-
Notifications
You must be signed in to change notification settings - Fork 42
/
main_geom_drugs.py
299 lines (258 loc) · 13.3 KB
/
main_geom_drugs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Rdkit import should be first, do not move it
try:
from rdkit import Chem
except ModuleNotFoundError:
pass
import build_geom_dataset
from configs.datasets_config import geom_with_h
import copy
import utils
import argparse
import wandb
from os.path import join
from qm9.models import get_optim, get_model, get_autoencoder, get_latent_diffusion
from equivariant_diffusion import en_diffusion
from equivariant_diffusion import utils as diffusion_utils
import torch
import time
import pickle
from qm9.utils import prepare_context, compute_mean_mad
import train_test
parser = argparse.ArgumentParser(description='e3_diffusion')
parser.add_argument('--exp_name', type=str, default='debug_10')
# Latent Diffusion args
parser.add_argument('--train_diffusion', action='store_true',
help='Train second stage LatentDiffusionModel model')
parser.add_argument('--ae_path', type=str, default=None,
help='Specify first stage model path')
parser.add_argument('--trainable_ae', action='store_true',
help='Train first stage AutoEncoder model')
# VAE args
parser.add_argument('--latent_nf', type=int, default=4,
help='number of latent features')
parser.add_argument('--kl_weight', type=float, default=0.01,
help='weight of KL term in ELBO')
parser.add_argument('--model', type=str, default='egnn_dynamics',
help='our_dynamics | schnet | simple_dynamics | '
'kernel_dynamics | egnn_dynamics |gnn_dynamics')
parser.add_argument('--probabilistic_model', type=str, default='diffusion',
help='diffusion')
# Training complexity is O(1) (unaffected), but sampling complexity O(steps).
parser.add_argument('--diffusion_steps', type=int, default=500)
parser.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2',
help='learned, cosine')
parser.add_argument('--diffusion_loss_type', type=str, default='l2',
help='vlb, l2')
parser.add_argument('--diffusion_noise_precision', type=float, default=1e-5)
parser.add_argument('--n_epochs', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--break_train_epoch', type=eval, default=False,
help='True | False')
parser.add_argument('--dp', type=eval, default=True,
help='True | False')
parser.add_argument('--condition_time', type=eval, default=True,
help='True | False')
parser.add_argument('--clip_grad', type=eval, default=True,
help='True | False')
parser.add_argument('--trace', type=str, default='hutch',
help='hutch | exact')
# EGNN args -->
parser.add_argument('--n_layers', type=int, default=6,
help='number of layers')
parser.add_argument('--inv_sublayers', type=int, default=1,
help='number of layers')
parser.add_argument('--nf', type=int, default=192,
help='number of layers')
parser.add_argument('--tanh', type=eval, default=True,
help='use tanh in the coord_mlp')
parser.add_argument('--attention', type=eval, default=True,
help='use attention in the EGNN')
parser.add_argument('--norm_constant', type=float, default=1,
help='diff/(|diff| + norm_constant)')
parser.add_argument('--sin_embedding', type=eval, default=False,
help='whether using or not the sin embedding')
# <-- EGNN args
parser.add_argument('--ode_regularization', type=float, default=1e-3)
parser.add_argument('--dataset', type=str, default='geom',
help='dataset name')
parser.add_argument('--filter_n_atoms', type=int, default=None,
help='When set to an integer value, QM9 will only contain molecules of that amount of atoms')
parser.add_argument('--dequantization', type=str, default='argmax_variational',
help='uniform | variational | argmax_variational | deterministic')
parser.add_argument('--n_report_steps', type=int, default=50)
parser.add_argument('--wandb_usr', type=str)
parser.add_argument('--no_wandb', action='store_true', help='Disable wandb')
parser.add_argument('--online', type=bool, default=True, help='True = wandb online -- False = wandb offline')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disable CUDA training')
parser.add_argument('--save_model', type=eval, default=True, help='save model')
parser.add_argument('--generate_epochs', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=0,
help='Number of worker for the dataloader')
parser.add_argument('--test_epochs', type=int, default=1)
parser.add_argument('--data_augmentation', type=eval, default=False,
help='use attention in the EGNN')
parser.add_argument("--conditioning", nargs='+', default=[],
help='multiple arguments can be passed, '
'including: homo | onehot | lumo | num_atoms | etc. '
'usage: "--conditioning H_thermo homo onehot H_thermo"')
parser.add_argument('--resume', type=str, default=None,
help='')
parser.add_argument('--start_epoch', type=int, default=0,
help='')
parser.add_argument('--ema_decay', type=float, default=0, # TODO
help='Amount of EMA decay, 0 means off. A reasonable value'
' is 0.999.')
parser.add_argument('--augment_noise', type=float, default=0)
parser.add_argument('--n_stability_samples', type=int, default=20,
help='Number of samples to compute the stability')
parser.add_argument('--normalize_factors', type=eval, default=[1, 4, 10],
help='normalize factors for [x, categorical, integer]')
parser.add_argument('--remove_h', action='store_true')
parser.add_argument('--include_charges', type=eval, default=False, help='include atom charge or not')
parser.add_argument('--visualize_every_batch', type=int, default=5000)
parser.add_argument('--normalization_factor', type=float,
default=100, help="Normalize the sum aggregation of EGNN")
parser.add_argument('--aggregation_method', type=str, default='sum',
help='"sum" or "mean" aggregation for the graph network')
parser.add_argument('--filter_molecule_size', type=int, default=None,
help="Only use molecules below this size.")
parser.add_argument('--sequential', action='store_true',
help='Organize data by size to reduce average memory usage.')
args = parser.parse_args()
data_file = './data/geom/geom_drugs_30.npy'
if args.remove_h:
raise NotImplementedError()
else:
dataset_info = geom_with_h
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
dtype = torch.float32
split_data = build_geom_dataset.load_split_data(data_file, val_proportion=0.1, test_proportion=0.1, filter_size=args.filter_molecule_size)
transform = build_geom_dataset.GeomDrugsTransform(dataset_info, args.include_charges, device, args.sequential)
dataloaders = {}
for key, data_list in zip(['train', 'val', 'test'], split_data):
dataset = build_geom_dataset.GeomDrugsDataset(data_list, transform=transform)
shuffle = (key == 'train') and not args.sequential
# Sequential dataloading disabled for now.
dataloaders[key] = build_geom_dataset.GeomDrugsDataLoader(
sequential=args.sequential, dataset=dataset, batch_size=args.batch_size,
shuffle=shuffle)
del split_data
atom_encoder = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# args, unparsed_args = parser.parse_known_args()
args.wandb_usr = utils.get_wandb_username(args.wandb_usr)
if args.resume is not None:
exp_name = args.exp_name + '_resume'
start_epoch = args.start_epoch
resume = args.resume
wandb_usr = args.wandb_usr
with open(join(args.resume, 'args.pickle'), 'rb') as f:
args = pickle.load(f)
args.resume = resume
args.break_train_epoch = False
args.exp_name = exp_name
args.start_epoch = start_epoch
args.wandb_usr = wandb_usr
print(args)
utils.create_folders(args)
print(args)
# Wandb config
if args.no_wandb:
mode = 'disabled'
else:
mode = 'online' if args.online else 'offline'
kwargs = {'entity': args.wandb_usr, 'name': args.exp_name, 'project': 'e3_diffusion_geom', 'config': args,
'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': mode}
wandb.init(**kwargs)
wandb.save('*.txt')
data_dummy = next(iter(dataloaders['train']))
if len(args.conditioning) > 0:
print(f'Conditioning on {args.conditioning}')
property_norms = compute_mean_mad(dataloaders, args.conditioning)
context_dummy = prepare_context(args.conditioning, data_dummy, property_norms)
context_node_nf = context_dummy.size(2)
else:
context_node_nf = 0
property_norms = None
args.context_node_nf = context_node_nf
# Create Latent Diffusion Model or Audoencoder
if args.train_diffusion:
model, nodes_dist, prop_dist = get_latent_diffusion(args, device, dataset_info, dataloaders['train'])
else:
model, nodes_dist, prop_dist = get_autoencoder(args, device, dataset_info, dataloaders['train'])
model = model.to(device)
optim = get_optim(args, model)
# print(model)
gradnorm_queue = utils.Queue()
gradnorm_queue.add(3000) # Add large value that will be flushed.
def main():
if args.resume is not None:
flow_state_dict = torch.load(join(args.resume, 'flow.npy'))
dequantizer_state_dict = torch.load(join(args.resume, 'dequantizer.npy'))
optim_state_dict = torch.load(join(args.resume, 'optim.npy'))
model.load_state_dict(flow_state_dict)
optim.load_state_dict(optim_state_dict)
# Initialize dataparallel if enabled and possible.
if args.dp and torch.cuda.device_count() > 1 and args.cuda:
print(f'Training using {torch.cuda.device_count()} GPUs')
model_dp = torch.nn.DataParallel(model.cpu())
model_dp = model_dp.cuda()
else:
model_dp = model
# Initialize model copy for exponential moving average of params.
if args.ema_decay > 0:
model_ema = copy.deepcopy(model)
ema = diffusion_utils.EMA(args.ema_decay)
if args.dp and torch.cuda.device_count() > 1:
model_ema_dp = torch.nn.DataParallel(model_ema)
else:
model_ema_dp = model_ema
else:
ema = None
model_ema = model
model_ema_dp = model_dp
best_nll_val = 1e8
best_nll_test = 1e8
for epoch in range(args.start_epoch, args.n_epochs):
start_epoch = time.time()
train_test.train_epoch(args, dataloaders['train'], epoch, model, model_dp, model_ema, ema, device, dtype,
property_norms, optim, nodes_dist, gradnorm_queue, dataset_info,
prop_dist)
print(f"Epoch took {time.time() - start_epoch:.1f} seconds.")
if epoch % args.test_epochs == 0:
if isinstance(model, en_diffusion.EnVariationalDiffusion):
wandb.log(model.log_info(), commit=True)
if not args.break_train_epoch:
train_test.analyze_and_save(epoch, model_ema, nodes_dist, args, device,
dataset_info, prop_dist, n_samples=args.n_stability_samples)
nll_val = train_test.test(args, dataloaders['val'], epoch, model_ema_dp, device, dtype,
property_norms, nodes_dist, partition='Val')
nll_test = train_test.test(args, dataloaders['test'], epoch, model_ema_dp, device, dtype,
property_norms, nodes_dist, partition='Test')
if nll_val < best_nll_val:
best_nll_val = nll_val
best_nll_test = nll_test
if args.save_model:
args.current_epoch = epoch + 1
utils.save_model(optim, 'outputs/%s/optim.npy' % args.exp_name)
utils.save_model(model, 'outputs/%s/generative_model.npy' % args.exp_name)
if args.ema_decay > 0:
utils.save_model(model_ema, 'outputs/%s/generative_model_ema.npy' % args.exp_name)
with open('outputs/%s/args.pickle' % args.exp_name, 'wb') as f:
pickle.dump(args, f)
if args.save_model:
utils.save_model(optim, 'outputs/%s/optim_%d.npy' % (args.exp_name, epoch))
utils.save_model(model, 'outputs/%s/generative_model_%d.npy' % (args.exp_name, epoch))
if args.ema_decay > 0:
utils.save_model(model_ema, 'outputs/%s/generative_model_ema_%d.npy' % (args.exp_name, epoch))
with open('outputs/%s/args_%d.pickle' % (args.exp_name, epoch), 'wb') as f:
pickle.dump(args, f)
print('Val loss: %.4f \t Test loss: %.4f' % (nll_val, nll_test))
print('Best val loss: %.4f \t Best test loss: %.4f' % (best_nll_val, best_nll_test))
wandb.log({"Val loss ": nll_val}, commit=True)
wandb.log({"Test loss ": nll_test}, commit=True)
wandb.log({"Best cross-validated test loss ": best_nll_test}, commit=True)
if __name__ == "__main__":
main()