Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SqueezNet CaffeModel tuned in DIGITS #1780

Open
kingreza opened this issue Aug 15, 2017 · 1 comment
Open

SqueezNet CaffeModel tuned in DIGITS #1780

kingreza opened this issue Aug 15, 2017 · 1 comment

Comments

@kingreza
Copy link

Image of Yaktocat
I have tuned a pre trained SqueezNet Caffe Model using DIGITS. Everything seems to work fine except when I try to classify an image through DIGITS I get the following error:


Traceback (most recent call last):
  File "/usr/lib/python2.7/dist-packages/flask/app.py", line 1475, in full_dispatch_request
    rv = self.dispatch_request()
  File "/usr/lib/python2.7/dist-packages/flask/app.py", line 1461, in dispatch_request
    return self.view_functions[rule.endpoint](**req.view_args)
  File "/usr/share/digits/digits/model/images/classification/views.py", line 291, in image_classification_model_classify_one
    predictions, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)
  File "/usr/share/digits/digits/model/tasks/caffe_train.py", line 1018, in infer_one
    layers=layers,
  File "/usr/share/digits/digits/model/tasks/caffe_train.py", line 1063, in classify_one
    predictions.append( (labels[i], scores[i]) )
IndexError: list index out of range

The same data DB works fine with AlextNet, however it fails to classify through DIGITS for this new retrained model:


# please cite:
# @article{SqueezeNet,
#     Author = {Forrest N. Iandola and Matthew W. Moskewicz and Khalid Ashraf and Song Han and William J. Dally and Kurt Keutzer},
#     Title = {SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and $<$1MB model size},
#     Journal = {arXiv:1602.07360},
#     Year = {2016}
# }
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    crop_size: 227
    mean_value: 104
    mean_value: 117
    mean_value: 123
  }

}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    crop_size: 227
    mean_value: 104
    mean_value: 117
    mean_value: 123
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 64
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu_conv1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fire2/squeeze1x1"
  type: "Convolution"
  bottom: "pool1"
  top: "fire2/squeeze1x1"
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire2/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire2/squeeze1x1"
  top: "fire2/squeeze1x1"
}
layer {
  name: "fire2/expand1x1"
  type: "Convolution"
  bottom: "fire2/squeeze1x1"
  top: "fire2/expand1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire2/relu_expand1x1"
  type: "ReLU"
  bottom: "fire2/expand1x1"
  top: "fire2/expand1x1"
}
layer {
  name: "fire2/expand3x3"
  type: "Convolution"
  bottom: "fire2/squeeze1x1"
  top: "fire2/expand3x3"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire2/relu_expand3x3"
  type: "ReLU"
  bottom: "fire2/expand3x3"
  top: "fire2/expand3x3"
}
layer {
  name: "fire2/concat"
  type: "Concat"
  bottom: "fire2/expand1x1"
  bottom: "fire2/expand3x3"
  top: "fire2/concat"
}
layer {
  name: "fire3/squeeze1x1"
  type: "Convolution"
  bottom: "fire2/concat"
  top: "fire3/squeeze1x1"
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire3/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire3/squeeze1x1"
  top: "fire3/squeeze1x1"
}
layer {
  name: "fire3/expand1x1"
  type: "Convolution"
  bottom: "fire3/squeeze1x1"
  top: "fire3/expand1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire3/relu_expand1x1"
  type: "ReLU"
  bottom: "fire3/expand1x1"
  top: "fire3/expand1x1"
}
layer {
  name: "fire3/expand3x3"
  type: "Convolution"
  bottom: "fire3/squeeze1x1"
  top: "fire3/expand3x3"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire3/relu_expand3x3"
  type: "ReLU"
  bottom: "fire3/expand3x3"
  top: "fire3/expand3x3"
}
layer {
  name: "fire3/concat"
  type: "Concat"
  bottom: "fire3/expand1x1"
  bottom: "fire3/expand3x3"
  top: "fire3/concat"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "fire3/concat"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fire4/squeeze1x1"
  type: "Convolution"
  bottom: "pool3"
  top: "fire4/squeeze1x1"
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire4/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire4/squeeze1x1"
  top: "fire4/squeeze1x1"
}
layer {
  name: "fire4/expand1x1"
  type: "Convolution"
  bottom: "fire4/squeeze1x1"
  top: "fire4/expand1x1"
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire4/relu_expand1x1"
  type: "ReLU"
  bottom: "fire4/expand1x1"
  top: "fire4/expand1x1"
}
layer {
  name: "fire4/expand3x3"
  type: "Convolution"
  bottom: "fire4/squeeze1x1"
  top: "fire4/expand3x3"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire4/relu_expand3x3"
  type: "ReLU"
  bottom: "fire4/expand3x3"
  top: "fire4/expand3x3"
}
layer {
  name: "fire4/concat"
  type: "Concat"
  bottom: "fire4/expand1x1"
  bottom: "fire4/expand3x3"
  top: "fire4/concat"
}
layer {
  name: "fire5/squeeze1x1"
  type: "Convolution"
  bottom: "fire4/concat"
  top: "fire5/squeeze1x1"
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire5/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire5/squeeze1x1"
  top: "fire5/squeeze1x1"
}
layer {
  name: "fire5/expand1x1"
  type: "Convolution"
  bottom: "fire5/squeeze1x1"
  top: "fire5/expand1x1"
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire5/relu_expand1x1"
  type: "ReLU"
  bottom: "fire5/expand1x1"
  top: "fire5/expand1x1"
}
layer {
  name: "fire5/expand3x3"
  type: "Convolution"
  bottom: "fire5/squeeze1x1"
  top: "fire5/expand3x3"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire5/relu_expand3x3"
  type: "ReLU"
  bottom: "fire5/expand3x3"
  top: "fire5/expand3x3"
}
layer {
  name: "fire5/concat"
  type: "Concat"
  bottom: "fire5/expand1x1"
  bottom: "fire5/expand3x3"
  top: "fire5/concat"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "fire5/concat"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fire6/squeeze1x1"
  type: "Convolution"
  bottom: "pool5"
  top: "fire6/squeeze1x1"
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire6/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire6/squeeze1x1"
  top: "fire6/squeeze1x1"
}
layer {
  name: "fire6/expand1x1"
  type: "Convolution"
  bottom: "fire6/squeeze1x1"
  top: "fire6/expand1x1"
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire6/relu_expand1x1"
  type: "ReLU"
  bottom: "fire6/expand1x1"
  top: "fire6/expand1x1"
}
layer {
  name: "fire6/expand3x3"
  type: "Convolution"
  bottom: "fire6/squeeze1x1"
  top: "fire6/expand3x3"
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire6/relu_expand3x3"
  type: "ReLU"
  bottom: "fire6/expand3x3"
  top: "fire6/expand3x3"
}
layer {
  name: "fire6/concat"
  type: "Concat"
  bottom: "fire6/expand1x1"
  bottom: "fire6/expand3x3"
  top: "fire6/concat"
}
layer {
  name: "fire7/squeeze1x1"
  type: "Convolution"
  bottom: "fire6/concat"
  top: "fire7/squeeze1x1"
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire7/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire7/squeeze1x1"
  top: "fire7/squeeze1x1"
}
layer {
  name: "fire7/expand1x1"
  type: "Convolution"
  bottom: "fire7/squeeze1x1"
  top: "fire7/expand1x1"
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire7/relu_expand1x1"
  type: "ReLU"
  bottom: "fire7/expand1x1"
  top: "fire7/expand1x1"
}
layer {
  name: "fire7/expand3x3"
  type: "Convolution"
  bottom: "fire7/squeeze1x1"
  top: "fire7/expand3x3"
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire7/relu_expand3x3"
  type: "ReLU"
  bottom: "fire7/expand3x3"
  top: "fire7/expand3x3"
}
layer {
  name: "fire7/concat"
  type: "Concat"
  bottom: "fire7/expand1x1"
  bottom: "fire7/expand3x3"
  top: "fire7/concat"
}
layer {
  name: "fire8/squeeze1x1"
  type: "Convolution"
  bottom: "fire7/concat"
  top: "fire8/squeeze1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire8/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire8/squeeze1x1"
  top: "fire8/squeeze1x1"
}
layer {
  name: "fire8/expand1x1"
  type: "Convolution"
  bottom: "fire8/squeeze1x1"
  top: "fire8/expand1x1"
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire8/relu_expand1x1"
  type: "ReLU"
  bottom: "fire8/expand1x1"
  top: "fire8/expand1x1"
}
layer {
  name: "fire8/expand3x3"
  type: "Convolution"
  bottom: "fire8/squeeze1x1"
  top: "fire8/expand3x3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire8/relu_expand3x3"
  type: "ReLU"
  bottom: "fire8/expand3x3"
  top: "fire8/expand3x3"
}
layer {
  name: "fire8/concat"
  type: "Concat"
  bottom: "fire8/expand1x1"
  bottom: "fire8/expand3x3"
  top: "fire8/concat"
}
layer {
  name: "fire9/squeeze1x1"
  type: "Convolution"
  bottom: "fire8/concat"
  top: "fire9/squeeze1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire9/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire9/squeeze1x1"
  top: "fire9/squeeze1x1"
}
layer {
  name: "fire9/expand1x1"
  type: "Convolution"
  bottom: "fire9/squeeze1x1"
  top: "fire9/expand1x1"
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire9/relu_expand1x1"
  type: "ReLU"
  bottom: "fire9/expand1x1"
  top: "fire9/expand1x1"
}
layer {
  name: "fire9/expand3x3"
  type: "Convolution"
  bottom: "fire9/squeeze1x1"
  top: "fire9/expand3x3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "fire9/relu_expand3x3"
  type: "ReLU"
  bottom: "fire9/expand3x3"
  top: "fire9/expand3x3"
}
layer {
  name: "fire9/concat"
  type: "Concat"
  bottom: "fire9/expand1x1"
  bottom: "fire9/expand3x3"
  top: "fire9/concat"
}
layer {
  name: "drop9"
  type: "Dropout"
  bottom: "fire9/concat"
  top: "fire9/concat"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "conv10"
  type: "Convolution"
  bottom: "fire9/concat"
  top: "conv10"
  convolution_param {
    num_output: 1000
    kernel_size: 1
    weight_filler {
      type: "gaussian"
      mean: 0.0
      std: 0.01
    }
  }
}
layer {
  name: "relu_conv10"
  type: "ReLU"
  bottom: "conv10"
  top: "conv10"
}
layer {
  name: "pool10"
  type: "Pooling"
  bottom: "conv10"
  top: "pool10"
  pooling_param {
    pool: AVE
    global_pooling: true
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "pool10"
  bottom: "label"
  top: "loss"
  #include {
  #  phase: TRAIN
  #}
}
layer {
  name: "accuracy_food"
  type: "Accuracy"
  bottom: "pool10"
  bottom: "label"
  top: "accuracy_food"
  #include {
  #  phase: TEST
  #}
}

@BradLarson
Copy link

If I'm not mistaken, I believe this is related to the same issue as reported in #1492, for which a solution was proposed in pull request #1536.

The core issue is that SqueezeNet is a fully convolutional network, with a pooling layer feeding into the softmax operator, instead of using a fully connected layer at the end like AlexNet. That leads to a different dimensionality in that last layer, which causes the DIGITS classification view to have problems. That pull request seemed to fix the issue for me when I tried it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants