forked from microsoft/singleshotpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregion_loss.py
175 lines (158 loc) · 8.03 KB
/
region_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import time
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from utils import *
def build_targets(pred_corners, target, num_keypoints, num_anchors, num_classes, nH, nW, noobject_scale, object_scale, sil_thresh, seen):
nB = target.size(0)
nA = num_anchors
nC = num_classes
conf_mask = torch.ones(nB, nA, nH, nW) * noobject_scale
coord_mask = torch.zeros(nB, nA, nH, nW)
cls_mask = torch.zeros(nB, nA, nH, nW)
txs = list()
tys = list()
for i in range(num_keypoints):
txs.append(torch.zeros(nB, nA, nH, nW))
tys.append(torch.zeros(nB, nA, nH, nW))
tconf = torch.zeros(nB, nA, nH, nW)
tcls = torch.zeros(nB, nA, nH, nW)
num_labels = 2 * num_keypoints + 3 # +2 for width, height and +1 for class within label files
nAnchors = nA*nH*nW
nPixels = nH*nW
for b in range(nB):
cur_pred_corners = pred_corners[b*nAnchors:(b+1)*nAnchors].t()
cur_confs = torch.zeros(nAnchors)
for t in range(50):
if target[b][t*num_labels+1] == 0:
break
g = list()
for i in range(num_keypoints):
g.append(target[b][t*num_labels+2*i+1])
g.append(target[b][t*num_labels+2*i+2])
cur_gt_corners = torch.FloatTensor(g).repeat(nAnchors,1).t() # 16 x nAnchors
cur_confs = torch.max(cur_confs, corner_confidences(cur_pred_corners, cur_gt_corners)).view_as(conf_mask[b]) # some irrelevant areas are filtered, in the same grid multiple anchor boxes might exceed the threshold
conf_mask[b][cur_confs>sil_thresh] = 0
nGT = 0
nCorrect = 0
for b in range(nB):
for t in range(50):
if target[b][t*num_labels+1] == 0:
break
# Get gt box for the current label
nGT = nGT + 1
gx = list()
gy = list()
gt_box = list()
for i in range(num_keypoints):
gt_box.extend([target[b][t*num_labels+2*i+1], target[b][t*num_labels+2*i+2]])
gx.append(target[b][t*num_labels+2*i+1] * nW)
gy.append(target[b][t*num_labels+2*i+2] * nH)
if i == 0:
gi0 = int(gx[i])
gj0 = int(gy[i])
# Update masks
best_n = 0 # 1 anchor box
pred_box = pred_corners[b*nAnchors+best_n*nPixels+gj0*nW+gi0]
conf = corner_confidence(gt_box, pred_box)
coord_mask[b][best_n][gj0][gi0] = 1
cls_mask[b][best_n][gj0][gi0] = 1
conf_mask[b][best_n][gj0][gi0] = object_scale
# Update targets
for i in range(num_keypoints):
txs[i][b][best_n][gj0][gi0] = gx[i]- gi0
tys[i][b][best_n][gj0][gi0] = gy[i]- gj0
tconf[b][best_n][gj0][gi0] = conf
tcls[b][best_n][gj0][gi0] = target[b][t*num_labels]
# Update recall during training
if conf > 0.5:
nCorrect = nCorrect + 1
return nGT, nCorrect, coord_mask, conf_mask, cls_mask, txs, tys, tconf, tcls
class RegionLoss(nn.Module):
def __init__(self, num_keypoints=9, num_classes=1, anchors=[], num_anchors=1, pretrain_num_epochs=15):
# Define the loss layer
super(RegionLoss, self).__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors # for single object pose estimation, there is only 1 trivial predictor (anchor)
self.num_keypoints = num_keypoints
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.seen = 0
self.pretrain_num_epochs = pretrain_num_epochs
def forward(self, output, target, epoch):
# Parameters
t0 = time.time()
nB = output.data.size(0)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3)
num_keypoints = self.num_keypoints
# Activation
output = output.view(nB, nA, (num_keypoints*2+1+nC), nH, nW)
x = list()
y = list()
x.append(torch.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW)))
y.append(torch.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW)))
for i in range(1,num_keypoints):
x.append(output.index_select(2, Variable(torch.cuda.LongTensor([2 * i + 0]))).view(nB, nA, nH, nW))
y.append(output.index_select(2, Variable(torch.cuda.LongTensor([2 * i + 1]))).view(nB, nA, nH, nW))
conf = torch.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([2 * num_keypoints]))).view(nB, nA, nH, nW))
cls = output.index_select(2, Variable(torch.linspace(2*num_keypoints+1,2*num_keypoints+1+nC-1,nC).long().cuda()))
cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC)
t1 = time.time()
# Create pred boxes
pred_corners = torch.cuda.FloatTensor(2*num_keypoints, nB*nA*nH*nW)
grid_x = torch.linspace(0, nW-1, nW).repeat(nH,1).repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
grid_y = torch.linspace(0, nH-1, nH).repeat(nW,1).t().repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
for i in range(num_keypoints):
pred_corners[2 * i + 0] = (x[i].data.view_as(grid_x) + grid_x) / nW
pred_corners[2 * i + 1] = (y[i].data.view_as(grid_y) + grid_y) / nH
gpu_matrix = pred_corners.transpose(0,1).contiguous().view(-1,2*num_keypoints)
pred_corners = convert2cpu(gpu_matrix)
t2 = time.time()
# Build targets
nGT, nCorrect, coord_mask, conf_mask, cls_mask, txs, tys, tconf, tcls = \
build_targets(pred_corners, target.data, num_keypoints, nA, nC, nH, nW, self.noobject_scale, self.object_scale, self.thresh, self.seen)
cls_mask = (cls_mask == 1)
nProposals = int((conf > 0.25).sum().data[0])
for i in range(num_keypoints):
txs[i] = Variable(txs[i].cuda())
tys[i] = Variable(tys[i].cuda())
tconf = Variable(tconf.cuda())
tcls = Variable(tcls[cls_mask].long().cuda())
coord_mask = Variable(coord_mask.cuda())
conf_mask = Variable(conf_mask.cuda().sqrt())
cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,nC).cuda())
cls = cls[cls_mask].view(-1, nC)
t3 = time.time()
# Create loss
loss_xs = list()
loss_ys = list()
for i in range(num_keypoints):
loss_xs.append(self.coord_scale * nn.MSELoss(size_average=False)(x[i]*coord_mask, txs[i]*coord_mask)/2.0)
loss_ys.append(self.coord_scale * nn.MSELoss(size_average=False)(y[i]*coord_mask, tys[i]*coord_mask)/2.0)
loss_conf = nn.MSELoss(size_average=False)(conf*conf_mask, tconf*conf_mask)/2.0
loss_x = np.sum(loss_xs)
loss_y = np.sum(loss_ys)
if epoch > self.pretrain_num_epochs:
loss = loss_x + loss_y + loss_conf # in single object pose estimation, there is no classification loss
else:
# pretrain initially without confidence loss
# once the coordinate predictions get better, start training for confidence as well
loss = loss_x + loss_y
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_corners : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, conf %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_conf.data[0], loss.data[0]))
return loss