diff --git a/README.md b/README.md index 57bc613..bdac114 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,7 @@ AFSC BSAI Atka Mackerel | working SWFSC sardine | working NWFSC petrale | working PIFSC opakapaka | working +SEFSC scamp | working ## How to add a case study diff --git a/content/NWFSC-petrale.R b/content/NWFSC-petrale.R deleted file mode 100644 index 3b966a1..0000000 --- a/content/NWFSC-petrale.R +++ /dev/null @@ -1,427 +0,0 @@ -library(dplyr) -library(tidyr) -library(ggplot2) -require(FIMS) -library(TMB) -# devtools::install_github("kaskr/TMB_contrib_R/TMBhelper") -library(TMBhelper) -# remotes::install_github("r4ss/r4ss") -require(r4ss) - -R_version <- version$version.string -TMB_version <- packageDescription("TMB")$Version -FIMS_commit <- substr(packageDescription("FIMS")$GithubSHA1, 1, 7) - - - -# read SS3 input files from petrale sole assessment on github -petrale_input <- r4ss::SS_read("https://raw.githubusercontent.com/pfmc-assessments/petrale/main/models/2023.a034.001/") - -# # reading output doesn't work from github, so just using hard-wired values from model output -# petrale_output <- r4ss::SS_output("https://raw.githubusercontent.com/pfmc-assessments/petrale/main/models/2023.a034.001/") - -# generic names for SS3 data and control files could be useful in future generalized version of this code -ss3dat <- petrale_input$dat -ss3ctl <- petrale_input$ctl - -# define the dimensions -years <- seq(ss3dat$styr, ss3dat$endyr) -nyears <- length(years) -nseasons <- 1 -# ages <- 0:ss3dat$Nages # population ages in SS3, starts at age 0 -ages <- 1:17 # same as data bins -nages <- length(ages) - -# use function defined above to extract data for FIMS -mydat <- get_ss3_data(ss3dat, fleets = c(1, 4), ages = ages) - -# remove fleets 2 and 3 and rename fleet4 as fleet2 -mydat <- mydat |> - dplyr::filter(name %in% c("fleet1", "fleet4")) |> - dplyr::mutate(name = dplyr::case_when( - name == "fleet1" ~ name, - name == "fleet4" ~ "fleet2" # change fleet4 to fleet2 - )) - -# # filter for just years with no missing age or index data -# # in spite of filling in -999 values earlier, just in case -# years <- 2003:2019 -# nyears <- length(years) -# mydat <- mydat |> dplyr::filter(datestart %in% paste0(years, "-01-01")) - - -age_frame <- FIMS::FIMSFrame(mydat) -fishery_catch <- FIMS::m_landings(age_frame) # filtering for the landings only -fishery_agecomp <- FIMS::m_agecomp(age_frame, "fleet1") # filtering for ages from fleet 1 -survey_index <- FIMS::m_index(age_frame, "fleet2") # filtering for index data from fleet 2 -survey_agecomp <- FIMS::m_agecomp(age_frame, "fleet2") # filtering for ages from fleet 2 - -fish_index <- methods::new(Index, nyears) -fish_age_comp <- methods::new(AgeComp, nyears, nages) -fish_index$index_data <- fishery_catch -# Q: I'm confused about FIMSFrame being set up with age comps in proportions -# vs here needing age comps in numbers -# just not sorted out yet, in the future this could be made simpler -fish_age_comp$age_comp_data <- age_frame@data |> - dplyr::filter(type == "age" & name == "fleet1") |> - dplyr::mutate(n = value * uncertainty) |> - dplyr::pull(n) |> - round(1) - -# switches to turn on or off estimation -estimate_fish_selex <- TRUE -estimate_survey_selex <- TRUE -estimate_q <- TRUE -estimate_F <- TRUE -estimate_recdevs <- TRUE -estimate_init_naa <- FALSE -estimate_log_rzero <- TRUE - -### set up fishery -## methods::show(DoubleLogisticSelectivity) -fish_selex <- methods::new(LogisticSelectivity) - -# SS3 model had length-based selectivity which leads to sex-specific -# age-based selectivity due to sexually-dimorphic growth. -# I didn't bother to calculate an age-based inflection point averaged over sexes -fish_selex$inflection_point$value <- 10 -fish_selex$inflection_point$is_random_effect <- FALSE -fish_selex$inflection_point$estimated <- estimate_fish_selex -fish_selex$slope$value <- 2 -fish_selex$slope$is_random_effect <- FALSE -fish_selex$slope$estimated <- estimate_fish_selex - -## create fleet object for fishing fleet -fish_fleet <- methods::new(Fleet) -fish_fleet$nages <- nages -fish_fleet$nyears <- nyears -fish_fleet$log_Fmort <- log(rep(0.00001, nyears)) -fish_fleet$estimate_F <- estimate_F -fish_fleet$random_F <- FALSE -fish_fleet$log_q <- 0 -fish_fleet$estimate_q <- estimate_q -fish_fleet$random_q <- FALSE -fish_fleet$log_obs_error <- rep(log(sqrt(log(0.01^2 + 1))), nyears) - -# Set Index, AgeComp, and Selectivity using the IDs from the modules defined above -fish_fleet$SetObservedIndexData(fish_index$get_id()) -fish_fleet$SetObservedAgeCompData(fish_age_comp$get_id()) -fish_fleet$SetSelectivity(fish_selex$get_id()) - -## Setup survey -survey_fleet_index <- methods::new(Index, nyears) -survey_age_comp <- methods::new(AgeComp, nyears, nages) -survey_fleet_index$index_data <- survey_index -survey_age_comp$age_comp_data <- mydat |> - dplyr::filter(type == "age" & name == "fleet2") |> - dplyr::mutate(n = value * uncertainty) |> - dplyr::pull(n) - -## survey selectivity: ascending logistic -## methods::show(DoubleLogisticSelectivity) -survey_selex <- new(LogisticSelectivity) -survey_selex$inflection_point$value <- 6 -survey_selex$inflection_point$is_random_effect <- FALSE -survey_selex$inflection_point$estimated <- estimate_survey_selex -survey_selex$slope$value <- 2 -survey_selex$slope$is_random_effect <- FALSE -survey_selex$slope$estimated <- estimate_survey_selex - -## create fleet object for survey -survey_fleet <- methods::new(Fleet) -survey_fleet$is_survey <- TRUE -survey_fleet$nages <- nages -survey_fleet$nyears <- nyears -survey_fleet$estimate_F <- FALSE -survey_fleet$random_F <- FALSE -survey_fleet$log_q <- 1.4 # petrale sole catchability estimated ~4.0 = exp(1.4) -survey_fleet$estimate_q <- estimate_q -survey_fleet$random_q <- FALSE -# Q: why can't the index uncertainty come from FIMSFrame? -survey_fleet$log_obs_error <- age_frame@data |> - dplyr::filter(type == "index" & name == "fleet2") |> - dplyr::pull(uncertainty) |> - log() - -survey_fleet$SetAgeCompLikelihood(1) -survey_fleet$SetIndexLikelihood(1) -survey_fleet$SetSelectivity(survey_selex$get_id()) -survey_fleet$SetObservedIndexData(survey_fleet_index$get_id()) -survey_fleet$SetObservedAgeCompData(survey_age_comp$get_id()) - -# Population module - -# recruitment -recruitment <- methods::new(BevertonHoltRecruitment) -# methods::show(BevertonHoltRecruitment) - -# petrale sigmaR is 0.5 -recruitment$log_sigma_recruit$value <- log(ss3ctl$SR_parms["SR_sigmaR", "INIT"]) -# petrale log(R0) is around 9.6 (where R0 is in thousands) -# Q: do we need to account for SS3 R0 in thousands? -# recruitment$log_rzero$value <- log(1000) + ss3ctl$SR_parms["SR_LN(R0)", "INIT"] -recruitment$log_rzero$value <- ss3ctl$SR_parms["SR_LN(R0)", "INIT"] -recruitment$log_rzero$is_random_effect <- FALSE -recruitment$log_rzero$estimated <- estimate_log_rzero -# petrale steepness is fixed at 0.8 -steep <- ss3ctl$SR_parms["SR_BH_steep", "INIT"] -recruitment$logit_steep$value <- -log(1.0 - steep) + log(steep - 0.2) -recruitment$logit_steep$is_random_effect <- FALSE -recruitment$logit_steep$estimated <- FALSE - -recruitment$estimate_log_devs <- estimate_recdevs -# Q: why are parameters "log_devs" when output is "report$log_recruit_dev"? -# and are they multipliers, not deviations from zero? -# needed to change from 1 to 0 to get stable population -recruitment$log_devs <- rep(0, nyears) # set to no deviations (multiplier) to start - -# growth -ewaa_growth <- methods::new(EWAAgrowth) -ewaa_growth$ages <- ages -# NOTE: getting weight-at-age vector from -# petrale_output$wtatage |> -# dplyr::filter(Sex == 1 & Fleet == -1 & Yr == 1876) |> -# dplyr::select(paste(0:40)) |> -# round(4) -ewaa_growth$weights <- c( - # 0.0010, # age 0 - 0.0148, 0.0617, 0.1449, 0.2570, 0.3876, 0.5260, 0.6640, 0.7957, 0.9175, - 1.0273, 1.1247, 1.2097, 1.2831, 1.3460, 1.3994, 1.4446, 1.4821 -) - -# maturity -maturity <- new(LogisticMaturity) -# approximate age-based equivalent to length-based maturity in petrale model -# based on looking at model$endgrowth |> dplyr::filter(Sex == 1) |> dplyr::select(Age_Beg, Len_Mat) -maturity$inflection_point$value <- 6.5 -maturity$inflection_point$is_random_effect <- FALSE -maturity$inflection_point$estimated <- FALSE -maturity$slope$value <- 2 # arbitrary guess -maturity$slope$is_random_effect <- FALSE -maturity$slope$estimated <- FALSE - -# population -population <- new(Population) -# petrale natural mortality is estimated around 0.14 -M_value <- ss3ctl$MG_parms["NatM_p_1_Fem_GP_1", "INIT"] -population$log_M <- rep(log(M_value), nages * nyears) -population$estimate_M <- FALSE -# initial numbers at age based on R0 + mortality -init_naa <- exp(recruitment$log_rzero$value) * exp(-(ages - 1) * M_value) -init_naa[nages] <- init_naa[nages] / M_value # sum of infinite series -population$log_init_naa <- log(init_naa) -population$estimate_init_naa <- estimate_init_naa -population$nages <- nages -population$ages <- ages -population$nfleets <- 2 # fleets plus surveys -population$nseasons <- nseasons -population$nyears <- nyears -# population$proportion_female <- rep(0.5, nages) - -population$SetMaturity(maturity$get_id()) -population$SetGrowth(ewaa_growth$get_id()) -population$SetRecruitment(recruitment$get_id()) - -if (TRUE) { - # make FIMS model - success <- CreateTMBModel() - - parameters <- list(p = get_fixed()) - obj <- MakeADFun(data = list(), parameters, DLL = "FIMS", silent = TRUE) - - opt <- nlminb(obj$par, obj$fn, obj$gr, - control = list(eval.max = 10000, iter.max = 10000) - ) - print(opt) - - # sdr <- TMB::sdreport(obj) - # sdr_fixed <- summary(sdr, "fixed") - # print(sdr_fixed) - - report <- obj$report() - - # copy input data to use as basis for results - results_frame <- age_frame@data - results_frame$expected <- NA - # convert date string to numeric year - results_frame <- results_frame |> - dplyr::mutate(year = lubridate::as_date(datestart) |> lubridate::year()) - - # add expected index to data frame - results_frame$expected[results_frame$type == "index" & results_frame$name == "fleet2"] <- - report$exp_index[[2]] - - # add estimated catch to data frame - results_frame$expected[results_frame$type == "landings" & results_frame$name == "fleet1"] <- - report$exp_catch[[1]] - - # add estimated age comps to data frame - for (fleet in 1:2) { - # copy Cole's approach to rescaling expected comps to proportions - x1 <- matrix(report$cnaa[[fleet]], ncol = nages, byrow = TRUE) - x1 <- x1 / rowSums(x1) - dimnames(x1) <- list(year = years, age = ages) - x1 <- reshape2::melt(x1, value.name = "paa") |> - dplyr::mutate(type = "age", name = paste0("fleet", fleet)) - # add expected proportions into results_frame - results_frame <- - # add paa for age comps (will be NA for all other types) - dplyr::left_join(x = results_frame, y = x1) |> - # replace value column with paa for age data within this fleet (when not NA) - dplyr::mutate(expected = dplyr::case_when(is.na(paa) ~ expected, TRUE ~ paa)) |> - dplyr::select(-paa) # remove temporary paa column - } - - # plot catch fit - results_frame |> - dplyr::filter(type == "landings" & value != -999) |> - ggplot(aes(x = year, y = value)) + - geom_point() + - xlab("Year") + - ylab("Catch (mt)") + - geom_line(aes(x = year, y = expected), color = "blue") + - theme_bw() - ggsave("content/figures/NWFSC-petrale_fit_catch.png") - - # plot index fit - results_frame |> - dplyr::filter(type == "index" & value != -999) |> - ggplot(aes(x = year, y = value)) + - geom_point() + - xlab("Year") + - ylab("Index") + - geom_line(aes(x = year, y = expected), color = "blue") + - theme_bw() - ggsave("content/figures/NWFSC-petrale_fit_index.png") - - # plot age comp fits - # age comps for fleet 1 - results_frame |> - dplyr::filter(type == "age" & name == "fleet1" & value != -999) |> - ggplot(aes(x = age, y = value)) + - # note: dir = "v" sets vertical direction to fill the facets which - # makes comparison of progression of cohorts easier to see - facet_wrap(vars(year), dir = "v") + - geom_point() + - xlab("Age") + - ylab("Proportion") + - geom_line(aes(x = age, y = expected), color = "blue") + - theme_bw() - ggsave("content/figures/NWFSC-petrale_fit_comps_fleet1.png") - - results_frame |> - dplyr::filter(type == "age" & name == "fleet2" & value != -999) |> - ggplot(aes(x = age, y = value)) + - # note: dir = "v" sets vertical direction to fill the facets which - # makes comparison of progression of cohorts easier to see - facet_wrap(vars(year), dir = "v") + - geom_point() + - xlab("Age") + - ylab("Proportion") + - geom_line(aes(x = age, y = expected), color = "blue") + - theme_bw() - ggsave("content/figures/NWFSC-petrale_fit_comps_fleet2.png") - - timeseries <- rbind( - data.frame( - year = c(years, max(years) + 1), - type = "ssb", - value = report$ssb[[1]] - ), - data.frame( - year = c(years, max(years) + 1), - type = "biomass", - value = report$biomass[[1]] - ), - data.frame( - year = c(years), - type = "recruitment", - value = report$recruitment[[1]][1:nyears] # final value was 0 - ), - data.frame( - year = c(years), - type = "F_mort", - value = report$F_mort[[1]] - ) - ) - - # plot time series of 4 quantities - timeseries |> - ggplot(aes(x = year, y = value)) + - facet_wrap(vars(type), scales = "free") + - geom_line() + - expand_limits(y = 0) + - theme_bw() - ggsave("content/figures/NWFSC-petrale_time_series.png") - - # create function to extract time series output from SS3 model - get_ss3_timeseries <- function(model, platform = "ss3") { - timeseries_ss3 <- model$timeseries |> - dplyr::filter(Yr %in% timeseries$year) |> # filter for matching years only (no forecast) - dplyr::select(Yr, Bio_all, SpawnBio, Recruit_0, "F:_1") |> # select quants of interest - dplyr::rename( # change to names used with FIMS - year = Yr, - biomass = Bio_all, ssb = SpawnBio, recruitment = Recruit_0, F_mort = "F:_1" - ) |> - dplyr::mutate(ssb = 1000 * ssb) |> - tidyr::pivot_longer( # convert quantities in separate columns into a single value column - cols = -1, - names_to = "type", - values_to = "value" - ) |> - dplyr::arrange(type) |> # sort by type instead of year - dplyr::mutate(platform = platform) - - return(timeseries_ss3) - } - - # compare to SS3 output - if (FALSE) { - # read SS3 models from location on Ian's computer - p1 <- r4ss::SS_output("c:/ss/Petrale/Petrale2023/petrale/models//2023.a034.001/") - p2 <- r4ss::SS_output("c:/ss/Petrale/Petrale2023/petrale/models//2023.a050.002_FIMS_case-study_wtatage/") - # # saving all model output creates large files (7MB for original) - # saveRDS(p1, file = "content/data_files/NWFSC-petrale-SS3-original.rds") - # saveRDS(p2, file = "content/data_files/NWFSC-petrale-SS3-simplified.rds") - - # combine SS3 model time series into data frame using function above - timeseries_compare <- rbind( - get_ss3_timeseries(model = p1, platform = "ss3_original"), - get_ss3_timeseries(model = p2, platform = "ss3_simplified") - ) - # save data frame of time series results - saveRDS(timeseries_compare, file = "content/data_files/NWFSC-petrale-SS3-timeseries.rds") - } - - # load saved time series - timeseries_compare <- readRDS("content/data_files/NWFSC-petrale-SS3-timeseries.rds") - # add FIMS output to time series table - timeseries_compare <- timeseries |> - dplyr::mutate(platform = "FIMS") |> - rbind(timeseries_compare) - - # make plot comparing time series - timeseries_compare |> - ggplot(aes(year, value, color = platform)) + - geom_line() + - facet_wrap("type", scales = "free") + - ylim(0, NA) + - labs(x = NULL, y = NULL) + - theme_bw() - ggsave("content/figures/NWFSC-petrale_timeseries_comparison.png") - - # numbers at age as a matrix - naa <- matrix(report$naa[[1]], ncol = nages, byrow = TRUE) - # numbers at age as a long data frame - naa_df <- tidyr::expand_grid(year = c(years, max(years) + 1), age = ages) |> - data.frame(naa = report$naa[[1]]) - - # bubble plot of numbers at age - naa_df |> - ggplot(aes(x = year, y = age, size = naa)) + - geom_point(alpha = 0.2) + - theme_bw() - ggsave("content/figures/NWFSC-petrale_numbers_at_age.png") - - clear() -} # end "if (FALSE)" block to only run if model is working diff --git a/content/NWFSC-petrale.qmd b/content/NWFSC-petrale.qmd index ec0b3ea..24ee3de 100644 --- a/content/NWFSC-petrale.qmd +++ b/content/NWFSC-petrale.qmd @@ -153,7 +153,7 @@ fish_fleet$log_Fmort <- log(rep(0.00001, nyears)) fish_fleet$estimate_F <- estimate_F fish_fleet$random_F <- FALSE fish_fleet$log_q <- 0 -fish_fleet$estimate_q <- estimate_q +fish_fleet$estimate_q <- FALSE fish_fleet$random_q <- FALSE fish_fleet$log_obs_error <- rep(log(sqrt(log(0.01^2 + 1))), nyears) diff --git a/content/R/get_ss3_data.R b/content/R/get_ss3_data.R index d96144d..e0520ff 100644 --- a/content/R/get_ss3_data.R +++ b/content/R/get_ss3_data.R @@ -8,7 +8,7 @@ #' @param fleets Which fleets to include in the processed output. #' @param ages Vector of ages to index. #' @return A data frame that can be passed to `FIMS::FIMSFrame()` -#' @author Ian G. Taylor +#' @author Ian G. Taylor, Megumi Oshima #' @export get_ss3_data <- function(dat, fleets, ages) {