-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnesterov_SVM_testspeed.m
236 lines (222 loc) · 6.75 KB
/
nesterov_SVM_testspeed.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
function newH=nesterov_SVM(data,label,options,rho,g,mylam,B)
% =========================================================================
% Nesterov SVM algorithm
% =========================================================================
% nesterov_SVM is a optimal gradient method with smooth technique for
% classical support vector machine (C-SVM) problem (1-norm soft margin).
% Hinge loss is nonsmooth and it is smoothed by Yurii Nesterov's technique
% in his 2004 Math. Programm paper.Then the SVM is solved using Nesterov's
% optimal gradient method.
%
% Problem:
% min f(w)=lambda*(1/2)*w'*w+|(e-Y*(X*w-1*gamma))+|; (linear)
% min f(w)=lambda*(1/2)*w'*w+|(e-Y*(K(X',X)*Y*w-1*gamma))+|; (nonlinear)
%
% Classification hyperplane: g(x)=x*w-gamma (linear) g(x)=K(x',X)*w-gamma
% For convinience, let A=Y*[X -e] for linear and Y*[K(X',X)*Y -e] for
% nonlinear, let W=[w gamma]', the hinge loss can be written as (e-AW)+.
% =========================================================================
% INPUT ARGUMENTS:
% data: n*p data matrix, n is #sample, p is #dimension;
% label: label vector corresponding to n samples;
% options: parameter setting;
% options.W0 is the pre-estimated solution;
% options.W1 is the starting point of solution;
% options.mu is the parameter of smoothing;
% options.lambda is the weight of margin maximization;
% options.kernel is the choice of kernel;
% options.bias is the option to choose bias in classifier;
% options.a, b and c are parameters of selected kernel.
% =========================================================================
% OUTPUT ARGUMENTS:
% classifier: classifier.w is weight vector of SVM classifier;
% classifier.gamma is bias of classification hyperplane;
% options: parameter setting;
% =========================================================================
%initialization
[n,p]=size(data);
y=label;
y(y==0)=-1;
%default parameter setting
if ~isfield(options,{'bias'})
options.bias=false;
end
if options.bias
if ~isfield(options,{'W0'})
options.W0=zeros(1+p,1);
end
if ~isfield(options,{'W1'})
options.W1=zeros(1+p,1);
end
else
if ~isfield(options,{'W0'})
options.W0=zeros(p,1);
end
if ~isfield(options,{'W1'})
options.W1=zeros(p,1);
end
end
if ~isfield(options,{'mu'})
options.mu=1e-4;
end
if ~isfield(options,{'lambda'})
options.lambda=1e-4;
end
if ~isfield(options,{'kernel'})
options.kernel='none';
end
if ~isfield(options,{'a'})
options.a=4;
end
if ~isfield(options,{'b'})
options.b=4;
end
if ~isfield(options,{'c'})
options.c=4;
end
W0=options.W0;
W1=options.W1;
mu=options.mu;
lambda=options.lambda;
[brow,bcol]=size(B);
%kernel selection and calculation
if strcmp(options.kernel,'linear')
K=data*data';
Y=diag(y);
X=[K*Y,-ones(n,1)];
d=n+1;
clear K y;
elseif strcmp(options.kernel,'poly')
a=options.a;
b=options.b;
c=options.c;
K=(a.*data*data'+b).^c;
Y=diag(y);
X=[K*Y,-ones(n,1)];
d=n+1;
clear K y;
elseif strcmp(options.kernel,'rbf') || strcmp(options.kernel,'gaussian')
a=options.a;
G=L2_distance(data',data',0);
G=G.^2;
G=G./max(max(G));
K=exp(-a.*G);
Y=diag(y);
X=[K*Y,-ones(n,1)];
d=n+1;
clear K y;
elseif strcmp(options.kernel,'sigmoid')
a=options.a;
b=options.b;
K=tanh(a.*data*data'+b);
Y=diag(y);
X=[K*Y,-ones(n,1)];
d=n+1;
clear K y;
elseif strcmp(options.kernel,'none')
Y=diag(y);
X=[data,-ones(n,1)];
d=p+1;
clear y;
else
fprintf('wrong kernel option, available selection: linear, poly, rbf(gaussian), sigmoid, none');
end
if ~options.bias
X=X(:,1:end-1);
d=d-1;
end
A=Y*X;
clear Y X;
A_l1=max(abs(A),[],2);
%为什么我感觉加上正则项前的系数完全没有道理呢?,c=1 lambda=rho/mylam.fif
%max_Q=max(abs(rho/mylam.fif+sum(A.*(A./repmat(A_l1,[1,d])))));
max_Q=n*max(abs(sum(A.*(A./repmat(A_l1,[1,d])))));
%sum_Al1=sum(A_l1);
D1=mu;
mu0=2*sqrt(2*D1/d);
%initialization of loop
iter=1;
%iter too many times
iter_max=35*d;
%stop criteria of relative error
epsilon=1e-3;
delta_f=epsilon+1e-5;
memory=10;
W=W1;
f=[];
f_real=[];
%differential of objective f
diff_f=[];
%accumulated differential information of f according to nesterov's method
acc_diff_f=zeros(d,1);
VB=B(:);
VBgamma=g.gamma5(:);
rho=1e-4;
%gradient method loop
while iter<iter_max
%update mu and Lipschitz constant
mu=mu0/(iter+1);
%Lipschitz constant of smoothed objective function
%有问题吧,这里貌似加上了一部分??
L=rho/mylam.fif + max_Q/mu;
%dual variable u
temp1=A*W;
U_mu=((1-temp1)./A_l1)./mu;
P1=find(U_mu<=1 & U_mu>=0);
P2=find(U_mu>1);
U_mu(P2)=1;
U_mu(U_mu<0)=0;
%update objective value of last step
%这里的求值要改,后面计算梯度的地方也要改
%temp2=(lambda/2).*W(1:end-1)'*W(1:end-1);
temp2=(rho/(2)).*(W)'*(W);
hingeloss=1-temp1;
%貌似没有用到f_real 的地方
f_real=[f_real,temp2+sum(hingeloss(hingeloss>0))];
%f应该是函数值,后面少减了一个x的无穷范数
Alimit=diag(A_l1);
%f=[f,temp2+hingeloss(P1)'*U_mu(P1)+sum(hingeloss(P2))-(mu/2)*((U_mu(P1))'*U_mu(P1)+length(P2))];
f=[f,temp2+hingeloss(P1)'*U_mu(P1)+sum(hingeloss(P2))-(mu/2)*((U_mu(P1))'*Alimit(P1,P1)*U_mu(P1)+sum(sum(Alimit(P2,P2))))];
clear hingeloss temp1 temp2;
%stop criteria justification
if iter>1
%f_memory=mean(f(iter-min(memory,iter-1):iter-1));
f_memory=f(iter-1);
delta_f=abs((f(iter)-f_memory)/f_memory);
end
if delta_f<epsilon && iter>80
break;
end
%differential of f
%这是单次的梯度
%diff_f=lambda.*[W(1:end-1);0]-(A(P1,:))'*U_mu(P1)-(sum(A(P2,:)))';
diff_f=(rho).*(W-(VB+VBgamma/rho))-(A(P1,:))'*U_mu(P1)-(sum(A(P2,:)))';
clear P1 P2 U_mu;
%add weighted differential information into accumulated vector
%这是累加的梯度
acc_diff_f=acc_diff_f+((iter+1)/2).*diff_f;
%update W
W=(2/(iter+3)).*(W0-(1/L).*acc_diff_f)+((iter+1)/(iter+3)).*(W-(1/L).*diff_f);
clear diff_f;
%update counter
iter=iter+1;
end
newH=reshape(W,brow,bcol);
%recover w and gamma from W
%if options.bias
% w=W(1:d-1);
% gamma=W(d);
% classifier.w=w;
% classifier.gamma=gamma;
%else
% classifier.w=W;
%end
%options.X=data;
%options.y=label;
% figure,plot(f,'b');
% hold on;plot(f_real,'r');
% box on;
% legend('smooth objective value','original objective value');
% xlabel('Iteration');
% ylabel('Objective value');
% title('Objective convergence');