forked from sandhya212/BISCUIT_SingleCell_IMM_ICML_2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConfusion_matrix_stitch_parallel_MAP.R
364 lines (250 loc) · 12.6 KB
/
Confusion_matrix_stitch_parallel_MAP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
## 4th April 2017
## Findng the best group of cells across gene-splits.
## by building a global confusion matrix.
##
## 17th April 2017
## parallelised the global confusion matrix creation.
##
## 18-19th April 2017
##
## Construct the MAP esitmates for momets and then resample
##
## 1st May 2017
## propagating weights for weighted CM
##
## Code author SP
###
###
###
################
#Construct the global Confusion matrix.
print("Computing the global confusion matrix")
print("Monitor log_CM.txt in outputs folder and debug_CM.txt")
strt_CM <- Sys.time()
divsr <- numcells %/% num_cells_batch
dividend <- numcells %% num_cells_batch
CM_local <- function(df){
df_indicator <- paste0("Batch in process is: ",df);
write.table(df_indicator,file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
cell_j_vals <- matrix(0,length(((1+(num_cells_batch*(df-1))):(num_cells_batch*df))),numcells)
write.table("Cells selected are ",file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
write.table(((1+(num_cells_batch*(df-1))):(num_cells_batch*df)),file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
rownames(cell_j_vals) <- as.character(((1+(num_cells_batch*(df-1))):(num_cells_batch*df)))
colnames(cell_j_vals) <- as.character(1:numcells)
for ( cell_i in((1+(num_cells_batch*(df-1))):(num_cells_batch*df))){
print(paste("comparing cell",cell_i));
for(cell_j in (cell_i):numcells){
for (i in 1:length(results.all.MCMC)){
for(j in 1:num_gene_sub_batches){
if(results.all.MCMC[[i]][[j]][[1]][cell_i] == results.all.MCMC[[i]][[j]][[1]][cell_j]){
#global_Conf_Mat1[cell_i,cell_j] = global_Conf_Mat1[cell_i,cell_j] + 1;
#print(i)
cell_j_vals[as.character(cell_i),as.character(cell_j)] <- cell_j_vals[as.character(cell_i),as.character(cell_j)] + 1*results.all.MCMC[[i]][[j]][[6]];
}
}
}
}
}
return(cell_j_vals)
}
# Start the cluster and register with doSNOW
cl <- makeCluster(num_cores, type = "SOCK",outfile="debug_CM.txt") #opens multiple socket connections
clusterExport(cl, "CM_local")
registerDoSNOW(cl)
# Call parallel processes to build CM
global_Conf_Mat <- foreach (df = 1:(divsr), .combine="rbind") %dopar%{
local_CM_batch <- CM_local(df)
return(local_CM_batch)
}
print("Time for creating the upper triangular global confusion matrix is ")
print(Sys.time()-strt_CM);
stopCluster(cl)
##Taking care of the remaining cells that fell off the parallel bins
if (dividend !=0){
cell_j_vals <- matrix(0,dividend,numcells)
df_indicator <- paste0("Batch in process is: ",divsr+1);
write.table(df_indicator,file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
write.table("Cells selected are ",file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
write.table(((num_cells_batch*divsr+1):(num_cells_batch*divsr+dividend)),file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
rownames(cell_j_vals) <- as.character((num_cells_batch*divsr+1):(num_cells_batch*divsr+dividend))
colnames(cell_j_vals) <- as.character(1:numcells)
for ( cell_i in (num_cells_batch*divsr+1):(num_cells_batch*divsr+dividend)){
#print(paste("comparing cell",cell_i));
f <- paste("comparing cell ",cell_i)
write.table(f,file=paste0(getwd(),"/debug_CM.txt"),append=TRUE,sep="");
for(cell_j in (cell_i):numcells){
for (i in 1:length(results.all.MCMC)){
for(j in 1:num_gene_sub_batches){
if(results.all.MCMC[[i]][[j]][[1]][cell_i] == results.all.MCMC[[i]][[j]][[1]][cell_j]){
#global_Conf_Mat1[cell_i,cell_j] = global_Conf_Mat1[cell_i,cell_j] + 1;
#print(i)
cell_j_vals[as.character(cell_i),as.character(cell_j)] <- cell_j_vals[as.character(cell_i),as.character(cell_j)] + 1*results.all.MCMC[[i]][[j]][[6]];
}
}
}
}
}
global_Conf_Mat <- rbind(global_Conf_Mat , cell_j_vals)
}
print("Time for creating the overall upper triangular global confusion matrix is ")
print(Sys.time()-strt_CM);
CM <- global_Conf_Mat + t(global_Conf_Mat);
diag(CM) <- 0;
#average CM
ave_CM <- CM / num_gene_batches;
f <- paste0(getwd(),"/",output_folder_name,"/plots/extras/ave_global_Conf_mat.txt");
write.matrix(ave_CM, file=f, sep="\t")
####
####
####Using the CM to do a k-means
num_clusters_per_batch <- rep(0,num_gene_batches);
batch <- 1
for (i in 1:length(results.all.MCMC)){
for(j in 1:num_gene_sub_batches){
inferred_labels <- results.all.MCMC[[i]][[j]][[1]];
uqe_inferred_labels <- unique(inferred_labels);
num_clusters_per_batch[batch] <- length(uqe_inferred_labels);
batch <- batch + 1;
}
}
print(paste("Number of clusters over gene splits: ",num_clusters_per_batch));
mean_num_clusters <- round(max(num_clusters_per_batch));
print(paste("Mean number of clusters over gene splits: ",mean_num_clusters));
#
print("Cluster the global CM by kmeans")
kmeans_CM <- kmeans(ave_CM,mean_num_clusters,nstart=1)
z_inferred_final <- kmeans_CM$cluster
f <- paste0(getwd(),"/",output_folder_name,"/plots/Inferred_labels/Conf_mat_final_inferred_kmeans.pdf");
pdf(file=f);
plot(X_tsne_all$Y[,1],X_tsne_all$Y[,2],col = col_palette[1*(z_inferred_final)], main="t-SNE of X (inferred labels) based on kmeans of CM");
dev.off();
rm(CM)
rm(ave_CM)
###########################
## Construct the MAP estimates cluster moments
##
## Since the splits are in equal sizes, we can create the MAP estimates for the moments by concatenating moments via law of total expectation and law of total moments from the MCMC chains.
## mu_MAP and Sigma_MAP are formed by calculating the means and covariances separately for each batch and averaging those vectors/matrices (with arithmetic mean) to form one total mean/covariance per cluster.
##
print("Construct the cluster moments based on k-means of the CM")
MAP.non.parallel <- FALSE
if (MAP.non.parallel){ # cycles per cluster
mu_MAP <- matrix(0, gene_batch*num_gene_batches, mean_num_clusters); #or numgenes?
Sigma_MAP <- list();
for(i in 1:mean_num_clusters){
print(paste0("cluster is ", i));
cell_ind <- which(z_inferred_final == i);
#mu_temp <- matrix(0,gene_batch*num_gene_batches, length(cell_ind));
mu_temp <- rep(0,gene_batch*num_gene_batches);
#Sigma_temp <- list();
Sigma_temp <- matrix(0,gene_batch*num_gene_batches,gene_batch*num_gene_batches);
for (j in 1:length(cell_ind)){
mu_temp_cellj <- rep(0,gene_batch*num_gene_batches);
p <- paste0("cell is ", cell_ind[j]);
print(p);
write.table(p,file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
count <- 1;
Sigma_temp_per_cell <- matrix(0,gene_batch*num_gene_batches,gene_batch*num_gene_batches)
for (r1 in 1:length(results.all.MCMC)){
for(r2 in 1:num_gene_sub_batches){
inferred_label_per_batch <- results.all.MCMC[[r1]][[r2]][[1]][cell_ind[j]];
pos.mu.temp <- (1+(gene_batch*(count-1))):(gene_batch*count)
mu_temp_cellj[pos.mu.temp] <- results.all.MCMC[[r1]][[r2]][[4]][,as.character(inferred_label_per_batch)];
Sigma_temp_per_cell[pos.mu.temp,pos.mu.temp] <- results.all.MCMC[[r1]][[r2]][[5]][,,as.character(inferred_label_per_batch)];
count <- count + 1;
}
}
#Sigma_temp[[j]] <- Sigma_temp_per_cell
Sigma_temp <- Sigma_temp + Sigma_temp_per_cell
rm(Sigma_temp_per_cell)
mu_temp <- sum(mu_temp,mu_temp_cellj);
rm(mu_temp_cellj);
}
mu_MAP[,i] <- mu_temp/length(cell_ind);
Sigma_MAP[[i]] <- Sigma_temp/length(cell_ind);
diag(Sigma_MAP[[i]]) <- diag(Sigma_MAP[[i]]) + 0.001;
#diag(Sigma_MAP[[i]]) <- diag(Sigma_MAP[[i]]) + 0.001
}
}else{ #cycles per cluster in parallel. If there are space /vector allocation issues, switch MAP.non.parallel to TRUE
MAP_local <- function(i){
write.table(paste0("Cluster in process is: ",i),file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
cell_ind <- which(z_inferred_final == i);
mu_temp <- matrix(0,gene_batch*num_gene_batches, length(cell_ind));
#Sigma_temp <- matrix(0,gene_batch*num_gene_batches,gene_batch*num_gene_batches); # very bad idea as you need this one for each cell!
Sigma_temp <- list();
for (j in 1:length(cell_ind)){
p <- paste0("cell is ", cell_ind[j]);
print(p);
write.table(p,file=paste0(getwd(),"/",output_folder_name,"/log_CM.txt"),append=TRUE,sep="");
count <- 1
Sigma_temp_per_cell <- matrix(0,gene_batch*num_gene_batches,gene_batch*num_gene_batches);
for (r1 in 1:length(results.all.MCMC)){
print(paste("r1", r1))
for(r2 in 1:num_gene_sub_batches){
print(paste("r2", r2))
inferred_label_per_batch <- results.all.MCMC[[r1]][[r2]][[1]][cell_ind[j]];
pos.mu.temp <- (1+(gene_batch*(count-1))):(gene_batch*count)
mu_temp[pos.mu.temp,j] <- results.all.MCMC[[r1]][[r2]][[4]][,as.character(inferred_label_per_batch)];
Sigma_temp_per_cell[pos.mu.temp,pos.mu.temp] <- results.all.MCMC[[r1]][[r2]][[5]][,,as.character(inferred_label_per_batch)];
count <- count + 1;
print(paste("count is ",count))
}
}
Sigma_temp[[j]] <- Sigma_temp_per_cell;
}
mu_MAP_per_k <- rowMeans(mu_temp);
Sigma_MAP_per_k <- Reduce('+',Sigma_temp)/length(cell_ind);
diag(Sigma_MAP_per_k) <- diag(Sigma_MAP_per_k) + 0.001;
return(list(mu_MAP_per_k, Sigma_MAP_per_k))
}
print("Compute MAP estimates of moments per cluster")
print("Monitor debug_CM.txt for parallel process diagnostics and log_CM.txt for MAP progression")
# Start the cluster and register with doSNOW
cl <- makeCluster(num_cores, type = "SOCK",outfile="debug_CM.txt") #opens multiple socket connections
clusterExport(cl, "MAP_local")
registerDoSNOW(cl)
# Call parallel processes per cluster to construct MAP estimates for mean and covariances
strt_MAP <- Sys.time();
MAP_estimates <- foreach (i = 1:mean_num_clusters) %dopar%{
local_MAP_batch <- MAP_local(i)
return(local_MAP_batch)
}
stopCluster(cl)
print("Time for creating the MAP estimates")
print(Sys.time()-strt_MAP)
mu_MAP <- matrix(0, gene_batch*num_gene_batches, mean_num_clusters); #or numgenes?
Sigma_MAP <- list();
for (k in 1:mean_num_clusters){
mu_MAP[,k] <- MAP_estimates[[k]][[1]]
Sigma_MAP[[k]] <- MAP_estimates[[k]][[2]]
}
} # end of parallel MAP building
## Use mu_MAP and Sigma_MAP to sample for moment estimates
###########################
## Construct the cluster moments using riwish and rmnorm
## Increase draws for averaged moments
print("Resample moments per cluster")
mu_final <- matrix(0, gene_batch*num_gene_batches, mean_num_clusters); #or numgenes?
Sigma_final <- list();
draws <- 1;
for( i in 1:mean_num_clusters){
t <- paste0("Sigma_",i)
t1 <- paste0("Heatmap for Sigma_",i)
print(paste0("cluster is ", i));
Sigma_MAP_temp <- list();
for ( dr in 1:draws){
Sigma_MAP_temp[[dr]] <- riwish(numgenes+2,forceSymmetric(Sigma_MAP[[i]]));
diag(Sigma_MAP_temp[[dr]]) <- diag(Sigma_MAP_temp[[dr]]) + 0.001
}
Sigma_final[[i]] <- Reduce('+', Sigma_MAP_temp)/draws;
f <- paste0(getwd(),"/",output_folder_name,"/plots/Inferred_Sigmas/Sigma_final_",i,".txt");
write.matrix(Sigma_final[[i]],file=f,sep="\t")
if(draws == 1){
mu_final[,i] <- rmnorm(draws,mu_MAP[,i],Sigma_final[[i]])
}else{
mu_final[,i] <- colMeans(rmnorm(draws,mu_MAP[,i],Sigma_final[[i]]))
}
}
####collect mu_final and Sigma_final
f <- paste0(getwd(),"/",output_folder_name,"/plots/Inferred_means/mu_final.txt");
write.matrix(mu_final,file=f,sep="\t")