forked from MKnoche/warp3d_reposing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
130 lines (101 loc) · 4.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import tensorflow as tf
import math
import numpy as np
from skimage.measure import compare_ssim
def initialize_uninitialized(sess):
global_vars = tf.global_variables()
is_not_initialized = sess.run([tf.is_variable_initialized(var) for var in global_vars])
not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f]
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
def format_time(s):
if s < 60:
return str(round(s, 4))
else:
m = int(s / 60)
s = s - m * 60
s = int(s)
if m < 60:
return str(m) + ':' + str(s)
else:
h = int(m / 60)
m = m - h * 60
return str(h) + ':' + str(m) + ':' + str(s)
def extract_paths_from_deep_dict(d, prefix=[]):
if type(d) is not dict:
return [prefix]
else:
return sum([extract_paths_from_deep_dict(d[key], prefix + [key]) for key in d], [])
def get_from_deep_dict(d, keys):
for k in keys:
d = d[k]
return d
def ssim(tar, gen, masks=None):
tar = np.array(tar)
gen = np.array(gen)
if masks is not None:
masks = np.array(masks)
data_range = max(gen.max(), tar.max()) - min(gen.min(), tar.min())
ssims = []
fg_ssims = []
bg_ssims = []
for t, g, m in zip(tar, gen, masks):
fgc = np.sum(m)
bgc = m.shape[0] * m.shape[1] - fgc
s, si = compare_ssim(t, g, multichannel=True, data_range=data_range, full=True)
ssims.append(s)
fg_ssims.append(np.sum(si * m) / fgc / si.shape[-1])
bg_ssims.append(np.sum(si * (1 - m)) / bgc / si.shape[-1])
if masks is not None:
return np.mean(ssims), np.mean(fg_ssims), np.mean(bg_ssims)
else:
return np.mean(ssims)
def soft_argmax(inp, axis):
softmaxed = softmax(inp, axis=axis)
return tf.stack(decode_heatmap(softmaxed, axis=axis), axis=-1)
def softmax(target, axis=-1, name=None):
with tf.name_scope(name, 'softmax', values=[target]):
max_along_axis = tf.reduce_max(target, axis, keepdims=True)
exponentiated = tf.exp(target - max_along_axis)
normalizer_denominator = tf.reduce_sum(exponentiated, axis, keepdims=True)
return exponentiated / normalizer_denominator
def decode_heatmap(inp, axis=-1):
shape = inp.get_shape().as_list()
ndims = inp.get_shape().ndims
def relative_coords_along_axis(ax):
grid_shape = [1] * ndims
grid_shape[ax] = shape[ax]
grid = tf.reshape(tf.linspace(0.0, 1.0, shape[ax]), grid_shape)
return tf.cast(grid, inp.dtype)
# Single axis:
if not isinstance(axis, (tuple, list)):
return tf.reduce_sum(relative_coords_along_axis(axis) * inp, axis=axis)
# Multiple axes.
# Convert negative axes to the corresponding positive index (e.g. -1 means last axis)
heatmap_axes = [ax if ax >= 0 else ndims + ax + 1 for ax in axis]
result = []
for ax in heatmap_axes:
other_heatmap_axes = tuple(set(heatmap_axes) - {ax})
summed_over_other_axes = tf.reduce_sum(inp, axis=other_heatmap_axes, keepdims=True)
coords = relative_coords_along_axis(ax)
decoded = tf.reduce_sum(coords * summed_over_other_axes, axis=ax, keepdims=True)
result.append(tf.squeeze(decoded, heatmap_axes))
return result
def make_pretrained_weight_loader(pretrained_path, loaded_scope, checkpoint_scope, excluded_parts, replace_names):
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=loaded_scope)
var_dict = {v.op.name[v.op.name.index(checkpoint_scope):]: v for v in var_list}
var_dict = {k: v for k, v in var_dict.items() if not any(excl in k for excl in excluded_parts)}
for fr, to in replace_names:
var_dict = {k.replace(fr, to): v for k, v in var_dict.items()}
saver = tf.train.Saver(var_list=var_dict)
# global_init_op = tf.global_variables_initializer()
def init_fn(sess):
# sess.run(global_init_op)
saver.restore(sess, pretrained_path)
return init_fn
def extend_spatial_sizes(t):
return tf.pad(t, [[0, 0]] + [[0, 1]] * (len(t.shape) - 2) + [[0, 0]])
def reduce_spatial_sizes(t):
for i in range(1, len(t.shape) - 1):
t = tf.gather(t, list(range(1, int(t.shape[i]))), axis=i)
return t