-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathapp.py
176 lines (138 loc) · 4.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import json
import logging
import re
import traceback
from pathlib import Path
from typing import Iterator
import click
import faiss
import numpy as np
import requests
from bs4 import BeautifulSoup
import settings
import llamafile_client as llamafile
logger = logging.getLogger(__name__)
def chunk_text(text: str) -> Iterator[str]:
if settings.INDEX_TEXT_CHUNK_LEN > 0:
chunk_len = min(settings.INDEX_TEXT_CHUNK_LEN, settings.EMBEDDING_MODEL_MAX_LEN)
else:
chunk_len = settings.EMBEDDING_MODEL_MAX_LEN
text = re.sub(r"\s+", " ", text)
tokens = llamafile.tokenize(text, port=settings.EMBEDDING_MODEL_PORT)
for i in range(0, len(tokens), chunk_len):
yield llamafile.detokenize(tokens[i : i + chunk_len])
def load_data_for_indexing() -> Iterator[str]:
for url in settings.INDEX_URLS:
try:
response = requests.get(url)
response.raise_for_status()
text = BeautifulSoup(response.text, "html.parser").get_text()
for chunk in chunk_text(text):
yield chunk
except Exception as e:
traceback.print_exc()
logger.error(f"skipping {url}: {e}")
continue
for directory in settings.INDEX_LOCAL_DATA_DIRS:
for path in Path(directory).rglob("*.txt"):
with open(path, "r") as f:
text = f.read()
for chunk in chunk_text(text):
yield chunk
def embed(text: str) -> np.ndarray:
embedding = llamafile.embed(text)
# why L2-normalize here?
# see: https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances#how-can-i-index-vectors-for-cosine-similarity
faiss.normalize_L2(embedding)
return embedding
def build_index():
savedir = Path(settings.INDEX_SAVE_DIR)
if savedir.exists():
logger.info("index already exists @ %s, will not overwrite", savedir)
return
embedding_dim = llamafile.embed("Apples are red.").shape[-1]
# index uses cosine similarity
# see: https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances#how-can-i-index-vectors-for-cosine-similarity
index = faiss.IndexFlatIP(embedding_dim)
docs = []
for text in load_data_for_indexing():
embedding = embed(text)
index.add(embedding)
docs.append(text)
savedir.mkdir(parents=True)
faiss.write_index(index, str(savedir / "index.faiss"))
with open(savedir / "index.json", "w") as fout:
json.dump(docs, fout)
def load_index():
savedir = Path(settings.INDEX_SAVE_DIR)
if not savedir.exists():
raise FileNotFoundError(f"index not found @ {savedir}")
index = faiss.read_index(str(savedir / "index.faiss"))
logger.info("index with %d entries loaded from %s", index.ntotal, savedir)
with open(savedir / "index.json", "r") as fin:
docs = json.load(fin)
return index, docs
def pprint_search_results(scores: np.ndarray, doc_indices: np.ndarray, docs: list[str]):
print("=== Search Results ===")
for i, doc_ix in enumerate(doc_indices[0]):
print('%.4f - "%s"' % (scores[0, i], docs[doc_ix][:100]))
print()
SEP = "-"*80
def run_query(k: int, index: faiss.IndexFlatIP, docs: list[str]):
query = click.prompt(
text="Enter query (ctrl-d to quit):",
prompt_suffix="> ",
default="What does Alice like?",
show_default=True,
)
print("=== Query ===")
print(query)
print()
# Vector search for top-k most similar documents
emb = embed(query)
scores, doc_indices = index.search(emb, k)
pprint_search_results(scores, doc_indices, docs)
search_results = [docs[ix] for ix in doc_indices[0]]
print("=== Prompt ===")
prompt_template = (
"You are an expert Q&A system. Answer the user's query using the provided context information.\n"
"Context information:\n"
"%s\n"
"Query: %s"
)
prompt = prompt_template % ("\n".join(search_results), query)
print(f'"{prompt}"')
prompt_ntokens = len(llamafile.tokenize(prompt, port=settings.GENERATION_MODEL_PORT))
print(f"(prompt_ntokens: {prompt_ntokens})")
print()
print()
print("=== Answer ===")
answer = llamafile.completion(prompt)
print(f'"{answer}"')
print()
print(SEP)
@click.group(invoke_without_command=True)
@click.pass_context
def cli(ctx: click.Context):
# Invoke `rag` by default
if ctx.invoked_subcommand is None:
ctx.invoke(rag)
@cli.command()
@click.option(
"-k",
"--k-search-results",
default=3,
help="Number of search results to add to the prompt.",
)
def rag(k_search_results: int):
index, docs = load_index()
while True:
run_query(k_search_results, index, docs)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
build_index()
cli()