diff --git a/ML_q.ipynb b/ML_q.ipynb new file mode 100644 index 0000000..d1d96cb --- /dev/null +++ b/ML_q.ipynb @@ -0,0 +1,1605 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "036e7fae-2189-44b0-93ec-4fe42d4d44a0", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np \n", + "import pandas as pd\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.preprocessing import StandardScaler , OneHotEncoder , OrdinalEncoder\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.impute import SimpleImputer\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.pipeline import Pipeline , make_pipeline\n", + "from sklearn.compose import ColumnTransformer\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.linear_model import LinearRegression\n", + "from xgboost import XGBRegressor\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "06eb45d3-c61a-468b-8f1b-51d161c8c581", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " | age | \n", + "job | \n", + "marital | \n", + "education | \n", + "default | \n", + "balance | \n", + "housing | \n", + "loan | \n", + "contact | \n", + "day | \n", + "month | \n", + "duration | \n", + "campaign | \n", + "pdays | \n", + "previous | \n", + "poutcome | \n", + "y | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "58 | \n", + "management | \n", + "married | \n", + "tertiary | \n", + "no | \n", + "2143 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "261 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "no | \n", + "
1 | \n", + "44 | \n", + "technician | \n", + "single | \n", + "secondary | \n", + "no | \n", + "29 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "151 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "no | \n", + "
2 | \n", + "33 | \n", + "entrepreneur | \n", + "married | \n", + "secondary | \n", + "no | \n", + "2 | \n", + "yes | \n", + "yes | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "76 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "no | \n", + "
3 | \n", + "47 | \n", + "blue-collar | \n", + "married | \n", + "unknown | \n", + "no | \n", + "1506 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "92 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "no | \n", + "
4 | \n", + "33 | \n", + "unknown | \n", + "single | \n", + "unknown | \n", + "no | \n", + "1 | \n", + "no | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "198 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "no | \n", + "
\n", + " | age | \n", + "balance | \n", + "day | \n", + "duration | \n", + "campaign | \n", + "pdays | \n", + "previous | \n", + "
---|---|---|---|---|---|---|---|
count | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "45211.000000 | \n", + "
mean | \n", + "40.936210 | \n", + "1362.272058 | \n", + "15.806419 | \n", + "258.163080 | \n", + "2.763841 | \n", + "40.197828 | \n", + "0.580323 | \n", + "
std | \n", + "10.618762 | \n", + "3044.765829 | \n", + "8.322476 | \n", + "257.527812 | \n", + "3.098021 | \n", + "100.128746 | \n", + "2.303441 | \n", + "
min | \n", + "18.000000 | \n", + "-8019.000000 | \n", + "1.000000 | \n", + "0.000000 | \n", + "1.000000 | \n", + "-1.000000 | \n", + "0.000000 | \n", + "
25% | \n", + "33.000000 | \n", + "72.000000 | \n", + "8.000000 | \n", + "103.000000 | \n", + "1.000000 | \n", + "-1.000000 | \n", + "0.000000 | \n", + "
50% | \n", + "39.000000 | \n", + "448.000000 | \n", + "16.000000 | \n", + "180.000000 | \n", + "2.000000 | \n", + "-1.000000 | \n", + "0.000000 | \n", + "
75% | \n", + "48.000000 | \n", + "1428.000000 | \n", + "21.000000 | \n", + "319.000000 | \n", + "3.000000 | \n", + "-1.000000 | \n", + "0.000000 | \n", + "
max | \n", + "95.000000 | \n", + "102127.000000 | \n", + "31.000000 | \n", + "4918.000000 | \n", + "63.000000 | \n", + "871.000000 | \n", + "275.000000 | \n", + "
\n", + " | age | \n", + "job | \n", + "marital | \n", + "education | \n", + "default | \n", + "balance | \n", + "housing | \n", + "loan | \n", + "contact | \n", + "day | \n", + "month | \n", + "duration | \n", + "campaign | \n", + "pdays | \n", + "previous | \n", + "poutcome | \n", + "y | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "58 | \n", + "management | \n", + "married | \n", + "tertiary | \n", + "no | \n", + "2143 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "261 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "0 | \n", + "
1 | \n", + "44 | \n", + "technician | \n", + "single | \n", + "secondary | \n", + "no | \n", + "29 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "151 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "0 | \n", + "
2 | \n", + "33 | \n", + "entrepreneur | \n", + "married | \n", + "secondary | \n", + "no | \n", + "2 | \n", + "yes | \n", + "yes | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "76 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "0 | \n", + "
3 | \n", + "47 | \n", + "blue-collar | \n", + "married | \n", + "unknown | \n", + "no | \n", + "1506 | \n", + "yes | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "92 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "0 | \n", + "
4 | \n", + "33 | \n", + "unknown | \n", + "single | \n", + "unknown | \n", + "no | \n", + "1 | \n", + "no | \n", + "no | \n", + "unknown | \n", + "5 | \n", + "may | \n", + "198 | \n", + "1 | \n", + "-1 | \n", + "0 | \n", + "unknown | \n", + "0 | \n", + "
Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('linearregression', LinearRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('linearregression', LinearRegression())])
ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])
Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')
SimpleImputer(strategy='median')
StandardScaler()
Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object')
SimpleImputer(strategy='most_frequent')
OneHotEncoder(handle_unknown='ignore')
LinearRegression()
Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('xgboost', RandomForestClassifier())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('xgboost', RandomForestClassifier())])
ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])
Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')
SimpleImputer(strategy='median')
StandardScaler()
Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object')
SimpleImputer(strategy='most_frequent')
OneHotEncoder(handle_unknown='ignore')
RandomForestClassifier()
Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotE...\n", + " feature_types=None, gamma=100, grow_policy=None,\n", + " importance_type=None,\n", + " interaction_constraints=None, learning_rate=None,\n", + " max_bin=None, max_cat_threshold=None,\n", + " max_cat_to_onehot=None, max_delta_step=None,\n", + " max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan,\n", + " monotone_constraints=None, multi_strategy=None,\n", + " n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotE...\n", + " feature_types=None, gamma=100, grow_policy=None,\n", + " importance_type=None,\n", + " interaction_constraints=None, learning_rate=None,\n", + " max_bin=None, max_cat_threshold=None,\n", + " max_cat_to_onehot=None, max_delta_step=None,\n", + " max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan,\n", + " monotone_constraints=None, multi_strategy=None,\n", + " n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...))])
ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])
Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')
SimpleImputer(strategy='median')
StandardScaler()
Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object')
SimpleImputer(strategy='most_frequent')
OneHotEncoder(handle_unknown='ignore')
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=100, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)
GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent...\n", + " monotone_constraints=None,\n", + " multi_strategy=None,\n", + " n_estimators=None,\n", + " n_jobs=None,\n", + " num_parallel_tree=None,\n", + " random_state=None, ...))]),\n", + " param_grid={'xgboost__colsample_bytree': [0.8, 1.0],\n", + " 'xgboost__gamma': [0, 1, 5],\n", + " 'xgboost__learning_rate': [0.01, 0.1, 0.2],\n", + " 'xgboost__max_depth': [3, 5, 7],\n", + " 'xgboost__min_child_weight': [1, 5, 10],\n", + " 'xgboost__n_estimators': [50, 100, 200],\n", + " 'xgboost__subsample': [0.8, 1.0]})In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent...\n", + " monotone_constraints=None,\n", + " multi_strategy=None,\n", + " n_estimators=None,\n", + " n_jobs=None,\n", + " num_parallel_tree=None,\n", + " random_state=None, ...))]),\n", + " param_grid={'xgboost__colsample_bytree': [0.8, 1.0],\n", + " 'xgboost__gamma': [0, 1, 5],\n", + " 'xgboost__learning_rate': [0.01, 0.1, 0.2],\n", + " 'xgboost__max_depth': [3, 5, 7],\n", + " 'xgboost__min_child_weight': [1, 5, 10],\n", + " 'xgboost__n_estimators': [50, 100, 200],\n", + " 'xgboost__subsample': [0.8, 1.0]})
Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotE...\n", + " feature_types=None, gamma=100, grow_policy=None,\n", + " importance_type=None,\n", + " interaction_constraints=None, learning_rate=None,\n", + " max_bin=None, max_cat_threshold=None,\n", + " max_cat_to_onehot=None, max_delta_step=None,\n", + " max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan,\n", + " monotone_constraints=None, multi_strategy=None,\n", + " n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...))])
ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])
Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')
SimpleImputer(strategy='median')
StandardScaler()
Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object')
SimpleImputer(strategy='most_frequent')
OneHotEncoder(handle_unknown='ignore')
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=100, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)
\n", + " | id | \n", + "client_id | \n", + "driver_id | \n", + "city_id | \n", + "status | \n", + "request_at | \n", + "
---|---|---|---|---|---|---|
0 | \n", + "1 | \n", + "1 | \n", + "10 | \n", + "1 | \n", + "completed | \n", + "2013-10-01 | \n", + "
1 | \n", + "2 | \n", + "2 | \n", + "11 | \n", + "1 | \n", + "cancelled_by_driver | \n", + "2013-10-01 | \n", + "
2 | \n", + "3 | \n", + "3 | \n", + "12 | \n", + "6 | \n", + "completed | \n", + "2013-10-01 | \n", + "
3 | \n", + "4 | \n", + "4 | \n", + "13 | \n", + "6 | \n", + "cancelled_by_client | \n", + "2013-10-01 | \n", + "
4 | \n", + "5 | \n", + "1 | \n", + "10 | \n", + "1 | \n", + "completed | \n", + "2013-10-02 | \n", + "
5 | \n", + "6 | \n", + "2 | \n", + "11 | \n", + "6 | \n", + "completed | \n", + "2013-10-02 | \n", + "
6 | \n", + "7 | \n", + "3 | \n", + "12 | \n", + "6 | \n", + "completed | \n", + "2013-10-02 | \n", + "
7 | \n", + "8 | \n", + "2 | \n", + "12 | \n", + "12 | \n", + "completed | \n", + "2013-10-03 | \n", + "
8 | \n", + "9 | \n", + "3 | \n", + "10 | \n", + "12 | \n", + "completed | \n", + "2013-10-03 | \n", + "
9 | \n", + "10 | \n", + "4 | \n", + "13 | \n", + "12 | \n", + "cancelled_by_driver | \n", + "2013-10-03 | \n", + "
\n", + " | users_id | \n", + "banned | \n", + "role | \n", + "
---|---|---|---|
0 | \n", + "1 | \n", + "False | \n", + "client | \n", + "
1 | \n", + "2 | \n", + "True | \n", + "client | \n", + "
2 | \n", + "3 | \n", + "False | \n", + "client | \n", + "
3 | \n", + "4 | \n", + "False | \n", + "client | \n", + "
4 | \n", + "10 | \n", + "False | \n", + "driver | \n", + "
5 | \n", + "11 | \n", + "False | \n", + "driver | \n", + "
6 | \n", + "12 | \n", + "False | \n", + "driver | \n", + "
7 | \n", + "13 | \n", + "False | \n", + "driver | \n", + "
\n", + " | Day | \n", + "Cancellation Rate | \n", + "
---|---|---|
0 | \n", + "2013-10-01 | \n", + "0.33 | \n", + "
1 | \n", + "2013-10-02 | \n", + "0.00 | \n", + "
2 | \n", + "2013-10-03 | \n", + "0.50 | \n", + "
\n", + " | Day | \n", + "Cancellation Rate | \n", + "
---|---|---|
0 | \n", + "2013-10-01 | \n", + "0.33 | \n", + "
1 | \n", + "2013-10-02 | \n", + "0.00 | \n", + "
2 | \n", + "2013-10-03 | \n", + "0.00 | \n", + "