-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_data_month.py
75 lines (63 loc) · 2.71 KB
/
prepare_data_month.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import unpickle as up
import numpy as np
from keras.utils import np_utils
from dat_extract.extract.Ship_Variable_Extraction import Ship
import random
import sys, os
def get_data(folder):
ships = up.unpickle_ships(folder)
random.shuffle(ships)
train_data_size = 5*(len(ships)/6)
test_data_size = len(ships)/6
train_spect = []
test_spect = []
train_months = []
test_months = []
i = 0
while len(train_spect)<train_data_size:
train_spect.append(ships[i].spect)
i+=1
while len(test_spect)<test_data_size and i<len(ships):
test_spect.append(ships[i].spect)
i+=1
i = 0
while len(train_months)<train_data_size:
train_months.append(ships[i].month) #for this run only cpa will refer to soundspeed profile
i+=1
while len(test_months)<test_data_size and i<len(ships):
test_months.append(ships[i].month)
i+=1
Y_train = np_utils.to_categorical(train_months,12)
Y_test = np_utils.to_categorical(test_months,12)
return train_spect, test_spect, Y_train, Y_test,12
def data_generator(folder,mode):
if mode=='train':
while True:
for ships in up.unpickle_batch(folder,50,0,6000): #the first 6000 ships in batches of 50
random.shuffle(ships)
train_spect = []
train_months = []
for ship in ships:
train_spect.append(ship.spect)
x_train = np.asarray(train_spect)
x_train = x_train.astype('float32')
x_train /= np.amax(x_train) #- 0.5
X_train = np.reshape(x_train, (-1,501, 501,1))
train_months.append(ship.month)
Y_train = np_utils.to_categorical(train_months,12)
yield X_train,Y_train
if mode == 'test':
while True:
for ships in up.unpickle_batch(folder,50,6000,7200): #The last 1200 ships in batches of 50
random.shuffle(ships)
test_spect = []
test_months = []
for ship in ships:
test_spect.append(ship.spect)
x_test = np.asarray(test_spect)
x_test = x_test.astype('float32')
x_test /= np.amax(x_test) #- 0.5
X_test = np.reshape(x_test, (-1,501, 501,1))
test_months.append(ship.month)
Y_test = np_utils.to_categorical(test_months,12)
yield X_test,Y_test