-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADMMmat.m~
500 lines (413 loc) · 11.3 KB
/
ADMMmat.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
function oneret =ADMMmat(wtr,svdw,Ytr,lambda,B,matD,matE,matF,matG,matH,g,rho);
iter=500;
e.abs=0.001;
e.rel=0.001;
[finB,B,matD,matE,matF,matG,matH,g,rho]=estimate(svdw,wtr,Ytr,lambda,rho,B,matD,matE,matF,matG,matH,g,iter,e);
oneret.finB=finB;
oneret.B=B;
oneret.D=matD;
oneret.E=matE;
oneret.F=matF;
oneret.G=matG;
oneret.H=matH;
oneret.rho=rho;
oneret.glist=g;
function [finB,B,matD,matE,matF,matG,matH,g,rho]=estimate(svdw,w,y,lambda,rho,B,matD,matE,matF,matG,matH,g,iter,e);
[meanfeat,uniqueY]=separateClasses(w,y);
[numcls,numf]=size(meanfeat);
diffmean=zeros(numcls-1,numf);
k=1;
for i =2:numcls
diffmean(k,:)=meanfeat(i,:)-meanfeat(i-1,:);
k=k+1;
end
for i=1:iter
%uupdate each variable
newB=update_b2(svdw,y,B,matD,matE,matF,matG,matH,rho,g);
newmatD=update_D(newB,w,rho,g,lambda);
newmatE=update_E(newB,w,rho,g,lambda);
newmatF=update_F(newB,w,rho,g,lambda);
newmatG=update_G(y,newB,g,rho,lambda);
label=ones(numcls-1,1);
options.bias=false;
%newmatH=nesterov_SVM(diffmean,label,options,rho,g,lambda,newB);
newmatH=qpsolver(diffmean,rho,g,lambda,newB);
%newmatH=update_H(w,y,newB,g,rho,lambda);
%newmatH=update_Hingeloss(diffmean,y,newB,g,rho,lambda);
newg=updategammas(w,newB,newmatD,newmatE,newmatF,newmatG,newmatH,g,rho);
%dual resudual s
d.diff=sum(sum(rho^2*(newmatD-matD).^2));
e.diff=sum(sum(rho^2*(newmatE-matE).^2));
f.diff=sum(sum(rho^2*(newmatF-matF).^2));
g.diff=sum(sum(rho^2*(newmatG-matG).^2));
h.diff=sum(sum(rho^2*(newmatH-matH).^2));
s.norm=sqrt(d.diff+e.diff+f.diff+g.diff+h.diff);
%s.norm=sqrt(d.diff+e.diff+f.diff);
%primal residual r
d.dif2=sum(sum((newB-newmatD).^2));
e.dif2=sum(sum((newB-newmatE).^2));
f.dif2=sum(sum((newB-newmatF).^2));
g.dif2=sum(sum((newB-newmatG).^2));
h.dif2=sum(sum((newB-newmatH).^2));
r.norm=sqrt(d.dif2+e.dif2+f.dif2+g.dif2+h.dif2);
allmat=[newmatD,newmatE,newmatF,newmatG,newmatH];
[brow,bcol]=size(newB);
crit1=max(sqrt(sum(sum(newB.^2))),sqrt(sum(sum(allmat.^2))))*e.rel+sqrt(brow*bcol)*e.abs;
vg=[];
vg=[vg,newg.gamma1(:)];
vg=[vg,newg.gamma2(:)];
vg=[vg,newg.gamma3(:)];
vg=[vg,newg.gamma4(:)];
vg=[vg,newg.gamma5(:)];
crit2=norm(vg)*e.rel+sqrt(brow*bcol)*e.abs;
if(r.norm<crit1 & s.norm<crit2)
finB=newB.*(newmatD~=0).*(newmatE~=0).*(newmatF~=0).*(newmatG~=0).*(newmatH~=0);
B=newB;
matD=newmatD;
matE=newmatE;
matF=newmatF;
matG=newmatG;
matH=newmatH;
g=newg;
return
else
B=newB;
matD=newmatD;
matE=newmatE;
matF=newmatF;
matG=newmatG;
matH=newmatH;
g=newg;
%update rho
if(r.norm>10*s.norm)
rho=2*rho;
else if(r.norm*10<s.norm)
rho=rho/2;
end
end
end
end
finB=newB.*(newmatD~=0).*(newmatE~=0).*(newmatF~=0).*(newmatG~=0).*(newmatH~=0);
function bnew=update_b2(svdw,y,B,matD,matE,matF,matG,matH,rho,g);
[brow,bcol]=size(matD);
u=svdw.u;
s=svdw.s;
v=svdw.v;
sver=diag(s);
m=size(y,1);
firpart=s'*u'*y;
tempver=sver.^2./(sver.^2+5*rho*m);
tempdiag=diag(tempver);
firpart=firpart-tempdiag*firpart;
firpart=(v*firpart)/(5*rho*m);
vmatD=matD(:);
vmatE=matE(:);
vmatF=matF(:);
vmatG=matG(:);
vmatH=matH(:);
vg.gamma1=g.gamma1(:);
vg.gamma2=g.gamma2(:);
vg.gamma3=g.gamma3(:);
vg.gamma4=g.gamma4(:);
vg.gamma5=g.gamma5(:);
bigexp=(rho*(vmatD+vmatE+vmatF+vmatG+vmatH)-(vg.gamma1+vg.gamma2+vg.gamma3+vg.gamma4+vg.gamma5));
secpart=v'*bigexp;
secpart=tempdiag*secpart;
secpart=v*secpart;
secpart=(bigexp-secpart)/(5*rho);
bnew=firpart+secpart;
bnew=reshape(bnew,brow,bcol);
% g.list 可以用结构体
%update d e g 与原代码是相同的???
function X=update_b(w,y,B,matD,matE,matF,matG,matH,rho,g);
%w is a n*(p1+1*p2+1) matrix ,n is the number of examples
%convert D,E,F,G,H to p1+1 * p2+1 vector
[n,m]=size(w);
[brow,bcol]=size(matD);
vmatD=matD(:);
vmatE=matE(:);
vmatF=matF(:);
vmatG=matG(:);
vmatH=matH(:);
vg.gamma1=g.gamma1(:);
vg.gamma2=g.gamma2(:);
vg.gamma3=g.gamma3(:);
vg.gamma4=g.gamma4(:);
vg.gamma5=g.gamma5(:);
%solve B according to ||y-wx||^2 this formula x=(w^t*w)^{-1}w^t*y,so next construct y and w
Y=y/sqrt(n);
Y_down=(rho*(vmatD+vmatE+vmatF+vmatG+vmatH)-(vg.gamma1+vg.gamma2+vg.gamma3+vg.gamma4+vg.gamma5))/sqrt(5*rho);
Y=[Y;Y_down];
W=w/sqrt(n);
W_down=sqrt(5*n)*ones(m,m);
W=[W;W_down];
%this inverse in time consuming
X=pinv(W'*W)*W'*Y
%X=gradientDescentB(Y,W);
%reshape in column order
X=reshape(X,brow,bcol);
%g.gama1,g.gama2,etc.
function Dnew=update_D(B,w,rho,g,lambda);
D.new=B;
[brow,bcol]=size(B);
D.new(1,:)=B(1,:)+g.gamma1(1,:)/rho;
newmat=B(2:brow,:)+g.gamma1(2:brow,:)/rho;
normmat=[];
for i =1:size(newmat,1)
normmat=[normmat;norm(newmat(i,:))];
end
coef=pmax(1-(lambda.fir/rho)./normmat,0,true);
newmat2=bsxfun(@times,newmat,coef);
D.new(2:brow,:)=newmat2;
Dnew=D.new;
function Enew=update_E(B,w,rho,g,lambda);
E.new=B;
bcol=size(B,2);
E.new(:,1)=B(:,1)+g.gamma2(:,1)/rho;
newmat=B(:,2:bcol)+g.gamma2(:,2:bcol)/rho;
normat=[];
for i =1:size(newmat,2)
normat=[normat,norm(newmat(:,i))];
end
coef=pmax(1-(lambda.sec/rho)./normat,0,false);
newmat2=bsxfun(@times,newmat,coef);
E.new(:,2:bcol)=newmat2;
Enew=E.new;
function Fnew=update_F(B,w,rho,g,lambda);
F.new=B+g.gamma3/rho;
% now we take the part F_{-0,-0}
[frow,fcol]=size(F.new);
tempf=F.new(2:frow,2:fcol);
%matrix - number is ok
tempf2=sign(tempf).*fmax(abs(tempf)-lambda.thi/rho,0);
F.new(2:frow,2:fcol)=tempf2;
Fnew=F.new;
%solving nuclear norm regularized problem using soft-shrinkage
function Gnew=update_G(y,B,g,rho,lambda);
G.new=B+g.gamma4/rho;
%now update data the part G_{-0,-0}
[grow,gcol]=size(G.new);
tempg=G.new(2:grow,2:gcol);
%apply svd to tempg,
%tempg=u*s*v'
tempg(isnan(tempg))=0;
[u,s,v]=svd(tempg,'econ');
v=v';
grank=sum(sum(s~=0,2));
s=s(1:grank,1:grank);
u=u(:,1:grank);
v=v(1:grank,:);
sdiag=diag(s);%vector
sdiag=fmax(sdiag,lambda.four/rho);
sdiag=diag(sdiag);%matrix
G_0=u*sdiag*v;
G.new(2:grow,2:gcol)=G_0;
Gnew=G.new;
%using gradient descent method
function Hnew=update_H(w,y,B,g,rho,lambda);
[meanfeat,uniqueY]=separateClasses(w,y);
[numcls,numf]=size(meanfeat);
diffmean=zeros(numcls-1,numf);
k=1;
for i =2:numcls
diffmean(k,:)=meanfeat(i,:)-meanfeat(i-1,:);
k=k+1;
end
Hnew=gradientDescentH(diffmean,y,B,g,rho,lambda);
function H=update_Hingeloss(diffmean,y,B,g,rho,lambda);
[brow,bcol]=size(B);
vB=B(:);
vgamma=g.gamma5(:);
hrow=size(vB,1);
H_0=zeros(hrow,1);
H_guess=H_0;
mu=2.5;
epstol=0.001;
[numEx,numfeat]=size(diffmean);
U=zeros(numEx,1);
k=0;
GF=[];
iter=100;
for it=1:iter
maxLu=0;
for i=1:numEx
U(i)=medianVal((1-diffmean(i,:)*H_0)/(mu*norm(diffmean(i,:),'inf')),0,1);
maxLu=max(maxLu,norm(diffmean(i,:)'*diffmean(i,:))/norm(diffmean(i,:),'inf'));
end
gradF=rho*(H_0-(vB+vgamma/rho))-lambda.fif*diffmean'*U;
GF=[GF,gradF];
L_u=rho+(lambda.fif*numEx/mu)*maxLu;
hingeY=H_0-(1/L_u)*gradF;
sumGrad=0;
sizeG=length(GF);
for j=1:sizeG;
sumGrad=sumGrad+((j+1)/2)*GF(j);
end
hingeZ=H_guess-(1/L_u)*sumGrad;
H=(2/(k+3))*hingeZ+((k+1)/(k+3))*hingeY;
k=k+1;
if(calcuFun(mu,rho,H,vB,vgamma,lambda,diffmean)-calcuFun(mu,rho,H_0,vB,vgamma,lambda,diffmean)<epstol)
break
end
H_0=H;
end
H=reshape(H,brow,bcol);
function TotaoVal=calcuFun(mu,rho,H,B,gamma,lambda,diffmean);
Firpart=(rho/2)*sum((H-(B+gamma/rho)).^2);
[numc,numfeat]=size(diffmean);
hloss=0;
for i=1:numc;
tempval=diffmean(i,:)*H;
if(tempval>1)
hloss=hloss+0;
elseif(tempval < 1-mu)
hloss=hloss+(1-tempval)-(mu/2)*norm(diffmean(i,:),'inf');
else
hloss=hloss+(1-tempval)^2/(2*mu*norm(diffmean(i,:),'inf'));
end
end
TotaoVal=Firpart+lambda.fif*hloss;
function medv=medianVal(a,b,c);
vec=[a,b,c];
sortv=sort(vec);
medv=sortv(2);
%help fun for update H using gradient descent
function H=gradientDescentH(diffmean,y,B,g,rho,lambda)
%convert matrix into vector for convenience
[orirow,oricol]=size(B);
vB=B(:);
vg.gamma5=g.gamma5(:);
[hrow,hcol]=size(vB);
H_old=zeros(hrow,1);
epsilon=0.0003;
gamma=0.0001;
iterk=0;
H_best=H_old;
%may can't jump out this loop,better set a iteration time
iterset=200;
for it=1:iterset
firderi=rho*(H_old-(vB+vg.gamma5/rho));
fullderi=firderi+lambda.fif*gradientHingeLoss(diffmean,H_old);
H_new=H_old-gamma*fullderi;
if(norm(H_new-H_old)<epsilon)
H_best=H_new;
break;
end
H_old=H_new;
H_best=H_old;%if don't have this line then after iteration H_best would not have been assigned
iterk=iterk+1;
end
H=H_best;
%convert to matrix again
H=reshape(H,orirow,oricol);
%calculate the gradient of the hinge loss,H is a column vector
function deri=gradientHingeLoss(diffmean,H)
len=size(diffmean,1);
lenH=size(H,1);
deri=zeros(lenH,1);
for i =1:len
z=diffmean(i,:)*H;
if(z<=0)
deri=deri+(-1*diffmean(i,:)');
else if(z>0 & z<1 )
deri=deri+(diffmean(i,:)'*(diffmean(i,:)*H-1));
end
end
end
%update g.gamma
function gnew=updategammas(w,B,matD,matE,matF,matG,matH,g,rho);
g.new=g;
g.new.gamma1=g.gamma1+rho*(B-matD);
g.new.gamma2=g.gamma2+rho*(B-matE);
g.new.gamma3=g.gamma3+rho*(B-matF);
g.new.gamma4=g.gamma4+rho*(B-matG);
g.new.gamma5=g.gamma5+rho*(B-matH);
gnew=g.new;
%help function to generate W
function xz=outdot(x,z)
[xrow,xcol]=size(x);
[zrow,zcol]=size(z);
xz=[];
mn=xcol*zcol;
for i =1 : xrow
temp=x(i,:)'*z(i,:);
xz=[xz;reshape(temp,1,mn)];
end
function w=generateW(x,z)
xrow=size(x,1);
zrow=size(z,1);
x=[ones(xrow,1),x];
z=[ones(zrow,1),z];
w=outdot(x,z);
%help fun for update d,x is a vector and y is a scalar
function coef=pmax(x,y,isD)
if (isD==true)
xrow=size(x,1);
y=repmat(y,xrow,1);
resu=x>y;
ret=x;
ret(resu,:)=x(resu,:);
ret(~resu,:)=y(~resu,:);
coef=ret;
else
xcol=size(x,2);
y=repmat(y,1,xcol);
resu=x>y;
ret=x;
ret(:,resu)=x(:,resu);
ret(:,~resu)=y(:,~resu);
coef=ret;
end
%help fun for update f and g
function ret= fmax(x,y);
%x is a matrix ,y is a scalar
resu=x<y;
x(resu)=0;
ret=x;
%help function for update H,about the hinge loss , separate data for different class
function [meanfeat,uniqueY] = separateClasses(w,y);
%y is a vector,sort in ascending order,Y=y(I)
[Y,I]=sort(y);
W=w(I,:);
[numEx,numfeat]=size(W);
uniqueY=unique(Y);
numrealCls=length(uniqueY);
%calculate the mean features of different classes
%numclass is the number of different classes,cla is the class in ascending order
%note that numclasses can be zero due to the continuous number in cla
%[numclass,cla]=hist(Y); hist may not work here
%lencla=length(numclass);
%这个代码写的很好!!,不过没有考虑样本数为0的类
d=diff([Y;max(Y)+1]);
count=diff(find([1;d]));
numclass=count;
cla=Y(find(d));
lencla=length(numclass);
meanfeat=zeros(numrealCls,numfeat);
startpos=1;
realClspos=1;
for i =1:lencla;
if(numclass(i,:)~=0);
meanfeat(realClspos,:)=mean(W(startpos:startpos+numclass(i,:)-1,:));
realClspos=realClspos+1;
startpos=startpos+numclass(i,:);
end
end
%gradient descent method for update B,in case the inverse opeation in b is very time-consuming
function B=gradientDescentB(Y,W);
epsilon = 0.0003;
gamma=0.0001;
x_old=zeros(size(W,2),1);
iterk=0;
siter=100;
for it=1:100
x_new=x_old-gamma*(W'*W*x_old-W'*Y);
if(norm(x_new-x_old)<epsilon)
x_best=x_new;
break;
end
x_old=x_new;
x_best=x_old;
iterk=iterk+1;
end
B=x_best;