-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict_mnist.py
63 lines (49 loc) · 1.7 KB
/
predict_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cv2
import sys
import os
import numpy as np
import logging as log
from time import time
from openvino.inference_engine import IENetwork, IEPlugin
im_path = 'data/6.jpg'
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
model_xml = "IR_model/IR_model.xml"
model_bin = "IR_model/IR_model.bin"
# Plugin initialization for specified device
plugin = IEPlugin(device="MYRIAD")
# Read IR
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
log.info("Preparing input blobs")
input_blob = next(iter(net.inputs))
out_blob = next(iter(net.outputs))
# Prepare image
n, c, h, w = net.inputs[input_blob].shape
print(n, c, h, w)
prepimg = np.ndarray(shape=(n, c, h, w))
# Read image as grayscale
im = cv2.imread(im_path, 0)
# Resize image
resized_image = cv2.resize(im, (28, 28), interpolation = cv2.INTER_CUBIC)
# Change data layout from HW to NCHW
prepimg[0,0,:,:] = resized_image
# Loading model to the plugin
log.info("Loading model to the plugin")
exec_net = plugin.load(network=net)
del net
# Start sync inference
log.info("Starting inference ({} iterations)".format(1))
infer_time = []
t0 = time()
res = exec_net.infer(inputs={input_blob: prepimg})
infer_time.append((time()-t0)*1000)
log.info("Average running time of one iteration: {} ms".format(np.average(np.asarray(infer_time))))
# Processing output blob
log.info("Processing output blob")
res = res[out_blob]
print(res)
del exec_net
del plugin
if __name__ == "__main__":
main()