-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
278 lines (185 loc) · 6.14 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import argparse
import json
from smiles_rl.configuration_envelope import ConfigurationEnvelope
from typing import Optional, Dict, Type, Any
from smiles_rl.utils.general import set_default_device_cuda
import importlib
from smiles_rl.agent.base_agent import BaseAgent
from dacite import from_dict
def load_dynamic_class(
name_spec: str,
default_module: Optional[str] = None,
exception_cls: Type[Exception] = ValueError,
):
if name_spec is None:
raise KeyError(f"Key method not found in scoring function config")
if "." not in name_spec:
name = name_spec
if not default_module:
raise exception_cls(
"Must provide default_module argument if not given in name_spec"
)
module_name = default_module
else:
module_name, name = name_spec.rsplit(".", maxsplit=1)
try:
loaded_module = importlib.import_module(module_name)
except ImportError:
raise exception_cls(f"Unable to load module: {module_name}")
if not hasattr(loaded_module, name):
raise exception_cls(
f"Module ({module_name}) does not have a class called {name}"
)
return getattr(loaded_module, name)
def run(
config: ConfigurationEnvelope,
agent,
) -> None:
print("Starting run", flush=True)
batch_size = config.reinforcement_learning.parameters.batch_size
n_steps = config.reinforcement_learning.parameters.n_steps
for _ in range(n_steps):
_run(batch_size, agent)
agent.log_out()
def _run(
batch_size: int,
agent: BaseAgent,
) -> None:
smiles = agent.act(batch_size)
assert len(smiles) <= batch_size, "Generated more SMILES strings than requested"
agent.update(smiles)
def _read_json_file(path: str) -> Dict[str, Any]:
"""Reads json config file
Args:
path (str): Path to json file with configuration
Returns:
dict: Dictionary containing configurations from json file
"""
print("Rading JSON file", flush=True)
with open(path) as f:
json_input = f.read().replace("\r", "").replace("\n", "")
try:
config = json.loads(json_input)
except (ValueError, KeyError, TypeError) as e:
print(f"JSON format error in file ${path}: \n ${e}")
return config
def _construct_logger(config: ConfigurationEnvelope):
"""Creates logger instance
Args:
config (ConfigurationEnvelope): configuration settings
Returns:
logger instance
"""
name_spec = config.logging.method
if name_spec is not None:
method_class = load_dynamic_class(name_spec)
else:
raise KeyError(f"Key method not found in logging config")
logger = method_class(config)
return logger
def _construct_scoring_function(config: ConfigurationEnvelope):
"""Creates scoring function instance
Args:
config (ConfigurationEnvelope): configuration settings
Returns:
scoring function instance
"""
name_spec = config.scoring_function.method
method_class = load_dynamic_class(name_spec)
scoring_function = method_class(config)
return scoring_function
def _construct_agent(
config: ConfigurationEnvelope,
logger,
scoring_function,
diversity_filter,
replay_buffer,
) -> BaseAgent:
"""Creates agent
Args:
config (ConfigurationEnvelope): _description_
logger: logger instance
scoring_function: scoring function instance
diversity_filter: diversity filter instance
replay_buffer: replay buffer instance
Returns:
BaseAgent: agent
"""
name_spec = config.reinforcement_learning.method
method_class = load_dynamic_class(name_spec)
agent = method_class(
config,
scoring_function,
diversity_filter,
replay_buffer,
logger,
)
return agent
def _construct_diversity_filter(config: ConfigurationEnvelope):
"""Creates diversity filter instance
Args:
config (ConfigurationEnvelope): configuration settings
Returns:
diversity filter instance
"""
name_spec = config.diversity_filter.method
method_class = load_dynamic_class(name_spec)
diversity_filter = method_class(config)
return diversity_filter
def _construct_replay_buffer(config: ConfigurationEnvelope):
"""Create replay buffer instance
Args:
config (ConfigurationEnvelope): configuration settings
Returns:
replay buffer instance
"""
name_spec = config.replay_buffer.method
method_class = load_dynamic_class(name_spec)
replay_buffer = method_class(config.replay_buffer.parameters)
return replay_buffer
def _construct_run(config: ConfigurationEnvelope) -> BaseAgent:
"""Construct run and returns agent
Args:
config (ConfigurationEnvelope): configuration settings
Returns:
BaseAgent: agent
"""
# Set default device of pytorch tensors to cuda
set_default_device_cuda()
logger = _construct_logger(config)
scoring_function = _construct_scoring_function(config)
diversity_filter = _construct_diversity_filter(config)
replay_buffer = _construct_replay_buffer(config)
agent = _construct_agent(
config, logger, scoring_function, diversity_filter, replay_buffer
)
return agent
def _get_arguments() -> argparse.Namespace:
"""Reads command-line arguments
Returns:
argparse.Namespace: command-line arguments
"""
print("Getting input args", flush=True)
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
required=True,
type=str,
help="path to config json file",
)
args = parser.parse_args()
return args
def main() -> None:
print("Starting main", flush=True)
# Get command line arguments
args = _get_arguments()
# Read configuration file
config_json = _read_json_file(args.config)
# Create envelope of configuration
config = from_dict(data_class=ConfigurationEnvelope, data=config_json)
# Construct run
agent = _construct_run(config)
# Run generation of SMILES strings using RNN
run(config, agent)
if __name__ == "__main__":
main()