-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparaphrase.py
47 lines (36 loc) · 1.63 KB
/
paraphrase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import ollama
import pandas as pd
import argparse
from tqdm import tqdm
# Argument parser setup
parser = argparse.ArgumentParser(
description="Paraphrase medical abstracts in a CSV file with ollama.")
parser.add_argument('--input_file', type=str, default='./medical_tc_train', required=True,
help="Path to the input CSV file.")
parser.add_argument('--output_file', type=str, required=True, default='output',
help="Path to the output CSV file.")
parser.add_argument('--model_name', type=str, required=True,
help="Model name to be used for paraphrasing.")
args = parser.parse_args()
def paraphrase_text(text):
for _ in range(5):
response = ollama.chat(model=args.model_name, messages=[
{'role': 'user', 'content': f"Please paraphrase the following text:\n{text}"}
])
paraphrased_text = response['message']['content'].replace('\n', '')
start_phrase = "Here's a paraphrased version of the text:"
if start_phrase in paraphrased_text:
paraphrased_text = paraphrased_text.split(
start_phrase, 1)[-1].strip()
if paraphrased_text:
print(paraphrased_text)
return paraphrased_text
return None
df = pd.read_csv(args.input_file)
paraphrased_abstracts = []
for abstract in tqdm(df['medical_abstract'], desc="Paraphrasing Abstracts"):
paraphrased_text = paraphrase_text(abstract)
paraphrased_abstracts.append(paraphrased_text)
df['paraphrased_abstract'] = paraphrased_abstracts
df.to_csv(args.output_file, index=False)
print(f"Paraphrased abstracts saved to {args.output_file}")