forked from Eerie16/deep-learning-morph-analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_prediction.py
365 lines (290 loc) · 14.5 KB
/
make_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import pickle
from keras.preprocessing.sequence import pad_sequences
from keras.models import Model
from keras.layers import Activation, TimeDistributed, Dense, Embedding, Input,merge,concatenate, GaussianNoise, dot,add
from keras.layers.recurrent import LSTM, GRU
from keras.layers.wrappers import Bidirectional
from keras.layers.core import Layer
from keras.optimizers import Adam
from keras.layers import Dropout, Conv1D, MaxPooling1D, AveragePooling1D
from keras.constraints import maxnorm
from keras.utils import to_categorical
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from collections import deque
from predict_with_features import *
import tensorflow as tf
import os
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Hyper-Parameters
EMBEDDING_DIM = 64
LAYER_NUM = 2
no_filters = 64
HIDDEN_DIM = no_filters * 2
X_max_len = 18
rnn_output_size = 32
Vocabulary_size = 90
NUM_FEATURES = 54
n1, n2, n3, n4, n5, n7, _ = pickle.load(open('./n', 'rb'))
#Loading all encoders-decoders
X_word2idx = pickle.load(open('./X_word2idx', 'rb'))
encoders = pickle.load(open('./phonetic_feature_encoders', 'rb'))
X_idx2word = pickle.load(open('./X_idx2word', 'rb'))
enc = pickle.load(open('./enc', 'rb'))
def encode_words(X):
X_return = []
for i, word in enumerate(X):
temp = []
for j, char in enumerate(word):
if char in X_word2idx:
temp.append(X_word2idx[char])
else:
temp.append(X_word2idx['U'])
X_return.append(temp)
return X_return
# Converts phonetic_features into encoded form
def encode_features(X_test):
total_features_to_be_encoded = len(X_test[0][3:])
transformed_feature_to_be_returned = []
for i in range(len(encoders)):
arr = [w if w in list(encoders[i].classes_) else 'UNK' for w in list(zip(*X_test))[i + 3]]
transformed_feature_to_be_returned.append(encoders[i].transform(arr))
X_test = np.asarray(X_test)
for i in range(total_features_to_be_encoded):
X_test[:, i + 3] = transformed_feature_to_be_returned[i]
X_test = X_test.astype(np.float)
X_test = X_test.tolist()
return X_test
def getIndexedWords(X_unique):
X = [list(x) for x in X_unique if len(x) > 0]
for i, word in enumerate(X):
for j, char in enumerate(word):
if char in X_word2idx:
X[i][j] = X_word2idx[char]
else:
X[i][j] = X_word2idx['U']
return X
# Generate context words
def get_context(X_unique):
X_left = deque(X_unique)
X_left.append(' ') # all elements would be shifted one left
X_left.popleft()
X_left1 = list(X_left)
X_left1 = getIndexedWords(X_left1)
X_left.append(' ')
X_left.popleft()
X_left2 = list(X_left)
X_left2 = getIndexedWords(X_left2)
X_left.append(' ')
X_left.popleft()
X_left3 = list(X_left)
X_left3 = getIndexedWords(X_left3)
X_left.append(' ')
X_left.popleft()
X_left4 = list(X_left)
X_left4 = getIndexedWords(X_left4)
X_right = deque(X_unique)
X_right.appendleft(' ')
X_right.pop()
X_right1 = list(X_right)
X_right1 = getIndexedWords(X_right1)
X_right.appendleft(' ')
X_right.pop()
X_right2 = list(X_right)
X_right2 = getIndexedWords(X_right2)
X_right.appendleft(' ')
X_right.pop()
X_right3 = list(X_right)
X_right3 = getIndexedWords(X_right3)
X_right.appendleft(' ')
X_right.pop()
X_right4 = list(X_right)
X_right4 = getIndexedWords(X_right4)
return X_left1, X_left2, X_left3, X_left4, X_right1, X_right2, X_right3, X_right4
################################################################################################
def create_model(Vocabulary_size, X_max_len, n_phonetic_features, n1, n2, n3, n4, n5, n6, HIDDEN_DIM, LAYER_NUM):
def smart_merge(vectors, **kwargs):
return vectors[0] if len(vectors) == 1 else add(vectors, **kwargs)
# Declaring the Input Layers
current_word = Input(shape=(X_max_len,), dtype='float32', name='input1') # for encoder (shared)
decoder_input = Input(shape=(X_max_len,), dtype='float32', name='input3') # for decoder -- attention
right_word1 = Input(shape=(X_max_len,), dtype='float32', name='input4')
right_word2 = Input(shape=(X_max_len,), dtype='float32', name='input5')
right_word3 = Input(shape=(X_max_len,), dtype='float32', name='input6')
right_word4 = Input(shape=(X_max_len,), dtype='float32', name='input7')
left_word1 = Input(shape=(X_max_len,), dtype='float32', name='input8')
left_word2 = Input(shape=(X_max_len,), dtype='float32', name='input9')
left_word3 = Input(shape=(X_max_len,), dtype='float32', name='input10')
left_word4 = Input(shape=(X_max_len,), dtype='float32', name='input11')
phonetic_input = Input(shape=(n_phonetic_features,), dtype='float32', name='input12')
# Initializing the Character Embeddings
emb_layer1 = Embedding(Vocabulary_size, EMBEDDING_DIM,
input_length=X_max_len,
mask_zero=False, name='Embedding')
list_of_inputs = [current_word, right_word1, right_word2, right_word3, right_word4,
left_word1, left_word2, left_word3, left_word4]
# Calling the embedding Function
list_of_embeddings = [emb_layer1(i) for i in list_of_inputs]
# Dropout Layer
list_of_embeddings = [Dropout(0.50, name='drop1_' + str(i))(j) for i, j in
enumerate(list_of_embeddings)]
# Gaussian Noise Layer
list_of_embeddings = [GaussianNoise(0.05, name='noise1_' + str(i))(j) for i, j in
enumerate(list_of_embeddings)]
# Applying convolution of filter size 4 for each context word
conv4s = [Conv1D(filters=no_filters,
kernel_size=4, padding='valid', activation='relu',
strides=1, name='conv4_' + str(i))(j) for i, j in enumerate(list_of_embeddings)
]
#Max pooling Operation on each context word
maxPool4 = [MaxPooling1D(name='max4_' + str(i))(j) for i, j in enumerate(conv4s)]
# Average Pooling Operation on each context word
avgPool4 = [AveragePooling1D(name='avg4_' + str(i))(j) for i, j in enumerate(conv4s)]
# Adding the max and average pooling element wise
pool4s=[add([i, j], name='merge_conv4_' + str(k)) for i, j, k in zip(maxPool4, avgPool4, range(len(maxPool4)))]
# Repeat Steps for Convolution of filter size 5
conv5s = [Conv1D(filters=no_filters,
kernel_size=5,
padding='valid',
activation='relu',
strides=1, name='conv5_' + str(i))(j) for i, j in enumerate(list_of_embeddings)
]
maxPool5 = [MaxPooling1D(name='max5_' + str(i))(j) for i, j in enumerate(conv5s)]
avgPool5 = [AveragePooling1D(name='avg5_' + str(i))(j) for i, j in enumerate(conv5s)]
pool5s=[add([i, j], name='merge_conv5_' + str(k)) for i, j, k in zip(maxPool5, avgPool5, range(len(maxPool5)))]
# End of convolutions for filter size 5
# Merging the convolutions of both sizes 4 and 5
mergedPools=pool4s+pool5s
# Keras Thing for merging
concat = concatenate(mergedPools, name='main_merge')
# Dropout Layer
x = Dropout(0.15, name='drop_single1')(concat)
# Passing the vector of size (None, 7, 1152) generated by concat operation into bidirectional GRU
x = Bidirectional(GRU(rnn_output_size), name='bidirec1')(x)
# Adding the phonetic features to RNN's output
total_features = [x, phonetic_input]
concat2 = concatenate(total_features, name='phonetic_merging')
# Two Stacks of fully connected Dense Layers with Dropouts
x = Dense(HIDDEN_DIM, activation='relu', kernel_initializer='he_normal',
kernel_constraint=maxnorm(3), bias_constraint=maxnorm(3), name='dense1')(concat2)
x = Dropout(0.15, name='drop_single2')(x)
x = Dense(HIDDEN_DIM, kernel_initializer='he_normal', activation='tanh',
kernel_constraint=maxnorm(3), bias_constraint=maxnorm(3), name='dense2')(x)
x = Dropout(0.15, name='drop_single3')(x)
# Prediction Layer with output size same as no. of categories for each tag
out1 = Dense(n1, kernel_initializer='he_normal', activation='softmax', name='output1')(x)
out2 = Dense(n2, kernel_initializer='he_normal', activation='softmax', name='output2')(x)
out3 = Dense(n3, kernel_initializer='he_normal', activation='softmax', name='output3')(x)
out4 = Dense(n4, kernel_initializer='he_normal', activation='softmax', name='output4')(x)
out5 = Dense(n5, kernel_initializer='he_normal', activation='softmax', name='output5')(x)
out6 = Dense(n6, kernel_initializer='he_normal', activation='softmax', name='output6')(x)
# Luong et al. 2015 attention model
emb_layer = Embedding(Vocabulary_size, EMBEDDING_DIM,
input_length=X_max_len,
mask_zero=True, name='Embedding_for_seq2seq')
current_word_embedding = emb_layer(list_of_inputs[0])
# current_word_embedding = smart_merge([ current_word_embedding, right_word_embedding1, left_word_embedding1])
encoder, state = GRU(rnn_output_size, return_sequences=True, unroll=True, return_state=True, name='encoder')(current_word_embedding)
encoder_last = encoder[:, -1, :]
decoder = emb_layer(decoder_input)
decoder = GRU(rnn_output_size, return_sequences=True, unroll=True, name='decoder')(decoder,initial_state=[encoder_last])
attention = dot([decoder, encoder], axes=[2, 2], name='dot')
attention = Activation('softmax', name='attention')(attention)
context = dot([attention, encoder], axes=[2, 1], name='dot2')
decoder_combined_context = concatenate([context, decoder], name='concatenate')
# End of Attention Model
# Fully Connected Layer before final prediction layer. TimeDistributed is applied because we used sequence to sequence model
outputs = TimeDistributed(Dense(64, activation='tanh'), name='td1')(decoder_combined_context)
# Final Prediction Layer. Fully Connected Layer.
outputs = TimeDistributed(Dense(Vocabulary_size, activation='softmax'), name='td2')(outputs)
all_inputs = [
current_word, decoder_input, right_word1, right_word2,
right_word3, right_word4, left_word1,
left_word2, left_word3, left_word4, phonetic_input
]
all_outputs = [outputs, out1, out2, out3, out4, out5, out6]
# Generate the complete keras model.
model = Model(inputs=all_inputs, outputs=all_outputs)
return model
def format_output_data(predictions, originals, encoders, pred_features, sentences):
pred_features[:] = [x.tolist() for x in pred_features]
for i in range(len(pred_features)):
pred_features[i] = encoders[i].inverse_transform(pred_features[i])
f1, f2, f3, f4, f5, f7 = pred_features
l = []
for a, b, c, d, e, f, g, h in zip(list(originals), list(predictions), f1, f2, f3, f4, f5, f7):
l.append([str(a), str(b), str(c), str(d), str(e), str(f), str(g), str(h)])
return l
# Processes the input to convert it into form feedable to the model. Also parses the output into human readable format
def predict(comment):
# sentence splitting
sentences = [line.split() for line in comment.split('\n')]
global X_max_len, model, n_phonetics, graph
# List of all words in all sentences
X_orig = [item for sublist in sentences for item in sublist]
# Reversing each word
X_wrds = [item[::-1] for sublist in sentences for item in sublist]
# Converting characters to indices
X_wrds_inds = encode_words(X_wrds)
# Generating phonetic features for each word
X_features = [add_basic_features(sent, word_ind) for sent in sentences for word_ind, _ in enumerate(sent)]
# Convert features to indices
X_fts = encode_features(X_features)
# Generate Context Words
X_left1, X_left2, X_left3, X_left4, X_right1, X_right2, X_right3, X_right4 = get_context(X_wrds)
# Dummy Padding
X_wrds_inds = pad_sequences(X_wrds_inds, maxlen=X_max_len, dtype='int32', padding='post')
X_left1 = pad_sequences(X_left1, maxlen=X_max_len, dtype='int32', padding='post')
X_left2 = pad_sequences(X_left2, maxlen=X_max_len, dtype='int32', padding='post')
X_left3 = pad_sequences(X_left3, maxlen=X_max_len, dtype='int32', padding='post')
X_left4 = pad_sequences(X_left4, maxlen=X_max_len, dtype='int32', padding='post')
X_right1 = pad_sequences(X_right1, maxlen=X_max_len, dtype='int32', padding='post')
X_right2 = pad_sequences(X_right2, maxlen=X_max_len, dtype='int32', padding='post')
X_right3 = pad_sequences(X_right3, maxlen=X_max_len, dtype='int32', padding='post')
X_right4 = pad_sequences(X_right4, maxlen=X_max_len, dtype='int32', padding='post')
decoder_input = np.zeros_like(X_wrds_inds)
decoder_input[:, 1:] = X_wrds_inds[:, :-1]
decoder_input[:, 0] = 1
scaler = MinMaxScaler()
# Scaling the phonetic features
scaler.fit(X_fts)
X_fts = scaler.transform(X_fts)
with graph.as_default():
# Calling the predict function
words, f1, f2, f3, f4, f5, f7 = model.predict(
[X_wrds_inds, decoder_input, X_right1, X_right2, X_right3, X_right4, X_left1, X_left2, X_left3,
X_left4, X_fts])
# Extracting the highest probability prediction for lemma
predictions = np.argmax(words, axis=2)
pred_features = [f1, f2, f3, f4, f5, f7]
# Extracting the highest probability prediction for morphological features
pred_features = [np.argmax(i, axis=1) for i in pred_features]
sequences = []
# Generating the output character sequence from indices
for i in predictions:
char_list = []
for idx in i:
if idx > 0:
char_list.append(X_idx2word[idx])
sequence = ''.join(char_list)
sequences.append(sequence)
# Generating features using the decoders
data=format_output_data(sequences, X_orig, enc, pred_features, sentences)
return data
graph = tf.get_default_graph()
if __name__ == "__main__":
n_phonetics = NUM_FEATURES
model = create_model(Vocabulary_size, X_max_len, n_phonetics, n1, n2, n3, n4, n5, n7, HIDDEN_DIM, LAYER_NUM)
model.load_weights('./frozen_training_weights.hdf5')
f=open('input.txt','r')
wf=open('output.txt','w')
sentences=f.readlines()
for sentence in sentences:
result=predict(sentence[:-1])
for word in result:
wf.write('\t'.join(word))
wf.write('\n')
wf.write('\n')
f.close()
wf.close()