diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 0535f66..486ef9b 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.8.5","generation_timestamp":"2024-03-25T00:17:26","documenter_version":"1.3.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.8.5","generation_timestamp":"2024-03-25T01:27:53","documenter_version":"1.3.0"}} \ No newline at end of file diff --git a/dev/Examples/Example1/index.html b/dev/Examples/Example1/index.html index 869667e..5effd06 100644 --- a/dev/Examples/Example1/index.html +++ b/dev/Examples/Example1/index.html @@ -8,4 +8,4 @@ 2.1755667174542923

Select the last value to get the sample entropy for m = 4.

Samp[end]
2.1755667174542923

Calculate the sample entropy for each embedding dimension (m) from 0 to 4 with a time delay (tau) of 2 samples.

Samp, Phi1, Phi2 = SampEn(X, m = 4, tau = 2)
([2.178923612371957, 2.183323250654987, 2.188041075511569, 2.189184333017654, 2.1440802180581136], [1.414258e6, 159224.0, 17843.0, 1998.0, 234.0], [1.24975e7, 1.413233e6, 159119.0, 17838.0, 1997.0])

Import a signal of uniformly distributed random numbers in the range [-1, 1] and calculate the sample entropy for an embedding dimension (m) of 5, a time delay of 2, and a threshold radius of 0.075. Return the conditional probability (Vcp) and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively.

Samp, _, _, Vcp_Ka_Kb = SampEn(X, m = 5, tau = 2, r = 0.075, Vcp = true)
 Vcp, Ka, Kb = Vcp_Ka_Kb
Vcp = 0.00018629728228987074
 Ka = 92
-Kb = 3943
+Kb = 3943 diff --git a/dev/Examples/Example10/index.html b/dev/Examples/Example10/index.html index 555f87e..4e32a22 100644 --- a/dev/Examples/Example10/index.html +++ b/dev/Examples/Example10/index.html @@ -2,4 +2,4 @@ Ex.10: Bidimensional Fuzzy Entropy · EntropyHub.jl

Example 10: Bidimensional Fuzzy Entropy

Import an image of a Mandelbrot fractal as a matrix.

X = ExampleData("mandelbrot_Mat");
 
 using Plots
-heatmap(X, background_color="black")

AlmondBread

Calculate the bidimensional fuzzy entropy in trits (logarithm base 3) with a template matrix of size [8 x 5], and a time delay (tau) of 2 using a 'constgaussian' fuzzy membership function (r=24).

FE2D = FuzzEn2D(X, m = (8, 5), tau = 2, Fx = "constgaussian", r = 24, Logx = 3)
1.4885540777860427
+heatmap(X, background_color="black")

AlmondBread

Calculate the bidimensional fuzzy entropy in trits (logarithm base 3) with a template matrix of size [8 x 5], and a time delay (tau) of 2 using a 'constgaussian' fuzzy membership function (r=24).

FE2D = FuzzEn2D(X, m = (8, 5), tau = 2, Fx = "constgaussian", r = 24, Logx = 3)
1.4885540777860427
diff --git a/dev/Examples/Example2/index.html b/dev/Examples/Example2/index.html index ffafab5..9753827 100644 --- a/dev/Examples/Example2/index.html +++ b/dev/Examples/Example2/index.html @@ -6,4 +6,4 @@ markercolor = "green", markerstrokecolor = "black", markersize = 3, background_color = "black", grid = false)

Lorenz

Calculate fine-grained permutation entropy of the z component in dits (logarithm base 10) with an embedding dimension of 3, time delay of 2, an alpha parameter of 1.234. Return Pnorm normalised w.r.t the number of all possible permutations (m!) and the condition permutation entropy (cPE) estimate.

Z = Data[:,3];
 Perm, Pnorm, cPE = PermEn(Z, m = 3, tau = 2, Typex = "finegrain",
-            tpx = 1.234, Logx = 10, Norm = false)
([-0.0, 0.8686539340402203, 0.946782979031713], [NaN, 0.8686539340402203, 0.4733914895158565], [0.8686539340402203, 0.07812904499149276])
+ tpx = 1.234, Logx = 10, Norm = false)
([-0.0, 0.8686539340402203, 0.946782979031713], [NaN, 0.8686539340402203, 0.4733914895158565], [0.8686539340402203, 0.07812904499149276])
diff --git a/dev/Examples/Example3/index.html b/dev/Examples/Example3/index.html index e531a05..a877f7d 100644 --- a/dev/Examples/Example3/index.html +++ b/dev/Examples/Example3/index.html @@ -6,4 +6,4 @@ markercolor = "green", markerstrokecolor = "black", markersize = 3, background_color = "black",grid = false)

Henon

Calculate the phase entropy of the y-component in bits (logarithm base 2) without normalization using 7 angular partitions and return the second-order difference plot.

Y = Data[:,2];
 Phas = PhasEn(Y, K = 7, Norm = false, Logx = 2, Plotx = true)
2.0192821496913216

Phas1

Calculate the phase entropy of the x-component using 11 angular partitions, a time delay of 2, and return the second-order difference plot.

X = Data[:,1];
-Phas = PhasEn(X, K = 11, tau = 2, Plotx = true)
0.8395391613164361

Phas2

+Phas = PhasEn(X, K = 11, tau = 2, Plotx = true)
0.8395391613164361

Phas2

diff --git a/dev/Examples/Example4/index.html b/dev/Examples/Example4/index.html index e45ceee..0ba512d 100644 --- a/dev/Examples/Example4/index.html +++ b/dev/Examples/Example4/index.html @@ -2,4 +2,4 @@ Ex.4: Cross-Distribution Entropy · EntropyHub.jl

Example 4: Cross-Distribution Entropy w/ Different Binning Methods

Import a signal of pseudorandom integers in the range [1, 8] and calculate the cross- distribution entropy with an embedding dimension of 5, a time delay (tau) of 3, and 'Sturges' bin selection method.

X = ExampleData("randintegers2");
 XDist, _ = XDistEn(X[:,1], X[:,2], m = 5, tau = 3);
Note: 17/25 bins were empty
 XDist = 0.5248413652396312

Use Rice's method to determine the number of histogram bins and return the probability of each bin (Ppi).

XDist, Ppi = XDistEn(X[:,1], X[:,2], m = 5, tau = 3, Bins = "rice")
Note: 407/415 bins were emptyXDist = 0.28024570808915084
-Ppi = [3.5953721176540164e-5, 0.004693584691286341, 0.03679902564295558, 0.10958694214609442, 0.19781322971493293, 0.2558194625893131, 0.24212389495509928, 0.15312790653914185]
+Ppi = [3.5953721176540164e-5, 0.004693584691286341, 0.03679902564295558, 0.10958694214609442, 0.19781322971493293, 0.2558194625893131, 0.24212389495509928, 0.15312790653914185] diff --git a/dev/Examples/Example5/index.html b/dev/Examples/Example5/index.html index e62313a..82c38c5 100644 --- a/dev/Examples/Example5/index.html +++ b/dev/Examples/Example5/index.html @@ -1,2 +1,2 @@ -Ex.5: Multiscale Entropy Object · EntropyHub.jl

Example 5: Multiscale Entropy Object - MSobject()

Note:

The base and cross- entropy functions used in the multiscale entropy calculation are declared by passing EntropyHub functions to MSobject(), not string names.

Create a multiscale entropy object (Mobj) for multiscale fuzzy entropy, calculated with an embedding dimension of 5, a time delay (tau) of 2, using a sigmoidal fuzzy function with the r scaling parameters (3, 1.2).

Mobj = MSobject(FuzzEn, m = 5, tau = 2, Fx = "sigmoid", r = (3, 1.2))
(Func = EntropyHub._FuzzEn.FuzzEn, m = 5, tau = 2, Fx = "sigmoid", r = (3, 1.2))

Create a multiscale entropy object (Mobj) for multiscale corrected-cross-conditional entropy, calculated with an embedding dimension of 6 and using a 11-symbolic data transform.

Mobj = MSobject(XCondEn, m = 6, c = 11)
(Func = EntropyHub._XCondEn.XCondEn, m = 6, c = 11)
+Ex.5: Multiscale Entropy Object · EntropyHub.jl

Example 5: Multiscale Entropy Object - MSobject()

Note:

The base and cross- entropy functions used in the multiscale entropy calculation are declared by passing EntropyHub functions to MSobject(), not string names.

Create a multiscale entropy object (Mobj) for multiscale fuzzy entropy, calculated with an embedding dimension of 5, a time delay (tau) of 2, using a sigmoidal fuzzy function with the r scaling parameters (3, 1.2).

Mobj = MSobject(FuzzEn, m = 5, tau = 2, Fx = "sigmoid", r = (3, 1.2))
(Func = EntropyHub._FuzzEn.FuzzEn, m = 5, tau = 2, Fx = "sigmoid", r = (3, 1.2))

Create a multiscale entropy object (Mobj) for multiscale corrected-cross-conditional entropy, calculated with an embedding dimension of 6 and using a 11-symbolic data transform.

Mobj = MSobject(XCondEn, m = 6, c = 11)
(Func = EntropyHub._XCondEn.XCondEn, m = 6, c = 11)
diff --git a/dev/Examples/Example6/index.html b/dev/Examples/Example6/index.html index 4125c19..e16012e 100644 --- a/dev/Examples/Example6/index.html +++ b/dev/Examples/Example6/index.html @@ -10,4 +10,4 @@ 3.83143162219877 4.24634531832518 4.271178349238616 - 4.192115013720915 + 4.192115013720915 diff --git a/dev/Examples/Example7/index.html b/dev/Examples/Example7/index.html index 1cede74..8427a0c 100644 --- a/dev/Examples/Example7/index.html +++ b/dev/Examples/Example7/index.html @@ -1,3 +1,3 @@ Ex.7: Refined Multiscale [Sample] Entropy · EntropyHub.jl

Example 7: Refined Multiscale Sample Entropy

Import a signal of uniformly distributed pseudorandom integers in the range [1, 8] and create a multiscale entropy object with the following parameters: EnType = SampEn(), embedding dimension = 4, radius threshold = 1.25

X = ExampleData("randintegers");
-Mobj = MSobject(SampEn, m = 4, r = 1.25)
(Func = EntropyHub._SampEn.SampEn, m = 4, r = 1.25)

Calculate the refined multiscale sample entropy and the complexity index (Ci) over 5 temporal scales using a 3rd order Butterworth filter with a normalised corner frequency of at each temporal scale (τ), where the radius threshold value (r) specified by Mobj becomes scaled by the median absolute deviation of the filtered signal at each scale.

MSx, Ci = rMSEn(X, Mobj, Scales = 5, F_Order = 3, F_Num = 0.6, RadNew = 4)
([0.5279653970442648, 0.573386455925927, 0.5939360094866717, 0.5907829626330106, 0.5564473543781709], 2.842518179468045)
+Mobj = MSobject(SampEn, m = 4, r = 1.25)
(Func = EntropyHub._SampEn.SampEn, m = 4, r = 1.25)

Calculate the refined multiscale sample entropy and the complexity index (Ci) over 5 temporal scales using a 3rd order Butterworth filter with a normalised corner frequency of at each temporal scale (τ), where the radius threshold value (r) specified by Mobj becomes scaled by the median absolute deviation of the filtered signal at each scale.

MSx, Ci = rMSEn(X, Mobj, Scales = 5, F_Order = 3, F_Num = 0.6, RadNew = 4)
([0.5279653970442648, 0.573386455925927, 0.5939360094866717, 0.5907829626330106, 0.5564473543781709], 2.842518179468045)
diff --git a/dev/Examples/Example8/index.html b/dev/Examples/Example8/index.html index ada4118..cf101fa 100644 --- a/dev/Examples/Example8/index.html +++ b/dev/Examples/Example8/index.html @@ -4,4 +4,4 @@ MSx, _ = cXMSEn(X[:,1], X[:,2], Mobj, Scales = 3, RadNew = 1)
3-element Vector{Float64}:
  1.0893229452569062
  1.4745638145624824
- 1.293182408488266
+ 1.293182408488266 diff --git a/dev/Examples/Example9/index.html b/dev/Examples/Example9/index.html index faf4ef5..58c5b79 100644 --- a/dev/Examples/Example9/index.html +++ b/dev/Examples/Example9/index.html @@ -4,4 +4,4 @@ using Plots scatter(Data[:,1], Data[:,2], markercolor = "green", markerstrokecolor = "black", -markersize = 3, background_color = "black", grid = false)

Henon

Calculate the hierarchical multiscale corrected cross-conditional entropy over 4 temporal scales and return the average cross-entropy at each scale (Sn), the complexity index (Ci), and a plot of the multiscale entropy curve and the hierarchical tree with the cross-entropy value at each node.

MSx, Sn, Ci = hXMSEn(Data[:,1], Data[:,2], Mobj, Scales = 4, Plotx = true)
([0.5159119469801318, 0.6245115584569841, 0.5634170000748405, 0.7022124034937283, 0.6532640538485219, 0.5852823820201765, 0.7956453173364485, 0.8446734972394015, 0.7604554984465494, 0.8415218012703684, 0.8115326608866869, 0.5128494134582905, 0.6861931413242152, 0.8678500562727558, 0.8287299287906533], [0.5159119469801318, 0.5939642792659123, 0.6841010391747188, 0.7692257497111151], 2.5632030151318776)

hXMSEn

+markersize = 3, background_color = "black", grid = false)

Henon

Calculate the hierarchical multiscale corrected cross-conditional entropy over 4 temporal scales and return the average cross-entropy at each scale (Sn), the complexity index (Ci), and a plot of the multiscale entropy curve and the hierarchical tree with the cross-entropy value at each node.

MSx, Sn, Ci = hXMSEn(Data[:,1], Data[:,2], Mobj, Scales = 4, Plotx = true)
([0.5159119469801318, 0.6245115584569841, 0.5634170000748405, 0.7022124034937283, 0.6532640538485219, 0.5852823820201765, 0.7956453173364485, 0.8446734972394015, 0.7604554984465494, 0.8415218012703684, 0.8115326608866869, 0.5128494134582905, 0.6861931413242152, 0.8678500562727558, 0.8287299287906533], [0.5159119469801318, 0.5939642792659123, 0.6841010391747188, 0.7692257497111151], 2.5632030151318776)

hXMSEn

diff --git a/dev/Examples/Examples/index.html b/dev/Examples/Examples/index.html index 8d52e5c..0ad8529 100644 --- a/dev/Examples/Examples/index.html +++ b/dev/Examples/Examples/index.html @@ -14,4 +14,4 @@ `mandelbrot_Mat` - matrix representing a Mandelbrot fractal image with values in range [0 255], N = 92 x 115 `entropyhub_Mat` - matrix representing the EntropyHub logo with values in range [0 255], N = 127 x 95 -For further info on these graining procedures see the `EntropyHub guide <https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHub%20Guide.pdf>`_.source
IMPORTANT TO NOTE

Parameters of the base or cross- entropy methods are passed to multiscale and multiscale cross- functions using the multiscale entropy object using MSobject. Base and cross- entropy methods are declared with MSobject() using any Base or Cross- entropy function. See the MSobject example in the following sections for more info.

Hierarchical Multiscale Entropy (+ Multiscale Cross-Entropy)

In hierarchical multiscale entropy (hMSEn) and hierarchical multiscale cross-entropy (hXMSEn) functions, the length of the time series signal(s) is halved at each scale. Thus, hMSEn and hXMSEn only use the first 2^N data points where 2^N <= the length of the original time series signal. i.e. For a signal of 5000 points, only the first 4096 are used. For a signal of 1500 points, only the first 1024 are used.

BIDIMENSIONAL ENTROPIES

Each bidimensional entropy function (SampEn2D, FuzzEn2D, DistEn2D) has an important keyword argument - Lock. Bidimensional entropy functions are "locked" by default (Lock == true) to only permit matrices with a maximum size of 128 x 128.

+For further info on these graining procedures see the `EntropyHub guide <https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHub%20Guide.pdf>`_.source
IMPORTANT TO NOTE

Parameters of the base or cross- entropy methods are passed to multiscale and multiscale cross- functions using the multiscale entropy object using MSobject. Base and cross- entropy methods are declared with MSobject() using any Base or Cross- entropy function. See the MSobject example in the following sections for more info.

Hierarchical Multiscale Entropy (+ Multiscale Cross-Entropy)

In hierarchical multiscale entropy (hMSEn) and hierarchical multiscale cross-entropy (hXMSEn) functions, the length of the time series signal(s) is halved at each scale. Thus, hMSEn and hXMSEn only use the first 2^N data points where 2^N <= the length of the original time series signal. i.e. For a signal of 5000 points, only the first 4096 are used. For a signal of 1500 points, only the first 1024 are used.

BIDIMENSIONAL ENTROPIES

Each bidimensional entropy function (SampEn2D, FuzzEn2D, DistEn2D) has an important keyword argument - Lock. Bidimensional entropy functions are "locked" by default (Lock == true) to only permit matrices with a maximum size of 128 x 128.

diff --git a/dev/Guide/Base_Entropies/index.html b/dev/Guide/Base_Entropies/index.html index 3264763..9831008 100644 --- a/dev/Guide/Base_Entropies/index.html +++ b/dev/Guide/Base_Entropies/index.html @@ -10,7 +10,7 @@ :rXMSEn
EntropyHub._ApEn.ApEnFunction
Ap, Phi = ApEn(Sig)

Returns the approximate entropy estimates Ap and the log-average number of matched vectors Phi for m = [0,1,2], estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, radius distance threshold = 0.2*SD(Sig), logarithm = natural

Ap, Phi = ApEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))

Returns the approximate entropy estimates Ap of the data sequence Sig for dimensions = [0,1,...,m] using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

r - Radius Distance Threshold, a positive scalar

Logx - Logarithm base, a positive scalar

See also XApEn, SampEn, MSEn, FuzzEn, PermEn, CondEn, DispEn

References:

[1] Steven M. Pincus, 
     "Approximate entropy as a measure of system complexity." 
     Proceedings of the National Academy of Sciences 
-    88.6 (1991): 2297-2301.
source
EntropyHub._SampEn.SampEnFunction
Samp, A, B = SampEn(Sig)

Returns the sample entropy estimates Samp and the number of matched state vectors (m:B, m+1:A) for m = [0,1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, radius threshold = 0.2*SD(Sig), logarithm = natural

Samp, A, B, (Vcp, Ka, Kb) = SampEn(Sig, ..., Vcp = true)

If Vcp == true, an additional tuple (Vcp, Ka, Kb) is returned with the sample entropy estimates (Samp) and the number of matched state vectors (m: B, m+1: A). (Vcp, Ka, Kb) contains the variance of the conditional probabilities (Vcp), i.e. CP = A/B, and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively. Note Vcp is undefined for the zeroth embedding dimension (m = 0) and due to the computational demand, will take substantially more time to return function outputs. See Appendix B in [2] for more info.

Samp, A, B = SampEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1), Vcp::Bool=false)

Returns the sample entropy estimates Samp for dimensions = [0,1,...,m] estimated from the data sequence Sig using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

r - Radius Distance Threshold, a positive scalar

Logx - Logarithm base, a positive scalar

See also ApEn, FuzzEn, PermEn, CondEn, XSampEn, SampEn2D, MSEn

References:

[1] Joshua S Richman and J. Randall Moorman. 
+    88.6 (1991): 2297-2301.
source
EntropyHub._SampEn.SampEnFunction
Samp, A, B = SampEn(Sig)

Returns the sample entropy estimates Samp and the number of matched state vectors (m:B, m+1:A) for m = [0,1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, radius threshold = 0.2*SD(Sig), logarithm = natural

Samp, A, B, (Vcp, Ka, Kb) = SampEn(Sig, ..., Vcp = true)

If Vcp == true, an additional tuple (Vcp, Ka, Kb) is returned with the sample entropy estimates (Samp) and the number of matched state vectors (m: B, m+1: A). (Vcp, Ka, Kb) contains the variance of the conditional probabilities (Vcp), i.e. CP = A/B, and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively. Note Vcp is undefined for the zeroth embedding dimension (m = 0) and due to the computational demand, will take substantially more time to return function outputs. See Appendix B in [2] for more info.

Samp, A, B = SampEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1), Vcp::Bool=false)

Returns the sample entropy estimates Samp for dimensions = [0,1,...,m] estimated from the data sequence Sig using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

r - Radius Distance Threshold, a positive scalar

Logx - Logarithm base, a positive scalar

See also ApEn, FuzzEn, PermEn, CondEn, XSampEn, SampEn2D, MSEn

References:

[1] Joshua S Richman and J. Randall Moorman. 
     "Physiological time-series analysis using approximate entropy
     and sample entropy." 
     American Journal of Physiology-Heart and Circulatory Physiology (2000).
@@ -18,7 +18,7 @@
 [2] Douglas E Lake, Joshua S Richman, M.P. Griffin, J. Randall Moorman
     "Sample entropy analysis of neonatal heart rate variability."
     American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
-    283, no. 3 (2002): R789-R797.
source
EntropyHub._FuzzEn.FuzzEnFunction
Fuzz, Ps1, Ps2 = FuzzEn(Sig)

Returns the fuzzy entropy estimates Fuzz and the average fuzzy distances (m:Ps1, m+1:Ps2) for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, fuzzy function (Fx) = "default", fuzzy function parameters (r) = [0.2, 2], logarithm = natural

Fuzz, Ps1, Ps2 = FuzzEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))

Returns the fuzzy entropy estimates Fuzz for dimensions = [1,...,m] estimated for the data sequence Sig using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Fx - Fuzzy function name, one of the following: {"sigmoid", "modsampen", "default", "gudermannian", "bell", "triangular", "trapezoidal1", "trapezoidal2", "z_shaped", "gaussian", "constgaussian"}

r - Fuzzy function parameters, a 1 element scalar or a 2 element tuple of positive values. The r parameters for each fuzzy function are defined as follows: [default: [.2 2]]

        default:        r(1) = divisor of the exponential argument
+    283, no. 3 (2002): R789-R797.
source
EntropyHub._FuzzEn.FuzzEnFunction
Fuzz, Ps1, Ps2 = FuzzEn(Sig)

Returns the fuzzy entropy estimates Fuzz and the average fuzzy distances (m:Ps1, m+1:Ps2) for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, fuzzy function (Fx) = "default", fuzzy function parameters (r) = [0.2, 2], logarithm = natural

Fuzz, Ps1, Ps2 = FuzzEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))

Returns the fuzzy entropy estimates Fuzz for dimensions = [1,...,m] estimated for the data sequence Sig using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Fx - Fuzzy function name, one of the following: {"sigmoid", "modsampen", "default", "gudermannian", "bell", "triangular", "trapezoidal1", "trapezoidal2", "z_shaped", "gaussian", "constgaussian"}

r - Fuzzy function parameters, a 1 element scalar or a 2 element tuple of positive values. The r parameters for each fuzzy function are defined as follows: [default: [.2 2]]

        default:        r(1) = divisor of the exponential argument
                         r(2) = argument exponent (pre-division)
         sigmoid:        r(1) = divisor of the exponential argument
                         r(2) = value subtracted from argument (pre-division)
@@ -55,14 +55,14 @@
     "Fuzzy Entropy Metrics for the Analysis of Biomedical Signals: 
     Assessment and Comparison"
     IEEE Access
-    7 (2019): 104833-104847
source
EntropyHub._K2En.K2EnFunction
K2, Ci = K2En(Sig)

Returns the Kolmogorov entropy estimates K2 and the correlation integrals Ci for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, r = 0.2*SD(Sig), logarithm = natural

K2, Ci = K2En(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))

Returns the Kolmogorov entropy estimates K2 for dimensions = [1,...,m] estimated from the data sequence Sig using the 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

r - Radius, a positive scalar

Logx - Logarithm base, a positive scalar

See also DistEn, XK2En, MSEn

References:

[1] Peter Grassberger and Itamar Procaccia,
+    7 (2019): 104833-104847
source
EntropyHub._K2En.K2EnFunction
K2, Ci = K2En(Sig)

Returns the Kolmogorov entropy estimates K2 and the correlation integrals Ci for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, r = 0.2*SD(Sig), logarithm = natural

K2, Ci = K2En(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))

Returns the Kolmogorov entropy estimates K2 for dimensions = [1,...,m] estimated from the data sequence Sig using the 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

r - Radius, a positive scalar

Logx - Logarithm base, a positive scalar

See also DistEn, XK2En, MSEn

References:

[1] Peter Grassberger and Itamar Procaccia,
     "Estimation of the Kolmogorov entropy from a chaotic signal." 
     Physical review A 28.4 (1983): 2591.
 
 [2] Lin Gao, Jue Wang  and Longwei Chen
     "Event-related desynchronization and synchronization 
     quantification in motor-related EEG by Kolmogorov entropy"
-    J Neural Eng. 2013 Jun;10(3):03602
source
EntropyHub._PermEn.PermEnFunction
Perm, Pnorm, cPE = PermEn(Sig)

Returns the permuation entropy estimates Perm, the normalised permutation entropy Pnorm and the conditional permutation entropy cPE for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, logarithm = base 2, normalisation = w.r.t #symbols (m-1) Note: using the standard PermEn estimation, Perm = 0 when m = 1. Note: It is recommeneded that signal length > 5m! (see [8] and Amigo et al., Europhys. Lett. 83:60005, 2008)

Perm, Pnorm, cPE = PermEn(Sig, m)

Returns the permutation entropy estimates Perm estimated from the data sequence Sig using the specified embedding dimensions = [1,...,m] with other default parameters as listed above.

Perm, Pnorm, cPE = PermEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Typex::String="none", tpx::Union{Real,Nothing}=nothing, Logx::Real=2, Norm::Bool=false)

Returns the permutation entropy estimates Perm for dimensions = [1,...,m] estimated from the data sequence Sig using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of PermEn value:

      false -  normalises w.r.t log(# of permutation symbols [m-1]) - default
+    J Neural Eng. 2013 Jun;10(3):03602
source
EntropyHub._PermEn.PermEnFunction
Perm, Pnorm, cPE = PermEn(Sig)

Returns the permuation entropy estimates Perm, the normalised permutation entropy Pnorm and the conditional permutation entropy cPE for m = [1,2] estimated from the data sequence Sig using the default parameters: embedding dimension = 2, time delay = 1, logarithm = base 2, normalisation = w.r.t #symbols (m-1) Note: using the standard PermEn estimation, Perm = 0 when m = 1. Note: It is recommeneded that signal length > 5m! (see [8] and Amigo et al., Europhys. Lett. 83:60005, 2008)

Perm, Pnorm, cPE = PermEn(Sig, m)

Returns the permutation entropy estimates Perm estimated from the data sequence Sig using the specified embedding dimensions = [1,...,m] with other default parameters as listed above.

Perm, Pnorm, cPE = PermEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Typex::String="none", tpx::Union{Real,Nothing}=nothing, Logx::Real=2, Norm::Bool=false)

Returns the permutation entropy estimates Perm for dimensions = [1,...,m] estimated from the data sequence Sig using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of PermEn value:

      false -  normalises w.r.t log(# of permutation symbols [m-1]) - default
       true  -  normalises w.r.t log(# of all possible permutations [m!])
       * Note: Normalised permutation entropy is undefined for m = 1.
       ** Note: When Typex = 'uniquant' and Norm = true, normalisation
@@ -120,19 +120,19 @@
         "Phase permutation entropy: A complexity measure for nonlinear time 
         series incorporating phase information." 
         Physica A: Statistical Mechanics and its Applications 
-        568 (2021): 125686.
source
EntropyHub._CondEn.CondEnFunction
Cond, SEw, SEz = CondEn(Sig)

Returns the corrected conditional entropy estimates (Cond) and the corresponding Shannon entropies (m: SEw, m+1: SEz) for m = [1,2] estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 6, logarithm = natural, normalisation = false Note: CondEn(m=1) returns the Shannon entropy of Sig.

Cond, SEw, SEz = CondEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)

Returns the corrected conditional entropy estimates (Cond) from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

c - # of symbols, an integer > 1

Logx - Logarithm base, a positive scalar

Norm - Normalisation of CondEn value:

      [false]  no normalisation - default
+        568 (2021): 125686.
source
EntropyHub._CondEn.CondEnFunction
Cond, SEw, SEz = CondEn(Sig)

Returns the corrected conditional entropy estimates (Cond) and the corresponding Shannon entropies (m: SEw, m+1: SEz) for m = [1,2] estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 6, logarithm = natural, normalisation = false Note: CondEn(m=1) returns the Shannon entropy of Sig.

Cond, SEw, SEz = CondEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)

Returns the corrected conditional entropy estimates (Cond) from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

c - # of symbols, an integer > 1

Logx - Logarithm base, a positive scalar

Norm - Normalisation of CondEn value:

      [false]  no normalisation - default
       [true]   normalises w.r.t Shannon entropy of data sequence `Sig`

See also XCondEn, MSEn, PermEn, DistEn, XPermEn

References:

[1] Alberto Porta, et al.,
     "Measuring regularity by means of a corrected conditional
     entropy in sympathetic outflow." 
     Biological cybernetics 
-    78.1 (1998): 71-78.
source
EntropyHub._DistEn.DistEnFunction
Dist, Ppi = DistEn(Sig)

Returns the distribution entropy estimate (Dist) and the corresponding distribution probabilities (Ppi) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, binning method = 'Sturges', logarithm = base 2, normalisation = w.r.t # of histogram bins

Dist, Ppi = DistEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)

Returns the distribution entropy estimate (Dist) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

Bins - Histogram bin selection method for distance distribution, one of the following:

      an integer > 1 indicating the number of bins, or one of the 
+    78.1 (1998): 71-78.
source
EntropyHub._DistEn.DistEnFunction
Dist, Ppi = DistEn(Sig)

Returns the distribution entropy estimate (Dist) and the corresponding distribution probabilities (Ppi) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, binning method = 'Sturges', logarithm = base 2, normalisation = w.r.t # of histogram bins

Dist, Ppi = DistEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)

Returns the distribution entropy estimate (Dist) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

Bins - Histogram bin selection method for distance distribution, one of the following:

      an integer > 1 indicating the number of bins, or one of the 
       following strings {'sturges','sqrt','rice','doanes'}
       [default: 'sturges']

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of DistEn value:

      [false]  no normalisation.
       [true]   normalises w.r.t # of histogram bins - default

See also XDistEn, DistEn2D, MSEn, K2En

References:

[1] Li, Peng, et al.,
     "Assessing the complexity of short-term heartbeat interval 
     series by distribution entropy." 
     Medical & biological engineering & computing 
-    53.1 (2015): 77-87.
source
EntropyHub._SpecEn.SpecEnFunction
Spec, BandEn = SpecEn(Sig)

Returns the spectral entropy estimate of the full spectrum (Spec) and the within-band entropy (BandEn) estimated from the data sequence (Sig) using the default parameters: N-point FFT = 2*len(Sig) + 1, normalised band edge frequencies = [0 1], logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency values.

Spec, BandEn = SpecEn(Sig::AbstractArray{T,1} where T<:Real; N::Int=1 + (2*size(Sig,1)), Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)

Returns the spectral entropy (Spec) and the within-band entropy (BandEn) estimate for the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

N - Resolution of spectrum (N-point FFT), an integer > 1

Freqs - Normalised band edge frequencies, a 2 element tuple with values

      in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2).
+    53.1 (2015): 77-87.
source
EntropyHub._SpecEn.SpecEnFunction
Spec, BandEn = SpecEn(Sig)

Returns the spectral entropy estimate of the full spectrum (Spec) and the within-band entropy (BandEn) estimated from the data sequence (Sig) using the default parameters: N-point FFT = 2*len(Sig) + 1, normalised band edge frequencies = [0 1], logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency values.

Spec, BandEn = SpecEn(Sig::AbstractArray{T,1} where T<:Real; N::Int=1 + (2*size(Sig,1)), Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)

Returns the spectral entropy (Spec) and the within-band entropy (BandEn) estimate for the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

N - Resolution of spectrum (N-point FFT), an integer > 1

Freqs - Normalised band edge frequencies, a 2 element tuple with values

      in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2).
       Note: When no band frequencies are entered, BandEn == SpecEn

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of Spec value:

      [false]  no normalisation.
       [true]   normalises w.r.t # of spectrum/band frequency values - default.

For more info, see the EntropyHub guide.

See also XSpecEn, fft, MSEn, XMSEn

References:

[1] G.E. Powell and I.C. Percival,
     "A spectral entropy method for distinguishing regular and 
@@ -144,7 +144,7 @@
     "Quantification of EEG irregularity by use of the entropy of 
     the power spectrum." 
     Electroencephalography and clinical neurophysiology 
-    79.3 (1991): 204-210.
source
EntropyHub._DispEn.DispEnFunction
Dispx, RDE = DispEn(Sig)

Returns the dispersion entropy (Dispx) and the reverse dispersion entropy (RDE) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural, data transform = normalised cumulative density function (ncdf)

Dispx, RDE = DispEn(Sig::AbstractArray{T,1} where T<:Real; c::Int=3, m::Int=2, tau::Int=1, Typex::String="ncdf", Logx::Real=exp(1), Fluct::Bool=false, Norm::Bool=false, rho::Real=1)

Returns the dispersion entropy (Dispx) and the reverse dispersion entropy (RDE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

c - Number of symbols, an integer > 1

Typex - Type of data-to-symbolic sequence transform, one of the following: {"linear", "kmeans" ,"ncdf", "finesort", "equal"}

      See the EntropyHub guide for more info on these transforms.

Logx - Logarithm base, a positive scalar

Fluct - When Fluct == true, DispEn returns the fluctuation-based Dispersion entropy. [default: false]

Norm - Normalisation of Dispx and RDE value: [false] no normalisation - default [true] normalises w.r.t number of possible dispersion patterns (c^m or (2c -1)^m-1 if Fluct == true).

rho - If Typex == 'finesort', rho is the tuning parameter (default: 1)

See also PermEn, SyDyEn, MSEn

References:

[1] Mostafa Rostaghi and Hamed Azami,
+    79.3 (1991): 204-210.
source
EntropyHub._DispEn.DispEnFunction
Dispx, RDE = DispEn(Sig)

Returns the dispersion entropy (Dispx) and the reverse dispersion entropy (RDE) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural, data transform = normalised cumulative density function (ncdf)

Dispx, RDE = DispEn(Sig::AbstractArray{T,1} where T<:Real; c::Int=3, m::Int=2, tau::Int=1, Typex::String="ncdf", Logx::Real=exp(1), Fluct::Bool=false, Norm::Bool=false, rho::Real=1)

Returns the dispersion entropy (Dispx) and the reverse dispersion entropy (RDE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

c - Number of symbols, an integer > 1

Typex - Type of data-to-symbolic sequence transform, one of the following: {"linear", "kmeans" ,"ncdf", "finesort", "equal"}

      See the EntropyHub guide for more info on these transforms.

Logx - Logarithm base, a positive scalar

Fluct - When Fluct == true, DispEn returns the fluctuation-based Dispersion entropy. [default: false]

Norm - Normalisation of Dispx and RDE value: [false] no normalisation - default [true] normalises w.r.t number of possible dispersion patterns (c^m or (2c -1)^m-1 if Fluct == true).

rho - If Typex == 'finesort', rho is the tuning parameter (default: 1)

See also PermEn, SyDyEn, MSEn

References:

[1] Mostafa Rostaghi and Hamed Azami,
     "Dispersion entropy: A measure for time-series analysis." 
     IEEE Signal Processing Letters 
     23.5 (2016): 610-614.
@@ -164,7 +164,7 @@
     "Fault diagnosis for rolling bearings based on fine-sorted 
     dispersion entropy and SVM optimized with mutation SCA-PSO."
     Entropy
-    21.4 (2019): 404.
source
EntropyHub._SyDyEn.SyDyEnFunction
SyDy, Zt = SyDyEn(Sig)

Returns the symbolic dynamic entropy (SyDy) and the symbolic sequence (Zt) of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural, symbolic partition type = maximum entropy partitioning (MEP), normalisation = normalises w.r.t # possible vector permutations (c^m)

SyDy, Zt = SyDyEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=3, Typex::String="MEP", Logx::Real=exp(1), Norm::Bool=true)

Returns the symbolic dynamic entropy (SyDy) and the symbolic sequence (Zt) of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

c - Number of symbols, an integer > 1

Typex - Type of symbolic sequnce partitioning method, one of the following:

      {"linear","uniform","MEP"(default),"kmeans"}

Logx - Logarithm base, a positive scalar

Norm - Normalisation of SyDyEn value:

      [false]  no normalisation 
+    21.4 (2019): 404.
source
EntropyHub._SyDyEn.SyDyEnFunction
SyDy, Zt = SyDyEn(Sig)

Returns the symbolic dynamic entropy (SyDy) and the symbolic sequence (Zt) of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural, symbolic partition type = maximum entropy partitioning (MEP), normalisation = normalises w.r.t # possible vector permutations (c^m)

SyDy, Zt = SyDyEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=3, Typex::String="MEP", Logx::Real=exp(1), Norm::Bool=true)

Returns the symbolic dynamic entropy (SyDy) and the symbolic sequence (Zt) of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer

tau - Time Delay, a positive integer

c - Number of symbols, an integer > 1

Typex - Type of symbolic sequnce partitioning method, one of the following:

      {"linear","uniform","MEP"(default),"kmeans"}

Logx - Logarithm base, a positive scalar

Norm - Normalisation of SyDyEn value:

      [false]  no normalisation 
       [true]   normalises w.r.t # possible vector permutations (c^m+1) - default

See the EntropyHub guide for more info on these parameters.

See also DispEn, PermEn, CondEn, SampEn, MSEn

References:

[1] Yongbo Li, et al.,
     "A fault diagnosis scheme for planetary gearboxes using 
     modified multi-scale symbolic dynamic entropy and mRMR feature 
@@ -182,7 +182,7 @@
 [3] Venkatesh Rajagopalan and Asok Ray,
     "Symbolic time series analysis via wavelet-based partitioning."
     Signal processing 
-    86.11 (2006): 3309-3320.
source
EntropyHub._IncrEn.IncrEnFunction
Incr = IncrEn(Sig)

Returns the increment entropy (Incr) estimate of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, quantifying resolution = 4, logarithm = base 2,

Incr = IncrEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, R::Int=4, Logx::Real=2, Norm::Bool=false)

Returns the increment entropy (Incr) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

R - Quantifying resolution, a positive scalar

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of IncrEn value:

      [false]  no normalisation - default
+    86.11 (2006): 3309-3320.
source
EntropyHub._IncrEn.IncrEnFunction
Incr = IncrEn(Sig)

Returns the increment entropy (Incr) estimate of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, quantifying resolution = 4, logarithm = base 2,

Incr = IncrEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, R::Int=4, Logx::Real=2, Norm::Bool=false)

Returns the increment entropy (Incr) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

R - Quantifying resolution, a positive scalar

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of IncrEn value:

      [false]  no normalisation - default
       [true]   normalises w.r.t embedding dimension (m-1).

See also PermEn, SyDyEn, MSEn

References:

[1] Xiaofeng Liu, et al.,
     "Increment entropy as a measure of complexity for time series."
     Entropy
@@ -198,7 +198,7 @@
     "Appropriate use of the increment entropy for 
     electrophysiological time series." 
     Computers in biology and medicine 
-    95 (2018): 13-23.
source
EntropyHub._CoSiEn.CoSiEnFunction
CoSi, Bm = CoSiEn(Sig)

Returns the cosine similarity entropy (CoSi) and the corresponding global probabilities estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, angular threshold = .1, logarithm = base 2,

CoSi, Bm = CoSiEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=.1, Logx::Real=2, Norm::Int=0)

Returns the cosine similarity entropy (CoSi) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

r - Angular threshold, a value in range [0 < r < 1]

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of Sig, one of the following integers:

    [0]  no normalisation - default
+    95 (2018): 13-23.
source
EntropyHub._CoSiEn.CoSiEnFunction
CoSi, Bm = CoSiEn(Sig)

Returns the cosine similarity entropy (CoSi) and the corresponding global probabilities estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, angular threshold = .1, logarithm = base 2,

CoSi, Bm = CoSiEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=.1, Logx::Real=2, Norm::Int=0)

Returns the cosine similarity entropy (CoSi) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

r - Angular threshold, a value in range [0 < r < 1]

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of Sig, one of the following integers:

    [0]  no normalisation - default
     [1]  normalises `Sig` by removing median(`Sig`)
     [2]  normalises `Sig` by removing mean(`Sig`)
     [3]  normalises `Sig` w.r.t. SD(`Sig`)
@@ -206,21 +206,21 @@
     "Cosine similarity entropy: Self-correlation-based complexity
     analysis of dynamical systems."
     Entropy 
-    19.12 (2017): 652.
source
EntropyHub._PhasEn.PhasEnFunction
Phas = PhasEn(Sig)

Returns the phase entropy (Phas) estimate of the data sequence (Sig) using the default parameters: angular partitions = 4, time delay = 1, logarithm = natural,

Phas = PhasEn(Sig::AbstractArray{T,1} where T<:Real; K::Int=4, tau::Int=1, Logx::Real=exp(1), Norm::Bool=true, Plotx::Bool=false)

Returns the phase entropy (Phas) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

K - Angular partitions (coarse graining), an integer > 1

        *Note: Division of partitions begins along the positive x-axis. As this point is somewhat arbitrary, it is
+    19.12 (2017): 652.
source
EntropyHub._PhasEn.PhasEnFunction
Phas = PhasEn(Sig)

Returns the phase entropy (Phas) estimate of the data sequence (Sig) using the default parameters: angular partitions = 4, time delay = 1, logarithm = natural,

Phas = PhasEn(Sig::AbstractArray{T,1} where T<:Real; K::Int=4, tau::Int=1, Logx::Real=exp(1), Norm::Bool=true, Plotx::Bool=false)

Returns the phase entropy (Phas) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

K - Angular partitions (coarse graining), an integer > 1

        *Note: Division of partitions begins along the positive x-axis. As this point is somewhat arbitrary, it is
          recommended to use even-numbered (preferably multiples of 4) partitions for sake of symmetry.

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar

Norm - Normalisation of Phas value:

      [false]  no normalisation
       [true]   normalises w.r.t. the number of partitions Log(`K`)

Plotx - When Plotx == true, returns Poincaré plot (default: false)

See also SampEn, ApEn, GridEn, MSEn, SlopEn, CoSiEn, BubbEn

References:

[1] Ashish Rohila and Ambalika Sharma,
     "Phase entropy: a new complexity measure for heart rate
     variability." 
     Physiological measurement
-    40.10 (2019): 105006.
source
EntropyHub._SlopEn.SlopEnFunction
Slop = SlopEn(Sig)

Returns the slope entropy (Slop) estimates for embedding dimensions [2, ..., m] of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, angular thresholds = [5 45], logarithm = base 2

Slop = SlopEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Lvls::AbstractArray{T,1} where T<:Real=[5, 45], Logx::Real=2, Norm::Bool=true)

Returns the slope entropy (Slop) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

      SlopEn returns estimates for each dimension [2,...,m]

tau - Time Delay, a positive integer

Lvls - Angular thresolds, a vector of monotonically increasing values in the range [0 90] degrees.

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of SlopEn value, a boolean operator:

      [false]  no normalisation
+    40.10 (2019): 105006.
source
EntropyHub._SlopEn.SlopEnFunction
Slop = SlopEn(Sig)

Returns the slope entropy (Slop) estimates for embedding dimensions [2, ..., m] of the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, angular thresholds = [5 45], logarithm = base 2

Slop = SlopEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Lvls::AbstractArray{T,1} where T<:Real=[5, 45], Logx::Real=2, Norm::Bool=true)

Returns the slope entropy (Slop) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

      SlopEn returns estimates for each dimension [2,...,m]

tau - Time Delay, a positive integer

Lvls - Angular thresolds, a vector of monotonically increasing values in the range [0 90] degrees.

Logx - Logarithm base, a positive scalar (enter 0 for natural log)

Norm - Normalisation of SlopEn value, a boolean operator:

      [false]  no normalisation
       [true]   normalises w.r.t. the number of patterns found (default)

See also PhasEn, GridEn, MSEn, CoSiEn, SampEn, ApEn

References:

[1] David Cuesta-Frau,
     "Slope Entropy: A New Time Series Complexity Estimator Based on
     Both Symbolic Patterns and Amplitude Information." 
     Entropy 
-    21.12 (2019): 1167.
source
EntropyHub._BubbEn.BubbEnFunction
Bubb, H = BubbEn(Sig)

Returns the bubble entropy (Bubb) and the conditional Rényi entropy (H) estimates of dimension m = 2 from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, logarithm = natural

Bubb, H = BubbEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Logx::Real=exp(1))

Returns the bubble entropy (Bubb) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

      BubbEn returns estimates for each dimension [2,...,m]

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar

See also PhasEn, MSEn

References:

[1] George Manis, M.D. Aktaruzzaman and Roberto Sassi,
+    21.12 (2019): 1167.
source
EntropyHub._BubbEn.BubbEnFunction
Bubb, H = BubbEn(Sig)

Returns the bubble entropy (Bubb) and the conditional Rényi entropy (H) estimates of dimension m = 2 from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, logarithm = natural

Bubb, H = BubbEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Logx::Real=exp(1))

Returns the bubble entropy (Bubb) estimate of the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

      BubbEn returns estimates for each dimension [2,...,m]

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar

See also PhasEn, MSEn

References:

[1] George Manis, M.D. Aktaruzzaman and Roberto Sassi,
     "Bubble entropy: An entropy almost free of parameters."
     IEEE Transactions on Biomedical Engineering
-    64.11 (2017): 2711-2718.
source
EntropyHub._GridEn.GridEnFunction
GDE, GDR, _ = GridEn(Sig)

Returns the gridded distribution entropy (GDE) and the gridded distribution rate (GDR) estimated from the data sequence (Sig) using the default parameters: grid coarse-grain = 3, time delay = 1, logarithm = base 2

GDE, GDR, PIx, GIx, SIx, AIx = GridEn(Sig)

In addition to GDE and GDR, GridEn returns the following indices estimated for the data sequence (Sig) using the default parameters: [PIx] - Percentage of points below the line of identity (LI) [GIx] - Proportion of point distances above the LI [SIx] - Ratio of phase angles (w.r.t. LI) of the points above the LI [AIx] - Ratio of the cumulative area of sectors of points above the LI

GDE, GDR, ..., = GridEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=3, tau::Int=1, Logx::Real=exp(1), Plotx::Bool=false)

Returns the gridded distribution entropy (GDE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Grid coarse-grain (m x m sectors), an integer > 1

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar

Plotx - When Plotx == true, returns gridded Poicaré plot and a bivariate histogram of the grid point distribution (default: false)

See also PhasEn, CoSiEn, SlopEn, BubbEn, MSEn

References:

[1] Chang Yan, et al.,
+    64.11 (2017): 2711-2718.
source
EntropyHub._GridEn.GridEnFunction
GDE, GDR, _ = GridEn(Sig)

Returns the gridded distribution entropy (GDE) and the gridded distribution rate (GDR) estimated from the data sequence (Sig) using the default parameters: grid coarse-grain = 3, time delay = 1, logarithm = base 2

GDE, GDR, PIx, GIx, SIx, AIx = GridEn(Sig)

In addition to GDE and GDR, GridEn returns the following indices estimated for the data sequence (Sig) using the default parameters: [PIx] - Percentage of points below the line of identity (LI) [GIx] - Proportion of point distances above the LI [SIx] - Ratio of phase angles (w.r.t. LI) of the points above the LI [AIx] - Ratio of the cumulative area of sectors of points above the LI

GDE, GDR, ..., = GridEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=3, tau::Int=1, Logx::Real=exp(1), Plotx::Bool=false)

Returns the gridded distribution entropy (GDE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Grid coarse-grain (m x m sectors), an integer > 1

tau - Time Delay, a positive integer

Logx - Logarithm base, a positive scalar

Plotx - When Plotx == true, returns gridded Poicaré plot and a bivariate histogram of the grid point distribution (default: false)

See also PhasEn, CoSiEn, SlopEn, BubbEn, MSEn

References:

[1] Chang Yan, et al.,
         "Novel gridded descriptors of poincaré plot for analyzing 
         heartbeat interval time-series." 
         Computers in biology and medicine 
@@ -241,15 +241,15 @@
 [4] C.K. Karmakar, A.H. Khandoker and M. Palaniswami,
         "Phase asymmetry of heart rate variability signal." 
         Physiological measurement 
-        36.2 (2015): 303.
source
EntropyHub._EnofEn.EnofEnFunction
EoE, AvEn, S2 = EnofEn(Sig)

Returns the entropy of entropy (EoE), the average Shannon entropy (AvEn), and the number of levels (S2) across all windows estimated from the data sequence (Sig) using the default parameters: window length (samples) = 10, slices = 10, logarithm = natural, heartbeat interval range (xmin, xmax) = (min(Sig), max(Sig))

EoE, AvEn, S2 = EnofEn(Sig::AbstractArray{T,1} where T<:Real; tau::Int=10, S::Int=10, Xrange::Tuple{Real,REal}, Logx::Real=exp(1))

Returns the entropy of entropy (EoE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

tau - Window length, an integer > 1

S - Number of slices (s1,s2), a two-element tuple of integers > 2

Xrange - The min and max heartbeat interval, a two-element tuple where X[1] <= X[2]

Logx - Logarithm base, a positive scalar

See also SampEn, MSEn, ApEn

References:

[1] Chang Francis Hsu, et al.,
+        36.2 (2015): 303.
source
EntropyHub._EnofEn.EnofEnFunction
EoE, AvEn, S2 = EnofEn(Sig)

Returns the entropy of entropy (EoE), the average Shannon entropy (AvEn), and the number of levels (S2) across all windows estimated from the data sequence (Sig) using the default parameters: window length (samples) = 10, slices = 10, logarithm = natural, heartbeat interval range (xmin, xmax) = (min(Sig), max(Sig))

EoE, AvEn, S2 = EnofEn(Sig::AbstractArray{T,1} where T<:Real; tau::Int=10, S::Int=10, Xrange::Tuple{Real,REal}, Logx::Real=exp(1))

Returns the entropy of entropy (EoE) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

tau - Window length, an integer > 1

S - Number of slices (s1,s2), a two-element tuple of integers > 2

Xrange - The min and max heartbeat interval, a two-element tuple where X[1] <= X[2]

Logx - Logarithm base, a positive scalar

See also SampEn, MSEn, ApEn

References:

[1] Chang Francis Hsu, et al.,
     "Entropy of entropy: Measurement of dynamical complexity for
     biological systems." 
     Entropy 
-    19.10 (2017): 550.
source
EntropyHub._AttnEn.AttnEnFunction
Av4, (Hxx,Hnn,Hxn,Hnx) = AttnEn(Sig)

Returns the attention entropy (Av4) calculated as the average of the sub-entropies (Hxx,Hxn,Hnn,Hnx) estimated from the data sequence (Sig) using a base-2 logarithm.

Av4, (Hxx, Hnn, Hxn, Hnx) = AttnEn(Sig::AbstractArray{T,1} where T<:Real; Logx::Real=2)

Returns the attention entropy (Av4) and the sub-entropies (Hxx,Hnn,Hxn,Hnx) from the data sequence (Sig) where, Hxx: entropy of local-maxima intervals Hnn: entropy of local minima intervals Hxn: entropy of intervals between local maxima and subsequent minima Hnx: entropy of intervals between local minima and subsequent maxima

Arguments:

Logx - Logarithm base, a positive scalar (Enter 0 for natural logarithm)

See also EnofEn, SpecEn, XSpecEn, PermEn, MSEn

References:

[1] Jiawei Yang, et al.,
+    19.10 (2017): 550.
source
EntropyHub._AttnEn.AttnEnFunction
Av4, (Hxx,Hnn,Hxn,Hnx) = AttnEn(Sig)

Returns the attention entropy (Av4) calculated as the average of the sub-entropies (Hxx,Hxn,Hnn,Hnx) estimated from the data sequence (Sig) using a base-2 logarithm.

Av4, (Hxx, Hnn, Hxn, Hnx) = AttnEn(Sig::AbstractArray{T,1} where T<:Real; Logx::Real=2)

Returns the attention entropy (Av4) and the sub-entropies (Hxx,Hnn,Hxn,Hnx) from the data sequence (Sig) where, Hxx: entropy of local-maxima intervals Hnn: entropy of local minima intervals Hxn: entropy of intervals between local maxima and subsequent minima Hnx: entropy of intervals between local minima and subsequent maxima

Arguments:

Logx - Logarithm base, a positive scalar (Enter 0 for natural logarithm)

See also EnofEn, SpecEn, XSpecEn, PermEn, MSEn

References:

[1] Jiawei Yang, et al.,
     "Classification of Interbeat Interval Time-series Using 
     Attention Entropy." 
     IEEE Transactions on Affective Computing 
-    (2020)
source
EntropyHub._RangEn.RangEnFunction
Rangx, A, B = RangEn(Sig)

Returns the range entropy estimate (Rangx) and the number of matched state vectors (m: B, m+1: A) estimated from the data sequence (Sig) using the sample entropy algorithm and the following default parameters: embedding dimension = 2, time delay = 1, radius threshold = 0.2, logarithm = natural.

Rangx, A, B = RangEn(Sig, keyword = value, ...)

Returns the range entropy estimates (Rangx) for dimensions = m estimated for the data sequence (Sig) using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer tau - Time Delay, a positive integer r - Radius Distance Threshold, a positive value between 0 and 1 Methodx - Base entropy method, either 'SampEn' [default] or 'ApEn' Logx - Logarithm base, a positive scalar

See also ApEn, SampEn, FuzzEn, MSEn

References:

[1] Omidvarnia, Amir, et al.
+    (2020)
source
EntropyHub._RangEn.RangEnFunction
Rangx, A, B = RangEn(Sig)

Returns the range entropy estimate (Rangx) and the number of matched state vectors (m: B, m+1: A) estimated from the data sequence (Sig) using the sample entropy algorithm and the following default parameters: embedding dimension = 2, time delay = 1, radius threshold = 0.2, logarithm = natural.

Rangx, A, B = RangEn(Sig, keyword = value, ...)

Returns the range entropy estimates (Rangx) for dimensions = m estimated for the data sequence (Sig) using the specified keyword arguments:

Arguments:

m - Embedding Dimension, a positive integer tau - Time Delay, a positive integer r - Radius Distance Threshold, a positive value between 0 and 1 Methodx - Base entropy method, either 'SampEn' [default] or 'ApEn' Logx - Logarithm base, a positive scalar

See also ApEn, SampEn, FuzzEn, MSEn

References:

[1] Omidvarnia, Amir, et al.
     "Range entropy: A bridge between signal complexity and self-similarity"
     Entropy 
     20.12 (2018): 962.
@@ -258,7 +258,7 @@
     "Physiological time-series analysis using approximate entropy
     and sample entropy." 
     American Journal of Physiology-Heart and Circulatory Physiology 
-    2000
source
EntropyHub._DivEn.DivEnFunction
Div, CDEn, Bm = DivEn(Sig)

Returns the diversity entropy (Div), the cumulative diversity entropy (CDEn), and the corresponding probabilities (Bm) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, #bins = 5, logarithm = natural,

Div, CDEn, Bm = DivEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Int=5, Logx::Real=exp(1))

Returns the diversity entropy (Div) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

r - Histogram bins #: either

        * an integer [1 < `r`] representing the number of bins
+    2000
source
EntropyHub._DivEn.DivEnFunction
Div, CDEn, Bm = DivEn(Sig)

Returns the diversity entropy (Div), the cumulative diversity entropy (CDEn), and the corresponding probabilities (Bm) estimated from the data sequence (Sig) using the default parameters: embedding dimension = 2, time delay = 1, #bins = 5, logarithm = natural,

Div, CDEn, Bm = DivEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Int=5, Logx::Real=exp(1))

Returns the diversity entropy (Div) estimated from the data sequence (Sig) using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1

tau - Time Delay, a positive integer

r - Histogram bins #: either

        * an integer [1 < `r`] representing the number of bins
         * a list/numpy array of 3 or more increasing values in range [-1 1] representing the bin edges including the rightmost edge.

Logx - Logarithm base, a positive scalar (Enter 0 for natural logarithm)

See also CoSiEn, PhasEn, SlopEn, GridEn, MSEn

References:

[1] X. Wang, S. Si and Y. Li, 
     "Multiscale Diversity Entropy: A Novel Dynamical Measure for Fault 
     Diagnosis of Rotating Machinery," 
@@ -269,4 +269,4 @@
     "Cumulative Diversity Pattern Entropy (CDEn): A High-Performance, 
     Almost-Parameter-Free Complexity Estimator for Nonstationary Time Series,"
     IEEE Transactions on Industrial Informatics
-    vol. 19, no. 9, pp. 9642-9653, Sept. 2023
source
+ vol. 19, no. 9, pp. 9642-9653, Sept. 2023source diff --git a/dev/Guide/Bidimensional_Entropies/index.html b/dev/Guide/Bidimensional_Entropies/index.html index 6bf44d2..f382d9c 100644 --- a/dev/Guide/Bidimensional_Entropies/index.html +++ b/dev/Guide/Bidimensional_Entropies/index.html @@ -5,7 +5,7 @@ "Two-dimensional sample entropy: Assessing image texture through irregularity." Biomedical Physics & Engineering Express - 2.4 (2016): 045002.source
EntropyHub._FuzzEn2D.FuzzEn2DFunction
Fuzz2D = FuzzEn2D(Mat)

Returns the bidimensional fuzzy entropy estimate (Fuzz2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, fuzzy function (Fx) = 'default', fuzzy function parameters (r) = [0.2, 2], logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height and width of the data matrix 'Mat')

** The minimum dimension size of Mat must be > 10.**

Fuzz2D = FuzzEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), 
+     2.4 (2016): 045002.
source
EntropyHub._FuzzEn2D.FuzzEn2DFunction
Fuzz2D = FuzzEn2D(Mat)

Returns the bidimensional fuzzy entropy estimate (Fuzz2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, fuzzy function (Fx) = 'default', fuzzy function parameters (r) = [0.2, 2], logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height and width of the data matrix 'Mat')

** The minimum dimension size of Mat must be > 10.**

Fuzz2D = FuzzEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), 
                     tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2*std(Mat, corrected=false),2), 
                         Fx::String="default", Logx::Real=exp(1), Lock::Bool=true)

Returns the bidimensional fuzzy entropy (Fuzz2D) estimates for the data matrix (Mat) using the specified 'keyword' arguments:

Arguments:

m - Template submatrix dimensions, an integer scalar (i.e. the same height and width) or a two-element vector of integers [height, width] with a minimum value > 1. (default: [floor(H/10) floor(W/10)])

tau - Time Delay, a positive integer (default: 1)

Fx - Fuzzy function name, one of the following: {"sigmoid", "modsampen", "default", "gudermannian", "bell", "triangular", "trapezoidal1", "trapezoidal2", "z_shaped", "gaussian", "constgaussian"}

r - Fuzzy function parameters, a 1 element scalar or a 2 element vector of positive values. The 'r' parameters for each fuzzy function are defined as follows:

      sigmoid:        r(1) = divisor of the exponential argument
                       r(2) = value subtracted from argument (pre-division)
@@ -46,18 +46,18 @@
     "Fuzzy Entropy Metrics for the Analysis of Biomedical Signals: 
     Assessment and Comparison"
     IEEE Access
-    7 (2019): 104833-104847
source
EntropyHub._DistEn2D.DistEn2DFunction
Dist2D = DistEn2D(Mat)

Returns the bidimensional distribution entropy estimate (Dist2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, histogram binning method = "sturges", logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum number of rows and columns of Mat must be > 10.**

Dist2D = DistEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
+    7 (2019): 104833-104847
source
EntropyHub._DistEn2D.DistEn2DFunction
Dist2D = DistEn2D(Mat)

Returns the bidimensional distribution entropy estimate (Dist2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, histogram binning method = "sturges", logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum number of rows and columns of Mat must be > 10.**

Dist2D = DistEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
                     Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Int=2, Lock::Bool=true)

Returns the bidimensional distribution entropy (Dist2D) estimate for the data matrix (Mat) using the specified 'keyword' arguments:

Arguments:

m - Template submatrix dimensions, an integer scalar (i.e. the same height and width) or a two-element tuple of integers [height, width] with a minimum value > 1. [default: [floor(H/10) floor(W/10)]]

tau - Time Delay, a positive integer [default: 1]

Bins - Histogram bin selection method for distance distribution, an integer > 1 indicating the number of bins, or one of the following strings {"sturges", "sqrt", "rice", "doanes"`} [default: 'sturges']

Logx - Logarithm base, a positive scalar [default: natural]

      ** enter 0 for natural logarithm.**

Norm - Normalisation of Dist2D value, one of the following integers: [0] no normalisation. [1] normalises values of data matrix (Mat) to range [0 1]. [2] normalises values of data matrix (Mat) to range [0 1], and normalises the distribution entropy value (Dist2D) w.r.t the number of histogram bins. [default] [3] normalises the distribution entropy value w.r.t the number of histogram bins, without normalising data matrix values.

Lock - By default, DistEn2D only permits matrices with a maximum size of 128 x 128 to prevent memory errors when storing data on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1, DistEn2D creates a vector of 753049836 elements. To enable matrices greater than [128 x 128] elements, set Lock to false. [default: 'true'] WARNING: unlocking the permitted matrix size may cause your Julia IDE to crash.

See also DistEn, XDistEn, SampEn2D, FuzzEn2D, MSEn

References:

[1] Hamed Azami, Javier Escudero and Anne Humeau-Heurtier,
     "Bidimensional distribution entropy to analyze the irregularity
     of small-sized textures."
     IEEE Signal Processing Letters 
-    24.9 (2017): 1338-1342.
source
EntropyHub._DispEn2D.DispEn2DFunction
Disp2D, RDE = DispEn2D(Mat)

Returns the bidimensional dispersion entropy estimate (Disp2D) and reverse bidimensional dispersion entropy (RDE) estimated for the data matrix (Mat) using the default parameters: time delay = 1, symbols = 3, logarithm = natural, data transform = normalised cumulative density function ('ncdf'), logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum number of rows and columns of Mat must be > 10.**

Disp2D, RDE = DispEn2D(Mat::AbstractArray{T,2} where T<:Real; 
+    24.9 (2017): 1338-1342.
source
EntropyHub._DispEn2D.DispEn2DFunction
Disp2D, RDE = DispEn2D(Mat)

Returns the bidimensional dispersion entropy estimate (Disp2D) and reverse bidimensional dispersion entropy (RDE) estimated for the data matrix (Mat) using the default parameters: time delay = 1, symbols = 3, logarithm = natural, data transform = normalised cumulative density function ('ncdf'), logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum number of rows and columns of Mat must be > 10.**

Disp2D, RDE = DispEn2D(Mat::AbstractArray{T,2} where T<:Real; 
                     m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
                         c::Int=3, Typex::String="ncdf", Logx::Real=exp(1), Norm::Bool=false, Lock::Bool=true)

Returns the bidimensional dispersion entropy (Disp2D) and reverse bidimensional distribution entropy (RDE) estimate for the data matrix (Mat) using the specified 'keyword' arguments:

Arguments:

m - Template submatrix dimensions, an integer scalar (i.e. the same height and width) or a two-element tuple of integers [height, width] with a minimum value > 1. [default: [floor(H/10) floor(W/10)]]

tau - Time Delay, a positive integer [default: 1]

c - Number of symbols, an integer > 1 Typex - Type of symbolic mapping transform, one of the following: {linear, kmeans, ncdf, equal} See the EntropyHub Guide for more info on these transforms. Logx - Logarithm base, a positive scalar [default: natural]

      ** enter 0 for natural logarithm.**

Norm - Normalisation of Disp2D value, a boolean: - [false] no normalisation - default - [true] normalises w.r.t number of possible dispersion patterns. Lock - By default, DispEn2D only permits matrices with a maximum size of 128 x 128 to prevent memory errors when storing data on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1, DispEn2D creates a vector of 753049836 elements. To enable matrices greater than [128 x 128] elements, set Lock to false. [default: 'true'] WARNING: unlocking the permitted matrix size may cause your Julia IDE to crash.

See also DispEn, DistEn2D, SampEn2D, FuzzEn2D, MSEn

References:

[1] Hamed Azami, et al.,
     "Two-dimensional dispersion entropy: An information-theoretic 
     method for irregularity analysis of images."
     Signal Processing: Image Communication, 
-    75 (2019): 178-187.
source
EntropyHub._PermEn2D.PermEn2DFunction
Perm2D = PermEn2D(Mat)

Returns the bidimensional permutation entropy estimate (Perm2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum dimension size of Mat must be > 10.**

Perm2D = PermEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),             
+    75 (2019): 178-187.
source
EntropyHub._PermEn2D.PermEn2DFunction
Perm2D = PermEn2D(Mat)

Returns the bidimensional permutation entropy estimate (Perm2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, logarithm = natural, template matrix size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat)

** The minimum dimension size of Mat must be > 10.**

Perm2D = PermEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),             
                                 tau::Int=1, Norm::Bool=true, Logx::Real=exp(1), Lock::Bool=true)

Returns the bidimensional permutation entropy (Perm2D) estimates for the data matrix (Mat) using the specified 'keyword' arguments:

Arguments:

m - Template submatrix dimensions, an integer scalar (i.e. the same height and width) or a two-element vector of integers [height, width] with a minimum value > 1. (default: [floor(H/10) floor(W/10)])

tau - Time Delay, a positive integer (default: 1)

Norm - Normalization of permutation entropy estimate, a boolean (default: true)

Logx - Logarithm base, a positive scalar (default: natural)

Lock - By default, PermEn2D only permits matrices with a maximum size of 128 x 128 to prevent memory errors when storing data on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1, SampEn2D creates a vector of 753049836 elements. To enable matrices greater than [128 x 128] elements, set Lock to false. (default: true)

      `WARNING: unlocking the permitted matrix size may cause your Julia
       IDE to crash.`

NOTE - The original bidimensional permutation entropy algorithms [1][2] do not account for equal-valued elements of the embedding matrices. To overcome this, PermEn2D uses the lowest common rank for such instances. For example, given an embedding matrix A where, A = [3.4 5.5 7.3] |2.1 6 9.9| [7.3 1.1 2.1] would normally be mapped to an ordinal pattern like so, [3.4 5.5 7.3 2.1 6 9.9 7.3 1.1 2.1] => [ 8 4 9 1 2 5 3 7 6 ] However, indices 4 & 9, and 3 & 7 have the same values, 2.1 and 7.3 respectively. Instead, PermEn2D uses the ordinal pattern [ 8 4 4 1 2 5 3 3 6 ] where the lowest rank (4 & 3) are used instead (of 9 & 7). Therefore, the number of possible permutations is no longer (mxmy)!, but (mxmy)^(mxmy). Here, the PermEn2D value is normalized by the maximum Shannon entropy (Smax = log((mxmy)!) $assuming that no equal values are found in the permutation motif matrices$, as presented in [1].

See also SampEn2D, FuzzEn2D, DispEn2D, DistEn2D

References:

[1] Haroldo Ribeiro et al.,
         "Complexity-Entropy Causality Plane as a Complexity Measure 
@@ -71,10 +71,10 @@
 
 [3] Matthew Flood and Bernd Grimm,
         "EntropyHub: An Open-source Toolkit for Entropic Time Series Analysis"
-        PLoS ONE (2021) 16(11): e0259448.
source
EntropyHub._EspEn2D.EspEn2DFunction
Esp2D,  = EspEn2D(Mat)

Returns the bidimensional Espinosa entropy estimate (Esp2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, tolerance threshold = 20, percentage similarity = 0.7 logarithm = natural, matrix template size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat) ** The minimum number of rows and columns of Mat must be > 10.

Esp2D = EspEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),             
+        PLoS ONE (2021) 16(11): e0259448.
source
EntropyHub._EspEn2D.EspEn2DFunction
Esp2D,  = EspEn2D(Mat)

Returns the bidimensional Espinosa entropy estimate (Esp2D) estimated for the data matrix (Mat) using the default parameters: time delay = 1, tolerance threshold = 20, percentage similarity = 0.7 logarithm = natural, matrix template size = [floor(H/10) floor(W/10)], (where H and W represent the height (rows) and width (columns) of the data matrix Mat) ** The minimum number of rows and columns of Mat must be > 10.

Esp2D = EspEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),             
                                 tau::Int=1, r::Real=20, ps::Float=.7, Logx::Real=exp(1), Lock::Bool=true)

Returns the bidimensional Espinosa entropy (Esp2D) estimates for the data matrix (Mat) using the specified 'keyword' arguments:

Arguments:

m - Template submatrix dimensions, an integer scalar (i.e. the same height and width) or a two-element vector of integers [height, width] with a minimum value > 1. (default: [floor(H/10) floor(W/10)])

tau - Time Delay, a positive integer (default: 1)

r - Tolerance threshold, a positive scalar (default: 20)

ps - Percentage similarity, a value in range [0 1], (default: 0.7)

Logx - Logarithm base, a positive scalar (default: natural)

Lock - By default, EspEn2D only permits matrices with a maximum size of 128 x 128 to prevent memory errors when storing data on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1, EspEn2D creates a vector of 753049836 elements. To enable matrices greater than [128 x 128] elements, set Lock to false. (default: true)

      `WARNING: unlocking the permitted matrix size may cause your Julia
       IDE to crash.`

See also SampEn2D, FuzzEn2D, DispEn2D, DistEn2D, PermEn2D

References:

[1] Ricardo Espinosa, et al.,
     "Two-dimensional EspEn: A New Approach to Analyze Image Texture 
     by Irregularity." 
     Entropy,
-    23:1261 (2021)
source
+ 23:1261 (2021)source diff --git a/dev/Guide/Cross_Entropies/index.html b/dev/Guide/Cross_Entropies/index.html index 523e472..1016fb9 100644 --- a/dev/Guide/Cross_Entropies/index.html +++ b/dev/Guide/Cross_Entropies/index.html @@ -14,7 +14,7 @@ [2] Steven Pincus, "Assessing serial irregularity and its implications for health." Annals of the New York Academy of Sciences - 954.1 (2001): 245-267.source
EntropyHub._XSampEn.XSampEnFunction
XSamp, A, B = XSampEn(Sig1, Sig2)

Returns the cross-sample entropy estimates (XSamp) and the number of matched vectors (m:B, m+1:A) for m = [0,1,2] estimated for the two univariate data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, radius distance threshold= 0.2*SDpooled(Sig1,Sig2), logarithm = natural

XSamp, A, B, (Vcp, Ka, Kb) = XSampEn(Sig1, Sig2, ..., Vcp = true)

If Vcp == true, an additional tuple (Vcp, Ka, Kb) is returned with the cross-sample entropy estimates (XSamp) and the number of matched state vectors (m: B, m+1: A). (Vcp, Ka, Kb) contains the variance of the conditional probabilities (Vcp), i.e. CP = A/B, and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively. Note Vcp is undefined for the zeroth embedding dimension (m = 0) and due to the computational demand, will take substantially more time to return function outputs. See Appendix B in [2] for more info.

XSamp, A, B = XSampEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1), Vcp::Bool=false)

Returns the cross-sample entropy estimates (XSamp) for dimensions [0,1,...,m] estimated between the data sequences in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

r - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,Sig2)]

Logx - Logarithm base, a positive scalar [default: natural]

See also XFuzzEn, XApEn, SampEn, SampEn2D, XMSEn, ApEn

References:

[1] Joshua S Richman and J. Randall Moorman. 
+    954.1 (2001): 245-267.
source
EntropyHub._XSampEn.XSampEnFunction
XSamp, A, B = XSampEn(Sig1, Sig2)

Returns the cross-sample entropy estimates (XSamp) and the number of matched vectors (m:B, m+1:A) for m = [0,1,2] estimated for the two univariate data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, radius distance threshold= 0.2*SDpooled(Sig1,Sig2), logarithm = natural

XSamp, A, B, (Vcp, Ka, Kb) = XSampEn(Sig1, Sig2, ..., Vcp = true)

If Vcp == true, an additional tuple (Vcp, Ka, Kb) is returned with the cross-sample entropy estimates (XSamp) and the number of matched state vectors (m: B, m+1: A). (Vcp, Ka, Kb) contains the variance of the conditional probabilities (Vcp), i.e. CP = A/B, and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively. Note Vcp is undefined for the zeroth embedding dimension (m = 0) and due to the computational demand, will take substantially more time to return function outputs. See Appendix B in [2] for more info.

XSamp, A, B = XSampEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1), Vcp::Bool=false)

Returns the cross-sample entropy estimates (XSamp) for dimensions [0,1,...,m] estimated between the data sequences in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

r - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,Sig2)]

Logx - Logarithm base, a positive scalar [default: natural]

See also XFuzzEn, XApEn, SampEn, SampEn2D, XMSEn, ApEn

References:

[1] Joshua S Richman and J. Randall Moorman. 
     "Physiological time-series analysis using approximate entropy
     and sample entropy." 
     American Journal of Physiology-Heart and Circulatory Physiology
@@ -23,7 +23,7 @@
 [2] Douglas E Lake, Joshua S Richman, M.P. Griffin, J. Randall Moorman
     "Sample entropy analysis of neonatal heart rate variability."
     American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
-    283, no. 3 (2002): R789-R797.
source
EntropyHub._XFuzzEn.XFuzzEnFunction
XFuzz, Ps1, Ps2 = XFuzzEn(Sig1, Sig2)

Returns the cross-fuzzy entropy estimates (XFuzz) and the average fuzzy distances (m:Ps1, m+1:Ps2) for m = [1,2] estimated for the data sequences contained in Sig1 and Sig2, using the default parameters: embedding dimension = 2, time delay = 1, fuzzy function (Fx) = 'default', fuzzy function parameters (r) = [0.2, 2], logarithm = natural

XFuzz, Ps1, Ps2 = XFuzzEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))

Returns the cross-fuzzy entropy estimates (XFuzz) for dimensions = [1,...,m] estimated for the data sequences in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Fx - Fuzzy function name, one of the following: {"sigmoid", "modsampen", "default", "gudermannian", "bell", "triangular", "trapezoidal1", "trapezoidal2", "z_shaped", "gaussian", "constgaussian"}

r - Fuzzy function parameters, a scalar or a 2 element tuple of positive values. The r parameters for each fuzzy function are defined as follows:

      sigmoid:        r(1) = divisor of the exponential argument
+    283, no. 3 (2002): R789-R797.
source
EntropyHub._XFuzzEn.XFuzzEnFunction
XFuzz, Ps1, Ps2 = XFuzzEn(Sig1, Sig2)

Returns the cross-fuzzy entropy estimates (XFuzz) and the average fuzzy distances (m:Ps1, m+1:Ps2) for m = [1,2] estimated for the data sequences contained in Sig1 and Sig2, using the default parameters: embedding dimension = 2, time delay = 1, fuzzy function (Fx) = 'default', fuzzy function parameters (r) = [0.2, 2], logarithm = natural

XFuzz, Ps1, Ps2 = XFuzzEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))

Returns the cross-fuzzy entropy estimates (XFuzz) for dimensions = [1,...,m] estimated for the data sequences in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Fx - Fuzzy function name, one of the following: {"sigmoid", "modsampen", "default", "gudermannian", "bell", "triangular", "trapezoidal1", "trapezoidal2", "z_shaped", "gaussian", "constgaussian"}

r - Fuzzy function parameters, a scalar or a 2 element tuple of positive values. The r parameters for each fuzzy function are defined as follows:

      sigmoid:        r(1) = divisor of the exponential argument
                       r(2) = value subtracted from argument (pre-division)
       modsampen:      r(1) = divisor of the exponential argument
                       r(2) = value subtracted from argument (pre-division)
@@ -55,20 +55,20 @@
     "Fuzzy Entropy Metrics for the Analysis of Biomedical Signals: 
     Assessment and Comparison"
     IEEE Access
-    7 (2019): 104833-104847
source
EntropyHub._XK2En.XK2EnFunction
XK2, Ci = XK2En(Sig1, Sig2)

Returns the cross-Kolmogorov entropy estimates (XK2) and the correlation integrals (Ci) for m = [1,2] estimated between the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, distance threshold (r) = 0.2*SDpooled(Sig1, Sig2), logarithm = natural

XK2, Ci = XK2En(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))

Returns the cross-Kolmogorov entropy estimates (XK2) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

r - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,Sig2)]

Logx - Logarithm base, a positive scalar [default: natural]

See also XSampEn, XFuzzEn, XApEn, K2En, XMSEn, XDistEn

References:

[1]  Matthew W. Flood,
+    7 (2019): 104833-104847
source
EntropyHub._XK2En.XK2EnFunction
XK2, Ci = XK2En(Sig1, Sig2)

Returns the cross-Kolmogorov entropy estimates (XK2) and the correlation integrals (Ci) for m = [1,2] estimated between the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, distance threshold (r) = 0.2*SDpooled(Sig1, Sig2), logarithm = natural

XK2, Ci = XK2En(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))

Returns the cross-Kolmogorov entropy estimates (XK2) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

r - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,Sig2)]

Logx - Logarithm base, a positive scalar [default: natural]

See also XSampEn, XFuzzEn, XApEn, K2En, XMSEn, XDistEn

References:

[1]  Matthew W. Flood,
      "XK2En - EntropyHub Project"
-     (2021) https://github.com/MattWillFlood/EntropyHub
source
EntropyHub._XPermEn.XPermEnFunction
XPerm = XPermEn(Sig1, Sig2)

Returns the cross-permuation entropy estimates (XPerm) estimated betweeen the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 3, time delay = 1, logarithm = base 2,

XPerm = XPermEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=3, tau::Int=1, Logx::Real=exp(1))

Returns the permutation entropy estimates (XPerm) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 2 [default: 3]

    **Note: XPerm is undefined for embedding dimensions < 3.**

tau - Time Delay, a positive integer [default: 1]

Logx - Logarithm base, a positive scalar [default: 2] ** enter 0 for natural log.**

See also PermEn, XApEn, XSampEn, XFuzzEn, XMSEn

References:

[1] Wenbin Shi, Pengjian Shang, and Aijing Lin,
+     (2021) https://github.com/MattWillFlood/EntropyHub
source
EntropyHub._XPermEn.XPermEnFunction
XPerm = XPermEn(Sig1, Sig2)

Returns the cross-permuation entropy estimates (XPerm) estimated betweeen the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 3, time delay = 1, logarithm = base 2,

XPerm = XPermEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=3, tau::Int=1, Logx::Real=exp(1))

Returns the permutation entropy estimates (XPerm) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 2 [default: 3]

    **Note: XPerm is undefined for embedding dimensions < 3.**

tau - Time Delay, a positive integer [default: 1]

Logx - Logarithm base, a positive scalar [default: 2] ** enter 0 for natural log.**

See also PermEn, XApEn, XSampEn, XFuzzEn, XMSEn

References:

[1] Wenbin Shi, Pengjian Shang, and Aijing Lin,
     "The coupling analysis of stock market indices based on 
     cross-permutation entropy."
     Nonlinear Dynamics
-    79.4 (2015): 2439-2447.
source
EntropyHub._XCondEn.XCondEnFunction
XCond, SEw, SEz = XCondEn(Sig1, Sig2)

Returns the corrected cross-conditional entropy estimates (XCond) and the corresponding Shannon entropies (m: SEw, m+1: SEz) for m = [1,2] estimated for the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, number of symbols = 6, logarithm = natural ** Note: XCondEn is direction-dependent. Therefore, the order of the data sequences Sig1 and Sig2 matters. If Sig1 is the sequence 'y', and Sig2 is the second sequence 'u', the XCond is the amount of information carried by y(i) when the pattern u(i) is found.**

XCond, SEw, SEz = XCondEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)

Returns the corrected cross-conditional entropy estimates (XCond) for the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1 [default: 2]

tau - Time Delay, a positive integer [default: 1]

c - Number of symbols, an integer > 1 [default: 6]

Logx - Logarithm base, a positive scalar [default: natural]

Norm - Normalisation of XCond values: [false] no normalisation [default]

        [true]   normalises w.r.t cross-Shannon entropy.

See also XFuzzEn, XSampEn, XApEn, XPermEn, CondEn, XMSEn

References:

[1] Alberto Porta, et al.,
+    79.4 (2015): 2439-2447.
source
EntropyHub._XCondEn.XCondEnFunction
XCond, SEw, SEz = XCondEn(Sig1, Sig2)

Returns the corrected cross-conditional entropy estimates (XCond) and the corresponding Shannon entropies (m: SEw, m+1: SEz) for m = [1,2] estimated for the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, number of symbols = 6, logarithm = natural ** Note: XCondEn is direction-dependent. Therefore, the order of the data sequences Sig1 and Sig2 matters. If Sig1 is the sequence 'y', and Sig2 is the second sequence 'u', the XCond is the amount of information carried by y(i) when the pattern u(i) is found.**

XCond, SEw, SEz = XCondEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)

Returns the corrected cross-conditional entropy estimates (XCond) for the data sequences contained in Sig1 and Sig2 using the specified 'keyword' arguments:

Arguments:

m - Embedding Dimension, an integer > 1 [default: 2]

tau - Time Delay, a positive integer [default: 1]

c - Number of symbols, an integer > 1 [default: 6]

Logx - Logarithm base, a positive scalar [default: natural]

Norm - Normalisation of XCond values: [false] no normalisation [default]

        [true]   normalises w.r.t cross-Shannon entropy.

See also XFuzzEn, XSampEn, XApEn, XPermEn, CondEn, XMSEn

References:

[1] Alberto Porta, et al.,
     "Conditional entropy approach for the evaluation of the 
     coupling strength." 
     Biological cybernetics 
-    81.2 (1999): 119-129.
source
EntropyHub._XDistEn.XDistEnFunction
XDist, Ppi = XDistEn(Sig1, Sig2)

Returns the cross-distribution entropy estimate (XDist) and the corresponding distribution probabilities (Ppi) estimated between the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, binning method = 'Sturges', logarithm = base 2, normalisation = w.r.t # of histogram bins

XDist, Ppi = XDistEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)

Returns the cross-distribution entropy estimate (XDist) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' = arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Bins - Histogram bin selection method for distance distribution, an integer > 1 indicating the number of bins, or one of the following strings {'sturges','sqrt','rice','doanes'} [default: 'sturges']

Logx - Logarithm base, a positive scalar [default: 2] ** enter 0 for natural log**

Norm - Normalisation of DistEn value: [false] no normalisation. [true] normalises w.r.t # of histogram bins [default]

See also XSampEn, XApEn, XPermEn, XCondEn, DistEn, DistEn2D, XMSEn

References:

[1] Yuanyuan Wang and Pengjian Shang,
+    81.2 (1999): 119-129.
source
EntropyHub._XDistEn.XDistEnFunction
XDist, Ppi = XDistEn(Sig1, Sig2)

Returns the cross-distribution entropy estimate (XDist) and the corresponding distribution probabilities (Ppi) estimated between the data sequences contained in Sig1 and Sig2 using the default parameters: embedding dimension = 2, time delay = 1, binning method = 'Sturges', logarithm = base 2, normalisation = w.r.t # of histogram bins

XDist, Ppi = XDistEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)

Returns the cross-distribution entropy estimate (XDist) estimated between the data sequences contained in Sig1 and Sig2 using the specified 'keyword' = arguments:

Arguments:

m - Embedding Dimension, a positive integer [default: 2]

tau - Time Delay, a positive integer [default: 1]

Bins - Histogram bin selection method for distance distribution, an integer > 1 indicating the number of bins, or one of the following strings {'sturges','sqrt','rice','doanes'} [default: 'sturges']

Logx - Logarithm base, a positive scalar [default: 2] ** enter 0 for natural log**

Norm - Normalisation of DistEn value: [false] no normalisation. [true] normalises w.r.t # of histogram bins [default]

See also XSampEn, XApEn, XPermEn, XCondEn, DistEn, DistEn2D, XMSEn

References:

[1] Yuanyuan Wang and Pengjian Shang,
     "Analysis of financial stock markets through the multiscale
     cross-distribution entropy based on the Tsallis entropy."
     Nonlinear Dynamics 
-    94.2 (2018): 1361-1376.
source
EntropyHub._XSpecEn.XSpecEnFunction
XSpec, BandEn = XSpecEn(Sig)

Returns the cross-spectral entropy estimate (XSpec) of the full cross- spectrum and the within-band entropy (BandEn) estimated between the data sequences contained in Sig using the default parameters: N-point FFT = 2 * max(length(Sig1/Sig2)) + 1, normalised band edge frequencies = [0 1], logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency values.

XSpec, BandEn = XSpecEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;  N::Union{Nothing,Int}=nothing, Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)

Returns the cross-spectral entropy (XSpec) and the within-band entropy (BandEn) estimate between the data sequences contained in Sig1 and Sig2 using the following specified 'keyword' arguments:

Arguments:

N - Resolution of spectrum (N-point FFT), an integer > 1

Freqs - Normalised band edge frequencies, a scalar in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2). Note: When no band frequencies are entered, BandEn == SpecEn

Logx - Logarithm base, a positive scalar [default: base 2] ** enter 0 for natural log**

Norm - Normalisation of XSpec value: [false] no normalisation. [true] normalises w.r.t # of spectrum/band frequency values [default]

For more info, see the EntropyHub guide

See also SpecEn, fft, XDistEn, periodogram, XSampEn, XApEn

References:

[1]  Matthew W. Flood,
+    94.2 (2018): 1361-1376.
source
EntropyHub._XSpecEn.XSpecEnFunction
XSpec, BandEn = XSpecEn(Sig)

Returns the cross-spectral entropy estimate (XSpec) of the full cross- spectrum and the within-band entropy (BandEn) estimated between the data sequences contained in Sig using the default parameters: N-point FFT = 2 * max(length(Sig1/Sig2)) + 1, normalised band edge frequencies = [0 1], logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency values.

XSpec, BandEn = XSpecEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;  N::Union{Nothing,Int}=nothing, Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)

Returns the cross-spectral entropy (XSpec) and the within-band entropy (BandEn) estimate between the data sequences contained in Sig1 and Sig2 using the following specified 'keyword' arguments:

Arguments:

N - Resolution of spectrum (N-point FFT), an integer > 1

Freqs - Normalised band edge frequencies, a scalar in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2). Note: When no band frequencies are entered, BandEn == SpecEn

Logx - Logarithm base, a positive scalar [default: base 2] ** enter 0 for natural log**

Norm - Normalisation of XSpec value: [false] no normalisation. [true] normalises w.r.t # of spectrum/band frequency values [default]

For more info, see the EntropyHub guide

See also SpecEn, fft, XDistEn, periodogram, XSampEn, XApEn

References:

[1]  Matthew W. Flood,
     "XSpecEn - EntropyHub Project"
-    (2021) https://github.com/MattWillFlood/EntropyHub
source
+ (2021) https://github.com/MattWillFlood/EntropyHubsource diff --git a/dev/Guide/Multiscale_Cross_Entropies/index.html b/dev/Guide/Multiscale_Cross_Entropies/index.html index 06f275f..4057495 100644 --- a/dev/Guide/Multiscale_Cross_Entropies/index.html +++ b/dev/Guide/Multiscale_Cross_Entropies/index.html @@ -38,7 +38,7 @@ [6] Antoine Jamin and Anne Humeau-Heurtier. "(Multiscale) Cross-Entropy Methods: A Review." Entropy - 22.1 (2020): 45.source
EntropyHub._cXMSEn.cXMSEnFunction
MSx, CI = cXMSEn(Sig1, Sig2, Mobj)

Returns a vector of composite multiscale cross-entropy values (MSx) between two univariate data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) using the composite multiscale method (cMSE) over 3 temporal scales.

MSx, CI = cXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple; 
+    22.1 (2020): 45.
source
EntropyHub._cXMSEn.cXMSEnFunction
MSx, CI = cXMSEn(Sig1, Sig2, Mobj)

Returns a vector of composite multiscale cross-entropy values (MSx) between two univariate data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) using the composite multiscale method (cMSE) over 3 temporal scales.

MSx, CI = cXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple; 
                       Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)

Returns a vector of composite multiscale cross-entropy values (MSx) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) and the following keyword arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3)

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is XSampEn or XApEn, RadNew rescales the radius threshold of the sub-sequences at each time scale (Ykj). If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Pooled Standard Deviation          - r*std(Ykj)
 
          [2]    Pooled Variance                    - r*var(Ykj)
@@ -76,7 +76,7 @@
 [6] Shuen-De Wu, et al.,
     "Time series analysis using composite multiscale entropy." 
     Entropy 
-    15.3 (2013): 1069-1084.
source
EntropyHub._rXMSEn.rXMSEnFunction
MSx, CI = rXMSEn(Sig1, Sig2, Mobj)

Returns a vector of refined multiscale cross-entropy values (MSx) and the complexity index (CI) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) and the following default parameters: Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified by Mobj is XSampEn or XApEn, rMSEn updates the threshold radius of the data sequences (Xt) at each scale to 0.2SDpooled(Xa, Xb) when no r value is provided by Mobj, or rSDpooled(Xa, Xb) if r is specified.

MSx, CI = rXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
+    15.3 (2013): 1069-1084.
source
EntropyHub._rXMSEn.rXMSEnFunction
MSx, CI = rXMSEn(Sig1, Sig2, Mobj)

Returns a vector of refined multiscale cross-entropy values (MSx) and the complexity index (CI) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) and the following default parameters: Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified by Mobj is XSampEn or XApEn, rMSEn updates the threshold radius of the data sequences (Xt) at each scale to 0.2SDpooled(Xa, Xb) when no r value is provided by Mobj, or rSDpooled(Xa, Xb) if r is specified.

MSx, CI = rXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
                  Scales::Int=3, F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)

Returns a vector of refined multiscale cross-entropy values (MSx) and the complexity index (CI) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) and the following keyword arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3)

F_Order - Butterworth low-pass filter order, a positive integer (default: 6)

F_Num - Numerator of Butterworth low-pass filter cutoff frequency, a scalar value in range [0 < F_Num < 1]. The cutoff frequency at each scale (T) becomes: Fc = F_Num/T. (default: 0.5)

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is XSampEn or XApEn, RadNew allows the radius threshold to be updated at each time scale (Xt). If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Pooled Standard Deviation          - r*std(Xt) 
 
          [2]    Pooled Variance                    - r*var(Xt) 
@@ -123,7 +123,7 @@
 [7] Antoine Jamin and Anne Humeau-Heurtier. 
     "(Multiscale) Cross-Entropy Methods: A Review." 
     Entropy 
-    22.1 (2020): 45.
source
EntropyHub._hXMSEn.hXMSEnFunction
MSx, Sn, CI = hXMSEn(Sig1, Sig2, Mobj)

Returns a vector of cross-entropy values (MSx) calculated at each node in the hierarchical tree, the average cross-entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the hierarchical tree (i.e. sum(Sn)) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) over 3 temporal scales (default). The entropy values in MSx are ordered from the root node (S.00) to the Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22, S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN. The average cross-entropy values in Sn are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, ..., ST

MSx, Sn, CI = hXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple; 
+    22.1 (2020): 45.
source
EntropyHub._hXMSEn.hXMSEnFunction
MSx, Sn, CI = hXMSEn(Sig1, Sig2, Mobj)

Returns a vector of cross-entropy values (MSx) calculated at each node in the hierarchical tree, the average cross-entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the hierarchical tree (i.e. sum(Sn)) between the data sequences contained in Sig1 and Sig2 using the parameters specified by the multiscale object (Mobj) over 3 temporal scales (default). The entropy values in MSx are ordered from the root node (S.00) to the Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22, S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN. The average cross-entropy values in Sn are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, ..., ST

MSx, Sn, CI = hXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple; 
                          Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)

Returns a vector of cross-entropy values (MSx) calculated at each node in the hierarchical tree, the average cross-entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the entire hierarchical tree between the data sequences contained in Sig1 and Sig2 using the following name/value pair arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3) At each scale (T), entropy is estimated for 2^(T-1) nodes.

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is XSampEn or XApEn, RadNew allows the radius threshold to be updated at each node in the tree. If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Pooled Standard Deviation          - r*std(Xt) 
 
          [2]    Pooled Variance                    - r*var(Xt) 
@@ -145,4 +145,4 @@
 [3] Ying Jiang, C-K. Peng and Yuesheng Xu,
     "Hierarchical entropy analysis for biological signals."
     Journal of Computational and Applied Mathematics
-    236.5 (2011): 728-742.
source
+ 236.5 (2011): 728-742.source diff --git a/dev/Guide/Multiscale_Entropies/index.html b/dev/Guide/Multiscale_Entropies/index.html index 09e4cd4..8ed4f29 100644 --- a/dev/Guide/Multiscale_Entropies/index.html +++ b/dev/Guide/Multiscale_Entropies/index.html @@ -53,7 +53,7 @@ `XDistEn` - Cross-Distribution Entropy -`XSpecEn` - Cross-Spectral Entropy

See also MSEn, XMSEn, rMSEn, cMSEn, hMSEn, rXMSEn, cXMSEn, hXMSEn

source

The following functions use the multiscale entropy object shown above.

EntropyHub._MSEn.MSEnFunction
 MSx, CI = MSEn(Sig, Mobj)

Returns a vector of multiscale entropy values MSx and the complexity index CI of the data sequence Sig using the parameters specified by the multiscale object Mobj over 3 temporal scales with coarse- graining (default).

 MSx, CI = MSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3, 
+`XSpecEn`   - Cross-Spectral Entropy

See also MSEn, XMSEn, rMSEn, cMSEn, hMSEn, rXMSEn, cXMSEn, hXMSEn

source

The following functions use the multiscale entropy object shown above.

EntropyHub._MSEn.MSEnFunction
 MSx, CI = MSEn(Sig, Mobj)

Returns a vector of multiscale entropy values MSx and the complexity index CI of the data sequence Sig using the parameters specified by the multiscale object Mobj over 3 temporal scales with coarse- graining (default).

 MSx, CI = MSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3, 
                       Methodx::String="coarse", RadNew::Int=0, Plotx::Bool=false)

Returns a vector of multiscale entropy values MSx and the complexity index CI of the data sequence Sig using the parameters specified by the multiscale object Mobj and the following 'keyword' arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3)

Method - Graining method, one of the following: {coarse,modified,imf,timeshift,generalized} [default = coarse] For further info on these graining procedures, see the EntropyHub guide.

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is SampEn or ApEn, RadNew allows the radius threshold to be updated at each time scale (Xt). If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

          [1]    Standard Deviation          - r*std(Xt)
 
           [2]    Variance                    - r*var(Xt) 
@@ -123,7 +123,7 @@
  [12] Madalena Costa and Ary L. Goldberger,
          "Generalized multiscale entropy analysis: Application to quantifying 
          the complex volatility of human heartbeat time series." 
-         Entropy 17.3 (2015): 1197-1203.
source
EntropyHub._cMSEn.cMSEnFunction
MSx, CI = cMSEn(Sig, Mobj)

Returns a vector of composite multiscale entropy values (MSx) for the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) using the composite multiscale entropy method over 3 temporal scales.

MSx, CI = cMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;  
+         Entropy 17.3 (2015): 1197-1203.
source
EntropyHub._cMSEn.cMSEnFunction
MSx, CI = cMSEn(Sig, Mobj)

Returns a vector of composite multiscale entropy values (MSx) for the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) using the composite multiscale entropy method over 3 temporal scales.

MSx, CI = cMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;  
                     Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)

Returns a vector of composite multiscale entropy values (MSx) of the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) and the following 'keyword' arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3)

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is SampEn or ApEn, RadNew allows the radius threshold to be updated at each time scale (Xt). If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Standard Deviation          - r*std(Xt)
 
          [2]    Variance                    - r*var(Xt) 
@@ -155,7 +155,7 @@
     "Analysis of complex time series using refined composite 
     multiscale entropy." 
     Physics Letters A 
-    378.20 (2014): 1369-1374.
source
EntropyHub._rMSEn.rMSEnFunction
MSx, CI = rMSEn(Sig, Mobj)

Returns a vector of refined multiscale entropy values (MSx) and the complexity index (CI) of the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) and the following default parameters: Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified by Mobj is SampEn or ApEn, rMSEn updates the threshold radius of the data sequence (Xt) at each scale to 0.2std(Xt) if no r value is provided by Mobj, or r.std(Xt) if r is specified.

MSx, CI = rMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3, 
+    378.20 (2014): 1369-1374.
source
EntropyHub._rMSEn.rMSEnFunction
MSx, CI = rMSEn(Sig, Mobj)

Returns a vector of refined multiscale entropy values (MSx) and the complexity index (CI) of the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) and the following default parameters: Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified by Mobj is SampEn or ApEn, rMSEn updates the threshold radius of the data sequence (Xt) at each scale to 0.2std(Xt) if no r value is provided by Mobj, or r.std(Xt) if r is specified.

MSx, CI = rMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3, 
                     F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)

Returns a vector of refined multiscale entropy values (MSx) and the complexity index (CI) of the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) and the following 'keyword' arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default = 3)

F_Order - Butterworth low-pass filter order, a positive integer (default: 6)

F_Num - Numerator of Butterworth low-pass filter cutoff frequency, a scalar value in range [0 < F_Num < 1]. The cutoff frequency at each scale (T) becomes: Fc = `F_Num/T. (default: 0.5)

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is SampEn or ApEn, RadNew allows the radius threshold to be updated at each time scale (Xt). If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Standard Deviation          - r*std(Xt)
 
          [2]    Variance                    - r*var(Xt) 
@@ -189,7 +189,7 @@
     "Optimal selection of threshold value ‘r’for refined multiscale
     entropy." 
     Cardiovascular engineering and technology 
-    6.4 (2015): 557-576.
source
EntropyHub._hMSEn.hMSEnFunction
MSx, Sn, CI = hMSEn(Sig, Mobj)

Returns a vector of entropy values (MSx) calculated at each node in the hierarchical tree, the average entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the hierarchical tree (i.e. sum(Sn)) for the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) over 3 temporal scales (default). The entropy values in MSx are ordered from the root node (S.00) to the Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22, S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN. The average entropy values in Sn are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, ..., ST

MSx, Sn, CI = hMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; 
+    6.4 (2015): 557-576.
source
EntropyHub._hMSEn.hMSEnFunction
MSx, Sn, CI = hMSEn(Sig, Mobj)

Returns a vector of entropy values (MSx) calculated at each node in the hierarchical tree, the average entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the hierarchical tree (i.e. sum(Sn)) for the data sequence (Sig) using the parameters specified by the multiscale object (Mobj) over 3 temporal scales (default). The entropy values in MSx are ordered from the root node (S.00) to the Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22, S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN. The average entropy values in Sn are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, ..., ST

MSx, Sn, CI = hMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; 
                         Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)

Returns a vector of entropy values (MSx) calculated at each node in the hierarchical tree, the average entropy value across all nodes at each scale (Sn), and the complexity index (CI) of the entire hierarchical tree for the data sequence (Sig) using the following 'keyword' arguments:

Arguments:

Scales - Number of temporal scales, an integer > 1 (default: 3) At each scale (T), entropy is estimated for 2^(T-1) nodes.

RadNew - Radius rescaling method, an integer in the range [1 4]. When the entropy specified by Mobj is SampEn or ApEn, RadNew allows the radius threshold to be updated at each node in the tree. If a radius value is specified by Mobj (r), this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:

         [1]    Standard Deviation          - r*std(Xt)
 
          [2]    Variance                    - r*var(Xt)
@@ -199,4 +199,4 @@
          [4]    Median Absolute Deviation   - r*med_ad(Xt,1)

Plotx - When Plotx == true, returns a plot of the average entropy value at each time scale (i.e. the multiscale entropy curve) and a hierarchical graph showing the entropy value of each node in the hierarchical tree decomposition. (default: false)

See also MSobject, MSEn, cMSEn, rMSEn, SampEn, ApEn, XMSEn

References:

[1] Ying Jiang, C-K. Peng and Yuesheng Xu,
     "Hierarchical entropy analysis for biological signals."
     Journal of Computational and Applied Mathematics
-    236.5 (2011): 728-742.
source
+ 236.5 (2011): 728-742.source diff --git a/dev/index.html b/dev/index.html index c78619d..fae47a8 100644 --- a/dev/index.html +++ b/dev/index.html @@ -29,4 +29,4 @@ | |_| || | | || | toolkit for | | / \ | | | _ || | | || \ entropic time- | | \___/ | | | | | || |_| || \ series analysis | \_______/ | - |_| |_|\_____/|_____/ \___________/

Documentation for EntropyHub.

+ |_| |_|\_____/|_____/ \___________/

Documentation for EntropyHub.