diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index f98c207a6e03..be1ebd3a03dc 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -71,6 +71,12 @@ Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values. + [codeblock] + # Creates a Basis whose z axis points down. + var my_basis = Basis.from_euler(Vector3(TAU / 4, 0, 0)) + + print(my_basis.z) # Prints (0, -1, 0). + [/codeblock] @@ -78,6 +84,13 @@ Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero. + [codeblock] + var my_basis = Basis.from_scale(Vector3(2, 4, 8)) + + print(my_basis.x) # Prints (2, 0, 0). + print(my_basis.y) # Prints (0, 4, 0). + print(my_basis.z) # Prints (0, 0, 8). + [/codeblock] @@ -98,6 +111,18 @@ Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis. + [codeblock] + var my_basis = Basis( + Vector3(2, 0, 0), + Vector3(0, 4, 0), + Vector3(0, 0, 8) + ) + # Rotating the Basis in any way preserves its scale. + my_basis = my_basis.rotated(Vector3.UP, TAU / 2) + my_basis = my_basis.rotated(Vector3.RIGHT, TAU / 4) + + print(my_basis.get_scale()) # Prints (2, 4, 8). + [/codeblock] @@ -140,6 +165,14 @@ Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. + [codeblock] + # Rotate this Node3D every frame. + func _process(delta): + basis = basis.rotated(Vector3.UP, TAU * delta) + basis = basis.rotated(Vector3.RIGHT, TAU * delta) + + basis = basis.orthonormalized() + [/codeblock] @@ -148,6 +181,14 @@ Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector. + [codeblock] + var my_basis = Basis.IDENTITY + var angle = TAU / 2 + + my_basis = my_basis.rotated(Vector3.UP, angle) # Rotate around the up axis (yaw) + my_basis = my_basis.rotated(Vector3.RIGHT, angle) # Rotate around the right axis (pitch) + my_basis = my_basis.rotated(Vector3.BACK, angle) # Rotate around the back axis (roll) + [/codeblock] @@ -155,6 +196,18 @@ Introduce an additional scaling specified by the given 3D scaling factor. + [codeblock] + var my_basis = Basis( + Vector3(1, 1, 1), + Vector3(2, 2, 2), + Vector3(3, 3, 3) + ) + my_basis = my_basis.scaled(Vector3(0, 2, -2)) + + print(my_basis.x) # Prints (0, 2, -2). + print(my_basis.y) # Prints (0, 4, -4). + print(my_basis.z) # Prints (0, 6, -6). + [/codeblock] @@ -190,6 +243,18 @@ Returns the transposed version of the matrix. + [codeblock] + var my_basis = Basis( + Vector3(1, 2, 3), + Vector3(4, 5, 6), + Vector3(7, 8, 9) + ) + my_basis = my_basis.transposed() + + print(my_basis.x) # Prints (1, 4, 7). + print(my_basis.y) # Prints (2, 5, 8). + print(my_basis.z) # Prints (3, 6, 9). + [/codeblock]