-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSpect_Generate_File_datetime_Mode.py
155 lines (125 loc) · 6.76 KB
/
Spect_Generate_File_datetime_Mode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from scipy import signal
from scipy.io import wavfile
from scipy import interpolate
import numpy as np
import numpy.matlib as npmb
import dat_extract.get_tf as tf
import unpickle as up
from dat_extract.extract.Ship_Variable_Extraction import Ship
import time
folder = 'D:\PickledData\\'
destination_folder = 'D:\Generated Spectrograms\\'
np.set_printoptions(threshold=np.inf)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def better_seconds(t):
new_time = time.mktime(t.timetuple())
return new_time
def convert_time(ship):
start_time = find_nearest(ship.sampletimes,ship.file_time) #get the start index and cut array to fit it
start_index = ship.sampletimes.index(start_time)
times = ship.sampletimes[start_index:]
cpa_index = ship.sampletimes.index(find_nearest(ship.sampletimes,ship.cpa_datetime))
if(start_time>=ship.cpa_datetime):
normal = False
else:
normal = True
result_array = []
for time in times:
result_array.append(better_seconds(time) - better_seconds(times[0])) #subtract start time
cpa_time = better_seconds(ship.cpa_datetime) - better_seconds(times[0]) #get new cpa_time in relation to file time
return result_array, start_index, cpa_index,cpa_time,normal
def range_spect(bins,spectrogram): #function to convert normal spectrogram into range baste
u_bins = np.unique(bins)
range_spectrogram = np.zeros((np.size(spectrogram,0),len(u_bins)))
for i in range(0,len(u_bins)):
searchval = u_bins[i]
ii = np.where(bins == searchval)[0]
#print(ii[len(ii)-1])
#print(spectrogram.shape)
for x in range(0,np.size(spectrogram,0)):
counter = 0
for j in range(0,len(ii)):
counter+=spectrogram[x,(ii[j])]
range_spectrogram[x,i] = counter/len(ii)
return range_spectrogram
def get_ranges(bins, ranges):
u_bins = np.unique(bins)
ranges = []
for bin in range(len(u_bins)):
ranges.append(ranges[bin])
return(ranges)
def generate(folder):
ships = up.unpickle_ships(folder)
bad_apples = []
i = 0
for ship in ships:
try:
wavfilepath = ship.filepath + ship.id + '.wav' #the original wav file
txtfilepath = ship.filepath + ship.id + '.txt' #the original txt file
destination = destination_folder + ship.year_month +'\\' + ship.id + '.png' #the destination for the spectrogram
print(txtfilepath)
converted_times,start,cpa_index,cpa_time,normal = convert_time(ship) #convert all times and find the file start time and cpa time
print(normal)
after_start = ship.distance[start:] #find all distances after file_time
closest_range = np.min(np.abs(after_start)) # find closest point of approach (cpa)
cpa_index = after_start.index(closest_range)
if len(after_start) < 20:
normal = False
raise NameError('Too Few Distances')
if normal: #for now only do the ones that are normal
pre_cpa = after_start[:cpa_index]
pre_times = converted_times[:cpa_index]
approach_inter = interpolate.interp1d(pre_times,pre_cpa, axis=0, fill_value="extrapolate")
post_cpa = after_start[cpa_index:] #find all distances after cpa time
post_times = converted_times[cpa_index:]
depart_inter = interpolate.interp1d(post_times,post_cpa, axis=0, fill_value="extrapolate")
sample_rate, samples = wavfile.read(wavfilepath) #get original wav file samples at the original sample rate
sound_length = len(samples)//sample_rate
frequencies, times, spectrogram = signal.spectrogram(samples,sample_rate, window = np.hanning(1e3), noverlap = 0, nfft = 1e3, mode='psd') #generate spectrogram
uppc = tf.get_tf(ship.harp,frequencies) #get the transfer function results
spectrogram = 10*np.log10(spectrogram) #convert to/from decibels ?
uppc = npmb.repmat(uppc,np.size(spectrogram,1),1) #copy tf results several times to make it same size as spect results
spectrogram = spectrogram + np.transpose(uppc) #add tf results to spect results
range_step = .01 # step size of 1m
if normal:
approach_times = np.arange(0,cpa_time)
range_approach = ((np.arange(pre_cpa[0], closest_range, -range_step))) # make a vector of distances between first range and cpa
depart_times = np.arange(cpa_time,sound_length)
else:
depart_times = np.arange(converted_times[0],sound_length)
range_depart = (np.arange(closest_range, post_cpa[len(post_cpa)-1], range_step)) # make a vector of distances between cpa and last range
#range_desired = np.append(range_approach,range_depart)# stick them together
#number_range_samples = len(range_desired)# total length is the number of samples we expect.
if normal:
spect_dis_approach = approach_inter(approach_times)
approach_bins = np.digitize(spect_dis_approach,range_approach)
approach_spect = range_spect(approach_bins,spectrogram)
spect_dis_depart = depart_inter(depart_times)
depart_bins = np.digitize(spect_dis_depart,range_depart)
#depart_bins = depart_bins + last_bin
depart_spect = range_spect(depart_bins,spectrogram)
if normal:
range_spectrogram = np.concatenate((approach_spect,depart_spect),axis=1)
#app_ranges = get_ranges(approach_bins,range_approach)
#dep_ranges = get_ranges(depart_bins,range_depart)
#ship.ranges = app_ranges.append(dep_ranges)
else:
range_spectrogram = depart_spect
#ship.ranges = get_ranges(depart_bins, range_depart)
ship.spect = range_spectrogram
#ranges = get_ranges(approach_bins,depart_bins,range_approach,range_depart)
normal = True
#plt.savefig(destination) #save spectrogram at destination
#plt.close()
except:
i+=1
print("bad ship" + str(i))
up.one_jar(folder,ship,True)
normal = False
pass
if normal:
up.one_jar(folder,ship,False)
generate(folder)