-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
490 lines (339 loc) · 18.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
<!DOCTYPE html>
<!--[if lt IE 8 ]><html class="no-js ie ie7" lang="en"> <![endif]-->
<!--[if IE 8 ]><html class="no-js ie ie8" lang="en"> <![endif]-->
<!--[if (gte IE 8)|!(IE)]><!--><html class="no-js" lang="en"> <!--<![endif]-->
<head>
<!--- Basic Page Needs
================================================== -->
<meta charset="utf-8">
<title>Mohamad Jaber</title>
<meta name="description" content="">
<meta name="author" content="">
<!-- Mobile Specific Metas
================================================== -->
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<!-- CSS
================================================== -->
<link rel="stylesheet" href="css/default.css">
<link rel="stylesheet" href="css/layout.css">
<link rel="stylesheet" href="css/media-queries.css">
<link rel="stylesheet" href="css/magnific-popup.css">
<!-- Script
================================================== -->
<script src="js/modernizr.js"></script>
<!-- Icon
================================================== -->
<link rel="shortcut icon" href="images/programmer.png" >
</head>
<body>
<!-- Header
================================================== -->
<header id="home">
<nav id="nav-wrap">
<a class="mobile-btn" href="#nav-wrap" title="Show navigation">Show navigation</a>
<a class="mobile-btn" href="#" title="Hide navigation">Hide navigation</a>
<ul id="nav" class="nav">
<li class="current"><a class="smoothscroll" href="#home">Home</a></li>
<li><a class="smoothscroll" href="#about">About</a></li>
<li><a class="smoothscroll" href="#resume">Resume</a></li>
<li><a class="smoothscroll" href="#projects">Projects</a></li>
<li><a class="smoothscroll" href="#contact">Contact</a></li>
</ul> <!-- end #nav -->
</nav> <!-- end #nav-wrap -->
<div class="row banner">
<div class="banner-text">
<h1 class="responsive-headline">Hi, I'm Mohamad Jaber.</h1>
<h3><span>I'm a software developer who is passionate in building machine learning solutions for actual use-cases.
Let's <a class="smoothscroll" href="#about">start scrolling</a>
and learn more <a class="smoothscroll" href="#about">about me</a>.</h3></span>
<hr />
<ul class="social">
<li><a href="https://www.linkedin.com/in/mohamadjaber1/"><i class="fa fa-linkedin"></i></a></li>
<li><a href="https://www.instagram.com/jaber_rise/"><i class="fa fa-instagram"></i></a></li>
<li><a href="https://github.com/MohamadJaber1"><i class="fa fa-github"></i></a></li>
</ul>
</div>
</div>
<p class="scrolldown">
<a class="smoothscroll" href="#about"><i class="icon-down-circle"></i></a>
</p>
</header> <!-- Header End -->
<!-- About Section
================================================== -->
<section id="about">
<div class="row">
<div class="three columns">
<img class="profile-pic" src="images/MohamadJaberPhoto.jpg" alt="" />
</div>
<div class="nine columns main-col">
<h2>About Me</h2>
<p> I am a software developer who is passionate in building machine learning
solutions for actual use-cases. I have received an M.Sc. in Automation and
Robotics and a B.Sc. in Electrical Engineering. </p>
<p> Since I was a child, I have always been fascinated with the realms of logic
and numbers (or specifically, data structures and algorithms). I got to appreciate
the elegance of "Python" that allowed me to apply a lot of abstract ideas into
practice. Also, I enjoy programming with Linux OS. </p>
<p> My interests also lie in deep learning, computer vision, natural language processing,
statistical inference, data visualization as well as in photography. </p>
<p> Specialities: Python, TensorFlow, Keras, OpenCV, pandas, NumPy, Git/Github.
Also, problem solving & quickly learning new skills. </p>
</div> <!-- end .main-col -->
</div>
</section> <!-- About Section End-->
<!-- Resume Section
================================================== -->
<section id="resume">
<!-- Work
----------------------------------------------- -->
<div class="row work">
<div class="three columns header-col">
<h1><span>Experience</span></h1>
</div>
<div class="twelve columns main-col">
<div class="row item">
<div class="twelve columns">
<h3>Software Developer - AI</h3>
<h5>invenio Virtual Technologies GmbH</h5>
<p class="info">Munich, Germany <span>•</span> <em class="date">March 2020 - Present</em></p>
<p>
My work involves the entire process of typical machine learning projects including
data preparation and preprocessing, data splitting, modelling, evaluation and deployment.
Some of the tasks include: <br>
<span>•</span> Select and extract relevant features using preprocessing and statistical algorithms.<br>
<span>•</span> Design, optimize and train neural network models for classification on highly imbalanced data.<br>
<span>•</span> Validate models using learning curves that ensures an improved fit model performance.<br>
<span>•</span> Reduced training time from circa 2 days to 2 hours, while increasing accuracy.<br>
<span>•</span> Implement end-to-end automated system for deploying production machine learning pipelines.<br>
<span>•</span> Adapted state-of-the-art algorithms such as Uncertainty Quantification, PointNet and Attention-based Learning.<br>
</p>
</div>
</div> <!-- item end -->
<div class="row item">
<div class="twelve columns">
<h3>Master Thesis Student</h3>
<h5>ABB Corporate Research Center</h5>
<p class="info">Ladenburg, Germany <span>•</span> <em class="date">March 2019 - August 2019</em></p>
<p>
<span>•</span> Implemented state-of-the-art object detection and classification machine learning models using TensorFlow.<br>
<span>•</span> Generated and prepared image data with their annotations for multiple objects pose using Unreal Engine.<br>
<span>•</span> Trained and optimized machine learning models for object detection and pose estimation using PyTorch.<br>
<span>•</span> Deployed trained models in RobotStudio allowing the robot to autonomously interact with the objects.<br>
</p>
</div>
<div class="twelve columns">
<h3>Intern</h3>
<h5>ABB Corporate Research Center</h5>
<p class="info">Ladenburg, Germany <span>•</span> <em class="date">December 2018 - February 2019</em></p>
<p>
<span>•</span> Conducted and presented a case study technical report on a data science topic.<br>
<span>•</span> Recognized the importance of vision for robots and formulated a topic based on it.<br>
</p>
</div>
<div class="twelve columns">
<h3>Intern</h3>
<h5>Fraunhofer Institute for Manufacturing Engineering and Automation</h5>
<p class="info">Stuttgart, Germany <span>•</span> <em class="date">May 2018 - October 2018</em></p>
<p>
<span>•</span> Calculated and configured the kinematics of KUKA robots in MATLAB.<br>
<span>•</span> Supported the team in literature research and preparation of presentations.<br>
</p>
</div>
<div class="twelve columns">
<h3>Research Student Assistant</h3>
<h5>Technical University of Dortmund</h5>
<p class="info">Dortmund, Germany <span>•</span> <em class="date">April 2017 - March 2018</em></p>
<p>
<span>•</span> Extended and developed an existing MILP optimization problem using Pyomo.<br>
<span>•</span> Documented the developed model into a research paper withmy supervisor.<br>
<span>•</span> Visualized and analyzed energy data in Python for power consumption in Dortmund.<br>
</p>
</div>
</div> <!-- item end -->
</div> <!-- main-col end -->
</div> <!-- End Work -->
<!-- Education
----------------------------------------------- -->
<div class="row education">
<div class="three columns header-col">
<h1><span>Education</span></h1>
</div>
<div class="twelve columns main-col">
<div class="row item">
<div class="twelve columns">
<h3>Master of Science in Automation and Robotics</h3>
<h5>Technical University of Dortmund</h5>
<p class="info">Dortmund, Germany <span>•</span> <em class="date">October 2016 - October 2019</em></p>
<p>
<span>•</span> Master thesis: Adaptive Execution of Robot Skills using Computer Vision.<br>
<span>•</span> Project group: Design and Real-time Implementation of a Nonlinear Model Predictive Control based on a Neural Network
Model Applied to a Dynamic Plant.<br>
<span>•</span> Specialized subjects: Machine Learning, Computer Science, Statistics, Advanced Mathematics.<br>
</p>
</div>
<div class="twelve columns">
<h3>Bachelor of Science in Electrical Engineering</h3>
<h5>Lebanese International University</h5>
<p class="info">Beirut, Lebanon <span>•</span> <em class="date">October 2013 - August 2016</em></p>
<p>
<span>•</span> Bachelor thesis: Smart Automated System for the Protection of Solar Panels.<br>
<span>•</span> Specialized subjects: Statistics, Linear Algebra, Calculus.<br>
</p>
</div>
</div> <!-- item end -->
</div> <!-- main-col end -->
</div> <!-- End Education -->
<!-- Certifications
----------------------------------------------- -->
<div class="row certifications">
<div class="three columns header-col">
<h1><span>Certifications</span></h1>
</div>
<div class="twelve columns main-col">
<div class="row item">
<div class="twelve columns">
<h3>Machine Learning</h3>
<h5>Stanford University, Coursera</h5>
<p class="info">Credential ID: 65U8KCMDLYQP<span>•</span> <em class="date">2020 </em><br> </p>
</div>
<div class="twelve columns">
<h3>Complete Guide to TensorFlow for Deep Learning with Python</h3>
<h5>Pierian Data Inc., Udemy</h5>
<p class="info">Credential ID: UC-RHHPEEYQ<span>•</span> <em class="date">2019 </em><br> </p>
</div>
</div> <!-- item end -->
</div> <!-- main-col end -->
</div> <!-- End Education -->
</section> <!-- Resume Section End-->
<section id="projects">
<div class="row">
<div class="twelve columns collapsed">
<h1>Open Source Contribution</h1>
<div id="projects-wrapper" class="bgrid-thirds s-bgrid-thirds cf">
<div class="columns portfolio-item">
<div class="item-wrap">
<a href="#modal-02" title="">
<img alt="" src="images/projects/keras-logo.png">
<div class="overlay">
<div class="portfolio-item-meta">
<h5>Attention MIL Classification</h5>
<p>Keras code example</p>
</div>
</div>
<div class="link-icon"><i class="icon-plus"></i></div>
</a>
</div>
</div>
</div>
</div>
<div id="modal-02" class="popup-modal mfp-hide">
<img class="scale-with-grid" src="images/projects/attention_mil_classification_keras.png" alt="" />
<div class="description-box">
<h4>Description</h4>
<p>It is an open source contribution with deep learning framework, Keras.<br>
In this example, I briefly explain Multiple Instance Learning (MIL) and its applications.
The goals of this example are to:<br>
- Learn MIL model to predict a class label for a bag of instances.<br>
- Find out which instances within the bag caused a position class label prediction.<br>
For more details, please open the project below.</p>
<span class="categories"><i class="fa fa-tag"></i>Deep Learning, Computer Vision</span>
</div>
<div class="link-box">
<a href="https://keras.io/examples/vision/attention_mil_classification">Open Project</a>
<a class="popup-modal-dismiss">Close</a>
</div>
</div>
</section> <!-- Project Section End-->
<!-- Contact Section
================================================== -->
<section id="contact">
<div class="row section-head">
<div class="two columns header-col">
<h1><span>Get In Touch.</span></h1>
</div>
<div class="ten columns">
<p class="lead">Feel free to reach me out. I will be more than happy to have a conversation related to my work, studies or interests.
</p>
</div>
</div>
<div class="row">
<div class="eight columns">
<!-- form -->
<form action="https://formspree.io/f/meqvoopq" method="POST" id="contactForm" name="contactForm">
<fieldset>
<div>
<label for="contactName">Name <span class="required">*</span></label>
<input type="text" value="" size="35" id="contactName" name="contactName" required>
</div>
<div>
<label for="contactEmail">Email <span class="required">*</span></label>
<input type="email" value="" size="35" id="contactEmail" name="contactEmail" required>
</div>
<div>
<label for="contactSubject">Subject</label>
<input type="text" value="" size="35" id="contactSubject" name="contactSubject">
</div>
<div>
<label for="contactMessage">Message <span class="required">*</span></label>
<textarea cols="50" rows="5" id="contactMessage" name="contactMessage" required></textarea>
</div>
<div>
<button type="submit" id="button">Submit</button>
<span id="image-loader">
<img alt="" src="images/loader.gif">
</span>
</div>
</fieldset>
</form> <!-- Form End -->
<!-- status -->
<div id="status"></div>
</div>
<aside class="four columns footer-widgets">
<div class="widget widget_contact">
<h4>Email address</h4>
<p class="address">
<a href="mailto: [email protected]">[email protected]</a>
</p>
<h4>Location</h4>
<p class="address">
Mohamad Jaber<br>
Munich, Germany<br>
</p>
</div>
</aside>
</div>
</section> <!-- Contact Section End-->
<!-- footer
================================================== -->
<footer>
<div class="row">
<div class="twelve columns">
<ul class="social-links">
<li><a href="https://www.linkedin.com/in/mohamadjaber1/"><i class="fa fa-linkedin"></i></a></li>
<li><a href="https://www.instagram.com/jaber_rise/"><i class="fa fa-instagram"></i></a></li>
<li><a href="https://github.com/MohamadJaber1"><i class="fa fa-github"></i></a></li>
</ul>
<ul class="copyright">
<li>© Copyright 2020 Mohamad Jaber</li>
<li>Design by <a href="http://www.styleshout.com/" title="Styleshout" target="_blank">Styleshout</a></li>
<li>Icon made by <a href="https://www.flaticon.com/authors/freepik" title="Freepik" target="_blank">Freepik</a>
from <a href="https://www.flaticon.com/" title="www.flaticon.com" target="_blank">www.flaticon.com</a>
</li>
</ul>
</div>
<div id="go-top"><a class="smoothscroll" title="Back to Top" href="#home"><i class="icon-up-open"></i></a></div>
</div>
</footer> <!-- Footer End-->
<!-- Java Script
================================================== -->
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="js/jquery-1.10.2.min.js"><\/script>')</script>
<script type="text/javascript" src="js/jquery-migrate-1.2.1.min.js"></script>
<script src="js/main.js"></script>
<script src="js/jquery.flexslider.js"></script>
<script src="js/waypoints.js"></script>
<script src="js/jquery.fittext.js"></script>
<script src="js/magnific-popup.js"></script>
<script src="js/init.js"></script>
</body>
</html>