forked from MKnoche/warp3d_reposing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
78 lines (61 loc) · 2.57 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import tensorflow as tf
from tensorflow.keras.applications import vgg19
from tensorflow.keras.models import Model
import time
from pose3d_minimal.main import predict_pose3d
import tensorflow_gan as tfgan
# tfgan = tf.contrib.gan
perception_model = None
def init_perception_model():
global perception_model
start = time.time()
with tf.name_scope('Perceptual'):
vgg = vgg19.VGG19(weights='imagenet', include_top=False)
perception_model = Model(inputs=vgg.input, outputs=[
vgg.get_layer('block1_conv2').output,
vgg.get_layer('block2_conv2').output,
vgg.get_layer('block3_conv2').output,
vgg.get_layer('block4_conv2').output,
vgg.get_layer('block5_conv2').output
])
for layer in perception_model.layers:
layer.trainable = False
print('Loaded perception model:', time.time() - start)
def perception_output(x):
if perception_model is None:
raise RuntimeError('perception model is not initialized')
def preprocess_for_vgg(x):
x = 255 * (x + 1) / 2
mean = tf.constant([103.939, 116.779, 123.68])
mean = tf.reshape(mean, (1, 1, 1, 3))
x = x - mean
x = x[..., ::-1]
return x
x = preprocess_for_vgg(x)
x = perception_model(x)
return x
def get_feature_loss(target, generated):
target = perception_output(target)
generated = perception_output(generated)
loss = 0
for t, g, w in zip(target, generated, [1. / 32, 1. / 16, 1. / 8, 1. / 4, 1.]):
loss += w * tf.reduce_mean(tf.abs(tf.subtract(t, g)))
return loss
def init_pose_model(sess, weight_path):
start = time.time()
checkpoint_scope = f'MainPart/resnet_v2_50'
loaded_scope = f'Pose/MainPart/resnet_v2_50'
do_not_load = ['Adam', 'Momentum']
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=loaded_scope)
var_dict = {v.op.name[v.op.name.index(checkpoint_scope):]: v for v in var_list}
var_dict = {k: v for k, v in var_dict.items() if not any(excl in k for excl in do_not_load)}
saver = tf.train.Saver(var_list=var_dict)
saver.restore(sess, weight_path)
print('Loaded pose model:', time.time() - start)
def get_pose_loss(target, generated):
with tf.variable_scope('Pose', reuse=tf.AUTO_REUSE):
target = tf.transpose(target, (0, 3, 1, 2)) / 2
generated = tf.transpose(generated, (0, 3, 1, 2)) / 2
target, target_logits = predict_pose3d(target)
generated, generated_logits = predict_pose3d(generated)
return tf.reduce_mean(tf.abs(target - generated)) * 2.2