-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathtest_lattice.py
267 lines (230 loc) · 10.1 KB
/
test_lattice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# python -m unittest pyxtal/test_all.py
import importlib.util
import os
import unittest
import numpy as np
import pymatgen.analysis.structure_matcher as sm
from pymatgen.core import Structure
from pyxtal import pyxtal
from pyxtal.lattice import Lattice
from pyxtal.symmetry import Group, Hall, Wyckoff_position
def resource_filename(package_name, resource_path):
package_path = importlib.util.find_spec(package_name).submodule_search_locations[0]
return os.path.join(package_path, resource_path)
cif_path = resource_filename("pyxtal", "database/cifs/")
l01 = Lattice.from_matrix([[4.08, 0, 0], [0, 9.13, 0], [0, 0, 5.50]])
l02 = Lattice.from_para(4.08, 9.13, 5.50, 90, 90, 90)
wp1 = Wyckoff_position.from_group_and_index(36, 0)
wp2 = Wyckoff_position.from_group_and_letter(36, "4a")
class TestLattice(unittest.TestCase):
def test_para_matrix(self):
assert np.allclose(l01.matrix, l02.matrix)
def test_swap(self):
l01.swap_axis(ids=[1, 0, 2])
abc = l01.get_para()[:3]
assert abc, np.array([9.13, 4.08, 5.5])
def test_optimize_once(self):
l3 = Lattice.from_para(4.08, 7.13, 5.50, 90, 38, 90, ltype="monoclinic")
lat, tran, _ = l3.optimize_once()
assert abs(lat.beta - 1.495907) < 0.0001
def test_optimize_multi(self):
l4 = Lattice.from_para(71.364, 9.127, 10.075, 90.00, 20.80, 90.00, ltype="monoclinic")
lat, _ = l4.optimize_multi(7)
assert abs(lat.beta - 1.7201) < 0.01
def test_setpara(self):
l0 = Lattice.from_matrix([[4.08, 0, 0], [0, 9.13, 0], [0, 0, 5.50]])
l0.set_para([5, 5, 5, 90, 90, 90])
assert l0.a == 5
def test_search_transformation(self):
l6 = Lattice.from_para(3.454, 3.401, 5.908, 90.00, 105.80, 90.00, ltype="monoclinic")
l7 = Lattice.from_para(6.028, 3.419, 6.028, 90.00, 146.92, 90.00, ltype="monoclinic")
l7, _ = l7.optimize_multi()
trans, diff = l7.search_transformation(l6)
l7 = l7.transform_multi(trans)
assert np.abs(l7.matrix - l6.matrix).sum() < 0.25
def test_is_valid_lattice(self):
l8 = Lattice.from_para(3.454, 3.401, 5.908, 90.00, 105.80, 91.00, ltype="monoclinic")
l9 = Lattice.from_para(3.454, 3.401, 5.908, 90.00, 105.80, 90.00, ltype="monoclinic")
l10 = Lattice.from_para(3.454, 3.401, 5.908, 90.00, 90.00, 90.00, ltype="cubic")
assert not l8.is_valid_lattice()
assert l9.is_valid_lattice()
assert not l10.is_valid_lattice()
def test_from_1d_representation(self):
lat = Lattice.from_1d_representation([5.09, 6.11], "trigonal")
assert abs(lat.a - 5.09) < 0.001
assert abs(lat.c - 6.11) < 0.001
assert abs(lat.gamma - 2 / 3 * np.pi) < 0.001
class TestOptimizeLattice(unittest.TestCase):
def test_atomic(self):
c1 = pyxtal()
c1.from_seed(cif_path + "LiCs.cif", backend="pyxtal")
pmg1 = c1.to_pymatgen()
c2 = c1.copy()
c2.optimize_lattice(1)
pmg2 = c2.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
c2.optimize_lattice(1)
pmg2 = c2.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
c3 = pyxtal()
c3.from_seed(cif_path + "LiCs.cif")
pmg3 = c3.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg3)
def test_molecular_from_seed(self):
c1 = pyxtal(molecular=True)
c1.from_seed(seed=cif_path + "aspirin-c.cif", molecules=["aspirin"])
c1.mol_sites[0].get_mol_object(0)
c1.mol_sites[0].get_mol_object(1)
pmg1 = c1.to_pymatgen()
c2 = c1.copy()
c2.optimize_lattice(1)
pmg2 = c2.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
def test_molecular_trans(self):
c1 = pyxtal(molecular=True)
c1.from_seed(seed=cif_path + "aspirin.cif", molecules=["aspirin"])
pmg1 = c1.to_pymatgen()
c1.transform(trans=[[1, 0, 0], [0, 1, 0], [-1, 0, 1]])
pmg2 = c1.to_pymatgen()
c1.optimize_lattice()
pmg3 = c1.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
assert sm.StructureMatcher().fit(pmg2, pmg3)
def test_molecular_nonstd(self):
sgs = [5, 7, 8, 9, 12, 13, 14, 15]
c1 = pyxtal(molecular=True)
for sg in sgs:
hns = Hall(sg).hall_numbers
for hn in hns[1:]:
c1.from_random(3, hn, ["aspirin"], use_hall=True)
pmg1 = c1.to_pymatgen()
c2 = c1.copy()
c2.optimize_lattice(1)
pmg2 = c2.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
pmg3 = Structure.from_str(c1.to_file(), fmt="cif")
assert sm.StructureMatcher().fit(pmg1, pmg3)
def test_molecular_from_random(self):
rng = np.random.default_rng(0)
sgs = [5, 7, 8, 12, 13, 14]
c1 = pyxtal(molecular=True)
for _i in range(20):
sg = rng.choice(sgs)
c1.from_random(3, sg, ["aspirin"])
pmg1 = c1.to_pymatgen()
c2 = c1.copy()
c2.optimize_lattice(1)
pmg2 = c2.to_pymatgen()
assert sm.StructureMatcher().fit(pmg1, pmg2)
def test_transform(self):
l = Lattice.from_para(48.005, 7.320, 35.864, 90.000, 174.948, 90.000, ltype="monoclinic")
sites = [
[0.0000, 0.0000, 0.1250],
[0.2296, 0.7704, 0.5370],
[0.2296, 0.2296, 0.5370],
[0.5408, 0.0000, 0.6186],
[0.0000, 0.0000, 0.3074],
]
c = pyxtal()
c.build(9, ["S"], [8], lattice=l, sites=[sites])
pmg0 = c.to_pymatgen()
c.optimize_lattice()
pmg1 = c.to_pymatgen()
assert sm.StructureMatcher().fit(pmg0, pmg1)
def test_build(self):
l = np.array([48.005, 7.320, 35.864, 90.000, 174.948, 90.000])
sites = [
[0.0000, 0.0000, 0.1250],
[0.2296, 0.7704, 0.5370],
[0.2296, 0.2296, 0.5370],
[0.5408, 0.0000, 0.6186],
[0.0000, 0.0000, 0.3074],
]
c = pyxtal()
c.build(9, ["S"], [8], lattice=l, sites=[sites])
pmg0 = c.to_pymatgen()
l1 = c.lattice.matrix
c.optimize_lattice()
pmg1 = c.to_pymatgen()
assert sm.StructureMatcher().fit(pmg0, pmg1)
c1 = pyxtal()
c1.build(9, ["S"], [8], lattice=l1, sites=[sites])
c1.optimize_lattice()
pmg2 = c1.to_pymatgen()
assert sm.StructureMatcher().fit(pmg0, pmg2)
def test_build_1D(self):
lat = Lattice.from_para(6.8472, 6.8472, 3.3198, 90, 90, 90, "tetragonal")
c1 = pyxtal()
sites = [
[
("4g", 0.9236547993389047, 0.0, 0.5),
("4f", 0.39177300078207977, 0.0, 0.0),
]
]
c1.build(30, ["C"], [8], lat, sites=sites, dim=1)
assert c1.valid
def test_build_2D(self):
lat = Lattice.from_para(6.8472, 6.8472, 3.3198, 90, 90, 90, "tetragonal")
c1 = pyxtal()
sites = [[("4c", 0.15, 0.50, 0.28), ("4c", 0.59, 0.85, 0.87)]]
c1.build(30, ["C"], [8], lat, sites=sites, dim=2)
assert c1.valid
# def test_build_0D(self):
# lat = Lattice.from_para(2.85, 2.85, 2.85, 90, 90, 90, 'spherical')
# c1 = pyxtal()
# sites = [[('8b', 0.70, 0.70, 0.70)]]
# c1.build(30, ['C'], [8], lat, sites=sites, dim=0)
# self.assertTrue(c1.valid)
def test_transforms(self):
paras = [
(5.0317, 19.2982, 5.8004, 90.0000, 122.2672, 90.0000, "monoclinic", 6),
(5.0317, 19.2982, 5.8004, 90.0000, 57.7328, 90.0000, "monoclinic", 6),
(9.0640, 8.3522, 5.2856, 90.0000, 103.9699, 90.0000, "monoclinic", 3),
(9.4913, 8.5844, 5.3358, 90.0000, 110.0035, 90.0000, "monoclinic", 3),
(3.7727, 6.7490, 7.6446, 64.4392, 77.9087, 75.7214, "triclinic", 1),
(3.7297, 6.5421, 7.9915, 73.9361, 71.5867, 103.2590, "triclinic", 1),
(5.5740, 7.0902, 11.4529, 96.5703, 90.0224, 108.1857, "triclinic", 2),
(5.5487, 7.1197, 11.4349, 83.0223, 89.8479, 72.0003, "triclinic", 2),
(5.7985, 30.6352, 7.6374, 90.0000, 112.2615, 90.0000, "monoclinic", 3),
(5.8280, 30.5992, 7.6373, 90.0000, 112.6020, 90.0000, "monoclinic", 3),
]
for i in range(int(len(paras) / 2)):
(a1, b1, c1, alpha1, beta1, gamma1, ltype1, N) = paras[i * 2]
(a2, b2, c2, alpha2, beta2, gamma2, ltype2, N) = paras[i * 2 + 1]
l1 = Lattice.from_para(a1, b1, c1, alpha1, beta1, gamma1, ltype=ltype1)
l2 = Lattice.from_para(a2, b2, c2, alpha2, beta2, gamma2, ltype=ltype2)
trans, diffs = l2.search_transformations(l1)
print(i, len(trans), N)
assert len(trans) == N
# print("\nTarget:", l1)
# print("Start :", l2)
# if len(trans) == N:
# for tran, diff in zip(trans, diffs):
# l = l2.transform_multi(tran)
# strs = "Success:" + str(l) + " {:6.3f} {:6.3f} {:6.3f}".format(*diff)
# print(strs)
def test_optlat_setting(self):
paras = [
(18.950, 10.914, 31.672, 90, 168.63, 90, "monoclinic"),
(48.005, 7.320, 35.864, 90, 174.948, 90, "monoclinic"),
]
sites = [0.3600, 0.7500, 0.6743]
for para in paras:
(a, b, c, alpha, beta, gamma, ltype) = para
l = Lattice.from_para(a, b, c, alpha, beta, gamma, ltype=ltype)
for sg in range(3, 16):
mult = Group(sg, quick=True)
c = pyxtal()
c.build(sg, ["S"], [mult], lattice=l, sites=[[sites]])
pmg0 = c.to_pymatgen()
c0 = c.copy()
c0.optimize_lattice(standard=True)
pmg1 = c0.to_pymatgen()
c1 = c.copy()
c1.optimize_lattice(standard=False)
pmg2 = c1.to_pymatgen()
d1 = sm.StructureMatcher().get_rms_dist(pmg0, pmg1)
d2 = sm.StructureMatcher().get_rms_dist(pmg0, pmg2)
assert sum(d1) + sum(d2) < 0.001
if __name__ == "__main__":
unittest.main()