-
Notifications
You must be signed in to change notification settings - Fork 0
/
C3D.py
158 lines (127 loc) · 5.53 KB
/
C3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
#modified done
#2019.06.03
#haidong
#total 16 layer
import torch
import torch.nn as nn
class C3D(nn.Module):
def __init__(self,num_classes,pretrained=False):
super(C3D,self).__init__()
self.conv1 = nn.Conv3d(3,64,kernel_size=(3,3,3),padding=(1,1,1))
self.pool1 = nn.MaxPool3d(kernel_size=(1,2,2),stride=(1,2,2))
self.conv2 = nn.Conv3d(64,128,kernel_size=(3,3,3),padding=(1,1,1))
self.pool2 = nn.MaxPool3d(kernel_size=(2,2,2),stride=(2,2,2))
self.conv3a = nn.Conv3d(128,256,kernel_size=(3,3,3),padding=(1,1,1))
self.conv3b = nn.Conv3d(256,256,kernel_size=(3,3,3),padding=(1,1,1))
self.pool3 = nn.MaxPool3d(kernel_size=(2,2,2),stride=(2,2,2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 16, 16), padding=(0, 1, 1))
self.fc6 = nn.Linear(512,4096)
self.fc7 = nn.Linear(4096,4096)
self.fc8 = nn.Linear(4096,num_classes)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
#self.__init_weight()
if pretrained:
self.__load_pretrained_weights()
def forward(self,x):
x = self.relu(self.conv1(x))
x = self.pool1(x)
x = self.relu(self.conv2(x))
x = self.pool2(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool3(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
x = self.pool4(x)
x = self.relu(self.conv5a(x))
x = self.relu(self.conv5b(x))
x = self.pool5(x)
x = x.view(x.shape[0], -1)
x = self.relu(self.fc6(x))
x = self.dropout(x)
x = self.relu(self.fc7(x))
x = self.dropout(x)
logits = self.fc8(x)
return logits
def __load_pretrained_weights(self):
"""Initialiaze network."""
corresp_name = {
# Conv1
"features.0.weight": "conv1.weight",
"features.0.bias": "conv1.bias",
# Conv2
"features.3.weight": "conv2.weight",
"features.3.bias": "conv2.bias",
# Conv3a
"features.6.weight": "conv3a.weight",
"features.6.bias": "conv3a.bias",
# Conv3b
"features.8.weight": "conv3b.weight",
"features.8.bias": "conv3b.bias",
# Conv4a
"features.11.weight": "conv4a.weight",
"features.11.bias": "conv4a.bias",
# Conv4b
"features.13.weight": "conv4b.weight",
"features.13.bias": "conv4b.bias",
# Conv5a
"features.16.weight": "conv5a.weight",
"features.16.bias": "conv5a.bias",
# Conv5b
"features.18.weight": "conv5b.weight",
"features.18.bias": "conv5b.bias",
# fc6
"classifier.0.weight": "fc6.weight",
"classifier.0.bias": "fc6.bias",
# fc7
"classifier.3.weight": "fc7.weight",
"classifier.3.bias": "fc7.bias",
}
"""
p_dict = torch.load(Path.model_dir())
s_dict = self.state_dict()
for name in p_dict:
if name not in corresp_name:
continue
s_dict[corresp_name[name]] = p_dict[name]
self.load_state_dict(s_dict)
def __init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv3d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
"""
def get_1x_lr_params(model):
"""
This generator returns all the parameters for conv and two fc layers of the net.
"""
b = [model.conv1, model.conv2, model.conv3a, model.conv3b, model.conv4a, model.conv4b,
model.conv5a, model.conv5b, model.fc6, model.fc7]
for i in range(len(b)):
for k in b[i].parameters():
if k.requires_grad:
yield k
def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last fc layer of the net.
"""
b = [model.fc8]
for j in range(len(b)):
for k in b[j].parameters():
if k.requires_grad:
yield k
if __name__ == "__main__": # 对自己的网络进行测试的入口;当该文件被调用的时候,不会执行该模块;当不被调用,它可以自己原地执行;进行测试;
data = torch.autograd.Variable(torch.randn(2,3,16,224,224)) #torch.rand(N, C{in}, D{in}, H{in}, W{in}).N is batch.
net = C3D(num_classes=101,pretrained=False)
output = net.forward(data)