-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_gray.py
68 lines (59 loc) · 2.34 KB
/
test_gray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import os
import argparse
import glob
from torch.autograd import Variable
from model.net import SMNet
from utils import *
# python test_gray.py -c 40 --mode S --test_noiseL 15 --test_data Set12
parser = argparse.ArgumentParser(description="SMNet_gray Test")
parser.add_argument("--checkpoint", "-c", type=int, default="40", help='checkpoint of model')
parser.add_argument("--test_data", type=str, default='Set12', choices=["Set12", "Set68"], help='test on Set12, Set68')
parser.add_argument("--test_noiseL", type=float, default=15, help='noise level used on test set')
parser.add_argument("--mode", type=str, default="S", choices=['S', 'B'], help='with known noise level (S) or blind training (B)')
opt = parser.parse_args()
def normalize(data):
return data/255.
def main():
# Build model
print('Loading model ...\n')
net = SMNet(in_channels=1)
model = torch.nn.DataParallel(net, device_ids=[0]).cuda()
if opt.mode == 'S':
model.load_state_dict(torch.load(os.path.join("weights","model_gray_L%d_%d.pth" %(opt.test_noiseL, opt.checkpoint))))
else:
model.load_state_dict(torch.load(os.path.join("weights", "model_gray_B_%d.pth" % (opt.checkpoint))))
model.eval()
# load data info
print('Loading data info ...\n')
files_source = glob.glob(os.path.join('data', opt.test_data, '*'))
files_source.sort()
# process data
psnr_test = 0
for f in files_source:
# image
Img = cv2.imread(f, 0)
Img = torch.tensor(Img)
Img = torch.unsqueeze(Img, 0)
Img = Img.numpy()
Img = np.tile(Img,(1,1,1,1)) #expand the dimensional
Img = np.float32(normalize(Img))
ISource = torch.Tensor(Img)
# noise
torch.manual_seed(0)
noise = torch.FloatTensor(ISource.size()).normal_(mean=0, std=opt.test_noiseL/255.)
# noisy image
INoisy = ISource + noise
ISource = Variable(ISource)
INoisy = Variable(INoisy)
ISource= ISource.cuda()
INoisy = INoisy.cuda()
with torch.no_grad(): # this can save much memory
Out = torch.clamp(model(INoisy), 0., 1.)
psnr = batch_PSNR(Out, ISource, 1.)
psnr_test += psnr
print("%s PSNR %f" % (f, psnr))
psnr_test /= len(files_source)
print("\nPSNR on test data %f" % psnr_test)
if __name__ == "__main__":
main()