-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
71 lines (47 loc) · 1.87 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#check streamlit documentation
import streamlit as st
st.title("Movie Recommender System")
import pickle
import pandas as pd
movies_dict = pickle.load(open('movies_dict.pkl','rb'))
movies = pd.DataFrame(movies_dict)
similarity = pickle.load(open('similarity.pkl','rb'))
selected_movies_name = st.selectbox('Enter your Movie Name',
(movies['title'].values))
import requests
def fetch_poster(movie_id):
response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=7b38c796ef22316b087ff1006d1d567e'.format(movie_id))
data = response.json()
return "https://image.tmdb.org/t/p/w500/"+data['poster_path']
def recommend(movie):
# we will fetch the movie index
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_poster = []
# i[0] means the index value for the list of tuples
for i in movies_list:
# print(i[0]) we will get movie index
movies_id = movies.iloc[i[0]].id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_poster.append(fetch_poster(movies_id))
return recommended_movies, recommended_movies_poster
if st.button("Recommend Movies"):
names,posters = recommend(selected_movies_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.header(names[0])
st.image(posters[0])
with col2:
st.header(names[1])
st.image(posters[1])
with col3:
st.header(names[2])
st.image(posters[2])
with col4:
st.header(names[3])
st.image(posters[3])
with col5:
st.header(names[4])
st.image(posters[4])