-
Notifications
You must be signed in to change notification settings - Fork 1
/
encoder.py
104 lines (77 loc) · 5.3 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
from torch import nn
from torch.nn import functional as F
from decoder import VAE_AttentionBlock, VAE_ResidualBlock
class VAE_Encoder(nn.Sequential):
def __init__(self):
super().__init__(
# (Batch_Size, Channel, Height, Width) -> (Batch_Size, 128, Height, Width)
nn.Conv2d(3, 128, kernel_size=3, padding=1),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
VAE_ResidualBlock(128, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
VAE_ResidualBlock(128, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height / 2, Width / 2)
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
# (Batch_Size, 128, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
VAE_ResidualBlock(128, 256),
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
VAE_ResidualBlock(256, 256),
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 4, Width / 4)
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
# (Batch_Size, 256, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
VAE_ResidualBlock(256, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 8, Width / 8)
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_AttentionBlock(512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
nn.GroupNorm(32, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
nn.SiLU(),
# Because the padding=1, it means the width and height will increase by 2
# Out_Height = In_Height + Padding_Top + Padding_Bottom
# Out_Width = In_Width + Padding_Left + Padding_Right
# Since padding = 1 means Padding_Top = Padding_Bottom = Padding_Left = Padding_Right = 1,
# Since the Out_Width = In_Width + 2 (same for Out_Height), it will compensate for the Kernel size of 3
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 8, Height / 8, Width / 8).
nn.Conv2d(512, 8, kernel_size=3, padding=1),
# (Batch_Size, 8, Height / 8, Width / 8) -> (Batch_Size, 8, Height / 8, Width / 8)
nn.Conv2d(8, 8, kernel_size=1, padding=0),
)
def forward(self, x, noise):
# x: (Batch_Size, Channel, Height, Width)
# noise: (Batch_Size, 4, Height / 8, Width / 8)
for module in self:
if getattr(module, 'stride', None) == (2, 2): # Padding at downsampling should be asymmetric (see #8)
# Pad: (Padding_Left, Padding_Right, Padding_Top, Padding_Bottom).
# Pad with zeros on the right and bottom.
# (Batch_Size, Channel, Height, Width) -> (Batch_Size, Channel, Height + Padding_Top + Padding_Bottom, Width + Padding_Left + Padding_Right) = (Batch_Size, Channel, Height + 1, Width + 1)
x = F.pad(x, (0, 1, 0, 1))
x = module(x)
# (Batch_Size, 8, Height / 8, Width / 8) -> two tensors of shape (Batch_Size, 4, Height / 8, Width / 8)
mean, log_variance = torch.chunk(x, 2, dim=1)
# Clamp the log variance between -30 and 20, so that the variance is between (circa) 1e-14 and 1e8.
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
log_variance = torch.clamp(log_variance, -30, 20)
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
variance = log_variance.exp()
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
stdev = variance.sqrt()
# Transform N(0, 1) -> N(mean, stdev)
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
x = mean + stdev * noise
# Scale by a constant
# Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1
x *= 0.18215
return x