forked from mnottoli/ddPCM
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.f90
306 lines (306 loc) · 11.9 KB
/
main.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
program main
use ddcosmo
use ddpcm_lib, only: ddpcm, ddpcm_fmm
!
! 888 888 .d8888b. .d88888b. .d8888b. 888b d888 .d88888b.
! 888 888 d88P Y88b d88P" "Y88b d88P Y88b 8888b d8888 d88P" "Y88b
! 888 888 888 888 888 888 Y88b. 88888b.d88888 888 888
! .d88888 .d88888 888 888 888 "Y888b. 888Y88888P888 888 888
! d88" 888 d88" 888 888 888 888 "Y88b. 888 Y888P 888 888 888
! 888 888 888 888 888 888 888 888 "888 888 Y8P 888 888 888
! Y88b 888 Y88b 888 Y88b d88P Y88b. .d88P Y88b d88P 888 " 888 Y88b. .d88P
! "Y88888 "Y88888 "Y8888P" "Y88888P" "Y8888P" 888 888 "Y88888P"
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! COPYRIGHT (C) 2015 by Filippo Lipparini, Benjamin Stamm, Paolo Gatto !
! Eric Cancès, Yvon Maday, Jean-Philip Piquemal, Louis Lagardère and !
! Benedetta Mennucci. !
! ALL RIGHT RESERVED. !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!
! A modular implementation of COSMO using a domain decomposition linear scaling
! strategy.
!
! This code is governed by the LGPL license and abiding by the rules of
! distribution of free software.
! This program is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE.
! See the GNU Lesser General Public License for more details.
!
! Users of this code are asked to include the following references in their
! publications:
!
! [1] E. Cancès, Y. Maday, B. Stamm
! "Domain decomposition for implicit solvation models"
! J. Chem. Phys. 139, 054111 (2013)
!
! [2] F. Lipparini, B. Stamm, E. Cancès, Y. Maday, B. Mennucci
! "Fast Domain Decomposition Algorithm for Continuum Solvation Models:
! Energy and First Derivatives"
! J. Chem. Theory Comput. 9, 3637–3648 (2013)
!
! Also, include one of the three following reference depending on whether you
! use this code in conjunction with a QM [3], Semiempirical [4] or Classical [5]
! description of the solute:
!
! [3] F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday,
! J.-P. Piquemal, M. J. Frisch, B. Mennucci
! "Quantum, classical, and hybrid QM/MM calculations in solution: General
! implementation of the ddCOSMO linear scaling strategy"
! J. Chem. Phys. 141, 184108 (2014)
! (for quantum mechanical models)
!
! [4] F. Lipparini, L. Lagardère, G. Scalmani, B. Stamm, E. Cancès, Y. Maday,
! J.-P. Piquemal, M. J. Frisch, B. Mennucci
! "Quantum Calculations in Solution for Large to Very Large Molecules:
! A New Linear Scaling QM/Continuum Approach"
! J. Phys. Chem. Lett. 5, 953-958 (2014)
! (for semiempirical models)
!
! [5] F. Lipparini, L. Lagardère, C. Raynaud, B. Stamm, E. Cancès, B. Mennucci
! M. Schnieders, P. Ren, Y. Maday, J.-P. Piquemal
! "Polarizable Molecular Dynamics in a Polarizable Continuum Solvent"
! J. Chem. Theory Comput. 11, 623-634 (2015)
! (for classical models, including polarizable force fields
!
! The users of this code should also include the appropriate reference to the
! COSMO model. This distribution includes the routines to generate lebedev
! grids by D. Laikov and C. van Wuellen, as publicly available on CCL. If the routines
! are used, the following reference should also be included:
!
! [6] V.I. Lebedev, and D.N. Laikov
! "A quadrature formula for the sphere of the 131st
! algebraic order of accuracy"
! Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
!
! Written by Filippo Lipparini, October 2015
! Paolo Gatto, December 2017
! Filippo Lipparini, March 2018
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !
! Sample interface with the ddcosmo module. !
! This program reads the various ddcosmo parameters and the geometrical !
! information of the molecule from a text file. The solute is described !
! by point charges, which are also read from a file. !
! Finally, the van der Waals radii are also read in. !
! !
! This program shows how to call the ddcosmo routines and how to initialize !
! the various ddcosmo quantities; also, shows where the user should place !
! his/her routines to compute the molecular electrostatic quantities. !
! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
implicit none
!
integer :: i, ii, isph, ig, n
real*8 :: tobohr, esolv, xx(1)
real*8, parameter :: toang=0.52917721092d0, tokcal=627.509469d0
!
! quantities to be allocated by the user.
! - solute's parameters, such as coordinates, vdw radii and
! point charges used to model the solute (or multipoles, or
! qm density...)
!
real*8, allocatable :: x(:), y(:), z(:), rvdw(:), charge(:)
!
! - electrostatic potential phi(ncav) and psi vector psi(nbasis,n)
!
real*8, allocatable :: phi(:), psi(:,:)
!
! - ddcosmo solution sigma (nbasis,n) and adjoint solution s(nbasis,n)
!
real*8, allocatable :: sigma(:,:), s(:,:)
!
! - forces:
!
real*8, allocatable :: fx(:,:), zeta(:), ef(:,:)
!
! - performance measurement
!
real*8 :: start_time, finish_time
!
! - for qm solutes, fock matrix contribution.
!
! here, we read all the ddcosmo parameters from a file named Input.txt
!
open (unit=100,file='Input.txt',form='formatted',access='sequential')
!
! scalar parameters. the variables are defined in the ddcosmo module and are common to
! all the ddcosmo routines (no need to declare them if ddcosmo.mod is loaded.)
!
read(100,*) iprint ! printing flag
read(100,*) nproc ! number of openmp threads
read(100,*) lmax ! max angular momentum of spherical harmonics basis
read(100,*) ngrid ! number of lebedev points
read(100,*) iconv ! 10^(-iconv) is the convergence threshold for the iterative solver
read(100,*) igrad ! whether to compute (1) or not (0) forces
read(100,*) eps ! dielectric constant of the solvent
read(100,*) eta ! regularization parameter
!
read(100,*) n ! number of atoms
!
allocate (x(n),y(n),z(n),rvdw(n),charge(n))
!
! we also read from the same file the charges, coordinates and vdw radii.
! in this example, the coordinates and radii are read in angstrom and
! converted in bohr before calling ddinit.
!
do i = 1, n
read(100,*) charge(i), x(i), y(i), z(i), rvdw(i)
end do
tobohr = 1.0d0/toang
x = x*tobohr
y = y*tobohr
z = z*tobohr
rvdw = rvdw*tobohr
!
close (100)
!
! call the initialization routine. this routine allocates memory, computes some
! quantities for internal use and creates and fills an array ccav(3,ncav) with
! the coordinates of the grid points at which the user needs to compute the potential.
! ncav is the number of external grid points and nbasis the number of spherical
! harmonics functions used for the expansion of the various ddcosmo quantities;
! both are computed by ddinit and defined as common variables in ddcosmo.mod.
!
call ddinit(n,x,y,z,rvdw)
!
allocate (phi(ncav),psi(nbasis,n))
!
! -------------------------- modify here --------------------------
!
! place here your favorite routine to assemble the solute's electrostatic potential
! and the "psi" vector. Such a routine should replace "mkrhs".
! for classical solutes, assembling the psi vector is straightforward; for qm solutes
! it requires a numerical integration (similar to the one used to compute the xc
! contributions in dft), as detaild in J. Chem. Phys. 141, 184108
! here, we compute the potential and the psi vector using the supplied routine mkrhs,
! which needs to be replaced by your routine.
!
call mkrhs(n,charge,x,y,z,ncav,ccav,phi,nbasis,psi)
!
! -------------------------- end modify --------------------------
!
! now, call the ddcosmo solver
!
allocate (sigma(nbasis,n))
!
! call cosmo(.false., .true., phi, xx, psi, sigma, esolv)
call cpu_time(start_time)
call ddpcm(phi,psi,esolv)
call cpu_time(finish_time)
write(6,*) 'ddpcm esolv: ', esolv
write(6,*) 'ddpcm time: ', finish_time-start_time
return
call cosmo(.false.,.true.,phi, xx, psi, sigma, esolv)
write(6,*) 'ddcosmo esolv:', esolv
!
if (iprint.ge.3) call prtsph('solution to the ddCOSMO equation',nsph,0,sigma)
!
write (6,'(1x,a,f14.6)') 'ddcosmo electrostatic solvation energy (kcal/mol):', esolv*tokcal
stop
!
! this is all for the energy. if the forces are also required, call the solver for
! the adjoint problem.
! the solution to the adjoint system is required also to compute the Fock matrix
! contributions.
!
if (igrad.eq.1) then
write(6,*)
allocate (s(nbasis,n))
allocate (fx(3,n))
call cosmo(.true., .false., xx, xx, psi, s, esolv)
!
if (iprint.ge.3) call prtsph('solution to the ddCOSMO adjoint equation',nsph,0,s)
!
! now call the routine that computes the ddcosmo specific contributions to the forces.
!
call forces_dd(n,phi,sigma,s,fx)
!
! form the "zeta" intermediate
!
allocate (zeta(ncav))
call ddmkzeta(s,zeta)
!
if (iprint.ge.4) call ptcart('zeta',nsph,0,zeta)
!
! -------------------------- modify here --------------------------
!
! finally, add the contributions that depend on the derivatives of the potential
! on the derivatives of the potential, i.e., the electric field
! produced by the solute at the cavity points times the ddcosmo intermediate zeta
! and the solute's potential derivatives at the cavity points times zeta.
! the two terms are described in JCP, 141, 184108, eqs. 47, 48.
!
! for a solute represented by point charges, the two terms can be rearranged as zeta
! contracted with the electric field of the solute plus the electric field produced
! by zeta, which have the physical dimension of a charge, at the nuclei times the
! charges. This rearrangement allows one to use fast summations methods, such as the
! fast multipole method, for this task.
!
! a routine for point charges that follows the aformentioned strategy is provided as
! an example (efld). note that the coordinates should be packed into an array of
! dimension (3,n). we use csph, as it contains exactly this.
! the user will need to replace efld with his/her favorite routine.
!
allocate(ef(3,max(n,ncav)))
!
! 1. solute's electric field at the cav points times zeta:
!
! compute the electric field
!
call efld(n,charge,csph,ncav,ccav,ef)
!
! contract it with the zeta intermediate
!
ii = 0
do isph = 1, nsph
do ig = 1, ngrid
if (ui(ig,isph).gt.zero) then
ii = ii + 1
fx(:,isph) = fx(:,isph) - zeta(ii)*ef(:,ii)
end if
end do
end do
!
! 2. "zeta's" electric field at the nuclei times the charges.
!
! compute the "electric field"
!
call efld(ncav,zeta,ccav,n,csph,ef)
!
! contract it with the solute's charges.
!
do isph = 1, nsph
fx(:,isph) = fx(:,isph) - ef(:,isph)*charge(isph)
end do
!
! for point charges, there is no contribution from the derivatives of the psi vector.
! for quantum mechanical solutes, such a contribution needs to be handled via a numerical
! integration.
!
! -------------------------- end modify --------------------------
!
deallocate (zeta, ef)
!
if (iprint.ge.1) then
write(iout,2000)
2000 format(1x,'ddCOSMO forces (atomic units):',/, &
1x,' atom',15x,'x',15x,'y',15x,'z')
do isph = 1, nsph
write(6,'(1x,i5,3f16.8)') isph, fx(:,isph)
end do
end if
end if
!
! clean up:
!
deallocate (x,y,z,rvdw,charge,phi,psi,sigma)
!
if (igrad.eq.1) deallocate (s,fx)
call memfree
!
end program main