-
Notifications
You must be signed in to change notification settings - Fork 1
/
Fig6.m
72 lines (57 loc) · 2.49 KB
/
Fig6.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
%% ModelDB
%%--------------------------------------------------------
%% J. Neural Eng. 2 (2005) 17–34
%% "Simulations of motor unit number estimation techniques"
%% AUTHOR: Lora A Major and Kelvin E Jones
%% SUBMITTED: 19NOV2004
%% FIGURE 6
%% MODIFIED DATE: 30MAY2005
%%--------------------------------------------------------
skip = 20; % number of units to skip in between probability plots
%% select treshold model: diameter-dependent, or direct-depth (random)
%p.ThMod = 'diam';
p.ThMod = 'dirdep';
%% define time scale
p.n = 250; %% no of units in pool
p.rte_cv = 0.0165; % standard deviation of threshold noise
%% define motor neuron pool
p.depth_fas = 2 * 1e3; % fascicle depth (um)
p.diam_min = 5; p.diam_max = 15;
p.depth_min = p.depth_fas + 200; p.depth_max = p.depth_fas + 400;
rand('state',sum(100*clock)) %% randomize random number gen. state
% axon diameter spatial distribution in the fascicle
p.depth = normrnd(0,1,1,p.n); p.depth = (p.depth-min(p.depth))/(max(p.depth)-min(p.depth));
p.depth = p.depth * (p.depth_max - p.depth_min) + p.depth_min;
% axon diameters
p.diam = normrnd(0,1,1,p.n); p.diam = (p.diam-min(p.diam))/(max(p.diam)-min(p.diam));
p.diam = sort( p.diam * (p.diam_max - p.diam_min) + p.diam_min );
ucdf = unique([[1 : skip: p.n] p.n]); % select units to plot
ncdfs = length(ucdf); % number of units in the pool to plot
switch p.ThMod
case 'diam'
% CALCULATE TRESHOLDS BY DEPTH-DIAMETER MODEL, OR
disp('Calculating thresholds by depth-diameter model.');
p.mrte = sort( AxonThreshPairs(p.depth, p.diam) );
dmrte = p.mrte(ucdf);
case 'dirdep'
% CALCULATE TRESHOLDS BY DEPTH ONLY (RANDOM)
disp('Randomizing thresholds.');
thrmax = AxonThresh(p.depth_max, p.diam_min);
thrmin = AxonThresh(p.depth_min, p.diam_max);
p.rrte = p.depth; p.rrte = (p.rrte-min(p.rrte))/(max(p.rrte)-min(p.rrte));
p.rrte = sort(p.rrte) * (thrmax - thrmin) + thrmin;
dmrte = p.rrte(ucdf);
end
minstim = min(dmrte) * (1 - 3 * p.rte_cv);
maxd = max(dmrte) * (1 + 3 * p.rte_cv);
rr = linspace(minstim, maxd, 5000);
alt_cdf = zeros(ncdfs, length(rr));
% calculate cummulative probability distributino for the selected units
for i = 1 : ncdfs
alt_cdf(i,:) = cdf('norm', rr, dmrte(i), p.rte_cv*dmrte(i) );
end
figure(6); clf
plot(rr, alt_cdf', 'LineWidth', 2); axis tight;
xlabel('Axon Threshold (mA)');
ylabel('Probability of Activation');
legend(num2str(ucdf'), 0);