-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoneChatbot_TinyGPT-1M_vietnamese_fine-tune.py
93 lines (76 loc) · 3.08 KB
/
oneChatbot_TinyGPT-1M_vietnamese_fine-tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
# Author: Mr.Jack _ Công ty www.BICweb.vn
# Date: 30 October 2023
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Step 1: Pretrained loading
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-1M')
# Step 2: Define the optimizer and learning rate scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=0.05)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
# Step 3: Fine-tune the model
model.to(device)
model.train()
# Define the questions and answers
qa_pair = 'Question: Xin chào \nAnswer: Công ty BICweb kính chào quý khách!.'
input_ids = tokenizer.encode(text=qa_pair, add_special_tokens=True, return_tensors='pt').to(device)
print(f"\n1: {qa_pair}")
for epoch in range(150):
loss = model(input_ids=input_ids, labels=input_ids)[0]
print(f"Epoch {epoch}, Loss {loss.item():.3f}")
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if loss <= 0.01:
break
# Generate responses to new questions
model.eval()
def generate_answer(question):
# Encode the question using the tokenizer
input_ids = tokenizer.encode(question, add_special_tokens=False, return_tensors='pt').to(device)
# Generate the answer using the model
sample_output = model.generate(input_ids, pad_token_id=2, eos_token_id=50256, max_length=256, do_sample=True, top_k=100, top_p=0.9, temperature=0.6).to(device)
# Decode the generated answer using the tokenizer
answer = tokenizer.decode(sample_output[0], skip_special_tokens=True)
sentences = answer.split('.')
return sentences[0]
# # Example usage
question = 'Question: Xin chào'
response = generate_answer(question)
print(f"\n{response}\n")
"""
GPTNeoForCausalLM(
(transformer): GPTNeoModel(
(wte): Embedding(50257, 64)
(wpe): Embedding(2048, 64)
(drop): Dropout(p=0.0, inplace=False)
(h): ModuleList(
(0-7): 8 x GPTNeoBlock(
(ln_1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(attn): GPTNeoAttention(
(attention): GPTNeoSelfAttention(
(attn_dropout): Dropout(p=0.0, inplace=False)
(resid_dropout): Dropout(p=0.0, inplace=False)
(k_proj): Linear(in_features=64, out_features=64, bias=False)
(v_proj): Linear(in_features=64, out_features=64, bias=False)
(q_proj): Linear(in_features=64, out_features=64, bias=False)
(out_proj): Linear(in_features=64, out_features=64, bias=True)
)
)
(ln_2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(mlp): GPTNeoMLP(
(c_fc): Linear(in_features=64, out_features=256, bias=True)
(c_proj): Linear(in_features=256, out_features=64, bias=True)
(act): NewGELUActivation()
(dropout): Dropout(p=0.0, inplace=False)
)
)
)
(ln_f): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=64, out_features=50257, bias=False)
)
"""