forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_headmovement.m
329 lines (286 loc) · 11.8 KB
/
ft_headmovement.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
function [varargout] = ft_headmovement(cfg)
% FT_HEADMOVEMENT creates a raw data structure, or cell-array of datastructures
% containing the HLC-coil data, which have a grad structure that has the
% head position information incorporated.
%
% Use as
% data = ft_headmovement(cfg)
%
% where the configuration should contain
% cfg.dataset = string with the filename
% cfg.method = string, 'updatesens' (default), 'cluster', 'avgoverrpt',
% 'pertrial_cluster', 'pertrial' (default = 'updatesens')
%
% optional arguments are
% cfg.trl = empty (default), or Nx3 matrix with the trial
% definition (see FT_DEFINETRIAL). When specified as empty,
% the whole recording is used.
% cfg.numclusters = number of segments with constant headposition in
% which to split the data (default = 10). This argument
% is only used for the clustering methods.
%
% If cfg.method = 'updatesens', the grad in the single output structure has
% a specification of the coils expanded as per the centroids of the position
% clusters. The balancing matrix is s a weighted concatenation of the
% original tra-matrix. This method requires cfg.numclusters to be specified
%
% If cfg.method = 'avgoverrpt', the grad in the single output structure has
% a specification of the coils according to the average head position
% across the specified samples.
%
% If cfg.method = 'cluster', the cell-array of output structures represent
% the epochs in which the head was considered to be positioned close to the
% corresponding kmeans-cluster's centroid. The corresponding grad-structure
% is specified according to this cluster's centroid. This method requires
% cfg.numclusters to be specified.
%
% If cfg.method = 'pertrial', the cell-array of output structures contains
% single trials, each trial with a trial-specific grad structure. Note that
% this is extremely memory inefficient with large numbers of trials, and
% probably an overkill.
%
% If cfg.method = 'pertrial_clusters', the cell-array of output structures
% contains sets of trials where the trial-specific head position was
% considered to be positioned close to the corresponding kmeans-cluster's
% centroid. The corresponding grad-structure is specified accordin to the
% cluster's centroid. This method requires cfg.numclusters to be specified.
%
% The updatesens method and related methods are described by Stolk et al., Online and
% offline tools for head movement compensation in MEG. NeuroImage, 2012.
%
% See also FT_REGRESSCONFOUND FT_REALTIME_HEADLOCALIZER
% Copyright (C) 2008-2018, Jan-Mathijs Schoffelen, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
% FIXME: consider allowing a data structure as input.
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes');
% set the defaults
cfg.method = ft_getopt(cfg, 'method', 'updatesens'); % 'pertrial', 'pertrial_cluster', 'avgoverrpt', 'cluster'
cfg.numclusters = ft_getopt(cfg, 'numclusters', 10);
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
if isequal(cfg.method,'updatesens') || isequal(cfg.method, 'pertrial_cluster') || isequal(cfg.method, 'cluster')
dokmeans = true;
else
dokmeans = false;
end
% read the header information and check whether it's a CTF dataset with HLC information
hdr = ft_read_header(cfg.headerfile);
assert(numel(intersect(hdr.label, {'HLC0011' 'HLC0012' 'HLC0013' 'HLC0021' 'HLC0022' 'HLC0023' 'HLC0031' 'HLC0032' 'HLC0033'}))==9, 'the data does not contain the expected head localizer channels');
grad_head = ctf2grad(hdr.orig, 0);
grad_head = ft_datatype_sens(grad_head); % ensure up-to-date sensor description (Oct 2011)
grad_dewar = ctf2grad(hdr.orig, 1);
grad_dewar = ft_datatype_sens(grad_dewar); % ensure up-to-date sensor description (Oct 2011)
grad = grad_dewar; % we want to work with dewar coordinates, ...
grad.chanpos = grad_head.chanpos;
% read the HLC-channels
% HLC0011 HLC0012 HLC0013 x, y, z coordinates of nasion-coil in m.
% HLC0021 HLC0022 HLC0023 x, y, z coordinates of lpa-coil in m.
% HLC0031 HLC0032 HLC0033 x, y, z coordinates of rpa-coil in m.
if ~isfield(cfg, 'trl') || isempty(cfg.trl)
cfg.trl = [1 hdr.nTrials.*hdr.nSamples 0];
end
tmpcfg = [];
tmpcfg.dataset = cfg.dataset;
tmpcfg.trl = cfg.trl;
tmpcfg.channel = {'HLC0011' 'HLC0012' 'HLC0013' 'HLC0021' 'HLC0022' 'HLC0023' 'HLC0031' 'HLC0032' 'HLC0033'};
tmpcfg.continuous = 'yes';
data = ft_preprocessing(tmpcfg);
data = removefields(data, 'elec'); % this slows down a great
% rendering the persistent variable trick useless.
% we don't need the elec anyway
wdat = cellfun('size', data.time, 2); % weights for weighted average
trial_index = cell(1,numel(data.trial));
for k = 1:numel(data.trial)
% it sometimes happens that data are numerically 0, which causes problems downstream, replace with nans
data.trial{k}(:,sum(data.trial{k}==0)==9) = nan;
% create a bookkeeping cell-array, indexing the trial-indx
trial_index{k} = k.*ones(1,numel(data.time{k}));
end
% average across time if needed
if isequal(cfg.method, 'pertrial') || isequal(cfg.method, 'avgoverrpt') || isequal(cfg.method, 'pertrial_cluster')
tmpcfg = [];
tmpcfg.avgovertime = 'yes';
tmpcfg.nanmean = 'yes';
data_timeavg = ft_selectdata(tmpcfg, data);
% concatenate across trials and scale the units
dat = cat(2, data_timeavg.trial{:});
else
% concatenate across trials and scale the units
dat = cat(2, data.trial{:});
end
% scale in units of the gradiometer definition, which is probably cm
dat = dat * ft_scalingfactor('m', grad.unit);
if isequal(cfg.method, 'pertrial_cluster')
trl_idx = 1:numel(data.trial);
else
trl_idx = cat(2, trial_index{:});
end
% average across trials if needed
if isequal(cfg.method, 'avgoverrpt')
dat = sum(dat*diag(wdat), 2)./sum(wdat);
end
% remove duplicates if clustering is to be performed
if dokmeans && ~isequal(cfg.method, 'pertrial_cluster')
[tmpdata, dum, ic] = unique(dat', 'rows');
dat = tmpdata';
% count how often each position occurs
wdat = hist(ic, unique(ic));
end
% perform the clustering if needed
if dokmeans
% compute the cluster means
[bin, dat] = kmeans(dat', cfg.numclusters, 'EmptyAction', 'drop');
% create a cell-array 1xnrpt with time specific indices of cluster id
cluster_id = cell(1,numel(data.trial));
for k = 1:numel(data.trial)
cluster_id{k} = nan+zeros(1,numel(data.time{k}));
if ~isequal(cfg.method, 'pertrial_cluster')
for m = 1:size(dat,1)
tmpdat = ic(trl_idx==k);
cluster_id{k}(ismember(tmpdat, find(bin==m))) = m;
end
else
cluster_id{k}(:) = bin(k);
end
end
else
bin = 1:size(dat,2);
dat = dat';
end
% find the three channels for each fiducial
selnas = match_str(data.label,{'HLC0011';'HLC0012';'HLC0013'});
sellpa = match_str(data.label,{'HLC0021';'HLC0022';'HLC0023'});
selrpa = match_str(data.label,{'HLC0031';'HLC0032';'HLC0033'});
ubin = unique(bin(isfinite(bin)));
nas = zeros(numel(ubin),3);
lpa = zeros(numel(ubin),3);
rpa = zeros(numel(ubin),3);
numperbin = zeros(numel(ubin),1);
for k = 1:length(ubin)
nas(k, :) = dat(k, selnas);
lpa(k, :) = dat(k, sellpa);
rpa(k, :) = dat(k, selrpa);
numperbin(k) = sum(wdat(bin==ubin(k)));
end
hc = read_ctf_hc([cfg.datafile(1:end-4),'hc']);
if istrue(cfg.feedback)
% plot some stuff
figure; hold on;
title(sprintf('%s coordinates (%s)', grad_dewar.coordsys, grad_dewar.unit));
ft_plot_axes(grad_dewar);
ft_plot_sens(grad_dewar);
fiducials = [nas;lpa;rpa];
plot3(fiducials(:,1), fiducials(:,2), fiducials(:,3), 'b.');
plot3(hc.dewar.nas(1), hc.dewar.nas(2), hc.dewar.nas(3), 'ro');
plot3(hc.dewar.lpa(1), hc.dewar.lpa(2), hc.dewar.lpa(3), 'ro');
plot3(hc.dewar.rpa(1), hc.dewar.rpa(2), hc.dewar.rpa(3), 'ro');
axis vis3d; axis off
end
% compute transformation matrix from dewar to head coordinates
dewar2head = zeros(4, 4, size(nas,1));
for k = 1:size(dewar2head, 3)
dewar2head(:,:,k) = ft_headcoordinates(nas(k,:), lpa(k,:), rpa(k,:), 'ctf');
end
if isequal(cfg.method, 'updatesens')
npos = size(dewar2head, 3);
ncoils = size(grad.coilpos, 1);
gradnew = grad;
gradnew.coilpos = zeros(size(grad.coilpos,1)*npos, size(grad.coilpos,2));
gradnew.coilori = zeros(size(grad.coilpos,1)*npos, size(grad.coilpos,2));
gradnew.tra = repmat(grad.tra, [1 npos]);
for m = 1:npos
tmptransform = dewar2head(:,:,m);
gradnew.coilpos((m-1)*ncoils+1:(m*ncoils), :) = ft_warp_apply(tmptransform, grad.coilpos); % back to head coordinates
tmptransform(1:3, 4) = 0; % keep only the rotation
gradnew.coilori((m-1)*ncoils+1:(m*ncoils), :) = ft_warp_apply(tmptransform, grad.coilori);
gradnew.tra(:, (m-1)*ncoils+1:(m*ncoils)) = grad.tra.*(numperbin(m)./sum(numperbin));
end
grad = gradnew;
else
npos = size(dewar2head, 3);
for k = 1:npos
grad(k) = ft_transform_geometry(dewar2head(:,:,k), grad_dewar);
end
end
% prepare the output data
switch cfg.method
case 'cluster'
varargout = cell(1,numel(grad));
tmpdata = data;
tmpdata.trial = cluster_id;
tmpdata.label = {'cluster_id'};
data = ft_appenddata([],data,tmpdata);
for k = 1:numel(grad)
tmpcfg = [];
tmpcfg.artfctdef.bpfilter = 'no';
tmpcfg.artfctdef.threshold.channel = {'cluster_id'};
tmpcfg.artfctdef.threshold.min = 0.9+k-1;
tmpcfg.artfctdef.threshold.max = 1.1+k-1;
tmpcfg = ft_artifact_threshold(tmpcfg, tmpdata);
artifacts = tmpcfg.artfctdef.threshold.artifact;
tmpcfg = [];
tmpcfg.artfctdef.reject = 'partial';
tmpcfg.artfctdef.threshold.artifact = artifacts;
tmpdata_clus = ft_rejectartifact(tmpcfg, data);
tmpdata_clus.grad = grad(k);
varargout{k} = tmpdata_clus;
end
case {'avgoverrpt' 'updatesens'}
data.grad = grad;
varargout{1} = data;
case 'pertrial'
ft_error('not yet implemented');
case 'pertrial_cluster'
varargout = cell(1,numel(grad));
tmpdata = data;
tmpdata.trial = cluster_id;
tmpdata.label = {'cluster_id'};
data = ft_appenddata([],data,tmpdata);
for k = 1:numel(grad)
tmpcfg = [];
tmpcfg.trials = find(bin==k);
tmpdata_clus = ft_selectdata(tmpcfg, data);
%tmpcfg.previous = tmpdata_clus.cfg;
%tmpdata_clus.cfg = tmpcfg;
tmpdata_clus.grad = grad(k);
varargout{k} = tmpdata_clus;
end
end % switch method
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble previous varargout
ft_postamble history varargout
ft_postamble savevar varargout