRTsMcTxvVWnuZeisvK62yQoPLxshVuPRxGsoKHTuJ465ePEiWzZvvn6bonrTIu6hId+Unb/v1cOqOqB67hOYGB/nyNGjBL7PgQMHkjeNIgcqnfjOJATA4Cp0YGXwnufxL/7FvwDgh37oh3jmmWfWvL5euOUGr2kauUqFdr0uRtJ3x6lxnBhKPpfjqaee4urVqxw5epSp6Wl27NzJ3j17VoyirFQqonHE85idm2OsQ61K6cjIvyw7l4mJCd56802KpRJPPfnkiv0CWKkUbRA66lJr8Yaudc370PUP8rRWHXV5AwtENDEh0XGcFX0HveA4TrJ2ULIZao2z2pFWk12JEYoIp0+fZmp6mpGREQ7KmgWIMCuUs10ty6LZbov1hEwGKGW2Xjh8+HCysPV9H8uy+Pmf//nrXl8v3HKDBxHWzOo6kVSOTaVSSx1QXdtqmsaWLVsoFAqcO3+eCxcucOHCBXbs2MHu3buXsiCaxtDgIJOTk7iOw2K1Sp/M53aOqenEhQsXOHrkCKMbNiRVvV7QdF0UzmR+PXed9r8khbrGNisXpDcQ0lwHGnDhgw8Y6O9f1XgUgiDAk142UygseytprE5N7kYMTE5Ocvr0aRYXFujr6+PJJ55gtMPh+FIeG0gIf4FsHVSdTxvWYHKWy2X27dvHqVOnAPhH/+gfJXr9Hxa3xeB1XSdTLNKan6dt2+Ty+SUDWGXyhGVZ7Ni5kz27dzM+McH5c+f44Px5tm3bxp69e0VnTipFpa+PxcVFFhcXySj2pJSh69RiOXHiBOfOnWPnrl3s37//urGglU6Lnk3PI1Kx7hq43v5WY0uqwtJHMfhavc7M7CyPPfbYmtvFiDZKdD1R7V1+cksV4dUk9KI4Znx8nNNnzlCrVhkcHOSZZ55hcGhILO5V7j0MsSUz0rKsRLUsknrwuqSOD1+njjI8PMypU6cYGhriX/7Lf3mDd2QlbovBA/QNDdGqVvFcF8e2yeZy4nW+iqHoumiZMAyDffv2sXvXLi5cvMjZM2e4eOkSmzdvZtu2bQwNDoouqFaL6dlZxkZHl+JiXScIAt5++20mJiYSAlgsszRrGalpmkLVwPOu6+UT8/gw5DH1pxop0/XZUD60a+HMqVPkstkV6hDdcB0noWNnVqlNdHJ4VBZF0zQc1+Xa1atc+OAD6s0mIyMjPPz884l+jAZJ83YcC42aGJK6RMzSqCI1qHp0bGxN3s5bb73F17/+dQB+5md+ZkVx6sPgthm8ZVmkczncRgNHhjVGKkUUBL1psWoyh/ydYZrs3r2bHTt2cOnSJT744AOuXrlCJpsVFTy5cJ2ZmUkyMb7n8fprr1Gv13niySeTOL+TB7MWMpmMoBo7jpCUW9Og10avkCaKlhr9utOS19tfq9VifGKC+++/v3dKUyKKIlwZu2e7qM+rHSsMQyYmJrh06ZJosNY0NmzYwKOHDi317qrr6FiDObYtKsmatiQIG8cJHdzQdVLpNCPX0Z756Z/+aQD279/PZz/72evcibVx2wxehTWh44jupHabUqm0qpdVxpXE+tI4DcNg586d7Nyxg4XFRa5cucIHFy7gex75XI5Kfz9ZWXB65ZVXiKKI5557bsUXleSe1zDiVCqFaRh4UvZvVS+vUoxr3oGVefjOKYQfNqQ5c+YMqXR6zda4GMGPRzarr5VxiuOY2dlZJsbHuTY+ju/79Pf1ceChh9i0efOanHMQ83NVJ1M2l0seLJWyjBHf3dDw8JqSKL/+67/O1772NUAwI79VCb7bZvAgPExQKOA0GqRSKWzbTmTXuqHyw0oWmu7YUtPo7+ujXC7zwAMPMD09zcWLFxkfHxfUYplheezQoaXBA3R+XDAfg+uENplMBl8OXLshLy/jWcVkVAtaMzTJkcVHSNIRiKyJ7/uCVhEEaJKPc710pN1uc/nyZe5/4IE1DcKVGp1xFJHt0VkW+H7SwD01OZnQNXbt3MnmLVuEoK12nenbkiGqWv6URn8cReiGsWzieNqyGBgaWlYfabfbTExM0Gg0eOmll/jZn/1ZAP7u3/27PP/889e5E9fHbTX4fD5Pq9UirSZNxLIRoceXpozQdV3+/t//+9RqNQYGB/nX//pfJ1+yWpwaus7A4CD/4T/8B6ampqhUKmzeupXB/n5eefllMkqAdGgo0V+XBxF6KmuENul0OpGJc103KcUDCbVYSVgEYYihBhp0PBhxHJOO0+TIS7YkGIFG23FwXRcjDGl0bK9p2rIhw2YXvffc+fMYpsmObdtWnWToy6nhMUKlTDcM4jBkYXGRmZkZZmdmmJ+fJ46FRn9fXx8HDx5kaHh4heR35xtWyXGov/u+T1vm29U4HSBRZHYcR0gaxjGbtm6l2KVK9p/+039aEbY8/vjjN8R1vxHcVoNPpoCEIV69jh6L4QhJaNMRYui6jhaLxoXv/p7v4T/97u8yNzfHN7/5TV544YVlXieKY/7dv/23nDt/Hl3T+L7v+z5qjQZ79+4Vch+1GjMzM1y+fBk0wa8fHh5mcHCQSrm8al+tQsayaIUhtm0nizRfjozRWBrLmDJNYrnoSxo6FI9GC3Fw8PHR0Qk1EeuqqYTJolFeTyz5LhGIDiW5XRhFXLx4kd27d2PK3uFuqEpyGIbYjsPs3ByzMzPMzs4mCm5Dg4McePhhhoeGkhGXhUKhd849XtLN7zR2pRCnFqkqVFHfZRTHQkk4DBkZGaFSqaxoIXxXDoSwLItt27bxwz/8w/yzf/bPProSXBduq8GDkN9ot9ukcjki1yUOQxrNptB/lIKoSYOFnEX0wvPP89//9E+Zn5/npZde4plnnlkWWvzu7/4ub7/zDgA/8iM/whNPPMGXvvSlxDPt2b2b/Q88gOd5zM7OMjMzw6TsyNERDMhioUClUqFcLlOuVCiXSpipVKKZ2LZt0X3veZgyntUQD3FKvqXyuRxpmcLs9rqhGdCkiY+PhkaYioQKrxSVymQyIhRSg4bl2yMMQ0JpPL7vc/78eWJgw4YNSyoLmkar2aRer1Ot1Vicn6faaOC028JYpdbMnj17GB4eXq4xH8dUV1F7VlBaP52cGzX6MpZMUZVqVmEdiHAllA/rjl27yHUokSn82q/9Gr/2a7/2Ea3p+rjtBq/rOvl8nkYUYYQhoewWajabwsN0siNNk0Cmx77/+7+fX//1X2dudpavf+1rvPBt34YWx/zxn/4pf/bnfw7Ad33qU/yV7/xO2jJu1OUXMDk9zYaREdLpNBs3bkzkK1zXpVqvU6tWqVWrzM/Pc/HSpSTEyWUyZKQRG5IAlclkGBwYoFQsiumD8nyDMEx4OD0rpD0qzOotpYxA04RClx7H0EGViMKQtm2zMD/P1atX6atUuHjxIo7nUa/VaDWboqUvFsOA88UiQ4ODDA4MUOnrWxFGdKKzgXxV1QQVxsifQ6kppDy+ysiot4BaczUaDcIgYOuOHViWtaYK3M3CbTd4ELG8bdsEloUme1dd1xU3L59PFn6GaaK5LkEQ8Nxzz/FHf/zHTIyP89IXv8hzzz3Hm2+/zX/+v/9vAJ568kn++l//64BQIdAQi+R0Oo3neUxOTzMyPLwsD21ZFiNDQ4xITkcUi5EuC/Pz1Op1Go0GtWqVZrOJY9v4YZiEXVosZ1Zls6RkSjSTTgudG8NAl+2Ehq5jmCZO2152DxqNOteuXUukuhPvLtv9lISGbdu0bTvhBxFFzM/N0Ww2sTIZMtksg4OD5PN5SsUimjxmpzZ7L6i4ehnPqAeSMAYgFu2IbRnGKLWIxLOzZOztdjuZCbVp06Y1H7qbiTvC4HXZVT83N0ecTmPIRmTbtsVNlIOvVLtbIDMYP/iDP8i/+Tf/hrm5Of7jb/82L7/8MnEcc/8DD/B3P/vZZVPqdMMgDEOGh4eZnZ3FcV2mZ2YYGRpa0esKQhyobdsEsvk7k8uxZcuWZak8x7aZX1jAlZIfnufRtm2ajQatZpOmfFB9KYnhRV6SJZnQpwj1MCm2XZm8yrHxY6BraDpkjRxp3UCTFNpUKkU2m6W/v59sNksURRw/fpz79+9nz549KHU113VxPA/fdQV/xXHI5vNrE8m0jhZC2fxxvXAGxFvMtu0kxZjLZhNiWedCPY5j4d2jiC3btlEoFG54QvnHjTvC4EGEK5VKhfn5eSLPw5AG2pIkIyuTWRpaIL3f4cOH2bJlC1euXElytVu3buUf/8//84oBw+l0Gt/zMA2DoaGhxOgV0SlpfJCin57viy9e8misdDoZXqbK/5lslnK5TJDLYZpmMoeq0WwSBAG5fJ60afLnV77M77z//6PqVQUhWzo2HbmgjTXO6+eZ0+eIiFhggayW5Sfv/zt8x+ZvX3GvYuCb3/wmxUIhMXYQBmamUuQNg5rvJ91Yhq7TbDbJWNaK/LkGywZHKGNekW5Vxiv/6soKudp/PptdpgTd2drnui6NRoO+gQE2bNjQMy18q3Dr3ylrIJPJiAxNKiWEl+Qrr2XbYmIzossJlqZFvPjii8nny+Uy/+yf/TORZuz6wtJS+x1EBmFkeFgUpHSd6elp2raN7/vU5LBk1TBSKpWSkejAigYQlT1QmRnoKCnFMW7o8n+892+Fsa8BpTUZyhG/dmDzf57497iht2Lbqakp5mZn2f/ggz1pxC3bBk0jJ8Mb1VVm27ZQClBxOis7m3p1a8Vdv2/LiYsgHFU+nxfOoOPNoPYbRxEzMzMYpsno2BgjIyMfmsP+ceKOMngQKsH5SoVY15PXq7rJdrudLBaDIGBqaoo/+IM/SD7ruu7yV3fH6zeby9G2l+JmXdcZHhoSEs+6ztXxcWZmZxNOTalYFPlq+dCtNoDXMIxkQG+y/w5vGMYRfrS2RiWAgViohixPr3Y3ikSxUD4bGhrqOQ6mLSeRa4i1UdqyKBQKycMdBAGtZjMRtuo2vSgMl4UjnS2RSu9dzXzKZDLkVWJBhlSd9Ig4ipibn8dxXfr7+9m5c+dNG1Z2o7jjDB4Et73Q37/cwOQC0nVdoW+yuMjP/a//K41GI4kHHcfhi1/84rJ9qS+rVCpRr9WW/U7XdYYGB0Vfpe8zt7CA4ziUisWeX8xqiyw1TDmUAwI6zzmfyvHUhieve82GjC5DlvLoL4w9R0pfHnVeuHCBRrPJgw8+uGIfjuOIaXmwbPiA6vYqyCkcMdBsNlfMwAIS3pFyLJ059mazKfqGNaEBmvQOdKWPQTw4tXqdRr2Olcmw74EHbmsoo3BHGrymafQPDlJQfJcOw4+iiGarxe/+9m9TXVzEMAz++T//5zwqtRO//OUvs9jd26pplMplWu12MkdIwZXMx3QmQ9ay8FyXmbm5VcvnvagEycIaETZ0hwl/Y99KxaxumImHX9K5+eHd/8OybVrtNu+//z47tm9fpt2irsORjeY5OVVvxTFMk6JsekfTaLZaK65TSY3oppmwJV3XpSUfEN0wKBQKSQ8DUYQWx3TuRT0cjWYTdJ2du3dft93wVuGONHiFyvAwRVUUkQuiMAh46aWXqNZq5PN5/vE//sds2bKF7/u+7wNZjPnD//bfVuyrXCpBHAtpCAnX85Isw4bRUUaGh4VCgeMwOT3dUy5bozdzMSNz8zFLkhcKO0rbeWbD2u1oRpfBP7/xeTbml7RWYuDIkSOYprlsbDyIjJItw6mMHFy2GjRNI5/Pi/WRpiWVUXWMWIYkuqYl+fUkXk+lxGcNI5HsjrWlkfJxHOO4Lq1WKxGj3bx1K/v27bstKcheuDPOYhXouk55eJhCuZxMjPijP/ojLsq5RJ/+9KeTLMXWrVs5+OijBGHIX3z1q8zMzCzbV0lKuanBZqFMqUVxjGVZZDIZiqUSQ0NDmLKiOyEJVJ1YK4uRzecFtaBD1EjhR/f9v1iN5KuLfI04L0JA46/v+uFl21y5coWZmRkOHjy4rF/X8zzarRaaponcf48Uazc0qfilSzKeavVTGpUaS15aqUZYmUyi+xPHy9UbVM2g2WrhSkpw27YZ3bCBnbt23bYUZC/c0QYPgnRUHBigVC7z1b/4C956+2183+fQoUPs2buXarUqBmdFET/4Az8g0mFRxH/5vd9bKs4gvVMulxi84zgEQSCKMh1GoohllpwcMjs7S7Uj9tdYvqDrhGkYWJJBqdYaCttL23hu7Nme16i8e6C8+6Zn2VTYlPzecV3eO3aMTZs2LVuoduqsmzJPvwKrZEQ0XRfb6zqe6wr5ajmJw5EpR1XsKxSLieraCh6/XMg2m03RJKLreJ5HuVJh05YtbOho9bsTcMcbPICZTvOFP/1T/p/f/33sdpsDDz/MM888I252u40j87yjo6McPnyYOI55XerLKJGfOI4plkrU63UhUio9V68UpinHPhbkq79WrTItQ5zOhVyn8Stk5ZSSCJIwQ+FH9/0Ivbz88gWrxmd2fWbZ748ePYqm64nqFoiwyZbpx3Q6TT6X68lqXKvxO2WaogothabarRZtSRFA0ibyihPT48FRQ+VUQ0c6lSLwfcx0mg2bNrFp06Y7JpRRuLPOZhX8yZ/8CX/rs5/l3ZMn2bt3L3/zx3+cvEy1GZpGQw47azab/NVPfSpJTf7ef/2vYgfS4EulErNzc6IFMF6SjO7lBTVNjHHv6+sTcb3nMTE5Sb1eX/bla3SFNzKDoViTnmxWjuOYjfmNvLBxJae7c8H6zNjTbC1uSc5pfGKCiYkJHj5wIOGNO3KOFYhe2xXKW5LusFYHl1oXWZaF73niTSnJXVY6TaFQSI7Xbewq3Gk1m0JpWb4tXDk4epNst7yTQhkFLb5RZdE7BE6rhddooElG4Nz8fDJi0vd9wcG2LHK5HOl0Oilzx3HM/Pw8X/3a1zh06BDZXI58Po8lB+6udRN832d+fl58oVGEkUox0N+/QlJaZWcc2xYzpWIhXVeUA9kAxpvj/N2v/Y9J07YfBvTFfZiYNGjw/33hX7OtuA0QbXt/8ZWvMDQ8zBOHDxNDMrkwRrxNOmP2QKYMk/Hxq0Fu48thwjVZ9g98n0wmkzzknRRltX81NRH5Oz2VIptOU6vX8X2fjVu3sm3btmUSf3cS7goP34lMPk+6UBAT5QoF+vr6klg0l88ThCENOcSsVqvhytBFKZRZ6TSzMzOooQAxJCq+6k2Q/CmRkuNb+ioVDMPAc10mJiepVavL03qaaHaOooiULEaBbKuT+9tY3MS3bXxh2TWpGP6x0UfZVhAtelEY8uYbb2BZVpJytW07ST12G7s4vNa7TbEjBIvjGMe2qdfrIk0bRYLOrIvJG5Ya+cmSsS/z6NLY05ZFPp8nn8lQlxpDY5s3s2XLljvW2OEuNHgQOipWPi8GneVypCwLK5US3rRYxJJtePV6nfm5ORZkQUnTNEZGRpibncWQ8tMKnV4+lv+pymEUi7a8QrGY8G50TaNWrzM1PZ0sUKOO5gtN05LFcBBFS1Puooi/tvszqFhex0gyNJ/Z85nEWI8eO0a90eDxw4cxDINmsylkuGXIpIx92agc8Q/LeOpxJDTNIpmNqdfr2I4jqriINGa5XE54QinlBOR4yYYkwiWGnslQKpdFA7imUa3VcByHsc2b2bxlC4PXmYN7u3HHkMc+LDIyzWjXauQyGeGtgkBQArJZQaWVOjLNVot2u03asqj09XHl6lVczxNcEnonC5O+Wfn3zqbxoaEhGs0mi9UqgecxPjFBNptNBjMoz65JUlVTLuxU4/TG4ib29u3hzOKZJH4fyA6wsywk6S5fvszlS5c4+MgjFPJ56jKE03Qx7VpNJFdl/KQaGoaJ/r3ioYcydFFisCC8nJXJiJBP0g2iKEp075sdBi5ug0YqnU6a4dXQh4XFRTTDYOPWrWzctInh4eGP8Ru+ObhrDR7AyucxUik06cEDORJRjVrM5/OiSigLIY7jiH5QTWP82jUq5XLCHkwaFbqQ/FsHP0bTdQqFAhnLYn5hAV8+UK1Wi1wuRy6XI5LGZxoGaTnFsNlqUZSteT/10D/iH3z9H6BHOhExf2OfUMGtVqscefddNm3ZwujIiKhWItKzii6QeHLJw0/mK8lsShhFBHLB3FlZ1uUiVXF/1APRbrVEA3kQCM8ttzdMEyudTijRavHaarWYn5+n0tfH4MgImzdvXqECcafirlu09kIURVRnZpiXxaZCl+yykoZoy3zxiRMn8IKA+/btS4o12VxOqOdq2qrGr/YVA5EcuRhFEZ7rJq92ZIVS0zQKhQL9/f1J+lTx+FW6c2p+mt/76n/lLx/8y2zZIErvX/3a1zANg8cffzzhuqQsaxljsxthEBBrGrZkfPrB8r5W0zRJmyYpeX2hHOKmdOHrzSbNVgvTMOjv6yOVSiWKZJ1N4XEcs7iwQNu2Gd6wgcHhYTZv3nxDxa47BXe1h1fQdZ3+0VFiTWNxelp4RU0TOWbZfWOl01jpNKVymVqtxomTJ2m1WhQKBZrNJs1mMxmZqHpK1ZiZzkVgZ4+mMoaUZTE8PIzjutSrVWw5lUQ1eRdLJTF6vdkkimNarRbFQoGMYTHKKJYh5ABfffVVQt/n4MMPJ9XMbDa7qjqYmrfq+754w3UsoA1dJ51OJ5mkIAiw5UPX6eOiOMaTs536KxXRSyzz96rQpAFtx6FWraIZBpu2b2d0dJQNGzbccXn26+ETYfAKAyMjhEBdDjsrygphZ4HI0HW279jBhYsXWVxcZNu2bdi2jStDona7TbvdFotamadPp1Kij1VfmoLXqaKrFr/ZTIbM6Ci2bTMxPo7n+zRbLZqtlkiVZjJicSuJW8n49Sji9ddfp91uc/CRR0SbnK5TyOWSRSRIGRDlnWUrpIKiBBimmTSNe/JB6IbqHjNlj0AqncaMY9Fjqh7uDkOv1+v4rku+UmHD2BibNm36luTubic+UQYPCB0VTaM2O0u71RIT7aSeizL8jGWxY/t2jp88SRAEDA4MEEpPp1J/YRDgS70cNbTY0HW0jrmmapiYoeviGB0Ly8HBQdG0ohaNarK3jLmzmUxijOfOnaPZbPLIo48KDruMmyOZ3QnDkCAMk8Fnqvc0jiIh1tTxAIaBIigsQT0IhmGI8ZWGgSFDt2qtRiyzXUpCRJPhUa1eJ3BdYl2nb3iYHTt3MrzGCPu7AZ+IGL4bURQxOztLc2GBUErupaSnRy7sGo0GX/3a1xgYGODxQ4eWxeyRbE72paS0Lxd/kZzOHcex0G6ReufKo3bKcTi2DbqeEK5sx0m0YcIowpPyglevXkXXNHbu2kW5I8vTmX2J4yUZPtUUbppmskiNYaklUXpvXb6J1H+wlHlSIVmz3RazsaJIdCIhcv2tdlsYuibUfXfu3cuuPXvuakNX+MR5eJCNHUND6LpOa3GRVrtN2vdFyV95WKmye/7cOWa3b2e4I3+sS+ahUiHQEDLWQRAk2Y+Efy49rnpIkj5Oz0vy+L7nMT09zfT0NHNSYcA0DNE4YhhsHBsjCgLRNO77mHLRmDxIhsF/+b3f44033uChBx/kf/x7f2/pjaNpIJu8DalQsAzdfJqOho5atYrreclQOM/zlgozmkZfXx8PPvwwfTcw+PluwSfSwyuobvnqwgJus4mO6ARSZX7btvn6179OGEU8++yzSSbkeh2XMYIH7rquKOxEEV946SX+5I//mJ/5mZ+h0tdHs17H8TyymQz/6md/VvRu6zppqbWoaRr9/f0UikXuv//+hAphSEmRlGmSTqeThefRI0f4uf/9fyedTvP//Jf/sozzrlQRrgelKOb5PtNTU7TlVA6l9KYh3iDZXI5tO3awdceOu25Rej18Ij28gqZplEolLMsS1dZGg0ajQVoOSshlszzy8MN8/eWXOX78OA899BCWZSWxfkID7t4vJLJ/oRyBo7M03r6Qz2PqOo7jYGUyNJtNQXQzDHKyB3Z2ZoaGlP/bt3eviPNlJVVlUpIR9sDYpk3s3rMH13F49fXX2f/AA0kBSjWdd0NlcYIwJPB9MQkFkrx7GIZUymUycp5sLp8nn8+zZccOCrdBJOlW4BNt8AqWZTEyMsJiOi1UudptnFqNdCrFwOAg9993H6dOnaK/v5+NY2NLZXu1g45cdGcu3NA0YsNIGp8750glvHLH4dPf/d2MbdpEIZ/nwsWLxFHEH//RH4kQxDTpq1RotlqkpbBTNpsllro8qnikaxr3793LpUuXuHTxIjt27Ei6jDzZtN2JTgpzIosnawah75MyDMbGxhJ+UCqdZnh0lMGRkU+cV+/EPWHwsEQeKxQKtFotWo0GXrtNo9Fgy5YtzM7OcvbMGVKmSX9//wrdw84FJCw9DGrRGsdxIvldrdWEZ/V9NF3nxRdf5OKlS5w7e5aRkRF27NzJn/3Zn6kdJ5XbVquFLxXGUqkU5UolCb/iMGTP7t289dZbhGHIpz/96WQxraaar7hmTUseKqXcaxgG6UyGcqlEsVgUhi6LSJ9kQ1e4ZwxewZLhTKlUEo3G9Tpeq8X9DzzAsSNHOPbee+zYvp2BgQGyuRyZznlOyrvLljbFUwllp08umxUqwrLr30ilaNbrHDt6FD8I2L9/P7t27WJ6djahACRVUU1MyXBdF9tx8CT/JatozprGI48+ym/+5m9ybXyc2dlZdu7YscT0XAVK5NRxHFrtNrquUyoWGRwaYnBkhIGhodsunXErcc8ZvIJSOiuVSiL37jjky2XeeuMNzp8/j+04jAwP09CEcP9quoydhKyYJfah3W5z4sQJZmZmxAjHRx5JUpSB7wvJwO4OKtllZKZSSVU00WS0LErlMtu3b+eDCxc4cuQIO3buTNSAkZVZTe4rlOxI13HwPA9XPjyjGzawedu26075+6TinjV4BaVenM/nGRgYYPP27fzFl7/Me0eOUK1W2TA6Sl9/P1EYkkqnE7qCqmiqgQcAzUaDarUqZiFNTZFKp9m/fz9bt25N5K81TUsIXUoJrRumlMJQqgqe54nyv65z8JFHuHjpEu+++y4/9EM/tPQhmWUJgkAYuNSo8VyXTC7H1s2bGRsbo9Lff1uVv2437nmD74ZpmnzHX/kr7Ny9m5e/+U2OnDhBX7HIJrnozCjOvWQt1ut16pIXHyME/Tdv3syjjz3G4OCgoOVKkaIYOTNWVkw7KbsKiXpAFCW5dSV5EcUx991/P0WpvXPx0iWGpdKxJ6u5fhAQy4bsQqnE2LZt9EmJ7BWtgPcg1g1+FezcuZOdO3cyNTXFq6+8wnunTiULVB2RJ9c6uosUjffpp55ix86dwJK39X0/MXql8RJ4XuKVu1OKndwf1S+ayWQIfJ/Uxo0M9vczv7DA8ePHefjAAdG9lUqhmyZWPk8ulxPhWqUiaMySx76OdYO/LkZHR/mBH/xBwjCkXq+zsLDAzMwM9XpddPVnMmTTafwg4NLFiximSbvdTsr/Kkb3pCKymmynWvVWgy4XtXEUEcrmDKUVv3vPHia++U2OnzzJd373d2PKPt68NHY1U/aTQAX4uLFu8DcIwzDo6+ujr6+PnR0eXDWWNDyPE+fOYVgWQRQRy/SiWjjWG43kDRH4vjBKSTZTAwUUsSwRJY0ikKQ0XdPQDIO+wUEee/pp/sNv/zYnz57lX//yLyc0inVcH+sG/y1AyXzkpS78xOQkAyMjybwl5ZGrsiMrDEOh62iazNdq6LqOGwSk8vmEealGVRqyAUORv5TXTqVSjG7YwOzsLHEslIT/0l/6S7f3RtxFWDf4jxFBEJDJZJZxxeM4ZmhoSMxAkrJ+V65c4YPLl9E0jYOHDrFpy5aEyqBYl51jKrvxpS99KdGvP3z48K28xLse6wZ/k6FpWkICU8jKxm4QWZsPO9zrC1/4AgAvvvjibRkMdjdjPfC7C6E08D/96U/f5jO5+7Bu8HcZjhw5wpUrV4B1g/8oWDf4uwwqnDl48CCbNm26ztbr6MZ6DH8L8PLLL3P+/Pnk73Nzc8nP58+f5z/+x/+4bPu/+Tf/5qr7eumllwD43u/93o/1HO8VrBv8LcCv//qv89u//ds9f/fKK6/wyiuvLPu31Qz+6tWrHDlyBFgPZz4q1g3+Y8ILL7wAcFMHdynvvnnzZg4ePHjTjvNJxie6p/WThu/4ju/gS1/6En//7/99fvVXf/V2n85difVF612Cer2eTBtfD2c+OtYN/i7Bn/7pn+L7PqVSKQmf1vHhsR7D3yX4i7/4C8rlMt/7vd+7zoL8FrAew6/jnsJ6SLOOewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBr+OewrrBn8LcfnyZT73uc+xb98+8vk8/f39HDp0iF/4hV+g3W6v+dkf//EfR9M0vv/7v/8Wne0nFPE6PhZ8/vOfj4H44sWLPX//0ksvxaVSKQZ6/rdnz5743Llzq+7/93//92MgzufzsW3bN+kqPvlY9/C3AEeOHOEzn/kM9XqdQqHAz/7sz/Lqq6/yla98hZ/8yZ8E4OzZs3zXd30XjUaj5z6+8zu/E8uyaLVafOUrX7mVp//Jwu1+4j4pWMvDP/vsszEQm6YZv/rqqyt+//M///OJp//85z+/6jE+9alPxUD82c9+9mM883sL6x7+JuPNN9/km9/8JgB/+2//bZ588skV23zuc5/jvvvuA+BXfuVX8H2/577UqJsvfvGLxOuy/h8J6wZ/k/GHf/iHyc8/8RM/0XMbXdf5sR/7MQCq1Spf/epXe273Pd/zPWiaxuTkJG+99dbHfq73AtYN/ibj5ZdfBiCfz/Poo4+uut3zzz+f/Nw9t1VhbGyMQ4cOAUsjLNfx4bBu8DcZp06dAmDXrl2Y5uojtfbt27fiM72gwpp1g/9oWDf4mwjHcZIx85s2bVpz276+PvL5PCAmbq8GNXL++PHjXLx48WM603sH6wZ/E9GZYiwUCtfdXhl8s9lcdZv9+/ezY8cOYN3LfxSsG/xNhOM4yc83MmrSsiwAbNtec7v1sOajY93gbyIymUzys+d5193edV0AstnsmtupsOYb3/gG1Wr1o5/gPYh1g7+JKBaLyc9rhSkKrVYLuH74c/jwYTRNIwgC3n777W/tJO8xrBv8TUQmk2FgYACAa9eurbnt4uJiYvCbN29ec9uXX36ZOI5Jp9McPnz44znZewTrBn+Tcf/99wNw/vx5giBYdbvTp08nP6uq62r4whe+AMCLL7647C2yjutj3eBvMp555hlAhCvvvPPOqtt9/etfT35++umn19znF7/4RWBp8bqOG8e6wd9kfN/3fV/y82/91m/13CaKIn7nd34HgEqlwosvvrjq/o4cOcKVK1eAdYP/KFg3+JuMxx9/nGeffRaA3/iN3+C1115bsc0v/uIvcvr0aYrFIj/1Uz9FFEWr7k+FMwcPHrxuMWsdK7F6rXsdNwxloJqmLfs33/MIg4Cf+1f/ik9993fjOA7f9alP8Q/+p/+Jw4cP4zgOX/yjP+K//Nf/yujoKNu2beOvfud3cv7MGYaHhrCyWVKpFGYqRUrm8VXuXaUm1/HhsG7wHwGO42DbNmEY4jgObruN7zjs2LGDU8ePM3PtGsQxuq6TMk2KlsUv/NzP8Qu//Mu0221+/bd+i1/vCG82btzItq1b+cm/9bdo1es0q1VmJicpFgqgabTbbZrNJpNTU3zwwQfk83k82+Y//+f/zPDwMIODg4yNjTE0NHQb78rdAS1eJ1bfEOI4ptVqsbCwQLNep91q4bsuge+jAWfPn+fs+fO8+PzzouAURcTig6TSaTKWxfzCAv/tpZd44803mZmbwzRNNm7YwAvPPcfzzz1HpVTCNE3qjQZ+ENBsNJiamqLZbBIDx0+e5Kvf+AZ9lQr/9Kd+CrvdpuU4uI5DBIxt3Mizzz/Prl27lr1t1rGEdYNfA3Ec43ke1WqVqWvXaLdahEGABqQtC9Mw0HUd0zQxDQM0jSgMRetSFOH7PmEUoetiqWQaBtlcjnQqlRyj1W7TbrfRDYNKuUyz0eDk++8zPjFBHIaMjo4ytnEjhUKB/8//9r9x+uxZvu2FF/jMD/5gEkqFUUS1WmViYoK2bVMslXj44EF27t5NsVgkm81imub6Q8B6SLMCURThOA7tdptWvU6jWqVWrxMFAVEck06lyFgWumEkYUsURXhxjA5ouo6maRipFCnLgijCDwJczyOIIuqNBulUikI+j65pOK5LHMekUilOvf8+p06dwrQsRkZHGRoaYnBgQIQ1rRbHjh8nCAIOPfII/X19RFFEGEWEYUghn2d0dJSZmRnGr13jlW9+k6nxccY2bSJfLFIql+nr66NSqSQP4L2IdYNnyZOrWLlVq1GXht6WRK6UaVLI54niGNt10RAPRxzHxJoGUUSoXpYdL81YPhSmaRLHMVEcY5kmnuuSyWaJwpCFxUXOv/kmrXabrVu3smXLFlrttnhwNI2UafLKkSNMT0+TsSyeffJJUpaFpmlEUUQEaPKYG0dG2Lt7N++8+y4fnD+PHwQMDw2xOD/PbKFAvlCgv7+fgYGBZVyfewX3tMFHUUS73aZWq7G4sECjWqVVrwsDAqIwpJDNkk6lsKSBGYaRhAfKmMMwhDgmCEPiOCaMIohj4YHlv0VRRBgE+L7PouPgBwGO4zA9M4Nt21SKRR566CHyuRwaYOg6mq6DpoGm8faRI1QqFZ575hnx8EQRmq6jaxpaHBN0pDKzuRxPP/UUJ0+c4MzZs6RNky1bttCs1WjWatQWF5mZnqZcqbBhw4brktU+SbgnY/goimjIBeHi/Dz1ahXimEw6jZVKoek6QRBgplKUSyWK+TyGYaAbhjD0KCKIIjoj4jiOiaOISBp+4PtEUUQQhjiui++6eEGQGHqj0eDa1as4cUwhk2FkwwaKuRzFfJ5cLoctH4qsZSW04eRY8k8NEUIZug66DlFEyjST8wQh/3Hi+HEOP/EEY2NjtGybZqOB43nkCgXKfX309/czODi44jifRNxTBh/HMY1Gg6tXr1KtVnEdBz0IyKTTZLJZ8tksmUwGR9J0U6mUSA12IQxDInnb4o4YPQyCxLuDMEwNkZ+PgSAI8DyPlm1z+tQpgiAgCEO2bt2KZVmkU6lEmUnTNHRdp1wsUi4UCOWbQ70pQvmAdS5EgygC+W+maZJKpdANg3feeovZuTm+7du/nVwmA5qG7/vMV6uEYUh5YICCDHUqlQqpjkX1Jw33jMG3Wi0uX77M/Pw8se9jyHRhX6VCpVjETKXQgEaziet5aEC5XF6R2QijSOTgpbcOpaePOuJ3Q9eFsZkmuqYRRhGe5xGFIbV6nfeOHSObzbJj506OHjnC4cOHMVMp0fgh3yCe79N2HHRdZ0AuNrOZDMRxcjw/DAmjiDgICNSD57rL1hAAfhjyxuuvU8jneeaZZzAMQ55qTNtxqDebGKaZePtyuUyxWPxEZnU+8TF8GIZcuHCByclJCAL0OCZvWfT391NSX6qmoQGe7+N5HnEcL/vCY8D3PDzPw5eG3mlUumGQNgxMw0i8KkiDarfFA6RpzM7McOr0aYaGhnjwwQep1+toiNY+0zRFujKOMUxTGO7iImEY4joOkxMTWJkMlXKZYj4vvDgi1Yn0yEEYkstmCcNQnKfvEwQBKcPg/vvv58jRo5x4/322b9uGlU6TSqfJZbOkTZNqvc70+DiLc3Ns3LwZx3Ho6+v7xHn7T7TBN5tNTp8+TbvRQA9Dcrkcw4OD5HI59A5DV1CtdRnLImWaeDIE6e5WShkGhgwZTNNEQ8qGSe8L4Ps+7XabKI6Fsc/OcvLUKbZv3crBgwepd/S76ppGoVBIHo4wDCkUChimKQpbmkbLtgl8n+mZGRZMk0q5TF5WYjUZ7sRxjK5p6KZJyjQhkyGWa4psNsv8/DyXL19m49gYQRiiOU6yIB/o76daq2E7DhfOnmVgaAjPcRgcHv5EZXM+kQYfRRETExNcunSJyPNIaRobN22iUi4n1c9uuK4rYuogIJVOU63VlsIUhFGm5QJShSkKYRiKmFvG6m3bxnGcJKvTaDQ4efw4O3bs4ODBgyIWj2NiELE4gKaRy+XQNA3bdbFtmyAMMVIpKqUS5TimUa/TbDYJwpDZhQXmFhcpF4vJ20gDYpk9Ug+eJtOaKdPkwQce4OrVq8zNzrJh40bx9vA8XM/DMAysdJooijANg4X5eVzbpm3bSeHrk4BPnME7jsPFixeZm50Fz6OYzbJ582bSloWuUoYdiKUHbrTbNNttDF3H6PDo6VQKK5MRr/aOB8A0DHzpVdV+/DCk1WolFVDLsnBsm7fefJOxsTEePnAAgMD3k5SmLj+LNPxsNksURbjS6HPZrChMGQZ9lQqlYpFms0m90SAIQxarVeZrNUrFIpVSCSB58DoNH0TotG3LFi5dusTevXsJogjPdfF8nzAMxWJcrgXSck0xee0azXqdnbt3U65UPu6v65bjE2Xw8/PzXL1yRYQwvk9/Xx8bN24U4Yss+iioDEoQBDRaLWq1GnEUkS0WSZkm6XSatGUtGUxXMQlNw9B1kaJEhEOO44DMruRzORzH4dVXXqG/v5/HDh0SeXUZYgDJ4lFBHSuXyyUPYtu2KRSLYltNE4vLcplSqUS92WRhYYHQ9wXHp9mkv1IRIYimCe63XASr8G3P3r1cuXKFa9eusWXLFtKmSRTHuK6LKx/0OI5p2zYp0yQKQxr1Oiffe489993H4F1OUPvE1JhnZ2e5duUKXqNBWtPYMDLChg0bRBm9I02oEAQBjUaDeqMheknjmEI+T19fH4Vicbmxd0CFHxpLN6/VbifGbqXTlEolwjDklVdfJZPN8uSTTyaqY7GmiUIVorjUC5qmkc/nkwVjs9kUawFIwpYojslls4wMD9NXqZCS8f7k9DSz8/MEMnUaSRJbJB/4QqHA6IYNnDlzJjmermlks1kqsuZgmibZTAbP87BtO1kAv//ee4zL5pO7FZ8Ig5+ZmWHi2jUiuQgbGRpKjCCW4YUy9iAMhaHX63hSpVfTNPK5HH19fei6nhhWJ2KEoXX+Lowi6vU6ge9jGAbFQoFCoUAURbzy6qvEUcTTTz+daNKo0CVcxcN3nqcyel0WwRqNRlK5DYMg2ZdhGJRKJcZGR8VDYhi0bZvx8fFlC+POmH7btm3U6/XlEh/SKaTTaZGWLBTIZDLEgGvb2I5DEIZcu3yZS+fOEa7Rn3sn464Paaanp5mZmADPI5NOU1ApvnR6maR0GIY0W60k4xIjsjGGaSZG1kv7UYUvsMRXAfmGaDbxgwBdGrsy4OPHjtFsNHjxxReTsr0qJgXSWDVNS9KXXQdErTJ0TcOyLHy5uKTVIp/NLj2MsrqqUplDg4PYjsPi4iJ+EDBfrdJstRjo78fqEIIaGR4mlUoxOTlJScb9KgWryayPlckwmEoxv7CAbdtEYYgts1apVArf99m6a9cNCUzdSbirPbwy9sjz6CuVKEipulwuByzNk7Edh1qjgef7xIjFpErrKSWBXl9cZ/jS6fE936feaBCGIYauU+ow9qtXrnDp8mUeeeSR5YUruWD2pcHrup7wbiKZtVF/xh2hiKZpZGVmyHWc5K2EPCe9qziUzWQYHRmhUiySMgwC32diaoparZZsoxsGIyMjTE1NLd0nedwwDMUaQxbQ+vv6yBcKIt+PcBzzi4s06nUunT27phLDnYi71sPPzMwwNT4Ovk9/pUKxWKRRrwtuiWkK44kiGjKNB2Cl02QyGQzlyeMYX2ZMug2+k6/SCcdxaLXbxJomqMLZbEK3bTabvHvkCFu3bGHLli3LPygXkSqcMQ0DT6Yz1bmo48Udn1HbpmTWpN1uYxSLSfyfpCM7DqXrOuVKhVw+T7VaxbZtFup15loL/PfFP2draTMPje3nrbfewnVdMpYlGJ8yU6RYmGr/WctCB3RZeAuCgGarhR8EXD5/nu179tw1lOO70uDb7fYyYx/o76fdbgvDTaWIwhDXdWk7TlKMyeZyZNLphOuiaRp+EIgvVnJPoIP/0uO4LdvGUcUpWaVUmZ8oinjzjTewMhkOyPRjJ1SKMInfTRNWkd/rjLfVOWUzGQK5eGy12xQLhaVz7CigdYZxqVSKoaEh6vU6b19+h98++7ssxDUucYkXx57jef1pJicn2b59e/LQ9GogtywLx3XFOeu6aHKRmZ2pqSkM02Tbrl09r+VOw93xWHYgCAIuX7yIFoYUczkG+vuTEEDTNJFTbzZp2XbyAJTLZTKWJdJ6hrGsGgoi197tJbvRarcTY89ms0LptyOcOHniBNVajcOHDmF2lePVAhME5RhWz9B0Qm2hYv58Loem64RBgC2FWrsfzO6/t/wWv3nht/g3F36VrJlh0OhnJzs5MvEeAwMDSViTnCfLm9HV3y3LQtd1fM/DsiysTAZNZpyuXrnC+Q4hqTsZd52Hn7h2DRwHAxgcHASWGImu52G7Lul0OvHqWctaEZ5oMn4OZDueaRjJK72XZ1eVUxDFm24a7fTUFOfOnePBBx+k0tfX87w1WZ1VhS9Ndkp1pgzVdcgPJJ9VhqgbBoVcjmaziSPz5CsW2irEiWPemXmXXz76K8zaQqP+KlcY1UcZ0QYoRDmsTIbZmZnkGFEH5TkJa+R5WOk0ruMIpmYQkC4USJkmjuMQhiHj4+O4vs/9+/ff0aSzu8rg52dncapVgjBkw8jIUlpPck1sx8E0DNL5vEjpyYpj9+3XNY0IGV5EkeCPr0IataVCAYjFsDJ2ZSDtdpu33n6bweFhNm7cmPBnkm4oSeONkfwa2xapT/kmIo7Fn53nKd9Uio9jmqZYA8j/QKRXa/U6lVJJXGPHG6Ptt/kPJ/4v/vTyny27lpCIcSYY0PrZmdtJOp3Gdl3qzSb5Hk0guq4nC1pdro3QdZGZ0jQ0XSebyeBK0t3s1BTHg4D9Bw7csTH9XWPwTrvN4sQEfhBQLpXIZrOJF2o0m8RqMag47CrNtsY+VcP1aqNoHNel1WwSRBGWZRHLY0WyDB/GMWdPn8bzfXbt3o0tefTJ4g9EilE+TGEQEEcRumz3S2ZVqp9VClSGQJHqZPJ9fKmOgPyM57oi6yPThJquYxgGpxbf5/96/zeZdqbR0YlYGZPPs8D23HbKMiV56dIlduzYQWaVFGNnd5e6DgXdMMgaBoau4zgO87OznDh2jAceeqhnneF2464w+Mj3mb1yJeF49Pf1CWMPQ2qyIGOm0xSk11HdSmsZexgEwtPKNjkQoYUikLVtOyn2ZCyLyDSx5UOl3gWNWo2rV6+KUfK5nODGyHNQBSwgWVs0Wy3Sstkkm8mIbYFSsUi5XE4eFOSbwQ8CkWfXdcGpUenLOCaH4Ph7noem63i+zRcuvsSrU0LZrEQJNAjjkIiIgAA/+f+QlJViy5YtHD12DLvVYmZmhuHBwRXMyM6cv0oAmKkUnozl1e9V3aPVbjM7M8OJY8fYf+DAHWf0d7zBR0FAY3YWx3GI4pihgQGxeJLVx1hWG4uFAs12O8nOlNfgcccgmjdkWrBt2/iel6Qv/SCg3WoRIxa02WwWQ3ox9WrXNY133n6bSqXC/fffv2rcuqK/RmaEei0Mu+nKMYgmEl1fVjgCQMp9uJ7HmeoZfu30v2fBWcDExOj8n2ZArGFholYeERGFMI/reRSLRRzXRdc0ZubmGBwYINcjvAl9X8TukhLt+/6ytYyGyOaEYYjtOMzNznLyvfd48OGH76iY/o42+CiKCFot6vU6YRRRyOexMhlcx6EhtdRN06RULILklnieR+D7OI6zwlvFkPDbq/U6rm2Tltuo/HMYBASeh5XJkMtkKJVKPb+wCxcusLi4yAsvvLC6sbOUYVHXAyuLRashWcSusr7IZrOcnjvDrx79d9Sp48n/dUJHx9AM9NgghYkeCo+b1bM4jkMhl2N+cTEpOk3NzDAyNEReFu9giUwGYh2jWhM7r02dr2VZaHFMy3WZm5nhwrlz7Ni9+44x+jvb4NttnFZLZAfCkIG+PtrtdnLzLctKqqsxItWXy2aFpoxtY0rv6HmeaOZQMbY0bFTxyLKE19V1Gs0mmq6TljSFXnBdlxMnTrB92zb6+/vXvAatI1xSBn+jr3mty+N3w9B1jlWPEWsx+TiPh0fclVyNiAgJCeKAOBJGaWCSstKkTJNcPs/45CTFYpF6vY7jOFwdH2ewv5+yVEJrS1lBXdcp5vPUZJU5CIKeHVHpTIZYvjmvXL5MNp9nw9jYHWH0d6zBh65L6HlCdi6KKBYKeL6fZEyymQz5fD7xMsqYspkMnuvSsm0mmk2sTEakHeVCUDcMUrLRIY4iiqWS6A6K4yRmT6VSlGTDQ7KY7MDxEyfQDYP79+9f+yI6Pqfy7ypDc8PouLZe2DO0hz+/9GW0WCNPniZLo3XCOEoKXjoGsR4RRTEhATlL1BLK5XISqvT19bGwsIDruszMz+N4HqZhEEVRIh6lGkoiqdywwtxjodOTTqchFj2zH5w9S1aS82437sjcURgEhK1W0gQRR5FQE5AU3IJMO6ovU5mVr0reMqvhBwFtmfLLZbOUKxX6KhUKuZzQfYEk89C2bTwpo1dQRSW52NTVIlTTmJub4/Lly+x/4IGVcXUXOh+TxLt/mHRdB6FrNTw79jQ/9uDfIG/mSZNGi3WCKCCIQoihkwmkoScKCtmUCFnUwjMGioUCW7ZsodLXh2WazC0ssFCrEUiVBNtxRLwvG1fUWzK5Xmns6twtyxJpS9fl/JkzydC224k7zuDDMCRsNkHTROweCxk6RVIq5HKC+6GMPY6x222qtRr1eh3XddF0nYKk6uYKhYQEpghQSX4ccQMU7xvJF18t5NA0jZPvv09/Xx9bt2277rV0mulalODrfV5dZzdU0eqvbv9Ofuap/zfPbniWfJwXhr1KMKRrOmiQN5cMPpbENHWswf5+coqK4fvoskE9CENs2xacHmn8dMTx3WcYx3EiP1JbXOTC+fPJfbhduOMMPpaGF0jBIs91E/HRTCYj6LYyL9xut1lYXKTZbic30kqnKRaL9Pf1MTgwICgFsJRmlAxF5b2jOKYl1XmzUo99NUxNTTE/P89+WU3s/g+kkcr9dhqAqrB+2IKMejhVIUulJUP57yCMfrA4wP+w64fYWdiOeZ1I1dAMctLgM5kMGkszZf0goNlsCvpENktRMkoz0ltrui4aUKIIx7ZZrFZFjUDTkt6DBPKtmMtm0Q2DiWvXllEZbgfuKIMPfZ/I9yGOcWxbvErDkFQqRTqdJp/LJdXNxcVFbMcRhSNdJ5fL0VepkC8USKVSSWxfKhaTNJsXBII92G4nX06z1SKUnJvsdbrzT77/PoODgwwND/f0n52pxaQ7SV2biuE7PLzy0MqoVcFJ/dxJN9Bk1TM5VtexDV3nePU4V5pXydN7sd2JfFpso2gYtm3TarVET65M9W4cGxOir7rO/OIimq5TKhYpFgqkJWXDDwKa7XbSG9AN9XYtyLbFyxcu3NAIz5uFO8vg5YJU0zRaMtNiZTKYqRS5XI6W9OiuVNzVDYNCoUCpVBKeSnrPhAQl95vNZChLSm0MNG2bRrNJs9UikAWowv+/vTcPkiu7zjt/b8l9qyUrqwpVBRTWBhpbo9ENoJvdTXSTsifksShSi8cjjSyFQlLMaCTZks1R2H84bIcVDoUccjg0ZsiirX2xPEGRbEmkRFK9sBeQQKOxdGPfqgqofcl9e9v8ce999TIra0ETQG84EQgAVZkv33t53rnnnvOd7wt0ZzvZ5NQU+Xxe1NzXuY5OjqnAbcEcvgU7wzJ+X/17o1tbTdNoOE3+4NofCuJWTEKY5KJZfmbvT5MKr2QcGIwPCDyP5xGORn1OelVaTCaTggSqp4eIHGCfX1gQTT3DIBGPC5y8nOttNpviO5N7qHbTdZ14NEq1UmHy9u0NCTXfD/vAOLzTbILjoCGiRiGfx7Zt0skkkVCIfLHoV2h0wyCTStGVyYgvowPQqt1ZTNMkk04LKgxEabFcLlMul9cnG/I8LrzzDrm+PvokYG2917f+t5W06b3Yes7/1ZtfZao2RQPBbBwnwU/v/Wk+u+0H+Z3n/yuf2foPCeki1fnM1n9IT7hHCCqUyxiG4ZcYk6mUSF3U52oa2d5ef6B7fnERV3Le67Iak5KrKp6HY9uiLFyttkoBaYLmJGyazExNsbS0tGb16X7ZB6YsqaK753nkFxdxHMdn4ypLrLthGCRiMcIBAFfQmVZzdmVqmMFJJlnK5/EQmPFms4nVbAremXB4BbZm4vZt8sUizz/++Hu6tuAX/14r0QrP0skWawv82dU/B6BChR69h13JnRzNHgEgHU7xc/t+lv9j149TaVSIEm1JK5Q0T7DZFDTDMMhms8zOzmI1mywsLdGVyQD47MixaFQgKiXPjW1ZlCyLWCzWUs2KxeOUymWWFhaIxWL+iOGDsg+EwzvNJp5MLerNpoAIWBaxeBxLTt8nYjEfMKZM0zSfm30jYDFlNQmtVYPbjUZDkBI1GjRk2S0cDos2umFw6eJFBgcGWppMa1Fyqk2mIlhtNBqUKxU0TfNBX64cJgcxvVWTKiCGrqNLpmJd06jXamLutq0EG7Q/uPSH1GwZMPBo0OBHdvwQjUYD0zT9wRHLtgl5IRwcv+kWDocJrwKeC1rINOnp6WFhYYF6rUZRliatQNVFl+jJcChEVQ5912o1mpZFLBoVpWBNIyZhyZnubhKSmflB2QfC4d16Hd0wcByHaqVCuVTCtm0Ssl6eSSZXRTSqConKkdezuozmGqJNHo1EiEYiAo7QaGBJmut6vS7426enyReL7D94ENu2Be+jpLsulcs05OvqjYYQO6vXqVWrfh6r8vJgiVH9HMSm9fz588ELaj1htXE1DAE8k8MX0UiEaDTKrDfP34x9Y/ntaDw19BT9kQFKpRIN2TxS5j/M4bBfMVIpx3oWk9yW+UKBskyFIqpEHHi/IXH7zWZTdGltm0qlQjQSIRwOEwqFqJfLLC0uEo/HBXDuAdn77vBus4knc/dSqUShWMR2HMxQiG5JKrSWI6ubvRFndz2PqsTghGXEUWaGQiRlHmrZNvVGg2KxyPXr14nH41y7do1zlQqVatUnU3U8D9MwiEejwgmjUZLJpI+IjEjIQlNG+mgsJh5iqQ1VKpX4xre+xXPPPUcqlRKRXzISK0qOQqkkaEB0XQDjJAfO4tIStWqVL9tfJayF5UY1RIQIu4u7uHXrFqFQiHgsRlbyaYZCoY7RVBFErZU2KUsmkzSbTQpy06+6ru3lVjUlZZgm1WpVRPt6HUeiT2PRKHPT03T39Phksg/C3n+Hl/IxpXKZkuR4CYVCJJJJUSZcz5EV9lzCV1cDWgF+yU0zDCJKXUNas9lkcXGRhYUFFhYWWFpawpa6TgohGY/F6OntJR6PE08kCCsHktUXBTf2u7PyQaxKItSYXFGUKeczTbOjGIHjOH4lRQHkmnIO17Vt3p49Q/1CgxQp/z1PJp8gpsdZmJ8X00hyhjeeSJDt6aE3mxXMyel0S4T3PE/cw3UaQ67nkUqn/RWtWC535NBXZspKWr3RoF6rCdpw1xXzwK5LpVwmGo0+MNjB++rwruviOQ6VapX84qIokYXD6Ibh08WtZ2o0D5aXZs/zWvJ6WKbCRu4H8vk8s7OzVMtl5hcWBNQY0Yjp7e7m0T17mLhzB6vZ5FOf+pRPq2FLIiRb5vyut0yupLgZ261creI5DrZMldS5luVqU65W0VTkDdTiXU9IZQJ+WqLq9rZr8eUbX/HBYQ4OmWiaf/L0TxALi75DsVTyhR8q1SqLCwvcvn1bFABkTt7b2+sTv2rIwLFK9STYPOvu6hK192aTcqVC9xq8k5omGNk0xP7JRvQ/IrIDG08kSKpKz32299XhvWaTRr3OonT2eCKB57oUK5WNXfwqEV3TNLwAxZ7reZTLZZaWlsgXCsxOT1Msl/E8j66uLrK9vTzyyCP0yOVVrThnz53j8cOHWyKhYuIF8XB4nicmoGQKooiWghwzasQPaGFCU4Ay13H8f3e4GDF0ITH4qkP84q1vcrl+pQUd+X/t+T99ZweBH3Jsm3g8LpgJ5F5naWnJX8muXbtG07IolUq8/vrrDG7axEB/f8uKo64jaOFIhFQiQb5YpFAqkUgmV938KsxSOBRC13WqtRqu61JrNLDk/SiVSusiT++Fva8O35AdU9dxiMZiZHt7mZqa8tF5a9o6uaYamp6ZmWFsbIypqSksyyIajdKXyzG6dSvZbHbVyHTjxg3C4TAjw8Prfo5hmhisLJMif6ZGCTMBbL1aLUA4ZlLSbrQMcav9Cfhpgwcs1hb5k2t/1uLse7r38OymZ1o+2zRNzFAIz7JoNJtCblPX6e3tpbe3l7m5Oebn50VTKBbDdhzOvP02nueRyWQYGBhgYHBwVTWQZDJJRXa780tLZOVwTsf7hHB6UxMUglVZp2/W65Rltcq27fuey79vDt+o1ykvLWFZFmGpyAH43b6NUritcHvPY25+nls3bjA5NSVwIPE4A4ODjG7ZQi6Xo9loUKpUWqoXQbNsm1u3brF169bvuWSmhIk1KYMTNLVSmIFVo/29wIrU7vcv/YFfhlT2M3t/uqNTRsJhX1squH8YHx/n9OnT5HI5KpUKuVyO/QcO0Gg0mJqa4vbEBBcvXeKdd98lkUwyunkzW0ZHW4dqNI1MKiVSG8uiVKmQSaVWnMPyy0W6aUgoiCrLzs3OkkylqNVqpNZ4/72w98XhHcehKPHWhmEIElAp86KwF2umNIEoqm5is9FgbGyMWzdvUiqXSaZS7Nmzh0wmIxQxQiHSqZSIwDLdcVdZJcbGx7Esi23bt9/VdXVENKqm010dqdWC771RuMnX29gIPjX8Aru6dnV8bygUwpBzvpYsCFy8eJFLly4xunUrjx08yNe//nWfrc00TUY2b2ZkZATLtpmbneX2nTtcvHSJCxcvsmlwkK1bt/p4IsMwSKVSVCoVSqUSMVl67HwhYnOvqjqxaJRqtSo0cfN5TNP8aDr80sICbqOBK2VoErGYj5BEArlWtWBnFUGTffPGDSHV7nkMDw3x2OOPk+3txXYcilLJQwHIFJ5FD2x28Tw/inrA9WvXGBoe7jjbGbT2RlAn/Is/1vdeVooO6dF/ffd3ZBNKfFLEiPBP9vyT1c9Rtv8d16VWr3Pu3DnGx8fZu3cvO3ftQvM8XwFEBRv5RkzTpH9ggP6BAQ4eOMDY+Di3bt7k26+/TjKRYGhoiFx/vyipyrLjYj5PLptdNbUJMjOYpkk0FqNWrXJnYoJoLOY/lPfLHrjD12o1HAn7jcVihMJhjFAIApu89YYkPASR6rvvvsv8wgKpZJJH9+xhy+hoS3Sp1Wq44NfDlQUbLX63FsDzmJmZoVQqcWgDMIIWZ/c6kzitxuZ1Vybfe2L6O5ydPyv+Kz/8R3f+KNloz6qrFYj0sFQqcfbcOQr5PE88+SRDQ0P+Ztq2rBVsadCK+DRDIbZv3872bdtYWFzk5o0bXL16lStXr7Jl82Z2PfKIGISXWJqOEjmBPYnq0IZDIdxIhFKlQj6f91UE75c9UIf3PI9SoSDU9GRe60NygxF3DeeYm5vjnQsXWFxYoKe3l2c/8Qn6crkV77EtC0uWIduVpv1uZzv2RtO4desWyXTap/ATP+58PsEIv5q7qTz8riad2s4PTaPpWvzOu1+U/xUl0r5YHz+047NrN4s8j1qtxltvvUWtXufwE08wtGmTf69t2xaYok6bRQVLDpYpNc3f9O7YtYuxW7cYHxtjfHyckZERenp7KZbLQjiu7Zr9s2w730gkQq1eJ7+4yFJ390fH4SuVio95D8kWsyHnSYMO38k1FhcWeOfCBWZnZ+nu6uITn/gEuVzOp6trt2qt5tfVV0jLrDKh07AspqaneXTPno5OrjhjOj4Aqzid/9C8F4cP/PurN15ksjoljqVpuLj89N6fImJE/JJm8AFWs7hLS0u8+eabmKbJE08+SUyWUtU1KAhER4dn7b2HaRiMjo6yfft2xm7d4vq1a9y5c4e+/n4i4TC9q5QZXU/w27iBgBKPRkXzsVTqyDhxr+yBObzrupTLZXTLAumA7QMXPktXwKHq9Tpnzpzh9p07ZFIpnjp2jMHBwZao3O5sVrPpf5Gdhjo02WVVxEaKNmPqzh1cx2FkZKTjNahppuWP1vzG0wpuSHVNgeHtuzZ5XeVmmT+98meBn8MjPbt5bvBZv0HVghqVf09NTXHy5Em6uro4evQoDXlfgmwDamijU0ojLxJdbjRXnp743Eg4zKOPPsr27dt598IFJiYmmJmZYe+ePWzdtq0FRxQ81yCUIRQOQ6VCXvYIhoaG7v5+bcAemMM3Gg1cy0KzbYxQaGV0B3/AWEWoifFxzp49i6ZpHHniCYZHRtavdnhiUl5F906bxeBYniu5JQHGJibouxtdUk2oZfhTTh2wKEFocFBNxG+aBZtSbYdXY4JfvvFlSs1SyzTV/7nv5/zjdFpbrl27xvnz5xkeHuawbJ4pfE4zsDH0WSDW2KB34qCHQAVKPsyRSITHDx0il8tx88YNzpw7x9TUFIcOHRJCbdCy1whCGXRdJ55IUFhaolgsfjQcXgt8uZ2cynVddE2QiJ54800mJycZGRnhwMGDYtCjg7V/EQ3L8sV81xrZM3R9GQogdZFmZ2c5fPjwhq8p2ETSAg9t0NS5raDnUBtnWSJdLQ+fLE/y7clvt5A3vTD8Ant6di93Z4Pv9TzOnjvHjRs32LVrF3v37vV/FQ6HhR6tZfkrW61aBTqvhEHTdb1V8jPwoLVfc7a3F4BMdzdjY2N881vfYv++fWzesmXFuQaDRCQcJp/PU5Vo0/tRrXmgDu/Ztk9Z5zd9AjfLcRyu37jBYj5PyDT99GVNa0tpGjK6x6LRNdMITdJ0qAg8cfs2hq6LDd09MlcCt2DjbGNB81yXL13/EsFdSsSI8pOPdi5DOo7Dd7/7XWZmZjh06BCjbcwKhmFgGAauJ5RPIuEw1VpNBJ/1Uq62KB8E6rVfWVQiR7u7u8lms9yemODU6dOM377Nocce8yWJoDXKG4YhiJ/kbG3XfdCFfSAjfrZtiyEPSfkQahvLA8DzOHf2LPMLC7i2TU9Pj+B7l2CrjX6OLYfAox3Qh0FTVRPl8ONjYwxu2nRXrW3/CjpFZ89rSWdWpeMLNKbaX3Nq7jRX8q14mR/Z8cP0RbPLG1P583q9zquvvML8/DxPP/30CmdXFgqFUFTcALVqtcUB17JgAFHp2WrXpuAItm2zd98+njp2jEKhwLe+9S0Wl5YCN6B1zxYKOPz9sAcS4ZvNJprj4EJH2IDjOJw8eZLFpSVy2SyxeJxKpcLbb72F63l0dXfT39/PgJw6Wi1a1hsNv+6+3iZRpRiu65IvFskXCux59NG7ui6VjyoCIo1A5JPH9lh9PE/9zKOVVhvAciz+6OIfy9+Ln2ejWX5ox+f816jjlkolXn/tNTzgueeeW7OsFw6HlwddPMH2G9ugw8NyCumuEt2VRcJhYrEY5UqFQrFIf38/n3rhBd544w2+/eqrHDlyxF+9g1FejXRWZap1r+2BOLwi6gSWifWlNRsN3njzTfKFAodls8cwTTZt2kS9Xmd2dpapqSlu3bzJlStXCIVC9Pf3+398gQIJRMLzNrTp1AMRfmJ8nLBp0t/fv/Z1BK7Hj2qekJnUgptH+Tu/y/oeKjR/eesvmanNkCDuf/JPPfqTRIxIy55lZnqaN0+cIJ5I8NRTTxFvG4NUpdTgdSv6PKvZpFqtbjx1kNFcAeI0Vu8gewgGt4pkkLNtm0gkwjPPPMOpU6c4ceIEBw8eZNu2beLeaWJU0zBNHMfxYdT32h5YDu9YFgaB8peMLq+99hqWZfHJZ58lGo0yMzvrb44ikQgjIyOMjIz4sNbpmRlmpqe5ffs2AN3d3fRls2S6uwnJAeyNpCW6LE06jsPE7dsMDQ+vWDncVWru7Q61WpTz3mP+XmwU+JMrf+bDBzxgd/dujg8db3nd2NgYp06doq+vjyMBbakVq0kg/QCR1li2LVLGu0hpAH/P5MjVa7WGmidxOeFQiIYUYutKpzFMkyNHj/LO+fOcOXuWaqXCXklsFTxeOSCqfC/twUV4y8KQQ8Mg0pxvf1tUH44fP04ykaApqytqhC5oiiOlt6eHvXv2UK/XmZ6dZWZmhqvXrtGQatiD/f0+xmMtxKWhC1HfUqlEqVTiwIEDK8pu3yvbbbCxcjf2R5f/mIpVJoGCBHv8zN6faakKXbxwgYuXLjE6OsqBAwfW/ozA+0CkDTU5FOJ63roVmtZDiQdHsRW0R3iPViXARCJBI5+nWquJqS35/v0HDhCPxzn3zjuYpsnuPXtwWV4NlXbUvR7wfiAO35D0eYoOwnYcTpw4gW3bvPDCCz5IS12cJ8W/VqQCqiKjaUSjUUY3b2Z082aq+/czcfs2C/PzFPJ5vnvyJJqm0dPdLTDdAwOkpUhwsF2PJshRDcPYGN9MB1uLW8V7DynNreIt/mrsa+IUZYR/euAp9vTsFp/nOLx1+jQTExPs37ePrdu2rQ0t6GCarmPqOrVKBTyPpEQodqq1d3y/tsxorCKy6uy2n0s0GsWQD0i9XicaqPdv37ED27Z599IlUuk0gwMD/gOlmCQ+lA7vym6emjs9c+YMi4uLPPvccy2IRIVi9BAVl44ROoDmA8DzaDabdGUyDPT3E4/HqdVqTE9PMzM9zeUrV3jn3XeJRiIi7x8YICel1w3DYGFxkWxvb8u+YqPmg9DWgxVsMMJ7nsfvvPtFPE9VbjRMLcT/tutHAbHfOXHiBEtLSxw9coSh4WF/wupuzQyFqFSr6LouJDjb6urBBmCHE215mFW3t5PpCvteLlOuVlscHuCRRx6hUChw6tQpnnvuOeKSudmS7HL32h6IwxvIPNfzuHr1Krdu3uTxw4c7Yi10qaO6UZZZ23FoNpt4gVJkLBZj6+goo6Ojgi1rYYHp6Wmmp6cZGxtDk1M/6UyGpXyeR3fvfs/XtlZUdNs6kevZyZmTvD33duDYGp8e+RTZWJZKucwbb7xBs9nk2WefpUc2d9ab/FrNVL07ERQ4Rh1yuXrUCXekxBHcNRw9aPF43FfubjabrYFM0zh8+DCvfvvbvHniBMeeekp8hhKNvsf2YCK84/h0DWfOnWPXjh2MbtnS8bWG3ExakrVqPWtKjplwOLxMOBrEa+g6fX199PX1sX//fiqVCjNy43vj+nXwPK5dv06tXmegv5++XO7uxswUJkex+8q/Hdf1lTM0TaMhI2GwaqImfsrlMh4uf3b+f9BFN6oQORga5Jns00zPzHDu7FlC4TCfeOYZUsmkiLASzch7oKA2DYNyuUwimRS0KKtcc/sq5bHMNrZRC0mVlVq9TrVWW7FyG6bJsaNHeenllzl/7hw7du5EN00qksX4Xtp9d3jFTGCYJleuXCEZj7N3DeUMUw76NjZIttm0LCE+JlXkfIzKKmlEIpFg27ZtbNu2je9+5ztMzszQJ2nkbt68ia5pZPv6GJB1/2RgAkcxEziu6zMXWM3mqlGu2Wz66ZnXIRcNljlfuf1t5mvziOlYYX9/+PtYWixw88YN0uk0+/fvB/B1XQFfPNhUjGW6kK9cL43yEOjVbF/fhmZJfU59z/MhxXcTGOLxuE9UlU6lVuxrYvE4+/fv563Tp8kVCvTlcoJDqK9vw5+xEbvvDq86ehVJh3FAfmmrWSQcRocNqUXYjiM6q5pgEwgiKIOTNR2d3/OYm5ujP5dj67Zt9HR3UymXReozM8M777zD2XPniMfj9Pb20tPTQ1dXVyvddTDvRURBpRYCctXRNJ9yOoi30TRtmbUg5PA/xv8HFar+RnVnegc5O8f1m9cYGBjgwIED/meqVQSkdpTj0E5Urc7DlGIGRptyYKVSwZFSQkpsYlVrS118DP1dYF2UEqIrSa46TZP15XIkUynGxsfpy+U6shB/r3bfHV6N7d28eZNMOk02m6WxygXjeX5q0rQsPNddNf/1PE8gMBGRRjeMlkEFfwleJdLlCwVq9Tp9fX3omuB8NEMhBgYHyfb1Ydk2S5KYaXZujvGJCQxdp6enh1wuR66/f1lQzfNWRCzHdWnKLywSiXSMuKoC8RcTX6FgF1p+91z0WW7evMmWLVs4ePDgimjqeR6e42A5DpZl+SuP2/Yn6MymrmOaJoZpks/nAcE8YEvBZP9eBzvIbefsKsCdJ8htVT6/nmkIag9bcm22f/+qEbZj61beevtt5ufmcHZ1ntP9XuyBRPi5uTkKhQJPyQ1Jo14nHA6vYA1QqYmh62ieR73ZXFEj9gJfRlPu5CNShLhTYhF0Mz9/1jSmpqYwDINoLEaxXKbRtpkyDIOBwUGGh4cxDIOqFNydmZ3l8qVLXLx4kXg8Tr/M+3t7e1ubMIHcd630Yoklvjn9rZaf7Q3vxZly2L17N5s2berYuNI0Dc0wMOXvgueuOtuu64pVUG4AbdfFbjah2WRufl4wp5mm6FJL3VU1I7DaOStqEVOCANXnqXNaLbdXgL5qtdoxXVWc/9lslt6eHm7cuMGRY8dWvW/v1R6Iw89MT9Pd3c3g4CCVctmnXVsx9yhTkFAkQl2SmyqHDy7hqopjy/Z2OBxeO32R5kmUoNVscufOHTKZjJ/3u65LSHZpTckaHPzSI5EI3d3dYnbTsgTkYXKSiYkJLl++jGma5HI5H/Ojlvv1CpJv6t/B9ZY3nSYmh5oHefqpp4jIa18VeCaPr0q5y7dR81cE9RgoLLxSGi8ViyQSCWzLotZoUG80SKfTq/JPKlOy8+r4QSdfz/HVSufIypp6SB25SrmeRzwaZfu2bZw8dYq52Vn2BODN98IeiMMvLi2xc8cOAKLxOI1mU1DfWVYrQ0EAF13VpNCWdMr2+VO1WTVDIX8p1trSGnFIQY7akIAp1SApFots3bZNEHlKWKr/AGpr87iHQiGGhoYYGBzkMcdhKZ9namqK6ZkZzpw5g+d5pNNpurq66MvlSHXYpAHcKN1kQr/TAlk9pD3G//rsPyCVTlMoFsXpbAC6u1550s/pJfX20tKSGHqPRFpovRVdeCgUEkxhbc5v2zYu+H2LTvdJ0XC0c/drmqBfcSWHvCo01CWkO2SaGIZBOpPBMAwmp6bWvu73YPfd4WdnZ3FsWwxaI8qOkViMeq1GpVxG68ApGIlE0HTdx7Z3ihaq9t7ywAQioStz/IbkY1dm6Dp1WS4cHh4mnUyyJBl7g7m4D39ty2Nboq0nCEgzmQyZTIbdu3fTbDaZnZ3lzuQkU1NTjI2Pc+7cOfpl3j/Q3++D2yYrd1quKakl+afHf4l0qsuPpGuuEOulEgqUJQOGOvdisUjTsujP5UinUoIevNHwc3LXdf17FzJNwpL1wXUcHPk5Kh1VKVvw84P/b/9dNBoVogmNBqlkUjAKO04LpFtDYKQm77Ten3th993hb9++jWGaLeywsVgMVy5rlWp1RQQMS+JNS76mfcDYkZsxDVZopdqyha1KgiBuYEQqVJiGwfWFBXTDoLuryy/jqXKbWmaDlHfK6fyVRiL7IIBJlw4VDocZHh4mm81SlRKPxUKBmZkZTr/1FiC+zP7+fnZEd5DwYtS0GgYmv3z4n9Gd6vGP23IeAVOUIGpT2dLSb0/rOnR7FxcXhVP19PjpT9jzfDoTW66+tm1jyT8KbAesSPfWYh1u5+2PRiIUEQGrWq36+wvFcuC5Lq48txs3b9JoNDoyK79Xu68O73keU1NTbO/vXyHmFZeKfLaUSVSlO1gm3rQsi3K5vIL/0ZLOrOTiQSy11VqtpZxpGIYQEJDlQWWLCwt0ZzL+55kSkroqnEGddxAlGYxiLGPENYUmlI7XlckwODjI7t27aTSbAvIwM8OVa9ewLYsfbn6OhdgiT+58ksd6DvoPjyo9em2pgf/5rIT+ypNc9fyVzS8skM5k/ChtGga2ZWFLxcRQOCzUyh1HpJ+S4lpF46ACurr+te6ZJ1dCzxUq56ZhUK/XKZfLhCVXvGkYfvlT8zx6uru5dv06ExMT7JDp8L2w+x7hnQ5OpGrWyUSCUqmEI50+IZXjXM8jFo/7iL52h/crBXKZrUrecXXscChEJBJZtU48v7DQgn1XNH/2KlGqkwVH3Ly2n2tI4Fgg2qoK1ObNmxkeGuLUqVPcuXOHiB5hh7mD2+/c5s47t+nu7mZgcJCenh5fKMw/JssbVAXVEBd9d2jMhfl5coHrVzX6djiHbhjEYjGikQgNy6IqtbYc26ZUKhGR8jZrVaH85lqwZKwai5rmC6KpQKFeF5VsdPdavfu+R3gCjtH+O6WYXSyVsKXmUSwW82Uq81Ki0rLtlrRGLYNWs9kyKBAOh4UC3RpfQL1ep1yp8GgAHakqDqplvur7pQOr6wpG+OBWObjvaD9Ws9HgzRMnyOfz7Nu3j9Nvv82RI0fELMDMDDNTU1y5fBnbcQiHw/RlswwND/uAN9UA8ukuVtmwrnYdSo+1V2FxkCkK+EC09vdpuo6hacTjcSzbxpTnUZOpYzQSEX2QDucRLBer3omaEEPTVqQr6vqMNkjzvbL77/DQMnygTP1fl2ScpXIZu9mkLJfMUDgsGhWO05LWuJ6Qmq/W66TkimCaJvF43HfcVbnWgYXFRfC8FuCakqCxJXTAb/KoHFn+m8DfLXQTHZyuk8OXy2XeDADAgvuWaDTKli1b2LJlC57rMj09zeTkJIuLi9yZnEQDent7/bJnKp32I7vix9kIKnNhYQFPHkuZrutCkEE2rzqxKqsKVyIeJyIrO6ogUKnVMDSNSIfB+WDJUimh6JpGSN7zwAvFfVWAO/kQ3mu77w6vInm7BXfvuiY4w2uIcmOlXCYSixGPxagH0hrX81gqFKjW6z62PhaPr0yZ2unhArYo5RLbQUmmYWDLBsxdj+StUiFR16Y+94033yQSiXD8+HESyaTf7Ww3Tdfp6u4mFo/zaCQCnicmvWZmuHT5Mu9euEA0GiXX10f/4CD9fX0rnb2tNu95gpZjfn6eeDS6oqFnGAaOpuFI4eGWS3FdLIWfkelHNBIhLCU/680mjiTaisZifuVMfb7rumLYRFaAUqkUDbkvsOWKoe6XPwr6YYzwIL48x16J1VBLnXoodE0TOXy9Tr1Wo16r+ehHq9GgUqvRlA0rEJFGDXWsOHbblx20hcXFVvlJeQ6GaaJJhb/1GA/U+9b8fSDC3759m1OnTtHb08OxY8cEy9Z67w8wHkRjMbZu3crWrVsF3Hl+nqnpaaanprh16xaarvuVn/6BASGe0GFF9YDpmRlyAwNiPxDgxDEMA9R31Xb9Cp5gaNoKRcBoNEooHKZaqfgylbYUnlAgwFq97t+PZDLpU7UoYJ3aawVnn1XK86EaADEMg75cjrmFhY5Kb4CfNiiLSS7IarkMMgIokqR0Oo3neSQSCVLJ5PpjbR3SjHw+z85du3yKPGWKOsR2nDUxPMHzXuuzVI599do1Ll28yPDICIcff3zDtNnqaO2wAt0wyPX3CwGD/fuplMtMzcwwNTnJu+++y/nz5wXkYWCAwYEBstms3yQql0pUymX27d27YvrLVBvXDiujwgStVgQw5F5Mr9UEI4Jt0yyV/L2NJ9OkWDzuX49hmtiNBrZEexJwdk3TWJqfxzDNVWkP36vdV4fXNI2hoSHOnTxJuVxeobrcCZwEospiZDI+K1ZTNkG6Mhli0Siu560LTe3UjFHVnJRUxAuaoes+Wb+1TnlSnfua1QnX5dKlS0xNTbFn92727NlzV9WU9eZh1dknkkl2JJNs27YNq9n0o//M9DQ3b9xAl/MA/f39NJpNMR8gm4BBU3X29nq6n8543pork2J603WdQqFAvdkE1yUSjZJMJJYrMdJUZcxRwDVacTqz8/P0S7mde2n3PaUZHh7mjVdfZXZursXh10sJVPktlUpRKZWwPI9iqeTnj+uN5Gks18WV85RKJfC8ztzliAjmOM66Dt/J2YNsuLZlcfbsWRaXljh06BBbt25d52o7mIq0q600HXJbIyBggOdRKpeZkZNe58+f91fZCxcuMDAwIDSZ5Iqj4MueJkWe5bhlUzb4lEr4WvfEsixqUjlcbzZBNag6FC0M0/RXVE0O1KsIb5gmS4uLPCnBhvfS7rvDx+Nx4qkUczMz7AhIyHjIKNxhCXVdV+C1HYdoJMLApk3k83lR+5X6nqVyWTQsVnN8TfP5YpSVSiU0w/Bhve0WDoV8kqK7Nrks12s1Xn/9dSrVKgcPHmTrKgxg65l6eFaj+PBLkurjO5xPKpUilUqxY+dO6rUaX//618lkMty5fZvr165hGEYL4E2X9IOO6xKSiiANNWCzSjrjeZ7ARTUaWBJ6oGkaPT09oksrHwI8ryWIKEyPivCwvGFVCt7vKVCsY/fd4ZVm0PidOxys1XwctKdazm35r6LVVi3pZDJJPB6nUa+LZoXroktS0GajQUjW3oP5pbqBRiDqgnD4ZCKxappgyiESR8JqVxM967Q6aUAhn+eNN98E4PHHHxcryV02haAVKrAqp02Hqsxals/ncRyHw4cPk0gmKRWLTM/MMD09zZmzZ+HMGZKplBiGl0wPjnJI8BtMPmpVVrSacibBk0S4ISlrD2LFrGtay8ZV1d3VwI4dwO6DWGlu3LxJRG7U77Xdd4c3DIN9+/bx7akpLl64wOHDh0XkDbSlgw5UkXKGmqaRTKVEbi07fmXJo5JJp8ETbAVNWVkxDaNj58/vSiIcfr2c0DRNn2x0NYdvB5QBTE9Pc+LECZLJJEeOHv3epnXaN8T3wKZnZkgkEmJoW9NIZzKkMxl27dqFFQS8zc5ya3wc0zTJ9vbS3dNDfy7nox8d18WS0G3VgNNktSYsFQODFpWNwLqEIGsSNqIUzDWJnbFtGzQxy3z9+nWOv/DCfRFFeCAOHwqF2LFzJ2M3brBjxw6SQd1PbZmTsVqr4dh2i7MrS6dSLC4uiiaHrhOLxQTXSaNBo14X0ca2MXSdsIwyIdPE8Dy/C1osFtm8efOa5xuWrFyWZa1OUNS2Kt28eZMzZ87Q19fHk0eOCOCbJJV6LxbcsHY8xt3Wpj2P6akpBiTvS7uFwmG/m1uWanyFQoGpqSmmLl7kwrvvks5kyPb20tXdLapliO82IpVc1FE7iSdEIhHRZW02qddqmLLp5Jem5b4J4Nr165imyVOf+MTdXeMG7YE4PMCW0VFmJie5cOECR9smWTRErtiUuIl4PL5igxSR+bquCcl2NSMZl1iPukx5lJpcXTanwpJ+z/W8DemAhkIhqNV8+EKnUmqwe/juu+9y5coVtm/fzr59+8RGbCPQ3jVs3fy9w89U0Ojk0EtLS1QqlXWpx3W5yUwmk3TLUcZmo0GhVGJhYYGx8XGu3bhByDTp6+tj0+AguYGBDV1nJBLxh3YqbaJnqgpUrdeZmJjgwP79Kyp698ruO122aZp+BeDRPXuYuH2bqTZgv+O6YkId4did6r2eJ6QnQ6ZJuVJZkffF43G6MhlSqZSADMsKQK1ep1gqMT09LY6xDo+i6uBquu4D0jqZ4mK/cuUKBw4c4ODBg8sOuk5JcV27Sz4bZat93sTEBJFIhOw67GoKQFapVllcXKRWq2GGw+RyOfbt3cunP/Upnn3mGbZv20a1WuXUqVP89V/+JS+//DIXL11qpcHucOxYPI5iLavXan6EV7MNVy5eJBqNsnPXLkzTZHh4GE3TeOGFF9a99nckZZ+mafzH//gfV33d/e+0SoBQzbbJ5XIMDg5y8rvf5fnnnxd4EJZlV0zTXDWNcB1HPAyGAa5LPp9vwdirz1LpjKdyfLlyFItFMeTseSxJEdxQKORP2QRNQZObzWbHPLJer/PmiRMU8nmOHjvmiyio8lqwofNebM0avEIUdvpdp2ab6zJx+7Zwng44FzXyZzsOjmQUqNXrYgNqmiLIBMb+otEo2d5e9uzZQ73R8Dl+rl27xoULFwTgTdb9c/39LdUdXdOIx2JUq1WaliWCltwX3Lp5k/n5eT7xzDP+PT969Chf+tKXOH369Lp9j1/+5V/GcRy2b9/OL/zCL6z6ugdCxBSJRKhVKtiWJVimXnmF1994gxeefx5N1/18dy3SHYUvT6RS1Ot18oUCyQ7TUsrUgxaJRHDjcSYnJwUWOzC0bFmWgCpLAJqaaQ12Xdv5DcvlMq+++iq2bfPcc8+teOhg7eGNjdhaKY0nDtz5mlmZ7szPz1Ov1xkZGfE5O5WTq0kjBZDzPM+nO4xEImTS6TWHL6KRCFs2b2bL5s148rOmp6aYlJNe7YC3dDothk3CYRrNpn9/p5aWGBsb4+DBg+QCGlvHjh3jS1/6EoVCgStXrvDII490PI8XX3yRb3zjGwD8+q//+po9lAfm8CBSl1goxNOf+AR/99JLnPjOdzh48KD/mpDMtTuZK29OMpEQX5xUfe7fAFGP2kjFYzG6Mhm/uWRblsgfHYeGnK4C4aiNeh1HsgsnEgkMw2BpaYkTJ05gmCbHn32WxCrp0bqAp0ANveNwxxopzVrMAMHPdyXycWxsTOx3TJNCsbgCrqtSOEUzXiqVaDSb6HK13KhpQF82SzabZc+jj1KtVv1hl8tXrvDuhQvEolHB7dnXRzwex3EcCoUCN2/eZHR0VCj+aRrhgMMrO3XqVEeHtyyLf/7P/zkgxCA+97nPrXhN0B4Mt6RhEIpE8Gwbx7KIx+M8dewYr776Ku+cP8+eRx8VD4W2coYUxBfk2DaaJ+iZu7q6aM7OCgaEVGpD5atms0lYTs37HPJSs1SNsqmpH9UjaEqZR9fzmJ2d5eLFi3R1dXFg/34fGKVpQspekTCJE17Gyavzx1se4vCHN9qWabVsB/cmPvRYvs6n9JOpjf93kJJDqq14rsvk5CSDmzYJrD8CQmGapj+43oLtkU0kYAUUYC0LolPVO+Lx+DLgzXWZX1hgRj4AY7duoes6sXiceqNBKpPh4IED6LJil5CNwSeeeEKMHNo2J0+e5Md+7MdWfPZv/dZvceXKFTRN4zd/8zfXPdcHJogQiUSo1mpCnS0cJtvby759+zh79iwegad5NSCW/LeG2NjGYjGcapWFpSWG1hM+Q+TdiQ4pk5qkD4VCIH+v8lnP82jaNrdu3uTmzZvk+vvZs2ePzxvpO2IgZ/cflGaTUGC00C8xBvoPqlZvWZY/2aOm+B3HwdB1n8hKObDjur5kvB+t5f2x5QCLh0iHlpaWaFgWIyMjJJJJ8WCusRFW5Fewhm5rB1vRLZf3RK1Guq4LKHMuJ6oxlQpXr15lbGICF9jzyCMt59Ul0ayxWIwDBw5w+vRpTp48ueJzFxYW+Lf/9t8C8BM/8RM8LhVk1rIH6vBlXccOjGzlcjn2HzjAxQsXePWVV3jq6af9aB3koQlOFynr7u6mJiHDG2koNep1ugNDD2uZoqeLJxJcP3eOyclJdu/ezc5du3BsWziG5/mbLlc6oXI8Sw5BA9TXcLBqvY4rHVxNdHmaJoTcXCH/YrSBuZzAyqBry9R+mqYRQT5YhoGhaVy5fJl0Mkl2I/yMnkejXhfHuRu5yA4BKjjM0U7XAWLE8uatW8QkqlM1wzyEkwdX7GPHjnH69GnOnDmzYj/1r//1vyafz5NIJPi1X/u1DZ3uA3P4cDgsLh7RVVM3ItfXR+6Tn+SNN97g5Zde4qmnnyaTTvvNohZuE5Y3goZpCu6WQoEledFrDW7U6nUGZMTdyFBB07I4/fbbzM/Osnv3bnbv2YOGlH7sgN9RcABXsgWrHDgajfoPbDAaq/QCGQFNCaYCOXJnGD76UAMIpEy6pnWM1GoFUOd/584d9sjzbsferLjeZtOHB+jh8KoDNJ2uu/2oauVR37cy13W5ePEily5dYmBwkK5MBj3ICcpydFd27Ngx/st/+S9Uq1Xeffddn2PzwoUL/PZv/zYAn//859m0QbnRByJbCcJR48kknuSbUc0ZU1J4PP/885imySsvv8z0zEyLhioEqg+BL60rkyFkmjiuy9Iq00PI46gS43oDxx5QrlR4+aWXyC8ucujxxxkcHFyuya/ysKgcXlV5wuEw0UhEaJbGYsTicQGkSyRIJBIkEwm/JxCPx0kkkyQSCT/CqbRN/VsNpRuGsXpaEri28bEx8DyfllzTllW8O0XkRqOBh1Qv11YfoFnxkZ3uYxuoTdX3T548yaWLF9m5axc7duwgFA5jtBUqutqqXsGNazCt+ZVf+RVs22Z4eNjftG7EHpjDg9yMyLy0LhX31FIej8f55PHj9GazvP7aa7z11ltY61FmaxpdXV2EFAZ7FeU3RTOhqkUr5i7BT00WFxd56aWXsGyb48ePM9DfDzIvV5+53jl1/PcGLTjp9F7Lmp7ncePGDQaHhgh3KCsq51eO32g0/I26ev26YgRrnJvW9kDNzM7yjW9+k8nJSQ4/8QTDw8PgeYIpWiE0JSlru8Pv3LnTn1A7deoUAH/913/N17/+dQB+7dd+7a5E2R6owxuGQUS2lJuSpiEYrUzT5KmnnuLgY48xMTHBN77xDaHWF8jh250gLqOiYRjMzs11HCes1+ugaT5XozwQsOzonucxMz3Nq6+8QiwW4/njx0nLOrQGft36Xs9Ytptfg7/budqAzc/PUyqX2b4O2lBVgBQLczQS8QUpWsidOtia90He20azycmTJ3nttdeIR6O88MILvkPrhoEum35qOiwd4AoK2tGjRwER4W3b5ld+5VcAUcX58R//8TWvsd0eqMMDJNNpPImK6xRFNE1jdOtWvu/7vo/ebJbvfOc7vPnmm/4sayfr6e0lbJq4rstCh/a2arD4G0Pp5IpeD+DGjRu88eab5Pr7efbZZ/2HQ9d1UW0BMcVzn80vSXaIoBuVgLl+4wbpVIreDQi1qZXWlCC/YFVpVdPW5t70PI+x8XH+9m//lqmpKR4/dIhnnntOkDupfYKk9QgFWMy6O0ggwXJac/78ef7Tf/pPXLp0CYDf/M3fvOtV8IE7fCgUwpTlP0vWsYM5nIKcxmIxjh09ylNPPcXi0hKvv/464xMTHbWfdF2nu6cHU9cpVyqUAwoZ6pjqtqhoriocnudx/vx5zpw5w/Zt2zh65MiKoRKFzbEk5mOj9l5SEh9W0B7pNvC5GsKBpyYnGd0Alty2bUE5jiA+0iRkV31Wx2vtVJUJWLFU4rXXX/f1Yz/9fd/HltFR0d2WASMajeLJzb1aDQxdp28VYWjl8M1mk3/5L/8lAD/8wz/MM888s+41ttsDq9IELZ7JUJyf91Fy7c2XoA1t2kSur4/Tb7/NlcuXmZiYYNeuXWzburWlWhKLxUilUhRKJeYXFlqYx1zX9UlAg+bIhsbtO3c4ePAg2wMTWUFTm0VHinKtq3zxPaQ9ilNnVcnOtT5W03wWg/Vg0B6icoXEp/sPuQwE2ircPp2qMiAGTC5dusSdO3cIhcM8/dRTYtRQvqciWctM0yQUDosehOf532HfwMCqnd2jR4/61TVL8tj/+q//+prXt5q9Pw4fj4Np4kni00g4vDzy1+FLDYVC7N27l02bNnH79m3Onz/P5UuX2LFzJzu2b/ebJF1dXdTqdRqNBvMLCwwODPjpS/uD5QPACgWOHTu2blkrEg5TdRzBqLuOwyu8y3vZcvqTTu8hh/c8jxs3bzIyPLzuOTbqdVzbFsMbnfAyq5Q+269pfmGBS5cuMTM9TTKR4NDjj7NpaKglJavXan4qk0gkfJiwxzLPzeDQ0KrnqpiZL168CMAv/uIvvudpqPfF4QFS2SxLt29Tq9VIJhJCicLzVjimMl0Ofezfv5+9e/dy9coVLl28yOXLl9m5Ywc7duwgHInQl80yNTVFvVZjMZ8nI+mgFUgMxOTT62+8gWPbfPK558h0da2bqkTCYV+Vz7KsNR3qe9nWqjp6u8NvRB7y9sQEtVqNbausVP6xXNevaMWi0ZWOHSwrKthAMNUB5mZnuXT5MnOzs6RSKZ548kmGh4YEGFBOL4FgnFBNOEXTUZOpjS6BamqoZC3L5XJcvHiRvr4+/tW/+lfr3ovV7H1z+EwmQ0FyxyvK7GBjqd1UDdl1HOKJBAcfe4zdu3dz9do1rl69ypWrV9m0aRMjIyOkMxkWl5ZYXFzEDFQBdE1jbn6eE2++STQa5dnjx30m3PUaM5quE5PwiHq9vm4EVc2iu7VgWbL1F+sDxq5cvkx/fz+ZTGbN11ZrNYEBkulFu6l77QX2E56EU0xMTDA+Pk6xUKCrq4tjx44xMDjYcr7q345ti7QJUQEyTVMMhjcaeNoyqdOmoaE19zsnT57klVdeAeDf/Jt/s+71rWXvm8OHQiHi6TTlhQUhdFWrEYnFVnU83VgpxRiJRtm3bx+7du1ibGyM8bEx3pyYwAyFyGazpNJp5ubm/Jr25OQkZ8+dI9vby9Fjx3ystiarButVQSLRKFXZNFtT6vE95vDBz7/blGZqaopiscjT62zkmpaFY1l4mrb6CGPAbMvi9p07jI+PMzszg2YYDA0Osn//fvraKP6CKal6QEAMbAflexqNhp+/J9PpZZHlVezzn/88APv27eNnf/Zn1z3ntex9c3hN04gmEtjVqmAB1nXMQOu/E+8LsqIT5IABAVvYuXMnO3fuJJ/PM3brFmNjY9y+c0d0LCMRXNflzJkzbN6yhUOHDq0YIfSj2hrnrOs6EcmbXpNkrutc5F3dk6By991UeDzP49KlS2Sz2RYawU7Hr1WroiojGX9Xe93CwgIXJZGU4zj0ZbM88cQTDG7atLaIsfxeaipvl6koiPtrS8VBldP353JrYu6/+MUv8vLLLwMCGfm9Uu+9bw4PojxVTySoLy3hOg6VSoVkMilyyrYoqfLMRqPBz//qr5LP58n29fEbv/Eb/k3wPI90KsX+/fvZuWsX/+7f/TuazSYNy2Lnrl1sGhjAMAxmpqfJ9vWt4FpZi4S15ZzrdR9KvBqzgesJ2DEBgJnreWIiSp5rWY41VspldClKUKvXMUMhQpKRVzm/vsZDMDs7Sz6f5xNrRHcPwQgBAofU4mSeR6lYZGZujrmZGebm56k3GiQTCXY/8ggjIyPL3UwJE1gtsoNwdksSOMVjsZY9gto7GIZBpquLLsWDL61arTI5OUmpVOKrX/0q//7f/3sAfu7nfo5PfvKTq17fRu19dfhYLEY5HCacSNCs1Qgjbki0A4xX1wRW3jRN/uEP/AB/9Id/yPzcHN/+9rc5fvw4gL85dT2PL3zhC9waGyMcCvGZz3yGWr0uSIgmJ7l+7Rq6ptHd2yvAa7kcPVJ2Utf1FV9oy3nIRpTbaFCv10kmEr5z27aNY9sUy2X/36qC1LJqKTShIg5FTO4rLL4nFb4t+T61BzF1XbB6KbFhmeZdvnyZrq4uctksTals2G51WZXxNM1nZZ6bnWVmbo7ZmRnq9TqarpPt6WHL6CiZdJr+gYGVD7QnpqJaeieBkcOgOEUsHl8hflaTCNGQaTKyZYsIcIF7/cd//Mcr0pYjR45sCOu+EXtfHV7TBDvWUrOJJimXa/W6GBgJh1uivKZpgnbOcTh+/Dhf++u/ZmFhga98+cs8++yzy8Ao4I/+6I84JfWU/tE/+kccPHiQ1197jVwuR18uRywSYW5ujpnZWa5dv87FixcxTJPe3l66JF9LOp0mnUp1rGBEo1FqtRrlUsmvJwdNQYXVsIUeiNBBXLziUoxFowIiW62iI/Y3EdmVVAMqriaY1DzbBtumLq+3VCoxPz/PkaNHV02hKuUyM3NzVMplarUahXyeoqQd7OruZmRkhJzSmjUMCoWC0HVaaxOvtZKxgojsDVmRUbOwXoD5wbJtf7Rv+86dxGKxFTiY06dPAwJOPjo6yo/+6I/yL/7Fv1hz/PNu7H11eJBRXnKgu9Uqrm2L1EbXfd0fNVhhGgYNmft99rOf5Ytf/CILCwu89NJLvPD88wD81de+xt/87d8C8A++//v5X/7+36dULgt8iOtSLpUwDIPR0VFGR0fxPI9CocDM3BxLCwvcvnOH6pUrgpdS10mnUnR1dZHJZEgmk4QjETyg3miIKO66vkaRGRgI9zyPZCLRAvttN19jSc7TGrqQi4zFYn7KodIfpbOqONVt28b1PK5duyYIluJxSqUSlUqFarVKoVikmM+zWCgI+hMJQ05nMvT09rJ79276crkVzR6/NMw6neK2h7xWq/kDJPFYzK/+KME4EOzFeB7JVIrBTZtIBfmJpH3hC1/gC1/4wtpO8z3Y++7wIAhTFy0LLRxGl9wy5VKJdDrdUq0wTVOoyzkOzz33HH/5V3/F1OQkL371qzz3yU9y6uRJ/vRP/gSAp596in/8j/8xsKxSHZFU3IV8Hs916enuRpOIy66uLti5ExADHIVikXw+TyGfZ3FpibGJCT/tUOwIoVCISDRKOpkkmUoRk1Bg13WXN1cd9iOrmV+Dbxck8ASVdE3y5tfqdWq1Ggvz8ywtLhKNxXjt9df9kUQ1FZZOpxnetIlYPE4mkyGbza5Z/WmHZK/m8B5yYy3TrZokwlJUesrZ9cAqoPhoLNvm0Z07/Qf7QdsHwuGj0SiJRIKKnBzSZeQslUqCVk82PVTOats2eizGD/3QD/Gf//N/Zn5hgd//vd/j1VdfxfM8Ht27l5/72Z/1Uxy1KTJDITKZDMVCgaIU/e3pwDoQCoXI9vaSTqepZLNslrl1rVYTFBNS7kVF0zvT0zTHxsTcLcuVHk3TfDkdlXMbhiGYeGWnGeDtM2fQJKBOAd0cOYRtqbG7thQiFAqJ0qhh+JWOcDiMJjl6zFDI3yCGTJPMKkhEZaruvhoq1X9dGwxERXaQ3P4yZ9cJDJ14Yqyv2WzSm8vR3d0tAsz7YB8IhwdIp9OCs9Bx8KQOkO04FEolkUtrkrTf8/x502NHj/KVzZsZGx/3S1cjmzfzT3/pl1pKZ7p8ryU55jUE9qNYLOJ6Htm2Up6SaGnKAW4klj4jFUdUJHZdl2KhgE/wpGnUajWWFhZEtUURhsqVwXVdHAkzVjKQrkw1otEo4UhEcLdI5jWlrqfSpaiU6olGo4yNjfH2mTM888lP+s7jD6RbFqVyWXQ8ZaBQShudHFnTllmc1WRWxyET9dDJv2uyWgX4hLa24ywPkGhyIN3zyBcKmJEIm7dsETMMdzNGeA/tA+PwmqbR3d3NvOOIiCErLrZtUy6VSKRS6LI76MhIaJgmx59/nt///d8HRPf2//n855d1RAPHD4fDfvVAOe5SPk+lXMZzXfoklLbeaAh5RsTmMyJ1RH38fFtzKCpVxWv1OplUikg6jSnb6/FEgkhAea/d8lKyfv++fSSSSSrlMoYUeYPlAe12s22bCxcusHlkZGWklPsd3TCIR6MCryJ1UZvNpi8A7L+c1iHs1UigtICzu65LtVr1Zw9ikkhV1daVqcpUsVik0WwyNDLCpk2b3pdURtkDhwevZYZh0NPTgxGN+pEBoCmd3pE7fl2mNdNTU3zpS1/y399oNPzI3v6FhSORFuq8dDpNT08Puq5TrVaZnZujWCpRlQzFuq6TTqdJtDlI+wY0GomI+r0nyEJbbJ30oOWld0Gvd/nKFSzbZu/evSt+p6jyQDhitqdHOJh01JKqLPmnuHLcL1jxUuevIrYSknYkXiYu1T2C8Aw1KgkCAj6/sEAsHmdoePh7ggXcC/tAOTyI/LknmxWDxKpz53lYUgwXRBRaXFzkP/yH/yA432XHs16v8+KLLy4fLOBoShozaKlkkl4pv764tMT07Cy2bROLRkmnUi1dvVWrFrJFryG7iwFoxN0ADHz1i6DDd4ju1VqNq9eusUuW9YKmmneAL+WJJljE0smkr1yu8ulOx1d0hLrEIPnOjggoakXUDcNnftN13VcqCT5AVrPJ9OwsnucxsGkT27Ztu4s7cn/sA+fwIPkLBwdXkAQ5rkuj0aBRq/Hff/d3mZqdJRIO86u/+qscPnwYgG9+85sstU89aULxWeXbQYvH40I3SkJ/K7Vax/a1cna9g5OEIxF/Q10LTmYFmzPrXHN7hcZbZVU4d+4cIcNg165dLT/3pSHl6pSQUV2ZLpVPwqEQmmFQr1Y7qly7ctOsJG5UWbQqK0QgNv+Kjc1bPoGWa6w3GuTzeRq1Gpnubvbv3/++5e1B+0A6PIgJnN5Nm1qdT5bBvvTlLzM7M0MyHucXfvEX2bx5M5/73Of8SseX/+Ivlt8jv/RMJuNXV5YP51EulzFl0ymdTILnMTk1RVWmBUFTEOP2IWUQXUUQUzntogAaayh5SAuyjalrbbc7k5NMTk5y8ODBlk2553kip5Y4o0Q8vuqmMx6PC/y7YVBvNFYwJKsHTzm7I1cNS963iKyotTMlu4FNb61apVatUi6XSaTT7D948H1PZZR9YB0eIJZM0jsw0NK8efGrX+Xa1avE43F+5Ed+hP3794PnMTw8zKHHH8fzPF5+5RVmZ2dbjpVOp9ENw0+LQOA2lMJ0T08Pg4ODRCSAbXZujnyh0PG8OmF9TIlP0TRNtPHvAjGp+GxAbDA7bVablsWZM2cYHBxkaHi45b3ValWkRK4rnLETvifwwEWjUX/voTD+gE8opVaJRr2+Il+PRiI+85mPjJR/VH7ftCyqlQrhaJTtO3cKloIPiH2gHR4gmk7Tlc0SCYf5u5de4tRbb6HpOkeOHGHXI4+wtLTk55qf+9zncD3Bj/jn//N/thwnJanmisUiaBrNgGyLEss1TZP+/n4SsixYyOeZmZvrOEfbKZ+PxWL+nKzqbvq2xgMQrH2vRs9x9uxZXMfhsccea3lfpVLBlmXauEwzOp5r2+dHo1FCEpdTrdWEep+3TBJVqVT8AW/DNEkmk8sPY9v5qaZYpVJpkbkc3ryZrVu3risx+iDtA+/wAJF0mjdOnODFF1/EcRz27d3Lk0eOYEu1t2KxSKPRYPPICEel5MyJN99kbHy8pVmTSqUEhgQxduZ5HmE5mKBM0zSy2Szd3d0YhkGjVmN6enpFvqvYxVrSG5kyaJpGw7JaUpu1KjW+3Lra+LUhNqdnZpiYmGD//v0tVIQVqX6NfGhDHRxrLaa1eCzmp4lNCZVQEkKO4wjckCSQ0ld5EC3LolAo0Gw2Reqm61jNJgPDw2waGrpvSh7v1T4UDv83f/M3/O8//dMsLi2xVQKK4vE44UiEWrVKvV6nIrWJfvAHf9Cnx/7//vzPfRyK67qk02mKhYLAZEviodVIfFKpFH19fZiS2WxqZoaC3PQGHag9vTEl65iuaVTkQxU0L/An+H9kj8Gn5JNm2zZvnz5NX18fW6QEpuu6lKWzawhxYjVNtHxiIqqvNbqoyT6CpmlUq1WKpZJwXE2IISSTyWWROK2Vjcx1HKrVKuVKRSA5DUPwh1Yq9PT1kevv3zD93YO0D85as4Z9//d/vyj52TaVpSVwXaKScdd1XYHAs21C4TCpVIrf+Z3fWabfBl8VsLunh7HxcYqlEq7XqhvaKRJGo1H6+/tZWFigIUUYytUqXV1dgrpDmt4Gl41JlQvHtqnUasTUJBf4YDhYJop1bBtPlveUioh6zbnz56k3mzwnmXGDGraw7OxBCzaJ1jNd06jJvYxidlBSobByKMaVQnKKFc7zPKISPDe/sEBXTw8Dg4Ns3779A5XKKPtQRHhlummS6O72p937czkxYKAJfVC1aSoUixRLJb/trUk2rcGBATzXZW5uDtdxfPImFQk7xUKV13f39GDoOo5lMTM1JfYOwa5rIE9W4DLFDNwMpEOdqifK0QzFtCsddXx8nLFbtzj02GMkEollZ5cPcKrd2dUmcrWo7i1TWKu+RqVa9aO3kqQJshioI6mIXiqVfGc3QiES8Thh02R+YYFUJuPX2z+Izg4fkggfNN00iff2Ul1Y8MUR9HJZaEDF437psdloUKvViEWjxONxMUObSJDOZJibmxNdVlk7D1ZFfFdpc+BUKkUsFmNpaYlSuUyxWKRWrdLT2yuIhVS0dhxcudELyxWmUquRksCxTs6oQGR6wEkKhQJvv/02m7dsYXTLFmw57K4YfhPBDWrAkVce3MOT+beHYBGoNxotG/GopBO0bNvfyKr32pKLJ9idNaUYNIiRvbmFBRKpFINDQ2zfvv2ulEMetH3oHB5kF7G7m8riotBxkgLFkUiEWCwmYLQysjYaDcqVCtFolGQySX9/P9dv3GD3I4+suZEMTvH4FNi6Tm9vL+FIhKWlJWzXZUYK/vpQZm2Z1joc4KWsto8vtn22gkyA2Ah+5zvfIZVK8dhjj/lK1pq8dlVnV3ghB4RySgDYBSJlUp3bhtqMKggDQp81Gg7jeEIy0nVdzFAIV+KZLElC69/3UIi4rEQp8NvS0hKxZJKhkRG2bdv2gXZ2+JA6PIgok8pmqRYKRJtNmrZNo14nlcnQFYkIEdx63c9Py+Uy1UqFaCQixvBKJTJdXSLHpxU7Aq1VFS3QcQRB4BoJh1lcWqJaqVAoFikUi6SSSdKp1DLy0HFIyMqQUg1JJBIt7XplemDz+9apUzQaDZ5++mmRL8uUKBSNisoK+A+N2rh6CAdX/9Y1Dc9xqMp82weFIYB0kUjEn8KyJRNDU+6LgjyeKl2MyterB7VUKpEvFunr76e3r4/R0dH7opx9r+1D6/AgUoBkby9mOOxLm1fKZV+rNRKJkEwkRJQvl2k0GmKDZZqMjY2RSCSIypxV1/WOjq+shWdGYkmy2SylSIRCsegrkZTKZaLxuBjVU1TgsZhoyMgKSFRuqF05v+rIRo/reVy9epU7k5McPXpUkL3KOdRYNOqLKyCrJhpg6rp4HcvibQ0pueMEorMGPmZepUKO42Bblg+aC8KEldpeSFac1ANq2zbzCwu4rsvIli309fczPDz8gc3Z2+3DcZbrWDSVom9khOmxMaxmk3Kl4qMcDSldE4/HaTSbVMplutJpFhYXKRaLlMtlH4+uJpZMw+gc9eXfumQ3sGybmMSoV6tVMQsqP6NRr5NIJIjLMT+VajXkzG5YybUbhlAWMU0mJyd599132b59O4lk0k+rUonEquwIasPZkA98O6whpPRow2E0z/P1pCzb9p27LBtGUflQhVU0D6AfQeBjZufnSSST5Pr7GRoaom8jcjofIPtIODxANB5nYOtWJm/dEsxWnkdKTcTL5TwSDhPp6WH3nj18+7XXKBQK9GWz2LICUa1Wfbn6SCTig8JMObWkTGMZc6JSn7hs0FQqFQr5PDXXpVQu401Pk4zHRWMoHMZqNsXnSMw+iBRkcWGBkydP0t/fz8jmzb68TiKR8HEt8gNFX8FxsBwHR448WnLGFfCprw2pSWvbNs1KpSN3vpp0CoVC5HK5VoCXvLZms0mhWKReq5Ht76cvl2Pz5s13JUTwQbGPjMODqJtvGh1lamKCZrVKpVr1dZJg2TmVWO7U1BT7DxzAkurTaoKnXq8L2grZTdWlzGMkHMaUTLuKOqOdTz2ZTAogmaZRltWjcqVCqVIRTqiJ6atyuezj5yuVCqcvX6aru5s9jz4q0h6VwiByc8uylp28zXEVO7KBWClc8De57abruuC9kdKdxUJBsESEQoJSJLB3UY7eqNUwQiE2bdnCwMAAw8PD35Ngw/tpmne/JS3eB6tWq8xOTtKU1ZmYnPwJtsfHJyY4ceIEhw4dYlR2MD1PyNXXazWRB0vRYuXcgF+t8R1eF8K+agRRwYTLpZLoF5im/wApa8pZ1Eajwdtnz2LoOqlkkv379hFuo/lWwg2qX6AInTRtWR/WNE0aUsc2aGqmNvgnWA2yHYepmRmazSY93d0+fr5Zr1Msl6nLGn0oFGLHnj0MDw9/KKN60D5SEV5ZPB6nt7+fxbk56sUitm2TiMfx9GUJxVwuR09PD1evXWNkeFg4KssVDEWApNiCLVn6dBwHV86oqtq0X9OQjqhLFCKyC6lLIbJ6vS5oql2XhmX5Qmy6rpPr76dcrRIO4m8QuHiFUVFOG5EP2PLHeuiIh0sRNRny9Wv1WgvFIq6cdTVDIfLFIo16XVSFZATv7unhsSee+MBhYt6rfSQjvLJqtcrC/DyNUgkk63AoFPIBU2O3bvHdU6fYI2UpjVXq8grroiErG1K5uyahtUoF27VtUR6UM5+2bROJRrEsi9npaWZmZ5mbnaVQKmHK/FwPhdgiZ1MVAVU4HCYiJS8NSeT0+3/wB7z+xhs89thj/Mo/+2e+PqtCZ9qKonoDX6cn783M1BQlCX0wApUfEPMIOx95hNHt2zc0ovhhsY9khFcWj8cJb9rE0tIS5UKBUqnkT/1rmsaW0VFmZma4fOUKXd3dDORyaIYhUoPAl6+B70iGrmNIh1SDywB/8aUv8Rdf/jK/8Ru/QV9fHxU5RheNRvmnv/RLaLoummRSPkeXe4LRrVsZHR3FcRwhCR8o79UbDcKui2maHDx4kDdOnOD8+fOiqywV8AAs1TXt4OyKBtCS6E3LsqjUaiwtLmI5DpFQCFMeJxIOE4vH6entZduuXcSlBPxHyT7SDg9imc9ms4TDYQrhMM1SiWahQFjWpA8dOkS+UODcuXNEjxwRHVNZj9Z0XYCN1Ma07dg+aCzQ2dRlzqsAY67r+gRQgI9OnJ+fx5Kp0/DQkA+AU6YgupZ00i2bN7N5eJimZfGdkycFOEseU+HPlQWrP45cddS5K7yR4rTJ9vaKKaholFA4TP/gIP2bNn2konrQPvIOD2LzlslkiEQiFKNRapUKTQkrDofDPP7447z22mtcvXqVXbt2kYjHRaT1PMHnGIQDy+Opyf4gsajaDDYaDaqVCiU5Pvh9n/40/QMDNOp1CsUiQ5s28d9/93dBHjsmoQK+ol4oRE939zISVEbnbaOjjI2NMXnnDjt37BAIR0nB51sbbEGdr2kY/uY3HA4Tj8fZNDQkNtyGQV8uR25w8AMxd3o/7WPh8MqiUtG6kU5TLpepFItY1SqhUIidO3dy+fJlPM9j6+goyWTST33aY51CViqFbzXpH4/HKZbLgjtHjcEBhw4d4sLFiziuy5NPPtkiuOZJ/h2lNVuR0bdQKIjafiyGJisje/bs4Y033qBcqfAjP/zDWAFSp06mKX5OBNtBpVLB1HUiySQ9XV1EIxF6czn61+B8/6jZx+MqAxascafTaTE4UiiwRQqrXb50iUq5zNatW8XmMRpt5ZGXG0NHzX+qtr4sD+IJSu+oadJoNLh65Qrz8/MMDQ1x8OBBYrEY09PToqwZYCRTQxepdFrgf+TGt95oiJFDwxAzu//tv7G4uMit8XG2b9/us7B1MtfzaMj+guoxRGIxsn19bBoepieb7Sh581G2j53DBy0sN56ZTAbLsugbGiKTzXLitde4fPkyW0dHBdJR132NonZTA+ZqeFvx2dy4cYOr165hmiZPPvmkLyOpuDFB5N7tM6yGppFMJgVCslrFdV3yxaLYF0SjbNu2jevXr/P26dNs37ZteX+hKjSyE6tq/7ac3TVNk8GhIbZs3UrvhwwOcC/tY+3wynRVQYlEeOLoUTZv3cqf/emf8ta5cwxkswwNDwuUpcx/w7JurWTaFY97s9Hg1FtvUa/VME2TLSMjjGzeTEJWO9R4oHL4ZgBj7puE94ZDIYxUyp+csppNrEaDQ4cOcWdykjNnzvDZz37Wf9g8z8O2LMHPqdCPzSZmOMzQ5s1k+/v9zfvH2R46fAfL5XL837/wC1y4cIE33niD754+TU86TUrm9Qp337QsMddZLHLp8mW/BHjo8GGGh4dxbNuvxyu0ZUOqeSukoicfFmX+rKtsYiUSCWLRKA3Z+Hr00Ud9sqkbN27Q1dUloAeqKSarRrFEgpFt2+jJZgV/fCLxoYUD3Et76PCrmK7r7Nu3j7179zIxMcHZs2dZmJ9ndnbWp5uLhkJkUilSySS5XI6rV69y5MgR+qWEuqFp1DTNF+LVVSUGRDdTNnuC5v8vMMihG4YvkhAOhejt6aFYKnHh4kUeP3yYSCRCPJ0mHIkQTyRIplI+BbliUXhowh46/DqmaRqbN29ukXJX1BQKe9Os17k+Po4tZ04Xl5YEH7xpCqps20aTyiOOTGPaiVc98KO9B34J0ZHc9LasyITCYUZ37ODFF1/kxFtv8WM/9VMCbhCJCF74AJ7noa20hw7/HiwkdWBhuTTZcBwuXr9OoqeHVCYjKjmeR9jzqBcKFMplPCm33mw2SUlsiq7rLCwuAstETLrkhjdMk7BUylaMBumuLj75qU/x//72b3NjfJxkMvm+iQt8GO2hw3+PpoZHAObn5+nL5RgeHvbVPBzHoVwuk8/nUcIJ+Xyecxcvouk6w9u3MzQ6CsqppdO3oxxDoZDP1Hv8+HHB8uV5nDp1ik9/+tPv7034ENlDh7/HpkloQbBj2dXVxVBAXv3mzZtMzcygaRrNZpNB+bvVaPba7bXXXhOVnHCYo0eP3rdr+SjaQ4d/QNYu5Bvsjt6tuvRXvvIVAJ5//nlfLeShbcwe1qk+hKZEH37gB37gfT6TD589dPgPmb399tuMj48DDx3+vdhDh/+QmUpnDh069IHiXf+w2MMc/gHYa6+9xrVr1/z/z8/P+/++du0av/d7v9fy+p/8yZ9c9Vhf/epXAfjMZz5zT8/x42IPHf4B2Be/+EVfWrPdXn/9dV5//fWWn63m8BMTE7z99tvAw3TmvdpDh79Hdvz4cYD72gRS0X1kZIRDhw7dt8/5KNtHeoj7o2Z/7+/9Pb7xjW/w8z//8/zWb/3W+306H0p7uGn9kFixWOTll18GHqYz34s9dPgPiX3ta1/DsizS6bSfPj20u7eHOfyHxP7u7/6OTCbDZz7zmY/9EMf3Yg9z+If2sbKHKc1D+1jZQ4d/aB8re+jwD+1jZQ8d/qF9rOyhwz+0j5U9dPiH9rGyhw7/0D5W9tDhH9rHyh46/EP7WNlDh39oHyt76PAP7WNl/z+nq4piOhV44QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -194,12 +194,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRcd3bfCX7eFntERkTuiX1fCIAASZAEySqSJY1lWS2rJC/q40W2JcvT3bbHp10e9xmddsttt3Vm5Ja3455z7BmvbY/lllWWVW3JlovFnQRJrMS+ZgIJ5L7F/vY3f7zf7+WLyMgEyCqAICu+ODhIREa8LX6/372/e7/3e5UgCAJ66KGHHnrooYeuUL/oC+ihhx566KGHJxk9Q9lDDz300EMPG6BnKHvooYceeuhhA/QMZQ899NBDDz1sgJ6hfIy4c+cO3/rWt9i/fz/ZbJZyuczx48f523/7b9NsNjf87J/6U38KRVH46Z/+6cd0tT300MOTgN668QQg6OEHgl/+5V8OgGB8fLzr73/7t387KBQKAdD17969e4MbN26se/zf/M3fDIAgm80GrVbrEd1FDz308DjRWze+HOjtKB8Dzp49y8/+7M9SrVbJ5XL8rb/1t/jggw944403+MVf/EUArl+/zk/8xE9Qq9W6HuPHfuzHSCaTNBoN3njjjcd5+T300MMXgN668eSgZygfA/7SX/pLtFotdF3n937v9/ilX/olTpw4wTe+8Q3+8T/+x/zqr/4qEA76X/u1X+t6jGw2y4/8yI8A8Nu//duP7dp76KGHLwa9dePJQc9QPmJ8/PHHvPvuuwD8wi/8AidOnFjznm9961scOHAAgL//9/8+juN0PdYf/IN/EIDvfOc7BD2diB56+Mqit248WegZykeM3/qt34p+/jN/5s90fY+qqvzcz/0cACsrK7z55ptd3/eTP/mTKIrC9PQ0n3zyyQ/8WnvooYcnA71148lCz1A+Yrz33ntAGAJ59tln133fq6++Gv38/vvvd33P2NgYx48fB3phlB56+Cqjt248WegZykeMK1euALB79250XV/3ffv371/zmW6QYZTegO+hh68ueuvGk4WeoXyEME2ThYUFADZv3rzhe0ulEtlsFoDJycl13/dTP/VTAFy4cIHx8fEf0JX20EMPTwp668aTh56hfISIU7ZzudwD3y8HfL1eX/c9hw4dYufOnUDPO+yhh68ieuvGk4eeoXyEME0z+jmRSDzw/clkEoBWq7Xh+3phlB56+Oqit248eegZykeIVCoV/Wzb9gPfb1kWAOl0esP3yTDKO++8w8rKyue/wB566OGJQ2/dePLQM5SPEPl8Pvp5o7CIRKPRAB4cbnnhhRdQFAXXdTl16tT3d5E99NDDE4XeuvHkoWcoHyFSqRT9/f0A3Lt3b8P3Li8vRwN+y5YtG773vffeIwgCEokEL7zwwg/mYnvooYcnAr1148lDz1A+Yhw8eBCAmzdv4rruuu+7evVq9LNU21gP/+E//AcAXn/99Tbvs4ceevhqoLduPFnoGcpHjFdeeQUIwyOnT59e931vv/129PPLL7+84TG/853vAKvJ+R566OGrhd668WShZygfMb75zW9GP/+zf/bPur7H933+5b/8lySTSYaHh3nttdfWPd7Zs2e5e/cu0BvwPfTwVcVnWTdUVWVkZCQyrt3QWze+P/QM5SPG888/Hw3gf/JP/glvvvEGtZUVKsvLVBYXWVpY4H/5m3+T2dlZ+vv7+bO/8AvMzczg2Dae5605ngyfHDt27IHFyD300MOXE93WjUa1Gq4di4ssz8/zt/7m3+T27dsMDw/zC3/mzzAzNcXy4iKu6+L7ftvxeuvG94f1tZF62BCWZWELY+a6Lr7nsXnzZu7evk2rVsPzPALXBUXhv//zf57JyUls2+bP/rk/xx/9mZ/h6cOHsWybt959l3fee49NmzYxNDjIS88/z7XLl5m4eZNsJoOqaSiqimlZmKbJb/zGb2AYBkeOHOHTTz+lXC7T39//QGp4Dz308MXD931M08R1XVzXJQgCNm/ezOTEBGathu95+MJB/tZf+AvcvXsXx3H4s7/4i/zRP/SHOHL4MLZt8/Z77/Gffu/32L17NyPDw5x44QXGb9xgQlUp5HJouo6m63iui2nbfPs3f5NkMsnBgwf58MMP6e/vp1wuUyqV0DTtC34qTz56hvIzIAgCWq0Wy8vL1KtVzGYzNJimiW2alEollhYXw1Y2nkcAKKrK6Ogo/8Nf/sv82j/4BzSbTf7Fv/7XBEFAEAQoikK5XGZwcJD/7s/9OcrFIo1WC8u2qdVqTN2/z+LSEkEQUK3XWV5eZmhoiJH+fv7Pf//vCQAP2LlrF1//+tfZunXrF/yUeuihh054nke1WmVleZlmvY7ZauFYFlazSalUYnF+HjwP3/ejVlj9AwP8D9/6Fn8ntm4A0dqRSqUYHhriz/38zzM0MECz2cR1Xar1OosLC0xNTWFZFtVajYXFRfr7+9m+aRPvvPEGrlifkqkUzz3/PC+++GLP2d4AStBrULYhgiDAcRwqlQozU1M0ajVcxwHfx0gk0FQVVVW5dOUKFy5e5Js/+ZNkMhkC38f1PFAUFABFYWV5mX/7m7/J9958k+nZWQzDYN+ePfzoN77BH/wDf4CRkRGajQaXrl7l/v37uLZNqVRiZGyMdCrFW++9x298+9v09/fzy7/0S3i+j2VZ1Ot1ZmZmME2TYrnM0WPH2LN3L9lsllQq1fMYe+jhC4DcPc7OzLA0P49lmviui6rr6JqGJtaNi5cv8zN/8A+SzmTCdIvv4/o+iqKgKAqLCwt8+7d/m+9+73tMz8xgGAbbt27lJ378x/mvfvzHKZdKJJNJJicnuXXrFgtLSyQ0jZFNmyiXSrz17rv8xr//9wwODPDX/8f/kQBwHAfTNFlcWGBxcRE0je3bt/P8iy/S399PJpPBMAwURfmiH+MTgZ6h7IIgCDBNE9M0qdVq1JaXWVlehiAg8DyMZJJkIoGqqqiAqutoqhoZRE1RQFVRFQXX87BsG8d1w88DqWSSTCaDqigsrqzgOw7pTIZ79+5x6cIFfEWhv7+f0dFRBvr7URSFAPif/uf/mbOffsof+P2/nz/38z+P53nRX9fzmF9YYHpqCtM02blrF1u2bSNfKFDo66NUKpHP53sDv4ceHiFc16XVatFsNqlXKqwsLmKaJoHvg6KQSqVIGAYKoOk6qqKgqqtUEUVV0RQFPwhwPQ/bsvDELlPVNHLZLAnDwLRtqpUKiqpi6Dpnz5xhbn6eTCbDwNAQW7duJWkYAPw1uW782I/x3/zZP4vreXi+H60drVaL6ZkZ5ubmyKTTHDx0iGK5TL5QoFgs0t/fjyGO9cOKXug1Btu2abVaNBoNGtUq1eVlVlZWaLZaBEDCMEinUmDbuK6Loij4IoQhwyEBQBBERlFRFHRdR9M0PPG66zjYtk0ylcJ3XSq1GqfPnqWyssLmLVvYvHkztuOgC2OrGQamafLOe+/RMk2+9uKLoQENAvwgwAeUIGDT2Bj79+7l/Pnz3Lp5E9M0GR0ZYWlhgdlcjkKhQKlUolwu/9AP/B56+EFB7hybzSatRoPKykq4dlQqeJ6HoiikhYG0TBPLtsP1IQgIhBH0IVw3IAq9KoqCIRxyz3FQdR3XcUinUnhi7t+/c4fbt2+TSCZ5+uhRjEQC3/dDQyy4De+fPEmr1eKVl16iVCqhEqZr4uvU9q1bWVhY4NSpU1w4f57du3dTyWZZzOWYmZqir1Siv7//h9bZ/qE3lDLvWKvVWFleprK0RK1WCw2hGMjpZJJkMkkqmQw9OxFulaGRIAjwfT9MxIsJ4AdBmJRXlDAMKzw4x3VZbLXwg4CWaTI3N0ejXiefy/HU4cMU8nk0VcVzXTRNI5FIoCgKJ0+exPU8Cvk8zz//fLR7VQB8Hz8IUBWFbDrNSydOcPXqVS5duoShqmzfvp3KwgK1lRWWFxeZyeUolUqMjo72DGYPPXxOeJ5HXfAGqktLVCsVms0mAL7rYug6qUSCTCz9oel6uG4AgVgbgiAIRQWEwfSkEx4E+K6LB7ieh1mvY9o2ShCwXKmwMD+P6zhs3rSJbdu2YRgGruuiKgq6pmEYBm+/+y6O45DP5XjhuedWo14QnkuwY3VdZ3RsjB/50R/l3Xff5caVKxx77jnsZpNGtUqlUmFpYYFMLsfIyAjFYvGHymD+0BpKaSDn5uaYm5ujsrxM4LokDINMMomSTOK6LolEgnwuRy6bRdM0VFVFNwx8Eb6IDxWZV/AEo831vDAXYNs4to3v+6iAoWnUGw2m793DtG3S6TTDo6PhwAsCdF3HtCxs16XZaqFpGucuXGDzpk28cPw4zVaLRrOJrqoowmj74nO6pqEA+/btI5lIcObMGQYGB9m6ZQuNRoNqvU6tUsFsNqnVagwODlIqlXoGs4ceHhKu67KyssLMzAzLi4s063U0RSGZSFDK57EdB0VVSSWTlPr6MAwjZKGK9cNx3dBQQvivcMh9wHUcPN/HcRxsy8IS//pBgC7Csgvz80wvLICiMDAwQKFYxHVd0skkSiJBq9mkaZooqsq5CxcYGx3lhePHaZlm+LqihKki4egrgGYYaEA6leL1117j3Xff5cKFC/zoj/4ovu9TbzRYmp+P1o58Xx8jIyNks9kfCoP5Q5mjbLVa3Lt3j8XFRVqNBggDmU6lyKTTpJJJHMcBRSGRSISDoeMYrutGIVfXdfFcF8txIsp35+BRIKJqt1otrly9imVZ+MDWTZtIpVJh2IQwT+ELI10ulUglk3i+jy/zCsILjZ/B8/0oD6Lrejg5NY2zZ88ydf8+3/jGN8jlcqiqSqvVYml5GVXX6RO5iHK5TF9fX1u+pIceeliF7/ssLi4yNTXFysoKnmWhAplUirT4qyhK5EAXCgV0vX0vEojcI0Dg+9iuiyNSOZ6IQEVpG4giVrZtY7suM9PTTNy5QzqVommabN20iXQ+j6ZpBL6PqqphFCyTYWhgIIx0+X64fngeHhCIcHB0PWIHq6oqhmGg6zqWafK9t95iZGSE4889F13/SqVCvdEgXyySEznMcrn8lWfM/lAZStd1mZiYYG5uDseyUIOAhKqGZJe+PpLJJApQrdWwHQdVVekrFNqOEQQBjuuGtVCeh+e6Ybg1/GX4V1EwRB2TKjw2S0yGRrPJ+fPn0TSN3bt2cf7CBV547jk0XadlWVE4tdlsYrsuqUQirHfq61tlrwYBtqi3kgbSdhxMy4ryHBKe7/PxJ5+gqypff/VVEmLnKL3ERrOJkU5TKpUoibqqr/qg76GHz4qlpSXu3r1LpVIB10UXxJxyqUQ+m0VTVVxRAuIFAdlMhpToEynh+z6mZeG4Lq7j4HoeCuDLOSvSOtLJlZ0+LNtGAW7fvs3du3fZvGULI8PDfPTJJzxz9CiarofHEimfWrOJ73mUSyWKxSK5TAZFVVGCANf3I0ECaUBboq6zczMwOzfHxYsXOXr0KNu3b0cVxtWybSqVCr6ikM3lKA8MUCqV6IuvUV8x/NCEXmdmZhgfH8c2TRTPI20Y4S4qnw+9PhGGsCwLx3EIgoCc6BweEHp/lm2Hu0Ax2CQUwhi/3MnJ8CeEu9emZaEoCisrK1y6eJF8ocCxY8eo1+sohO1xNF0nlU4T+D66ppEwDKq1GqqiUKvXqVar5LJZisUiyUQCQ1EIVDX0QIGU75PNZKJwr+u6OI6Dpqo8dfAgp06d4uKlS+zauZNkKkVC18nn8yQSCVYqFe7ducPK8jL2li0R6eeHIaTSQw8bwXEcrl+/zvz8PIrnoQUBhVyOcrlMJpOJwpcEQZSfTBpGZCTljs1ynEhtK66aownWqpzzimDPe75Po9EIc4hBwNVr15idneXI008zODBApVpFJVw7DMNYJQCpKr7nYYs1YH5+niVdp1goUMjnw3RNR5olmUhEO07HcbBFhGx4aIiFkREuXLhANpslm82STCRIJBIM9PdTq9epLC5SWVmhOTKCaZqUy+W2fppfFXzlDaXruty8eZPZ2VkUxyFlGAwND1Ps62snxAiYphmWcKRSqKqKbVmYHXJyigjJyjCFrmmrXqGA73nUG42I9VatVrlw4UIYyjh+nEajgfyEoqrk83kajQa2yGUWCwXSqVQUkjFtm2arRb1eJ53JUOzrC8lF4hjy+nRNQxdeXRAEeL5PJpNh27ZtTE5OsmXzZjzfp6koJHSdZCJBf38/y6IQ+vrly4xt2oTruvT3939lPcQeengQlpeXuX79Oma9jhYEFAsFBgcG2naK0pmUhskPArLZbFTjbNs28aCdrmmosbVD5iqjdE0QYFkWjVYryh9evXaNhfl5XnzhBQYHB6k3m1GkKmEYZLNZ6o0GQRCgqSqDg4NRCqhlmniex+LyMssrK/QVCuQFYTBQFAKxbmiqGhptwyAdIxUdOnSIN996i7uTk+zatSuMtGkayUSCfD6Pqmk06nXu3b1LZWUFe8sWBoaGHtgb88uGr7ShXFlZ4ebNmzQrFTSgv1xmZGQkqlPq3C+ZYjfpCMbaSqXS9ntDsFATyWQYFonlGoBo0FumSaPVAkBVFGzb5tzZswwPDfHiiy+uhkxFqCRS2kinCQDbsmg0myiKQjKVIp/PY5km1VqNVquFZZpMN5voiQTFvj6ymUx4fpHPkFAE+03XNA499RSTd+8yNzfH5i1b8ITXKQd+KpUKVX48j6n792kI9ZCxTZvW5Fl66OGrDNd1mZyc5N7kJIHjkNR1tm3aRCabDZnwXT7TNE08wTyv1etdHetkIoGu6yGbVawZ0pFWBAO23mjgxJze6zduMDc7y0svvRQJkgRBgCaOExAyafO5HJV6PdwROg6GYZDPZimVy9TrdWr1Oo7rslytsrSyEkan+vrCHayo05a8B0WwYjXDoFwssnf3bm7cuMGe3bsJCDcBrVaLlmmS0HWMRAJFVWnW64zfvEmjXmdsyxZKpdIj/qYeH76SK6DrukxNTTEzPY1Zr5PQNDYND1MUX1ynkZQDv1arUW800HU9FAgAVFUNB3kyidZBdFEUJayNFMfwPI+GkJECQmWLIOD9Tz6hr6+P50WHcUnJ1mIhWkUIFWQzmWgn2Gw2Q61XQqmpgWQSx7ap1mrReaZnZtATCfrLZdKJRFiOAlG+VHq8mXSaHdu3c/fOHfbv308QBFi2He5gRZLfFwXICcOgWq1i3bxJs9Fg7/79PZJPDz8UqFarTE5OsixCrX25HFs2bw7nahDgQbuDLeZRrVbDsm3ysZ2UYRgkk8l2hRthTOOS5QGhdrQM3QJkMxlu377NnYkJnnvuOUZGRoCQWQ9EUSMQa4euU8jlqIrSNt/zyKTTIQejUCCfy0Wsd9uyqNbrLFUqFPP5MLcoDGacSCSxZ/fuMCo3M8O+ffvCFJTgXNgiTSU3F57nMTczQ6NWY8fevQwODv4gvpYvHF85Q2nbNrdv36a2vIzTaNCXyzE6MkImnV4lunQU9lq2HeYB6/UwN5lKkU4mQ4k6XW8zOBIBRMo8rgizNDoGugK89fbbGIbBSydOoOv6as0UrDG8EA76rJCyCoBGs0mxWAxDLcIzHejvp9jXx9LKCivVKq5tMzU9TSGXo1Qsrho1EZ7xCQf+nr17GZ+YYPLuXXbs2IGh6wSZTFgELWT5AJqtVliT5XnMTU/TbDR46sgRkh3khB56+Cphfn6e+/fu0axW0YKAgYEBhoeHwx2fFPZArBtiBygZ5LZgqScSCRKGEUWdEJ9pW3MUJWKpOkFAs9HAse2IsZ7LZrl79y5Xrlzh0FNPsW3bNiB08OVOdU1KRJSH5bLZSNSgaZqkUqnw/KpKNpcjl8tRbzRYXFoC32elWqXebFIuFsmIyFQEcf3JVIod27dz69Yt9uzeTSqZJJVK4bhuWMJiWSQMg5ZpRoa21Wpx5dNPMXftYsv27Y/g23q8+EptE2zb5taNG5i1Gp5lMdjfz/DQENlsdnWgsmogHcehUq1SbzQwTRMVKOTzFItFUplMlEOIG8mA1fon+de0LJoi1KprGsW+PnRN4/0PP8RxHF55+WWSsQS3u95gF9emqir5XC4MEXsetVotuuYA8MRgLPb1MTo8TDaTwVBV6o0G96amqNfr8mBh7lSEdjPpNGNjY9y8eTM6n9yt9uXz5LJZkkKeT6oUOY5DrVrl4tmz1KvV7/cr6qGHJxKzs7NM3buHU6+TMgzGRkYYGhoKHdTY3EOkbZrNJiuVCk3TxHZdVFWNZCKTqVSUQ2yLXClK5LwqhCzYRqMRRq8UhXQ6TT6XY25ujrNnzrBz50727dsXnduLlZ51rh2BWKMSiQRp4aSbrRa2bYs3hPfgel7Y93ZoiHK5TNIw8H2f2YUFZufnIyc+rjbmBwG7du/Gsizu3b8fRawMTSObzdJXLEYlMr4oZWm1WgRBwPitW4xfv76m7deXDV8ZQ2maJjevX8dpNgkch6GBgdCDymajhLUcqI7jsFKpUK3XI4q2ruuks1kKhUI0yDsRxD1EwsFUr9dpiSLeTDpNQYQxPjl1imq1yisvv0xWhGOksZNeodrFUEqjrGka6UwmJBQ5DnVxrb4QTZb5SMMwGBwcZGBggEQiAcD80hLTs7Ork0QeW1XZvHkz1WqVWq0WdSqQ95NIJsnn8xQKBQyRlzQtK1Quqla5de0aiwsLn+Pb6aGHJxezs7PMTk0RWBbJRILBcplcLheGNyWHQDit9UaDSqWCaZphrjEIyKbT9BUK/O7k7/IvLv3vNN1m2/Ej0l5srrmuS1XMQelcZ9NpqrUaJz/8kLGxMY4+/XS0q1NieU2927rB6vqSTqVIChWxar2OZdsRqzV6v6KQy+UYGR4mn8thqCqWaXJveprlSqXNsClANpul3N/P/fv3I9lOeV2aokQEw0I+H96feFaWZTE7O8vta9fCXfOXFF+J0Ktpmty+eROv1UJTFPKi0Dcj6gHlDtB1XerNJrZlAWHoNCWKhINGAyAyEHHEB4WEHwTU63VsxwHBdJOhyVu3bjE9Pc2JEycolkptyX9PyNwphEQfORERk1HK4Umx5IRhhMLFloWiaaSEMZRajo4gA2QyGVKpFJVqlVq1iuM43J+ZoZDPU4oJCQwPD2PoOlNTU+zZsyfyGuV9qkA6nUbXdRYWF7Fl/afnoagqjI/j2jbDY2M/gG+uhx6+WExPT7MwM4Nv22SF2IiiqiQTiYjJHigKltCAlpwEwzDIpNNhvbPj8Nc/+hucWT4LwL+5+uv8vdd+jf3lfZGhi0M6vp7noYnokappeK7LqY8/ptDXx3PHj4OYs/I6HLGjVDVtVfAEonCnDyCcX90wQi6E71Or1ynk86sbAEVBEcIEmq7TXy6Ty2ZZXl7GFjWSjUaDgY5Sj81jY1y4dAlfrDnRuijWLU3WnQcB9WYTx3HChhDLy+iahnP1Kjv27CH1JazT/tLvKKWRdFstNFVlaGAAXddRNY1EMhkN7KZgjXoiTJIRXmA6lcKT5BthhCQikXPaQyie71MVxkiBMNwijOTKygoXLlxg165djI6ORp+NPEnPAzGo5ACL2K+iZkrqPELIaEuLUE6z0YjCtuGBlbawsKqqlIpFRkdHwxyrqlKr1ZiZm4tCKrquMzQ8zPT09JpJHIgC5MD3MXSdcl8fuWwWXdMIRLipVq8zff9+b2fZw5ce09PTzAsj2V8sRnXTGcE+h9W53hCNEXRdpyCiLnGD9enyhei4pmfy377xF/g31/4tAe3EQdmRyCd0ymWJBcC58+dpNps8//zzUdoHiMpEojks5mMg5qofc7Z934/CpslUClXkQuNEoSidFJv/yWSSkZERSqUSCV3H932m5+ZCgQWB0bExAt9nbn4eWN3BytypZPLn83mymUwkXBIEASsiijVx61aoevYlw5faULquy/j4OE6rRULT2LJpU/Q7QxBnAt+nUquFHUCCgKRhUBSJa6l+IQUGErFCXJmP6MwzuK5LtVoNdV1F/aPUSfVcl08+/ph8ocDhw4e7XrM0ytpDlFxII5hMJNBFMXKj2Wwz3hG1PPY5wzAYHh6mv1zGEB0H7k9PR3nUsdFRlpaWcMTOWjJlJRtX7mp1oRCSSqfDCUdo6Gu1GhM3blDr5Sx7+JJiaWmJuelpAttmoFSiXCpFRk8XBD6z1aJSreJ6XthwQHTgSRhG1AUoIEyThLzxEKGDHfCPPv3/8K23/u/Mt0KnsiE0mgFShkFWSEoC3Lt3j4mJCZ4+epS8CF+2HS8Wel1v7YivB/L/UovVFprTbe+FcO7HImX5fJ7RkRGy6TSGqrJUrYa5S98nJ+5/emYmlLwTxjYu2SmPlUom0XWdhKgX9TwP0zRZWlzkzs2bX7qc5ZfaUE5NTeE2GhiKwqaxMbSYh6eqKs1mMxzoQlE/J1hfmgh5Qmj4PKGRKg1et10khKGPaq2GJ/IKfYVCW75AeoTHjx9fU04R5SdjpSHrITpvbPBlRb7S97zI4MXfqyprQzxZkYNIig4ks3NzLFcqjIyOoqpqNOBlfmONPq2ihLJ+gtCQSaej9zaaTa5evNgj+PTwpYNpmty7exfF8yiLXq3xdQOgUquFu0jhQPf19UWRHRnJscXOKGEYJLUkBCFBJz6Pzsyd5ef/0y/yvZtvYYp5m06n28TEm40Gp0+fZsuWLWzburXtWtt2imKOdpvrEnFDKY1+Op3uHpGCKAUUN5aarjM4OEixWMRQFEzLYmZmBsu2GRsbY2Z6OpLqJBYJiyMhmtpruh6lkKQk3/TMDLevXWs755OOL62hXFpaor64SOD7DA0Ohjse8eX5Ii4f30X29fWRFHWGqqqiCEMV1TwKLzLosouU76vVavhi4hRi3iDA5ORk6BEeO9bdIxQ/R/TuB9QlRjlMwtyDqqphyYmiYJlmNEnj4ZNu00fuLvPZLIamUalUWK5UyGYyLC0tRdcne9h1ihYkDCOaSI7nkclmSQhFoFarxafnzrGysrLhvfTQw5MC3/eZvHMHzXVJGQalYjH8hbKqyby0shI519lsNszvifmqygbtEKnfGIaBoRr4BF3rjX3H5x+e/n/zLy7/K7SU3qal7Ps+H338MYlEgqNHj3bNacbFTaJ6x4dAtLtLpbpGpGInWGMsIRR1HxoaIqFp+J7H9Ows2WwW27ajnbFMEaldrkumo2zbRhMKQrIs5v7UFJfOn28TZniS8aUk85imydy9e/ieR6mvj3QmE+b2VDUsZ6jXSSYSpFIpMtksqURizS5RBfzYAFSFbqrSxctxPY9avR4aSV0nl8u1hRrqtRqnz5xh06ZNjA4PY1pWW0NnmX8MgoBarRblIev1esScVeT5WQ2JNEVCXJ5HFbRw13Wp1ev09fW1D87Y7jAOVVXp7+8nmUyytLKCbVkk0mmWlpbajKR8Pppo2xUeMqzdDBQF17ZRgUQqhSY8TcdxOH/6NIeOHKH/K1Jc3MNXFzNTU/hC3WZ4aCicd4Tjvt5o4LoueRFezWazYTcOOpxQwYD1PC8isSRUo+tOL0eORBByH373/u9ypnqav/biL7G3tJcgCLh86RJLy8u88vLL+EKgXK4VUngEwjXPsqxQ1xWoybWj0UCJC5cQGq9WqxU2VxCNnw1dx7YsHM+j0WiQEfnY+D2p4rPxNSWVSjEyPMzC4iKmZWGKdW1paSnM5XaEUOOOdiIWofNj3BDTsrAdh8WFBc6fPcvTx4498VKZXzpD6XkeMxMT4DgYuk6pWIyk4xqCjgxh6UVfX1/oKdF9t6WK3aeUhOr2Htf3qdVqOJ6HpijohkGr1YqS145tc/78eVRVZefOnWs9tkAUKgdhex3ZSke2zPIDoegvDHZbPlQ0elZiuQWpqOO6LpZpkkqnw3CMpkV6jarIvXZ6eFJAeWFpiWwmw8TCAhUhtt7t2cidsKHr4Pthix4RCkokEqiahmmaOI7DhfPnOfz00z1j2cMTi8ryMvWFBWzPi0h/ijB61VotnINK2BUkl8msm4KJyHbBahN3Q0t0no4MGZJBEhUNCxMdnZVahf/Hd/8af2j3z/Bi+QWuXr/Ojh070HU9lL2M12wSEuwUJZTB9Dwv5BwI/WfZsssTYWN5rUEQYItImSlK1yDcvTZbLeq1GjnRr1IT64aqaRFno3Pd0HSd4eFhKisrVKpVjESCe1NTDA4OtslbxlNG8rp14YhE3UlUlXQ6jaaqmJbFyuIi58+c4elnnnmijeWXylD6vs/8vXvYrRZeELBpcDAKddSFoLguBHsj2ah1aiKBSLcQRWnLNbqeF3XfkMo3qqqSyWZpiTyDpGXPz8+zsLDA4SNHMBKJkIItJo8SO7cc7EEQYOg6uXw+HExANp1eNVZyoogwMEooXi47BPi+TyqVoibqo1RdR1dVPNfFiQ1w6RxomoYmhNs1TQvZbYODNOp1bo+Pc29qirGRkaj+KY6Ibed5YbNq3w+lqoSnqGkamUyGutCYvHDuHIeOHmWgZyx7eMJgmyaL9+/juC65bDaMChHyDqSgh9RilY73RgFOz/NCIykMha7qKCjo6BgY5MiRC7IoqJiYBPgkEMY0gG/f+Pec1c/ySupltm3bFjrqIi2kxoyVXMM8z8MwDHK5XFgyJnZyWZHvDI8brHY6sqzQyTWMVcOlqiQcB9P3abRapFMpAt/HjXE2AAJxDZqqRk0fVE2jr1hEFzvtaq3G3MJC5HDEoRDWbPuI2nOREvM8LzKGSVGGU280WF5a4tzp0zz9zDNPrK70k3lV68CuVqkvL4ceYblMIpEI85HSGwRKpVIkSmxb1oYtXySRR7bNajWbOJ4XUq4Fpdr1PFRNi7wgOWg0VSUIAm7cvMnIyAh7du/umjuIdFcRBkfXSaZSYb9KETLRhCHshOd5BEJJI9NRe5ROpSJST0oMeHkvvihB8QlDKY7rRtegiME/NDiIpijYpslypUIQBGt6b4aXHrL7dEEZdxwHxLXIEHFWaEx6rsvFnrHs4QmD77osT03h2DaapjE4MIBC2HygJuqndV2nLATELcsiLSI13SDZ334QoAqjU6QPExOABAkyQVhiYmFhYuLF/ri4eHjMO/N88/BPUV5HPDyIOc2acL5TySSqiBzB+mtHIpmEIIjWLYlcLke1UsH1vJBwo2nRmiHXDzwv7B4iCUsi7aNqGoqqUi4WuXP3Lp7nMTs/z2B/fyR2Eodr26hK2JtX1/Ww7V9sQ2IkEmSDgGqtxsryMudPn+boc889kTvLL42h9FotVhYX8USNX75QaFO3UFSVgmgfk0ylaDWbNE0zDBF2JNg9z8OybRqNBrVqFUXTwhBBjIZtWRa6rpNKpSj29XUdjBcvXsS2LI4ePbp+gj3mqT0skSeCyI9044alUqmwtY8w7J0OgR8E+J6HK4ybJ8M1ouccQEoUTGfzeRZXVvB8n7IkNwiYok1PUnixMtwjd+AKhGLu6XQk1H7pwgWeOX58Damphx4eN3zfx6pUQmUr32ewvx9NUWi0WlF0KJlMhq2xXDcyHM1mc01KIgAc28Z2HJaXlrBtm3Qmg+55JNUUEKChowUaTVo0aFCjhs/aUgg/CJVjNw9u7nrdkt+gyPQQRDvOh4GqrNZix6EpoVRes9XCsW1SQoksfl5pNF3PCxtMu264gXCcyDF2HQez1ULXdWbm5hgZGmozljLfqhDqXnvBqsa1hCKIUNlslkazSWVlhauXLnHw8OGHJiw9LnwpDKXvONiNRjTYh/v7sYWQeRAEaJpGQTQ/9jyPdCqFI/J49UaDXC4X7jBtO2xqLAxWFArVNIxEImxJpeu0ms0ofFDI57t6OLV6nes3brBv377V0MeD7kOESx52sEfEni4DXhUDXkroGYKOHf+9quvohI1kXeE1yvyG63mk02lc1yWdTFJvNJidm6PRbDLU348hQq2y9iqTyWDHugbEQ9WBeFbZTCaagJc+/ZRjzz3XE1Lv4QuF12hQr9XwhHOXy+WitAWEkZlsNosnyIC5XC7snGNZJMSaYDtO2L5K9pYUZQ4ytJlMJPANl7paJ+vnsHwbV3WoU1/3ulRUfuHAzzOWG133PdJYPExJWTfEVbfikFrOthB1z8bE0KN0jaZhGAZeIrFqOEVD50w6jR+E6j8EAc1Wi/HJSYYHBsgKjexmq4Xv+2F6Jp2O2nx1K0MzDINcOk290WBmeppMLsf2HTueKGP5xBtK3/dxGw2q1Sqe74fK/IkEVZFXMAyDvGChRl2+gVw2y+LyMq1qlWqtFkpTxbyshGFAKoUmpO4kZbslRI41TQuFyWX38I4Bd/bsWdKZDPv27n2o+wjEDg8+24DvFBOII2kYWNKgtVptBjsuaiyPI1uGSeRyOSorK5RKJVRVpSI9b8chm8nguG4kBZgQ57FjjsaaaxWstkYQUK9WuXr5Mk8dPvzE5h16+GrDM01cywrJeK7LYH9/qD8qjGQumw3TFsGqeo6h6ySTSWq1GtMzM2GbLCFeAqGTqxtGGJpVVYqFQsicVSFPPpyrekCDumCTh38kVFR2s4s/deBP8vzB5x/qPuS68Vla3XUq73T+LpNOh/1obTvKzUrIPGfEfFdVdMnjEEICsnytVC6HUpeOw/TMDOVyOSJIJsTarItayoAwJ5zoEp0zhABDo9Fg4tYtMtksw8PDD32/jxpP/ArmNRr4IuHueh7lQiHqjpFMJqPwiEzA+0EQtn4RfRblpJA5uIQg+qiKEtZFSg1Twm4irUaDAMhks6HHxOqgkyzQyclJ5ufnefnll7sKm0vEvTn52c8SPomG+QYqFpl0OvQOHYeEzCUKAxn3yBRiiXWBVDLJvG2TFsr/aVEy0mq1qDebUW8913FoNJvoIqfqdYRQ2q5ZVclls9TqdRbm5rh75w47du58orzDHr768BwHt9mMHD/DMEBVcR0HRVHI53Jh2ZOcD2LHZIm1wxEhR8/zyOVyZDOZSGXGFdGp+NqRJUcYTQ2oU0NBRVdVAkQ6hwAlgG/mf4qnjH0cP3B83WuP1gp5L3JH+Rl7wiod8z0OmVZqtVo0Wq1ornc2fo+uSYiyQCgmoCoKnutSyOfJpNPMzc/TaLWYnp0lIzRz5c5Spr98kQON31uUhxWkxUCEhW9evUpWkK6eBDzRggNus0kgJOOkGo58sG1GUtRD1mo1lpeXo1yZoesUi0WymQypZBJPhAJkTN4TYRRN5AHqwkimkklSXUKGcuBdunSJTZs2RR7PwyhMbNRaa0MoSiSO3AnZkish6kTrzWZb/eOaQ8njCaTSaUzTjHasfYUCxWIxJCwRkp0ymQyBouDYNs1Wi6Zo3SNbAwFraqkIgiicc3d8nHmhDdlDD48DnufhNZsg6pZd3yeVSOCK3HxBOMySaGdZFivVKpVqFdOyIAjI5fPk8vmwllKMczl3ZZ2jNJIt08QIQpZ9lRp+LAakoKAqKrqioakaH9U/5uljxx6srhP7/+eKRLE+a1caYqm65TpOyJJdZx1TACW29iqKQlKsHRAa3eGhIVKJBKlkElOErTVNC6XrWi1apknLsmiZZrRRCFhNR4Ewlskk6USCljCWT4ou7BNrKH3XxRONQKXhk21vdF0Pw62saq9WKpVwkBOGKNKZDCWh4SibGXueR7VajfJukfSSotCoh6ESTdfbYvadmJiYoNVq8dRTT0U1R210bgjrJDvyA58nfCINkS9p30K8wA9i4seEA14V9WCdrbXaD6e0eZmpZDLMV4rcQaPZRFEUCoVC6BGK553LZtEMIypGNm2b5ZUVLGFk15AGBEMvk8ngui43r12LiBM99PCo4TebIAg5UhhARn5keYVMVyxXKtTq9ZBoEgQYiQQ50QB9oFwmnUqBotAyTar1esgMFeNdU5QoClVOlWnQwGU12rK3tIcf3/77o/8H+NwL7jPpTYIsH4v9lfA6HE/5/8+0drBqiGQKJr5+yHCzXDtM09zQ4Vc6zp9OJqOadcd1aQguSCqRIC/SNjK0LdcDx3GoCwKlK+pA14SHg4CU7F40P8+diYknQuruiTWUbqMRyrVZVli6YZokk8kwd5jP4wkFnmqlgu04+IQhgbxovJxOpcJWMqI4vq+vD13XI2GCSq0WiaGbloUtCmJzudy6sX3P87hy9SpbtmxprzvsqHmSg6rb4I8PNmlk4gOZ+P8JjXm8+L/znBDmCmQO9mEGvPQOZffzqsjjym4opWKRocFBdE2jUqth2TZZ0W8uncmEYRfR+qtaq2FKkkPb5YW08FQiQbPR4M7ExBrWWw89/KDh2TaBGGetVgtLlIRIxy2RSNAyTSorKzSazbClXcyxjodkZYhWOs6u64bNmpvNaD7KKNSP7/795NPhmrA1v4W/fuKv8Y9+5H/j/3bsz1NOheUfoQ4s/H8v/JOuIdG44x0JDginWEpvRlEcVne20ommwyBKQqJ0qIPYeeS/SSEcEpV+bYD4Tjcpw7bNJo1GIyT36DqbxsZIC8We+cVFDMOIuq0YgvxjiTZjtUZjbRpHXFtW5IDvT06yvLz8wO/9UeOJzFF6lhU2JyYc7M1mk4RhhC2nBDvKtqyQnKMo4Za/S91TRMIRxbOFXC4MAZgmtm2HPeHEjklVFHKivGQ9jI+PY7ZaHNi//8E30TERpFhy/PgKaz2VzunzwNyeJCclk5i2HQoPOE7Xuqa28wpVjkC04ioWixFDTQoTyOari0tLaGrYuzOdSkVlJgpEpSe2aZJIJkkIAfa4zqTjecxOT1Pu72dwcLCXr+zhkcET6jYBhIt4s8nAwEDkFC4tL0eRJFUJGw53ln7FSYGw2gmj3mjgiaYEpmVFzHND19lT2smv/8S/YtFcZDA1EC34KT3FnzzwJ/h7Z/4+crZfWrrCB9Mf8NLoS2uuv1MNKC6yrooSNqAtitWp5gNrNZvXg2x84Ps+pmmuCrWs934RmdMNIyRJCec6kUxGz7i/v5/5hQUc12VhcZGB/n50TSObyUT143INcYUjk0ylVglFihKx6OuNBvcnJ0M50g0ifY8aT9yO0vf9cLATDtjl5WVsxyEtHmStXseWqhOJBOViMWRWdcTvO70n+XMmnabY1xeKFQQBjXo9FCiI6Z12g+t5XLt2jW3btq0mmDcYiJ2DNCoN+bzFtA8wLqpwGB4URpE1orVaDVsM8iAIO4Pkcrm2PEixr49UMommKCwsLYVC0WKnrImBnxH1m34QYJpmpJcZXa+ikMtkcB2HuZmZUOu2hx4eASIHW1FoNBq0ms2omYAsFfN9H1XTyOZylEqlMBLT5Vidr+maRrFQCHOWhEo/jWaTZqMR7siCAFVRGUwPrpmrT6kHyAX5tpf/6cV/LmopO7DOuvEoivADcUFJQbYJgmDD1I3rumFPWqFX7Yuqg1w+H0bwxPsMXae/VEJTFCzbZln0tFSFVF4ikSCbzUY7TE/oz7Y61i1d10klkyzMzbEk1p8vCk+eobTtUDQcIiq363kkRW1kIPIIJWkgdT1ipErIneR6pkUTzExN08JaQ1E3VK3Xw4S+aa7pl3b71i1My2L/gQOf774+J3NN4mH2YMlkEmWdMIoc5NVajZascRKTIyV3gp3nVBQGpOpGEDC3sNDGxJNh7XwuR0a0IPK7DHpFVcmkUizOz4fkil4ItodHAMlp8H2fpcVFHM/DSCRwRJQlIOzPWOzrI5VKRU5f3DQFG6wbAKlEgnQ2G+bdFIVkKoVt22FpVaMREobi3ATf58bVG/xXgz/edpyJ2h3emHzjwfckHezPGYV5mE8p4j5kqivouH7btqnVatTrdWzbRoGoIiCbyXRd05LJJOVyGY0w1VWt1aIdses4aKKULJ/Ph1rShEpJdVFvKZESCkPLi4tfqJP9RIVefd/Ht6ywBMH3WVlZwTRNdF0PF3WgkMuF8kwxKJIZ2iEOvBEsy8IPAtKpFMNDQziui21ZUWil2WqF0kuGgaaqXL92jR3bt69P9AlCqTjTNGm1WpimiWmauK6L63lhXsP3wzypmMyScXrhwoVo4kp5KlW+z/NIpVIU+vrCvnepVJirlYOzY8ecSiZpCVUMCA2k67pthl/VNFLJZNSnbsOcpqJQLpejUMr84mJIhhD3IIWUE6IWyzRNLNvGtixcxyGdTKIbBkYiEbYwWlggI/JBPfTwg4JrWQRCf7VRq9FsNmk1m4yMjKAQRp9ymcyaiE5bCcQDjKR8T6vVwtA0MoUCfYUCpuBR2LYdGhJFieq979y5Q6vV4r9++Wf5+OQpblVuR8f6F5f/d17b/Bq6omOZJqZl0Ww2scQcks2OpeHQVTUSDmmJ5gsXLl4Moz4xaU1NiCSogpiXzmRIJhIkU6moL6S4mehakoaBpWl4Yg1TNS0UbRFymOJhhWtQMklaGLCNkEmn8fr6WKlWWalUyOVyaxjyMnes2zZNsUFpNBoYiQRpwbvIZDIszs1RLJejxg6PG0+UoQwcB2LtqKqVCrbnMSBCpbLtTTcogq4deN4Dc2Ce74ddPmK7qUQiQSadxhItYFzXDT1R1+XOxASm4zC6aROzc3O0RH1WrVaj0WxGRlEyUaXQuhQVlkl4TVUjBR0Z6pC6ka1WK2TUeV4osuD7eK6LH5Oc82I75YRoI5ZMpUilUuGuLpMhnU5jCSURy7Ki4l5FCRtTS4MGoRzXw+QLDV1noFxmbn4+qlHNptORoZSQg97QdRpy0LdaJH0/MswLX/CA7+GrB9/38U0TVVFwLIuVSgXTNNGEMEAul9tQIUpVlDVM0/UgDZfMocm1w3Xd0EEUUS9LlFNdvnKF0dFRXNfjZ8Z+mv+18neQtLyZ5iz/r+/8Kge9MEoVJ/EZhhHKaqph/0td1zF0HVUQkyQhz7VtGp4XqedIzefIQRa6rUEQoIhyspRYM4xEIhKIT2ez6JqGZZrU6vWwsbR8PpoWGX65/sq2gPGayG7I5/NRm8KVlRUy2SzdZr1clyR/xLHtSPhEkrEW5ubIZDL09/c/1Hf1g8QTZSi9VgtFUajV69SqVWyhDDNYLpN9kG5oLMwX/383NAXbTXYakVCUsMVOKplkaXmZhYUFlldWmJycRFUU3n333bbSikw2SyqdDnMdItmcSqUiIyZ3W5bwFDVdb2PLrqysMD0zw9Gnn6bYobEKYRPZpij0N0Txbss0aTWbtEwTU+xcF5eWmJycbAvTJEVyvVQqUSwWGRwcbGsYG39WD0O+NhIJ+opFlhYXaZomhtiVrvfegq7TarVwRDsw3/dJiz6Wy0tLZLNZyuXyQ5y5hx42hnSwfd9naWWFphAkyefzYWnYg0RBhAEJgiAU91jHeXRFtAnJGI857boQ/jZ0nbn5eZYXF5mZm8OyLKZmZrh3/z4BsJ99TDMTCaN/Glzkpw/9NOV8iUQiQTKZDEs2xLGr1Sqe55EVZS0Sy8vLTE9Pc/TYsa5rR0WIqaRTKVzXjRz6llhDLMFYnVxaiqJPEBosI5kkL0pk+vv7KRcKazYossxMVdW1ddQd6CsUouharVrt2nwBRHN6URpiir6c9UaDbCZDMpVicWGBoZERLMt67NKYT4yh9AWxpNVssrK0FOYlDSP0Ch9CSzVQlCiRH9XndDGWlpBtgpCRiSi4XVpeZnFhgcXFRZaWl8P+aTFG2NZt2+gTZSdJYQQj6nYcYsJJVpyqqpE+qqKqbUQX+VnP9yPB9DjdW6qEeKoa9o4TrN9kKkUxuvHVa7BtG9M0aQqB4Vq9zt07d7hx4wYQlr4MDAxQLpfp7++PJO+kcMGae4l/P75PJp2mlU5j2jbVWm1DjVtVDfvOqbZNS/Ss9MXOcmV5mYHBQWzb3pCd20MPD4NA8BoWFxexRAu+lChnemDtoaJEpBZFUQhizNJOyF6zulDogbDp+uLiIkuLiyyIPFoAJHQdV8yZbdu3k06nSaVSbG1u5X8983fQ5dLrw9n6OX5i8MejVlStVivcNYq1Q87xeM/azrUj3mnEhyiNJNM5cseWjSvdiJpQmQZqmSZ1USpWqVSYnpoiEFGjklgz+stlyv390TrbTfErDlm3WSqVsOfmaJpm2G2ls+l87PtIiqhbo9UiEKFYyS6urKxEzsTjxJNjKG0bq9lkYXExEtzNiEH8wMEuaxDj9YzQ1uIKwi+t2WiEodd6nZmZGZaWl2kID9QwDPr7+9m3bx/9/f0Ui0XeevttRvN5nnvuudjpgtXQrONEIdMgCELKc8egkYYiIUIjElKKr9FodL1H23GwLQtf19FEDWhU7CxyETLJr4uwTHROsduUeYvFxUWWlpZYXFzkzp07EARowkO9fesWA/39pNLptuclf4ob0GJfXyRwXKnV1rT/ikNR1ajvXKvZxBPXFRAa9Wq1ysDAwLqf76GHB8H3fTzRzaPZbKIqCtlMBst1QyfsAamFzt1QG7kntruUc9i2LJaWlpidnaVSqUQkoUKhwIBYO8rlMo1mk3feeYcTJ04wFGs5N+QNsu/eXs7NnUcTf747+QZf3/Q1MlqauIqyHwQ0m00gDH/GCT110R5svbXDsqwwaibKMaRoiXTeNWGIJYNdHsP3/VAQIAjIiqYLi4uLLC4uMjE+ztVr1yLRF9d1mZ2dZXCdlnrxrieGYdDX10ez0aDRbIYasxsYO03TyGUyNE0T13FotVpouk61UqFYKmGa5oYtFH/QeCIMZRAEWI0Gi5VKSF5Jp0kkEqwsL68h7nwWxAe9a9tMTE4ydf8+C4uLuI5DIpmkWCyyd+9eBvr7o2auEguLi6wsL/PSSy+tOa5hGOgibi/hibyi9PCkt2bZNqroTBIP18QNuyrECqRggSzb8A2DRDJJJpNpq6eKnIGYUkgcyUQiIhmk83k2b97M5s1hSx/P85iZmeH8+fM4QcDS8jL/+T//Zwp9fYwMDzM6OkpfX99akQPC/nfFvj7submoxnW9+qY4XVzNZmkKbz/wPCpLSyQSicc+4Hv4asG3LOrVamgkVZVSuczKygqB43QV327DOuSdaG5pGngelWqVW7dvMzc/T7VaRQHyhQJbt21jeGiIcn8/iQ7h/wsXLlAoFBjscAQ1TeNPH/k5fvG7/0302rK3zO/M/A5/at+fipR0ZI9cyQFYrzykTTtaip0oSrTjTafT6ILAo0Lb+tNt7VAFj8IX+tGlUolSqcTu3buBMG117fp1JsbH8YOAD95/H80wGBwcZGx0lOGREQxdD8vtOpyUXDZLIpnEN02WVlYYHhxcn3MiriWTTmOK9JUv6sQ9IVf6Q2co7WaTerWKY9skUyn6y2VWKhU8ePBgh3W3/Y7jcP/ePaamppidncVyHHLZLLt27mRsbCwKcXb2YJS4dfs2mVxuXRX7TraopqogchVxeJ5HUogrtxFYxOfzuRx9fX1rjm8KUYVEIhHlUjul8VBV6NLNQ9U0EroehZrTsUHVbDa5ePFiNJCfe+45FEVhamqKazdvcvHSJTKZDGOjo2zevJlSudw26JPJJOlUCtt1WalW2whCXRGru5RKJouLiwwMD9NsNnuGsofPjZpQ2AmCgIIo+5BpjIcK668TNlwR3ISZqSlWqlV8YGhwkL179lAsFnFdl2QqFdURx1FvNJiamlq3T+3u4i5+ZPPrvHHvzei1f3/7P/DNnT/FYGZ1d+Y4Dr6Q3+vM68mdcD6X65rzk02YJSNWvvYw955MJiNheKlcJHHnzh0mxscpFArYjsOJF19kenqaqakpTn78MUBoNEdG2LJlS9tGR1EUCrlc1IGoUqtR6rLuyWtTFAUE619RlLB1l+extLjI4NDQY03dfOGG0hO7C1MwNAuiNlL2LjM2ehAx2nI8TLKyvMz4+Dh3797F9zz6BwfZLQZ4X18f2Ww2TPwLaaRuzK2maTI5OcmRDZqIdr4aVwJa8zrt3txDocsgVugg32xAWkokk1HZi5S4m5+f5+TJk2SzWZ5++mnefucdkslkOLjHxjjmeczNzzM1NcW9+/e5cesWfYUCO3fsYMvWraGhVxSy+Tx+tUrg+6xUKgysw0RTFAWNkLEr85b1Wg3bslhcXGRwcHDNZOyhh4dBdWUFS9QupjMZ8vl8JEupx8KJXRHL6Ul4rsvkvXuMj4+zvLREMplkaGSELdu3R6Q4TdNoClGN9cqqxm/fRtN1tmzZsu7pf+7gz/HWvXfwRLDVcm3+1bX/H//9sb8Uveez9q/tdn8bv6X7ezRBHpRtuGQrsjNnznD37l2eeuopms0mi4uL5AsF8oUCu/fsodVsMjU1xf3paT69cIELFy+yadMmduzYQb/Ia8r2hbJmMi1Ih+tB5kITySS26+I6Dgvz85TKZVqiM8njwBdqKIMgYGl+Hk8Up6czGVKZTFSUCmF9z8PA8zwmJyfDQb68TDqdZu/evWzfvh1d16lUq5ECjQxXKKqKLyZWpzG8fesWuqaxbdu29a+/iwHtJqMnvb/PWzS8UZ5loyMahhGphti2zczMDGfPnmVoaIjnn3+eer2O73loqhqFYFRNY2RoiMHBQZ4+coS5uTnGx8c5d/48Fy5eZMvmzYxt2kQqlaKvr49arYZpWWGD7PXIPcI7DGLGstVqMTs9TTabxTTNL1SeqocvH1qtFs1KJXQC02ly6TSaotAQBfMP5WALVCuVyLF2bJvhkRFOnDjB8PBwJHqSTCSiwnhZwxx0ieS4rsvtiQl27NixYZRlU26MP7D99/Odif8IhFP8P935Pf7w7j/ElnyYIonm5OddNzrQKWu3xumOIZlMRiUvqqry0UcfsbS0xPHjx9m8eTOfnDoViZvIlFE6m2XHzp1s37kT27Ki3efdyUkKhQI7t2+nr1gMKwJUFdOyWF5ZYXhoqKszEDWtENeaTiZpCjH72ZmZUEe2UHgskphfqKGs1+sEIkmeFj3MIgFw8ZD09QyleICmZXHt2jVu3bqF6ziMjI5Gg1zu4KrVKhCyXCXhJRIf1rRwsMgwRBDg+j63b99m67ZtG9b6PczXExFhHoaU1HmL3c6jKASx+P+D/MZUIkHD87hy5Qrj4+Ns276do08/DUJeKgD0zkVFUVCCgEBRGBoeZmh4GNM0uTMxwcTEBON37lDI59m5cyf9/f1UazWqgtizbs5BEU2zg1D2yvd9avU6iwsLFAqFnqHs4aERBAHVlRUC20bRNIxEgqQglXmiQL5T0nLNMYDZ2VmuXLnC/Pw8iWSSnTt3sn3Hjmgsuo6DI1in8dIqSYKRBkJcFAB3JydxbJudO3Y88D7++IE/xu/d/S6WH3bh8AOPf37lX/LXnv+l8P/fx44yWhfigiS0rxcbCY0YhhGKN9TrfPzRR9i2zcsvv0x/f38kgymjS3Goqorn+ySSSfbs3cuePXuYn59nfHycTy9cQFVVhoaHObB/f/h8NwjBRk0mxJqsKArpVArf85ifm6OvWKRcLj8WBuwXZig9z6NeqYAQ2FU1LdyCdyu56ALLtrlx4wY3b95EURR27drFjh07SHcsuLaItQNr6whjg1wJXyBQFO5PTmKaJrt27vxM99Rt4Ml7+Vxezzqh13h3gQex+jRN4/Lly9y7f5+DBw6wf9++6NhSud/o9HyFUY/nNFKpFPv272ff3r1M3rvHrfFxzp07R14QhTK53Po5Bxnmir0k8yDLS0sR9bwXfu3hYVCv10GIgiRTKZJi/YiPs3XnWxAwv7DApcuXWVxYoFgs8vwLLzA6Orpm/DUFQ1vWREvE22Ipqy8SEPIaRkZHH8rx60/1881d3+TXr/86si/HO/ff4fryH2FvaU8UifrMKRtxn/Ja18UGZR0QluqdPn0aRVH42te+FirriPe7rtvdQAlCUXx9GhwaYnBoCMs0uXbtGncnJ5memmLzli309/fTaDTIZ7Pdd+CCUOgLLW4ZkVqqVFhZWfnqG8p6vY4qNEkTySTJRCIcEGLXIR905+B1XZfr169z8+ZNPN9nz+7d7N6zpzsrLAiiwZ4WEnFxKNHb2sMRk/fuMTQ0RF6IAwQQ7bDiw67TMHbLdX4/Gq/ryfG1hVA6r0HWNhE6CSdPnmRpaYnDhw4xtmlT23sltb3rAI2FS9ugqgwMDlLo66NRr3P9xg0uX75MvlBgdGys+4CXOeSOY2XSaZZWViKVo26Eph56iMPzPOq1GorjoOl6pFO6ZsHvYiCWlpa4dOkSs3NzFItFXnrpJYaGhrqyxp24g92ZQ5N10B2fq1SrVCsVDh482C6NB6EzHt/dibn1s3v/ML9967dpuI3od//00j/n//nK3/rcO8pubPXouuPX3HnfYo0jCLh//z6nTp0il8tx8ODBNZsMx3HaazJj6HSyJZLJJFu3bWNs82YWZme5cfMm9+/fZ2h4GF3XGRkaWveaVU2LQt1SLL22ssLS0lKU/3yU+EIMpeu6NOt1FMdBFeo1qfhglzfdMdhu37zJ5StXcByHXbt2sXfv3kgdxpVEmhgsQSdW5fE7EIUvY59rmSZzMzM8ffTo6vvEtWxosFhr0OLH/lxeYcd1RscUgydeZNz2LyGz9f3338e2bU6cOIGRSODaNoFgkEHYcFVhA+o53UO7Mixe7u/n1ZERZufmuHDhAtevXWN2ZoZnn322vV9nsNofj5iSh67rJBIJlpaWKBQKPUPZwwNRr9dRhDSbbhjtu0kZ3qe920Oz2eT8p59y/949Cvk8L77wAmNjY6vju4vBaAod5ni6RkLtsm4ATN69i2EYa1jycv2IHx9x7pyR42f3/VH+6aV/Fv369Pxpzs6fY0ciDN9+P5EWpeNnBaK56ItraXsGQcDNmze5cOECmzZt4sCBAyEh0HFIx56D4zjr52DXcbJlyzBd09i3fz87d+3i6tWrTExMMDs3x67t2zlw4MCanr1eLH0lrzObTrOwtEStVqNWq1FYR+3nB4UvxFA2m00UoU+o63r7blKJKesINBoNTp86xfzCAtu3bWP/wYNraNnd2KCtVisiCXUbbIrQUYyHeu9NThKoKptEzeFGUFg1Yn5s8MevwYuFT9YoBsUMXPxz8l7aGjjHDyuo3/H3xbG8vMyHH36Ioeu8+uqr5HK5sHdcEAq3y5KbqIZxPVavqqKIuq622yIW3lIUhoeHKRaL3Lh5k7t37/K9732PgwcOsHvPnihMHO/xF3QM+MXlZarlMq6QLOyhh24IgrAAX3EcFOFgd9tNyrEZEPaQvXjhApquc/y559i8ZcsDyTGW4+A6TpQT64T8fHzdCAgN5ebNmx9MvlFWa6UBvrnzp/j2zd9iyVxCzvR/cvGf8jee/uvIZsnrqY0FcUMn3uvLZxC7Nvk5yROI5mTHDvP8p59y+/Zt9uzZw6FDh0JBlUYjanUoYbZaXZ9N/Bl5Xb6X8PbDKzMMg8OHDzM4OMjt8XGu3bzJ7Owszz77bOQ0twnVx4yvJsrfVpaXWVlZ+WoaSsuyQIiXK0KkN/6FRd25FYVbN29y6dIlEskkX/va19YU8K4HU0o4baBJKsOh8RDK3clJRoeHH65+MwZptLoRbwC0WF4jvmOOzhy7hiB6adW4xH/ftsPsGIxTU1OcOnWKYrHIiy++GNGnDcPA9Twc247urbWBWIBE1wHfJe+aTCYZHR2lUChwf3qaCxcvMj09zbFnnlkjdRf3Ng3R3qspOqX3dpU9rAfbtglcF991w3SN3E12QOorv//ee8zOzrJ92zYOHzmyNhffDdLBhrB1XBcHW55TioqoisLCwgLNVostW7c+1L3EF/+UluTn9v8x/sH5/y36zY2VW5xfvMjRwSPtEZ8Yr2LN2hE3muuEWOXc69xJe57Hxx9/zOzsLMeOHmW7ICMZQiQlECLruq6HkTohz7f+Da7dVQbCue90zPv7+/F8n1J/P3fGx3nzzTfZf+AAe/bu3ZBwlEqlaNTrkXrRo8RjZ0/4vo9jWXi2jSaK86USffwBzs3Pc/XKFc6eO8eWbdv4kR/5kQ2NZKfxkM2L07FQYyekwo0vYt+1ep3lpaUN65+6nFicsvsXKo3wD4rMA+072fg7bt64wUcffcTo6CivvPJKW42RkUigKAq240TX1Gw215Cf1p5MWXPt8l47PedCPo+maWwaG+PFF1+k1WrxX37v97hx/XqbM9K2+w8CEoaB2WjQaDTooYf1YFkWSkzP2ejS6smxbe7cucPJkyepViq8/PLLPPPMMw9nJAllIzdK1wCr5WWKEu0q705Okkmn6X9Iof8g9q+iKPz49h9nLDsW/V5F4Tu3fpt1so0POHhHCqvj2jthmibvvPMOCwsLnDhxIjKS8hiyNZctcrYtYZgetHZ0rg/SQHe+bhgGmUyGfDbL4aefZveePVy8eJE33niDiqhYACIyT/S5RALbtmk0Gmv67/6g8dgNpWVZUX5N9m3r9IDmZmeZGB+nVqsxMDBAIZ8PP/eQsB0nEgTesL1Ox47y7t27aIbByOjoQ5+rGyEojmhH2eH5BrHfy8nSOYS77Taj83Y4BufOnePCxYvs3buX48ePr/GENVVFF7WjclA1Wq01Sfpu6BzY/joTUQ54VQkLi1//xjfYvnMn5y9c4KOTJyPFFOgY8IYRyeH10MN6sCwLRLMCVeS62ngMvs/Zs2eZnZ0FiOaxuwGLvjNaY4pOGkkh0LEe4tqoru9zb3LyoXeTbRDn1lWdnzvwJ1ePj8p0a4aPZj7u+jE/9tm1h1zfuCod/9ZqNd5++21M0+TrX/96VxUywzCidSOIESQ33FHCGic7zlPoRCGfD5tGeB7btm3ja1//Op7r8tYbbzA1Pd1+f+JfTdPQNI3WY9hVPnZDadt2mGMQhsGQwsXigd6bnOTjjz8mlUoxMjqKpqp8+umn/O7v/i7f/e53uXDxIvMLC2vCgfFBI41q4mEGu9hRBoRe4aZNmz4zQ7Uz1i81XmVoJh5KlX/jZJzoM6zm/9ryekIQoNvwd12XDz/8kPHxcY4dO8ZTTz217nUaiQSqokTdU1qNxoMHO6xZjCS65WIK+XzUMcWybY4cPszLL73E3Nwc777zTleHJ5FIYFsWjUajzZj20INEEARhJEqQSDoVWVzX5f0PPqDZalEulxkeHmZ2dpb33nuP//M73+GDDz/k9vg4jQ0WVFcov8g+tRtB1bSI3zA7M4PtOJ/dUMbCqACvbvo6OwuCwCOW5t8a/w9YrtW2dsRJe13/xlI2ct1o4ziIlM/8/DxvvfUWhmHw+muvrZv20HU9WhMd16XVbKKp6kPpcMfXiGhH2eV9mqaRy+VQg4BqtUq5VOIb3/gGwyMjfHTyJLdu3Vp9r+yJqSgkdJ1Gs/nIDeVjz1EGQYDjeeiKEon1il9w48YNLly4wJYtWxgcGsJxHLZt24bneczOzTEzM8Pdu3e5ceMGuq4zNDTEyMgIw8PDUZ7TE3m4IAjCLtwbQBMEIj8IWFxaol6rcezYsfWvPXYPawxwLB6vxP4fvfY5Qq+RIY15ZvEB32q1ePe992jU65w4cYKR4eF1w6QQGqRWq4XreTSaTfwgeOhCf1UwCr3Y/XS7J03TSKZSOOIc6VSKkZERvva1r/Hhhx/y1ttv88pLL4XUcsGA1XUdFIVmo7GmGXQPPYBYZEXTAUU0HZYwTZMP3n+fer3OsaNHQdTaDQ4MUK1UmJ6dZXZ6mvPnzoWdPvJ5hoaHGRkdjUoLAkTHDUIHe6MeltBO6JmcnKTY10d+nXKJ6B5YXTtk78uIEBQEaIrKnz74p/mfTv5yZCjnzXl+Z+J3+eaun3roZyVd2c45Go9QTUxMcPr0aQYHB3nh+efRBVdg9S3tbnlC18O11XFWUzafcU3zhRjEes82m05TqVTwRNuvVCrF8y+8wIVPP+X8p59itlocfOqpiNuhAKqut9XKPyp8IWQe37bBMFYJM4JtdevmTfbt38/BAwe4d+8ejhL2ZzMMg82bNrF506ZIW3R2ZoaZ2VnOnDkDQF9fHwODg/QVi6vNTx8w2KMu3UHAvclJUul0m2bpegGMNcZovfuM776+H73GLgOyWqnw3nvv4XoeX3/11TaW2JpjSJadqqIbBr7jUKvVgLUiDOtBUcJaSF+UlHSVnCK852wmQ6PRwBLdSwzDoFgq8eqrr/L+++/z1ttvc+KllyiXSqGHKY7VarWi77uHHjrhuW5InlHVKOxar1Z574MPCHyfr7/6KqqqsriwgOd5KEChr49CXx/79uzBdhzm5uaYmZ1l8t49bt68ia7rDAwMRI3NdcN44G4SiMrabNtmanqagwcOtP2+k7kv8SCH+YXh4xwqP8X40kR4z/j862v/ht+39f9CxnhI9aoN1o0gCLh85QpXLl9m27ZtPP300+H8WydiFTFUk0lMYZAazeZDrxuIfK4fcwo6147IgRDdQhqtFo1WK8oRHz5yhHQmw8ULF2i2Wjz77LMRm15TVRqW9dUzlK5t43seSiIRytMFAZcvX+bmzZscO3qUnUINRw7EzoVTUVVKxSKlYpH9+/dj2TZzs7PMzMwwfvs2ptAmHB0eZnRsjJHh4ZBC3gUy1+H5PvenpxkZGWlnoj4EZKfvbpCvfl6txrYdagxzs7Oc/Ogj0qkUr7zwwsaDNr4TDQIMXQ8He6OB1L59KMQGfABtTkgU8hETwRBOkGXbNJrNqLtBJpvl1Vdf5cMPP+SD99/ntddfJ51OR2pD0jPsdRPpoRs8kTKQspaWafLe+++jaxovf/3rpNNpGs0miqquDeErYReezZs3hw43UFlZYWZmhqnpac6eO4freRTyeTZv2sTIyAilcnldB1clnJ8L8/M4Qjoz6DjfRpCSjp3RKUVR+Pmn/jS//O7fACDAp2JX+Pat3+JP7P9jD/eg1oli+Z7H6TNnuHPnDocOHWL3rl0PvM6oHENVw6iSolBvNLp2LFkPsrzFE2vHGr6GeB0gK9rxmaYZthkTJKzdu3eTTqU4deoUuq5z9Ngx8LxobZU9hR8VHruhdESOStM0FFXl/uQkV69e5dChQ5GRBNpi4muWTWmclLAb9pYtW9iyZQsHGg3uT0+zvLxMtVLh9OnTAJRLJYZFiLZUKq0aD9G1otVq0ajVGD18+LPfUEeuMY7vS76OWN1R7LWJiQnOnj3L8NAQzzzzzAN3zZ0wDAPFNKmurJBIJqPyjM5zdoMinApY9QoDVmuz4shms9i2TbPVIp/LRYILiWSSl156iTfffJOTH37Iq6+9FjWRlc1me+ihG3zXRSVsvef7Pic/+gjX83j11VcjZ1ETbFRP8A66Qgn1Q4vFIsVikT379jE3N8fs3Bz1apWJiQmuXb+OYRhhiFb8TaRS0aKvCo3ouYUFCvk8uQeEXbtfRvf0xaH+QxztP8qVxSv4IpD6725+m5/c8RP0JR9cPtVtPXJsmw9PnmR5aYkXX3iBkdHRzzzXDMPAcV3qtRqbx8YgZuQ33FzIULNYs6PaakLjHX8GiUQi1IKWa0dMuGTT5s04rsvZs2cpFArs2LEjWoe+ejlK4ekpqsrK8jKnT59m8+bN7N2zp+19mgituOuRO+IDTBhOy3HoKxQYGx0llUphmmYYop2b44aQWkskEgwPD4e5zaEhNE1jYWkJFIWBdTp1b4hYvHzNvX4/Wo3EdpRioF2+dIlr16+zY8cOjj79dJgz/IzkF9ndvNZsRjmVNnWhjQa+EtaFyjZGa3pjxiAVTVzPo9XRHcRIJDhx4gRvvfUWpz75hOeefRYEWaOHHrrB8zxUVqMz586dY3lpia+JnaSEFKxYd92QiEWCHMdBVVXGRkcpHjhAEAQsLy8zOzvLzOwsp06dgiCgWCoxMjLCiBDYUAgJMZsfQpyk+yWs70D/zM5v8iuLVyND2XQb/PqN3+D/eujPPvC4nbyIRr3OBx98gG1ZvPLKK5T7+6PuTJ8Fhq6HzqznUeiS6tlo7ZCNHFRVjVI08c/EkctmcYShzGazbbv67du3U61U+PTTT8nn82GuNAjCBg/duCM/IDx2Q6mJG7FMk1OnT5PL5Xjm2WfX3GA89LohxOdsx8FzHJRYSYjUFtyydSuB77O4tMTM7CyzMzNM3r0LikKxWKTRaFAoFD4XiaRNOaLL70AQYcTAiA8sOZk91w1JCut4mH4QcPaTT5i8d49Dhw6xZ8+e8L2fc/dl6DrNRoP+Lj0kNxr4UhEoKrTegIauqiqZTIZarUaji7BBvlDguePHOfnhh1zOZhkeGYm6FfREB3rohGvbGJqGFwTcvHWLiYkJnnn22TV1i5EYgO/jed7Gc1o62KJkLSFqrhVFodzfT7lcZv/+/aHDPTvL7OwsN2/d4uqVKySSSXK5HJZlUX7I2slObFTGsSm3ieeGnuG/zL2BIv78x1v/kZ/a8ZMMpAZwRUMD3/PWrB1R7TawvLjIBx9+iJFI8Nrrr6/qs26QMloPuq7TbDZD6b0uO+g28iHtBlNWAuiyNdcGSAmhB8/zMC1rTXro8JEjVGs1Tn70Ec8dP05AOD4eJR6rofR9P/QKVZXbt27hui4nTpzo2hJH0zQU3w/b3DwEbMcBIWsEq6UYEoqqMjAwwMDAAIeeeopWqxXmJ6ammF9cxPM8fvd3f5cR0VZqeGho45524hy+52E7TmhE4mUhvk+r2cQUXbjtLh6cDBc0W60oFh8/dr1ex/U8zpw+Ta1W4+jTTzM6NoZlWZFnxufxohQFs9Uis17/yNg1yPcrhIZdhkwehpyUy2ap1+s4ogFsJ6V/dHSUgwcPcvnKFXK5HNlcrldL2UNXOJaFpuuYjQaXL11i565dbO/SK1bW8EqizYNIJ0EQ632bSKxZNyBcuLdt28a2bdsIRMP3mZkZxicmUIBPPvmE27dvhyHa0VH6+voeOCd938d13ag20ResXrmGVKtVXh/8BmfmzkXNnQng3134Tf74/j9Gs9UCoNFsrkm/WJaFbdvUajVuXL9OvlAI0zRiR6gqCq7vh5uWz7J2KAqtZhPDMNasVx0PdY1cnSPrXx9i3Yic7EaDZrO5xlAqisLzx4/zvTff5OqVK+zeuzcq6/lK7Cgdx0EJAhzHYWpmhkOHDq07kFOJBKqmPZTQQBAEoUH1/ZD4E3RINHV5eOl0mh07dpBMJLg/NcVBIf47NzvLxJ07qIpC/8AAw0NDDA0Pk8vl8DwPz/fxPQ/X8/CF17qeh+TFPLs4ZA2pDCNJb7BN7ikIMC2LGzdu4LkuR48do6+vr+15BEEQDUBNVdFEV3dNVaPOCt3QbDZRFIVMNovreQ/u3Sd2ko7jhLWvD6lyomka6VSKpmCxdetGvmfvXu7cvcudO3c4fORIpPrRQw9xuLaNruvcv38fTdc5ePDguu81DAPFsjBN84GG0nIcfEStoEgtxDkQnVBUlf7+fvr7+5mdnSWRTDI6MsLK8nLYSefKFVKpFMNDQwyPjDA4MICqaeHaEVs//CDAdd2uu0pZb1hKlXhp5ATvzrwXvk7AhzMn+dGtP0paDSM0yjq7t5mZGSYnJxkZHma/YORaQkwBQsMVBEFI0tG0NevHega03miQy+fDHe1G7GBZvymIOr7rPrSDDZDJZKjX61i23VUDOpFMcuDgQc6eOUO9ViObyWBZ1sOzcT8jHq+hFIv85ORkWOc0OBhpJXZCigX4onZno5IB13XDMKaiRIt4VMv4gGuanZ0lnckwOjpKLpfj6SNHqNVqzExPMzM7y6XLl/n04kVSqRT9om9iqVyOQjqqEFaXklaqqq7+rCg4hkE2kyHVRUpPTpJcLtcWbpRsuitXrpDQdV7+2tdIZzLRblV6nrJJbUC42+vMy0gavaZp4UIgrrlaqxEA+VwuHISdhjKIFTTHnA3Zv1IXE8rrSMR3Q0aw2NZzeBzHYceOHVy8eJFqtdoTHOihKzzPo9lqMTs7y+49e3Bj4v6dSCQSaErYmHwjBCLsGsnhKTF1LCXWnKGL0XREL9Vde/cyOjrK/v378T2Pufl5pqenmZubY1w43H3FIv2lEv0DA2Sy2WjOSIOkKqHmtRoPn/o+iqryR478YX5n9nexgtX58+/u/Tv+uz3/LSDWjmIx+p3veVy/cYN7k5Ps2LGDQ0891b5jFX89CP/6Pp7v0xnv0lU1XDOkzKi4rlq1Sl+hEBp5cY0dDzX8x/fD5gfimiQJUNf1dbsStZ1f1zEMA89xaJnmmhrVIAgol8vkcjkmJycZGhqK1qdHgcdqKF3XZWVlhfmFBQ4fPoxCWCzcrURBEV+U7TiYspt2B+Su0bQsAghFkmNtnICNGZ1BwPTMDIMDYcy/Vq+jCe+vf3CQ/sFBfM9jZWWFxcVFFpeWmJqaQlPVcLc5PMzw8DCZfL6rZ2hZViSz9FlCAlP37/PJqVMUCgWePnKkbSK0X364O/diu1vpsXpiQti+DyK0JFvcLC8tkU6lMDQtDDvFNDPbjGPHuVzXxSf02H3heSsdz7sTCaEx63nemvCrLwqLBwYHyeZyjN++zb79+x/6OfXwwwE5vsdv3SKdTrN50yYs0ySZTK5V0QqCqBvRes6ZHN+e74dC6+Iz3Uo1oGPdEEZzdm4OPwgol0q0Wq3IcUwkk2zbvp1t27djtlosLi6ytLTE+MQEt27fJpVOMzI8zOjwMOWBga47LNd1w92dotCXKfHN3T/Fv73xf0S/f2fqXX5s5Me6fk4Km+/ft49du3d3Tx+JUg3XdaOdbjw65gcBru+HeT/hbEhmer1eZ2zTJlRxPnn8NULrsefoynZ+uo6qaW1M1/XytLJZhuU4WJa1xlBatk3g++zes4fTp0+zsLDQtQfmDwqPPfR6584d+goFdmzfTq1W23jAJ5OYlrXmQUlPT7aasm07rBEUi/K6QgGxn/0gYGFhgXq9ztZt22i2Wui6Hm3dVWGoDV2nVCqxe/duAOq1GjNC7ODypUucP3+edCrF0MgIIyLUIndun1UQPQhCdaKLFy+yeWyM3Xv3blx8Lya2NMZt7w2CcJcpdtueCLU4rstKpUImm6XebBIEAYlE4oHtrWT9pEIYUo3a9YjelFEbsQ4ohMZSfo9xQ2lZFoqiYKgqB/bt45NTp5idmXmoZ9XDDw9c16VaqTA3P8+zzz1HMpHAtG1azeYaUkmAiEYRkuQ6o1Eyx45wMmXRuqbrEaO7E53qNq7rcv/ePTIiIuMJdSlJQJQRnHwux+joaOgoui7zCwshKWhmhomJCQgCSuVyyKQdGSErdpud68Yf3fOH+Y/jv0PdXa0V/De3f53jPBf932y1+OCDD6g3Ghw7dixk5a6z7sidnqIo6GLHGIc0mq7oGCJ3nXUhUJ5MJGiZJr7vk3+ITYDkNuhC9i98/BvvKRXC3HC1VsNxnJDfEtPXtcXmaFSU/E1MTETNLR4FHpuhDIKwfc3S0hKHDh0Ki9ITCax1BjyEX4jKqlAxxHY8gm3quG60u3mQoosfBNi2jS3i3jOzsyiqSrGvD9t1UTWNbDYbhSu7IZfPszufj8I/M9PTTE1PMzM9ze1bt1A1jaHBQYZHRsjIkOtDxOUD3+fc+fOMj4+zf98+du/eTbPV2nAQSpHh9Uo52iaBMJyO41BZWQl1KYUkWKVSIWEY6IaBYRhdjaZk2ckwjBpnJIswVWeeVf4/lUxiWRaWbSOroqQclh+EHV76BwdJJpNMdwgg99CD4zjMzsygahpbNm8O5eZsG9tx1qZlRL5e1vxZIholjWN8fErN48h524AJ6rouluPgiBZTC4uLoSCBMBS6SLHo63ADNF2PDCJPPx1K683McP/+fS5evMinn35KVrC/B/r7SaXT0TzMJ/L80b1/hH96+Z9Fx/t0+VO2KGFZSnVlhQ8+/BCA177+dRQRFVt37ZDrxjrkF5k+ks9VRpNmpqfxgWwuF2ozC0dDrjMJIZ7e7dnJ9ymwZs0KCPkancbTEG3UfNfFsu2o/6WMFGiqSsIwGB0d5crly9RqNUqfk4H8IDxWQzk7O0sQBAwNDQEhocYWA74V62QhH1cimYxU62V37M6Hadt26EXGdWM74LoupmCCxT9dFfH2wcFBqrUavu+H/de6LPzr6ZqOjo0xPDqK73lhblN4jBc+/RRPyLmNjIwwNjZG/8BAV8F1KWw+OzfHM888w/bt26PBsGHpSTyHst77wjcD4QQwTRPHdRkbGyOVTFIT+qpxJ0JVVRKJRNvAl4N9I7q9ZAzKgmIJWa5j23ZEfJKsPcMw0DUN27YplUpR54ceepAIRPSnP6aUI6NNjWaTfD6/Oq/EWE+IXY9p22QBYuovEM4LWzAlu5HM5Hkt245620rIGr/9w8P0l8uYpokudpHyGmRz8vXWpFw+z+5cjh07duDK3ebMDDPT09y6dQtNVSn397NpbIyRkRG+ueun+K3bv82SuRgd4z5TLC0ucvHSJXLZLCdeeol0Ok1V7PzWNZTi9c55ut4zgNDIVatVioUC5VKJ5eXlaFcpd56maWLoOolkMnoWniAuyUgUhOtQPEwaN9qR4Lv4N5VI0BRlIulUCkuod/miH6bv+/SXywSE3JetXZjQPwg8VkM5MzNDIpGIulGrmkYmk6HRbNIyTVRNI5lIrA52mXMMgkgktxMy7Bof7LJPnMxvyt0QhNv/hGFgJBLUarWwDETsomzHCUkCHceK4u+AEvs5LjGnKAqFQoFCocDePXuwLIuJO3dYXFri/v373L59OxJyl4IHEmfOnMGyLF5+6SWGRJubB4mpy3O2GcnYBO0mgqAoCguLi2GdWKkU5ScCRSGVTOIKD13mDk3TjJQyJENPTgB5/k7HRYa+FVWFmKSdrmlh5wHRJ1TmNaWuph+EBd3Xrl2j0Wisafbcww8vHMdhaXmZnbHuHOlMJkor1Ot18vl8GykwmUyiEjI9ZYomDpmb1ESKBVZl5TxB8rFMs00dS86F+WYTBRgZHg5LVkwTt2MHF5EJ4xEWWJ2fsdd1XWd0ZITRkZHIKbg/Pc3K8jIXLlzg/Pnz5PN5fjT3Df4P8zeiz/VT5tz584yMjHD8+PG2HWB0Dd0Q4yOsvhS0Keh0W3cWFhYYGR1F1/Ww1lHXo/kruRKO6+KI6FzSMPDFdajxEO16IeFgVdJPso9TgjVvCz1XyzTxRVpO0zQ8sV7nslnu3r3Ly+vd8/eJx5qjnJ2eZs/WrdEDUwhVWlJiYW42Gqisajkifm9ZVptIroQrw66wOkh8n1arFXo7sQGTSCRIxTwd0zSp1+uRmLGu65Fn1Olhtg2aGDOus4WW/D2EoZbBoSEGBwcpFotUK5Uot3nu3DmCIIgan9qWxde+9jWKkrQjJ1KHEWorHxH/X6OO84BJsri4SLGvr41g5HtexDJLBWGpjeU4YY2obdNqtbAch4SutzFkuxnK6DJiyhtBEJBIJnFcl2q1SjaTIQgCsplMuEPwfQLfp1QqEfg+ExMTG7YL6+GHC1NTUwS+T3+scbuiKGSzWWr1Op7n0ajXyeZy0bhPJpOgqpitFn4X4QGnM+xKuJ40Go22mmdNVUklk2FHETFfVpaXSafTpMWOBgSzs8t5Og3OGgPaxThlslm2bt3K3j170HWdeSHk7s66vOp/nXvqfbbrW9hqb2NkeJgTL74YcQQUWC1xgeg1WI0u+XQh34if5fV1oin6xQ6I70Cul0EQkEqlSCaTIWHPssLm8J5Hy/MwTRNFUdpSa9E51ssHxzgPkgzoiEYOqqaFu1axoZLPv1Quc2diYt1w8veLx7qjrNVqa3KRiqJEA8627ahORxdaiul0mmajEdbXlUptn41i38JImqYZhvRE8lkO8mQqtaYEZWlpCSBS1Yikrz4DxbhrfjAeOhBhSIVYF4N9+7Asi+vXr3Pl+hWaboOEl+Ltt96KWoYNj4xE5Bm6KPvHjZOqKHifYXAsLi4yJhraylyEZLtJ45kQC4PruuHAtyw818UmrKNKpVJtifn1no0fu65UMsnKygquyEm2GUlh7FNCe1Z+Nz30ALCyshLOoZjuJ4RRi1wuR71Ww3Fdmo1GJKKhC3KbbCnX+VnHdUMCoGHguS7NVisq/oewrVQylepagrKwuEhZqFpJ0p/jOLgPUgLqhBJqzkaN0DvWDlmzPDo2xujYGEEQ8PzScU6dPcvK8jKu53J/aorvfve7jIyOMjIyEnXkIQhAlK7B6joVAIgdtmyd9zBYXFwkYHW9lGtFPCStaRrpTIaUiObJ7kE+oJtmqJomDN+G5xZM+oioqKo0bBtN08hns6Sk0yKenRwbc/Pzj6xN32M1lG11SgJyx5ERdYK2bVOv1Uil0xiJBJl0muVYI+BkzAN0hFELfJ9KpbLaxkXTKGSzUb6xG5aWlkilUlFeNK4RuZFXEnltrHpoQYchi+43vME1uZH7U1N8cPND/rPxXZZZ5njxOP91/x9hbm6e06JtWKFQoFQus2lsjOTQ0Lo1mPIZPgyazSatmFcI4c7XEzvpzgEmk/SObG8ktFvrjUa0kKyHeIhJ1ny6Il9hyJrOjjBUFE7uoYdOKO3yjnKsaJpGJpulUathWRae75PJZFBET0pLNASPG0pZOuX7fqRiI5FKJjGSSfR1CHheELC0tNQW8YhHo5Lr5DsjxCNAsRQErBqzSMCkY+1wbJsLFy/SbDQ4cvgwZ8+f59DBg9RqNe5MTHD9+nU0XadcKjEwMBDt9DohHdg2Nu8DnO3FhYWwHlwcL76xWFNWI2REVcEvsV0XRdMinkgqmWyLGrZdW0ckyvM8fLEmu64bdhuKX3e8ScMjXDseq6HsdhvS6CiKEkqeEbKaGvU6qXQ6/JtKhQt0s9k2EC3Lolqvk0mlQkaVqpKODY6N6vsWFhfpL5fbin9lGynX81bVZ2IGSXpAbQN6vdBjtxxjEHDx0iVuXL/OjfxN6o2Q7n1q5RQ/e/CP8NrB17Ati9nZWe7dv8/9e/e4MzFBwjCi7ifDQ0NRZ/E2LzG6yPYi4PggjrzCmMarpmnQrS2RgOzCkEylyGazWJaF47rYrotdr0dhkDWTTIakfD9sEi1a4sQVgzqp4qqqojykh9vDDw860xoRhKNlGAaZXI5GvY5t23ieRzaXI5vJUKtUMEWfU+kIOoK74AjiGoRRqYxgmm5UZlBZWcHzvDZ9V0PXMaGt4D0+/ztl8eL/X8MzCN8AtLfnq9frfPjBB9i2zddeeSWaQ0PDw+zdtw+CgJWVFaamp5memuLKlStcuXKFYrEYciKGh0NGaMxAxh186fSvZywXFhbatKGjaJRwOLrt4hyhppTOZNBUFdOy8IOApmmi2nbItO9g2GuqGq2zllBXUgVRsxuj2I+PjUe4djzeHeUDoKgqWeENmq1W1Mg3lU6Hu6FGA4pFAqDZaERMVU3TSKXTpOPqN3Jb3uWLl15hpwyWoet4to3rOOiiruoBN7V67cpaCTr5OohecKdPc+/ePQ4dPswb995qO9R0c5qn+p8ikUyyZetWiqVSWM5hWSwsLITNZicngbBt2ODwMCNDQxSLxfYwhtSA7YKFhQWy2Wybs6GJEOp6qha2kK3TRH5Sz2RwRe7BFTq3tuOQSadXJ4uYgK4IaUkvMZvLhZT+jtZpkgGnPGKvsIcvL7pFG+KpD8MwyOZyNBoNPM+jVq2GpV6JBI5w1gr5PJ4QEGm1WiQTiXBHmsms6Xm73txfWlxEVdVVPgHtu6uoZCseRu1A2ytdFvjOtWNpcZEPP/yQRDLJq6+9Ri6XY7kzPaEoFEslsvk8Y2NjoZJRo8HM7Czjt29z7do1EqJt2JCQ5ewkLa65NvGMHVFCtmPHjrbfSTKN1yUaJWu2feHIyFC4ZdtRO716s0kqkSApVNggjEQFgrNii/KxpOCXyCiAbDQNHV1Ivgo7SggHYNe4dEeYLi3U41uNRph0F4u/Y9u0xANsiWL5VDJJqVhc25dRUSLGbCcirzDmIQWAqusg6v26hSw60Y1ZGv0uNtFsy+LDkydZWVnhhRdeYGzTJpT7naHUjs+LCVfu72doeJiDTz212sVgepob165x5dIlkqkUA0IlaKibkLsM3wQBM7OzDA0ORoNKqvlDaKy6SVK5to0PpGMLia5pYSscx6HZbOL6PvVGg3QqRSKRICDMF9uWhRcE0WIU+KHIfSS1J25aGmkpZNALv/bQCRmG6/a6dFI1TSOfz9NoNMLm5PV6xBFoNBokEwnqzSaWbaMoCvlCYU3uEthwwV1cWqJYKq2uLcqq/JxPKNP5oGYKa5jz4jgS8V3SvXv3OHXqFOVSiRdffDGKJq0Lse4kkkn6+/vDzklBwPLSUkgmnJnh7p07QEiAGejvZ2R0NDT8Xe47AObm5iAIGBwcXH1PEITC6GI+d96xGxNzkGuMItj1CcPANE0C34+0XGV3Id/3aYmmzYGwBYlEgnq9HknwaZoWEXkiLofIu37pRdFVVSWTz7OysrLmd9IDi4cJk4kEuqpSl3V+YhczNTNDsa8v3GmmUhTy+XWbFyuqGvW/jKMirqGvr69N0Dyh6zRFgrqrjmEMnaHkNTtK8W+r1VoNmXzta1HIpvPr7MxydgvdRl0Mtm7F9TyWFhfDDigzM9y5cwdFUegXhnVkeDjUjxWfr9frNBsNRg4fbmO7yZCGF4SCBEbsnuMecjcRAsMwyOXz1BsNXFH60RL1kZKNaxhGtNOXXrvvum2etDScrWYTz/cZFWSjHnoAGB4e5lPLYnlpicymTdHrUYlSTFFHMiybrRaWKDmzTJNqrRYpWEGokZrraP0WP25naYfE8soKQ4ODbcInELLzPZGWeGDXofi5uu2ExNy5dfMmly9fZvOWLTz7kE3aozRGPGeoiLZh/f0ceOopWmKnOTs3x42bN7ly9SrJZDIqW+t0uGdnZsiI7j7xY8p0VzcHJmqg0CUXKbuDaIZBo17H831qtVpUniPvQQo4AFH5nuO60THluqGpKkvLy4yMjT206PpnxWMzlJqmsWnTJqbv319Lo16HEKPpOoVCgVarFYZjTTMSyE2n03hCIGAjxHd98guoVKukM5k1TFipnO/7Pk6XMpHPBJEzuHDhAqlUitdee61joHUXE5bX2W3Axz6MqqoMDA4yMDjIwUOHqNfrzM7MMDs7y7WrV7l86RLpdDpi0dZqtbDVWKw5tTTCqqahxBSO5LU4gia/ESlKU1Vy2SytVotqtRoSI1SVTCpFOpNpYw3KQe94XpSL9ESiHmB+YYFkKsXWWL1cDz0MDw/jEu5sNsUMJcTybB0hzEw6jaHr0e6yZZosr6wwPDgYpXc2NDydIdEg1D+tVqvs3LFjTWjW0PUw7/k5hLk7GaC+73Pt+nWmpqbYv29fmCJ6yJ1SvCSuK4KAVDrN9u3b2b59O47jsCgc7pnZWe7evRsa1nKZYdGkenpmhrGxsfbDsEqg8QWPIVpnfR+7oyKhGxK6jpLLUa1WoxSNpmnkcrmQ2RozerquYwvClNykSAOt6TqLi4u88tprD/WMPg8e645y06ZNTFy7xuLSEkOxBTseHuyE9Liy2Sy1ahVTKGUEvk8yVhe50Xl9z2vLZ9Sq1Uj0oBOSUv4gQ7kmlt9x7VNTU5y/cIFSXx8vv/zyGi+zk//b5ibEj/UQE0RRFDKZDDt27mTHzp14rsvC4mJkOCdEfZFuGEyMjzM8MkIul1s1lIJGLruTyIkrtTA38pCDIAip4LYdyoaJbvGKoqxRIZKTxvf9sB9ezBvVNI2FhQV27Nz5QCnCHn64oOs65cFB5hcW2l5vm3Fd1g5Z5J7NZiPWfLPVwgfyDxC0kLsbBaK6w3qtBkHQde0wDCPq2fqghtEbsTUc2+bTTz9laXk5Uun6LIh21uvtrDqek6ZpkcN96PBhms0mc7OzzMzMRA637/vU63Wmp6YYHByM5rGc54hdvSL4DrYQQVdjYddu8EXNO4K9HH9unY65rusoIuolCVCylM8S6bidO3d+pmf1WfBYc5QjIyOYnsfczExkKANW6crdQh3NZjPsOmEYDA8NUanVqNdqYZ2fCL+mU6n1F1ffj9QhJKrVKqMdnqmEjJ87ztpGy3HE8wzhC8IDDQKuX7/OxUuXGB4e5tixY10NzZpyj9jR4qLIXXdy67DkJDRdjzqbQBhq/t73vkcqmeTy5ctcuHCBTDYbNpodGaEgQrSelAmknfbdbbBL5SPbsnBlkl3TKPf3h7lJQaDIxDQrVUVB1TQCod6hi+8QwkVtaWWFF195pdvj7uGHGJqmMTY2xsTVq2u0XRVFWSNPB+Fuo16vEwRhOyZVVak1GmGHIFVFZbVfajejIneq8riKooTt6YKAfLe8JuFiLh3MDWv5OuarXPjNVov333+fRrPJ00eOfGYjCbQJfXQ/dXs+dM1OPJNh+44dbN+xA891OX/+PBN37lCv1Th58mQYlervD2u+R0aiHLAn5n8AkWDDetE+1/Mi9rwUjckLxz1ae4OgrRRE1/VwjRLrkhcLt88vLGCItNSjwmM1lIZhMDI2xsSdOxw4eHDVe6C7l9Wo16NQRiabJZ/LhcLEolhYFRqhEQ05lWrvICJCifHdnuu6IQNunR2lpCDL5szreUTdrtf3fc6fO8fExAQ7d+5k27Zt606YNTTnLoaya9i1y7nj2rTd0Gw2CXyfEydOkEqnWZifj0Itt2/fRtM0+opFSqUS27Zti0SPIaahKyaULxLwUjdXFganUqmoVZGu67SaTVzPCzuUx3MNmhZ2J3BdfCFcrRC2Fgt8n3379nW9hx5+eKHrOlu3buXqhQvcvn2bffv2hQ62dOw6FnvPdak3GhHBJ5fLRYtqvdnE0HUCCLVgWy2SqRSpZDIkp7Cae+wMidZqNZKJxLqRJhlRcRynq9ymRCcJMCB0ZqWw+bFnnlnTVuphIa+269rRaSQfAE3XqdXrDA8Pc+LEiZBFKzsnCYc7nclEJSgyPOsJkQH5nOTa5IjIkxSKkRwGKVUK4VrWarXCxtJi7ZD5UMSOEohKeFRNY3x8nN27d39/qbIH4LEaSk3TePbZZ/nk7be5efMme/fti8IbcvckB3RLiHcDZLPZyIvMpNO0TBPPdRno74+S9bKfpKppJJPJqDclENVHApGXuZ5XCO2e4bqhg47J6bouJ0+eZG52lmeeeYZ+0eNyI63WNsS9TJn/eMjwSXg560+A2dlZMtlslCMdFt7gkSCgXq8zMz3N9PQ0N27c4Nq1a2SzWUr9/fSXSmzeHHYo8FwXW0jbydIbTVWjLgduLNeoilCwHPDNVotcNhvVXgXC4ModrO95XLt6lX3790eC+T30IKGJrj7bduzg6rVrbN+xo612N+5o+4KBLR022bqqkM9Tq9dDwloiQV+hEGk7m0LX1UgkSAo9126o1evkNlg3DMMARQnnwjpkwG715LOzs5z88ENyuRzHn39+w3XjQfA32lF2KUXZCLZlsbi4yNNPPw2Em5Wdu3axc9cuPM9jYX6e+/fvh6Vr9+6hnj5NeWCAcqnE0PBwVMbhiBKyyED6PglRFiKdkbgUqaIoNFstXM+jJfoVyzSOXGMcQQicmZ6mVqvx+37f7/tcz+th8dgNZT6fZ+u2beGA3769LSwpB7wUv4Xwy4kP3HyhwPLyMk2x48lmMmTS6Ui+zhVfSEuwLBOJRFsIoFarhcfZYMAnYp5hej3PMDbgWq0W73/wAY1Gg5dffpnBoaHoPOsP9weHXtfdUXbxDNfblROEzam7MUkVRSGfz5PP5xkZGaElnuH09DTzc3NM3r3LhQsXKPf3UyqX6S+XQzayYZDueK5rGmYroTRhENtZykVLXrmUDLt3/z6mZfG1r3993afVww8vFEFee+rgQU6/9x5Xr17l8OHD8TegEs6bpigbkztJCU0IeWuqSqPZZGxkhHQ6jSuIPqZp4omeqVLQOyH65Mr5WKtWQyb5OtA+BxlwfHycc+fOMTA4yPPPPw+EzvznNZQPzFF2YKOzzM3NEQQBIyKFE4emaQyPjFAul9mxcyfNVotqpcLU1FSbw13u76e/XKavWERVVZKiIUVk+GCNwIOu62TSaRrNZmhkdb2N7+DGQrbXr19n27Zta8hGP2g8Gi7tOpBhyF27dhH4PlevXm1/g6jtazabAF21FpOiybCqKNTF+xRCEeRSsUgmm40Gq2Xb1Op1VioVmuKh16pVkqnUhmzZuGcYLx+JQxqlSqXCW2+9heu6vPbaawzKHVGX8o441I5H38Z6e4ChXK/eqRsWFxdpNhqMxrqVdL0eXUc3DPrLZbZv387Ro0d59tln2b59O7Zlce3qVd5//30++eQTxm/fDmtRY9fc7UoVRSEtQieeqI+SobLA9yNP89atW+zctYvh4WE2b96Moih84xvf2PB6AS5evBiFyn/t137tge/v4csLXddJptPs2rOHmzdv0qjX29+gKFH9HRBpvsaRzWTQVTXSIJXHzeVyFIvFUIhD5MGapkmlUqFSrUYRrGq12rVvbhwJw0BVlDZh9W4IglCl6+zZs+zYuZOXTpyIwovh7XzOHeUGa0dX0ZcNznPv/n2KfX1R84ZukISpdCrF2NgYBw4c4Pjx4xw+coRCXx8zs7OcOXuWd955h0uXLjE1PR21ENwIeqwzidlqtV275I/cu38f0zR57vjxR75uPNYdpSzi1xIJ9uzZw5UrVxjbtGlVGinuEYqcYzdIb6Mp6vfinTDSgtzjimaftm3ji+Rxq9VicWmJTCYThlXXKXtQVTXMYzhOqE3Y7TqCsID/448+Ip/Ph/m/VCpSmVlXdosNXw6xQeh1PYWj9chQ9+7di0QJ1oPsZm6aJhXLisLg+XyeUrHI3r17CRSF+bk5ZgWF/MaNG+iGweDgICPDwwwMDXXVuVQVpc07lPVVtuNgJBJcv36dIAjYv38/6XSaF154gW9/+9ucOXNmw7wrwF/+y38Zz/PYtWsXf/Ev/sV139fDlx+JRALbttm6ZQvjExOcPXuWl19+OVJzcoTcmQKRs9wJQ0RDdM+jUqtRKpUiB08aTF86cLEG747rsiTSCEnRLGA9tr1hGKu9b9PpNTu7gJD4cvrUKe7du8eRI0fYtWsXQFsN4ecxk/G6zofdUa4Hx7aZmZ7mgOiu1PV8or7dtm2aon0eQdgpaCCbZUy05Gq2WszMzDA7M8P5c+c4T9iPc3RkhMHh4UhdrBOyI4lM30jipy2ETm7dvMmOnTsZGBh45OvGYzWUsmu257ps37GDmdlZTp48yeuvvUYmmw11GmVecgMvJim0XQFWKhX6u3S1loLemXQ6NJpCcadar1MoFKjV66vSbLqOIf6VD1iGX9czlLfHxzl/7lzUC65z4kRsuXXuYaPykA13lOvlGbq8Hvg+9+7dC72t2MSJN1t1XTesexLd2y3bJp1Mkstmo1CpxOZNm9gs2MIrKyvMCBr56TNn8H2fQl9fxKQtlkrR9UvvUCbyfc/DCQLuT00xOz3Nc88/TzqVQjcMXnzxRb797W9TqVS4fv36uuSe73znO/yX//JfAPjVX/3VR5rI7+GLRzKZjPgFzz/3HO++9x7nP/2Uo0ePgoxWECrSdOv4AWGILyP6WK6srJDP5dbkI1Uh6J0Ukmm2KEdrinZdqqZRFcXxct0wDCOKlum6HpZNrBN+tS2LDz74IFTpevFFNomQoSyPi2bw59hRRqmPLmz5IAja2m89CFNTU3i+H3EU5DFc140ca5lLdVwX23HQCL+nvkKhLWJXyOcp5PPs3bMHx3WZm5tjZmaGO3fvcu36dRRFYWhoKOqeFF9vU+k0rvjePdclUBQsy+L8+fNk0mkOHTpEMpV65OvGYzWUIAa8ZeF7HidOnOB7b77JBx98wKuvvkrLNEFs49dTWJAivFmxK6xUKhTy+XUT8FIRxjAMMoJtmUmno/rKqDs3tBlOVYQLCYK2+p4gCLh06RKXr1xh965dHDlypG1QylxhV1H09itr+18QrIZ4NzSU6+0oWRt+nZ+fx7QsxkZHsYQT4gm1HTkpZb5T13U0XScZBGSz2QeGmIrFIsVikQP792NaFjMzM9y/f5/x8XGuXrtGMpGImlQPDw+HfUVFs1zbcajX64wLBuPmsbGoE8mLL74YnePUqVNdB7zjOPyVv/JXAPj617/Oz/zMz2x4rT18+SHJOz6h9Nqxo0c5c/Ys+VyOzVu24HkeqmiKsB583ycpCDue77O0vMzwBuQxVVVJpVKkUimWl5aitl7S6NgiQkKrFa0zuqZF89ay7baFuF6v895772F1qHQB0bx+GE3sde9vg3UjYgd3vg5dd2CTk5P0l8vosjG1MJBxYy4JfYZhoFsWqVSKnOjatB4MXWfT2FjkICwvL4cO8+xsuBskXFuGheEslctRRMp1Xbwg4MaNG7iexyuvvBKRNx/1uvHYDWUqlaJereIK7+7ll17izTff5ORHH/HUwYOomhbFptcrwfB8n2wuF0meLS4tdU04d0IRIZpCPh/J4MnQius4URI+XsjqiC7qcof76YULTE1N8fSRI+zevbvrOdoG+7qh17WyVZF0VlwkvBPrTCTpccm8qud53B4fJy1YqS2Rz5UDXRpGXYidu55Ho9EIJ/xn2J0FQShavHXrVjZv3owrRKdlqGXy3j0g7GM30N9PMpmkWq9zb3KS4ZER9u3fH7XlAXjuueeitkWffPIJf/yP//E15/yH//Afcl14on/37/7dh77WHr68UBSFZDIZhkMdhx07dlCt1Th7/jwoCqVSKex6v56eNKst9ErlMstLSzQaDUzT3LCUQ8IWghrFvj6k7qxcNxwRlbFsGxtRw9loAOEuT9d1KpUKp0+fRtd1Xn/99TURM1lLuaarSPzfDkgDFwmKP6CGcj3Ed4qekAqdX1hgz549NOS6Id4n01KySYKqaQRCqFyyWR8K4r5KpRL5vj7279+PJTonSZGUa9evY+g6wyMjFItFPNdlem6OWrXKyydORBGvZDL5yNeNx24oDVG2EYjFvJDP88Lzz/PeBx+gqSpHjx4NDUQQdPWuXFF3pyihWr5lWTSbTZqtFhnRW3I9yCSynBhS+1Eu0nLwe2LQGIaBLTRMfc/jwoUL1Ot1Dh06RH9/P5VqNWLkxf+FcFJKtRt5vXF0hl59VsMv8Yku5eyCIAi7qAcBgefhit2u7/thv0fxPKPj+T6z09OMbdmCIpqfqpoWGcbOiSdZZNLwPRQ6wr1BEKCrKuVSiXKpxMEDBzBNM1T6mJ1lfHw8LAlRVTRd59lnnomeS07UtabTaY4cOcKZM2f45JNP1pxycXGRv/E3/gYAP/dzP8czzzzzcNfaw5ceyWQSu16PHNnDhw9TrVb59Px5nj52jO1S27jLuiHnj0LYczKTzeLV6ywuLUW7m43gxHrhyrCrruuQSoWGxvNwHSd0vlUVTdPC3FqzydLKStjyqq+Ppw4exLFtKq4blkspSqRMg0iJeL6PLtaByFXuTKuw6pTLdTIuVCKNZhAE4doi1gxflK744viB2BwE0WkCpqem8H2fgcFBVLF2aGLtWCP7JyJECqulHQ+F2P2ogjiZTCbZsmULW7ZswQ9CCdBZIeR+/949NF3HB/bu3Uu5v3+VS1EooBvGI103HruhVBSFRCoVCgU4DqqmMTAwwFMHDnD5yhVcz+PFF14IdzXxRZj2/o+KopBIJMjmcnj1OksdgsndYFkWKMq6DYcj0WRhOPP5PAtLS1SrVc6cOYPneTz77LPhOUWuTQ7YuNfnuS4N4VHKL1PuFiEMd6S9NCVKONgoqARmQLVSwRO1jVGIoyO57wdrNXHDtwUoQYAqqNTzCwvYrsuunTs3LIURH8YWJJ4HaeeuOWfna7TXraZSKbZt387WbduYmp7mk08+QQE2bd7clhMulkrRMV588UXOnDnDuXPn1siB/fIv/zIrKytks1l+5Vd+5aGvtYcvP5LJJBVVxRViF6qicPjQIT45dYqzp0+jKQpbt21rG3+wqv4lf1YUhWJfH81GA9u2qdVqD5wjpmWt64jLeROfO8lEgmq9zt07dxgfH2d0dJR9+/dHuzbkWhYzLH4QhHJsto0tOBJA+9oh/pWM/0ajEdUmSx6GYRhrGipHSkOS8BM3aGJ90jUNVVWZm59nYGBgQwKghO04Ue5zI13XzufV2UAiEhyQ/1cUyqVSRCY8efIkC4uLJBMJxkZHIwchl89H532U68ZjLQ+RSCaTBCIJrBAWj46MjvLsc8+xtLTEW2+9FQ6A2JfZubuUvykWi2iKgmPbVKvVDc8rDeWDdp7RORQFs9nk03PnUDSN115/nc2bN1MoFCj09ZHL58kKgfaEUAXSNA2lY8cm28P4olu35/sovoISKOCrKL6K54X6p57rhh1PYgw2cTHhjtAwSBpG6BWn02QzGfK5HMVCgb6+PvLZLJl0mumpKfrEdT4IMneoKAqJZPKh8iTxeshOBEGwhjx088YNTn7wAflcjm07dlAul6PzaJrWdp0y39BsNrl06VL0+uXLl/lH/+gfAfBX/+pffeS1Uz08WdB1HV20cZM6xADHjh1j85YtfHLqFJcvXVpNYwjIOr34qNZ0nb5iMew8sbKybhmYhGmapB5y3YBQ1/jG9evcHh9n7969vPjii5SKxXCOFgpks1ky2SypVIpEMhmycWOOYyB3i51rh/jriFSRJxTEPN/H8TwCsWOM98NUxNph6DrJZJJ0Ok02nSaXzVLI5+kTZJtsJoMvUllbt2x58E0K46woCsnPoM/cGRpv43jEjagg7rz9zjssLCwwMjrK1u3b0XQ9MoLxvqCPct147DtKCHcZVU3DE/VMUoFnZHiY8uuv8/4HH/Dmm29y4sQJyqVSG226s8uIqqr09fWxvLzMcqVCNpOJpKg6YZomBEEYal2PPSoQBAF3Jyc5deoUhXyepw4fjnqmyTDreoQjV0jsoSgUC4Wu127rFjWqOIroNpAMKORykeivpqrkC4W2HASwcV2n+J1pWUxPTXHw0CHUeHimW57D96OQtHwuUXPU9bBOKUrncSGcFOfPnWN8fJztO3dSLJUwbRtd06Jj9BWLbfcYT8x/8sknHDlyBIBvfetbuK7L5s2bo6R8Dz9cSKfT1JtNbMtCE31qpeJXvlDg8qVL1Ot1nnn22dVFt3Pci/8X8nnqtRqW47C8stKVPS9htlqUyuWQUCQUpbpB5vtOnjzJzNwcBw4cYFtMs1VRVTQZau0CTUTKksnkKlcjtm5EyjSOgyKc/nwuFxIRVRU3kSCTybQ1Q4b11w1oXzsmJibQdZ2xTZtCEYd1PxXmbQPPCzWcE4kHN7qHNZKi4qbarkX2pZWyfr7vc/jIESzbRtP1tnBzvKfwo1w3vpAdpaZppHM5AiUUwfVjxb/5fJ7XX3uNfD7P2++8w3XBcIqjM+dXyOdJGAaB77PUpd+lhGVZUW5Bsr3ikPF8z/e5cvUqH3/8MZs3b+bYs89i6HrYQuoh0DaJlLCxq2zrI8O7gQo2DjY2Dg6B6qMJj1IVObx4zhM2HuzxwXdnYgJFUdi+bVsbOaAbG86y7UivNZFIrK/w8xmhKErI8nv3XSYmJjh85EjYIT0IolyGzDXFw64Ae/bsiRiBp06dAuB3fud3+E//6T8B8Cu/8iuR09LDDxcymQxoWiQ9RxBEIcP9+/bxwgsvcH9qinfeeYdKpdI2ltcw0RUljEipKpVKZcNCeMuyIuOznpH0g4BGo8Gbb73F4tISL77wAqOjo9iW9XBzKmYQlXXWDbl+yXI0SchrWztideXw4PkcT+uMT0ywbetWdKGHq4i/aufGQuwmA8KNT6Sv/RD3+CD4nsfE7du8/fbb6LrO8ePHyYqWfZogD0n1pXwsEvUo140vxFBC2Dg1UJSwbEEQXuQuJplM8vLLL7Nzxw7Onz/P22+9FTV87lpnJIg9uqpSq9cjxlknLNOMiDtyIMpjyjyG77qcOXOGS5cuceDAAZ599tmQci7CAJ8FG6W11+T2xI19buaa+NcPAm6Pj7N5y5Y1JTMyp6iK4weeF0kFRv3fhMe88ck2Huye73Pt2jW++93v0mg2eemll8Lu6IjWO4I5J8UZSjGvUOKFF14AQs/QdV2+9a1vASEr9k/8iT+x8fX18JWFpmmkxGLXajaj0iaJTZs28dprr+E4Dm+88QaXLl6MSG7doiCZbJZ0Oo2macwvLHQd+77vYwpDCbRFaeS64fk+y8vLvPX22ziOw6uvvsro6Gikdxo52RvNnc8457tdp7y+tsM+4HPyiqbu38cyTXbu2LH2PWJnrorjWaLVoUzXSOLi50Lsemu1Gu+89x5nzp5lbGyMEy++iGEY+EEQpbZQwtK9TgcbHt268YUZSl3XSYgB79j2miJZTdM4cuQIr7/+OoHv88b3vsfFCxeiXUgn0ul0mNhVVRYXF7u2ybIdp60YWQE8QfWWihwffPghd+/e5bnnnuPAgQNh/F3stGQ5yYN8ooerheouOBDVQn1GZQ357OZmZ2k1m+Hubb3rCy8yFDgnDAfFRaY/Ty2X3KEvLi3xve99j0sXL7Jr925+9Ed/lHw+HxlpTbTikU5KOp3uSs+XYZQLFy7w9/7e34vkDv/u3/27n9mJ6OGrhVyhEHEcZLPx+JgtFot84xvfYP+BA9y4fp3vfve7zM/NRb/vHD/lUglD10MFnuXlNeeTxJioGwar410yxWdnZnjn7bdJpVK8/tprFETaRMriRYbyQWO3g7TzsIiHI7upAW14SvHv7fFx+gcGyK/TWSleIy53ySkhbP6g+9rwfsQafOX/z95/R0l2Zeed6O/68BHpXWVVlkFVwRQaBW8baMOhJIrsJilR0kgjieRjUxLnsWUWJS1q6WlRmtZoKPLNaIYUR5ymxCbFmUVSEpvdj90S27EJ17CFginvMstkpQ1vrn9/nHNuRtpCGwBVwP2wciErMuLGvRHnnn3O3t/+vhMn+NpXv0qn0+Hxxx/n3nvvTeZ7Q/a2m5K4BFDZIlX+Ts0b70mNUiFXKuHW6/i+j5PJbLKfiaKIgYEBPvLRj3L27FneOnGCy5cvc+DgQSa3EPkeqFTo9Xq4UvV+fIO+aRTHCUNM/ehApGl0Ox2ee/55Op2OEDbvM5ZWgcR1XXqeRy6b3XnwyZXmtlqtbB44CcV7m1Xh28X5CxcSy6ydEAQBbq9HDBRyuYT5ps7/24UfBBx/7TXOX7hApVzmqY9+NOl9SvzppIauIVNlAMPbNHyrAe95Hj//8z8PwF/4C3+Bx1O/yg88LMvCzOWg2xWL7A3pNHUv3X74MLumpnj11Vd5+umnmZiYYN/+/Zt2WIZpMjg4yPLSEo1Gg1w2uy5F1x+A4nitfUvtsi5cuMDx48eZmJhI+vkUHMdZ37B/A2yq371N9O/mNi6yb1Q71IBGs8nS0hIPPPDADd+rK+XkDNMU5L8bHf8GnIbl5WVefuUVWs0mhw4e5OChQxiy91u9j+owUO0puqYx3DdHK7xT88Z7Giiz2SwNxyGWOqD9A7j/g9V1nUOHDjE5NcUrL7/Ma8eOMTc7y5133CFsmfpqDkNDQyxcv06316NWr1Ppy2HHUZS4lYuni7x6rVrlueeeQ9d1nnzyyS29Km3HEWajnkckUzDbYoc6RvKUG+woN60K38YN1Gq3Wbh+nXuOHt3xeTEkAuW2ZSXkpx31IbchP3mex/nz5zl37hyu53H33Xezb98+MalEEZ1uFyBJAyf1DsT3Or4NA+2hhx5KbjDf93Ech1/8xV+8wSeQ4oOCXKlEa5vMkTKCB9Hi9eEPf5hLFy/y2uuvMz8/z/4DBzh4223r2sSy2Sz5QoGo2WRpZYVdtr3On1K1VSQtUbJ08/rrr3P27FkO7N/PkSNHNt1DSrbTk/KQlsxObYfvVOv123UNWfdaTePixYs4jnPDnlJf2u0BSUlK8R/U57TdJmAjlpeXOXX6NNfm56mUy3zsYx9LdrO+54n+TE0otXU7HZGRksceHR/fUo3tnZo33tNACZCtVKivroqt/IYAthHFQoEHH3yQ2bk5ZmdnefqZZxgcHOTwoUPCRkoSUiqVCtVajWq1SjaTEe0ocnu/8Uu8fv06L7zwAoVCgUcfeWTbHkulBRvIgbKTAsXbGewbd4xJoFQ7ym8zfQIwe/Eihmky3afPuBU8101SVlulPTcF+S2CZK/X49y5c5y/cIEwipjZs4f9+/evcxro9noJQzCbyVCv19fVlIaGh5O6z0aUpVrHyZMnAfjZn/3ZHdPJKT5YyOVyxNK4wO31yGYyawFyg6appmnM7N1LNp9ndnaW8+fPc/78efbu3cvBgwfJyraPQSlg0nNdllZWErUvVZrpP2YQBLzyyitclsLmW6l0KShFIdd1k6zKdlB8iW8X280bbwdBEDA7O8u+vXt3DLQxgv2riH9Jd4Hcae9EdOo/xsLCAqdOnWJleZlSqcSDDzzAZF8PfBgEdOUCW3lWqnYg07LQYNsF9js1b7zngbJQLBJL1/t2u01eaSluswoxDIOR4WEmJiZot9ucPn2a5557jnK5zKFDh5ienqZYKiXeikvLy4nFVBzH6wLU+QsXeP34ccbHx7n/gQduOMiUc0BXDvhtKeKsbxLeGptXXYlwMVsM+BvsKIMg4OKlS8zs2bNtewxIYoJsk8nkcutvDDnQY0AzDNHPuSFIdrpdzpw+zcVLl9B0nf379nHgwAHx2fSlljzXTVb7efk+vlyJqoL81A16tUZHRzl58iQjIyP8k3/yT3Z8booPHgqDg1SvXKHb61FQMmqy7LHxzlOLtf379nH77bdzWTrgnL9wgZk9ezh48CCFQmEtI9XtJrZaG4NQr9fj+W99i3qtxiOPPLKpxLMRlszaBNJkYbvFYf+5frvEnvi7KNnMzc4msoA7ode38N1uga3EAxTRJ2mNQwitnz59murqKpVKhYcffpjxiYlEIQhNS7JQMUIAIaN2k/Iz0XWdUrm8ZdZP4Z2YN97zQKnrOuXhYRoLC3Q6HTLKGURN0ls8X5PKG0pwe2VlhdOnT/PiSy/x1ltvsWfPHiYmJ5N0x9LSEiMjI4l8WhzHvPnmm5w9e5b9fSmTG7G2bNsW3nRSVehGuoY7hskNf1TEgP7r/HZw8dIlfN/nwG237fg8tVIzTHPL819Xp5SDMwxDYa81O8u1+XlM0+TQoUPs37dvS13YQMr+gUjPqBqDH4ZEiH6vcqm0rll4I1566SW++c1vAvALv/ALOxrmpvhgYmBggNriIoHv05GLbNieOKLrOrHMaBw6fJgDBw5w8eJFzpw5w6VLlxgfH2f37t0UikUa9TpLKysYhpGws3VNo9ls8uxzzxEGAR/+8IcT4Yzt9GUVMo5DS1rZ9RPntoJqyfh2oLxhN2Wi3ka/8+kzZ5jatWtH38kwDPEkpyEnOQ07QTcMQmnYfvnyZeZmZ2k0mwwPD/P4448zPDKCktrrF2xXWShd15M6sev7INtBAKamp7edH9+peeM9D5QAxXKZVrUqttydjthlsvVg0VRvoawZqLrko48+Sq1W48KFC5w5e5aTJ09SLJUolUqUBwZEX5D8Ul544QWuXbu2KWWyUfpq03trQoDX7xvwO2KHwbTRuBm2Z63dCFEUcfbMGXbt3p2kkbaC7/tC/B0o3EBlJI5jatUqly5d4vKVK7iuS6Vc5siRI+zZs2cdYWGdtmQUJQLstnSJj+NY7GI1DVOuCscnJrZ1fAGhoAFw11138alPfertfhQpPkAwTZN8uUxreRnPdbEtC0uOt60Cka7Lu07eZ4ZpcuC229i3bx9zc3Ncmp3lhW99S8hqDg1RqlRYgETert5o8K1vfYtMJsMTTz1Fvs8c+kaEFdu20btdEXB8/+3rKb9NxDKbsy6A7JCZU5i7fJlut8vDsq1iy2MjMkloQqpvS6m6vs/b9zyuXL3K5bk5FhYXMUyTyYkJjt5775r3MGsKXmrO7c9C5aSXp4Zo64s0DUvXyefz60QGNuKdmjduikBp2zbZYpHO6iphGOJ2u1jbpCd0TSg7RMjAtoEWfu+99/Khu+/m6rVrzM3NMTs3B7OzFMtlAlnPiOOYhx95ZBNz9u2s4jK2TbvTIZJszu2878QBdzjihr9FrO0oN5rO3mi1Ojs7S6/X49DBg9s+J45jsZvUNEHp3kYZpNvtcn1hgWvXrtFqtchmMszMzDA9Pb1tuiOOooQ23ul0EnaxkvwyNNEvC6CbJrlcjgEparwVPvvZz/Inf/IngFD8307FJEWKXKGA12ol5gWmaSamChuhTJ5VLVMFEd0wmNm7l5m9e2k1m1yanWV2dpb569cxpGNIFMe8fvw4wyMjPPTQQ+sCnRrHOyn2aPK+8yXb3P52BMTfBrZsK9uGgKcQxzGnT59mfHx825YQkJwG6byy3UI8jmOWl5c5efIk8/PzxHHM8PAwDzzwAOPbEG+S7ykWzkcbs1BAYoMYxTGGaTIyNrZt6vqdnDduikBpWRZWJoOTzQq1DU1DUy4XKgUooWkaXhDwS7/0S8xfu8bAwAC/9Mu/vO5D0XSdXVNTjIyO8i8/8xlWVlbI5nLs3bePwUqFoaEhmo0G1UyGcrm8bnDp8kbaDpquk7FturLWt1OgjKUbgHL4iOVgiwE7sClTJkD0ZWqeULJRRCHXdde5C+wkmXX6zBmmpqaSfsVNz0GIJyt6daZvoPmex9LiIotLSyxICxtN15manOSee+5hZGRknVrPlitUeUP2er3ENSWfyyXFfSXYrHwwJ6am1g32TqfDtWvXaDabfOELX+Azn/kMAD/90z/Nk08+ue3nmyJFJpPBLhTorq4ShaFwEerb6fVDl/2M/9O/+BcsLCwwNDzML/3SL615zQLZXI47br+d/fv385nPfIZer0e71+PQoUOMj46Sy2ZZXFhgZGRkXZ1O9QjvlJFyMhna0gB6p9JNjEilalLPNerr1wRxDyr7q063i2VZtDsdtFioXqmdmn4Dcs21a9doNZs7OmkEMnsWxzHZfk5DLEwcFpeWWFxYYHllhZ7rUiwWueOOO5ienk68QdUiuh/9CxWVogURC1TLiW4YYoGtCaGDQqHA4NBQ8rm9m/PGTREoQXwIgefRq1ZFjavTESkP+YGqL1w18T75xBP87u/9HisrKzzz9NM8+dRTwFozfRTH/Ntf/VXOnT+Prmn82I/9GI1mk16vh2FZnDhxgjfeeAPbcRgdGWF0dJTR0VHy+Xxi2rzdIMtkMqJWGQT4vi+UI2RQDKSfW6vVQtf1pL6xMR1kxAYWFkmjSKTh+b6wEdN1erKWGCFWqmafrJ0pRYE1TePy5ct02m0eeuihbdlybq9HKPuQMo7D0tISi4uLLC4uUltdFb2UxSLDQ0PM7N3LyMgIxQ2TTX+zsRrk/Sv3Tre7RhvP5ZIdaxzH+FJ9KQxDJvbsoVyprOtT+53f+Z1NaZIHH3ww9ZpMcUNkMhksxyEsFHA7HSGkYZpbpjY1XcexbT7+8Y/zO7/zOywvL/P000/z1FNPrWv9iOKYf/tv/y3nL1zAsW3+4l/8i9TrdcqVCqurq4LIpgkHktHRUUZGRxkZHk5EzbdLd2qaJhbZvR4918W27YSNr/osm61W4olrbiTlKaKSpiXEuUimcgOZslS/K8UgpRttyPnDlHNIHMecOnWKkdFRBgYHt+zxTLJQgGXbhEHA7LVrYu5YWsLt9UQ/4/Awe2ZmKJfLjI+NbdrJKWJjv9h50jcufXCjOEY3jCS4GlILutftit2kprF7714KhUIyj76b88ZNEyiz2SxtxyEulfClzVSn0yGXz29KieqGwYMPPcTXvv51FhYW+MIXvsATTzyBZhiJ59x//I//kZdfeQWAv/pX/yqPP/44zz77LHEcs3fvXh568EGajQYLMmC8euwYxDG5XI7KwICobUr3DWUQmry/vOFarRbVWo2M46wbaIHvJ31XQBLU+neIgRHQpImHj45GaAbYloWOsOgxTVPswKIIdF30f0qVip7nJcXtU6dOMTo6SqVcxt8w2IMgoFqtsri0RLvZpNXp0KjVCKX32+joKPv27mVYrpQ73a5Ie2/DmlWr5jAIhEOKvL5ut5ukVnPZ7LqeSRDO7nEsxOinpqcpFovrPs9XX30VEKzimZkZfuzHfoyf+7mf27HemiKFQrFYxPc8ApnR6Ha7GLqOqXZX8nmGvPceeugh/ut//a+srKzwh5//PE888UQiNQfr544f+7Ef4+GHH+aPv/pVKpUKe/fuJes4LC4tsbS0xOXLlzl95gy6YTBQLieMzHK5TLlc3pRydByHdqeDL0UIdG09MzSKonXMd6X3bMi0MYj7yuszMnBsG18uDBx5zWHfcSLpQOJKswZd06hWq9RrNR5/4oktP9NOu83C0hL1Wo1Wu02j0RDcgzimMjDAzO7djIyOMiRLKM1GA196bO6IvnRwFEW0VKnGMCjIHasOyQJCaYHv2b+fXC63ri78bs4bN02g1DSNYrHIqu+j2zZRGCZN8dlcbl2uXYkA/8AP/AD//t//e5aWlvjTp5/mw088gQb80Ze/zH/74z8G4Af+3J/jz3z/9wNi11StVgnDkOXlZcbkF33H7bfj+z7LKyssLy9Tr9e5eP48HddFk7nxSqVCuVSiUCwmrDW3r9lZGSKbfas227YpFItb1gliI8bFxcdHQyPWhRO6oesUCoVkNRlBYq8TSRuuIAiINI35+XlarRb79u9nfn6ebrcrBnW9Tq3RoN1sJoyyfD7PQKXCrqkpRkdHNwWrpKGanWu1URQl6v4gWGrKky4rrcaU4zkI3ddOp0MQBBy6/fbE5qcfv/Zrv8av/dqvvd2hkiLFOiirKkolgkaD0PdptVqUSqW1AKhpQjhc7rI++clP8hu/8RusrKzwzW9+kw8/+SQ6W88dyT0RRdTqdYyBAXZPT7N7epo4Fv6xi0tL1GTv9uylS8JYHVGCqFQqlEolctLZKAgCwjhG933xmGTiGqaZ7GwLhcKOZDf1N9uyhH2W1EFVgUQFXWXFldhzSQnOs+fOUa5UCMMw4SM0mk2a9Tr1RiPpW7RMk3KpxOTkJMNDQwyPjGwqN6n0MGzPONYQwgaKUKnaARXDVQVJTdWQgWa7LRbY2SzTe/ZsmrPezXnjpgmUIAe8bUMUEbZaSU+Npuvr6mqGYaAhhG6/9OUvc31+nj/8/Od57LHHeOmll/h//u//G4BHH3mEv/JX/sra8R1HuIfrOn4QcH1xkfHRUQzDwLIsJsbHk55LEH1D1VqNer3OarXKwuIi5y5eJPQ8Qk2anZommUyGQi5HVv5YsinWkjtNtTI0ZCBU59+PKCZxN3c9j16vRyjTuWEY4rkunW6XXq8n6ibtNqurq6BpHD9+nDgWLuuWdGAZGx0lNzNDVvpVbhxk/UjSqaq+skNdQ1kbqZqkJ3e3WTVZxXHyHE3TaDQaBFFEsVJheGRkx/NIkeI7RalUYtnzMLJZAskubTQalMvltVKBpmFYFqHv88ijj/JHX/pSMnc8/vjjvLjN3KFBomBlaBorUg+2JMdysVhcZ/wcxTHNZjMJnLVqlfPnz4tyjSS+KTutnFQESjSPNS3J2liOI3bGUvJRmbJvvH/CKCKQpZVOpyOCYhQRyFJOr9ej2+vR7XbpdDrU6/WkJvjc888nu89cLke5VGLf/v1kHId8oUC5VNqx71PTNOH3uQ3TuO+J6HGcOL+odKsGImMnGa4qAxDHMW1J0rrrzjsxTfM9zTDdVIESBHN1eXmZOJsllC4g7XYbQ0pBgWhEBTFAfvRHfoRf/dVfZWFxkd/8zd9M0qt33HknP/2pT60LSLZtE/o+I6OjLC0tEWwIlhvhOA4DAwM4jsPQyIiofUr/RmXzU6/X6fZ6BL7Pyuoq7tWr9KRgsHrviIileIW21iKWxb639LeItEiSe2JePPsijdMN0CJ6sUuRIqPRKIa2Fph0XSebyZDN5fB9nzAMOXjwIJVKJamP6LKZ35X9SJZtr8vrbwWV/kmYc1s9Vz6m9sbKTR3EAseQ7Te6rC1oiCJ9q90mAvbu20deGtWmSPG9hm3bFItFmlGE7vvEctHZaDQSgXJVrtBkBuRHf/RH+ZX/4/9geWWFz33uczz9zDPEUcQdd9215dxhmibFQoFWq8VKtUocRVv26emaRiGfFzulQoGpXbtEKjEIcD2PIAhotlq0Wy3cXo9up8NKtYrb7SYi4DGspSnVQhYS30nFF/j6178u5hCVlpVZocSHU/7ftm0ymQzZTAbP88jn8xw8eFC0rRiGSO32yU5aMjDdKEj267zuxPhV5xP21yQ1TYie9M0tigvRarfxfJ/y4CBDQ0MMDAy8pwvsmy5QmqbJwMAAq6urRJ4n6nKaaPQtlkqY0pdN13XCMOSBBx5g9549XLx4MaEG79mzh7/39/7epmK4Ld3RDV1ndGSERRUsFxYYHR1dV5sLgoCOHLiK2ONkMjjyGCqo9Ho9QbzRNMpyhdlzXaqrq4AIIv/7yV/luaXnNl2rqjhoMcxr83SMDgEhNcSK9fGJx/nbh34awzCwbTvxi3Q9jz/+b/+Nffv2cdddd607Zz8IaLXbIsUSxxhScm+jkSuQ3ET9NRK1E1z3NNaCvirw+316j6ZlJTvnpP6AqE32ej3GJycZHR3dUU0jRYrvFsViEd/36YSh4CrILEur1aJQLKJJIpwGBGHIww8/zB9+/vPMzs0lc8fumRn+3t/9u5vmDsu28T2PoaEhdF2n0WiwWq8TAQP9etJxTM916Xa7glcQRRiWRcZxMPus5YhjGo0GURSJckQmQxzHrNZqdLtd4Vik64Qyo6R2iaG8tmazyekzZ7jt4MFkA6ECm/KkVD+ZTCZpOTt95gyLCws8+pGPUJACDXEcJwv/Wr2O0km1bXtrUhEbeqfFA1v3vcsAjyb8ZzudDkohLZfLrc03KsDL19XqdTRNY2ZmhqGhoR3T0O8GbrpACWInVyqVqPo+kRRLjzWNVrNJoVgU7gGWlaQmn3rqKS5evAgIrb+f+7mfIye36f3FfPVh+7I2MDY6yuLSEn4QsLC4yNjoKKZhCFaaVKGI45hcNivSihL9q6iM4yTaqb1ej2w2m/QQGoZBaAdbBsmNMBA72og1Qs4zi8/yd+/9WbLm+l3YyZMniYHbb7993eP9ldBcLiduUtPE8308ec1qN07/ilMhirZMofT3iXU6HUK56s3KVHkgXc4VYxCZjlleXcXJZJjatSsp+qdI8U5iYGBAkEDU3BHHeL5Pq9kkXygkmSO1c3vqIx/hc5/7HCDmjn+o5o4N94Zj24kLjtrd1BsN6rUaSJcjlUFRfALDNMkVChjamvJMAk0TBMZ2W7SZOY5Ix5omuiStqFaPrVCt1Th95gy7pqbQJYkxXyiIxf6GnZ5Cz3U5ffo0e/ftS4IkrAW6KAzJOA6BTPGiabTbbSzbJivNmRUi6SEMcj5ULHj1mMyAJRkoz6Mn072GYZDNZpN65EYOR7PRoNftMjY5yeTk5E2RhXrP/ChvhHw+T7FcRrcs0VcUhkRxTKvZxOv1xICPY+avX+c//af/lLzOdd3NqjHyd5VGUJRn27YZHRkRJsJhyPz8PNVaLakPWqZJqVQik8kkgWAT5IAHMRDDvgEEULAKOMaNv2gVKMO+QFlxKmQ2BMlmq8XFCxc4dOjQprSIulFB3NhDg4Pkc7kkldqWfZrxFkFSLQo2tuIoBEFAq9USQVLTyOXzCb1dpUsi+XnEUcTS8jJhEDA8OsrevXu/I7HmFCm+XWiaxuDgIGY2m7R5RVGUBEuQTflRxLWrV/kv/+W/JK9N5o4tFnQZaZelUKlUKJfLGLpOvdFgYWGBeqOR1ApzuRylYhHTMNYLIPTdc5YUFtc0LWkH6y9xvB0pu37pS7Vr3C64njx5Eg04fPjwpr/1ej18eW9XymUq5TKOFEUIfF+UUFTLXN/mA8TiuD8TFUMSJFUGSgVJ07JEC55i8cZrBtggvoOl5WWcXI7de/bc0C7w3cJNPXuVSiXyg4MoG5ckWEoWZbvV4td//dcT8WIQX/gXv/jFdcfpt9zRNI1Gq5X8zbZtxsfGMA2DTrfL/MICvV6PfD5PPp9fp5KjbRMsLVm/0DRt3c0EYOkWf37vD9zwWrcKlJ/c+0Ob3u/NN98kk8mwf//+dY9HUUS71RIEI8MgL/UYLcuiKFeamq6LQStF0de9XoohaH2UdBVQXdelLclVumEkjLzkxug7VhSG1Op1ms0muUKBw4cPp20eKd5VGIbB8OgoutylKQaoLxd7aBqtTof/7//6v9JsNrefO2Q7ieozbjYa68Z6pVymUqkQRRFLKyusVKtoCJLPxkVsslDcEITVveF6XiLWAST3543kLJM2NE1b28FtESgbzSYXL17k0OHDm87Nc11cyavISa1tTdfJ5nKi1irngla7nfRr9iNSBKU+r0j1mXfa7bVWlkxmXZBUvd3qM+m5LovLy8RRxPjExKY57r3ETR0oNU1jcGiIokx16DJnH0cRrVaL//v/+X+o12rksln+4T/6R9x3330AfPWrX6W60alc00QAyedpNRqb3icnV6DEsWiel1/uVue05YpTDXhJ9IG1VOiPHfjRG+4qVaAMZKAs2EV+YObPrXvOtfl55ufnuevIkXXkI0VRjxGDVAXJ5JylRmIuk0HTdTzJqu1HGEXEfWQgVS/odLvJate0LAqFglg8yJWg2kXC2q6z3mhgWBYHDx9m8gb+dilSvBOwLIvRqSlM207IL6rW12m3+e3/+B9pNZsYhsE/usHcoWkapVIJ3/dxN8wLjuOI+r88fluyTrfCViQ50zSxbBtd00T9Tj6e/P8GRg3hht3kVuWNGDh27Bi5XI59+/at+5vn+8n7ZhxnXYkJ5A6wUMCUx293OpvUh0LJeu1XOArlXBD0ZaAysg6L6g9X5xfHdDsdmvU6brdLZXCQD33oQ+95XbIfN3WgVBgYG6M0MIAuqdOe7/O7v/u7XF9YIJfP81Of+hQze/bwyR/+YZFm8Tw+/wd/sPlAmka5XKbRFygjGXQBhoeHGRwYwDAMVqpVlldWtpSk0rbIq5vS7VvXdbpS8kk9p+JU+MS+H9zxGtd2lCLI/vC+T5Az13ZifhDw2rFjjI2NsavPbzKOYzpbUK03X7qG7ThJsHSls0ryOUjyg7rhQkUKkhNDJpMRsnSsJ/3EUlrLdV3a7TZtWazfs3cvt93AySRFincSlm0zMj2NJWtuuiY0h3/3936PRr2O7Th8+tOfZs+ePXzik59MSCxbzR2lUglku5OC63l0Oh2ymQwT4+NkMxl83+e6zEptha0yUllZE1UpYmBtR7nNwlxBBdL+ILURFy9eZGVlhXvvvXfdAjsIArpS2tKxrK1rgbKPPJ/Pi2CpaSIN20cAVC0vmlyQuL0erXZb9EzKzUl/vTVh5SLmnU6nQ891abXbFEol7vrQh246t6BbIlAClEZHKVUq6LrOl/7oj7h44QK6pvF9H/84ExMT+L7P7ulp7rv/fsIw5Otf/zqLCwubjlMul2nIWgWIemUgLb1KpRJjY2OUSyUMXafVarGwuLhJ8SZxMNmArAxCkQwc/YP2R/f/CBlj6xSkCpKx/K9g5fnBmT+/7jnHjx8nCEOOHj2aPKaCZCDTprl8frPY+QZmqy0ZdioNq9IfESRi5t1ul1arRdRfj5SuDP3XFMVxQvfu9XpEUkljYtcuDh48eFMU4VN8sGE5DkOTk4Ixrut8+Utf4vLcHGEY8uf+3J9jevduAGb27OG+++4jCEO+/o1vsLi4uO44xUIB0zBoNpuJaowyAHAyGSoDA4yPjQlWfByLmmW9vul8NDbvLHVdX0vBSn7Extdsh8QCrE+DtR/tToc33nyTmZkZRkZGksdVLyOatn2PogrSsiTTX4pSWab+VLTKbKnSjmlZSZvMxrppINvs1K6z2+2ScRz233bbuo3AzYJbJlDquk5+eJivfOUrvPDii3iex6OPPsqB227DDwJWVlbwPI+/8KM/mmis/t7v/74oNPft7kqlEj3Z9pEI/kbRWu4cUagfHhrCNAyxQrx+fd0KUYOkbto/MDVdT8TAXdnnqFBxynxy/w9teW0b65Of3PcJ8uaaFurC4iJzc3McOXIkGdBxHNPuC5L5XG5LGvcmZisiXWSZJrqsyyrqti8V/FXaWaVatzxuLCQGW61WUlvp9XoMj44yPT297qZMkeK9hJ3LURke5htf/zovvfQSPdflkYcf5sD+/bSaTeqNBmEU8SM/8iOJaszv/e7vrp/cNSEs0Gg20XRdsL+lSpXSJ7Usi/HxcXK5HLquU63XWVpeXp+V0tZrVys4joMp6/7b7Ua3gjpHwzAEs3YDQe/YsWPYprmujcz3fcE5kOnSjaUadZ5sDNjKI1LT8OV8EUiGrzpmGIag62RyuYTZuvFaVZBW16lqnJN79rB79+6t55v3GLdMoAT43Oc+x8/9039KvV7n6L338rGPf5xCoSC+pE6HVrudOGdrmsbzzz/P5bk5sQKUAVNJPKmVT4zYZW38cnK5nLCHMU2IomSFqL5UBV3XRSpWwrQsbNvG0DS63e66m+1HDvwIWXOzOWp/fTJv5vjzfbvJIAh49dVXGR4eZmZmBiCRf1K1gRvJXW2FbDabKGAo1Z9utytuNFnIz/UxZoF1tchGqyUkBhEyV67nkcnlGJuYuClXhCk+2Pid3/99/s2//be0mk3uuecePvKRj2DZdmJg0Gw0GB0d5eGHHiKOY55/4QXm5uYSGbgYschuNpvJIps43mRirGkaI8PDghEr647zCwtJbVMtstX/+5GTgSUMQ+GipI65w3WpxfjGeQhgbm6OxcVFjh49uq41rt1uE2vCW3KjjrW6hqR9bAMM6T6k6bpQ5nLdRKIy1rRkF7mljVgs1LyazeaaYplpiiyUbAXZycz9vcQtEyi/9KUv8bf+1t9ipVYjW6nw4z/+45SKRQr5fOJ0Ua/VaLfbfPz7vk+QazSN3//93wdIgkJRmkIvLCyIekAcb5sitCyLsbEx4YahadTqdZGK7avtwWZmWk7uKpWor8rJF4w8n9y3eVdpyHbWkIAf2v8JinYxGaRvnThBz3W5V6ZcoyhKCANxHItCu2mur03coF9RKfjYloUfBCytria1SMdxBEtWpXC3aBFpyzYRXdfJZDJ4rivMWaen2bt3b5pyTXFTQc0dx956i6ndu/nxH/9x8oUC+VxOmAG02yJYNpv8mT/zZ7BsG+KY35NzB4haYLFUYmVlha5KuUp91a1QLpcZGRnBNAxCmZWqVqvr7tONwVI3DDIyWKqSUH+5Q80jSfDuZ7z2369yV/r68eNMT08zJmU5Pc8T6VbE4jYng+TGuua2Zs9yJ+zYNrFsRavVaoRBIHpGs1nRjraRIxHHuL0ejWYzSS1bckPRajQYGR9nfHLypl5ga/GNLLBvUnidDr1GA03TaLdaQpJOpkJi+UUoenNS6JaX+syzz+L7PkfuugvdMESglQNmu6Z4pd0YxbFo7i0WKSvRZYmkwC37CDvdLoV8nkI+n7iCt/02P/7Vn6AdiAHrhyED8QAmBp7h8evf939StIRu5Pz8PM8//zx3HznC/gMH1gkJA+LalHh6FBFu0au1DmqlGMe4nke706HZbuP1eliS3Vbq06xUUCnqsI/Na5gmjuOIzwTYNT3N3n37broifIoU/YiiiM7qKpFkzy8uLdFqtRJbJ6UrXSgURBtFX69fs9nkj7/yFT50992UKhVRt5RtYdtBOfh0pV2UbhgMVCqbFpOJ0peUswMhqF4oFNbVChWq1Spf/cpXeOCBByhXKuu0ZuM45plnnqHRaPDxj3888bdVxu2WNE9X5636J7edN/qOG8ldoRJO91yXTDbL4MBAonrUz9j1JGmwn71rZzJowOLyMsOjo0xMTrJ///6butf65j2zG8DO5XCKRSKZTh0YHEx6gBzHwfd9GvU6S0tLyVYfAE1jbGyM1dVVgiDAMk2hai+Pm5gs9/2A6MGcmJggJxV3mvX6JnabYoFGMvdvmqYocHc6QjgYKNgFfnjfJ9deA5gy9fpn9n5/EiTb7TYvv/wyExMTHFBBUlHPNU20aah0sap5SIWMTZCM2EhaENUbDSE2r2mJz6Vj22T7qeFxLBqN+3aQINLU+UKBXDYrBM/DkMlduxI/uhQpbmbouk5ucBBN9goODQ4m0phZ2SLW7nRYXllhdXUVV97fmqZRLJXIZbMsr6wkhgjAurlCBRP1u2majIyMMCQ5D2EQsLCwICQ6NzLqo4gwihKpzTCKEnGUjU3+/VA2fgonT55keWmJhx58EKc/SCLE3fuDZNLHuHHeUKxb+U/f9+lIuy3P80RftqZhWxYZ207kP2NEgOz1ejRVeUs6hGRzOSElCCwvLzM0PMzY+PgtIUhyc5/dDeDk8ziFAlEsZOYs28aR4silUglT1s5Wq1WuLyxQq9UIfJ/JiQniOGZpZWUt2EhsFBVQAzaSzfZDw8NC+UPa5SSDPgyTIKlen5HtIhpC1Z84Jo4ifnDvD2JqYoep6pOg8SP7fxgQdYcXXngBx7Z54P778aWIciyp2qVicX3KRxIQknNWN6ysrUQIO6xmo0HPdRNB4mwmk+y4w0jYfCnmaqPZFHVQGSAtx6FcLguXc01jtVrFdV2mpqfZvXv3TaOgkSLFjaDrOvnBQZCelflsFkdaxA1UKkLCTjbYLy0tsbC4mNy/o2NjLC0vb5tyVVAN92rhncvlGJ+YSEiDrXaba/PzifapEvxQwgE52XPoyl0bsG1JRZdi5gDX5+c5feoUd951F0PDw7Q7HXq9XsKsVWRDFXjjKFoj7aiMWLwmrK5EGlrtNp6aC0yTkhQxiTVNWOvJhXVbBlNXBUjDIJfPUyyVMAwD13VZXl6mNDDAmBQVuBnJOxtx85/hDZApFNB1nU69TiaTodvr4fs+pVKJbDabWMt4vk+j2aTVapHJZMjlclRXV9E2NOBuhKoj9O8us7kcY5bFarVKt9MRmo+NBsVSiZJMlajX5HM5sROUq8NsLkfRLvDI+MM8Pf90EigPDh6gaAmFkNdee41Ws8mHn3wSXzoOAAlDTd0YSnQZtYqFdf1Xyp7Ld11UGNU1TQg0WxaG1LWNZUBt9+m4gqi92rK/SvVzdXs9VpaXsR2H6b172bVrF8PDw9+jbzNFincHuq5TGB6mW62KecN1icIQI5NhaHhYzBvttug3lso1prSwcy9epNvtJnyHjeFLW3uTRP9YlXUGBwdxHIfVapXQ95mfn8fJZCj3SWXGsrXCNk3cXo9Or5dY9Ik30Nb935QiIe12m5defpnxiQn27dsnFtcyCGZzuaR1Jal7RtHa7/JxlTr1PQ9P2nQp2KaJIwXWY0SGypfPaTSb69KrqjRjW1ZS1lJiJCNjYwyPjrJv375bIkjC+yBQgkjDGspM2XUJwhDXdRND10KhkKQCFMMzn8+zLM1Wi6USlnTm2Iq6DWs7TZVaMA2D4aEhOtksy8vLBEFAvVaj2WhQkrtcEDdJNpul1WrRlSkIx3H4ux/6WS7WLrFQW2QwO8in7voUcRxz8dIlLl26xNGjR4UwgOtCLMxLlcNAsvIE0VCirRmihmGI5/v4nreuH0sFSMu2E+cV13VpNpu0Ox3y2WwSJE1pBms7jnAbl59Hs9mkWq1SGRpidHyc6enp1BEkxS0LXdfJDw1htFp0JXuz2+1SNE1B9Mnl8DyPrmTUB0EgvCGB2dlZ8rlcYjG3FdQsoiTdQMwvmUyGibExVqtVsftyXRaXlnAch3wul2SDspaF32fLVSwURA+3chGRC2RN+us+//zzWKbJkSNHaDSbQp9almlUGQhEGjGCdeekaRpBGOJ7XmLarKACpDqGUiBqdToEsg1OQy6sbVuYVqj3k3PS0tISURwzvWcPI1I05VYJkvA+CZQgVjDF0VECYHVxkXanIxhaMv2ptFtdz6PVbFIpl7l+/TpXrl5lsNtNFO2VebS+hbkyyMGvRI7DENtxGJ+YoN1q0ZD9WDWZx89mMmSzWWzbJpvN0uv1EiNqx7D5V/d+hj/+6ld54Pb7KWaKrKyucvy119izZw+Dg4PJCi3f18u4MYiroOdtsQIEkSaxbFvUR2TtIAiCJC3UkyQD23HEtUuD2n6mXRTHSb1mYvduhoeH2b17tzDZTpHiFkemUGDEspifnaXX7QpLv2JRLGotC2dggFKpRLfbpSoX1ouLi4xKH1vl9ZiRlnNbtX6sC5q6ThjHVCoVcvk8zUaDdrst1K06HZAM22KxSC6XE+If0rlH9TyqUovqU3z15ZdpNps88sgj+L6PLoUENrV4iRehy8AYyFYU3/OSxb06T9u2kx1h4Pu4cu6IEQYLyiFFPc+0rGRHrM6t1+uxvLxMNp9ndGKCqampW7LH+n0TKEEEjaHxcdA0VhcXacrm4H6fSce2cYaGyGQyXL12jcXFRYaGhsSqTaZmDdMUrNlMBsuyhLGpYSQDrp/ZpSF0FgvFIvlCgVazSbPZJIpj6s0mfhAwODBANpcjlKmKdrtNsVBYJ+nUajR49rnnqFQqzOzdm1xPbgshAbWqU8dTriUKRp8fnUqjdDcEUBAFet0wyFsWQ4ODiYJGQmyKhfJPo9nEsix27d3LxMQEY2NjN33xPUWKbweW4zCxdy/XLl3C63RoNJuUpImCFsfJYjuXy9HtdHj51VdpNpuUy2XhSSvrgJbcfTmOI+5BXReLbjV3qMxUX6uFPTREsVSiXq/TabfpeB69lZWknU0FyyAIRPYnl0vud03Xef34ca5cucKRu+8mIwl5TiYj+h03BMlYEoaCIMB1XTzfTwKkIigpx5NAylhu1RjhhyGmZPAW8vn1GrVSkKAhFwDDY2MMj4ywZ88e0Xd6C+J9FSgVhsbGiDWN2uIidZkKtSxLpC3kczLZLPsPHOC1V18VKY98nm6ng+t5hEFA4Pt0Ox0x0GV9wLKsdYFTWWoplZ4Y0T9VKBRYWlqiXq8TBgG1ep1avZ4Ip5umSVOaK4MQUn/9tdfI5XIcOXIEU77XOgq3THEEYZg0OwMJESAMQ3GecrWp1DL6oUvjWtOyMGSa2jCMJKWjBnkcC9UdxWotlcuMT02xa9euNNWa4n0Ly7KYnJnh2uwsruytzOVyCXFH7d4mJyepnD/P8tISBw8doicJM57vJxrKmq6LuUPec5ZcfKvFayQDpfpxbJuRkRHcYpFr167Rc1160unHNAxsx0l2kV0pFxnHMVcuX+bq1ascOnyY0ZERwYjP5ZJ2tEgGxVDOG/1qYaGcI9S5qhTuxqwUkFyDIkgaug62Ta4vSIJoNWk2GrTl3Dm1ezejt2CqdSNu3TO/AYZGRoiB+vIyLbmDUzRqFdgmx8c5Vyhw9uxZHnv0UXK5HFEY4sogGfg+QRQRBgG+TFsqFxNDytvpcoAZss1C07QkjatLOnjg+wR92pBhEIhCvawFnDp1CsuyOHLkCGgahmkSyb4tNdBVg7GinyNXuWrwGaqHqS/tYRiGCOryebqsr6jCv+t5CW1b1TnbnY5QH5Ei6SOjoxw4dIiRkZF0F5nifQ/LspjYvZvrV67Qazah10tM4FXNz3Ec9u3bx7Fjx2g1GgwND1OK4yS705MaylEY4gcBniTj6TJwqtRp/1yi5iZd1ykWi4n8W7fbxZMBTdUlc9ksrXYbTdO4eu0a+/bvF0ESQezp9HrQ6RCEoRAs7xMoCOM4CeD9cxeI3aYmz1PNZ6rNrZ+j0axWCaOIrGyV0zQhgVmr1URpCVHXnDl4kN27d68zib5V8b4NlJqmMTQ8LPwrV1ZoNBrkcjmcPnHvjDQHfevECWr1OpVyWQQ5KRKsKM9qF6cK66EMnl7/Ck2uEHXJDg2CAN/3MaT7+JWrV1mS5KFarUYgi/q24zA0NMTuyUla7TaO46z1TvXhj770JY699hqHbruNH/8bf2Od+HkYhiIwmua6Gw9kbWRDn1QYhjQaDUEYyGaF4fPqqqhfhiE6YBkGB++4g723CH07RYrvFWzbZmRigiVdx200aAaBaKtQogSaxsT4OGfyeU6ePs1jQ0NCylGqzRQLBVEakVqovu/jeZ7I/Mg5xfW8tZ2YJOSo0k6v202YqNeuX2dxYYFqtUq9XscPAkzbZnBwkGw2S0kG1U63u84NSOGPvvxljr/2GgcPHuR/+Gt/jWxfGjiWi23dMJJ+auVF298m18/sbXc6eNIdKZPN0m63hcet6yba16VKhaMPPHDTytF9J3hfz4C6rjMyMoJlWTSrVTrtNr7vC5cNXccAdu/ezbnz53n5lVd46sknxQqpL2dvy3SrCjaRZJyplaLreURBwDe++U2e/tM/5e/8nb9DsVhMaogAn/2N31h3TrlMhnyhQMay0HWdSqFAGAsn8MD3cWQAdaSXnmkY3HnHHXz1a1/jpXqdv/WpTyU0bRCecutqERsbiPt+jxGqHo1mE9d1E/ePfrLByNgYd919N8U0zZriA4psNsvYxAQrlkW30aDRbCYLbeKYbC7HzMwMb77xBhcvXmTv3r3iHpItFqZhiJRp3zFDmdYMgoB2t0sURXz9G9/gT7/5TX7mZ36GkhRQAbGY/e3f+q3E2UhD2Ibl83myUmLPkOfZk3J3jmUJUp7jiBKRrnPH4cN87atfpdFo8FM/+ZOiBUXuJuM43pxm3UJ8IGkZCQKWl5dpdTromsby8nLSiK9LQuD+gwc5cPDgjmpFtyLe14ESRGBSvUvV1VV6zSbNRoNcPo9pmhQKBT509928+OKLvPHmm9x5552iL4k+8WJIBo8h0xK2ZZHNZtfSKkB1dZVyuczg4CC+7wsykaaxurICCFWb4eFh8oUCV69do5DLMb17N9PT08SIG8FWSkGSyWrLWsPthw/j2DadToc3T5zgkYceAkSdYSvxYUCkXvp6nTx5TvV6nSAMRW1SfkbZTIZcPs/e225jIjVbTpECx3EYGx+nlsnQqtXoSEJNRi5SbztwgMWFBV5/4w3K5TKVSiXZjQFrc4eEKWt8AJl8nsD3xbxRrVKpVBgcHCSKY9pyXqnV6wmPYHRsjJHhYWYvXaLuOOyZmWH//v2JAEhGWufFMk0bI9Kfhw4fJpPJ0Ol2xbzx4INJkPS2MpiWc0fiDiLnjq7rsrq6iue6aLpOsVBAl9eUzWYZGh7mtttvF2Wc9yHe94FSIZ/PY9s2Vceh02gk+o6ZTIbp6WmWl5a4cP48A5UKE5OTmIaRrO5UbUIJECe7L4SQcSRXZUq6zpKSTp7nEfg+f/bP/lmmJBmm0Wjw2rFjnDl9msDzmNq9m927dwsGmiySh7Fw9IijSPxfvvfDDz7IuQsXeP2NN5ianBR10iBY17PZr+caSUV/tSL0ZN9kGIYU8nnBxpUtMaVKhV0zM6mgeYoUfTAMg8HBQWzbpmZZeFJ5RrWE3HvffXzjG9/gtePHeeD++4XQeF9/o876VhGt7//KTEEpZVmWJYg+2Swx8LGPfYzp6WkmJyZwHIcXXnyRt958E8v3sSyL2++4A08y3j3PwzQMMecEAWEQ0PN9Yl3noQce4NyFC7z51lvsmppKBANUJkqp8KjzCvvVeuT5tWQGijhmeGiIQqFALp/HsW3GpqYYm5h457+M9xAfmEAJooYwPDxM03FoZjIEUrVHAw4fPsxqtcrJEyfIZDKUy+WkTzCK4zULmz6yjMrd65LJpv6umnZbzSYx8NRTTxHHMZcuXWJubi7ZQYIooKtUsCb7M7OWRWZoaN2KLggCbr/9dq7Pz7N0/bqQt3JdkTpRDc0y7ZMEc01LdsBBEKDMnfP5PGNjY4l+5cTUFPktxNBTpEghdV6LRRzHodFo0G238aQil22a3POhD/Hiyy9z7vx59u3dS04aHMdRRCTbS0DWBCWHIY6idUIEqjFfOXx0Oh0efeQRsrkczUaDV199NVEKUovZrGwBaTab6PKxUqmELgOm73mEYcjthw9z5coVFufn0eJY1EslsWfjvEbfbljtfrvSNMG2bUZHR4WBs2kyMjbGyPj4B4LD8P6/wg3QdZ1yuUyxWKQjGZ5uq4XX7XL77bfz6iuv8Oorr3D49tsTVf5EOqoPSsNRpTbRNPL5PPVGI2nYV7JvtVqN06dP43keH7rnHkpSQEDVOzWkNZeu0+l2Rdqj2SSTzSaMsVjTePCBB/jt3/5twiii1Wqxe8+edXTvddcpyT2hVPUIwxDLsnAyGYaGhijLlo80QKZI8fZg2zbDw8N4pZLQP2028TsdiuUyM7t3c+niRVzXZWZmhmKhINKhfa9Pdm/yvg+kMEAhn6fRaIjaoaYlouphFHH+3Dkuzc4yODDAw488wpf/639NHIxUmrdQLNKRykHtble4g2SzCVv3/gce4HO/9VtcvXqVdqfD7t27EwbtVlCs2G6vJ/gLMrVbKpUolcsfqACp8MG50g3QdZ1CoSD6J6Uah53P8+Ajj/DKyy/zxhtvsG//fmFCats4qnlXpVHiPreAKEKT+oyqwdi2LKIw5OTJkywuLjI2Ps7Re+4hn89zfX4+qSf0H0P523WlEWqn08HzvMSxZGBggD27d3P+wgVef/11bjt0SKRX2aw36QcBnXY7oavHmkalUmHPvn2MTkykKdYUKb5D2JJ1WiqVaLfbtJpNDmcymLbN2bNn6XW77N6zRzgZSUk3IJk7lOKWkpGzZF+zasnIZLOsrq5y9uxZgiDg7rvvZv++faysrCTOImruALEozuXzeNIlxPc8alIZzMlkGBwYYO/evZw7f57jr73GgdtuS/xsN84bcRzTc11cyWb1fB/bthmbmGD3zAzlgYEbCsK/H/GBDZQKmqaRk7qO0cgI/q5djO7axZe++EVOnTrFLim55Epije04a5JQUiZKrey6nQ55SZA5c/YsFy9exNB1PnT33ew/cCB5XiB3gV6fIICqgRoygLtSYzKQggWGrmPLmsiFixd59dVX+ZEf/dEkXdsvTKCcx12ZeikPDjI+OcnumZkP1CowRYp3EqZpUi6XKZfLBEHA+PQ0A6OjPPOnf0rPdZmYmBCp0F4v0UpN+A19/YvdbpdsPk+hVOLa1atcuHCB5eVlhkdGOHrPPZRKpaR/WgkJhBt2g8pE3bJtutIEotPr0e31ME2To0ePcv78eV49dowf/bEfS+YiFSyjKBJiCb1ewuY3TJOJXbuY2buXwQ+48UE6a/ZBCZaPT0zw13/iJ/ja177GsZdeYvbKFaanppiamsIMQyzHSXaZqt7gSr3EF154AV+2eBzYv5+xsTFsuRtVAzKQAVIFyn6RAPkAttRn7chVXRhFdNttbr/jDnLZLNevX2f+2jXGxsaIAVfKaPlBQOj7QktyeJjx8XHKAwMJIy9FihTfeyhG6wMPP8zk9DR/9Ed/xPG33mJ4YIDpXbsYcZyk11IFTRDzgee6nDl7ltpLL+F7HiMjI9x3332Uy+Ukk6X1tXL0O/wkjh+KaCh3l6bcXSqiz+HDhykWiywuLXH18mVGx8bQWDNl77luouZlOw6Te/YwMjrKwMBAmn0iDZTbwjRNvv/7v58nnniCl156iZdeeIELs7MYuk5O+roZMo/fabc5f+FCsuK79957mRgfR9N16o1GUpNQRXZlUaMINgobf9ekvmRWOYW7LmOjo4yMjVGrVnn12DE+dOSIIBtJkQHTshioVBidnKRYLFKQ8n0pUqR4dzA1NcVP/dRPMTc3x7NPP82rr7+OJdnweWmUEAYBrU6H8+fPE0YRV69c4a677mJmZka4Hbku3U4H3/fJZDJEkEhS+moOiddssYCkHASi1cyy7UTsYHxigpHhYZaWlzl27Bj33HNPktlSkpxOJsP49DRDw8OC1Sot/VKkgfKGyOVyPPnkkzz66KPMzs6yvLzM8vIy1WqVbrdLaXCQiakpmq0Wl+fmuPOOOxgaHBTK+pqWtIn0XJecdBABoe+6EzStz4xZKmjYtk2v1+PwoUO8+NJLnDxzhic/+lFMqVWrRJuVTmyaZk2R4r2Bpmns2bOHPXv2sLKywrVr11heXmZlZYX66iqO4zA5MMDC9etUBgZ46OGHGZdmA0EYYpsmPanwpZTBIilH53reph7N/vdNzBZkj7UpFYUOHj5M/aWXOHXmDI89+SSm45DNZsnlcuTzeRzHwZGPpdmn9Uhn0rcJy7I4cOAABw4cAKT7t+8npq4vvvYa569cQXccep5H2O0KergUGDd0nboUZfd8nyiKsKSVV7fXWzNSlancOIoIwnCtaK9pONksAyMjPPDoo3z2t3+bY2+9xWf+1b9K1IdSpEhx82FoaIihoaHk35Es1biuy7G33uKNM2dwCgUiTRO2d/Ke7/V6ib0WmiZUwKJIeD1GET3XFXNDHAtj9j4mvvq/al8rVirc++CD/MZv/zavnTjBL/zLf8nw8LCwFEx3jTdEGii/Q2ia9GuzbYqyxWLuyhUGZF1QqeGEYUi9VqPb6RCFYWLC3PE8dCCQaVNd00DSw3VZ7zCk5Y0hZfTUz/jUFIuLi8RxzIkTJ/j4xz/+3n4YKVKkeNvQdZ1sNktWtm/Mz88zMDTExMQEvu8nAuie61JdWSEMAqIwRLcslms1seuMYyEmIrVbDfl7/7yhS8eSjfNGGIacOnUqnTe+DaSB8nsI13XJ5XIMDg4Ca76Ro6OjtFotPM/DcRzm5+c5c+ECAHcePcrUzMw6yx3DMNaJmyuhYoWvfOUrxJLw85CUskuRIsWtCSWLVy6Xk8fCMCSKIkbHxmi1WgAsLy9z9uJFNE3jyNGj7Nq7d928oeaO/nmjf7f4la98hTAM03njO0AaKN9BaLJ9xDTNdcyxZrNJrVYDxE0yMDDwbR33D//wDwH4yEc+kuxmU6RI8f6BCnaWZSWiI71ej3q9DqTzxruNNDl9C+KLX/wiAD/0Qz/0Hp9JihQpbhWk88Z3jjRQ3mI4duwYc3NzQDrgU6RI8faQzhvfHdJAeYtBpU+OHj3Krl273uOzSZEixa2AdN747pDWKN8FPPPMM5w7dy759/LycvL7uXPn+M3f/M11z/+bf/NvbnusL3zhCwB84hOf+J6eY4oUKW4upPPGzYM0UL4L+OxnP8vnPve5Lf/27LPP8uyzz657bLsBf/nyZY4dOwak6ZMUKd7vSOeNmwdpoPwe4amnngKgUqm8Y++hVoXT09McPXr0HXufFClSvDtI541bA1rcLzCa4qbGf/ff/Xd85Stf4Wd+5mf4lV/5lff6dFKkSHELIJ03vnukZJ5bBI1Ggz/5kz8B0vRJihQp3h7SeeN7gzRQ3iL48pe/jO/7lEqlJF2TIkWKFDshnTe+N0hrlLcIvv71r1Mul/nEJz6Bbdvv9emkSJHiFkA6b3xvkNYoU6RIkSJFih2Qpl5TpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKFClSpEiRYgekgTJFihQpUqTYAWmgTJEiRYoUKXZAGihTpEiRIkWKHZAGyhQpUqRIkWIHpIEyRYoUKVKk2AFpoEyRIkWKFCl2QBooU6RIkSJFih2QBsoUKVKkSJFiB6SBMkWKFClSpNgBaaBMkSJFihQpdkAaKFOkSJEiRYodkAbKdxGzs7P8g3/wDzh8+DD5fJ7BwUEeeOAB/vW//td0Op0dX/s3/sbfQNM0fviHf/hdOtsUKVLcDEjnjZsAcYrvCf7ZP/tnMRBfvHhxy79/4QtfiEulUgxs+XPw4MH47Nmz2x7/P//n/xwDcT6fj7vd7jt0FSlSpHg3kc4btwbSHeW7gGPHjvGX/tJfotFoUCgU+MxnPsNzzz3H1772NX7qp34KgDNnzvADP/ADNJvNLY/x/d///TiOQ7vd5mtf+9q7efopUqR4D5DOGzcP0kD5LuDTn/403W4X0zT54z/+Y37+53+eRx55hI9+9KP8+q//Or/4i78IiEH/y7/8y1seI5/P87GPfQyAL3zhC+/auadIkeK9QTpv3DxIA+U7jBdffJGnn34agJ/8yZ/kkUce2fScf/AP/gG33347AP/m3/wbfN/f8lg/9EM/BMAXv/hF4jh+h844RYoU7zXSeePmQhoo32F8/vOfT37/8R//8S2fo+s6f/2v/3UAarUa3/jGN7Z83g/+4A+iaRrz8/O89NJL3/NzTZEixc2BdN64uZAGyncYzzzzDCBSIPfdd9+2z3vyySeT35999tktnzM5OckDDzwApGmUFCnez0jnjZsLaaB8h3Hy5EkADhw4gGma2z7v8OHDm16zFVQaJR3wKVK8f5HOGzcX0kD5DqLX67G8vAzArl27dnzuwMAA+XwegMuXL2/7vE984hMAvPHGG1y8ePF7dKYpUqS4WZDOGzcf0kD5DqKfsl0oFG74fDXgW63Wts+566672LdvH5CuDlOkeD8inTduPqSB8h1Er9dLfrdt+4bPdxwHgG63u+Pz0jRKihTvX6Tzxs2HNFC+g8hkMsnvnufd8Pmu6wKQzWZ3fJ5Ko/zpn/4ptVrtOz/BFClS3HRI542bD2mgfAdRLBaT33dKiyi0223gxumWhx56CE3TCIKAl19++bs7yRQpUtxUSOeNmw9poHwHkclkGBoaAuDKlSs7PrdarSYDfnp6esfnPvPMM8RxjG3bPPTQQ9+bk02RIsVNgXTeuPmQBsp3GHfccQcA586dIwiCbZ936tSp5HeltrEd/vAP/xCAj3zkI+tWnylSpHh/IJ03bi6kgfIdxuOPPw6I9Mgrr7yy7fO++c1vJr8/9thjOx7zi1/8IrBWnE+RIsX7C+m8cXMhDZTvMD75yU8mv/+H//AftnxOFEX81m/9FgCVSoWPfOQj2x7v2LFjzM3NAemAT5Hi/Yp03ri5kAbKdxgPPvggTzzxBAC/8Ru/wfPPP7/pOb/8y7/MmTNnGBgY4NOf/jRhGG57PJU+OXr06A2bkVOkSHFr4u3OGydPniSXy/HpT3+adrtNFEVbHi+dN747bK+NlOJtIY7jpIaQyWQIw1D8+D6u6xJ4Hr/wT/8pf+Ev/2Vc1+WTn/wkP/UTP8H9995Lz3X5b3/8x3z+i19k9+7dTE1O8vGnnuLkG28wNDSEk8lg2Ta2ZeHkcliWlfRAKap3ihQpbk2oBXE2m8X3ffHvKMJ1XXzP45//s3/Gj/zFv4jneXziE5/gUz/5kzxw//30ul3+61e+wn/5/OcZHx/nwP79fOzDH+b86dNkMxkGh4YwTBPbcbAdByeTSeaNdDf5nSENlN8BfN+n1Wrhui7dToder4fX67F7925OHD/OtUuX0ADdMLAsi4FSiX/5C7/Av/7f/jc6nQ7//nOf499/7nPJ8UZHR5netYtP/cRPELguq90ujXqdQjZLt9djaXmZTqfD/Pw8c3NzlMtlmvU6n/13/46B4WHGx8e5++670wJ9ihQ3MeI4ptPp0Ol06Ha7uL0evuuya9cuzpw4weKVK4RRhK7rWIZBKZfjf/7n/3zbeaNYLHL44EF+6id+giiKqFWr1IBGvY5uGFRXVqg3GszPz3PlyhUGBgaorazwK//m31AeGGB4ZISZmRkOHTqErqfJxZ2gxalB2dtGq9VidXWVRrVKt9PB7fWIowhd0zhz7hynz5zhox/5iFDKiCJiTUMDDF0n4zjU6nX+0x/8Ac9961ssLC1hmia7d+3iI089xcefeoqhwUHQNGr1OqvVKtWVFZZXV5PXv37iBF/5+tcZqFT4+//j/0jPdel1u7Q6HcIoYmb/fh57/HGmpqZ2FFJOkSLFu4cgCKjX66wuL9NuNul1uwRSSODs+fOcPnOGj3/0oziOQxRFwjNS09A0DduyaDQa/MEXvsBzzz+fzBu7Jif56Ec+wvd99KPkcjmK+TztTodGs8nK8jILi4u4rott27zx1lt89U/+hKHBQf7h3//79Ho9et0uHfmTKxS49777uPe++8jn82nQ3AJpoNwBkUyDdDodrl+9SqNaFemROBYpDdvGMk0sy0LXdTRA03Ux0OMYPwjouS5xHIsfIOs45LJZNDkYm80mPdfFsm0KuRznzp3j5KlTeL5PpVxm9+7dDA8NEQG/8JnP8NbJk3zfxz7GX/1Lf4kwipJU7+LiItcXFvB9n/Hxce578EGGhofJ5/MUi0Usy3ovP8oUKT5Q8GXppb66yrWrV/E8jzgM0XUdx3GwTRPLtjENQ8wdmkYMxFFEHEW4noen2kLiGF3XyWWzZByHWNMIwpDq6ioA5VKJTqfDm6+/ztWFBXRdZ3rXLqampshms/x//vk/540TJ/j+j3+cv/bf//dEYUgYRURRRKvd5vr8PNVqFdO2ueuuuzhw8CDlSoV8Pk8ul0sDJ2nqdRPiOKbb7dLtdmk3GnRaLarLy3Q8jygMcWwbx7bRWbsZNCDWNIAkWOqGga5+1zTCMEQDeq6L63nkczlsy8L1PPGenQ7PP/cczWaTkbExBgYGqJTL5HM5QOg4vvb663S7XR564AEGBwaIZEAOo4ihgQH2zcxw+coVLs3O8sw3vsFthw5RKJXIFwqUKxWGhoYoFoto8lxTpEjxvUMQBHQ6HdrtNt1Wi0a1Sq1WIwwCNF0nk8lgmaYIhK5Lp9cT8wWADJbJ/KHrGJpGFMfiJ4potFq4nkchlxOBVwbQ06dPc+rUKZxMhl3T0wwNDVEplTBMk1anw+tvvUWv1+PBBx5goFwGSHaug5UKk+Pj1Op1zp49y/Fjx6hXq0xOTZHN5ylVKlQqFQYHB9+W7uz7FWmglPA8L6kfNFZXqddqtFstmq0WaBqmYVDM5cRAj2OCMCQGoiAATUt2jMjgpbbpsfqJIpABU9c0mq0WtuMQ+D4XL17k6tWrlEol7r//fjKZDJ1eD8MwyGWzmIbBc88/z9WrVykWCjz+8MPYliXeX95I6iYbGx9nenqab33rW5w+cYKDhw/TbjRoVKssLy1RKBYZGhpicHAwTc+mSPFdIoqiZGHdbDRorKzQbDZptVp0XRdT13EyGfKOg44g8GhxTASEUSTmC8Qcoco1qAyUpiWPxVFEGMdYpkmz1ULXdWq1GmfPnqXb7bJnZoaZPXvodDoAmKZJLpfjueee48qVKxTyeT786KOYpommaUmgVOWhocFBZqaneemVV7h08SJhFDE+NkazVmO1UOB6oUC5XGZoaIhSqfQefdrvHT7wM6XruqyurrK6vEy9WqUlLW4cyyKOY0q5HLppkpesU8s0MQxDpE7jGMMwiOKYWKYyQpk6iYA4DAmCQKRR4pgoDImjiHavR7fXY6VaZWllBQOYmJxk99QUumEkqVrP8+j0euiaxqvHjzM9Pc1jDz1EKFMzmq5j6DpaX2oXYHR4mI8+9RTPPvccp06e5IknnsD1PKrLyzRqNWrVKoulEqOjowwNDWEYxnv18adIcUsiiiLa7TaLi4vUqlVatRrdbhfbsjA0Dcs0cSwL23HIZzKYloVhGOJek/VHTS6w+1OhsdpBhiGe7+O5LmEYEkURURCw2mjQ6fW4Nj9P13UpZDIcuO02BioVAt/HMAyCIKDb66HJeWP37t088uCD+EFAINO/hq6LOUzOVSB2sg/efz/lUok333qLQi7HnulpGq0Wi3Kxvbq6SqVSYWJigpzMdn0Q8IGtUfZ6PZaWllhcXKReqxG6LpZpkpHtGMj0pOM4jAwNocnUCIhUSSCDXgzJ40EQEAQBfhAQykGpEIYhoRzAisk6f+0agaYxUC4zWKlg2zaZTIZsNovneWiaRj6fT3ax/VD/VoV/4hjDNDENA1MG806nw1e/+lVGRkZ4+KGHiIBuu02t2STWNCpydTgyMkKpVEprESlS3ABRFNGQTNLV1VU6zSYGiBYuy8KyLPwgwLYsisUiJcVElzu3OI7xfT/hKCAfC3wfT7aI+HJuES/T8Hwf3/Po9nq0Wy0uXb5Mu9MhBsbGxigVCjiZDBlZ+/SDAMMwKBYKxHEs3le9l3jDtcfl3GVZFpZhYMgd54kTJzh18iQffvJJhoeH8TyPerNJu9MhXypRrlQYGBhgcHDwhq4l7wd84AJlGIZcvXqV69ev0+12iT0P0zAo5fPk8nlymQyapomBGEUUCoVNuXmVeg3DkCAMCXxfrNaCQNQbZOBSN4cq1AdBQOD7LCwscP78eQrFIvVmk9sPHUp2qaZpEkYRnW4X0zQZHBxksFxGQ9ykoVx9+mFILH8HklWogi6Ptbi0xKuvvMLRo0eZmZlJ/t5otWi22xSKRQqlEuVymcHBwQ/UKjFFim8HzWaT2dlZ6vW6YK36PtlMhmKhQC6bJZfN0ul2k0BYLpU28QGiKBJzhpwvgiAQpB0lFCDnDk3TiDUNQ9MIogjf8/B9nxMnTtDpdJicmmJ2bo6DBw5gyiCNruN5Hq7vk81mmRwbw7HtJNMVhSGBfP9I7lKVm0g/1EL7+RdewO12+ejHPiY2D0Dg+1QbDfwoojwwQKlUEnyKSuV9Xcr5QAXKq1evcvnyZUHACUNsXadULDJQqQgPOJm+rNXrRFGEY9ubAodKa7i9niDTSKjfdV0XjDbLEoQeTRNtHL0e6DoXzp9nbnaWmb17GRke5oUXX+SxRx7BzmTEMeWgbnc6eJ6HbhhkMxlKpRLlYhHTMNbqnnJlGIUhnkzx+kFA6PvrzvnkqVMsLCzwyMMPi2Zkw0BDkJFq9TpeGJLN5xmfmKBcLlMul9/Xgz5Fim8H3W6XixcvsrS0RBwEmJpG1nEYKJUolcvJ/dSV7RYxUCoW15U0oijCCwJ6nY4IjH21SRWwbNPEtCwRqHSdUBILgyCg1+1y/PhxojDk7nvuIY5jXnzxRR584AGy2WziSen5Pk2p0JN1HLLZLOVKhUIut27OUOcUhiHdXo9QZsL6lX26vR4vvPgiQ0ND3H/ffdi2LQJ/HNOSrSiGZVEZHGR0dJRSqUQ+n39fkgU/ELOh67qcPHmSRq0GMkBWBgYYHhhY1zah6Trtdlv0Rup6EiRVm4jrukkKI5IDzrJtkfKUOziVvlSBqNluiyCqaZw+dYrr8/Pcc889jI2NUa1WAaHok8lmk5vHtm2KhQK1Wo1A9mnWGg1q9TrFQoFKqYRl20n6xDBNHF3HlDemugG8IMD3PA7edhvVWo2TJ09y5EMfwjAMQVG3LIYGB2k0m7QaDc7UaoyPj+NOTAhlIOmcniLFBxXXr1/n3LlzhK6LHscUcjmGh4bISpKdQhzHdOX8kM1mk3nA8308uRuENQKPyh5ZhoEuyyVJgInjpESjaRqtVovXjx/HcRwefvxxojCk3myiAYV8HlMuyrU4ZnhoiKWVFbqS2+DLDNaqZVEplynm8wlhSJO11DiTSdLCYRSJ8pHcFR8+dIi3Tpzg2vw8lYEBbNPEsW2K+Ty2ZVGr11m4coX6ygq79uxhYHCQSqXyvivjvO8D5eLiIufOncPvdjGB4aEhhoaGxCCXg0UhiiK6rksUx+TlKs3z/U2pCduyxI3SN7ijfgbbhoFu6DpnzpxhYX6ehx9+mMnJycRhPJbn4GQyGLpOs9PB9Tx0TaNYLmPIwnuj2cTzfdrtNs1mk1wuR7lcFn1VMjAq6JJeblkWsXRLv+P223nl1Vdpt1rkCwXB8JWr2Fw2S6xpeL0e169do91q0et0GJuYIJ/Pv4PfTooUNyc8z+PChQssXr+OFgTkbJvJyUkK+bzYAcK6uaOrxEfkgrXT7eJJUQEFQ9fJZjJohrFuURv3zUNhENDudAQ7VtMIfZ/jr71GqVTisUcfFXNUrycySzLg5gsFOu02nufR7nTI5XJkslkc204ESaIoYmllhdVqlVKpRKlYFG1r8lqQ12PKc8s4DnEcUywUuHz5MnOzs1QqFRH4fR/dMHAsi0qpREPXcT2Pc6dPMz4+jj81xfDIyPuKJPi+DZSe5zE3N8f1a9eIPY+cbTO9a5fYJcq+pP6BHscxPdcVtUbf35Q+sAxDaCeq9ANidRjLYwEg8/3tdlsELk3Dtm0uXbrE3NwcD9x/P5OTkyLF0cdSVaxZw7LI53K0mk08SQjK5XIUCgVyuRy9Xo9ao5EU9putFtlsllK5LGoUaxeT/KrOde+ePZw5c4b5a9e4+0MfwvM8AsWsk9cbxzGZbJZ2u83cxYu022327N37gaSDp/jgolqtcvHiRdrVKgYwODjI+NhYEpz0jXVHKU3X6/UwTHNd+lLTNBzbxnacJDjGrOm8JiQbOf90222QC11T13nhW98im8nw6KOPYlqWED6XbHv1Og3I5XJEkijU7XRwZKZrUBL2mu027VYLP4pYrdWoVqsUikWK+Ty6PJZqW+kPnJZpcucdd/DiCy9AGOJks3i+TxSGdOUcpwKsoessLi7S7XTodjpM79nzvgmW78tAWavVuCLTAQQBg+Uyk5OTGKaJHseErAUQtZrzfJ/l1VU8zyMnWVyGYWArgYEtUgmKpKOO05Par2iaSN3m81y9coXTJ09y15Ej7N6zR6Q35A61/5jqfGzLIp/P02w26cgaZUk+N5vLiXqE59FoNGi2WrTbbRqtFiUpKmD1sXNV/5Uuz+fgbbfx2rFj3HXXXZTLZQLfp+d5SfOyYRh0XTehmK8uLdFptTh0+DAV6bieIsX7FVEUMTc3x8rSEp1GA9s0mZDiH5pc2G5cYEdRRK3RoNFqAVCQ5QrbtrGlctemmp0UClABNZKchCAIQNexLQvbtnn6mWeI45jHHn8cW5ZaVIDtD0BqDsrncrRaLWKg0+2SzeXQEIzWSrlMpVSi1WrRaDTouS4rq6vU6nWGBgbI53IiSOp6UstUs9PU5CT5QoFz58/z4EMPkY9jXM/D9TyCIBDXIpXIbMOgJRfanU6Hg4cPvy/4Drf+FWzAysoKV+bm6DYamMDgyAgjw8NJqhXWWitAkHNWm1X+3SufpdPp8OjUIzx16MM4jrPW87ThPdSrdU1D1zTcMKTZaomBLvUZc/k8C9ev89qxYxy47TYOHTwoXiRFB4AtB1AcxziOI3amUjzZ8zyxk0UEP1VbzGazVGX/Vqvdpt3pMFipUCgU1MHEzYVYJe6ZmeHEyZOcOXOGo0ePYpomBdMklsG30+3iAJ1OJ9lhaprGG8ePc+DgQSZSe54U71MEQcDFixdp1Wr0Gg1K+TzDw8NUSqWkVSNpyYJEZq7b7VJvNIjCkHw+Tz6Xw5HEwK1ILaodQwfQdVzXpdlsJu1o+Xwey7J47rnn6LTbPPnkkwlXQtUQYX2gVPOCrmkiDdvt0pPGDVnJ4tcli7YgW0nqzSaNeh0/DFlYXiaXzTIga5AKiluh6TqHDh3i5VdeodVqUSwUyDgOmUxGLLZdV7TCxbHo+5blouWFBbqdDnccOXLLt5C8ryquy8vLXJmbI5SNv+MjI4wMDmKZZhIkQ5mqCIOAZrNJvdnkXz7/i5xdOcdsd47//eyv8Csnfo1QixK1m370S9WB6KdstVrJSjOfz5PP56lVq7zwwgtMTU1x95EjyY2gQVLzNLbZpYJIpViyn7Mlg7Ba0arWFNu2GRkZYXh4OGlhWVpdZX5hIamP9F+DpmnM7NnD5cuXN6WHMo5DuVhMaO5hGCbBMwxDLp4/z5VLl7b1u0uR4laFCpLdeh2/02F4aIiR4WHKpdK6fmXFbFclkE6ngy8Xx7l8npGRERxJjNkYJNXiWpPzD4Db6yWLUsuyKMsSyrFXXmF5aYlHHnmEspSco383KVOz/VCiI4auUywU0HUdPwhoSQZsJINsKOepYj7P+NgYpWIRS9dxpYhBVTL+xUHXsm67pqYwDYPLs7N9FxWLxXY+T0WWhyzLIooikYp2XVrNJqfffJNGo/E9+a7eK7xvAuXi4iLzly+D5+HYNiODg0JbUfYRqYEayN1fvdFIanOXWpdoxS3aUQdXc/nSxS/zqa/8bU5XzyTHVy0Z/QM9CAIazaaQpdN1KuUyWbnKev755xkYGOD+Bx5IBhxsvyrcCE3TyEiCTyDTO77vJ6lUTdeT4+ZyOZEiKpWwdB3f97l6/Tor1er6gAhMTU3hBwGLi4viBlJuBYgdcjabZXBggEKhkPRYtdptWq0W1+fnuXjmzCZyU4oUtyqCIOD82bP06nXiIGCwUiGXyQgSW78cpabhui61ep2OJMeo0kwhnxdGB7B5Yd3HRUgeA9qdTiIakM1kRMAyTc6fP8/F2Vnuv/9+hkdG1l7T1++4ZSpT1gpBzCuZTIYoDOn1eiJYSq9LFcQ1TRM1zIEBxsbGyGYymJpGvV7n2vXrdLrddYc3TJOJiQmuzc+vzRt986ppWRQLBQYHBsT5aZogF7Xb1Ot1Zs+eZWVx8Tv6jm4GvC8C5cLCAgtXrxJ5HqVCgZJMPeZyuUS5JgZaUo/RdV2Qu6hKuQymRqxFRHqIGtaXGpf4O1/9f/Mf3vot/CjcdBO4vp8EScMwKBUKIvDFMa+88gqapvHIww+LHitJx46iCD8IkpSmpmlC1k71Q8qfQAoZEMdkpEZkLFdpChvPR9d1ylJaKpvNYuk6rVaLq/PzoodToiJ7qubn55PHFCEpjCKQgXiwUqFYKAjmrKw/rFSr1Gs1Lpw5k9RZU6S4VaGCpNdqocVCINxxnMTVQ2mhqoVqp9sVfpGGQSGfpyR3e5ok7W2ECrD992qMsOvruS5xFJHNZsnJ3sNatcobb73F4UOHmJ6eTlo2VM0wkHOHbhjJLjGZO+T9qzSoFZNeQ+yA/b77VUPMF2qB7DgOY2NjQvhcCp4sLC2xtLKybqE9NTlJQ+6kk/Pql+6MY7KOI9pnMpmkzNRqt6nV61yZnWX5Fg2Wt3ygXFxc5Pq1a0Sex6BslgexwlG7rtD3qdfrImDIAVSWrhqGYTCdnQI0PNbTub3I4z+8+Zv8j1/7WWabl5PHe70erWaTKI6FVFWhkDDHzp47x/z169x///2iViGRMFw3FONVLVBZc9G3Y9U0TQT0XC4hHPVkYzGIHeDGFaxlWYyNjDA0NIRtmkRxzPziIvW+1Mfk5CTX+wOlOjdIUjRxHFOUSkUZSVAIfF8M+mqVuQsX3uY3lCLFzYcgCDh37hy9Vgtd09g1MZHcwxmZPgRRr6/X60nWqJDPUy6VyGQyicVdFMfrAqUKIhsXs1EcizYvz4M4Jl8oiICCuLdefPFFKqUSd955Z/IatchWspnQV7LpC5SweTermPq67A/vF0jRJMGvH4VCgYnxcUr5PJauC7P4vjLO2Pg4hmFwfX5+3Ws3BmvbNMlmsxQLhWT323Ndmq0Wly9dol6vv+3v6WbBLR0oW60W169eBc9jUNpI+b4vcueSudmW2qZhFGFoGqVikWKhIDQNETW/giH0GPsDZRRH6JpgkJ6qnuKn/ttP8/tn/jOtjiDNAGQch4KsBwBiRfjmm9x2222MjY1tOl9N0zYP9p0gUymmZLzqmkan212nIdsvsNyPvKxBFOTucrVeZ3FpiSiKmJycpOu61Gs1ccMgB/uG+qMhlUIs28YwDCzTJJTpnPn5eS5funTja0iR4ibElStXcFstLE1janwc0zRFdgfQLYsgDKk1GnRlNsaxbaHg1dceFkgRAduy1u0YtyIABmFIXZZPNFlH7A+urx0/Tqfb5cGHHtqSYa/SnbBzyQZIdGRjRFbNkLvHTrudPCepmfYx90Hc80NDQwwPD2MZBmEQML+wQKvdxjRNRkZGuCYX2UlWLF6fXI4RcyNRhGmaCWM3iiKarRbnT50S3QG3EG7ZQBkEAZdnZ9HCkGI+z9DgYJLeVISbZrO5NtAdR7RPSJNlve84jukQEREgpKWiOEbX1n80buTym6/9Fv/TM/+Spe4K2WxWyDWp4/g+L7zwAuVyed2KcCOSgvwOlOlEfF2JGcgUrGVZ6Jom1IPUc/tfx3pGryEHdrlcxtI0ur0e165fp1gsYlsWCyoN0sdwZcOgdxwnSRHbjpP8OwgCLl64wMVz57a9jhQpbkasrKzQqlbRo4ixsTFsxxFZFERKstfrrXEPNI1isUhBpkd1ucAGobpDHCfqXhuJfgpBFNHsL9NsMFKfm51ldnaWe48e3SzwEa/JzcGamMh26CfvqRRsTvIN/L6M1LqyzRbs3Fwux9jYmCj96DpLKyusVKuMj42xsrKSlF7UbnLjQt3o282GYUg2kxHXHMe0Wi3ePH6clmypuRVwywbKK3NzxL0eBjAyPAyQpDsUK61/F1mQ6UuVDlFBIQhDHMPGx09SJlsNnDx57NjmTPUs//hb/5inF59J3pM45rXXXqPb6/HQgw8mAzlJR8gUTRiGSaN/rOqVsE4gWT0vViSbvtRKXrqNK1YZsH6AShr4RpTLZUZHR0UqNgyZX1qiICXyYE2OT9Uu+o+plDpiTcNzXaF/qyS64pi52VlOnzjxnX6NKVK8q+j1eixcuQK+T6VSIZvJiIWxvK+azabQa41jHNumUqkkbkLJ3CHv71DuQE3T3ET0UwijiKaci0zTpLxBA7bVanHstdfYs2cP07t3J4+rHWQg5w/X88T7SVEBX753MneoNHA/0Ua1oRmG6KnU9c0ZKYmtWlksy2J0dJSCTMU2m01CIATqjUYyv62bU/vgyJ1k4PtEcUw2m03KON1Oh+OvvHLLpGFvyT7K5aUlvEaDMAyZnJhYSzXEQqzXlX2HjuOQlwESNuy+NA3dMAh9H0d38GIPDW3zchDIkSMTi1pCmza9oMe/+tYvMmgNckfldq5du8bs7CxH7r6bMIrEIJLFdnVeSNWLlkx/GLIGEMcx7W4XQ4qd96PbbuOFoXADcF3RC6WEDVyXKIqwZC3WUCzYLXaFIPRkx8fGWF5Zoee6mLbN8sqKCNpb3OCqdgprA14RAgzTJJ/PC5KA73Pt6lWCKOLOu+56+19iihTvMqIo4sqFC2i+L1Kp5XKyMO56Hs1WiziOyal+Q2mODpt3YL4MSsiWjK1kwKM4FsFFinkUC4WE4KL0VF944QUs2+bAgQM0Gg1B6FNymH33YK/Xw/P9xCe3LYUF2t2u0HmV7xkjgnOr1RLznq5jSJZ8IAPsahBQlLtM3TDW9KllGnUjSXBocJCMbbNaqyVzy+LiIuVyeV0GS+s7BrCmfS13lRprGaqeFCt47eWX+dDRo1QGB7+br/Ydxy0XKDutFtWrV/GDgEqpREZ+8GEY0pCmyyC+kGI+v+VAp++xKI4xDYtI27o/sCD/MzDw8MiQIU8eDY0T104yqU3yxhtvMDg8zODwMIHvbwp44s20hMijbGxUnVKHxAga+hqb5Y2ieifVblGT1OtqrZZI8gHJoDd0Xdw8smCvVrAqFVtvNCgWCly9do0r164xOTa2zh8v+aw0oeyjduJKekvRv3O5HK7UtF24dg2iiDvvvnv7Ly9FivcQ1+fmiKRw+cjoaBIglOuHarvK5XLYape4zbHUTkrfSnkHsdOrNRoJESabzYpAKFOoYRxz9coVVldXue+++xICXT9ipcPaF8AMNXdIhr2OCNwqs0XfvyPZexlrGppk6waui+d5RFG0Juoug6maPzQpn6fmEIB8oYBp26yurAjW/PXrjE9MUNhCC7pf9Ux9xmEf299yHAzTpNPp4Pk+x48d4+5772VgYOCG3+F7hVsqUEZBwPKVK4RhiGVZQlpK9g02m81E1aY/rWruUPhWruJ5M0sQ+xiagYmJhYWJSY4cuThLDLi4xMSY8iMzNIMjI0eYnZ3FD0OOHDlCLpNJUpdb1RK6vR6GruPYNvl8PrkR8oXClnqqjm3T6XaFobPjJO0jlm1Ds5mkXExJF4+DgAgI5M4ykjtZJdRsmKZI/5RKTIyPc/bsWer1OqZhMDo8vLmJGRHAffl5Ky1Jx3HEDRzHOJmMoLy321yfnycG7kqDZYqbDK3VVdq1Gl4YMjI4mPgrttrtxKKqUCwmqc2MGuPbQLFgDbnDU7tEZdzebLWEZrSuC3k4mSpVij1xGHLu3Dl27drF2NhYMl+ouUMx3lXw0zSNKIooFYuYppn0VOYLhaRNZd35yXu/WCiIDQEi8OqGQafdJvB9kTKOYwhDQk1L+rv7+yOVGbz6/+joKIVCgXqjwcrqKko4vR/9C22VllWymJZlock5KZ/LEcp57PVXXuHuo0cZuEmlMm+ZQBmFIc2lJdxejzCOGR8aQpeKEiqdaZomxUKBhhQT6Ha7m75EhRghnO55Hg4Ow8YwcRQTiwQsFhbZOEdISI8eTZoJ4WdfZS8/c/RvM21O8ccvfJU777yTwR1WQ/3+b8COxfitoCx5+mGZplAEiuNEHCCSRs5RFCW/qxpHFMfg+0TiRHAcR3hlttt4xSLXFxcZHR7e9D5hGOJLEQdlOLuueC8XJ2EQ0HFdFufnOanr3J6mYVPcJAi7XWpLS4RhSD6Xo1goEMcxzVYrsb9SZJ1avY7vugSZjFD02gJRLHwiu70eprw/lHBHhCiZ+EGAoeuUSiVs2xYuQHInqGkaL738Mrqmcc8992xrZ5fMG3H8thmvCobcVfZnrkCwUXVJxtOlc1DUN2cEfXNHFIaEkjcR93pJP2e5VGJxYQENWK3ViOKYcrG46Ry6cpfuyB2kLwMlyGCq6xQKBRrNJkEY8vqxYxy9/35KlcrbusZ3E7dEoIzjmKDdplGvE0YRhXyeTCZDq91ex2ot5PNEcUwul8OX/UquzOsDSfHbc11c36fX7dLtdrF1Gx0DdPBjnyAOsWKbOjVcXJqIlO5gZpC/9aFP8fHdH0VD40/+5E8oFgocOHBgx3NX2ErQeEeouuMWNUfbsrAtC1cuCAr5PLppbvpCYwQj1/N9QR7y/TVyUKGA6/t4vR6upnF1fp6JsbGEtq7qp0higyEJA0HfgAcx6G3ZD9bp9bh29Sq5QoE9MzNv7zpTpHiHEPk+nXqdXrdLEMdMVipEUUSj1UqsrJSwRhhFZDIZXNel3W5TLpeT3VEUReu8JRvNJn4QUJAi4ipr0+12sR2HXDZLqVTaUkVnZWWFS5cu7Rgk++95VbLZSLTbCev6szcgl8uJfk7XxbYsLGkUjWnSfzZhFCXkQ7UYUP2fyqMXTWNxaQnP8xgeHFxrnQmCZKdeKhSEHuwGkRJFHiwUCrTbbYIw5M3jxzn64IM3nTbsLREow26XbrstdpNhyGClQlOqW4DI/+elzUwcC/3BTCYjvNhaLULZHOwHQTLokKkGwzRxHBEUAwI0TaOiDeCGLj4+DRoowvVUYZLv2/0xAGZnZ1leWeGxxx7bdofY33gM3/6OcismWT+yuRye7M3yfD9JJ22EbhjYup4EQMWszWWzeJ5HuVKhXq/TdV0uzs0xIo1pA2n1pWkauWyWnuviSrZuf6BUt6LtOMSaRrfb5cK5c4n+ZYoU7wWiKCKQggFBFFHI5dANg1q9ntTPVCpT1QBzuRy+7wvOQ6OBaVkE0pO2P+TEiMVqQfZDGoYhSiu+jxFF5DewW5PXxTHHjh1jYGCAmZ0Wkn0L5GQ3+W1kohSnYCsov8lOFNHtdjGLxS2NHzRNw7QsIYkn/SkTZq2cZ23bpt3psLy6SqfbZWhgAEP6U4JwUclmMvQk+TCKos0lHk0TziftNp1ul5NvvsldH/rQlmpH7xVu+vaQ0PMIez2ajQZBFFHM5xOLF4CiVOxXzE31hduWhS/tqBYWFuh0uyJIahq23H2WikVyuRzZXA4fcSMUKRFHMZoOXb0tvlQNImJeX36TZ689h+d5vPHGG+zevXvnQNDX09SfPtHf5o5SXc9Wq0IQN44iM3W73TWWLaImodKw4lTWbgWlUZnP5wmkvuX46CiO9NJbXF5meXWV1VqNdqeTpItUvVfR1Le6Xse2yWazhEHAmZMnhTNCihTvAcJ2G6/Xoyel50rFIg3JZTANg7La8cUxWl8t0DRNWu02yysrrK6sJEHSMAyymQxFKZOZzWTIZjIYhoEfBHQliz2Xz4sMjCLD9N1758+fp9FocPTo0R0Xwf13l8pEvd15Q17IjsfPSD5FFIa4Miun9KwTElAsvDcTv0r52ZTkTtvQdUZHRxkolzE0jXa3m8wdymjetqzkdf2CKxuvU5M7S8MwWF1Z4eKFCzeVAcNNHSjDMCTsdHBdVwSCKMJyHDzPQwNKxaIgk6gAEUX0ej3qjQaNRkP4T8oBE/i+EPyuVCjKgaxwYGAfIHoljcgADe6cuJ1f/77/k/H8OLqmY+oGuq7x7974v3j9rTcIJYFnR2yTPtmq13FbbFDO2Ag14JVijgqOG1V21O60P8BlHIee9J8sFArsnp6mXCwSA8urq/i+j2VZBEFAvV4X/nOyfiEubz1LV51v1nHI2DbdTodzZ84kdaAUKd4tBN0uke9Tq9UIo4is44jFtSTDlcvlNfNjhHhAu92mWqsltnZAQqArl0pUSqWkhziGRCIzku0YikyY6ZOuVBZXuuxDfuvNN9m3bx+VHepwSkNVIfwOd5SKcLcVdMlaR1tT++o3SegPshszW6ZU6XI9D0sy6SfHx8lI3kRDtqaYhkGr06HRbCZkJmVFmFxr//nFMQX5+V6Zm1sns/le4+YOlO02xDGNRoNQbvXVAFLqMqp9ot3psFytrhmgxnHSO1gul3Ech65sZVhHroljdhV38ffu/ln2Zvdy1/Ad/JPH/hH/4vFfYH9lHz91108k56OhcbV1jT+6+Efccccd624I2H7nl7wX3z6RBzanX/sF1BWZRg34nVZhWt/qEMDJZHBlkV79PZ/L4VgWOamqkc1m0XRdsGmDQFhvtdtrnpVbXHcUx2SyWUzDYGVxkdlLl3b8bFKk+F4i9H3Cbld4JfZ6+LKlKY6ixMAAgDjGc13q9Tp1aWYcy9SgYobnJcmn2Wolu6F197LsaYxkGacgvSM3QdM4e/YsumFwxx13CHGCDbvNBBsC1bebiVp3qHWHXRNYVyUqtVjobnAL2Xz66xfsTjZLr+81lmUJQQFJXLJtG9txktY2Pwhot1o0W60ks7exhqrJlpR8NkscRZw/c+amsee6aWuUYbcLYShSA66L67qUJLMql8vh2LZId3S7YoADcRhiyPqkY9vCrTuOKVkW7U4Hz/PoSiX9fC6X2G/FccwTI4/x2PCjZKQfo8JHpz/Cfzr7Xzi1ejp57FvRS/y93X93k8ZqIgEnV5mwlusP+naU26Ff3DhGSmLJYNgvXtD/nrFMd3quixfHuK67YyFc9WXFcZwIMvdk20pXBs2BSkXc/Aj6/OjwsCjeex56r4cXxzSlyLIiI/T3YaqbP5fLCSHkixepDAwwLBWUUqR4pxBFEaFcxKmFYyxVcTRdp1gsYmhCzrErCSZqwakkGq0+8p9pGImnY73RSOYGDRLtZS8I0BCi4lsGPkQgOn/+PAcPHRLG7HKRru5HBeVYovXxG5LU606p2o1zR9/jkTxW8n4SGiTmy67nJdmp7aBStZqmras7dqXwSFYujnuuS7fXI5vNUimXBanS82h3u/jSoMLJZIRJ9Bbvp8sUd7fX4/zZs9x1993rOBHvBW7KHWUYhgS9HsQxvV5PKEpINY1MJoNt2zTbbeq1Gl1J6LFk7rxSqZDJZJIgCWKAqVomyGbgej0xJW6324SIVVFuwy5R0zT+9t0/vXZusWgX+d0zv7/1yfeJAsBa+kM17vene1Q9IJGrk9hq75XcCFvsLkGmYDUtGbw7QR3DkVY4VVmIV6vMSrksnAJkj+pKtYppmuRzOSrlslDqkU4BylfP87xNu8akVyqKmLt0aZ1NWIoU7wSiC+UXcQAAoyxJREFUXi/xXex2u7Q6HZFG1XXKxSJBEFBtNGi224KoBuSyWQakB2sSJOMYpPJVuVxOWkU63S71eh1PEny6khVeKBR2TI2ePn0awzS57bbbdjx/TQZJIDFtUI8rfej+XeGN5o7+eWhLmTrTFBrSsM6Ob8tzY21X6zgOnW6XZrMphN4RvpojIyPJZ7FareK6Lo7jCDOKfB5D1wWb1vepN5t0Zf04OX8p+uDYNqZpsrq8zPXr19/zeuVNGShj102+2GarRbvbJSsDJMBqtSq+VF3HsSzKxSLlDULDCv1DI+M4lEsloboRx3iex8rKCt1uVzT+5/NbrgjvHjnCE1OPCa9KORL/09n/wkJ7YYeL2JyOhD57Lfmjw7ar0LWL2L4wrx61LAtTkgf6rbi2QxCGSe3Q9Txh2iwNazVNwzJNhgYHMTSNXrdLVWoyGoaR6L06liWk+voMYjdSwBXDrrqywtLSUmr6nOIdQxiGhHLs+0FAS07i2WyWXCZDs9VK6mW6ppHJZhmQRs39GZGNi1Jd0xLin64Jf8pWu83K6ip+EAiD+B12PJ1ulwsXL3Lbbbcl7SJavNVymM3zhkq79hEDVVvFxt3oVtjpr+qdMpkMmqbhqhaQnV4j20I02cMeI/rXC4VCkl0akJsVXddZXl0V4vHI9GwuRz6bTdSDfN+n1aevu3biWpLGnr969T3XhL3pAmUYhoS9XuK/1qjVCIJA0LblCk5DsFpLxaJY7fVpMipspV8KYuIuSqstlT93JR280+1uO5H/lb1/WWZVxVG9yOOzb/z7LZ+rGo83XhfsnD7ZCW+nfyqTzaID7ja7StX71Gg06LTbyWLEkJ+Js0GNJJPJUKlUMDSNZrNJs9VKiAz9XpzqdZHcnatBr2owjqx3LszPJ0LsKVJ8rxG7biJMXpOkHMuykhYGX+4gM5kMAwMDQgdajufkGH27uY3ISqP3jG0nrWqeTFv2cx824vTJk1iWxf79+298DRv+/d3UJ2Ft57kl5JximiaWbYuM1Da7yjAM6UhiTk/Oz8Qx+XyeQj6/qRVmeHBQ9K/HsdCUDoI1swjELr6YzydMel9q7SqbRHV++VyORrXK6urqDeuo7yRuukAZ93oJO7NarYrex0iYgapCe7FYpFQqrak8qMZ8dQx2XkmBCJhqd5TPZjEMA8/zaDSb1BsNkRLoozI3Lze417pn3TG+evlrnKme2XTsfqsbdT5JGlgyVH2pCgRCISjw/TUxZHWcG35a65GkUfoGvNo5q0Gu2MOapuFks4IFKCncW6GQzyd1nWqthut5aPGaSaumaWQcR/jrye9o3aCXn0chl6NZq9GS55AixfcSURQRum7CB2jU63hBgG3bic6oY9sMDAyInaFs3u9ngu8UJBU0lRp0HGxpuhDHQqmnVqvRarXWlSHa7TYXLl3i0MGDW4oP3AhhX+o1kj3MrusmRBrV87mR5b7ufN/OIlu2mbmum8x7kewiaDabNPsMp03TTHaP26kXaZrG8NAQlnQsWl5dFX+I+8wVDIN8Lif6WzUh69fpdNaREk3TJOM4LC8uJjKl7wVuKjJPFIZEcrD3PI9GvU6n10uK5LZtJ4N8O7zdD7Ld6RBJKbeR4WGxs/Q8PDlQumEoGogNg163y9zly/zNu/4HTr91hnawZoD6q8d+jZ+/8x8LwlGvR6/XoyN7t3q93pp9lkxRbkQIPP300+sV+6VShrqZbcchn81iyRqt4zhkJA3dlv9W9ZFMJoPreSIN2udwkBxb13GkPFcQBILRusV59aNcLgsT7G6X5ZUVsjJV0988rEm6uSX1aeMoot1uJ2w4VXdYvH6dnFRWersqIylS3AhRrycWcHFMs9Gg0+nQ8zxGR0cT9Z0tG9g3BMsbjcggDJOsVrlcplIq4fo+bq9HIHeYnqzZmZbFiRMnsC2LvXv3rp1rFAmXI0lE7PV6Yu5wXXHevR6e5wkJSiUhtyEQKlnKp//0T9cuRRkiSM9M3TDIZbNksllsyyKTyYgfx8GR84bV1+domWZCtjEta/28oGlCDUzWDt8OucYwDIYGB1laXsb3POr1OpYUMOiHkh7tSYKV7/uEfSntTCZDvdGg2WySz+c3e3a+C7ipAmXY7SaKOc16PTH2LBQKoh1kB6UGlXLZykR0IzxJGweh6oMcKKbUPvQ8TxTr5WrtLZk6Cdsh35f/GF+pfw0fn4CAt2on+I/P/g4zzGCaJlnHwZRqFEVZN40R6vnKnkoFwW6vxyuvvMJdR46IJv0NOoue59GTgTsMAqq1mripVGpVE+4eyCbnfC5HLp/HkAO5UCgIaTtdx5SSd/2r2sSf820ErMHBQYLlZbrdLvVGg1KptGV61zJNSoWCYAN6Hn4QELbbou0kk6HRaNBqNikUCqKPK0WK7xJRFIkFtq4Ld6FqFc/3xT0oBUV2Sl1qmkbEDnXDPnQ6HdFmYlmiF1uyzh3bTqyzVK2vurrK5cuXGR0b49hrrwmlsE4nsc/rX+5n5A7Vtu2kDGLIxWwcRWSzWWzbRpfare1OJ5k7MlJ5LPG+lYo7vu8Ty99XV1dxpXOIvGjRJWBZFPN5snLxqlo7BgYHkznRkjJ3/RuUZM5QzPxtYNs2g4ODLMu5I5CKYFt9B9lsFkt2KERRRKfbxYkisSlwHBauXUvmjXd7kX3TBMooiohlymJVfqggmJlbiXVvB90wEsbaVoXuOI5pSxF1JT3Vj06nw+rKCsurq6wsL9NsNPDlyuripUvclj3A6/obNCKhOBMTcz5zkZ947MfJ2Gv06n73kJ7r0u10kuCloOp1IyMjWzYguzJlapkmuXw+CZiBbJnpSq3adqdDp92m3W6zcP16on8byh3zQKXC0OAgQ0NDyQ2gzlFhoxjBVhgol5PaTKfdTtpLNkJJ3lmWlaRRWu22IADZNivLy+QLBbHTTHeVKb5LxJLA0+v1qEqmpWWalMtl8luIdW8Fnb52rG3Qk7udWBLf+ueXMAyp1eusrqywsrxMtVajK++V6/PzZByHXD5PpVxmanISy3HIZTJkpJmxYRhoyj2kL11aq9eJo2gdIxegWq0C288ddUlaKuTz6FI5KJIEvq7MeHW6XdqtFp1Oh1azycL168lOVUOUXQaHh5O5Q5kvgORaSOWeaIfPLIbEFzgIQ5qtFpYkU2517yvfzq7cELiuSxSGYlfZbNLrdmm32+vm0XcDN02gjH1ftCpUqwllOJfLCaHvt7HNjzb0M8Z9/o79aMtja4aBrWk0Gg1WlpdZWVlhZWUl2WkWCgWGhoexbZuVlRU++tGPksvlCIIAc87i3x3/v9DR0dBY7a3yJ7N/ypO7nlhfPJcD3vN9fM/DljU95E5OsVNd1xXpSkj6JhODZmnq7Ms6S/+gzGSzgnBTLicWWirwLy0uJn54zUaD02fOiFSrplGpVETQlI4nShx6o2lr8t3EcaKLO1CpCNHobpeC6yaO5RuhmLOFfJ5Wu52kYrOZDG1puv1eDPgU7z/E8v5aXloikuICpm0n7WA7v1j2GCpegVowblhoh1FEp9MhQuz+fN/n+sICrUaDlZUVqtUqcSwMmgcHB5mamuLChQvs3buXu48cEbVTWYYJwlD0Vct7WYmH92doVNBsSdKdaZpCkUye005zRxTHQuNaajobyoZPHts0TQrFovCSHBnBNAwxd5gm3W6XxcVFWu228LxdXeXSxYuACHiDg4MMDw/TlrtDVbPdrkaqrqlYKtHt9eh0uzRarW3dltT8qFizqu896nbJ2Da11VWcTOaGJbjvNW6aQBnJHHar2Uyad1vt9ttje20xsNcpSci/BVIdYml5mXq1yvzCAr70ZRusVJjevZvhoSEGBweTVMofffnL7Nu3j6JcmRqGwccPfJQ/mPs8p6tnMOR//3n2P/Po9CNYmpX0TaqA50s3b0UYUvDUYPc87C1aOjaaueq6jhYLncr+OuZWq7Ph4WGyMpevhBqazWayIJifn+fcuXMAvHb8OK12m4mJiXWOCf2BWR0/l8+TcRy8MKTebFIsFLYfsPImKuTzSc+q6nttNZvo0iT33RzwKd5fiIIAv9djZWWFMAxFlsg06fR6wrf1Btgqi7LVQrvTblNvNKiurrK4tERN7uhy2SxDw8Psmp5maHCQcrmMrmmcO3+eMAy54447kpJR/47QV9wFGczCKBLOPuKkiKOIII4JJfFFMXYV1Dyy3dyh5h9F5lE7VkNfM3bXtc3ymIVCgSiOqQwMiFqm4xAEAaurq8nccfLkyUSo4dnnnmNqcpLRsbF1sqARQgBGzcm6rjM4OChcV6R/8FYevLDW/pJxHDRdp9vpECL63xv1OiPj47RarW1f/07gpgiUURTRkowxXdeplMsEUpT3bSvIb7GNV5N7p9fj6rVrzM3NsbyyAnIg7J6epjI4yO7paYwtXj93+TK+57Fv3751j+uazt+++6f59Df/PoH877q/wBeu/P/4iTv+BkAirad2mKqfy7btREpKrQodaczcv9tE07B8Xxg9SxF3RaBZN7jlbm8jLNvGkPJdfhBgmaZoiykWmZmZYW5ujldeeUUIwRcKXLxwgdOnT2NbFuMTE4yPjzMyMrJlECuXy2JnLjVgt3Mm1xC+eCEk7iNeX/2mUCzS6XTSXWWK7xh+p0NNCgDYts3w8DDXr19/e3PHNhkUWCtFLC8vMzc3x5Vr15LyyfDICJMTE4yNjW25M4qBc+fOMbVr15b1OBCpS8uy1gQO+u5r5c7he946UYQkiMYxlrIXlAQ/NWdoiN2oUhsqKZ7EhmxU8p5bLBQytk1bciQcx8E0TUZHRxkdHcX3fb71rW+xvLyc6Ne+8uqrxMDQwABj4+NC+m8LlSJVeqo3GtSbzUQ8ZsvPH5EKt0wTXS604zim0+kIMpWmUdhpkf49xk0RKJvVqkhrhKEgoBSLLC8vE8ONV4XqixZNjsnDge9z+fJlLs3OUl1dJdY0isUit912Gwf27SOTzVKTpqNbBckYOH/uHBOTk1uyrO4eOcLjk4/xzLVnk8f+4Pwf8AMzf5ax3Og6FR5dpnlzudy6WqvaUTqOs6XsnErlrPOh21BH2a46oGkaluMQdrtJzUbh5MmTnDp1il3T01y+fJk777iD0dFRlpeXuXz1KteuXuX8uXOYlsXU5CR79+5loM9rTjdNysUijXabVqdDJpvdtl6pzgWEckcUC33N2soKE1NTwkszDZQpvgOEYUizWhUGyoaR1OrCON7S7Hwddqir1Wo1Ll68yNWrV3F7PWzHYWBggCNHjrBrairhHGznJXn9+nVarRb33nff9u+/8T7u+7eu6+hAZBjYlpXIcvbD7Z87trj3TBksk0AiiX9vhxNg2Ta6ZPEGQZB8jt1ul2effRbXdZmamqJWr/PkU0/R63a5dv06l+fmeOONN3j99dcplUrsmZlhz+7dSTBM7PpkH+Zqrcbo8PDOXQyILF4um6XRbIKmsbSwwO6ZmRvKdX4v8Z4Hyk6ngytradlslrwsGLueJ7REb1SflAFS9U7WqlUuXrzI3NwcURgyPjHBAw88gCPbEfL5PI70VksOwWZa+OLSEvV6nSMf+tC2b/3/uusnef7atwgRZB836PEfTvwm//j+f7jhFLeWn7shtkoLsSE47nBMx7KSFhVVhzx27Bhzc3PceeedTExMcPnyZQzTJAYGh4cZHB7m7rvuolavc21+nrnZWS7NzVEuldi3bx/T09OJUXNO0tertRrWDoQrQ9eFtiXixg59nzCKuHL5Mrv37Fl3M6ZI8XYQxzHVxUVc2Xedy+fJZjJCJjGON7E0tz2O/H8YBFy5coWLly6xurJCJpNhZmaG4eHhxIWoXC6v65Hejvx24cIFKuUyQ4OD384FbXoo6guc3y002DLVuuVzZSteJFtWCqZJrVbj+eefxzAMnnzySc6cOYNpGMRRhG3b7Nmzhz179uD2eiwtLnL5yhXeeOMN3nrzTaZ27WLfzAyDQ0PC9alUSvrUm80m5XJ523M2dF0Izstg2el2qVWrDI2MkMlkPhiB0vd9GisrhK6b9Ms4Kk0gi93b9uv0EWb8IGB2bo6LFy5QrVbJZrMcPHiQmZkZMlLlvtXpJGlMlbdXIuZRFG3SaTx//jzFcpmRHYS8d5em+fP7/jx/eOEPAYi0mK9d/jo/sv+HOTggNB37+xi/4wHfHww3MvN2kJzSDUMES8+j3W5z/PhxVldXeeCBB9i1axerq6uibcUw1t1Amq5TKpcplcscPnSIxcVFLly8yGuvvcYbb7zB5OQk4+PjDAwMJE7v9UZj+4lB04Sgsvwsstks7U6H6uoqA7KuU3yb7MQUKQDq9TqhZKHmpHE7moYnew7tHTIc/fdPvdHgwvnzzM3N4Xke4+PjPPzww4yPj6NpGrV6nSAIRIuJYrRLqcitgk6z1WJ+fp777rvvu2Z098vXfS+wkdm+E8vdsW16UjT+ytWrvPrKK5TLZR5++GFs2xbEIsMQCmR952fbNhNTU0xMTeG5LrOzs1ySG5dSqcTk+Dij4+OUi0VqUnNXlaS2Qqw2Qn1CB51Oh2tXruA4DpVK5V1Jv76ngbLRaKCHIV4cJ4306DpRn4zcVi7hCkEYcvHCBU6dOUO33WZ8YoJHHnmEsbGxRLsxlur2aoJe5/bRX7DvC0CtVotr165x9J57dhzsMfDXDv/3fHXuq0KEQB7q3735f/FLj/8vCZNUvde3e+OoYdz/qo1H0DYGzg2wHYd6o8Gx117D8zwee+wxBgcHiaQwMbIOsOGga7RvTWN0bIzRsTF6vR6XLl3i4oULzF2+zNDgIIcOH0ZD6Fnmd2DB9p+/puvkslnq9TpLi4tJ7TRFircD3/fpNptEvR5OJoNpmslEG9/IpUfeK/VGgxMnTnDlyhUs22bvvn3s3bt3XW9vT7Z36IaxLs2qs3bfJQFT3ivnzp/HcRx27dr1tq9H8Rg2zg/fjTVfP/M+eWzjXLHD3KHLtO/5Cxc4c/o0k5OT3HvffRiSPOj5vnD/2ABN0xLypO043HbwILfddhtLS0tcuHCBM2fPcu78eQ7s38/g8DCe71NrNBjdYUOiaVqiFuTYNlEY0pCew91u910RIHjPAqXrunidDrHrCqV4wxCDXclJyedtNUiiMOTipUucPnWKXq/HnpkZ9h84sOUH1u31iKTNzsaaQpJGidfb3czJdOT07t07pk21OKbilPkrh/4yn33rN5LHX19+neevv8CjEw9/V6vC7VZ8/enXHVMpcUy9Xufll14CXeeRRx5ZRz5Qzu1btt/0DXiFTCbD4cOH2bN7N1evXuXihQs898wzDA8PMz45SaPZvGGgVDAMg0w2S7NWo16vMzo6+vaJWyk+0FAL7BA5jlRPY9/coW0TXJqtFqdOnmTu8mVyuRz3338/k1NTm+aZOIqETFwcC9H0jVkdNixkNSGWPjs7y769e0VAYfPCdjtsNb+olovvZGeanFv/xkC1wiRP2nr2iCUR6PSZM1y4cIFdu3Zx7733rjtWEAQ4WwUoTXjerhMj0TRGRkcZGRlhaWmJ2dlZTp85g3nxIuMTE4wMD9PpdrckPumaFIPouybHcWh3u9SrVWoDA+/vQNloNNAlBVppJyaDfYcv8PLcHG+dOEG702HP9DSHb7+dQj6f1MD6EUWRULiXu8mN0DcMePX73Nwc07t2JYK9m84D1gXWT+77Ib5w4QvMtxaSO+Ozb36WB8fu/65WhQqbbpQtVoIbg2ocx8zPz/PSSy9RKpW44847N6WxlRbrVvVBTaVLt/kuRkdHmZqaYmlpibfeeou33nyTysAA2uHDjIyMbHlucRwL/zn5mWQch1a7TbvVolarMTo6eoNPIsUHHa7r4nY6aFLwXCnJAGs9kGwOUJ1Oh5MnT3Lp0iUymQxH77mH3TMzCZN8I3q9HmEUiZ3VFgts2HzPXZ+fJwgC9szMrLHX+3Ajq7yNCL/DuWPbBfaGxW+89oJ1/pVhGPLiiy+ysLDA7YcPMzY+jh8E2H3zRyDb6rZ8H3nMjfyJOI6xbJsDt93G7XfcwZlTp7g0N8f169eZnJzkrjvu2HRMxdbtTxvruk5eZqSq1SpjY2PvOMfhPQmU3W4Xv9dLBnuym4SEmKN+V6jX67zy8susVqtMTU3x6KOPJv2B275Pr0cUx0K+bRudR2BdMFhZXaXVanH03nu3PW5yVvJ1junwN2//m/zPL/0riDXQ4HLrCl+69GW+b+Lj4jXfSfpkw/v1/1vRv2PY8kY/d+4cb7zxBrt27eLo0aO0pEN72FeP9T1PWHNtc24bbywFZQSr6TrT09NM7drF6VOnuHDpEs889xwH9u3jjjvuWEub96VOdEicVVQf5fLSEsVSKQ2UKW6IZrOJHkVil6Hra7vJPqgdCIiJ9uyZM5w4eRLdMLj7yBFm9u3DlGN+qwq/EgOP45js/7+9/46zND3rO+HvE05OlXNX5zjdPd2TuifPCLFacBBIvOzasLZxANs4AQa84DVpzbtLeO0PYTEsYLDBLIglSCDJSBrNaEL3TKeZTtM5VIfK8cTnPOn94w71nFOnqrtHmp50fvrUpzWnTq77ua/rvq7f9fu1kEszI22dKG7cuEFHoUBuFRb3ilOpHAnRpdum+0QDw72ggW8Qua1BUIHGkRQFx3F47bXXKBWLPP744xQKBW3MHA2U9Xp99QpQq1Nl5PMg2a/79u9ny9atvPnWW1y9epXxiQkee/hhuru7G56LyMlaPUcikaBYKlFcWmJubu5d3zvek0BZq9WwggBfnjAaTpNyoSgppyAIOH/+POfOnSObzfLcc8+1JI00s0H9IMCRszerzTKpgBH6PshFcHNsjGQqtSaJR79mZFF/bPR5/uTSn3Fh4bxc8yG/e/a/cLD7IDEiDLxQOJgrqKAT7XPo+6k5THm/hst1tb5kGPLWyZNcuXKFbdu28cADDwCivBpIBRNLEh0q1erarLE7LHh1IjcNg23btpHP57kxPs6ly5eZmJzkkUceobOjY4Uwe/RUmU6lmJiaolIuU73T+2njIw3f96nLBNuWghvNm7UKCIZpslQscuzYMebn5tiyZQs7d+xYcfJoVdSsqQTbthuG6BXMSIKtXs9xXcYnJti1c+ddfRbTMPDVqTMyttFQfYkGSnW73Ce1cbP63JG9Q98uH6P2jugJsvkxIJKQ1157jSAIePqZZ+jo6MD3fT3/nJI+kr5MJJJrXKsGK/dkdTKMfufZbJa9e/cyOTXF1atXefGll9i6dSsP7NqFaVkNM+KGaTb0oFOpFIsLC1qS9N3EeyKJ4jgOgWRbNpdOYPm0VK1W+eoLL/D222+zbds2Pvaxj63JrIyiWq0SIGaCVmPOKoKNLxeOH4aM3bjBunXr7v7DqMCOwfft+Yf6JsMwWHKL/MWVv5S3Lc9BqkWkb4+Wm5v/PzTcX6HhApHwfZ9Dhw9z9epV9u/fr4MkCP9OA7SJKnBXganVRtKKfGBZFrl8npHBQfbs3QthyFdffJHTZ8402JVB46IzEULqpXJZUPvbaGMVOI6jE0hDuuC0Ku8BjF2/zle+/GVcx+HZZ59lz+7dd1WeC2RvMgzDVUX7o7Z+Kom8ffMmge/f295B4/ULaDZ+EDlFKSESvXcYy6IkKmjKJ2v40XtM9Pmjrxv57qanp3nxxReJxWI8/9xzeibVsixsuU+qVk1NGjavdgCRb3zlSVi+p+YTujJv2LFzJ1u2buXK5ct8+StfYWZmpjHBbtpz4omE0KytVNZk8H4jcN8Dpeu6BPLHNE0RxJq+ON/zOHnyJKdOncL3fZ577jl27dp114SYMAioS6brWn9MS2Zqyk5manKSuuPc22KPLNK9PXt4YuCJhl9/6fqXmXXmvy6Kd0siUdNttVqNr730EjMzMzzxxBNs2LCh4ffKp1I5DICQ5bqjg4c82UehSQZNF0I2m9UknUcefZTt27bx9rlzfOWFF1hcWlrxvCACfjwWo1ap3JfMsI0PLhzHwZSyaGEoZiWbKysTExMcP36ci5cusWnTJj72Td9E1z3MMzoyCNgR1ZxmGJEgoALa2I0b9Pb1rRAGuBNaBY6mF7un52t86Br7RuR3Y2NjvPrqq3R3d/PMM8+sOCna8TimaepAWZUJ7b26/wSr7BumYZDP5zGB7p4enn32WUzL4sUXX+TM6dMNrbHoY2Oy2lWSZtLvJu57oHQcB0PVxg2jgekKYhM+deqUlncrl8ucOH6c02fOMDM3tyq5JLokHMcRi10Kha8GpXijnvPGjRvkCgU6VhmAbfm6TWWYf7j772OxTAIKwoDPXf5cwx84ylht1SfQ94sukGjvIvLfYRiytLTEiy++SM1xeOaZZ1rW6w1DSGaZpokjdSIrlQqpu1ns0QsuUu5Z0buRC94IQ8rVKps2beL5554jDAJeeuklpqenV3we9b6qUprqvTJmbeP9j3q9jl+vi1OObQsd6MgaXJif57LUWAW4PjbGkSNHuHr1qnbUaYYmnsh/HWlOfCf2tg6UYUilWmVqeprRezxNQmN/MgpN5IkklNF9w5ePi96un7P5lBr5/2qfUq/59ttvc+zYMdavX8/jjz/ecr9U1ShXCoUoEfY7tkmaTpWr7RsAmXRaJCZhiBeGPPvss+zatYtzFy/y+uHDy1WpyEnYlOugch+qUfe9R+l5HoHnYZomlmFgRf4wnudx+PBhJicn2bRxo/BIi8eZnJriyuXLXDh3jng8Tl9/PwMDA/T19S0v6EgJs+Y4hHe72A1D2M94Hrdu3mTHXfYYoKn8KRfeSHaYv7bxW/ns1c+J18DkjakjXFq4xI7u7Y2PjSYILZ4/2hlsqdMITE5M8Prrr5PJZnniiSfWzGjjsZj2iPQ8j5rjrF0+kVClnmbiUKtcN5NOUywWqUpXg0KhwLPPPcfhw4d59dVXeeThhxmR6j7qZBCPxURmKB0P2io9bTQjCAL8ep3A97Hi8cYE2zCYnJzk8OHDpFMptstepFOrMT4+zokTJwChUTwwMCA0Wru6lisl8l9H+s8aUXLhKrBMU1wTvi/UrUyToaGhu/9AioynEuVVrm9Dzi3q2+W/zf2/5l6g+lytAimINs3RY8e4ceMGu3fvZuvWrau+VVPKAQah0KyuViokpPj8nRANikqnerXqWj6fZ3p6mmqlQj6b1byHN954g5e/9jUef+IJIRgT6VXGbZtatfqunyjfkx3Jc11ipokdWew1x+G1V1+lVCrx1FNPaZfv4ZERRtevJ/B95ubnmZicZGpigqNHjwLQ2dlJf38//QMDFPJ56nKxm6a5gtbdDNUkD4Fbt27h+f6qg8IhtBwKVos8evt37/guvnzjBarecpbzm2d/m59/6v+4t5moyIJv9d6vXLnCkWPH6O/r47FHH12eh1R0atXfkAvUlrJevudpU+y7LZ8oK50gCDRZouXsl3xOx3WpVKvkcznisRhPPvEEx44d4/WjR6nWamzZskUnNyrrrEjD1jbaaIVQSiaCSPrUdXH9+nWOHztGf38/23fsYGlpiWQiwcYNG9i+fTv1ep2JiQkmJye5evUq58+fJxaLiX2jv59eOcOryq7aoGANGDJQ+mHI2NgYg0NDqyZ4Qat9QxFqVnn+aI/yXrHm7LfsNb762mvMzs5qlS75QNEHbapeEQqBedfzcKVH7r2Q7hRbVY/KtRi7CxE9R9u2qXse5UqFXDZL/8AATz/9NIcOHeLFl17iqSeeIJPNalKTYVk40qT63cR9D5Sh7wvlHZUVIkglL33tawS+zzPPPktHocDNmzdRHm6maWKYJt3d3XR3dfHAzp3UajUmpqaYnJzk0qVLvH3unLDL6uqi0NHB0ODgHReZel58n5u3b9PZ1UU6nV41KLZceKykmHckCvzP276T3z37X8RnJuTk7EkOT7zO44MH7/67WmXBh2HI22fOcObtt9mwfj37mhWEjGW1kGij3zBN4rGYNlCFuyif6KcUp0pl/dWcTarvTM2sLi4tCaf1Wo10KoVhmjzyyCOk02lOnjpF3XHYtXs3IP8OgFOt4nleW3igjZbwZMvAtm2tqnXp0iXeOnmSTRs38uC+fVSkf6OnmNZykx8dHWV03TrhXLO4yMTEBFMTExy7eZMgCISMYqFAV2cnHXdh32TJalSxWGRhYUFXoloFvpb7hkw89dhGE76u+es12hflUolXXnmFaq3G0089tXIUg6bSrQyesVgMQybZ5btt2UiYkjDpS0eoZrnQaKUqnU7jLi1RlYESoKOzk2effZZXXnmFF196iaefeYZcLqefSxnZv5u474HSdV3NWrNtG891OXToEIQhzz//vN64Vf/BU/M7TWWSZCrFhtFRNoyOEoQhc7OzjN28ye3bt7lx8yZvnz1Ld3c3A7JMm5eCxlGoMkDd85icmGDHjh1r1tFboVk/UeHbN3+SL1z5Im7NRXX1fvPMb/Fo/yPY5t197a2GpwPf59ixY9y4eZMHHniALZs3313D31jWSzQNYVit+wxNDLjVn0KUqQ3DaFjszSVZNR9ZKpXERaXKwYbBrgceIJ5IcPr0abLZLOvWr9ePcer1dz0zbOODCcMw8F0XA3Qva2JigpMnT7JdjkFpxx5DzO0qHkTkSTBNk+7OTro7O3XCPT45ydjYGGNjY1y7epWzZ87Qr9o7/f0rR1Bk0hmEIZOTk2AY9Pb23pXg+IrPtcrt6rnekaKXeu6mx87PzvLaoUPYts2zzz13d8bWES6BbVkEvk9xaYnBwUFR/r2bvUPuPcojU8+hqp/I3pGWrRtPjqAk5N6RzmR47rnnePnllzl06BDPP/sstiQogvC3fTdx/wOljPyxWIwwCDh2/DhLpRLPPftsw+lGDau7EfPPljAMTIRRcTyZZGh4mDAIKBaLTE5McP7CBc6cPUsymRSLv7+f3v5+rbpjmiaLS0t4nsdAf/837HMmrAT/y/bv4rff+h3tLiJECL7I39z01+/uSZpOlHXH4fDhw8zPz3PgsccYHBwUTun3ANu2RSZcLpPNZJZntIyIK8IqjzUMIdMVgJboCqOn1ggy6TTlchlHCitHT6BbNm+mWCxy4s03yWSzdHZ1gWHgvMt9hjY+uAiCgNDzxIZt2ywVi7zxxhsMDQ3pIAnLguWrXhdqL5FrNplMMrpuHZl0mq3bthH4PjPT00xMTDB24waGYdAlfRb7pZg3LM9gz8zM0LOGc85aWCu8fD2lV1ok2Ldu3uTY0aN0dHRw4PHHsVrMR98JMdumVqtRrlbJ5fMrEvm1gqay+FI/zcm1gmLNV6pVytWqDpQgSrOPP/44X/3qV3n9jTd44vHH9etVq9V7+iz3ivseKE355SohgZs3bvDYgQMrmKbRzHBVRE6ZQRDoOatCoUBPTw8bN24UC392lvHxcSYmJrh29aou4w4MDNDR0cHs7CyJRIL8PbBd9VugdZkW4MnBJ/jy5a9yqXRR3/Zfzv0e37TueTKxO+sTRjPDcqnEa6+9Rr1e5+mnn6aru1s07e8xUCI3mkqptOwDKev9YeQ+zWQBdbvKDLUbyCqIxWLEYzEc16VUqVCIlrMMg30PPkhxaYnDhw/z9DPPADSMrrTRRhSuFBkIw5BarcZrhw5prdbotacCli9dRFZVxFLkP6TAAKLvWejpob+/nwd276ZSrTIxMcHExATnz53jzOnTIuGWhCDLspibm2PXrl3v6DOtdQINv47SaxBJsENZnlYqXY88/DCmZb2jyo1t21QqFW2Vpd9rlJ2vbmt+T6plY1libn2N8nA2k6EqCTrNFnzpTIbHDhzg1Vde4dTZs2zauBGQutWr7MPfCNzXQBmGIRbiy5yfneXU6dPs2rmTkeHhFfdVrDI/4iSyFur1urDLsm1xWhUvCIZBT08PPT097Nmzh3K5zOTkJJMTE5w9exbf8wgQkkgT4+P09vXdU3YYsDLrU3081/X45Ia/zi+d/hVSpDAw8Ooef3Tmj/nObf8fTVmv1WpiNskwGk52br0OhsH09DRvvPEG8Xic5557TriHA8Y7HKWwLYtyqcTwag4HinYuyyTqVXxpfRZVJFkLmUwGZ36earVKrsmN3DBNDhw4wFdffJE3jhxhz+7dWKZJsVi8p7m3Nj4a8KW2qO95HD16FK9e56nnn19xrVqmqX0X3Tv1u1Wlpl7XJB5YJrAkEwk2rF/PhvXrCYKA2dlZTQq6fu2aPhVVKxUWFxfFaNS9bNQtuAcqoNRdVzj81OvavECx60OWT1C1Wk38/8i+UXccsXcA506c4Nq1a2zbupUHdu9uGMu611Esy7Ioy0C5Ggmw1UhbiCA9aQbuHV43Ho8Ts20Cz9OEwCh6e3vZs2cPJ0+dIpFIkMlm8V33wxMofd/HNAwMy+LipUv0dHezc5VxjJic3VEzf3dCvV7HNE3tZ7naIshkMmzatIlNmzbh+z5jY2McOXoU13V57dAhLNOkp7dX9zazLfRkgyDADwICz8P1PB2klYCvQq1WYygxzMMdD3F84YS+/cXrL/H0wNPEXcFSdV13xecM5ZjL3Pw8V69cIZ/Ps2fPHlzPY2lpCUO6oPvS1NQ0TU0wuBN838f3fUFcWiPr1heT/EzRZvzdLMhkMollmkIGq1ZbcXElkkkOHDjASy++yOTUFAMDA1QkyaiNNqJw5fzk3MwM09PTPPnkk2RXcY0wbRuzXl9bj1TC8zyRYBsGsXhcq4KteE7TpLe3V2/SlUqF1w8fZmZujmvXrnHl6lXSqRT9AwOivdMi4VY+u76snDiOI/YRJVWpmLByNhOWmeorvg95gHBddwWRxanVqNZqXD1zRhCNtm9naHhYGFGo2XFZCrUsC0uWq+8GtUqFZDp9V0E2jCTUbr0ujJjXsE2MIpvN4s7PU6lWl1tEEWzevJnp6WkuXbzIg/v2UXccPe3wbuC+BkpXlkYX5ucplUrs2bNn1T9QPKIGsWYJBVGmcF1XC6ArqST9p1yldq7r9IYhDEljMaanp5mYnOT06dOcPHWKTDpNT28v3T09ujwcDYaBpKy3YsiqhfitW76V14++gY9PSEg1rPJn1/+M/2XDdwHCY01bgMkLxvd9pqamuH79OgP9/ezcuVN/B0EQgHRecZtO3JZpLgdOOZDb/N5KpRIGYjH6vq8Fold+sY16kp7rEiL7y3eRvZmmSTqTYalYFDY6LbLQfD5PX38/169fZ3BwsE3maaMlfNfFMk2u37hBR2dnI1uzCfFYjKphUKvXaS1Pvox6va51XZX4wN0QVNKpFNVqlaHhYbZv3Uq1VmMyMoJiGgbdPT3ip6uLZDLZoFsKy+XCKAzQZDnDMBrmxNXssWEYWpAlrvaOcFlIoFqpcP78eWqOw4MPPqgrNGpfARFoo69tSqKT2juUlm7z91AsFsllMniuC2sx5iOHhiBcVj9raenXAklpbebLU/WK+XDDYNv27bz0ta8xNTVFZuNG6tJk493A/Q2UspwwNjZGX38/yVQK13VbfriYDJRKLWO1QfoQqNXr+EGALQNDczNbi5C3uAAmJibo6uzEjsUEk3bjRkbWraNWqzE9Pc3MzAzjExNcvXYNyzTplBdpb28vmWxWBOR4XJzw5OI25WIuWRau59Gb6ubZjU/z2at/oV/3r8a/xPNDzwGiSR0lMoVBwIkTJ7h+/TobNmxg//794nQns89A3icIAgzpt6nKvb78/1HYpoklVYps29Yn0nQ6jeu6jYs3EhhV1qngeZ5gHcrgqyTx1tpUFItN/e2bMz7Hcdi0aRMTr73G7Vu37lkrs40PP3TiODlJuVzmkYcfplarrbopxuNxLMMQMpZ3eN6aDJSpyMmz1Rxh8xpXyd+m7m5ChO1cZ1cXW7Zto7i4yNTMDLMzM5w/dw4/CEinUmK8Tf7Ytq0N083o3iErMKF8H6t5LarSa6Jp71haWODEm29CGPLEwYP09vXpqlAQBKJt4vvUZTVMnXBVMIuSoFSib9u22Fsti2KxyMDgoHguaWod+UKXS8QRqOCsWcmREvJqMKUzTKVaxXGcFfu/EiYZHhrixs2brBsZWeHm8o3EfQ2UnlS/qdZqPPLoo4Cwwmq54OX8kyNLC81fVLRM4cheXiweb1l710vcMBpOmX4QMDk5yYaNG6mUy4KOHBEp6O7poae3F8uyqFYqzM7MMD0zw6WLF7l48SK5XE6XY7q6u1fMB0Wb6t+947v58o2vUvGW9Uz/6+Xf5wCPNjzGdV2OHDnC5OQkO3bsYN3IyHJfQZZX1dJUzXH1edXiVcHS9zz8IMALArx6XZd3Z2dnyWQyBPIknlLfZ1M23bBhBAGeKr3KZCRQbNk1+h0xyxIOJJ6HU68vj4og1oPneSSTSYaHh7l67Rp79+1r+TxtfHTh+z6+53HlyhWGhoYo5POi5dFk/aSg1Fucer1lNUqtVc/z8GXyl1C8hiZEFaSiBKCJ8XEMwyCVTLJYLOJFyn7xZJKRkRFGR0cxgIWFBWZmZpiamuLWrVsNZdze3t4VwXA1T807YWpyksOvv046lWLPnj0UZAVMiarrvcO2sWIx4hFZOFUCVm0Zda2raxRERcmRal4B4lSakPvPWqVY1WONyVN7IO9vNqkONSMRCZTNUCfqLVu3cvv2ba6Pjen3+W7gvp8ob92+zejICL09PSwuLuLJDbTBzkZ+eYl4nEqlIsYGIozU6B8mCEPcep0wDEnEYpp6vBrU0Hy9Xuf2+Dh1zyOby+H5PhaiBGFHTl+qfp/P5eiX4yOu6zI1NcXkxAQ3btzg/PnzWJZFX1+flshKpVINzLUOW4gQ/PbZ/6zfy9mFswwYyyMp1WqVQ6+9Rqlc5sBjj5HOZNYuAUmVHD1zJTPT6B81uth9z8MLApaWlkhns9SqVeryYkkkky3LtAqe72PI17DkDJn6fKoM22rRh2FIMh6nIu16VKBUPVgQm9S27du5JWdgH1/9E7fxEYTrukxOTlKr1di1c6cw/K5UqFQqxJoINKo1YMr1WPc8vbdEyTAgJOtCRDnQsCyhYLXKxq3Wt+Ik3Lx1i47OTlHJkUEmpvYN6bGr+nGFQoH169cThqEeW7s9Ps7Jt97C831ycm8ZGBigu6dnVfHwtXDt2jXePHGCvr4+dj7wwJpi62Hz7ZFepT60yODpeZ4InJ5HsVhECYpUy2WcWo1CoUBM6e6uAnVKtVR5O/J9hmGIaVktT4Pq7+bK11c9X1fuZSGQz2YZHh4WymofhkAZhiGLUnFhULKvkskkZSmGrWviLG/8cSkl5ci+VfNCBylggOzNyS+yFSMzCEMc6aum/nDz8/PEYzE6OzpwajXMWIyOjo6WsnRRxGIxhoeHGRoaYs/evSwuLnL79m0mJic5ceIEYShGVAodHXR3d2vSwbdv/iR/cfUvmapO6ed6yzgJiJLJa4cOAfCcVPCvVKtr9gH1QPUaWZkSHY/J+clarcbC0hLr1q3DtCxMGcB8GXSVyXUzEcGT5SBVLmp+VzoLloojkTegSyj1SGZYd10CmbXGpR9pLptlamJi1c/SxkcTnucxMzNDKpWiUCiI671W076IDepSYYgpq0uO64oqUTzesiToSk3ohAoOq1xLShdZ8SDUXjY6OioSYkmMy2Qya/buDUOYBuTzebZs3YrjONweH2dycpJbt25x6dIlbNumu7ubQkcHAwMDd/xuwjDk7JkznDt/no0bN7LvwQcplcui3Lna3hGGdz6tRoKnwvXr17FjMXL5PKWlJVz5/dYQ86uxWEwcVqJiJDJRV2Ineo4yUm1TM5bNfx/LsvSIWc1xyEbGg0KEzqtpGPT09nLjxg2mp6fp6e2943f2TnBfA+XE7dsEQK90t0gkk9Tkgi+Xy+Sy2YZFlpCBUgW3VioVdVlOjLLbzMiX7knGpaKAK8Rsm1KpJMqmnZ3MLyzocqVl2w0Xlj6lNl8EsnzQ0dFBPp9nx44d1Ot1pqammJiYYPz2ba5fv86pU6cY6O+nr7+f797yt/n/nfqP+ikWjUXmZmc5feYM2UxGCJunUnr4ftWs8C5ZZxiGMEmWm8D8/DxmGDI4OKjp3mEQiH5jKESPXWmBlojHdTlbZWsqGVn1fUUWvfpXN+Z9n7pUV3GkOW4qkdASV51dXUxNTb2rNO82PngIw5DZ6WlGpei4gVCUKpXLVGs1TMsSp4/INZFIJKhUq9QchzysOLGo8qLB8t4RrUaFYSjaPrVaQ9/OlCQh3/MYGR4ml89TLpcbBALUdWc0JfUNJ98wJBaLMTIywsjwMGEoXIDGx8cZHx/nwoULnD9/no5CQZ82u7q6VvT4z545w+TUlBY2V4Gn+fVaYdWWSeR9R6/F+fl5ujo7yedyhEFA1XH0vhH4Po7v48hWWjyRwLYs/R2rthGg+7CNL9l4ulTvK5lMUpcl30w6LZxLpMJPPB4Xh5J8HsuyuDE2xs53ONN6J9zXQDk5OUk+m9VHagPIZLOUSiU8z6NcLjfU6y3TxLYs6gjB7GY6eIg4mYTyS4vCqdepSVUY/XyWRTKR0PddmJ9n27ZtKLWPwHW1iswKFiss9yoi/18vKHmfeDzOyMgIQ0NDLCwusrS0RKVcZmpqiuPHjhEQsj2+nfPeeQAeCHfy5ltvMTAwwGOPPaZPcup5Wy521Z+NfLf6v1sE82hmOTs7S0zOHnmui21ZhJZFTpafXUmrD6ROa61WE0LFcvzGjmSYq4kO6PcTuWBjto0vhdJVIhO3be0CEfo+XZ2djI2NMTU1pcvcbbRRKpUolUp09/To2+LxOEmZBFfKZb3Gor83Q2H+3qqsV4+WXSPBx5fCJY7jLHMM5PMlZKVFsVq7uroaEnIVVPT1Z0TUriL9f0MSa9TvlWh6oVCgUCgwun49pVKJ4tIS8/PzXL9+nQsXLhCLxejr66N/YECf9Kanpznw2GMNM9F37HFGvg+9nzXtEwrqs6g50h07dugqVRCGJBIJYrGYLkn7vr+cbKtyNoKrcCdEg7xCIpGApSXqUozd932CMCSTSunk2zRN8oUC169fv+NrvFPc10A5NTnJugceaLjdsiwymQylYpG662JWq7qUEiJOndV6nXKLQOnKIGlJOnMYhtQdh3K1usy0QtDF1R9UYUGWDhR12rZt8Qf2PNbyHGnICqOlGkluiS4sEP2J0dFRdu7ciSNdDEYmhjk+cYLQg063QDKdYHh4WJ9mkRmaKpFEsz6d4YUr571UMF8Ls7OzdHV1iTJrk4qJbVnYqRTJRIK66+qAWanVcGo1bFnCavVdNENtDKqfmUwmcep1iktL5GUGGCVOhWFIoaMDwzC4fv16O1C2oXHr1i0Mw6A7KkRhGJoH4NTrVEolMrmcTuQSspzvyRnlRFMirRNsuScEvi9OoLKsByJRT8TjJJLJhmrW3Pw8hUJBE+nUXOJaFnHNpgXN12mgyqHyuexYjIHhYTZt2iQqQQsLQiVocpJjR4+Kvl3oEu9O4Nv+8uOjz6XaIMay8pZhGMLEofkkeYd9Y3FxEc/39ViOZVmC7+H7xOXhIx6Pi6qR4+jWinIEyhcKy4kEdxY8UL+Px+OYlkVVBspYLEY6ldKvrz5rV1cXN6TA/bsxS3nfyTzNJz+1YWcyGV1KCYFUMqktm0rFItVqlUD2H/TzydNiTJ54qpWKGI2Q90skEiQSiRVsVIC5mRkMw6CzsxNYDhrvtCGsFqH6/0EkgKrblIvByPAwHBUbgGOKzOvo0aMYCNuwgcFBCoUCSfkd6OeXr2HQ6Fhyt6VK3/eZnZ3VIg+Kru2HIZ7vE5Pfk2Ga+rtzPY/FxUX9OsVSiYRMPJRXXqvXVrf5QSASmVgMp1bT8lUpWY4NwlCUqGQZO27b77oTQBsfLDiOg2EYDbqfINZjKp3WLYNSqUQ2kxHJpmGQTKXwgoBSudwQKEOWr3PLsqhUKtrPUIl/J5JJ4quQ22ZmZ+mTvbBoNcpvkltbC4qNGz1lqs+ky5CqYmUYdHR20tHZSV9fH68dOoTv1fgL9wtMLUyRPJzkm82P8+jAI/T39ZFMpbRwfDODXSXe99rYmJ2dxTQMOjo69PfWSlPXsixS6TRJ2T8uhSEBgjFbKpXE96pIl2sEyujvDPl4xzDI5XLL7jGSSBVKHoQSRHk3cF9PlC0/gsx2YvE46TCkXCpRrVZxPY9MOk0imcSyLFzfp1qpNJRmFZOz4vtYStnGMEil08sN+lUwNz9PPp/XC1tloiozXE1BItp7C4JGllzYeEdgpVZj3XE4dPgwCwsL7N69m2MnTvDYY4+RTCaFtN74OBfOn8fzfWFS3dfH0NAQfX19+kQcRn6aS61rEZEWFxfxg6ChhGXbtma2tRrTsS1L0LolKzZAsAXrrktC+setBcMwtCuI2hTUHKYhNwg/Wipq9ybbaAFNXJOIsjqVWbjn+ywVi6RSKeKJBOl0mmqlQrlcplsmxCBkMcMgwK3Xhd2cXH+2bQtLOMNYNfGsOQ7FYpEd25dN2GN3qkZFAlYI2nRY9fOb2xcqkDW/h5s3b3L06FG6Ojsxe02m3hakwJpR46/4KzoWCty4cQOAQj7P0PAwA/39gqAYeX3CUPz3PcwdzszM0NnZqfezO2nqGqaJKauFgSyP+mGoSX0JmSi3/rqWk4ZqraZ5FoZhLI8DhctTD5qc9C4FSbjPgXK1LVAFH1WKKxWLuPU6Jd8nk82SSqVwPI9SJFAGYUhJBtWclJlLyuFblamtNYA6OztLb4QhpdQoXNfVM1G6Lynr7NH3C42B0Wj67ygRSKFUKnEoImweDaLJZJL169cLGnkQcPPWLaYmJ5mfnxfenEB3d7du7KvPrMo4DZmUJCU0f9+zs7NYknykoDLD1cTIPck4jsVioo/peUKsOAjEeIfjkGwKmNH34jiO1rSNxeO6tKTfe+TvFNWVbaMNhdUChyaNmSbZXI5SqSR6WeUyfhCQlHuBmiFWp8parUaxVMI0DK0Alk6ndbUrDFYfE5mfm4MwbFAGWq0aFRIhEa2SUK82UqU+n3rsxYsXOX36NCPr1vHwQw9x7Obxhsc4YZ2/8P+Sn3nqZ3BmaszNzXHx4kXefvttEvG4GFsbGKCvt3fZyceydNCOvna0aqfey+zsLCMRMZDVqlFR1OXekc5kdNXPqdfFXHe5rEUFWpVKgyAQPUkZhOMRS63m+90P3NdACS0We+Q2RSHO5fOC4OP7FItFYokEtgyKimG1sLRETbKuUskk6VSqYZZnrXlK1Svbtm1bw+0x26buusKpQOkfrpWlRMsDTcEqSvoBmJ2Z4dDhwyQSCZ57TgibLywstHxaQwazXC5HJpPBq9eZkEzac+fPc+bsWRLxuHBoHxykp7t7Vddw/ZxhyPT0NB0dHcvWWixrL66mvu9GAiWITSGbzVKXZCk/CChXKoJcIVnKKkvWbGPZC8pkMlSjLEL5HlSQ1slJG21EcDflNMMwSGcyQhykWqVWrRL4Pol4HM/3KZXLxONxqrUa84uLBEFAIpkknU5rdr1+LtNcEUAUZufmSCaTDSMpqhql5g7vpUfWao9pHp148623uHb1Ktu3bxdOJYbBltxmtgZbuGhe0o+bry/wCyd/kR9/8McYGRkhm8kwOzcnhNwnJrg+NkYYhnR3ddEnNWkzTbPaK/ZNw6AsVYh6enoaEnDbtnGlQEFzNSrwfTH+hdhXVVCMx+OCLCWJk6VymXQqtUxiDMU4SbVa1Qpj+VxOaLnKeVWl7qOqegaycvcuVqPua4/SisVa9p90kIls3vl8XswDuS6uZK/6oRhvwDCEyK4hhAC0XVTz8zbP9EnMzc0RIk5oqskdhqE+XbmeR/ouvvS1eoPRxa5KJt1dXRw8eFCcrO703JFTViqTYePGjdo2bHpmhtu3bzM1Ocm1a9cIgO6uLp015rLZFYvGk9qx23fsaGDnmbI32LAII++hrmagmi6EeDxOLBajIpmxyuUgnUoJxqxKaoJAlMLica0vqQJjEIaYLA8kq+8+SvJpo41EIoEfhtSq1RWkHC08IjfMZDKJaVlU5OnSl4l1qVRqaDPYtk1XZ6eY4W2BVhUZEHtHlzxNRttJtm0T1OvUXXdZn/UdIsqkfeONN5icmmL/Qw+xYcOGhvs9EzxFojPB6cUz+raJygT/9+nf5F/u/2cYpqmdk3bv3k21UmF8YoKJ8XHOnzvH2dOnsWIxBiOnzVZarBOTk1iWRU9Pjx71CBGzkya0rEbV5enaltqxCqZpkpI91HKlguf7lCsVMYom44Ma5TMNg3Q6rYVUQpmIWJE2mdrLHMcRp84Puii6ZVl09/YyMzPT8veaPi1hGGIAvVKtCs1Gw6C0uIjjOPT392MYBtlMpnHYuAmrnSoXFxdFhpNKNQicK8cST2ZJayndR8k76rWayythGHL16lUuXrigSyZrKVhEocJ788VqWhb9/f26bFwulbgtZ69Onz7NqVOnSKfT9A8MMDgwQE9PD5ZtMzs7i+f7DMjvDvn+MAyx4Fv0Zl0p79U8FhL9zJlUCtM0qVYqeJ7H9PQ0pmnqZCCTyehsUUlYeXIY2gzDhsC5MD+PZVlslB5zbbQBsG7dOg6//DLTMzNalg2Wq1HNyXA8FsOS843xeJy52VnKUtQkIcc8YrHYmgmr2SLJDsOQhYUFNmzcuOKUq/qUnuvCHQLlnc7Haqj+2LFjVMplnnziCfpasMBNLP7Vrn/J/376Z7lWvAaAgcGV4hV+6+3/zA8d+AEMYzlwpNJpNm7cyIYNG/ClT+/t27eZGB/n2rVrGIawJGxOuMcnJrQ+rXp/sNy2aVX+VEIwrSQGYbkyVS6XcT1PBE2p+x3KXmQq0se0LYvA93F9X/eBteKPZTEzM8OmLVvuitT4TnBfA+Xw8DAXT52iVq2SbApwWly7aQGqY/ni0hJBEFAsleju7Fwm4dyjs3gQChmpXC7XMmO0bVuz6Na0hLlDOcj3fc6dO8f4+Dg7IiWTu0H0dH0nGatMNsuWrVvZuGkTvgxUE9Jv8+qVK1pX0g8CEvE4uaiBMrLXYJq4LIugqwtBl13vcAKO2TZePE5FUsh9KbSey+Ua+grRXo4iMkQFk2dmZyl0dtITIRu10UY+nyeWSjE9NcWWzZsbfrcaSVBVpZaWlsT9goD5+XmGBgexY7F7spZSCaXjONRqtWV+QASxWAwkCfFOLPTmINvQtpHM8pNvvYVpmjzz7LMNyUEz0naanz7wk/zgK/+amdoMwnwP3pg+wv999rf53gf+YcvHWZZFf1/fsk9vqaS9Ns+cOaMT7r6+Pmamp1vaIVryZKkMGUw5ChbIg4Zqpa0GU7JV68WiFp7x5Dx183SEbds4UshdnfZ1T9gwWFhY4Nlv+qZVX+vrxX0LlIZhsG7dOk4cOcLk1BTr16/Xv1MN5FZtWT8Qxqj5fJ5atUrVdSmVyyBHCfJNG/+K1zVNXStXWJSzfK2g+5Suu6pjSStEF7/nuhw7epTZuTn27N3L1i1b7vp5IEIAWIN91/TigFDNGRgcZGBwUF9wk9KhfXp6mjAI+PKXviQ88wYGdG/TtCxNstHjKLJXEIThqi4NYSi0L2u1Gq5kwUaTi3qTmL0SclAC6/FYTGeFtm0zPT3N7n373rWssI0PJizLon9ggPGpqdYlUZVkN8GRzjqdUhjADQJKpRK+75PL59cMaNF5QzWrVywWhb5oi0Cp7KkCqUu6pt3TGkn2xOQkx48dI51O89RTT61ZMVPoSfXwUwd+kh959UcxPMVuDfmzK39GX7KHb9v8bct3XuW7ymSzbN6yhc1btuBLycDxiQlu37qF7/ucPXuW6ZkZQSbs7xfOSUr3WZowGNIBRY/trVEKDeT8a7lSAYSuaxAEWLZNzXFWyOfZsRhGtUogq1zRStTS0hKYppg5fZdwX3uU+XweOx5nYnJyRaBUFOAofNlbUP3DwaEh5ubmKJZKxBMJ6sDS4iKxRIKUHF9oQBhCEDQIAYRhSHFpiYFVBtpj8ThGrSYylxa059WgSq+1apXXXnuNcrnMgw8+yLCU3boXqMtotVdeQW5odbHLmaNcLsfg4CD//b//d7Zt20a9XufWzZtcvnRJC7n39PaSyeUavO8cx9Ezrs1zqGEoHNh1g12WUJNyRspxHGqOg6MsjGQJxTTEjJobhvieB7GYzgrrrkuxVGqXXdtYAcuyGBkZ4fjhwywtLuoTlr6uW4hqV6VIBojZZAMolkqUKxVxOnEcFhYXSSaTJKVNnoIaoVD/X+0dS8WiVhNrhXgshh8Eq1oHRp8/esWqE+XVq1d588036erqYvcDD9xVkFTYmN/Ajz/yY/zc6z8PIQTy2PF/n/0telO9PDn05PJna/HaUVi2Tb8sv4KY996yeTNTU1OcOnWKk2+9RTabpX9ggI6ODtLptC6/hmGoZUUTLXxr/SDAqdU0IzZE2ABmpca2YiyXK5UGko9SXVInVUX0MQyDqakpcoUCfVIa9d3A/SXzWBbbduzg+vXr7Ny5U2gGRr7I6IiFL7M/FSQzmQyGYQgWrMxUEokEIWIEoe44xOJxUsmkqHMrUWC5QavnVeLGq50orUiW5HneqmXHVky8xcVFXnvtNQzgkccea6ix3wvu1T1ADxGv8loTExMYhsH27dux5eItLi0xMTnJxPg4p06dAiCZSjEgx09U6SOpBpdltqwCpPLENAyDRDwuMkBZelFiBNVqVZdv0/KityyLuueJEq0MsgAXLlwgk8m0LPG08dGGatucisU4c/YsTzwu/GUaVKoiqEWCZCqZJJFM4udyejxBzf/6kkhSrVbFaFkyqcfBouxtdV0Vi0XBrF3luozFYtTq9RVm6iugDgaR/z59+jQXL1xgw4YNrN+wYdXXWAv7eh/ke3b8Pf7r27+HKkiHhPz88V+gM9HJru67b/+o9zUxPs7w0BBbt21j67ZteK4r2jvytHn58mUMw6Crs5PBoSG6ursxZIXQlsIPGEIr2nEc8d3IkTDLtskmElrf1ZTM5aok+VTkOGD0dKkqUOpf1/e5fOUKn/jWb31XK1H3PVDu3LmTwxMTnD19moOPP95w2ov2KCvlsgiStk1WBklAN4Br1Sp9vb3EEwlhFyU1SuuOg2XbQllGBtRo1lQsFiEMybYonyjEYjGhWbhGoGzGxOQkhw8fJpvJ8PgTT+DJecx38scL7xQoWwTptV5lQjXjZZZrGAb5QoF8ocC2bdtw63WuXb/O5NQUYzduaBeDzq4uhoeG6OntxTZNYUskmaymZWm6t4FYsH5kU1FNfBUs67YtFDkkjVuVdgEq1SpjY2N88yc+0Wa8trECpmliWRa79u5l7Px5ZmZmxIYc2TeUALlytABBXklESGWLCwuEkrTW1dlJXd7Xl/J11UqFeCKhyT4GNCTZituwGpQajr+GaEmrE9bRI0e4ceMGu/fsYeOGDaK19A43/YP9B5ivLvDfrv03fVs9dPmpIz/DLz718wylGytca+1PxWKRSqWiT5YgSqCDQ0MMDg0RhiGzMzPcvH2bmZkZ3nzrLQyEmlpvXx/DQ0Pk8vkGT8sgDInZNol0WhB0wmXdW1hmulaqVTzPE8Eym9WjY+pvoRLwy5cuEbNtnn766Xf0fd0t7nugtCyL7du3c/b0ab3gFdQXocRvDcMgk043/DGzuRxTU1O4vi9MRNNpspkMfipFpVIRYwpSTqqC2LDjiYT2QisVi2CaqzqHg8wMpV5hapWTWjRUqZJJX38/jzzyCLZtU5R/yHey4Ncsva5CXliN4asywF1rqOrH4nEGBgfp6u4mnUoxPT3N5OQks3Nzwi0dyGYydHV10dvbS09v7woKvCEzxyjisRihFCaoVatYMmkxJFlJ+YheuniRdDrNI488sup7bOOjC8MwME2T9evXsyjZ3U8//XRDIqnk1Cqy56UCXvT3mWyW+cVFypWKYL0nEiSlHVe1WsWTdk41x8EyTaFfGotppvrS0hKDd2ilxGIxAslxaEkGjFwjTr3O4UOHWFhY4LEDBxgeHtYCH+/0dBQGAd+87uNM+RN8/sYX9e1Ft8i/O/wT/NyTP0dXonONZ1jG7fFxTDli0gqGIaT1bNtm/fr12LbNTWl3dfvmTa5eu4ZlmnR1dtLZ1cXgwAD5QqFROKBF6dcwhI5vqVQiUGNBsnoILGtQV6vcuHGDRx555F1PsN+doZNVoOr2/YODdBQKvHXy5ApFGXUyBJEFNjeDLTm4apmmyLxk4DBNk2w2K2rmmYw4zofCKqdYKrG4sECpVGJ+YYFMOt1S5UG/z4gT91rar6EsmZw4cYKNmzbx+OOPr6BQv5PlvmbpdbX3vcrt4+Pj+EHA8PDwmq9pSRGCknRi6Onr46H9+3nqySfZuWMHmWyWW7dvc+TIEb785S/zxpEjjN24Qc1xVp05AzEDF5O2ZZVKRbAUJdvVDwIWFhaETdADD5DOZhkZGcEwDD72sY+t+X4BTp8+rT3ufvEXf/GO92/jg4uY1AfdsXMnM3KOOIowFPKXqgqVbtHfS6VSWIZB4PtUq1VN1InHYhSkT2RC2sr5vk+1VmOpWGRxcVE7mKx1ogSRHJos2/+tgNwXSqUSL734IsVSiaeffpoR6f6hdsN3GigV8ej79nwfj/U92vC7ieokP33kZ6h61bt6rptjYwxIO77VYMkKUd1xKJfLpNNpNm7ezBNPPsnDDz3E6Pr1OPU6595+m69+9au8+OKLnDlzhpnZ2RXa3VGY6pCEGFNTJ0hYHj25dOkSyWSSXQ888K7vG/f1RKl6iyHwwO7dvPzyy5w5c4bdu3cDLC9gaE3OkUinUhSXlnBqNaq1WgOz0jRNUskkqWQS3/NwZOD1pA3MwsICqVSKYqm07Eje4nUS8Tih1Cht1Zj3PI9jR49y69Yt9u7dy2ZJW4+yRoF3dqK8Sz+5u8HY2BjdXV2k0umWr+PJfqEqPdVdV/dpY7EY6UxGy3WFCE+6yYiLQQh0dHTQ19dHb18fndIBJIpkKoUns0NX+lHWXRfD9zlz5gydnZ2MjIyQTCY5cOAAf/Inf8Lx48fvSLP/wR/8QXzfZ/Pmzfzzf/7Pv+7vqo33LxKJBLVajY6ODgYGBzl2/Dj5QkEHrppkuKoq1GpIptMElQrzCwskBwYa1lcsFhP8BkVWk9e/7/vMLyyIIGSalCsVvXc0J/LxeJxytbrqLHaIkIM7dPgwiXic559/nkw6vTzmohLsr2PfALBNm3/z8I/yo6/9r1xcvKhvv7R4if/z+M/zvz3641iGtSoDt7i0xOLSEjtW4Qz4kt2rTvG1el33dpPSPm9wYEAYQECDT+/Va9c4f+ECtm3T199Pb08P/f39K06FlmWRTKWoVqvCjUSy8l3P4+atW0xOTHDgwAHS6fS7vm/c10BpGEJbsV6vUygU2LtnDydPnSKXzbJ+wwat2mPZ9gqnAAVF7oknkwRhyJycjWoFy7ZJ2zbpdFprlFZrNTo7OvQIiHpftm0Ts21icsYqHo9Tk0E2JYWSFRzH4ZVXXmFxcZEDBw82MFuN5gX/Dr4nXXq9Q8k3CqPF7xzHYWp6mj0yEVFjGapnEFXUUEwyz/NIZrN0FAorEggD6OrspKuzk507d1JzHCYnJxkfH+fSpUtaWm9gYIB+aVStNBoz6bQYKvY8giDADUMunj9PGIYcPHCAmNTcPHjwIH/yJ3/C4uIiFy5cYHtEfDqKz33uc3zpS18C4Od+7udWzF218eGC2kQ93+ehhx7ipZde4rXXXuP5557Dsm2cel0bOq86khCGpDMZnWCXyuUV1n2AJqipkYV6vc7c/DzI06dTq+EYwsXHtCwRYGXgNAwh+q/Yn83M1Zs3b3LkyBG6Ojs5ePBgg2m0kmV7pwgiQVYErCQ/eeDf8UMv/zAT1Ql9v6PTR/m10/+J79/9T1dN5G/cuCHGcuR0gCI3qh+lfx2yXHmLx2Jk0umWREnl0zsyMqITbjW3efTYMUDsLf39/fQPDOiEOx6L4UnBedfzMAyD6dlZLl24wLZt2xgZHiaRTL7r+8Z9DZQgM8NKBdd12bxlC0vFIseOHxeyRvJNp1OpVct5gWRK5vN5SsUijuMIe51VKNsKysrLc10K+TyZVAo38kfXgbNaFYHTsjRzrlqtCgaraVIqlXjt1VepOQ7PPPOMtulSUMShr6eEsmbp9S4vJN/3uTE2RijnyIrFou77aisfhOKFLRMEddpLrnGajyKZSAiW3ugoXhAwPTUlHFAmJ7k+NrZCyF1tJNVajdu3b1MqFnn6mWdISok7gIMHD+rnP3r0aMsF77ou//pf/2sAnnnmGT71qU/d1XfSxgcXqvITuC6mafLE44/z1Rdf5PXXX2f//v1aZjGRSKwabALPw0QQAmuOw/z8vNCIXoNhakZaPYZh0NnRoRNKXyabvu9TA61iFQQBdSm7qUTXAS5euMDJU6dYt24d+x96qCWz9etq2cjHRhPszkQnP33wJ/mhV36YolvUt39x7L/Tm+zlf9r6nSte3/c8xsbG6B8YoCrJTkoERSmOIQ8XtmxxuXJ2NL3GaV4hmnDv2rmTSrXK+Pg4E5OTXLp0ibfPndNa1gMDA/T29AhBFFkOv3zpEr29vezauRMMYabxbu8b70mgBPGhMQz27dtHuVTitUOHePTRR8nlcrr80WrBqxOJEk9fXFxkbn5eawKuhUDOOKXTaTE/xfLgqut5OnMJg4B6KOyfHMeh7nmkk0mKxSInT54kFo/zxJNPChKRDD7Nr60C/R1HPMJl3dWohZdSzAEag5tkiIWyvxLKxMGXGZcfBASeRwCM3bhBR2enoGfLxW6ZZkPJWb0/T4oU+2F4T1qVSmPTMk16e3ro6e3lgQceoFqt6ozx3LlznD17lmQySaFQoFStUi6VeHDfPvL5vMh+ZQVBkaE8z+PIkSN813d914rX/JVf+RUuXLiAYRj8h//wH+76vbbxwUYikaAqxS0y2SwHDx7k5Zdf5tSpU2zfvl2I8iPkH1sFGjVS0NHRwczsLE69ztLSUoObzmqoy7GSaJtHnbKUxZZWpEGMoan5Yss0uXjxophH3LKFbdu3C/YtIqhFta7VKe1OCbYKWGrvEDfK/25SHRrJjvATj/07fuzQj1MP6hgYWFj84YU/ojvWw8HeAzrg+0FAaXGRcrnMlm3blu3xkDPVau+QIiUgDhKmfO27VkqLTDgkEwnWr1/PunXrCIG52VmdcI/duKF9ei3bZmFpiVQqxSOPPqrL2ilJBHw39437Hiht28aOx7XRacy2eezAAV74ylc4fuwYBx9/XMvLNS94dcwHkbnlslkq5TI112VxcXHF6a4ZjuMIc+BIIFB/XNu2IZnUgdP3fWK2zaIMohOTk7x97hwd+TwP7N5NEAQslUryjQn5JkMSYgzDoFarYYB2JjDEiy27pcjZIvWvbv6HIU69DkGAI4kFIaJsqqjtARHpLnkxKpq1WtT1mrDa2b17N0mpmGNZ1qqBW5WurHtc7MpwVv03kkyQSqWWhdzDkJmZGSbGx7l+/TpBGJLJ5RgZGdGkqw7pXp9Kpdi7dy/Hjx/nyJEjK15ydnaWn/7pnwbg7/ydv8NDDz10d++1jQ88EokEZdMUY1dAb08Pe3bvFmMJpsmjjz4q5qZpnHPW109kw8/n88zPzzO/sEAum122nloFjuOskN00FTNWVkMC2dpQAbNaq1FzHC5euMD8/Dzbt2+nr7+fkto3VPnWMECOP6hZT+QIFixr2sJyWdWTZUhX7R1hKJj69Tp2KLRio8n1utgI/2rHv+S3z/5n8Z2EYsby90//PskdSbZ1btd7ycTUFHY8Tn9fH5YUHLEigTGKUJamA1muvluEYcR2Ue4bap5SCbnv2rULp1ZjfGKCW7duMTc3R2AY7N63T/BG5F6lZDnfzX3jvgdKEAtezcmoctxDDz/MW2+9xSuvvMKBxx5jcGioYcGHyJJktDQh5wG9uTkWFhfJZrNrKmKo+aq1ygPRwJlIJPDlQOvly5cZHRlhz549Wn3DjwQn3/dBuWLI0RWAuCQnRTMohXK5TBgEVMplcVHI4FeTjDxbLobo41SioLJJ0xCi5jEVpKXS/uXJSQzDYMP69dh3WMCB72smWSwev2MzXH1PrU78KimI6saahhhIvnzpEn4QkO/oYHTdOt2XMQxDB0oQ5dfjx4/z5ptvriBE/MRP/AQLCwtkMhl+9md/ds332MaHC3GZOAaycmKZJgODg+xyXc6dP4/jOKLvF4ut8HxsXqm5bFbI2QUBcwsL9N5BX9hxnDsq5ZimSdw0QZIWPc/jxJtvUq/VOHjwIF0dHUJsQ+rBBtKxJzCEKpkhA1zddRvHwFrsHaVKBcKQarmsK09qYiAmn6vhOwD2dOzm29Z/kj+99mcEhIQEuLj8p3P/iR975N+wMb8BwzSZnJxkZHi4JQGw1feiTBPu1vABViktywOHaj0p44pcNsv8wgJ2LEahq4uMJHCFYdigg/tu7hv3dTxEIZFIEEpKMYh+WiKR4PGDB+nv7+e1Q4e4eOFCY4BooVAPot+gKN3zq/g7KjiOA6q0eBe9Ps/3OX/+PFcuX2bTpk088uijJJJJkqkUmWyWfC5HR6FAR0cHBcnAy2SzJOQgfjwWIy6ZdHak3Kl0IY1IaVUNVZtItw75uJhkkCkPvEw6TS6bpSOfp6NQIJ/Pk8tmSadSJBIJ4ZxgmtwYGxN9wbvI8moRubqYbd+VGepapIOQZZ9LUyr0vPy1rzE1NcXGjRvp6+khIU/vIBjO0ZKW6jdUKhXOnFm2EDp79iy//uu/DsCP/MiPMPQO5AHb+ODCNE3iySShaYoZXMD3PAYHB3nyiSdYWFjgxRdfpFQu6z6d7qlBY+AxDDo6OrBNk6LkOqyFaq2m/VbvBuVymaNHj+K5Lk88+SSDAwPa/zKXy5HP58W+0dlJPp8nm8mIllAiQUy5m6i9Q/IIbKl+ZZqmFkIw5L6hRN5NyyIei4n9Ix7X5eJUMkk2m+Vv7PzrPLXxSeaYZZ55llhkypvmZ078LPPeAjOzs1RrNUbXrbvjHhn4vjBvR+7pd7FvtCQPRW5T4gPqNHz9+nVefuUVMpkM60ZH6ers1HskQKEpwYZ3Z994z06UVixGqCjYclYxnkhw4MABzpw5w1unTlEqldjz4IMNfzCVHUYXbEdHB/WpKUqlEvlcblUxc6epHLraZh8isrPXDx9mSirnDwwM6Cy2Gaocov54pmmKcoghJJlWgwpIKujC8oyQku1reF93yYqbm5tjcWmJ3bt3L1sRqR5I00L1PU9vOslEQjsBrIXVfD6b3ysIdttrhw4RhiEPP/KIJk2ZliUUfkyzYbFDI6HnyJEj7N27F4Af+qEfwvM8RkZGdFO+jY8W0uk0CzKwWZalZ6j7+/t5/vnnee3VV/nqV7/KwQMH6Orp0VwIWJncpVIpkqkUfqXC7Nzcqux5EHtHQZb4Vp0bltfX+O3bvP7GG6TTaR7Yvbuh1dN8ZZmGARGJtoTrguzZr2XKoBjrmUxGj8gYhkHM80in0yvYnNHk9x/s/B5majO8Mv6qfBzMObP8xJGf5jtjn6aQy2khGMWm13rc0e/EcTBZdgW6074RQmOrRv9i+TYjkuCcOXOG8+fPMzI6yujICItLS5hST1e9VmeLQAnf+H3jPTlRGoZBNp8nNE3tRA7oMuzu3bt5+KGHuHLtGi985SvMzs3px7ZapAl52rJsm+mZmVVPRLVaTY8hYBgrShOhJPCUSyVeeukl5ubneeqpp1g3Ogpwx6zzGwFddmiReQVrLcTI/S9fuUImndYedtGZTlP1SyXUaVIRfBruvwruJnP0fZ+35ZBxIh7n8YMHReAPhYSVpXq0NC52gK1bt9Ilbzt69CgAn//85/niF4XSyM/+7M/eFbuujQ8fkskkhmwPVGRbQ3mlZrNZnn3uOfL5PF97+WXekiW4ZkST7M6ODizD0CLpq8GRTjiq3RGF4k74YcjlS5d47dAhent7efrpp0nE46JNo66Zta6tMGzpoHS3WI0tv1L5xuQH9/0Auzob1brGitf5vZk/YHTD6PJj5b+m7P3q1/J9YXoAune75v7EGgSlptsXl5Z46aWXOH/uHA/s2sXWLVsIkQcsed8gCEhnMg3JxLu5b7wngRJEZmhYlhjMldYp0dPahg0b+NjzzwPw4le/yptvvqnlnYAVX25Xdzdxy8L3/YbAGkUt0pCPnrR0vyAMWZif56svvojrujz77LP09vaSlNmZct6+05nOaPr3XqAXdauT69oPBMQFffvWLTauYjkTpZ8HkrEXhKHeBFR/8V4RfW/T09N85Stf4fz582zfvp0nn3xSnEJD6U9nmljS99M0TQotWIcHDhwARGboeR4/9EM/BAhW7Hd/93ff8/tr48MBwzDIFQqily85B7acWwSxmT711FPseuABrly5wpe+9CUmJsQMoV77kb3DjsVECdaymJ+fb5kM+76vWa/NUCS6IAiEStebb7J50yYOHjggVKmkZuyqSj2NH255Q/46xsqaA3mrABU34/xvj/w4I9mRhtsnzHH+vPg5mru6mo2LCBqKrBizbeJ3kWCvVcFTp0zf9zl16hRf+cpXcF2Xp599lmGpWKRaQ5b8WwdBIBj9TXi39o33LFAahkFSlgwcWaZsXhz5QoHnn3+evQ8+yLVr1/irL32JifHxls9nmiadXV2651Aql1fcx/d9bBmAVClSBUgQ4uFfe+klUqkUz8vMFNBGr4ShZpitha9nFsqPNLLfCa6PjRFCg41ZK4RAJVKKtmTfo/mkHcWd+jOO43Ds+HG+9rWvYcdifOxjH2PHjh16k7Al61brvSL+xq0kslQZ5dSpU/zH//gfOXfuHAD/4T/8h2+IYlEbH1ykUimMWEz4IErmeHTvMAyDrVu28M3f/M3k8nlefeUVjrzxhuZENCOXz5NMJjFNs2VFyo9UvGA5aKgSoO/7HHnjDS5cuMDevXvZ++CD+lSXSCRAnljvRUrgXld49D2vGFVbZb/KxXP81KM/SWeysaLztfGv8V/P/d6qr1WPSMollEPSncZZoizX5t8ZBpNTU3z5y1/m0qVL7Nixg2/62Mfo6OgQIgPIZMgwltnJhkFnRCdc4d3aN96zQAmQzefBMPQ4RhSK1qwW/Sc+8QkKhQLHjh/X/ctmpFIpsrkctmUxOzsrLqKm51T/6jETuUlfuXKFQ4cO0dffL0omkSO9YRi6z+DU63f3hd/F4mmJ1Uqvd1HWCMKQK1euMDw8fEfFibrjCGaqHKhWrh5rvdZqF5wfBFy7do0vf+Ur3Lx5k3379/Pss8+Sy+cFdVzNWEl3Bds09fc+sEpjXS34er3Oj/3YjwHwHd/xHTz11FNrfq42PvwwTZOEFBhxZOLaPA4Con/35BNP8NhjjzE+McHhQ4e4cfPmin0BoLuri5ht43qeUOGJQI9dGYZm3quKlFLpmpiY4ODBg2xpMmnX5sVhqPkHa6GZQ3C30LKXrExo16oQ9af7+KlHf4K40Xha/uMrf8znr39h5esgWPmGIQb9bUki0qMorfaINT5TqVzmjTfe4JWXXyaRSPCxb/omduzYAYah5Uzj8XjDaRYEAbDVOOC7tW+8J2QeBcuysDMZKJX0qWO10YR0KsUTTzzB1StXOH3mDF/72tcYGRlh+7ZtDUfwzo4OanJ+aXpmhoGIRYwfBITyj6pfIRTC5hcuXGDL5s3s2bOn5axhMh6nVq3qwf61/OK+HhkqXwXwFgIGd8LU1BSVcvmOLhxBEOg5q1Q6Lcqi8ndricU3w/N9rl+7xoWLFymXy/T397Nv3z6dZHiep1lxyURC6Ltalj5NJpNJenp7Wz73gQMH9AXoui6JRIKf+7mfu+v31saHG7lCgfmJCa05mkildIIXvf4Mw2B0dJS+/n6OHTvGhfPnuX79Otu3bWPjxo3aes6ybbo6O5mZmWFpaYl0KqX7WasFgXKpxCuvvILneTz99NMreu3q9RPxONVqteUs5gpEAt69QMvXtajO3Cmx39Kxhb+Z+hv8v5U/Idol/fWzv0F3spsD/Y/p26Kauknp3wlr7BstRltAmGBfOH+e62NjmJbFvv372bhhw7KIgXwdy7JIJBIsLC6i5EsBBlYxeXi39o33NFAC5Ds7mRsfB6kMY61R7zYNg6GhIfKFAlNTU1y7do0XXniB/oEBduzYIcS7DYPu7m4mJyao1mosLC5SyOdFw933GwKQ53kcPXqUW7dvs3fv3hXZYBSGHC52pOflnWaqWmV2d4NQnqwbFp4sEd/p+a5cuUI+n9cN7dWgMjVbjp7o96zKrkZELYSVLFfX87h65QoXL16k5jgMDw1x4MCBBo/PMAioSssjNeJSKpUgDLGUi0wkiWlGoVBgx44dvP322wD8i3/xL9i4ceOan6uNjw4sy8JOpfAch2qtRiabXU6yI/6GCol4nF07d7Ju3TrGb9/m1OnTnDt/ni1btrBlyxZisRipdJp0JkNQKjEzO8twPI4peQ9qHlhhemaGw4cOEU8mee6pp9ZktycSCW3jFUiT89UQqkrUPe4d6tRovYM9p1QskpvP8rc2/U/8t1t/sPxewoCfP/EL/OzBf8+2jq2iV1urESJn0dVrGY1iCA2fp6nkurCwwLlz57h16xbJZJK9e/cyOjqqzTJAVLu04Xs6LURWpLasktscWIWh/G7tG+95oEwmk9jpNGG1ytLSkjhOr9EnsywL0zAYHh5m29at3Lx1i3PnzvHSV79KT18f27dto7+/n0JHBwsLC8zNz4vZJCmLpxZ7rVbj0OHDLC4s8PjBgwwODd2RxBJPJHAcB8dxSCSTq2ZR6r2/kz6DfmyT196dgmRxaYnx8fE7Kk64risuWCDbHOybSQCSgKOCZK1W4+rVq1y6dAnX8xgdHWXbtm1k5Sal+qthGFKpVDRZJ5VOi/6ulMOypTPJ8Lp1a77Xvr4+3n77bXp7e/nxH//xNe/bxkcPXX193FpcFCLljrOs89riWjEMA8uyhPLTgw+yc9cuLl68yPlz57hw4QKbN29m8+bNdHd1UXccavU6UzMz9PX2rmCT3rhxg6PHjtHd3c2Bxx7TIh2rwYwk2TXHWdPdpEFQ5R4QRJLahqe7i8deuHiRRDLJJ/d8Ej8V8IeX/lD/rh44/MyRn+Hnnvg/yYU5MITou91C2EWrB0USazVeMjMzw/nz55mcmCCTybD/oYeWA2Rk7/A8j6oy3k4msS2LpWpVj8wZhkF3b++araV3Y994zwMlQEdPD3O3buHW6zi1GslUSvcnm6G0EX3fxzBN1q1bx7qREW6Pj3Pu3DleffVVkqkU69atI5vJYBgGE5OTDAwMaJucYrHIq6++iu/7PPPMM/oEthYzC9ALxJely1aed1HcawE2uriiJ9+7eZ5z58+TSibFoPBqzx+GYhEaBslEoqWSRlRWykCUV2/fvs3169eZnJzEME02btjAtq1btXJHc7nccRwtM6aMt5XZqgr6XT09a86JHTlyhJdeegmAn/qpn2pQ4GijDZD+kskkfrVKtVoVyfAa91ejHUEQkE6nefDBB9m5YwcXL17k0qVLXDh/nr7+fgb6+zEsi2q1yvz8vA4KpmFo3eJ169bx0MMPY8mT0J0qPslkUuhG1+ukJHFo1ff5Dr4LNWK3omVzh+S/Wqlw/fp1duzYgWma/O1tf5vp6jQv3HpB32fRXeT/+8b/wY/s+WGydrZ1NS0y/2gggmVxaYnrY2PcGBujXC6Tz+d55NFHGRkebgjoWm0sWoWKxYgnEsKaT5I9leDCiFL1aoF3a994XwTKTCZDKZ3GrVRwHIeYVNppCUU6iQY0WZIdGhxkfn6esbExrl29SrVWI51O09nVpcdQXNflxRdfJJlM8vTTTzcM9d8pUILIchwV0Nc4Varnuxes1me4U6AsVyrcvHmTHTt3rinCXqvVCOWQ/5rC52HI1NQUN27c4NatW9Trdbo6O9n34IOMjIxolxeFqOyU67qaYp9KpXQwrstBatM0sW2bgcHBNTVlf+RHfgSA3bt3873f+713+Aba+CjCNE1yXV0sjo/j1utUKhUy2SyBYsI231/qlUZ/E08keGD3brZv386t27cZGxvjxJtvgiFkFzs6O+mR8nYXLl5kcmKCHTt3snPHjuUTFOK0s1ZFyrZtYvE4vuNQc5w7Jtn3CrVv3Stb/uKlS9iWxSZZnjSAf7b3+5lz5nhz5k3xnFgUqyV+6+3/zA8+/K9a7jHqO3VqNW5PTDB2/Trzs7OYts3w8DAPPfww3d3dLUuziozVUIWSSbRlmlpRzbIsOrq6VgixRPFu7Rvvi0CZSCSIp1L40tKlUqmsOhhqmabWMdQebuqXhkFnVxednZ088MADTExNce3qVW7fusXY9etgWRjSdurJJ58k3lQ+MBBZ41qDs0pSyg0CnFpt7V5lq0AZIQWoLFDNYaleSHOfQTl0rIYL589jx2Jr1uKVeHIYhoJQ0Pwavs/czAy3xse5PT5OrVIhm82yZcsWcTrPZlfdCKKfJ8pUUyUp0zCEZZksu3b29Ky52H/zN3+TF198ERCK/2v1dNr4aCOZTOJks9QrFWJyjdurrBeV1AZyTUavczsWY/369YyuW0e5UuHGjRtcvXKFS7OzXLp8mSAImJyYYN++fWxaZUb5rt5rrXZXSfYKRIhKWluaxr0D7i1QOo7D1atX2bxlS4MovG3Y/JuHfpR/c/jHuLZ0lRzCpOJy8RK//Pav8KP7fwTTXP6Oq5UKt+W+MTM1BYZBf38/jx04QP/AQMv3FHU+CWmsQqVTKTFGJm/XpW/DoG9goOU8K7y7+8b7IlCapimcx12XaqmEaZpCHKDFF6IU83/uF36BifFxurq6+Pmf//nlL0XWu03TpLu7m9/49V/nhvRWW79hA/lcjtmZGV74ylfo6+ujt6+Pvt5e/eWrofu1TpapZBLPdXHq9RW9SuXnprwu1XPpec1IYC9VKoQIirQpM6d6vU48HtcXs5o7tGTZoTmbq1aronSyc6eQ9GrxvgMpvE4YklBek2HIwuIi01NTTE1OMjMzI4SEYzH6+vrYuHEjXV1dDezg6MlRfVfq9Xzfp1ypaGaaKquqDUmNicTicQYGBxsSoUqlwu3btykWi3z2s5/l3//7fw/A933f9/Hss8+u+ndoo410Ok05mcSV9luUy0LSTfbJoicYwzSpuy7/+8/8DJOTk3R3d/MLv/iLeu9QQSidSrFh40b+4A/+QJRe43E2bNhAT3c3b771Fjdu3qSvt5e+/n46OzqEbjNiH1O2e62gNJ9daSLffKpUBsiu61KV71UFwubxl+a9oxgZl7NsW+8dliH0X025j0Rx6dIlADZv3rzye7XT/OQj/45/+8r/Rq0uCDxLFDk8eZhfP/Mb/M3Ov8H0zAzTU1MsFZe4al/nOmN09Bb4p/v+MT3ZZZF5LYGn/lvuJeq2muwxA1phTb1TxZrHMBgYGiKXy+lK1P3cN94XgRIgn89Tq9WwajXcel3YXEmBb5oa9IlEgmeffpo/+qM/YmZ6mldefll8MYahrbmCMOT/+tVf5eKlS5iGwV/7a39NmDxXKmzdsoVyuczUxARXrlwBoKOzk/6+Pnp6e+no6FizWRyPsOGcWk0vfk960tVdl2qtpucF1TuPSsmJf5ZtdqLB2TAMAmWnJX9UgDUNo0Fg/eLFi5imyeaNG1uWaEPEglL9ydm5OWZmZpianMSp17FMk25paZMvFLDjcWK2rUsfDc/VFIT1STIIKJfLWrtV9SVN+fpV2Yz3goANW7aQzWYbvt/f//3fX1Emeeyxx9pek23cEbZtk8pkhKTa4iKmYVCuVMhIfkIUpmGQiMX4+Mc/zu///u8zOzvLyy+/zHPPPaeT2VZ7x9/5u3+X2dlZNmzYQDaXY252lvPnz3P2zBnseJy+3l56+/ro7u4ml82uyVhNJpO4pRJOrUZciia4rqvtucqViiC2yOtclSaB5X0j8mMayzrOigQZeB5B5MSsrlNLtj3U816+fJmNmzYRj8dbSv3l7Dz/fNc/55dP/TLT/gwBwmvz82OfZ+ryFAdTB+nq6eRI5igX5y/h+h5Xipf5f67+If9sz/fr51E9SxXwo0FSkSNB7OvNbZ2a/D4ymQwDg4NaBAbu777xvgmUtm2LU0YQUF9agjCkVCxqY98oYcQ0TQ4cPMhXX3yRifFxPvvZz/L000839C5/7/d+j6PHjgHwXd/1XTz5xBMcfv11ypUKdizG1q1beXDvXirVKtPT00xPTXHt+nXOnT8vBAbicQqFgv7p6Oggl81qJqhlWZRKJZaKRbLZ7HIwBHH6kuywVCqFEkxXRCT9Ix+Ty2bp6OjAXFrC8zxSqZRwcw8CfHlC9X1fGMEiyqiu51F3HK5dvcr6DRsaJO/qjsPi0pIwtZ6bY2lxkWKppE+DXV1dbNi0ib7eXrq6unRppFqtUqvVVi0JGSAuRpl5G4ZBKIOkJ4NkNpPRZRN9ci6V8IKAnq4u7bISxfHjxwFxoWzYsIHv/M7v5Id/+IfvOILTRhsAuVyOarWKnUrhuy5Bvd7AtlZQPcpHH3uML37xi8zOzvLZP/9znn766YbrsXnveOaZZ/jcn/85hmGQzWbZKsfI5ufnmZqaYnpqirfeekucYC2LXCZDoVAgH9k/lEKPKWU7a9WqrppF009DklYSsnWhqkhq71D3UYEml82KpED8gpxskWhvzIiHbSCZ5/V6nStXr+IHARvWr28QYimVSiwsLrK4sMDc3BzFYpE9zh4+H/8iAQHSUZej9jGe2PEEn5v4C96aP0knndJDOOC1yUP8kwf+MVakPEskQKrXq9frmuGqTbEl4ZJQWo75Pp7vs2X7dlKpVEOCfT/3jfdNoITlBR9Lp/GlX+VSsUghl9NfHqCtqr71W76F3/7t32Z6epqvvfwyzzz7LGEY8vkvfIH//ld/BcBf+9Zv5X/8xCcAIZo8OTWFaRhMTU3R19dHOpVi/ego60dHCcOQcqXC4sICi4uLLCwucvPmTc5fuACIBZrLZkkmkzrzsSyLuuPQ0dFBJpMhZtuiDFmtYqsS5F0KEKhGtirRaB89WRZWF0DNcSiXSly4eJEAwUw9fuwYpWKRxVJJSHXJ58rm82RzOUakRU1HodCS2g2ix3ind2oaBqFkDoZBQEmeJDXDVQZJhZrjUHcc/DBk644dpNPpFZ6hv/Zrv8av/dqv3dV31EYbzVBOOyXfxw8CAs+jItVjosxqS7UxTJNv+7Zv47d+67eYmZnhpZde4tlnn8UA/rLF3hGyPCrleZ7eO7q7uuju6mLnjh14nqeT04WFBRYWFrh56xae70MYEk8kyOZy+toG0Rft6eoiJx2PbMvCloE0KVskd0MIVIxbbUCvbo/sO4EUZihVKiwuLnJjbIyOQoFLly5RqVQoFovLybRs0WQzGQYHBtjds5sN7gZ+9dz/1fC6v3zql8XYhtTL0YmxW+JK8SpbC8tz6Yqr4Mv3qoJkSCRIwvJp0zBYKpUIfJ++/n5hJ9iUYN/PfeN9FSgtyyKbzVIMQ0zXxZczf8VyWZQ0EF94TC6g/Q89xMAXvsDE+Dh/+qd/ypNPPsmRo0f5g//23wB44vHH+Vt/62/p54/H4/jyxFatVpmcnqavp0fPNRmGQTaTIZvJMCyVHwLJxpqZmWFRnswWFxdx5uaoyUazGqo1DYNkKkUykcCOx4nbNvFkUnvIWbaNLf3jTMvS9ffxiQnm5ucpl8u65Kx0LFVW6NRqVCQNXhm/qoV5+9YtYvE4dizG0OAgmUyGzs5ObNvWgfdOWZZ+vnAN02Z1moTlICnvn81kdJlZUcQxDH2aHBkdJZVKrVjsbbTxjUA2mxVEsmSSQPbrypWKmGGU/rPqtFYPAg4ePMhffv7zTIyP8+fyVHnkyJGWe4eBECxISvcKp15nYmKC/r4+3d+0bVsHThDXgOd5LMzPMytPZkvFIgtzc0K0RDpvXJDPb8vqk/KiTMTj+kCgfkwZSJXHK8Dt8fEGWz9L9kmVYpEn20BVuXeoazP0febn56lUq9i2TSab1QEpm82KqpJpkstmMU2TdayjRInfPfdf9He+PC8umixRVZ+3Zt7SgTIIQz1GY1kWtVpNnyTjsZjmh+gysgyktVqNANi0eXPLBPt+4n0VKEEseNd1qQWBYIVKIkipVBIlTtX3k0f4T3/qU/zqr/4q0zMz/M7v/A6vvio81nbt3Mn3fe/3NpxuYrEYnu/T3d3N3OwslWpVDBV3d7dkYXqeR7lSoe66ZLJZ0pkMGxIJEYCkSPrs3ByVchnP9wnlfGWpVKIsR10ol8WAvyyhqpJIKMUFgiDQJqOGKZzCLXlBYFk6sMbjcXp7e0mlUqRSKa5cuUK5XOZjH/sYiURCy9Ip9lilWhXEIJnJrgZDng51j1SVPlrcT+tdyudXhKNUhEUbZSPX63WKxSIxOdfa2dnZZrC28a7ANE06OzuZnZ3FSiQIZOAolUrk1fWECEh1eT1++tOf5pd/6ZeYiewdYRiy64EHVuwdccng7uvrY3p6GtfzmJiaYiASLBXCMKTmOCKYSVJhb18fcanKY5gmdcdhdmaGquOIQOc41Go1lopFUZaV9oO+3Ac9z8OXJ1rNYQgCzp49K5J0GVQ1L8I0hZ2dPG339PToZPnNN99k+86d7NolbLZcGUyVN7A6jXdIopLCpzZ+O+fmz/H65BuN3z0mYUiD48hbsyf5js2fBtBBEsT4SDRIKiEYS54kDcSeWCoWqdfrrN+0SZev30u87wKl+gPNeB5BPI5fq2HILM4ol8lkMvp05nseDz/8MOtGR7l27ZqmBo+OjvKDP/iDK+b0VH3b9zx6enqYnZ2lXKkwPTtLEIb61BqEodZmVBt/XLqFK+ZnIINGoVDAMk2CMCQvBdnrrku5XMayLPK5XMtxkyAMmZ+b4ysvvMAzzzxDLpejIh+jTl3qhNeMmZkZZmdneeSRR5azMdMUCy8eZ2lxEaXob8teaiqZXJGRqR5jlGykCEMr7if+j04eCAJMxAxsw/uUz4lhsLi4iO/7rB8aoq+vb1VadxttfCMQj8fp6Ohg1vMIXVdXN4pLS+TyeSzL0tUo3/M4ePAgf/Znf8bY2JjeO9avX88P/MAPrNg7bKmsk0wm6evrY2pqCq9FsKy7LlVJQFFapclEQrc7lAJNPJEg39FBSo6zZOXeUywW8XxftHFkEIkiRJwGZ+fmeOGrX+X5557Dlu0e/RhYtd1z6PBhUskk27dv17cpxaKYbTM/P68TdtdxqIAeZXl54hWOTR9f8ZyquxtEAuXZ+bM4fp2EndCs11qtRl2ZPcsql+d5WHJ/UT+e77OwuEgmm2V4eJjOzs57nkn/RuM9dQ9ZDaZp0tXVhaVcLeRJp+Y4gl0ZhppC7Ps+z0nfShBaf7qhK/tpCvF4XHjDua4eH1FlhpnZWZaKRdEXXVrCcRz8ICBm2+TzeTKSlNMMNUhsGgY1WQ5pxmoKQ+riskxTz1Rqqjq0XOwhwkKmo6ODdU0qPKF8DwGCZt3T1aUv+GqlQqVabaRpN81Fthot0UESwVArl0ogSQsZWZaJMu7UqdNxHOYXFsgVCqxbt27Nuck22vhGIZVKkS8UMONxwRSXSW2xWMRzXd0e8GW16vkWe0da7R2R500kEtoPN5FI0NfXJ/qJnsfE5CR116VSrYpWg+z1p9NpCvk88USipQylYpZHbauijNlWocFAkJJU4FWuQbA8Q7laUJmZmWF8fJzde/Y0noIjVaJYIkEhlyMveSGe51EqFvmTi3/KL5z4RbxgpfOK5Ow3lF7dwOXcgrC4Uqx4ZXOWSCZJpVKCJS/3aLUXhWHIzMwMQRjS09fHunXr3hdVqPdloAQRgLq6uzHlYvIleUQFSzVSMT4+zv/7x3+sH+c4TkM2aEQ2f1V6KEuvStM06ZHB0jJNJqamuD0xIRrwQD6XI5PJiBEVw1hVcDglCTt1zxMOGe/g8zZrNa622G/cuMH8wgJ79+xZ8TunVqMmbYcyqRTJVIp8LifmUU0TT550WzkhBJHbTHlCNiLBr1Kp6ETAjsXIZbNae7F5Tsqt1xmfmMC2LIaGhxkZaTSHbaONdxO5XI5UPi9mKUG3PIqlkihdWhYhcPPWLf7kT/5EP27F3hEJlulUqsHjNpFI0N/Xp625ro+NUSyVRHIdj5PP5ZZns4kEvSYWbiKRwDQMQWwJlwXEdf/vDiepqBazCpStZOtC4OSpU3R2dKy4HkMp8qJ0mLOZDOl0WswsmibHp0/wFxf/khSteQ4WFmEIPo2v+9bMSXzPo1Qqad/QdCaj5+MNyxIjcCrRDgIWFhYolUrk8nktVv9+wPs2UIJYjD0DA7r+rtzE61JcuFgs8pu/+ZssLi3p0kWtVuNzn/vc8pOohWYYuiFcXFpqeJ2e7m7R5/M8FiRhJ5vNrpRYM4yWQdC0LC08oJhcDQ+7i8/qN58oW5zuPM/jzOnTDA4O0t3T0/A7NbsJkJSkAPWek8kkWan2rzaMFYFSZtiGpKNHNSzL5bLQW0SUYaKnw2a1nprjMDs3h+u6dPX0sOuBB97zskkbHy0YhnAQynR0YMqRDKV6VSqXxUhTsch//KVfYmmtvYPlYJnL5ykViw3zhvF4nN6eHnw5qjUzMyN6gul0a4WcsHEeHMT1hCTgOPIa0/flzntHVLBdJ60t7nf9+nUWFhbYs3dv01sKKVWreJKNmpbMdVgmV741/xYAGTKkWamYZmMREuLTeNo8M3NGf9+mfC5VTlbCLPpz+L4eTTFtm63btjG4ikPIe4H3daAEsZB6h4exJKklBC1K/v/84R+yuLREIZ/nR37kR9i/fz8AX/7yl5mPmq9G5i+zuRyLTYHScRzi8TipVIpEPE4YBExNT+O2GMJdzclDmR8rhio0Ltg7BQttkyMDVKtAeebsWWr1Ont272643fM8KuUyhiEGqlspGtm2TT6X0xewKmEr+JJcZEnVHsXaa84G48lkQ8YadQypVipUSyXK5TK5jg72PfRQu+TaxnsCwzDo7u8nWygsq+Z4nhbe/oM//EPKxSLxZJIf/tEf1a47K/YO+VyFfF5XVhRU0l7I57FjMZLxOAvz8yw17S/qOUwpv9lwu9Q1NQxhVKz8aNW91Oz0aojuG+p1mneamuNw6uRJRkZGhBVhBJVKRagJIfgGK4wSDIPt/dsoI07Tafm/KCxseaJc3i8zZJlZmqHiirn1TCYjDgEt9jXf9ymXy5TkeMqGjRvZsnXrGp/6/uN9HygBEuk0PcPDWj2eIOAzn/kMt27dIpfN8nf/7t9l/fr1fOrTnxaZmePwZ3/6py2fq6NQoFgs6v/2PE+XHXp6ehgeGsIyTVzXZWJigpoMelEYYbhiMRqmKTQKEQvTl/NIGmvMUq4on7RY7DOzs1y+fJndDzxARmbAIMpK5VJJK3m0HAORmawSBDBl5lmNXPTqYlHEpGq1SrlUasgG7VisIStWwdzzfUrlMnXXpVipkMpk2LF9O319fat+5jbauB/oGBggWygIAqBl4bgun/nMZ5idmSGVTvNP/8k/YePoKN/+qU8Jv8V6veXekc/nBUEtEgQr1argO1gWGzdsIJvPYxoGcwsLTM/MtNRGjs6DKyQkk94wjOX9RrVBDGNNTVgdKNeoRL355psYpsneptNkpVrFdV3CICCTTq/aC/yWdf8j/3DP3yeXEvtOmjRxRMXKwMBEzE57eMSI0UknKZKEhFypXBGnVCIjaKBLrjXHoVQq4cge7+DwMDt27lxTGe29wAciUAIkMhk6+/pIxON89rOfFULgts3zzz/PwOAgpVKJ0XXrePSxxwjDkK+88AITk5MrnicvSyggsrVyuSz6CpKFlU6nGRgYIGbbEARMTk6yFAmsgAhkLU6WMammYZimcOqILNpov6MZarGbsufXnHX6QcDx48fp7Oho0GX0PE9oPMogmImaqa4CU9LF1fPW63WIMHl9WQJRjfdYPE5ayoE1v68gCKjWapTlYHDdcbAMg9ENG1i/YcM9Oxm00cY3GqZpUujrI5vLYVoWn//Lv+TKlSsYpsk3f/zjDA4M4AcB60dHefTRRwmCgK+88AKTk5MNAS0Rj5NKJHSSrWYhwzDUbZrenh4KHR1YhkGlUmF8cnKZpCOh5q2bg6VSEfKjxJ67QBBJsFsRAG/dvs3t27fZ9+CDDazzSqUirn1E//VO/pKfWP8Jfulj/5F/tv/7ebBnLwUKGBiiP0lAQEiGDAUKWFgEYcBiuMjL06+oJ9PPGxoGnutSKpd19a1aqdDT18fGTZtWnHrfD/hA7WTJfJ4//exnefnll/E8j8cPHmT7jh249TqLS0sUi0W+/du/HUPW/P/4M5/RAUBLPuVywhxUzhm6ci4pKtIdi8Xo7+/X8nNz8/PMzM42qNhD65NlKpXS4sgNPQdW/7Kjix1W9hjefvttyuUyDz/yiH5tT54klWB6qyCpA3nT7ZZlCQKSYVB1HDGvJVlvjuMIIo9lkUqnxXfAykDvyX5u3XE0WcHzPAZHRxkZGVnV/aWNNu43LNsm19PDl7/8ZQ4fOoTrujz26KNs3ryZWq3GwsICtVqNT33qU7p98pnPfAY/SnozDPKFgk6yq9UqQRBoBR2FQqFAb2+vYMS6LhOTk1SibHg5ttWcRFqWRVJqJFdrNd3SUFg1yY4Q8Jr3Iqde580332RwcJBhSeBR6mPKRL1ZFi76PptPp4Zh8sjQQ/zDXX+fn3rsJ/juTd9Nf6ofO4yRJUsyTAqBlrDKXDhPnTpHp4+tqKxVJTs48DwsKZaQzmQYGhl53xL/PlCB8rd/+7f5pz/4g0zMzPDQQw/xP37Lt+hsrlwuU6lUyOdyPH7wIKZlcejwYW7cuCF6bqFwFcnJucYF6YwOgsbdfDq0LIteKZBuGQblcpnxycnGUqxhNDLaEAs2LQOsU6tpBq24e+O8EIiFG8j+YKuscGFhgQsXLrBzxw49X+m6riiLsizf1SASoFhka5R7E4kEtiQAFKVmrXI7ScTjZKUcH02fL/B9qpUKpWJRCxzbsRjlSoXegQH6+/vp7+9f/Y/YRhvvAX73v/5X/s2/+3eUymX27d/Pxz/+cW0dt7i4SLlcptDRwcEDBzBMk0OHDnHjxg19fQZBQDabZWFhQZwkJfmllfl4KpViYGBA8B1C4e06Oze3ohTbfLJMJhJi7E32KxX0KZTlfUO1dtTeYdn2imB68uRJAt9n37594rGyx+q5rmDGp9OrzzavtncYBql0mnyiwDf1f4yf3vOTfNeGv83m/Gb8MGCJRcqUCA3pTxu4WoPbrdcplkp6D40nEvqgMrRuHaOjo++7kqvCByZQfv7zn+cf/+N/TBiG5Ht7+Qf/6B+RkeLD6XSaZCJBpVKhXC7z3HPP6eH/P/7jP14+ASIWcTqVYnx8XAQxw9ABoRUKhQI9PT3YloUvZ6YaFr0swUb7CIlEQiiByADrh6FQ1ZDMO/WjbLf8aJ9BZpzI+aijx4+Tz+fZum0bgBYzCOX71i4J0YXdorQThbq/YZqUKxUWFhYENdy2yUrdSSVYoJ4vkBTyolTM8MOQZCJBMpFgaXGR7t5eBoaG2NAuubbxPoPaOyZnZ8l2dfH3vud7yOfzFAoFTXwrlcuUSyU+/vGP60T3jz/zmYZqTFd3t9Zz9YOAhAySrZodtm0zMDAgen+mSalU4vb4eEMABJbnkEEz80EkwzWpIOSFYUNlLIhWssJlX0ctP2kYjE9MMDY2xp69e0kmkyJIlsta/jKdyeigpBW51to3ItwExeEQ+22FDdkN/IO938PPPf9/8G2bPknMXA52T/Y/IRS6SiVNHAJBHPLqdTzXZWh0lNHRUTo6Ou7yL3r/YYRrHTvexwg8j/L8PKHv40uh4mqtJmTqZJYSi8fJZrOkksnlsmYYcvz4cSYmJ3n0kUeIJRLaF85A1M9bLXzf95mbn6cqXbhDhAuHeqyeBQpDCAJm5ua07F4ikdAkm6irxsLCAl/6q7/i0QMHtMasbdt6QZ44cYKxsTGee+45CoUCjuNQqVRQAsjRk7AvNWfv9OcMQ+EgoE675XKZWq1GMpUil83qUqtuuvs+NcfR4yEg5iiVaPvMzAyFri6GRkbYvHnzypGaNtp4n6FWKlGXbQslYq70SOuuS8y2xUiVHGdQ15jjOHz2c59j+7Zt9Pb309HR0WB11Ur6EUQ/cH5+Ht/3cX2fdCpFZ0eHNkuO6ixXazUW5ucJQiFMruaVmzE/P8+Xv/QlHn30UTo6O/WICwhG+wsvvEBPTw+PHzyIL4OkGpFRCj4KruvekdsAaJnMer2OI0XNPdclncnQmc/rU63ne7wy/goddoHNmS1aTAW5J8dsm1KpRLVSYWj9ekbXr3/fE/8+sLuaadtkOjspzc1h2bYokUp6cTKZpFaracmkmCwlpuV8U//AAJevXKFSq9Ed6aWpxarGM0LDwIwwRnt7evSidxyH6elpMum0XvSKvaoU8lOpFGEQ4EiZqmavNQ15oowGyevXr3Pt6lX2P/QQhXxe2/K0CpL6/asgqbI/+VmUNqTreVpxCKQ/XzwutF6leLp6Hs/zcGTGp2BHxNU912Vmbo5cRwcDQ0Ns3LixHSTb+EAgmc2KhFEmsortakq/RsdxKJZKVGs1ETDl6SuRSNDV1cXM7CwDg4ON5VAZLJX+cdRbNpVKkUgkWFhY0Ceraq1GV2enrgiFvo8vT46xeFy3QSrlsta4jiawUUQDaeD7vPH668RjMR555BH8IKBcqehgFZ0PD0GbF2hETrda29nzqNXruPW6fn11IAHRqjFlkAx8H9/1eLjwsNCj9X0M01z2mgwCisUi5UqF4dFRhkdG3vdBEj7AgRJEsEx3dVGenSWRTOJIck4qmSSdTlMql7VmqyM9GjPpND3d3Vimyez0NL1Ng/sKUSKMnmsMQ5LJJP39/cxIndhypUKlVqOjUNCaiEo1yLZtYrGY6ClWq+Sk4HnLzyKFjMMwZHFhgTfffJPR9etZv349JZkNGoYhTqfJpBZfUH1NVQrWXpEqww0CHMehVq8vk5EQ5eF4PE5J9gwMqflak5T36KykCsymaeLLecm5+XnyhQKDw8Ns3rz5fdtbaKONVkjlcmK9F4tCc1ReX52dnWI0qlLBlWYMlXJZmAtks/T39XHu3LlV56LNyL4B6B6iYRh0dHWRSqWYnp7G832mZ2cpl8vk83kxHgJYsoyalPPKQRhSqVYFU32V0qgyaMAwePOtt1gqFoWRPVAslcTzKiEEyxL7gNyjlDmDTqoRAdQEPWpXjyTLSrvWMk0hrhIEQhdWsoC9iIiACpBJ6cXpui7zCws4jsPgunUMDQ+/r0QF1sIHOlCC2MRzvb1U5ueJJxK6rJjN5+nq6hK+ZzKgKc+4paUlcrkc09PT7Ni5c9XnNiL/aiKOPH11S8eR2ZkZHM9jenISOxYjXyiQyWSEmFMQCNeBIMD1PMoyO4yq6Stij2kY2u380Ouvk81m2b17N0vFog5a6UxGuKJHehG6VxqZUTJlCcmt1fCknY/6HIlEgngspss+ddfFcV3sUJi26s8uRdbj8Ti2ZQkPShnEi+Uy/QMDdPf2smHDhnaQbOMDiWQuhxmLEc7NEbNt6nKzz+VypNNpao5DRbYm1I9t2wRhyOzsrJitJHIyi0D/tzoJykQ7kUgwMDjI4sICS0tLFCVbP5VK0dHRIeYL5UNT6TTFUom6rEjFFfFGnvZCuScpbsO1a9e4eu0aDz30EIlEgpKU+rQsSyS68v6GFF/QjkDq9Itg0Xr1OnXPawh6tpTbi8VimIYhfi8V0qpNZu+WbYsTeDyuT9u1Wo3ZuTlisRijmzYxMDDA0NDQN+6P+S7jAx8oQSrudHdjJxLU5emxLD0sVckkn89TrVYpFos49TqZTIYbN29y48YN0dRPJsWJUNm9tMgYDfFiekElEgn6BwZESUWyRudmZ1laWsIyTWIySKZSKbxSSShQVCpkUykddNUJ0LIswjDk6JEjuI7DgUcfFXY38vOlIwPB6r1ZcsHrsk8QaAfzqOqOaRjEVYCUQs7K13JpcRHHdYnLsqutvPDkBaECue/7TM7MYIQh6zZsoL+/n5GRkTZxp40PNOLJJHZfH6FhMDczQ7VWw7JtEvE4mXSadCqF67riZFmtEpd+kWNjY2TSaZKpFKlkElsaLjSj4TaZ3BpBQKGjg7gsxyp/xur4uHYosuSpLZVM6hOubo9IFq7aO0zDYGF+nhMnTjC6bh093d04cmwrHo8vk/Mi78eSJ0vVH/VcF1dW5KJnVtu2ScoAqUrUykGoWqsR+L6oosn9TiXhhgzkBsIRZX5hgY6uLvoGBli3bp1OMj4o+FAESoVkNkvf6Cjj16/jOg4lwxA9AESwyWQyZDIZ0afzPG7dvs3ExASWtKJSWVsqmSQuqdorLKfkv6ZpagJNoVAgl82yVCxql4JirSZmm0yTDsnMLZVKePU6lQi7LSqvd/LkScYnJoScVqR8m0ql1lTQd2o1Ko7ToENpADHpbGJId5KaMn2W93Fl1miGwmIsGoz1CIthUK1UmJ6ZIZ/P0yMXepc0qG2jjQ86TNumc2AAPwxZmJmhVCph5HLEJZEnHo/T1dVFQfok9nR1cWtiglK5TM1xWJS9zaQk7cViMeGbG9k7oom3Km/G4nH6+vqoOQ5LCwvU6nUqtRq1apV0Ok0qnSYRj+sAVS6XyUopOHWtm6ZJpVLh1ddeI5vNsnnzZv27dDq9erXHMPB9X/hQOk6DnLlpmsSl8XyAMDlQc6MK1UqFMAhIp9NkslltX6YS9NAw8IOA+YUFatUqgyMj9PT2vq9HQNbChypQAiTTaQY3buTWtWtCHScIyOZyDRqIiUSCkZERbo+PMzkxweYtW/DqdfwgoFKpUKlUsKWVTSwWE/9Ks2blMK7q+6oka9k2nZ2d5KWWrCMzr7mZGaqVCtlMhkQigSNZY7rsIXHp4kUuX77Mjh076Ozs1O+zWZLOk3qVnu/jypOjJw1eVXZpyfeqXAGaYRgGdixG3XVJSJ/KbC7XUL5FznItLS3hOY4otfb1sX79+pazY2208UGGYRj0Dg2BZbEwNaXbM/EI69UyTQqFAjt37eL25CRLi4sMDQ2JNocku5TKZWzbxrZt7Q9ryWtSue0YoC2mQOhEJ/v6qNXrzM3OUqtWqVSrjI+Pk0qltE6q7/uU5F6iyDm+7/Pyyy9jmiZ79uzRyXkmnSbWNFvpycTYk5MCigEfbdmosTa3Xtdz5lEoe0PDNIlLclNcemCqXqwvCTulUol4PM66jRsZHBykv7//A1uB+tAFShALb3jDBsbHxqjLwKfKqmqhxmIxNqxfz81btyguLbFx40bRz5TkH8/zdF9CzUkaMlCqC0GxW03TXP6xbbq6uojFYszOzoqFKZvYhCG2vPAU1RpgYnKSG2NjbN68meHh4eVSq/SD8z1PU8tDWXZRZZNAMm1D0ILGvnyMgoFY4DH5vk3LIvB9FhYW8MOQDiVcLi/cmuOwuLiI5zgYts3g+vW68f5BXehttHE36OnrIwhDluTJMifnsXXp0jDIZrOsGx7m5q1b7Nm7F2VKrEYnVBmzCtqJx5JEPtu2NWnPQFyzpmFocfShoSFMy9I6y9VqlWqlIhJf0PPiqjJ0+swZAt/XJu6JZJJkIiEkJV0X3/d1gNTiJvJfgLrvi/cnFYncJlEEwzT1vmHbNqZpsrS0RBiGxGIxEolEgwhCsVgUc96+TyqXY9369QwPD3/gSq3N+FAGShDBsn9khOnbt6lKD0bFSlVEmK7ubgb6+7l08SKbNm/WfcogDHEdRxiqyoXvhyGB5+HIAGoYhlCVME2h2mAs679ato3nusSkar7v+7onWJeB05PllBAxCjIyNER3d7fokViWZpTBsnqPGjS2bFssbtsmJkvAqtyiJO30j2kua8hGvp8l6c0Xl6XdQF7sxVIJr1YD2XPYvmcPIyMjH8hySRtt3CsMw6BXjisUZbBMR05nqt+/YcMGbty8ydWrV9myZQu5XI5sNiuu8Xod13VxXVckrZI7EEr9ZAxDjH+o8qxMxJX4SeD7pNJpkvG47l8GrksQBMwtLBC3LGGVhyDj7dq1S7+G63ksLi4Cy2YLSthE7U22ZS3Ph0YZrZGArn6i+xtIR6FymSAIKBQKmvNQku4f6jV7BwbYtXu3ro590PGhDZQgavTdAwPMTk9Tl2QbbcQsM6L169fz+uuvc+XyZbZIwXHLMDCTSRIslxJ8WbLwVPD0fZAnT0+KDGhLnDDElfezbJsgCJianGRycpK5+XlKxaIQREgmRZ+ip4dUNkvNcYjLwWdA9ykty+LPP/tZjhw9yq5du/jH/+gfiQUsLzTX9/WJ1pIO7urx0ZlKBadeZ6lUwvU8kuk0c3Nz1BxnuZRsGPT397P3oYfamq1tfORgmiY9vb2EQEWyUzPpNAmpcEMYUujspL+vjwsXLzI6OkpCknliti2qRnIvUEz2KBFGtU/8IMALG1W6qpITEIYhRWB6eprJyUlmZma0zqwtxRDS6TQdnZ14ksCnGPlRt6A//+xnOXrsGDt27uR7/8E/0HuGaZqEMtnWQTGaTDePosj/v7i0pMXgPd9nYnJSiJHI+8diMbbt2sWmzZs/VNWnD3WghOUB27l4nJocDUnLJrlpGAwODDDQ38+p06fp6u6mU8ooRSWiLMPAisV0LR7EBeDIEksYBPzlF77AX33xi/yvP/Zj5PN56o5DBXHR/dIv/7J4TsPQzLBEMkkiHscCOgsFLMPA9zxqcrGl5elWMVAf3LuXz3/xi7z22mv8wL/8l1qjMQgCrCbxdY2IAEGIKI04jsP4xISQs5LWWqZpNthp7XjgAQaHh7/hf4s22vigwLIs+vv7WUwmWZyboyYrMCnZEknE42zZupXXXn2VYydO8Oijj2IrT8jIuIUlGawgEvcwFA49yorvL//yL/mrL36RH/u3/5ZCoaArQ269zm/8xm9o4QFT9TwTCbKWhQXELYtUPI4Jgunu+2JuMZkklUph2zZ79+7l81/4AgsLC/zAv/gXJCOlUtd18VcjCTbNa9Y9j8WFBaZnZ6lWKoKcWCzqk2osFqN/YICdu3cLJ5QPGT70gRJkGXZggIVkktLiIpViEbdeJymJLA/u28dLL77IsWPHeOLxxzVZRalhACv+tUyTVDwuZiLDEBPh75bNZunq6sL3fZaWljCAmZkZwaaV5JxkMsnExARzs7Ns2bKFLVu24EkVC1XC9YOAUqlECcAwGBkdZd3ICJVqldePHOGhBx/EsixcedptHkMOfR9PZrOe/HFliURlhIVCgZgsvabSaXr6+li/cePyvFYbbXyEYRgGHR0dJBIJZmdncUolSsWimEVOJOjv72f7jh2cOXOGa93drF+/Xvcc1eNh5Ty2KXt9rufpfSOTTmut01QqheM4LMzPU6/XSaVSdPf00NnZydVr11haWCCbzfLggw8Sj8fx5IiGfFEhMSfLvMPDw4yOjlKr1Xj9jTd4cO9eLW7geF4jgU9CVc9cuWf4UqWruLiIJ5XPEnLsLpVKkclmWb9xIz0fYjOEj0SgBJEhdnV1EY/HWYzHqZfLFEslQetOJtm/fz+HXn+d8+fPs3XbNsE2bdJObRYKNwwDU7LRtHqPvJ8phYN93+fbv+3bGBoZob+3l6tXrzI5NcW1a9d0v7Gvr49Suaxfx7YsrSaknts0Tfbu2cPVq1e5dPEiG0ZHNeM1SttW80sqeEdPwBWpNmIAA1KrMp5IkMpkGBgaoqM98tFGGyug3EDm5+eplEo4coYwmUyybds2ZmdnefvcObLZLJ1dXcJkQYkCyHJog1ScJO/YkqATZZqD1GOu1/mWb/kWhoaHGRkZoVwuc+zYMU6fPo0hNWg3bNiwrJwThlqlq1ar4bouge8Tt232PPAAV69e5fLly2xYv147Kam9BVgWRWiBer1ORe5PuWyW/v5+4WFp28IMYXh4dXnODwk+MoESRADLSXeMsmw+16XjSC6fZ+OGDVy9ckWbN6dVP1MiqmIBcoEHAZYKTDKbU7OU9XodwpBnn32WhcVF3n77bQAee+wxvvbSS+I5pGl0LpulXC6L4Od5ZLNZuru7BWnIdfE8j+3btnH2zBkuXbjAJz7xCXBdTGg5Y2nIfqW6GJWRdDqdprOzk7ScKe1vB8g22rgjbNump6eHaiYjBL3LZeqVCkGtxu7du3n1lVc4dfo0e/fsEQ48iUSDq0ezfV4YBMuzi0GA53lUymVcz6Neq+HW6xx8/HHi8ThXrlzh1s2bDA4MAMsyeZZtk7FtTKkDHQSBeJ/d3UJ7WrZatm/bxunTp7lw7hzf+q3fKkzZwxCifIYIlHWeqUhHiApaPB6np7cXy7bp6umhf2hodZuuDxk+UoFSIRaL0dHRQS6XEwGzWKRWKrFp0ybKlQpn336bpaUlBoeGyGQyetETKaWoXoPn+3iui2Wa5PJ5arWann1UAsunz55lenqawcFB9u/fT6lYFCdROQ8ZhiGWtLgql8t4rku5UqFWq5HOZLBls/2RRx7ht//zf2Zubo5SscimTZsaRAaa4cs5ykq1KgyWTZNCPk//4KBwP2gHyDbauGsog/d0Oo3jOKI1srSEW6mwZ+9e3nrrLUGc2b5dk220S0dEcCCQVSDX8zANg47OTqqVig46pmVhWhbz8/NcuXKFIAh4cN8+crkcpmniycCqoMziK5WKIBEuLelRkUQiwcNy31hYWGB+bo4tmzfruetWUCfacqUi5sF9n0QySXdvL/39/fQODn5kAqTCRzJQKliWRT6fJ5fLUZGB6WBnJyeOHGHs2jWqtRrrpEyb0jkElhe9XGjR8mg8FiMt1YAmxsc5f/Eitm1z8OBBhqQA8PzcnFDGiCx2VTrJZbPCwqZSIZBzSUrAvFAosHnTJi5fvsyJ48fZuGmTnsmKwvd97ZxSrdXwPI90NsuIFFlPNIkYtNFGG/eGRCLRII1Z6Okhk89z+NVXOX3mDJs3bxZ2VrYtVL5aMEDViVKJhCSTSWFBVS5z4fx5ZufmGB4eZt++fSSTSWamp5fl6GR1S1358Xgcy7apViq4rovjOLieR0LuG5s2buTylSu8eeIEW7Zs0a0jtYeFhgGS01CrVqnV69SqVUzTpG9ggI2bN9PT1/ehYrLeCz7SgVLBkFJ3mUwGursZWreOI2+8wYsvvMDCwgJDQ0P09vbi+772UzMltVqNZRjA4sICnudx/tw5xsbGqNfrDI2MsG3LFi35ZshyBkgfuAjUeEYiHseWi96RIgiVSgXbttm/fz9Xrlzh2LFjfPunP62fMwxDXe51HEd7xuUKBXoGBhgdHRWfr4022viGISbVu8jn6enrY93mzfzxH/0Rp86cob+nh6HhYTKglXrUDLQa5QJYXFwkmUwyOzvL1StXmJ6ZIZlIsG/fPtatW6dnmP3I+EfQ4jRomSbZbBbHdUXAlGpBGAb7H3qIa9evc/zECT79Hd+x/CBDWvDJ4Kp+DMuib2iI/qEhBgYGPvIWeh/tT78KTNPkwMGDbNi4kVdfeYXT586RHRtjZHBQlGKlyXEylcKp1SiVy0xOThICr7z6Kl3d3WzatInR0VFtIq2E1j3fF+XSMNSziwrqfuonlU5jx2LCPkwSg3bs2EGhUGBufp6xsTG6Oju1HY7neUIYwfcpdHWxYXCQfEcH+Xz+I1cqaaON+w3DMMjn8/zd7/keTp48yauvvsrt48fp6+mhu6dH2//lpFxkpVplbm6OMAx54atfJRGP09vby4EDB+jo6NDchLh04XCl/Z3rustmzyyzatU8pm1ZZDMZnHqduhxD2blrF1/68pdZWFzk6tWr9PT0CGEVmVAHQUDg+1ixGH1DQ/QODJDL5XS596OOdqBcA/39/Xzq059mcXGRw4cP8/aZM1QqFUzQg7u2VNWoVKtYlsX+/fvZtXOnlpNbWlzUqhkJqbQBLPcYmjRf1W1q8auMNQgC6vU6AwMDdHd1sVQscvLkSfY/9BC2bWPF42SyWTKZDPlCgXyhQDabbQfINtq4z1D7wL59+7h48SKHXnuNsxcvEsik2USc/kzDYGFxETsWY2RkhP379pHNZgExR6nUfVTi7LouhmlqrWhdNo28tk7KTVMrjbmuSywep7enh/mFBU6fOcODe/dixWLY8TjxdJpUKkU2m6Wjq0v3V9cyYviooR0o7wKFQoFPfOITfOITn8D3febm5picnKRcLguV/0SCP/7DP+T0mTPCQ65Y1FJRSq6qVq1iIi4AQAfMVgjlqdALAq3tqjQbATZu3coX/+qvOHbyJJ/6n/9nbaycyWS0JuNHvVTSRhvvNQzDYNu2bWzbto0wDKlWq0xPTzM1NSU8IlMp/t/PfIa3Tp5keHgY1/NYWlrSxgu+JPqpMTFAi5q3glICCiTZJ5T7hiIdbty8mUtf+QrHT57k277jOzBlXzQjDRuU0fxqptQfZbR303uEZVn09vbS29sLLLuA13yfM5cuke3uJpnNiqHdMCQwDGqSITc3N4dhmtQcR5ABEBfTwsJCg8t4GIZavNyybaxYDCseJ5dKkc3neeq55/jVX/91Lly6xK//xm98aPQU22jjwwrFmF0vCXXqhOgGAWcvXybf20uhUKBeq4lAJ8dHlIcuhiGMmKVdoIGQk4u2alR7x7Jt/WPHYsRNk2xHB088+yz/6bd+iwuXL/Orv/ZrdHd3v9dfywcG7UD5dUK5hwNMTk7S09MjskMliiwF0Rck0Sdm25TLZS6OjWEaBht37KB7aEg7lNBCmNiSIsaxWAzbtvnYxz6mBYiPHTvGxz/+8ff4W2ijjTbuBcrnEoRyV1dXFyMjI7ovqX7m5+e1XWAsnebc5cuYpsnmHTvo7O/Xe4ZqBSmCYdStRO0dfX19IikPQ06cONHeN+4B7UD5DYYaJWnuDargaVkW165d4+atWxiGgVOvMzwysjycDFqgeDW88sorhGFIPB7nwIED7+rnaaONNt59KL1UPYIm0dfXp9nxY2Nj3Lx9G8MwqDpOw76hfpSVYCu09413jnagvE9QARQEVVwtfrVw7wV//ud/DsDzzz8vGHRttNHGhxYqeFqW1bBv3CtRr71vvHO0eb8fQHzuc58D4G/+zb/5Hr+TNtpo44OC9r7xztEOlB8wnDhxgrGxMaC94Ntoo427Q3vf+PrQDpQfMKjyyf79+xkZGXmP300bbbTxQUB73/j60O5R3ge88sorXLp0Sf/3zMyM/v+XLl3id37ndxru//f+3t9b9bk++9nPAvDJT37yG/oe22ijjfcX2vvG+wftQHkf8Ju/+Zv87u/+bsvfvfrqq7z66qsNt6224G/cuMGJEyeAdvmkjTY+7GjvG+8ftAPlNwjPPfccgHYpfzegssJ169axf//+d+112mijjfuD9r7xwYARrmZK1sb7Dv/D//A/8KUvfYnv//7v51d+5Vfe67fTRhttfADQ3je+frTJPB8QLC0t8eKLLwLt8kkbbbRxd2jvG98YtAPlBwRf+MIXcF2XfD6vyzVttNFGG2uhvW98Y9DuUX5A8MILL1AoFPjkJz95z0o+bbTRxkcT7X3jG4N2j7KNNtpoo4021kC79NpGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtZAO1C20UYbbbTRxhpoB8o22mijjTbaWAPtQNlGG2200UYba6AdKNtoo4022mhjDbQDZRtttNFGG22sgXagbKONNtpoo4010A6UbbTRRhtttLEG2oGyjTbaaKONNtbA/x/fTuhHhZNRoAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGFCAYAAAB9krNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZAd55reB/5yO3n2U3sVCjsIECAJEAT39fLebrc6bEVri9FmyS3LlhwOT2g04XbIEf5jNKMIOSbU0aHocDvC6nGrQ4qYsdyyeqRuS2P17eUuvFwAEgQJEDtQAKpQ+3bW3DPnj+/7svKcOlUAeQkS5D0PgwGg6pw8mXm+/N7teZ9XS5IkYYABBhhggAEG6Av96z6BnyXcvXuXX/mVX+HEiROUSiVGRkZ46aWX+NVf/VU6nc6u7/0bf+NvoGkaf/7P//mv6GwHGGCAxwGDfeMxQDLAl4K///f/fgIkMzMzfX//e7/3e0m1Wk2Avv8/+eSTyY0bN3Y8/r/6V/8qAZJSqZQ4jvOIrmKAAQb4KjHYN74ZGESUXwE+/vhj/vJf/ss0Gg3K5TL/8B/+Q959913+6I/+iL/9t/82ANevX+dP/+k/TbPZ7HuMX/zFX8S2bdrtNn/0R3/0VZ7+AAMM8DVgsG88PhgYyq8Af/fv/l0cx8E0Tf7gD/6A/+6/++947bXX+Lmf+zl+8zd/k3/0j/4RIBb9r/3ar/U9RqlU4ud//ucB+L3f+72v7NwHGGCArweDfePxwcBQPmKcPXuWH//4xwD85//5f85rr7227TW/8iu/wlNPPQXAr//6rxMEQd9j/Zk/82cA+P3f/32SAQdrgAG+tRjsG48XBobyEeNf/+t/nf79b/7Nv9n3Nbqu88u//MsAbG5u8id/8id9X/dLv/RLaJrGwsIC586d+9LPdYABBng8MNg3Hi8MDOUjxjvvvAOIFMgLL7yw4+vefvvt9O8/+clP+r5menqal156CRikUQYY4NuMwb7xeGFgKB8xrly5AsDRo0cxTXPH1504cWLbe/pBpVEGC36AAb69GOwbjxcGhvIRwnVdVldXAdi3b9+urx0eHqZUKgEwOzu74+v+7J/9swBcvHiRmZmZL+lMBxhggMcFg33j8cPAUD5CZCnb5XL5ga9XC77Vau34mpMnT3LkyBFg4B0OMMC3EYN94/HDwFA+Qrium/49l8s98PW2bQPgOM6urxukUQYY4NuLwb7x+GFgKB8h8vl8+nff9x/4es/zACgUCru+TqVRfvSjH7G5ufnFT3CAAQZ47DDYNx4/DAzlI0SlUkn/vltaRKHdbgMPTre88soraJpGGIZ8+OGHP91JDjDAAI8VBvvG44eBoXyEyOfzjI6OAjA3N7frazc2NtIFv3///l1f+84775AkCblcjldeeeXLOdkBBhjgscBg33j8MDCUjxhPP/00ADdv3iQMwx1fd/Xq1fTvSm1jJ/ybf/NvAPje977X5X0OMMAA3w4M9o3HCwND+Yjx5ptvAiI98tFHH+34uh/+8Ifp3994441dj/n7v//7wFZxfoABBvh2YbBvPF4YGMpHjD/35/5c+vff/u3f7vuaOI755//8nwMwNDTE9773vR2P9/HHH3Pv3j1gsOAHGODbisG+8XhhYCgfMV5++WXeeustAH7rt36L9957b9trfu3Xfo0rV65gGAZ/9+/+3V2VOFT65MyZMw9sRh5ggAG+mfg8+waISSOapu14vMG+8dNh5x15gC8Nv/7rv84bb7yB4zj8qT/1p/hv/97f4zvf+Q6O4/A7v/M7/NPf/m2KxSKnTp3ir/zlv8zS4iITk5Po+nY/RvVAKar3AAMM8O1Ev33j7e98h47r8i9/53f4rX/6T9E0jeeff56//Jf+Egvz89SGhqhWq9uONdg3fjoMDOUXQJIkBEFAGIbp/0kcMzo6ytLCAnocE0cRcRgSRxEFXefXf/VX+Ye/+qt0Oh3+h9/4DX7jf/wfUw9w3759HDt6lP/yb/0tFmdnWZydZebGDaqVCoZpYlkWZi7H/fv3uXjxIpqmcfToUW7fvs3o6CjVanVXb3KAAQZ4PBBFUdfeATA6OsrK0hKG/H0cBCRxTNE0+fVf+zX+4f/z/0nHcfgffuM3+B9+4zfQNA1N05iamuLYE0/wd/6r/4qluTmWNA0NqNVq5OSeYVkWyysrfPbZZ+i6zqFDh7h06RKjo6OMjIykYgUD7A4tGQwoe2gkSUK73abZbNJqNHBdl8Dz8D2Py1eucP3GDb739tsUCgWSKAJdx7IscqaJYRgsLS3xb/7tv+XD8+dZXVvDNE2mp6Z48403eOv11ymVSuQsi1a7DZpGqVBgaWWFxfl5Wq0WH124wA/eeYdKucx/9tf/OnGSEAG6YTA+McGbb73FiRMnBkZzgAEeMwRBQLPZpFGv43Y6eJ5H4HlcvHSJa9ev872336ZYKBDHMUmSYBgGuVwO0zRZXVnh3/zbf8u5jz7q2jfeeO01vvPmm+RyOUqlEq7nEYYhOcsijiLm7t9nbW2N98+d4wc//rHYN/6T/4QkSUjk3pEvFjl+4gTf+c53qNVqX/dtemwxMJQPgSAIWF1eZn11lXa7je+6aJqGYRgYhoGuaei6ThRFJElCHMdEUQSImXFoGpZpUsjnyeVyqUeIpuF7Ho1mEzSNoVoNDZidm2Pu/n0hjBzHjI6NUa3V+J9+67eYuXOHn/vOd/g//YW/gOf7uJ6H67psrK9TbzQolkqcevZZTp85Q61Ww7KsgeEcYICvAUmS0Gq1WF5aorGxges4REGAYZrouo6h62l5JYoiEiCOIqI4FnuErmMgJOoK+bzgLqhnWdOo1+sEQYBtWZRKJRzX5dbMDIsLC7RaLWzbZnJqit/87d8W+8Z3v8tf+Yt/kTAM033DabdZXlkhCEP2HTjACy++yMFDhygWixiG8bXdu8cNg9RrHyRJgud5OI5DfWOD1aUlPNclSRJ0w6BYKJC3bTTANE1M00Q3TUxdTyeIq/SsFwRCu1HT8HyfMIooF4vpom+32xiGgZ3P47suH3/8MYvLy1i5HHunpzlw8CA5y6LjOFy5epUwDHn+zBlKpRJ2oUBFPliTExM0Gg0WFhc5+957fHbxIqefe46RsbG0blGtVgeLf4ABHiHCMMTzPNqtFhurq6ytrhJHEchG/3K1imma3XuHrmOaJnGSQJIQxTG+dIKDKCIGWq5LIZejUCyiaxphFBHLyLNcLnNvdpaLn36KGwQMDw/zzMmTTIyN0XFdrt+4QRiGvPTCC5SKReIkoVgoEEmHfmp6mtXlZRYWFvi93/1dDj/xBEeOHmV4eJhKtUqtVqNYLH7dt/ZrxcBQZqCMY6vRwGm3qW9ssFGvE4YhWpJQKBTQAcd1cRyHOIpINI0Y0GQ6A03D0PU0irPkw6Ah6w9xzGazSd62yedy+L5PGMcs3L7NtevXsW2bp595hnw+j6br5CwLgI/On6fZbGLncrzx6qvkcjnhgcpUja5pRJOTHD50iOXlZT759FM++vBDnjx2jFK5TKFcplKtMjw8zOjoaJee5AADDPDFEccxjuPQbrfpNJu0m0021tZodTokSYJpmhRsmzAMRfYoSYiBWO4ZGhCDyEzJbJOu61imiW4YaYTpeB6e71MqFgmiiCSO8XyfH/34x6yurTE1Pc3U5CS6YZCXYuofnT9Pu93GzuV49eWXUwc/gTTrBbB3aoonn3ySK1eucPvWLdxOh73795PP5ymVy9SGhxkZGaFWq/1MOts/84YyiiI6nQ6dTofNjQ3q6+u0m00R/QUBhmFgGgalcjldILqmEScJsUybJHEMbC184phEGkrf93Fdl0TT0kJ+LB8ekoRms8n9+/dxOh3279/PwYMHMXSdjuuSM03ytk3Osjj30UdEUcQbr71GsVSCTMY8jmOiOMY0DCzbplIuMzk+zjvvvMP1a9c49eyzdBoN2vU69fV1lhYXqdZqjI2NMTQ09NXe8AEG+JbA87yUs1BfW6PRaOA6jhApl9mnvG1TtG00XScBYRTjGD1JSADknpEgslDq32EcEwUBMcKoKQKQStl6QcDa6iqLCwvY+TwnT51iZGiIIAyJ4picZVEpl9N947VXXqFaKol9Se4dlmEQhCFomjDmhQJvvP46V69e5eKlS2jA4SNHWF9eplGvs7a6SrlSoVarMTEx8VCTTb4t+JmtUUZRRKPRYHFxkfr6Os1GgziKsHM5cqZJEIZogJ3PUymXRWRoGBgyOtQMA0MaSg1hJP0gEN5ikhBFEaFMvfquK/70PMIkIfB92p0Oi8vLbDab5EyTgwcOMDoyQqVQwLJtOo5DFEUUCwWxIOXXpGsammGgIeqf6sFRHmm2Hul5Hu+99x6tVouf//mfhySh0WrRcV3y+TzloSGGhoaYmpqiWCwOapkDDPAQUIOVV1dXqa+t4TgOpq6Tl/yDIAiwLItioUBJ1voMuX8gs02GLNMkSUIgWfNJHBMDYRAQRhGe6+LKfSMIAuIooiM5DbP37xMlCaNDQ+zfu1ekR2WWqNXpoGsa1R6ZOkPXQddTToX6XznZKZKEufv3OXfuHIcPH+bUyZM0222aUqC9UC5TkcZydHR0177vbwt+5gxlFEVsbGywsLDAxsYGvuNggjCQuRyFQoE4itB0HduyqFar6NIwpceIY2IZRSoEQYAfBKmBVGnY7O2NkwSn3abjedy7e5eNzU2SJGF8YoJSuUxOEm8Ktp0arUKhQCGfT6PV1POErqgykcbZMAwsy0ofzDAM+cM//EPK5TJvvvkmuq4ThiH1RoNmu02lVqMqDebw8PDPfC1igAF2guu6LC0tsby8LBxrz8O2LGzbJm/bWJZFEIZYlkW5VKKQz4Ns2QDxjIaZdKf6met5RGFIGEWizIOIIjW5f2iahu/7dByHzXqd27dvE0ryz9TkJGWZ7bJME1umeE3TZKhaBU0TqVt5TCTZMOsUx0lCEseYlpWWigzD4Nbt23zy8ce88tpr7J2eJkkSHNelXq8TJglDo6NUKhXGxsaoytrrtxXf3ivrQZIkrK+vMzs7S71ehyhCjyKGi0WGajUKxSJ528YPAlrtNnEcpwuwF1EUCYOYWdxRzwOQstZk1BknCb7vk7Ntbt+5Q6vR4Mjhw8zcucP+6WlMmQYxTVMsSN/H8300XadWq1EuFgUzLo5FWiaOCeV5xKpvUxrL7LkYpsmpZ5/lgw8+4Nq1azx5/Di6rjM8NESlUmFdkpVcx8FxHGq1GsPDw9/qRT/AAJ8HQRAwNzfHkiT1EYbYhsHQ+DjlcplioYBhGDSaTSzprBby+W0ZGsUpUPuGihLjOE6dasWINzJ7hx8EGJpGHEXcu3OHcqHAkaNH+eTTT5kaH08dedM0iaQxM0yTUrHI2MiIyDhJ5z6M4zSCDdW+IXkOge8TyPmXmqYxOTHB+MQEH507x8gv/AJ2Pk/etrHHx2m32zRWV/FkqrndbjM8PEypVPpWZqZ+JnbDRqPB7du3hYEMQyxNo1goCFZXqYQm0yFRFNGRU8KLhQKWJNLAVp1AeXZd0RxAkmBaVuqVGbqOIY1fp91O0yyfXbpEp9PhxZdewtB1Zu/cYWRoCMM0hfGV0azebEIc40kvdt2yGKrVKJdK2JYlUjU91+kGAYGsrfqyaTkKQ8qlEgcPHuSzK1col8uMj41h5nIYhsHY6Cjtdpv62hr1jQ1Gx8YIgoBKpUK5XP5WLvoBBngYxHHM3Nwcc3NzhL4PUUTeMKiOjjJSq2GpVi+gLUslSZJQzhgL9dz7vk/HdQmDoOszojgWPAjTxJL/G8pZdhxcz0PXdVY2Nrh69Spjo6M8/dRTtB0HHahVq+Tz+fSzozgm9H0CSRxqt9uUy2WGajXsXA4zSbBtuzvTFcd4nocfhmktVLH2nzx+nA/OnuW9Dz7gpZdeIm/bGKZJuVwmZ9s0Gw0W79+nvr6Ov28fVcmS/bbVL7/VhlIt9Dt37pAEAQZQLZcZHx3FzufR5WJWi9p1XRK5cNW08DCKRHOwSqdCmsbIScOo+imzqRKSBKfTwfE8kTrxPD7++GPiKOLtt99GNwzqcsq4ZVmUymVarVZaNxjau5f19XVc+f4ojllZW2N9Y4Mh2eqh9aR2DU3DyOVAMmKjOCaUxvOJY8dYW1/nytWrFF54Ac11ycm0UaVSwcrl2NzYYHF+ns31dfYdOIA/MsLw8HBfKb0BBvg2w3Ecrly5QqvRIAlD8qbJ8NgYw7I3WUE52K5sHyuXSuiy/hgEAZ7nbaVbZbnGkOnNnGmKrJPKWslyTSida8V2nZ+f59q1axw+eJCTJ0/ScRw010XXNIrFInYuh+O6AJRsm2KhQKPRIJSRYqfTodVsUlTZs0JBpFshLRGpVhXyeXHuUUTo+5imydMnTnDh00+5f/8+Y+Pjop1NlqqGh4exWi1a7TY3r1xhbGKCiT17GB0d/VaVcb61htJ1Xa5fv87G2hp6FFEpFpnes4d8Pi9y9NAVLanFHicJxXwe13XxfL+rFqlpGrlcjkqplBblYatFAwShJgxD2p2OeEAk5fvTTz5B1zS++/M/T75QoL65KVIxcsGapkmlUqHVahFKJq6Vy2HlclTlz5utFlEcs1avs16vC09R1gbUNSmzqQGmrmPK+kkZePbkSd597z0a9TrVWg1PpncNw8C2bWq1Gs12m8D3uX3zJhMTEwS+z9j4+CAVO8DPDBYXF7l58yaR52ECE+PjjI2PoylHuSfL4rpuynLVdJ1Wu03QEzlahkGuWESTAiVASvxDOteJpqWtZwCGYbC6usr1a9c4cfw4zzzzTPo70zRJ5DNfKBbRdJ22VPxB/ixv2+i6TqPZFNGp6zLf6ZDL56lWKlTKZTTYNu9S0zRy0pAnQKVS4f7cHPfu3WN8fDzNvHWks52XHArX91ldWcHpdHAdh8mpKSqVyrciK/Wt3P1WVla4fesWXruNBUxMTDAxPo4m2zr0ni8uSRI6rpuScXq/2JxlkbNtLNPsSqlEGQOpaRoJwhN1HEcYSMmEe++DD/B9n+9+73sUCoW0RUSlbVR6Rtd1EVk2m+liLBYKoGnUajUq1aqoDTSbBGFIq9lks16nXCpRkWQgMg9hFhqwd3qa4aEh5u/fZ9++fSLdIq+50+kI4oGmoRsGepKwurqats4cOHhwYCwH+FbD933u3r3L4sIC+D4l2+bAvn0U8nnRL91nb4jjmLas0ymHVUHXdXK5HLZtp/VGEJke5SQDoGmiRNPppEbLtm0ajQafXrjA4SNHeObpp0kQRk0JDaSOtkqnAp1OB9/zQH52wbYZt21836fRagkHPghYXllhfXOTWqVCSTLe03YVSAlIKqB46umneeeddwh8n1qthuv7RFGE7/v4vp866fl8Hs91mbtzh3azyYFDhxgZHX0E39ZXi2/Vzuf7PrOzs6ytrOC3WhRyOfbv3UulXE6NUS9TFE3D9TzW1tcJg0D0KCKEAqxcjpxl9U89SqOimKiRjCIjGUXauRyFfJ4Pzp6lWa/z9ttvUy6XxWKXqRijz3ENXadcLtNstdJG5kq5nHqi5XKZcqlEx3GoNxo4nQ6NRoN6o8Hw0BA16cGpxd616DWNE8ePc/bsWdqtFkPDw0IFRDYyR1GEoev4UUQoe7Fcx2Huzh067TbHn3qqK+00wADfFqyvrzM3N0dzfV2Q/GTbBbouxEQyTNGU0R7HbGxu0my10DVNiITIZ1/ptJLpWwTxPOqSXKNJ4QHXdXGko6rrOsVSiXarxbmzZ9kzPc1zp0+n7Nloh70jSRLytk0syYWdTgfLNCnL/SyXyzE2MsJQrSY0ZxsNPN9nYXmZvG0zNjycGlt1nrC1d0xOTDA0PMyNGzd48803yefzQgpPGsokSTB0HcdxsGSNtb6xwdV2myeOHWNyz55H8r19VfjWFJ983+fWrVtsrqwQtNsM12ocOniQSqWyJSuXfYPsd6rX62xsbKStFVXZUFuuVMjlctuMpDKMQErY8X2fRqORRqPlcplSsciFTz5hcXGRV199laHhYfGxSUIkvcZeRq06tmEYlEslDFWvkOkWDdkrqesUi0UmxscZGR3Flue5trnJ/cVFOo4jNGelcxArJRBg7969lMplrl+/DkmCoWkU8nlR95RRaS6XE4u+08GT0e/6ygoXPvyQjuylGmCAbwuWlpaYvXuX9vo6lqYxNTnJ3ulpQfKTe0cqJoIQGOl0OmxsbtJoNkmShGKxSKlcZmhoiEKhsJV96SX9IZ5j1UfZkmlRpQddrVbxPY93f/ITasPDvPTSS0KsQDLaVRTau3coI65qlmganXY7jVCVtrRhGKlgQKVSwdJ1wepdXGRlfT0lBaX/s+UYnHjySVZXVtjY2ABE+rcs656lYhFLCix4vi8yVWFIGARcvXyZmRs3HsE399XhW2EoXdfl5vXreK0WoecxOT7O+NgYxWKxi+ySSBq2HwRsbm7SkDU/PwjIWRZjY2Pk83khQQfbU7SQenbqNyrVqmkaOdl3mbMsLl+5wp07d3jxhReYnJoS75cLL40oe1KZKhULYhGWSiU06KpbxEmSeo1JIjQbJycnGapWyRkGYRCwsLTE6toaYbbXU0XTmsbhw4eZm5tLqeAKlmVRkbWLUrEomLhhiOM4aWroyqVLKQlpgAG+6VhaWmJxfp6w06Fg20xOTIiWCqmcBSJViszSdDodNtXkoCBA03XKxSKjo6OiD5rtNcwEUqUu9ZsoimhlCDulYpFyuUzg+7zzzjvYts3rr73WVe5QRs+UxMGuz8gY8lKphGkYQiNWtroliP1PtY8ZhsHw0BB79uyhYNtYuk6r1eL+wgLtTqf7uPLPqT17sPN57ty5k14XiH0yb9vUqlWKxaLQkY0iIbnneSRxzP25OW5JrepvIr7xhtJ1XW7fvEnkOBCGKaO1pIxkkohFKoWE6/W6IMVEkdBTzOUoFYuiRyifR+vzGWqhZw1kgliEKtorFApUq1Us02R+fp6rV65w8uRJ9h840HUs1c8E/VOvsCUokMvlsPN5iCJanQ4dpS8r66zqYdFlr+X01BSlUgnLMGg7Dvfv3xfakj3Yt28fSZIwv7DQRUSSH54azOHh4bQHy/d9Op0OzVaLuzdvsryw8LBf0QADPJZYWFhgeX6exPMo2Dajw8OUZFtYIp8LZeA6jsPG5iYdzxM1QtMkZ9uUi0UK0qHdae8AkUlSv1ear6Hcg2rVKoVCAU3TeP/sWeIk4fU33tjWYrGTgw1sTSRC7AcFuZeFYcimnDLSRWKUr7Usi8nJSWHoZcp0eXWVxeVl/B5HWtd19u7dy/35ebEP9ewduuwWGB4aolwuA6IHtN3p0O50WF1d5dbVq6nT/03CN9pQpkay08HQdYZqNSzTpChrBUqDNYoikZeXJBgQhq1WrQrvTIqP9yP5ZBe6QpwIjVbP90nimFKxmFKhO+025z/6iP0HDnD8ySfTVhFVeFeKGul4HeXtZdIdkRQUUD1WyrvtdDrCu1XnJI+jFqthmoyPjTE+MYEta6trm5vMLy7iZzy5QqHA6OgoC/Pz6XUqA64Mpyaj1dGRkZTVFsUx7Xab9Xqdxfv3WZid/ZK+yQEG+GqxsLDA6uIise9TKZeplMugaeTlTEgATdfxfV9wAWQ5w5TlmWq1Cohyht2nZzCbZs3uKn4QpEbS0HWq5XIaNV65fJn1tTVeffVVSqVSegyVbg3DUDDkDUM8p/JZjfvsG3Eck5dDmRWjn8w56T2tZaVSiT179lCT6Vjf85hfWmKjXu+6rr179+L7fqoq1rt3aJKUODI0REVdmywhra2v02w2mbl2Dafd/iJf29eGb6yhdF2XWzduEDqOGGQ6OSkiNE3Dtm0x0UPXcYJAFK6DQMjDSY9HqWkEvk8C20gq/dKsIAxbo9kU9O8koVwup1PC4zjmg7NnsXI5zpw50zU7TpNRYBiGQpxA1hiUQc8ayq5+TITerCqQtzudrlqrmjSQRSGfZ2pykqFKBUvK2C0sLAhmq8SePXtYXl5OVUHS65YLP5IPYiGfp5jPUymVyMkH2nUcGs0miwsLrCwtfcFvcIABvh7Mz8+zIo3k2NBQSngp2HaaYo2BZrMpSHWJGGJQrVSoydJKKCM0XfYgZpFo/WJLcD2PZrNJjGDSVyoVdLkPrKyscPXaNZ555hlGR0aAbuYpSCKPZLwC24TUFYNe0zRBQpJcBk3TcCWrn8wx1X6poOs6w8PDTE5NifmXmsZmo8Hi8nJaxhkdHcW2LBYXF0Vgkd07MkZa0zQqUrUoLyU5kySh0WjQbLWYuXlzW+nnccY30lDGcczM7dtErkvOMNg3PZ16XcqDiaXoeTuz0NVcNU0ukCiKUjmnXhUe2J5KCcNQNPJK9ZyqJPwoXLl8mfWNDV5++eX+hhcxmBW2F+P7IVuHUNJQkZpv2ee1WQOq6zq1oSH2TE5iSwWRpdVV1jY2iOOY6T17COOYtdXV1BlQkw3Sc5beqi1H8+QsCzuXS4kFrVaLu7dv05DF/QEGeNyxvr7OyuIiie8zNjrK8MjIVu3PsoQaludR39xMnetiocDQ0BCWJMkoIiAIBztbjoHuNKtCW47hAsjncpTL5dTB9T2Ps2fPMj4xwZPHjnW9L5tlSnu1dxEASdOv8k9TTiDSNG1bRirVoe2JLu1cTvAehoawNI0rq1f55d//z3jud1/hL/7gP2ZiapKFhYVt788eO84oDpmmiWVZWJZFJO/vxsYGt69f36aZ/bjiG2ko52ZniTodTE1j7/Q0hoyaQKQlXMehXq/jy4VeKhSoVSpiSGqGMKMWu2lZW2r+bE+XAKkklFLar1WrXbWC5eVl4RE+/TQj0iPMQi1EtZh2M5Rq8aV0dET+X/U7OY7TtyjemzoGWYOYmKBSKmHpOs1mk6WVFYqlEuVikXlVa5SGtp9CvilltdB1oiRJp60r1Y8rn33G5oDgM8BjDtd1uT87ixZFjNRqDNdqInuihEF0naZUmUmd60z9MLsv+EEgMlHSUd5tskSr3cbNcBkUSU+8MeHDDz8kiWNeevFF4cRnIfeBLFP+QQ38XQTGJCFfKPTNSKnj9EvFAhRKBf6k8UP+t1v/kiJ5jnGU+Y1FfsS7NBqNNEOVFXHvhUr/kiTkpLFUakbLy8vcuHz5G2Esv3GGcn1tjdb6OnEcMyHllJIkAV0nThJa7TatTqdroeczKv5ZQ6mK45ZUoECyXXsRhqFImSQJOdOkmvEGQXiE586dY2JiguNPPrnt/dl0quqD0h8QUXYRh+RCytk2Oam2oR7mfu/rha7rjI6OMjIygmmaBL7P/OIiIyMjrK+vp69Txf7ecV0gGqA1TUtT1aViMZ2O4Hken33yCetra7te0wADfF2I45jZu3cxgoC8ZTGs2rXkfuAHARs9UWStUtmaQYuM5FRpQpJZrIyz3O/Zy6rllMvlVBpTGaWbN2+ysLjIiy++2HeYeupgy33DfIh9Q5ejtNT7NU0TxlnXd8xIKUchPa/Nm/xffvR/5X+59S+4xz00PWHMHGY/+wn8gETTWJPPuyrXpEShzL6kppqgaXi+T86yKJfLmHLfXlpa4tL58489G/YbJTjgui6r9+8ThSFD1SoFyWxVKclmq5UOIC1KFisZr0lB0/VUMDxJktRoaX0MTxhFaZ3CMk3KWUkmWR/48MMPieOYF55/Ps3Rq9E1ahGBiErTVpJcLvXuOo4jUrXqXOWfvhRhj+KYvJwkks/nUwZbp9MR9ZU4BmW4tS21n16Uy2Usy2JtfT31iOuNRnp+2feoqFbVGywZjaNpqbCzlcuJOrDjEIUhFy9c4KmTJ5mYnPz8X+4AAzxCLM3PE0sHemJiInV0NU0Tqly+T6lYFEzWUimt33XtG4i9I5SGT8/IWPYzkh0pGwfi2cuWaRJgc3OTTy9d4ujRo4xPTAjVnQxBR+0hIEiCvtSbTpJE9ErTs3dknn3X94mlTjXyvPOFAk67nYoC9GPPRknI/+fqv+B/vfE7RIkkQxJzn3lGtGEmrGGO5Y+Ss0zW1tbYt3+/6B/vuUcxpAbTzuVodTopkVJxRZSE5ka9zoWPPuLZM2ceWzH1b4yhDMOQxZkZYt/HtixGhobSzdz1vLTJPoGUzbpTrVF5PmEUESMiyn4LPYpjmpl0a6FYFENVpTGMwpC5+/eZX1jg2dOncTwPRy5Mhazx8aWqvyFZZUqOypcKF70PpR+GYnpAEHS1kigtWAAvCMRAaV0X0nNyPI8mI+ze67Jtm6nJSdbW16lUq0QgRn3t27et9tHLqlXebBCG6QZhmiZFuej9IOCzixdJkiTtHR1ggK8b9fV1Wqur+LJ9TK3jOI5Fq5jcwHO2Ta1S6etcK+gZNv1O+wZ09z4XCgV0yaCN5Eg+Pwg4e+4cxUKBvXv3splhl6pUppKUA3A8jziKMC0LTQ46SBIx9NnrIcUkQJARY8/qznquKxx2z0unnOiGganrzDTv8I8v/Do3G7fQ+lzZOhu4uIwVRojKMUurqzSbTSGz2YNs7dJUPamS9a8B6DqFQkEIm7guzXqdT86f5/Tzzz+WxvIbYSjjOGb1/n181yUCJkdH0yiw3engui6WZWGGYdo/lJVu64coDEU6RdO29TNGsm9ws14XRgHBJG02GpA5tuf7XLt6ldHxcUZGRlK9Vl0JFvSwylJyTC5HsVjcOnYuRzGf3/ZwaJpGIB9GZbASybSzTBMvDGm1WqIdJnsNSSJGdalp6rKoruobuq4zPjaGrut8dukS6xsb5AsFxkdH+xrLlCik0te6LgbUynMzTTM9P9/z+OzTT9MG5QEG+DrhOw7r8/MEUUSpUBAi3QhSXb3ZJJZEPlvNf9zFSCqoQcjblLUQ+0qr3RalkTDEkjW6bO9gAszeu0d9c5MXXngh/UxdMdgzaVDlkHquSyIl6QxdT41jPpdLU7apU56IySWJHHigS6c5iWNM28aXijntdptcLkcYB/z7e9/nD+5+n5iYMW0UP/GJiYmICAgQIQV0cBgeG8bvCLnQlbU1xkZGKPVMCknvn66TKI3cjJOhyfPM2TZIsYOGjCyfe+GFx85YPvaGMo5j/EaD1sYGfhQxPjwsmvCBZquVNsUWSyUM08T3fVzP2/bFZZEgc/66Tk7TUsMYhSGBHKqqBIoNw+gaF6MiNsM0uXXrFmEU8fxzz6Ws1H6KGQqqzlAqFrFtO1XysJSwQA8syyKQTcnVSqXrmFEcU280hDqIrAPEUSRSv0mCphqCEZGsMnJqJJghp5UUCwVcx8HzfZZXV5mQBnT7TRPeoGKx+b7fXZ+RHqIaSnv54kWAgbEc4GtDHARsLCzg+T66pjE+Po6GyIg0pfScYRiMjozQaDbTGa67sUqVMLmm6+jSWQ3lDMdIpjodme2xbTtt4tc0DdMw0A0DPwy5desWBw4e5MCBA/33DUj1ZaMoIic5Aip6y0lWvZUxlFlESYIvBQAUoSZJhJRlMZ8XqkBhyLwzz29d/m0WWgvo6GhoGBgUtAJREqeRZUJMQEBASF63GZ4Y4s7MDHEUsSo5IxUpMpCFliRC+cw005Y6pQwkT4qcVCFrNpu0Gg0ufPQRZ1588bHSlX78DaXjsLm2RiQL55VqVaRMZNMuICZn5HJCiUIaStu2+xa+1UJvdjq0Wi0MXU8beVVtUQ1aztt2Kkmny/SmwubmJndmZnj6mWeoZIzYrtcivamHne+YEnp66o3qoavIGZZRHGPLQcxA6j1GGckqVd+IowiPLQNerlRwPU/Q4n2fpZUVkZ7qqV90HAfimLycV7dtNA+iL6tULKYjxq599hmFfJ6aJE4MMMBXhTiK8Or19PkYHxnBNAw816Up2zRUb2SciKHrURjS6nSo9tnwYSvT1Gy1COTUHV3TiIEkikSpRPZ1F/J5ypVKqgedNYSXP/wQXdc5/eyzO+8FmWjyYZjyvejHU9A0DQMxlD4MQ95b+5j/+fI/ZZPN9DU6OiYmBgaGZqAlOhYWGjpmbKInBom7pQ7kOg6lUom1jQ2SJOly6EEOhXZdNF2nVCiAzEb1XoslA5JOp0Oz0eCzTz/l9PPPP5Dh+1XhsTaUkecROA6tZpMwjpkcGyOKIhoyZaJJZQvLsgQjNZcjJ0fKtNttMdwYYRz9ICCQY6XiJMFpt4mCAFMSfiwZKbmOQ7FYTKO4nRbnhQsXKJfLHD169KGuRRkp+JwLfpeFogTMXc/Dcd20cVrXNJCRI9IrU/WMIOP9hlEkFvn6OqVikY2NjXSSyJ6JiVRIIZCkIoBqqURLTknp8gzV+crpBx1ZvL908SJnXnzxWzXEdYDHG0mSELbbwkhGEaZhUK5UaHc6aQrUlr2MqmG/Uiqx2WgQ+D6edLSB1Mn0goDI9wnjWKQ1FUPcMFIhjrjVSgVI1LPYi9XVVe7evctzzz23e3oxwx7daWLIbkhLJn1IfQCFQp5/eeN/w8AgRw4f8XzHxOnf1YGCKMBMLCxMTCzyVh7btNFlW56m6wSuy+LKCn4QMDo8nH52u9MhkURIy7JwXFc42aptRH2MrosB9sUi7XabtdVVbl6/zlGlbvY147E1lHEUEcoRUpHswcnbNvV6PZ3HVi2XMWRqA0lcKcnaXxAErK2vY0kVjbRHUt50wzDIFwrUarU0NeHIwc2mYVCRRrLfQpu5c4e19XXefOON3dM0mfcqYeJ+Sjo7oWuszw5Q7LEgCFJx995zULVRNR9PPaBJkrBeqeB7HpZtUxsaoiEFn+/MzjI+OoplmvhBgK7r2LYtasGGIeogfTxDdY2lQoFWp4MjhdRPPWhjGGCALwmR4xD5Pk0pWTk+Okqn08GRDNRCPi8k4mTUpur4hUIBp9Oh3mySk6+NpOQkkJYvcrkcpmUxPDSUMujrzaYwmrL9Ics1UEiShAsff8zoyAgHDx7c8fyz/dzw+TNR6lzpcw4KumEQ6AFoGuWkzAYbbAl2QkKS7lm6phMkASEB4DA+PI6FmY7aqsq6b8dxWFlbo91uMzI8nJIVdV2nWCik90RNKMkawJQwaFmpoz139y6FUom9e/d+7cbyseyjjOOYqNUikeovYRRRrVTESBtI+yNV+J9NMyg1/mazSb1ep765KQauytaKSrnMyNAQ+XxeqEXIYwRBgCNTrsViEVMOaVZjrdTC83yfSxcvcvDAAUY/x0DSL5I+UZRvdlkkhq6n2raO44i0KyL9GimKOWzVQTLHUlMLAHKmyejICFOTk9iWRRzHLC0vs7KxQavTwfU8NNkuou5Z1yZCNxEJXadcKmGaJhvr68zcvv2NaCwe4JuNyPeJXJdWqyUIZ7JsojIi5VJpy0hCul4VQ9yTBnZtfR1XCqArZnetWqVSqVDI57EtKyXQqQyLYRiUy+V038i2j4Domaw3mzx35swDN/7sb6MvmIna7TMMTedvPvufYukiLVygQEJClMSEcSifVQ0ls6DrgtBnaCa2Lso8KoVbrVaFZObQEKam0ep0WFhcFIOi220xd1MGIJqup2WunZCTet1RHHP75s3HQszk8TSUrksSx6lcnGWaorlehvC1ajVt/gVx0x3XZbNep9FoEEcRhWIxJa5o8j3lYjGNuNSmrjb/VrstJnTbdpp2AbqECnRN49rVqyRJwslTp/o2/O94TV8wfaL+3C2qzNkyDRJFYsKIkrt6CEECW6aeXddF13VKpRL79u2jXCym4u9JImTsPNelLsXgwzAUaZdtH9D9k6Kkxs/duycmxw8wwCNCFEVEnQ7IdRtFEfl8PjWSlXI5rbEDoImRe612m42NDTqdjlCPkWnCJI5T4YFCPp82ySeQGklH9mBqkLZbZKEySH4Q8Nnlyxw9epRarbb7hfQc4wtFlPI4u+1Qb+99i3/w5v+D50ZOY8UWSQwkoKHTu1NoCKNfMAvpNebzeVzXTZnvE2NjTE5OYhkGju/T7nSwJZu/1WpRbzREK47kOGSZ+knGcCaahiU7AXzX5ea1a2k/6NeFx85QRp5H5Lpb0WQYCrk0qR1YrVZT9YdI9kGtbW4KHUNpjHK5HCPDw0Ln1LYhSVJJO6DLwGmILzGOYzEDcpdamuO6zNy5w/ETJyiouZU9nttOCzP6oou957gx3elUlR5Reo6+5+3qraXnK++BGi3myoWYIKLrUqlE3rYp2jaGYYgJCZJmHknHJDtmDE3b7jhI56JUKJDEMbdu3KDZZ+zXAAN8GYjabWEkWy1iOeRYKdQUi8UuI+nLRvd6o5Fuwrqsr++dnqZWq2HlcqLHT6pygTRa8rj9slA74cb16+i6zlMnTnRld1S/IXS3dyioZxwerOa1G5SAelbMIE4S9lX38l+c+lv8n0/+l1ToT2JS0DWdUm6rZ1I5zwqK4FcplylYlnA6DAMrlxOdBpJg2G63qTebRLIfW7Fxu6BpQonMsqhvbHD71q2vNSP1WNUooygikso1rlSk8Xw/rQVUKhV0TcOXCjdqgSdRhGGa2LYtBMAzTfK1Wk1QoaXCjp3LCW8R4RV2ZAOupmmU5KidnXD16lVM0+ToE0+IH/SkMWHLD1O9Vup1KqLMLnaVglALOPt+1VOpfp7IVGqv+Lkq+qtF6YchnuelUln9oGkammEQRVE6Ikg1IruOQyQp8pPj49Qlu7jRajE+OioEEmR/VhCGtOUU9bxtd6Wo08/SdQxNo5DP48iJL8+cOvVYUb8H+OYjdF2Qz5jnuri+nwpw5PN5Cvm8aDXzPDquSyQNKci5r7L+DuJZq5RKqZCJH4aE9TqFYnFrCDJsZaHy+e4sVA9c1+XWrVscO3ZMTDbKPusZY6mIhwppGxukfdHKiKqMWDpxSB4jO0VEZZV6JwQpZCPD6/Wb5MhhoKc9k/1QtirpnmPn82Iwc5LgyiHNIFSI7HyedrtNo9ViLJejVq3iBwGu49CRe0ij1RKExIwqWS8KhQJhFDE/N8fwyAhTX5OQyWNlKBPPS0k5HccR8kxSJ7BWqQhvsd3Gc11hNJDMz8xMtxSaGG1lGga1SoW2NKyeTAmEYSio3XIhlsvlXdOi7Xab2zMznDp5clfPEdhauFs/SKXgsp+h5J66XtrzvjT9uosBV8Yzn88Ttttpe8yDoldd19M0R6PZpCZp84bsiTRNk1wux/LKSuqBjw4PYxYKJInQ1VUealtGljnpiPQSkWzbJgwC1lZWWF5eZs+ePV84uh5ggCyiKCJyXVELi2Oxd3Q6TIyPk5PiHp7r0nZd0VKmiH+Fgmgry6YA5Z+adO4s06TZbhPLSMhxXQxdF7JtmhixVdrFKQW4LqPJYz2TQbYhk+mBrZKLagfr/V0WWX6AIgKlxrPP67NY8pb5o/t/TAIUKNKixb7yPpY7S/hx0PXaqiWClTgR7XO+71Ov11NDl8vlhIi8PJ92p8Pq+jpTExPYuRw52RvuuS5xGOIjxBgsSTLM1mHVHlIqFmm2WszevUu5XE6HQn+VeGx2KrXYFeqbm3ieR7FYpFwq4bgu6/JnIBQpVHF92zy4JOnSbdU0jXKxKFiycuhpp9NhbWMDz/fFvMcHRDhXr17FzuU4fPjwA6+lX/Ow8iIfpXFQjFRN0x4qpx9FEe1OB8uyRK8TwqCVM45HLpdjZGQEA+Es1KU6kWEYYhMqFMTorTgmjiJcz6Ol5nVCFxmpKCnzC3Nz4uEaYIAvAYnnidFWui6MWacjCDilEjnbpr65SaPdJo4iDNm0r2bSdhnJDHtewTRNoSstm/rDIGBtY0NI30WR2LR3cWIdx+G2jCbVHvN5+JvpEIUvyPpUbSK74bcu/1NatET0jY2t5fi/v/x/4ze/9z/x9t63ul77+p43RGTu+8LpkHVewzAolUrinsrXDg8NYds2hqaxsrYm6pKyFa9YLFIqFtOpJWEQ0G61Uo4FbDnZhq5TyOdpbGywvLyc1py/Sjw2EWXiOKkXVK/XhUSTplGrVml3OoK5itBXLBSLYuKHTIN0Hac3msvAsiyGLAtd01jf2BAtKBnhYDuX6xstNptN7t65w7OnTz8wmlTn0PXvTG79ixpKRTp60KLP5/OErdaOUWWSCHkrz/NS1qoiHFQqlb7nVywUiGo16o0G9UYjnS8HwgHISwPtS5HjOBHjtyzLIp/PdwlQl4pF6uvrrK+vC9WQPqoiAwzwsFAOttJg3djYIJRkPl3TaDUaxAhDk5eDElRdrItA0lP6yEIp4ti2LUoNUns5kfVQW6Zu+z2bV69dwzDNz9Vv3fXvL6E+qSLAfvh45QIfLJ0FICJER+fPHvgzTJeEotZ/+/zf488f+XN8sHSOg6UDvDjyAo1mU9RppVSn6kntvXpN0xgdHmZ5dZUgCFhZW2NyfDyV1EPdV9kLHkgN2zAIyOfzop1Mvi5v20RBwPLCAuVyWagsfYUtI4+FoYyiiMj30aVKTqPREHWvXA5fbryGrlMql7v6BLO1SNjyCHfz8IBUySa2LMqSKu7JHLspi885y0rTAFevXiVfKHDo0KGHu6CeRfnTEnlgd88wew8sy8K0LBI5TqcoJ6yEsrc0kD2l4qAatpwRpzRqd0KlUiGMIlrtNmvr64yNjqaydoo9bNt2KoDgyYUfhqFY9PJ7Mw2DnG2zsbpKpVLZcYMZYICHQeL76fpRqdEgDBmWacEY4Twq9nUWcc9e8aBVqKK6fD5PuVTCMk0iyTRP04eZmlun02FmZoZnnn66y8HekYnax5ile8cXfEZ2Y71GcchvfvY/p/9u02afvY9fnP5TxJKnEMcxBwsH2bN3migM02hOl+UZEqFqtNPZGYbB2OgoKysrBGHI6vq6iM4TIW1XkJ0JpWKRMAzpuK7oYnAcgiAQEapMHxdLJRrNJi0p7PBVipg8FoYydt2UidmRihqu5zFWqQgpuXw+HVq8E1KP8AELKowiXKnFWK1UGB4aIpRTOgKZTgjlwjcMA8/zuHvvHmfOnOnKn6uaQBCGuK6L67rC2LouHccRhAIZtQWylUJ5h5GcPKIIBT/84Q+FsLhU8VckBOUIWKZJqVzGlrqOdj4v2lgkiaD3mvP5PIHvpySmSDL1FLLiAbquY8repgdhqFYT98p1Wd/YEKO3JGU+JTNlajsd1yWOonTRF2R0mc/nqUumsiOVkAYY4PMijuN07wg8j2azKdoVNDHGTtM0qj3jrRQ0TROj6ZQQyEN8XsdxiGS72sjwMKZpilFR8jn3fT9tFTEti6uXL2OZJkeOHNl2rCRJ0j3CdV2xb7iu0F32PGHkJZkxTUXKZzmK43Qu7I9/9CPR8600qA0DXU7r0GQUXSqVyFkWtoyK1d7x/fvf527zbnpOISF/+sh/RE632dzcxLKsNPWrYFkWOdsWQxk8b1uw0g+W7NFeWV0V/BLV39rjuJimSaVUwvN9OnI4faPVEuebywnH3rZZXligVCqlA7W/CnzthjKOIuEVAp1Oh0azKUZLSd3QWrWKuVv9ULG8eLjF3u50iBELWTE+TdOkbJokxWK62JXM29WrV1NB4qtXr+JIokCr2UyL/Oqz1Z+2bacGzbZtrFyOOI7FYpXtFmrszmdXrnDo0CFyuZwQNJfScGo4rCfPp7O8nD5UQFr41wAzl6NUKIjBsMWi8PQ0La3H5mUK1pTRo6pjKmi6/lDFak3TGBkeZmVlBcf3cR2H2tAQsWzdyUItenXOoZyqUJL9rXnbZun+fQqFwle64Af49iBxXcH8lG1im/U6cRxTKpWwbVs417tkSTREu9XDrDzlICrSnGrxyEvDE4ZhOj9WaVHfnZ3l4MGD3Ll7F9d16XQ6tNttWs1mqhKU3TsMwxDpYenE5mxbRGvS+VQTgAzDoOM4XLlyhf0HDnTtHWrfCOTYu1arxfrmJh2peasi6CDx+Bf6vxREIfnfPnsfx63jtFot0dZVKol9Q5Zaeo2bElR4mPtn2zYjw8Osra3R6nQo5vN9BRTUPbVMU+zVMrqMooiCzEw1Wi1arRalUukrI/Z87YZSMV2DMKRer+M4Tpr+HBkZefAGKtMnqijMDlRoEDPdgiBIx2Zta2XQhFL/5uYma2trbKyvs7K+DsCHH34IkEa31aEhxicn0zpboVAQvVSyBpo971a7TeD722pym5ubfHblCgcOHGBoaGjb+cay/xNENJcAvjQ8juPgSA+04zi02202Nje5Pz8vvEBNtA3b+TzVapXh4WFGR0cZljqMvdetpKYe1KtkGAZDQ0N4KyuEcYzT6VAqFHZc9AUpTt9x3ZQpW5Rsw7qUy+t0OpR20MYcYIB+iONYMF01jXqjQVtmT3TDYHh4+KE3UF21W+0SFaUMb2Rpow9PQdd1nE6H9bU11iXpJI5jZmZmAPHcFIpFysUiU3v2YNs2hXyefKFAoVhMiUXZFGsUxzTU8z801PXcrm9scOXKFQ4ePNh373AcJ+UpFGWLhet5uO02Hdfld2f+vxTWCpQzvZNPt0/wyccX0vMtlUoMDQ0xOjrK6Ojotsg8ZbbLvz8osizIa/XDkIYc8bUTlMqRavVRw+pLxSIF22ZteVmQh6Qu96PG124oYylSvrq6ii/H4dj5PMU+xeF+yH41mqaRGIYwlj2I5KaOTOVGcZwW/9fW1lhfX2dtdTX19Ery8w1d58yZM6mqB4gxPcqDy8J1XWKZ1lWLXtN1IQwso6408tW0NN/vS3JNtmdS9VC15dQOVZBXNQvLtrFsm2qtlnrVhpxaHgQBbqfD6tqaMEaOw/Vr1wjCEF3XGRoaYmR0lLGREUZGR9MagCbPN+lz/9K+zjjGyuWo1WqiGVuKz+/IGtY0LMuirOu0HYcoDOl0OmlvW31zU2wafWpIAwywE5IgQNO0dI5hgmgVs2Qk+cD3y/+zfYw7OdqObCtRkZ0SSl9eWWFtdZX1tTU2NjfTzEq1VsMPAiYnJzl29Cj5QiFNYyr90+wzFkdRqoCFdLKV0+q6LpphpClldW5KPMUPAiEWIvcMtXc4UnbSDwIhQoIUSzAM2nqHj9bPYyCc24iIU2Mn+eun/zqu69Ko11nb2KDTbrOyuiqMvUx7jo6MpIYzvZeSZNhvULy618oBr9VqdOS51ZtNhnZRKVK2wDAMWnJfbbXbFPJ52pJ13G63H3p600+Dr9VQxmFIHIapkTRNUzSqdjpCkf9hoskeaAgJJPEBW4u+I9Oknu+zvrbGwvw8m42GmD9nGAzXauw7cICx0VHRDmEY/Lt/9+944sgRDvURMM7WD1QdMIoi0fQsGXgRQBThSyNoyuK/gkqjqsHT2y8vIZZqF9n2EqUjacjRXyq9pDy8Qj5PtVJhaGiItmQTVyoVGo2GcAjk9d+8cSNN4eq6zvz0NBMTE/3bW3qMZ6VcZkMyhzc2N9P6405Qwsiu5xF4Hq4kTrUaDcbGx7+yBT/AtwNJENDudNhYXydOEoqKlBcEYhjwAw/QZ+/QNJJMUz8IToNK/Xmuy5wcVuzI56qQzzM6Nsbe/fsZHRmhVquJoQmrq7zw/PPb6u+JJMCpCCmU6dJQ7R1SKCCKY2HkggBdGswsXNm3vNPeEYahcOQzzrnqx/xXM/+KelInIiIkxNAN/vrJv5aWQYaHhxkeHU2FRAzDSPeNtbU1rly5IlR45D5x+fJlnjl5koqaxtJzvVnBA13XGR4ept1u43se7U5nV8dG0zQMObC64zjEclawYRg0G41UdvNRO9lfq6GMXJf65iau46AbBmPj42LzTZKHW+w7IE0JyEW/tLzMnTt3WF1dpdPpoOs6taEhjh49yvT0NENDQxg9xmHmzh183+cJpcLTA12OhclCLYpYLvY4jlODmiRJ2oirlpJK4ajG/uy5q9eFYYghR35psibQa7TSxdgDK5fDcF0CSSiqVqtUq9WUvdtutzl37hwbGxtEccz777+PbhiMj4+zZ2pK6Dbukh4ZqlZTwlKz2dxVw1JDeIiFfB5d0/BcFz+OxbnJaetfxYIf4JuPOI5x22025V5RlLWqTruNYZoPt4Z2SBOqqC1JEnzP4/bMDAuLi8IgxzE522Z4eJinn36aifHxdJByeljg1o0b7N27ty9JTRmrXmdUKXRl/9RkT6GqV2aNkOJtWGrvyNQKlS61YRgU8nmKpZKoxyYJn6x+wo9Wftz12b906JeYLk93/Syfy9GWkXPFtpmYmGBiYiL9/Z07d7hw4QJRHLO0tMTC4iKlUompyUn27NnD8MhI9qK7jm1LEYhWp8PG5uaObXkg9w35fZaKxbTPMgoCmvU61VqNVqtFtVrt+/4vC1+boUyShOb6Oi3HQdd1RkdGsHM50b4AP53EWZKwsrLC3Nwc8/PzdKQs3tT0NKdPn6YqN3g1/Hjb2xFK/3ump3etnfUSiBT7MzW6hpG2oqBp22bUhTJ9UiwU+npVURwLZplc9OozHhaapmHZNpFk0lmZxeh5HmfPnqXValEoFpmcnOSJJ55gYWGB+bk5Pjh7FjSNsdFRpqen2b9//7aeR0PeP8dxaLbbKRt3h5NB1zRxPyQ5qiOL9Wurq0zt2ZO2swwwwG7w220a9TphFJEvFBgZGaHTbqfj+HbFA54f3/OYnZ1lfmFBNLcHAdVqlSeffJK9e/cSy1arSrnc9TwpLC8v05ATQnY8hb6nlXQ950DKlLdle0vXecqyTWGHvUNpuRqmmdY9kzjmn1z6f3W9rmbX+CvH/uK295uWhS5TzkpvW+HevXtcuHCBWq3GxuYmP/fzP0+n3WZ+fp579+5x5do17FyOPVNT7N23j4nJye72Fk2jKImTmqaxvrnJxNjYzvcrk01Tg+GDMGRjfZ2pvXtxHIdKpfJICYFfm6HcXF0V6YM4plQupyNb4jhGe9CCzy52bUv2yfc87t69y52ZGZqSFTW1Zw+1Wo2h4WFREEcYCdfzdmyJWF1dZbNe5+SpU7tew7avJXMu6anKSO+n+RKz79Q0bXsdZZeH37aslHWqRgE1m03effdd4jjmO9/5Du+//76Q4iqVeOLoUY4cOYLnedyfn2dhfp7PLl3i0qVLTO/Zw+HDhxlX6VkZIao+zc16nYmxsZ09ell/SRIxZNuXfZ0rS0uMjI4OWkUGeCDCMKSxtobv++RyOarVKoaczkGS7JoB6UL2WU0S1tbWmJmZYe7+fZI4Zmx8nCePHxdpSDmWL0kSGlKZaieH9ebNm9RqtV1H8G0rbSRJ3/3hy1Dzyh71D2b/gJn6TNfv//qT/zEla3uwoOu6YOvLtjdlKK9evcoVydQfHx/ng7NnUzWvsYkJnj19mrW1Nebn55mfn+eunCl5+NAhDh48mGbVdF2nUq3iui5+ENBsNncsveiaRqxtCa4UCgVCWdOdn51l38GD+L6/q97uT4uvxVC2mk2CdhvP91MmmJJCApGKfNjFkcjo8c7t28zNzwOwb+9ennv+eUZGRlLPs1QopF6NSmH2I62AWOzVapWJ8fFdPzubRlXn0rvcv/CIHHHA/p+r9RdG7wfdMISxlG0mrVaL999/n1KpxOuvv04+n8eTAtKpeocsoh+SizsMAu7eu8edmRl+/JOfUJYLf2xiAl3TGKpW2dzcxJfM5eHh4R0vSd2zBDHxJJHp1/uzsxw8fDhtdB5ggF7EcczGygqhzLIUCgWRwZCOWoyYZbgjep6RwPe5d+8et2dmaDYalEolnn7qKQ4cPEiSJGKWouz7Ve0giiXbb+9otlosLCzw/AsvPFTP907nlb1e+GJiA71HbAdt/tmVf971s8PVQ/yp/b+w4zHyuZwQDpF94J988gn37t3jmWee4cknn+TunTtbwgSZvWNkdJShoSGefvppNjc2mLlzh2vXrnH5yhX2TE1x8NAh8rLdpVatslmvU282U8GSflCdBIowVCwUaEvxk9rISNoS9KjwlRvKMAxp1+uErktOKVnIxa76gIyHWOxxknBHfgHNZpNyuczJZ57hwMGD6c12Oh0iyUTL1jzVeKxtKj6JEPGdn5/n9OnTD4wCH2Qk1XnCl6vxuo2K/YB0Us628YOAu3fvcvXqVSbGx3n55ZfRTTNtXu6XRtJ1nSgMMS2LJ554gieOHGFtfZ2ZmRkuX75Mcvky4+PjPPnkkwwND7Mqe6RKpVLfBa9YfTpbA7YLhQKxJGWMjI3hOM6gVWSAvmg2myRSeae3/zaOopQw1xeZZ6TZanH16lXu3btHHMdMT09z+tlnGR8fT53Ozc1NkiRJh6IraIaxVVpRf8pj37p9m1wux/59+z7fhe3g6H4pTrY8x39x43+lHjS6Ro/97af/Foa+816rGwY506TT6fCTn/yEzc1NXnzpJfbt2yf0XoMgFUbpvhwtNZ5DIyOcGRnh1KlTzM7OMjMzw3vvvkuhWGTf3r089dRTuI6D6/tsNho7p2DVXi35H4ZhUCgUaLZaLM3PUyqVqNVqjyz9+pUbymaziSa9P6U0o77MVF1np4Uhb9K92VkuX7lCu91mz9QUzz33HGNjY11GL5FMsZRE03sDk2SbcUs0jdszM+iGwf79+x94Lb0RZT+k47W+iFfYs9i3PnjnCLIfTNNkZmaGmzdvsm//fp4/cyYd2aPIR/0MJbDNW1TU8ODZZ7l18yZ37t3jxz/6Efv27WPP9DSGru+44LPRZJxJSRfyeVzfZ211laGhoYGhHGAbwjDEaTaJJatVl6L86jl4GGWutuNw7coV7ty5g2XbnDhxggMHD26rvTuumzrYvVGKOnqWn5BoGmEUMTMzwxNHjvTtKe53DIV+adyu0Xs/haHUgPn2Av/61u91ffgrky9zZuK5tN1sJ4RhyIfnz+N6Hq+99hpjY2NpNB0EwY5ckt4SkWlZHD5yhMOHD7O2vs6N69e5cesWs/fucfToUfLFIr7n4bhuKkDf97iZv1uWRd62qTcaNJtNPM97ZNrRX6mh9H0fp9UC38eyLAxd31rsyfaZjFkkwNzsLFeuXKHRarF3eprXXn2VspS564XjusTSw+xd7Glxu8/nzN27x8EDB/oyWrc9hA9hsL6UiLLPw589n53IASAit4/Pn+fevXs8cfQohw4e7DoXNWx1J/WjvjVRBKN2/8GDTO7Zw9rKCtdv3mRufp7xsTEmp6fF8NbeRas8QoRnnkgnwjAMCrZNs9FgY2ODiYmJB242A/xsodFooMmMU06K7WuZyE49A/2Mius4XL12jZnbtzEti1OnTgnmd5/XPsjB7vfMacDiwgJxGHKoZ7pQPwOe9Byzn6pYLPdERYL7wtA0/ulnv02QBOqfmJrJ3z75t7adR/Z8ATY2Nnjv3XfRdJ0Xnn9e9GxnEATBzhG8polyTq8h1jSGhoZ46umnOXT4MLN373Lx4kUKxSJ7pqcxTbOvoVRs/ygTWYIQgOk4Do16nc3NzUc2r/IrNZSNRgNDXqzS/CSz2NUN6F2cS4uLXLp0ic3NTSanpnjxpZcYlmoU0Q4pC9dxxGLvRw7JLlq2Funq6iodx+kbTfaLSMUfya6qFNnI6fNiJ8dBtVqkiiJxvC0NDGIhv//++6yvr/PSiy9SrlQIpVakmosZZurCfZFJo2w7PymEcODQIQ4dOcKdmRmuXr/Oyuoqy0tLPP/cc11OivJE4zje6ndVC962aa+vC4WhjQ2RIRhgAISD7bbbaL4v2JhZB1uhz7MShiFXrlzhxo0bmIbBiaee4ugTT2CaphD06BNNOVKUu5+DDVKUg+1R4L3ZWYZGR7cx27U+e42mslmSJ9E3MMjsGz/N3vHZ2me8s/iTrfNB45cO/xLTpWk0tW+ovSzz94WFBc6dO8fQ0BDPnTmTyuJlSZa9bNhe7HTW6pqLxSIvvvQSx0+c4LNLl5i5c4f78/M8eewYR44c6c72ZY+p66mTres6hWKRzY0N1qpVJiYmHgnH4SszlL7v47su+D5mLtcdTcJW+pWtG+z7Pp9++in37t1jZGSE77z9tphakUE/I9VxnLTFpB97Vtf11CjHGaNxb3aWYqGwK2Mt88FdEz0UIytNx2Z+rhr6HxaqlqeUNvqleNXAZA2hV7ntHsi6gu/7vPnmm4yOjtJut4l9n8D3MaTXphqZd2zrUNe4U3oIYbQNXeeJJ55g3759XPrsM+bm5/n+H/4hZ557jr1796b3LM5sDNnvTvV8rcv068BQDqDQarXQZYnAyJBrtnEMIP338tISH54/j+d5PHn8OMeOHdud6IMUEclEk/2gywECWTKP5/ssLC7y7EOy5LPGT5UiUshnWg0yUM/IwxpLdSylxPPbl/8ZcbJlECtWlb967C+lz24/UtKtW7f49NNP2bt3Ly+++CIJomTmBwGFTI3Tdd3dCTQyGu51stVnq1pvpVLh1dde4/78PNevX+fTixdZXFjghRdf3NqXEiHCkDoamT2pWCiwtLxMq9mk0Wj0lfT7afGVGUrP89AyX0oaTWYWezpvUdNYWFjg448/JgxDzjz/PAcPHHgoSbsoivDlYt+t1cCQElHKUIZxzNzsbF+l/wch6TGEWs/vVFSW/nvrl2LgsTR6Xe/NpKKznl76GZrWNZw6i42NDd577z0s0+Ttt99OdS9zuRy+FG9WufxOpyMYqLtNad9hwWdrlwq2bXPs2DFGRkeZuXOH9z/4gH379vHc6dPkcrld+0DzhQKra2tpf+WA/TqAGoGnhSGmHCZg90aTkDqVcRxz/uOPuXP7NmMTE3znrbf69hlq4uBda9dxHFGusawd2ZeKMZ+NRufu34c4Zp9yCD8nuvY1ZUBluSMlHtLNWcjuG9v2Dnlt7y99wN3WXXT1G03jbz79NyjLdpBtT2KS8OnFi9y6dYsnn3ySZ555Jv2VqetEuk4QBOkwiY7jPNAoqX0q+1mp1F3P871nzx50TWNldZW7d+/y/e9/n9OnT7N///5tfJKsk60lCflcjlazSbvd/uYbSiXvpiFqXP2ilDAMuXP1KisrK0xNTXHmzJldi7u9x3BdV9DEbXvXtIDahFVqdGlxET8IHorEo9CrorP91JKtlJB6bdYz1IS2qsbOaQoe8DvYeqigO2Xy6quvdj3wlmmiA2Ecp2mTjuOkMywfeK2Ze901jLrH2y2Xy7RbLY498QStqSluXL/OH/zBH/Ds6dNb0aW8Li0jxG5K2cJOp0On0/nKJgMM8PgiCAISKXVp2HY667EXSSwExK9cvkwUhjz33HMcOnz4oZxr6I4me5v7s1DZp+z6v3f3LpNTU19qe0I/Ik8X+1ZGpTvtHU7g8L/P/FuyJupg5SD/4cFfREu0LrIQiADj7NmzLC0tcUbeuyysXE6oaPl+aiidTofpPXt2vxAZJGQdizQT1fNSXdOoVCpESUKlVmNhbo6zZ88ye+8ez505s/3+ZgItK5fDkfvGo8BX4rLHcSyiPN/HkI2s2UK8wuzdu3x84QLLy8scO3aMV15+eXcj2fP+JI7xpUDwbqlEIJ3OrTbp2dlZhmq1L6Q3ulOMlBayMxFl1/uSZMdeTvmC9P3bkCUVyL/fvHmT999/nz179vDmm29u94rlgtJVgzak0z8eiJ5ryD5kvWkhXdOoVqtouk65UuF73/seteFhPjh7lg8//HDbjLts/SFnmnTa7Ue24Af4ZqE3E2VlyH8pkoQLFy5w48YNDF3ntdde43BPjasvMuvWkwIkaqTUTkgdbLnZt9pt1tbWPpeDnf3sHfcORQLcIeXaL8uUxf/v7v9BM2h0Gcr/4uTfxtCMLW1o+XPXdfnRj37E6uoqr7322jYjCSIbpQFBRtfa8/2HFwjJOtm7MJSLciC2qim//PLLrK6v8wd/8AcsLS+nr9N63p+TPZ+dTiclKH6Z+EoiSt/30ZIkJfFYcrBoFgvz89y6fRsd0CyLWzdvcvvWLcYnJpiammJqaqqvp5e91Z7npUzXB0ngqTplHMf4Ycj8wgJPP/XUF7q+ndKJ2Rpett7Y+56ErQcj++VnUyq9zDgt+2eS8Mmnn3L79u1tKZNe5OSw2SAISCRjbNe06w5QddGdaieFYpFWu43r+4Ja/uqr3Lt3j/Mff4zjOLz66qvpd2RkosqcZeG027Tb7c99TgN8++B5HkkYimHmmtBJzRq4KIo4d+4cvmxVcByHd378Y/LFItN79jA1NcXo2BhmH0c1zQTJ9K4aEr8b0r5BaTDmZmcxdJ09n5dtmWxvT8sinXOrZaZyKMZ4xsgqg529psX2In80+8fqgwB4ZfIVnh8/s/XZ8je9Kl076TVrmoZpWcRBQCD3D6A/WXL7m7sIgYrM04+hrKLK9Y0NGu02E+Pj/Ac///N8+OGHvPuTn/D8889zMDukQkaVak5nU47u+7KzUV+JoYyiiDhQ9GQR1WQX++1bt7hw4QITk5PsmZ4ml8tRLhZZWFpiYX6eCxcuAFCtVJiURnNkdBQjQwsnSYQs3UNEkyBFBxALcn5ujigMP5dXqAxftpbY77rVNZNsz7Gzy79huwHe9imaRuD7vP/++ywuLXHmzBkOHzmy9b4+52WaJoauE0gNx06nw0hWwHgXKGWSOElIoqhLsLgXuqaJeXLr63Qch0q5zIEDBygWi7z3/vv84Ac/4I0336RYKKQPrYZoU2m22zhyOsIAP9uIoogoCLDl4ODsvuF7Hu++9x6b9TonTpzAzucZGxmhJXVH78/NcevWLQwp9D8lhf7TmqV8Lv0gSGdZ7jYjUUHXNCJEj/Tde/eY3rt31zJPFv1Ief2QZcunV6xtH5Lcb9LPb13+baIkQkeTpBmTv/XMf5Z+tvpzeWmJ9957j1K5zOuvvy4ITD2GN4ucZRHIiSbq+dwtTb3tPOW1xklCzM7RcqFQwGw2CT2PjuNQrVR47fXX+fj8eT786COcTofjJ06k6WclomDImaCe530zDSWIBa8jNur0y00SLn32GdeuXePY0aM8cfQoKysrxFFEtVajUq3y5LFjYvbb0hKLS0vcm50VdG/TZGJigsnJScbHx9ENQ3yGrj/U5BHNMFIm1d3ZWSYmJ/t6k2kk2OdLzUaHuxm6L0pKSVOSOywoz3H40Tvv0Go2ef3115mcnOybyu3t/bLkuC8/CHDabYqfQ0lELXg1LX2na1N6rrqui1FFrku5VGJ0bIy3336bd3/yE374gx/w+muvURsaEmzCKEprQJ1BRDkAkESRGDXXQ7Bpt9v85J138IOAt996C8/3abXboGnskc600mZdXFpiaXGRTz75hCRJqFYqTExOMjk5yfDISMr8trMloV2gGwaEIRsbGzSaTU7twHZVRL6+0HaW0IStGujn3Tsurl7inYV3GEWwxhMS/szhX2JveesZ1zSNu3fu8OFHHzExMcHLL72EaVndDrYMJMgwTC05lD6MIlqt1oNJgD3Xq9phIjlOTO/TK62i5JIUIOg4DmU5VejMmTMUi0U+u3qVdqfDGSWcIo+v6zq+739zU68AkdQTzbaEfPzxx9yemeH0s89y9OhRPKkmH8obqQq1Octi39697Nu7lwSob26yuLjI4tISFz7+WGi5lssMDQ0xPT39UFJGhmTXep7HyvIyzz33HCAZWQ8R7cHuRlQdCx5MxtkRu9QoG5ubvPOTnxDGMW+9/fauA1B7HwDLsvB8XwgSh+HDpU8UFENZRpS9wgDqnigmcLFYpNlsCnKO7DGrVCp897vf5d333uOHP/oRb731FkMjI12Gd8B8HQAgkoPdNcMQG2uS0Gq3+eEPf4hlmnz3u9+lXCqxsrICmiYmbsj3appGrVajVq1y/Ngx/DBMHe7ZuTmu37iBrmnUhoYYGRnhcJ/aXD8YMrJbWFzENE3G5fipbXvHLnvQTgRAhYdRGupFHEf85qXfTI8PULbK/NUn/2rXca9cvsxnly9z8OBBnnvuue2fIQ1jNlunzsWyLKJE6ODm8/nPpRqkaxrBLiTAhK1IOi/n20ZRhOt5ItrVNI6fOEGxWOT8+fP4vs8rr76anq9uGHie9801lIHniQZRw0jZlTdv3OD2zAwvvvgiBw8cALYYZUpWrd+i04ChoSGGhoY4ceIEnu9z//597s3OpmNecrkck9JjnJqcxO6JFJMkQZP9UCurq4RRJKIxPt/CfNBi/6m0Gtn5YVleWuKDs2cpFgq89corD8+2kwvKlPWedqdDIr03jQd4wBmocVmqry09X7YPeC6XSrRaLYIwFMO55fdv5/N85623+PE77/D+++/z3e9+N41ANU3Mq1QZggF+dhHIcVI5y0LTNIIg4L133yVnmnznu99NGZhqnJSKVujdO5KEnGl2Odybm5vMzMywsLTEtWvXuH79OrVajanJSaamphgeGdm2/hLpbCbA4tISU5OTqCEFn1sY4AHcBj7nMf9w7o+51bhF1jX/a8f/KpWcSEPGUcRH588zOzvLqVOnOHL48EM971mYponm+2I6U8983YeB6qNWzznq/Zk2F+Tvi8UiTUnsy/a17j9wACuX4/333+fypUucPHUqTeVGUfRIslFfGZkHRPSha6JH8tNPP+X48eOpkQS2QvFETAPYlZAjF7+dyzE+Pk6pXMYwTcIgYGlpiaWlJT766CMARoaHt1Itw8Ppg6TrOpvr69Rqtc8XVfWcw074aVOv/Y59984dPv74YyYmJnjp5Ze7PuehoWmiNUSmqirV6pZRVh/9gENEcsK5Lieo99LNFQzDIJ/P4zgObcehlvlODdPk1Vdf5U/+5E/44P33eeutt9JjqGHXA/xsI5bjs0zTJE4Szp49i+u6fO9730uNJGyx2APZgrYNmXIPiHVeq9XYt28f03v3ki8U2FhbY3FxUQxbuH4dy7KYkGTCycnJNPVr6Dq+59HY3OTJY8e+2IVpOwsJpPVJHn7vcMIO/+zKP5PvE8ecKkzxHx36DwHhcLz3/vtsrK/zyssvs2fvXkK5L38eWJaFhiABjY+OdvV2PnDvUPwGtjJR/ZxrhWKxSLPVwpPj+LL2YGpqipMnT3Lp4kWqQ0NbPaxJIsY3fsn4SgylntnwGvU6Z8+eZWpqimeefrr7dZoYXJogapo7Gkq1uCRrVW2qxUIBq1pldHSUp59+GtdxRIp2cZEbN25w5fJlcrYtIs2pKYrFIiurq5+f2p1Bsoux/GlnUaaGVj5UVy5f5uq1axw+fJjnTp9Gk9M9+sn4PQiWZdFptykWCoJJ2POZ2fPuPXocx5hyKLXSYNwNpWIR13HEgNVyuevhz+fzvPbqq/zoRz/io48/5uTJk6BpREEwMJQ/44iiCEvXCRDr8tKnn7K0uMgbb765jaxhGoZQtHlQ2i3zvHquSyKZtKVikVKxyL79+8U4r42NdO/48Nw5AIaGh5mammJ8fJy19XViYEKmXb8IdizpfIG06+/c+JdseBvifdJk/YWjfx5DN2m3Wrz77rv4nidUusbGxDP7BfYlTRO9351Oh1KWfdonCu6XoUriWEhfShbsbs+4JTV9Xdel0+lsY+QefeIJ6pubnP/oI0qlUhrZ+1/AAXgQvhJDqcl6VRzHvPPuuxTyeV566aW+C0GF5L29djshy1jLGtY4ScjZNgcOHhTz5eKY9czin713T0wrjyI8z2Nzc/NLG9OiFEKCIEgnhHe1g8gF4noeIAdJS0JBynLTtPTagiDgwoULzN2/z8mTJzl27NiORuxhYZomrXabYqlELO9fv+tIoTYYWUOOEU7Cg4wkkM6e88MwLc5nMTQ8zJnnn+fDc+coFAqMSPk613Ee6Yy5AR5vBL4vHDLDYHZ2lus3b/Lc6dNM9jFOKkJ5mPWoNm/lYCuWfJL5/fDwMMPDw2IMlOumtc2bt25x9coVYsmdWFxcZHrPnociEGaxG9s1lPMfdV0XQi2Z96g0pZPZO2Y3Zvl3N/8P8uRFtIbBqaFTPFl7ktWVFd5//31yts13v/c9StLB+GmE1n3PQ0t2Vj7rcrbVz+SfkeQ29L5uJxSLRTzXxXFdKpVKd4StaZw5c4Z2u837773Hcy+8QIL4Xr9sPHJDmSQJiVSBmbt/H6fT4Rd+4Rd2jBaVOovn+w81bsn3PHRNw5byaDvdfE3X0xFRzzzzDI7j8NH588zPz7OwsMD9+/fJ5/NMTU6KNO3ExI7T0mMpLB6Hoailyfx6HMdd59CSNUBd1/tOw1Cejy+JNb1wOh1c3+eTCxdotlqcfOYZJicnabVaqJlvadSp5uQ95AOgaRqddpvxiQnCMCT3oGkdiqAjoz1V63xYFItFgkaji9STxf79+1lfW+PW7duUKxXK5TKtZpPaI5CjGuCbgdD3MWXf79WrV9m/bx9P7CAxqVpHAt8XfXoPSFmGUZTWwC3J+Ex2iLLy+XyXw726tsaPfvxjdE3jo48+4mNdZ3h4WNQ29+zZ0eFWDnQURWnNXv1MSdKBcP5d1xWlqh2uI8jsHf/brX+FneSwEfuVRY5f2PMfMHf/PjO3blGpVDh1+jRxHAvdXBkVhmGY9h9+ngAhHWgt20l223O6AgTpBCQyc/gwyNs2hmEQhCGO626TI9QNg1deeYXvf//7zN69y/4DB3AfgVjJIzeUKppK4ph7d+9y8ODBXXtccrkcBnR5UjshkVFbjBwTlWQExHdhjILo1fFcl4mJCU6cOEEcRSmN/M7du+iamNQ9MT7O6Pg4hUIhpTanjbNJQiQHxvZCQ8oeyQdRRcrZnihV87AU9V16jEnmgbl29arQuz1zhlqtln6mQm/q1dR10ZwtjfNOD5vv+6LfqFIRhnI3j1idl5z8Esbxg6fJ96BULNJoNonkBtGvX+3Y8ePMzs0xPz/PiRMn0oh7gJ9NBJIFv7y0hB8EHD9+fMcN3cxs+I7rPlAxJvB9sW+odrWHTPNntV6fe+EFKqUS9XqdxaUlrt+4weUrV8jn80yMjzM2Ps7oyIgokUhdafVsx1KwoC+SLWEW0zS3qdCkvejArHuP91bfFz+X/7295ztE9ZDb924zNTnJiaee2pKRk5+ZJImo52bKO7phYMh9Q9f1beIOCs1mU2SJZOvXrsOyZV0Smb1TpKeHNcy6rlMqldhsNMRQ9z7fq53Pc/jIEa7fuMHU1FQqhvBl4pEbyiAI0ID78/Nous7+/fvxMnqBvcjlcinNdzckSYLn+0RJgqm8wkwRHK1bjKD3C3ddl431dY4/9RSaNIpj4+OcOHGCRqPB0uIiyysrXLl6lejyZfL5PKMjI4yOjjI8MiJ0Uw2jayHrur6dzYUQSui3MJRXmM/ntz3Y62trXLx4kZxl8fZbb1Gp1VKvMxVEjmN8w0DzfSKp5BFmHgYFXdcxpSyUIQUH6vU6CaJVIwjDvvcoyTgEqHuaJKIOJAkWWubnu8EwTexcDtfzcD1vm6FUnvWBAwe4eesWBw8c2F3eb4BvPVTZ4d7sLPv37WO3SRoJQpDflQ7gboYyAVzPI44iivn81virzHF3c7YXl5bI53JUKxVM0+TQ4cPsP3CAwPdZWVlhaWmJ1bU17ty7J+QcazXGRkYYHRujVCphGAamYYhanTTuat/QdR3XdXE9DzuX2/E6hBOZ8P+e/V9o0Ux/XrYqnOA4d+/dE1yG554TjFLp3CYZg615niijqP0kDOmt8Jpyj1N7h6ZpNJtNypJrsNOorTSzltkXojAULWWmmTocD/OM2/k8WqOB7/t9W8aCMGTvvn3M3LnD3Xv3dlQX+mnwlUSUTqfD3OwsTxw7hmmaOI6T0r17Ydu2UH+J4x0jD5WrV7nonVKk2eitdxtfXloiAUZGR/F8n83NzS0NRF1nanqaqelpIbbcaLC2tsbqygrz8/MYus7Y+DgTExOCcdsnlZiq8vD5yTz35+b48MMPqVSrnDp1irI0tJphbBPnzUURkYwG4zgmjiIR8cnUsPq77/uozL2u66yurqIjUqJJFHV5hrulocLMHDjTMAgzxfkHGUs7n8f1POEE9WjqBkFAHMfs27ePu3fvMjMzw6nTpz/XfRvg2wPlkN25cwdN0zh85IjQF91pir3s8TNgx0yEWp+qBqhlsjq9a3ebA5gxmosLC4xPTAjBDtclDMM0y1SqVDhSqXDk6FF832djfZ211VXu3L3Lrdu3KRQK7Nmzh/GxMUbHxvqmIPvJWfbDDe0mM62Zrp+9mXud5bkVThw/zsGDB1HTmAxdJ/tJSZJgSSaxivbU/hGp0lIcC45FJoNl6no6F1j1rXbd32RnZZ90SLx01lUrj6brO+43sGWsgyDA9bwuNaAkSfBcF03TOHb0KJ999hn1RuNL78H+SiLK2dlZLNvmxIkTdNptwjDEdd1tM98SRArAsiy8IMDriTyUl6dmMfqSGZmTihr9xAIUsgXkIAyZvX+fcrksUoFBIFQmpJE2TTNNeximyejoaNqM3Go2U7GDSxcvEkYRhUIhldYbl4v/izDXkiThxo0bXLp0iX1793L02LGuCLXPG7rEDFREa3a9RGw4ilSkHojNep1SuYwnH/QojimXy1sP7g6fqViFqj6paxqxtjWNYEeDmSRpFkGpZ2QNs+f7IJnLTxw9ytUrV2g2m9uPM8DPBMIwJAgC7t+/z/ETJ6jVajSbTVzXJSef0y5IUk6/bFRvZkQ976ZliU26J/LJIju8IYoiGs0ma+vrTO3Zg+M4JHGcllbS6Ev+r+s6U5OTgHhuVmX7ydLiIjdv3iRJEsbGxlIta8XcTNOhu2z0TuhyVv+w62cj2igH2vt54cUXqeyQxeqC1KxV7WK9SIlFUSRKPHEsHF3XpVgo0Gq3heykYXQPuuiDJBEtfzE9IiXKGZHp2L5lLOnQhNImZA2lcrCTJOHw4cPMzMxw7969b56hDMNQLKzJSSzTpCCVWjy54LMN62qBWLkcukw/VCqV7SlA5PidRDS8qy9Z0/W+C14ZR1+K+cZJwtraGuPj4+m085xpUqtWdzdMQLlS4WilwtFjx/B8n+WlJRYWFlhcWOD2rVvohpHWJ8ql0kNrDiZxzIVPPmFmZoYTx4+LFLAyFDudj/z5TgtM/c7MjNFSNc7NzU2Ghoa2mnRlAVw3DHKWlaaWe6GUT9J73vNZ2dRY9ntLELVYyzRJgkCID8hjeIqAIZmEk5OTXL16lfv37/PCSy891P0b4NuFMAxZWV4mimP279tHzrIwTVNkqHpqVWrl52w7bVdSfXf9ohxFouk31L0XkcrGBAFhGLK8vIwmWbEqKi0Wi0JJZpd9wzDNVAQlOXWKRqPBwsIC8wsLXLp0iU8//ZRSqcTk5CTVWo1qtbrref3vc/87jtZNWnlLf52fe+N7WLYtpq7sZih3cQ4UdF0nl8uhQpU4Sbg/O0sYx6L3Wt7nZqslAgupx9slU6ruo8pEkXGyM8MQQBhmwzD6MpcL+TydTqeL0RrHcSpmX5DTTSYmJpi7f3/HlPAXxSM3lI16HafTSfuNsgu+3W6LXHdPMd3O5dDZGn3TL5xXjNFsxNlrMGIZlnuyhqcQyDrG1NQUY6Oj1BsNEc2qWXOKFCTPazcCwZ49e5iYmOD06dM0m82UEPTZZ58RxzGlYpHp6el0ioHRx8sJw5D33n+fpaUlnn/+eQ4dOkScSXc8sN+KndtEkszv1XWFYUi71eLE8eMpQUhR5eMowo0iXIQxzNm2mPaCZK1J8pKhDOUu7D4VWaepFURq3Q/DtI4UBAG+5xHHMcVCQRAVTJNKpcL8wsIOVzXAtx1JkrC8vEwhn0+dzWKhQKPZxPM8IWShCGgZQoppmoI16nnCCe4xBpGMkjRIMxz9np9ARi8q+lRoNhoUi0UmJiZwHCeNXvVdoqFt16ZpwuEulznyxBPCKVhdZUm2rt26fVuUd8bG2CMnoPSWd86vftz178PGIX755/4GhUIBR7E+d4mo1F6wG5TTq7JFmqaxWa9j2zaTExO0Wi3aUmoykfcsCAKRFczlhHauPAdF5NnNeCknp9fRBrFvqLZB3/fTSTEqi2VZFmEYMjQ8zJ2ZGRYXFzl06NADrvDh8cgN5ezcHAkwPj6e/qxcKtFoNsX0inZ72yLI2TaargsDF0V9NQGzaVcF1XAahiGu5wnPUf5Ol+F7zrJYXFpCAyYnJlLvJ5Z08ewX2Y+okjWgavGoSLZarVKVQu6tVov78/NsbGwwNzfHzZs3u4TcpzJjeT4+fx7X83jj9deZkKmaz5O67RU9yPZbqXuSXg+wtr5OkiSMjo1hWRZ2Po9hGBSKReElyhpOtp9LpbeVWkjW4GcNoYJKwWY/H8SCb7XbeNJDd+SwXOVAqbT68PAwC/PzO5I3Bvh2I0kSVpaXOZIRA7EsSxgCx8HpdMS67IkKbdsWZJg+rQRAuieYklACpGk/JV7iel4Xs9w0TTG9JJej1WqJ8opkpWa1RXccjCCfm231zszx90xNsUcKuc8vLLCyukpjc5OLFy/yySefUKlU0n1jdHSUvaVpbjZuAmBg8iuv/0payupV2ep7Tup8FYkv2RI/TzLv7d2H1tbWGB0dRdM07HyeMIpEq0g+L/rGfV8EKJKLYElnO1ufVFD3ZNsEFOVom2aXaItlWcS+j+f7aXtPnCSU8/m09DZUq6EbBrdv3vxmGcrF+XmGy+VuuSnDoFwu02w08IMAzXEEu0t+KTnLSoWH+/XdqbSrnkm7gngIWp1OlzqHaRjY+Tx2hjy0sb6epkuAtKi9U7i+TSSdnrpHknQtzkRe4/jEBPv27aNQKNCo10V9YmmJCxcuiHSBfJA9zxPC4KpnMMMYyy7mBCHeoB6ztPcq2d4/qox8P6ytrZEvFNIHyzQMojAkjmNs2yZn28RyMGsgmWau66Ypq2LP96HGDvVD9kFLkiT1DMMgoN5sYko6umpPSZIELUkYGR5mdm6OxcVF9jxoivoA3zo0Gg2arRajo6NdP7fz+XRtdlot9Eqlq+alBCranQ6jfcbH9XOwkzimI5Wjsk5lLpcTbRDy+FEcs7m5yT45bUftFapFrO+EoczP0kgp02+tDKn6TDSNYqHAgQMHqD3zDFEcs7K8zOLSEvfv3+fmzZvohsEJ4zhL0TLk4T996T/lyPCRNErsGvqs9qnMdcGWM93F7n2AgQ2jiPX1dZ6W825NSS4Mw1CUwPJ5EtsWtcQgIApDUfKS4/xM0+wKinp7wbNI07KZ3+XzeTypM1suFtMslCHnGytS4fDwMLfv3OHndriOL4JHaiiTRIy5OdCnSdgwDEqlkoguPA8N0duoUoT5YhFXpWf7GErY6uMLgoBOp5N6GOkit+2+hm91fb3rAVTpms+jOp9Al5TeTgQWFYVVazWqtRrHjx/H8zyuX7/OletXaIct7KjAD3/wg9RjnJyaSqX8lHi7liTbUkRZz+/zYG11VXiF8t+G7JeKwhDkRqMbBoVCQXiKyouTLFrNdTFklKnvUBfeugVbDoUuGXiWadJ2HDTXJVcqUZCTAkiStCe0Wq1CkrC+vj4wlD+D2NjYQIdttTpd0ygUi8RJQhAEtFotypUKhnxO1NQJTzbtZxmyKtsEwjlOkgRHRp/I9KGh69i2nbLve88pjuN071D9hmGfbNRuUHtHenS55uPs7+XeYZkm09PT7JmeJkkS6hsbfHj+PO6Gx+vhqyQtWDq/wMU9Qv90ZGSkSxqua7/IRI+wxch/EFtdYXNzkyhz/bqui3GFkilrylYXK5fDyuVEmtTzcBwnrRs7jkM+n0/LObqm7SjBqWbfqn0vb9usBQF+GJK3bSG/mbnnisxZrVZZX119qGt6WDxyQ5miT3ht5XIUk4R2q4XjusRJks43KxaLtFotOo6TDuZUUHUyTddpNptdDabFfB4rl+tbCwTpFW5sbInosuUZPoyh3JZOlJ5MNuoDumqMvcbt/vw87958j39v/SGbbPBi7UX+ythfYnl5hY/OnwegVq0yNDLC5MQExWKxf1pHKpCofqSdUhlZhFHExsYGz0ivEMQDr0Ff2UBN0wTpStKzE8/D1HVc38f3fex8Pm312alGk71naR9XHBMGAQVZl8xeE2wJ5D/sQzzAtwuJSgXuEKWV5P7gBwHNZpOSnFmo6TqFQoEwimh3Ol2GUvX/aojeO6fVStebYZoUbXtXgs/62hq6rncZb1OSTx5EHklrgj2liGxECWwrYWRfG/g+n168SLvd5vSpU3z8ySecfPppms0md+/c4fr165imycjICCOjoxzYvz8l8SnE2X1C17fSrjzY6V5bW8PQ9a4+RcMwiKTmdK9SlyrnxNIBVopm7U4HUw5L2GmfTu9N5h4oVSN1Deq7ipMEXf7+iwYPD8JXYyi1biWGbG+hbdsk8ua5jiNmSxaLom4mJwJk068JYsE4soisbrSdy1EoFNIZZjthc3OTOIoYyaRlVJ0ykl+Ekdmks1FcF4tTGUj61+j6zqJMxKDqG9evc718k1anBcCH9Y/4S8/8Jb779HfxPY+lpaV0QvvdO3cEE1ROMJicmNhS0VGFdnV4+Rnqd+pn2XPY3Njo8gpBGkpdF7P/dtB9DYIAwzCoVqvkLAtXSvc5rovveVi23V/SLmPogiCg3emkx1cU+n73bbcHaIBvP9JxTP3KHohnrlQqkcgRbo16nWKpRM62KRaLdNrtbelXxXzP9gVquk6xUBD7UOaZ7oe19XVGekZv7ZqNytb9MrwBdW3iBLYHEPT5XavV4r1338X3fd568830HCYmJ3ny+HFIEjY3N9MU7dUrV7h65QpDQ0NMygkowyMjXe0uSfa82O5k9/57bW1NjB7L/Mw0DPyebFTv9ahJUEXpwKgaY6vdxjLNtL1mp/uQJAmO4xBIyT0tIwmqaRpatgyG5Eds/zZ+KnwlWq/9LHw2ArFtGzShPRr4Pk05iLlQLOL1pF8dx6HRakEcU5RspzRPLbFb8/ua9AqzXpGmCe1BVadUA2Kzi6jPhfX/e+91ygUQRxEfffQRc3NznDx1ij+a+0HX6xY7C5wcfYacbbP/wAHGxseFik2nIyYZLC0xOzsLyLFhU1NMjo8zNDTUHUH2WSTZBb+2toZhGNuuPytG39dQSsmvfIYC7gdBqnUbOg6GLOpn2cMKrmQfJ8ipALadjthJiT9kRgz1Yb4N8DOGndjeCIOpuA4qsuy020RRREEOFA4z6dcEaDSbtB1HsGVlLVDVzHf7PBDrcG11lQPZiRn0ZKOyjvTWG7cdp6uliu6osZ/YwPraGu+99x452+bt736XcrnM5sbGtns1NDwsJpzs2UMgU55Ly8vMzMxw7fr11OGeGB9nfHJSdBdkU5/admGWLNZWV7cNt94tGwUQymyfIuMouU5PDo0PwpBAZqay+t/KPsQyiIrimCSKhEh6djizdERUunk3bsZPg68kokwecOJq8yxXq7RbLaIootloiMZdTWg3RpJQUm80SOKYXC5HpVLpK66u6boYFN0H6+vrXQNZ1Tlappn2S+06B7Pn2iDDHuvze03T8D2P995/n83NTV555RWm9+5Fu9/rSW77ADGkemSEPdPTPP3MM7iuK2ZtLixw49o1Ll+6hJ3PMzk5ydjYGBM7CblnHoDl5WVGR0e3Xb9pGISamAzSe/VhpvaraguaJoToc5aF53k4nifYsmp0l2ITxzGO4+CHIUkcY+dy2LYtvmfEBmPbdnoD1APwsKLJA3w7sdsUENWKkchUW6lcxnRd0a4h9wo7l0vTr2pSjuM4kIhB5dVKZZtwej+Wu0K708F1XUYymZiErXUaSrb4512320oWPYZyTqp0jQwP8+qrrz5wSokiAVq5HGPj40LIPUnYWF8XZMLlZe7euQPA8MgIExMTTExMCCJh7z6d2Tc2NzfxPI+xsbGt1yXJA7NRgWyvsbNzaHUxlDkXRbiOgy/JVFYQpI52It+rMlckCeVyOXW406yAvF+KwKnr+o6tOj8NHqmh1DSNUqVCs17vWztT+Xl1UYauU6lUaLfbBJI1pdIaS8vL2LZNJMP44aGhXQ3aTrnq9bU1pvfu7UqFwBZdXDFqP3dLwg61hna7zbmzZ0XK5K230pTv9paX7i+2i7kmkc/nOXjwIAcPHiSOY1ZXVoRK0PIyM7dvg6YxOjrKxOQkU5OTImrM1naDgJXVVU6dPNk1UkjTtHRqSz+hZqVJa/VpJNY0TTADLYtms0mcJLQ7HdFDBbiSLp5EEYViMa0rmKZJLD1KO59PU1JqLbSaTQzD2MZ6HOBnAyMjI/i+T73R6LsGerM9dj6Pbhi0Wy1CqQEdhiEbGxugifavBCHOX61Wd36++zi9IAxFAgwPDW2xVSVM0ySWPYQPMpS9R+51srPs+RvXrwuVrv37eeH55/tmerYdXz2/mXKX0rIeGR3l6WeeodNui37v5WVu3LzJZ599hm3bTExOskfO2+w1yEuLi5imKQwlW1mqrL51JLVrs+fiy6EYvbVSEM55qVTC8Dw6MrUatduinUTezxhpWEulVLUNtiJYFUUqw2kYBvV6PW2z+7LwSA2lYRjs3buXe9eu4fn+VoMwW3XKuCfy0zQt9RzUpOpmq4UfhkxNTYlUiUy57ga9T90wCAJa7TbljNqPghL4VgXjBzHYthnibYZPPFwXL14kn8/z3e9+N50Ft3UHsm/oH5HupPahaRpjUgHoJNBqt1mYn2dpaYlrV69y+bPPxNgwyaKdGB9neXmZJIq6ejjVZylx5lRzMZNGCuWC3e2em4ZBpVKh4zi4rsu6TA3ZsnZZyMrjIcgTiZTF6hdNrq6uUqpUtp3rAD8bGBkZITFNVldWONKT7tMgJaBkYVkWlVqNTqdDLklwOh06MvVaKBYpF4t9VWO6jt0v/ZgkNOp10RMox/n1fm4QBPgyItoNWs959yuTxHHM9evXuT83x/Hjx3n66acfOp2ojrdjhT8RhMlDhw5x6NAhoihiRTncS0vM3rsnDOvIiJDllA734uIiExMTW3rYmdKIbhhoUuQ9i0A9z2oSSb/7IR1tTdPodDq4nke92RR91YaRMpDV5xmyLBZJp1rtj8pwGqbJ+sYGL73++kPdr4fFI69R7t+/n8uffMLq6moX0xR2rz/l83niJBGFXlm/DH1fTCRnd4WHfp+hahRJklDtEeRWsCwrpZ0/FIMtA0VlVlhcXOTylSuMDg/z2muvbUuJauweUWaJUA+DYrHI4SNHhHi01JVckn2bSlg6J3sk1SLLbhjKKwyjiDgM0VWPmBR81ni4e66xxWyNpQ5msXfgKluOSZhhLCuv0DRNVldXeeLo0S9Vr3GAbw4Mw2ByaorFlZVtv9up/gdiUy6XSqz7vphSgXjuc7bdVTrYFT2OYgw0ZBtKP+Qsi46s7z9oFua2iLLn334QcPHTT1nf2OCMVOn6PEhr/DudQ08EaxgGY2NjwuE+dYpOpyOGVC8upg63nc/jOA6HDx8mDIJt0aFpGPjSeKm2F9UOorHz0IqueyD3IsWI9yUjvtfxUC05sdSuVlOj1HU35R7fW0v9afHIDeXIyAgxsLK83GUoH5RB9iSbslqtCsm1TofNRgPDNMnnculN2g1xz4OkRLYruxhKpQfbK9j+0EgSrl27xmeXLzM5Ockrr7zS18A8KPX6IGWe3ZyMrK4kQLvVYnFxkYsXLxLFMX/4/e9TLJXEoNmpKcbGx9MFqGsaMVseqaoxWDtMewGxuBWxJ5BKHZVyWXh5mkZbqi9ljZ4lm4RVqjdOuudsbtTrfG+HIb0DfPthGAbT09NcuXBhez+kKnP0eQbiOKbdbgsJuNFRTMPA8TwazWYq4P0wg52ze4eGkOIc2mGIuFKqimWdst/Eo10hr8d1HN5/7z06jsMLL7zAgQMHPt9x1LHg8xFaMr3QxWKRQ4cPc+jwYaIwZG1tjZs3b+I4DjO3b3Pnzh3GRkfTnu+ydIJV6hW29vZA6kLvtk+HciKM63nEiRicoKL2IAhwZcSZhWkYxFGEHwTkcrmtyNUwWFhYwC4W2dsTlP20eOSG0jRNxqemuD8/z+nTp9NCbdpb12fBO66L57qAqD1MTU2xsrLCZqNBXteJEiFkYJomBdk32UtrRh0/c+xWs0m+p0k1C0vW6dSEjZ2imX4mStM0kijiwoULzNy5w6FDhzh8+PCOKYfehRw/RI1y18/v/ymAIDuMjY0RRRGvvfYamqalqZbbt28Lr3J8nOHhYarVqliYUj5KaerafUgESvJLyYIplaByuZxuHO12mzhJaLXblIrFNP1qSkMZhmF3vUHTWFpaQtN1jgwM5c8slKE89/77zM3NcfToUaBn7ffwAqI4pt1qpXqhY2NjgnAiNUnzhQKe77OxsYGdz5OX/cHZ4yWZP7X0xwmtZjNV5OkHy7IIo+iBhnKnXuPNzU3efe89EuDM888z9gVr87vtGzt+Pv33FMM0mZic5N7sLLVqlVdeeYWlpSUWl5a4cuUKly5dolgqMT4+Tq1apZpxJDw5dFsNglZDDxSCIEhFTBL5+ZZpkpdpVmU8PclxKMj0LMiWHDnVJEnkAGrEmrk/P8/RY8e+dDLgIzeUhmFw6tQpPnrnHe7cvdu33pD9ktyMkSzk84LowdbkCTRNRHtyk222WkIgOZ9Pe6HU16EDYSbF2Gw2d4wmYWvGomog3mnB91tYQRDw3nvvsbKywpkzZxgeHpYv3qHG2PuD3oK+iij7GOudFvZuWFxcxDAMJiYm0GVa69kkodVqpWLM165dE/T6QoE9U1MMj45SKpXE0NZMbSKKolRLF8TDach+NKW+oyQGS+WyoO1LmrcSwVdDYFVqK5YPjKbrXLl8mSNPPNGlDzzAzxbUZPsDBw9y9epVDh061CVyrjSWs73NykiqdWfoOpVqFVfqCRfyeTGuSa5fNcEoL7WO1WauaRo6W0al024TRNGuEz1Ub3FW/ORhsbS8zAfvv0+5XOa5M2dQal5fBA8ylJ8XSRyzuLDAoUOHKJXLHJFC7lEUpWTChcVF7t29SxTHjI2NMTk1RaVcFtKhuZwIWmTUqhzrSJKrVAdDSTLfsy2Dmq6L/kmZwlVZPsM00TLkP5V2XV5ZYbNe54033vhSrj2LrySiHB0dZc/0NFcuX+bA/v3d7C1NSwvcak4liJuSjWIqlQqNRgPHcZiWpB4lfhxJg9mRbMucan7XNEEVlsdoNBqMSNbWTlAq9Cqs74veCNhx+Mm779JqtXjjjTcYGRmh2Wo9YLHvHFH2Y649EA943eLSEuPSSG69RaNSqVCRY8OcToe5+/dZXV1l7v59bt2+jSZTWFNTU4yNjWHI/kmlhGGaJoXMhBGlvqGgaxrFUik1lp1Oh1KxmBpU+SbxMGhiKG6r0+Hnfu7LVGoc4JsI5WRfePddbt68yfETJ7p+nyXGdNrt1EiWy+U0G1QsFtEkUS0MAmpTU4Ry4LIaBKwGyeekMo9KJarI9EElG9gSLYnVEPSHjGhmZmY4f/48k5OTvPTyy/hyYskX7gVUz95OqeUdItqdSjkbGxt4vi8GNWegasjK4V5aXmZpYYH1zU0uXbxIgtjDp6ammJyYoFKtpkOhxWkIvd2cVFFL2N6LqRjyjuPgBwGGaW6pgMlMpNLZTTSNq1eusHd6+kuvT8JXFFECPHn8OGfffZebt27x5JNPdr9ILrB2uw0IndbeVF+5XEY3DBIZkufz+TTiVONuwigicl0c18XIKP6rRd9stTj4gJtomSYO7Nomkl1S9Xqdd999F03X+e53vkOlVutuht0BOjsrUTwwfdLnZxrseL6e67K2tsbp06d3PB8QRffx8XHGxsawbZvllRVWVlfZXF/n04sXiRPRgzY8MsLU5CQTExPbJL8SXd96WNW1amJmX0s2hHcN7U7EdPUojomBG9eusW/fvm2N3QP87MGQTOqDhw5x7fp1Dh0+3O286jpaHAujJ5+53lq4+lmjXqcjxzKZlkXFslKD6XkevhTvVi0IuVwuLdE0Wy1M2fu3GyzLEvV638fcgeOgUrpJkvDZ5ctcv3aNI088wamTJ8XEJBkoPKqI8vNmohYWFshZFiMqQ9YHmqZRrVSwczmOPvkkjuOwsrrK+uoq8/Pz3J6ZQdc0hoaGxKDqycmtjFv23PoY65xlpSL4ruNsZbdk9KlE7peWlmg0m/zCL/7i57zCh8MjpxQqT6tQLHL48GGuXrmybQI5soaVJKKBtd+CVDRiQ+q7ZusIxUKBoVqNSrmcFoLDIKDtONTrdRrNJhsbG0QPSJ+o89WldN6D0iiLS0v88Ic/FO0fb7+9laN/ABFH/G7n42ZHy/TFDs3YO71+bm4ODR5Y4FbpVd/3qTeb6JrG3j17eO7MGd544w1OPvMMtaEhlhcXOXf2LP/+3/973v/gA+7eu4cjH/B+HiuIVFpBptGzkl+J/DfA3L17uJ7HyVOnyOVy7Nu3D03THiq6vHTpUrrWfu3Xfu2Brx/g8YdlWSBr1Ukcc+Xy5fR3alMNslmoTA08i4JU7lK1ctWza5gm5XKZoaEh8RpZV1cTKjY3N2m329Q3NynuEk0q5OT8xZ32DVUWiuKYc+fOcf3aNZ599lmeO306LbFk+5u/CD4vtwF2McpJwuzsLNPT0w8kPynnpN1u47guhVyOY8eO8eqrr/LC889z+PBh4jjm6pUr/OAHP+AP//APuXjpEssrK0Q99cteqBazBFKVHmTwozgON2/cYN/evUzv3ftI9o1HHlGqoZp+GPLEkSPcu3ePDz74gDffeCNNA7qeRxxFaDJN1w9RHFPM52kZhtAMbbe7XqtpWtpzExeLQmVHMljVYFS1iBzHEdO4dyD15HI5MVZql/TrzMwMFy5cYGpqipdeeimtn6jCtDqnnbCtPSSJM39P0nvXD7st+H6/m5ubY3xiYsdrUQtOTY/veJ6oKyDadHKWRbFY7NLN3NzcTAlB5z/6iAQx6WFycpLx8fFtmpAgNj5bstw6crisYre1Wy1uXL/OE0ePpt7rK6+8wu/+7u9y/vz5B4pA/Nf/9X9NFEU88cQT/J2/83d2fN0A3xzYti2cYsPgxIkTXLx4kfHxcaaVw5ckdDodkkSMb7N3KZUUCgU0x2GzXqdcKnWtJcMwKBYKQos0DNM6WizX6vrmpjiXVivVJu1nkHOWlcq59RVJ1zQ83+f9994TKl2vvspeORWkF1+4xrhbe8guTPl+WFtbo91u8/zzz/f9fSJTn2rfaLVauL4voj7LSlOl1Uol7XgIwpDl5WUWFxeZm53lxo0bIo07McHo+DhTk5PbWK4q0Gq1WmkQlCQJQRhi5XJcuXyZwPc5efIktm0/kn3jkRtKkFPtXRfDMHjt1Vf50Y9/zCeffMJzZ86QxHE6Zisvvbp+iKMIwzTFZIAkYX1zk7wUQe+FLjVH8/k8kQzbfVkD03VdRD+uKxRpDCM1mmphK1k23/dJCoWuRZckCRcvXuT69es88cQTPPvss1tfhGLwqohyl3uiaT2pV7anXvvOt9vlmP0eg06nw+raGi++8MLW8ZUnJo1jqvUoPe0wCMjncpRKpR3rMkNDQwwNDXHixAl832dJLv7bd+5w+coVoSspW1QmJyfTVLoth7iqSfNRHOM6DhcvXmR0bIyTJ0+mqiCvvvoqv/u7v0u9Xuf69escP36877n8/u//Pt///vcB+Ef/6B99fnr+AI8llFh2nCQcPnKE9Y0Nzp47x3dLJWq1Gq7niSyUae6aFo3jmGKxiO95BL5Po9HYMbNkyn2gVCwKZqYk/VQqFXypFqM5DpouZuFapolpWem+pXqxfd/fZihbzSbvvPMOfhB0qXRl1Xk+b//0tmt9wN7R11TukonKFwqpMlLWMKo/1flGsjYbhiGFfJ6hWq1vW4hlmuydnmbv9DRAKuS+uLjIhY8/FsOXe4Tcdck1KRYKdDod0XYSRYRJwszt2ywuLfHKyy9TLJXIFwqPZN/4SgxlPp+nWa8TRhEjo6M8//zznP/oIyrVKtPSozIlNXinonIciyHFtaEhNjc3hXh6q0XtAalU5S2amkYhn6dcKhEEgbjZcYwvPRMHUsNpGAahbLT3fD/1cKIo4qMPP+TuvXs8++yzKWW9Fw+z2LdHlH1krD5H+kS9vvf+zd67h6HrjIyMpDM7s0VzRYc35AaRPuQyinwY5HI59u/fz/59+4jjmJW1NRFtLi4yOzcHCCF3ZTTLlQqO46SkqTszM5imySsvvyzmAcr7/eqrr6af8eGHH/Zd8EEQ8N/8N/8NAN/5znf4C3/hLzzUOQ/w+ENliZS254svvMCPfvQj3nv3Xd5++208ybou5HdXw1HrfWh4mEajwUa93kX42QlK/N/zPIZqNYqFQpqhSqIIL4rwfV+ojKk2CMnGjzPi7CCis5+8+y45y+J73/sepZ5nKxUseQgneydkpfU+T+q1H+IoYnZujunpaZHxi+O0HSNr1HVdF5Gj/J5AlMIeRi8bhMNdGxrixPHjuJ7HvFQXu3PnTirkriQ5p+ScXk1G5o1mkzt37vD000+nWQZlKBW+rH3jKzGUlmWhSz3EKAw5dPAgzUaDTz75BBCiBPl8fte2h1CqXli2zVCtxvrGBpubm5SLxe5eqB3g+j55yaRV0U0YRYRy4WcNpyZ/5khvslypEIUhFy5coNls8tJLL6V6sb3jw0iSbUIHfdGrYAepqoWqZahaqfrdTqmTRH5mFEUEvi/GhcUxcRhyb3aWkdHRtPlXvV55zqZhpDqvAE6nkzZQP2wvUtZA67rOyPAwI8PDPP3UU7ium6Zabt68ydWrV7FzOUbGxrBMk9XNTVzP4ztvvZV6dErq8MUXX8Q0TcIw5Ny5c/y1v/bXtn32b/zGb3D9+nU0TeMf/+N//FDnO8A3B7Zt4zWbhL5Pvlzm1dde44//+I/5yXvvcea550Q6X66bfs9dIsliGohWEcfB9X02Nje7Sgk7QdUbC8UiBUkgVMYwCMN0/0gUozMRI6HUM2jncqysrHDx4kVqtRovvfxyl5Sngooq06HLD4go02kZihmf+TewNQGp5170O45q3lfynar1w/M8RkdHU05JIts80r3DNNPymcpQJUnyQOH2ngtPx2TlbJsDBw+yb9++VAJ0cXGRpcVFPpQO99DQUJpNWF1dZXp6mmPHjqXXbdv2I9k3vhJDCXLBe54Y8GlZPHPyJJv1Op9+8gmnT59OWVA62xd8nGwNR9ZlS0Or3cb1PDbq9YdqzvUzkaGCaRhdNG6VUlCjprwgIIwi6o0GFz/5hDCOee655ygUi2zW62lDbdp7Jfu6ApmiQdNS0orGVoQo+rS2K/Mksi9InYdS+gBB8IkSIS4eywcqln9P4phEE8oYigiUJAmddptGvc6pZ59N01iGjJj71TBUKvZBahq96H0AleFUBKwDBw5w4MAB4jhmfX2dpaUlFhYW6HQ6xJrG8WPHqGSmOdTkWigUCjz77LOcP3+ec+fObfvctbU1/sE/+AcA/PIv//KOtZQBvrmwbZtY14V8JSJ6fO211/iTH/yATz/9lJdffnlHJzJBDlCXz4Sh6wwNDbG6uirSrztMH8rCl43z2b0jOzKKQqHrmQ2l0XFdF9/3mZub49atW0xOTnL8+HE6jkOn0xH7htw7VDuK+rzefUN9ZmoU2dpP0j7CTCSLrqdpUTVlJZL7RQKpvGQSRShmhGL8qgzT4uIitm1TGxrCNAx0yTbdKSgJfF9E1Uny+WbJZr43FWgYMt2edbg9OadXzdtM5PWrvtM4jqlUq2JY9CPYN74yQ5nP5/GaTYIwJI+4yJMnT/LJJ59w/uOPiYGjTzzR973bPCFJNV5dWUnrDbtNJgchZFAulXadgG1m6pRFeY7Ly8tcunQJ27Z5+YUXyEkB5EiO+FGi7qlXp2l4rovreeSkl9a1GORCLwYlxhglIERDI3FEq0mSJLQ6HZCpZtUPmjLm+nmFsRhgbeo6SBk63TS5PzeHbpocOngw1W7dDZ7niU0g4yk+EP02qR0appWuZKVcZml5GaQu5+SePel15HI5ahmFj1dffZXz589z4cKFrqHaAH//7/99Njc3KZVK/Pf//X//cOc7wDcKhmFg2TaxJOZZlkWlUuHMc8/x6aef8u5PfsLrb7xBqVRKszEK/faNQrEophA5Dmvr60w9YMqEmxE/2QldhhMxRH6jXufatWvMz89z9OhRjhw5IqJPmRkLkwTiWERTmWhStbAoA9pv79AQ2rMgWlcUgiDAdRx02ZAPpCMOFds2zVAlW10Duq5jmSaGmgQCrKyscPjIEcpdgxz6Q7VvgHRskuSnaqdQRjD7/dm2LST9NI2F+XmsXI4909OYMhULYmyYwpe9b3xlitPKM4xkikJt+KdOneLo0aN88vHHXLhwYVs6M9ugqm4gSEECqaixvr7+wM/3HEfMOvscRfKVlRU++eQTyuUyb7/9NqMjI5QrFaq1Wppbr1QqYsh0oUBOKn/oSjdVLjq0reZ65eElyKhQRoGxyv9DOmdPl4ZP08RgaVP2hubzeYqFAqVikUqlwnCtRq1WE+dSLIp7Y1nMzc2xd8+ehzKSYRimaSY7l9t1HmAX+qWDMz/L3u84jmk0GvzxD35Ap9Nh37597Jme3koza1rXQGnYqlN2Oh0+++yz9OeXL1/mn/yTfwLA3/t7f49pSQ4Y4NsHtXeoemAYhgwPD/PqK68QRhF//Cd/wtramoiy5HtUarJfu8XQ8DCGrtPpdOjICUU7QU0wetBUkCySJOHSxYsszM/z7LPP8uypU5RLJarVqtg3pFRkuVQSBJR8npwcXGxo2va9I3NcJQCuBNgTmXlS5ZdEEl/QNOE0S7Ux07KwpQpRqVCgXC5Tq1ap1WpUq1Wq5TLFQoG8bbO6toYfBBzYv/+hrtd1XXQgZ5oi4vyc7Nrs9SkosQdxC4TRvHzlCh+eO8fI6Cj79+9nqFbr4lv0Gkr48vaNryyi1HWdfKZtQ4XwhmFw+vRpKpUKFy5coNNu89JLL2GYZpfCS79bPzI8jOe6dByHtlR86YckSXA8r69eab/XAly9epVLly4xOTXFk8ePb0VYGaKNBv2NkIwEbdveLq4uH2DPctlkg0CTOqeFmGq12rVYarXaNkLPbgYs+8ql5WXa7TYvvvjilmblLtetGp1zuVzX6KtdsUvdVEEZfNUU/MEHH5CXqZGWpP5nvcehnjR6tjB/7tw5nn32WQB+5Vd+hTAM2bdvX1qUH+DbiWLx/8/en0dbcp7nfeivhl1Ve95nHnqeMYONgQCJmbQpR5YpytS1rmMnnmLZN86yYuvKucv5I0vrWlIiyctK4lznKpQtOZZ9JVmOOIiSTYIkSIIgBqIBNBo9oNFz95nP2XPNVfeP7/vq7DN2gwTQ3UA9a/VCo8/etYfz1Ts+7/OW6DabRLKSo9oRjaEhnnnmGV544QW+/dxzPPTww4JQNkBq2ex0WpZFqVwm7vVYXl6mtM18sR8EmQiBysS2Qir7k88//zzdXo+PfexjjA7IMKpn6poGsgWy/vkqWK2vXyw9QKBR7FM0jXKlktkJz/eFwpBlbSDiDRKFNn3vA38/f+4cIyMjVGu1LAPd6plqZzCIgCaUjvuHwfptRuo1oyjiB6++ypXLlzl48CCNRgPX8zDV7wQhllIbCLLfa7vxge4wKpfLpLqOL2napGk2y7h//34++dhjzC8s8K1vfYulpaXNLzLwZZqFApVqFVPXWVpayrZcr4eq3au9Z1tuwZAH8JUf/IA3T5zgzrvu4r7778cwjI0iCVth4Cbd9HU0LbsBYhJiIhLi1QxygPW2/vnvJk47f+4c9Voto6Bn10T+0gduGjVDqfQwYXNixHpsxVBe/6mjKOLEiRM8//zzDA0N8eADD2CaJpasCKieK6yNCgEOHTqUfYZXXnkFgK9+9av86Z/+KQC//Mu/fMPs3By3J0zTxJG/Y9/3SeR9roLRJx5/nB07d/LSiy/y+htvEGxyr66/l4aGhjA0jVASe7aCJ/Vgt9JfVY4rSVNWmk2+8c1vEoQhTz75JENDQ8Rq5+qPCpklarou+oXSyQ4uTlYOalM273XuZ/XZut0uc/PzmSZ3OvDzzT6/53nZ+jJTystd13ZsYX/XP0tDyI4+9+1vc+3qVT529Ci75EaVgmWha1pm8+vrNru813bjA3WUtm1jSPFbz/NA0zAGeouTExM888wzaLrON77xDV5//fVsX+FWRrler1MwTZIkYVEuC14PX85brZ+TUaWZJBXrnoIg4HsvvMClS5d46KGHuPPOOwVDLRUjE6q0sS22ccTrHrjm/5TWq7qlfpSBYdd1mZmZYd8W2zdUCVuX70L1YWzLEkQftv6+V9/+NsLNA59/YWGBZ599ltOnT3PkyBGOHj2aLYk2ZV9EaWSWyuVNs/5HHnkEEJFhFEX8/M//PCBYsX/1r/7V7d9njg8FytUqqRTJTpABn3QWhmny0EMPce9993H27FmeffZZZmdnga3PsS6JPaZpsrKykt0D6+FLuUyQVSSloDPgIJM0ZXZmhueeew7btnn66adpNBrZHsYbDrIHcMMazwO4rqLX9i8IwLnz57Esix1bbEpRgbbSzlXkP9XWUoScbV/nBgLsOI458dZbPPvss0RhyOOPP54JkaiVgIZhrI7+bLIC7b20Gx/4VtyyHGBXq5nWf2m1Wo2nn36a++6/nwsXLvD1r32N2ZmZ7OfrD4Gu64yMjGDqOr1ej+5Ac1tBMcnWG2HFGEtTsQ3929/+NsvLyzz22GPZLriCVJjQIMuCr4sbeIy+TnAgK638CFGhwvkLF9AMg13X6TGkkCmQgAhkdF1f00/dFNcpuarrvvrqq3z729/GLBT49DPPcOjw4axsphY3D26EaGyhJ6nKKMePH+c3fuM3OHXqFAD/7J/9sx/OKOS47WDbNoZ0PIphOfib1zSNgwcP8qlPf5pKpcL3nn+el19+OcsuNzsn1Wo1k7dbWFzctGQYhuHaxcMDzlFlTufPneN7L7zA2NgYTz75ZOZYHfm8zNZdB9cNTq+DTL7u3bBOBxDHMRcvXmT3nj3bXiNFvFdPfreKCKTsxrYZ5Q18xvn5eb7+9a9z5vRp7rjjDv7Mpz+N4zjZKi4lij5IOBzaZPLhvbQbH1iPUqFULtOVxjEKQ7RSaQ2BRw20Hjp4kOnpaV47doznn3+eqclJ9h84wGYcLNtxqFartNptFhYXsW17De1bXTMrC6hfljT4zWaT733ve+i6zlNPPbVBtcO2bfpxjBcE193WnV138L+bPWRDRikXGG8VFabpDd1sSZpy/vx5du/ateXezdVLpqvZpOMIPczBvnC6Uf5JfYdbfbIUuHb1Ksdee40oDLn//vuzzFaJ3tuWJVRV1n3O0S3WaqkDHwQB//gf/2MAfvqnf5rHH39828+X48OFcr1Os9cjDAJsy9rAYE+BaqXCY489xuXLl3nt9deZmZnh4IEDq7J36zAyMkI4M4MfhiwtLzO2brtQmiRibEKOYKl7Qt0nJ06c4MyZMxw8cIB77713TSXIlFJ3sRQmuO68tyLhKCbsu0QWZP8Qz9WAK1evEgQB+/buve7jg0HZ0VJJbCv5EYPWwPd57fXXOX/hAiMjIzz6iU9QrVYJfZ8witAQs5aKvauceb1e37QS9V7ajQ/cUWqaRqnRoN9uZzNKgxgcti2XSnzyk5/k8uXLHHvtNWbn5th/4ABHDh/O1FsUVIPXDwIWFheZliMH6ppZtLaObn3t2jVefuklqrUan/zEJzZcF8AuFOiDkE2KohuO2LY7NhvOlHxbW/YZboA4g6YxMzOD53kb9n5uBs/zst6oY9uZ49I0bUunnG7hJFNEJHjq1Clm5+aYmJjgqJw5BVEOjuXgt23bdPv9NeWzWr2+phk/iEceeSQj/IRhiG3b/Oqv/up1P1+ODxeK5TJNqR4VRdFG2yEJLpqmsXv3bsbHx3nt9dd56623uHL5Mnffey9Tk5Nrbj5d1xkaHmZxYYFOt0uxWKQyoCGtwkZV/cqemaa8/PLLXLl6dUuVLk3TsGwbt9/HDwJK1xu5+hEyykEbt75tc6OZ6rlz5xgfG7vuSEiSJFmA7QyoDxnbtJ22W+UVBAHvvPMOZ86cIUoSjh49yt69e7OWjCfH1iy121ITIgXKRk5vUTl7L+3GB+4oQZRfF3SdJAwJfF8wyuQXsKGhKw99pVLh7bNnOXfuHOfOnWP//v0cOnRolVWqaYyNjjIzM4Pveaw0mwzJunUsB/PX49y5c7x27BiTU1OZmsNm0HRdCCbI+cjSFit0FLJRlm0es5GocwOl1+tAA8698w4jw8NbOh2FKIoIZFbnVCprsmCNG49KU8QqnlOnTrGyvMzQ0BCfePRRJgcClTAMsyXPSsg+CkNSROmVNGVqG+ZhvV7njjvu4OTJkwD8/b//99+XnXM5bm1omkaxXqfXamVze5nd2CQLcxyHhx58kLHRUc6dP8/3nn+eer3OkTvuYNfOndnji8UiFbnvdmlpiaJtY8iqV7yJQ/Y8jxdeeIGVZpNHH3102xEDx7LwXFeIedzonsofIjNLBsYk1tuO7SpACs1mk+XlZR6Vfb3t4LouyDGWQRWejPizyfvf7D14vs/Zt9/mnXPniJOEvXv2cPDQIbG0Wf5O+66bzZM7ti22v+g6BfkZnVKJkS12DL+XduOmOEpd13GqVXpLS/Rdl9Kgmr9cobIetm2z/8ABDh86xNVr18QXfPYse/fu5fCRI5TLZcxCgcbQECsrK6ysrOCobSLrUvU0TXnzzTd5++23OXDwIPfcc891a9a2ZeF7HmEQkKhe3ja43vW22h6i5kt/GEfZareZX1jgoYce2vZxKQhheF3HknqWa9/c6vzSVpFgkqZcvXqVU6dP02o2GR0d5fHHH2d0bGwNPT+JY1y5KcSWi3E9z8vmpHRNDIGPX2fwe3x8nJMnTzI2NsZ//9//9zf4jeT4sKFarzOv6xDH9Pt9irJ1s1XOZBgGw0ND1Ot14iTh9OnTvPTSS7z11lscOXKEPXv2oGkaQ40GntxNubC4yMTkZKYvPTjG0el2ef7554mjiKefemoD23I9NF3HsqxMXN3cYjsSbF2tuRFs15+8kWu+8847OI6zJsDdDJnWbZpu3PSk2meISlHmvLVVmToQjvb0mTOcP38eTdfZv28fhw4dyhIm9UjP80QVSpPKSJom+r1JIvrVacrUdeYg3yu7cVMcJcDQ2Bi9ZpPA9/Fcl2KpJMqOWzgYXRerjg25cufQwYOcO3+eM6dPc/7CBXbt2sXevXsZGx0VX3Cvx9zCAtPywIM4tFEU8corr3BNDgMfPHhQRI7X2YlmyvU6SRBcN6vcbMh5PTY4SvVfebjWZ3SqLr8dTp88SalYzFbabAXf87L+wma6k+L9sao/K0sgalbryuXLnHvnHdrdLhMTE3zsqaeyDQMaZDNeaZrS6/dF5iip/Clk2YBhGOiaxuT09La6si+//DLPPfccAL/4i7+4QZQgx0cHpmlSqdfpr6zQ7/dFb13Xs0rMemgDfb+hoSE++clP0mw2OXXqFD945RVOnTzJ/gMH2LVrFyMjI8zNztJ3XZYWFxkaGiJJkmyEbWFxke+/8AKO4/D4U09RqVTWBIVbQcl3BmFIMUmuGwT/MAXYbUdDroN+v8/FS5e46667trWBaZpme2dtx9lcvUt+10owXSmTpcDS4iIXL17k4qVLmIbB4cOHOXjgQMb7UCxiWFuFyvaJyl4vCDnCgm1v2XuG99Zu3DRHads2VqmE3+ngyfKrUSiQbFLqADJdROV8DNPk0KFD7N+/nwsXLvDOO+9w+dIlnGKRnTt3ZoSe+fn5jNkayl1w7XabRz/xiayPOajTuh0cxxEruzzvuio/13Nqm5VekyRZLV+sO/DXu16v1+PqtWvisG9zsyRJgi97k8V1K8S2eq04jrl27RoXLlxgbm4OTdOYmpriwYcf3rCpfLAE5rkuiSRDlEollMyfWqtm6DoFy2JicnLbz/aP/tE/AuCee+7hZ3/2Z6/zTeT4sKM2MoLX7RKFIf1ej2q1uu29q+s6iSTkIMdCHn30UTrtNmfOnOGtEyd48/hxxicmGBkZoVAo0Ox0xEC7DKAvX77MKz/4ASMjIzzyyCOZELuGLCteL8i2LKLrtG7WCBK8S2TrtX6I/uTbb79NwTSvS+JRa800yWlYj81oF91ej8uXLnHx4kV6vR7FYpG777qLvfv2rSFcDs5frq9CqcdFUsxAVbpGR0e3VUx6L+3GTXOUqvwaex5RGNLr96nValseOHV41vQkEFnJgQMHOCD31V26dIl3zp0jDALKpRKN4WGx7kbTeP7550mSJBsGHkQ2O7jNIS0UCpiGQSCb2VtmlWrUY9tvYOMcZTYHxbuPDE+fPk3Bsti9Z8+Wj0kR0SNS1mo7Bm+apiwsLHDt6lWuXL1KGIYMDw1x/333sXPXruvufAxkBA1i88LgBndFlzcMg7Hx8Y3qRQP4whe+wLe+9S1AKP7f6EaTHB9eWJaFXangtlokUYTveRQsa8tenKbrpJvcT9VajQcfeoj777+fqzIQPH78OJpcS9dpNrPl75cuXWLXrl088OCDa0S/lbzk9dRoHMfBc1389yDI3gyqzLlekPx6btLzfc6fP8+hw4e3ZeVG8ntOQZB9tnn/QRAwNzfHxQsXWFlZwZA7KI8+8ACjo6MbmfSsTiakaUrPdddUoUDMMaoxP13KeU5MTW3JK3mv7cZNc5QgMpqoUsHrdCgUCriuK1inm0RBar4vVSXI9b0zTct6EXfffTdzc3OcP3+eq1evCiFiyVh96OGHNx1OVZtAouuUYB3HyRa63tCBl798tdlD1eDN2KREkRBLPC4SNfkwDIV8XxQJFY4BKaet4Pb7XLx4kbvuvnvbA+F7XvY+ipv0SqIwZHFxkStXrzI7M5PJAh48cIBdu3cLNuAANX7zDy02H6gSjWPbYlYySdANI2PLKUbgyNjYGmp3v9/n2rVrdDodvvSlL/FLv/RLAPydv/N3eOqpp67zTeT4KMCyLIxCgYJlEUQRqeeJWectRivUIHySphTU+R14jFkoZPtU+67LxQsXOH/hAgsLC6Llkabs2rWL++67b9PNGBrbszphVbkmjKLtg+xBKLuRpmtKmIMzjH4QiP6n3BmpdGCzjSTXySjPvv02mqaxfwtxEuTr9V1XjGdY1kbnlKZ0u11mZma4eu0aCwsLpEnCxMQED3/840xNTmZl2q02Damfua5LEsdrq1AI9rHneZCKDVKjExNrlHXeb7txUx1luVym1+thBYEgyaRygfAmxl59Yb7v8/f+3t+j1WoxMjrKr//6r2fOQZF2DF1nZHSU3/zN32R2dpZGo8GuPXsYHR7m+e9+F8dxmJiYYHRsjInx8dUvXDrL7QZmLcsSjLgowvf9NVsF1Iouz/cJ5LJZQzq6QeebpilWalGiLLeHgBFp9CWZwIhjOgOPV1GrUqQw163JevvsWQzTZP/evVuWgcKBiLBUKqEbBmkcs7yywvz8PAvz8ywtLZGmKU6xyNDQEEePHmVsfHxthLsuo1e9CPX/oSyHgcjA1biN2o+nJK+SNGXnnj1Uq9U12fPv/u7vbiiTfPzjH893TebIoGmaUOqJY/x2G9Mw6PX72VjD+vlfTdcJg4D/1y/+IgsLC4yOjvJrA3ZjUPjEME1+7/d/n7Nnz7JjepqDR45QqVS4ePEily9fZnh4mPHxccYnJhgeHs5s1fUcJUgtVHkfDgbZiWTXhmGI63kisE5lhUk6+fXO35NVmVByPFzPy/gNqo+nlITUblllP9R3EwYB5955h/379wuN5wHm7CD6/b64z+UKKxBB9/z8PPPz88zNz+O5LpqmUa3VOHz4MAf2798427jJd6RKqcoZh5tUodTvNJC7dmulEpNTU5QHgv33227cVEdpGAblcpluHBO02+hpSq/bXS3BDkSHuq6jpWLh8E/8hb/A7/6bf8Pi4iLf+c53ePrpp9dkOUma8v/53/433j57Fl3T+NznPker0+HIkSNUq1XarRbz8/NcvHgRNLHfcnx8nNHRUbHJfBtmGogsqRfHuDLKiuOYMIoyRx0EAVEUUTBNUllPV+XUTOdVi/HwCAnR0Yk10cszdD1TrVFHKklTUqnHmgCkafa4OElE6eTQIcxCgWATvVulPBTHMa7nsbC4yML8PAsLC+J9FgqMjY5y/8c+xvjYmFhoHUVUKpUt9S3V+xt0klEUrSHvqJtK/S4TGTEGcczExAQNuX1lEK+++iogjMrevXv5S3/pL/ELv/AL25Znc3z0UKlU6Pf7FEolAtfFTBI818UpFjdkUrqmUbAsPvOZz/C7v/u7LC4u8t3vfIennnoq28+ogrdBu/FTf/Ev0u/3CcKQAwcPksQxi4uLnDt3jlOnT2PoOmNjY4yNjzMsN4Jkme0msCwL0/MIk4Rut5stF47lML2yIzqrmZfqxw06OA2xqUNDZMOmaWaVp0HbkaZif20cxxCGYv2VpmXL2t955x2SNOXQoUNbfs++72cOPApDzp8/z/zcHK12G9KUWqPBjh07mBgfp1qt4ochOmy+gEK+fpaIDATdnuuujpCVSplilwomlFhJkqbsP3SIcrm8psf5ftuNm+ooYe2BT3yfNI7pdLvUqlWQbLbssBhGRsv+0z/5E5aWlvjSl77E448/vqYE+m/+zb/hlR/8AIC/8lf+Co8++ihf+9rXsl/K4UOHuOfuuwmCgIWFBebn55mZneXs2bPoiI0g1Uol26ZdbzSo12qYhUJW3ui7LkEYEgUB5kBj3zAMUWYxDMqlEpYcJVl/88RmRJcuISEaGnEhwXEcMS/kOEKyKRUi7ZFcw6Uy1lg6nTAMOXv2LCkwNTWVRWNoGr1ul3a7TbPVYmVpiWangycjQ03XGR0Z4fDhw4yPj9NoNFbfX5rSlHsxt+sXqzlRdUPHkq6fypknNfKjys8gItNYOvn9Bw9SKpU2lIr/xb/4F/yLf/EvfsjTlOOjAl3XKZfLdKKINAiye1I3jA39c0NqCz/66KP86Z/+aWY3nnjiCWC1J7jBbjzyCC++/DLu4iIgbNX+fftI01SMYslKzFsnTmQbd5xiUdiNWo16o5Gt00LTCOV+2m6vB2kqMiLp1HVdLEW2TJOCaVKrVjMHuRkyRqjjiBaWEgeXm0SSJBF2I4rW2I8UQYrxfJ+zZ88yvWNH1hoCsQ1E2Y1ms8nyygrdTkdcX36+iYkJDh0+zPjY2BqBFt/3wffRrtMP1OW6RWVfPM/Dl7arVCoJBzjgJEE4yiiOs0xyvSjC+203brqjzA58kmDEMXEYEoYh3W5XZDSDvQTTJJJf8E/91E/xhS98gcWFBZ771rd4+lOfQktT/vhP/oT/+J/+EwB//sd/nD/3Yz9GX/bFVK9iZm6OqYkJIf67Ywc7JMXY932a7TatZpNWs8nS0hLnL1zIIqCS4+BI56duPsdxGB0ZoVatZlsGQBxGpRO7aZ9gPetV9SEgcx6apmGYJnqawkD0lMQxfddleWmJy5cvM9RocP78ebwgoN1q0et2CeWsk21ZlKtVxkZHGR0ZoTE0tKHcOYiMPbfNTZqVW+Xf4zim1+tlGabqLajIVpWOOp0OcRSxR5Zl1meTOXK8G1QqFZFplEqksv/e63bRq9U1fTRTLjJOgc997nP81m/9FgsLCzz33HM89fTTpGnKVzexG0DG7jSlIPu8LN026nUa9TqHDx0iSVO6nQ6tVotWu02z2eTc+fOijygDx0qlgmXbFNT1TJMwihgdHqZcLqMbhqgYSQfxbvY6Ds5QZlmnrmNqGhgGKmxQCjW9Xo+zb7+dBbVvvvkmPdel3enQ73TE8zWNUrlMuVIRWfPoKPVaDVsSI9dDg4y1vx3rXgUG6hquTDhgwEmyGowD9CV3QzMM9h84kGWcHyRuuqME0at0XZfIttHkQlLf94XRLZczQoxhmmi+TxRFPPnkk3zlj/+Ya1ev8qUvf5knn3ySl155hX/3b/8tAJ/8xCf4y3/5LwNgFQpoCPKQZVkEQcDM3BwT4+NraM62bTMxNsaE1BxNUjE3tLy0RKvdptPp0Go26Xa7eK5LGMdZeVhLUwqWRalYpCApzY5sfOuGIZhahiH6BaaJ11+7MLbTaXPlyhXiOM7KDrEsgar/uq6L67rZFnTSFJKEpcVFut0utuPgFIuMjo5SLpdFVCpfs1gqYQ042/VQpafs5twim8zKrQCpkBLry3Krruurq8wGroumiRJWEGA7Djt37tzWWefIcSPQNLHoe2VlBQoFdMlz6Mj2jSH74rpcTRVHEZ987DH++KtfZXZmhj/64hd5/IkneHkLuwHCdsRxzPDwMMvLy1nrYmx0NMt4dE0Ty49rNXYhHFIUx0LpZ3mZbrdLp9Oh0+kQLC/j+j5IMQPVknGKRbHA2TQxCgWKck7RVGu1pPC4IW2JGp+Ym5vDWFpadcqmucZuxHGM7/vCbvT7YrEDq9J8ly9fxpGC86PDw5R27aJWq+HI+VRN16lUKtcdWVESehpbj7dkymvSPqiyNojMWLFuB2e4kUFIGEXsO3QIx3GuK7H3fuCWcJS6pGMvLi6SWhaGbNq6rpsdIk3W1hWrUtN1Pv/5z/O//C//C4uLi/z27/wO3/3ud0nTlLvuvpu/87M/mxlrdbjiOGZ8fJyFhQU832dufp6JsbFNZ3GCMKTvukRBIA5xqcTu3bvXjFR4rsvS8jK+56FpQjWi77p0Ox163S5deXhC2YcIkiBjnV7TZ4n1OGPgXZq5zOtXXwddQ9OhaJSwdANN3iCFQoFiscjw8DDFYpEkSTh+/Dh33XMPhw8fzsotvu/jBQGhvDliz6NYLm8fgcmStAZZCel6ZVcQWbMrqdyGYVAqFrObf5DAlKapyCaThN1791KpVG7KYc/x4UOxWCQIAnpJQhIE2ZB7u92mXqtlwZiqRqVJwuc//3n++f/6vwq78du/zfPPPw/AXXfeucZugNh7GPh+ViZdXlrCdV0WFhYYGxvb4BQSSVjzPI8kTWk0GmLez7ZhgIm6vLxMt9fLpBzdfh+336fT7xO7Lt12myhJiMNQOLwkyappSLJPkiQcf/PN7LUN08RQzlVf3Vtp2zZDQ0NMT09TLBa5dPEizVaLT3/601kPTzHVA9/HDwLBv5CTBNdj9g/qaG+ZA2urMoOK3epLre+SDApUNj34+MD36fV6lKpVpqamxB7RmzAidks4ShAHudFosLS0RBIEmep+T4pn246TNarVguVHHnmE3bt3c+nSpWxmZs+ePfyD//a/XeMYFK05DAJMw2BsbCxzlkrAO1tYnCT0VKQj+3m2bWNblpjHSpJMZs4pFqnX60SyFKDElDvdLlEUUSqXsUyT/3Tp6/zrt/5PmkFTDATJREpHEn1SjbP6WRb1RRISllmmqBX523f9V3xm16c3fFcp8J3vfIdqpZI5SRCOySwUKBsGrTBEl9+Boet0u10c297Qv9FgjarJlkPPyunJ//Ul205dv1wsil2dqgw00LT3fZ9Op8PQyAhTU1ObjufkyPHDolarCUMfRaSyEqWcZU06S3OgGvXoo4/yR3/0R2vsxu7du/mH//AfbggoLcvKeniVchld01hcXMT1POYXFhgfcJZBGIo+vAyGrUIBS45HgQgsAdA06o2GeJ9pSq1SyRx5p9NB03UatVrW2lBIEcpdURyzvLTEc9/5Dk8++SS2bRNHkQjopfrVVmXblWaThcVFjh49uobooslqkK5pmQNzZJAQxzHFYnHTCtDg+1MVqc02DiknmSQJbr8vlktoGkXHoSBtsy4TocHrNlstUk1jescOxsbGrju//X7hlqp9OY4jGK+FAokcrQDoKfozguUFZM3rZ555Jnt+vV7nF37hF8S4x7pfllUoZA1w0zCYGB8XQgS6ztzcXEZNbrXbBGGIWvRcq9UoKSYdbFjcrA6bYrrCwMBwmuLHPv/rG/+bcJLbQJe/ihhxM7mRy//+5v8XPw42PHZ2dpbFhQXuuffejZlfKgZ20TRKsgyrJLhU+SXrQ7Jxd9wg2y77t3U/7/f7mZM0TZNyuSyCiIGbRF03TRLm5+cxTJPJ6WkmJia2nVPNkePdQtM0hoaGsNS6J/lvcZLQlkQUY6AaBZvbjWKxKDKZgfOpemaDjMzRsTFMXc9GJFRw3e12RdYHlGXVpLAuYFcwJOlI1zT67to2zFZOToOMrGRJu2PK8jIMiA1s0zY5fvw41WqVPeuESTSETe1L8YaRoSEq1SrI77HT6WRkwew+38x2yOQiu+5AuTWOIvEdRRFommCuWlY2Y60cqrJBruuKYKdeZ9euXWvmJj9o3FKOEsQy1XKjQarrWRlQGWe3389INFEUMTs7y3/4D/8he67v+2sjwoEyYbFUWnMgdV1nfGyMkoyULl+9yrwaMNY0atWqmDeUv3Rd1zc9wNmB1/XV6w9kX3GaECbhdT+3gSgnxKwdc1m/4DlJU44fP87Y2BiTm0i/9fv9jG5eLpexbJtKpZIFBVEU0et2M8Hn9bdUIplxg1lq5vyShJ7cBwgisCkrwpWMFgdl+NIkYVH2T4aHhzlw4ECurJPjfYGu66IsZ9skcSyUamTlqSPPu444k9euXt3WbijiD6wGwn3ZEwREADo2hiEJPufPn6cnM0nHtqnVahkfYLBfvx6OvHYcx1mvbhA3Gk6u13nVtnC0MzMzLC4uir2Z65xppNi4iNGTYqkkEpdqNZvb7vd6eLIdtpm2rrr3ddXKGbC/QRDQ7fXEFIMkNxUkF0OxZAeD9jAImJufxygU2LFzJxPXWZrwfuOWc5QgdktWhofXOiZJrFEKFMsrK/zyr/wKnU4n63d5nseXv/zlNddSB6JWq9Futdb8TNd1xkZHhQRVGLK4vIznedSq1U0N+lbkk+zAJ0km+K3ec7lQ4pNTn7juZzZkFTxmdQ7y6eknKehrS0Hnzp2j0+1y7733briG53lCqQSxyzP7DJqGbduidCSJON1ud+vDnqZZQDI4I9ntdollNFgql1ep4evGeEA43Fa7TafdxnYc7rj77rzkmuN9RaFQYHx6GsOyVs+u7OUpVna31+Of/bN/Rrvd3tpuaKtD/orI0mm317yWqtZEYYjn+ywtLWFbltBPXl96ZHOnN8i/2JBVqsfcIIlGXQ82l62Lk4Q3ZYC93ukkki2sITLUwcxNNwwq5TKObD35QZDNNK6/xuD7GGTFu64ryEdpilkoUCmXMQwjG1VTYysKnu+zsLREGEWMjY9zxx133PQq1C3pKDVNY3h0lIrSYx2sg8vI59/8zu/QXFnBMAz+u//uv+PBBx8E4Otf/7pgwa29ILV6nV6/v9onkPClSLHlOBRtm8D3mV9c3FKmbbODmx14RLlgfTnzv7jjr1z3M5tZRhln38FfOvR/W/OYXr/PW2+9xf59+zas9/F9P5O1KjlOVqJe8xqmSbVaxZRygN1eb8PnVJJZumlmJRPf9+lJx6qraFCuxEFKfA1eRTnVTrcLus6BQ4fYtcVy1Rw53kuYpsn4zp2Y0rArJKnYZPNv/+2/pdPrYRYK/KPt7Ia8z03TpFyp0FoXZMdxTBiG1BoNTNPEsiwWl5Y2dSLK8W5m6h3bFu8zTbN2xo2OhQDZ/KMqXW71/FOnTtHr9bjvvvvW/HuapvR6vYxIU96kbYWm4RSL2dhXJAUINnsfWYCNsNX9Xo9A2iXbcUSVbvD6Aw5WCaP0ul36vR71RoOPreul3izcko5SoTE+TlUNwyu2VxTxpS99iWarRblc5h/8g3/A7t27+dznPgdyTuiP/q//a8O16rVaRjVWUOyuFJianGRifBzDMPA9j5m5udUB/gFsd+ANwxBrpNYdov21fTw+9fi2n9VY5yif2vEUO8qru9ZS4NixY5imyd13373muUEYimWq8n1Ym6liqPcvewOGdJZKSUe9RjpQPlHzkVk/slAQzzUMsTcU0bPNnpcKDcperyfWCgUBu/bs4Y477shHQXJ8YCjYNqNTU6K/OGA3/uAP/oCVZpNyscjP/f2/z97du/ncT/0USZIQBMGmdgNgaGiI9oDdUK2gKIqwCgX27dsnWhvAwtLSxkAdxPvY7B5QzgnwJMP1xt0kGxe9bxLIN5tNTp8+zR133kmtVlvzOXq9XrbCT3ENNr5F8R1acvwNKQkYDFTP1Go9TdqVIAgyUiOa2Dnr2HZmOwcZsCAqUL1ej0DO0JcrFe64807G5KjezcYtbb10Xac+Pk6lXhdRiKbxla98hfPnzmEYBp/97Gcz1ueePXs4+uCDRHHMN775Tebn59dcq1atouk6HXngYznakKQptm3jOA7VWo2xsTFMOXN1TQqDD2I7VmixXBYSdlK3cRB/9Y7/nK26Drrgv4r3RQxo/OWDf2nNYy5dusT8/DxHjx5dI90UBAH9Xg9N08Ts5jZrZ7K3qusZgy+Vm1BUmUT1LVVWGMnPYTtOdkOnabqG8KBmPru9Hr5crdV3XSanpjhw8GA+CpLjA4dVKjEsRUXQNL785S9z4fx54jjmz37mM0xPT5OkKXt27+ahhx4iSRK+8Y1vMD83t+FatWqVXrebGXYl65YiRA9M02RiYoJqtYqhabQ7Hebm5jZop2ppumlFypQC7zqiDLyZcPhWyDI5VXZd99wkTfnBsWNUq1UOHz6c/btyklEco6UpZan/vB6atBHKAVu2LSYEdB1XLmBHMtxV+6XX7YpSq6pASdJOInu/g+8wliNtnW5XrNdyXcxCgT379m0gHN1M3NKOEkRJoToyQq1e55vf+AYvv/IKYRjy8MMPc/jIEZrNpigdJAmf/4t/UYwlJAm/9/u/vzqUj8yGSqXMUXqeJ9hwur5G2FwJptuyz7GwsEBzoOyisZboMgjTMMRCU1muHCxr7qvt5cnpJzb9jCqbjFQ2ufMJdlZ2Zj/3fJ83Xn+dnTt3riHw+L6fkQxMOWe5AVvcZJqui8fruqCAyzmtOEnw5OiHEnmoVKuCJr/JZ05l/6crD7qm6wRBQL3RYOfu3UxdZ2N6jhzvF+xKhfrw8Bq78YlHH+XggQO4/T7NZhM/CPj85z8vemVJwu//wR+sLmOWtqNaq+F6Xra4QQXYxWJxjYrW8PAww8PDGLqO5/vMzM4KWTcJde/omzBGS8WimPVOhfj3+s1IWyEdKHluNhZy5swZWs0mDz30UJZ1qp5t5iQrlY0rttKB5QfrXt+WIy+adJapzNhVhS6SPAnbcTLVoc3GRqIootvrrVmUkCQJ0zt3snvPnhsK+j8o3PKOEsC0LL74J3/Cv//DP8Tt97n/Yx/j8ccfF0a638eTc3qTk5M88sgjpGnK9194gUuXLokvXx78aq1Gu90mSZIs49tslERFiBVZomw1m8zJUuwgwWXQaSoUpaJFAlk5VOGv3vFX2CyrXEvk0fiZgz+z5uevvfYamq6v6S/4nieur2lYlkW5VNp0y8d2/Y6CaQrVIsMQTrfXoy9JD2hCnq+sNFs3uVmjKKLT7WaLmK1CgSgMMS2LqZ072blzZ15yzXFT8W//8A/537/wBTrtNkePHuWZT30Kp1jMBEX6vR5DQ0M8+sgjaJrGC9JuZBs80lSMrIEYHfP9THzc3mSmr1KpMD4+TsE0SeKYmbk52pIINFiF2bCYXdfFGBpiM0g4uNxg3SB/CqL1ka5qtG6mJ93pdjl56hSHDh3KiHTKScaSFVyWGfGGzSfaxk0fgyhLJxaFYVYu9aTwiiH7upsKo0NWxWp3OkRypZZpmriex9jEBBOTk7dMyVXhtrBiX/3qV/mbP/uzvHriBEeOHOGv/7W/RlmOPBiSkea6Lt1ul//sx388o3r//h/8gbjAwIFfWFzE8zziVMg9maa5acSmaRojIyOZEoQfBFybmaHdbq85kBskmyQjVEOURQNZoknTlB3lHTy946kNrzVI5Hl8+jH2VHdn7+nqtWtcu3aNj91/f3bwPM/Lmum2ZW2cL1pX/98Mqu9r2zZhEIjMXIqW25ZFZeCgbxoJdrv0ut1s912xWMQPAlJNY+euXeyVCjw5ctwsfPWrX+Xv/t2/y4uvvcae/fv563/jb1AplykWi0LRx/fp9fu4rsuf/cxnRAajafzhv//3GQEnTVMhoymrS4GsFKnHwsZyp23bTE5O4tg2uqaxsrLCzOxs1saAAa7DwHMtKX2pZisHg3wleafYpYMjWJmsZJoK9R/JOP3BD35AyXG48447gFUnqSpd1U2c5HXZpTIA1+QGkkDusI1kj7JYKq1yINZdL00SfM+jI51qkiTYloXjOLQ7HUbGxpjaseOWKrkq3DLKPNvhx3/8x7MM0Ov1CDodISmVpiwuLWVDxL1ej0q5zG/8xm9QKpWwLGvNypnJiQlOnjzJwuJiNic0uDJqM1SrVRzHYWlpCT8IWFlZod3tMjI8vKZXOKhEY8oNInEqdCerlUpW///PD/9lnrv2bdJ0tSxrZhllzF8+vJpN9vp9Xv3BD5ienmbnzp2kkMljpYjsdbA8MbjbbVvI8nQYhviehy9LSlEYil6t1GFd/71EculsLL/vFDAsi6Jl0Wq3iaKIHXv2sHvPnnwUJMdNx6DdSJKE3tKSkMscGsraDJomlGjK5TK/8iu/guM4WaCrlKZ0TWNqcpKZmRnGZaYzuDN3M+diGAbjExNCH7rVIggCrl67Rq1azdSCNhP1sG2bMAwJ5RhGUQXBao57C9Z9lqFKJ3ry5ElWlpd54sknxSJ4qXKm+o1qRGP1DVwnuJajHClCYciXdsiXu4StYpGK4+CoTUrrHGQQBCKQVu0oSWLSNKF01BgeZnJqin379n3gguc3gtsioxyEUy5jVSoksmwwNDSU9dpK5XImA7WyskKr1crWt+i6zsjICLZlsTA/TyozypTV2rjKPLP/ShQKBSYmJhhqNDAMg8D3uTYzQ6vZXDteoWli2DlJRHNeHt6+nCEC2FHdyad2PL3mM6ke5UOTD7K3IqKpJI556cUXsW07o7C7rpuNgKx3kuLlN+8pqNdWEbInFS96/T5Rkoi1YLqO7Tii/zC40JZ1GaR0kpZtUy6XKTsO7XabIAiY3rWL3bt3Mzw8/C5+ozlyvP/QdZ3yyIhwKobB6PCwcFiIe6lQKOC6Lq12m2U55pFIbVVN05iYnGRleZkgDMWgPKszjCrDG/w3EPdjrVZjamoqa8m0221m5+aykQklSJDIVVgawlkmaYovHSaQscw3gzE4GgLMzsxw+tQp7rr7bkZHR7MVeInM+gadZGbntsokZSKBEivp9Wi32/hSV9eQmaVq47BNBqnGy8rlMtVKBUPXWVxaojo0xNSOHbesk4TbJKNcD6dSEXNH3S6lUgk/DDHjOGsye1LcNwgC+v0+tjTqtm0zMTHB4sICe/ftW1MyHVSRyA79QPQDUJHZ5eLiIp7v02q36blull0OOk1NEzqGai+c63nCoScJ//dDP8OzV74JpOgYGeP1Zw7/TPZar73+Ou1Oh6eeegrDMMSwfyKWOzsDm0AGZeNUM1+T2a1irKWaBklCGAR4vr+6lodVFtvyygpJHGdGIJFqIWEYihtMwnIcQfPWhDpSs9XC8zx27NnDrt27GR0dfQ9/0zlyvHfQdZ3S8DDd5WV006RcLEIqxDVKpRKutB1918XzPLGIoFSiXCoxJUl0S4uLVPfu3XhxNQso/54kCehCmNIwDMbHx+l2u6ICFobMzs5SrdWoK01XJdghdWkN0ySOInquS1WKm29VLTL01eXp/X6fl195hcmpKY4cPrwqcM6q3OSa72SgErb246TZmFgYRWLca6B0bJqmGInTNJrttrAdco9kFEUEQbCG+a/LDUamYZAAge+zuLxMpVZjanqa/fv33zQd1xvBbekoARw57uG2WpQcR2RHUSSk54pFoQYhmWrdXo9+v49l2zSGhrh0+bIQ/kWsm9ksllLKHJnzlIfJkKLqnW6XlWaTSJZUisViJl2VSUlJsfCuJLyYhkHBsthR3cmRocOcXjmd9SdHiiMcqO8H4OLFi1y8cIGjDzxApVym3elkN1GpWBT6kbJ8mg68N9UYV4dcQ9CvwzAkkOVVEA7SdhxRmpaRYpIkYoYrTVcVeNR3oYkN8UW5QivVNHzPY3llBc0w2LFnDzt27mR8fPw9/A3nyPHeQzdNKsPD9FstbNvGk6LftuMwNDSE63l4rosvt2j4QUCn06FULFKt1VhaXmbf/v2re1bXQdmNrMfJ6v1ZKpeZMAyazSau54nlyHLLSaVUQhtwho5l4SP1V3s90e/fQv5RMVaTOObF738fq1DgwQcfFHscfZ9sWUKxmGkyKwHzFDIRd2Xv1OeKZEYbDNgC5SAVtyNW2XSa4svZykHFL0MuolczrSnQbbVotVoMj40xNjFxyztJuI0dJYBdLmMUCmhSei6Su9ccx8GSw/H+wAC853lCt1DTuHrlCo16PfsFbXvwYY1+q9rR5tg2S8vLhNIR93o9SqUSpVKJRLG5DAPLtgk8j26vR1VGjD9339/nv3nuv0FPdBJS/os7/ioghoOPvfoqO3fvZnJiQqjbIMZklCzdYOaoDZR6dFkmipOESBKJBpWIdEneUdq0ypH2JUU7jCIhwSUfb0hmX2Fd36HX67G0tERjaIjRiQl27drFkFJRypHjFodumlRGRvA6HfwgoCtF/gumSUkRfYJAZJe9HmEY0ul2qZTLzMzOik04Q0No8h7aLNjWBv6rqlVpkmAWCoyOjdHtdllaWiKOY8F7aLWECDmrc8nFYlGsp4tjuq5LRfYrVQslQepBy8D82Guv0Wq1eOKppzKyDIhSblHyMRiwFZEUGhh8z3EU4YchURCsUdsqmKao2MndvkBW0nVdFxwnE1rRdB1LzoaqCpV6/NLiImEUMb17N6NjY+zateuWd5JwmztKEKMj1fFxYmBpfl6s5ZIOQZVUiqVSNpjflQd+bn6eYVkydRyHYqmELVlqmznNNQ5T09BkvX1kZIRqpZKVIBX7VtOETmQKOJZFHEXZ3FClXGZ3ZRe/+ehv8vvf/AP+7NE/y+7RXXiexwvf/z7lSoXDhw5l80UF216zwWQQuq4TRxGppmXljjXUckQUaJkmBfn54ijCk9tOoiii3e0SRJFYLG0YFAoFrEIB0zSzEi6Im3NleZm+6zK1Ywej4+Ps2rXrlpp3ypHjRuFUq4xYFsGFC6KX1umIURBNw7YsoY9cqeB5Hr1ul2q1yrVr17h06ZJo6VgWjnSshUJhy2Ab9e+yFJvEMY7jMDU9TVcudI7jmFarRRRFmQCKpmmUSiUh/OH7eJqQklOOVFxY2KNz585x4cIF7r//fjGeJjPEslwBKB669t2px6mh/8GqE4jKk2lZwukVCiRpSijthtqxq0ZNCoUCZqGAbVmYkrk7yM71g4DFuTnscpldu3YxvWPHTRc6fze47R0lyMXPk5OkmsbK3JzIwjRNzAjKEohtWdiWRa1ep9Vq8eaJE4IlW6nQ7XbpdrsYktDiyD+6rmeKQAqDlG7lRAq2zfj4OJ7v05Zllb7rZr2Baq2WHfhEKmJUKxUcw2aSSWzDJkkSvve97xGHIUc/9rFM/aYod8xthiRJxKENQ5FRD5Y8dB3LsjJmbhRF2R649TvkAlmeGW40qMnVOqoso76/vufRajbRDIOd+/YxOTnJ1NRUPieZ47ZGwbaZ2r+fmQsX8Pt9WmqH5QDjtSz7lOVymatXr7KwsMDIyIgQ5vB9Wq2WEPxwHOE0TVOUUde9lhoJUbwCXZJ9KtUqnXY723LS7nQIwpCRkREqxSLFUglXzosjnfigtuq1q1c5duwYu/fsYXhkBBAVqFKxuCU5RgXJvuQtDL7HggyqDcMgTRLCKBIl6nUBuKf2Vto2w0NDGTkSWF2tJcmV7U5HlFrHx9m9e/dtNzr2oXCUCiMTE8RAe2GBdrtNVSrKDAoDGLrOvv37OXf+PCsrK+zdu1ds25al236/T7/fx9B1dDlnqRawGpLllSnfy9dVpKCi4+BMTuK6LteuXhWDuL0e3V4P27YpSXJPoglBcjXWkiYJ3//+9+n3+xx94AERTeo6lVJpQ+kiltGc2tauoKTnDNPMqOeBdKDrocmSsCl3dBYsCzNNqSonKR6UOch2u03o+5QbDabkqEq9Xn/Pf385ctwMFAoFpvbu5drFi/jdLl05frZGaBwhTrL/wAFee+01oXtaKol+puzlhbKfaRgGhq5TsKwsWNWl3YDVnqXqZxqaWORcrVZZXFxkZWVFEOUkc7/kOBimSZIk2ZorRbBrtVqcPnmSyclJDh44kC2pH5ytVhmoco6xVM4ZfC+6rmNKm5fIoHoz4pCu65iFAqbUxC4UCkK6T7WEJJTD7/V6oGlM7drFhGzT3KrM1u1w+73j62BsfBxN02gtLNDv9dA1Dd0wsp6cioD279vH8RMniKKI0ZERIR3l+9kIRhxF2eF35fMMSS1XjWwdUY83dF28xgDhZnR0VMg7KTKNLG0o+njRcTIn9vbbb9PtdnngwQfFDknZF0wkWzaWW80TSbbJGvFJgiZfWznuOFJCeKtQDlSVVXXDwJAl5marRZokYjPAwJCwospHvk+q6wyNj7P/wAHGx8dvi55CjhzvBoVCgandu5m5fBm/24V+P5vzQ/b+NU1j186dvPP227zzzjs89thj1Gs1kXHJtksYBIIjILM1WF07Zcp7MJFMWxXQKtuh6zqNeh3TNDMJzDiKxPyjtBuGbIf4vg9pyulTpxgaHuaOO+8UpVpJ2FHjGEqaMlW7YgfGWXTDQFNz5ElCmCSwLmscHAExZRCuBBGCMBQiA3LhNZDt/+z1eqh1fXsOHGDnzp23NY/hQ+coNU1jZHSUJE3pLi/T7nQol0oUZGaJdGa7du/m7LlznDp9mo8//DCGHOcoOo4YvpeZWyAFkKM4JokiYhk9RtJ5aazKRw0OEXuuC7pOWQofuJ6H2++LrDBJWJFKOClCaurAwYPZjKOSyRpcP6OyR9M00eXB1U1zdaxFW12WahpGFsEaA5FsxsiT1+31+/jytSrVaiYU3+v3hYOUn+ngkSMcPHw4d5A5PtSwLIuJHTuYn53Fa7VIZACpJCl1qQu9Z98+3jxxgpVmk2G5ZqtSqVCtVISQQRwLVa4gIFK2Qy0fkOxQVXoF0FSQLZnsgVwkXSqVsvEONXcZhCHzYUiz2SSRQf/OXbvo9/vZaFw2yymvp4h/ylEXpE4rSFH1gVVdhmFg6vpqZUr2VQeRQiYFWioWM/vmeZ5wkPI1K5UK9z300C0nR/fDQEuvK+NyeyJJEpaWluitrBC4LlahkClugDggb7zxBmfffpvHn3yS8XXzf8r5qIHbWDpPxSbN9j/KDE+p56tmuCe3aNiOI7Z1z80xNzfH4uIi3W4X0zDEwmfDYMf0NONjY9jFIpZpYkoyzWDE+Xu///u8+OKL3Hfvvfw//u7fXc1wNS0bBlYlnzUYcIyDiKKIufl5eq6LqeuYlkUQBGtuisbQEPd+7GMMyb5HjhwfBbiuy+L8vMgs45hyuSz2u8r7qNvr8eyzz1Kr13nsE5/YsOQ9u9vkvafKnaGcL3TlQoZUzlsqu6Hml5VmKprGvLQbC/PzNFstTNMUxMNSiUqpxOj4OEONBnahgGlZ2LJipDLUP/jDP+Sll17innvu4e/+7M9mAb3KDGNENmnI56zBFraj2W6z0mzieR6VSkWQByWhECnksnf/fo7cffdtWWbdDB9aRwkiE+t0OjSXl/G7XXRYs07GdV2ee+454iThiSeeyJil11E7FNmeJjaEqJLGF7/0Jb76x3/ML/7iL9IYGqLbbuMFAUXH4Z/80i+hIyJSSynva2LbQKVa5a677sok9wxJvy7IZbCqx/HasWP88v/0P2FZFv/+935vzc5JxUC7HiLZpwjCkLnZWfquSxzHGdNPDSUXSyX27t/Pnv37c7JOjo8koihiaWmJfrtN0OsJUp3cOZkCZ8+e5dixY9xxxx0cueOOVW3T61w3lddWWeYXv/hFvvKVr/D//if/hEa9ThSGtDodSFN+/dd/PbumWSgIUp9kvk5OTtKQnIFqpZJVzJSNsR0HyzR57bXX+NVf/3VM0+QPfu/3cGw7E1TRkgQvDLddnACC/6AWVXc6HeYXFvDkwntHijZogFMsUq/XOXL33TRu4zLrZvhwuPstoCSkbNtmeXkZT1KxLdsW5JpikQc+9jGe++53OX78OPfddx+2XC46uDFjU/aajJziKBLRGUIE3XEcKuUypuwT2I5Dt9sVElaGQckwsKSMXqfT4ciRI9xx5IjoY4ahmG+S0WYolXEApnfu5NDhw/iex/e+/33uufvuTHggCMNNG++KFRvFMZFcCptANjcZxzGNeh3HtikWi5TKZcrlMrv3789munLk+CjCNE3Gx8dpO47Qam23CcMwm0Pev38/CwsLnDp9mnqjwbjkRmRMeYnNbIdhGKSahiZbN2EYYltWppqj7uRWq4UlRcOLxSLVSoVLly9j9npMTk3xyMc/TkFu7FHOL4ljSBK8fh8P2LFrFwcPHiQIQ174/ve5+847BUlR9ko3W06fMkAcDMNsbVYcRZmmc8E0KUu9bOUwxyYmmN69e0OG/WHAh9pRKijpuhXLotftEvb7eK0WVqHAyOgod915JydPnmR4eJgd09PZXGDmegZmCQdZcIamkRqGINkwoJuYpqt7HT2Pz/7ETzC9cyeVcplz58+TJgl//JWviFKpaTLUaNDt9bDk6ptisUiaJKI3IXscuqZx15EjXLhwgQvnz7N//34hT5emBFG04YYcZNap+a5U9j/iMKRgGExPT2f6tQXLYnxyktGJiTyLzJEDca/XpShJs1DA7/UE2c91sW2bo0eP0mw2OXHiBI6cudQKBTGoPxC4DtoOFYTriKqUshsqMFfs1CAI+Mmf/El27tjB9PQ0V65e5Z133uGtkyepy0X209PThFK5B+QCaNPMxBJiWVK96447hN24cIEDe/eSDsxPKts1aD82C7qjMMR1XbG/t1JhemqKYqlECtQaDaZ27twgj/dhwkfCUcKqKHqlUqHX69HrdAj6fTqdDrt372ZhYYEzp09TME2Gh4dFE38gMhok1sCqE1XljjRNM2HlphwcjsIQTdd55plnOH/hAm+fOcPExAT7DxzgP/7H/6gunCn99Ho9wijCdV0KhQL1RiMrE6dxzOFDh3j55ZeJ45jPfvazGclow9JV9Zk1LXPGpCme52EYBpbjUK/VqFarwkFOTTE6Pp47yBw5NkGxWMS2bfrSXvi9Hq5cdHD//ffzwgsvcPLkSY4cOUKpXM60kBXW2w4gm1FOEZtIPM+jJQlEkdRXfvLJJ/F9n5NvvUXfdbn/vvt49tlns+BX13VsqbLV63az8Q8lt6dw6MABXnzxRcIw5C/+1E/hS1Z/JAPtzaCYrrquC41ozxPjcYUCIyMjYiykVmNq164PtYNU+Mg4SgVbll1rtRrdbpeO7EHcdffdvH7sGK+/8Qb79+1jZGRErOKy7VUHog6/rNkrHdU4jrOxkDCKMvq3USjQbbd5/bXXCKOIe+65h4MHDzK3sJBJzWUqOlKFw/d9XM8jkPqsRbUuTNN44MEH+Zf/8l9yRQ49H9i/f3XzyRZQMlOe59Hr99F1nVq1yujYGKMTE4yMjX0oSyU5cryX0GUwWy6XxdLhdhu300EzDO6++25OnDiB63kcOnSIouNQKpXWrOFTtkNtF1KsekPTKFerBEGQqe0YUuXn3PnzXLl0ieHhYZ5++mn8IMAwDOIkIZblVhBl4kq1Sl8KinR7PUzfp1Qqoes6Dzz0EP/yt3+bq1evMjM7y/59+wAy1v5mUOxct9/H9Tx8z8O2bepDQ4yNjzM2MUFlwBl/2PGRc5QKpmnSaDSo1WqinOJ5lOt1Xn7xRc6ePYvreUyMj9PRNCzbzrZ1rMeg0HgKOLZNvV7H7fd58803mZ+fZ2JigqMPPEBZDgFHcv4oCsM1GwE0TcNxHMxCIVPR6ff7BEEgnHu9zr59+3jn3DmOHTvG/gMHRNlG7qpLNaH9CoLV68kDrnbBFUslJqem2LV3L7VcMCBHjncNTc4NFotF/EYD3/epjoxQqlb5wcsvc+LNNzl46BB9qR1bsKw1uysHmaRq5EtDzHFWKhV0Xefy5cu8+eabxHHM/UePsn/vXjRdZ2FhAduyVvdGDmSqhq5TKZcz5xZHEZ12G8u2qVWr7Nu7V9iNV1/NAuxB1bEUwbtIQcyOuy5hGGYL4odHR9m1dy9TO3asDQA+IvjIOkoFXdfFXsVymZGREXbt28c3vv513jh2jGazydTkJEPDw2KNjNQ91DQtmzMy5DJTgG6nQ7PZ5MKFC8zNzlKwLO655x727NmzuiRa0zKh8kDtmlsH0zCoVCqrM1RBIGTmdJ2jDzzA+QsXePXVV/npn/7p1SfJ/ofqb/ieRyDnQJ1SiT27djE9PU1jeHhTzdgcOXK8OwxWpyYmJ9m5fz//4d//e944fpwdExNMTE1ls4xKO1mNZhiGkc0ytlstNE3j3DvvcP7CBfr9PqOjoxw5fFgIqKiZxzgWC5zl1iCFwftZbfbwpHCK63mZ4tely5czu7Fhb22SiG0pUhglCAKSOKYxOsrE1BQ7du78SM9Rf+Qd5XqYpsln/tyf48ChQ3z3O9/h2JtvMlStslOScRzHoVqtYkvJpna7nS1jTYFXX32VXbt28eBDDzE6OioOnNw1p9hkSmFnvQgxrK7lSZKEQqGAYRhrBIvvvOsuql//OisrK5y/cCHbuB5I9Z8wikilGkelVmN6716GhoaoVqtrZK1y5Mjx3kHTNCYnJ/mb/9V/xYsvvsgrL73EhatXmZ6YYHx8PMtCK9VqprzT7nRYXFoiBb71rW9Rq9XYtWsX+/btE1mj6iGqeUw5yuFJhS+FNauxpK0plkqYhQK+7xMGAXfddRdf+/rXabfbXLp4kaGREQxdF4LosuqkyD1oGiNjY4xNTVGtVqnVah+aecgfFh/tT78NDhw4wIEDB5idneV7zz/PGydPZsQdHTHnqA1EZWod1mOf/CT7DxwAVrO7MAwzZ+m5rvhZEKzurFvnLAe1aXVdz2a4ojCksGMHo8PDLC0vc/z4cT52//2kaSoU+00Tu1ymVCqJsnKjIdaByU0EOXLkeH/hOA5PPfUUjz32GG+88QYvvPACF197LVPeMaRQCIh7fGV5GQ246847ue+++4SwAWKVnaokOYZBovgMmkYolX3WO0uQi5ilrSmorR9xjFMsMjI8zPLKCq+98QYPHD0q2PRSWk8vFCgWi5TLZYZHR6lUKlQqlY+8g1TIv4XrYHJykr/4+c8TxzHtdpvl5WXm5+dpt9s4jkPZcShaFmEUceH8eQzTpN/vZzJz6kAHshGvtoQPKvZvBl2SfZReo6KNx3HMocOHufad73D8xAl+7Cd+Qqy3sW3K0kmapilWZX2ESyU5ctxMmKbJAw88wAMPPIDneaysrLC4uMjCwgJRFFEtlynaNn4Ycv7CBRrDw3i+jxlFmS6zshtOsbgaYIdhtjlkM6hgPonjTChA2Y7DR47w/He/y4m33uLP/rk/R0HNdsvNKGo1odqclGMVuaO8QRiGwdDQEENDQxwYyBjVQuhOEPDm229j2LagXcsxD0WoaXc62SGOwlA4M6k725ear0qjMVECxkkCSo5K09AMg6HRUR567DF+83d+hxNnzvDrv/EbjI2N5Qc7R45bFI7jMDU1xdTUFEDmAD3Po/eVr/DG6dMU63XQNPwoIpVM+m6nA4j2jqbruJ5HkqbYtk2apvRcN1uOMNiySaQdUf1QNA27WOSBRx7ht/7P/5MTZ8/yy7/2a4yPj38kiTk/DHJH+SNAKeqrOaJrMzOMTEwwNTWVKVrEcUxzeTlTwjF1HUyTpVYLXdfxo4hCuZxtItFUs182/5WoucoSC4UCk1NTLCwskKYpx48f58/8mT9zc7+IHDly3DDUYnlbylDOzM4yPDIiBASkGlcsNV9XlpdJ5MhZSdOYXVpC1zS8KMJSmZ9UA1IkQ2OAODRoN3bLVlKappw8eZIdO3bc5G/i9kHuKN9DRFGE4zhrdjWmacrY2Fi2dsa2bS5dusQ7Fy+iaRpHH36Ynbt3Z8ocSgZLOcjNMsWvfe1rpGmKZVk88sgjH+RHzJEjx3uMJEmwLGvDMuMkSRgfH8f3fXRdZ3Z2lnMXLqBpGg9+/OPs3Lt3jdTmIKPWWLdLE3K78aMgd5TvMzRNy8TNFYrFIl1J/onjWCxMfhf44he/CMAzzzzzrp+bI0eO2wODo2sAzWZTLEImtxsfNPLG1m2IL3/5ywB89rOfvcnvJEeOHLcLcrvxwyN3lLcZjh07xqVLl4D8wOfIkePGkNuNHw25o7zNoMonR48eZefOnTf53eTIkeN2QG43fjTkPcoPAN/97nc5e/Zs9v+Li4vZ38+ePctv//Zvr3n8X//rf33La33pS18C4Cd/8iff0/eYI0eOWwu53bh1kDvKDwBf+MIX+J3f+Z1Nf/b888/z/PPPr/m3rQ785cuXOXbsGJCXT3Lk+LAjtxu3DnJH+R7h6aefBqDRaLxvr6Giwl27dnH06NH37XVy5MjxwSC3G7cHtHSrzZ05bjl85jOf4Wtf+xp/7+/9Pf75P//nN/vt5MiR4zZAbjd+dORkntsE7Xabb33rW0BePsmRI8eNIbcb7w1yR3mb4E/+5E8Iw5BarZaVa3LkyJFjO+R2471B3qO8TfCNb3yDer3OT/7kT+ZbQXLkyHFDyO3Ge4O8R5kjR44cOXJsg7z0miNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB1ljhw5cuTIsQ1yR5kjR44cOXJsg9xR5siRI0eOHNsgd5Q5cuTIkSPHNsgdZY4cOXLkyLENckeZI0eOHDlybIPcUebIkSNHjhzbIHeUOXLkyJEjxzbIHWWOHDly5MixDXJHmSNHjhw5cmyD3FHmyJEjR44c2yB3lDly5MiRI8c2yB3lB4iLFy/y8z//89xxxx2Uy2WGh4d5+OGH+bVf+zX6/f62z/1rf+2voWkaP/VTP/UBvdscOXLcCsjtxi2ANMd7gv/hf/gfUiA9f/78pj//0pe+lNZqtRTY9M/hw4fTt99+e8vr/+Ef/mEKpOVyOXVd9336FDly5PggkduN2wN5RvkB4NixY/zMz/wM7XabSqXCL/3SL/G9732PZ599lr/9t/82AGfOnOHP//k/T6fT2fQaP/ZjP4Zt2/R6PZ599tkP8u3nyJHjJiC3G7cOckf5AeDnfu7ncF0X0zT5T//pP/GP//E/5hOf+ASf+tSn+M3f/E1+9Vd/FRCH/p/+03+66TXK5TKf/vSnAfjSl770gb33HDly3BzkduPWQe4o32e89NJLfOc73wHgb/2tv8UnPvGJDY/5+Z//ee68804A/uf/+X8mDMNNr/XZz34WgC9/+cukafo+veMcOXLcbOR249ZC7ijfZ/zRH/1R9ve/8Tf+xqaP0XWd//K//C8BaDabfPOb39z0cX/hL/wFNE1jZmaGl19++T1/rzly5Lg1kNuNWwu5o3yf8d3vfhcQJZAHH3xwy8c99dRT2d+ff/75TR8zPT3Nww8/DORllBw5PszI7cathdxRvs84efIkAAcPHsQ0zS0fd8cdd2x4zmZQZZT8wOfI8eFFbjduLeSO8n2E53ksLi4CsHPnzm0fOzQ0RLlcBuDy5ctbPu4nf/InATh+/Djnz59/j95pjhw5bhXkduPWQ+4o30cMUrYrlcp1H68OfLfb3fIx99xzD/v37wfy6DBHjg8jcrtx6yF3lO8jPM/L/m5Z1nUfb9s2AK7rbvu4vIySI8eHF7nduPWQO8r3EY7jZH8PguC6j/d9H4Bisbjt41QZ5dvf/jbNZvOHf4M5cuS45ZDbjVsPuaN8H1GtVrO/b1cWUej1esD1yy2PPPIImqYRRRGvvPLKj/Ymc+TIcUshtxu3HnJH+T7CcRxGRkYAuHLlyraPXVlZyQ78rl27tn3sd7/7XdI0xbIsHnnkkffmzebIkeOWQG43bj3kjvJ9xl133QXA2bNniaJoy8edOnUq+7tS29gKX/ziFwF45pln1kSfOXLk+HAgtxu3FnJH+T7j8ccfB0R55Ac/+MGWj3vuueeyvz/22GPbXvPLX/4ysNqcz5Ejx4cLud24tZA7yvcZn/vc57K//6t/9a82fUySJPzrf/2vAWg0GjzzzDNbXu/YsWNcunQJyA98jhwfVuR249ZC7ijfZ3z84x/niSeeAOC3fuu3eOGFFzY85p/+03/KqVOnqFar/NzP/RxJkmx5PVU+OXr06HWHkXPkyHF74kbtxsmTJ7EsK9s0spXtyO3Gj4attZFy3DDU4dQ0bc2/hUFAHEX88j/5J/z4T/wEnufx53/8x/lv/uv/mkceeQTP8/jyV77C7/3BHzA5OcnevXv5z37sxzh7+jTjY2PYxSKFQgGzUKAg56nUDJSieufIkeP2hNrkYRjGmq0eURgSRRG/8ku/xJ/78R/H9/0NduMrf/zH/P9+//ep1Wrcfffd/Gef+QyXzp/HsW3GxsYwCoXMdhimmduNHxG5o/wh4HkerusSxzGe5+H3+4Sex/79+zl5/DjzV65AmqLrOgXTpGrb/Nov/zK/9hu/Qb/f5wv/6l/xhYFyyo4dO9i7Zw9/+2/+TXrtNt1mk/mZGaqVCmga/X6fbrfLzOws77zzDuVymcB1+Xf/7t8xPj7O6Ogo09PTjI2N3cRvJUeOHNshjmP6/T6hdIT9Xo8oDNm9ezdn3nqLpZmZLOg2TZOKZfHrv/IrW9qN4eFhjhw+zN/5W38Lt9ul224DMD87i10oEKcp7VaLK9eucf78earVKkGvx7/8P/4PhsfGGB8fZ2RkhH379t2QsMFHGVqaLyi7IaRpSq/XY3l5mW67Tb/XI/R9ojBEA86cPcuZs2d55qmnxMBwkpCKJ1KwLBzbZml5mf/rS1/ixZdeYn5xEdM02TE1xdNPPslTTz5Jo1bDNE3anQ5hFNHtdJidnaXb7ZICx0+c4Jvf/jZDjQb/z5/7Odx+n57n4XseCTC9YwdPPPUUBw8eXJPd5siR4+YhjmOazSYrS0v0u118zxMiAUmS2Y1PPfUUTrFIGseo4qmu69iWRavV4o++/GVefOklFpaWMAyDHVNTPPXEE8Le2DaVSgXf93E9D8/zWF5ZYW5mhihJeP34cb757W8z3GjwC//wHxKFIf1+n77nEUURZqHAvfffz+NPPEGtVrup39WtitxRboM0TQmCgGazyeyVK/R7PeIoQgMs28Y0DHRdxzRNTMMATSOJY1IgTRLCMCROEnRdtIJNw6BYKmEVCtlr9Pp9+v0+umHQqNfpdjqceOstrl67RhrHTE5OMr1jB5VKhf/3//g/curMGT719NP8zOc/n0WfcZLQbDa5du0afdelWqvxsaNHOXDoENVqlWKxiGmaufPMkeMDQhzHuK7L3LVrLC0uEgYBaRxjmCaWZWHoOoauU5C2QNN14jiGNCWOY/wwRNc0NF1HS1Ns26ZYLKJrmrAzacrKygpJklApl7Esi4sXLnD67Fna7TaObbN71y7Gxsb4J7/2a5w6fZo/+6lP8TM//dOkaSr+AL7nMTc/z/zCApqmsWP3bj7+8Y8zMjpKWV7XMIyb+2XeAshLr+uQJAme59Hv9+m123SaTVrtNkkUkaQpVqGAY9vohpGVV5MkIUhTdMSB1zRN9AhsG5KEMIrwg4AoSWh3OliFApVyGV3T8HyfNE0pFAqcfOstTp48iWnbTExOMjY2xujIiCi/9nq8fvw4URTx8AMPMDw0RJIkxElCHMdUymUmJyeZn5/n6pUrPP+d7zB79SrTO3dSrlap1esMDQ3RaDQyx50jR473DmEY4rouvW6XfrvNyvIyvu8TRhGGrlN0HApyZZYmnWCcJJCmaAP9StM0sW2bJE0Jg4AwSfB8Hz8IKJfL2IUCQRAQxzGartN3XZ5//nmWl5aoDw2xf/9+picnsYpF+r0eb544QRRFPPTggww3GqRAEsfCdpRKNOp1du3axbWrV7ly8SLLCwvcedddVOt1avU69XqdkZGR60rkfZiRO0pWM0fVC+y1WrSlg+xLoeGCaVIpl0nSFNf30RBONU1TUk2DJCFWyflAkp5KZ2qaJmmakqQptmkS+D5OsUgSxyyvrHD2pZfo9fvs2bOH3bt30+v3hcPVNAqmyfPHjjE3N4dj2zzxiU9QsG00TSNJEhLIbrQdExMcOXSIH7z6Ku+cPUsYRYyPjbGytMRCpUK5UmF4eJiRkZE1mpI5cuR491CZo+u69Fotmisr9DodVtptUfFJU8qlEqZl4QcBYRhCmgrbAVl7Zo3t0LTMhhRME80wiKIIwzAIwpBSsUiSJERRxKXLl7l08SLFcpmjDz2Ebdv4QUAqn3vs2DEWFhZwbJunHnsMo1DIRh3iNF1jq/bu3MnM/Dwvv/wyJ44f5/CRI3RbLZZKJebn5qjV6wwPD38kg+2PtKNMkoR+v0+r1WJleZlOs0mv3RaOBxF1VYpFrEIBWzomFfFpmpY5QVUyieKYNE2zKDGR2V6q/h5FhGHIiucRRhGeLHu4rkujWuW+++6jXCqhAYauo+m6uGk0jVeOHaPRaPDk448Lp5skaLouyjNpSjRACy+WSjz2yU9y4s03OX3mDJZpsnv3brqtFt1Wi9bKCvNzc9QbDaampj7SkWKOHD8MgiCg2+2ysrJCa2mJbruN57rohkEUxziFArquU3IcDNPE0HV0wxD3q8wmlV1Y/ydFOODs/6OIME3pdrt4rkusaTSXl1laWiKJY/bs2cOOHTuwCgVSwJRVLV3TeOW112g0GjzxyU+iaxppkpDK92BoGnGSkEiHqRkG05OT/JlPfYrvPv88Z956i4c+/nGIIhbn5mivrLC8tES5UmF0dJSxsbGPjMP8SPYokyShI4kyK0tLtJtNSFMcy8IuFNB0PWty12s1quUyhmGgG4ZwkElClCQMdvzSNCWVhy6KY6IwFFFfHOP5PqHvE0RR5iA7nQ5XLl/GS1MqjsPE1BTVUolquUypVMKVzrRo29kaney15H81RKnX0HXQdUgSCqaZvU+AM2fO8Obx4zzy6KNMT0/Tc126nQ5eEFCqVKgPDTE8PMzo6OiG18mRI8daBEHA8vIyc3NzLC8uErguBcPAsixsy8rKrJZlMdRoYEsugyYD3jiOSQeC2hQyR5UkiRgNkQ4y8H28IBDl1ygi9H36vs/c3BwLKysAjA4PMzY2Rq1cplwuYxoG7V4PDTJizgY7labCces6mmEI56ppGKaZOT7f9/n2c8+BpvGpT32KBOh2OnS6XdB1hoaHqdRqTExMUK1WP/R9zI+Uo0zTlE6nw+XLl2k2m/iehx5FOJaFUyxSLhZxHAdPrq0pFApiRGMd4jgWhxtJ2pE9yDiKsmwSxE2gIfoRKRBFEUEQ0HNdTp08SRRFRDIitG07iwhT+Rxd16lXq9QrFWKZqarMNJaOeZCgEyUJyH8zTZNCoYBuGPzg5ZdZWFzkU5/+NCXHAU0jDEOWmk3iOKY+MkJFlmQbjUZGMMiRI4dAFEXMzc0JFnqnQ+z7FAwDx7IolcsUpUP0w5A0SajXapjr7qNUBtHZ36OIJI4Ff0FmkOsJdxrCkQZhSBQEXL16lctXrlAul+n0++zesYNSpYIhq0y6YRBHEbZtMzE2hiH7oMp2RHFMEsdrXieVBCKQPdJCgYJp0uv1+Oa3vsXePXu4//77s8d3ZRXOLpVoDA9TrVYZHh6mUql8aAmDH5nSa6/X4+LFiywtLZGGIUaaUrEshsbHaVSrmIUCGtDpdkVpBKjIzeGDiJME1/NEGVU6RnWYAZDRWqFQQDdNdFneCIIADej3+5x+6y1KxSL7DxzgtWPH2Dk1hVkoiMWrMmMNwpC+5xEEAUmS0Gg0xCbzNM1eL5QN+TSKiJTDluSgMAxFPwTYf+gQC0tLvPTiizz++ONZ+Xh8ZIS+59GWfRVPUsvr9TrVavVDe+hz5LhRpGnK7OwsV65cod/vQxxjAkONBkNDQ5SLRTR5j7fkHGO5XN7USYZhKJyitB2KeYrM8jRNo2AYoo8oA+VQBteOZXHq/HlmZmY4dOgQIyMjvPTSS0xNTGAWCuJ68lqdMKTb65GmKcNDQ9Rlxqfu5lAG20maZsG953nEcZz98eVjDx0+zKmTJxmRs9q6plEplSjaNiudDouzs3TbbXzfp16v05BZ9IcNH3pHGccx586dY2ZmBqIIPU0p2zbDw8PUlDOQjjEIQ4IgIE3TNY4iBcIgIFAlkCha0wTXDQPLMDANI8viQNwc/X4fPwjQNI2F+XlOnjrF2NgY9957L+12Gw15Y5mmGBtJUwzTFHNWKyvi0HoeM9euYTsOjXqdarksskbEyAnypozimFKxSBzH4n3KweaCYXDXXXdx7LXXePOtt9i3dy+2ZVGwLErFIpZp0my3mbt6lZXFRXbs2oXneQwNDeXZZY6PLNrtNqdPn6bf76PFMQWEg2zUaoIIJ3t9yPucNKVgmmtIcnEcEwQBvu+LkqrM3EBUjUwZVBumuYYRG8pZR8VsP/HmmzRXVvj4Qw9Rq9dpSdtRUdmk5Evosj/Z7/fRgGa7TavdplapUKtWseW4h6p0YVmkaYpj20JNTNq3UAbo05OTLCwscOzYMSzLEqxb28Y0TUbqdXquS7vdpt1qMTw8TDQ9TaVWo1arfagC7Q+1o+x2u5w6dYp+p4Mex5RKJcZHRymVStk80uCv0pUMV8e2KZgmgYzm1m8ZLxiGONiFgiD2IJxpKrM9YPWgy0hxYWGBEydPsm/PHo4ePUq708mup2salUolc6pxHGc3QBSGaJpGz3WJwpC5+XmWTZNGvU5ZKvdosiybpqmIRNVN5zhZuadYLLK0tMTFixfZMT1NFMdonpcRlUaGh2m2Wriex7kzZxgZGyPwPEbHx3N2bI6PFJIk4fLly1y8eBEtDDGBkeFhhmXgqO5x5QgCWb1JgZJkxodhiO/7WUkTxH1uFApYloVpGEK6buB1FZO+77p4vp+1bI6/8QZur8cTTzxBvVaj1+8LZydbLJVqlW63K1i2msbI8DDVSkX0OcOQIAxpd7u02m0q5TL1Wg3LssRry9lvWBU4sC2LtFgUWXAUcf999/Hcc89x+coV9u3bhx8EGIaBbduUikUKhkGz02F5cZF2s8mO3buJooihoaEPDdnnQ+kokyTh2rVrXLhwgSQIKGgaO3bupFGvZ+WJ9fB9X/QMo4iCZdFstVbLqYhDbklijSqnKsSy5q/Lg913XTzPy1iynU6HE8ePs3//fo4ePZoxzVIERVsd2FKphKZpuL6P67pEcYxRKNCo1ainKZ12m263SxTHLCwvs7iyQr1azbJfDUglG3fwZi5Ix3nv3Xdz+fJlFhcWmNqxQ2SrQbB68C2LJEkwDYPlpSV816XvupngQY4cH3Z4nseZM2dYWVxETxKqpRI7d+7EkvfGZjlS3/MEr0DXcV03a3koFKTIgJKJy2zHwOA/iD5ov98XREFNw7YsXj12jG6nw1NPPUWj0aDX75MiWPFr5O6ks4zjmCCO0XWdYqnEaKlE33XptNu4vi/IfN0udrFIo1ajWCwKOzcwkgJyzlO+B2toiIP793Pu/HkO7t9PwqocX1/TsAoFSo6DDoRRxOWLFwVhcMcOJiYmMM3b383c/p9gHTzP4/z58ywuLEAQUC0W2bVrF5Zto6vRjQGo3kCn36fb7wvFjIEM0ioUsB1HlCAHDpJpGIQyi1PXCeOYXq+XHWDbtvFcl5dfeonp6Wk+JhviURiulkrkc5E3TFHOSPnSWZZkZFcwDIYaDWryhmh3OkRxzEqzyVKrRa1apSFZbsphDzpMECXevbt3c+HCBY4cOUIkmXVBGGa9CVV+sWTPdObKFbrtNgcOHaLeaLzXv64cOW4ZzM3NcfnSJdx2GxMYHxtjcmIC2HgvgagiBWFIt9vFDwIq5XLGaDUMg4LMzgyVVckMdM0Mtrg4rgyukb3JcqnEG2+8wcLCAk88/jiNRiMjAKVpmjkfdZ/rmkalXKbT7eKHoSAbmaawKY5D0XEytn1fSuhdnZ3FLBQYGx7OnLjKYgeJgpqmcejwYd555x0WFhY4cOgQvuRPRLK0nCKcJIjMtNVs4vX7uP0++w8cuO0zyw+Vo1xaWuLypUui1BqGDA8NsWPHDlFmlcP+CoqRGkURnV6PVqtFmiQUq9XVCNC2V2+OdSICaBqGrotREdj0oHuex/eef57h4WEeevhhMRc5wHxbT6lWr1UqlTIH3nddKop+LSnc9XqdWq1Gu9tleXmZOAyFBm23y3CjkfVPdMjIQarMfPjIES5dusSVK1fYvXs3lmmSpCm+VP5Qn6/vuhRMkySO6bTbnHjjDQ7feSejufB6jg8ZoijiwoULNJeX8dptHMtienKSer2eOcj1toM0xfN9FpeWCMIQ0zSzcqRlWcKRra9cSceoa5qYt0xTojCk1+uJEq3M4IqlEiffeouLFy/y8UceWbPsQJVy9fXjGLJ6VSmXCYMAP4qEnGW1mjlox3FwHIcwilhpNmk2m4RBwOVr16hVqwzV61mPE+nYkiRB1zRKxSK79+7l7NmzHDhwQDjfYjEjKAVBgG3bWSXMMk3CIODqpUv0u13uuPvu21p4/fZ28wNYWFjgyqVLBJ0OlqYxNTHB1NSUiGQGxjUUoiii0+nQ7nTo9XqQplTKZYaGhqhUq2ud5ABUmVRj9cvr9fuZk7Qti1qtRhzHPP+97+EUi3ziE59YjQDlLBWwGmmug6ZplMvljEjT7XZFrxOy8mqSppSKRSbGxxlqNCjIfubM3BwLS0uCBj6gAJLIQKFSqTA5NcXp06ez19M1jaIsxVQlsajoOARBIEpJkhj01htvcFUuf82R48OAKIp455136K6sEHa7NBoNdu7YkWVwygZk42Bpiu95NFstut0ugeQQjAwN0ajXha6ylLccRIq4b4HsPg6laEEsS6WVSoVyucz58+c5ffo09913H7vk7sjB0RJdzU4PQL1P0zTFmAbgB0GmLCYepGWciUatlomNFHSdbrfL1ZmZjC2bynESEO2hJE05dPAgrudxWdkASV6qSBm8onTEuq7jysA7TVNWlpd549gx+r3ee/Abuzn4UDjK+fl5rl25QiLJKRNjY5nzUKWQrA8Qx8JBttsEspegaRrlUilrPquDPAh10Ad/FicJ7XabKAwxDINqpUJFNtGf/973SJOExx57LIukVIk13iKjHHyfylnqUvyg0+lkSj+xLL+QphiGQa1WY3pyUjhXw6Dvuly9enUNYWiwZ7l3717a7TbNZnPghcUrW5YlxkMqFRzHEcLJrovreURxzJWLF7nw9tvEssySI8ftiiiKeOfttwk6HSLfZ3RkhCF59pWTTFMhL6dJXeZmq0VPkvRiyTJv1Os4ckxky+AaITOpfu55ngjQNQ3LsqjV69iFAteuXuX1Y8c4fOgQhw4dWr3IQIBtXme437KsbIOR73m4vp+931TNeWsaBWkrR0ZGsCRzdmFpidn5+TUERvWeq9Uqo6OjXLxyZU1vFUSwXXIcatUqtWpV2K04zraZ9Dod3j55kuby8rv4Dd06uO1Lr3Nzc8xfuwZy1qiiRi0k7VkhjmO6vV52AFIEu9WQdXxg06azKrPCqp4qyIy02yWMInTpJJXjO/7663Q7HZ555plMHk6JCKgegybLL5u84OqaHU3Dtm1CSbqh1xNzW+qxUo1HjZSMjY7ieh4rKyuEUcRSs0m312NkeBh7oOwxMT5OoVBgZmZmVb1joB+hpSm24zBaKLC0vCw2p8cxrmQBFwoFwjBkz8GDt3U5JcdHF5mT7HZJk4RGrYZtWdlcZCorMZquZ6S2wQC36Dh4hkEYhtiWtaWD3Czo7rkuXr9PKitQisTX6/X4wauvsmPnTu69997VGUt5DRWcGlL7dTNktqxQwIxjkRi022i1WuZgFVEnjaIsIC8Wi7RaLTqdDkEQcG1ujnqlQl2WYxV2TE/z+htvZHYgHbieakdVKxUMXWe52RT2TtNEpgpo587hex4T09M/xG/t5uG2ziiVk0yCgKFaLRMIKJVKAJnKjet5tDodAknhtm07G69QB24zgz9YZh087EEY0u50iOMYQ9epDTjJy5cuceHiRR544AHq9frqLJEkEqlBY11qPSrFDFUmTSQTTpVMNU2jKJm2vudlWTDyPenrZpWKjsPkxASNapWCYRCFIddmZ2m1WtljdMNgYmKC2dnZ1e9Jvm4sby4lnDA8NES5UslusjiOWVpZodNuc+HMmS1v2Bw5blUEQcDZM2cIpLjI2MgItuwrFuQ8IZLZ3u50MiepeoBqvEIFvYV1tmN9tpX9O0LQxJMs2WKxSFnORCdJwosvvoht2zz04IOrdkc5Nchsh2GaGzViZWk2lmv+kjQVvVIpydmTjkpBl39UMqHrOkNDQ0xMTgqVIU2j1elwbXZ2TXY5PT0Nacr8/Pyaz6vmPZUcX7FYpF6rUSoWM1vX6/Vod7vMXLnCvLQ9twtuW0c5Pz/P7NWrJEHAcKNBrV4HpPapOkhxTLvdpue6pGmKbVmZgzRksz2UDNT1jnJQT3UQijmWIBix1Wo1ywy73S6vHjvGnt272b1799onyvGR9eWTQUe64fXkz0zDwHGcbJB4kLm7WblH13UheD4xQblUoqDrLLfbzC0sZOLp09PTrKys4Pt+RvpRn1vduLFkvhVtm6LjYFtWVgru9nqsNJtcPHs262XkyHGrI4oizp07R9DroWsaOycns7Nv2XZGfHM9j5Zsz6isq1GvY8v7UI2AmFLwXGGr4DpJU9oyW1N8iOLAfPKJEydoNps88vGPb1D1YV3LZlMGqWS+DlaGQATOapSk3++veYom9+kOwrYsJiYmGB4eFkS/OGZmbo5utwuIJKTRaDA7O7uaSQ58xsHgv1QsUjBNinKxBIj9l91ej6sXL95WZdjb0lH2+31mr16FMGS40WBkeDgbuSgUCiRxjOd5NNttojhGlwe9ptijslcQRVEWPQ7SrWHrkklPHjbHsqhUKtlBS5KEl158Edtx1ugiKqjILSvfbDNbpF57UBnIkSMqaZpms1SrT9A2HFoQWrVjY2NCv1X2WGZmZvCDgKnJSXRdF4pFA852M6dn27aY3TJNClLZI5VM2dnZWS6dO7flZ8mR41bClStXCLpdTE1jx+QkBZUZIs53FEWC4NfvZ/akXqtRcpw196XKsgYD7K2C60jK24VhCJpGtVpd87y5uTnePnOGe+65h8bQ0JrnrrcbuixvXg8ZJ0HXs9KuHwQbKlKwOhIyiEqlwtTkJEVJzllYXmZpeVmo9UxPMzs7u8ZWqJGS9bBtWzhxXc9G3ZIkodPr8fapU3QGeBS3Mm47RxlFERfPn0eLY6qlEiPDw9mXr5xFp9vNskirUKBer+PYdkahHlTPAZEZKnWdrdDr9/Ekg0yVTBhwTCfefJNmq8UjDz+8qc6jyhiVCsaNHHb1CNXTLJdKYtlrFOF6HrDxptysV1Kr1RgfH8cyDNIkYWZuDtf3GRkZycqv2fuEDQ5Xk71SXdcJJQ1cRdZxHHP50iXOnjp13c+TI8fNxPLyMr2VFbQkYXxsTGSQMgvSgCgIaHU6hCqLLJVWdVLV2jvEfRKowFySYNYT/RTiJKHTbmel23qtlvX2QFSoXnn5ZSYmJjh08OCW711VkTblNQxAW/ffNEkoFAqiIoXQvM4qUgP3+foWDojAYWxsjGqlQkHX6XS7zM7PMzY2JkZM5AYT1dPVN6luWZYlfi5L2SXF5pezoydfe4221Mi9lXHbOcprV66A52EAo6OjwGqU5wcBzVZLEGwGskiV9WURofz/SNbzTcNYQ91eD6W0A2SN70HMzc7y9ttvc+8mEaGCEk5WUnOaLIcMjm6sWeQycHCzPoJhUJH7Kj05trHBuW+SWYLISCcnJkQpRtNYWlnBdpzssGfBBgO9z4H3Y1uWkMqLImIpSFAqlbLs8urVq5w4fnztZ8iR4xaB53nMX7lCEkVilEHNKiPOfrfXo9PtrskiHVlJWV/hUWIBKEKeJMCth+pxxlLtqj6wjkoRdV555RXQNB566KE19/yGaw1wG5IkyRS9lN0YvO8GbZy6h1VFCthYkVLP2+T1dclTGBkZyUbQuq4rdGQlaz77PsRF1thQpe6j2lykKaVSKSs7e0HAGz/4AStLS1t+9lsBtxXrdWlhAa/ZJIpjpiYmVscrNKGF6noepmFgyd1sSqFmQw9P0zIZJuRqms0OOggikNKALZVKmTK+ciz9fp+XX3mF0fFxduzYkem7ZsobciYpReq/um421NvpdoXav6z/Z+9TOjulF2uaZtbjVJFfFMe02m0atVrGzhvEZhmyYZpMTEzQajZptdtYloXr+7S7XcqbLG/WdX1V+UP2fpEbDXRNLJ8tOg6+FJNfmJ3leBRxz/333/ZKHDk+PEiShGtSztIqFBiSM5K6phHGcTanDFCWRnyzMqoKIAPFPpX38WbuLZH3tcokq9XqakaaJMRhyNmzZ5mdneWRRx8limPCXk84vgGJS1XO7PV64jHyXuvKLKzT7a6xGwoqc0yTBMtxVreRSF1aHXDUPT/wPA2yxfWDKJfLWJbF4tISfhBgl0rMzs+zb//+NSVYTV5P8RxAZJWpHG1LJEvfsu1s5CaOY944dox77r+fkVtU0OS2cZRev8/KtWuEUURdahSqX0an2yVVJBm1Q3KbDFEhURnlFv1Cz/fpdbtESSL6dPK1ErWOJk05c+oUQRhy8NAhXLnHcpDSncj/BxkVJgm6KtcwwDhlYBRFlmqTNBXkG3m4s3IKEPi+YNFKmram62K5tNwgYMhSUaa0MYB6o0HBsrI+y4ULF9i/fz/OFqMemqZlzlJ9DgXdMCgaBoau43keSwsLvPn669x9330f+mWuOW4PzF2+TOy6JGnKjvHx7BwHvk+n1xNZYZLgFItbOkkFTdOI0xSSBGNAIH0QGXEnDMV1HQdXMmdjSTJ0PY+3Tp1ix86dlEolsQNXlnDXCKTIv0fr2PLIezJV42Qq0Jc/U3OTQRSBvM+VE/Nk8K/aR7quo8t72DCMLAheH+wWCgUmxsdZWVmhVqnQbLWYm59nZDPxcxmIJGmaqYopJrH6udq05Louvu9z/LXXuOdjH7sl1b9uC0eZhCELly5lGqTDQ0PCScYxLTmIb1oWFfkLjqIo2y+5FeIoEk5E17MsLUnTTBi977rZkL9j2ySmiauWrsprdFotLl++zB133EG5VBIHbuCQDTbLNTlLZMkl0UUZ5WlArVqlXq9nDhZ5A4RRJOYkVSNcjZGkKSVE1BgEgXCSabq6kHWASauyTVOuATNNE90wKJVK7N69m9defx2312N+fp7x0dENm0IGZzZVFG4WCplklfq5mlvt9fsszM/z5uuvc8/99+fOMsdNRXdpie7KCn4cMzYyIoJKyR5XqjXlUinbzbhZBWo9Ejk7PRhgR3EsbEcYilE0zxP3bamEL9s2sBoUn337bTRd59DBg4IjIQNalfkpgo0qDasycWNoaE0/sVqp0NjEduiScGTbtuiJJgkJIimI45goCPB8P7tvkyQhUoE6q+0ewzSzTSemaYpS7PAwI40Gc3Nz9CUXZHR4eNMqkuIxGIaBJvu6inMBompVKpVIpFN/87XXuPv++xkbH39Xv+f3G7e8o0yiiM7CAp7nkaQpYyMj2ULT7rKToAAAse5JREFUTqcj5orkwH+338f3ffqeR32bPYpqJklt/ei7LqEU+EX+rC/njqxCgWKxiCEjLlWC1DWNH7zyCo1Gg7vuumvT+j6sHrgMkmG7GWFmfX0/BbH8Wa6/WYNSCatQwA+CTIJORauKnh3LecgkigjimGBd816XJSHP99E1jfnFRUZHRihtUoaNwzDrTZqmKQatBxa0agiGWyyj5cWFBU688Qb3fuxjW343OXK8n4h6PZqLi8RxTNm2RaUJUa70ZfWn6Dg4ts3iygpRFBGEIfYN2I4wijDjmE6vRyhFwdMkWbM9pCzHIgxpM5T9WFxaYnZujocfeojh4eGtX2sgm9Qk23U96WZw2H/wJ8ohFgoFQWQcgOM4tDsdklTsocz6ngP2A9UuCgIiFXwnCZpc71WXJMpArgObX1xkfHR0g7PUEP1hq1AQKwPl51H9UpXllsplYtnPPfH669x39CjDkoNyK+CWdpRJkhD1erTbbeIkoVIuYzsOvufRkbqBpmlSq1ZFk7hYFIr2YYjneRuyoxSy/ZLNdhvfdbHkY9T8YBxFREGA7ThCkmmLBaTnzp1jZWWFp59+emsnCWuiJ1Wz34xhthkyAsEW/dNisZg5+DhJxKzSups8lg5T9TeiMMzmIwlDKqUSSysrmdjA7Pw8E2NjlKVoA/Iz9Af6tFEUCSLUwGdT79e2bbQ0pef7LM7Pc+7tt9l/6FDuLHN8oIh9H7fTwXNdoiRhanhYDPxLVitApVzGcRziKMq2a/R7PQr1+oZ7VDlR3/dpNpvEqqTIagaazVwWi0KSbp2DAmEDXn/tNcZGR9m1a9eW738wwM7sxrvo+2cchU1sh2kYFG2bvufh+b5YYL/+9RGtqSiKCKKIOAwJkgRNirerJdNhEGAaBm4UMbewwMTY2Jr3GQTB6lhMpUIorzm4EF5DqA2Vy2WxZiyOOXH8OA8+8kgmHnOzcWs7yn4fr9fD9zziOGZkaGhNycS27UyNJ0U010vFIv1+n57rZqWCIAjEEmbVQ5QOEU3sUnPkxm5NUqA1XceScnibwfd93nzzTfbt3bttRChearWsqw78jZYjtyIKKBi6TrFYpOu6uOrzrrvBVRRrykXTqYwcY1liLpXLXJ2ZoVqt0m638TyPy1evMjo8TL1WwzTNTJlE13Wq5TItqUq0/sArWI5DKjP1SxcvUiyXmZqezp1ljg8ESRwT9/u0Wi0iGWCbpklLjmmgadQqlazsmGpiF2wo1831ej3K5bLo8QXBarVJ2g3FlFdbQkwpZafKn5WBhQbr8fbbb9Pt9Xjm4x+/4fthq21D20Lajq046I7j4AcBYRThed4a8QNYdV66rmMWCsSWRTFdVe6KpT0JgoCxsTGazSYt36fvukyOjWVJSl+WnR3bxtB1YtcljGM21qxEi6hYKtHv9UTP8vXXOfrgg7eETOYt6yhj3ycOAtqdDmGSUK1UCMIwY6AWHYdyuZxlNcoJFR2HQC4ovdbtYjuOGP+QBBld7olLJCOsWquJ6ChNs55koVCgJss0GclmAMfffBPdMLjrnnu2/xCDUeGAqsa7chgDn20z2LaNJ6M2z/PWlE1VP2RwxhTI+pW2bVOv17OS6tDQEMvLy/i+z/zSEp6MFhOZrVak3FZBKh9FScIGcyANjyUp4X3P450zZyhK0fkcOd5PJElC1O0SBIHIJuOYer1Oe2BLR61axVQaz+mqUHm5XGal2aTVatFqt3FkD16R7gqmKQJqRO9OBdKhtEupvIZtWdkC9cG9jv1+n5OnTnHo0KFMY3kzrHduWUb5Lhzl9apRmmzXRJ1OVhodHF3J7J4aTVMcBV3PggBH8iYqUsJzaWmJMAy5OjtLvVolimNhZ2R5W11PJQ2DmWc2AqdplCsVet0unVaLM6dOccddd9305c+3JIc/jiJiGVW4rksqmWNqlVVFjn9kc1DyeaGUVlMU6DCK6CvppWKReqPBUKNBpVQSrFBWyxl91yWIIjRERKhYWppihUkHt7i4yMWLF7nn7rs39g3XYfCIZtnkuxmbUMzdbRyrOvCaZLNFUSSICQO6sZmsFUK2atDx2wPGoFqpsHv3bhpDQ9imyeLyMsutFlEUEaep2ATg+9nCaZWVZ59Xsfbke7el9J3v+5w9fTrrC+XI8X4hcV3SOM6yyXKxiO95pEmSDfwPOknFEPU8T4x2yQUEvu+LcTOpwDU8NERdKupoUoAAxH2tVlM5tp0Jm6hREkP29NA0Xn/9dWzL4s4779z+Q6xzbj9M6VXdl9uJS9qWRcGy0GX1J5GvtWbLSHa5jfPZRZmVFh2H4aEhdu3aRclxSJKEmfn5LGNN4lhUpeTvQEO0hDZ14dK5l+WM9tzMDFevXr3p89m3nKOM45i42wVNE71JSSNW4tuVUimLThQjzO33abZatNttfN9Hk7vdKpUKpUol019U+qrZfCPiC1B7F0nTLDraDJqmceKttxgeGmLP3r3X/SyDx2q71VrXe776nOuhBo4Lppn1DBQLbbtrDt5wtm2TalrGzNOA0eFhSqUSjmURh6Fg+BmGWJsjy7yqv8GAI17/qmmaikW2hQKtlRXOnT2bfQ85crzXiIOA2PezDC+WIxxJkqDpOvVaLRPIUKSSdrvNysoKvX5ftBJMU+hBF4uC7S6Nu2ppKAei9tz2ul3xGNNc09cfhKZpLC8vMzM7y7333SfskLZRNm7Lz3WD67U2eeEtWzcpwonatk3CKndDcTW2+hyDKEq+iIJj24yOjFAwDGzLwvN9isUiqWTgdrtdXM/LXmuwTbRGv1qOq6jv88LZs5kwys3CLecoU+mwIlk7D3w/E9R15FZtNUPU7/dZXlmh2+9nh8m2LKrVKsNDQ4yOjGSMr2zcQ2Zb2VCsPOwpghyzVW8BYHZ2lqWlJe65554swhr8A6ssLjUwrBD/MFEhq05dCRio8ZA4XVXjSNJ0jVjz9TZ6DPY+lbSVUh4Ko4hutytk+opFqnLDiiOzQ03XxeLoJMFzXVaazUzya4PWo8zCS8UiumFw7cqVNZJ5OXK8V1DEP7WuSrU6TF0HXV+jiqMcZKvdFuvrkPwG2R5Qf3RdJ5bCHp58nLqvVRaWVaEGZrc3w1tvvcVQvc7OnTvXZJyqRJoFm4Mz1ayq3mSl1HeBwWtldiQdUAFLxYYgW2aV3oDT2wqamuNEOFnlKBXhLwhDhoaGcCyLUrGIHwRiMYNlZU5YKaipoH6zgEGNuJQchzAMefvUqZtakbqlHGUchiSyKe65rij5SYqzZVli3kmq4aysrODKdTWmOuSNBuVKJRMP1zSNWrWa9e2CKKLZbOL2+5lR7/Z6xKnQhF3f0F6PE2+9xejoKGPj41sOI6ubQP1RhyATNR6ICjdIUMk/g7X87EaSKjnZa617bUPXseQ6rhs98CDmH3VNw3Vder2eMDKS0bdjepqKXB69tLKCJvs71UpF6GQiHWu/n+3mXA+VzVekZNjFc+eyTQQ5crxXiPv97J7zXJee62JJRSu1Bi8MQ9rtdra0PUUE1rVajXqjIYLGgfuiXq9nvbFeryd0YOX2jzCK1lahtgmAFxYWWFhY4M677tpoNwZZ4yroZtUpKruhxjIUBh3goN0Y/DNog9SfzeA4TkZUUozgraCxasMcx8HzfXzfpyP7wiDaXNNTU5hSCajT6YjWl1yFqOm6KHH7Pu1OR9jj9ZUmafMKhQJ2oUCn3ebSxYs3rSJ1azlKSdTRNI2eZK7ajoMpdUV7MoP0fV9EHIZBpVKhVqutOeSZuLe8btFxREQpnU3Xdel0u3R7PSIpPHC9iPDazAzNZlPMTF7nc2zm0BShZvCGWh8lDh7mGxl8zq4jr6H6I5Gc87ru83Rd7K2Tc1WhjI5t2842o4wMD4u5sjRlcWlJiDnIski5UsHUddIkIQgC8TuTPeL10HWdkuPQ7/W4duXKmh13OXL8KIjDkESepyAI6MlZRqdYFPc10Gy36bTbomcm+4lq5d4gUUQ5GCDbNasC6CiKaLXbdHs9XDlnfb0qFIgVWkONBpNTU9f9LJsRedbbDVgNxNVz1j9vsG2zFaEH+TNd0wRxSaprXQ/KbpmFAnGaCgnAJMHQ9WzkxrZtRoaHMZBBRquFpmk4jkOlVBK8CkQp2/N98Z267kbiouRg6LrO7NWrNJvNm9KvvGUcZRwEEMdoiCylJbdj1yoV7EKBZrudMV51KTDcqNeFEV9HKIGNTsY0TbEuR4qK+75Pt9ul2+1e96CTprz15puMj40xdiNDsOt+kYO/2HfDXBvEjThNQ9fFlo8byCqjKMLt9+l1u9nG9EKhQKVaFSVW9bqaJvoOcjfdoly1o1SILMsS2wWkM42jSIzn9PvZoVeZtmXbWKbJ3MwMKysr+R7LHO8JYinSrQGtZhPf87ClwEDg+7RaLcIwJIGMeFIulzc4n82CU9U6aNTrWQuo2+3S7veF6MB12Jhzc3MsLi2tySbfTQFVadC+KxLgOqzXgV77Q/FubHnPq5GYrZCmKUEQ0Ol2hYCAbAsVHYeKZBMrFCWB0jQMWnJ1GZCNqxWLRaFDKwP2SGaf6vUzQpGsSPm+z+zMzE2pSN06jlI6wTRNaS4vE8cxpmliFQp0JRtNlwo8jXodS/bkBrGVk1RQS4grkuCTQjYL1Gw2s4b+ely+coVmu81dd931Q322QYfxw04SbtefGHTE25VREpn5dTodugOlEl3XKUgywmY3pGEYjI6OYuhizdbSysqq7qsUHig6jijJSibw+kOvUJTzaitLS3kJNsePjDgMRYCt60RxLHbQypGFvueJ6hPSQTYalOVMpdIvVhgchdgMhq5TVQvfAV2S6DrdruhhyirXerz51luMjIwwMTFx3c+yfgsIrI6Vbevs3gOsySo36QXGkrnabrczdrApd/uWy+U1cpaDqFYqWVCytLyM53mZ7YjiGEuO2ZTlzkwA13VFSwxAPlZVpBblEukPugR7S8xRxkFAKkugXhAIKbowFEY1jknSlHKxmI1BKKg9Z0hyDtxYtOa6buYYhoaG8KWCvS/r7boUHLAKBUzD4NTJk0xNTq4RF9gu/VfkGz8IiKNIZK+SaKDEzJM4zpaWzs/P4/b7mTCxbhjij6bhuS6GFFHfboBYQZdjGZ7n4Xleli2qcZnMGGhCbMGyLNHLuQ4Kpsnw8DBLS0t4rktbjoiEAwdW18U2EatQoO95GUs2CMNs07qmaRQdh4X5eeoqss/1YHP8kEhkNpkmCe1Wi0jOFBcKBVKpMVquVDJWuEKmiTzgnK5nO6I4Jo4i7GKR0aEhdMMQ93Mc0+/3ceWmn4K0HXNzczSXl3niiSc2SFNuBzXepnZZqvnxjmGIqQBJMAJhO5TzMQbsRyjveTX3ueVrDsxa2nLcQ2WVg9tGBqs/uqxcVapVNlv6vB6Nel3YAs9jcXmZarlMiuy/yiy9YJqY5bKYQPA84iii2+lQlOvB1E7coNNheWmJYrFIo9G4ziu/d7glHGXieejyEPR7PbqdDlEUZRlOfV0fYRCqAa5q+deDJ5U2NIQcm5p9isIQT1LLkyTJHM3c7CzNdpt777+fKIowTFNI6HU6QjNSPs7zfaHK73m4/X6WzanMdX3ZRR2uJE05fvz44Ada+4ZVU14qgThyabJj26IX4DjYlkWpVKJSrQrRctMkCEPCIMCXogEKWRBgWat7OpXRuA6KjkOjXqfZatGVJVtbjeoMPN+QezODIBDzU1FEr9fDsW0sy6JQKOB1u6wsL1MqlYQgfI4c7xJJGJJKHVRXstp7rosjy3lFx6E4kKlswLtwkmpnZZqmWLJsaJqmYHb6fuZglA5sH3j9jTcYGhqi3mhkjqbb69FutXDljltFhlFznJ7nZY/dznYkMoG4EdtRsCwKpolTLOIUi9iWheM4WS+xWqlgOw5qT67vuvRdN+sjqmsXTDO7f4FsqcT1eoaapjE6PMz8wgJ+ELDSalEqlTbVrbVtG8M06ff7xEkixknCUDDnpRLZwtwcjaEhKtv4hfcaN91RJkFAKnuTnU6HVrstFB3k3jhnkxLrIJSRvhEnmaQpfakRa8kMR8EsFKjIPlsYRXi+T7vd5p133qFUKnH27Fne6PXoyd4EckTDNAxK0mE5jkNFlh+dYhFbSuMFMrN0isVskFbXdTqdDl979lmefPJJqtWqyDSjaI2oeavTIQpDDF0Xgu/yZlpeWcFzXfwwJBkoFxeLRUpSE7dQKFAqFhkdHaVUKlEYUN8YhCZnwtaXozZDpVIhCAJakgylVHo2iCGvO/QqoozlNpai47AwO8vQ8HBWDsuR490gdl2QI1EdyTdQxLx6vb4hixyEGlXIrMZ1zr3n+6ItI0uUCoqg4jiOyMTCEM91uXT5Mp1Oh4mJCb73ve+tSm8O7Jq0LUtUYGQ7aHh4WAS+cvZY1/Vsf60SSlAzzSutFs9+/es88cQTVCsV4lRsD1Ki5mrZvNo41O/38aUzXllZwfM8kRRIaT6zUKBcKlEqFjELBQqWRaNeZ3hoCEvasfX3ePb/aXpd8qGmaYyMjDAzO0ssRRqGtgiQTbmsQQnORDJIKZdKovQdBKwsLWXjPB8Ebrp1SnxfOMlul067TSTLJmXFNrueA1S/JBXZbHPg1eiDZhjYur7m2kEQsLy8zNLSEktLS6zIbQJJurq0uFQsMjwyQqlUolQur8o+SVaairAyNR/pwPuuSyRLyYM3mXJapmluKqAcy95LkqaZ8HsQRSTKocrPGwSBGO3o9+n3evRdl6XFRTzpmEhTSuUyo8PDjIyOMjw8TK1WW5NRqmhyA017/e8rTanWalkG3e52s60Mm8GUzGTP9/FclyAISJKEUrFIkiT0ul0cx8nl7XK8KyRxDHLx+tLyMr7noUnCWKNep3C9cr6yG4NiGVvYjkiWVpFs2fX9wk6nw+LiIkvSfigRgjRNabValIpFhoaG2Cl3TzqSKavB6h5ZNRYyYEfSJMmWtq+XvFNBfqFQWF3AnH00MVftui4FWYWKZdlYBeFJmpLGMX3Po9ft0uv1BLlP/lHatbqu02g0GBkZYWRkhOHh4Q3LJkBK3G1DzlMJTaNeZ2FhQWT+A1rd66Eh9WHlvkqlgFQqFnEsi5WVFYZHR6koIuH7jJvqKJMkIY1jev0+zeVlMapgWeiGkZFSrofBRaeqhJim6Zq+JQhl/0DOQJWLRZrNJvPz8/S7XRaXlsTKLgQZZmRoiLvuvJPLV68SBgGf/vSnM61D1aeIZE8zkc5K9Q42Y3J25ZxQJEu66r12ZXbb7ffR1I09MBOVpCk9tSVF/jwbFpbQpZBwqVRiSgo0K2Ztu9OhKVmAvX6f5aUlrly5QpqmGLLnODIygieNjLpRtzrwg6IJQ42GmJ0MAhEdbtMv0DQN27LQEP3hCFGCsqViT6lc/sAOfI4PB1LfJwGWFhcJPE+QURyHWDqJG7EdilEJrO21rXOYvX5fzGsXCiRpysrysmBuN5ssLS5mo1iNRoOJiQmKe/Zw/PhxHnrwQfZKBS8lJq5GtyK1m1FqJqebSLopB60PzFCq0QzFIM1sx0CSkKQpvu8TBAGWlJBLYY1t0gCjUKAmK3emaWZye0kcs7C4SLfbJYoiVppNLl+6xJkzZwBRVRodHc2Ce7VUftAWZ1+l+iP/XSUZnu/Tabc3X/o8AFOSfZSoTN91cSwr4120221GRka2fP57hZvqKNMgwPc8lqWTLJXLoinf692Y0dwig9Q0jVSWE0EcnG63y8rKCs1Wi/nZWdrdLmma0mg0GB0Z4ciRIwzLMqDKcF9/4w0eePDBNZnXoFycI+v6qtyhNmooMk8mJjBwEygnpPoMyP8mW2Vympb1HXUlaKBpWeNeZdKbOehSsUgcRZRKJfbt25f1cldWVrLM+ezZswSSofr8888zNT3N5MTEmgx3vXMGsGybarlMs92m1elQrlS2JAVpyN7oQDkpSRJc3yeU77vT6Vx3E0uOHApxGNJcWsJ1XZGpDA2xvLJCHIbbllzXYJMeGazNLl3fp9/rsbS8THtlhZm5OYIgoFAoMDoywsFDh0SVRjobgGOvvYbtOOzavTu7tiGXH9uWlYmCqz/KbsTSYSbSXsSS56Cz1m6A1Flme9uh7ERBLoZWSjy6bP1omrYpe1TNpytS0sGDB8V34bosLS1llTc10/j8977H3j17mJycZGRkZM33uJldatTrtJtNwiRhpdViZJtqknLApWJRcEiCgL7niZGTlZVsauH93jByUx2lL+vlSRzjFIuMjowwMzOTbavYFjfQQI6ThLm5OS5evMjMzIwYQnYcxsbH2btvH6Ojo1tmQufOncOyLHbt3Hnd1zFME4PN6d3KkaZAfWC3pcpOQTi0SqWyVoBARmcq01Plza0O32YwTROzUCANQ/wgyJa0qjLKwsICi4uLgnpdLBLFMa8dO0aaptTrdSYnJ5mcmqIq2W3rUalU6El1pObKCqNyqfam3xNyfkrTsr1zSZIQeB5dyf6NbmAuLUeOOAzptlr0+n00XWdoeBhdExKKBRmMbYvrtGiUDN7lK1e4ePEizVYL0pTRkRH27dtHrV5nempqU4ccRBEXLlzg0OHD1519VMsW1Aq89ej3+7iSxFcsldaQjwLpKEtSZlK9byATDvB9X8h+ylJpsknWup6Ip2DbNqHcv6l4IsVikZ07d7Jjxw5effVVms0mAOPj41y9epWz77yDYRhMTEwwOTnJ+MTEpt+RrmlUazVWpEpaz7a31MlVj08lW17XNFzfJwhD2q0Wo+PjdLvd9z3IvmlWyfc8uisrhGGIZdvZB1XqMDcaIWw47mnKwuIiF86d49rMjNApLZWYnJpi7549jI+PE/g+nV5vS5HhUB72ffv2/cijC7Ekuig5pkGoQ2QOZKnrnwtsiHw3HO5tbnpblikC6SgVLl26xKuvvsr4+Di9Xo/x8XHuve8+fN9nZmaGK5cvc/LUKd48cYJypcLe3bvZs3fv2v6EplGvVkUJNgzp9HrUq9Ut34vqhSpdTTUeszA/T6VaxXVdqts8P0cOgK4UMU/TlGq1SqVUoiV1nO0fIcAOg4CLFy9y4eJF2q2W0HCVbZh9e/dSLJVoSvGCra5y8fx5kiRh/759W77OZkXhzcgwaq2VKcfUBjFoO240uNyMrLcVCVKVYtXs9WCZ9fvf/z7Ly8scOnSIM2fOcP/99+PYNivNJleuXOHq1atcuHgRQ9eZmJhg3759jE9MZCxXTQqVlEslkjSl1W5jy92eW753+R3ZUjrTdV067TbdbjerlL1bHe13g5viKOM4pi33HarN1gXTzIaD0bTtS68Dv2z1yw98Xxzy8+fpdLtUqlXuvPNO6vU6uozYatWqOCiyDJFscdNcvHSJMAzZf+DAu/pcm274UGID7+pKa6Gt+7s2UFYW/7ixN6BQKBQwdD2r6RcKBU6ePMmpU6fYu28fH7v/fv70T/8UQ7JXTdNk1+7d7Nq1izCKWJif58rVq5w8dYq3Tp5kemqKffv2ZXq3hmSo9Xo9Ov9/9v48SLI7u+9DP3fJfas1a+99Re+NpbsxWEciadOyJC6SnkRK7/kpTP3xHklTNGmFFS9sWTbDTzG2HA5JDIUok5RIy4+UhsMZLsPRDAfAAN0NdAPoBb2v1dXdtS+535t3e3/8fr9bN7MyqxoYAANg6iAQ3V2VefPem797zvmd8z3fb6VCSo6AdL4QAXpSizqVTFKv1ymvrFBaWcE0zc1AuWnrWq1SwapWcWyblByJQtNC5Yt1K1GdnpkgYHFpiXt37/JQyjmNjo6yd88eMUSv6+Ql4lS8TVt7LGl+EHD77l0mJiY6Al7C02j/t+939A/KP30UwXP1GS3vbPMTGyHcE/G4wGLIQFmv1zl9+jS2bfPCCy+EGpymYQjAYaHAU4UCTz31FNVKhcfT0zx48IC33nqLTCbDtm3b2LZtW/gdpdNp7GaTpuOwXCoxuE6vMQrWVLtd13V59OABu/bupdFokOkCDPo47AcSKJcXF/FtG9/zSKfTZFIpCIRiCEHwxIs9QBAO37t7l0ePHxMEAeNjYxw9fpyB/n5cz6NcKon+p0SGKd5EPbpoIk39ALhz+zZj4+MtIsidrH2Qt1NW+FFEVztd63qfu1EZKR6PhzNJly5d4sGDBxw4cIDde/agBQG2TFhUkiLfiGmaDA0PMzQ8zJHDh5l88ID79+7xvbfeIpvJMDY2RnFoSIy2yPGPpZUVigMDXbO7QN3rIMCUs12Nep1HU1MkU6kwmG/aprVbs9mkurwselJyjljtrDw5Vxh7wkpUs9nk/v373Lt/n3KpRCaT4an9+9mydSuJRIJqtYpt22JUIrIedYmW75Rkz0jWmGefeWbdz17DKNYl0f1IGrYbWLdSayeLxeMYloXjeSwsLHDu3DkMw+Dll18mm81y7969EJnffvapTIadu3axc+dOVpaXuXf/Pjdu3OCqJG8pDg3R29dHf28vs3NzISlLVxSspqEjkgff88Iku16rsTA/L9SOvkiBstFo4En5rFQqJb6MWGx1vkiW5tazAMGheOXKFRYWF8llszy1fz9bt21r2c00pBipmmdUFh2wD9l9AIKA2dlZKpUKx44f3/BaWoJkEHQuqXwfWWHkhFv/ydqsdD2Lx+NUKhUuXrpEaWWFZ559lrGxsRBk5DoOZofgpPgzFeJv586d7NyxI8zAb926xc1bt9i6ZQt79u7FaTZxJddrttPISKTnqhh94rEYfiJBpVZjZWWFvr6+TQKCTetopeVlMRKCAJMpyT0kYA7WCSpqlMp1uXnzJrdu3cJ1XUZHRzl86BCDg4Phc+Z6Hk1JSdeeLIfocLmWo8Cf27dv09fXt2G/bM1OrkuiG/qOjxIo1TEjvkND9vue8BCaphFLJJh58IArV66Qz+c5eeqUeGZlSTbWxrWtPtPQ9VDOsKevj2N9fRw6dIipqSnu3rvH4wsXyKTTHDhwgFwuR7lSoSxVRp6khKp6pq7nMTc7S75QoLe39xNj+fpUA2UQBFRKJZB0dZosvwGtZYF1gsr8/DwfXL3K0uIiff39vPilLzFYLK55jyuZaQgC8UBFLGS4UAsx/IXG/fv3yebz9Pf1bRjkogGr2+Lzvo+sMOhyP7QPU0IJAhqNBu+++y4Ny+LpZ55hbHQ0fL/ruoLztlN/QNPWjovIweH+/n527dnD5P37PJic5MGDB0xMTNDX30+5WhXMGx1Ip9U5RS2RSNCwLFaWllju7d0MlJu2xhqNBq4UZlb9LNM0w7W0URnRcV1u377NrVu38HyfnTt2sH3nzo4l0ka9jg/hoH3UdFqfew1AjnrNzszwzLPPhufTNTl+krG3SPBvZ7B5Imv3beFHR/qUG9yzIAiYevCASx98QH9fH88991xLtW8jUvj2hN6Mxdi+Ywdbt27l4aNH3Lt3j3fefptcPs/4+DgZiXcotM2Mtl1AWLlT7ZuVUolKpUK9Xv/EWjefaqCs1Wqh5mRMUiEZarFHnH+nkLK0uMgHV68yNzdHb08PX/rSlygWix2RXCCEmtVcZHuW0QIDj5jtOEzPzPDU/v0dF7nKHjs+AJ9AVvhhdo0tn8Xq7NLy8jJnzpzBNE2eefZZUoqqSl6DotrrBqlf7xE1DYNt27axc+dOJu/f587t2zx69IjBoSES8Tj9XTJrPxDSPtEeTDqZFKQTlQqWZa3b49m0Hy4LgoByuYzueaL6I3cToUV2Se3Pmed53L59m5s3b+JK3MEe2X/0OqDHowl2utMalMdvL71OTU0RM02RhNLqYzRaK0taW5LbKaj6ESDfRwGphJ+wXpk38vcol7TyHZcvXeLOnTts37aNrdu3izGUSKBcF6XeKclW1yZR9ceOHqXZbHLl6lWuXr1KLp9neGREsIh1OK5KHqLkBrFYDDMWo1Qqsbi4+PkPlL7vC4opxwEZuNqFkn1o6RcCWJbFhQsXePjoEYVcjlMnTzIyMtKyC2wPUo4kRu70GSAfJgknV04bYPrRI3zPY2JiouM1qOxx9aO1kHAgKrLcck1KsPn7KJ+sQcPRurDb5xzV36anpzl37hw9PT2cOHECW94XJakFhMPSnUqv8iKFDE6HBa8e8kQ8zlNPPcXOnTu5cvUqU1NTzM7OcmD/frbv2NHCVRk912h2G4vHoVZjRc54jo2Nfbh7tWlfWKvX60KGr9kUCNAo0rMNXBN9/h49fMjFS5eoNxrs2LaNvfv3h8GvWxIaJtiSfrHdWkhNpAUIFPno2NiawKFF37d6kPB93QCF/vezm4SO1TmFDwh9R9A24y3/9DyPd955h9nZWY4dPcro2Bi1ep2mHK9T5qjSaxdTZepOkwnKV/b39/PSCy8wt7DApUuXuHnzJvNzczz7zDMtPUflO8JDyJ9pmkYmnWZlaYmenh5s2+7Icvb92qcWKG3bxnccNNfFkA3ylt0khDV/dXOnHjzg4sWLaJrGc888w/jExMbo0SCgLmf7kslkRxBNqCSuYMXyNZNTUwwWi0++m1HZobaqSr5GJicisRVEkwAZYOmwUMP3BkG4i1XHjS6Q9iHkqN2+fZvLly8zPj7O05I0QQ03NyOAGaXx2V6ebr3Mzgs+RPTKJCCRSHD82DGKxSL37t7lwqVLTE9Pc+zYMdLp9BrHEKXM03WddCZDaXmZcrm8GSg3LbR6vY7hefjtu8no8ySfLx3hay5euMDDhw8ZGR3lxRdf7AoSiZpSygg6tGuUGepZiCSOKysrlCsVDh069ETXE00cVc+wJXlE+o2gjX9Z+UnpF6L/t9+PMCENAnz5nvC9HZJqZZZlcebMGarVKqdOnWJoaEjcV00TrGRSkQWE71jPbwAdd5V+m99A0ygODvLC889z+9497k9O8u1vf5uDBw+yY+fOVd8T2TjokfuSkLiU8soK5XJZ9Js/ZvtUA6UWCQqdgpHv++iaIDk+e+YMjx8/ZmJigsNHjnSdj2p34LbjCEFRTeu4m1Rm6Poq5ZxhUG80mJub4+mnn37ia4qSB2iRYB81dW6KCSPyZvG/HPXo2mNp22FHM9SOPb8g4OKlS9y9e5c9e/Zw4MCB8FfxeBzbtnEdJ9xJNyQV1nr3Sp1/S6lKBfEO1zwgYd6F3l4mJyf59ne+w6GDB9mydeuac9XaFvzKygp1yTW5iX7dNN/3cWybQO5eTMNYu5tkNXA9np7mgw8+IACePXGCcVkKbTcN1jxbdZk0JlOprih1RTUZfRYePHhAMpGgWCw++YWp3Z06btszrpLqNX5DvHi1fKsS7uhxoeW4WptvURiHdp9TqVQ4ffo0vu/z0ksvhVgBTRPjen4geKVVcKzV6wwPD697mWpD0ik4t19XMpViWKLoHz16xIWLF3n8+DHHjh9fw2fbXjZOxmICBSv92cdtn2qgDFw3pF4LB2gjN8vzPO7cvcvSygox0wzLrOtaW+nVlrvJlJTa6fo2XRfbebngpx4+xND1sMfwcZjKCuHjbch3s5aSybFjIc+kMkWj5QcBjuOQiMcFd2IyGfZeulrbrjJKQN9+fkpNobe3l4GBAR5OTXH+vfd48PAhx44eJR1h4YjuKg3pBOu1GrVa7VPVm9u0z6bZtt1Sqot3KastLy1x/+FDapUKExMTHD16VJTg1gOsRJ5JVybYsH7SaKgdm/QbfhAwNTXF+Pj4h0O2t5WM2y0svX7U0ZCNrrutLzo/P8/Zs2fJZDI8f+rUmsCkqOKarktSvrdRr2+4oxQf1xYo5Yap0/3K5XJYts34+Djj4+NcunSJb/3Zn3Hg0CF2SBpOWG2DqU1KLBajUq2K2c71gFQf0T5Z2WxprusKcWbHQZfcg2uQX0HApYsXWVhcxHdd+vr6sKWI54f5HFey3ic3qFMrFKpakA8mJxkZHf1QFGrhFXRalEHQUnbt9sVFCQnWlRPr8NnRsotlWbzx+ussLCzw/PPPrwmSypQIqurhNur1lsC1nkUfWpXxdrs2RXvnui4HDh7k1MmTlEolvvOd77C0vBy5sNasPhYJlJu2abZtCxCPfMbiUgovatVymVu3b1Mul0mlUqTSaUrlckce025mSbKTRESntZPpUi1IiRbMz8/TsKyuuIZu1o68bzfVovgwgfJJQ0P42fLPyclJ3nrrLdEvfOmltbs3xHOpQDSuFKP3fP+JfEeLnBmr19xp85CIx0mlUuiaRiwe58uvvsrEli1cuHCB8+fPt3ynUb+jZsWr5bIQv/iY7VPZUTabTTTPE7Vy1tLTeZ7HuXPnWFpepjgwQCqdplar8f677+IHAT29vSF/YJ/kdexkllQUSEhO0/VMlTR832elXGalVGL/U099qOvyI1v/QO241E5LHltlTh1ZeyJlkhDIFD1+l/5mS/k1CASh+ZtvEkBLyaSTxePxVYHqIKBWrwseySe0KIAoei7tphZ8tVajVC4zNDTEX/jylzl9+jTfe+MNnnvuubBaEN1VxmMxqp9gCWXTPl/WbDbxmk1BqWaaa1CtCwsLnD1zhkQyyeDQEIZh8OjhQ27euEE8FqM4NBT6jjU7Rbmz8n2fpty5JjZoQWiaECnw5fM9NTVFNpP50DJxgcQYRGcx1Z9axHeIH3XwHfLn0WQ5+io/koCrNksLvgEIPI+rV69yQ7F0HT267khLLBYTM6aui2PbAE/sO6K9yhCn0OWz8tksjUYD27Jw02mOHj3K4OAg586fx7IsTp48udqW0XWQOBPDMKhWq1iW9bEDej6VQBkEQZgJKG1HZU3b5vSZM6yUSjwth/wN02R0dBTLspibm2N6epr79+5x8+ZNYrEYQ3LxD0VULgJJsE0QPBEYR4/sKKcePCBumgwNDa1/HZHriVJZqWZ5uFDbyjMftXwSPV50AUcfiNmZGc6cPUs6k+HUqVOkU6m1r408aLose/u+L5j46/UnL3FG+g2+FNvu1ssJgGwmQ61WE31R1yWRSPDCCy9w/vx5zp49y5EjR9ixY4e4d5oGvo9hmnieF8qRbdoPtwVSnipmGEKdJuJkHz58yPnz5+nv62Pb9u3YzSbFwUHSqRQrpRIzMzNMT08Lon+gUCi0JNwq6VPtGoWo3ch0XQfPw3EcHj58yK7duze+DmitnsgeYTQIRlH17UC5D23R40Z6oeo8XM/j/LvvMjU5yYGDB9mze/eqn9E6z1rGYjGsZhPXcULpsY3Yy1quTZovKwTdZsvNWCwc36nX6yQTCcbGxkgkEpw5e5bXXnuNL73wQujr1GZEidt/bneUIBj/DSJjCHI38+abb+I4Di+/+CLJZJLZubmwUZ5IJJiYmGBiYiKUh5qZnWV2ZoaHDx8C0Nvby+DAAIXeXmLRQeQNTFFReZ7H1MOHjI2Pr9mp+l1q3e2BqNuuar0Sw5PYGkKENpucnOT8+fMMDg7y3LPPhve2I/NHJNjGYjEc1xWl7Q9RehUnI7JwT2a83Ra7Ep2Nx2LY8sHqyecxTJPnTpzgg8uXuXDxIvVajQMHD4YLXh1PKYps2g+3KZFy4vHVSpSmcevmTS5fvsyWrVs5duwYCwsL2JIZStM0enp66OnpYd/evdjNJnOzs8zOznL//v0w4R4cHAxR7qZhbNiuUaYbBpqcuXYdh/E2haFufqMTKK+bhb7j+0yyO73fcRzefOstFhcWePa551rOP4o9UOesztU0TcEbLUf9DF1/cnkrCUxSkoRBEHRMsgNEhTGbydBoNGhYVjiv2T8wwMsvv8zpt97ite9+ly89/zyFnp6wUqnJQPlhSu5Pap/ejtJxMGKx8MY2m02+973voWsar7zyCtlMhqZEqzqS8zVquq7T39dHf18fB/bvx7IsZubmmJ2d5dbt29iOg2EYjAwNhRyk632JhtyyVyoVKpUKhw8fXtsH/D4bwt8PqTGweg/aGW6CgGtXr3Lt+nW2bdvG4cOH1/+MCDoXRHmzIcWc/SDYEPHaeigRcD2ZFbYv9oBWGbBMJoO9skK90SAvCaw1TePQ4cOk02kuffABpmmyb/9+fFYfbMuyWqDom/bDaa4s8ZmRsuu9u3e5fPkye/ftC8lBDNk7VE44OjaSiMdDon8/CFheWWFmZoaZmRkenD+P5/vkJTvM8PAwvb296z5POmKdz87MkM3lyGYyLb7jiZ73Lu0YZRu1Ntaz9Y5bq1Y5ffo0jUaDF154YWPR42ilDIibJq7nUa3VhN/4EL5N0zRcWW5WJezwY+R5q2pdPB4nZpr4jrPqOxDYh1deeYXTZ87w5ltv8cqrr4rRsyDAMIxQXuzjtk8lUNqNBgRCMiYmb/TZs2dxXZcvf/nL4fZdOcXA90N5qhZTCFdNqJlv27KFbVu2UD90iKmHD1lcWKC0ssI7586haRp9vb1CU3F4mHyhsHYmSdNYWFjAMAwGBwY+0rWtpw0ZfL+l1w4Pi+95vPvee0xNTXHo4EG279ix7oPRyTRdx9R1GrUaBIFQYGDtqE3X98seCqzuAKMLPWrJZBJDBlbLslqAAjt37cJ1Xa5cv04un2dkeDh8iFRmuBkof7jNlWU0Mx6HIGBhYYELFy6wY+dODkQwBaZhiFk/113rvCP/1jWN/t5e+qV81ozcaa6USty5c4fr16+TiMdFa2d4mCGZcEfJ/FXAnpmbY/vWrR8qWEStWzUq6lO+H6ISoOXclhcXOX3mDLF4nFdeffUjsV+Zpolu21TK5Ra/AU/mO0KEexQYSGc/mslkcGSSnclkwnuRSCb50vPP89prr3H2zBlefvllIUYt39f4BPANn0qg9CX7i5JKuXDhAktLS7z40kstNW6l6hEgEKwdd4SRTBEAOdvTUygwPDREOp2m0WgwMzPD7MwMN27e5IMrV0gmEuHiLxaLgvDAMFhcWmKgv78jC8dGFpKrdwlU3y8hejhvJP9s2jZnz55leXmZE889x9j4uOBq/ZCBEkQJvFavo+u6YMAIWuci1UPc8chB0JIEKARgJ9OV9mS1SrVeX4Oo27t3L6VSifPnz/PSSy+RzmRA08Ts3Ee4rk374lgQBCBHrHRdp1arcfbttxkcHOTw4cMtr9UNAy0IwhGPjtb2rLqui6HrDA8Ps3/fPtA0lpeWVnebU1MEQUB/Xx9F2dvsKRQwDINKpULTthneaHxtHduoZbMeWn49a+l7yvc/eviQd8+fp6enh5OnTmHGYuJefcjjm6aJpmnUqlXGt2xZs+PsRg/afm66VBxRzGadLJVKUZboZVuKaCiLJxKcOnWK1157jXPnzvHciRPhsRSJysdpn0qgNCAc8L116xb3793j+NNPd+QC1Q0DDZ64zux6ntCii4yEpFIptkvtM9/zWFhcDBf/5OQkmq7T399PvlBgeWWFp/bt+8jXtt4ubA0DxYe06AOjSibNZpMXX3yRPlUy+YjBRM0rZrLZjoKxQMusU/RTPM8T/YZ1AmTU0uk01VoNRwpItyRAmsbTTz/NG9/7HmfOnuXkqVPiM1x33d36pn3xzXVd4qZJUz7jZ86cIRaL8dyJE2v6/tHS67oWSbAty8KXpVnVQugfGKB/YID9Bw7QqNWYnZtjZmaGWzdvcu3qVZISXduo1zEMg95PYNY3inb/KNZOERll6Xrm6afRDUMkuh/l+PKYzWaTbAdsQ3uQbvcOvu8L5RVJ+LJuiVvXSUnfUe/AApTL53nm2Wd5++xZrl29ysjoKD6r/NUfp306O0rPwzBN6vU6Fy5dYs+uXWzburXjaw0JsnEc54mGWZvNZjhyEuqiRUqAmq6Lpv3gIIcOHaJWqzErAUF379yBIOD2nTs0LIvhoSEGi8UPNUuJhHn7sjei/vR8n3qjES4GW+68oijUigSsVKtV8eBHM0hNDPR6nke5XObSxYvE4nG+9MIL5LLZcKFrEoH3Yc2UUOpMNovreV2vuX1XrJrtH2a3F4vFSEqFkHqjsaZSYJgmJ0+c4LuvvcblS5fYtXs3umlSq1afaA1s2hfTXKmTqhsGV69codFo8Oqrr3bUqzXkuJcrq1cbWYB0qIEQAlbPU3Rdp9LpUGzY930WZcI9OzvLysoKruvy5ltvMSI1W/P5/BMHN/UpUb+h/m7bNo16XZQTtVaKO7WDK7f5jrC6hXg+G41GCHp6MDXFrp072f/UUyh+1+8Hf6GOvdFoiGrFqJKpmn7wgoBEJ8ahDpaRo4JWBNQTtZGREZ566imuXLlCIpUimUqJUZ+P2T7xQOn7PoEMlDdv3iSbTnPg4MHuJxSLoes69hNCfJuOQwCrfQT1f5cvIZPJsGPHDnbs2ME7b7/N49lZBgcGmJub4969e+iaxsDgIMOy1JKNsNF7kuvQ830818X1PJxms+uuSqmuu65L0AXhBayWLtuO4zgOC4uL3Lt7l3w+H3JJVqrV8DW+fMBNXRcPlq5jGMaGizBAqLkMDA6urwIQOUf1v5Lm+jAJRTqdxrIsGpZFPpdb03tJpdMcOnSId997j2KpxGCxSL1Wg0+At3HTPh/m2DamYVC2LB49esThw4dDUEe7xROJsHf+JPSHisZRsUGFfKRdfIceSbj37NnD17/+dUZGR8Us4rVrfHDlCqlUSmAi2hLuMEBE/Ifile1kzWYTx/MwNcGvup518h2KEODuvXuUVlbYt3evIDaPkHgEyA2MTEQM6Tf0SMDtZrVqVeBN4nERdNdjQJMbCZVge563ZtxtPYvFYsRjMQI5JdFJgmvPnj08evyYO3fucOjwYazPY+lVLYZatcrC4iKHNyAOTsTjIbHxRuZ6Xlhnj5lmi6JItPne8YsPBKvGULHI9h076OvtpVatihLt7CwffPABFy9dIp1O09/fT19fHz09PS0oz3CHyOogr67rYRCIx+NomkZWNqKjfLCapoXKIpl0WuwSiZQ9fZ/79+5x9949hoeHw55MdNcKq4rf7Xm0Og/TMDANQwxrR+5DrVbD831y2ezGWXhbiTXUsPwQXKypVErQ57kulm13nL8aLBbJ5nJMPnjAYLH4iZRQNu3zY2pdTj18SCKVWrcfqGsapmnSdBws295wbVoywU1Ipp+WFsM6iTbA3OwsAbBr506y2SzJRIL5hQVmZXvn7t27GLpOT08PfQMD9PX2kkqnW54/VZWJCjToEqOBPId4IkEmnQ5HNNSuUYvcm0w6TVb6DrVJqFYq3Lx5U+jPPv00/f39giRd7lrV8X0JmiTynGlIrIhphn6jfQSsUq2SzWQwDUMoEa0zXRAF+Kl2mhmZ5X6S8m8mk8FuNrEsq2OgDIBdu3bxzjvvsLK8LO7Zx2yfeKB05ajHvXv3KOTzDAwMYHdxlARBWEJtOs662YoqUfhIJJaqu0sLF36XL2KlVKJhWQwODqJrGk3bxozFGB4ZYWBwEMd1WV5aYnFxkbn5eR5MTWHoOn19fRSLRYpDQ6EiQbS8oMzzfZpyASZktttuCtGpywUZXpvvc/GDD7h77x5bt27lyJEja3ZvQRAQeB6OHHxWmarf9n80CJq6HjKcrKysAJCVgbLlXqtg3daoB5GFKg5bwzDCfuVGpiGyfpXttn//igBh1/btvPv++yzMz+Pt2bPhcTfti2ue61JaWWFhYYEDBw7gNJt4qVTH2d0A8ZxZto1t2+Sy2Y7HDAB8H1viGtq5Y7sRe0RtZnaWnkKBRCKBIyXr8vk86XSaia1bqddqLC0vs7iwwJ3bt7kpqd4GBwYYLBYZHBjAMIzQb7T7Bk3uiBKJRNcRt6jviPqG8soKZ99+myAIeO7ZZztyZasdblNK7vmetzrfCLi+D80mqqanaxqGDJymabKyvEwun0dDyPS1BErlM3x/je9VvkgBgtTOcqM2TjKZDEfSmo6zpvRuN5sUenro7+/n/v37DG9AHPNR7FPZUc7Pz1MqlTglgRq2ZRGPx1eJ0aWpEqqh62hBgNVsrpnxCyJOvCmRkYlYrCuopoVjULwRNI3p6WkMwyCZSlGuVrHbQCaGYTA8MsL4+DiGYVCv15mfm2N2bo4b169z7do10uk0Q7LM0t/f3/oAf0TkmuM4nDt3jtnZWfbt28fo6GhHwgJN09AMA1P+Lnru6kHwfV/suiUwxvV9AbdvNplfWCAupc4CGdRVr6brwDSEpSBTlmvU56lz6rboAwTZdL1e71hWt+V3OTAwQH9fH3fv3uW5kyef+L5t2hfLVJJ3584degsFxsfGaEqCjGynIBgEYTWqE6tTi99wHAEqkbvQKKYhalr7+2UZ8fH0NOPj41RrNVyVOEYsm83S09PDnt27CYKA5aUl5iQoaGpqSsyE9/czMDDA8PBwi+4iRMbKPmQfcW52lrNvv00mleLgoUMtbaOW69LE3GkcWn2wrBypEqnreQJUFwT4qlQcBFSqVfoGBsS1y3unqPIiH7Lmc13PE6Qi0U1BEGw4lqbJiqHnONi23RIoFf1gAOx/6inefPNNHj9+LJSoPiqrUQf7VALl7MwMvb29jIyMUKtWsWwbq9FYu+BlqTSWSGDJEooKlNFSo0LFupJGLR6Pr19mlRYEQjXDaTZ59OgRhUIh7Gv6vk9MsvqYUs4nGiwSiQS9vb3s2bsXx3EEtd7jx0xNTXHjxg1M06RYLIYUWar082GWeqPR4Mzp01RrNZ4/dSrknexKqC6Prxr+q7dRC7NMFT6VFqXruriuS6VcJpPJ4DoODdvGsm3y+Xw4NtPNvEhWqD4r6oTafxY1tbP2JIpRBXdP7or9QKjK79yxg3PnzzM/N8f+iEzYpv3wmOM41Gs1SqUSJ06cIJVO4zgOTemwW0qrcq3FEwk0XReakpEKSft8ryOxA0nZGokC7LqZJyseCwsLYseaz4sAKYOaGpA3TXPN85MaG2N0bAzFyzwzPc3j6WkuX77MxYsXyeVyod/o7+/vKkO1nt2/f58L779PsVjk0JEjeJKhqKtJP9pimiAB0HV99f4Ggu5OBc1yuYzjuiHmwJUl5GQyKdpf6zB1qXJz6Fulz94oSKrj2zJQRqsFtgySaj52YGCA2dlZfNdFf1LWoCewTyVQLi0vs3vXLgCS6TR2s0lTLvp4hwWfiMepaxq2ZYEMZu3D9wrEY8Zi4ZejtZVfxSEDQdcmicBVH7BcLrN9xw4ystZumuZq4Na0dQNcLBZjbGyM4ZERjnoeyysrTE9PMzM7y4ULFwiCgHw+T09PD4PFIrkO4JV2K6+scPrMGQBeeeklcvk8pXJZnM4TSGBt9KCHPUvTFFnu8jJbt20jnkhgN5t48h7Zth0+KPFYbA3zjuu6+Kxmhd0GptV8pTLVj4nFYvjNZriDDwIB0w8QCgWGYZCXs2qPp6fXv+5N+8Ka53nMzs4CUCwWBV1aIoElkdM50wx3XGqVxSUQkCDAbjZXeaCj6xChWasFQUsy2+np8eRuxW42w7GTpeVlgaTv7w/bQ5lUSlRjNngONU0jn8+Ty+XYuWsXzWYzxEQ8evSI27dvY5omvX199Pb2MjExsSG5dxAEXL1yhes3brB9+3aOHjmCZdsbBsonxqzLpNs0TYJEgpnZWQLfZ2BggIZE9asydgNC2kpTqhQpC8uuEnAIIrg9yXgZCJIBrVwWCbX0L47rrgptJ5MEvk9/fz83b96kblnkP0+Bcm5uDs91GZSipoauk0ilsBoNatUqWja7pvGekJmhIivutDtRs5MtgTbyxfiyh6nkYJQZuo4lv+Dx8XHy2SzLrrvKPxgtJ2paK9k5bVleIOaBCoUChUKBffv20Ww2mZub49Hjx4LM/cEk37n4HYb6ihwYP8jw0NAaRoylxUU+uHKFbCbD888/TzKVCndu6+aUG5U8gyB8eKNE7uVymabjMFQsks/l8H0fy7bDnqPv++G9i5km8UQC0zRFH0N+jirZqNLymvmpLueWTCaxm80wM2xIqjqC1TlYDcHh+/jRo/WuftO+wBYEAfNzcxR6ekL/kEqlhJqI54kZ4ExmDelHPB7HdpxQQaL9uVD9eGTSBqypQrkScKZQ6yDWZEyOuPX29FAoFKjX6zQsC8fzSGireq3RpF49fy29T/l7lXCPyd1muVxmenqaR48fc/PmTW7cuEEhnw/ZxXr7+tb0Z69eucLs3BwHDx5k9+7da569rvd3AyBNCxgyYktLSyLYZ7MisdV1QT1pGAJUKCtWumURSyREW0zXBQcvrWXX9QgXVKLdkgSZpkjom01BwymJ2eOyCtZ0HPr6+kACIQ8fOdL1+j6sfeKB8uHDhxim2SJDk0ql8GX5rVavr9lxxeNx0SiWr4m1AVk82b/QELvPqLmSKq19kSeSSRKyL3pncRFdDgurcQo19qDKgdF5xpCiSe1sNS0suQSs9j4VR+H4+DgDAwPUGw3+9ZX/g/+48G2Yh9G5UU4Gz7K3dy9DQ0OChQa4cPEiw8PDPPfcc6uQcnXuHRZzWNeXC6mltNRefu7w0CwtLYlg1NcXlmnjgZgnM00TV+72XdcVWZvrhiTywJqydFQmq91UL0hZMpGgjEh06vV62D9Np9Oh3p0vz+3uvXvYtv2xS+Zs2mffPM9jfn6eYxGUvKZpZDIZqpWK4IVuNATCMeLME/G4GFC3LPIdEJLKL8TbdjyaptGwbSHtFFnLpmkKUE0shq5pLC8vhwAZ9axGAXNrgDnih2t2tUSeXfU+lXAPj4yE/dj5+XkmJye5dPMSj41pMvkMr277MpmYQHbOz8+HLF3h8duqby0W9WERvxH1YdHXttvCwgJFObJlyAqQDuSyWeHTZWvLDwJsy8K2LGKxmMAlaFpLT7RbIG9JriObnGQ8Tt3zsBqNEHmva4LOVLXP0skk8VSKu5+nQBkEAdPT0+wcGmrJhDTEXJ1q2Fcl3Djckus68VgMx3GoVqtr2C9UjyFKlOy6LvVGo2WsxJCKAAnZi1C2tLhIb6EQfp4ppZ260uap845mhdHMDUI6Jk0uQC8IqNgVvjf3Fp4mvuyHwUN+X3vIIfsAR28dJetm8D2PVDrN2NgYnuuKjCtYHQEJ2kqY4edD597KE/Q1FhYXyRcK4aI1DUMovHsesViMWDxOLB7Hl2WVZrOJ7/vh7i+TybTsUNf7RLXolR5dTPZ/LcuiWq0STyRISfUGBSbQgoC+3l5u37nD1NQUu2TZftN+eGx+fh7XdVtIuzXEs5qJyLdpmtYC+EumUhilEo1GI9RhjJoCpKjnXKHnFTmI+px4PE5SJo7KGpZFvV4Pz0n9TlVh1muvtAegQFarlCnsBYjk0ozFyAxkuehd5k3rTS7MXxSVsWX48+XX+En3JwiCgOLQEMlUqiUh9Xx/dccYBC2BOdyBt7WoVEBfzyzLolat0i+ZzJT/8DyPwBeakEnDIJFI4DqOKFlL+rl6vY6m66TbqmkblV/VOas+Za3RoFSt0lsoiDiSSrWKYGsaA319PJicXPdaPqx94jtKr0PwUTNB2UyGSqWCJ4NlJpsNqdFS6XSocNEeKEPkpSwH1huNUINMQ2SLiUSi6yzVwuJii/ZkzDSFZuKHYLgJyQ1orfeHuz3fp+yURXNc0fVq4vyuNK5xhWtktBSn9OfZZ+zl/PnzYclxeGSEvr4+cf7BKqpMZVAKxBMGyQ+JjltcWKAYuX41Y9lOG6gbBqlUimQige041Ot1gah1XSqVColkck1mvuY+qT+jozuKUELTRAlHHSNY5ZBNplKi1/QJsGxs2mffLMtC07S11QRNIxaPkw7EAHqj0UBDlPR9IKZQ84hZ4Sjww5OAEhDPfFMGSDXupGuaSKyTyY6I08XFRYIgEOU9VrVdA9bhpu5m0Wc3EijmGwu8OfUW7y9c4O3SO0QbPzo6aLBCiXqiRqqRZn5+numZGeKxmCBxLxYFLaXs1Ybv1rRQ9SQKvnuS8YyW64cwUVDoWU8CfmIKKyK/o1g8jud5IQMZQN2ycFxXiCWoKtUGn6/O0zRNbFnq9lyXfC4X+g2Q1SvEWihHyBU+DvvEd5REAkr77zRdJ5vNUq5UcOUNTaVSmLEY6XSaleVlAcJx3ZbyqyrXOXIIVVk8HiclZ266mWVZVGs1noqohUQzw+hOqcNJr5ZR2gBG0fxMLUbXd/HpvghqWoNvGt8kWUzy0zt/kspSldnpaW7euIHrecTjcQYHBhgbHw+J3FX2pWDZ3RZat+toNBrUarWWTN2U/LqKYH1N+UjXMTSNdDqN47qY8jwassSdTCTEHGuH84gCJVT2HqjeaQdHqK7PUECNJ3yIN+2LZ2FCGDG1nuIRYd9avY7reYLuUBPUarbrirZOJFCq8YTA9ylXKqs7SF0nJZO+9Wx5aYlUKtVCq2hKNaRugTJ8niJBy48kpEEQMFub4c3pt3jz8WmuL12nj355/Z3XfkpL8aPP/gjfe+MtXnjxRQLfD0FBU1NTAGFvc3R0VAizR5DxLUQpHcrC3bzn4uJi5+t3XTxZjWo3xXyUTqdDuUDHdXGqVRKx2Jo51uh9iZqavzZ0XVBuRkBBnd7z/VD0dbJPPlBCOFgaNfVv3TDI5XJUqlXcZpOqLO3F4nExoO55LeVXPwho1OvULYuc3IGqL0IFPH+dneHi0hIEQQshuyFvuivnh8Jyi+ojyL8T+dNv/1LavtggCHB8t+tiX30zfG3qD/nzme/yN3b/df7Ssz+OqZnMzMzw+PFjlpaWePT4MRoik1Mw8lw+H+4kNVm+eJLF0Z4VgsiMNcMAOXTcPt8KhIjhTDpNQiJlFVCq1mhgaJrIxLss3iAIqDcauI6DrmnE2hd6JCsEgWD+eJf6pn2ebD1icBV8lMOu12phbzGbTgsS/mp1TfnVaTap1WpomkZarr1kKhUm1wF07bWD8B19bfqNZiwGHapRYbkzCNY4/SAIeFR7zJuP3+T1h29ya+XW6vEwokdo/azAYG9qD3//+V8i42XC+9Pb309ffz9PHTiAZVncu3+fxYUFbt+9y42bN0nE4wxLPtpisSjOOZL0r/mkdpyDuv7FxTX6lYous1s1zo/Q1uWz2RBk6bgutsRCKMBg1KIB3JGalEEQoJsmyUhS3r6jDDQNo0u76vuxTzxQqp1ju0VvhC6b9A3E2EetWiWRSpFOpURdXJZf/SBguVSiblmhtmUqnV5b2pX9sE621CErAtmnk4P3H3pQtdOXEgQ4vkNA5/Not7JT5l9d/Q3+6P4f849P/iN6Je3VU4kEBEGom3f9xg2uSBWD4uAgQyMjDA0OrnUoWutsZSAdxsLCAulkcg2Rg2EYeJqG57priSB8H0fxu8oyaVICHJrNJpaEz1erVZKpVJiZhxm07wuRaNnLyeVy2LLv6codqrqHKssPof+bO8ofSlPthnaHrdo2yhKJhJDgqlZxHYeKbOG0l1+bjsPyyoqYAUwmScjeeHT8SVWGOiVonu+ztLTEgba5XjUz6TqOSNDXSVYny5O8/uh7vD71BndL97q8Srzfl34jZaTYk9xFsTLIX9j9Fzh28ChoGivLyx3fnUgkGBkeZmR4mFwux/Lycig5OPngARrQ09vLkOSkzXUgJVjDZiap7paXlxmfmGj5VViN61KNciJz17oumlBmOi2QxZaF6/tYzSaO65JKpdb4Xtu2aciqoaHrZNNpkXC3Beb2ttHnKlCCCFqeu5ZLNAqlVk48k82iWxZWo4HVaIRqII5tU2s0aEqiAhA7GyXGvObYbUEiaotLS2GPgcg5GKaJ1mziyFLiRrbR1xAEAd6T7CjbbLo+zW9f+zf84v6fB8S1JFMptm/fzvbt24Vs2MIC0zMzzExPc//+fTRdp7e3N9TbzGWzax2MvCczs7MUh4dFv1P1MQJBR4f6rtquX6H6jDbUmq7rYtA4HqcuWUoacteYlLtLu9mkYVnhws1msxiS1Uf1dlTJJgiCcMGr0uymcPMPpykkeiffEYJUJODNNE2y+Ty1alX0xMpl8Ty7LtVaDV3XsSwLR1Yzent7uyKp9S49u5VSCd/z6OvrW215yNcrH+RE1jKI9XyndJc3H73JG4/fZKoyhR/4+H53n6CjkTJSHBw8wDPjxwkmfRbmFjl2/Bjbtm3b+MZFzl3XdQYGBhgYGODgwYM06nVmZmeZfvyYG9evc/WDD0gkEgwWi2K3OTgoktY1J6UzNzND4PsMFYthhVCNcehSMsv3/TXPq5p3by/Lqrl1u9kUPkNWDlOplMCe+L74zmQAjsVipJLJELfSHihD3Io8lw/DQ/0k9okGSsMwGCwWmV9c7I4Ka9v6p5JJQRlXrYLccdQbDebm5sjn8wRBQCaTIZfNrl9q7FIOXVlZYfeePWsY92OxGMgSwkaM+Oq81/ssX+4o1+tRdjNRshXWDirQDYPi0JBg4Dh0iFq1yrRc/FeuXOHy5cuCWk9mlQMDA+HsUrVSoVatcvDAgdbehGyUa1pnPT/FWdtt8Rmy16w3GliyrNKsVMIMPZDl3FQ6HV6PYZq4ti14JRVSWPWMNI3lhQUM02SiLYPdtB8OGxkZoW7bLCwuUpQz2Mo0CEm+VcAydJ1cLke9VhPrVdOwGg1KpRIx6Xhj8TipRGLdcaNu4JbS8jIBtLB5KYvHYjSkIohpmtxcvskbj9/ke4/eZLrWSprRbaeTj+d4fuQUpwZPsTO1EwK4fOkStVqNLz3/fAv4bj1TLaFO1JmpdJrt27axdcsWPF/Ihs3OzPDw0SORcGtaSKvXnnDPzMyQzmTIyJ5v1HcYsk/rSTWS8FzkzwJYM+KnTI3sVapV0cap11fp8DSNQPaeVdVQHScMlG2VKNM0WVxa4qk2Ye/v1z7RQKlpGmNjY1w6d45qtbpmrqljfRw5QFoo0KjXAQQ7hm3TUyiQSibxZRa50We3L0qFjs3lcmsCm6HrYnhWlhk3QrCtC/pBBIfJR1NsvPdstWwsy9/e+zMtC77j8eWfmWyWXdksO3bsCCm2pmWp5d7du6E80NDQEHazKVhF2hwPEM5JtvdowrJrEKyrEqBg+rquUyqVsJpN8H0SySTZTGYV2SpNIY09RchOK4/s3MICQyMjHUtDm/bFt2QySa5QYGFhoePvA98nkBURZZqsSpnNJn6lIipQts3y8jLFwUF0w+jqsCMHaf0cRGAul8trFECUGabB3dm7nJ9/j9cXXmOuPt/18FFv0Jvo5Uujz/PC6PMc7j+EoYtnYm5+nssXL6LpOi+99BKFQmH9c44efwO/QaRSUywWKRaL7HvqKeq1Wqi12Z5wDxWLTM/MMDo62vGQagPkR5JeEAm2GulZr52l6zqZTIZ6vU6pXBYJkK4LZZS2GXuF0A8U0jYyAw+iRF6pVJ5s9/0h7BMvvY6Pj3P6jTeYm59vCZQbhQ81BpHL5ahVKjhBQLlSCftjxkaBktW5RhV0KpUKBEFnUmXEjsnzvA0DZacgGZ0Hch2HixcvsryyiK89WY8S4Ej/Yf7+sV9iMDVIRdLX0W2BdchMDdMUC3t4GAJBXqykfy5fvhzu6q9evcrw8DAD/f1hj0apGASa0PTTpORPUxI7KM269e6J4zg0Gg0M00RvNiHC6dh+vwzTDHfwmq6LPogMlIZpsry0xLOSRH/TfvjMMAyGR0d5PDPTGYm9TntF8ZVmpSi57bpUJIjnSdoqUZ8RSIBIpS3R9wOfSwuXeePh93jz0VtgifNbpnPvUNlAqp8XR17gxbEXONB3AEPXW6o4c3NzvPfee6TTaV588cU1LF4b2ZOw8rSbSjB27trFzl278Fx3TcIdBAGLi4vcuXOH4aGhcGcJhDqW4XVogqRFzbtvlJwEQRBWomKxGJZlEVdgvg5+1pAsQJ4EArVUopaW0GMxduzY8cTX/yT2iQfKdDpNOpdjfnaWXTt3hj8PkIu9Q6nP932hl+h5JBMJhkdHWVlZEbN7cri2Uq2KQfVuX4KmicZ8JKBUKhU0wwjlsdotHouJL+yj6CDKTMpqNHjrrbeo1esMj48QPAELm6mZ/D/2/9/5iR1/BU2T2VkE6NTJon0S6ABA0DRyuRy5XI5du3djNRp885vfpFAo8OjhQ+7cvh1mlQpJq0sAhOf7IlND8GIG0BU6HwRCjaFp22K+STq1vr6+kIux0WhAELQkH4pzVu0oYbV80mw2qTcabN++feObt2lfSDMMg9HRUaZu32alVApR7wGRnUsH32FLRhtN0ygWi+i6TrVW4/78fVacEkf1I2i6LgjRuxF4E2GUks9YuVSiODrMudl3+d6j7/HWo9Ms2yvhe/Lkicv/GrQKBw9nhnhh9Eu8OPYiewq76cYkfe/ePS5cuEBfXx/Hjx370EESVueVN2wdRay9+taecF/+4ANu3bpFzDS5fPkyly5eJJvNCkDQ8DA9hYLwt5Hvw3Fd4Qug66bG831sy6LpOEIiMAhCbd6GZYlSbLVKJkJGA6Li5LguTc8jqWktPLLz8/P0DwyIkZiP0T7xQGmaJhNbtvDg0SOONBqhDmEQXYiRL8mX6Em1ULPZLOl0WtAhyXKeHo9j2zZN2xZ9h2SytYkuvzBDa2V9qFQqZBU/ZJdzVYFCzep0sk6ZrAaUIsTmx48f553lcxuCeXqDXn71+K9wZOzI6vEjkPKuUjsdUK7r2crKCp7n8fTTT5PJZqmUy8zMzjIzM8OFixfhwgWyuRw9hULILempQMYq5Zc6L18ihJtSEzTwfTH2EY+v9hNiMSxNawH0qP6QEtp2/VXtTBA727v37pGQAKZN++E0wzAYGhrC1zRu37rFs88+G/6u2/Nr27ZIyhAz1el0mqbj8M6j87z24A3KXoVvTP0R/5/n/yHJWJKkRL5qkXEC5ZdURavpNTk/fZ4/rP4Rk7enqN+od/xsB6clUI5lx3hp7AVeGH2B3T27wnP2JLlBu33wwQfcunmTiYkJduzc+ZHBKCG2YYPfR03r8nPxS7FLGxoa4tSpU7hSNnFmZobHjx6FCXdfby+F3l62bt1KOpOhadsh+YuhqlWq4ibZehypVRz4PoYc+zCkXzAMg2qthh8EVGu1FuY20zTRIm0blWB7QcDDqSle+ot/8SPdu/XsEw+UhmFw8OBBvjc9zbWrV3n66afFTk8unPYvqVavrwbJXE70DiVDTLVexw8CoXIdBDQlvZrTbGIaRkemmOgAbaVS2bDnZZqmAOI4TtdA2U6UDqLZffbsWbLZLM+dOIHjONgLa3XxovbjY/8JA3f72ZrZ2vqLdqDQx2Azs7NkZDNe0zTyhQL5QoE9e/bgRInc5+a4/+ABpmky0N9Pb18fQzIzF0heAVqwJHEAcvwnmUwSj8dbeC9hVXTVkv0iTdITGoYhSjSS29V1XdA0HMfhzp07vPLlL3+kjHrTvhimaYK0/ODBgzyYnGTPnj3kC4UWqraWdofrrgbJRCJMyF9//BoX599HDwzqWp3Hjce8M3uOF0a/REMi7OOSjceUDt3ybN6ZPsfrU69zevosdaeOE3joXvdn0cZmV2YXRweP8MLO59me3945oLcFSc/3OXfuHA+npjh46BCjo6OiovURn3t/ox1lhyC9XirvNJssLC5yRIJjzFiMkdFRRkZHCYKASrnM7OwsDx8/5saNG1y/fp1sLkd/by+9AwOMy76mas3YzWbI0xoEATHTJJFOh4IM4QZBls5rtVo4XqY2OaF8GoQ+CeDunTv4msYLL7zw4W/cBvapBMpYLMau3buZvHuXXbt2kVXUQxDWs9VAupKHUUFSWT6XY2lpSQy36zqpVArP84Siudy+N11XyPHIXU3MNDGC1UnGcrnMli1b1j3feCwWlgzbZw1Da9sFq5LJ4OAgzz73nKjPOw6P6p1lovqTvfzysb/PzsRO/uzun635/XrINaDz3OZ6FgTMTE8zPDzc8XixeDxk/6nWalQqFUqlEtPT00xfu8bVK1fIFwoM9PfT09sr0MeI7zYRjwugjjyWLgFRUVMqDnazidVohKwa4YiQ7AsD3L5zB9M0OfWlL324a9y0L5wZhsGuPXsozc1x9epVTp46tWb9BohdYE1SlsXj8TBI/vur/54/vPWHDDNExkiScTPMMMNbC2/xn+75MRqNhmgNWBYr1RWuLF/l7PzbnJ49S8Nt3TlqLSn3qu3q2clLYy/y0viLFIICjuuSSXUG/ajzVb+xm03OnjnD8vIyJ06cYHRsLLyOj2ph6bXb53dQDVmPxm5ubo4gCBgeHl7zu2jCPTI6Sr1epypxEdOzs9x/8IDLFy+KhLu/n76+vlBaL2aaJBSNHatBL2pqvl5VGBuWRTqVElU22bZTMluO43Dn3j2OHDnSFYPy/dinEigBtm7bxuzjx1y9epUTbcr1GqIX1pS8nul0eg1wJCH7kbqmUa3VSKVSGIZBWnKRWrI063meyBQlKUE8Hg93iY1GY8MdZSwWA8lO322kJco2c+XKFW7evMnOnTs5ePCgAKhIpx8Ea3soXxo5xS8e/QUKiQIrKysdz2HD/mSHn6lko9MDsry8TK1WC1UPupkuwTfZbJbevj6KxSJN26ZUqbC4uMjkgwfcvnuXmGkyODjI6MgIxeHhJ2LQSSQSodh2rU2lXqFq65bF1NQUhw8d6qj8sGk/XGaaJrppsnfvXi5cuMDCwkLIDKN69FoQUJUcxIZhCKo04P/3we/xR7e+AUCVOkWzSNpNYWBwfu49bGy0hM75+Xc5O/U2V+eu0/QFX3RaSxHDxMbGpgltQXJf314RHMdeZDS7+kypQfim43QHA8rzrlarnD59mqbj8OJLL4U9tXWVP57Auo2Vhcf8kDvVqYcPKeTzpOR97WaGrmPGYgwODZHL59mybRu2ZbG0tMTCwgIzV6/iI8CZwxITsdEx1XWkUynq9boQ7m5TLlKja/fu3cPUdY4dP/6hru9J7VPpUarRg6f27+fcuXNsmZ5ucdqe71OXmVSird+oLAgCwdRj21RrtZCCTpMIt3Q6TSqVEjdTCkO7nocne2PValUcY4MvRzH++LK0263853ke58+f59GjRxw+fJhdu3aFElFqx/eXd/znvLbwOm7goaHxd/b/LH9rz/9t48X6ERry6l50sqmpKRKJBAMRfttu7/ckybxfrRLI8Y5iscjI8DCmaVKt1Zifm2Nmdpbz588Dgsh9aHiYoaGhrlB2TRMcnCo7tCSZdYAA72iaxs1r10gmk+zeswfTNBkfH+fRo0e8+uqr/Pmf//m65/7BBx9w9OhRPM/jK1/5Cr/8y7+84f3atM+2xeNx6vU6g8UiPYUCFy5c4JVXXmmZ1bMsK6xCKdm6/+uDf8cf3/qT8DUuDh4eCSNOj9fDor/IL37nl5isPMDxle6rRlJLkCCJFhjoGKTJkNWyNHHoM3v5sad+lJfHX6SYXjteBaIaZSsdyw6jJCqRXVxc5MzZsyTicV599VUy6fSa+eWPylW6Xun1w050u47DzPQ0+/fvf+LX12o1fDk7mY2IVAeS2Wh2dpb79+9z6+ZNzFiM4aEhBotFhoeHQ+WkdlNSZ5ZtC25veW9c18U0TcqVCg+mpjh88CD5XO4T8RufPDOPJoivG64rHO7ICOfeeYdXX31V8JVC2FswTbNrudP3PBFEDQN8n5WVlRaNS/VZquwaqB6m3KmWy+UQWbW8soJpmkJSSmqqRU1JfHULlJZlcebsWUorK5w4eZIxWYdXYw4qKxzNjvJ7/+m/4/TMGZ4ePE5fqn/NsTpe63oQ77ZB67YbsJZkwfeZeviQ8fHxNQ+Pmj9yXVckFVKwtmFZAphjmqRTKWKqp4joOQ7097N//34s22Z2dpbZmRlu377N1atXBZG7nNssDg21oGWj2WFTKpX7ssdw/949FhYW+NILL4T3/MSJE3z1q1/lvffe23Bu9e///b+P53ns3LmTn//5n3+i+7xpn21TwC/X9zly9Civv/467733Hs888wwgklUl7p6RVajfvfx/8s3bf9pyHAOdGlVSRoKCV2CZZW6X7ra8JiCggUUDC0MzSJLkcN8hnh44jvfQY6QwzP7BfeiuQb3RIGaaIUmHMlXx0mSvvdOu8uGjR5w/f56+3l5Onjy59jUfYbyj9e0fYTyky88fP36M5/uMR7QulSn6SfW/EqhoWJbwG5kMaVkFVOeSyWSYmJggQFS5ZuXc5oP33oMgoFAoCBT+8DC9PT0t15CQJPiOqjwGAY7ngW1z4cIFegsFduzcSSKZ/ET8xiceKEFcZKNWw3Ucnn76ad54/XXeOn2aL7/6Kpqu4zgOUZLjTubJkkUml8OyLFZKJbJSoqmTqQCdSCTw02keP34stBBNk0AiNh05EKtJYnW1+KMsPe1sE9VqlTfeeAPXdXnppZfWBGtYzdw0TSMTz/IjW37kQ92v9UqvgThw52tmbda4sLCAZVligUrORrW4Pc8LmZFUj8CQ85OJRIJCPr8ui0kykWDrli1s3bKFQH7WzPQ0j6enQ17JKJF7Pp8XItHxuGjqy/s7vbzM5OQkR44coVgshoHy5MmTfPWrX6VUKnHz5k327t3b8Ty+8Y1v8B//438E4J/8k3/y4eSONu0zawrf4Lku2VyOZ595hnfOnSOXy7F3795wd5GIxYjFYvzOpX/Ln9351prjaBjU/QYZdDJ6igF/gDnm1n6ebnB88BgvT7zIC2NfojfZi+s4fP3eN0glkyHFoud5WBCOPsRME1PqrMYTCVxJbBJdh0EQcOPGDS5fvsyWLVs4dvz4Go1e9RyKH3zEHeVGvuND2NTUFP19faHepeu6eNJ3hOpFyOAsKSl1XSeTzVLI57sGKA3o6+2lr7c3TLhnpqeZlgn3tevXV4ncIwl3MpkUPUnlwzyPa9euYWgaJ06eFD4/mfxE/ManFihBlFhTsRjPf+lL/Pl3v8vZt9/miFShTiQSYcmzkyk6pGwmIxy+ZbG0ssKQVNtezxTAJJ1K0VMohKQCruOI/pjnYXveqqalpmHLOZ5KpUImk8EwDJaXlzl79iyGafLKiy8KdfUOtiEhb2QGstNr15uFWq/xHv18XyqBTE5Oin6uaVIql9fIXqlSsyn/r1Qq2M0mutydP6lpwKDkldz/1FPU6/WQ6ePGzZtcuXqVVDIZckqm02k8z6NUKnHv3j22bdvG9h07RFUgEiiVnT9/vuOCdxyH//q//q8BeOmll/jJn/zJJz7nTfvsWyKREL0/12VsfJz9lQpXPviAdCYTzkMnk0l++8K/4dv3/mPng8iq5grL9Jp9WE2bFVZo0iSmmzwz/Awvj7/I86PPU0i09sZ1ObPX09NDT09Pi9/wlR9xXbCskOSk3mig9BPNWAxD07hw8SJ37txh37597N+/vzOBQiT4bCT150cqV2rXFERGTzq2bboIRbS+RIxqNRoN5ubn2bN7N+VKRVTK1CnI8zAifkMDrEYD3zBIJhJPvqPVBAnEtm3b2LJ1K47rsry0FPqOloR7eDjcmFiWxePpaeq1Gi+99BLpVIoAwkCp7OPyG59KoDQMg1giQeC6eI5DOp3m1MmTvPHGG3xw+TL7n3pKBFPZnG8PAwGCnV4LAnTDoKenh+bcHLVqFSuXe6IxgmazSVx+gerLRWaJruuGD0DI9appYvTEcfCDgLm5Oa5du0ZPTw+HDx0KCb81TQvnhELgT1tDXi0sFaQ09Zq2soBa8NGZwlBGRr5OPSCK6zL8U85+uvIBVrONjx8/ZmR0NORcNOTu2ZQ6cVH1BCR5ALCGcm49i6q1qHek0+lVInffZ0HySs7OzjJ5/z66rpNKp7Fsm1yhwJHDh0XZClGiAXjmmWdCvbtz587xMz/zM2s++5/9s3/GzZs30TSNf/pP/+kTne+mfX4skUhQ1XVcyRC1b/9+KtUq5955h2eefpq+/n6+cvYrXJ693PH9vu+jBWJVNrBIY5M10hS9Irm+LF95+f9LNt4dJdlsNtEhlJBLxOMkZAIZTbjVLkuTn+l6HivlMoamceXqVZaWljh44ABj4+PYckzK0PWQAUv5jBbfJ31h1I8o3xFFxKs/w02G9EXRsqMKwr4MeH7Ud8g2led54TEeP3yI7/v0DQyEqihKW1L5juiu15FqQH4QPPEMaEArIYyaXx0YGKC/v58DBw7QaDSYlfPeN27cwHNdEsmk8FWex7Fjx0IUvmmaJJPJT8RvfCqBElYzQ8dxiMXjDPT3c/DgQS5evEhAZPfQoc/mR4Knhli0qVQKr15ncXmZsQ3QnCAykEyH0q6a14rFYiB/r/p1QRDQdF3u37vHvXv3KA4NsX//fgE+kmwzLecrF6+a7YzF4y2LOcr0oUZIkH/aEvEbBIEAKHieECmVQ7kq8Hm+L2i1iJRa5f1x5RxSgCi9LC8vYzsOExMTq9JD6wCEmrKsAXRWEehia9iV5D2JKgwUBwcZKhYFurVW49atW0xOTeED+/fubTmvHgnUSqVSHD58mPfee49z586t+dzFxUX+h//hfwDg7/ydv8PxTwjxtmk/OIvLZ8iPtEGOHj3K8soK777/PjOD03ww94F4TeChRUbtPd9HFw8IGhoBAcssM2qMUPfTzK7MYerru0DLskDOCbebYRiiLSMrZqo0qxsGtXod27K4fu0ajUaDI4cPkysUhGSUCjBtQUKDcDxEzY8rnxJFrHbzHU0pbqzrOvVaLfQFfhAQyApTJ41gz/NwPK9lxGt2dpa+/n56e3pChZD1ysG2bYsy+IfYTWodfP0aIvdUim3btrFj+3Zc32dhfp73338fy7ZJJBKMjo6G7ylI5PAn4Tc+1UBZ1XVc+aUCQgHj8GGuXb3KG6+/zqnnnw8XZMgAI3de7eXG3t5eGlJ660mIBGzLorf/ycA0pmFgGgbpTIY7ly7x+PFj9u3bx+49e/BcVwQUmZ35KkuTZY8AsXjVzsxaJzDVLQtfBkbFhxhomniYJFuF0a67FtmJKk5LtfNMIB84w8DQNG7euEE+m2XgCcrTBAG2ZYnjfBhWkA6LXf1bjde0f3cLi4vcu3+flCRdViQIAWKRR53SyZMnee+997hw4cKafvF/99/9d6ysrJDJZPi1X/u1Jz/nTfvcmKZpJFIpgSlwXXRJgv300aNcvX6dP5v+ZkhDEw2SQaDKkK2O18OjQpW8mcF2mpx9/DavbHm56+dbUgtxPfxE9FxN0ySXzVIqlbh86RK6rvPyK6+QlSxBjqxYhZUhlfhqgjxBjUrZzWZ3InFNoyaFjKO+w3FdmraNbhhY7bRxQRDSSyrAkabrGJpGPBYjIQO8YRg0LIvF5WWePnbsiRJmR+5GNUQlqqtSVNs1hJqj4Smu+okomYTi3nVdl+s3btCwLAaHhihKv6Y2DD0RvMjH7Tc+tUAZj8eF00TAepUDLQ4OUnz5ZU6fPs1r3/0up55/nkI+H5IERG9ewGrGYZgmuXyeUqnEsrzo9b6chmUxLLPTJxH1bDoO773/Pgtzc+zbt499+/eH1EqduAvD0obnhYsxHo8Lpy9/F939qTIocscVLWWYhoFmGKEah8om1fXpmtYZ/i13nOr8Hz16JPoh6j6uk+k1m82Qhk6Px7sKX3e67vajqoWrvm9lvu9z7do1rl+/zvDICD2FArrsbyjriWiFgljw/+Jf/Avq9TpXrlzhsGQIuXr1Kv/yX/5LAH71V3+1q7LBpn3+LZFIYMtKTSKRwHVdjFiMp48f59r5a7y2+BqGZkiH6qOh4fliF6mx9nkvUWJEGyGlJzl3//y6gdKWCMsnIVMH8TzMzc/z7rvvkkwmefbZZwWTGJDQdWIdfI8qgXqeJwSgfb+VWk/5jEhPUrGG6YYRBrMAEahM5XcgBCsq39GNxMSVwD6ABw8eoOs6ox3Qrh0uWLB0QbibfFLQ0Bq/EW1DsdrSUVWot06fxrIs9u7dixcINSPP80ICgr7I+NvH7Tc+tUCpaRrpbJa6ZNJRkk2maZLL5Xj11Vc5c/o0r7/2Gs+dOEGxWGyZLeqEBuspFKjXalhSvby/zckq830/HPVYL1Cqn9ZqNU5LYvNjx49TyOfFQxqPd2XFUQtQl6Vc3/dJJhLr9k9duetMp9MhG78vIdAgstj2Rd3OetN2EuFfH0xOQhCwbevW8PzC62wPmkGALRd7MpkUoxtPkExAZ2h5ENllqiDvui7vvvsuD6em2L13L0NDQ5RKJdD1ls/qaUMRRxvz586dCxf8L//yL+O6LuPj42FTftO+mJZOp6mYJr5lhYhtEO2Bn3v55+g718tbD95CjxtoCY3p8nQr8bimtZB/BASUWKFgFmjWBfq9W1/Ntm1MOUKmdoCdAo0KZHfv3OHCxYsUi0X27N0bokE1Wp+LqOmaJpR2dD08j6QMlN0s9B2pVNjTV2N2iQ5+JwoUWs/8IODe3btsnZgId6prELkRazabYnOAaIk1Za9yXetyH9pNYUUWFhY4e/YsumHw9DPP4MqKnaESCU0w+EQR+h+33/jUAiUIkEZ9eVnAjGWpUn0Z6XSal195hXfeeYe33nyTLVu3cuDAgXU1ENE0enp6WFxcpFQqkUmnOwYm9eWpG9lOs6YWuRJ2Pn36NLqu88orrxCLxWhY1mqg3Kj+rmmd//6EFqWg+n5mqe7evcvI2BjxDplwtMGPpokgKRdlPJEIZxzXtXUWezsga1ZKB1mNBk8/8wz5QgFH3k/HF1qUSpW8PVDu3r2bvr4+lpaWOH/+PH/37/5d/uRP/oRvfvObAPzar/3ahiQSm/b5Nk3TSOdy1G2buuSCBkLloJ9+9q/x4paXOHv2LGbT4MBzBzELMWaq00yXpplbmmWuvsCkNclyYxmAGnXyFDg18hzzCwuMdsE52LIXps5Di2hgRnd4frDK0rVr504OHTpEqVIRyFjHEfPEGwSHj/a0r1oIAuwUyJ/gswNgdmaGRqPB9ohMVRQfEqJzxUHD/mgimQy1bDesRm2wUVHmeR5Xr17l1q1b9PX1cfjwYTRdp+p5QspPJuDxeHxNJerj9hufaqA0DINENktzZYVmsylgxVH5FNPk1KlT3L17l0uyN3j4yBHGx8a6wqbTUvDTq9eZm59nbGRkTWk0nLeKBlHp6KPzQLMzM7z99tvk8nmeP3WKRDIpWGRkJusp7cRP0MI5qO/jcxYWFqhUqxw7dmzd16lFb0sFkHQiIcrB2ipUvStnZIeSa+TA4iFqNrl08SIPpqYY6Ovj+VOnQsSdbhjosgervoN8odDxuk+cOMGf/umfcu7cOVzXDdkznnnmGX72Z3/2yW/Mpn1uLZPJUF9awpWAMzMWa1krQ0ND/MiP/Ajvvfce77x9jrHRUY4cOcKhwcNUZOUin89jORaztVmWrCWGEkW8iiAtWF5ZCaW8omZbVstORQfcCLoVTbBZvXv+PA8jLF0AiViMhu9j23ZXmbqoRQPFR0mSw57e9+E77ty7R6G3t6tMVZRiz7btcIediMWwg1Vkf1dbL8GO/H1mZob3L1zAbjQ4ePAgW7ZsoSFHcAzDwA3EeIq65vYEGz5ev/HJev0Ols3nCTTBXNFp16JpGtu2b+dHfuRH6B8Y4O233+bMmTNYjUaHownr6+8nbpr4vs/i8vKa36vB+hAwI0soURTY3bt3OX3mDMWhIV588cUwqOq6LtCrgCXnLD9JWy8r3HCXJ+3O3bvkczn6N6CsA5lEyJ5HdCRk3QdV09bNfoMgYPLBA771rW8xPT3N8WPHeOGll4jF4yJIaloIyohFuBt7u5TOVRnl8uXL/G//2//G9evXAfin//SffuRd96Z9vswwDBJyB+BIyrp2S6VSnDx5kpMnTrC4uMiffetboeiwsmQsydaerRwbPsZo7xg9vb2YpikQ4hGgoTLX81Z7gJFeoR+pxrz55pvMzMxw8uTJMEgC4RhDWEHbyKIB5KMEyshY2Yc2TaNWrzM3M8OOJ5C3830fS96vpGoRRStV3WyDna1lWbz9zju8dfo0mXSav/AX/yK79uxp2bmq6zQkfsMwjBDxGrWP0298qjtKkM3mVArqdZxmEy2bxQ+CMDCo5nUqleLkiRM8mpjg/fff56233mLrtm3s2bNnTT9B13V6+/pYmJ+nWquRTqVaSLeju59oIApkNviBFCZVJZP2jCwRj4cjH0/a1IePOSt8gpq+hlho048fc/DQoQ1f70qUXIBc7IYRzneKj+ywo9ygv1CuVHjv/feZnZ1lbGyMw4cPk0wm8SOEDslkkmq12vJwGbrO4NBQx2OqBd9sNvlv/9v/FoCf/umf/kTkdDbts2vpQoHGyspqkt3Wa/fleh0bG2NwcJAPPviAixcvUujpETJdHYj2c5Lpy5cD9mOjoy2BJpC+qUUjVoJMKtUqp996C9d1efHFF9ckeirJdppN7Damno6mnocnxAe020bKIet+NHDv7l3MWKwjZV27NRqNcLay5bo+YuKqyFEuXrwoUM3HjzOxZQuaptFoNELwoyEF5RVICaA4NNQxOfg4/canHihBLPjywkIIhV4DNInY2OgoxcFB3nv/fW7euMHU1BR79uxhx/btLSXWVCpFLpejVKmwsLgomH5kQPV9X4xVtJknB1IfPnrEkSNH2LlzZ8fzVVynnuvSbDY3Hqj9iAsdBAMRdMgKn+ABCjSN+/fvo+n6hnJiAQIJjNSHVP0eha7V2sZSwvd1KbmurKxw/fp1Hj16RCwe5/lTp4RCunxPTSo8mKYpnIfjgCyfAAwOD3d1JCdOnAjLxI7jkEgk+Cf/5J+se32b9sWzRCKBIZPsZrO5OmKgAlkEaBOPxzl+/Dgjo6O8++67vPP220xOTrJv375QgURZf38/zvQ0tuOwtLTUIh6gxjiifkkDFpaWOHPmDPF4nFdeeSUkZG+3pFzrTdsWYuXrBRJVuvw+dpOw1nc8EYjH97k/OcnWLVvWcF+3myMJFoIgaLluRRjSsfLVxX95nsf9yUlu3rxJtVplZHSUY0eOEJMbEsW5DSLBdmU1QSF5NU1jdGKi43l+nH7jBxMo02kwTQLPw7IsEvF4OPrR6UuNxWIcOHCA0dFRHj58yOXLl7lx/Tq7du9m186dYWmkp6eHhmVh2zYLi4uMDA+vziq1BeSQ2LxU4uTJkxvChBPxOHWpzL1RoAxgw/Jk1/d+Hz3KIAi4e+8eE+PjG56jbVn4ritElzvtkruMoLRf08LiItevX2d2ZoZsJsOx48cZHRtrKR1bjUZYcs1kMqHcVoBALmqaxsjYWNdzLRQK7Nu3j2vXrgHwC7/wC2x/gvLQpn3xLN3TQ2lhIWSCCYFpdN5JDQ4OcurECWbm5piamuL1115jYHCQffv2iTk8mRiqilS5UiGZSgmqzEAQCLQfd+rhQ86fP09vXx8nn3tuXcChGYth6DqelN9KrPPaJwloXd/bDQT4hGjXhw8fYts22yIgnm7n2JBE9IlkspXZS5oiSggDY4cg6boud+/d4/atWzQsi7HRUU6cOEEulwt7nL7n0agLXdBEIoEZi1Gr19GAuEywe/v7u864fpx+4wcSKAFyAwMsP3xIo9Egm8lgmOa6ABJdijUfOnSIAwcOcOvmTa5fu8aNGzfYvWsXu3btIp5IMDgwwPT0NFajwdLKCoVcTjxQrG7VK5UKb50+jee6vPzSSxR6ejZcTIl4XAhLSxTbeoHooy93wl5Ge6B8knGNh1NTNBoNdnTZGYfHkgAlIJzXarHI/Q/p6SKLPQDm5+a4fuMG83Nz5HI5nnn2WcbHxgTJveuGx2jadki+kEqn0TWNhswQdUnfpcSg17Nisci1a9cYHBzkH/7Df7jhvdi0L6blcjlm4nF8x6FSLoveVKRd0G6GrqMZBsWBAXbv3s3MzAzXr1/ne9/7Hn39/ezbu5eR4WFSqRTZXI5yuczCwkIokuBHZhYVsfnVq1eZmJjg+PHjGz7rStGoYVkCGPQE/MkfJcHu5jeeqBIVBNy8fZvi4CC5DUSPLYmQ1zsl2NGkRf479OnyJU3H4e6dO9y6fRvHcdgyMcGePXvI5nIiMZHXEQSBIFVAzJUnIjvMIAjCXe9Gs54fl9/4gQXKQqFAaW4Oz3Wp1ethJrEe47yGyDLSmQxHjh5l37593Lp9m1u3bnHz1i1GR0eZmJggXyiwtLzM0tISpmGEqEpd05hfWODsmTMkk0lefOUVMjJz3GggX9N1UpKGz7KsDXdsaqF8WOvaZ3iSxX7jxrqakMoUabMhy6Dtpu51iHCTwbLeaDA1NcWDBw8ol0r09PRw8uRJhkdGWs43pMZyXVHeRSiNmKZJgEDLBZoWOqDRsbF1S1Lnzp3j9ddfB+Af/aN/tOH1bdoX2wqDg5QePcKWvb/kOgQZarbZl2Mdo6OjjI6MMDs3x43r1zlz+jSZbJYtW7YwPj4uNDAbDebn50VFSlZCPN/nwoULTN6/z779+9m/b184XL8RyE4Jy/tK1LmL7wjHML4Pv/FRKlGzs7OUl5d5foPencI0+EFANpVa499Cnyd9aRAEaLqO73nMzc8z9eABDx89IvB9tm3bxu49e1pGNKKbFavRwJdkAmmp7el7HnYkyc7m82vK6FH7OP3GDyxQxmIx0vk81cVFXNfFbjRIpFJdA5bepmwNYut/8OBB9uzZw+TkJA8mJzkzNYUZizEwMEAun2d+fj4sRzx+/JiLly4x0N/PiZMnwwWrSRTmRgs+kUxSjww9mx0YeoCP3KNcr8+wkU1PT1Mulzdc7E3HwXMcAk3rqv0ZNddxePjoEQ8ePGBudhbNMBgbGeHQoUMMDg6uCZDhbJniwwViphmiiDWJFFT9yWw+T98G1IK/+qu/CsDBgwf5uZ/7uQ3PedO+2JbJZKhJySWrXhdo9nV2ToqnNMpzOjQ0xNDQEIuLi9y/f58bN25w5epVegoFCoUC+UKBufn5kGf69OnTLMzPc/zpp0MSD4gkleucrya5Yh3ZanqSUZEPa93Gyp5Eaej6jRv09vWtK+weYhoQ1bWuvi9ilXKZyclJpqamxGYom2XPnj1s3bq1pVwaVhHld9hehVIVL9u2W5iGhorFdQFSH6ff+IEFSk3TSGYyuBL9auk6ZoRirj0oKpoihZCNliLj8Ti7d+9m9+7drKysMHn/PpOTkzx89EgQqCcS+DIj3LJ1K8eOHWvRgoMnW/BKPcD3PBqWtWGZ4sPuKKPq5B8mqwyCgOvXrzMwMEBflxELdfxGvS5QrolEx/6Cet3i4iLXrl9nenoaz/MYHBjgmWeeYWR0tOtDohDLIFBxivNRPRQaIvB6nhf2LIeKxXU1L3/jN36D1157DRCM/xsBDTbti2+JRIJENkt9eRnf96nXaqSz2a5BQTnhKPBHWX9/P/39/Rw9ckQkhFNT3Lt3DxBVr3q9zsryMmgaX3rhhZBftOX4cte03jObSCSo1Wp4rrth6+YjoeU7jZUF3ZmElC0sLrK0uMiJEyfWPb7aEaNp67KNWZYl1D6mpymVSsTicSbGx5nYsoVCobDmXALfX0Xb07kKhfzebAngMkyTdDpN/+Bg1w3Fx+03fmCBEgSKycpksJaX8T2PWq1GNpttYb9QFs0q/l//4B+wsrLCwOAgX/nKV8KbEAQB+VyOQ4cOsXvPHv7xP/7HNJtNbMdh9549jA4PYxgGszMzDAwOrsnsonJR656zZYWSXGa3YCPnp4gQp/tBEOq6BUFAVSoF1KpVdMPAdRwaloUZixFrNDAkoEZJeHVb8HNzc6ysrPCldXaTAVCTjXHDNFuDUxBQKZeZnZ9nfnaW+YUFLNsmm8mwb+9eJiYmVkskcqSm204SRJB0pCxSOpVq6YGq3qiaferp62txGvV6ncePH1OpVPj617/O//Q//U8A/L2/9/d4+eWXu17fpv3wmGmaxJJJEul0KFnVXAdkp+s6TrPJr/73/z0LCwv0Dwy0+A3liCfGxykODfFr/+P/yMzMDD29vWzbvp3enh4Gi0WWl5cFe1Sbw1ezfOtVpHRdJ55IYNn2uq2bANFvdJpNvCBoIVBXwJwAgbMAQbepGwb1Wi3EYviIgKnIQ9YLlDeuXydfKDA8PNx11tNxXZoSwNP+PLuuy+LCAnNzc8zOzlIqlfCB4WKR/fv3UxwaWt2UaFrLPVKl2TBIeh516aOiVSjFC9607bBNNjI+3hKwP2m/8QMNlKlUimo8TjyTodloEEc40mQHFJOuCa1K0zT5z//yX+Z3/u2/ZWF+nu9973u88sorAKsLJQj49V//de5PThKPxfgrf+Wv0LAsCoUCjx4/5s7t2+iaRm9/vyBlLxbp6+/HkFv6Tki38DzkbJQvF3w2kwmDolIAL1er4d+jw8rhMeXCUKMgARAoJKjvE3geTrOJw+pwcxAEmLouqJukuokhy9E3btygp6eH4sAAzYhcTtQsiXINNI10KoVlWczPzTE7P8/c7CyWZaHpOgN9fWzdto1CPs/Q8PDaRCAIMNr4WUOwD6L/qeDcqXQ6HP9Q59SQiikx02Ri61aRGEXu9e/+7u+uKZM899xzm1qTm9ZiuVwOx7Zxm02RYErf0Om51XSdeDzOj/3Yj/G7v/u7LC4utvoN9TwGAf/in/9zbt+9i65p/Ozf/tssr6wIxY8g4OqVK1y+fJlEPE5xaIhisUhxcJBMJtNC79bNEokETdtuad24kgjdk/23SrWKjtxptW0Yokf2iFBvSh1aBYaxJYNNwOpsqaHrq1q0khFteXmZubk5nn322a7nHASBQJ5KUFLMNFlaXGRubo752VkWlpYIfJ9kKsXAwADj4+P0DwzQ06kf2Gnzo+6971OtVkXF0DDCKpSaYXWkZrDjukxs2UJPT0/IcQufvN/4gQZKTdPI5XIsN5tozSae79OwLCH03EZArmka6Dp4Hq+88gp/+id/wuLiIn/4ta/x4osvhqVTgN/5nd/h/LvvAvA3/sbf4MiRI7z15psUi0UGi0VSiQTz8/PMzs1x+84drl27hmGa9Pf30yP7E/l8nnwu1xERmkwmaTQaVCuVcB4wakpySy1MJYeleqWqFOTKQJlKJoXUVL2OjujfJiSLTSCDsK9pQpPSdcF1seT1VioVFhYWeO7Eia6l3lq1yuz8PLVqlUajQWllRaiWBwE9vb1MTExQLBbp7+/HMAxKpZKQNFoP3NTW8wGxk7QjZM2xWCxEyIHITO1mE9fz2Ll7N6lUag3f4nvvvQcIp7Jt2zb++l//6/zKr/zKE8kcbdoPjyWTSSEGn8ngVKugaVSqVfLZbEuZFVbLkadOneKb3/wmi4uLfP3rX+fFF18U7Qe5jqN+42d+5md48YUXeP2NN6hbFtu2b2fw2WepVavMSd/xcGqKIAjI5HL09/WRz+fJ5fP0FAoddRkNqfRh1WosLS8TlyAktQv0lGi8IkfXWmX0VPtJtTA0hO9Ip9MCaR4EIe4gZB6TOzhf7kybMqAaus7Vq1fJZDJiNK7Dsx74PnNzc5TKZarVKnV53o7jYJomxYEBDh8+TLFYJJPJ0LRt6o1G15YOrPJsR/1HGCQltWVW9iXVpkcDqtUqBAGJRIKxiYk1CfYn7Td+oIES5K4ykRD19Hod33VFCVbXxW5Ggns0iZK0ZW/rJ37iJ/iN3/gNFhcX+e53v8uXX30VgD/+0z/lz771LQD+sx//cf6TH/sxKvJBCnyfaqWCYRhs27aNbdu2EQQBpVKJ2fl5lhcXefjoEfWbN8UXpOvkczl6enooFApks1niiQQBAiatqKlSyWSo+h0tA2czmTVK4FFTuzUFRTfkA5JKpcLSaEiZJWV4fN8PM1I/CLh9+zaZTIZMOk2lUqFWq1Gv1ymVy5RXVlgqlWhK8Iyu6+QLBQGL37ePwQ7N8Cice6Ph6Kg1Go1Q+DmdSoVoWqW6AFCVwTmbyzEyOkoul1vzGb/+67/Or//6r6+/aDZt04B8Ps+i42AkEgSy91epVsN1pYKl2mlqEPqNhfl53njjDV566SU0OvsNgEw2S61WQ0MI/g4NDTE4OMiBp56i6TgsLCwwPz/P8vIyjx89CklUEokEPT095PN5CoWC2HXK0SlLljFBlBgN0yQhx+N0TbDdZHO5dUGBCidgmqaockXEJZR5kSDpSeFr5bNK5TKzs7Ps27+figxStWqVarVKqVxmZXmZcqUSSoAlEgl6e3rYvWsXg8Uivb29Xec1NyRVaAuStVpN7CR1PQySsDpm4nketWoVx/PYt28f8Xh8TYL9SfuNH3igBFFGWXIctHgcXYqAVisV8vl8S7PWNE2asjf40ksv8Ud//MdMP37MN77+dV56+WXOnzvHv/s//08Anj91ir/5N/8mQBgMEsmk2DGtrBD4Pn3yy+7p6REkwLt3A2JWp1Qus7KyQmllhaXlZSanpsLyqJqNisViJJJJ8tks2VyOVDJJMpXC9/3V/keHfms3C2eh2jIyNfjcaDSwGg0alkWj0WBxYYHlpSWSqRRvvvWWoNmTmWYimSSfzzM+OkoqnaZQKDAwMLAumradVaMrIToScCTLwg3LCsWsE4lEGCT1yAPheh61eh3HdXlq9+4wIdi0TfuolkgkhFal7xM0GqGoeq1eD8uhQNii8D2PF154gT/64z9mZnqar33ta3zphRc49847Hf0GEFZ24rEYTcdhZnaWYZlgxmMxRkdGQuWRIAgE+KdUYmVlhZWVFR4+fMjNGzfwNQ3PdYmZpvAdiQSpZJJCoUA6nSaVTIb6iu1Aw43M7+I3NNkTbDabLb6jVqsx9eABhmkyef8+N2/eFD1RudPL5/Pk83kG5U5xsFgks57ShtzMKM+xXiVK7YgDCHEpKkhGZ7q1yOurtRpeEJArFBgaGuqYYH/S9pkIlMlkUkC+ZalAl1lPpVIRoqcSNqwWvOu66KkUP/VTP8X//r//7ywsLvLbv/VbvPHGGwRBwFMHDvD3fu7nwputGudmLEahUKBcKlEulwHo68A6H4vFGOjvJ5/PUxsYYIssiTQaDeqSPsu27XD39mhmhubkJJ4EsETnoQzDEMLMsqdoGIZQEpfMRADvX7iApgmieEXg7nmeaOrLXVo7vD0Wi4k+h2GEyNF4PI6m66TTaVHikcCZmGlS6KLMoUzNTW6UFbbTDaqdJIgykOpJ6vL36rur12o0m036ZTbaTZ1g0zbtw1ihUGDBcfATCXQJmLMaDXRNI6WcexCE1Sjf9/mpn/op/tk/+2csLCzw27/1W7z15psd/QaIJNt1HIrFInPz8zSbTWbm5sJgGTVNE8xTqXSanp4eLKmu4cpZ8Ua9jitRnZVymVK5zII8pmLzUuer/IbyF6b6t2liGkbYtnnv/fdFe8bzCGQv1ZUJveu6aOoZRDyPavdp2TaDg4MUZJlYlYUzmYzwdbZN3DRJptOk10lowxJ3BGzUUa9TAXeURXeSmpiVDOS1h++XyY3qXW7bvr1ju+bTsM9EoARRRnEcB8vzCBxHaI15HqVKRfQKVQklCPBkeePkiRP84ZYtTD54EEKBJ7Zs4b/6xV9sGWHQ5Xsd2xaINQQ3ablcxg8CBtpGKnzfp1avrwoYy9KDgjdHSxrlUokgCMSXpwkC3+XFRYFeNU3RT5AL1/d9PCnX5ct+rMqmkskk8UQiXDSGfChUydk0TZKpFKlUimQyyeTkJO9fuMALL78cBh3Vz1QlKNW3MAwD13Vb1EGipsmytDqG2jF2eGEY/BSVlRsJkrFYDFcOCasHX5FXr5RKmIkEW7ZupaenZ2O+3E3btCcw0zTp7e1laWmJoNnEkL25er0e0jNq6lmS1aiTJ0/yh1/7Wovf2Lp1K7/0S7+0ZvQpHovhuC6GYYhgOTdHs9lkenaWoWJxDTtNs9kUDF7yPAwp79Xf39+CKrUkcYmmaWSyWWzLolqrsbyygu+6xBOJ0Fd4rourWi8ygVaasYo7WQsCzFiMZDIpAqqui4TcMEjE46HvME2T73znO+TzeV548cXwfFRAtyyLlXJZsHc1m8TlaF23JDsMkqySHrS3mnzZE1UbCM91qUaCZDaTEVzcQes8peKIrjcajIyOMjg4+ANLsD8zgVLTNHp7e1mQ7BXIJrfrulQrFTK5nKjfmyae3HkZpskrr77Kb//2bwMiu/xvfvVXQ7ad9sxQoTFVwFteWaFWrRL4PoNy2NaS4rABhLX5VDIZfvntpADJVCosaRRyORL5PKbsRaQzGRKxWFf6uZWVFaanpzl08KDohVSrGIZBLpcDCDOsdnNdl6tXr7JlYmLtwpH9XN0wSCeTIQWUJcWn0+l0y6LXoGUkJlQvaVvsWiRI+tIReVJpPpVMEo9IaClT2WW5XMZuNhmbmGB0dHSz5LppH6slEgny+TzLrotXqwkBAzlqoEfQmg3Es6MBr375y/zWb/0WIPzBr/zKr4idU9vzFpM81IqntVgsMj8/j2XbzM7NMTQ4KNRxfJ9qrSawA4iKSjad7soDm0wmsZtNAt/HdRwy6bSoCsViaLpOj5Qj7DautrSywn/81rc4eOAAZiyG6zik02kBEIKu7Z47d+9SqVZ5rg3pqljR/EAoNzm2jS4p/CqVColEomUcI8rcFR5D/ru99BoNknaziaXG1GT1S5MgTRUko7Ofi4uLJJNJRsbG6O/v/9RLrso+dT3K9cwwDPr6+jCU5pi88U0ZLD2Z2Shl65npab761a+G77dtO8wI229oPJEIAyWIHWxfXx+6rlOXos/lSkUoqCvgSz5Ppi2wtGdLKmMNgiCkVwrtSZrb6qURsoGN7MbNmziuy4EDB9b8zpO9QBABbKCvTwQmuQArCqkbnmLbA6WAPJEfaZEdouu6VKtVESQ1jXQmI9CtwSoNYMBq+dlpNllYXCSVTjM2Pr5JP7dpn4hlMhmyuRyaaYbD/2pWudFoCL8BeI7D9PQ0//4//IfwvVG/0f58x6UWrfIdpmEwODgY7iRnZmepVKuUKxUcCbBLysCdSCRan6PogbXVwX1LVpZCU3+XM9cbmf+EvsNxXa5du8aWiYk1+o0aYnTLlclvb18fvYWCUDzRdZrNJjXpG8Uprj0zn9WAq64x9AeyTaOCpBmLkctmV31r5Ljqu1tYXMRxXXr6+9m2bdsTsQF9UvaZCpQg+oN9AwPo8Xg4ZIuco1FDtn4QsLS0xP/8P//PVCqVUHvSsiy+8Y1vrB4ssuhzuZxAv0Ysl83S39eHpmksLS8zMzeH67qkkknyuVwLm0NXFKgmqOA0JBtNtCfwIa7bkz2HlkZ+h8VYbzS4dfs2e+R4RdRUcxxESUqVgxOJBPlsNpyfUv3CTsf3ZJ9Hlxy5YZBEOBS1A9cNg2w2S0wpzSukWuSYjuznBEHA8OgoOzZQJti0Tft+rFAokOrpWeVflcmb4mfWdJ1qrcZX/pf/hepGfkOue/Ua5XuAEBeQSiaFjuKDB1SkvmpegvqUr1DjYJ2oORPxuBAwZ5WII2qapm3ooBUiXp1XeP4d7Pr167ie1zHBtixL7HCBjCzR6oZBJpMhLQO657rUqtXQV7WcB2IWPBwHi5yDYk9qRsSXM5lMeG88hcFQx5IJfWllhXQ6ze7du1tmJn8Q9pkLlCDKEgMjI60orkAO09o2dqPB//Gbv8n03ByJeJx/8A/+AU8//TQA3/72t1leXm49oKaRy2bDfmLUFOLMlxJatUajI91ROJPVIbjEZTNckz3K6DmHf93gmtsRr9006S5dukTMMNizZ0/Lz1VfVe2GM22kxbphkM1kRGnHMLDq9Y6K7r4EE+mGEZZMQmcjr001/ZWIqjyBlmu0bJuVlRXsRoNCby+HDh3a7Etu2idqmqbR399Pup0qLQjClsq/+bf/NmTY2chvaJpGSo46VST4T5mu6yHeAYRguSd7mWvOC5kAt/sOTZB/aIhAFfYwo6/boBoVbiZUQAboUK4tVyrcvn2b3bt2rUmwm81mi5pQe7k4nkiQy+Uw5ahXTbIARc2XQCJNApDUNXiyAuVGKlBhCVcGyahP9j1P9GqXl0HX2b5r14baup+GfSYDJUAylaJ/dLR14clxhK9+7WvMzc6STaf5+V/4BbZs2cJP/uRPhsjRr/3BH6y+Ry60QqEQolVXDxdQrVYxJdlAPpuFIODx9HRIpRQ1jdWxiHZTCLtmsxmWL6LvWxcyTQTi3VaKiNqjx495/PgxR44caSlDKFi6J5vjmcgsUuuJCKBQMpEAw8Cy7ZZyNKwGbBUkPblLddqywfB6IvNQ6lwaEuFXrVbJ5PMcOnJks+S6aZ+KaZpG//AwmTbZNs/z+L3f/31WVlZIpVL8/C/8AhMTE/xEN78ROV4+nxcEHRFToJ2enh56CgUyqRSVapXZ2dmOOy51rHYzYzFi8Ti6rtNoNEIw3ZNa9Hnt9hkB8O5775FOpdjblmC7riswGZpGIh7vyrusKlSKFq8aKcOq8/Alyl+1aWzbplqrhXyuWdmmEScVhGQL4blIX1OXY2Rbtmxh3759H0kR5eO2H/wZrGOpbJb+4eGWof1vfP3r3L51i3Q6zV/7a3+NQ4cOQRAwPj7OsePHCYKA115/nbm5uZZj5fN5dMNoKaHU63UxfgH09fUxMjJCQhKzz83Ps1IqdTyvTly0puRP1TRtbc9hAwuCIKSzM9VCa3t/03G4cOECIyMjjEU02MIg6Xng+yKIdWLGiDxAyWQy7K0qjU2Qau6q9KrrAonX1o9MJhKCZo/VMqvqSar+ZdNxqNdqxJNJdu7ezfgGmnGbtmkfp2maRu/wMNl8PnTE3/jGN7h75w4a8J/9pb/E7t270TSNLePjHD16FM/3O/oNgN5CgUqptIralDgANV85OjoqsBW6jmXbTM/MdKzWQOeEOZVKgb4q7txyLRtcq8I2RIlO2u3OnTssLS3x9NNPh+NbsPq8IqcCOqoJRXqGqhSrS1SqFameqVK3LoFU1WpV/D4Q1IJKc1iVw0NUvDxny7KoVau4EoQ1PDzM7r17fyCjIJ3sMx0oAZL5PD0DAyTicf78u9/l/Lvvouk6zz33HHv27mV5eTnspf3kT/4kfhDQdBx+7/d/v+U4uWwWQ9fF/KSm0XQcIUIaBGSzWTFHZJoMDQ2RkZlTaWWF2fn5jhlip8wtlUq1EPi2BLt1Amd0djGkuGuzixcv4nseR48ebXlfTSLtgiAgLcuhHc+17fOTySQx2YeoNxoEEvGmgl6tVhPlmEDKYWWzq0G87fwUGUJNZo+KnWR8yxa2b9/+A23Cb9oPp+m6Tr5YJJvP893vfpd3330XPwg4efIk+6XfsG0bNI2f+umfFjgIx+H3fu/31jwruXxeCBjIn6vxD8MwQkeezWYpFotC7NnzmJ6dDfECysK+ZYdzTUucg23ba8qR64EBuwo2S6vV61y5coUd27fTH5HRcmW/ETl+1t6qiZxcy7moYImmCbJ0x2kZmXOaTQG8lMl1Qs49atEAKS0IAvH6ahXbttEROI+enh62bN/O0NBQ1+v+tO0zHygBEvk8p8+e5Rvf+Aae53HwwAGefe45XFn+KJfL2LbNlokJTjz3HBpw9swZJh88aBnSz+VyYQnFkmWOuJJyQb1MY2BggN7eXgzDwG40mOmQISruxZYyrLYqMmo7TksJdt3FLgOxWuztkPCZ2VmmpqY4dOhQWN8Pg6TsKWaz2ZDGqv08uxE1Kzi8LwO767pYto1tWeKcNE0MHKfT4lo7XIPjOJRKJZrNpigxS6WG4fFxRsfGyLeVwDZt0z4tM2Mx/uhb3+I/fPWr2LbNkSNHePmVV0IB4nK5TKVSYWxsjJMnTwJw9uxZJh88CIUIQFSj1E5HzSkHvh+C5ZQlEgmGh4eFhB0wv7DAkpQCg9YA2b6zjCvCEFmRetJ6lDpHo0MlKkBwoMZjMQ4ePBj+3HGc1iDZDSij+p9tZhhGWJGypJBzU5ZZlc8zYzGymQyJeFzco/ZALlGwKrnWDQNHznqPjI8zMTHxmSi5KvvsnMk69md/9mf8rb/7d1laXma7JLxNp9PEEwka9brYttdqVCoV/upf/ash8e6//73fC1Fhvu+LXkOpJNj65axOt619LpdjcHAQ0zTxfJ9pKSETZa+BtWVYMxYjHo+jaxo1GYyjFkT+j/4bTcyItmddruvy/nvvMTg4yNZt2wBWZ7akUkhGIlpbPklbHdrtZpqcA9U0jXq9TrlSEQFP04jJXWRckRREUGkgmu71el30IALBfJJIJKjWavQNDlIcGhJky5u2aT8g+5M/+RP+n//lf8n7V66wa+dOfvZnf1aUAbNZAk2jItd7pVzmL/2lvxRWg37/938/fHY83xevDwJWVlawZKUoJekw280wDIpDQ+TzeQxdp1KpMD0725JoRxGxUUun0yG3qR1FwbYFv7DtEQRhQqt3aAdN3r/P/Pw8x44fDzcDTccRO91IkGxJphU6twNKN3o+yWRSEIt4HqVyWZSiPQ/dMEjKXWTHQBcENJtNyuVyCHyMx+MgCRVGt2xhYsuWz0zJVdnnoib24z/+42L0wnWpLS+D75N0HGxJEWVLAE0sHieXy/Gv/tW/Ek1pTQv5SzVNo7evj8kHD0Ky3ygFVaedVzKZDFXQbctipVSiWq/T09MjMiVpepvsVCqVCgfya40GqVRq7UJEDvcHkmlIjlloui5Qa/I1ly5fxmo2een4cfEeSf2kdqEqSEatGxy9k+maRkP2aj15jtlsNlyoUUo+EAHSsm0cCQIK5ENjGgYLi4v09PUxPDLCzp07N0uum/YDtR//8R8PZ4btahW7WiURjws6O+kzarUapmmSz+f55//8n4dobpAzfYidYjaTYXp2NuRyjssZyU5pqCJPicViLC8v4zkOMzMzZLNZchH+ak28eHVQ3zBISL3bWqOBGYuJ8ZEgWOufIv4kgJaRDA2oNRpcunyZiYmJsITZbDYFY5HsSarqV+grogC9Lr5D0zTRpvE8AqCq8BFBQCweJ5/LrQbINuRxU/ls+V5NovMVd/XYli1MTEwwECkRf1bsc7GjVKabJpneXsE2E4sxVCwKeLWmEYvHw+Z0qVymXKmE9GqaXEQjw8MEvs/8/Dy+5xE3zZZ5q06LXvUte2Wz3nMcZqenRW80ytIT6QMq0nRfNqmb0WyyQ5alApSh+gFygT148IDJ+/c5dvQomUxmNUjKwJ9rD5IKXNNtFxl54NRcak1qzQXyGtKpVAstlzqS2kFWKpUwSBqxGJl0mrhpsrC4SK5QCOclN4Pkpn2WLJHNEs9mxZxgNktvby9xGYgM0xTVkWqVlVJJJOWqXCpbDiMjI8zOzBDInr0iHF8Pe5DNZhkZGQl3V+VqlZnp6ZaZyRZyDwkOUpSS1Wp1VbN2nc8xIkESxI707TNnSMTjHD16VLSC5HgMCN+pgmR4Hh1wDC0mNx2e59Go1ymXyyELkeu6JJLJVgIBZXIHWalWachdJ5pGLJEgn8uFyNjRLVsYiwT1z5p97ryZbpqk+/upLy6iGwY9PT3ockEl0ulwBKRp2zQajVCvLRaLkc5kyBcKzM/PC1YeOfsYre2HS6Ut8OVyOVKpFMvLy4KJo1ymUa/T199PMplsKYX48mGKy8VVazTISd7FTgtekaPrkeBSKpV4//332bJ1K9u2bg2JlQNJExfNfOmUcYYHDwgiM1ZN28ay7RaAUlJmx45UN9Ajx3VdN1QlUWbG4yFCznUc5hcXyeRyjIyNsXPnzjVk0Zu2aZ8FS2azgtO0Xiefy4lqlG2HrQZLorwtyyIRj5OSM9a6rjM8PMytW7eoVav0KG7oiO9QCW77Psw0TQYHB6lJLcdms8ns7CxZGaxVYPGl3wggrEB5vk+90Qh7iN12sIZhtPiri5cuUa5UePmll4iZphBTl9dpyuQ2alEE++oPW0uwnvQDtm2H52CaJulkkrp8TRQjEUjVkqbjhMFezY0aUqe2VqtRrlYZnZhgdGyMEanC8lm0z12gBPkF9fZSW1oSUjvNJs1mU/CyplKCKknu5FTGkkwmyWazDA0NcefuXfbt3bsuwCaIlD8VJZau6/T39xNPJFheXsb1fWZnZ8lkMquSYKpfAGF5xnVd6rWaEBtVvYS2z1bUfCCa7W+//Ta5XI6jR49iN5s0pGq5aZrhnKQqDXkQosqipRxFRgwCTWdHhpo1BI9lMh7HCwLqliVIlmMxfAlTd5rNll2zGYuRlsheReq+vLxMKptlbGKCHTt2bAbJTftMWzqfpxEE2PW64DSV3K+ZbJZEIkG9XseWdG2NRoOYJNfo7+/HNE3mFxZa0KPKOvkS1VrREMFvJJFgYWGBWr0ujm9ZFAoFkhLxqp5/TRP0dpZtC7Fz2w5bSd3ANapd8+DBA+7fu8exY8co9PSI8S75DIc6t8GqyoeviELURkHTwmNpCFSt3WzSjARIQ9eFnF4sFqow+Z4nxBccR5S1I4m1IqePy/E513VZKZWo1euMTkyIkbexsY/4jX469rkMlCB2NbmBAeqlEslmk6brYlsWuUKBnkRCkO9aVth/UwrdScnKX65UKPT0hOri7cu8pSwRYagBBNl5PM7S8jL1Wo2SlMzJZbPkc7lVJQ7PIyORttHsMEoLpyzajH/3/Hls2+b5558XD4ss3caSyVXJGxkUFaAnYFUNXJVRA8+jLvuJIdk5onmeSCRC5XRXcjyqHkJ0PkqVtZPy9SrAVyoVVsplBoeG6B8cZNu2bS2kyZu2aZ9VSxUKGLEYtZUV4qZJU+6WMpkMyVQKW/bMLNvGbjaxm00MwxCSXouLT/w5msJIgAiYuk5ffz+pdJqlpSWazSZzc3PETJOenp6Qk5lAKP6kk0nqUtpPja+1fQCwWnpVVaiJiQnGxscFwl8GvWwmg6mG/eUomGLwUW0nlXgHmoYjq0hOBLlv6DqJZDIsD2sIkgDPddE1jYqktwxfL7U3Q+QrgrFraWkJzTDYsm0bQ8PDn/kgCZ/jQAmiVJnt78eMx7FkSbEmFc4Vy0Q2kxG7Sjmrk0wmMU2TycnJ8MFQQaBTwFSmGu8ASDjzwMAAlUSCUrlM07apVCpUqlWS6TQ6rKqOp1JiEF8iSpMyO/R9n8DzBKOOBATdunWLR48fc+LECTFP5boEmuCTTSaTq7tRuVBNXRevg3CnZzeboRBr9PyVZqUq2Xqeh+s4IRl8VG7LVAKzEsGrArvruiwsLuL7PhNbtzI4NMT4+PhmT3LTPlcWT6cx4nECTaO5sIAlZfES8ThpORLVlJWcmpSsS2cyzC8sMD09TZ8UG1BMMwEdkm35pw4tlJSpVIqhoSFWVlZCkYL5+Xli8TimaQqsgu+Lf7tuOGuYlbPgAazK9knfYds2Z86cIZPJsO+pp6hUq+iaUBHKpNNrELqG9BVBIBlyZNLdtO2QhCV8rRwHicVi6DLIqiCq0KuGaYrj6DrxWIx4LIYpxRKU36xVqywsLdHT28vA0BATExP0dtAD/izaF8K7JXM5BicmmJmcFIuqVgtVPwzDIJ3JkE6nRUmlWqUnn2dxaYlyuUy1Wg31IFPJJMlUCtMwOu8y5Z+6XMiO65KSOm/1ep1SqYQjP8O2LEEonMkI1gtZErYtC8MwRFYGYBiCC9I0efz4MVeuXGHnzp1kstmw/JvLZFYJj9tNBjFbJgrt9Hkx0yQmabI0ucBtWdJRQVHRTCVlMI6r3aMq5cpjWbbN3MICmWyW4tAQY2NjDA4Ofhxf4aZt2qduhmnSMzSE5/usLCxQrVbRcjniMvip3VAum6VhWXiuy4MHD3j0+DG6rrOyshK2I5LJZAvSvt2ivsOTqM+enh7yuRylclnox0odWV3ThNSWlPjzXVe0R1T7RiW0ss3jBwFvv/02drPJsePHcaSeb6wDaCdquq7jOA4NiemIIvd1WUmKx2JiRE7OnjquG/oYx3VDqbCM0ruUwbSFfUeO1tRrNUbGxugbGGDr1q2fqwrUFyJQAiTTaYa3b+fx/fui4RwE5OSiUiXNRDxOoq+Pffv3870336RUKjE4MBAOE9frdXRdD0uTiuxcqYsrU7V7WC3Rqiy0VqtRWlmh4fuiFDEzQzadFoQA8TiOhGjrUjMTRDa6tLjIuXPnGBoaYmLLFhE85ZxTVM9N7UR9z8PxPDwpRqskfkDQ4MVisTDLc12XZq0W6kdGTUOUXGKxmGAWiRKXy2trNpuUymWsRoOBoSEGi0W2fAZnnTZt0z6s6brO4NgYmmmyNDtLuVQil8+H8loB4hnPptMkt25lenqa6ZkZduzYges4oiLjOJTLZSGuLrVZFaJW1/U1vgNW+5G6adLb0xOSoTgSADO/uIht22SyWZKpVMgGVK3VhNCxYuQB3nnnHRYXFzl27BgJqUepkt528z0PVwpBu1LXtyn9goZQbzLlqJov+6M1OSsdNU3XV0fystmQyzk6F+7L4F6uVDBMk/Ht2xkeHmZkZOQzRSbwJPaFCZQgFsfotm1MT03RlA1zhVqD1aDW39/P0NCQEE0+fBjHtsUsj2XhOg6WZYXq47qmoZumGKiPxzFlhqWYO9qHh7PZrCBI17QQ3l2t1ajUaiJ4yRmmarUa6lfWajXeu3GDnt5e9j/1VNjMVwtdlTrC4NgW8FQJxkBkyT6E4J9203VdEDGbJqZpUi6VMGRgNWOxFpCRCpB2o4ERizG6dSvDw8OMj49/7hb6pm3aetZfLOIHAaWFBcFaIyXkNAgxBYZhsGPHDqYePqRWrbJ9+/ZQtN2Wff6qlPLTdB1D/h+LxUIGMF3XBa5AItFVTzAWi9Hf10cyHmd+YUEgRpVogWzXBL4P8Tg1OaMdBAG379xhcXGRw4cPiwkAwyAtZbJAtEo86TPcSDKtTCFSDcPAkECbKMJdmQISmqYZllSrtRq6TCLaqekUAYzreWSy2ZBt5/MqjvCFCpQgSQLGxph7/BhLci2mkskQ4KJmHLdv387Zs2eZevBAAFFSKXrkzI/VaIg+n+sSyD6e02zSaDRC9GsYKHVdiJvKAKjktpKJBAn5cKjA69g2DkKI2jSMEGp948YNctksT+3bJ7I608SV9X/f9wUzv5zZ8iVpuaZpGBKMY5ommuw3uJHsUNMEm3/0/yi61vU8KvU6nu9TUNJEmkbTsihXq0JkVZZgdu3fz/j4+OYuctO+kKZpGoNDQwRAZXGRWrW6SuStrXIw9/X1MToywu3bt9mxYweZbJZsNovn+wIn0WiInabn4clqjt1sQq0W7i6bjoNhmujy+dTbqlZRdLxivGnIHaVXrZJIJKhVq2gImryn9u+np6dHlGI1IfXnSdkrL9KHVAhXQ56HputohgGuK8ZTIvdDta0UiEiXQV/ZSrmM6ziYhkFKcr+q2c9qRLOyf2CAvU89xcDAwOc6uf7CBUoQZdD+oSGW5uex5GBsJp0miBD8FotF+vr6uHX7NhPj4yLAsYoIDQLBgep5nmhcyxEUz/NE+UL+HCDEiMoApktVjpDqyTAEL6LMPH3fx3YclldWALEoi0NDVOt14lF+WES2qThU1cJNyMC8+rEBOiLjM+QcpCFfvx43T6lcxpf8imYsxkq5jC0DuuJm7O3r4+gzz2xytm7aF940TWOwWBSiAMvLlCoVMhLhHgQBPmJEauu2bUyfPcv9yUl2bt8OiOCTSaXIpFKhPJ3anTXluIQrWyau47SqhEgsgC7bKpZlYeg6qUwGQ9PwJHGJLVWJ5ubmmF9YINA0enp70Q2Dar3eKvrOKgDRlKQKMQkUivoO3/dDAFE0oVa7XXljWkqvrusK4vMgoCeXoyF31ZZlhdJZhq6zc98+9n5GZLK+X/tCBkoQXK2GYbBomtiVCpVKhbTSQwuE9Mv2bdt45/x5rt+4wb79+zHU4pAwaUPTwgVGhIfRdV0c1w0zN9/3BQrNdUN1dQWddj0Px7KYm5lhdm6O+bk5SpVKyLOox2JsnZgI1cOb8XgIIkgmk2Hm+dv/5t/w1unTHD16lF/+pV8Ks1PFT6mEUddl15AWICTGSktLVCTF3tzMTAhEUKXf3Xv3sm3nznXnTTdt075Ipus6xWKR5ViM6soKdQmySWcyAr0aBAwPDdHf18fVK1cYHBggl8u1JKQaAidgSrSo6tt5sgxabzZxbTtErrquC7JSpPyHHwR4lQpzs7Oh31hYXBQAnVSKTC4nUPuxWAjii0vfkZTodl3X+be/8zu8efo0x44e5Zd+4RfCpN2UIyWu563OjK/H6BX+NWBmfp6KIkBXiHv5O90wGOjv59DRo2Q/p2XWTvaFDZQgdpbx0VGWl5eplkpUKhVSEqGmaRpbt21jdnaWGzdv0tPby3CxiGYYQhEkklGp4AkiUzJkIIvH4+FA/h989av8wde+xle+8pWQiaPZbJJMJvmvfvEX0eSQrpop0mXPc9v27Wzbtg3P88IegDLLtonLjO/IkSOcPnuWy5cvCxYi+SAAOIr5osNC92UQdaSaieM41BoNlpeWcDyPRCwmHhoI2Uj6+vvZsWcP6W6qApu2aV9gU8QiiUSClXgcq1ymUiqRkQh20zQ5cvQor7/2Gu9fuMCzzzwT4gladmLSFE2dLpPuWDyOI2ki/+CrX+Wrf/AH/K//6//KYF8fvu+zIitN/+C/+W8IEK2YpJT+04B4MsmWZJJju3eHLD7xeDykx1Sye7FYjMOHDnH27bf54MoVPM8jIQGKIHyDSuo7+Q5VNfNcl6b0HcsyeXB9n55CQWw6DIOUJEKf2LaN0c+Y8sfHYV/oQAmiHDkwMEA8HqcUj9OsVGiWSqGszbFjx1gplbh06RLJ554TDDuy3q7puiDDVYCdtmOHZOgRJhwFy1YL2Pd9EhGlAaXWsbCwgCNLvONjYyFJszIldeXIBbp1yxa2jI/TdBzePndOkI7LYyr9R2VRNK0nd7nq3BXgwJV90oH+ftLptNCnjMcZGhlhaHR0cxe5aT/0ls1micfjrCQS1OUIhxJo7+3t5fCRI5x/913u3LnDjp07BZVlVFJLW5Wmiz5NuiyHuorHFUKsAYh5Z8dxwrlKgKwUTX8wNUXctonHYuzbt0/oV8rKlRr3cOTIRrPZZOvWrYyPjdF0HM699x47t28PK1Ge7KNGTfkKtdOM+g5FfuB5Hj09PfT29JBOpYgnEqQzGSa2b//CJtdf+EAJYhEWCgUSiQTlZJJGrUZTynPF43GOHz/Om2++ya1bt9izZw+ZdFosUNmXaJHVYjVrVLV4hSRTIBnbtqnXauGD9SN/8S8yNDyMbVmUymXGRkf5P37zN0EeOyUp6ZRQshmL0dfbu6qMIneDO7ZtY3JyksePHrF71y6R7Ul5mtDa6PHU+ZqGEYKC4nKoenRsTACRDIPBYpHiyEjreMimbdoPucXjcQYGBijH41STSZx6nZoE5oyNjjI/P8/dO3coyMCRkomwj6CVbJ9NVIFTqWeon4OgrnQdh7osa/7oj/4o4+Pj5HI57t+7R8OyuH3nTsjOlZCzm9VqNQT/ZHt6iMfjLX5j29at3L93j0cPHrB7xw4C38eOAnhUYh1B8SszDQNdEyLNOqJK11Mo0N/fLwjmMxmGRkdX+W+/oPZDESiVqaFgO5+nWq1SK5dx6nVisRi7d+/mxo0bBEHA9m3byGazYYm2fW+lhml9mbV5sqeQTqcpV6sYUsNS9SaOHTvG1WvX8HyfZ599NuRJBMLmdyqVwjAManK3VyqVxGxmKoUmkab79+/n9OnTVGs1/tpP/zSO7Hn4bVmhMk3Xw11nXYqkmrpOIpulr6eHZCJBf7HI0OjoJrPOpm1aF9N1nR4566gUdOxqlYZlsXvXLpaWlrh44QL79u+nt6dHzEzL5zvqO5SWbSBBgq6s9sQTCSqVSgu5eQC88MILTN6/z41r1xgYHOTo0aP8yR//sTgWq7vWTDZLvVbDcRzq9TpNxwlbTARB6DcajQZ/82/9LSHSrhLsLn1JwzAwY7FQdcT1fdGayWQE3V46zdDYGL1f8ACp7IfOO0ZnFPP5vJj3KZXYKgd1b1y/Hs5IxePxkNswcgChEuL7LZBrXZVOJFAoaZrYts2tmzdZWFhgbGyMI0eOkEqlmJmZEY17WTJRepkx0ySXzwt+Wt+nXq9j2XZIQXXs+HGCf/2vWVpa4v6DB+zcuTOcp+pkfhAI3srIjGgilWJgcJDR8XH6BgaIbZKYb9qmPZEZhkEulyObzYYB06pWeebZZ7nw/vtc/uADdmzbJvRqFWFJtFcnWzoKrKPGvFIqIZejWIau8+jRIy5cuADA0ePH2bp1KwuLi5jxuKgiOU7I7axByDymxlMqjkNC+rnjx4/zm7/5mywuLXHn7l127dhBLAhCnuhO5jiOYBizbar1OqZhkC0UGJuYEMLUPT2f7M3+jNkPXaCMmkKJFQoFHMdhcGyMwsAAZ998kxs3brB92zah/CHZ7zvtuszInJVlWeQl2vbu3bvcun0b0zR59tln2bJlC0DIng+it6hFyjEgkLbZbFYohtTrorlfLou+ZzLJjh07uHPnDu+/9x47d+xY7Z8q1FoEYm4pAgXbxjRNRsbG2Lp9O/2btHObtmkf2TRNyNxlMpkQIDc4Ps5r3/42t+/cYWx0lMFiEcu2iUnO5HZwi+Jh1RB4hFQqRaFQEODC69dZWFxkaHiYZ59+moSU8QsksA9WBRCi56T4WBuNRjj3bcv20vbt27l9+zbvv/ceu3buFOfQAXDjSMIVp9kM0bSFfJ6h0VG2/RBL6P1QB0plukKkJhI8c+IEW7Zv5//6d/+Ody9dYnhggLHxcaE6Ivt7ivBXsfYrcuGmbXP+3XexGg1M02TrxAQTW7aEenKq7KICZcsslTI5sxSPxTBkqceTxMiObXPs2DEePX7MhQsX+Imf+IkwSAdBIIgR5EJXOpJmPM7Yli0MDA2FoKZN27RN+3hMoWBTqRR/7W/9Lb7753/O22fO8Gh6mvHRUUbHxvB9P6TGVKIEUQF3y7K4f/8+77//Po1Gg55CgaNHj4bIW1ViVX6jExUlrIIJ0+k0zViMuhR59yyLo0eOMD0zw8WLF/nJn/iJkEwdBDtPlAPatm1cx6HQ18fg8DADg4P09PT8UAP8NgNlBysWi/y/f/7nuXr1KqdPn+ad996jL58nJ/uWSveyKXsC1XKZ6zduhKMYx55+mvHxcTzXFfV9qXmHpgkSYdWjcByBLIsiVtWfsiyTyWRIJZNCE67Z5KmnnuLb3/42y8vL3L17l56eHkFxp8gQJAo3lckwsWMHfQMDYfb7RYNsb9qmfZZM0zS+/Bf+Ak8/8wxvv/02F957j7uTkwz295OSfiOZSgkxZQkKun37Nn4QcPfuXfbv28f2HTvo6emhXCrhSeGFeDwO8hknCEIu6yi6XZkCD8VMk3w+L5iBbJunDhzg29/5DisrK9y7d498oRCi4l3XFQHV9zF0nZ6BAYaHh8nm8yFW44fdNgNlF9N1nYMHD3LgwAGmpqa4ePEiiwsLzM3NUZO6a8lYjEIuRy6bpVgscuvWLZ577jmGhoYAUUZtaFoLfNuyLADBfiMp46LWiQ1Dl3NKiUSCuOSELFcqXL12jeNPP00ikSCdz4cw7WwuRzKZFOol66gHbNqmbdrHb4VCgR/90R/l5Zdf5v333+fBgwcsLi9TmZ4W6kG6Ti6TIS+BMclEgpdeeomx0dFwpxmLx/Esi6bjEIvFaEY0ZR3HadXLjX54xG9oclQtFouxQwVg6TcOHT4sQIXJJMlYjFQ6TTaXC+cho4CkTdsMlBuapmls2bIl7DGCWKilUkmUW5tNmpbFnQcPcH2fWq3G0vJySBvlSnSbJlFtniy3KkJ0ZQGEu8sAwlEOT84zKXLjWDzOtl27+MY3vsHZd9/lZ/6L/0LQ2iUSpOVYi6Kg2rRN27QfnCUSCU6ePMnJkyeBVbJwS85IN22bBzMz1GTJc2l5GUPSyaFp2LYdtmeati2wB5IfWllUUN6XAENP9jM9Kc/lSc7qPfv+/+3dzU9aaRTH8R+30HToRfCltBPQNmkXs2VlMhsxNS5lObvGvf+OXdi40D9BzdSFiXEBm4mRpBvSBCWti7EJA0hIBhF6Z3FfRhu9sRWRO/P9rEAIPpDLOeR5OecX/f7+vf4oFvXbmzderIhGo15damadrkai/AGRSEQTExOS/j0ictbrqXR4qMdjY4o5FSt6lqWHlqX26alOWy1ZTh+6TqejmFM71TAM/VWrSZK3sccwDPsLEw7r4aNHduEDp4jxSCKhmdev9XZlRUefP8s0TbsgMoChFnI26pmmKcku/nH+9as+Hh0pnkwqbpr22UbnR3Lo7Exn7bbaTqP0v9ttuyJYJCJDUq1et5do7Be3myBEIna91nDY7ivrHA/7KRrVrzMzevvunQ4/fdKKaWrsf3K0ox9IlLfkNn2WpGq1qifJpNLptF0MoNdTr9dTq9VSo9GQ5Zy1bDQa+lAqKWQYSr98qdSLF5KbDN0L/puuH+4UimEYymazXo+4/f19zc3N3e+HAOC7uTtY6/W6RkdHNTU15ZWa7Ha7etLtqlar2UXSHzxQtNVSsVSSISn96pWePX9+qd/lVXHDa6EXDiv59KmazaYsy9LBwQFx4zuQKPvs4rqAK5FIKJVKedOhlUpFf375olAopE6no5+dx749KnKdfD7v1Xecnp6+s/cCYHAu7r53jY+Pexv7KpWKTk5OvLiRIm4MDIlyQC4tvjtHSlxuHdib2tjYkCTNzs4qFov1Z4AAhtLF5vAXd7sSNwaHldsA2trakiQtLCzc80gABAVx48eRKAPG3W4uccEDuBnixu2QKAPGnT7JZDJKp9P3PBoAQUDcuB3WKAcgn8+rXC5796vVqne7XC5rbW3t0vMXFxevfa3NzU1JUi6X6+sYAQwX4sbwIFEOwOrqqtbX1698rFAoqFAoXPrbdRf88fGxisWiJKZPgP864sbwIFH2STablaQ7Pfzv/iqcnJxUJpO5s/8DYDCIG8EQsq5rZoihMz8/r52dHS0tLWl5efm+hwMgAIgbt8dmnoBoNpva29uTxPQJgJshbvQHiTIgtre3dX5+rpGREW+6BgD8EDf6gzXKgNjd3VU8Hlcul6P5MoAbIW70B2uUAAD4YOoVAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8EGiBADAB4kSAAAfJEoAAHyQKAEA8PEPy2bqg9i4nDQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +230,7 @@ "rng = np.random.default_rng(seed=47)\n", "blochSphere = qutip.Bloch()\n", "for _ in range(10):\n", - " angleList = rng.random(3) * 2 * np.pi\n", + " angleList = rng.random(4) * 2 * np.pi\n", " sph = cudaq.add_to_bloch_sphere(cudaq.get_state(kernel, angleList), blochSphere)\n" ] }, @@ -243,12 +243,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk2Vkmir/hI32W7a42M+3djMbP9DhJM3IYrSRk8AKWBZb9YZZ7l3svF8GywkgICS0/AVoWgdCuYHeBFcghJCRkkDTTMxqrGc2076621V02XfiIc+4fcU5UZKTPyqqZnon3eeqpqjQRJyIj47zn+97v/QRKKUWKFClSpEiRIgWD+EIPIEWKFClSpEjx4kJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKVKkSJGiCSk5SJEiRYoUKVI0ISUHKVKkSJEiRYompOQgRYoUKVKkSNGElBykSJEiRYoUKZqQkoMUKVKkSJEiRRNScpAiRYoUKVKkaEJKDlKkSJEiRYoUTUjJQYoUKZpw7tw5/PIv/zIOHDiAXC6H8fFx3HnnnfjABz4A0zS7vvcnfuInIAgC3vrWt27QaFOkSLEeECil9IUeRIoUKTYG7373u/Gbv/mbOHv2LHbs2NHy/Gc/+1m8853vRK1Wa/v+ffv24XOf+xz27NnT9vm///u/x9vf/nbkcjksLi5C1/VRDj9FihQbhDRykCJFCgDAU089hR/8wR9ErVZDPp/He97zHjz88MP48pe/jJ/5mZ8BAJw4cQJvfOMbUa/X227ju77ru6BpGgzDwJe//OWNHH6KFClGiJQcpEiRAgDwS7/0S7AsC7Is44tf/CLe9a534Z577sFrXvMafOQjH8H73/9+ACFB+OAHP9h2G7lcDq997WsBAJ/5zGc2bOwpUqQYLVJykCJFCnzrW9/CN77xDQDAT/3UT+Gee+5pec0v//Iv4+DBgwCAD33oQ/A8r+223vzmNwMIUxRp1jJFimsTKTlIkSIFPvWpT0V//+RP/mTb14iiiB//8R8HAFQqFXz1q19t+7o3velNEAQBc3NzeOyxx0Y+1hQpUqw/UnKQIkUKfPOb3wQQpgVuv/32jq979atfHf390EMPtX3Nli1bcOeddwJIUwspUlyrSMlBihQpcPToUQDAnj17IMtyx9cdOHCg5T3twFMLKTlIkeLaREoOUqR4mcO2bSwuLgIAtm3b1vW1Y2NjyOVyAIALFy50fN1b3vIWAMCzzz6Ls2fPjmikKVKk2Cik5CBFipc54mWJ+Xy+5+s5OWg0Gh1fc+ONN2LXrl0A0uhBihTXIlJykCLFyxy2bUd/q6ra8/WapgEALMvq+ro0tZAixbWLlBykSPEyR9zF0HXdnq93HAcAkMlkur6Opxa+/vWvo1KpDD/AFClSbDhScpAixcschUIh+rtbqoDDMAwAvVMQhw8fhiAI8H0fjz/++NoGmSJFig1FSg5SpHiZQ9d1TExMAAAuXrzY9bUrKysROdi+fXvX137zm98EpRSqquLw4cOjGWyKFCk2BCk5SJEiBQ4dOgQAOHXqFHzf7/i6Y8eORX9zt8RO+PSnPw0AePDBB5uiEylSpHjxIyUHKVKkwP333w8gTBk88cQTHV/3L//yL9Hf9913X9dtfvaznwWwKkxMkSLFtYOUHKRIkQLf933fF/39sY99rO1rCCH4+Mc/DgAol8t48MEHO27vqaeewvnz5wGk5CBFimsRKTlIkSIF7rrrLrzyla8EAHz0ox/FkSNHWl7zwQ9+MHJF/KVf+iUoitJxezylcOutt/Y0VkqRIsWLD519UlOkSPGywoc+9CHcd999sCwLb3jDG/Cud70LDz74ICzLwl//9V/jIx/5CABg3759+OVf/uWu2+LeBrycMUWKFNcWUnKQIkUKAOEq/2/+5m/wzne+E7VaDe9617taXrNv3z587nOf6yowvHDhAp566ikAaUohRYprFSk5SJHiZYQHHngAQKgZaIc3velNeOaZZ/ChD30In/vc53Dx4kWoqoo9e/bg+7//+/ELv/ALyGazXffBowbbt2/HrbfeOsrhp0iRYoMgUErpCz2IFClSvHTwhje8AV/60pfw8z//8/jjP/7jF3o4KVKkGAKpIDFFihQjQ61Ww9e+9jUAaUohRYprGSk5SJEixcjw+c9/Hp7noVgsRimMFClSXHtINQcpUqQYGb7yla+gVCrhLW95S18dHlOkSPHiRKo5SJEiRYoUKVI0IU0rpEiRIkWKFCmakJKDFClSpEiRIkUTUs1BihQpRgbDMOB5HkRRhCRJ0DQNspzeZlKkuNaQfmtTpHgZgBAC4vsIggCEEFD2w58DAErp6g9/jL+GPyaKEAAIggBBDAOPIvvdMAzYtg2w5yGKEEURU5OT0LPZlCSkSHENIRUkpkhxjYIQAt/zEHheOOn7fkQAqCAg8H2QIAAlBCQI1rQvCnTdRsMwYDsOACCj66CUwg8C+L4PSRRRKhYhShJESYIkSRBFERSAKMuQJQmyooR/yzJkRYGSVjqkSPGCIiUHKVK8iMFX/L7nwXddBOzvwPcR+D56fX3584RSCGsYRzdyUDcMOIwY5HM56JoWjb1aqyEgBJqqopDPIxptl3FTABCEkCQoChRNW/2dpilSpNgQpOQgRYoXEJRSBEEAz3Xh2DbAw/08KuD77d4Ewn632x6lNCQV7DelFAFPJbDnATYJ8zQC3y4jESS2bcoeRyKtAACe58GwLAgActksNFUF2HOCIMD3fRiGAQogm80iq+sQWUpCFASIohhtq+k4YvtOQmSRBkVVV380DXom099JT5EiRU+kFDxFinUGpRQ+C/f7vg/P8+BYFhzbhmvbcB0HNAjCSZVNxJIkQWKiPkmSALA8P1g0ITb5cz0A/z+xc8SnV0JItB+0mZS7Hke4gabVv2EYCCiFrmkQBAGu5zXtG4IACAIcx4HneSBBEJKB+KQvCE1EIfmbCgIkUQRl+2s0GjAaDTQaDTTqddQNA67jIJvLIV8ooDQ2hrGJCUxNTWFiagpjY2NQFGWgY02R4uWONHKQIsWIQSmFbdswTRO+78O1bXi+j8B1I40AhwAAggBJkkAJgef78HwfNAjgcxLAJn6+yheZ0E8SRciyDCUWZo9/mUW2OuerdE4uqCCENcxs4uZj6PZbEIQorcBvGZbjwDAMCABKxWI4kbN9x0kIpRQr1SoIIchnsxAlqemY2EZB2fmwHAdGowHDsmCZJkzThBFLXQCAoijIZ7PIFwoo5PNQNQ22aaJhmhF5CAgBQSiqzOTzKBaLGJucxOTkJHbu3ImtW7eO4NNOkeKliZQcpEgxIlBKYZomqtUqHNOEa9vwXTec0BkBEEQxmhAFQYgmyCAImvQBJAgQ8N+EhGkBFl0Q2A+AaMWtaxoyug5FUZqe7zjWYY4vFpWglKJSrSIgBNlMBtlYSJ9P8nFwXYKuacjnck3bIYTAIwSXL13CudlZLCwtAQAkUUQmm0Uum4WeyUDXdWQzGWSy2baRAImTJhZ18TwPlm3DMAxYjDQ0Gg3UmXhyZts23PfKV2Lv3r09z1eKFC83pOQgRYo1wvd91CoVVJaX4VoWAt+HIIrQVBWiKEarf9/3W8P+CXA1fzylwKMKoiBEFQABIQiCAI7jIGCrdEopNEWBpmlQGUnoBj6J93sDiJMD23HQMAyIgoCxcjnaFxcTConbiut5qNXrLa83TBNnz57FudlZOK6LKbaqn5yagqZp0fi4biKIHTthv4Mg6HkMsiSFlRDsfM7Pz+P48eNYXl5GaXwct915J266+WZout7n2UiR4qWNlBykSDEEAt+HbRioLC+jVq2CBAH8IAChFIosQ2KkoB0ENvHLbUhAckLnxCIgpG21AaUUrufBtm24XLzIIhW6pkHTtEiz0AmDkoN41CCXzSLDJ9QuOgZKKVYqFRBKkcvnsby0hLNnzuDq/DxURcH111+PnTt3olAodBkAjUhCEvwccbIQEYdOn4EgQJYkVKtVnDlzBovz88gVCjh48CAO3XgjimNj0LPZyMMhRYqXG1JykCJFn/BdF7ZpwqrXUalUYBhGtJKnwOqKPfYeUZKgsPp9RZajGv9uiCoOmNCw369oEASwHQe246yaGQHQFAU6KwfsFk3otRdODqKogShirFRq0hp0i1UsLC3h7OwsrszNwfc8jI+PY+fOndi2dSukAcoTXebr4HteGI3pcH54xIGwtE3ARKHtIg2GYeDK3ByWlpagaRp279qFvfv2oTw2hnyhgHypBLEHyUqR4qWElBykSNEFhBDYjQaseh1Go4GVSgWGaUZRAUmWo1y/CES1+ZwMtCUCHb5yhJcMskmdstWwOGhVAaVwXRe244TRBLY/rk3QNa39uFhqouN22TFXqlX4QRBFDdppDOLHdPXKFZw9exaXr1yBKIrYPDODQwcOoFwu9zwOn03mUbUH12bEUil8Px020hLN4DoHThh8bhIlCLBtG3NXrmBpcRGiKGJm82bs3r0buXwe45OTmJyaQjaf7zruFCleCkjJQYoUCVBK4Zom6tUqjFoNjuvC9bwwUsCEgaqiIJ/Ph8SAO/sNac4T9yOIj6FJzQ80TYZtUwz88VipoMd0CVE0AYBAKbLZLDKs/LBFe8AnVPabMl8FGgSwz/wLzC/9OkAJcg/8KvRDb24aoxAby6WLF/HMc8/BMowoSpAvFCCIIkqFQpOokBCyqqdgJCCImS7FtysKQqjNEEXIPBLDjq0dSWg5VwmywH0dXM+D4zhwXRf1RgOX5+YwPz+PbCaDPXv3QmWfcTafx+TUFCamp5Fl4shU0JjipYaUHKRIweBYFmorKzBqNdi2vboqJQT1RgOCIEBVVYyPjSGr62ueENqRgvhzXb+asYmbv16gtOOYKKVwXBe2bcMLAoBSyLKMfC4HOR4uZ9tMboUCCBwDK39yGCBM2yCIKP/swxD1YtNrLcvC008/jbkrV7B1Zgb7DxzAGIsS1BsN2I4TOh7K8ioRICQsr+TVHLFqDJmlYxRJgsj0HEKnKAcjCQH3U1gDXM/DwsICHn/8cUAUsWfv3sj9kZefZnM5lMpljE9OQtf16CdFimsdKTlI8bIFpRSO46BeqaBRqcC2rKYJhfsCWI4TTk6yjHKx2FPg13O/WBUaUjYRxqcxHk4fOJ3Q8kD7r7Zl2zBMM9pXNpNBJk52kiZFbNvGkT+BdeRDTY/rd/w0svf/h+g1s7OzePaZZyDJMm695RZs3bIFYMfLKxbqjQYUWUYum23aV9RngYkz5W5pGe6hwH63EAFOvLqesf5gmCYefvhhGIaBW2+7DZlMJtI9cOdJUZJQKBZRGhtDeWwMhUIBmUwmFTSmuGaRkoMULzu4rot6rYZ6pQLbMJomQlmWoSoKNFWF5/uoGwYoq0AoFQpdb/a8XNHz/ShE7rO/A88LUxJAOJnFjIm4qRFfOccf590PJWZbHL22z0mHkw+eo+cIggCGacL1PFBKIUsScrlcZKiU1BEETgMrf/5aUKfatH1BL6P8U1+G4QR46sknsbC4iOt37MArbrwRqqKEbpAsLQPmFNmwLCiKgvFyOSQCjBQMs9JvV8VB2fnl0YV4embYWILreXjkkUewuLiI22+/HVu3bg0Nq1gqgn/enutC1jQUymWMj49jjBGFtB9EimsNKTlI8bJAEASwLAvVlRVY9Tp8x4kMhVRFgaqqUFUVEpt0Dea2RwmBoijI6no4AcQm/SD+fxCsWgPH3AijqECsBC/e2yCarHiYnFcpsPdEoKs2yJEBUsJmWJZlaKoKTVWjY1p9O23aD9+v4zjhcbI0RoYZDcW1CABgHPkwzCN/1PbcNg79NJ40dyGTyeDWW2/F+Ph4mLv3vCZvBJERL8M0IYkixsrl/khObOw8SsDHxtMvQuy4KHeCZI9HFtOx7URGUezxfqI0ASF48sknce7cOdxwww3Yt29ftF8/COB5HlzXhWXbcF0XgiAgk8uhND6O8fFxlMtlZNL+DymuEaTkIMVLFtzG2DAMNKpVuJYF4nkQBAEaU+3HxWSu76PRaGBpeRmmZSEIAkiyDJWv+tjEL2JV+BeRAAa+qpdZblxibYoF1j8AQHMvBEpBWWkdYSFqrsiPlzLyv/lxAe1LD3kondKwP4MaM0XSGAGKr9A5KTBME7brApRCEsVQi6CqECgFsVaw/NHXgbpG2/NsS0Us3P9h7Nq7PyoVjM4PM4PSVDVaPa8wX4hCoQAt6XTYJqXRCx0rFWLg57CbCRUndmK7tEqMWBx9/nk8f/Qodu7YgZtvuaWF4BBC4LguTNOEaVnwfR9aJoNCqYTy2BgmJiZQ6BGFSpHihUYa60rxkoPneaEff70OyzTh23YYAZBl5AqFyLnQ933UGw2YlgXDsuDaNhzPA2Ghal3Twi6DLDTPhXESC/PzcHj0eKxJEgcXx/XLwVsqFJLPx7QK8d88peF4HjzXjdwYPd+H67phF0eWWuBRBR5h0DQNhXwemuuiYZoICEG1XoeuachmszAf+2hHYgAAelDDNvc5eO7OJkKgqioUWW7q4ggAiiTBYWWESJKDdVqrCIIAiRG5TsZIPHIT8HHEIwx8/JTi0MGDyOVyeOKJJ2CYJg4fPtxUeSGKIjK6joyuo+T7sCwLDcPA4pUrqCwtYeHqVRTLZYyNjWF8fLwpwpMixYsFaeQgxUsChBCYpgmLNevxTBO+64aTPLtRC4IQEgG2onMcJ5w02ArOtu0oUlAulaBnMk1WxoOCInRSHOQL1steeZDtuK4b/rBwt8cIQ5S+wGrkgGstVEWBT0hUzUCtJdBPvAPw7e47LGyD/P3/G7qegcrIVy9BpKqqKI7IM6Cf6AFHwJwsh4XA9B/zV6/i0UcfRTabxT333ruaMujgreC6LuqGAcMwQADk8nnkCgWUSiWMj4+jVCoNPaYUKUaNlBykuKYRBEHUUMdnLZCJ74crY0VBQGlEGmzbDuvkea6eraJ1TQuFbaw8rZDPj0RA5g8QMYgfT9SboE+BXpRnj+kSkuF5no93fT9qn+y6LjzmMshfydMSge/D9jwUn/sIsuf+sa9xZN7wPih7v6fz+LBaiVGr1yOHxXbHyT8f/lkBzRoN7tfAxx20Kb/shCjaMoJbX61Ww0MPPQRV0/DgAw+0kMh2vSsIITAMA9V6HY7rIsO6S+aLRWzduhW5XC71TUjxgiMlBymuSfhMH2BZVmhr3GhAQriq85g7oGlZkdiMTzaSJK1298tkoCgKLBZNAIBiobDmUkUAUSfFuOAQSExuib879U9YD8TFjx7rzeA4TmQC5LguaH0O41//OQg06L1BABjbDbz5470bPlGKar0OACjm8z1z77w9Ne+4GP+fkwfKtRacJMXOd1Lcyf/3fb9vAtYNlUoFX/3KV7Brzx7cdOONYefN+OcdK1flehB+jmzbRrVWg2GayBYKUbphcnISGSYMTZHihUCqOUhxTcH3fdTrdViWBQAwazWYtVpk8sM7IoqCAFkUIUoSMpoGjRECjZvYxLZnmiYogBxLIwyM5MTfhwJeaPP3qKYBXr4YiR5ZGJ3/5rbMNGZBzA2eFNYJ0fc82N/5cP/EAABWTkOeewTi9a9qGgufrHnkAABURYmEi3Kbcx5vsMQ1FZ3AyQJYpCFJIJo0A1gVk8rMhAnov/lUO5TLZdz4ilfgmWeewabpaUxPTzeNLQkhRhR0XYemafA8D4vLy1i6ehU+0ykUi0UUi0Vks9mUJKTYcKSRgxTXBDzPiyIFQOjCt3z1KlzLgijLYVSATQ6apoU6g0wGuqqGK7k2oISgWqvBDwLIsoxCP/nvBBFoh2Fy2pxQ9HpN3DCJxCb5gNk6B7FKiH4cFiPvBEmKJk3PdeEtnYL3dz8CAYNpIMRNr8Dkj/7vllLIJGqNBlzXDW2cOzgKRkSGd1mMdajkvRFazk8bCIlIQ/zvgFLEr45kRKdvUIpvPvwwKisreN1rXws1QUIBNIsb48ZN7O+AEDRME/VGA5lsFrliEYVCAbquI5/PpyQhxYYiJQcpXtRwXReNRgO2HQriTNNEZWUFTqMRlhgKAjRFQYa5/A3iStcwDNi2DQFAiXUXbEIfRCAJijAaMSg6tndGGCoHK3EMgiA0WfL9vvUMUmw1LcbD87x0TxRDH4hYff7yP/4q9PP/NPBxAID94B8gc91dyOVyyOg6JFGMJlqufTBME5ZtQ9c05HO5nttMHikPz9MYWeDnJ97mulf1A68O4Y2yZEWJBKrxffVDGGzbxj9/+csol0q49957ex6TyISNAJoiG67rolavQ5AkZAoFZLNZZLNZSJKEfD6fahJSbAjStEKKFyV830e1WoXjOCCENIkOZQAZVQ1LxUqlUCU+YH284zhR/wTeDAhYe2h/0GqDyMEQq/lx/jtyWGSui+0gCQIESYp+x5sS8VB7ciKJ57wJIbBME5bjRMd+5swZ6EvnMGyHAKlyGsbkjag3GhBFEdlsFvlsFllG3CjCVtYQhDDSwVfSXbaZfC4iTbHyUQpE3RU5OFFoF3kgQQCB0rArI6vsABD5VLQjC900I7qu447bb8fDDz2E06dPY/fu3V3PE79WKMLPkftoqKqKcrmMhmHAqtUgiSIIIchms6jVamg0GilJSLHuSCMHKV5UoJSuEgFGECzLgkgp4PuQBAG5bBaFYjH0IBgCQRCgWquBEBLV8o8K/VQoxMPJ8ffFyYAftOb6uQuiHPNXiDsxdkPkisiV/8wgyrLtaDySKOLo0aOYu3wZt05bkL/5n4BBNAcAIGeQ+8G/hqNOw7LtcCJmaRZBFJHVdeRzOSiKgoZhQJIkjJVKffeF6HqMWC1pjLslgokV202khBDYrhumUnw/9F5IQBTFsA23JLWNLMT3LwB4+tvfxukzZ/DgAw+gWCoNTDjjkS/TNGHaNvLFInKFQtQSHAAURUG5XG7yWEiRYlRIyUGKFw1c10WlUoFt21hZWYFlWVBlGSJb4RWLRRQLhdXc7SCIrdBrtRp834coSSgWCiM9hvgKv4kEJMYb78Pgum5L/hxY7UjIV7ESW223bL8DeIQgHpEglK5GTdjrFNbf4LHHHkOlUsFdd92FLTMz8CoXUT3zCIjvIvAdXPj2VzFT+cbq/pUcpFt+AiA+BBBomQIye18PeWpfpKGwbRumZYVVJcximvDjDwJkMxls27y5belodGNiJYv9fOLcu6Ht+cBq+WMkjhSEKBUBdn4C9rn0JAvss0mShYAQfPWrX4UfBHjNgw9C4v0qBii3BBujIAhwPS90WgyC0BchYZyUz+dRYN+LFClGhZQcpHjBQQhBrVbD8vIyVlZWYBgGsooCWRQhS1JICphYcNDLlfvn8xsnt7QllKJcKo3EwpYCoaiN3cjb3aQD3piHRQZIjAzw1a7EwtnRpCNJ4bZ5ymQA3wM+rvjfDosU8HMoyzIyug7X9/HwN78J1/Nw3733YmxsLJrcq7Va9P4nP/1H2H/5L6L9SMWtmPiZr6DRaIDwzoT5fKgx4Cv42BisGFHwPA+1RgOEhl0hc9ksCvk88tls288k/ql3m2Tj0YO+QCkCRgjagbCSR79PsqCwTpK1eh1f+cpXsH37dtxy663RvuKRm76ncjZGx3FgMe1NLp/H2OQkFEYSJElCqVRK20WnGBlSzUGKFxSWZeHy5ctYWlqCZVnQJAlFZkxULBaRy+WilWO/xCAqDeSTKfvtsRUYpRT5XG7txIBrBeK6AVGMxIPxNEE7LYIky1BY7wWZ/Y70AKxeP3kM7dCpbJJHDFw2qRBWuigxUqCpKlYqFTz80EOQZRkPPvBAeL6xumIFwoknLDtMHIMoRVUeDcNAEASo1+thXwYeCeBllZRGlsIYG4PjuhCvXoVl25BFEa7jYN62sSRJKBeLLR0wm44ufqyJa2LglQ5LO7ToMhBWs3CjLJWF7iOy4HkhWWBRB+4RAayShUOHDuGZZ5/FpulpzGzd2lpOOcAYRaZFEEUx9OWo12HU68gVCiiOjUHPZLC8vIxMJoPiCNqKp0iRkoMULwg8z8P58+cxPz8P13UhE4IC8/gvsvKtqGQPPYhBbEJtKhGLgRCChmGAAlEHxqEgCK03djb5Oa4brYrbjTcucpMlCQJbYXO/Ab7tfggBsJo26OSn4LLxBDwywQygNNZ8aY7Z/5aKRdx7772RhoOv9n1GDhTuB0CbyYEghhOmJMsoFAqhToQRhFwu19zkiX02fNuaqmKsXEbB96EoCnzPQ50RjKWVFaxUKigxkpBMOSSJQrISgiRf0wPtPiuuz+AlmZyEDEIWJiYmMDU5iceeeAL3ZzIoFAqr+oB2n1mXa1xA+PmBUuRyubCyxHHQqNfhWhb0bBZqJhNeh44T+SOkSDEsUnKQYsNx/vx5XLhwAYHrQiAEWVXF+MQExsfGohsgR9PkGUe85j+uQegwUVqsy6IgCNHquBcoE9EJsf0ln/didsTAqiBREISQCMR+2hnx8H2sPjFA6qAdUUGYwjBMMxI1ioIQRgo0LTpPZ2dn8eSTT2LLzAzuuuuuppVm5HfAQuiyogCO02qIJErReRFFEcVCAQ3DiMpPs7kcdFbvnxRNUkIgSRJ834+iD6VyGfV6HfVGA57nYaVWw0qlgkKhgLFisSOhi0eKeIqHp0X6ycN39EdIVpGw7cdTAr3Iwv6DB/GtRx/Fd557DjfeeGPkw8GbfyV22JsgyDKo7yPLDLtM1k1TkCRQQlCvVJAtFKLmY2P8O5UixYBIyUGKDYNlWThx4gSqKyuA50FXVUxOT2N8bCxyyYuH33mb3aY8bYwI9CvAIoTAchwQAIU+VlNxotGuDt33fTis9C0+sUiSBF3TIDCtRNNkyCaUbmWFPZEgKO3eZds2DMuKIgq6pkHTtGgiogCOPv88jh47ht27duHmW25p2k5k5RzzUVDYyj2ZVhDEZsIDQUA+l4MhCFHLYkIIsrwhUXzMzG8BWP3MRUFAiRn/mKz3gOt5MAwjjEZksxjrkVePn+NIb9Fl0u07VRXbZvzzImBpJX5YCbJQoBQHDxzA0888A8s0kclmw+ZglgWFtdGOtw1PpkySkQseQQiCIOoYynUcQNhJ1G40UF1eRrFchud5mJiYSDs/phgYKTlIsSGYn5/HqVOn4FsWJABTmzZh8/T06qTFIwQMXFgWV9w3VSkMoMy2HQegFBLLBXdEYhKJ7yHKK7tuE4ERBCFaCfIVWryREX9NJwLQFzGIp006gBACwzTh+T4EAKosI5vLNSnpKYCnnnwSZ2dn8Yobb8Teffva+gc0RQ1iEY+WyIEkr56v2OeSy+VWV7W2DUIp8glSJmC1ZC8p8hMFAfl8Hvl8HqZloVavR2WXhmFA13WMlcvIdSB6AovIxP0jkp8t/2utXTBFJKIKCf2CKAjYtWsXTpw4gbnLl/GKm26Cw1pqe54Hz/MgimLUQrtplR9LmfD/wfUlooiAEGiaBkppJPYUGDlRFAX1SgVGowHHtrFp8+bVrpEpUvSBlBykWFe4rotz587h6twcqOtCVxRct3078nGr4iQx4KQAWA3rDwlCSKjQB5BNrjg76Afi4+Btj5MmRPxmzr0G4u8RJWm1GqHb5N9l1RqPKPQiEK7rwjDNaBWci4Xz4/jOd76Ds+fO4c477sB1113XdZvc5TFOpoSk5kCQorElj0TXdYiCEKYZHAeWILRMTpIkra6MOyCbySCbycBxXVSrVZhM0zF39SoURcFYudxS4SB0Oq/xqAuLSvlB0LUHRj8QEiSEV8jwUUiiiH179+KZZ5/FDYcOoVgoIAgCOKzBFSEEtm3Dtm0osgxV06DGownxsXOCIIoRedZ1HYRSuI4D0zQhZLNQVRW5bBambePi7CyMWg3bduxI20Kn6BspOUixblheXsa5c+fQqFQgEILxYhFbtmyJyq8AhGVaTAsAoGMefVg4jhOu5oBmgVwHUJYzdmKOeRyKLEdixm6RAAEA2M27177aPca7SPYCoWE7aodZHkuyHFYKsBJIAYi6FJ48fRrHjx/HzTffjOuuu67jhMxX3Z7ngRASbotNQi2GSKLcVEWS9HVQNQ1ZAIZhwLRtCKIITdcjN0RBFEEFIWwKxc9dh3OmqSqmp6bCEsh6HXXDACEE84uLbSscouhBB1CExDGydh5Ao9ANSQEmn9R37NyJY8eP48TJk7j5llsgSVLYGVTX4XkeHNY+m/srmKIITVGgalprYyq2TUmSQl0JKwcFE8UaphlqXhQF2UwGlm1jeWkJhmniuuuvx6aZmTUfZ4qXPlJykGLk8H0fFy9exML8POx6HaosY3rTJkyMjYW2uRw07LwXle6xh4MBzWI6gYdbKcIVaLcbYrSSc5ymSUUURWiq2pS37weiKDZ5GbQdX2KsycqDyNWP0tVWxOw5j7Ws5mPVWbMpgU220fYpxcVLl/Dtp57Cvv37sWfPnrbEIH7MQczRkH9e4cTdhhwkxKOxfwCEkzphfRsMwwhJg6Ks+h/wVsu80iCe1kl8XgIARVUxMT6OUqmEWr2ORqPRtsJBkuWuEQlKyCqpCXcWXYOjsn6Jj19VFOzZswdHjx3Dgf37obEoCu+GqaoqAkLgxlJXtuPAdhzIsgytDSkVBAESSy8AQIZVK7ieh4ZhoJDPQ5blJvHi6ePHUatWsWf//pF4fKR46SIlBylGikqlgkuXLqG+sgLfcVDK5zE5MRE6ESbEVgFb0QvrQAz4KoqwlXiyVTPAdAQsQhB3KBQEIboZt3Xu63OFKUlSmE9v99qYrz4/B1FJXmJf/Hj4ZG9aFhzbBgQBkiQhl822HScALC4s4LHHHsN111+PV9x4Y9fx8mPiKQUe9o+ep60+B3F0Oi+ZTCbSbBiNBkRWnigIQhg94O2jE2mG5CTdVFIoiiiVSigVi2g0GqjFKhyWKxUUWUlsu+6IUVOm5PGvngg+gNaTtAbs3r0bJ06cwOkzZ3DDDTdEpI9DEsWwk6iuh86ZjgM35pVhWlZTOgsINQ3RkYgicrkcKLMerzcaKBYKkCQpqo4wDANXLl9GvVbD/kOHkB+xQ2iKlw5ScpBiJPB9H5cvX8bK8jLMahUCpdg0OYlSqdS23jpgBjNJpXxS0DUImloaC0LUWCkTixrwkLnjOC06AkVRoGkalISOID6+dhUHncBLzyLiwev8BQGUh70TE0S36cj3fRiGETUX0pmpUKfx1Go1PHzkCCYnJ3H77bf3LeLkJZDJEjgBzZED7nMQ/d9l+9lstmVVyztDBmAhfh6lWN1gGMHosE3+ORcKhVC8aJqo1uvwXBcNw8BKpYJcPo9SoRB26xTCtsg+T2N1IDNJkhAnJWuBpqrYvXs3zpw+jX37969eZ7GIULjb1YoHTmAd1wUJgshsSZIkaJoWGSMRRrS5IJSLUxuGgTwTiCoxwyqj0cAzTz6J3fv2YdPMzJqPLcVLDyk5SLFm1Go1XLx4EZ5pwjFNZJm7YTGfD3PMMfAJUWo3+Q6Z823yI2DvdxwnmgQ0TYPneXDZTTYOmekItF56hC75cP58uwlEQNiBsElXEQ569X29DzBU61sWIIRdF3PZbNfKC9Oy8M2HHkIul8M9d9/dPYScOO+8eiCZ6+4VOegG7i9BGg34nCDEokmdzqzYQzuQ3D43CKrValG1hGGaYQfPYjE6Z/GITFJQ2OnxpMfBMNizZw9OnTqFs4wgxEsUgdbzIIpi5CzJtQmu5yEIApimCcuyQnMt1hSKvyefy6FWr4feByyCwFt1F/L50AfD93Hi6FE0qlVs37UrLXdM0YSUHKQYGoQQXLp0CcuLi4Dvg/o+yqUSNFVFLpdrJgb8Ztup3pxtbxBy0EQKgKaJ1rKsUNUtSajV601pA64jUDWtc4e9HkQl3jOAvaHja0UAkKSw/wB7rN8CusD3YXJDI5afzmazXRX2rufh4W9+E6Ig4P77748mjY7HEovgUKbgB9DGmTBRrSANdvsQhNAHoV6vI2BtuPl+u5UUtjMf6gY+mVq2jWq9DsswYFkW6mwVPVYqNR1bvA9EUylrLBLFIz7xCNQwJCGj69hx/fU4deoUdu/Z0xqdiUWUksRRYSWKhBC4LPoVBEFIfD0Pgm0jk8lEEYlCPo96owESBGgYBnLZbBitYeShzvQaV69ehWVZ2LJ9O8YnJ4c4qhQvRaSKlBRDodFo4Pjx41ienwccB1lNi4iBruurRjV01bioq3p8kKgBX23xiT3xPs91Ydl25LTHiYGmqijk8yiXSshkMm2JAWXbaxlLYuz9Tgz8XSLCnHIURu5jNezYNmr1ehQByedyYU+ILueJEIJHjhyBbdu4//77ezbiSZKcIOaq2DJxJQWJwuBrC1EUkWfNmQLfjwSjtAs5ABvjoCWHuq5jcnwcU9PTYaRFFGGZJi7NzaFWr/d8PyckvGSQEALC9REISVW8WqNf7N23D67nYXZ2ts1OV1trC+z/JERRhK5pKLEupZqmQUT42TUajajPhSiKUfqGEALTNFdJlhC2PhdEEb7vo1Gv4+LsLGZPnoTLekSkeHkjJQcpBgKPFpw+dQpOowGJEGyang6dAVn5FDenEQShyeRoLXlbGs/LimLHcLznuri6sACThVt5WHasXEYul2sNxTOVetNNfgT55abx8l0hnOCELuMHEK706nWYzPVOlmWUutgHx/f52OOPY2V5Gffed18Ytu+B5CgivUEbgWOLz0GbtEK7405CkiTk8vlQU8Bq/Ac543wl3wuEEHjMnnlychLT09ORMG+pUsHlK1dgsy6Hg4BfK7zigbDHCDv2XmPL53K4bvt2nDhxoiOx4J9LFK3o8DpZlpHLZlFixBxAVO5pmma0P0EIW1ObrGIECElGLpsFhLDJlu04qNdqOHX0KCrLywOdkxQvPaTkIEXfIITgzJkzWLp6FbBtFDMZbNu6Neo6KEkS8vl8VH0QD1X3mnA7eQJEIkO+6u5CCqrVKpYrlUhXUCwUMFYuNwkSk9tuMlwSRuOxEEUf0D7CwEvQxHAQTc+5rotavR6JJbPZbJQv7r5TimeefRaXLl3CXYcPY2Jiovc420QwglilQsu4kXRIbE1X9HsOZZb7FgQBnufBYhNZL0Rlr93IFUuNBIk0la7r2LRpE8rFIhRJgs/MlBaXluCvwSkxXv7IIwwBIU1kIXl179u/H45t48KFC713EIu+dTpqniooxpo7Oexacj0PuWwWlJEA3lALQtj/I8OiS7ZtR5U7F86exbnTp6PKlRQvP6SagxR9wfd9nD17Fma1CpEQTE9PI5/Ph/ljFvYuFgqrofMYuAlRJ7Tk7xEjBT1CyZ7rwrSs6CbmOg40VY3sd+P7aNnfiMhA0z56CReBprSIBETGS5ZlhcZLghCtCPttmnPi1CmcPnUKt916K7Zs2dL3mJPn1+8gRgTaCBKFzmPrJ02kKAryuRwcZo1sO05bZ8e24wZWqzxiE3NAY26bbXL3vAQyn8thuVKBZZowLAumZYVdIuPOnUOiqfdCvGRVEKLVWLFYxMyWLTh2/Di2b9/eX0qNXzfx1FS81JSlgvK5XFT6GAQBbNuGyHpZ0CCAaVkoxipydE0DZb4KhmVBFEXIsoxapQLLsrBj927oqfXyyw5p5CBFT/i+j7OnT8NmxGBm82bk8/loMuPEoJ2VMOlBDPjrmtBHpMD3PNRqtTAnz7wEVE2DnsmEor1MpuOqTYj9jALxUHpPYoA29fs0dDp02YpO1/UoV9wPLly4gO88+ywOHjiAnbt2DTT2OOL1/+18EwYRJParH9E0DZquh4ZVsXPQD/hnSBHm2/0gaNIudOtpIckypiYnMTU9DY1ZFS+urODylSstFS1rQVMUjekXCPte7NmzB41aDYuLi4NtNEYShMT/HLIso1goIMespQkhkRmVx7QecWQymSji0IhZcXuOgzPHjqFWqw1x9CmuZaTkIEVX+L6P0ydPwqnVAEYMdF0HJQSWZUVNctrlw/utD+fhV3QhA9F4GCmo1mrwPA8Cq/cvl0qRSltWlCYnxvhkPEpSAPROIfSC7/thNQUh4Q29VAqFYn1Orlfn5/H4E09gx44dOHTo0AADb13ZczGiFOuYGEc7h8S1IqocYdePwUSkvcBz/H4QgATBQJqFODK6js2bNqFcKESphstXrmBpeXnNTZkidEgJjE9MIJPN4uKlS6HQcUitS7KKIg5VVVEsFJDRdYis8ZhpmqhUq3ASwsNcNhvaSbN+JBwBITh38iSW5ueHGl+KaxMpOUjREZwY+PU6KKURMQANbYm5yU+7UHCyy2In0D5yyEB7UqBpGkqlUtQFkLdQVpVWc571IAWRKdKA7+WTju95qNfrIEEASRRRzOejhjuiKEY9FjpNGZVKBY8+8gg2TU/j1ltv7dvkCECT8RJHlFLo4LbYrvHSWsE/d1VRQoIgCDCY2r4dKA2dNX3fD82gYj4Bw5pniaKIUrmMmU2boqqGhmHg0twcGo3GUNtsC36dx/wTtszMYO7y5ShNEK+IGIgqxKuCWnYbEuhioRCJcn3fxwLrt8CvR0EQIv1BsvsoAFw6fx6X+9FIpHhJICUHKdrCdV2cPnEiJAaCgK0zM1FZHKU0tO9F2LOgHXrVgcdX3N1K1DzfRz1GChAjBflY6J0QAs/zQBH67zdNGoMdek/Q2M19KAgCHMdBvV4HBSArCgqFQnPfCfa6SLyYIFCmYeCbDz2EQqGAw4cPD+ST307jAcQiB53IQdKdYUCfg7bb5OdSCLs2ynLYr6HRaESracIIgRcECFjqoK3Qk28vkYfvF4qiYGpqCpOTk1BVFZRSLCwvY+7q1ZYmXGsBHycFMLNlCyzLQqVabXoNL++MyEKfUYUoQtGmdFgURWQzGUxNTER+CfVGA7V6PSwppRSKooTkkNKw1TlWoxGCIGBpfh5nT55sabOd4qWHlBykaIHrujhz4gS8RgNUELBl8+aok6IARCFHma/2EuhWnRAnBRztbt883F6tVuHESEE5QQqiMTNiILHJdNRiQz52ilBXsJZtW5YVtlgWhMh7oefkzsgBzx8/dOQIFFnGvffe23Gl33FTHR7vZJscvY8m7ZO777efskbeX4GD58j9IAitkFmEgBLSl55DQHhTW8vnk81mMbNpU+ioKIrwPA+XrlzB0srK6FINCEnx1OQkFFXF3Nxc19f2HVXglTcsktDudYqiYGJ8HLlsFr7vR6LFWr0Ox3WjSKDDKheSpZT1Wg2njh9vSUukeGkhJQcpmmDbNmaPH4dvmgAjBtxJUGR16VHUoE3PBC66ageu2AbQtLqLv9r3fdTrdVSq1UjsyA1f2pECDtd1o6jBiymFkNxOvdEIyRWl0HUdOVaDPgi+8+yzsAwD9957b5TmoYmfjmPo8HwQBNHE165SAWhTrdCDHPRT1sjHwz0JKKXhdSUI8Fnt/TBoMt4aIpcviiLGymXMzMwgo2lhqqHRwKW5ORh9ll32tR9Jwszmzbh8+XLf74lHFYKY3iL5uXKi1O453mmUeyBw0mmaZpQybIoeYPV7KgBwLAunjx6F0YeZVIprEyk5SBHBNE2cP3ECrmVBEEVs27IFmqY13eC5sYqiqlDarFgJWhX70U2l3STIViVxUsDV4nFS0G11zJspgdLICGbUWCvZIJSGKzPHAShFLpfrmJLphkuXLuH06dO4+eabUSwW2eCE1Tr4NqQrMu1po2rniEcNOpGVlrRCn4LEOGnhFRG8uoBXRxCuURFY7wjmTWFbVkuDrH4hoHMUpF8oioJNmzZhYmICKkt5zC8u4sr8PNwRhda3btmCer0Oy7IGFlYKgtBMFNoQocjDI/G5ZjOZ6DlN0yI/EP7ZWLYN27Yjh87It4S9JwgCnDlxArVKZfCDTvGiR0oOUgAIIwYXTp2Ca9sQJSlMJTBxHL+p+L4f5V7bTWyU0qgVMf+fJkRYSQRBgLphNJGCePqgKylgP57nRXX1g4bYu257rdoCBp8Q1LiQEkCBWd4OCtMw8MQTT2Drtm3YsWNHx9cJiXHHJ4fICphP2GClgOwc8qhBUyQCrO9FS7WC1PI6vu14yR4nAZExUCLdwMcbjzgpbGXL2wwHwyr5gVYtxxDI5XKYmZlBqVCAIopwHQeX5+awMoJUw6bNmyFJEuYuXw5vyEMKK/nnGzdgip4DopQDhyRJ0DkJcxyoihLZMXPdiWGaWKlUOkajKKU4f/YsLMMYaswpXrxIyUEKmKaJ2ZMn4dk2JFnGzObNUNt0KeQ5RlXTWiZhHuqM/98rrGw7DqrVKrwEKSj0ESngBjcCENXGKyOIGjSFT4eckOLwmaDSZxUJ+ZiD3UDjIgSPPf44FFkeuDJhdSM0En8KscdAaVPkoGUi4P+39FZIkAMunIv/AD31FFEZXuLxTCYTjcdcw+TTScU/KERRxNjYGDZt3oyMrkMWBFTrdVy+cqXFN2AQyLKMqakpXJ6ba9LKtKso6RdNTo0J8sIFi0CYXpAkKapA4qLFYj6PQi4HINTIVGPNy5KjIkGA2dOno+9xipcGUnLwModpmuEX27IgSRK2bt4cldMlwcO7yVJBYJUYRILDbtECQlCr19EwDBBKIStKX6Qgvv14+aPHSxjXSA7iOdVRaBYc5nEfEAKFmdIMG+Y+evQoFhcXcefhw0MfZ7fJkYf3u42vtbfCAFGaLkQrmgyTOXNBiDQZvucN1QcBWCV5gzZu6gRNVbFp0yaMj49DY6r/K1evYiVRcTAItmzZgqWlpSgyx90UB9GjdNP68MhNkvgKghBFAV3XjTwmJElCoVBAPpcDBAGe66LeaLRUbfAFgO95mD19umMJaoprDyk5eBnDNE2cPnkSAScGW7ZA7kAMKKVR+VJSa8DDzjRJCNrcrHi0wGVeBblMJgzV9mor3KE00fP9cGIThLYaiH4QpT8wGlIAhGmaRr0OwnwXCvl8kyp/ECwsLODY0aO44dAhTIyPDz2mTqFhEltddlvlD6s56OVBED3XZnySJCHLTKFMlv8GgBVnBT/y1Z/Eqz/3XfirU3/ddf/xFfgohar5fB6bN21CPpuFIkmo1Gq4Mj8/VJ+GmZkZgFJcuXKl5bl+Ih/cJbIX4tEEfr3LihJqiwQBpmU1XSe6piHPBKKUUhimGXZ3jL2GE3bLMHDx7Nl+DznFixwpOXiZotFo4PTJk6COA0WWsW3Llq6rdh41EESxxX2QBEFod4xEKD52Uw4IQT0eLWCdBrkIKlKWJxA1RuowufCVjKooQ934o0jHCFIIHAYrVQTYzZURg2HG5zoOHnvsMUxOT2Pfvn1rGlencxi1ae7gjBi9v43mYCTgaYUOn4GmaVBZW+KGYcD2Hbzxi2/Hw/OP4FzjPH79id/Es8vPdd58Yl+jarAFhJ4Qk5OTGBsbgyIIcB0Hc3NzA0c5dF3H2Ph416qFbpGPgVqeYzWa4DMjqYyuQ2AVC/EUicRcR3krdiAscaw3GqtpBiYqFgQBlUoFcxcv9j2OFC9epOTgZQjXdXH29GkQ14WqqmHEoMeqm3dyi6/wCc/7x2+2bW5QNuuY6CSiBfGSueTqsqlfQZebHhcjDpXHj+17FOClinxiyGQyTaWKA9MPSvHEk08iCALccccdQ0cewk113ns/KQWgNXIgCP1HavqJHHQbYzaTgShJIEGAX3n013HZbPYF+NS5z/Y9FrbTjoR0GBQKBWzatAmKqoJQirn5eVQH7EewdetWzM/Pd40AdOoXMawoUmDlyZRSZJhI1naclrLWgJCQ6OZyEEQxFBJ3SDMsXr2KpYWFocaT4sWDlBy8zEAIwblz50BdF7osY9vMTF95cC+WUojsVtE7j12v10O3uzbRgiSSk2ivcHQQBPB9P/Q3GJAcjJoY8FJF13UBSpHP55FZYye706dP4/Lly7jjjjvWtK1eZkTxngrd0BI5GIFDItBZkNj0GlFELpfDR8/+N3z64j+0PJ8kC/1CFMWREQRN07B5agr5TAaKKGK5UsH8wkLfE/eWLVsQBAHm++hhEGl6+vC26BeROyJCggBKIUlSGE2iFEEQQFEUFJk2qF2agX+fLl+4gHrarOmaRkoOXma4evUqnFoNIqXYNDXVl+0ubylMEa4uuZVvt5VsMlqQbRMt6LSvXqSAg69aFEXpW2w2atEhEHoExO2dC4VCe9HgADfwSqWCZ599Fnt278bmzZvXPMZux8q1JJ1sk6NttAgSB0srdPZPCNGrF8c/XPw8PnzyI22fO1490Xm/QNdzzye/UUBilQelUgmKKMKybVy+cqUv++V8Po9isdjTLZFDQEiaRkVuAETXreM48JhvAl888N4boigin8t1TDMAACjFhTNnYI3QMCrFxiIlBy8jNBoNLF+5AhoEmJyYgNpnrb3v+wATMKmqGpGCdiuiTtGCbIdoAQcvfRykRwBfpbernui0j1HDY+ZNQRBAkqTQcneIFEccge/jsW99C4ViETe+4hUjGmmX/fVwRuRoFSQOdpydPv1+iOC35h/H//3or3Z8/kx9FivOSud999iHIIojvT5KpRKmp6ehyjJIEODy1auo99HEaWZmBnNzc31P+NxXQhSEkRAcRZYhsnSLzxwrJXZuvNjkz5s0dUszcJMkMyUI1yRScvAyge/7mJudBQ0C5LLZVXe9LuA3KAoAbYSIyZvRMNECHvLmK/lkg6FO4Ha7pE+9wagMjeJwPQ/1Wi0qVSytoVQxjqe//W2Ypok777xzILLUDr1CzkGsqU9PP4IW++TBj7WjSyY6Rw7O1M7iZ77x83BJ91bOTy8/223HPcc2qlJHDp21g87oOiRBwOLyMhaWlrqmGWZmZuB6Hip9uA7yDpV81KIoDmzFnQR3S4QgNJVVgvlYxK8XAO3TDLGKB9/3cerYMZij7G6ZYkOQkoOXCeZmZxE4DiQhbPbSDUkhIM9FN5Uvxf5eS7QgbvrC0c8NLq6w75Yrj/oi0LU1S0rC8/2wVBFhNKVQKPQUDPazGrxw4QJmZ2dx8623olAojGSsXXUbPKXQxTY52g4SjZdG0LIZQHTe2p2dZWcZ//pf/i0qbqXndp5a+nbnffQ5aY6WHqymGYqsiZNhGF2tl8fKZYhM9d8LnfpGrJUgqIoSaQx49CC+Xe7AyNGSZnCcKM0gCqG988ljx0bb/jrFuiMlBy9xUEqxdPEi7EYDXhBg0/Q0JEkCCYD/9Tcy/vJ/yODmc/F8fPyGkFST09jfQ2sLYvtKgkcQuoHXu/eyV+60j7WA94HgxCDfZ/OkXuTAMAw8+eSTuG77dly/ffuIRtsdnGT1+ryANpEDafD0SafPG2glB3bg4Ke//nM41zjf17a7kYO+McIyRw7exGlychKqLIdRvA4NnERJQiGf70kOuDV1EjwCt5bKFlEUoTGHVIc1NANWDY/4hM+bdfEyyk5pBt6w7fTRo2ikjZquGYxGbpziRQlCCKxKBSuLi3A8D+PlcsTuf/Rf65g9F95A/uufKbj/vgCvf22A++4JoOu0iRS0lBiycKZpGGE7ZYSTdD6X60tw2M8NWGDeA52m06APcgCsAzEIAtRYhERVlL6JAdhxdwIhBI8++ig0TcMtt9zSVxi85y7Ru/6d6w366T/QUso4pM9BsoSwXSkjoQT/1yP/L55YfKrv7T699AwIJRCF1olxoLPJrs9RCv2AsIupoihYWlqC7bqYX1xEsVDAWKnUlNIZGx/vSg64t0g3RC2be1SqdIKmaXA9Dy4rd27dweo54teYKAhhmkGSYJgmfN8PfwcBdF1HEAQ4fewYdu3bh0KpNMSoUmwk0sjBSxSEEPiNBhbm5uAHATRVxdjYGADA94HZc0LstQK+/g0Z//HdGr77X2XwH9+t4atfk8G9UOI3LkJI5HI4VLRggJVZt9VPpJxO7LPJH6HP/fQLn6VPCNMY5PP5vkO4vW7Qzz//PCrVKu66807IaxQ0xtFrfP2WMQLtNAfDry2ayMHqg9HjHzn2F/js+X8caJt1r44z9fYOfcNMkKPox5CEoiiYnp5GIZeDIoqo1+uhq2IszVAqlVCr1bo2O+oX3QzGukGSpDDVJIpRQ7T4tcT/4ueILxgIIRAEoSXN0Gg0QndG38fp48dRW4PVdIqNQRo5eAmCEILAMLC8sADXdRFQipmpqeh5SQJkCfCD5PsEuB7wla8p+MrXgEyG4r57Arz2NQH27xMhSX5Yyz9gtAAYLsQvAFGf+aZtsXwoobRp34OSj0EQEBKJD2VZDu2QB1jdd3NgvHr1Kk4cP44bbrwRY2uwR25BjwmBn0egdxkj0M4hcbjbR7JUtYkEsgjLX538X0Nt+/H5J7GnuHuo97aDiNVo18i2KYqYmJiApmlYrlTgex4uX7mCqclJZHQd5XIZhBHRpHA4IKRnyWcSAkLy16n3QidomgbfNOG6bpRmaLt9Rj7ikQRRFKFrGmRJgmFZCIIAlmlCUVWogoDTx49j1759KJXLA40pxcYhJQcvMXBiYNRqqNfrcIMA0xMTkaKfhwDvvy/A177OPn5KQaiIcJ5dvQFYloB//oqMf/6KjIw+g1tvreMNrzNw661hfjGj6z0nyH7TCJ3QjiDwvvWiIKyKJbmF65D76QZCaViuyGq+h+mT0Om27DoOHn/sMUxPT2Pf3r1rHmukCyFkNQlAY22SY6tz3/fDHhcInSZdJnBrqlJh7zEtqyWt4Lg+Asta/XzbpKLiRCC6Vvhvfm0kDH0EAFtzW3DBGNyG97H5J/EDu9/RolkZ+rrgK2/Wv2OUyOfzUFQ1bLjkebgyP49yqYRyqQRBEFCtVJrIwTDEII5+nCjjiMoaCYHv+119KpLRichhUZZRzOejNIPjOAgIQUbTcObECezcuxdlFtFM8eJCSg5eQiCEIGg04Nk2lpeX4fk+ivk88vl89Br+BX/r9/khOaAAAScGnWHZIh4+UsLDR0r49z9v4gfe0bvJy6hW8pwgUNZVLt5emO9nlL0R4uDEgLdcLhYKw5UXdqhDf+bZZ0EoxR133NF28uGCr+g3yzdHza6YcjxZstg0ASRXvux/l3U6lCSpay06Rdj5UkpEDlyfwGO5p7hbZvJvoJkcCQAIQgLDr8e4kl2WZbz7Fb+G3/3O7+Ph+SPwaHtlfzs8s/Id2LYddRocFQQhpEajJp+aqmLzpk1YWl6GZZqo1GpwHAcZXUelWgWXpZI1EgMgNnYmEOxZnSKEPRXqhhE1SuvxhhatRkAIRFFELpuF4ziwHAeObUNA2HeEE4SRRsxSjAQpOXiJgBMD4nlR61dZljE+Ph75CMRx+60ExQJBrSZCGnCu+9KXNfzAO7obm4w67y8AgCgCLG8JhHqDdsc2KvBeCb7vQxRFFIYlBkATMeAT/cLCAs7NzuIVN92EgBAYptk04cejJe0mWX7s0c04RgL4ChzMyTK5sgcA0fMgSRI0RQnL12IRgGif7D1hv4jmyUnRMpBUdTXSENN7xMfEIxbJ1/BJCmzVGTDjHQDYrGzCh279AKzAxrdXnsGjS4/hv539K/SS112151E3DIiiGDpn8oZgifMzMISwhXI/k+qgEEURU5OTqNVqqFQqcBwHSiaD5ZXQ1CneNXMUGCTNIElSSMpjfgrdtgswIsWuPwGr/hW6rkOUJNTrddi2HfZz0HWcPXkSdM8ejE9MrOGoUowaKTl4CYCLD+GHmgDbcUKdwfR0VH6UhCRSPPhqgs98bnDF+Z7dnaMGa00jdAMnCD5LK8iyvP7EgOkrCvl83wZH3CyGC7ACFpYNYjd5SgieevppFIpFjE9MhF72aDPhA5FVtRj/LQhRF8W4s2Q8dNxrEqsLAiRZRi6bDY1vukBTZDiJx/RsDnI229c5aQdOgoCwPM4PAuQyGYiyHE1IClVw/+Z7ocs6Pnb2L5vef6CwHyfqJxFLoODOsdthWxY8x0E2l4tC3lw4JzEzL/5b5CmNPiHyiW/EBAEAisUiNE3D4uIiCrkcLl66hGq1ilwuN/J9AYicELtRBD8IILN+Kq7n9e3+GdchcHAhbyabhcW0DACQ0XXMnjoFSggmYtqoFC8sUnJwjYMQAr9eB4IgrCKoVOD4PibHx6GqarQy4+CThiCKePCBAJ/53GDK+N07Xfybf10H0FretJ7EoGk/hACE9CWEHGr7AIxGI+yVgLDjXruSScJqvYMgCCd+34ffIfwb+H6ki4Ag4MKFC2g0Grjn7ruhqmq0wk1O+J268PUafz/viIyk+jmPpDW0L6yhWiHcgLDqjCmKkBjhazcBPTPb7H54oLQPn33t/0bNa+Cxhcfx7PJ3UFSKeMu2N8M3PQRBEEXPonA3IWg5ClGEJAghYWBNhqL+Ie2iRKxkbz0iCABr3rRpE2q1GmbPncPlq1exaWoKxREZYiXBFw9Bh+PxPC9stkYpPNcF0fW+omftdAhAeI/QVBWUENi23UQQzp05A0opJqenR3FoKdaIlBxcw4gTg4AQLC8twQsC5DMZlEqlUKCXJAY8xAzgjtsJigWKWr2/m9zevR7+069fgabJSJKD9awUiCNgDaBE3kFuHbQGBvdvoDQqV3RdN4oCBIwUtN03W4kJggBZkqJVKhCq8kVRhG3bOHv2LPbu2YMtW7aMfPz9nJN42qKviEiyUgEYyj45jujajGslOrz2yPy3mv6/Z/owFEXBhDKG777+9fju618fPWdnHJimGZbUMb0NYZ+b7/sgQYCAewUEAQJBQEBISAbjERv22bVEG0Qx7MWwTgRBEEVs37YNzzzzDGzLwkq1CkopSn1Yng+Ldt0pfXZfkWUZoigiIASu60Ylin2hg2eErCjQANiWBZdFzTK6jvOMIExt2rTGI0qxVqTk4BpFnBgAwMrKCmzXhSCE9shc9MWRJAYAIMvAK+8P8LnP974M8nmC97/HhCDRqKeBGKsDX29SAIQTR7xJEL+hdbKRHQR80m80GjBNE8T3oWcyHS1fI+MXNnlIMSLQzoo4iEUTnn32WSiKgoMHD65pzGsBifkb9NVToE3kYC0+B0l0G4EdOHhy6emmx+7ZdLjj6zVVhcPInOM4yGazYd0+pVBiESAu6iSEgAQBfPabPyYEAWgQhNGG+DkSBEg8xcOuQ5n9vRaywK9lQgi0TAa6poH4PiRRRKVWA6EUY+tkHhSt9LE6kXuxrqeKLMOwLDiuC03T+j7OuAgynmYQ2HYppbBtO0qrZXQdF86eBSEEm2ZmRnV4KYZASg6uQZAgCDUG7AbveR4Mw4BPCLZs2rRasx4ThXXSHrz2Ab8vctBoiPjPf5jFf/g/GgDCmy5fQWwUMQBWzY/4ajcZGel3W4Hvw2c/nu+DEALHcZjwDshkMhH5SEYBpEREYBBcuXIFFy9exF133rnm7o3t0O854FGDvgWWpDVysOa0AlYrFyIhZZvXPL30bTiBE3uPgMNTd3TepiAgq+uoGwZsx4Gqqm3TQlyYJ4kiIMuIqy54VUgQIw+RZoQQBIIAEALqeU1W45IsQ5IkyJIUrbj7QbwihY+tVC7Dtm2UikVUWWkyIQQT61j6x0WolNLIz4STA9G2o4Zn/XZCbbddAYgiL6qqggJwbBtOjCBcOncOoBSb1iOylqIvpOTgGkMkPozZp1aqVQSEIJvJIMsEYvxmw0OgnXD77QHyeYJGo/dN7BvfVECCSfyf/8eViBxsJDEAWFohYX7UVCffLt9PCHzWRMb3/cgnAZSGOgAWLnVdF7IkIZfPh6vNDlGAoY6BfR7ffvppTE9NYeu2bWve5lqQLAftibZphRHcPgQhsvoN99NKD5IphRvGDqKkdl9BK4oSRRBMywq9KdC/U6IoCBBlueUG2S7aEMTEptTz4HseHHY9iqIYEQVOHJLXU6dqhHK5jPPnz6NULEIQBFSqVRimCUoIxsfG1tyxsxMEIGq4JCD0OxCE0BrZcRz4Q5ADvl2uQxCxGtnUVBUgBLbrNhOE82FPjZQgvDBIycE1hsAwImJAAfieB8s04ROCzTG3MUppGObssq0wpFfH4TuBL3+1VRG9YwfBlSsCbHt1K998WEVAJvF//4fFkCD0ULmvBe2c6XilQjtHP04SPN+H73nwgwCe563eePlqD+GKWVYUyJIUPk/DXgnZbHawnGqfEAQBJ44fh2EYuOfee9clVz1IYiWKHPRLDtqmFUbUlTEe/Wnz/JH5R5v+v2e6c0ohDj2Tged5CHwfrutCadcjYEB0ijZQIOpiGPh+SEYJAWVpCr4Kj0cXOPnshFK5DOv4cTiuG/prCAKWKxWYtg2yvIzJ8fF1IQg0Mr0ClFgKQZZlOK7bZPU8FLjINkaINGaoZiUjCBcuIJPLoZj2YthwpL0VriEElgXKbjJckV6r1+ETgqyur05qsRrjjtsKAlSrVbieh/vutVqev/EQwZ/9Fxsf/D0LmcxqjTqogEcfzeH3/2AKtbo10vrrONoRAxIrfYsMkNiq3zRN1Go1rFSraNTr0U0mclMURWiKglwuh3KphLFyGYV8PhIIQhCgZzLrQgyA0OTn2LFj2Ld//8haMbdgAN3FoGkF2q5aQViHtUXiGGzfxtOJbov3TN/V16YkQQijW6IIy7bXbCLUDZw0qKqKTDaLQqGAcrGIXD4PTdOiqglCCDzXhWVZqNXrWKlUUKvXYZjm6vXKtlkulwFBiPoQ5PN5TIyPQxQEWI6DhaWldfn+2Sx9IIoisjEXVK7X4LqMYSEkfnOoihLqLFiKz7JtgFKcO3UqqmpIsXFIycE1AuJ5oVUtVldXnufBaDTgszBj+CSNjG86wfd9VGs1+EEAQRTx6lep2L1z9ct+4yGCP/h9G/k8cPNNAd7/uxZ0LSQGfLOPPJLFB/9gHJVadzOkYcArH5IIYqsywzBQqVSwsrKCRqMB27Lgex5oEACCAIXV75dKJYyPjaFcKiGXy0HTtIhYuEyrAUGApmkjd9WL4+mnn4aeyeDAgQPrto9BMEirZgDtIwfSiMhBlyjKE0tPwSVe9L8oiLhj8va+N62paniMTPi2nkhGgwRRhCLL0HUduVwOxUIBuVwOqqpGZZO8v4XL0h+1eh3VahX1RgMSS0msMDMkAMhls5gcH4cihO2U5xcXR0oQfFYSDQDZTCYSq/KSWlmSQq+RtUYP2pU9iyJ0XYeeyYBQCpsRBM/zMHvq1Nr2l2JgpGmFawCEEPiG0fSYIAitUYPYF66jl7/rot5ohKF5SUIxn4cky/jjD9n4h3+UkcsCb/xeH6qKSLl8y80B3v8+C7/yq5mmFMPDD+fwex8AfuPXbeQyaw/Zot24mTDK9TzU63WYpglZliHHSq8kltONcrvtJjxmPczh+T4a9ToowhVLbg1mPr1w6dIlXLl6Fffec0//Of4Bwc1s+klWcOEbzwH3hTaCRAijO5ZOmoNkSuEVYzegqPYfeeFdQ2uNBhzXhSTLTRULo0an/gW8a6EoitA0LUpHxL0yuC6GEgKfUvgAcrkcFpeWsKXRgKwoUFjqSxRFLC4uwvM8XF1YwKapqTWnGCilkY22qqqRYDZecSDLcpiu8/32rZz7Rey6a/JDoBQa2y+vYuBncu7iRcy8wFqdlxNScnANIDCMKFcOhF8mz3WjqMHmsbH2TDwB27bRYCRDUZQorA4A5TLwzh9psxpgX+Lbbgnwvvfa+JVf1eE4zQThd94j4Lfe7UOR15ZH58dHWKrA8zx4ntdSqaCqKnRdjwhBX02QmP0t7xPQaDRAmCFLvPfEqOEHAZ769rexZfNmzKxzaVa/Zz9uftQ3OWjTkXGUugn+GSbJ4ZGrzWLEu/tMKcQhyzI0TYNt27AsC3KhsG5C2iQx50JU/lwS3PQqXrniB0EUIctms2iYZkgcggC2bUMUBMiKgrGxMaywro5X5ucxPTnZtiqjX9gsrSGIIjJt0mu8/NBmosS1IG6hzaupKBMI854OQHjP4hqEuUuXkCsUUv3BBiFNK7zIEVgWiOtGXxp+Q26KGmhaKzFIrFwahhERA03T+moglLyp3X6rj9/7XRua1rztbz6UxW/+thIvoBgYnu/DNE1UazWsVCowTBMuKxMTWdg/l82iWCigWCggk8lAUZTBuiOyG5FpWSCUQpXldSUGAHDs6FG4roubbr55XfcziAVwZH40yLlLphVGJEaMNgc09WAAAMMz8O3lZmfEfsWISWR0PXQ2DILIdGe9wCMywZC5eVmSous9n8/Dd13omhb2Q2Alla7rwvN96JqGIAjgOA6uLiwMPWkH8XRCFxdEhblHUm4ENiSartYYQQAQXgOMuOu6HnkhmJaV6g82ECk5eBGDeB58y2rxKPBcN/I1GGOipZapIRbe5I1OgDCPWGCuf93Ab9TJV91+q4/3vdeGqjYThH/5ega/+R61b4JAsZrzX1lZQbVahWXb4c2NpTyyuo4SEw/ms9lIWd+XaU/bnVI0DCNyfSsUiyG5WIfKAQCo1+s4efIkDuzfv27++BEGECNyQ6a+KxWAlrSCMMKUAttgZMLD8fjiU/BjHRllQcadk7cNtXlREJDJZCAIAkzLajKlGhUoQn8EXtYoJo5nGOi6Dod5NeRyOZRKJWQzmcgdVJRlFItFEEJQbzRw9vx51BuNgSZuSikMywIohaIoXdMFXHcgjEJ30Lzh8BcQLoQYOeEEAQijCLV6HedOnx7dflN0RJpWeJGCEALPMJq65HHU6nUEQYCsroc3vC7bqNXr0Ze4kMtB60ON38tI547bfPzee238yrt0uO7q3r/6VQ2iIOA3fs1Bu4UHL+nymIYANNZmWBCgyjIUlutst6qlrORwoGhBDJZth61ngaaUSpQnBqJucqPAk089hVwuh317945oi6MBnzjWFDmQRm/glDzvjyw0pxRuGr8ROWV4kqWpKmxFgcdaVY9KZ8K1OS39Fngqaw3unbquR/4ccsxvQFEU0EwGATPxEgQhsk+/fOUKxkqlKPWmKkpHvw5KKQzTRMC20Y8oV5HlcExBAHXIJlQ9zwl3PU2kGCzLwvzVq8gXCqn+YJ2RRg5epAgMA0KiaRKwGjXwCMHY2FjHiSzgFQnsS18qFkdCDDjuuN3H+95jQ0lEEL78FRW//V4tKmH2gwCmba+mCwwjDAuym4qmaSgUChgvl1EoFKLwaTsQJrobRnjluS4s0wSlFLlcrlUYyFauEmt2tFZcuHABi4uLuOWWW9ZNhDgsBnZHBECTmoN1iBwAaArDH7k6nL9Bt33w6AEPyw8LTggi86MOk+QwjbPi0DUNAhDl3Zu2jVBPkdF1jJXLuO6668KulqKIpUoFJutb0Gg0UGXlkq7rRt9xTgw8zwMEATkmdOwFWVEioyTuejgy8POVqLiKIgiCAMuycPb06ajEM8X6ICUHL0IElgXCvrBJxKMG2Q6TfRAEqLLXSZKEcrHYl1VvXPDYT5j6zjt8vO93WgnCP39Zxbt/R8LSciVMF5hmk+2xnsmgWCyiXC4jn8tBVZSeN1AS658waFohIAQN0wRFuBLrpbJOtkMe9NbneR6eeeYZbN+2DVMb0GFukPHx0jlgAHdEoCVyIIyqjJFvD1idGAA0PAPPrjzX9Jp+/Q06gVfo6MzYx7SsgT9bHl2Ke26sJzRdBxWEvsowFUXBlpkZFPN55HQ9FDISAioIkU7BNE1UajXUGw1UqtWQqAsC8tls33bekiiChwZJEIQlmWs6yg5I9EyJEwTTsnCS6XlSrA9ScvAiA/E8BLbddrKMaw3GO/irB4SgWq9HeftSsdjWTTAJbifM99vvje+uO338bhuC8NWvZvEHHyojIIjKr8qlEkqlEjK6HoY5+9pDiEgcOahGgFIYjQYIIZAVBbkBvQwEIWyyIw6wAnzuuefg+z5ecdNNA+1rGCRFfL0QnUdGgPp/Y2KVPWIDpHi5HAA8tvA4gli0QhEV3D5560j2obHoFCUETo9JN0oZJKIEA+13DdEDblFu9ymilCQJkxMTIQlWFDQMI9TXMH8FiGKkT6g1GmiYZth8a4BrIdIdCEJE+gfVV/Q8h4IAtIniaaoaWTdXqlWcOXFigL2mGAQpOXgRoZ2fQRw8apDR9balRoSJDymrpy6XSn196XlItFONdjf4QYAbb6jhXb+yCFlOihQL+MifbUYuW4Cu6xAlqamxzCCgMdvjQWCYZpSTzedyw4kPeZgzEVFot62VSgWnz5zBoRtuiIRUIw27JjHgtrkQb+BUR9LnYMTVChHY8ST7Kdw6cRMy8tpMqnhETBDFSKtj2XaLODFOCHiEYK2fIb92Bt2OoigQRbEniYlDkiRMTU4iw0jQ0vIyHNdFhomRuVsjT+sFQYBavY4684LoZ4yKLEMAmlIzfbttAn1XcbSLYuqsmoJSiitXruDShQt9bSvFYEjJwYsIgWF0tHjlUYOgQ9SAIlTH8zrlYrHYd/h90FUNRbiSqdZqqFarsG0bt95i4ld/ZRGy0vxF/qcvanjf+1VQ0rkCoh8E7H2DpBSiLouUopDLjdSHXmDRBDGRG3366adRLhaxZ/fuke2rx0AGejkZRowItKYVRtiuOdxg83EkzY/unlpbSiG5H0VVIatqaEXM0gvJlMF6kLqBKkQQXmd6JjOwu6MgCJicmAijdKKIpZUV1BsNmJYFPwigaxqmJidRZpFFglBDwMuJ+es6QZblKEUVNzDqJw3Xzhq942uFsAFW8ti4cNL3fcyeOZPqD9YBKTl4kcA3TRDP6zhR12o1EEKgt4kaUAD1RiMSCBXz+f6EdR1ufh0Jiu+jYRiRsJCXHSqKgnw+j9e9VsPv/KbVQhC+8EUN73mfChqQocOrPHLQb6WC7/swDQMUQCabhbwO7ZEBRGWkoiji4sWLWFpexs233rpu5ZFx0CEmsGAIMWK4s1YTpFEifraqbg3PVY42PX/3WsWI0Y5Wa+l1TQvbBTsObMcZKmUw8O7jY+gTuq4PZf0sCAImxseRzWQgAbh85Qoq1SoEANlsFhqrDMrncigVCtA0DYIoIqAUjuOgXq+jVq/DcZyW88LtnwG0lDT2IvAD6zx4Kiw2BkmSovugZVk4eexYqj8YMVJy8CJA0EVnACBq1OIHQduogWEY8NgXo1AoNLmkdfyadmDv3IaXg1AKy7ZRqVZRq9XCGwVLW2QyGZRZlYGqqhAEAffeE+B3ftNuSjEEBPinL2l43wdUkCHvvbxzYj+RA0oIGoYRGh2patsUzKhBKcXR55/Hti1bMDU5GUYUgKb0w3pMPINSkKHEiECrz8GoIwcxPLb4BAhdJaiqqOK2yVvWtM3ouqZhW29CadQoSRCEgcL2a8Wgglpd0/rWHCQhCALGyuUwFYYwNQmgpeWyyPoaFAsF5BmZ5p0mTctClbWLjhMBXlrZzu9AEISwHXoCFJ0XH10OIiQiCUIbt3iuVCqp/mDESMnBC4wgCMKyxQ43DAFhusAPgrZRA9OyojKnfD4PtYf4MO4r0A2e76PeaGBlZQWmaUbhQ1VVw45z5TIymUzbMOm99/j4bUYQAgIIQrjPz/9TBu/9PQm+P7gBDek3csCNjoIAoiSFOoMNwLlz51A3DBw6dCh6LG5exXPOccKwZqowRHRimDJGoE1XxvXSHKA1pXDb5C3QpcFag1MABCxNwIgBZcQAWCVVOus6GLD23huFQQR8w0YOgLBypt5oIJfLIZfJIKvrqNXrsLusshXWa6RYKIStlEURBKwvi2GE73ecKDXVqSS03RWWXHz0i6RgmiMT1x/MzaX6gxEiJQcvMIhpdhWVEWb36wdB6IYYg+04sFinxhwLEyYR/zLxZjudQAmBZVlRlICH6SRRRDabxfjYGPL5fF8lT/fd6+O33m1BUZq/0P/0xRze9wEZtjPYjThq1dxjUksaHY3S/7/j2AjB0WPHsG3rVpR6+b7HnODiFRDxcHPfEYYBIxE8nw4Mnvte77RCHMl+Ct1KGCOtAFaJQMDTA+3OT+J6EAUhLG3krbs3Ckyv0g90XR84skERhtsN5u0hSxJmNm9GPpeDJAhYWlrq6XAoiiJ0ZrWez+UgK0oomg4CWJYF07JgWRYc1+0oMGwR7g4bPYtpe+IixSb9QRBg9vRp1CqV4faRogkpOXgB4ZsmaKcvKJvILcsCCQLIstzkXuYwgSIA6JlMpIxvBwGrFQltUwmEwDQMLK+sRKtuICwbKhaLKJXL4QprINMcivvu9fHb77YgSQmR4pfy+P3/rKJuWH1PhPESvE6IGx1l2xkdrRPOzc7CNE0cjEUNBkFk+oJVoWP0WILcxf4ZeD9cjCiK4uAW1BskSKy4VRytHGt66p7pw1H1ANdZkMT/8fMxKCHUWLkgb528Uei3xFHTtDCd1+d2gyBAg1UeAGFaIseqFMbHxkJ3RUIGavcssxboZVaKLIgiqCCAEALbtlGp1TpGXvh1zQWfwyL+TkEUo8+8SX9g2zhx9OhorZ1fpkjJwQuEIAhAuuQR+eRgmiYCSpuIARcGAuGNo1ftfif3tjgpsGwbFOEXLZvNYqxcjm4ogyJervjK+3z81n9qRxAK+MM/zqBSq/flc8+tkzuFw5NGR+2iKOuBKGqwbRuKhf5bCXdFPJqA1UmEl1BGinAeaWCv46HzbmMFhnOYXM/GS/EJ/vHFJxAPPOuSjhvLNzYf48j2HKIperDOTZmGAW8+1E/DKJd1HA2YOVE+l4u8EoDw+z0xMQFZlhEEARaWlgZqDsXLH4uFAgr5PFRNA6U07HRqmqg3Gl3TM2v67JIkMHYdq6oateKu1mq4ODu7lj2lQEoOXjBQlg5oBx5i5iYtQRBEjXt83w9FRaxKoGdDHzahxqlBO1IgShKK+TxKzJN92P4FTcfA8Kr7ffzmb7QShC/8UxF/8qdFVKrVaJXT/hBWc8ZtV7xrNDpaC86cPQvLsnDo4MEN2yfAzm/CMyLSMyTAz3oQixwkn49+OpGLFp+DMLXUtHKP/dD4qh7NBKbd8xyPLj3e9P/tk7dClwfTGwwDLd618UUWPeBdV9tZKHNwK2Tu+qjI8qqnQQKKLGNyfBySENpIrwxZBihLEvLZbLiIkCSAEPi+35EkUELW1rckUTYMNIs7M8w6mlKK8+fORSnXFMMhJQcvAALfR9DhBhTPPduMGHAlcUAIao0GQGnoetZPX3qeSmBkwzTNFlJQyOdRLpX6tk/thk66hle/0se7/6MFUWyeDD7/hSI+8mdjqDeMsJtcm1UMDx8LbW4OwIiMjoZAEAQ4fuwYrr/++nVv/RwHpRSDSDr52SDsHCbTLUL8JxGNiPbZJnIQV53TxE9yvIiRiG6rx8cS5GBk/gY9wNuCC0JoVbzeJY1x9DJI0nQdoLTjZOcy0aHHtDYZXUcul+tKOlRVxfj4OCSE1U7VWm2osfMUlaqqoYBRUUKSEAQwOEnw/Yjgj1oDFN9mXH/gel5avbBGpOTgBQDpULaYrIG2LAuEUmRZ97harRaVEfZFDNj2CCEwmdCQG77ESUGvXgP9opfg8YFXtScI//iFIv78o2NwXA8VVjIVz03yFUc7YrCeRke9cOb0adiOgwMHDmzYPoHmKohBwMPH/RggJbcv0DaljCO+0S+7KzhZb27Hu+ZmSwl0G7GmaRCZvfBGVi5wdBKJ8oqKZOTAZxVFpmmCEAJJFJHP56Fp/UVaspkMSqUSZFFEtVaDYZqDj5nl/oNYeXOxUIAqy6CMJDQajagJHICozHcotBOaJvwPuP5q7vJlrCwvD7unlz1ScrDBCDwPpM+wJfc2yGYyqNfrYUvYAdwPCYsUrFQqsPsgBWtZK3VUhyfw4Kt9vPvXWwnC5z5fxMf+2wQoDaswKpVKGN2gFAHbbvKYN8zoqA1838fx48exc8eO3qmdEWPYz4l0SCv09+b1LWUUADy+/GTTY1k5ixvHhhN5dkK3iADXHogvQPQA6GyQJEkSVFWNqimCIIBhGJF4WBAE6LqOfKEwsAi3UCiEXUqZzXK3Esd24NcSjRlIiaKIbIwkBDGS0GDmaf02d0uCtoseJio/NFWNLKJPHDu24Z/jSwUpOdhgBJbVGjVoU0nAUwoA67mQcD/shogUVKthDpLSkBTkchgrl1sMUNYK/tXrN2T44AM+/tOvtRKEz/xDHn/5V9MQhbDLm2lZqNRqcFgKJH5TeCGMjuI4ffo0PM/D/v37N3S/wBAmMli1BgaGJQfrX8r42NITTf/fMXkbVGnEwtIe16imaRAk6YWLHnQYn6ZpsGwblmVFoXqBPV5krc6HXY2XS6WwVXqfJY5N4405sSaFjTwdWsjlQv8VSuF7XkQSBhFCxtFuqk+mLDIs2lKvVnE+FScOhZQcbCAC1wXa+JW3m1QtywpDdVi1Jy0m3A+T4BPqSrUK07ZBeAoilwsjBSyn2klsOAzDjsxJBnzfax708RvvsiAKzfv8+09l8Ff/cxrZTDYUiDES0Gg0opXvC2V0xOF7Ho4fP44dO3dGKZ+uGOHKZWgTmdiNeChy0C6tMGI8vtxMDu7ZdHhDfCriEHj0gPkevBCrzqRBEmUaI+4pAIQOh4VCIZoE1wJBEFZLHINgoBJHAJF7YfI9FKstnTOZTOikqihNJMHkNuyDoMvY+Jng0QsIAs6zUuMUgyElBxsEQgiCNoKiTqFEyzRh2XbUbjmfz0elOklQhPW9yysroekJJwU8fdBnDnJQDNthkeO1r/Hx67/WShD+9hMa/vwvilF7Z4GGDV4aRiharJvmhhsdxXHy5EmQINhwrQEwvN5g6J4KHOucVpi3FnDWONf02Kj1BkB/0S1NVSPtgfsCRA94mJzSsMdBrVaLKkkkRoaz2exI9TVRiaOiDFziyHUHydcTQprubXGSoHCS4PswDCNsKtel0VNihx2fiqcrZFmGzjwiZs+eTb0PBkRKDjYI1HW7Mt44XOZ86DgOtEymo/shEEYVqtUqTBamkyQJeUYKuPo6iU7lU8OsktY6Lb/+NT5+vU0E4W8/oeFP/lRHRs8gXypFqRDLsrC4uAjTsqBq2oYZHXG4rosTJ09i5+7dXY2n1gvDrmTXpDcAQNc5rfCtxeYqhbycw41jhyIDr40Er+XnrZI3ev+EkMivwOJpQVZl0qk8cRQYtsSRpznj5KBbUzC+qk+ShEa93ne0phPJS6YfNU2DLEmYv3IFS0tLqf5gAKyfB2qKCIQQBEn70y6OhdVaDZZtQ9O0yMQkCQrAZNEFAIAghLk91kimFzjDps0P9n1MvSoTBsHrX+uDUhvv+V0dhK5u9a//VoMgAD/xYxYyLERosrbWXL0d+D40XQ9LqDYggnDy5EkQAPv27ev7PXRI8VXbbQ35vn7tpztvYH0dEh9ZeKzp/7um74DM9jHSyFCfn4OmqnBcF4Hvw3XdvisA1oIgCOA4Thit4JMrszBeL0KQBC9xXF5agmEYkCUJpWKx63tEUYyqooDwGg36OM+cJGiaBtuy4HoeHMeB5/vI6HrPFGo3CCzyAoT+Bw3DwJXLl6Hrem+L8xQAUnKwISCu23JT6kQMfN9HpVKBTwgmx8baGvp4vh+6oDHXQEVVkc9mB+8Vz8KB/VYacIySGHC84XUeKAXe87s64lv/X3+jIfDz+KEfshD4PlRdh6pp0FQVnufBDwL4hgGT5Yr5im894LguTp46hT27doXGNBsMvhobqoyRRQ6GNrdKphWE0UZsHl1sJgfxlEL8Rr9R4NEDi03Y/ZLuQUEphed5cF23KewtiiI0XYciy+FnLopDCVGHQTaTQVAqoVqroVqrRdbJncC/b7ynRTDg/UQSReRyOSieF5Yxs1SDqqpRGedawNMZywsLmNq0CdlsdiSeLi91pORgA0CTzmaUduxxUKtW4fs+RFHE9ORk0/OEUpimGZU0CexLpanqmlbNAvpfkUZEYh1ulN/1eg+EAr/7vmaC8Ld/l4Pnu3j72y5D17QoHEkphe04cBwHhJBQzW3bUBQFuqaN/AZw4vhxAMDevXsHe+MIJ7Zhz3oUORg2DZNsvCSN7tZxxbyK2cb66w0GhaYocCRpXaIHPHXgJpoWKYoCVdOa9EWUhu2lh1X3D4NCoRCWHxoGlpaXIbHKg3aIk4O1jFFVFMiFAkzLgsfOue/7yGQybaMIvUijKAjRda/IMjxRRGV5GbquY3x8fOhxvlyQkoN1RuA4IKwWGUCYTuiweuOdzighKBWLTV8I1/PQYCF1IMylZTu0TB4EkU9/HxPYoCWLw+B73uABFPjd32smCJ/89Bg838e//Sk7mvQFQUBG15HRNHi+D9u24fk+PM+D53mQJAmaqnbUXgwC27Zx+vRp7N27d+BJYhDy1Q1r2UZknTzseUimFYTR3TqSLZqLShEHy6tiTwGr7o5rxgApHl65YPo+7BFFD3w26fHUARCSfFVRuke9YhPdRqFcKsFn36ullRVsmppqO0nHBYncDGlYiKKIXDYL1/NgsYorwzCgsHLljo3I2oCi+bunaRoW5udRGhuD67ojM397qSIVJK4jeIVC/ILudHPxXBeO68KxbciqGpXnEUpDhX69HpIMUUShWER+hG6A/RCEYUsWh8H3fJeH//f/sREv6AoCis/+wyT++m/HW2dJQYDCSrtKxWJY8y0ICIIg9EqoVGCYJvzYDXlQnDhxAqIoDh41eBEg3jNh6MhBiyBxdGmFI1ebycHh6TshxbffR/+B9YKqKBBZjX633gbdQAiB47qo1+toNBph7wZWeZDNZlEsFKK+AO0gCAJkSdqwtEJ8v/10ceSfDEWr18Gw+1UVBYVcLkyrEALPdVv7NQx4TUiSBIFSLC0uojakXfTLCWnkYB1BE1qDTmWLvOcBJSQy88jn82FbZv44pdB1Hdlsdl1ulNxXn7ZJGay1ZHEYfO93eyAEeP/v6yB0dd//439lIYoC/s1P2G0HxG+4mUwmJFuOEwm9HMeJbjxRF7c+zqVlWThz+jT2HzgwVKpiJFGDNegN4pNKP9cOZe8JCAEJgtCEy3Oam3cJ4WS11gZdQGvk4O7p1n4KI9MdDLgNHp0yGo1Ie9APKecmSq7rNpfoxa6/QUSGSe+DjQIvcVxYXITn+1hYWsLUxMTqOaA0iurwCM+oIIgiMkx3Ydl2dJ9UFAW6rkcN5brukY2LXzuaqmJxfh7jExOwbfsFqTi6VpCSg3UCIQQkWaHQASbrJeC4LmRZBkUYxnZdN7Q8ZkZG6ymiiTuMtfuyvRDrtjd+jwvLsvAHfzjWVNr8l/8jA0EAfvInOp9fHhLWNQ2+58FhN2rKzrPjuhDAcryqCkVROk6cx44fhyTL2LNnz4iPcDDEV2gu6ynBe0v4vh8KwghBEARhS3D2t+f7cB0HhOWu+aQf/Y69lv+dxN7FeUzE/j927ATOX/kkBFGEJIoQZRkS/1uSIEkSRFGEJEnRY/x/kT0mSRLm/UVcMC427euQfgCGYUDX9SjSMTJyMETliCLLkGQZPruGOk0oQRDAZSktkqjZ5xbIiqIMFfETRBECI4cbTRJ4ieP8wkJU4jgxNgYgJAMklkoYlS4icl1kBlD5XC681l03FCL7PnRd79vtlV8/oiSFTpDz89A0LSUHXZCSg3UCdZym1V6n6gSXlS7xL4PjOJAkCQ6byLKZDDKZTJNmYT1L9iKCwG6g61GZ0C9sx8GDD4ZtaP/so1uanvv4X2UgCsBP/HhvAiYrStTK2fd9uJ4H1/MikxtuqCQrSrSq4+fBNE2cPXsWNxw6NHw5WT+fGaWRbsK2bTi2Dcd1o78N0wzFl+x5oDmnykPPgiCsTsaSBJmVmVGEE5Qiy1BUFaIgNE3SYmwSb3lMFOF98RNAzGRuy/brMbH3tlVSwcRohJGUIAjCiSMIojbISVJCCMFDziNNpyGLLC4+fgGXcTH8TGQZuq5D03WoTD+i63r0mK5pYSmrpg1fptkDvHeBEatc4JOhH9O4NE2MggBZlqEoChRZXnMKUBDFqIZ/o9MLQKLEsdGAzDwX+DEnyxlHAQGIyCz/DBRFiXRZlmXB8zxkWBSh5/YYQdA0DYsLCxifmoJlsTLpFC1IycE6gBACwvKTkaNdu3RCEERtWBVZxkKjAcOyMDU5GXVYa5qQ1kmQlFyR8fE2CSk3GH4QhJanlOJ7v9eDLC/iT/60uXrjv/1lGEH48R/rL0IDQYiIQharN3bX88IVNrvJG6YZTqKKgueffx6qomDXrl1DHQfviBmt8tnfvMqCkwGbia/iE74kiuFkqGlQNQ1j5fLqxMgmSY1NjnIXLYFpWXBsG6qmdS1J64arktDUJro8PoHMjh1DbSuOLz36NWB29f/D03fi9be/PiRBMTLkOE7UWpgTJwBRJID3GdD5eWlDIHgkaZgGXaqiwJak6PqQRBG+77cQAn7dyCMgBHEICK8lbmD2Qpj5xEscVyqVpgoGLnRdj4oKMUaIuEMkTxn6vo+6YSDTTxSBXSeSKEbGSPx79ELd517MSMnBOoAm0wkdLjzemlgURZiGAddxIAoCyuVyq2c6vxls0EUcRTteIJimGXrKKwpEQcDrX1eHLCv4ow83G5h87OMhQfixd/ZJEGKQZRmyLCOTyYQhYR6yZKH4Wr2O2XPnsHfvXti2Hb2+XQSBt8+t12qo1+uo1Wphg5lGAy5rksMRn/Dz+TwmJyebV8Tsb1mWo4mATwzDYJBWzZ03khAkjsDngFKKR+a/1fTY3VN3haY7bYx3KMtvAyGxdlwXNk+vJMiE0WhgaWkJDvtMwzELoEEARVVRLBZRKBRQyOfD38UisvEIHT9sShH4PvwgQMDq7wkhyOXzYethJoblUYL1+s7ECcEgFUajRr5QgO048IIAy5UKNk9PQ2TRpXYWyqOAAAAxgsBThlyLQFgUgRDS3X8k9tmoqorlpSVMTk/DNM0N76x6LSAlByMGIWS1JXOX8ivuBEaYkZHDUgtj5XLYMCSOdSYGLbcYSptao1JKQ+vnDSILtuNEN/RcNhtFV773u03IkoI/+MPm1e9f/PcMIAI/9iODEwQOSZKQYSkcXoN++tQpyLKMmZmZSKfgslC/ZVmwTBOmYaDWaIShfuY4ya1hJ6emsHPXLuiZTLRq5c2vBsIay/iaQr9DgiZLGUfgc3DBuIjL5lzTY3dO3N75DTG9gCBJ4XntIyQcBEFTeqbGCNzy8jLOnTvXRJ7yhQLy+Txy2Sx0dj1ksllIjAiIsgzq+xAFAblcLiJw6w1RFJvIgYjRiv/6ASdn5XI5vH8FQaQ/iDQHPJU64nPCo5nxiIkkSchls7AdBy6LJBBCejaj4qk3VVGwOD+/rkLvaxkpORgxKJvUItV/mwuOsHQCL60TWamQquvtb3YbfNHSxP4EQQBlK4P1Bjd6IgiJQVO4XBDw5jc5oBT4//9RgiB8LAMBwDvXQBA4RCG0Zr58+TLGx8Ywe/ZsOKGwVrnhUARkMhnkMhlMT00hn8+jVC6jWCy25ED9fhvKdMBaz3pEDtbiiZE0QRqBz0GySmFcHcPufI/0zRCaG0mSkMvlkMvlUB4bw5Ytq/qVIAjQqNdRrdVQq9VgsA6gC/PzkRYF7LPOFwrIZ7NQNQ2EkI2dUAShpepkI9MLlNIo9y+KIsbGxrC4sADLsmCwdFUU5aIU0npUVCX0UPwxTgb4ooIQEnrAdCLD7P2qoqBWrSIIAhiGgXw+P/IxX8tIycGIQXnUAB3C8pTCMIywxM7zkMlmoagqZEWB7XkvjDFHHzeYjQplGoYRKpQlqUVJzM/mW97sgFDgD/+4mSB89GMZCALFj/5w//XojUYDKysraNTrqDcaUTqAG7osLS2hUCyiWCxiy5YtyBcKyLEeFoQQ+L7fdLPiJZOiKEKJpSAEHnrdYFBKo0llaAMkoDWtMILIwZFESuH28du6jjEqtx1iX/w8+L4Pz/cR+H4kmgSAIvuMgZBMSLIMynwyDMOIUkVX5uZg2nZkXa5nMijk86tpikIBY8wbYJRoV8ooiCLoGolnL/Cy1ng1EwDouo58oYB6o4FKtdrcGG497xEdqk00TYMoSbBMEwHClG02m22fSuNRUUIgiSIa9XrY52HEnS6vdaTkYIQghIRf1i4Kf8uy0Gg04Ps+cqypUkbXUalUAEqbRTUbrDMId9l5ZcYrLtYrzeCyUjFQinw221S6l8Rb3xISgCRB+PO/yEIUgB/+oVaCQAjBysoKlpeWsLS0hKXl5cjYRtN1FPJ5TExM4Prrr8eJEydQHhvD3YcP91wdBkEA3/ejiYcw5T5PRRDmUyEIYWe9pvI+9ncnRBUvQ55r3qp5zeSkxSFxbZqDUG/QHDm4c/y2ntdUr9Uy12fwqoiAVUsEbIIDIU3heAGAxEgc/2zi5ymXz2NqaqppH0ajgaVKBZZphuY89ToWFhdx9uzZSBtSKpUwOTmJ8fFxTExMIDukEJRDbFMJIGB9qxd6mRoVi8WQDHseViqV0Dl0nRcPSf1B9DgTg4q5HEzLAmHRgGwn62UgIvCNeh35QgGNRiMiiClScjBS0LiCug08z8PKygp8zwtD0rkcNE2LSrsAtEYONoIYMDZO+9zfeqQZCIuoUAB6hy90cmxvfYsDUOAPP9x84/3IR7OAALztrfVVIrC0hJWVlait9fjYGHbu3Inx8XGMjY+HXR0Z5q5cgWVZuPOuu/qalPmkwm2VgyAIG0Kx1Wm8yx4nEc2H1b6sUJKklhXboOA39zWHv5NphTV2ZTzbmMVVa77psTvGu+gNOPi1GjNp4mWU3KOh01UpAIAkQeUkjRGCQc9NJpNBwfeRy2ZRyOebXCcbjQYWFxexvLyMK1eu4NSpU4AgIJvJYGJiAhMTExgfH0epVBqIrAkxzUEcoiCArEN6IZ5G6ARRFDFWLmN+YQEOE/JmNsA3QAA6djrlOgSTtbo2DKN9o6XY+93Ya3O53Ia3gX+xIiUHIwTl9rwddAaLCwvwPQ+KoqAcCz16nhc2V0msWjYsYkDpwKHaUacZTMuKfNlbBJl8n20ee+v3OSAE+OM/SRCEP8/iueeexW23fAcZXcf45CRu3LoVExMT4Y25y7k9ffo0xsplTAzZnCUiC4zoBbGJK2405AdB5H4Z+D5aAsQsUsNV8VwVzv8X2N/dJplIbLfWG16yK+MaycEjV5tTClP6FK7PXhc57lHum8D/jv32PK+rGI+fk6Q5E59g1zqRipIETVFgM4FqvE4+n88jn89jByvzdF03IqdLy8u4dOkSKCGQZDmKKkxMTIQ2xV1Sit0iJoIQ9l0Yxd2iUxqhE1RNQ7FYRLVWg9FoRA3R1hsigADt7wm8P4NphZ1cTdOMSlkjsPu0yM6rY1nQs1k0Go20pTNDSg5GhCil0EYo5Ps+lpaW4DIHxMnp6aauax5zr4vY7UanE+hwnRab0gxruCF4ngeHqf3zuVzLF77dzSYIAqxUKlhaWsKWzYt44FXT+NrX72x6zUNHDuPAgQN421v7z8vWGw1cuXIFt99++0jFZnxiT0ZEKDMK8uPkgXe34yZCvTaeIA/8b0EQ4Ng2/CCAzMgIF9jx/H3fx5jQHAhdeitEBlrx/9ljhE3+37xypOk9t5VuhmEYoZdAIrLSafvcyElOmD51s3QeVQhe1TS4ngfHcbrWyauqipmZGczMzACIpbaWl7G4tIQzp0/j6LFjAKUol0oYZ2SBpyL4dnuRA3FE6YVhShGLxSJsx4Fl26jX6yhsRFkgn9j5eJNeLSxa07GSgX9e7H2ObUPPZqOyxqENz15CSM/AiEAdp+0E6zkOqrUabMuCJMuYnJxsIgYA4DFRW1Po60WiM+gHTSKxAbUIlFI0TBMUoagoeW44XNdFvVZDtVqNUgQ82jI+Po7vf7uL67bP4+P/Y7rpfR/9WAmaauL7395fFcOp06ehaRq2bdvW9zGsBYIghOHtNqQh8H14TMMS5dLZb766o4xE8DBwkgaZlhWlN5LpjNggmia3uKPnqiGW10TaTMeDXa+vRo949KmPKBSlFN9aeKzpsVvLt0bXIc+lRyRHFCEC0d9ASAxG0ddhWHCNArc971pfH4MoitHkz5t4NZgnw/LyMhYWFnDmzBlACGv5JycnMTExAdM0m3s0JNAt1N4L8WjBsBgrl1Gr1eAxU6KJDRBWx4+Zsusu2eSOVw7Zth1VMuRieiZ+vTVqNUxu2gTP81Cv1zHG7KFfzkjJwYjASxjjF6dt27AMA5ZlQZZllMrltu1+Pd8HQVhas972yG0xAv1AVGYkSSFB6BOmbSMIAoiC0CLaWqlUMDc3h/Pnz6NSq0GgFNlsFpMTE9h+3XVh7rZYjFIEhw4C2ZyJ//qR5u38lz8NNQjf/7buBMH1fcyePYu9e/e+4HlHThp6lR9y0hAnDzwkTymFyConJFlezVsnP+tEqL3tlZBIKxAIfSnlm8y0GOE42ziLJXe56XWv3HIvcnJYBVLoUVLWSyi3UdBUFT4zz+qXHLQDT0Vcf/31AEIivLy8HKUjvvOd74TaCkpx5JFHsHXLFmzevLlJnzSM9wHF6vWz1igZ74paqVRQbzRQYBU96w1REBDQ1cZP7Y5eY3bX3HG1YRjIJVKXPqtgAULReD6fX9deNtcCUnIwApAgiFIKHLZpwmLubbKiIJvNIt9Bsex7XuhzsNFljOuQG4zUxH2kGnzfh21ZAKXIsglhfmEBly9fxtzlyzAsC6qiYGx8HFu3bcPMzAzKPdTEP/gOG5QCf/pnCYLwX7MQBOAdb+1MEM7NzoIQgp1DWiWPGv18OrwCohO4rqFQKDSFSuO5dxpf7ccfi/1t0+bJOJPJQc7nWyb/KAweG18Sz175TtP/M5nN2Fm4HjYjMuuJUV7xiqpCYmkbj2mJRgFVVbF582Zs3rwZvu/jW9/6Fq5evQpREGCaJh57/HGIgoDJyUnMzMxgy5YtUQqiH+8DHuHhRGJU6bMsC8tTAMuVCqYnJzekNLCflIrCmjcZpgkSBKizSgY+PlEUUa9UMLl5MyzLQr1ex/iQmqOXClJyMAJQ1226MfKOeb7vQ5RlqIoSetq3+RJysRoQsu8NjxoA60MSeugReDrB833UqlWcOX0ac1euwPM8ZDMZbGY3vYmJiag3QLuoSzv80PeHBOEjf95MED78J2GZ49u+r5UgEEpx6vRpbNu2beSK66HNatb4ucQn+OQEMJDeAGipVpBVvWMKqBeS/gZ3T9/VHF3ogbV8QzqtLofaliBA1TQErPfDqFeatm3j4YcfhmEY2Lp1K1YqFTz44IOwLAtzc3OYu3wZzzz7LJ555hmUSiVs2bIFMzMzYeSlw3lcz6iLAKBUKKBhGAiCANV6HWMbIe7j6ShB6EoSeF8GwzRBCYFhmqHGiaUmVlZWsH3nzqjXieu6L4zvzIsEKTkYAeLGRz5Tx3Lhlcp6j3cSuPBKBVEQNlYEswGKYqC9HsGyLJw7fx6XLl7EMvN3KJfL2LNnD2ZmZlAqlVpy4IOO+Yd/wAYoK2uM4Y/+SxhBeOtbmgnC1atXYTQauOOOOwY+xl4YVr1NsbaJkMSI2ZpXcCOqViCU4NGFZnJwz/Thgbcz7CQ/6qteVVVYLHoQBMHI0lHVahUPP/wwRFHEAw88gFOnT0dkLJPJYNeuXdi1axc8z8PVq1dx+fJlnDh5Es8fPYqMrociyC1bMDkxEX2XCF17pUY3CAgrOYrFImr1OhqNBjIb0BY5Smn2QXp4JUOD9cgwLSvqqUGYW2Ymk4FpmqjX65iYmOi5zZcqUnKwRhAmJhQEAcT3YTQaYbOWIICqKJAlqetKlJdlyS9ESiG+Wlvnm0a9VsPly5dx8fJlLC8vgwAoF4u44dAhbN++vWvjk+jLP+B+f/gHbRAC/PnHmgnCH3441CC89c2rBOHU6dMoj40NXb7YDcNEDkbRKjuKGjBx39o2lqxWGO7WcaJ6CsvOStNj92w6HH22/Y7yhepMmIQoih3LGofF/Pw8Hn30UeTzedxzzz3QdR2+77ftJqkoCrZt24Zt27aBEILFhQXMXbmCixcv4tTp05AlKUxRzMxgetOmoaM9g0DX9bBJlWVhpVLBJtacaT3BhbP9XBPcDbFeq4WpTccJqxgALC0sYM/+/TBNM3SxHSHhu9aQkoM1gkcNCCFhOI1dnDwKkMnluoZKfUYOMhtFDjaoTJISguXl5Ug/0DAMSOxGtXXrVuSLReSyWRQLhd4b4+RgiMngR3/YBgXw0SRB+OMwgvB9b7JRq9dx9cqVdYkaDItRTHvcWGskN+aWyMFwN8xkP4Vtua3YltsKK9nJtBfWmdAOAlXTog6Ra23/Ozs7i6effhqbNm/GXXfeGU1Mnuv2nNhFUcT0pk2Y3rQJN914IxaXlnBpbg5zc3OYPX8ekihiemoKMyz9MPIVfey4i6USHNYCnTdnWm8IggCBkJbeMO0giSIymQwsy4LjumEjJlVFrVIBpRSqqsJ13Uic+HJESg7WCMIUrqZhICAkbDgiCAiYwFDuwTp598GevcjXEyO6yVJCcOXqVcxdvozLc3NwHQeapmFmZgavuPlmTE9PgwQBarUaCKXIZbOROKqrExvXLwyZK33nD9ugBPiL/95MED70R1mIAsX2bU9D03VsXa/yxSHOr9BHSWAvkFGlFIDW3gpDRg6SlslRSmGYErwe1027168HeBtv6vsDlTUm8Z3vfAcnT57Erl27cPPNNzc95/t+f1EJdt0QAGPj4yiNjeHQoUMwDQNzc3O4fPkynnrqKTz11FMYHxvDzMwMtm/fjuwIvAnidueSJKFcKmFxaSnsXqppa7aQ7oXZWR1HvlWGIBCUSj5KJQ+loo9SyUe55EHXScRfuK8Mtzm3bDv0IZEkLC8tIZfPRx1YU3KQYmAQzwNYL3E+yWssX8W79nUFpWEZY9LjYL3Q4ea41lumZZqYnZ3F7OwsLMtCoVDA9ddfjy1btmB8bKxpRdFoNEKL5JgOI26W0+5mzwVDaxnnj/1oGEH4WIIg/MEf5vDgqzS87W07u/Y4WBOGWOWOJHIwioZLACgJWkY0TFoh1Bs83vTY3dN3hfsYcFvcC2GQ87qesbK1lDUSQvD444/j0qVLuOmmm7B79+6W13ieh0KHSp22VSfco4I9l83lsHvPHuzesweu4+DqlSu4NDeHY8eO4bnnn8fmTZuwY+dObJ6ZWfP1wveps34l9UYDlVotXCytU1rj1OksfuKnb4TjdF6MqSpBqeihVPJRLHhQFALTkrBpuoF/97PPAggFiksLC5iYnES1WoXrumFK52VoivTyO+IRgrouXMeBY4cTTz6fh83Co5qq9vySUSCsraW0byX+8IMd7aqJEoKr8/M4e/YsrszNQRRFXHfdddixcyfK5XLb93iuG5GouA4jSQiSJCFyNFvjMfz4j4ZVDP/t480E4UtfuReHbljBoYMvjjA1MPiquB0icjBqMSIwVFrhaOUYqm616TFODjgGOeJBRYnrqVEYtqzRdV088sgjqFQquPvuuyMnxSTaTVDJksQWCAIk5gMQh6pp2H799dh+/fUIfB8XLl7E2bNn8ciRI9CzWezcsQM7duwYXD/R5notFgqhSyFLL0ytk8DvGw+VuxIDAHBdEQuLGhYWm++1z6KEZ78zhv/+F1+FaVnA0hIsy4KmaXAcJ1rwvNyQkoMhQX0fnmXBsixQIKoz9n0fgiCE+bweE5rruqAIb97XiujFtu0oSmAYBsqlEm6++WZs3769rWAqDpORKF3X25r7JK1iI/e9mNp6rfiJd9ogVMDH/zK88VFCIYoUf/ThMlTVwL/6XrfHFobAgJP8KIgBsKreXuu2aDKlAAyVVkiWMF6fvw5bsonJcICxDlyxsI46hWHKGhuNBo4cOQLf9/GqV72qI6kGwshBpDngqYN+3EhFEUIQdDxPkixjByMDlUoFs2fO4MSJEzh67BhmNm/Gzp07Mb1p00DRhPi+BNacaWFhAY7joNForEuY/vrrBtSsJHB1PgMgTAfbjoOLs7O4bteulBykGByeacIwDBBKoasqNE1DvV4HEEYNulq7shsUTymse8hqrTdESjF/9SrOnj2LyyxKsG3bNtx1552hzWgfNw7HdeF7XmRp2gtxxzMxZpE6Cvzkj1kABT7+VxmQWNHGB/8gB0EA3vg9oyUIwguQUgDWO3IwDDlo1hskowaDQhhwsl9vB5FByhqXlpbwyCOPQNM0vPrVr+6Zj/c8D6IkNXed7HPCFkUxat3dDeVyGbfcdhtufMUrcPHCBZydncVDDz2EXC4XEYiuIsYOET5VVVEsFFCt18P0gq5DHfE975X3rWB8zMXyynDC7okJF7lsBoZhwPd9XLlyBZu3bo0WfKM0ubpWkJKDIRC4LhqVCgI2sWeyWXie1xw16Ab2pfaYZkFdzzrgfm6eHSybHdvGuXPnMHv2LBqGgUKxiJtuugnbt2/v2kGu3fajCAvzOu8XUUMhQQgbEI1o9fevf9zC7Lnz+Oq/7G16nBOE7/3u0RGEFypZMTJBYhtyIAiDRboCEuCxhN4g7m8waCnjMFjv0sd4WaPjuh27i168eBFPPPEExsfHcffdd/ecdHgLcJm18B4YfToncsiKgh27dmHHzp2orKzgzNmzOHbsGI4ePYotMzPYuXMnpqanW421gI7fzXw+D4s1QaqsrGByYmKk5Y2KQvGWN83jYx8fXFScy/r4r3/8NCRJQiabhWWacFwXZ06dwo7du0MbfMtKyUGK7qCUor60BN/3Q8ct5kYWaQ00rTlq0GUy81lPhY2oPe6K+JecUiwsLmL2zBlcvHwZAoBt27bh9jvvbBEX9gvbdRH4PkRRHKp8KmoCxGr/aWK8w6Ber+PGg19HsVDEZ/5hU9Pmfv8/5yAKwHd/12gIwqBh/VF4HPCujsDayQFtFzmQBrtmn6scRd1rND12TzxyMOTnOJDfgSgCffSDWAt4WaPDa+cTn/2JEyfw3HPP4brrrsNtt93W8dqgWHW4dJlOp1farht4D4KBIAgoj4/jtvFx3HTTTTh//jzOzs7iGw89hHwuh507duD666+Hxr/TXa5zQRQxXi7j6uJi2NzIMFAaYaieUuDQgQYGtQ7L5Xz86YefxtYtDoDwXkx0HY7jYGlxERPT01AUBZZlodjDuv2lhpQcDAizVoPvOBAEAbl8HoIgNEcNBhAW8rz6uukN+rgZ8Fe4joNz589j9syZsHFKoYAbb7wR11933WBRgjZjsC0LlFJkh6wBj5dIxf8HhicKp0+dgqZr+Pe/IKOQt/E//nqVtFAKvP+DOUAAvvsNaycIg6xYI7vptYoRR2mA1I4cCIPdOpIphV2FnZjOTLe8btCxDqQ72ABfBFmWISsKqOc1lTVSSvH0009jdnYWBw8exIEDB1rGxjsMkhg5FBB6oQBY28p1wOhBErKiYNfu3di1axeWl5dx5swZPPf883ju+eexdcsW7Ny1K1oodTrPsqKgVCyGzZmYE+Fa0wumKeILX5zE331qE46fGEzLIMsEv/s7z2PXTrPpcU1VQQiB53m4MDuLXXv3ImCVKC8nO+WUHAwAQgjsWi0SIPJJ3bYsAG2iBn1sb63tkjuiz5vA8vIyTp48iYuXLoFSim1bt+KW227D5MTESMZlsxysJElDV2QIohj5HCTXBW2JQo8J1vE8zJ47h33790OSRPzUv7FAKfA//yZBEH4/TDF81+vXQaTYBS8mMWK4rdbVtjBg5KDV3yChN9iAiXu9NQccmqrC9/2orJE3T5qfn8ftt9+O6667DgBb41IKAhYt4oQusT1e4bNWbdJQ0YMkBAHjExMYn5jAzTffjPPnz+PMmTO48I1vIJ/LYcuWLbjuuuvQKT6Yz+XCpnSui1qthskhHUlPn8ngE5/cjH/8wiQMY7jz8q5fOYE7bqu0fY5/bqZhYGVlBWNjY7AsKyUHKdqjUakAhERuWkD4xfWDoLfWoMtkNaquaINgpVLB0eefxxcvfhkncBIT+UlsH9+GWfEcvj77TZCzhPWHCBBQAkIJAkpAKQEBwXX57fiRQz+MnNLZPIUSEjrfUYoM8y8fBvEqBsLOf9vXrb6hK1E4NzsLQil27tjBX46f/ikLBMBfJwjC730gB1GgeP3rvKHGHh9/PxjVFBmMSowIdIgc9B/t8oiHxxaeaHrs7kQ/hUFFdqvj6F+DslHaD0VRIIkifN9HrVbDY489BtM0cf/992NycjJKGcS9O7odtc+M1taSVgh3srboQRKKqobeCbt3Y3FxEadOn8bJU6dwdnYWB/btw85du9pGRYulEuyFBViWFbpK9rlocF0BX/naOP7uk5vx1LfXFuL/mZ+axXe/Yb7j8zwKbNk2rl6+jFKpBNu2USwWX5D79QuBlBz0iSAI4BoGgLDxCb+JNUUNOl00nfKKIzKpad1w5y9/rV7H0aNHcfHiRTwnPY8v+v8MAJitnMMTlSc6vq8dZmvn8J5X/nbH5y3bBiEEsiyvmXHzBk793tg6EQVCCE6fOYPt27Y1kTlBAP7tT4URhL/522aC8L4P5CGggdetgSD0jVG5VXK9wUgiB2urVvjO8nMw/ObQbbJSIfpch0grvNggCAJUVUWlWsUz3/42BFHEqx94APlcbqiOiDxyMAptkiiKobfKKO85goDJqSnk83lUd+7E+XPn8Oxzz+HkyZM4cOAAduzY0RRRVVUV2UwGhmWhVq/3JAeX5zT8/ac24dOfncZKpTtB2jJj47rrbDzyaLnja970xjn86x873/OwFEUJLaBdFysrK5iYmIDruuvvSfMiQUoO+kS9WgUIgSxJEYPvO2oAhF/GfuqS1wmGaeLo0aM4f+4c9EwGt912G/7x2BcAY/htPrd8tONzhJDQHGqNUQMOXto4lBXx6kawsLCARqOBO+68s43ZEvCzP22BEuBvP7H6eRIC/O4H8oDQwOteu74EYTA5VWesa18FQRro80z6G+wr7sGk3t4MZ5hjH9jvYJ1BKcXK8jKefOIJaJkM7r3nno6VC/3A931QrD2twCGK4kg8Q5IgzMztFa94BQ4ePIijzz+Pp55+GidOnsTBgwexffv26LopFgowLQuu60adEeMIAuDhR8r4xN9vxsOPlEFpF7GjQHH/vSt4+1uv4p7DFVSrMr73+26H77de+4fvWsb//R9O9X0b1lUVpmmiurKCcrkcmSO9HJCSgz7g+z5sw4CCMGrAr6u+ogZxJOxeo655oyQMiTC6ZVk4duwYZmdnoWgaXnHzzdixYwdkUcTh6t04unx86F3dMnVzx+cs2448HEaRp+Mr4LXe0i5evIhiodC2EQz/PP7dvw0jCP/77xIE4f15CEIDr33N+hCEUVQpxLcFYCANTEe09FUYTECbFCMebuNvEI13sJGF7xlhqHwoxMSElFKcPXsW3/72tzE1NYX9+/evOXrj+z4EjE64LKzTQoWTbUEUkcvlcMedd2L/gQN4/vnn8fjjj+P48eM4ePAgtm3bBllRImtlHj0QRRFLywo+/dlpfPLT05i70n3BNT7m4i1vmsfb3nIVMzOruqDxcR+veWAZX/znyabX793TwO/85jHIcv/XiqwokGQZFvO1URRlZCZlL3ak5KAP1Go1iDTsfyDLMgilUdSgZ3lePN+duIFF+cZRe/oLAmzXxYljx3D6zBlIkoSDN9yA3bt2NTWC+umbfhJPXH0czy4+N9Ru3nnwh9s+HhACh1cojKrZCicHa5gEfGYVu2/fvg67WP3C//9+1kJAgL//ZDNBeO/v5SGIDbzmgf4JQr+3kVFOb6PUHLSkFQZIKbiBiycWn2p67J6E3qAJw9x019H5sB1oG4LP9//ss8/i1KlT2LNnD/bv3w/DsuB63po6IHq8XfOoJiTmHTLq6AGvvoqPslAo4PDhw6isrOC5o0fx2Le+heMnTuCGgwcxOT0N0zTh+gEefkTD5z6/A1/9l/G2K/44bru1ine89SoefPUyFKX9MfzA9881kYPpaQcffP/zKOQJBsrsUApd02CYJqrVKjKZDBzWffOljpQc9IDrurANAzoLj/NLse+oQfw59rfpGjhTm8Vjl57AqcpZLJ1exrnGeZypzsIObPzA3rfhvfe9G6Iw4I2d1USfPHkSJ0+dAgDs27cPe/fubZuvFAB88MEP4Ke/8O9wvt47BxfHPTP3YM/YnrbPWaYZ+jeo6siMQ/g5XssNbW5uDoHvY/v27X3sD/jFn7MgAPjE32fYvZ+CUuC97ws1CA8OQBD6wSg6MXJEmoN1SCsM0nTp28vPwgqspscOT9/Z8rq1miCt52quLRlIIAgCPPHEE83Nk5j5l0/Impr3+L4/ci+UQd0l+wFl3hrtrrny2Bjuu/deLC0t4bnnn8fDR44gk92MM7Ovxhf/eQ8uXOwuMMzlfPyr71nA2996Fbt2Wl1fC0HAza9o4P/897P4n38zg5nNNn71/zmF6Sk3er5vESs7HkWWYbPogWVZKTlIEYsaqCokxrY9142iBt3yT49cehSPXX0Sdb+Bs9VzOF05gzPVWVw25rru80NP/xc8sO2V+O4dr+97nH4Q4OTJkzh14gT8IMCePXuwd+9eaD1C+jk5i9++/9342S/+HOygf3/yrfktsH0LutycK/SDAK7jAJSuKc+aRHTjH7JtMwCcv3gRYxMTyA3QnvYXfs4ChYBPfkoHn7qCAPjt9+YBGHjg1U7z+NaAURKDUYpdWyMH/Ye3kymFA6X9GNdaUzr8Zj2sD0ZfHRr7dAvlr6J9vsd1XRw5cgTVarW5eZIgQFFVENZ4aFhy4K3hvR0hCKHr6AgJQrStLp/hxMQEpqa+C1/4Uglf/doMXK/7/enA/gbe8dar+K7XLyKT6e+7zzUoP/JDc/ihH7jUQugGOW5+PWqahlq9DiOfR61WQ7lcfsmnFlJy0AWWZcG1bWiUQmcTHQWa3RA7XCA/+LmfwCdPfWbofa84K329LgiC0N706FH4vo8dO3fiwL59AzHbXaWd+L/u/A/4nUfe2/d7PnHy7/DP57+MH9j3Dnzf3rdEJY08aqBq2khvaCLWJjyzHQdXLl/GTbfcMvB7f/HnTIAAn/xMeE7Dj1zAe96XgygBr35lqw9CUk/ST158VKvfSBHPwsdr3+DwaYVH5x9r+r/F34BjjZPUoNdGy2cxZNSmUa/j4SNHEPg+XvXKV6Kc0LKosgyHdSOlQ5qArVfLYIG5jo6EHsTOZ7tjtG0BX/zyJD7x95vw3PPdzYo0leANr1vE2992FTccbAycTYlaWKN9pGfg42XfI13TsLK0hGw2C8uyRpcyfZEiJQcdQClFvV6H5PvQMxlIrJSun6gBpRSfOvXZNe3/lVvv7/o8IQSz587h2NGjsGwb1113HQ4dPDjcal0Q8PrrX4dnF7+DTw9AaCpOBR959s/xv479Dd6x7214y643g7pk5FEDAKGYE8OnFS5eugQqCNi2detQ7//FXzBBAXzqM3ENgoDffk8Owq8Br0oQhHa+86TLDXSUYfFRC12TJkj9phWcwMUTS816g7s3tdcbDO1zwN+G9jd9fl4pcx4cppSwE5aWlnDkyBHouo5XPvhg2xbHsixDEkV4QRCmB4ZIs3muuz6+/iP0PYhvIx6tOndex999chM++7kp1Ordr5vJiUXcctMRvOG1F3HHnbtRHNJemfuh0A6ftQAAotjx+RawY1NVFY1KBY16HSsrKyk5eLnCNE34rgtVECLv8H6jBoIgQJNU2IEz1L7vmTmMbfktHZ+vVqt4/LHHUK1WsW3bNhw4dAiFAULlnfCLt/4cji0dx/GVwSoY6l4dH3vuv+Pzx76A12x9Df7VvjeO3BJaZDbAfX+hE7hw/jw2bdq0psqJf/8LJigFPv3ZBEF4bw6/8WvAK+/v4qTIbsQtYCs3wqtMsPZJPWBljJ3MogbGkJGDp5aehhP7DggQcHjqjvYvXsMEFYng4qvgmDguWkmOkBhcvHABTzz5JCYmJnD34cOdDYoEAYoshz4pQ3b2W09f/1FpDyLLZ0GA5wv4+jfG8Im/34RvPV7q+j5JonjgVct48xsv4PrrT2N+cQGXL8/hy/98Fvv378eBAwcGjn7RxO92EICowqQn2OtEUUQ2k8HCwgLyhQI2b968ftb3LwKk5KADDMOAHATIZjLgl2a/WgNQig+/5j/jp7/0CxgmaPeOPd/X9nFCCI4fP45jx44hXyjggQcfxFiXHvD9gk9Fiqjit+77T/jpf/pZ1L1629f+4i0/j8evPoEjc480Pa5Ahev5+PzsF/B3Fz6JN+15I35o/w9gMjvZdjuDgq9G+mk9m0TDMLC0tIQ77mwVwg2KX/rFMILwmRhBCAIBv/WeHH7j1yleed+AIkXm39BkAx0r66PJCETcVa+TudYoyxgxvObgkYS/wQ1jB1FS208WyWOKf2viE3y79/GoQbwnAX9fu32sFcePH8fzzz/fs3kSh6qqcBwHvueBUDqwDsQwTUxv3ryWIXeGIEAaga0ypRTzCxo+9/lt+NwXtmFxsTsJn55y8Na3zOOtb57H1FT4nVlc0jE9PY2tW7dicX4ex06cwNzcHO644w6USt1JRtNYgL4iRH1HTWJlnxldR63RQK1SQaVSwcREe7+OlwJSctAGvu+HUQNm6gGEF5w1gK/Bjx36EWzNb8VbPvMDcILBvPn/5Nk/x4qzgnfsfSv2j4UthWvVKh5//HFUqtVmRj1ixfHm3Gb8+t3vwq9841dbnjs4fgDv2Pc2vGP/23Fi+QQ+/vxf4RuXvgkAyCMHAgIHDqzAwt8e/wQ+derT+N6d34MfOfBD2Jxf282NM/RhVn8XLlyAJEnYwoVia8Qv/YIJSgR89nOrBDEIBPzW7+Tx7v/YwH33thKEntGADimHlndxMyigbV8OgYfOKY3IQYuwLrZi6itKkaxW6GGdzMeVFCPePXVX08o+Xp4are5p2GugiSx12VcTGVjnkkZKKZ566imcO3euffOkDpAkCZIkRSXQvUTCcQRBAMdxRp+mi2MN2gNCgEe/VcTffmIK33hoDIR0J6R3H67gHW+9ilfet4KkjKJQKMB2HLiOg527d2PLli144okn8JWvfhUH9u8PPSP6ILz93iMEoOVaa//CuFGagIymod5owDCMlBy83OA4/x977xknx3ldef8rdO7JGWGQQQQCBAECBECCABNIijmKkiztOry21+v1WvJatmXLsrJkb/QG2Ss5rCRSlJiTmAlGBCIRgcg5Tffkmc5d6f1QYbp7Os70ACCJox81mJ7qquququc5z73nnptCtAx87NtCUdWyowY2buhcyzN3/ZJ7n/tcRZUARwaP8p0P/pbvfPC3LGycz7qGa5kZncbc+lmsW7eOBlv0NEED4cpJV/PF+V/gZ/sfyXr9Swu+6Dwocxvn8p1rv8XxoeM8svcxdp7eiYZOghGb3LSm8MyR53j+2IvcOn09X5j/OabUVN5vHazIgZ1LpDLvgFOnTjF58uQqmsjAH/9RDMOAF36dTRC+aRGE1atyCMIEiBHzbm99R/aKEHDCvaM+RMaxC+3fMAwMLeeziHLemvbMcsSkkuDDvl1Zb1vZenX295BBCDKPOdakSjFR4nifFFVR2PLBB/T09HDVVVeVVQ6bCZfLhappFZMDe0EyofltS3BXSVRucEjmueebeeLpVs6cKS5+rqtTuOv2Hu6/J8zUqYVTrR63G5/PRyIeZ3h4mNbmZq5ft44DBw6w/8ABzp07VzKKYFDZAkIsV3uQQTxdskzUKmn8JOMSOciDdDqNYBjIGQ9xOm2u/t1ud/m+BsCNnet46s5Huff5z2XlX8vFR/37HZviK7RFPHD8Hu4T72JG3fQJNX/5rct/k8MDR9gcMld/y9uvYvWklaO2m1E7nT+8/A84M+UML5x+kZfPvDLqnDRd48VjL/HS8Ze5sfMGvrjg80yvm1HR+YgZE3ux5ku5GBgYYDgSYfHixRUdrxQEAb78H2PoBvz6pRGCoKoCf/PtIN/8epRVmQShyD1jUF2XzEoFicW2M1fjOYOnpTnIfVfm79v7dpLWRz6/KIgsb1lW+lxKblHkvRPklJhIJNi4cSOJRMJpnlQp3G43yVQKpcLUQtyagPKJHauKMsSJhgG79wZ54slWXnujkXS6+DO4+PIID9wX5qYb+vB4yrsutcEgyUQCJcNWef6CBXR0dDhRhPnz5jF37txRUQTDMNB0fcIjSG63GzUSIRaLoYxRR/JxwCVykAPDMMzIga47vcbtKgUAd7EboUCd703TrufJOx/h/ue/MCaCYGNX7x529e7h65u+zbLWK7l/1l3cP/tupo5xNW7DFnNlnrcoinxvzXd4+/Q7qIbKdVPW5J3gkuk0mqoyqaaDr67+T3wx9hv8Yv9j/Pr4yyh69opTNwxeO/kGr598k7VT1/DFBV9gjpU2KQeSKKLrekXk4PTp03g9HlpaWso+TrkQBPiTPzYjCC+9nE0QvvHtIN/86yirVprfQdGpoMoDmV5Fd0Rzh5ULEnP1Bpc3LKTGVaCErcrVFdXE4OAgmzZuRJJl1q1dS3CMCnpRFJElCV3XUSpo3pOImxqXCScHFG7pHI+L/PrlJp54qpVDh4sLn31ejc/c2ssD94WZOydedNt8cLlcBAOBUbbK9Q0NXH/DDRw8cIB9+/dz7tw5li1b5kQRDEw9UqV3UMWVC5hpIlkUiUYixOPxivQQHydU2bf34w9VVdFVFUkQkCxyoCiK2fhEkpzX8sIKfefD+mk38vgdP8MtFQ4prpuyhudv/RV3Nd5GvVhcnby9eydf2/RNLvvZUtY9eRv/a9c/cjZa3FypKPKctyRK3DDtetZPvxmvnCd0aBgkLZtku7nSpGAHf7L8y/zijp/xwNz78OT5vAYGb51+h99+5ff4i3f/kn29hRs4ZcKe7MotR9MNg9OnTzNlypQJm3gEAf7Tl2Pcdks26bMjCJu3mGRy4tYxo1H1UkYt1yGxdHomlxysbCngb0C2AHNcqPI1DoVCvPvOO/j8ftaOgxjYsKOOdhSyHMTjcbxeb1bkbMKQU1Fz5KiP7//tNG65/Uq+98MZRYnBzBlR/uMf7ue5JzfxtT87PiZiYCMYDCJZ3SPjGaF7URSZv2AB69auRdM0NmzYwIGDB50S1fFc/ZLPZ07qS3K5iMdixONj/5wXOy6Rgxw4egOXy7nZ0oqCYb1WEGWs/m6dfjOP316YIKypXcXwniF+u/mL7H5wM6/c8wy/e/lv0uorvur9ILydr77/deb89ApuevpOfrTnn+iKhUuez3iRVhQ0TUOUpFEroVZ/K3+09A/55Z2P8vl5n8Un51/5vH92E7//+r/nKxv+lF3du4seTxRFU0RUJjno7u4mkUwytbOzrO3HCkGA//SVGLeszyYIiiLwjW8F2fJB8bBjNUPhmeK+qkUOjMoiBzElxq7+PVmvFTQ/ysQ4J/dqRmeOHTvG5s2baW1rY82aNVXpxOeyxhRV18vO78cTCXzn0apXUUReeqWJ3/rd+Tz0+UU8/mQbsXh+YuJy6dx2Sy//9I/7+NefbOWeu84QrBn/vSxJEsFgEFEQiEQio553O4owe84cPvroI15/4w2GhofHfDyBMp6VnPvH7XKRTCSIx+MXtunXBEIwPqmfbIzo6+tDjUap8fnwejwYwNDgIJphUFNTUxVR24vHXuahF7+UFXYXEfk/7f+ZpfOWMn/evKzjqLrKe+c28cThZ3j22Av0JftLHkNAYM2k1dw3+y7umXkHrf7iBEOzhH6VYHh4GMVqKlNKMDWUHOKJw0/x5KGniCqF+0Rf0bKYLy38Ale1XTVq5RuPx4nH47jdbgJlCLS2bdtGb18fN99cvg31eKDr8Hf/JcArr2VPJC6Xwbf+JsqypflFqZrV9rsa0HSd4aEhEISqlLkCRLf+M5ENI+6Zcudqau/7ScHt3wm9x79953dHthdkdt6zyXHRzIWqqkSiUSRRHHc9v67rBV3xbP+HojAM9uzd6zRPWnT55VWNSMRiMVLpNB63uywX0/feew9JklixcrTep5o4c9bNE0+18MxzTQwMFCezkycluf/eHu6+s4eGBpM4RqNRNFXF5/NVJQevGwbd3d0omkbA76euwH3R19/Ptq1bicfjzJs/n7lz5pgiwzFMa5WkJVKpFP2Dg8ycPZv5CxZ8Its4XyIHGTAMg1AohCudpq62FkkUSSsKsVgMAagplFvKU1JWCk8feJbfePV3UKxV2XU1q/nFnf9KY2MjduvXfPtU1DRvn32PJ48+x3PHXmQgNVjyWKIgsm7ytdw3+27umvEZmn2jy2+0jBVnOVBVleGhIXTDoKG+vuywZzQd5anDT/P4oScZShVm+wua5vPFBb/B6kkrnYkzlUwSjcWQJImaYHELVlVVeeHFF5k9Zw7zyyw5qwZ0Hf72vwR4NQ9B+OY3hrlqWXZI2bBDolWagFRVJRKJIAgC9dUiB1t+TOTtHzq/u6avoeaefyy4/d/u/q/8w4ER8rC0aQlP3Pho8XOORpEkacyueDYMQM9DAsohB5qmsW3bNrq6uli8eDEzZ84c17nkg6IoRONxMIyyPuurr75KW1sbl1dZUAtmj5B336/j8SdaeH9TLYZR+B4URYNrrxnkwfu6WbVyiNyFdmR4GE3XCQYCVasKisXjDAwMoBkG7a2toyykbSKo6zr79+/n8OHD1NfXs/yqq8aUAqqk0kFVVfosn4MlS5dSM8779mLEJUFiBtLpNIamIQqCI3iz84OucTjr5cOa5mv4evNXeSnyOlNrJ/OD9d+isb7R/KNVzjVqqjYMXJKLmzqv56bO6/kf1/2QN8+8w1NHnuX54y8xlM4/2eqGzptn3uHNM+/wH9/+KtdPuY77LaLQ4K0f0/mnUimnh0Il+dCgO8iXFn6RB+bez/NHXuAXB39Jf3Jg1Hb7+vbzF+/+JXPqZ/OlhV9gzZQ1CJIEliK5FLq6ulAVpeKSs/FCFOGrf2KKFF97fYQgKIrAN75Zy7f+ZphlS0cIgkB1hXh6tVMKUHFaYZTeoERK4XysTkoR31QqxaZNm4gMD7Py6qtpr5InRi5csowIZXdqjCcS+KpcxtjbK/P0s808+XQzXaHiK96mxjT33N3Dfff00NFeWCtRTtOlShHw+4lGoxiKQiQSGSnhJjtCJIoiCxcupGPSJHZs387rr7/OkiuvZPr06RUdr1gprLnBSBWELTCNRiIkk8lPJDm4FDnIwPDwMPHBQQIuFwG/Hx0YHhxENwyCVUopgBlafPfdd4nFYqYDnqaBINDY0EB7ezttHR3U1dYWJAj5kNJSvH76LZ48/AwvnHi5aOjehkt0cePUddw/6y4+M/1Watzl3eCGrjM4OIim69TW1o4rjJhSk7xw7CV+ceAxuuM9BbebXjeNL1z2ea6sXYJI6ZD5+5s2kUgmuX7t2jGf23ig6/CDvw3y+pvZpNLtNvjWN4ZZahEEo8KITSmkUini8Tiyy1U8upJpQkQeN0HbgwCIbfyfRN//e+dvrtk3U3PH/8jbZjmqxLjymZVoxsgq/adrf8KattXO/sh4n4FJwGPxOLIsl4wIlULByEERUpnZPGnV6tVVi7gUQjyRIJVKIctyUXOjVDrNCy+8wNUrVtAxxp4gNgwDtm4P8vgTLby5oQFVKz6JX7VsmAfu6+b6tQO4XCXuT8NgaHgYQ9epqa2tSidQG8lkkt6+PnSgtaUFlyw70YJ80DSN3Xv2cOLECebNm8f8efMqIt+VRA+GhoeJJxIsXb6czs7O6hLyiwCXIgcZsMWI9mSnpNMYmDX2BYlBhSmFgf5+Nm7ahCRJLLr8ckRZpr2tjVAoRDgcdqxZvT4fba2ttLW302I9FMXgkTzcPv0Wbp9+Cwk1waun3uTJI8/y6xOvElfzK2oVXeHlk6/x8snXcItubuq8nvtm3c1t09ZT4y48SKfSaXTLJGq8+UWP7OX+ufdy56zbeeX4qzyy/xd5W1qfGDrJ9z74AfP987h12npuCa7HLec/djKVoisUYvGiReM6t/FAFOHPvxrFMIK8sSHTL0Pgr79Zy7e+McTSpUphW+AyTJHsfgyZ22WaRJUkHRl/L7SlAKMaLyFIWdtn/vuD3m1ZxMAlyixtupJ8w62R8zPz30LG75VMNTbhKNc6ube3l82bN+Pz+VizZs15KRl0yzJpy/OgWKfGhKWEH0/kYDgi8fwLTTz+ZDPHTxT/bDVBlTvv6OPB+3uZOSNZnkaDjFW8IFSVGAB4vV68Xi+JZJLh4WEaGxuLCpIlSeLKJUsI+P3s/egj4rEYS5curc7EnTPWy7KMIAgMDw2RTqcr6oT7ccAlcmBB13WUVAqPYWSVMALjataTiVBXF1u2bKGuvp6VV19NuLubdDqN2+1mxowZzJgxA03T6OvrIxwKEQqHOXnypCkua2igo6OD9vZ2ampqig6YPtnH3TNv5+6ZtxNX4rx88nWePPosL598nYSa39Urraf59YlX+PWJV/BKXtZ33sh9s+7ilmk3ZQvJDINkMolhGHirKMJxS27unH0Ht824lddPvcHP9z3KqcjprG0MDMLxMD/d/wi/OPErPjvvAW6dfsuocskzZ8+Cro+5A2O14BAEgrw5iiDU8e1vDnPF4hGRYuZkXk40IZ/zoR3erVZfBXOnOaWMUuFhIzelsKTxioKVKg4KCAjz/TsXuWTAMZQqww74zOnTbNu+nZaWFq5esaJ4NVIVIcuy6UioqkU7NY7HAGnffj+/eqKFl15uJJkqfi8sXBDjwft7uPWWfnze7JK9cu7Dapt45cK2VU4mkyQTibLG4zlz5+L1+dixfTvJZJKrr766rIWMABiiaIb+cpFjVy+JIpIoMjQ0RCqVukQOPqnQNM1chUkSkiCgY1qmQhHjowqiBsePHePDnTvpmDyZq666ClmSTDYrCGiq6kQmJEmitbWV1tZWFmGmIELhMOfOnWPfRx+xd+9e/D4fbW1ttLW309rSUjRv6Xf5uW/2Xdw3+y6iSpSXTrzGE0ee4dVTbxY0ZEpqSZ47/iLPHX8Rv+zj1mk3c++su1jfeSOSLpnli6KIewIUurIkc+uMW1g/7SY2nH6Hn+37OceGjjt/19CREelL9PLfd/5Pfn7gUT4790HumPEZx4vh9KlTtLW3XxQKYkkaiSBseCuHIHyjhr/5a5UlS8bQi6EA7JBoNVdwoxovCeWTg1J6AxifL0O+6EPu75miT/v1A/v3s3/fPqZNn86VV155fg2YBAGXy4Wm60U7NSbicbPDa7mGSUmBl19p5PEnW/hoX3GzIq9H55b1/Tz0QA+XL8wfWSxkipQLw1L5T9R36HG78brdxBIJYrFYaXJgkcOpU6fi9XrZsnkz77z7LtesWoW3DKIlQt5IV2YDJjDHalEUiUUiZUdZPk64RA4yIGZM9nZKIbNpyphgGOzbt48DBw4wc9YsFi9e7AzcktWGWNU0Ct3ugUCAWTNmMHPGDDRVpae3l1A4TCgU4viJE4iiSHNzM+0WWSiWsw26gjw4514enHMvw+kILx5/mSeOPMvrpzeMcjO0EVcTPHX0OZ46+hxBV4CbJl3PbZNv4ebpN07ogCqKEjdOu57rO9ey8exG/t++n3Gw/zCG9diKSIBCb6KP/73rH3jkwC94cM793NRxY9U6MI4FBqNTApIEf/HVKLoe4O13Rgb6RErk639Tx7f/ZigvQRgL9HFMtIV3mjPwFYgcDKeH2TeYbWi1svXqkrt3UgnVOucc+1whwxpY13V2fvghp06cYP6CBcy77DJnReh0hDwPMiyXy1WyU2M8HjdLhEt8L8dPeHj8yRaee6GJSKT4kD59WpIH7+/hrjv6qK2tzoSmapozVlYb9vMUCAaJJRIkUilqSgk5M65fS0sL1113HRs3beKtt95i9bXXllcRUyh6kLWJGZFJJsvvm/NxwiVBogVFUejr6sItCNTX1hKJRlFV1cl5jSIHZUQNDF1n+44dnDx5ksWLFjF79uysATAUDhONxWhuaiqqdh11iSwRWzQWM9MPoZAp2tF1AsEgbW1ttLe10dzcjFzGAzuYGuL54y/xxOFn2HD2HdTclWIe1LhquH36Ldw76y5umLK2qPNjNWAYBh+EtvLYnl9ysv80CeLEGL3iCUg+FmgL+Optf0qDr37izofydAGZUNIa3/1hDe++a0Y4NM0AdDweg29/c4glV4yfIAwND6NbJWXV8nwffv2bxHf+3PndveizBG78xqjtXj/7Jr/3/h+ObCe6+fDeLXik4ivfhCXQ87jdVVHm5xOsaVbTo81btpjkcelSphSrZLGurZHZCKqMVEUliEQiKNYYk68Z0wdbt5JIJrn22mtH/U1RYcNb9fzqiRa2bivuDSFLBjdcP8CDD/SwfFm0ooKCYuI/G/F43GkoVc1onUG24Vl3dzcpVaUmECgpXM29TolEgo3vv08ymWTVqlVl9cco9bkNw6B/YIBUOs3Vq1czZcr4bOwvNlyKHGRA1HUQRXRAU80JsmAIq8QTploDUW9PDytWrGBqnhtHstIKqlp6Ms49tgDUBIPUzJ7N7NmzUVWV7p4ewqEQXWfPcuzoUURRpKW1lfb2dtrb2goaB9V76vjivIf5/GWfpTfRx4vHX+bJo8/yztn3ssRlmYgoER47/ASPHX6COncdd864jXtn3snayWtwSdXP3QqCwNUdK1hUdzk7z37IsyeeY3PfB6O2i6oxthhb+Y1X/g33zrqbB+beR72nfkzHdELWBUhApStdSRb4iz8dBkPg3fc8Dr9MpQS+/o06vvOtIa5YPD6CUHV3REanFQrZJ+emFK5sWlKSGJgHqG4ZXL69xONxs3lSMsm111xTenKwUxD5CEFu58gxkoZSnRrj8TiBQHZ6IBRy8cTTLTz9TDO9fcWfs/a2NPff28O99/TS0lzhGGMhX9+VXOhWSraq9xyjJ2e/3096aIhYPF6UHOS7Fj6fj+vWrmXz5s289957LL/qKiaXmMxHCVtzvgfB6mYJEB2HQ+PFikvkwIJhGGZagZyUgijmf/CLPDBJq4tbLBYr2sVNkmUzr1ckX1UwsGOHTq2fsiwzqaODSR0dGJhlmaFwmHAoxO5du9hlGNQEg7S1t9Pe0UFTU5PT0jcTTd5GvjT/83xp/ufpTfTy3PFf89SRZ3mvaxN6bnc+C0PpIX5+8DF+fvAxGjwN3DnjNu6bdTdrJq1GLqNJTyWQJIl5jZexoPnPOJU+zc/3P8KW0Fbn77qhIyCSUBM8evAxnjryNHfMvJ3PXvYQTd7Ggvu1J4J817SaIXpZhr/46hCGUceGt0csulMpgb/66zq+++0hFi8aG0HIKoucyLSCmH9S2tyzJev3siyTmaC0QgYG+vt57/33kWWZ66vQI6EYGRCscHQ5ZKFUp8Z4PE5zczO6Dps21/KrJ1p45706dL1YF02D1auGeej+Hq69ZogSRU6lYU2ABdOqVomoXdU1Xhj2f3lW7X6/n+FIBE3XSSaTFQsAXS4X115zDdu2b2fL1q0sSiSYM6dw4zcxR5CZrwrGIQfRaEXn8nHApbSChXQyyXBXl1O2qFpWoLaFctbDUYQYRIaHef/99wFYfc01RfNbg0NDDAwM4PZ4aG9rG71BEafEUedS5DKmVZXucNgkC+EwqWQSWZZpbWmhrb2dtvZ2/F4vOoVDaSf7T/Hk4Wd56cwrfNCznXLWSs3eJu6aeTv3zbqb1e1XI5XRsKcUFEVhOBIBw6Decqw8OHiYn+9/hPfObkTTNYQ8a0eX5OK26bfyucs+S5u/FTCv6fkUohmG4dTgqyp867tB3t+YvbL2eg2+++0hFl1eOUHQdJ1hawVTX1dXtc82+Ouvkvzoaed3z7Lfwr/mP2VvkxrkqmevybovHrv+pyxvuark/u3Wtz6vF0+VFN92eV1XVxcffPABwWCQVatWnT+RqmFkVYwUGmaj0ShpRcHr8WSdm24YPPLIK4R67uSNDXM5c7b4eTfUK9x9Vx8P3tfDlCnlN3YqC0U8InRNIxKNYhhGQYvjSo6jU1zzMTA46IgSmxrzk/2SI5Nh8NFHH3H48GFmzZ7N4kWL8j4ro0hKnrE4EosRiURobG7m+htuKHXkjxUukQML6Xic4XA464GutSyUS92wNnp7e9m0cSM+v59rVq8uWYIUjUbp7e1FkmUmTZo06u8VX5oyy46GhoYIWVqFgf5+DKC2ro621lZaWltpamwcVQo3ODSEqigEAgH6tQGeO/YiTx19ji3hrXmPk4s2fyt3z7iDe2fdycr2FYjC2EKQuqYxYBlTNdTXZ5Ww/ezXP2MHH/JhdHdB8iKJEus7b+bheZ9lSvD8ljpmkgOAVErjuz+oy0sQvvftIS6vkCBomsawbZ1cxTaygy98heT+50fOb/nv4rvmj7O2eeXM6/zBxj8a2UbysuOezXm7cuYiaul7/D5f1SpgdF3nyOHD7Nq9m0mTJrF06dIJEcyVDXtiySHyqVSKeCKBKIoEAwEMA3buCvDoLxt47Y1GNK340n/J4igPPdjDTTcM4PFM3FCuW6LDXCjptHn+gkBwnAZW5TifKopCd08Pmq7Tlq9Sq8zySzAryHbt3s3kSZO46qqrRt0f5RgixeNxBoeH8fp83H7nnWUd9+OCS+TAghKNMtTTg6rruGQ5y+d9FDnIwyDPnT3LB1u30tzUVHZNbSKRINzdDYKQV5MwpktT4XtSikK3lX4IhcMkEglcLhetbW1muWRbG5IkmStSq5lPJss+HTnDs8df4Kmjz7G9e2dZx5wU6OCemXdw78y7WN62rDIHM0sEpOu60/8CTCHeK6+9xjWrVpEOKDx64DFeP/VGwVSIIAjcOPUGPj/vYabVTiv7+ONBJjkwDAPdMFAU+O73a9m4KXtS9PnMCMLlC8snCIqiEI3FEEVx/Ku4DAw+90ckD77k/O69+t/hW/Ufsrb55o7v8tMjjzi/X9O2ip+u/aey9u+QA7+/Kp4ihq6za/duDh8+zJw5c7j88svL7uR53mAYIIoYVrRnaNjgnfen86snWjl8pPiiwu/XuOMzplnR3Dn5fUuqf7r5hYnJZLIst8ei+6ay5mM9PT2kFAW/zzfqPhcEoaLKsq5z59i6dSsNDQ2sXr161LhtG40VQiqVom9gAEEUueOuu6rmiXMx4BI5sKAMDzPU10cylcLn8zkpBcghB3lyuv39/bzzzjtM6uhg2VVXORNWKaTSaUKhEIqqMiPXB3ysyuhxXE4D6LUNmEIhBgYGAKipraWuro6Ojg46OjoKCo9ORk7z9NHneProc3zYW7z9so2pwcncPfNO7pt1N0tbrihrgBgYHERVVWqCQWRZxgAOHTrE3r17ufOOOxwTq3PRLh47+EteOflqwQoMAYE1k6/lC/M/z+z6WWWd81hh6LozwOoZ+gBFge98r5ZNm0cThO99Z4iFC8ojCPYqtBo2xJkYeOYPSB1+zfndu+o/4Lv632Vtc9srd3No6LDz+59c/h/5gwW/V9b+I1adeKAKFRaqqrJt61bOnTvHokWLmDlrVlmK+wuFg4e8/PSRWl56tYVEoniUYO6cOA/e38Ptt/UTCJznz2N9h7mjSzwWQ1HVMVUqFNMXFEM8Hqd/cBBBEGhtbs4ajyolB2BqUt5//32aW1pYuXLlKO1HsXsnnU7TOzCAIAisue46WlpbKzr2xYxL5MCCMjjIQH8/iXicYE0NtXV1jmCvWFohmUjw5ptvEggGufbaa8smBmCG0c6cOUNaUZgxbVpZOcqyMI73qhlMOZVK0dXVxanTp+mzQnket9sUNba309raWnBAODp0nGeOPc/TR59jT99HZR17Wk0n9866i3tn3skVzaPzgLb+YnhoyFk52Md/9513QBC45pprRu23O97Nrw4+zosnXiKtFc7HrupYyW/M+xzzmuaXdb6VIjNykDvQKgp8+7u1bN6S/X36/SZBWDC/NEFIJpMkkkncLtcolft4MPDU75E6+qbzu++aL+Nd/v85v/cl+1nxXHa53eM3PMrS5iVl7d/u6BcIBkvahBdDMpl0mictX76cltZWx/goX7+FC4VUSuCV1+t47FfN7NxV/Dq5XDq33GSWIV6xOFZVnWmlMHR91MQbtYidz++v6No5Oq4xjFW6rhMOh9E0jbq6uqx28WMhBwDdoRAbN2/msrlzWbhwYdZ5FtMdpNJpBq3utIsXL2b23LkVH/tixSVygHmzaUND9PT2oqRS1Dc0ZK28CpEDTdN49+23SaZSrLv++jHZCZ8+fZpkOs3UKVNGVk3VrKeu8PJqZD8M8XicRCJhijQVxdQqhMMMDQ0hWGmGdqsCoq6ACO7w4BEzonDsefb1HyjrPGbWzuDeWXdy78y7WNg433wgLYeyeDxuToJuN36/H0VReP6551i0aBGzZs8uuM++ZD+PH3qCF46+QEIrbFxyVdsyvjD/8yxurn5vBlVVETBbZOdem3Qavv29WrbkIQjf/84g8+cXL0ezG/p4PJ4xh3jzof+J3yZ9/B3nd9+a/4R32W85v//69Mv8h01fGTlf2ceOezbjKlDVkAu79XfQigSNBbYQWDcMVlvNk+w8eb5J7ULg1Gk3v3yiiaeebWRwsPjnbGke4ppVu/njP6qhoV7NKp+8YJ/EMMzKKvsZN0YaLgVraspaGNnnXkkaIR+GhoaIRKO4XC6am0Za0I+VHAAcPnyYvXv3cvXy5VkeGMVITCqdZnh4GFXXmTVzJlcsXTqmY1+MuFTKCGZXREZ6KRQMbWamFAyDnTt2MDg8zLp168bcZ0AQRQRMlzH7uFV9+DMe5LI2zzy+YZBKpTAMA5/Ph7uujqbmZhZefrmpl7CaRR06fJh9+/fj9XpNnUJrK61tbU7+bU79bL667Ct8ddlX2N9/kKePPsdTx57l8ODRgudxbPg4/2Xn3/Nfdv49c+tnc89MkyjMa5jrCIfsEtCe7m40w6Ctvb3oZ2vyNvL7i3+Xh+c+xNNHnuGpo88QV0YbKW0Lb2dbeDuLmhfxxflfYGlr9ex1Hd9/wxhVU+F2w9e/Nsy3vlvHBx+M5C7jcYG/+Ho9P/jOIPPmFSYIE2GdDIzqrZBbypjrb3BV87KyiQFklDKO5dwwr//mLVvw+3ysXr16xEjJ/q5LVPNMJFQV3n63lsceb+K9jcV1IKJosPbaQR5+sJehoSeYNKmdhnqLoGYuGDIqIc7rp8opa3QEhFaPgVLI9C4Y7/Pk9/uJxmKkFIW0ooxY3I/jOs+ZPZuhwUG279hBsKbG6c5ZsseE9VlisdKdcD9OuBQ5APRUinQ0yrmzZxFFkclTpmR5AOj2g5kRUjp86BB79uxhxYoV43LGCoVCRONxWpqbTbVvOeWLY0GZl9lg5KFPpVJEo1FEUSzaxlbXNPr6+83OkqGQo5hvampy3Bprc6IKhmHwUf9+kygcfY5jw8fLOr95DZdxz/TbubFlHTNqZlBfX8+O7dvp7u5m/S23lLUPG9F0lGeOPssTh58iko4U3G5+4zx+Y/7nubr96nEPapqmlcyBp9Pwre/U8cHWbHGTP2AUJQiRDNV/NUv2+h77AsrpEQLgu/6v8F7xeef39S/dwdHIMef3ry76Cr83/3fK3v/g4CAAtTU1FdfKnzpxgh07d9LS0sKKHCGwHTG4EL733T0yTzzdyONPNhEKFxepNTcr3HNHiM/cdobOqSBLEs889xxLr7ySadPKEMuez6hCRlmjkk4Tj8cRJYlgkTTWeFIIxdDX10cimcTr89GQUZ0znqNoqso7775LOpXi+uuvd7wUCj2vqXSaSCSCqmnU1tZy4/r14zj6xYVL5ADQ4nGUWIxQKIQgSXS0t2fZDmuQdWOHw2Hef+89Lps3j4ULFozr2N3d3QxHozQ2NFBXV1fdlEIhFLnkmeRgaHgYRVHw+/34Kqg/j8VihC1fhZ7ubjMnaTWLsrUKtpDQFjrt6fuIp46ZYsZT0dOlDgHAvLrLuG/WXTScquXKaUtYvHhx2eeYibia4Lmjz/PEoScYSA0W3G523Sy+MP/zXDv5mjGXYmq6niVMLIRUCr757Tq2bc+eWAIBg+9/d5B5l40mCLZ1ciAQKNwsbAzoe/RhlLPbnd/9N3wDz+LPAtCd6GHV82uztn/qxse4oqm8a2EYBkNDQwDU1daW3U3SMAwOHDjA/v37mT5tGlcuWYKQW4pm3VuFyvCqDcOALVuDPParJt54qw5VLU4kV66I8PCDfdywbgjDSBOLxxEFgbSi8OaGDVy/bl1RUp4XglC4cVCVYH+fyWSSdCqFVKBSwRYc6uNMIRRCIpmkv68PQxBoa2lxhInjvdaJRIK3NmwgGAhw7Zo1I7118njKxBMJYvE4umEQ8Pu55rrrsjQQH2dcIgeAFo2SjMfp7+0FUaSpsTErTaCB04QjGo2yYcMGmpubWbly5bhv+r7+fgaHh6kJBGhqajovTV+AogRB1XVURWHIKl+sr6sbszWqrmlmsygrBRGJRBCsZlFtlrVzTTDoREoMw2Bn7y5Ho3A2dq6s4yyoncf9c+/l7um301lTxDO/CFJqkl8ff4nHDj1Ob6K34HbTajv5/LzPc/2UtRUbO+m67kQPSp5PEYLwg+8NctncbIIwZOXua2pqyuqpUS76fv4AStcu53f/zd/Gs/B+AJ479SJf3vynzt+CcoDt92wq2xnT0HXzPoOCmpVR79E0tu/YwanTp1m4YAFzL7ss//usVe5ERw6GhiWeea6BXz7RxPETxUl0bY3KPXcN8PCDfcyYPtIVVdd1hiMRVFVlcGCA7Tt2cNddd43dm8EqlZyQiIKuoxkG8VgMVVVxezyj7J/tUt2JRigcRlFVamtqTJ+IKu13oL+fd959l86pU1m6dKmpZcgh9IZhEIlGSaXTCIKA1+PhiqVLac1naPcxxKeeHOi6jhGJEIvHiUWjGEDA788SJNriMUVR2PDWWwjAunXrqtLYZnBwkP7BQXw+H63Nzec3h1jg0quGQTQSIZlK4fV4xqV8t1MkhmGArhONx02tQihEd28vhqbhDwRob2+nra2NlpYWZ0DUDZ1t3Tt4+thzPHvsRbriobKOubR5CXfPuIO7pt/O5OBoc6lSSGtpXj35Gr84+BihWLjgdpODk/n8ZZ/lps6bkAt0KsxFJeQATILwN9+uY3sOQQgGTYIwd84IQRiww/MZ/g/VQO9P70ENj1Sc+Nd/H8+CuwH42rZv8Mtjjzt/u75jLT9Z86Oy951JDspZJSvpNJu3bKG/r49lV11VMqWnqCpGpoiuitiz18djjzfz61fqSSaLf9+LFsZ5+MFebrtlEJ8v/7WPRiKkVZVjR48SCodZX80QtZV6qErK0orIDNslqH5/lpA0n9h2ojA8PEwkGkWUpKqPn6dOnmT7jh0sueIKZs2aZZKDjMiBqmnE4nHSioIkirhcLubMncuMWRNbEn2+cIkcqCpGLMawFUI3DAOXLFOX4b6nWTqAjRs30t/Xx/XXXz9uNzAbkUiE3t5eXIUslM8Hcm4BVdPo7+9HNwzq6urGpCC3b6tit5emaU6zqHA4TDwWQ5QkWpqbTbLQ3u4QE93Q2RzayjPHnue54y8STnSXdR7LW5dx9/Q7uGvG7bT7K/t+VU3ljdNv8uiBxzgTPVNwuzZ/Kw9f9llunX5Lye6UumGYjbYqeOxSKfjGt+rYsSN73zVBgx98f5A5s1X0zEm2itbJAL3/eidqz0iVSeDWv8M973YAbvz1bZyInnT+9hdX/Cm/c9lvlr1v3XZ1BOpKkINYNMrGTZtIJ5OsXLWKpjI662maVtXIQSIh8OLLDTz2eBMf7SsePvZ6dW6/bYDPPdjHwgWlzYqSVkviHTt24HK7WXl16XbXFcMSM4530Dd0nYHBQQwrUiUCuiBU7FkwXmiaRigcRjcMmhobq25CtGf3bo4eO8a111xDS0vLiPYMU5OVTKediIIsSUyaPJnLr7iiqudwoXCJHKRSGImEs+qylanBmhrc1qSo6Tp79u7l8KFDXHPttbRV0eginkjQ3d2NIAhMnjRpQlY4ZcO6FaLxOLFYDFmWqa3Qac+wNRM2y67g2JFIhJClVejr7TVLpOwW1B0dNFuGJ5qu8c6Z9/nVwSd58eTLRIzSTU8EBK5uW87dM+7gzumfodXXUvapabrG22ff4dEDv+D40ImC2zV5m/jsZQ9x+4zb8Mr5w8uGYZBWlIqV+akUfOObdezYOZog/PAHg8yYnpoQ62SAnn++Fa1vpLIk8Jn/invurYTiYa554fqsbZ+9+Qkubyhfh6OpKpFoFEEQTM1NAQz097Np0yZkWWb1NdeUTc51TUOtAjk4eszDLx9v4pnnG4lEi4f6Z85I8vCDfdx9Rz+1teVPlqqqEonFeOftt5kxfTrz5k+M34aDcQgZNVV1tCI1NTUXtFS0v7+feCKB1+OhvqGhqvs2DION77/P0NAQ69atwx8IOONkLBZD0XUkQUDVNCRJoqG+nhWrV1f1HC4UPvXkQEsk0BIJhoeHEUQRt8tFKpXC6/U6IptjJ06wfds20+SiSB39WOC4JGoa0zs7q7rvscDQdfoHBkirKjU1NXlbyY56D4wIKat0OymKQm9Pj+OrkLS8Flra2mhvbaW5pYUzZ86wfddOGpY28krX67xw8qWigkIboiCyuu1q7p5xJ7dPv5Vmb1PJ94AZvdh4bhM/3/8ohwcPF9yu3lPHg3Pu585ZdxFwZa8uDV03ycEYSGAyJfCNv6ll54fZ16S2xuC73+mjtXUAscQkOxb0/ORmtIETzu+BO/4e9+ybeObkc/zJlj8fOQ9XLdvufr8iHYaqqk5FTCEieu7sWbZt3UpdfT0rV66sqDmTruuVt0S3kFYE3nizlsceb+aDbcXJiCwb3HTDEJ97sJflV43RrMgw6O3rY8OGDSxdtoypU8emnRkL7Pux3Kc3nU4TjUYxBIHgBRbgpdNpunt60A2D1nz9FsYJJZ1mw4YNiJLEurVrTTG1YTAcjaLrOl6Ph2QqhSRJBPx+Vqxe/YmwUb5EDqJR0omEuVJ2ufC63USjUSSXi7qaGvoHB3n9jTeY1tnJMkuYUk2oqsrZc+dIplLMnD69bLX2REFRFAaHhjB03WThub3rM+CQgkqjBJXCMBiKRAh3dREKhejr78fQdURZRtU0Vl59NS3NzWiCzrtdG3n2+PP8+uQrDKVL91iXBIlrO1Zz94zbuX3abTR46ss4HYMPwlv5+f5H2Ne3v+B2Ne4a7pt9D/fOvocat9WnYxyTFZgE4a+/UcuHu3IiCDU6X//aaWbO0op2Ah0Lev7v9WhDI2mVwF3/B/fMdfz51r/i8eNPOa/fNOkG/vHa/1XRvhVFIRaLIUkSNTnnbRgGR48eZffu3UyZPJlly5Y51tjlYizf97kuF796soknn26kt6+4rqijI81D9/Vx/739tDSP/braOHX6NFs2b+baNWtoaiqPtFYVtjah0N+t6SKeSJBMJhFFsWSDufOB7u5u0qpKIBCoqnW4jcjwMG+99ZYjRFdVlXjSNFLzejxZzbMWLlpEw4W4dlXGJXIwPEwiFjPFd14vXq+XQcsru7aujjc3bADDYO26dVUVeWXi9OnTJFMp2js6KioZnAjEYjHiVktnu3bZvkWyzEDOR8llASjpNOHubrZ88IEj8HPbzaKsCgjRLfH2uXd55vgLvHTqVaJK6dSDLMisnXQtd8+4g9s611PnKb4CNwyDnT0f8sj+R/mwZ1fB7fwuP/fMvJv759xLrbt2XOQATILw9W/UsWtX9sRVU6PxN3/dxaLLR3scGJZuJjO645C7jNez+tdbrw//y00Y0RFhpvsz/xOp8xpuef1OzsTPOq9/bdFX+dKc30BgxNBIEIQRQp35bwtK2izhk3L6QRi6zp7duzly7BiXzZ3LgoULx0TMyyUHug7vbazhscebePvdWnS98LEEweDa1RE+91Af1107TDWbPR44eJB9+/axdu3aUWTpfMN53jNEeIauYwgCsVgMVVGQZPn8tcEugmg0ylDE9CqpZto3E11dXWzauJEVK1bQ1NxMWlGQJQnZ5TL9Hixy0Dl9Op25vXI+hvhUkwO7UiFilRAFAgHcbrfz+8DgIDu2b2ft9dfTVOVcViZC4TCRWIz6+vosM48LgYGBAdR8TXCsicIRHF1IbQRmDvq1N95gyZIl+Hw+BgcGCIVC9FvNourq6kxb57Y2fHUB3j73Ls+eeIFXTr1OTC3tZOYSXVw/+TrunnEHt0692Vn5F8Le3r38fP+jbA1vK7iNV/Jw2/TbuH/WvTSVmcrIhF23bxgG8bjBN7/dyJ692WQyGFT5xl93Ma0z5bxnvEj9/FZI9I28sP7vCTVM5o5378/a7rFVP2VOTXlpN3uiVxWFZCqFS5YJBoMIooiuaXy4axfd3d0sXrSImTNnjjmiZlhVRoXQ3y/x5LON/OqJJs6cLT7JNTSo3H9PPw/d38fUKYV7dIwH27Zvp7+/nyVLllTk+zBRMAxjpIwv45m3+2F4vd4L2wrbgq7rhMJhVF2nob5+whZZG99/n0g0yqqVK9Et51hBEByPimAwSHNrK/PG6X9zMeDTTQ4UBSMed8LotbW1SJJEIpkkHo/zwZYtZp5zIlTDNgyDgcFBBgYHcV/IigXMEG+m4j1TS2Do+ui85EQ4OZaJ/fv3c+DAAVZfey1ul8sRqKVSKcLhsPlfKORYq7a1tdHW3k5tYy3v9m7kueMv8tqZN4irpVXkHsnDDZPXcfeM21k/9SaCrsKlnQf6D/LIgUfZeG5T3r+rmopH8nDrtPU8NOchWv0tWZO+/dMxS8p4LfdRTaYEfvjDyezbnx3Wra3V+Ku/PMO0zvwTmADZ6SJrRS/k/tv6PfpPazGSg877XXf8I8+pZ/n67m85r9W76njzxpcRMRsdGVY5W6nBJa0opKxIlc/nI51MsmvPHhKJBAsXLMiqSBBFEUEUEQUBURCcfzuvWX/PhKHrKDmRA8OAHR8GeOxXTbzyeh2KUnwCXnZllIcf7GP9TUO43RM7XG7YsAGvx8Ocyy7D6/VeuNx1ZkTJRkY55ODQkFmpEAxeuF4PORgcHCQai+Fyu2lqbJyQYwwPDfH6a68xb+FCOjo6qAkG0XWdWDyOIAjUBIP4/X6WrlgxIcc/n/h091awnOrsic9OG7hkma5z54jF46xetWqUK1Y1YQBujwdBEEinJ2Y1Ui7SioIBeFyurAEesr3QsxTOF4gghEIhWltbEQUhq1TN4/HQ2dlJZ2cnuq6bEYVwmFAoxOlt5qq+saGBP2n/Q76x8Gtsi+7g2RMv8MaZDSS1VN5jpbQUL516hZdOvYJX8nDTlBu4Z8ad3DT1Bvxy9sQ8r/Eyvr36mxwdPMYjBx7lnTPvYmAgWf9z40HWJd4+/i4bj29mdfsqbulcT7O/dFmeDXtCrAmKfP2vevjO91r56KORldLwsMR3vjeVH36vn+nT1KzQ/lhC81EjW+3v9QfYcTo7jXJ16wrqagtHvTLvpUyik0wmEQUBWZZRFIVtO3eCYbB8+XKCgUBW90pd100DnhLnK9hEIYPkCKJIIuHi+V838tjjTRw+UjxPHgho3HW7aVY0d07hJl1VhWEwPDxMy+zZZr8VRTm/5MBeCFj/LvR3xWoeZn/P6gQ5IFYCQRCcfgvJZBJVVasuTAQzIjlpyhROHDvGpEmTstNmGSWOnwR8uskBI817JFEccekDjh8/Tnt7O/4JELfkwmORAyWdRrNKYi4E0uk0hmEgu1xmvrFEzXJWr4SJPrkMpFIp+vv6WGJ1QNOslXXuACWKIo1NTTQ2NbFgwQKSySRhq/rh8OHDKPtVPB4P/77t/+PP13yFD9N7ePHMK7x55i3Sen6iltRSvHDyJV44+RJ+2cf6qTdx94w7uGHyOrySxyyd03U6PB185fI/5qHOB3jp2MtsCW3FwEBFJVPiuTG0ic2hLVzVtoxbp9/C5OAkZ2LL/Jn570wEA/C9b0f5i7+EffszCMKQyJ9/rZG/++Eg06eNs5RPz36/IUhs7tmS9drK1uIrJUEQnOcr8yqJkoQsy0SiUT7cuZOA38+q1auzRG6GJXrV7Z+Z/7aIhh1dsbe3n2vdMDhw0MuTz7Tz6mutxBPFh7x5cxM8/FAvd9w2SCBwfmv2o7EYmqZRX1+PIAgjfhgTPfFa31u55Yj2dyvKMoIkIVG498D5hMvlwu12k1IUYvE4dRWWYZeCPcbMmj2brlCIs6dPZ5WbGhnbfRLw6SYHuu7UQGeqoI8dPYqiKMyYMYN0KjXS5a3KsG8hSRTNlZOqkkylCFyA0iBFVZ3BaCzOj6PqpSdwUAuHQhhAR3s78UTCdGzTtJJKdq/Xy7Tp05k2fTq6ptE/MECoq4tQOMypU6dwCxK/3fgb/NGy32evvo9Xw2/y9rl3UfT8Oeu4muCZ48/zzPHnCch+bmhfx22T13Nt62rHDKnV18a/Wfhv+MzM23n55Mu8eXoDCgoaGnrG/34dfomXwi+zZtIaPn/ZZ5lZN7Ps78PnM/jaX4T4znfbOHBwZFIdGhL56p/X87c/GB9BMHI+/+l03yi3ylLkoPDODc51dXHowAFaW1tZvmLFqPtPEAQESaJU9j2TRCQTBi+9WscvftXErj3FCb7brXPj9T08cG+YJYvjSJKIJEkYhnReV8SRSAQD0ylSVRQ0y6NhIlbAQMWkwIZmpWlcsuzYytu6hAsVQbA/gd/nI51Ok5qAKKxofUavx0N7ezuHjxxh1qxZSJnNvoziTdU+Tvh0kwNGGK/dDS6dTnPw4EFmzJiBz+MhlUrh9ngmplIh46F0u90kUilS55kc2CHEZCqFAbjc7qwQdKUs2CEJEzhIhLu7aaivx+v1kkqnTdfBMshBJkRJorm5mebmZi5ftIh4PO7oFM4ePUOtFuA3PA/w/132JfYaB3hr4F02dm9GM/JPsjE1zvNnfs3zZ35NjauG9ZNv5M5pn2HtpGvxurw0NjQwt2M2D17+AL88+DgvnXhpFOkwMHjn3Du8c+4dVrWv5HOXPcy8hsvK+jwej8af/9lZ/vbvOtm3fyQUPTgo8md/YRKEaZ1jJAg5kYMPhrLLN5s8Tcyprdz/wzAMDh46xLFjx5g6dSpXLVs2LgGeIAicPOPlF79q4Mmn6xgYLH4/TJmc4L67Q9x2Sxf19eaEl1aAjMtiaxkkSXJ+StLEkIbBwUHcLhc+n4+EFf2YkPC4lR4Yy2RuWA6fumE45yXYqT07OnQhVs7WMb1eLwwNoaTTE/LdJa0W9nNmz+bc2bMcOnyYBXnEhxcyAlwtfOrJgc2C7Qt58NAhdMNg3vz5aFav8EQiUbQl6ZiR8SC53W4kzBzs+YBNCnTDQMAsKcMw8GSw4LGQA+e99nFySqHGG00wdJ1zoRCzZswAQJZlVFUdt0Wu3+9n2rRpTJ48mXQ6TW9PD909PfT19dERb+ULwgP8xuTPsl84yKbYFrb270Av0PsuokR48sQzPHniGerddXxm2i3cPeNOVrevpM3fyn9Y8gc8PPdBnjjyNC8cf4FUHq3DptBmNoU2c1XrMj5/2ee4vGlhiS/GwOcz+NY3+/nrv2li376R6zgwYEYQ/u6Hg3ROrex7MgwdjOzPuWXwo6zfr25dXvEko1vNk06fPs3s2bO5bO7cMRMDVYU33wry6C8bePf94lECUTS4fu0wn3uwl1Uro4giYPjRrHSFpmnmv+2fVlQq12VRFEVkiyjIspyVlhwrIpEINTU1CJj3dcqa4KoBw3rOM6MEYyE4TkohQ6MlYH4fWRolUTyvVsr2OCVJEi6XC8OKHlSTHKiqalrs6zp1tbXMnj2bo0ePMtMai8AcVwUw+3lcIgcfX2TmJmVJIpFIcPToUebOno3X40FzuVAsFppyucpyC6zg4Fm/etxuREmacFFibs8DAbImV1fGZ7RFieNZJWXWuGd6JNivVYr+gQGUVIq29nZghNRpYxiI7LCtqijmd5Cxj9r6emrr65kzdy6pZJKB/n56+/pY0DuHy/RZfLHlIQ56jrI5vpVt/TsppMsfTA/x6OFf8ejhX9HoaeAznbdy17TbWNGynN+7/Hd4eM6DPH30GZ459jzxPCWW27q3s617O4ubF/OFuZ9jScsVea+H/d0G/PDdbw3xl1+vY9/+0QThb39QIUHQc5T+wOaBPVmvrWqpLKWgpNNs2ryZgf5+Fi9e7NhiV4pwt8yvnqjnsSfqCYWKp8JaWhQevLePB+/vp70tJ00kCE5EILd8tyBp0HXSug5WmaQgCCZZkGWz9l2SKr6/h4aGaLaqM2RZdp5NQ9fHRpxy0gbVWM/bZCV30s1dSGRVN01wJCH32B63G0VRqh6FtVMVLpcLSZKYO3cux48d4+ChQ8y0my1ZiyFV1z/2k+vH/fzHBdV6sEUrTHhg/34kSWLOnDmAqQXw+HwkLTcwtyXUqwaMnPCb2+NxclrpdLrqKuViYhm7SsGV8/lsAVy1Hu68RME8qbIH0lAohMftpsFq0mOvXrQyVlh2mNbWV+TLDYqW/sMly+aK0CIf7RYZ0VSVnt5ewqEQdeF6FmrzeLD2bg55jrE1tZ1dw3sLHr8/NcDPD/+Cnx/+Bc3eJj4z9RbunPYZvjjvN3hg9v08c+w5njn6DMNKZNR7d/fuZnfvbhY0zOdz8x5mRcZqPbPkTBAEAgGD7357iK/9VT37D4w84v39IxGEqVPKJAg5KYVTEnSn+rJeW9lafqlvLBpl48aNpFMprr32Wtwez0hIugwYBmzc7OfRXzbw2hs1aFrx962+OsrnPtvP2usGcckV3sdFSINqE0uLWBuGgWLdW2CSbocoWD+LfUZN14lEIs4kY9+Huq6jKAruco2G7IqDCZqQVU3DgFEpvGKEVRCEqlqrl4LH6yUWi5kpR10fc7v5TCiWBkTXdTw+HwgCLllm7mWXsW/fPiZNmoQ30ynyEyBK/FSTA3tCEUWRSDTK8RMnWLRoEXLGQOD1eEinUmiaRiqdxlstN7Ccm0cUBFwuFymL8VaLHJTTHdGuUsh7zAnKIRasdChBFEKhEG3t7c4Dnxk5yB0INIsEOGQgz+eww8I2GSg1kEiybJortbez2DCIRaOEQiFmh2axovdK+moG+EjYzw5tF/tiBwvupzfZx08PP8pPDz9Km6+Vz3Tewl2dt/OvM/+ZF0+8xJNHnmIwPTjqffsG9vP1Td9gTt1sPnfZw6zuWIWhj3wu+/wDAYPvfWeQv/jLeg4czCYIf/rn9fznHw4yZXJpgmDkRA625dz+rd4WZtRML7kfgIG+PjZu2oTL7Wbd9dcTCAYZtpr3lCLdg4MiTz1bz6O/rOf4ieLPYF2txv33DvK5hwaY3mmm6TS9irexVXopyzJ4PE6EQVVVVE1Ds+411Rb5WqVtmURBkuWsz2yLEesyXBFll8u5d0uRAyOj5HOiYOsNjAy9gQ27tDHfOJPXYbXK55UJj6WbspucjXfMNixNlm4YeN3urAXTrJkzOXr0KMeOHWPBwoXO69XsBHqh8KkmB2pGSmHPnj34vF5mzMxWiQuCgNfrdepn3W434gSJ7VxuN2IySTKVqop1aq5dbj7YLW0FwD2GKoVqoFyikLC6Z2Y2v7LL/DQr4gI4g3I+MiBnrubKIAOlzjtYU8Psmhpmz5mDqqr0dHezNHwlN4du4Ix4lp3qbnYZezmcPFpwP+FEN/9y8Gf8y8Gf0eFv547O2/jysi8Tipzl8SNP0pvsG/Wew0NH+NYH32F6zTQ+N/thFtUswiVlP86BgMH3vzvIn/9lPQczCUKfyJ/+WT1/98MBpkwukY4pQQ5Wtq4oK5p29swZtm/bRn19PStXrXImu8z0Vi4MA3bv8fLIYw288FItqVTxa3XFogSff3iAO24bxus1KxdGMlgTMzFZO3ciDPbXo+m6Q05Va8Wp5mgXZFE0owuyzNDgIBgGNRkOqS5ZJolZSTSKNGc82+drjapa44QginkF2oIomrn2ArD9Laot5swVVgqCgNvjQU8mzSZ64yQH6XTaTJNkLKBsMiRJEvPnzWP3nj10TpvmpDEukYOPOezIQTQa5fTp02Zjlzw3vdvjQU4mUTWNVDI57kYjhR5mj9uNyPhNNJxBo4zBMGWlFGSXK29e0xYxna8SpWJEIRwOg2HQZrlI2r75qVSKeDJphl8zoh/2w2tHBeSc1Vq1IcsyHZMm0TFpEoZlaLM2tIZwdzf7w/vZmtrJh8YeTiqnC+6jKx7ixwf+hR8f+Bcm+yfxmc5buMbdyKazm+hOdo/a/kTkJP95539ljm8Ot05bz001NyKLI491IGDw/e+YBOHQoZHX+/pEvvpnDfzdDweYXIQgGNoIOTCAHTnBpVIpBcMwOHL4MHv27mXqlCksW7bMqQzKTIdkkrR4XOD5X9fxyGP1fLSv+LPm8+ncefsQX3h4kMsXnCezojIgiSKS2+3cj/a9aqe2NF1H1XVUSzjX09eHz+dDU1VT7GeRDVEUHWIh5/nezidUVTXTjwVEfkIZ401mKqwaKcssE6IMeD0eksnkuEsadV0nZVUo+LzeUSTEMAw6p03j0JEjHD92jFarr8MnwevgU00OVMvpq+vcObxeL512y+Qcli4APr+fSCRiRg/GW9pY4MZxezwIomhqAMYgQrJvSLsCoRwo1o1fMGpQ4OE7H8glCuFwmLr6enTDIBKNmsphu67Y+ulyubL0Ahfy3Ovq6qirq2PuZZdxdWoFt4ZvJRQKsfvcHjZGt7BT281ZvavgPs7Gz/HjA/8CQGdwKpc3zKc/1sdQajDHsVKkO9HNPx34Fx45+Qs+O/ch1nfe5HgtBIMGP/juaILQ2yfyp6UIgjFCDo7L0JcjwL66ZXnB8zd0nV27dnHs+PH8zZMynwNB4PARN4/+soGnn6sjEimu9J49M8XnHx7gvruHqKnJf+6ZA/SFdvATRTGLuNohelVV0VSVyNAQgWCQlFXOLIiiOQlb+XolnUa8wE3ZHDFiARW+7UhZzrSYFcmZgNRltUoabXIhWhqDTNj3lCgITOvs5OChQ6jpNLLPh34pcvDxhW34IwgCvb29tLS0ZAnmcuFyuXC5XCgTWNrodrmQRBHBMEim0xU1D8kUIZU7DNpqfQGKVmKc77KkXOiGQTqVorunh5bWVmKxEVW/KIoE/H5TO+ByTUi71mpAdruZPHkykydPZunSpdw9cBddXV1sP7OTt/rfZYe6i7AxOjJg41T0NKeiZsSh3ddKQPBj6BoeYSTNZWAQToT5+13/k0cPPspDcx7g1um34ZU8BIMjEYTDh7MJgi1SnDRp9DU2MgSJ23JukXZfO9OCnXnPV1VVPvjgA8LhMFdeeSUzMsq9nH0bBooisOHtRp55fjJbthZ/plyywfqbh/nCw4OsuCpeUsOYFcK+yFZygqUxcrlc6LrO0NAQs+fMcczQdDsloSgk02nSsuykIC4EDKtiw2B0pUIm7BRfpfseaxSh0DuqUdKoaRqK5aMSyBMtzhR5NzQ0gGHQ39/PpMmTPxFGSJ9ucoAZNhoYHGSGXYpSBD6fD0VRSKfTqB7P2B7UEg+Ay+MhaXWqK4cclCM4LIR0iZSCDUdtfB6hWSrtdDqNoqqkkkmSySR1tbWmgNAqLZUkyVR0WyFbO/94oVeKo5Cziq1vaKCuro558+bxYPp+uru72XJyK690vc629A66jd6CuwolRkhEUA5QIwSYLEuI4shn7k328X/2/COPHvwlD8y5nzumf4aaGr8ZQfhaPYePjNy7Pb2SQxA6OnIGtQzNQbl6g2QiwcaNG4nGYqxetcopO83E2bMyj/6yiV89OZf+geLi20kdCp97aICH7h+kubm8Fdmo3La1Ur3o7gtgYHAQRVVpaWnB5/PhtaIKdk09hkEymTRTDaKIbJEKSZJQz+1APfYOYm0H7jnrEfwT03DIXkTYplAFMYbvNzOKULE2pMi24y1pTOYISXOPJWSMvV6vF4/XS29v7yVy8HGHTQ4GBwcBnFxRIQiYbNTjdpNKp0kkEmMSDeaWMObC43IRFwRSySSUaN9cbue7QnCqFMoQIp6PgVXTddNTwvIdyEQkEgHDYOqUKfhzHnTRCsEqVj7X7XaPEmJebJNCZvjV7XYzZcoUpkyZwn3GPfT397PpxBZePPMyG2Nb6DP6C+4nqsaIEqNL6cYneAnKfmrlIB7RnHAH04P85KN/4leHfsU9s+7hnpl38f3vwp9/rZ4jR0ce/+4eyRIp5hAEixzowPacOXxVHsvk4cFBNm4yO1Kuu+46aq2SUwBNg3feC/DoLxvY8HYQwyh8TQTBYO2aGF94eIC1a6KV+8nkXG97YrsY4geZhF4QBPp6e5FE0Vx9kh1V8Pl8GEA8mTStoQWzQVs6nUYYPgNvfQ8s187UnidwzVyHZ+E9iHVTqnrOhfwNciGYH2DMkRpd1xElqexIZTEiYZc0psdQ0mine3Rdx19CY2YLnxsbGuju6TFfu0QOPr6wb6q+vj4CwWDJG8AO23u9Xmc1mxyLErbEQ+Pxek3dQQkhTb4WvpXALr0qt0pBEMUJCc2quo6SSpG2y74yIMsybpcLl9vN6dOnCVrtUPNBlmWn7tztdo8MUhayvitBKDv1Ui2Ue60EQaCpqYk7mj7DHcs+QzKZ5O2j7/L8yZd4Z/A9+o2Bgu9NGEkSSpIepR+v6KZWClIr1+AWXQwrEX564Gc8ceQp7pl5J1/75v189xtTOZpLEOwIQrs5uNmCxGMyDOVM0LlixO5wmM1bthAMBLKaJ/X2STzxVD2/+FU9Z84WjxI0Nqo8dN8gDz80yNQp+XtajBkXyNo3lwyMnI75796+Purr6/NWQQmCYDZmMwxcXi+SKKIqCoqqYvQfQsi089ZVlCOvoxx5HXnqCtwL7kVumz9qn2NBIX+DfBAFoeJ+DTbshm/lRBBK6RvskkbN8qAo18TOsCI1BiZxL0YqBFHEsPxympqaOHvmDMlE4lK1wscdAiY5KBU1sLdFEBAlCa/PRyKRIBGPm0KjKpYA2hObbbqR6889njRCJpR02skfimUsy6pZCqbpOulUipT1GTMhyzIeixBkij77e3tpamoquE/Z5YJUqqDdbG7k4HyTBYPytSCZ8Hq93LLwZm5ZeDOapvHOifd4+uhzvNX3Lv16YaKQ1NMk9X66lX68osciCkFQYzx66DGeOvoM6794P+q//jtOnhhJX3V3S44PQnub7qxKc1MKUwKTmRKY7Px+4sQJdu7cSVtbG8uXL0eWXWzd5uORXzbw8iu1KGrxT798WZzPPzzALTdH8LgnZgKf0HLGDJQiA7nb9vX20jltWsH9SZIEooiuqngDAVwuF17DIOnxUog+qac/QD39AVLLPNwL70WeuhxBGJuI2rAb1BlGQTFiJqrxLNmLn2JRhFJXMrOkMZlMlkUODMMgnkg4ImdHRFqAWGZaUjc2NWEAPT09l6oVPs4wDINUKkUsFqOlpaWs99g3vdfrRbdMkeLRKGJtbVkPTTm3iySKpvBRVUkmkwQyhI/jjRZkImUp/c9nv3jVirakLWICOD7ybrfbzKPmYemqpjE4NMSUzvziNxgJd6qWW12pNEJBsmArrjNyoOOF7Ws/6vi5teslIEkS189ay/Wz1qIbOpvObuHxQ0/xRvdbDGiDBd+X1FMk9RTdSh8+0UOtXEOtHuS5rkdwr3uV2lf+leGuNmf77vBIiqHRSivkihFXWpbJhmGw76OPOHjoEDNmzGDWzCt57PEGHnmsnsNHimtmAgGN22/t4bMP9LLkiir70BcYyKu6/wyyYaexSpGBXMRiMVKpVHHiK0kIZNfOC4KA7CpMDmxoPQdIvPV9hNrJeBbeg2vmWgSpsmdeVVVEMDtjlhGatzU/1ShTHK8QutKSxmQy6aQTAn5/WZ429jn6PB5qa2ro6e29FDn4OMOwlKUALZmRgyIDdmYYy+f3oxsGiqIQjUapqakpXd5Y5sPidrtJWGZIgUCg6n3CNV1HVZSKjI8EQUCn8gHWMAzT9dHyibAhyzIeqw681AM4ODCApus0FxlAJcsMyW6SU6gWuxByB/JcX/jcwa4apEEYR523KIhcM2UV10xZxcDQIB/0bOflM6/wWvhNBtWhgu9L6CkS6RRhevGJXurkQWpuehDXr/8Z+kbMpcI2QfhPGjqwY5QY8WqzedL27Zw+cwaf/xoef/oKnn+xjnii+HOwYF6Szz88wPqbupHEuHUPTkBjs1yM45rZBM/2GBByVpK5aaxy0dfXh2EYNDUWFhJmuYBqGgIG6OksD4qS5z98luSm/01y6z/hmno13pW/j+Aqz6/FTilU8kxVO0qTzxehnP1XUtKYTKVQFMXRGWRFbQuQlMzIgSCKtLS20tXVdUlz8HGGYRgM9vdTW1ubHW4q8oBnigkFQSDg9xONRlE1jVgsRjAYrIp7otvtRhIE03wDoMrWqIrFoiVJKiulYEOs4IHXLPOQlGU7CuaD5Ha78VZY6dHf348kiiUFoC7Li15V1YrJQSEUWgna3SYzowy522RtO4EQEFjRvIybZqwDATZ3f8BTR5/j5TOvMVSUKCRJpJOE6MV/2zpq9/57ag/8NnLSJMvhsMQ//MjHutkwnDPfL6tfwptvbuKtdzvYtfdu9h2oL3qObrfO7bcN84WHB1iyOIkgQCKhkUpNkFh0jGVxmdczNwJlgBNeNjQFQ0uD9dNQzX+j2/9OZ2yTNn+qadCt7bU0qAp0n+MKLYay8TBK5j51BdQUhqaAliZp+EkraTSlH5c+DrMnNYly/G3U3kME7/k/ZX33tvlROdFRG9W+pjbZqJR0lFvSmFYU0qkUuq7j9XpHb1cgrWAwEjkQBYGWlhaOHj1qOl5+zPGpJQe6qtI/OMikjo6y35MrgBFEkUAgQCQaRVVV4rEYgUAg/4NRwQ3tscyQ7Jat4zJcygMnpVCpmLIMQZdilWGmlZGApySKeNxuPF7vmMhTX38/jU1NZfU9oIptboshH2nIaoCU8e+JJgeZKRFJFLmmfRXXtK/ih/q32RjezLMnXuSlU68wrI5u6GQjTpT45T8ktPDv8Ieupe7kfdScvpOhAX2U3qDD3cl3/7KZjVuuIx4vvvqc1pnm858d4P57h2iozwm12uc9hvvbMAxzMrYmYXtSNtQ0hq6gp5MjE7OumBOzliadioOWBlVF11NZEznWBG7Y79HSGOrIBE/GZF8tYWOt9VM9WXw7SUojGDLV6vWnR7qIDA/j8XrNhnIFroHdhdI8hwrIAaUFg2OB/YyJFey7VEmjaqVwdSvNmjeaWuB6C+A0bhdEkZbmZgTg9JkzXLF0aZlneHHiU0sOBgYGSCWTTovUsUKUJILBIJHhYdKKgpBI5L0BS5UwZsLujqjruqk7qGLbUd0wUC1/A/cYQu/5PoFhGKTSaTNflxFOc8myOfiMw7a4HMFW5vGA80IO8iG3rt7+LbesMnN7280yX866HGSGL3OJlyzKXNdxLdd1XMv3V3yT90KbeOHUr3np1KtE1GiBD6ET73iHeMc7dK34EwZ7r+TqnNuka9MtdG1YVvCcJEnnhtVdPHzHIVYtPo1gpDF60yTDStYqOp2MoytJ0oKGhu6smu1tDHVk0nYm+ozXMqeHzO9YwBj5ugX7b+YvmqZSZfXBeYGoKyC60YQqRcTctRiYOXa746zb4xlFAGx/AzttV9ExJsg8zZmQyxxTPVZvnHwljZqmEY/HzbSJJOWtPit2txiG4SwEREFAkGXqGxo4c+ZMhZ/q4sOnlhycOXMGAVNhWgnyid0kSSIQCBC1xEWiIIzuv1AmMbC38vp8pFWVWCxWVXJgiwHtznAVIeczqJrmpA4yBYZuj8dMHVRcnD4asXicZDJZ1nWy7ZJ1q+lNxZ9vgiBgkcNc5PGpyK2icN6f8TOTRGS6YhYjFm7JzQ2T13LD5LV8f8W3eKfrPZ4/+RKvnnmdqBrL/yZRo7t1G29oI2tAwRAwtv1e3s1bgiHuXvRL7ln0GK01YeiG6OsFT8mBav2XD1kpm1GT/oioM/OTGwhZI7rg/N/HF6KhmPe2II+58sXZV+NMfNf9GZrXZ7Y11jQzrK4ojpeLbC1QtDL9DfJhor7yLEJchm7HY+ma1JySRl3XiScSzsTuLWQ6V4SE6Lru3H/289fa2srZc+cuWtOtcnFxjJ4XAGfPnaOpvj67T3sJFBuAXW43fsMgHo+TSCYRrYesUthhM7/fTzwaNctqDKNqnSAVK9zvGkuVgqVCtqMESsYKXRJFvB4Pbo+nql0r+/v6MKCoYGvk9MxWurplonSxkIMxh1YzlfA5+8nso2EYhrlKs/4m2Er6jH1kDnAeycNNk2/gpsk3kNTTvHX2bZ4/9WteO/MmCS3hHGyhAjNUeNdr8NnBlRwYltj1xnegKztqsKLzPe5b8ghrZr6BLCqZp55x5oJ1XjnfRybrMRP+OLUdZU36ld1rE2p1IAggeRBkF0husypAcmX89CBI5t+Q3AwORRmMJZg+aw6CaG6X9V7RBbLHeq8LUgaqIeD3B5E8XvRIN/FX/7Ls05MnL8Vz5ReRGmcAIGFqgFRNI22J8TRNI55IICaTuNxux0V1LM/SRE2Mkig6OiZbqFhMAJivpNEuWTR03eyd4/ON6Xzt88iMRrS0tHD02DHC4TDtedxBPy64OEbPC4DBgQFmtLRUzm6LjC4ej8dJBcRjMbNZh8tV1uRgMMJCwSzBESUJQ9NIJpMlTZrKhd1TYiyCvVQqRTyRyArbu+3UwQS1e+7v7ycYDJZdcinLMoplEjO+Rq1VRIUli5XtOqPk0iYM9jHJmEtzVd7W+XhEN7dOvZlbp95MQk3w+rm32fTRI6w68gErUgauGBj9AhuvWM2Vp2WOh5YwDNR6Brl94RPcu/gROhtPlHiOrChHvu9AyP05Ts8JUTYnUtGakGWXOWFLLgTRjSiIGKI5OSNbE3LGJJ45eQuy9VN0ITiTtLmtPYELsnks872VPVPb334bV7Mb39LRTpP54InHIZVC93hweTxQZrWC2DQb79IvIXcszvt3WZKQ/X4MXSelKCiWiDiRSBCLx5FkOaukuhKUmrjHgtwUrW41qSuWwvBYJY22K2zCNioyjKIli06krtC5WOQik1g01NdjGAbd3d2XyMHHEcYYB+xSIhufz4eu66TTabOCoYwSRwOLgWaK3EQxK7VQDXKg6brzoFYSJlQUhXg87jReETDzeB6PB7nKYslc9PX1Fa0Bz0Wm38HFgFL32XhDxHaJlZAZKchV2Oc/sVHbuNMJ1h7czIp9W8Ew8PXB3BdAThlc/vr/INHWwUPtr7J7UTONM0/hkQvUjouyNYlmTLr2ili0JmDZjWoIILiQvQEk2W1NwOZ7RMkNcsYKWjInaMF+zZrIBckDzmrbhSDKZvStwEShG8ZFUWamahr9/f0sWLiw7PdIkgR2qN/jKelXINS0473yi8jTVpVlgCRY0T+P241qlWgLALpONBbDa5ceV/DMV5sS6xn3eyZKuSr6vF6GhoZIp9MjY5ntZVDk85T6pLoV6ZVyBMof32TCCD615MBeaY3lIpbKJfn9fqekLhqNEgwGCxKE3IhB7n5i0SixeJymKqQW7JKkclsZq6pqRgrsygNBwOf14j1PxkmqqjIwNMS06dPLfo+tc9A1La/D5EWFPINIJlnIDr/nJxla7mA4hnvE0NIkdv6c2Kb/jZGKOAfvfA9ks/cMkqLhisVorpO5LiRx5j98m4FIjN7+Ibp7+0koOpLsobmtg7aOSbS1tRXO4VoYHBoyV241NWWX1Nr6jcyAQ0HNxkWMwcFBNF2viPhKuWZIrvzfr+Ctw7P4s7jm3GwSsQohCAIutxvZ7cabMdYlrZ4ObotAXIh8emZKIRfFSh0lScIly6QTCWKxGG63G1+ul0E+iGJBjwMYiRyMun8/xloDG59acgBWeKrSnCWlc2mCIBAMBIhEImiaRjQSyRtBMDBX84X257XUw0qVUgtOvXKJqIFu5R0z+zt4PB78Pp9j3HM+Wjj3DwxgGEZFolFRFJ3UgnoRkANnmLIn95wVe97qj3w7KhT2zEwrVHpuhkH66JtE3/oB2mB2LV3taQiGs7fXrftG7u2jrkfBt2QFk8wdMTg4SCgcJhwKsWPHDgDq6+tpa22lvb2dhsbG0T4RYzh3OzqST4fhbGPfmxnft026LhaBWF9fH5IoUl+iuVomJElCEEU0RUHXNER3AGnSErRzH5obyF7cC+/Bs+AuBNf4RMy6ppnHkGVqg0E0TSOZSqHpuuNy6vV4zqvDKpSu+ipGEARBMMsWBYHampqqeKHYRKXa5eYXAz7V5GAsgibs95RYoQiiSDAYZDgSQdN1IpEIgUDAuSHtVEKxwaraqYVSegND101nxuSIyYrL7cbv9WYJks5XC+f+vj5cskxthd0vZVlGtRo5jUUUOh7kTtaGYYyYWOW5Z8bTpCYTlU56as9BIhu+h3Jq0+g/GjBpa/ZLmteLmlE143vlFdJLltgHp76hgfqGBubNm0c6lSIcDhPu7ub48eMcPHQIt8tFa1sb7W1ttLW1jQiBBaFou/CxIt/3PdZU4kSgr69vFGEqBUEw2yULgoCmaYiShH/tV1GOvAmGjmvGdQi++qqcX9quUrAsk23SnbbcTnXDIG7l8POaBmWcc7XcEgulFHKRdZ0twW4ymcSwUkqCIJRFagzzoEWjy845XSIHnzyMZSVRSndgQ5QkampqiFkuitFoFJ/Ph9vjKfthsVML461aMCjcdtXuMxFPJJwBVZZl/H5/4SjDhMq+TfT399PQ0FDxNXLJMklwyrAmDBmVALkNsTJ/Fv2Wxvk92scp977QY31EN/4Pkrt/BUb+6I+3dy6BvkNZrw3ceiueDz90fvds3ow4NISeZ+Xr9niY2tnJ1M5ODMNgoL+fUChEuLubbVb9d319PQ0NDTQ3N1NfW1u9SbvY920dIx8pH5XemcAyNNu7Y8aMGRW/V5YkVEEwLcIBweXHPf+Oqp+jYnuhZAiNBUEwLc9dLlLpNKlUClXXicbjyJJkkoQ8kbpqkYNiKYVRyCgTjsXjaKqKYDXJE61y51LaiVLTfWavm2pWaF0suEQOxvi+cgcP0bL9jcXjZqMny03R5/OVNSDaVQtKKjWu1IKdUhBFMSs/ZpMCxwJUFPH7/SWZ9UR3uDMMg96+PmbOnFnxe+UMM6RqDPJZ+zCM0QNUiTBnMYx3SMkKoRfbTkuT2PEzU1eQzm+AFPFMJb3wd7j+h/+a9boyaxZd/+7fMeUP/gDZyncLioJ3wwbi99xT9LiCINDY1ERjUxMLFi4klUoRDoU419XFqdOnOX78OLt37aKtrY32jg5aW1rGVmY7csCSZEvME/ka9Q57P3YEyH557GfmIBqNkkqnK9Ib2JAtQ7GJFNxqll7HMIy8iwNBEMyUgstl+pxYKbxoLOZUL01EmL0SIzkwU7bxeNwRDdbU1Jh27pYwu6SwspTeINODQ8huwvVJoAqfenIwFlScuxQERxWbiMdJWU6CAb+/ZDhKEEV8Ph/KOFMLSk7UILMCwTmOVYFQzmdz3P0miDFHo1FSqVTFJlVgEhxJkkw3SFWtyMsCLDLAyIQwrm6YExxdyTRBKvT39NE3iL71w1G6Ahuqu5Gj9etpX/kbLNuzB9fx41l/H/rjP8aor+f49OnMOXrUed332mvE7767olW/x+Ohc9o0Ojo6iMZiRKNRhoeHCVlkQcA0Jmtva6OtvZ26akYVbJQ5yeQrvazGwN/X14cANJTh3ZELu2JBL7P76FigWE3ZZJeruJLfGpvcVpmgoqqkVZV0NJpV2VCNc9SLaLMKfQa79bIgCE7fG1mSSFvjwliMnTKRmUIURXFkLLXO82LRt4wVn0pykHlRx3wBK2SxBubAKIoi8VgMJZ0momkEgsGSojm/z0csEhlXasHWGwjAcCSSVYHg9Xrxeb0VfxfluJONFX0DA2AYNDQ0jOn9siyjaVpZ5CBzkLXFlnlr8seAkpPJOL8/Z0Wb53zVngOWrmBz/jfLPnpab+aY72qWrVjNpJYW6n4v2/0wvXAhifXrYXCQ/XPnZpED+eRJXAcPosybV/l5W995Y2MjU6dOZeHChSTicVOrEA5z4OBBPtq3D6/XS1tbGx1tbbS0tY17QK8GcqtIKn1uevv6qK2tHZMgThRFM7xure4n4vuwUwrlnp8kigT8flRLOK1q2ujKBspLxRZCuWONnSJNpdPolr7K6/M5vR4kWQZVRVFVitXSVKI3mMhx8ELiwj9pFwB5L2SFYqVybnbnOBkrT5fLRbC2llg0iqZpRIaHTaFikVCq1+tFlOVxpRYURSGRSKBqmpMXzKxAGBNEESYovNnf20ttXd2YzZVkSSJFkT4LhlE4MlAtYmAr8ovtTxCymjSN6RhkkwM91kf0/f9Ocs/jBXUF0pzPsEdaRYwA16xeTWNjI8Gf/xz57Nms7Ya+/GXn/Ls6Oki3teEOj5Qx+F59dUzkILNTp7Mvv5/pM2YwfcYMdE2jr6/P0SqcPHkSQRBobm42UxBtbWaXztx69zKOXdWUWG6KIpNokp8Y9vb20trSMuZDSpKEoqoTQg60jEZLlUbcZEkiGAg4zdfsygYlnTabrk2waM82N0orCrph4HW7R0VCXS6XQ2CKwSYTxeC4I+bqVz7mEQMbl8jBOPdT8kYwDLQcPwW7/XAsFkNRFGLRKF6fD2+BSX+8qYVUOu2UVXq93rwVCGOCNalOxMPQ399P4xjCrjYyzZDs/KJTBne+WP54IlNlIpMcGGqa+I6fEt/8fwrqCuSOJehL/z2bjkbweDysW7WKQDCIkEhQ+6MfZW2bWraM5Jo1I8cSBIbWraPll790XvO88w7C7/wORoX9P5zzLjBhiJJES2srLa2tLALisRihUIhQOMz+ffvYu3cvfp+PtvZ22tvbaWluNu/nC72CyyELuc9HMpkkFo3SNAZCZUOSJERhxAypmkhbKQVpHM3SXC5XVmWDZhjE4nFcLteY/BHKeV51XScWj5vpFl03dVM55CazjLuUWDnTcbQQ7DTCKNJzoe/BKuFTSQ4cZJipTITfAeB03Rt9aDMPFk8kSCWTJKz8mN/vz2+IlJFaqATJZJKBoSFzlWFVT1SrNlkQBNPiucqeB2lFYXBwkJmzZo15H7bRk13SeCHC0WWTkHFULNhRj/TRN0i895/RBk/l3U6s6SB43Z/SG7yCbdu309TYyMqVK52IVfDnP0fq6cl6z9BXvjLqXhxas4bmJ55AsAfGZBLPu++SvOWWis8byl9l+QMBZs6axcxZs9A0jd7eXsKhEKFQiOPHjyMKAi0tLbS0tNDe3k4gGCy4r/O6ssshC729vehAc3PzmPULdhpyIkSJajqNDvjGaYduVza4ZJlkMknKapmsqip+n6+iKEIpC2bbrM3eJlgkVSvLMpQj6CzDT8EmB3IOkboUOfgYo2oh5CI3kF1TWwp+y6UrEYuRTqXQNI1gIICQc3NnphbiyST+Eu5zmsWkFUVxOhQ21NdX37RkAh6EgYEBDBhT5CAzRSDLMpquo1wgclBuukAUhNFOh2VC6z2Itvm/oXRtz7+B7CNw9e/iX/abHD5+mo+2bmXq1KksXbrUqVoRIhFqfvzjrLcl1qwhtXz56OPV15Navhzv5hEdg/+VVyacHGRCkiTaLL+ExYsXE43FCIdCdIVC7Nm7l927dxMIBmlvb6etvZ3mpqbsyeICruy6QiHqamrw+nwjUQWrtK7cb8I2iXiw1wAAzXBJREFUQzJU1TQqqpLRl6qqzmKmWs+LXf0kp9NEYjHTFC4axev1VmUsSqfTJBMJNMNAkiT8RfokgPW5rOey2KJB1/WipYy6rjvXTxTFrHvqkxE3+BSTAwMc68uxXsyi761gAPK43ciiSDQWQ1NVhqNRgoFAtvFQZmohGi1KDlKKQiwWy9I5eCVpQtzMBMNAp7qlO/19fbhdLoJFVn+ZKFRN4JJl0uk0iqLgK0GmJgLl3gFjuf/0WC/R9/476p7HC+7Bu+AeAmu+ghBo5cMPP+TEiRPMmzeP+fPnZ5G6mn/+Z6TBwaz3Dv3xHxc8dnL9+ixy4Dp0CPn4cdQK6vYL5WsrhhWBC86ezazZs1HSabp7esxyybNnOXrkCJIs09Lc7KQgfFVsgV4RDINwOEzn1KnWqed0zrReK6XMFwQBSRTRMsyQqoFMIWK1V79ut5taQSBmNTxKJJOoqmoueopEEQo927axUUpRMAwDl8tVlqjaqViwxMqFSjWFEuO3HXmwI5SZW+uadl5SihONTyU5EEWR+oYGc4VaoRAxF/ly7iWNb/JAkmVHh6CpKpFIBJ/Ph8fjcc6vVGrBwMzNJi3bY1mS8Pn9RIaHzQdoIlbPgmDWjVdxNdbX309jU1PBhyvXaKgQXC6XGUJUVZMIXqQuZpXcfaau4P9ZuoJY3m1ck5YSvP5ruDoWoyoKmzdupKenh6XLljFt2rSsbcX+fmr+9V+zXouvX4+yaFHBc0gtW4bW1ITU1+e85n31VaI5lQ7FP4h17ap8TSRZpqOjg46ODjAMhiMRU9QYDrN79252ffghNbW1NDU3097WRlNTU9Um11IYHBwkmUjQlqdTX6aIMfP3QkRBkmUEVXXMkMYLwzDG1869DEiyTMDvN1f7qRSKqqJGo/j8/oJjU76Ugq7rTndYwzDMZlEVaC8kWUbUtMKphTLSfI6hnH3vZFyj/oEBJFn+WHdkhE8pOZAkiUmTJnF8/36Slkf4WJBPdzCevgNihlAxnU6TiMdJp9P4/X4kWS6aWlBV1Yw8WMf2er34fT6nH7soihM2OVbbEKm/v3+U+dFYxISiKCJLkjnwqer594Ev91zLqGowDIP0kdeIvPVD9KHTebcRayYRXPuneC77DIIgkEwkeP/994knElxzzTW0tLaOek/Nj3+MGBshGYYgMPQf/2Px85UkEjfdRDBDmOjbsIHov/23ZQvkHNOtiVxdCQK1tbXU1tYyd+5cFEWhu7ubUCjEmdOnOXL4MLIs09raakYV2toKioKrgVAohOxy0VQiXSbY4lnnY4yOMMi5TZjGCVXTRlIKE0SW7PHS4/Egy7JjUBSPx3G73XhLeKxklika1u+BYi6uBeCSZVKplOmamG/sKvHcZuoNRom6BYHucJj6+voxmVxdTPhUkgOAzs5O9u7YQU84zNTOzopLGfPBIQb2fsY4YQYCAWSXi6TFjiPDw3g8Hrw+36jUggEkLEEjmINtMBh0mLjNcCckamDDGryqMcyn0mlS6TQ1tbVVqS5wuVyoqoqiKOedHJQNK+9cCEp4H9EN30M580H+DWQvgat/H/9Vv4VgdeobGhxk46ZNCMDa666jNo/NsRgOE/z5z7Nei995J+qcOSVPOXnzzVnkQIxG8WzaRGrdupLvBbDpczWpQTmRpMmTJzN58mSWLFnCwOCgI2r8cOdODMOgrq7OLJVsb6exsbGqhDoUCtHa2lrRPkcRBSu/LYqiY4ZUDahWtNHlck1cONyaiAVBQJIkgsEgyWSStKKQTqcdsaKtD8lMKSiKQtLq6aDruulfUKLdciFIGaJEwzDM7zhjQacbRlG9QabZke0EaachBEGgt6+PRVdeeSmt8HFFfX09uFx09/SY5GCMF9Jmnrk17eNdSdse5olEgnQqZXZCs3JkEhC3cnfReNwhAB6XC38gkLUas0NvEy3Iq1ZqIRKJoOs6gUCgKlUQLlkmIQhmPnWCyi4LoRLClE+/YuoK/hvJPU/k+asJcc7tuFb8IYGOkcqOUCjE1g8+IBgMsmr16oKtk+t+9CPEVGrkfGWZoT/6o7LOV2tvJ7VkSVa/Bd9rr5VFDrI6Ml6oVI8gUF9fT319PZdZzaK6u7sJhcOcOHGCQ4cO4XK5aLW6Sra1teEZh24llUzS19/PsqVLx3XOjpe/1QxJK9cKuAjslIJB5d4GlUBghNyAOXb6fD5kWXaqtaKxGD5LrGg3mEomk875gZleHc95yrKctfrXdd0ZvyrRG+QbU9OpFNFYbEx9My42fGrJgSRJtLW3EwqHxz1pZHpqVxOCIOD3+/G43U6ODcMglU6jqCrhnh7H5CNgbZd1XhRutlR1jNcQyRI2Dg4OIkDZYsRSkGXZDL9ag8H5qlqwLZjLRZY3u5oivv3/Ed/yo8K6gslL8a75M1LBGVk58+PHjvHhrl20t7ezfPnygp9XOnWKwK9+lfVa7IEH0Do7yz7nxM03Zzdj2rULqasLraOj6Psy+0FUlaxVQE5zw8luj4cpU6cyZepUDF03W1BbWoXt281KkIaGBqdKoqGhoSJi093dDUBbW1vZ7yl6/pYtsYC50pXGQc6dvisw4S3O84XxXS4XkiQ5FswJq9ujJEmkUikMQcDQdTyWtmC894zLGhOyPFDsc6pAb5D5Xdnv6O7pQZLlMfWEudjwqSYHkydPZv/OncQTCQJjVDDbt+lEGuvYYsVMP4S4pS+YPGkSNTU1eRudaLZlsiCM3/CoBMZS9ZGPVEWjUfyBQFUbt7hcLnTDIK0oF4X9biEYhkHq8KtE3/4h+tCZvNuItZMJXveneC67zRSQxeOOYcvevXs5fPgwM2fNYvGiRUUnr7r/9b8QMoxgDLeb4T/4g4rON7VyJVpNDVIk4rzmfe01Yl/6UvHPaX+Wio5WHJWKgItNL4Io0tDYSENjI/MXLCCVTBIOhwmFQhw9epQDBw7gdrtpsyIKra2tJQVxXV1d1NfVjSv6kAtRkhAUxTT+kWVzgs+jTygFR4g4kSkFC6IgkG8JYZc8ptNpotEosVTKIQRutxtfTU3VHBZtEykdc6K3043lGB/ZaQ3Ir83o7u6m3RqTP+64eEfKCYYtSvzAUnIHclTc5eJ81rR6vF7SqorH4yEWjTrlQKqqIuXJpyvWimBC9QYZyM3dFYQ1kOcrgYxEIlV/sNwuF2lFMftJTKDgLBOV3hdq9z6G3vgOypmtef8uuPz4r/49/Mt+09EV2N+1rml88MEHnD17lkWLFzN79uyix5KPHMH/3HNZr0W/8AW0StXVHg/JG24g8Oyzzku+118n9oUvQJEVqD24VjOlMJFdQj1eL53TptE5bRqGrtNvt6AOhzl96hSCINDQ0OD4KtTX1WWlKQ1dJxwOV301KQoCWKkFyBAuklH9UIa4zkkpXGBNjq7rqLZIEGsiNgynJ001IcsymqJkkYNyIsiZroj5zqm3r49V115b1XO9UPhUkwOPx4MvGKQ7HGb6GMmBjfORz45Fo2iqauolgGgsRiQSQRAEUm43gQwxD5zHlIKF3HrfXNh/s7s55vu2hoeH6Zg0qarnZecnM8OIE41yDZC0aA+Rd/8LiT1PUtCvYOF9BNZ8GSmYHZI2ME1g9u7dSyQSYeXKlWV9d3X/438gZAqwAgGGKylDzEBi/fosciD19+PZto3U1VcXflNmCPdCYawaI1GkqbmZpuZmFl5+udksqrubcCjEoUOH2LdvHx6vlzZLq9Da2srw8DBpRal6aZtkVSzkEyXmVjsUKom0G7AJVv3/RKPQt55Opx3BoSEI1AaD6LrutF32j6EqoRhkWSZllYI655ZBMAud56gSRvu9mONxKp3+RKQU4FNODgDaOzo409XFcipXThuM1CFPZGcuwzCIxWLOjRkIBBzLzmQqZYbM02mUdBqf32+agXD+xIgZJ5r33O32zjYKkSjN6h1R7ciBPfDplltirjZjIlDqTjDUFLFt/0J0048wlEK6gmUEr/9LXO2X5/17JBpl+/btaJrGdWvWlNUC2PXRR/hfeSV7P//236KPsY+FNm0a6XnzcB844LzmffXVouSgagZIGRjLs1cNQu/z+5k+fTrTp08faRYVDhMOhThlRRW8Xi+StdKs5iLC1poUdWK1K4lEcST1l/Fd2VEDzwQKEXOR6V2gaZrTEM4wDKfDo/1d2VqreDyO1+cbcyO2XMguF4Kt48qBIIpQ4DstWMKImVJwuVxMnz69Kud4ofGpJweTJ09m+6lTDA8NUZen3KsU8j7oVSQJhmEQtTo4CoLgEANZlhkaGkLWdbOCQRRJK4rpjZBK4fF4HEvW80YOLIFZZv5Xh5LqXxuRaBTDMCYkX+fOKGk8H+SgEAzDIHnoZSJv/RCtmK5g7VfxzL214ETS29vL5k2bcLlcrFq1qixiAFD33/5b1u9aXR2R3/qtyj5EDhLr12eRA8/WrYh9fegF6rzHY51cLZTTda9SZDWLWrSIeCxGOBxm7969aLrOm2++ic9uFtXWRktr67ieTcn6/jRdL8vka5TBkqaRthcQ55Ec2HbRqVSKtNXLAcMwLZVdLic9KQgCfp+PhFWtYJdrV4MgOKXeduQgUxCs645AMxO6VRkC+fUGPT09TJsxoyJDposZn1pyYNfatre3k0inCYfDFZGDzKiBvT/n5ipD2FIOdF0nGo06x8lsKGL/rg4MEI1GmTJ5Mul0mng8jqppxIeGUBUFv99//hvN6HrR1EEhRCxh20SQA6fhynkqacx39ZXQXobf/C7pYrqClb9v6grkwgPM6dOn2b59O/X19SxcuJBAIFDWObm3bcP3zjtZr0V+53cwxvl9p9asQf/xjxGtwVvQdXxvvEHsoYfybj8h5GAsz1uOJ3614Q8E6OjoYMfOnSxbuhSvz2d2luzq4sTx44iiaLagtshCIBis6DsRRBHJWoVruo5cZrrM/sSKrbq3zMLOB2yNQywWc8R9bpcry0Y5U7ckCIJjfW4TBFuoOB7Y46hmpRolScp6ZsU8Y3iuZXLW58J0RlxWLJ32McOnlhyAeZElSaKhuZnu7m7mzp1b0ftzb5BqiqI0XScaiTgTWTBPRUKwpoah4WHzoYnHHRvSuFXVkLZq2G3f8YmOINgmUAZjG/gjEbONcLVCh5mQZRlREFANA1VVJ7SeG8gaWLRoN5F3/2sRXYGAb9H9BK/9MkKgpeg+Dx48yL59++js7GTOZZehWxGlcs5nVNSguZnoF79Y3ucptmufj+R112WlK7yvvkrsgQfy2iPbg381ycFYnrrx9FUpF+FwGDDTl263m9bWVrNZVCRiahXCYT7au5c9u3cTCAQcA6bmlpayygpFSQJrgqsUqXQaAc6LOZhhVQulrOZyqq4jWZHQTMF0vmtiRxCSgkDKsl42rEjDWGFXZhi6jppHh5RPe6DlKWG0MTQ4iK7rnxi9AVwiBwBMnTqVU0ePoul6WSV0uVGDrL9VgRzYncsMywktGAzmFdFJokggECAyPMzQ8DA+vx/Bytkp6TSqpiGKohm+S6Vwud34vN7qT4zWCkCw0goiZGkMykU0EqGmtra655YBl92lUVEmnBwYAGqK2LZ/JrrpHwrqCtxTllN7g6krsO+rfNB1nQ8//JCTJ04wb/585s+bZ0aVKC9373n/fbxbsyMWw7//+xhVakKUXL8+ixzIoRDuPXtIX3HFqG2dUsYL7SBXpQhfMXSFQjQ2NIyagIM1NQRraphltaDusQyYQqEQx44dQ5IkmltaaLfIgr9AdEi0tASVkgPV6uhoGIZDxvPZNI8Xuq6bDoiWNsq+X31WiWLmGGpY1QmFSKPXaqyUtC2ULYIwVpIpy7LTtZYCDZgyvwvH/CgPOQh1d+P1+5kyZcqYzuVixCVyAMycOZPDe/dy4vhxZs2aVeJdhYVMgmA2IRrLxGhDs3okGIbZgjQQCBRV19fW1JhljYkE6XR6ZBASBIJ+Pz6fD03TSKfTjmhRlmWTJOQ8nBXB0hXYZj/5wmyV7nloeHhMbZrLhcvtJmXZtE4kDMMgeeDXpq5g+GzebaS6KdSs+zO8GbqCQt+Xoihs2bKF3p4eli1bRqdVWVN2eN4wqP+v/zXrJXXSJKIPP1z+hyoBZe5c1OnTkU+ccF7zvfpqXnJQ9VLGMT5vEx050DWN7nCYOSXsqCVJor2jg/aODlNjlNksas8edu3aRU1NDa1tbXS0t2c1ixKLVCwUgx1V9LjdznWopqBa03XSOZoCURTxud243W7ytbQvZyzyeDwIomiOd5aYspxujPkgyzJpVXUiArnIjB5oFpGC0ZEDVdc5fuwYl1955YSbSJ1PXCIHQF1dHbNmz2b//v1MmzatZPh9onLWqqoSjUbNc5NlgoFAyeO4XC58Ph+qpjE0NERLixmWtgcLt9uNZCn1E8kkKcsbIRKNIkkSXq+3ctcxw8gbdrMhCAKStUooF7quE4lERnUNrCZctu6gCpazhZDu2sPg698ifWZb3r8LrgDBVf+OwFV5dAV5BudEPM7GjRvN5knXXutcX3Pz8koCfa+9hnvv3qzXhv/wD6Ga4WRBIHHzzdT8+MfOS56NGxGHh9FzokFV1xychwjAWNDf34+iqnm7MBaCIAjU1NZSU1vLnLlzURWF7p4eQqEQZ8+cMVtQS5LTLKq5qQkEwfE6KAe6ppG2ShjdRXL3gihiWO2Hy4WqaSYpsCZuwzCQRRG3FbF0TONy3lcJMbEjHclEwjRwMgx8Pl/F95Msy4iGgVKEWNmVC8X0BseOHSOZTHLTTTdVdPyLHZfIASYrXLFyJa8+9xyHDh9mwfz5Bd+jU2JQG+NAlVYU4lZ3PFmWK7IPrq2pIZFMEotGaaivNz+XYYAw0hhEtNINfp+PZDJJMplE0zRisRjxRAKf12t2RSs2YdpVCOV8PiufV+4DG4/H0XR9Qp3FBEHAJUkYVmqhmqpiLRJm6O3/TLyoruABatZ8BSlYQFeQc+8MDg6yaeNGRFFk3dq1o1IupWqyzRPTqPvv/z3rJWXGDGL33FPqI1WM5PXXE/zXf0Wwa+cVBe9bbxG/666s7apdyjhWWjDRotSuUAiPxzOmKigbssvFpEmTmDRpEoZhEBkeNtMPXV18+OGHYBgEg0Hq6+uZ0tlJc2MjQonVq601kCSpKEHOtLkux1LYtnXHSg/IlpdMPhO23G++Ur2W2+VCFATi8bhp9mZpriq5p0RBcKyZC8H+m13CmLtwTCkKBw4cYM7cuR/7Loy5uEQOMC98TUMDs2bN4tChQ8yaMaOgzWk5E16l4UpNVR1i4HK5ylaf2/B4vXisUr3hSIRaq6OhIIzu9mc3O/F5vSRTKRLJpNMfPZFI4PV4TOVwzgBjiw3LHVAr9X6YyEqFTLhcLhS7pLEK5MBQkkQ++AmRTT/CUOJ5t8nUFZSCfe90hUJs3bKFmtpaVq1alVd8lVualg/+F17AdeRI1mtDf/RHeXOs44VeW0tq9Wq8b7/tvOZ79VXid9450pBM152J5kKnFSYaoVCI9ra2qpEQQRCoraujtq7ObEGdTtPd3c3pM2c4Gwpx4uRJZJfLNGBqa6OtvX3UOGYYBorV8riskt5MYpCHJCiWyFC1rqtuGLhcLvxud/EKiCp8J7Is4/f7TS8Eyy+hYhv8cszKBKGg+dGhgwfRNY2l42modZHiEjnADGkbgsBll13GiRMn2H/gAEuWLBm1fcmoATi1/nZv9FIwDIPoOIiBjWBNDclUiuFIBL/fj0GJvuyWOYvX4yGlKGZ7aE0jkUqRTCZxezz4vF4nJWGLDStBJauBSCSCS5LwTbC9scvlQrAavIwnPWQYBokDLzK04QdoQ4V0BVMtXcEtFZGqo0ePsmvXLjqs5kkl+2IU2reiUPf3f5/1UnrePBK33VbWuYwFifXrs8iBfOIE8qFDqJddBmSnQqq2cr8IyUE8FiMyPMz8efMm7Bgut5vJU6ZQW1/PHCuU39fbazaL2rEDMLvPtrW10d7WRkNjo9OdVBSEyr0N7FJtQEmnzcoDqzrJ0HXcHg8et3tMfVHGqneQZZmA3++YxKUsj5dyYC+ASh1bVVXzfiVbbxBPJDhy9Chz5syhznKt/SThU00ObH9s29zC7fFw2WWXsfejj5g9e3ZWaN9+AMoRfyEIiGXa58Ys8aFoVR6MFba9qJpOm+ZIslxeTl0Q8LjdeNxusyQymUS1yoUSySQetxuv1zum/gyVehwEJ7BSwUZmznCsJY3prt0Mvv7twroCd4Dgqj8gsOzfFvUryIVhGOzevZvDhw8za9YsFhVrnpTpOFlgf4Enn0Q+fTrrtaEvfzlveWG1kF60CLW9HTkUcl7zvfoqEYscVN0dsczn7HwjZH3+TI3IREEWRRRRpLamhpaWFubNn086lSIcDhMOhzl+7BgHDx7E7XLR1NxMQ0MDk0p0zswHI0/lAZjuim6PZ+zXdJzkTpIkvD4fiUSCZCqFJEnll22XmTKxj5OJffv3I8syl82dO66yyosVn2pyADgrY03TkEWRWbNnc/ToUT7at4+rV6zI2rYig5IyVs124ySAwDhbFAuCQE1NDerAAMORCA0NDRUzeJfLZYbdLZKQtkqG0pkVDhV2biu3emM4EqGmSm2aS8Hlco2ppNHUFfydpSvIB4HAFQ8RvPbLiIHmis5J0zS2btvGubNnWbx4MbNKNE/KvLfyXo9Uitr//b+zX1qyhOS6dRWdV8UQRZLr1xP86U+dl7xvv030t38bw++vvsfBRSpGDIXDNDY1nZdmRk7FQkbu3O3xMLWzk6mdnRi6zkB/P2e7ugiHw5wLhfjoo49oaGw0SyXb2sx+LQWuia7rTrWT7X4qYJICj2XVXimEjJ+VOzSMRqYDajyRIFiiyss5hwxxdT5kNabKGCuGIhFOnTrFokWLkK3v4ZOGS+RAksxaV01DtvLkCxYsYNv27cyZPdsprav28KMoCqlkEqBqLYoDwSDDw8OOF/lY2lDbvRhqgkE0r9escEilzDx9NIokiritcqRyowmlyhptoVVba2vF5zsWuF2uEfFUGTB1BT8msukfCusKOq+m/qa/xt22wExTVTBhpVIpNm3axNDwMCtXraKtra3ke7L2n2dQDz76KLJlwGNj6MtfPi/NjhI33kjg5z93mjuJySSe994juX79SOTgPDS/KoWJ+iY0VaU7HGZ+EWFzNSGKIoJVhZMPgijS2NyMx+dj2tSpaLrO4NAQ3eEwhw8fZv/+/XjsFtTt7bS1tiJLkqPNsRcwutX7wGM9/87+K0ijZp0X1XOTBbOkUdc0s1mTpT8oREIz06TFjm6nH0VRzIpG7N27F5/Px4zp08EwLpGDTyIyRYmCFXKeOnUqhw8fZu/evay57jqHYVYEK0eVb5KwO42ByfCr5QgoWYZJQ5EI0ViM9nIn24xcYtb+rKoJn89H0qpZ1jSNhFXtINoDhcdTUN9gmyIVmyxtj/Xz1QPd5XKBYaBZEaNCtcmGYZDY/yJDG76PNnwu7zZSfSf1N3wN79z1Y3aFfH/jRnS7eVJDQ1llacW+TyEapfYf/iHrteSqVaRWrar4/MYCvamJ1PLleLdscV7zvfoqyfXrq17GePHFDMwGPJqmVb0LYyE42qkiJXm6pqEqCrphUFtbS319PdOnTUO3W1BbFRB2s6i6ujqamppoaGx0+rkEPJ684XpjDMQAcCqaqgVBEPD7/URjMTRNI5lM5tUwlVsCDKa2AiytklXW2NvXRygU4qqrrjL1QJfIwScT9oOlqirYTmGiyMLLL2fjxo2Eu7pos8xJKhbkkX/witsmR7KMv8oCvGAwiCwIRNNp0opSWnRURs5WkiSnDFJRFDPEqCiomoaWTJJIJpFk2ck95kZBirWMBatSwZiYhkuF4HK5MNJpUul03muQPrfL1BWc3Z73/YI7SO01/55gHr+Ccies3t5eNm/ejNfrZdWaNU6kp5xql2KVCjU//SnSwEDWa0Nf+UqZZ1UdJG++OYscuA8cQDp5EsMirJ9kMeLp06eptbwKzgecVbBhoGvaqEojMMsXwbzvM6M2oiBQX1eH3++nc+pUEokEvX199PX2cuzECbQjR/B4vXRYEYXWUs2irHRqOVc3sztjtSCKIj6vl7hlkiTJ8qjFl11FJdrVXAXuIc2KQsDIgsIA9uzZY5aO2m6Ilrj7k4ZPPTmww2PpdBosQaAgCGbXtJYW9n70Ea3t7WMbzPLcePF4fKTDYpWsazMhiiJujweXohCxKhfywhJOFrMrzYUgCE5KwTAMhySkUylUK/wYTySQZdlULlsDkYBVU1xgv5FIBERx3LqLSuDxeJywKRnkQIuEGHrr74jvfarAOwUCSz5L7XVfQSrUB6GMCevUqVPs2LGD5uZmrr766qx8ZiVVHrlXThwcpOYnP8l6LXHDDXmdCicSqeXL0Robkfr7ndd8r77K8Oc/b55nldIK43X1q2Y/FDBTCl1dXcy1BJjnA3bZsG2GNKoM2XIrzCxfVFUVVVFIW9EEc0MDrxUqnztnDggCfX19hEMhQuEwJ44fRxCErGZRowi9TQzKSBdMVIt7l8uFR9PMPgyJBHIhPwebUBXYTzqTUFnj19lz5+gfGOCaa64x9Ref0KgBXCIHDpPWdR1F05DAmTgvX7iQDW+9xamTJx3L2pLIeSgyBXm2uA8oaYs8Vui6jj8QIJFMmvW/+aIHGWZGY13BCYKAx+MxW0P7/SP2zIri5CnjmN+v2+0uKvyLRCLm93Ee8uE23JZbm6ZpqKqKaChEt/yYyOZ/wFASed/j6VxJ3U1fx922oOi+i2ksDGOkedK0adO48sorR98H5eRhC4Tna37yE0TLZdPG0B//cfF9TQQkicSNNxJ8/HHnJe+bb8IDD5jVPNW41hdh1KCrqwtV05h6nj32JUlCVNW8K3F7zAGTFCQSCVMXw4jbq9vlQna5RqUHW1taaG1pYdGiRcTicUKhEN3hMPv27WPvnj34/X6nWVRLZrMow3BaL18IeDwe89nWNGLxeNb4Uo55mG4YjibJjjzous5He/fS2tpKa0uLmWYwjE9Mi+ZcfOrJgT3JJSwrTufRMAwaGhuZMnkyH330EZOnTCnPN7tIiCph6Qy8E9ghUbNboHo86MDg8LBpsZpxfoZFfqoFURRNzwSv1+zjYHdfU1UzsqAoZl21JOGyiELmpDYciVB7HlMKNlwuF7phENnzNMmN/72IrmAa9Td+De+cm8sjUwW+X13X2blzJydPnmTBwoVcNnfuuHwWIJsciD09BH/2s6ztYrffjjKBtfbFkLz55ixyIEUi+D/4gKGrr65OOWUVxGzVjhycPn2ahvr6go2SJgq2KDGXHGiWVbqSSiG7XOZnte5PlyzjcrnKHosCfj+zZs5k1syZZrOo3l6HLBw/fhxBFGltaaHNMmAKBgLmdc45p/NB6QRBwOf3Oy3vk8kkfp8vbyoj3/VXLJdPu3MvwMkTJ4hEoyy3qtjs9F8xC+qPMz715ABwyEEqlcLrdmcN7AsWLuTVV19l+/btLF++vPLB3Bp8YrbRkSxPaH7KsJTyNbW1xKJRorFYlqWyYZ3TREGSJHyShM/rRVNVUlbaQdM0UoZhWreKIm4roiDLMpGhISZPnTph51QIQt9+4q99Cz20K//fPTXUXvOHBJf9m7L9CgppU5zmSb29XHXVVXR2dhY+rzImK2eLjGPV/sM/ICZGoh6GJDH8R39U1nlPBLRJk0gtXoxn927ntZoNGxi6+uoL35FxApBOpQiFwyxcuPC8H9uOPuma5vgR2BVRyWQSDAO3pbh3V0AICkGSJKcMEiAajRKy0g979u5l9+7dBIJB2tvbaWtro6W52TlHe1Kd6DtAtFK3sVjM1EpJUlaVRaHIre0iCSPli0NDQ+zes4fOzk7qLTts+xm8FDn4BMO+uGlVxXC7s3JmwUCA5VddxQdbt1JTUzOm8iQ7jCcIwoSvKGxWHAwETFtTyzWxfhz+7mOFJMv4LdGlqqpmq9VUCl3TSOm6+W+rcmMi9BeFoA53MfjW3xLbU0BXIIgErrB1BZX5FeRDLB5n08aNJJNJrr32WpqbS+xzDPla6dw5go89ln3ce+9FnTFjTOdcLSTWr88iB4G9e3F1dyNWQaxXjRV/NSeoc11dGIbBlMmTq7jX8qFYUbrMEt1UKoUoivj9/rIauY0VwWCQ2bNnM3v2bFRVpae3l3AoxNmzZzl65Aii3SyqrY221lZzHLTy+BNJEuzmcolk0jFIyhcBzmzEpmqao8VyyTLJZJJNmzYRDARGnHMzntFL5OATDEmSHPMfVVVxyTKCtco2gClTphCJRNj30UfU1NRU1LNbVVWHhQaDwQlv9mKrawVRpKamhlQ6zeDgIDWBQGkb3gmELMsELaLgCBnTabPsSNdBEBgYHDRTD9bKptqpF11JMLz5/zK86UeFdQXTVlF341+V1BWUi4GBATZt2oQoSaxdu7bsioxS4e7ctELt//pfTsMjAMPlMjsvXmCkVq1CDwazdBC177yDWqKN8ccRZ06fprmpCe8EW4CDOZmpVrthVVVRLbKtqCqyy4VLlk1PAo/HFPsWqfmvNmRZpqO9nY72dpZgpg3t9MOuXbvQdZ3a2lozotDSQmNT04RGktxuN6qlLUomk44TbSH30Uwhoq7rbNq8GU3XWbNqFZIkYQCZ7/Sch+t9IXCJHFjweDwm89Y0p7UvGU1i5s2fTzQaZdvWrQT8fhosc6RSSFhhXo/Hc156fetW33HJGhCGhobQNI2BoaFs7cEFgigIjhNjwOczW1QLAl6fzwyHZgiBBEFAlmVcFlEYK1kwDIP4R88y8OYP0CJdebcRaqfScNNf4Ztbpq6gDHR1dfHB1q3UWc2TKllhlNu8SwDk48cJPP101uvRz30ObdKkis53QuDxkLj+egLPP++8VP/22/T95m/COJ4HuxHYuFNkVbrWyUSCcHc3V155ZVX2lwvDIgP2JKdleBrY4mJRknCLIsFAAJfLRSIeR7SshC+k6VRtTQ21NTXMnTMHRVUJW54Kp0+f5sCBA0iyTJsVVWhvb5+QtKvX4yFqlV+rqmp+J/a1tyoWRHC8T8AkB9u2bWNocJA1113neCY4pMKaG7yXIgefbHg8HqLRqClEsS92Rs2uACxdupRoLMbGjRu54YYb8JUIhasWqxesOthqi5/ywakxtkJ29fX19Pb0MDw8TG1tbdUMl8YMq+xKtwZ2TdMQMVXRhmE4JZGKqmblTs23jpAFl8tVFtlKnd1J/2vfJH12Z/7T8dTguep3ERc+hKumfvzEwLq+R44eZc/u3XRMmsTyq66qnBiWSi1kRA5q//7vETImC93nY/j3f7/iU58oJNevzyIH8sAAnu3bSeXYk1cCx13vIsHZs2cRBYHJVSJkhq47E9koMmBFNW3CLNsEQJJIK4o5zljPjmEYF/6Zz4BLlpkyeTKTJ08Gw6B/YIBz587R3d3Nzp07nTGrrbWV9vZ2Ghobxx1VMAzD7LdgRYdTlh08WBE6MBeCouhEeWVZ5tChQ5w9c4YVV19NQ0ND5g6z0iGXShk/4XC73QhWnbDjmpdj5iFJEqtWrmTDW2+xceNG1q5bV3Q1a0cN3G63sz+dCbRttcSImVpcn8+Hx+tFSyTo7+93BEQXC1LJJK4M46TMUip7YFSsn1lkIZEwc4JWCsIly1kTsDp8jsENPyS295n8BxZEgks+R/3ar5ASzdLPlKKM2wvfAHbv3s2RI0eYM2cOl19++YSEc22S6Tl0iMCLL2b9LfqlL6GX0jWcR6gzZqDMnYvr0CHnNe+rr46LHFxsPRVOnz5NS2vrmO8fwzAcEpC5qLAbvtldVm1CIEnSqLC4YLuy6jppTTP9RXJsfy8W2AuYxsZGamtrmTdvHmlFoTscJhQKceLECQ4eOoTb5TJ1CtZ/Y8nvi5KEoet4PR5n8WFHD4ARh9iMqGV3Tw/79+1j/oIFTMohfI6BEqau6mL8fquBT+anGgPsksakZTMqSVJety+v18uqVat45+232bp1KytXrsw7+Gc+4J6MSEQpK+HxwNB1dMsHPBONDQ2kLN+DeDxe2BjpPEHIcCZLplIF+8rbA6EX8zuzB07FEl0Zuu54RwiY4T7ZUEjt/H/EPvi/GGoy736901fTcNNf424zxaVuSyyZTqcxxpGb1TSNLVu2cO7cOa5YsoRZM2eOaT8w0hSmUNjbvoeacpor6TU1DP/O74z5uBOFxPr1WeTAs3UrYn8/epnpuYmCbXE+HgIXi0bp7+9n2VVXlf2ezPvZiQxk6JwMw0C2JnabFBTs0GlBtJwSNcNASaUwDOPice4rQObs796OcEyZMoUpU6agGwaDg4OmAVMoxOkzZwBoqK83KyDa22moLx3pMwzDKaUURXFU9MBO39mdeQ3DIBKN8uHOnUyZOpW5c+eO2qdo+RvAJ1eMCJfIQRY8Hg/JeBxFVbEveb5br76ujuUrVrBp40b27t3LokWLRm0zKmqQsb+JWu/Yq2spJ4wou1wEa2oYGh6mf2AAr9d7wRvf2OZQqWSyrLCcnVKQrVJQwzDMsKtFFBQljbr/RYY3/z1GLJx3H3LDdFNXMOemrEFFlmUkQUAXBBRFySp3KhepVIqNGzcyMDjIqlWrquKr74Q888AAfHv2EHz77azXI7/92xgXoDKlFJLXXUfwJz9BtJqNCZqG7403iD344Jj2V02CPd64zpkzZxBFkY4ibZANw+rlYQsIrZLDzL+LomhGwCxCkM8GuRhs8qCk06bxmhVZuyhQ4HoVmtxFQaCxoYHGhgbmz59PMpmku7ubUDjM0aNH2X/ggNksytIptLa15U2f2FbJNnKjB5nkO60oJFMpdu7cSV1dHUuXLs17fpkLxouGfE0ALpGDDNgsUFXVrJs5X7lNR3s7ixYtYs+ePdTU1DB9+nTnb3mjBjas6EE5bYwrgW6tRCB//W5dXR2xWIx0On3BShszYUcPkqnUmB4wu8zIJcuIZ3cQe/WbpM99mH9jdxDPVb+He/Hn0NxeEomEKdSyypoEQcDt8aAmEqTT6YrJwfDwMJs2bULTNNauXVu977ZI6NwwDNp/9KOs17TGRiJf+lJ1jl1lGH4/sVWrqNmwwXnN++qrxCzHxAuKjJXgWHD69GnaOzqQZdmx1NVUFc1ajWqa5jgSAk6EQBQEhwjYmoHxQMiIxrldro/dqraYJsvr9dLZ2UlnZye6YTDQ308oFCLc3c2p06cRgKamJocs1NbW5t1fbvTAjrYomoaiKOzevRtJFFm5cmXecTSXLLgvkYNPB2RZRnK5MKzVqCzLzgOXD7PnzCESjbJjxw4CgQAtLabXftJaHeVGDSYK9sBjh8XyCXhEUaSutpb+gQGGhoYueGkjmINjMpEgOMaeCurwOQbe/AHxj57Nv4Eg4l30IO4Vf4DhrgPDIK2qZsmf9R3Z6QgBqzukReica18CPT09bN68Gb/fz5o1a6o6IBeLMvk/+IDgtm1Zrw3/3u9hFPou7Xt4PI6MVgjYfiYyIxu56bd85z18ww1Z5EDu6sK9Zw/pxYsrPZnqVCpYGGs0T9d1BgcGGB4eZtasWUQsNz4yiEDm9yOKoklIbVJb5bFBFAQUO0Xhdn8syIGtPRCwvAYsfUAxiIJAU1MTTU1NLFy4kEQiQTgcJhwOc/DQIT7atw+v1+uYNLW0tmZFUDKjB3YZdTqV4qOPPiIejbJ27dq8352Rc//DpbTCpwoej4e0ZaWcKTTJFz0QgCuuuIJoJMLmzZu5/vrr8bjdKJZiuOCNIxRu51wpdGOkq6JtgFSIkNTU1BCNxUimUhdFaaMgCKTS6YpLgfR0nOFN/8Dw5n8srCuYcS0NN30dd6tpHWzneJ3/rNIwQ9cxNA3DSilolgGKx+1GEkXHNMX+L3M1YTdPamlpYcWKFbhcrixV+bhRiJgaBi05WgO1rY2o1dRo9OYZE/d47jlrJWbft7n3b6k9J2bNIjllCl4rfwxmMyZl8WLns5ZzdhPt8jnqeBn3jh0JsO+T4ydPIsoywdpaVNtnQhDM+0UUEUURyfIcKKUZGC8E6x42dP1jNWnZ5Ey0ejFUWtXl+//Z+/MwOa7zPBR/a6/qdfYFgxns4AIuALiBlACCokjKcq4dKXbixI6vY1/Lsa0othzbebL5Z99EN5F9I1/Hy1Uib4kdxzeyYkuJJZEURUokuGIhCZAAsQ/W2afX2uv8/qhzaqp7qrure7oHAFnv88wDTE91bV19znu+7/3eT9OwefNmbN68GR4hWJifxzXqq3Dx4kVwlEyEm0WJIV8bcBzOnD2L+fl5PHD//Q27afJUVB7GejaLW28k5KAOqqrC4Hn/i87qWps8rALP46F9+/D888/j5UOHcD8VJbWKGrChbS30oCZUiZVURcMVL8fVlDZmM5kbOoiwPgxxS4EI8VA5/pdYfu7fwi030BUMbEH/4/8C2o7Ha+5DWLMQhud5QS4YhKBSrcK1bRBBgE3LyQLBGl398TyPCxcu4MyZM5jatAl7du8OPutuOr41WkGpzz2H1Ntv17xW/NmfBWQ5cvK/WQr+CCEoHjwI9U/+JHhNeekl4B/+w1URj5qWukBgPMPEes3Emu2CTU6EkJo0QJgQ1N9Vdg7Xr1/H6MgINE0LyCTrkLjeYMQAQEOR73oi7iQf3o79v9N2zjzHYXh4GCMjI76/SbXq+ypcv46T776LE8ePI6VpGB4d9dN/HIeFxUVcvnIFt+3cifEmpajMGI99xwRBQL6vr+1zvFWQkIM6yLIMIghwLcsPc7Hwc5P0giLLeOSRR/Dcc8/hyNGjuOeee1pPumuMHrjN3tdkYNI0Daqmwa1WsbS01BXhXKewLAs84ol6zMuHsfjMrzXUFXBKDn37/zGy9/8oOCH+wMgme+adAPiEIZvN1kYbQpPF8RMncP3aNWzdtg2bN21CoVCAQE1VCBCsEnnq6RC01I2JYHVO69VrPk3PQ/43f7Nme2dyEpVPfjL2/m8EWIlt8UMfwvCf/3ng5sjZNtTnn4f+N/5GzfZByiL0nHuhv616xtkE06LCg5UGsrJf5idg2zY8160pA2bHZ6ZiPI0GMAJQLBRQrVSwd/fuGy5MY2W+ANZcjtstxB7b6rZjBKFTX5jwuJpKpbBlyxZs2bIFnudhnjaLuj4zg+kLF8CLIgh8n5WtTaqLuLCwkc4F2Xz+hgu7e4mEHNSB53lIigLPsuCElOut8pLZTAZ79uzBG4cP48jhw/jw/v2tSwY7rNX22CBYh6hOfVHo7+uDoeuoGobfzvQGlTYahuGr7jWtYTmZU7iCpW//W1RPfDV6JxyPzN4fRt+Bz0JIra0sThAESKIIizqpqYpSk6u0LAuvvPIKFhcXsXvPHoyOjPiiMypA9cK58NBAwoGWmVGiINCVJSMmXIhEBPegASnVvv51yKdO1Zx34TOfAW4WVXoj0GfWzWZh7tsH9bvfDf6kfeMb0L/3e2OvtqMmjKAUzfPggXoDeB5cQkBcFy57LeK9LiHwaDqIeQOwVAD7f5SO5/KVK1BVNdAa3UiYtJyX53kIdCJbL7vktYI0KXPsJnie99stj4zgbkJw4sQJnD13DhzPY9OmTU0rO6LG/7guubcqEnIQAUVR/E5ejhNbue4Rgmw2iwfuvx9vv/02nvv2t/HIww9joMUD1G74LAirRv0t5peJlTYWi0UsLS1Bu0GljaZpAoRAVZSgNzqDZ1VCugIz8v3qlv1UV3Bb185JlmVfuVynhahWq3jp0CFYprmqeVKNB4Pj1NRME6ZYhz85cYTAZoNhxODN0QkpHHVggz7necj/1m/VbG9t347q935v166/V2ApL57joD/1VA05kC5cgHj6NJyImvLgHtJ/WQQn/LoXnvRD95RpLWpEkzwPHtQwiN5n5iYqCEKgXm8FQgguXb7sN1m6watH4nkwKdFm7YNvKDloc9EThOtX7ab9yEGc93iE4M1jx3D+/HkMjYygv78fiqI0vF/MWKr++zpwE9jR9xIJOYiAqqoo87wvWKv7kjXKKTvUWSubzeIjjz2GQy+/jBdeeAEPPPBAy0ZN7ailPddtucKKMyjk83lUq1WYN7C0kVV1qKrqq5WJbwFTeft/YPnb/66JrmCr71ew/SNdHwAlSQJ03e/MRju1seZJoijiwIEDq5onMT2DIIqQ2MQV+rsXIgksrx1+jU1woKtcj5II9jkz8jjwta9BunCh5tjXfvInUaFukeHz4bASfg8rwoO/1/0NwMp7wts0AQvjBwJFrITuWaSAbWc7jp9GEgQUdu4Ev2kThIUFEDoxO889h/LExEpqgBD/HoUGejbZu+FJnx6P47hgYg+ndMKRGUYE2HUF32VCAm1J3OjF/Pw8DMNoqwlbr2CaPnkWeR68JMGiBPWWCXk3IRPBZxWDJNRXzESBtU6fm5vDrl274NHPXmwWNajzSmDRzm412Nq4cSOuXLmCxx57DM8991zTbY8fP47du3fDdV38xm/8Bn7hF36hK+cQhYQcRECSJHCCAELV62EfbgCRDzIjB5IoQlFVHNi/H4ePHMGrr76KcrmM22+7reHAw3G+IVCrB9uNYK81YGmFFvsB/JVoLpfD0uLiDSttNAwDkiQFg5h55QiWnv5VWNfejNyeV3PI7/85ZO/7+23pCtqBIAiQRTFwXlxaWsLrr7+OfD6Pffv2rWhJQhMJGzg8OqGtOm+OAxq0ig0jvDpmJIK4LhzPAwwDo7//+zXbl3buxNL+/TXdGDtCxOAcJgkAUCqVACBolBWe+IPtQqv38GDKcRxM24ZlGBAkCQLPY+nAAWj/63+tPKtHjsD5xCdAWKSOkCDczCZ8trIXgWCy50IEoF2iuEoUHCJVrDS40T4vXbrUVgO2XsFzXRiUHCiq6rdoxtqEzmtCJ6nSGJ8bRysZmu+msWkYAFQrFbx06BB0w8DDDz8MSZIwPz8PUZabOmXWPwcc0FUh4kMPPYSvfOUrOHLkSMuIz2c/+1m4rott27bhH/2jf9S1c4hCQg4aQNE0WKa5qqQRiI4esBI2NsEKoogHHngAmUwGx48fR7lcxp49e6InCI4D3yC0xtAy9dBBfi6byaBcLsMwDCwtL9eEytcDJjVAspcvY+lbn0Plna9Fb8gJyO79YeQP/PyadQVxIMkyLMfB6TNncOa99zCxcSPuu+++lYoEdq+7nRNtQCI8QpD9ylcgX79e8/q1f/gPkUqng4nZj7sgWHmHBXXh0HrwL3sPm4hD18QGYvY+FknxXHclPx8exBhZYhMs9Y5gUQzHdSFIEmRJgqwo4D70IaT+4i/As0hBpQIcOwbz4MEgqsFjJc1Scz86ULHHQUAWQimQ8MrVowO357q4cvkytmzZckOqEsIwTTPQsUii6LcbpkLWG4JOvhNxogItShxbTaoLCwt45ZVXIIgiDj76KARRRLlchiBJEOnzFV4IMjTaZzdJ4b59+/CVr3wFhUIB7733Hm67LTpN+rWvfQ3PPPMMAODzn/98R06u7SAhBw2gKAoMnodl20GrTiB6VU4AvxQOqHm4OI7DnXfeiUw2i8NvvIFKpYKHH3448kNt+uCjRysBLlTaWCohm82ua2mjWVnG8NWv4srv/XRjXcHWA76uYHh1PrpXEAUB7506helLl7Bj+/bAHrvXHTUbga9Wkf/iF2teK+/ZA/3hh9Eny92foEitlwEBYLsuOI5DKp0O3OeAeOkHAEC1CoHnoaqqr+yfmIB4551QXn892ER85hksPflk0930ihg0QvgzZ6LEmdlZWLaNycnJdT2XeniuC5N2EWTVEuwc1/s+AehYYB1v1833XW+THMb0pUs4cvgw+vr6sG/fvoAYeJ5X07OinhyEO9zWn0s+3KVxjdi3b1/w/zfeeCOSHNi2jX/yT/4JAODAgQP45DpUJ90iSan1h6qqgCDAo2VOzeA4TpD3jIoMTE1OYv/+/SgUi3juueeCEG0NmgyybKXWFA0qGFqB5c4EmltfDxDPQ/HY/4f88z+D/PRfRhIDcXAbRv7OH2Lkh/7zuhEDlht/5dVXcfnyZdx2223Yun17/Pf36Lyyf/InEObna167/lM/1btVK6usYOV7oWhG2AyKhfNjgU5W4e31OiIgvfsuhOnphruo13J0DW3ex3Pnz6O/vx+5fN6fjG8QaTQMAzwQNGcCViI2N+KMek6e6XMZdZxGr73z7rt44/XXsXHjRuzfvx+yokCnWiee4yDSCiXAj26FwdPme/XI5nJd7cR4//33B/t7PUSWw/jt3/5tvPfee+A4Dl/4whe6duxmSMhBA/A8j1QmA4IV4RxDfW7LCUUNGnkXDA0N4bGDB8HzPL797W9jdnZ21TZRQ1RLnQFFzRHbHOz6+/og8HxQ2thL6BdfxeX/9HHM/uXPQbBWkxFezaP/yV/Bhp/8Zk8Eh/UI6wV0Xcfzzz+PudlZ7HvoIUxs2ADLNOP3wejB4MgVi8h+6Us1r1X370dl9266wa1RrhZUK4RSBNYDD8Cry91qTz/dcB8sRdFttLPPSrWK2evXg5p4Fs7msb6Dqes4sGwbHlBTVcNSMuueVljLZ9POM0xWd51tpBN4/Y03cPLdd3HnnXf6TZR4HrZlwXUccPDHawKs+JswUWroWFHo62LUAPAXaPdQC/EocrCwsIBf+7VfAwD86I/+KPbu3dvV4zdCQg6aIJPNAoIQdFELI/w4OvUphQYPeyaTwaOPPor+/n68+OKLOF+nPK+PHnQUGuxgsmCljSLPY3FxsSchSXvpEq7/95/ClT/8BMxrb63egBOQe+DHsPFnv4v8Q/8HIPSubp+ZDLE8sut5KBQK+Pbzz8M0TRx49FFsmJiAQMmeTUO3rdALIpP9gz+AUCjUvLb0mc+wA3b9eL0Ce6Zq/AJEEfpHP1qznfrtbwMx73e30M6K98L58xBpa+GafWBFi8SjPcLRCQzDAAdfAC2GopU3JK2w1uhJm++t1xfUX6tpGPjOd76Dq1eu4MEHH8ROKgYnnhcs9BRV9TUkhPh9LuiCz43S09Qdu68HIlSWWjh27NgqC/Zf+ZVfwfLyMtLpND73uc91/diNkJCDJhAEATI1CGLlQgwsehDWG0gxQk0ydVPcvHkzjrzxBt5+660als/Rn3ZDqGzbTieofD4PURThOA6KxWJH+4iCZ1aw8K1/i+nfPoDyiWjBobbtUUz81NMY/Nj/CSHVH5gG9QJMhR6uLJidncULL7wAWZJw8OBB9NHVrKIoAMfBiDtZdVuguLiI7B//cc1rlaeegnnnnV09Tq8R7sdQ31/AeOKJmt/5QgHKq6+u27kBrVXuDK7n4fyFC9g0NdW08iT4LoZ/uvhssK6vBKvdRdn9Xde0whqvre0qkxAZqde8FItFfPv551GuVHBg/35smJgI/mbSVtYCz0ORZd8aO5Q6A1qTA0VRVpUydwOMHFSrVZw4cSJ4/Z133sEXqd7ol37pl7Chib1zt5GQgxbQ6INgWZYf4g+Bg08M2IohGDBafFl4nsfu3btxz7334r3Tp/HKq68G0QdmyLLegiJW2ijyPJYLhYDwdArieSge/XNc/A8fwtJ3fwvEXa0rMJRRSE/9Jsb+3p9E6wq6MKASIIgOsBa64RX39PQ0Dh06hMGBARw4cKBGfKrQcCOhBkdxjtVN5L74RfCVysr+eR7LLGqA3q9Ou4Xws1wfEnYnJmBRwSdDo9RCL3Pace7l1StXYJomNjex2W18gO6lHoLVLy0LrT0Mt2Lasw7oRrSso0+Vpk/Cz9bMzAyef/55CKKIxw4erFnhe64Liy7wVFUN3stRshCQgxZVEd0UIoYRFiWGUwu/8Au/AMdxsHHjxkCQuF5IyEELaJoGgTa0sczVE5zdoEqhFTiOw/bt2/Hwww9jZmYGLzz/PJaXl1f+3qaBSVzr5GbIZjKBL/tcnQCuHfi6gu/B7F/9PNzyam0Fr/YhffCf4d3t/xTpHR+J3Aerbe8ELOoSdiqM2uadd97BG2+8gU1TU3j44YdXGaFwPB9UbxgRn30vIVy/jsyf/mnNa5Xv+z4427at63l0A42iBgz1wkT56FHwdWWbwA1S4Idw7vx5DA0NIdthJ75upB4c24ZHFyRRlUXM6KneQKpX6MYxOrkPHu05wvM8PEJw8uRJvPTSSxgcHMSjBw5Aq7OEZ1btoihClCTfT8R1/YZeorgqctAI/T0iBzt27AjcdN+grdj/+q//Gt/4xjcAAJ/73Oda2/F3GQk5iAEtnQbgpxbC4jSO44KHqVP16vj4OB599FG4nofnvvUtvP3WW3CoYKYtdGMg4PzWpiLPQzcMLNflulvBXprG9f+P6QreXr0BJyD/0E9g02deAnf7DwDgu1s6SfzmPoGlboPNPM/D4cOHcfLkSdy1axd279nTcOJi3e1s244vTOwCcr/7u+BC6QwiSSh8+tP+/7tABNcTkXqDEMxHHgGh3zEG7dlnV23X0+ttse9CsYj5+Xls3bKlK4djTxLfppDPMAx48J/LKAfEsDvmjSq9bRednCebzBcWFvCtb30L77zzDnbu3ImH9+1bRfKZrTkHQKNpmCB9AN9ZUhAE/56x6GID9NL06qGHHgLgRw4cxwncD++//378yI/8SM+O2wgJOYgBNZMBLwgghPgmIyE4tNXvWkpb+vr68JGPfAR37NqFk++9h2eeeQYzMzMdlUmtdfiUZRn5vj6IgoClpaVVWosoeGYZC8/+X5j+7UdRbmBklNr+EUz9zHMY/h5fVxC2Tm6EuDX0YWFhq3CqbVl48cUXcSUkVmp2DNbmmQMiI0d1J9LyXONAmJ5G+stfrnmt8oM/COcmsOrtBGFToUgoCozHHqt5SX3mGSBOCe864fy5c1BUtes53+De0J9mz5BtWcGk1qwlMxcRcu86ukjU2iZ9HAfLNHHs2DE/jcDz+MhHPoI7d+1a3eeCkGCskRXFL08EfNdRjgt+B3zCwVHb/ChkstmedrxkqYW3334bv/mbv4mTJ08CAL7whS/ckIVAYoIUA5woQpFl6LoOwzCgyHLth7WGEDiDIAh+P/GxMRw9ehTfffFFbNq0CXfffXcsJywWSu/GQ5TL5YKujXPz89gwPh65SiGeh9KxP8fCt/4t3Mpc5L6koR0YeupXVqUPTNOssU5uhFYrICYujGzjWwdmn2pZFj784Q9jMGbjFFVVUa5UYFgWFNoHIgqNusu1i/xv/Ra40ADlKQoKP/3ToQPRyMGaj7Q+8FqkFQA/taD9z/8Z/C4sLEA+ehTW/fcD6H0NfbPnzHYcXJyexvZt29b8PW+EcCQBAFZN64QEqS1VUZp+b3jaXKpnd4zeqxvx/BFCcPXqVRw7dgyObeOee+7B1iapNpMSKp7jagiVR79f4fvIA36DtHUqYawHIweWZeGf/bN/BgD4gR/4AXz4wx/u6XEbISEHMcDzPNRMxs9beR7sUCvnbsLzPGQyGXz4wx/GpUuX8NZbb+H6tWu46+67sWlqal1L1wYHB2FeuwbbcbC0tLRqItUvvIL5b/wrmNePR76f1/oxcPAXkL//74OLKEs0DCN2SiHsq86a49Qo4GPcl8XFRbz88suQJAmPPvooMm3kjSVJCkKOtuNAbhQl6sIEJp4+jdTXaqMv5R/5EXijo373uvAxbrW0QpMJzdm6FfaOHZBOnw5e0775zYAc9BxNPrtLly7BdRxs7lJKoelp0H9ZlQMjCZZlBWZocov23D33OugyMYj7rdGrVRw7dgxXr1/H2Ogodu/evaItiKjuIp4XRD4VVa0hdq7r+iLy0GucIDSNVvW6j8ZDDz0UkFTbtqEoCj7/+c/39JjNkJCDmOBF0bdUNgyYpllDDliOL/x7sJqNifpGNVNTUxgZHcXbb7+NN954A9PT09izZ09bk9paIIgiBgcGsLCwgEKxCC2VQkrTYC9NY/6Zf43KO/8z+o28iPwDP4aBR38eQqox03ZdN1bpJ4DA8S3oA9DmJHz16lW88frrvn1qA/vqpsenqw7DMGAZBuRGn0EXIgf53/zNmrI3L51G6Sd/MjiPdknRzQA2SbU6X+PJJ2vIgfzaa+AWF0H6+9fFfS/qsyOE4Ny5cxgdH6+pZFkPMPEigJpJrmW0DaixwO4qeuAI2arM0/M8nD9/HsePH4cginjwgQewYWJiVfS2/rwM0wQhxC9Jr/vOu54HEna0DZOpiOdUEISuNluKQj6fx+233453330XAPCZz3zG799xg5BoDmKCkyQotASG1RnXoJ65tjlwR4ndVEXBA/ffj/3796NSreKZZ5/FqZMnI1cEvRgIUuk0Uuk0REHA3NULmHv6X+Pibx9oSAxSOx7H1E9/C8Pf82tNiQEQnzwF3QkJCdTFcUEIwZnTp/HKK69gbHwcH96/v+OID/M8sB1nVUlr6IAd7ZtBevttpGhjFYbSP/gH8NiK5RYRmNUjyh0xCsaBAyBhtz/XhfrccytNoXqIRkdYXFpCoVDAths4SOuGAUKdAZtpDQLESLF1hF6JHJuca6FQwAsvvICjR49i4+QknvjoRzGxceOqsaPeGMl13UAfFkXqXNcFR+8pIcSfCJucR69TCgwjIyMAgOHhYfzzf/7P1+WYjZBEDmJCkCS4lIFapgndMJDNZGp8zNn/GXOP+wUlhARdx6IwOjKCJz76Ubx74gROnDiBS5cuYe999wWlL2F0ezXZl8+h8uafw3r1d1AwFiO38XUF/z+kdzwW+fdIeF7L/K1HVvpFsL4VcUVWxPPw5ltv4dy5c7jttttw5513runeCNSD3XYcmJaFVISQMrzS6wT53/zNmt/dvj6UfvzHI49zK4G0qFYItkunYezfX1OpoD3zDPQf+IGeX3Oj/Z87exbpVAojo6M9PoNouK4Li5bhpVKpoHeCRxthRYG92s17RuCv8NcrVuW6Lk6ePIn33nsPqVQKjz76KAabdI2tvxesf4IsSZGGVZ7nwQPtFcLzK91MG2A9WnO//vrreOGFFwAAv/qrv4p8Pt/zYzZDQg7aACdJUBUFlmnCse1VNbGtOoc1Qqt2o4DfKfDuu+/GxslJHD5yBM8/9xy2bt+Ou3bt8ut2w+fQJVQvHML813+lua7gsX+C/H1/H5zQ3qPkEVKjFA6jk9RBGI7j4LXXXsPMzAz27NnTtdCcoiiwHQeWaUKLECau5c4rr78O7bvfrXmt9KlPgYRTGOyzZffmFkgrNHNHjILx1FM15EC8cgXS8eM9d4UMk3wG07Jw5coV3HGDHCkJgKquAxzn2yQzUy74+fFWJKGbkaZOx7ZOMDs7i6NHj6JareK222/HbS0qihiYSNIK9U9oVA3FIgcBMQih/kgCz2NweLiTS2kLv/RLvwQAuOuuu/CpT32q58drhYQctAFeVcGbJkRJgmPbQbtUYPXAEneSZmHzWNtzfovlxw4exLlz53DinXdw9epV7Ln33qasul3Yixcx9/SvofLuX0dvwIvIP/gPfF2B1tfRMSIJEfUpaKSEDkxPmkQPDMPAoUOHUC6X8cgjj2C0iys+Vl3BOnWGhWFrGjYJQf7f//ual9zhYZR/+IejN6f/3vzUoLk7YhTs22+HMzkJ8dKl4DX1G99YF3JQj4sXL4IA2LRpU0+P3QiWaQaGR1GhcQK/c2DP3RDXiRiYloXjb7+NCxcuYHBwEPsefhi5bDa2vwjT5IT7J0QR0sAAieNilaCPjI8HzZl6hS996Ut4/vnnAfgdGJvZc68XEnLQBgRBgCfLUBUFZduO9AAIfNpjPtDtChc5jgPP89i2fTvGN2zAm2++iUOvvILxsTFs3bJl1UNMPBfEMcHLrd21XKOEpe/8P1h+5T+BuNH9BLjJD0F+5LMYvO2hWIN9I3ieF4SZw50RmUq7ETj44emoAaNYLOLQoUMghODRRx/teliOCRN1Jkrt0oChfuc7UA4frnmt+NM/DRIxIdxqIqF2ogb+hhz0J59E9vd/P3hJPXQIxfooSpdRr2sghOD8uXOYmJjoSWVSK3i0SRAjBo3uHwEA1qaZpeG6HVHqNTEgBNPT03jr7bfhuS727t2LqU2bgsm+nfHRMIya/glRcF0XrMldq0mY5zhMTE62dTlxUK1WcfXqVZRKJXz1q1/Fv/k3/wYA8FM/9VN49NFHu368TpCQgzYhqCpEy4IgikHb1PpJIipEGQVCiN/nvsMvcyqVwsP79uHKlSs4dvQoZq5fx+atW3HHHXdAlmWUTz2Dma98GsQ20H/gH2Pw4Gejz8NzUTz636hfQbRtsjy8E/0f/ZcopHbCdl0UCoU1WYmyL31N2Dnme6NCnLOzs3j11VeRTqXw8COP9ExZzipWHMeB67qx+2k0BCGrtAbOxo0o/+2/3fgt9N9bKXJQ3wOgGYzHHkPmj/848HrgLAvaCy+g+r3f25NzBFbfy9nZWVQqFdy3XqWUddANA6CTlxyj5JcAwTjS1eeih1EDAmBudhbvvPsuZmZnMbFhA+65994gFcBhNWlrBtu2YVkWeI4L+idEwfE8gFYx1J9PPQaGh5satXWKP/3TP12VOnjwwQfxhS98oevH6hQJOWgTvCgCoghVUVBxHFiW1TDkFIv1dkAMmEUqayI0sXEj+vr6cOLECZw/dw4XLlzAttEU1Gf/IYhdBQAsfvvXoW3ah9SWR2r2VT1/CHPf+Fewrp+IOBLAp/ox+NgvIX/fj4ATRPDlMhYXF7G0vAxN0zr+4niUvXeqLQinFy5cuIBjx45hZHgYDz744Cr71G6C53lIkgTLsnxhIiMhHRI87emnIZ+ovfeFT38aaLZavYU0B17MMsYwSF8fzH37oL74YvCa9vTTqH784z275vqn8Ny5c8jlcpGi317Ddhw4tg1CyKoeAS1BKxX4LlQW9MqCmQC4fu0aTp46hcWFBeTzeTzy8MMYHRtbOTbaS9V5rgtd1wH4TojNxgDbNMHxPIRGKQVGsjgOG3sQNQCAI0eOAPAXG5s3b8bf/tt/G7/4i7+47uWyzZCQgw4gaRqIbfuhPmpYUc+ueY5DK/PXrnx56f9lRcGOHTuwZetWXL92Fc43PxMQA4b5b/wKJn/qG+B4AdbiBcw//WuovPv16J3zIvoe+vFVuoJMJgND11HWdczNz2Niw4a20wuEEDietybLaRZGffedd3Dy1Cls2bIFu++9t2cOdmEoigLLsmBZlh/yRYefpeuuihrYW7ag+n3f1/g9dX4aNzsCA6Q2c6j6k0/WkAPp/HmIZ8/C2b69q+fHEL6XVV3H9evXcc+99/bkWM1ACAkmOUVVG09gzRCa3Nay8mdpvm7BIwRXr1zByZMnsVwoYGhwEI986EMYGRmpKQ8mbZJfQgiquh54GrQq9zQtC/C8htuxo+b6+pDpQXtmAPi93/s9/N7v/V5P9t0tJOSgA/CSBE4QoCgKSsCqfgsMHMc1TRuslZOHmT3L34uiiI36EcyVTq3a3rx+HMuv/zHcwhUsv/KlhrqC9M4nMPTUr0AeirYlHRgchHXtGkzbxsLiIoZjiiFZDwTQ0s1WpW3N4LguDh8+jOnpadx1113YsWPHupkCSZK0klayrHi15xFIffWrkM6erXmt8HM/B7SaEG6BiAFD3DLGeti7d8MdGYEwu9LVM/X00yj2iByEceHCBXCCgMkerRqbwTBNv6yZ56F22JSspry6TtcTfydcS3OiuHA9D5emp/HeqVMolssYGRnBgQMHMETHjfpz40OLnjgwDCOwSE7Tcs9G10s8z4/KcNxqzVCd++jGW7SXSbeQkIMOIWgaZMcBx/NwXReGaSJTN6hzAFj71MiJqwtfvsBbgYqS7OVLWH76/2y4/dxf/ws0+urJI7dh6GO/ivS25oIYnufRPzCA+bk5lMplaKra0rkxTAwAuirpcJVvmiZeeeUVLC4tYd++fV1vhhMHiiyj6rowTbMzcmBZyP+H/1D70h13QH/qqdi7uBUcEt2YBkirwPPQn3iipm219p3voPTjPw7Sgxwwg0cIzp8/j6nJyTVFtjqBQ8tkCSG+j0a3Pl+aZojdiKlLOgPHdXHxwgW8d/o0KpUKxsfHcd/996/2DKiLhrVzZJtG8ABApcQAaCxaZt1VeZ5fJTQNb51OpdAfs/fK+xUJOegQoqLAqVSQSqVQKpVQqVSgaVqt8KqJzW23cnkcY/gcBwKC8jP/YlU6oWb7iK+ekBrAwEd+Cfm9Pxzbr0DTNGSyWRSLRSwsLkJRlKbai/qBqZnpUzOUy2UcevllWKaJ/fv3Y3BwEKRJe+ZegTXicl0XjuO0HTZPf/nLEC9frnmt8PM/v7qrXBRuIc0BoV4gnUSJjCeeQPrP/gwc0y1Uq1Bfegn644939RyBlVDytWvXYBhG11ozxwXBighRkqSu6GZI3f9blQED/niy1nSC7Tg4f+4cTp8+DcM0MTExgYcffhi5XK7Bia6caTvfY9dxVlIwilJjx95oPwa9x6uIAXVgBfyqtF5UKNxqSMjBGiBqGjTDQKVSgW3b0HUdmVBfei7EXuvFiV2dzOh+jbf+HPbl12K/jYBHderjGH/qn6JvYmvbk01/X1/Qa2J+YQHjIUERgGDSjiJCXgdphfmFBbzy8suQZBkHDx5ciVaEGjOtFzieh6woME0Thmki1YZwjDMM5H/3d2teM/fuhXGTlDB1C16ItLVLngDAGxqCtWdPTZmn9swzPSEHhKboTp8+jcHBQeTW2Z3OMs1ApKutNTJCBcv1YBFGEorgrdpmDcTAsiycPXsWZ86cge042DQ1hR07d7aOKmL1+NgKxPN8nQEASRRXCaOjxhye43y9ASGron1uiMSmNA1D1Mb4g4yEHKwBPF0ta6qKarUaNGQK57KCxz2ijrqbcJYuovzd34i9vZAZgfQ9v4tL13WcffUYBgYv4fbbbvMn+LhfUo7D4OAgZq5fh2EYWF5eRh9tThKkERqg3bTC5cuX8fobb2Cgvx/79u2r6ejIoXfK6mZQFQWmYcC2bd+RLeb1ZP70T2ty6QCNGsQVYAG3RtQgVKnQSZTIIwTVJ5+sIQfyO+9AuHwZbg/ywfMLC1hYWMDDDz/c9X03A/M0APxnaq2iWpbObPj3TnUIDWAYBs6cOYOz587B9Txs3bIFO7Zvj19pQUjbOgNd1/0FBs9HKvzrxwOO83vi2LYNAqyKHDgsaiCKGN+4cU0eLu8XJORgDeB5HlI6DbFUgiTLcF0X1WoVYi63siqm+btVubQuTmTE83D9L3++aTqhHm55FmNpDh/5yEcwMzuLUydP4uVDh5DP53Hb7bdj48RErAlIlmX09fVhaXk5KG+UZLnlSj6uIJEQgvdOn8aJ48excXISe/fuhRixCuXQvqHUWsG6vVm2DT2q34LnrUoTcOUysl/8Ys1rxoc+BPOhh+IfmK3ubnKCELfhUkMQAvOBB+Dl8+ALheDl1NNPR/acWCtOnTyJfD6PsboIWK+hU4tknkajuoJW4wslbGuJuFWqVZx+7z2cP38evCBg69at2L59e+xW7MGpor1IqmkYsKkHRqqJQVRAEOi4wLQJgiiu0pO4juNHFBQFo+PjbZ3/+xUJPVojBFpupMhy0ECJ5cEAoL5bIzP96eYqd/n1P0b1/KG23zf/jV8BIR5GR0dx4NFHceDAASiqitdefRVPP/MMLly4EEvElM3loKoqOI7DzOwsHNtu+R4PrQV1nufh2LFjOHH8OHbu3IkH7r8/khiA7utGWI6qquqXs1rWyr0iBLn/8B8wcd99GGOiOjowZf/ojyAsL9fso/BzP7e+J71O8DqsVKiBKK5KI2jf/jYQ4xlrB0uLi5iZncVtO3d2db+tYNs2HMcB8bwVz4y1gkUGYm3aflSnVC7j8OHD+OY3v4npS5dw2+2342NPPYVdu3a1TQz8E40/FjqOA4M602otSj3ZVXG0f4JhWQDHQanTc3iEwKUVIhMbN667EPVmRXIX1gie56Gk0zVmSBa11pUkqSa81bJ6oQOYMycx8786a+1pXj+O8tt/iey9fwsAMDg0hA8NDWF5aQknT53C4TfewPG338bExo3YtGkTBvr7G65WB/r7YZomLNvG3Pw8RkdGml9jC0Gibdt47fXXMTszgz1792LL5s0tr4dZL69nckEURUiSBM+yfO2BpkE8fz6oROArFfT/6q8i+/u/j9KP/ziyX/pSzfurjz8Oq8N6+ps7bhAyQFojaas+8QTSX/lK8DtfKEB57TWYH/rQmvYbxqmTJ5HJZLBhYqJr+2wFQkjQPVBR1Y50GVEIokoxJt1gixbbW5aFy1euYPriRSwsLEBVVezatQtbtmxZ82RKYlo+E8+DXvWjo7IktYyysHGX6RlYd0upXm9AmzQJgoDJG9RH42ZEQg66ADWXQ3HRb2csyTIc20ZV15ETxcDNsAZdjBpc/rN/AJBWdkuNUTnz7YAcMPTRvH6pVML0xYuYnp7GuXPnkMlkMDU1hampKaRDwksQAl4UMTQ0hJmZGRhUoNjM/4DlC6NQ1XW8/PLLqHTQPImjjZHWM72gqqrvmGgYUFUV4vnzq7YRL19G/6/9Ws1rhONQXEPU4GYvZQyskzs4z3BkzZ2YgLVrV42TZOqZZ7pGDorFIq5ev4577rlnXe+pQcsW+TV4GqwFhOX6WSSzjiC4rovrMzOYnp7G9WvX4BGCkZER3P/AA7752RrITI0AMWZ6sVqtBmWIaowoC8HKd8R1HDiu6+sN6u6147rwAIyNjt6QPho3KxJy0AWIkgRRVeEYBgRBgOu68FwXhmGsEssEX4MuNUhxSjNrer+6ofGqNZvNYtddd2HXrl2Ym5/H9PQ0Tp06hXfeeQeDg4PYNDWFiYkJiLIc5OsGBwcxv7CASqUCSZLQ10D13agT5XKhgEOHDoEDcODRRxu+vxE4+D7+cTu5dQOBKRIVlqVpPrQVzAcegL2GMPbNTQ1WNAedCOzqn4/qk0/WkAP56FEIs7Nwu6AqP3nqFFKahql1LF9zHAcmXcmmMpmeNEtq9Q0IWyyHI5wLCwuYvnQJly9dgmlZ6O/rw6677sLGjRu70meAeJ4fTWrjO2qaJhzXBQffgyAOieOpgy2h7wfHQRYEiHXl5qx98+Z1Ll+92ZGQgy5BTqfhGAYc24amaahWKjBME5IsQxSEmtphjuOC0qm1rlRyd/9NFA7/afONOB68kgOvZMArWf9fNYfUtkeRfzCGsIvjMDw8jOHhYezevRvXrl3D9PQ0jhw7hsNHj2J8bAxTk5MYGx9HOp2G4zhYLhSwVChAFMWa8k6GKHJw/fp1vPbaa0hnMnjkkUc6L+nqkolLO9BC0QMSkxyor72Gkb/7d1H47GdhPvhg+we9RSIHnQgS658N85FHQP7jfwRXqfh/JwTas8+i/Pf+3prOsVKp4Mrly7jr7rvXxXobWPE04KhLX7dz3HHGlHoxYrlcxqVLlzA9PY1yuQxFUbBp82ZsmppCtpE/QQcgrEopFPJvBTvUAVfTtFgRC87feUCQmE5BqosaEELguS5yfX1d7+J6qyMhB12Clk6jurQEx3WREkWIkuSnF6pVZKPqfBvUIreL8b/575HZ+VHolw5DGrkDJp8CL2eQGxyjRCALImldW2UKgoCNGzdiYmICuq7j8uXLuDQ9jZdfeQWyLGPjxo2YmppCJp1GuVTC/Pw8REFYXYeM2tr38+fP+82TRkfx0IMPrrnvgsBxgTvfekCig7xj23DCgtQWUI4cwciP/Aj0j3wEC7/xG+21JWb16jchSWDiXGAN1Qrh/SkK9EcfReqv/zp4TXv2WZR/6IfiGUc1wKlTpyDJMjZv3rxupbCWaQZN03rR8Y+h0dWwpm12SEewuLgIURSxYcMG7Nm7F0NDQz25H2Fi4L/QQpQcbqgky6v0ApHHAE0phF4zLQsEWCVGZFUPE5OTSfliHRJy0CXIsgxOluEZBjzX9bs20vp3wzQDVXsNurTCzd75cWTv/Dg8z0NheRkeAJn6DTB0O8xOPA+qomD7tm3Yvm0bSuUypqenMT09jfPnzkFLpTA0NIR8Po/ZuTmMj43VOCgSzwsaFh0/cQKn33sPW7Zswb333tudL2kXSrXahaqqqLguHLpKaQfac88h9zu/g8Iv/3L8N3FcUx/5G4lwlUu70bFG11N98skaciDMz0M5dgzm3r0dnaOu67h48SLu3LULgiDAiRnxWQsCTwNCaux+u41wU7b641+7etXXEVy/DgAYGRnBAw88gPHx8dqKny57h0R6kTTZf31DpbhEqp4Y2LYdGEwxTQErfXYdB6l0OujzkGAFCTnoEjiOg5xKwbQs2LYNVVWhaBoMXYdhGH5emg4EvRrKgy5snrcqZdFNkyDPXS2AzGYy2HXnnbjzzjsxPz8fhCinp6eRSqcxMzuLXXfcETgJMrLy2uuv48rly7j77ruxffv2rgrCGPlYr5W1LEnQeR5ch5OMMDfX9ntuhPlTHAS5bJ5v7zOlVttR73G2boW9bVtNsyrt6ac7JgenT5+GIIrYGqMSphsg8L0BQMtueyZ+Y8QgFLpfWFjApelpXL58GZZto7+vD3fffTc2btzYsPyQAxX4doNgN3hOmz254YZKKU1r+RwxcWdw3fT1QG8gScHCg6V5HdfFhtHRzkow3+dIyEEXoSgKTEnyO/UpCmRZhm1ZcF0XerWKdCazutyORQ+6MImFa5Zdz6vxBGDlTaRJl8g4iCIGNecAYHhoCMNDQ7jn3ntx9coVnDlzBhcvXMCFCxewYXwcmzZtAvE8nD13Doau48EHH+xJBzQOfurCXa/qBWp9y3UwmHqqitL//r/H2rZXZlrdRKd6g1Z19/qTT0IKtbpVXn0V/PIyvLpIWSuYponz589jx44dECVpXcpfDRpVBMe1ZbfdEQhBpVrFpUuXcInqCFKahi1bt2JqchLZuK2I6YS7ZoLQ6Dlt8HpNQ6WYOgO+PhJLx1STlosGZIwSA9u2oWgaBoeGGvaF+SAjIQddRCqVQrlchkttOmVZhqZpKJfLvjrZNKNLlkJ2pmudxHhBgON5kV+6YCXQ4YTSihjUQ+R5TE1OYnR0FFeuXMHs3ByWlpbw6iuvwPM8VCsV7Ni5E319fV259iisd/WCLMvg27xP1s6dWPz3/35NlQs3Gzo1QGr1KekHDiD7B38AjqZuONeF9txzqHzyk20d5wyNPmzdFt2WvNuwacdFjxBkepROcB0HCwsLmJmZwbVr11AoFCCIIiY2bMB9992HgcHBzrRH9LvZaYSq2Xc7ao+rGirFmLgj904XQ5ZtgxBSozcghMCybWy77Tak0+mbviz4RiAhB10Ez/PIZDIoOg50mkrgBQGKosAwzSC9EPkgshXTGicxFploxvQ7+aKvJXStyDLGxsYgiCJGhochSRJefvllSJKEU6dOBQY0wyMjGBkZwfDQUNeFWusWfuc4SG0MNKUf/mEUfvmXO2tDTNNIQfqkF6A18Ox5inucTiMHrfZO0mkYH/4wtG99K3hNe+YZVD7xidgRMdu2cfbsWWzZsmWlAU8Pnw1GhAG/d0I3Oi7SHWO5UMDs7CxmZ2cxPz8Pz3Uhqyr6+/owNTWFzVu2QBSEG5N6oiv3phNv3Xl51IKeABDp2BnrUIgmCLZt+2kqnvfvOz2ebdsYGhlBJpNp2Rjqg4qEHHQZ6XQalUoFruf5kQJVhawosKgopkrTC70ajIKcWjNyALQnNgopzztFStPQl89juVCA5TiQFQVbaIOW+YUFf4CbmcG5c+fAAejv7/eJwvAwhoaG1la9QElXT4fHELGLM/S7fX1Y/NznYHz0o2s/NBpPqsTz4NHPzwv/n90PmtIiod8Dr/tQzrpcLoPAL3ljg33gxEcJChf6v67rfl06x4Gnwkme6g/4JjoEjwpVm0F/4okaciBeuQL5nXdg7doV427BbxDkutixfXvwWq9WjgRAlbr68W2I6qJ3RlCpVDA3O4uZ2VnMzc3BsiwIgoDhoSHs2rULIyMjvjC2WgXHcV0jBuzz9WKmJetLFhtuF/q/57qoVCq+0ZEgIBXDz4AZOTU6Z6Y3UGQ52I5Q07axDRuQzWaTqEEDJOSgy+A4DtlsFsuuG3Rp5HkeqVQKpVIJtm3DMs3Gq4c1Rg8YOYgzIMS1Gu6KIAlAPpeD4zgolUrgOA66rkOSJIyPjQXtnnXD8FdBc3O4OD2NU++9B57nMTg4iJHhYYyOjqKvr6+jXDYPX4vRk8EgfL9bpBWMffuw+PnPw+20wU/oWJ7nwXFduNSf36Vi1IAIhELCNZEpdg9CpIndlYAYsO3DBCB8GvD9BsKEgq3gLNsG8Tw4tg095PERHIuShHriwHpkNPuMrDvugDMxAfHKleA17ZlnYpEDx3Fw5vRpbNq0KZbL3lrBRHWEEL93QpvPnmkYmJufx9zMDGZmZ1Glk/7AwAC2bt2KkZER9Pf313wfLMtamcxJ5y2YoxCnOmbVs9Z8Y4DjVhGDOKmXZsQA8J+1wN8gtLiwHQdT1Pa559qPWxgJOegBAp2B58G0LL9BCA2R6YaBarWKXDbbvD67Q4EiG1RbTegcfPtertmKmjRvu9wJ+vv74bguZElCqVSCZds1La41VcWmqSlsmpoCIQSlchlzs7OYnZvDqVOncOLECUiyjJHhYYyMjmJkZASZmDlDjuPWRX8gTk9Hvk4EAYXPfAalT30KaNN61qNmLa7rQjcMWJYF23EgiaKfRmLHCE/EoWdIYBNweCIGalb9QbULVlaKQG1KJpPJIJ/LrVjusmP5BwwiECzPq6pqEKXyPM+vpKHbetS2NrhG9johEHkevChC4HkIggBBEFYmQI6D/uSTyP7hHwbvVV96CcWf/EmQCMOtMC5cuADLsiIbLDUKTXcK23ECP/90Oh1LVOc4Dhbm5zE3N4eZmRkUCgWAEGTzeYyPj2OERdKapCYIIf53G9130Wy1oGAVA7GjFYwYhKyR42oy+BaRCce2YVF/A2aZTAhBvr8fqXQauVwuiRo0QUIOegCO45DL5bC4uAjTdaHQPgLMg9+xbZQrFWQaKYZDq7p2CQLH87Fz0K3SC2yw7iZ4jvM1BYoC07Z9D4TR0ciOihzHIZfNIpfNYtu2bfAIwdLSEmZnZzE3O4tjx4753exSKYyMjmKUpiFahW7jRkw6BU/7bIThTExg4QtfgLV7d8v3h6MBrufBc93AOhbwV4aO6/ohY6xM/DzHgaerbiFGCL8TsH22On9G+KLEXh5NcRBCaiMdnue3zqWleI7jwMUK8eHoqlLkeTgf+hAy//k/g6NRGs40ob3wAqof/3jT83rvvfcwOTnZ8xUjIQR6tQpCQ9oNJ3PP85/puTnMzsxgfmEBxPOgaBpGR0awfccOjAwNtRXlIIQAnge+Rwr8ZtULbREDShAr1WrQayWTTsciBswBsRnK1SoIIZBlGTKNHHA0nSBJUk8NqN4PSMhBj6CqKmRZ9i11HQeaLIPjOKTTaRSLRZiWBaFahdZokOqwgkEQBIDj2jJ04Wn4MQzmcNcLXs1zHNKZDKrz83BdF7NzcxgdHW2pbOc5DoMDAxgcGMAdt98Ox3EwPz/v6xXm5nD+/HlwHId8LofR0VEMj4xgoL+/RtTEVsfdNkcK373KD/0Q1GefDe5d+d57MffFL0IcGIh8r0cIHMfx3RVpg5j68D1oDlcQBCiSBInaUqu0/jusEbjRCLoxNiAmPCUzwIo+I9A8YIU8uDRS4rouXJrr9jwPtufBUlWU9+5F9vXXg/1qzzyDyvd8T8Pvy8WLF2EYBm677bbIv3frWSfwbZkJsNq8x/NQKpUwNz+P2ZkZzM3Pw7ZtiKKI4cFB3HPPPRgeHkYmk+mI1BEW7etR9Q89SOSYwY4fF67ndU4M4uy7XAY4Dmk6xhIAG8bHg9RvEjVojoQc9BDZbBYLCwswCQmiB6zXQLFY9POHNKIQCa59i2W2YmSDa9SKPAo1X/YeEgMGmQqEBI6DaVlYaNHFMQqiKGJsbAxjNHdvGAbm5uYwOzeHS5cu4dR774HjOGhUDJnL5/1/czlkaWi8FzAPHsTi7/0e0v/1v6K0bx9mfuAHwIkimEN9QAbojxsicuyMBEEIQuq8IEAUhJqB03aclrn5GwWXdWNsRxcSylEz8hAWobLoAiMLnueh+NhjNeRAOnsW5ttvw92+HaIgQBTF4PknhOD0e+9hAxWh9RIm1RlYtg3PcXD9+nUUCwUsLy2hWCoFJk8DAwPYsX07hqluYK2fZbCQYOSsGxfTBOEIQrvVQIRO3owYpGOmEljUr+m1cRwqlYpvNhUaX/sGB6Gl05BlOYkaxEBCDnoIRVF8YyTThAmABQZlRYGWSqGq66iUyxA4blVDkABtChSZQtmioem45ACgBIEK2XoNWZZhOw6GhoYwNz+PSqUCUZLQv4bmJ6qqYnJyEpOTkyDEN4FZXl5GoVBAoVDA9MWLOEXrp3lBQC6bRZ6Shjz96ZZrnfHEEzCeeML3higUYJsmSkAQLq8X/7HJTJSkVUQgFkLiwxsNEoocxEWrVA8TKtY8z488And4uMZZMv/885jbvBmO48AzDAgcB1EUMXP9OsqVCh7opMFVC7BqjkKhgKWlJSwtLqJULgc2yTzP+89YXx+mNm1CPpdDX39/1xsu8TwPQtM0BL2rwGCo0Zy0SQzKlQrsEDFop/1zK2LguS7K1SrARKAAZFXFwOAgACDXxUZS72ck5KDHyGazME0ThuNAUVXwdOBUNQ2O68KyLJTKZWR5vmsuXaIowqIhaqXNyY7QkHuvpxhJkmBbFlKpVFDiuFwoBOHytYLjOGTSaWTSaWycmAhet2wbheVlFItFv3Pk0hKmL14MmjRpmoZ8Po8+2qUtl8shm8l0ZFrjOA5sy4JpWb7PhWUFgxVPJy3WsGmtpjg3AylgcKkOoJ3IQUd0VBCgP/EEMv/1vwYv5V9+GaUf+zHYouhXcMD/zN87fRoDg4MQJQmmZfkeJB3cM9u2fbK5vIxCsRg8Sy41HlNUFel0GhMbNmBgcBD5fL7jFEE74LBCyoJW2etwTHa8uMdixMClY0xsYtDqGKxcmRDfidJxwHFcUCEyPjEBjuOCdG+C1kjIQY/BXBJ1XYfueUjTh5j5hRPPg+04KJdKyGaz0cIl9qWIWWMsiiI4jqsJV8dGuPSt/XfHhizLgfAun8/7JY7lMubm5/3Szx6VmcmSFLSfBvxJyfM8lMtlLBcKKNJB/+LFi6jqeuCwmM3n0R9KTeTz+cgOcR4lfKZlwXNdEEoCOFpvLYoiUjHtYFui7lm4WfoseKH0QBwQdG7ipD/+ONJ/9md+SSUAvlJB/o03YDz+uC94dF2cO3cOFV3HnXfeGTQ+0qtViLIMmeo36iceQgjKlYo/+VPiWigUoFPPAo7nkc/lkOvrw+TkJPL5PARRDASg60EIGFgaMRyNImgvctPhgYMOqHGijcTzUGZVCRyHVMwKDv9QzYlB+Pkp05SCqmngeR4jo6MQaJSm1yml9xMScrAOyGazMGj5mZpKQaCsluN5pNNplMpluK6LcrmMbC7nr7iivgzhuvMmEEURXEgJHpvVY2WQ7oZbYzMw9m5bFkRNQ39/P1zXRVXXMTs7i5GRkZ4RhDA4+JNYNpv1B45QjwfTNIMIQ5FGGS5evBgYCKVTqSC6oNByVUkUIStKMFBLkgQplYKqabAMI3Brez+DRQ7ikoO1VI94IyOw9u6Fcvhw8Jr2zDMwHn88eO5Pnz6NKdpm3LJt2JYFB75Nb7FahWlZcBwHlXIZpVIJxWIRhUJhJRqgaejL5TC5cSPyfX3I53L+5B+6PpM6oBIgdmltt7DKOIqedy/PIPBQiDlOkLD4EH6L+9jHan4iNcTAMk2/fJHjkNY0KJqG/MAAXNeFpmlJD4U2kJCDdYAoikin0yiXyyjpOnKKAp6KkggNf5fKZbh0BZvJZKK1AjErGDiOg0DDqo7jxP5CrGL/PSQI7Jxs24ZGGT7TH+i6jpm5OYwMDiLdhRRDKzSanBRFqYkyAP4gV6L55cXFRSwtL+PcuXN+jjO0P0VRoKoq0qkUNE2Dqqp+vTVtzJXP54MIT7to+ol06I/RLRCqlAfaixysBfoTT9SQA/nECfCXL6MyOIh33nkHtm0jnU7jnXfe8aMGuo5qteobFNHKCA6A7XnIpNPI53LYsGED+vr6kOvra5macxzHJwaEBM/yeqA+YsDAPCh6RVBYdUyw/xbjBCMGLiUGaWpXHCfa0OwKohwbS9TBU6E21aMbNvidHXk+0Rq0iYQcrBOy2Sxs24ZpmiiZJrKSBB7UiEgQkMlkUC6V4DgOqtUqUuk0BI5bPdDHrGAQRBFcG+SAANHlfWwg6DJJYJEDy7aD13iex/DQEBYWFlCpVjG7sIBhoCsahFaIHZLn/J7w2WwWqUwGG6n40aVugI7rwqQTEJuI5hcWoOu633gntCtJEKBR8qCpKlRN8//Pfk+loMpye5GGGJa1vQSLGvinEpMctHm+Dm3Mw+6v3teHfek05EoFzA768u/8Dl554IFgojx58iQ0TUMqlYKqqsjn80hpGlS6mhRF0fdeCKXwRFluqZvwPC+wR5ZkeV3z2VHaIBbVatXdsqPj0XLaqE+rkfdBPTFIpdPgeR5OjOZkPHyPi0ZX4dURYdd1fREogLSmoW9gIBB99vf3tyXOTpCQg3UDx3Ho7+/H/Py8H8K0LKRFMVCrC4LgRxcqFViWBZ7mzBpGENgKrcEAIFLnPDfGl9AwTfzjf/yPUSwWMTw8jF//9V+vOS5zUbRsG//X5z6H02fOQBJF/PIv/zLuuP32ju4Ha0Bl07asDMwqGQAq1Srm5udBCEG2x81RWhpC0V4ZhmkGHhDgeSiqGqwsW62EWNe8arUKx3VBqNuhrusolcuYnZuDbhiBiyBzKVRTKWiqGkxmHC3zS2man84IuQiy8kYh5C64XitZINRwqcFATICackSX+jq4ET+MKBuGAUPXUdV1v2eD46y4PxICSZIwuGMH7jhyJPCxuPPCBZz56EexXKngscceixWBsqmI16Tuky79ngqSBEWWI0m2ruvBuaxXeRzXzKcj9Ax2kxx4hEBoQAz8w0Z4HkQQA0EQYpFXvoXuKWoPZeprIEkStEwG+f5+AEA+n4/dwCnBChJysI7geR4DAwM+QfA8mI4DRRSD1aQoSdA0zR8QTRO8IPh+AIKw+kvSSndAzZBsqthutrWiKPi+7/s+/Mmf/Anm5ubw3e9+FwcPHqw9FiH43d/5HZw+cwY8x+Gnf+ZnOiYGgL/KAiFBz/YwGEHgeB7lchnzi4sghPiW0z1EFEFgqxGT2rDC8/wGOuk05FCHzTj9JwRRRP/AAGRZBvE85PL5VStTQohf3UAnw2B1TP8tFAqo6Hqt2JTjgsgOqzZhzwdHCLiQZ0LUj0i9FMI2xfV/Yy10L126hOszM4GVM5vYScjIyaJ9Hgh1wHMoEXAcBy41eAqsu0Mr3cDsCSuDP0vJaJqG4eHh4HdGlFRVhSgIEHbvBvczPxPcErlUQubYMUz8zb8ZixiwCV6UJIiSBJf2RrEsy9fCVCr+91FRgs/dNE2/ZJIQZNPpjqofOkGz5lQ1mqEuohkxYMcLwvz0PCq6HlQlBMQArdNITR1eGxB44nmB8ZSqqhgaHoZAmzetR2ry/YiEHKwzRFFEX18fFhcXYXgeQMuqGBRFAfG8YDLgOb8FMIHPpmtIQZMIgiAI4DkOLjWOEZuF1AjB448/jq9//etYWFjAV7/6Vezfv78mevAn/+W/4MiRI4Dn4Yd/9Efx0AMPrO0+UO/8cFohDJ7nMcQiCOUyFpaWQDwP+TX4IMQBu4s2zSOblhU4KoqiCFXTIEa03Y4rzJLo5GPbNnRdX5Uy4TgOqqJAVRT09fVF7qNcLsOwLKg0ahCsxEMTtsN+pxbM9W6DruPUmArZphm81wttE7zXtuERgtNnzkAQRYh1Bk2CIPipLJ737YJFEbIsBwRDqCMgjIQwT4eo1wUa/YoDd+NGWHfcAfndd4PX7j53DvzmzTH3UAs2saiKElSfsDI50zAgiCJs0wzK5dYjZM0iBs3uSZBW6Fa0iOmcYmzK9CYEfidKRgTTIWIQbNcAfIPJPyAFDd5boVbJPM+jf2AA6UwGsiz3fLx4PyMhBzcAqqoil8uhWCzCcBzwjhOU2gC+B4LrebAsC5VqFVk6aLqEgEfdqqDJCkEURT8X7jhNyYFLJ75PfOIT+NKXvoS5uTl854UX8NhHPgIA+Ppf/zWefuYZAMDf+N/+N3zsYx/rSl5bppNkMwwNDoLnOJRKJSwWCiAA+nr4hfdoKNQ0zaB6QxJFqOl0U9OadvLmmqb5K2waxm7bDIfznd8kUYwUy62lNLARFhYX8eyzz+Lgo482JC2AX0bm2DZSqVTL/HsQNejSOepPPVVDDjZMT2Nufh5eSFDaLnhBgKppvpkZ7ajqeR4Ky8sg8FuRr4fOIOxj0AzdjBy0+9lwHAfwPCrlcmABXk8MgOj0G2FpiwbPbavnuUSjBpqqYnxiAoIgdMV18oOM93dN1U2MTCYDTdMAUURZ130nvRBSqRQkUQzc1zwWjiURnRLZF6DudfalbOZ3EH7HgQMHAivir37ta3BdF6+++ir+7L/9NwDAww8/jL/7Qz8UHHOt048sy7BoS9VmGBgY8NX9PB8YF3UbhBDouo7lQgG2bYNwHCRZRo6WrbWcwNsYhASWLuI4VGm4vqNz7sK5xEXckHlb7oi0SVi3YDzyCLxQ+StHCLRnn+3Kvjmeh6ooyGYyQTkqu8IynQx7iXaaGXFYO+HqRNDoeR6qlQps6gCaSqViRVSI50UTAzrGtLpyXdfh0ZTVps2bIYoiBgYGEgHiGpGQgxuIvr4+X5gnSShXKjVfDtakSRCEwKQnWDlQc5eaL1NEZQMzd2nWhCmcK+c4Dn/rB34AADA/P48/+qM/whe/+EUQQnDnHXfgU5/6VM0xuDUSBGahHAd9tL5c5HkUikUsdpEgWLaNYrEInZa28TyPfDaLbMSqp1tgXfaYB39HaDRhUEHjeoNVbQDx3BG7TmFUFTN79tS8lHr2WaBbEzchqOq6Lx5OpdA3MABeEOARgkqphKqud916nKPHjX+KXShj7MBMy3UcnyQ5DgSOQyqViiTU9ftt2OK5jXNg5CydzWJgaCgYVxOsDQk5uIFgzVdEVYUHv5Nbzd9ppzKe5/0uYyECwUrvaoRw9boDaobEutzVIyr8vO/BBzE1NQUAeP7552HbNiYnJ/FzP//zkV/2tQxCsiy3TCuE0dfXF4j4isUi5iNaI7cDl3oWlMtl2HRCTafTyGazASngEW/V1m6pJ8/zQUfFQPEeFy3uORez3LXbCHLCMVed3U592I6DV0dHa14T5uYgv/lmV/YfrpRIp9NIaRry2awvUBQEvxV7qeSb8HTh2jpxvAzGhw41B4F2po3vtWVZ/uLG84Ky7EaRtvDVMGJQdwJtpcUs0/Q/F9vGlq1bVyKyCdaMhBzcYLDcmKCqcCwrsGdl4OmXjaOVB9W6vwOojSKEIggcx0GQJJAW0YMacBwee+yx4Nd8Po9f/MVfbP6F6zCCIMVMK4TRl8/794vmNucXFto+LqErwEKh4HfOIwSKLCOfy63O4dP8fkt0QJJURfHrxmmFQjdxI3KtLGrALISbgVUmdBMnT57EzOAgzC1bal5PPf30mvdtmCZM2w6cMdnkx/E8UqkUMul0UCGkG4avvejEvpwirsagHmvqq8C+x3FTSFSgqdMmR6zjrNBMmxO6Jj4s4qXjVrtkqESjFfn+fmzYsCExOuoiEnJwE0CWZfQNDoKTZRimuWrCFAQhsGS1IghETRQh/GXDit9B3JzozMwMvvKVrwS/m6YZSzDXyWAkS1JHA2gul8PAwAB4nkelUsHs3FzscK7jOL4Q1DDgUn+JXDaLFF3FN0JPplqOg0Zr4/U2QtLBudxAs6MokBA5aIkuk5dKtYozZ85g544dMJ58suZvymuvgVte7njftmUF5jqaqkb21BBFEZlMBilVDb6P1XK57agQq+3vOPJAozft3t1O9QUmvS+KqgYGR81PL+L86P3qxAxruVCASwh27NzZVCiboH0k5OAmQSqVQqa/HzyAaqWyiiAwDwTAX8VU6jQKDK7n+YM0q9tuYoZU//5SqYTP/7t/h1KphAw1HTIMA1/72tfiXUSbA4wsSTDbjBwwZLNZDA4MQOB56Ibhq9JbDC6maaJYKsGm9yKTSiHbyKq6Dr0K1TMfC3BcMAHFRdO687WdVkdopxtjtx03jx8/DkVRfHLw6KPwQjlnznGgffvbTd/f6Gwcx0GFikYVWW5upsNxkBUF+WwWiiQBggDbcVCpVGL5YBBCGpfyxUS77ZpZpKCdI7qOsxIZ4Tho1HUyfMxIL4L6qAbn28d3cr3E8zA3Nwd4Hvr7+7F9x451Nfv6ICC5mzcR8v39kNNpgONQoc5wYSiKglQqBcDP81XCIkUKJhJ0KUOXWOSAmiGFEf5SmqaJ3/j1X8fs3BxUVcU//af/FPfddx8A4Nlnn41fIdAGQUil0zBNsy3dQRiZTAYDg4MQaN5+rkEEgRCCSqXiN34hvqNeNpttuwStGyrw1Tv16+Q5+J9BrAhPg+qU1ZutL0UIQtoxBuluUoOFxUVcuXIFd95xBwRRBMlkYH74wzXbpJ55pun9irpTruv6Hf7gi3u1mA6IHM9DS6WQod9Vj5DWaYYuEAOALg4QL3rTDolgsG3b1xe4bqCJivoeNSKI7HhB2qSD6/VcF8vLy/74x/PYc9997ZcDJ2iJhBzcROA4DoPj41BoVz+9Wl0VIVAUJUgx2LTNcX0ZJOB/+VzqlMdTy9Lw4ESwEgb2PA+/9Vu/hXPnz4PneXzmH/0jbNq0CX/rb/0t/zi2jb/8H/+j3YtpuQnLD5ZKpfb2HUImncbQ0BBEGkGoTzG4nodiqQTTsuB6HjRVDUSebYNGD6KubC3TMHPl42JGD+Iea93JQRuRg26lRAiAt95+G7lcDlObNgWvV594omY78fJlSCEPhKj91PxOBcAcfLfRdCrVdmRMlCTkMhmI9H5UKpXISBmrLlgrMfBoapHQiptm6IQYGIaBKu1fwdIoDfUFESZh4SiFF7FNHLDutUvLy+AEAZs3b8bGUCfVBN1DQg5uMgiiiPzQEDS6mrRZhCA0cEi08Q9P3fFYy+d6sAGH53kQjoNbHz2gX84/+IM/wFtvvQUA+Imf+Ancfc89AIDJyUncf//9AIDnX3gBs7Oz8S4iHF5sslk2kwEHoLgGcgD4KZmh4WGIPA/TMDAzMwOPEFi2jUKh4PcxoMdbs/99RMkogJWGPR2CpYxs2+44klIPFmJeLwRljK3SNF0kLVeuXMHS4iLuvvvumsnO3rULzvh4zbZaM2FieGKmkSaPruY7IQYMTFAsSxI4+nxWaQTLP1R3IgZAqK8FzzclB+16GHiUKDF9gawoLfUF4b0HxIeQjkSWDLbjoFqpoFgu+wZU6TT20vEpQfeRkIObEFIqBS2VQiqTAWiEoFwXIRAEwc+X025opVJpVRMjBlGSAEJqVy10MPofX/kKXnjhBQDAJz/xCRw4cKDmvZ/4xCcCz/S/+PKX27sQOgg1GvZEUUQ6k0GpWGxvvxFIaRpGRkYg8Dws28b09DQKhYI/wPM8stls12qfOUSYAq1xcBeobz9H1e6tjg/E86hfr9iBF9K5tKxUWMMEEYbreTj+9tsYHR3FyMhI7R85DtU6YaL60kvgyuXmOyUElWoVDmsvnE6v3YqY1v2nVBWgHQmZJ0A3IgYMnusCVGTb+FS4trwYXNdFhbpeAvCbgLUQ7wKrXRA9Zt7WIcmyTBM6jbzYpglZUbBz586kb0IPkZCDmxC8IECitqwsBO7YNsp1EQJeEPxJjzopMtvfesi09azjurAtCx4hcFwXL7zwAr5C0wUHDhzAJz75yVXvnZycxAO0j8Irr7yCS5cutX09zQaSfD6PYhfIAeDbUo+MjMCxbVQqFcwtLIDnuIBEdRvhFV83QviaqgKc3w/D7FL0YL1SC2ExYrNjdtPb4Ny5c6jqOu6+++7Iv+sf+QhIaKLkTRPqd7/bdJ+6rgfGXKl0umF3yU4gU4dFRiyrayx3rEczvQFLI7STTrDpmOMxfUEmE2nX3QjsOGv9zA3DgG4Yfs8GXYesqshls7j9jjvWtN8EzZGQg5sUYirlN6CRJD+3JwhwPQ/lUqlmQOF4PmgyQghBtVqNLHVkOW3WBfHNN9/Ef/xP/wmu5+Geu+/GT/zETzQ8l09+8pPg6Yrjy//9v3d2QayOue7lbDbbNXIA+JMUS7kwu+W1WBS3Qs1AvMZBkON5X/WNFqWNbNBd09G6i1atmhm61RDIMAycfPddbNmyBdkG3TpJfz/MBx+sea1RaoHArwKybBsgpMbLoJsQKKEXRdHvQ1CpxGqrHgce9TuJMhbi0N7zEtYXCK30BSEEWqYQcV5l1hYThBDo1Sos0wQHP3ogiiJ4nscdd97pR0QT9AyJxPMmBc/zUPv6oC8tBQMKUzyXy2W/4QstqwqslqkozzBNeIQglUoF7F1RlKAFrZZKYffu3fiT//Jfgi9zs0F7YmICf/yf/3NXritYvdCBI5fLBc5zax2Mq7TCQxQETE5OolgswrQszM3Pw8rl0N+DOmgOoVBtF1bpqqIEzX10Xffz3RHHBBCLjMRNQawV4Xx3M3QjckAAHD12zJ8kWqweq088AfXll4Pf5bNnIZ49C2fbtprtrLCXgab1zn6XTtSZVMr/PsP3aEjH7EPQDCxyEG6NzNIWcaMF7LljaQRJUaDVlSlGgX2qxPNWXBbXAOJ5qNIojgCAF0XYtLnSps2bsanO6CpB95FEDm5iCJIEha2KaHhckiRfSV2tBgIhBlXTkKaEwLKsmn4MoigGk69F2xADNH/O8yDUYnk9VqPhYYZVLKw1elDVdT/0SIiv10ilMDo66ju2cRyKhQJmZme7tkqrR9fC9xyHFM2jrqXMs3aXvU8tBGmFVhNcF8jBlStXcO3qVdy7e3dz3wEA1p49cIeGal7TaIdRBsdxoFer4ACorbwMOgWboEMmZelUyq9koKXLnayuGaIqFYKywZif/yp9gaa1NAcDNS9iZYlR27bbb8JzXZSrVTiO4y+SUimUy2WA45DP57G7rn9Ggt4gIQc3OSRNg8wiAByHTDodDF5VXUeV9jFnkGmpI8/5lsmlUikYuBVFATgu0qqX7T8gCb1236PH60bFgq7rMHQdxPOg0fa6/iE4DA4O+nbLggDTMHD9+vWOjZeaoZviP1EUISsKeJ5HNcph7yZMK8RquNQFkmJaFo4dO4bxDRswMTHR+g2CAP3xx2te0p5/Hhx9BljDIHCc35q7F778hAARzYU4nkc6nQ4IQjmmWVIUwpGbTiIQ9fqCdCbTnCTRa2lq18wqFDoQQLqu62uqUino1Spc14Uoitj3oQ8lngbrhIQc3AKQMxmITAhEV5apVCqoQKjWeSGIkoRMNguBNmxiOgWZ6g5cx4ls48xC5MBKnrDXJEGUpDVVLBiGAV3XfQ8DTYMSUaqYzWYxPDwMURThui6uz8ygEtGjYq3opouipqpB34WG1Qs3iX1ysHJE87RCN56lt956C8TzsGf37tjvqX70ozWlpny1CuXQIb/bKX0OBEEIDMa6jiZhdkYQBEYQOowgML2BIAht9UcA4JdX1ukLmjVOIvBJASvDbIg2KzFs20alXIZHCGRRRCaV8is7KhWA57F7796G+pIE3UdCDm4BcBwHJZ8HLwjBl01RFL8hE/yWw+EIAVArfPII8TsP2jZkWa4RJjY6HgOhJUhBx70eIJ/Po1QqtT15mJbl14w3IQYMqqpidHTUN5jiOMzNz2NpDX77UQiTqzXvi+cDvYFhmmtWtfcytcCeO65JpQLB2snB9evXcenSJdx9zz1NP+t6eKOjsOrIhPb0034XVELAM2LQ7XsUc3/MaVCg21eq1bajQkGlQhtRA9d1USmXA62FJMtIN/AvYJ9fkD5gYsMm+yeE+E6tLcAaOFXpdUuSFOillpaWAI7zdQabN8e+tgRrR0IObhHwPA+VEgQGSZaRyWbBc5xvhlQqQQ+lGVj5kSxJQakjUxLHaStbY17SQ5KQy+VQLBZ9UWTMfbuuG5jJKKoay9xIFEWMjo76pY0ch2KxiJmZma7rEDigK/dIlCRIsgye41AJpxfW2fmwFbyYKYW1nLXtODh69ChGRkawKeSEGBf1jonKiRMQrlwB4HdZbLoC7gRtivJYBIGVx7bTZ4Pj+cADJZZtMt1/UPnEcb6+ICRgDm1cExkK/t6lqhMWGTBNEwT+oidNK7VKxSIc10VfX1+iM7gBSMjBLQRBkqDUtSQVRRG5XC4oZTRM0/9S0ZUmR9MQKs0f2o4TEINmYrdAzFQ3CNSQhC4hXLHQyIGwHlVdh+u6EAQhtuc94F/XwMAABmjTJsM0u6dDCAnAeJ7vSnOhlKYFgz+bMNqpVgjQwxREHDHiWu/F8ePHYTsO9nQ4SZgPPgi37ruTf+EFf8XOQvHdQL3wsA3wgoCUpvnkPUa0iACBlsGl38lWegNW7cTEzMwGOawvYB0S2Xcd6Czy1Cw5wtJlFapz4HkemVQqEECapolSuQxFVbE76Z1wQ5CQg1sMkqJATqdrJme26mBCRJc6JjKxIsdxgYKfQY9o7BSFYEioGxyYJqEbRIHlEcul0spxmjgrspJMAB2HgzOZDEZGRiBRHcK1mRk/zNxFtBMJabYPNmDqhuE3Zurgetu1zG0HccoY13IX5ubncf78eezatatzXYAsQz94sOalvpdeAptKu0F2OaDtPHs9REmCIkngBAFVavwTeSz2WdIJvKHHAYVHSwPZZAzaHCod7kpKSKApiDpOu2jkhMkICus8K8uyH+GkuirP87C0tARRknDbnXdicHCw7WMnWDsScnALQslkIEasliVZRpZGEQDaorhYDEqTWNMmWRT9hkSFQqwVMxPaNVIkE0L8nGeHRCGbzfoVC3WixKjjOTSdQAiBqqprqg1XFAVjY2NQFQU8/EloaWmpY8V41NTbjTaykiz76QWeR7VaDQbqnleUxEQrckCAjkmS4zg4fPgwBgcHsXXr1g7P0D/HhbpOjcLyMpTXX+8OMeiiDbKqqn6aI0KMSuATxrDToccarDXoqcAqEWz6XZdkGVlmnIaQngDwIx/RF9jWNUS2bKYeCqyFNc9xyGQySKVSNSmpUrEIlxBMbNqELYmfwQ1DQg5uUai5HPiIUBtPhWyZTAY867tQLvvdHT0Pkiwj39cHRZbhUobeVo11g0GCw0o4MqhyiDlYiqKIdDod7XXASizpvnR6roIgrL2JEvxQ+MjoKHK5HASeR7FUwtzcXFd1CHyHYeYwUpoG0EZbjNB1ssdu0wlGDIEYHgcd4J1334VuGNi7d2/H+2Ctl43xcVR37Kj5W6pZM6aYCIhBF8WoLCJmmWZg5xwQg7pniX3f6jUfrCywSr/7nCAgnclA0zTf2yQkMIwCaUQUYqC+UyzrD8MifrIoBtbv4WOwdMLI2Bi2bt2apBNuIBJycIuCCRQjByRas53LZoNcomVZKNLmTIIgYGBwEKqqwrZtmIaBEq1maAV2tJaOaSzcGbMcMkcrFhoel+dhGAZs2/Y7snWx7IzjOPT399foEK512Q9hrbbBHM8jRZ3qLNp+ut2JvheNmMINl7oRJQljYXERZ86cwa4770Qmk+loH2yCZEJc82Mfq/m7fOQI+Lm5zk6whxEcURShyDJ4QYCu6z4xCB0zDNdxgqoLdj6mafrNnVjUUFWRpSWK4Qhfs+8x3yS11xQhokQ8D3q1iirrckkXLym6eKm/jqWlJfQNDWFi40YMDAx0cvQEXUJCDm5hCKIIra+vIUFgK5BMqHtjuVJBpVKBJIpI0Q5rBNSVjEYYWkUR2nVeI4TAdV2QJhMaq1hoshOY1BZaW2M6oRHCOgSP6hDKbegQmt2PYGJew0QiK0rQI8MwjI66G3Zbd9CqUqHT6hbX83Dk8GH09/Vh+/btHZ0bixgw3U0mnYa1fz+8kNERRwi0b30r+F28dg3pv/xLpP/qr8A1++xjCmfXAk1Vg/JG0zQbHo85m/I8D9dxUKlUYOh64FuQzmaDhkntWCl3+qS6rgvP84J0hkUJCtMWSLK8iqR6nof5hQVomUx8g6sEPUUSs7nFIcoy1L4+GIuLDQcPSRQhZrMwaN8Fy7Lg2DYEQYAgCJAkCYIgwDAM/2+OA412hWwFpsxuNZAErZs9Dx78VUl4kMrlcqhSy9SoUCIjBoIgtFXj3i6YDmF+bg6GaWJ+fh6WZaEvn1/zyrjGP6LDfaRSKVim6acXmnhVNAT9rLo1rbWqVOCoNXe7OHnyJMrlMj7y+OMdERrXcQJix3wEeJ4HEQToBw4g/c1vBtumvvlNmCMjSD3zDOS33gpeV15/HYv/+l9HH4BGInoGOomrqoqKrsOy7cCjox4uFQY7tu07hQLBeyVKJuMesxvXxMSPLB3C87w/njToV+F5Hubn5yGrKsYnJrB58+ZYY0+C3iKJHLwPIMkylL6+xuFNOhFrqRSy2SwEQYBHCGzHganrsCwLiqKs/M3zUKERhlhahDaV8Eyf4IX6OWSzWRDQioUIWJYFz3Wh0FUHU4b3AvU6hFKphNm5Odhd0CE0FXfGAM/zSKXTQfTAbXPi5TiuqzX9LcWIHUQNlpeXcerUKdx+xx1B74124DoOSuVycF6ZOmMf48kna7bnZ2fR93//3zXEAADkt94CVycIDD63HhKDwMocviEQ8z6wI0obPUJgWxYq5TJMmnJj5YnM8CzWMf0Dr/ncLdNEqVIJzpWJoJVmxGBxEYIkYXzjRmzZsqV3TpUJ2kJCDt4nkFUVaj7flCCAEIhUCKSpKkRBADgOlUoFpXI5cFXUaOmcZVkolUqxV6idDjDE8wI76MXFxVVhaIfaPRMg6EQJrL12vhnqdQiWZeHqlStNe0DEVqyvkSAosgxBEMDRz64T1JeskYgfDysNfVjJavA+OoG5rgvCcYFXAGERIvZvm5+RRwgOHz2KXC6HnTt3tn1dDo0YcBwHXhBWOf5x1SrEc+fgxVyZEhbFWscKkZpjcNyKq2mdBsaj1ujMWVCgacRGLodNj7nGc2bpjDLVd/CCgEwmE6QAo/bPShZ5nseGyUls2bKlY21Jgu4jSSu8jyBrml/+VChEDw5MKwBfoCTJMhzHgVUooFgo1DQukiQpaIBSrVRgWxZS1LmsIUIueKRNhb4kSRgaGsK169execuWmg5vpmnCJQSqoqwKhwfHi32k9pChnTAXFxdhWRYWFxdRrVYxODAQ2da3nek+jgVt5PtoyLhKV2iGaQYmV/UITzSEkpcgzB9XcBZ6bmr2SwgcZqfLnov6STScm4+hP3jvvfdQWF7GY4891vYEZ9u2r8znOIjUEpntQ7h2Dekvfxnqd78LPqb7oJfLAZSE9ZQU0PvX6BiKLAdRIocaf1mW5Tcco14IqqoGFUpxwaE7pMAwTTg0akEIgayqfoSvRURxeXkZHsdhIyUGnUSJEvQOCTl4n0FOpeB5HsxSqfGXk07iAs9joL8/sCI2aMtjwzShUPEQ63Nv2zaKxWJN18OGYCSBKZZjDqxj4+M4ceKE75hG+0gQz/MHRteFROuyo4abmokr1tHig+kQisUiisUiTNPElWvX0J/PI5vN1q5M21F4c1xnBIGu1BVKlnRd93UjrDwN/v3wUHfvwxN2F+CGKhWaWifXrYQb/b1YKuHdkyexY8cO9PX1tXUutm0HURSRRgwC4eziIgZ/7ufA63qD04vOtXt9fV0vU1yFulLdiJMDx/OQJQkmJQQAAvdEQnz78PrUSUsQUtOMql2ESQEDLwhByqtV6mppeRmO62Ji0yZs2rwZ+Xy+43NJ0BskaYX3IdRMBko264eCm21Iy8/6+vqCUCShbmu6rgelhayBEyEE1WoV5XK5rVx33PD5+Pg4PM/D3Px88JpJrZ5FSQrOz/VaOzN2eyjnOL+X/NjYGDRFgQBguVDAzOxsTclj28SEEri2dQAc5xsj0bB3uVKB43lwaQmp2+r+dEl4BiBoOdwxKKE6/MYbSGka7rj99rbebllWQAwkSaohBgCgvPlmQ2IAoOEk6fX19SwixXQFq6Ip4UgPS+PQqgPLsrC8vAybeQXIsl/uyHGt/QDqPQs6/LyC9EGoTFKiC4k07c3Q6lkuUPO1DZOTmJqaQn9/f0fnkqC3SMjB+xRqJgMlnQ5sVZtBFMUglSCKIlLpNHgqTNR1HeVyGZIkBVoE27ZRKhaDSENctJqQsnSAmbl+PXjNpuRACeWIg7bSwCovhVWRhS6v+CRJwujYGPqpFsG2bVy/fh1Ly8vwPK/jSbedErPQm6CIIlwqVjOaTIBRx1urMRNr+x1lxtUu3nrrLRSKRTzwwAN+qVvMUL5pmr5rJMfVdPMLw96xY0U70Aa8NqMXsRCOFESQgsCtkP7ueR502pac9R7hOM6PWFHNkCiKraMG7US0IuA0IAXZbDYQEBKgJTEolkrQdR0TU1OYnJrC0NDQGs4qQS+RkIP3MbRcDnIqFVgbR4JGDzSan2WlablsdhVJME0TkiwHUQRGHOK4CQYhXjQmCRzHYWxsDNeuXw8GSBYlaLoyogNfmCgEJi89yhVns1mMj48jRd3misUirs3MBA1t2kWsKgY6oXiuC+K68AgBJ4p+a2eaDnJiGFmFj7kWNHRGbJN4XL50CefOnsW9996LgYGB4LPjeb6pcZNpmjB0HRwAuQExAAB340Ysf/azIA0U843O1O0mOSChhkws6kZWGhwxUsDAvnOlUinoWChJEjTagVTgeTiO40fVmnw31kqNGSmohEiBHCIFvCDAdV1wPN+UGBBCUKaCxQ1TU5jYuBEjIyNrPLsEvURCDt7nSPX1QdE035ikwYDN0dWHRjvCsbbPiiyvIgmWafq+6HRCcBwHpVIpfhSBkYQGudbx8fFgheJ5nq985uK777GcPxtsA2LUA5IgiiKGh4cxODgIURDgOg6uz85icXFxTf0ZIidtz4PruoEzYlgAKMuyL9bkOJSr1VXWtY0P1iVyUP/ZhEWILVAqlXDk6FFflLZ5c/Q50tVyjc0uXU178JuRNSIGwfYf/jAW/9W/qjFAAprrYboVOeCAoHtimAhEKvhdF1VGCiyrpgohl8tBkqTgmXYcB8TzmpKDTp96x3FQKZcjSYFGSQG7Nmbu1exeVnUdxWIRGyYnsWFiAuPj4x2eWYL1QkIOPgDQ+vogaxo86lwWBR60goFGBYL2wBwXSRLYBMRW67quo8hWOTEnYg4rq0OGoaEhiIKAmZmZ4BhrcUMMpyCYtwJoXp79rFWJnk6n/ShCKgWB41CuVHD12jVU2wjz15wzQv0YPA+u48CtE8XVd8tTNc0vbwRqmjM1w1qum2lTgNWfT9yIhGPbeOWVV5BKpfxWzK3ex6pXDCN4PlVV9ftOxIB9771Y/NznaiMCzchBJ7nwutx+QFBb2Ih7VBRcpP0HCPz7mqbeJDI1KgN84ykWNeB4foUc1OsKOkANKaBpoyhSAPifc/1zGYVqtYrlQgHjk5MYHx9P3A9vESTk4AMAjuOg9fVBUtXa1XTtRsEKhfVTD6cLwiQhTUkC4E9iruvCsm24juMPcG2ShLCJkiiKGBkdxfXr1+FQvUQ3rZLD1QT1ZkxBLX8HhEEQBAwPDWFoeBiiIIB4HuZmZzE/Px/k5uMi3JfCaeHEF/bIZ4Iwh64+Y6FTYRp9Nnha6hc6oXiOiITgyNGjMHQd+x56KFaDHUIIKtWq77tByzm1Nt0ynW3bsPD5z8OJsXKNFTlgWoFQVIAJgeP0L6ghBXSFLooiMuk0srSMliEsGLYdB/A8iJJUU4XSlUhBC1LAI1QGGdJK1IPjOBi67hODiQmMjY1h48aNHZ5hgvVGQg4+IOB5Hqn+fgh0MGH+5+FJkMOKOBGgK1CgZtDhqClLmCSIoghJFOG6LmzbhsNIAhUtthtiHxsbC2yLWVi122DDNcdxQQvcYFJmiv8I0tAKqVQKY2NjQfVHtVrF1evXY5sVeXTwZ6vyRsK8ICIS+lu4lMyyrFWmOZHoMHoQ2CZ3mFI4c/Ysrly+jPvuuw+ZbDbW8UrlcmCGlU6nkaIC2XbhjY1h4d/9O1jbtjW9/ijNAUtRRWkFakSlLe4r8w+JIgWZdDqSLPE8D4HnA/JOCPEtiTtNDxHfcrkckxQA/oRBuBUDrGYwDAOLS0sYGRvD6NgYpqamut6cK0HvkHxSHyDwPI/04CAE6rde014Z8MWJHOdXJVDBk2lZkeHKepIgiCJE+uM6DkzTDJTkTJMQp6ETx3EYHxsDIQSzs7M+Oehh21aWM23kCVFPGsKEoV78yPYn8DwGBwYwOjICSZJACMH8woJvwdwgihBEMFy3ZhUWpBjqzzuULglDEkWotHtjlfpDxLkH7WItbZoXFhZw/PhxbN+xAxtihJht20apXAYhfle/XDbre++zMlA6YbYD0teHpX/zb2Ds2bPqbxwh4DzPL2WM+Jzr7znzQYhTYcFIQalchkWfBakFKQiDp9bnjuMEZk/twqWVLcVSyTc6i0MK2PWFSCm74149OSIElmliYWEBQ2NjGB0fx+bNmxNicIsh+bQ+YAgTBAYmVmQ5TJ7n/TwuDQu2qpeXZRn5XA7pdBqyLEOSpKBxSlXXA2+EYrHoi8hakIR0Oo1cLof5+fnOSvw6QCuSEEZYUFZPGICVsLKsKBgfH0c+mwVP7+W1a9dWt6YORXJanWP9/6M+G1VVIYoiOGClXXHTHXew+qYTSg05iBGFMAwDr736KgYGBnDXXXc135j4FTGVSsWPagkCsplMJCEJIkAR5xA1mRMAnqZh8V/+S+j79wMhAuABcDkOLnXsa/g8hJ+VFtfOVP9hUiCLol++G4MUMAi086LnuoH9eRwQzwvaOJfLZT/y4HngeD7oqxJFCpgQtP7qws8qF/qXVSXMLyxgcHQUY+Pj2Lp1a0IMbkEkDokfQDCCYBSLsKpVf0UQavvK0wHDsizYtg1d12uaoTASUT8gyrIMWZb9qgbLgmlZfiTBdWGYJkC7QsqSBJWWZDUaNDaMj+PcuXPgdu7suqFRMwTHigjbN3wPt9JHgPkshFeZuXweqqZhYXERtmVhYXERlUoFgwMD/v2JkXapGYBD59doUkqnUijRio+qriOdTjfcd9vCREJtk1FHDiKeifrjvP7aayAAHnzwwaYkjBAS2Hdz8MWyaoOuhAxM4Op6XqCgryEMoTQA248nCFj+7GfhKQpSzzyzcnxFARpN2KF7T9BcU+AwJ8FQxEgWRShtth0Pdz91aDQojvGR4zjB9zgMUZKg0LLkKILBiHLNs0YRfl6ZtwcjVsuLi7BsG+PUwyCJGNy6SMjBBxQ8zyPV1wdRlqEXi8Hq0qXWxRzHIZVKBXbBiqIEg1l4oIoaFnmeDyZ/lpqQJAm2bcO0LD/doOtQZBmpVMpX2tcNIGNjYzh16hTK5TJyUTnpGCrptaCeJLDrjfdmLpgk2X5kWcbY6ChKxSIK9J5eunoVaU0LHChX3s4F+wl8GuquNYgcNDoFnkc6lUKxXPYNkgwDahPxXtTqsBHCtsk1A38LknHixAnMz89j//79Tc+FaVbY85VKpyExEyz2ObAVLXsOWOSLpsaCUDd9rmtSNXUCSvA8ip/+NMBx0L71LRBRROHTn649qRAhjkOmIkmBJNV8j1qC48DDt8Fmv5NQfwWpATlwHQe2bcOy7ZqokSCKflRPklZKYesPSY8DRD8PYRFiOHJiWxYWlpagqiqmJicxNj6O0dHRhBjcwkjIwQcccioFQZZRXVqCa9srUQRCwFP/fsMwUK1Wka2bpONMzUyHQDTNH7BorwaDEgRd1yHLMrRUCplMJiAJg4ODEEURi/PzGB8bW73jdUg1ALUkgU2gpEUFQaOJluM45PJ5aKkU5ubn4dB0S7lSQYamUgTaUwJADSEhbDXMrfStYGkNNlGTOkLCCwJSqur3zdD14LOIQjuxgxrb5GAHzcnatatX8d577+Guu+7C0PBww+1M00TVMHxFPM/7ehae9w2fak44RNbqqgICghBDbxGQC45D8dOf9klCHQLvjBakgBASEOCw1kOWJKiKsipkHwlKCILPHbXfM9u2QQiByPM1+yOeB8u2YdOqoWB3tC+DJEnNtTsx03dME8OqlDiOC1KGA8PDGB4dxcaNG5MmSu8DJOQgAQRR9NMMpRIsqqpnJEFRVZh0BWRaVo2NcRhhMVJkmJJqE2QaLbAsC9VqFbph+NEEy0KpWESK1nVLkoTBoSHMLy42NG8K9g0Exke9pgzM0AZoMlmEIgdREAQBI8PD0HUdhWIRlmkG7nGZbBa5iLx6eOAOUhdhrUPoeOEjS7IMyXFgUVFfJp1eiQCx7TnOd+1jnhN1n2FwLHocm1YMcIzIRIjxCHxhH+E4lEslvP766xgfH8f27dujdQGEoKrrcCwLHMdBkKTAfTJ8rnHB0fscRDmi0ITQhAleM1JAqF6Ehe7DZbKSLEOV5XikAI1FpmFY1N9AolVHnaYNao4LBM90MwSfNdPIuC6WCwU4joMNU1MYGh7Gpk2bYusnEtzcSD7FBABomiGfh6go0JeXfWdCngcoQdB1HYau+yHJJur5mlx4g0GpPu1QrVZRqVSCCaxULkNVVfT39eHq1aswDcMv2WqA8IDMfu8lSVilS6iLJDQ7NpvQAUDTNGiahmqlgkKxCNuyUC6VUCmXkc1k/EhKg4kluN8s59skmpGiDpmu40CvVpHJZGo+Qy78WYWiFsE5o3Yl67kuQEgQ5WF6Fa7+HtDV+6uvvgpFUXDfffdFPjusK6hHr4E9G7FASWmjCZUJ+KLuTZRQkXkJtIqkhAlBmLzynN8QS5HlWCH1dsW2jm37Jkiui2Kp1HbaoB58k3tXj4CEEhKkEbRUCuPU9XB0dLSta0lwcyMhBwlqIKsqxKEhVGiaged5KKoKi0YPSqUSstls60Et5qAniiJyuRyy2SwMw0CpVIJOHfAEqsaevngRO3bsCDoztkL4yL0kCsF+W0US2LnQyoZ6pNJppNJpVCoVFAoF2I6DQrGIUqWCbCaDXCazarBn94EN2I2U+v6Jckin0ygWi3BpI5+4roJRYII4Rlz4BscmhODo0aOolMs4+NhjNYY+DLbjoMo8IDjfyClqu6h9x1lpA/6k2aykk5GCcGomCp7rwnIc2JZV8zlyQFChE2fVHIj9YgpBWXTCMAxUqlVYluUbXqGNtEH4+HT1T+ISA47z/SXo+ZbKZRRLJQwOD2N4ZARTU1PIZDKxjp3g1kFCDhKsAk/TDGapBLNSgchxSGcyKJVKsCzLD09nMm23GW5WlshxXLCStm0bpVIJruMgpWm4fPUqcvl8ECpVNQ0y7SDZCmwgXkvHxDjHYNcA+AKyqGuNU8KppVK+gRTtd18sFn1RJo0kMJIQTIyhJj7s9ahJh+d5ZNJplMtlWKYJURRXR2NiTFae5wX1z3wochBFBi9evIjp6Wncf999yOfzq/5umiZ0Xfc1AtQqOK5Yb1WkqtX2PL+qpDOOP4HneXBsG5bj1IgLAb/qQJRlSKLYuvyVEhAOK74Azc6dWSQ7th04heq67osRaYpOVZRYaQOGIO0HNGxTXfcGP4rCrNI9D0uLi3A9DxNTUxgZGcHk5GSSRnifIvlUE0SC53lo+TwEmmaQAZ8gFIs+QQhFEOJOuTU97JtAkiQMDAwglUqhVCrh3ZMnUdV1aDScWalW/clNFCGrqj9Ih7zn68Em6nYU+WsBz/lW1GHxYpzW2ey9mXQaqVTKTzcUCnBdF8vFIkrlMrLZLDLUBRFYEUhyIb1AozSDSEtImcCUj6qvb/H5eDTdxAuCTw4apI8WFhZw7NgxbNmyBVObNtX8jRCCarUa5MkbtVquf89ayB3PcT5pA2rV+A0iHrbjwLGswJOAgT13caNYTLwX/ryirsOjVQgOdRiNIpK2bUMUBOT6+uKt1MP3rB0yxcgSWXGCNKmpUSqTwYbxcWzYsCHpqvg+R0IOEjQFSzNUl5ehEgJCV5+2ZUGvVqFQr4LYJCG8amoxWSqKgsnJSVy8eBFLCwuYvPde6NVqsIqzLQtVw6gZsCVJ8v+NWM3VlLPBX+H3LOXAro/qNlqJKuvBcxwymQxS6TTKpZIfSfE8LBcKKJVKvhqcVSmg7jpYmiGCIKiqCsfz4FiWL4DMZGpd9pqUqAL+ilYUxRVRY0RKYXl5GYdeegmDg4O45557Vr2/Uq0G56ZpGlRq1x2FgNh1IerD1wkU6887LO4L/0XgeUiyDFkUY4sLWVVJs7N2HccnIRFRCWCl0kcURViWBUEQoMiy3z21GZh2ot17RkkBRytDCPH7ZJRKJRSKRQyPjmKIRguSNML7Hwk5SNASvCgiMzQEo1gEKZXAGuDohuE7rMkyPKAzksB+xeqBlOM4KIqCTZs3491338U999yDwaEh357ZtmEaBmzLWmk0FCIKQc8HShTq87HseOFKh7jlXHHA9ssBcLF6tRg3zcFzHHK5HDLZ7ApJcF0sLS3BtG2kNA2ZVAp8fRVJI0EoxyGTSqFMle4VShDCPhNcE+LGcvcirVSoX9GXSiW8+OKLyGSzeHjfvppojmma/jNDzyMbwxlwrZ9H2MEwqKCgv7PrsWwbtmWtFhZSHUHbqY4G8Dwv6D3ihHL4wTFph0VRkiCyyAx9HyMtMk1jNAITGLZFRetIAbBSlrm4uAgPwOSmTUGZYpJG+GAg+ZQTxIaay0GUZWBpCR4h0GmVAc/zfqtnz2ufJFCwCaN+UhIlCRs2bMDZs2dx+swZ3HvvvRBEESlRRErT/NWebQeCSYca/hAgaAjFiIFEyUI4JEzqj0+xZiEjvRbmzb/qz6FW1atq+CMQJgklmmLwDMMXGbouBgYGkA65WLJrIlFRBCr8K1MHQuazEK4+aDTRBR4HEZGZarWKF198Eaqq4pFHHvE7BoJWI+g6XMfxyxRFEelUKjIs3w277JqmVKHniYMfPXBo7w/dMBoKC4X6bpMNzjOqAVZ4G/ZM2tTyuP48RUHwyUAoGlMPmxIDjkYw6oluOGUWTpu0RAQpYKhWq1hcXEQqk8EIbbM83MSfIsH7Dwk5SNAWRFVFbngYPM/Dc93Arz2byQR+/h2ThIgBVqKD5tTGjTh7/jzuuP12yKEwNAu7BkSBDqSs3Mu0bRDD8BXroug3PtJ1f5VGV2gC/Qmj/pw7nbQareDCe2LCzkY5cNRtm8/nkc1kMDM7i2KxCMe2sbiwgGKxiHwuV2N1zaIAQdMcJlykAkVmscwiCOH8eOT1hER8YZimiRdffBEcx+FDH/oQFEUBIQQGbcDFhKGqqkKJsEFea/qgpscBu8bQvh0m8KN+HV6ItDHSKDUo0408TsT/Pc/zS0ZDx6qHQAkrIwNxhIyGacKy7SBtVnN8liJpupdVF9GQFOiGgaXlZdiWheHRUQyPjmJqaqrmmUrwwUBCDhK0DUEUkR0eBngeS7S1coUa+LDV55pIQvhYND0wMTmJ8xcvBgQhCmEHQJu6xTFHOVbnbzkOePgRCc/zYNUdSxCEgDDwocE7fP5eDKIQ+M230a46HL1gjnyNjsILAnK5HBRZDiY8x7axsLCA5UIBaeY4GSI9NSF1zm9UlMlkUGYEoVxGmlWhNEktsPvDVsuWZeHFF1+EY9t49OBBv+KEeiqwSUiUJGiatoqEdUoKaiI9dRGC8IqdkYKa93IcRJ6HKMuthYVcrWMhQ5gIeJSINmqtLdHIgCiKbdsJW5blixUdB6qq+gSm7vxiowkpME0TxWLRF/sKAjZMTmJi40aMj48naYQPKJJPPUFH4Hke+eFhCKKI+WvXYNG+8FnagZBhrSSB9ay3ZRkbN27EmTNnsHP79pY13VJolWXTnLJF1fEeNSKybNvP0RISTFqu69YQBp7nIfA8BLrSE0K54OAcEZ2CaKeWfdV7UbsybTTxcDyPbC6HIVlGgZY9utQgp1gsQlFVZNJpaKq6ksoI+TLw1KK4XKnAZRGEdLrpZyQIQpCmcF0Xh15+GXq1iv0HDkDTNFSqVdjU6RCc36NDjnDWrE/lxLknNaSF/ssmT0YEojwNGMkUBSEQUUaKRJmYL/iVRh0YEfA8v+a/wTnyPB8QzGYVNHFhsqgBJRbtlC4GiEEKDNqlUZIk3H7XXdi8eXPkZ5bgg4OEHCRYEzL9/eAFAdenp/38NSUIq8SFqHXSC6/IW0FRFJimGVQuXLh4Edu3bYttmcyIQgqAZdt+iVqd3Swb9OlJ1ZyX53l+OoJdC8f5RIERBjohrAIX330uDurz21xII8ALAvr7+5Hv60OVWjFblgXTMGAaBjhBQFrTgrbawIpoUhAEP8VAxY6VatU32WnQZZGZU7mui5dfeQWF5WXs378fmqYF7ag5+M2mwp0361Mzce5NVIQgCNvTaFCUsZTIyAD9qfk8gZrPn/3N9Ty/R4FlwaGRgUb9GTj4Ql322bOfbgpaHXpthmkipWmR6Zhm7yfNSIFloVgowDQM/zn1PPQPDOD+ffuSSoQEABJykKALSOVyGNu0CdcuXvQnFxqebjSMMZU7AQJjmGaDHstVu66LDePjeO/0aWzdti0w4wlyyzHOVab2sowosIkGjrPKX55FGKLOLSqnLNRNFsyBrhvTRVSumxGS8NTISiAzmQws20alXEa1Wg2Eh+VKBZIkIZ1O+70LBMHvQxBKMTiOg6quI6Vptat1elyJpmTeeOMNzM/N4eGHH4asKKjS9t88zyOVStV2mmT7aeNa2TPiUUGfS+95/Yqfg3/vAzLQZJImgF9a6rpwGQFwHDiUGDQ6nzABYNGjbhEBAvjPcl0qRzcM37CKRjuUJiWfoZMNKjMQgxSA46CpKjZMTuL2XbuSFEKCAMmTkKArSGWzGN+yBVfPnQsscdPpdNP3hKMJwIqCP2rQlWUZpmliatMmXL12DVcuX8bkxo01g1/4/3GJAkICr7CYrJHdbn14P5w6cB0H4XcxYxs2kbCVJcfz4OkkuhYRXiAeZILDlZMMrk+m0QRD11GuVGAYBmzbxvLyMpaXl6HRaIKmqhBF0XdRrFRg2zZ0jgtslh06cbJzPXL0KK5euYK9990HRVWD/gWB4LD+vrW6GKa4JyQwAmLRgah7LtRHBsLHoqkARkI92mXUC5EC07IQhfo0Et8oKtQFBJ/dyokHf2NVOLquQ0unoTaJGgT6liYaFdOy/Pbr1JGSOZJms1mMT0xgauvWrpGdBO8PJOQgQdeQSqexYetWXLtwAZZlgeN5aGz1GQPN0g4sepDPZjE0NIT3Tp3CxjpyEAYLmbPwaiDGawK2KmRh97CQkZGG+rUlm7gCEd/KH+BhJfoAYFXnvOBc6YQE+JNT/U8jAhHYNdep8+tX6DwhSKVSSKVS8FwXpXIZlUoFDhUN6tWqXx6aSiFNfyqVCixaZaBpGjwaJREEASeOH8f0xYvYtWsX8n19geBQpQQjDth98Wgen/24tCVw/XWyiAAjWMwZ0nGcQHTK9tGq6oOlIZjoVKRkgN3vXmHVJ9jkHFmVh0QraqL6TYRJAfu9HowUGLoekElV09CXz0MURYxPTGB8cnItl5XgfYqEHCToKlLpNEY3bcLM9DRM04TrukilUismO01U8Aw1aQc6oHGc7ydvShI2b9qENw4fxuzsLEabWLiyoZKLCEPHynezSSk04dWXq7l0hVrfNpnj/O58zMMgfLzg+uhERjwvWJk3OxeO822ZudAkxo7vum4gAKyPvoSbNgmiiHxfH/L5PAzTRLVc9j0IXBelYtEXMSoKZEUBoaWqHM/7+XhCcOXKFUxPT2Pnzp0YGxsDAF9wWBfyZikXz3X9ssG6f8Ngk1vYVIln0RUmFKVEIJziaFrNwSI0IYIl0H9dstq8qduoSRVgdcSpGRx63w3D8B0kVXXlXMPli032aVKLc4OlekKkQKKixqmtWzGYeBckaACOdCqnTpCgCarVKmYvX4al6+DgkwbW6KfTPDxH2++WSiW8+tprkCQJB/bv7/gcg8hCx3vwEVbLs0gDg1XnvMfAAeAEYSWXX1eKR//T9NwIISgWiwDHrRKB1lSF1JGGmr9R0WFV11GtVODYdmC767oueEGApigoV6s4evQoAGBqaspvuENXtIwcea7rT7yhVABbxQf/hq4zPHEH/4bz+Q1IQLOJP/xaI1gNehesFTX3ew3DakXXsby0BNfzkMlkkKa9NOKYZZmmiVK5DKNaDT7zgBRIkp/GEARs3bEDub6+js8xwfsfSeQgQU+QSqUwuW0bZq5cQWV5GeVyGaqqRqYZ4pIF1mBIkmVs3rwZbx47hoWlJQz293d0jlzdv4G7XGgQjkMgeJ6HLMsIF36xVIQoir4RE+2vQGjYnABBt7tOwM6VhZY9FjkIk4yaN5Aam+hVawJCoCoKbEGAaRjQDcMv93QczNs25hcWQADks1m/vbauQxBF6IYRvD+czuAQmvxpo6ZwRCCIZpCVXg4s8sGHJvmwNiPQbKxhxc/aZne6h1Xvi4pgrIEYuJ6HMu1+qqhq0HeiUZTE87ygu6VumoDjgNB7q2ka8tlsENUhhEBLp7Fl2zaoialRghZIIgcJegpCCJYXF7E4MwPXtiEIAtIhq96O9gmgWCjgxUOHQAjBRz/6UUg9Eo2Fj9mIODRr4EQIgVUnfvNA9RWUMIQFc+F/w2LNRqiUy3AJQUrTIIriqsk/6K5Xd07s3/ooRTgNohsGyqUSrl+7hsXlZQDA6NgY8rkcJEmCoihQVBWaLPsTuShCoKt/tpJnhCE8+Yf/X/O3dYBHyKoy1npEEYC1TPhxwPa+tLQURIMGBgehRHgNeJ4H3TBg6HrgTxB+NtU6UgBCAJ7H2MQExjZsSISHCWIhIQcJ1gWmaWLmyhWYpRII4NfbR4iswlGEZhEF1/Nw9epVvPLKK9g4OYn79u4NyuW40KSzHgh/gQIhJB2sPfiphU4mF7bSZ+2eA9JAV7/wvKD0UFFVX0hZd+0sshAYU7GUQrjSgZoCMaGfRx0XbdvGuXPnMDMzg1wuh2w267v0yTJkWV7ZN89DVhRotFIhXHIXHl6a9WxYL9g09XMjCEA96qNSlUoFC4uLcFwXffl8jd+A67p+dIASAkaomMeFpqpIaRpUTau9x4RAy2SweevWJFqQoC0k5CDBusF1XSzMz6O0sACXdphLpVKNV91oPsE7joN33n0X77z7Lh64/35MhlTXTMwYrFS7dxltgQCBFqEmPRHKqYf/ZdUV9VqESLdFQlA1DFiGAVVVoWpa7XvY8epC/vX7YETBdhwYuu5XZbgujh8/jsXlZdy2cyc2bNgAjudhGcbK9XDcKk0Fc5tkJEGjlr81CF1fOPIShM7D19/o/EOvcYTUVqREbMvO0LCsVQLV9QIjjfUNoQDfc2N2bg62bSOVTqMvn/erSXTd9zuwrMDXA4RAEEVomgYtlYJCiVo9eJ7HKI0WJEjQLhJykGBdQQhBuVzG4uwszErFN+1Jp2PVkgd+CKHXTNPEoZdfxuLSEg4ePIhsE3e3mhLJNVxDu3Cp30EvvmqmaUKvViErSuzmOPW2zI5tw6CTPjgOpmHg7bfegm6aeOjBB6EqCgiATDYL13FQLpd9Z0Weh5ZKwXUcP8xNW2izShNGTERRhKwoUOlPVFneesClLZPXEwFpCWkros5rdnYWpmWBwNfrmKYJh5YDM9IkUkKQ0rRV1SG1ByVI5XLYtHUrVFXtzYUleN8jIQcJbghM08Ti/Dyqy8twHQcpugKKi/BAu7i8jO9+5ztIpdP40COPtKy1Z22M63tA9AosDeCsQYDYCDZ1QRRFEZlstuF29VbIhBDYlBSEBXqGruPIkSMQRREPP/IIVOp8yNPOl4AfCamUy0HEIEM7cgIIOnWapul3E7SsmnbRhFBPBEYWVLVnJkNhEEJgN7FD7tpxsBKxaVZqyeC4Lq7PzvquhZa1QpRpmkeWZZ8QpNMQY9wnnucxvnEjRsbHu3A1CT7ISMhBghsGz/OwvLyM0tISzEoFsihCS6VqJu04IITgwsWLeO3117Fjxw7cftttbdvABuV94TK/LsL1PLghQ6Su7Zf6E3A8j3w+DwArofkIJT0TSDIPClZVICsK5ufnceTwYfT19WHfww9DkeWgiZKiKJBC5M3zPFSq1cDPYNVqlhICQggMwwhMfSzTXCWOFOusj1k7Y6kLjYuC+8SiN12+/0E0i+b/o+BRImaHnR+peVOlWg3srbPZLBTaj0KlEYJ2rj+Ty2Fy82Y/vZQgwRqRlDImuGHgeR4DAwOQZRnLS0swSiWUikWoqgo5woK3ETiOw6ZNmzA3N4czZ88in8thdGzMFzzS/DXhOHChFWw9WNg3nOPnuhhZ4OBrIFgznG6A1feD42omqQDhygpqGWyaZtAvgmkDZEnC6TNncOL4cUxOTeG+vXsD8yE2+YeJAQGCds/VSgWWbaNarcIjZCWMHWrdrWkaNDphua7rEwXDgGmasG0bLvUdME0zdOqE7sYvgwwTB/YjxWyBzEyP1koM6sWy4TJM1qfBtm3YjABQMhAYVFGwyEK1WoWh6+AIwdDgIIYGB1cLCmOA53lsmJrC8Ojomq4vQYIwkshBgpsClmVhaWkJeqUCu1oF53mQqagtbiTBcRx861vfguN52Lt3L9Kp1Kqc66q8L1vxxYgYRHWSjDuMs5JFgPYpaPW1o6mP4JybqOkLhQI8z0Mul1u10gyTAnadPM/7BEyWQTwPR44exfT0NO644w7cfvvtwfWxqAQ4Dvl8vmG/CVZWByAQmUaSsIjzd13X74IYsqgOui3S49W/q8ZIibVHpl0yGYlgUQcC/7lg/Rbign1WNQJCek3h1X/4J/BrwOpKBNZumREay7Jg0OhNJpNBX39/2wSU4zgMDg1hbGICUpymTAkStIGEHCS4aUAIQbVaRblchlEuw6pWQTwvaP0bxxuhUCjgW889h7HxcWyjgqwa+9kmxw6X99XY1K7eOPhvDWFoJnZk5Yd0f2ziY++Lk59uhFKxCIdOMsyx0LFtWLbt97ig5yVQUiBRdbtlmnjllVewuLSEvXv3YmpqauW64Pv769UqJFlGOp1e1YUyTLQsy0KlWgXgt0tOp9M1ts319yIOCCFB+D1MGGzaTTPoo8DOg97HcIUG0xiwlE7UcxD0JgACd8hm7pRs0mdXF74PoihClCRIoghBFIN24ezZZd0xdV2HaRiQVRX9fX1tpQ84nsfA0BBGN2yI16kxQYIOkJCDBDcdWJ66UqmgUijA0nV4rgtZFKGoqu8N3wRnzp7FsWPHcPfdd6Ovv99vUZxKrVuNfZDzR4g8YHXEwO1S/ps1SRJFEbwg1BACVvbGIgUM5VIJLx06BMe2se/hhzE4OLhqv+VyGY5tB70T6slBTWkmANtxUKGVDDzH+WZX9Z9VyE9hrb4C4UhDOIQfJhRBFISRA4RKRYHA3yF8Ta0QdISkJECkJKCVzsWmlR6ObUM3DMiKgmw63bzyIASe59GfkIIE64SEHCS4qWFZFsrlMopLS7B1HcRxgslOkqTIwZwAePnQIcwtLOCB+++HJEngeR7pTKZtsWM3wRTsAIKa/Ki+C7H353mwbBulUgnVahWyLEOhaRSR5/1VqyyvmrTm5ubw6quvQlEUPPLII6tba3Mc4HlYLhQAQpCl6Yp6csCuKXxHPWrMxIhPJp2G2Kh0sd7LoAtg95SExJ8stYC6c11PQyYWWWHEl0UUWrU1J4SAFwQMDg1hdGKihuAlSNBLJOQgwS0Bx3FQqVSwPD/vRxIcBwLPBx0E6yd90zTxzLPPQtM03HXXXb5wjeOQ0rQbVmcPQuDWfd3YCtoLWeCGXQxRt7JlGgKmfOfgG+iYhgFFVZHL5SDLcmSY2rZtvPPOOzh75gyGR0bw0EMPNZxsHMdBuVSqqYKIIgfRl0lQpi2hAUCi7aAbphlW7yD65YjfmXkSO26U8DCs91hvEEL8FIJp+pUith2QtVwu15igUG1I/8AARicmkkhBgnVHQg4S3FLwPA+VSgVL8/Mwy2V4ngeB4yArij8phiaghcVFvPTSS5AkCffeey9kWYbruivOjDcgihDOkzMwglCvag+/x7IsWJYVbMO2E0XRJwiWBUmSkMvnV4XKAeDq1as4dvQobMfBrjvvxLZt2yIna5YqMKjIUJZlpOjqNi45YNdkUGMkBmavXCNWDA8/IXJE4EdXPLpNqxbLQS+KiOHMoz0s1hu2baNKU2IO1UiIogjX85DNZhv6FvCC4JOCDRuCSFCCBOuNhBwkuCXBVmSLc3PQSyVfeEYIBKoKZ7XyumHgpZdegmmauP/++6GqahDyTqVSkf0denreQMNVLAGCcDgjBEx8xyZGQghkli6gQjfX81AsFMDRqoJAYc9xMKpVHHvzTVy9ehXjGzbg3nvvRZo6Ka6abEO5+FKxCNd1/Vbbshz0dqgXatbrDurhOg6q1JKZ0MlRS6X8Dosd3r96sHbRjVJMjaosegVC/BbYFi3NZJELnpKeTCazOrJDy1LzAwMYS0hBgpsACTlIcMtD13UUFhZQLhbh0g6ITPTGwxejvXnsGJaWl7Fnzx4MDAzApv0DJBpFWC8tQniSZa2WA4MkWu/v0JUmh5UJnOkHGtX2F5aX4RHir0hFEZ7n4fz58zh+4gQkQcC9u3f7/RFarL45joPreSgVCkEJY9CQqcNJlhAC07Jg6HqwsldYFUkH+2OExKUCz2ZD2HqnFJjnA+uoyfM8XGqdzfN8UMXBnjcOvodE/9AQBoaGElKQ4KZBQg4SvG/geR5MXUe5UEClVIJlGCstiD0P777zDq7NzmL7tm2YmJjwc/Z0oE7TFXIvQGjKwGNGObQu3qO9DCLeAHCcXwIX0+ynXC77TXtSKRiGgaNHjmBxaQlbtmzBXXfd1VRnUR+yZykFVsIIYE3kgMH1POjVatDfgBeEoNV0u2AdKutTFOEeBusZNfBoGa5t20HzKZ7nA2MnJj4MOlkKAnJ9fRgYHESur29dzjFBgnaQkIME71vYpony8jKq5TJsarRz+vRpnDt/Hhs2bMCO7duDhkMcx/nWtZpWmwuOKHNbZYZU528QJgKu50U687HUBnMq5HkegiBA4PnAFTCs5Pdct6mgT9d1VKtVTE9P48KFC8hms9izZ09kiWI96lMDxWIRnutCS6eDfhexyAFzomxxvPrVdavunGF4LSIFtacT8pZguoVY74wPZkdd1fXAG0GjqSvLsuB5Xo3XhpZOo39wEP2Dgx2RogQJ1gsJOUjwvofneTCrVd9YyTBw7tw5HDt2DIODg7jzzjvhOI7fEY8K1yRJWiVuDBB2KmzkWhjxepgAMGtigecDm+GWYEK9BtGGK1ev4s2jR2FaFu684w7s2LkzlrVwPepdEQOtA9YeOQjDoyV9pmEEvgiqpjVsvtUOKWBwXTfSXTFcCQKEtBO0g2LkZ8xsuLFCpizaXMr1PMDz/IZSqgrTMGDRyFAqlUKKEoKBoSFoMTtnJkhwo5GQgwQfKDi2DaNcxsVz53DopZegahoe3rcPoiiiUqn4YWH4E4skSVBkGYIorkxMobK58L9h8HT1z4gA638QBiGkcwU9tfP16Kr1rbfewqXpafT19+O222/HhrGx+GWDdYhKKQDdJwcMDhUsutR+WKIeFqIodkQIGHqVUggaV9FuloBPbJg5Fyvh9AjB2Pg4xjZsQK6vryOiliDBjURCDhJ8YHHl0iX89Ve/Cp4Q7N69G+Pj4/A8D4Zh+K2GgRr7Zr4Ni9tWCErvOhFCEoKFhQWcO3cOly9fhiiKgRuk57rIZjKNjYdagKUUUnUajHbIQWBFHfOYhBCYpumX/RECeB54QfB7a0hSR0Sn2+WLhBDYlhW0uCa0MkZRVciS5PevMAwIkoRcfz+2bNkCrYXBUYIENzMScpDgA41yuYz/8ZWv4NqlSxgaGMBtO3Zg06ZNANBzktBu9MA2TVy8dAnnz51DuVRCKp3Gli1bsGnTJiiyjDJtr6ypakeq90YpBaCzyEEcbwIGD4DnOH6qgVacsDC+rChQIpweG+4X3YsaNCMFkijCNE2YlgUtlULfwABy/f0YGBjoWqvpBAluFBJykCABgCtXruDQiy/i3JkzyKVS2LFjB7Zv2wZRFCNJgkx9BtYKz3WbRw8IwfzCAs6fP48rly+DEIINGzZgy5YtGB4eXlVloOs6JElCJp2uSWWwjowMUf4Es7OzOHf+PC5fvozz587h7LlzKJfLAIAPPfIIPvWpT7W8nv/3i1/Eiy++iPvuuw8//3M/F7oMEhwz+GnUCInaQodD98TzIIhirGhCN6IGHm3wZJomHM8DR0sRFVWFIAhBu+lMLof84CAymQzS6TS0DlouJ0hwMyKRyyZIAGBiYgI/+Hf+DhYXF/HKK6/g8Jtv4sS772Lb5s3YsWMHstksDMOAbduwHQeWZYHn+YAodBpN4AUhsgFTVJTgzjvvxNSmTVAbWOmylbUbIVpkk+mXv/xl/MVf/AX+n9/6LQwPDdVs86u/+qvgeB7VchlWG26IYdy3dy+++93v4u233gqsgsPlhTXn1GAS5agttkKbPVl0de55HoxqFToaRxOY/0EnE3TQzdKyYNk2OPhCSIHjoKRSEHgeumGAEIJsPo/84CDS6TQymUxib5zgfYeEHCRIEMLAwAA+/vGP4+DBg3j99dfxxmuv4b2zZ7Fpago7t29HPp+HZduwLSvIlRuGAZGuamVJivYuaAKe44Jc+/zi4qoowb333rsqShAFQRDAcVxQRlkf2mZBQl4QVlVTWJYFjueDVfvgwADGJyZw/K232JtX9sH0BGSlrTGb/O+++26INNx+4vhx7N69u3FVRwwwt0tN02qiCbZlwTIMP5ogyxBpNYgXspaOC9d1YZmmX3rIrpNWHyiyDI5+zhzHIT8wgPzAAFKpVNAiO0GC9yMScpAgQQRSqRQeffRRPPLII3jzzTfx8ssv49yFC9gwMoJ8Po9UOg1FUSDRyYnjOFQrFegcB4mlHRrkyC3LQrlUQrlcRqlUQqlYRIH+TjwvVpQgChzHQRRF2HT1q2la8LdWNf6GYeCxgwcxNTWFnTt3Ip/PY25uDj//2c+ynddUbNRP9WzfiqLgrl27cOzYMRw+cgS7d+8OSgfXksFsGk0wDIAQvyU2/GoRRhZ4nocgiuA5riYVEaQuTBOObcOjRlUAAgtu13VhV6uQFQWDo6PI5HLIZDLR9scJErzPkJCDBAmaQJIk3H///di7dy9OnTqFt996C5cXFlA6dw6ubfuTD3UzTGsaNE2DqmlQFQXpVAqCKMKgBkXlUgmFchkO1S8AgKZpyGYyGBkZwebNm9HX14fBwcGO89ayLK8iB0wY2GhyZv0bHn/8ceRyuTWX3e3ZuxfHjh3D0SNHQH78x4MoQ7NzaAf10QTbcfzPgqx0ZbTD5kfs+DQy4rqu72tBVppdqaqKVCYDVVV9jwvqdSFSopdOp32b7aQkMcEHBAk5SJAgBniexx133IE77rgDgD/pGIaBpaUlLC8vB/8uzs/j8uwsKuUy4LoQeB6yJCGXySCTzWLLpk3I5fPI0VVo2I1xLXX9DBIV63meB8e2IdDoRbP9ss6JiqJ0ZfLbu3cv/vAP/xDLy8s4d/as3wGyS8QgjCCaQLttsqZWruf5nRAdx9eI0DSQw8SkioJMKhUQAtaPgjXrEgSh5v9JlCDBBxEJOUiQoANwHAeNRgo2bNiw6u+u62JhYQGWZUEQBFimCdswYOq6HzmgeWxPFCFKUtCGma1y13Jekij6Rj2WhVSL8j/btv0eExzXNVFdf18ftm3dirNnz+LIkSPYtm1bcG7MYnkt11gPj9k2MxdJ2rzKpuSoP5eDlk5DUhQIggBJkpCi5IBN/kmFQYIEtUjIQYIEPYAgCBgZGQFAa+Vt26/hN02/DM40YVarqOg6SKUCURCCJksc7asQTFd0Io07gSmKErR7buU1wBoDybLc1ZD5nr17cfbsWRw+cgQ/+IM/GLwe2DG3SxDC2zISBd9h0aEEx6FdLRVNQyaXg5bNQlXVQKugUHKQIEGC1kjIQYIEPQbHcUHJI+BHFRhJME3TV8obBixdh0kbEvGCAJ7jILDwNrVgZuI+rvYAK/8nBKIoBlULtm037DbJQu4s595N3Hffffjyf//vuHzpEmbn5jAyPLxyuvQHrEojdO7hkscwdWCGUa7rwmUpA8cBoW231VQK+XQaKo0IMDIg0ahMggQJ2kNCDhIkWGcIguA35KFNeMJRBdu2/ZWwZfnRBcNAtVIBx3GB8l4QBD/SwPO+Ap91HAzl9SVJgmEYqFarEAXB345Oxh7tFlmpVkEAv1yPrejr2yA3QLgBUTCZ09A+AbBx40YMDQ9jZmYGhw8fxsc+9rFI46WoNApzOKz5oVEBjud94WA67ZeOUgGhLMsBIUhEgwkSrB0JOUiQ4AZDkiRIkoRsNhso6Nmq3rIsFBYXUV5c9Cd2Kq5jhICnzZ04joPAceBYxIG+5rouiuUysplMQAB4nke1UoFERXiKogQtjQEEkzXzSwAAJ+w6yHL79PyDqb2uxHHv3r34xje+gSOHD+Opp56q2c4jxHcyrPtxXdevKIgovZRUFWMTE0hRfwH2k5CBBAm6j4QcJEhwE4F5FbBSPQAYGhrya/tZNMG2YZsmHMfx/f49D65t+5MrLe3zXBeO60KvVgEApmEE6YX+/v5Aj6CoalDOV5OuoEQiIBThaEKofXGYVBDaLZK9vvvee/Htb38bFy5exPz8PFRFCc6X43m/Y6UkQZQkSFRzIYgiOBohkSUJkiz73TFpVCBJESRIsD5IyEGCBLcAGGEATUUACDQFbMUd9WMYBpYXF32dg+vCdl04hMADICkKLEoS2MTuhXoZlMtl9PX1ATRCsby87B+YRRBohQX7AU19sP9PbdkCy3FQ1nVcnZ3Fnr17IdDqDFYlwFpb1/8w3USCBAluDBJykCDBLQqe1vk3AktRDA4OolQq+TbBhODdM2cwNjWFicnJgBjU/wCAd+UK3jp1CjzPY2r7doxNTgI870cRQkSghiAAwf8PHTqE0xcugOd57D94EPl8voYMJEiQ4OZFQg4SJHifgqUo+vr6/AgAxcWLF9Hf34+husZLYTCTp+vXrwMATNvGho0bVxGAZqv7p59+GktLS3jqqacwOjranYtKkCDBuiAhBwkSJFgFVh3BBImElki2g6997WsAgO/7vu/r+vklSJCgt0hkvgkSJOg6jh49iunpaQAJOUiQ4FZEQg4SJEjQdfzVX/0VAGDPnj3YuHHjDT6bBAkStIskrZAgQQIAwIsvvogzZ84Ev8/Pzwf/P3PmDP7oj/6oZvsf+7Efa7ivr371qwCA7//+7+/qOSZIkGB9kJCDBAkSAAC+9KUv4Y//+I8j//bSSy/hpZdeqnmtETm4dOkSjh49CiBJKSRIcKsiIQcJEnyAcPDgQQCoqV7oNljUYHJyEnv27OnZcRIkSNA7cKTbTdYTJEjwgcaTTz6JZ555Bj/7sz+L3/7t377Rp5MgQYIOkAgSEyRI0DUUi0U8//zzAJKUQoIEtzIScpAgQYKu4etf/zps20YulwtSGAkSJLj1kGgOEiRI0DU899xzyOfz+P7v//6g0VOCBAluPSSagwQJEiRIkCBBDZK0QoIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSJAgQYIECWqQkIMECRIkSJAgQQ0ScpAgQYIECRIkqEFCDhIkSJAgQYIENUjIQYIECRIkSJCgBgk5SJAgQYIECRLUICEHCRIkSJAgQYIaJOQgQYIECRIkSFCDhBwkSPD/b7eOBQAAAAAG+VvvnkNRBMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwcgAAjBwAACMHAMDIAQAwAQSkOXSibj1iAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgk2Vkeir8ntozcs7auqt6mt+ll9hlNzyohJIzwNQiBEbtYBEjCgI2Nrjd8uQb/zL0/jLEtLywCIcBGV1hIFwQyCCGxSLP29PTsM71W9VrdXVtusUecc/+Ic6IisnKvrO7qmXifp56qyoyMLSPivOf73u/9CGOMIUWKFClSpEiRgkO62TuQIkWKFClSpNhaSMlBihQpUqRIkSKBlBykSJEiRYoUKRJIyUGKFClSpEiRIoGUHKRIkSJFihQpEkjJQYoUKVKkSJEigZQcpEiRIkWKFCkSSMlBihQpUqRIkSKBlBykSJEigfPnz+OjH/0oDh8+jHw+j/HxcRw9ehS//Mu/DNM0u372h37oh0AIwbd/+7ffoL1NkSLFZoCkDokpUrx18PM///P4hV/4BczNzWHPnj3r3v+TP/kTfOADH0C9Xm/7+YMHD+ILX/gCDhw40Pb9z33uc/iO7/gO5PN5LC0tQdf1Ue5+ihQpbhDSyEGKFCkAACdOnMB3f/d3o16vo1Ao4Bd/8Rfx5JNP4stf/jI+9KEPAQBOnTqFb/7mb0aj0Wi7jm/6pm9CJpOBYRj48pe/fCN3P0WKFCNESg5SpEgBAPjpn/5pWJYFRVHwF3/xF/jZn/1ZPProo3j3u9+Nj3/84/h3/+7fAQgJwq/8yq+0XUc+n8c3fMM3AAA+//nP37B9T5EixWiRkoMUKVLg2WefxVe/+lUAwI/+6I/i0UcfXbfMRz/6URw5cgQA8LGPfQye57Vd17d+67cCCFMUadYyRYpbEyk5SJEiBf7oj/4o+vuDH/xg22UkScIP/uAPAgCq1Sr+6q/+qu1y733ve0EIwcLCAo4dOzbyfU2RIsXmIyUHKVKkwNe+9jUAYVrgbW97W8fl3vnOd0Z/P/HEE22X2b59O44ePQogTS2kSHGrIiUHKVKkwOuvvw4AOHDgABRF6bjc4cOH132mHURqISUHKVLcmkjJQYoUb3HYto2lpSUAwM6dO7suOzY2hnw+DwC4ePFix+Xe9773AQBefvllzM3NjWhPU6RIcaOQkoMUKd7iiJclFgqFnssLctBsNjsuc9ddd2Hfvn0A0uhBihS3IlJykCLFWxy2bUd/a5rWc/lMJgMAsCyr63JpaiFFilsXKTlIkeItjriLoeu6PZd3HAcAkM1muy4nUgt/+7d/i2q1OvwOpkiR4oYjJQcpUrzFUSwWo7+7pQoEDMMA0DsF8fDDD4MQAt/38dxzz21sJ1OkSHFDkZKDFCne4tB1HRMTEwCAS5cudV12dXU1Ige7du3quuzXvvY1MMagaRoefvjh0exsihQpbghScpAiRQrccccdAIAzZ87A9/2Oy73xxhvR38ItsRP++I//GADwrne9KxGdSJEixdZHSg5SpEiBt7/97QDClMHx48c7Lvc3f/M30d+PP/5413X+yZ/8CYA1YWKKFCluHaTkIEWKFPi2b/u26O9PfvKTbZehlOL3fu/3AACVSgXvete7Oq7vxIkTuHDhAoCUHKRIcSsiJQcpUqTAQw89hHe84x0AgE984hN46qmn1i3zK7/yK5Er4k//9E9DVdWO6xMphfvvv7+nsVKKFCm2Hjr7pKZIkeIthY997GN4/PHHYVkW3vOe9+Bnf/Zn8a53vQuWZeHTn/40Pv7xjwMADh48iI9+9KNd1yW8DUQ5Y4oUKW4tpOQgRYoUAMJZ/h/8wR/gAx/4AOr1On72Z3923TIHDx7EF77wha4Cw4sXL+LEiRMA0pRCihS3KlJykCLFWwhf//VfDyDUDLTDe9/7Xrz00kv42Mc+hi984Qu4dOkSNE3DgQMH8J3f+Z34qZ/6KeRyua7bEFGDXbt24f777x/l7qdIkeIGgTDG2M3eiRQpUrx58J73vAdf+tKX8JM/+ZP4r//1v97s3UmRIsUQSAWJKVKkGBnq9Tr++q//GkCaUkiR4lZGSg5SpEgxMvzZn/0ZPM9DqVSKUhgpUqS49ZBqDlKkSDEyfOUrX0G5XMb73ve+vjo8pkiRYmsi1RykSJEiRYoUKRJI0wopUqRIkSJFigRScpAiRYoUKVKkSCAlBylSpEiRIkWKBFJykCJFipHC8zz4vo9UzpQixa2LtFohRYoUCVBKE78ZpWCUAoSAEAIiSSAAiCRBktbmF4wxrK6uwrZtAAAhBLIso1QqQdf1G34cKVKkGB5ptUKKFG8S+L6PwPPAGAMhBIHvI6AU1PdBgwA0CBD4PhgAUArG2NrfCAd3xhjQ5pHAANAgaL9hThrqjQY83wchBJIkgRECAkCWZUxOTkLVNMiyDElRIEsSJEUB9X3IqgpV0xJEI0WKFDcXKTlIkeIWAQ0C+J6HwPPgex5cxwELAgT8Jz6oi9t6VLd3N3JAKUW92YTPiUGpUICiKKCUomma8DwPiqKgXCyCEBKtjzEGEluPJMuQFQWyqkJRFCiaBlXToGUyUFQ1+myKFCk2Hyk5SJFiC4FSCt91QX0/JALit+ethfnFDL8PiKUY/2zH5VrIBGMMNPwj2i9GKYgkgTEGSQzUhKDBIwaSJKFULEJV1rKVQRCgWq+DMYZcLoesrreNTHRCIAgEIVBVNSQMqgqVE4ZMJgMlNVtKkWLkSMlBihQ3EJRS+L4P3/fhWBYs0wwjAFzAJ8LwsiRBluXEZztFAxhjoJSCMgZGafR3/LWAUoCx8P/4egQJCF8AOszORfqhFZ7nwbAsEEJQyOWgyHK0DkmSAMaiZcCjCpqqQpKkMP3AUxAk9jseIRARhk5gAGzLgu04MEwTiqZhcts2zGzfjmIsUpEiRYrBkAoSU6QYMSilCIIgIgG+78N1HNiWBddxQF03oeYXw1c0y29DAiRCwkGX6wnE+7Q1iiB0BPH9iYXvu84EYgOpmK2L3/H3hFaBMQbbcQAAGa4nYHwfgDBqAPB0gSzD9TwYpgmWzSa32zL4E0mCxIWPEiFghMCxbVimCZMTqmazCdM00TQMsCCI9k+siTAGSVVRLBZRGh/HxOQkJqemMDk5iYmJCWRb9yFFihQJpJGDFClGBNd10Ww2YVkWfNcNf3wf1HXDsDzCQVeKRQbE7NoVJMJ14XkePN8PqwT4uqm4TWO3q6Io4aCsKNEgLouBlc/E4zPz+GBPgEgwKMhG6+842kUOHMdBwzAAAJVyORzIY2kIEvvf831U63UAQLlYjJYREQ7G/wYAy7JwZWEBjUYDlmnCtu2QBPHjz+ZyyOk6cvk88vk8CoUCioUCCvk8iCzDNk0YzSYazSaazWb0t1hPAEDLZFAZG8Ou227DI488gnK5PMQ3niLFmxcpOUiRYoNwHAfVlRU0Gw34jgPPdcNBWpahyHI06yfgwj4eWQgo7SjyE8uB0ij3TxlDwKsMAETlhIosI5vJIJPJrEtFdMKgN30rOWCMoVqrIaAUuWwWudhMnIETjJZHy2q1ioBSFAsFZFp0AgFjWLhyBXNzc7h2/To0RcHY2BiyhQL0TAb5XA56Ngs1kwEVFRcd0ErAxHfBGAujDTHScGVhAZbr4tCRI3jHO9+JqampAc9MihRvTqTkIEWKIUApRaNaRXV5GZZpRiWCWV2HpmlglMITaYWWSoJWEElaG8gEoeCDGgOiWTXjs3EgLFt0XBe240QCRQYgo6rQMxmofaj7RSSjnwdAKzmwHQdNw4BECMYqlUQVAggBaXO8hmnCsm1kNA3FQiF6bX5+HnNzc3BdF+Pj49i7dy927NgBJSZsFOmSuIaCcoIVBEGCcHWDRAgURQnPs6IAhODC/DxOnTwJy3Gwc9cuPPjQQ7ht715k0tRDircwUnKQIkWf8F0XjmWhUa2iXquFVQSUwg8CqKoKWVHAgqC9gI4QKHzwjwsOo9RCDNFgL4SEXcAYg8tJguv74kVIhEDvM5owKDmIRw3yogKBb7eToBEIUwu1eh0MgGNZmJ+bw7XFRWiKgt27d2PP3r19hffFuYlXU0TnjKcpEuSB/007nEuJR3euXr2Kc+fOwTAMzM7O4s4778Su225DvlhErlCA1GdUJkWKNwNScpAiRRf4jgPbMOBYFoxmE/V6HS7XBFBKw3K6FgMfglAPoCgKVP67n3B/ZEQkHAo7GBJ13NcggOM4a9EEvr4ML/nTukQTem0lTg5s20bTNCFJEsbK5VBbwJfrFqtoGgZee+MNXLl8GYHvY3JiAnv27sXOHTsgK/1ro31u5uT7Pjzfj3weeh4DT8sEMW+IVsLAGMPKygquXr0KyzQxNjaGQwcPYvuOHSgUCsiXyyiWy32nb1KkuFWRkoMUKVpAfR+2acJuNmGbJurNJmr1elRhQCQpnJVzUhAnAionAv2W0ImKg1YiwBgD5QPeoOV4jDG4ngfbtttGE3Rdb+tG2O1BECcHVX4uRNRApCfaIdISnDuH60tLkGUZ09PT2LNnD2ZnZroeB40N5D7/CXhkhqClCkMIIQd8nIkoQzvCUK1WsXD1KoxmE/lcDnv27MH0tm3I5nIYGxvD2NQUiqmQMcWbFCk5SJEC4SDh2jbMeh1GvQ7HdeF7HizHgWnbYEEAWZaRy+WQz+VCIqCqUBVlqFr6iBS0CXWL0LgoXUyE6nlEoK8tEoIgCGDbNmzXjaofJEKQz+WQyWSigTZeRrnueES+nw+k1WoVADBWqUCWpI6phKWlJTz//PNoNhqYmJzEvr17sW16Gk3TBCEE4zGtQhAb/P1YNCA8jKTvgcSrMmRFCclZPD0T29dh4fk+HMeB47pwXBeLS0u4fPEiGs0mdu3ahenp6YgUZnM5jE9MYGJqCvlCASr3cEiR4lZHSg5SvKXh2Tbq1SqatRocxwkHFT7AmJYF1/OgyDKKhQIq5XJo8rNBUMaiga8VcXFhP4hu3x6kQUQTTMuKQvCaoqCQzyebJ/HfresR9smWbcO0LKiKghIvSWwlB57n4ZVXX8XcuXMYHx/H/fffj0pshr28ugrX88IKB8bgiwhJm3VJkgQ1rtVQFCiiNBNI6A7aHTONeSAMC8ZLTV966SWcm5vD7MwMdu7atVY1wgWluVwOpbExjE1MQNf16Cc1YkpxKyIlBynecnBdF/WVlZAQWNa6gVhRFLiui4AxyISgkM8nSvWGRVTT3+WWE34IkdAOfUYJkDRN6lSFwBiDZVkwbDtappDNJrsmtilDFOSgWq8jCIKwtLBNp8WFhQWcOHECvu/jrrvuwr59+8LtcKdEx3WxUq3CDwLkeGWHgKggEBUb7cSabY8bXc6RECmO6DF39uxZvPDCC5jmgkXXdeGJplY8JSHLMgrFIirj4yiPjaFQKCCXy6URhRS3FFJykOItAd/30ajVUF9dhWUYicFPkiRoqgpN06DIMurNZmRCVCoWoWcyHdcr7JA9XrLox8oXg9hrDDwkztsdSzGzosiwiA8eUstrok2yJD4X++kGJlISbaIKvu+jaZqRjkJVFOTz+Sgy0ro8Q0iqatzIqCJSChy2beOlF17ApYUFzE5P47777kMul4PHjZ0cntYAAMtx4Hke8vk8SsViRASGnWG39poQqQcAa/4SXIw4ijn8lStX8Oyzz6JcqeDRRx6BpCihcZXnwfW8sEFWEMB1XciqivLYGMbGxzHGiYKqqiPYixQpNhcpOUjxpgWlFLZto7a6CqNWg++60XuqokDTNGiaFjUKCoIA1VoNXhCABUHkze95XpQPj//t8xmjAIkN9sDa7L1dCoG1iQwwQkB9H4ip/xMz+Fi6IdoGJw0yd0vUNA2ZTAZ6SwVFgihwXYGwPzZMM1oml82GpYnCTVF8HgjdH20bGrclFq+fn5/Hyy+/DEmScO+992J2djYiBEEQrLkyEgJN00AIgW3bkBUFlVKp+5cojj9mHR33ZyAIUwvCAyLSUHCvhbghk1iOApDEOmNILN8DyysreOrJJ6GoKh5//HHk83kAYXTI5yTB5Z0zXd5GO5vPY3xiAmMTE6hUKshkMmnKIcWWRUoOUrzp4DhO6IJXrcKxrHDABaCpKnRdjxr/AOEM2rQs1BsNrNbr8DwPoBRaJrMmtiMEEpAY5CLbYV69IARqMv8tyTIU3hdAlL1FjZBEnT5PMYjfQaxpEhPvtfkbWBvs4yQDWCt/ZIxB5dGQDP8R0REhcqQIB8QgCKLWyowxKLKMfD6f6K7IEA6IlFIU8nlkNA1Nw8CJEyewuLiI3bt34+DBg2D8nMZ7Mmi83FMYMwkSBgDjlcoaiWmTzugXUffGPiCEle0QJ3atBAlAgqAZhoGvPfEEfM/Do489hrGxsXXr830/6inh2Da8IEBG11GuVFDh0YRisZimHFJsOaTkIMWbAr7vw7IsNBsNWI0GPNsGoxSyokTle7IkgVIK07Jg8CY+juOABgFsHlVQZDlcVoT2Y/lvoZBXhDAuJpRrBWMMPhc39gOhsO9ngKOCWCDUATDGIsdEEdoWJX9ieeF5IMtyOFhz3wNBHgghIakyzShMn9V15LJZEELg+n5UpVApl3H27Fm8+uqr0HUdh48cQalUSggKVU4IRKQASKYpVlZXQRlDpVRKOiFuAIPoCihjCHiUpiM48WsVSsY/4TgOnnjySdRqNTz08MMdyzPFd2TaNgzDgOM4UFQV+WIRpUoF4+PjGB8fT1MOKbYMUnKQ4paFSBuYpgnTMOCZZpg6YCxUinMbYZN39DN4E58o908IAl42p2kadF1HqViMvAqihkYDgnEF/qCfGeWtGJEF14XjefBEEyhKAUlacxjkJZOqqkJTVaiqGi7HIwiSJKGQz8N1XZiWBdu28dprr6Feq2Hnrl3Yu29fpFNQFCUyXIq6SHZAvdGA63kodBA2DoNBogdA96qRXohIA0JfjGeOHcPCwgLuu+8+7N27t2sXTMoYXN60yjJNUAC5QgH5YhFjY2OYmJhAgdtLp0hxs5CSgxS3HHzfDxvnGAZ824Zn2wh8HyrvK0CAtegAjyBEIj8e5s9ls5AkCQFXl2c0DdlcbsOCNaExGPS2iqoYRF+CPnPRIr8ebjyZn4/2KWYaFEUXYlGGaNsiLw9EAjshfHRcF4vXrmHx+nXkCwUcPHQI5UIhoXWQu4TG410gGWNhSaRtQ9c0FHi+Ptr36E8SdZWMjgXJFtdCJyCOc9CHmUjlbAj8fL/00ks4e+YM7r73Xtx+4IDYqXXtruM6gyAIYDSbqBkGXNdFNpdDoVRCvlDAzMwMytyBMkWKG42UHKS4ZeB5XtQS2XMc2I1GmOPng7ztODAtKxzUWloW67qOLC/Z0zMZBEGAVR4m1zMZZEfUZMfnPv5xPULroL9ugEM4SNyoQSAu2mOUhpbLtg3HtuFw4uC6LgJKYdo26vU6Lly5AgZg2/g4duzYgXKxiGw2m/R9GEAz4HkeDMuCLElRE6ZOEJUbcqxKQ5Q5itcE4q2xgZgwsYVARWLGmJ5jw2AML738Ms6cOYN3vetdGBsfD/e/zXJxy+nwJQbHtlGr19G0LOjZLMpjYyhXKti2bRvy+XxKElLcUKTkIMWWh+d5aDQaYUqAMVj1OlzDAAVCFzvHAeGueSJCkMlkkM1kkOVOgAnBF2Oo1evwfB+yLIdVCUPsF0NS9U55E6Zh7I5HfRvG9QZCgCdEkEL0KAyfhLCRxH47nGitVKuYP3cuFEwyhu2zs8gVCpBlGSrXc2Sz2XUtmDvuk6gcoBR1XhZZLpXanrNBnA4FWSCSBDlWBhovB+0EUY4KSVqLRAwQvWld11/99V/D8zx8w7veFaWmSMxJsu1aY9vzggCrKyswbRvl8XEUikWUy2WUy+WUJKS4YUjJQYotC9d10Ww2Yds2AMBoNLCyuAjPdaMZowg9a6qKLI8OZDKZriI3yzRhWBYYY6iUywMZ7XRsXMTz1wPfTEPMWsUeBKLSQbQt5v8LkWK39YroQeShwMWXjDF4vARxZXUVr732GorFIvbs3YsTJ07grjvvhCLLYAg1BgELXQhVVUU+l0Mhn4eu69H6u2G5D1GiqOLwgyAiN1GL5jYpgbiBVBySJEVtsKPoQ+xv2rKuqFySrLWf7vdbajYa+PJXvoKdO3fi/vvvb7svAu2uJ5F6MW0bq9Uq1EwGhXIZxWIRuVwuNVVKcUMwGplwihQjhChFdBwHQFhfX1tehmvb4WxVVSPdgM4V9Yqq9hXW9nk4G4ytsw4WELXu8cd2r4FOmBwNCtbOjVCkIfh+iMhCZLDEzZX6hSRm04oS/uaz7Di5oix0TnS4zmBhYQEnT53Czu3bceD222GYJiRCUC4WoWezUVMoPwiiLpCNZhO1Wg0yt2XO5XLIZ7MJTQCwdi5lWQbjIslO5zdeMbLu3LG1Fs1RAyUeBaCctIgBXyzjd9mOMINSVDXcXowYRMth7Tvr5EJZKBZx7z334Pnnn8f09DS2b9+eeD9OQuK+GJFhE/87p+tQp6ZQr9fRrFbBKIXHK1GazSby+TzyHa7hFCk2ipQcpNgysG0bzWYTruuCUopGo4Fms4nAtqFIUihey2ZRKpfbK9x7EANGKZqGAQBQuYhuGCLQDkOL2sTnYiSBcC2AGyMDneryI22FCKnzH8Lz8onBhyMuiqOUwrJtWLYdvkYI5s6dw/z8PA4dPIhDhw/DNIwoZZPL5aBlMrAdB2AMuVwOkxMTsCwrqmaglIZEoV6HJElRRCEb6wbJAEiyDPj+WvfJLqep3XuE+0hEgyNPCQTcEEkca5w8JP6OkQdReurbNmDbACFQeOpEkIWoJLMPwrBnzx5cvXoVJ06cwNj4eGgs1QbxlFLcR4MfIFRFwXilgqZpwqzXQQgBpRS5XA6U0gRJSNtIpxglUnKQ4qbD933UeOOjIAhQq9Vg2zYkSiH5PjQesi6L8POQOdemYSAIAkgk7JfQSgqGhRiAuuWCxYAc1cwLIyL+WiAsmPlPu5SALEnhYKUokLnhUiKP3cf2w8W4O2KMFAjNxhtvvIHLV67gvvvuw4H9+8MoC0IHRvHZPK/0ME0TDo8aFAsFFIvFqDmTYRiwOFEwTBONZhOSJCGXzUa9KhRJgsejFq2uku0sn9sh8b44v7K8Fo3ggzyTJKgdzo9IVYhujMI6W3wXEVngLbkV7nERv37WEQZC8MDb3oYv/eVf4vixY3j7O97R40gQeVEIkkFi1tnFfB6qqsKo1UBzOaiqGhldNZtNmKYZpR1STUKKUSAlByluGhhjMAwDjUYDrutidXUVtm1DUxQovg+JEJQqFRTy+WhwGmIjkcDO8zwwAMVCYeQP0La545ayvPg++Xwwcrn/QDvpj8IbEYmfyDugT1IT5f3JmqsjZSyqThBRE7Gd5557Dqurq3j0kUewfXY2TBt4Xrgv8fNPCHQeBTB4CZ5wThSRglwut1ayaJqwLCusfjBNNLldsyzLUfvldZGbdtGOPo55bReT4r94JCGeDmCMJSog4lbagqwJ50jf86LzEScLwhejdZsZTcNDR4/iq1/9Kk6dPo2DBw/2fSwMiNwwBVHIaBqUSgWGYeDa5cthc6exMWSyWVBKUavVYFkWyuVyaqaUYsNIyUGKmwLXdVGr1dBoNCJSkFVV6IRAYQyV8fHIr35QJAYaSYLP7YEZEM5YR+TIJ9DTj5/rBTzPi/QCoiY/TgoECRCzUyCW8uiTzLRGKOIlkyJSILYpKwpyug7P9/HEE0/AcRx83TvegfHx8UQ+H0DbnL/G+zc0m034vo96s4lioRBGNHgZZy6bRT6bBRWRCp5+8HmfCsOyUK3VYNk28rkc8rnc2rHHtpUo/euRPuqkBRDria87XqFBJAngAs/I+ZI33fKDICQHfL/jZMHi57odWdg2NYVDhw7htVdfxbapKVTGxpLfZx9iVEEUGMLoUTGfh2LbMOp1NOt1ZHM5bJuZgaJpcF0XS0tLyOfzUW+QFCmGQVqtkOKGQmgJrl27hmq1CsuykFNVaJIUes7z0KhYdlC0VhQwXrbox8oWR4LYwNvqtMcoTaQIfH+9DE7MVgUhiGaeLSV0gzzc2y3JALiOE4X4wWfqovxwtVrFE088AVVR8Pjjjyec+RzXhWmakGUZQRDgy1/+Mt79rnehUqlE5Ea4TEYpG+6oKAb4eA+I+P7Zto2mYWBpZQW+7yOXzSLgj6JysYhysZho59zuuPgG2qYfAv7eIBCiz6iss8s6BFkQ33PrY5RwsiD6bHz1q1+F73l497vfnYyCxSIZ/aRR4nA9DxYnWmAsdFicnITKz5ssy1GDpxQpBkUaOUhxw2AYBi5evIjV1VW4jgNNllHiDnnlYhEZIdrqt7xP5Kq7hNlNy4py+KUhIxGMxTz229S/U0pDx0EhHuxABhRVjWaXsixHLYQZeIthxoBBlOexfWl3/K7rhuF8ESngfSNEL4WFa9fwzDPPoFwq4bHHHou8CsQgJULoqqKssxmOiAzCCESxWAwjCEGARqOBfD6f6KsgdBZi3bquR/4Tnu9DUZTQ3Mr3IzFjIZ9HpVRqKz4lazvSckp4vh6DV49EwsAW/UNUMRLbrsIrKMSetSMLwmUSAA4fPoxnjx3D8eefxwMPPLBGBmMRkUi30IZMtYOiKMhms3AcB47rwmg0YBkGCqUSMrkc8oUClpeXkc1mUSqVUsFiioGQkoMUmw7HcTA/P4+lpSUErgsJQCmTQaVSQaVUiursAW5800fYGODGMl3g8ZkV61K22HU7LSVm4m8A0cPf4S15W6MDEs9fq5wQtJowRTqAmBivb6FljBS1g+v7sEwzqnCQCEGWD8ZiW3Pz83j++eexfft2PHT0aGLgEGFvjx+TqqphdcL6ExQdiyRJKBWLaHINQtMwkGMMOp+1tqZGRItlsd1SsYiJsbGwQ2a9HrldNptNZHM5VEol5HlEad1utO4Tf43xSMlGEBdxxtckOloKxMmC8LyIR49y2SwO3n47Xn/jDZTLZUzPzERNr6JzH48Yxf7vRBQkrhchug5FUWCYJnzfR6NeB4IARrUKLZtFMDYGx3FQKpWiqFyKFL2QkoMUm4oLFy7g/PnzYJ4HQinyuo7JiQmUy+Wwzj1uPMM6OwW25tD7gcGFbxovW+wbsVlxtG0Oz/PgcHvhtcVJQjioKkp74tKiHxhES5BcTfvPMIQGT5bjgACRbbQeIwUMwKuvvoqTJ0/iwP79uOfeexPHF9k5x0LlnTQaBFizJebHUsjnYUpSOLibJmgQJAakBMmKle0FlEJBqAnJZbNwXDfUIlgWXMfBwrVrUFUVY5UKCl0MgFr1JuFBsTV3xi4YJI0lIRZVwBrZAZLXQ7j5kCzouo7VlRWcPn0ak5OTsHnjMFVRoPEume2IoiAm7e4NSZIiQ6pioYCmYUT6j1KhgMBxcOX8eWTzeTi2jQJv7pR6I6TohZQcpNgUuK6LkydPYnV5GcTzkM1kMLNtG8qVSvhgapM6SDTO4SF20hLqHWT7Ip3Qc7bUjnTEthcEAVxu0xzfZ4kryDXe7KmdF0HHgbzPgYgxFkVVusH3fRiGEdX465lMwlcACAe/4ydO4ML587jnnntw4MCBdcfdGjXoWToaC4WL38K9zzRN2Pyc5VtK7MTfsizDE90iY8hoGqanpuB5HmqNBpqGAUopri8tYVmWUSmVUC4Wu5IEkQ6IkxCR2mhtgDSMhTVpIXki1dK6ljhZuO+++/DFv/gLrK6sYHp2Nkw98DJWk5DoemoVgApjpMT55n+L+wlc79FoNkGDIBKI5nM5uI6DS/PzKI+NwfM8TE5OjlyYm+LNhfTqSDFyLC0t4czp03BNEzKAqelpbJ+ZSeTI19necrIQN+0ZdmYNIFTlA4lZs9hON/1AfDmRy23Nt2f4LC9eLiYGl3amQ+1A0V18JtbVixgwhMdqWRYIwsE2l8tBayllo4zh2WPHcHVhAQ8/9BB27tzZdb1+LKXQDfGIRBy6rkMiBIZpRlGWQhvNhyxaZ3cgS6qqYnJ8HGPlMur1Ohpc+Li8uorVahVlThLaDXRtdQecCEbvEQKMoDNjq7ZCbKeVcBQLBezauRPnzp3Dgf37EQBrxJM3D7MdJ2x/zSNeieup5W/xn8TdJoUgVJynpmGgwD0SFEVBo1qF2WzCtizMbt+eihVTdERKDlKMDL7vY35+HlevXgWzbeiqil07dqxVCPAHZ2vEgHLjFyk+sG4gV+zFatMjMRvP7yNeU99GzCZ0BF6LhkBVFGQyGajx0G8MIn/e7+yz29H1m0IJgiDKMxM+6xStqBPHBeDFF1/ElcuX8ehjj2F2ZqbDhtdm1348ctADnUL2GhccNrjrpUHIOt2AJMvhcQqnQrQ/N7IsY4x3KWw0Gmg0m/A8D6v1OlarVRSLRYyVSsn0UUt6qPVYxXYYIQmnxI2W/7VGSFqrHw4dPIgvf+UruHT5Mnbu2oUsT/34vh+mrETJq+/DtKxIm9Duu4jEjAiFoaIqp5DPRyWmhmlGkZtcLgfLtnF5fh5Gs4nb9u5NVKikSCGQkoMUI0G1WsX58+dRW1mBRCkqpRK2z8ysVSAAa7nf+AObP8BHWY9tcVe/jKaFFr1xM6A2y3ueB5eTgjhkWUZG0xJCvm6QRQOfXgShDwLRa2u2bcOwLIh2xrlcLpxlrlsRwck33sC5s2fxwNvehhlODKJWxoip8vkg7/MmTiISIb4z0Q653Wy8ExRVRS6XQ5OnGIQOQsyqRc48iF8DXc6PRAjKpRKKxSJM00StXofreaGZVr2OfD6PMWGvLa61Lvsn9ADr+huMsMI7Uf1ACCqVCrZNT+PUqVNhBIeTYpVHoyilYbdR1wUNgjCC5ThQZDnUJmja+ogS32+JtwhXFAX5fB5Nw4iEuSLdk8tmYVoWVpeWYDab2L1vH7Zt2zbSezDFrY+UHKTYEHzfx5UrV3Dt6lXYjQY0RcHU1BSmJibCgTmGhI88WXPsG+UjyQ8CuNwJMZvNdkxNBJTC5WmDeEhZImG7Zy2uIm85hm4PUUmSQHs0RWolD53Wlhi4Y/ttmOZaJYGihA99slZuF8f58+fxyiuv4I477sCePXui9cZz44kBP1br386VslNuXqyz3bnRNA05SmFaFkzTBCEkmuGLPL3otBjXLkQivxiRERAW2IV8Pqxw4C29LcuCYRjQdR2VSiVyauwERmni/XVRpRGShGj9hODIoUP4m7/9W1y/dg3bpqcT16gkSWGHUV1fE8ByAyafu01qqgotk4kcHQVkXhoKAJqiIJ/LwTAMOK4b6kGyWRAewbEdB5Zp4swbb6BRq2HfgQOpUDFFhJQcpBga9Xodly5dQmN1FZ5to5jPY2piAqVicZ1aP3oIEwLxjihb3Cg5iIvORHtnlXdubF3O5TOy1tLDeOi23QAnBui+IgjcNKjDzoJSuvYQbiNii4fp4wO4wysAxGw4n8t1zRlfu3oVx48fx769e3Hk8OGOy7WmBaKUwgB18W3z+zHouh7m1HnfBTFTjg/CiZQCWzNPaifyi2s2stkssroOx/NQr9Vg2jY838fVa9cgqyoqpVLbUlbRgKnT8YR/xL6HERKFyclJTExM4OSpU5iemVk71hbEowkiuhUEQRRZENEt4VYJnt4ShFeQsKZhwHEcSIREqTY9k4EsSTBME1cuXkSjVsOhO+9Myx1TAEjJQYohQCnF5cuXsbK8DKteBwsCTI2Po1KphDnlNrn8yOgnvp4NEoOE7S3C8jvHdcEYi7rgCdc7m/dWiKOXjiCC0Cv0CYK1FAOLD35szVWw1eGvdXuJ4xTRAj77U1S1p2/D6uoqnnnmGWyfncV9993XXcPRkm4ZRG+QXE33b1PM4kVL7mKpFLVGFucnka8HT39gfZg/viXxnqaqmJycDI2U6nU0uR7j2uIilldWUCmXowqHgDEEXKvR17GFB7hW6dDXp7qsjxAcOnQITz35JJaXlzExMZGIErVeE5IkQc9kktoELpY1LQumbUNTVWQ0DaqiQFAegjC9xkTkhqeiBKlUVTUqgazX63jh2DEcOHQI2zrpUlK8ZZCSgxQDodls4uLFi3BNE65pIqMoqExOolgotG+jjDCX3fowba0NHwSRCIuHnAVs3jdA5bN/0zQjsiAgyg+FO1/b9beGx4eYMRJCIMlyaG3L/xemR8EAx+y5LgzTjGb3WV0Pc/Zd1tFsNvHkE0+gXKng6NGjPc2i4muKz6aHctTrkeMXrYY934fRbKLIB2vRPrn1OxkmzK8qCsbHx1Eul1FrNNBoNKIKh5XVVRSLxTVyFfuuW1NQ7Y5CRI9GQRJmZ2ZQKpdx8uRJPPbYY4ltRmSkjZGTKIvMZrPwYpEwlxMGSZbD5mUx8y1d1xE1wrIsgAtYgfB7LhYKkbj11Ouvw2g0sOu226AM4g+S4k2FlByk6AuUUly9ehWL16+Deh6I50Wtd/O53DpiIGZ7nR6gG1GFt/scDQLYrgufVynU6vXE8iL02m023DV1MGQOWoR4xRr7soXm2zFME67jRKHieFOiTnBsG1/72teQyWTw6KOP9ly+9XsQ6RDRpXBQiJl+JxBCkOe1+AG3ShbntNu5SZQe9nkOZVnGeKUSzoybTdSbTTiOg5XVVdQbDYyPjSGXzUbksTV1EM3kW0pfCWIkYQOpBkIIDh08iGePHUO9XkepVEouwMtuO21D6GMymQx8Llx0uYjRCgJQ00SGRxsk3k+DMRb1zJBEageIumk2mk1QSrFw5Qps08T23btRHhsb+hhT3LpI1ScpesI0TZw+fRqLCwuA4yCnqiiXy8hls+HDJ5sNF2Rrvvbhv51nVv0OkgmRXUukIA7DNGEYBiyuOQDWQqaVchm5PgbWtiRmbUeGiiBIABRey9+v0Y7v+6EKn6cRdF1HqUMtf+JznocnnnwSlFI8/vjjQ9Wwi0jHsAY5/Sj9JUlCoVCIiJPwpOh1fuOD8iCQJQmFYhHbJicxPjYGTVFAKcW1xUVcW1xs2xgLiOk9uA8C5XqRgP9QESURosnYZ/rFzp07kS8U8MbJk+0XiN1T3Y5a4eSxUi4jn8tB5VEDx3FCsabjhOm2bDZMowGRm6K4p4RHAiEkugbPnz2Li3NzbfuFpHhzIyUHKTqCUopr167h9KlTsBsNSEGAyYmJqJZe5bnv6AFG1nwK4rPlVnSqZU8sE69q6EIKfN9HvV7H0vIyXNeNKg3KpRKKhUJvPUHLfrVi0NhGXPkf/6xESO+ZOGOwTBONej0KsRcLhUhh3g2UMTz97LMwDANvf/vbkeujyVS7QTwYQozYin7LPguFQpj/pzRsENWjymPQbQDhd+FTGpYr8m3OzsyE14YkwbFtXFpYwGqtNrARkmhpTWPkAYSAxTUlPSBJEm6//XZcuXQJhmH0XL4XSRB6ghJPnYhSVItXdHieF0ag+H0hIjgCsiyHrdIJgeu6sB0H1ZUVnHrtNTRqtT6PKsWbASk5SNEWlFLMzc1h4fJlMMdBTtOwc/v2aBYljFaiXDr/iZwOu6y724NznZ6gwyAQ+D6azSZqtVporcsYMpkMJicmoofiOsQe2u0Gxg2JI4FIfNhtPVKsyVQcASc5tm1H+eBSqdTToTDcOMOJ48extLiIRx99FOVyua99bufmKCIH7coY+4XIx/eCuIYUPlM1uT9Fv2jtati6D5SLDlsjErKiYGJ8HNPT09AzGSiEoFar4crVq4nI06AQOhpRmUMZA+X70a7MVGDPbbcho+s4ffp039tKRBM6nOuMpoXkkvsbUC5sbTSbYaUC7wxptZx3RVGQ49FA27ZDK3LPw9zp07h84UIaRXiLICUHKdbB932cPXsWzdVVSL6PbRMTmJ2ehs3LqAghKBWL0cNlnT1xr4GhR265H1JQrdXgOE44CFCKfC6HifHx9t4EWD9gjdLwJSI0PUhRJDYjBDJZs0a2bRv1eh0BjxYUCgXk8/m+eioAwCuvvooLFy7gwaNHMTU11d8+txmsIq8BbDByAHSvjohBURTkCwUQIKy7H5QggFfBxLZHuW9CEARrOoU2yGQymJmZwRhPNQSU4ur167i+tNQx1TAwhJ4C4fkNKAVFMsKkyDIOHDiA8+fPR6W4gyDSRKx7g0R6m1KxGAlZha0yYwyUd49MNBJDSCyEYNHgbc8JIVhZXMTZkyfhbIBEpbg1kJKDFAn4vo+5s2dh12qQKMX2mRmUSiWYvDseAVAqldr6AaxzP+yA+CC9Tk/QJykAwhrurK4jo+tQuSkMi83SxA9p+RkV4umDftabODM8R21xUxtwcVipVFrXF6Ebzp45g1OnTuGee+/Frh79EhJoIxwUYX3R72AjGOTTmqaFAxdjsG17nVNlX2AMAaXwBSmIX4c9rslisRhWDuTzUCUJtmXh8sICajy9MwoQhFEjwisQRCpCaBf27tsHIkk4e/bs4CsXKTh0Pu+EV7qUisXI+4BSCo97Jhimue5Yc7kcVFUFYwzN2PuObePsG2+g2WgMvq8pbhmk5CBFBEEMnHodoBSzMzPQdR2B74eNfSQJxWKx7eDVr9hOhFsFuukJgLAKodlsolavR4OGqmkol8soFovRgCZmOa0EY5RkIH4MQ2nU46SIsbDngOdBIgTFQgElXtbXrwL+8uXLePHFF3Hw4EEcOHBgoF1pd16G9TfoiD6Pg0jSWlttXoLqtnhSdN4EJwWURttb54nQjwZCUTAxMYFt27aFZa6EYLVaxcK1a0PN5ruhXbRNkWXs2rkTFy5c6LtjZ8f1i20gJHpxiKoEIXDVVBW+SNHV6+vOXT6Xg8Jbq8fPQxAEmDt1CsuLixva1xRbFyk5SAGApxJOn4bLHxCCGIjaaFH21FUB32MwYIyBiXB6H6TAiKcPGAuFhuVy9GCjlEYNllRODtpa4Y4QLKZMH0asCIQztnqjAc/3QRDOXEX/BkmSQtvpHudncXERx44dw+7bbsPdd9011H60YqOVCuvQZ/RBpE+0eCibNw1qB8YYWDxKQOlaa2/EWhjHd6XPXdZ1HdPbtmGsUglTDb6PhWvXsLi8PHCqgTEG54X/DvPPfgb+1ZfXvd9KEmZnZ6N+ESKyMHSppCBKHb4D4W0gWjozAI1mEyurq8kUAyFr+gPXXac3uHz+PK5cvDjcPqbY0kh9DlLA932cO30afqMBCkTEACInyR8WrR31BIRqu5cIMRKQ9SAFlmWFPQ+4+ltTVWR5eVYcHu+hEK/JFzOmUSNKT2ygrp1RGs3SKGNRNUKrTiJerhfPTQvTqHq9jqeeegpTU1N429ve1vcg3HXfeJ4eGCE5QH9+FlGFC2ORi6LreaGLIte2iGgN5cSgp7ajNQIzgD+CJEkolUrI53JYrVZhmmb0M1apoCS6jHYBc02Yn/8w6NWXAADW2S8j932fgzy+v+3xM8awbWoKqqJgYWEh8jxojch11Bd0OhYkr6FWqKqKsUoFEiFoGEYYISQEqusiq+uR4ZKqqvA8D6Zto1gorLmTEoKl69fh2DZ27927ISFriq2FNHLwFofrujh38iT8RgOMEOyYnY265hFCIgW5lsl0HDS6+RkIQViUPujwgKZcJLVaq8FyHFDGoKoqysViqNpvs23X8wARNRhyNt8LQ6cQ2sBxXTQajbDaQ5JQakMMWkF4pEXiUQXXdfHVr30NxUIBjzz88MCNcjrpQsQsVUQvRoV+Qvqt3RjzvNokoBQ1HmEJgiBsaNWDGETrRPtqjEEgKwomJyexbds26Lx3wXK1iitXr3ZNNQSrczA/870RMeAHB+/lT3feX0IgKwq2bduGhYWFjssJvcI6XUUP9NIjlMvlsLxT0+DxltGNZhOGYSAIgsiOXLSSbrW5btbrOHPy5HB6kRRbEik5eAvDtm2cP3UKvmGAEoLtMzNh21/+UPV8Hz7P/YrQYis6mdeIFELrw5m0EAQaBDA5KYjsj1UV5VIJ5S6lfIwxeK6LgDFkVHVDM/pOiIgNNk46bNuG0WyCgZszFYvrulb2AgHw/PPPgzCGxx5/HIqiJCox+hks4lGJOETIXFSgjAr9lDWKts2UpwooN+shhCDw/b7q/9shXh2ykSPSdR3T09OolEpQZRm+52Hh2jUsLS+HWocYvNNfhPk/vxd0dW79irTeEYcdO3ZgZXW1p84hKhuOiRs7dsuMfw7tr2WRPhC9GUS1iut5obOk60ZaI1Hu2dqwy7FtnOHWyylufaTk4C0K27Zx8dQpuKa5RgwymUTY0jJNAEBG19vPcHnaYd3L6BH+5A82wzSxyrvoiR70pWKxKykINxs2U6KMQZakkYbBxf6zEZEChtC9sWkYYLysTJj/DIozZ85gYWEBDz74YJj2IUkr38T+A4Co3IgJ9TqldIbpxNgPWssaxf7E1fqiRbQoQWQ85ZLnPhoub1s87PY7EaJBIEkSyuUydszMhA6EsgzDsnD58mXUGw2wwIP91X8H+4v/FPDM9uvIjvXczuzsLBRZxtWrVwfex/h5jV8DHUGS9s+apkFV1UjzUioWw4gdC5tlOZ4H1/Pg+T48z0sQfRE9DIIAZ0+dwsrS0sD7n2JrIU0QvQUhiIHDDXdmp6cjQZyA6ziRtWquQ0OleNtcYE1X0I0UCCMWESUA1kxXtH6avPDPCNGUsIIdBeIzoVFEIhjCJkgi/SFaCw+D6uoqXnrlFdx+4EDY4rcNEg2EwhfW7Ix5eoSwFjtqfpzeBs2PxOAgyEf0P5AgJx12fE1jEVtGNBeyLAuGYUCW5aHJi0RIZEi00VTD1NQULNvG6uoqPN/H6sIZ0OO/BHn5te4fpr0dIFVNw+TkJK4sLGDPnj1RhGBQiIoH0USr9YgJEH73hCS2kctmUedpBT8IUCgU4HkeLNuOxJ+GYYBRivGxsbVrjpC1jpKM4dL8PCRJQmV8fOB9T7E1kJKDtxhEKsGzbRBJwvbZ2bUywBhMHjrM6nrb8DdjDIiFVCPBYQcIkZnZbMKNlcz1SwpY7EFGEIY7GRBVKWwU8RTCKEB5qaJIy+S5lfMw8D0Pzz77LCqlEu4csDIBiJGG1kEmNmgLFbosSWulprGBNGETzGemiW1g/Uw17gPRq5dGq+5AIJPJwPM8eJ4HwzRRKhaH/o6EfoMO2Q00jqyuIzM9jcbJr4D+7b+G5NR6foax/uyhZ2dn8fLLLyMIgoSfyFD7HSsdjio5YhAkQfgvSJIEnRMy0zShcjGioihwebTAbTRgmCZkWUa5VEp+dzGid3FuDqqqIt+HgDPF1kOaVngLoZUY7JidbetZQCmNBot2bZiFTaz4O/5AaAfKGJqGEbbO5emDYrGISrnckxi0K00UJWwABjIMart+JI2SRgE/CFCr18PQaxdviH7xwosvwrQsPDSEAFGgW+5fmNsQEvZ/aBuKb9WOtPz0Qs9BrU3kQHwun89DkuWokmVYiH1oV+o4KBijcI9/AvjLn+mLGIQf6p8cUEpx/fr1xOsDi0+RJGUMSDaNSizMInKsqeo6a2XhtFgulVAoFAAAlmWFvRlibcmTq2SYP3s2dVO8RZGSg7cIbNvG3OnT8GwbkiRh5/btkfiwFWK2K8f6wccRKfj7UIM7nodatRrljLPZLMYqlbbRinXbiIf54ykPkVJQlA33QwBGW+Hg+T7qjQaCIIAsy2HeVlWHrni4cP48zp8/jwfuvz9siLMBdPquon4KI6xSaIdu4XHhddDO/kcY9xBCQq//mEHS8rKEf/zPZvG//+wMVle7739CYb+BY2XUh/mFfwznqY8BbADDoj7SCkBYrVEul7Fw5cq696IeJv3sZ5fzLcyjgpiQUZwdSZbDVtYII3Re7HwTQqJW7UIj0uCCxcT6+bKB72P+zJnR2VGnuGFI0wpvAZimifPnziGwLMiyjNnZ2a4hbq+LU55Qla/z/W9RLlPGYBhG9NAQTXZESWLQb5i53f65bqT6HxabQQwc14XRbIIiJC7FQiEchIacpTabTZw4cQK33XYbdu3evbGd67IPUUphE2vUe4kCo3c67KeqqtAzGVi2DdM0IReLMAwF7/y7+9Fshmmvrz6RxzN/09l+eF0qhGsuBv123Fc/C//cVwb8FAYiEtu3b8eZM2ei7pytEOeLofM13K/1M+WaFJF2IIxBVRRkdR22bcO0LJRi6Q1FliHLMrJcqBwEAUzThO/7UQfReKWIbds4f+YM9h48ONIy2RSbi/SbepPDNE3MnT2LwDQhKwp27tjRM8QtyEGrt4BwpouIQavJDIfbJlpQafEqaDdQdDNrEQh4oxhGaX8CxjbbAEabRgDC8q4mJwaapqFYLK7NTocgBzQI8MwzzyCbzeK+e+/d0L71ErQJ0VrPltIbRLfz3U6Q2Ao9m4WqKGCMoVq38CM/vjMiBgBw7bqKq9c6E5yOdf7ddroNmLk84Cc4aP+z5+3bt8PzfSwvt9+WiCBI4T/r9xG9v/d2nxH9KRiALLeRFi2fBYTpGCEEuq6HIlsStniOpxmi5QmBaRi4fP78QPuT4uYiJQdvYvi+j/lz5xDYdkgMtm/vOQDE9QZiMI+aGbU+bFoeSpQxNAwjDKszFgmW8nw2kfgoWlTssdlLN4gQp6KqfXctFBi9EwKvSDAMmLzsM6vrYcQgXr43hPjtlVdeQb1ex9GHHtp017mo4dImk4PW0rnW9wB0JVJCfwAQ/F///5147vn1jp0vvDhgNQghfaXH4tCOfBtIcXaw7QBwnf5z75VKBTld72qIBCAhoo1fZxvpz0C4aJMyFmmOHNdNRCJE1Yjv+9B1HcV8HpIkdU4zMIbV5WVca5MqSbE1kZKDNzEuXbgAattQCOmLGABr9e6Ee/zHbVK7IYoWcIe0rK6vixbEkcidDvCAdnlKYVCBn3hwjjJaICoSxIMwl8sh18FiehBcvXoVZ86cwd13341KpbLh9XWDqD4ANl9zQICOhC5uodwNkizjU3+wG5/94+m27594sb1ZV1/712fZoFTajuL3fRaZR/8hiF7pe/2WaWBpebltuL+dceXs9u0hOejH3IpHEeKVDaOAqqpRMzDbcUKCh7WUY9xyu1goRJEd0zRhmOaanoHf39cXFrCaeiDcEkjJwZsUS4uLMKpVMEoxPT3d96zQb4kaSD0EUB2jBVxA1gmRJ0If0YJoW/FGS32Sg6gaYYDt9INANE9yXYAxFAuFtpUdg8KyLDz37LOYmZ3F/n37RrCn3SFSCpIk3Zh8cA9y0Atf+LMCfvk/dZ61b4QcAOH13k+EiWRK0I9+BMUf/gtod31Xf+sGRdMwcPX69aicNwiAf/N/zeLOB+7CnfffhX//H9dIj2jEVB/GcXCDpZpxZDIZgBA4joOAp/Rk7s7px2ycJUlCIXYfdEozXL5wAfVanxUeKW4aUnLwJoRpmli6fBnU91GpVAYy3hFhe1VVEW+n3G5GNWi0QECsSSJkINW4aLQkS1JfZjibIToEQgJVr9fhBwEIb9IzCr8FRimOHTsGIssjbajUDfQGVSr0gjjSbpGD4yd0/JN/1t4ASuClV3V06vYcGf903RGex+8zX0+0HILqfF/LZjMaNEWB7/tYWFjAq69TfNf378fvf3oSQUAQUILf/OQULCs8G1OTk1BVFVcGCMWLBlqjcIUUUBUlIk3i+RBFgRhbN/hndT1yAW2XZmCM4fy5c6hVqyPZvxSbg5QcvMng+z6uzs8j8H3omQwmxsb6+pyoiRaEIB7+bW3W0zZaUCz2jhYIlz4goWbuF6KEbRAh4qYQg0YDAaVQJAnlUqm3fXOfA83JU6eweP06Hjp6dCix5frN9lbi+zdKb8BBgLakp5MJksD5Cyp+7B9sh+N2f2TZtoSTp7q0Fe/nehtAg+AvnEBw6dnEa8rhb4VUXl9doo3vxvT0NBRJw1e+PI5/8k/Hcf5igKQahqDeCI9RkmVMT0/31h3EEE8nRARhgyRBeBwQYN0gT4UWqeV7E9U6SizNYMbSDCwIMH/6NGqrqxvatxSbh7SU8U0ESikWL16Ex01Htk1N9fxMdEszlggt03bLIBygjWYzKkXM6npUvtRzO20cCEX5FA2Cng+xgKuolR59F8R2Rk4M+CyI8lKvqFSxB/qhBsvLy3jttddw+MgRTPbxvfWLXucgEiPewFa7kZti4sXOEapqVcIHP7wDK6v97eOJl7K468723QHbbrvtgiQhmu0E59jHkx/Lb0Pu3T8PSDK801+Ec/y3QZdOQt75ELS7vhNn5rP4D//pCBaXXEyNmwAYNM3F6uoYKA2vpbGxtbtvanISly9f7ljSGEc0ULccrzieYWyYBTRNg83TCr7vR4RYrD/gBEGK9VSRJAmFfB6248C2bTiuCz8IkM/lQjJKCM6dOoW9Bw+i0uckJsWNQ0oO3iSglKJx/TqatRoc38f01FT35kWIzd7jA6p4SMccEBlXLhumGaUQZH7j95P77xXeJwgFkL1MW3yR7+zwkBy1BXIcPqWhwyOlAxEDoPeA5Lounn32WUyMj+PI4cMj2d9+EQnKblDkAIhVqsRNiTqQA8cl+PBPbcfZuf4jKSdezOIHvrfaftsDDpIE63uICATXX4M//9XEa5kHPgiihPuqHfp70A79PTDfhRto+OSnCvjs53IIKAGgQc+omJ5oIKMFUBQfq6tjkCUFmrq2f+VKBQxAo9FAuVzuuJ+MtW+CJo4h/GN4giBJElRVjZpgiYhAuFoSXeNBEETtxcV7WV2HoigwTDNKMwjbdCJJIUG4/XaMpX0YthRScvAmAKUUbq2GlaUlOL6PYqGAIrc4bUWcFESVCPFBruUhLXoiGIYRidf6jhbESEcv9Hpoi/C3JEltyQHj+c/NIAZBjBgoAxIDoMfskzE8//zz8HwfDx49uiHnvtZtiu+3E+LueDfanKaVDEbkoGW5n/uFbXjm2GAVIAOXM3YD1yAwStdFtuzWqEF2HNpd37FuFa+8kcd/+lgJl68kH7e2k4HvKygVa8hoDchyAE1NCirL5TIIgFqt1pUc9KryANbSDMN4IABARtNCx0TXRZBZn7qJ1i90CDw9SQiBqigoFQowuFmS+J3RdTDGMHf6NNiBAxifmBh4v1JsDlLNwS0OSin8ZhNL16/DtW3IkoSpNjdYPH0gfrcrUYzP4CgfFEWOXZakvrQF0fYGmMWL9EKnnHM3F7/NqEYQEOWKwg55UGLQy4Hv3NwcLl+6hLc98MBIyiAj9JE3j84pN7S5mYgTVoErCwr+4A87D4idcG4+09FKedjjbP3Og+Uz8M/+ZeI17f4fBFHXvkPDAP7rfyvin/7z8XXEQMAPZFSrY5CJhNmpBrbPLuLq9evwORFXFAWFfB7VLuI9ys3JBjqeIc6DoihhhEmSEtqDdesS1x5jiVJZkWaIeycYhhHVcc6fOYPlxcWB9yvF5iAlB7cwKKXwGw3UV1dhWRY8xjC9bdu6WaAYPIG1mUMn7wIhRHQ9D9VaLaxtRtiAqVIujySN0AkEoQirHUFoF/6OyhQH3E6/oIyh0WjA931IvIHSKGfYtVoNL734Ivbt34/t27ePbL1AfzNDEQm6kSkFgVZNSFyQuNbKm0GShguDP//SCKMHHPH0kPPcbybfzJSQuft7on8bDeBnPjqBP/1fvQkfA0GjWYJt57BrhwHHcbCwsACba4cqY2MdyQHtkk7odhxRCnHACIIQyjqOk0grtK5fvC6iFEGs5DGr6yjk8yC8msEwzbC0k1cxLLc0nEpxc5CSg1sUghi4loXq6ipc38dYpQK9Q7gv7kDXq8wp3m1NRAsK/UQL2lQjDIqIILTA9/2wjJG/t1lligIMCFsuc2JQKhZHWu4XBAGefeYZFIpF3HPPPSNbL4B1rZM7QQwq7c53tC4x++Pf7UZEbV0Rv7b4NrZNBfg/f3YR2ezghj7PPqeM3hGTh8mD1fPwTv1Z4q3Mvd8HkllL5T35lI7zFwfL2tp2Fhm1Ao3n8xeuX0edaw1qtdq675RSOjAxSBwOeLRuEHdI7kxKuc1yr2dC3CMlavfNfUpKvJoBABzbDskQYzg/N4fFa9eGPKoUo0KqObgFIYgB830sLS/DDwJkMhmMtbjp9dQXtCAIAjR5syRZlqFqWl+kQGxrVGLAqIJBiCIZC81WKIUsyzeEGDSbzag7ZbFQGHmp38mTJ9E0DHzDu989VDRCPGTFb0EIxADOKE28hpb3EUuXMEpD58mYziT+G4yhUa8DCAkTgGhASUSgYt9/vIwuIqct74MPMuL4fT579DwPiqKASBI++ANVfM/7azh+Iosnn8niK3+Vx+sne0cF5uc1OI7TlixvFO7zv41EEyU1B+3eDySWiVccDIJCQcbM9DSWVldhWxaWV1dBAbi+D9OyotRTPFy/UYjvoh/iRwiBFtMe9OquGtchCFBKQSQJosOjbduwHQeW44Ayhlw2i4tzcwBjmJrp7muRYvOQkoNbDIIYIAiwsroa5v4IwTQvf4sPnOuIQTdxmu+jxp3YCCHIZDLI6nr/xACjHazjBEEMgIQQyLFSqc0AA2A0m5GnQrFY7O1j0GN9rWg2mzh18iQO3n47iqVS9HrrgB8/9ug3/3ttA3wLMcV4/EEszptILYmUkhCain0MeGQmufNrFQVivZTSsMw1RhwE4mH36NrD+usi/h6NaUUsywqX5419wP8mAO69u47775WQ1bfh9ZM7onVlMhSeR0Bpciu3H7Bg2zZUTYM8Qj0FrV+B+/ofJ17T7v5uSNlK4rWjD7r4rvcb+Mwf5jCIGqZQYJAVBdNTU6hVq6jV6/D59be0tITdu3ePlBgAse9HkvrSLmQ0DavVami21O+5bSkNFeSVSBJ03t2xYRhRO/ZcNouL8/OgjGF6dvA+Fik2jpQc3EKgQQC/2QR4i9RmswkvCDAzNZXI2Saa/qCzvkDA9Tw0Gg0wxqAoCsYqFXi+D891oWQ729EOUo0wDAhCDYQTEyNutnDOMAw4ngcwhmKxuKG20ED4nQX8YU4pBaMUx48fh5LJYPvOnajX68kBv6XET7wmqjHiIIRAkuVQJyIevvHZuZjdx//n7weUwvN9SABKxWL0fvSZlmiAeKgXi0VUSqVEdEHsVTzSEEUtxHKIpTti78dr82VZDlX3nLyICAcBIvX7U8/kE+fgW//eIn76py7i+ReKeO54CfMXsrjziInvfv95mJYPPwhQ4E2BIkdOSoEhU0T2859MdleUM8jc/0PrliME+JEPNvHOd9j41V8v4tXX+yvFLBTWBudypQJN17G8tISMpuHSlSsYm5hAdhOiIcBaSXMvEW3UkrlH+XHiM7HPxgmhIAmapiHPWPhME1GSbDbs5MgYpkesyUnRGyk5uEUQJwa+72N5ZQWe74fVA/l8V3FQtwHVsW00DANAqEYuFYtwXBdeowHbdZHtQA4201MgDkJIKJxjbNNd/AzLinwcCoVC//0buOCKUopAkIEgiFIh8TKz69eu4fr167jn3nvDZddWEua0ebhV1IqL8KvMf5PYMm3bXvf5sHZdF6qiQFGUvo4zThrIKKM3nCAIAkApjZz1ItLEl3EcihMvFhMff/BtDRRyPt7+6Are8diq2FkEgYSmGRJcyr0p4rlvYfgl8wZj4ne3FA81FuG+8tnEa9pd3wEpP9nxM/sP+Pj3v7yKX/g3ZTz9bO90SLGYnLlndR2zMzMoFgowm01cv34d42NjHUuVNwqRYhAEst015vk+FFWFz6/zXiWzrZBaCAIQliprqoqsrsOy7UQE4fKFC6CMYXbHjvYrTLEpSMnBLYA4MWCMYXl5OcrLjo+PdxwQet2whmlGfdozmUyoIOY1yYQQBHyAa1Wzb3bOv3VbLAhCE5ZNdPGzbBs2Pxf5fL6tfXHr4B/wn9YQb1wQKB6cEiHwgwCnT5/G9MwMdu7c2feAvxkQvhE3o1IhAUEw4ykMfu4kHhkReOVVHaaZ3N93v5OhUqlEEQhBxiilkAiBbdvwfR+aqoJwkgERySEEfjwiwyMrCcLAUxyyJME58btAEHNelBTob/uRnod4ZUHG8ef7m+0XCuvvZUmSMD42hvkLFyBLElaqVTDGoojPZkGWpLb+CeLZk2EMkCS4rhs2ZxoArXbZBGGKSZFlZHUdpmUlCMLCxYsAY5jduXNDx5Sif6TkYIsjTgwAoN5ohDamjGF227bwBo4NTv3oCxhjofAw1jApn88nPq8qClzPgxtLLWx2GmHdfvLfPrdNFs2gRq2Yt20bpmkCALLZLGRZhuu666IA7SoABBEghEDhM09ZliGLWWjse3jppZfg+z4euP/+gZphbQb6qVS40eh1XT31bLIs8Pb9DqYm+XHwgT2eLtA0DfV6HQGl0DQtqq/3gwCB76+le2KpH1CKgFIEvg8vThzsGvDipxPbVw69F8hPJ7xB2uHjHy/C89eOTpYY7rjDxcuvrB9QK+UWosn3Z2x8HKdOn0Ymk4Hjulit1UApRaWLMdIo0HpsjAtGASCfy0WOiQOTA6xFH+MEAZyIZRmD3RJBWLh0CZQx7Ni1awRHlqIXUnKwhUF9PyQGfPD3fT/sguj7mJqYQCaTSTjh9aMvoLzVsGjNHDclAdYGZC2TiW78XDZ7w9IIrfsRldHxtIKozW7X7GXQ9fs8t9lsNBAEQdRZUURTov2IpWxaQ9GCCHQ652Lfa9Uqzpw5gzvvvHO0ZkdDQngc3OxujEBSyIiWv+N4uoUcPPqw2XW9EiHIZrNRhExT1UijQRRl3cOPIaYRadWKvPEZEH/tugCR4B/+HtTr9SjaQMS1Ebsunj2m4ZljyYHzfd9q4sMfauKZZzX8xseLuLIQ7sm2qQB33MFFokKPwb+ncqUSlVKWi0XUuDkZoxRjm9iXILqqeWWJJ0qKJQm5bBae50Wt1AfV5yTWzdMMEiEIGIOiadAYg+04cF0XBCFxv3b5Mhhj2Ll7fWOrFKNFSg62KFqJAYBQuRwE0DMZlGMq97jwrFdFQp2XrxFCUCwUEuFzEcIHIWEYVqQWfD8UA478KNsjPjgIFz8lNgALAsRi9r+94PPZoM9/giCA67phpzgAeiYDVVUjotUuCjCM5kGQtxMvvIBCPo8DBw4MvI5BttXvclGr5q0QOWgRTraD6wLPPT8YOQC45a/rwvU8mLaNQj7fcVkCRN83YgMdcxqon0xqDci+bwTKuxLRBgCIfAMZQxBI+LVf35P43FglwPd/X1gO+vBDLu6/bxlfe0LHyoqEr3+nDU1DQmshUMjnocoyqtUqbr/9doAQ1Op1NAwDFOi7++qwIAgJgcFn8iKKp2kaHH5+NyLejXQIseeXxqMRtuPA5tvNZrO4fuUKQCl27tkz9PZS9EZKDrYghCVynBj4vg+j2YTPGLbF/Aw6CRFb4Xke6s0mGBdjldqU6MWb4UiEQFMUOPyhWtokAVQrWoe3qKVwG70B4XbLrVEEERWI/1Dhjc+V2L7vw7IsyIqCrK5HXgabYSV84fx5LC0v4+ve8Y5N62HQTy+FxLKImeBsFcTKJlvx0itZWFZyXx8+2pscAOGA4vk+PJEmU9WBok7Oy38AOI3Ea/lH/gHkYnF9tIGxiHx+4c8qWLia1K587/csgRATjhtaEWuajHe/K3RCDEtF2ToNCxDe36VyGfVaDQBQLpVACEG1VoNhmqCUYmJsbFO/T9/3Efg+CEIzJCAkCY7rRpHIjSAyTIo9h7RMBuDakQRBuHoVsqqmIsVNREoOtiACw0gQAwagXqshoBR6JrMWlu6TGDiOE5nXKLKMYrHYc8bIGEM2l4Nbr8NzXTiOM3BecRC0dukT8LkIs1NLYUIIaBBED3/xYI7WJ4gDD/0KAZ4VBCgWi9BUFYVNJD6u4+Cll1/Gbbt3Y2qErZjXYYCUz81o09wPov1vM3A/9UwyanD4kI3xsf7cARVZRjaTgeU4sCwLxQGOm3km3BO/l1zf/m+EPL4/2ufWaAMDsLhE8Ed/lKxiOLDfxOOPrcJxCeA4UZpAkWWQWHSq0/dYrlSwuLQU/V8qFiERgpVqFZZtY2llBZPj45tCEBhjMHm6TdO0qCujwvdXVOxsJBIljltqEUJqmgZQCtt1o54OWa5BKBaLKMSiqClGh631dEiBwLLAYuY0AHcuNE14lGJSRA36FAealhWJ7TRNCxsHdSATUZtmvm5FlpHLZmGaJgzLgqqqm/bgaUcMAG6bHCtjFK2bfZ7u8H0/SoWAUgT8OCRJChvFiB8eEfB9H41GI0qdbCYxAIBXXnkFlDHcddddm7qdQWbCIgQujThCshEQQkIvB7SPHLSKER99qL+ogYCu63A8D0EQwLbtvomu++pnwezV5LqOfqjrZwiA3/3dEkxTAondLj/xD5oo5LPRtRtQCo/SyIxKfFbm16v4Le65SrmMubNnoyZoQFhySyQJyysrsG0bi8vLmJqYGPl9ajtOmI6UJOS4Rkk8R2RZju7Fjaap4n4I8TSZpusAIbAsKzJ+y+o65s6cwZF77tmQUVmK9kjP6BYC9TwEnJ1HznKEhIrrIICuacjncgli0GlIYIzBMIxE46Rhuinqug6Xhw0N0xx5fXWkWG73HqXwPS+smnAc2JYVWexGKQK25pyo8BmNzEVnraRD9JIPKL0hxGBlZQXn5udx/333JUSfNxtbsVIBiDV6aSE6jktw/ETSb6MfvUEchBDkslk0m03Yth1dJ93AAhfO87+TeE257R2Qp450/dyrr2v4q7/OQZIAygBCGN7zd0wcPhQA0KBiTfwYJ7oBJ8JioAW/dyUe8cpms2CEoF6tYmx8PNqeuK9XlpfhuC6uLy1h2+TkyAhCEATRcySn68n18somcQyjiC7GS6WjK4GxKJVhxfxIAGD+zBkcOHx4w9tNkURKDrYIKKXw+Qw/uiH4TLfZbIZRAyE66hExoJSi0WyulRzl8z1L5+JOd/F1E4QPn1qjAdd14XgeMht0DYy22X5H4AuxoGUlZvnR/hGSiAqostyWYIhwpygHE62nVUXZdGIAACdOnMBYpYK9e/du+rYGwc3sxtgVHQazEy/ocJy19whhePjBwcgBEObJNU0Lffwtq+c14L7+R2BGskNg5uiHu34moMCv/3qJ72dIeLJZih/+oVCzwICEkFZcw+CDqvDOaC23dCmFqmkgABauXYOWyUBRVaiKAolXDkiTk1jiHijXFhcxNTGx4Rk1YwyGaQIsbJbU6v9BEOoOLMeBN4QhUju0nfRwEbKmaWAIy48jglCt4tqVK6mL4oiRkoMtgsA0Iy8DYC1kty5qgO6q7iAIwjbDPNReLBR6NkcBgCBea9wCRVGg6zpsy4JpGFDL5Q2HpBOla7xESjRzEflGQW4URUEmk4kepIPMiES4WkQMhOZis82Gzp49i9VqFV/3zndu+rYG9X0QkYNuTbhuBkiHEtWnnk1WGNxx2EG5PFxvgWw2GzqABgFcz4tmo61ggQfn+G8nXpN3PgRl9r6u6//iF3M4e25tnYQAP/D9BirlAJSF577b9SD0C+KOFbl8MTNXM5mwPTuPLpiMRS6XqqpiamoKS0tL8D0viiBshCA4Ip3AIy/toPBInTAG2zAhEX/EDLIY1q5z8TwTDZsYgMsXLyJfLKKwycZQbyWk5GALILAsMNdNzIwBJKIGE1xr0PpYibNs3/dRbzQie9h2FQntwMB91bsgl83C48ZApml2LQnrZ3uU0lDl7LpR7bSAmI3IsgyFd4fciDeAYZpgjK1FDDZ5sLZtG6+++ir27duH8U0uMRsUjLE1j4MtFjkQVtGtV2KrGHHQlEIcsiQhm83CNAxYlhWSzTbXg3fqf4HVLyde0x/sHjWoNyX83v9IDk67dnr45m9uRuWJgxLFeJQMmQzyug7KrYY93w+jYkEAGgRwwg+gUCigVqsh8H1cW1zE9NTUUAN2PJ2QzWY7knJhmubxqN9GyUHHdClZ6/MRJwiOHVZ7zJ85g8N3353qD0aE9CzeZFDPg29ZbVMFwt1NV9WwdXKX9TiuG1YkcAVxPxUJAPo2EyII0xP1eh2O40BV1b4iEtF2EJIX13VD98GWci1JksKwr6qG7XoJgcE1BhuJUgifdoKwVlyJCRvjBkejxMsvvwwiSbjzzjtHvu6NQpTJCUvnrQShsYl/J7ZN8MKLyZTYow8ZG9qOnsnAtu1o8Mu1pNwYDeA891uJ1+SZeyDvfKjrev/H/yigXpcABviUAWD48IerkOVQQSTJcl9dD7sho+twXBe6rkPHmmOh53lrlT18lr9aq4G5Li5duYKZ6emB2lczxmBYFkQztl73uqIo8Ljgc6OphXUCZfFsFG3IORIRBNtGFcD5s2ex/9ChobedYg0pObiJoJTC402PWm+lKGoQBJicnOx6s1m2DYOvR1VVFAuFvkLvUTi65YHcCapIL9g2moYBENJVf0BjDy7X86JwttiewsmAqqpt89801tZ1GHieB8swwBASm/iMIuosx81X2BCzunZYXFzEhYsXcfTBB6FpWlQ2uFWwVaMGANqKbI+fyML11r5/SWI4+qC17qMDbQZhJKxpGHBsGxkepRLwzn4JtDqf+EzmwY90vT7m5hX86Rdy8AOAIAzDP/6YhfvujWyRoq6ZGyGkuq5jZXWtekLk4UUu3vd9+J4HhrC6oVarwXFdzF+4gKmJCeRyOWgtx9sKYa8e+D4IIVE6sxtURYHFt094t8ah76YO5zlygUWHFINtY+HKFRRKpbTN8wiQkoObiMA0gQ6DkogaZHjUoB0YgGaseZKeySDPmyf1QjyFMchsJpfLhQIp10Wz2QQpFBJ524DncgUpiLYnejaoKlRNC61se1VOcJe4YVTXlFI0OTHQdb2riloiBJDlSCw2LCileOGFFzAxOYldN8jedVC9QeRxsBXJAbCOqLZaJt99p41ScWOzbxASivlUNRK+iiocxhicY7+ZWFyaPAxlzzvaroohJMH/5b8VEVAGQsLhS1MpfuxH6us3jY0RhEwmE4XR261bVRSoioIswu9az2RwfXERjudhcWkJ45UKNE0DkaTwXuQpi3gPhaZhhIM8IVG7614QLqIBpaE2QlXDNMqAx9ftrDBCIHFb6ThaNQhnT58O9Qc3yLjtzYqUHNwkBLYN5rptB3IaBFFf89np6Y7rMAwDNn9Q5HK5joKhVrS6KrbrvNYJBGFtdbPZhMtTGblsFoyxqFlRHBJ/CMXTBf1CWMgOHP5mYV94SikURUG+z/NCsOa6SIGBZz+nT59Go9HA33n44cH2d0jEnQ77hUgrbLWUAoA1h8TYvrX6GzwyoL9BO4jrX/QG8H0/bB6kafDn/wZ0+VRief3oh9Zdt0IgxxjD3/ytjldfS4bdv/P9Bqan2zsdApyEDvEd6LoOh4vwen1almXk83ns1nVcX1qCZVlYqddRKpWQ0TQwx4HLzZiEqDEuQCy0RNt6QVEUUF72rHItx6ibpDFetRA5o3LECYJpWTj1+uu45/77U/3BBrC15MpvEVDfD8sWOzwcarxCIaNpHYV/Jq/1JQCK+fxAxCDenGmYm1foD0AIms0mriwshGWCvHOhoijI5nIol0ool8vI5XKRF/sgEGmFQSMHBldzEy7OGvghzPPxMv/dz36bponX33gDt99+O4o3yrFtAFdEga3qjgjEDHD4b9MkePHljfkbdN0OFydKhMC2LASUwjn28cSy0tg+KPv/TkgGEBJpUV7IGINtE3zik8nve3oqwPvf31kXQQAQWR7q3svoelj2HIvK9YIsy9g2OYlCoYCcrsOxbcg8esJI2OjI9TwsLS+jytMQWV0feGBVeP+VuJVyO4HpKNBuvRkekQRjqK6s4Nzp05uw5bcOUnJwgxH1Tej0Pi9FDCjtqHQXddpAKLLLDGCws26gG/AB5QcBDNNEtVYL8/T8dcdxoGkaxsbGUCqVkNX10GRnyNxjXDA4CKlwXBe2ZQGM9R0S7QhCovpqiXfbI/y1Vrzw4ovIaBoOH1kzyBn1rGkdhli/iBxshW6M3cAAPHciC89bO9eKwnD0gY2TgzgymgZZUcAAmGf/FsG1lxPvaw/+GBjIWnfGlnP+B58pYGkpmaL5sR+rIaN1/24IhutroXOnQLtDaqETZFnG1MREOOjLMqr1OhjCHg2FfD4sleRkXJbl0GOk2YTjun1fx6qigAJr9uUc0gAEoV1fiXZgABQe5YtD5yZNlDEsXL6MxatX+9xyilZsvenDmxyBYXQVv9XqdVBuONIuauC4biQ+1LNZ6LqeMDDqiA4Wxf3ctJSnDBzHScwKJFnGxMREpFJ2eV93VZKGGthbtylu/H5D4L7vw2w2wRCGjDfSJa4TSGy2LkLLCwsLWFhYwCOPPLKlw5hRtz9ssYZLHNG3zK+bp55JXv/33GUhn9844RJhaf4Pstls2Lb7xCeSBmClnZAPfFPHwfHKgozPfS65j/fd6+CxR522y3faj0GOSM9kABa2Mi4OWNNPCMHkxASWV1Zg2TaWV1YQBEHU06GQyyGTyYQTGNG91Pdhca1QhjuQdoJoZx7XHUTv9ZFiECXO/Ub6KGI2y/wzkROmYcDzfZw5dQr5QgG5VH8wMLbeE+JNDN+2QT2v44AptAa+72Ms1nlRwPP9sEoAoTCp31w6gPbEoCVv12l7q6urMLhICYxB1TQUCgVUeMqgVCqFne4ANLiTItloOROlYX5Rkvp6WDAuQAwYg6ZpyA5yboaBiCgQgldfeQXT09PYvn37ulzoVkLUpllEQLYoRD59lP4G3SDLMuSVV0GuvZB4XXvgR0CkzoPhb/5WCZ6/dh5lieHHP1wfKIs1aCWOrusgschBwAL8+ZW/wN/9yrfi6P96O37q2X/S9fojhGBifBz5XA4yIVi4ehW1Wi0q9c1lsyjk8ygVi6GIV5KitEOz2US90YDtOB1n+KqqQkL47Gi37W4np1uPlS4HtO4cyrIcOcIapolTr78+kq6RbzVs3WnOmwyB54GaZteHskgniHLExOeDAPVGI7IxzceiCq1NSgQiQd0gIkDG4DhOJEwSkCQJGV2HzpXOcRASOjEKy+ZGswld15HjD7JhQPm+9zvDbZpm1BVuIwZNg+LCxYuoN5t48KGHwghH7LsQj89BRYP9YBgCspWjBgAS12mjSfDyq63+BiMQI/Kf1pp5vPS7yV0pTEM5/N6O63nuuIZnnk3u37d8i4nduwcfhIgk9a3sF4ZIC82r+LPTX8Rnzn8OV+1r0ft/c/2r+O9zn8IP7vv+ztsjBOVSCRZ/HtWbTeQLheRMX5JCLwVdD91LuT8JDQIElgXLsqISSjUWTVBkGS7QcTDuWq0xLKnmE5FEoyZNg+/78HwfyysrmDt9Grcf6d4TI0USKTm4AaCUhm2YuwyUlDcF8n0f21pa+waUosaJgaIoof1vy+db68MHJQau58FxHLium3hd07QwVdAjRC/UzaZhwPE82LYNz/NQLBSGym+L/G4/A5llWQmjoxs1K2aM4bXXXsOOHTsSkR6xfQkAbUlDbIbpUr/wt3oZYwzHns8jCNa+R1VleNv9g/kbxJv2tJ71+P/+tVcRXHgy8b563w+ByO2NfzwP+I3fLCdeq1QCfOD7GgPtn4Agwb3KaBljeGbpGD4tfRavnHkNAdp7aMw15ruux3VdWJaFfKEAivC6qNfr0DWtbYOwqDxS1+F5HhxuYiYIgyRJoRhQtHIGIo1Gu/u3nQOiEHsODB7BY20IQjabRWAYoJTiyuXLKI+NYdvMzODbeIsiJQc3AAFvXNIJhJCwtjgI1kUNKGNoNBpRG+J2xKAV/TqU+dwhzrHttTAhY5B5L4NMmyhBr20WCgWoXBcRBAFqtRry+fxAborAmt9AL3LgeR4s0wyNjgqFG5rznz9/Hk3DwKOPPtr2/dZvvJWstRq69BthGJZeRJGDW4AcPPV0Mi103z0WstnOR06RtAAXepCO90Fs9uo8l6xQYPoYcPBbO27r85/P4/Ll5HX2Qz/Y2JAeotuMuupW8UcX/gT/c/6zmDfO91zX+3a1j3gwxmBaVuQ/oioKts/MYGV1FbZtY3l1tavVsiRJ4XMhk4maowm3U9txYNo2NFWNon6+769r1BQdb5tqqWHPXsJ6PUYQCNeTGDH9QS6fT/sv9ImUHGwyfNsG61J2JG4Sy7JAKU3MQBl4qoH3US+VSh3FeeKm6Kc23/M8WJYV+abzFSDDowSDDrDRzcj/z2gaZFkONQBBEImD8tls37P6gB9LNzHiOqOjAQnIRkApxRtvvIFdu3ah1Kl0scdMKCqpE2Kq2OcYIQni0Pq5YR6kWz6tEMM6vcFDZiLy0hoVaFfa1s+1Fiydgn/uK4nX2B3fDccH2l1NKysSPvXpZMrv4O0uvvEbNubaCKwnCCdWXsAfzP0h/vzKl+BSt/uHOUpqEfeM3bXudd/3YfFyTYKkMdj42BgWl5bg8mZNM9u29bxGFFmGks0iq+thS3XXBQuCqIGaz9tP9yxh5sc7VNQgvhq0GLvx9SmyHNplOw5M08SZN97AXan/QV9Iz9AmIggCUKvDQyM2q/F9Hy4X+QgtAQOiNAMIQamf8HyPVILn+7BMM6wuEDcPjxJomjZUOL6VGAgosoxysQiT25o6jgPf81AoFPpqFSwiBx0jF0MaHY0K8/PzMA0Djz/2WMdlhh3E4/4F7cx3xMwsijwAfVWGCA3JlmvVzCHOVb0h49XXk46WDx9tttdZDOH1EIdzPNlDAZkSyKG/H1XftM58P/k7RVh28pr8Bx+pd+o2PRDiBkn/9uVfwqfm/mDgdTw6+QgksrYzDIDDnQOBUIyay+USqSWZVx0tLi3B830sLi9jamKiLxJJxKSCW4W73ATJsW0YlgUiSdB5tKHd9SkIEePPuaHREnWJEwQR6fB9Hyurq7h8/jxu279/+G29RbD1pxC3MFgvYiCiBqYJysJOY0LcYxgGPJ7/L/bZXbHT4OD5Pur1Ouq1WtjjAGFJVLlUCt3SOty4/aLTJwkhyGezKBYKIODaiXodltO71EvMJDo9oDZsdLQBBEGA1994A7t37x64nGzDYCwKn8dNg+LfXztCQkVDHKzNskXofbS7F2u7HPthbX4nfoQgjzEcP1EApWvHo2kUD9w/WF1/PwhW5+Gd/mLitcy9H0CmMBZWBLRcp6+9ruHLf5WMaHzj3zFx6FD/hkS9QAAsONeHIgYA8PDk0ehvxljoosqPQ1NVFAqFtpoTVVEwOT4OmRC4rovVWm3gbcuyjGw2i3KpBD2bjb5ny3HCKgfb7ny9bZBdtVtr/J7IcnE0pRTnz5+PfGJSdEZKDjYJge8jcNuHAltLekS4T0QNhPshEFoVa32GwIgkJWba7UhBJpPBWLmMYj6/YZe8fu2FNVVFuVyOiI9pmlFlRicI6+R2pGWkRkdDYG5uDrZl4fDhw90X3ATC0g+Ja7dEwM+lJMuRV0OcVHSjCAy8tJSLRFsH9fjfic/EftDmd8uBRX8+eywZtn/gPguZzOiFnM7xTwAsdg2qeWj3fh8ymUxopMNnwgBAKfDrv5EkgvkcxQ//4HAixG7IyTpUaTiPjkcmw86Rrueh0WhEPRJyuRxyuVzX60fTNIyPj0MGYDSbqNXX94boB7IsQ1VV5LJZ6JoWCnMp7UgSgiCIrscNoQvRlSQpcpF1XRfnTp3quGyKECk52CRQ2+4YRos/CGkQwOEphVwul3A/zOVy/efRY+vsRgoK+TxkWd5wjm/QvgOyJKFULEbtcV3fR7VWg8GjJuvW36HpUtzoKLtJRkfd4AcB3jh5Env27LkpjV2GFm310Bt0+y4JOPFsN7DEXxsRGXr2ueQg/MjRjbVobgdavwLv5J8mXsvc/d2Q9DIkQqDzaJoYyP7iSzmcOZu8F7/vexsYG9tgE6g2GMuM4V/d888G/tyO7HbMZGbQaDZh8vtKluVwgtHnfZLLZlEul6HIMmr1Ogxz8PJR4f9BJCmsruK2ze1IQnyCQAhJiEoHRrvKiFi6QaRQAWDhyhWsxrpbpliPlBxsAgLPA+0QNWiFECIqigIQsuZ+qOuRkUdP8Iey5/toNBpoxEmBpiVIwSgQhY2HQDabRTmWJrEdB9VqFVZsNiEcHxmS7og33OioDc6ePQvXdXtHDTD6kD2AobtGBreIGLFWk3HydPJ7fWQTzI+c478N0FgtvqJDu/8Ho3+1TAaSLINSitVVH7/7e0kiuHunh/d+y+aYMgHA9+z9LvzHo/9uoAjCA5X7oyohQgh0XQ/TCAN+58ViEfl8HrIkYXllZWCrZoBfZzyML9pKtyMJ1VoNtuOsaZfaWCJvFPFrXoilQQhOv/76ljUs2wrY2k+KWxRBB7Ojdg5hpmUhYAy6rqPJey5omtZXD3UBX0QKqtVQNUzIWqSgQ45x6BlorExoWCiKgnKxGHkgMITnoVqvRzXUYhvxNMnNMjoS8D0Pp06exN49e5Ab4PsZFfqyye6AW6VS4fiJEhhbu7Z0neK+e/uzI+4X1FiE+9rnEq9pd74fUm4i+l8iJAyJE4LP/b8yavXkefvwh+vYbMH7/7bzm/Bbj/0aFNLfhh4o3QeCMEpYKhbD6MeQ266Uy9AzGciEYHl1dWCHQXGd0ZbIgCAJWV0HDQJQSuHYNuqNRthtkrHh+350GOhFNYvYhxyvmqrXargwPz/ctt4C2NpPilsQgeOABevNSdrdpIxS2LYdzvJ5R0OVi4b6ge/7qDcaqHFSEKUPKpVw4B2xKr1TZcKw0FQV5VIJuVwOEp9lNA0DtXodvucliMHNMjqK4/SZMwh8v6+owWYg3tdhUNwqDZeOHU+WhT74gNWzidGgsI9/EghikT1JQeaBH1q3XCaTwcJVDV99QoWurxGUxx6x8cD9/UUGNwLGGL545UvwWX8D8yNTD6FYLEbiu42AEILxsTGoqgpGKa4vLfXdFAlYu87apQwJCTtCikgCEF6fNicJNu82O8ROd05txfZDkqQwKksIzs/NwRwidfJWwNZ+UtxioJQi6KA1aAfbtiMzEeEu1o/Jke95qNfrqNVq8OKagkolihTE2zKPAqMmBgKEEGQzGVTK5SiN4vOeDhaPFERGR4whN2CP+VHB8zycPn0ae/fvb+sidyOwkRCo6Kuw1SMHx55PkoNHHzI72oMPA2qtwn4pWQmgHfk2SIV2znkEn/p/pgAmI5c1ADBoKsWP/dhwQr1B8dunfxefOtdf1cLthf3YWdkx0u9XlDgqioIgCLC4vNw3QWgXORBgjIHy1Ec83QCEEybLslBvNOAN0BFSoOPziesgBFRVhaZpcF0Xc2fPJqziU4TY2k+KWwzMcUJZc+LFzt4DTcOAaRiROroXMQiCAPVmE9V6HZ7vgyJMQcRJQRwdZ5oD3nCbRQziEOG+SrkMjRun+L6P1WoVS0tL8Cm94UZHcZw+fRoBYzh48OBN2T6wMQe5XqWhWwErKzLOnE2max7h/RRGRXTtE78H+LEyNiIj87Yfabvs157QceKFEgAZksSg6zbe/x0GZqY3fyD5wqU/wy+/+h8TrylEwZ2lO9ou/8jUw5uyH+tKHKvVvj4nrrPWiiTGWFQ5I9CabiCERCSh2WjA6VO/JdbfNb0Q+1/PZCDLMq5fu4alpaVUf9CCrfukuMUgogat6NSJjHFrYdfzkMtmu7ofMgCWbaNaq8F1HDAAahdS0LID626WYW6BGxXElyUJ+XweRR4hsLiBi21ZoDyKcKPhuC5OnT6NA/v2hS1zbwJ6ddDs+tnYA3ork4NnnkvqSHI5invuDu+pUZADatfhvPD7idfUg38PUnnXumVtm+C3fjvUP5hmmKPeubOB939Hc8P70QvPLj2Hf3H859a9/q8P/0v86n3/Gd86+y3r3nt0k8gB0FLiyNN+vSBxYaEodRXo1l+kHUmgjMG2rMhttScI6e6Z0GIwls1mQYMAVy5dQqMx+rLUWxlb90lxi6Gd4VFHt0LGsFqtwuN59ampqY65YCE2FKVJqqoOpCmIRH3DDiwDliyOAgyh/7+iadB4Fzo9lwurMZrNUOHczVBlxDh18iQA4Pbbb78h22uHjegNbpVKhWeeTWptHnzAwigrVZ2XPgXmxgd3gsyDP9Z22c98No/FxfD+sm0djMn4++9rgpDRiiNbcaZ+Fj/19D+GR5Mk+Cf3fQTv2f4eFPNF/OLbfh7fRL4BMsL9e3jyITw+1b6/x6gwaImjFCt9FakFBvQ1wCdIAhdVBr6PZrOZqGwYGrEJk8z1BytLS1hdXV3XeO6tjNQ+eQSglHY0PGoHy7LQbDbhBwHGx8bamhwxvpwpSAc3/Bkm3004m2aUto0kdMLNIAYCQsWs6zomSyWoqhq2knZdUEphiraxmUwUHtwM2LaNs2fP4vbbb49qpG8G3gp6g6ePJSMHj8ZKGAm4bfSQEQTmGrCf/73Ea+qBb4Q8vm/dsgtXZfzhZ+NEhWDvHgX33+/CdsjQVuO9cM26jg89+ROoe8kZ7Pt3fjs+fPhHo+0yxvAN8rvwvp3firGdFdxRPpKwTN4sFItF+LxXyvLKCmTe1rkTJElCwFjYnVGW4XOdQb8gvOpKVVWYlhXZMns82trxnu/jXpEkKUq1qaoKz/exurKCfD6PycnJvvfxzYyt/bS4RUDbhLo7RQ08z4s6ISqKgnKbpj2e76NWq4VmSIxBVRSMVSobEsLFywL7GWZuav6NMVi2HUVKxOCfy+UwVi5H3vAMgOM4qNXraDQaIesf8X6fOnUKkiTd1KgBMLzeAFjTG2zlSoXrizLOzSWv7zg5wAYFtvYrnwGzq4nXMg9+qO2yv/WJEjxvbVuSxPCjP2KHjqKMRe6lowKlFEuNJXz4iZ/AgnU18d67Zt6JX3jw55IW51xcN6lM4K7KnTeEGAgMUuIovA4CSiMXxGEgSRIK+XzocMjFjM1udsx9XCft9AeNWg2u6w7l6/BmxNZ9WtwiYIyta67UiRgwSmGaJnzXBSQJiqpGlslAeMEaphmW8vFGJMV8PtQjjGBmLELTvQb+GyFA7AbHdeFywpXP5da58EV9IbjzG0FIqJqGgVVOqgYpu+oEy7JwjkcNbrQTYxwb0RsAt0bk4Olnk0LEQj7AXXckH9JDRw18B/Zzv514TdnzTshT60tSj5/I4KmnkyTlW77ZxN49QeQbIKJXG4XneTAMAyvVFfzvz/9LnGycTrx/z9hd+A9HfwkyaREag7fdvgkEfpASR6E78Ab0SOgEkWpQ+HodxwkjsCNYvyRJQBBgdXk51R5wbN2nxS0COsBsVQxajudBkWVkM5lIhOj6fuQUCISliZVSCdqoQ9mczXfCzSYGlLGw7pgx6MLNrAMU7glR5mWQIuRq2TZqtRoazWZkrDIM3jh5ErKi4MCBA8Mezsiwke8jqlTYot0YgfUtmh960BqZyZDz6ufAzKXEa5mjH163nOcBv/EbyUheqUTxge8LBwtNVcPoAaVD56ZF6+R6vQ7DMOC6Ln7p1H/A0yvPJpbbld+JX3v0PyOrtHcBlWNh8RuNfkscZULCzrQjIFICEhcsZ0UUgVIYhgHLspL3eT9EsiUaldF1LF6/Dtd108ZMSDUHGwKlFAG/KIWHd6cWw57rrpXk8HKeSqEQDYaObYfhQklCPpcLW8UytinNeySuAm7FzSYGQBg5oUEASZb7TqNIkoRsrLe84zjwfB+e54WzM9OEqihRbXM/M2jTNDE3N4c777hjeF+FET28N7oWIQLrVA2zFfB0Czl4tI1l8jC6AxZ4sJ9LtmVWdj0CZfbedd/P5/80j0uXk9/1D/9QA4XCmiuorusweD+Ufq4lxhh8fi36vr/OMfD3Lv0+/mThC4nPVLQKfvOxX8VEZqJ1dQnczG9TlDheX1yMShwnxsfXFmAsfMZwc7NRQXQUVVUViqJEJnKu68LzfWR1feAon5hUEEKgEILlpaUwnTkCM6lbGSk52AAYjxrErTnbLscFdEBoHUx5eY+qKKjWamG5DwBd05DN5aJw3GYQA0EAOhGEm3kruJ4XlWrmstnBj5+rnLVYb3nP8+AHQUgWfB+mZUGRZaiaFs4EO8ym33jjDWiqin371gvWtgoYAN914QdBNEMLKAXl/weUIuD9NkRLcMpztpTngSlfjvKfIAjCjqKxdVFKwwgMgKefeQaaokBSFMgk7PIo8x9JkiBJEmRJCt+XpOh18ZokSVAkKfwc/724rGPufNK/oh05GEZ34L7xJ6CNhcRr2Yd+fJ2x0sqqhE/9P8lqidtvd/Geb0zuh6aqsGUZnu/DcZy2/T0YYxEZ8DwvsR1CSDSwfWHhz/Grpz+e+GxGyuDXHvnP2FO4retxif2XJGmkg+8g0DQNE+PjWF5ehmEYkYaKMYaA0ug5NuoIBwHCCCilUfM1y7ajtK0Y2GVOJPpdJ+PHtHz9OsbGx2GaZiLt+1ZDSg6GBKUUNCZc6Vi2iLBvAKU0DAXyh27ATT4YY5BkGcV8fo3x3qBwoUQIKN/ezaxMCHch7D3PEIqDNvpAEb3ls9lsOLi5LnzPg+f78IMAPq92kGUZmqpGD2wAaDabmJ+bw1333LMhN8Zhj8D3fdi2DYf7O0ReD7Yd/bi2nWxWxT/b+h3Ghw2ZkLVBXJbDQVoM5ISAyDIUWYaiqtD432JZUbUh8s1xYuH5PlzeE0OQCV/8HSMincRjx0/cCeD+6KWsbuHs2c9h4XL4kNezWeiZDDK6DlXToGsaMroOXde7zt4ZDWAd+83Ea8rs/VB2Hl333Xzyd4qwrOR6fvzDdUhtbgpd1+EbBmzHWWvvTGlEBjzfT9zDRJKiyJWiKCCE4MnrT+PnTvxC8lSA4N8f/b9x/8S9bY8nDlmSEpG+myUfzvISx1q9jlq9DkVE/NhaR1UGrEVXRwTxvKWMQVEUFPJ52I6zNiHw/fD66DOKEEUP+D2xsrgITdN6trl+MyMlB0OCCcVyjxm+xy9YQgjyhQIWFhbQaDaRy+dBGUOOD2DRBSgeKpt1QbY8oCUgdCzbnK31DcOywtmGCN2a5sj2KfJS13VQSuHxMKTv+wiCAFYQwLJtSJIETVXx6muvQctksG/v3o1tOFY2SoMADldCJwZ5x1k38MdrwQPe1U7PZKLBsFwqITM1FTpG6joURQln7/EZuSRBVhTQIAijJYqCSrk89KGsrK5GJZ2VSmWodYioRRAjDj6l+Nsn9ySWu++eKg4dOhCRINM0sbq6GpayOk4UrhZRu4ymRQRCnBM9k0F+8Wno1fOJdesPfSRy4BN4/Q0VX/5KMq3xDe82ceRwe8MtTVWhyjKcIECj2YQsy6EorsW/X1HVKDoVH2BO1k7hHz7zM+t6JvzLe/4pvnH7N/R3MvnAKMqUKaU37R4WJY6NZhOLy8vYtm0bNE6CJEmKIlOjLjcWraEZv0dESsGyrMhh0fM8ZHW9d/oHawRBz2SwtLiI8akpGIZxU1qzbwWk5GAIUEpB421GgY4uiCKdoGcycGwbDe5vUMjnUSmXkzPTTUol9IIkwm/CB+EGQ9QvgzHkC4VIXb8pegtJQiaTQSaTicK/YrZBKcXK6iouXLyIQwcPRqFS8dPtASMiH41mE81GI+ySWa+HA77jrHN2ZAjbx4oZcS6Xw/jY2NrgputhjTdPfww7e7EdB7IkQdkCYkSJEEiKsu6h8/wLlcT/b3/cw6EONtWB78O0bTiCTPGyYPG70WhgcWkJjmXigSufSHy2oW3HM683kZn/K2iqikKxiEK+iP/6q/cklstmKT74w+sV634QhCkc34fr+zANA5RfsxIfCHulq65a1/DhJ38Shm8kXv/hAz+AH9z//W0/0w5SLC0iBuFh23mPAuVSCZbjhPfQygq2TU5GRkgEIcndDC8S8ewV50LhHVsd14XjOFGfljwvf+65Pk44VFXF9atXoapq2BhuC1f6bBZScjAEWDyd0MEeGeDiOsag8JmFaZpglCKjaZicmEg+8G9QKqF1K4wTEgKAbUIv9Z77wxiaPJ2gZTLQVBUWJwebTVOEE5sQf3q+j7NnzkBTFMzMzEQ6BQERknf4bNYwDDQ4EWg2m6GWBOEDqlgsIpvNolQuIyNmtPx3VtehxevWu2Cj+eSt3qr50mUFFy8l9QYPP9gA0P5BLisK8rlcz5bZ7tkvwzx/Pfni3T+IXWO7Yds2moaBSxcv4sSLezA3l1zX17/zJJaXl2DbeeRyufD+5V1To/0gBLKqgvB0YU8bcwANr4EPPfkTuGYn9+vv7ngP/tldP9P1s61odT0lANgABmejBEX4XBmvVHD9+nX43Mm0XCpBlqQwpbTJxIW0kCU9k4GqKDBtO+r2msvloPaZJlQVBdWVFWybmUGz2USpjR/Nmx0pORgCkelRl5m+UMyLchtKKXzPC2cWnRzWNnnW3uprzlq2KZTAaFluM2HxzpSEkNDT4GaBE6TLV67g4O23I5/LoVqrhSWRjQaMZhNN0wwNUvi50TQNhUIBlUoFu3fvRqlcRomTAsLNXzbiTyD8DTaS89zq5ODpZ5OCr0rZw+0HLACdQ7m9ujQyxuA8+xuJ16Tx/dj5+PeDcMMgRinqDeB3/8c2vk4KRfExva2K/fuewysvNyK9hizLyOdyyOfzKBQKKBWLKJXLGKtUIkOkXufXpR7+0TMfxen6mcTrb5u4H7/0tn87sJERaakCIIRAQvsWyZsFhiR5VVUV5XIZq9Uq6o0G9Fg4fzNFk9H10EKOxPdmmiYCSmEaBvRstmfzNkmSQCiFpqpYXVmBoijI5/Ob5sK6VZGSgwFBPS+8ALtoA2gQRJ4GlFIoCJm+putwXHe9SOYGpRPWbaHNdsVAdCPSDD4/T2BhK+Z1pXY34JyYpolGo4FGo4GLly4h8DycOXMGr73+erRMPp9HIZ/Hzu3bkc3lovx2a8kU4XXdtm2HDxKurh/avAcbbzi01clBq7/BA/fXIck9jrnHDNm/8ASC668mXtOPfjhBDDzfx6c/nQOlJsbGPMhyGK364A/XcejQ28CASPRpmiZMw0Cz2cTS4iI83wcBn6HmcsjqOsrlMiq8EVqxWExcG4wx/NzzP4+nFp9J7NPewh78t0c+how8uJdJgsjHXiM3ML3QbsAvFAqhgNa2sVqtolwsAth8x9Woj0OLfooQglwuB4vbLts8kqB3idwxhPeLqqowmk1MTk2h2WyivAHNzq2IlBwMiChq0OmhzxgM0wwVs64LnXuA5wsFrCwvgwLJQeUGM/3E310GHkLIpqYZ4ukEoUBP7NsmbLfZbGJ5eRkry8tYWV1Fs9kMQ55AlLPN5nK4bc8eFItFFAuFjuFiUb8e/XA1fjwVIdIMopRPpCUUWYbUIlJrixGcg4gcbMFZD2PrnREffKDeM51ExIc7nD+7JWpASjvh7/w6OM1mKIRkDFcuEzzxVAa6vpYivPMOH3ffDShyNtSYdBBeCu1QvV5HtVpFrVbDxYsXcfr06ahyQKj4x8fH8bnm5/HHl/40sY7JzAR+87H/hoo23IBDOhCkdqRh1KBAVwIyXqng2uJiJFLUNO2GVFMQYJ32QmgSctksbJ4SdLnDZS4uBO+AgOuRRFnjRqqXbjW8dY50RBDeBh0fTI4DyzThOE54MakqCvk8CCGR6E1rDWvdYBFg37W/m5hmsLlYiADr0wmMhfnTDYBSitXVVawsL2N5eRnLKytRrX6pVML4+Dh279qFYqmEYrGIWq2GJ558Eg899BDG42YuHSDq1QXRY4whCIKIKAR8EEJMmd8qSiSCKHDiEPcKANb7vw8Kxlj0oNyKBkgXL6m4spCMvhx9W+92wEB47kTahcXKg/2LzyK48nxiWXrXB+D4FFFhJwM++7kiHCeDIFDgeSrAZPzAB5Z6ahmA0Ekvo+uYnJwEpRS1ej0abEzTRJMTh1qthv9+8lP4HPt84vO6lMF/uv+XsSO3o69jbXv8HcyFxAC5GWH81jRCJ8i8MmZlZQVGzN/lRqCd9kIQNp2XnVqmCR+IhIrtomoiMqQoCizDgKqqaDabQ1fq3IpIycEAaI0atIbKfG6B7Np2GHrW9cjMRwweANbIwU2qThhku5uRZgi4WQkYC5sotdycnWr2u8FxHCyvrGB5aQkry8tYrVaj8qnxsTHs3bsX4+PjGJ+YaNsF8/jzz4fv90EM2kE8SOIPwYDXvrcaE1EeZWCUwmv3gOfqc+GYKUlSpIYHV1P3kyYQrZpJjHBsJbSmFCbGPezbawFYI1wM4SyVUgrKzxnl91Lg+whYS9+J5z+RvG7y01APvReymolKPZ98Kounnk5+z9/9XXXMzPRuJ9wKSZKQUVXY3IyqUqlEA8jfXPsq/ngx6X5IQPCd/rfj/FPncV2/honJSUyMj2NiYgLlcrnv74l0sU/ejPQCG9DMKJfLwbZtePV6pD+4USCizDP2v7hGNFWFlM9H3jMdKxkIAbhmyDZNlCqVKHpwM/us3Eik5GAARHqDdmWLlGJ5eRku77ZYLJXC2noO3/cTLUJvStMU/rAdZoAfZZrBMAwwxqBwJ7O22ws32nEdjUYDSzxFsLy8jGazCQDI6jrGJydx186daw/cHsdbq9dx/do1HH3ooWEPqSNERAAtD5R4rb/oWieMgkTKomuelhNUQR7E3yRGHkSqQ95iUQMxyD/5dNJd8IH7a7BsC57vJe6XdojPYgl4x8nlNxAsHEsslz36o8iUKtH/jkPwW59IhvKnJgN81/ubQx+PlslEpXOix8er1dfwM8f+OQKWJBz/+t5/hW/b/t4wmsUjWlcuXwajFLKiYGxsDJOTkxgfH8fE+DjUDuI5mQteO2FU1QtM/AyxnkqlAsMw4Hgeao0GijfIL6BdeiEOITA0TXOtkoE7LUbgz3mJENiWFTnKNhqNoScQtxpSctAnKKVhSqGN1oAFAZaWl6OLaGJyEpmWhknCRjUqpbkJD+yNioJGkWaI1/x3rE7ggk9xhvwgQHV1de2BurwcraNSqWDb9DSOHDmCiYmJMFIzIM6ePYuMrmP79u3DHNJQkLkOoZU0CBGr5/uJGbN4HeD5Xk4iAkrRab4rBixFUSIzJQFRfy6qNOIlue1eF6p8hzelEd8+i4lzxUwfYsbP/4Z4TbzPX26NHNx/3yoC319n7d2O/IhjkWUZhL/e/JvfS6yP5Cag3fkdidf+52dyWFxMzhJ/5IM1ZDYwsVUUBYqqgvG+HkvBMn786X8EK0g27/nw7T+K79oT7s/s7CxmZ2cBhN95tVrFysoKlpaWcO7sWbz+xhsAYyiXShifmMAkjzDkeIqSSBJol26Eo6heYC3f2aCQJAmVSgXWwgJsLuzsJ20zEsSqF9o992TeBjqqZDDNqNy4HRzbhprJhMZcrrs+NfwmREoO+oWoc24Z1IMgQK1ahWmakCQJk22IARA+VBml0Li16A0nB21KfYZBIs0ADJRqEE2mKEJi0MmYx/N9LF6/jkaziVqtFvWfUBQFE+PjOHDgACYmJzFeqWw4l+l4Hubn53H48OF16Y2NolfJXTtEaYQehkuiP0ci3C5eE+/H1tn6kBz0KojIgePAHsGD8dKlLBaXkut57KG1B3Qhnw8HfXSu2IjPnIPFN+Cf+6vE+5kHPgiirI36V69K+MwfJksn777bwdvfnmwNPQwymgbf97FoLuPHT/wUlp3lxPvv3fnN+OkjP9n2s5IkRSkt0QHUMIwosrC0vIy5uTmA1+9PjI+jWqtFpbKdzo+olBn0GuxXW9APMpkM9FwOjm2jWq9D07Qboj+IVy90et6KSgZbVDJw9009k0ncH4QQ1FZXsXvfvqi6aWKie1OsNwNSctAnqOOsixp4rotmswnDNCHJMirlcttGLABPKwA3J1+1CSmMiCQMkGowuKOcIknr0gmmZeHKlStYWFjA9evX4fk+crkcpiYncdttt2F8YgLlUmnkxkjz8/NgAPZu1Cq5DTbqcdDtod9PzbWiKHB56iYTf+DFZ4Qx0hCf6be+r/DrVlNVZDKZRFQhngKKmpDF/xbHIUo7AfzZF8cS+7ptysPB2xlsR4XSxWGw9TyIfbdbeigQvYzM3d+VeO03f6sIz1s7p5LE8JEP1UbC01VVhc88/LOX/iXmmvOJ9x6efAj/v/v/9UBlqfl8Hvl8Hrt37wYQRh5XVlawsrKChYUFGIaBIAjw53/+55iZncX22VlMTU2tI5VEksCC/rQU4vseqVcCISgWClGabLVWw9QNGlgJ1txfO3XzJIQgm81G5maikkGPT/AYg9lsQuVOpcLGu1OU4c2ClBz0AUopWEsIz/M8NJtN2LYNiRDkuEFKJ/ieB8pYGI66WTngzSIJ4iHdZf2irSoYC2eFAFarVVxdWMCVhQVUq1UQQjA1NYUjR46gWCqhVCohP0SaoF9QxnD27Fns2rlzU270YWZtQHdiMNB6eCoh0j1sAKLdeCSy3SBaUwqPPGRGt0W/Ry5U6MHqHLzTX0y8l7nvB0C0tSjB88+rePKpJCH95r9nYM+ezqH5QcDA8G/e+L/xYu3lxOu3Fw/gPz/076FJG5sUqKqK6elp+L6PU6dOQVEUlEolTExMYGFhAXNnz0LVNGzbtg3bt2/HzMxMOJgBfYkTRRRq1M8mwn/KxWLYmt5x0Gw2b1i/gnj3ym73omigZVoWfN+HRelay2ZOaqvLyyiUy5EzakoOUkTEIApVcV91IfjK5XIoFApdH+iCOWdudOQgfkOMIK3QCd1IAmVh34GAUlimiYsXL2JhYQGmaULhVsUHDx4MG7ZoGizLCkWLm2zmsrCwANMwsH8ThIgbwai+IRF232rObowBTx9bTw6GPe4wahD7tFaAdt9anwLfB37940n722KR4vu/b33/hGHxy6/8B/zFwl8mXpvWt+HXH/0vKKrFkWzj9OnTeOWVV7Br1y4YhoFcPo977r0X99xzD2r1OhYWFrBw5QqePXYMEiGYnJzE9u3bMTs7C13X2w6OiRTCJkxaRKRIVVWUikXUGo0wvaDrbauGNgOkBzEQUFUVeUkKI5yUAlxgCgBgDMuLi5jZsQOmacLlTdRuZBXGjUZKDvoA47MmAJG6NaAUrusil82GDXK6XOiR8joWnr0huBkVEUK0yI/X933MXbiAhcuXsbS8jCAIkMvlMDs7i+3bt2NiYmLd4BWlLDZ5/8+cPYvxiQmMjY31XngY3ITzn9x8uP2t1nL2zFkNS0vJ++XRh82BzxchBEH1Irw3kgZDmXu+F1JmjQx8/k+zuHgxub0f+oE6CoXRfD///eyn8Nunk2LIvJzDrz/yXzCbnRnJNl544QXMzc3h8OHDOHLkCP7yy19ey90TgnK5jHK5jMOHD8M0zSgi9+JLL+HFF19EqVzGzPQ0tm/fjhJ3+mMxXcpmghECwljonsi71FZXVzE5MXFDSmxF2quf54kiy8hlszAMA67rhqWqPNprWRYcx0GhUECj0UCz2UzJwVsZlFIw7v3PGIsiBi5nlTK/mLohqlRQ1Ztbb36DBivbtsOH05UrWLh6FUEQIJ/PY//+/di1axfK5XLXAatbM6tRoVqvY/H6dTz08MObt5EhIzWMbbyFNuUVDcDWs05uTSnMzni4bbcHawhdoHP8t4F4uaCiI3P/D0T/rq4S/P7vJ0PYB/Z7eM83moNvrA2+dPnL+MUXfynxmkxk/Ns7fgEHS7dveP2+7+PYsWO4du0aHnjgAdx2223h657XcUKSy+Wwb/9+7Nu/H57n4dq1a7hy5QpOc1twXdexfXYWs5ycb/r1wUJTMyJJoXvi0hI8z0PDMCJ75U3HAPehqqqh1b1tw7assKupogCMYenaNezYvRuNRgOu6yIIgi0XmRsVUnLQAyzmbWBxW2RQGkYAuNq110AWVSrcyBxVu5ths9IKjKHOw5pXFhawurICEIKpyUkcOnQIpXIZlXIZeV6G1QsJpfEmQZQvinKyrYIoLbNBciTOnSjz20pol1KI72K/exs0r8F97XOJ1zJ3fxek3Jrg7ZO/W4BpJge/f/CROqQRPM9PLL+Ijx77F2gt9vu5O/4lHpl8CI7jbGhmads2nnzySRiGgccffxxTU1PRe57n9RWFVFUVO3fuxM4dO+BTGkUULl2+jNNnz0JT1VDQODODbTMzfXct7BfRd8mvR0VVUS6VUK1W0Wg0kM1kbkhZIOHNlPqNRmZUNXI1NSwLBW6UtLq6it1790LTNLi8rPdG6SduNFJy0APM80AIgW3b4SAPQFIUgFKoqtq7LIex0DYZN7BS4UZECBjD6uoqLl28iCtcPS3LMmZmZrD/wQcxMzMDhtCsCAhLF+Ppgp6RA2xeWsFxXZzfpPLFBIYclEcxmEc9FbYYMaAUeKaln8KjD7fM4vvcZ/u53waCmCW1rCLzwAejf0+eVPGlLyW39e53WThyh4eNylnmm+fx40/9QzjUSbz+j478JL5j77fBME24njc0OajVanjyySdBCMHXf/3Xo9gyw/Z9v+dAHlWh8MoTQghmZmexbXoauPdeVKvVUKewsIALFy5AliRsm5rCzPbt2LVz56Y9rwr5PGze1GqlWsW2yckbEr0gANCPOJP/1jMZUG5QZloW8rkcbF7KmM1mU3LwVgb1PDDfh+95sEwz8ue2ec13th/PAkIin/1Obmc3CqMYbD3Pw6WLF3Hu3DlUazXomUyojp6dxbZt29ZucsZQrdfDc6brbRv/dCIJm00ONrN8MQ5yEzUHW7Ub46kzGaysttEbDAhqrsB++X8mXtPu+PuQCmELZkaBX/215EM7m6X40Q82NpyyWbaX8aEnfgJVt5p4/Tv3/H38xOEPAwhNdnzfh+d5Aw+y165dw7PPPotCoYBHH310HcEQzcI6RQ66lSQKgSAjBJWxMVTGxnDkjjtgGkZEFF44cQIvv/QSdu3ciT1792JsbGx4wtrqi8IxVqnAu34dfhCg1mhg7EZ0PBTRgz4XJ4Qgq+swTDNBEC6fP4+Dd9yBer0eNtjz/TdlQ6Y33xGNEMx1QYMgVM4jJAaRR7emQeZ5qF7webXDulbNm4Eu+zP0Q5FHCebn53HhwgXQIMDM7CzuuPNOTG/bBtJmAHJcF4HvRzdYYj9i9e/xevrWuvjNIAeUMZw5exa7du3a9FKkYfZ+VMcsZkftvpubiVa9wc4dLnbuaGlI1cd67Od/F/BjIgUiI/Pgj0b/funLWZw6nSTj3/c9BsYnGBgd/hxbvoUff+of4oJxMfH6O6Yfx7++719F166maQgoheM4A5GD+fl5vPDCC5iemcFDR4+2zWf7vg9wDVMC/F7qVZIoSdI66+VcPo/9Bw5g/4EDsG0b5+fnMT8/j7nz51EplbB33z7s2r174LSD2IvWMy5zX5hl3h01m8lsurhPkCJCSNfoQfw9SZIigWIQBLBsG6hW0Ww0oGkaHMeBZVnrIjtvBqTkoAOY7yPgJkeU34iapqHOw+T9XsjCNx/C42Cz0S2SMaDmwPc8XLx4EXNzc6hWq8hmszh48CD27NkDvZsIk7HQYpcx5LjBSCdEM5noo2xNkCjCoX3vcW9cuXIFlmniwP79I1xrewwz2xrV8W7VyMHTz3ROKfR7ZVK7BvvF30+8ph7+FsilsMuhYRB88neSUYMdO3y87318W5IUOp4OiIAF+Oixf4GXVl9JvH5H+TD+00P/HmrMy0DTNFi2DZ936uxnZvnKK6/g9OnT2LdvH+69996Oy3meBxASDdTrbI57XXct91wrdF3HocOHcejgQVy7fh1zc3N44YUX8PLLL2PXrl3Yy6MJG0U2l0PetmFYFlarVUzHI4+bAaHDAbr2nYg3bQJCIpPL5WBwzZkkSbh4/jz2HjiQkoO3IqhlodloIKAUiiwjn8/DMsOHS0bT+laoujwFIVrzbhrEhd7twdAnMahWq5g7dw4XL15E4PuYnp3Fo0eOYHp6uq+ZqO04CIIAkiz3TaJaB1IC3qBnRIZAAmfOnMHExMQNab06sG3tCKoUBERIeStpDigFnnluvRgxQp/ny37h98FcI/YKgX70Q9F/v/+pAqrV5HX64x9prLWxGLKC5Bdf/CV8eSFp0bwjtx2/8dh/Q0FN2jKLEjibl+51IwdBEOD48eO4fPky7r777shCuROEZwqR5a7Nl7qhXfSgzUKYnpnB9MwMbMvC/PnzmJ+bw9z8PMYqFezZuxe7du3qHk0Q11+Hc14ql+E4DrwgwGqthonNKitG0pRMQtTAO4FO5FxRFGR1HbbjwLZtrK6sYNayQAgZOn201ZGSgzZgngej0QgHOEKQz+dBKY1c4jLxAa8dA43N3n3fB6UUyhZo1NHtkRj4Pi5euoS5uTmsrqxA13XcfvvtuO2225AdoFkKoxS2iBoIh7EBIPzgo4jCCJT7AqvVKpaWlja3fDGGQfd6lEmUrRg5eP2NDGq1JKlOkAOBLt83cw3YJ5KeAtrBvwt5LNSPXDgv4/N/koxqPfyQgwfftuZVMszV9InTv4PfP/fpxGsltYjffOxXsS071fYzGU0Lm1+5LrLZbNt7wXVdPP3006hWq3jkkUd6Vs8whCk7yictQ4OQdQ2uukHPZnH48GEcPngQV69fx9y5c6E2gUcT9u3d25twt7mXZVlGZWwMS8vLMC0L2Uxm05ozJcg66dCYqsv50DQNlFK4ngfTNHFhfh679+4NxZWWlZKDtwKM1dWo0UyhUIAkyzCNcKbSV9Qg3n+Bs/xNvXA2UP5Wq9UwNzeHC+fPw/c8zMzO4tFHH+07StAK23EQUApZljeU05cIARXbjx/XBnLyZ8+di2q8bwTYoN/HCDUWkQHSFiIHT7VUKdy228X22Zh9cSzs2wn2S58Gs2uJ17IPfYSnoAh+7TdKCIK1Nagqw0c+VE8sP+hZ/sLFP8Mvv/IfE6+pkopfffRj2F/a1/FzsqJAVRQwxtqWNTabTTz11FPwPA/veMc7OofquU+AKHMVHUk3WnZIhiltliTMzMxgZmYGlmlifn4e58+fx9zcHMYrFezdtw87d+4cSKCn6zoKhQKazeamNmeKV20AaBvVCCjtev1lMhlQxuAHARavX8f41BQURYFlWSiVSl0+eeshJQctcEwTjmmCMYZ8Pg9ZURAEQfuoQR8Q3fE2rWSun3RCCwLfx6VLlzA3P4+V5WVkMhns378fe/bu3RBrZ5TCtm0wxjrOlPoFid248bWwIYmC7Ti4cP48jhw5csNm0zcroM8Yi0RVWymt8NQzydB726gB0PFaZr4N6/jvJF5T970bytQhBJTiyScyeOHFZITu73+7idntw9ctPrv4HP758f9j3eu/9LZ/i6OTD/b8vKZp8HhfkTg5WF5extNPP41MJoOv//qvb3vfCS0B/yd63ff9rtUKfYMM17VRIJvL4cgdd+DI4cNYuHoVc3NzOP7883jppZewe/du7N2zJ3JjDA+hc4qwXCzC4SmYWqOxKemFdtuWCEHAnzH96H3iFQyUUlyan8fe229HEARvulbOKTlogVWtgpGwNaowLXLsUBXdNWrQYZBmfcyGbhRqtRrOnTuHCxcuwHVdTM/M4OGHH8bM7OxIBkzLtsNwp6JsuBIgMkJqfT329yBEYW5uDgCwZ8+eDe3XQBhGczBCjwMQsmXSCr4PHHsuGe5vLWHsNUjZr3wWzFxKvJZ9+CMAANeT8PHfSorCJiYCfM93G1iHPs/xmfpZ/OTTPw2PJqsp/uld/wTfvOt/62sdKu8w6ccGj0uXLuH48eMYHx/HI488kogqMqBnHb7neZAIaVsePCgi5f5GrjtJwuz27Zjdvh2WYWB+fh7z58/j3LlzGKtUMLN9O7ZNTnbfD0lCpVLB4uIiTNNEMZ+/YQOtLNIrfd6vhBDkslk0DSOMdqyuolypwLKslBy8WWE3Ggi4I6JQ4/cVNeghugEQKqRHjX4FhrUaXnj1RXzx4pegKSp2Tu3ExOQEGloTLzgvgc69gIAFoIzy3wyU/z+WqeAdO78OBS3fdRs0pjXo1LZ6IPRRzph4nImeDuGHEssFjOHc3Bx27d59YzupDfDAHaXwcisaIL36uo5GMzmYPfpQcuAW31q788ACF/ax30q8pu5+DOrMPQCAP/xMHtevJ9f/oR9tQNfbXD993DfXrUV86ImfQN1LNmf6/n3fgx+9/Yd7fl6AEBKWNfJ2wPPz83j11Vexe/du3HfffVG3wEFm777vjyxNSbit8ahKaLP5PI7ceScOHzmCqwsLODc/j9dffx2nZRmHDh3Cvn37Ok6wMpqGrK7Dsm1U6/WehGJUYED4/BhA3ClJEjRFgev7WLh8GaVyGbZto1QqbTlH0mGRkgMOxhjMepib1LPZKFdr9xM1EGh3UcTUsTcajUYDr7/+Os5eOItfdz8BDx4QALjEf/rEZ0//v/j4N/5611moZVlRqHMU7DnyOhjgho3OPok1fwJw5fLlsPviDShfHBaj9HTYimLEVn+DfXsdbNvWUk7Y5Rw4r38etHk18Vr24R8HAFy7LuMzf5hHXE1w910uvu7rku6F/aLpGfjIkz+JK9ZC4vVvmH0X/tW9/3zgh7+maTBNE6++8QauXLmCQ4cO4ciRIwOTAgHf80aak5cICSsXRjioEUnC7I4dmJmdxbXr1zE/P49XXnkFZ86cweHDh7Hnttva6mHKpRJs24brOLBse51HymYg8lsZ8LvQMhm4vg/PdbG6uorx8XG4rvumaeW8dZ4eNxlmswnKTXvE4CbySEAfvgYdLizGf0bOJruEwQzTxHPHj+NLX/oSlpaXsTS7GhKDIXG6egYXGhc6vh8EARyuNejVhKpfSP1EY7qAYK3y4f9j77zD47rq9P+5ZfpIsqzuKhe5lzh2XBIndjrpCQSSQGCBhaX3XfZHrwvLshWWvpQFEgJkIaQHEhJS3GLHXW5ylctIVtf0ueX3xy2aGc2MZkYzkuLwPo8eSXduOXPvuee851ve7/ETJ6iprWVSVVXZVBeztSH/nUvXPyZiMOIwyeQM8Qa25SB9u6YQ2fajlG3y1JU4pl0CwI/+x088IWBpGwmCznvfM1jULU1oCT667e9p7T+Ysn159VL+7ZJ/RhIKN+WrqsrevXs5c+4cCxctYsGCBaPqhyVPmyuj+8myJC5YuJBrrrmGmpoadu7cyR//9CdOnTo17D7IDgc+rxdRFOkfGMhy1uKRrUtY0sqFQBRF25rc092Nbuq7XCj4q+UAY6UVGhhAxCAB1kSebDUY0b8nihknMs0q9lEOU1PaOSORCAcPHuTEiRM4XC6WLl9Oc3MzdZ27+NXJXxd9GbfkptHXkPXzSCRi1I5wOktr7kx2FRSJcDTK+c5OVlx8sX1eMAmbGQU+EYyAJdU4mGCWg0QCXt6RShrXZpBMzibiEz/8JFp/Kjn1rDasBjt3OXnxJYu4G2FlN98UYfZshazIRuR1nS/u/CovdLyUsn2Gbzrfv/TbeOSRia/1HK1FQTgUYvPmzYTDYS5evpyq6upRu5BUVS15NH9RmQt5wLL7iRiZX5dccgnzFyzgQGsr27dv59ChQyxcuJBp06bZx1RUVhKORFAUhVA4jK+UqY0ZvqelKikKQkbtg1xwOhyGlSMUIhwOI0lSybVZxgt/JQdAKBRCUBQkScJpSiQXbDVIUvXLhHJ2lmgsxqFDhzh29CiSLLNw8WLmzJ5t50GvaryYdU1r2Hxua1Hnv3XOLbizDIyKohhCTyW0GgD2BDHayoyn29tBFJk6dWrq6c1rJMu75huxXAhyKdFZKFUlRgu2ANIEIQf79rsJhfPQNzCREnSqa0S2fj/lc6lhCY6Zl6Eo8IMfViQdJ1BRofLWe4NFtfO7B3/Igyd/n7Kt2lnNjy77LpNdkzMek7LyNVPlrC19fX1s3rwZURTZuHEjOsb7klCUUUmpJ0rsVgAK1j3IG2ZqYPL4V1lRwZo1a+jr7aX1wAFe3raNQ4cPs3jhQhqbmpAkiQq/n/7BQQYGBvC43SXry+mWCl1PqkFhvYMF3AMBQ1Y/HI3S292Nx+MZdTXOiYLXPDlQVZVgfz8OMNLvMF7ugqwG2QZ1RUFqb8d3+DCevj7ks2chHEa7+Wa0jRuLb7TZeeOJBIcPH6bt6FEEYP6CBcydOzdj/vPXr/gn3venD3Gg50BBl3KITu5e8Kasn1tWA5fLVdIBq1T1FU6eOsWUPErRCmm/Ldgm+jKvBEp5/okWkJiubzBvbozamgzyxRnudbztadSeoym7ede8F0EQePQxLydODj1XQYC3vy1IRUXhfeb3J//Atw58J2WbS3Tx/Uu/RbN/ZkobdfvP7Nfp6Ohg29atVFRWsm7dOlwuF9FoFNUsAzxaclCO8u+CIBjWtBKeM7l0eDomVVdz6aWX0t3dTWtrK5s3b2bS5MksXrSI2tpaQqEQCU0jGApRWSJ54vTUTQFSyIAgiugFSms7HA6keJywaT2IRCJ/JQcXAgYHBxE1DYcs45RlNAqMNYhG4eRJhGPHEE6cgGPHEI4fRzh+HE6dYoqSwbz5s58R+9Of0FesKLzBuk5CUWhra+PIkSOomsbcOXNomTcPV44BxyHK/NP6L/GOJ99Nf7w/637pWFa3lEmuSRk/UxIJEvE4lCpDIQmitaofBTnoHxigr6+PhQsWFH2O9EnbCnScyGZDmxyUINWtFBimb5CtCmOGVV1k2w9Stkk1LThmX0lfn8gv70utn9AyN8H114cZyfaT3qNe6tjMZ1/5Uso2AYF/u+SfWV69zJ5MkoNcc+H48ePs3r2bxsZGLkkqnuRwOGw5ZY/HUzR5UxQFry939lBRGKXuQSbkQ65ramq4/PLLOX/+PPtbW3nxxRepq61l1uzZCILAYDCI3+criyUsXULacjXmPe6Y1ga3y0UwHCYUCuHxeJg0adKEHiPywWuaHCQSCcLBIE5dT4mKzctq8PvfI3/oQxAKFWWGFl9+GbVAcqAqCm1Hj3L48GGURILZc+Ywb9483HmuIup99Xxu7Wf4h+f/kXzXBzs6dnDvE2/n3gX3cP2sa5GTisuEzQwFt9udd62JfGGb+0cxULW3t+OQZaN+fYlguSMsJLsjMpKGPAaaUg/GdkXGCTA4xeOwY2eavsHqDNoDDI85SJx4AbWzNWUfz5r3IAgiP/u5n2Ao9fu9/32DyNLIcSrJq+ODfYf40NaPo+ipJP7TSz/J1U1XFvxs9u7dS1tbG3PmzGHZ0qUpfUWSJGRRRBVFEokEriKzeuKJxOgFkLKg1LEHw1QJc6Curo6NV1xBoKPDcDe8/DKTJk+mqampZGWdk59ntmdbkPXA/F6yubjs7+3F4/EQjUZLvmAaa7ymycHAwACipqXIdSqKkpfVQP7gBxHChdeht6AvWpT3vpqqcvz4cVoPHiQRj9M8cybzFy7EW6DpSgAuaVrFO5a8nZ/s+2nex50NnuFftv8r/9v6C9684G5unH0DqNgyrmVJNzJXCcX6QHXgVHs706ZNK586JWnuiAykAUbWMChlnEOyAFI5v3e+2L3XQySS2o41l+S2HFir1/RYA3HSTJwtr+PQEQdP/TF14L3qyiiLFyXQ9ewrXytYUDWvdS4c4N2b3k9ISSUr75j7Nu6dc0/e3xFSiyctW7Ysa9qsw+kkoaok4vGiyYGSSIxaOjkrBAHJVA0sBXQz5iBvK4kgGPLMDQ2cOXeO/fv2cbC1lbNVVSxdsoSamppRtceKq7CCEDM2oVDrgbmvy+Wib2CAUChEf3//X8nBqxWxWIxYJIJT0+zJTQeiZirKiLEG8Xj2z0aAXl+Ptm7dyPsB7adOsW//fiLhMNOnT2fhwoX4R2NSFATetugt7Ovaz7bAtoIO7Qh38B+v/Bc/b/0ldzW/ifVNl1HlqyqL+doaTArROUhGd1cXoWCQ6WaWwljDGgrFDAIz6ebpUq7vxypGIl+k6xssmB+lunr4M00pOQwop19GObczZR/P6r9DFyS+972KlHHb7db523cYYkW6KWaTHFyafm5d0xhMDPJ3mz9AZ/R8yjVeN/U6/n7xRwv6jvF4nM2bN9Pf3z9i8SSHw4EQiZBQFKMGSYEETtf1URGLvCCKCKpaktgD+94X2h8FgalTpjClqYkDBw9y8uRJ/vLCC0ybMoWlS5cWPfHa8SIjjCvFuFckScLlcNB9/jxer5f6cpegLjNevS0fJQYGBpBVFbfLZb+gqqoSN1fDI8UaaPcUtrJIhnrrrTDChBqJRNi8aRPbX36ZydXVXHvttVyyatXoiAFW/r/IZ9d+mnpPfdb9Lqpbzvzq+Rk/C0aDPND6a/7x+U/z++O/J5QoLjo8F8RRWg5Otbfj8XioHSOVtUKQrMFgia8ki7AkR7wXKs4y0dIYt+Shb5AOAYhs/V7KNrGiCef8m3nmaTcHDjrQNMwfgXvuCjJ5sjrkUrHuWdK9ExgiYXE1zoe2fpwjA20p11hZczH/fPFXEIX8711wcJDnnnuOcCjEFZdfPmJVRVEUkR0OREmyLW+FIBqNoup6QZVSi0Gp+s9oS4cLgsCcOXNYumQJzc3NdJ4/z5+efpqTJ08WTV7yfqeKaLPX6yUcDDI4OEhfX1/hjZtAmBgjyBhDURQSsRiiruNOesksAQv3SFYDXUf7r/9C/cAHimtAby/Crl0ZzVY6cOrkSf709NP09vaydt061qxeTYXfP2zf0aDKVcmXL/sCsjDceCQg8PFVH+WH136Xb17xDZbWLkn53IsPHTif6OSHe3/Mmx55Mz/Z+zMGYoPDzlUsRFG0lQ4LrVmv6jqnT59m+owZJWtPsRjR/80QUbBW+8kTWTqJsM5p/1jEwvxfnUDkIBYThsUbZNM3sL+DrpM4t5tE+5aUfdyr3k046uTHP/ObZmrjZ9q0BLffPuQWGEkbQ9N1PrvzS2ztejll+2z/LP57zX/gkvLPAuju7ua5v/zFSFW88kom5VksyOlwIIDtviwEYXOMKmnacCYk9cdRweyfozmXy+nE4/VS39DAiosvpqmpiR07drDppZeKEh3K5k5IRnr6ZU4kjeOiKOJ2u+nr6WFwsHTj4Xhg/EeQcUDMJAayw2HfACXJapBX5UVBQPvqV1E/9amCry//3//huuYanKtXI3/1qwj79oGprrV50ya2b99OU1MT11xzjbESKaWsadK5FtYs5IMr3j9sn43TrmBm5UwQBFY3XcJ/X/Vf/NfGf2dl/cV48Fh2cSIYgZuD8SA/2/9z7nrkbn6w+0f0RftK0k5RFA2zcIHkoCMQIBaLMWP69FG3Y7QY6cnlu/rJRB5SiAVDJnQrMDKZOJBGIpL/ttQ2MxKOpBV4ikUj7WfYNl3nld0e4vGhIUYQdFavDKVYSrSka2PGBETTMhQEXx2uxXdw/wM++npTSft73j2IMyk2b6RB/T/3f5tHTj+Wsq3WVcMP1v03k5z5B7ydbm/nxRdfpKqqio0bNhRk5naY5EDTNNQC0+Yi4TA6lN1yAKVJhc2VylgIKisqEDHirxYtXszadevo6+8v2IpQsCWyCILgcjhsUaSxVGQtNV675EDTUtT8YrEYOnnEGqQ9bO2Tn0T9x38sqh3i8ePI//mfuDZuRFy1irMf+ADK3r2sXbeOVStXDtUoKGMHu2PubVwz42r7f4fo5G+WvC11J0HgooaL+PeN3+Srq7/M0slLCBEelvEQUiLcd+BXvPGRe/jvnd+lK62CXqGwBqdCX+j29naqqqpeFfXVSz14aKZGviSKKcSBNBKR/Lcl4JWRcFifJclZ26JNST/DtgGbt6ROmIsXRqmqSksdG7oRxq+ewySOP5eyj3vlO2g/5+MPD6e61C65JMrqS4bXT8g2nD9w7Ld871CqDLNX8vD9dd9mmm9qlqOG49ChQ7y8fTvTpk1j/fr1BWcOWBLtgiAUbD0IRyI4ZLls2QopGK31INmtM0qi4XA48Hq9iJLE4MAAjY2NXHP11QVZEXRdRyuAjBVkPUgiPw6nE0XTCIVCRVmHJgpecwGJuq4Ti8WQdd2O+NUxI+91PT9xkbQOo/3jP4KmIX3zm0W3y3nyJItPnmTxww+j/fznqLffjnrbbehz5xZ9zoxIn4wEgU+t+UfmTprDyYFT3DDremZVzcp4aCQapbmymY9f8hE61A5+0Xofz595cdh+MTXGbw49yENtf+DGWTfw5gV30+hvLLipoiRBImG80HkOhnFF4cyZMywsIBtkvFAOmVWbbEyAgMStL6eubnOpItoukz3/m7JdcE/CtfRN/ODLflRl6DvJDp33vidLrEuGSPNnzz3PF3Z+NWWbJEj8+yX/wuJJ+fUVXdfZuXMnJ0+eZOHChSwYhX6Gw+EgHo8TVxTcBfSDSDhcfpdCEsRRZC7oSUSxFL2xsqKCSCRCXFVtWeWVK1cydepUdu7cyZ+efprly5YxY+bMjNdTNa3gQEMBQwJ6xPYnnVOSJCRJIhQMEg6HX7WFmF5zloN4PI6uqoiCYMsLK4qCrutGsFABVgMbgoD2qU+hfvzjOa+tNzSgfOQjaM3NOfcTDx3C8Y1v4L70UlwbNyL/x38gHDuW85i8kWEQkkWZexbezf9b80mW1y/PeJiuaYb+g24IHs2vmc9XL/8yP3vdj7l65lUZTZBxNcFDbQ9zz+Nv5RvbvsnpwQJKQWL474QCB6ezZ86gqirTJ4BLYSSUY/rWJ0jMQTQqsGv3yPEGydD7TsCJ51K2uS9+G1t3VPPKK6muvtffHmJKU+b6CekT7d7e/Xxk69+jpSnnf375p9nQeHnONllQEgk2bdrEqVOnWLVq1aiIAYBDlo18+gJdC+FweGxT5EZhPbBqygijtUCYkCQJv9+PCAwMDtqxAyNaEXRDDj893Thf5PUupZ3XKcuEQyFCocyaHq8GvObIQSaXQjweR9d1Q9I0V+cxTazZPtM++1nUj3406+HqnXeifO5z9D//PC//+7/Tet11ROuzZwwAiK2tOL7+ddxr1+K6+mrkb30L4eTJnMfkQrGvaDQWQ9M0ZFlOYcKzJ83iC+s+y89v+Bk3zLoeKUOkt6qpPHbsCe59/G/4yuZ/4kT/8byuKZnFrAqJOTjV3k5tXd2YlHrNB7nudzmcRRNFOnnHTg/xxFBfkCSdS1aOYDnY+3OS74rgrEBYeC8//FGqdG5NjcLdd2cfdJO/eXvoNO9+6f1E1FST83vmvYs3Nb8hr+8SiUT4y/PP09vby/r160tDPAXBCEwUBDvWKR+EIxE85VBHzIFiiaZmxpCUsif6/X5kk1QFkyZeh9PJypUrM8YipAQ0l8tFmzZGOZ1OItEo4XA4rwDIiYjXHDmIx+Mp5MByKegYHSwrkkxkWSEIaJ//POqHP5zxY/X222k/dYo/Pf00p2pqcP/rv6Lv20f0ySdJvO99aFOm5Dy9uHcvjq9+Ffcll+C6/nrk734X4XRhq/GiYLpidF3PqsY4o3I6n1rzj9x30y+4bc4tyOJwj5Wm6/zp5DP8zRPv4vMvfZEjvUdyXlawLAd5vlzhaJTOjo4JEYiYD8oxTFnnHG+dgy3bUiewJYuiVPizP0e1/zQc+1PKNtdFb+F3jzUSCKT2pb99ZxCPO/fd04HeWB/vevF9dMd6Uj67dfrNfGRhfplGfX19PPfss6iqysYNG0qaGutwOBBMtcR8Td1j7VawUFR/MgNNS1k6XBQEKisrEQSBYCg0bOK1rAiNjY1s376dF154YZgVoVAIjPwd0s/qkGXQdQYHB1+1cQevKXKgaRrxaBQR7ICehOlSkJLcDBmRy2qQtp/2xS+ifvCDKZvV2bPZFImwfft2pkyZwjXXXmtnIugrV6J8+cvEdu4k9uijKO9+N/oIkr/izp04vvhF3BdfjPPGG5F+8AM4d27k9hWBeCKBqqqIojhiTMYUfxOfuORjPHDzL3nDvDtwScMJl47Oc+3P87dPvYdPvfAZWrsyF4OSrHTGPMmBXYExqfzrhEY5ghGtvPJxdiuk6xusXZPbvBp/5SegJ5nXZQ/B6X/Dr3+Tep7Fi+Ns3Bgd8fpxLc77Nn+YY8ETKdvX1a3hKyu+kNdkFzh3jheefx6P18uGDRvwl6j4jwVZlm2NlUSmGixpUFWVWDw+LuSgGEuUlqEiYyng8Xrtybc/Q7qgw+lk1apVrFm71rYinLAyGkbRllxva/p3FEURWRQZ6O8nFhseNPtqwGuKHMTM0sKyJCFZ+u0mq5Odzuwdp4j0F+3LXybxmc+g+XxEGhv5yz330NvXZ2QirFplFElKP68ooq1ZQ+JrXyO6axexP/wB5R3vQB9htSJt347zc5/Ds3w5zltuQfrxj6Gjo7A250DMqjXhcuX9otd76/nIxR/i17fczz0L7sKTpeTzS2c2896nP8DHn/0HdnfuSflMNN0KltzpSDjV3p5XBcaJgrJkKkDJfLzFIhQS2L03vZ5CdpeCNhggceChlG3uZXfxP/fNJB5LSoUUdd733oERzdSarvEPL3+aHd2pCovzK1v49rr/wCmOHNx67NgxtmzdSn1DA5dffnnZgsos10I+gkhhU659LNIYh6GI/mSltZa6L4qCQEVFBQIQCoVQMhArXddpaGjgatOK8Morr7Bp06aidBHAsB6MSLjT6mhIkkQ4GCz6muONV8coWiLY+gbmi25nKWAEkGRFMZ1bEAi97338cfZsovE4DXV1XL5q1ZCYkZkqNmx6sCYMSUJbtw5t3ToSX/sa4qZNSA89hPTYYwg9PelH2ZC2bkXauhX9059Gu/RS1NtuQ73pJqirMy5rXSPP76SYJWZzuRRyYbJ7Mu+76D28ecHdPHjkd/zf4d8RTAxfRW7v2MH2jh0sr1vG2xa/hVUNq4yARFEEVUXVNOQcL2f/wAC9vb3Mnzev4DaOB8oxaE4U6eQdO70oyZkFss7KFdnJQWTHT0FLGuAlJ0c9f8cLL6TGjdx4Q4Q5s0deYX999zd54vRTKdsaPPX86LLvUiH7c/uAdZ29+/bR1tbG3LlzWbpkSVkzPwqp1DhmAkhZIIliQYJkBddVKABej4eQ00k0Hqd/cJCaJAEqTdPsd8HpcLBq1SqmTZvGzl27+NOf/sSqVatGVLLMhLwzFzDeQVmWCZlBiaqqlrw4XbnxmrMciEkpjJZLQRAEpGypckWu7mKxGFu3bEHVdRwOBz09PTz9xz/y7HPPceDAAXp7evIvuCNJaJdfTuLf/o3o3r3Efv1rlLe8BX3SpKyHCLqO9NJLOD/5SdxLl+K8806kX/wCchCLjN8jGkUDnC7XqGooVLmr+Nul7+DXt/yKdy19B1WuzBoEu8/v4RPP/SPve/qDvHRmsz3RjeRasCowNjQWnjJZbmR8xqW0Gpjnsi0HhboUktqSqVWWWFG6EFI2bE5zKSxbEsHny5zSpoW6iO37bco256I38N2fpRYu8leovO2tI8t0/+zwL/jx4dR0SL/s538u+y5N3sacE72qqmzdto2jR4+yfPlylqZVVSwHrEqNVuxBLkRMy4F7PAv6FNBvC6nIWAwqq6oQBIFoJGL79bNJIzc2NnL11VdTW1vLli1bOFZk9lch7jpZlhFFkb6+vlela+E1YzlQFAU1HscFdgVGy6XgKLGgSHBwkJc2bSIRj7Nk0SIkWaahoYGuri46Ojpoa2vj4IEDOJ1OGhobqW9ooKG+3siWGAkOB9qVV6JdeSWJb3wD8YUXDIvCE08gDAxkPETQNKTnn0d6/nn0T34S9YorSNx6K8oNN0AOgqFrGnHTFVOM1SATKpx+3rb4rdw57w083PYIDxz6DT3R3mH7tXYf4FMvfIZllUu5pflmLvOsy+ou0BmbCoxFI0PefV7Qjepw2YZWO4/cPL81GItFFI0ZiSAIaefLdfYtW1ODEdesDqeoKCYjsvPnoCTFEAgSL/a9nxMnUt+Ft78tSGVFboL41Omn+cquf07ZJgsy31n3HyyoMuuEZLkvsViMzZs3MzgwwNo1a2gsYmVZLPKt1BiORHC73SUN8CsIpmppvqJkpVJHzAaX04nH7SYcjdI/MEBtTU1Oq5DT4WDN2rXs3bOHXbt3EwmHWbR4cUHkJaO1NwtEUUSSJAZNcuAdD3fQKPCaIQe2S0GW7QdsuxRyZSkUyHq7u7vZvGkTbpeLy6++mu7ubkN0SZaZOXMmM2fORNc0unt6CAQCdHR00H7qFACTqquNcqWNjVRVVY1sVXA60a6+Gu3qq41aEc89h/SHPyA9+SRCMPMqS1BV5GefRX72WYMobNhA4rbbUK6/HtIUBWPxOJp5z0pNoLwOL3cvvIs7Wm7j0WNP8KuDD9AZPj9sv2MDx/nBnh/x22MP8sZFr2fj9I3IQqoFo7u7e1wrMI6EYcIrWVY3FixJYcGa9HOf3P5TTYo5GC8MBkX2taa6A9atzhyMqEX7iO2+P2Wb0nwzP75/Ycq2WbMTvO76SOb7YN6nHV27+OjWfxim2vm1lV/i0vq1OdscHBxk0+bNqIrC5VdcwaQchLkcyLdSYyQcHvcJRiiA6NqWgzK2p7Kigmg0SjweJxwOj1gwTxQEli5bhsfrZd/evYTCYVauXFmQyd/SpxgJkkkOgsHgXy0HExmKoiAAUrpLQRSRZDnzYF2Abx7gzJkzvLxtG5MnT2btunU4HQ76JAkEAUVR7KAmQRSpra2ltraWJUuWEIlECAQCnD13jsOHDtHa2orb7aahoYHGxkbq6+tHDrJzudCuvx7t+utJRCKIf/4z0sMPIz31FEI4s79XSCSQn34a+emn0Z1OlKuuQrn1VpTrrgOfj+gI6YulgEt284Z5d3DLnJt46vgfue/ArzgbGsq60DAi2M8Gz/FP277Bz1p/wZvn3811M6+x0yXbT52asBUYIanQS/LqPMcAW6xYi16sW6GE2L7Di6oOtd0h61y8InNAVmzXfZBI6puCyB+OfZRgMLX973vPAGK2sVsQODZ4gr978f3E1NQB+KOLP8TtM28dqh9hkjRLElrXNLrOn2fL1q14PB4uv/zysRUYMmFVatR0nUQigZTlfQuHw+MTjJiMbLFSGWBVyCxn5ozD4cDjdjMYDhMyLSs522T+njt3Ll6Ph5e3bycWi7F27dq8F0BZi3ulvdOSJCGKIpFwmGg0iqZp455FVAheM+QAQEx6eJaPyul0FmQqyghdp62tjT179jB9+nQuXrnSZv8WI82lgubxeJjV3ExzczOaqtLV00Pg3Dk6AgFOnjyJIAjU1NTYVgUrUjfHCdFuugntpptIhMOIzzyD/NBDiE8/jZAlclaIx3E8+SSOJ59Ed7tJXHklrmuuQduwAefkycXembzhlJzcMvdmbpj1Op4+9Qy/bL2fU4PtqKaqnWSGx5wJnuWbO/6dnx/4JffMv4vrZl5L++nTzBxBdXIsYBUcSl+52wWRrP300Veqy3h9K41xHC0Hm7emTl4XLY/g8Qx/u/R4iNjOX6RsC9Zdy+/uX5aybcOGCEuWZPfFd0W7eecL76E33pey/U2z7uQDC98zTE7a/l/XaW9vZ/v27dTW1bFuzRpb5yTFXTNGcDocJBIJEvF4VjIeikRoGmOrRibks3LWNa3sbgXrffN4vQTNCVhRFNttnPmgob44ZepU1rtcbNmyheeee47L1q/PL9hT141aCun3IM2qkkwEBrO4fCcyXlPkwPKb6oBikYNsHSnfwUHX2bNnD21tbcybN4/FaT4sybQcjCSRanUpUZKor6ujvrYWli4lGArR0dlJIBCgtbWVffv24fV4aGhspKGhgfq6utwvg9eLdsstxG+5BYJBpD/9CfGhh5D+/GeELKYuIRrF+cQT1D/xBJrHg3rttUaMwlVXQZlXVrIk87pZ13PdzGt4tv157m/9Fb39fYikLh07wp38585v87/7f8nC2DxWT1ld1nYlI1f9gkwTviCK6GnPvxym/6IDEkuI4fUUMrsUYnseQI+lDpj/u/MfQB+6L263xt++M3vZ24gS4e9efD+ngu0p269oXM+XV34uu46+rnPg4EEOHjjAjOZmVlx0EaIoZrXmJD+rclXZsyo1qqacciYzdyQUGrdMhWTk03OTXVzlIKs6Q/3d6XTicDjQEwnCkQiVOfQo0p9eTW0tV2zYwKaXXuK5Z5/lsksvpSoPAiYCw+hRhr5hPcdwFjfvRMZrhxxYnRXTpYAxiMqynNlqkEeHVlWVl19+mbNnznDRRRcxe/bsYftIoogoCCi5yEGmAcdkoX6fD/+sWcyZNQtFVenq6iLQ0UEgEOD48eOIpouisaGBhsbGoVTJTPD7Ue+4A+WOO1D7+5GfegrHww8jPfssQpZIaTESQXz4YRwPP4zu86Fcd51BFDZuhDJKFIuixNUzr+SKqZfz/JHnefTYY+wYHB642BPv4QV9E/tebOWN8+7ktjm34s2iqVAoks3RKRjlYFcmAddxtxwMDIi0HkjtE5nqKeiJCNFXfpayrcd/NZtaU2NG7r4rRG1t5hWqqql8dMs/sLtnb8r2xZMW8u11/4FDdAybyHVNQ9M0du7axakTJ1i4aBEL5s/P/DzzIASWe8KOCxkFcbAqNSanNSYjGo2i6fq4xxwARmCiIOQMTNTMWgajyXDKhmRiYMHv89Hb20s4EsHv82U032d7nysqKti4cSObNm/mL88/z5o1a2gYQYTOOl/KmTKc2yIHoSyu3YmM1xw5gFSXQrGIx+Ns2rSJvv5+1q5bx5Qs0c2iJBkrghzkIOsrlmamkiWJxoYGGhsaYNkyBoNBOgIBAh0d7Nu/nz179+Lz+41YhYYGauvqsmsD+P0od96Jcued0N+P/OSTOP7wB6Tnn0fIotYmhEI4fv97HL//PXpFBYnrr0e57TaUK66AUdzLXJAliYsaLmJJzRLaYkf55cH72N/dan9u6LcL9MX6+dHeH/PAod/whpY7uGPu7VQ4chClNGjZzPzjrBlQCGwz7ji1edt2L5o2dG2nU2PF8uFurNi+B9HD3SnbfrQ1tex5Y5PCHbdntjrous5Xdn2dp8/+OWX7VO8U/ufy7+N3GNkSluXAuh8JRWHT5s10d3ez6pJLRl0jIbnqYAqs+18gWchVqdHSOBiPmIhMEATBGFOz9DVV04zMmRJasazJPRMpcbvdiKKIqqpEY7GMFhYR0LK01+V2c8Xll7Nt61Ze2rSJlStWjOiqHJYVlOHclns5/CoswPSaIQeldCmEQiFeeukl4vE4V1x+OZOTBDjSIZnkIJOKl32tXNfLER1c4fdTMXcuc+fORVEUOs+fN8jC2bMcO3oUURSpr6+nobGRxoYGfOaqY1jAW1UVyl13odx1F3p3N4nf/Q7PE0/g2boVIQupEQYHcT74IM4HH0SvqiJxww0kbr0Vdf36vMsr5wPBTJ8SRZFVdStY03QJu87v4pcH7ueVzl3mvRn6LoPxQX62/+f8+tBvuWPObdw57/VMck1KOaee4X6P5YRaDtN08kpqvIKe0iWTL14RweVKW70rcaI7fpqyLSBtZM/ZVSnb3vt3Aziy8M0fHfoJv2hLzXKodFTykyt+QL2nLmW79VxDoRCbNm0iFA6z/tJLqa1L3a+kSIprSK5qONJztys1Kgqqqqa4CyNhIx10QlgOYMS0Rqs/lkr4R2coiycTRFHE6/UyGAoRLrL+hCTLrL30Unbv2sWOV14hHImwYMGCrGNDpiyk9HHFspzEYjFbgv7VgtcMObAsB1aRJVGSsvvqc0wUfb29vLRpEw5ZZuPGjfhHqJAmS5Ihi5wlgEcf4XrD2pPl5ZBlmSlNTUxpakIHBgcHCQQCBAIB9uzezW5dp8LvN4hCU5NBaDJcN+b3E3r96wndeSfVioL8+OM4HnkEadMmhCzfQejvx/nAAzgfeACtuhrlxhsNonDppVACKWPLTK7pOjKwou4iVtRdxP3P/Zpnep+hLTFc0CSiRLj/0AP8ru333Dz7Jt44743UemrMBo+vNaAc6V3J6ojjZTlI1zdYm0EyOX7gD+jBQMq2/3n5H1L+X7UqyurVmYvVPHLqcb6x599StjlFBz9Y/9/MrZwzbH9BEOjp6WHTpk1IosiVZaiRkBUZgiCtGi3WyltP29/pcKCqKvFEImV8CofDyJJU8pTi0SBXWqOqqkbNmhJNhvlUNvR6vQwGg8QSicyBiXmkYQqCwEUXXYTX62X/gQOEw2FWrFiR1U2R8i7nsBxous7gwACTa2pG/B4TBa8ZcmBZDhKJBJIo5n7JsqzkA+fOsXXbNqqqqli3bl1OwRILllshY8xBMSvIfDo4Rv5vZUUF81paSCgKnWZQY/vp07S1tRmxCnV1RgZEQ4OtuhaNRtExzHS6203ibW8j8ba3IXR2GkThD39A2rp1mCiO/X17e3Hedx/O++5Dq6lBuekmErfdhrpmDRS5ihAlCSGRQFNV2yqhqCqeXid/v+gT6HXwy9b7eOnspmHHRtUYDx75HX849gg3Nr+Ou+a9iQbfyP7EcqFced9aUkzNeKC3T+LAodz6BrqmEN3+Pynb2hPrONC9zv5flnXe8+7MQYhbO1/mk9s+NWz7v6z+OqvrVmU4wnhnt2zdSlVlJevWrbMLro0LktwNySvOZMuCLMtGjFKapTEciRguhYnk5jJJTqbYjlKlMWq6bhRwyuN7OxwO3G430WiUUChEVVVVcRcVBObNn4/H4+GVV14hGo2yevXqYXOGJQ1tff+MmUoWEdR1+vv6/koOJho0TUMwWbpi5hEnqxGmdO0cxGDz5s00TZnCqlWrcldwTILFXvUcUcjlhkOWmTplClOnTEEH+vv7OXfuHGfPnWPXzp3ouk5lVRV1dXX4/H6qKiuHxWPo9fUk3v52Em9/O0IggOPRR5Effhj55ZezXlfs7sb585/j/PnP0errUW6+mcQtt6CuXm2kAuUJa4BRk1xDXV1dJBSF+vp6Kisr+fKlX+RY33HuP/Qrnmv/yzAxnISa4A9HH+HR449z3YxruWfB3Uz15y6RXSpYedHlHNbtYMRxMltuS8tScLs1li5NrZ4YP/Q4Wn9qZsEv9qRaDW67dZCp04YT6SP9bbz3pQ8R11IDZ/9x2Se4ZcaNGdt0tK2NXbt309jYyCWrViFKUl4r0LFG8uQqyzIIApqmoeq6XSAuYpGDCYZM5EA1J/PRWLGs+IJCU369Xi+xaJRwNEpFRcWo3ofpM2bg9njYumULm156ifWXXz58/E5arGVrp1WTov9Vls74miAHlkvBYuOiJGWf3DM84MGBAbZt20ZTUxOrV68uKBpcNH1zCAKqoqR0rqI9zwWolA07FJhUVUVVVRUt8+aRiMfp6Oyko6ODkydOEInFcDocNDY10WjGK6QLi+iNjcTf9S7i73oXwpkzOB55BPmRR5BfeSXrdcXOTpw/+QnOn/wEramJxM03o9x6K+rKlSOuhqwBUtM0O30ocO4cHq/Xru0OMHvSLD675tO8bdFb+dXBB3j61DNoeupkoGoqT5x4kidPPsXV06/izQvuZmblzMJuYhGwvmG5UuHGmxyk6xusXBHG5UzWdtCIbvthyj4nwxezv2eD/f+kSQne9KZBSEtb7Yyc550vvIeBROrg+ta5b+bd8985rC26prF3717ajh5lXksLCxctyp7WOMFgFezR4nGUeBzR6UQURYKhENUTQOMgHQLDJYVVVUWn+HiDkeILcsFt1oBRVJVINGrHWRWLuro6Llu/nuf/8hd27drFxRdfnEICBFKLMWUiM9Y7GXyVpTO+NsiBadJXEgmkkfx2aZaDeDzOps2b8Xq9rFq1qqg0MUkUEcx0Rns9PtqBqsiIaPtw81iH08m0adOYMmUKzc3N9Pf3Ew6HOd/ZyQ5zsq+urqahoYGGhgaqq6tTJiB96lTi730v8fe+F6G9Hccjjxiuhz17Ml8YEM+dw/WjH+H60Y/Qpk4lccstJG67DW358lQ/bVJEtM4QudN1nbOBAI2NjRnZ+oyK6fzjJf/A2xbey68O/ZqnTv4RRUs10+q6ztOnnuGZU3/miqnrefPCNzN30nCfdalRrgnKXhGPV7zBtnR9g9R4g0Tbn9B6U2NDfnvo70m2p7z5nvP40sbyYCLEu154L2fD51K2XzPlKj530aeGPX9FUdj+8sucCwS4aPlyZs+Zg5rUb14NcMiyIYhkqqqqmkZwYMDIrjAnn6xptmMNQRgmiqSNIt7AKvBVLERRxGfGHoTC4RRyUOx5q6urufjii9m+YweVlZW0tLSkfC4kCSJlehrWeBkazK7ZMRHxmiAHumro7Cnmyn1YgaPkgKHkzZrGtq1bSSQSrL/yytxiQzkgZlBJLNkwNQorAqJoHxuNGibgmtpaZlVUwOLFxKJRAh0ddHR0cPToUQ4ePIjT4TCCGk1Z5+Q69/r06cTf/37i738/wokTOB5+2Ahm3LcvexPOnMH1/e/j+v730WbMIH7LLSRuvRVt0SLb9WDdd9UsxRoKBgmGQkY53Rxo8jfx8ZUf5a0L38KvD/2Wx048TlxNDXTT0fnLmRf4y5kXWDdlHffOv5sFNQuznHEUyKSoVkJY5GA8LAdd3RJH2rLrG+i6TnTbD1I+PxVcws6u6+3/W+aFueyyAQRhqL5HQkvwoc0fY3/fgZRjL5q8jP9c+02kNE3laDRqF09at3atXTxJyCFwNBEhOxwIptqf1d8VTaPKDKRMiVcwf4/nt7MWGhZRUa1SzQVYDkZjLUiHz+djMBhEURTi8fioUtYtTJ8xg4GBAfbt20dlZWWKDkKyIFIu96GqqkQjkfGtqlkAXhPkAE2zX7SMLgVrgk1j4bv37KGrq4vLLrtsVOYpyXQr2EFGpZZnLdKKYAuZ6Dpxs45C8mTvcrvtYlGaptHb22tnQLS3tyMIAtWTJhlBjU1NRrEoa+Xf3Ez8wx8m/uEPI7a1IVtE4eDB7O05dQr3d76D+zvfQW1uJnHrrYay48KFRlvNuI1AIIAA1NXX5/U967x1fHDF+7ln4d08ePj/eOToI0TU6LD9Np/dzOazm1nVsJJ7F76ZpbVLC7qfI6FcssnWuWF8BJC2plkNvB6NpYuH9A2UE8+jnk997g8d+xj2MCrovP1tHWlJOTqf3/Flng+8mHLcDP90frj+u3jShK4GBwZ46aWX0HSdKzZsSCmeZJm99Rx5+RMJkigimRlOCUVhwPRVV2YIsEsPbLTM3GMKy3pgtkWz3Ar5EFVdRxOEvAoZ5QtJkoxqjZEIoXDYJgejpR2LFi9moL+frdu2ceXGjVRYZC1pn2xaKda9CQWDfyUHEwW6roOqGhOzIOT2gyVN2CeOH+fo0aNcvGIFdaPMiZbMCOQUIaRyDFJFkoRYPI6qaYiZrComRFGkpqaGmpoaFi9eTCQSodNUajx85AitBw4MFYtqaKCuvt5+KbW5c4l//OPEP/5xxEOHDKLw8MNIbW1Z2ySdOIH0rW/h/ta3UOfORbjuOvquvRZ16VICgQB1I8lGZ0CNezLvWfZu7p7/Jn535Pf87uhDhBPD0+22d+xge8cOltUu5d6Fb+Hi+hWjntCtCapcaYbjKYC0ZVtqCuOqlWFb6kLXdSJbv5/y+dlQC9s6brX/f931YWbNMqW8zfb/d+v3+c3x/0s5brKrmp9c/gNq3Km1Ps53drJl61a8Hg+XXnrp8OJEo7GujRNkWSahKCiKQv/AAC6HI4W4Z4JVBRGSMiDK3E4LoiCg6rpNDCC3FStF0KgMz8br8xGORkta8EgQBC5Zs4bnnn2WzVu2sHHDhqHaPFn6WHoW0eDgIDXl1NgoIS58cmBOyJbpK6t5MWl7V1cXu3btYs7s2cyaNWvUbRBFMSWdsewvbLIlJI8XLxqLoQMetzvvycXj8TCzuZmZZrEoqwR1Z0dHSrEoiyxYqx6lpQXlE58g+vGPIx48iNMiCidOZL2W1NZGVVsbVd/9LvGWFqa2tCC98Y15tTMTqlxVvGPJ23njvDt56OgfePDI7xiMD/cH7unayydf+H8srFnIvQvuYU3jmuInXyFLJbcSQR9Ht8KwegprhlIYldNbUQO7Uz7/w/GPoZtBh36/ylvvHQo0FASB/zvxEP+5/9spx7gkFz9c/11mVTSnbD914gSv7NxJXW0tq5OKJ6Ujk/DVRIZDlokJgmE56O+nosC0vIypkiVtYRosq4XVD3NkKlhWnHK2x+1y4ZBl4okEoXA4t6x8AZBlmXXr1vHsc8/x8ssvs+7SS+3vmmlusRaEohl3Fn4VyShf8OQAM9/WMrmh6ykpQpjbADAf3pYtW6ipqWHpsmWZzlgwZFPrQFPVsVvBJH+/LCRBwAjSVBIJBMhLtyETREmirq7OsLAsXUo4HObcuXN0dHZyoLWVvXv34vF4DOnnxkbq6uuNiOyFC4kuXEj0k59E2r9/KEbh1Kms13IeOcKqI0fg8cdRFi0idtNNRG+5BW1m4RkHfqefexe+hde3vJ5Hjj7Kbw8/SG+sd9h+B7oP8JmXPs/cSXO5d8E9XDb1MkShsEnY9suWCfo4WQ46z8scPZa6ol2XFIwY3Zoaa9AZmcHmwBvs/996b5DKCpXBoNH2FwOb+PTLn085RkDgP9Z8kxU1y+1tuq5z8OBBDhw4QPPMmay46CKEcUgTLhdkWTYmHFWlr78/L63/bEiX+C1XnIJopuwJgJjBqqcz5FobC/i8XhL9/UTCYcMFUKLr+vx+1qxezUsvvcS+fftYtnRp1sq+iqoiWBZrXX9VFWC68MmBqtoVwmRZRhRFI2shaSLUzQFVURQ2b9qELMusXrOmZOpedmXGMrPljLAmiwwuBwGImFYDt5kyNVroum6UoJ41i1mzZqFpmlEs6tw5Ojo6OHHiBIIkUVtbS0N9vVGC2u9HXbIEdckSop/6FNLu3TgeeQTnI48gnjmT9Vpyaytyayu+b36TxNKlxG6+mdhNN6EVqJnvlT3cNf+N3D7nFh4//gQPHP4tXZGuYfu19bXxxS1fYWblDN684M1cOW3DsKC4nPemoFblDy2pX4215SA9S8HvV1m00IjnUM7uRDm9NeXzR45/FFU3fA7NzQluvCFit/3wwBE+8PJHUPTUzJLPrfgU10+7xv5fV1V2vPIKp9rbWbxoEfPmz89JisZLMXJUMFMa44pCMBSipbJy5GPyQSbXQwmtKtZKOXnstK431hoTHo+HgYEBFE0jFongLGGhuLr6epYtW8aevXupqqgw6jBkGGMVRUE3XbY65FdWeoJg4rdwlNA1zVixA07TZ5dQlNRVsq6DprF9+3ZCoRAbNm4sehWdCZK5CkgoyvinHyVZEVRNM+pM6Dqu0bw45oCTaUVg1XeoN4MHg6EQHYEAHVYJ6r178fp8NJolqOvq6uCii1AvuojoZz+L9MorOB5+GOejjyIGAsPOb8Gxdy+OvXvxf/3rJC66aIgoTMlf6Mglu7mj5Q5umn0Tfzz5J3516AECoY5h+50cOMXXt/0zP2/9BW+efxfXzLgGWRq/V8m2GjD2E2E6OVi9KmwrZkfSMhR6ok08f/Ye+//3vncASYaEAoFoBx965RMElVRVxb+d93b+puVe+/9EPM6WrVvp6e7mkgKKJwllzhYpBxwOB5HubgQoXu0vB0qe9WCa1rUkZUSdsScFFiRJwuPxEIpECEajTC5xFdnZs2fTPzDAKzt34q+ooKamJuW7WhLSgiDYlmor+ySfstDjjQueHKCqtq/f5XSiKApKenliXaf1wAHOnjnDunXrqCoVSzchJaUylitavRhYUsmyw1EUk01WMcsXfp8P/5w5zJkzB1VVOX/+PB1mYOOxo0cNF0VtrUEWGhvxrVyJunIl0S98gZ4nniD085+z4MABHN3dWa/h2LULx65d+L/6VRIrVxK75RZiN96Ilqdp1ik5uXn2Tbxu5vU80/5n7j/4AKeDp4ftdyZ4hm/u+Hd+fuCX3D3/Ll7XfD1OKTupLHemwrgEI2app6B0tqKceD7ls8dOfhBFNwj6FVdEWLbUeA8HYv18+JVPcD52PmX/G6e/jv+3/O/t/0PBIJs2byYejXLZ+vXU1tbm39BXWUAiGJbOoFnNz18in3k22O+w6XYo9m5ZsS+SJBmKpuN8330+H+FIhGgkguL3l3bFLghctHw5wcFBtmzZwpVXXmlkIliLryQxKDWJNPyVHEwAaGa8gUUOHC6XEVGraSiqaqc0nj59moMHD7J4yRKaspReHg0kUTRSzEzrQSnybkcFcxKJxWJGjfgRoqCTYZkgS5F6JEmSkQbZ2MhyswR1wCxBvWfvXvTdu/H7/fY+56ZN4+Cdd1J59dVU7d+P69FHcT3xBGIuorBjB44dO/B96UskVq8mdtNNxG68ET2PiGFZkrm++TqumXE1fznzPPcf/BXH+08M268j3Ml/7fw2vzxwP3fNfxM3zboBt5ymKlnGQXK8MhXOBWROnkrty2vNegrpaoj98VqePf02AFxujb99pxEAGlfjfGjrxzkaTBVIuqR2Jf+6+ut2bEdvTw+bN29GlmU2XHllwZPlRCHkhUAURSLhsCGbPFaTbJrboZCrWpkKlmbBRKg/6HQ6cTgc6PE44UiEyhIX3RJEkTWrV/Pn555j85YtXJEksWzNO7LDgRozsnF0DHLwasAFTQ4sZUTL1COblRgT8bjh95Ek+np72b59O9OnT2demvJVKSGYBEGZCOQAw7Wi6bohCuV0jrz6tFwH5coVFwQqKiqoqKigpaWFRCJB1/nzBAIBTp85Q1tbm1GVUZY5deYMM5Yvx7tuHcEvfQnHli1DRKGvL/PpdR3n1q04t27F/8UvklizxrAovO516CMUQ5FEiaumX8nGaRvYdHYzvzxwP0f6jgzbrzvazXd3f49fHfwVd7a8gVvm3ILPYZbJHoXO/EiwiJowzvEGlZUqC+bHULuPkGj7Y8pnT5x8PzHNsDLc9cYQdXWGoNWntn+OrV2p9TnmVMzm+5d9G5dkkNazZ86w/eWXqZo0ibVr147OBfYqQygUwu/3oyhK1kyMciE94yFnbIK5CLPSBsdDbyMb/D4fvSY58Pt8JY/LcbrdXLpuHX/5y1/YsWMHl1xyCWDEG2iahixJxKyddZ1wKJT1XBMJFzY5MBX1rJgDWZIMadJ4nEQigcvl4pVdu/BXVrIiTTO71HA4HERiMWKx2ISoyZ6IG0qBTjMeAlIjiVO2gS1jPFbxEg6Hg6YpU2iaMgV0ne6eHp597jmcssz+AwdoPXCAyspKGhsaaJg/n5p16xC/8hUcmzbheuQRXE89hZil0ImgaTg3b8a5eTP+z32OxKWXGhaFG25Az2HuEwWR9VMv47Ipl7Kt42V+eeA+WrsPDNuvN9bHj/b9mAcO/4bXz72d18+9A6/sLbu+/0gDsvV8beldUl1DmdxE1nZLQTMeixGLRkEQ2LQ5dZK+ZGUQXVeIbk21GoQSVTzdbtRAaGxUeP0dxuD4b/v+i4dOPpKyb627hp9c8QMmuSah6zpHjx5lz549TJs6lZUrVyIVaRaeOFNVYRgYHKSxsXFYlcaxRnJci576gd1HVEVBxLAITiT3qdtM0dZUlWgshrcMIkSVVVWsXLmSLVu3Mn36dFsbx8pUSH73Xy3pjBc0OdCT4g2sjAGHw2GkMyoKZ86cobunh8svvzzvKovFwulwIAkCsXjmOvVjjVg8PqSIaK4IbEKgaejproNxDqKMRqPomsZFK1YgSRKxWIyOQICTp05x+MgRHLJMfUMDDTNm0PiVr+D+2tdwvvACrscew/nHPyJm0TUXVBXnCy/gfOEF/J/9LPH164ndfDPx665DzxIEJggCaxpXs7rhEnae38V9B+5n1/ndw/YbjA/yv62/4LdH/o9bmm/mjjm3U+UsPp5FN11iyb9VTSMciRCLRkk4HLafc9jkX/RVDcTNOJ1YPE7EJArp4kcXLeth8OxBOPJEyvanTv0dEdX43m95S4BINMR9Rx7iewdSSYRH8vCdVf9JrVRDNBqltbWVEydO0NLSwpIlSybMZDNWiMVixGMx/BUVaLo+blVdk2ERAYGhccKClY0lShLiBJKsFkURr9dLMBQiHA6XhRwATJkyhfr6evbt38/69euNeK6056WbzzEcDk+IRWIuXNDkAFNuF4Z0vkVRRJRlFEVh3/79Rt59IYFNRUA3swEEUSQWi418QJmhKAqamX/rdDiMYifWh9bLb+YrTxTxmEAgQEVlJR6PB1XTaJo8mWnTpqHrOn19fXSYss6v7NwJwKRJk4waEJ/+NNX/9E+4X3gB16OP4nz6acQsZj1BUXA99xyu555DdziIX3GFQRSuvRY9g69SEAQurl/BxfUr2Ne1j18euJ+XO7YP2y+cCHPfofv5XdvvuGnWzdw59w5q3EOujOQJ3/5b141MmyQikG2wTcTjKObEoeYZCyIYX2BoRW3+LZjWofTMB6tYmexw4HQ4OH3GwdlzqZaDNasGEfb9Ej2pEmZE8fNU+3sAWL48yMUrgjzf+RJfa/1myrEiIl9e+DnmeucQCgbZ39pKd3c38+fPZ+rUqfT39xtiM6bJWhRF++/kbckkNxmaro8q0G48MDAwgA5MqqxEwHAFjis5SMpKsuMS7I/0oQA883moE4QcADY5iFku5XKkEgoCixcv5rlnn6W9vZ36xkbb0pXe90KDg38lB+OKpDTG5JfKIcu0nzrF4MAAa9asKa+8qnleS2ZTVRQSiUTuypBlRjweRwdbKlk3xVYsJA+tKepqSRHNYwpdJxAIMH36dCRJSllFCYJAdXU11dXVLFi4kFgsRmdnJ4FAgOPHjnHo0CGjWFRDAw1///c0fPnLVGzebMQoPPMMQiSS8ZJCIoHrmWdwPfMMustFfONGIz3y6qvB5xu2/5LaJfzz5V/jYM8h7jt4P5vObrY/ExFx6k4EVeTJtid59uhzbJx6OddPfx3VrqqCJyx7QjRV11TTz+v1eOzy2ukxDtbfxcY+WKTW43bj9fnYsy/VqlI9SWH53C4GX3o8Zfszp99BMDEZWdZ533tDnFJP8ak9n0NLqwDwyfkf5+qpV6JrGjt37SIcDrN8+XJqamqGNPt13dAtGaGtgkUekkiE1Xet7a8G9Pf3I2KYrKORiJFlVUDwcCmhm2Q1/d23no3lvrUsB1Za40S414JpMXa5XMRiMUKhUNlSQ6urq2maMoW2o0epqa1FtqwU5hxjveuWm24i48ImB6b7AFLNO4IgcPz4cbtYUDnNX9aZJVHE4XCQUBRisdj4koNEAl3XkR0OoxZ5HmZna6U5HmuBvv5+IpEIDQ0NSJKEoihZV8gul4vp06czffp0NE2jr7eXgJkq2b7dWNVPrq6m8YMfpOHTn6bhlVdwP/YYzj//GSGLVUeIxXA99RSup55Cd7uJX3UV0ZtvJn7VVWC+/NbKf7Z/Fp+++FMcn32ch488ys4Ow5KhoA6RLh2eP/0iL53ezJrG1Vw/4zrqfHX2ZJa8Gra3JU126dA0DUUU7cjsscDmtGDENavDxHf+BJJKY8dVN4+ffD8At90WQpjczruf+cCwolfvnvtO3jjz9cTjcXZs344ObLjiCjvdS0+yotjWFOvvNDeLtX9KBVTT6qKZx1r3UxJFJNMEbhHNiYSBgQEqKitxOhwGOTAFdcYs8DRdvyTH/bGsBgKGrgsmYZ0IrgWrDT6vl1gsRjgapaKiouSBiZYK74IFC3j2uec4c/o0kxYvTm9MSpsmMi58cpCUd2vhxMmTxONxZs+ejaqqY6Yq53Q6icRiRONxypu1nB2KWYRKx7CgQGGm1mQz4lhZEAKBALIsU1NTY69g1TwCtERRZHJNDZNrali0aBHRaNQQYOro4MiRI7QqCi6Xi4Z3vYspH/sY0/ftw/fkkzifew4hS2yIEI3ievxxXI8/jubxEN64kcHrrye4bh1a0qqu0dXI3y15F4FZAZ44/iQvndtMnDgqGjqa/fvRwOM8GnicK6dt5J75dzHDX5i6I4x9toKuw9a0eIM1yzuI7X0wZduzZ95Gf7yB6mqVG+44zd+88B66Y6lpp7fPvJUPtLyH811d7Nu7F7/Px7pLLzXS90wIgoAgSSOmxulmXr2WRiR0s7phQlXBjCDXNI30HjTRSEN/fz9VVVVGO2QZTdfLn7WQNHkVMi4oioKAWV7dJGqSJJFIJMaVdCVPwm6328gY03Xi8bhtZSsVrG/pcjqZ0tTEiRMnmNfSgsO0GicjpQjfBMUFSw40TTMCZEzTlkUA4vE4Rw4fZsaMGbhdLiJmestY8DiXy4U0OEh8nExKOkPaBrIs25OJ5WcuhM0mv/DlvnfnAgHqGxrswRqKe7ncbvdQsShNo6enx5Z1PnXqFFtFkcn33suU976X2a2tTHrmGVwvvoiQLpplQoxE8D/xBP4nnkDzeglu3Ejwda8jdvnlSF4vkigyv3Ie85vm8abQG/nVwQf448k/DZMHBnjm9DP8+fSfuXzK5bx5/l3Mrpqd9/ca63LNp9odnAukWihWeP8X+ocsL4rm4NETHwTgre/o4qM7P8ixweMpx1xav5avr/oyx9uOc6C1lZraWtauXVu09cPqx5IokuKZ13Vc5ligqCqqmXKnqSqKSRSSfyYEadB1BgYGjGwdDCKvJBIkykUOLFKQFmSYLxQr3sDysVsBzaYVrJQlmQtBcpaAIAi43G7USIRYGcgBGCQpoSjMmjWL06dPc/jIERYvXmwvpKyx8q+Wg3FGpniDQ4cOoek6ixYvJh6NGmmNTmdZAlTSH7/T6TSCEuPxMTUPWvECmq4Tj8WMAMn0AXgUcRfDpFdLaFWIx+P0dHVx8cqVAPZzSiZ+xUAURWpra6mtrWXJ0qUEg0HOnjtHZyDA/vZ2dnu9uN/wBhre/GbmHjxI0+bN+LdtQ8hisRDDYSoff5zKxx9Hq6wkft11xG66ifj69WiyzBRfE5+4+KO8ed49/PbIgzxx8kniWqp1Qkfn+bPP8/zZ51nXuJZ75t/Ngur5I36XsVZITM9SqK2JM/X8f6Rse+Hs3fTEpjF/QZRHPR9lx+lXUj6fXzWP71z6n7QdPMLBQ4eYMmUKF190UXncImmxF5nedcsVUQxpkCUJWZJsmfRSIBgKoaqqrdZqFWJSSinBnpTRommaTa4KP41h0dDNRYcFQRAQLZKg60MkYQwtCenpw9aCsByB4YIgEDXP6/f5mDt3Lm1tbcyZPTvJpTiknjjRcUGTA1uhyiQHkXCYtqNHmd/SgtfjQRAEIpEIkUgEn99f+pVX2mTrcDgMC4auE0+v71AGJPtgwSBLimr4vocJMZXguydHvpeKKHR0dKAD9ab0sR1QZgZAFZP3bk0EiqLYP5qu22RBU1X6+vro7e2lu7ubU1OnIr7xjTS85S0sOnyYqVu34tm2DSHLakgcGMD94IO4H3wQraqK2PXXE7npJmJr1lDnqeUDy9/HPfPv4sG23/Ho8ceIqsMtSZsDW9gc2MKq+pW8ef49LKlZnOFKaZHjY0UOtqbGG6yavQdBGcrd1nSRh098FAQd+ZbP8PDpp1L2b/Q08KNLv8Oh3Ydob29nbksL06dNy1jJrxTIhzyNijQkEUZZFJFlGUmW7Qm9GAwODqKDXepckiQjA0DTUExhnaKQpGehJZHr0fQda0wRTOtKMuyshSQRpXLrfeSCy6qvk0iUPGshHo/bfcXl8dDS0sLxEyc4cPAg8xcsANIWUBMcFzQ5sOINrDTG1gMHkGWZFlMJ0e1yEY/FUFTV8EGVOhI4bTUumlGzsUSCaDRaNnKQScwGzEBEjHS0dKuFkDZYjBYZiUIRCAQCVFVV4UkyAVoZC0qe5MAyJyeTgfR7Y4mVyLKMLElUV1czZ84cBEEgGAzS2dFBoKOD52bPRmtuZvLrX8+SY8eYvm0bvp07EbK87GJ/P57f/AbPb36DVl1N5LrrCN90E5NXr+bvlryLu1reyO+PPsRDxx4hrAxPsdzeuYPtnTtYVruMt8y7h4vqlqc8Iy3pumNBDnR9uDLixf5fpvy/KfAGOiOzaLzj2/yu86cpn/kdfn6w9tsc3XmU3p4eVq9eTYXfbwezlRuFTkz5kAZFVVHNIFnFKmZmxqxIJlmQZdl2SeSD/v5+nA5HSvaJLMvGNRKJosiBbgVtloAQJCNT0LeNDNfQxzCtNP1ZS5KE0+EgFo8TjcXwl4gc6LpO1MwCsyrcupxO5s+bx/79+5k+Y4axILMsB6+CImAXLjlIiliWJImBgQFOnjjB0uXLkU3TpSAIuN1uwuEw0WgUp9NZOutBlgHI5XIZojVlMGulWwrSETeFj5yZTLdmXEY5GH3yHS3k7LqmEQgEaG5uTtkumzoV2UxzlpkzYRIBq+BVSpvMwdb+yeFD9vv9+P1+Zs+Zg6oonO/qoiMQYMekSTw/fz6+229n6dGjzNqxg8p9+7J+H7G3F9+vf43v179Grakh8rrX4bzhBt6+6l7unPsGHjr2MA8dfYiBxHDBpj1de9jTtYdF1Qu5Z8HdrK6/xLagWN9nLMjByVNuOs+n9p+L61JFjx4+/jES8x7m+covpmyXBZl/X/HPnNt5lngsxvr166mpraXPlLwuW2BwMoGiNJNSMmmwKL5m6qooioKqKChm3JMaj9viZ6JFFkw3RLay8AODg1RUVKS8O7K5sChELXFYCmIZ+kjCDHDORKKsLKf08dD+r5xp5JDRjeF0OoknEsTj8YxpycUgnkgY2jG6bltlBYzKjUfb2jhy+DCLlywZ+t5/JQfjB11VU2IO9re24vF6mT1rVoqp2+lyEY3FUBSFWDSaEiU9qutn6fQWASk1ORhJCU81zZ8CZLdYlPlFhcKIQm9fH7FYjMa0Ylh2UKL5glmmXfsnA2kQ08hAsQFlkiwPFYsCgoODRkXJOXPYtmIF7t5eFh44wNzdu5l06FD283R347/vPvz33YdaX0/k+ut550038fprfsKjp57kwSP/R1+8b9hxrb0H+NzmL9BSNZd75t/N6jpDx32svLjbX0nND6/1nWNm1WH7/20dt9Dm7efcuveQ3hs/u/CTRPeFcTiddvGksVDhTGlFGfu4FYNgxU1YJFW1+qXphojH48STjpElybZaWX27v7eX2rTiYLIsI0D2lMakGIJyEwL7kiYhSo83SIYoCCkWrtQTGBbOcixMBMgYXOnxeAiZgkhWLYjRQNM0O9Db43INjStmcOzCRYvYtWsXM2bMwGU+079aDsYRCTPCXJIkenp6OHvmDJdccsmwjiAAXo+HwcFBYtEoTpcrK5svCNksB04ngiDY/qnRKp7ZA8EIsISPkrMU0lFoFbbRYiSi0BEI4HQ4qE6rdyAKAolEgkg0iqaqGV80iww4LDJQJn+2v6KCuRUVzG1pQVEUznd2ElixgkeuugrxzBnm7NnDvL17mXzsWNZzSJ2d+H/xC/y/+AXVjY28+4YbeOP1H+MPVWf4Tdv/0RUdXnXySH8bX972Veb45/D66bezuvGSsny/dGx/JVX+eVXTn1PmnvvOv4lz176FBKnk92+nv42qNj8Vk/ysXbcOp+nCSy/uUw7oVrDdGMMS30kmC6pJXi0Sq2kacU0Dc7yyLECDwSCzZqdmrFhWB81MzUw2U6foERgnGpPvaMUbWMQoE0a695arR9M0ezwsCVHIQgQdDod9zXgiMWp3cjweB11HEgQ7PRyGxrcZM2Zw5PBhQxjJLPL212yFcYTlBxMlicOtrVRVVTFt2rSM+zocDmSHg4QZC+Aro6ylvWo1pZSLldAcyYWQDkv4aKSKkOOlapaJKJw5d476xkZEUbStA3HTRBuORNA1zQ7ytAZOR5JlYKwhy7JdLEo3U9ECl13GMx0dxA8dYvauXczbt4+aU6eynyMQwP/Tn+L/6U95z9SpvOV11/HMisl8R99MR7Rz2P5ngmf46YH/5Q8nHuaWBbdw9fQrkcVyBfbBjnRyMOVZ+++/9G5g27rPkXD0pOzzusnXMv9sC43Tp7Bq5Uo7Bsg4Z5kzLdL683jm3AuCgGyONQBYsTCWK8JcgQ+aBcNkWWZwcNAmGJIkITscxBMJW2V1vCcZy8WRK7DPkuIeqa3J1oOc1oZ8keV4K6VRM927oyEHmqYZY6um4TGD3O3LW9cD5s2bx67du+kfGMDtdv/VcjCeSFjkQBA439FBy/z5OQcGj8dDIpEgHovhcrlGVYhppC7tcrmImgExxZCDXDr7mWAFMQmQOd4gCclSs+MFAcPy09fby7Tp0xkcHDT8mkntkmUZURBwu1x4vd4xE7LKF4IgUFVVRUVlJXPnzSOxdi2dN97IlnPnCO7axYzt22nZs4fac+eynkM+c4ZJP/4pbwBunT6dA5ct4nuzu3h+Up+9MhRNaaBzkQD/tvPf+eXB+7hr3pu4bsY1OKXSBrx2dNbS05t6ToscRAT4SlOARMWJlM9XeJexsX89C+bPZ9HixcPewXJnWhSTsz9mSHJ1YRZAUzWNjo4OBMEoYa5pGtFolGg0mlL23Q4uHGek6xtkQ6GBoFYtjEL1V1LOkeMzl9NppDSOshBeNBq1XSrpBCm559XU1iJJEt3d3TTU19su74mMC5YcKKaZbsCcWOrr63Pu75BlI1AlHicaieD3j0LDcITO7HQ6kaDguINsWQgjwSrPLElSyqotE8YzzQiMQSEej3Pu3Dl0XcfjdtsVAWVJwmEW/nG5XESj0ZzmzAkB8146HA6mTpnClKYm1OXLGbjjDnafO0d41y7qn3+eubt3U9M53DJgwdHezrIH2vkeMDC9gceWenhgocrZBi8I2LUKOiIdfGv3t7n/0P28qeVOXtd8A26pNFk4R483p/zf4DvF1IpjqMCHfZPpq0yNsZjpmMEb4rez6uJVzJo1K+M5x1qjYQJTBcNHLUkM9PVRWVVFVVWVsWAxC2vpqoqq68SiURRNQ5QkQ1htnFQcdTNTA10fcTFVTPssV4lY7JiU4xi32w39/UbRsiJTGu3MJzN1MROSx9NJkybRdf48LFw47guwfHDBkgNVUZCAnq4uHLI8zG+dDh2jqEwiHjciWROJEVfZWTFC0JPL6UQ0yw7nC0satpguFbNcCnmYz8Y67gAMy4Z13y2LT3dPD5IsU1FRgcvpNAhVcvEsTSNmraLGOJ2vEGS6l5ZVoaqqChYsIP7619PW2cnul1+m6umnmf3KK1R3dWU9Z2V7B/e0wz2Pw+nGXv64dBJPLPfS2jC0T1e0m+/u/QH3H/o1b5j7em6ZdRNex+jcZW3HZqb8v2rKsyDAv1bBTl+qK6FGnMw7xHu5as1GGhobs55zrMmBda2JsOpOh9Wmzq4uplrKiKZLwc7AMWNtBE0jYtZbEE13heV6GKt7qSgKIhjS1iMQdIHiMkUEhlydWgGxIyM9Y8lcaOimm7IYchCLxewCdlY9iWzt0DSN6upq2o4cQTVVOic6LkhykGx27zh/nrqGhqFOlUWUR8Do5C63m2g0SiQSwVGMiEkeg47T5TJ8ambkcq44gEJjC9Kh6TqKqW/gzPMFGIucc9WK2s6QmiVLEuFgkNqaGiZlqZ6WrJQIQ5NLelDWuFOFDCmU6X3Q6XQa8TDTpqHffjune3o4tHUr/iefZPrWrVT19KSf1ca0QJB3BoK8809wqNHJU8v9PLHcz6k6o0/1xfv4cetP+O2R33L7nNu5ffat+J2FW8U0DY6dmJGybdWUZ/m5H36blg3mwcP73e/itvU3UzkSKbfIQcEtyhMZ3puxyrEfCcnvttV/w+EwkXDYDlyzkBzcKAgCwVDIiKdgyNoWj8eN/WTZiG0ooWJjJqTXaBkJo5FRtrQRSknsXE4niUSCWCxWcJxZIpEwYkQ0DWeODDervbquM7mmBvXQIbq7u/GVKIWynLhgyQEYEpU93d1cdNFFQx/mUknDFEYyMwki0SjeAlMbs6UwJiNZDCkWi2UlB7b63SheBjtLwcyrzgdFm/FGgKKqtoUgPd1QlmWcDoed6tnb38+cOXOynssSlLG08i2yMMynPY5kIes9zNUHBcEoFnXjjXDjjXRHo5x44QU8TzxB04svUtHbm/XY+YE48wM9fPipHg5McfLk8gqeXO7ndI2DgcQgPz/4Cx5s+x23z76FO+bcTpUrM/HKhLajHsLh1AE0NP9Rvp0an4iExAcr/467NtyVV1rweFgOxiJlNxMykQGjOUN/d3d3owOT08hBMqzAW10Q8Pt8RkBjPG7H5ViWTwFsi0I5iIIVb5BvfNaor16A9SCf8cvldhMMhYgXmNJoxYHoum5YgXPEaekMCZX5vF7cbjcdHR1MnTo1r2uNJy5octDb22tI744Qb2BBABBFvB4PwVDI9mkXFM2a56DjcDoRo1GisRgVFRUZ21+KCTqeSEAeWQopKOHgadVziJqEKxkOkxA4nM6U9NGBwUES8Tg1kyfnPLeV1pXLZ5iTLGTZp9woZPXjcrtxXXstXHstfapK4MUXcTz8MHUvvIAvB1FYeDbOwrPdfOyJbvZNc/HEcj9PLfdzrjrE/Ycf4HdHH+LmWTdx59zXM9md+z4DbNuRygJqF/6K/2oanmL5nup38rcb35l3jYSxyFYYDyST+lxkIB1d5qoyl3qqJEnGRGm+Tw6TLLh1Q/gtkUigJBJouk7CzGwAw0XhHGWwtYXkFOJ8M4Ps2g2jeCbp9zHbe5QXOTAXIoquk8hTzl7TNELhsFH6WxCGxtVsmRG6bltLREGgvq6O8+fPj3idiYALnhz4PJ68TTjWqt/hdOIxfXrhcBhRFIuPP8gCl9OJyPCgRKuLlYIYaLpOwrQcFNL+UsQdKKpKNBYzCj1Z58W0EJgxBNnUKHu6u9F1nerq6pzXkGXZCNYqQDEuE1mw25cW0zHaCavU05IoSXg3bIANG+jTNHq3bUP7zW+oe/55PP39WY9bcjrGktMx/uGxbnbNcPHU8gqeWubnQfX/ePjYI9ww83W8seVO6r11Wc/xcjI5qGul/453kUi7PW+tvYePb/xIYQXFrH5epqDSjGSw9Bexx45MLrlC+lF3Vxe1tbU597EqRGoZrGZ21LzHM6QSGo+nEAVRknA5nbaLohhY+gZSgQHBJUlRNGGt9tNVEPN1GwmCgNPlQjOzQUYiB7quEzFTqAVdx+P1pgge5bIegOFWqauvp729nXA4nHHfiYQLkhyA0UF6e3upT443yOMY60G63W50TSMaixEOBhErKkYMWimkyztdLgRRtHNkBTPHt5TmfIsYyGY9+LxRZBt03SgoFYtG7cBCMAYQt9udtzx1d08PlVVVI64+rRVQIeQgHSl9I8ntkPws7H5RoFuirL5tUURYu5aBBQsY0DRqDh1CfughKp95BlcOonDRqRgXnYrxj4908UqzmyeW+/njst/x2InHuW7GNdw17000+VIVKVUVtu80rVsVZ+EtN5Bwpg5ut9TeyOc3fqbgSqPljDmwnuGw938UpM9+P9Njl0rwPeLxOH0DA8xOEz/KBEmSSJjaCNnGJZsouN2GSy8Ws2V+I5GILRnvdDhGzGJKh5qHvkEmlPI5W5YDO95o6IO8xzAr6ymeR0pjJBo16mnoOr709Okc10vWbqivq0PHKCg30XFBkgOL4QWDQRYtWlT0edwejxFJn0gQDIWoqKjIrZ5YwKTqdDiQRBFBNwp2uF2ukvv5rRTAguu/C4VVTtPM9KpYPJ4i7uF0OHC7XAWX4e3u6hoWkJUJlh9VNQvflFIFMX1CSSYNydtykYZs969UQVWada9FEXXtWrR16+hSVZzbtuF4+GF8f/oTjhxE4eITUS4+EeVTD3exfZabJ5f/mk8se4KLFl7D3fPuYkbFdABaD7oYHJTBOQhvvgkmpYo4rZ+8jn/b+I2iUkq1pIGzHMi0MLDy5zO+r0lWAOv/jGSiDO3t6elB0LS8+r4ky4im1cyVh9tTliRkrxe3KdoTN+V+Y7EYsVjMcPG5XHlP9lYwYqHvXDncR3bKYxELLI/bTX9/v22BzPb9o7GY4arRNLweT0EqujYBNosxVfj9dHZ2lkS6uZy4YMmB5depyzPeIBMEQcDn9RIMBlFUlWAwSEVFRckGMocphhQOh0teoVEzA5PyUUXMiDzYt6IohuvAtFCAMci7XC4j/7qIjh9PJBgYGGDuvHl5NNHIC7eqLpZLIjn9min/m7+HkQbLfJpp5VoiZEzhlCTi69YRX7eO0Fe+gmvLFtyPPYb7qaeQB4cXdAIQdVh9LMrqY1E+89B5ts05y1PLf0/o2mu5bdXfsGnLChA0eOOboGlXyrFLKhfx/Y3/jSQW58e2Ta5jGPeRHuQ7bDJJC2IdK3R3d+NwufDlobFixR0UmhIniCIulwun02krjlruh4Si2NUEHabMeyZopt5CIcGI6W0oNmsh6zmTrAhaAeeWJMkI7jT1JDKRg3g8bpMpt9s9fJ8RxkotKeYAjPLz586eRVXVv5KDsYau65zv7LRz5As9NiXoRRTx+XwMBoOoqko4FMLn8w1/cYpYCbqcTkKCQDgSGVGHoVAkTGJglYwtFNlM4lY0tFWsyoJspoG6RuHHBGP1pMOIwYgWHGaFxkSeK6hyIRtpyKXwlqlSZCFIJmQZIcvE1q8ntn49/V/+Mq5Nm/A8/jjuP/4RKRjMeIikw7q2COvaIii/v4/NLb/npal/gLlxaHkyZd/p3mn8ZOMP8cijKFZm3YNSTcLJfv+0GBI9jaxNNK2D7u5uJk+enJfpXRLFoRx6VS3YLZCcGqmpKjEzFVLTNCKmD97hdNqaLMmwJZOL1FQQgXJl+RfzTF0uF3FzoZOuWKsoylBmginAlo4R70CS5QCgvq6Oo0eP0tXVRVNaUbmJhIlLW0YBTdM4f/48k/OcYCxYebTpECUJv9+PgLGyDUciw/YpVKZVA0P2VxCG+ehLAcuHVpTVAIaxYVXTCEci9PX3EwyFUio8VlVUUFVZiTvHaiNf9HR343Q68w4itYjPaOIOyobkiS/5BzIGZWmmSdQKkkwOTk3+sU9vrZDyuecOB7ENG+j7xjcIbNlC9/e/T/i229By3GdZg8sPhXnrpu+BN1WUqVKaxE83/JCaPDIdcsH6DiP2G+u7mz+WfLBu/q1Z/1u7k5RWbJGCpOtMNLEsVVXp7u6mNg+XAgxZzQRByFiFtBCIkoTH46GyogK3222Y5zHGkMFgkFAoZC82APvdL2bRYbW9XEgOEMz3Oi6Xyxjb0+IOVFUlHA6j64YCZNbFxwjXSbcc1NbWIggCx3IUY5sIuCDJQVdXF/F4PC/f3TBkedCSJBkWA4wMg0gGgpAPdAxioOs6kunnkySJUChU1Pmywcp5LpocYIhCJRIJgsEg/f39RhVEM4XH63ZTVVWF3+crepDIhO7eXibX1OT9YttiSGaFu4kCPZuvGrIOXClbrEkwB4mwfttCK6Sl0EEq2bDO53IRueoqer75Tc5u3Ur3v/4r0csuQ3Nmjg15e/R3vLU5QGW3EShXI9bz043fY1ZFc/qXtn8nT+T2/Ujaz2qPlrZPyk+2Sd+8hyPdz/FKYywG/f39qJpGzQiZCsmQJAmxCNdCNlguh4qKCrxJ77WiKITDYYLBILFYjISioFGcSyH5WuWAltQH89VEcJmidLqm2bUWNHMxBEZ2iNvtznisDjldJFoS+bXaIssykydP5vjRo/l+rXHBBelWOH/+PAIY8rQFIleEucPpxKPrhopZNGpM7kkV1kaCPUAnbfN6PESjUULhcFY1wEJhKXcJ5J+DnI64WfnQypEGo1O7XS6co3QdZIOm63R3dTEvj3gDC6IoIksSOsYgNhoyVEqM1BtGk8mQHudgP4kMBCH5MwChvx+5rQ3p6FHkI0eM34EAOhCbNh0xFEIKBpHCYQTzmFCtxOrl3XjFFZxiFtfUXk1lr4+QO2QLHVmrohTLRtq1U8z85jZrAM/YnwrMDknHq4caGC4FSRSZVIB7UZYkYjBqy0EmWNoJmqoSSyRIxGLGhBkKEY5EjGDgUdSfKVsmT1ocjmZmguUanwVTryBqBmc6HQ676iswrNpiMkaiONb7YLmBLFRXV9OZQyJ9IuCCJAeaOTEOSzXJc0LLmP5kwuVy2QpZoWAQwe8fKsGa65wMJwYAXp+Pvr4+27WQrxRpLiSS0owKncStVYKiKLYp1ul04i4gkrlYDAwOkkgkCnYHybJsl72dKORgRIxSDAZzpWP/nWEXsbt7iAi0tRl/5xqQRBGtogKtooKOxl4ivm4EDfpmqpyOfI8f+IyAxm3nt/O+rr+jcncllRUVNDY10dDQQM3kyTlXhOlttNo/LM7H3HfUE0iOFd3EcioY4keTJk0qKNhZlmUjKNEs/lOO1bgoSXgkCbfLRcJ0M4BB5IPBoBF8XIQ7sRyLi0xZQJZc+UgZQi63m2gsRjQaRZYkNLN8ts90/WaFKObsZ7blIO3ZCOS2OEwEXJDkwO4EaabHfJAt7iAZHo/HrosQCofx+/05I/OzEQPAdi0omkYoFCqJ9UA104wKmcxVRSGSlu/rdrvtOhBjgZ6uLgRBGFH8KB2ywwFpAZLjjhEm/vSJzw6iy/B3tvMnWw7Ezk6DABw9imQRgRwKirnQM7WPwPxU9cNn5KEAxm69n00NL/O55v9HZ0cHJ0+c4PDhw8iyTEN9PQ2NjTQ0NGQ1xQ59hdT31FYGtT7PcpyViphMIlKOS5oMsr7LEyjmQDctZjNmzizoOEEQDDEkQUDRNBxljHy3BIOcZp0W0SSkltCZy+0uyKJYjrufS1zJSnXM5nq0AtfD4bAhDgXDtQxG0SYpPWC5ROnM5cQFSQ4sFD2p5bGq83q9tnTv4OBgVg0EHZM95mhLqV0LCXPVnw850E3fWrJSo9PpxOvxIJppgmPFcHt6e6mqqirYQmH7Rk22PyGCzdJ87DbMvpUccGjvluXv9PNKgQBSWxv6sWNIZ87gP3KEilGKqugOB2pzM92zwnQrbcM+X6y52c5QnM2fA89xe/Mt3LDyetB1+vr6CHR00BEI8MorrwBGidqG+noaGxupnjx5uDql+bvQ99Rym2QjESlZCUnvcjKREMhtIRxLhEIhYrFYUTFSkiyTMJUSS2F1zAWrmqAkSVRWVNipzJquGwuLWAy32523rknJJ8gRzmW5GDKNZ1bWhqqqxKJRqidNGtElqxsnzUl09GyWgwnQ70bCBUkOrE5Q7APIx5wpCEbRk8HBQYMgDAzg9flSUl10TOY4QjtK6VrQdN0OUMp1Hl3XjeqT0aj9UskOB16PJ2VyFsx8/bHozN3d3dTVZZfwzQZLwlVTVZQxGCSzIblOgO33T7cYpccC5IKmIZ09i3zkyJBF4NgxRNO0O1hRQdTlQiowmFV3OlHmzEGZMwd1zhyUlhaUGTMI7/sNwae/OGx/32Uf4a0HnuRh7Qi94tDA+qWd/8S6+rVMclYxqbqaSdXVLFiwgHgsRkdnJx0dHRw/fpxDhw/jdDgMi0J9PQ0NDYZsbb6ZCgUiJVUxfcJIeh8tX/R4k4Suri50Xc87fTcZkiQZqYGKAmVO5U0kFXMSRRGnKcEci8eJxWKouk4oEkGOxw09gBEm11KSg3zPlYkY6Ca5sV0QopgXwREY+T3WksaEFJiCTRMZFyQ5SJE4HcU5RhowBFGkoqKCwWAQJZEgFAyieTyG9DIjWwwslNK1YCmXiaKY0Qep64YqWiQatV8UyUxlyuavF8egI8ficQYHBpg/f35RxztkGdW05IwJOTAnfZsIaFqKWXukzIlhd1NRkE+fTo0POHYMMUdWjHUFIcez0Twe1NmzUebORZk71yAD06ZB2j2K7H4gMzFY/zF8a99H9UAfn2jv4bPeoaIx3bEevr77m3zjkq+mHON0uZg+fTrTp09H13X6ens5FwjQ0dFBe3s7YARk1dXVUVlZWXKNj1xITzm2Mh+SrQr2Z2NIiisqKwtWHbA0KQAA6DxJREFUEgUzY8CMOyg3EqZLwZG2eLCClOPxOLF43BCMC4WMYlBud1aXaynvbaH1GqwFoKZpRoyVqhqkwKqymM858rAw22mMmWIO/koOxh72Cq7ISP184g6Gdhao8PsN03w0SjgSQVFV3G53QQFCpXItJAcjpiNuqjEmB8l4PZ6RxYNE0RDYLyMs8aNCgxEtyLKMUGARpnygm0GZ1uSRPghlFTgix6pCUZBOnsRx+DDy0aP2j5CHvnvKNcz+ZZEDze8fsgaYFgF1ypQRixpFdv+awT99fth232Ufxbf2fQCI0y/lmuPP8VTCwwuOIcLyu5MPccuMG1nfcGnGcwuCQPXkyVRPnsyiRYuIxWJ0BAIEAgGOHjuGqii4TKtCY1MT9XV1hct9F4u0wX3Yk7Q+TycUJSYN3d3dxaVdYy4CTHJTjBhSvlCTqjBmIjFWup/D6SQWjRK3VBeDQVwOh5EumN4PSzQ5JmfnFHKMpWNgfa/Kigr6+vtLlhpqNMto11jFbZUSFzQ5GBUKiSYXBLxer61XEItGUVQVv9ebN0EplWtBMfUNkslBSgaC2V6Px4Pb5cpvkBsD02t3dzcul2uYQlm+KJkYUvJkkRYbkG+vsggFAPE40okTSG1tSEeOGBaBEycQklJEi4FWUUF80SLizc0IM2cSaWlBbWwsONAuvPs3BP/0uWHbfZd+GN+699v/C/VLSAge/iFaww75DGFh6G58bseXeOy63+OVR352LpeLGTNnMmPmTCLhMJ2dnfT29dHT3c2p9nYEYHJNDY0NDTQ0NlJVWVlU8GA+zyq9CmfG8+QjzkTxq+BYLMbg4GBB6bvJEAQBWZJQrWydMpGDuOVSGCEDShJFvF4vTlW1NRFiiQTxRGJYZoOVwjra8bqYrJZ4ImFUWNRN3Rav12iHSQ7yqXug6XrOVMaU4m0ZrK9/tRyMA0rB1orpcFbHD4VCKIkEg8EgPr8/L62BUrgWdIYmR4csoyoK4WiURFoGgqdAq4YgCEZwYhkDE3t6eqgpQPwoHZZanKZphRVhMleGdjbJaF7YaBTp+HGkI0fg0CGDCJw8iTDKlYhaXW24BObOtS0CWm0twYEBNF1H9vuHuQnyweDOBwg/84VhFg7vug/gu/SDKdsESea8o5mp8YN8MFrNv3h67M9Oh8/wn/v/m08v/2RhDRAEqiZNor6hAY/HQyQSocN0Pxw8dIj9ra243W4aGhpoamigrqEh/2DVPPpqPmbhbO3Wk/7OZH3Itxd39/QY8QYFiB+lQ5IkBCjpijcdSjyORmarQSZYhZ4s+WHFrHCbntlQCr2DQo63Yq3iZhlrh8NhjIdJhMUKNM+VFi0IQk53HqTGG4iCgJqswVBAm8cLFyw5EAVh1Hm/ha6WVXPF7q+oIGTWYhgcGMDn8+VlKvWM0rWgJmkTWIIeFpIzEIpCGa0Gmq7T3d3NggULij6HVcteSyRQRiIH+pBCn/V/wdcLh5GOHTOCBI8cQWprQzx1yliNalrRNevVujqDACSRAS2LyXmYCFIB6NvxK2LPfpF0hQTv2vfju/TDGY8575zD1PhB7khU8EdHiF3yUP/63yO/5KbpN7B88tK826Cn+WM9Hg/Ns2bRPGsWmiknHAgE6Ojs5OTJkwiCQG1tLQ0NDTQ2NFBRUZG1X47pmixNZ0JIc0XkGke6u7txezy2mFQxKJWMcjYoimIEJVO4ZLIsy/j9fiMewQxatDIbPNZ4NJrYMMj7eF3XDbevWV3R7XbbLlXLgiGbRZgUVSXniJ0HscwpDf7XVMbxwWgGTQsFxR3ouv3ygGFaq6iosDXJQ8Egbo8H9wgDgM/no38UrgVFUYxKa8mqhhkyEIqBgBEAVw6KMNDfj6IoRftdLciyTCKRMIowmduSc96HZQ7kCSEYRDp6dMgt0NaGeOZM9pVDni+92tRkZw1YhEAvIDjPXqUWSNzOb/0F2gtfHU4M1rwX32UfyXq+frkBPDWIkW4+Ha3lXt8Z4uauGhqf2fF5fnf1b3CK+a0uc62yRUmirr6euvp6lgLhUIhARweBQIADra3s27cPn8dDfWMjjY2N1NXWjklVznwwzBWRgyx0d3UZ4lGjuF65xZCSAxGLtexZmQ3xRIJYNIqq6wTDYWP7KM6br+VB0zRC4bCtHuvxelMzy8xnYo0hIwZ45vGOq1mCEZOvOZExMd6mEqNk6THk7nj2hJPheoIg4Pf7jQpnkQiRSARVVY2CQllehNG4FnRgMBgkGAoZhUREEZ/XW1LFQLFMbLe7pwehQOnYTEiOO0h2ExTSZqG/34gPMDMG5LY2xHPnCmtIhiA2ZepU1LlzUVtajN9z5hhqhMW6apJNlAUMrGdf/CnSln8eTgxW/x2+9R/LfS5BQJi2Fv3IY8zUHPxtbBLfc/fZHx/qP8KPDv2EDyx8T15tKSSV0evzMXv2bGbPnm0UKerqImAGNh4/fhxREKirq7MFmPKKXRmrIDGzkFE6FFWlp7eXxYsXj+r0lhiSKoolF0PSdd2WUB9toKggCEY5aFk2XAxmmWTLilCM1Hs+77aiKITMAkqAIVqX4Vq6ruOQZSKMLEmdEleUBZabx7qWvUgR8i8KNZ64cMlBKR5APqYjchMIj1nlLBIKGfKjmobf58saqFiMa0FVVYLhsP0CuD0eJlVWlnwFUS5Vr57ubqqrqoquA6FjmHJlU7TJSmkc6XxCT49tCbCsAuL58zmPGbEtgoAycyYJiwSYREDPMFmNpnfqhZIDXef4n3+Id+e/DycGl7wb3+WfyO8809fBkccAuDdexdOOEEekIUvVdw58n+unXsPcyjl5f4dC+6kkSdQ3NFDf0MCyZcsIhkJ2BsS+vXvZvWsXXp+PxsZGGhobqa2pydgXxm14Nt0QXefPo6kqDfX19j3QVLWocUu2xJBKnMprC4sxukJLyRDNLCmHLBOJRFB0nWAohMftLmgxk89IFDMlkTVAFkU8I8ghW/0kV2BzPk9H1/WU0tbDzvFXt8L4wK7GVQJ2NlLcQT4P2OV0IosiwVAIVVEYCAbx+3wZzaCFuhZisRihSMQwKeo6Xo+H6qqq8jDTMrHdrp4eGurrCzrGltq1fpvbHQ4HWiJBIpEYmhB0HbGrC8mMDbCsAmJPT4YzF9AGSUKbMWMoPqClBXX2bFSns2RpWlmvnXz+EZ6Lpmkcfuq7VO//9nBisOpv8V3x9/n3l6qZiJXT0AZOIyPwmUgt7/QHsFQeElqCz+74Ivdv/F9EIfeknywaVTRMC51/7lzmzJ2Lqih0dnRwLhDg7JkzHG1rQ5Jl6mprjXTJxsZUq0KxQYklwLlAAK/Ph7+iYuh5JsVKFUIUbDGkEscdKPE4OpSl2JrD4UCSJMLhMLFEgkg0SiKRMGIR8iCMuSy7duBhIpEx8DBXm2DIJZD5wiP3GTXJKpZOTFNEuiYwLkhy4Ha7URWFeDw+an9WtmOtFWq+Z5Zk2Y5DUE3JZa/XizNNYyDZtRAOhbJWltR0nVAoZMcXCIKAz+s1dMHLaLIqNeONRqMEg0EWLVqU1/52IGGWNjhkGf3MGRwnT+I+fXooWLC/f1TttOSFLWuAMncu6qxZkGmlU8AAXWy0dlbltTQoiQT7H/s2jW0/GEYMPCvfgW/DJwvqL4Ig4Jp9OZFdvwJgoebizWodv5Q67X12dO/k/qO/5t659+Q8VzlywCVZpnHKFBqamkDXGRgcNIIaOzrYs2cPu3ftoqKy0ghqbGw06niMh4lX1wkEAjQ0NKTc/5T3y1zg2NUFc5xOShJDKlXaseVS0Mk/S6FQiKKIz+dDjEaNrAZVJWjGaDlHuGZWjRHdqJxrla0vxCIhmfOFZq78M8Zq5enKgOzWlpjpSpnIuCDJwfTp09m+aRNd58/jb24e1bkyDd5W/mqhr5+YFKgYj8cJmwGLXo8nxc1guRaC4XBGchBPJAiFQvYE4fV40FSVSCxW9sqJpV5p9fT0gK4zOUexpeR84bQPEM+eRTxyBPnIEcS2NvxtbYiDg6Nqk+50oppiQmpLi0EEZsyAPAdInQJM1sXezzzIQTQSYe9j32bGiZ9kIAZvx7/x/xU1iTjnbLDJAcC7Q27+UtdAe2yovsO/7vsPrpqykSnepszNT16ZlWtyFgQqKyuprKxk3rx5JBIJOjs7CQQCtLe303bkCIIo2rEKjQ0NIwYNlwqDwSDhUIjGhoYczU9dYVrW0ExEIUUMSdOKdtElw1ZbpfAshULhcDiQZdkWJYqYWQVu0y2bjmxvTCKRIBqNomoaVlXFQtoumit9zRR9ynRkPu+3HW+Q4doCRpbKsosvzrtd44ELkhxUVVUhOJ10dXXRPEpyMCyPOceqNV/4fD4kSSIaiRCPx21TmsvlAkHI6lrQMaqGRc0URUkU8ft8yLJM/8DAMPGjcsCWCy4R+gcGcDocwwLIhhECTUM8fdpwDRw5gmhaBIQc8sL5QHe77foCdozA9OlQbPxDEaSx2OtAdnLQ39dH61PfY3b7/yKQaiL1XPw2/Bs/VbymRNU0pMlzUHuOAuBG5LPeVbwn9pi9T0gJ8/lXvsyPLvtuxuukmNFLTA70LLLlDoeDqVOnMnXqVNB1+vr7OXv2LOfOnWPXzp3ouk5VVZVtVZg8Qgnq0aAjEDCISZ7utJR6HUMbjewE8x5KphiSZhZHGi1KFYg4EgRBsCXafT4fsViMWDxOQlFQQyE8GbKtRHN1b0GzCEVS8TW/z1dUVUVZkgx1x0QCt8s1PL5npDg0fai+TbLlwFpoRmMxgqEQs2bNKrhtY4kLkhxIZhpU5/nzpRHZSDPTjVosB+zqZVbebTgcJh6PG0qLGVwLiqoSCgZRzBWX21QTtL6fFV07FnUFslU2KwbBwUEqKiuBJEKgKEinTiG2tSEdPmy4BY4eRUjSbSgGms9nBwjaWQNTp44oL1xOFOumyUUOAoEAbc/8mJZzvxhODFbci//Kz4x6QnbOuYKISQ4AVpw7yZ3zb+PBk3+wt/0l8AKPtD/OrTNuGna8NbCXRVY2n3MKApMmTaJq0iTmzZ9PPBYzrAodHZwwS1A7HA7qzaqSDQ0NuEYoQV0IAh0dRvplEZN4yrNLIleiKBpiSJrGaJ0AY+FSSEZyiW23221YESIRw30aDuNyOo0sLPO7WpkuVq2YmBkboZvS9c4kJcZCIcsyglkCXiuC7FtjsWgWhLOgm8Sis6MDSZb/Sg7GA5IkMXXqVA7u2kU4EhmVbyc57iBlNVsC87okSVT4/cTicaKRiF3d0eVy4XK7bdeC0+UibK6QLUac7I+zUvdEUSybtnoySmU90IGB7m6aIhGkRx+1swbEY8dGLS+sVlQY0sILF9oBg1pTU9n9ywXflyL7UDYtj+PHjnFq0/0s6LhvODG46M34r/pcSVbqrlmXE3n5p0PtiQf5+OSr+EvHS5yPdtnbv7rrn1nfcCmTXaluo5IEI5YCZjucLhfTpk9n2vTpoOv09vbasQo7duwAjGJRpYhVUBWFrvPnWbxkyaibn/wuioIAolh8emwSFPP9EwWhZFkKuZB+J2VZxu/zETWtpzGzborX67WtOZYLQTNFxxyyjNvrLcpakH5ta8FVzBO2NBKyEb+uri4ampoMEa8JjAuSHMiyzJQpU9ixeTOd588zc8aMUZ3PClCxsyAorQKby+nE6XAQiUSIx2JEYzGDuSsKkWAQWZaRZRmnw2EE76Tn0OcotlQWFEuKYjHEY8eQjhxBOHIE6fBhbjp6FGGUg5lWXY1mWQLM3z1OJ4quU1VRURITa77IR68/Zf8iSeYwASRdZ9++fXTv+gMLOu9D0FODIj3L34z/6i+UbDIW/fXI9YtROvfb29ztO/j8RZ/hQ1s+Zm/rjffytd3f4F9X/3PaFygujXEkFGyFyXQ/hKFiUQsXLSIWjdLR0UFHRwdHjx7l4MGDOJ1OW1Ohob5+WGBxLnR0dqKpas54g2IgmSte1XSrCFDUyheSXApjYDUAMj4H0azTEE8kiEYiqJpGMBjE5XKhmGZ/62l7PZ6StdUK6s4khJSP29CyHKSPx5ZyZndvL6vXrStJW8uJC5Ic2BXCvF7Od3aOmhzouo6enlZU4jQUQTCKf7icTqPCo2lNiMVihIJBpkyZgjvLAJQwZZPHpFSx0diRzeGRCOLRo0iHDyO2tRk/J04MIwKaqo5c3CZ5/9pa1JaWFDKgZ1BWlINBNDOeYyzJwVglJyVrBKiKwo4dOwgffpqFnfcPIwbuZXfhv+bzJV+lO+dckUIOEqe2cf1lH+baKVfzp7PP2Nv/cOpRbp1xM1c0rre3aVksH6NFoW4agZHTlV1ut10sStc0enp6bKtC+6lTCIJAdXW1raswqaoqp1WhIxDA6/fj8/sL+WojIrnGQrrWSyGxMLqmEbcKuI0RORAgqzXW6XAgmymPkWiUgcFBHA4HDlk2rKz5FpDLE5Ip6ayaC0LbEiHkUU9B02zLTSaLSyQSIRKNTniXAlyg5MAKzmlobORsIDD61J4xNH1KsozX4yESjeJ0uYjF40M6Bi5XxhfciioeM8sBpL7IoZARH2AGCopHjiC2t4/4IgEZ1QQtaI2NBhGwAgVbWvKWF3Y4HCTManDuEvqKJwqsmI94PM62rVvh7BYWnr8fQU9d7biXvpGKa7+EMILmQDFwNV9GeMsPwSIjSpT4qS18YcVn2HJ+G4OJoayRz73yJR679iH8Dh9QvpiDYmJhCmmBIIrU1NZSU1vL4iVLiITDdHR20hEIcPjwYVpbW3G53TSYsQr19fWpAX26TqCjg6amzFkco4EoinZ5dV3ThgmtZQxqzICEoiCY5xsLl4KFXMTOVjw1J9+Eoti1EUpNeiVJQhRFNKvSpfX8zDbkupqSpIo4rF2CwPnz55FlefSB8mOAC5IcwFDcwZ6XXyYUDOIfhX/H0isfC9EKRVEIhUI4HQ7q6+oQgXA0SldPD5WJBF6fD1cSm7e0wgWy+7hKiv5+2y0gHDpkZA2cPTvq02qWvPC8eTYZ0EfxzJwOB2FBGLo/YxR0WEwPSY+8zus6ps7F3r178ffvY17gF6Clxmm4l9xJxXVfKQsxABA8k3A0LSNxdqe9LX78BRrmbOT/LfsEn9nxRXv72fA5/n3/f/H5iz5tbLAm8XEMBrUxisnF4/XS3NxMc3MzmqraVoVAIMAp06pQU1Njxyrouk4kHKaxsbGEX2AIopnuqGpaSvxRSpzQCC6HscpSSEem4HHNquZoVpZ1OJ043W5UVUVVVSLRaF7iRoVCNtMZEyY5sEjBSG7AkeINOs+fZ9r06RNe4wAucHLQ1NTE5miUzvPniyYHmj5UuKdU4iLZkDD1C8CwAvh8xiqru7ubcCSCz+cjODhI3Ok0shpE0XApMHKd9WIg9PYiHjpkxAccOYJw+DBiR8fIB+aALgho06ejtrRwyuOh3efjorvugny08AuAKIpIZnBWQsldfrWkGCPVs57eXnbt2kVt/Chzzv5sODFY/Hoqrv9q2YiBBeecDSnkIHF6B3pskDc2v4FHTj3OlvPb7M9+2fYrbpl+IytqLiqLABIMSacXgmLIWcbzSBK1dXXU1tWxZOlSwqEQHWaxqIMHD7J//37DTC8IKGb10FJb+yRJQlAUNFXNqcuhY0x0llvF3m6+L7qpKjiWSB+/4vE40WjUGHs1DdnhMHQPBIFEIkEkEjHiDnRDGbaU458sy8QUZSjzIHkOyHGckiGF0YKOUUfm8mXLStbOcuKCJQeyLONwOPBXVnK+q4vZs2cXdR6LEFg1ucs19McTCcImMXDIsu2PrKisZGBwMMWcFYvH7bRHtRQuBV1H6OpCNAmATQS6ukY+NtdpRRHNVBXUWlqMYMHZs8FkzQf/8hcjkKvExMCCw+FASWL/Y4GiCGSBQYnt7e1s37GDqcIZmk/9D6jxlM/di++g4vp/KjsxAHDOWEdI/M4QOdEUYic24Z5/PV9d+UVu+uMdxDQjBVVH51PbP88frnnQzqMoKTUoghgYjSitsJcFr8/HrNmzmTV7tpGh0N3Njh07UBWFrVu3IoqiUYLaFGDy+f2jnuCsdMZ8MxZ088ca2xKJhG2FlMbYqmN9c8sioJqphJaKoizLNpGxggbD4bBdWMk7Qt2EQiA7HAimO3d4QzP3FzvWg8yWg+DgIPF4vOi5aKxxwZID6+FMmTaN02fOsJrCB6JhA73VKUo8kMRiMSJmqqLTtApYkMwXQ9U04vE4tXV1hrKiohAOhwlHInbaT17QdYSODsTDh43YgMOHEUpRZ0CW0WbNsrMFNEteOIe/v39goKyBOU6Hg2gsZptJy41iLUt5H6HrHDp0iNbWVmZ5uply8PvDicGi26i4/msI4tj4igWXD8e0VSRObba3JY49j3v+9cz0z+Ajiz/Av+z9d/uzo4PH+P7BH/LOGX9jHF/KCahMk3wpIMkyk6uriUajLF+2jPr6egJmBsT+ffvYu2cPPp/Pdj/U1tUV5SaUTKXEnLUB0pDscrAtkWNsNQCD0MRiMSLRKGBYMSzNAjLEI1jWVasUczgUwpshm6sYWMHdVjpj8rUtd0z6VdRc8QYYLgWn282MUQbIjxUufHIwZQpb2toY6O/PWqcgG7RMg72u22IWBUPX4cgRY+U8fTpg1BaImi+D0+XCm8EXVVlRQSgYJBKJoKkqlZWVRhaDWVshGovhMlfGzrTgJ+HMmaEgwUOHENvaEAYGCm978tdwOtHmzBnKGJg7F7W5OW95YYB4LEYsFrMFkMoBWZbtVZSiqmMaXFUI8ulJmqaxa9cuTp44wZK6OFXbvwVqqiiUa+GtVLzun8eMGNjXnbMhlRyc24MW7kH0TuYdLW/jsfYn2d/Xan/+g4P/w+WTLmO2b9b46xyMITo7O9F1ncbGRjxeL3P8fubMmYOqqpw3BZgCgQDHjh1DMl0UjSZZ8OZJ/q04A62IAkyKohjCP2CPJ2MBzVz4xOJxFFUd0izw+WzrhZDF9SNJEj6v1yAImkYoGDTSvUdJOq35QzXbk1L/gsyxB9lSGC10dXUxs7l57Fyco8QFTw7q6uqImprqhZADyyeXDEvbvKi1SXc3fPvbcNRUlbv7bsJXXUXcVP1zu91Zo+odDgdujwdFVRkYGKC2thaXy4UoCHbao5pIMHj4MI7Tp/EdP47Hcg+YropioXs8BhGYNw+tpQW9pcWoM2DeX13Xi/LXDpquknILgciyjGaqvZWbHBS7ZhUgp0k8kUiwdetWus6fZ9V0EddLX8tADG6h8oZvjDkxAHBMvwTB4UFPWFLWOvHjL+BefBuyKPO1VV/m9c/chWpmNSR0ha+0fp3/WfW9ksYcFBswPFb0JBAIUFlRgSfNjSZJEo1NTTQ2NaHrOsHkYlF797J7924qKiqob2igqbGRmpqarGJnVo0FzfTTF2KZsYL+XFb8kq6XNRBbNS0F1nU1XUcSRdwuV0q8g5ak25AJkiTh9/nsejPBUAif1zuqAG3LbaFrGglVxZk24Wu6bvRd896MVKJZx4gTWnHJJUW3aaxxwZMDURRpmDKFYydOMHfu3LxWKjo5BhpBGK55MBL27oXvfheCQXtT+I9/JL5uHYjiUF2FHKioqLArGFZXVuI4fRrx0CH8x45RdeIEnqNHiQlGUZaIIBAHPJqGJ4/cXAu612uTAK2lBW3ePPRp0wwioGcufpQpqCkfDA4OIgD+Eud6p8PpcBA3Szh7ypzSWKgAUurBmftTJBxm06ZNhCMRLp3rhWf+AZRoyj6uBTeNGzEAEGQXjhlriR991t4WP/Y87sW3AbBo0gLeNe/t/ODQj+3P9/W38pv2/+O9S9415u0dF+hGFcbppsUwGwRBoKKykorKSlrmzUNJJDh//jyBQIAzp08bJaglifr6ejtWIZlsWHUKRNO1IOdJDnRNIxGPo8GQoJOQWiGyVHVDFFUlluTu0zUNSZbxuFzIsjys7LQoSSOmqIqiiM/vJxwKGRaEcBhvhpoMhUCWZRKJhBF3kC5olLZvrhLNAO2nT6OoKvPmzSu6PWONC5YcJBciWb9+PS8+9RSnTp1i5syZIx6ba6IrKDBR1+Ghh+B3v0vZHPJ6SWgadHfjbW7OXZpUUeDMGTzHj+M/ehT9yBHE1lbc/f1oHg+yx4MzHsc/OIgXiHo8RDweVCDo8RD2evFEIniiUcSkF0yvrESbO9cgA5ZVYMqUjKllIxWbstOiCiBMg8EgHjPjopywVgCKopQ/pXEUPu9MEfN9fX1s3rQJQRC4fF4F8Sc+MpwYzLuByhu/iSCO76vsmr0hhRwo5w+hDgSQKo2UvQ8ueh9PnXmaE8GT9j7fbfsht8y5iWm+qaVpRLEr3DFwbfT19RGNRgtOYZQdDpqmTKFpyhR0XWdwYMBwP5w7x65du0DXqayqorGhgYbGRmomT0aUJIREwnAt5Dk5xszVuyxJmVfcSe+3VeypUCQUhZhZs8BagDlkGVfSJJ7xCeb5XEVBwOvzEQmHUVSVsBmkWCxBkGWZuOlqydws3baw5LIaqLrOgdZWmpubjaJfrxJcsOQAsMlBfX09U6dNY39rK9OmTctpbsqnG+alwhYMwve+B3v2pJw75PejmJ3VFwjgaGkZOiaRgPZ2OH4cTpwwftrbwWTSfqeTsCwTlWW8goAmSei6jmSl2wDeSARPJELM7SZskYS6OoIzZ+KcORPnnDmI8+ejNzTkHBSt75fPQJBcVS1fDAwOUlnGeAMLlpCLJUddTn/fqMyvacTiXCDAy1u3UlFZySUznUQe+QAoqRUoxVlXU3nzv407MQCQp1yE4KpEjw3Fs8SPP49n+ZsAcEtu/mnll3jLX95ufx7VonzulS/xk/U/GH3sgWXZKjIgtNxpyoFAANnhoCaDmme+EASByqoqKquqjBLU8TidnZ10dHRw8uRJDh8+jOxwUFtbS9WkSXnLOuu6TtwsXJQz1iBJlTP5/5HOnVAU4rGYUTHR3OZ0OHA6ncMmU0vrwHoSgmkNzReiqTQbNmvVhMNh3B5P7gVYFkiiiKDrecVv5CrRfOLECULBIBs2bCi4DeOJ8R9VygiLBCiKwrLly/njk09y7NgxWpIn5DSMNMDnNQEcOwbf+pYRZ5AEixgIuo4vGETeswei0SEycObMkDhMBjjjcSJuN6rbTczlQrNcJ0nHaLW16C0tSC0teOfNIzZrFmGvF0VViZsuBqfLhVtVszJqXdeNdgj5l9PNJGCSCwMDAzSVSQgmHQ5ZtrXYJ2owULLr59ixY+zevZumxkYumiIy+NB70BPh1P2br0K68isTghgACJKMs/lSYoeetLfFjw2RA4DVdau4e/YbeeDYb+1tL3Zs4qFTD3PHzNtG2QBhVBaAcgdGBgIB6uvrS2q5cjidTJ02janTpqHrOn19fXQEApwLBDjX2krr/v1DJagbGqjOUoI6kUgYJdEFIT8J9iRXQzaCoOs68USCuFnrwdIIcLlcOJ3OnBZDkaGxpBjCLQiCrTJr6SEIFF4nIp86OpZyY6YSzWC4UA4dOMC0GTOYNm1aQdcfb0yMkaVMSI44rZw0iebmZg4eOEBzc3PGjpJ3N8zlZ3/mGfjFL+zVvoWIx2MTA38waKz2t2wxfgqAOxol4vMRDoehpgZ15ky0GTOIWTEC1dUp+zuAKowqa9bLEovHicViOJxOPGbpaAu2b6/AwVIwiUc+91A1y0+PVVUyh8NBxPRxlnOFOKqwLUEATWPv3r20tbUxZ84cFtQk6P+/dw8jBs4516Bv+DLiBCEGFpyzN6SQA7X3BGrvSaTqIVfeJ5d+nD+ffY7O6Hl729d2/wtXNKynxl38qnq0KJTcFoJYLEZ3Tw8Xr1hRpitg13eorq5mbksLvb29nO/qYqC/n+PHjnHo0CGcDsdQsaiGBtuqEEu2GhTybljuRlG0SYKmaTYp0BiyPFqkIJ8AVLsk/ChieARBsGOMEubYZ8ki5/fVhqxQI7XBIgbpJZoB2traiMRiLFq4ENerQBUxGRNrdCkxksmB4HKxcOFCTp06xeHDh1m8ePGw/Qsu2JK8IR6Hn/wEXnpp2L4Jh4OY+SJ6wmHbDVAQ6uuhuRm5uZnIpEn0VFcjV1XhcrnQqqpQR4jMlR0OKhwOFEUxSIIppJSIx5ElCZfbPer0pXyL3gTNwMxypjEmw05p1HXUHBaTUWMUbgVVVdmydSvnzp1j2bJlzPAO0vfgu9ETqdkmzrlX47vhXwlF4hMuDVBuXIzgrUUPD4lnxY8+j2fVW+3/KxwVfHbJ/+PD2z9hb+uL9/OVXV/nP9f+a9HXHvXEXkaNhE5TVbShxFUYs0ESRRwOB/X19YaVVNfp7emxdRXa29sBmDx5MnV1dVRWVuL3+4syvVv3zSIFUTP7yorvsXQKiuqpopjTkjpy0wyCoGmaoYMQDuPz+fJ6b1Im+RH6hZJIQIZAxFg8zuHDh5kzZw7+iooJa7XMhtcMObCyAlrmzuXIkSPMmTNndAV5kgeTY8fgX/4FMqQNqqJI2IwmdsViOPMR5JkyBZqbh35mzrRVBCXA3dtLpK+PwVAIl9tdUFCfLMtU+P22ClksGjWYvqIQliQ8JkkoauLJc4AdHBxE1/UxrWfucDiGUhrHskBVHojFYmzevJnevj7Wrl1Lrd5B34PvRI+nEYM5V1F1y3+hagIw8ciBIIi4Zq0nuv8he1vs+F9wr7w3pa0bG67gmoareLrjz/a2x04/yS1nb+bqKRuLu/goJ/ZyWg46OjqYVFWFe4xWjoK5ghVUFU1VDQGm2lom19ayaPFiowR1IECgo4Ojx46RUBRcsmxYFRobaaivz9sEr6WlI+qmoqHbLKFcTA+1rbIlIGuWiyFoZjFEotGMWjLZjoXci0YrpgIY5pI5dPgwuq6zYP78EbPRJiIm1ihZYqSTA4CWlhaOHzvGgQMHWDFKM58dYf6Nb0A4nHGfsM+HLghIioInEhm+w+TJsHjxEBGYMSOnqiAYokj9/f32yr8YX6skSXi9XtwuF7FYjGgshqooBEMhIpEILqcTp8tVkDaAQH469QODg7hdruJWKkXCkZzSWKZBOjmQKl8MDg7y0qZNqIrCFVdcgS9yMjMxmH0lVbd8C0FyoltSxROMHIBRayGZHGiDAdSuw8h18+1tuqbx9/M+yrae7QwkhgIYv7DzK6yuW0mFowjSOMqJpFzEQNc0AoEAzWNcotfWO9A00t9gl9vNjOZmpk2fTn9/P30DAwz299PZ2cmpU6cAqKmpsUtQV1VUpPY1K8jQrA9h1T6QZBmfmY6YTbQoLwh5lIQvAKIo4vV4CIXDRqVWWR5x7LHdjyNkplmuSkmSUhYd4UiEo0ePMm/ePMOl8ldyMLFgkQNN02wtd4fTybz589m3fz8tLS12nn3eHTnT6jgLMQh5vaiShKBp+LKJEa1bB3ffnd+1TUhmHXPJ1BYvGKZwkZXu6fV6cbvdxMxCJ4qqokajhp9Olg2iMEIQUerpc/v1g6OsklkMnA4HIYwAoZQa7SVEoVN1V1cXW7Zswe12c/nll+Pob6PnwXeix4Mp+zlnbaDq1m8jyIZZ0ho0J5rlAECqmYtYOQVtYKhSZ/zo8ynkQANqXJP55OKP8dldX7K3d0Q6+Obe/+DLF3++sIuORl/CRCkno2T09PQQi8dpHCOXgoVkGeVs02A8kUASRepqamg2JX0j4bBRLKqz0y4W5Xa7aWhooK62lknV1XZwYXI6ojNNUyA5za9QWOcvJWRZxu1yEY3FiEYiSKKYNWvN6gv5WDDiVgVLWU6ZG1oPHMDhcNjB769Gy8EEqJdaPiQHiCQPqLPnzMHjdrO/dUjStajOaEXzZ9DKjjmdJEwfkz8UQsx2/uPHC78uGIVIJMmYzAupHWC+1OkTiyiKeNxuJlVVUWH6H3VdR0kkCIXD9PX10T8wQDQWy5laZOlA5MJAf/+YuhTAaJfD1Dy3TKClRKH959SpU7z44otMmjSJDRs24Og/Ss9v/gY9Npiyn3PWFVTd9t82MSjmWmMJQRBwzboiZVvsxAvo2lCcjRX0eseM27isfl3Kvr869hu2nd9e6EWLa+wYoP30adxuN9VpgcLlhmjF2WSJb9J1nXgsNix90eP10jxrFmvXrOGmm29m3bp1NDY20tXdzfZXXuHpZ55h+44dnDx1ingsht/ny64lkJzVUADKRXpdLhcOWUYHwuFw1gWhPVeYRayyvW2KothjYbIbpn9wkFOnTjF//nx7u6vMAmzlwAVNDmBI5zqRSNhpPJIksXDRItrb2+np7QUK6JBpHUoA+OpX4Q1vgPnzoaICVZKImDECIwYgnjhRyNexITscOBwOZIeDvnxqJZhBQyNNK1ZkcUVFBdXV1SnV0KyS0r19fQwODhpRzllUE7M3wxByGWtyAIbVqFzkIF/ous7BgwfZvn0706dP59JLL4XuQ5mJQfPlVN32HQTZlX4SYOxkfwuFc3YqOdDDPSiBfUP/mwOqJEl8ZeUX8Eipbp7P7vgisTR56HKjHBOSrmmcOX2aqVOnlld8KwNE0ySerQBTwnx3BUEYNrFrmkY0GiUcCuHxepk9ezaXXHIJa9euZf78+TgdDo4ePcoLL7zA008/za5duwgEAsOUDW0UoD9RbtrrNks7a7pONJObN72dOawfltXAaQqtWcfu27cPj8fDrObmoeu+CsnBBe1WAIMtxs3UPUsfWwBmTp/OkcOH2b9vH5etX1/8BaxOcfvtcPvt6JpG8MgROHwYx+HDuPbuzX18OGxoHRTYeTRVxWemNAZDIaonTcqqbAZktBaMBNGMNna73aiqSjyRIGbGJsQSCWKJhJEb7XTiMsmKVd462wsVDoVQNG1cyIHL6TTEUcrgWshnUNM0jZ07d3Ly5EkWLVrE/PnzUTpb6f7N36SIBwE4m9dTdft3hxODpGtNRLcCgFQ9A2lyM2rPCXtb/NgLOKYsB7BdfKIgMN03jY8t/hBf2/Mv9r7Hgyf4zoHv8/ElH8nreiWZUMpgjek8f55oLMb0cchvlyQJBAHNjAlI7yvp6YuappEwY3JUU6wIAF1HdjjwOBxUVVbSUF8PGHFc57u66OjooCMQ4Pjx4wiiSH1dnZEq2diYWik2D20ESAoMLVP2iCgIRqEms7JtLBZLMfknWwqsmieZFkCaptmqiLbVQNPo6u4mEAiwauVKOyVTEIRXpeXgNUEOBgcHjQqAyUEoosjixYvZvGULnR0d1I/CJ5jsrwyFw+gNDYhNTXhvvtlQPTxwwFBK3LcPzp5NPbihAYrwR2mahsvlIqEoJBSFgcFBqidNSt1J19EozQpTkiQ8ZjaDqijEzFRI1dRJj8ViRgqVSRSkpNrryRgcNFbH40EOBFPkRdd1YvF4SWstjBTtbhdP6upi1apVzJgxg0TnAbp//Tfo0f6UfR0zL6XqtszEACjaXDuWcM7aQCSZHJx4Ee+694AgDWv/21rewqPtT7Cnd4hI/+jQT7lh2vUsnLRg5ItNUDfL6fZ2fF4vk8bYpQBDAYkIRvEgIWnhoCgKuqoaP7pRqEg1JY2teCSnw4HD6cwqiiRJklExsqEBli0jGAwSMDMg9u7bx549e/D5/TSa9R9qamuNmCWTqFhlj9ORTHzL5T6TJAm3x0MkEiEaiw0FE6bFruQSQbLqQkhJctMasG//fiorK5k2fbpddwb+ajmYkHA4HIiiaDC95MhdXaepqYmayZPZu3cvG2tri67iZU0M0WjUZpN2Pq3TCcuXGz9gqCbu3QsHDxoFjW65pahBXtM0BIzMhT7TzD+pqipl1V5ovYN8IckyXlnG6/WimOw7bq44VDM9UhRFZDOYMVlSdDAYRBZFvGmV6cYKTqfTWCGVmBzkQigcZvOmTUSjUdavX09tbS2JzoN0//pt6NG+1PbNuJSq27+H4MjetoluOQBwzb6CyI7/tf/X40GUMzsRp64EGLIwAZIg8bVVX+L2p9+Eohvvj6IrfHrH5/ntlfcjjyD2pJtqnhMJqqJw9swZZs2ZM27PSTR95qqm2VUcdV0nGAzaZeIFUbR977Ik4UiyABYCv9/P3LlzmTt3LoqiGFaFQIAzZ84YxaJkmbq6OiMDor5+xPe/nKmlYLgCLNXUcCSC3+dDMmXWhxqR+R5Y6o/WeSycPXOG7q4uLr3sstSyzoLw12yFiQjLhx6JREgkEra5zcKy5ct59s9/ZtfOnVy8cmXR+f1KImG/cF6zo2VETQ1s3Gj8FAnNVA9DFKmoqGAwGESJxwmaqoNjOXnIsowsy3iTNNTjiQSKqpJQVaKmMpnT5cLlcDA4OIhvjMSPMsHpcBAWBBRNQ1HVkpVxzrbK6e3tZfPmzYiSxIYNG6ioqCBx/hA9v34reqQ3tW0z1lL9hh+gS7kHEjtgqiQtLw/Eigbk+gUonQftbbFjz+OacrHxeVrfnF81j/cseBffOfB9e9u+3lZ+duQXvGv+O3JfrAT9vNTvSkdnJ/FEYlxcChYkUSQhCHYsQMJ0CwZDIdB1PKb/3e102ouoUkCWZZoaGw35b4zU5UAgQGdHB7t37bI1ThrMfaonTx6WCTUWY5fH7UZTVbuKo8/nS+mXVtxGumVKSXLVWPEaAwMDbN+xg8amJupN14sFp9NZluyocuOCJweATQ5iioI7bTKonjSJlatW8fLLL1NplkktFLqm2SmFzjHI39fNwEJREBAlCb/fj9LbS//gYNlLIP9/9t48TI6rPBd/T+29z75ImpFGluRFkq3VljdZArMlNwuEBEggCZdcchOSkJWQEMKShCwkIZebjcCPJCyB3AC5gYsNxtiWN1m2bMuSLGvfl9l7Znqr/fz+qHNqqvfqnp6RhPt9Hj2SqrurqqurznnP973f+1UDIcRrpsKqHEzT9Gyadd0zXMrnUQCQnp5GLBKBbdtXxYyIEOIZIrG0iLSIxjRXrlzBs889h1QyiTvvvNNLA00cx/RX3wm3lBgM3YHOt/wTiByp2572ekgrAF5qIUgOrPPPQDGZCKzCYPlLN70X37n4EE5lTvvb/teRv8Prlr8WK+PlFUHXMi6cP49UKrVkLqCloMwV0DAM6LrujUmEeFE9AEokglQyuSSTVjKRQDKRwLq1a2HZNsbHxzE6OoqLFy7g5IkTkCQJvX196Ovrw+Dg4JKF4AnxmjRlcznP4dEwio/N3R9LPlcqRDRME08//TSikQi2bds23zyKPafXYxkj8CqoVgDmfxzTsvyBlw+rlFIMDw3hxhtvxMGDB3HlypXaO6swIOu67hlhSFJo962FwGbfgYcKE4kEIAgwDcPP6V9N8GhNMpFAV1fXfKkTpZjLZiEpCuYyGa/qgYU4qyqdFwEKq1qwGikBbRAnT53CM888g/7+ftx7770eMZg8jul/r0AMVmxH5098FoISLWrAVA3XQ+QAAJSRewAyP8RQW4d18TkA5ZEDAFBFBZ/Y+jGQwDfTHR0ffv5j13T5Zikc28aVK1ewYmhoyY5JmaCwUCggk81idm7Oa49sml6lFlvlyrIMLRpFMh6/KqtZWZKwfNkybN2yBW9605uwe/durF23Drph4MCBA3jggQfwyCOP4OXDhzE1NdW8kVJIcNE1AWCaZtHxKj1fjuP4YxV3Xd23dy9s28add93lL3iC97dyHeoNgFdJ5EBkuTSL9RKXeYMRXvMPYP369chkMnj22Wexa9cupFKpyjsruVmp6/q90COa1pRLXqOgrMsZvwEFQpBKJpFOpzE9M+OFx66RMJYgCFBVFaqqwrZtOLaNGAtnUubHblkWSKEAwnQKsiRBkuWGbKEbgcJsXR3HaVkEg98VlFK/edKaNWuwceNGj4hMnsD0V98FNz9dfC4rtqPzrZ+DoLAcbAiV9vWgOQAAIdoJefBWWJcP+NusM08AfVuqemFs6dmMd97wDnzx1L/52/ZO7MPXzn4DPznyE2XvvxZJw+XLl+G47qJ24aOsT4ht2/4fLuLj5kSCKEJiIe14IuGZHjGvj2vFQryjowMdnZ246cYbYZgmxsbHMTY6irPnzuHI0aNesyjWKKq/v39RVuGqovjdI8uiByi+x4KmR0QQ8MILL2AqncY999wzr6MoSUdcr5GDa+MOWQKoquoJ0RynyDGMBP7evm0b9uzZg6effhqvec1rQv2oPGogiaLXWIOpfRcT3HiDMKElpRTJRALZTAaGZSE9M4Purq5FPYew4MIzSqmXqwOQ6uhARyoFx3Fg2TZsy4LFFNSG48A0TU/QIwiQ2WpHkqSWEh5FlmHAWy20ZKBkg/Vz+/fjyuXLuG3TJtywejUAwJ46hel/fxfcfHELb3n5VkYMYkXbw4qxrnVyAHidGoPkwL3yIoiZq1m6+5sb3o+HLz+CK4VRf9ufHvxL3DewE32R3kU711Yp5C9cuICuzs6Wim6DZID/HTxXSqn/vHAdEKUUc/AEiYSQiqZH1xJURcHQihUYXrECjutiipUFjo6O4sLFiwC8NDC3de7s6GjNM0C9VtL5QgGmaUJRVS9lWzLe8N4sgOeZcurkSZw7exZbt25Fd3f1jqLXKzm4NpaXSwD+Axk1QsmSJOHOu+6C7TjYu3dv3VB3MGqwlKUqbiBy4A8QhKCjowOiIGBubm5RQ+aNgj/Ahmn6DyJfvUQ0zTNc6uhAIpFAJBKBJIqg8LwcuIBqdnYWs3NzyOfzXnpogYO4Ekw1tWBCMAwDjz/+OMbGxnDnnXcGiMFpTH31nXBzk0Xvl5dvQddb/78yYgDUn/SDv/m1DmXlnYAQoOOuDVx+rqaLZlyOlVkoZ6wMPn7gE0XbuKd/y9CC62kYBsbGxxecUuBkwDAM5PJ5zGUyyOZy0FnbdZdN+LIsQ4tEkEgkvOcnGvXMvngpo7czWKbpLyquqe6AJZEyToxFQUBXVxduvvlm7N69Gz/0pjdh29atiMXjOHXqFB577DE88MAD2L9/Py5evOiv6Bs+PDuezCKVFIBplBtwcR8IwIuGTk5M4ODBg1i7bh2GShxy3RLL5eutVTPHqyZywPPMvG0vryYoTQNEIxHcuWMHHt+zBy+++CK21qhgCEYNZP7AEQLSAq/3WnAcp2KZYjQWg5rJwNV1TKfTvmHJtQJD10EBaBWYNB/oZFkGIhG/2xmPKjhsxeQ4DmAYXpMnXnrFVkqNrCJkZi/rMDOTsF3oKmFubg5PPPkkXMfBfTt3ooP5TdjTZxgxmCg+9rJNHjFQq4hH66QWrhfNAQAQNQ55xVZY55/xt9GLz0C45Ydqfm7X4E78yNAP41sXvu1v++6l7+GhSw/j9cvv9/ZNCGgLCVIryueuXL4M6rpYsXx5w591Xde/123b9oXHwTSSFIgMCHUqbYIEgVdSLWWzs1Co5LAKVoYtCKBsgaZpGoaHhzE8PAyXshbUo6MYGx/H+QsXQOA1i+rv78fAwACSyWQ4kh14T2n0oNTVkpMDwzCw79ln0T8wgFtuuaVsv2LJca9HjwPgVUQOuEjOtCzYvKQRgVrUALq7uuYrGBIJrLvxxrL91YoaLKaBB4U3oYHlFEvR2dUFc3QUuVwO+UJhSQSS9cD7Lei67kcOwnyGVz8A845kFqtNdhlRcBwHOrwBRQzoFaqZtwShKgooK71slhxMTEzgmWeegaKquOvee/1Qsj19lhGD8aL3y4O3oesn/xmCWt0Eqt50dz1FDgDP8yBIDjBxBDDmAKWn5uc+tOl38eTYU0ibM/62j734J9jRezuSytUrh62FCxcuoKe3N5QjHr+nuRaHrzhdwDcLEiUJEjPpEZtIfwnM/dBmXgfXctQgCIEQPx1SOpYKhKC7uxvd3d1Yv349CoWC59Q4NoZjx4/j5SNHoGkaBphOoa9KC2pBEIr2LcsyxID2gEcX+UKFRw+ee/ZZRKNRbN++vYyAVCIkbXJwHUBVVZjZLEzLmn94A6LEIIaHhpDJZHDo0CEkEgkMLltW9HrFqAEHIRDQQKfHBsDdzfymTyVQFAXRWAxOLofp6WlEm1jBLAoEAYauQ2L6gcY/LkBh3SEBJiZ0HFiM7PFVl23bgK57hIR1XpOYi5koikV5REVRoLO215SJJBvB+fPn8cILL6Cnpwfbtm3zByA7fRZTX/0ZuNmxovfLg7eh66f+pSYx8FHLj/46ihwAgDx8B4ikgdre6hXUhXX+Kcjrf6zm57rVLnxo0wfx289+0N82rk/gzw/9Ff5k68dafp4LvZ6FfB7jExPYUtIKnlIKx3V9QuuyMkN/fGCkgBLiaZcYEZBKPFmaAREET1cjilBa6GXQCvDOh9XAW07XW2xFIhGsWrUKq1atgksppiYnvajC2BjOnjvnk4l+5taYSCSq7rM0esDPw2AN5w4fOgTbcXDvvfdWHceC84msKE2b611tvOrIwawgeFahzFWtVh+AW265BZlMBvuefRa7d+/2KxiuhtaAwiMbvMtaLSV/RyqFPOtdPjc3h+RVNB3iIPA0B60S5/DJXg2QhSJxo+vCoRS244C3WSIAwAZgURQhiCJc5iNvW1Y5yasC3jzplVdewapVq7Bp0yZ/oLHT57yIQSkxGNhYN2IQBCHV+8g3VK1QjWTUIh8VdzPfzTPMcf2BnxAQWYM8vAPm6cf8160zTwJ1yAEA/OjQD+Nb57+NPaNP+Nv+z5mv40eGfhh39G4Pff5LgYsXL0IQBPT19UHX9XkSwNIDwXQjv1/EQJqgFWSgFJyQEEGomM67amDp19pvmb/XeJ+CehAIQW9vL3p7e7Fx40bk83mMsv4PR195BYcPH0Y0EvFEjf396O3tLZrkS6MHnKDYto0TJ09iOp3Gvffei0glsSlPhQS+1zUVqWkQrypy4Kt4mYNfUf9xlK8cCIBtW7f6FQy7d++Gqqq1owb+h1sbPeAPhssGmForAFGSkEqlkJ6ZQXp2FvGrVNNcCtM0F41M+R7nbADkKQfHdb0cLhuk4bowKQWxLM8UxjRhGgZ0w/BqvwORBiEo6mKgrosXWPOk9evXYx0zzaKUwp457xGDzGjRZ+T+DV7EQGsdSSvNl1Z5U/Hf1V4PA0L8/vZhU2bcqx/wUgtBcuCMvwKaG4cQ758/l0B58fxhCT6+5Q/xQw/9GHJ23t/+oec/gm/d/3VoYgvvpwYmZn/idxzYLCpw7tw5dHd2+guHIBEQBQFCgJSKLKq12Kkh07JA4GlsroUxAGgy7crSLI1+LhqNYvXICFaPjMB1XUyyqMIoaxYlCAJ6enp8rUIsFiuKHvC29ZcmJ3H50iVs2bwZXVUqwYRS+2V4OrDrFa8qcgB4ylFD12EFSthqRQ94BcMjjzyCvXv34p577gkfNWiRODHYapkrjut5ACQTCeSyWeimiXQ6XbPUZqlgGMaSaSCCDVE4uAI8SBxc1/W7dhqK4q92vb+IP4iLogjXdbF//36k02ls374dQ0yRTl0X9uxFz/kwU2yiJfWvR9fb/hWCVsU3o0Fwjwv2ha7ZpkOlkJZvBlHioGbW36afehyRW986/6Yq4rTl0UH81sZfx8dfnK9WOJ+7gE8f+Xt8YONvLuZpg7JonR1IBxSlBNh5FwoFzMzOYsOGDf7kz8mAKAhL3rIZ8KJhYJGxa0mIuBA9Fu+T0+xn+/r60N/fj1tZsyjeVfLll1/GoUOHEIvFMDAw4Ltb2raNmZkZnD59GjesXl1WmRBEpe91NZputQqvPnKgqigIgt8gKQyikQjuuusu7NmzB8/t34+b1q3zzHrChIxCmNrUQlk/9rBiNFbaODk5iVmWWliIIr8V0AuFq/qwBNXeHIl4HKIowjBNyCzXyysjqOPAYj0YCoUCDh48CNM0cetttyHV0YF8Pu+RhswVpP/9nXDnijtuSn03o/unqhODsla6ATEagn+XfCb4fa4XEFGGNHwnrJPf87eZp/cUk4MK4N/2Z1a/Hd869228OP2S/9o/n/gCfmjFG7Gx85b554FHNhq8NjxlZ9r2vNiVRQSKfoUA2eeaFlEQcOnSJYiiiFUjI9eMwZCu6wDT6lwz4tUGxsNKZ8xLuJuOyAaiD/F4HPF4HDfccANs2/ajClcuX8apU6cgShI0TUNe19HV1YVb1q+vuluhUhqQEHRdA4uyZnFt3MVLCFVVQUURDqv7FQKrxFqMtquzE1u3bsW+fftgmSa2b9sW6nh+288mbuaqD0DIfUWiUaiq6hmKTE977VWvIgzmPhY2f7hUUFXVLw0NRjb4SnF6ehovPP88RFHE1q1bEYlEPCGkbcOZuwzjm+8FssXEQOheB+1HPgMDKgTT9POngiBAJMT3a694X9QYQINljNcTOQAAceXdReTAmT4DZ+YCxI76ngACEfAn2z6OH3v4rbBcr6TMhYsPvfARfH33v0EOeCnwVsUAW/lTCsome0opXNf1tpX8DQCmbRcN9NR156MAjAxwUhD0Ebh86RIGBgauGWJgsXbqYFU/za62W44Gx8EyAg342pemIhA1IsQDAwMYGBgApRSZbBZHjx7F6JUroJRi/YYNNdMypakwUIp4IgHpGorYNIpr405eQhBCoCgKHOY5HnQLq3fD9fX24rZNm/Dy4cN4eu9e3HXnnZWFKaXHhNfru5Gh3K2S2/Unh5ATQ0dnJwzDQD6fv6qljZRS6IbhGSBh4fXkrYQiyyjouidkDAxGgiBgbGwMzz33HFKpFHbs2AFVUTwdg+PAnLmIwv/7xTJiQLrWQHzT38IkGsxCofyAjCQIhIAIghd2Ztv434IgVCQJNLCP6w2k52ZA6wACbarNU3sQ2frOUJ9fm7wBv3TTe/HpI3/nbzs6ewz/dPTz+IU17y6e9PmEX5rWY1UBhEUXqON4Xgms3FYKpAIEQYAoSTUNmwDP52Iuk6m5slxSsGeNe4pYJW6KVwtNTehVrr3rumWliKH2FeL9hBBMTkzg4oULiCcS6BsYQKxGQ7tqY/H1nFIAXoXkAPB0Bzmm5g+SA1+RXeVztm2ju7sbd911F57fvx+PPPoo7r77bt/0piqYOLERIVerHmZFURCLx+Fks5ienoY2OHhVhEm8FIiXkF5L0QOuFDeZ/oBXVJw8eRKHDh7E8hUrsHXrVl/DIIoikBtH9hv/HXTuUtG+xJ51iL/l84DW4TtZuixHzSctsNI2B97AYtUIg5eSBt5gRwymxphY0Fd2h6woWGpQAGT5DtBT3/G3GWf2QN30Dv91YP45RIXV/c8sfxu+ff5BnMrOd278h+OfxT0dd2EoWh6B4GFogRAQUfT+LiFnhBEBAvgW343gwoULkCXpmjEdM00TruOA4NoiB26d0sVKqPZ+gbkZNoQQ1yDYG2XF8uWIxGIQZbnM2Kj0HCvtuZpw8XrBq5IcaJqGLCFFfbmB2sJEwBs4CLwffdfu3di7dy8ee+wx3HH77WU+CKUIu1qm8MqP6q0MG3nIOjo6kMvlYJkmMtksUlehtNFglqRcxHmtRQ9URfHKHk0TqqLg4KFDOHXyJNauW4cN69cX/R5OZhQT//bTcGbOF+1D7F6Lzp/6AoRo9UGBq/2Dq9xguDs4GQIstWHb/vFtx0G+UJgXuVW4Z/372ftP8TY2ORa9VuF1lOyDu8NZluX/lsFJnP8/uFIvqmygFLlCAW7PJmgBcuDOXcHsuQMgXTf47wPgrea5Qj2wnYDg92/6AH5h/y+BH8l0TfzpsU/is9v/DqIkzxMAUYQANCYGZFEFfty6kyqluHjxIpYvXw5yLdSzU+r/Pqqm+aTnqpODEKWLDe+S7TfMdwujU7AtC8/u34/RK1dwyy23oLOrC5NTU5AVpchVtxSV9irJMhLVmvc1gRUrVuDSpUvYvXs3HnnkkZrvPXz4MDZt2gTHcfCXf/mX+K3f+q2mjvmqJAeSJIHIsic4s+0yJW+l6IHDhEmEEM9YR5Jw386deG7/fjz19NPYtGkT1txwQ/VJPVAKVgvcf6Hq6008YIIgeKWN6TRmZmYQj0abcltbCAzDAAgpTuNcQ9EDWZaBQgG6YeDwoUMYHRvDps2bMbJqVZHYzc6MYfIrPw1n5lzR58XuNXWJATA/+daL3vCJ1WbObDxvTpi7p98YhoXJa03S7MDBnTeclsgVCl5qSNd990k+gYcC9VzmaHwIjtYDkh/3wvsAyIW9EDpXzxMWFmnj9r98Zc+/812JHXjX9E/jC6e/7O/+hfQBfGv8Qbx95Ccb+l6l4KS11KLaJymuW2TZPD09jWw+j81L2J65FniEjhACVZaLiB4PxV8VLCI5qTeOUC70rYFCoYCnn34a2WwWO3bsQDQaRUHXoSoKBEJgOw4qyc+rpTZSLU4p3HHHHfjGN76BF154oaIOI4jf/M3fhOM4uOGGG/Crv/qrTR/zVUkOgPmSRruEHFSLHlgshCsFhEiiJOGOO+7A4cOHceCll5DJZLDpttuqrlTqrZbd0gG9CjhJaQTB0saZ2dklL200DAOgtKj881qKHojMEOnAiy8in8/jzjvvxEB/f9Gk62THMfnVn4GTPlv82e4bPGIQa9015av7UoGbzBpFiaKIRKKCoVJgtU5puekOf90P29d7jf1bYve0wNpqByMSfAIiqB2tcBhpUW7YCfPw1+cn3svPInXvL4GQ8BPXr6//FXx/9FFcys/rPf7y8N9g98BO9EcWILyt8vwHLauDQsQL589D0zT0XAOqdG7OxrUGvnaG/TYupddfp70QBJTWcVGsN1am02ns3bsXBMB9990HWZbnWzMril8CXfHYVY7Z2WJysGPHDnzjG9/A7Owsjh8/jhsrWPoDwLe+9S1873ue6Pcv/uIvFmTCdN3dK62CpmlwBcFrY1oalkX5pMXzu7Isl5WTbdy4EVs2b8bp06fx9NNPV++IyFZElRBWZ9D0ZEoIOjo7IQkCZufmmu5i1ix0XfcjLkE0LCpaBFBKMTM7i3379sE0TWzZuhX9nBgwONkJTH3lZ+BMnyn6rNR1Azp+6gsQYrX7BDSFwKoveK7eSzUiVDyPHrCN9l34ZBkys6FWVBWqqkLTNO9PJIJINIpoNIpoLIZYLIZ4LIZ4PO73jIhGo4jF44ix16PRKCKRCCJsH6qmQWX75XbXsiz7Ij9RFKHdsKvolN38FOzRl0NfFgogKkXxsU0fLtqetbP42IFPLP79xEiO4zi4cOkShoaGvD4nV/k+NkzTq65gFQocAr+PrsL5LVj7ElJAWHsX1fdx+coVPPH441BVFbt270Y0FvPHRomJUUVmblRKEGoJVTtbTBZ37Njh/3v//v0V32NZFn77t38bALBz50685S1vWdAxX7XkQFVVCGyi56ZGPir86Hbghqn0+sjICO6++25MTE7iscceQz6fL3tPtX0D8G2RQ6OJhy4SiUDVNIiiiOnp6YY/vxAYul7VOvlqGMQA8C2pR8fG8Nhjj0FRFGzbvh2xWMyPFAGAk5vE1Fd+Bvb06aLPi10j6H7HlyDGF0+Idu3JCptDsJRO7h6B1Lmy6HXz9J7wO2OD/T39d+HHh3+06KVHRh/Ddy491PR5NnK9L166BNM0sXrVKj/UK/CUyBJPxNR1/a6nqqYVT5js+boa5YwLdohtYJyrNFlXE+dSSnHixAk8s3cvevr6sPO++3z3W2De9ph7owAojx5UObd4PN5y2+Rt27b55/Hcc89VfM/f/u3f4vjx4yCE4FOf+tSCj/mqJQeEEMRZWNaoEj3g8PUGQM1cfX9/P3bv3g3btvHIo49WnoDZABKEW0dnEESjpYyl6OjogEgI8oVCdQKzCNBNs6q3+2J2sSwFj9C4rHLg3LlzePrpp9Hd1YX7du5EMpHw+kAwUZdHDN4Je/pU0X7EzlXoefuXPWKwmPnUCud/PcK/b9lEpYzcV/S6cfZpUCeEMRn77Tg+uPG30a0W6zz++OCfIW3MLOyEQ+D06dPo6+srKnPz0zIlFSSLDa7pkQShTEMlsPNYjEZw9bDQb98IyaIoXmhUG1dcSnHgwAEcOnQIa9etw4477oAoijAty+tDQQg0VfWcMANRmCA5qDVmJetVrzWBSCSCW2+9FUBlcjA1NYWPf/zjAICf/dmfxZYtWxZ8zFctOQCAaDwOIklwWXe/IIIPNV9FipLk3ew1bthkMondu3YhFo1iz549uHTpUvmbuFocxXnhpQAvbRQFAdPp9JKtJgxdr9rGlqB2r4iFgl9jbpfsUs8Y58iRI9i/fz9WDg/jzjvvhCTLfnTDsixY2UlMffWdsKdOFO1P7FyJnnd8GWLCy20v6ZAbyH1fT+D3Gf+dldU7i16nxhysywfq7qd0JdihpPAHt36w6D1TxjT+/PBfLfCMa2NmZgbT09NYvXp17Tey34tHFBaDSLqO4y9wKj1jvGLhaqc9mkKD9znXH3j/qaAdsyw8/dRTOHv2LDZt3oz1rBKJR14AptdgNs2E0vluq0FyUOMcOhaphJGnFg4cOFAWxfjIRz6CmZkZxGIxfOITn6j08YbxqiYHhBBorDEGXylWAtcbFPViqAFV03DvPfdg2bJleOaZZ3Ds2LHyG5Wpnxtm8yUq6mbQ0dEBSRRhmSbmMpkF7Ck89BppBY5WDl2lJYNBEuS6Lp5//nkcPXoUG9avx6bNm/0VhyiKnqtZIe0Rg8kSYtAx7EUMEgP+cZZymubX6PqiBvDV5DxqJiYHIPUWi6rCpBYq3SNvXP567B4ojkT83/PfxJNjTzd+oiEno9NnziCiaRgYGKi/SwQ8VFjkkABAi4g5H7skUfQrSYrA0wpLSQ5aRF4bPWNfUE7K7YzzuRwe27MH0+k07r77bqxatcp/zTAMuEzoqyiKV2LMIsayoviRAof5lFSLGkis6d1igJODfD6Pl1+e1+gcOXIEn/nMZwAAH/jAB7CsTll9WLyqyQEARFhqwbbtiv0WKMrJQRiIkoTt27fjxhtvxOHDh/H8Cy8UTVAETegMgJawf0EQkEomIYoiZmdnqwsoWwi9UKjZqKoVxj1cXR+MDpReLcs08eSTT+LSpUu4/fbbse7GG8uOqzg56P/vf8ItjRh0DHsRg+Rg8MQXdM51UUGUeD2CT0zBsK86Uhw9MM8/A2rrNfdTaVAmhOAjmz6EmFTcAe8jB/6oqJNjKIR4vizLwoULF7BqZKSpezaYYlnoAOw6TlGFQiUIgL86XjK0iIg0c+dTlKcjpqen8ehjj8G2bey67z709Pb6rznM3wRgPiyE+CtzQphrJrtvHdv2xKdVfvdUKrVoUdCgKDGYWvit3/ot2LaNFStW+ILEVuBVTw5kVYXCJq2CXjww8V7efHXYqG86IQTr16/Htm3bcO7cOex57DHMzs4CYM5tonjVVoCJRMITzVCKyampRT0WpRS6aVZNK3A0ey14BIbrCKoNS3zlkMlkcM8992DFihVl73Hyacx87d2g0yeLtoupIXS/48sQkyWsfAlWY8Hrcr1GDvxuooFBVV59LxAoX6RWAeaFykps/z1Vtg9E+vE7G369aNul/OUiq+UwCHNdz1+4AMe2i1aezYJrmfy0Q4PQdd0fm6qNT3yyutpVQUuFoAmYSymOHz+Oxx9/HNFYDLt37fK1Zhw6E3LKgWtol6TBuAGS4zg1r+NiWiavXbvWd13kFQsPPPAAvvMdz1TsE5/4hF9V1Aq86skBAESYoMhmgpQgbNsGKJ3XGwANTwjDw8PYuXMnLNvG97//fRw+fBgmi0bUc2UsRSWDpqZACHp7eiAKAnRdx8zMTCv2WhEmK7GqtrKZP6XGV8mcFNQb+PjKgVKK++67r6LPg5NPY/Kr74Q9cbRou5hage53fBlSKTFYIpR2bmQbr8q5NItSQSIAiNEuyAMbi95nnn685j5qrX5/atVbsa17a9G2L576NxycPhT+REOUxZ05dQqDg4P1W7Y3gKB1e1h9gGPbMC2rZtQAYGZSWJq0wtW27faFgoQgnU7j0UceweHDh7F69Wrce889UEquE2+gRoCi39NlrqRiCTmodw1bXcJYijvuuAOAFzmwbdt3P9y2bRve+c5wPUrCok0OAMia5nfP0ku0B7ySoMg6s4kHoLu7G6/ZvRs33XQTjr7yCr7/8MOYGB8vNlUJiWZMkCpBkmXP+0AUMZ1O19RdLAS+WKoOOQDCGyO5LP8XZjV0+fJlPPnEE0jE49i1axfiFZqouIUZTH71XbDGjhSfT3wQnW/7IqTU8or7pksxGFYKpS/+UVsKHjkoLVstFSaaF56Da2Qr7kOo86wIRMAfbf5DKMJ8GZkLFx968aMw3dakzqampjCbyWD1DTe0ZH/VQEJEEnTDAAFb8dawbg6KnxcTS1l1VA3cVfSlgwfx/UceAQWwa/dubNi40UsHFL95vnRRVYted1hvCr6Nj/9+f5QKiEaj0Ba5sR1PLRw6dAh/8zd/g6NHvYXMpz71qZYTszY5AEBk2WfepmkWscNKpYMEzT1ooiThpptuwu7XvhaKquLxJ57AC/v3w7Ks0IN9qx+9RCKBSCQCURQxMTm5KNUL/AEMs9Ligq1SBAWGYUkBpRQnT5zAM888g4HBQdxz770V64/dwiwmvvouWGPFRjwkMQj1Rz4DW+st+0zgIHXPoyUIuBhej/AFiSXblZV3AyQQDnctWOefqbyPEMcZSazC+276n0XbTsydxOeOf76Bs62O02fOIB6Po7e3xj3RIvgpB5STQdu2YfOoQZ3nyu/wicX1OlgMYtDohDd65QoefvhhnDl1Chs3bsRrdu+u2hjPME3fUro08sLFiDxy4Dc+q3HsVlsmVwInB6Zp4vd///cBAG9961txzz33tPxYbXIA7+GRNc3LN1Hql7RwVLw9m2RpLqVIJZO4b+dObN60CRcuXsT3vvc9XLx0qbGBv4UssauzE7IkwbLtRTFHMllEohljEF9kWEVgWPVzrouDBw/i4KFDuPHGG7F9+/aKQiFXn8PEV38W1ujhou1ichm6fuqLEFIrvLRIw2feQjDXQyCgObiO0grBct3SyIGgxSGvKE4FGDVSC2Hw39f+LG5OFVdC/MOxz+LU3OkqnwgH3TBw6eJFjIyMLGg/jYJfuyBJ8Fe8suxPYLXAP7toK/vFuh9Dnq9hGNj37LN4au9exGIxvPb++7F23bqq73cdZ750kYkQg3BYGaNPDlD/2nUuQRfGO+64w3/2LcuCqqr4i7/4i0U5VpscMAiBGvd6pkjNIpgzJYRgZGQEr3vd69Dd3Y19+/bh6b17UahjTLRQE6RKECUJXV1dkAUBc5kMci02R+I5PbnEnKUauPYgaFbU6PGe2bcPp0+fxmZWy1zpennE4F2wRg8WbRcTA+j96X+D1rvaGxwo9dXMVwv+3Xgdag6Cv18lgqauvrfo/9bll+AWZmrupxZkQcYfbf4ogrUAlmvhD178GFxaex+1ruq5s2dBCMHKlStrvGvxwO8B27LgsNbSYVJ1wPx4sWjkYJH2Wy9tRynF2TNn8N3vfhdjY2PYtnUr7r7nHt+YijfvKoVuGKDwhJyVxiXHcUCD6eQ65yEIwqKKETlSqRRuuukm//+/9mu/tmhktU0OGIgsQ5ZlCMxHm1sql95YZYN0A6ikFYhEIrjjjjtw1513YnZmBt996CGcOnmyag30Yj3ckUgEsXgckihicmrKaxPcIrhMIBSK0AQEhs0IqHRdx+OPP46JiQncddddVR8cV5/D5L//HKwrxcRAiPej96e/AqlzJQghXrSDkKrkYKkiCtfzg1pJjBiEMrwDkAKTHHVgnn1qQcfc0HkL3r32Z4u2vTh9AP92+t9rn2s1e3NKcfrMGawYGgpNchcDlFIUdN138avWRrgM1xGZDKLWWWczGTz+xBN4/oUXMDg4iNe/7nUYGh4uH7NLxhHbtv3y7WopGV5mzruB1kNyEUsYS9HX59m19/b24kMf+tCiHed6HnNaClGWQUSxdvQg4GzY6KNGKa3pa8Bv7lWrVuHAgQN4NFD2WAmLEVbu6uz0DUAmWljeGMYoiJMBJ2Dy1GhTprm5OTz22GMwDAP33Xcf+vsrd+dzjQwm//3nYZY48gnxPvT+9L9B6lrlb1NVFQTegFKxM9tSaQAWe+W3iPDLGKt1K5U1KEN3FG0zTi0stQAAv3LT/8RwrLiV8l8f+TQu569U/Uy1+3R8bAyFfH7JUwql0A3DcwEUBD8cTurkwgEUdcu83uG4Lo4ePYqHH34Y+Xwed999N7Zu21ZWicBRpGMKiBBVRalIrmhA1yRIUqgFwGK5Ipbiueeew549nlnYxz72sUUzXALa5KAIRJahMjcs13GKmu8Ewb3TG0G9HtyAVz2wedMm7Nq92yt7fPhhvPzyy8WT0mJODoSgu7sbkiCgUChgdm6uJbvlg1nV18EmvRISQYDQK6Px8XHs2bMHiixj165dVR8a18gyYvBi0XZODOTuYjtcQRA8hzR4/SFKsWS5f3Z9/F//Ohrog6m0alBKUgv2+MtwsuPz+2jiuBEpgo9vLu7cmLfz+NiBP2mYZJ06fRqpjo6Wt+JtBLZt+11kI4E8OQWLyix1A7OrcA9OTU/j0UcewZEjR7D6hhtw/2tfi74qi4AgeBTSNE04jgOBkKopGV6pQAQBcqXxp+R7i6KI/hBOma3ABz7wAQDAhg0b8N73vndRj9UmBwEIqgoEbppSYSJQHD0Ii3r12aXo6e7Ga1/7Wtxy8804fuwYHuZlj4EBbbEeS0VRkOrogCQImJ6ebklrZ5fSiiE3Hi2od23qfddg86SdO3ciUqWcyDWymPw/74Z56YWi7UKslxGDyuVpKkstWMxiteRL1Dm7FoGQosH/+qEG8wNzrbCrsnwriFLscGieeWL+P01e5x29d+CtK99ctG3P2BP4fxcfrPqZ0iPl8nmMjY5e1agBBTNpIwSyovil12VglQkVnSRbeUIN+rMsFJZl4aUDB/DYo48ChOC+XbuwcePGmo3wguDElJeqq6x/QiXYrFJBYHqjeujt71+SVNPnPvc5PPbYYwC8DoyhU0pNok0OAhAlCQLrcw9CvFByhehBw8ZFLOfeCCRBwI0334zX3n8/NE3DE088gf3PP78kVsfJRAKapkEgBBMTEwsufyqNmtCAvXG968gZfLX9Hnn5ZTz//PNYuXKl3zypElwz5xGDi8UOfEKspyYxADwhJX8QrZLowVIG+UujKtcL/KZLNZ4BIilQVt5VtM0MphYWMBH9zobfRK/aU7TtEwf/AmkjXflcSv5/9uxZiJKEoQqOmksF0zC8tCSPGtQCr24JXu9AlGHBWGJicOXyZXzv4Ydx5uxZbNi4Ebt37UJXZ2fD30UvFEAD/ROqwXEcgNkm10vnCYRg2SLdF/l8HidPnsSLL76Ij33sY/jlX/5lAMAv/uIv4r777luUYwbRJgclEFQVAheiAb4wsQwNGH40lSdmEYpEPI6d996LzZs349KlS3hm3z5cvnJlcd3OWHpBFEWYpon0At0Tg53S/LK2EDoE/3RQHpJ2XRf79+/H0WPHsGHDBmzatKkqiahKDKLdHjHoWVP3HFRGGCulFpYKpEIzmesB1QyQSqGsLh7w7OlTcGYuAljYpJZSkvjwbb9XtC1tpvGJQ/VLwFxKcebsWawcHg69Sm01XNct8gqpdx0BgPfkCPXeRrFExCCbzXpVXM88g0Q8jvvvvx9r166t6zdQCZZpwrQsCIRULF0MwmVphzLTJIbgJzu7u1tqWRzEl7/8ZaxduxZbtmzBRz/6UViWhdtvvx2f+tSnFuV4pWiTgxKIsgwETJEs0/Q6cZUgjIIVWJiAzG9GRAhWjYzg9a9/PTo7OvDKkSN46LvfxenTpyuL5FoAUZLQ3dUFmTVnyhcKTe+LV2mEsTmuhmCdsWmaePKJJ3D58mXccccdWLduXdV8tmvmMfkf74F5obgH+jwxWBvq+CqLSFDHqdiga8lwHZcy1qvHlwc3Qoh0FG0zQnRqDIPXL78fr1v22qJt37rwAB4ffbL8zYFre/nSJRi6jpF6rZkXEYVCAWCTVTXRXTVwfZRPLBc6sS/BfTczO4t9+/bhoYcewvjEBLZt24a77r4bUdZBt9Fv4Ni2dw3hOSHW65FjWhZcSmu6TnIsHxqq+55m8cILXvpTVVXceOON+PCHP4yHH364atq01WiTgwoQVRWCIPgh6tJQciNoBcfmj6OmaVi/YQNu37EDnV1dePHAATz44IM4ceJES0sPOaKxGKKxmFfeODnZ1DG4nelCVfaE1Rzncjns2bMHmWwW9957L5Yvr2xrDACuVcDUf7wH5vl9RduFSBd6f/rLkHurm6SUHV8Q5qMHQZvpJa4e8M2ElvSozYM7WwL1IwdEEKGsKhYmmqcfb1mFxodv+z0k5eKmOx858EfIWrmqnzl95gy6e3qQKGnWs1Tg3v/UdRFtdlLgUQT2d9NYZHvk6XQaT+/di+8//DCmpqZw22234U1vfCOGhoaKmik1Auq6yBcKnqdBoBqt1vt56latY9qW6uhAchGrBf7hH/7Ba1qn6zh69Cg+/vGPL+l92CYHFSCpKiBJXvSAEFiMSZZCILXzUfVeC4PSVsYCIYhHo9i6ZQve8PrXY3BwEIcOHcKDDz6Io0ePtlyT0MncE13XxWS6co62GnwToxCVGmEwNTWFPax50q5du/wOZZXgEYNfgFFixStEOhkxuLHKJ6uDDxbB+2FJeisE4A+S10nkoJ4BUilKey04c5dgT51qybn0ab34wIbfLNp2pTCKTx35dNE2fm1nMxlMTExg9VUSInJPAwBQNa1qmLtRNLOfRlOBjWBychJPPPkkHn3kEWTm5rBl61a8/g1vwMjq1UX3DEHji62CrvsWydFotO5z49g2XFZdVS/CsJhRg2sBbXJQBSJrxiSKIihQuSkR0wXUvOFa5GXOfyhe0+y4LmKxGLZs2YI3vOENWLFiBY6+8goeeOABvPzyy75l8YKPKwh+eWMul0M2W7kpTik4MQA8Nr5Qg5CLFy/iySeeQDKZxH333YdYLFb1vdTSMfW1/wHj3NNF2wWtAz3v+BLkvpuqfLI2JNbghmDeEnrJex1cZz4HYSoVgpD6boIQLy5NM0+1JrUAAD+x8s3Y0Xt70bZ/O/3veGHqwPwGds5nT5+GqqpYvuzqdOPUWdkiqeD93yiCIxTfZ0OfbzEZpQBGx8bw2J492LNnD4xCAdtvvx33338/Vq5cOd9mOvCZRnVWhq77i6VoJOJ/56rfhVIvKkgIFFmuec/GYjF0LXIHxquNNjmoAklV4QJ+fqdQKMAuye8HmWyl2zboKb9gMCIi8FLKwIMSjUZx26ZNeOMb34jVq1fj5IkTeODBB3Ho4EE/17YQqJqGRDIJSRAwMTlZMzpRyfI4jMdDrf0dO34czz77LJYtX46777mnplqbWjomv/Y/YJQ47BEthZ6f/jKU/luaOg8OnlrwhapLvYLnx7teIgcBp7kwIISUeR6YZ54ArWN7HBaEEHxs04ehCvOTLQXFh1/8GExn/je1bRvnzp/HqpUrF0fUVwe2bcNgq95IJNKS37tU0CqUVjTUQotIKQVw6fJlPPLII3jqySfhOg527NiB3a99LVasWFF+rV03lE9GKWzb9tN/EU0rEpNW24sgCP5nSqsZuLaLR3IHr2LlylKhTQ5qQI5EEIlEIMsyHNtGLpcrTxPwSbvC5yvZJS8EJFCiVEkkqWoaNmzYgDe+6U1Yt24dzpw9i+88+CBefOEF5HPV86ph0JFKQWNajGrdG33fgpJr5FLalEGL67o4cOAAXj58GOvWrcP2bduKyovKjm8bmPz6L8I4WywyI1oKve/40oKJAeANGoQQUNdtiQdEw2A12NcLwuoNglBLqhbc/CSc8aMtO6eV8WH82s2/XLTtVOY0/vH45wB4k8f5CxdgW9ZV8TbgngaEEKiKUje8HQoVnhk+Pi0F+XEpxYWLF/Hwww9j7969EEUR99xzD+7btQuDy5ZVHSd9v4EGQF3X71GjyHKZiLMSzeSCadM0AUrLPsPJgcTKIMMYL13vaJODGhCYUUYkEgEhBKZhFIvRUBKuK93BIoSAeSOgWsZBiqLg5ptvxpve+EbcfMstuHTpEh787nexf/9+ZDKZ5g7MyxsJgaHrZdbOfhqhwnemrhuqc1wQlmVh7zPP4OzZs9i8ZQs2bNhQJEoSS/3TOTE4U2y7S7Qket/+RSgDGxo6fjVwT/syYeISgVZpJHOtwglZqRCE2LkKYsdw0Taz5HddKH5uzTuxvqOYLH722P+H43Mn4FKKY8eOYdmKFYgsUplaLZiG4T1LvOyuBfCjjdXq9RfJUMdxXZw9exbfe+gh7Nu3D5qm4b777sPOnTvR29dX/15usHyXUop8Pu8br2kVRJykynXgZcqCKEIpIWQ8aixJEpatWLFkfRSuJn7wv+ECIAgCJE2DzNinbdvQdb3MzjioIA+umhdjhSeIYuh6d0mWceONN+KNb3oTbtu4EeNjY/jeQw/h2WefxUwT3gWSLKOjsxOSJCE9MwNd1/1oQS2jpEbTCvlCAY8/8QSmJie95kmrVpW/KbDiobaBqW/8UlnZG1ETHjEY3Bj62GGgqioIIXBse0GVLE2Br8SvE4LQTEjYSy0UCxPNs0+Buq0r25UECX+8+SMQyfykaFEbH37hYzh7/izy+TxuqtHyd7Hgexq4bnhPg7Co8RvwZ7ToeAu4x2zHwalTp/Dd734X+59/HolkErt378bdd9+N7pC5+mbE3IZhwGb2x7FqAsSS78mF5SYTf8olKQVKqT/mK4qCgaukQVlqtMlBHYiRCCRJgiLLvjNYPtDSOHjzBcWJjVomh4XAcl6V0grVIIoiblizBm94wxuwefNmTE9P45Hvfx9PP/00pqenGzp+IpFAJBKBKEmYmJiAZVl1v2cj5GBmdhaPPfYYTMPAzhrNkwBGxmwDU9/4ZeinHi1+zScGt4Y6biMQBMHvwaFXsNheTFBcP2WMQMAdscFJTh0pJgdUn4V95aWWnRcA3NxxE96z9ueLtr2UPoTPvfx5DAwMLGqZWjVwjZAoSTVd/JqB38OkGlip4kLaO1u2jePHj+O73/kODrz0Erq7u/G6++/Hjh07GupL0dSxLcsXjkcikZrRkEoRX/5ZtcRllRMDURCwbMWK1qR5rgO0yUEdCIIAJRaDSylkWQYFEwsFVoylgzVdxNWdb4vaRFmRIIqemdLrXodt27Yhm83i0UcfxRNPPIGx0dHQaZDu7m7IogjLsjAxOVn3QXYDDom1MDo6isf37IGqqti1ezc66g3Ojonp//sr0E89UrSZqAn0vO1foSy7re4xm4WmaX63xqtqinSNI4x1ciWIqWWQeopX7ubpJ6q8u3m876ZfxKr4yqJt3za/i9TKZMuPVQ+WZcFmZbItN7oh4XrC+FFJQWhofCnoOl555RV858EHcfjllzEwMIDXve512L59OxLJxq9lQ2JJeMJX3+hIUcpW/9XAxyXHtmHaNijKxYg2s60WJekHvnwxiFcHBVoglGgUAiGghECWJNi2jUI+D0mSvFxqwGucAAATtywGBEJAKIWL5tMWRBAwNDyMoaEhXL58GUePHsVTTz0FVdMwPDSE4ZUrkUomqz6cAiHo6OzExPg4DMPA1PQ0emqECmmVxktBnDlzBgcOHEBffz/uuP32uuycOiYmvvE+FE48XPzdlDh63vavUJdvrvn5hUIQBCiqCstxoOs64vH4oh7vekSRx0ETOW1l9b2wJ4/7/7fO7wV1fglEbN2KWhVV/NHmj+BdT/z3+eMQC//r/N/jHwf/dsnSN76nAdO0tFoDEPZb+JEDSj0PjxrE37ZtXLp8GefPn8f4+DiIIGBk1SqsW7t2wVoNWkUXUO29+UDfhDA6jVLvFcM0PWG5JJWNPY5tA4Sgf2Cg5dGcaxltchACgiRBjkSg53K+OYZt28jn80jE477ugN9qizmc+C5nruunMZrus0AIli1fjmXLlmFmZgbnzp/H2XPncPzECaRSKawcHsaKoaHiVQylcFwXEU1Dd3c3JqemkM1mIUlS1ZU+pbTqypFSisMvv4wTx49jZGQEt912W10iQR0LE9/4FRSOP1T8dZTYkhADjoimIZfLwbIsOI6z6F3Sgmh0JX41ENQbNDPJyqvuBZ79PDgNplYe9sX9kEsaNC0U23u24u0jP4mvnvkPf9veyX345sVv48eG/ltLj1UNumH4fiAL9TSoihDjhBBwQSQAIAhFaUOXUkxMTODC+fO4eOkSbNtGT08PNm/ejOXLloVesVcDCRw/7KjGdWACIZ6fQRP3mmEYoKw6JIhgg7hVV9FC+2qgTQ5CQksmoedysEwTiUQCmWwWtmXBNE0oitIa3/IQCA60jutCEkUICyEI3k7R0dmJjs5ObNy4EePj4zh//jwOv/wyDh06hP7+fgwPD2NwcBAkoJaPxWKwbRszMzNIz8xAlqSK5kRuFdMV23Hw/PPP49LFi9iwcSPWrllT98GmjoXJ//wVFI5/t/gryFH0vO1foK7Y0vx1aBCCIEBRFJimCV3XaxoztRzXATlo1ACpFEK0C9LABtijh/xtxuknWk4OAOC31r8f3zn7EGbofBXOJ4/8Ne7puxPd6uKa3di2DVPXQQFPXb9Yv20I++Oy19mzm56exoWLF3H+/HkUCgUk4nGsW7cOw8PDLWs8xMsJ/TEgxJhmmaZXfghAi0ZDRVz8SGZATG4YBkBpOTlg1tWd3d1XzUL7aqFNDkJCi0YBQfCFgJqqQtd15PN5SLJcPqnxkBxtvF1zPQiiCLukbJDX3i/0WIIgYGBgAAMDA7AsC5cuXcL58+ex79lnIQgCli9fjuHhYfT29kIQBKRSKdi2jWwmg4nJSYjcdjoAyqIcQRiGgb3PPIOZdBq33347VoQwFaGOhcn/+6vIH/tO0XYiR9H79n+FMrR9yR0EI5rmD1Capi1d9GAR7qtWo1m9QRDK6p1F5MC6+ByomQdRWltiaMwa+BH3Tfgi+aq/bc6aw5+//Jf4iy1/2tJjBcE9Dbgr36KJ3er8Bv7EHNhW0HVcvHAB586dw+zsLGRZxooVKzA8PIyOzs6Wp1zCapM4gg2VVFWFHPLaCTxtwv7PI38gpCxtYDE90dDwMF5taJODkBAEAWI0CiebhWXbUDQNlm37N2jFpigB1W9LzZDYH8d1/R/QDwG2cHKUZRmrVq3CypUrkclkcJGtHM6dOwctEvH1CZ0dHZ4OQ9cxMTGBgf5+yAHFb6nmIJPN4umnn4Zlmrh350501+iR4O/DtTH5X+9H/uiDRduJHEHf2/8F2vDtXllly759OIiiCJlHDwwDsaWqi+fppWvYTtlv1bwAwqSsvBP5vf8IUFbG6JiwLuyDcsPuVpyij2PHjuGO5HZMJKbxncvz6arvXP4efmj5m7Crf2eNTzcP0zA8F8kWehpUQ60RyHUcEEJgOw4uX76Mc+fOYWJiAoQQDPT345ZbbvGNf1pupczE1aX7rdmzpsGGShwCipuXcWt8CkCWpPlximkuHMdBNBZDT29vY1/qBwBtctAAIrEYsvk8bNuGoiiIaBqy2SxMw4DMWH9Qd+C3S0VrCYIgikCFEkIuhmwlQeDmRvFYDDfdeCNuvPFGT59w7hzOnTuH48ePI5VKYXhoCKqmgVKKcUYQ+CrapdQ3wZmcnMTevXuhahp27doVSsjnEYPfQP6Vbxd/XzmCvrf9C7ThO7z/EwIBjXuwLxSapsGyLJiGgYimLYlBCuH31aIfqXn4rZqbuO/5b0jUJOTlm2Fd3O+/Zp5+vKXkIJ1OY2xsDNu3b8dtPZvw9MQzmLPm/Nf/+NCfYWvXFiTk1opOHaawJ/BK766GTTPgTbQTExM4f+ECLjEdQXd3NzZv2oRly5d7ZdwcbMJs1Vjmj1VVHByrodGGShwu5klSUUohqDdgUTnqOHBdF32vMiEiR5scNABVVZGVZb+3AG/jaxiGL06s+ICHLCMKCx6mrTQJlt74CwEFykKNBEBnRwc6Ozrm9QkXLuDlI0dAXRfJjg50dXQAAJYNDvrpDgLgwsWL2L9/P7q7unDHjh11W6ICjBh88zeQP/LN4u8paej7qc9DW7mjBd90YZAkCbIkwbQs6IbRfGvdBkFaTARbDX+Cb2bSC3wvZWRnETmwLh8A1edAtNaUGx47dgyxWAzLly8HIQS/u+G38KEXP+K/Pq6P42+O/m98eOPvteR4gPds5QsFEEHwo0+LCZ9IBq7r7Owszp87hwsXLqCg64jHYli3bh2GhoaqR8BYFLDRFEDV86ohVK62oKrWUKkWKomiCVBkmcyjD4SJMB3Hgapp6Ovvf1U4IpaiTQ4agKIoEGQZbkCIqKiq18LXdWtPDC0MAfsmJdXKJQPRimZBwUKNNd4jCgIGBwYwODAAc9MmXLp0CWfOnsWZs2dx+tw59PX2Yt3atbAdB2YmgwsXLmBoaAibt2zxeiTUOwfXwdS3fgv5l0uJgYret30e2qpyYRohBEKLVzdh4EcPdB2api1eNcE1TAZK0awBUinkodsBUQF4YyTqwDz3FNQb37TQU0Rmbg6XL1/G5s2b/fvlR1f8N3z74oN4emK+3fd/nPs63rTsDdjW3RrBq14o+KH8pSKTgKfsv3jxIs6eO4fM3BxkRcHQihUYGh5GZ2dnOC8EeM++swCCQFlb5JrHqbDvWg2Vqh6LUogVXGUp4I/dwRbNfFw1TBPDIyOhUxY/aGiTgwZACEEsHkeG1bbLTIioaRry+TwMw1hcURGDwAxKqk3+ldy/GgJLJTTy2CuyjJFVqzCyahUmp6Zw4sQJjE1O4vHHH/fKowAsX74ct956a3hi8P9+G7nD/7doO5FU9P7U5xFZdXfVz/LBaynTCxL73S1msb0kA/41TBSCDqELJQdEiUIZ2g4z0GnTPP14S8jB0WPHoGkahgOCM0IIPrzx9/HmPT8F3Zl3wPzYwT/G13Z+Baq4sMnCZIsLSimisdjiphMoxezsLK5cvozLo6OYnJrydQTrmY6g0b4nHKIoNu3nIohiw4sX13FqNlSqhkrEAPDGCSPQopmPGQQeaUikUujq7l7aKqRrCG1y0CBisRhyuZznq29ZUBTFmxhkGbZlIZfPI1nNEaxFFQwCE6PVezCbDTs3SgxK0dPdDVmWMTgzg7lMBkdfeQUAcOHCBVy8eBGdXV3o6+1FX38/urq6ysiCRwx+B7lD3yjesaii9yf/P0RG7ql7DoSZRS369Bn4HTVNg53NwjCMxY0eBI690AgRJxg8jOu3IOf7ZNu5C6TN7nuuefDPg31XXmpbZIDUaFe9Ct9HGdlZRA7ssSNwc5MQYj0N7TuIXD6Pi6yMtvQcl0eX4Vdv/GV88shf+9vO5c7jH098Du+/6X1NH9PlHQMphappi7KQKOTzGB8f9/5MTMDQdQiEIJVKYf0tt2D16tWhCHpdBFIMjSDMuFQmTnRd5Oo0VKoEocaxKDx/CVAKRVF8YkAphUMphlauRCwWe1WmFIA2OWgYgiAgHo9jzrZRYEJEHj3I2rbfOKVqKIpN7HQBITm+0gjzUAp8oA4r2GmRs2MqmYRl2yCUoqOjA5IkYeuWLRgfH8fY+DhOnz6No0ePQhRF9DKi0Nvbi1Qygelv/y5yh75evENRRd9PfhaR1feGPgeeO1wqyIoCUZJAbRsGEycuNiqKEplRFaUUruN4bbRdd/5v1/WqOkoGzaCKuxRcGV7QdciSNE8iqnyGi+0EUfSEuoRAEAQv6lXy76LngJa3/AYAacVWEDkKavG+JhTmmSehbfjxGlenNo4fOwaJVeQUgZ3PT4+8Dd+5/BAOzRz2X/qXU1/AG5e9DjcmG2/KROEREgAVS36bhW2aGJ+YwPjEBCbGx73Oq5Sio7MTq4aH0dvXh1gsBsMwvHu0heW2jRLTZhYs1HWRzeV8AWLVhkqlx6pzfrSkRTPfo2XbGFy+HIqivKqdT9vkoAn40QMApmlCVVWPzWoa8oUCdF33BsQajHMh+XBBEIoslOvtiYQtcWzAsjQMujo74TgOZFlGNpfzSyNXrVoFSilm5+b8Fc7Lhw7BcR3cMP51dKX3Fu9IVND3k/+EyA33NXR8Au9aLaX+QFNVZBk50Fj3xsWA4ziwHQeO48BhfvxugAD4IlgerQqW1SIgTqMUYPep/36gLBIgi6KfrhFE0a8TL7W55f9yXNe7Nyn17GcDCBILXsImCIJnDc5MvQRBgCgI/jNERAXyyjthnvy+vx/rzONNk4NCoYBz587hpptvrrqKFomIj976B3jbE++ETb3v4FAHH3npj/Clu/8ZktDY8KkzhT0I8YyDmrw3XMfB9PS0/+ykp6e9FEU8jr7eXtxy883o6esrqjLIMz8A/vu3Cr5La4gFSCPEgKcEKxGDVllL6yylQAQBCtsnpRSRWAydXV1IJBJLqlu61tAmB02AEIJEIoGZmRnotg2FqWoVRYFlGLBsG7l8HvFYrPoDswCBIiHEG9AdJ5ywhx2vpkkSW222uqqiu7sbqqJgZna2qMSREIKOVAodqRQTLdoY+6/fhltCDFwiIbf5A5C0tei1rOKyqhAgWFhutBYqhr8VBSKzc+XphYXAZat/x3HgsNCq4zi+ktuf5PnAyysE2KTOJ12BTbT+v0sm/3qDIFeHx6JRJKs4xfHUBOBNRpIgQJJlaKoKv7U3O3fHdefTPjzCAYCy5jdg75cEAQLrYSIM3wUEyIE9dRLO3GWIycZb6J44cQKCIGD1yEjZa8ErsTa5Bu9Z82585sRn/W1HZl/Bl858BT9/w7tCH8+yLBisg2esUZ0BpZhjz8/42BgmJyf9cure/n6sXLkSfb29iNbIjVNmmrZYqS4hxDPWVMQgn2+KGIT5lrzlfDDKSwEsW7ECoii2zPnxekWbHDSJSCSCbDYL23VhWBY0VooUicVgzc7Ctizoul47N7YAgiAQAhfwH5x6qGmS1IQAMSwkQUAymcTo+Dhsx8HE5CT6+vqKBilKXcw99GG4x/6r+MOChMymD+ASHcLRvXtBCEFnVxf6+/rQ19eHzgp6hUrgq5slKftjKaZcLgfDMKA2ED1wWW7fsW04ruuTgiBsRggppX7jL25pLTDSxQnAUiNIMjgpUxWlaoqNkwmXpzrYv23H8WxrAb8Lqg3ATd4AqCnAmPX3UTj5KLRb3+YTzjAwTRNnz5zBDWvWFJl1VcP/WPNufO/KwzidPeNv+/tj/4jXDuzGUKy+s6frusjn894CQlUhhThmqW7A1HUQQtDT3Y0bb74Zfb29SKVSob5zsFfBoq2EOVmt9ow1qLNyOTFgPRPCEgMacjy0bduPpnDxMKUUvczA7dUeNQDa5KBp8OhBOp2GQSkUdlNyU45MNos8y7nWNdBoQqDIW5oGXRLrnrN34mUP8GJn5bVIBI5tQ4AXypuamkJvjycko9RF+rsfRu7AV4s/JMjoecvfY2jt/dgAIM8Gy7HxcZw6dQqvvPIKRElCX28vevv60Nvbi44ag2Wr7KXDQFUUvxkMTztVAicD/E/F8DsTYImiCFEUEbEsCIKAjlTKHyyXqq9HIwjTVyEY3QAwn6bg+2CkweGRE0eAvWw76Jn5TpzWmSdhrf5hCKwUTRJFSEx5Xg0nT54EBXDDmjWhvosiKvjorX+An3v6F8Alm7pr4GMH/wSf3fH3NSeRoM5AEMWqOgPbNDExOekTgkq6ge7u7qbEnb7uCE16ToRETXLQwHNHXRe5XG6eGMRioSMGYsgqiFw+77sicr+VWCKBVGcnJElqfcvs6xBtcrAA8OiBZVmwAPDHXlFVaI6DfC6HXDYLIZGovlpgAkU0OHFJzHTHtu1QZkL+4dgx/dUEy1Ev5pSpKgpAKTo7O5GemUGO6Q9SySTS3/0Ici/+W/EHBAk9b/5bRNbe72+KRqNleoWx8XFMcL0CpdBUFd3d3Uh1dKAjlUIymfRCuCz/LiywNjs0CIHKylt1w4CiKP7AGSQDlm0Xm1ZRComRAFEUPTGfKBYN6LzGeylIzkLAIx4LiWBwsh1U9Fs3349MgBwgcwlC5iJoahgOu66urkMkxCML7A8/D8u2cer0aYyMjDT03Gzqug1vX/WT+MrZ/+Nve3bqOfznhf/CW4Z/vOrndF33oyBR1lTJtm1kZmcxOzuLmbk5zKTToXQDzYCr9WuZCrUMJdULlLKGaw0QV16VYNk2xAaJgYAQqQvieaBwcsBTB4IoondgAADaUQOGNjlYIBKJBKanp1GwLCiaBsJuzlg06nVbM01ks1nEE4naZUvsIQ57U3IFeOlqMyy4knexiQEA/3tLsoyOVAozs7NIz8zAfPLPYRz8SvGbBQndP/63iKx7fdX9BfUKN65dC8d1MTU1hYnxcUyn0zhx4gQs1qlNVhSkUimkkkl0dHQgkUwiUe+3aAE0Fj2wDAOZbNb/rUoHL4FNYr79dhOTqa/KvkYGtKD2oRFyEMYOWuq7GUKsF25uwt+mjD8PZdnNsB3Hj8DwdITFrjknC2fOnoVt21hTK2pQZYL5tZveh0dH92BUH/O3/dWRv8G9ffegVysvqbQsC7MzM8hkszB1HZlsFrNzc8jNzYGy3yqeSKAzlQqlG2gUfrQM85Pmot8hbAzzHRSbIAa240Bkos3QGgNC/FLEGm8CpRR5pmOQAu2xB5cv95wqZbkdNWBok4MFQtM0v22vASAoP4vFYqCuC8u2kclkkEomq9/spDGLZUmSPCU4yz83wnQJAErq+yS0CjytYpomOlIpWJaF7GOfgHGspFyRiOj+8f+N6I1vaGj/oiB4vgmsOQqlFLphYHZmBrNzc5idncX42BhOnT7tC90SySQ6kkmkUikkGdHQmuwFXwqXpRNM0/QscgPtnIXAilaWpJYpr9HgCm0xEdRJNEIOwtyNhAhQVu+EHih1Nc88gcjWn/MIHxM/OowoWLYNh4kddV3H6TNnMDAwAJdSWJblk+ySg1Q8dkyK4cO3/j7e9+z7/W0ZO4tPHP5z/OXmP8Mcu9dmZ2f9e8+yLFBK/UhZf18fUmvXevddMrlo2hBuDRysTFn0yAEHI2ONjC6cGHBRdCQaDeV+OH/IcMQAALLZLECp3welo7sbWjQKSml1j5pXIdrkoAVIJBKYmpqCbpqIxGKgbNVKBAGxWAyZTAaO62KOEYSqq8MGmDYhBKIk+aHUMMKqos8DSzaZ8LC6xVzhyPN/C1KRGHwa0RvfuODjEUIQ0TREWOtpDsdx/AF8Op3G7NwcRsfGvFpn4jVeSTGikEyl/AE8TF246zgwbduvVuFlf4BHCESmtm5kwGvoO6NJN8xFgG+b3CjxCXk/KiPF5MDNjsMZPwqp/2YA3u/PCZjGzsdxHBx55RU4to2RVatgO47/O8my7DnkhRA13tt3N9448Hp8Z3S+c+P3Rx/Fn33zz3EzvQkEQDQWQzyRwNDwMBLxOPoHBhDRtKULVZPi9svc3CpMVcpCQRHQNYRcfFBKkSsUiohB2AhapZ4JZQjojQpMCwQmcpRkGf2Dg76h3avVKrkS2uSgBVBV1W/AlLMsxEQR1HG8FAMhiMfjyGSzcBwHmUzGy2m1YMUgShJIk+TA5WHo4N+LBB45MAwD6Yf/CNn9/1z0OiUiOn74rxC96YcW7RwAT6zU2dmJzs5OrGTaBUopCoWCF2FghOHK2BiOnzjhD6bxRAIdjCxw4qCxDpSmYfh2uFxXQCmFKMuIKAo0TfNKpkKqqMOidDi8VogB0LqeCtUgdo1ATK2AM3vR32ae2eOTg1IIggDDMHD29GmsWbMGvb29MC0LlmnChadDME3Tq3eXJF8f5LquTybnZmcxw6ICG81b8Lj8BPKk4B/jocijeOfmn8Hy7uXz9siui0QisfSVI6WpwsCzvZjkoKgagqeW6hyPUuqX5xKwaGvoA1bumVDpGPw8spkMCEsnCIKA4VWrfPfPdtSgGG1y0CIkk0lMTEx4/RViMUiOA4GVDlJR9AhCJgPLtpHN5ZCIxys/OHxbCIEibxFtl5S71QNFwAmRH2MRCYIsywClsJ/9NDKv/Hvxi0QA7v4DpDu2QGPNrJYCQcOfaDSKaDSKwUCUwbZtZObm/AlhdnYWV65c8UmAoiiIRqNQNQ0qa8AVjUYRj8WQTCa978HIgmVZcBwHumEsWj7zWowcNOvZXw+EECir70PhxS/724wzTyJy+/8AESpHK44cOQJJkrBu3Tqv6kMUoSkKsrkcstkssrkcDF2HbprI53LIzM0hm836IflYPI5UKoUbVq9GqqMDMT2Ojx75Y3//aTuNfx79An6/83dh6joovBXwUhIDAlTMu/vdMRczalCaFmVVKLX6m/D8f5AYiIIAO2TEgYQhBoF/m4bhkTZ4mrDO7m5IigLbtv30cBvzaJODFkGWZSSTSczNzSGbzyOpaRBY+Iq6LkRRRCwaRTaX83LRuRwiTElfESEeZF7jbzMBVthHv1a5Uasd1ADvvIYmvw0y8XDJCwI6f+Svke3ZAcM0cWVsDP29vQs2DmoFJElCZ1cXOru6AHjXzDAMpGdmMDc3h0wmg0w2i5mZGRiG4QsgCSGghEASBESiUUQiEd9BU1EUdHV2IhqNQotGoSlKa0vLFjkCFBaNRg6CPR3CQhm5t4gcUH0W9pWDkJdvBuA9EwXmVjo1NYVz586hp6cHzz//PAq6jjzzoQiegyAIUDXN0wd0dGDZ8uWIxePo6uhANBYrSi/9OP1RfH/iUTwxMd/v4RsX/gs7O+7FltQmP1WxZKjx7PpixMUiKtXE1DWqsDgxsIPEQBRD3QehUgkoJ8vZXA6AJxZWNQ3dfX2wbRuiKKKDtZlvYx5tctBCxONxWJaFQqGATKGApKp6pUTsRpYVBVH2UBQMA0QUoVXLRfKBvkZoThRF3x7Yse1QCvyiqEEFkBYTBEopph/5M/RWIAbdP/rXiG94M6KOg4mJCeiGgbGJCfT19i5ZXwI/P1vlGruuC8M0Yeg6XOo1aOnp7cXyZcsgMS0F4GkOdF1HQddRyOf9iUkvFJDL5ZDL5/30Aj82IQQaIxBRTYMWiSDC/mia5v+bT0pLYuLUAjSqOWjEoIpSCtM0UaAx0ORKkLlz/msXnvkPnEpOolAoeISZFjtH6roOQRCQTCS8yoBoFBFNg8auPc83244DQ9dhspQdhReOlmQZqqr6IsYPbfwg3rLnbcg7ef8cPnnir/EvWz6LhFbZRXLRUOOZ5qmuxYhi8IqIasSjknNiKTGIRqPz93i9qEE9YsDGzdK7yXEcz/SIlUf2L1vmP/ddXV2v2uZKtdAmBy1GR0eH37kuY5qIlwyQqqp6E4lhoFAoQGQWs7zTYhHCRA8kCY7rwg5BDnTDwK+///2YnZtDb28vPvnJT1YU21mWhU984hM4cfIkZEnC7/7u7+Lmm26q/+VLQClF+tE/x+zTf1/yCkH3j/wV4hve7H0H1nxpcnISBV3H2NgY+vr6lqTtMZ+kS8Htj7mvAHVdEFFEhIUf+Wd4SkcQRURjMa8Urbu7bH+24yAzNwfDMCCJojfBMfJQ0HUUCgXMzM5CLxR8oRyPBimq6hEFTYMgih7JjEaLPBFEUfTC+IJQcbsoir4N8aLmnZnLIQB/EHdZ9QD/w50feW8Il92/wffwagOHkS5d1z1SXSh4oWpKsULvwVr3jO+kmMgcQ+/IWxCJDUPTNEQjEWSyWbz4wgvYceedGBwcDPUdBOI5GSqq6t0HnCg4DuxcDiIzNhvQ+vFrN70Pf/byJ/3PXtIv44tX/g2/2fH+GkdoLeqR+cUilT6pqzGxlh6ba3yCxCA4btVslBSCGFT7fJaVE0uShK6eHt+5tqOjo2G91qsFbXLQYnAmOjk56Q1sjgNNFItyb5FoFC5bAeVyOcQTCUAUIXg7KN1hzVCxJEkwTNMX1dSCqqr4kR/7MXzpi1/ExMQEnnjiCezatav4TZTiH/7hH3Dy5EkQQvBLv/zLzRODxz6Jmaf+ruQVgu4f+UvEN76l+HuIIvp6ezExMYGCrmN8fHzJCILAaqQBLxyt89wkm4QEUUQkFvM7cBYhpL+AxCYUXsXQU4FAcFjMejvPSINeKKDA/szOzXm/NXcOpBTUcYpbLQeFpuwceX6WH58bLAnMVVAQBIj83+w1/j5RFP0Q/PETJyDLsmfxzPo92KwbKZ/MbW7/7LqeARClfvSsqI02X+WVhJ5FUYTIiIwkilBZFKWzs9OPqkSjUaju7dD/63kA3uRIHAM3d5lQhtd6XxvAiy++iJ7e3tDEoBQiI30aI4umZcFxXY/Y6Tp+fPBH8cCl7+DgzCH/M1868xW8cdnrcUuqskCyVaimMSiFn1ZoISn08/119smPGRT/cvJbiRhUG+n8yEedlGjFzzL7agogHouhi5U8x+PxtqdBDbTJwSKAq+KnpqZgsKoFuWSFHo1GfQ+EbDaLRDwOyghC1brrCje/b4YUUpT42te8Bg8+8ACmpqbwzW9+E/fee29R9OCLX/wi9u/fD0IIfuad78Qd27c39N050nv+GjNP/u+ibRQEPf/tk4jf+taKnxEEAb29vZiY9ELDYxMT6Ovu9j0CFhPc/95g2gHeu0BjOeiqaGDAjWgaLNOE7TgwazSRkmXZ93cvRXpmBgCQTKUgBlbmLpuo/cmZTdBFq3H2f5et2t2SlXpwFW8aht/jwHFdGIYB13UxPTkJibX95X8U/n9m6e0yjQ0PF/P0VyX3R4F1YRQlyS8lDH9FO2AP3AJ79GV/i3n6cSjDOwAAZ86cwVw2i9c0eA9XmmQEUUQkGoXG00yMLBkFHb88+D/xq7Pvh8U6N7pw8dGDf4wv3/2vkBvs3BgWvtFQiPfySbdVofMwQsDS97uu6xMDwFsglUY6a30XodoiiRPMGguoXD7vkShCMLhihf9cV3q+2phHmxwsEhRWMz8zM4O8ZSHqukWTDGG5L+6BwCsYqCB4D3ItHUIAfEDlA32tmnzXdSFJEt785jfjc5/7HCYmJvD4nj3Y/ZrXAAAefOABPPS97wEAfuiHfghvfAMzI2owLJne8ynMPPE3Zdsnbvh5rLrtJ2t+VhAE9Pb0YGpqyuunMDWFXniMfzHgsly0zjQFlOkKeG65lRCYxkRnEQG5kgFPWAQiAwIhXgQA5f0JWoV0Oo2Hvvc93H7HHTXFW6ZpIp/PQ5LlUL8Z5aK1JqGM7CwmBxeehWvrcCHhyJEjGB4aalxsViNaR1hrdk1VoRsGZmZnMaytwNsHfgpfvDJvA348cwJfPPNl/Pcbfq6Zr1UXjTibtipywEsVG727KKV+ugzwFkZyhWerWlO4WqLtUH0UcjmAUqRSKa9ZmySho6Nj6XwnrlO0VRiLiGg06nmDyzIKplm2uieCgHg87osKc7mcH8rmbXnLUHJDE0IgiSJonehBcNLYuXOnbw70zW99C47jYN++ffjKV73mR3feeSfe8fa3Fx8z5IOUfvxvkH78r8u2G5vfj6nOO0PtQxAEdHd3eytPQjAxOYlMNhvqs43ANE3Mzc2hoOtwGXnrSKUQi8UWzV5ZVVUQ5j/PoxSNoO6vcJVFi/weDF3GuMDzVVbd5ZXDctgmrPP7cPTYMVi2jfXr1ze8TxLynBzHgaaq0FQVPzfyLoxER4pe/8cTn8W57Lkqn24OzXQXbQVZLPIwaAAua6LE057RSKQiMQAqOGTWIgYI9724ONV2HKwcGYEgCG0BYki0r9Aiw695l2Vks1m4JRO4wDwQCCGwbBt51sGNDwIu68NehEAeDwjndxB8kAgh+Im3eqH9yclJ/Mu//As+85nPgFKKW26+Ge9973vLyUCIBzH9xKeR3vNXZdt7fvjPIKz7UViB0rF64AQhHo9DFARMTk9jLpMJ/flacBwHc5kMsrkcbLYCi8XjiLNyKqGBAbjR4ZKvPAkhfrSisR2Ey/FeLfg19UtEDgQtBXn5pqJthROP4sTJk1i3dm1TOWUa4hoWdN2b8AhBR0cHeju68eFbfhdCYEg1XRMfO/QJuLR1NuXNtFZfaNOlZomBzVKmDrtO0TopurJKhSrRU7eB0tdsNgvbddHZ2emZmXV0LHpflR8UtMnBIoMLFCVFAUTRE8ZUSA3EWHcw0zShFwpFr/P+CSU79gkETy3UFCWWfH7H7bdjeHgYAPDYY4/BsiwMDQ3h13/jNyo/PHWiB+kn/xbpxz5Ztr3nh/4UyS0/A0WW/SY4YSEw4V48HodECKbSacwugCC4lCJfKGCGed671OvkmEwmy/L/YtjBsIlBU1UUv8xP1/WGPw/UXjVdTYLgNhA5aFX6Qx7ZWfR/+8oBRAUb69ata2p/9c7LMAwY3EwnEvEbZm0b2IZ3rHpb0XtfSL+I/zj79co7agC8iVEzvyylFKTZUkbSnOWyYZrIZbOeMyhbAMk1rImD4kZ+tFJTpap+ClVgsoow27IwsmYNksnkNeGhcr2gTQ6WAH4oS9PgMHOWUvDyNMBblQQNWqpGEQgBYSpzQmnFrn8cZVsJwe7du/3/plIp/M7v/E79lRaPWgQ2zTz190g/+udlb+15058gufWdALyOjBSAaVm1918BPd3dXidFQjCdTmNmdrbhfZSmECRZRjKRqO55H3ZQbGaCI8S/zoauw2kk536N50kbMUBqlSmPsnIHIM2TO4G6WN9tNL1CrHWFLdP0CV1E0yCXuOr96k2/jGWRZUXbPn3873Aufa7xKFHgfOrW/9dAsLdCYwduLoVRKBSgswioJMu+wVGYcstgCW/peTR6LtyRtqe3F729vYjH4w19/tWONjlYIsiy7LntKYpn41khxK6y/CXg5cqsCjlpP4oQeFBEQYAgSaBARd1BJZHa2NgYvvGNb/j/N4wGBlMetQAw8/Q/YvqRPy17S/cb/wjJbT/r/19h38tqghwAQFdXF1KpFCRB8Fo+p9OhPkcpRS6X81IIrLY6EUgh1AJBFWFo8D1NTtayLEOSZRBBqEgWF4KrRR+CA3gYctAqdYQgR6Gs2Fa0LTn7cpV310e187JtG7lCARRe9KdSk56oFMEf3vr7RdtyTh5/cexTyGQyoUqOy85ngRGWpj9fwxys8ttd5HM5f2xTNc3TXIWMIgkoIQbEM5Br5vwt08QMa429Zt26tgNiE2iTgyVEJBJBnNnxltq3+u+JRqEoCiilnt97yXv8KEKQIDBRYtXUQsnDlclk8Bd//ufIZDI+m9Z1Hd/61rca+j6zz/wTpr//J2Xbu9/wcaS2/3zRNkWWQYCKpCgsOjo6kEomIQkCZufmMF2HIPBOmIZpwnFdaJqGZDLZmOlJPVFU+D2VgUcPTMsKPWn4Z1JnwLwaqQUeNSBhjZZa2DJcHrmv6P/26GE4uamW7d9xHN9+V5akmg6ed/XuwI+u+G9F256afhqPTu5BLvBMu9TFoZmXcTJzquJ+CLBgTQZl+2gkHO+/r4HIjsP0BVyHEY3FykL49Y5fRgwq6a1CgDoOJqamQClFb08PRkZGrroW53pEmxwsMTo6OqAlkwAhyOdyFVeN0WjUX5Xk8/mKOgWgOIogscm30iQT/KRhGPjLT34S4xMT0DQNH/zgB7F161YAwMMPPxx6RT7zzGcx/b0/Ktve/fqPIHX7uyt+JxCCXD5f9loj6Ojo8Gr8BQFzc3OYmp6u+D7TsjA7OwubGQQl4vHm2uYS4qnXqw1SCxi8uUeAQIhn7dpCXI2hsJGUQqtrKqTlW+CQIOmjsM4+2ZJ9U7YiJvDMrGLsXq6F37nlN9CldBVt+1+n/hZzTgaGruPg+CG86+n/jnc9/W689Yl34HMn/7novc1UJVSCy+5/Qki4VE9Ic6MgTNNENpfzXUTj8XhFAl4tNcL1FODH5d+9meoIx0F6Zgb5bBaSIGDL1q2hWq63UY42ObgK6B4YgBaJeIp15r1fWk0QjUZ9d0DDMJAveQ9/H6UUTlCUGHDL4+D/d10Xn/70p3H6zBkIgoBf+9VfxcqVK/ETP/ETXrWEZeH//ud/1j3/2X2fw/RDHyvb3vW6P0Tqjl+o+BlVURDRNGTm5uruvx46Uil0dnZCFARks1lMTs2vECkTHWazWbhMhJVIJBZmkcq0HdVeWwi4javDjJHCnAtQP1TcTDOjhcIvYwwxGLd6JXfm/CVMyMNF28zTjze3s+C1pdQ30REICUUMACClpPB7G36naFvaSuMfzn0Gnzv/r3j38+/Fy7NH/Nf++fQX4FDv+i1UYxCE47qgCP+bNHLPcH1BIZ/3Fyi10nWVIkq8c62/z0ri65BwHAfZbBazMzMgoojV69ahr7+/qX210SYHVwWCICDV24toJOKF2pmNculDoWoaYtEoCCEwLQuZTKasFBIIqHtZKK70PXyg+fznP4+DBw8CAN7znvdg4623AgCGhoawbZuXs31szx6Mj49XPffZZz+Pqe9+tGx71+s+jI4731vzeydY18pWIJlM+vXKuVwO4xMTcBwHmWwWBSbyUxQFCVYKuVBU0x8sdIoTBMEnioVCoe7AGPZ4hJBQnetaiYYiBy30YzAtC0dfeQVYvqNouzN5As7clYb3558ZIwa8pXA0FmtIRPn6wfuxq7+4kuKBK9/FFy58yScCHDk7hyl9umURAw7XcTwL8Drn3SgxqKQviIZoUe2TA5bmCOpUGo1YBGFZFvL5POYyGVBCkEgksHnLlqb21YaHNjm4SpA0DVoshhj3ODDNipO/oqqeURIzOcpksxVFh9wbn1IKPSBk5A/8f37jG9izZw8A4C1vfjN27iwetN785jf7Nqdf/9rXKp7z7HP/gqnv/GHZ9q77P4SOO3/R+0+NQSaZTCLTIq8CAEgkEuju6oIoCMjkcjh7/rxXYkYpYtGoT6xaCQGtdyDUmDESpTS0MdLVtTqqjLAGSDwP3iocO3YMtuti1fYfBtGSRa+ZZ55ofIfs3PzujkBZy+YwIITgQxs+iJgYDfX+cX28ZREDDl7hVPXceRi/gX06tu0JfJm+IBKNVu8uWwHBLo6UUj+60SxMw4BeKHgNskwTiqLglvXrPX+ZNppGmxxcJQiCADkahawo3uQvilUnf0mSEE8kIDJnvWwmA7tCCFqRZUAQYLKVswtvcNizZw++wdIFO3fuxJvf8payzw4NDWE786B/5plncOHChaLXZ5/7V0w9+Adln+t67e+h465fKtpWbZBIJZPeuYfsAxEG8XgcqVQKtmEgVyhgOp1GNNB+t+UgpCWRiNJ9cvGW33WwRVhKEsFLMutWgbSQsOXyeZw8eRI3rluHSCwOedXdRa83lVogxPMysKwiL4NmcGzuOEQhHKm4MHex5b8X1yWVts/2BYoN3mu+vsBxPH1BLNbQJOw6DgRR9CMGCyXaOiv7th0H+Xweiqqis7MTN6xdu6D9ttEmB1cVciTidcKTJN8J0HXdiiVPoih6uXNJglulkkGSZW8fYCWDlOLAgQP4zD/9EyiluHXjRrznPe+pej5vectb/A6FX/uP//C3z+3/IqYe/FDZ+ztf80F03P2+yjurYJqUSCRA4bmWtQq248ClFMlUCqokQRZFjE9ONm0uFBatjkj4xkgsvVD1uA3sk2DpHnDfgyOEP0SrIi8UwEsvvQRVVbF2zRoAgDJyb/F5zZyHM302/D4phcXaaQOVvQzCYMqYxgde+H38ynO/jjkrXLRsND/a0rJWCm8ydiktIrQULNcPhA7jU+r1IPH1BZLk6QsaJE2lGoNm4ySUUuTzeZiG4f9mkixDEkVsuPXWtj1yC9D2kbyKIIRATSahs057iUTCD9dlMhnEolHfHwDwBD2xeNx7KFiDG9dxEGHmSYQQqIoCp1CAaRhQFAWbNm3Cl7/0Jb9MqHTgNi6/hMkHPgTXyqNz52/gX7/whaLX557/EiYf+L2yc+/c/QF03vMrYb4keL/5ZCoFEIJMJoOOVKqRS1URNhMgOY6DaDSKzs5OTE5OwrZtjI2NobOrC8lF6rzGryVtYvVVeYeeCDWbyXihUdaZsdL7gPARgVbnsKshmFKoW/rZovO5ePEiRkdHcccdd/iTlNR/C4RYD9zcpP8+48zjiHatCrVP7mUAVPcyqIdJfRI/89TP40phtKHPjZuTsC0LeWY1vFBUqlTw8/yN7Md1Ucjn/QWLoqqNpREo9dJmJSkTiuaEl9R1kS8UPFtmeISDN3UaWb0aA8uW1fp4GyHRpldXGaIsQ2ETGBEEJOJxLz3AxFBGyQqYd3Pkdda6YRSJGXmIz7LtIv0Cf4zdgBqYUhfj//mrMC4fgDVxHONf/yXMPf8l/zNzL34Fk9/+YNk5d+76bXTe+2uhvyMfRFRZRkTTMNeEw2EpODGwbRsia2ClKAr6+/sRiUYhMDfFyakpXyjXcrR40pUkyWvMRIhntlNh/2F9Dvy3te70aiKsGLFVERfdMPDSSy9h2bJlWBaYDAgRIJdED6zTT4QiSI14GdTCw6OPNEwMACDtpAFCYFuWH7lYCPxKBRZt5KLDRn6DSvqCCBPQ1gWl/uRfiQQ0Q1pdx0E2n4dj2yDwfGFyuRxACLp6enDr5s0N77ONymiTg2sAsqZBYe1tKYBYLAaVDUz5QqGiz4EWiSDKKxlME9mAj7kiyyCEVBS38YfacRzoF1+ENXW66PXJb38Qc/u/gLkXv4rJb32g7POd9/0mOnf+enNflBAkU6kFN1AqIwaJhP+9RFFEb08PUh0dEAlBLpfD2Pg4rBbqHHwQ4kUQWrjLSCTiibUorTxBNDi5LlW9QuhKhRYRqoMHD4JSik233Vb2WllqITsGZ+JYzf25rG0673IatmSxEvq15srnJs1Jv3w5aNPcLHilgiiKEHkaoQFYljWvLxCEhvQFfnSiVhSpQdLOO9e6/HziceRyOb8y6fYdO9rphBaifSWvEajxOCS2auQh5no+B6qqIh6LQWDOiJlMBo7jzEcPaijfBUKQe+XbFV+bfOD3Mfmt30bpurPj3vej877fbO4LskEitcByRsdxkGOpBKGEGASRSqXQ29sLURBgWRZGR0cXT4fQSv0Br6WHtzqu5pzYyEC/FO5wYTwOKtl4N4Mro6O4ePEibrvtNp9EByF23wAhVRxaNk9Xr1rgFttgFr4LIQYAsKt/J35x7f+ASBqrbhjTx6GoqvfcCwIM04S+AEdR13WLrM4bga7ryLNr4muiQugLaCBaUAn8qlI0dg/bto0c8y4RmRDSsm0/arBt+/Z274QWo00OriGoyWSRqph7kxN4tdyVWj5LsuxXMjiskkEQBO//lPq5uFJQALlXHgh9bh33/Bo6d/12M1+rCMlkEvl8vrFmQwyUUj9iQAjxW11XQyQSwcDAgJemcV2MjY21zGchiDA9GBqBJMu+c2K19EKrUxoLhRMmctCCa2TZNg68+CL6+/sxNDRU5TAESkmnRuvsk6Buhb4jlCKfy/mRj1iDXgbVjv++G38R/+feL2N797b6H2AY08dBKYWiqp6bJ6s8MkOWtwZB4f0mrus2VGnBjYR4OlNRVUTr9EcoqzyopzkBKvq1VIPJUqeA15MkHouBEIL0zAyIIOCGdeuwbMWK0PtrIxza5OAagiAI0Do6ikRkiqIgkUhAYA6GmUymrEqBVzJIgUoGwkLe1XoZmFdegjN7MdR5ddz9K+jc/TstWYEmk0mAUmQzmYa7vhW4CIkRgzAhRFmWMTAwMK9DmJlpqQ4heE0EoGWTNk8vuI5THPFo4jdY7LhBcLVYK3LQivM4dOgQLNvGpk2bar6vlBy4hTTs0cNF27jDn+04njdGLFZW8rcQrE2uwed2/AM+ufVP0a/11X2/6ZqYsTw9jt+ETRT9TqKhwe4Rri8Ka0ql6zqymYz/jGl19AWlpYiN9III89y7LI3A02uyoiDGjJa4NXpndzc2bNgQ6phtNIY2ObjGIEoS1FSq6IEUmc+BLMtwXBf5fB7ZEsMkEhDlUUph2jZM04RlmhUHltyR8FEDIdrVstB0ivWV4LoDEjIXalkWdF2HywfxBlZ3hJDKOoQmO0QGUXTu3Ga5BQSBCILnoEkICrrue0M0+yssZmqBpxRqNVyqF24Og/GJCZw9exYbNmzw25tXg9ixAmL36qJt5pl5zwNeCmdZFlxKEY3FILHOpi0Dm5jfMPg6/Neur+E9a94NWaht4z2anxcyaqrqNVQThFC9N3iOn7d351UC9Z4VmzVN4tECSZYRj8eh1tAXFE3urBopbGmkG6JvgmkYfpRQYNUb3NRM13VkczlEIhFs2bq1aQ+KNmqjTQ6uQciqCqUkfyaKIhLxuPeAwAuvzpVEEXglg6aqXlrBcVAwjLKwJKUUuaOV9QaVMP29j2Nm7z+1ZNKTZBnRSKSox0K9ict1Xd/fXlHVpgeDoA7BNE2Mjo0tWIdQeuYELLTegmslKwpkRYEgCOWi1GsorcDJZ01zqAWSE9u28cILL6C7uxsjIyOhPqOsLkktnNsL6lje/XThJZgvfgHus38PLXPaSz21GoGa/qgUxftveh++sfPfcU/vXVU/cmgmEN0gxLdYdx2nYhfXIPhzRAiZr1So8Zu4bKGRY+lKIgiIRKOIVXKDpNTv7li26m9Q01ArahCMFrjwqkbi8bivLXFdF+mZGciqips3bGi3Yl5EtMnBNQo1FoOkacUPEiFQNQ2JZNK3SuZRhKCrYiQaRTQahSLLsC0L6XS6KMdvjh6GnT7f0PlMf+/jmNn/xZYIylIdHeW5f26aVGH/hULBFyBykWaz4DoElUVYFkuH0CqCwMVpjuMUidMa3vMikolGGi41iyOvvIKCrmNrA3758qp7iv5PjSxye/4Ss1/7BVjf/0PgxIPAxb3QH/0TOBm2Ym/ldaqwr5XxYfzd7f8Ln97+1xiMDJZ/pOT/gih6JZUsglQpCliJXPs9Far8JrzCiYuWuVNrsBphvuSZlgsIWbSgGVQbQ4xAtIDAc6YsJSqzs7NwKcXQ8DCGh4cr7qeN1qBNDq5hqIkExAorGlEUkUwk/FJGi1UqGLruP3iqqqKjowOiKMIyTaSnp2EwN7FqVQr1kH7kT/2QZdAvoVEk4/Hq5YwlKx3TNL3zdl2/7fNCwXUI0YAOYWJysikdQq2oRytC+UQQEGWGM3pwcmjw2i9mWiFUGeMCJt2p6WmcPHkS62+5BbEGFOlivA9CT3FqwTq3FwgYJAEAHMt3UWyJYVSdfRBCsKt/J76562t4y9CP+dv71N6i/3MoqgpJlucjSPwwCDRMKvl9q0UOeDlgIZ/3S59j8XhZ06Ra9sa8nXIzV6qSNbjL/CV0Xfd9GRLJpO/5wcHTCb0DA1izdm07nbDIaF/daxiCIEBLpZCfnq444KgsxJ5n7mX5QgGmZSEajUIURciKgs6ODkyn076jomEYyB1pjhwQQZr3ZAd8okAEYb7eP8QklEgmkT1+HI5tVy6P4l4M7Du5lELVtJYOBlyHMCvLmJ2d9VwnLQt9PT0La+9ccgzefpcuYHJWVBWmZfnmOJIoNjUw+3nhFqMeOVjIMR3XxQvPP4/Ojg6sYRbJdT+TnYR19gmYZ56AO3m6/gcACLxhU7OOl5R6xDZEPp1DFVV89LYP4zdvfj8u5i/hlo6bq743Folg1rbhUgrDMLxeHDWcDh0msuSrbkopTO6dwBcQmjY/AfMoQWAf1Qhl03cypUU6KX5OBiMFBF5kr5IrJU8ndPb0YOXKlZ6wuY1FRZscXOMQJQmRVAqFdLrioMO1CIZpQmdd5DKZDCKa5pVERaOIWRZ0Jmgyx16BnT7b8HkQNYnuH/6zsgGDDywUnk+6gPokIcWskzPZbM2coWmacGwbgiA07VZXD6lUCoqiYGpqCrZlYXRsDN3d3Q2lL+pNur517AIIQjQSwZxtw3VdWJRCbWICWwxiwLvqAYuTVjh69Ciy2Sxe89rXhop+5Pf/K4xD30Cj35bEmXFRs8RgATbaSSWJW5Takx0RBMQiEc811TCgyHLVlAFlkzCvVHBsG3ldh8vKmkVJQiQSgcAEpA1HS5q8j4OpCddxPAtkRhYkSara8tl1XUxNT0NVVQyWOGK2sXhok4PrAJKqQuvoQGF2tjJrJwSqqkKWJBRY9CBfKMAwTcRiMciiCEeWoWka0i99MfRxiaQhsva1iN/y3xBZ+1oIcsSLFNRYUQR92yv1cgC8HhKEEGTm5qqTA7ZCooBvCrRY4DqEiYkJmJaFifFxdHR0+CSmFRAEYUHdFgVRRCQSgWEY0HW9KbIksFBwK3stBBsutdqdbmZ2FseOHcPNN98caqXopM/COPT1xg8kyhCinQCaIFBLYDDFIasqJMuCbdswTBORKgSWR3II8bpL+uXMxOv+yXUFS9Fzo/S8eFtyXhlBAGia5nclrfSZ9PQ0iCBgcGgIw8PD7XTCEqF9la8TyJoG6rrQM5mqYT2BNWaSWH9zx3GQyWR810XLsmCefqTmcYioIrJmF2K3/Aii6+6HoMTKjhFqUOHRhGDagQ2kkiQhFo3WFAJyfYQkipADJWbBtEYrIUkSBgYGMDk1hUI+j/TsLEzTRHd3d/1JL+SqUSDEd61rBpwAGoQgr+uL1lSqEdSrVGi20ZJLKZ5/4QUkEgmsW7cu3IeanOuEeB8I8c6/oQlzAdGCRsFX+JqiIGtZsCyravMjx3Vh2bZHCtj5SbLskYnA++s+R6wUslUkwmFNrYLRgkiddGE6nYYrCFgxPIzVq1e3XRCXEG1ycB1BiUZBARhzc5UfbLaNaxF0FkWgrgujUIAsy55uoPRzggR55T1IbPhRJG5+IwS1/qQTNhxZlHag1HcSTNXqscCiBi6lfnc6EtjfYg3HXIcwNzeHmZkZ5HUd5pUr6O7urrqyafgYCxxso7EYcqwRjm6a0JpoJ8zzu6Xbgih93WWlbH5VCbyJ1HYcUEIgMh1EWWlnM2FrAMePH8fszAx27doVOiIhdq2CsuY1ME/WJsBln0t4KYVrjhjQ+W6G/EiSJPluqJZllfU6cKnnIqrrupc2YCk5qRkdTZO/XaXvkS8UfK8Gri2QVbWmIn56ehoOpVgxNIRVq1a1dQZLjDY5uM6gRqPeZJ/N1rTsFUXRSymYJgqFAgRRRC6fh7r7oyh89wOAY0DqGkF8xy8Bw/cCUgwuAN0REamzOg/WUwPhB1WedgC81MLpM2dAeZoicDzbtv3VhVxh8iNA61olV0AymYQsy97gZNsYHRtDPB5HJ6v+qHg+Iffte8s3IFwLQhRFKKoKy7ZRyOchs8miHnyFeYnwjAYn/eD7y3fgvz/4e/O0Arcc9pXzwTw8mW/bHQaZbBavHD2KtWvXorOzM+SnPETv/hVQx4YVMDyqB5JoQG/Av9MiE4OiZyv42xACRVVR0HVPexB4Pkz2rOuGAcd1oWlaXYvxisdG6/QpXETLDcdkrneoo09Jz8zAdhwsX7kSK1etavsZXAW0ycF1CC0e91bX2WzdVZWiqp76nhAYug6zdxuS//NZaKrqi5Jc10VB12EaBgzDgGXbiEYioVX7fDVPa+gRStHX14dXjh5FemYGHamU5y7o7Qw6Symoqlp1QiE1lNqtANchpNNp5PN55PN56LqOrs7Ouu589RC8Ro1+BwLPUptrPwqFAuKx4tRP0OPer1Gvlc5YQJrGDxEHB3t+/MAEGlTE+6r+SmVyAJ5//nlENQ0333RTw+fjuoCz6T2AS4Fz1ZstBSHGB/hJVn9Ti0Ps9VDrOIos+54HNhPs5gsFbwJmFUQRTfO1PWHBSUErvqFtWR5JsW2f4EQ1DbIk1SUGMzMzMEwTK5iXQVdXVwvOqI1G0SYH1ym0RMIrBcrlqhMENiATQpBKpeA4Dubm5rxIAtMgKIoCjVmTKrLslQ6y5iu8AUyYsK5foRByRd/d0wNFljE6OuqvCigA17Zh6Doc10WsDjkJDnuLMWSLooienh4UCgVMT0/DdhyMT0wgFouhq7NzQep8UrKqbuCDnoiLlXtZlgXDsqAEdBluhcm5bOJrMnJRug+/4VKla1F6L/DjBchL6f5OnTqFqelp3HfvvaG6AAbhMBtgEAHitvdCVCMwjz9U93NCvI8dvsrv0GCErFmETsEIAhRZhq7rmJmbm48cEa/dNK+0CXV/Bu6DVpMCDklRoCiKpzuqM5bMZTLQdR3LV67EiqEh9PT0tOCs2mgGbROk6xiRZBJyJFLbkCgQsk+lUogxz3QeHjYMA3Nzc8jn835ZJK8zNg0DmWw2dA8CXtcfxu9AIAT9AwMYvXKlaLvBHduY6YvjunDpvENbtQFsMTXjkUgEy5YtQyIeh8iMaC5fuYIs6xTXtEAyeL1Cf4SldEQRmqbBBZDNZmGyGviwFREL7TwIsE6MjHxWJJANTqYzs7M4fPgwbrjhhoYnBdu2vd+DEAiiiHg8gehd74Ny8w/X/azAyxgrkBUSkuw2jeDkXOs47Hl1qdejgrujFnI5UNZ5MRGPQ2Daj7qKftcN7UsSBjbrGpvL5fzGTaqmIZ5IQGMLDIEJk6shxz6/bHgYy1esQH9/f0vOrY3m0CYH1zmiHR2QNc2fQGtBIASRSASSLEOUJMR4s5kASdB1HRoLSQqi6EcRcoG2tnXBJ706A8/AwACm0+kiz3ibTXI8lxrMvfrujFW+Kwn8afWATghBV1cX+vr6oMgyKKWYnJryGjg10H624r7RGEGg8FbJkiz7q8N8Pt/Qd27F1WmlbbJlWdj37LNIJpPYuGFD6HsI8O6ZXDbrueuJot+5jxCC6B3vhbrhx2t+XkiwtEJpGqRVgrwqIITMp1hKwdIuvlMhvGfAMgxkMhmYluWRMlGEommIx2JeNNC2QV23fkowZMOzeqhGCpKMFFBK571PaiCXz2Mmk8Hg0BCWLV+OwcFya+k2lhZtcvADgGhnp0cQmPFJNXDlsixJcBwHtm0jkUggHo+XkQTTNBGPx32Vvmma3qDURG/5agP8QH8/CCEYG/V87SmlnrMbqk84Re6MfCVViSwQsiglj5qmYXBwEKlkEpIgwDAMXLl8uaiRVMOoF0FgE4XrOKDMupojziy0eROd0GhBy2q3VeSAUuzfvx+mYWDHHXfM7y8gfK32W1qW5RMDiYlwg1EMQggi294N9da3Vj62JENQy8vjFl1bwIlHyXF498pglIw/l5lMxjMzYlU/fpMkdm0c123db1IH9UgBIcRr5hSiuqhQKGB2dhbLhoawbNkyLF++fFHPvY1waJODHxBEUilIqup5qtcY2ARB8ISIzCDFcRzIslyRJGTm5sD73Iui6HWzy+UaiiL4gzob4IPnpqoquru7McrJAW8zizo+/SXgqyo/BRFQ1i8GCCHo6OjwowgEwHQ6jdGxsebbQLPrUzQJsonCYX/8SoDA60QQEGOCRNOy6nbuKz3eQmBXc0Zs8LqfOHECo1euYPu2bYiWiCuDKL0vTMtCjqUSZFlGLBar+J0IIYhseRe0ze8of02YNwRaCqmhf36B58cnuCVaDNd1obPnsBAgBVEW2eMtvbnuw2b3niRJ5dehlemDTKY6KWC/D4+81LrHKKXQCwVMz8xgcPlyLFu2DENDQy05zzYWjjY5+AGBIAheBEFR4DhO1dwzYaVQXFcQXG1WIwn5fB6iJEFhPuymafo6hdAkgf8tCEUD1eDAAMbGx71JMLDqaWbi8qMKgJ+CCE5UrSYLqqpiYGDAb3BlGgYuX7nidY5rdmUeEBPaFX7HokoH9pokSf5qraDrRR06ax6quTP0wY9TSuQa0TNMTkzg8MsvY92NN2KgXiiZl0Sye7DANB/cerde+W1k0zvKNAhC1yr/ddqCaEpF8Px+QC/A79FKJZ6u60LXdWSYOM8FikgBfw75defRAovZa3NPg6J9L/DeLyIFjlOTFBAuVKWVGzfxczMMA9PpNAaWLUP/4CBWrFixoHNso7VoVyv8AEEQBES7upCbmoJjWXAIgVCBvQvwRHaGaXpWrIbh9UtnD7Isy5BlGZZlQdd12MxtjRACSZL88KVhGDBNEzKreAhTb+/X+TOhV39/Pw4fPozJqSkkEgmA0paFRP2QZmCAcigFCazQguZKzR4jlUpB1TRMTU7CMAyvkVOhgO7OTigVmsjUAic1tYZyv+Qs8L00TYNj27BsG7lcDol4vP4kvYAJg4e/gZIyRoQnYXqhgGeffRY9PT1Yf8stYQ/sNxgjguBV25R076uF2I5fBJEiME9+H0JqEInX/eH8i60QH3KBYWA/Lpsw68F1XRimCZPZhgOs+ZqiQFaUsu/Ijadc14XtOH6zJZn9Hq3wK7DZGMCJoL+4UJSi+8tvMoaAB0mN62mZJqanp9E3OIj+gQGsXLmy5fbbbSwMbXLwAwZBEBDr7kZuchKObcOhXvOVIsMkNslHWSMXXde9UqOSUsRKJMFiQihJkrycv+PAZP7tvCwyzOTOldKdnZ2IRCIYHR1FNBqF20JyUAkC5o16gis4AgCCUBRKa4QwyLKM/v5+ZDIZzMzOwrIsjI6OIpFKIZVM1h34+GTLIwVcjOfSckOqaiVv0WgUmWzW0x8UCn66oRaadTDkpWqiKDZVJum6LvY9+ywIIbh9+/ZQYW+e1uJRmWAHP37twvxm0W0/i+i2ny1zdGzoOgS/I09JVJkQ652R67o+0eafFAXBs8uW5arfSRAEiABseJogXrUglGg2GgalngNnGFKAeRLul9Ky36f0evpRH8PA5PQ0evr70TcwgJGRkTYxuAbRJgc/gBAEAbGuLmSnp+Ey9bJLiN/jAIBfK2+aJizLQqFQ8Mx9Avl6PihVIgk2mxy4iRJvv2qaJhRF8S2c64EQgsHBQYxeuYKVw8OgAIRFbqwS1EEAKBrUiwLLnDRwYRzqEwaeC55Kp1HQdS9fXCigu6urYitaHlp2eOi5BLxZUtn5V8iRE0HwelZks7DY4F7P9rmaQ2I9VPM3CGtv/fLLL2N6eho7d+70olZ1YFsWsvm8Xysfj0aL7i8iCBBqhLF9sPu6lEjUKyMMTvql0aj5k5iP0rkV0gWlcB0HOntmOERBgKppUEIakAmSBGJZ3j4YaW8WruPAtCxYplnUvKkSKeB6l9L70KmRmiHE81aZnJ5GV08PBpYtaxODaxhtcvADCkGSEO/qQnZqyq9icB1nPorAyqCirAGSYRhQVdVftXNxXNBZL0gSDMOAZVlFuXX+b04SZNYJst6ANTA4iNNnziCXz3vleYtQZVAJ/lG49W+FAT84EVDAyx8HRZaBffmrPklCX28vcrkcZmZmvFbQo6NIJBLo6OjwB0M/hRBiIikKEQcqNkohShJikYjv6CiJYn1f/Saut68PKRnYw6y+L1++jJMnTmDjxo3o7u6u+35d16HrOgjxejjEY7GKKRMSIHvVzoIGKiAqv6ECEeDbiw82/xEwEhcgJ7WuqOs40A0DZkC8KooiNO5mGhKUUoiCAJNSWKYJURAgN9BqHPAiLpZlwbSsIuOiqqSAvx4wXvL35Z2Uf27+e9lrhULBc0Tt6vKJQbvD4rWL9i/zAwxBkhDv7UU+nYZtGN5DWhJFkCQJqqpC13Xk83kv788Q9HWvFElwXBeWacIwTb9syaXUH/QopbAsyxfMVRv4+np7IQoCpqenMTAwMF/C5e1kUUoSgyjae42Jl78enDCCuf+i0DK8JkmapmE6nUahUEA2m0W+UEBXVxeimhZaOFga+g5OgpWgqCpsx4Fpmsjl8745TtX9N5FaqGibHALZTAbP79+PZcuXY82aNTXfy41+LMsCAaAqCjSm0K+GYJ+OYCldUJjnV30EdQGuO0+EQ14LylJ2tYR3QThcpxMgBZIkQQsZZQtCIASU/W6+RkUQQrtK2rbtRw2D31eSZSjs+a5EGitFsjgcxyknRZTCodQTMBcK6BsYQE9fX5sYXAdo/zo/4BAEAfHubujZLIy5uXklv+NAYIrnInGiaUKt1OyowkAhCgJETYOqqkWDjcBMgkwWnuTRBok1XSklCbIso7evD5OTkxgcGPAHq2BIvzQ/vBgIfkc+YYaZJkjJqjE42BJBQHd3N/L5PNIzM3BtG2Ojo1A1DSmmPK90/IrHKXlPrQkpEonAYSK1fD7vtbqtsv+GUwu0jm1yFTiOg2f27YOmadi6ZUvN4/Hz5i2uo9FoWQfC0nMqLfPkJl48XVSXWDXw/UmNaFOl72LoOsygpXATpKBI9Bc4F77il+vsq1LaAPB+Q0WWPd1RlRC/wIh/tW8bTKMEr4ll20in0yCShKFVq9A/MIDly5e3UwnXAdrk4FUCLR6HpCjIp9PeigrzD7FAyLw4sVDwavcbWK0TQvxoghvoJc8nTdM0YRgGJEmCZVl+uiEothocGMBLBw/65XulU87SJBpKjhkcjOtMAvy7Vrtu0WgUmqoiPTOD2dlZFPJ55AsFRDQNqWQSCrO0DuywYvtj/+86q1VCiKc/yGRgs8ZakRoh57BaAaCKbXKgAqQiKMWLL76IfD6P3bt21Ux1WJaFHNMXcPLKCaUfTQLKIjiVVq2CIMC2bT9NtiAEVPhhSAGvBLICpEBmkbpGSQFH6VFddhxRFCtH5lgkzzTNsrSBrCiQZbnmufDSRIra5NX3KAlco3w+j5mZGaQ6O9HT34+hoaGGu2y2cfXQJgevIkiKgnhvLwqzs7BYb3W+OlYUpVycWA1s5eS65V0YBUGAqihQFQWO68I0DIiSBMe2YVoW8vk8iCCgoOvQVBVaJAJFljE4OIgDBw4gnU4jEbZvexNCumbAIxgE3mBcLexcd+UvikimUohEox5BKBSg67p/vVOsVTTYMUqP4lvp0oCNdHDVX3I9uEAxk81C13WIguBFKngahA38aIAYAFVsk+t899Nnz+LcuXPYvn07EsmkP5EEJxQXXnmjbhheVIvpJwRRLFe+F13YciIVhCRJsCuFvIP7q/KbBvUEYdINTnB1Hni/IklQQ1byAPA0QQDqOS/wiiQRxf0UbNuGZZpeCiOYNpAkKIwU1PvNfN+QOu/jBl1EEPyqkdmZGeiGgYHly9HV04OVK1fWFce2cW2hTQ5eZRAEAbHOTpiqisLsbNFqV1FVWGy1oyhK9RVFnVUyh8hWfZqm+WkHnnM1DQOGriOXy0FVVcRiMURjMUxNTWE4rEvaEgkXgflVqYD5wbJ0QqmVu+fW0ARey93enh6YhoGZuTnohQIKhQIK+TyisRiSiURVfQYhxBeUUm6XHTxmyfFFpvfQCwVvNS4I8zoBSotEZEDxpMtJEYXnD8Htqm1WAUMEwZsA2Qq92ndPp9N46cABjIyMYGhoaF6jEfibl186tu3pC1TVN3YKhTpEURJFP4JQCWWTMCPAJISewOWiPtMsUusTeCmzoNC3JhghCGpu6n17y7Y962gWtTMtyxMKB/QsAosqKLIcKg3kr/5DIPguLm6cnp6GJMsYGhnBwMAABgcH22mE6xBtcvAqhRKNQpBlFNJpb0AmBKqieJO2afrixLCDc2llQ+lrPO0QiUS8kkjDgK7rsEwT2VwO+XweyUQCo+PjsF0XNbLLlY+P+VzsomsT/H/UES8y8FLFUiiqir7eXo8kzM76otB8LodYLIZUKlVxUuF5YZefC1uxVZscNaYJsW3b1x8Ild5LKpj1sBB+sCrDYccSmaiVAhWjSIDX2XPfvn1IpVK49dZbK56f4zheR0V27GgsVlH3UhMh7lNRkoomzSAoO38/UoDav6vrurAtC2agrJdDliT/fm/k+QHK0wb1YJomLMOAJYrIBO8xQjxhYS2SHzx++QnV/QzvbwL2J5fLYXZ2Fh3d3egbGMCKFSuQSqUa+0JtXDNok4NXMSRZRqynB/rcHMx8HoQQRGMx3+wok816TnshBwpe512vt4PK7JvjsRgMw0Aul4NhGIgnEnAuX8aZU6fQPzCAaCQCLRIJtergRySB/y8ZSQD80Halb14vJK2oKvr6+qAbBmZnZrxrks8jl8shHo8jmUwWkQQ+sft2v3zVXG3Fx/UH2Sxcx0G+UEC8UtqIrZLr/d48d80nnWrvp5Tiuf37Yds27r333opExzRN5AsF378gVuJfUAuNVllwQWelFIXAuhTWihRQFjWxTNNfsXNITNQnsVbjYc+/2j1TC47jwLYsGKwZmmVZiDPDK5GlDZQQaQN+Ds2m51xKAdeFQylm0mmYponBFSvQ3duLlStX1haQtnHNo00OXuUQBAHRjg5IioLC7CwkUUQ8HsdcJgPTMDAHeKVwIQePaq5olSAynwUeTZBkGWdOn8b4xAQSyaSvT1CZ82K0kYkj8LeLxSUKQaEgAYr0An6PhxDQVBVaf7/XpW5uDqauI5vNIpvLIR6L+STBX2UGqyLY/6tNNnzizWazviVupRxwXWLgOL4rYr1J8Ogrr2BsbAx333VXmVsjpRQFXS+y5Y6yVsth0YyzoyAIvv6A0oCRT4198ZSYbVlF6QdBEDyVf8hwvf+5AEEJ8w1c1/UjP7wlMwDkCgVQeKmLaCzW0HkUpQ4aIQYsQki9E4NhWZiamoKmaRhavRqDg4Po7+9vpxF+ANAmB20A8NIMIqtmUChFPB73ViWmiVwuhyhbwTes+Ob5cVrd6IcQAkVR0Nfbi5HVq/HKK694JIAQfyLTdR2zs7OQZBkRTfNaTytKfVtiVF8xthpc2e3X2QeaSTWCSCSCSCQyTxIMA9lcziMJiQSibFIv0zwE/q70TXkpaYEZJHHi1Qhc14Uoil5Koca9cPr0abxy9CjW33IL+gcGyvaRz+fn9QWa1lB/hIVCZFEC1GgO5DiOryMICgsFQiDJMlRFCS0u9P0QMC8ArjUhc30KJwNOSdoC8CIE1HEgyTI6k8n6Yr8gSS/9OwwYKfDTd8zKemZ2Fl29vejt78eKFSuQDCsmbuOaR5sctOFDlCTEuruhZzJANgsaiyGbzcLQdQiE+ANQIySBr6S5uK1WeF0QBKwcHsbp06cxPjaGTZs3e9UT+TwKrNmOZZqwWDhVZLXivOKhVlQh6Fy3WNqEIp8E9v/gtjCWukFwkpDP5zE7O+vpMzIZZOfmAEL8UHK1c6mkQ1BVFZS1Ai6wVFJYq15g3gVTDKQUSifXixcu4MCBA7jhhhuw7sYbi16zbBt51k0xrH9BI2WWtVD0W1Qgbb6w0LKKSB0B0xGw/H2oe59FkQiK1f7VPsvJAP9Tek0FQYAky5AlCZIkwTQMgFJIolibGHCxKDunhsGJfaC6xLYspNNp2LaNZcPD6GFphLap0Q8W2r9mG0UQBAHRVAqSqgLpNBzXRaFQ8PLCbKXJJ4iGIwkVcr2ln45EIhgeGsKZM2dwy4YNnqgqlUIylYJj2yjoOvKFAizD8Pz2LQu5XM5zdmPlYrVyv6XahPlTa40TY3DVXjoBBVMzjUQxotEootGoL/jiPgD5QgFEFJGq1IGxhgZEi0Q8J0smPCXRaHF1RA0SZzsOVHg5dr/lcOB7jY6OYv/+/RgeHsatt97qv+YyrwXTNH3zrVppouB+F0IMikyPAgQx2BOENz2yFigs9Akw5jU41c7d1y/YtpeuKEk98VQL/xOMUlBKkSsUYLnuvJthrXMJ/Ds0gqSAHxdAQdeRnpqCGo1i2fAwBpctQ39/f2P7buO6QJsctFERiqZB6u0FYYN3gQnkBEHwndi4e12lttBhUCmaICsKhoaGcPrMGZw+dQo33XST/5ooSYjH44jH474VLY8ocKFYvlDwV1h8YOf/r2u7i+oh+fBfivg1+7X2E5z4wvRWAIBYLIZINIp8Pg/j8mXYto3ZmRnkslkk2XUp7ZiHwIoviGgkAgqvdW4un0c8FvMnap7TrnS9/MiBKJaVL05OTuKZZ55B/8AAtm7Z4n/eNE0UCgX/e/LunRXJGzvfshB4SBRVklQRgvKJWdd1WJblkQJ2HJEJC+UQwkJe2VDxPCpsdwK6gdIKB8C7v+UAGah2v1osggYAEU0rukZ+Cm3+RGp+h0rn7ZaQAsDTXczNzSGTy6Gnrw89vb0YHh72nDfb+IFEmxy0URWCJCHZ0+O1Zx4bg2EYyLIKBn/Fx8uZmiUJpeFTQqBFIli+bBlOnjyJtWvXVsztcjFjNBr1DJZsG3qhAIvZQBcsCwVdhxQccNm/RVH0J7ey0yn5PxeuhR5k2aREG+ibULRCrlGSCHjXJx6L+Y2dHMeB67qYmZtDJptFLB5HPBYrvmbBlEqgsiEWiSDLSvKyrDJC4pNStegBnXdGDBKDmZkZ7H36aXR3d+P2228HEQQ4juNPwLxpUrVoQRkpaAAVPxE4N9d1YQfC9jxlwH0bBEHwjYHq6gjIvBdBrTPlFuU2/2NZ5RoRRrR5dCCsiE83DBiW5ZcqeqdF6kYran8t4pclBr+X4zh+G3JJlrFsaAj9zO2wnUb4wUb7122jJgghiHV2AoKAyStX/NLDeCJR3JFvoSQhcDxFlrFy1SpcvHgR586dw+rVq2t+RpQkRCQJEU2DY9swuDaBRRR0XfeMYiQJCut3zyciURQhMsIgVSAMzeZqmxE/8vx0pWqEUvCwfCwahW4YyGQycFwXc7OzmJudhRaJIB6NekZCwVbdJavKeCyGbC4H27b90klREADuelfhu/OJjJ9fNpPBk08+iXgigTt37IAgCF5UR9d9gabGenCU7S+Q/mj0WvHQdyl4Twku5qvkMSGJIiAIoTQEpSWHpUd0XdcTn9o2bMeB47oVNQ0EmE8VhCEiFcCjBo5tQ2V6jeBv2yhqkYJsNotMNgvbcaAoCkbWrMHyFSvaFsivErTJQRuhEGOGPFfOn4dl28hmMkgkk+Vh1RaQBFmWEY1E0D8wgOMnTmBkZMQXeNWDKEmIShIQifhEwTZNfwVn2jaoYfileEIFUuCTBUHwyUM1lK4gg4LHZlDa/Cl4nOBqWGArcwBIJpOIJxLIZjLI5XKeyZSuQy8UvLbcsRjiJbqC4EozFo0im8vBcV1kczm/dLWaU16QGOTzeTz51FPQNA133XUXiCAgm816pkgARFZdUstts9FrU9rgqlTM55au0OH9ppIkeS2sGSGg8MLlZeQhEB0oLTl0ApO/Y9uweTfHKufLo1Q8KrFQXYtpGNCZg6miKAsi4bVIQTaX8yIrto1UKoXbtm5Fb2/vgs69jesLbXLQRmho8TiWjYzg8pkznnI+m63uthcgCQQoWr3WA28jvWpkBPv27sWlS5ewYsWKImFUGASJgs16O1im6QvpXNf1+j8EytVEQiCylXGQMAjMdjgYaeArSr6K5ftYjJJJTjqKmi9h3vZXIATJZBLJZNIvfcwXCnAdB9lMBplMBqqiIMaiDeC/ByGAICAeiyHDTJL837U0ncL+zUmGYRh46qmnAAB33XUXXNfFXCbj3w+RSARqoOtkM5UHRYSAlQE6ASJgcwvpks+IjATwP9XuPZ9IlJBPl6UFHFaOyv9U+20FQfC6lLJ7Q2DEciGg8Oy6OSzWNdU0Ta+RV4O9CoLiUABVSQGlFNR1IQoCVq1Zg1s3b277FrwK0SYHbTQENRLBICMINqsU4KKkarlfCoA6TlFOud6KR4tE0JFMoqu7G8eOHcOKFSv814KfDDvR8EkCkUhRDtphK0DvVKkfIrZM0594RTbwOyUrP6EkLRHUMTRKZMKg6NiC4DW6qVAxoKgqulQVHZR6QtJsFrphwGR/ZmZnEY1EEI3FPH8Bb4eet0U2C5dS5Jh+gU8JwdWxIIqwLAtPPfUUTNPEPffc44n62CpUYpGfsgklJDEIEgIuHgzqBSqRgWBUQKxBBvh58FJPTrocfi/wyECJA2IQAvutJUYGSonkQsEjNqXfgQtwG+3XABS7dAbvlSJSwHwfZFFEvLMTI2vXYmjlylZ9rTauM7TJQRsNQ4tEsGxkBJcYQcjncohEo/6qsNrA7HcVxHwZZLX3ikwkNjIygv3792N8fBz9fX1l7/NX1GD15LRK+94ABEGAwtztODhJsAOrRI4gYZg/sEcMHNcFKWmFS9lnREHw3scmclEUW0YaBO7sxxogFe2XTQICIYjFYogxS+xsNot8LgfbcZDL5ZDN5yEzZ8IYq1bgGgTHdZEPED8eehdYH4enn34auVwO22+/fb7kTRD8/XAiWLfVNbuW3ml738cX8THNQOkeBFJc5icErisHj7L4aR72G7oBAug6DvK6XtXBkqcjBGb6JImir1dpJcr2VuGa2Y7jV+ZEWTOz2jstrtYoPUZppACuC1mSkEilEIlEMLRqFfoHB5v+Tm1c/2iTgzaaAicIV86ehWmaQEmb51oTNAHmLVgxn3IoHXQjkQi6u7qQSqVw9NixiuSA7w9AUdOghlMQbDXI7Xi4Sx1fUdq2DTeQN3dZrpnXxpPAfig84Vi1cyWiCJEQELbi5GFwwrZVuhZl++Gvl6ww/cm2RLkuShI6OjrQ0dGBQqGAbC6HQj7vlagFRYyxmFfFwEhENptFLBbzyZJACPbt24d0Oo0tW7Z4pXTwyhOjkUhRGqIiMaBeEyruHsmvM1f3V/q9RCYclAIRGn93CER8ghM/+1PLvtoNvEYI8Sd/MfCn1ShNFYS9Pw3DQMEwIEkStCo205yM1SqN5U2ustlsMSno7EQsGoUgili5ejU6u7sb/GZt/KChTQ7aaBqRSAT9w8MYu3ABpmHAcRzEYrGiKoZ6q3hgniiUph0I8Rz0RkZGcODAAUzPzKCro6PueZVNloFzCYugCQ0Hn9CcQEpCDEyA/iRVEnkoimYwsZuD2uRJEEVPFMiiDgI8EiUKAkggfVEqvgt8gaLvHyQbvASUVyiUihiJKELVNLi2Dcgy8roOh020x0+cQDqdxsaNG5FKpTzBYyQy75EQnOxZJIAL+PhkXfO6s+8uBXL3BKxlNA/5m6ZHJGpM/JXALZ/5taXEs+2uVtbaSlRLFYSJQbiUetEcy0IkGoUW1HF4O/fusQppA44yUsDSB5wUEHily6vXrUOibYHcBgBCF9twvo0feOi6jvFLl6BnswA8sx4esvdD/gg3EPLPBCsdZmdn8eSTTyKWSODuO+9c0LlWOo+FPADV9AsGEz6WHoeHt/1tAc0Afz+fEDkxqHTdHNdFIZ+HKIqIJxJlJICTq6C5E4LbSsSUlmUhl80ix0SMhDUoch0HmqYhk8ngpYMHQSnF+vXr0dvTA1VRIEiS950cx5vAgwQgqPQPiDUFdnxBEPx/+1GUwHUpIj51himeuuH7FIL/58cpgVVK4hYI36uhZXv0kMvnMTU9Ddd10d3d7VcphBm6q5KCVMojBey6SLKMtTfdBK1St842XpVoRw7aWDA0TcPyVaswfvkycjMz3kpUURBlK5JGQTA/aQJAJBrFqpUrcejIEaRnZtAZInpQa98Vj1fy77BpiWr6BYX5LPDVLeVhb1K7m2FRftxx4PL0RGCi5edomqbnWCnL/rXiE2pZxCQwYfv1+qXkhVKIguBFEVjKwbZtjE1MYGJiAhRAV3c3REFArlBAQdfLrqFfwRGIfIiEeKkULtbkE3WwVJJFBiohGC0JO/HXA49wNPO5IsLFUWlbC+C4Lmbn5mDbNqKxmPdbeydS9TOGafrNyizT9K9zJVIAShFLJrFqzZp2i+U2itAmB220BKIoYmDFCswlEpi8csVrcWvbvltf2aAZUjwIeIY1K4aGcOLkSbz00ku4++67fQvnVqFaKqKUOADFE3QliKwZjliFBATz5KV/81A8/7vS6pAC/uqef85fSZas1otq9QPEgIvV+P+5LwEI8dsQc0fM2XQaZqEAkRAokoQ8E8YpqgpVUaCqKmRWteGnQgKTpR+p4KvqkteCkQz+2kIm/lCosV/u/1D269UiADXy/M2CAkjPzMAyTRBBQDKZrJgycFk5bqFQgK7rXvSKpzEIgSzLiMfjZaRAkCQsHxpCT7s3QhsV0E4rtNFyGIaBidFRFGZnQSlFtLTePQC/dr8OUaAAzp49i+eeew5r1q7F+vXri1IPizSF1EU14uBSCtOy6obDw+w/KNZzHMf3kJibnYXjul6FgCjOT3gV9AZl4e7Ae4L+CRSAzVaepmXh2NGjmJmbw+DAAGRZhhaJAPAEiMEIiCTLXodM1n6ZlxMWpRT4d1qEibRROI4D03EqE4CrPSQyopfJZJBOp2E5Dnq6uxFh1x6Yb2TFIwS8LJNDVVWvq2c06t0bQVCKeCqFlSMjUBr0Smjj1YM2OWhjUeC6LqanpjA7OQnHMDzXw1is5kowKNqrNEBTAPufew5nzp/HHdu3Y2BgwC8dFAKrz6s98XCYtu3pC9hKFCiejMsePUJAKPUslIOrfPaabyLEPpfJZODYNmLxuNc5EPPlnMFj1gIBAFaeyLsT8p4Ihw4ehGFZ2Lh+PTo6OyHJMgxW+mfZNkRBgGkYsErKDSmlXvSBEQWtRk0+JQQC+85VUeG7lBIP/tuX3TWcdAbuKcqI27Uw9AWjUEHSpBsGJiYmYDsO4okEUskkHFbOWNB1mIbhv5+yMlJe4hgNRghKIEoSlg0NoadK5U8bbXC0yUEbi4pcLoepsTEYuRwIpX4dfD0Eb8rgMGfZNh555BGYpom77roLiUSi4ueL+gk0ffYLg8PEiov1iOXzeZiGgUg0WjUyUxE84sJSF4ZpwjAMPz2RmZvDwUOHIEsS7rzzTt/jIJ5IgLouMpmMr22Ix2IQBAGFQgGGYcAwDE9rAW9C5ha9iqL4kQVVVa+q457DS1Cv8tBXSgg4bNvG+MQETMuCIAiIRKNeJMc0vUgHIYDrQhBFLzrASEHN8ldKkejsxPDISFtb0EYotMlBG4sOy7IwNTmJ3MwMHNP0Qs+a1tCkHYwqTE9P47HHHkNPby82bdpUXtr1/7d3J79xXVcawL83v5pYHCXbomhRaluy47REylPiNBAngJ2Vvco+yCKbbJL8EZ1dpwNk0QECJFnHCZBk4XbbCOy0ZcsTKSmmY9kSZYtqWTNZrPGNtxfv3sf3SqzioKIG+/sBBXEQySJL4vvq3nPPyX6cEGtdC3egkryfWJ7pH2RFfJY6emg7Tq7HRLf1piyKOE6m+3leGsRMXceN5WXMz89jdHQU33j6aQgk47p1y0LRddNn641mE2EQAJqGYqEAWz0GQiCUKw+dTgeePOKavGttNcRxnGTp23Fu2qLYSQLITWa8bbIrRX1+5cZC4NLly6jVavCDAKViMemdIUOEaZooFAr5n/kGDMPAngcfxBhnI9AWMBzQbRHHMWq1GlZv3IDfbMI0DBSKxZ5Fexv55NNPcfLkSTx66FCyd7qVZ0Oalm5v7GRYUDUCMdCzEv9W+L6PVrMJUxacKdkw0N1aWcRxcuH2vLXGTaYJ13GweO4cPlpYwN6pKRydnYVuGMnJE9+H6zgwMz9jAaDVbKZ1FW53177Mr5UwitBpt5Mw0ukkF+Zswx7Vb0D2lbDUXATLunm//BZlGzDtNJF9DLrep8Y4h2GIQJ4K8YMA9Xo9mYkRxxiS20W2bSeBQNWWbPoOCFRHRzG5bx9XC2jLGA7otmq1Wrhx/Tq8RgNCNnXJHgPcLAHgrbfewuUrV3D06FEMDw8nBVtyf3rTRW+qKn0Hj6IJuYIwsP9q8nuMogj1eh26rqNarfb9kFiGAk9OpIQQaY9+0zAwPz+Pz8+fxyOPPIJDhw6lgWJlZSVZkq5U8nUFSH5Wbbl6AcguicXi2ipFpjI+KwiCdN+843lJcMo8s86eqNC0ZBCWmptgGkYSGuTLW+limHssttA8aSMCWKt5yIQB1YpbjQ7P3rL/FjQAYRzD73TQarcRhSFGRkcxOjaGgutuq1OjaZq4f2oK41wtoG1iOKDbLgxDLC8vo1mvw280oGsaXMeBrYYAbZIfBHj11VdhWRYOHz6cVmjnJvllj8ipwje5t97LekfutksdTwSSC8CW9rm77nt36BFxjJVaDZqmoVqt9uyMp/ar1fst04TjurAsC77n4fg77+DGjRuYnZ3F1NRU+rGhHM2tyfARZmdIYO0i7vs+mq0WgOTYablcXr8Yssf37smixjAIcjMVup/ddxc9ArKbomyvnB3LrEYkZztJquZTQRTlWm1vlQoDkJ8zvfjLIKCmRnZ3b+zunWEYRnIkVzah8uUWT6lUwsjo6Lb/3Q2PjWHP1BRXC+iWMBzQHSGEQKPRQL1eh99qwW+1oCOZKGjb9qa3G65du4bX33gD+/btw9TUFAw5PGij2QS9Tkasd5xSvU3T9eSisoXQkL0opUcRM9QWQHrR3+JRupWVFQghklbG8mcm4jhdpvY9L+2HYNs2XNdNC0IbjQbeOnYMfhDg6aefxvj4ePaOJVsB7XayIiCHN/UShCGajQYEkqZFpVIJeq9nvJv8/ronMoaZ4VhhGOZmMaifXVrXIB8nU86syI7T7vd9dH99yM+rjo/mtmiAdHpjr38LugwultwmsdTWiWVBk6Gg0WymJ0Uc10V1aGjLqwWapqE6MoL79uxBgV0OaQAYDuiOEkKg1WqhXq+j02ggaLXWLmSbHEv70T//iY8WFjB79CjKlUpycSqXB9JAp9d/jmwb4Gyh403BQi5jZ0XylMAgpvutrq4iiiKUS6V04JMvp0eqEwm2PCWQ/Vlev34db7/9NmzbxjPPPINSqXTT51ZHJYvFImzH2fCiGscxGo3G2umGcnnjkym38OtHzbhQ+/fp65nRzunPX/6sY7F+J8buINArJKLr7SqUqO0OFQJUAOgXcj3PQ6vVQhhF8Dod2I6z/uyEPtJQ8MADKKzzGBJtF8MB3RWEEPA8D6urq2jVavDb7SQkmGaymtCnLiEWAn//+9/RaDTw5JNPphds1Z3xdsvNN8D62wndgWE7RBxjZWUF7U4nvSipi6Ap2yo7jnPTM/ilpSV88MEHGB0ZwdPf+MZNy89q73ylVgOEwNDQEHTD2NQzbqFOMsi/u+mq+h34NeTLoCQy4SANDV19D3rFNG2DFSxVC7FVqpthLASCIIAhB01VMoWl/XClgHYawwHddXzfR71eR315GX6zmS5Vu66bDJ1Z52OarRZee+01TExM4NChQ2nRWUn2o7+T1Fl/RS1zCwDITKTcDBHH6UUvDMO15Wi59K+q29cLRUEQYGFhAYtnz2LqwQcxOzvb8wihqjfQdR1Dsthx08vxyJ9ksCwracyz2ZMpt1IPIJf+IyEgMisEAmvHGO9kkywhBJqtFgLfT7cp1JCpoUplw7kbuqahOjyM3Xv2oMiVAtpBDAd011LV+LXr1+E1m4BcyrflGfnubYMLFy7g+DvvYHp6GgcOHEAg96VVFf0glvG3QwDrjhZW4SDuCg65joryVILv+2nBHjLbGHEcIwpDuIUChvqM2r148SJOzM8jCEM89thj2L9/f9+fR7vdTpa6ZegANh8O0s8hex0oBdeFs512vZln+KlM0Wm2wyA0LZlJ0ePnfdv7G2QEQZAcU5S1EhrWalJK5XLPeSECgKFpKFeruH9ykqGAbguGA7rrqb3s5atX4TUa6cXTtu20Kl3t7S6eO4f5+XlMTEzg8OHDyf6zvFAUt3lsciDfgxDo9V9NDU/KUkfgfFn9nl7GNS1dHTAtC3EYotlqwZCDebKtmTVNQ7vdxokTJ3Dx4kXcd999mJmZ6dkwKdeaWdYyFEuldNuhXzjoVZQXRRFa7XbSMAlrTXxuWtnILvMjfxoiWwPQ75eVqifoFXkGepx0C4QQybAqeRohDXbycS/0mj0iQ2ClWsV9e/agtMktB6JBYDige4YqXly+ehWtWi33dkPXYcj93xvLy3j33XdRLBbx1FNPQQiRW0UoFIs7N+2vz32Pe4UD2WY5iqLckb5soaNlmrBkIMgWuUVRhNXV1ZuOMwohcO7cOXy4sABD03B4ZgZ79uzJDWO6qUGSEICuIw5D1FdXAbmErQNJI6ds7UQmSPS8aIu1joie56HdaqWvq1WELT8Kme9P3X/1cr/eBXdq1cAPArRarWQ1A8njqB7rOI5Rlo2OUvIx1zQN5UoF901OMhTQHcFwQPekTqeD2vIy2qur6LRa6eRBdYyt2Wzi1KlTCMMQTzzxBEqlUjIgSP6SvhOrCL4MKLG8MIRxnL4OefIhfVnu1Vu2Dcs0++5F11ZWkj1reQRudXUVc3NzuHHjBh7ctw9ff+yxvmfeu0OCasts2XZ6ikFgE10eNziGGcUx2q1WUouA5Jx/sVDYVkGfuk8CgFBHGvt87Xid1ZmdFAuBdma1wDAM2LaNTruNSNaglMvldHqlYts2hsfGMDoxke84SXSbMRzQPS8MAtRlU6Wg00m2EoRA4Ps49Y9/oL66ikcffRTj4+PpMT8AcF13YEceFbVCEGeeHUZRlM5YyFbOZz4Iuq5Dlx3/1LG4zWrU6wjCEI7j4LPPPsPp06dRKpUwOzOzqQ553RMi1ZZCoVSCI0PFpsIBem8vZGWfTQOApWpCNvzsa18D6FHHkQ06cuVCCHFbVw26vz9HDkVqt9tJUaGupwOrAACahqFqFaMTExjq0cyK6HZjOKAvFa/dRqfRSHomhCF838fJkyfxxRdfYP/+/dg7NYUwCNDxvPSXt+u6aXfGdX8xZ96WHlPMvVtL6wbUUbn1ZDvjGTIMqA5/6FelvsEz3na7jUuXLuH06dNot9s4ePAgDh46tK25FVEUrW0pZLcpMNj5EOqZtSdnPGi6jkKh0Hc1p18o6Pu1gKRuI/vYqq0IDK5ldhiGaMtwKoSAaZooFosIgiBdMbBNE0XZpMstFJJVgrExWOxmSHcZhgP6UorjOAkJzSYCz8NHCwv4+OOPMbl3Lw498giiMES90UAkf5Gr4T8DaTmraWsBQNZC6PL1GOgZHvrKHH3MhhVfro6c/+wzDA8P4/Ennuh7aiH/KcVNYWi9LQVgi+FgC10eQ1lQqZ7Z25a1bk1Iv4LOjUSZToo3yZwM2a4oDNMW1ULToAmRjqZuq8mUcQzXcVAqlZJAMD7OWgK6qzEc0Jde4PvoNBo4vbCA995/H2NjY3jqqadgmWY6WjhtjgMkcx5sOz+jAev39s9eBFUvf13Xe15w+hUmbppcJl9aWsKHH36IKIpw4MABPHD//RgeHt50P4Hu7QQg6bgYd51SAAa/cpAlhEgnRar74zhOsqVxixfu9TpUDkokp036QZDWPDiOA9dxoGlaOtY6FgLjExO4f3IS1ZGRO9KYi2irGA7oKyOOYyx++in+5+WXUS4UcPjIEeySe/K+76chIY5j6LqeXKAc55YvUOvdj+3+p2s2Gjh37hw++/xzeJ0OHtizB0cOH4bneYjjGJVyeUv1Clm9thSA7YWD9VYm+gmjCK1WC77npV/Tsiw48pTGdvbid6IQMRsKgGTbx3HdJBToOnzfh9fpQNN1lKtV7JueRmWDqZlEdxuGA/rKuX79Ov74xz+idu0a7hsfx8MPP4zJyUno8hd7u91OLuBxDE3X4bjuQJ7FKltdPRBRhC8uXcK5xUVcuXIFpmXhwakp7JueTrcQGnL7RPXm7/vZeyyl99pSAHZm5SC7IpP9NRQEQTKpUV58IUTyONg2bMfpe3Kj+/OrI6GDoEKB5/tpi2nbcVCQBYedTgee78N1XVRHRzE0MoLR0dE73qGTaDsYDugrSfUBePvYMSx9/jlGhoZw8KGHMD09DcuyEARBEhLkyQNd12HbNhz57PBWbWapu91qJasEn32GTqeD0dFRTE9PY8/kJMyupelOp4N2uw3LspKRyV0BQABrw5561ARcvHgR55eWcOHCBZxbXMTZxUU0Gg0AwDPf/CZ+9KMfbXif/+vXv8abb76Jo0eP4qc/+cna11f3J3OCYKOVhTiK4Pk+fNlqGPJmWhZcx9lwhUQNuLoVQgiEsl21J8deizhOQ4EA4HU6CMIQxXIZw6OjKFUqKJVKd7QrJ9Gt2t4BY6J7nKZp2L9/P/bv348rV67g+PHjeGd+HqcWFvAv+/bhoYcfRmVoKK00j+MYnueh0+nANE04jpM8I9zmL389M0Y4J45x6fJlnFtcxKXLl2EYBqampjA9PY1qn6Vp1SsgPbLXdb/UiYCXXnoJf/rTn/Cfv/wlJiYm0hARhSH+/ec/B4RArVbb8raHutDPzs7if994A6dOnYIfBDBNc936jOQu9v/Z6YaBQqEA13URBgE830cQBAjDEPUgSHsH2LZ902qCCkPbFUdRunoRqeZPMpgUCwVEckZCHMdJB8PRURTLZZTL5SRAMhTQPY7hgL7ydu3ahRdeeAHf+c538N577+GD997Dx2fO4MG9e/HQQw9hdHQUQRCktziO0Ww2kxMOsnhxq0VmmqYlnQflBbPTauHz8+exuLiIdruN4WoVR44cwd69ezfVJMgwjGSgkzxO2e/+aLqeXuwAALIgEEIkTXuEwNjYGO5/4AH849Sp5K+oD850PUzfhLVJjv/69a/DtG34noeFDz/EkSNHct0Ut0PTtKQZlG2nF21fPg5qxUS10tZlUeh26gxEHCdbGnKOhVrp0DQNthz6FYYhGvKxr46MYGh0FKVSCaWuAk6iex3DAZFULpfx7LPP4lvf+hZOnjyJ48ePY/G11/DArl3YtXs3SsUiXNeFaVmwDAOxpsH3PHidDgzTTLYd+tUmyM6N9XodjUYDq6urqNVqWG004HseDMPA3slJTO/fj5GRkS3dd03TYJpmEmB8H0ahsM6XX/8CHcUxfN/Hs88+mw6tqlaruHr1Kn76s58ln7/Px2e/W8dx8NjXvoYTJ07gg7k5HDlyJHn/LQYERTeMpK5CNrny5HRK9X0DyYhsXdNyjaXUsdLu8dVAcpzSl4FDxDGiOEYcxzB1HbppwpTjqn3Pg+U4GNu9G5VqNQ0F2+3wSHQ3479qoi6WZeHxxx/H0aNH8cknn+Dd48fxj9On4XU6yUVH02BoWrKvXCjAtW04cniO47rJ6F3ZEa/eaKDRaKC+uop6o5E+ozUMA5VKBZVyGbsmJlCpVrFrYuKWmuGoWgnf9+F2hYN+F2Y1OfF7zz8/kLP3M7OzOHHiBObn5iB++MNkSwMYWEBIPpVctXGcZGql56UzCyAHLEXydR9IVzx0TUsDQhxF6HheMlBK/n1N0+C4bjL+Wq5GmPJmybkcqp5gs4WRRPcihgOiHjRNS7oNHjwIIKmir9VqqNVqWFlZwcrKSvLy8jIuLC2h3W5DR3IhNGQjJNdxUKlUMDIyggf37UsCQaWCQqGwNp0Pt7Y/rti2jXa7jSiOEYZh+oy23wU5juP0Gfe2ximvY3Z2Fr/97W+xsrKCxbNnceDAAQCDDwiKIVcTAKRHUdX2ivozDEP4QQBP1ixAblWYtg23XEaxWES5UoErZz0YasVBtbSWbzNNk/UE9JXAcEC0SZZlYXx8HOPj4+u+P4oi3LhxA1euXEEURSiXyxBRBL/TQdBuQwNgyvoEEceArkMDoAOIttBVsBdNjnP2fR+e5+WLAXvodDoQcsjToJbHR4aHcWD/fpw9exZzc3NpOAB2LiAg089A13Voug5N09LaBAGgWCrBLRZhuW5Sn6DrKMqVgGwg4IoAEcMB0cAYhoGJiYnkFACSvWzP89Kb3+nAl70EGvU6dFltb1kWTMNAJERupPJ2OLYN3/eTEdXq6GIPsaw1AJJagUGamZ3F2bNn8cHcHL7//e/n3jfQgCBPW8RAumLi+T6iMIRuGHALBZSHh+HKehHHcZJZGpkOmER0M4YDoh1imiZM00SpVIIQIn1Gr25Buw2v00Gz2YRQkxmzRXSGsTYMap2VhfUuboZpQtN1xFGEIAj6VtB78mSCYRgDb9Rz9OhRvPSHP+DC0hKuXL2adqJM77u8/wLoHWLW6dWgCiNjGQTiKEIQhsnLQsBxXZSrVRRLpbU6EBkI2LaYaPMYDohuA03T1toxI9mCyK0qeB5CeYQukP0URByv7XubJgw5xCk38yE7JVL2TrAsC54stjMta92R1GpYEAAUBlRrkLV3chK7du/GlcuXMTc3h+89/3z6vu5JiJquQ8tMSVTFg5oMRGrcdRRFiMIwHYFtySLBUqkEx3Vhy5UBdePqANH2MRwQ3QGGYaBYLKJYLCZd+NRxPHnzPA+N5WW0G42kAt/300ZDuq6nYUHT9WQ0s6alI5pty0q69vk+ms0mioVCepGM4xgagGarBUteRA3LWlviz6xQCNkdUn2c2gpQl1s1gfCmzQEZWo4cPoyXX3kF77//Pp5/7rn84KqbPkSkRwizhYSR3B5JVxA0DaZlYWxiApWhoSQgZG6sFyAaDIYDojtMFRJ2L+2Hu3ejUa+jUaslnQGDAHEUQZ1rEHGMMAjQiePkIp4JDwDWmgVFUdLKV4aIsjyuaJtmsmqQvcBnti6yKxOQDZaA/g2RMh+Mo48/jv9+5RWcPn0a9Xodruumg5DUUUP1J4RItlNMM2lkZJow5JaIruvpFo0j+ww4W5ixQERbx3BAdJcyTRPDIyMYzjREimQtgWojnC63Z5fdwxBxGEK3rKTZUrOJZquFKAwBAJVKBZ7nIYxjNBoNaJqWbktA09LXfc+D6zhp6FA1CtlQoGYkqLcDa4OUdu3aheHhYQDA6U8+wcFHHoFpGNAtKzkWaFkw5EVf7zo+qMKACk3cHiC6vRgOiO4h6uLpdtUJqCK97rCwsrKChmy+FMcxmmGIM0tLGNm9G8MTExBqfHQcJysScYxYDizSLAtN2fgpjCJAFkxqKkCoVQpdh67eJp/Na7qO+bk5fHLuHISm4cl/+zdUKpVcANBlDQWPEBLdfRgOiL4ENNl0qbsif2hoKC08VM++P1xYwPiuXXhgcjL3zL/7FmkaTi8uQtM0fG1mBpPT07lg0H1TX0Pd/uMXv8D/ffEFvvvd7+Z6HRDR3Y/hgOhLTNM0FLpaKQdBAMuyNuxtUCqVUKvVACQ9G7Y67+Gvf/0rwjDECy+8sLU7TUR3HNfxiGjg5ufncf78eQBgOCC6BzEcENHA/fnPfwYAzMzMYHJy8g7fGyLaKm4rEBEA4M0338SZM2fS169du5a+fObMGfzud7/L/f0f/OAHPT/XX/7yFwDAiy++OND7SES3B8MBEQEAfvOb3+D3v//9uu87duwYjh07lntbr3CwtLSE+fl5ANxSILpXMRwQfYV8+9vfBoC0/8BOUKsGe/fuxczMzI59HSLaOZoY+OxUIvoqe+655/Dqq6/ixz/+MX71q1/d6btDRNvAgkQiGpjV1VW8/vrrALilQHQvYzggooF5+eWXEQQBhoaG0i0MIrr3sOaAiAbmb3/7G6rVKl588UXYcnASEd17WHNAREREOdxWICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiymE4ICIiohyGAyIiIsphOCAiIqIchgMiIiLKYTggIiKiHIYDIiIiyvl/jrR3kg7NE1MAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -279,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -328,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -367,7 +367,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -382,11 +382,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" - }, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } } }, "nbformat": 4,

|kWT`LS~S zZC6@1E?)KI`x&=ZxfOxxZG5nNbk_`(w5M4&}HYr9_lQPyjI|F$BP`Kt?x|c$&d>Beg|)JD6Xna|4pjLzn!**Qvrw7oSZX{>u2Tw z+wo`njo$lL#OM2lt~J153UkHfoFprJe&dJgy9xm5{*N=#T0`@uD?)S_7 zfx!E_mYt{nUQ#$+?y7yPbx8hbXq`4w z%gj_R&H!zBJ_ruzr&zg9JmqG^A}2?Es}wueo!dFU=D(Bry47EENrSa~#z@do<(n{Z zGW~8Vc1W|uaPO*H$+b16d*qS}WYGt#&&}Cz`|^KCi;mEEnEPZ3Vk;GQMySmz^6nk_BM=wYHxn3^FP%;{JVIiOIDdnC1G2R(TwjgILZA2wW1rzD< z0Ll)q_I)(+(>zTUpVwoD)Y>*r-w3{v#6+fEMtfrr+s#SqOxp-2xk8 z$j!f=NIc)GGNUaJ>a*bFaCP$h*crRyb-37^2)_R8fZT^R>uh`VF1EQFewR!7%FZW& zllB|(als1=$^^}K$64{3#VhUq0?tPl0{*&?B4!e6s!0b0eKbz9a7aCFXrrb487PH_ zF2O0Au<5iyl|{}Mb2DL<&pz_>pWkkU7?7V^rc=p!?4zQp|Jy8kHE%2 zDXP(IxwW_*e6t)3gTSD?egYzNpiY~Mi=(-XDHTM9kJ$;dhh^CTDGR8_gY@w}!r27WlV?p<`@;_(+S^8e#23WZ=K$47;Q8iY zBJAr0NHLhP=K6SP;Y_gOEZXsu;&~$gX*K&_V!-*@W(>~}r!CsbYBMWTKL#KN!aT+@ z-=+>%0|AheM|?zYM6c<;v4Vi%?4`Te^bIS*Kaa>nt{mQ9;RC+#Z_oN?IXL;A60#|` z4WOGD5d zOVU=aCL9mgQ}}o1(K!rlT-lD$$WfxfH5sf;WDv-=qkT)-0d9nv-*FlXhU2fhXfov| z)#*d>5h^w!p1$vx_$-$e78IHc^Jf92H<0kLV}MC4zt1&unDzNk6dRh`6;=Zkm7_Uw z&9v=YMyPJ(8Tq5H5n~|8o&V}zVXelPIyYcgqE^fBT&ckb3@a^*nIa|DT|YOI7lE4g z&%ssP-bUYOhJLemvIYl{i+tgB;$>i)f7!(h9KuZ47S+Lfs4Fxb=kV>J~w_4h&L?(R54L2r^yt~ z236%?3cYOg^Ac}V8$)6mwxahqUNiwc@!?8mCug8I&8;2H)s76~N1M6VlG4fo4fZW4 zQgt1Y-)y*v!EAB|SekgZAeKubuCN33zj8<33=(P&j1~fT7%>N6 z1_In{DIq?de2d?K!yJf@_UnmZQ=>hNuW-LbOAa^ANni?ij9_hQvDFsO7zu&QZD31m zJL@Cyb-Lqt$o7^;QiuL<#72Y<$}~hraP9sH-ZoFldzqdLU5IprLkhL(q3Z#8;K|Bn(-Y-{f;$r8m@k z(LJ3^`>i4^-Jv8z`SpO~pZb`8%Q?JOZ8Xd#Z0^dnsn4}}3{4VnR=q-^@q()gb8!%g zDy=W}$e-TRr1n_(Bz7)8Ha5oL^(@>{ktknOZI_{+(*>v_QcyJ2TzJpzv`^ygtuWC) zr^p2-$hpaWtPKE<2k#_Tbilpx^B!L2Nui%VbG)p|jGO)-PCan$FwQW-E~`&j{^=c0 z{($4hq@UHkc=p(FlJ~+?lc!47ERlQabvt!)2eXma-LnGEGTA$*9nT~cAd>ZL(3m3- zL7HY*6%w=eK-?UN9xrqTQ~4eG7~o0X@mhONF5(N4Y%eh}LQ3i7_0;ZSb}Q!MZAATX1kW(6 zM470*r5lkE5(2kJHc*5DSJn6Ai)BD7>H2JdJD7i}nbi-%IK^LgSf|q@4l4IJ`Z5OM zYH>>RJ4f_xfY#zOXlns4OIFnUW+G>NTPCO|OuG*BJe7u@0Hw1UbK(ajN1S5#R7LvS z*IrY~fXaI}0Gf3*I9_S}zq}R;vl?8R@WKgpoGd#`1eNJW-+DJ#qWFg{bEIYC0{-Hj z0U{tAy=N88lJ3@{^A@Sv7y5Rf{Q#*Gz#UvRC2;^3l3r5|@2d4` z*VJ}Cc~dBo5##mCmqd*CFIvDXX!e($q7q~c5eT5|`76m$|Hv1p!74s5i;D$c@vpl@ zu=9Qje_jiKTRr)g+1Y)jjB?gsEy5Qy{AnPzP7G$W1VYx6j%Q)c;Avm>n?O&6jgI3Yu8qqP-#taiez<*@2EafUAL9X{ETc~OB zKOzQxtGD6UiA=9U%#+aA?Zw1{odhLEW0|sXrOMqe$RG?3uR(xnAqmn}Xg(4*dUw7987tA&*oMEww zIy8+0-(V5B;Y+9$hZSY;s24p~7vS-KyFfs85{-ct4GO$zyiDfQU?QCtD1e%r)_$k^ zp9TDnr1NmZ>i^rgRT;@hviASPL`HVV-p~8~ zJ%2!Ty3aYE^B&jrx=t3Z-hvo9rr+YU&g7zwSrX3PpC9vW88lh_SzjBwCMflUB8Mp`BBvGRd#Ux2uSoQE zYMrF<$5q(cWAnF2Qsu>nAsOe383|Zax>qeTB;2;c2(1+U%Ja)H7MEyh&G84O=KN+Y zKM!L`30(T+YMcy$Kw!Mw4hd#aZp#co#Wm;P46?y zr=@hsC+~0f*(sV1Fx;EV7UR zrpcp?)G5+yj<=sSFM%Y$a8A1^Q69g+pEeW|{4~0^8QbJ-)8FHq;-HdNM@z^^0*!RJ zN!##VA11UVP1}wvTVXaq0eX8kOD2~%(61nOT9p=r21GTdV zMK#T;;EiB{+chWzg{rG>X)qqKEsRBe{hHV=@ecHSpSMJEC`ZdFIrS=Cr2k9v)&xmo z8-ast)sJxv?ZSqqnP5nPN-q2%CO`eifeczeYv1YI|KBFqIc?Y{HCc>n#3Ax+;|5pV zk0y16-<lVduui&4&pw4?Gw}8nD<}``^fX((v<>yM9r#F69O*q)FV38@>_HRHxD)q)9H^0vpcqcqhs$4};mJty1< zf16ONK9#|*bl95OyX@Su$4ixd$MMh$im@DWwHQ??Ya0*zS<7OY-6l>XiU>w%GcErU z`T;~>^eAa$(^i&1f&2i_PdE=RAK(0YyxhbI0&=rwpt1az^t7PpBU7toP^bg`j(?`t z+1k43^q?W$FPUg^8?4BUe=d*q|I4q7@x#DK(91FaA&c<8L)G)Gmf()33`mf1s?~r$7ao|IG z79kdb>r{^5oVsD*^g9|OW{kX#hkkp6Ws#;2DGZpCO+12-q?iVXFyt_7a0c*)D?k1i z(#Wi5WR$DL7OPYsdYkEJwTOK7X-z(HBcYoF_+#ND7+6;^l@#40VdiuQD5d_4Z0~f(&ckHjzd+oiKq#)-*iiNUE9#5+^w@0ER}bt)X@0j zK?NBktMGw6JUVhZ-7^EF!KR1IfEv@{zPmSqadY{Y96%#bDar|`ys-?js$n(l);J@Y zSb@1alE0!-E$9vj+~90z>dc?e+?yzwPJtjcdkYJME#Iex54SZo)^iS|YIu3STpiD? z{PO_${s%c8Ry_*~rY+W;uWF;6!iBrbZ{S&gplS+HH~abNq9=|jw_;rAXa_oeuxYhC zvbG3`d%4oSL~AF|=(0}-vj&p&t>v?41u|dLUy-a=-zjN*@0~Te-=y|Qs3Y@wBhwks zZbs9%v%C-yOzL}V?RVVo_$}Y(6-Ru(x`{z&;yYem;+Oi5KrDON7k!C|?8|q*_(WBW zX~1N$GpnOZ%VL!-bL53EaZR0mQYm9F;gc^PXgI*Ajg|K$+saU9@adB~KQWsgAS(4+ zyspLY=-G`?!t^47cVEo8>83OlK0)tRP>Soy_;vDI^zYAR1wg2jsA?yekJRtH4oMH~ zu6(a;;iqf(xFhP)2R0WckB!=2@d>%_(HPd-XVEIWzT4G~`_=tJ)1PAua*5|{`~99* z_mYOzu=qNR#%!mvZOP{99oH0mR}{biy0`6tBv(Pak*>$P;#TKmNTYZ5m!2 zRquUKd~3m8;0*bT6Td?~`PXtQE&@9>FE?cTdj0m(7)(Y#evy;I;m;J)TJ(foCqNaNpn?TY9GJW8cR!qF@MP;!whL*QF0Ta}gDrFA|2BIUDD}&gQ6SSP|btw63Uv$|ryHXm*~s zvNo2NmcG6^cLndM958U;ObL`}@>WBziNW*tDP;K_dnU@=dw6eM8DO!2IrtSANs0`o z%r`5UrCvTD`ltbW9c}!!RZXLa`DZkJ44eDWy$~rNM4yxM<>GJimxJRum|s*oF0`uq z%jtv1WB8D-ez~%?_B$Qb=N_SKUnO*6_HIbnArE?tM4CBHPS2S4J43jpLid_Vav-?`5+VatU;8-bY|;l8`j`Pha^ zWVbnzwg{VfBx_|As3J~RBF%2QR@1}jX12L700_1;n-hTA9)e^lhS}m{e2{j-=p@ue0Yput31BJVFRlV{{O=%1E9l1modiEEDdTx&7` z-r4C26KnWDf!CyJxtElZ{3R=;VWhmC^N?rQd5_Xrk}qseI4U-aU3Qr zmO@heL90=dHboh$_?r|yW-ayG&EK-anUcsoDs!gSE93So(r~bPW+W^qmmd6J#uIL4#!fRKi3luVDk`%ksf>*At$_`m<%0N7kPqocD+dPCF&O3`H&>uJ*%2KAoHn0DT1+Jrz?g zeKq+g5!*3cB66+i%jLKVxM>88RKwhjFjZ8D<~;q^a~{9#d@k?x**nfDGUVAakj}Wd z%#w!m#-T9Me44ha>bt_**q{p+NBINGW#8r7;K*5V7Di$j;ggQh-?A0lYxBcRu{B1y z0J1TIzu~(oE#!UuJY56p5{OVF0o()ib(i0NzguQ%ALp++3tKHYdG|u1WcV+wT;tJK z!R0xmx4ZpO-FANsefxG7Zuy!Q;0^%FxjomM9Q)f$vxo>rr?69nJr_&dqJkCigQ_za zzylR|@pONgTw+UktPp1QB!?K6{nU&dfBy((6cRqb`1!>r4HT@6xN^}PVKLL9j5A}o zPp(A|H~ujqdVj;#_h*w2d9Tw94|hj~xL4mFXFBfKX#xy?8f~d>iOh7O-)Jy9jd$g1 zGN_XmPW^8UK(>!9(sWfcxn;&wMYa4TxQ}NXJgZSumN27(zbp-`y-o*H8~{RvYojq? z0eTlQJR#pKuu$1};-iV);&uuzL%h;+@6`u9Ja2y5(3niPYQ_bRRF~quwYSUi*4z4F z4Weh?<({V0m;oZ&8rs3nJNbWILtn>tRR6L;ve1C4$C9jkcz6ikIHh0(d4plW+#Y9R zjbBe#B0uIUy^|Wel}aq~d913+RYem@{^g@-lRJylS2=#QzmLFcI*0xKeFBwuXHrYs ziUiNGYCiZ zSKCM{kagP}O@xfv2>PC44PGdJZw%kX?B#03Yundg)2OMbNq|%s-}k@LJNZtfr34ZU zmKS6)nSE^WF>IQmc0Hh*<2_nL#iJId+w(!rUSZT=AkUYb_Ml{}J=p@ywrFR=i^`3m zfB4VA%Yk)`3-~19v8w~{X#7lUvik{am0s~F=4u+FC;iH|$2H&bgJIP%nEzow4>UGm zUj87`aBi^L0{F$(SAtzZ45Xvs$(-Dy3nO9i%w4xil!*Sw<4DA+YDV7`PopI9d>8#Q z$EaeYG8Unx22eFYqisZQ#~TVX#8&YYDgU$+lE8^aC1(1{jd+NQgq-yEXqGHE!^^Q^ ze%q%kb=@-0C(RD!4bI9rTe$r_pzXY*4Z9t9uV;;!7mc_h9uuuIN&OauO8tx_ z&mY^1e{>+g&SI*ur3j3kIw4@$q8bhl==x%!H>r^gm&? z+#5ytaxCCIv*DhyI0Ph+CDob1uk)8BXLE&`spM|JJAmkbFImbYnE=Q2Qoe;#y*x~= z_d39HehH5IauaJ$PqL8%5(<*V6u{|PxYTaRX5$ais5^Z)&=4mgqucY$czDbn0+-AG z*l$_T_dSqXaPcE<$Wd_xcETNDp#yD*j|b_(3HaD^Yi7%(rG>!PU!>|1ObVz?!HG#1Y7vPMN6=lF6$4V}!O~@?>tJ z5j*Jemp#@Zk7_(@s&5uer*XSsn&4~dPl)lMf54(LDS2N!+MrBcAkD$7O`Uj%?b_sK zk-DooS#1KQoGw4Y^n4H9~d0FL~X|mxi$KMT(9i?%};4xec8YlC06c zo$ai#l~H3E6lY}BU`oGM5Q<-LA&tM;bW2)Fo9z~$a9q0DT`93qi*P&l@?72GQPtxkox1o8-#^1wXH8B?hnL4K2~ZB~b4+Rdm5#g50b;JB!r+{n zKlhYSF2*I7T~j2{Zo|L$S7EBp=El}bC$b~YbdaC{$@27kx^4L8Q1VI*<+7#iJj2kX2`jbX?EDE+np4RkNT%X*CgGn0HakZzotD($2y+G97e|fWf z1BnfHq29NjYfb-^L3KO)39N-~d1<9}>DG8}Y3D)`BKU-7kDJQUP{tfxQW0NhY-rVW z+drZB*Puu@6p`PCN$Xeh)6jQCeX>(H34-M&%qDX zDZnla(v9=0cBc{{z$5XCuu{^t zZ66&s0X$rGVxafWnzg}K5E{3*Llj?*RR$2Xvk{nv{ds%6(`E@H+g+bsuP^@w9-)-r zFk+q_ncTPnFO@L5`}C3DY6T1k;jNFRlKcZ$V}LF?`nAzmJ|^DS+U<=oJb$X#uqU=+ zpYZshw?I7B`)o~=$GRoI7jn7=esiyOs^`$4;&L0SY$aayP0`}dA{P;g8}+sCF&|jDCoIgjbYe-K{5{&e{<~Yw8jrM- zrWwSiO_?_u-RrG)N<+k&Dld#~G)}styNeA+U(H1CH@96hvvYFRpW`0EzW8P-^X3gW zWx~sCFSi%2=h!PsF}tH_7B>?g8MS(+$ca65vI&K-FQ?Zrs!S6yyHi7;%RtP%vYr1g z4s$;KssYS>Q9o_#97wVijziTQl_?Ew1y?b?N3?I+7iDdg7}UlQH~`WLHclBn$Ft>Y z6d3+e8OrLK-}v+mj4VKObT+FG^);q@c)lAZSOr@U0TE!nz= zI~9^f=XcKR*9pg)-)S98b;2J9=RJG3aF)LC8)$@RdxFc!|TRt+aM~Sbgxa^djRX9``L-IWH ziiuVRq*9cbg1&3DL`AJHFfoK9Xx>*=*viC@yLLc2_mK`8Fy@Kf|9%ZC&-(>V1W4De zvrClEk+!vbQke8VIw#P{!7jhCyW7ikS2-^(hR*=+=l7`t)T;PedW)edJ$AW1|31|n zASNEnG39EgiR*eV3R| zBNt9_i61^Z`wQ#xWD}nU?_wDst>D~34PR)8?zlI!$MVT5=l6OcwDszz!s*IEHU@c3DC&tF!fAutAl>6k zHasA0yWVOWuDCg`sA#hhaF_r9#7OqCDFY!!^@(l~XhHG<@_yLb;h#rB6yY!TW!&eU z8;pD+7r5_K1yss(WMwh0@8RNdgCNeoAOm#Oz|Q3Y;4cUWqp8KQm9*d-05HMp_7^_MWw{!vt?gRsE@3IS`a^B)iqpP$(HnVAJexdV|uZ#&Eu{0Y>zhAD_K;{?} zsM~XGnIGE8LYuD$VXO_d6qP=Ywk~eB7$f0N3ncxkR6vS_YyW08YVFkl*>QFf|fZuMBZYz;u8fNsC8`C$aP7 zYVukk#P_8jj&;@#9v=SFpEi78`2kyY&X}o_nLj{c;);kITaS`H&&H=%(WNkCj_^u| zCz1nblYtOpMb4Epy16fLJu-h+&9aaE~8%#5F7>e~&T@ zqsSr-nlO=crbJahQtU`|MSj~|66Bk`Z!eI>(V7GBIOr*YZILT~AY~AVYcx&_t{uQL za(nfuQ>7k5O~!ce&u=UvRnHlfcS6xIomklv<*l3Q`nF2y$e!cJJR$=1`sPPdzwzS~ z%!GamO{rGPBB^A3wLDFN>;gi8QsOULP3uKOl1I-ZyKk=BZgxSE{BN%9$PlTEz>sc# zcIV#SiSOUF&a^VJH7j;`NQ{TTKF(y+^{sXh>hNxo^i&}nbRNesfk z_vF~dD)`R|Lk32r+*;P%F8t1K)de;r!Rmy`-{eqsP5yhAkCpBIWbv;@1_+Ui4Me|) z6NiUMgqQ{Pjk${tvo4>Z?GE`$F)%s+3i1?~Gxy$6ggpLq2gU|Kw$OvGy0YO>iRl@p7$JF%S= zfB+F9ixj=YAl{USJ=c1~Pd=smiQH)=n=Zn)81~;aDxRUfO?dJ)F7;#L-IcnK-Q@nr zP2*Q{tt~H_|4dYl$RS@sCyG0R2bdHJHjy4wdCE@?v9+-nG50JymSIAB`8$aN0B86z z{>=6EzuV5cP3%d{MpwNk=ZHi3F$8TJje79VZvT*HgY0I|@MDtVg|@KT{lxz{KVnQR250)jM~roPbSh3f`4$kxtoz(5+x>*W5q!#gzi18 zk~=1`x)lk^AHy&V>tE#+6j;A#{fU^XW#*dT+t}H$w6zWUJo`1K1@H${*Da+gmR}@h*OLX`7 zKe4;4yOY4Z3Sg^aZ~|(kMYTSt0t`wZ3NB!`>FfQlQC;`)@DhW^JpMYVRUbt4anL~U z38*2o;_~popInMxm$P=c5b?X-YohSBfi=B*&s$5X0pbmv^()`YWGy&G2= zM^)R9>OFg3n;a7+De?gp0`UY!Kc%kU~PI=qi(h_Fsb_I(w;Mv7yG|M5 zsl-s50|%Ll;j;I6 zJxHqrq~M&%=$O2vZf}f}f!JMbX>PvL8GB_k&!xy5PkSqYvAbYm!(}jg`m-eilh$Kf z!)*fw#q)6j4^3N%L~vOs+OR&GwS*_>l>lklM^hIUmztF(Tj~<{xcoa48!QjkEx|%X z7q^g8La!?Y&qi$_cDK1r)6?h#`fY*odQjW>T~0M1 z1x8lv!COLbQlR1ol<#DSzTMR<((x$A-6+-@yOd%P6t0itWW7Y9C*-m%Dd-1&KA@7l zZf-dw!;J$sL0->yizAhI8pH#JoSICi*~tE(Y%tqU-J`l-bb50wc^R_TqR}>X?cJM4T=tJL-;7I0h~zJW zwUu>|RtcnMP+(Q6477th)gUux-M?bfGVe5b%1t0rG6Ge5PZE@Z=aFRQ zE`y2vjxa=S2?|gb8*>GZJpTrHH*2{#Z|3B?l5+0DJJpDsfLzk>*g-2@pO-8DZ8jT1 z*npF<=lR7f%*O6lq55bZr(h@0oWBQ*;yMiDEy6$LXvo$>HZSPwZ!RToMzq)x)xE~6 z*^vU&QY!Z9^*4>5q}t@!lZVC^rbF^=p)ls<6%5&G%7tQ~(Fi9^R+p%dsc?~xfgDlG zyhmF;7cU-?B<~y2t>?)1pX-Hy*NXd-?^X-`@|zII|b{l&J|Bs=X%`nF`4i zjb<@&LPT}w)41>L1yod7haTk`tbB~xUW3oz-a3n@fI1VhJn$`5XNlR|&|fu4>`z;= zo^naIE9=p{PQD4+l=qb__c|h5^?HZ@5bU}^QA_XdXyvxrJr6ifs8C-vO)nG%LJ&Te zbz&&JU249=`sW99&(n3?uPL|BkGB5HnC9-NXII&N?H|EDwizr9o@@^ErnRQ;#gn7D zb)W8-6N^#Y3IFuoT+L4YYcg+&s=K3DP=|VN9F`AMP%a`vz@{{`V)Da3PQgi_86ZTb zr!QkEm%2CcL%=Pk<7Pjtt^e>RMVR|1zdgKbR5i&fK9q&);|Bfb&tHju&WC%|7J2>z?Y&|)$Fq?fh!X>c%Y%fFX# zd<=NpAKNOgelWvtF$QGNrgS#ICnpWGoi*GDSj^1!IRei@IZ8yE;Z!Z9e2exMYM^N& zvscQ?VVo3{hKqZM7(bg(sRzegITdrC$sW97(vrHpu3pZe%Z3a=ns0V1Q>p|gZ+NP@ zSEEpdV$9$w*J`0Iq8jDNP_h&q0xjk{zk4;>syv&z8J6zt{zA25akWFcSa3IjI&Y_X+boL`-d)yc|`n?lU1Q^&oG;-Kw_UfG^XTH+g_751u8&zC? zRCnxo(jBO88j%tH)-BWNUpb%&dM;QVe>G5C%!r0d_mld`THp=JKr z>KYD@vB||tzepGl0y74pgFnhlS| z3%XEO^PW&KDd?8B%h)0jF?N584~w_Z!ltL9Rhb9_tfD7*N;Z{>uPrB>KmheMUdiq6 zuc6c1sZNkwLR|nq^zI(ltha>A*M-v_!T-G0?vd?fUgfoYg%=Stw;apMkOD(Aaw2+; z`|g*Fzj9IShaU+-DEubEA|h;+51OJZ=fJVk0&E%5*c!5ISb6@1t^iG>80(2=a4}JdidON1qKqQV22Ou1@CaQ>;C~NLexsMz zC9CyC%zCi8P`l(m!a#m8v2Oq`^P|b3N#EwBWI>HP6B9>A2VczfW%I%+jBCJK51DBc zkeCOcbm8s1D^T+=_=4({!gu$?uWePR(Vkd#y8ALWf6Rq~R)!1%dU0+A3uLrLY;4Li zICy5y&Z0=o3%+qAD%atk)?+lgqFKARap(T`vIaKqOI}n8(Nqo|CJ4Hn02&&O!7R#= zx}Aggeg^K@5P;lZ5boy(JcnqF)sIpGW|lQ2(qDEiiAZG-R?#2QExZSbfevzw?$GJ@ z1FvAC>1nGTL)yr}JY*-lUGRA*i7DjqkKrP3q0)hzFEaCdBa>JNv-kH2T>6yQqek!N zm?V9fCHr_?Trvt7LskF`klCI+_?VH7yN@=|*=iZ`2BGo^ve#Y?#BTYcHe(B@luT|J zH97}T&NWO>$BsE$!mHvt^{Y7SlhI&fp=nq?R<%p7EosV|R0Qgmgnn0n-5D&)sIVs+o=HDZUbG zCg6W0^yM*n^H!4{OkDJrKJg*$QWQ)q8HgIaUlsycUFuLi3%5#M@b7&m`QDzshQxLl zaY%5$L2$ipxUeJ%#t^tv&>py-CF;tcE;%=<=4qONPy@&vpXi?{j)&#jsnz5vAU>wPS;qo$eqX{6=!deh{p zgm(XL+fB;?j)qz5ZuoQAB8Hjs)zYU8Wj>tApc=uS;M@1kv}L8eZ&~4AXQ{_aOivY^ z^OB68G$Mys?mGIK9Pur*-r5*g=+|Dm$cfIB!yJl^b$za;qCA~}p@fnl<&Pb!)KBP> ze35{iXw)P?RhtOyH?}Z}C6ZIOrAhsJ%Y(~M-r%!dM=#=)Ea#>L=N4wSDw+I$8gLL>Ad&7Iq{S9b`x88Sb>KI z=X|9_9t-0J*W3`-T|hTO=W^G$K(mNTTy!qZMuDJ8Lj}Z`4MmhsI_ht=RqhaAn8}p9 zwYh_U{U?M+Lf{sjAUdL#Ky+R)#$GA^fk*?ovY@8~j1BO^-KhX+nvgAy2Mxo3u|==c zLkwt_2UeXiy(4;;X|Nv1H`tq*4jE}ed(>eN$*MM}0DCY! z52LMT+BOt~*mwTDjJyp4+8r6Wdnb3|Y!##Qft8^C@*jUPr%8{UfXBwE6Qt>0<+^3T zAf$|(q9uMKRbKYkPTV63Yzsz(8p;y*sN>ZR6j*53E3z-hZiBSr@bHKm7|L+k3aXT+ z9i!J#-|SNZRbj{OL9+oP*pNj;H+b#pfD;}!vUaw1bD0@p^D2hdCp6t$Al}T=O<=`2 zYLK-5scj*h8qixoyJy3QNB@8;GtcrksN(j7e*`cp0}vQ$KrP* zJA~cPt$$?WMOru<$s%z-q;=R5xfIE&NI-)2pKUc{)|abet}zO}U&;4LVvijn9I@*D zWGbNI==j))H1zHS(PXS$Vxp!J!)mb+o8dk9V1FC_hToUbLPueO=M^(#MM_GF^;UP) zE-__eBPpey*clJ&o@PSaq@AmFja&K%H=Q)$*QmoCUTbLLktuAo0W0ozF&BygEZnIm zU*F|m5~R!koys(8@*piv>{b&)T)z$)s-^QC{UROPK4WG`28*T191QB48RIY{3CB1Z zN%i^rCFNCW?!`sXW6o^y+c2hGca~-x-*}CYYdgmWGvf*l;&8|a0S7zeli}!4315(u z?S!c0aqNLS1mqqNh#e4?V+0x96Ofb2lVZ;rbo$Ti!(g}eOTIp(U)@h}p2y~F#V*34 z&K(l7kr}^p^{;Tl6490JKOFMjNN@_igNI4Ss{_#X>K)>DnwnOMyM<>iK!6BsVwo3LFjzKzt z==eC^sitx;<$r?|Rwx(_SzfJ&?y6(Gx{&zBhq!&`PLUEvuT@Py015O-OSMh+^A<2^ zN~Jtn)mp|dy+Y^RDuc~xPfI|BpaI&wGmuB7t$@`A{U8WkoEH9p>%Z{}=g3QdrFz?f9N1zV;2 zY7BbMp993)${LxZR}yDhY=UCu(c@~oS(l1WuH6z?Kce&9nr(8B%5B%(b>^zDm@^{e?)(XL?{20-eJXF0nXq!olib*fHy|JFXO&v-y zu7L(Osqgud%~o*3v!z+un+H&WnD=%+;zHF>B(s13W9F!7kuULQ1&B}N=%ibo_a?bG zfRpAU!!(Q;difB49ugaj<_w6O5l$M6;deMP#3J*13|cs&9QBE?Z^aSr7iah(?jO2= z^|K8^Gh zIc~h0K;y>W=#RRYN7xSu+*{^`#Emlk8FDf)y9PQle$TMymHG!v%C+F%4%}SY8T^vR zPGDAuiZSaUHaz~12ST~x623v|^U9k>ZN_^e^z^ayW7}NHI0fuKBK%G+J?!WHoULU( z#0zJi?}_Wz?k6WDdhnUqR2$bQQ3HJ>hw~zgc2+ps1CqvMR$X+R#fqt9TqKke>*D_% zv9&{{mCk@Am`>KIDJ+1j#*y2Pe8{y`9$=GHk<=wVKqkoiO@ePozZSOP@i+E4m{`Fu z31-l7&%?vjE`?J&72jcgYC z>U>Zt4Lr5A3jxQ{)6;va)8uxGJ=6Q5;Hy=ZkLG(C4$O(}cT$7tOBA1CG&-(}gjw*g zDY(dhPx(@>jY(29tBjrw6(<=;+g@7fNWP+<{1rE=CTx4wpPl{Zf`_y zm4#9j(}Up$gK{uEY*rR70qrX{BEG-Bf3HJb`t!4Pt$eaw6h)x}Sm-9o1!y*^PSh7^ zvBCBcAm<{b#Zd*C=J+Ob%JDp+hd!C@2N*d~7#QZnf1WjMT+=1XFxT zvqqyjbv#C^jC z9wEN3kXmV_<~$*xORQGFz2pSNNMq$YM$3K3DYg|RoJ>gkl$ubgV$JjIF*}#II3kmX zTwRqHl`_uZtl%C;0#Z+ql|>6xicD+(P>!L&1SoQ8z;3u-^DCj39}{a9QA-Dol@>s7 zi3|XOB$wTy0#L}Wr>YYSrZqfc1Rfz!n$r*qqsBmife582Oyf5;3JYZleBm6vIQ7CKnb zbBNpAhD_KyhaLcMVY02}YixJWAJ>r97*l1m6AU4e9V9kd88 zfQf}$hztMT{pl@N7h^n?_z&AgMd6R0)p_Z0j1{xj!Uw`YKkN5JHW4?ktUx+(Aj-Z_ zRG`h4ChvVYfhG_zK`tk(xy;Q6i3!A3KRweLLF~x+jCAdbiLuI;F!)N1E_Rz&aSg)c z+p3IsQ$Zdfn_vWRY*XSeLcr01O$Qd_rSk9nvmlu1Nxk=N>vUxAQ@R0y^BIy>>mrWLax1)3KC(VcIcT*SaUcZ{1 z-e>%Jek^&UHSb8&`vPYbI@%A#K)a52+u!qpg`JB09MebYt3TT*TpHkcG%YW$kMwO(UOZ<8MEW z(TcY(#4nr!NV18ZH&X(0bA5w5KO9-(0Y14dR>yJICH>K41Y1(ilPCy zrC^3g@!XR_(a>b|T=^C~X%i}uxkcC~kuhOE4mN+@0kDDdEW6sy9CNkE#Mi_lzlD=qyltOm|1sJ&=G&4GMnD!r>bBs2 zvD@ks7-@coH!Mw4M`CP8B0!K)AD2s&pQvWhEs?R%PBL}dS%75w(?6Wf6Rk1%wq);R zWig~Ionj5@nv_?{%AC1QU|1%?)44O(FkAKF4xBFb0^w^HXv`4Cm7c%$yWcKq-d?7R z_%CM~1WBf@|2z9WSFEGq^2Pj%Z69TxZW*#y)h@BYO#K2Z8_1?pNHFK8Jz7(mee`%d zL<>__HX|f|%O)7L{87&{x)a&DGNMq$WNDLG<;I9Dp^w4R%Fb=YvmpTh4DE1o0!i+uNy^@t`15SOSr78)|Ts%hOeGn zeUXsXWGAAp{mXe3stDaO?+QgOtw|e|pjwepPx9plEA}3^N|?4US#9rZEwA&A*gMz1 z`tk4=AL2!&9#J;R;9vsV10KTPR2Zld=5lu6gHg>C9|ZS-+pC3pp^NcKd40K>Sz_rw z()m~a3w&hARK8qW9H_|tj&qJJ$r42NMXI-DC-z_&$)Ozv)K!p9(~N?N&ua|#ym zkT~|0x2SG4xsbW7jBiv1Z;nmsOd@uoa!~EKEKcCz;IYG;``V>P`NDr4AaCaWz7)e{ zD?8D7OFl4U%+;7;8kbiP9yjbES6NrrTj_4%c)gIVn_>n5LT8P_%8AN-HHE$ANI&Cb zSK7WiCLNG}%>JCs-TYbDo7$Lw-YUW5I?n{V=2^E|QJ}`O<#Y@&4MUHzii#FP_phJd zR59h$^A_g4PO2T&hF#YXf({d{iuqe2-R7~YdJ&rtLylFgWX*%tLWXe{4;NnKUVwms zP?jcnu#O>@42{`Txwdd~&ZGLSfun$vgQ#42Q#nqxX6|JOHHLd4_M4iTtOY$iBO;V^ ztq-c4%<30adYDV$Dhsg*>u$!=XANx!qF+4D`5?J_HQD#~!_M6K1bW8uwX)%eir)1H z*Zihdz8N3rq;x~Q&P3CFsf2_Cd8m0)Re-{wSNXF1;svcz4G*L1YTvCUfc4f#L{GR- z{E~S4G$v~B1>2Q^r3POa^V`PFpAQz>6Me@0uYJciYDWtqdP&Jh&1_s;-aKryl{`!u zvI^^6E@dG6zKR(_XtTSsv$_Yj#qY%U@6X1rsC3a=iI!TLDu#*q;Sz`@_K>Czy$@tc zQA0hfd!0HPmEV;TA^f=bpZu&3>oo@hkJ`HKz(69|$?KIqd5|eUSric+36u0;@L!5H zIO09h$k@)2N1S2TO+=jEd*Zw3K?T!=!{fu4r+J~wgs{zLs&~BUWSTZPmBKP7AjZB0 zGO<;QIQcU9X9I75sue{oIh^L$+7BH(?BnntIged^HrXb2(wzULR-Jng!!sJvxq6U} z|9*c&@3;S$hfgfRK_3d99(jc`N#6rOX(~}h){O-9YSQqr>AB|O2)eiLMe7}2I6KDy zU9t*-lwx<3JW@x0tnYt6OARIn2v~A1^mMUTMTx!pzQa6rsZVjsy$?R-c#Uv50Jvu9 zUDk?M`sA6Oit#5RG72{RBlDtfS^C;zu6s2g- zp`iI&LU(~k8 zse^tN4`RB@*xL9*Zfet0y0pBCf)EQjX}_wz(e-tvn&Es0gNGBY=~Tj7g+wmfc8S53 z$e$ei)&IHwM!SITY(s&;&i)q9ESrV@e7^q?bOAhGz;iJINzB zz6J{g&nsTcx+zM#Zl5{@_+3@#8yGBIzrOi^q~8H7xXLL&2yM#X880*2cZ-3nQS}y4lY$9ojuGQ>xWvHWa}w&FT4~ z$wr%;qZeF$us%i)L_w5xNPn7z@)O3rANT(&q!WJHw^J(JCzjvyj4eu5=DcyaH~Jv0 z?JSL*lLI+da@(1aX2+DtSbzFQD9V(i#-aE~B;PECgNP*UBYx+1aq-OUq3eiQJmb$1 zsWM>?uy0ZHn!UD<=xj%^Uhs|w%S)xtoIutk?d-1TPSdx(Pl=ZLD~vw?#L$fNXie}T zkq@)gmN-&<8F<+Zg--^!X=3VU?R8j!zi(wXnsA1iwR^j5a8|tC*4xQs z`)+_?{)!dt)?5!C0y?dkCLhtOwAwdt`cs2AtM8{JPYOPbppeAy%Y|zJWch3FlF(sJ z0G}77;T5;n;Y((d`0jz=FU?ZNU+mnP1`&w`u>PzweNzJy_Hh_0@pNwCXRqa+>Opj? z(22v~@i<^p8bL{myohGEzeH=JsIQk5J0BFx-W{tA^3KQ_)2P3~S6RPOzoTr~B$LZT zDE4Lv#9fYSH|K9}qTW6>Hg`9DSGDhyB|>-M^iCf}w6brm=igS5LExRm)>jNb z1_ydN7jI{ySq`!%@(9-uMR#*q6!pe`?Td1FvpvI2CGPtTQrAwyGEc*}6z@pWgc7XC z=!(Qyi4DW_`z~ajf6fOP8REiSHOur_5s}{xJmjqxYktFXkoIlknF?QWSZnS1Naprv zWn*Zdz8$Ro&+kTJx9vs(267oP{xAg$?laUj*M_+F2aKfwSQ8t3LwXTSL>?#X;W-LX zT;jZ45M_7P4_6SQN{Jz=mVo}F-odChYjnDI5!l`D--CtiQXTzL0NwJ=BjWJOHoxmN zBsru&E%Q(M$*-Kpnas==Ny;bHtX^o7&M81o3Ctns1@ICin2Ak4IPxj-2+7AHG@HzM zP2tZTPNy@OSh4@GGPQMMBg=^Gx6i_NSQHZIJa1uph3dxR*mK}dKCR#$#p2w;**#!_ zg6SyQ8}trKkfen=dBW|Ip5c!Q8^8WP2edlNA@lH4AP+YfN&vS46;_k~x$o139h*ef*YBOzQnfXD@O$R^`f;T`)Q@FnVXgy1*ot1;@;)nt=D zNbfp$*4Q~8KTF9V-jr^7${A1l*q^&!E+F~2XIRzP*y{q)@ZNp)@cd;YFhictlCsx! zaxl`@{i~ymvlfi@t7LDPZV29^lwg+%f^m>ugq8?GAQ@+kHs@U~V(xANd1}6`{cJVk zHg|wtVVxm858#jZ9ptWQ6?ZT?{b@+|U=nqE1+*Q5s?9V@H;n}AC1lv@=9QFfM$X~nq zwaT!fphManUf%B({cmhNNM*p3d##8DgQYpMTAMv+xJ<`rihSydX| z6u-E>*_j_wGq5G<-KTCCbyjA-mTMN` zqq#J}=cS?YInRyltkTQnvoBF&73E<57I!U9=RCDlRP*!ayY%=a32&|}#{=H(q9J(L#CyuSWx zS*ol1eEZWTzPlBS8WxHbnZ261O!K7PzrufCSKGb~%A57=rrUG(q8D#`(%){o z<+u3D{@b~`l_FG>oP*ZJZJ(a;Mtu8h1sA2Vz1IqEywiRy!~a`T>gsx9YsnOr(AV zXlbTMcq z1>99@YHIp)>Z~_qyQ?m}T@|+art2knn}97>gEodtQq=tWYU(`O`nr|(pN1A5&R!_a zr~UKGO5i-b&gn}B4>A@$ww|Ez`^}?W4cZeuG^To0US2rW%eB7l=b`|OCBSf;Klk`P zTdktGHFoc>md}|tZ{OzcObG>g@Aj4V_V-sy|JIt?<>%+OXU9aPJRY9TA_qO)eb(+? zF?q5#X5YGTV}i=rbLX_gy1%A3FtlAd`s{;v`EDU|w)UyF8E)OWHAzKRN9WFG4+a+2 z!pFxaYA_$Wo2OTJka>sXqhoI;0J(F4lg36~%Ymn!N-;P(+}R;}O@m!w{`u80dez@o zUtLwcJ4P=%H}~zO&*I|Z>ucAZJ?rZkq&NNbYY9dk@khr#Cc{*8rE> ztq9PF`E|Qg{Ljaa8@rA!Qd#ET@ZSoo?3<_A?5RtvZU4Ogr!{BJoDj9iJ2(GlPB7?@ zJ}9thU3OZ>LSuXT^>gRS>gwudR#yJp*UqfK&>_A3c-p*%471s{Zr`4KF!>-LqZAZ76B0uX&33vZ@BmQ?hg=g zV|M1uIp>XIw1%2ICK?GE92^{`qJoST931>8_zFis0>AN3YO)4@2)fDYyJw zPNI*qHejuyWBVY1cXQ-P!gAW({fn95dTd~8#2*b=lRIhsk1QcZCx>y5x*SdRsdoO)csZgHz z>=s5+JbkOx=-oyC|GzN46qR0*#u7c7mc}A2c*o@X-+wTFeuiQF-`|Sb2jvy|eQf`* z^J4AhN84g=p!kw~nrp}S@y5{ga^S7goIM}^-G2U!b|9Lp=G9*Q!`_fv3wXi)tA!hb_|=L1un_U9iKz+qOVqCVVvb>GQ+YZr@N+e#dIxyS2NCHH;vt>-OL?++830-7`kD9R1TgCx6&mG683}px(#JN3r+~ zH_;!IccFpUL5F@j!U&?dQ4~H`qeX3wA_luJN98}R-PEkb1UzsDZcn-SCqSWhzozcV z;9kFe-F3a4ZM=4wEPkEL6w`Nh#*^=NGJrFRSd zYgKhUB=>g@w}+noQ;UnlLkX0~KISRl9hr;&_l~dM)WX&KUOKuNn_l|gULKmBW;%W{ zPgxB*ER3vU^MQR!4hIJx#-W-V9*zjd=d{|j?yFpiyJSxoG%_;czILfCey$B?)b1R7 ze0)qfoq7R6NFD9zd67@gi_&iW(DCc}8auLIw~6VcXyglWi=D|_i7DZI@cK0WdmM)< z_l;npg2>VRh!t*-URBHb?SGg0_i1yypEf5-hne8se);10nv($`+@70H|K$kBsPJJ| z|LExGPVW~G*6Y#IPAgs~)7&Wu*w=nyH{QkdQ8L9da1>;Y-s|B+8u*9{?t<=rzh8PL zK7|5a_){npf>5B=s>Hv)zlZzv+0&{2l8v2R{&~Py8Y^kfW%uPOEy^?8Xax4Iqdu%{ zi~nr+v!@N0e%f#{5ijhZY<{Odod=zVpMB2l&YE8CAM&o{aBcj~?OI6EC<@9kRW>^;prgsU34e)=F)PfN3US{i51^@Nk0 z_+wMx#Z+g{(53&wR_|RpU9w_CWTf}MmW3apt4mGqI(#qLrb&;$b(cO3dGZC+ZKVPCds+EvW>|V`DmmL=oVd7qiTzSkewV4vN#>Ywhp>YJdN&Bw_jFswW! zKGiaop4sl5Y|ju1g)l*5AO;y_BTjeUoXm)kbhVE?7R z%G`jvvC#rO$}84-dBB+4?j$=(0_IN5)HXrHT7P_-pz=gMGClHakM&| zUicm!=Yy=U*zL6e+5?yF5#+s^nhm{)BqWZCbQKQP&fYvgMv^7TT!^>5kiQ^JJ7oJ7lFO(Wem-_3QEF z$-^;0M|XFb9{Wun#_oQKUm^2kt3C|&J}e+eN?;=}#YlA+**H6YdOVoA7aSd=iPJ+L zYptBOQ(5Vq`ZJ3wiLFtyU|?cmV{03g_z>_g75I3F3Wv4W@t(-^@n&JE(;Y^1m-3YI z)x7fLTMVtOy)$jPpaNaO3d{7ny%~B5p@389_sa8KfsSw=FaxHj~Y4 zkl3uaUOrnJIv3Hv$A^*4;ky;T)_4lDbQZp?#k54(q){BD=eE-z2Vde4--dJ?P+zQf#YY-~Uhv*;L~ zu^d`#@?;0)ONV*>l-PH79X;rm=;Y*hJ&$;Tb=FmFEEKkz6~XW$E;gP0lsoVUD{0cI z&n@fSx2HXu@*MV=Z(v`sNWME|MaEB41 zD=X9S#3ia`Go>qaogaL@`vwXD#tV$2g~y@CL^x+M2$xuF$)w9COEjJQariFVom> z+Z^d3#Bg`K9gcU43CC-9OX9IGZ?7K88uA*w*uBh`+uPg2C39pVZc!E;Dm@wn`Yd4M z5~$}l>FL?F8X`#aaVV5)nJu^1#uhPM(S%X=Q^QMO z%gAYJ;=38k&+&*Hcfte~TUEJI`#g=ATS&^M@=6;U`?gu%E_Qiyw{8@mTUNb9DubL% z`X0`3srFp_i7kZ3e0E3m1v!PvY;KYG_VQrs?)vmsr#CpPm*g+aA?CqLM)6XG5|uhd zMr@DMSa+ZrNJ<`%Wlu2F$c2uMDz$s)Fni@i7BQ8C2REzWjkWflQ=_1S;ha$$@l&C7 zGslEbletd0XtrlUHUf;l^tg%_9Mh_jcka&0xL>HGLb0&tUFpgttVImdEk-xagKrHHSWXX(_Hz^z# zuSEog+zsqojzWXdAYA{OHniC_{!it#DI?KRMPQABm@f)9}w!GFm zcJzu(u=AAbE!~aZx!HfDyq=-lTJc=l`j+~d%=bWW-zHhEMX6Nl>1b8hhK7ex1}%;w zN6j9lNt7T|JKNhC+1bU7T`Ipj=`cc7xT2F({&ccM%Y^u`$+Kn4&hhBz%JO6Q;q*jd z5oEqOLMWa%@8TdbTNY@IJG`w3DujF|#Vk8q>2G$J-Q(#mE?)nF{>;sIsF}rnp>)Zv z5JIxUW@L6+rrPCvCorKGE7ufV3uWrFz5Vl{v#b#A_TnFHrh@bK_)8=tVpJ&5(?Z}SR;t-@o|i?*jOHzJC7`Nrh>-kP6Iiztga$` za>~sO2L`QGVa$2I%gVHd)K#7Hu>Ti#GLf|*7c%>?KHSF}$so4AM)cED6?T@OA`T7? zi9&r)B4$VElxQTYmP#O5pt5zK6A_b=Z-s9RK{9QwI*Y<8Y1VgN2iXwYN(iO?IbSf@ zc-q^(aP+&~ga@XcLv1G>{jB_iAMt*sl(e+8R!vKkXrb5AnZ@=khM+x57#x%}j6*_s zo~c#}u763ABH0kUEOnwnSZLt}aV<=a`pts-u@TXj3(ctK&TmbsBD*$2)>@Riq?l7m;d$jo(Zc6<|81;8`t!1ip%{`Z0+hB z|L~S;1yreO-U8zNQg>kwuOrH}L&en8^leWGXzldF4{ur6*tmFk2S-QI@~jJ=W$MH< zUsW+FZAuWKA-Z+@v*SknqLui4yI31bt0kBhB_RtTjiS+Ob+G)*#yvNu@~cByD76TZ zWxvuK?IxB`20`cnt-m=wOR~AG8P!L(>wxwEFA56mC}(FkQ48cMD075)0Zb?ja?;(l zYGGv+wlO72Wc;X9D%CwhWy+F-CphlfahLjT{6XWT(t>+tMuwTAVDd*jE zn8`aE8)8bzAwE_7DOv~ObvEXFtZp%!h6E~5}b>4_wiGvm@Dx zSypOcWapF)7gdj$;9#YrfAoawB8?SiZzqzvWELR%uP$Uy0Qv4tBxa`&5kA}~9t1K& za&%uhf@Dg*3W=N*-B$dBYmS1$>)Nbh)F05C(-^ZU-yZei8I%uEl3(WEFJ$EAZVk_= za|>`tlp4y?8wq3d>(j$kGWYD5$MTv51mw{hm+LcW4Da;2smf>3XDY}Ds|~r-%ZAx| z*+zvY;;hgZVCHOr%v{0s%R4#ld%BMbOPtZ<08q)?sTxbi~<89sDFthiscF*=`fY+!2j^ z82X6pAL5f6H&tmO6Ju-yuO85YnJ>3GsHmwmTA$j8td&Gp^VzxFoqTL(`=uH?_wEMYb$wrVo?8;2x` zT~Ns!8XBsJR$-mxl{fU~glp{e>oWqhO+<4J4g6;fj-dM^aplgOzS&YimT`F+!w>2#Q70)3J!U=0YO_gZ1r+Y@XKy zJO#Z*HUK(8wg3KN&$Qs*L;3bosdVn zHDO?39{-7DuZ>WVt)SETsZfpzx7=vUlMS#7S1L{Zlw~FZzzTX*;nrCy{MozF2!lOh zjhQN50f|$eG!Sl87kFNXp5rHb9)ccX2sB$qVGFO21Hcv34G>AFyuE~=oPTOi&Hk}z z@C1!9Ku*ia*<9VE3*Pwj-M!V}rwl_jX6BKx*c^|l$XAiNd6+Rd3^c~IFzRgG>X);L zdI-;3S8aa}*^AA zWFuV^M}AmP8_J>(SaE0CGA`QlN!PrQs;msQ!X0X@{9!laUG~mq8V~hm%z8FjMnC?U zW{-|fSEgGQ`EuKb%SrN!!!>nm1pQX>12fsAH6p}e)cyj)8jF=K#ikjv!-sp(By}ut z{0hCQrz^lBRpZ}5_Lk4-#f}~JZ^_T0tlOG3di{+KCk?qN=EQW#BOc+T<|-RWTkwS* z%@`}sthir3CFR^`)I88M$;rtDeKNq3(WJ$GA6ctCyj2l1%eQt4DmXQAu?AKCm~6G@ za%0607>h15{^>PG8xw|2jsji7yUPO(W`6Ge9{<}u{FL8Di!`eA{6u*>oc!F<#d?-Q ztKFcbd7$b^V<$5el!h$xwK=VowRU}+vz<;K;}qhOV#qb2?{vezFl;5?hKHSV@MkI| zsxe4M3mH3c3*f@bjEdBvH1P-_bw2AlzgQ-Y_zK$50@#h+1b#JV7oh&CKQ*ES$u%i9 z=wnE;_HmQ%9+odI49$+By`E>Tb>QX|Ri#cZ)?uk7;l;^2Mn!(e>-K$_pJ8@#VC=EK z7+eTL$W+lsV70o2%c{}SPu}t#S5=?0=kfYGjFUvZ8TQ1*nS-neV8cwc-b_ePa4E*NiC3>UT(IURWjnD;zr=e=3?hV-hRNRx2P17lxUjy((o^;A#cp)iTim| zYqUPCt={0U%tz&Rw58^*sw9&Vxz)I&@Vx+%RiagSbO%-9OQ%gA15u`LWcY0DU8!N| zs=XE);Yif54uZ@5h)&E?T)=*?UhJ=`GH24IDy_FW>i1a~fHpP_A{Ws*Z|AZ#r_Sm5 z&tmN2U&8NYpROw<2Rx7ge#DVxw2 zd5Rw^tCgveA{|9K5;T9qc)iffl11|!`kn+N12@%;do1w*7cvv?YwM&2gtpJCW<(2R zQ08kRHVhnJiWWoG&TY7(0W+41b50=<6~5%J8oD4cUY3=CB6?zGexMWP!M(?0X=w>c z2DecDubPXkQ&2#Yr1I3E_=54$HHKS%mYTj-%^zOA{tGx$+@_``m6gwt+I7iX7~kaN zh)GD$$iFZCk}h!o(BgF}n(Ewuhp~=soE1%SrA~^peXP+drOhtpFqTERVjQ_T{BSoR zRk3tSN5}Z4ca!xWcGLh5MwGi8o0{idOCGFW3@Ag$dP#N-VXH$df7s=3ACtvP58J2K zahBuAKYuA4(Pn3dmQk#hZyOo@v&Z4LMwWw>UP{?&3{~3fiP<+Sa`aq1Ox6IzB1nF@ zs(Jg-w6~}1-$FX3=}T!y76X5s=@5hul`OI_ICwgA)TTJBg{&feqh6~L&_T2@t+lX{ zCIhr^DV||roB>gpzOOoU3y^4;$xrV$%a z1V4SGgh0)?T&PkhDE;QOoG8O(bD*r<9c&(+u(RDC@~qe_AJfj7*w=Q{D(j9*?iszC zgMb!^QT*;xLjz~L*u7hGm9~YqYWH&I*S|MOYNZNj1PylG@z%>YRlGjEMW4pDh+k4L zG-D6(^ZhHUp?MePXtjnn-{ql?2@92bPQ``o zGJqT&Mu`B5hy4)zSGVNC5x`<_ii%D|<1sR&DLIS;st^Bq6(&O|h=Y@?Il8Xcuo-3^ z);E|IUIZx#<4iG(kEePLXfVJ=r-GeriP;eNm7iJoX-Yc=6%~-Imb*gQ+S>a|O^hcb zTmDc9pl!&`VCj@L?8s}+W)GQ46W!jj^5|OIn!y<_X!6F%aJ|IbFEfktp;1Y~ zF)Q&8W}^C9*Mn1A>+7M=lo(k#dHH^_DyUY~d`4z=tQ2!+EjN$I z_}ST6mLgfyv&}D;oNl?Urj#A_gvN6yGVPUmb=>}s0Z#9h`qL@q=H|xHX_rh{)4&OmyJG-_{>s#9RYE`h8^pH6jvjgOpKb!tOYC zd#!SdA*Q>r?0xZf#dD){b+LyGfMwSEBR`uo@r?eIPBBuT%}}A6mgRIUUb5$2#c2__ z5CkcNf}*U~=o>aU@`1X#y!ZEp8O^k`H0OayLoRE2(l-Zo?uFP%O6C2i^0vG0TS)Nu z9W`KEEWTGs77$2u#~$R_vP}Wt&zNQ9)QJ$pn&ykNYW{$P>MY^*Taj4qJ0cU6N^)4& zF?L}n`B8${{o_$h+r!~_n^butHBT12R)nOUg3_}m_8=OxBVs-&T_~olX1(!wPNQ9v*sKQ!<`R?XsoaO@@5io8uxf2pp7~;5gp2FjEo0?J~j*~U3lO4*p^-; zq$)AYxaWpd5S@!)0Rq?1XmfHR+q5%h3+$?zs_Hr)32{tcSp#QtMr1jZdBTR9Y*$KC zoKfF23&mT?_DZBMkr~sZ&6qB%Fu|@Sg7E~+KV0f{>lT4t2 zYoSA+mShx5m>kdD+IgH~Kk3ePGLP}jRx4i~7|4!80(zAVki_hlJ6rx4E_=jS#Cv4J za9yNd#RUlE9#ABPFd^der)AZ01KGJje?S9YWz53H25GGIB`K+;jgL^$Uphk6SX%0= zpYJ;zam*a!vN){5%og zJpu|XLXjqz7eQm^+HH(YIjowuyR!I$Z?Q`CWpmSN7l%Ul#|kaJxcu1x@^^YUL6yE= zp@2dei7qnBwBb?QSWkAGlRscPU1EtS)2!6duhkj0;bLKBm0e);U38Bjq{E=iQi$J4 z9I;VEkuA`x8Z6(LYyj-odN)wLk^#S(+4TW=!d>wtQmF;!U3epOqzj+|!G$GzzVXB8 zYv?G_KkUji;)vivk}CvbSe*aR4rSg$;3+%X)w0t4TQN%iJ5E3Y7Rx7iOhCR3 zsuuYSMM^Y(Rxa(7E3shIw`8Hlcc&yFp(%u1DGuPtR$i>35ld z7$HHRuy0Yr&V2@QbT_XJFr#^7rHu0A37VZ3+$-l{XXocFSd)tf94`Qcba=>^sRD3P zh=T#$ECk%_pC3#7#IkIc2`IR#S1^F=+Nv2W!yL{aqB`Uv5O~8A8BbRD_*%>8SN|I# zAPQYct=M?kGUa%NZS(+~*2(6LV=`gWWX}IWC`aRK(76aZO#_`yF-(nJK3)dfl``P+ z;n20rC#(134|_vfb2=4DyWbwJ^4M6{$;sH2RDn?~ftD9SAMaFSwZ;NL#Yju>j6^hg zIyOn2UKIh~8|=7zOyi+e7P6`08QV`d*Na!8m4BL!dFfM?IJrc|`~J|BS)0eWJ3t_> z#AaO1uKvjS;n**Az3vale7@;@ZsUk8>qEF z6Mrw-DuK_8Z0<|Gq$J-ue)7Cn@pY90Woz00_ zF7@NZ0%qtu9MOI%Rv|Ek!)M-*H78VQk$^6Jq&hn!df4Nu9iFGOvRhs}#>*s0TmnpV zJo4OB!|=x;&qtC#+smmVi)+MMlitaAa$$g2Q@TGc*yG~vx70X> zXKv|TBZ+MmtC0ChX@TljH{V-U5Nm=nby|3^2q*;SUGayNX}8?FV}=u&$TFugF}hQgiRRXsz;qU zwTR(wv5v9)8(oow!Dvk9Ju+LM6NWAGs-iDBgoXlo#W5k_gOgoMLtjlxhaGS8 zCc8DPQfOFt1%xD1C8BdWqs#e#EHa+Ly5Jp)uUDU0Hbd;?;YK@Khdtj%G@O$cB?Xb+ zEmGqz<>1w(PNisHVT9NIWn$XhB_`e+PDF2Hs>sMdxT3@U#uMbUc6FIEKXsz?*SghV znNa924Qt7_kEureB2)bw7_J>g`dkbit_F#R7zw1+9zu=P(<8heb^A-9bU<~ygfttL zXukr2Yn%%o+%p%DaHk}6wv47a#M*aMdh`Ft1^M9X0f@lSN&1eUUG#j8lLk zNNUlqfZ=bsyKy-S!T{?S4J!@r3f0nD0CoXdv33a-9$pXvDwm|bg@w7f#h<~4_I59? zap6mnK;uP4O{It4V}~wTgqgWQd{0^9#w7( z91prh(J8>q0KT)ujzD&<4_oqMgo6QLXKk`lDbvNdJNZWQLuRmrp_VX6)kVz=vtGqk)CVZoJ0r`0=TyD@|wc+<_}V;2+_Ba)~Z^4Mw=M@;?H zLJ>zvwdBWgJn&gbS}Pbn!6&6-Mcyz+#*n&tl~5ZA17cZ)^nHEICOY@e7dzH|B8K6E6T-0fIf?a1ge) zW5LkFN1NyQC_`hfSPE;-nqcw+4ESdsffk=!KseSrt@X@L4}~5`hbdEd)XNX#u{}2- zcy6M!`!Xb+{IMI@4Z`BAjMsTb?;>E{C36s9RmoKW#7RbOcJYio*LR?5OVu=9Fei_g z4Rs<7NY4j*=`E=+WCf**-KSVii7w!29j>E?FW73-%^!t*NFUoOYDNr8%(Ul=WgHIb zFk;)!u{59?$TAaFTkKJ~NW-^&!PN{P!4YP9ry(P3r{0hBjeCW*>1C&mPQdz?Deg2< z<4e(5eGwH!1O5Tswm+W?CtI=Ir@jqL7rVth$)zSV4R!*u(mN_bag_@936ucf&$LXCt}yJyU7e6oOGdO+!JiXHwIYl8oN}x8bT%Q!LI5sa|zHulpN4mf2Nm- z2Prpv#QO3m9^Ug}-(WTq3V*|q#cjiO42exFj z$a`A{;n4}DVUc$Oes6T$MmDgeo;CW_=&(gu*SC5lP@5lRxzqk zf{CGk87&W{HM}!YGB-XkHD}wBk(WzP%kyDtQmd@jFY$TY+S`;!f|5aruy7}nZY8}> zwRs34Ga=6%n-r<&HcCk1{pua$w7yIKu;T@~Pq9&EAq;SwjhPsgR=Db6&#Y8d@yzj6 zH{t*GDU>BCY8gvKxc)Zobc+UVHd%_PekK+B?}qQCnUv__f1xfVy{7&v1DmjUd%uw- zJ+gsXG7C|e`{+^aAO396f|HH~Cn=XJ6C=0?`0~JAE3;jpefu2#ycg!z8NrCYs+jjFQnFrMgSjOJFEuW&Qh2mt6`bqSfg#GO|vG7 zzN&mMN7@M8o=iv@N1A#J+dkfVCjW&&yf}%{^<)PpH)E{+nrgc`J?2#BPk0eb;6~FI zt}|u7^nLQI#ho}No+TAcS40-#sxB;BT;yhCWE9NX9e>wWm*tgraC1a~(FvbC&u8?b z!AxX_tVwl!!Ls->6bAC_xmj*a%TKKGX79{OE3WZ3F~1~>mt-{Y0XMpf6SI>$W;269 z%Phy|kiC^kz+!H-@CgY)nmu_0pb-8#5!51sodyjMybCC(Yz^+#Wr37+sj1 z7S4)h0nECc4gOQ7?XKs{Z(Hplb;A1<-bta*<=+Wdd=RTY&oi$cQRBS3u6j>%u(#2y zUR;Eabn9I2{R{}xv4U&GFM8HUfv3C zKGLC)Y?}E!IWR!-<1LoxUBUViUoi1I;5t%H2~!wiO;iBe2og0<)nxeH{! zORlA!Y2P46eSuQ0ujC}BNv7x7IvZWqPo*SP>7=)KviNKJ;D8sHFgrN;lNzjcBk zPL7uDa#tw(+cyRD!My81S&aUu&Kly7JIiQ3%N99H2NHRsw|bjFhw5sLU0ruy4(~NL zqQ^CT(g^q%8OZi0Y?1+^%UX^gJlb0QDW{leJ*`)HMO&s1XRs+8Xc_Ps46P24qU!_k zin{o&MO{{+9}^NRTMfw;dmq2@&v4?D=)2xsp}iMPo!mS9@+*&ykv=)2l^hLAKy9J3 zto0O4H(sLo4>Msbj6`#Ajn=mrtbAMJ0XVnHDgp7+n7owHV;< z=rV*dYuWJ+(hE!4KS$~w2YM}LjI20#v01NPi4NwA95G(`zIzaJZ8bIQ>_eWTJeu8A zeqYn^X z0|(-DI3n4CwYf`T@I!zb5I#m^&No~!UBYQWH>-y#8-v@h3j;C_Bcrt7EGCUVsBORE zXD{!a>+xPJZf#lH4^gvHSk;&er9ttc5wtNBs|t2VPry%KpC@wzqrac?k?&F+{WjSdABeql;yH zqJi#5K0BIvUSab;4IVNY<~Eo&ovecu)d>ncgvwpiqC{ypchjd#7H?cdb*|4)T9aR= zW}!c<2U5G2?s5Br6_9$5!O!y#d&C$&sQxj(Favgd>s*c)vP~fHr&YV)CezY;hUD(( z;3Jj%mBZ#}tDpWhkZk@BnBU}@sZKs)_{i#xlxVR`PDO6Un4q*q%EOI7fE-pjC`&fg zuR!N4lR{6mKc&A9qfJ$kRWtp?gGgFU3Rfu;;>Jh1y@DTZ#T@RiY!1;a#=(vF^9x~Z z=i5B#-J4MHRgawLpX93B#q|UWR*TsK5FnW(9q{+a9p|WSD-EWtQcFD`=>) zN8F6(fC*~L^<^B#yl%~W5qSelz_uubC4VZ?a5hXy(OuK&RU$5$G_b~*RwUocgq!%U z4YgI*BYeFyFfjPaqY4TZk$b_XvG5ZWPNt-nKdE1I;joPLVLh9z#P64u7O0JNFwnFG zj=k_%<%r-is8O#+9MD(m)Xz|*Dh1|vfUXC8;E*ifM1^^qoAh7yi&SQeC%O2n_l4X3 zQSxTi?U_0SUNwARJm~SP)XAty4Q;X<%28r~pz30vV3xo-9U@HUd9+5XzLz`p=ady` zu%#DkjNbjRP>8_3qzX^LDoI76HRYnKgLTh5@pqiTKj>XG;{sH#TMRfJ@uPg*H3;L>SVR?Ia{HMy#6jDp>wfg*n82}x|Viuo)bxo2X_Zu#& znb88KsOG}f2xPPL7JkMsxB=e`OCkbIumR3 zUR!lOPQQ=Y9YK8W=or5#wuq0t8AnppHTpLsLxdE!hjZ%Nt1avv;EYS4SH#7rkm+)mk$HQoA&~etVmIm>2!eu4gVCbWRe;{uMZ9d7^K9%d!C05;8`!HhPR?Ne`Lv`&7 zF}U^FlKnq9+OmujJqGggATFzVkR)oP)DNmLXIeqLGr`PJ+8e!$oE#Zl{8j(UmDbr9 z6+UI=+!r6nX_j)7N@-{rJm01r;qw|hS&r3KS96GR_s^8)mn{}Hpqb+>l`)<1%N#q7 z@qp+C)@tp2Bck*)@M`wxb9Az<-8#&gEQBw~$n4(}lLqQxN%!#KqTa;Fg1HPJutzMW z)?TiL)Xv$pILiogtX(R`ilvPyD+5Q?=+=pJPDdmKUxZt||Jpl?i)YQKXpTVp*MrQW zPf;%i3QZJ)7C{|kh^`H$E@{7>39P(@hIv6rF5>a3*MMb_v-5cVeZ2!I$cSjc>xSKv zE5e@bE*nVLX+0Pi7$BzsaUp^3u*CUmmTz>RIB@0VmZhozL-)L)gLK?mUCi6b%2rk7 zv+A?KNmnp468u%tetGp%?y@u%R;a`g2_X?tgA9643e!6uvwwv}G9`qvnkW|IvueX8 zO`RIM!S#DLfBw)YgL$SX5kojSH}W^*nGVZs$!g__rCRn5j$47Er=HVWv#|c98^HjJ zqoHCw9dPY`@y4`BPab4+U&9Yf^C~eyF+rL$asd!sFPlH{kKf(rL zS!QxzV<6d*$$_+L$;#Y?6Zh9dl;qu)uWawJH_ks!|M-K}$6m8!8&is8FOvKMWNlM$k}8(c)^w z)Xmtsb;~ci)U%?SF3iYa+Uo4HxZ-e))Wz1TxT!TPr+CNy=a|#_sXbPA}8M;EL!Y@Jk z!lPSUpjGl*^^U}2RO7&ZFUY@%*?72WGC7eej~Cb@e2rwfcE-zPnAINBNQnRjsHiXk zzoCk{&rsNRxAZqwbJ#JAa+cUeyRGt?N708GQ}kcnYhVK`98-oK3l1L`xH-ipfx(q# zh6vaTb91eobJKi|YZ)WVrxzCFn`R1T>?25;NQs42=Z3AhcvSHKxzS>1+o{%~RjAKw zp0yppiXS-bMT21tEOl{6AX_V#D3&YI;a0P-*HIt%5e^`Czh72SQG0TggSTvtm!`=q z(FZQVLlZEAQ*2X<3w{e8d^)SlUL#m*PP|Lw$i5!kRdjY#(q^;72i;Y{#abA^{LDOn zR$>;+vV4RYD#NA7kPN9RkI4zn&{7~9k)fe^S#s+AH08EEVXjO$b()cxxen%01SG%A zo^U;0i$A_Y^Y{OVfyFH(q-1KkW|;WA@4*uou=YDTD!#dQ-;@a$8%@|i(454NM3}+s z5^nU6*l*t}yRU65f9LIN>2y=II>v#mB6!1%V9l{#XfxN=5klfc0qiPo+nl)h#noF3 zW#Lc4pS^8!umqN0*Ff>;7weCp?rSjN6Yo1C@TzX8Q(g-O9DjaPJp;IS{BZp4MWEeU zeoTs+Rf5q7yndZXiK?(+OfHjB^M-2q+-}I1VyWeuIfs85hzWf}H#4PL(OQ)Q2P>b0 zIUL;o-MBM+8#)dR!deZaocNDb$=)qxJrM`P7;EgGP)>>wpE6D60KaOQo*pp;nNj`+ znp*l~HOrW@RQA6EqSSA0q~9_9vq|=8iLqR!(|!f+C@@cpcpaHVy0_iOZ#X}$ik6j? zfoL3bB?I$HpFIw&?Cn|5Ts$t!Qrg{b`7(_hjR|hmS}V$+RIUUrU_?bL>UA5A{=g0} zmHPYpzmIo9(+roP!P(LhESu7ov zb(*Z2K~JmKbHQ;5=Co+dy(*39Ty`eO!6CfDM_Y{Vk0vs;^6|;4tbC;waK|ZO%Ofwh z*l4Z1EGG{rmky)v!4+CnntvM)M&4`VBO<^|HB;){({~!0+lPNoPg|<4_^n6G;(bQf z=HNju;?ufdN^?MJ6vIn)=kq2HX=iFg5+%JKHQzr$@+<&V7%c%&MaqO4u z=~5BOwE;8yV04Szc%f3KD)Cty#v3r3%g&%z&e;XZL}wZBrM8~e^~S>gV<=|q?wxwe z)1{ebT}(?7fm0c=*g64*klsz@S%VSQo&3N&pYHfWZ{TPTH`7tIw6cx*`c*Pd%r&f| zL-5T2?tcidan1}A44~zB*V_1A^oVVi?7FFfT9^{!| z*U5uMvQq*(!-NvO+p{@{>mE;5(KI&VDb|)5y3Xs=;RX-;Y>+aZM*okFoaubPY(i0= zmq9<7Tl8jo?byF)RIpnO<|)?NjvvMA?=MetqaRViwC}`Mu0Ni; z`Guxmy>I)r7f+q3B1g{-g`UjFQ#Ld=4}kwB;mI$VpCd#NojshQDU@wJG?{C^)`7R& zShTXUGNOnEVy(@oyiOnE^)ns7)9RZTn0wh)RB>bT)?hDWsWCv%IB%B#$spgV;l+}a zVOmjGy#Pa?QOqM09jAeJKK^uej#26rRA%k+?jzBW z7TU%J7+mPdEmjxDlrmw4JDZf1)zkt8JrH&7b zp#9K!&kGG%Y;v5G#8GVu)wmeF^aq}L;0OiWD;Q~AF9cIZ^Qi>SmgQ!Eb{0}XmFit2 z(W5=8wPhCXVII{Ltk84BmT!ut{Lg26`@?xB$e`EK6tUw?Ye%+~>yOu~)BVQdfeM)7# z9VJCD&%!I_QvT$R^?cWdGabDF{xpQE%O{l5b54b&gO#4?TJKa}l*c9Ba}Dd`s?~Gr ze?9zFBG))UGJ0{mYc@AqFF#w`QMhjhb(*vumOp#-^f@02(P~IN?I9(!FW5(Q1YX+< z2Fk?<(I6jq<9#-~3W_XuT6=@V)>!g8t0w{M$l#?txO~LQ#?N14ddYQP{LPre%hoAF z#sXFxtOH^xDQSxCeWcRSVV~~YGNSmJzl^m*;AC#${D8vXy@e89@OdvIiCyY}Hlpo; z2^m)WX0os+F;GD!5e@iE$e@$jqN$nx(8N?cJc&t(4Q075#nNG*M5b+GJmn?7&kUQ8n{)BL3r2_`1nPo#jB|gPb=z?x5E8jPJPcuM}Mpe z_Ggu1hpToB7X1cr9=~<8`f>3wfp0m&$OP0+8XDAb88&{|_smx{ zrcJwslu+7MId0&}wJ@<{L0RaIuW$npTzB6CNW1I%bQVY}yz~B0qTyUHv93_o| zd~PPV`l$TFHCv-6@|Q(b_`1vW-(iup>$C2;^J#%@8>^%BnkB@v+nixI4QiG5wJ>DuxaoEKZ~oUWe$DO|HDtw+TEmFUD==>bh2*y|yI{)U9WI-I0B z@ONhX6fHA9$^GeVl<2svy20H|z8Udac4obu-L=tZY}2*X zD%*uSh+Ecp&<_FNp`t zW_OaftrvfPx=TehXeZN=;=9C)TziYKD>La~(;XTAdWiBn7-QrCg-@g^g-3BN7$-?24)U zZI{h=rr=UuH~CtcPt1&ehlZ3I&56V+WKbn6(0x}y5hs@^NuqB-N?DW3(93GCqqr&5 zUulftK^wZxrNe>VBr$IX=CjtBMEC6h{2eX~1vPy6hg*?|MewoJ1c6QW)e(clQY#(NEh}O!8OQ zi=vpJ3bH}O@M~b)b)@4eeyOap)II7-t;Z9hY>X5DV6KFm2i?wd30(h=+b>utZEdcc$N57}wjh0F`TZzoPa zi|jGOs^vc8>%t9MHSTzPcypC6j;)WkCR)8>!vDP61nL%B7v!Ym_&@>?G>TClH;}hF3Z%CwvW{fFLJ5CK#C$Sjt3S$ zYp~zn`l+c$(_j?QPg)y5>25Jv)#^Q0*|J3#20H$4{7xZ;rJbRy4TM8E7%jh#1WBhN zb_y##X?~PI+@5>7n(nR`KRSn}W8;_Cj;~+*YdX7re%==z_vV{^UFT2}%{F!_VX=%otY?G*oK(@K}Nd|WwaWZDV;V%8fm#!hSP-{X5n~V z-tO-ka5(CI(w`#G5pO+p8clH)jS+5~vmezLI#Q}^M4#Cl&T2RZ@|u;bEDU67%{R?& zWfufY;d_`Ny?3_-CQb!xW~-W{DLh*NtWsQeAonIb`hOgP$|VWJA1iJ|RO(oYyq3fE zfu4ZSn%Ir$+KQNDsf|EC6Sm6wfPJa5yK+zB7_Pj)yn_?)X~KNaoD&c#N8r|!lOLE^ zAKvULwceSoZt04l&(mP4yFBO-JnZGbG^0f`q2ZB3+$vZx3BlQB+ErBiESt08Et7Ul zd0d>%aCv%6Va6DTlP%%W9OHVAEJt&>)=^EzqtKH_#ICSQH06NvB=C;tSnc9S< zj>zJDKQ47if{F}#WiIVPF4=RNb<**F{J1KQUDeSZh3a3o^Ncq*(66!T%xA>V)3o8O z6Yd3IcP$(Zwzz|1TB7`p`f|;rD|*8KAdFz>azALbwDxvr1BbRzh$68p)nF<4;$&{o zuETr#gEW^IYpk^~_2g86J^I&?k=>4#0g^y=$gV+(G3#|*Nu=Xxl>Re!-m`HD&3Jh) z>MM*4a)yr?jjIbggPYL#ixE~pQ&e-?;-}f9Z_7)OB6K$rVg8Wpe2?>uoXefve=KuX zJ1*6>`_zYz9$7Yj+83n>f46Axpmtp4fuG(&wnCCHhj<0Y7%P{ai8&p)T%7lk@wau3 zAFJ1s2kv56->3FmbQ3Va&9uL72Ss7~D@SGq1G6+kH_4erSc!)~pyl zJoEVTqOHt2f>gM-hqbIaxdmTLk>%r4-f#?jwbu-dox&9)qN6{9=GX){ ze7AX1XO!EUb8i*fobwAj^7%~@zdA>Jjj35QTIt*>`$6}*U6tE@#(ar4D0ToU^!N2g z_yGoc=a$8VNynfE*2X0RAdFRd-lq75Z3iLMn`}&;wqZUC0$78x) zfgN;lN5w+Un3m|a%;d$b|0wE@`NWE&slwe%_ixX=t8fL}7o1A)`1wRHEI74fVi9M8 zYZ>XrnW%6{>AEiFt$vk#s{X1Uxtm#}&o<3xN~|V^i-ByI->U z|FLiSIO;@(=Wm)(noZ=0DfCg(SaRgHBqv!sP>5hymFiyKUz#B;`ezd3F}iXgjER#? zoZS--*ZTdFg%8}I*B~My3zvIzN1_8m4CO-xdHkT_I@q2w#}U$A$@anPO1qU`^lP+Rgvo=-n0&6XiA@8I!^heQxvFryJvY#F7p2N&mplUJ*bLsY zeM#J+AdXNoYZz5(V3M2Fr}-@A@uT)eXla(+&6A zVO;Iz^%r5g4Gk3a?JRf8wDb06KkP2JlLJCxlskSr(MTpfIUlx}4NHLe`&dDZjucgC z)|SzajdhIsMqRfCTaApN-#9Zb(ObT2GVN~`6dwQs?+`AH!(vtffSA$(86!sDRiy9M z29onHRNKg;sEjgfX%}m_?fPP(dZZRNo-^g=msOQ~TytaiFReIIOrPT7c&o{o6qrL_ zz9yR-%nI4e)&&N!{FMS}FqsHzYxqmx>Reu$VDpCRW*kmyb>Bp`8{;yQj<=Uu0ssr{%qX}*YFlP4l zvUy!_XAjbml98JN^agJKD6!f5?1+Uk;gg&kA|fISvvlEm#yPt-QN><*h3%DO@6h2N ze!EUGd{5@qDiHeg$%@kN#D_VyoNzbNNCczVqsrm|Z!&wan_)@J>V1U-Q7myE zT}XZr#=HG-c1+f_0w;uFv;Q- z;!oJWJ`=;4r(v zT;7lhPl|Lg>-uv^#noGKKc_3d=d5vN*1{~SYs0ndAZ`e7C8K;cx&JkrsFDbm_6Hn9 zF^XBdPMdf&MX;%Ru~%nq9Vg^Z@r1lK%~2vkZiEw0edXUW?dxK_mBBRe=;(WshKrW* z3KrjDOGtpz@doCkk5Gs)z#&&&S0`Vgy6|^n#vysKeZzSwD64w$R*QEG7B`#gdfOM;$zFwdMvObmrrXF+j2K38;HpDDl&Njwme zPp#_LE`;et&QTGEu1BMaJH0ja1IQTF{ zx{VPAga$zxmkODxL+Qm2!`G|*??eApjpCgo-_Ouqg#v5g36C5={xylarPLqO@TP0^Zxe>b^88P6ZozzBTOx`b<3rMpo(%BW~Bk|@N!WnMh}vHRb3Z~yy)XQ8iY#3vj{F3-c~=C9q?2ZZ;klIwz` z>ibbBJU&`$)g5#{i@mtW*pW}YA5aw7|6@&M{qyF8`F2z|DVX6^Irj%zqkBy4{L*?& z%dKnA0a^E|Q0?^Zh|hFiEL=%&Q!wn4T5aRUnd1zZLvj zL)E%w)zRcY8mlQA^ap>s%<0*u-SVoRt?=>7IXIvTe-t8Cs+l=t4hth;g5XRAzVx2m z|F8^Ne+OYQ^L-UUV8}j1x_5}8Gi+@1*9xA_SS!*{&(5&<~llcaz6$=^MS3T z_}#g~u^(hA+uS8}Rh=l%fk(^iO(KhnH_L6J*tIchieRrJzERI2u+Duzwf*3g#+~&t zF2n;Fv^11~L$>FZ3hwKB(KIk)RrLCcJwPU+_#dw@`BUytP@w!@ploSGKA2flPF%X}+hXmAw_1;vNFFxK(;sbLs1}9twJ$xOgXE z4{5w}H8)>Mab6?^xQ~FMxx}IgRf7`jbn$enwpqx(p%ZYvDP+K>5OJ>818QUcH(`ZB zjiq&f1MzbQm}o_twXf}`w%{H~qF1eU`VQ zW2`R6ZrKebc$ZToDhG_8}FZu`~rYSR$arjB3-N9;b$6SdvfW0zB2TpSV+$# znIBp_lsZ+vtU=#oJ%uXKasoT>c6vJHk4o?u0mdniYH~>B{QR7pmmZ{BPBXdOLj*tc zssq#t)b%JXADFH7OZFwB&CltcD*QYBCn8lodIxsAMY4^W@t`pK^N!0#r%|y%8Fhry zP&$|CVbN}2Qv5)fGsD9|Q`{D|u^+F=FrC76l4+3o6oxZF-?pTDP0Op>m6<}C4?7|c z>v`su;g;B%t>s}tp2=-7kadWn-68ETcxM^_H*BFm)GMg*vxQ;@;Q>w)J-UiI#dVb7 zbaHdu06vR=bCf)7l?YdxDAhj!z}2)S3*?4~UH`rX$}+$p!Sl2yh&gbwFNBFW-1A4& zqy#Rv3D)u&W8|UJ$i6R8*kMFvdmai%<@stB=}5AS;^N|Mw|k;k82>4#4@tasQBcq5 ze>gK}#SQ33d2SG(VeZV(JAaN?@~bGu%(G7i3WQon_S;e?q*R01uHMdceGkmwc|De8 zGS7#^G3}}TJJUG;#@73 z@9p;25i}_N4&qYPeerIrj2ixwZ-Ibi?uwtCn_^M^pgwO z;r`&~ta((=S_|2>)Ye)jfBq{`T0fvelYL` zh;qkJjY`TXDSp;rLEziOTGar8Icm^J@82Xs#*BT)M%_K7OxF6pswre|j|_2rw#9-N zWl^fZL6fX>}2oDj6ShaD}_8BZBN^An>kY5|?y6 z?U~>}#snhXndjyvASMnO%aQ)n@s2?kVFETT5EMVA5DpX5WS%aR5XIJy-RAvL zmgJ1GTr~8P`3|b&XCv!xAH#`~MSp{##`ms4Z=*(W2HI}1w{6tFCQ*+8BlvHC*aaVS zVu^`juSRWu@d@_s?Xi9JXecl<*V3RZ|Enc-=heyXVOQQOz@5NiGSiy+r@mK}z=>h) zn~hR;L$UD&OzNMsZ>E`9pGPZZv2i{}7ii<;mDnxU*-H(+3k6_xol<+8XQky(JpG%{Fzttd=`!yc8cM z?auv*)U9=KQKAS|#XvY^B-;q`1G5HBL^qKID;ZPwdca(b(5cx8yIpdLAxqcRyPdsi zBJwS)zO&Vw zVxh*A>u>s)FYy(tqOwX#m5F860za_vLJw-hZkMKBQNA@W_ynCZD9xbjS+60to>4c* z#n8=BV=4uR`7NjoImEW+53*i<6Y)*~8t`BzDh>4?Y8RVSbu1xNF{kuUSbw`&h0Va< z*70DatK@9A-o@~-O<;7MNl#Fbrm^lnQi(G0HpV2LRa>?_{J9$Zv z;A+mQ;s%PJ%R>z0Zf4_^qVk>2zTsgU zXpkO;4&$QzaC#un(OO-HCE|418EOG)l zCA{Z^op)!UVVShWl8atAlH;4C`^5GwVhNf+_|5!jHM3NyKrwRuh;hapC^l6U1v_Jmz+jPBg*-OY}Uw-U@!f_B<@j$edZRcKRh2fd!%QdqRl98=+uk=6(BbOTU>5@`V zL!3`Q;3d{QbPSB!RB7$_cN?A{jj1SJQ-2LpLz=j3^#{VJb6v9C$w&ZPPuXvM+C+4p z>>q>dBEN#TVK?v!QNw(R+(?Xw2!A2SAF}IaVDri~j6nDbPpPvyJS>cjn_KGo_kXXO zoEWWyVYS6EAlL#ltc<1-gAG~1z_QtkW}dqX_kaV|;RG}gnmBn?-1B@pdNFl%oM4Hm z-wD2+G&S|c=-obsXj(-^Q_d0|pMMCounlryOjR<*$*HUXXEh2{;%|;fb}UVX0w@7J zgd6#bTQ!w}bR#XMjBgumvSRf=dc*d#HoAA&?fF!M`;=TKapP4>%in|^(Al#%M;{Oy zI~*L1W$FkI?C8L#)p@>qX0;a`?!W08r$-9vj3+1M7BKjLVO}*d=d^IDvF~#=A=#4f zE9U1cH;OD!f6+se4A?LAt;;d4*u|rMx0+dwkAt1+1z`8Qv!WWjva(|Sn$aaC+XBGE z!N%Ou<=LHLCiKHZy;JhA(N}{gud)stAfNzG|-5^;r4{wG3 zjwDr_{Nh7Q-POkmBVn=ZwBkyNx7_|Ic1Q*^JW==mk_m82gSFd3^lGbISw-0te)nep zzXY6(9~Q^cEtsrOq=2qFxpapVKx1;xz>@(IDH2Auukz_Q>_R3XbdSF#{gDW{uVJzx zD0)yTU#>v*vfuyA6!$)GydJ;QkjMRHghCLFwuFtZnVedRxM4IK`wc}$cQRIq2=zgC z55%W=kURqJ(~I*2;~(ZBPx`>otJRx>BrMGK@^rtF?5!il4Av6Oj|RM-jO&hXT=4Pn z35m!g!FNBVg2*^~R*e&ZTnt**0a9C=Q|><2wma3rTlHb3vdC9HT<;$Vz3$=Mm(*4S zUU;eATA3E0YkPW-GlwU^9f=v=l2c3v#tMh-zCu;kRy8!R;U>=g@s5w$>%Epnl1!1` zvzDR~ei@HcXt~@4N^i%=(8{z4k^$KrfsFoAT7--?`?FzCiIGUiQB>|9e<|db7T=Uc z1#??iy@FVY;g{RaG@lP;5OL~cd>f+Sm@DM-Pa1mFK)JYjS2fy7#A0pr1BARA@C7wEblcadH=AhO=ke@97uUm)`oHsP_ztHDbdAz z&;L@0??te1JBMRSt}2C-IJ`2^OyLG3Z6J;PLLWA&vNr@y9d(>wXYre`Jc&G@_bM#ipRaA84ecMnhVx!tFAF3oV3 zGe@eqpwyKkr*y{iw#Pxc{}m;`mjK*6T@01M0MOd^Qlxth;k1!dnN+nL;v4Hh>EOlu zjJ_Tu^*BG@3}pN@ z34A>-;32zFqpX}iNwo3xOIY0gH5;NGfDsucu}oCMaM2MSlh5FqYG8Y#JEkL^?AGx! zu9aQ-iuK4BS+nr_7c=lh=ze4XK*Kut>?kFiqP7SO)*!nr>XfY{k~P?RCH6tXi%011 zt&*}boc^>gJM?}kp#YqyhxfK_Vz?A-dfFrVBr8V5nO29B_?_9Q z9=ECOQ&v(Xqm`>IJDj@2TZO55XVVYoUB6WLpupH;t#Uzr?)LR@LQ$-}%V9gkWT75- ztcup`z2AlGdY#mQs*IhT9mi>z3iZF(qNYv$C%1ygDy@=F*gynH`_`#G)>2ZCw(tfe z7!Vt@+O;Dp{5{DuH<1o~E?^B`{yZo*H=omr1ccOP<(Ziy)G5iNBo2p%kv|mXjJRU0 zo#gJ=cSK`5`BYlJDjt=|8Ub?;KucFNY37Z4?>hRaJn~4D%PN~}mmGonP^F=i1jHX; zw^7mKEW)mievRX1{lnc{G>|HEho`QIt2+AP)hiF%L-Bv*`?~R3tFHUJ*G|_I1~xV+ zBk9(fY0BT#SZ)sf<-x%kt}h2f!ssBMEd25sb)g@DE3najn=a;Wgw=c6pKp-iQa_`9 z1iA*vj(OBj>l<_?_D8U(;VJGwvR^3Dp&lH9vp;!QT&(&iIU67NBXR`L7i3-Vfq(ncta4+qPCo zu<#$Y;=D;CF&ju-8*K807y1rtajwpt0KTom1Y2CJ?Z5m~WaHf2yLZ2BxB2^*kn51L zHk4|<(x5SxP;X)_)g_RG-&cm|t5qm*rS2PP+U`R^k5anYA`)kk5Pg?A*%lfd0hk$W zIg<>pGlbyCrC^sO5+CvBIr3j7$@xEWET7=Udft<+T^u8uB_}{frnkkf#O^0>dp0C9b zFVYI^44rGlBQ+H_8UX| z$w(OlCuCcsPda!0+O;7lL zRW5-`?=^ksmyboL7P71_l6w4O|3!>he7>C{Xjohl$jVwHNwS!S3FygHd(bk$d_toz zAWJX!UWDx!>;_V>u)r4ym`Ype#I7G3Znd-1`r0}Y>Z9tyx3_Bxa*dynOKtx*^-LH4 zw7kTz!^l*`DvdfKD(7U`!x2x3pITOWE_8M(SD8$y2-Lfm%YxsYQEi+uOya&z zxnbx*Y36)FC&Nc8P7E?#nTCe~a;PY85mk=TUs#_1S$Y#L^~I4Ow9#nlXX{-nSR$#h z%jRk7OeLtOP`6vrQx~(XQr(A$7Rt@58h>W~p>QqYD;Dk{tDeP{7<$kdK{S=#Tj-!; zFOt*#L=1$Yy#~v+x$75S5CcrMy>(9{K@{1o3_tyxhj&-(sd;WvR4w}4z1z@N0V@yS zsrhH(=09p=RjVt*F*A)G1w#e)jI<+d!fNqc7+hYCOp@RRrtBq{iuWhDH)M!+n%3z_ zTS0H5O>DtvJou>bco2;!0C`;FsLG{4lL{mZ&gRu+0KZ{_iB&%_KA zc5udRn{;8DuE|tb^t?O&@|zOF$k}((hn8Os7kP2^b%*OeoZRfdpc*F7_jnOPSNN!O z2PWe%1Z?S-75#lMtSUqI?d!r$vcP{bABom?&5Rv6IWKj01a84{l@b+TvpSwiSbojx zhQcnhr6jlxQI=uU<3|t_!>Mp*F7l_2i3`=-iA8XB-=~uMz|(WDCzsu`NW{l>qh<;0 zto7QE98y<*8Z%H1_`X$_;k%)MXfeU}YVuVRoV*MPIJh{(ON&{jEwWYd4$hpC2%hB= zA2o($P!|DIyI5gRFb&Bm=~Gh>VSt{Tw#+3UxBtFiR2$=~$F`+PXZ9g-tJmK7(TtQX zdZkUM@0lQEgXL0D+&+J*lmf zC31Tn>^pGtuN*?ihmOkm5YAEb=Wt6xsh=YWdbPVX)+s+ZzrlQY;DqRjaR#~jE#PLZ zzUncA1yFCc!Vpp=SXEv{nw=S_!to4zbkZLlc_Yy~f(6ecq`r3B4#gDMTKu1H-s8MO^_ z_@H?U2QeeSAG(a$ncg5BtIW(yJA-zF_l>$8U-O{Qz571+lz_3;*E~QpL$Bk|6R;|3 zDKxvH4|#8?oTV()482&XNy}pb6kk|axX{n_bF(%hj@ZQPQm`Ck@6PGJ%+L$O%GltC zb_5FG03!tsoK7(LxQbD}rD=8XJb09=R*=c@l}lbT@7wN$uwnvx^uWDnjvMi3o>~Y( z??a){cP9eec*KPD?+)Rx{2M(kI~#9jlXxHuccG1EgK1|)!Ru<^0d6?*8xD;@#XG9` zgRg?KIX^qC6)$4Bg4c(x5t~u&l{$2Eg&LvnDu{7t)Z*lsB>7`3j4--IcU|>jL;p&o zlfU&c_+-q~Hl|sxgDC_nz$Kg=EABS*r>zH8WK_MtK1xFl?Ub1$G8g|~6XYe#a^dC_ zOr{#5{3BARQLr^#YNTL3Hh9Fgd&cKiEkN|WVb=ldO5i3MZ+x%+h1$I{S+$O~=$X$) zHU2(mmnWbX1AsFF=?(}bprs%o9<%>yFqG-;ZW>TpT6)}4BKLj&ek7H)nI}bU26Y+< zPEEw;9)PfC;Du*ffO0cxf|$d-rpV|~bL@1c%-zBbesF=*9ZXtc9)$^Gk|QJRf$=D> zQ`-)yVdACt1<1*_{Qg#zO)vu^>=lCv6!+{J1l2=so&%OWW`FWWW&VE0{jB$sx!t#**-cE7nJfr8cHB_*n%T&q0(gC2HP$C0Tbsu+4r*`VSSV&oS*MS0xmB zy(FWY;qany-kLu9kFlBDs|vzSR+>at3GgTN-Y41VLWR1V(q~FD<^k9*lmkqxpHa0W z_tR@y+zTIw4mxc^YR%@v`S*Y!l2R_xsa1%CGqG^vQ{6ac4ssqtZvWs|J4r?kALl6Kr@=1lMN?O*lOvwwIJPk>eI)SSfa0u3=lSZl6?X`^`zc5$r05> zNCxW7r)bJ$u>&|8Rj?WH$~HUF+S7E1g}|CGDIL?j^2Q8zH8#3u#K?gCy2Wom2nh)) zd84_AcLvF+sEygL@{R~z&qe;Bq6KS423bm;Us$R@|D;rpUF#wG!lUN97IyOg^5mE_t~^GgW45@>zF;;p8N+T2}OXXDjD3bxF}t&O2$dX`#DV&63vO zVkXdc%bHr+SqLNqFdjE|d+TU{y z-|=KnyW}5Kg{1p!Z}@!l_*F-@V8}w&i(z@jzgnPk3KG+kIqy_RkQtGV@Gzx8`-$f1 zDB|=%*s)JhFvj2_g3M~J^zMKYpZ7mOTriImkMg=57!$^A?qXUtNK2)Yme8+y-->?Q z;yxsdIHW$V!wc_v)FGt(!S{P1o&@5^HXH}}nc&f{0aoU>K|lXwG(!gwV8F%>A3j-t zl-JdE^uzbs1o+`Il%X_#n%d*v+?uYb`GhzP8-p+I-7Y1ySn&Q#3bKaku1zvoRwiZ7 zYA@1FVx|aj;@O`n&;gzn0hb+P5a%Ejzi@G`u>_P^j#uL*$Uo$jDkynXW=ssjKV(dLvSe%L|}1|{U@;MSUGIwBQ2(wu_nYzcZa zHcCg+tdg@E3Gs-=rU6xPC314ef|lZz0wQk|2?w0RVry`eP)#c0w+k$6^vTolK}~gw|8C{%6uuY zoWh7Jq>!F1Z~v-xJEZ$?vK`t?Vt+!5;`lPi3}6;`68p6sNh2rIa~{b--pI=E-6*1iygQ`Y(4xiFdvK6P?*6<%IC z1LvFPpe}iO{-lR9LdS?y6!qKJlx&TH{R^+T-3y%oqyY$nO@vd;!2PxGajv2MIWr?l z9bTjVUQaOQH1NC+4%ih+m%2>ZjfXd68v38;%e*XM#toKug9>b9|Bi{bzv&HA4BUkV z*tqAxSGViEcN^I53Hn}No6^$O1(BF1D1my285QS!bi`B~u3ukX?F-o_l2oY!F#~I$ zB};pnvH(}+(7^%p9zFh#2;f|L#gqUor8sw)LDY_GktMO|vouZvtSPN-$(MT7vFNox zOUO3auPFBRoXLSL3oD+e-iOV3QN_j+@*73f-a^Yh&v%^uq-+L~7y(%{1ync7e7TGX zV=H4n;Kx1-0tnG!a7v!)pa9kRa`%~LfrdEU8ULU#3Xv_`xejanFQANokW@^+{>wG4 zSj=7(=eHT>ukBB}y9+&! zfI5^tvNc&An8fpbI2SQB_nkrIiVVx5p*_0K7??1_lyMz>EB4S|DhG)#Hzj5Ra{)3# zq_BU$2D{?D4Jlg7f9kQ^21no}QO-g_@WIx2bxeZdx1i?Gg>8?1vXuvx(yxaSF!~*K z|9OUZda4`-*hKl|!Qv0{j!_sz z7=n-j&l=U3RKIGyb`HhRe_SfM?j+=&anz}NvNIDZfi~v5Wona1_oOGJc^(+_s->Nf zj16kDvuZxm`~H{h;Uwz;P4n}VG%YRY=on6;)oM?&`UGN+)GL=@_^;FGl}w3xlgtg1 zO9DODPw%}iroQnxn6}hC`wh{u-b4e3;}wZGj>@lJQ&vB&7yUW% zNN<>_v`$R-Bo`fLG^b25k^i~;u2TC(g(|?&a^|qct27?z0CWAOg#{ViAGl>S!SZu5 zi#gBz6m7t-6Ok-HL`dkmjBJOueVJwDS`D1XzECwQrU-T+VHN;!P)@`qdiHl&=@@_N z-iGJqywyeQaG4&}7ml|E^Sp7=<@xaeXJ+d86kW3X=N{7x<-FEa zg`{!j@n*<)>qR9#105-Vt;F>8TQi@>%MBg9+*PJK0OK^;ogF0wa3}XU42UT4$BFTv z>v`-;He7AL2i`9Q_+`TNf&Q)2QT?k?>BP?6g-~hsuVJV62SiRl_kTjZ zCUO-EEP0t;K#JwqGL1UbdNST;i%JG*%MfSX{A`scZTt2! zP#cHDZ`6>-EBwIqs(2oXDSS$)w&A`n$sHV(#vB=Hy0c7v#mISpcI&kbL9u0h}jNGVY|oNm-2AjlPP*|mp82XF@F z<_w!Dc>3>OZEzNy&I%!(D&sNtEW&aI4#&r2{1WVO?*D%gDIe6CEPNmbwc7lL_YGa3 zMf?rn<#IioqE<_YSDI1Oby}s*z;}Psv*YfmVz;xQv-?mKXY1KLT8NIAf993|b^!$*HLjs|hm7 zQa{{9vdk3ss z3xzz+sJaA%)Ba9^1Ax!rnE6a6qVG-Ryc>DGc}NMl#~eK)szAza`OmuEy$8!L)Yaiw z1eQM_lG7{ohS$fb#l#Ap6mryLOCFAuZCCnN=@lP>MBczD*YWmHofo0PmecNgUnd$v z6qkm_x-M^HVq##$xL)?6f-TCMavn~es+5jr#dSE*JQPPYH`N39?)3^6AMWm~BG~*4HBWCLdhXq#-KG)T13WbZF~vk@B<~c3pM(Yi`rz6!gzE^PWc! z#NE{;meLJMu1%4KXhQl+v+?Bnq72$~PDqWLH_|hS9FyD|kv`>?5zpY968qOo?PBl{ zeFl?1coZlqR&KlQRIjC1N~U@opm|?LUhi|QT?St7QP}IcrhA|4{+kJG7$a|}QwH7~ zJ5hi*Ss?6-l?z9CKl~G9c$lTixaHoMlEPW={IA>!JD93rlnKnvl34L(e4m>*tIVAr zIy|JADln_o#aSuUx42eBAx$s=r99l1{vkPP{=N`-4B|r-i`5s^| z)anwF67?_{B9{kJggBRLsAlO$RLf+2@-6O(aNuwjg#z*f zr6b8PFeI=XkBW3uTyhxFv>Qyc0GyLph)*>1#$KqCw(J|B>V*o+u>IZ#!$HWlc+M&B zIj{sttP3=HfZ_91p~l(YOScqZ=df+nsj8kDsI8zQs`_ zGs|+l$?J+`=Kovy<>y=6Cfc@YnOKocgu|*oko`jYz1m~{t`@29^U7Ly(X-Ke!oI_YzsPCodIw%>Y=)D z?Mr?+{uddN9wkEy19#UW{+DDvT{GZeWazHJ2&5S@HsC!x6MO`L$_46R&GB7xyD^e1 z@JSXaJRYw?tW~pMEU0v|zS_a3LU+lm=X@&1JI;`M&-6b4+v8S*s|01xRPUl#a@n=~ zy3Zi`ktz2NsFlWxdWw<-c$odMDcbRAQ&23{iuladEPo;jvsD=@t>g_jYj${(LfhuG^4e=9t+*nPRRlcjPt@C< z7!u^C+nx?m-Ncxc=O|?`J_KjGC5d-Q{=cW*8hHMO`V@UqcmD@{#Qa8+ZBmE~>T$zO z73h-idG|lU7(}?5f$sRGwX5Y`hQpoN3(L>m3gk+>IR9NtLPZdE4KZ({bT7#Rz!Xl* zBrPZYc@LMz+|YBF3qxJ~Yf`G&+qZ9Fv+B3atFq%jql@TY8=d%%8izFM`ZZp6mZ}7u zpxXg0=q6x*4zCy*6i_@#uX)Bo&GH;G8dlZ!sL_64;YUV~k;;sdn5@{R^?E31`yR>lC;5USDtOdoEYJ5)#xJ zbRyIJX&1xadJ80~MlgZ)u;0W3aksXD5o#xY{b}x)V{(Jxi!DJ&-LWD1;s=?9Xb{ce)rF8`5SQf&UQh3U)}gQ44`AurfQN2qQ|D&}7TNQ)G}@G(BD` zL{#q!-YGQ-J84mCoiteI?=t=jx*hIhx`aLeesAC!Ct1EAkK|Q9 znSnsz09kza4~1fHHR-+mVk;V4eG==M@}8jld`QW;G1x;W1$RtvW-dQieD8@8zSE5q zV#2z28-N#luqyHQNXdCj5#gTQ#fEhEqj@c}1zW5~{zV8IBtBO@Z^$}#6gtDQee`;9 zcK-4s|4Pz(C3dP)aOU55B1R>DIZTIM6CAjK)G~glq^@i@PKXs8_Oab7QOdM< zSv8`o7dK^i?=&g&UvJ;Ym#f3kP4sU2j)Fw@=dNX@*EE$j65X5;;70oA!9sw8t^R~3 znlh&ACzp7@5dy;x!!^wKYN`h0y;H?jbxdwOiNX z)MOh1rW&YPWeFdE@#Ig|T$UeLq-{jY>KCK-JqAv0mLC+}moK1YT^%nUFkE*Z7u%#7 zRkJAxyiTon_SEc??|eQH(0+R;rmWP z(qFbMQ_K}D^P_n0kSL8ouJho-i7tG(8y)>Pl@MyWPCzeLTT2l*;J&Vq0`~o5Phdi?6UwPAN}QI$F1< z>aLEb)@%9!Xw(%F@0m!6DSMRV!HjdnfCvX*h1fVRz#>bmM6vXiS?IpXLmm@rxkJa} z{#22HDLCJ_Ja)9rXoG}cA6I~&Y1g7>9tjH)u&3-c>J|*xt$}tm0J?L#`QNuwJdY=$ z>{*&`rQRpWsz59sw}yM#tR|i!Fz-OhPPto8Jl9hW_MF_1C6p8b+51vgbABCl`(1D$ zQee+A$<=T%vpa0g?Y5DX(7dxAG$!D~N8d&y_o7&N5!S7@#0DV2vEiuj{cWme$4ZyM zBBlFBM|*MpaPPDlBHnRl4Ab3!`u8U-ix+qwzpvYWkieoBCSx;`PWja;{w9&gqL-D~ zk?f*j*XW@*+D}P~!SN}HJs&<2tW~ON;f?NsUm1y*>iNh=g1JyAh zw#@a zmK#@d7s0i}{M_WhzwM*T z*}0cXx2`tlE}HWuV<5*l!Z@GMmCCAi=Qxw&&Px=C^c1|Mr#}bfpjbwO!$WfITT~Lu znm95Dnd`aB%lxY;otf_`vC0-rc)MUO>9e}g0G(0G<&*=d?38T(f?VXTlx0Ksr@fES zQH;%{=uSRLJ6quKaSE{{RbvKhri`54eQflOmv7Iewu3q;0+z3aXM-OrdRedL{MkC) zCR#JG)=8Jr`ASN0-G$P&BcCbuA2XZAr~+fmlBE{$YPI#9dmQ#_b{bi~Y*}}QY$Hh@ zzbWZt?s_e!Nt`{CFhh*2#zB0H2xHsg9k43Kcc}~xe&g;eKP63xrt{_EqZ|DL-i7W~ zBGCAKpPjpGBVjq7(rZ_GH#Wc1L%RwMoa&0d%wc_Y@@Gu-Nd}!uwIRwa#W+oRz5DaO z*1;horO&Y@FQywoDhk`qrTu=OxqH?-5!#4q>P*&QVYB-vP?nNtoy8?xY25vaUTgA)J4c>`aoaC$;Y z)nhRCF&M+~!(6NC{?>{BXN`-t=ugOK?gLUff!OvJ{JF9R%S(7;q)Y9T)K^$)_^F~tFz?Yw{hapl z-OCm~$Qp*HN(SMX8?f8Q(R$yhhsdTd_c42C(1# z<7sAge0i9zE!SJ$TY5)*K;J+w;hWoY0-0^zn^cvnu17Q8wJvkwJf*TkInHVwB;K$aBMS%f1i_i`i0*>E z@S%jn@Fm6#As?jE`cx+je@~=C-%nb>^v|Te^?ROXoemR+Mvceb>3WqrY_MDZ=7s^z z6PS@vsvk?)O-vtDbBfy1UOzy3;u{sJb{_Q); zEkPF|TrJzzfLHLC*4GM2qg;HQvNyCQtiC6OJ&eD#RiXIZ!ih?%2%9+9*)RSGiOCIrPJk;Rfnh6#_Ay3cd^} zO~dl3#fClL{DOWwnRhWsJ=Vu2t`DB%oui+>Y#czcqyxHJcu6VT5dUVB1@fMO@5bKh zFe>Q}nz(_l;WzsF>l38do{qYkfLj=G9hXklngq0qDDkav`nMIMQV%v(IeLU=N_oGR zdO(cJUE~m@%MB?)6uF_T)!!TM6HnMhS#+?Xcj&a;maNBLiEgm-fdaw;9FR3jJHrXY zzF3(N1dw5REMGJ7)&1Z_H&*lGDf0TED8Ea~YG{o*JFzn2%&S?|)Q-)$_9hQrc+$K% zlqR+f$T#AFS*yAJ@otTS;GvY6n_HrP|K4mYFgjwow5fX5uln?c0 zKP)95;*AV9(kpm1nSgY32u9tI1qjs*>h9l}+%Hat4@dXR_e8wSIOapx`A>YmI>_Y} zhNcRJ?B^-LyHC6VoMQ=SZia_zR~hFc*EQ66?Q8y3?|j#KS%>;LXB!Rf1|q*vpXcjG z{z5+6bP>|#9E{@|%=Lzp;qY-Tp11_Q^sDG*Oc1Ln?W`qAADqG*wK8w+GQVmJYVOQE zZf2bv9Qw{&6C#?AXxN@{4z1|KARS?`i<7~w$b)72`xh#%2yoBJ+=+>irN>rPu2JWa zMx!tEO4)q~`LLReE!MxD%;#hZ&hAN;0*PVXoB|iuLxh^QpIlaT)JV)MrJqvixj#tG zKoPaKpv<-N%g6=9%rwl*EGZs6aGt??jR`QM>S;My$wndc7lCXkl-2c)$UCzhnmT{v zn<7Oc`|yLcJ3}tl&%IEz%YeDnFHQ{`$6|Gw4^`X;_RRF&rG`JmlQFO22WHHPFL>jC z`@p}s1{Yk?KKPDv^Lp3;-Q=7XEA9i-E5Ioi)JZq_J{9BUOIzfGjfU zW38tu_&uZATp}!V+RN=IlKEE~`_{L4<7Jc$Cl5$g>%;8(j=kQtm#dIq2XOcAMG zKchoRp#dkeA%}LZ)OYa_K`L68+iTsr`}NZ~@e|fH2Tw<|UGmGx-#0B4CWtG6W*HzY z)MzM$4=NQWS{D7Qr|qP~6_`AlB_ ztYQXRgVgnKklbryHm4}5K5Xku`kb0|TGE;+-qL>jeg>z>!fx6FNKJ+-vlkFfa3r8M zH_xfJBE5I*U%f|6!lM2^3x0g9%9}kb%=MlD==pEapCe4XcS@fG{@n;7WfPYKyO@AR z6$fAPVb5v~T;=$Nifc)g1I=o)&m!&Ie%B)>!0X%H-Q74VXF0+pP`TIs7QO~pC5Fh( zR?gaPSHKomVeTM#@<^_2nCevi#cgE$NV5si^MI?3b+&fZPTuTV&X9kJueCCp1715f z40O~~SPWP)@+#U&e{fMQZE71v9*I>NxAreL3IpqxMIfhnuGM-#3P( zmy0sqMcS^vTw4 zPGr<*>CvNBrzXbuf)@g_YaYa2)ye0)d?Q@AZ?l;jjpNbT>|1V&pG^+$vIOt4gs7j- zsdX{Q#Tw^_Anfn0TraU>F1bmWuac|7p>>^ThC6ezIpcM!KNQBW@YZm^pR6NziYygK zds>3dg#e5d+y5c6el3ThN0jZ*cDHTs9&-B93$t?$tKRVeGBV^HVGj?=h9V#!0GUph z_y%jOrDjH2EZ!1zZNeG1x3|~niqf4zL4&r4By>sMV!QMGF=ef~q(wMc7Z2QEyaM%3 ze@}DX{I|{qcXXM9gXn##JKS8e5#7ukFfD-O8#=sdj3r`PHEH z_Ej-uh}&`W^3#{-q956`m?ihE?Q_*@G-TnTLNwz3V|wj*I!F%mw&b8L)nTbG zB`$BlQDt<2;ia-Ny8Hf1vFvbLiLF$q&?=dtHI|Cdvc2 z!HD1&{-N5tjyeZ~tw46bJg(XAhj}M>Xc8A=5<>tRHg2qDGsrQgeB~tlQ&~wIk^h|N zFLLcbCgbAO)mZ!ST@-Euf$dxuqg)lfL)Rva<3*j@;chwFdp#TwXCFUNkTaWP&Lu2HoX zsd0uT+6&yl*F$2VHcAZ{2EU1s1v0S1)T5Rs>y{-+dcWOLfe^6}PJ;yx}PWRTZqUQ4_+2+Zj@wFfC$FYl#kl?%s zp`6zGm8qgLl?whY9a%bME8N&GWMW&|oEx%>bloTaHRUQ2e&2Lu@BH(w*B+D zW`VZ}%NM}oA?ROE(5t+&#yn*8Y!*WVxWaTEiCud=^2e*0tSP?KOAl<)044GJLw~s* zd{I?iUcMcbcO~{jY)6)X|Hk@iJndOE?IO6ctt7Oc>Oj-rf3$gTT?j@!D6}15YT>{Y zye4yQbxxL7gKmu~jmER7ZXQ%oUhl%WJG($=G|{vY!t8G{Flo91>${%|qWti4P3pbemNRM+m3Gg-Uq2 zzYK29pkz}_%B(P$F!OWVjBfLIPAd0FyR@5|wU@f=R^K&gyU?x4_B>dqvD4OE)Mpj~|-I7hp>oV)S|>C^GpyS$YS*brFfBN^?3 z!DovSSif&vPUkHS2V5OtSRf#;1g9ern&9rGyMa9$4U1>u0}md+!=qJ&X!N-hqejT3 zH12@zy-~YBot?RyzoBZEf_+r8$! zLzf6^*?pyZVe;WWjzA&;?xA&P@9m_8j5lk{wQ!K z(`tdD5}Z`J8!b*Uq(t?GicjK7*4O{q!;qf-g>(DK-4!GmnEWx2`BdpwWE+)Pl?YsU7OapQF}Az!NFZHECx=1AMY-*ddZ3C0Cg+PzIiG zuuOmqmT!=s&S}cDFD9*;m6HYNY@{^jW8F*r8n$1_qN;Vgd{%VYt8)pg%&vmoj}qXX zWF2dS!mW`r$2r5aisdi!h5($UZ|$fgg5C(-;apGmcuEdtS%ME`bWe4hsjMy(MoT}m z)ySC07*LjG6|s0X81Nf(x$aUyya68triN^_rn!%mRnMM6(t@a5skX)B9(RqwwLVTK zK8ng>~?yME~w$JE9qTJc63Q;9EupQCR|Kc3O6TXR?Ab&X3)@HbY5#Nsry zcZ^{cq(r@%YE_6rMgA? zzWJj@{ISnlF@Id&2(`cWD8pi~WFfD-j{!xTlj3O8`gc(t)xAeU+%wvt#F*}$zP_)8 zvhSsG(rtKA$|y;N+R9$%kpyfs=ml_j%us2EbLT^IDx+oI)4nVc7o|@sa24vENKVBW z3k%sfIEWmv(~x`~TkG95351div3CD>}N^ zC!+orLwZ+R!+t~bCxv8x3sbQ(hPW~O9}Irg%1I1`Bdn42cQQRpShD*Phn8Xd%#8=G zJ#=YG_evA~)V!WcyHH4Xsv1~#xt?~ZnCWixNKd@vu)ANCy7O93;)Y;TIfrdDLtxnq z^R>fGP}tO|$gEt{RkI;$jy2qu2j=-mAwj#%6g`v$Nl z-u+DnSRPn8w!Fjrm(8i3RRZalXt2{|b6NhnW!dfneJgV`Llxoqje9Bd2F=s|YrD&n zkF^CTQTq`f+a(sCIc7#6(+xOla<@V62ObP2dfB*PA@Nk7V<#4^c!hS!?!VvndnDB| z!q@K>G3jpdp{y(fo8juL&uqD|cvZlp?1PXk&!EGe$E#cD^!%N%2Rku6C&;KEiVp6N zPNF+6Js!dB?s63eRB%^l5i3NWNnqR7AsM=ed&o51TndvOBu>j-@DtaO7$5Qd3TwN+ zeHQ4KP-1;gbhYR*$09pd``7_a+TT1jC83PqVg7?1+AjbcCfs)12U#h=S;fY#Xh)S9j4Tan7hM4d=4Ukm+yWx~ zFg6P!{P^*6@5CS05_4?bEbV+~OpOH|jK&gQl)Zno$TU^jYMS6EkiAbx5h-PR!w9P{ zj+;<)Dw<#V`@@&RyWU$D1~n_ECKCV^#)KkW+5=}6FVcP(bFw&Vj&<$@iun%N3#whk zYSG8mtK{z=#dwNPOE>-<>eu$AGx>holJIrBfvHJXpA~>157JSCOJodg{L~Bx&0tcikinQHr4ewg zgRk%QO|q%1U6pI9B$(Y^MxR~_$1C(?F*h+)yw^>rKyjR4{Q;o=aW96)j5WIJGBPJu z8uS@~r+mQSR}Nz;zuv@(*C%u=gUrE@d*rOc zg)C#Ok>-g*kgc>Ne+!kMh1lQ~5bj%AT2f7l@Ebm7b$JmW{-oMizJYy2k2F%&RRz4| z)(<*E5-eA$%z)nb?kctAyXVZ%2cBK;GIz}Y?Vj}%O z$Zcn=ULj>`GqKI;1}?6RK=vnJIgM0Iq@Oq48>xydh{m{o;nMBTxTlleLGW?d-B{;xZJ}lZ4Wn|M!!+mT zTrpo_e4&8j?UMEbzefSSE_(ge_m_F&N#(Eu%u?002aM-dFgh1LOOV`_A!gFSQo61< zRwIj>Yq8VqfHgta7GAt;{l++c#{Y2o2j}+8H`Pb}aOm%bhqF>oyo7O&7Caz2~~?Z%a|37In3Cb=p4aDA156Y9$);_aT^Vtatkr8<%L7 z63P(){8+ACW{aIX+%4x=qdraeV!U6DIC1^p4zC>O;@ooNz`tg z`TKCKk@Mxi0Bn=v&dw6y&DKs;YF2(#%jdSy1uC9@c%RWeCaTbVd3APm5)2Bkr5c0F zd5P1<)82D|XaNUhX2ne-rN(2jXnm`8{1n-Mi?(T+q{%;R^rn0O_u*t~RdsCV4I~%4sAJg==5$TY6J0Z^4-& zHRdVS_hI8PnOtX}6`c;(ACKlfd&DR9n-O99V!df^r{um(Ro2ehKGnZ-gMij%7wgiC zO|yjr+$%;(*;J5fy<8uDA?zAXHm;6o0qTNJK%(jEG$2dGnm90U5*);hUyMF&7Yj0~ zQET|7%OpI;2b4#XG1&_>@!az(EP4F-$eAVG!Yh@b_j0@KN#a9MEYAiApaBahc`6F*MnlxF-d4>iVe7syJg9k%N3ysG zv@JmTn+BDfA}V+_4Gc(h*esqpJ#HNOW-N7m^pdWQ2sX48OcwmNTD@nkiDF-C(wrKt zF0XJ1tw|8e8-Dq;)Q$lk`4~-`gDcB8@pCIpg_qI3O8<~za4Wz0GQ&y^bYsJwc6CTn zrF)yFKcbvP8r~W)s9#G3+gY9azyQg({FCq*@;sVKb^>Xygup1~xNUfI&2F>#DhLWC zFyKdJJ!Qvhac0={8eWg~v!>%{1@bCL^TE^@6067Ut3Q7JthmGM$~_rUjwhXjM|BZ? z`1t4wo7{4pwCHAX^?B9P<&&?kCE7QIdlG0_uw~+D9%YG@gjvyzl{5wf)lQsX*_3gR zd)>z`8>J;;vRIjM&d@EB`)QVtT8VdoAnkIMKH5C+lhstTv_Nn|q>hgk>AY6JM|0s@ zGASuxJeBJKC(33EyVF$WWV@@-GF$qAiJZ;hzxlSaO-5{)w#zsdc!{4kg}S8C$G8EE zjIn>ki}swC{5}Q-fIB$40aP!utXtdG0{8^B*gZ|ml)owkb#@~hqdKpZKMAj+-B61X zoDE0;G(%oqKDkGSi!rM{Frnb)XbsbtS*)f($))zEe#g?$csm2d?7{9PJ38dQpOv-9 zjbvAw+|&p!a-Ndl<~MoL z`Nd>%^}V`le}LN+fs?Nj<$6lq^byYPO4gmf&@aMd0XSkz-tG&Rjj8~x>=_dqB@h18iHOID>1BetNt3+(bBHylC0k>hYX~$3}Q5R8a z|0c!%@FPG(6|31tWDP2BF^{KL#e0S?#)6evO;`WGu%bF4_>FWvU0ab_6kG^G&m6M4 zK`=H9lacCcspwjYVx?(MUQJj#ox8a;zWEr%qZ(ac74g1J`??82?!NA~PwbA!?jL+j zGn-A>8;@_DV;i{F3fl(<^17@X?*%sZ(P5)l5vZUB8yhUTq+rduP|7|NrwAx8S)a0w z=K-wZ%xBO$e86K9>RHz-Uv`fPi-=dRay6-MnJhc=Gn?KEHt~t$oVlyO%c1s*23TBR zxzmX6CM7(b^s;#R!;ueV4L2V}!w_$o8$5p<3>S#WKa*AWItyg?F=PwPT3M9aQGmKA zjOf97JWzQRowPV=#;?wjQbO-`+#Qw6nnrA*T-wuj~q}YwJjjuK~hH9Ho^;h-x-F+pNH{IZ? zXV>fXD=~z2>Ix^;i-)|(B}YhV*t1cu#JG@E2^+(e>ZNqEU1gQ(^jk9xwqt-jX))O= zDw*pPdR#G;b&H=j*b>5%?l+<0`qW`3j{T#HrcchTR(TA-XBrHplhsP3El%WE{oFPGq-UHC)($V6i9g$)K6ezX`RRr85)|#j5?5m0w8Gzjf$|Fn2V-F>)yI#N$a$o!?v{Nq zS9|F%X$s*^cVO8D5L*d*1N z3{U%h_MMcN(Tvnu4Epz`tfarjZ{7wezS%{;p3m>l8?1Ww*FV`T3az|;mYY9fyS~Yjt?WYx`wk zm$##^5F&qTpb*Y(LY%HVs-^t$effE;9K&lhYBDMnzYwY($U{a=%9WM-bU}!134Fit zah))_FTASx_FM_sne0awA%DKU$;_lL|TZ9b>e!E z&m0TF6eE-O;PlyHP%tqQazg-I8hGJSrc#&E)EMSh{bcvvqxyrdLc}Z8#8(pvhJ@pk z`1Ar*b}_@nmPo6!(s@^QinuecM7q(RKna2_7jw8HvCpKLSfYuP&DrKplbZ8$Le;~Y zxA1QwbW9?GynhR$xnqe-hu|Nssd1{87wQ5*H&NPd@HmO02_SqYp}^2Na~5tj+Vk0U zR=wQlYSJ#Pm8_tKtF#5E0es}*)+chW*H6j55gzU!9hRC2LHatH){z$kk`$i~jvnqxx2 zk@U7YhCuSrp-e}I^oh*WGE=xXUJ6~QX1BLW>o)B|9L(uar0tsZO$_E}^# zWZZcFO237+-j|A;9iMbpFa~X){KE$On(4Ci$WL?*(dc`0bfd6 zPj5tk@3-@d4~+X;oVATqmg!x<>S`Dx%1VgC>e7r!R!Mu0SaKJxCP^*paO8YE!nxgh z+#&Yp%7d7d;1>I|8Z2YFp=gy)4`f9`;{i8k3d zzbZDL(VfVjb#c~`PDg8>!``<})wC-exO@6P0%yW%>Zr9=|4GoSc64;i6}mix;`|2G z8e}vjMisHX9iB1Y2pLn%ZGH3yDL3l>2&VV*mwfu@&SeTT1LlCJxOrtG{}kCP{WMST zX#^hLxP97>qt_rW?6YD$Qnc=_srx3N3Sg#MRfhh4jNp%77jvl$^c!B;8Kyz6cVckB z{e|TYf*0Gyy|KviUa7zQ$kf)ZYnsTxBZ4PW9&8gOF^t!LS;|KCXAA@LWqq{l1D~al zuI4XI3noTOODMH!T;|%07!@f8!Bm)uPY4HldRrGc-jG0B1*kG=}63^YKP?@8vmR!BkytTWRYQoCOL(LN5Gr4 zwY8r_OkEtH9PcB*H~(blanB!$VNE_&sr^1My-%pL`guc&u7y4n+#YrtjV*W@ZvSL2 zV49H}(^oY4<13K)avIGroL`k?-s;BGXSLb{B zC4InbwB^f|&NEE6(c;8KqImEzcp6If- zt4`I|Fq4?89gTiIw%VY>4rAi@nZg7NfX+JQ@Ts5@6Ve{VRvU{WXXt<7lxg6eR7+a8 z^SDI)X=hDlUQRJ$y@v}mNIuQ?PQLVt4L9#$Q+W7cD?1SdZzghtY%Ng*wi|zI@ z0)?3~0#l&QC+2Scz!$P!UDCO|B~YV+S`pWQa2iLh|{>E#{`e=4_nT>iZR zu@3SX6`)XhScH|9mKxRcoCcDxN@2$3@3{Wp(*;w5{*~WBd5S&tu91dI(~w6JGb5 z;qEoM17KoIn7p)OY{V`caGf>mUK=w5;2i_Ku3+HKBe__Y8|jPO)!tkPPLprz9PXW(%l6e4p`4CK3ES)pAHm`XWW!Bx%<+Y-~0Wbwpm%kBR<(` z?E=%PF}sE}ADY&*w4xl<>jQMyvWF}g%A4M*2w&i2qB4_{nzxu4aeUR78BeJNG5hq1 zBcYn`G!dJ7a;=Dgm8~a5vR~hMoNPXdzQk(#&hE(pMV)5iTl%|b9jK$^)kmNoj(Gdw zE(G3Yy&c)z9nBvHyg$#^H|yAyi#V3tL3edVK=r#$&+Il^LO`zbyYO}27gCbH&j6?4 z`C%RSrKa37RLj7gEiIR9L_&v^RNoM?*Q!Xc&>^nTur(L^U3Q70R@Q@XLe1cdIs{w; zC=rrY8$#q}gNiGrc_yDI1`ZJ&o{Vd*TV3f--qU>LMZ>WgZmX;*?pI93g;>5+xZ~7a z_8e&gub!w@1H+4NJZm8kcc3N{Y~`l@u~+`97+iM4aecfo3jqP8ZzP6yM~QC`P#3V^ zJj~r587jrl98(r(+!*lFW^hz>eyG!1~ z1Myrd5ZsC)JB}m~eT@eCiq|IvtS@FuwG!AD_plG^PuUg5a z5N68{mK&dzr-keM1q&OVe(+>;o_W}g9w{#$9eTRU%h4FF#b+Iwy7B1ze^(1k6d#LA+H&d9{a=;SEelD^ZN`la4ON9Fj~5` z{5nulZVuF-6d<+~k#@v=Z5;eRbi%6(@)-3R?YGH4M3r)Fn3F|f|K0U%DzAF~t$p1W z$H{117?~5VPMgHA26IO$A&=;!q$H2KuNMLdU@a$Fv)A=1e>e!_Ba~Hs>kJJ89}DfI)GZn*pXU8*w@7u>IY4H`nv=a!s#ps#X$u_T9n{Lz_F|DLOk& zE7LPbUdo4fAi9^Q^^4q)BDmS72>_V)=pE!F)p7{=N9tLy9Qp<~Z6b%3#Z!V_&jJ z2JWntCQ1S;Co7peZL&xZfJ>3}+CA6dy{=`WpTxRZnIm*tRi%!uKCPTnFuqtt9EL!-_O5j_>_%u|SB zrHDcTvFBs`BY`YFX2T&6sL0D329oeH9gz)zwk_NYe3KqDFyS9++*|cMNz?QB+sD#% zvy|(Z%YaAOO@SnGI>;GHG)MX>EeHTQB%VtMO4r(LF6U&THeE$6DZilHQOez;}K{@yPN&AUv(8{x*$YfG= z^yL(FiC8jB~`WkI3{s$)e-U0ZfmvZsAla|*a(#CI$duoCFUi0iGBhHMa{ z_a!|&(}184^C$RVc#}%1n`*9M>tur?4}cGPRVIar13az%f@5Q2ozawEb(N%&`|Jk{ zJ2s*S7AFL90F!+3=66yQ%{AE^^9MWTl0~McemP>kY6pHfba--3nnCiDDv`$G!?Q?d zO9p-;wWMo3u4I(7@6!8zd>H?uAgwCTsp%s6Jfth)x@qtte*ZEr%#|kN&>h^PUa&a? zpuG;r{c_aRqEVq)stv*oxMio@OiRbtaS|Xa9kK<@ZMaMdHiiDZer*mhS}|w}@`kHj zysDIpqj^!cXqi*`eyn+Qwe0*3S4`Zm=gmxaf4p#uVKu&Ty{4%tcD2d2Nv&F4G6Ru1 zWJ69tvr>#ix-#imD>Z#jPFBlZ1uLfD!{JMV5+?Ez_*4Pse2RM;!#>y^Sa-M4Vt|)*DjKQ96A@?PS#|g`!+=9mBrWoE2Fl zL=t}OPUGN#hs)&Q!_v3Dv7~|Ac;S$&;D{`-G4Rp!m9Kj-?LQZYQosGKTkJu#kr6+9 z%z_KQpXw4-Y+d!MNU>QPq~D7cpJeCRu1*Mi1@DNNg&C^byQTq24YL6x14q^DFOgfH zF`n?wJ{s=e!{b@SL^mh=u@`7zvYLN`=J#|2Zp+CpqkmahN|+eh%u1!(@Aqz=jr%Q~ z)LCK03fcJBMoZ^Qa^?ZIvb&@NphTb5_E$%Qw3(7P1(DohVk%>2fxufFT5&;hig49ni3n_Op-)2@P~LeQZU_BmA$@z7sOx= zxD!AL6%(}F`IGd7qw|MWkpjJ^=}S3qw;i$l;nc8G#E{{XHNBTlu(L40<-Q3Dn~fP| zH43U84Ou3nvg9w!dr|c91)kEFA9&1!17LbW6SzcF(?|u+8xRfoHEwFYoGf=lhuZ7U zZnb9V3r>uZE#DXBz3`;CFZbWRv${I6p#M|(UiGuZ7Wp}6{f(gJQNFMBPC#Xg2(3kt zu)BMYk8gx^Y+ts2!-rE1c!ZE%$4H**To!@Ya03y_-romR+wkZ4@gb5#=TcVW1A$V9 zMzO#M-|mSR5XbB$^lDt{4C6oovgk`g+q6ofq$w#mF3MlTpHVrs<|Q{(ILVYU#QdsS zf6Qk)^v3bV+@;euR)~VEhUj%qk1bCGTi>I6?E~x%!hsr?O+fX_I*^{gCkZ^A!>33A z=xKe5lYdA!3G9ec$1d|eZ1#3vTaYtGSOZhSBA;$FKd|bFm&JTu{07IlUb?aUsKL4 zU&Ta}l@Q!@;0TGjL;guTr}H(X^A0u5qYL>EO2He_tZB)c7zVkHmIGP65ijrh!noli ziS}ZI$pp!z^7c)S$!kA0f?K@e!hM^sUlaVi&y5;Vme^@>X0Sm-iPV?leLjrBLb1Jf z!AirPAjc#u{b9;AqNI9^A9(Q+W^az-Px7@FrpC)qPNYCMg(M##zu`x~)+`D(#KCz% z=@s5DJ5%G-G>Ta;2K2iF5VwGbl^ZDIOdol@qP?i5RbFAZ&0fe#Y=Hxy)QX@=N{mS} zN^J3!;PZ}@h{K^2PI|%VH1l=+!YHlk-42Ikzv~a+_pFS@c~_ z@pnVhgRa+adm<(I=S*7J%_kFvPyHAeIE-9!v7~eUtn%v^K#*G6=L4o&aOY0LtcB0h zkTsKLGS@dn2+ixNgnOZ@AZ7PYpHk)mS1ZtPp=SMXS~8^+AJn<+i=H#Z)5hAedS{eO zo7^uLp6`f)f*E+pt_Qo;@;%)@^dDMpH98lpSc~3*p%lu4;>#DwtUw0*ROB~4)wZj% z_B@tcpDh-Oa9!a{Iq)+p2UJ(%DT_gIRiqf|^nAFCmIuT7TorbwS%GjTVN zO|!_yo134%>&eB>C#ZHj$m9Oo2Z}(df6C+V|7Ro6=uQsV9kc?zo!8f5VCEao}M8L+<>EL_b17d zn#pg}m^)yX0WKLfexKt)vnX^o5?VyDlcf}~(?5lS-@n&@p9c6-0>lQC0K4ajF{Nx^ zS(LH5@_8>_l#GIkwEr|K{Zq`oamE`DLiGHtCKA4i;a3LtZ6WU#ltQ2(Z8;uQek0}{ z34yj6Dy2GQve{{Bj#)OUFsKYIu>*}()FYS#*3^8fb3o{un%cm$=JfCV_(g7E?l0dC z*0r&)eE!Twk!RRoNRe4&Ge0WbE>8W*!1j36Z?=SH=<-N)@QzhN9oy}QTQuS-7sVMu zo-23>k4~6M7J&`bx9kSVGywZ2B@|D-J5YEw+JFPC+wW zWh~`Q1uE@{jhlX-Ny!8~a+*l3j{@>oV?P$9=`|pX9%`nQP7B3ie|uhGTV*FS$&LZC zqwPP10f!C2*_Pn@@a%HDUFm0(W|4yH9(b`u11oN6E{S~{%s#3cW*6cfK6`%iI)f@n zz4vbJ)`4G4>zyoS?JoriK9A&y9wBbK%TVE39*Q%!ownPXJBefB&2yxZkUpeje` zE7$ozaNqX!$B(2c-f@Dm6s+wswpsfQwN9}$T^5`Dx3R2D)Jx}Im@5FLh+HF#Ft_+N zy(8v9muRPDGA23N;c2kNU9=oWZ@vF>`1mI&Kun-_iUCRdagW61Y!Df0+ackafZj&8 z-equj_#ro6Cm=ed%6RE_4+GIdS-??Bm5KptCoD_p5(Ya zd9p}oi|^+Mw&BAj^2bJa!qVg2x^>N=Evc}u@RK2j*l>p{6>w*S-RG~NdDA@V|2a4) zGC&RCo-x@E@+~4z)Ar8f?Y+d*8lcg3Rp8uvsmGa-(({d*DV6~qQ`MC zN$kr=?9=2a#==nMHvB*Dcs})63lzNuM)i^+zfnKoF!4L(9QCNA?@OuTCorMy2NC1! zVyzGhg~H_u5;{(iY3DeBB6WOQ;_C?Nj^bkpkUF6u!y`!*H65J8Pk& zJNRhs!W$OeZ2lSaW5;P`Cuv8g9;hvhO9!8&f00$L5hhp!K+7e8KDv)uhgq6Y-$j3T zU9$|wyBY1Tw$9+fVKPZ!fYVx(9==IX!6CH)yY2Fz3b-gIoh;&^PROl;wIZOQ-;oq? z32=e+fOSiPZ=g;rG5z1aV)eu8ga2-EqbQUYei-~^0^RPd3hE0<*}ULW{r_M3|F#0& zMBspY9v-|+0Q5#~u;_t~h{oqP`sG3UCBj1_huZ8+@UnYOa*QwNI4bzqL<9+oKaGdl zPiU^OTR4}K5@*kN2+dl2TnE~NK_D2dT&#)bc;deO`|B~B;7FP)iL2EsDhyZgyoBbN zO;L~Ar~^eX={scu)+qIIa|mRA>||Vynic#PG<`hyOuWN=_)!lkP%G%~yP%sP51)PC z#*o;?;L9H3NZ7dm=7CVWO!Lf&gW1_sv+pVD#}UADCP*+UdBXX7Ebo$U#`*3T-wCi6 zEQ2mrgL5C#_`XO8+Almmt-2CvKYrPc9W8Y=(0)E(L<1okd(g_^g`gg>t*OR$uoGLQ zL|mrD6fl-WUqNt25~K%Ggyfy~WBToEGlI#4?KA| z@*WBc_hAr-p%vMs!oxR=`cQD~-UdXu?k*{!-J%i-vCBe=Z*2pY(zN!rHpM;aZFtIq zVd(|$!dl%b_z%>_`vQlOSHLDP?N0(|Lcqkt<*elioHl4JJKdBJV!Pw-Q38wn*#Nc3 zwEul$UJXq5osR?fe;ZZ&svmA#uWUxCpA#!@X%+cMFysh2i^EY*En9_94r*{ZiyZc* zx)I{s(7d=e%BKWtV}?4vqTu`rhvv0!D|dBf`=oOH8r;g>0l7+r=WBVFY;}ekq7q+G zyUhdj#t7hz-OymalQQS6^pX|m&cD0Y(jkoyTXhUOECl>=Pnt#hP+zV6zpsYbCK(0A zwcn5jBr4uuSiy`DBRJUvY-J*5c|;kDt25jZ#W6w_l-*F6#r-NafCdxm?^q0}BJx zk4Ms=h*KcMMqdkglC*FU`@fBV@`wdd9VQxRtlGZ<Vgw}{9;ig zq%vc7sGlE;SFRKL(6nzqxnc{R=en{sMl7e~oij-skVt&JIGR-+_B?S3KJN**d}(F{ z{sJnhYP&n{au=2;T>!Ctk<#~cQlQ>?e#uQgJ#Al-?SnTQ(9Wvwue%ClcY&yDi}jnQ zNx<-8-c@aIcfxsBd-SR=>Sp_mg6_ngUtR1snOv^xwS5adIbS8GrCkMXTEM>!+LiM) zltCU=R3x_w3DWf=^$nI3#g#Y@!IKG{|UDBn5l$3x242XhAcS*l%&j0;zzIeR6W}ey4-fORQ-@p6n(m88!-fzpfe;0ZP zDL?DNUtV;-#A{?Ponw#i%n;>~Ye1M$cJNFJvCIG^(tMbSw5?>y?05T$_-S`!5^ zG#q`VMLv*ZU5-Z8UZ!XZi6zJ*A@(j!QA~MPijr!6_mdOOdL`}^& zM2GLfO~aE@1nEb$e`nw#k_K;yYs;tSl%32b7FWJhUgwVBF?Sq zkH_tK;IG|Ok^Z%DvY#&K9316$kOw<9fkfvMmGMz-Tx1PQ2+qHNc^0_KS>MQ87@1C1 zqy#&UeGc+qa1eIF4_Zxt2tm{xc6fMWMYtWZ6>uEhhc7RK;A39?p1(Q+|BmMzJLO3n zD?#IN`x)v#a2r{T&fc)fp1mF;9|#Sm3d1(pJRQQ-7(SwhxX7YIq^%7s?S9tG2zcK#L$I0y7ufO}D&uL;y?!=moH3u?>1Y7J|Y>P-(|} zwV=Iu04xc+{84;3W3H6Fj#Ucx2kSX;#lBIdO5$`Yi&IE6X1*_)5nUjGiMx3%*xt0p zF*~DyY;tW$B@`B6T4l%Zc_OqN0k!%i2qHU<=C6*$jipH> z#FfQM=l-68HN%>4ydJeX^EvF$EXlqD-vE1(92%3=n(KX7vdGQvn{HOTWG*_7N(KjA z_@kI{9Bs*a>&LWPNV#c#aKEM3S_}5C@I`QUa)_gORzN;IXh3WSI}iDHGc)d>0NCIv ziK*s9E!Ox!_tHdW^89rj;}%AUned&wkR1Q(N07%0L{#Wu?S12I|6=$4 zjxuvXA2C)uDw+rW7WKOShb=QP4$WtVHv;oJZcG;Ay>g_uDVaz%*y z`{-|R68q0{)=5$&33?Zp!Yn`OfMV@I(tUqTj8SOcIj>DTOqUPVA0LOLUFC-f9P)7* zMP2K!+a%!P`2~z)*?Jh#ZWVzESaFMs@L~*S3JmU=_I}hXl~+`V8CnKiHO$mOLNcGY zwQ)vhl^wss|G1c%TSK!LVGVXTxaV4u6&fpjTj~~$G7aFM$H=9*2EEb`eZLCoSF2A$ zX``>JBDmqN)i2`x6GS;0U~CEg)~${!U$Dnz7@(5Z%xjZ_zrZ^%GFhtmkO+(aa;Ix5 zk>RJ|Pw6#Aa&qcdo}Q^FA|y=G0s`OP9k=JUR4aufb7f{C2wOLCaNtlFfySafZCI|E z@tiHUWmy@ZKf#mhqED=faO5K0iwumU*|Bt#zZs-V{};QPB4^;~N1XUVhNvE8agtuG zLYZ1%4Y)!f@@gcr0J&N7$|4v5Ju5EHuO%1CuqQ2|h;(pxLhoGgd?gRkdkd|A-n5hh zZ=pqDk;iI+W~0k4tuXOogIM5XwE%4cSqQgG)0s?`j!vpc7Slc@nUyO>E@yCOJy*kYGgcn4(BA^G_&K=4Vht3=VQzKLscZNO0i(2`j{yK&p*jBMIn8 zVTks8h!G=%h<&iLhV7i@b3Gfd+ZlSqlU_9NMeh0t{br`2#`dOuSs(Jx$sYgl_>MRA z{63();H_fUZkkqo?-WlK~+OY_5*g13z)*8ATn}r*a@y+*uLfc>xMZ=FsdaEVX)(y zZlMBq$2pjn_W$g8IHlmE7KZwhNPv}Ip~)k`6Spgx2Isc7VcCxW;R$lHUn;!sSwQLp zx(c9~I6#9GtB3Z`A`W?%Qq~Q~V)rCb9Jq0AQVI&QDm_WD+58+mpHpLLHosf3>K_Bx zqv{$zb(dDQc7i-BB_&1X5?DEw^+>=nVHMn4a!UE~h8Y#xaYGg<6y#mioAl#^?;iMjUrBGNB&10TO^BYI z5F32nbURt;6=dYO3*S?X9QT|#m!CtpSnZy7nCy~|{=kVa`ar2>r4w`&L_XgZv(+zB zW8+dP#=Ogy(q1;XF0LG8icGulUe>0uEt6(k`s2K-KJf>h!Fxee3is_O+Nf5Z6Ax#- zg47^D^#JzcFC<+3sg|PpGHlk(xs+`WL-5S^_9Rf?fmvedKRe!9rjt3zy9b%_yQiq` z@A~iw9LVqs?0_dW+`_C&SS&gQ>JCXvNzZdD=iZQKbSL! zQnKhgP4H=Mqk7!>j~2|#vwrhFQ}vH-_)(0rES;mArXHWcRNF)z z^z=s50F`#IKl>nq%-hh#eDOTk)HK2oQPjPT6jZ+F@PzY!+U8z==S`)`K2Z1H1hgQ5 zusIg_YY^v0iMjH_q=$d^ZyQU;)lKll$$alLCJ5b&nI)tabO~vIjEb3a{sjN)@Y_|} zLETtyu3U=HZghHgI)K%3v|()I0AbX7?W~Kf+h|Krr$JfQwe7~~4@ygvFpVZDP~t%t zZF7YjLGPa>mZAL%h2q=Dn(m12yp4Ij7|39M`<3Sq$8HRfPbjure}8|sF@NInFEcLa z^4E@kIplXy$kSps?d$Xct=Ya093Al8QRo6aA|G`w4wjWz1AA?vY8SbV#UrH05=hG$ zbpBwYf7wYWozmlxE3_Q^37_rDUgacWpbHKfI10%d{~vmS_F1B zdpgkw(*fr}zB`T-s%!*}-X~nnwY5+Y;s5iYp5t&}3zsbx7ehD-L^&6|d?F|qDfF~w zr?2lUjQ$@efijm-!-+#1M2J9Cy4{mDo1`g*f%g1Mf2v+iXlB<*&d!-VP;Yot>q)JL@L|aT&BdW4$WsW!haeealWT66BY`9Dtl6 zEOe(P3TVsfB$Aaol;yu*>XuH=_qA-bm64wO*%eHyqOtW=5gxyF=V{aWq1_*4qLYXxm}Kj9_#77= zuXrr;#HNdbS)q;6y`$7ko=pvGp)jrTNr2SA?hnhgnLp85clB<1qLtG!rTfkT_G4j^ z1+!YXbr1x*EKwBQD9eF31orQnaIJhUzdgO*emik{P#6?gjkM#}Z(a{v;({kcQW#3r z8&rmlSC_i)owYQn&ObuOq^%chY{csC|48L_SbkpQc-%~-WvcYt-+jF{r+4GBc2I~gJY+FCtaetv zN?;#Z{sjYnP-V=zBJ|-_3<>qi9y0qi#w0HKygA90-~q9!<8%4PLAcroyTuuyG68Bu z41B+r0a*atDbWkmsd`iPdPd+#1~ko>^>wA_B`jopb%7J2Fg1e!OX>R4*z_P8Oko6o z_K@``>L~dAd#U^=bQ5*d-frF%w!Sj}%R%RnN%r_=?9kFE-iIHuP4We5FpGx|4L3X1 z(o(4FgE25*+0aU_d8!Pm)s9d6p$EOG^D+#&#qP#Lnd*&n9rD9jil9yCv+c@eAf5q5 z4wTv*kN@3ixFodw3_rj98LsDl5c0g3_!}CHFgLf$TnGNVAZoPeU zONpYF56~!uD*V&?{MB(1H-*%7zgg6(nO|v?&K1tBa%dGRF%wLD=^lEg#Q<~Q-`)Lj zsAUakSwlhy}hxUwhw zpgmB7>90DSReylEMFmK?Uvr0aM#GIzFsUo1`*XSUqY_H7TcfUeh=OTb#!X9T1`gJs z(pgqMAyHGm+nS=2c*Z{2YWo2dD8uUJ_qeaP+WiX%hVXhCT^UgCMtD*R;b?0a0NbC7 z#wHpoOczeE_jf24mNX4=Casm(2>ST$q{vIM)$411>g=grIZIs1U3!NOGjn&4o(?ud zw^p)LfB;@EC5+(BHKEhepyi2L&6=*6kB&XQL#3T$1!yM5!oUt``q=@1p(3p zS~Xd<41rZTVuT@Kn47?}3onq$O{; zWlX~O1sI;}nL;B8a!K`vEpjmn8t<@T=R7Gp#*IP01C!K&g73|~<~_EW4AF`}up;hl z^3DWVD}~I5X%hO$1)aG4yKj-}4B;w+HOzze2C6j;jKOn*>QdLlr|0?cK2)u}P|BqX zu7JH4;u-)hB7q8zKk0Gc^6x1gy1+nDUF9SE zVt=x}Im5OwX=~>sog~YiM>EQ|G@Vbr_dMP&t~|F>)EuGj)qF&HfhK@?gKVfUx?tQD z2ngCu1D=;B%Mb$g3xp@q7!;U`vrev^zQu&!<@c@YaNAnIP_ai3p>*O&Gj}k03r2|pt-2XIopK^@$TYqA`;E~_ zHH@Hv1tcEl)3pa{t_w6qRVojX`Z4e6c2E=)Lf;Q0&5`uIAHT~3!bb8|m51?MuY@!e z8obc7WYI%r;^5*!k?(sT&=;=YAcy#2Fpk)6G-px$fhF>d6)r){IAE5g)sn50BkX>v zaR2Ey|LbrO0b(T-kYGEVIb3&Xo^ySV5<-ODt{57r93uDGFR{`Fr6}|{x=*Z9X^88P z0J;OixVgFG?u*k%dyLk{H4RHDXQ^`l!p$~NH? zN|s58dxntxNFq!6_rmbPZ=d?->7#SzS(p2b?O8Wv;08p9MZ43(S=qV=Qj}d(2~5Q* z(;JzKDTEmtUsz}*`a|(hY#>V*ixjWdEML-$P16dCd_)T2I-sJ%k~UVWDv$zRu)%-^FoPd0Ubxw~c z&8%a3_oSFrPRTp#A|#=2Ot1*3ljz;OQt3DCg0QMCj;%jbt*=8rjQ~`U{rx|?Aoz$J z=H9>m;}$FG@Td)OL_0%;-_OpO^5V}$DfdUhI0Lbbw-@ba>SEuBt^GIn?ts2b^q(G9 zCNw9jKSB6Nj=FzTgbn4b{gCN_9y>*?wJ zIjyr1&+N^%O}tgzsoYXAdR&ZHr#0%ku9jFq1~If588^83e~dS^^(_juo}`^e8J=ld zq`?T;3+(n5amsq7?QNGT?)dF|f%dR{q8GShh%>Z;=e*J?+)zKo%Sw>S zC;=w~=hQj@WQsrk^2Wn>2l}OaKooD&z}6q1dde9y+eMlpcvHC&0?TE7e1s5F_5_%X zg!X__Wc@|~7A-k(tujS8&*PCmK1RU7ybWku4+r-ji^j|8e---H%?mEIDkXV6T`>&mAc+;Ktdvn(t@a(6BNpD_Hdi83o zGa5GZ(O*WfKh=WLENYv0Mk%E}y_AkKZ`1X+o^iXWP!GyijqUhWTawynXnkNn)LD35Z-%ozu^hDd@CPIfni~&|>=k7Kt z3=S@Soap=)1gzzL#M;rTatU{oMIK;^QFMLneW}8ziwn2wjj6x#hiq5>bgz<&h_hsV z#_|2FLl^*gZg({BE+g7A8L2)31(INyJioHFgepZEZGp!c^l9xAvIfl&tQw?MzHep8 z{z*cu3!@?l79N}wL!De2hCL&N$d{Asr%}c6&rKA%ob_}3O6i*ylA9m^GmCFG!#4uv zt)&nI!KT-A17-;-57PQW-c`3&rVbU3+C-RAAOVj0t$xzlapQjmv+)*prl?X%Gn(bQi2d#}xceElyF)S*w}a4_WL*wv@JjK- z;SlM=&~hDZwm}nUG6cx?@T4h-(%b~y8COSnn(EoFz6`TpX8?GDKOf+OS=nM`tJ7e< z@#}uUfu#b5R>?pPoRsurExD)NqGgB#pZAfA(Mi|u@ocnnNgH39yJ&hx*nP3CWcw07l$(9d<0JYa5#|BAUeK@H12sbcjI$yC zLi`Fh7)VxBosxZyjVcjc`xo6z4UgWT&&*YfdL(R<(gipJm1;k;!c;oZn+9#e8c!*{ zMShOs$3d|QiD6-(i)W?upe}Pd|=<~=ufy{=qB$I&k&E`_l z$>>;~8pf@Tw8|sO-bcjDFM$6F5-7zNl9$h#{(+>MX$C7Z-b~SS(CvLbj zvRSB#=IRN@&Q4$SgO^me5%&>_T*V4|px5Q#b~ZN9xKYT$BL-ne8y8h zO#S$zj5}u|&uu~0Q*NvSC|MN~pY$8uaC1XmY`1%zJq88lF&<+1Z%DqwN#Ba)J(~FS z_tq_NH=nXjY8zzWVD#us4cwam#Dl+{oxx@ceJD zce*S}k|Li00v}`?Vy-Q!BYT9)lQtwiStwL)y`}U|qhi71i5%V;NveNn=(~5JGLaNb zd~!IAjosbJdvs5@1L^3bk~1=T?utR)p(uNtj7pO3NHBv)P?n0;t&Hp$}w>Na1QD+@>zo7IE|0pSE>D7N07xJ@`^s)WZZENu0K3pSf+$ zKpe9cm*K}IG0varJLB9D%wf!g;mL(52Wo$@-{mWq&z**CBg`ueM%=-caOj*7*fN9$$B&ydWCz|Kvf7S>AMF*1q|T5=7=PvCKF8xyT_7Y^&f*WnBYFl&C}Y&-;q2> z-}0ckbEoSoha3aPh$zcMs`EaZIf`iY(5Ztr97gcsYbabGAk z#4avhe~#?=SDwx0acZ1WsB|-IQJjJ%R&p57wjHHpQUtxQ=PigkP)NNouSdS=fq5-4 zDJ9j<13?(&$l>2I=WD5W^O%?knrDvsU^IAEygr**XskL*kJ+McEhh)sNx`H%EoRuh zhBR2KJ5&Ie-WIvtd^6>P(!mUH4ZLYv+NcU!h2kBgf|yhOiM-8Ohgly)L$C`wF@3Zm zd)#);)m-Q}B5-VL^D5~Zx#M{~X(d+htoqTb3gIecSDCNl1`xX{(Pi|1lavpHT_Wf6>W?7)40-PNBEZcI7LZ zFo10S>VCgLJp02UIGGETD?tnlP!M@WvC=t%Uh7AH_F?m9PwGm#kgfQ(jwZ7U6`$UG z5dt*`u68A-M043O&7!$eZIbr9#g~_VUcyd6!RKJq z>#R8?JNicIWAh@>Qz>Lk)gx?8c1$d2YgyT!ikjY}L+tyAQ0-kjbyCWCyM6|p&Wb`u zSKrLg>gu5SinStXlfVbJ(M09}7Pw+JefI|p&D;)Inne8to;-QI{Tzfu@9|CqGdwd4 z8szYL|U%-KWJKW0nl;2cuLW<3oJG;;sKHX zbXbekW>h3zfo>SG%r;5r&$d0(Yo?_?A#bmr*7DLM4TkzE0(6{>&59tx>boD0F#*FL zu{si^i>!e>Vg*x2tJ@>{Bvcf7HW{}A%!&+H2!g0KFkLMdW)~F1C1dV9R5Om4?ndtANHpYD(zYmp-{vfu}@tnE?w5`TEBbmI^`oTw;CuzI9q z5XJgn|1sk|u`|mhC^BMY?&wz}0Jtw_c+aBSuit!z7?rJgs+!+L4an zA-)u6>K*;IN9}63v?d0IzHzTA1>P@vprme)dhE3xK1&Mr4iDP>AL=>L%^-ec(;2kp+EX(%L;`W|Dy;hZYW<#nUgrVBitI& zzEKWX{;V(i<9ZRmN?xfN_d>3VLrY)#_rg1D-h}I2fKKez;)ow;hk5gF%S5cIT#sH(|9sO^j*Wu)b6I-8z zKATg#&pgP2*K7lFkM!8?p$(Rn0=B?h8wJNOAii|2@qNJlT0l-Sr14$%Pj|ue^dZ`>W&k7h3E|KrX4UHP@1=2sL#h zbl*MRy3{_hICetpP@c#2UgBRZ>>3*RnNth7B3{xj=jAxoxkd;z|C5?^?4?|{$DHzA zPHH8d7mT^ZQ)GCCK0%lwiTf`@!&qm24exWmnS*(Z!G%E9;BPIWXT>GZutDM7tOA9# zUe_UQG81(5+zEPNG$h|;WbPOZ}jti>s9d#o$D?N$@g5f6=rxLrae9am|L+2Q$(lnl?IKk#Rn+BerH^hh9o|OveD+ zmZ6*EHzpg>LUr6fy1v)HucgVrQm3_I?|?n+eY#G(p~xdwx&1WJ{I&awhLqLB81k2um_5flJzv?WV*cqx2bUE0WM6Q|Q(H#lXF{Y5o{<6fbu{7ei2-=DFV`KM)q~ecf=1so0W2U((7w z+$E2lSXV5biEx&hUyR|`*z>(dM*nxPVwqvOcr#n2F14_{^o3i&j>f_Xflwv|wjlkLT9;@VC+J2Pi>UakGu8o3qW} zC9|yb(+GLSKszKi(hgw9`Z6okW?QW)#h@*XrMYeLwpfR;&*GP-04IZe12QN?UD>{i zU3r}Q@@P(|&CR~rlK2F;3>}C4$Dubq>zs-`-8wGvQWKzwDUF-5-cFds)ZJhgDKvWe zh_v;E2xV7{2A{fih-T?G*(SF18)i{!z$dp#1r-|0QjOADjNG+K+(da*0*Riy#K_UwqeEua|(JrhDF}g)QfP3aN1D`sx7v@-V_L|(6%lo<&nA=p( zI`6AS-L8~NDMk_;aO0kJ6o!lU&|Sc+m*I&wX^TAPPfTr9Q)hFB&G?6Reg z5`^3tC|k!j?O()PCA9fzTd4OaLua}6_4(POtWvTlUIXHdbiwJ{uZ#Rx;)Zh3ws=}( zC(kBeF!>4DZ_*u|6h>CBiV=qIr^n1DOP(w{#+x|B(2!G)45u<{f{qV=A}Kl-E6S zrsi2V=#SG%?76%+d+m)&et9uB!DMW=+{ExF9VUl~cHti;cv=QHa8{*F6kiUHbaR67 zLsYP%n9$;lgVI4|Z}n*Woq(scnBDB{$s225>YR(T&uB^7xRDo>g|f-W+3B_nQZMIKVrd&gEq1cv>l+J z$J|@VHOJZRd18}ZoH^~X;af`XDkwvy#iiy`jCE7=0rSqqQ%*D2baG#v z^_YC+Q;gP`XQd()Q(f>=o7D!OGe4Zw&50gia?P+V4_^1M+)b4!EwnPDkovdYzil~} z4MeL4NqO3(W3kK8v^~f7lnL;g?K^K-POQHXd25FZ9sX#Fgsg#(j2zpa+phw)3FryA z6UbaBY^|E{dPR$iG)e(w_#@!~s5*!tJ`R%2bi?k>Vj3H+J&hIkRXe9aEt9i`Kcj zHFK+YG7lSI$XH!_z|a3oso9vBECe^upkZ)!Y4Cig`vuMDJVPXyc#^)ex~{)$}8K8WAa}djIR@(6{rL^r$EqA){sd*S@|NL89nY?;+4i> z3~b};9<;bK%MQ^Lx(LU7eoefa0b|WQ9*22A$-BQ{pR|-fSi_}0KF?n!)7->xXtl_k zJ7>>i%ct(H)#{s(uBPGH!a@hiKuqOICL#w%c>vFYMt+|kYS8N;B=&%~uj)~Fo7Ztgh7G~(Bsv*!01cXKIp{n7Y@^Ct zzI|Jk0n%CVShNRfY^RL=7%aKk$_|6eJs_cOhCf+S&+}eO}I6;jb%^U#*QrW zdbzb@Hx}P8pW0*$do~0o*b&sGxs+zN3NR9!rU%4b==f#GZ{@57QZN@z2p;giBv@av z-h7nu{5JBze9{$(VX+@Bb=KRr4c1KmqDC(7Jo#pn%BbD@CEl7qLYp@Nf9+%-Qx^S; zePu70NILbUB10H2aG!^RR42~=1ZGH-@sN-|KT_>;LOf=fa6U4RjqCl$y*>yf#e^l>O;gEh}X z_ySR^z{G(!BNV;90^2>unsDT}M}Qe!!cA7+I#sg!j%$}7h_S~kOtf=}b!&zxk&0!t zYUP#9%>ytNC#57`oU*CBT~MXSR6Vk8xb^DKoyq#md>oU$9$N~D|KMqoNi*e}icBdl zxKupYcH0xeU?zNja9&eW)3Lxgq}6ha!AP3`z%EX^B|0x4$t&*JSS*+O1$n&Lu+q14 zJJ6>BSdDG4i7qIyyD|t&MuD7lZ2${y6J=~Lr{LaM8d!s1)Y(LV z&+Dh;+_X7>&vq7cj>&qn(c3>|bFk)n9G$ri5}epy1=(w^a9Zo~(6n%wTcHHE+=u|zz`HJi&ZtP@^u<{tlJ5o0)!!(o*>GzVC{5o(6P^)%Pc>o z+L*+0Kp_9IzD_A3G|!Tfju;}sZXib}U1fAw{_L-)JY$Z%* z?&^L;b+LGTjQ8*3n#58bzx|^ly_9MBeuOQ!o0tz%48~cB^s4r*+pP1$6|;B{tVs}T zqB(8*ecjEf0lEHn%pDD4vp)D3eqvE8y=~41Rc_99L-kM;&%u+gK9`XfmV>4?!T#k| z&~FFsqqerTvAH?Jv=tE+Iv6Ob?a~qw2nA2aqGAV^FaxeR4=>D9UUiI)jg4w;mhUmu z`VGXjWNI1mC!zh^_wgR-N_;BtM^Uj_RUbjPDl2`;ct6m>YHefix!hIuH#jRCRN0w` zbXayCKVoO}eFMmm@mIqkYNdtB#cJZC@sUij6rOojHhXj3j=AA4K-N08VxJVS&KS8w zo|9Y){WE|}=bO}~;MiF;Ul`#0BiI(|-n-N>(4mc8xKU`wv}yFBL+gly#lT;O!(Pks zJuJ`h2cjF7z=c2UyiqP02w$dTlEsk?C-v5?TPdlj3lMa=G1rpR5=DVur>Y%%yHn{v zeb7rg^!@QGOSMs3neWgV6^)V499M*fV6W(+j`ef$f#8=^NNxqJp4^>S3KXfB(>=a=W?2iSv(I zwI$mEYi|8hJav=m>GFSr85*~r+NTPW_EWf(PRpmd>uw$)O}*?ms}K)m`Z~~6C{3(9 zQatMhAb+C$z?{5HE%|3#8t5p&BN3-IK<#rfxPfel%GFCD3;xo3*E?P)`Ha7)^cBY+ zzblU;A&}|QX{9C{D3rWimg9XbL87uVVRX#D@kr-6PioUzb0iUV#=zzCzZ#{rKu)UR zN~#PZOC7SPp-IllLg`GewYr`20ZKJAG}JZn_JzMTrBKpHoFhdmN>(wZ{mH zS!SeU&CBj-+RAtO<2j0*hd&KN0Nzs;Zd)3$6 zAHkadfq4pBD*&Dl>+0G_&9s0ij#JZz3M&*SgaZea8yOp`d=)vWIg3vEt&{oQu;4;| zNL~m{<3PL1Vnn@REa;fW9@rg9ibWLRfJglUy5sWYt0QO z8dUd$i?0vD06si25OP1^YG1AfLaA%idg}0e`&rS+0q>Qd|M_-v$7kY-^Q(WMFD@~J zY0Hb;l1s7%>o>(^Wy`TBt-j56AjQY4ybVbNLf!F@# z0sR)8f#F3VP;6FRzU!NZZIk#Gi78-Ro2nmz%vF#X`*}I{@{kf}u}Yx0!XP6|utCJ` z_3!jy#=$=eB7&wTVIb)n<^)DW;vpYivD{$IkDGT+w``V%e|!CWt{g-k@|82OhB*GF z(9>6zA#)#9$XOm{b_d(4?Pcn+5kRP|t`j|AAYgb8%`r+!a4EJQmcItvW%>%DeQ&L_ z`}64MYo?2fqNlI16KK^vOL)m9U~t55F*rgU1E|FN`s|+;QT{(nu7pD6DXW-E0aSWu z+GL5eO;8R^HbFRi^7~y8n(x-ai4-FHyZpDEK}QcxC>4Euh9BHvJ+uvTZsfO)HtFJq zRN@NrbkX}s`24mg0FtF!Q?>=ywZ*uo-EVcTp!f6ZoO%cCiC<#%?8{aW z(VDyuSr8QlOXp3_$%#E6j|A$zdG?5nBCi76BqQ9?G>XI+)8^_8iigpIoTLb_eTHTR zucFH}$jeppV2BVQ$9YTzO;FyWEPQIVtH@qp`J_7puDZ4>y9}F}dy##D~jiEJ6 zCly&`W6koL!giU#%Wv`iig_$y8!OpVLv-X4Z@P#$$O> zwm4zhP`}sj?}MeZ*=!d>B-%R?_PbYEK12vt*hO zn|W&hq5pJZHT6cj?#oo1h^vtK~tx zEOzw+zAXp&UbxH=s=w#|A29+2n3I>6cYu`v18xjBcS$Lz{%*Bw!MAj_^UVZJ0sGL9 zGJ68bXbs$kP-SPu?}*YmvLAPXSj7KPWk-ho89utuj7u9o8sZTBZ&4s(N<)nt!^ z-n4th;4<{qMHx9Gd8@e_1R~Gt?zb5;X-T@9>40B9_pEN6kcDbssTW;p#> zpcP5Ca*!SJ|LHBijy%~Ou{(kD@8_FE+@GHN3WaW)CiCBL0>#8S55YWi3hxpl%*m0? zJTCf}!-GcCt8O6M#EJL-O(Q`P|L;I$XJrklNIMwhV^N?9pFvweBL=DCF_b~AK>0b@KfC1jd-MD5 z^^i}=mHL;@g=((eKjWj}raU_%=~%ozPmRONweJ?4{vB8Brrb#0oV_#HKwx0)0WA6{ zz*55|o@>{`@ncRnwL+C8>0!bk1y~W_2xix7?Xv-<6#47cFQ5QhTwH{^CB5SIp`__q zsK|IwcFj2(_(j0l3YJc^nhI6#w2f|phu7fZkz&WD zOt;@3oU69;RN=lHm@I8Q9bknblFIj=F-#=8X}j>S%zTz#A$j06mX}xf-NX(A2)$VH zBo&Cv{KuEKxELQUVXfk3ZWFO)z#JFEu4vKN7exb%SU5|RomFY z(JMO$1WEhF0;uk5!QePTzj50@ir<&#z3poesS{o zz5=PAtZ;z>JCy@?vDuIo+wDG3u(|8Me*LoEeI>Y>eW;|?ZJyz}>QC0?;Vdw-z-;}n zzEWzJglG8fe8f{jp?yIQ+eN+VuGyTyPunLDdFFh|4RU=HV~`}4f90gz;cDud!uY+t z{7t@Dw;dYP835q}C}7udE1{$;zT(qLVJdkxARWKh|gnL>I*%~!Q_>j${R z^M{7Nri#W&h9Z!2-}+tt9Bj?KC{(E9D_n>_VSRtemF2U}8{2DW=$o-z+3`8={#`%K z(#}l{?~7FgrRqaRc@V=cB^lh%Uj`nAwv?dK@TPA4`~mKpcMxw60Ilg-FJ8?`gC%(U z{Kwy(KqdM_@R>~BbgOZ;8W0!ddE{y}@(e1UJb!+A6sr4Ba8wC<1MgX++Dp^<*&Mt3 zdT_G{mU88qYwuCm4lQgsD}!W3r7gLuXv$>cau*Somt_{ z&x-qWW8D7*QIi^5S%rf6PBH6QpvNvPs$#*p3p$PldcoCHg20s)#$HEghEJ5LTce?E zZwo`r<|qTYjujJQpwIiqJCIw1iZN*!Hy%0Qe*d~715!99KA+-C#3(f;we&}f^5VQX zJcAQtyv2yC&n?P|^#!-*mMS}X5Bsm#2t?c7QG$0I zW&c|J&H&9+sqLosb5EY!j`OC2mkB&q8IwfVwo~3C`XEKYym9pHTUj;Y%z>`7H3GAv ztH~6JeiYpEy7ef)^)dkhoEE|#*Hl$~26W>S9>GZJn^QjfQZ&f5dT(lvZxQFAe38|* zX=n{|UpL)nzoe)ZHFASpXdRJ~p8lue#nzOIe9w=~m*nfsiUt<>aBTuz@HSuXZ-LwK zV8`u1$YFTZqy+^f=lN;^aG-T>Z?H_G6qMw|Qq>S`Aw6ygB zpYM3^)2l(i-brK6HF9-__w`lU`N-o7){v*8zns>w44V(k+g~p%EoA?#lN17l?(5cFj25@eg_W_qPx)eAQ<_nS0xz|k?VRn&U$dc`-z;5y4#%-PNNZN% zt2nIQ8{t2ufMO0V4O?1rX~zYMF4F1hYSc>rzwS|a2xXIfh(&EEm4r!B&bm!Yzu-qo z%#hHdjg%+pd>;4aI2zCT@GXuuyW&lKOR+lcp+zkwZ(Mb>T}9S%3#`BRy?tL%F~M1L znQu;DF0Pqr1hZPl0Z+PhW2UO!@fwovI!5cSr&dEPa&I>88gsH4RefO#VUVWjmnIvs z6g`$NN>LntruKedw|kj?^j+5E z#$;=;DC_9}r*uny{>9HYl+~#!;F@732bp4=Qx5aPA`nf(d5(g!qz&zX=dq4Hg1c7a zg64BfEpO=%SMgi?Q^7t72WQ(4W-N7#p;8?dX3BoH2OgJyzGpca|8CXWf6(D|)ZtKd zM#D*q)2hUm%=$6={-*QFS@AP@kB;C$*SdByl0Be2plTyKWc}`Ew7b`GTgjx+@5|kz zWSLx>DXV_L_QsW#7Z=7{^)VyMO`L+m1%pW`$>}ISP)=>0={pXu1GN;zg5>1XTorcJ zw(&EoMLOL1DbBykf2V59v0u1vXgTg#s!x;^-$d4v z2d@x*lMX017;)79%EUNT=e(@%Lp08@Gg?0-QV5Mc$bsg;$L&&NIjSLv~WvF-Bou{L_87_7%;u3R5{m!Z;y-YVC# zr#(=od+Zh@O*Ol+-rbmaXQhq%WFgp!=OA0Pm;i#~bYc(Yy1i&a7a(fXOqVA~(dgup zTDiu_8usIzBjoE^J0y?bQFT;#f7u5x(%qx62+%McW(kOROdLra{9&%~OS9|x)@9en z&yin_H&5Q5GJ?#&Dg3-Ap(DQG(TGTiME>ij#I&?4A?{hjoZmNMz{V^F(AUE?^`q_i z%0PO|D@C+Vp)3xX{>77$-^09(w24rLnlB|S4n=dRajKyvD-r& z+GE0hHS6rjI9bDH+w`(TLqUOzr_$|O%xmu@8LjrBzxSKDUQbm!GwIgbFG0)H`-IgH z>g+Oxc=>64|A8J zRUWqk18^lIy*+vIgnzgDzU@?1&hO)aB9&)2Z=;u*^8(-VPfO*oa@}y1DXGl@` z#Bai?KWcLJUV2BYrKh8_+e&l8m!Bw4qj)yyTUEqecDO6Y*H{`eTQH=tvZ8X0AcP!s zi?AAJ6g*Ox7e@$ud-9wMa|(Yl-GU^BCi}+BR0R3K(P23rM&o@Q^vFWumZD`F?-jB$ z$v^I}xwoFKmAbgQ1C(i`jPK#hE?=S5ny_}l?aj94tDB`8rrTbWduK1bT} zg9|-i9{;vFj$2;6Vrp75qaJJVeVcL1E8B(Qme}N1+&uqPER*|!u50m$?$B;X=kra6 z^}+Fkw}GXJz8S9i_~H6k?Q4Nwb1^vR~ubwrREe4Xn<$ zBl?$mUDSL7T6U96qsQUw(U#k^d-KL5U@Pwqf7~uT0GSwgt}?*d(e$P|Y%ftsU2EgAuv@$U zx?rSXWw>gj9X91kADLcq)^g2+7J8!~&sPXWY4kiSahtFTX3XsKqqI`=W;&|B6K^aH zI1Fpg)G;r91yNH!E-ZyVq4e=%K3z#s;Xf;~YERE#rY_u>`0?K9@2)}h;y#(F z`1Ncj>JsJSHmOw)D*t652LXLS;*ukC+40|wF+@8|e{#&*kq+-oNl#sXRj$Y99{Gk} z(a=u_hLi_~hyO>?S+G^Lwp(};0umw(N=r$1hopdXH_}oP(h@46fPjFsNJvOamy~o% zmxOe8hn#19=Lc-B&6;z*?-OI(gN4#&{sN|(WWASLU?61~~Y6V6Du_~IZ#CeLkfl?XGmE;2>I~`{{A5gh|*d@tM}Zq-Wo3|Xw=s1K|;&;U0AHcOqX?j zoq8W9OflD|a??OO4FP|#%a#&P8T$#jm0p1fO{aX60gHEONC`HyI~-FCDld!EnC4?C zx?dTa=Y&$|Z}WBjg(#40E#?CNe%mJO{f)+xnH0M=#GwKOHC_TBg__81-RTf^#?e=q*!2mYd|Aji}R7xlUF+&gD)^j*4>Kj#{M zlwuQ*k`}OeTT`9%z3ZLR$y^B{|;8jUYAX0Kh;s>ap8eBU0_B3zY&S9!dmQjFtt5CjmoPYX7 zu$m&nJNe5|cNdrxMN)~#!T<1#=k{|bbS-IHI&dCNHu{Oczy*wW@b=aEoG^nNjuDbB z{Ju4%nFzHO^b}90KgS{ER=YIonw%tsSwjJXmt=vTG@hM~_rDiWhbE<~+tu5AjhEB* zK(e)qW50MZgzlJcf`|Fmd*aAB`{{1Or(Hrr?Wmqg(t0dBv8OXtd9Nt}_5hmF+vfjN zC2n{T#@6-(lf^v7uhg;qb{er}`hvq*m$PktxSuojuvRGIh-l^MIsA6)Q5y$&2F0H} z&1mjV5m2XmnPY1XgZtT8H&6G2=7H2vJ3fY-9K?$^oc-*l-|m+my_=hvzlU0WFDy`y zB>9;5rlnLnjZBTn3a6UzF;y9P6=o%R(qUc?&NRl(i(Q$v*)S|GZ!6qW{W-7{h`#r) z-oUEmy;;|c&4BajPW99ef3d4%qM(mfm7iXGo99$sEKTHB3$ABMThArTRkXSp`=Xq` zr_^7_&dzo>_rxH=jXBsX84(kdHDassRakb`WfF2zsBiDR(JWf@HZk-{kBHy5>}{@c zEXsF>eqm17J4X4Tz~MrppH^1Dx7@^W*H|hF3M;o+;lD=ZHC@1p)r4E3-aD2WBj_VQ zO>}J-DLl>QExYZsO7$$w%p`R)4em6?Uxg@%o=nOSG!|cM@lBHe2?s{W!7#ZSQ5CCn zB@E0NF2ep=s)sGjFtt+eI3=GL!@2S7>38ee-!HP6Q&pDO+0^6S;-`NrkA(?gJmSA4 zG4%<}P4f;hV$V%`MmE)yQnUAV*xk6_pxp5xB&oZt-w&dJAjF?@HQKi=nnxnaRxy^$ z?IAf_SzJ&VU8G(Qp4x40oU(Ojdv_MrPmv_ z6oGl;)_J}0XS_IOdPP^*%GfnyX;Po_a9UsJZTHjb^HJ$D$F<33_q2qx6r)p8f0cK> zJhp`q($;v%M3l?siKiHk!&2bgR?dB65)?NMdjJGM2UlhsDQVkDDc!fjOewRh09^0g z0hKxt5%*tWKof_L0d8EQdY`y*n}OdY(;_!FEKk)ehslCyU^elb^!W62E^gsGY_PIt zXR~%LIy1p%H>Y!8aNuw{LmFoCaGrX4c8ue(zjf3{ZBzws9_*Xd|23pENbidEJklJ@ z$WQB%d;V2QAhdtIy~Ab##ai7VDBI;MB~)qVmlwS3T(e(C`7&OJ>6TZp1-8nVW*YBXzZH*b3C!P3wPaT_s+j? zxFZOA3#FZqhe4>aarWO#l`Ml1du+dDyiLW&4=lf!qxi6CMu^_TuVa489mn9_;9YSg zdy2{OR5jg@-zf*+eT)49-InEU9`0|=7Jl~nh472l0E6=PQCo=P3@Z`jg>*aws?-Mc z-QIUA1tuhR9MSfGS>mpHNs;81Tr^V!`4&9TGAb!?dMu%ZnEj^rBfiQ`6kr{EKG@gy zyFBF8fPo&%PhYWYT?4vFxGR?@hrYSFxj8Q!be0i5Ye^L1^ zr|euqqQATHoq4}*zIM-8{=LuCisexf{{&5MAgm06F}xNJpvTrO7<+xmdKPv?$)tR- z!c6lvMd0QB_9(Uad~*tTHoUy9rFzS$NRCkVn~j#n2-#k^^-wShyD9|wngLXmAT0A z9L6#_+HD%k5?RgvW$x*(Z)Ct*g6^@Gqfx}o#nl2Q(b{0@64Z{gf8&FwAzUdX#bTn^ zcyFDj$Q>D{DRS8UzQPY_{jWOA#!;fzoHGZLZl+bMaze2cCad*TYPGw-pHY55hfk<-1Rt3m$rFuVeYpeOiAM9sWec$s2 ziZo$~$y(l8nyE{XK~A0@$*jmpy>@nv$pjsx9>Whhg1h{Mrh_3TTX)~RfjOHpW}W{| zvN(}83lT91N&Ab@28U6$8g%CLQDa@f>(Q<0pHE7+q~lf9Dh-scZ@U`RJ;_Tw|64;4 ze=6-AX6oYLp}r*Tt(#D1ML-mu)IPZTV@%%g1GShf+Af8O0A&4 zO$!EWhv|w?@Lm1v-WbgX5IzB8nF*S_R0t!y_^M`1qUPcA) zio8@tvZ||forZxqJAq4OZT&J5F_K@|)E>?wgxWB(0X`8O@%qNXFMudH#iQ5GOZ?%= zPY|E9$$`W zo=Cqelnvi>V|ASQ0amjH@*z=fZnpo_Y6hT7-hbm};*z5BC*GDFT}9~A%=H`q%FxWY zE*nekWa|2tM)<^h-NL86>h+9nNXk(Vjx_^-62CB8*>3==Km&vbvT%0(p}cDQjoxbF1=1JIvbL;b&)19Bkl_gw!e6rR{a+|}JOS8>4IG@YDaPsrZ!Qa)bg*oAF=wFkF z{aKOCqEhnm{`avhFut*&NWbDS4F6PJ^B>$9>zmtck?p9l9!qj^<3--{CpLRxP?QmJdFegTXZRMs;3KL*wqJ?>a?VQsz79q;KimyG>6udBO!jNI(#fo}JF&hAU8pdBL{ zT@u48$8R+?U88;2)}= zTRVyisf1^3c;6Qa^}D0-5A8U!d6cpZz;!@$)r8MLM)_c|qd%qaA({T))x(H3KVWic zH9?ytdbs}W&5vJpwF@iPv5%f%^_yx{DE;j+F=3^2(tkbi><`=)Nsz$_Sn-gEhafF^ z7fFuyczt&xBe$BQx9qzPbKgK8rx;Ibb~s6`*8wdk;u9?D>gsj-&}CC#b+=T1aTrme zaS(r^bi1`OzxH1gzi5ZMF&Jil!Br;WvHg6utIO3?GG2FVSgYUV#CvQ}yJh%H6fluk z$Ul9I6FhBfY#^ru^^oqX#=MOt|LhMlRHU!W4Lz20Y7SF;mlRyR`1k0(zSk__hzg?~ z4_x!6i$#zhYa!3@_1TX7g{Y&i8=TdRYc8<1LvUr6k1|(=EN`;XM-9LDG+6N|7HJP2 z?OPotsQnCKkRi&-L`?@Y26iiToKl${>!NIr|AA!;zQ%;HN@F0ju#o? zfT?zFj;O_%Pqkmf3`TFQB~2>Aapr?x#Rx6$D23*4HMCZhnsY7U=?iKj>o}6R7ZunO z%E)#{+nFFOY9)WV8Z^k(8?%V$)_hI9=ft0PkM9xQ-Ov4MjGJtR)vi~kj>S`gH2HaK3jcxE!0b_t9fGgrpG&IiuBPizq1M$Jvn-;>g8b z(esR~Q}NYJ`VF>XAp?d~-liOAshfx93Usk-y%m^W_bj?5ek@}rUHax@&)5yUH%Jhby`T#Fzt4>KpMWbL0rrf!lU?YR1*S2H~-h962 zJtul+q7BtD-JH~PTT(JYzkjf1Jg@BOC>pO`r2F&JJv?$iMZG&(k|F05XQQ;>(ghS( zut*{Z$)Gf>7ZV@ouAcjKr&sXqhnQ|Ch>`ZcXziD1 z71*C5ojf^tpr3?K5!HRs4b}3mVSJc9fe}-Qtl5{$Ew0<02d^b|g<6~4&R}YI`moiYGt&40XH&!M z!{dTyky~NR>Y{UHbnA-B>p__J3XGm9lIR~$kDBlc3p3-JD}3y=5}URlnNRsuq8b{K6PE{z=6_XV`Hab$@5gj*%W1^ZD$7cNr_vvJYDSQ z@;i=%-sQ5X5ZU-oZ#C{z>o60!>#KY$o9XLH*j4Dr&V0kt=8ysikDi>=)IJW@b=PdG z861*$@oaum)G}Y_lq6x22Ll42LP2Sfn3(wd8a{K=rhz=oT+;Qu+>)lWy}85ci`&%8 zsLRL15wfe+HbQ=@*i%Y!7%90LKIi^ph5PLKHl!h(3h^n;z@fJ$F{*AAjYHSP((uM-wJ$`X7 zXqu)rY~`}oYu>7TW{&ICvgcFk#m|lE;)|B2`wj#s^7o>Jf~DUNGg}Vl@QUPu&6uXe zD-ERQ2R_r$%pZ}GQ8Ga0JbS`JROC^28(#Vo9L9N0I^u9HZth=Q`MsI+Pk3jc> z$n}dvz}HAA$u$1@x;mZX^TDq|t;?gIiTQQk=3bl_n2p6NEc-nzX$O8!ov=vvnk(cN zkGUK-LW3N+x74L$AQ}w-;TwvAD!lZo9}yf=UUgb~0PE67pr2O~X8ZCi>zAr1CCU33 z1goxwi@#&QQ*gwG5qd5mAt41Ao<6lhfrL0PiggpCW!qZV>w{oY z(BZT2UwIRG3fiPMzVWi$(ZA1(6Vq&FsvMarqnh0-!}>6ZSy<1QX>UzAn7q@xL^HFV(#HSf66yRp5*ca&#NVU6OcSKqy7KGkgKO?Ap zZc!D%5j?C-OHl2&gABV(kst#1L(pQIhb=OVN}X@SEtTe@f9tzsaWG z)c81i<_F01SjCNHkTXL}Diq00OZGoC5s!^esJjlG@oBFr*oq{-+Dqgz^v^xU;yRF?6} zzU+0At;lH777;kqGNLwesHB$_qSLCYwk^@cbcfiDLz5URB}uR`YP4uT?9!ier+>mW zy(ib1N7-S#8R@UK zj0-yN_kI>GE_j1yCwh@q`tSDsUbU_KeMA`*o*%umJ|5x}Ixww&MI*QflfLEpAxx z&U*l^6U5HPnk8S>zY>cA@!gGZyGCe`lIUk$lY$AI>I+F~{3Jc>T%D0a?Z^6&IKR|B zf43wPc{u|abWa{qu?j{8nvvqvrBRPtFsF{Qflo#T08`ztXjIDHfA>bC_RoDL>G+aY zQ1WUqPYR6J@L#8@vir670b=Nbk5Hsk7}YUp~PewP$?~`@*Y}6QHuayIe8yM2eI__%hxC z&ZerL*(Bced6*vvZg6H9F$4Y?puEuj(k8W)u>#n`AdmO6HBoH&;+3A_R0pSg_DCc^#hS-0BFU*jkjoOl{mAbiTB6#+TQ9zX=)-%CYJ-&lNp?mG-(G)WY%99qJ z`Es(zIvCS#dM8IIGbGHP_?q6Q2spVOudBnw!u47?XO1|lIaz(FpJ$Bik5SBa7LC%N zQv<>rp+Q<3D#+-ayhk_| z=lBgLcntYHLqrn8lu;y9Gd}t&-2V4JeSZBmnMNnK2LjnkwSMtp7yTEnlIvc{f~`YE zkd&4Z$myVlW>EBi2%iS8C`PS>Un5&Q&1V~!vqFBCyfC>s*q6q2*Z2=&ErQ$FVBSQ#k!Nk8>>YzR#X#!&VhUtIOL)(UR00X&NBHuU5D9;SX?r zK}DXGTmM>n!ujTlSr^P%DJUp<#|>ERIf`={_vDc2KPc0Hqdvj%u>=N_F7rDh8vP#T zXX6eQQ&>Hg+*;pQr7kG7K8<%PJam+C7FgkJ<&?MKmLktG$kr*sKNk=6A|E`1!nbY7 zCBO2)QFu5IFldwLQdR6d8vNNujPRZiTCc6jGsNONdYu0td-dL4_S12@C|k-@ucM-B z1XE|G+KEJkKBOi7k98HAVa*GZ;i!}nj(se~fM}|K{Z3LcGT_p2iU=?U{b6JP(E$WD z!fJAeksRr>=(XFb4oo~d%lej@pbk9psZ>tFDsuD068&ZT#(^r5lY zu1Rjpl}hH=?ScxG24k2O7e*>CYJ0r3vv_Gc>M(cV zYtn~O%U*0*a+yKu)XW*wRZJ7~Uxl&O(GmaPu>!m(c(f`n^1CTQGQ^E*zdpTWZ#=H_ z2^?xKR%DnpHU`nR+LyxJ<3G`wI?Sw5R5mw#q6nkt7TI} z;T^HlrLaVP@q8_*OknZ{#-qKAV(au|_8^cduo8cxO)BkKp-xr2+fk@!_wLE(UyCk9 z9C^qV_d^m{ap?;7#1#*1zeUK1D^sSqv2K>x74gPB;-nr zKvXu9r)8s^=dvoa2le)BV}99m_tu6qCoeVDV{cBmQo{@c)i9|TNE7Lt8p(w@1KOk9 zejS5CFo{4Xuc{hFd4hpg9?MWsC^xpUF&#f$ikV{@6C*b2n*DC=3Q~5s!WfnUAFS}; zKsHiQu$ENP2fb+ir0HJJ!{iR&)-lyt>ARhsa`W(v9G)eMvzd{a|JR^VgxN3GnqE=! zVM*}#?974`ZAvM}WwPdOK`Ju|35je-tRf%A7nV+ZRci(N$FonnMK&vwds)m#T|vDC zAj$M+4EB%pWHNreK5Dl!AilY|sdF%5kE>y`DN#ui?}si(K6m687n@U%6R~lMcjOTf z317Ry?%KO|@sAU`biwf0+W7I_m?$y+O<$50<_K?|4l}I!;3ET(kR^3&_qv0+f}Xc4 z=`?n0NOLWx1Q22zK2yGOtU&tla#r|W(>3=95061SPJDrSf48$Jacj&`1nfY-P0^z< zN=MTvYF;{-e79hVw)^7ZkGpjv66t~0-ZRFTf}b3qYW`q+BO zV>drWvH~Uk-uNQJsTx~?Mr3uN(-<6D=3$d531Jd<1%}vV7olmEX>YY>5`R5d z7Ii;z1LumMMwfBwsk`bVr=FhP!j#ixj<)I6R=Xe8=MXc*OQnJsXO0p=lFUStCeE^s zqrSxbj_*KFFsM`68(HX4n4vAt^(*e`~>rTGeUS&4%i zUxYu&+s;GIdsde-JMuu`v~8IVfQpY&RgOSiRHV%EIbRpNcLnRr_>CkoNrvq`k^u$9 zGyP;v(qSaosGTBpOq}Iw`&td8pkn*`sCre({VqCPYg4795CcYCU^JvSIy{V@n3E{v zm*8yr`ZECPMJR2|U0r3V|%DnqbZu;U0 zsnmU53?%TY!6x~wHrlksfuLLw19t*(#oAc9Vo9Z4+=R*N2w1wp+NA5p=h-@v@4YW7 zbxkB+zHl$?O@iq`=fVQ@?M>6IXO-g&VwpYOpJLSLrhrv@c6=Jsz4GAa9(m^wPjUaN z?`BNolkS1W@oKTIay>5Oc9DVKSU+0cZRc(KnEWv0{408C;s7R;#HCtx3C1&eNWEon z2md|)+X_~xO@jEwV#5!1y4mt*AEqo(;7@_W+eO%goS2wIfgzSITlwp|2N`O&raKgX zCeb0V5B6dWp+YS%K$lCC@M+H{SV8D{kNO2RHaE@BP;mcff6|&voNtbjIJCI_vn7E` zgL*i55Ri7m=A+plDs;SjXk&jctqwnT6Km7E#Iw0FZyrreO@v<%K08_dlx%oyA|vk& zZ&a{1g_wP}k|kjCwFk*{-WcyAewoSttg}0+%vlpy;?QEEG>kPEwPlaFumkh*9=ir3 z`)NElfz1*9ksk4k$M(YI$rfU<_5w|=v1|Q9Fh{ur5go8hLd-CT3;VS2Ls4nWQ8RW0 z+ZJ6ky0gB&Vo`ryD_O9nz1UHZ%2XsDzwAAiZ`G-z^b=Y>lh-?Z*bC8}l=k0C=dpIj z#Gc^dl^hy?9+fnt<#cDJbY+o^osEl2sJrc45QMbI)Jck5)SaqY8;|nP60E8Uk+Tll zc(DUzMA^BY==-RfqmJ2WCpe89W>&L?*R6%(7h#wEN5XCdcT5HALB+vPh~3PWuy(;$ zr>v@??AKNgwDM`c%f7Q@PNIueT3mDW5tZz}y^N99DAH+vq0gPy*^;^K=x$6DF56OQ zyi)hE-F$TOgvff6CH)>+^sP9Q$Rr#_&s#%q3g>^AjZNrbUHMQgzxKEm`?odI^qyJ% zebDvwfoVF=PXYGd|Fn14qQL+RHZfe5 z!N22w;gU+ROuLXD%yva{_EvQ>;2X@3eePSyr@PQv7JPo}mdC8NX*zLM>$`%Pc0TUp zr^}*#CZ@Lgr#7|~Avf?#4g{g7^K|$r6U#~&Mog8m4w}Lffj9PJ%zh0G@L`#e(DNy7 zMFv{UNa@R=jlLMyVkM@*?yh1=V}iMLhJKA)xc_1L!u)t{xA)gZX{9mnW#eb3}3NrFmAZibasTd!dQZSyINH}yKQw;W^&FB_KzeOlE&$i8$LU1xGkM9ZG1m2)S#>xJC@r{6=p_to6-Xn=t z4)K#C?CgguM)o_Z(3C1>XR5|iE2e|+5c?huUI-1W1ONQ=O96}GobMJJc2Kf`lPOiJ zwDj`f1)6FvHFoF}f2fQEno!wnPsyz z@GLMjRPx_V{#XhPI+cPR^?7oE@cY0%>}(S=ySP{bUahVKqD0F!Upp*)!)oOOc^Wjg@l-eSRfLUR$IgL^l92f@W(ZBziNlQb&E*Nm-IQ%T-LF=ai%sf7 ztdiZ_J%*>o+7}=vSt>(aFkN-{cssmmdu?SHTn*}Kp>k?ja^bs*H6m@_z4{NS?pGmJ_-)J|HYiE z$6Q+T1ESZ={mtGg3D0V*NHz_AAUHFaF3Dg``XcD^E+U2h;Cv~nBwej3cBRpJ!@csX zp=SqNqUVy$`}_OJCAJE9?_%7{*EhD7GH$NCH@g|9YAw*=_cW|_dbQkz*Lc0caRkb8 z@McKD6`LxA!i7Q-TV)leDEotuer6088339=%D+({R@)kqQCc{$|7Y;H@JE8Gy+~}= z|9~XmAo9#76nz%_4Lq)qf?=G5hY9(ZaW9AFAp;x|Zy`ypKwEhLQ7S?wP33%QoMA#_D~FQ!Fg7iSXK-e@cn}Nx{$a#c)J+PSVsA(e$i(;^wCyQcX=pc|A(8TDJ{+7_u1S zitZQhJv=*+$@2-P*>B#R{ds-Zi}-KA_ld&F@%)AIKs0Rg2@~RB1e{-KfKoops|-_x zJWKrfBWKHnlPsJ*$ok0B3Nr^?oBZ6OI~2|tqfCxtiGXr~39T#4f=_p6d#x1=qsrvo zdU|C3d?ry_-vXjc=w`EqH{wf{y8Sbl#m0v6%nwhjL25(SFq7x00I@Bcq?+oti4VLT``G2alS>E|>H|Dw$EL zAtVuc7ZIJm*yk~`1u6%XKE`JrvBTm{&d;BaK6w(Tx;JJ&AsFx%xyo^5VqVor6&IRG z7M0+5E10N4qSmhnnX*IU!KKwALxfIrp&4m-9EuLDcy zFY|9jE1I^LI>pTW?~d$lC}S+DS=W~@5q5Was}yGVH{1;DKkL}@!B+Md23kcZ|zVFnt?w< zj2lngf-K+WzV@h^68GSdymdJo1}yj(C?Jl>f_pnv#8cxHImp-%8#54q8yGkNF2Ubc ztBCgj&qf6)^C=`$HRB)>hg3;J$VHvsB#!=u$s$<4NgdQeItlNE`2%T=TTX(pyM9gIMxI_&j@*Xs&EKf%Dla?zsiEm` zU3PmzE09l>9Y9fLk4bn+`Y16p$b|IW+Om#pMF;C zk{m^wB##k4x6Wj8pHqyFo?MNAu~wYFN~+7)kq*$nFqP6|CPrkL$t#A6ya`0d-CUFK zIeyW5XRnU^_R{p${=cu@t7PIQd8)Hxp2HpJB>9H~HS9UIhiywyM`Pf5I+-xF0lAZb zHCMEJ;R6Sd9Ln5BwvU8(@}Ivym;{>H$r*@&ns{m`gFw-gA*FFo6Q#(U2o=fwaebc5 z1QH_Hqgyjqulgm$6_w9-`tp-4yQ!{DIfCs08Ab`eea4FnUH`;P!_n#hm+hvJlC03Wlle1I2trz?B28!RR#8NieH=-HOH$?FQtRr$+t6WaLX+&g2clNR${rXfz&OgN z&MmZhFm=RW9AW=CJ;snE)W6r{yMf=(&;aUJ0&KIKgO_^`_Y~4m4>Gv0p;mudtF>4u z{od<%=xO(gYu)vbT}uH$D88zxk&)#~e-nG;;@~F(g4rXsToUbv3;A2#!msWIzVTt& zP9yKk*!9keRRD$xBH^Am>ZmPN6%#)iTfD!d2>FKMsVG!bW8Z@lH2RPp1g2Pi2rg^F z?`dmEAWNV^Mg98pKg1pQ)FwCGrnmiNlC^ZVeuIQ+7~z$fmnuw|Ek?MNeO~)O5xVjg zof5EFn;#E=Mug~KEx8q7U8+^2!5-)3JTHED@w3a{>W*Y|2IMwEG=}elr{6@_#C4qM z1rfVZ%^Ne)>-V?&RJ)fARR=9{V02|}XXBn?MaQLFUP&-r9nI5pm~S-xaQJAM%J9wu zJ`IG(x^J5msu`eY2Br+yeeW%ed6Duowd`|yyiS(n$BeuS^Il#MVPz&h{Zj@`)oQF$ zHfTsHi^m@CsNAi>)U(^WFVJ)QQiI|_cjP`n)QyP$_U|Z7+)YwaJ-zF{!4jDw+f*{{T_{YG=iSZUjXQ|Fn zvo$cBV4JZvvklc^ZhsUdp5HtDSOL{n;4A{f<&HBQk)4%8wtZFJ+s#NO=RLZD{@bMJ zQ~^f4y?h*A?tSRdwJT-%02kq#uyS#6Y2PR&gD>>ef;_cafYD49P15MwkuyK@s{Tyu zOn9Zh6+=#OA&R>_r+gokHBRv`;_d~5G`=~sJ~{QP&>zo#YZzBt_}XZ@$64n_ zAVvw&LgRz~v?53%3>}@dpfHpqh0Y$D^P#MQdmAQcirJI(o*bP~RBP~zSxj6#JmS;- zZKR|LiewMyfPxq0qYM&OFV)oL|DXrcQA?y1)vd&CxZbGpApi8HU}*nW96KA~#a zI=FTOHUu8X4Ps9*uKEhL$fd$hv%Ew+Iy%zGQ`2flkRhV}iX8FHg6ad#4un=DW?De& zVx03yq{Mf9)nyD~R{QB+uKHuKR`R+#6lP3`mnXs=Ocmzex=-pRF>dWTo0h8w|JfX* z2AOvpo~ho7cT*@-xxbuv-Q6}y=pm{SU`iEFNM1_&mMcsxJ_kj=xY01ktj$Ax_o3Za zjk~pb)0J4cIuZr1X?E5@>dmu3yAp;ic{7r<$;XEy(Skzd(^GSr+TPq)AFWb1z% zK{7K?(HZ!)Mxip!pGnr5cMTD}si9+(_<^U_K@`@t<3Z? zg^~N2t6W4`*~9-@N2@7L#ndv_ZK~I(u=a#(0sm8*0FVB&$&U9}E=hv0 zyf9B|;w*@8A)%E%eSoJ50SH0%Dbv)N#qB3tp!uTOThg)FLe z=F|*n1%E~UJ9XP$of!{^k!U!zK@AE*t*N=reRUg3^?G^!2UinPD=*LzEG@li=#hSm zon70YjCes72UhY0Ta~GANiI%^w zsL1uf-+(rH;UExwV{dN_PTv}@zfu-&USz1@X3nQG%^nq;i!cjDqU2Y2ku-=8o(X~P zUYFg}dL%~~AtR-WQHaSSgq{Lelt2e~`V{?6cXO|0Io&cfn1vs)C%JiK{mFBqiIBI| z#?elZufBItlW6(rG44;;P6L7IQCjXdHHf>7g=#og16FN+zdTR=L;8@wucf~0&EBkOvt|-pqd&@{O=L^4hl^46|GHk=hj3DV4kTKqep^S(I5p2X+TI^fmsk?cS z77JX6HT)0d*vw_&LNJ}>-019~t+*zEWpc5WT~+jgE)WG}`j$JP7cBqnjj-p3xi+LZ z#jDXuD%GZZZ;(F3aLDtwO3opc;#_XbkeO5NrKJoHy?I1Av9hSet-znM;O1*