diff --git a/ML_q.ipynb b/ML_q.ipynb new file mode 100644 index 0000000..d1d96cb --- /dev/null +++ b/ML_q.ipynb @@ -0,0 +1,1605 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "036e7fae-2189-44b0-93ec-4fe42d4d44a0", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np \n", + "import pandas as pd\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.preprocessing import StandardScaler , OneHotEncoder , OrdinalEncoder\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.impute import SimpleImputer\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.pipeline import Pipeline , make_pipeline\n", + "from sklearn.compose import ColumnTransformer\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.linear_model import LinearRegression\n", + "from xgboost import XGBRegressor\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "06eb45d3-c61a-468b-8f1b-51d161c8c581", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
058managementmarriedtertiaryno2143yesnounknown5may2611-10unknownno
144techniciansinglesecondaryno29yesnounknown5may1511-10unknownno
233entrepreneurmarriedsecondaryno2yesyesunknown5may761-10unknownno
347blue-collarmarriedunknownno1506yesnounknown5may921-10unknownno
433unknownsingleunknownno1nonounknown5may1981-10unknownno
\n", + "
" + ], + "text/plain": [ + " age job marital education default balance housing loan \\\n", + "0 58 management married tertiary no 2143 yes no \n", + "1 44 technician single secondary no 29 yes no \n", + "2 33 entrepreneur married secondary no 2 yes yes \n", + "3 47 blue-collar married unknown no 1506 yes no \n", + "4 33 unknown single unknown no 1 no no \n", + "\n", + " contact day month duration campaign pdays previous poutcome y \n", + "0 unknown 5 may 261 1 -1 0 unknown no \n", + "1 unknown 5 may 151 1 -1 0 unknown no \n", + "2 unknown 5 may 76 1 -1 0 unknown no \n", + "3 unknown 5 may 92 1 -1 0 unknown no \n", + "4 unknown 5 may 198 1 -1 0 unknown no " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"bank.csv\", delimiter=\";\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "9fd73749-308f-4f7d-8a36-c14fabfd45ca", + "metadata": {}, + "source": [ + " ## Description:\n", + " The data is related with direct marketing campaigns of a Portuguese banking institution.
\n", + " The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required,
\n", + " in order to access if the product (bank term deposit) would be (or not) subscribed. \n" + ] + }, + { + "cell_type": "markdown", + "id": "c2bbd4e3-790d-4d36-82a1-f95fc05cdec9", + "metadata": {}, + "source": [ + " ## Input variables:" + ] + }, + { + "cell_type": "markdown", + "id": "5e77843f-df08-4a97-90ec-7feb105abc83", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "525d3b1f-241b-4785-8186-f59b5cc9729f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 45211 entries, 0 to 45210\n", + "Data columns (total 17 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 age 45211 non-null int64 \n", + " 1 job 45211 non-null object\n", + " 2 marital 45211 non-null object\n", + " 3 education 45211 non-null object\n", + " 4 default 45211 non-null object\n", + " 5 balance 45211 non-null int64 \n", + " 6 housing 45211 non-null object\n", + " 7 loan 45211 non-null object\n", + " 8 contact 45211 non-null object\n", + " 9 day 45211 non-null int64 \n", + " 10 month 45211 non-null object\n", + " 11 duration 45211 non-null int64 \n", + " 12 campaign 45211 non-null int64 \n", + " 13 pdays 45211 non-null int64 \n", + " 14 previous 45211 non-null int64 \n", + " 15 poutcome 45211 non-null object\n", + " 16 y 45211 non-null object\n", + "dtypes: int64(7), object(10)\n", + "memory usage: 5.9+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b0edb6c2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agebalancedaydurationcampaignpdaysprevious
count45211.00000045211.00000045211.00000045211.00000045211.00000045211.00000045211.000000
mean40.9362101362.27205815.806419258.1630802.76384140.1978280.580323
std10.6187623044.7658298.322476257.5278123.098021100.1287462.303441
min18.000000-8019.0000001.0000000.0000001.000000-1.0000000.000000
25%33.00000072.0000008.000000103.0000001.000000-1.0000000.000000
50%39.000000448.00000016.000000180.0000002.000000-1.0000000.000000
75%48.0000001428.00000021.000000319.0000003.000000-1.0000000.000000
max95.000000102127.00000031.0000004918.00000063.000000871.000000275.000000
\n", + "
" + ], + "text/plain": [ + " age balance day duration campaign \\\n", + "count 45211.000000 45211.000000 45211.000000 45211.000000 45211.000000 \n", + "mean 40.936210 1362.272058 15.806419 258.163080 2.763841 \n", + "std 10.618762 3044.765829 8.322476 257.527812 3.098021 \n", + "min 18.000000 -8019.000000 1.000000 0.000000 1.000000 \n", + "25% 33.000000 72.000000 8.000000 103.000000 1.000000 \n", + "50% 39.000000 448.000000 16.000000 180.000000 2.000000 \n", + "75% 48.000000 1428.000000 21.000000 319.000000 3.000000 \n", + "max 95.000000 102127.000000 31.000000 4918.000000 63.000000 \n", + "\n", + " pdays previous \n", + "count 45211.000000 45211.000000 \n", + "mean 40.197828 0.580323 \n", + "std 100.128746 2.303441 \n", + "min -1.000000 0.000000 \n", + "25% -1.000000 0.000000 \n", + "50% -1.000000 0.000000 \n", + "75% -1.000000 0.000000 \n", + "max 871.000000 275.000000 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "78f9a979", + "metadata": {}, + "outputs": [], + "source": [ + "integer_columns = df.select_dtypes(include=['int64']).columns \n", + "object_columns = df.select_dtypes(include=['object']).columns " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acda24da", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "int64 columns:\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')\n", + "\n", + "object columns:\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome', 'y'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "print('\\nint64 columns:\\n', integer_columns) \n", + "print('\\nobject columns:\\n', object_columns) " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "8bacf9e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ],\n", + " [, , ]],\n", + " dtype=object)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAZGCAYAAAAyJ/crAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVzUZb7/8TcgN94BYgJyRGXTVfEmE0sn07VERqM2N7ayPEpmenTBDTlHzVJCzSzKG0ySLO86yalsN7fEgBFTM/GOZL0rTze27jk50K4ieQcj8PvDH9/jhChjw3Dj6/l48KD5fj9zfa/rw4DTfL7XdblVVlZWCgAAAAAAAAAAALXiXt8dAAAAAAAAAAAAaEworgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAaBCSk5Pl5uamf/zjH05pb+jQoRo6dKhT2gIAAKgPVe+PADQ8FFcAAAAAAAAAAAAcQHEFAAAAAAAAAADAARRXAAAAAAAAAAAAHEBxBUCN/va3v+kPf/iDunXrpubNm6tt27Z6+OGH9f3331eLPXjwoH7zm9+oefPm6tChg1544QWtWbNGbm5u1eI/+eQTDR48WC1btlTr1q0VHR2tI0eOuGZQAACgwfvHP/6hRx55RL6+vmrbtq2efvppXbx40Ti/Zs0a3XvvvQoMDJS3t7fCw8O1YsWK67ZbVlampKQkRUREyM/PTy1bttTgwYP16aef2sV9//33cnNz06uvvqqVK1fq1ltvlbe3t+644w7t27evWrtfffWVHnnkEbVr107NmzdXt27d9Nxzz9nF/O///q+efPJJBQUFydvbWz179tTq1atvMEMAAKAp2rlzp+644w75+Pjo1ltv1RtvvFEtpjbvg2JjY3XLLbfIZrNVe35UVJS6detWZ2MAbibN6rsDABquffv2adeuXRo9erQ6dOig77//XitWrNDQoUN19OhRtWjRQtLlDwvuueceubm5adasWWrZsqXeeusteXt7V2vzP//zPxUbGyuz2ayXX35Z58+f14oVK3T33XfrwIED6ty5s4tHCQAAGppHHnlEnTt31sKFC7V7924tW7ZMp0+f1ttvvy1JWrFihXr27Knf/va3atasmT7++GP94Q9/UEVFheLi4mpst6SkRG+99ZYee+wxTZw4UT/99JNWrVols9msvXv3qm/fvnbxGRkZ+umnn/Rv//ZvcnNzU0pKih566CF999138vT0lHT5BpPBgwfL09NTkyZNUufOnfXtt9/q448/1oIFCyRJhYWFGjhwoNzc3BQfH6927drpk08+0YQJE1RSUqKEhIQ6ySMAAGg8Dh06pKioKLVr107Jycm6dOmSnn/+eQUFBdnF1eZ90NixY/X2228rOztb999/v/Fcq9WqrVu36vnnn3fp2ICmyq2ysrKyvjsBoGG6cOGCmjdvbnds9+7dMplMevvttzV27FhJ0h//+EctX75cX3zxhfGhxKlTp9S1a1edOnVKx48fV+fOnXX27FmFhobq4Ycf1sqVK402CwsL1a1bNz3yyCN2xwEAwM0lOTlZc+fO1W9/+1v95S9/MY7HxcXp9ddf11//+lf16dPnqu9RRowYoa+//lrffvutcWzo0KGSpG3btkmSysvLVV5eLi8vLyOmuLhY3bt3V3R0tFatWiXp8syVsLAwtW3bVl9//bXatGkjSfroo4/04IMP6uOPPzY+qPjNb36jAwcO6PDhw+rYsaPRbmVlpdzc3CRJTz31lDZv3qxDhw6pbdu2Rsxjjz2mTz75RCdPnqw2HgAAcHP53e9+p6ysLB07dsx4T/Hll1+qd+/eKi8vV9VHuLV5H1RRUaFOnTpp0KBBevfdd424JUuW6N///d/17bffKiwszEUjA5oulgUDUKMr/7G22Wz65z//qS5dusjf319ffPGFcS4rK0smk8nubs+AgACNGTPGrj2LxaLi4mI99thj+sc//mF8eXh4aMCAAdWW5AAAADenn88+mTp1qiRp8+bNkuzfo5w5c0b/+Mc/9Jvf/Ebfffedzpw5U2O7Hh4eRmGloqJCp06d0qVLl9S/f3+79zZVHn30UaOwIkmDBw+WJH333XeSpB9//FE7duzQk08+aVdYkWQUViorK/WnP/1JDzzwgCorK+3eA5nNZp05c+aq1wYAADeP8vJyZWdna9SoUXbvKXr06CGz2WwXW5v3Qe7u7hozZow++ugj/fTTT0b8+vXrddddd1FYAZyE4gqAGl24cEFJSUkKDQ2Vt7e3brnlFrVr107FxcV2H1z87W9/U5cuXao9/+fHvv76a0nSvffeq3bt2tl95eTkqKioqG4HBAAAGoWuXbvaPb711lvl7u5u7OP2+eefKzIyUi1btpS/v7/atWunZ599VpKuWVyRpHXr1qlPnz7y8fFR27Zt1a5dO2VmZl71eT8vmFQVWk6fPi3p/4osvXr1qvF6P/74o4qLi7Vy5cpq73/Gjx8vSbwHAgDgJvfjjz/qwoUL1d4DSaq2P0pt3weNGzdOFy5c0IcffihJOnbsmPLz841VSAD8cuy5AqBGU6dO1Zo1a5SQkCCTySQ/Pz+5ublp9OjRqqiocLi9quf853/+p4KDg6udb9aMP0kAAKC6qlkgkvTtt99q2LBh6t69uxYvXqzQ0FB5eXlp8+bNWrJkyTXfo7zzzjt64oknNGrUKE2fPl2BgYHy8PDQwoUL7ZYTq+Lh4XHVdhxZWbmqP//6r/+q2NjYq8b06dOn1u0BAICblyPvg8LDwxUREaF33nlH48aN0zvvvCMvLy898sgj9TgCoGnhk0wANfrggw8UGxurRYsWGccuXryo4uJiu7hOnTrpm2++qfb8nx+79dZbJUmBgYGKjIx0focBAECT8PXXX9stV/HNN9+ooqJCnTt31scff6zS0lJ99NFHdjNLarO86AcffKBf/epX+vOf/2xXsLnRTV1/9atfSZIOHz5cY0y7du3UunVrlZeX8/4HAABcVbt27dS8eXNjxY8rHTt2zPhvR98HjRs3TomJiTp58qQyMjIUHR1tt+QpgF+GZcEA1MjDw6PanZmvvfaaysvL7Y6ZzWbl5eWpoKDAOHbq1CmtX7++Wpyvr69efPFF2Wy2atf78ccfndd5AADQaKWlpdk9fu211yRJI0eONGaTXPke5cyZM1qzZs11273ac/fs2aO8vLwb6me7du00ZMgQrV69WidOnLA7V3UNDw8PxcTE6E9/+tNVizC8/wEAAB4eHjKbzdq4caPde4ovv/xS2dnZdnFS7d8HPfbYY3Jzc9PTTz+t7777Tv/6r/9aRyMAbk7MXAFQo/vvv1//+Z//KT8/P4WHhysvL09btmxR27Zt7eJmzJihd955R8OHD9fUqVPVsmVLvfXWW+rYsaNOnTpl3Bnq6+urFStWaOzYserXr59Gjx6tdu3a6cSJE8rMzNSgQYO0fPny+hgqAABoQI4fP67f/va3GjFihPLy8vTOO+/o8ccf12233SYfHx95eXnpgQce0L/927/p7NmzevPNNxUYGKiTJ09es937779ff/7zn/W73/1O0dHROn78uNLT0xUeHq6zZ8/eUF+XLVumu+++W/369dOkSZMUFham77//XpmZmcaNJy+99JI+/fRTDRgwQBMnTlR4eLhOnTqlL774Qlu2bNGpU6du6NoAAKDpmDt3rrKysjR48GD94Q9/0KVLl/Taa6+pZ8+eOnjwoCQpKirKofdB7dq104gRI7Rhwwb5+/srOjra1cMCmjSKKwBqlJqaKg8PD61fv14XL17UoEGDtGXLFpnNZru40NBQffrpp/rjH/+oF198Ue3atVNcXJxatmypP/7xj/Lx8TFiH3/8cYWEhOill17SK6+8otLSUv3Lv/yLBg8ebGzqCgAAbm7vvfeekpKS9Mwzz6hZs2aKj4/XK6+8Iunypq4ffPCBZs+erf/4j/9QcHCwpkyZonbt2unJJ5+8ZrtPPPGErFar3njjDWVnZys8PFzvvPOONmzYoG3btt1QX2+77Tbt3r1bc+bM0YoVK3Tx4kV16tTJbj3zoKAg7d27V/PmzdOf//xnvf7662rbtq169uypl19++YauCwAAmpY+ffooOztbiYmJSkpKUocOHTR37lydPHnSKK7cyPugcePGadOmTXrkkUfk7e3tyiEBTZ5bpSO7MQKAAxISEvTGG2/o7NmzNW4ICwAAAAAAgLrxl7/8RaNGjdKOHTs0ePDg+u4O0KRQXAHgFBcuXFDz5s2Nx//85z/161//Wv369ZPFYqnHngEAAAAAANyc7r//fn355Zf65ptvjGXbATgHy4IBcAqTyaShQ4eqR48eKiws1KpVq1RSUqI5c+bUd9cAAAAAAABuKu+++64OHjyozMxMpaamUlgB6gAzVwA4xbPPPqsPPvhA//M//yM3Nzf169dPzz//vCIjI+u7awAAAAAAADcVNzc3tWrVSo8++qjS09PVrBn32APORnEFAAAAAAAAAADAAe713QEAAAAAAAAAAIDGhOIKAAAAAAAAAACAA27qxfYqKir0ww8/qHXr1mzqBABo8CorK/XTTz8pJCRE7u7cH3Ez4r0LAKCx4f0LeP8CAGhsavv+5aYurvzwww8KDQ2t724AAOCQv//97+rQoUN9dwP1gPcuAIDGivcvNy/evwAAGqvrvX+5qYsrrVu3lnQ5Sb6+vi65ps1mU05OjqKiouTp6emSa9YVxtIwMZaGp6mMQ2Is9a2kpEShoaHGv1+4+dTHexdnaoy/d65Cbq6N/NSM3NSM3NTMlbnh/Quu9f6F31NyIJEDiRxUIQ/kQGoYOajt+5eburhSNR3V19fXpcWVFi1ayNfXt9H/gjCWhomxNDxNZRwSY2koWE7h5lUf712cqTH/3tU1cnNt5Kdm5KZm5KZm9ZEb3r/cvK71/oXfU3IgkQOJHFQhD+RAalg5uN77FxY8BQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAHBTeemll+Tm5qaEhATj2MWLFxUXF6e2bduqVatWiomJUWFhod3zTpw4oejoaLVo0UKBgYGaPn26Ll26ZBezbds29evXT97e3urSpYvWrl1b7fppaWnq3LmzfHx8NGDAAO3du7cuhgkAAAAAAOoQxRUAAHDT2Ldvn9544w316dPH7vi0adP08ccfa8OGDdq+fbt++OEHPfTQQ8b58vJyRUdHq6ysTLt27dK6deu0du1aJSUlGTHHjx9XdHS07rnnHhUUFCghIUFPPfWUsrOzjZj33ntPiYmJev755/XFF1/otttuk9lsVlFRUd0PHgAAAAAAOA3FFQAAcFM4e/asxowZozfffFNt2rQxjp85c0arVq3S4sWLde+99yoiIkJr1qzRrl27tHv3bklSTk6Ojh49qnfeeUd9+/bVyJEjNX/+fKWlpamsrEySlJ6errCwMC1atEg9evRQfHy8fv/732vJkiXGtRYvXqyJEydq/PjxCg8PV3p6ulq0aKHVq1e7NhkAAAAAAOAXaVbfHQAAAHCFuLg4RUdHKzIyUi+88IJxPD8/XzabTZGRkcax7t27q2PHjsrLy9PAgQOVl5en3r17KygoyIgxm82aMmWKjhw5ottvv115eXl2bVTFVC0/VlZWpvz8fM2aNcs47+7ursjISOXl5V21z6WlpSotLTUel5SUSJJsNptsNtuNJ6OeVPW5Mfa9rpGbayM/NSM3NSM3NXNlbsg/AABoqiiuAACAJu/dd9/VF198oX379lU7Z7Va5eXlJX9/f7vjQUFBslqtRsyVhZWq81XnrhVTUlKiCxcu6PTp0yovL79qzFdffXXVfi9cuFBz586tdjwnJ0ctWrS4xogbNovFUt9daLDIzbWRn5qRm5qRm5q5Ijfnz5+v82sAAADUB4orAACgSfv73/+up59+WhaLRT4+PvXdHYfMmjVLiYmJxuOSkhKFhoYqKipKvr6+9dizG2Oz2WSxWDR8+HB5enrWd3caFHJzbeSnZuSmZuSmZq7MTdWsSwAAgKaG4goAAGjS8vPzVVRUpH79+hnHysvLtWPHDi1fvlzZ2dkqKytTcXGx3eyVwsJCBQcHS5KCg4O1d+9eu3YLCwuNc1Xfq45dGePr66vmzZvLw8NDHh4eV42pauPnvL295e3tXe24p6dno/6gsLH3vy6Rm2sjPzUjNzUjNzVzRW7IPQAAaKrY0B4AADRpw4YN06FDh1RQUGB89e/fX2PGjDH+29PTU7m5ucZzjh07phMnTshkMkmSTCaTDh06pKKiIiPGYrHI19dX4eHhRsyVbVTFVLXh5eWliIgIu5iKigrl5uYaMQAAAAAAoHFg5goAAGjSWrdurV69etkda9mypdq2bWscnzBhghITExUQECBfX19NnTpVJpNJAwcOlCRFRUUpPDxcY8eOVUpKiqxWq2bPnq24uDhjZsnkyZO1fPlyzZgxQ08++aS2bt2q999/X5mZmcZ1ExMTFRsbq/79++vOO+/U0qVLde7cOY0fP95F2QAAAAAAAM5AcQX1rvMzmdcPqmPeHpVKuVPqlZyt0nI3u3PfvxRdT70CALjKkiVL5O7urpiYGJWWlspsNuv11183znt4eGjTpk2aMmWKTCaTWrZsqdjYWM2bN8+ICQsLU2ZmpqZNm6bU1FR16NBBb731lsxmsxHz6KOP6scff1RSUpKsVqv69u2rrKysapvcu5Ir/x2+1r+3V8O/wQAAAEDjdCP/n+Ho/y/8Evy/BpyB4goAALjpbNu2ze6xj4+P0tLSlJaWVuNzOnXqpM2bN1+z3aFDh+rAgQPXjImPj1d8fHyt+woAAAAAABoe9lwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAc4XFzZsWOHHnjgAYWEhMjNzU0bN240ztlsNs2cOVO9e/dWy5YtFRISonHjxumHH36wa+PUqVMaM2aMfH195e/vrwkTJujs2bN2MQcPHtTgwYPl4+Oj0NBQpaSkVOvLhg0b1L17d/n4+Kh3797avHmzo8MBAAAAAAAAAABwiMPFlXPnzum2225TWlpatXPnz5/XF198oTlz5uiLL77Qn//8Zx07dky//e1v7eLGjBmjI0eOyGKxaNOmTdqxY4cmTZpknC8pKVFUVJQ6deqk/Px8vfLKK0pOTtbKlSuNmF27dumxxx7ThAkTdODAAY0aNUqjRo3S4cOHHR0SAAAAAAAAAABArTVz9AkjR47UyJEjr3rOz89PFovF7tjy5ct155136sSJE+rYsaO+/PJLZWVlad++ferfv78k6bXXXtN9992nV199VSEhIVq/fr3Kysq0evVqeXl5qWfPniooKNDixYuNIkxqaqpGjBih6dOnS5Lmz58vi8Wi5cuXKz093dFhAQAAAAAAAAAA1Eqd77ly5swZubm5yd/fX5KUl5cnf39/o7AiSZGRkXJ3d9eePXuMmCFDhsjLy8uIMZvNOnbsmE6fPm3EREZG2l3LbDYrLy+vjkcEAAAAAAAAAABuZg7PXHHExYsXNXPmTD322GPy9fWVJFmtVgUGBtp3olkzBQQEyGq1GjFhYWF2MUFBQca5Nm3ayGq1GseujKlq42pKS0tVWlpqPC4pKZF0ea8Ym812g6N0TNV1XHW9uuSssXh7VDqjO7+sD+6Vdt+v1Nh+VrzGGp6mMg6JsdS3xtRXAAAAAACApqzOiis2m02PPPKIKisrtWLFirq6jEMWLlyouXPnVjuek5OjFi1auLQvP18+rTH7pWNJudNJHXGC+f0rqh3bvHlzPfTkl+M11vA0lXFIjKW+nD9/vr67AAAAgAbif//3fzVz5kx98sknOn/+vLp06aI1a9YYK4VUVlbq+eef15tvvqni4mINGjRIK1asUNeuXY02Tp06palTp+rjjz+Wu7u7YmJilJqaqlatWhkxBw8eVFxcnPbt26d27dpp6tSpmjFjhsvHCwBAQ1MnxZWqwsrf/vY3bd261Zi1IknBwcEqKiqyi7906ZJOnTql4OBgI6awsNAupurx9WKqzl/NrFmzlJiYaDwuKSlRaGiooqKi7PpYl2w2mywWi4YPHy5PT0+XXLOuOGssvZKzndirG+PtXqn5/Ss0Z7+7Sivc7M4dTjbXU69uDK+xhqepjENiLPWtasYlAAAAbm6nT5/WoEGDdM899+iTTz5Ru3bt9PXXX6tNmzZGTEpKipYtW6Z169YpLCxMc+bMkdls1tGjR+Xj4yNJGjNmjE6ePCmLxSKbzabx48dr0qRJysjIkHT5/WdUVJQiIyOVnp6uQ4cO6cknn5S/v7+xJy4AADcrpxdXqgorX3/9tT799FO1bdvW7rzJZFJxcbHy8/MVEREhSdq6dasqKio0YMAAI+a5556TzWYzPvCyWCzq1q2b8UbBZDIpNzdXCQkJRtsWi0Umk6nGvnl7e8vb27vacU9PT5d/sFYf16wrv3QspeVu1w9ykdIKt2r9aaw/J15jDU9TGYfEWOpLY+knAAAA6tbLL7+s0NBQrVmzxjh25fLqlZWVWrp0qWbPnq0HH3xQkvT2228rKChIGzdu1OjRo/Xll18qKytL+/btM2a7vPbaa7rvvvv06quvKiQkROvXr1dZWZlWr14tLy8v9ezZUwUFBVq8eDHFFQDATc/h4srZs2f1zTffGI+PHz+ugoICBQQEqH379vr973+vL774Qps2bVJ5ebmxB0pAQIC8vLzUo0cPjRgxQhMnTlR6erpsNpvi4+M1evRohYSESJIef/xxzZ07VxMmTNDMmTN1+PBhpaamasmSJcZ1n376af3mN7/RokWLFB0drXfffVf79+/XypUrf2lOAAAAAAAAGqyPPvpIZrNZDz/8sLZv365/+Zd/0R/+8AdNnDhR0uXPaqxWqyIjI43n+Pn5acCAAcrLy9Po0aOVl5cnf39/o7AiSZGRkXJ3d9eePXv0u9/9Tnl5eRoyZIi8vLyMGLPZrJdfflmnT5+2mylTxZH9bhvjPojORg7IgdQ0c3Ajeyxfa09kZ2uouW6KrwVHNYQc1PbaDhdX9u/fr3vuucd4XLXMVmxsrJKTk/XRRx9Jkvr27Wv3vE8//VRDhw6VJK1fv17x8fEaNmyYsabnsmXLjFg/Pz/l5OQoLi5OERERuuWWW5SUlGR3V8Rdd92ljIwMzZ49W88++6y6du2qjRs3qlevXo4OCQAAAAAAoNH47rvvtGLFCiUmJurZZ5/Vvn379Mc//lFeXl6KjY01bnQNCgqye15QUJBxzmq1KjAw0O58s2bNFBAQYBdz5YyYK9u0Wq1XLa7cyH63jWkfxLpCDsiB1LRy8Ev2WL7ansjO1tD3WG5Kr4UbVZ85qO2etw4XV4YOHarKypqrh9c6VyUgIMBYv7Mmffr00WeffXbNmIcfflgPP/zwda8HAAAAAADQVFRUVKh///568cUXJUm33367Dh8+rPT0dMXGxtZr3xzZ77Yx7oPobOSAHEhNMwc3ssfytfZEdraGusdyU3wtOKoh5KC2e97WyYb2AAAAAAAAqBvt27dXeHi43bEePXroT3/6kyQpODhYklRYWKj27dsbMYWFhcZKI8HBwSoqKrJr49KlSzp16pTx/ODgYBUWFtrFVD2uivm5G9nvtjHtg1hXyAE5kJpWDn7JHstX2xPZ2Rp6npvSa+FG1WcOantd9zruBwAAAAAAAJxo0KBBOnbsmN2x//7v/1anTp0kXd7cPjg4WLm5ucb5kpIS7dmzRyaTSZJkMplUXFys/Px8I2br1q2qqKjQgAEDjJgdO3bYrT1vsVjUrVu3qy4JBgDAzYSZKzeJzs9kOr1Nb49Kpdx5eZpfXVeTAQAAAADAZdOmTdNdd92lF198UY888oj27t2rlStXauXKlZIkNzc3JSQk6IUXXlDXrl0VFhamOXPmKCQkRKNGjZJ0eabLiBEjNHHiRKWnp8tmsyk+Pl6jR49WSEiIJOnxxx/X3LlzNWHCBM2cOVOHDx9WamqqlixZUl9DBwCgwaC4AgAAAAAA0Ijccccd+vDDDzVr1izNmzdPYWFhWrp0qcaMGWPEzJgxQ+fOndOkSZNUXFysu+++W1lZWfLx8TFi1q9fr/j4eA0bNkzu7u6KiYnRsmXLjPN+fn7KyclRXFycIiIidMsttygpKUmTJk1y6XgBAGiIKK4AAAAAAAA0Mvfff7/uv//+Gs+7ublp3rx5mjdvXo0xAQEBysjIuOZ1+vTpo88+++yG+wkAQFPFnisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAACgSVuxYoX69OkjX19f+fr6ymQy6ZNPPjHODx06VG5ubnZfkydPtmvjxIkTio6OVosWLRQYGKjp06fr0qVLdjHbtm1Tv3795O3trS5dumjt2rXV+pKWlqbOnTvLx8dHAwYM0N69e+tkzAAAAAAAoG5RXAEAAE1ahw4d9NJLLyk/P1/79+/XvffeqwcffFBHjhwxYiZOnKiTJ08aXykpKca58vJyRUdHq6ysTLt27dK6deu0du1aJSUlGTHHjx9XdHS07rnnHhUUFCghIUFPPfWUsrOzjZj33ntPiYmJev755/XFF1/otttuk9lsVlFRkWsSAQAAAAAAnIbiCgAAaNIeeOAB3Xffferatat+/etfa8GCBWrVqpV2795txLRo0ULBwcHGl6+vr3EuJydHR48e1TvvvKO+fftq5MiRmj9/vtLS0lRWViZJSk9PV1hYmBYtWqQePXooPj5ev//977VkyRKjncWLF2vixIkaP368wsPDlZ6erhYtWmj16tWuSwYAAAAAAHAKiisAAOCmUV5ernfffVfnzp2TyWQyjq9fv1633HKLevXqpVmzZun8+fPGuby8PPXu3VtBQUHGMbPZrJKSEmP2S15eniIjI+2uZTablZeXJ0kqKytTfn6+XYy7u7siIyONGAAAAAAA0Hg0q+8OAAAA1LVDhw7JZDLp4sWLatWqlT788EOFh4dLkh5//HF16tRJISEhOnjwoGbOnKljx47pz3/+syTJarXaFVYkGY+tVus1Y0pKSnThwgWdPn1a5eXlV4356quvaux3aWmpSktLjcclJSWSJJvNJpvNdiOpqMbbo9Ip7dTqWu6Vdt+vx1ljbAyqxnozjdkR5Kdm5KZm5KZmrswN+QcAoOno/ExmnV/D26NSKXdKvZKzVVruVuvnff9SdB326uoorgAAgCavW7duKigo0JkzZ/TBBx8oNjZW27dvV3h4uCZNmmTE9e7dW+3bt9ewYcP07bff6tZbb63HXksLFy7U3Llzqx3PyclRixYtnHKNlDud0oxD5vevqFXc5s2b67gnDY/FYqnvLjRo5Kdm5KZm5KZmrsjNlbNBAQAAmhKKKwAAoMnz8vJSly5dJEkRERHat2+fUlNT9cYbb1SLHTBggCTpm2++0a233qrg4GDt3bvXLqawsFCSFBwcbHyvOnZljK+vr5o3by4PDw95eHhcNaaqjauZNWuWEhMTjcclJSUKDQ1VVFSU3b4wv0Sv5GyntFMb3u6Vmt+/QnP2u6u04vp3IB1ONrugVw2DzWaTxWLR8OHD5enpWd/daXDIT83ITc3ITc1cmZuqWZcAAABNDcUVAABw06moqLBbbutKBQUFkqT27dtLkkwmkxYsWKCioiIFBgZKunynr6+vr7G0mMlkqjbLwmKxGPu6eHl5KSIiQrm5uRo1apTRh9zcXMXHx9fYT29vb3l7e1c77unp6bQPwxyZZu0spRVutbruzfhhqDN/tk0R+akZuakZuamZK3JD7gEAQFNFcQUAADRps2bN0siRI9WxY0f99NNPysjI0LZt25Sdna1vv/1WGRkZuu+++9S2bVsdPHhQ06ZN05AhQ9SnTx9JUlRUlMLDwzV27FilpKTIarVq9uzZiouLMwofkydP1vLlyzVjxgw9+eST2rp1q95//31lZv7ferSJiYmKjY1V//79deedd2rp0qU6d+6cxo8fXy95AQAAAAAAN47iCgAAaNKKioo0btw4nTx5Un5+furTp4+ys7M1fPhw/f3vf9eWLVuMQkdoaKhiYmI0e/Zs4/keHh7atGmTpkyZIpPJpJYtWyo2Nlbz5s0zYsLCwpSZmalp06YpNTVVHTp00FtvvSWz+f+WtXr00Uf1448/KikpSVarVX379lVWVla1Te4BAAAAAEDDR3EFAAA0aatWrarxXGhoqLZv337dNjp16nTdzdWHDh2qAwcOXDMmPj7+msuAAQAAAACAxsG9vjsAAAAAAAAAAADQmDBzBQAAAAAAAAAamc7PZF4/CECdYeYKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADigWX13AAAAAAAAAGgKOj+T6VC8t0elUu6UeiVnq7TcrY56ddn3L0XXafsAcLNh5goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIAN7QEAAAAAAIAmrvMzmfXdhavy9qhUyp313QsAcBwzVwAAAAAAAAAAABxAcQUAAAAAAAAAAMABFFcAAAAAAAAAAAAcQHEFAAAAAAAAAADAAQ5vaL9jxw698sorys/P18mTJ/Xhhx9q1KhRxvnKyko9//zzevPNN1VcXKxBgwZpxYoV6tq1qxFz6tQpTZ06VR9//LHc3d0VExOj1NRUtWrVyog5ePCg4uLitG/fPrVr105Tp07VjBkz7PqyYcMGzZkzR99//726du2ql19+Wffdd98NpAEAAAAAAAAA7HV+JrPOr+HtUamUO6VeydkqLXer8+sBcA6HZ66cO3dOt912m9LS0q56PiUlRcuWLVN6err27Nmjli1bymw26+LFi0bMmDFjdOTIEVksFm3atEk7duzQpEmTjPMlJSWKiopSp06dlJ+fr1deeUXJyclauXKlEbNr1y499thjmjBhgg4cOKBRo0Zp1KhROnz4sKNDAgAAAAAAAAAAqDWHZ66MHDlSI0eOvOq5yspKLV26VLNnz9aDDz4oSXr77bcVFBSkjRs3avTo0fryyy+VlZWlffv2qX///pKk1157Tffdd59effVVhYSEaP369SorK9Pq1avl5eWlnj17qqCgQIsXLzaKMKmpqRoxYoSmT58uSZo/f74sFouWL1+u9PT0G0oGAAAAAAAAAADA9Th1z5Xjx4/LarUqMjLSOObn56cBAwYoLy9PkpSXlyd/f3+jsCJJkZGRcnd31549e4yYIUOGyMvLy4gxm806duyYTp8+bcRceZ2qmKrrAAAAAAAAAAAA1AWHZ65ci9VqlSQFBQXZHQ8KCjLOWa1WBQYG2neiWTMFBATYxYSFhVVro+pcmzZtZLVar3mdqyktLVVpaanxuKSkRJJks9lks9lqPc5fouo6rrpeFW+PSue36V5p970xu9ZYXP2z+qXq6zVWF5rKWJrKOCTGUt8aU18BAABQd5KTkzV37ly7Y926ddNXX30lSbp48aL+/d//Xe+++65KS0tlNpv1+uuv232OcuLECU2ZMkWffvqpWrVqpdjYWC1cuFDNmv3fR0Xbtm1TYmKijhw5otDQUM2ePVtPPPGES8YIAEBD59TiSkO3cOHCam8+JCknJ0ctWrRwaV8sFotLr5dyZ921Pb9/Rd017mJXG8vmzZvroSe/nKtfY3WpqYylqYxDYiz15fz58/XdBQAAADQQPXv21JYtW4zHVxZFpk2bpszMTG3YsEF+fn6Kj4/XQw89pM8//1ySVF5erujoaAUHB2vXrl06efKkxo0bJ09PT7344ouSLq9OEh0drcmTJ2v9+vXKzc3VU089pfbt28tsNrt2sAAANEBOLa4EBwdLkgoLC9W+fXvjeGFhofr27WvEFBUV2T3v0qVLOnXqlPH84OBgFRYW2sVUPb5eTNX5q5k1a5YSExONxyUlJQoNDVVUVJR8fX0dGeoNs9lsslgsGj58uDw9PV1yTUnqlZzt9Da93Ss1v3+F5ux3V2mFm9Pbd6VrjeVwcuN601hfr7G60FTG0lTGITGW+lY14xIAAABo1qzZVT8DOXPmjFatWqWMjAzde++9kqQ1a9aoR48e2r17twYOHKicnBwdPXpUW7ZsUVBQkPr27av58+dr5syZSk5OlpeXl9LT0xUWFqZFixZJknr06KGdO3dqyZIlFFcAAJCTiythYWEKDg5Wbm6uUUwpKSnRnj17NGXKFEmSyWRScXGx8vPzFRERIUnaunWrKioqNGDAACPmueeek81mMz7wslgs6tatm9q0aWPE5ObmKiEhwbi+xWKRyWSqsX/e3t7y9vaudtzT09PlH6y5+pql5XVX/CitcKvT9l3pamNpLB+6/lx9vK7rSlMZS1MZh8RY6ktj6WdDs2LFCq1YsULff/+9pMt3eSYlJWnkyJGSXLtsRlpaml555RVZrVbddttteu2113TnnXU4vRQAADRZX3/9tUJCQuTj4yOTyaSFCxeqY8eOys/Pl81ms9untnv37urYsaPy8vI0cOBA5eXlqXfv3nbvd8xms6ZMmaIjR47o9ttvr3Gv2ys/h7kaR5Zkb4xL9V6Po8uyN6Ul129U1dgb6uugLpbar3YNXgeSXJuHhvp6a+h/Fxvy74Mzc1bbthwurpw9e1bffPON8fj48eMqKChQQECAOnbsqISEBL3wwgvq2rWrwsLCNGfOHIWEhGjUqFGSLt/pMGLECE2cOFHp6emy2WyKj4/X6NGjFRISIkl6/PHHNXfuXE2YMEEzZ87U4cOHlZqaqiVLlhjXffrpp/Wb3/xGixYtUnR0tN59913t379fK1eudHRIAACgCevQoYNeeuklde3aVZWVlVq3bp0efPBBHThwQD179nTZshnvvfeeEhMTlZ6ergEDBmjp0qUym806duxYtf3oAAAArmXAgAFau3atunXrppMnT2ru3LkaPHiwDh8+LKvVKi8vL/n7+9s95+f74V5tH9uqc9eKKSkp0YULF9S8efOr9u1GlmRvTEv1Xs+NLsvelJZcv1EN9XVQl0vt/xyvg8tckYeGvg0Avw+Ovw6c+TOt7bLsDhdX9u/fr3vuucd4XLXMVmxsrNauXasZM2bo3LlzmjRpkoqLi3X33XcrKytLPj4+xnPWr1+v+Ph4DRs2TO7u7oqJidGyZcuM835+fsrJyVFcXJwiIiJ0yy23KCkpSZMmTTJi7rrrLmVkZGj27Nl69tln1bVrV23cuFG9evVydEgAAKAJe+CBB+weL1iwQCtWrNDu3bvVoUMHly2bsXjxYk2cOFHjx4+XJKWnpyszM1OrV6/WM88848KMAACAxq5qBq4k9enTRwMGDFCnTp30/vvv11j0cBVHlmRvjEv1Xo+jy7I3pSXXb1RVDhrq66Aultr/OV4Hl7kyDw11G4CG/nexIf8+OPNnWttl2R0urgwdOlSVlTVPyXFzc9O8efM0b968GmMCAgKUkZFxzev06dNHn3322TVjHn74YT388MPX7jAAAMD/V15erg0bNujcuXMymUwuWzajrKxM+fn5mjVrlnHe3d1dkZGRysvLq7G/jiyrcaNcMa3buJaD07sb6lT4utDQp//XN/JTM3JTM3JTM1fmhvy7hr+/v37961/rm2++0fDhw1VWVqbi4mK72StX7lMbHBysvXv32rVR271ufX19r1nAuZEl2RvTUr3Xc6PLpjelJddvVEN9Hbjy58Lr4DJX5KEhvtauxO+D468DZ+artm05dc8VAACAhujQoUMymUy6ePGiWrVqpQ8//FDh4eEqKChwybIZp0+fVnl5+VVjvvrqqxr7fSPLajjKldO6q9R2endDn6pfFxrq9P+GgvzUjNzUjNzUzBW5qe2yGvhlzp49q2+//VZjx45VRESEPD09lZubq5iYGEnSsWPHdOLECWOfWpPJpAULFqioqMhYntRiscjX11fh4eFGzM//Lb7eXrcAANxMKK4AAIAmr1u3biooKNCZM2f0wQcfKDY2Vtu3b6/vbl2XI8tq3ChXTOuu4uj07oY6Vb8uNPTp//WN/NSM3NSM3NTMlbmp7bIacMx//Md/6IEHHlCnTp30ww8/6Pnnn5eHh4cee+wx+fn5acKECUpMTFRAQIB8fX01depUmUwmDRw4UJIUFRWl8PBwjR07VikpKbJarZo9e7bi4uKMWSeTJ0/W8uXLNWPGDD355JPaunWr3n//fWVmZtbn0AEAaDAorgAAgCbPy8tLXbp0kSRFRERo3759Sk1N1aOPPuqSZTM8PDzk4eFx1ZiqNq7mRpbVcFR9LDtQ2+ndN+OHoQ11+n9DQX5qRm5qRm5q5orckPu68T//8z967LHH9M9//lPt2rXT3Xffrd27d6tdu3aSpCVLlhh73JaWlspsNuv11183nu/h4aFNmzZpypQpMplMatmypWJjY+2WeA8LC1NmZqamTZum1NRUdejQQW+99ZaxnxwAADc7iisAAOCmU1FRodLSUpctm+Hl5aWIiAjl5uZq1KhRRh9yc3MVHx/viiEDAIAm5N13373meR8fH6WlpSktLa3GmE6dOl13Cc6hQ4fqwIEDN9RHAACaOoorAACgSZs1a5ZGjhypjh076qefflJGRoa2bdum7Oxsly6bkZiYqNjYWPXv31933nmnli5dqnPnzmn8+PH1khcAAAAAAHDjKK4AAIAmraioSOPGjdPJkyfl5+enPn36KDs7W8OHD5fkumUzHn30Uf34449KSkqS1WpV3759lZWVVW2TewAAAAAA0PBRXAEAAE3aqlWrrnnelctmxMfHswwYAAAAAABNgHt9dwAAAAAAAAAAAKAxobgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAAAAAAAAAAA6guAIAAAAAAAAAAOAAiisAAAAAAAAAAAAOoLgCAAAAAAAAAADgAIorAAAAAAAAAAAADqC4AgAAAAAAAAAA4ACKKwAAoElbuHCh7rjjDrVu3VqBgYEaNWqUjh07ZhczdOhQubm52X1NnjzZLubEiROKjo5WixYtFBgYqOnTp+vSpUt2Mdu2bVO/fv3k7e2tLl26aO3atdX6k5aWps6dO8vHx0cDBgzQ3r17nT5mAAAAAABQtyiuAACAJm379u2Ki4vT7t27ZbFYZLPZFBUVpXPnztnFTZw4USdPnjS+UlJSjHPl5eWKjo5WWVmZdu3apXXr1mnt2rVKSkoyYo4fP67o6Gjdc889KigoUEJCgp566illZ2cbMe+9954SExP1/PPP64svvtBtt90ms9msoqKiuk8EAAAAAABwmmb13QEAAIC6lJWVZfd47dq1CgwMVH5+voYMGWIcb9GihYKDg6/aRk5Ojo4ePaotW7YoKChIffv21fz58zVz5kwlJyfLy8tL6enpCgsL06JFiyRJPXr00M6dO7VkyRKZzWZJ0uLFizVx4kSNHz9ekpSenq7MzEytXr1azzzzTF0MHwAAAAAA1AFmrgAAgJvKmTNnJEkBAQF2x9evX69bbrlFvXr10qxZs3T+/HnjXF5ennr37q2goCDjmNlsVklJiY4cOWLEREZG2rVpNpuVl5cnSSorK1N+fr5djLu7uyIjI40YAAAAAADQODBzBQAA3DQqKiqUkJCgQYMGqVevXsbxxx9/XJ06dVJISIgOHjyomTNn6tixY/rzn/8sSbJarXaFFUnGY6vVes2YkpISXbhwQadPn1Z5eflVY7766qur9re0tFSlpaXG45KSEkmSzWaTzWa7kRRU4+1R6ZR2anUt90q779fjrDE2BlVjvZnG7AjyUzNyUzNyUzNX5ob8AwCApsrpxZXy8nIlJyfrnXfekdVqVUhIiJ544gnNnj1bbm5ukqTKyko9//zzevPNN1VcXKxBgwZpxYoV6tq1q9HOqVOnNHXqVH388cdyd3dXTEyMUlNT1apVKyPm4MGDiouL0759+9SuXTtNnTpVM2bMcPaQAABAExEXF6fDhw9r586ddscnTZpk/Hfv3r3Vvn17DRs2TN9++61uvfVWV3fTsHDhQs2dO7fa8ZycHLVo0cIp10i50ynNOGR+/4paxW3evLmOe9LwWCyW+u5Cg0Z+akZuakZuauaK3Fw5ExQAAKApcXpx5eWXX9aKFSu0bt069ezZU/v379f48ePl5+enP/7xj5KklJQULVu2TOvWrVNYWJjmzJkjs9mso0ePysfHR5I0ZswYnTx50th4dvz48Zo0aZIyMjIkXb5zMyoqSpGRkUpPT9ehQ4f05JNPyt/f3+4DEgAAAEmKj4/Xpk2btGPHDnXo0OGasQMGDJAkffPNN7r11lsVHBysvXv32sUUFhZKkrFPS3BwsHHsyhhfX181b95cHh4e8vDwuGpMTXu9zJo1S4mJicbjkpIShYaGKioqSr6+vrUY9fX1Ss52Sju14e1eqfn9KzRnv7tKK9yuG3842eyCXjUMNptNFotFw4cPl6enZ313p8EhPzUjNzUjNzVzZW6qZl0CAAA0NU4vruzatUsPPvigoqOjJUmdO3fWf/3XfxkfSFRWVmrp0qWaPXu2HnzwQUnS22+/raCgIG3cuFGjR4/Wl19+qaysLO3bt0/9+/eXJL322mu677779OqrryokJETr169XWVmZVq9eLS8vL/Xs2VMFBQVavHgxxRUAAGCorKzU1KlT9eGHH2rbtm0KCwu77nMKCgokSe3bt5ckmUwmLViwQEVFRQoMDJR0+W5fX19fhYeHGzE/n2lhsVhkMpkkSV5eXoqIiFBubq5GjRol6fIyZbm5uYqPj79qP7y9veXt7V3tuKenp9M+DCstv36Rw9lKK9xqdd2b8cNQZ/5smyLyUzNyUzNyUzNX5IbcAwCApsrpG9rfddddys3N1X//939Lkv76179q586dGjlypCTp+PHjslqtdpu5+vn5acCAAcZmrnl5efL39zcKK5IUGRkpd3d37dmzx4gZMmSIvLy8jBiz2axjx47p9OnTzh4WAABopOLi4vTOO+8oIyNDrVu3ltVqldVq1YULFyRJ3377rebPn6/8/Hx9//33+uijjzRu3DgNGTJEffr0kSRFRUUpPDxcY8eO1V//+ldlZ2dr9uzZiouLM4ofkydP1nfffacZM2boq6++0uuvv673339f06ZNM/qSmJioN998U+vWrdOXX36pKVOm6Ny5cxo/frzrEwMAAJqMl156SW5ubkpISDCOXbx4UXFxcWrbtq1atWqlmJiYajNoT5w4oejoaLVo0UKBgYGaPn26Ll26ZBezbds29evXT97e3urSpYvWrl3rghEBANDwOX3myjPPPKOSkhJ1795dHh4eKi8v14IFCzRmzBhJ/7fp69U2c71yQ9iqu0KNjjZrpoCAALuYn995euXGsm3atKnWN1dsCns99bWpYl1sVuvoprQN2bXG0u25Ta7uTq1dbbmUprRxZ1MZS1MZh8RY6ltj6mtDsmLFCknS0KFD7Y6vWbNGTzzxhLy8vLRlyxYtXbpU586dU2hoqGJiYjR79mwj1sPDQ5s2bdKUKVNkMpnUsmVLxcbGat68eUZMWFiYMjMzNW3aNKWmpqpDhw566623ZDb/39/qRx99VD/++KOSkpJktVrVt29fZWVlVXtfBAAAUFv79u3TG2+8YdwUUmXatGnKzMzUhg0b5Ofnp/j4eD300EP6/PPPJV3eMzc6OlrBwcHatWuXTp48qXHjxsnT01MvvviipMs3yEZHR2vy5Mlav369cnNz9dRTT6l9+/Z273EAALgZOb248v7772v9+vXKyMgwlupKSEhQSEiIYmNjnX05h7hiU9jacvWminW5WW1tN6VtDBrbWK610W9T2rizqYylqYxDYiz1hQ1hb0xl5bVvAggNDdX27duv206nTp2uu8H60KFDdeDAgWvGxMfH17gMGAAAgCPOnj2rMWPG6M0339QLL7xgHD9z5oxWrVqljIwM3XvvvZIu31jSo0cP7d69WwMHDlROTo6OHj2qLVu2KCgoSH379tX8+fM1c+ZMJScny8vLS+np6QoLC9OiRYskST169NDOnTu1ZMkSiisAgJue04sr06dP1zPPPKPRo0dLknr37q2//e1vWrhwoWJjY40NWwsLC411zKse9+3bV9LlDWGLiors2r106ZJOnTp13U1jq85djSs2hb2e+tpUsS42q3V0U9qGrLGOpaaZK01l486mMpamMg6JsdQ3NoQFAADAleLi4hQdHa3IyEi74kp+fr5sNpvdkuzdu3dXx44dlZeXp4EDByovL0+9e/e2m0FrNps1ZcoUHTlyRLfffrvy8vLs2qiKuXL5MQAAblZOL66cP39e7u72W7l4eHioouLyjICwsDAFBwcrNzfXKKaUlJRoz549mjJliqTLG8IWFxcrPz9fERERkqStW7eqoqJCAwYMMGKee+452Ww240Mxi8Wibt26XXVJMMk1m8LWlquvWZeb1dZ2U9rGoLGN5Vqvoaa0cWdTGUtTGYfEWOpLY+knAAAA6t67776rL774Qvv27at2zmq1ysvLS/7+/nbHf74k+9WWbK86d62YkpISXbhwQc2bN692bUeWZG+MS/Vej6PLsjelJddvVNXYG+rroC6W2q92DV4Hklybh4b6emvofxcb8u+DM3NW27acXlx54IEHtGDBAnXs2FE9e/bUgQMHtHjxYj355JOSZGyw9sILL6hr164KCwvTnDlzFBISolGjRkm6PM10xIgRmjhxotLT02Wz2RQfH6/Ro0crJCREkvT4449r7ty5mjBhgmbOnKnDhw8rNTVVS5YscfaQAAAAAAAAGoy///3vevrpp2WxWOTj41Pf3bFzI0uyN6aleq/nRpdlb2zLlNeFhvo6qMul9n+O18FlrsjD9ZZ8rm/8Pjj+OnDmz7S2y7I7vbjy2muvac6cOfrDH/6goqIihYSE6N/+7d+UlJRkxMyYMUPnzp3TpEmTVFxcrLvvvltZWVl2bwjWr1+v+Ph4DRs2TO7u7oqJidGyZcuM835+fsrJyVFcXJwiIiJ0yy23KCkpSZMmTXL2kAAAAAAAABqM/Px8FRUVqV+/fsax8vJy7dixQ8uXL1d2drbKyspUXFxsN3ulsLDQbrn1vXv32rX78+XWa1qS3dfX96qzViTHlmRvjEv1Xo+jy7I31mXKnakqBw31dVAXS+3/HK+Dy1yZh6sttd8QNPS/iw3598GZP9PaLsvu9OJK69attXTpUi1durTGGDc3N82bN0/z5s2rMSYgIEAZGRnXvFafPn302Wef3WhXAQAAAAAAGp1hw4bp0KFDdsfGjx+v7t27a+bMmQoNDZWnp6dyc3MVExMjSTp27JhOnDghk8kk6fJy6wsWLFBRUZECAwMlXb5T2tfXV+Hh4UbMz+8EtlgsRhtXcyNLsjempXqv50aXGm9sy5TXhYb6OnDlz4XXwWWuyENDfK1did8Hx18HzsxXbdtyenEFAAAAAAAAdad169bq1auX3bGWLVuqbdu2xvEJEyYoMTFRAQEB8vX11dSpU2UymTRw4EBJUlRUlMLDwzV27FilpKTIarVq9uzZiouLM4ojkydP1vLlyzVjxgw9+eST2rp1q95//31lZma6dsAAADRAFFcAAAAAAACamCVLlhjLrJeWlspsNuv11183znt4eGjTpk2aMmWKTCaTWrZsqdjYWLtVRsLCwpSZmalp06YpNTVVHTp00FtvvSWzuWEupwMAgCtRXAEAAAAAAGjktm3bZvfYx8dHaWlpSktLq/E5nTp1uu4GwEOHDtWBAwec0UUAAJoU9/ruAAAAAAAAAAAAQGNCcQUAAAAAAAAAAMABFFcAAAAAAAAAAAAcQHEFAAAAAAAAAADAARRXAAAAAAAAAAAAHEBxBQAAAAAAAAAAwAEUVwAAAAAAAAAAABxAcQUAAAAAAAAAAMABFFcAAAAAAAAAAAAcQHEFAAAAAAAAAADAARRXAAAAAAAAAAAAHEBxBQAAAAAAAAAAwAEUVwAAAAAAAAAAABxAcQUAAAAAAAAAAMABFFcAAAAAAAAAAAAcQHEFAAAAAAAAAADAARRXAAAAAAAAAAAAHEBxBQAAAAAAAAAAwAHN6rsDAAAAAAAAAG5uvZKzVVruVt/dAIBaY+YKAAAAAAAAAACAA5i5AjRinZ/JrHbM26NSKXfW/x0f378UXW/XBgAAAAAAAIC6xMwVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAADQpC1cuFB33HGHWrdurcDAQI0aNUrHjh2zi7l48aLi4uLUtm1btWrVSjExMSosLLSLOXHihKKjo9WiRQsFBgZq+vTpunTpkl3Mtm3b1K9fP3l7e6tLly5au3Zttf6kpaWpc+fO8vHx0YABA7R3716njxkAAAAAANQtiisAAKBJ2759u+Li4rR7925ZLBbZbDZFRUXp3LlzRsy0adP08ccfa8OGDdq+fbt++OEHPfTQQ8b58vJyRUdHq6ysTLt27dK6deu0du1aJSUlGTHHjx9XdHS07rnnHhUUFCghIUFPPfWUsrOzjZj33ntPiYmJev755/XFF1/otttuk9lsVlFRkWuSAQAAAAAAnKJZfXcAAACgLmVlZdk9Xrt2rQIDA5Wfn68hQ4bozJkzWrVqlTIyMnTvvfdKktasWaMePXpo9+7dGjhwoHJycnT06FFt2bJFQUFB6tu3r+bPn6+ZM2cqOTlZXl5eSk9PV1hYmBYtWiRJ6tGjh3bu3KklS5bIbDZLkhYvXqyJEydq/PjxkqT09HRlZmZq9erVeuaZZ1yYFQAAAAAA8EtQXAEAADeVM2fOSJICAgIkSfn5+bLZbIqMjDRiunfvro4dOyovL08DBw5UXl6eevfuraCgICPGbDZrypQpOnLkiG6//Xbl5eXZtVEVk5CQIEkqKytTfn6+Zs2aZZx3d3dXZGSk8vLyrtrX0tJSlZaWGo9LSkokSTabTTab7Rdk4f94e1Q6pZ1aXcu90u779ThrjI1B1VhvpjE7gvzUjNzUjNzUzJW5If8AAKCporgCAABuGhUVFUpISNCgQYPUq1cvSZLVapWXl5f8/f3tYoOCgmS1Wo2YKwsrVeerzl0rpqSkRBcuXNDp06dVXl5+1Zivvvrqqv1duHCh5s6dW+14Tk6OWrRoUctRX1vKnU5pxiHz+1fUKm7z5s113JOGx2Kx1HcXGjTyUzNyUzNyUzNX5Ob8+fN1fg0AAID6QHEFAADcNOLi4nT48GHt3LmzvrtSK7NmzVJiYqLxuKSkRKGhoYqKipKvr69TrtErOfv6QU7i7V6p+f0rNGe/u0or3K4bfzjZ7IJeNQw2m00Wi0XDhw+Xp6dnfXenwSE/NSM3NSM3NXNlbqpmXQIAADQ1FFcAAMBNIT4+Xps2bdKOHTvUoUMH43hwcLDKyspUXFxsN3ulsLBQwcHBRszevXvt2issLDTOVX2vOnZljK+vr5o3by4PDw95eHhcNaaqjZ/z9vaWt7d3teOenp5O+zCstPz6RQ5nK61wq9V1b8YPQ535s22KyE/NyE3NyE3NXJEbcg8AAJoq9/ruAAAAQF2qrKxUfHy8PvzwQ23dulVhYWF25yMiIuTp6anc3Fzj2LFjx3TixAmZTCZJkslk0qFDh1RUVGTEWCwW+fr6Kjw83Ii5so2qmKo2vLy8FBERYRdTUVGh3NxcIwYAAAAAADQOzFwBAABNWlxcnDIyMvSXv/xFrVu3NvZI8fPzU/PmzeXn56cJEyYoMTFRAQEB8vX11dSpU2UymTRw4EBJUlRUlMLDwzV27FilpKTIarVq9uzZiouLM2aWTJ48WcuXL9eMGTP05JNPauvWrXr//feVmZlp9CUxMVGxsbHq37+/7rzzTi1dulTnzp3T+PHjXZ8YAAAAAABwwyiuAACAJm3FihWSpKFDh9odX7NmjZ544glJ0pIlS+Tu7q6YmBiVlpbKbDbr9ddfN2I9PDy0adMmTZkyRSaTSS1btlRsbKzmzZtnxISFhSkzM1PTpk1TamqqOnTooLfeektm8//tG/Loo4/qxx9/VFJSkqxWq/r27ausrKxqm9wDAAAAAICGjeIKAABo0iorK68b4+Pjo7S0NKWlpdUY06lTJ23evPma7QwdOlQHDhy4Zkx8fLzi4+Ov2ycAAAAAANBwsecKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIAD6qS48r//+7/613/9V7Vt21bNmzdX7969tX//fuN8ZWWlkpKS1L59ezVv3lyRkZH6+uuv7do4deqUxowZI19fX/n7+2vChAk6e/asXczBgwc1ePBg+fj4KDQ0VCkpKXUxHAAAAAAAAAAAAIPTiyunT5/WoEGD5OnpqU8++URHjx7VokWL1KZNGyMmJSVFy5YtU3p6uvbs2aOWLVvKbDbr4sWLRsyYMWN05MgRWSwWbdq0STt27NCkSZOM8yUlJYqKilKnTp2Un5+vV155RcnJyVq5cqWzhwQAAAAAAAAAAGBo5uwGX375ZYWGhmrNmjXGsbCwMOO/KysrtXTpUs2ePVsPPvigJOntt99WUFCQNm7cqNGjR+vLL79UVlaW9u3bp/79+0uSXnvtNd1333169dVXFRISovXr16usrEyrV6+Wl5eXevbsqYKCAi1evNiuCAMAAAAAAAAAAOBMTp+58tFHH6l///56+OGHFRgYqNtvv11vvvmmcf748eOyWq2KjIw0jvn5+WnAgAHKy8uTJOXl5cnf398orEhSZGSk3N3dtWfPHiNmyJAh8vLyMmLMZrOOHTum06dPO3tYAAAAAAAADcKKFSvUp08f+fr6ytfXVyaTSZ988olx/uLFi4qLi1Pbtm3VqlUrxcTEqLCw0K6NEydOKDo6Wi1atFBgYKCmT5+uS5cu2cVs27ZN/fr1k7e3t7p06aK1a9e6YngAADQKTp+58t1332nFihVKTEzUs88+q3379umPf/yjvLy8FBsbK6vVKkkKCgqye15QUJBxzmq1KjAw0L6jzZopICDALubKGTFXtmm1Wu2WIatSWlqq0tJS43FJSYkkyWazyWaz/ZJh11rVdVx1vSreHpXOb9O90u57Y8ZYnM8Zr/H6+n1xtqYyDomx1LfG1FcAAADUnQ4dOuill15S165dVVlZqXXr1unBBx/UgQMH1LNnT02bNk2ZmZnasGGD/Pz8FB8fr4ceekiff/65JKm8vFzR0dEKDg7Wrl27dPLkSY0bN06enp568cUXJV2+OTY6OlqTJ0/W+vXrlZubq6eeekrt27eX2Wyuz+EDANAgOL24UlFRof79+xv/GN9+++06fPiw0tPTFRsb6+zLOWThwoWaO3duteM5OTlq0aKFS/tisVhcer2UO+uu7fn9K+qucRdjLM6zefNmp7Xl6t+XutJUxiExlvpy/vz5+u4CAAAAGoAHHnjA7vGCBQu0YsUK7d69Wx06dNCqVauUkZGhe++9V5K0Zs0a9ejRQ7t379bAgQOVk5Ojo0ePasuWLQoKClLfvn01f/58zZw5U8nJyfLy8lJ6errCwsK0aNEiSVKPHj20c+dOLVmyhOIKAACqg+JK+/btFR4ebnesR48e+tOf/iRJCg4OliQVFhaqffv2RkxhYaH69u1rxBQVFdm1cenSJZ06dcp4fnBwcLUprVWPq2J+btasWUpMTDQel5SUKDQ0VFFRUfL19XV0qDfEZrPJYrFo+PDh8vT0dMk1JalXcrbT2/R2r9T8/hWas99dpRVuTm/flRiL8x1O/uVvtuvr98XZmso4JMZS36pmXAIAAABVysvLtWHDBp07d04mk0n5+fmy2Wx2y7F3795dHTt2VF5engYOHKi8vDz17t3bblURs9msKVOm6MiRI7r99tuVl5dn10ZVTEJCwjX748iqIY1xNvn1OLpySENZfaI+kQNyUMWVeWiof3ca+t/Fulgdqdo1bvB14Myc1bYtpxdXBg0apGPHjtkd++///m916tRJ0uXN7YODg5Wbm2sUU0pKSrRnzx5NmTJFkmQymVRcXKz8/HxFRERIkrZu3aqKigoNGDDAiHnuuedks9mMD8UsFou6det21SXBJMnb21ve3t7Vjnt6err8gzVXX7O0vO4+ZC+tcKvT9l2JsTiPM1/f9fE7WheayjgkxlJfGks/AQAAUPcOHTokk8mkixcvqlWrVvrwww8VHh6ugoICeXl5yd/f3y7+58uxX2259qpz14opKSnRhQsX1Lx586v260ZWDWlMs8mv50ZXDqnv1ScaAnJADqq4Ig/OXHGlLjTUv4t1uTrSzzn6OnDmz7S2K4c4vbgybdo03XXXXXrxxRf1yCOPaO/evVq5cqVWrlwpSXJzc1NCQoJeeOEFde3aVWFhYZozZ45CQkI0atQoSZdnuowYMUITJ05Uenq6bDab4uPjNXr0aIWEhEiSHn/8cc2dO1cTJkzQzJkzdfjwYaWmpmrJkiXOHhIAAAAAAECD0q1bNxUUFOjMmTP64IMPFBsbq+3bt9d3txxaNaQxzia/HkdXDmkoq0/UJ3JADqq4Mg/OWHGlLlT9XbyZXws3+jpw5s+0tiuHOL24cscdd+jDDz/UrFmzNG/ePIWFhWnp0qUaM2aMETNjxgydO3dOkyZNUnFxse6++25lZWXJx8fHiFm/fr3i4+M1bNgwubu7KyYmRsuWLTPO+/n5KScnR3FxcYqIiNAtt9yipKQkTZo0ydlDAgAAAAAAaFC8vLzUpUsXSVJERIT27dun1NRUPfrooyorK1NxcbHd7JXCwkK7pdb37t1r197Pl1qvaTl2X1/fGmetSDe2akhjmk1+PTe6gkR9rz7REJADclDFFXlo6H9zeC04ngNnr6JTG04vrkjS/fffr/vvv7/G825ubpo3b57mzZtXY0xAQIAyMjKueZ0+ffros88+u+F+AgAAAAAANAUVFRUqLS1VRESEPD09lZubq5iYGEnSsWPHdOLECZlMJkmXl1pfsGCBioqKFBgYKOnyEjS+vr7GPromk6naEisWi8VoAwCAm12dFFcAAAAAAABQN2bNmqWRI0eqY8eO+umnn5SRkaFt27YpOztbfn5+mjBhghITExUQECBfX19NnTpVJpNJAwcOlCRFRUUpPDxcY8eOVUpKiqxWq2bPnq24uDhj1snkyZO1fPlyzZgxQ08++aS2bt2q999/X5mZmfU5dAAAGgyKKwAAAAAAAI1IUVGRxo0bp5MnT8rPz099+vRRdna2hg8fLklasmSJscR6aWmpzGazXn/9deP5Hh4e2rRpk6ZMmSKTyaSWLVsqNjbWboWRsLAwZWZmatq0aUpNTVWHDh301ltvyWxumPsUAADgahRXAAAAAAAAGpFVq1Zd87yPj4/S0tKUlpZWY0ynTp2qLfv1c0OHDtWBAwduqI8AADR17vXdAQAAAAAAAAAAgMaE4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAOa1XcHAAAAAAAAgNrq/ExmfXcBAABmrgAAAAAAAAAAADiC4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAIAmbceOHXrggQcUEhIiNzc3bdy40e78E088ITc3N7uvESNG2MWcOnVKY8aMka+vr/z9/TVhwgSdPXvWLubgwYMaPHiwfHx8FBoaqpSUlGp92bBhg7p37y4fHx/17t1bmzdvdvp4AQAAAABA3aO4AgAAmrRz587ptttuU1paWo0xI0aM0MmTJ42v//qv/7I7P2bMGB05ckQWi0WbNm3Sjh07NGnSJON8SUmJoqKi1KlTJ+Xn5+uVV15RcnKyVq5cacTs2rVLjz32mCZMmKADBw5o1KhRGjVqlA4fPuz8QQMAAAAAgDrVrL47AAAAUJdGjhypkSNHXjPG29tbwcHBVz335ZdfKisrS/v27VP//v0lSa+99pruu+8+vfrqqwoJCdH69etVVlam1atXy8vLSz179lRBQYEWL15sFGFSU1M1YsQITZ8+XZI0f/58WSwWLV++XOnp6U4cMQAAAAAAqGvMXAEAADe9bdu2KTAwUN26ddOUKVP0z3/+0ziXl5cnf39/o7AiSZGRkXJ3d9eePXuMmCFDhsjLy8uIMZvNOnbsmE6fPm3EREZG2l3XbDYrLy+vLocGAAAAAADqADNXAADATW3EiBF66KGHFBYWpm+//VbPPvusRo4cqby8PHl4eMhqtSowMNDuOc2aNVNAQICsVqskyWq1KiwszC4mKCjIONemTRtZrVbj2JUxVW1cTWlpqUpLS43HJSUlkiSbzSabzXbjg76Ct0elU9qp1bXcK+2+X4+zxtgYVI31ZhqzI8hPzchNzchNzVyZG/IPAACaKoorAADgpjZ69Gjjv3v37q0+ffro1ltv1bZt2zRs2LB67Jm0cOFCzZ07t9rxnJwctWjRwinXSLnTKc04ZH7/ilrFbd68uY570vBYLJb67kKDRn5qRm5qRm5q5orcnD9/vs6vAQAAUB8orgAAAFzhV7/6lW655RZ98803GjZsmIKDg1VUVGQXc+nSJZ06dcrYpyU4OFiFhYV2MVWPrxdT014vkjRr1iwlJiYaj0tKShQaGqqoqCj5+vre+CCv0Cs52ynt1Ia3e6Xm96/QnP3uKq1wu2784WSzC3rVMNhsNlksFg0fPlyenp713Z0Gh/zUjNzUjNzUzJW5qZp1CQAA0NRQXAEAALjC//zP/+if//yn2rdvL0kymUwqLi5Wfn6+IiIiJElbt25VRUWFBgwYYMQ899xzstlsxodUFotF3bp1U5s2bYyY3NxcJSQkGNeyWCwymUw19sXb21ve3t7Vjnt6ejrtw7DS8usXOZyttMKtVte9GT8MdebPtikiPzUjNzUjNzVzRW7IPQAAaKrY0B4AADRpZ8+eVUFBgQoKCiRJx48fV0FBgU6cOKGzZ89q+vTp2r17t77//nvl5ubqwQcfVJcuXWQ2X5410aNHD40YMUITJ07U3r179fnnnys+Pl6jR49WSEiIJOnxxx+Xl5eXJkyYoCNHjui9995Tamqq3ayTp59+WllZWVq0aJG++uorJScna//+/YqPj3d5TgAAAAAAwC9DcQUAADRp+/fv1+23367bb79dkpSYmKjbb79dSUlJ8vDw0MGDB/Xb3/5Wv/71rzVhwgRFRETos88+s5sxsn79enXv3l3Dhg3Tfffdp7vvvlsrV640zvv5+SknJ0fHjx9XRESE/v3f/11JSUmaNGmSEXPXXXcpIyNDK1eu1G233aYPPvhAGzduVK9evVyXDAAAAAAA4BQsCwYAAJq0oUOHqrKyssbz2dnX33MkICBAGRkZ14zp06ePPvvss2vGPPzww3r44Yevez0AAAAAANCwMXMFAAAAAAAAAADAARRXAAAAAAAAAAAAHEBxBQAAAAAAAAAAwAEUVwAAAAAAAAAAABxAcQUAAAAAAAAAAMABzeq7AwAAAAAAAAAAuErnZzLruwtX5e1RqZQ767sXqC1mrgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAPqvLjy0ksvyc3NTQkJCcaxixcvKi4uTm3btlWrVq0UExOjwsJCu+edOHFC0dHRatGihQIDAzV9+nRdunTJLmbbtm3q16+fvL291aVLF61du7auhwMAAAAAAAAAAG5ydVpc2bdvn9544w316dPH7vi0adP08ccfa8OGDdq+fbt++OEHPfTQQ8b58vJyRUdHq6ysTLt27dK6deu0du1aJSUlGTHHjx9XdHS07rnnHhUUFCghIUFPPfWUsrOz63JIAAAAAAAA9WrhwoW644471Lp1awUGBmrUqFE6duyYXQw3tgIAULfqrLhy9uxZjRkzRm+++abatGljHD9z5oxWrVqlxYsX695771VERITWrFmjXbt2affu3ZKknJwcHT16VO+884769u2rkSNHav78+UpLS1NZWZkkKT09XWFhYVq0aJF69Oih+Ph4/f73v9eSJUvqakgAAAAAAAD1bvv27YqLi9Pu3btlsVhks9kUFRWlc+fOGTHc2AoAQN1qVlcNx8XFKTo6WpGRkXrhhReM4/n5+bLZbIqMjDSOde/eXR07dlReXp4GDhyovLw89e7dW0FBQUaM2WzWlClTdOTIEd1+++3Ky8uza6Mq5srlx36utLRUpaWlxuOSkhJJks1mk81m+6VDrpWq67jqelW8PSqd36Z7pd33xoyxOJ8zXuP19fvibE1lHBJjqW+Nqa8AAACoO1lZWXaP165dq8DAQOXn52vIkCHGja0ZGRm69957JUlr1qxRjx49tHv3bg0cONC4sXXLli0KCgpS3759NX/+fM2cOVPJycny8vKyu7FVknr06KGdO3dqyZIlMpvNLh83AAANSZ0UV95991198cUX2rdvX7VzVqtVXl5e8vf3tzseFBQkq9VqxFxZWKk6X3XuWjElJSW6cOGCmjdvXu3aCxcu1Ny5c6sdz8nJUYsWLWo/QCewWCwuvV7KnXXX9vz+FXXXuIsxFufZvHmz09py9e9LXWkq45AYS305f/58fXcBAAAADdCZM2ckSQEBAZIaz42tN3rDU13cQFpfGsoNkvWJHJCDKuSBHEg3ngNn3pBa27acXlz5+9//rqeffloWi0U+Pj7Obv4XmTVrlhITE43HJSUlCg0NVVRUlHx9fV3SB5vNJovFouHDh8vT09Ml15SkXsnOn7Lr7V6p+f0rNGe/u0or3JzevisxFuc7nPzL72Kqr98XZ2sq45AYS32r+h9TAAAAoEpFRYUSEhI0aNAg9erVS1Lju7HV0Rue6vIG0vpS3zdINgTkgBxUIQ/kQHI8B8680bu2N7c6vbiSn5+voqIi9evXzzhWXl6uHTt2aPny5crOzlZZWZmKi4vt/pEvLCxUcHCwJCk4OFh79+61a7dq07UrY36+EVthYaF8fX2v+o+7JHl7e8vb27vacU9PT5d/sObqa5aW192H7KUVbnXavisxFudx5uu7Pn5H60JTGYfEWOpLY+knAAAAXCcuLk6HDx/Wzp0767srkhy7sfVGb3iqixtI60tDuUGyPpEDclCFPJAD6cZz4IwbvavU9uZWpxdXhg0bpkOHDtkdGz9+vLp3766ZM2cqNDRUnp6eys3NVUxMjCTp2LFjOnHihEwmkyTJZDJpwYIFKioqUmBgoKTLdzH4+voqPDzciPl5NcpisRhtAAAAAAAANGXx8fHatGmTduzYoQ4dOhjHg4ODG9WNrY7e8NRUboq8Un3fINkQkANyUIU8kAPJ8Rw4+0bv2nB32hX/v9atW6tXr152Xy1btlTbtm3Vq1cv+fn5acKECUpMTNSnn36q/Px8jR8/XiaTSQMHDpQkRUVFKTw8XGPHjtVf//pXZWdna/bs2YqLizP+gZ48ebK+++47zZgxQ1999ZVef/11vf/++5o2bZqzhwQAAAAAANBgVFZWKj4+Xh9++KG2bt2qsLAwu/MRERHGja1VrnZj66FDh1RUVGTEXO3G1ivbqIrhxlYAAOpoQ/vrWbJkidzd3RUTE6PS0lKZzWa9/vrrxnkPDw9t2rRJU6ZMkclkUsuWLRUbG6t58+YZMWFhYcrMzNS0adOUmpqqDh066K233pLZ7LzpPwAAAAAAAA1NXFycMjIy9Je//EWtW7c29kjx8/NT8+bN7W5sDQgIkK+vr6ZOnVrjja0pKSmyWq1XvbF1+fLlmjFjhp588klt3bpV77//vjIzM+tt7AAANBQuKa5s27bN7rGPj4/S0tKUlpZW43M6dep03U1ohg4dqgMHDjijiwAAAAAAAI3CihUrJF3+XORKa9as0RNPPCGJG1sBAKhr9TJzBQAAAAAAADemsrLyujHc2AoAQN1y+p4rAAAAAAAAAAAATRnFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAAAAAAAAAAAAB1BcAQAAAAAAAAAAcADFFQAAAAAAAAAAAAdQXAEAAAAAAAAAAHAAxRUAAAAAAAAAAAAHUFwBAAAAAAAAAABwAMUVAADQpO3YsUMPPPCAQkJC5Obmpo0bN9qdr6ysVFJSktq3b6/mzZsrMjJSX3/9tV3MqVOnNGbMGPn6+srf318TJkzQ2bNn7WIOHjyowYMHy8fHR6GhoUpJSanWlw0bNqh79+7y8fFR7969tXnzZqePFwAAAAAA1D2KKwAAoEk7d+6cbrvtNqWlpV31fEpKipYtW6b09HTt2bNHLVu2lNls1sWLF42YMWPG6MiRI7JYLNq0aZN27NihSZMmGedLSkoUFRWlTp06KT8/X6+88oqSk5O1cuVKI2bXrl167LHHNGHCBB04cECjRo3SqFGjdPjw4bobPAAAAAAAqBPN6rsDAAAAdWnkyJEaOXLkVc9VVlZq6dKlmj17th588EFJ0ttvv62goCBt3LhRo0eP1pdffqmsrCzt27dP/fv3lyS99tpruu+++/Tqq68qJCRE69evV1lZmVavXi0vLy/17NlTBQUFWrx4sVGESU1N1YgRIzR9+nRJ0vz582WxWLR8+XKlp6e7IBMAAAAAAMBZKK4AqBOdn8n8xW14e1Qq5U6pV3K2SsvdnNCry75/KdppbQFo3I4fPy6r1arIyEjjmJ+fnwYMGKC8vDyNHj1aeXl58vf3NworkhQZGSl3d3ft2bNHv/vd75SXl6chQ4bIy8vLiDGbzXr55Zd1+vRptWnTRnl5eUpMTLS7vtlsrrZM2ZVKS0tVWlpqPC4pKZEk2Ww22Wy2Xzp8SZf/1rqKt3ul3ffrcdYYG4Oqsd5MY3YE+akZuakZuamZK3ND/gEAQFNFcQUAANy0rFarJCkoKMjueFBQkHHOarUqMDDQ7nyzZs0UEBBgFxMWFlatjapzbdq0kdVqveZ1rmbhwoWaO3duteM5OTlq0aJFbYZ4XSl3OqUZh8zvX1GruJtxTxqLxVLfXWjQyE/NyE3NyE3NXJGb8+fP1/k1AAAA6gPFFQAAgAZq1qxZdrNdSkpKFBoaqqioKPn6+jrlGr2Ss53STm14u1dqfv8KzdnvrtKK689IPJxsdkGvGgabzSaLxaLhw4fL09OzvrvT4JCfmpGbmpGbmrkyN1WzLgEAAJoaiisAAOCmFRwcLEkqLCxU+/btjeOFhYXq27evEVNUVGT3vEuXLunUqVPG84ODg1VYWGgXU/X4ejFV56/G29tb3t7e1Y57eno67cMwZy67WOtrVrjV6ro344ehzvzZNkXkp2bkpmbkpmauyA25BwAATZV7fXcAAACgvoSFhSk4OFi5ubnGsZKSEu3Zs0cmk0mSZDKZVFxcrPz8fCNm69atqqio0IABA4yYHTt22K0rb7FY1K1bN7Vp08aIufI6VTFV1wEAAAAAAI0HxRUAANCknT17VgUFBSooKJB0eRP7goICnThxQm5ubkpISNALL7ygjz76SIcOHdK4ceMUEhKiUaNGSZJ69OihESNGaOLEidq7d68+//xzxcfHa/To0QoJCZEkPf744/Ly8tKECRN05MgRvffee0pNTbVb0uvpp59WVlaWFi1apK+++krJycnav3+/4uPjXZ0SAAAAAADwC7EsGAAAaNL279+ve+65x3hcVfCIjY3V2rVrNWPGDJ07d06TJk1ScXGx7r77bmVlZcnHx8d4zvr16xUfH69hw4bJ3d1dMTExWrZsmXHez89POTk5iouLU0REhG655RYlJSVp0qRJRsxdd92ljIwMzZ49W88++6y6du2qjRs3qlevXi7IAgAAAAAAcCaKKwAAoEkbOnSoKisrazzv5uamefPmad68eTXGBAQEKCMj45rX6dOnjz777LNrxjz88MN6+OGHr91hAAAAAADQ4LEsGAAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAAyiuAAAAAAAAAAAAOIDiCgAAAAAAAAAAgAMorgAAAAAAAAAAADiA4goAAAAAAAAAAIADKK4AAAAAAAAAAAA4gOIKAAAAAAAAAACAA5xeXFm4cKHuuOMOtW7dWoGBgRo1apSOHTtmF3Px4kXFxcWpbdu2atWqlWJiYlRYWGgXc+LECUVHR6tFixYKDAzU9OnTdenSJbuYbdu2qV+/fvL29laXLl20du1aZw8HAAAAAACgwdmxY4ceeOABhYSEyM3NTRs3brQ7X1lZqaSkJLVv317NmzdXZGSkvv76a7uYU6dOacyYMfL19ZW/v78mTJigs2fP2sUcPHhQgwcPlo+Pj0JDQ5WSklLXQwMAoFFwenFl+/btiouL0+7du2WxWGSz2RQVFaVz584ZMdOmTdPHH3+sDRs2aPv27frhhx/00EMPGefLy8sVHR2tsrIy7dq1S+vWrdPatWuVlJRkxBw/flzR0dG65557VFBQoISEBD311FPKzs529pAAAAAAAAAalHPnzum2225TWlraVc+npKRo2bJlSk9P1549e9SyZUuZzWZdvHjRiBkzZoyOHDkii8WiTZs2aceOHZo0aZJxvqSkRFFRUerUqZPy8/P1yiuvKDk5WStXrqzz8QEA0NA1c3aDWVlZdo/Xrl2rwMBA5efna8iQITpz5oxWrVqljIwM3XvvvZKkNWvWqEePHtq9e7cGDhyonJwcHT16VFu2bFFQUJD69u2r+fPna+bMmUpOTpaXl5fS09MVFhamRYsWSZJ69OihnTt3asmSJTKbzc4eFgAAAAAAQIMxcuRIjRw58qrnKisrtXTpUs2ePVsPPvigJOntt99WUFCQNm7cqNGjR+vLL79UVlaW9u3bp/79+0uSXnvtNd1333169dVXFRISovXr16usrEyrV6+Wl5eXevbsqYKCAi1evNiuCAMAwM3I6cWVnztz5owkKSAgQJKUn58vm82myMhII6Z79+7q2LGj8vLyNHDgQOXl5al3794KCgoyYsxms6ZMmaIjR47o9ttvV15enl0bVTEJCQk19qW0tFSlpaXG45KSEkmSzWaTzWb7xWOtjarruOp6Vbw9Kp3fpnul3ffGjLE0THU1Flf//tXX731dYCz1qzH1FQAAAPXn+PHjslqtdp+b+Pn5acCAAcrLy9Po0aOVl5cnf39/o7AiSZGRkXJ3d9eePXv0u9/9Tnl5eRoyZIi8vLyMGLPZrJdfflmnT59WmzZtXDouAAAakjotrlRUVCghIUGDBg1Sr169JElWq1VeXl7y9/e3iw0KCpLVajViriysVJ2vOnetmJKSEl24cEHNmzev1p+FCxdq7ty51Y7n5OSoRYsWNzbIG2SxWFx6vZQ7667t+f0r6q5xF2MsDZOzx7J582antldbrv69r0uMpX6cP3++vrsAAACARqDqs5OrfW5y5ecqgYGBduebNWumgIAAu5iwsLBqbVSdu1pxxZEbW2/0hqe6uIG0vjSlGyRvFDkgB1XIAzmQbjwHzrwhtbZt1WlxJS4uTocPH9bOnTvr8jK1NmvWLCUmJhqPS0pKFBoaqqioKPn6+rqkDzabTRaLRcOHD5enp6dLrilJvZKdvxeNt3ul5vev0Jz97iqtcHN6+67EWBqmuhrL4WTXLh1YX7/3dYGx1K+q/zEFAAAAGqobubHV0Rue6vIG0vrSlG6QvFHkgBxUIQ/kQHI8B868mbq2N7fWWXElPj7e2AytQ4cOxvHg4GCVlZWpuLjYbvZKYWGhgoODjZi9e/fatVdYWGicq/pedezKGF9f36vOWpEkb29veXt7Vzvu6enp8g/WXH3N0vK6+5C9tMKtTtt3JcbSMDl7LPX1QXp9/K2pK4ylfjSWfgIAAKB+VX12UlhYqPbt2xvHCwsL1bdvXyOmqKjI7nmXLl3SqVOnrvvZy5XX+DlHbmy90Rue6uIG0vrSlG6QvFHkgBxUIQ/kQLrxHDjzZura3tzq9OJKZWWlpk6dqg8//FDbtm2rNn00IiJCnp6eys3NVUxMjCTp2LFjOnHihEwmkyTJZDJpwYIFKioqMqaoWiwW+fr6Kjw83Ij5eTXKYrEYbQAAAAAAANyMwsLCFBwcrNzcXKOYUlJSoj179mjKlCmSLn+uUlxcrPz8fEVEREiStm7dqoqKCg0YMMCIee6552Sz2Yzih8ViUbdu3Wrcb+VGbmx19IanpnIj4ZWa0g2SN4ockIMq5IEcSI7nwJk3pNa2LXenXfH/i4uL0zvvvKOMjAy1bt1aVqtVVqtVFy5ckHR5A7UJEyYoMTFRn376qfLz8zV+/HiZTCYNHDhQkhQVFaXw8HCNHTtWf/3rX5Wdna3Zs2crLi7O+Ad68uTJ+u677zRjxgx99dVXev311/X+++9r2rRpzh4SAAAAAABAg3L27FkVFBSooKBA0uVN7AsKCnTixAm5ubkpISFBL7zwgj766CMdOnRI48aNU0hIiEaNGiVJ6tGjh0aMGKGJEydq7969+vzzzxUfH6/Ro0crJCREkvT444/Ly8tLEyZM0JEjR/Tee+8pNTXVbmYKAAA3K6fPXFmxYoUkaejQoXbH16xZoyeeeEKStGTJErm7uysmJkalpaUym816/fXXjVgPDw9t2rRJU6ZMkclkUsuWLRUbG6t58+YZMWFhYcrMzNS0adOUmpqqDh066K233pLZ7Nq9FAAAAAAAAFxt//79uueee4zHVQWP2NhYrV27VjNmzNC5c+c0adIkFRcX6+6771ZWVpZ8fHyM56xfv17x8fEaNmyY8TnNsmXLjPN+fn7KyclRXFycIiIidMsttygpKUmTJk1y3UABAGig6mRZsOvx8fFRWlqa0tLSaozp1KnTdTehGTp0qA4cOOBwHwEAAAAAABqzoUOHXvMzGDc3N82bN8/uRtWfCwgIUEZGxjWv06dPH3322Wc33E8AAJoqpy8LBgAA0NgkJyfLzc3N7qt79+7G+YsXLyouLk5t27ZVq1atFBMTU21z1xMnTig6OlotWrRQYGCgpk+frkuXLtnFbNu2Tf369ZO3t7e6dOmitWvXumJ4AAAAAADAySiuAAAASOrZs6dOnjxpfO3cudM4N23aNH388cfasGGDtm/frh9++EEPPfSQcb68vFzR0dEqKyvTrl27tG7dOq1du1ZJSUlGzPHjxxUdHa177rlHBQUFSkhI0FNPPaXs7GyXjhMAAAAAAPxyTl8WDAAAoDFq1qyZgoODqx0/c+aMVq1apYyMDN17772SLu8l16NHD+3evVsDBw5UTk6Ojh49qi1btigoKEh9+/bV/PnzNXPmTCUnJ8vLy0vp6ekKCwvTokWLJF3eRHbnzp1asmQJe8bVoPMzmfXdhRp9/1J0fXcBAAAAAFCPmLkCAAAg6euvv1ZISIh+9atfacyYMTpx4oQkKT8/XzabTZGRkUZs9+7d1bFjR+Xl5UmS8vLy1Lt3bwUFBRkxZrNZJSUlOnLkiBFzZRtVMVVtAAAAAACAxoOZKwAA4KY3YMAArV27Vt26ddPJkyc1d+5cDR48WIcPH5bVapWXl5f8/f3tnhMUFCSr1SpJslqtdoWVqvNV564VU1JSogsXLqh58+bV+lVaWqrS0lLjcUlJiSTJZrPJZrP9skH/f94eNW+E62ze7pV23xszZ+X/5+05u92mgvzUjNzUjNzUzJW5If8AAKCporgCAABueiNHjjT+u0+fPhowYIA6deqk999//6pFD1dZuHCh5s6dW+14Tk6OWrRo4ZRrpNzplGYcMr9/hesv6mSbN2+uk3YtFkudtNtUkJ+akZuakZuauSI358+fr/NrAAAA1AeKKwAAAD/j7++vX//61/rmm280fPhwlZWVqbi42G72SmFhobFHS3BwsPbu3WvXRmFhoXGu6nvVsStjfH19ayzgzJo1S4mJicbjkpIShYaGKioqSr6+vr94nJLUKznbKe3Uhrd7peb3r9Cc/e4qrXBz2XXrwuFk5+6TY7PZZLFYNHz4cHl6ejq17aaA/NSM3NSM3NTMlbmpmnUJAADQ1FBcAQAA+JmzZ8/q22+/1dixYxURESFPT0/l5uYqJiZGknTs2DGdOHFCJpNJkmQymbRgwQIVFRUpMDBQ0uW7gX19fRUeHm7E/Hy2g8ViMdq4Gm9vb3l7e1c77unp6bQPw0rLXV/kKK1wq5frOlNdfRjpzJ9tU0R+akZuakZuauaK3JB7AADQVLGhPQAAuOn9x3/8h7Zv367vv/9eu3bt0u9+9zt5eHjosccek5+fnyZMmKDExER9+umnys/P1/9j79/jqqzz/f//CchRXZoHQAOVtFTylJi6phkzQ1bGbmpn5VTbCNO+GljAHktmDE/b0Y/z8TSJ2p5U2jsttU+HSUxATNpuMRVlPKUzlWUzCTil4HiAJVy/P+bHNa5A9ILF+XG/3bjlel+v9eb1fi2gN9eLa12xsbGy2+0aOXKkJCkqKkrh4eGaOHGi/vjHPyojI0OzZs1SXFyc2RyZOnWqvvrqK7388ss6ceKEVq1apc2bNysxMbExlw4AAAAAAGqBK1cAAECr95e//EVPPvmkvv/+e3Xt2lU//elPtXfvXnXt2lWStGzZMnl6emr8+PEqLS2Vw+HQqlWrzOd7eXlp69atmjZtmux2u9q2bauYmBjNmzfPjAkLC1N6eroSExO1YsUKhYSE6I033pDD4d63lwIAAAAAAPWP5goAAGj13nnnnRqP+/n5KTU1VampqdeN6dmz5w1vcj569GgdOnSoVjkCAAAAAICmg7cFAwAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACzgnitu1Gtm+g1jfL0MLR4uDZiTodJyjwbICgAAAAAAAAAAuBNXrgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABW0aOwEAaGi9ZqY36Ofz9TK0eLg0YE6GSss9aoz9elF0A2UFAAAAAAAAoLa4cgUAAAAAAAAAAMACmisAAAAAAAAAAAAW8LZgANCENPRbllnBW5YBAAAAAAAA/8CVKwAAAAAAAAAAABbQXAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsaPY3tE9NTdVvf/tbFRQUaPDgwXrttdc0fPjwxk4LAFqcXjPT5etlaPFwacCcDJWWezR2SqavF0U3dgqAJexfAABAc8LeBQCAqpp1c2XTpk1KSkrSmjVrNGLECC1fvlwOh0MnT55UYGBgY6cHAABQBfuXlqHXzHS3zufO5jUNZwCAO7F3AQCges36bcGWLl2qKVOmKDY2VuHh4VqzZo0CAgK0bt26xk4NAACgWuxfAABAc8LeBQCA6jXbK1fKysqUl5en5ORkc8zT01ORkZHKzc2t9jmlpaUqLS01HxcXF0uSfvjhBzmdzjrn1ObqxRvHVBi6dKlCbZyeKq9oOm+pUxuspWliLU1PS1mH1HTX8v3331t+jtPp1KVLl/T999/L29u7HrJyvwsXLkiSDMNo5ExQW1b3L/W9d5Fubv/iLk31Z0hT4M7a9PnlZjdl5X6fJd9fq+c1x5/ZDYXaXB+1ub6GrA37l+atvs+91PZrsSH3L/WN/RE1kKhBJepADaTa16A254au52b3L822ufK3v/1N5eXlCgoKchkPCgrSiRMnqn3OwoULNXfu3CrjYWFh9ZLj9TzVoJ+tfrGWpom1ND0tZR1S01xLlyWNnUHDunDhgjp06NDYaaAWrO5fmsrexZ2a4s+QpqI11Ka1/bwG8E/sX5qn5nzupTlpDXuAG6EG1KASdaAGUu1qUB+/a9xo/9Jsmyu1kZycrKSkJPNxRUWFfvjhB3Xu3FkeHg3TCSwpKVFoaKi+/fZb2Wy2Bvmc9YW1NE2spelpKeuQWEtjMwxDFy5cUPfu3Rs7FTSQprB3cafm+H3XUKhNzajP9VGb66M219eQtWH/0vpY2b/wfUoNJGogUYNK1IEaSE2jBje7f2m2zZUuXbrIy8tLhYWFLuOFhYUKDg6u9jm+vr7y9fV1GevYsWN9pVgjm83WYr5BWEvTxFqanpayDom1NCb+4rN5s7p/aUp7F3dqbt93DYna1Iz6XB+1uT5qc30NVRv2L81XQ5174fuUGkjUQKIGlagDNZAavwY3s39ptje09/HxUUREhLKzs82xiooKZWdny263N2JmAAAA1WP/AgAAmhP2LgAAXF+zvXJFkpKSkhQTE6Nhw4Zp+PDhWr58uS5evKjY2NjGTg0AAKBa7F8AAEBzwt4FAIDqNevmyoQJE3T27FmlpKSooKBAQ4YM0fbt26vcaK0p8fX11ezZs6tcItscsZamibU0PS1lHRJrAdyhOe5f3IXvu+ujNjWjPtdHba6P2lwftYEV9bl34WuRGkjUQKIGlagDNZCaVw08DMMwGjsJAAAAAAAAAACA5qLZ3nMFAAAAAAAAAACgMdBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguVJPFi5cqLvvvlvt27dXYGCgHnnkEZ08edIl5sqVK4qLi1Pnzp3Vrl07jR8/XoWFhY2UcfVWr16tQYMGyWazyWazyW636+OPPzaPN4c1XM+iRYvk4eGhhIQEc6y5rGfOnDny8PBw+ejXr595vLmso9Jf//pX/du//Zs6d+4sf39/DRw4UAcOHDCPG4ahlJQUdevWTf7+/oqMjNSf//znRsy4er169aryunh4eCguLk5S83pdysvL9eqrryosLEz+/v7q3bu35s+fL8MwzJjm8rpcuHBBCQkJ6tmzp/z9/fWTn/xE+/fvN483l3UALUFqaqp69eolPz8/jRgxQvv27WvslOrEXfu906dPKzo6WgEBAQoMDNSMGTN09epVl5hdu3Zp6NCh8vX1VZ8+fZSWllYln6Za39ruuVpyXdyx9/nhhx/09NNPy2azqWPHjnruuef097//3SXm8OHD+tnPfiY/Pz+FhoZq8eLFVXLZsmWL+vXrJz8/Pw0cOFDbtm2rn0XfBHftP1pCbT799FM99NBD6t69uzw8PPTBBx+4HG9KdWAvhdpqij+fG8qNfqdvqdzxs625u1ENnn322SpfGw888EDjJFtPWso507q4mRqMHj26ytfC1KlTGylj92sx55wN1AuHw2GsX7/eOHr0qJGfn288+OCDRo8ePYy///3vZszUqVON0NBQIzs72zhw4IAxcuRI4yc/+UkjZl3VH/7wByM9Pd3405/+ZJw8edL41a9+ZXh7extHjx41DKN5rKE6+/btM3r16mUMGjTIeOmll8zx5rKe2bNnG3feeadx5swZ8+Ps2bPm8eayDsMwjB9++MHo2bOn8eyzzxqfffaZ8dVXXxkZGRnGF198YcYsWrTI6NChg/HBBx8Yf/zjH42f//znRlhYmHH58uVGzLyqoqIil9ckKyvLkGR88sknhmE0r9dlwYIFRufOnY2tW7cap06dMrZs2WK0a9fOWLFihRnTXF6XJ554wggPDzdycnKMP//5z8bs2bMNm81m/OUvfzEMo/msA2ju3nnnHcPHx8dYt26dcezYMWPKlClGx44djcLCwsZOrdbcsd+7evWqMWDAACMyMtI4dOiQsW3bNqNLly5GcnKyGfPVV18ZAQEBRlJSknH8+HHjtddeM7y8vIzt27ebMU21vrXdc7Xkurhr7/PAAw8YgwcPNvbu3Wv8z//8j9GnTx/jySefNI8XFxcbQUFBxtNPP20cPXrUePvttw1/f3/j9ddfN2P+93//1/Dy8jIWL15sHD9+3Jg1a5bh7e1tHDlypGGK8SPu2n+0hNps27bN+PWvf2289957hiTj/fffdznelOrAXgq10RR/PjekG/1O31K542dbc3ejGsTExBgPPPCAy9fGDz/80DjJ1pOWcs60Lm6mBvfee68xZcoUl6+F4uLiRszavVrKOWeaKw2kqKjIkGTk5OQYhmEY58+fN7y9vY0tW7aYMZ9//rkhycjNzW2sNG/KLbfcYrzxxhvNdg0XLlwwbr/9diMrK8u49957zV/0m9N6Zs+ebQwePLjaY81pHYZhGK+88orx05/+9LrHKyoqjODgYOO3v/2tOXb+/HnD19fXePvttxsixVp76aWXjN69exsVFRXN7nWJjo42Jk2a5DL26KOPGk8//bRhGM3ndbl06ZLh5eVlbN261WV86NChxq9//etmsw6gJRg+fLgRFxdnPi4vLze6d+9uLFy4sBGzcq/a7Pe2bdtmeHp6GgUFBWbM6tWrDZvNZpSWlhqGYRgvv/yyceedd7p8rgkTJhgOh8N83BTrW5c9V0uuizv2PsePHzckGfv37zdjPv74Y8PDw8P461//ahiGYaxatcq45ZZbzHpVfu6+ffuaj5944gkjOjra5fOPGDHC+P/+v/+vbousJXfsP1pibX588q0p1YG9FGqrKf58bkg1/U7fWtTmZ1tLc73mysMPP9wo+TSWlnTOtLZ+XAPDMFz2z61FczznzNuCNZDi4mJJUqdOnSRJeXl5cjqdioyMNGP69eunHj16KDc3t1FyvJHy8nK98847unjxoux2e7NcgyTFxcUpOjraJW+p+b0mf/7zn9W9e3fddtttevrpp3X69GlJzW8df/jDHzRs2DA9/vjjCgwM1F133aXf//735vFTp06poKDAZT0dOnTQiBEjmuR6KpWVlemtt97SpEmT5OHh0exel5/85CfKzs7Wn/70J0nSH//4R+3evVvjxo2T1Hxel6tXr6q8vFx+fn4u4/7+/tq9e3ezWQfQ3JWVlSkvL8/le83T01ORkZEt6nutNvu93NxcDRw4UEFBQWaMw+FQSUmJjh07Zsb8eN/icDjMOZpqfeuy52rJdXHH3ic3N1cdO3bUsGHDzJjIyEh5enrqs88+M2NGjRolHx8fM8bhcOjkyZM6d+6cGVNTDRuaO/YfLbU212pKdWAvhdpoqj+fG9r1fqdvrfh58k+7du1SYGCg+vbtq2nTpun7779v7JTqVUs4Z1pXP65BpQ0bNqhLly4aMGCAkpOTdenSpcZIr94153PObRo7gdagoqJCCQkJuueeezRgwABJUkFBgXx8fNSxY0eX2KCgIBUUFDRCltd35MgR2e12XblyRe3atdP777+v8PBw5efnN5s1VHrnnXd08OBBl/stVGpOr8mIESOUlpamvn376syZM5o7d65+9rOf6ejRo81qHZL01VdfafXq1UpKStKvfvUr7d+/Xy+++KJ8fHwUExNj5nztyZXKx01xPZU++OADnT9/Xs8++6yk5vX1JUkzZ85USUmJ+vXrJy8vL5WXl2vBggV6+umnJanZvC7t27eX3W7X/Pnz1b9/fwUFBentt99Wbm6u+vTp02zWATR3f/vb31ReXl7t99qJEycaKSv3qu1+r6CgoNq6VB6rKaakpESXL1/WuXPnmlx967rnaql1kdyz9ykoKFBgYKDL8TZt2qhTp04uMWFhYVXmqDx2yy23XLeGjfX/QHfsP1pqba7VlOrAXgq10Rr2BTdS0+/07du3b+z0GgU/T/7hgQce0KOPPqqwsDB9+eWX+tWvfqVx48YpNzdXXl5ejZ2e2zX3c6buUF0NJOmpp55Sz5491b17dx0+fFivvPKKTp48qffee68Rs3WvlnDOmeZKA4iLi9PRo0e1e/fuxk6lVvr27av8/HwVFxfr3XffVUxMjHJycho7Lcu+/fZbvfTSS8rKyqryV+zNTeVf70nSoEGDNGLECPXs2VObN2+Wv79/I2ZmXUVFhYYNG6bf/OY3kqS77rpLR48e1Zo1axQTE9PI2dXe2rVrNW7cOHXv3r2xU6mVzZs3a8OGDdq4caPuvPNO5efnKyEhQd27d292r8t///d/a9KkSbr11lvl5eWloUOH6sknn1ReXl5jpwagBWnu+z13akl7rvrQUvc+7tCS9h8AUJOafqd/7rnnGjEzNLZf/OIX5r8HDhyoQYMGqXfv3tq1a5fuv//+RsysfrCHvn4Nnn/+efPfAwcOVLdu3XT//ffryy+/VO/evRs6zXrREs4587Zg9Sw+Pl5bt27VJ598opCQEHM8ODhYZWVlOn/+vEt8YWGhgoODGzjLmvn4+KhPnz6KiIjQwoULNXjwYK1YsaJZrUH6x2WFRUVFGjp0qNq0aaM2bdooJydHv/vd79SmTRsFBQU1q/Vcq2PHjrrjjjv0xRdfNLvXpVu3bgoPD3cZ69+/v3lJdGXOhYWFLjFNdT2S9M0332jHjh2aPHmyOdbcXpcZM2Zo5syZ+sUvfqGBAwdq4sSJSkxM1MKFCyU1r9eld+/eysnJ0d///nd9++232rdvn5xOp2677bZmtQ6gOevSpYu8vLxa7PdaXfZ7wcHB1dal8lhNMTabTf7+/k2uvu7Yc7XEulRyx94nODhYRUVFLsevXr2qH374wS01bKz6uGP/0VJrc62mVAf2UqiNpvrzuTFd+zt9a8XPk+rddttt6tKlS4v82mgJ50zr6no1qM6IESMkqUV9LbSEc840V+qJYRiKj4/X+++/r507d1a53DoiIkLe3t7Kzs42x06ePKnTp0/Lbrc3dLqWVFRUqLS0tNmt4f7779eRI0eUn59vfgwbNkxPP/20+e/mtJ5r/f3vf9eXX36pbt26NbvX5Z577tHJkyddxv70pz+pZ8+ekqSwsDAFBwe7rKekpESfffZZk1yPJK1fv16BgYGKjo42x5rb63Lp0iV5err+L8LLy0sVFRWSmufr0rZtW3Xr1k3nzp1TRkaGHn744Wa5DqA58vHxUUREhMv3WkVFhbKzs5v195o79nt2u11HjhxxOQmalZUlm81mnoC32+0uc1TGVM7R1Orrjj1XS6xLJXfsfex2u86fP+9yFebOnTtVUVFh/uJtt9v16aefyul0mjFZWVnq27evbrnlFjOmpho2NHfsP1pqba7VlOrAXgq10VR/Pjema3+nb634eVK9v/zlL/r+++9b1NdGSz5nerNuVIPq5OfnS1KL+lr4sWZ5zvkmb3wPi6ZNm2Z06NDB2LVrl3HmzBnz49KlS2bM1KlTjR49ehg7d+40Dhw4YNjtdsNutzdi1lXNnDnTyMnJMU6dOmUcPnzYmDlzpuHh4WFkZmYahtE81lCTe++913jppZfMx81lPf/+7/9u7Nq1yzh16pTxv//7v0ZkZKTRpUsXo6ioyDCM5rMOwzCMffv2GW3atDEWLFhg/PnPfzY2bNhgBAQEGG+99ZYZs2jRIqNjx47Ghx9+aBw+fNh4+OGHjbCwMOPy5cuNmHn1ysvLjR49ehivvPJKlWPN6XWJiYkxbr31VmPr1q3GqVOnjPfee8/o0qWL8fLLL5sxzeV12b59u/Hxxx8bX331lZGZmWkMHjzYGDFihFFWVmYYRvNZB9DcvfPOO4avr6+RlpZmHD9+3Hj++eeNjh07GgUFBY2dWq25Y7939epVY8CAAUZUVJSRn59vbN++3ejatauRnJxsxnz11VdGQECAMWPGDOPzzz83UlNTDS8vL2P79u1mTFOvr9U9V0uui7v2Pg888IBx1113GZ999pmxe/du4/bbbzeefPJJ8/j58+eNoKAgY+LEicbRo0eNd955xwgICDBef/11M+Z///d/jTZt2hj/9//+X+Pzzz83Zs+ebXh7extHjhxpmGL8iLv2Hy2hNhcuXDAOHTpkHDp0yJBkLF261Dh06JDxzTffNLk6sJdCbTTFn88N6Ua/07dU7vjZ1tzVVIMLFy4Yv/zlL43c3Fzj1KlTxo4dO4yhQ4cat99+u3HlypXGTt1tWso507q4UQ2++OILY968ecaBAweMU6dOGR9++KFx2223GaNGjWrkzN2npZxzprlSTyRV+7F+/Xoz5vLly8YLL7xg3HLLLUZAQIDxr//6r8aZM2caL+lqTJo0yejZs6fh4+NjdO3a1bj//vvNL3LDaB5rqMmPf9FvLuuZMGGC0a1bN8PHx8e49dZbjQkTJhhffPGFeby5rKPSRx99ZAwYMMDw9fU1+vXrZ/znf/6ny/GKigrj1VdfNYKCggxfX1/j/vvvN06ePNlI2dYsIyPDkFRtfs3pdSkpKTFeeuklo0ePHoafn59x2223Gb/+9a+N0tJSM6a5vC6bNm0ybrvtNsPHx8cIDg424uLijPPnz5vHm8s6gJbgtddeM3r06GH4+PgYw4cPN/bu3dvYKdWJu/Z7X3/9tTFu3DjD39/f6NKli/Hv//7vhtPpdIn55JNPjCFDhhg+Pj7Gbbfd5vI5KjXl+tZmz9WS6+KOvc/3339vPPnkk0a7du0Mm81mxMbGGhcuXHCJ+eMf/2j89Kc/NXx9fY1bb73VWLRoUZVcNm/ebNxxxx2Gj4+Pceeddxrp6enuX/BNctf+oyXU5pNPPqn250tMTIxhGE2rDuylUFtN8edzQ7nR7/QtlTt+tjV3NdXg0qVLRlRUlNG1a1fD29vb6NmzpzFlypQW13RsKedM6+JGNTh9+rQxatQoo1OnToavr6/Rp08fY8aMGUZxcXHjJu5GLeWcs4dhGEY9XRQDAAAAAAAAAADQ4nDPFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBWpE5c+bIw8OjsdOoolevXnr22WcbOw0AAIA62bVrlzw8PLRr167GTgUAALQQHh4emjNnTmOnAaAaNFcANIg9e/Zozpw5On/+fGOnAgAAAAAAAAB10qaxEwDQOuzZs0dz587Vs88+q44dO7ocO3nypDw96fUCAIDmbdSoUbp8+bJ8fHwaOxUAAAAA9YyzmQBq5eLFi26by9fXV97e3m6bDwAAoDF4enrKz8+PPxoBAAAAWgF2/UALtXv3bt19993y8/NT79699frrr7sc//rrr+Xh4aG0tLQqz/3x+3lW3qvl+PHjeuqpp3TLLbfopz/9qSTp8OHDevbZZ3XbbbfJz89PwcHBmjRpkr7//nuX58+YMUOSFBYWJg8PD3l4eOjrr7+WVP09V7766is9/vjj6tSpkwICAjRy5Eilp6e7xFS+r/nmzZu1YMEChYSEyM/PT/fff7+++OKLWlYOAADUt7/+9a967rnn1L17d/n6+iosLEzTpk1TWVmZfvjhB/3yl7/UwIED1a5dO9lsNo0bN05//OMfXea4dh8wd+5c3XrrrWrfvr0ee+wxFRcXq7S0VAkJCQoMDFS7du0UGxur0tJSlzk8PDwUHx+vDRs2qG/fvvLz81NERIQ+/fRTl7hvvvlGL7zwgvr27St/f3917txZjz/+uLmX+XFOP77nSmpqqm677Tb5+/tr+PDh+p//+R+NHj1ao0ePrnY97GsAAGg5Ks+pnDhxQk888YRsNps6d+6sl156SVeuXDHjSktLlZiYqK5du6p9+/b6+c9/rr/85S9V5ruZfclXX30lDw8PLVu2rMrz9+zZIw8PD7399tuSpAsXLighIUG9evWSr6+vAgMDNXbsWB08eND9xQBaGN4WDGiBjhw5oqioKHXt2lVz5szR1atXNXv2bAUFBdVp3scff1y33367fvOb38gwDElSVlaWvvrqK8XGxio4OFjHjh3Tf/7nf+rYsWPau3evPDw89Oijj+pPf/qT3n77bS1btkxdunSRJHXt2rXaz1NYWKif/OQnunTpkl588UV17txZb775pn7+85/r3Xff1b/+67+6xC9atEienp765S9/qeLiYi1evFhPP/20PvvsszqtFwAAuN93332n4cOH6/z583r++efVr18//fWvf9W7776rS5cu6auvvtIHH3ygxx9/XGFhYSosLNTrr7+ue++9V8ePH1f37t1d5lu4cKH8/f01c+ZMffHFF3rttdfk7e0tT09PnTt3TnPmzNHevXuVlpamsLAwpaSkuDw/JydHmzZt0osvvihfX1+tWrVKDzzwgPbt26cBAwZIkvbv3689e/boF7/4hUJCQvT1119r9erVGj16tI4fP66AgIDrrnf16tWKj4/Xz372MyUmJurrr7/WI488oltuuUUhISFV4tnXAADQMj3xxBPq1auXFi5cqL179+p3v/udzp07p//6r/+SJE2ePFlvvfWWnnrqKf3kJz/Rzp07FR0dXWWem9mX3Hbbbbrnnnu0YcMGJSYmujx/w4YNat++vR5++GFJ0tSpU/Xuu+8qPj5e4eHh+v7777V79259/vnnGjp0aP0XBmjODAAtziOPPGL4+fkZ33zzjTl2/Phxw8vLy6j8tj916pQhyVi/fn2V50syZs+ebT6ePXu2Icl48sknq8ReunSpytjbb79tSDI+/fRTc+y3v/2tIck4depUlfiePXsaMTEx5uOEhARDkvE///M/5tiFCxeMsLAwo1evXkZ5eblhGIbxySefGJKM/v37G6WlpWbsihUrDEnGkSNHqhYHAAA0qmeeecbw9PQ09u/fX+VYRUWFceXKFfP/9ZVOnTpl+Pr6GvPmzTPHKvcBAwYMMMrKyszxJ5980vDw8DDGjRvnMofdbjd69uzpMibJkGQcOHDAHPvmm28MPz8/41//9V/Nser2O7m5uYYk47/+67+q5PTJJ58YhmEYpaWlRufOnY27777bcDqdZlxaWpohybj33nurPJd9DQAALUvlOZWf//znLuMvvPCCIcn44x//aOTn5xuSjBdeeMEl5qmnnqpyjuZm9yWvv/66Icn4/PPPzbGysjKjS5cuLudgOnToYMTFxdVxlUDrxNuCAS1MeXm5MjIy9Mgjj6hHjx7meP/+/eVwOOo099SpU6uM+fv7m/++cuWK/va3v2nkyJGSVOtLSLdt26bhw4ebbz0mSe3atdPzzz+vr7/+WsePH3eJj42Ndblx7M9+9jNJ/7gMFgAANB0VFRX64IMP9NBDD2nYsGFVjnt4eMjX19e8Z0l5ebm+//57tWvXTn379q12b/HMM8+43LttxIgRMgxDkyZNcokbMWKEvv32W129etVl3G63KyIiwnzco0cPPfzww8rIyFB5ebkk1/2O0+nU999/rz59+qhjx4417ncOHDig77//XlOmTFGbNv9804Cnn35at9xyS7XPYV8DAEDLFBcX5/J4+vTpkv5xDmTbtm2SpBdffNElJiEhoco8N7sveeKJJ+Tn56cNGzaYYxkZGfrb3/6mf/u3fzPHOnbsqM8++0zfffdd7RcHtFI0V4AW5uzZs7p8+bJuv/32Ksf69u1bp7nDwsKqjP3www966aWXFBQUJH9/f3Xt2tWMKy4urtXn+eabb6rNtX///ubxa13bRJJknqw4d+5crT4/AACoH2fPnlVJSYn5dlvVqaio0LJly3T77bfL19dXXbp0UdeuXXX48OFq9xY/3gd06NBBkhQaGlplvKKiosoc1e2Z7rjjDl26dElnz56VJF2+fFkpKSkKDQ11yen8+fM17ncq9yx9+vRxGW/Tpo169epV7XPY1wAA0DL9eM/Ru3dveXp66uuvv9Y333wjT09P9e7d2yWmunMjN7sv6dixox566CFt3LjRHNuwYYNuvfVWjRkzxhxbvHixjh49qtDQUA0fPlxz5szhjzqAm0RzBWilPDw8qh2v/AvN6lz71xGVnnjiCf3+97/X1KlT9d577ykzM1Pbt2+X9I+TIw3By8ur2nHj/39fGAAA0Hz85je/UVJSkkaNGqW33npLGRkZysrK0p133lnt3uJ6+wB37g+mT5+uBQsW6IknntDmzZuVmZmprKwsde7c2e37HfY1AAC0Dtc7L3MjVvYlzzzzjL766ivt2bNHFy5c0B/+8Ac9+eST5lXC0j/O63z11Vd67bXX1L17d/32t7/VnXfeqY8//rhO6wNaA25oD7QwXbt2lb+/v/785z9XOXby5Enz35V/BXn+/HmXmB9fFVKTc+fOKTs7W3PnznW5OWx1n9vKpqFnz54uuVY6ceKEeRwAADQ/Xbt2lc1m09GjR68b8+677+q+++7T2rVrXcbPnz+vLl26uD2n6vYtf/rTnxQQEKCuXbuaOcXExGjJkiVmzJUrV6rso36scs/yxRdf6L777jPHr169qq+//lqDBg1ywwoAAEBz8Oc//9nlHUG++OILVVRUqFevXjIMQxUVFfryyy9drlap7tyIlX3JAw88oK5du2rDhg0aMWKELl26pIkTJ1aJ69atm1544QW98MILKioq0tChQ7VgwQKNGzeujqsGWjauXAFaGC8vLzkcDn3wwQc6ffq0Of75558rIyPDfGyz2dSlSxd9+umnLs9ftWqVpc8lVf1LyuXLl1eJbdu2raSqzZzqPPjgg9q3b59yc3PNsYsXL+o///M/1atXL4WHh990jgAAoOnw9PTUI488oo8++kgHDhyoctwwDHl5eVXZW2zZskV//etf6yWn3Nxcl/cn//bbb/Xhhx8qKirK3OtUl9Nrr71W4xW/kjRs2DB17txZv//9713u9bJhwwbe5gsAgFYmNTXV5fFrr70mSRo3bpzZxPjd737nElPd+RUr+5I2bdroySef1ObNm5WWlqaBAwe6/HFHeXl5lbc4DQwMVPfu3VVaWnrziwNaKa5cAVqguXPnavv27frZz36mF154QVevXtVrr72mO++8U4cPHzbjJk+erEWLFmny5MkaNmyYPv30U/3pT3+66c9js9k0atQoLV68WE6nU7feeqsyMzN16tSpKrGVN4r99a9/rV/84hfy9vbWQw89ZDZdrjVz5ky9/fbbGjdunF588UV16tRJb775pk6dOqX/9//+n8vlqwAAoHn5zW9+o8zMTN177716/vnn1b9/f505c0ZbtmzR7t279S//8i+aN2+eYmNj9ZOf/ERHjhzRhg0bdNttt9VLPgMGDJDD4dCLL74oX19f8w9N5s6da8b8y7/8i/77v/9bHTp0UHh4uHJzc7Vjxw517ty5xrl9fHw0Z84cTZ8+XWPGjNETTzyhr7/+Wmlpaerdu3et3w4EAAA0P6dOndLPf/5zPfDAA8rNzdVbb72lp556SoMHD5YkPfnkk1q1apWKi4v1k5/8RNnZ2friiy+qzGN1X/LMM8/od7/7nT755BP9n//zf1yOXbhwQSEhIXrsscc0ePBgtWvXTjt27ND+/ftdrowBUD2aK0ALNGjQIGVkZCgpKUkpKSkKCQnR3LlzdebMGZfmSkpKis6ePat3331Xmzdv1rhx4/Txxx8rMDDwpj/Xxo0bNX36dKWmpsowDEVFRenjjz9W9+7dXeLuvvtuzZ8/X2vWrNH27dtVUVGhU6dOVdtcCQoK0p49e/TKK6/otdde05UrVzRo0CB99NFHio6Orn1hAABAo7v11lv12Wef6dVXX9WGDRtUUlKiW2+9VePGjVNAQIB+9atf6eLFi9q4caM2bdqkoUOHKj09XTNnzqyXfO69917Z7XbNnTtXp0+fVnh4uNLS0lz+qnPFihXy8vLShg0bdOXKFd1zzz3asWOHHA7HDeePj4+XYRhasmSJfvnLX2rw4MH6wx/+oBdffFF+fn71siYAAND0bNq0SSkpKZo5c6batGmj+Ph4/fa3vzWPr1u3znwLrw8++EBjxoxRenq6QkNDXeaxui+JiIjQnXfeqc8//1xPP/20y7GAgAC98MILyszM1HvvvaeKigr16dNHq1at0rRp09xfBKCF8TC4MyIAAACAVsjDw0NxcXFauXJlg37eiooKde3aVY8++qh+//vfN+jnBgAADWvOnDmaO3euzp49Wy/3j7sZd911lzp16qTs7OxG+fxAS8V76wAAAABAPbly5UqV90X/r//6L/3www8aPXp04yQFAABajQMHDig/P1/PPPNMY6cCtDi8LRgAAAAA1JO9e/cqMTFRjz/+uDp37qyDBw9q7dq1GjBggB5//PHGTg8AALRQR48eVV5enpYsWaJu3bppwoQJjZ0S0OLQXAEAAACAetKrVy+Fhobqd7/7nX744Qd16tRJzzzzjBYtWiQfH5/GTg8AALRQ7777rubNm6e+ffvq7bff5l5vQD3gnisAAAAAAAAAAAAWcM8VAAAAAAAAAAAAC2iuAAAAAAAAAAAAWNCq77lSUVGh7777Tu3bt5eHh0djpwMAQI0Mw9CFCxfUvXt3eXry9xGtEXsXAEBzw/4F7F8AAM3Nze5fWnVz5bvvvlNoaGhjpwEAgCXffvutQkJCGjsNNAL2LgCA5or9S+vF/gUA0FzdaP/Sqpsr7du3l/SPItlstjrN5XQ6lZmZqaioKHl7e7sjvVaF+tUetasb6lc31K/2alO7kpIShYaGmv//QutT271La/5eZe2snbW3Hqy9aa6d/Qvcee5Fatpf7y0JdW4Y1Ln+UeOG0dLqfLP7l1bdXKm8HNVms7mluRIQECCbzdYivoAaGvWrPWpXN9Svbqhf7dWldrydQutV271La/5eZe2snbW3Hqy9aa+d/Uvr5c5zL1Lz+HpvCahzw6DO9Y8aN4yWWucb7V94w1MAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYUKfmyqJFi+Th4aGEhARz7MqVK4qLi1Pnzp3Vrl07jR8/XoWFhS7PO336tKKjoxUQEKDAwEDNmDFDV69edYnZtWuXhg4dKl9fX/Xp00dpaWlVPn9qaqp69eolPz8/jRgxQvv27avLcgAAAAAAAAAAAG6o1s2V/fv36/XXX9egQYNcxhMTE/XRRx9py5YtysnJ0XfffadHH33UPF5eXq7o6GiVlZVpz549evPNN5WWlqaUlBQz5tSpU4qOjtZ9992n/Px8JSQkaPLkycrIyDBjNm3apKSkJM2ePVsHDx7U4MGD5XA4VFRUVNslAQAAAAAAAAAA3FCtmit///vf9fTTT+v3v/+9brnlFnO8uLhYa9eu1dKlSzVmzBhFRERo/fr12rNnj/bu3StJyszM1PHjx/XWW29pyJAhGjdunObPn6/U1FSVlZVJktasWaOwsDAtWbJE/fv3V3x8vB577DEtW7bM/FxLly7VlClTFBsbq/DwcK1Zs0YBAQFat25dXeoBAAAAAAAAAABQoza1eVJcXJyio6MVGRmp//iP/zDH8/Ly5HQ6FRkZaY7169dPPXr0UG5urkaOHKnc3FwNHDhQQUFBZozD4dC0adN07Ngx3XXXXcrNzXWZozKm8u3HysrKlJeXp+TkZPO4p6enIiMjlZube928S0tLVVpaaj4uKSmRJDmdTjmdztqUwlT5/LrO01pRv9qjdnVD/eqG+tVebWpHnQEAAAAAAJoGy82Vd955RwcPHtT+/furHCsoKJCPj486duzoMh4UFKSCggIz5trGSuXxymM1xZSUlOjy5cs6d+6cysvLq405ceLEdXNfuHCh5s6dW2U8MzNTAQEB132eFVlZWW6Zp7WifrVH7eqG+tUN9as9K7W7dOlSPWYCAAAAAACAm2WpufLtt9/qpZdeUlZWlvz8/Oorp3qTnJyspKQk83FJSYlCQ0MVFRUlm81Wp7mdTqeysrI0duxYeXt71zXVVof61R61qxvqVzfUr/ZqU7vKKy4BAAAAAADQuCw1V/Ly8lRUVKShQ4eaY+Xl5fr000+1cuVKZWRkqKysTOfPn3e5eqWwsFDBwcGSpODgYO3bt89l3sLCQvNY5X8rx66Nsdls8vf3l5eXl7y8vKqNqZyjOr6+vvL19a0y7u3t7baTgu6cqzWifrVH7eqG+tUN9as9K7WjxgAAAAAAAE2DpRva33///Tpy5Ijy8/PNj2HDhunpp582/+3t7a3s7GzzOSdPntTp06dlt9slSXa7XUeOHFFRUZEZk5WVJZvNpvDwcDPm2jkqYyrn8PHxUUREhEtMRUWFsrOzzRgAAAAAAAAAAID6YOnKlfbt22vAgAEuY23btlXnzp3N8eeee05JSUnq1KmTbDabpk+fLrvdrpEjR0qSoqKiFB4erokTJ2rx4sUqKCjQrFmzFBcXZ15VMnXqVK1cuVIvv/yyJk2apJ07d2rz5s1KT083P29SUpJiYmI0bNgwDR8+XMuXL9fFixcVGxtbp4LU1YA5GSot92jUHKrz9aLoxk4BAAA0Qb1mpt84qJGwfwEAANfD+RcAQGOzfEP7G1m2bJk8PT01fvx4lZaWyuFwaNWqVeZxLy8vbd26VdOmTZPdblfbtm0VExOjefPmmTFhYWFKT09XYmKiVqxYoZCQEL3xxhtyOBxmzIQJE3T27FmlpKSooKBAQ4YM0fbt26vc5B4AAAAAAAAAAMCd6txc2bVrl8tjPz8/paamKjU19brP6dmzp7Zt21bjvKNHj9ahQ4dqjImPj1d8fPxN5woAAAAAAAAAAFBXlu65AgAAAAAAAAAA0NrRXAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAAAAAAAAAABgAc0VAAAAAAAAAAAAC2iuAAAAAAAAAAAAWEBzBQAAAAAAAAAAwAKaKwAAAAAAAAAAABbQXAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAAAAAAAAAABgAc0VAAAAAAAAAAAAC2iuAAAAAAAAAAAAWEBzBQAAAAAAAAAAwAKaKwAAAAAAAAAAABbQXAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAABalUWLFsnDw0MJCQnm2JUrVxQXF6fOnTurXbt2Gj9+vAoLC12ed/r0aUVHRysgIECBgYGaMWOGrl696hKza9cuDR06VL6+vurTp4/S0tKqfP7U1FT16tVLfn5+GjFihPbt21cfywQAAM3Y6tWrNWjQINlsNtlsNtntdn388cfm8dGjR8vDw8PlY+rUqS5zsHcBAKB+0VwBAACtxv79+/X6669r0KBBLuOJiYn66KOPtGXLFuXk5Oi7777To48+ah4vLy9XdHS0ysrKtGfPHr355ptKS0tTSkqKGXPq1ClFR0frvvvuU35+vhISEjR58mRlZGSYMZs2bVJSUpJmz56tgwcPavDgwXI4HCoqKqr/xQMAgGYjJCREixYtUl5eng4cOKAxY8bo4Ycf1rFjx8yYKVOm6MyZM+bH4sWLzWPsXQAAqH80VwAAQKvw97//XU8//bR+//vf65ZbbjHHi4uLtXbtWi1dulRjxoxRRESE1q9frz179mjv3r2SpMzMTB0/flxvvfWWhgwZonHjxmn+/PlKTU1VWVmZJGnNmjUKCwvTkiVL1L9/f8XHx+uxxx7TsmXLzM+1dOlSTZkyRbGxsQoPD9eaNWsUEBCgdevWNWwxAABAk/bQQw/pwQcf1O2336477rhDCxYsULt27cy9iSQFBAQoODjY/LDZbOYx9i4AANS/No2dAAAAQEOIi4tTdHS0IiMj9R//8R/meF5enpxOpyIjI82xfv36qUePHsrNzdXIkSOVm5urgQMHKigoyIxxOByaNm2ajh07prvuuku5ubkuc1TGVL79WFlZmfLy8pScnGwe9/T0VGRkpHJzc6vNubS0VKWlpebjkpISSZLT6ZTT6bzptVfGVvccXy/jpudpaFbWeKM53DFXc8PaWXtrw9qb5tqbYk7NTXl5ubZs2aKLFy/Kbreb4xs2bNBbb72l4OBgPfTQQ3r11VcVEBAgSY22d5Hct3+5nso5fD2b5h6mpXzNN+WfKy0Jda5/1LhhtLQ63+w6aK4AAIAW75133tHBgwe1f//+KscKCgrk4+Ojjh07uowHBQWpoKDAjLn25ETl8cpjNcWUlJTo8uXLOnfunMrLy6uNOXHiRLV5L1y4UHPnzq0ynpmZaZ48sSIrK6vK2OLhlqdpMNu2bXPbXNWtvbVg7a0Ta2+dmuLaL1261NgpNFtHjhyR3W7XlStX1K5dO73//vsKDw+XJD311FPq2bOnunfvrsOHD+uVV17RyZMn9d5770lqvL2L5P79y/XMH1bhtrncyZ37l6agKf5caYmoc/2jxg2jpdT5ZvcvNFcAAECL9u233+qll15SVlaW/Pz8GjsdS5KTk5WUlGQ+LikpUWhoqKKiolze+uNGnE6nsrKyNHbsWHl7e7scGzAn4zrPanxH5zjqPEdNa2/pWDtrZ+2tR1Nee+VVC7Cub9++ys/PV3Fxsd59913FxMQoJydH4eHhev755824gQMHqlu3brr//vv15Zdfqnfv3o2Ytfv2L9dT+fX+6gFPlVZ41Hk+d3PH/qUpaMo/V1oS6lz/qHHDaGl1vtn9C80VAADQouXl5amoqEhDhw41x8rLy/Xpp59q5cqVysjIUFlZmc6fP+9y9UphYaGCg4MlScHBwdq3b5/LvIWFheaxyv9Wjl0bY7PZ5O/vLy8vL3l5eVUbUznHj/n6+srX17fKuLe3d602rNU9r7S86Z2UqOTOTXlta9YSsHbW3tqw9qa19qaWT3Pi4+OjPn36SJIiIiK0f/9+rVixQq+//nqV2BEjRkiSvvjiC/Xu3bvR9i6S+/cv11Na4dEk9zEt7Wu+Kf5caYmoc/2jxg2jpdT5ZtfADe0BAECLdv/99+vIkSPKz883P4YNG6ann37a/Le3t7eys7PN55w8eVKnT58239fcbrfryJEjKioqMmOysrJks9nMt+ew2+0uc1TGVM7h4+OjiIgIl5iKigplZ2e7vH86AABAdSoqKlzuZXKt/Px8SVK3bt0ksXcBAKAhcOUKAABo0dq3b68BAwa4jLVt21adO3c2x5977jklJSWpU6dOstlsmj59uux2u0aOHClJioqKUnh4uCZOnKjFixeroKBAs2bNUlxcnPmXmVOnTtXKlSv18ssva9KkSdq5c6c2b96s9PR08/MmJSUpJiZGw4YN0/Dhw7V8+XJdvHhRsbGxDVQNAADQHCQnJ2vcuHHq0aOHLly4oI0bN2rXrl3KyMjQl19+qY0bN+rBBx9U586ddfjwYSUmJmrUqFEaNGiQJPYuAAA0BJorAACg1Vu2bJk8PT01fvx4lZaWyuFwaNWqVeZxLy8vbd26VdOmTZPdblfbtm0VExOjefPmmTFhYWFKT09XYmKiVqxYoZCQEL3xxhtyOP75vtsTJkzQ2bNnlZKSooKCAg0ZMkTbt2+vcqNYAADQuhUVFemZZ57RmTNn1KFDBw0aNEgZGRkaO3asvv32W+3YscNsdISGhmr8+PGaNWuW+Xz2LgAA1D+aKwAAoNXZtWuXy2M/Pz+lpqYqNTX1us/p2bOntm3bVuO8o0eP1qFDh2qMiY+PV3x8/E3nCgAAWp+1a9de91hoaKhycnJuOAd7FwAA6hf3XAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAAAAAAAAAABgAc0VAAAAAAAAAAAAC2iuAAAAAAAAAAAAWEBzBQAAAAAAAAAAwAKaKwAAAAAAAAAAABbQXAEAAAAAAAAAALDAUnNl9erVGjRokGw2m2w2m+x2uz7++GPz+OjRo+Xh4eHyMXXqVJc5Tp8+rejoaAUEBCgwMFAzZszQ1atXXWJ27dqloUOHytfXV3369FFaWlqVXFJTU9WrVy/5+flpxIgR2rdvn5WlAAAAAAAAAAAA1Iql5kpISIgWLVqkvLw8HThwQGPGjNHDDz+sY8eOmTFTpkzRmTNnzI/Fixebx8rLyxUdHa2ysjLt2bNHb775ptLS0pSSkmLGnDp1StHR0brvvvuUn5+vhIQETZ48WRkZGWbMpk2blJSUpNmzZ+vgwYMaPHiwHA6HioqK6lILAAAAAAAAAACAG7LUXHnooYf04IMP6vbbb9cdd9yhBQsWqF27dtq7d68ZExAQoODgYPPDZrOZxzIzM3X8+HG99dZbGjJkiMaNG6f58+crNTVVZWVlkqQ1a9YoLCxMS5YsUf/+/RUfH6/HHntMy5YtM+dZunSppkyZotjYWIWHh2vNmjUKCAjQunXr6loPAAAAAAAAAACAGtX6nivl5eV65513dPHiRdntdnN8w4YN6tKliwYMGKDk5GRdunTJPJabm6uBAwcqKCjIHHM4HCopKTGvfsnNzVVkZKTL53I4HMrNzZUklZWVKS8vzyXG09NTkZGRZgwAAAAAAAAAAEB9aWP1CUeOHJHdbteVK1fUrl07vf/++woPD5ckPfXUU+rZs6e6d++uw4cP65VXXtHJkyf13nvvSZIKCgpcGiuSzMcFBQU1xpSUlOjy5cs6d+6cysvLq405ceJEjbmXlpaqtLTUfFxSUiJJcjqdcjqdVkvhovL5vp5GneapL3VdX32rzK+p59kUUbu6oX51Q/1qrza1o84AAAAAAABNg+XmSt++fZWfn6/i4mK9++67iomJUU5OjsLDw/X888+bcQMHDlS3bt10//3368svv1Tv3r3dmnhtLFy4UHPnzq0ynpmZqYCAALd8jvnDKtwyj7tt27atsVO4KVlZWY2dQrNF7eqG+tUN9as9K7W79mpQAAAAAAAANB7LzRUfHx/16dNHkhQREaH9+/drxYoVev3116vEjhgxQpL0xRdfqHfv3goODta+fftcYgoLCyVJwcHB5n8rx66Nsdls8vf3l5eXl7y8vKqNqZzjepKTk5WUlGQ+LikpUWhoqKKiolzuDVMbTqdTWVlZevWAp0orPOo0V304OsfR2CnUqLJ+Y8eOlbe3d2On06xQu7qhfnVD/WqvNrWrvOISAAAAAAAAjctyc+XHKioqXN5q61r5+fmSpG7dukmS7Ha7FixYoKKiIgUGBkr6x1/s2mw2863F7HZ7lasssrKyzPu6+Pj4KCIiQtnZ2XrkkUfMHLKzsxUfH19jrr6+vvL19a0y7u3t7baTgqUVHiotb3rNleZy0tOdr0VrQ+3qhvrVDfWrPSu1o8YAAAAAAABNg6XmSnJyssaNG6cePXrowoUL2rhxo3bt2qWMjAx9+eWX2rhxox588EF17txZhw8fVmJiokaNGqVBgwZJkqKiohQeHq6JEydq8eLFKigo0KxZsxQXF2c2PaZOnaqVK1fq5Zdf1qRJk7Rz505t3rxZ6enpZh5JSUmKiYnRsGHDNHz4cC1fvlwXL15UbGysG0sDAAAAAAAAAABQlaXmSlFRkZ555hmdOXNGHTp00KBBg5SRkaGxY8fq22+/1Y4dO8xGR2hoqMaPH69Zs2aZz/fy8tLWrVs1bdo02e12tW3bVjExMZo3b54ZExYWpvT0dCUmJmrFihUKCQnRG2+8IYfjn29rNWHCBJ09e1YpKSkqKCjQkCFDtH379io3uQcAAAAAAAAAAHA3S82VtWvXXvdYaGiocnJybjhHz549b3hz9dGjR+vQoUM1xsTHx9/wbcAAAAAAAAAAAADczbOxEwAAAAAAAAAAAGhOaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAANCErF69WoMGDZLNZpPNZpPdbtfHH39sHr9y5Yri4uLUuXNntWvXTuPHj1dhYaHLHKdPn1Z0dLQCAgIUGBioGTNm6OrVqy4xu3bt0tChQ+Xr66s+ffooLS2tSi6pqanq1auX/Pz8NGLECO3bt69e1gwAQHNDcwUAAAAAAKAJCQkJ0aJFi5SXl6cDBw5ozJgxevjhh3Xs2DFJUmJioj766CNt2bJFOTk5+u677/Too4+azy8vL1d0dLTKysq0Z88evfnmm0pLS1NKSooZc+rUKUVHR+u+++5Tfn6+EhISNHnyZGVkZJgxmzZtUlJSkmbPnq2DBw9q8ODBcjgcKioqarhiAADQRNFcAQAAAAAAaEIeeughPfjgg7r99tt1xx13aMGCBWrXrp327t2r4uJirV27VkuXLtWYMWMUERGh9evXa8+ePdq7d68kKTMzU8ePH9dbb72lIUOGaNy4cZo/f75SU1NVVlYmSVqzZo3CwsK0ZMkS9e/fX/Hx8Xrssce0bNkyM4+lS5dqypQpio2NVXh4uNasWaOAgACtW7euUeoCAEBT0qaxEwAAAAAAAED1ysvLtWXLFl28eFF2u115eXlyOp2KjIw0Y/r166cePXooNzdXI0eOVG5urgYOHKigoCAzxuFwaNq0aTp27Jjuuusu5ebmusxRGZOQkCBJKisrU15enpKTk83jnp6eioyMVG5u7nXzLS0tVWlpqfm4pKREkuR0OuV0OutUi8p5JMnX06jzXPXBHWtsCirX0VLW01RR5/pHjRtGS6vzza6D5goAAAAAAEATc+TIEdntdl25ckXt2rXT+++/r/DwcOXn58vHx0cdO3Z0iQ8KClJBQYEkqaCgwKWxUnm88lhNMSUlJbp8+bLOnTun8vLyamNOnDhx3bwXLlyouXPnVhnPzMxUQEDAzS3+JswfVuG2udxp27ZtjZ2CW2VlZTV2Cq0Cda5/1LhhtJQ6X7p06abiaK4AAAAAAAA0MX379lV+fr6Ki4v17rvvKiYmRjk5OY2d1g0lJycrKSnJfFxSUqLQ0FBFRUXJZrPVeX6n06msrCy9esBTpRUedZ7P3Y7OcTR2Cm5RWeexY8fK29u7sdNpsahz/aPGDaOl1bnyqssbobkCAAAAAADQxPj4+KhPnz6SpIiICO3fv18rVqzQhAkTVFZWpvPnz7tcvVJYWKjg4GBJUnBwsPbt2+cyX2FhoXms8r+VY9fG2Gw2+fv7y8vLS15eXtXGVM5RHV9fX/n6+lYZ9/b2dusJt9IKD5WWN73mSks4qXgtd79uqB51rn/UuGG0lDrf7Bq4oT0AAAAAAEATV1FRodLSUkVERMjb21vZ2dnmsZMnT+r06dOy2+2SJLvdriNHjqioqMiMycrKks1mU3h4uBlz7RyVMZVz+Pj4KCIiwiWmoqJC2dnZZgwAAK0ZV64AAAAAAAA0IcnJyRo3bpx69OihCxcuaOPGjdq1a5cyMjLUoUMHPffcc0pKSlKnTp1ks9k0ffp02e12jRw5UpIUFRWl8PBwTZw4UYsXL1ZBQYFmzZqluLg486qSqVOnauXKlXr55Zc1adIk7dy5U5s3b1Z6erqZR1JSkmJiYjRs2DANHz5cy5cv18WLFxUbG9sodQEAoCmhuQIAAAAAANCEFBUV6ZlnntGZM2fUoUMHDRo0SBkZGRo7dqwkadmyZfL09NT48eNVWloqh8OhVatWmc/38vLS1q1bNW3aNNntdrVt21YxMTGaN2+eGRMWFqb09HQlJiZqxYoVCgkJ0RtvvCGH45/3DJkwYYLOnj2rlJQUFRQUaMiQIdq+fXuVm9wDANAa0VwBAAAAAABoQtauXVvjcT8/P6Wmpio1NfW6MT179tS2bdtqnGf06NE6dOhQjTHx8fGKj4+vMQYAgNaIe64AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGCBpebK6tWrNWjQINlsNtlsNtntdn388cfm8StXriguLk6dO3dWu3btNH78eBUWFrrMcfr0aUVHRysgIECBgYGaMWOGrl696hKza9cuDR06VL6+vurTp4/S0tKq5JKamqpevXrJz89PI0aM0L59+6wsBQAAAAAAAAAAoFYsNVdCQkK0aNEi5eXl6cCBAxozZowefvhhHTt2TJKUmJiojz76SFu2bFFOTo6+++47Pfroo+bzy8vLFR0drbKyMu3Zs0dvvvmm0tLSlJKSYsacOnVK0dHRuu+++5Sfn6+EhARNnjxZGRkZZsymTZuUlJSk2bNn6+DBgxo8eLAcDoeKiorqWg8AAAAAAAAAAIAaWWquPPTQQ3rwwQd1++2364477tCCBQvUrl077d27V8XFxVq7dq2WLl2qMWPGKCIiQuvXr9eePXu0d+9eSVJmZqaOHz+ut956S0OGDNG4ceM0f/58paamqqysTJK0Zs0ahYWFacmSJerfv7/i4+P12GOPadmyZWYeS5cu1ZQpUxQbG6vw8HCtWbNGAQEBWrdunRtLAwAAAAAAAAAAUFWb2j6xvLxcW7Zs0cWLF2W325WXlyen06nIyEgzpl+/furRo4dyc3M1cuRI5ebmauDAgQoKCjJjHA6Hpk2bpmPHjumuu+5Sbm6uyxyVMQkJCZKksrIy5eXlKTk52Tzu6empyMhI5ebm1phzaWmpSktLzcclJSWSJKfTKafTWdtSmHNIkq+nUad56ktd11ffKvNr6nk2RdSubqhf3VC/2qtN7agzAAAAAABA02C5uXLkyBHZ7XZduXJF7dq10/vvv6/w8HDl5+fLx8dHHTt2dIkPCgpSQUGBJKmgoMClsVJ5vPJYTTElJSW6fPmyzp07p/Ly8mpjTpw4UWPuCxcu1Ny5c6uMZ2ZmKiAg4MaLvwnzh1W4ZR5327ZtW2OncFOysrIaO4Vmi9rVDfWrG+pXe1Zqd+nSpXrMBAAAAAAAADfLcnOlb9++ys/PV3Fxsd59913FxMQoJyenPnJzu+TkZCUlJZmPS0pKFBoaqqioKNlstjrN7XQ6lZWVpVcPeKq0wqOuqbrd0TmOxk6hRpX1Gzt2rLy9vRs7nWaF2tUN9asb6ld7tald5RWXAAAAAAAAaFyWmys+Pj7q06ePJCkiIkL79+/XihUrNGHCBJWVlen8+fMuV68UFhYqODhYkhQcHKx9+/a5zFdYWGgeq/xv5di1MTabTf7+/vLy8pKXl1e1MZVzXI+vr698fX2rjHt7e7vtpGBphYdKy5tec6W5nPR052vR2lC7uqF+dUP9as9K7agxAAAAAABA02DphvbVqaioUGlpqSIiIuTt7a3s7Gzz2MmTJ3X69GnZ7XZJkt1u15EjR1RUVGTGZGVlyWazKTw83Iy5do7KmMo5fHx8FBER4RJTUVGh7OxsMwYAAAAAAAAAAKC+WLpyJTk5WePGjVOPHj104cIFbdy4Ubt27VJGRoY6dOig5557TklJSerUqZNsNpumT58uu92ukSNHSpKioqIUHh6uiRMnavHixSooKNCsWbMUFxdnXlEydepUrVy5Ui+//LImTZqknTt3avPmzUpPTzfzSEpKUkxMjIYNG6bhw4dr+fLlunjxomJjY91YGgAAAAAAAAAAgKosNVeKior0zDPP6MyZM+rQoYMGDRqkjIwMjR07VpK0bNkyeXp6avz48SotLZXD4dCqVavM53t5eWnr1q2aNm2a7Ha72rZtq5iYGM2bN8+MCQsLU3p6uhITE7VixQqFhITojTfekMPxz3uGTJgwQWfPnlVKSooKCgo0ZMgQbd++vcpN7gEAAAAAAAAAANzNUnNl7dq1NR738/NTamqqUlNTrxvTs2dPbdu2rcZ5Ro8erUOHDtUYEx8fr/j4+BpjAAAAAAAAAAAA3K3O91wBAAAAAAAAAABoTWiuAAAAAAAAAAAAWEBzBQAAAAAAAAAAwAKaKwAAAAAAAAAAABbQXAEAAAAAAAAAALCA5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAAAAAAAAAABgAc0VAAAAAAAAAAAAC2iuAAAAAAAAAAAAWEBzBQAAAAAAAAAAwAKaKwAAAAAAAAAAABbQXAEAAC3a6tWrNWjQINlsNtlsNtntdn388cfm8StXriguLk6dO3dWu3btNH78eBUWFrrMcfr0aUVHRysgIECBgYGaMWOGrl696hKza9cuDR06VL6+vurTp4/S0tKq5JKamqpevXrJz89PI0aM0L59++plzQAAAAAAoH7RXAEAAC1aSEiIFi1apLy8PB04cEBjxozRww8/rGPHjkmSEhMT9dFHH2nLli3KycnRd999p0cffdR8fnl5uaKjo1VWVqY9e/bozTffVFpamlJSUsyYU6dOKTo6Wvfdd5/y8/OVkJCgyZMnKyMjw4zZtGmTkpKSNHv2bB08eFCDBw+Ww+FQUVFRwxUDAAAAAAC4Bc0VAADQoj300EN68MEHdfvtt+uOO+7QggUL1K5dO+3du1fFxcVau3atli5dqjFjxigiIkLr16/Xnj17tHfvXklSZmamjh8/rrfeektDhgzRuHHjNH/+fKWmpqqsrEyStGbNGoWFhWnJkiXq37+/4uPj9dhjj2nZsmVmHkuXLtWUKVMUGxur8PBwrVmzRgEBAVq3bl2j1AUAAAAAANRem8ZOAAAAoKGUl5dry5Ytunjxoux2u/Ly8uR0OhUZGWnG9OvXTz169FBubq5Gjhyp3NxcDRw4UEFBQWaMw+HQtGnTdOzYMd11113Kzc11maMyJiEhQZJUVlamvLw8JScnm8c9PT0VGRmp3Nzc6+ZbWlqq0tJS83FJSYkkyel0yul03vS6K2Ore46vl3HT8zQ0K2u80RzumKu5Ye2svbVh7U1z7U0xJwAAAHeguQIAAFq8I0eOyG6368qVK2rXrp3ef/99hYeHKz8/Xz4+PurYsaNLfFBQkAoKCiRJBQUFLo2VyuOVx2qKKSkp0eXLl3Xu3DmVl5dXG3PixInr5r1w4ULNnTu3ynhmZqYCAgJubvHXyMrKqjK2eLjlaRrMtm3b3DZXdWtvLVh768TaW6emuPZLly41dgoAAAD1guYKAABo8fr27av8/HwVFxfr3XffVUxMjHJycho7rRtKTk5WUlKS+bikpEShoaGKioqSzWa76XmcTqeysrI0duxYeXt7uxwbMCfjOs9qfEfnOOo8R01rb+lYO2tn7a1HU1575VWXAAAALQ3NFQAA0OL5+PioT58+kqSIiAjt379fK1as0IQJE1RWVqbz58+7XL1SWFio4OBgSVJwcLD27dvnMl9hYaF5rPK/lWPXxthsNvn7+8vLy0teXl7VxlTOUR1fX1/5+vpWGff29q7VybPqnlda7mF5nobizhOEta1ZS8DaWXtrw9qb1tqbWj4AAADuwg3tAQBAq1NRUaHS0lJFRETI29tb2dnZ5rGTJ0/q9OnTstvtkiS73a4jR46oqKjIjMnKypLNZlN4eLgZc+0clTGVc/j4+CgiIsIlpqKiQtnZ2WYMAAAAAABoPrhyBQAAtGjJyckaN26cevTooQsXLmjjxo3atWuXMjIy1KFDBz333HNKSkpSp06dZLPZNH36dNntdo0cOVKSFBUVpfDwcE2cOFGLFy9WQUGBZs2apbi4OPOqkqlTp2rlypV6+eWXNWnSJO3cuVObN29Wenq6mUdSUpJiYmI0bNgwDR8+XMuXL9fFixcVGxvbKHUBAAAAAAC1R3MFAAC0aEVFRXrmmWd05swZdejQQYMGDVJGRobGjh0rSVq2bJk8PT01fvx4lZaWyuFwaNWqVebzvby8tHXrVk2bNk12u11t27ZVTEyM5s2bZ8aEhYUpPT1diYmJWrFihUJCQvTGG2/I4fjnPUMmTJigs2fPKiUlRQUFBRoyZIi2b99e5Sb3AAAAAACg6aO5AgAAWrS1a9fWeNzPz0+pqalKTU29bkzPnj21bdu2GucZPXq0Dh06VGNMfHy84uPja4wBAAAAAABNH/dcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAJqQhQsX6u6771b79u0VGBioRx55RCdPnnSJGT16tDw8PFw+pk6d6hJz+vRpRUdHKyAgQIGBgZoxY4auXr3qErNr1y4NHTpUvr6+6tOnj9LS0qrkk5qaql69esnPz08jRozQvn373L5mAACaG5orAAAAAAAATUhOTo7i4uK0d+9eZWVlyel0KioqShcvXnSJmzJlis6cOWN+LF682DxWXl6u6OholZWVac+ePXrzzTeVlpamlJQUM+bUqVOKjo7Wfffdp/z8fCUkJGjy5MnKyMgwYzZt2qSkpCTNnj1bBw8e1ODBg+VwOFRUVFT/hQAAoAnjhvYAAAAAAABNyPbt210ep6WlKTAwUHl5eRo1apQ5HhAQoODg4GrnyMzM1PHjx7Vjxw4FBQVpyJAhmj9/vl555RXNmTNHPj4+WrNmjcLCwrRkyRJJUv/+/bV7924tW7ZMDodDkrR06VJNmTJFsbGxkqQ1a9YoPT1d69at08yZM+tj+QAANAtcuQIAAAAAANCEFRcXS5I6derkMr5hwwZ16dJFAwYMUHJysi5dumQey83N1cCBAxUUFGSOORwOlZSU6NixY2ZMZGSky5wOh0O5ubmSpLKyMuXl5bnEeHp6KjIy0owBAKC14soVAAAAAACAJqqiokIJCQm65557NGDAAHP8qaeeUs+ePdW9e3cdPnxYr7zyik6ePKn33ntPklRQUODSWJFkPi4oKKgxpqSkRJcvX9a5c+dUXl5ebcyJEyeqzbe0tFSlpaXm45KSEkmS0+mU0+msTQlcVM7h62nUea764I41NgWV62gp62mqqHP9o8YNo6XV+WbXQXMFAAAAAACgiYqLi9PRo0e1e/dul/Hnn3/e/PfAgQPVrVs33X///fryyy/Vu3fvhk7TtHDhQs2dO7fKeGZmpgICAtz2eeYPq3DbXO60bdu2xk7BrbKysho7hVaBOtc/atwwWkqdr70StCY0VwAAAAAAAJqg+Ph4bd26VZ9++qlCQkJqjB0xYoQk6YsvvlDv3r0VHBysffv2ucQUFhZKknmfluDgYHPs2hibzSZ/f395eXnJy8ur2pjr3eslOTlZSUlJ5uOSkhKFhoYqKipKNpvtJlZdM6fTqaysLL16wFOlFR51ns/djs5xNHYKblFZ57Fjx8rb27ux02mxqHP9o8YNo6XVufKqyxuhuQIAAAAAANCEGIah6dOn6/3339euXbsUFhZ2w+fk5+dLkrp16yZJstvtWrBggYqKihQYGCjpH39RbLPZFB4ebsb8+EqLrKws2e12SZKPj48iIiKUnZ2tRx55RNI/3qYsOztb8fHx1ebh6+srX1/fKuPe3t5uPeFWWuGh0vKm11xpCScVr+Xu1w3Vo871jxo3jJZS55tdA80VAAAAAACAJiQuLk4bN27Uhx9+qPbt25v3SOnQoYP8/f315ZdfauPGjXrwwQfVuXNnHT58WImJiRo1apQGDRokSYqKilJ4eLgmTpyoxYsXq6CgQLNmzVJcXJzZ/Jg6dapWrlypl19+WZMmTdLOnTu1efNmpaenm7kkJSUpJiZGw4YN0/Dhw7V8+XJdvHhRsbGxDV8YAACaEJorAAAAAAAATcjq1aslSaNHj3YZX79+vZ599ln5+Phox44dZqMjNDRU48eP16xZs8xYLy8vbd26VdOmTZPdblfbtm0VExOjefPmmTFhYWFKT09XYmKiVqxYoZCQEL3xxhtyOP751lYTJkzQ2bNnlZKSooKCAg0ZMkTbt2+vcpN7AABaG5orAAAAAAAATYhhGDUeDw0NVU5Ozg3n6dmz5w1vsD569GgdOnSoxpj4+Pjrvg0YAACtlWdjJwAAAAAAAAAAANCc0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALLDUXFm4cKHuvvtutW/fXoGBgXrkkUd08uRJl5jRo0fLw8PD5WPq1KkuMadPn1Z0dLQCAgIUGBioGTNm6OrVqy4xu3bt0tChQ+Xr66s+ffooLS2tSj6pqanq1auX/Pz8NGLECO3bt8/KcgAAAAAAAAAAACyz1FzJyclRXFyc9u7dq6ysLDmdTkVFRenixYsucVOmTNGZM2fMj8WLF5vHysvLFR0drbKyMu3Zs0dvvvmm0tLSlJKSYsacOnVK0dHRuu+++5Sfn6+EhARNnjxZGRkZZsymTZuUlJSk2bNn6+DBgxo8eLAcDoeKiopqWwsAAAAAAAAAAIAbamMlePv27S6P09LSFBgYqLy8PI0aNcocDwgIUHBwcLVzZGZm6vjx49qxY4eCgoI0ZMgQzZ8/X6+88ormzJkjHx8frVmzRmFhYVqyZIkkqX///tq9e7eWLVsmh8MhSVq6dKmmTJmi2NhYSdKaNWuUnp6udevWaebMmVaWBQAAAAAAAAAAcNMsNVd+rLi4WJLUqVMnl/ENGzborbfeUnBwsB566CG9+uqrCggIkCTl5uZq4MCBCgoKMuMdDoemTZumY8eO6a677lJubq4iIyNd5nQ4HEpISJAklZWVKS8vT8nJyeZxT09PRUZGKjc397r5lpaWqrS01HxcUlIiSXI6nXI6nbWowD9VPt/X06jTPPWlruurb5X5NfU8myJqVzfUr26oX+3VpnbUGQAAAAAAoGmodXOloqJCCQkJuueeezRgwABz/KmnnlLPnj3VvXt3HT58WK+88opOnjyp9957T5JUUFDg0liRZD4uKCioMaakpESXL1/WuXPnVF5eXm3MiRMnrpvzwoULNXfu3CrjmZmZZvOnruYPq3DLPO62bdu2xk7hpmRlZTV2Cs0Wtasb6lc31K/2rNTu0qVL9ZgJAAAAAAAAblatmytxcXE6evSodu/e7TL+/PPPm/8eOHCgunXrpvvvv19ffvmlevfuXftM3SA5OVlJSUnm45KSEoWGhioqKko2m61OczudTmVlZenVA54qrfCoa6pud3SOo7FTqFFl/caOHStvb+/GTqdZoXZ1Q/3qhvrVXm1qV3nFJQAAAAAAABpXrZor8fHx2rp1qz799FOFhITUGDtixAhJ0hdffKHevXsrODhY+/btc4kpLCyUJPM+LcHBwebYtTE2m03+/v7y8vKSl5dXtTHXu9eLJPn6+srX17fKuLe3t9tOCpZWeKi0vOk1V5rLSU93vhatDbWrG+pXN9Sv9qzUjhoDAAAAAAA0DZ5Wgg3DUHx8vN5//33t3LlTYWFhN3xOfn6+JKlbt26SJLvdriNHjqioqMiMycrKks1mU3h4uBmTnZ3tMk9WVpbsdrskycfHRxERES4xFRUVys7ONmMAAAAAAAAAAADqg6UrV+Li4rRx40Z9+OGHat++vXmPlA4dOsjf319ffvmlNm7cqAcffFCdO3fW4cOHlZiYqFGjRmnQoEGSpKioKIWHh2vixIlavHixCgoKNGvWLMXFxZlXlUydOlUrV67Uyy+/rEmTJmnnzp3avHmz0tPTzVySkpIUExOjYcOGafjw4Vq+fLkuXryo2NhYd9UGAAAAAAAAAACgCkvNldWrV0uSRo8e7TK+fv16Pfvss/Lx8dGOHTvMRkdoaKjGjx+vWbNmmbFeXl7aunWrpk2bJrvdrrZt2yomJkbz5s0zY8LCwpSenq7ExEStWLFCISEheuONN+Rw/PO+IRMmTNDZs2eVkpKigoICDRkyRNu3b69yk3sAAAAAAAAAAAB3stRcMQyjxuOhoaHKycm54Tw9e/bUtm3baowZPXq0Dh06VGNMfHy84uPjb/j5AAAAAAAAAAAA3MXSPVcAAAAAAAAAAABaO5orAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAAAAAAGABzRUAAAAAAAAAAAALaK4AAAAAAAAAAABYQHMFAAAAAAAAAADAAporAAAAAAAAAAAAFtBcAQAAAAAAAAAAsIDmCgAAAAAAAAAAgAU0VwAAAAAAAAAAACyguQIAAAAAANCELFy4UHfffbfat2+vwMBAPfLIIzp58qRLzJUrVxQXF6fOnTurXbt2Gj9+vAoLC11iTp8+rejoaAUEBCgwMFAzZszQ1atXXWJ27dqloUOHytfXV3369FFaWlqVfFJTU9WrVy/5+flpxIgR2rdvn9vXDABAc0NzBQAAAAAAoAnJyclRXFyc9u7dq6ysLDmdTkVFRenixYtmTGJioj766CNt2bJFOTk5+u677/Too4+ax8vLyxUdHa2ysjLt2bNHb775ptLS0pSSkmLGnDp1StHR0brvvvuUn5+vhIQETZ48WRkZGWbMpk2blJSUpNmzZ+vgwYMaPHiwHA6HioqKGqYYAAA0UW0aOwEAAAAAAAD80/bt210ep6WlKTAwUHl5eRo1apSKi4u1du1abdy4UWPGjJEkrV+/Xv3799fevXs1cuRIZWZm6vjx49qxY4eCgoI0ZMgQzZ8/X6+88ormzJkjHx8frVmzRmFhYVqyZIkkqX///tq9e7eWLVsmh8MhSVq6dKmmTJmi2NhYSdKaNWuUnp6udevWaebMmQ1YFQAAmhaaKwAAAAAAAE1YcXGxJKlTp06SpLy8PDmdTkVGRpox/fr1U48ePZSbm6uRI0cqNzdXAwcOVFBQkBnjcDg0bdo0HTt2THfddZdyc3Nd5qiMSUhIkCSVlZUpLy9PycnJ5nFPT09FRkYqNze32lxLS0tVWlpqPi4pKZEkOZ1OOZ3OOlRB5jyS5Otp1Hmu+uCONTYFletoKetpqqhz/aPGDaOl1flm10FzBQAAAAAAoImqqKhQQkKC7rnnHg0YMECSVFBQIB8fH3Xs2NElNigoSAUFBWbMtY2VyuOVx2qKKSkp0eXLl3Xu3DmVl5dXG3PixIlq8124cKHmzp1bZTwzM1MBAQE3ueobmz+swm1zudO2bdsaOwW3ysrKauwUWgXqXP+occNoKXW+dOnSTcXRXAEAAAAAAGii4uLidPToUe3evbuxU7kpycnJSkpKMh+XlJQoNDRUUVFRstlsdZ7f6XQqKytLrx7wVGmFR53nc7ejcxyNnYJbVNZ57Nix8vb2bux0WizqXP+occNoaXWuvOryRmiuAAAAAAAANEHx8fHaunWrPv30U4WEhJjjwcHBKisr0/nz512uXiksLFRwcLAZs2/fPpf5CgsLzWOV/60cuzbGZrPJ399fXl5e8vLyqjamco4f8/X1la+vb5Vxb29vt55wK63wUGl502uutISTitdy9+uG6lHn+keNG0ZLqfPNrsGznvMAAAAAAACABYZhKD4+Xu+//7527typsLAwl+MRERHy9vZWdna2OXby5EmdPn1adrtdkmS323XkyBEVFRWZMVlZWbLZbAoPDzdjrp2jMqZyDh8fH0VERLjEVFRUKDs724wBAKC14soVAAAAAACAJiQuLk4bN27Uhx9+qPbt25v3SOnQoYP8/f3VoUMHPffcc0pKSlKnTp1ks9k0ffp02e12jRw5UpIUFRWl8PBwTZw4UYsXL1ZBQYFmzZqluLg488qSqVOnauXKlXr55Zc1adIk7dy5U5s3b1Z6erqZS1JSkmJiYjRs2DANHz5cy5cv18WLFxUbG9vwhQEAoAmhuQIAAAAAANCErF69WpI0evRol/H169fr2WeflSQtW7ZMnp6eGj9+vEpLS+VwOLRq1Soz1svLS1u3btW0adNkt9vVtm1bxcTEaN68eWZMWFiY0tPTlZiYqBUrVigkJERvvPGGHI5/3jdkwoQJOnv2rFJSUlRQUKAhQ4Zo+/btVW5yDwBAa0NzBQAAAAAAoAkxDOOGMX5+fkpNTVVqaup1Y3r27Klt27bVOM/o0aN16NChGmPi4+MVHx9/w5wAAGhNLN1zZeHChbr77rvVvn17BQYG6pFHHtHJkyddYq5cuaK4uDh17txZ7dq10/jx46vc+Oz06dOKjo5WQECAAgMDNWPGDF29etUlZteuXRo6dKh8fX3Vp08fpaWlVcknNTVVvXr1kp+fn0aMGFHlRm0AAAAAAAAAAADuZqm5kpOTo7i4OO3du1dZWVlyOp2KiorSxYsXzZjExER99NFH2rJli3JycvTdd9/p0UcfNY+Xl5crOjpaZWVl2rNnj958802lpaUpJSXFjDl16pSio6N13333KT8/XwkJCZo8ebIyMjLMmE2bNikpKUmzZ8/WwYMHNXjwYDkcDpcbtQEAAAAAAAAAALibpbcF2759u8vjtLQ0BQYGKi8vT6NGjVJxcbHWrl2rjRs3asyYMZL+8X6g/fv31969ezVy5EhlZmbq+PHj2rFjh4KCgjRkyBDNnz9fr7zyiubMmSMfHx+tWbNGYWFhWrJkiSSpf//+2r17t5YtW2a+7+fSpUs1ZcoU8wZqa9asUXp6utatW6eZM2fWuTAAAAAAAAAAAADVsXTlyo8VFxdLkjp16iRJysvLk9PpVGRkpBnTr18/9ejRQ7m5uZKk3NxcDRw40OXGZw6HQyUlJTp27JgZc+0clTGVc5SVlSkvL88lxtPTU5GRkWYMAAAAAAAAAABAfaj1De0rKiqUkJCge+65RwMGDJAkFRQUyMfHRx07dnSJDQoKUkFBgRlzbWOl8njlsZpiSkpKdPnyZZ07d07l5eXVxpw4ceK6OZeWlqq0tNR8XFJSIklyOp1yOp03u/RqVT7f1/PGN51rDHVdX32rzK+p59kUUbu6oX51Q/1qrza1o84AAAAAAABNQ62bK3FxcTp69Kh2797tznzq1cKFCzV37twq45mZmQoICHDL55g/rMIt87jbtm3bGjuFm5KVldXYKTRb1K5uqF/dUL/as1K7S5cu1WMmAAAAAAAAuFm1aq7Ex8dr69at+vTTTxUSEmKOBwcHq6ysTOfPn3e5eqWwsFDBwcFmzL59+1zmKywsNI9V/rdy7NoYm80mf39/eXl5ycvLq9qYyjmqk5ycrKSkJPNxSUmJQkNDFRUVJZvNZqECVTmdTmVlZenVA54qrfCo01z14egcR2OnUKPK+o0dO1be3t6NnU6zQu3qhvrVDfWrvdrUrvKKSwAAAAAAADQuS80VwzA0ffp0vf/++9q1a5fCwsJcjkdERMjb21vZ2dkaP368JOnkyZM6ffq07Ha7JMlut2vBggUqKipSYGCgpH/81a7NZlN4eLgZ8+MrLbKyssw5fHx8FBERoezsbD3yyCOS/vE2ZdnZ2YqPj79u/r6+vvL19a0y7u3t7baTgqUVHiotb3rNleZy0tOdr0VrQ+3qhvrVDfWrPSu1o8YAAAAAAABNg6XmSlxcnDZu3KgPP/xQ7du3N++R0qFDB/n7+6tDhw567rnnlJSUpE6dOslms2n69Omy2+0aOXKkJCkqKkrh4eGaOHGiFi9erIKCAs2aNUtxcXFm42Pq1KlauXKlXn75ZU2aNEk7d+7U5s2blZ6ebuaSlJSkmJgYDRs2TMOHD9fy5ct18eJFxcbGuqs2AAAAAAAAAAAAVVhqrqxevVqSNHr0aJfx9evX69lnn5UkLVu2TJ6enho/frxKS0vlcDi0atUqM9bLy0tbt27VtGnTZLfb1bZtW8XExGjevHlmTFhYmNLT05WYmKgVK1YoJCREb7zxhhyOf7611YQJE3T27FmlpKSooKBAQ4YM0fbt26vc5B4AAAAAAAAAAMCdLL8t2I34+fkpNTVVqamp143p2bPnDW+wPnr0aB06dKjGmPj4+BrfBgwAAAAAAAAAAMDdPBs7AQAAAAAAAAAAgOaE5goAAAAAAAAAAIAFNFcAAAAAAAAAAAAsoLkCAAAAAAAAAABgAc0VAAAAAAAAAAAAC2iuAACAFm3hwoW6++671b59ewUGBuqRRx7RyZMnXWKuXLmiuLg4de7cWe3atdP48eNVWFjoEnP69GlFR0crICBAgYGBmjFjhq5eveoSs2vXLg0dOlS+vr7q06eP0tLSquSTmpqqXr16yc/PTyNGjNC+ffvcvmYAAAAAAFC/aK4AAIAWLScnR3Fxcdq7d6+ysrLkdDoVFRWlixcvmjGJiYn66KOPtGXLFuXk5Oi7777To48+ah4vLy9XdHS0ysrKtGfPHr355ptKS0tTSkqKGXPq1ClFR0frvvvuU35+vhISEjR58mRlZGSYMZs2bVJSUpJmz56tgwcPavDgwXI4HCoqKmqYYgAAAAAAALdo09gJAAAA1Kft27e7PE5LS1NgYKDy8vI0atQoFRcXa+3atdq4caPGjBkjSVq/fr369++vvXv3auTIkcrMzNTx48e1Y8cOBQUFaciQIZo/f75eeeUVzZkzRz4+PlqzZo3CwsK0ZMkSSVL//v21e/duLVu2TA6HQ5K0dOlSTZkyRbGxsZKkNWvWKD09XevWrdPMmTMbsCoAAAAAAKAuaK4AAIBWpbi4WJLUqVMnSVJeXp6cTqciIyPNmH79+qlHjx7Kzc3VyJEjlZubq4EDByooKMiMcTgcmjZtmo4dO6a77rpLubm5LnNUxiQkJEiSysrKlJeXp+TkZPO4p6enIiMjlZubW22upaWlKi0tNR+XlJRIkpxOp5xO502vuTK2uuf4ehk3PU9Ds7LGG83hjrmaG9bO2lsb1t40194UcwIAAHAHmisAAKDVqKioUEJCgu655x4NGDBAklRQUCAfHx917NjRJTYoKEgFBQVmzLWNlcrjlcdqiikpKdHly5d17tw5lZeXVxtz4sSJavNduHCh5s6dW2U8MzNTAQEBN7nqf8rKyqoytni45WkazLZt29w2V3Vrby1Ye+vE2lunprj2S5cuNXYKAAAA9YLmCgAAaDXi4uJ09OhR7d69u7FTuSnJyclKSkoyH5eUlCg0NFRRUVGy2Ww3PY/T6VRWVpbGjh0rb29vl2MD5mRc51mN7+gcR53nqGntLR1rZ+2svfVoymuvvOoSAACgpaG5AgAAWoX4+Hht3bpVn376qUJCQszx4OBglZWV6fz58y5XrxQWFio4ONiM2bdvn8t8hYWF5rHK/1aOXRtjs9nk7+8vLy8veXl5VRtTOceP+fr6ytfXt8q4t7d3rU6eVfe80nIPy/M0FHeeIKxtzVoC1s7aWxvW3rTW3tTyAQAAcBfPxk4AAACgPhmGofj4eL3//vvauXOnwsLCXI5HRETI29tb2dnZ5tjJkyd1+vRp2e12SZLdbteRI0dUVFRkxmRlZclmsyk8PNyMuXaOypjKOXx8fBQREeESU1FRoezsbDMGAAAAAAA0D1y5AgAAWrS4uDht3LhRH374odq3b2/eI6VDhw7y9/dXhw4d9NxzzykpKUmdOnWSzWbT9OnTZbfbNXLkSElSVFSUwsPDNXHiRC1evFgFBQWaNWuW4uLizCtLpk6dqpUrV+rll1/WpEmTtHPnTm3evFnp6elmLklJSYqJidGwYcM0fPhwLV++XBcvXlRsbGzDFwYAAAAAANQazRUAANCirV69WpI0evRol/H169fr2WeflSQtW7ZMnp6eGj9+vEpLS+VwOLRq1Soz1svLS1u3btW0adNkt9vVtm1bxcTEaN68eWZMWFiY0tPTlZiYqBUrVigkJERvvPGGHI5/3jdkwoQJOnv2rFJSUlRQUKAhQ4Zo+/btVW5yDwAAAAAAmjaaKwAAoEUzDOOGMX5+fkpNTVVqaup1Y3r27Klt27bVOM/o0aN16NChGmPi4+MVHx9/w5wAAAAAAEDTxT1XAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAACABTRXAAAAAAAAAAAALKC5AgAAAAAAAAAAYAHNFQAAAAAAAAAAAAtorgAAAAAAAAAAAFhAcwUAAAAAAAAAAMACmisAAAAAAAAAAAAW0FwBAAAAAAAAAACwgOYKAAAAAAAAAADA/4+9u4/zqq7zxv8abmaAbLjRAFlRKU28RcUNp7UyRQZkLdTLVaMiJd0KulRaLVtD1LpQyxtUjNxS67ey3nRtbqkhE6aYjjegk+Ld1kbL7upAG+KI5jDC9/eHF991gkEPMzAwPJ+Pxzz0e877e87n83ac75nzmnNOAcIVAAAAgG3IwoULc9xxx2XIkCGpqKjInXfe2Wr95z73uVRUVLT6Gjt2bKualStXZuLEiamurk6/fv0yefLkrF69ulXNU089lY985CPp1atXhg4dmssvv3yDsdxxxx0ZPnx4evXqlQMPPDD33HNPh88XALZHwhUAAACAbchrr72WESNGZPbs2W3WjB07Ni+99FL565/+6Z9arZ84cWKeeeaZ1NXV5a677srChQtz5plnltc3NTVlzJgx2WOPPbJ48eJ8+9vfzowZM3LDDTeUax5++OGceuqpmTx5cp588slMmDAhEyZMyJIlSzp+0gCwnenR2QMAAAAA4H+MGzcu48aN22RNVVVVBg8evNF1zz33XObNm5fHH388hx12WJLk2muvzbHHHpvvfOc7GTJkSG655ZasWbMmN954YyorK7P//vunoaEhV155ZTmEmTVrVsaOHZtzzz03SXLJJZekrq4u1113XebMmdOBMwaA7Y9wBQAAAGA7c//992fgwIHp379/jjrqqHzzm9/MzjvvnCSpr69Pv379ysFKkowePTrdunXLo48+muOPPz719fX56Ec/msrKynJNbW1tLrvssrz88svp379/6uvrM23atFb7ra2t3eA2ZW/X3Nyc5ubm8uumpqYkSUtLS1paWto97/XbqOpWave2toSOmOO2YP08usp8tlX6vOXp8dbR1fr8buchXAEAAADYjowdOzYnnHBChg0bln/7t3/L17/+9YwbNy719fXp3r17GhsbM3DgwFbv6dGjRwYMGJDGxsYkSWNjY4YNG9aqZtCgQeV1/fv3T2NjY3nZ22vWb2NjZs6cmYsuumiD5fPnz0+fPn02a74bc8lh6zpsWx2pqz2Tpq6urrOHsEPQ5y1Pj7eOrtLn119//V3VCVcAAAAAtiOnnHJK+d8PPPDAHHTQQfnABz6Q+++/P0cffXQnjiw5//zzW13t0tTUlKFDh2bMmDGprq5u9/ZbWlpSV1eXbyzqluZ1Fe3eXkdbMqO2s4fQIdb3+ZhjjknPnj07ezhdlj5veXq8dXS1Pq+/6vKdCFcAAAAAtmPvf//7s8suu+S3v/1tjj766AwePDgrVqxoVfPmm29m5cqV5ee0DB48OMuXL29Vs/71O9W09ayX5K1nwVRVVW2wvGfPnh16wq15XUWa12574UpXOKn4dh39342N0+ctT4+3jq7S53c7h25beBwAAAAAbEH/+Z//mT/+8Y/ZddddkyQ1NTVZtWpVFi9eXK657777sm7duowaNapcs3Dhwlb3la+rq8s+++yT/v37l2sWLFjQal91dXWpqanZ0lMCgG2ecAUAAABgG7J69eo0NDSkoaEhSbJ06dI0NDRk2bJlWb16dc4999w88sgj+f3vf58FCxbkk5/8ZPbaa6/U1r51S6p99903Y8eOzRlnnJHHHnssDz30UKZOnZpTTjklQ4YMSZJ86lOfSmVlZSZPnpxnnnkmt912W2bNmtXqll5nnXVW5s2blyuuuCLPP/98ZsyYkUWLFmXq1KlbvScAsK0pHK4sXLgwxx13XIYMGZKKiorceeedrdZ/7nOfS0VFRauvsWPHtqpZuXJlJk6cmOrq6vTr1y+TJ0/O6tWrW9U89dRT+chHPpJevXpl6NChufzyyzcYyx133JHhw4enV69eOfDAA7vcQ8MAAACAHc+iRYtyyCGH5JBDDkmSTJs2LYccckimT5+e7t2756mnnsonPvGJfPCDH8zkyZMzcuTIPPjgg61ux3XLLbdk+PDhOfroo3PsscfmiCOOyA033FBe37dv38yfPz9Lly7NyJEj85WvfCXTp0/PmWeeWa758Ic/nLlz5+aGG27IiBEj8uMf/zh33nlnDjjggK3XDADYRhV+5sprr72WESNG5PTTT88JJ5yw0ZqxY8fmpptuKr/+83ttTpw4MS+99FLq6urS0tKS0047LWeeeWbmzp2b5K0HxowZMyajR4/OnDlz8vTTT+f0009Pv379yh/yDz/8cE499dTMnDkzf/3Xf525c+dmwoQJeeKJJ3zIAwAAANutI488MqVSqc3199577ztuY8CAAeXzLG056KCD8uCDD26y5qSTTspJJ530jvsDgB1N4XBl3LhxGTdu3CZrqqqq2ny42XPPPZd58+bl8ccfz2GHHZYkufbaa3PsscfmO9/5ToYMGZJbbrkla9asyY033pjKysrsv//+aWhoyJVXXlkOV2bNmpWxY8fm3HPPTZJccsklqaury3XXXZc5c+YUnRYAAAAAAMC7UjhceTfuv//+DBw4MP37989RRx2Vb37zm9l5552TJPX19enXr185WEmS0aNHp1u3bnn00Udz/PHHp76+Ph/96EdTWVlZrqmtrc1ll12Wl19+Of379099fX2r+4Cur/nz25S9XXNzc5qbm8uvm5qakiQtLS2tHuC2Oda/v6pb239Z0pnaO78tbf34tvVxbov0rn30r330b/NtTu/0GQAAAGDb0OHhytixY3PCCSdk2LBh+bd/+7d8/etfz7hx41JfX5/u3bunsbExAwcObD2IHj0yYMCANDY2JkkaGxszbNiwVjWDBg0qr+vfv38aGxvLy95es34bGzNz5sxcdNFFGyyfP39++vTps1nz/XOXHLauQ7bT0baX59HU1dV19hC2W3rXPvrXPvq3+Yr07vXXX9+CIwEAAADg3erwcOWUU04p//uBBx6Ygw46KB/4wAdy//335+ijj+7o3RVy/vnnt7rapampKUOHDs2YMWNSXV3drm23tLSkrq4u31jULc3rKto71A63ZEZtZw9hk9b375hjjknPnj07ezjbFb1rH/1rH/3bfJvTu/VXXAIAAADQubbIbcHe7v3vf3922WWX/Pa3v83RRx+dwYMHZ8WKFa1q3nzzzaxcubL8nJbBgwdn+fLlrWrWv36nmrae9ZK89SyYqqqqDZb37Nmzw04KNq+rSPPabS9c2V5Oenbkf4sdjd61j/61j/5tviK902MAAACAbUO3Lb2D//zP/8wf//jH7LrrrkmSmpqarFq1KosXLy7X3HfffVm3bl1GjRpVrlm4cGGre8vX1dVln332Sf/+/cs1CxYsaLWvurq61NTUbOkpAQAAAAAAO7DC4crq1avT0NCQhoaGJMnSpUvT0NCQZcuWZfXq1Tn33HPzyCOP5Pe//30WLFiQT37yk9lrr71SW/vWban23XffjB07NmeccUYee+yxPPTQQ5k6dWpOOeWUDBkyJEnyqU99KpWVlZk8eXKeeeaZ3HbbbZk1a1arW3qdddZZmTdvXq644oo8//zzmTFjRhYtWpSpU6d2QFsAAAAAAAA2rnC4smjRohxyyCE55JBDkiTTpk3LIYcckunTp6d79+556qmn8olPfCIf/OAHM3ny5IwcOTIPPvhgq9tx3XLLLRk+fHiOPvroHHvssTniiCNyww03lNf37ds38+fPz9KlSzNy5Mh85StfyfTp03PmmWeWaz784Q9n7ty5ueGGGzJixIj8+Mc/zp133pkDDjigPf0AAAAAAADYpMLPXDnyyCNTKpXaXH/vvfe+4zYGDBiQuXPnbrLmoIMOyoMPPrjJmpNOOiknnXTSO+4PAAAAAACgo2zxZ64AAAAAAAB0JcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAADbkIULF+a4447LkCFDUlFRkTvvvLPV+lKplOnTp2fXXXdN7969M3r06PzmN79pVbNy5cpMnDgx1dXV6devXyZPnpzVq1e3qnnqqafykY98JL169crQoUNz+eWXbzCWO+64I8OHD0+vXr1y4IEH5p577unw+QLA9ki4AgAAALANee211zJixIjMnj17o+svv/zyXHPNNZkzZ04effTRvOc970ltbW3eeOONcs3EiRPzzDPPpK6uLnfddVcWLlyYM888s7y+qakpY8aMyR577JHFixfn29/+dmbMmJEbbrihXPPwww/n1FNPzeTJk/Pkk09mwoQJmTBhQpYsWbLlJg8A24kenT0AAAAAAP7HuHHjMm7cuI2uK5VKufrqq3PBBRfkk5/8ZJLkRz/6UQYNGpQ777wzp5xySp577rnMmzcvjz/+eA477LAkybXXXptjjz023/nOdzJkyJDccsstWbNmTW688cZUVlZm//33T0NDQ6688spyCDNr1qyMHTs25557bpLkkksuSV1dXa677rrMmTNnK3QCALZdrlwBAAAA2E4sXbo0jY2NGT16dHlZ3759M2rUqNTX1ydJ6uvr069fv3KwkiSjR49Ot27d8uijj5ZrPvrRj6aysrJcU1tbmxdeeCEvv/xyuebt+1lfs34/ALAjc+UKAAAAwHaisbExSTJo0KBWywcNGlRe19jYmIEDB7Za36NHjwwYMKBVzbBhwzbYxvp1/fv3T2Nj4yb3szHNzc1pbm4uv25qakqStLS0pKWl5V3Psy3rt1HVrdTubW0JHTHHbcH6eXSV+Wyr9HnL0+Oto6v1+d3OQ7gCAAAAQIeYOXNmLrroog2Wz58/P3369Omw/Vxy2LoO21ZHuueeezp7CB2qrq6us4ewQ9DnLU+Pt46u0ufXX3/9XdUVDlcWLlyYb3/721m8eHFeeuml/OQnP8mECRPK60ulUi688ML8wz/8Q1atWpW/+qu/yne/+93svffe5ZqVK1fmy1/+cn72s5+lW7duOfHEEzNr1qzstNNO5ZqnnnoqU6ZMyeOPP573ve99+fKXv5zzzjuv1VjuuOOOfOMb38jvf//77L333rnsssty7LHHFp0SAAAAwHZh8ODBSZLly5dn1113LS9fvnx5Dj744HLNihUrWr3vzTffzMqVK8vvHzx4cJYvX96qZv3rd6pZv35jzj///EybNq38uqmpKUOHDs2YMWNSXV1dZKob1dLSkrq6unxjUbc0r6to9/Y62pIZtZ09hA6xvs/HHHNMevbs2dnD6bL0ecvT462jq/V5/VWX76RwuPLaa69lxIgROf3003PCCSdssP7yyy/PNddckx/+8IcZNmxYvvGNb6S2tjbPPvtsevXqlSSZOHFiXnrppdTV1aWlpSWnnXZazjzzzMydO7c8+DFjxmT06NGZM2dOnn766Zx++unp169f+aFqDz/8cE499dTMnDkzf/3Xf525c+dmwoQJeeKJJ3LAAQcUnRYAAADANm/YsGEZPHhwFixYUA5Tmpqa8uijj+aLX/xikqSmpiarVq3K4sWLM3LkyCTJfffdl3Xr1mXUqFHlmr//+79PS0tL+URYXV1d9tlnn/Tv379cs2DBgpx99tnl/dfV1aWmpqbN8VVVVaWqqmqD5T179uzQE27N6yrSvHbbC1e6wknFt+vo/25snD5veXq8dXSVPr/bORR+oP24cePyzW9+M8cff/wG60qlUq6++upccMEF+eQnP5mDDjooP/rRj/Liiy/mzjvvTJI899xzmTdvXr7//e9n1KhROeKII3Lttdfm1ltvzYsvvpgkueWWW7JmzZrceOON2X///XPKKafkf//v/50rr7yyvK9Zs2Zl7NixOffcc7PvvvvmkksuyaGHHprrrruu6JQAAAAAthmrV69OQ0NDGhoakrz1EPuGhoYsW7YsFRUVOfvss/PNb34zP/3pT/P000/ns5/9bIYMGVK+s8i+++6bsWPH5owzzshjjz2Whx56KFOnTs0pp5ySIUOGJEk+9alPpbKyMpMnT84zzzyT2267LbNmzWp11clZZ52VefPm5Yorrsjzzz+fGTNmZNGiRZk6derWbgkAbHM69JkrS5cuTWNjY0aPHl1e1rdv34waNSr19fU55ZRTUl9fn379+uWwww4r14wePTrdunXLo48+muOPPz719fX56Ec/msrKynJNbW1tLrvssrz88svp379/6uvrW33gr69ZH+JszJZ8qJoHqrVPV3vo0dakd+2jf+2jf5tvc3qnzwAAO4ZFixbl4x//ePn1+vMfkyZNys0335zzzjsvr732Ws4888ysWrUqRxxxRObNm1e+Y0jy1h+uTp06NUcffXT5luzXXHNNeX3fvn0zf/78TJkyJSNHjswuu+yS6dOnl+8YkiQf/vCHM3fu3FxwwQX5+te/nr333jt33nmnO4YAQDo4XGlsbEySDBo0qNXyQYMGldc1NjZm4MCBrQfRo0cGDBjQqmbYsGEbbGP9uv79+6exsXGT+9mYrfFQNQ9Ua5+u8tCjzqB37aN/7aN/m69I797tA9UAANi+HXnkkSmV2v7jzYqKilx88cW5+OKL26wZMGBA+fbrbTnooIPy4IMPbrLmpJNOykknnbTpAQPADqhDw5Vt3ZZ8qJoHqrVPV3vo0dakd+2jf+2jf5tvc3r3bh+oBgAAAMCW1aHhyuDBg5Mky5cvz6677lpevnz58vJD1gYPHpwVK1a0et+bb76ZlStXlt8/ePDgLF++vFXN+tfvVLN+/cZsjYeqeaBa+3SVhx51Br1rH/1rH/3bfEV6p8cAAAAA24bCD7TflGHDhmXw4MFZsGBBeVlTU1MeffTR1NTUJElqamqyatWqLF68uFxz3333Zd26dRk1alS5ZuHCha3uLV9XV5d99tkn/fv3L9e8fT/ra9bvBwAAAAAAYEsoHK6sXr06DQ0NaWhoSPLWQ+wbGhqybNmyVFRU5Oyzz843v/nN/PSnP83TTz+dz372sxkyZEgmTJiQJNl3330zduzYnHHGGXnsscfy0EMPZerUqTnllFMyZMiQJMmnPvWpVFZWZvLkyXnmmWdy2223ZdasWa1u6XXWWWdl3rx5ueKKK/L8889nxowZWbRoUaZOndr+rgAAXcbChQtz3HHHZciQIamoqMidd97Zan2pVMr06dOz6667pnfv3hk9enR+85vftKpZuXJlJk6cmOrq6vTr1y+TJ0/O6tWrW9U89dRT+chHPpJevXpl6NChufzyyzcYyx133JHhw4enV69eOfDAA7ebZ6IBAAAArRUOVxYtWpRDDjkkhxxySJJk2rRpOeSQQzJ9+vQkyXnnnZcvf/nLOfPMM/OXf/mXWb16debNm5devXqVt3HLLbdk+PDhOfroo3PsscfmiCOOyA033FBe37dv38yfPz9Lly7NyJEj85WvfCXTp0/PmWee3uwDDgAAXDtJREFUWa758Ic/nLlz5+aGG27IiBEj8uMf/zh33nlnDjjggM1uBgDQ9bz22msZMWJEZs+evdH1l19+ea655prMmTMnjz76aN7znvektrY2b7zxRrlm4sSJeeaZZ1JXV5e77rorCxcubHVc0tTUlDFjxmSPPfbI4sWL8+1vfzszZsxodXzz8MMP59RTT83kyZPz5JNPZsKECZkwYUKWLFmy5SYPAAAAbBGFn7ly5JFHplQqtbm+oqIiF198cS6++OI2awYMGJC5c+ducj8HHXRQHnzwwU3WnHTSSTnppJM2PWAAYIc2bty4jBs3bqPrSqVSrr766lxwwQX55Cc/mST50Y9+lEGDBuXOO+/MKaeckueeey7z5s3L448/nsMOOyxJcu211+bYY4/Nd77znQwZMiS33HJL1qxZkxtvvDGVlZXZf//909DQkCuvvLIcwsyaNStjx47NueeemyS55JJLUldXl+uuuy5z5szZCp0AAAAAOkqHPtAeAGB7snTp0jQ2Nmb06NHlZX379s2oUaNSX1+fU045JfX19enXr185WEmS0aNHp1u3bnn00Udz/PHHp76+Ph/96EdTWVlZrqmtrc1ll12Wl19+Of379099fX2rW5yur/nz25S9XXNzc5qbm8uvm5qakiQtLS2tnk33TtbXbuw9Vd3b/qOZzlZkju+0jY7Y1vbG3M19R2Pu2+bct8UxAQB0BOEKALDDamxsTJIMGjSo1fJBgwaV1zU2NmbgwIGt1vfo0SMDBgxoVTNs2LANtrF+Xf/+/dPY2LjJ/WzMzJkzc9FFF22wfP78+enTp8+7mWIrdXV1Gyy7/EOFN7PVdOQzaTY29x2Fue+YzH3HtC3O/fXXX+/sIQAAbBHCFQCAbdT555/f6mqXpqamDB06NGPGjEl1dfW73k5LS0vq6upyzDHHpGfPnq3WHTDj3g4bb0dbMqO23dvY1Ny7OnM3d3PfcWzLc19/1SUAQFcjXAEAdliDBw9Okixfvjy77rprefny5ctz8MEHl2tWrFjR6n1vvvlmVq5cWX7/4MGDs3z58lY161+/U8369RtTVVWVqqqqDZb37Nlzs06ebex9zWsrCm9na+nIE4Sb27OuwNzNfUdj7tvW3Le18QAAdJRunT0AAIDOMmzYsAwePDgLFiwoL2tqasqjjz6ampqaJElNTU1WrVqVxYsXl2vuu+++rFu3LqNGjSrXLFy4sNV95evq6rLPPvukf//+5Zq372d9zfr9AAAAANsP4QoA0KWtXr06DQ0NaWhoSPLWQ+wbGhqybNmyVFRU5Oyzz843v/nN/PSnP83TTz+dz372sxkyZEgmTJiQJNl3330zduzYnHHGGXnsscfy0EMPZerUqTnllFMyZMiQJMmnPvWpVFZWZvLkyXnmmWdy2223ZdasWa1u6XXWWWdl3rx5ueKKK/L8889nxowZWbRoUaZOnbq1WwIAAAC0k9uCAQBd2qJFi/Lxj3+8/Hp94DFp0qTcfPPNOe+88/Laa6/lzDPPzKpVq3LEEUdk3rx56dWrV/k9t9xyS6ZOnZqjjz463bp1y4knnphrrrmmvL5v376ZP39+pkyZkpEjR2aXXXbJ9OnTc+aZZ5ZrPvzhD2fu3Lm54IIL8vWvfz1777137rzzzhxwwAFboQsAAABARxKuAABd2pFHHplSqdTm+oqKilx88cW5+OKL26wZMGBA5s6du8n9HHTQQXnwwQc3WXPSSSflpJNO2vSAAQAAgG2e24IBAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAgO3IjBkzUlFR0epr+PDh5fVvvPFGpkyZkp133jk77bRTTjzxxCxfvrzVNpYtW5bx48enT58+GThwYM4999y8+eabrWruv//+HHrooamqqspee+2Vm2++eWtMDwC2C8IVAAAAgO3M/vvvn5deeqn89atf/aq87pxzzsnPfvaz3HHHHXnggQfy4osv5oQTTiivX7t2bcaPH581a9bk4Ycfzg9/+MPcfPPNmT59erlm6dKlGT9+fD7+8Y+noaEhZ599dj7/+c/n3nvv3arzBIBtVY/OHgAAAAAAxfTo0SODBw/eYPkrr7ySH/zgB5k7d26OOuqoJMlNN92UfffdN4888kgOP/zwzJ8/P88++2x+8YtfZNCgQTn44INzySWX5Ktf/WpmzJiRysrKzJkzJ8OGDcsVV1yRJNl3333zq1/9KldddVVqa2u36lwBYFvU4VeuuDQVAAAAYMv6zW9+kyFDhuT9739/Jk6cmGXLliVJFi9enJaWlowePbpcO3z48Oy+++6pr69PktTX1+fAAw/MoEGDyjW1tbVpamrKM888U655+zbW16zfBgDs6LbIlSv7779/fvGLX/zPTnr8z27OOeec3H333bnjjjvSt2/fTJ06NSeccEIeeuihJP9zaergwYPz8MMP56WXXspnP/vZ9OzZM//n//yfJP9zaeoXvvCF3HLLLVmwYEE+//nPZ9ddd/XXEwAAAECXNmrUqNx8883ZZ5998tJLL+Wiiy7KRz7ykSxZsiSNjY2prKxMv379Wr1n0KBBaWxsTJI0Nja2ClbWr1+/blM1TU1N+dOf/pTevXtvdGzNzc1pbm4uv25qakqStLS0pKWlZfMn/f+s30ZVt1K7t7UldMQctwXr59FV5rOt0uctT4+3jq7W53c7jy0Srrg0FQAAAGDLGDduXPnfDzrooIwaNSp77LFHbr/99jZDj61l5syZueiiizZYPn/+/PTp06fD9nPJYes6bFsd6Z577unsIXSourq6zh7CDkGftzw93jq6Sp9ff/31d1W3RcKV9Zem9urVKzU1NZk5c2Z23333d7w09fDDD2/z0tQvfvGLeeaZZ3LIIYe0eWnq2WefvSWmAwAAALDN6tevXz74wQ/mt7/9bY455pisWbMmq1atanX1yvLly8t/CDt48OA89thjrbax/pbtb6/589u4L1++PNXV1ZsMcM4///xMmzat/LqpqSlDhw7NmDFjUl1d3a55Jm/9NXFdXV2+sahbmtdVtHt7HW3JjK7xR7/r+3zMMcekZ8+enT2cLkuftzw93jq6Wp/XX3X5Tjo8XNlRL011WWr7dLVLx7YmvWsf/Wsf/dt8m9M7fQYAYGNWr16df/u3f8tnPvOZjBw5Mj179syCBQty4oknJkleeOGFLFu2LDU1NUmSmpqafOtb38qKFSsycODAJG/9tXF1dXX222+/cs2fX4VRV1dX3kZbqqqqUlVVtcHynj17dugJt+Z1FWleu+2FK13hpOLbdfR/NzZOn7c8Pd46ukqf3+0cOjxc2dEvTXVZavt0lUvHOoPetY/+tY/+bb4ivXu3l6UCANC1/d3f/V2OO+647LHHHnnxxRdz4YUXpnv37jn11FPTt2/fTJ48OdOmTcuAAQNSXV2dL3/5y6mpqcnhhx+eJBkzZkz222+/fOYzn8nll1+exsbGXHDBBZkyZUo5GPnCF76Q6667Luedd15OP/303Hfffbn99ttz9913d+bUAWCbsUVuC/Z2O8qlqS5LbZ+udunY1qR37aN/7aN/m29zevduL0sFAKBr+8///M+ceuqp+eMf/5j3ve99OeKII/LII4/kfe97X5LkqquuSrdu3XLiiSemubk5tbW1uf7668vv7969e+6666588YtfTE1NTd7znvdk0qRJufjii8s1w4YNy913351zzjkns2bNym677Zbvf//7nnULAP/PFg9XdrRLU12W2j5d5dKxzqB37aN/7aN/m69I7/QYAIAkufXWWze5vlevXpk9e3Zmz57dZs0ee+zxjne5OPLII/Pkk09u1hgBoKvr1tEb/Lu/+7s88MAD+f3vf5+HH344xx9//EYvTf3lL3+ZxYsX57TTTmvz0tRf//rXuffeezd6aervfve7nHfeeXn++edz/fXX5/bbb88555zT0dMBAAAAAABopcOvXHFpKgAAAAAA0JV1eLji0lQAAAAAAKAr2+LPXGHbsOfX7u7sIbTp95eO7+whAAAAAADAu9bhz1wBAAAAAADoyoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAK6NHZAwAAAACArmDPr93d2UNo0+8vHd/ZQwDoUly5AgAAAAAAUIArVwAAAACgiytyVU1V91Iu/1BywIx707y2YguO6i2uqgG2R65cAQAAAAAAKEC4AgAAAAAAUIDbggEAAAAAnabILcu2NrcsA9riyhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAU4IH2AABskzriwaZV3Uu5/EPJATPuTfPaig4Y1Vs82BQAAGDH5soVAAAAAACAAly5AgAAAACwER1xNXVb2nuVtaupoXO5cgUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIACPHOFTrfn1+5u9z0mtyT3rwQAAAAA4O1cuQIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIACtvsH2s+ePTvf/va309jYmBEjRuTaa6/Nhz70oc4eFgBAmxy/bP/2/NrdnT2ENv3+0vGdPQQAuhjHLgCwoe36ypXbbrst06ZNy4UXXpgnnngiI0aMSG1tbVasWNHZQwMA2CjHLwDA9sSxCwBs3HZ95cqVV16ZM844I6eddlqSZM6cObn77rtz44035mtf+1onj46uwl+mAtCRHL8AANsTxy4AsHHbbbiyZs2aLF68OOeff355Wbdu3TJ69OjU19dv9D3Nzc1pbm4uv37llVeSJCtXrkxLS0u7xtPS0pLXX389PVq6Ze26inZta0fUY10pr7++Tv8K+uMf/1j+3vvjH/+Ynj17dvaQtjv61z76t/k2p3evvvpqkqRUKm3JobEFFT1+6ahjl019v/V487Wi09iu7IjHGHv93e1JkqpupVxwyLoc/Pf/nOYdZO7rbe7cHz3/6C04qq1jR/5sNvdtc+6OX7Zv29q5l8T5l61lRzyG6gzt7fP6475t0bZyXLUtf0Z2JV2tz+/2+GW7DVf++7//O2vXrs2gQYNaLR80aFCef/75jb5n5syZueiiizZYPmzYsC0yRor5VGcPYDu0yxWdPQKgM7z66qvp27dvZw+DzVD0+MWxS8fYkY8xzL0Yx1aw5Th+2T4597Jj25GPI7amrtpnx1V0Be90/LLdhiub4/zzz8+0adPKr9etW5eVK1dm5513TkVF+1L4pqamDB06NP/xH/+R6urq9g51h6N/m0/v2kf/2kf/Nt/m9K5UKuXVV1/NkCFDtvDo2FZ01LHLjvz/qrmbu7nvOMx925y745cdz5Y895Js29/vXYk+bx36vOXp8dbR1fr8bo9ftttwZZdddkn37t2zfPnyVsuXL1+ewYMHb/Q9VVVVqaqqarWsX79+HTqu6urqLvEN1Fn0b/PpXfvoX/vo3+Yr2jt/8bl9K3r80tHHLjvy/6vmbu47GnM3922J45ft17Z67iXZdr/fuxp93jr0ecvT462jK/X53Ry/dNsK49giKisrM3LkyCxYsKC8bN26dVmwYEFqamo6cWQAABvn+AUA2J44dgGAtm23V64kybRp0zJp0qQcdthh+dCHPpSrr746r732Wk477bTOHhoAwEY5fgEAtieOXQBg47brcOXkk0/OH/7wh0yfPj2NjY05+OCDM2/evA0etLY1VFVV5cILL9zg0lfeHf3bfHrXPvrXPvq3+fRux9UZxy878vebuZv7jsbczR062rZ07iXx/b616PPWoc9bnh5vHTtqnytKpVKpswcBAAAAAACwvdhun7kCAAAAAADQGYQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBc6SCzZ8/OnnvumV69emXUqFF57LHHOntIW93ChQtz3HHHZciQIamoqMidd97Zan2pVMr06dOz6667pnfv3hk9enR+85vftKpZuXJlJk6cmOrq6vTr1y+TJ0/O6tWrW9U89dRT+chHPpJevXpl6NChufzyy7f01La4mTNn5i//8i/z3ve+NwMHDsyECRPywgsvtKp54403MmXKlOy8887ZaaedcuKJJ2b58uWtapYtW5bx48enT58+GThwYM4999y8+eabrWruv//+HHrooamqqspee+2Vm2++eUtPb4v67ne/m4MOOijV1dWprq5OTU1Nfv7zn5fX61sxl156aSoqKnL22WeXl+lh22bMmJGKiopWX8OHDy+v1zu2BTvCMUpHHINsrzrqGGJ71BHHAF3F5n5+b6864vN3e/Zf//Vf+fSnP52dd945vXv3zoEHHphFixaV13fln3mQ7BjHNlvK1jz3wFu25O/YO7qO+Dx8N+chd2Rr167NN77xjQwbNiy9e/fOBz7wgVxyySUplUrlmh2+zyXa7dZbby1VVlaWbrzxxtIzzzxTOuOMM0r9+vUrLV++vLOHtlXdc889pb//+78v/fM//3MpSeknP/lJq/WXXnppqW/fvqU777yz9Otf/7r0iU98ojRs2LDSn/70p3LN2LFjSyNGjCg98sgjpQcffLC01157lU499dTy+ldeeaU0aNCg0sSJE0tLliwp/dM//VOpd+/epe9973tba5pbRG1tbemmm24qLVmypNTQ0FA69thjS7vvvntp9erV5ZovfOELpaFDh5YWLFhQWrRoUenwww8vffjDHy6vf/PNN0sHHHBAafTo0aUnn3yydM8995R22WWX0vnnn1+u+d3vflfq06dPadq0aaVnn322dO2115a6d+9emjdv3ladb0f66U9/Wrr77rtL//qv/1p64YUXSl//+tdLPXv2LC1ZsqRUKulbEY899lhpzz33LB100EGls846q7xcD9t24YUXlvbff//SSy+9VP76wx/+UF6vd3S2HeUYpSOOQbZXHXEMsb1q7zFAV7G5n9/bs/Z+/m7PVq5cWdpjjz1Kn/vc50qPPvpo6Xe/+13p3nvvLf32t78t13Tln3mwoxzbbClb69wDb9mSv2Pv6Drq8/CdzkPu6L71rW+Vdt5559Jdd91VWrp0aemOO+4o7bTTTqVZs2aVa3b0PgtXOsCHPvSh0pQpU8qv165dWxoyZEhp5syZnTiqzvXnJzbWrVtXGjx4cOnb3/52edmqVatKVVVVpX/6p38qlUql0rPPPltKUnr88cfLNT//+c9LFRUVpf/6r/8qlUql0vXXX1/q379/qbm5uVzz1a9+tbTPPvts4RltXStWrCglKT3wwAOlUumtXvXs2bN0xx13lGuee+65UpJSfX19qVR668RSt27dSo2NjeWa7373u6Xq6upyv84777zS/vvv32pfJ598cqm2tnZLT2mr6t+/f+n73/++vhXw6quvlvbee+9SXV1d6WMf+1j5wE8PN+3CCy8sjRgxYqPr9I5twY54jLI5xyBdyeYcQ3QlRY4BuoL2fH5vz9r7+bs9++pXv1o64ogj2ly/o/3MY8ezIx7bbElb6twDW/537B1dR3wevpvzkDu68ePHl04//fRWy0444YTSxIkTS6WSPpdKpZLbgrXTmjVrsnjx4owePbq8rFu3bhk9enTq6+s7cWTblqVLl6axsbFVn/r27ZtRo0aV+1RfX59+/frlsMMOK9eMHj063bp1y6OPPlqu+ehHP5rKyspyTW1tbV544YW8/PLLW2k2W94rr7ySJBkwYECSZPHixWlpaWnVv+HDh2f33Xdv1b8DDzwwgwYNKtfU1tamqakpzzzzTLnm7dtYX9NVvlfXrl2bW2+9Na+99lpqamr0rYApU6Zk/PjxG8xTD9/Zb37zmwwZMiTvf//7M3HixCxbtiyJ3tH5HKO85d0cg3Qlm3MM0RVszjFAV9Cez+/tXXs+f7dnP/3pT3PYYYflpJNOysCBA3PIIYfkH/7hH8rrd7SfeexYHNt0vC117oEt/zv2jq4jPg/fzXnIHd2HP/zhLFiwIP/6r/+aJPn1r3+dX/3qVxk3blwSfU6SHp09gO3df//3f2ft2rWtfuAlyaBBg/L888930qi2PY2NjUmy0T6tX9fY2JiBAwe2Wt+jR48MGDCgVc2wYcM22Mb6df37998i49+a1q1bl7PPPjt/9Vd/lQMOOCDJW3OrrKxMv379WtX+ef821t/16zZV09TUlD/96U/p3bv3lpjSFvf000+npqYmb7zxRnbaaaf85Cc/yX777ZeGhgZ9exduvfXWPPHEE3n88cc3WOd7b9NGjRqVm2++Ofvss09eeumlXHTRRfnIRz6SJUuW6B2dzjHKW97NMUhXsbnHENuz9hwDbO/a+/m9PWvv5+/27He/+12++93vZtq0afn617+exx9/PP/7f//vVFZWZtKkSTvUzzx2PI5tOtaWPPewo9sav2Pv6Dri8/DdnIfc0X3ta19LU1NThg8fnu7du2ft2rX51re+lYkTJybpuPO92zPhCmxjpkyZkiVLluRXv/pVZw9lu7HPPvukoaEhr7zySn784x9n0qRJeeCBBzp7WNuF//iP/8hZZ52Vurq69OrVq7OHs91Z/9caSXLQQQdl1KhR2WOPPXL77bcLPYCtbkc8hthRjwF29M/vHfnzd926dTnssMPyf/7P/0mSHHLIIVmyZEnmzJmTSZMmdfLogO3JjnjcsDXs6J/RW4vPw63j9ttvzy233JK5c+dm//33T0NDQ84+++wMGTJEn/8ftwVrp1122SXdu3fP8uXLWy1fvnx5Bg8e3Emj2vas78Wm+jR48OCsWLGi1fo333wzK1eubFWzsW28fR/bs6lTp+auu+7KL3/5y+y2227l5YMHD86aNWuyatWqVvV/3r936k1bNdXV1dv1L6KVlZXZa6+9MnLkyMycOTMjRozIrFmz9O1dWLx4cVasWJFDDz00PXr0SI8ePfLAAw/kmmuuSY8ePTJo0CA9LKBfv3754Ac/mN/+9re+/+h0jlHe8m6OQbqC9hxDbM/acwywPeuIz++upOjn7/Zs1113zX777ddq2b777lu+LdqO8jOPHZNjm46zpc897Mi21u/YO7qO+Dx8N+chd3Tnnntuvva1r+WUU07JgQcemM985jM555xzMnPmzCT6nAhX2q2ysjIjR47MggULysvWrVuXBQsWpKamphNHtm0ZNmxYBg8e3KpPTU1NefTRR8t9qqmpyapVq7J48eJyzX333Zd169Zl1KhR5ZqFCxempaWlXFNXV5d99tlnu74lWKlUytSpU/OTn/wk99133wa3Phs5cmR69uzZqn8vvPBCli1b1qp/Tz/9dKsfWHV1damuri5/4NTU1LTaxvqarva9um7dujQ3N+vbu3D00Ufn6aefTkNDQ/nrsMMOy8SJE8v/rofv3urVq/Nv//Zv2XXXXX3/0ekco7zl3RyDbM864hiiKylyDLA964jP766k6Ofv9uyv/uqv8sILL7Ra9q//+q/ZY489knT9n3ns2BzbtN/WOvewI9tav2Pv6Dri8/DdnIfc0b3++uvp1q11fNC9e/esW7cuiT4nSd7lg+/ZhFtvvbVUVVVVuvnmm0vPPvts6cwzzyz169ev1NjY2NlD26peffXV0pNPPll68sknS0lKV155ZenJJ58s/fu//3upVCqVLr300lK/fv1K//Iv/1J66qmnSp/85CdLw4YNK/3pT38qb2Ps2LGlQw45pPToo4+WfvWrX5X23nvv0qmnnlpev2rVqtKgQYNKn/nMZ0pLliwp3XrrraU+ffqUvve97231+XakL37xi6W+ffuW7r///tJLL71U/nr99dfLNV/4whdKu+++e+m+++4rLVq0qFRTU1Oqqakpr3/zzTdLBxxwQGnMmDGlhoaG0rx580rve9/7Sueff3655ne/+12pT58+pXPPPbf03HPPlWbPnl3q3r17ad68eVt1vh3pa1/7WumBBx4oLV26tPTUU0+Vvva1r5UqKipK8+fPL5VK+rY5Pvaxj5XOOuus8ms9bNtXvvKV0v33319aunRp6aGHHiqNHj26tMsuu5RWrFhRKpX0js63oxyjdMQxyPaqI44htlftPQboaop+fm/P2vv5uz177LHHSj169Ch961vfKv3mN78p3XLLLaU+ffqU/vEf/7Fc05V/5sGOcmyzpWytcw+0tiV+x97RddTn4Tudh9zRTZo0qfQXf/EXpbvuuqu0dOnS0j//8z+Xdtlll9J5551XrtnR+yxc6SDXXnttaffddy9VVlaWPvShD5UeeeSRzh7SVvfLX/6ylGSDr0mTJpVKpVJp3bp1pW984xulQYMGlaqqqkpHH3106YUXXmi1jT/+8Y+lU089tbTTTjuVqqurS6eddlrp1VdfbVXz61//unTEEUeUqqqqSn/xF39RuvTSS7fWFLeYjfUtSemmm24q1/zpT38qfelLXyr179+/1KdPn9Lxxx9feumll1pt5/e//31p3Lhxpd69e5d22WWX0le+8pVSS0tLq5pf/vKXpYMPPrhUWVlZev/7399qH9uj008/vbTHHnuUKisrS+973/tKRx99dPmkSqmkb5vjzw/89LBtJ598cmnXXXctVVZWlv7iL/6idPLJJ5d++9vfltfrHduCHeEYpSOOQbZXHXUMsT3qiGOArmRzPr+3Vx3x+bs9+9nPflY64IADSlVVVaXhw4eXbrjhhlbru/LPPCiVdoxjmy1la5574H9sqd+xd3Qd8Xn4bs5D7siamppKZ511Vmn33Xcv9erVq/T+97+/9Pd///el5ubmcs2O3ueKUqlU2hpXyAAAAAAAAHQFnrkCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEK8AWdf/996eioiL3339/Zw8FAAAAAKBDCFcAAAAAAAAKqCiVSqXOHgTQda1bty5r1qxJZWVlunWT5wIAAAAA2z/hCpDkf0KQXr16dfZQAAAAAAC2af6MHLqYGTNmpKKiIs8//3z+5m/+JtXV1dl5551z1lln5Y033ijXVVRUZOrUqbnllluy//77p6qqKvPmzUuS/Nd//VdOP/30DBo0KFVVVdl///1z4403lt+7fPny9OjRIxdddNEG+3/hhRdSUVGR6667Lknbz1y54447MnLkyPTu3Tu77LJLPv3pT+e//uu/WtUceeSROfLIIzfYx+c+97nsueeerZbdeuutGTlyZN773vemuro6Bx54YGbNmlWkdQAAAAAA74pwBbqov/mbv8kbb7yRmTNn5thjj80111yTM888s1XNfffdl3POOScnn3xyZs2alT333DPLly/P4Ycfnl/84heZOnVqZs2alb322iuTJ0/O1VdfnSQZNGhQPvaxj+X222/fYL+33XZbunfvnpNOOqnNsd188835m7/5m3Tv3j0zZ87MGWeckX/+53/OEUcckVWrVhWea11dXU499dT0798/l112WS699NIceeSReeihhwpvCwAAAADgnfTo7AEAW8awYcPyL//yL0mSKVOmpLq6Otdff33+7u/+LgcddFCSt64yefrpp7PffvuV3/f5z38+a9euzdNPP52dd945SfKFL3whp556ambMmJG//du/Te/evXPyySfnb//2b7NkyZIccMAB5fffdttt+djHPpZBgwZtdFwtLS356le/mgMOOCALFy4s34bsiCOOyF//9V/nqquu2ugVMZty9913p7q6Ovfee2+6d+9e6L0AAAAAAEW5cgW6qClTprR6/eUvfzlJcs8995SXfexjH2sVrJRKpfzf//t/c9xxx6VUKuW///u/y1+1tbV55ZVX8sQTTyRJTjjhhPTo0SO33XZb+f1LlizJs88+m5NPPrnNcS1atCgrVqzIl770pVbPdxk/fnyGDx+eu+++u/Bc+/Xrl9deey11dXWF3wsAAAAAUJRwBbqovffeu9XrD3zgA+nWrVt+//vfl5cNGzasVc0f/vCHrFq1KjfccEPe9773tfo67bTTkiQrVqxIkuyyyy45+uijW90a7LbbbkuPHj1ywgkntDmuf//3f0+S7LPPPhusGz58eHl9EV/60pfywQ9+MOPGjctuu+2W008/vfz8GAAAAACAjua2YLCDqKio2GBZ7969W71et25dkuTTn/50Jk2atNHtrL+lWJKccsopOe2009LQ0JCDDz44t99+e44++ujssssuHTbmUqm0wfK1a9e2ej1w4MA0NDTk3nvvzc9//vP8/Oc/z0033ZTPfvaz+eEPf9ghYwEAAAAAWE+4Al3Ub37zm1ZXpvz2t7/NunXrsueee7b5nve9731573vfm7Vr12b06NHvuI8JEybkb//2b8u3BvvXf/3XnH/++Zt8zx577JHkree9HHXUUa3WvfDCC+X1SdK/f//87ne/22AbG7u6pbKyMscdd1yOO+64rFu3Ll/60pfyve99L9/4xjey1157veNcAAAAAADeLbcFgy5q9uzZrV5fe+21SZJx48a1+Z7u3bvnxBNPzP/9v/83S5Ys2WD9H/7wh1av+/Xrl9ra2tx+++259dZbU1lZmQkTJmxyXIcddlgGDhyYOXPmpLm5ubz85z//eZ577rmMHz++vOwDH/hAnn/++Vb7/fWvf52HHnqo1Tb/+Mc/tnrdrVu38hU2b98HAAAAAEBHcOUKdFFLly7NJz7xiYwdOzb19fX5x3/8x3zqU5/KiBEjNvm+Sy+9NL/85S8zatSonHHGGdlvv/2ycuXKPPHEE/nFL36RlStXtqo/+eST8+lPfzrXX399amtr069fv01uv2fPnrnsssty2mmn5WMf+1hOPfXULF++PLNmzcqee+6Zc845p1x7+umn58orr0xtbW0mT56cFStWZM6cOdl///3T1NRUrvv85z+flStX5qijjspuu+2Wf//3f8+1116bgw8+OPvuu2/x5gEAAAAAbIIrV6CLuu2221JVVZWvfe1rufvuuzN16tT84Ac/eMf3DRo0KI899lhOO+20/PM//3OmTp2aWbNmZeXKlbnssss2qP/EJz6R3r1759VXX83JJ5/8rsb2uc99LrfddlvWrFmTr371q/ne976X448/Pr/61a9ahTP77rtvfvSjH+WVV17JtGnT8tOf/jT/3//3/+XQQw9ttb1Pf/rT6dWrV66//vp86Utfyg9/+MOcfPLJ+fnPf55u3fyYAwAAAAA6VkVpY0+LBrZbM2bMyEUXXZQ//OEPHfZgeQAAAAAA/oc/6QYAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAAz1wBAAAAAAAowJUrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFNCjswfQmdatW5cXX3wx733ve1NRUdHZwwGATSqVSnn11VczZMiQdOvm7yMAAAAAOssOHa68+OKLGTp0aGcPAwAK+Y//+I/stttunT0MAAAAgB3WDh2uvPe9703y1kmq6urqdm2rpaUl8+fPz5gxY9KzZ8+OGF6XoTebpj9t05u26U3bunJvmpqaMnTo0PLnFwAAAACdY4cOV9bfCqy6urpDwpU+ffqkurq6y53May+92TT9aZvetE1v2rYj9MatLAEAAAA6lxu2AwAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAU0KOzB9DVHDDj3jSvrejsYWzg95eO7+whAAAAAABAl+DKFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAtoVrlx66aWpqKjI2WefXV72xhtvZMqUKdl5552z00475cQTT8zy5ctbvW/ZsmUZP358+vTpk4EDB+bcc8/Nm2++2arm/vvvz6GHHpqqqqrstddeufnmmzfY/+zZs7PnnnumV69eGTVqVB577LH2TAcAAAAAAOAdbXa48vjjj+d73/teDjrooFbLzznnnPzsZz/LHXfckQceeCAvvvhiTjjhhPL6tWvXZvz48VmzZk0efvjh/PCHP8zNN9+c6dOnl2uWLl2a8ePH5+Mf/3gaGhpy9tln5/Of/3zuvffecs1tt92WadOm5cILL8wTTzyRESNGpLa2NitWrNjcKQEAAAAAALyjzQpXVq9enYkTJ+Yf/uEf0r9///LyV155JT/4wQ9y5ZVX5qijjsrIkSNz00035eGHH84jjzySJJk/f36effbZ/OM//mMOPvjgjBs3Lpdccklmz56dNWvWJEnmzJmTYcOG5Yorrsi+++6bqVOn5n/9r/+Vq666qryvK6+8MmeccUZOO+207LfffpkzZ0769OmTG2+8sT39AAAAAAAA2KTNClemTJmS8ePHZ/To0a2WL168OC0tLa2WDx8+PLvvvnvq6+uTJPX19TnwwAMzaNCgck1tbW2ampryzDPPlGv+fNu1tbXlbaxZsyaLFy9uVdOtW7eMHj26XAMAAAAAALAl9Cj6hltvvTVPPPFEHn/88Q3WNTY2prKyMv369Wu1fNCgQWlsbCzXvD1YWb9+/bpN1TQ1NeVPf/pTXn755axdu3ajNc8//3ybY29ubk5zc3P5dVNTU5KkpaUlLS0tm5r2O1r//qpupXZtZ0tp7/w6Yt+dOYZtmf60TW/apjdt68q96YpzAgAAANgeFQpX/uM//iNnnXVW6urq0qtXry01pi1m5syZueiiizZYPn/+/PTp06dD9nHJYes6ZDsd7Z577unsIaSurq6zh7BN05+26U3b9KZtXbE3r7/+emcPAQAAAIAUDFcWL16cFStW5NBDDy0vW7t2bRYuXJjrrrsu9957b9asWZNVq1a1unpl+fLlGTx4cJJk8ODBeeyxx1ptd/ny5eV16/+5ftnba6qrq9O7d+9079493bt332jN+m1szPnnn59p06aVXzc1NWXo0KEZM2ZMqqurC3RiQy0tLamrq8s3FnVL87qKdm1rS1gyo7bT9r2+N8ccc0x69uzZaePYVulP2/SmbXrTtq7cm/VXXAIAAADQuQqFK0cffXSefvrpVstOO+20DB8+PF/96lczdOjQ9OzZMwsWLMiJJ56YJHnhhReybNmy1NTUJElqamryrW99KytWrMjAgQOTvPXXxdXV1dlvv/3KNX9+pUVdXV15G5WVlRk5cmQWLFiQCRMmJEnWrVuXBQsWZOrUqW2Ov6qqKlVVVRss79mzZ4edgGteV5HmtdteuLItnGDsyD53RfrTNr1pm960rSv2pqvNBwAAAGB7VShcee9735sDDjig1bL3vOc92XnnncvLJ0+enGnTpmXAgAGprq7Ol7/85dTU1OTwww9PkowZMyb77bdfPvOZz+Tyyy9PY2NjLrjggkyZMqUcfHzhC1/Iddddl/POOy+nn3567rvvvtx+++25++67y/udNm1aJk2alMMOOywf+tCHcvXVV+e1117Laaed1q6GAAAAAAAAbErhB9q/k6uuuirdunXLiSeemObm5tTW1ub6668vr+/evXvuuuuufPGLX0xNTU3e8573ZNKkSbn44ovLNcOGDcvdd9+dc845J7Nmzcpuu+2W73//+6mt/Z9bW5188sn5wx/+kOnTp6exsTEHH3xw5s2bt8FD7gEAAAAAADpSu8OV+++/v9XrXr16Zfbs2Zk9e3ab79ljjz3e8QHrRx55ZJ588slN1kydOnWTtwEDAAAAAADoaN06ewAAAAAAAADbE+EKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKKBQuPLd7343Bx10UKqrq1NdXZ2ampr8/Oc/L69/4403MmXKlOy8887ZaaedcuKJJ2b58uWttrFs2bKMHz8+ffr0ycCBA3PuuefmzTffbFVz//3359BDD01VVVX22muv3HzzzRuMZfbs2dlzzz3Tq1evjBo1Ko899liRqQAAAAAAAGyWQuHKbrvtlksvvTSLFy/OokWLctRRR+WTn/xknnnmmSTJOeeck5/97Ge544478sADD+TFF1/MCSecUH7/2rVrM378+KxZsyYPP/xwfvjDH+bmm2/O9OnTyzVLly7N+PHj8/GPfzwNDQ05++yz8/nPfz733ntvuea2227LtGnTcuGFF+aJJ57IiBEjUltbmxUrVrS3HwAAAAAAAJtUKFw57rjjcuyxx2bvvffOBz/4wXzrW9/KTjvtlEceeSSvvPJKfvCDH+TKK6/MUUcdlZEjR+amm27Kww8/nEceeSRJMn/+/Dz77LP5x3/8xxx88MEZN25cLrnkksyePTtr1qxJksyZMyfDhg3LFVdckX333TdTp07N//pf/ytXXXVVeRxXXnllzjjjjJx22mnZb7/9MmfOnPTp0yc33nhjB7YGAAAAAABgQ5v9zJW1a9fm1ltvzWuvvZaamposXrw4LS0tGT16dLlm+PDh2X333VNfX58kqa+vz4EHHphBgwaVa2pra9PU1FS++qW+vr7VNtbXrN/GmjVrsnjx4lY13bp1y+jRo8s1AAAAAAAAW0qPom94+umnU1NTkzfeeCM77bRTfvKTn2S//fZLQ0NDKisr069fv1b1gwYNSmNjY5KksbGxVbCyfv36dZuqaWpqyp/+9Ke8/PLLWbt27UZrnn/++U2Ovbm5Oc3NzeXXTU1NSZKWlpa0tLS8yw5s3Pr3V3UrtWs7W0p759cR++7MMWzL9KdtetM2vWlbV+5NV5wTAAAAwPaocLiyzz77pKGhIa+88kp+/OMfZ9KkSXnggQe2xNg63MyZM3PRRRdtsHz+/Pnp06dPh+zjksPWdch2Oto999zT2UNIXV1dZw9hm6Y/bdObtulN27pib15//fXOHgIAAAAA2YxwpbKyMnvttVeSZOTIkXn88ccza9asnHzyyVmzZk1WrVrV6uqV5cuXZ/DgwUmSwYMH57HHHmu1veXLl5fXrf/n+mVvr6murk7v3r3TvXv3dO/efaM167fRlvPPPz/Tpk0rv25qasrQoUMzZsyYVFdXF+jChlpaWlJXV5dvLOqW5nUV7drWlrBkRm2n7Xt9b4455pj07Nmz08axrdKftulN2/SmbV25N+uvuAQAAACgcxUOV/7cunXr0tzcnJEjR6Znz55ZsGBBTjzxxCTJCy+8kGXLlqWmpiZJUlNTk29961tZsWJFBg4cmOStvyyurq7OfvvtV67586ss6urqytuorKzMyJEjs2DBgkyYMKE8hgULFmTq1KmbHGtVVVWqqqo2WN6zZ88OOwHXvK4izWu3vXBlWzjB2JF97or0p2160za9aVtX7E1Xmw8AAADA9qpQuHL++edn3Lhx2X333fPqq69m7ty5uf/++3Pvvfemb9++mTx5cqZNm5YBAwakuro6X/7yl1NTU5PDDz88STJmzJjst99++cxnPpPLL788jY2NueCCCzJlypRy6PGFL3wh1113Xc4777ycfvrpue+++3L77bfn7rvvLo9j2rRpmTRpUg477LB86EMfytVXX53XXnstp512Wge2BgAAAAAAYEOFwpUVK1bks5/9bF566aX07ds3Bx10UO69994cc8wxSZKrrroq3bp1y4knnpjm5ubU1tbm+uuvL7+/e/fuueuuu/LFL34xNTU1ec973pNJkybl4osvLtcMGzYsd999d84555zMmjUru+22W77//e+ntvZ/bmt18skn5w9/+EOmT5+exsbGHHzwwZk3b94GD7kHAAAAAADoaIXClR/84AebXN+rV6/Mnj07s2fPbrNmjz32eMeHqx955JF58sknN1kzderUd7wNGAAAAAAAQEfr1tkDAAAAAAAA2J4IVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIACCoUrM2fOzF/+5V/mve99bwYOHJgJEybkhRdeaFXzxhtvZMqUKdl5552z00475cQTT8zy5ctb1Sxbtizjx49Pnz59MnDgwJx77rl58803W9Xcf//9OfTQQ1NVVZW99torN9988wbjmT17dvbcc8/06tUro0aNymOPPVZkOgAAAAAAAIUVClceeOCBTJkyJY888kjq6urS0tKSMWPG5LXXXivXnHPOOfnZz36WO+64Iw888EBefPHFnHDCCeX1a9euzfjx47NmzZo8/PDD+eEPf5ibb74506dPL9csXbo048ePz8c//vE0NDTk7LPPzuc///nce++95Zrbbrst06ZNy4UXXpgnnngiI0aMSG1tbVasWNGefgAAAAAAAGxSjyLF8+bNa/X65ptvzsCBA7N48eJ89KMfzSuvvJIf/OAHmTt3bo466qgkyU033ZR99903jzzySA4//PDMnz8/zz77bH7xi19k0KBBOfjgg3PJJZfkq1/9ambMmJHKysrMmTMnw4YNyxVXXJEk2XffffOrX/0qV111VWpra5MkV155Zc4444ycdtppSZI5c+bk7rvvzo033pivfe1r7W4MAAAAAADAxhQKV/7cK6+8kiQZMGBAkmTx4sVpaWnJ6NGjyzXDhw/P7rvvnvr6+hx++OGpr6/PgQcemEGDBpVramtr88UvfjHPPPNMDjnkkNTX17faxvqas88+O0myZs2aLF68OOeff355fbdu3TJ69OjU19e3Od7m5uY0NzeXXzc1NSVJWlpa0tLSspldSHkbSVLVrdSu7Wwp7Z1fR+y7M8ewLdOftulN2/SmbV25N11xTgAAAADbo80OV9atW5ezzz47f/VXf5UDDjggSdLY2JjKysr069evVe2gQYPS2NhYrnl7sLJ+/fp1m6ppamrKn/70p7z88stZu3btRmuef/75Nsc8c+bMXHTRRRssnz9/fvr06fMuZv3OLjlsXYdsp6Pdc889nT2E1NXVdfYQtmn60za9aZvetK0r9ub111/v7CEAAAAAkHaEK1OmTMmSJUvyq1/9qiPHs0Wdf/75mTZtWvl1U1NThg4dmjFjxqS6urpd225paUldXV2+sahbmtdVtHeoHW7JjNpO2/f63hxzzDHp2bNnp41jW6U/bdObtulN27pyb9ZfcQkAAABA59qscGXq1Km56667snDhwuy2227l5YMHD86aNWuyatWqVlevLF++PIMHDy7XPPbYY622t3z58vK69f9cv+ztNdXV1endu3e6d++e7t27b7Rm/TY2pqqqKlVVVRss79mzZ4edgGteV5HmtdteuLItnGDsyD53RfrTNr1pm960rSv2pqvNBwAAAGB71a1IcalUytSpU/OTn/wk9913X4YNG9Zq/ciRI9OzZ88sWLCgvOyFF17IsmXLUlNTkySpqanJ008/nRUrVpRr6urqUl1dnf32269c8/ZtrK9Zv43KysqMHDmyVc26deuyYMGCcg0AAAAAAMCWUOjKlSlTpmTu3Ln5l3/5l7z3ve8tPyOlb9++6d27d/r27ZvJkydn2rRpGTBgQKqrq/PlL385NTU1Ofzww5MkY8aMyX777ZfPfOYzufzyy9PY2JgLLrggU6ZMKV9V8oUvfCHXXXddzjvvvJx++um57777cvvtt+fuu+8uj2XatGmZNGlSDjvssHzoQx/K1Vdfnddeey2nnXZaR/UGAAAAAABgA4XCle9+97tJkiOPPLLV8ptuuimf+9znkiRXXXVVunXrlhNPPDHNzc2pra3N9ddfX67t3r177rrrrnzxi19MTU1N3vOe92TSpEm5+OKLyzXDhg3L3XffnXPOOSezZs3Kbrvtlu9///uprf2f54acfPLJ+cMf/pDp06ensbExBx98cObNm7fBQ+4BAAAAAAA6UqFwpVQqvWNNr169Mnv27MyePbvNmj322CP33HPPJrdz5JFH5sknn9xkzdSpUzN16tR3HBMAAAAAAEBHKfTMFQAAAAAAgB2dcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgCAAAAAABQgHAFAAAAAACgAOEKAAAAAABAAcIVAAAAAACAAoQrAAAAAAAABQhXAAAAAAAAChCuAAAAAAAAFCBcAQAAAAAAKEC4AgAAAAAAUIBwBQAAAAAAoADhCgAAAAAAQAHCFQAAAAAAgAKEKwAAAAAAAAUIVwAAAAAAAAoQrgAAAAAAABQgXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUUDhcWbhwYY477rgMGTIkFRUVufPOO1utL5VKmT59enbdddf07t07o0ePzm9+85tWNStXrszEiRNTXV2dfv36ZfLkyVm9enWrmqeeeiof+chH0qtXrwwdOjSXX375BmO54447Mnz48PTq1SsHHnhg7rnnnqLTAQAAAAAAKKRwuPLaa69lxIgRmT179kbXX3755bnmmmsyZ86cPProo3nPe96T2travPHGG+WaiRMn5plnnkldXV3uuuuuLFy4MGeeeWZ5fVNTU8aMGZM99tgjixcvzre//e3MmDEjN9xwQ7nm4YcfzqmnnprJkyfnySefzIQJEzJhwoQsWbKk6JQAAAAAAADetR5F3zBu3LiMGzduo+tKpVKuvvrqXHDBBfnkJz+ZJPnRj36UQYMG5c4778wpp5yS5557LvPmzcvjjz+eww47LEly7bXX5thjj813vvOdDBkyJLfcckvWrFmTG2+8MZWVldl///3T0NCQK6+8shzCzJo1K2PHjs25556bJLnkkktSV1eX6667LnPmzNmsZgAAAAAAALyTwuHKpixdujSNjY0ZPXp0eVnfvn0zatSo1NfX55RTTkl9fX369etXDlaSZPTo0enWrVseffTRHH/88amvr89HP/rRVFZWlmtqa2tz2WWX5eWXX07//v1TX1+fadOmtdp/bW3tBrcpe7vm5uY0NzeXXzc1NSVJWlpa0tLS0q65r39/VbdSu7azpbR3fh2x784cw7ZMf9qmN23Tm7Z15d50xTkBAAAAbI86NFxpbGxMkgwaNKjV8kGDBpXXNTY2ZuDAga0H0aNHBgwY0Kpm2LBhG2xj/br+/funsbFxk/vZmJkzZ+aiiy7aYPn8+fPTp0+fdzPFd3TJYes6ZDsdbVt4Hk1dXV1nD2Gbpj9t05u26U3bumJvXn/99c4eAgAAAADp4HBlW3f++ee3utqlqakpQ4cOzZgxY1JdXd2ubbe0tKSuri7fWNQtzesq2jvUDrdkRm2n7Xt9b4455pj07Nmz08axrdKftulN2/SmbV25N+uvuAQAAACgc3VouDJ48OAkyfLly7PrrruWly9fvjwHH3xwuWbFihWt3vfmm29m5cqV5fcPHjw4y5cvb1Wz/vU71axfvzFVVVWpqqraYHnPnj077ARc87qKNK/d9sKVbeEEY0f2uSvSn7bpTdv0pm1dsTddbT4AAAAA26tuHbmxYcOGZfDgwVmwYEF5WVNTUx599NHU1NQkSWpqarJq1aosXry4XHPfffdl3bp1GTVqVLlm4cKFre4tX1dXl3322Sf9+/cv17x9P+tr1u8HAAAAAABgSygcrqxevToNDQ1paGhI8tZD7BsaGrJs2bJUVFTk7LPPzje/+c389Kc/zdNPP53PfvazGTJkSCZMmJAk2XfffTN27NicccYZeeyxx/LQQw9l6tSpOeWUUzJkyJAkyac+9alUVlZm8uTJeeaZZ3Lbbbdl1qxZrW7pddZZZ2XevHm54oor8vzzz2fGjBlZtGhRpk6d2v6uAAAAAAAAtKHwbcEWLVqUj3/84+XX6wOPSZMm5eabb855552X1157LWeeeWZWrVqVI444IvPmzUuvXr3K77nlllsyderUHH300enWrVtOPPHEXHPNNeX1ffv2zfz58zNlypSMHDkyu+yyS6ZPn54zzzyzXPPhD384c+fOzQUXXJCvf/3r2XvvvXPnnXfmgAMO2KxGAAAAAAAAvBuFw5UjjzwypVKpzfUVFRW5+OKLc/HFF7dZM2DAgMydO3eT+znooIPy4IMPbrLmpJNOykknnbTpAQMAAAAAAHSgDn3mCgAAAAAAQFcnXAEAAAAAAChAuAIAAAAAAFCAcAUAAAAAAKAA4QoAAAAAAEABwhUAAAAAAIAChCsAAAAAAAAFCFcAAAAAAAAKEK4AAAAAAAAUIFwBAAAAAAAoQLgC/P/t3X+oV/X9B/Cnmvemq+vd9ea93i3tVlvlUgPN22VMBopXa4GrgTYZTsKxTYO61ZpjacIgEL5Dtgn+tbk/5miD1ViwQKyMsZsNQ1oxJWXDhV41xd8rb96zP8LL9zM1PfN6P7vXxwMu3Hve5/PxdZ6c88/n6fkcAAAAAABKUK4AAAAAAACUoFwBAAAAAAAoQbkCAAAAAABQgnIFAAAAAACgBOUKAAAAAABACcoVAAAAAACAEpQrAAAAAAAAJShXAAAAAAAASlCuAAAAAAAAlKBcAQAAAAAAKEG5AgAAAAAAUIJyBQAAAAAAoATlCgAAAAAAQAnKFQAAAAAAgBKUKwAAAAAAACUoVwAAAAAAAEpQrgAAAAAAAJSgXAEAAAAAAChBuQIAAAAAAFCCcgUAAAAAAKAE5QoAAAAAAEAJyhUAAAAAAIASlCsAAAAAAAAlKFcAAAAAAABKUK4AAAAAAACUoFwBAAAAAAAoQbkCAAAAAABQgnIFAAAAAACgBOUKAAAAAABACcoVAAAAAACAEpQrAAAAAAAAJShXAAAAAAAASlCuAAAAAAAAlKBcAQAAAAAAKEG5AgAAAAAAUIJyBQAAAAAAoATlCgAAAAAAQAnKFQAAAAAAgBKUKwAAAAAAACUoVwAAAAAAAEpQrgAAAAAAAJSgXAEAAAAAAChBuQIAAAAAAFCCcgUAAAAAAKAE5QoAAAAAAEAJyhUAAAAAAIASlCsAAAAAAAAlKFcAAAAAAABKUK4AAAAAAACUoFwBAAAAAAAoQbkCAAAAAABQgnIFAAAAAACgBOUKAAAAAABACcoVAAAAAACAEpQrAAAAAAAAJShXAAAAAAAASlCuAAAAAAAAlKBcAQAAAAAAKEG5AgAAAAAAUIJyBQAAAAAAoATlCgAAAAAAQAnKFQAAAAAAgBKUKwAAAAAAACUoVwAAAAAAAEpQrgAAAAAAAJSgXAEAAAAAAChBuQIAAAAAAFCCcgUAAAAAAKCEQV+urFu3LjfddFOuvfbatLW15Y033qj2SAAAAAAAwBA2qMuV5557Lp2dnVm1alXefPPNTJ06NR0dHTlw4EC1RwMAAAAAAIaoQV2u/PjHP87SpUuzZMmSTJo0KevXr8/o0aPz85//vNqjAQAAAAAAQ9Q11R7gv3X69Ols27YtK1as6Ns2fPjwzJ49O11dXed9zYcffpgPP/yw7++jR48mSQ4fPpyenp7LmqenpyenTp3KNT3Dc6Z32GW915Vw6NChqv3bZ7M5dOhQRo4cWbU5/lfJ58Jkc2GyubChnM3x48eTJEVRVHkSAAAAgKvboC1X3n///Zw5cyZNTU0V25uamrJjx47zvubZZ5/N6tWrz9ne2tp6RWb8X9L4f9WeAID+cvz48YwZM6baYwAAAABctQZtufLfWLFiRTo7O/v+7u3tzeHDhzN27NgMG3Z5d5scO3YsN954Y/75z3+mrq7uckcdUmTzyeRzYbK5MNlc2FDOpiiKHD9+PC0tLdUeBQAAAOCqNmjLlcbGxowYMSL79++v2L5///40Nzef9zW1tbWpra2t2FZfX9+vc9XV1Q25D/P6i2w+mXwuTDYXJpsLG6rZuGMFAAAAoPoG7QPta2pqMm3atGzevLlvW29vbzZv3pz29vYqTgYAAAAAAAxlg/bOlSTp7OzM4sWLM3369MyYMSNr167NyZMns2TJkmqPBgAAAAAADFGDulxZsGBBDh48mJUrV6a7uzt33XVXXnrppXMecj8Qamtrs2rVqnO+dgzZXIx8Lkw2FyabC5MNAAAAAFfasKIoimoPAQAAAAAAMFgM2meuAAAAAAAAVINyBQAAAAAAoATlCgAAAAAAQAnKFQAAAAAAgBKUK/1k3bp1uemmm3Lttdemra0tb7zxRrVHGnDPPPNMhg0bVvFz++23961/8MEHWbZsWcaOHZvrrrsuDz74YPbv31/Fia+c1157Lffff39aWloybNiwvPDCCxXrRVFk5cqVGT9+fEaNGpXZs2fn3Xffrdjn8OHDWbRoUerq6lJfX5+HH344J06cGMCjuDIuls03v/nNc86juXPnVuwzVLN59tlnc/fdd+f666/PuHHjMn/+/OzcubNin0u5jvbs2ZP77rsvo0ePzrhx4/Lkk0/mo48+GshD6XeXks2Xv/zlc86db3/72xX7DMVsAAAAABh4ypV+8Nxzz6WzszOrVq3Km2++malTp6ajoyMHDhyo9mgD7gtf+EL27dvX9/OnP/2pb+2xxx7LH/7wh/z2t7/Nli1bsnfv3jzwwANVnPbKOXnyZKZOnZp169add33NmjX5yU9+kvXr12fr1q351Kc+lY6OjnzwwQd9+yxatCjvvPNONm3alBdffDGvvfZavvWtbw3UIVwxF8smSebOnVtxHv3617+uWB+q2WzZsiXLli3L66+/nk2bNqWnpydz5szJyZMn+/a52HV05syZ3HfffTl9+nT+/Oc/55e//GU2bNiQlStXVuOQ+s2lZJMkS5curTh31qxZ07c2VLMBAAAAYOANK4qiqPYQg11bW1vuvvvu/OxnP0uS9Pb25sYbb8wjjzyS73//+1WebuA888wzeeGFF7J9+/Zz1o4ePZobbrghGzduzNe+9rUkyY4dO3LHHXekq6sr99xzzwBPO3CGDRuW559/PvPnz0/y8V0rLS0tefzxx/PEE08k+TifpqambNiwIQsXLszf/va3TJo0KX/5y18yffr0JMlLL72Ue++9N++9915aWlqqdTj96j+zST6+c+XIkSPn3NFy1tWSTZIcPHgw48aNy5YtWzJz5sxLuo7++Mc/5itf+Ur27t2bpqamJMn69evz1FNP5eDBg6mpqanmIfWb/8wm+fjOlbvuuitr164972uulmwAAAAAuPLcuXKZTp8+nW3btmX27Nl924YPH57Zs2enq6uripNVx7vvvpuWlpbcfPPNWbRoUfbs2ZMk2bZtW3p6eipyuv322zNhwoSrLqe///3v6e7urshizJgxaWtr68uiq6sr9fX1feVBksyePTvDhw/P1q1bB3zmgfbqq69m3Lhxue222/Kd73wnhw4d6lu7mrI5evRokqShoSHJpV1HXV1dmTx5cl95kCQdHR05duxY3nnnnQGc/sr6z2zO+tWvfpXGxsbceeedWbFiRU6dOtW3drVkAwAAAMCVd021Bxjs3n///Zw5c6biw7okaWpqyo4dO6o0VXW0tbVlw4YNue2227Jv376sXr06X/rSl/L222+nu7s7NTU1qa+vr3hNU1NTuru7qzNwlZw93vOdM2fXuru7M27cuIr1a665Jg0NDUM+r7lz5+aBBx5Ia2trdu/enR/84AeZN29eurq6MmLEiKsmm97e3jz66KP54he/mDvvvDNJLuk66u7uPu+5dXZtKDhfNkny9a9/PRMnTkxLS0veeuutPPXUU9m5c2d+97vfJbk6sgEAAABgYChX6Dfz5s3r+33KlClpa2vLxIkT85vf/CajRo2q4mQMJgsXLuz7ffLkyZkyZUpuueWWvPrqq5k1a1YVJxtYy5Yty9tvv13x3CI+dqFs/v9zdyZPnpzx48dn1qxZ2b17d2655ZaBHhMAAACAIczXgl2mxsbGjBgxIvv376/Yvn///jQ3N1dpqv8N9fX1+fznP59du3alubk5p0+fzpEjRyr2uRpzOnu8n3TONDc358CBAxXrH330UQ4fPnzV5XXzzTensbExu3btSnJ1ZLN8+fK8+OKLeeWVV/LZz362b/ulXEfNzc3nPbfOrg12F8rmfNra2pKk4twZytkAAAAAMHCUK5eppqYm06ZNy+bNm/u29fb2ZvPmzWlvb6/iZNV34sSJ7N69O+PHj8+0adMycuTIipx27tyZPXv2XHU5tba2prm5uSKLY8eOZevWrX1ZtLe358iRI9m2bVvfPi+//HJ6e3v7PjC+Wrz33ns5dOhQxo8fn2RoZ1MURZYvX57nn38+L7/8clpbWyvWL+U6am9vz1//+teKAmrTpk2pq6vLpEmTBuZAroCLZXM+27dvT5KKc2coZgMAAADAwPO1YP2gs7MzixcvzvTp0zNjxoysXbs2J0+ezJIlS6o92oB64okncv/992fixInZu3dvVq1alREjRuShhx7KmDFj8vDDD6ezszMNDQ2pq6vLI488kvb29txzzz3VHr3fnThxou9/yycfP8R++/btaWhoyIQJE/Loo4/mRz/6UT73uc+ltbU1Tz/9dFpaWjJ//vwkyR133JG5c+dm6dKlWb9+fXp6erJ8+fIsXLgwLS0tVTqq/vFJ2TQ0NGT16tV58MEH09zcnN27d+d73/tebr311nR0dCQZ2tksW7YsGzduzO9///tcf/31fc8BGTNmTEaNGnVJ19GcOXMyadKkfOMb38iaNWvS3d2dH/7wh1m2bFlqa2ureXiX5WLZ7N69Oxs3bsy9996bsWPH5q233spjjz2WmTNnZsqUKUmGbjYAAAAAVEFBv/jpT39aTJgwoaipqSlmzJhRvP7669UeacAtWLCgGD9+fFFTU1N85jOfKRYsWFDs2rWrb/1f//pX8d3vfrf49Kc/XYwePbr46le/Wuzbt6+KE185r7zySpHknJ/FixcXRVEUvb29xdNPP100NTUVtbW1xaxZs4qdO3dWvMehQ4eKhx56qLjuuuuKurq6YsmSJcXx48ercDT965OyOXXqVDFnzpzihhtuKEaOHFlMnDixWLp0adHd3V3xHkM1m/PlkqT4xS9+0bfPpVxH//jHP4p58+YVo0aNKhobG4vHH3+86OnpGeCj6V8Xy2bPnj3FzJkzi4aGhqK2tra49dZbiyeffLI4evRoxfsMxWwAAAAAGHjDiqIoBrLMAQAAAAAAGMw8cwUAAAAAAKAE5QoAAAAAAEAJyhUAAAAAAIASlCsAAAAAAAAlKFcAAAAAAABKUK4AAAAAAACUoFwBAAAAAAAoQbkCAAAAAABQgnIFAAAAAACgBOUKAAAAAABACcoVAAAAAACAEpQrAAAAAAAAJfwbUizFvXd2acgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df[integer_columns].hist(figsize=(20,20))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "71efdac3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb0AAAY1CAYAAAAGs3P9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5QV5cEG8GdhAQFB6ZrYewOxxhaNn0RjLIkmxmjUaNSIXbEraqxYMXYEe4mxt1iJPXakS1NRsNGxAErb/f5AV1dQcdn16vD7nXNz2LnvzH0mZ/Y6+9z3zpRVVlZWBgAAAAAACqBeqQMAAAAAAEBtUXoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAYSm8AAAAAAOrEM888kx122CE/+9nPUlZWlnvvvfc713nqqaey7rrrplGjRllppZVy/fXXf6/XVHoDAAAAAFAnpk6dmrXXXjuXX375fI1/6623st1222XLLbdM//79c8QRR2S//fbLo48+Ot+vWVZZWVlZ08AAAAAAADA/ysrKcs899+T3v//9N4457rjj8uCDD2bw4MFVy/785z/nww8/zCOPPDJfr2OmNwAAAAAA82X69On5+OOPqz2mT59ea9t/4YUX0qlTp2rLttlmm7zwwgvzvY3yWkuzgGZOGFnqCLBAftOxc6kjwAJ5fdoHpY4AC6SsrKzUEWCB1C+rX+oIsEA+nVV7f+xCqTQub1TqCLBARk7oV+oIPzk6ye+v22U35rTTTqu27NRTT80//vGPWtn+mDFj0q5du2rL2rVrl48//jiffvppGjdu/J3b+NGU3gAAAAAA/LidcMIJ6dKlS7VljRr9uD40VHoDAAAAADBfGjVqVKcl9xJLLJGxY8dWWzZ27Ng0b958vmZ5J67pDQAAAADAj8TGG2+cxx9/vNqy3r17Z+ONN57vbSi9AQAAAACoE1OmTEn//v3Tv3//JMlbb72V/v37Z/To0UnmXC5lr732qhrfuXPnjBw5Mscee2yGDRuWK664IrfffnuOPPLI+X5NpTcAAAAAAHWiT58+WWeddbLOOuskSbp06ZJ11lknp5xySpLkgw8+qCrAk2T55ZfPgw8+mN69e2fttdfOhRdemKuvvjrbbLPNfL9mWWVlZWXt7kbNuFMqP3W/6di51BFggbw+7YNSR4AFUlZWVuoIsEDql9UvdQRYIJ/Oml7qCLDAGpf/uG7EBt/XyAn9Sh3hJ2fmuNdLHeEnp0HblUsd4TuZ6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAURnmpAwAAAAAAlERlRakTUAfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqKiotQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAApVBZWVHqCNQBM70BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwigvdQAAAAAAgJKoqCh1AuqAmd4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYZSXOgAAAAAAQElUVpQ6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqZpc6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqK0qdgDpgpjcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGOWlDgAAAAAAUBIVFaVOQB0w0xsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAojPJSBwAAAAAAKIXKyopSR6AOmOkNAAAAAEBhKL0BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFEZ5qQMAAAAAAJRERUWpE1AHzPQGAAAAAKAwlN4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACqO81AEAAAAAAEqisqLUCagDZnoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhVFe6gAAAAAAACVRMbvUCagDZnoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhVFe6gAAAAAAACVRWVHqBNQBM70BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGOWlDgAAAAAAUBIVFaVOQB0w0xsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAojPJSBwAAAAAAKInKilInoA6Y6Q0AAAAAQGEovQEAAAAAKIwFKr3feOONPProo/n000+TJJWVlbUSCgAAAAAAaqJGpffEiRPTqVOnrLLKKvntb3+bDz74IEmy77775qijjqrVgAAAAAAAML9qVHofeeSRKS8vz+jRo9OkSZOq5bvuumseeeSRWgsHAAAAAADfR3lNVnrsscfy6KOPZqmllqq2fOWVV86oUaNqJRgAAAAAQJ2qqCh1AupAjWZ6T506tdoM7y9MmjQpjRo1WuBQAAAAAABQEzUqvX/5y1/mxhtvrPq5rKwsFRUVOe+887LlllvWWriFVZ/+g3Lwsadmyx3/krU23TaPP/N8nb/mrXc9kK3/8Nesu+WO2W3/IzJoyPBqz0+fPiNnXnh5Nt32T9mg00454sQzM2HS5DrPxcLjd3/dIbe8cGMefuM/ueyBS7Jqx1W/ceyyqyybU3uenFteuDGPv/tYdt53px8wKQuzLiccnD5DnsiI917Jv+7uleVWWOY719lr3z/nuf6PZMT7fXJf71uy9rprVXu+UaOGOeO8kzLgjWczdPRL6XFD97Ru06ramE03/0XufuSmDBn1YvoMfTInnHpk6tevX6v7xsKhy/EH5ZXXHs/wd1/OLXf3nM9jeNf8r9/DGf7eK7n3sW86hk9M/9efyZBRL6bH9d3Tuk3LamNGTRw412OHnX5Tq/tG8e35tz/lmb4PZui7L+buR29Mh3XW/Nbx2+7YKb1fuDtD330xDz9ze37VabO5xhxx/IF58bXHMuSdF3LTXT3m+p14pu+DGTmhX7VH58P2qdX9gmNOPCT9hz2dkR/0zW33XpPlV1j2O9fZe7/d8vLA3nlrTL88+N9/p+O67aueW3zxxXLmeSfl2VcezMgP+qbPoMdzxrknplnzRetyN1gIlOJ9+KAj980dD12f10Y/n/5vPlOr+wMUW41K7/POOy89e/bMtttumxkzZuTYY4/NWmutlWeeeSbnnntubWdc6Hz66WdZdaUVctJRB9XK9u59sHf2PuTYb3z+4f8+nfMu7ZkD//aX3HHtpVl1peVzQJeumTj5w6ox515yVZ567qV0P/PEXH/ZeRk/YWKOOPHMWskHv9phi3Q+5YDceNHN6bztQXlzyMice/PZWbzV4vMcv0jjRvlg9Jhc3e3aTBw78YcNy0LrwMP+ln3+vntOOOqM7Pjrv2TatE9z851XpVGjht+4zg47bZOTzzwm/zyvR7bb8k8ZOnhEbr7zqrRq/WUheMpZx6bTb7bIgfsclT/tsE/aLdE2PW+8qOr51ddcJdffdkWefvy5bPurXXLwvsek07a/yvGnHlGXu0sBdT5sn+z9991z4tFn5HdbzzmGb7qjx7cew9v/fpt0PeOYXHx+j2z/f7tm6ODhuemOHtWO4ZPPOjZbbbNFDvrb0fnTjvuk3RJtctUNF821raMO6Zr1V9+y6vHYQ0/UyX5STNv9fuuceMZRueT8q7LD/+2eoa+NyA13XJFWrVvMc/y6G6ydi3t2y+233Jvtt9wtjz30VHrc2D2rrLZi1ZgDDt07e++/W7oefXZ23mavTJv2aa6//fI0/NrvRPduV2TDNTpVPW64+tY63VcWLgcfvm/2PWCPHNfltGzX6c+ZNu3T3Hp3z299b95xp9/kH2cdlwvPvSLbbPHHDBk8LLfe3bPqvbndkm2yxBJtcvrJ52fLjX+Xww8+MVtutVm6X3rGD7VbFFCp3ocbNmyQh+/vnVuuv7PO9xEolhqV3muttVZGjBiRzTbbLL/73e8yderU7LzzzunXr19WXHHF794A3+qXG2+Qw/7+13TaYtN5Pj9jxoycf1mv/N/v9sgGW/0+u+1/RF7uO7DGr3fjbffkjztsm5222zorLr9sTjnm0CzSqFHu+c9jSZJPpkzN3f95LMceun9+sV7HrLnayjnjpC7pP2hIBgweWuPXhS/88e9/yEO3PpxHb38so14fnX8ef3GmfzY9v/nzNvMcP3zAiPQ8s1eevP+pzJwx8wdOy8Jq38575NILe6b3w09m2JAROfLAE9N2iTbZerv/+8Z19jtor9x6412541/35vXhI3NCl9Pz6bRPs+tf5nw7oVmzRbPrHjvnjK7n5/lnX86gAUNy9CEnZ/1frJN11u+QJNlhp99k2GsjcvH5PTLqrXfy0vN90u3U7vnrvn9O00XnvtQYfJN9D9gjl13YK70ffirDhryeLgeeNOcY/u23H8P/vumu3PGv+/L68JE58agz8umnn+ZPf/l9ks+P4b/slDO7XpDnn305gwcMzdGHVj+Gv/DxR59k/LiJVY/p02fU5e5SMPseuEduu+nu3Hnr/XljxMh0PeqsfPrpZ9ll99/Pc/zeB+yWZ554Pr0uuzFvvv5WLjrnirw2cGj22u/PVWP26bx7LuveK//9/Hfi6INOTrsl2mTr31b/5urUKVMzYdzEqsen0z6ry11lIbP/gXvln+dflUcfeiJDXxuRwzofn3ZLtM1vttvqG9c54OC9c8sNd+S2W+7JiOFv5tgjT8un0z7LbnvsnCQZPvSN7LfXEen9yFMZ9fY7ee6Zl3LOGRfn17/Z0jfFqLFSvQ//89weubbHLRk+5PW63kWgYGpUeifJYostlpNOOim33357HnrooZx55plZcsklazMb3+Cs7ldmwOBhOf+043PXDVdk6y03S+ejumbUO+99723NnDkzQ4a/no026Fi1rF69etlo/Y5VhfaQ4a9n1qxZ2Wj9darGrLDs0lmyXdsMGDxsgfeHhVt5g/Ks0n7l9H22X9WyysrK9H22X9ZYd/USJoMvLbPsUmm7RJv876kXq5Z98smU9H91UNbbYO15rtOgQXnar71G/vf0l+tUVlbmf0+/mHU/X6d9xzXSsGGDatt98/W38u4771eNadioYaZPn15t2599Nj2LNF4k7ddeo9b2kWJbetmfzzmGn577GF73W4/h1edxDL809zH89FeP4bfnHMNfK73POO/E9BvxdO7rfUv+9A1/IMO8NGhQnrXWXj3PPf1S1bLKyso89/RLWWeDDvNcZ931O1QbnyTPPvlC1YcxSy/787Rt16bamE8+mZL+fQfP9YFN58P2yasjnswDT9ya/Q/ZS2lIrVlm2aXSbok2efbpF6qWffLxlPR7dWDW37DjPNdp0KBBOnRcI89+7b352adfyHrfsE6SNG++aKZ8MiWzZ8+urfgsREr9PgxQE+U1WWngwHnPKi4rK8siiyySZZZZ5ltvaDl9+vS5/oCvN326m2DOhw/GjMu9Dz2W3nfdmLafX/N1n93/mOdeejX3PNg7R3Te+3ttb/KHH2f27Iq0aln9K0mtWrbIW6PfTZJMmDg5DRqUp3mzRb82ZvFMmDSp5jsDSRZr2Tz1y+tn8vjq14ifPGFyll5p6RKlguratJvzfjthfPXL6UwYPzFt2rae5zotW7VIeXn5PNdZcZXl52y3betMnz4jH3/8SfUx4yam7efbffqJ57Jv5z2y487b5j/3Ppo27Vrn8GM6J0natmuz4DvHQuGL42nex3Crea2SFl8cw+O+ts64iVlx5e84hsdPTJt2X/5uXHj2ZXn+2Zfz6aef5Zdbbpwzzj8pTRZtkut7/muB943iqzoWx1c/75wwfmJWXHm5ea7Tum3ruceP+/J4b1P1OzGPMe2+/J24odetGTxwaD6a/HHW3XDtHNP10LRt1yZnnXzhgu4WpO3n75Pjx02otnz8uG87v1g85eXl81xnpZVXmPc6LRfPkccemJuvv6MWUrMwKuX7MPwQKit9IFhENSq9O3bsmLKysiRzPt1LUvVzMufT51133TVXXXVVFllkkbnW79atW0477bRqy7oec1hOOfbwmsRZqIwY+XZmz67IdrvtV235zBkzs1jz5knmFOM77nFA1XOzZ8/OrFmzs0GnL2/2t/+eu+bvf/1zAJjb7/+4Xbp1P6Xq573/fHDJsjz75As569TuObv7yflnj7MzY/qMXHJBz/xik/VSWVlRslz8uP3+j7/N2Rd+eQzvs1vpjuEkueTCnlX/fm3QsDRp0jgHHLK30psfvWuuvLnq38OGvJ6ZM2bmzAtPyvlnXJIZLrHG97TzLtvnvIv+UfXznrt2rvPXXLRZ09x0e4+MGPZmLjjn8jp/PQD4sahR6X3PPffkuOOOyzHHHJMNN9wwSfLyyy/nwgsvzKmnnppZs2bl+OOPT9euXXPBBRfMtf4JJ5yQLl26VFtW75Pvf2mOhdG0aZ+mfv16uf2aS1O/fvWr0zRpPOcDhjatW+Wu6788ofnv08+l91PP5dxTv7yZ5WLNmyVJWizePPXr18vESdVn2U6cNDmtP5/93bpVi8ycOSsffzKl2mzviZM+TOuWLQML4qNJH2f2rNlp0ab6tw1atG6RSeN8k4DS6P3Ik+n36pffavriZlKt27TKuLFfzqxq3aZVhnzDZZ4mTZycWbNmpXWb6jNVWrdplfGf34B1/LgJadSoYZo3b1Ztpmzrtq0y7iszuK6+4sZcfcWNabdEm3z44cdZepmf5fhTj8iot99d8J2lkHo/8lT6vTqo6ueGDb/tGB4+z21M/uIY/tpM8NZtW1XNMPzGY7hNq4wfW30W4lf1f3VQDj+mcxo2bKA45DtVHYttqp93tm7TKuPHzfuG1hPGTZh7fNsvx39xDLdu07Lasdq6basMGTTv34lkzrHboEGD/HyZn+WtN0bVaH9YeD368BPp2+fL84svbtbXpm3rau/Nbdq2ymuDvun84sPMmjVrrpngbb527pAkTRdtkn/d2TNTpkzN3/Y4NLNmzaqtXWEh82N6HwaYXzW6pvdZZ52Viy++OPvuu2/at2+f9u3bZ999981FF12UCy+8MH/5y19y6aWX5p577pnn+o0aNUrz5s2rPVzaZP6svsqKmT27IpMmf5hllvpZtUfrVnP+g1JeXr/a8paLL55GjRpWW/ZF6d2gQYOsserKealP/6rXqKioyEuv9s/aa825nvIaq66c8vLyamPeGvVuPhg7LmuvtdoPtu8U06yZszJi0OtZZ7OOVcvKysqyzmYdM6SvG6VSGlOnTMuot96peowY9mbGjRmfTbf4RdWYRZs1Tcf12ufVVwbMcxszZ87KoAFDsunmX65TVlaWTbfYKH0/X2dQ/yGZMWNmte2usNJyWWrpn1WN+aqxY8Zn+mfTs+Mffpv33v0ggwf4HWHevn4Mvz7882N487mP4Xkda8kXx/DQuY/hzX8xf8dwn2++yfYa7VfLh5M/UngzX2bOnJXBA4Zmk68di5tsvmH6vTLv46xvn4HZZPMNqy3bdIuN0u/z4/KdUe9l3Njx1ba56KJN03HdtarGzMsa7VfN7NmzM3G8D+b5/qZOmZa33xpd9Rgx7I2MHTM+m22xUdWYRZs1zTrrdUifl/vPcxszZ87MwP5Dqq1TVlaWzTbfKK9+ZZ1FmzXNv+++OjNnzszeux3s5sEskB/T+zDA/KrRTO9BgwZl2WWXnWv5sssum0GD5swq6tixYz744IMFS7eQmjbt04x+9/2qn997f2yGjXgzizVvluWWWSrbbb1lTjzzghx9yP5ZfZUVM/nDj/Jin/5ZZaXls8UmG37Lludtr113yklnXZg1V1s5a62xam6+/d58+tn0/H67XydJmi3aNDtvv3XOu7RXFmveLE2bNsnZF12ZtddavaoYhwVxZ8+7ctxFx2TEgNczrP+w/GG/nbNI40Xy6G2PJkmO++cxmTBmYq4559okc25+uezKy3z+7wZpvWTrrLjGCvl02md5/+33v/F1YEFc0+PmHHbUAXn7zdEZPeq9HH3iIRk3Znwee/CJqjG33tMrjzz4RG64+tYkc2ZoX3j5WRnU/7X07zso+3beM02aNM7t/7o3yZyb9dx28905+cxj8uHkjzLlk6k57dwT0ufl/tVO9g84dO889d/nUllZkd9s3ykHHb5vDvrb0amocHkT5t81V92cQ4/6e94aOTrvjHovR5148Jxj+KEvj+F/3dMrjz74eG64+t9JvjiGz8zA/kMyoO+g/O2APdKkSePc8dVj+JZ70vWMo/Ph5I/yySdTcvo5J+TVrxzDW22zRdq0aZW+fQZm+vTp+eWvNs7BR+yXnpff8IP/f8BP1zVX3pwLLjs9g/oPyYC+g7NP593TpEnj3HnrfUmSCy4/I2M/GJfzz7w0SXL9Vbfm1vt7Zd+D9syTjz2bHXbeJu07rpGTupxRtc3revwrh3TZL2+PHJ13R72XI084KGPHjM9jDz2ZJFln/Q7puN5aeeF/fTJ1ytSsu0GHnHTG0bn3jofy8UefzB0SaqDXlTfmiKMPyFtvjsroUe/muJMOy9gx4/LIg49Xjbn9vmvz8H/+m+t6zbkk1FWXX5+Lr+yWAf0Gp/+rg7L/gXulSdPG+fctcyadfVF4N26ySA75+3FZtNmiWfTzb+xOnDDJ+QM1Uor34ST52c+XyGItmudnSy2ZevXrZfW1VkmSjHrrnUyb+ukP+P8A8FNTo9J7tdVWyznnnJOePXtWfV125syZOeecc7LaanNm/r733ntp165d7SVdiAwe9nr+duhxVT+fd+mc62D+bttOOavrUTnzpC656vpbc8FlvTJ2/MS0WKx5Oqy5WrbY9PsX3kmybactMvnDj3LZ1TdnwqRJWW3lFdPjwjOqLm+SJMcddkDq1auXI046MzNnzswmG66Xk48u7fVBKY6nHng6i7VaLHsfvVdatGmRN4eMzPF7npTJEz5MkrT9edtUVlRWjW/VrlV6Ptaj6uddO++SXTvvkv4vDMhRuxzzQ8dnIXHlJdemcdPG6XbRqWm+WLP0ebFf9tylc7WZU8ssv3Ratlq86ucH7nk0LVu1TJcTDk6btq0zZPCw7LlL52o3Ezz9pPNSUVGZq264KA0bNsjTTzyfrsecWe21f7XVZjmky/5p1LBhhrw2PPvtcVie+u//6nyfKZYel1yXJk0ap1v3U+Ycwy/1y15/OrD6MbzcUmnxlf/+/+feR9OqdYt0Of6gz4/h4dnrTwdWu+nUGSedl8qKivS4vnsaNmyYZ558Ll2POavq+VkzZ2WvfXfNyWcdk7KU5e23RueMk8/PrTfe9cPsOIXw4L2PpWWrFjny+APTum2rDB08PHv/6eCqY/FnSy1Rrcjr+8qAHHHAiTnqxINz9EmH5O2Ro9N5ry4ZMezNqjFXXXp9GjdtnLMv7Pr570T/7LPrwZnx+e/EjBkzsv1O2+TwY+dciued0e/nuh635Jorb/phd55Cu/zia9KkaeOc/8/T0nyxZnn5xb7Z/Q9/r/bevNzyS6dlqy/fm++/55G0at0yx554aNq0bZ3XBg3L7n84oOr8ov3aa2S9DdZOkrzY/9Fqr7dBh055d7RJInx/pXgfTpIjjj8wf9xtxy9zPHVbkmS33+2Xl557ta53G/gJK6v84k6U38Pzzz+fHXfcMfXq1UuHDh2SzJn9PXv27PznP//JRhttlJtuuiljxozJMcfMXwE1c8LI7xsDflR+07Hub0QDden1ab6dw0/bV2+qDT9F9cvqlzoCLJBPZ00vdQRYYI3LXXqVn7aRE/qVOsJPzmf9/1PqCD85i3TcvtQRvlONZnpvsskmeeutt3LLLbdkxIgRSZJddtklu+++e5o1m3Ot6D333LP2UgIAAAAAwHyoUemdJM2aNcvmm2+e5ZZbLjNmzPnqyZNPzrnu0o477vhtqwIAAAAAQJ2oUek9cuTI7LTTThk0aFDKyspSWVlZ7SvFs2fPrrWAAAAAAAAwv+rVZKXDDz88yy+/fMaNG5cmTZpk8ODBefrpp7P++uvnqaeequWIAAAAAAAwf2o00/uFF17IE088kdatW6devXqpX79+Nttss3Tr1i2HHXZY+vVz0XwAAAAAAH54NSq9Z8+eXXXDytatW+f999/PqquummWXXTbDhw+v1YAAAAAAAHWioqLUCagDNSq911prrQwYMCDLL798fvGLX+S8885Lw4YN07Nnz6ywwgq1nREAAAAAAOZLjUrvrl27ZurUqUmS008/Pdtvv31++ctfplWrVrnttttqNSAAAAAAAMyvGpXe22yzTdW/V1pppQwbNiyTJk1KixYtUlZWVmvhAAAAAADg+6hR6T0vLVu2rK1NAQAAAABAjdQrdQAAAAAAAKgttTbTGwAAAADgJ6WyotQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAAJVExu9QJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAAJVFZUeoE1AEzvQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCKC91AAAAAACAkqioKHUC6oCZ3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhlJc6AAAAAABASVRWlDoBdcBMbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwyksdAAAAAACgJCoqSp2AOmCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQEhUVpU5AHTDTGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACiM8lIHAAAAAAAohcrK2aWOQB0w0xsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAojPJSBwAAAAAAKImKilInoA6Y6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAURnmpAwAAAAAAlERlRakTUAfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqKiotQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAAJVFZUeoE1AEzvQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCKC91AAAAAACAkqioKHUC6oCZ3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhlJc6AAAAAABASVRWlDoBdcBMbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwyksdAAAAAACgJCoqSp2AOmCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQEhUVpU5AHTDTGwAAAACAwlB6AwAAAABQGD+ay5v8pmPnUkeABfJI/x6ljgALZNXV/lDqCLBAGtb70ZzWQI1MmfVpqSPAAmlc3qjUEWCBlZfVL3UEAGqBmd4AAAAAABSG0hsAAAAAgMLwPWAAAAAAYOFUWVHqBNQBM70BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwigvdQAAAAAAgJKoqCh1AuqAmd4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYZSXOgAAAAAAQElUVpQ6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqKkqdgDpgpjcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGOWlDgAAAAAAUBKVFaVOQB0w0xsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAojPJSBwAAAAAAKImKilInoA6Y6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAURnmpAwAAAAAAlERFRakTUAfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqKystQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAAJVFRUeoE1AEzvQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCKC91AAAAAACAkqioKHUC6oCZ3gAAAAAA1JnLL788yy23XBZZZJH84he/yMsvv/yt4//5z39m1VVXTePGjbP00kvnyCOPzGeffTbfr6f0BgAAAACgTtx2223p0qVLTj311PTt2zdrr712ttlmm4wbN26e4//1r3/l+OOPz6mnnpqhQ4fmmmuuyW233ZYTTzxxvl9T6Q0AAAAAQJ3o3r179t9//+yzzz5ZY4010qNHjzRp0iTXXnvtPMc///zz2XTTTbP77rtnueWWy9Zbb53ddtvtO2eHf5XSGwAAAACA+TJ9+vR8/PHH1R7Tp0+f59gZM2bk1VdfTadOnaqW1atXL506dcoLL7wwz3U22WSTvPrqq1Ul98iRI/PQQw/lt7/97XxnVHoDAAAAADBfunXrlsUWW6zao1u3bvMcO2HChMyePTvt2rWrtrxdu3YZM2bMPNfZfffdc/rpp2ezzTZLgwYNsuKKK+ZXv/rV97q8Sfn87w4AAAAAQIFUVpQ6wU/OCSd0TZcuXaota9SoUa1t/6mnnsrZZ5+dK664Ir/4xS/yxhtv5PDDD88ZZ5yRk08+eb62ofQGAAAAAGC+NGrUaL5L7tatW6d+/foZO3ZsteVjx47NEkssMc91Tj755Oy5557Zb7/9kiTt27fP1KlT8/e//z0nnXRS6tX77ouXuLwJAAAAAAC1rmHDhllvvfXy+OOPVy2rqKjI448/no033nie60ybNm2uYrt+/fpJksrKyvl6XTO9AQAAAACoE126dMlf//rXrL/++tlwww3zz3/+M1OnTs0+++yTJNlrr73y85//vOq64DvssEO6d++eddZZp+ryJieffHJ22GGHqvL7uyi9AQAAAACoE7vuumvGjx+fU045JWPGjEnHjh3zyCOPVN3ccvTo0dVmdnft2jVlZWXp2rVr3nvvvbRp0yY77LBDzjrrrPl+zbLK+Z0TXse2WmrrUkeABfJI/x6ljgALZNXV/lDqCLBAGtbzWT4/bVNmfVrqCLBAGtZrUOoIsMDKy+ZvBiH8WI0Y36fUEX5yPr35pFJH+MlpvMf8l8+l4q9DAAAAAGDhVFFR6gTUATeyBAAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAYSm8AAAAAAAqjvNQBAAAAAABKorKy1AmoA2Z6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACgMpTcAAAAAAIVRXuoAAAAAAAAlUVFR6gTUATO9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwlN4AAAAAABTGApXeM2bMyPDhwzNr1qzaygMAAAAAADVWo9J72rRp2XfffdOkSZOsueaaGT16dJLk0EMPzTnnnFOrAQEAAAAA6kRFhcf3ffwE1Kj0PuGEEzJgwIA89dRTWWSRRaqWd+rUKbfddluthQMAAAAAgO+jvCYr3Xvvvbntttuy0UYbpaysrGr5mmuumTfffLPWwgEAAAAAwPdRo5ne48ePT9u2bedaPnXq1GolOAAAAAAA/JBqVHqvv/76efDBB6t+/qLovvrqq7PxxhvXTjIAAAAAAPieanR5k7PPPjvbbrtthgwZklmzZuXiiy/OkCFD8vzzz+fpp5+u7YwAAAAAADBfajTTe7PNNkv//v0za9astG/fPo899ljatm2bF154Ieutt15tZwQAAAAAqH2VFR7f9/ETUKOZ3kmy4oorplevXrWZBQAAAAAAFkiNZno/9NBDefTRR+da/uijj+bhhx9e4FAAAAAAAFATNSq9jz/++MyePXuu5ZWVlTn++OMXOBQAAAAAANREjUrv119/PWusscZcy1dbbbW88cYbCxwKAAAAAABqokal92KLLZaRI0fOtfyNN95I06ZNFzgUAAAAAADURI1uZPm73/0uRxxxRO65556suOKKSeYU3kcddVR23HHHWg0IAAAAAFAXKisqSx2BOlCjmd7nnXdemjZtmtVWWy3LL798ll9++ay++upp1apVLrjggtrOCAAAAAAA86VGM70XW2yxPP/88+ndu3cGDBiQxo0bp0OHDtl8881rOx8AAAAAAMy3GpXeSVJWVpatt946W2+9dW3mAQAAAACAGqtx6f3444/n8ccfz7hx41JRUVHtuWuvvXaBgwEAAAAAwPdVo9L7tNNOy+mnn571118/Sy65ZMrKymo7FwAAAAAAfG81upFljx49cv311+ell17Kvffem3vuuafagx/e7/66Q2554cY8/MZ/ctkDl2TVjqt+49hlV1k2p/Y8Obe8cGMef/ex7LzvTj9gUhYGffoPysHHnpotd/xL1tp02zz+zPN1/pq33vVAtv7DX7Puljtmt/2PyKAhw6s9P336jJx54eXZdNs/ZYNOO+WIE8/MhEmT6zwXxbHn3/6UZ/o+mKHvvpi7H70xHdZZ81vHb7tjp/R+4e4MfffFPPzM7flVp83mGnPE8Qfmxdcey5B3XshNd/XIcissU+35Z/o+mJET+lV7dD5sn1rdLxZeu/9tlzze574MGP2/3PbwdWm/zhrfOn6bHbbKQ8/dkQGj/5f7n7o1m2+1SdVz5eX1c9TJh+T+p25N37eeyTMDH8o5l/0jbdu1ruvdgBx9wsF5dciTeeO9Prn17l5Z/mvvpfPy133/nBf6P5o33n81D/T+Vzquu1a15//y1z/mjvuvy9BRL+bdSYPTvHmzuorPQqQU5xI9b/5n/tf/oQx998W8+NpjufCKM9J2iTa1ul8s3P7yt13yxKv3Z9A7z+WOR67/zuP6NztulUeevzOD3nkuDzz972zRadOq58rL6+fokw/NA0//O/3ffjbPDno45112mvMJ6l5Fhcf3ffwE1Kj0njFjRjbZZJPvHsgP4lc7bJHOpxyQGy+6OZ23PShvDhmZc28+O4u3Wnye4xdp3CgfjB6Tq7tdm4ljJ/6wYVkofPrpZ1l1pRVy0lEH1cr27n2wd/Y+5NhvfP7h/z6d8y7tmQP/9pfcce2lWXWl5XNAl66ZOPnDqjHnXnJVnnrupXQ/88Rcf9l5GT9hYo448cxayUfxbff7rXPiGUflkvOvyg7/t3uGvjYiN9xxRVq1bjHP8etusHYu7tktt99yb7bfcrc89tBT6XFj96yy2opVYw44dO/svf9u6Xr02dl5m70ybdqnuf72y9OwUcNq2+re7YpsuEanqscNV99ap/vKwmHb3/06x592RC6/4Ors3GnPDH/t9Vx926Vp+Q3H9DobdMiFV52ZO/91X3baao/89+Gnc9kNF2Tlz4/pRRovkjU6rJYrul+TP3TaM4fuc2yWX3HZXHHThT/kbrEQOuiwv2Wfv/8lJxx1enb49e6ZNu3T3HznVWn0tffSr9php9/klDOPzUXnXZltt9wlQwYPz813XpVWrVtWjVmk8SJ56vH/5bLuvX6I3WAhUKpziRf/90oO2fe4bLXRTjlo72OyzHJL5/Jrz6/z/WXh8Nvf/zonnH5kLrugV36/1R4Z9tqIXHP7t59PdL/qrNxxy335/f/9Jf99+Klc/rXziTU7rJYrul+dnbbaI4fsfUyWX2nZXHlz9x9yt4CCKKusrKz8visdd9xxWXTRRXPyySfXWpCtlnJDzJq67IFLMnzA8Fza9fIkc24y+u9Xbsk9192Xf19+27eue8sLN+auq+/J3deYob+gHunfo9QRfpTW2nTbXNzt5Gy1+ZcflM2YMSMX97whD/d+Op9MmZKVVlguRx74t2y4bod5buPeB3vn3od75/rLzpvn87vtf0TWWm2VqpK9oqIinXbaK7v/ccfst+ef8smUqfnldn/Oef84Nltv+cskychR72TH3f+eW67qnrXXWr2W9/qnadXV/lDqCD9adz96Ywb2ey3/OP7cJHPeZ58b+Ehu7PXv9LjkurnGX3L1OWnSpHH22/3wqmV3PXJDhg4eka5Hn5UkefG1x3L1FTfl6stvSpI0a7ZoXh763xxz6Kn5zz2PJpkz0/u6q27JdVf9q653sRAa1qvxrUoWOrc9fF0G9x+SM06YU3yUlZXlqf7/yc1X355el94w1/juPc9OkyaLpPMeXaqW/fuhazPstRH5xzHnzPM11uq4Ru587IZsuc72+eC9sXWzIwUzZdanpY7wk/PqkCfT84obctVl1yeZ817ab/jT6XJI19x/98PzXOeB3v/KgL6D0/W4s5PMOf5fGfTfXNfrX7n84muqjd140w1yxwPXZY3lNs7HH39Sp/tSBA3rNSh1hB+tUp1LfN1Wv9kiV93YPav97BeZNWtWbe9mIZSX1S91hJ+MOx65PoP6D8npx8/5O62srCzPDHgwN119W3peMvf5xD97nZ3GTRrngL8cWbXs9oevy9DBI3LqMd3m+RrtO66Ru3rfmC06bud8Yj6NGN+n1BF+cqb1OPy7B1FNk84XlzrCd6rRTO/PPvss3bt3zxZbbJFDDz00Xbp0qfbgh1PeoDyrtF85fZ/tV7WssrIyfZ/tlzXWVeTx43RW9yszYPCwnH/a8bnrhiuy9ZabpfNRXTPqnfe+97ZmzpyZIcNfz0YbdKxaVq9evWy0fscMGDw0STJk+OuZNWtWNlp/naoxKyy7dJZs1zYDBg9b4P2h2Bo0KM9aa6+e555+qWpZZWVlnnv6payzwbw/qFl3/Q7VxifJs0++kHXWnzN+6WV/nrbt2lQb88knU9K/7+CqMV/ofNg+eXXEk3ngiVuz/yF7pX59f4ixYBo0KM+aa6+W5595uWpZZWVlXnjm5XRcv/081+m4fvs8/8wr1ZY999SL3zg+SZo1XzQVFRX5+KMptRMcvmaZZZdKuyXa5NmnXqha9sknU9L/1YFZb4O157lOgwblab/2Gnn26RerllVWVubZp1/Mut+wDiyoUp9LfGGxxZvnd3/cNn1fHqDwZoFVnU987bh+/pmX0/EbjsGO63eodv6RJP978oWs43wCqAM1mhI1cODAdOzYMUkyePDgas/Nz00tp0+fnunTp1dbVlFZkXplNergF2qLtWye+uX1M3l89WsTT54wOUuvtHSJUsE3+2DMuNz70GPpfdeNadumVZJkn93/mOdeejX3PNg7R3Te+3ttb/KHH2f27Iq0aln9K3StWrbIW6PfTZJMmDg5DRqUp3mzRb82ZvFMmDSp5jvDQqFFqxYpLy/PhPHVj5UJ4ydmxZWXm+c6rdu2nnv8uIlp03bOMd+mbevPtzGPMe1aVf18Q69bM3jg0Hw0+eOsu+HaOabroWnbrk3OOtklI6i5Fi0XT3l5eSbOdUxPyvIrLTfPdVq3bZWJ4yfONb5121bzHN+wUcMcffIhefCexzJ1ytRayQ1f16bdF++l1Y/N8eMnVr3Pfl3Lz9/Tx891PE/MSqssXzdBWeiV8lwiSY475bDsue+f06Rp4/R9ZWD22/2wBdkdSPLl+cTcx+CkrPAt5xMTxs19/vGt5xOnHJr/3P2o8wnge6tR6f3kk08u0It269Ytp512WrVlyzVbISs0X/Eb1gCKYsTItzN7dkW2222/astnzpiZxZo3TzKnGN9xjwOqnps9e3ZmzZqdDTp9edPV/ffcNX//659/mNBQItdceXPVv4cNeT0zZ8zMmReelPPPuCQzZswsYTL4ZuXl9fPPXt2SsrJvvPQJ1MROf9wu53Q/ternv/65du4dAkXX87Ibc/st9+bnSy2Zw445IBdecUb23U3xzY9beXn9XHz1OSkrK8upzieAGijJxS9POOGEuS6D8rvVdy5FlJ+8jyZ9nNmzZqdFm+qzXFu0bpFJ48xg5cdn2rRPU79+vdx+zaWpX7/6tzuaNF4kSdKmdavcdf3lVcv/+/Rz6f3Uczn31C9vZrlY82ZJkhaLN0/9+vUycVL1bztMnDQ5rT+f/d26VYvMnDkrH38ypdps74mTPkzrli0D32byxMmZNWtWWrepfqy0btMq48fN+2bAE8ZNmHt82y/Hjx834fNttMz4sROqjRkyaPg3Zun/6qA0aNAgP1/mZ3nrjVE12h+YPOnDzJo1K63mOqZbZsI3HtMT06pNq+8cX15ePxdd3S0/W3qJ7L3zQWZlUasee+TJ9Ht1YNXPX9ysr3WbVhn3lffSNm1a5bXB834vnfT5e3qbuY7n6tuA2lTqc4nJkz7M5Ekf5q03R+eNEW/l+UGPZp31O6Rfn4GBmvrifGLu47TltxzXE9O67Xeff3xReP98qSWy184HOp+g7lVWlDoBdaDG1xPp06dPjj322Pz5z3/OzjvvXO3xXRo1apTmzZtXe7i0Sc3MmjkrIwa9nnU261i1rKysLOts1jFD+g4tXTD4BquvsmJmz67IpMkfZpmlflbt0brVnBOg8vL61Za3XHzxNGrUsNqyL0rvBg0aZI1VV85LffpXvUZFRUVeerV/1Q0q11h15ZSXl1cb89aod/PB2HFZe63VfrB956dp5sxZGTxgaDbZ/BdVy8rKyrLJ5hum3yvz/mOxb5+B2WTzDast23SLjar+uHxn1HsZN3Z8tW0uumjTdFx3rW/9A3SN9qtm9uzZc12WAr6PmTNn5bUBw7LxLzeoWlZWVpaNfrlB+vcZNM91+vcZVG18kmyyxS+qjf+i8F52+WWyzx8PzoeTP6qbHWChNXXKtLz91jtVjxHD3szYMeOz2RYbVY1ZtFnTdFyvQ159ZcA8tzFz5qwMGjAkm33tPX2zLX6Rvt+wDiyoH9O5RL16c/7ubtjITUdZMFXnE185TsvKyrLxLzdI/284Bvv3GTjP84l+XzufuPjqc7LsCsvkr388yPkEUGM1mun973//O3vttVe22WabPPbYY9l6660zYsSIjB07NjvttNN3b4BadWfPu3LcRcdkxIDXM6z/sPxhv52zSONF8uhtc+7Yfdw/j8mEMRNzzTnXJplz88tlV17m8383SOslW2fFNVbIp9M+y/tvv1+y/aA4pk37NKPf/fJYeu/9sRk24s0s1rxZlltmqWy39ZY58cwLcvQh+2f1VVbM5A8/yot9+meVlZbPFpts+C1bnre9dt0pJ511YdZcbeWstcaqufn2e/PpZ9Pz++1+nSRptmjT7Lz91jnv0l5ZrHmzNG3aJGdfdGXWXmv1qmIcvs01V96cCy47PYP6D8mAvoOzT+fd06RJ49x5631JkgsuPyNjPxiX88+8NEly/VW35tb7e2Xfg/bMk489mx123ibtO66Rk7qcUbXN63r8K4d02S9vjxydd0e9lyNPOChjx4zPYw/NuYTYOut3SMf11soL/+uTqVOmZt0NOuSkM47OvXc8lI8/+uSH/z+BQrm+x79yzqWnZvCAoRnY97X89YDd0rhJ49z97weSJOdc9o+M+2B8up8151s3N/X6d26896rsc+Bf8lTv/2W7nbbOmmuvnlOOOjvJ53+gXnNu1uiwWjrvcWTq169fdX3OjyZ/lJkz3TCNunFNj5ty2FF/z1tvjso7o97L0ScekrFjxuXRBx+vGvPve67OIw8+nuuvvjVJ0vOKG3PR5WdlQP/X0r/v4OzXeY80btI4t/3r3qp12rRtlTZtW2e5FeacM6+2xsqZMmVq3n/3g3z44cc/6D5SDKU4l1h73bXSYZ010+elfvnow0+y7PJL5cjjD8rbI0d/Y9kO38d1PW7JuZf+I4P7D/n8fGL3NG7SOHfdOud84rzLTsvYMeNy4Zlzzidu6Pnv3Hxfz/yt6nxim6zVcY2c/JXziUuuPS9rdlg1B/zF+QSwYGpUep999tm56KKLcvDBB6dZs2a5+OKLs/zyy+eAAw7IkksuWdsZ+Q5PPfB0Fmu1WPY+eq+0aNMibw4ZmeP3PCmTJ3yYJGn787aprKisGt+qXav0fKxH1c+7dt4lu3beJf1fGJCjdjnmh45PAQ0e9nr+duhxVT+fd2nPJMnvtu2Us7oelTNP6pKrrr81F1zWK2PHT0yLxZqnw5qrZYtNv3/hnSTbdtoikz/8KJddfXMmTJqU1VZeMT0uPKPq8iZJctxhB6RevXo54qQzM3PmzGyy4Xo5+eiDF2xHWWg8eO9jadmqRY48/sC0btsqQwcPz95/Orjqxj0/W2qJVFR8+ZW4vq8MyBEHnJijTjw4R590SN4eOTqd9+qSEcPerBpz1aXXp3HTxjn7wq5pvliz9Hmpf/bZ9eDMmD4jSTJjxoxsv9M2OfzYzmnYsEHeGf1+rutxS6658qYfducppIfv652WrRbPoccekDZtW2Xo4BHZ/8+HVX2L4Gc/X6LauUO/Vwbm6M5dc8QJB+bIEw/K2yPfySF/PTqvf35Mt1uybbbadoskyX1P/qvaa+31+wPy8vN9f6A9Y2FzxSXXpknTxjn3on+k+WLN8sqLfbPHLp0z/fP30iRZdvml07LVl+cED9zzSFq1apGjTzgkbdq2zpDBw7LnLp2r3RBzz312TZfjvrxm+N0P3ZgkOfLgk3LH5yUlfB+lOJf47NPPss32/5cjjuucJk0aZ9zYCXnmiedz6IW93BuEWvHQvb3TslWLHHZc56rziX13PbTqfGLJpZZIxVcuG9HvlYE5qvNJOeKEg9LlpIPz9sh3cvDXzic6fX4+cf9Tt1Z7rT1+d0Befv7VH2jPgCIoq6ysrPzuYdU1bdo0r732WpZbbrm0atUqTz31VNq3b5+hQ4fm//7v//LBBx987yBbLbX1914Hfkwe6d/juwfBj9iqq/2h1BFggTSsV5JblUCtmTLr01JHgAXSsJ5LZvDTV15Wv9QRYIGMGN+n1BF+cqZdeWipI/zkNDnw0lJH+E41upB2ixYt8sknc75a/fOf/zyDBw9Oknz44YeZNm1a7aUDAAAAAIDvoUZTojbffPP07t077du3zy677JLDDz88TzzxRHr37p2tttqqtjMCAAAAANS+iu99EQx+AmpUel922WX57LPPkiQnnXRSGjRokOeffz5/+MMf0rVr11oNCAAAAAAA86tGpXfLli2r/l2vXr0cf/zxtRYIAAAAAABqar5L748//ni+N9q8efMahQEAAAAAgAUx36X34osvnrKysm8dU1lZmbKyssyePXuBgwEAAAAAwPc136X3k08+WZc5AAAAAABggc136b3FFlvUZQ4AAAAAgB9WRUWpE1AHanQjyy9MmzYto0ePzowZM6ot79ChwwKFAgAAAACAmqhR6T1+/Pjss88+efjhh+f5vGt6AwAAAABQCvVqstIRRxyRDz/8MC+99FIaN26cRx55JDfccENWXnnl3H///bWdEQAAAAAA5kuNZno/8cQTue+++7L++uunXr16WXbZZfPrX/86zZs3T7du3bLddtvVdk4AAAAAAPhONZrpPXXq1LRt2zZJ0qJFi4wfPz5J0r59+/Tt27f20gEAAAAAwPdQo5neq666aoYPH57lllsua6+9dq666qost9xy6dGjR5ZccsnazggAAAAAUPsqKkqdgDpQo9L78MMPzwcffJAkOfXUU/Ob3/wmN998cxo2bJgbbrihVgMCAAAAAMD8qlHpvccee1T9e911182oUaMybNiwLLPMMmndunWthQMAAAAAgO+jRtf0TpJrrrkma621VhZZZJG0aNEie+21V+69995ajAYAAAAAAN9PjWZ6n3LKKenevXsOPfTQbLzxxkmSF154IUceeWRGjx6d008/vVZDAgAAAADA/KhR6X3llVemV69e2W233aqW7bjjjunQoUMOPfRQpTcAAAAAACVRo9J75syZWX/99edavt5662XWrFkLHAoAAAAAoM5VVpY6AXWgRtf03nPPPXPllVfOtbxnz575y1/+ssChAAAAAACgJuZ7pneXLl2q/l1WVparr746jz32WDbaaKMkyUsvvZTRo0dnr732qv2UAAAAAAAwH+a79O7Xr1+1n9dbb70kyZtvvpkkad26dVq3bp3XXnutFuMBAAAAAMD8m+/S+8knn6zLHAAAAAAAsMBqdE1vAAAAAAD4MZrvmd4AAAAAAIVSUVHqBNQBM70BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwigvdQAAAAAAgJKoqCx1AuqAmd4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYZSXOgAAAAAAQElUVpQ6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqKkudgDpgpjcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGOWlDgAAAAAAUAqVFRWljkAdMNMbAAAAAIDCUHoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKIzyUgcAAAAAACiJispSJ6AOmOkNAAAAAEBhKL0BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFEZ5qQMAAAAAAJREZUWpE1AHzPQGAAAAAKAwlN4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACqO81AEAAAAAAEqiorLUCagDZnoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhVFe6gAAAAAAACVRUVHqBNQBM70BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwigvdQAAAAAAgJKoqCx1AuqAmd4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYZSXOgAAAAAAQElUVpQ6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqKkudgDpgpjcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGOWlDgAAAAAAUAqVFRWljkAdMNMbAAAAAIDCUHoDAAAAAFAYSm8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKIzyUgcAAAAAACiJispSJ6AO/GhK79enfVDqCLBAVl3tD6WOAAtk+LC7Sh0BFshSK/621BFggWy1+OqljgAL5PYPXi51BFhgTRsuUuoIANQClzcBAAAAAKAwlN4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBg/mhtZAgAAAAD8oCoqS52AOmCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQEpUVpU5AHTDTGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACiM8lIHAAAAAAAoiYrKUiegDpjpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwlN4AAAAAABRGeakDAAAAAACUQmVFZakjUAfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqKistQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwyksdAAAAAACgJCoqSp2AOmCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQEhWVpU5AHTDTGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACiM8lIHAAAAAAAoiYrKUiegDpjpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwlN4AAAAAABRGeakDAAAAAACUQmVlZakjUAfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqKistQJqANmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAAJVFRWeoE1AEzvQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCKC91AAAAAACAUqisqCx1BOqAmd4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYZSXOgAAAAAAQElUVJY6AXXATG8AAAAAAApD6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMMpLHQAAAAAAoCQqSh2AumCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQCpUVlaWOQB0w0xsAAAAAgMJQegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAojPJSBwAAAAAAKImKylInoA6Y6Q0AAAAAQGEovQEAAAAAKIwald4jR46s7RwAAAAAALDAalR6r7TSStlyyy1z880357PPPqvtTAAAAAAAUCM1Kr379u2bDh06pEuXLlliiSVywAEH5OWXX67tbAAAAAAA8L3UqPTu2LFjLr744rz//vu59tpr88EHH2SzzTbLWmutle7du2f8+PG1nRMAAAAAoHZVeHzvx0/AAt3Isry8PDvvvHPuuOOOnHvuuXnjjTdy9NFHZ+mll85ee+2VDz74oLZyAgAAAADAd1qg0rtPnz456KCDsuSSS6Z79+45+uij8+abb6Z37955//3387vf/a62cgIAAAAAwHeqUendvXv3tG/fPptssknef//93HjjjRk1alTOPPPMLL/88vnlL3+Z66+/Pn379q3tvAu1LiccnD5DnsiI917Jv+7uleVWWOY719lr3z/nuf6PZMT7fXJf71uy9rprVXu+UaOGOeO8kzLgjWczdPRL6XFD97Ru06ramE03/0XufuSmDBn1YvoMfTInnHpk6tevX6v7RvHt+bc/5Zm+D2bouy/m7kdvTId11vzW8dvu2Cm9X7g7Q999MQ8/c3t+1WmzucYccfyBefG1xzLknRdy01095vqdeKbvgxk5oV+1R+fD9qnV/aKY+vQflIOPPTVb7viXrLXptnn8mefr/DVvveuBbP2Hv2bdLXfMbvsfkUFDhld7fvr0GTnzwsuz6bZ/ygaddsoRJ56ZCZMm13kuiu/YEw/NwOHP5O0x/XPHfddm+RWW/c519tlv97wy8PGMGjsgDz9+W9ZZt32158//52l5qf9jeXtM/7z25vO54V+XZ6WVl6+rXYAqv95r21z8v6ty/fDbcvq952bFtVf+xrFb/vnXOeWOs9Jr4E3pNfCmnHjLP751PNSVf5x6dN4Z1TeffPRGHn3431lppe9+vzyw81/zxogXM+XjN/P8/x7IBut3rPb8CissmzvvuDofvDcwkyYMy63/6pG2bVvX0R6wsDux6xEZ/sYLGTP+tdz3wI1ZYcXlvnOd/f6+Rwa+9nTGThiSx5+8K+uu16Ha8/95+JZ8NOXNao+LLj6jjvYAKKIald5XXnlldt9994waNSr33ntvtt9++9SrV31Tbdu2zTXXXFMrIUkOPOxv2efvu+eEo87Ijr/+S6ZN+zQ333lVGjVq+I3r7LDTNjn5zGPyz/N6ZLst/5Shg0fk5juvSqvWLavGnHLWsen0my1y4D5H5U877JN2S7RNzxsvqnp+9TVXyfW3XZGnH38u2/5qlxy87zHptO2vcvypR9Tl7lIw2/1+65x4xlG55PyrssP/7Z6hr43IDXdckVatW8xz/LobrJ2Le3bL7bfcm+233C2PPfRUetzYPaustmLVmAMO3Tt7779buh59dnbeZq9Mm/Zprr/98jT82u9E925XZMM1OlU9brj61jrdV4rh008/y6orrZCTjjqoVrZ374O9s/chx37j8w//9+mcd2nPHPi3v+SOay/NqistnwO6dM3EyR9WjTn3kqvy1HMvpfuZJ+b6y87L+AkTc8SJZ9ZKPhZehxyxX/Y7YM8ce+Q/8tut/pRpUz/Nbfdc/a3nF7/beducdvbxufDcy/PrzXfOa4OH59/3XJ3WXzm/GNj/tRx+0In55Ybb5c8775eysrLcds81c50vQm3aaPtNs0fXfXL3xbflpO2Pyuihb+f4m05J81aLzXP8GhuvmefvfzZn/vnknLrT8Zn4/oQcf9OpadGu5TzHQ1045uiDcsjBf8tBhxyfTTbbIVOnTctD/7kljRo1+sZ1dtllx1xw/qk548zu2eAXv8mAgUPy0IO3pM3nk5eaNGmchx/8VyorK/Prbf6UzX/1+zRs2CD33XN9ysrKfqhdYyFxxJF/zwGd/5ojDz85W/1q50ydOi333Hvdt55L7PyH7XJ2txNzbrdLsvlmO2bw4GG5597r55qAd/11/87KK/yi6nFK13PreneAAimrrKysLHWIJFmmZfvvHrQQ6zPkifS84ob0vOyGJEmzZovm1eFP5ahDuuaBux+Z5zr39b4lA/q+llOOOztJUlZWlpcG9c71vW7NFRdfk2bNFk2/15/JYX8/Lg/d3ztJsuLKy+fJl+7P77b+S/r1GZhjux6WX/5q4+zQabeq7XbaZotcce0FWWfVLTJ1yrQ63vOfjvJ65aWO8KN196M3ZmC/1/KP4+ecpJSVleW5gY/kxl7/To9Lrptr/CVXn5MmTRpnv90Pr1p21yM3ZOjgEel69FlJkhdfeyxXX3FTrr78piRzfideHvrfHHPoqfnPPY8mmTPT+7qrbsl1V/2rrnexEIYPu6vUEX6U1tp021zc7eRstfkmVctmzJiRi3vekId7P51PpkzJSisslyMP/Fs2XLfDPLdx74O9c+/DvXP9ZefN8/nd9j8ia622SlXJXlFRkU477ZXd/7hj9tvzT/lkytT8crs/57x/HJutt/xlkmTkqHey4+5/zy1Xdc/aa61ey3v907TUir8tdYSfnIHDn8mVl12fKy+9NknSrPmiGfz6czn8oBNy710PzXOdhx+/Lf36Ds6Jx8yZbVVWVpZ+Q57KNT1vzqUX9ZrnOmusuUqefP7+bNjx1xn11jt1szMFsNXifpcXxOn3npuRA9/I9afMOQ7Lyspy6Yu98uj1D+WBK+/+zvXL6tVLr4E35YZTeuXZu5+q47TFdPsHL5c6wk/OO6P65qJ/XpXuF12VJGnevFnef7d//rbfkbn99vvnuc7z/3sgr/QZkMOP6JpkzrH+9shXcvkV1+W88y/Przttnv88cHNat10jn3wypWq7E8YNyba/3T2PP/HsD7NzP1FNGy5S6gg/KcPfeCGXXXJNLr3k6iRJ8+aL5vWRL+egzsfmrjv/M891Hn/yrvTtOzDHHHVakjnH8JDh/0vPHjfmou5zfhf+8/AtGTRwaE44ziSP7+ujKW+WOsJPzoe7blnqCD85i9/2ZKkjfKcFmm4zbdq0DBs2LAMHDqz2oHYts+xSabtEm/zvqRerln3yyZT0f3VQ1ttg7Xmu06BBedqvvUb+9/SX61RWVuZ/T7+YdT9fp33HNdKwYYNq233z9bfy7jvvV41p2Khhpk+fXm3bn302PYs0XiTt116j1vaR4mrQoDxrrb16nnv6papllZWVee7pl7LOBvMuCNddv0O18Uny7JMvZJ3154xfetmfp227NtXGfPLJlPTvO7hqzBc6H7ZPXh3xZB544tbsf8heLs1DrTir+5UZMHhYzj/t+Nx1wxXZesvN0vmorhn1znvfe1szZ87MkOGvZ6MNOlYtq1evXjZav2MGDB6aJBky/PXMmjUrG62/TtWYFZZdOku2a5sBg4ct8P6wcFp2uaXSbom2eeapLy/f88nHU9K3z8Cs/5Xj8asaNGiQDh3XzLNfWaeysjLPPPXCN67TpEnj/PkvO2fU2+/k/XfH1OYuQJX6DcqzfPsVM/h/A6qWVVZWZvD/BmbldVedr200atww5Q3qZ8qHU+oqJlSz/PLLZMkl2+XxJ/5Xtezjjz/Jyy/3y0a/WG+e6zRo0CDrrtuhWnFdWVmZx5/4XzbaaM46jRo1SmVlZaZPn1E15rPPpqeioiKbbrpBHe0NC6Pllls6SyzRNk89+VzVso8/npI+ffpngw3Xmec6DRo0SMd11spTT1Y/l3jqyefnWudPu+6YkaNeyQsvP5xT/3F0Gjf2gQR1o7Ki0uN7Pn4KajQ1dfz48dl7773zyCPznmE8e/bsb11/+vTpcxWplZUVKSvzldd5adNuzld8JoyfWG35hPET0+YbrsvWslWLlJeXz3OdFVeZc424Nm1bZ/r0Gfn440+qjxk3sep6b08/8Vz27bxHdtx52/zn3kfTpl3rHH5M5yRJ23ZtFnznKLwWVcfipGrLJ4yfmBVXXm6e67Ru23ru8eMmpk3bOb8LXxz38xzT7suvxN3Q69YMHjg0H03+OOtuuHaO6Xpo2rZrk7NOvnBBd4uF2AdjxuXehx5L77tuTNvPv4K5z+5/zHMvvZp7HuydIzrv/b22N/nDjzN7dkVatax+uZ9WLVvkrdHvJkkmTJycBg3K07zZol8bs3gmTKr+ewDzq03bOf8dHz+u+rnC+PET0rbdt59fzGudlVepfg3avffbLaecdnSaLto0r48YmV1+/7fMnDmzFvcAvtSsRbPUL6+fjyZ8VG35RxM+zM9W/Pl8bWO3E/bK5LGTM/i5Ad89GGrBEu3aJknGjh1fbfnYcROyxBJt57lO69YtU15ennFjJ1RbPm7c+Ky26pxLAb740quZOnVaup19Urqe3C1lZWU5+6wTU15eniWWaFcHe8LC6otOYNy46sfj+HET0u4b+oJWn59LzGudVVZZoernO29/IO+Mfi8fjBmbNddcLaedcWxWXmWF7LF77Vx+ECi+GrXMRxxxRD766KO89NJLady4cR555JHccMMNWXnllXP//fP+CtZXdevWLYsttli1x8efjf/O9RYWv//jdhk6+qWqR3l5g5JlefbJF3LWqd1zdveT88aYV/P0yw/kyd5zZhVUVlaULBfMj2uuvDkvPfdqhg15Pf+6/s6cfUr37LXfrmnYsHS/U/z0jRj5dmbPrsh2u+2XDTrtVPXo029Q3nnvgyRzivGvPnf6BZem74DXqi3recO/S7wnLGz+sMv2Gfneq1WPBg3q9rJcd93+QLb65c753bZ7ZOQbb6fX9f/81ut7QintcODO2XiHzdL97+dk5nQfzlA3dtttp3w4aUTVo67ehydMmJQ/73ZAtt+uUz6a/HomTRiWxRdfLK/2HZiKCn/DUXO7/GnHvDdmYNWjLs8lrr/u33n88Wcz5LURueP2+9P578dkhx23yfLLL1NnrwkUS43eoZ544oncd999WX/99VOvXr0su+yy+fWvf53mzZunW7du2W677b51/RNOOCFdunSptmzNZTeuSZRC6v3Ik+n36peXifniD8TWbVpV+0S/dZtWGfINX2ufNHFyZs2aNdeNIFq3aZXxY+fMzho/bkIaNWqY5s2bVZvt3bptq2qful59xY25+oob026JNvnww4+z9DI/y/GnHpFRb7+74DtL4U2uOhar3xSqdZtWc80U/MKEcRPmHt/2y/HjPz8+W7dpmfFf/Z1o2ypDBg3/xiz9Xx2UBg0a5OfL/CxvvTGqRvsD06Z9mvr16+X2ay5N/frVPztu8vlXLtu0bpW7rr+8avl/n34uvZ96Luee+uXNLBdr3ixJ0mLx5qlfv14mTppcbVsTJ01O689nf7du1SIzZ87Kx59MqTbbe+KkD9O6pRuuMX8eefjJvPrV84uGc84v2rRtlXFfmWXYpk3rvDZo6Dy38cX5xRffvPnqOl+fdfjJx1PyycdT8tbIUXn1lQEZMeql/Hb7X+eeux6srV2CKp9M/iSzZ83OYq2r37RysdaL58PxH37rutv9/XfZ8cCdc/ZfTs07w5wfUHceeOCxvPxyv6qfv/g7r127NhkzZlzV8nZtW6f/gNfmuY0JEyZl1qxZc30jp23bNhnzlffy3v99JquuvmlatWqRWbNm56OPPs67o/vl9rcc49Tcww89nlf7fPltmIafH8Nt27au9o2FNm1bZ9DAeZ9LTPz8XKLt17613uZr2/i6Pq/0T5KssMKyeeut0TXdBWAhUqOZ3lOnTk3btnO+btWiRYuMHz/njal9+/bp27fvd67fqFGjNG/evNrDpU2+NHXKtIx6652qx4hhb2bcmPHZdItfVI1ZtFnTdFyvfV59Zd5fv5w5c1YGDRiSTTf/cp2ysrJsusVG6fv5OoP6D8mMGTOrbXeFlZbLUkv/rGrMV40dMz7TP5ueHf/w27z37gcZPGDe/xGDr5o5c1YGDxiaTb52LG6y+Ybp98q87wHQt8/AbLL5htWWbbrFRunXZ874d0a9l3Fjx1fb5qKLNk3HddeqGjMva7RfNbNnz87E8S4HQc2tvsqKmT27IpMmf5hllvpZtUfrVnMK6PLy+tWWt1x88TRq1LDasi9K7wYNGmSNVVfOS336V71GRUVFXnq1f9UNKtdYdeWUl5dXG/PWqHfzwdhxWXut1X6wfeenbeqUqXl75Oiqx/Bhb2TsmHH55RZfTjxYtFnTrLt+h6o/LL9u5syZGdj/tWrrlJWV5ZdbbPSN68wZM+d/GprpTR2ZPXNW3hr0Ztbc9Mt7e5SVlWXNTdvn9b7f/IH49gf8PjsdukvO/evpeWuQG39Rt6ZMmZo333y76jFkyIh88MHY/N+Wm1WNadZs0Wy44Tp58aVX57mNmTNnpm/fgdXWKSsry/9tuVlefHHudSZOnJyPPvo4W/5q07Rt2zoP/Kd37e8YC40pU6Zm5MhRVY9hQ1/PmDHjssWvvrzhe7Nmi2b99Tvmla98wPNVM2fOTP9+g6utU1ZWli1+tfE3rpMk7TvMuafYVz8gAvg2NZrpveqqq2b48OFZbrnlsvbaa+eqq67Kcsstlx49emTJJZes7YwkuabHzTnsqAPy9pujM3rUezn6xEMybsz4PPbgE1Vjbr2nVx558InccPWtSebM0L7w8rMyqP9r6d93UPbtvGeaNGmc2/91b5I5N/677ea7c/KZx+TDyR9lyidTc9q5J6TPy/2rFYcHHLp3nvrvc6msrMhvtu+Ugw7fNwf97WhfjWO+XXPlzbngstMzqP+QDOg7OPt03j1NmjTOnbfelyS54PIzMvaDcTn/zEuTJNdfdWtuvb9X9j1ozzz52LPZYedt0r7jGjmpyxlV27yux79ySJf98vbI0Xl31Hs58oSDMnbM+Dz20Jw7CK+zfod0XG+tvPC/Ppk6ZWrW3aBDTjrj6Nx7x0P5+KNP5g4JXzFt2qcZ/e77VT+/9/7YDBvxZhZr3izLLbNUttt6y5x45gU5+pD9s/oqK2byhx/lxT79s8pKy2eLTTb8li3P21677pSTzrowa662ctZaY9XcfPu9+fSz6fn9dr9OkjRbtGl23n7rnHdpryzWvFmaNm2Ssy+6MmuvtXpVMQ410fPKG3PkMZ3z1ptvZ/So93LcSYdl7Jhxefg//60ac+f91+WhB/6ba3vdkiTpcfn1ueTKc9K/3+D0e3Vg/n7QX9OkaeP8++a7k8y5Qebvdv5tnnriuUycMClL/myJHHbk/vnss+l5/LGnS7KfLBweuvr+dL7wsIwc+GbeHPB6tv3b9lmkySJ5+o7HkyQHdj8sk8ZMym3n3Zwk2aHzTvljl91y2eHdM/7dcVmszeJJks+mfpbp0z4r1W6wkLnk0qtz4gmH5fU3Rubtt9/Jaf84Ju+/Pzb33fdo1ZjHHrkt9973cK648vokyUUX98p111yUV/sOzCuv9Mthh+6fpk0b5/obbqta5697/SnDhr2R8RMmZqON1stFF56eiy/ulREjfLhD7bry8utyzLEH5803386oUe/kpK5dMuaDsfnPA49Vjbn/PzflgQceS6+rbkqSXH7ZtbnyqvPTr++gvPrqgBx08D5p2qRJbr75ziRzbvL6xz/tmN6PPpVJkyZnzbVWS7dzTsr//vdSXnvtmz/IBPiqGpXehx9+eD74YM51S0899dT85je/yc0335yGDRvmhhtuqNWAzHHlJdemcdPG6XbRqWm+WLP0ebFf9tylc7U7ci+z/NJp2Wrxqp8fuOfRtGzVMl1OODht2rbOkMHDsucunavd3PL0k85LRUVlrrrhojRs2CBPP/F8uh5zZrXX/tVWm+WQLvunUcOGGfLa8Oy3x2F56r//C8yvB+99LC1btciRxx+Y1m1bZejg4dn7TwdX3YjyZ0stUe1DlL6vDMgRB5yYo048OEefdEjeHjk6nffqkhHDvjxJv+rS69O4aeOcfWHXOb8TL/XPPrsenBmf/07MmDEj2++0TQ4/tnMaNmyQd0a/n+t63JJrrrzph915fpIGD3s9fzv0uKqfz7u0Z5Lkd9t2ylldj8qZJ3XJVdffmgsu65Wx4yemxWLN02HN1bLFpt+/8E6SbTttkckffpTLrr45EyZNymorr5geF55RdXmTJDnusANSr169HHHSmZk5c2Y22XC9nHz0wQu2oyz0Lvvn1WnSpHEuuPj0NF+seV5+8dX8eef9q51fLLvcMmnZ6stj8b67H06rVi1z7Ilzbg782qCh2W3n/TP+8/OLzz6bkV9svF7+fuBeWWzx5hk/bmJefL5Ptv/1bpkwwTdtqDsv/ue5NG/VPH/s8ucs3qZFRg15K+fsdXo+/vzmlq1+1iYVFZVV4zvt8Zs0aNQgR/Y4rtp27rro37nrn7cFfgjnX3BFmjZtkh5XnJfFF2+e5557JdvtsEemT59eNWaFFZZN69ZfXs7sjjvuT5vWLfOPU47OEku0yYABr2W77feodonKVVddMWedeUJatlw8b496N93OuST/vLjnD7pvLBz+eVHPNGnaJBdfelYWW6x5XnyhT3beaZ9q5xLLLb9MWn3lXOLuux5Mq9Ytc2LXI9Ku3ZxLoey80z5Vl7OcMWNmfrXlJjnooL3TpGmTvPfuB7n/vkdz/nmXz/X6UCvM6SykssrKysrvHvbtpk2blmHDhmWZZZZJ69atv3uFeVimZfsFjQElVV6vbm8IBnVt+LC7Sh0BFshSK/621BFggWy1uG9u8NN2+wcvlzoCLLCmDRcpdQRYIB9N8Y2O72vyH35V6gg/OS3ueqrUEb7TfLd0X7/x5Lfp3r17jcIAAAAAAMCCmO/Su1+/6jcU6Nu3b2bNmpVVV101STJixIjUr18/6623Xu0mBAAAAACA+TTfpfeTTz5Z9e/u3bunWbNmueGGG9KixZzrMk2ePDn77LNPfvnLX9Z+SgAAAAAAmA/1arLShRdemG7dulUV3knSokWLnHnmmbnwwgtrLRwAAAAAAHwfNSq9P/7444wfP36u5ePHj88nn3yywKEAAAAAAOpaZUWlx/d81MTll1+e5ZZbLossskh+8Ytf5OWXv/0G2B9++GEOPvjgLLnkkmnUqFFWWWWVPPTQQ/P9ejUqvXfaaafss88+ufvuu/Puu+/m3XffzV133ZV99903O++8c002CQAAAABAwdx2223p0qVLTj311PTt2zdrr712ttlmm4wbN26e42fMmJFf//rXefvtt3PnnXdm+PDh6dWrV37+85/P92vO9zW9v6pHjx45+uijs/vuu2fmzJlzNlRenn333Tfnn39+TTYJAAAAAEDBdO/ePfvvv3/22WefJHO65QcffDDXXnttjj/++LnGX3vttZk0aVKef/75NGjQIEmy3HLLfa/XrNFM7yZNmuSKK67IxIkT069fv/Tr1y+TJk3KFVdckaZNm9ZkkwAAAAAA/MhNnz49H3/8cbXH9OnT5zl2xowZefXVV9OpU6eqZfXq1UunTp3ywgsvzHOd+++/PxtvvHEOPvjgtGvXLmuttVbOPvvszJ49e74z1qj0/kLTpk3ToUOHdOjQQdkNAAAAAFBw3bp1y2KLLVbt0a1bt3mOnTBhQmbPnp127dpVW96uXbuMGTNmnuuMHDkyd955Z2bPnp2HHnooJ598ci688MKceeaZ852xRpc3AQAAAABg4XPCCSekS5cu1ZY1atSo1rZfUVGRtm3bpmfPnqlfv37WW2+9vPfeezn//PNz6qmnztc2lN4AAAAAwMKpotQBfnoaNWo03yV369atU79+/YwdO7ba8rFjx2aJJZaY5zpLLrlkGjRokPr161ctW3311TNmzJjMmDEjDRs2/M7XXaDLmwAAAAAAwLw0bNgw6623Xh5//PGqZRUVFXn88cez8cYbz3OdTTfdNG+88UYqKr78RGLEiBFZcskl56vwTpTeAAAAAADUkS5duqRXr1654YYbMnTo0Bx44IGZOnVq9tlnnyTJXnvtlRNOOKFq/IEHHphJkybl8MMPz4gRI/Lggw/m7LPPzsEHHzzfr+nyJgAAAAAA1Ildd90148ePzymnnJIxY8akY8eOeeSRR6pubjl69OjUq/fl3Oyll146jz76aI488sh06NAhP//5z3P44YfnuOOOm+/XLKusrKys9T2pgWVati91BFgg5fV8hsRP2/Bhd5U6AiyQpVb8bakjwALZavHVSx0BFsjtH7xc6giwwJo2XKTUEWCBfDTlzVJH+MmZ9LstSh3hJ6flfU+XOsJ3cnkTAAAAAAAKw9RUAAAAAGChVFnx3WP46THTGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACiM8lIHAAAAAAAoiYpSB6AumOkNAAAAAEBhKL0BAAAAACgMpTcAAAAAAIWh9AYAAAAAoDCU3gAAAAAAFEZ5qQMAAAAAAJRCZUWpE1AXzPQGAAAAAKAwlN4AAAAAABSG0hsAAAAAgMJQegMAAAAAUBhKbwAAAAAACqO81AEAAAAAAEqiotQBqAtmegMAAAAAUBhKbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFUV7qAAAAAAAApVBZUeoE1AUzvQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCKC91AAAAAACAUqisKHUC6oKZ3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhlJc6AAAAAABAKVRWlDoBdcFMbwAAAAAACkPpDQAAAABAYSi9AQAAAAAoDKU3AAAAAACFofQGAAAAAKAwyksdAAAAAACgJCrLSp2AOmCmNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAUhtIbAAAAAIDCUHoDAAAAAFAY5aUOAAAAAABQCpUVpU5AXTDTGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKQ+kNAAAAAEBhKL0BAAAAACiM8lIHAAAAAAAohcqKslJHoA6Y6Q0AAAAAQGEovQEAAAAAKAylNwAAAAAAhaH0BgAAAACgMJTeAAAAAAAURnmpAwAAAAAAlEJlRakTUBfM9AYAAAAAoDCU3gAAAAAAFIbSGwAAAACAwlB6AwAAAABQGEpvAAAAAAAKo7zUAQAAAAAASqGysqzUEagDZnoDAAAAAFAYSm8AAADg/9m77zCpqvsPwJ/FRaRK2QU19h4LdmMsMSZEYyxRY8OoscaGRhF77x17BRV7+9ljCfaCYqEKigUVxEJXQJS2+/sDXVlZFZZdR4f39bk+zJlz7nwvz+xh7mfP3AsARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUjdJCFwAAAAAAUAiVFYWugPpgpTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARaO00AUAAAAAABRCZUVJoUugHljpDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFQ+gNAAAAAEDRKC10AQAAAAAAhVBZWegKqA9WegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAAReMXc03vkpKSQpcA82TBBr+YHyeolcWX+1uhS4B5MmLoo4UuAeZJk8U2KXQJME+WaF5W6BJgnpWUWBsIUAzM5gAAAAAAFA1LUwEAAACA+VJlhatPFCMrvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGqWFLgAAAAAAoBAqK0oKXQL1wEpvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIpGaaELAAAAAAAohMrKQldAfbDSGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiUVroAgAAAAAACqGyoqTQJVAPrPQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqKwsKXQJ1AMrvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGqWFLgAAAAAAoBAqKwpdAfXBSm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAikZpoQsAAAAAACiEisqSQpdAPbDSGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiUVroAgAAAAAACqGysqTQJVAPrPQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqKwoKXQJ1AMrvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGqWFLgAAAAAAoBAqKwtdAfXBSm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAikZpoQsAAAAAACiEyoqSQpdAPbDSGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiUVroAgAAAAAACqGisqTQJVAPrPQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqKwsKXQJ1AMrvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGqWFLgAAAAAAoBAqKwtdAfXBSm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGjU+pre7777bp555pmMGjUqFRUV1Z47+eST57kwAAAAAACYW7UKvbt165aDDjooZWVlWWSRRVJSUlL1XElJidAbAAAAAICCqFXofeaZZ+ass87KMcccU9f1AAAAAAD8LCoqS366E786tbqm9/jx47PTTjvVdS0AAAAAADBPahV677TTTunZs2dd1wIAAAAAAPOkVpc3WX755XPSSSeld+/eWX311dOwYcNqzx922GF1UhwAAAAAAMyNWoXe1113XZo1a5bnnnsuzz33XLXnSkpKhN4AAAAAABRErULvDz74oK7rAAAAAACAeVar0HtWlZWVSWau8AYAAAAA+LWorJRpFqNa3cgySW6++easvvrqady4cRo3bpz27dvnlltuqcvaAAAAAABgrtRqpXfXrl1z0kknpVOnTtloo42SJC+++GIOPPDAjBkzJkcccUSdFgkAAAAAAHOiVqH35Zdfnquvvjp77rlnVdu2226bVVddNaeeeqrQGwAAAACAgqjV5U0+/fTTbLjhhrO1b7jhhvn000/nuSgAAAAAAKiNWoXeyy+/fO6+++7Z2u+6666ssMIK81wUAAAAAADURq0ub3Laaadll112yfPPP191Te9evXrlqaeeqjEMBwAAAAD4pamsLHQF1IdarfT+xz/+kVdeeSVlZWV54IEH8sADD6SsrCyvvvpqtt9++7quEQAAAAAA5kitVnonyTrrrJNbb721LmsBAAAAAIB5Mseh94QJE9KiRYuqP/+Yb/sBAAAAAMDPaY5D71atWuXTTz9N27Zt07Jly5SUlMzWp7KyMiUlJZkxY0adFgkAAAAAAHNijkPvp59+Oq1bt06SPPPMM/VWEAAAAAAA1NYch96bbrpp1Z+XWWaZLLHEErOt9q6srMxHH31Ud9UBAAAAANSTisrZr2bBr1+D2gxaZpllMnr06Nnax40bl2WWWWaei6JmnY89OK8Nfipvj3g1t913XZZedsmfHLPnvrvkxX6P5e2PX8sDPW/LGmuvVu35Ro0WzBnnH5/+7z6fN4f1zjU9uqasvHW1PsPGDpxt22b7v9bpsTH/2W2fnfLU6w9mwPAXc9djN2b1tVb50f5bbPPnPNrrngwY/mIeevaO/OHPG1Y9V1q6QI48qVMeevaO9P3g+Tw/8NGce8WpaduurL4Pg/nc0ccfmoFvP58PP+ufex68Icssu9RPjtl7v93y2sCnMmzkgDz21F1Za+3Vqz1/wSWn5ZX+PfPhZ/0zeOhLuen2K7P8Cv5tZe683v+NHHL0Kdls239mtY22zFPPv1Tvr3nHvQ9n83/8K2tvtm067n943njz7WrPT5kyNWdedGU22nLnrNdh+xx+/JkZM258vddF8TvllC4ZPqxvJnzxXh5/7M4sv/xPz5kHHfivvPtO70ycMDS9Xnw46627ZrXn27UrT48bL8tHw/vl8/Hv5tVXHs/22/+tno6A+c0Rxx6cVwY/mbdGvJJb7rt2js7r9th3l7zQ79EM+fjV3N/z1tnO6xZstGBOP/+49H33uQwa9nKu6nFRtfO63666Yi697tz0Gvi/vDXilTzx8v3Z69+71fmxUdz22GfnPN/3kbw1onfu+9/Nab/Wqj/af8ttO+SJl+/LWyN657Hn784fO2w8W5/Djz0ovQf3zJsfvZxb7r1mtp+Hg4/YN/c82iODh7+U/kOfr9PjAYpbrULvb6/d/X2TJk3KQgstNM9FMbsDD9s7e/17txzf5Yz8ffN/ZvLkr3LLPdekUaMFf3DM1tttkRPPOCqXXnBNtv7TLnlr0Nu55Z5r0qbsuw8/J511dP68xaY5eJ8u2XnbvdNukfJce9PFs+3ryE4nZt3fbla19Xz06Xo5TuYPW/79Lzn2tMNz5YXds0OHPfL24HfT/a7L07qsVY3911qvfS669sz83+0PZvs/754nH3suV9x0YVZYebkkyUKNF8oq7VfOVV2vzz867JFD9z46yyy3VK665aKf87CYz3Q6fL/sd8AeOfqIU/O3P++cyV9+lbvu7/6j8/Lfd9gyp519bC4678r85Q87ZPCgt3Pn/d1TNsu8PLD/4Pzn4OOzyfpbZdcd9ktJSUnuuv/6NGhQq3+ymU999dXXWWn5ZXPCkQfXyf4eeOSJ7NXp6B98/rEnn8v5l1+Xg/b5Z+654fKstPwyOaDziRk7/vOqPudddm2e7fVKup55fHpccX5Gjxmbw48/s07qY/7VpcvB6XTIPjmk07HZaONt8uXkyXnkv7elUaNGPzhmp522zQUXnJIzz+ya9X/31wwc+GYeeeS2lJe3qepz4w2XZsUVl80OO+ydtdb+c+5/4LHccfs1WXPNHw944KcccNje2evfHXNilzOz/ea756vJX+Wme67Ogj/y+WGr7bbICWd0yaUXXJut/7Rr3hr0dm665+rvndcdlT9tsWkO2eeo7LrtPmm3SHmuvqlr1fOrrbFKxo4Zl84HHp/NN9ohV3btnqNPOix77rdrvR4vxWOr7TbP8WccmcsuuDbb/Gm3vDX4ndx0z1Vp8wPncGuvt0Yuve6c3H3bA9l6s47p+eizuebmrlnxm3O4JDng0L2y1/4dc2KXs7PDFntm8uSv0uPuK6v9PCy4YMM89tATua3H/9X7MQLFpaSysrJyTjt37tw5SXLppZdm//33T5MmTaqemzFjRl555ZUssMAC6dWr11wXslSb9nM9Zn7y2uCn0u2qm3PdlTclSZo3b5bXhzyTLp1OysP3P17jmAd63paB/Qbl5GPOSZKUlJSk9xs906PbHbn60hvSvHmz9H3nufzn38fm0YefSJIst8LSebr3Q9lui93T7/WBSWau9N5/j/+k56Ou5f5jGi/wwydXVHfXYzdmUP83c8ZxFySZ+d58tv9/c2v3u9Pt8ptm69/1urPTpMlCOXD3zlVtdz56Q4YMfienHnVuja+x2pqr5P963pTN1to6n348sn4OpMiMnzKx0CX8qgx8+/lcfUWPXH35DUmS5i2aZdC7vfKfg4/LA/c+WuOYx566K/36DsrxR52RZOZ7v9+bz+b6627N5Rd3q3HMKquumGdeeijrr/mXDPvAJcR+zIihNf+9z+9W22jLXHrOSfnzH777hszUqVNz6XU35bEnnsvESZOy/LJL54iD9sn6a9f8eeyBR57IA489kR5XnF/j8x33PzyrrbxiVcheUVGRDtvvmd123Db77bFzJk76MptstWvOP/XobL7ZJkmS94d9lG13+3duu7Zr1ljtt3V81L9OTRbbpNAl/OoMH9Y3F19ybS6++NokSYsWzfPxiP7Zd78jcvfdD9U4pteLD+f11wfkP4efmGTmXPzB+6/lyqtuzAUXXJkkGT/unXQ69Ljcdtu9VeM++3RQjj/+rNxw4x31fFS/Xos39y27n/LK4CfT/aqb0+3Km5PMPK97bcjT6dLp5Pz3B87r7u95awb2G5xTZjmve+mNnrmp2x255pvzutffeTaH//vYPPbwk0mSZVdYOk/1fjDbb7F7+r/+Ro37Pf3847Lcisvmn9vtXw9H+utVUmKhQU3u+9/NGdhvcE499rwkM9+HvQY+npu73ZlrLrtxtv6XdT83TZo0zn67/aeq7d7Hb8pbg97JiV3OSpL0Htwz3a+6Jd2vvCXJzJ+HV996Mkcdekr+e///qu3vH7tuk5POOiprLveH+jrEovH+mH6FLuFX5/XFtyt0Cb866454oNAl/KS5ms379euXfv36pbKyMm+88UbV4379+mXIkCFZY4010qNHj3oqdf61xFK/SdtFyvPic72r2iZOnJT+fd7I2uutUeOYhg1Ls/oav602prKyMi8+90rVmNXXXCULLtiwWp+h736YER99krXXrX7Se8b5x6ffO8/lwSduy867bVeHR8f8pmHD0qy6xsp56flXq9oqKyvz8vOvZs11V69xzJrrrp6Xnn+tWluvZ3v/YP9kZgBZUVGRCV9MqpvCYRZLLb142i3SNs8/+90lIyZOmJS+rw/MuuutWeOYhg0bpv2aq+aFWcZUVlbm+Wdf/sExTZo0zq7/3CHDPvwon4z4rC4PgfncWV2vzoBBQ3LBacfm3puuyuabbZwDjzwxwz76eK73NW3atLz59rvZYJb3cYMGDbLBumtmwKC3kiRvvv1upk+fng3WXauqz7JLLZFF27XNgEFD5vl4mD8ts8ySWXTRdnn66Rer2iZMmJhXX+2XDX63To1jGjZsmLXXbp+nnn6hqq2ysjJPP/1iNtjguzEvv/x6dtpx27Rq1TIlJSXZeedts9BCjfLc8y/X3wFR9L47r3ulqu2787qaf+nYsGFpVqvhvK7Xc72rxqxWdV733X7ff/fDfPzRJ1l73ZrPF5OkeYvm+WL8F/N6WMwHvn0f9prlPTbzffhK1vqB9+7a67av1j9JXnjm5az1TdawxFK/Sdt25dX6TJw4Kf37DqrqAzAv5vhGlknyzDMzV/ruvffeufTSS9OiRYtaveiUKVMyZcqUam2VlRV+o/oD2raduWJizOix1drHjB6b8rZtahqSVm1apbS0NGNGfW/MqLFZ7ptrw5a3LcuUKVMzYUL11Z1jRo9N+SzXQr7o7Cvy0guv5quvvs4mm/0+Z1xwQpo0a5Ie190+z8fG/KdV65YpLS3N2NHjqrWPGT0uyyy/dI1jytq2ydjZ3v/jUvYD7/8FGy2YLid1yiP398yXk76sk7phVuVty5Mko783x44ePeYHryXf+pt5uaYxK6xY/fqze+3XMSef1iVNmzXNu++8n5222yfTpk2rwyNgfvbpZ6PywKM988S9N6ftN5dz2Hu3HdPrlT65/5EncviBe83V/sZ/PiEzZlSkTevqX29u07pVPhg+IkkyZuz4NGxYmhbNm32vT8uMGVf93wOYU4u0a5skGTmy+r2GRo4ak3aLtK1xTFlZ65SWlmbUyDHfGzM6K6303VfuO+52YG6/7eqMGjk406ZNy+TJX2XHnfbN0KEf1u1BMF8p/9Hzupo/P8zZeV2bTJkyNRNnO68bV+28blZrr7dGttpu8+y766G1OhbmL1Xvw9nO4cZmuRWWrnFMWduy2fuP+i7D+O7noYY+7Wo+zwOYG3MVen/rxhtn/+rK3DjnnHNy2mmnVWtrsVDbtGzSbp72Wyy22/FvOfuik6se793xkAJWk1x20XVVfx78xpA0adI4B3TaS+jNL1Jp6QK5pNs5SUnJD176BObWP3baOhdc8t2/W//c+cB6fb177344zz39UtotUp6DD90n3Xpckm0275gpU6bW6+syf3jn/Q8zY0ZFtuq4X7X2aVOnZeFvFjR8+tmobLv7AVXPzZgxI9Onz8h6Hbavatt/j13y73+5Fiw/n44dt89VV55X9Xjbv+9Zb6912qlHpWXLFtl8i10yduy4bLvtFrnj9muy2Z92yCDfTmAO/X3Hv+Wsi06qerxvx04FrOY7K668fK679ZJcdsG1eeFZ314AqKyc/b6F/PrVKvROktdffz133313hg8fnqlTq5+E33fffT869rjjjqu6Pvi3Vlt6wx/oPf954vFn06/Pd9ddW3DBmTdxKCtvU21VSll5m7w56O0a9zF+7PhMnz59tpWwZW3bZPSomfsYPWpMGjVaMC1aNK+22rusvE1Gf2/1y6z693kj/znqwCy4YMNMnWrlIXNn/LjPM3369LSZ5W7ySVJW3nq2FSzfGjNqbNqUt/nJ/qWlC+Ti7udksSUWyV47HGyVN3Xm8ceeSZ8+A6seN/pmXi5v2yajZllhWF5elsFvvFXjPsZ9My9//xs65eVls604nDhhUiZOmJQP3h+WPq8NyDvDXsnftv5L7r/3kbo6JOZjkyd/lQUWaJC7r788CyxQ/Vt2TRrPvCF5eVmb3Nvjyqr2J5/rlSee7ZXzTvnuZpYLt2ieJGnVskUWWKBBxo4bX21fY8eNT9k3q7/L2rTKtGnTM2HipGqrvceO+zxlrav/ewA/5OGHe+bVV7+7Tum3Nw5u1648n302qqq9XduyDBgwuMZ9jBkzLtOnT5/tWznt2pbns2/m82WXXSqHHLJP1lhzs7z55jtJkoED38zGG/0uBx24Vw7pdGydHhfF68nHn03/HzivG12n53Vj06jRgmneonm11d5l5a1nO69bfqVlc9v91+XOm+/NFRfVfD8R+L6q9+Fs53BtZvsW47fGjBoze/+23/X/9v37/fdpWds2efONmn8eAOZGra4ncuedd2bDDTfMW2+9lfvvvz/Tpk3L4MGD8/TTT2fhhRf+yfGNGjVKixYtqm0ubfKdLydNzrAPPqra3n17aEZ9Njob/eF3VX2aNW+aNddZPX1fG1DjPqZNm543BrxVbUxJSUk2+sPvqsa80f/NTJ06LRtt+l2fZZdfOosvsVj6vj5wtn1+a5XVV87n478QeFMr06ZNz+ABQ/L7TdaraispKckGm6z3gzfZ6f/6G9X6J8mGm/6uWv9vA++lllkye+94SD53fULq0JeTvsyH7w+v2t4e8l5GfjYqm2z6+6o+zZo3zdrrts/rr/WvcR/Tpk3LwP6Dq40pKSnJJptu8INjZvaZ+b9Z72IP8+K3Ky6XGTMqMm7851ly8cWqbWVtZp6clpYuUK29dcuWadRowWpt34beDRs2zCorrZBXXu9f9RoVFRV5pU//qhtUrrLSCiktLa3W54NhI/LpyFFZY7WVf7Zj59dt0qQvM3Toh1Xbm2++k08/HZnNNtu4qk/z5s2y/vprpfcrfWrcx7Rp09K378D8aZYxJSUl2WyzjdO798wxTZo0TjLzfTyrGTNmpEEDK8GYc3N3Xlfz+de0adMzqIbzug3/8LuqMYOqzuvWr+qz7PJL5TdLLJa+r393vrjCSsvljge65947H8qFZ11R14dLEfv2fbjhbO/D9dPvB967fV8fmA3/sH61to023SD9vskaPhr2cUaNHF1tn82aNc2aa69W1QdgXtRqpffZZ5+diy++OIccckiaN2+eSy+9NMsss0wOOOCALLroonVdI0muv/bWHHrkv/PB+8Pz0bCPc+Txh2TUZ6PT89Gnq/rcfn+3/O+Rp3JT9zuTJN2vujkXXXlmBvZ/MwP6vpF9Dtg9TZo0zj23P5Bk5k0i7rrt/px4Rpd8Pv6LTJw4Kaefe1z6vNq/6h+ZP2+xacrL26Tv6wMzZcqUbPLH3+eQw/fLdVfe9LP/HVA8elxze869/JQMGvBWBvYdnH8d0DGNmzTOfXc+nCQ594pTM+rT0el61sxVhrd0uzM3P3Bt9j7on3n2iRez1fabZ9U1fpuTjzw7ycxw5tLrz8sq7VfOgbsfkQUWWKBqNcwX47/ItGnTC3OgFLXrrr45Rxx1YD4Y+mGGD/s4x5xwWEZ+NiqP/ffJqj7/99CNefThJ3NDt9uSJNdc2SOXXX1u+vcblH59BubfB/8rTZo2zp23zvyG1FJLL56/7/C3PPt0r4wdMy6LLrZIDjti/3z99ZQ81fO5ghwnv06TJ3+V4SM+qXr88ScjM+SdoVm4RfMsveTi2WrzzXL8mRemS6f989sVl8v4z79I79f7Z8Xll8mmG67/I3uu2Z67bJ8Tzrooq668QlZbZaXcevcD+errKdluq78kSZo3a5odtt4851/eLQu3aJ6mTZvk7Iuvzhqr/bYqGIfauOzy7jn+uMPy3nvv58MPP8qppx6VTz4ZmQcf/F9Vn/89flcefPCxXHV1jyTJJZd2yw3XX5w+fQfmtdf65bBD90/Tpo1z0013JUmGDHkv7777Qa668rwcc8wZGTtufLbd9q/p0OEP+ft2/yrEYVJEbrj2tnQ6cv98+P6wfDTs43Q+/pCM/N553a33X5eejzydm6vO627JRVeekYH9B2dA30FV53X/N8t53d1V53UTMmnipJx67rHp82r/qkUiK668fG57oFteeOaldL/6lqrPyhUzKjJubPVv6kBNrr/61lx4xel5o/+bGdB3UPY+cLeZ78M7HkySXHjlGRn56ahccOblSZIe196ROx7qln0P3iPP9Hwh2+ywRVZfc5Wc0PmMqn3eeM3t6dR5v3z4/vCMGPZxjjju4G9+Hp6p6rPYbxbJwq1aZLHFF02DBRrkt6utmCQZ9sFHmfzlVz/j3wDwa1Or0Hvo0KHZaqutksz8itaXX36ZkpKSHHHEEfnTn/402/W6mXfXXHZjmjRpnHO6npwWCzfP66/0y547H1Tt+q5LLr14Ws1yE6n/PvC/tClrlc7HHpzytmV5c9Db2XPng6rdKOKME85PZUVFrunRNQsuuGCef6ZXTjzqrKrnp0+bnj333SUnnXVUSlKSDz8YnjNOuiB33Hzvz3PgFKXHHnwirdu0zKFHH5Dytm3y1qB3sv+uh1Xd3HKx3yySyorKqv79XhuYLgeemMOPOyhHHH9wPnz/o3T6V5e8O2RokqTdom3z5y03TZI8+Ez1a83vud0BefWlvj/TkTE/ueKS7mnSpHEuvPT0tFi4RV7t3Se77rB/tXl5qaWXTOs2383LD973WNq0aZ2jjz80bduVZ/Abb6XjDvtn9Dc3tPr666n53e/Xyb8P2jMLt2yR0aPGpvdLr2frv3TMmDFu9secGzTk3exz6DFVj8+/fOb9Of6+ZYecdeKROfOEzrm2xx258IpuGTl6bFot3CLtV105m24094F3kmzZYdOM//yLXNH91owZNy4rr7BcrrnojKrLmyTJMYcdkAYNGuTwE87MtGnTsuH66+SkLoW9bwm/fhdeeFWaNm2Sq686Py1btkivXq9l6212z5QpU6r6LLvsUmlT9t1X7O+556GUl7XOKSd3ySKLlGfAgMHZeuvdM+qbr9pPnz492/59j5x11nG5//4eadasaYYO/TD77Ht4Hn/86dlqgLlx7TfndWd/c1732iv9stfOB2dqtc8Pi6dV65ZVjx+Z5byurG1Z3hr0dvba+eDvndddkMqKilzd46JvzuteykmznNdtuW2HlJW3zvY7b53td966qn3E8I+zyVp/q9+Dpig88kDPtG7TKkcce1DK2rb55n14SNX7cLHFF6n2DZm+rw3I4QccnyOPPyRdTuiUD98fngP37Jx3vjmHS5JrL++Rxk0b5+yLTvwm5+ifvXc5pNrPw+HHHpQdO277XR3PzvwFZce/75dXetX8rR6AJCmprKys/Olu1S2++OJ57LHHsvrqq6d9+/Y57rjj0rFjx7z88sv561//mi++mPvLCizVpv1cj4FfksYLNCp0CTBPxk+Z+NOd4BdsxNBHC10CzJMmi21S6BJgnizevOynO8EvnEuv8mv3/ph+P92Jal77zfY/3Ylq1vv4/kKX8JNqtdL7D3/4Q5544omsvvrq2WmnnfKf//wnTz/9dJ544on8+c9/rusaAQAAAADqXEWle3YUo1qF3ldccUW+/vrrJMkJJ5yQhg0b5qWXXso//vGPnHjiiXVaIAAAAAAAzKm5Dr2nT5+e//73v9liiy2SJA0aNMixxx5b54UBAAAAAMDcmuuLVZWWlubAAw+sWukNAAAAAAC/FLW6Q8P666+f/v3713EpAAAAAAAwb2p1Te+DDz44nTt3zkcffZR11lknTZs2rfZ8+/bt66Q4AAAAAACYG7UKvXfdddckyWGHHVbVVlJSksrKypSUlGTGjBl1Ux0AAAAAQD2pLHQB1Itahd4ffPBBXdcBAAAAAADzrFah91JLLVXXdQAAAAAAwDyrVeh98803/+jze+65Z62KAQAAAACAeVGr0Ps///lPtcfTpk3L5MmTs+CCC6ZJkyZCbwAAAAAACqJBbQaNHz++2jZp0qS8/fbb2XjjjXPHHXfUdY0AAAAAADBHarXSuyYrrLBCzj333Oy+++4ZMmRIXe0WAAAAAKBeVFSWFLoE6kGtVnr/kNLS0nzyySd1uUsAAAAAAJhjtVrp/dBDD1V7XFlZmU8//TRXXHFFNtpoozopDAAAAAAA5latQu/tttuu2uOSkpKUl5fnT3/6Uy666KK6qAsAAAAAAOZarULvioqKuq4DAAAAAADm2RyH3p07d57jnXbt2rVWxQAAAAAAwLyY49C7X79+1R737ds306dPz0orrZQkeeedd7LAAgtknXXWqdsKAQAAAADqQWVlSaFLoB7Mcej9zDPPVP25a9euad68eW666aa0atUqSTJ+/Pjsvffe2WSTTeq+SgAAAAAAmAMNajPooosuyjnnnFMVeCdJq1atcuaZZ7qRJQAAAAAABVOr0HvChAkZPXr0bO2jR4/OxIkT57koAAAAAACojVqF3ttvv3323nvv3HfffRkxYkRGjBiRe++9N/vuu2922GGHuq4RAAAAAADmyBxf03tW11xzTbp06ZLddtst06ZNm7mj0tLsu+++ueCCC+q0QAAAAAAAmFO1Cr2bNGmSq666KhdccEGGDh2aJFluueXStGnTOi0OAAAAAKC+VBS6AOpFrULvbzVt2jTt27evq1oAAAAAAGCe1Oqa3gAAAAAA8Esk9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAisY83cgSAAAAAODXqjIlhS6BemClNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFo7TQBQAAAAAAFEJFZaEroD5Y6Q0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0SgtdAEAAAAAAIVQkZJCl0A9sNIbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKJRWugCAAAAAAAKoTIlhS6BemClNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFo7TQBQAAAAAAFEJFoQugXljpDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFQ+gNAAAAAEDRKC10AQAAAAAAhVCZkkKXQD2w0hsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAenPllVdm6aWXzkILLZTf/e53efXVV+do3J133pmSkpJst912c/V6Qm8AAAAAYL5UYZvrbW7ddddd6dy5c0455ZT07ds3a6yxRrbYYouMGjXqR8d9+OGH6dKlSzbZZJO5fk2hNwAAAAAA9aJr167Zf//9s/fee2eVVVbJNddckyZNmuSGG274wTEzZszIP//5z5x22mlZdtll5/o1hd4AAAAAANS5qVOnpk+fPunQoUNVW4MGDdKhQ4e8/PLLPzju9NNPT9u2bbPvvvvW6nVLazUKAAAAAID5zpQpUzJlypRqbY0aNUqjRo1m6ztmzJjMmDEj7dq1q9berl27DBkypMb9v/jii7n++uvTv3//WtdopTcAAAAAAHPknHPOycILL1xtO+ecc+pk3xMnTswee+yRbt26paysrNb7sdIbAAAAAIA5ctxxx6Vz587V2mpa5Z0kZWVlWWCBBTJy5Mhq7SNHjswiiywyW/+hQ4fmww8/zDbbbFPVVlEx8/aZpaWlefvtt7Pccsv9ZI1CbwAAAABgvlRR6AJ+hX7oUiY1WXDBBbPOOuvkqaeeynbbbZdkZoj91FNPpVOnTrP1X3nllfPGG29UazvxxBMzceLEXHrppVliiSXm6HWF3gAAAAAA1IvOnTvnX//6V9Zdd92sv/76ueSSS/Lll19m7733TpLsueee+c1vfpNzzjknCy20UFZbbbVq41u2bJkks7X/GKE3AAAAAAD1Ypdddsno0aNz8skn57PPPsuaa66Zxx9/vOrmlsOHD0+DBnV768mSysrKyjrdYy0t1aZ9oUuAedJ4gTn7Wgf8Uo2fMrHQJcA8GTH00UKXAPOkyWKbFLoEmCeLN6/9zabgl6KkpG5DF/i5vT+mX6FL+NV5tN2uhS7hV+dvI+8sdAk/yWwOAAAAAEDREHoDAAAAAFA0XNMbAAAAAJgvVaak0CVQD6z0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgapYUuAAAAAACgECpKCl0B9cFKbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKRmmhCwAAAAAAKISKlBS6BOqBld4AAAAAABQNoTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFI3SQhcAAAAAAFAIlYUugHphpTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARaO00AUAAAAAABRCRaELoF78YkLvBUoWKHQJME8mTf+q0CXAPPlzy98WugSYJ00W26TQJcA8mfzJC4UuAeaJeZhi0Lpx80KXAEAdcHkTAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgav5gbWQIAAAAA/JwqSkoKXQL1wEpvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIpGaaELAAAAAAAohMpCF0C9sNIbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKJRWugCAAAAAAAKoaLQBVAvrPQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqCgpdAXUByu9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgapYUuAAAAAACgECpSUugSqAdWegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNEoLXQAAAAAAQCFUFroA6oWV3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUjdJCFwAAAAAAUAgVJYWugPpgpTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARaO00AUAAAAAABRCRaELoF5Y6Q0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0SgtdAEAAAAAAIVQWegCqBdWegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNEoLXQAAAAAAQCFUlBS6AuqDld4AAAAAABQNoTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFI3SQhcAAAAAAFAIFYUugHphpTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARaO00AUAAAAAABRCRaELoF5Y6Q0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0SgtdAEAAAAAAIVQWVLoCqgPVnoDAAAAAFA0ar3S+6mnnspTTz2VUaNGpaKiotpzN9xwwzwXBgAAAAAAc6tWofdpp52W008/Peuuu24WXXTRlJT4HgAAAAAAAIVXq9D7mmuuSY8ePbLHHnvUdT0AAAAAAFBrtbqm99SpU7PhhhvWdS0AAAAAADBPahV677fffrn99tvruhYAAAAAgJ9NhW2ut1+DWl3e5Ouvv851112XJ598Mu3bt0/Dhg2rPd+1a9c6KQ4AAAAAAOZGrULvgQMHZs0110ySDBo0qNpzbmoJAAAAAECh1Cr0fuaZZ+q6DgAAAAAAmGe1uqY3AAAAAAD8EtVqpff2229f42VMSkpKstBCC2X55ZfPbrvtlpVWWmmeCwQAAAAAgDlVq5XeCy+8cJ5++un07ds3JSUlKSkpSb9+/fL0009n+vTpueuuu7LGGmukV69edV0vAAAAAECdqLDN9fZrUKuV3ossskh22223XHHFFWnQYGZuXlFRkf/85z9p3rx57rzzzhx44IE55phj8uKLL9ZpwQAAAAAA8ENqtdL7+uuvz+GHH14VeCdJgwYNcuihh+a6665LSUlJOnXqlEGDBtVZoQAAAAAA8FNqFXpPnz49Q4YMma19yJAhmTFjRpJkoYUWqvG63wAAAAAAUF9qdXmTPfbYI/vuu2+OP/74rLfeekmS1157LWeffXb23HPPJMlzzz2XVVddte4qBQAAAACAn1Cr0Pviiy9Ou3btcv7552fkyJFJknbt2uWII47IMccckyTZfPPN89e//rXuKgUAAAAAgJ9Qq9B7gQUWyAknnJATTjghEyZMSJK0aNGiWp8ll1xy3qsDAAAAAKgnlYUugHpRq9B7Vt8PuwEAAAAAoFDmOPRee+2189RTT6VVq1ZZa621fvQmlX379q2T4gAAAAAAYG7Mcej997//PY0aNUqSbLfddvVVDwAAAAAA1Noch96nnHJKjX8GAAAAAIBfigaFLgAAAAAAAOpKrW5kOWPGjFx88cW5++67M3z48EydOrXa8+PGjauT4gAAAAAA6kvFD9+2kF+xWq30Pu2009K1a9fssssu+eKLL9K5c+fssMMOadCgQU499dQ6LhEAAAAAAOZMrULv2267Ld26dcuRRx6Z0tLSdOzYMd27d8/JJ5+c3r1713WNAAAAAAAwR2oVen/22WdZffXVkyTNmjXLF198kSTZeuut88gjj9RddQAAAAAAMBdqFXovvvji+fTTT5Mkyy23XHr27Jkkee2119KoUaO6q44kyR777Jzn+z6St0b0zn3/uznt11r1R/tvuW2HPPHyfXlrRO889vzd+WOHjWfrc/ixB6X34J5586OXc8u912TpZZes9vzzfR/J+2P6VdsOPGzvOj0u6HLcIenz5jN57+PXc8d93bLM996HNfnXvrvm5f7/y3uf9MnDT9yeNdderdrz//zXjrnnoRvz1rDeGTFuUFq0aF5f5cNs/rLnlrn0xWvT4+27cvoD52W5NVb4wb6b7fqXnHzPWek28JZ0G3hLjr/t1B/tD/XllFO6ZPiwvpnwxXt5/LE7s/zyy/zkmIMO/Ffefad3Jk4Yml4vPpz11l2z2vPt2pWnx42X5aPh/fL5+Hfz6iuPZ/vt/1ZPR0Axer3/Gznk6FOy2bb/zGobbZmnnn+p3l/zjnsfzub/+FfW3mzbdNz/8Lzx5tvVnp8yZWrOvOjKbLTlzlmvw/Y5/PgzM2bc+Hqvi+JXH/PwsssulXvu6Z5PPh6YsWOG5Pbbr0nbtmX1dATM744+/tAMfPv5fPhZ/9zz4A1ZZtmlfnLM3vvtltcGPpVhIwfksafuylprr17t+QsuOS2v9O+ZDz/rn8FDX8pNt1+Z5Vf46Z8NgG/VKvTefvvt89RTTyVJDj300Jx00klZYYUVsueee2afffap0wLnd1ttt3mOP+PIXHbBtdnmT7vlrcHv5KZ7rkqbslY19l97vTVy6XXn5O7bHsjWm3VMz0efzTU3d82KKy9X1eeAQ/fKXvt3zIldzs4OW+yZyZO/So+7r8yCjRastq+u51yV9VfpULXd1P2Oej1W5i8HH7ZP9v73P3Pckadnm7/slsmTv8qt/3dtGn3vfTirbbb/a04+8+hcfP7V2XKznfLmoLdz6/9dmzZlrav6LNR4oTz71Iu5omu3n+MwoMoGW2+U3U/cO/ddeldO2PrIDH/rwxx7y8lp0WbhGvuv8vtV89JDL+TMXU/KKdsfm7GfjMmxt5ySVu1a19gf6kOXLgen0yH75JBOx2ajjbfJl5Mn55H/3vajixh22mnbXHDBKTnzzK5Z/3d/zcCBb+aRR25LeXmbqj433nBpVlxx2eyww95Za+0/5/4HHssdt1+TNdf88V/cw7e++urrrLT8sjnhyIPrZH8PPPJE9up09A8+/9iTz+X8y6/LQfv8M/fccHlWWn6ZHND5xIwd/3lVn/MuuzbP9nolXc88Pj2uOD+jx4zN4cefWSf1Mf+qj3m4SZPGefSR21NZWZnNt9g5m/5xuyy4YMM8cH+PlJS4Wxt1q9Ph+2W/A/bI0Uecmr/9eedM/vKr3HV/9x89r/v7DlvmtLOPzUXnXZm//GGHDB70du68v3vKZjmvG9h/cP5z8PHZZP2tsusO+6WkpCR33X99GjSoVYwFzIdKKisrK+d1Jy+//HJefvnlrLDCCtlmm21qtY9ly9aa1zKK0n3/uzkD+w3OqceelyQpKSlJr4GP5+Zud+aay26crf9l3c9NkyaNs99u/6lqu/fxm/LWoHdyYpezkiS9B/dM96tuSfcrb0mSNG/eLK++9WSOOvSU/Pf+/yWZudL7xmtvy43X3l7fh1g0plZMK3QJvyp93nwm1111U669okeSme/Dfm8/l86dTsxD9z1W45iHn7g9A/oOyonHnJ1k5s/Da288mRu73Z4rL72+Wt/fb7Re7nn4xqyy9O8zYcLEej2WYvGH5lYZz4vTHzgv7w98Lz1OnvkLl5KSklzeu1v+1+PRPHz1fT85vqRBg3QbeEtuOrlbXrjv2Xqutjjd8+mrhS7hV2f4sL65+JJrc/HF1yZJWrRono9H9M+++x2Ru+9+qMYxvV58OK+/PiD/OfzEJDPf6x+8/1quvOrGXHDBlUmS8ePeSadDj8ttt91bNe6zTwfl+OPPyg03+iX6D5n8yQuFLuEXabWNtsyl55yUP/9hw6q2qVOn5tLrbspjTzyXiZMmZflll84RB+2T9dduX+M+HnjkiTzw2BPpccX5NT7fcf/Ds9rKK1aF7BUVFemw/Z7Zbcdts98eO2fipC+zyVa75vxTj87mm22SJHl/2EfZdrd/57Zru2aN1X5bx0f969RksU0KXcKvTn3Mwx06/CH/ffjWlLddJRMnTqra7+hRb2bLv+2Wp5821/yY1o19U3RuDHz7+Vx9RY9cffkNSZLmLZpl0Lu98p+Dj8sD9z5a45jHnror/foOyvFHnZFk5nu435vP5vrrbs3lF9e8eGmVVVfMMy89lPXX/EuGffBR/RxMkRj5xZBCl/Crc/GSuxe6hF+dI4bfWugSflKd/Irs97//fTp37lzrwJuaNWxYmtXW+G16PfdKVVtlZWV6PfdK1lqv5g/0a6/bvlr/JHnhmZez1roz+y+x1G/Stl15tT4TJ05K/76Dqvp868DD9k6fd57Jw0/fkf077ZkFFligrg6N+dySSy2edouU54VnX65qmzhxUvr3GZh11lujxjENG5Zm9TVWyQvPfXez3MrKyrzwXO+s/QNj4OeyQMPSLLP6chn04oCqtsrKygx6cWBWWHulOdpHo8YLprThApn0+aT6KhOqWWaZJbPoou3y9NMvVrVNmDAxr77aLxv8bp0axzRs2DBrr90+T80SmFRWVubpp1/MBht8N+bll1/PTjtum1atWqakpCQ777xtFlqoUZ57/uWadgtz7ayuV2fAoCG54LRjc+9NV2XzzTbOgUeemGEffTzX+5o2bVrefPvdbLDemlVtDRo0yAbrrpkBg95Kkrz59ruZPn16Nlj3u4U6yy61RBZt1zYDBgkXqJ36mocbNWqUysrKTJkytarP119PSUVFRTbaaL16OhrmR0stvXjaLdI2zz/73SWoJk6YlL6vD8y6s8yps2rYsGHar7lqXphlTGVlZZ5/9uUfHNOkSePs+s8dMuzDj/LJiM/q8hCAIlZa24Fvv/12Lr/88rz11swPgr/97W9z6KGHZqWVfvrkfsqUKZkyZUq1tsrKipSU+JrKrFq1aZXS0tKMGT2uWvuY0WOz3ApL1zimrG3Z7P1HjU1525lfdSv/5jpuNfZp993Xkm/qdkcGDXwrX4yfkLXXXyNHnXho2rYrz1knXTSvhwUpb/ft+3BstfbRo8dWvUe/r/U3Pw+jvzdmzOixWX5F13ajsJq3ap4FShfIF2O+qNb+xZjPs9hyv5mjfXQ8bs+MHzk+g3oN+OnOUAcWadc2STJy5Ohq7SNHjUm7RdrWOKasrHVKS0szauSY740ZnZVW+u5Sah13OzC333Z1Ro0cnGnTpmXy5K+y4077ZujQD+v2IJgvffrZqDzwaM88ce/NafvN5Rz23m3H9HqlT+5/5IkcfuBec7W/8Z9PyIwZFWnTuvrlA9u0bpUPho9IkowZOz4NG5amRfNm3+vTMmPGVf9cDXOqvubhV17pky+/nJxzzj4hJ550TkpKSnL2WcentLQ0iy7Srh6OhPlVedvyJMnoUd8/rxuTtu1+4ryuhjErfO+8bq/9Oubk07qkabOmefed97PTdvtk2jTfsAbmTK1S5nvvvTerrbZa+vTpkzXWWCNrrLFG+vbtm9VWWy333nvvT44/55xzsvDCC1fbPv9qZG1KoZ5cf/WteaVXnwx5893c3uP/cvbJXbPnfrtkwQUbFro0foW233GrvD381aqtYWmtf98GRWmbg3bI77fZOF3/fW6mTfFBnvrRseP2GT/unaqttGH9zcWnnXpUWrZskc232CUb/P5vueTS63LH7ddktdVWrrfXZP7xzvsfZsaMimzVcb+s12H7qu31fm/ko48/TTIzGJ/1udMvvDx9Bwyu1nbdTXcW+EiY3/xc8/CYMeOya8cDstVWHfL5+HczdsyQtGy5cPr2HZiKiop6eU3mD//Yaeu8/3Gfqq1hPX6WSJJ77344f95kh/x9y93z/nsfpluPS370WuEAs6rVDHX00UfnuOOOy+mnn16t/ZRTTsnRRx+df/zjHz86/rjjjkvnzp2rta2xjOu/fd/4seMzffr0lJVXv6lZWXmb2X4r+q0xo8bM3r/td/1HjxrzzT5aZ/QsqwPK2rbJm29Uv0P9rPr3eSMNGzbMb5ZcLB+8N6xWx8P8q+fjz6Rfn4FVj7+9aWpZeZtqq1TKy9tk8KCa34fjvvl5mPVGaTXtAwph4viJmTF9RhYuq37TyoXLWubz0Z//6Nit/v33bHvQDjn7n6fkoyHmV+rPww/3zKuv9qt6/O1JY7t25fnss1FV7e3almXAgME17mPMmHGZPn36bKu32rUtz2ffrFRcdtmlcsgh+2SNNTfLm2++kyQZOPDNbLzR73LQgXvlkE7H1ulxMf+ZPPmrLLBAg9x9/eVZYIHqa3iaNF4oSVJe1ib39riyqv3J53rliWd75bxTvruZ5cItZl63t1XLFllggQYZO258tX2NHTc+Zd+s/i5r0yrTpk3PhImTqq32Hjvu85S1dgNi5szPNQ8nyZNPPp+Vf7tR2rRplenTZ+SLLybko+H98v4HPmtQe48/9kz6zHJe12jBme/h8rZtMmqW9195eVkGv/FWjfuoOq9rW/28rry8bLbzuokTJmXihEn54P1h6fPagLwz7JX8beu/5P57H6mrQwKKWK1Wen/66afZc889Z2vffffd8+mnn/7k+EaNGqVFixbVNpc2md20adMzaMBb2fAPv6tqKykpyYZ/WD/9XhtY45i+rw/Mhn9Yv1rbRptukH6vz+z/0bCPM2rk6Gr7bNasadZce7WqPjVZZfWVMmPGjIwd7eubzL0vJ03Ohx98VLW9M2RoRn42OhtvukFVn2bNm2bNddqnz2s1X9ph2rTpeWPAm9n4ez8PG2/6u/T9gTHwc5kxbXo+eGNoVt3ou3sjlJSUZNWNVs+7fX/4F4pbH7Bdtj90p5z3r9PzwRtDf45SmY9NmvRlhg79sGp788138umnI7PZZhtX9WnevFnWX3+t9H6lT437mDZtWvr2HZg/zTKmpKQkm222cXr3njmmSZPGSTLbasIZM2akQYOSuj4s5kO/XXG5zJhRkXHjP8+Siy9WbStrMzOALi1doFp765Yt06jRgtXavg29GzZsmFVWWiGvvN6/6jUqKirySp/+VTeoXGWlFVJaWlqtzwfDRuTTkaOyhm8wMId+rnl4VmPHjs8XX0zIH/+4Udq2Lct///tE3R8Y840vJ32ZD98fXrW9PeS9jPxsVDbZ9PdVfZo1b5q1122f11/rX+M+pk2bloH9B1cbU1JSkk023eAHx8zsM/N/C1rpDcyhWq30/uMf/5gXXnghyy+/fLX2F198MZtsYsV2Xbr+6ltz4RWn543+b2ZA30HZ+8Dd0qRJ4/zfHQ8mSS688oyM/HRULjjz8iRJj2vvyB0Pdcu+B++RZ3q+kG122CKrr7lKTuh8RtU+b7zm9nTqvF8+fH94Rgz7OEccd3BGfjY6PR99Jkmy1rrts+Y6q+XlF1/Pl5O+zNrrtc8JZ3TJA/c8mglfTPz5/xIoStdfc0sOO/Lf+WDosHw07ON0Ob5TRn42Kv975KmqPnfe3z2PP/JUenS/I0ly3VU35+Irz8qA/oPTv++g7Hfg7mncpHHuuv2BqjHlbdukvG1Zll52ySTJyquskEmTvswnIz7N559P+FmPkfnLo90fyoEXHZb3Bw7N0AHvZst9ts5CTRbKc/fMfE8f1PWwjPtsXO46f+Zdrrc5cPvs2LljrvhP14weMSoLl7dMknz95deZMvnrQh0G85nLLu+e4487LO+9934+/PCjnHrqUfnkk5F58MH/VfX53+N35cEHH8tVV/dIklxyabfccP3F6dN3YF57rV8OO3T/NG3aODfddFeSZMiQ9/Luux/kqivPyzHHnJGx48Zn223/mg4d/pC/b/evQhwmv0KTJ3+V4SM+qXr88ScjM+SdoVm4RfMsveTi2WrzzXL8mRemS6f989sVl8v4z79I79f7Z8Xll8mmG67/I3uu2Z67bJ8Tzrooq668QlZbZaXcevcD+errKdluq78kSZo3a5odtt4851/eLQu3aJ6mTZvk7Iuvzhqr/bYqGIfaqI95OEn+tefOGTLkvYweMzYbbLBOul50ei69tFveeccv2alb1119c4446sB8MPTDDB/2cY454bCM/GxUHvvvk1V9/u+hG/Pow0/mhm63JUmuubJHLrv63PTvNyj9+gzMvw/+V5o0bZw7b70vycwbZP59h7/l2ad7ZeyYcVl0sUVy2BH75+uvp+Spns8V5Dgpbi78VJxqFXpvu+22OeaYY9KnT59ssMHMlZq9e/fOPffck9NOOy0PPfRQtb7U3iMP9EzrNq1yxLEHpaxtm7w16O3stfMhVTeiXGzxRaqtpOr72oAcfsDxOfL4Q9LlhE758P3hOXDPznlnyHcfbq69vEcaN22csy86MS0Wbp7XX+mfvXc5JFO/ubv31KlTs/X2W+Q/Rx+YBRdsmI+Gf5Ibr7kt1199y8978BS1qy67IU2aNs55F5+aFgs3z2u9+2b3nQ6sdpf5pZZZIq3bfHdTqYfvfzxt2rRKl+M6pbxtWd4cNCR77HRgtRti7rH3Lul8zMFVj+979OYkyRGHnJB7vvllEdSH3v/tlRZtWmTHzrumZXmrDHvzg5y75+mZ8M3NLdssVp6Kisqq/h12/2saNmqYI645ptp+7r34ztx7yV2Bn8OFF16Vpk2b5Oqrzk/Lli3Sq9dr2Xqb3avdcHzZZZdKm7LvLt9wzz0PpbysdU45uUsWWaQ8AwYMztZb755R31xCbfr06dn273vkrLOOy/3390izZk0zdOiH2Wffw/P440//7MfIr9OgIe9mn0O/mx/Pv/y6JMnft+yQs048Mmee0DnX9rgjF17RLSNHj02rhVuk/aorZ9ON5j7wTpItO2ya8Z9/kSu635ox48Zl5RWWyzUXnVF1eZMkOeawA9KgQYMcfsKZmTZtWjZcf52c1OWQeTtQ5nv1MQ8nyYorLZczzzwurVu3zIfDRuTccy/LJZde97MeG/OHKy7pniZNGufCS09Pi4Vb5NXefbLrDvtXP69beslq53UP3vdY2rRpnaOPPzRt25Vn8BtvpeMO+2f0N+d1X389Nb/7/Tr590F7ZuGWLTJ61Nj0fun1bP2XjhkzxrfPgTlTUllZWfnT3apr0GDOLkVSUlKSGTNmzFHfZcvWmtsy4BdlaoWbz/Hr9ofmKxS6BJgn93z6aqFLgHky+ZMXCl0CzJMmi/nWL79+rRs3L3QJME9GfjGk0CX86ly05O6FLuFX58jhtxa6hJ9Uq5Xe7vgMAAAAAMAvkbtHAgAAAABQNGq10jtJXnvttTzzzDMZNWrUbCu/u3btOs+FAQAAAADA3KpV6H322WfnxBNPzEorrZR27dqlpKSk6rlZ/wwAAAAA8Es11zc75FehVqH3pZdemhtuuCF77bVXHZcDAAAAAAC1V6trejdo0CAbbbRRXdcCAAAAAADzpFah9xFHHJErr7yyrmsBAAAAAIB5UqvLm3Tp0iVbbbVVlltuuayyyipp2LBhtefvu+++OikOAAAAAADmRq1C78MOOyzPPPNMNttss7Rp08bNKwEAAAAA+EWoVeh900035d57781WW21V1/UAAAAAAPwsKqzlLUq1uqZ369ats9xyy9V1LQAAAAAAME9qFXqfeuqpOeWUUzJ58uS6rgcAAAAAAGqtVpc3ueyyyzJ06NC0a9cuSy+99Gw3suzbt2+dFAcAAAAAAHOjVqH3dtttV8dlAAAAAADAvKtV6H3KKafUdR0AAAAAADDPahV6AwAAAAD82lUUugDqRa1C7xkzZuTiiy/O3XffneHDh2fq1KnVnh83blydFAcAAAAAAHOjQW0GnXbaaenatWt22WWXfPHFF+ncuXN22GGHNGjQIKeeemodlwgAAAAAAHOmVqH3bbfdlm7duuXII49MaWlpOnbsmO7du+fkk09O796967pGAAAAAACYI7UKvT/77LOsvvrqSZJmzZrliy++SJJsvfXWeeSRR+quOgAAAAAAmAu1Cr0XX3zxfPrpp0mS5ZZbLj179kySvPbaa2nUqFHdVQcAAAAAAHOhVqH39ttvn6eeeipJcuihh+akk07KCiuskD333DP77LNPnRYIAAAAAFAfKm1zvf0alNZm0Lnnnlv151122SVLLbVUXnrppaywwgrZZptt6qw4AAAAAACYG7Va6X3OOefkhhtuqHq8wQYbpHPnzhk9enTOO++8OisOAAAAAADmRq1C72uvvTYrr7zybO2rrrpqrrnmmnkuCgAAAAAAaqNWofdnn32WRRdddLb28vLyqhtcAgAAAADAz61WofcSSyyRXr16zdbeq1evLLbYYvNcFAAAAAAA1EatbmS5//775/DDD8+0adPypz/9KUny1FNP5eijj86RRx5ZpwUCAAAAANSHilQWugTqQa1C76OOOipjx47NwQcfnKlTpyZJFlpooRxzzDE57rjj6rRAAAAAAACYU7UKvUtKSnLeeeflpJNOyltvvZXGjRtnhRVWSKNGjeq6PgAAAAAAmGO1Cr2/1axZs6y33np1VQsAAAAAAMyTWt3IEgAAAAAAfomE3gAAAAAAFI15urwJAAAAAMCvVUWhC6BeWOkNAAAAAEDREHoDAAAAAFA0hN4AAAAAABQNoTcAAAAAAEVD6A0AAAAAQNEoLXQBAAAAAACFUFnoAqgXVnoDAAAAAFA0hN4AAAAAABQNoTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDRKC10AAAAAAEAhVBS6AOqFld4AAAAAABQNoTcAAAAAAEVD6A0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFI3SQhcAAAAAAFAIFSWFroD6YKU3AAAAAABFQ+gNAAAAAEDREHoDAAAAAFA0hN4AAAAAABQNoTcAAAAAAEWjtNAFAAAAAAAUQkUqC10C9cBKbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKRmmhCwAAAAAAKITKQhdAvbDSGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiUVroAgAAAAAACqGi0AVQL6z0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBolBa6AAAAAACAQqhIZaFLoB5Y6Q0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0SgtdAEAAAAAAIVQWegCqBdWegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNEoLXQAAAAAAQCFUFLoA6oWV3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUjdJCFwAAAAAAUAgVqSx0CdQDK70BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBqlhS4AAAAAAKAQKgtdAPXCSm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBq/mBtZfjV9SqFLgHnSuLRRoUuAeXL3p68WugSYJ0s0Lyt0CTBPmiy2SaFLgHky+ZMXCl0CzLMBa3YudAkA1IFfTOgNAAAAAPBzqih0AdQLlzcBAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqExloUugHljpDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFQ+gNAAAAAEDRKC10AQAAAAAAhVBR6AKoF1Z6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFQ+gNAAAAAEDREHoDAAAAAFA0SgtdAAAAAABAIVSkstAlUA+s9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAiobQGwAAAACAenPllVdm6aWXzkILLZTf/e53efXVV3+wb7du3bLJJpukVatWadWqVTp06PCj/Wsi9AYAAAAAoF7cdddd6dy5c0455ZT07ds3a6yxRrbYYouMGjWqxv7PPvtsOnbsmGeeeSYvv/xyllhiiWy++eb5+OOP5/g1hd4AAAAAwHyp0jbX29zq2rVr9t9//+y9995ZZZVVcs0116RJkya54YYbaux/22235eCDD86aa66ZlVdeOd27d09FRUWeeuqpOX5NoTcAAAAAAHNkypQpmTBhQrVtypQpNfadOnVq+vTpkw4dOlS1NWjQIB06dMjLL788R683efLkTJs2La1bt57jGoXeAAAAAADMkXPOOScLL7xwte2cc86pse+YMWMyY8aMtGvXrlp7u3bt8tlnn83R6x1zzDFZbLHFqgXnP6V0jnsCAAAAADBfO+6449K5c+dqbY0aNaqX1zr33HNz55135tlnn81CCy00x+OE3gAAAAAAzJFGjRrNcchdVlaWBRZYICNHjqzWPnLkyCyyyCI/OvbCCy/MueeemyeffDLt27efqxpd3gQAAAAAgDq34IILZp111ql2E8pvb0r5+9///gfHnX/++TnjjDPy+OOPZ911153r17XSGwAAAACYL1WkstAlFL3OnTvnX//6V9Zdd92sv/76ueSSS/Lll19m7733TpLsueee+c1vflN1XfDzzjsvJ598cm6//fYsvfTSVdf+btasWZo1azZHryn0BgAAAACgXuyyyy4ZPXp0Tj755Hz22WdZc8018/jjj1fd3HL48OFp0OC7C5JcffXVmTp1anbcccdq+znllFNy6qmnztFrCr0BAAAAAKg3nTp1SqdOnWp87tlnn632+MMPP5zn13NNbwAAAAAAiobQGwAAAACAoiH0BgAAAACgaLimNwAAAAAwX6oodAHUCyu9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgapYUuAAAAAACgECpTWegSqAdWegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNEoLXQAAAAAAQCFUFLoA6oWV3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0RB6AwAAAABQNITeAAAAAAAUjdJCFwAAAAAAUAiVqSx0CdQDK70BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBqlhS4AAAAAAKAQKgpdAPXCSm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGgIvQEAAAAAKBpCbwAAAAAAikZpoQsAAAAAACiEisrKQpdAPbDSGwAAAACAoiH0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiUVroAgAAAAAACqGy0AVQL6z0BgAAAACgaAi9AQAAAAAoGkJvAAAAAACKhtAbAAAAAICiIfQGAAAAAKBolBa6AAAAAACAQqhIZaFLoB5Y6Q0AAAAAQNEQegMAAAAAUDSE3gAAAAAAFA2hNwAAAAAARUPoDQAAAABA0SgtdAEAAAAAAIVQmcpCl0A9sNIbAAAAAICiIfQGAAAAAKBoCL0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKJRWugCAAAAAAAKoaLQBVAv6myl9+eff15XuwIAAAAAgFqpVeh93nnn5a677qp6vPPOO6dNmzb5zW9+kwEDBtRZcQAAAAAAMDdqFXpfc801WWKJJZIkTzzxRJ544ok89thj2XLLLXPUUUfVaYEAAAAAADCnanVN788++6wq9P7vf/+bnXfeOZtvvnmWXnrp/O53v6vTAgEAAAAAYE7VaqV3q1at8tFHHyVJHn/88XTo0CFJUllZmRkzZtRddQAAAAAAMBdqtdJ7hx12yG677ZYVVlghY8eOzZZbbpkk6devX5Zffvk6LRAAAAAAoD5UpLLQJVAPahV6X3zxxVl66aXz0Ucf5fzzz0+zZs2SJJ9++mkOPvjgOi0QAAAAAADmVK1C76lTp6ZLly6ztR9xxBHzXBAAAAAAANRWra7p3a5du+yzzz558cUX67oeAAAAAACotVqF3rfeemvGjRuXP/3pT1lxxRVz7rnn5pNPPqnr2gAAAAAAYK7UKvTebrvt8sADD+Tjjz/OgQcemNtvvz1LLbVUtt5669x3332ZPn16XdcJAAAAAAA/qVah97fKy8vTuXPnDBw4MF27ds2TTz6ZHXfcMYsttlhOPvnkTJ48ua7qBAAAAACoU5X+m+v/fg1qdSPLb40cOTI33XRTevTokWHDhmXHHXfMvvvumxEjRuS8885L796907Nnz7qqFQAAAAAAflStVnrfd9992WabbbLEEkvk9ttvz8EHH5yPP/44t956azbbbLPsscceefDBB/Pss8/WcbnM6qjjO6X/kOfy/qd9c9cD12eZZZf6yTF77dcxrw58Ih981i+PPHln1lx79arnWrZcOGeef0JeeO2RvP9p37z+xlM547zj07xFs/o8DOYTe+yzc57v+0jeGtE79/3v5rRfa9Uf7b/lth3yxMv35a0RvfPY83fnjx02nq3P4ccelN6De+bNj17OLfdek6WXXbLa89fdekle7P9o3hrRO70H98xFV52RtouU1+lxMX879ZQu+WhY30z84r3877E7s/zyy/zkmIMO/Ffee6d3Jk0YmpdefDjrrbtmteeXXXap/N893fPpxwMzbsyQ3HH7NWnbtqyejoD5zRHHHpxXBj+Zt0a8klvuu3a2ebMme+y7S17o92iGfPxq7u95a9ZYe7Vqzy/YaMGcfv5x6fvucxk07OVc1eOilJW3rnr+t6uumEuvOze9Bv4vb414JU+8fH/2+vdudX5szL9OOaVLhg/rmwlfvJfH52Iufved3pk4YWh6/cBcfM893fPJxwMzdsyQ3G4uZi693v+NHHL0Kdls239mtY22zFPPv1Tvr3nHvQ9n83/8K2tvtm067n943njz7WrPT5kyNWdedGU22nLnrNdh+xx+/JkZM258vdfF/KX8X1tm9Zevy9rv3Z2VHz4/Tddc4Qf7ttnpT1l3xAPVtrXfu/tnrBYoZrUKvffee+8stthi6dWrV/r3759OnTqlZcuW1fostthiOeGEE+qiRmpwyH/2zb4H7J5jOp+WrTrsmsmTv8od912XRo0W/MEx227/15x61jG56LyrssWmO+bNQUNyx33XpU3ZzBPTdouWZ5FFynP6SRdks9//Pf855Phs9ueN0/XyM36uw6JIbbXd5jn+jCNz2QXXZps/7Za3Br+Tm+65Km3KWtXYf+311sil152Tu297IFtv1jE9H30219zcNSuuvFxVnwMO3St77d8xJ3Y5OztssWcmT/4qPe6+MgvO8jPQ+8XX0mnfY/LnDbbPwXsdlSWXXiJX3nBBvR8v84ejuhycTofsk4M7HZsNN94mX06enEf/e1saNWr0g2N22mnbXHjBKTnjzK5Z73d/zYCBb+bRR25LeXmbJEmTJo3z2CO3p7KyMn/ZYuf84Y/bZcEFG+bB+3ukpKTk5zo0itQBh+2dvf7dMSd2OTPbb757vpr8VW665+pq8+b3bbXdFjnhjC659IJrs/Wfds1bg97OTfdcXfXZIUlOOuuo/GmLTXPIPkdl1233SbtFynP1TV2rnl9tjVUydsy4dD7w+Gy+0Q65smv3HH3SYdlzv13r9XiZP3T5Zi4+pNOx2eibufiROZiLL7jglJx5Ztes/7u/ZuDAN/PI9+biR7+ZizffYuds+s1c/IC5mLnw1VdfZ6Xll80JRx5cJ/t74JEnsleno3/w+ceefC7nX35dDtrnn7nnhsuz0vLL5IDOJ2bs+M+r+px32bV5ttcr6Xrm8elxxfkZPWZsDj/+zDqpD5Kk1TYbZYmT98knF9+ZN7fsnK/e/DAr3HpKStss/INjpk/4Mv3X2qtqG7jB/j9jxUAxK6msrJzrC7FMnjw5TZo0qdNCFm25Sp3ur9j1H/JcrrmiR6654sYkSfMWzTLwnRdy+MHH58H7HqtxzCNP3pn+fd/ICUeflSQpKSlJn8FP54brbssVl3SvcczWf98iV1x3XpZbbJ3MmDGjfg6mSDQu/eGTq/ndff+7OQP7Dc6px56XZOZ7r9fAx3NztztzzWU3ztb/su7npkmTxtlvt/9Utd37+E15a9A7ObHLzPdv78E90/2qW9L9yluSJM2bN8urbz2Zow49Jf+9/3811vHnv26aa2/umpUX+50b7tZg+IRRhS7hV+WjYX1z8SXXpuvF1yZJWrRonk9G9M8++x2Ru+9+qMYxL734cF57fUD+c/iJSWb+LHz4/mu58qobc/4FV+YvHf6Q/z58a8rarpKJEydV7XfMqDez5d92y1NPv/DzHNyv1BLNrcL8Ma8MfjLdr7o53a68OcnMefO1IU+nS6eT89/7H69xzP09b83AfoNzyjHnJJn5nn3pjZ65qdsduebSG9K8ebO8/s6zOfzfx+axh59Mkiy7wtJ5qveD2X6L3dP/9Tdq3O/p5x+X5VZcNv/czontrEZMHFPoEn51hn8zF188y1z88Yj+2fdH5uJeLz6c1783F3/wzVx8wQVXpsM3c3H59+bi0d/MxU+bi3/Q5E/83dRktY22zKXnnJQ//2HDqrapU6fm0utuymNPPJeJkyZl+WWXzhEH7ZP1125f4z4eeOSJPPDYE+lxxfk1Pt9x/8Oz2sorVoXsFRUV6bD9ntltx22z3x47Z+KkL7PJVrvm/FOPzuabbZIkeX/YR9l2t3/ntmu7Zo3VflvHR/3rNWDNzoUu4Vdr5YfPz+QB72b4id1mNpSUpP1r3TPqxkfy2ZX3zda/zU5/yhKn7pv+q/7zZ660uK074oFCl/Crs+NS2xa6hF+d/xtW8+esX5JarfSeNfD++uuvM2HChGob9WvJpRZPu0XK88JzL1e1TZwwKf36DMy6669Z45iGDRum/Zqr5IXnele1VVZW5oXnXs46PzAmSVq0aJZJEycJvKm1hg1Ls9oav02v516paqusrEyv517JWuvV/KF+7XXbV+ufJC8883LWWndm/yWW+k3atiuv1mfixEnp33dQVZ/vW7hli/x9xy3T99UBAm/m2TLLLJlFF22Xp55+saptwoSJefXVftngd+vUOKZhw4ZZe+321YLrysrKPPX0i9lgg5ljGjVqlMrKykyZMrWqz9dfT0lFRUU22mi9ejoa5gdLLPWbtF2kPC9+f97s80bW/oG5+Nv5+8XvfXbo9VzvqjGrrblKFlywYbX9vv/uh/n4o0+y9rpr/GA9zVs0zxfjv5jXw2I+9+1c/HQdzMVPm4v5mZ3V9eoMGDQkF5x2bO696apsvtnGOfDIEzPso4/nel/Tpk3Lm2+/mw3WW7OqrUGDBtlg3TUzYNBbSZI3334306dPzwbrrlXVZ9mllsii7dpmwKAh83w8UNKwNE1XXy4TXhj4XWNlZSa8MCBN117pB8ct0HShrN77urR/tXuWu/64LLTiEj9DtcD8oFah95dffplOnTqlbdu2adq0aVq1alVt+ylTpkyZLSivrKyoTSnzpbbtZq5kGz2q+mqg0aPGpvwHrjXYuk3LlJaW1jjmh65P2Lp1yxxx9EG5tcc9dVA186tWbVqltLQ0Y0aPq9Y+ZvTYlLdtU+OYsrZls/cf9V3/b9/nNfZpV32fx5x8WAYNeyn93nsui/1m0fx7jyPm6XggSRZp1zZJMnLk6GrtI0eNySKLtK1xTFlZ65SWlmbUyOrz8KhRo7NIu5nXmu/9Sp98+eXknHP2CWnceKE0adI45593UkpLS7PIIu3q4UiYX3w3b46t1j5zLq75c0DV/D3qe2Nm+bxR3rZNpkyZmokTJn5vv+NS3q7m/a693hrZarvNc8dN99bqWOBbPzYXt5vLuXjkLHPxKz8yFy9qLqYOfPrZqDzwaM90PeP4rLPmally8cWy9247Zu32q+b+R56Y6/2N/3xCZsyoSJvW1c/F27RuVXXN7jFjx6dhw9K0aN7se31aZsy46p+poTZKWzdPSekCmTb682rt08d8kYZta86Jvh76cT488vK8t885ef+wi1PSoEFWfuDcNFy05vNEqC8Vtrnefg1qFXofffTRefrpp3P11VenUaNG6d69e0477bQstthiufnmm39y/DnnnJOFF1642jZpytifHDe/2mGnrfPeiNertoYNS+v9NZs1b5pb7r4m7wwZmgvPvbLeXw/qy3VX3Jxt/rRr9vzHgamYMSMXXeUa9cy9jh23z+fj3qna6mseHjNmXHbteEC23qpDvhj/bsaNGZKWLRdOn74DU1Hxa/lowS/B33f8WwYNe7lq+zk+O8yJFVdePtfdekkuu+DavPDsyz89AGbRseP2GT/unaqttJ7n4q226pDPx7+bsd/MxX3NxdSRd97/MDNmVGSrjvtlvQ7bV22v93sjH338aZKZwfisz51+4eXpO2BwtbbrbrqzwEcC8+bLvm9n7L3P5qs3P8ik3oMzdP9zM33chJT/c4tClwYUgVp9Unz44Ydz8803549//GP23nvvbLLJJll++eWz1FJL5bbbbss///nj12M67rjj0rlz9etkrbjE+rUpZb7wv8eeTt/Xv/uK0Lc3nCpvW1ZtlUp52zYZ/EbNX00bN/bzTJ8+fbbVXOVt22TU91Z/N23WJLf/33WZNOnL7LP7oS4FwTwZP3Z8pk+fnrLy1tXay8rbZPSomn/ZNWbUmNn7t/2u/7ffWCgrb53Rs/wMlLVtkzffqH6X+vHjPs/4cZ/ng6HD8947H+SlN/6XtdZtn36z/EzBT3n44Z559dV+VY+/vWlwu3bl+eyz766F3q5tWfoPGFzjPsaMGZfp06dXfVvnW23bluezWVYpPvHk81nptxulTZtWmT59Rr74YkJGDO+Xuz8YVpeHRJF78vFn07/Pd9fTXnDBme/ZsvI21efN8jZ5c9Dbs41PZpm/v/etnJnz8cx9jB41No0aLZjmLZpXW+39/fk5SZZfadncdv91ufPme3PFRd3m7QCZL83NXDxgLufidt+bi5988vms/L25+KPh/fK+uZg6MHnyV1lggQa5+/rLs8AC1dehNWm8UJKkvKxN7u3x3eKjJ5/rlSee7ZXzTvnuZpYLt2ieJGnVskUWWKBBxn6zqvtbY8eNT9k3q7/L2rTKtGnTM2HipGqrvceO+zxlrat/7obamD5uYiqnz0jD8pbV2kvLFs60UeNrHvQ9ldNnZPKg99No6UXqoUJgflOrld7jxo3LsssumyRp0aJFxn3zdaiNN944zz///E+Ob9SoUVq0aFFtKympVSnzhS8nTc6HHwyv2t4Z8l5GfjY6G2+6QVWfZs2bZq112uf1V/vXuI9p06ZlYP83q40pKSnJxn/YIH1mGdOsedPceV/3TJs2LXt1PKTatQyhNqZNm55BA97Khn/4XVVbSUlJNvzD+un3Ws3Bc9/XB2bDP1T/RdhGm25QFVR/NOzjjBo5uto+mzVrmjXXXu1Hw+wGDWbOMws2aljr42H+NGnSlxk69MOq7c0338mnn47MnzbbuKpP8+bNsv76a6X3K31q3Me0adPSt+/AamNKSkryp802Tu/es48ZO3Z8vvhiQjb740Zp27YsD/937r/uzPzry0mTM+yDj6q2d98emlGfjc5Gs86bzZtmzXVWT98fmIu/nb83mm3+/l3VmEH938zUqdOy0abfzdnLLr9UfrPEYun7+oCqthVWWi53PNA99975UC4864q6PlzmEz80F29WB3PxZj8xF//xm7n4v+Zi6sBvV1wuM2ZUZNz4z7Pk4otV28razAygS0sXqNbeumXLNGq0YLW2b0Pvhg0bZpWVVsgrr/eveo2Kioq80qd/1Q0qV1lphZSWllbr88GwEfl05KissdrKP9uxU7wqp03Pl28MTfONZ7lXSElJWmzcPl/2rfkX7LNp0CCNV15qjkNygB9Tq5Xeyy67bD744IMsueSSWXnllXP33Xdn/fXXz8MPP5yWLVvWcYnUpNvVN+fwLgfkg6HDMnzYiBxzwmEZ+dmoPP7IU1V97n7whjz23ydzY7fbkyTXXtkjl159Tgb0G5T+fd7I/gftmSZNG+fO2+5P8l3g3bjJQun072PSrHmzNPtmFcDYMeN8nZNau/7qW3PhFafnjf5vZkDfQdn7wN3SpEnj/N8dDyZJLrzyjIz8dFQuOPPyJEmPa+/IHQ91y74H75Fner6QbXbYIquvuUpO6PzdpUluvOb2dOq8Xz58f3hGDPs4Rxx3cEZ+Njo9H30mSbLG2qul/Vqr5vVX+uWLzydmqWUWzxHHHpwP3x/+g2E7zI3LLu+e4487LO++934+/PCjnHbqUfnkk5F58MH/VfXp+fhdeeDBx3LV1T2SJBdf2i03Xn9x+vQdmNde65fDDt0/TZs2To+b7qoa8689d86QIe9l9Jix2WCDdXLxRafn0ku75Z13hv7ch0iRueHa29LpyP3z4fvD8tGwj9P5+EO+mTefrupz6/3XpecjT+fm7jO/Mt/9qlty0ZVnZGD/wRnQd1D2OWD3mfP37Q8kmXkzzLtvuz8nntEln4+fkEkTJ+XUc49Nn1f7p//rM1ear7jy8rntgW554ZmX0v3qW6pWjlfMqMi4sU5qmTffzsXvfTMXn1rDXPy/x+/Kg7PMxZdc2i031DAX3/Qjc3FXczFzafLkrzJ8xCdVjz/+ZGSGvDM0C7donqWXXDxbbb5Zjj/zwnTptH9+u+JyGf/5F+n9ev+suPwy2XTDuf8W9J67bJ8Tzrooq668QlZbZaXcevcD+errKdluq78kSZo3a5odtt4851/eLQu3aJ6mTZvk7Iuvzhqr/bYqGId5NfK6B7PMxf/J5AHv5cv+76bdftukQeOFMuaumTnF0pf8J9M+G5uPz701SbLo4Tvny77v5OsPP01pi6Zpd+B2abR4ecbc4ReMwLyrVei99957Z8CAAdl0001z7LHHZptttskVV1yRadOmpWvXrnVdIzW48tLr06Rp41xwyWlpsXDzvNq7b3b7x7+rrcxeepkl0rrNdzeMeOj+x9OmrHWOPv7QlLcty+A3hmS3fxxQdVOr1ddYJeust0aSpHf//1V7vfXad8iI4Z8EauORB3qmdZtWOeLYg1LWtk3eGvR29tr5kKobUS62+CLVfqnS97UBOfyA43Pk8Yekywmd8uH7w3Pgnp3zzpDvTjSvvbxHGjdtnLMvOjEtFm6e11/pn713OSRTv/kZ+Pqrr7PF1n/K4cccmCZNGmfUyDF5/umXcuhF3TJ16rSf9y+AonTBhVeladMmueaq89OyZYv06vVattpm90yZMqWqz7LLLpWysu++MnzPPQ+lvKx1Tj25SxZZpDwDBgzOVlvvXu0yUyuttFzOOvO4tG7dMh8OG5Fzzr0sl1x63c96bBSnay+7MU2aNM7ZXU9Oi4Wb57VX+mWvnQ+umjeTZKmlF0+r1i2rHj/ywP/SpqxVOh97cMraln0zfx9c7UbCZ5xwQSorKnJ1j4uy4IIL5vlnXspJR51V9fyW23ZIWXnrbL/z1tl+562r2kcM/zibrPW3+j1oit6F38zFV88yF29dw1zcpoa5+JRZ5uKtvzcXr7jScjlzlrn4XHMxc2nQkHezz6HHVD0+//KZ75+/b9khZ514ZM48oXOu7XFHLryiW0aOHptWC7dI+1VXzqYb1e6yn1t22DTjP/8iV3S/NWPGjcvKKyyXay46o+ryJklyzGEHpEGDBjn8hDMzbdq0bLj+OjmpyyHzdqAwi/EP90ppm4WzWJeOaVjeKpPf/CDv7nFapo/5IknS6DflSUVlVf/ShZtlqfMPTsPyVpnxxaR8+cbQvPX3Y/P1uyMKdQhAESmprKys/OluP27YsGHp06dPll9++bRv3/6nB9Rg0ZarzGsZUFCNSxsVugSYJ8MnjPrpTvALtkTzsp/uBL9gIyaO+elO8As2+ZMXCl0CzLMBa3b+6U7wC7buiAcKXcKvzvZLblPoEn517h/+cKFL+El1csvzpZZaKksttVRd7AoAAAAAAGptjkPvyy67bI53ethhh9WqGAAAAAAAmBdzHHpffPHF1R6PHj06kydPrrpx5eeff54mTZqkbdu2Qm8AAAAAAAqiwZx2/OCDD6q2s846K2uuuWbeeuutjBs3LuPGjctbb72VtddeO2eccUZ91gsAAAAAAD9ojkPvWZ100km5/PLLs9JKK1W1rbTSSrn44otz4okn1llxAAAAAAAwN2p1I8tPP/0006dPn619xowZGTly5DwXBQAAAABQ3ypSWegSqAe1Wun95z//OQcccED69u1b1danT58cdNBB6dChQ50VBwAAAAAAc6NWofcNN9yQRRZZJOuuu24aNWqURo0aZb311ku7du3SvXv3uq4RAAAAAADmSK0ub1JeXp5HH3007777bt56660kycorr5wVV1yxTosDAAAAAIC5UavQO0muv/76XHzxxXn33XeTJCussEIOP/zw7LfffnVWHAAAAAAAzI1ahd4nn3xyunbtmkMPPTS///3vkyQvv/xyjjjiiAwfPjynn356nRYJAAAAAABzolah99VXX51u3bqlY8eOVW3bbrtt2rdvn0MPPVToDQAAAAD84lUUugDqRa1uZDlt2rSsu+66s7Wvs846mT59+jwXBQAAAAAAtVGr0HuPPfbI1VdfPVv7ddddl3/+85/zXBQAAAAAANTGPN3IsmfPntlggw2SJK+88kqGDx+ePffcM507d67q17Vr13mvEgAAAAAA5kCtQu9BgwZl7bXXTpIMHTo0SVJWVpaysrIMGjSoql9JSUkdlAgAAAAAAHOmVqH3M888U9d1AAAAAADAPKv15U0AAAAAAH7NKlNZ6BKoB7W6kSUAAAAAAPwSCb0BAAAAACgaQm8AAAAAAIqG0BsAAAAAgKIh9AYAAAAAoGiUFroAAAAAAIBCqEhloUugHljpDQAAAABA0RB6AwAAAABQNITeAAAAAAAUDaE3AAAAAABFQ+gNAAAAAEDREHrD/7d332FWlHcbgJ+FpTeVGiuxSxMVe8FEE2OMxhijIvausWLBXpOoqMT6mYgKGrERIsbYY9QkoEhXBMEgiiYKAlZE2p7vD+LqCigsrCcc7/u6Ti7PzDszv9m8zM559j3vAAAAAAAlo7zYBQAAAAAAFEOhUCh2CdQAI70BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBnlxS4AAAAAAKAYKopdADXCSG8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBlCbwAAAAAASkZ5sQsAAAAAACiGQgrFLoEaYKQ3AAAAAAAlQ+gNAAAAAEDJEHoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACWjvNgFAAAAAAAUQ0UKxS6BGmCkNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUDKE3AAAAAAAlo7zYBQAAAAAAFEOhUCh2CdQAI70BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBnlxS4AAAAAAKAYKlIodgnUACO9AQAAAAAoGUJvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZ5cUuAAAAAACgGAopFLsEaoCR3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjPJiFwAAAAAAUAwVhUKxS6AGGOkNAAAAAEDJEHoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkoL3YBAAAAAADFUCh2AdQII70BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBnlxS4AAAAAAKAYKlIodgnUACO9AQAAAAAoGUJvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZ5cUuAAAAAACgGCpSKHYJ1AAjvQEAAAAAKBlCbwAAAAAASobQGwAAAACAkiH0BgAAAACgZAi9AQAAAAAoGeXFLgAAAAAAoBgKhUKxS6AGGOkNAAAAAEDJEHoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkoL3YBAAAAAADFUJFCsUugBhjpDQAAAABAyfifGendoLxesUuA5VJeVrvYJcByaVS3frFLgOVSVuZv+azcVmvQpNglwHIZ07lHsUuA5bbp6N7FLgGAFcCnQwAAAAAASobQGwAAAACAkiH0BgAAAACgZPzPzOkNAAAAAPBNKqRQ7BKoAUZ6AwAAAABQMoTeAAAAAACUDKE3AAAAAAAlQ+gNAAAAAEDJEHoDAAAAAFAyyotdAAAAAABAMRQKhWKXQA0w0hsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBlCbwAAAAAASobQGwAAAACAklFe7AIAAAAAAIqhIoVil0ANMNIbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJJRXuwCAAAAAACKoVAoFLsEaoCR3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjPJiFwAAAAAAUAwVKRS7BGqAkd4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDKE3gAAAAAAlIzyYhcAAAAAAFAMhRSKXQI1wEhvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZQm8AAAAAAEpGebELAAAAAAAohopCodglUAOM9AYAAAAAoGQIvQEAAAAAKBlCbwAAAAAASobQGwAAAACAkiH0BgAAAACgZJQXuwAAAAAAgGIopFDsEqgBRnoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDLKi10AAAAAAEAxVBQKxS6BGmCkNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUDKE3AAAAAAAlo7zYBQAAAAAAFEMhhWKXQA0w0hsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBlCbwAAAAAASobQGwAAAACAklFe7AIAAAAAAIqholAodgnUACO9AQAAAAAoGUJvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZ5cUuAAAAAACgGAopFLsEaoCR3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjPJiFwAAAAAAUAwVhUKxS6AGGOkNAAAAAEDJEHoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkoL3YBAAAAAADFUEih2CVQA4z0BgAAAACgZFQr9B45cmReeumlyvcPPvhg9t5775x77rmZO3fuCisOAAAAAACWRbVC72OPPTYTJ05Mkrz22ms54IAD0rBhwwwYMCBnnXXWCi0QAAAAAICV10033ZS2bdumfv362XrrrfPCCy98ZfsBAwZk4403Tv369dOxY8c88sgjy3S8aoXeEydOTOfOnSsL2GmnnXL33XenX79+GThwYHV2CQAAAABAibnvvvvSo0ePXHTRRRk5cmQ23XTT7Lbbbpk2bdpi2w8ZMiTdunXLkUcemVGjRmXvvffO3nvvnbFjxy71MasVehcKhVRUVCRJ/vrXv+bHP/5xkmSttdbK9OnTq7NLAAAAAABKTO/evXP00Ufn8MMPT7t27fK73/0uDRs2zO23377Y9tddd11+9KMf5cwzz8wmm2ySyy67LJtvvnluvPHGpT5meXUK7dKlS371q19l1113zbPPPpubb745STJ58uS0bt26OrsEAAAAAPhGFQoVxS5hpTNnzpzMmTOnyrJ69eqlXr16i7SdO3duRowYkXPOOadyWa1atbLrrrvmueeeW+z+n3vuufTo0aPKst122y2DBg1a6hqrNdL72muvzciRI3PiiSfmvPPOy/rrr58k+eMf/5jtttuuOrsEAAAAAOB/3OWXX55mzZpVeV1++eWLbTt9+vQsWLBgkYHSrVu3zjvvvLPYbd55551lar841Rrp3alTp7z00kuLLL/qqqtSu3bt6uwSAAAAAID/ceecc84iI7EXN8q7mKoVei9J/fr1V+TuAAAAAAD4H7KkqUwWp0WLFqldu3amTp1aZfnUqVPTpk2bxW7Tpk2bZWq/ONWa3qRWrVqpXbv2El8AAAAAAHy71a1bN1tssUWeeuqpymUVFRV56qmnsu222y52m2233bZK+yR58sknl9h+cao10vuBBx6o8n7evHkZNWpU7rjjjlxyySXV2SUAAAAAACWmR48eOfTQQ9OlS5dstdVWufbaazNr1qwcfvjhSZJDDjkka6yxRuW84Kecckq6du2aa665JnvssUfuvffeDB8+PLfccstSH7NaofdPf/rTRZbtu+++ad++fe67774ceeSR1dktAAAAAMA3piKFYpdQ8vbff/+8++67ufDCC/POO++kc+fOeeyxxyofVjllypTUqvX5hCTbbbdd7r777px//vk599xzs8EGG2TQoEHp0KHDUh+zrFAorLD/Z1977bV06tQpH3/88TJvu26LzVZUGVAU5WWm9mHlNnX2e8UuAZZL8/pNi10CLJdZ82YXuwRYLg832bjYJcBy23R072KXAMulTot1i13CSmed5p2KXcJK540ZLxa7hK9VrTm9F2f27Nm5/vrrs8Yaa6yoXQIAAAAAwDKp1vQmq666asrKyirfFwqFfPTRR2nYsGHuuuuuFVYcAAAAAAAsi2qF3tdee22V97Vq1UrLli2z9dZbZ9VVV10RdQEAAAAAwDKrVuh96KGHrug6AAAAAABguVUr9E6S999/P7fddlvGjx+fJGnfvn2OOOKINGvWbIUVBwAAAABQUwqFQrFLoAZU60GWw4cPz3rrrZff/va3mTlzZmbOnJnevXtnvfXWy8iRI1d0jQAAAAAAsFSqNdL7tNNOy1577ZU+ffqkvHzhLubPn5+jjjoqp556av7+97+v0CIBAAAAAGBpVCv0Hj58eJXAO0nKy8tz1llnpUuXLiusOAAAAAAAWBbVmt6kadOmmTJlyiLL33zzzTRp0mS5iwIAAAAAgOqoVui9//7758gjj8x9992XN998M2+++WbuvffeHHXUUenWrduKrvFb7+Aj9svfRz6c8W89nz89fmc6bdb+K9vvvteuefK5P2X8W8/n0b/fn5133WGRNqeefXyef/mJjHvzufxh4O/Sdt21q6w/4bQjM+CRfnl5ypCMnmS6Gla87kf8In8b8ee89ObgDHis39f26x/ttUseG/LHvPTm4Dz07L3puuv2levKy2vnjAtOykPP3pvRr/8j/3jp0fS68ZK0at2ipk+Db7lzzz81E/71XN559+U8+NCdWXe9tl+7zVHHHJQXX342U6ePy1NPD8zmW3Sqsv4vj/bPBx9PqvL67XWX1dAZ8G3ifoJSdda5J+XFCX/P6++MzoAHb893113na7c5/KgDM+zFp/LG1DF59Kn7stnmHausv+raSzJ09BN5/Z3ReXnSkNxx901Zf4Pv1tQpQKWWh+6ejs/dks3/dX82fqhXGnXeYIltm//i++ny1qAqr83/df83WC2lbPjol/LLsy7K9/bqng7b756n/j6kxo95z8CH8sOfH5rNv7dXuh19al4aN6HK+jlz5uZX19yU7XffL1vu+rOceu6vMn3mezVeF7ByqlboffXVV2efffbJIYcckrZt26Zt27Y57LDDsu++++bKK69c0TV+q+2x9w9z7mWn5/qrfp89v39gxr88MXcM+L80b7HqYttvvuWmue6Wy3N//0H5yfe65YlHnsnv7uydDTder7LNsScdlsOO7pbzz/hN9tntkHzyyez0u/+m1K1Xt7JN3bp18uifn0z/fn+s8XPk2+fHe/8g51x6Wm68uk/23uWgvPLyxNx2/w1ZbQn9erMtO6X373+dAf0fzN7f756/PvpMbrrj6mzw335dv0H9tO+0cf6v96352S4H5cTDzsx3118nN9/V+5s8Lb5lTj3tmBx73KE57ZQLssvO+2TWrE/ywKC+qfeFa+mX7fPzPfKby8/NlZdfn5122Ctjx76SBwb1S4uWzau069f33myw7taVrwvP97uV5eN+glJ14qlH5ahjD85Zp12cH++yXz6ZNTv3PXDrV16Lf7rP7rnkN2fnmitvyg922icvj52Qex+4NS1arFbZ5sXRL+eUE87NjlvtkQP2OSplZWW574HbUqtWtT4+wVJZdc/ts9aFR+Q/v70343bvkdnjXs8Gd12U8ubNlrjN/A9nZfRmh1W+Xtzm6G+wYkrZ7NmfZqP11815p5+wQvY36OEnc9iJZy1x/aN/fTa9brglxx/RPQNuvyEbrf/dHNvj/Mx47/3KNlde//s8M3hoev/q3PS7sVfenT4jp577qxVSH99uFSl4LeNrZVBWKBSqXeknn3ySSZMmJUnWW2+9NGzYsNqFrNtis2pvW8r+9PideXHUy7n47IWBR1lZWQa/+Fju7HNvfnd930XaX3/rFWnYsEGOOvCUymUDH7sj48dOzPln/DpJ8vzLT+TW//tDbr3pD0mSJk0a54Xxf82ZJ12UvzzweJX9/fyAPXPBr89M5/V2qqlTLBnlZbWLXcJKY8Bj/fLS6HG59OxeSRb267+PeTh/uPW+3HL9HYu0v7bPb9KgYYMc2/20ymX3P9o348dOzEVnXr7YY3Ts3C4Dn7wzXTvvkbf/PbVmTqTETJ1tlMSymPCv53Lj9bflhutvTZI0bdo4r772Qk447qwM/ONfFrvNU08PzMiRL+bM0y9JsrDvj5vwz9zyuzvz296/T7JwpPdLL47POT3dwC+r5vWbFruE/1nuJ1YOs+bNLnYJK50XJ/w9N9/YLzffcHuSpEnTxhn76uCccsI5GTTwkcVu8+hT92XUyLE598yF36IpKyvLqHHP5LZb7soNv+2z2G3atd8wTw/5c7bq/IO8MfnNmjmZEvBwk42LXcJKbeOHeuWTMa9myvn/7YdlZek07NZM6/tw3rnpT4u0b/6L72eti4/M6Pbdv+FKS9umow2c+bIO2++e6y6/ILvstF3lsrlz5+a6W+7Io08+m48+/jjrr9s2px1/RLbavNNi9zHo4Scz6NEn0+/GXotd3+3oU9Nh4w0rQ/aKiors+rNDcuC+e+Wog/fLRx/Pyo57HJBeF5+VH35vxyTJa2+8mb0OPCb9f987m3bYZAWf9cqrTot1i13CSmfN1ToUu4SVzlszxxa7hK+1XEMVGjZsmI4dO6Zjx47LFXizeHXqlKfDpptk8LNDK5cVCoUMfnZoNtty8b9INu/SqUr7JPnH089lsy4L26+1zhpp1bpllTYfffRxRo8cW9kGalKdOuVpv+nGGfKlfj3k7y+k8xL6YOcunTLk7y9UWfbPp5/LZl06LrZ9svBDb0VFRT784OMVUzh8Qdu2a6VNm1Z55unBlcs+/PDjDB8+Oltutfg/4tapUyedN+uQZ57+/KuhhUIhzzw9ZJFt9tt/r7z2xrA898KjuejiM9KgQf2aORG+FdxPUKrWabtmWrdplb8/8/l19aMPP87I4S+my5adF7tNnTp10qlz+/zjmarX4r8/89wSt2nYsEEO6L5P3nj9zfznrXdW5ClApbI65WnUcb18+I8XP19YKOTDf4xJo803WuJ2tRvVT8fnb0mnF27Neredk/obrvUNVAvJr3vfnDFjX8lVl5ydgXf8X374vR1y3Onn5403/73M+5o3b17GTXg123zhOlyrVq1s06VzxowdnyQZN+HVzJ8/P9t0+fy+ed111sp3WrfKmLGvLPf5AKWnfGkb7rPPPunXr1+aNm2affbZ5yvb/ulPi/4V+ovmzJmTOXPmVFlWKFSkrMzXBb9o1earpry8PNPfnVll+fR3Z2S9DdoudpsWrVos2n7ajLRstfCr8y1btfjvPhbTpnXVr9dDTVh1tVUW36+nzcy667dd7DYtWjXP9Glf/ncwMy1aLb7P1q1XN2dceFL+8qfHM+vjWSukbviiVq1bJkmmTZteZfm706an9X/XfVnz/17TF7fNhht+Phrjj/c/lDen/DtvvzM17dtvnEsuOysbbLhuDjpwxXy1lG8f9xOUqpatFl5v3502o8ryd9+dvsTneqz2338Pi9tmgw2rztl92FHdcuElZ6RR40Z5deJr+cXeR2TevHkr8Azgc+WrNUlZee3Me/f9KsvnT/8g9ddfc7HbfDrp33n99Bvyyfg3Urtpw7Q5du9sPOiKvLzLyZn39ozFbgMrwtvvTMugR57IkwPvTKv/TtN3+IH7ZvDQEXng4Sdz6nGHLdP+3nv/wyxYUJHmq1Wddq35aqtm8pS3kiTTZ7yXOnXK07RJ4y+1WSXTZ1a9HwFIliH0btasWcrKyir/e3lcfvnlueSSS6osW6VB66za8DvLtV+A8vLaue7WK1JWVpaLzryi2OVQIn6x31659vrPpxvZb9+jauxY/freW/nf416emKlT381DD9+V73537UyePKXGjgvwv+7nv/hJrrr2888Q3fc7rkaPN/D+h/Ls34akdZuWOeGkI9Kn37XZ84fdMmfO3Bo9LiytWSMnZNbIzx/0N2n4K2n/zI1p2X23/Ofqu4tYGaVu4muvZ8GCiuzRreo98by589Ks6cLp5t5+Z1r2OujYynULFizI/PkLsuWuP6tcdvTB++eYQw/4ZooGvnWWOvTu27fvYv+7Os4555z06NGjyrJNv7vjcu2zFL03473Mnz8/LVquVmV5i5bNFxmd8pnp06Yv2r7V5+3f/e8IwxYtV8u7U6dXaTPupapPRoaa8N7M9xffr1ut9hX9ekZatPryv4PVMv1L7T8LvNdYs00O2ed4o7xZYR595KmMGD6m8v1nD+pr1apFpk59t3J5y1Yt8tKL4xe7jxn/vaa3alV19GHLL+3jy4YPG50kWXfddYTeVIv7CUrFY48+nREjPp/6oV7dhdfilq2aZ9oXr8UtW+TllxZ/LZ75338PLb/0bbGWLVtk2tSq38T56MOP89GHH2fya29kxLAxmfjG0Pz4Jz/IAwMfXlGnBJXmz/wohfkLUqflKlWWl7dolnnTlu65K4X5C/LJ2NdSr22bGqgQPvfJJ7NTu3at3H/bDaldu+o39hv+d1q+li2aZ2C/myqX//XZwXnymcG58qLPH2bZrGmTJMmqqzRN7dq1MmNm1b4+Y+Z7afHf0d8tmq+aefPm58OPPq4y2nvGzPfTYrWq9ywASTXn9P7Vr36VyZMnV/ug9erVS9OmTau8TG2yqHnz5mfsmPHZbqetK5eVlZVlu522yqhhLy52m5HDX8x2O21VZdn2XbfJqOEL27/5xr8zbeq7VfbZuHGjdN68Q2UbqEnz5s3Py2NeybZf6KdlZWXZdsctM3oJfXD08Bez7Y5bVlm2XdetM2r4S5XvPwu811l37Ry67wl5/70PauYE+Fb6+ONZee21Nypfr4x/Ne+8My1dd/78YT5NmjROly6dM+yFUYvdx7x58zJ61Ngq25SVlaXrztsucZsk6dipXZLknXemraCz4dvG/QSlYtbHs/L6a1MqXxNe+VemvjMtO3bdtrJN4yaNsnmXTpV/MPyyefPm5cXRL1fZpqysLDt23WaJ2yxss/B/PvujJ6xohXnzM+ulSWmywxeei1BWlqY7dKoymvsr1aqVBhuvs9QhOVTXJhuulwULKjLzvfez9pqrV3m1aL4wgC4vr11l+WqrrJJ69epWWfZZ6F2nTp2022iDDB0+uvIYFRUVGTpidOUDKttttEHKy8urtJn8xlt5e+q0bNrBQ3RZPoVCwWsZXyuDpR7p/UUDBgzIRRddlK233joHHXRQ9ttvv7Rosfh581g+t918V66+8dK8NHpcxowcm8OPOzANGzbIH+95MEly9U2XZerb03LVr25IkvT7/T255899cuQJB+fpJ/6RPffZLR07t8t5PS6r3Gff392dE3sclddfm5K33vh3TjvnhEx959088cjTlW1WX6NNmq3aNKuv+Z3Uql0rm3TYMEnyxuQ388ms2d/gT4BS1Pd3/XPlDRdn7OhxeXHkyzn02APToGGDDLznoSRJrxsvydR3puWaXy0cGXDHLffmrgdvyRHHd88zT/4ze/xst3To3C4XnP6bJAtvqK6/vVfad9oox3Y/LbVr166c7/uD9z7IvHnzi3OilLSbb+qbM8/6ZSZNej1vvPFmzju/R955e2r+8tATlW3+/Jc/5KGHnkif3/8hSXLTjbfn5t9flVEjX8qIEWNywi8PT6OGDXPXXX9Mknz3u2tn3/32ypOPP5OZM99L+w4b5/Irzss//zk0L79s9CzV536CUnXLzXfmtDOPy+RJr2fKG/9Oz/NOztR3puXRv/y1ss0f/9w3jzz019zep3+S5Hc39cv1N1+R0aPGZtSIF3PMCYemYaMGufeuhc8lWqftmvnpPj/OM38bnBnTZ+Y7q7fJyacdnU8/nZOnnni2KOfJt8PUWx7Md397Sj4Z86/MGv1qWh+1Z2o1qJ/p9z2VJGl77SmZ986M/PuKu5Ik3zl1v8waOTGfvv52yps2Suvj9k69NVtm+j1PFvM0KBGffDI7U976T+X7f/9nal6ZOCnNmjZJ27XXzB4//F7O/dXVOePEo7PJhuvlvfc/yPPDR2fD9b+brttt9RV7XrxD9v9Zzvv1NWm/8Qbp0G6j3HX/oMz+dE723uMHSZImjRtln5/8ML1u6JNmTZukUaOG+c1vb86mHTapDMYBvqhaofeYMWPy8ssvp3///rn66qtz6qmn5gc/+EG6d++evffeOw0bNlzRdX5rPTzoiazWfNWcdvbxadGqecaPnZDD9vtl5YOjVl+zTSoqKirbjxw2Jqcee25OP/eXOeO8E/P6a1Ny3CE9MvGVSZVtfn9DvzRo1CC/ueb8NG3WJMOHjs7h+/8yc78wP+GpZx+ffbvt9Xkdz9yXJOn206MydPCImj5tStwjg57Mas1Xzck9j0vLVs0zfuzEHLn/SZnx3379nTXbpKLweb8eNezFnH7ceTn1nBPS47xf5vXX3swvDz0jr/63X7f+TqvsunvXJMmfn7mnyrEO+umxeWGIPsuKd+1vb0nDRg1z3Q2/TrNmTfP8c8Ozz88OrzLXa9vvrp3mzT9/IM+fBj6c5i1Wy7nnn5rWrRdOhbLPzw6vnDJi7tx52fl72+WEEw5Lw0YN8++33s6fH3w8V/W6aZHjw7JwP0GpuvHaW9OwYYNcfd2ladqsaV54fkQO2OfoKtfiddqundW+cC1+8E+Ppnnz1XLWuSelVeuWefml8em2z9F5992F1+JPP52brbfdIsccf0iardI0706bkeeHDM9PftAt06d7WBo1572HBqe8ebOsfka31Gm5aj4ZNzmvHnxJ5k9f+A3Gemu0TCo+H11X3qxx1ul1Quq0XDULPvg4s16alPE/PTufvvpWsU6BEjL2lVdzxEk9K9/3uuGWJMlPd981vz7/9PzqvB75fb97cvWNfTL13RlZtVnTdGq/cbpuv+yBd5LsvmvXvPf+B7nx1rsyfebMbLzBevndNZdVTm+SJD1PPja1atXKqef9KvPmzct2W22RC8745fKdKFCyygorYEz64MGDc/fdd2fAgAH59NNP8+GHHy7zPtZtsdnylgFFVV5Wu9glwHKZOttXYVm5Na/ftNglwHKZNc/od1ZuDzcxxQArv01H9y52CbBc6rRYt9glrHTWWLV9sUtY6fz7vZeLXcLXWiETaTdq1CgNGjRI3bp1M2/evBWxSwAAAAAAWGbVDr0nT56cX//612nfvn26dOmSUaNG5ZJLLsk777yzIusDAAAAAIClVq05vbfZZpsMGzYsnTp1yuGHH55u3bpljTXWWNG1AQAAAADUmIrln/mZ/0HVCr132WWX3H777WnXrt2KrgcAAAAAAKqtWqH3r3/96yTJ3LlzM3ny5Ky33nopL6/WrgAAAAAAYIWp1pzes2fPzpFHHpmGDRumffv2mTJlSpLkpJNOyhVXXLFCCwQAAAAAgKVVrdD77LPPzpgxY/LMM8+kfv36lct33XXX3HfffSusOAAAAAAAWBbVmpNk0KBBue+++7LNNtukrKyscnn79u0zadKkFVYcAAAAAAAsi2qF3u+++25atWq1yPJZs2ZVCcEBAAAAAP5XFVIodgnUgGpNb9KlS5c8/PDDle8/C7pvvfXWbLvttiumMgAAAAAAWEbVGun9m9/8JrvvvnvGjRuX+fPn57rrrsu4ceMyZMiQPPvssyu6RgAAAAAAWCrVGum9ww47ZMyYMZk/f346duyYJ554Iq1atcpzzz2XLbbYYkXXCAAAAAAAS2WZR3rPmzcvxx57bC644IL06dOnJmoCAAAAAIBqWeaR3nXq1MnAgQNrohYAAAAAAFgu1ZreZO+9986gQYNWcCkAAAAAAN+cQqHgtYyvlUG1HmS5wQYb5NJLL83gwYOzxRZbpFGjRlXWn3zyySukOAAAAAAAWBbVCr1vu+22rLLKKhkxYkRGjBhRZV1ZWZnQGwAAAACAoqhW6D158uTK//5sSHtZWdmKqQgAAAAAAKqpWnN6JwtHe3fo0CH169dP/fr106FDh9x6660rsjYAAAAAAFgm1RrpfeGFF6Z379456aSTsu222yZJnnvuuZx22mmZMmVKLr300hVaJAAAAAAALI1qhd4333xz+vTpk27dulUu22uvvdKpU6ecdNJJQm8AAAAA4H9eRQrFLoEaUK3pTebNm5cuXbossnyLLbbI/Pnzl7soAAAAAACojmqF3gcffHBuvvnmRZbfcsst6d69+3IXBQAAAAAA1VGt6U2ShQ+yfOKJJ7LNNtskSYYOHZopU6bkkEMOSY8ePSrb9e7de/mrBAAAAACApVCt0Hvs2LHZfPPNkySTJk1KkrRo0SItWrTI2LFjK9uVlZWtgBIBAAAAAGDpVCv0fvrpp1d0HQAAAAAAsNyqPb0JAAAAAMDKrFAoFLsEakC1HmQJAAAAAAD/i4TeAAAAAACUDKE3AAAAAAAlQ+gNAAAAAEDJEHoDAAAAAFAyyotdAAAAAABAMVQUCsUugRpgpDcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDKE3gAAAAAAlAyhNwAAAAAAJaO82AUAAAAAABRDoVAodgnUACO9AQAAAAAoGUJvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZ5cUuAAAAAACgGCpSKHYJ1AAjvQEAAAAAKBlCbwAAAAAASobQGwAAAACAkiH0BgAAAACgZAi9AQAAAAAoGeXFLgAAAAAAoBgKhUKxS6AGGOkNAAAAAEDJEHoDAAAAAFAyhN4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkoL3YBAAAAAADFUFEoFLsEaoCR3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjPJiFwAAAAAAUAyFFIpdAjXASG8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBlCbwAAAAAASkZ5sQsAAAAAACiGikKh2CVQA4z0BgAAAACgZAi9AQAAAAAoGUJvAAAAAABKhtAbAAAAAICSIfQGAAAAAKBklBe7AAAAAACAYigUCsUugRpgpDcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDKE3gAAAAAAlAyhNwAAAAAAJaO82AUAAAAAABRDIYVil0ANMNIbAAAAAICSIfQGAAAAAKBkCL0BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJJRXuwCAAAAAACKoVAoFLsEaoCR3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjPJiFwAAAAAAUAyFQqHYJVADjPQGAAAAAKBkCL0BAAAAACgZQm8AAAAAAEqG0BsAAAAAgJIh9AYAAAAAoGSUF7sAAAAAAIBiKBS7AGqEkd4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDKE3gAAAAAAlIyyQqHgIaUlbs6cObn88stzzjnnpF69esUuB5aZPkwp0I9Z2enDrOz0YVZ2+jArO30Y+CYJvb8FPvzwwzRr1iwffPBBmjZtWuxyYJnpw5QC/ZiVnT7Myk4fZmWnD7Oy04eBb5LpTQAAAAAAKBlCbwAAAAAASobQGwAAAACAkiH0/haoV69eLrroIg+KYKWlD1MK9GNWdvowKzt9mJWdPszKTh8GvkkeZAkAAAAAQMkw0hsAAAAAgJIh9AYAAAAAoGQIvQEAAAAAKBlCb2C57Lzzzjn11FOrvf0zzzyTsrKyvP/++yusJiim5f03AcurmH3QNZ1SdPHFF6dz587FLoNvkbZt2+baa68tdhlQow477LDsvffexS4DKGHlxS4AAICVz84775zOnTtXCWa22267vP3222nWrFnxCoMV7IwzzshJJ51U7DIASsp1112XQqFQ7DKAEib0BgCg0rx581KnTp1qbVu3bt20adNmBVcExdW4ceM0bty42GUA/E+YO3du6tatu9z78QdyoKaZ3mQl9thjj2WHHXbIKquskubNm+cnP/lJJk2aVLl+yJAh6dy5c+rXr58uXbpk0KBBKSsry+jRoyvbjB07NrvvvnsaN26c1q1b5+CDD8706dOLcDaszObPn58TTzwxzZo1S4sWLXLBBRdU/tX+D3/4Q7p06ZImTZqkTZs2OfDAAzNt2rQl7mvGjBnp1q1b1lhjjTRs2DAdO3bMPffcU6XNzjvvnJNPPjlnnXVWVltttbRp0yYXX3xxlTbvv/9+jj322LRu3Tr169dPhw4d8pe//KVy/T//+c/suOOOadCgQdZaa62cfPLJmTVr1or7ofCtMGvWrBxyyCFp3LhxvvOd7+Saa66psv6r+n+hUMj666+fq6++uso2o0ePTllZWf71r399Y+fByuvr+mBZWVkGDRpUZdkqq6ySfv36JUlef/31lJWV5b777kvXrl1Tv3799O/f/2uvxYcddlieffbZXHfddSkrK0tZWVlef/31xU5vMnDgwLRv3z716tVL27ZtF6mxbdu2+c1vfpMjjjgiTZo0ydprr51bbrllhf6c+N9QUVGRXr16Zf3110+9evWy+5ndMQAAE8lJREFU9tpr59e//nWSpGfPntlwww3TsGHDrLvuurngggsyb968ym0/m2Lk9ttvz9prr53GjRvnhBNOyIIFC9KrV6+0adMmrVq1qtzfZ8rKynLzzTdn9913T4MGDbLuuuvmj3/8Y5U2S3vsz8yfPz8nn3xy5T14z549c+ihh1b5mv7S3Kvw7bDzzjvnxBNPXOK98rRp07LnnnumQYMG+e53v5v+/fsvso/evXunY8eOadSoUdZaa62ccMIJ+fjjj5Ms/D3QtGnTRfr1oEGD0qhRo3z00UeZO3duTjzxxHznO99J/fr1s8466+Tyyy+v+ZNnpfB1fbRt27a57LLLcsghh6Rp06Y55phjknz156lzzz03W2+99SLH2nTTTXPppZcmWXR6kzlz5uTkk09Oq1atUr9+/eywww4ZNmxY5fp+/fpllVVWqbK/zzKOz4wZMybf+9730qRJkzRt2jRbbLFFhg8fvkJ+TsDKR+i9Eps1a1Z69OiR4cOH56mnnkqtWrXys5/9LBUVFfnwww+z5557pmPHjhk5cmQuu+yy9OzZs8r277//fr7//e9ns802y/Dhw/PYY49l6tSp2W+//Yp0Rqys7rjjjpSXl+eFF17Iddddl969e+fWW29NsnDE4GWXXZYxY8Zk0KBBef3113PYYYctcV+ffvpptthiizz88MMZO3ZsjjnmmBx88MF54YUXFjlmo0aNMnTo0PTq1SuXXnppnnzyySQLP1TvvvvuGTx4cO66666MGzcuV1xxRWrXrp0kmTRpUn70ox/l5z//eV588cXcd999+ec//5kTTzyxZn5AlKwzzzwzzz77bB588ME88cQTeeaZZzJy5MjK9V/V/8vKynLEEUekb9++VfbZt2/f7LTTTll//fW/yVNhJfV1fXBpnX322TnllFMyfvz47Lbbbl97Lb7uuuuy7bbb5uijj87bb7+dt99+O2uttdYi+x0xYkT222+/HHDAAXnppZdy8cUX54ILLqgM3T9zzTXXpEuXLhk1alROOOGEHH/88ZkwYUK1fib87zrnnHNyxRVX5IILLsi4ceNy9913p3Xr1kmSJk2apF+/fhk3blyuu+669OnTJ7/97W+rbD9p0qQ8+uijeeyxx3LPPffktttuyx577JG33norzz77bK688sqcf/75GTp0aJXtLrjggvz85z/PmDFj0r179xxwwAEZP3585fqlOfYXXXnllenfv3/69u2bwYMH58MPP1zkj0vJV9+r8O3yVffKhx12WN588808/fTT+eMf/5j/+7//W2SASK1atXL99dfn5Zdfzh133JG//e1vOeuss5IkjRo1ygEHHLDY+4l99903TZo0yfXXX58///nPuf/++zNhwoT0798/bdu2/UbOnZXDV/XRJLn66quz6aabZtSoUbngggu+9vNU9+7d88ILL1QZlPfyyy/nxRdfzIEHHrjYGs4666wMHDgwd9xxR0aOHJn1118/u+22W2bOnLnU59G9e/esueaaGTZsWEaMGJGzzz672t9eA0pAgZLx7rvvFpIUXnrppcLNN99caN68eWH27NmV6/v06VNIUhg1alShUCgULrvsssIPf/jDKvt48803C0kKEyZM+CZLZyXWtWvXwiabbFKoqKioXNazZ8/CJptsstj2w4YNKyQpfPTRR4VCoVB4+umnC0kK77333hKPscceexROP/30KsfcYYcdqrTZcsstCz179iwUCoXC448/XqhVq9YS+/GRRx5ZOOaYY6os+8c//lGoVatWlX8z8FU++uijQt26dQv3339/5bIZM2YUGjRoUDjllFMWu82X+/+///3vQu3atQtDhw4tFAqFwty5cwstWrQo9OvXr8brZ+W3NH0wSeGBBx6osl2zZs0Kffv2LRQKhcLkyZMLSQrXXnvt1x5vcdfiL/f1L1/TDzzwwMIPfvCDKm3OPPPMQrt27Srfr7POOoWDDjqo8n1FRUWhVatWhZtvvvlra2Ll8eGHHxbq1atX6NOnz1K1v+qqqwpbbLFF5fuLLrqo0LBhw8KHH35YuWy33XYrtG3btrBgwYLKZRtttFHh8ssvr3yfpHDcccdV2ffWW29dOP7445fp2Jtuumnl+9atWxeuuuqqyvfz588vrL322oWf/vSnlcu+7l6Fb4+vuleeMGFCIUnhhRdeqFw3fvz4QpLCb3/72yXuc8CAAYXmzZtXvh86dGihdu3ahf/85z+FQqFQmDp1aqG8vLzwzDPPFAqFQuGkk04qfP/7369SA3zm6z7PrbPOOoW99967yjZL83lq0003LVx66aWV688555zC1ltvXfn+0EMPrbxufvzxx4U6deoU+vfvX7l+7ty5hdVXX73Qq1evQqFQKPTt27fQrFmzKsd84IEHCl+MtZo0aeI+GqhkpPdK7NVXX023bt2y7rrrpmnTppV/rZ8yZUomTJiQTp06pX79+pXtt9pqqyrbjxkzJk8//XTlPIWNGzfOxhtvnCRV/iILX2ebbbap8rWybbfdNq+++moWLFiQESNGZM8998zaa6+dJk2apGvXrkkW9tPFWbBgQS677LJ07Ngxq622Who3bpzHH398kfadOnWq8v473/lO5aiY0aNHZ80118yGG2642GOMGTMm/fr1q9L3d9ttt1RUVGTy5MnV/jnw7TJp0qTMnTu3ylc3V1tttWy00UaV77+u/6+++urZY489cvvttydJHnroocyZMye/+MUvvsEzYWW1NH1waXXp0qXK+6W9Fn+d8ePHZ/vtt6+ybPvtt6/8HfGZL17Ty8rK0qZNm6+cCouVz/jx4zNnzpzssssui11/3333Zfvtt0+bNm3SuHHjnH/++Yv0t7Zt26ZJkyaV71u3bp127dqlVq1aVZZ9ue9su+22i7z/4kjvpTn2Zz744INMnTq1yn117dq1s8UWWyzS9qvuVfh2WdK98vjx41NeXl6l/2y88caLTOHw17/+NbvsskvWWGONNGnSJAcffHBmzJiRTz75JMnCz3nt27fPHXfckSS56667ss4662SnnXZKsnA0+ejRo7PRRhvl5JNPzhNPPFHDZ8zK5qs+zyWL3icszeep7t275+67706ycFq/e+65J927d1/s8SdNmpR58+ZVuWeoU6dOttpqqyrX66/To0ePHHXUUdl1111zxRVXyDXgW07ovRLbc889M3PmzPTp0ydDhw6t/Crn3Llzl2r7jz/+OHvuuWdGjx5d5fXqq69W3iDB8vj000+z2267pWnTpunfv3+GDRuWBx54IMmS++lVV12V6667Lj179szTTz+d0aNHZ7fddluk/Ze/plZWVpaKiookSYMGDb6yro8//jjHHntslX4/ZsyYvPrqq1lvvfWqe7pQxaxZs5aq/x911FG59957M3v27PTt2zf7779/GjZsWKyyKTFlZWWVc3J+5otzFX+mUaNGVd4v7bV4Rfmqazql4at+Nz/33HPp3r17fvzjH+cvf/lLRo0alfPOO2+pfvcvb99Z2mNXh37NivD666/nJz/5STp16pSBAwdmxIgRuemmm5Isej/x2dRRffv2zeGHH14ZYm6++eaZPHlyLrvsssyePTv77bdf9t1332/8XFh5ffk+YWk+T3Xr1i0TJkzIyJEjM2TIkLz55pvZf//9q11DrVq1vvae5uKLL87LL7+cPfbYI3/729/Srl27yvtv4NunvNgFUD0zZszIhAkT0qdPn+y4445JFj5I4jMbbbRR7rrrrsyZMyf16tVLkioPgUgW3vwMHDgwbdu2TXm5rkD1fXnuzOeffz4bbLBBXnnllcyYMSNXXHFF5VyvX/cgkcGDB+enP/1pDjrooCQL5+eeOHFi2rVrt9T1dOrUKW+99VYmTpy42NHem2++ecaNG2fOZJbLeuutlzp16mTo0KFZe+21kyTvvfdeJk6cmK5duy51///xj3+cRo0a5eabb85jjz2Wv//979/oebDy+ro+mCQtW7bM22+/XbnNq6++Wjky8KsszbW4bt26VUZrL84mm2ySwYMHL7LvDTfcsPI5C3w7bLDBBmnQoEGeeuqpHHXUUVXWDRkyJOuss07OO++8ymVvvPHGCjv2888/n0MOOaTK+80226xax27WrFlat26dYcOGVQ4SWbBgQUaOHFnlYZfwRUu6V954440zf/78jBgxIltuuWWSZMKECVUeBjxixIhUVFTkmmuuqfxWw/3337/IMQ466KCcddZZuf766zNu3LgceuihVdY3bdo0+++/f/bff//su++++dGPfpSZM2dmtdVWW8Fny8poSX10Sb+rl+bz1JprrpmuXbumf//+mT17dn7wgx+kVatWi2273nrrpW7duhk8eHDWWWedJAsD7WHDhuXUU09NsvCe5qOPPsqsWbMqQ/jRo0cvsq8NN9wwG264YU477bR069Ytffv2zc9+9rOv+xEAJchI75XUqquumubNm+eWW27Jv/71r/ztb39Ljx49KtcfeOCBqaioyDHHHJPx48fn8ccfz9VXX50klX/x/+Uvf5mZM2emW7duGTZsWCZNmpTHH388hx9++Nd+iIUvmjJlSnr06JEJEybknnvuyQ033JBTTjkla6+9durWrZsbbrghr732Wv785z/nsssu+8p9bbDBBnnyySczZMiQjB8/Pscee2ymTp26TPV07do1O+20U37+85/nySefzOTJkysffJUkPXv2zJAhQ3LiiSdWfrvhwQcf9CBLlknjxo1z5JFH5swzz8zf/va3jB07NocddljlB9Kl7f+1a9fOYYcdlnPOOScbbLDBIl/DhyX5uj6YJN///vdz4403ZtSoURk+fHiOO+64pXqg09Jci9u2bZuhQ4fm9ddfz/Tp0xc7gvX000/PU089lcsuuywTJ07MHXfckRtvvDFnnHHG8v8AWKnUr18/PXv2zFlnnZU777wzkyZNyvPPP5/bbrstG2ywQaZMmZJ77703kyZNyvXXX79CR+YNGDAgt99+eyZOnJiLLrooL7zwQuXv/Ooc+6STTsrll1+eBx98MBMmTMgpp5yS9957r8rUAPBFS7pX3mijjfKjH/0oxx57bIYOHZoRI0bkqKOOqvLNiPXXXz/z5s2rvJ/4wx/+kN/97neLHGPVVVfNPvvskzPPPDM//OEPs+aaa1au6927d+6555688sormThxYgYMGJA2bdosMo0K315L6qNLsrSfp7p375577703AwYMWOLUJsnCkeTHH398zjzzzDz22GMZN25cjj766HzyySc58sgjkyRbb711GjZsmHPPPTeTJk3K3XffXeXB2LNnz86JJ56YZ555Jm+88UYGDx6cYcOGZZNNNlm+Hw6w0hJ6r6Rq1aqVe++9NyNGjEiHDh1y2mmn5aqrrqpc37Rp0zz00EMZPXp0OnfunPPOOy8XXnhhklTO87366qtn8ODBWbBgQX74wx+mY8eOOfXUU7PKKqtU+cAMX+eQQw7J7Nmzs9VWW+WXv/xlTjnllBxzzDFp2bJl+vXrlwEDBqRdu3a54oorKv/4siTnn39+Nt988+y2227Zeeed06ZNm+y9997LXNPAgQOz5ZZbplu3bmnXrl3OOuusyj/mdOrUKc8++2wmTpyYHXfcMZtttlkuvPDCrL766tU5fb7Frrrqquy4447Zc889s+uuu2aHHXaonJdzWfr/kUcemblz5+bwww//JsunBHxVH0ySa665JmuttVZ23HHHHHjggTnjjDOWavqcpbkWn3HGGaldu3batWuXli1bLnYO5M033zz3339/7r333nTo0CEXXnhhLr300hx22GHLe+qshC644IKcfvrpufDCC7PJJptk//33z7Rp07LXXnvltNNOy4knnpjOnTtnyJAhueCCC1bYcS+55JLce++96dSpU+68887cc889ld9aqM6xe/bsmW7duuWQQw7JtttuWzmX7RefpQNftKR75WThVCSrr756unbtmn322SfHHHNMldGwm266aXr37p0rr7wyHTp0SP/+/XP55Zcv9jif3U8cccQRVZY3adIkvXr1SpcuXbLlllvm9ddfzyOPPOIzH5W+qo8uztJ+ntp3330r55//us90V1xxRX7+85/n4IMPzuabb55//etfefzxx7PqqqsmWfjckrvuuiuPPPJIOnbsmHvuuScXX3xx5fa1a9fOjBkzcsghh2TDDTfMfvvtl9133z2XXHJJtX8uwMqtrPDlSZEoWf3798/hhx+eDz744GvnPAbgm/OPf/wju+yyS9588820bt262OUAlIyysrI88MAD1foD+tKqqKjIJptskv322+9rv9HGt8/OO++czp0759prr63xY/3hD3/Iaaedlv/85z+pW7dujR+P0vBN9lGAb5KJnEvYnXfemXXXXTdrrLFGxowZk549e2a//fYTeAP8j5gzZ07efffdXHzxxfnFL34h8AZYCbzxxht54okn0rVr18yZMyc33nhjJk+enAMPPLDYpfEt9cknn+Ttt9/OFVdckWOPPVbgDQAxvUlJe+edd3LQQQdlk002yWmnnZZf/OIXueWWW4pdFgD/dc8992SdddbJ+++/n169ehW7HACWQq1atdKvX79sueWW2X777fPSSy/lr3/9q3ljKZpevXpl4403Tps2bXLOOecUuxwA+J9gehMAAAAAAEqGkd4AAAAAAJQMoTcAAAAAACVD6A0AAAAAQMkQegMAAAAAUDKE3gAAAAAAlAyhNwAAAAAAJUPoDQAAAABAyRB6AwAAAABQMoTeAAAAAACUjP8HZZhhdlt7gp8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20,20))\n", + "sns.heatmap(df[integer_columns].corr() , annot=True ,fmt=\"0.0\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "6a04608f", + "metadata": {}, + "outputs": [], + "source": [ + "df[\"y\"] = df[\"y\"].map(lambda x:0 if x == \"no\" else 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "e58d918c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_style('whitegrid')\n", + "edgecolor = 'black'\n", + "\n", + "fig = plt.figure(figsize=(12,12))\n", + "\n", + "def scatter_plot(a):\n", + " fig, ax = plt.subplots()\n", + " ax.scatter(x = df[a], y = df['y'], edgecolor=edgecolor)\n", + " plt.ylabel('y', fontsize=12)\n", + " plt.xlabel(a, fontsize=12)\n", + " plt.suptitle(\"Scatter Plot of \"+ a + \" and y\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c1f6cfab", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "e6b449b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
058managementmarriedtertiaryno2143yesnounknown5may2611-10unknown0
144techniciansinglesecondaryno29yesnounknown5may1511-10unknown0
233entrepreneurmarriedsecondaryno2yesyesunknown5may761-10unknown0
347blue-collarmarriedunknownno1506yesnounknown5may921-10unknown0
433unknownsingleunknownno1nonounknown5may1981-10unknown0
\n", + "
" + ], + "text/plain": [ + " age job marital education default balance housing loan \\\n", + "0 58 management married tertiary no 2143 yes no \n", + "1 44 technician single secondary no 29 yes no \n", + "2 33 entrepreneur married secondary no 2 yes yes \n", + "3 47 blue-collar married unknown no 1506 yes no \n", + "4 33 unknown single unknown no 1 no no \n", + "\n", + " contact day month duration campaign pdays previous poutcome y \n", + "0 unknown 5 may 261 1 -1 0 unknown 0 \n", + "1 unknown 5 may 151 1 -1 0 unknown 0 \n", + "2 unknown 5 may 76 1 -1 0 unknown 0 \n", + "3 unknown 5 may 92 1 -1 0 unknown 0 \n", + "4 unknown 5 may 198 1 -1 0 unknown 0 " + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "7d02b688", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNaklEQVR4nO3deVzU1f7H8TcMsrjv1DXDpTBFBEQtw9vPJZe00pRWK+vmtXuzzPa0XMpuZmauaabX8pZtpunVNNu0VUvNBe3aNe2a5gYKpoIsM+f3BzE5wsCMoIOH1/Px4NHlcOZ8P5/z/TLzvjPDGGSMMQIAADjHBQe6AAAAgLJAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQA5yjTv3cTBs+R9OGHgAEDqEGKAP//e9/9cADDygpKUktW7ZUhw4dNHToUG3btq3Mj5WTk6Nnn31WS5YscY9t375dN998c5kfq8DChQvVrFkzj6/mzZurbdu2+stf/qL169e7506dOlXNmjXza/39+/dr0KBB+vXXX0td648//qg+ffqoZcuW6tmzZ6nXOxcVnK89e/YEuhTgrAoJdAHAuW779u268cYbFR8fryeffFJ16tTR/v379cYbb+iGG27Qv/71L8XHx5fZ8Q4ePKi5c+dq7Nix7rEPP/xQGzZsKLNjeDNt2jTVq1dPkuRyuZSWlqaXXnpJAwYM0HvvvadLLrnktNb95ptv9Pnnn5dJjS+99JL27t2rl156SbVr1y6TNQGcGwg1QCm9+uqrqlWrlmbNmqWQkD9+pa688kr16NFD06dP1yuvvBLACstO8+bNdcEFF3iMtWjRQl27dtWbb76pp59+OkCV/SE9PV3R0dH6v//7v0CXAuAs4+UnoJTS0tJkjJHL5fIYr1y5soYPH66rrrrKY3zRokW67rrrFBcXp44dO2rChAnKyclx//yTTz7RLbfcooSEBLVs2VI9evTQvHnzJEl79uxRly5dJEnDhg1T586dNXXqVE2bNk2S1KxZM02dOlVS/jMpr7zyirp27aqWLVuqe/fuev311z1que222/Twww9ryJAhio+P15133ul3/xdccIFq1aqlvXv3ep2zbNky9e3bVwkJCUpKStLIkSN15MgRSfkvlQwbNkyS1KVLFz3++ONe1zl48KCGDRum//u//1OrVq2UnJysTz/91P3zZs2a6bvvvtPatWvVrFkzLVy4sMh1nE6nXnnlFV199dVq1aqV4uPjddNNN2nNmjUe81atWqW+ffuqVatW6t69u5YuXaquXbu691iSMjIyNHLkSF1++eWKjY3VDTfcoNWrV5e4b2vXrtVdd92ltm3bqmXLlu5zWXAd7dmzR82aNdPy5cs1ZMgQJSQkqF27dnryySeVmZnpXsflcmn69Onq2LGj4uLidM8997j31ptx48apVatWOnr0qMf49OnTlZiYqKysrBLrB8ojQg1QSh07dtTevXt10003ad68edqxY4f7Da89evTQdddd5547b948PfbYY4qJidG0adM0aNAgvf7663rmmWck5T+IDh48WDExMZo+fbqmTp2qhg0b6umnn9amTZtUv359d4D5+9//rmnTpun6669XcnKyJOmdd97R9ddfL0kaPXq0pkyZomuvvVYvv/yyevTooWeffVYvvfSSR/3Lly9XlSpVNGPGDA0cONDv/tPT05Wenq4LL7ywyJ9Pnz5dDz74oOLj4zVlyhQNHjxYK1as0G233aYTJ06oY8eO+vvf/y4p/+Wte+65p8h10tLSlJycrHXr1umBBx7Q1KlT1aBBAw0ePFj//ve/3f23aNFCLVq00DvvvKOOHTsWudYLL7yg6dOn68Ybb9Ts2bM1ZswYZWRk6P7773c/oK9Zs0b33HOPzj//fE2dOlX9+/fXqFGjtG/fPvc62dnZGjBggD799FM98MADmjZtms477zwNHDiw2GCzbds23XHHHapZs6YmTpyoGTNmqE2bNpo2bZqWL1/uMXfUqFFq0KCBpk+frrvuukvvvfeeZsyY4f75+PHj9dJLLyk5OVnTpk1TzZo1NWHCBK/HlqTk5GRlZ2frww8/9BhfvHixevbsqYiIiGJvD5RbBkCpTZo0ycTGxpro6GgTHR1tLr30UvPQQw+ZTZs2uec4nU7Tvn17c88993jcdvbs2ea6664zOTk5ZtasWeaxxx7z+Hl6erqJjo42M2fONMYYs3v3bhMdHW0WLFjgnjNlyhQTHR3t/n7nzp2mWbNm7tsUmDhxoomNjTWHDx82xhhz6623mri4OJOdnV1sfwsWLDDR0dFm165dJjc31+Tm5ppjx46ZLVu2mDvuuMO0aNHCbNu2rVAtGRkZpmXLlmbEiBEe661du9ZER0ebN954w2P93bt3e63h+eefNzExMWbPnj0e4wMGDDBJSUnG6XS6e7r11luL7efBBx80r732msfYihUrTHR0tNmwYYMxxphbbrnFXHvttcblcrnnLF261ERHR5spU6YYY4x55513THR0tNm4caN7jsvlMv379zd9+/b1evz333/fDBw40F2zMfnXR2JionuvCs7zww8/7HHb2267zVx99dXGGGOOHDliYmJizPjx4z3m3HXXXSXu54033mj69+/v/n79+vUmOjrafP/9915vA5R3PFMDlIH7779fX375pSZMmKDk5GRVrVpVS5Yscb9RWJJ+/vlnHTp0SF27dvW47V133aWFCxeqUqVKGjhwoJ577jkdP35cW7Zs0bJlyzRz5kxJ8niJqiRr1qyRMUadO3dWXl6e+6tz587Kzs72+GulJk2aKDQ01Kd1u3btqpiYGMXExKh169bq27evdu3apfHjxxf5F08bN25UTk6Orr76ao/xNm3aqEGDBvruu+987um7775TQkKCGjRo4DF+7bXXKjU1VTt37vR5rQkTJmjAgAE6fPiw1q1bpwULFrif7cnJyVFOTo42bNigbt26KSgoyH27Hj16eLxvavXq1apXr55iYmLce+x0OtWpUydt2bLF68tAffr00axZs5Sbm6tt27ZpxYoVmjJlipxOp3Jzcz3mnvom8/POO8/98tPGjRuVm5urTp06ecw59SXPovTr10/r1q1z/8XZ+++/r8aNGyshIaHE2wLlFW8UBspIjRo1dPXVV7sfwH/44Qc98sgjGj9+vK655hplZGRIkurUqeN1jcOHD2vUqFH65JNPFBQUpKioKLVp00aSf5/hUnCsXr16FfnzAwcOuP93lSpVfF53xowZ7r9+qlSpkmrVqqXIyEiv8wse1OvWrVvoZ3Xr1i30no7iHDlyRA0bNixyHUn67bfffF4rJSVFTz31lFJSUhQREaGLLrpIf/rTnyTl73NGRoacTmehc+VwOFSzZk339xkZGUpNTVVMTEyRx0lNTVWNGjUKjZ84cUJjxozR4sWLlZeXpwsuuEAJCQkKCQkpdJ5PfSkoODjYPadgf2vVquUxp+AcFadnz5569tlntXjxYt11111avny5Bg0aVOLtgPKMUAOUwoEDB9SvXz/df//97veyFGjRooUeeOABDR48WLt371b16tUl5QeXk6Wnp+uHH35QQkKCHn74Ye3cuVOvvfaaEhISFBoaqqysLL377rt+1VVwrLlz5xYZWgoewP0VHR1d6K+filPwgJ6WlqYmTZp4/Cw1NbXIkFLcWqmpqYXGC8ZOfWD35tixYxo4cKCaNWumDz74QE2aNFFwcLA+//xzrVixQlJ+8KxUqZLS0tI8butyudyBUZKqVaumRo0a6YUXXijyWN726h//+IdWrFihSZMm6fLLL1flypUlSe3bt/ephwIFPR86dMhjf0+u0ZsqVaqoR48eWr58uaKjo5WZmanevXv7dXygvOHlJ6AU6tatq5CQEL355pvKzs4u9POdO3cqLCxMUVFRatKkiWrVqqWVK1d6zFm8eLEGDRqk3NxcrV+/Xt26ddOll17qfknoiy++kCT3X8U4HI5CxwkO9vxVLnh2Jz09XbGxse6vw4cPa/LkyT496JWFuLg4hYaGaunSpR7j69at0969e9W6desi6y9K27ZttWHDhkIf0Pfvf/9b9erVU1RUlE817dy5UxkZGbr99tt10UUXuY998j47HA61bt3a4y+rJOmzzz5TXl6e+/t27dpp3759qlOnjsc+f/3115o9e3aR50qS1q9fr0svvVRXXnmlO9Bs2bJFhw8fLvRXdMVJSEhQeHh4oTf8nnqNeZOcnKz//ve/mjt3ri6//PJin3UDzgU8UwOUgsPh0OjRozV48GD169dP/fv3V9OmTZWVlaWvv/5a8+bN0/333+9+xuK+++7T008/rTp16qhz5876+eefNWXKFPXv3181atRQq1attGTJEsXExOi8887T999/r1deeUVBQUHuv8qpVq2apPz3czRt2lRxcXHuZ2aWLl2quLg4NWvWTNdee61GjBihX3/9VS1bttTPP/+siRMn6oILLlCjRo3Oyv7UrFlTgwYN0ksvvaRKlSqpU6dO2rNnjyZPnqyLLrrI/ZdhBfV//PHHuuKKK9S0adNCa915553697//rTvuuEP33nuvatasqUWLFmnNmjV69tlnfQpGktS4cWNVrVpVL7/8skJCQhQSEqIVK1bovffekyT3Pg8ZMkS33XabhgwZouTkZO3du1eTJ0+WJPf7bPr27as33nhDd955p/72t7/p/PPP1zfffKNZs2bp1ltvVaVKlYqsoVWrVlq+fLneeustNW3aVNu2bdOMGTM8zrMvqlSponvuuUeTJk1SRESELrvsMn3++ec+h5rExEQ1btxY3333nSZOnOjzcYFyK6BvUwYssWXLFvPAAw+YK664wrRs2dK0bt3a3HrrrWbFihWF5i5cuND06tXLxMTEmC5dupjp06eb3NxcY4wxe/bsMXfffbdJTEw0iYmJpl+/fmbx4sXmrrvuMv369XOvMXbsWBMfH2/atm1rcnJyzP79+02/fv1MTEyMGTVqlDHGmNzcXDNt2jTTpUsXExMTY6644gozatQok56e7l7Hl78UMsa3v04qcOpfYhljzJtvvml69uxpYmJiTFJSkhk9erTJyMhw//zYsWPmjjvuMDExMeavf/2r17V/+eUXc//995s2bdqYuLg4c+ONN5pPPvnEY44vPa1Zs8b07dvXtGrVyrRv39785S9/MevWrTMJCQlm3Lhx7nkff/yxufrqq01MTIzp1q2b+eCDD0x0dLSZM2eOe05aWpoZNmyYad++vWnZsqXp3r27mTVrlsdfNp0qPT3dPPjgg6Zdu3YmPj7eXH311Wbu3LlmxIgRJikpyeTl5RX5V27GGPPYY4+ZTp06eYz961//Ml26dDEtW7Y0t912m3nzzTd9Pl9jx441bdu2LfEv4IBzQZAx/AtyAHCqTz/9VOedd57Hm4C3b9+uq6++WtOnT3d/COK5zBijXr16qUOHDho+fHigywFKjZefAKAIX331lZYtW6aHH35YjRs31oEDBzRjxgw1adJEHTp0CHR5pXLs2DG99tprSklJ0e7du3XbbbcFuiSgTPBMDQAU4cSJE5o8ebJWrFihgwcPqmbNmvrzn/+shx56qMg/UT+X5OXlqWPHjnK5XBo2bJiuueaaQJcElAlCDQAAsAJ/0g0AAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYIWQQBdwNrlcLuXl5Sk4OFhBQUGBLgcAAPjAGCOXy6WQkBAFB3t/PqZChZq8vDylpKQEugwAAHAaYmNjFRoa6vXnFSrUFKS72NhYORyOgNXhdDqVkpIS8DrOtIrSp0SvNqoofUoVp9eK0qdkX68F/RT3LI1UwUJNwUtODoejXJzk8lLHmVZR+pTo1UYVpU+p4vRaUfqU7Ou1pLeO8EZhAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAHU05kZ2ebXr16mTVr1nids3XrVpOcnGxatWpl+vbta1JSUvw6Rl5enlm3bp3Jy8srbbluBw8eNI0aNTJVqlQxjRo1MgcPHjTGGLNz504THh5ugoKCTHh4uNm5c6cxxpjNmzeboKAgI8kEBQWZzZs3G2OM+fTTT40k99enn35qjDFmypQpHuNTpkwxzz//vMfY888/b4wx5pZbbvEYv+WWW4wxxrRo0cJjvEWLFsYYY+rVq+cxXq9ePWOMMdWrV/cYr169ujHGeIwVfHkb92duoMa9za1SpYrHWJUqVYwxxlStWtVjvGrVqsYYY5o1a+Yx3qxZM2OMMU2bNvUYb9q0qTHGmJYtW3qMt2zZ0hhjTJs2bTzG27RpY6644gqPsSuuuMIYY0xCQoLHeEJCgjHGmIsvvthj/OKLLy72Grjqqqs8xq+66ipjjDHt2rXzGG/Xrp0xxph+/fp5jPfr189ce+21HmPXXnutMcaYbt26eYx369at2PHu3bt7jHfv3t0YY0zv3r09xnv37l3s9X7NNdd4jF9zzTVF1m2MMV26dPEY79KlizHGmPbt23uMt2/f3hhjzNChQz3Ghw4daowxZtq0aR7j06ZNM8YY8+abb3qMv/nmm8YYY2bPnu0xPnv2bLNq1SqPsVWrVhljjFm+fLnH+PLly40xxnz00Uce4x999JExxnhdZ926dR7j69atK3Z86dKlHuNLly71Wou38W3bthmHw2EkGYfDYbZt22aM8X4/uGHDBo91NmzYYIzxfv+4detWExwcbCSZ4OBgs3XrVrNr1y5TtWpVExwcbKpWrWp27dpljDFm+/btplKlSkaSqVSpktm+fbsxxphDhw6Zli1bmtq1a5uWLVuaQ4cOGWOM2bdvn4mMjDRhYWEmMjLS7Nu3r9j5GRkZJikpyTRs2NAkJSWZjIwMY4wxR48eNX369DGxsbGmT58+5ujRo0WOGWNMZmamGTx4sOnWrZsZPHiwyczMNKcjOzvbvPDCC+b66683L7zwgsnOzi5x/sSJE829995rJk6caLKzs4scK05eXp5ZuXKlefPNN83KlSvL9HG2YH1fHr/LRag5ceKEGTx4sImOjvYaao4fP26SkpLMc889Z3766SczZswYc/nll5vjx4/7fJyyDjU1atQwCnZ4PjAWfH+mxoOC87/O5jFPd7w81VLkeFA5qsXbuS4ntXgbL0+1nMs1ngu/M+fC9RigfQwODi5yPDQ0tIiagoqc6+3xpCDE++qRRx4xjkqhHus4KoWaRx55xOf5QcHBJsgR4vMaCxYsMA0vjPKY3/DCKLNgwQJ/H1a98vXxO+D/9tNPP/2khx56SMaYYuctW7ZMYWFhevTRRxUUFKQnnnhCX3zxhT788EP17dv3LFX7h5o1a+rIkSOKaNpONdrfoEr1opSbuksH3h0pk5OpiMaJHuOHP56hnAM7FNG4tWq0v9E9fmT1O8rasVah9Rqrdte/uccPLhwjV+YRj3WOrl+qjC/mKqJpW5/WSFsyXnlHDhSqpWB+cHhV1e87osQa/a3dPX5BjCKvH33K3Eaq3fXvJe5XwfygkDBF3vB0sftSXE8l7UHlFh1Vp/tgn+aeWktZ7VdR80s61yHV6qruNY+UupZT98vbeSpq/NCKl5T5wyqv++VLn75cR75ep0XVuO9fDyrv0O5CNXo71/6s7cs1E1Ktnupe83ARPVVT/b5PFp5fp6HOv/3FYq+7/W8Pl1xOv2svzTVT8n2Pt+vFv2tAwQ6dd8u4P3p983FJ8rvXk3+vvc09/XPneT2675NOeSxwz69cwz2/uN+ZIzvWKqRGpMc5OrL6HS1evFh9+vTRokWLSnxcevTRRzV+/Pgiaxk/frwk6fnnny92vrvGpm18WmPhwoVKTk5WRNO2Ou/W+9zzD615V8nJyXrvvffO6mN0wN9T89133+nSSy/VO++8U+y8TZs2KTEx0f2PWQUFBal169bauHHjWajSU2pqqo4cPaaIpu1Ur9+TCmtwiYJDI+Soc4FMXnah8dDzL5bzxNHfx0e4x8MaXKJ6/UYoomlbOU8cVej5Fys4NEIh9aLkOuG5flBIqI5u+tDnNSpFNlHescOFajl5vuvEMYXUiyq2Rn9rP3k8Z+82GemUucfcc73t18nzTV62HHUu8LovxfXkyx5k/vi1FOzwae7JtZTVfhU135dznXfssCpFNil1LSfvl7fzVNS4gh3K/PHrYverpD59vY58uU6LqtHlciovfW+hGr2da3/W9vX6yjt2yH2ePHs6WuS+56Xvlcvl9HrdBdf6U36gOY3aT/ea8e2+x9v14t81IJdTwbX+pODQCAXVOE+SOa1eC36vvc0t3bn743r05z7Jl9+Zk8/RyeOLlyxVVlZWsY9LOTk5enHS5GLXf3HSZOXk5Hid70uNJ6/hdDo19IEHFdG0rer29Zxft++TimjaVkMffEhOp/MMPyr/IeCh5pZbbtHw4cMVERFR7LzU1FTVr1/fY6xOnTrav3+/38d0Op2l+mrbNv+Xr0b7GxQU9McWHvpgYpHj2Xu2ynnkYKFxSQoKClaN9jfIeeSAsvdslSRlrHq10Dr5axzweY1jG5ZJztxi58vlzD9WMTX6W7u39Yua622/Tl3j0AcTve5Lccf0aQ+cuTq2YZnP+1VQS1ntV1HzfTnXBXWXtpaT98tbjUWN+7JfJfXp6zF9uU6LWsfb9eWtdn9r9Of68nXfT77GihpLXTDmtO9jTvea8fe+x9u4r9dj6oIxkqSDvz8jVZpevc0tq3Pnz31SaY/54IMPFvu4NHXqVDlzc4o/T7k5+fO8zPfp9/qkNVatWqXdv+xS9cuKnl/9suu1e9f/tGrVqlI/7voajAL+8pOvsrKyFBoa6jEWGhrqToz+SElJKVUtBw8elCRVqhflMe7M2F/0+LH0IscLVKob5TEvL31fofl+r+GlllPnFxzL2/r+Htfb+kXN9bZfheb/Pq+ofSnumD7vQcYfwdjXWspqv4qa7+saeWVUy8nnqKgaixr3dW+L69OfY5Z0nRa1jrfry1vtZ+x3LGN/0ePe9v3k6/GUMdfR1FLVfjrXTGnPnb/XQEGPruOlvK4z9stRpVaRc8vq3Plzn1TwoH+6x9ywYUOxr0x8++23Pq3/7bffauPGjUXO93VfCtZYs2aNT/PXrFmjmjVreq29LJ0zoSYsLKxQgMnJyVF4eLjfa8XGxsrhcJx2LfXr19euXbuUm7or/ym73zlqnqfctCLGq+b/Yp06XiA3bZfHvJBa50v/2+Ax3+81ap7n0/yQWucXu76/x/W2flFzve1Xofm/91LUvhR3TJ/34Pd5PvX5+9yy2q+i5vu6RkgZ1XLyOSqqxqLGfd3b4vr055glXadFrePt+vJW+xn7HTvp+iqqp0Lrn3w9njIWXK2enEfTTv9cn8Y1U9pz5+81EFytXv5/q9SS88TRUvXqbW5ZnTt/7pNKe8yEhATFx8cXul2BSy+9VPPnzy9x/UsvvVTx8fFFzve1xoI1MjIyfJp/2WWXFVu7L5xOp09PSAT85SdfRUZGKi0tzWMsLS2t0EtSvnA4HKX6Wrs2/w1tR1a/I2Nc7nXr9HqgyPGwC2LkqFG/0LgkGePSkdXvylEjUmEXxEiSana8s9A6+WtE6sjqd31ao2pCT8lRqdhjKtiRf6xiavS3dm/rFzXX236dukadXg943ZfijunTHjgqqWpCT5/3q6CWstqvoub7cq4L6i5tLSfvl7caixr3Zb9K6tPXY/pynRa1jrfry1vt/tboz/Xl676ffI0VNVav34jTvo853WvG3/seb+O+Xo/1+o2QJNW/6dlS9+ptblmdO3/uk0p7zBdffLHYx6X77rtPjkqhxV+/lULz53mZ79Pv9UlrdOzYUQ0vjNJva4q+Nn5bM18NoxqpY8eOpX7c9fWJiHMm1MTFxWnDhg3uv5Iyxuj7779XXFzcWa+lXr16qlGtqrJ2rFXqgjHK/vU/cmVnynlot4JCwgqN5+z7rxzh1QqNZ//6H6UuGKOsHWvlCK+qnH3/lSs7U3mp/1NwuOf6Jjdb1eK6K2vHdz6tkXtgh0Kq1i72mMHhVZWX+r9ia/S39pPHQ//UTEHGeJ3rbb9Onh8UEibnod1e96W4nnzZg8rNLpeceT7NPbmWstqvoub7cq5DqtZW7oEdpa7l5P3y5ZwWjMuZp8rNLi9Vn74e05frtKh1goOCFVLr/EJzvZ1rf2v05Zo5+Tz5su8htc5XcFCw1+vOlf6rFOw4rdpP95rx976nNNeAgh1ypf8qV3amzJF9koJOq9eC32tvc8vq3Plzn+TL74y3Y/a+5uoS33caGhqqB4feX+z6Dw693/02jqLm+1LjyWs4HA5NmviisnasVdrCZzzmpy18Rlk71mrSixNK9cqI38rsj8jLwKmfU3Pw4EGTlZVljMn/AKPLLrvMjBkzxmzfvt2MGTPGJCUl8Tk15eEzIcrJZ0X4P87n1JR63MtnbpSvGstRLefy78y5cD3yOTXl53NqohoF5HNqynWoiY6O9tiUTZs2uT+FMTk52WzdutWv9flE4fwvPlG4+Br5RGE+UZhPFOYThflE4XPzE4WDjCnhU+8s4nQ6tXHjRsXHx5/dp8PKaR1nWkXpU6JXG1WUPqWK02tF6VOyr1df+zln3lMDAABQHEINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKAQ812dnZGj58uNq0aaMOHTpozpw5Xud+/PHHuuqqq5SQkKCbb75ZW7duPYuVAgCA8izgoeb555/Xli1bNHfuXI0aNUrTpk3Thx9+WGje9u3b9dBDD+nuu+/W4sWL1bx5c919993KysoKQNUAAKC8CWioyczM1Pz58/XEE08oJiZGXbt21cCBAzVv3rxCc7/++mtddNFF6tOnjy688EI9+OCDSk1N1U8//RSAygEAQHkTEsiDb9u2TXl5eUpISHCPJSYm6uWXX5bL5VJw8B+Zq2bNmvrpp5+0fv16JSQkaOHChapataouvPBCv4/rdDrLpP7TVXD8QNdxplWUPiV6tVFF6VOqOL1WlD4l+3r1tY+AhprU1FTVqlVLoaGh7rG6desqOztbGRkZql27tnu8Z8+e+uyzz3TLLbfI4XAoODhYM2fOVI0aNfw+bkpKSpnUX1rlpY4zraL0KdGrjSpKn1LF6bWi9ClVrF6lAIearKwsj0Ajyf19Tk6Ox3h6erpSU1M1cuRIxcXF6a233tKwYcP0/vvvq06dOn4dNzY2Vg6Ho3TFl4LT6VRKSkrA6zjTKkqfEr3aqKL0KVWcXitKn5J9vRb0U5KAhpqwsLBC4aXg+/DwcI/xF154QdHR0erfv78kacyYMbrqqqu0YMECDRo0yK/jOhyOcnGSy0sdZ1pF6VOiVxtVlD6litNrRelTqli9SgF+o3BkZKTS09OVl5fnHktNTVV4eLiqV6/uMXfr1q265JJL3N8HBwfrkksu0d69e89avQAAoPwKaKhp3ry5QkJCtHHjRvfY+vXrFRsb6/EmYUmqX7++duzY4TH2888/64ILLjgbpQIAgHIuoKEmIiJCffr00ejRo7V582Z98sknmjNnjm6//XZJ+c/anDhxQpJ0ww036N1339WiRYu0a9cuvfDCC9q7d6+uu+66QLYAAADKiYC+p0aShg0bptGjR2vAgAGqWrWq7rvvPnXr1k2S1KFDB40dO1Z9+/ZVz549dfz4cc2cOVP79+9X8+bNNXfuXL/fJAwAAOwU8FATERGhcePGady4cYV+9uOPP3p8f/311+v6668/W6UBAIBzSMD/mQQAAICyQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALBCwENNdna2hg8frjZt2qhDhw6aM2eO17k//vijbr75ZrVq1UrXXHON1qxZcxYrBQAA5VnAQ83zzz+vLVu2aO7cuRo1apSmTZumDz/8sNC8o0eP6i9/+YsuuugiLVmyRF27dtW9996rQ4cOBaBqAABQ3gQ01GRmZmr+/Pl64oknFBMTo65du2rgwIGaN29eobnvv/++KleurNGjRysqKkpDhgxRVFSUtmzZEoDKAQBAeRMSyINv27ZNeXl5SkhIcI8lJibq5ZdflsvlUnDwH5nru+++U5cuXeRwONxjCxYsOK3jOp3O0y+6DBQcP9B1nGkVpU+JXm1UUfqUKk6vFaVPyb5efe0joKEmNTVVtWrVUmhoqHusbt26ys7OVkZGhmrXru0e3717t1q1aqURI0bos88+U4MGDfTYY48pMTHR7+OmpKSUSf2lVV7qONMqSp8SvdqoovQpVZxeK0qfUsXqVQpwqMnKyvIINJLc3+fk5HiMZ2Zm6pVXXtHtt9+uWbNm6YMPPtBdd92l5cuX6/zzz/fruLGxsR7P+JxtTqdTKSkpAa/jTKsofUr0aqOK0qdUcXqtKH1K9vVa0E9JAhpqwsLCCoWXgu/Dw8M9xh0Oh5o3b64hQ4ZIklq0aKGvv/5aixcv1t/+9je/jutwOMrFSS4vdZxpFaVPiV5tVFH6lCpOrxWlT6li9SoF+I3CkZGRSk9PV15ennssNTVV4eHhql69usfcevXqqUmTJh5jjRo10r59+85KrQAAoHwLaKhp3ry5QkJCtHHjRvfY+vXrFRsb6/EmYUmKj4/Xjz/+6DG2c+dONWjQ4GyUCgAAyrmAhpqIiAj16dNHo0eP1ubNm/XJJ59ozpw5uv322yXlP2tz4sQJSdJNN92kH3/8UVOnTtWuXbs0efJk7d69W7179w5kCwAAoJwI+IfvDRs2TDExMRowYICeeuop3XffferWrZskqUOHDlq2bJkkqUGDBpo9e7ZWrlypq6++WitXrtQrr7yiyMjIQJYPAADKiYC+UVjKf7Zm3LhxGjduXKGfnfpyU2JiohYuXHi2SgMAAOeQgD9TAwAAUBYINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFbwO9RkZ2efiToAAABKxe9Qk5SUpFGjRmnz5s1noh4AAIDT4neo+ctf/qI1a9boxhtvVM+ePTV79mylpqaeidoAAAB85neoueeee7RixQrNmzdPiYmJmjlzpjp16qRBgwZpxYoVys3NPRN1AgAAFOu03yjcunVrjRkzRl9//bUmT56srKwsDR06VB06dNC4ceP066+/lmWdAAAAxSrVXz/t27dPc+bM0ZQpU7R27Vo1atRIffv21RdffKGePXtq2bJlZVUnAABAsUL8vcGxY8e0YsUKLVq0SOvXr1d4eLh69OihUaNGqXXr1pKkxx57THfffbeeffZZ9ezZs8yLBgAAOJXfoSYpKUk5OTmKi4vT008/rZ49e6py5cqF5sXGxuqHH34okyIBAABK4neo6d+/v5KTk9WkSZNi59155536+9//ftqFAQAA+MPvUPPoo4/6NK9KlSp+FwMAAHC6+GcSAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArBDwUJOdna3hw4erTZs26tChg+bMmVPibfbs2aOEhAR9++23Z6FCAABwLggJdAHPP/+8tmzZorlz52rv3r167LHH9Kc//Uk9evTwepvRo0crMzPzLFYJAADKu4CGmszMTM2fP1+zZs1STEyMYmJitH37ds2bN89rqPn3v/+t48ePn+VKAQBAeRfQl5+2bdumvLw8JSQkuMcSExO1adMmuVyuQvPT09M1fvx4Pf3002ezTAAAcA4I6DM1qampqlWrlkJDQ91jdevWVXZ2tjIyMlS7dm2P+c8995yuu+46XXzxxaU6rtPpLNXtS6vg+IGu40yrKH1K9GqjitKnVHF6rSh9Svb16msfAQ01WVlZHoFGkvv7nJwcj/FvvvlG69ev19KlS0t93JSUlFKvURbKSx1nWkXpU6JXG1WUPqWK02tF6VOqWL1KAQ41YWFhhcJLwffh4eHusRMnTmjkyJEaNWqUx/jpio2NlcPhKPU6p8vpdColJSXgdZxpFaVPiV5tVFH6lCpOrxWlT8m+Xgv6KUlAQ01kZKTS09OVl5enkJD8UlJTUxUeHq7q1au7523evFm7d+/WkCFDPG7/17/+VX369PH7PTYOh6NcnOTyUseZVlH6lOjVRhWlT6ni9FpR+pQqVq9SgENN8+bNFRISoo0bN6pNmzaSpPXr1ys2NlbBwX+8h7lVq1b66KOPPG7brVs3PfPMM0pKSjqrNQMAgPIpoKEmIiJCffr00ejRo/Xss8/q4MGDmjNnjsaOHSsp/1mbatWqKTw8XFFRUYVuHxkZqTp16pztsgEAQDkU8E8UHjZsmGJiYjRgwAA99dRTuu+++9StWzdJUocOHbRs2bIAVwgAAM4FAf9E4YiICI0bN07jxo0r9LMff/zR6+2K+xkAAKh4Av5MDQAAQFkg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWCHgoSY7O1vDhw9XmzZt1KFDB82ZM8fr3FWrVql3795KSEjQNddco08//fQsVgoAAMqzgIea559/Xlu2bNHcuXM1atQoTZs2TR9++GGhedu2bdO9996rfv36adGiRbrpppt0//33a9u2bQGoGgAAlDchgTx4Zmam5s+fr1mzZikmJkYxMTHavn275s2bpx49enjMXbp0qS677DLdfvvtkqSoqCh99tlnWr58uS655JJAlA8AAMqRgIaabdu2KS8vTwkJCe6xxMREvfzyy3K5XAoO/uOJpOuuu065ubmF1jh69OhZqRUAAJRvAQ01qampqlWrlkJDQ91jdevWVXZ2tjIyMlS7dm33eNOmTT1uu337dq1evVo33XST38d1Op2nX3QZKDh+oOs40ypKnxK92qii9ClVnF4rSp+Sfb362kdAQ01WVpZHoJHk/j4nJ8fr7Q4fPqz77rtPrVu3VpcuXfw+bkpKit+3ORPKSx1nWkXpU6JXG1WUPqWK02tF6VOqWL1KAQ41YWFhhcJLwffh4eFF3iYtLU133nmnjDGaMmWKx0tUvoqNjZXD4fC/4DLidDqVkpIS8DrOtIrSp0SvNqoofUoVp9eK0qdkX68F/ZQkoKEmMjJS6enpysvLU0hIfimpqakKDw9X9erVC80/cOCA+43C//rXvzxenvKHw+EoFye5vNRxplWUPiV6tVFF6VOqOL1WlD6litWrFOA/6W7evLlCQkK0ceNG99j69esVGxtb6BmYzMxMDRw4UMHBwXrjjTcUGRl5lqsFAADlWUBDTUREhPr06aPRo0dr8+bN+uSTTzRnzhz3szGpqak6ceKEJGnmzJn65ZdfNG7cOPfPUlNT+esnAAAgKcAvP0nSsGHDNHr0aA0YMEBVq1bVfffdp27dukmSOnTooLFjx6pv375asWKFTpw4oeuvv97j9tddd52ee+65QJQOAADKkYCHmoiICI0bN879DMzJfvzxR/f/LupThgEAAAoE/J9JAAAAKAuEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAO5gAO3HihBk2bJhJTEw0SUlJ5p///KfXuVu3bjXJycmmVatWpm/fviYlJcWvY+Xl5Zl169aZvLy80pbtlpGRYZKSkkzDhg1NUlKSycjIMMYYs3z5ciPJ/bV8+XJjjDGzZ8/2GJ89e7YxxpihQ4d6jA8dOtQYY0znzp09xk/9vuDLGFOuxstTLdRIjWW1dqdOnTzGOnXqZIwxZtKkSR7jkyZNMsYY88wzz3iMP/PMM8YYY6ZNm+YxPm3aNDN9+nSPsenTp3uda4wxb7zxhsf4G2+8YYwxZvPmzSYoKMhIMkFBQWbz5s3GGGMWLlzoMX/hwoXGGGNGjhzpMT5y5EhjjDFvv/22x/jbb79t5s+f7zE2f/58Y4wxX375pcf4l19+aYzxfj/obXzDhg0e4xs2bDDGGPPpp596jH/66ade53vr/5tvvvGY+8033xhjjNm5c6cJDw83QUFBJjw83OzcubPYcW81Hj161PTp08fExsaaPn36mKNHjxpj8h93Vq5cad58802zcuVKk5eX5/Vxo6i5xhiTnZ1tJk6caO69914zceJEk52dbYwxJjMz0wwePNh069bNDB482GRmZpoCZ+LxrrgavY2X5XF96Sfgoebpp58211xzjdmyZYv56KOPTEJCgvsCP9nx48dNUlKSee6558xPP/1kxowZYy6//HJz/Phxn49V1ie5adOmRsEOzzu/gu/P1LiCzv4x/a6xHNVyTu/jOVBjUHD+V3mopdjxoHJUS1H76Cj/+0iNfo83bdrUNLwwymPcERJS5NzIyMhCcxteGGV69+5tHJVCPdeoFOr18ad3795n5PHOGGMWLFhQZI2PPPJIkeMLFiwos2P72k+IAigzM1Pz58/XrFmzFBMTo5iYGG3fvl3z5s1Tjx49POYuW7ZMYWFhevTRRxUUFKQnnnhCX3zxhT788EP17dv3rNd+0UUXaceOHYpo2k412t+gSvWilJu6S4c/nqGcAzsU0bi1arS/0T1+ZPU7ytqxVqH1Gqt217/5PB4cXk31+z6pSvWidGjFS8r8YZUiGid6HNPbGiXX0ki1u/69xPlpS8Yr78gBr8cNqVZXda95RJXqRenXWX+T69ghn2ssqs/c1F06uHCMXJlHCq3jTy3eeippH09dw9t+lUUt3tYvucZ6qnvNwz7X4uu5Luk8edubmlcMULXEq8vsOiqu9oJxuVw679YX3OP733xckryuX7lFR9XpPtjHWjz3t6RagkLCFHnD0yVevyWt78s+llRLcHhV1e87osRaTnf9k2v095yWtC8Kdui8W8b5fE59qbGkPZcxHtfRgXdHyuRk+n0fVlQtO3asVUiN89zrH5g/Wjl7thZ63Diy+h0d2LFWwZVretSyb+kLWrx4cZGPM/mPP20LnbvFixerT58+WrBgQZk+5i1cuFDJycmKaNpW59163x/79cnLGj9+vCpf1M5j/NCad5WcnKz33nvvrD5GB/Q9Ndu2bVNeXp4SEhLcY4mJidq0aZNcLpfH3E2bNikxMVFBQUGSpKCgILVu3VobN248myVLko4cOaIdP/9PEU3bqV6/JxXW4BIFh0Yo9PyL5Txx9PfxEe7xsAaXqF6/EYpo2lbOE0cVev7FPo+7ThxVSL0oKdihzB+/LnRMb2v4VsuxEudXimyivGOHiz1u3rHDqhTZRM68XLkyM3yusag+g0MjFFIvSq4Txwqt408t3nryZR9PXsPbfpVFLd7W963GQ+61fanFl3Pty3kqem/a6dimDxUUElom11FxtZ88ruBgmSp1FRwaoaAa50kyxa6f+ePXUrDDx1oO+VWLycuWo84FxV6/Ja9f8j76UovrxLESf5dOf/0/avT3nPqyL3I5FVzrTz6f05Jq9OWcKihIqlZfwaERctS5QCYv+7Tuw7ydj4LjGkk5e7cVu/bJ94OVIpso7+ih0zp3i5csVVZWVpk95jmdTg194EFFNG2run1PqSXrN0U0becxHtbgEtXt+6QimrbV0AcfktPpLLNaShLQUJOamqpatWopNDTUPVa3bl1lZ2crIyOj0Nz69et7jNWpU0f79+/3+7hOp7NUX1dddZXkcqpG+xsUFPTHFmbv2SrnkYOFxiUpKChYNdrfIOeRA8res9Xncbmcylj1qo5tWCY5c31e299avM335bhy5urYhmVKXTCmyH3xp09J+f8tYh1/avHWk79reKu9LGrxtr6/a5/pa6Pkvbleeb/PL4vryOdaXE4dfH2oJOng28NLvPYK1j9TtRz6YKIk79dvWeyjr7WU9Lt0+uv/UaO/++jTvric+fcj8u2cllRjyXv++3U072FJyj+Hp3kfVtLvjK/9F5w7b/vry7mTy6lHHnlEUukf75xOp1atWqXdv+xS9cv8q6X6Zddr967/adWqVWVShy8C+vJTVlaWR6CR5P4+JyfHp7mnzvNFSkqK37c52Y4dOyRJlepFeYw7j6UXOV6gUt0oj3m+juel73NfML6u7W8t3ubnZez3aZ28jP1yHU3165iF1kjf5/Hf0tTirSd/1/BWe1nU4m19f9f2df7pXhvejlvc/NKeO19rMdnHJUmu4771dPL6ZV2Ls+B8eLl+T2f9M/W7VBb3VX5fpz7uS8H9iK/n1Jf705L23JX1W/5t/Pxd8nU8L2O/79dFwbnzUouv527Dhg2SSv94J0lr1qwpVS1r1qxRzZo1S12HLwIaasLCwgqFkoLvw8PDfZp76jxfxMbGyuFw+H27Ak2bNtXBgweVm7or/yWN3zmq1pKkQuMFctN2eczzdTyk1vkKqXmeX2v7W4u3+b4eN6TmeQquVk/Oo2mn3X9IrfP/+O//NpSqFm89+buGt9rLohZv6/u79pm+Nrwdt7j5pT13vtYSFFZFkhRcpZacJ476tX5Z1+IoOB9ert/TWf9M/S6VxX2V39epj/sSXK1e/n99PKe+3J+WtOfBEdXzb1PzPOWm7Sr7+/Ca58kYl2/XRcG587K/vp67grd1lPbxTpL7lZPTreWyyy5TfHx8qWpwOp0+BbSAvvwUGRmp9PR05eXlucdSU1MVHh6u6tWrF5qblpbmMZaWllboJSlfOByOUn0tX75cCnboyOp38i/U34VdECNHjfqFxiXJGJeOrH5XjhqRCrsgxudxBTtUs+OdqprQU3JU8nltf2vxNt+X48pRSVUTeqpevxFF7os/fUrK/28R6/hTi7ee/F3DW+1lUYu39f1d+0xfGyXvzXyF/D6/LK4jn2sJdqj+bZMkSfVverbEa69g/TNVS51eD0jyfv2WxT76WktJv0unv/4fNfq7jz7tS7Aj/35Evp3Tkmosec9/v476vyBJ+efwNO/DSvqd8bX/gnPnbX99OXcKdmj8+PGSSv9453A41LFjRzW8MEq/rXnXr1p+WzNfDaMaqWPHjmVShy8CGmqaN2+ukJAQjzf7rl+/XrGxsQoO9iwtLi5OGzZskDFGkmSM0ffff6+4uLizWbIkqUaNGmrauJGydqxV6oIxyv71P3JlZypn33/lCK9WaDz71/8odcEYZe1YK0d4VeXs+6/P48HhVZWX+j/JmafKzS73eW1/a/E2P/fADoVUrV3sOiFVayv3wA45HCEKrlzztPov6NOVnam81P8pOLxqqWrx1pMv+3jyGt5qL4tavK3vb42+1FKaa6PkvflOVeO6y+Rml8l15GstcrkUdDxVruxMmSP7JAUVu37lZpdLzrwzUktQSJich3YXe/2WxT6W1e/S6a//R43+7qMv+6Jgh1zpv/p8Tkuq0ZdzKmOkowfkys6U89BuBYWElel9eEjVOso9sENBxij0T82KXTs4vJr73OUe2KGQanVO69z1vuZqRURElNljnsPh0KSJLyprx1qlLXzGs5aI6oXGs3/9j9IWPqOsHWs16cUJpX6myC9l9kfkp2nEiBGmV69eZtOmTebjjz82rVu3NitWrDDGGHPw4EGTlZVljMn/YKPLLrvMjBkzxmzfvt2MGTPGJCUl8Tk1Af4chqJrLEe1nNP7eA7UWM4+F8T7OJ9TQ43n4OfURDUq/59TE9Wo6M+piWoUkM+pCXioyczMNI8++qiJj483HTp0MK+++qr7Z9HR0R6bsmnTJvcnNiYnJ5utW7f6dSw+UfjsjZenWqiRGstqbT5RmE8U5hOFy/cnCgcZ8/vrORWA0+nUxo0bFR8ff3afDiundZxpFaVPiV5tVFH6lCpOrxWlT8m+Xn3th3/QEgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYISTQBZxNBR+e7HQ6A1pHwfEDXceZVlH6lOjVRhWlT6ni9FpR+pTs67Wgj5L+EYQK9c8k5OTkKCUlJdBlAACA0xAbG6vQ0FCvP69QocblcikvL0/BwcEKCgoKdDkAAMAHxhi5XC6FhIQoONj7O2cqVKgBAAD24o3CAADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGrOsAMHDmjIkCFq166d/vznP2vs2LHKzs6WJO3evVt33HGH4uPj1bNnT3311VcBrvb07dq1S3fddZcSEhLUsWNHzZ492/0zm/o82aBBg/T444+7v//hhx90/fXXKy4uTv369dOWLVsCWF3pffzxx2rWrJnH15AhQyTZ12tOTo6eeuoptW3bVpdffrlefPFF98ex29TrwoULC53TZs2a6ZJLLpFkV6/79u3T3XffrdatW6tz58567bXX3D+zqU9JOnTokIYMGaI2bdqoa9euWrhwoftntt7/ekOoOYOMMRoyZIiysrI0b948TZw4UStXrtSkSZNkjNHgwYNVt25dLViwQL1799a9996rvXv3Brpsv7lcLg0aNEi1atXS+++/r6eeekozZszQkiVLrOrzZB988IE+//xz9/eZmZkaNGiQ2rRpo4ULFyohIUF33323MjMzA1hl6fz000/q1KmTvvrqK/fXM888Y2WvzzzzjL755hv985//1IQJE/Tuu+/qnXfesa7Xgge1gq9Vq1YpKipKt99+u3W9Dh06VJUrV9bChQs1fPhwTZo0SR9//LF1fRbcx+7fv1//+te/NHz4cD333HP66KOPrL3/LZbBGfPTTz+Z6Ohok5qa6h5bsmSJ6dChg/nmm29MfHy8OX78uPtnAwYMMFOmTAlEqaVy4MABc//995ujR4+6xwYPHmxGjRplVZ8F0tPTzRVXXGH69etnHnvsMWOMMfPnzzedO3c2LpfLGGOMy+UyXbt2NQsWLAhkqaXy0EMPmQkTJhQat63X9PR006JFC/Ptt9+6x2bOnGkef/xx63o91csvv2yuvPJKk52dbVWvGRkZJjo62vz444/usXvvvdc89dRTVvVpjDGbN2820dHR5pdffnGPzZw509xwww1W3v+WhGdqzqB69epp9uzZqlu3rsf4sWPHtGnTJrVo0UKVK1d2jycmJmrjxo1nucrSq1+/viZNmqSqVavKGKP169dr7dq1ateunVV9Fhg3bpx69+6tiy66yD22adMmJSYmuv9NsaCgILVu3fqc7nPHjh1q1KhRoXHbel2/fr2qVq2qdu3auccGDRqksWPHWtfryTIyMjRr1iw99NBDCg0NtarX8PBwRUREaOHChcrNzdXOnTv1/fffq3nz5lb1KeW/vFS7dm01bNjQPdasWTNt2bJF69evt+7+tySEmjOoevXq+vOf/+z+3uVy6Y033tBll12m1NRU1a9f32N+nTp1tH///rNdZpnq3LmzbrnlFiUkJKh79+7W9bl69WqtW7dO99xzj8e4bX0aY/Tzzz/rq6++Uvfu3XXllVfqhRdeUE5OjnW97t69Ww0aNNCiRYvUo0cPdenSRS+99JJcLpd1vZ7srbfeUv369dWjRw9Jdl3DYWFhGjlypN555x3FxcXpqquu0hVXXKHrr7/eqj4lqW7dujp69KiysrLcY/v371deXp51vfoiJNAFVCTjx4/XDz/8oPfee0+vvfZaoX8+PTQ0VDk5OQGqrmxMmTJFaWlpGj16tMaOHausrCxr+szOztaoUaM0cuRIhYeHe/zMpj4lae/eve6eJk2apD179uiZZ57RiRMnrOs1MzNTu3bt0ttvv62xY8cqNTVVI0eOVEREhHW9FjDGaP78+Ro4cKB7zLZed+zYoU6dOunOO+/U9u3bNWbMGLVv3966PuPi4lS/fn2NGTNGTz75pFJTU/Xqq69Kyn8DvE29+oJQc5aMHz9ec+fO1cSJExUdHa2wsDBlZGR4zMnJySn0YHmuiY2NlZQfAB5++GH169fP4/9BSOdun9OmTVPLli09nn0rEBYWVuiO4lztU5IaNGigb7/9VjVq1FBQUJCaN28ul8ulRx55RO3atbOq15CQEB07dkwTJkxQgwYNJOWHurfeektRUVFW9VogJSVFBw4cUK9evdxjNl3Dq1ev1nvvvafPP/9c4eHhio2N1YEDBzRjxgw1bNjQmj6l/PM2adIkDR06VImJiapTp44GDhyosWPHKigoyKpefcHLT2fBmDFj9Oqrr2r8+PHq3r27JCkyMlJpaWke89LS0go9VXguSEtL0yeffOIxdtFFFyk3N1f16tWzps8PPvhAn3zyiRISEpSQkKAlS5ZoyZIlSkhIsOp8FqhZs6b7fQeS1LRpU2VnZ1t1TqX8976FhYW5A40kNW7cWPv27bPyvErSl19+qTZt2qhGjRruMZt63bJli6KiojwevFu0aKG9e/da1WeBVq1a6bPPPtMXX3yhVatWqXHjxqpVq5YuvPBC63otCaHmDJs2bZrefvttvfjiix7/ryguLk5bt27ViRMn3GPr169XXFxcIMoslT179ujee+/VgQMH3GNbtmxR7dq1lZiYaE2fr7/+upYsWaJFixZp0aJF6ty5szp37qxFixYpLi5OGzZscH+2iTFG33///TnZp5T/oHfppZd6PMv2n//8RzVr1lRiYqJVvcbFxSk7O1s///yze2znzp1q0KCBdee1wObNm9W6dWuPMZt6rV+/vnbt2uXxLMXOnTt1wQUXWNWnlP+G75tvvlnp6emqV6+eQkJCtGrVKrVr186qxxlfEWrOoB07dmj69On661//qsTERKWmprq/2rVrp/PPP1/Dhg3T9u3b9corr2jz5s1KTk4OdNl+i42NVUxMjIYPH66ffvpJn3/+ucaPH6+//e1vVvXZoEEDRUVFub+qVKmiKlWqKCoqSj169NBvv/2mf/zjH/rpp5/0j3/8Q1lZWbrqqqsCXfZpSUhIUFhYmJ588knt3LlTn3/+uZ5//nkNHDjQul6bNGmijh07atiwYdq2bZu+/PJLvfLKK7r55put67XA9u3bPf56T5JVvXbu3FmVKlXSk08+qZ9//lmfffaZXn75Zd12221W9SnlP6OamZmp8ePHa/fu3Zo/f74WLFiggQMHWnX/67OA/CF5BTFz5kwTHR1d5Jcxxvzvf/8z/fv3Ny1btjS9evUyX3/9dYArPn379+83gwcPNq1btzZJSUlmxowZ7s+BsKnPkz322GPuz6kxxphNmzaZPn36mNjYWJOcnGy2bt0awOpK77///a+54447THx8vElKSjJTp051n1Pbev3tt9/MI488YuLj40379u2t7tUYY2JjY80XX3xRaNymXrdv327uuOMO07p1a3PllVeaV1991dpzumPHDnPrrbeauLg406tXL/PZZ5+5f2br/a83Qcb8/hwcAADAOYyXnwAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINgHLpxIkTmjBhgrp166aWLVuqdevWuvPOO/Wf//zHPef9999Xz549FRsbq2uvvVarV69WixYttHDhQvecvXv36sEHH1S7du0UFxenAQMG6IcffghESwDOMEINgHLp0Ucf1YIFCzRo0CDNmTNHw4YN0/bt2/XQQw/JGKNFixbp8ccfV+vWrTV9+nR1795d99xzj5xOp3uNw4cP66abbtLWrVs1YsQITZgwQS6XS/3799eOHTsC2B2AMyEk0AUAwKlycnJ0/PhxPfnkk+rZs6ckqV27djp27Jiee+45paWlafLkyerUqZOeeeYZSdKf//xnVapUSRMmTHCvM3fuXGVkZOitt95SgwYNJElXXHGFevbsqcmTJ2vKlClnvzkAZwzP1AAod0JDQ/XPf/5TPXv21IEDB7RmzRq9/fbbWrlypSTp559/1t69e9WjRw+P2/Xq1cvj+9WrV6t58+aKjIxUXl6e8vLyFBwcrCuuuELffPPNWesHwNnBMzUAyqUvv/xSzz77rHbu3KkqVarokksuUeXKlSVJlSpVkiTVqVPH4zZ169b1+D4jI0O7du1STExMkcfIyspSRETEGageQCAQagCUO7/88osGDx6sK6+8UjNnzlTDhg0VFBSkefPm6csvv3S/b+bQoUMetzv1+2rVqqldu3Z69NFHizxOaGjomWkAQEDw8hOAcmfLli3Kzs7WoEGDdOGFFyooKEhS/rM3klS/fn1deOGF+vjjjz1u99FHH3l8365dO/38889q3LixYmNj3V+LFy/We++9J4fDcXYaAnBWEGoAlDsxMTEKCQnR+PHj9fXXX2vlypW67777tGrVKkn5LxsNGTJEn3zyiUaNGqWvvvpKs2fP1uTJkyVJwcH5d2133HGHXC6X7rjjDi1btkyrV6/WiBEj9Prrr6tx48aBag/AGRJkjDGBLgIATvXhhx9q2rRp+uWXX1SjRg3Fx8fr9ttv12233aYRI0aof//+euedd/TPf/5Te/fu1cUXX6z+/fvriSee0NSpU9WtWzdJ+S9lTZgwQatXr1Z2drYaNWqk2267TcnJyQHuEEBZI9QAOCctXbpULVq0UJMmTdxjq1at0t13363FixfrkksuCWB1AAKBUAPgnDRo0CDt2LFDQ4cO1fnnn69du3ZpypQpuvDCC/X6668HujwAAUCoAXBOSk9P14QJE/TFF1/o8OHDqlu3rrp3764hQ4aoSpUqgS4PQAAQagAAgBX46ycAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAr/D6ll/zq5zvFwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "scatter_plot(\"age\")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "e8cc5093", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNaklEQVR4nO3deVzU1f7H8TcMsrjv1DXDpTBFBEQtw9vPJZe00pRWK+vmtXuzzPa0XMpuZmauaabX8pZtpunVNNu0VUvNBe3aNe2a5gYKpoIsM+f3BzE5wsCMoIOH1/Px4NHlcOZ8P5/z/TLzvjPDGGSMMQIAADjHBQe6AAAAgLJAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQA5yjTv3cTBs+R9OGHgAEDqEGKAP//e9/9cADDygpKUktW7ZUhw4dNHToUG3btq3Mj5WTk6Nnn31WS5YscY9t375dN998c5kfq8DChQvVrFkzj6/mzZurbdu2+stf/qL169e7506dOlXNmjXza/39+/dr0KBB+vXXX0td648//qg+ffqoZcuW6tmzZ6nXOxcVnK89e/YEuhTgrAoJdAHAuW779u268cYbFR8fryeffFJ16tTR/v379cYbb+iGG27Qv/71L8XHx5fZ8Q4ePKi5c+dq7Nix7rEPP/xQGzZsKLNjeDNt2jTVq1dPkuRyuZSWlqaXXnpJAwYM0HvvvadLLrnktNb95ptv9Pnnn5dJjS+99JL27t2rl156SbVr1y6TNQGcGwg1QCm9+uqrqlWrlmbNmqWQkD9+pa688kr16NFD06dP1yuvvBLACstO8+bNdcEFF3iMtWjRQl27dtWbb76pp59+OkCV/SE9PV3R0dH6v//7v0CXAuAs4+UnoJTS0tJkjJHL5fIYr1y5soYPH66rrrrKY3zRokW67rrrFBcXp44dO2rChAnKyclx//yTTz7RLbfcooSEBLVs2VI9evTQvHnzJEl79uxRly5dJEnDhg1T586dNXXqVE2bNk2S1KxZM02dOlVS/jMpr7zyirp27aqWLVuqe/fuev311z1que222/Twww9ryJAhio+P15133ul3/xdccIFq1aqlvXv3ep2zbNky9e3bVwkJCUpKStLIkSN15MgRSfkvlQwbNkyS1KVLFz3++ONe1zl48KCGDRum//u//1OrVq2UnJysTz/91P3zZs2a6bvvvtPatWvVrFkzLVy4sMh1nE6nXnnlFV199dVq1aqV4uPjddNNN2nNmjUe81atWqW+ffuqVatW6t69u5YuXaquXbu691iSMjIyNHLkSF1++eWKjY3VDTfcoNWrV5e4b2vXrtVdd92ltm3bqmXLlu5zWXAd7dmzR82aNdPy5cs1ZMgQJSQkqF27dnryySeVmZnpXsflcmn69Onq2LGj4uLidM8997j31ptx48apVatWOnr0qMf49OnTlZiYqKysrBLrB8ojQg1QSh07dtTevXt10003ad68edqxY4f7Da89evTQdddd5547b948PfbYY4qJidG0adM0aNAgvf7663rmmWck5T+IDh48WDExMZo+fbqmTp2qhg0b6umnn9amTZtUv359d4D5+9//rmnTpun6669XcnKyJOmdd97R9ddfL0kaPXq0pkyZomuvvVYvv/yyevTooWeffVYvvfSSR/3Lly9XlSpVNGPGDA0cONDv/tPT05Wenq4LL7ywyJ9Pnz5dDz74oOLj4zVlyhQNHjxYK1as0G233aYTJ06oY8eO+vvf/y4p/+Wte+65p8h10tLSlJycrHXr1umBBx7Q1KlT1aBBAw0ePFj//ve/3f23aNFCLVq00DvvvKOOHTsWudYLL7yg6dOn68Ybb9Ts2bM1ZswYZWRk6P7773c/oK9Zs0b33HOPzj//fE2dOlX9+/fXqFGjtG/fPvc62dnZGjBggD799FM98MADmjZtms477zwNHDiw2GCzbds23XHHHapZs6YmTpyoGTNmqE2bNpo2bZqWL1/uMXfUqFFq0KCBpk+frrvuukvvvfeeZsyY4f75+PHj9dJLLyk5OVnTpk1TzZo1NWHCBK/HlqTk5GRlZ2frww8/9BhfvHixevbsqYiIiGJvD5RbBkCpTZo0ycTGxpro6GgTHR1tLr30UvPQQw+ZTZs2uec4nU7Tvn17c88993jcdvbs2ea6664zOTk5ZtasWeaxxx7z+Hl6erqJjo42M2fONMYYs3v3bhMdHW0WLFjgnjNlyhQTHR3t/n7nzp2mWbNm7tsUmDhxoomNjTWHDx82xhhz6623mri4OJOdnV1sfwsWLDDR0dFm165dJjc31+Tm5ppjx46ZLVu2mDvuuMO0aNHCbNu2rVAtGRkZpmXLlmbEiBEe661du9ZER0ebN954w2P93bt3e63h+eefNzExMWbPnj0e4wMGDDBJSUnG6XS6e7r11luL7efBBx80r732msfYihUrTHR0tNmwYYMxxphbbrnFXHvttcblcrnnLF261ERHR5spU6YYY4x55513THR0tNm4caN7jsvlMv379zd9+/b1evz333/fDBw40F2zMfnXR2JionuvCs7zww8/7HHb2267zVx99dXGGGOOHDliYmJizPjx4z3m3HXXXSXu54033mj69+/v/n79+vUmOjrafP/9915vA5R3PFMDlIH7779fX375pSZMmKDk5GRVrVpVS5Yscb9RWJJ+/vlnHTp0SF27dvW47V133aWFCxeqUqVKGjhwoJ577jkdP35cW7Zs0bJlyzRz5kxJ8niJqiRr1qyRMUadO3dWXl6e+6tz587Kzs72+GulJk2aKDQ01Kd1u3btqpiYGMXExKh169bq27evdu3apfHjxxf5F08bN25UTk6Orr76ao/xNm3aqEGDBvruu+987um7775TQkKCGjRo4DF+7bXXKjU1VTt37vR5rQkTJmjAgAE6fPiw1q1bpwULFrif7cnJyVFOTo42bNigbt26KSgoyH27Hj16eLxvavXq1apXr55iYmLce+x0OtWpUydt2bLF68tAffr00axZs5Sbm6tt27ZpxYoVmjJlipxOp3Jzcz3mnvom8/POO8/98tPGjRuVm5urTp06ecw59SXPovTr10/r1q1z/8XZ+++/r8aNGyshIaHE2wLlFW8UBspIjRo1dPXVV7sfwH/44Qc98sgjGj9+vK655hplZGRIkurUqeN1jcOHD2vUqFH65JNPFBQUpKioKLVp00aSf5/hUnCsXr16FfnzAwcOuP93lSpVfF53xowZ7r9+qlSpkmrVqqXIyEiv8wse1OvWrVvoZ3Xr1i30no7iHDlyRA0bNixyHUn67bfffF4rJSVFTz31lFJSUhQREaGLLrpIf/rTnyTl73NGRoacTmehc+VwOFSzZk339xkZGUpNTVVMTEyRx0lNTVWNGjUKjZ84cUJjxozR4sWLlZeXpwsuuEAJCQkKCQkpdJ5PfSkoODjYPadgf2vVquUxp+AcFadnz5569tlntXjxYt11111avny5Bg0aVOLtgPKMUAOUwoEDB9SvXz/df//97veyFGjRooUeeOABDR48WLt371b16tUl5QeXk6Wnp+uHH35QQkKCHn74Ye3cuVOvvfaaEhISFBoaqqysLL377rt+1VVwrLlz5xYZWgoewP0VHR1d6K+filPwgJ6WlqYmTZp4/Cw1NbXIkFLcWqmpqYXGC8ZOfWD35tixYxo4cKCaNWumDz74QE2aNFFwcLA+//xzrVixQlJ+8KxUqZLS0tI8butyudyBUZKqVaumRo0a6YUXXijyWN726h//+IdWrFihSZMm6fLLL1flypUlSe3bt/ephwIFPR86dMhjf0+u0ZsqVaqoR48eWr58uaKjo5WZmanevXv7dXygvOHlJ6AU6tatq5CQEL355pvKzs4u9POdO3cqLCxMUVFRatKkiWrVqqWVK1d6zFm8eLEGDRqk3NxcrV+/Xt26ddOll17qfknoiy++kCT3X8U4HI5CxwkO9vxVLnh2Jz09XbGxse6vw4cPa/LkyT496JWFuLg4hYaGaunSpR7j69at0969e9W6desi6y9K27ZttWHDhkIf0Pfvf/9b9erVU1RUlE817dy5UxkZGbr99tt10UUXuY998j47HA61bt3a4y+rJOmzzz5TXl6e+/t27dpp3759qlOnjsc+f/3115o9e3aR50qS1q9fr0svvVRXXnmlO9Bs2bJFhw8fLvRXdMVJSEhQeHh4oTf8nnqNeZOcnKz//ve/mjt3ri6//PJin3UDzgU8UwOUgsPh0OjRozV48GD169dP/fv3V9OmTZWVlaWvv/5a8+bN0/333+9+xuK+++7T008/rTp16qhz5876+eefNWXKFPXv3181atRQq1attGTJEsXExOi8887T999/r1deeUVBQUHuv8qpVq2apPz3czRt2lRxcXHuZ2aWLl2quLg4NWvWTNdee61GjBihX3/9VS1bttTPP/+siRMn6oILLlCjRo3Oyv7UrFlTgwYN0ksvvaRKlSqpU6dO2rNnjyZPnqyLLrrI/ZdhBfV//PHHuuKKK9S0adNCa915553697//rTvuuEP33nuvatasqUWLFmnNmjV69tlnfQpGktS4cWNVrVpVL7/8skJCQhQSEqIVK1bovffekyT3Pg8ZMkS33XabhgwZouTkZO3du1eTJ0+WJPf7bPr27as33nhDd955p/72t7/p/PPP1zfffKNZs2bp1ltvVaVKlYqsoVWrVlq+fLneeustNW3aVNu2bdOMGTM8zrMvqlSponvuuUeTJk1SRESELrvsMn3++ec+h5rExEQ1btxY3333nSZOnOjzcYFyK6BvUwYssWXLFvPAAw+YK664wrRs2dK0bt3a3HrrrWbFihWF5i5cuND06tXLxMTEmC5dupjp06eb3NxcY4wxe/bsMXfffbdJTEw0iYmJpl+/fmbx4sXmrrvuMv369XOvMXbsWBMfH2/atm1rcnJyzP79+02/fv1MTEyMGTVqlDHGmNzcXDNt2jTTpUsXExMTY6644gozatQok56e7l7Hl78UMsa3v04qcOpfYhljzJtvvml69uxpYmJiTFJSkhk9erTJyMhw//zYsWPmjjvuMDExMeavf/2r17V/+eUXc//995s2bdqYuLg4c+ONN5pPPvnEY44vPa1Zs8b07dvXtGrVyrRv39785S9/MevWrTMJCQlm3Lhx7nkff/yxufrqq01MTIzp1q2b+eCDD0x0dLSZM2eOe05aWpoZNmyYad++vWnZsqXp3r27mTVrlsdfNp0qPT3dPPjgg6Zdu3YmPj7eXH311Wbu3LlmxIgRJikpyeTl5RX5V27GGPPYY4+ZTp06eYz961//Ml26dDEtW7Y0t912m3nzzTd9Pl9jx441bdu2LfEv4IBzQZAx/AtyAHCqTz/9VOedd57Hm4C3b9+uq6++WtOnT3d/COK5zBijXr16qUOHDho+fHigywFKjZefAKAIX331lZYtW6aHH35YjRs31oEDBzRjxgw1adJEHTp0CHR5pXLs2DG99tprSklJ0e7du3XbbbcFuiSgTPBMDQAU4cSJE5o8ebJWrFihgwcPqmbNmvrzn/+shx56qMg/UT+X5OXlqWPHjnK5XBo2bJiuueaaQJcElAlCDQAAsAJ/0g0AAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYIWQQBdwNrlcLuXl5Sk4OFhBQUGBLgcAAPjAGCOXy6WQkBAFB3t/PqZChZq8vDylpKQEugwAAHAaYmNjFRoa6vXnFSrUFKS72NhYORyOgNXhdDqVkpIS8DrOtIrSp0SvNqoofUoVp9eK0qdkX68F/RT3LI1UwUJNwUtODoejXJzk8lLHmVZR+pTo1UYVpU+p4vRaUfqU7Ou1pLeO8EZhAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAHU05kZ2ebXr16mTVr1nids3XrVpOcnGxatWpl+vbta1JSUvw6Rl5enlm3bp3Jy8srbbluBw8eNI0aNTJVqlQxjRo1MgcPHjTGGLNz504THh5ugoKCTHh4uNm5c6cxxpjNmzeboKAgI8kEBQWZzZs3G2OM+fTTT40k99enn35qjDFmypQpHuNTpkwxzz//vMfY888/b4wx5pZbbvEYv+WWW4wxxrRo0cJjvEWLFsYYY+rVq+cxXq9ePWOMMdWrV/cYr169ujHGeIwVfHkb92duoMa9za1SpYrHWJUqVYwxxlStWtVjvGrVqsYYY5o1a+Yx3qxZM2OMMU2bNvUYb9q0qTHGmJYtW3qMt2zZ0hhjTJs2bTzG27RpY6644gqPsSuuuMIYY0xCQoLHeEJCgjHGmIsvvthj/OKLLy72Grjqqqs8xq+66ipjjDHt2rXzGG/Xrp0xxph+/fp5jPfr189ce+21HmPXXnutMcaYbt26eYx369at2PHu3bt7jHfv3t0YY0zv3r09xnv37l3s9X7NNdd4jF9zzTVF1m2MMV26dPEY79KlizHGmPbt23uMt2/f3hhjzNChQz3Ghw4daowxZtq0aR7j06ZNM8YY8+abb3qMv/nmm8YYY2bPnu0xPnv2bLNq1SqPsVWrVhljjFm+fLnH+PLly40xxnz00Uce4x999JExxnhdZ926dR7j69atK3Z86dKlHuNLly71Wou38W3bthmHw2EkGYfDYbZt22aM8X4/uGHDBo91NmzYYIzxfv+4detWExwcbCSZ4OBgs3XrVrNr1y5TtWpVExwcbKpWrWp27dpljDFm+/btplKlSkaSqVSpktm+fbsxxphDhw6Zli1bmtq1a5uWLVuaQ4cOGWOM2bdvn4mMjDRhYWEmMjLS7Nu3r9j5GRkZJikpyTRs2NAkJSWZjIwMY4wxR48eNX369DGxsbGmT58+5ujRo0WOGWNMZmamGTx4sOnWrZsZPHiwyczMNKcjOzvbvPDCC+b66683L7zwgsnOzi5x/sSJE829995rJk6caLKzs4scK05eXp5ZuXKlefPNN83KlSvL9HG2YH1fHr/LRag5ceKEGTx4sImOjvYaao4fP26SkpLMc889Z3766SczZswYc/nll5vjx4/7fJyyDjU1atQwCnZ4PjAWfH+mxoOC87/O5jFPd7w81VLkeFA5qsXbuS4ntXgbL0+1nMs1ngu/M+fC9RigfQwODi5yPDQ0tIiagoqc6+3xpCDE++qRRx4xjkqhHus4KoWaRx55xOf5QcHBJsgR4vMaCxYsMA0vjPKY3/DCKLNgwQJ/H1a98vXxO+D/9tNPP/2khx56SMaYYuctW7ZMYWFhevTRRxUUFKQnnnhCX3zxhT788EP17dv3LFX7h5o1a+rIkSOKaNpONdrfoEr1opSbuksH3h0pk5OpiMaJHuOHP56hnAM7FNG4tWq0v9E9fmT1O8rasVah9Rqrdte/uccPLhwjV+YRj3WOrl+qjC/mKqJpW5/WSFsyXnlHDhSqpWB+cHhV1e87osQa/a3dPX5BjCKvH33K3Eaq3fXvJe5XwfygkDBF3vB0sftSXE8l7UHlFh1Vp/tgn+aeWktZ7VdR80s61yHV6qruNY+UupZT98vbeSpq/NCKl5T5wyqv++VLn75cR75ep0XVuO9fDyrv0O5CNXo71/6s7cs1E1Ktnupe83ARPVVT/b5PFp5fp6HOv/3FYq+7/W8Pl1xOv2svzTVT8n2Pt+vFv2tAwQ6dd8u4P3p983FJ8rvXk3+vvc09/XPneT2675NOeSxwz69cwz2/uN+ZIzvWKqRGpMc5OrL6HS1evFh9+vTRokWLSnxcevTRRzV+/Pgiaxk/frwk6fnnny92vrvGpm18WmPhwoVKTk5WRNO2Ou/W+9zzD615V8nJyXrvvffO6mN0wN9T89133+nSSy/VO++8U+y8TZs2KTEx0f2PWQUFBal169bauHHjWajSU2pqqo4cPaaIpu1Ur9+TCmtwiYJDI+Soc4FMXnah8dDzL5bzxNHfx0e4x8MaXKJ6/UYoomlbOU8cVej5Fys4NEIh9aLkOuG5flBIqI5u+tDnNSpFNlHescOFajl5vuvEMYXUiyq2Rn9rP3k8Z+82GemUucfcc73t18nzTV62HHUu8LovxfXkyx5k/vi1FOzwae7JtZTVfhU135dznXfssCpFNil1LSfvl7fzVNS4gh3K/PHrYverpD59vY58uU6LqtHlciovfW+hGr2da3/W9vX6yjt2yH2ePHs6WuS+56Xvlcvl9HrdBdf6U36gOY3aT/ea8e2+x9v14t81IJdTwbX+pODQCAXVOE+SOa1eC36vvc0t3bn743r05z7Jl9+Zk8/RyeOLlyxVVlZWsY9LOTk5enHS5GLXf3HSZOXk5Hid70uNJ6/hdDo19IEHFdG0rer29Zxft++TimjaVkMffEhOp/MMPyr/IeCh5pZbbtHw4cMVERFR7LzU1FTVr1/fY6xOnTrav3+/38d0Op2l+mrbNv+Xr0b7GxQU9McWHvpgYpHj2Xu2ynnkYKFxSQoKClaN9jfIeeSAsvdslSRlrHq10Dr5axzweY1jG5ZJztxi58vlzD9WMTX6W7u39Yua622/Tl3j0AcTve5Lccf0aQ+cuTq2YZnP+1VQS1ntV1HzfTnXBXWXtpaT98tbjUWN+7JfJfXp6zF9uU6LWsfb9eWtdn9r9Of68nXfT77GihpLXTDmtO9jTvea8fe+x9u4r9dj6oIxkqSDvz8jVZpevc0tq3Pnz31SaY/54IMPFvu4NHXqVDlzc4o/T7k5+fO8zPfp9/qkNVatWqXdv+xS9cuKnl/9suu1e9f/tGrVqlI/7voajAL+8pOvsrKyFBoa6jEWGhrqToz+SElJKVUtBw8elCRVqhflMe7M2F/0+LH0IscLVKob5TEvL31fofl+r+GlllPnFxzL2/r+Htfb+kXN9bZfheb/Pq+ofSnumD7vQcYfwdjXWspqv4qa7+saeWVUy8nnqKgaixr3dW+L69OfY5Z0nRa1jrfry1vtZ+x3LGN/0ePe9v3k6/GUMdfR1FLVfjrXTGnPnb/XQEGPruOlvK4z9stRpVaRc8vq3Plzn1TwoH+6x9ywYUOxr0x8++23Pq3/7bffauPGjUXO93VfCtZYs2aNT/PXrFmjmjVreq29LJ0zoSYsLKxQgMnJyVF4eLjfa8XGxsrhcJx2LfXr19euXbuUm7or/ym73zlqnqfctCLGq+b/Yp06XiA3bZfHvJBa50v/2+Ax3+81ap7n0/yQWucXu76/x/W2flFzve1Xofm/91LUvhR3TJ/34Pd5PvX5+9yy2q+i5vu6RkgZ1XLyOSqqxqLGfd3b4vr055glXadFrePt+vJW+xn7HTvp+iqqp0Lrn3w9njIWXK2enEfTTv9cn8Y1U9pz5+81EFytXv5/q9SS88TRUvXqbW5ZnTt/7pNKe8yEhATFx8cXul2BSy+9VPPnzy9x/UsvvVTx8fFFzve1xoI1MjIyfJp/2WWXFVu7L5xOp09PSAT85SdfRUZGKi0tzWMsLS2t0EtSvnA4HKX6Wrs2/w1tR1a/I2Nc7nXr9HqgyPGwC2LkqFG/0LgkGePSkdXvylEjUmEXxEiSana8s9A6+WtE6sjqd31ao2pCT8lRqdhjKtiRf6xiavS3dm/rFzXX236dukadXg943ZfijunTHjgqqWpCT5/3q6CWstqvoub7cq4L6i5tLSfvl7caixr3Zb9K6tPXY/pynRa1jrfry1vt/tboz/Xl676ffI0VNVav34jTvo853WvG3/seb+O+Xo/1+o2QJNW/6dlS9+ptblmdO3/uk0p7zBdffLHYx6X77rtPjkqhxV+/lULz53mZ79Pv9UlrdOzYUQ0vjNJva4q+Nn5bM18NoxqpY8eOpX7c9fWJiHMm1MTFxWnDhg3uv5Iyxuj7779XXFzcWa+lXr16qlGtqrJ2rFXqgjHK/vU/cmVnynlot4JCwgqN5+z7rxzh1QqNZ//6H6UuGKOsHWvlCK+qnH3/lSs7U3mp/1NwuOf6Jjdb1eK6K2vHdz6tkXtgh0Kq1i72mMHhVZWX+r9ia/S39pPHQ//UTEHGeJ3rbb9Onh8UEibnod1e96W4nnzZg8rNLpeceT7NPbmWstqvoub7cq5DqtZW7oEdpa7l5P3y5ZwWjMuZp8rNLi9Vn74e05frtKh1goOCFVLr/EJzvZ1rf2v05Zo5+Tz5su8htc5XcFCw1+vOlf6rFOw4rdpP95rx976nNNeAgh1ypf8qV3amzJF9koJOq9eC32tvc8vq3Plzn+TL74y3Y/a+5uoS33caGhqqB4feX+z6Dw693/02jqLm+1LjyWs4HA5NmviisnasVdrCZzzmpy18Rlk71mrSixNK9cqI38rsj8jLwKmfU3Pw4EGTlZVljMn/AKPLLrvMjBkzxmzfvt2MGTPGJCUl8Tk15eEzIcrJZ0X4P87n1JR63MtnbpSvGstRLefy78y5cD3yOTXl53NqohoF5HNqynWoiY6O9tiUTZs2uT+FMTk52WzdutWv9flE4fwvPlG4+Br5RGE+UZhPFOYThflE4XPzE4WDjCnhU+8s4nQ6tXHjRsXHx5/dp8PKaR1nWkXpU6JXG1WUPqWK02tF6VOyr1df+zln3lMDAABQHEINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKAQ812dnZGj58uNq0aaMOHTpozpw5Xud+/PHHuuqqq5SQkKCbb75ZW7duPYuVAgCA8izgoeb555/Xli1bNHfuXI0aNUrTpk3Thx9+WGje9u3b9dBDD+nuu+/W4sWL1bx5c919993KysoKQNUAAKC8CWioyczM1Pz58/XEE08oJiZGXbt21cCBAzVv3rxCc7/++mtddNFF6tOnjy688EI9+OCDSk1N1U8//RSAygEAQHkTEsiDb9u2TXl5eUpISHCPJSYm6uWXX5bL5VJw8B+Zq2bNmvrpp5+0fv16JSQkaOHChapataouvPBCv4/rdDrLpP7TVXD8QNdxplWUPiV6tVFF6VOqOL1WlD4l+3r1tY+AhprU1FTVqlVLoaGh7rG6desqOztbGRkZql27tnu8Z8+e+uyzz3TLLbfI4XAoODhYM2fOVI0aNfw+bkpKSpnUX1rlpY4zraL0KdGrjSpKn1LF6bWi9ClVrF6lAIearKwsj0Ajyf19Tk6Ox3h6erpSU1M1cuRIxcXF6a233tKwYcP0/vvvq06dOn4dNzY2Vg6Ho3TFl4LT6VRKSkrA6zjTKkqfEr3aqKL0KVWcXitKn5J9vRb0U5KAhpqwsLBC4aXg+/DwcI/xF154QdHR0erfv78kacyYMbrqqqu0YMECDRo0yK/jOhyOcnGSy0sdZ1pF6VOiVxtVlD6litNrRelTqli9SgF+o3BkZKTS09OVl5fnHktNTVV4eLiqV6/uMXfr1q265JJL3N8HBwfrkksu0d69e89avQAAoPwKaKhp3ry5QkJCtHHjRvfY+vXrFRsb6/EmYUmqX7++duzY4TH2888/64ILLjgbpQIAgHIuoKEmIiJCffr00ejRo7V582Z98sknmjNnjm6//XZJ+c/anDhxQpJ0ww036N1339WiRYu0a9cuvfDCC9q7d6+uu+66QLYAAADKiYC+p0aShg0bptGjR2vAgAGqWrWq7rvvPnXr1k2S1KFDB40dO1Z9+/ZVz549dfz4cc2cOVP79+9X8+bNNXfuXL/fJAwAAOwU8FATERGhcePGady4cYV+9uOPP3p8f/311+v6668/W6UBAIBzSMD/mQQAAICyQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALBCwENNdna2hg8frjZt2qhDhw6aM2eO17k//vijbr75ZrVq1UrXXHON1qxZcxYrBQAA5VnAQ83zzz+vLVu2aO7cuRo1apSmTZumDz/8sNC8o0eP6i9/+YsuuugiLVmyRF27dtW9996rQ4cOBaBqAABQ3gQ01GRmZmr+/Pl64oknFBMTo65du2rgwIGaN29eobnvv/++KleurNGjRysqKkpDhgxRVFSUtmzZEoDKAQBAeRMSyINv27ZNeXl5SkhIcI8lJibq5ZdflsvlUnDwH5nru+++U5cuXeRwONxjCxYsOK3jOp3O0y+6DBQcP9B1nGkVpU+JXm1UUfqUKk6vFaVPyb5efe0joKEmNTVVtWrVUmhoqHusbt26ys7OVkZGhmrXru0e3717t1q1aqURI0bos88+U4MGDfTYY48pMTHR7+OmpKSUSf2lVV7qONMqSp8SvdqoovQpVZxeK0qfUsXqVQpwqMnKyvIINJLc3+fk5HiMZ2Zm6pVXXtHtt9+uWbNm6YMPPtBdd92l5cuX6/zzz/fruLGxsR7P+JxtTqdTKSkpAa/jTKsofUr0aqOK0qdUcXqtKH1K9vVa0E9JAhpqwsLCCoWXgu/Dw8M9xh0Oh5o3b64hQ4ZIklq0aKGvv/5aixcv1t/+9je/jutwOMrFSS4vdZxpFaVPiV5tVFH6lCpOrxWlT6li9SoF+I3CkZGRSk9PV15ennssNTVV4eHhql69usfcevXqqUmTJh5jjRo10r59+85KrQAAoHwLaKhp3ry5QkJCtHHjRvfY+vXrFRsb6/EmYUmKj4/Xjz/+6DG2c+dONWjQ4GyUCgAAyrmAhpqIiAj16dNHo0eP1ubNm/XJJ59ozpw5uv322yXlP2tz4sQJSdJNN92kH3/8UVOnTtWuXbs0efJk7d69W7179w5kCwAAoJwI+IfvDRs2TDExMRowYICeeuop3XffferWrZskqUOHDlq2bJkkqUGDBpo9e7ZWrlypq6++WitXrtQrr7yiyMjIQJYPAADKiYC+UVjKf7Zm3LhxGjduXKGfnfpyU2JiohYuXHi2SgMAAOeQgD9TAwAAUBYINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFbwO9RkZ2efiToAAABKxe9Qk5SUpFGjRmnz5s1noh4AAIDT4neo+ctf/qI1a9boxhtvVM+ePTV79mylpqaeidoAAAB85neoueeee7RixQrNmzdPiYmJmjlzpjp16qRBgwZpxYoVys3NPRN1AgAAFOu03yjcunVrjRkzRl9//bUmT56srKwsDR06VB06dNC4ceP066+/lmWdAAAAxSrVXz/t27dPc+bM0ZQpU7R27Vo1atRIffv21RdffKGePXtq2bJlZVUnAABAsUL8vcGxY8e0YsUKLVq0SOvXr1d4eLh69OihUaNGqXXr1pKkxx57THfffbeeffZZ9ezZs8yLBgAAOJXfoSYpKUk5OTmKi4vT008/rZ49e6py5cqF5sXGxuqHH34okyIBAABK4neo6d+/v5KTk9WkSZNi59155536+9//ftqFAQAA+MPvUPPoo4/6NK9KlSp+FwMAAHC6+GcSAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArBDwUJOdna3hw4erTZs26tChg+bMmVPibfbs2aOEhAR9++23Z6FCAABwLggJdAHPP/+8tmzZorlz52rv3r167LHH9Kc//Uk9evTwepvRo0crMzPzLFYJAADKu4CGmszMTM2fP1+zZs1STEyMYmJitH37ds2bN89rqPn3v/+t48ePn+VKAQBAeRfQl5+2bdumvLw8JSQkuMcSExO1adMmuVyuQvPT09M1fvx4Pf3002ezTAAAcA4I6DM1qampqlWrlkJDQ91jdevWVXZ2tjIyMlS7dm2P+c8995yuu+46XXzxxaU6rtPpLNXtS6vg+IGu40yrKH1K9GqjitKnVHF6rSh9Svb16msfAQ01WVlZHoFGkvv7nJwcj/FvvvlG69ev19KlS0t93JSUlFKvURbKSx1nWkXpU6JXG1WUPqWK02tF6VOqWL1KAQ41YWFhhcJLwffh4eHusRMnTmjkyJEaNWqUx/jpio2NlcPhKPU6p8vpdColJSXgdZxpFaVPiV5tVFH6lCpOrxWlT8m+Xgv6KUlAQ01kZKTS09OVl5enkJD8UlJTUxUeHq7q1au7523evFm7d+/WkCFDPG7/17/+VX369PH7PTYOh6NcnOTyUseZVlH6lOjVRhWlT6ni9FpR+pQqVq9SgENN8+bNFRISoo0bN6pNmzaSpPXr1ys2NlbBwX+8h7lVq1b66KOPPG7brVs3PfPMM0pKSjqrNQMAgPIpoKEmIiJCffr00ejRo/Xss8/q4MGDmjNnjsaOHSsp/1mbatWqKTw8XFFRUYVuHxkZqTp16pztsgEAQDkU8E8UHjZsmGJiYjRgwAA99dRTuu+++9StWzdJUocOHbRs2bIAVwgAAM4FAf9E4YiICI0bN07jxo0r9LMff/zR6+2K+xkAAKh4Av5MDQAAQFkg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWCHgoSY7O1vDhw9XmzZt1KFDB82ZM8fr3FWrVql3795KSEjQNddco08//fQsVgoAAMqzgIea559/Xlu2bNHcuXM1atQoTZs2TR9++GGhedu2bdO9996rfv36adGiRbrpppt0//33a9u2bQGoGgAAlDchgTx4Zmam5s+fr1mzZikmJkYxMTHavn275s2bpx49enjMXbp0qS677DLdfvvtkqSoqCh99tlnWr58uS655JJAlA8AAMqRgIaabdu2KS8vTwkJCe6xxMREvfzyy3K5XAoO/uOJpOuuu065ubmF1jh69OhZqRUAAJRvAQ01qampqlWrlkJDQ91jdevWVXZ2tjIyMlS7dm33eNOmTT1uu337dq1evVo33XST38d1Op2nX3QZKDh+oOs40ypKnxK92qii9ClVnF4rSp+Sfb362kdAQ01WVpZHoJHk/j4nJ8fr7Q4fPqz77rtPrVu3VpcuXfw+bkpKit+3ORPKSx1nWkXpU6JXG1WUPqWK02tF6VOqWL1KAQ41YWFhhcJLwffh4eFF3iYtLU133nmnjDGaMmWKx0tUvoqNjZXD4fC/4DLidDqVkpIS8DrOtIrSp0SvNqoofUoVp9eK0qdkX68F/ZQkoKEmMjJS6enpysvLU0hIfimpqakKDw9X9erVC80/cOCA+43C//rXvzxenvKHw+EoFye5vNRxplWUPiV6tVFF6VOqOL1WlD6litWrFOA/6W7evLlCQkK0ceNG99j69esVGxtb6BmYzMxMDRw4UMHBwXrjjTcUGRl5lqsFAADlWUBDTUREhPr06aPRo0dr8+bN+uSTTzRnzhz3szGpqak6ceKEJGnmzJn65ZdfNG7cOPfPUlNT+esnAAAgKcAvP0nSsGHDNHr0aA0YMEBVq1bVfffdp27dukmSOnTooLFjx6pv375asWKFTpw4oeuvv97j9tddd52ee+65QJQOAADKkYCHmoiICI0bN879DMzJfvzxR/f/LupThgEAAAoE/J9JAAAAKAuEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAO5gAO3HihBk2bJhJTEw0SUlJ5p///KfXuVu3bjXJycmmVatWpm/fviYlJcWvY+Xl5Zl169aZvLy80pbtlpGRYZKSkkzDhg1NUlKSycjIMMYYs3z5ciPJ/bV8+XJjjDGzZ8/2GJ89e7YxxpihQ4d6jA8dOtQYY0znzp09xk/9vuDLGFOuxstTLdRIjWW1dqdOnTzGOnXqZIwxZtKkSR7jkyZNMsYY88wzz3iMP/PMM8YYY6ZNm+YxPm3aNDN9+nSPsenTp3uda4wxb7zxhsf4G2+8YYwxZvPmzSYoKMhIMkFBQWbz5s3GGGMWLlzoMX/hwoXGGGNGjhzpMT5y5EhjjDFvv/22x/jbb79t5s+f7zE2f/58Y4wxX375pcf4l19+aYzxfj/obXzDhg0e4xs2bDDGGPPpp596jH/66ade53vr/5tvvvGY+8033xhjjNm5c6cJDw83QUFBJjw83OzcubPYcW81Hj161PTp08fExsaaPn36mKNHjxpj8h93Vq5cad58802zcuVKk5eX5/Vxo6i5xhiTnZ1tJk6caO69914zceJEk52dbYwxJjMz0wwePNh069bNDB482GRmZpoCZ+LxrrgavY2X5XF96Sfgoebpp58211xzjdmyZYv56KOPTEJCgvsCP9nx48dNUlKSee6558xPP/1kxowZYy6//HJz/Phxn49V1ie5adOmRsEOzzu/gu/P1LiCzv4x/a6xHNVyTu/jOVBjUHD+V3mopdjxoHJUS1H76Cj/+0iNfo83bdrUNLwwymPcERJS5NzIyMhCcxteGGV69+5tHJVCPdeoFOr18ad3795n5PHOGGMWLFhQZI2PPPJIkeMLFiwos2P72k+IAigzM1Pz58/XrFmzFBMTo5iYGG3fvl3z5s1Tjx49POYuW7ZMYWFhevTRRxUUFKQnnnhCX3zxhT788EP17dv3rNd+0UUXaceOHYpo2k412t+gSvWilJu6S4c/nqGcAzsU0bi1arS/0T1+ZPU7ytqxVqH1Gqt217/5PB4cXk31+z6pSvWidGjFS8r8YZUiGid6HNPbGiXX0ki1u/69xPlpS8Yr78gBr8cNqVZXda95RJXqRenXWX+T69ghn2ssqs/c1F06uHCMXJlHCq3jTy3eeippH09dw9t+lUUt3tYvucZ6qnvNwz7X4uu5Luk8edubmlcMULXEq8vsOiqu9oJxuVw679YX3OP733xckryuX7lFR9XpPtjHWjz3t6RagkLCFHnD0yVevyWt78s+llRLcHhV1e87osRaTnf9k2v095yWtC8Kdui8W8b5fE59qbGkPZcxHtfRgXdHyuRk+n0fVlQtO3asVUiN89zrH5g/Wjl7thZ63Diy+h0d2LFWwZVretSyb+kLWrx4cZGPM/mPP20LnbvFixerT58+WrBgQZk+5i1cuFDJycmKaNpW59163x/79cnLGj9+vCpf1M5j/NCad5WcnKz33nvvrD5GB/Q9Ndu2bVNeXp4SEhLcY4mJidq0aZNcLpfH3E2bNikxMVFBQUGSpKCgILVu3VobN248myVLko4cOaIdP/9PEU3bqV6/JxXW4BIFh0Yo9PyL5Txx9PfxEe7xsAaXqF6/EYpo2lbOE0cVev7FPo+7ThxVSL0oKdihzB+/LnRMb2v4VsuxEudXimyivGOHiz1u3rHDqhTZRM68XLkyM3yusag+g0MjFFIvSq4Txwqt408t3nryZR9PXsPbfpVFLd7W963GQ+61fanFl3Pty3kqem/a6dimDxUUElom11FxtZ88ruBgmSp1FRwaoaAa50kyxa6f+ePXUrDDx1oO+VWLycuWo84FxV6/Ja9f8j76UovrxLESf5dOf/0/avT3nPqyL3I5FVzrTz6f05Jq9OWcKihIqlZfwaERctS5QCYv+7Tuw7ydj4LjGkk5e7cVu/bJ94OVIpso7+ih0zp3i5csVVZWVpk95jmdTg194EFFNG2run1PqSXrN0U0becxHtbgEtXt+6QimrbV0AcfktPpLLNaShLQUJOamqpatWopNDTUPVa3bl1lZ2crIyOj0Nz69et7jNWpU0f79+/3+7hOp7NUX1dddZXkcqpG+xsUFPTHFmbv2SrnkYOFxiUpKChYNdrfIOeRA8res9Xncbmcylj1qo5tWCY5c31e299avM335bhy5urYhmVKXTCmyH3xp09J+f8tYh1/avHWk79reKu9LGrxtr6/a5/pa6Pkvbleeb/PL4vryOdaXE4dfH2oJOng28NLvPYK1j9TtRz6YKIk79dvWeyjr7WU9Lt0+uv/UaO/++jTvric+fcj8u2cllRjyXv++3U072FJyj+Hp3kfVtLvjK/9F5w7b/vry7mTy6lHHnlEUukf75xOp1atWqXdv+xS9cv8q6X6Zddr967/adWqVWVShy8C+vJTVlaWR6CR5P4+JyfHp7mnzvNFSkqK37c52Y4dOyRJlepFeYw7j6UXOV6gUt0oj3m+juel73NfML6u7W8t3ubnZez3aZ28jP1yHU3165iF1kjf5/Hf0tTirSd/1/BWe1nU4m19f9f2df7pXhvejlvc/NKeO19rMdnHJUmu4771dPL6ZV2Ls+B8eLl+T2f9M/W7VBb3VX5fpz7uS8H9iK/n1Jf705L23JX1W/5t/Pxd8nU8L2O/79dFwbnzUouv527Dhg2SSv94J0lr1qwpVS1r1qxRzZo1S12HLwIaasLCwgqFkoLvw8PDfZp76jxfxMbGyuFw+H27Ak2bNtXBgweVm7or/yWN3zmq1pKkQuMFctN2eczzdTyk1vkKqXmeX2v7W4u3+b4eN6TmeQquVk/Oo2mn3X9IrfP/+O//NpSqFm89+buGt9rLohZv6/u79pm+Nrwdt7j5pT13vtYSFFZFkhRcpZacJ476tX5Z1+IoOB9ert/TWf9M/S6VxX2V39epj/sSXK1e/n99PKe+3J+WtOfBEdXzb1PzPOWm7Sr7+/Ca58kYl2/XRcG587K/vp67grd1lPbxTpL7lZPTreWyyy5TfHx8qWpwOp0+BbSAvvwUGRmp9PR05eXlucdSU1MVHh6u6tWrF5qblpbmMZaWllboJSlfOByOUn0tX75cCnboyOp38i/U34VdECNHjfqFxiXJGJeOrH5XjhqRCrsgxudxBTtUs+OdqprQU3JU8nltf2vxNt+X48pRSVUTeqpevxFF7os/fUrK/28R6/hTi7ee/F3DW+1lUYu39f1d+0xfGyXvzXyF/D6/LK4jn2sJdqj+bZMkSfVverbEa69g/TNVS51eD0jyfv2WxT76WktJv0unv/4fNfq7jz7tS7Aj/35Evp3Tkmosec9/v476vyBJ+efwNO/DSvqd8bX/gnPnbX99OXcKdmj8+PGSSv9453A41LFjRzW8MEq/rXnXr1p+WzNfDaMaqWPHjmVShy8CGmqaN2+ukJAQjzf7rl+/XrGxsQoO9iwtLi5OGzZskDFGkmSM0ffff6+4uLizWbIkqUaNGmrauJGydqxV6oIxyv71P3JlZypn33/lCK9WaDz71/8odcEYZe1YK0d4VeXs+6/P48HhVZWX+j/JmafKzS73eW1/a/E2P/fADoVUrV3sOiFVayv3wA45HCEKrlzztPov6NOVnam81P8pOLxqqWrx1pMv+3jyGt5qL4tavK3vb42+1FKaa6PkvflOVeO6y+Rml8l15GstcrkUdDxVruxMmSP7JAUVu37lZpdLzrwzUktQSJich3YXe/2WxT6W1e/S6a//R43+7qMv+6Jgh1zpv/p8Tkuq0ZdzKmOkowfkys6U89BuBYWElel9eEjVOso9sENBxij0T82KXTs4vJr73OUe2KGQanVO69z1vuZqRURElNljnsPh0KSJLyprx1qlLXzGs5aI6oXGs3/9j9IWPqOsHWs16cUJpX6myC9l9kfkp2nEiBGmV69eZtOmTebjjz82rVu3NitWrDDGGHPw4EGTlZVljMn/YKPLLrvMjBkzxmzfvt2MGTPGJCUl8Tk1Af4chqJrLEe1nNP7eA7UWM4+F8T7OJ9TQ43n4OfURDUq/59TE9Wo6M+piWoUkM+pCXioyczMNI8++qiJj483HTp0MK+++qr7Z9HR0R6bsmnTJvcnNiYnJ5utW7f6dSw+UfjsjZenWqiRGstqbT5RmE8U5hOFy/cnCgcZ8/vrORWA0+nUxo0bFR8ff3afDiundZxpFaVPiV5tVFH6lCpOrxWlT8m+Xn3th3/QEgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYISTQBZxNBR+e7HQ6A1pHwfEDXceZVlH6lOjVRhWlT6ni9FpR+pTs67Wgj5L+EYQK9c8k5OTkKCUlJdBlAACA0xAbG6vQ0FCvP69QocblcikvL0/BwcEKCgoKdDkAAMAHxhi5XC6FhIQoONj7O2cqVKgBAAD24o3CAADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGrOsAMHDmjIkCFq166d/vznP2vs2LHKzs6WJO3evVt33HGH4uPj1bNnT3311VcBrvb07dq1S3fddZcSEhLUsWNHzZ492/0zm/o82aBBg/T444+7v//hhx90/fXXKy4uTv369dOWLVsCWF3pffzxx2rWrJnH15AhQyTZ12tOTo6eeuoptW3bVpdffrlefPFF98ex29TrwoULC53TZs2a6ZJLLpFkV6/79u3T3XffrdatW6tz58567bXX3D+zqU9JOnTokIYMGaI2bdqoa9euWrhwoftntt7/ekOoOYOMMRoyZIiysrI0b948TZw4UStXrtSkSZNkjNHgwYNVt25dLViwQL1799a9996rvXv3Brpsv7lcLg0aNEi1atXS+++/r6eeekozZszQkiVLrOrzZB988IE+//xz9/eZmZkaNGiQ2rRpo4ULFyohIUF33323MjMzA1hl6fz000/q1KmTvvrqK/fXM888Y2WvzzzzjL755hv985//1IQJE/Tuu+/qnXfesa7Xgge1gq9Vq1YpKipKt99+u3W9Dh06VJUrV9bChQs1fPhwTZo0SR9//LF1fRbcx+7fv1//+te/NHz4cD333HP66KOPrL3/LZbBGfPTTz+Z6Ohok5qa6h5bsmSJ6dChg/nmm29MfHy8OX78uPtnAwYMMFOmTAlEqaVy4MABc//995ujR4+6xwYPHmxGjRplVZ8F0tPTzRVXXGH69etnHnvsMWOMMfPnzzedO3c2LpfLGGOMy+UyXbt2NQsWLAhkqaXy0EMPmQkTJhQat63X9PR006JFC/Ptt9+6x2bOnGkef/xx63o91csvv2yuvPJKk52dbVWvGRkZJjo62vz444/usXvvvdc89dRTVvVpjDGbN2820dHR5pdffnGPzZw509xwww1W3v+WhGdqzqB69epp9uzZqlu3rsf4sWPHtGnTJrVo0UKVK1d2jycmJmrjxo1nucrSq1+/viZNmqSqVavKGKP169dr7dq1ateunVV9Fhg3bpx69+6tiy66yD22adMmJSYmuv9NsaCgILVu3fqc7nPHjh1q1KhRoXHbel2/fr2qVq2qdu3auccGDRqksWPHWtfryTIyMjRr1iw99NBDCg0NtarX8PBwRUREaOHChcrNzdXOnTv1/fffq3nz5lb1KeW/vFS7dm01bNjQPdasWTNt2bJF69evt+7+tySEmjOoevXq+vOf/+z+3uVy6Y033tBll12m1NRU1a9f32N+nTp1tH///rNdZpnq3LmzbrnlFiUkJKh79+7W9bl69WqtW7dO99xzj8e4bX0aY/Tzzz/rq6++Uvfu3XXllVfqhRdeUE5OjnW97t69Ww0aNNCiRYvUo0cPdenSRS+99JJcLpd1vZ7srbfeUv369dWjRw9Jdl3DYWFhGjlypN555x3FxcXpqquu0hVXXKHrr7/eqj4lqW7dujp69KiysrLcY/v371deXp51vfoiJNAFVCTjx4/XDz/8oPfee0+vvfZaoX8+PTQ0VDk5OQGqrmxMmTJFaWlpGj16tMaOHausrCxr+szOztaoUaM0cuRIhYeHe/zMpj4lae/eve6eJk2apD179uiZZ57RiRMnrOs1MzNTu3bt0ttvv62xY8cqNTVVI0eOVEREhHW9FjDGaP78+Ro4cKB7zLZed+zYoU6dOunOO+/U9u3bNWbMGLVv3966PuPi4lS/fn2NGTNGTz75pFJTU/Xqq69Kyn8DvE29+oJQc5aMHz9ec+fO1cSJExUdHa2wsDBlZGR4zMnJySn0YHmuiY2NlZQfAB5++GH169fP4/9BSOdun9OmTVPLli09nn0rEBYWVuiO4lztU5IaNGigb7/9VjVq1FBQUJCaN28ul8ulRx55RO3atbOq15CQEB07dkwTJkxQgwYNJOWHurfeektRUVFW9VogJSVFBw4cUK9evdxjNl3Dq1ev1nvvvafPP/9c4eHhio2N1YEDBzRjxgw1bNjQmj6l/PM2adIkDR06VImJiapTp44GDhyosWPHKigoyKpefcHLT2fBmDFj9Oqrr2r8+PHq3r27JCkyMlJpaWke89LS0go9VXguSEtL0yeffOIxdtFFFyk3N1f16tWzps8PPvhAn3zyiRISEpSQkKAlS5ZoyZIlSkhIsOp8FqhZs6b7fQeS1LRpU2VnZ1t1TqX8976FhYW5A40kNW7cWPv27bPyvErSl19+qTZt2qhGjRruMZt63bJli6KiojwevFu0aKG9e/da1WeBVq1a6bPPPtMXX3yhVatWqXHjxqpVq5YuvPBC63otCaHmDJs2bZrefvttvfjiix7/ryguLk5bt27ViRMn3GPr169XXFxcIMoslT179ujee+/VgQMH3GNbtmxR7dq1lZiYaE2fr7/+upYsWaJFixZp0aJF6ty5szp37qxFixYpLi5OGzZscH+2iTFG33///TnZp5T/oHfppZd6PMv2n//8RzVr1lRiYqJVvcbFxSk7O1s///yze2znzp1q0KCBdee1wObNm9W6dWuPMZt6rV+/vnbt2uXxLMXOnTt1wQUXWNWnlP+G75tvvlnp6emqV6+eQkJCtGrVKrVr186qxxlfEWrOoB07dmj69On661//qsTERKWmprq/2rVrp/PPP1/Dhg3T9u3b9corr2jz5s1KTk4OdNl+i42NVUxMjIYPH66ffvpJn3/+ucaPH6+//e1vVvXZoEEDRUVFub+qVKmiKlWqKCoqSj169NBvv/2mf/zjH/rpp5/0j3/8Q1lZWbrqqqsCXfZpSUhIUFhYmJ588knt3LlTn3/+uZ5//nkNHDjQul6bNGmijh07atiwYdq2bZu+/PJLvfLKK7r55put67XA9u3bPf56T5JVvXbu3FmVKlXSk08+qZ9//lmfffaZXn75Zd12221W9SnlP6OamZmp8ePHa/fu3Zo/f74WLFiggQMHWnX/67OA/CF5BTFz5kwTHR1d5Jcxxvzvf/8z/fv3Ny1btjS9evUyX3/9dYArPn379+83gwcPNq1btzZJSUlmxowZ7s+BsKnPkz322GPuz6kxxphNmzaZPn36mNjYWJOcnGy2bt0awOpK77///a+54447THx8vElKSjJTp051n1Pbev3tt9/MI488YuLj40379u2t7tUYY2JjY80XX3xRaNymXrdv327uuOMO07p1a3PllVeaV1991dpzumPHDnPrrbeauLg406tXL/PZZ5+5f2br/a83Qcb8/hwcAADAOYyXnwAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINgHLpxIkTmjBhgrp166aWLVuqdevWuvPOO/Wf//zHPef9999Xz549FRsbq2uvvVarV69WixYttHDhQvecvXv36sEHH1S7du0UFxenAQMG6IcffghESwDOMEINgHLp0Ucf1YIFCzRo0CDNmTNHw4YN0/bt2/XQQw/JGKNFixbp8ccfV+vWrTV9+nR1795d99xzj5xOp3uNw4cP66abbtLWrVs1YsQITZgwQS6XS/3799eOHTsC2B2AMyEk0AUAwKlycnJ0/PhxPfnkk+rZs6ckqV27djp27Jiee+45paWlafLkyerUqZOeeeYZSdKf//xnVapUSRMmTHCvM3fuXGVkZOitt95SgwYNJElXXHGFevbsqcmTJ2vKlClnvzkAZwzP1AAod0JDQ/XPf/5TPXv21IEDB7RmzRq9/fbbWrlypSTp559/1t69e9WjRw+P2/Xq1cvj+9WrV6t58+aKjIxUXl6e8vLyFBwcrCuuuELffPPNWesHwNnBMzUAyqUvv/xSzz77rHbu3KkqVarokksuUeXKlSVJlSpVkiTVqVPH4zZ169b1+D4jI0O7du1STExMkcfIyspSRETEGageQCAQagCUO7/88osGDx6sK6+8UjNnzlTDhg0VFBSkefPm6csvv3S/b+bQoUMetzv1+2rVqqldu3Z69NFHizxOaGjomWkAQEDw8hOAcmfLli3Kzs7WoEGDdOGFFyooKEhS/rM3klS/fn1deOGF+vjjjz1u99FHH3l8365dO/38889q3LixYmNj3V+LFy/We++9J4fDcXYaAnBWEGoAlDsxMTEKCQnR+PHj9fXXX2vlypW67777tGrVKkn5LxsNGTJEn3zyiUaNGqWvvvpKs2fP1uTJkyVJwcH5d2133HGHXC6X7rjjDi1btkyrV6/WiBEj9Prrr6tx48aBag/AGRJkjDGBLgIATvXhhx9q2rRp+uWXX1SjRg3Fx8fr9ttv12233aYRI0aof//+euedd/TPf/5Te/fu1cUXX6z+/fvriSee0NSpU9WtWzdJ+S9lTZgwQatXr1Z2drYaNWqk2267TcnJyQHuEEBZI9QAOCctXbpULVq0UJMmTdxjq1at0t13363FixfrkksuCWB1AAKBUAPgnDRo0CDt2LFDQ4cO1fnnn69du3ZpypQpuvDCC/X6668HujwAAUCoAXBOSk9P14QJE/TFF1/o8OHDqlu3rrp3764hQ4aoSpUqgS4PQAAQagAAgBX46ycAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAr/D6ll/zq5zvFwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABS/0lEQVR4nO3deVhUZf8G8HuYYTNkERATFVMDUUdAyJVyKc1c0lxbXMrM3lczbTGXXlf85a65plaWpS0qLmmL1lukr4oLCmLmBi6oKIOCG8MMM/P8/sA5MjDAIAODp/tzXVw15zznWb7nzHg7zBwVQggBIiIiooeck6MnQERERGQPDDVEREQkCww1REREJAsMNURERCQLDDVEREQkCww1REREJAsMNURERCQLDDVEREQkCww1RA5U+N6XcrgXphzWQEQPJ4YaontOnz6Nd955B+3atUOzZs0QHR2NsWPH4uTJk3YfS6/X46OPPsL27dulbWfOnMFLL71k97HMNm/ejJCQEIuf0NBQPPHEExg2bBgSEhKktkuXLkVISEiZ+r969SpGjBiBy5cvl3uup06dQu/evdGsWTN069bNapvBgwdj8ODB5R7LXJdLly6Vuy+5CAkJwdKlSx09DaIyUzl6AkRVwZkzZzBw4ECEh4fjP//5D3x9fXH16lWsW7cOAwYMwFdffYXw8HC7jZeRkYG1a9di1qxZ0rZffvkFR48etdsYxVm2bBn8/f0BACaTCZmZmVi+fDmGDh2KTZs2oXHjxg/U7759+/Dnn3/aZY7Lly/HlStXsHz5ctSoUcMufRKR/DHUEAH44osv4OPjg08//RQq1f2nxTPPPIOuXbtixYoVWL16tQNnaD+hoaGoU6eOxbYmTZqgc+fO+OabbzBjxgwHzey+rKwsBAcHo3379o6eChE9RPjrJyIAmZmZEELAZDJZbK9WrRomTZqE5557zmL71q1b8cILLyAsLAwdOnTAggULoNfrpf2//fYbXn75ZURERKBZs2bo2rUr1q9fDwC4dOkSnn76aQDAxIkT0alTJyxduhTLli0DYPnWv8lkwurVq9G5c2c0a9YMzz77LL7++muLuQwePBjvv/8+3n77bYSHh+O1114r8/rr1KkDHx8fXLlypdg2P/30E/r06YOIiAi0a9cOU6ZMwc2bNwHk/wpn4sSJAICnn34aEyZMKLafjIwMTJw4Ee3bt0fz5s3Rr18//Pe//5X2h4SE4ODBgzh06BBCQkKwefPmEue+fPlytG3bFhERERg5ciTS0tIs9pd0LoqzceNG9OnTB+Hh4WjevDl69eqFn3/+Wdq/efNmNGnSBElJSRg4cCDUajU6duyIzz//3KKfO3fuICYmBk8++STCw8PRt29fxMXFFRmre/fuaNasGTp06IClS5fCaDSWOL8bN25g+vTp6NixI5o1a4aWLVti1KhRFr9CGzx4MD788EOsXr0aHTp0gFqtxosvvohjx45Z9HXw4EEMHDgQYWFhePbZZ7Fv374Sxz5z5gxCQkLw/fffW2xPT09HaGgofvjhhxKPJ6pQgojE+vXrRXBwsHjhhRfEunXrxNmzZ4XJZLLadt26dSI4OFh8+OGHYvfu3WL9+vUiLCxMTJ48WQghxB9//CGCg4PFzJkzxb59+8Tvv/8uhg8fLoKDg0ViYqLQ6XRi165dIjg4WCxatEj89ddfIj09XUyaNEkEBweLo0ePivT0dCGEEJMnTxZNmzYVS5YsEXv27BELFy4UjRs3FsuWLZPmM2jQINGkSRMxYcIEsW/fPvG///3P6rxjY2NFcHCwSEtLK7Lvxo0bonHjxmL69OlCCCGWLFkigoODpf3Lly8XISEhYvr06dKaW7ZsKXr27Cm0Wq24fv26WLRokQgODha7du0SFy5csDoHjUYjnnzySfHMM8+ILVu2iLi4OPH222+LkJAQsW3bNiGEEEePHhW9e/cWvXv3FkePHhXXr1+32tegQYNEaGioeO6558TPP/8sduzYITp27Cg6dOggbt++bdO5sFaXdevWicaNG4vly5eL+Ph4sXPnTtGvXz/RpEkT6bzExsaKkJAQ0aFDB/Hll1+Kffv2iXfffVcEBweL3bt3CyGEMBgMon///uKJJ54QX3/9tdi7d694//33RZMmTcShQ4eEEEKsXLlShISEiJiYGLFnzx6xevVqoVarxcSJE62uWQghTCaT6Nevn+jcubPYsWOHiI+PF2vXrhURERFi2LBhFvWJjIwUAwYMEL/++qvYtWuXePrpp8VTTz0lDAaDEEKI48ePi6ZNm4rXX39dxMXFiXXr1olWrVqJ4OBgsWTJkmLn0L9/f/HSSy9ZbFuxYoVo0aKF0Gq1xR5HVNEYaoju+fjjj4VarRbBwcEiODhYtGrVSrz33nsiKSlJamM0GkWbNm3EyJEjLY797LPPxAsvvCD0er349NNPxfjx4y32Z2VlieDgYLFq1SohhBBpaWkiODhYxMbGSm0KB4nU1FQREhIiHWO2aNEioVarxY0bN4QQ+X94hYWFCZ1OV+L6zH94X7hwQeTl5Ym8vDxx584dcfz4cfHqq6+KJk2aiJMnTxaZS3Z2tmjWrJkU2swOHTokgoODxbp16yz6txaazObOnSuaNm0qLl26ZLF96NChol27dsJoNEprGjRoUInrGTRokGjWrJkUNIQQ4sSJEyI4OFh8/fXXQghh07koPO9Zs2aJefPmWRxz/PhxERwcLHbs2GFxzIYNG6Q2Op1OqNVqMWPGDCGEEL///rsIDg4Wv/76q9TGaDSKgQMHiqVLl4pbt26J5s2biylTpliMtWHDBhEcHCxOnz5tdd1Xr14VgwcPloKRWUxMjGjWrJlFfcLCwqSAJ4QQW7ZsEcHBwSI5OVkIIcTo0aPFU089JfR6vdTmxx9/LDXUfPfddyIkJERcvHhR2talS5ci1whRZeNnaojuGTNmDF599VXs2bMH+/fvx4EDB7B9+3bs2LEDkyZNwpAhQ3Du3Dlcv34dnTt3tjj29ddfx+uvvw4AGD58OADg7t27OHfuHC5evIjk5GQAsPgVVWni4+MhhECnTp1gMBik7Z06dcInn3yChIQEPPPMMwCABg0awMXFxaZ+C88dAAIDAzFv3jyr33hKTEyEXq9Hjx49LLZHRUUhMDAQBw8exCuvvGLT2AcPHkRERAQCAwMttj///POYOHEiUlNT0ahRI5v6AoAWLVqgVq1a0uPQ0FDUrVsXhw4dwqBBgx7oXJh/dXbr1i2kpqbiwoULOHDggNVjIiIipP93cXFBjRo1kJOTAwBISEiAs7MzOnXqJLVxcnLCd999BwDYvXs3cnNzrZ5fANi7dy8ef/zxIvMLCAjAV199BSEELl26hAsXLiA1NRVHjhwpMr9GjRrBw8PD4lgA0Gq10hw7duwIZ2dnqU2XLl2gVCqt1sase/fumDVrFrZt24a33noLR44cwfnz5zF79uwSjyOqaAw1RAV4eXmhR48e0h/gJ06cwLhx4zBv3jz07NkT2dnZAABfX99i+7hx4wamTp2K3377DQqFAkFBQYiKigJQtnu4mMfq3r271f3Xrl2T/v+RRx6xud9PPvlE+vaTs7MzfHx8pD/srDF/bsbPz6/IPj8/P9y+fdvmsW/evIm6deta7QfIDxJlYW1Ovr6+Uj8Pci4uXryIKVOmYP/+/XB2dkaDBg2kb4QVPsbNzc3isZOTk9QmOzsb3t7ecHKy/tFF8/kdMWKE1f0ZGRlWtwPADz/8gIULFyI9PR3e3t4IDQ0tMhcAcHd3LzI/ANJnx27evAkfHx+LNiqVqsi2wjw8PNC1a1f88MMPeOutt7B161Y89thjFiGPyBEYaugf79q1a+jbty/GjBmD/v37W+xr0qQJ3nnnHYwaNQppaWnw9PQEkP+HZUFZWVk4ceIEIiIi8P777yM1NRVffvklIiIi4OLiAq1Wiw0bNpRpXuax1q5dazW01K5du0z9mQUHBxf59lNJvLy8AOR/mLpBgwYW+zQajdWQUlJfGo2myHbzttL+MC3MHLgK92X+w7Ws58JkMmHEiBFwdnbGpk2bEBoaCpVKhbNnz2Lbtm1lmlv16tWRnZ0NIQQUCoW0/cSJExBCSOd3/vz5qF+/fpHjrQU2ADh8+DDGjx+PwYMH4/XXX5cC6dy5cy3uNWQLb29vZGZmWmwTQlita2F9+/bFli1bcOzYMezcuVN6p5LIkfjtJ/rH8/Pzg0qlwjfffAOdTldkf2pqKlxdXREUFIQGDRrAx8cHf/zxh0Wbbdu2YcSIEcjLy0NCQgK6dOmCVq1aSb8S2r17N4D7f0O29vZ+4b/Rm99RyMrKglqtln5u3LiBxYsXS3/Tr2hhYWFwcXHBjh07LLYfPnwYV65cQYsWLazO35onnngCR48eLXKDvh9++AH+/v4ICgoq09wSEhIs3ilKSkrC5cuX0bp1a2l/aeeioKysLJw7dw79+vWDWq2Wvt5f0jHFiYqKQl5ennQskB8YJk6ciFWrViEsLAzOzs64du2axflVqVRYuHBhsTcDPHr0KEwmE0aPHi0FGqPRKH1rqSxzbNOmDXbv3i39OgoA9uzZg7y8vFKPfeKJJ1C/fn3MmzcPt2/fRq9evWwel6ii8J0a+sdTKpWYNm0aRo0ahb59++KVV15Bw4YNodVqsXfvXqxfvx5jxoyR3rEYPXo0ZsyYAV9fX3Tq1Annzp3DkiVL8Morr8DLywvNmzfH9u3b0bRpU9SqVQtHjhzB6tWroVAopD88qlevDgDYv38/GjZsiLCwMOlv7jt27EBYWBhCQkLw/PPPY/Lkybh8+TKaNWuGc+fOYdGiRahTp47Vv91XBG9vb4wYMQLLly+Hs7MzOnbsiEuXLmHx4sVo1KgRXnjhBQD331n69ddf8dRTT6Fhw4ZF+nrttdfwww8/4NVXX8Vbb70Fb29vbN26FfHx8fjoo49sCkYFmd9Z+de//oWsrCwsWLAAwcHBeP755wHApnNRkK+vLwIDA7F+/XrUqlULnp6e2LNnD7766isAsHpMcTp06ICIiAhMmDABY8eORd26dbFt2zakpKQgJiYGPj4+GD58OBYvXow7d+6gVatWuHbtGhYvXgyFQlHsTRCbN28OAJgxYwb69u2LmzdvYv369dKdr3Nyciw+R1OSUaNG4bfffsPrr7+O4cOH48aNG/j4448tPmNTkr59+2LBggV46qmnSvwVJlFlYaghQv4fQBs2bMDnn3+OlStX4saNG3BxcUGTJk2waNEidOnSRWr7yiuvoFq1avj888/x/fffo1atWnjjjTfwxhtvAABmz56NmJgYxMTEAADq16+P6dOn44cffsDhw4cB5H8m4bXXXsP333+PP//8E3v37kWXLl2wbds2TJgwAf369cO0adMwa9YsrFq1Ct999x2uXr0KX19fdOvWDWPHji31w5z2NHr0aPj5+WHdunX4/vvv4e3tja5du2Ls2LGoVq0aAKBVq1Zo27YtFixYgP3791u9WaG/vz++/fZbLFiwADNnzkReXh4aN26MFStWSPfuKYtnnnkGtWvXxrhx42AwGNCxY0d8+OGHcHV1BWDbuShsxYoV+L//+z9MmDABLi4uaNSoET755BN89NFHOHz4sM3/NINSqcSnn36K+fPnY/HixdBqtQgJCcGaNWukYDJ27Fj4+/vjm2++wWeffQYvLy+0adMG7777rhR8C2vVqhWmTJmCL774Ar/88gv8/PzQqlUrLFu2DKNGjUJCQoLNNy2sX78+1q1bh9mzZ+Odd96Br68vxo8fb/MHftu3b48FCxagT58+NrUnqmgKUZZPLhIREd2zevVqfPnll4iLi7P523dEFYnv1BARUZls2bIFp0+fxjfffIORI0cy0FCVwVBDRERlcvLkSXz33Xfo3Lkzhg0b5ujpEEn46yciIiKSBX6lm4iIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZEHl6AlUJpPJBIPBACcnJygUCkdPh4iIiGwghIDJZIJKpYKTU/Hvx/yjQo3BYEBycrKjp0FEREQPQK1Ww8XFpdj9/6hQY053arUaSqXSwbOxL6PRiOTkZFmurTKxjvbBOtoH62gfrGP5ObqG5vFLepcG+IeFGvOvnJRKpWwvbDmvrTKxjvbBOtoH62gfrGP5ObqGpX10hB8UJiIiIllgqCEiIiJZYKghIiIiWWCoISIiIllgqCEiIiJZYKghIiIiWWCoISIiIllgqCEiIiJZYKghIiIiWagydxTW6/Xo06cPJk+ejFatWlltc+LECUydOhWnT59Go0aNMH36dDRr1qySZ1rxjEYj9uzZg/T0dDz66KNo27Yt9u3bh/T0dPj6+uLgwYP45JNPcOXKFUdPtcKoVCoYDAYA+XewbNiwIZo3b46cnBykp6fj9u3b8PX1hU6ng16vh7e3N3r37o0xY8ZY/Lsg5lpevnwZ58+fx9q1a5GdnY2aNWtizJgxyM7ORlJSEu7evYu2bdtCrVbjwIED+PTTT3H16lVUr14dgwcPxtNPPw0AiIuLw++//46LFy+idu3auHXrFpycnPD4449j+PDhWL16Nfbs2SMd16lTp2LvvlnwPHt4eGD27NlIS0tDvXr18OOPP8LLywtGoxFxcXGIi4sDAHTo0AEdOnQo0mfha+bJJ58EgCLbCh5n7RilUlnsdkdy1Jz0ej1WrFiBlJQUNGzYECNHjizx352hqo/nVOZEFZCbmytGjRolgoODRXx8vNU2d+/eFe3atROzZ88WZ8+eFTExMaJt27bi7t27No9jMBjE4cOHhcFgsNfU7S42NlbUrRckAEg/SmeX+48VThb7LLcpiu53Ulppq7C9TeH+FNbaFrO9uLkUGU8pgMLjOBVdT0nrvNde4aQU48aNs17LwuNaXbeVtTgphZubu6ju5V3y8U7KIrWt7uUtYmNjSz/PVvoKCAgQvv41i8zR18/fok9r14yvf03h6+dvsa1uvSDpOGvH1K0XJMaNG2d1u7U1lMSez7Xi5lrWOZXVuHHjLJ97956L5uurMjwMr1kPA3Md33//fYef04eVo69FW8d3+Ds1Z8+exXvvvQchRIntfvrpJ7i6uuKDDz6AQqHAhx9+iN27d+OXX35Bnz59Kmm2FWvz5s3o168f3Bs+gVqDRiMv+yqu71gAl3rhcA0MRfbutXBvEAmvNgORve875KYeBgC41HwM+mspAATcGzwBrzYDpGPdH4uEV5sBcPYPQp7mAm7u/x7alEPwfmooqkf2KLDtMHx7vAdn71q4uX8DtCkHAQDuDaKsHu/b4/17bfMfu9Ssjxqd/12g3f0+PCKfh0foU8jcPg+Gm9dsnNO94+9dF9WadIDQ3YU25ZDFOgv3IUxGzJs3D6dPn8YPP/wA54CGUn3N4xZfm/wxi64lv2+DqydqDZpf5tr27dsPsbGbpOu04Hmu1uQx5JyIs9rXtZRDcAloiFqDPrCY4/WUg+jbty9iY2MBwOKaKWku1+M3oF+/fnj//fcxf/78Isdc+20l5s2bh2qNWlpsNx+3adOmSn+uFX5OVNacPvjgA8ybNw/uDVsWOS/z5s0DAMydO9fu41LFWbx4Mb7++mueU5lTiNLSRAX75ptvcP78ebzzzjsIDw/HV199ZfXXT5MnT4ZOp7O46CZMmAAXFxfMmDHDprGMRiMSExMRHh7u8LfTCzMajXisQUNcdwmAX5//AELg8uoRcPEPgl/vibiy+k24+AfBv+9kmPJ0uLSoP6BwgttjLaDPvAChvQ23es3h39fyWP8+/4FCcf+jU0KYoImdibzMC6g9YjUUTsr8bZtnIk+Tv00IEy4tfglu9dTw7zvZyvEx0GdeROCI1YBCYfFY4aS0GCf3YjKEMQ+Bo9fh8rLBcK8fAf++Ns7JfLwQgMmAwLfX48ryoSXOK/fi8fz2Rj1c60dAl3EO0N6E+2ORNtamuLXEQHs+EXXe/gbpa94qW21jY+CXl4FzqSkAIJ3nGs9/gEuLXyqhJiXUNS0ZtQP8oVAocOPeNWPLXDI3z4TuQiJc6oVZ1FCYjLi8+g24+NW3OpfMzTPhm5eBcylnbXru2OO5Vvg5Ud452Uqv16OaR3W41Asv/rxcTELOndsV/muLqvya9TDRarWo7ukFl6ASnmuVdE4fVo6+Fm0d3+EfFH755ZcxadIkuLu7l9hOo9GgZs2aFtt8fX1x9erVMo9pNBqr3E9cXBzSLl6AZ+sBUCicoLv0F4w3r8Gr9QDoL/8N460MeLUZCIXCCdlxX+QvRJjg3iAKplsaiLxceLUpemzBJy8AKBRO8GrTH4ab16C79Nf9ba3vb9Nf/vtefwOLOX4AjPfaFn5ceByRpwVMBlz/cRFgzJPmaNOczMcbcgGTATf/XFvqvKT2wgSFygW4ewMwGctQm+LWMgAw5iE77ouy17bNAKRdvCB9NsZ8nu8m/lJKTUqoq16Ly2kXcanANWPLXDxb94cxTw+3xyItjsmvS0axc/Fs3R9pF84jLi7O5msaKN9zrfBzwh5zsuVn6dKlMObpSz4vefr8dpXw2lDeOvLHiOXLl8NoKOW5Vonn9GH9cfS1aAuH//rJVlqttkiCdnFxgV6vL3NfycnJ9pqW3cTHxwMAnP2DAADGO1nSY+3Zgxb7DFnp0nEKZ1fp/60da42zn2W7YrfZeLy1YwtuBwBj9tUHnpOZed2l9WEmdHfv7ytHbQput3UO1tZhPsfm4++eiCvXXAr2Vda5FLxuCrYpra/4+Hh4e3tbbWNNeZ5rhZ8T9ppTaQ4cOGDTuAcOHEBiYqLdxi1JVXzNepgcPGj5GlqYI87pw6qqX4sPTahxdXUtEmD0ej3c3NzK3Jdara5yb+VmZ2cDAPI0F+Aa2BhKDx/pccH/dw1sDJXPo8D5owAAkaeT+rB2rGtg4yJj5WVeAACpXbHbbDze2rEFtwOA0rsW8jIvPNCczMzrLq0PM4XrI0XW8iC1Kbjd1jlYW0fr1q0t5qPyrlWuuRReW1nmUvC6KdimtL5at26N8PDwIvsLMxqNSE5OLtdzrfBzorxzslWrVq2wcePGUsdt1aqVXce1xh51JKBly5ZV5pw+rBx9LZrHL43Df/1kq4CAAGRmZlpsy8zMLPIrKVsolcoq99OhQwfUrReEW/EbIIQJrnWaQukVgJvxG+ASGAqlZ03c3P89hDDBu8Nr+QtROEGbehhOnv5QOLvh5v6ixwphsli7ECbc3L8RKq8AuNZpen9b/P1tLoGh9/r7vpjjN0B5r23hx4XHUTi7A04q+HZ/B1A6l9CnlTmZj1e5AU4qeLUfWuq8pPYKJwiDHnikBuCklI4pvTbFrWUDoHSGd4fXyl7b/RtQt16Q9HVs83l+JLxrKTUpoa4u7gisWw91ClwztszlVvxGKJ1dkHsuweKY/LrULHYut+I3om5Qfenr5Lb8AOV7rhV+TthjTrb8jB49Gkpnl5LPi7NLfrtKeG0obx35o8SoUaOgVJXyXKvEc/qw/jj6WrTFQxNqwsLCcPToUelbUkIIHDlyBGFhYQ6emX0olUp8vGghtCmHkLl5JvTpp+H95CBozx5C5paPUD28K7Qph6CJjYFBcx5uDaIAYUJu6mGo3D0h8nKhTTkITazlsZrYGOgu/w2TLge6y3/nf+A15SA8wp6FyNPd33b2ELyeHAR9+mlkbpl1r79D0MTOtHL8IXjfa2t+rHTzgD79dIF2M6FNOQiRp4VHRDcYr6dB5VFDWkPpc7p/PAy5qNa4HW5sn1/qvMztez3fE/rzR+BSvQZgMkrjllybmcWsJb9vlUcNGDTny17blMP4eNFC6YlpPs83fpiLaiFtS6hJCXXVa7Hk40VYXOCaKW0umZvz1/fu2DHITT1scYw+/TSU7p5W+zIf9/HCBTa/sFTEc6Ky5uTi4oJ3x44p8by8O3YMP1D6EHFxccHLL73Ic/pPUNHfLS+LwvepycjIEFqtVgghxO3bt0Xr1q1FTEyMOHPmjIiJiRHt2rXjfWpKu3+L1XvClHafmgL3jSn1PjX3+rO2vVz3qbm3zeI+NebjrN2nJr99+e5TU8xanJTCzb2q3KdGKXz9S79PjZ+1+9QE1S/5PjVB9a3fp6bAcbaq8PvUPMCcyor3qZEP3qem/Bx9Ldo6vsO/0l1QSEiIxVe6Q0JCMGvWLOk+FMeOHcPUqVORkpKCkJAQTJ8+HU2aNLG5f6Px4fh6pNHIOwo7+o7C6enpvKNwOe7ea+/nmj3m9CAcfffZh+U1q6orWEej0cg7Cj8AR1+Lto5fpUJNRXP0SalIcl5bZWId7YN1tA/W0T5Yx/JzdA1tHf+h+UwNERERUUkYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWHB5qdDodJk2ahKioKERHR2PNmjXFtv3111/x3HPPISIiAi+99BL++uuvSpwpERERVWUODzVz587F8ePHsXbtWkydOhXLli3DL7/8UqTdmTNn8N577+HNN9/Etm3bEBoaijfffBNardYBsyYiIqKqxqGhJicnBxs3bsSHH36Ipk2bonPnzhg+fDjWr19fpO3evXvRqFEj9O7dG/Xq1cO7774LjUaDs2fPOmDmREREVNWoHDn4yZMnYTAYEBERIW2LjIzEypUrYTKZ4OR0P3N5e3vj7NmzSEhIQEREBDZv3gwPDw/Uq1evzOMajUa7zL8qMa9JjmurTKyjfbCO9sE62gfrWH6OrqGt4zo01Gg0Gvj4+MDFxUXa5ufnB51Oh+zsbNSoUUPa3q1bN/z+++94+eWXoVQq4eTkhFWrVsHLy6vM4yYnJ9tl/lWRnNdWmVhH+2Ad7YN1tA/Wsfyqeg0dGmq0Wq1FoAEgPdbr9Rbbs7KyoNFoMGXKFISFheHbb7/FxIkTsWXLFvj6+pZpXLVaDaVSWb7JVzFGoxHJycmyXFtlYh3tg3W0D9bRPljH8nN0Dc3jl8ahocbV1bVIeDE/dnNzs9g+f/58BAcH45VXXgEAxMTE4LnnnkNsbCxGjBhRpnGVSqVsL2w5r60ysY72wTraB+toH6xj+VX1Gjr0g8IBAQHIysqCwWCQtmk0Gri5ucHT09Oi7V9//YXGjRtLj52cnNC4cWNcuXKl0uZLREREVZdDQ01oaChUKhUSExOlbQkJCVCr1RYfEgaAmjVrIiUlxWLbuXPnUKdOncqYKhEREVVxDg017u7u6N27N6ZNm4Zjx47ht99+w5o1azBkyBAA+e/a5ObmAgAGDBiADRs2YOvWrbhw4QLmz5+PK1eu4IUXXnDkEoiIiKiKcOhnagBg4sSJmDZtGoYOHQoPDw+MHj0aXbp0AQBER0dj1qxZ6NOnD7p164a7d+9i1apVuHr1KkJDQ7F27doyf0iYiIiI5Mnhocbd3R1z5szBnDlziuw7deqUxeP+/fujf//+lTU1IiIieog4/J9JICIiIrIHhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFh4canU6HSZMmISoqCtHR0VizZk2xbU+dOoWXXnoJzZs3R8+ePREfH1+JMyUiIqKqzOGhZu7cuTh+/DjWrl2LqVOnYtmyZfjll1+KtLt9+zaGDRuGRo0aYfv27ejcuTPeeustXL9+3QGzJiIioqrGoaEmJycHGzduxIcffoimTZuic+fOGD58ONavX1+k7ZYtW1CtWjVMmzYNQUFBePvttxEUFITjx487YOZERERU1agcOfjJkydhMBgQEREhbYuMjMTKlSthMpng5HQ/cx08eBBPP/00lEqltC02NvaBxjUajQ8+6SrKvCY5rq0ysY72wTraB+toH6xj+Tm6hraO69BQo9Fo4OPjAxcXF2mbn58fdDodsrOzUaNGDWl7WloamjdvjsmTJ+P3339HYGAgxo8fj8jIyDKPm5ycbJf5V0VyXltlYh3tg3W0D9bRPljH8qvqNXRoqNFqtRaBBoD0WK/XW2zPycnB6tWrMWTIEHz66af48ccf8frrr+Pnn3/Go48+WqZx1Wq1xTs+cmA0GpGcnCzLtVUm1tE+WEf7YB3tg3UsP0fX0Dx+aRwaalxdXYuEF/NjNzc3i+1KpRKhoaF4++23AQBNmjTB3r17sW3bNvzrX/8q07hKpVK2F7ac11aZWEf7YB3tg3W0D9ax/Kp6DR36QeGAgABkZWXBYDBI2zQaDdzc3ODp6WnR1t/fHw0aNLDYVr9+faSnp1fKXImIiKhqc2ioCQ0NhUqlQmJiorQtISEBarXa4kPCABAeHo5Tp05ZbEtNTUVgYGBlTJWIiIiqOIeGGnd3d/Tu3RvTpk3DsWPH8Ntvv2HNmjUYMmQIgPx3bXJzcwEAL774Ik6dOoWlS5fiwoULWLx4MdLS0tCrVy9HLoGIiIiqCIfffG/ixIlo2rQphg4diunTp2P06NHo0qULACA6Oho//fQTACAwMBCfffYZ/vjjD/To0QN//PEHVq9ejYCAAEdOn4iIiKoIh35QGMh/t2bOnDmYM2dOkX2Ff90UGRmJzZs3V9bUiIiI6CHi8HdqiIiIiOyBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkocyhRqfTVcQ8iIiIiMqlzKGmXbt2mDp1Ko4dO1YR8yEiIiJ6IGUONcOGDUN8fDwGDhyIbt264bPPPoNGo6mIuRERERHZrMyhZuTIkdi5cyfWr1+PyMhIrFq1Ch07dsSIESOwc+dO5OXlVcQ8iYiIiEr0wB8UbtGiBWJiYrB3714sXrwYWq0WY8eORXR0NObMmYPLly/bc55EREREJSrXt5/S09OxZs0aLFmyBIcOHUL9+vXRp08f7N69G926dcNPP/1kr3kSERERlUhV1gPu3LmDnTt3YuvWrUhISICbmxu6du2KqVOnokWLFgCA8ePH480338RHH32Ebt262X3SRERERIWVOdS0a9cOer0eYWFhmDFjBrp164Zq1aoVaadWq3HixAm7TJKIiIioNGUONa+88gr69euHBg0alNjutddew7///e8HnhgRERFRWZQ51HzwwQc2tXvkkUfKPBkiIiKiB8V/JoGIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkgaGGiIiIZIGhhoiIiGSBoYaIiIhkweGhRqfTYdKkSYiKikJ0dDTWrFlT6jGXLl1CREQEDhw4UAkzJCIiooeBytETmDt3Lo4fP461a9fiypUrGD9+PGrXro2uXbsWe8y0adOQk5NTibMkIiKiqs6hoSYnJwcbN27Ep59+iqZNm6Jp06Y4c+YM1q9fX2yo+eGHH3D37t1KnikRERFVdQ799dPJkydhMBgQEREhbYuMjERSUhJMJlOR9llZWZg3bx5mzJhRmdMkIiKih4BD36nRaDTw8fGBi4uLtM3Pzw86nQ7Z2dmoUaOGRfvZs2fjhRdewOOPP16ucY1GY7mOr4rMa5Lj2ioT62gfrKN9sI72wTqWn6NraOu4Dg01Wq3WItAAkB7r9XqL7fv27UNCQgJ27NhR7nGTk5PL3UdVJee1VSbW0T5YR/tgHe2DdSy/ql5Dh4YaV1fXIuHF/NjNzU3alpubiylTpmDq1KkW2x+UWq2GUqksdz9VidFoRHJysizXVplYR/tgHe2DdbQP1rH8HF1D8/ilcWioCQgIQFZWFgwGA1Sq/KloNBq4ubnB09NTanfs2DGkpaXh7bfftjj+jTfeQO/evcv8GRulUinbC1vOa6tMrKN9sI72wTraB+tYflW9hg4NNaGhoVCpVEhMTERUVBQAICEhAWq1Gk5O9z/D3Lx5c+zatcvi2C5dumDmzJlo165dpc6ZiIiIqiaHhhp3d3f07t0b06ZNw0cffYSMjAysWbMGs2bNApD/rk316tXh5uaGoKCgIscHBATA19e3sqdNREREVZDD7yg8ceJENG3aFEOHDsX06dMxevRodOnSBQAQHR2Nn376ycEzJCIiooeBw+8o7O7ujjlz5mDOnDlF9p06darY40raR0RERP88Dn+nhoiIiMgeGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWGGqIiIhIFhhqiIiISBYYaoiIiEgWHB5qdDodJk2ahKioKERHR2PNmjXFto2Li0OvXr0QERGBnj174r///W8lzpSIiIiqMoeHmrlz5+L48eNYu3Ytpk6dimXLluGXX34p0u7kyZN466230LdvX2zduhUvvvgixowZg5MnTzpg1kRERFTVqBw5eE5ODjZu3IhPP/0UTZs2RdOmTXHmzBmsX78eXbt2tWi7Y8cOtG7dGkOGDAEABAUF4ffff8fPP/+Mxo0bO2L6REREVIU4NNScPHkSBoMBERER0rbIyEisXLkSJpMJTk7330h64YUXkJeXV6SP27dvV8pciYiIqGpzaKjRaDTw8fGBi4uLtM3Pzw86nQ7Z2dmoUaOGtL1hw4YWx545cwb79+/Hiy++WOZxjUbjg0+6ijKvSY5rq0yso32wjvbBOtoH61h+jq6hreM6NNRotVqLQANAeqzX64s97saNGxg9ejRatGiBp59+uszjJicnl/mYh4Wc11aZWEf7YB3tg3W0D9ax/Kp6DR0aalxdXYuEF/NjNzc3q8dkZmbitddegxACS5YssfgVla3UajWUSmXZJ1yFGY1GJCcny3JtlYl1tA/W0T5YR/tgHcvP0TU0j18ah4aagIAAZGVlwWAwQKXKn4pGo4Gbmxs8PT2LtL927Zr0QeGvvvrK4tdTZaFUKmV7Yct5bZWJdbQP1tE+WEf7YB3Lr6rX0KFf6Q4NDYVKpUJiYqK0LSEhAWq1usg7MDk5ORg+fDicnJywbt06BAQEVPJsiYiIqCpzaKhxd3dH7969MW3aNBw7dgy//fYb1qxZI70bo9FokJubCwBYtWoVLl68iDlz5kj7NBoNv/1EREREABz86ycAmDhxIqZNm4ahQ4fCw8MDo0ePRpcuXQAA0dHRmDVrFvr06YOdO3ciNzcX/fv3tzj+hRdewOzZsx0xdSIiIqpCHB5q3N3dMWfOHOkdmIJOnTol/b+1uwwTERERmTn8n0kgIiIisgeGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWVoyeg0+kwffp07Nq1C25ubhg2bBiGDRtmte2JEycwdepUnD59Go0aNcL06dPRrFmzSp6xJaPRiD179iA9PR2PPvoonnzySQAosk2pVJZ6vJ+fH5KTk5GSkgKj0Yjbt2/j9u3buHTpEo4ePVqZy5I9Dw8PODs7w2g04u7duzAajQAAhUIBIUSZ+3NycoKzszMMBgOEEFAqlVCpVFAqlQgICECLFi2gUChw6tQppKen4/r16zCZTFAoFHj00Ufh7+8Pd3d3PPLII4iIiMCdO3egUCgQFBSEkydPYvv27dDpdKhZsyaioqLQsGFDdOrUCR06dJCuLa1Wi3HjxuHMmTNo0KABnn/+eWRmZuLAgQMQQuDxxx/HyJEjAQArVqxASkoKGjZsiJEjR0KpVCIuLg5xcXEwmUyoUaMGatasiYyMDGRkZODw4cPIyMiAl5cXevXqhbfeegsHDhxAeno6atasKV3HANChQwfpeWBmNBql/o1GI7Kzs6FQKPD444/jzTfflPoyP1+MRqPFHM1tLl++DI1GA39/fwQGBpb43HoQhZ/PrVq1wqpVqyxq5eLi8sD9Wps/AKk2AKQ1ZWRkoGbNmqhevbrd1lNcvfR6fZFrojzrtOW1j6qe8py/KnPuhYPNmDFD9OzZUxw/flzs2rVLREREiJ9//rlIu7t374p27dqJ2bNni7Nnz4qYmBjRtm1bcffuXZvHMhgM4vDhw8JgMNhl7rGxsaJuvSABQPrx9fMXvv41LbbVrRckYmNjbToeCqf8/zopi24377P2Y25fuE3Bx6W1USgFoChmn5P1PotrU9wabF2jtfGsjVvWMQv+19Z1FFefwmMVrq/Vmlkbt1C/JdW60Ji+/jVFbGys6NWrV/HzKdCPwkkpFEqVRTsnlbNwc3MvuVYl1l1RpI2vf00xd+5cYTAYRGxsbJHnRH57hdU1eVT3FE4qZ5uu7+KeW/Z6Pheem9LZRYwbN+7B+7VSJ4/qniWe84Baj4qNGzfaZT3W6jVu3DihdHax7zor4PyUh71f++WotPNXUg0r49zbeg4VQjzAX0vtJCcnB61bt8ann36KVq1aAcj/G+T+/fvx9ddfW7TdtGkTPvnkE/z222/S36afffZZ/Otf/0KfPn1sGs9oNCIxMRHh4eHlTpCbN29Gv3794N7wCXi2HgBn/yDcTtiB7N1r4d7wCXi1GQhn/yDkaS7gVvwGaFMOYdOmTdJcrR2fp7mAm/u/hzblEFwCGqJaSDSyd6+VxnRv2BJebQYgL/sqru+YbzEfl4BG0F9LuTd2wf7yx/Z+aghyTv2vQJuBRdq4BDSA/loKvJ8aiuqRPYrMR38t5d48rB1/EC4BDVGj878LreUwfHu8B2fvWtI4Kq8AGG5etdJP/ljmtboGhiJ791fS2NbXdhAA4BH5PO4kbId7w6hi1pbfh3mNBetZtPaNUKPzv4qtj5OHL0x3rhd7vMqrFgw3r91rn3qv9nuhv3a2xHHzKeDe8Alp7eY155/zBVZqYFkza/uqNekAocuRalVc3e/P21yrhtBfO1vs+S7I6tiph/H+e+9h/oIFcG9g7bwUnc/1ncuRcyKuxNr69Xy/xOeWPZ7PpdV73LhxmDt3rs39Ogc0hP6qtWv4/jVXLaSdxTkvzxqLe30p3NcHH3yAefPmFVvvsq6ztPEcxZ6v/XJky/nr1auX1RpW1rm39Rw6NNQcOXIEgwYNQmJiovRW54EDB/DGG28gMTERTk73P/IzefJk6HQ6iyfYhAkT4OLighkzZtg0nr0ubKPRiMcaNMR1lwD49fkPFAonCJMRl1ePgItfEPz75m8zE8KEzM0z4ZuXgXMp+X+wFT6+YFtNbAz0mRdhzMsDtNlQqFzgVq85/Pv+BxACF5cMAXQ38w9wUsKtfgvkXb8AF//68LfW3+aZ0GecB4D8Nlbmp9k8E3rNBTj71oPh+kXUHrEaCielNB+d5gKE9hbc6qnh33dysXMOvHdcwX7zNBdQe8RqQKFARmwMcs8nwr1+hPV5xMYg9+JxBI7+Gumfj4KzXz3kZZawttiZ0F48BpiMxfdpXptfPeRlXoSzb13o0v5CnTHfwEnpbPM69JoLUHjVhuHSMbg/Flns/LXnE+EaFAbD9TQ4+9ZF3vU0mIxGQHdHOo9Wjzt3BK5B4ajZ9z+48um/4OIfBP8++ef88uoR0uPialbcerTnExE4eh2uLB9a4vm7P++LcPbLf2Fy8Q8qpv1M5F5MhjDo4PZYJGr2K+aauJgE57rNUbPflFLnbTLokfbxwBKvDe35RNQd+z2cVC7S9oLPrQd5Xhd+PttSb/3FJOTcuV3ir2jM/WY614S+xGs4//mlUKDYNmVZo7XXJ2t9nfr7BKp7ecOlXnix9S7LOksb70HPjz0w1BTP1vN39vQpJCcnW9SwMs+9refQoR8U1mg08PHxsXjC+Pn5QafTITs7u0jbmjVrWmzz9fXF1atXyzyu0Wgs109cXBzSLl6AZ+sB0knUXfoLxpvX4NVmgMWJBQCFwgmerfsj7cJ56XfnhY8v2NarzQAYb14Dcm4AwgSRlyv1q7v01/1AA+T/Yd4gEsabGfAqrr/W/WG8lQHjrYxi5+fVuj+MN6/BvUEkDDev5Y9TYD6mWxn35jGwxDmbjyvYr7k/hcIJ7o9FAsa84ufRZgBEnhZ3E3/Jn89jpaytTX8gL7fkPs1reyzy3hqjIPK00F/+u0zrMN68BpFzAzAZS5w/jHlw9n5UGst48xrEnUyL82j1OJMRzj61ob/8d/611Pr+OS/4uLiaFbceGPNw88+1pZ6/+/POyK/VrYwS2veHyNMCwgT3BpHFXxN5erg3iLJp3neO/lTqtQFjXn67AtsLPrfs8Xy2pd7GPD2WLl1qU79upV7D+c+vktqUZY2lvb6Y+3r33XdhzNOXWO+yrLO08R70/NjrByj/a78cf2w9f3/++WeRGlb2ubeFQz8orNVqi/wNwPxYr9fb1LZwO1skJyeX+ZiC4uPjAQDO/kHSNuOdrCLbCnL2C7I41pa2FtvutTWPU5DC2dXm/kpro7j3N+CC45Tl+MLzK7zd3H9p/Riy88NqRazN2hptXYfQ3rZpLGHQW4xl6xyFMa/ItWTrtVXSegxZ6TaPD5St7ua2xbUpbb953uZzbuu1UXh7fHw8vL29rR5bksLPZ1vrfeDAASQmJpbarz2vYVvWaO31yVpf5i8f2Gud9ph7RSvva78c2Xr+Dh48iK5du1rUsCqee4eGGldX1yKhxPzYzc3NpraF29lCrVaX660w87tIeZoLcA1sDABQevgU2VZQXuYFAEDr1q3vbyulrcW2e23N4xQk8nQ291daG/MfxgXHKcvxhedXeLu5/9L6UXnXqrC1WVujretQuFcH7t4odSxzmDGPZescFUrnIteSrddWSetR+TwKnD9q0/hA2epubltcm9L2m+dtPue2XhuFt7du3Rrh4eFWxypJ4eezrfVu1apVieOZ+7XnNWzLGq29PlnrKyIiAgcOHLDbOu0x94piNBqRnJxc7td+ObL1/LVs2RKA5Z+flXnuzeewNA799VNAQACysrJgMBikbRqNBm5ubvD09CzSNjMz02JbZmZmkV9J2UKpVJbrp0OHDqhbLwi34jdACBMAwLVOUyi9AnBz//1tZkKYcCt+I+oG1UeHDh2sHl+w7c39G6D0CgCq1QAUTlA4u0n9utZpCrh63T/ASQlt6mEovWriZnH9xW+E0rMmlJ41cXP/98W38QqANjUBKq+A/HEKzMfJs+a9eRRz/L05m48r2K+5PyFM0J5LAJTOJfajcHbHI+Fd8+dzLqHkte3fCDi73euzhPVLfQVAm3oYCmd3uASGlmkdSq8AKKrVAJyUJc4fSmfkZadLYym9AqDw8LM4j1aPc1IiL+sKXAJD86+l+PvnvODj4mpW3HqgdIZX+6Glnr/7866ZX6uSrpf9G6FwdgcUTtCmJhR/TTi7QJt62KZ5e0R0K/XagNI5v12B7QWfW/Z4PttSb6WzC0aPHm1Tv7mlXsP5z6+S2pRljaW9vpj7WrhwIZTOLiU/p8uwztLGe9DzY68foPyv/XL8sfX8tW/fvkgNK/vc28KhoSY0NBQqlcrirc2EhASo1WqLDwkDQFhYGI4ePSrdQ0QIgSNHjiAsLKwypwwg/6R+vGghtCmHkLl5JnSX/4bI06F62LPQphzM/+Df5b9h0uVAd/lvZG6eCW3KIXy8cIF0cgofb26riY2BNuUQlG4e8I7qIX2mJr/fmdCnn4Zv5+H3J2MyIjf1MJRu1aE9ewia2ML9zYT27CFUD+8KpXt1aFMOFZmfuY3SzQO5qYfgEfYsRJ7OYj4q9+r35lHM8ffmrE8/bbmWs4fg9eQg6NNP53+4NOUwVB6+xfSTP5bI0+L6trmoHvYsclMOQ+nmWfzaUg4CebnwCH+ulLVVv9eXB3JTD0PkaZG5ZVYxta9eaB3362O4eBRO1bxLnL/Kwxe61IR7YyWgetizcH7E2+I8WjsOJiN0544gc8us/Gvp3pr16afh/eSge4+Lr1nmlo+s7qsW0hY3ti8o4fwVnrdnfq3cPUs43welz9Tkplo7NzHQph7GO2PeRu65hGKvmYLzhtGAaiFtS51j3rWUYp9b9ng+21Lvd8eOKfU+LuZ+c1Pv1dLqNWx+fnmielhXq23KusaSXl8K9uXu7o53x44psd5lWWdp4z3o+aGKVZ7zVyXPvd2+RP6AJk+eLLp37y6SkpLEr7/+Klq0aCF27twphBAiIyNDaLVaIYQQt2/fFq1btxYxMTHizJkzIiYmRrRr167q3afG38p9aoLql+E+NUqr98d48PvUKG1vY/U+NVb2FXeflVLvGaO0/K+1/WW6T42y7GMqCtSg2DrYWJ9i71NT6L8W/2/f+9T42Xyfmvz/t899agrXvei59yv1PjXK/FpYWZOHZxnuU1PMc8tez+eKvk+Nny33qXm0tv3uU2OlXhV6nxo7np/y4H1qSlfa+SvzfWrsfO4fivvUAPkfAJ42bRp27doFDw8PvP7663j11VcBACEhIZg1a5b0Hfdjx45h6tSpSElJQUhICKZPn44mTZrYPJbRaP+v9RmNvKPww4h3FK74OwoX/Pqn+ZsScbyj8APdUTgyMvKB1mnt9claP3K/o3BFvPbLUUnnr7QaVvS5t/UcOjzUVCY5X9hyXltlYh3tg3W0D9bRPljH8nN0DW0dn/+gJREREckCQw0RERHJAkMNERERyQJDDREREckCQw0RERHJAkMNERERyQJDDREREckCQw0RERHJAkMNERERyYLK0ROoTOabJ5tviS8n5jXJcW2ViXW0D9bRPlhH+2Ady8/RNTSPW9o/gvCP+mcS9Ho9kpOTHT0NIiIiegBqtbrEf5fsHxVqTCYTDAYDnJycoFAoHD0dIiIisoEQAiaTCSqVCk5OxX9y5h8VaoiIiEi++EFhIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGhnQ6XSYNGkSoqKiEB0djTVr1jh6Sg5x7do1vP3222jZsiWefPJJzJo1CzqdDgCQlpaGV199FeHh4ejWrRv+97//WRy7b98+9OjRA2FhYRgyZAjS0tIs9n/55Zd48sknERERgUmTJkGr1Ur75Fz/ESNGYMKECdLjEydOoH///ggLC0Pfvn1x/Phxi/Y7duzAM888g7CwMIwaNQo3btyQ9gkhMH/+fLRu3RotW7bE3LlzYTKZpP1ZWVkYPXo0IiIi0KlTJ2zbtq3iF1iB9Ho9pk+fjieeeAJt27bFwoULpVu8s462S09Px5tvvokWLVqgU6dO+PLLL6V9rGPp9Ho9evTogQMHDkjbHPl6WNrY5SbooTdjxgzRs2dPcfz4cbFr1y4REREhfv75Z0dPq1KZTCYxYMAAMXz4cHH69Glx6NAh0blzZzF79mxhMplEz549xXvvvSfOnj0rVq5cKcLCwsTly5eFEEJcvnxZhIeHi88//1ycPn1ajBkzRvTo0UOYTCYhhBC//PKLiIyMFL///rtISkoS3bp1E9OnT5fGlmv9d+zYIYKDg8X48eOFEELcvXtXtGvXTsyePVucPXtWxMTEiLZt24q7d+8KIYRISkoSzZs3F1u2bBF///23GDRokBgxYoTU3+effy7at28vDh06JPbv3y+io6PFZ599Ju1/8803xdChQ8WpU6fEhg0bRLNmzURSUlLlLtqOJk+eLLp06SKSkpLEvn37RKtWrcS3337LOpbRgAEDxNixY8W5c+fEr7/+KsLCwsSuXbtYRxvk5uaKUaNGieDgYBEfHy+EEA59PSxtbHtgqHnI3b17V6jVaumCFUKI5cuXi0GDBjlwVpXv7NmzIjg4WGg0Gmnb9u3bRXR0tNi3b58IDw+XXuyEEGLo0KFiyZIlQgghPv74Y4t65eTkiIiICKmmL7/8stRWCCEOHTokmjdvLnJycmRb/6ysLPHUU0+Jvn37SqFm48aNolOnTtKLm8lkEp07dxaxsbFCCCHGjRsntRVCiCtXroiQkBBx8eJFIYQQ7du3l9oKIcTWrVtFx44dhRBCXLhwQQQHB4u0tDRp/6RJkyz6e5hkZWWJJk2aiAMHDkjbVq1aJSZMmMA6lkF2drYIDg4Wp06dkra99dZbYvr06axjKc6cOSOef/550bNnT4tQ48jXw9LGtgf++ukhd/LkSRgMBkREREjbIiMjkZSUZPFWqtz5+/vjs88+g5+fn8X2O3fuICkpCU2aNEG1atWk7ZGRkUhMTAQAJCUlISoqStrn7u6Opk2bIjExEUajEcnJyRb7w8PDkZeXh5MnT8q2/nPmzEGvXr3QqFEjaVtSUhIiIyOlfzdNoVCgRYsWxdbx0UcfRe3atZGUlIRr164hPT0dTzzxhLQ/MjISly9fRkZGBpKSkvDoo4+iTp06FvuPHj1awSutGAkJCfDw8EDLli2lbSNGjMCsWbNYxzJwc3ODu7s7Nm/ejLy8PKSmpuLIkSMIDQ1lHUtx8OBBtGrVCt9//73Fdke+HpY2tj0w1DzkNBoNfHx8LP7VUj8/P+h0OmRnZztuYpXM09MTTz75pPTYZDJh3bp1aN26NTQaDWrWrGnR3tfXF1evXgWAEvffunULOp3OYr9KpYK3tzeuXr0qy/rv378fhw8fxsiRIy22l1bHjIyMYvdrNBoAsNhvDqDm/daOvXbtmn0WVcnS0tIQGBiIrVu3omvXrnj66aexfPlymEwm1rEMXF1dMWXKFHz//fcICwvDc889h6eeegr9+/dnHUvx8ssvY9KkSXB3d7fY7sjXw9LGtgeV3Xoih9BqtUX+GXbzY71e74gpVQnz5s3DiRMnsGnTJnz55ZdWa2SuT3E11Ov1yM3NlR5b2y+EkFX9dTodpk6diilTpsDNzc1iX0l1AoDc3Nwy1bFgnUrr+2GTk5ODCxcu4LvvvsOsWbOg0WgwZcoUuLu7s45llJKSgo4dO+K1117DmTNnEBMTgzZt2rCOD6i0tVXk62Fl1JWh5iHn6upa5IIwPy78h9I/xbx587B27VosWrQIwcHBcHV1LfKuiV6vl+pTXA09PT3h6uoqPS68393dHUajUVb1X7ZsGZo1a2bxrpdZcXUqrY7u7u4WL2yFa+ru7l5q3w8blUqFO3fuYMGCBQgMDAQAXLlyBd9++y2CgoJYRxvt378fmzZtwp9//gk3Nzeo1Wpcu3YNn3zyCerWrcs6PgBHvh6WNrY98NdPD7mAgABkZWXBYDBI2zQaDdzc3ODp6enAmTlGTEwMvvjiC8ybNw/PPvssgPwaZWZmWrTLzMyU3gYtbr+/vz+8vb3h6upqsd9gMCA7Oxv+/v6yq/+PP/6I3377DREREYiIiMD27duxfft2RERElKuOAQEBACC97V/w/837izv2YeTv7w9XV1cp0ADAY489hvT0dNaxDI4fP46goCCLP/SaNGmCK1eusI4PyJGvh6WNbQ8MNQ+50NBQqFQqiw9aJSQkQK1Ww8npn3V6ly1bhu+++w4LFy5E9+7dpe1hYWH466+/pLdOgfwahYWFSfsTEhKkfVqtFidOnEBYWBicnJygVqst9icmJkKlUqFx48ayq//XX3+N7du3Y+vWrdi6dSs6deqETp06YevWrQgLC8PRo0ele60IIXDkyJFi65ieno709HSEhYUhICAAtWvXttifkJCA2rVro2bNmggPD8fly5ctfreekJCA8PDwylm4nYWFhUGn0+HcuXPSttTUVAQGBrKOZVCzZk1cuHDB4m//qampqFOnDuv4gBz5elja2HZht+9RkcNMnjxZdO/eXSQlJYlff/1VtGjRQuzcudPR06pUZ8+eFaGhoWLRokUiIyPD4sdgMIhu3bqJsWPHitOnT4tVq1aJ8PBw6d4IaWlpQq1Wi1WrVkn3ZejZs6f0VdEdO3aIFi1aiF9//VUkJSWJ7t27i5iYGGlsOdd//Pjx0tdYb9++LVq3bi1iYmLEmTNnRExMjGjXrp309cwjR46Ipk2big0bNkj3BXnzzTelvlatWiWio6NFfHy8iI+PF9HR0WLNmjXS/mHDholBgwaJv//+W2zYsEGo1eqH7r4gBY0YMUIMHDhQ/P3332L37t2idevWYu3ataxjGdy6dUu0a9dOjBs3TqSmpor//ve/omXLluLbb79lHcug4Fe6Hfl6WNrY9sBQIwM5OTnigw8+EOHh4SI6Olp88cUXjp5SpVu1apUIDg62+iOEEOfPnxevvPKKaNasmejevbvYu3evxfFxcXGiS5cuonnz5mLo0KHSvSwK9t+mTRsRGRkpJk6cKHJzc6V9cq5/wVAjRP4NzXr37i3UarXo16+f+Ouvvyzax8bGivbt24vw8HAxatQocePGDWmfwWAQH330kYiKihKtWrUS8+bNk14ohRAiMzNTvPnmm0KtVotOnTqJ7du3V/wCK9CtW7fEuHHjRHh4uGjTpo1YunSptF7W0XZnzpwRr776qmjRooV45plnxBdffME6llHBUCOEY18PSxu7vBRC3HvvjoiIiOgh9vD90p+IiIjICoYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiIiIpIFhhoiIiKSBYYaIiIikgWGGiKqMJ06dcKECRPK1cfSpUsREhJipxkRkZwx1BAREZEsMNQQERGRLDDUEFGFysvLw8yZM/HEE08gKioK48ePx40bN6T9GzduRJ8+fRAeHo7mzZujV69e+Pnnn4vtz2g0YvXq1ejRoweaN2+O8PBwvPjii4iPj5faLF26FJ07d0ZcXBx69uyJZs2a4dlnn8XWrVst+srIyMD48ePRpk0bREREYNCgQTh69Ki032QyYfXq1ejcubPUx9dff22/4hCRXTHUEFGF+vnnn/HXX39h9uzZGD9+POLi4vDGG2/AaDRi/fr1mDJlCp555hmsWrUK8+fPh4uLC95//31cvXrVan/z58/HihUrMHDgQHz22WeIiYlBdnY2xowZA61WK7XTaDSYMWMGhgwZgtWrV6NOnToYP348UlJSAAB3797FSy+9hAMHDmDcuHFYtmwZXF1dMWzYMJw/fx4AMG3aNCxZsgTPP/88Vq5cia5du+Kjjz7C8uXLK7xuRFR2KkdPgIjkzcfHB59//jmqVasmPR41ahR2796NtLQ0vP766xg5cqTUPjAwEH369EFCQgK6d+9epL+MjAy88847GDx4sLTN1dUVo0ePxqlTpxAeHg4A0Gq1+L//+z+0adMGAFC/fn107NgRf/75Jxo2bIgtW7bg8uXL2LJlC0JDQwEALVq0QO/evXHo0CEIIbBhwwa8++67GDFiBAAgOjoaCoUCq1atwssvvwwfH58KqRkRPRiGGiKqUO3bt5cCDZD/jSiVSoVDhw5J34y6desWUlNTceHCBRw4cAAAoNfrrfa3YMECAMCNGzekY/744w+rx5gDDgDUqlULAJCTkwMASEhIQJ06daRAAwDu7u7YuXMnAODbb7+FEAKdOnWCwWCwmP8nn3yChIQEPPPMM2UvCBFVGIYaIqpQ/v7+Fo+dnJzg4+ODW7du4eLFi5gyZQr2798PZ2dnNGjQAI0bNwYACCGs9pecnIzp06cjOTkZ7u7uaNSoEWrXrm31GHd3d4txC7bJzs6Gr69vsfPOzs4GAKvvFgHAtWvXij2WiByDoYaIKpQ5HJgZjUZkZWXBx8cHI0aMgLOzMzZt2oTQ0FCoVCqcPXsW27Zts9rXnTt3MHz4cISEhODHH39EgwYN4OTkhD///FN6h8VW1atXx6VLl4psP3LkCLy8vODp6QkAWLt2LR555JEi7cxBioiqDn5QmIgq1N69ey1+fbNz504YDAaEhobi3Llz6NevH9RqNVSq/L9j7d69G0D+N48KS01NRXZ2NoYMGYJGjRpJ776UdExxoqKikJaWhjNnzkjbdDodRo8ejU2bNiEqKgoAkJWVBbVaLf3cuHEDixcvLhLWiMjx+E4NEVUojUaD0aNHY/DgwTh//jwWLlyIdu3a4bnnnsP8+fOxfv161KpVC56entizZw+++uorALD4JpPZY489Bg8PD6xcuRIqlQoqlQo7d+7Epk2bij2mOH369MHXX3+Nf//733j77bfh4+ODr776Cnl5eXj55ZdRt25dPP/885g8eTIuX76MZs2a4dy5c1i0aBHq1KmD+vXr26U+RGQ/fKeGiCrUyy+/DF9fX4waNQqLFy9Gz549sWzZMigUCqxYsQIBAQGYMGECxo4di6SkJHzyySdo0KABDh8+XKSv6tWrY8WKFRBCYMyYMfjggw9w5coVrFu3Do888ojVY4rj4eGBdevWISwsDDExMRg7dixMJhO++uor1K1bFwAwa9YsvPbaa/juu+8wfPhwrFy5Et26dcOaNWugVCrtViMisg+FKO7TeEREREQPEb5TQ0RERLLAUENERESywFBDREREssBQQ0RERLLAUENERESywFBDREREssBQQ0RERLLAUENERESywFBDREREssBQQ0RERLLAUENERESy8P8LosaMz7RwyQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5rklEQVR4nO3dfVhUdf7/8dcAcmPmLUqrpoYtqIiKUGbSJpZEZi2Cdr/epGnlTW2WJmWQ+tPUbSvv8qZsLc2sNK1WMc22dl01pUUxV9e7TNdUSHRTkNvz+8MvUyM3HoyY4ePzcV1zrfM5533OZ95zlnl1zhlwWJZlCQAAoIbzcvcEAAAAqgKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINUINd+LszTfhdmia8BgDuQagBqsh//vMf/fGPf1S3bt3Uvn17RUdH64knntDu3burfF/5+fmaPHmyPv74Y+fY3r17dd9991X5vkqsWLFCoaGhLo+2bdvquuuu00MPPaS0tDTnujNnzlRoaGiltn/s2DENHTpU//3vf3/xXPfs2aP4+Hi1b99evXr1sl23ZcsWhYaGasuWLb94Du505MgRhYaGasWKFe6eClCtfNw9AcAEe/fu1T333KNOnTrpueeeU6NGjXTs2DEtXrxYd999t9566y116tSpyvZ34sQJLVq0SFOmTHGOpaam6l//+leV7aM8s2bNUuPGjSVJxcXFysrK0uzZszVgwAB98MEHatOmzSVt95///Ke++OKLKpnj7NmzdfToUc2ePVsNGzaskm0C8HyEGqAKvPnmm2rQoIEWLFggH5+f/m916623Ki4uTnPmzNH8+fPdOMOq07ZtWzVv3txlrF27durZs6feeecdTZgwwU0z+0l2drZCQkJ08803u3sqAKoRl5+AKpCVlSXLslRcXOwyXrt2bSUlJen22293GV+5cqX69Omjjh07qnv37nrppZeUn5/vXL5+/Xrdf//9ioiIUPv27RUXF6clS5ZIOn9p4ZZbbpEkjRs3Tj169NDMmTM1a9YsSVJoaKhmzpwp6fyZlPnz56tnz55q3769brvtNr399tsuc/nDH/6gp556SqNGjVKnTp00aNCgSr/+5s2bq0GDBjp69Gi566xevVoJCQmKiIhQt27d9Pzzz+v06dOSzl/aGjdunCTplltu0TPPPFPudk6cOKFx48bp5ptvVocOHdS3b1999tlnzuWhoaH66quvtHXr1otegnn33Xd12223qUOHDnrwwQfLnP/WrVs1ePBgXXfddWrfvr2z3yXvdWJiou69995SdQMHDqywl0eOHNGYMWMUHR2tsLAwde3aVWPGjFF2drZznR49emjGjBmaOnWqbrzxRnXo0EGDBw/Wt99+67KtTz/9VHfddZc6dOigPn36XPSS59/+9jeFhobqH//4h8v4tm3bFBoa6nIpEahJCDVAFejevbuOHj2qe++9V0uWLNH+/fudN7zGxcWpT58+znWXLFmisWPHKiwsTLNmzdLQoUP19ttva9KkSZLOf+AMHz5cYWFhmjNnjmbOnKmrr75aEyZM0Pbt29WkSRNngHn00Uc1a9Ys9evXT3379pUkLVu2TP369ZMkpaSkaMaMGbrrrrs0d+5cxcXFafLkyZo9e7bL/NesWaMrrrhCr732moYMGVLp15+dna3s7Gy1aNGizOVz5szRk08+qU6dOmnGjBkaPny41q5dqz/84Q86d+6cunfvrkcffVTS+ctbjz32WJnbycrKUt++fbVt2zb98Y9/1MyZM9WsWTMNHz5cH330kfP1t2vXTu3atdOyZcvUvXv3Mre1ePFiJScn6+abb9acOXPUsWNHjR8/3mWd3bt3a+DAgapfv75efvllvfbaa4qKitKsWbO0Zs0aSVLfvn31r3/9S4cOHXLWff/999qyZYsSEhLK3Hdubq769++v/fv3Kzk5WW+88Yb69++vv/71r3r55Zdd1n3rrbd04MABTZkyRZMmTdLOnTs1duxY5/INGzZo1KhRCg0N1ezZs3X77bfr6aefLnO/JW666SY1adJEq1atchlfuXKlWrVqpcjIyArrAY9lAagSr7zyihUeHm6FhIRYISEhVpcuXazRo0db27dvd65TVFRkde3a1Xrsscdcal9//XWrT58+Vn5+vrVgwQJr7NixLsuzs7OtkJAQa968eZZlWdbhw4etkJAQa/ny5c51ZsyYYYWEhDifHzhwwAoNDXXWlHj55Zet8PBw6+TJk5ZlWdaDDz5odezY0crLy6vw9S1fvtwKCQmxDh06ZBUUFFgFBQXWmTNnrJ07d1oDBw602rVrZ+3evbvUXE6dOmW1b9/eGj9+vMv2tm7daoWEhFiLFy922f7hw4fLncO0adOssLAw68iRIy7jAwYMsLp162YVFRU5X9ODDz5Y7naKi4utrl27Wk888YTL+PPPP2+FhIRYmzdvtizLsj788ENryJAhzu1a1vn3MDIy0vl6/ve//1kdOnSwXn31Vec6r732mhUZGWnl5uaWuf9du3ZZ9913n/Xdd9+5jA8bNsy67bbbnM9jYmKsmJgYq7Cw0Dk2c+ZMKyQkxPn+JSQkWP369XPZzrx580odHxd66aWXrE6dOllnzpyxLMuycnNzrc6dO1tz584ttwbwdJypAarI448/rr///e966aWX1LdvX9WpU0cff/yx80ZhSTp48KB++OEH9ezZ06V28ODBWrFihWrVqqUhQ4boxRdf1NmzZ7Vz506tXr1a8+bNkySXS1QXs3nzZlmWpR49eqiwsND56NGjh/Ly8lwuMQQHB8vX19fWdnv27KmwsDCFhYWpc+fOSkhI0KFDhzR9+vQyv/GUnp6u/Px89e7d22U8KipKzZo101dffWX7NX311VeKiIhQs2bNXMbvuusuZWZm6sCBA7a2c+DAAf3www+KiYlxGb/wMmF8fLwWLFiggoIC7d69W2vXrtWMGTNUVFSkgoICSdKVV16p2NhY55kiSfrwww/Vq1cv+fv7l7n/tm3b6p133lGzZs307bff6osvvtAbb7yhAwcOlHqPw8PD5e3t7Xx+1VVXSTp/tufcuXP65ptvLvo6ypKYmKicnBytW7dOkrRu3Trl5OQoPj7+orWAp+JGYaAK1atXT71793Z+gO/atUtPP/20pk+frjvvvFOnTp2SJDVq1KjcbZw8eVLJyclav369HA6HWrZsqaioKEmV+x0uJfu64447ylx+/Phx57+vuOIK29t97bXXnN9+qlWrlho0aKCgoKBy1y+5byYwMLDUssDAQP3444+293369GldffXVZW5Hkv73v//Z3o4kNWjQwGW85HWVOHfunCZOnKhVq1apsLBQzZs3V0REhHx8fFzei759++qjjz7Stm3b5O3trW+//VZTp06tcA5vvvmm5s6dq1OnTikwMFDt27dXQEBAqX4EBAS4PPfyOv/fosXFxTp9+rQsyyr1Opo0aXLRHrRs2VLXX3+9Vq5cqfj4eK1cuVI33nhjhe8l4OkINcAvdPz4cSUmJurxxx933stSol27dvrjH/+o4cOH6/Dhw6pbt66k88Hl57Kzs7Vr1y5FREToqaee0oEDB/SXv/xFERER8vX1VW5urt57771KzatkX4sWLSoztDRt2rRS2ysREhJS6ttPFalXr56k8/fDBAcHuyzLzMwsM6RUtK3MzMxS4yVjF364l6dkvR9++MFlvCQIlvh//+//ae3atXrllVd04403qnbt2pKkrl27uqx3/fXXq0WLFkpNTZWXl5eCg4Mr/Ar/xx9/rBdffFFPP/20EhISnF87f/zxx5WRkWHrNUhS/fr15eXlpaysrApfR3kSExOVlJSk/fv3a9OmTfrTn/5ke9+AJ+LyE/ALBQYGysfHR++8847y8vJKLT9w4ID8/PzUsmVLBQcHq0GDBvr8889d1lm1apWGDh2qgoICpaWlKTY2Vl26dHFeEvryyy8lyfmNm59fjihR8l/wJUrO7mRnZys8PNz5OHnypF599VXbH3y/VMeOHeXr66tPPvnEZXzbtm06evSoOnfuXOb8y3LdddfpX//6V6lf0PfRRx+pcePGatmypa05tWrVSr/5zW+UmprqMn7h+5KWlqYuXbro1ltvdQaanTt36uTJky7fdHM4HEpISND69eu1YcMGlxvDy5KWlqa6detqyJAhzkBz9uxZpaWllfoGXUX8/PwUERGhTz/91OXM0YYNG2zV33bbbQoICFBKSoquuOIK3Xrrrbb3DXgiztQAv5C3t7dSUlI0fPhwJSYm6oEHHlDr1q2Vm5urjRs3asmSJXr88cedZyxGjhypCRMmqFGjRurRo4cOHjyoGTNm6IEHHlC9evXUoUMHffzxxwoLC9NVV12lr7/+WvPnz5fD4VBubq6k8/dxSNKmTZvUunVrdezY0Xlm5pNPPlHHjh0VGhqqu+66S+PHj9d///tftW/fXgcPHtTLL7+s5s2bq1WrVtXSn/r162vo0KGaPXu2atWqpZiYGB05ckSvvvqqrr32WmcAKJn/unXr9Lvf/U6tW7cuta1Bgwbpo48+0sCBAzVixAjVr19fK1eu1ObNmzV58mRbwUg6H0KeeuopjR49Ws8995zi4uKUnp6upUuXuqzXoUMHrVmzRkuXLlXr1q21e/duvfbaay7vRYmEhATnV+l///vfV7j/Dh06aOnSpXrxxRcVExOjEydO6I033lBWVpbzOLHrySef1IABAzRixAjdc889OnjwoObOnWurNiAgQHfccYeWLVum++67z/Z9VYCnItQAVaB79+5677339MYbb2ju3Lk6efKkfH191a5dO7388suKjY11rvvAAw+odu3aeuONN7Rs2TJdddVVevjhh/Xwww9Lkl588UVNnDhREydOlHT+rMILL7zgvGdDkurUqaNBgwZp2bJl+uKLL7Rx40bFxsZq1apVeuaZZ9S3b1+lpKRoypQpmjdvnt59910dO3ZMjRo1Uq9evfTEE0+Uebbn1zJy5EgFBgZq8eLFWrZsmerXr6+4uDg98cQTzjMgXbp00Y033qiXXnpJmzZtKvOXFTZu3FhLly7VSy+9pEmTJqmgoEBt2rTRnDlznL+7x67evXvLy8tLc+bM0apVqxQSEqIJEyboySefdK7zzDPPqKCgQK+88ory8/PVvHlzPfroo9q3b582bNigoqIiZx+DgoLUpk0bBQYGXvS+lD59+ujIkSNavny53nnnHQUFBenmm2/W/fffr/Hjx2v//v1lhrqyREVFacGCBfrzn/+sESNGqHnz5po8ebIeeeQRW/Xdu3fXsmXLyv36OVCTOKzK3HkIACjT8ePHFRMToxkzZtSoyzjJycnavn27Vq5c6e6pAL8YZ2oA4Bf497//rc8++0xr165Vq1at1KNHD3dPyZaSX+r33nvvafr06e6eDlAluFEYAH6BvLw8vfnmmyoqKtKf//xn2/f1uNu2bdu0atUqDRgwoNTvEAJqKi4/AQAAI9SM/6QAAAC4CEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAj+Lh7AtWpuLhYhYWF8vLyksPhcPd0AACADZZlqbi4WD4+PvLyKv98zGUVagoLC5WRkeHuaQAAgEsQHh4uX1/fcpdfVqGmJN2Fh4fL29vbZVlRUZEyMjLKXAZX9Mo+elU59Ms+emUfvbLPU3tVMq+KztJIl1moKbnk5O3tXe6bVdEyuKJX9tGryqFf9tEr++iVfZ7aq4vdOsKNwgAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACB4TavLz89W7d29t2bKl3HV27dqlfv36qWPHjkpMTNTOnTurcYZl69GjhxwOh/PRo0cP27U/ryt51IRaHx8fRUVFycfHp8bM2R21rVu3dulV69atbde6c94cW9VTGxwc7FIXHBxcqf26o1clfwy45HGxX1n/cy1atHCpbdGihe3aYcOGudQOGzbMdm1QUJBLr4KCgmzXtmnTxmW/bdq0sV3r6+vrUlvR3yu60JVXXulSe+WVV9qubdasmUtts2bNbNf+kuNqypQpLvudMmWK7dqq5LAsy3LLnn8mLy9Po0eP1rp16/TWW2+pS5cupdbJyclRbGys7rzzTvXt21dLly7VmjVrtG7dOtWuXdvWfoqKipSenq5OnTqV+befyltWHofDIXl5S8VFPw3+3/OLtZVaaj1x39RSSy211Vlrl93PaLf/7ad9+/Zp9OjRF33hq1evlp+fn8aMGSOHw6Fnn31WX375pVJTU5WQkFBNs/1JSYINuCZS9brerVqNW6og85BOb1qm3P1b5XA4yn1N1FJb0fFeE+dNLbXUUnspP++qmtsvP3311Vfq0qWLli1bVuF627dvV2RkpLOBDodDnTt3Vnp6ejXM0lWPHj0kL28FtL5ejROfk1+zNvLyDZBfszZqnDheAa2vk7y8y7wUVZJoL1Zb1mk/aj2/tnXr1rZqy7sUVRNfM7X2a4ODg23VlnUpyl1z9vLyslVb1qWoFi1a2Kot61LUsGHDbNWWdSkqKCjIVm1Zl6LatGljq7asS1G+vr62asu6FHXllVfaqi3rUlSzZs1s1ZZ1KeqXHBtTpkyxVVudl6LcHmruv/9+JSUlKSAgoML1MjMz1aRJE5exRo0a6dixY5XeZ1FRUZmPipb9/PH5559LxUWq1/VuORyuLXQ4vFSv691S8fn1ytqHndqy5kKt59ceOHDAVu2BAwfKPQZr2mum1n7twYMHbdUePHjQY+ZsWZatWsuyStUePnzYVu3hw4dL1c6fP99W7fz580vVnjhxwlbtiRMnStXu2bPHVu2ePXtK1RYUFNiqLSgoKFV75swZW7VnzpwpVXv06FFbtUePHq3SYyMpKclWbVJSUoWfqXYfdrj98pNdubm5pdKtr6+v8vPzK72tjIyMS1p2oVqNW5Y9HvjTeHlnkqiltqKzjDVx3tRSSy21la2tajUm1Pj5+ZUKMPn5+fL396/0tsLDw8u8UTgjI6PMZeUpyDwkv2alT0EWZB1y/rtTp07UUlupWnfum1pqqaW2OmvtKvmMvhi3X36yKygoSFlZWS5jWVlZpS5J2eHt7V3mo6JlP3/ExMRIXt46vWmZLKvYZduWVazTm96TvM6vV9Y+7NSWNRdqPb+25J6Ji9UGBweXewzWtNdMrf3aa665xlbtNddc4zFzLrnn4mK1DoejVO3VV19tq/bqq68uVTt06FBbtUOHDi1V26RJE1u1TZo0KVUbGhpqqzY0NLRUba1atWzV1qpVq1RtnTp1bNXWqVOnVG3Tpk1t1TZt2rRKj43Jkyfbqp08eXKFn6l2H3Z4xFe6S4SGhpb7le4PPvhACxYsUGpqqvNu6tjYWD3yyCNKTEy0tf2ioqr7Srfzju/W152/4zuwpQqyDun0pveUu3+rJF38bnFqqfWgfVNLLbXUVvfPO7vsfkZ7dKjJzMzUlVdeKX9/f505c0Y9e/bUHXfcoXvvvVfvvvuuUlNT9emnn/J7aqg1qramzptaaqmltrK1dtn9jPboy0/R0dFavXq1JKlOnTqaN2+e0tLSlJCQoO3bt2v+/Pm2A82vwbIsxdz8O5exmJt/Z+tNLPlGgQubBwC1NaM2uJXrzXPBrVra/j94TX3N1Nqvvaal69eYr2nZwuPn7LjgEoPDKrZde3Wzpi5jVzdrart26JDBLmNDhwy2XdsksJHLWJPARrZrQ397rctY6G+vtV1by9v147WWt5ft2jq1Xb8NXKd2gO3aple5fk296VVB1XJsTJ400WVs8qSJVRZoKsOjztT82qr6TM3lil7ZR68qh37ZR6/so1f2eWqvjDhTAwAAYBehBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBLeHmry8PCUlJSkqKkrR0dFauHBhueuuW7dOt99+uyIiInTffffpm2++qcaZAgAAT+b2UDNt2jTt3LlTixYtUnJysmbNmqXU1NRS6+3du1ejR4/WsGHDtGrVKrVt21bDhg1Tbm6uG2YNAAA8jVtDTU5Ojt5//309++yzCgsLU8+ePTVkyBAtWbKk1LobN27Utddeq/j4eLVo0UJPPvmkMjMztW/fPjfMHAAAeBofd+589+7dKiwsVEREhHMsMjJSc+fOVXFxsby8fspc9evX1759+5SWlqaIiAitWLFCderUUYsWLSq936KionLHyloGV/TKPnpVOfTLPnplH72yz1N7ZXc+bg01mZmZatCggXx9fZ1jgYGBysvL06lTp9SwYUPneK9evbRhwwbdf//98vb2lpeXl+bNm6d69epVer8ZGRmXtAyu6JV99Kpy6Jd99Mo+emVfTe2VW0NNbm6uS6CR5Hyen5/vMp6dna3MzEw9//zz6tixo5YuXapx48bpww8/VKNGjSq13/DwcHl7e7uMFRUVKSMjo8xlcEWv7KNXlUO/7KNX9tEr+zy1VyXzuhi3hho/P79S4aXkub+/v8v4n/70J4WEhOiBBx6QJE2cOFG33367li9frqFDh1Zqv97e3uW+WRUtgyt6ZR+9qhz6ZR+9so9e2VdTe+XWG4WDgoKUnZ2twsJC51hmZqb8/f1Vt25dl3W/+eYbtWnTxvncy8tLbdq00dGjR6ttvgAAwHO5NdS0bdtWPj4+Sk9Pd46lpaUpPDzc5SZhSWrSpIn279/vMnbw4EE1b968OqYKAAA8nFtDTUBAgOLj45WSkqIdO3Zo/fr1Wrhwofr37y/p/Fmbc+fOSZLuvvtuvffee1q5cqUOHTqkP/3pTzp69Kj69OnjzpcAAAA8hFvvqZGkcePGKSUlRQMGDFCdOnU0cuRIxcbGSpKio6M1ZcoUJSQkqFevXjp79qzmzZunY8eOqW3btlq0aFGlbxIGAABmcnuoCQgI0NSpUzV16tRSy/bs2ePyvF+/furXr191TQ0AANQgbv8zCQAAAFWBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYAS3h5q8vDwlJSUpKipK0dHRWrhwYbnr7tmzR/fdd586dOigO++8U5s3b67GmQIAAE/m9lAzbdo07dy5U4sWLVJycrJmzZql1NTUUuv9+OOPeuihh3Tttdfq448/Vs+ePTVixAj98MMPbpg1AADwNG4NNTk5OXr//ff17LPPKiwsTD179tSQIUO0ZMmSUut++OGHql27tlJSUtSyZUuNGjVKLVu21M6dO90wcwAA4Gl83Lnz3bt3q7CwUBEREc6xyMhIzZ07V8XFxfLy+ilzffXVV7rlllvk7e3tHFu+fPkl7beoqKjcsbKWwRW9so9eVQ79so9e2Uev7PPUXtmdj1tDTWZmpho0aCBfX1/nWGBgoPLy8nTq1Ck1bNjQOX748GF16NBB48eP14YNG9SsWTONHTtWkZGRld5vRkbGJS2DK3plH72qHPplH72yj17ZV1N75dZQk5ub6xJoJDmf5+fnu4zn5ORo/vz56t+/vxYsWKC//vWvGjx4sNasWaPf/OY3ldpveHi4yxkf6XwKzMjIKHMZXNEr++hV5dAv++iVffTKPk/tVcm8LsatocbPz69UeCl57u/v7zLu7e2ttm3batSoUZKkdu3aaePGjVq1apUeeeSRSu3X29u73DeromVwRa/so1eVQ7/so1f20Sv7amqv3HqjcFBQkLKzs1VYWOgcy8zMlL+/v+rWreuybuPGjRUcHOwy1qpVK33//ffVMlcAAODZ3Bpq2rZtKx8fH6WnpzvH0tLSFB4e7nKTsCR16tRJe/bscRk7cOCAmjVrVh1TBQAAHs6toSYgIEDx8fFKSUnRjh07tH79ei1cuFD9+/eXdP6szblz5yRJ9957r/bs2aOZM2fq0KFDevXVV3X48GH9/ve/d+dLAAAAHsLtv3xv3LhxCgsL04ABA/TCCy9o5MiRio2NlSRFR0dr9erVkqRmzZrp9ddf1+eff67evXvr888/1/z58xUUFOTO6QMAAA/h1huFpfNna6ZOnaqpU6eWWnbh5abIyEitWLGiuqYGAABqELefqQEAAKgKhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjVDrU5OXl/RrzAAAA+EUqHWq6deum5ORk7dix49eYDwAAwCWpdKh56KGHtHnzZt1zzz3q1auXXn/9dWVmZv4acwMAALCt0qHmscce09q1a7VkyRJFRkZq3rx5iomJ0dChQ7V27VoVFBT8GvMEAACo0CXfKNy5c2dNnDhRGzdu1Kuvvqrc3Fw98cQTio6O1tSpU/Xf//63KucJAABQoV/07afvv/9eCxcu1IwZM7R161a1atVKCQkJ+vLLL9WrVy+tXr26quYJAABQIZ/KFpw5c0Zr167VypUrlZaWJn9/f8XFxSk5OVmdO3eWJI0dO1bDhg3T5MmT1atXryqfNAAAwIUqHWq6deum/Px8dezYURMmTFCvXr1Uu3btUuuFh4dr165dVTJJAACAi6l0qHnggQfUt29fBQcHV7jeoEGD9Oijj17yxAAAACqj0qFmzJgxtta74oorKj0ZAACAS8WfSQAAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADCC20NNXl6ekpKSFBUVpejoaC1cuPCiNUeOHFFERIS2bNlSDTMEAAA1gY+7JzBt2jTt3LlTixYt0tGjRzV27Fg1bdpUcXFx5dakpKQoJyenGmcJAAA8nVtDTU5Ojt5//30tWLBAYWFhCgsL0969e7VkyZJyQ81HH32ks2fPVvNMAQCAp3Pr5afdu3ersLBQERERzrHIyEht375dxcXFpdbPzs7W9OnTNWHChOqcJgAAqAHceqYmMzNTDRo0kK+vr3MsMDBQeXl5OnXqlBo2bOiy/osvvqg+ffrot7/97S/ab1FRUbljZS2DK3plH72qHPplH72yj17Z56m9sjsft4aa3Nxcl0Ajyfk8Pz/fZfyf//yn0tLS9Mknn/zi/WZkZFzSMriiV/bRq8qhX/bRK/volX01tVduDTV+fn6lwkvJc39/f+fYuXPn9Pzzzys5Odll/FKFh4fL29vbZayoqEgZGRllLoMremUfvaoc+mUfvbKPXtnnqb0qmdfFuDXUBAUFKTs7W4WFhfLxOT+VzMxM+fv7q27dus71duzYocOHD2vUqFEu9Q8//LDi4+MrfY+Nt7d3uW9WRcvgil7ZR68qh37ZR6/so1f21dReuTXUtG3bVj4+PkpPT1dUVJQkKS0tTeHh4fLy+uke5g4dOujTTz91qY2NjdWkSZPUrVu3ap0zAADwTG4NNQEBAYqPj1dKSoomT56sEydOaOHChZoyZYqk82dtrrzySvn7+6tly5al6oOCgtSoUaPqnjYAAPBAbv+NwuPGjVNYWJgGDBigF154QSNHjlRsbKwkKTo6WqtXr3bzDAEAQE3g9t8oHBAQoKlTp2rq1Kmllu3Zs6fcuoqWAQCAy4/bz9QAAABUBUINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIAR3B5q8vLylJSUpKioKEVHR2vhwoXlrvu3v/1Nv//97xUREaE777xTn332WTXOFAAAeDK3h5pp06Zp586dWrRokZKTkzVr1iylpqaWWm/37t0aMWKEEhMTtXLlSt177716/PHHtXv3bjfMGgAAeBofd+48JydH77//vhYsWKCwsDCFhYVp7969WrJkieLi4lzW/eSTT3TDDTeof//+kqSWLVtqw4YNWrNmjdq0aeOO6QMAAA/i1lCze/duFRYWKiIiwjkWGRmpuXPnqri4WF5eP51I6tOnjwoKCkpt48cff6yWuQIAAM/m1lCTmZmpBg0ayNfX1zkWGBiovLw8nTp1Sg0bNnSOt27d2qV279692rRpk+69995K77eoqKjcsbKWwRW9so9eVQ79so9e2Uev7PPUXtmdj1tDTW5urkugkeR8np+fX27dyZMnNXLkSHXu3Fm33HJLpfebkZFxScvgil7ZR68qh37ZR6/so1f21dReuTXU+Pn5lQovJc/9/f3LrMnKytKgQYNkWZZmzJjhconKrvDwcHl7e7uMFRUVKSMjo8xlcEWv7KNXlUO/7KNX9tEr+zy1VyXzuhi3hpqgoCBlZ2ersLBQPj7np5KZmSl/f3/VrVu31PrHjx933ij81ltvuVyeqgxvb+9y36yKlsEVvbKPXlUO/bKPXtlHr+yrqb1y61e627ZtKx8fH6WnpzvH0tLSFB4eXuoMTE5OjoYMGSIvLy8tXrxYQUFB1TxbAADgydwaagICAhQfH6+UlBTt2LFD69ev18KFC51nYzIzM3Xu3DlJ0rx58/Tdd99p6tSpzmWZmZl8+wkAAEhy8+UnSRo3bpxSUlI0YMAA1alTRyNHjlRsbKwkKTo6WlOmTFFCQoLWrl2rc+fOqV+/fi71ffr00YsvvuiOqQMAAA/i9lATEBCgqVOnOs/A/NyePXuc/y7rtwwDAACUcPufSQAAAKgKhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACP4uHsCeXl5euGFF/Tpp5/K399fDz30kB566KEy1921a5eSk5P1n//8R9dee61eeOEFtW/fvppn7MrhcJQasyyLWmp/Ua07900ttdRSW521VcntZ2qmTZumnTt3atGiRUpOTtasWbOUmppaar2cnBwNHTpUUVFRWrFihSIiIjRs2DDl5OS4YdbnORwOycvbddDLu8w3l1pq7da6c9/UUksttdVZW9XceqYmJydH77//vhYsWKCwsDCFhYVp7969WrJkieLi4lzWXb16tfz8/DRmzBg5HA49++yz+vLLL5WamqqEhIRqn3vJmxVwTaTqdb1btRq3VEHmIZ3etEy5+7fK4XCUm1Kppbai/4KpifOmllpqqb2Un3dVzWG54/zQ//n666/14IMPKj09Xb6+vpKkLVu26OGHH1Z6erq8vH46kTR+/Hjl5eVp2rRpzrFnnnlGvr6+mjBhgq39FRUVKT09XZ06dZK3t7ftZRcqSaUB10SqceJzcjh+mqdlFStz+UTlHvxaKi4q9WZSS215tTV13tRSSy21l/LzrjLsfka79fJTZmamGjRo4Aw0khQYGKi8vDydOnWq1LpNmjRxGWvUqJGOHTtW6f0WFRWV+aho2YXrqbhI9bre7fImSpLD4aV6Xe+WisveHrXUlldbU+dNLbXUUnspP+8q+7DDrZefcnNzXQKNJOfz/Px8W+teuJ4dGRkZl7TsQrUatyx7PPCn8fT0dGqprVStO/dNLbXUUludtVXNraHGz8+vVCgpee7v729r3QvXsyM8PLzMy08ZGRllLitPQeYh+TVrU3o865Dz3506daKW2krVunPf1FJLLbXVWWtXyWf0xbj18lNQUJCys7NVWFjoHMvMzJS/v7/q1q1bat2srCyXsaysrFKXpOzw9vYu81HRsgvXk5e3Tm9aJssqdtm2ZRXr9Kb3nHeCU0ut3dqaOm9qqaWW2kv5eVfZhx1uvVE4NzdXXbp00cKFCxUVFSVJmj17tjZt2qTFixe7rPvBBx9owYIFSk1Ndd5NHRsbq0ceeUSJiYm29ldUVDU3Cks/u+O79XXn7/gObKmCrEM6vek95e7fKqn87+hTS62tbz/VoHlTSy211F7Kzzu7bH9GW242fvx464477rC2b99urVu3zurcubO1du1ay7Is68SJE1Zubq5lWZb1448/WjfccIM1ceJEa+/evdbEiROtbt26WWfPnrW9r8LCQmvbtm1WYWFhpZaVR5IlL+/z/1vy+L/n1FJ7qbU1dd7UUksttZfy884Ou5/Rbv/le+PGjVNYWJgGDBigF154QSNHjlRsbKwkKTo6WqtXr5Yk1alTR/PmzVNaWpoSEhK0fft2zZ8/X7Vr13bb3C3Lct7Z7WTzq2vUUuuJ+6aWWmqprc7aqubWy0/VrSovP13O6JV99Kpy6Jd99Mo+emWfp/bK7rzcfqYGAACgKhBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAj+Lh7AtWp5JcnFxUVlVpWMlbWMriiV/bRq8qhX/bRK/volX2e2quS+VzsjyBcVn8mIT8/XxkZGe6eBgAAuATh4eHy9fUtd/llFWqKi4tVWFgoLy8v559LBwAAns2yLBUXF8vHx0deXuXfOXNZhRoAAGAubhQGAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUCMpLy9PSUlJioqKUnR0tBYuXOjuKXmsdevWKTQ01OUxatQod0/Lo+Tn56t3797asmWLc+zw4cMaOHCgOnXqpF69eukf//iHG2foOcrq1aRJk0odY4sXL3bjLN3r+PHjGjVqlK6//nrddNNNmjJlivLy8iRxXJWlon5xbLk6dOiQBg8erIiICHXv3l2vv/66c1lNPbYuq7/9VJ5p06Zp586dWrRokY4ePaqxY8eqadOmiouLc/fUPM6+ffsUExOjiRMnOsf8/PzcOCPPkpeXp9GjR2vv3r3OMcuyNHz4cIWEhGj58uVav369RowYodWrV6tp06ZunK17ldUrSdq/f79Gjx6tPn36OMfq1KlT3dPzCJZladSoUapbt66WLFmi06dPKykpSV5eXhozZgzH1QUq6tfYsWM5tn6muLhYQ4cOVXh4uD788EMdOnRITz75pIKCgtS7d+8ae2xd9qEmJydH77//vhYsWKCwsDCFhYVp7969WrJkCaGmDPv371dISIgaN27s7ql4nH379mn06NGl/uDa5s2bdfjwYb377ruqXbu2WrdurU2bNmn58uUaOXKkm2brXuX1Sjp/jA0ePJhjTNKBAweUnp6ujRs3KjAwUJI0atQoTZ06Vb/73e84ri5QUb9KQg3H1nlZWVlq27atUlJSVKdOHbVq1Updu3ZVWlqaAgMDa+yxddlfftq9e7cKCwsVERHhHIuMjNT27dtVXFzsxpl5pv3796tVq1bunoZH+uqrr9SlSxctW7bMZXz79u1q166dateu7RyLjIxUenp6Nc/Qc5TXqzNnzuj48eMcY/+ncePGev31150f0CXOnDnDcVWGivrFseWqSZMmeuWVV1SnTh1ZlqW0tDRt3bpV119/fY0+ti77MzWZmZlq0KCBy1/9DAwMVF5enk6dOqWGDRu6cXaexbIsHTx4UP/4xz80b948FRUVKS4uTqNGjarwr6ZeLu6///4yxzMzM9WkSROXsUaNGunYsWPVMS2PVF6v9u/fL4fDoblz5+rLL79U/fr1NWjQIJfLBZeTunXr6qabbnI+Ly4u1uLFi3XDDTdwXJWhon5xbJWvR48eOnr0qGJiYnTbbbdp8uTJNfbYuuxDTW5ubqkP5JLn+fn57piSxzp69KizX6+88oqOHDmiSZMm6dy5c3ruuefcPT2PVd4xxvFV2oEDB+RwOBQcHKwHH3xQW7du1fjx41WnTh317NnT3dNzu+nTp2vXrl364IMP9Je//IXj6iJ+3q9vvvmGY6scM2bMUFZWllJSUjRlypQa/TPrsg81fn5+pd6okuf+/v7umJLHatasmbZs2aJ69erJ4XCobdu2Ki4u1tNPP61x48bJ29vb3VP0SH5+fjp16pTLWH5+PsdXGeLj4xUTE6P69etLktq0aaNvv/1WS5cuvew/eKZPn65Fixbp5ZdfVkhICMfVRVzYr9/+9rccW+UIDw+XdP7m/aeeekqJiYnKzc11WaemHFuX/T01QUFBys7OVmFhoXMsMzNT/v7+qlu3rhtn5pnq168vh8PhfN66dWvl5eXp9OnTbpyVZwsKClJWVpbLWFZWVqnTu5AcDofzQ6dEcHCwjh8/7p4JeYiJEyfqzTff1PTp03XbbbdJ4riqSFn94thylZWVpfXr17uMXXvttSooKFDjxo1r7LF12Yeatm3bysfHx+UGqLS0NIWHh8vL67Jvj4u///3v6tKli0uC//e//6369etz71EFOnbsqG+++Ubnzp1zjqWlpaljx45unJVnevXVVzVw4ECXsd27dys4ONg9E/IAs2bN0rvvvqs///nPuuOOO5zjHFdlK69fHFuujhw5ohEjRriEup07d6phw4aKjIysscfWZf+pHRAQoPj4eKWkpGjHjh1av369Fi5cqP79+7t7ah4nIiJCfn5+eu6553TgwAF98cUXmjZtmoYMGeLuqXm066+/Xr/5zW80btw47d27V/Pnz9eOHTvUt29fd0/N48TExGjr1q1644039N133+mdd97RypUr9dBDD7l7am6xf/9+zZkzRw8//LAiIyOVmZnpfHBclVZRvzi2XIWHhyssLExJSUnat2+fvvjiC02fPl2PPPJIzT62LFg5OTnWmDFjrE6dOlnR0dHWm2++6e4peaz//Oc/1sCBA61OnTpZ3bp1s2bOnGkVFxe7e1oeJyQkxNq8ebPz+bfffms98MADVvv27a077rjD2rhxoxtn51ku7NW6deusO++80woPD7fi4uKstWvXunF27jVv3jwrJCSkzIdlcVxd6GL94thydezYMWv48OFW586drW7dulmvvfaa8+d5TT22HJZVxm+/AgAAqGEu+8tPAADADIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAapQVK1YoNDRUR44ccfdUAHgYQg0AADACoQYAABiBUAPAYxUXF2vOnDnq3r27OnbsqMcee0ynT592WWf9+vW6//77FRERofbt2ysuLk5LliyRJBUWFio6OlqjR48ute3Y2Fg999xz1fI6AFQPQg0AjzV9+nTNnj1bffv21axZs1S/fn299NJLzuV/+9vfNHz4cIWFhWnOnDmaOXOmrr76ak2YMEHbt2+Xj4+P4uPjtX79ep05c8ZZl5aWpkOHDikhIcEdLwvAr8TH3RMAgLL873//09tvv61BgwZpxIgRkqSbbrpJJ06c0N///ndJ0r59+9SnTx89++yzzrqIiAh16dJFW7ZsUceOHZWYmKgFCxZo7dq1SkxMlCStXLlSrVq1UufOnav/hQH41RBqAHik9PR0FRQUKCYmxmX89ttvd4aaIUOGSJLOnj2rgwcP6rvvvlNGRoYkKT8/X5J0zTXXKDIyUqtWrVJiYqLOnTunNWvW6OGHH67GVwOgOhBqAHikkntnGjRo4DLeuHFj579Pnjyp5ORkrV+/Xg6HQy1btlRUVJQkybIs53p9+/ZVUlKSvv/+e6Wlpens2bOKj4//9V8EgGrFPTUAPFJJmPnhhx9cxk+dOuX891NPPaWMjAz95S9/UXp6utasWaOkpKRS24qLi1Pt2rWVmpqqNWvWqFu3bgoKCvpV5w+g+hFqAHikiIgI+fv7KzU11WX8888/d/47LS1NsbGx6tKli3x9fSVJX375paTz35wqUbt2bfXq1UuffPKJNm7cyA3CgKG4/ATAI11xxRV67LHH9MorryggIEA33HCDvvjiC5dQ06FDB3388ccKCwvTVVddpa+//lrz58+Xw+FQbm6uy/b69u2re+65R/Xq1dOtt95a3S8HQDVwWD+/8AwAHubtt9/WokWLdPz4cUVEROj2229XSkqKPvvsMzkcDk2cOFHbtm2TJLVq1Ur9+/fXRx99pFOnTumDDz5w2VaXLl3Uq1cvJScnu+OlAPiVEWoAXBa2b9+uu+++W6tWrVKbNm3cPR0AvwIuPwEw2pYtW7RlyxatXLlS0dHRBBrAYNwoDMBo2dnZevPNNxUYGKhJkya5ezoAfkVcfgIAAEbgTA0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYIT/D5XGbwdQWtcNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAHhCAYAAAB9ZfQ/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRc0lEQVR4nO3deVyU5f7/8fcwrOauSKWpqUdERUAsLbHMk0umZWrWsdJWK5d2j2blhkfT6rS4pZZl5TnllpWVlt+O1a/coFDMfcncgcQlHbbh/v2BMzEwA4PAjN2+no8HD5nrvq/rvq7PPcDbmZsbi2EYhgAAAEwgwN8TAAAAqCgEGwAAYBoEGwAAYBoEGwAAYBoEGwAAYBoEGwAAYBoEGwAAYBoEGwAAYBoEG8BPit4b0wz3yjTDGsrqYlwzcCEj2ACSdu7cqSeffFIdO3ZU69atlZCQoCeeeELbt2+v8GPl5ORo8uTJ+uyzz5xtu3bt0j/+8Y8KP5bDsmXLFBkZ6fIRFRWlq666Svfff7+Sk5Od+06fPl2RkZFlGv/o0aMaMmSIDh06VO657tixQ3369FHr1q3Vs2dPr/utX79ekZGRWr9+fbnn4A1353H06NHq0qWLT45f2e655x7dc889/p4GUGaB/p4A4G+7du3SHXfcodjYWD3//POqU6eOjh49qg8++EADBgzQe++9p9jY2Ao7XlpamhYsWKApU6Y421auXKmff/65wo7hyYwZMxQeHi5Jys/PV0ZGhmbOnKnBgwdryZIlatGixXmN++OPP+rbb7+tkDnOnDlThw8f1syZM1W7du0KGbMyuDuPQ4cO1aBBg/w4KwAEG1z03nnnHdWqVUvz5s1TYOCfXxI33nijevTooVmzZmnu3Ll+nGHFiYqKUoMGDVzaWrZsqa5du+o///mPJk6c6KeZ/SkzM1PNmzfX9ddf7++plFnDhg39PQXgosdbUbjoZWRkyDAM5efnu7RXqVJFY8aM0U033eTSvnz5ct12222KiYlR586d9corrygnJ8e5ffXq1Ro4cKDi4uLUunVr9ejRQwsXLpQkHTx4UH//+98lSc8++6y6dOmi6dOna8aMGZKkyMhITZ8+XVLBKypz585V165d1bp1a3Xv3l3vv/++y1zuuecePfPMM3rssccUGxur++67r8zrb9CggWrVqqXDhw973OeLL75Q3759FRcXp44dO2rs2LE6efKkpIK3uZ599llJ0t///neNHj3a4zhpaWl69tlndf3116tNmzbq37+//u///s+5PTIyUhs2bNDGjRsVGRmpZcuWeRzrww8/VPfu3dWmTRvdfffdxebv6S21wjU+ePCgIiMj9c4776hHjx6KiYnR0qVLJZX9PErF34qy2+1auHChevfurTZt2qhz5856+eWXlZ2d7dxn9OjRuvfee7V06VJ1795drVu31q233qrvvvvO49odY8+dO1e9evVSmzZtFBsbqzvvvFPr1q1zqUHXrl21Zs0a9e7d2/k8Wr58uctYhw8f1vDhwxUfH6+OHTvqnXfeKfHYeXl5SkhI0NNPP11sW7du3fT888+X2B+oTAQbXPQ6d+6sw4cP684779TChQu1Z88e5wWhPXr00G233ebcd+HChRo1apRatWqlGTNmaMiQIXr//fc1adIkSdKaNWs0bNgwtWrVSrNmzdL06dN1xRVXaOLEidq0aZPq1avnDDGPPvqoZsyYodtvv139+/eXJH300Ue6/fbbJUnjx4/XG2+8oVtuuUVvvvmmevToocmTJ2vmzJku8//yyy91ySWXaPbs2XrwwQfLvP7MzExlZmZ6fLVh1qxZeuqppxQbG6s33nhDw4YN06pVq3TPPfcoKytLnTt31qOPPiqp4K2uoUOHuh0nIyND/fv3V1JSkp588klNnz5d9evX17Bhw/Tpp58619+yZUu1bNlSH330kTp37ux2rA8++EDjxo3T9ddfr1mzZikmJkYvvPBCmdfuMH36dD300EOaNm2aOnbseF7n0Z2xY8dqypQpuvHGGzV79mzddddd+uCDDzR06FCXi463bNmit99+W4899phmzpwpq9WqESNGOMOjOy+//LJmzZqlO+64Q2+99ZYSExN14sQJPf7447LZbM790tPTNXHiRA0aNEhz585VgwYNNGrUKO3Zs0eSdPbsWd19993auXOnEhMT9cILL2jx4sUlvjUaGBioPn36aPXq1frjjz+c7cnJydq/f7/69u3rXeGBSsBbUbjoDRw4UOnp6Xr77bedb8XUqlVLCQkJGjRokNq0aSOp4BWUmTNn6sYbb3QGGUmy2Wz6/PPPlZubq927d+u2227Tc88959weFxen9u3ba/369YqJiVFUVJSkgrctWrZsKUm69NJLJcl5Lc++ffu0aNEiPfXUUxoyZIgkKSEhQRaLRXPmzNHAgQNVq1YtSVJQUJAmTJig4ODgUtean5+vvLw8SVJ2drZ+/fVXvfzyywoICNAdd9xRbP+TJ09q9uzZGjBggMaOHetsb968ue666y4tXbpUd911lzMUuXury+Gdd97R8ePHtWrVKtWvX1+SdP311+vee+/VtGnT1KtXL8XGxqpq1aoutSjKMAzNmjVLPXv21JgxY5y1+eOPP/Thhx+WWgN3brrpJvXr18/5eMWKFed1HgvbvXu3lixZoqefftp5Djt27Kh69erpn//8p7777jvn222nT5/WsmXLnHWsUqWK7r77bq1bt07du3d3O+e0tDQ9+eSTLhf4hoSEaMSIEdqxY4ezfjabTf/61790zTXXSJIaN26sG264Qd9++62aNm2qjz/+WIcPH9aKFSvUrFkzSVJMTIy6du1aYs369eunefPmadWqVc7aLV++XI0bN1bbtm1L7AtUJl6xASQ9/vjj+v777/XKK6+of//+qlq1qj777DPnxcNSQdj4/fffi33Df+CBB7Rs2TIFBQXpwQcf1IsvvqgzZ85oy5Yt+uKLLzRnzhxJcnm7qjTr1q2TYRjq0qWL8vLynB9dunRRdna2y28xNWnSxKtQI0ldu3ZVq1at1KpVK7Vt21Z9+/bV/v379dJLL7l92yYlJUU5OTnq1auXS3u7du1Uv359bdiwwes1bdiwQXFxcc5Q43DLLbcoPT1de/fu9WqcvXv36vfff9cNN9zg0l70LcOycIQUh4o4j47a3HzzzS7tN998s6xWq8tvb9WuXdvlFTNH0C38yktRr7zyigYPHqzjx48rKSlJS5cudb7yVXSOhUOiY+yzZ89KkpKSktSwYUNnqJGkyy67rNQL5q+88krFx8frk08+kSRlZWXpyy+/5NUa+B2v2ADn1KhRQ7169XL+EN+6datGjhypl156Sb1799aJEyckSXXq1PE4xvHjxzVu3DitXr1aFotFjRo1Urt27SSV7X4njmMV/aHocOzYMefnl1xyidfjzp492/lbUUFBQapVq5YiIiI87u94K6Ru3brFttWtW1enT5/2+tgnT57UFVdc4XYcSTp16pTX40hyvmLl4FjX+ahSpYrL44o4j455Fp1XYGCgatWq5VK7sLAwl30sFoskFbvuq7DU1FRNmDBBqampCgsLU7NmzXT55Ze7nWPh8QMCAlz2OXnyZLFaOuadkZFR4hr79++vMWPG6MiRI0pOTtaZM2fUp0+fEvsAlY1gg4vasWPH1K9fPz3++OPOa1scWrZsqSeffFLDhg3TgQMHVL16dUkFP/QKy8zM1NatWxUXF6dnnnlGe/fu1bvvvqu4uDgFBwfLZrNp0aJFZZqX41gLFixwG1wcP8DKqnnz5h7fKnKnRo0akgquj2nSpInLtvT0dLdBpaSx0tPTi7U72tz9cHXHsd/vv//u0u4Igw6OcGC322W1WiVJZ86c8eoYFXEeHbVLT093eZUqNzdXmZmZXq/XnT/++EMPPvigIiMj9fnnn6tJkyYKCAjQt99+q1WrVpVprFq1amn//v3F2ovW050ePXpo0qRJWrlypZKSktSxY8cSgzLgC7wVhYta3bp1FRgYqP/85z8uv6nisHfvXoWEhKhRo0Zq0qSJatWqpf/9738u+3zyyScaMmSIcnNzlZycrG7duql9+/bOt4ccv93i+N+344dsYY7/RTs4Xh3IzMxUdHS08+P48eN6/fXXvfqhUxFiYmIUHBysFStWuLQnJSXp8OHDzmspis7fnauuuko///xzsZv4ffrppwoPD1ejRo28mlPjxo112WWXaeXKlS7tRc+L41qdo0ePOtsKv4VXkvM9j4VdffXVkqTPP//cpf3zzz+X3W5XfHy8V3NxZ+/evTpx4oQGDRqkZs2aOetfdI7e6NChgw4ePKjU1FRn2/Hjx5WSklJq3ypVqqhnz55asWKFfvjhB96GwgWBV2xwUbNarRo/fryGDRumfv366a677lLTpk1ls9n0ww8/aOHChXr88ced//seMWKEJk6cqDp16qhLly7at2+f3njjDd11112qUaOG2rRpo88++0ytWrXSpZdeqp9++klz586VxWJxXi9RrVo1SdLatWvVtGlTxcTEOF+hWbFihWJiYhQZGalbbrlFL7zwgg4dOqTWrVtr3759evXVV9WgQQM1btzYJ/WpWbOmhgwZopkzZyooKEg33HCDDh48qNdff13NmjVz/saYY/5ff/21rrvuOjVt2rTYWPfdd58+/fRT3XvvvRo+fLhq1qyp5cuXa926dZo8ebJX4UgqeCXmmWee0dNPP63nn39ePXr0UEpKiv773/+67Hf99ddrypQpGjt2rB544AEdOXJEM2fO9Oqtu/M9j4U56vPGG2/IZrPpqquu0rZt2zRjxgy1b99enTp18mq97lx55ZWqWrWq3nzzTQUGBiowMFCrVq3SkiVLJJV8bU5Rt956q9577z0NHz5cTz75pKpWrarZs2d7HY769++vO+64QzVq1NCNN954XusBKhLBBhe9zp07a9GiRXr77bf15ptv6vjx4woODlbLli316quvqlu3bs5977rrLlWpUkVvv/22PvroI1166aV66KGH9NBDD0mSXnzxRSUmJioxMVFSwasLEyZM0KeffqqkpCRJBa8k3Hffffroo4/07bff6ocfflC3bt30ySefaPTo0erfv7/Gjx+vKVOmaM6cOfrwww919OhR1alTRz179tQTTzxR6qsFFWnEiBGqW7euPvjgA3300UeqWbOmevTooSeeeMJ5bUr79u117bXX6pVXXtHatWvd3tAwPDxc//3vf/XKK69o0qRJys3NVYsWLTRr1iznPWG81atXLwUEBGjWrFn65JNP1Lx5c02cOFFPPfWUc58rr7xSU6dO1ezZszVkyBA1bdrU5dyU5HzPY1H/+te/1KhRIy1dulTz5s1TvXr1NGjQIA0dOtTrIOdOtWrVNGvWLE2bNk2PP/64LrnkEkVFRemDDz7QQw89pKSkJK//tENwcLAWLFigyZMn61//+pcsFosGDBigK664otjbfe7ExsaqZs2a6tmzp9cXsQOVyWLwF9wAAOdp06ZNGjBggD755JPz/pMcQEXiFRsAQJmtX79e69ev1/Lly5WQkECowQWDi4cBAGWWmZmpd955R3Xr1nW5YSXgb7wVBQAATINXbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkE+nsCvpSfn6+8vDwFBATIYrH4ezoAAMALhmEoPz9fgYGBCggo+TWZiyrY5OXlKTU11d/TAAAA5yE6OlrBwcEl7nNRBRtHyouOjpbVaq2wce12u1JTUyt8XLhHvX2LevsOtfYt6u1b5am3o29pr9ZIF1mwcbz9ZLVaK+VJXFnjwj3q7VvU23eotW9Rb98qT729uYyEi4cBAIBpEGwAAIBpEGwAAIBpEGwAAIBpEGwAAIBpEGwAAIBpEGwAAIBpEGwAAIBpEGwAAIBpXDB3Hs7JyVHfvn31wgsvqH379m732bp1q8aNG6edO3eqWbNmmjBhglq3bu3jmRaXk5OjBQsWaPjw4Tp69KgMw1BwcLB27drl76nhAmS1WpWfny/DMNxud9xZ85JLLlF4eLhyc3N16tQp5efnKyAgwHnXTpvNpry8PNWsWVPDhg1TTEyMXnvtNaWmpio4OFhXXHGF6tatqyNHjig4OFhhYWHKz8/X9u3blZOToyuvvFLPPfec9u3bp19//VWNGzdWZGSk3n//fX377bc6e/asateurcGDB2vz5s3aunWrgoODNXDgQLVr105paWk6cuSIUlJSdObMGXXq1EnDhw93+Tsudrtd33//vY4cOaLLLrtMnTp1kqRibVar1WXfevXqSZLS0tJ02WWX6dprr9WPP/7o7FP4cZ06dZSamqpff/1VTZs21dChQxUcHOz22O7udurY79ChQ0pPT1d4eLjq169f7JiF++fk5GjGjBn6/vvvVa1aNd1zzz3q0qVLpd29tvAcjx49quPHjysgIECdO3dW586dncf1tGZva/FXd7GsE6UwLgBZWVnGsGHDjObNmxvr1q1zu8+ZM2eMjh07Gi+++KKxe/duIzEx0bj22muNM2fOeH2cvLw8IykpycjLy6uoqRsjR440LAEBhiznPqQ/PxyPi7bL4n6b4/MAq+v+hR+Xdgxv5+DpWC77WUqeS0n93f5r8dzP47EsJczfUnKbu3NS2nxLGt9T35JqWPhzl/0sbo5pLX5MlzVY/vwora+ndXl7/s6zhgHWQGPkyJGGYRjG0qVLjSsaNnLZt054PaNO3XCXtisaNjJGjhxZbN/Cx7UGBbtsc3lcZH7WoGDj1ltvLTbeFQ0bGUuXLnX5+nU3R8d4RY/p6D9y5EgjwBpY7LjVatQsNn5ZufseVdIcHTVdunSp2/081dZdLf7qPK2/pHVWxs8EeFaeepelr8UwPPy30Ud2796tp59+WoZhaMeOHXrvvffcvmKzZMkSzZ49W6tXr5bFYpFhGOrevbseeeQR9e3b16tj2e12paSkKDY2tkJS/D//+U+99NJLzsdhTa9WjWsGKCi8kXLT9+vk2o9k27NRwRFNVbvro8o9cVS/r3hZkhRYI0J5J48prOlVsoRcorNb1xQbp2D/VxTW9CqF1I/Sie/eU1jTq4ocY5FsezaeG+/oue13OLcf/3q2co7tKXFuOcf2qk6vpxVU89Jz7UkKbtBSOQd/8djvz7m6Hs8xn4Jx9xT5d7ckqeZ1g5V9aKtse5JUp9fTsp9K14nvFrgZ689jeZpHzesGq1p8r0LH3iBJqtKys85uXeNhzKQi692o4Ihmqt31kVLGL9q34HjF+y4613eQsg9tK/T51iK1K9uaCvN4Phu0Us7BrQqOaKKcY3vdPF/crT9JoU3ilbU3ycP53FDKsQuf84JzfOutt+rTTz9VWNOrVL1DyWs8vvpN5RzdrSrNri6y76IitUtS1fje+iP5s1K+Js7V4tJmqn3jn+fl1LqC8ZYsWaK+fftq2bJl6t+/f7E5Hv/6TeUc212sFqfWLdLZ3RtKOQdJWrp0idffk4oq+j3K0xzd1UYyitXQU22L1uKvzlOdSltnRf9MQMnKU++y9PV7sPnPf/6jX3/9VU8++aRiY2M9BpsXXnhB2dnZmjZtmrNt9OjRCg4O1sSJE706VkU+iXNychRa5RIZ+fmyBAYrtGEbhfd7XhbLn5ctGUa+0pcmKifjN13+4GwdnDtExplMhTSKVfZvmxXWOFZ1bh2lg6/dKVkCJMOusCvjFd7veckwdGjuEAWHN1LdPs/q8LxHFBzeSOF9ix8jbWmisn5NUVjjOJc5GPl2HZr7kILrNi5xbkF1Gyov4zddPmSuZLEofWmibPt+UmjjtqrX/4Xix1syUVm//qywK9sqvF/x7enLJiknfb+C6jZU7rnxczN+U1Cdhso+uEUBodV0+ZA5ylg+RTlpv0oWuZ1jvj1XB1//h0IbRrs/ztJJys3Yr8uHzJUlwOpss/22Wcq3F6tH4fnlpu93WW9Oxm+qf26cEsf3tu+5/S576E1lLJ/i/Dx92b/O1S7ewzlxv6as31Jl5GbJEhRS4nPNtu8nBTeMkT3zoILDG7t9vhRdQ9qSRGX9+pPn87l0kmz7N0v5uaWf8zoNlfVbqpSfqypN4lXX3fELrVFSyc/RwnX8eIpsv/6s0MaxCr9tTIlfE57OS8aySaqTm6bdO3eo2d+a6/fgCJc5lvQ1k2/P1YHX7pTFYinxHNTNTdO+vXvO63tM4e9RknRlk6bF5ui+NpOVdWCLGjz2HwVYg0pdS+Fa7Nuz+y/9Q91ut5dYp5LWSbDxLV8FG79fPDxw4ECNGTNGYWFhJe6Xnp7ufN/doU6dOjp69GiZj2m328v9MX36dBn2PMnIl5GbpRrXDHD5gpIkiyVANa4ZIPvJY/rj5y9knM6Q8u0KqnW5ZM9VjWvu0JmUlVJ+nmTPkfLtznGyD/4i+8ljqtFhgHIObXN+7u4YYVfGnxvPdXvBGGmlzi3synjlnTym7IO/ONuVb1dYk3j3x2vS7txc73A/bofbneO6/NskXkaOTfZTaco5tK1gv1NpHueYc2jbudp6OM41tzvnXbhNuVlu61F4fkXXay80Tonje9v33H6OdTo+/7N2ns6J+zUZuTZJRqnPNeXbFRAUUlBTD8+XomsIaxJf8vm85nYpL8u7c94k3rlvdU/HL7TGUp+jhet4ze2SPVdhV8aX+jXh6bxU73C7Duz/VdOnT9eB3/YXm2NJ88k5tE3Kyy71HBz4bb/WrFlz3t9bpILvUWvWrHE7R/e1GSAjx1YwRy/WUrgW5ZnrhfBRWp1KW6ej3nz45qM89fbWBXPxcGlsNpvLRYmSFBwcrJycnDKPlZqaWu75rF+/3uVxUHgjt/sF1S1ozzvxZwAz7LnOPmcKvQVVeBz7H5nOx7ZzL397OoYlMNjt9sJjlDQ3R3/n/o72oJAyHc/TuEX/dRwrrOlVf/ZxM5a383fsV7itLP3cjVPa+GXp61in/Y9Mr2vnaU3e9DWyz5TpGN7OyZt9Cp/jMq3Ri30ddbQEhZzXc6Nwu+PrtyxfM2WZ77p161SzZk23+3gjNTVV69at8+pYRZ9jRedb2XP1N2/rVNI6K+JnArxX2fX+ywSbkJCQYiEmJydHoaGhZR4rOjq63C87tm/fXosXL3Y+zk3fr5D6LYrtl5uxX5IUWPNSZ5vl3EvFuen7XdoLj2OtWsv5uPDn7o5h5OW43V5aP8fcHP2d+zvac7Pdrt3T8TyNW/Rfx7Ec+3kay9v5O/Yr3FaWfu7GKW38svQt/Lk9/bdyrcmbvpaQS8p0DG/Ppzf7FD7HZVqjF/sWfl5aa0aU+RiF2x1fv2X5minLfDt06OB8O6ks7Ha7UlNTFR0drRMnTnh1rKLPMW/WUhFzvVB4Wyd36yxcb96Kqnzlqbejrzf8/laUtyIiIpSRkeHSlpGRUeztKW84fl22PB8jRoyQxRooWQJkCQrVybWLZBj5LscxjHydXLtI1hoRqhrXU5ZqdaUAq3IzD0vWIJ1c+5Euie0hBQRK1mApwKqTaz+SYeQrpEErWWtE6OS6RQquH+X83N0xbPuSneMV3l4wRr1i7UXnZtuXrMAaEQpp0MrZrgCrbHuT3B9vb5LLXIuNu26xc1yXf/cmyxIcJmv1egquH1WwX/V65+ZYfG3B9aPO1dbT/Bc75124TUGh5+rh4ZysW1xsvdZC45Q4vrd9z+3nWKfj8z9r5+n54n5NlqAwSZZSn2sKsCo/N7ugph6eL0XXYNubXPL5XLtYCgz17pzvTXbue8rT8QutsdTnaOE6rl0sWYNk25dc6teEp/Nyat1iXdGosUaMGKErGjYqNseS5hNcP0oKDCn1HFzRsJHzV7DP50Mq+B7VuXNnt3N0X5tFsgSHFczRi7UUrkV55nohfJRWp9LW6ag3H775KE+9vfWXCTYxMTH6+eefnff+MAxDP/30k2JiYvwyn+DgYD3z1JPOa2xsezYofekkZR/apvzss8o+tK3gYs49G2UNrarcY3tU+/rBUr5d2fuSFVi1tmx7Nur3T6aqSouOzmtsbHs2Flz4eGSnana6W7bdG5Xx8WRVi+ku2+6Nbo4xSVl7khRYtY6zr2N7zpGdsoZWO9fueW5Ze5JUo9Pdyjmy81x7koIvj1TW3iSX8Rz9svYmucy16HxsuzfKGlpNWXuSXP/du1FGjk3VYnso4+PJsu3eqJrX3aNqMT3O1c91rIyPJ5+rraf5b1DVmO4ycrP/PPaeDVJulqpEXut2zPSlibLt3lhkvQXzzTmys5Txi/ad5Kyha9+CGlSN6V5wwavz88mFaufp+eJ+TYWvsSnpuRZ8eaRyfv254Ly7fb4UX3/W3iSFNo7zfD73bHBeN1PqOd+7UcrL0q29e8m2Z6MylpW8xpwjO2UNq+5h30kutbPt2aiqsTcpa09SKV8T585pmOs5zVhWcL5e+/crCg4O1muv/rvYcQu+Zqq7Xefvy6c4r7HxfA6S9Nqr/y7TN2FPrFar2zm6r02SjBybfl8+xXUtHmpbuBYVMVd/KqlOZlonyqDMv0xeiYrexyYtLc2w2WyGYRjG6dOnjQ4dOhiJiYnGrl27jMTERKNjx44X+H1srG7vs1Gx97Gxlnys0tqL3ZOkyL1WSrq3TEn93f7r6Z4uKthWpvvYuLvnS5FjeHUPlpLqU9p9bLyoYeHPz+s+NlY/38fGWoYaWku9j01dd/exadTYw31s/jxOhdzHplFjL+9jY3V7TEf/C+M+Nn/Wpm5J97HxUFt3tfir87R+7mNz4bho7mNTWGRkpMuve0dGRmrKlCnO+w9s3rxZ48aN0549exQZGakJEyaoZcuWXo9vt1fOr/bZbDaNGjVKGzdu5M7DKJXVyp2HufOwe56+RxWeI3ce9qys66ysnwlwrzz1LkvfCyrYVLbKehLzxeFb1Nu3qLfvUGvfot6+5atg85e5xgYAAKA0BBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAaBBsAAGAafg822dnZGjNmjNq1a6eEhATNnz/f475ff/21brrpJsXFxekf//iHfvnlFx/OFAAAXOj8HmymTZumLVu2aMGCBRo3bpxmzJihlStXFttv165devrpp/Xwww/rk08+UVRUlB5++GHZbDY/zBoAAFyI/Bpszp49q8WLF+u5555Tq1at1LVrVz344INauHBhsX1/+OEHNWvWTH369FHDhg311FNPKT09Xbt37/bDzAEAwIUo0J8H3759u/Ly8hQXF+dsi4+P15tvvqn8/HwFBPyZu2rWrKndu3crOTlZcXFxWrZsmapWraqGDRuW+bh2u71C5l90vIoeF+5Rb9+i3r5DrX2LevtWeepdlj5+DTbp6emqVauWgoODnW1169ZVdna2Tpw4odq1azvbe/bsqW+++UYDBw6U1WpVQECA5syZoxo1apT5uKmpqRUyf1+NC/eot29Rb9+h1r5FvX2rsuvt12Bjs9lcQo0k5+OcnByX9szMTKWnp2vs2LGKiYnRf//7Xz377LP6+OOPVadOnTIdNzo6WlartXyTL8Rutys1NbXCx4V71Nu3qLfvUGvfot6+VZ56O/p6w6/BJiQkpFiAcTwODQ11aX/55ZfVvHlz3XXXXZKkxMRE3XTTTVq6dKmGDBlSpuNardZKeRJX1rhwj3r7FvX2HWrtW9Tbtyq73n69eDgiIkKZmZnKy8tztqWnpys0NFTVq1d32feXX35RixYtnI8DAgLUokULHT582GfzBQAAFza/BpuoqCgFBgYqJSXF2ZacnKzo6GiXC4clqV69etqzZ49L2759+9SgQQNfTBUAAPwF+DXYhIWFqU+fPho/frw2b96s1atXa/78+Ro0aJCkgldvsrKyJEkDBgzQokWLtHz5cu3fv18vv/yyDh8+rNtuu82fSwAAABcQv15jI0nPPvusxo8fr8GDB6tq1aoaMWKEunXrJklKSEjQlClT1LdvX/Xs2VNnzpzRnDlzdPToUUVFRWnBggVlvnAYAACYl9+DTVhYmKZOnaqpU6cW27Zjxw6Xx7fffrtuv/12X00NAAD8xfj9TyoAAABUFIINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDYINAAAwDb8Hm+zsbI0ZM0bt2rVTQkKC5s+f73HfHTt26B//+IfatGmj3r17a926dT6cKQAAuND5PdhMmzZNW7Zs0YIFCzRu3DjNmDFDK1euLLbf6dOndf/996tZs2b67LPP1LVrVw0fPly///67H2YNAAAuRH4NNmfPntXixYv13HPPqVWrVuratasefPBBLVy4sNi+H3/8sapUqaLx48erUaNGeuyxx9SoUSNt2bLFDzMHAAAXokB/Hnz79u3Ky8tTXFycsy0+Pl5vvvmm8vPzFRDwZ+7asGGD/v73v8tqtTrbli5del7Htdvt5z/pEsar6HHhHvX2LertO9Tat6i3b5Wn3mXp49dgk56erlq1aik4ONjZVrduXWVnZ+vEiROqXbu2s/3AgQNq06aNXnjhBX3zzTeqX7++Ro0apfj4+DIfNzU1tULm76tx4R719i3q7TvU2reot29Vdr39GmxsNptLqJHkfJyTk+PSfvbsWc2dO1eDBg3SvHnz9Pnnn+uBBx7Ql19+qcsuu6xMx42OjnZ55ae87Ha7UlNTK3xcuEe9fYt6+w619i3q7Vvlqbejrzf8GmxCQkKKBRjH49DQUJd2q9WqqKgoPfbYY5Kkli1b6ocfftAnn3yiRx55pEzHtVqtlfIkrqxx4R719i3q7TvU2reot29Vdr39evFwRESEMjMzlZeX52xLT09XaGioqlev7rJveHi4mjRp4tLWuHFjHTlyxCdzBQAAFz6/BpuoqCgFBgYqJSXF2ZacnKzo6GiXC4clKTY2Vjt27HBp27t3r+rXr++LqQIAgL8AvwabsLAw9enTR+PHj9fmzZu1evVqzZ8/X4MGDZJU8OpNVlaWJOnOO+/Ujh07NH36dO3fv1+vv/66Dhw4oFtvvdWfSwAAABcQv9+g79lnn1WrVq00ePBgTZgwQSNGjFC3bt0kSQkJCfriiy8kSfXr19dbb72l//3vf+rVq5f+97//ae7cuYqIiPDn9AEAwAXErxcPSwWv2kydOlVTp04ttq3oW0/x8fFatmyZr6YGAAD+Yvz+ig0AAEBFIdgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTINgAAADTKHOwyc7Orox5AAAAlFuZg03Hjh01btw4bd68uTLmAwAAcN7KHGzuv/9+rVu3TnfccYd69uypt956S+np6ZUxNwAAgDIpc7AZOnSoVq1apYULFyo+Pl5z5szRDTfcoCFDhmjVqlXKzc2tjHkCAACU6rwvHm7btq0SExP1ww8/6PXXX5fNZtMTTzyhhIQETZ06VYcOHarIeQIAAJSqXL8VdeTIEc2fP19vvPGGNm7cqMaNG6tv37767rvv1LNnT33xxRcVNU8AAIBSBZa1wx9//KFVq1Zp+fLlSk5OVmhoqHr06KFx48apbdu2kqRRo0bp4Ycf1uTJk9WzZ88KnzQAAIA7ZQ42HTt2VE5OjmJiYjRx4kT17NlTVapUKbZfdHS0tm7dWiGTBAAA8EaZg81dd92l/v37q0mTJiXud9999+nRRx8974kBAACUVZmDzT//+U+v9rvkkkvKPBkAAIDy4E8qAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0yDYAAAA0/B7sMnOztaYMWPUrl07JSQkaP78+aX2OXjwoOLi4rR+/XofzBAAAPxVBPp7AtOmTdOWLVu0YMECHT58WKNGjdLll1+uHj16eOwzfvx4nT171oezBAAAfwV+DTZnz57V4sWLNW/ePLVq1UqtWrXSrl27tHDhQo/B5tNPP9WZM2d8PFMAAPBX4Ne3orZv3668vDzFxcU52+Lj47Vp0ybl5+cX2z8zM1MvvfSSJk6c6MtpAgCAvwi/vmKTnp6uWrVqKTg42NlWt25dZWdn68SJE6pdu7bL/i+++KJuu+02/e1vfyvXce12e7n6exqvoseFe9Tbt6i371Br36LevlWeepelj1+Djc1mcwk1kpyPc3JyXNp//PFHJScna8WKFeU+bmpqarnH8OW4cI96+xb19h1q7VvU27cqu95+DTYhISHFAozjcWhoqLMtKytLY8eO1bhx41zaz1d0dLSsVmu5x3Gw2+1KTU2t8HHhHvX2LertO9Tat6i3b5Wn3o6+3vBrsImIiFBmZqby8vIUGFgwlfT0dIWGhqp69erO/TZv3qwDBw7osccec+n/0EMPqU+fPmW+5sZqtVbKk7iyxoV71Nu3qLfvUGvfot6+Vdn19muwiYqKUmBgoFJSUtSuXTtJUnJysqKjoxUQ8Od1zW3atNFXX33l0rdbt26aNGmSOnbs6NM5AwCAC5dfg01YWJj69Omj8ePHa/LkyUpLS9P8+fM1ZcoUSQWv3lSrVk2hoaFq1KhRsf4RERGqU6eOr6cNAAAuUH6/8/Czzz6rVq1aafDgwZowYYJGjBihbt26SZISEhL0xRdf+HmGAADgr8Lvdx4OCwvT1KlTNXXq1GLbduzY4bFfSdsAAMDFye+v2AAAAFQUgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANgg0AADANvweb7OxsjRkzRu3atVNCQoLmz5/vcd81a9bo1ltvVVxcnHr37q3/+7//8+FMAQDAhc7vwWbatGnasmWLFixYoHHjxmnGjBlauXJlsf22b9+u4cOHq1+/flq+fLnuvPNOPf7449q+fbsfZg0AAC5Egf48+NmzZ7V48WLNmzdPrVq1UqtWrbRr1y4tXLhQPXr0cNl3xYoV6tChgwYNGiRJatSokb755ht9+eWXatGihT+mDwAALjB+DTbbt29XXl6e4uLinG3x8fF68803lZ+fr4CAP19Quu2225Sbm1tsjNOnT/tkrgAA4MLn12CTnp6uWrVqKTg42NlWt25dZWdn68SJE6pdu7azvWnTpi59d+3apbVr1+rOO+8s83Htdvv5T7qE8Sp6XLhHvX2LevsOtfYt6u1b5al3Wfr4NdjYbDaXUCPJ+TgnJ8djv+PHj2vEiBFq27at/v73v5f5uKmpqWXu489x4R719i3q7TvU2reot29Vdr39GmxCQkKKBRjH49DQULd9MjIydN9998kwDL3xxhsub1d5Kzo6WlartewT9sButys1NbXCx4V71Nu3qLfvUGvfot6+VZ56O/p6w6/BJiIiQpmZmcrLy1NgYMFU0tPTFRoaqurVqxfb/9ixY86Lh9977z2Xt6rKwmq1VsqTuLLGhXvU27eot+9Qa9+i3r5V2fX26697R0VFKTAwUCkpKc625ORkRUdHF3sl5uzZs3rwwQcVEBCgDz74QBERET6eLQAAuND5NdiEhYWpT58+Gj9+vDZv3qzVq1dr/vz5zldl0tPTlZWVJUmaM2eOfvvtN02dOtW5LT09nd+KAgAATn59K0qSnn32WY0fP16DBw9W1apVNWLECHXr1k2SlJCQoClTpqhv375atWqVsrKydPvtt7v0v+222/Tiiy/6Y+oAAOAC4/dgExYWpqlTpzpfiSlsx44dzs/d3Y0YAACgML//SQUAAICKQrABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmEejvCWRnZ2vChAn66quvFBoaqvvvv1/333+/2323bt2qcePGaefOnWrWrJkmTJig1q1b+3jGrnbv3q2//e1vfp0DKp/ValVISIjy8/MlSYGBgTpz5owMw/DYx2KxKCAgQBaLRRaLRYGBgapSpYoCAgJkt9udY54+fVo2m01BQUFq1aqVrrvuOoWGhqpTp06yWq06fPiw1q9f7zx29erVdfDgQdntdh05ckTbt2+XxWJRu3bt9PDDD+v06dOqVq2aZs+erXXr1ikvL0+NGzdWZGSkAgMDlZaWpqysLDVs2FAxMTE6ceKEDhw4IElq0KCBTpw4oaNHj+qSSy5RtWrVZLFYFBISorS0NH333XfauHGjsrKy1LhxYw0ePFhdunSR1WqV3W7X999/r0OHDik9PV3h4eG69NJLlZOTo4ULF2r//v264oorFBcXp0svvVRHjx5VSkqKzp49q4SEBI0YMULBwcEe6+kY/8iRI7rssst07bXX6scff9SRI0dUr149SdLRo0edx65fv76zhqUpOra3/SprzJLWWt75lTa2u2NJqvD6lHfe/pgDPLugzo/hZxMnTjR69+5tbNmyxfjqq6+MuLg448svvyy235kzZ4yOHTsaL774orF7924jMTHRuPbaa40zZ854fay8vDwjKSnJyMvLq5C5WywWQ5IhWQwFWM99Ls9tjseWANd/HR+WgIJ+7tqLthXez9M4xY7trs3T/DzMo6R+7h57tZYi+5VWt6J9LFbPfQsfz2OdLMXPS9F93c3B23FLmovFzXwVUPoxS6uV23ZL6WOUZd3nPqrVqGmMHDnSuKJhI++eLx7GCggMMkaOHOn2a23p0qXFxrcGBZf6vL+iYSNj6dKlJX4duxvbm36VMWZeXp4xbdo0o0Epaz3f+XlTx6KP69QNN+qE16vQ+lTEvCtiDhX9M+Fi5e35KU+9y9LXYhgl/Jezkp09e1YdOnTQvHnz1L59e0nSrFmztHbtWr3//vsu+y5ZskSzZ8/W6tWrZbFYZBiGunfvrkceeUR9+/b16nh2u10pKSmKjY0td5IMCAhw+d96WNOrVeOaAQoKb6TfV83U2a1rXNpy0/fr+NezlXNsj4Ijminn2G6FNb1KNa65w7n95NpFsu3ZIEmqed1gVYvvpdPJK3TiuwUu+zragiOaKufY3nPbBhQa5yPZ9mx0jlG0zVo9XL+veMVjv4AqNZV/9oSH+W1UcEQT5Rzbo9Am7ZS1N6nYOh3jFK1L0TVWadlZdboPK9buqW6lzadoX9c6eeq/wXkOC87LHud4hetXeA4h9VvqxHfvnRvXu/NYtC6BNS5V3smjJfYNqFJD+WdPKqzp1QqpH6UT373n4ZwlqU6vpxVU89ISalXSOfG8zd26PT1vgi9tpto3PlKo75sl1Gejal43SNmHthX6fKtsezZq5MiRmjZtmvO8LFu2TP3791dY06tUvYPntbt73p9aV3CsJUuWuP0+4Wns0vqVpDxjLlmyRAMGDCh1reczv7LVseCx/VR6se8/5a1PWVXGOXKoyJ8JF6uynJ/y1Lssff0abH766SfdfffdSklJcb4EvX79ej300ENKSUlRQMCflwC98MILys7OdvmGN3r0aAUHB2vixIleHa+insR/vv1kkQICFHZlvML7PS+LJUD5eTk68NodCmsc52yTJCPfrkNzH1JQnUbKzdiv4PBGCu/3gnO7JBlGvtKXTlLWb6kKCKumyx96U4ffelTBdRs5xyoYZ4iC6jRU7u/7FRzeWOF9n3c7Tm7Gfl0+ZK4sAVZnW076r5JFJfRLlG3fTwptHKd6/ccW375sknLS9yuozhXK+vVnhTZuq3r9XdeRb8/Vwdf/odCG0SWu0bDn6oonFykgMNhjH0fdgus2dqmnu/lkH/hFDR7/jwKsQa518qLehgwFhFVXcHgj5Wb8pqA6DZX3+2+6fMhcSXLOoe5tz+rwvEcUVLehctO9O4/1H55X6BwkyrY/VTLsCmscW/Kc8rIV0rit6vV7TofnPVJwLHfnbNkk5abv12UPztbhtx7xXKulicr6bYuzRsW2HdiiBo/9ua1w7R3r9jiHpYnKyfhN9R3PNy/OW276fl320JvKWD7lz88/nqyc3zbp7B+nFRwcLLvdriubNNXvwRGqW8LaLx8yV7JY3D7vM5ZNUp3cNO3bs9vl6760sT31K0l5xrTb7WrcpKmOe7nWssyvzHU893VlGIZCwt2fw/OpT1lVxjkqOj7B5vyV9fz4Ktj49eLh9PR01apVy+V99bp16yo7O1snTpwotq/jfXSHOnXq6OjRo2U+rt1uL9dHy5Ytz41kSPl21bhmgPOE/vHzF5I916VNkrIP/iL7yTSFNYmX/VSaalxzh8t2SbJYAlTjmttl5NpkP5WmP37+QvaTx1zGKhjnWME4J9NUo8MAj+PknTym7IO/uLTZT6WV0m+AlG9XWJN27rd3uP3c8dud2y++2H45h7bJyM0qdY3KzyuoVwl9HHUrWk938zFybco5tK14nbyot3KzlH8qTWFXxjv7OepXeA45h7YVbL/S+/Poeg4GSHlZ554jpczJyFdQrcucx/R4zjoUnOuC50sJtbpmgEuNim3Lcd3mbt0lPW/shZ5v3py3vJPHlHNom+vn1wyQPTdH06dPl91u15o1a3Tgt/2qXsrasw/+4vF5X73D7Tqw/1etWbPG5eu4tLE99SvpozxjrlmzRgfLsNayzK/MdTz3dZV/yvM5PJ/6lPWjMs5R0Q+p/D8TLtaP8zk/5am3t/x68bDNZit2saDjcU5Ojlf7Ft3PG6mpqWXuU1hubq7L46DwRs7P804cLdYmSfY/MiVJlqAQt9udY9UteayyjuPYv+jYpfVzjO9xe2Cwx/0cxyzLGj318XYsx3wc+59PvQuPU3Q8xxi23RvKPO75ngNJMuy5XtfA03Ov6H6F51PStsLHdazb27G9nbP9j0yFNb2q2Ofr169XSkqK1q1bV6bjlvS8X7dunWrWrOls93bsov1KUp4xz3et3szvfMc+37VUlMo4R+6U92fCxep8z09l19uvwSYkJKRYMHE8Dg0N9Wrfovt5Izo6ulwvOwYFBbmEm9z0/Qqp30KSFFjz0mJtkmStWkuSZORmu93uHCtjv/Nzd2OVdRzH/kXHLq2fY3yP2/NyPO7nOGZZ1uipj7djOebj2P986u2yriLjOcY4n3HP9xxIksUa5HUNPD33iu5XeD4lbSt8XG/nULT+3uzv7vP27dsrNjbW+cqtt8ct6XnfoUMHxcbGOtu9Hbtov5KUZ8zzXas38zvfsc93LRWlMs5RYXa7XampqeX+mXCxKuv5KU+9HX294de3oiIiIpSZmam8vDxnW3p6ukJDQ1W9evVi+2ZkZLi0ZWRkFHt7yhtWq7VcH1u3bj03kkUKsOrk2o9kGAW/ils1rqdkDXJpk6SQBq1krVFPtr1JslavV2y7VPCe5Mm1i2UJCpO1ej1Vjespa40InVy7yLlvwTgRsu1NlrVGPZ1ct8jjOIE1IhTSoJVLm7V6vVL6LZICrLLtTXK/fd3ic8dP8rhfcP0oWYJCS12jAgIL6lVCH0fdPI5VaD6WoDAF148qXicv6q2gUAVUryfbvmRnP0f9Cs8huH5UwfZ93o1rrV6vyDlYJAWGun2OFJuTJUC5mYedx/R4ztYVnOuC50tJc1rkUqNi24Jdt7lbd0nPG2uh55s35y2wRoSC60e5fr52kaxBwRoxYoSsVqs6d+6sKxo20qlS1h7SoJXH5/2pdYt1RaPG6ty5s8vXcWlje+pX0kd5xuzcubMalGGtZZlfmet47usqoHo9l+8/5a1PWT8q4xwV/ZDK/zPhYv04n/NTnnp7y6/BJioqSoGBgUpJSXG2JScnKzo62uXCYUmKiYnRzz//7PxNJMMw9NNPPykmJsaXU5YkNWvWTBaLRY5rbGx7Nip9aaKyD22T7HmqEnmtS1t+9lnlHNkpa2g1Ze1NkjWserHt2Ye2KX3pJNn2bJCRa1O12B6SPU/VYrrLtmeDc18jN1vVYrora+9GWUOrybZ7o9KXTioyTqJsezaoakx3GbnZLm3VYnuoZqd7zvUrevzEgt+KOjdPt/PbvVHW0KrK2puk0MZxbvfL+HiyjNysc2ssOrc/11ilRUfJnneuz5RCfYrXzWO9Cs3HyLUp4+PJxesUVkL/c3NRbpYCw6ora0/SufE2OutXeA4ZH08uGHeP9+fR9RxslPKyFFi1Tql9A8KqKXtfsjI+nlLwPPB0rndvVI1Odyv32J4SalVw7IIaTXG/Lcd1m7t1e36+FdQ558jOQn1LqM/ugvpmfDyl0OeTZduzUU898bjzbWer1arXXv13wRyWeV57zpGdbp/3GcsmybZno1779yvFvjGWNHZJ/UpSnjGtVqtefeVlr9Za1vmVuY67N6pmp7tVPbaHy/ef8tanrCrjHKHiXLDnp8y/TF7BXnjhBePmm282Nm3aZHz99ddG27ZtjVWrVhmGYRhpaWmGzWYzDMMwTp8+bXTo0MFITEw0du3aZSQmJhodO3Y02X1srIbk5h4qbu/9UtL9WTzds8bb+9ic29ftuCX0c/fY3Rhu72NTwr1oPN7Hpsh83fUt8T425+qtgOLjles+No5xi97Hxlq8T7H72FgN89zHxsNcCq+50Oflv49N8ef4FY0an999bLzoVxljen0fm/Oc33ndxybczX1sylmfiph3RcyB+9hUDG/Pz0VxHxup4KLg8ePH66uvvlLVqlX1wAMP6N5775UkRUZGasqUKc7fgd+8ebPGjRunPXv2KDIyUhMmTCj0G0qls9sr/lf7uPPwxcFq5c7D3bt3587DZXA+Yzq+R0VHR5d6N+DznV9JdbzY7jxcGT8TLlbenJ/y1Lssff0ebHypsp7EfHH4FvX2LertO9Tat6i3b/kq2PBHMAEAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkQbAAAgGkE+nsCvuS4ybLdbq/QcR3jVfS4cI96+xb19h1q7VvU27fKU29HH2/+WMJF9ScVcnJylJqa6u9pAACA8xAdHV3i35STLrJgk5+fr7y8POcfJgQAABc+wzCUn5+vwMBABQSUfBXNRRVsAACAuXHxMAAAMA2CDQAAMA2CDQAAMA2CDQAAMA2CDQAAMA2CDQAAMA2CDQAAMA2CTTllZ2drzJgxateunRISEjR//nx/T+kvKScnR7169dL69eudbQcOHNC9996r2NhY9ezZU//v//0/lz4//vijevXqpZiYGA0aNEgHDhxw2f7uu++qU6dOiouL05gxY2Sz2XyylgvZsWPH9Nhjj+nqq69Wp06dNGXKFGVnZ0ui3hVt//79euCBBxQXF6fOnTvrrbfecm6j1pVryJAhGj16tPPx1q1bdfvttysmJkb9+vXTli1bXPZfsWKFbrzxRsXExGjYsGE6fvy4c5thGHr55ZfVoUMHXX311Zo2bZry8/N9tpYL1ddff63IyEiXj8cee0zSBVBvA+UyceJEo3fv3saWLVuMr776yoiLizO+/PJLf0/rLyUrK8sYNmyY0bx5c2PdunWGYRhGfn6+0bt3b+Ppp582du/ebbz55ptGTEyMcejQIcMwDOPQoUNGbGys8fbbbxs7d+40Hn/8caNXr15Gfn6+YRiGsXLlSiM+Pt745ptvjE2bNhk9e/Y0JkyY4Lc1Xgjy8/ONAQMGGA8++KCxc+dOY+PGjUbXrl2NF198kXpXMLvdbnTr1s14+umnjX379hlr1qwx2rZta3z66afUupKtWLHCaN68uTFq1CjDMAzjzJkzRseOHY0XX3zR2L17t5GYmGhce+21xpkzZwzDMIxNmzYZbdq0MT7++GNj27Ztxt13320MGTLEOd7bb79tXH/99cbGjRuNtWvXGgkJCcZbb73ll7VdSGbNmmU8/PDDRlpamvPj5MmTF0S9CTblcObMGSM6Otr5w9gwDGPmzJnG3Xff7cdZ/bXs2rXLuOWWW4zevXu7BJsff/zRiI2NdX4xGIZhDB482HjjjTcMwzCM1157zaXOZ8+eNeLi4pz9Bw4c6NzXMAxj48aNRps2bYyzZ8/6YlkXpN27dxvNmzc30tPTnW2fffaZkZCQQL0r2LFjx4zHH3/cOH36tLNt2LBhxrhx46h1JcrMzDSuu+46o1+/fs5gs3jxYqNLly7OYJifn2907drVWLp0qWEYhjFy5EjnvoZhGIcPHzYiIyON3377zTAMw7j++uud+xqGYSxfvty44YYbfLWkC9bTTz9tvPLKK8XaL4R681ZUOWzfvl15eXmKi4tztsXHx2vTpk28VOmlDRs2qH379vroo49c2jdt2qSWLVuqSpUqzrb4+HilpKQ4t7dr1865LSwsTK1atVJKSorsdrtSU1NdtsfGxio3N1fbt2+v3AVdwMLDw/XWW2+pbt26Lu1//PEH9a5g9erV02uvvaaqVavKMAwlJydr48aNuvrqq6l1JZo6dapuvfVWNWvWzNm2adMmxcfHO/8+oMViUdu2bT3W+7LLLtPll1+uTZs26dixYzpy5Iiuuuoq5/b4+HgdOnRIaWlpvlnUBWrPnj1q3LhxsfYLod4Em3JIT09XrVq1XP7SaN26dZWdna0TJ074b2J/IQMHDtSYMWMUFhbm0p6enq569eq5tNWpU0dHjx4tdfupU6eUnZ3tsj0wMFA1a9Z09r8YVa9eXZ06dXI+zs/P1wcffKAOHTpQ70rUpUsXDRw4UHFxcerevTu1riRr165VUlKShg4d6tJeWr3T0tI8bk9PT5ckl+2O/xhczPU2DEP79u3T//t//0/du3fXjTfeqJdfflk5OTkXRL0Dz2tVkCTZbLZifz7d8TgnJ8cfUzINT7V11LWk7VlZWc7HnvpDeumll7R161YtWbJE7777LvWuJG+88YYyMjI0fvx4TZkyhed2JcjOzta4ceM0duxYhYaGumwrrd5ZWVllqjff46XDhw876/raa6/p4MGDmjRpkrKysi6IehNsyiEkJKRYsR2Pi35xoWxCQkKKveqVk5PjrKun2levXl0hISHOx0W3F31l6GL10ksvacGCBXr11VfVvHlz6l2JoqOjJRX88H3mmWfUr1+/Yr/FRK3LZ8aMGWrdurXLK5IOnupZWr3DwsJcfqgWrf3FXO/69etr/fr1qlGjhiwWi6KiopSfn6+RI0fq6quv9nu9eSuqHCIiIpSZmam8vDxnW3p6ukJDQ1W9enU/zuyvLyIiQhkZGS5tGRkZzpcoPW0PDw9XzZo1FRIS4rI9Ly9PJ06cUHh4eOVP/gKXmJiod955Ry+99JK6d+8uiXpXtIyMDK1evdqlrVmzZsrNzVV4eDi1rmCff/65Vq9erbi4OMXFxemzzz7TZ599pri4uHI9tyMiIiTJ+RZJ4c8v5npLUs2aNZ3X0UhS06ZNlZ2dXa7nd0XVm2BTDlFRUQoMDHReFCVJycnJio6OVkAApS2PmJgY/fLLL86XJqWC2sbExDi3JycnO7fZbDZt3bpVMTExCggIUHR0tMv2lJQUBQYGqkWLFr5bxAVoxowZ+vDDD/Xvf/9bN998s7OdelesgwcPavjw4Tp27JizbcuWLapdu7bi4+OpdQV7//339dlnn2n58uVavny5unTpoi5dumj58uWKiYnRzz//LMMwJBVcH/LTTz95rPeRI0d05MgRxcTEKCIiQpdffrnL9uTkZF1++eXFrhO5mHz//fdq3769yyuP27ZtU82aNRUfH+//epfpd6hQzAsvvGDcfPPNxqZNm4yvv/7aaNu2rbFq1Sp/T+svqfCve+fl5Rk9e/Y0nnjiCWPnzp3GnDlzjNjYWOe9Pg4cOGBER0cbc+bMcd7ro3fv3s5fMVyxYoXRtm1b4+uvvzY2bdpk3HzzzUZiYqLf1nYh2L17txEVFWW8+uqrLveeSEtLo94VLC8vz+jbt69x//33G7t27TLWrFljXHvttca7775LrX1g1KhRzl8pPn36tNGhQwcjMTHR2LVrl5GYmGh07NjR+ev2P/30k9GqVStj0aJFzvuqPPzww86x5syZYyQkJBjr1q0z1q1bZyQkJBjz58/3y7ouFKdPnzY6depkPPXUU8aePXuMNWvWGAkJCcbcuXMviHoTbMrp7Nmzxj//+U8jNjbWSEhIMN555x1/T+kvq3CwMQzD+PXXX4277rrLaN26tXHzzTcbP/zwg8v+a9asMbp162a0adPGGDx4sPM+CA5z5swxrrnmGiM+Pt549tlnjaysLJ+s40I1Z84co3nz5m4/DIN6V7SjR48aw4YNM9q2bWt07NjRmD17tjOcUOvKVTjYGEbBTeH69OljREdHG/379zd++eUXl/2XLl1qXH/99UZsbKwxbNgw4/jx485teXl5xuTJk4127doZ7du3N1566SXnebyY7dy507j33nuN2NhYo2PHjsb06dOddfF3vS2Gce71IgAAgL84LgQBAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABAACmQbABYGrcqgu4uBBsAPjMsmXLFBkZqYMHD1b6sU6dOqV//vOfSkpKcrbdc889uueeeyr92AD8J9DfEwCAyrBt2zZ98skn6tevn7Nt3LhxfpwRAF8g2AC4aDRr1szfUwBQyXgrCkClyM/P16xZs9S5c2fFxMRo6NChOnnypHP76NGj1aVLF5c+Bw8eVGRkpJYtWyZJWr9+vSIjI/Xhhx/qhhtuUNu2bfXDDz9IkhYvXqy+ffsqNjZWbdq00a233qovv/zS2W/QoEGSpEGDBjnffir6VlR2drZmzpypHj16KDo6Wt26ddPcuXOVn5/v3Oeee+7Rc889p7lz56pz586Kjo7WnXfeqc2bN1dC1QCUF6/YAKgUL730kt577z09+uijiomJ0ZdffqlXXnnlvMaaMWOGnn/+eWVlZSkuLk4LFy7UpEmTNGLECMXHx+vkyZOaN2+ennnmGcXFxalVq1YaO3asJk6cqLFjx6p9+/bFxjQMQ4888ohSUlI0fPhwtWjRQuvXr9drr72mAwcOKDEx0bnvqlWr1LRpUz3//PMyDENTp07ViBEj9M0338hqtZ53jQBUPIINgAp36tQpvf/++7rvvvs0fPhwSVKnTp2Ulpam77//vszjDRw4UD169HA+PnDggB544AENHTrU2Va/fn317dtXycnJuvnmm51vOzVr1sztW1DfffedfvzxR/373//WzTffLEnq2LGjQkND9frrr2vQoEH629/+JknKy8vT22+/rapVq0qSzpw5o1GjRmnbtm1q3bp1mdcDoPIQbABUuJSUFOXm5uqGG25wab/pppvOK9hERUW5PB49erSkggC1d+9e7d+/X+vXr5ck5eTkeDXmhg0bFBgY6BKYJOmWW27R66+/rg0bNjiDTbNmzZyhRpIiIiIkSTabrcxrAVC5CDYAKpzjWppatWq5tIeHh5/XeFWqVHF5/Ntvv2ns2LFau3atgoKC1KRJE7Vo0UKS9/etOXnypGrVqlXsrSTHHE+fPu1sCwsLc9knIKDg8sTC1+IAuDAQbABUOEeg+f3339WkSRNn+4kTJ5yfWywW2e12l35nz54tdez8/HwNGTJEQUFBWrJkiaKiohQYGKjdu3frk08+8XqONWrUUGZmpux2u0u4SUtLc1kDgL8WfisKQIWLi4tTaGioVq5c6dL+v//9z/n5JZdcoszMTGVnZzvbkpOTSx07MzNT+/btU//+/RUdHa3AwIL/n3333XeS/nwVpbSLeq+++mrl5eUVm+Onn34qSYqPjy91LgAuPLxiA6DCXXLJJRo6dKhee+01hYWFqUOHDvr2229dgs0NN9yg999/X88995z69++vnTt36p133ik1kNSpU0f169fXwoULdemll6p69er6/vvv9d5770n687qXatWqSZLWrFmjGjVqON+qcrjuuuvUvn17Pf/88zp27JhatGihDRs2aN68ebrtttu45w3wF8UrNgAqxcMPP6wxY8Zo5cqVevTRR7Vjxw6NGjXKub1jx44aNWqUkpOT9dBDD+mLL77QjBkzvPr16VmzZikiIkKjR4/WE088oU2bNmn27Nlq0qSJ808o/O1vf1OvXr20cOFCPfPMM8XGsFgsmjNnju688069++67GjJkiFauXKmnnnpKkydPrrhCAPApi8FfiAMAACbBKzYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0CDYAAMA0/j8hPp7G1LdEEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABK2klEQVR4nO3de3zP9f//8fvOm4Q5NOXUB7857W1bc2zrQ4SScu7TCSnU5+NQfUoO5RDKORIVaqJQOURHSSHlEMuYxJdIJNkYYbPZ9vz9sc/eedv2fr934M1rt+vl8r7k/Xq+nofX4/3ee/de79f7PS9jjBEAAMA1ztvTCwAAACgOhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBrgMrv0+y2t8H2XVjgGANZDqEGJ8n//9396+umnFR0drbCwMMXExOipp57Snj17in2u9PR0vfzyy/rkk0/s2/bt26cHHnig2OfKsXz5ctWpU8fhVq9ePTVu3FiPPvqo4uLi7Pu+9tprqlOnToHGP3bsmPr166fff/+9yGvdu3evOnXqpLCwMLVv377I413NevTooR49enh6GcWiVatWGjp0qKeXAeTJ19MLAK6Uffv26V//+pciIiL0wgsvqEKFCjp27Jjee+893XfffVqwYIEiIiKKbb7jx49r/vz5Gj9+vH3bqlWrtH379mKbIz8zZ85UpUqVJElZWVlKSkrSrFmz1KtXLy1dulR169Yt1LgbN27U+vXri2WNs2bN0tGjRzVr1iyVL1++WMa8Wo0aNcrTSwBKBEINSox58+YpODhYc+fOla/v30/9O+64Q3feeadef/11zZkzx4MrLD716tVT1apVHbbVr19fbdq00aJFizRmzBgPrexvycnJCg0NVYsWLTy9lMuudu3anl4CUCLw9hNKjKSkJBljlJWV5bC9VKlSGj58uO666y6H7StWrFDnzp0VHh6uli1baurUqUpPT7e3r1mzRg8++KAiIyMVFhamO++8UwsXLpQkHTlyRK1bt5YkDRs2TK1atdJrr72mmTNnSpLq1Kmj1157TVL2mZQ5c+aoTZs2CgsLU7t27fTuu+86rKVHjx569tlnNWjQIEVERKh3794FPv6qVasqODhYR48ezXefzz//XF26dFFkZKSio6M1cuRInT59WlL2W1vDhg2TJLVu3drpWxDHjx/XsGHD1KJFCzVs2FDdunXT119/bW+vU6eOfvjhB23dulV16tTR8uXL8x2rKI+DJG3ZskV16tTRpk2b1KNHDzVs2FAtW7bUkiVLdPz4cQ0YMECRkZFq0aKF3nnnnVz9vvvuOz300ENq2LCh2rZtq0WLFjms7+TJk3rxxRd1++23KywsTE2aNFH//v115MgR+z6Xvv109uxZjRw5Us2bN1dkZKSefvppvfPOOw5vB/bo0UPPP/+85syZo5YtW8pms+n+++/Xzp07862VJJ0/f15Tp05V27ZtFRYWpltuuUW9e/fWzz//bN9n6NCheuSRR7Rs2TK1a9dOYWFh6tixo7799luHsfbs2aPevXsrMjJSt99+uz7++GOnc586dUo2m02vvPKKw/bU1FRFRUXpjTfecNofKDIDlBALFy40oaGhpnPnzua9994z+/fvN1lZWXnu+95775nQ0FDz/PPPm2+//dYsXLjQhIeHmxEjRhhjjFm7dq0JDQ0148aNMxs3bjTffPON6dOnjwkNDTXx8fEmLS3NrF692oSGhppp06aZn376yfzxxx9m+PDhJjQ01Gzfvt388ccfxhhjRowYYRo0aGBmzJhhNmzYYF555RVTt25dM3PmTPt6Hn74YVO/fn0zdOhQs3HjRvPdd9/lue5ly5aZ0NBQc/jw4VxtJ0+eNHXr1jUvvviiMcaYGTNmmNDQUHv7rFmzTJ06dcyLL75oP+YmTZqYe+65x6SmppoTJ06YadOmmdDQULN69Wpz6NChPNeQmJhobrvtNnPHHXeYjz76yKxbt84MGjTI1KlTx6xcudIYY8z27dtNp06dTKdOncz27dvNiRMnLsvjYIwxmzdvNqGhoaZZs2YmNjbWbNy40TzyyCOmXr16pl27dmb69Olm48aNZsCAASY0NNTs2LHDoV+jRo3MuHHjzLfffmtGjRplQkNDzcKFC40xxmRlZZlu3bqZNm3amE8//dRs3rzZzJ8/30RGRppHH33U4fF7+OGH7fd79OhhGjVqZBYuXGjWrl1r+vbta8LCwhwej4cffthERUWZ++67z3z11Vdm9erVpnXr1uaf//ynycjIyLNexhgzcOBA07x5c7NkyRKzZcsW8+GHH5ro6Ghz11132Z/vQ4YMMVFRUeauu+4yn376qVm3bp3p3LmzadiwoTl16pQxxphjx46ZqKgo07VrV/PVV1+Zjz76yNx2222mfv36ZsiQIfnO/9RTT5mWLVs6/GytXLnS1K1b1xw9ejTffkBxINSgRJk+fbqx2WwmNDTUhIaGmqZNm5pnnnnG/ovMGGMyMzNN8+bNzX/+8x+Hvm+99Zbp3LmzSU9PN3Pnzs31wp6cnGxCQ0PN7NmzjTHGHD582ISGhpply5bZ97k0SBw4cMDUqVPH3ifHtGnTjM1mMydPnjTGZP+CCw8PN2lpaU6PLyfUHDp0yFy4cMFcuHDBnD171uzatcs88sgjpn79+mbPnj251nLq1CkTFhZmDws5tm7dakJDQ817773nMH5eoSnHpEmTTIMGDcyRI0cctvfq1ctER0ebzMxM+zFd/Iv+UsX1OOSEk8mTJ9v3iY+PN6GhoWbw4MH2bSdPnjShoaFm3rx5Dv2GDRvmMP6///1vEx0dbbKyssyxY8dMjx49zNatWx32GTt2rAkLC7Pfv/hYN27caEJDQ82XX37pcKx33XVXrlATHh5uzpw5Y9/20UcfmdDQUJOQkJBnzdLS0syjjz5qPvvsM4ftsbGxJjQ01Bw/ftwYkx1qcp4nOX744QcTGhpqVq1aZYwxZsKECSYiIsIhcObUzVmo2bBhgwkNDTWbNm2yb+vdu7dDyAMuF66pQYny5JNP6pFHHtGGDRu0adMmbdmyRZ988ok+/fRTDR8+XD179tTBgwd14sQJtWnTxqHvY489pscee0yS1KdPH0nSuXPndPDgQf32229KSEiQJIe3RlzZvHmzjDFq1aqVMjIy7NtbtWqlN954Q3FxcbrjjjskSTVr1pS/v79b4166dkmqUqWKJk+enOcnnuLj45Wenq4OHTo4bG/UqJGqVKmiH374QQ899JBbc//www+KjIxUlSpVHLbfe++9GjZsmA4cOODWNSbF/ThERkba/12hQgVJUnh4uH1bcHCwJOnMmTMO/Tp37uxwv23btvr666918OBB1axZUwsWLJAxRkeOHNGhQ4d04MAB/fjjj/k+DzZv3iw/Pz/74ypJ3t7eat++vf0tyRy1a9dW6dKl7fdDQkIkZb+dkxd/f3+9/fbbkqQ///xTBw8e1K+//qq1a9fmqkn58uVVvXp1+/3KlSs7jB0XF6eIiAiHi7jDw8N100035Tl3jltvvVU33XSTVq5cqWbNmunYsWPatGmTJk+e7LQfUBwINShxypYtqw4dOth/ge/evVuDBw/W5MmTdc899+jUqVOS/v7Fl5eTJ09q1KhRWrNmjby8vFSjRg01atRIUsG+wyVnrrvvvjvP9j///NP+7+uuu87tcd944w37p5/8/PwUHBxs/4WYl5zrZipWrJirrWLFirl+0Ttz+vRpVatWLc9xJOmvv/5ya5zifhwuDgc5goKCXK7j0rrlrCenZh9//LFeeeUV/fHHHypXrpzq1aunwMDAfMdLTk5WuXLl5O3teEljXsd56fpy+lx6XdjFNmzYoJdfflkHDhzQddddp7p166pUqVKSHGty6dheXl4OY58+fTrXxeaS7M+r/Hh7e6tLly6aN2+eRo0apZUrV6p06dJ5Bm2guBFqUCL8+eef6tq1q5588kl1797doa1+/fp6+umn1b9/fx0+fFhlypSRlP0L82LJycnavXu3IiMj9eyzz+rAgQN65513FBkZKX9/f6WmpurDDz8s0Lpy5po/f36eocXV/xXnJzQ0NM9fSPkpW7aspOyLqWvWrOnQlpiYmGdIcTZWYmJiru0523LOiLhyJR8HZ5KTkx3OaJw4cUJSdgjZtm2bhgwZoh49euixxx6zB6BJkyY5fCfQxUJCQpScnKysrCyHYJMzblH89ttv6t+/v+644w7Nnj1b1apVk5eXlxYuXKgNGzYUaKzg4GAlJSXl2p4TNp3p0qWLZs2apW+//VZffPGF2rdvr4CAgALNDxQGn35CiVCxYkX5+vpq0aJFSktLy9V+4MABBQQEqEaNGqpZs6aCg4Ptp+xzrFy5Uv369dOFCxcUFxentm3bqmnTpva3hHI+OZLzf7o+Pj655rn0/85zziokJyfLZrPZbydPntSrr77q1i+Q4hAeHi5/f399+umnDtu3bdumo0eP6pZbbslz/Xlp3Lixtm/fnusL+j7++GNVqlRJNWrUcGtNxfU4FNWaNWsc7q9atUpVqlRR9erVtX37dmVlZWngwIH2QJOZmamNGzfmu4YmTZooIyND33zzjX2bMSbXPIWxa9cupaWlqV+/fqpevbr97EtOoCnIWcRmzZpp+/btDmcL9+/fr8OHD7vsW6VKFTVv3lwLFizQzz//rC5duhTwSIDC4UwNSgQfHx+NHj1a/fv3V9euXfXQQw+pVq1aSk1N1ffff6+FCxfqySeftJ+xGDhwoMaMGaMKFSqoVatWOnjwoGbMmKGHHnpIZcuWVcOGDfXJJ5+oQYMGqly5sn788UfNmTNHXl5e9msSrr/+eknSpk2bVKtWLYWHh9vPPnz66acKDw9XnTp1dO+992rEiBH6/fffFRYWpoMHD2ratGmqWrWqbr755itSn3Llyqlfv36aNWuW/Pz8dPvtt+vIkSN69dVXVbt2bft1JTnr/+qrr/TPf/5TtWrVyjVW79699fHHH+uRRx7RgAEDVK5cOa1YsUKbN2/Wyy+/7FYwkrIfs+J4HIpq3rx5CggIUEREhFavXq21a9dq6tSpkqSGDRtKksaMGaOuXbvq9OnTWrhwof0bqlNSUnK97dW4cWNFR0fr+eefV1JSkm666SYtXbpUe/futYeQwmrQoIF8fX01efJkPfroo0pPT9fy5cu1bt06+3rclfNFjY899pgGDhyozMxMTZs2TX5+fm7179atm/773//an/vAlUCoQYnRsmVLffjhh3r77bf15ptv6uTJk/L391f9+vU1bdo0tW3b1r7vQw89pFKlSuntt9/WBx98oMqVK6tv377q27evJGnChAkaO3asxo4dK0m6+eab9eKLL+rjjz/Wtm3bJGVfw9G7d2998MEHWr9+vb7//nu1bdtWK1eu1NChQ9WtWzeNHj1a48eP1+zZs/X+++/r2LFjqlChgtq3b6+nnnoqz7M9l8vAgQNVsWJFvffee/rggw9Urlw53XnnnXrqqafs12Q0bdpUt956q6ZOnapNmzbl+WWFlSpV0uLFizV16lSNGzdOFy5cUN26dfX666/bv7vHXcXxOBTV8OHD9dFHH2n27NmqWbOmZsyYoXbt2knKrsfIkSM1b948rVq1ShUrVlTTpk01c+ZM9e/fX3FxcXl+ueC0adM0YcIETZ06VRkZGWrdurUeeOABrVixokhrrVGjhqZOnaqZM2fq3//+t8qWLauIiAi9++676tGjh7Zt2+b2n8YIDg7W4sWL9dJLL2no0KG67rrr1KdPH33++edu9W/RooW8vLw4S4MryssU5HwkAJQQW7ZsUc+ePbVgwQI1bdq02Mb9/fffFR8fr9atWztcUDxo0CAdPnxYH330UbHN5Umff/65nnvuOa1fv97pxd5AceJMDQBcQd7e3ho6dKhat26tbt26ycfHRxs2bNDq1asd/k7YtWrNmjVKSEjQ+++/ry5duhBocEURagDgCrrxxhs1d+5czZo1S0899ZQyMjJUq1YtTZkyJdf3BF2Ljhw5ovnz5ysqKkqDBw/29HJQwvD2EwAAsAQ+0g0AACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACzB19MLuJKysrKUkZEhb29veXl5eXo5AADADcYYZWVlydfXV97e+Z+PKVGhJiMjQwkJCZ5eBgAAKASbzSZ/f/9820tUqMlJdzabTT4+PgXqm5mZqYSEhEL1LSmokXPUxzVq5Bo1co0aOXct1idnzc7O0kglLNTkvOXk4+NT6AeyKH1LCmrkHPVxjRq5Ro1co0bOXYv1cXXpCBcKAwAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAAS7hqQk16ero6dOigLVu25LvP7t271b17d4WHh6tr167atWvXFVxh3ry8vHLd3GkrSt/g4GCH7cHBwQ7jtmzZ0qG9ZcuW9raXXnrJoe2ll16yt7377rsObe+++669bf369Q5t69evd5hz9+7d8vf3V6NGjeTv76/du3fb2+Lj4x36xsfH29vOnj2rzp07q2HDhurcubPOnj1rbzt58qRsNpsqVKggm82mkydPOszprK+ztvT0dE2fPl0DBw7U9OnTlZ6e7jCuq3kLIzMzU+vWrdOqVau0bt06ZWZm5tm+ePHiPNuLMmdxjnm1rulqPFYAHmCuAufPnzf9+/c3oaGhZvPmzXnuc+7cORMdHW0mTJhg9u/fb8aOHWtuvfVWc+7cObfnycjIMNu2bTMZGRkFXmNefSUZeftk/zfndvH9fNqK0tcT416uORs3bpxnW+PGjU1ISEiebSEhIcYY47Svs7bBgwcbHz9/hzYfP38zePBgY4xxOW9hLFu2zFSrXsNhzGrVa5hly5a51X455vQEd9ZUmJ/Rq/FYL6eivI6VFNTIuWuxPu6u2eN/+2n//v165plnZIxxut/nn3+ugIAAPffcc/Ly8tLzzz+vb7/9VqtWrVKXLl2u0Gr/lnPmJOgfUSrb/D75VaqhC4mHdHrTB0r9ZavTtqL09cS4l2vOrVu3KqhWk1xtW7f+r18ebX/+slV+fn7KyMgocN+tW/Ofc/LkyZo1a5ZSUlLynbdy5co6duxYgZ4ny5cvV7du3RRUq7EqPzzQPuaJzR+qW7duevbZZzVlypR825cuXVrg57erOQszZlFdrjVdjccKwHO8jKs0cZktWrRIv/76q55++mlFRERowYIFatq0aa79RowYobS0NE2aNMm+bejQofL399eYMWPcmiszM1Px8fGKiIgo1F/pzunr6+srefso6B9RqtT1BXl5/f0uXuaF8zoy/V95thmTpcRlY5V68EcF3hypG7qNzLP9/G+7VPXJRfL28bO3ZWVe0JFXH1BgdZsqdR2R77gBNSIU0n2UQ7s7fYs2Z6RCujseS0baOf0+40GXdaj8xDsKuD64WOYsyrH8ueRFpR2Kd7neE4nHVb58ebkjMzNT/6hZSyf8Q1SxS+4xk5aPU9qhePlXD89zTUnLx6nCheM6+Mt+t5+v7sxZ0DGLqiBrkuT2z+jVeKxXQlFex0oKauTctVgfd9fs8WtqHnzwQQ0fPlxBQUFO90tMTNQNN9zgsK1ChQoF/j9nKbs4hbnl9JUkZWWqbPP7HF5IJelc/Kp827y8vFW2+X1SVqaCajbKt91cSFX67z87tKX//rPMhfMq2/xfTsf1C74pV7s7fYs254252k+vn+9WHRI/eL7Y5izKsfgF3+TWem+77Ta3ny/r1q3T4d8OqUyzvMcs06y7Mi+kK/AfUfm2Hz70q/0akeKas6BjFvVW0DVJ7v2MXo3HeqVu7taoJN+okfXq4w6Pv/3krtTUVPn7+zts8/f3z3WRpzsSEhIKvY6L+/pVqpGrPePUsXzbJMmvYvZ2L78Ap+2ZZ5MdtufcdzWuybyQq83dvsU5Z0byH271zTpXfHNe3F7QYzEZ6W7Ne+TIEYcLnZ3ZvHmzW2O6ei5s3rxZ5cqVK9Y5CzJmURVmTe78jF6Nx3olFeV1rKSgRs5ZsT7XTKgJCAjIFWDS09MVGBhY4LFsNluh3n5KSEiQzWazb7uQeEgBVeo67OdbrnK+bZJ0IemQJMlcSMtznpx2n9KOn2jKue9qXK+L3nIpaN/inNM3+Ebp1+0u+3pfV3xzFuVYvHz93Zq3atWqioiIyHPuS506dcqtMV09F5o1a1bscxZkzKIqyJpsNpv958zVz+jVeKxXwsWvRdfKWwdXGjVy7lqsT86aXfH420/uCgkJUVJSksO2pKSkXG9JucPHx6dQt5y+kiRvH53e9IGMyXIY+7qIO/NtMyZLpzd9KHn7KPXAtnzbvfyC5F+lnkObf5V68vILdDnuheSjudrd6Vvcc5Zt0cutOlT610sObUWZsyjHciH5qFvr3bBhg9vPl5YtW6pa9Rr6a/OHeY751+Yl8vHz1/mDcfm2V6txs1q2bFmscxZ0zKLeCromyb2f0avxWK/Uzd0aleQbNbJefdxxzYSa8PBwbd++3f4pKWOMfvzxR4WHh1/xtRhjpKxMpf6yVYnLxirt95+VlZaitN9/1omVE/NtS1w2NvsTQVmZOn9gW77t5kKqkj562aEt6aOXZS6cdzlu2sG4XO3u9C3uOU9+MsWtOpz+ckaB5/T19spzzqIcS9rBOJUKDHA6b0ilim5fJCxlv2BMn/aKUn/Zmn1R8MXrWT5Oqb9s1X+felLnD2zLt336K1Pd/mF2d86CjllUl2tNV+OxAvCwy/7h8gK49Htqjh8/blJTU40xxpw5c8Y0a9bMjB071uzbt8+MHTvWREdH8z01fE9Nrr7XxPfU1LjZ+ffUXNR+Oeb0BHfWVGzfU+PhY72crsXvGLnSqJFz12J93F3zVR1qQkNDHV6YduzYYTp16mRsNpvp1q2b+emnnwo0fnGHGmOM4y+//93caStK33LlyjlsL1eunMO4LVq0cGhv0aKFvW3cuHEObePGjbO3LViwwKFtwYIF9rZ169Y5tK1bt85hzp9++sl4e3sbScbb29vhsdm+fbtD3+3bt9vbzpw5Y39MO3XqZM6cOWNvO3HihAkLCzPly5c3YWFh5sSJEw5zOuvrrC0tLc1MmzbNDBgwwEybNs2kpaU5jOtq3sLIyMgwa9asMePGjTNr1qzJ9TzKyMgwa9euNYsWLTJr164tlhebyzHm5V5TYX9Gr8ZjvVyuxV9IVxo1cu5arI+7a/b499RcSZmZxfM9NZzOzhs1co76uEaNXKNGrlEj567F+ri75mvmmhoAAABnCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASPB5q0tLSNHz4cDVq1EgxMTGKjY3Nd9+vvvpKd911lyIjI/XAAw/op59+uoIrBQAAVzOPh5pJkyZp165dmj9/vkaNGqWZM2dq1apVufbbt2+fnnnmGT3++ONauXKl6tWrp8cff1ypqakeWDUAALjaeDTUpKSkaMmSJXr++efVoEEDtWnTRn369NHChQtz7fv999+rdu3a6tSpk6pXr67//ve/SkxM1P79+z2wcgAAcLXx9eTke/bsUUZGhiIjI+3boqKi9OabbyorK0ve3n9nrnLlymn//v2Ki4tTZGSkli9frtKlS6t69eoFnjczM7PQfQrTt6SgRs5RH9eokWvUyDVq5Ny1WB931+rRUJOYmKjg4GD5+/vbt1WsWFFpaWk6deqUypcvb9/evn17ffPNN3rwwQfl4+Mjb29vzZ49W2XLli3wvAkJCYVec1H6lhTUyDnq4xo1co0auUaNnLNifTwaalJTUx0CjST7/fT0dIftycnJSkxM1MiRIxUeHq7Fixdr2LBh+uijj1ShQoUCzWuz2eTj41OgPpmZmUpISChU35KCGjlHfVyjRq5RI9eokXPXYn1y1uyKR0NNQEBArvCScz8wMNBh+5QpUxQaGqqHHnpIkjR27FjdddddWrZsmfr161egeX18fAr9QBalb0lBjZyjPq5RI9eokWvUyDkr1sejFwqHhIQoOTlZGRkZ9m2JiYkKDAxUmTJlHPb96aefVLduXft9b29v1a1bV0ePHr1i6wUAAFcvj4aaevXqydfXV/Hx8fZtcXFxstlsDhcJS9INN9ygX375xWHbwYMHVbVq1SuxVAAAcJXzaKgJCgpSp06dNHr0aO3cuVNr1qxRbGysevbsKSn7rM358+clSffdd58+/PBDrVixQocOHdKUKVN09OhRde7c2ZOHAAAArhIevaZGkoYNG6bRo0erV69eKl26tAYOHKi2bdtKkmJiYjR+/Hh16dJF7du317lz5zR79mwdO3ZM9erV0/z58wt8kTAAALAmj4eaoKAgTZw4URMnTszVtnfvXof73bt3V/fu3a/U0gAAwDXE438mAQAAoDgQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCV4PNSkpaVp+PDhatSokWJiYhQbG5vvvnv37tUDDzyghg0b6p577tHmzZuv4EoBAMDVzOOhZtKkSdq1a5fmz5+vUaNGaebMmVq1alWu/c6cOaNHH31UtWvX1ieffKI2bdpowIABOnHihAdWDQAArjYeDTUpKSlasmSJnn/+eTVo0EBt2rRRnz59tHDhwlz7fvTRRypVqpRGjx6tGjVqaNCgQapRo4Z27drlgZUDAICrja8nJ9+zZ48yMjIUGRlp3xYVFaU333xTWVlZ8vb+O3P98MMPat26tXx8fOzbli1bVqh5MzMzC92nMH1LCmrkHPVxjRq5Ro1co0bOXYv1cXetHg01iYmJCg4Olr+/v31bxYoVlZaWplOnTql8+fL27YcPH1bDhg01YsQIffPNN6pSpYqGDBmiqKioAs+bkJBQ6DUXpW9JQY2coz6uUSPXqJFr1Mg5K9bHo6EmNTXVIdBIst9PT0932J6SkqI5c+aoZ8+emjt3rj777DM99thj+uKLL3TjjTcWaF6bzeZwxscdmZmZSkhIKFTfkoIaOUd9XKNGrlEj16iRc9difXLW7IpHQ01AQECu8JJzPzAw0GG7j4+P6tWrp0GDBkmS6tevr++//14rV67UE088UaB5fXx8Cv1AFqVvSUGNnKM+rlEj16iRa9TIOSvWx6MXCoeEhCg5OVkZGRn2bYmJiQoMDFSZMmUc9q1UqZJq1qzpsO3mm2/WH3/8cUXWCgAArm4eDTX16tWTr6+v4uPj7dvi4uJks9kcLhKWpIiICO3du9dh24EDB1SlSpUrsVQAAHCV82ioCQoKUqdOnTR69Gjt3LlTa9asUWxsrHr27Ckp+6zN+fPnJUn333+/9u7dq9dee02HDh3Sq6++qsOHD6tjx46ePAQAAHCV8PiX7w0bNkwNGjRQr1699OKLL2rgwIFq27atJCkmJkaff/65JKlKlSp66623tHbtWnXo0EFr167VnDlzFBIS4snlAwCAq4RHLxSWss/WTJw4URMnTszVdunbTVFRUVq+fPmVWhoAALiGePxMDQAAQHEg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsocKhJS0u7HOsAAAAokgKHmujoaI0aNUo7d+68HOsBAAAolAKHmkcffVSbN2/Wv/71L7Vv315vvfWWEhMTL8faAAAA3FbgUPOf//xHX375pRYuXKioqCjNnj1bt99+u/r166cvv/xSFy5cuBzrBAAAcKrQFwrfcsstGjt2rL7//nu9+uqrSk1N1VNPPaWYmBhNnDhRv//+e3GuEwAAwKkiffrpjz/+UGxsrGbMmKGtW7fq5ptvVpcuXfTtt9+qffv2+vzzz4trnQAAAE75FrTD2bNn9eWXX2rFihWKi4tTYGCg7rzzTo0aNUq33HKLJGnIkCF6/PHH9fLLL6t9+/bFvmgAAIBLFTjUREdHKz09XeHh4RozZozat2+vUqVK5drPZrNp9+7dxbJIAAAAVwocah566CF169ZNNWvWdLpf79699e9//7vQCwMAACiIAoea5557zq39rrvuugIvBgAAoLD4MwkAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASPB5q0tLSNHz4cDVq1EgxMTGKjY112efIkSOKjIzUli1brsAKAQDAtcDX0wuYNGmSdu3apfnz5+vo0aMaMmSIbrrpJt1555359hk9erRSUlKu4CoBAMDVzqOhJiUlRUuWLNHcuXPVoEEDNWjQQPv27dPChQvzDTUff/yxzp07d4VXCgAArnYefftpz549ysjIUGRkpH1bVFSUduzYoaysrFz7Jycna/LkyRozZsyVXCYAALgGePRMTWJiooKDg+Xv72/fVrFiRaWlpenUqVMqX768w/4TJkxQ586d9f/+3/8r0ryZmZmF7lOYviUFNXKO+rhGjVyjRq5RI+euxfq4u1aPhprU1FSHQCPJfj89Pd1h+8aNGxUXF6dPP/20yPMmJCR4pG9JQY2coz6uUSPXqJFr1Mg5K9bHo6EmICAgV3jJuR8YGGjfdv78eY0cOVKjRo1y2F5YNptNPj4+BeqTmZmphISEQvUtKaiRc9THNWrkGjVyjRo5dy3WJ2fNrng01ISEhCg5OVkZGRny9c1eSmJiogIDA1WmTBn7fjt37tThw4c1aNAgh/59+/ZVp06dCnyNjY+PT6EfyKL0LSmokXPUxzVq5Bo1co0aOWfF+ng01NSrV0++vr6Kj49Xo0aNJElxcXGy2Wzy9v77GuaGDRtq9erVDn3btm2rcePGKTo6+oquGQAAXJ08GmqCgoLUqVMnjR49Wi+//LKOHz+u2NhYjR8/XlL2WZvrr79egYGBqlGjRq7+ISEhqlChwpVeNgAAuAp5/BuFhw0bpgYNGqhXr1568cUXNXDgQLVt21aSFBMTo88//9zDKwQAANcCj3+jcFBQkCZOnKiJEyfmatu7d2++/Zy1AQCAksfjZ2oAAACKA6EGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYgsdDTVpamoYPH65GjRopJiZGsbGx+e67bt06dezYUZGRkbrnnnv09ddfX8GVAgCAq5nHQ82kSZO0a9cuzZ8/X6NGjdLMmTO1atWqXPvt2bNHAwYMUNeuXbVixQrdf//9evLJJ7Vnzx4PrBoAAFxtfD05eUpKipYsWaK5c+eqQYMGatCggfbt26eFCxfqzjvvdNj3008/VbNmzdSzZ09JUo0aNfTNN9/oiy++UN26dT2xfAAAcBXxaKjZs2ePMjIyFBkZad8WFRWlN998U1lZWfL2/vtEUufOnXXhwoVcY5w5c+aKrBUAAFzdPBpqEhMTFRwcLH9/f/u2ihUrKi0tTadOnVL58uXt22vVquXQd9++fdq0aZPuv//+As+bmZlZ6D6F6VtSUCPnqI9r1Mg1auQaNXLuWqyPu2v1aKhJTU11CDSS7PfT09Pz7Xfy5EkNHDhQt9xyi1q3bl3geRMSEgrcpzj6lhTUyDnq4xo1co0auUaNnLNifTwaagICAnKFl5z7gYGBefZJSkpS7969ZYzRjBkzHN6icpfNZpOPj0+B+mRmZiohIaFQfUsKauQc9XGNGrlGjVyjRs5di/XJWbMrHg01ISEhSk5OVkZGhnx9s5eSmJiowMBAlSlTJtf+f/75p/1C4QULFji8PVUQPj4+hX4gi9K3pKBGzlEf16iRa9TINWrknBXr49GPdNerV0++vr6Kj4+3b4uLi5PNZst1BiYlJUV9+vSRt7e33nvvPYWEhFzh1QIAgKuZR0NNUFCQOnXqpNGjR2vnzp1as2aNYmNj7WdjEhMTdf78eUnS7Nmz9dtvv2nixIn2tsTERD79BAAAJHn47SdJGjZsmEaPHq1evXqpdOnSGjhwoNq2bStJiomJ0fjx49WlSxd9+eWXOn/+vLp37+7Qv3PnzpowYYInlg4AAK4iHg81QUFBmjhxov0MzMX27t1r/3de3zIMAACQw+N/JgEAAKA4EGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAlEGoAAIAleDzUpKWlafjw4WrUqJFiYmIUGxub7767d+9W9+7dFR4erq5du2rXrl1XcKV58/LyynVzp60ofT0xrjtz+vr6qlGjRvL19XW7r5+fn8N2Pz8/e1u1atUc2qpVq+YwZ+vWrR3aW7dubW/r0KGDQ1uHDh3sbR07dnRo69ixo8O4ffv2dWjv27evvW3EiBEObSNGjLC3TZ482aFt8uTJ9rZp06Y51GfatGkOc86bN8+h77x58+xtX331lUPbV199ZW/75ptvHNq++eYbe9umTZsc2jZt2uQwp7O+e/futT+Ovr6+2rt3r73tt99+0/XXXy8fHx9df/31+u233xzGjY+Pdxg3Pj7e3paQkCBvb295eXnJ29tbCQkJ9rZjx46pSpUqat68uapUqaJjx47Z2/bv3y9/f395eXnJ399f+/fvd5jz2LFjqly5sgIDA1W5cmWHvidPnpTNZlOFChVks9l08uRJe9vp06cVExOj6tWrKyYmRqdPn7a3nT17Vp07d1bDhg3VuXNnnT171mFOZ+3p6emaPn26Bg4cqOnTpys9Pd3elpqaqgEDBqhdu3YaMGCAUlNTHcbNzMzUunXrtHjxYq1bt06ZmZlyh7M5XXG2psKup7D9iiqnDhMnTsxVB0+s6XLN6an6XvXrMR42ZswYc88995hdu3aZ1atXm8jISPPFF1/k2u/cuXMmOjraTJgwwezfv9+MHTvW3HrrrebcuXNuz5WRkWG2bdtmMjIyCrzOvPpKMvL2yf5vzu3i+/m0FaWvJ8YtKXNa6Vgu15y+vr55tvn6+hZp3FKlSuXZVqpUKePl5ZVnm5eXlzHGOO0bEhKSZ1tISIipVatWnm21atUyjRs3zrOtcePGxhjjtH3w4MHGx8/foc3Hz98MHjzYdOzYMc9+HTt2NMYYs2zZMlOteg2H9mrVa5hly5Y5fS1yNqcrztbkznryUth+ReWsDp5Y0+Was6jjFuV34eVYjzvcXbOXMcbIQ1JSUtSsWTPNnTtXTZs2lSS9/vrr2rRpk959912HfZcuXao33nhDa9askZeXl4wxateunZ544gl16dLFrfkyMzMVHx+viIgI+fj4FGitl/bNOdsQVKuJyja/T36VauhC4iGd3vSBUn/Z6rKtKH09MW5JmdNKx0L9Ls+cpUqVUkpKSrGP27hxY23btk1BtRqrTLO/2//a/KFSf9mqpUuXqkuXLrlei5577jlNnjw533EHDx6sSZMmKS+dOnXSypUrna63VO0mTtdzqeXLl6tbt24uj6O4uapDYY6lKC5XHYpj3KL8Lrwc63GHu2v2aKj58ccf9fDDDys+Pl7+/v6SpC1btqhv376Kj4+Xt/ff746NGDFCaWlpDj+cQ4cOlb+/v8aMGePWfMUVanx9fSVvHwX9I0qVur4gL6+/15mRdk6/z3gwzzZjspS4bKxSD/6owJsjdUO3kQ7tWZkXdOTVBxRY3aZKXUfk27fKoEXyDbguzzb/6hGqfN+oQvW9tM3d9eQ1p7O+7ox7/rddqvrkInn7+OU5Z0CNSIV0d79+RTmWzAvndWT6v/J8TN0bd7uqPvW+fPwCHdr+XPKi0g7Fu3iu5O5bHPULvPkW3dDN/b7u1i+vx+Xi9hv/s0D+15V1q7bFcSx5Pa+d/YwW13HeNOA9+QVdX6DjzO91wZgsJS0fpwoXjuvgL9lvu+W8FmVmZqpU6evlXz0i33HTf9uhlLNn7K+xOVJTU1Wq9PWFqsPF67n4tTQzM1P/qFlLJ/xDVLFL7vXk16+o0tPTXdYhv5/Dy7Gmy1WH4hq3uELNlXy83V2zR6+pSUxMVHBwsMMPW8WKFZWWlqZTp07l2veGG25w2FahQgWH987dlZmZWahbTl9JUlamyja/z+FBlKTT6+fn2+bl5a2yze+TsjIVVLNRrvb033+WuXBeZZv/y2nf0+vn59vm7edf6L6Xtrm7nrzmdNbXnXHNhVSl//5zvnP6Bd9Y7HPmdyzn4lfl+5i6N25G9hiXtPkF3+TGcyV33+KoX1DNqAL1dbd+eT0uF7cnLR/n0OastsVxLHk9r539jBbXcZ78fHqBj1NZmfItl/e4ZZp11+FDvzpcq5CZmanXXntNmRfSnY6beSE9e79LXs/++9//FroOl64n57Zu3Tod/u2QyjTLez359SvqzZ065PdzeDnWdLnqUJzj5jyHrsbjdLZmV3zd2usySU1NzfV/Dzn3L73ILb99C3IxXI6LL04sSl+/SjVytWck/5FvmyT5Vcze7uUXkKst82yyW31z5sirzaSdK3TfS9vcXU9eczrr6+64OfvlOWfmhcsyZ17HknHqWJHHzRnjYiYjvVB9i6N+eT3/nPV1u355PC4Xt2edSXTY7qy2ztZzcZurY7n0ee3sZ7S4jjPzksfM3eN0Ne7mzZtVrlw5SdmvRVu2bHFr3C1btjhcsC1J27dvz7evu3W4eD059wvTr6jcrUNeP4eXY02Xqw7FPW5RfhdejvUUB4+GmoCAgFyhJOd+YGCgW/teup87bDZbod5+SkhIkM1ms2+7kHhIAVXqOuznG3yj9Ov2PNsk6ULSIUmSuZCWq82ndHC+417c1zf4xnzbvC46zV7Qvpe2ubuevOZ01tfdcXP2y3POi96KKM458zoW33KVizxuzhgX8/L1L1Tf4qhfXs8/Z33drl8ej8vF7d7XV3LY7qy2xXUslz6vnf2MFtdx+lzymLl7nK7GbdasmWw2m/21qGnTplqyZInLcZs2baqIiAiHtsjISG3ZsqVIdWjWrJnDuDln2Avar6jcrUNeP4eXY02Xqw7FNe7Fv8+K8rbQlXy8c9bsikfffgoJCVFycrIyMjLs2xITExUYGKgyZcrk2jcpKclhW1JSUq63pNzh4+NTqFtOX0mSt49Ob/pAxmQ5jF22Ra9824zJ0ulNH0rePko9sC1Xu3+VevLyC3TZt2yLXvm2ZV1IK3TfS9vcXU9eczrr6864Xn5B8q9SL985LyQfLfY58zuW6yLuzPcxdW9c3+wxLmm7kHzUjedK7r7FUb+8nn/O+rpbv7wel4vbK3Z5waHNWW2L41jyel47+xktruMs3/6pAh+nvH2UceqPPNv/2rxE1WrcrJYtWzq8Fg0cOFA+fv5Ox/Xx88/e75LXs1deeaXQdbh0PTm3li1bqlr1Gvpr84cF6lfUmzt1yO/n8HKs6XLVoTjHzXkOXY3H6WzNrnj0QuHU1FQ1bdpUsbGxatSokSRp1qxZ2rRpk9577z2HfZcuXaq5c+dq1apV9k8/tW3bVk888YS6du3q1nzFdaGwj8/Fn35qnH2lfcUaupB0SKc3fXjRpxzybytKX0+MW1LmtNKxUL/LM+ffn34q3nEdP/3U3d7+1+Ylbn76Ke9x3fv0U/7rzf7EUP7ruZTjp2Hc71dUrupQmGMpistVh+IYt7guFC6u9bjD7TUX24fIC2nEiBHm7rvvNjt27DBfffWVueWWW8yXX35pjDHm+PHjJjU11RhjzJkzZ0yzZs3M2LFjzb59+8zYsWNNdHQ031NzBcYtKXNa6Vgu15x8T40Hvqemxs1X1/fUXLKevBS2X1EV+HtqLvOaLtecRR33inxPTTHX1t01ezzUpKSkmOeee85ERESYmJgYM2/ePHtbaGioQ1F27NhhOnXqZGw2m+nWrZv56aefCjRXcYcaY4zjC8H/bu60FaWvJ8a9XHP6+vo6bM/55WiMMVWrVnVoq1q1qsOcrVq1cmhv1aqVve3uu+92aLv77rvtbffee69D27333uswbp8+fRza+/TpY2974YUXHNpeeOEFe9ukSZMc2iZNmmRve+WVVxzaXnnlFYc5Y2NjHdpjY2PtbatXr3ZoW716tb3t66+/dmj7+uuv7W0bN250aNu4caPDnM767tmzx/j4ZP+i8/HxMXv27LG3HTp0yJQuXdp4e3ub0qVLm0OHDjmMu337dodxt2/fbm/buXNndkiRjJeXl9m5c6e97Y8//jAhISHGz8/PhISEmD/++MPetm/fPuPn52ckGT8/P7Nv3z6HOXP6BgQE5Op74sQJExYWZsqXL2/CwsLMiRMn7G2nTp0y0dHRplq1aiY6OtqcOnXK3nbmzBn7602nTp3MmTNnHOZ01p6WlmamTZtmBgwYYKZNm2bS0tLsbSkpKaZ///6mbdu2pn///iYlJcVh3IyMDLN27VqzaNEis3bt2lyvOfm9Fjmb0xVna3K1nvwUtl9RpaWlmSlTppju3bubKVOmONTBE2u6XHMWZdziDjVFXY+741/1X753pRXn20/IjRo5R31co0auUSPXqJFz12J93F2zx//2EwAAQHEg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEvw9fQCrqScL0/OzMwscN+cPoXpW1JQI+eoj2vUyDVq5Bo1cu5arE/OWl39EYQS9WcS0tPTlZCQ4OllAACAQrDZbPL398+3vUSFmqysLGVkZMjb21teXl6eXg4AAHCDMUZZWVny9fWVt3f+V86UqFADAACsiwuFAQCAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBq3JCWlqbhw4erUaNGiomJUWxsrKeXdFVIT09Xhw4dtGXLFvu2w4cP65FHHlFERITat2+v7777zoMr9Jw///xTgwYNUpMmTXTbbbdp/PjxSktLk0SNchw6dEiPPfaYIiMj1bJlS7311lv2NmrkqF+/fho6dKj9/u7du9W9e3eFh4era9eu2rVrlwdX5zlfffWV6tSp43AbNGiQJGqUIz09XS+++KIaN26sW2+9Va+88or9Tw1YsUaEGjdMmjRJu3bt0vz58zVq1CjNnDlTq1at8vSyPCotLU3//e9/tW/fPvs2Y4z69++vihUratmyZerYsaMGDBigo0ePenClV54xRoMGDVJqaqoWLlyoadOmae3atZo+fTo1+p+srCz169dPwcHB+uijj/Tiiy/qjTfe0CeffEKNLvHZZ59p/fr19vspKSnq16+fGjVqpOXLlysyMlKPP/64UlJSPLhKz9i/f79uv/12fffdd/bbuHHjqNFFxo0bp40bN+rtt9/W1KlT9eGHH+qDDz6wbo0MnDp37pyx2Wxm8+bN9m2zZs0yDz/8sAdX5Vn79u0z9957r7nnnntMaGiovTYbN240ERER5ty5c/Z9e/XqZWbMmOGppXrE/v37TWhoqElMTLRv++STT0xMTAw1+p8///zTPPnkk+bMmTP2bf379zejRo2iRhdJTk42//znP03Xrl3NkCFDjDHGLFmyxLRq1cpkZWUZY4zJysoybdq0McuWLfPkUj3imWeeMVOnTs21nRplS05ONvXr1zdbtmyxb5s9e7YZOnSoZWvEmRoX9uzZo4yMDEVGRtq3RUVFaceOHcrKyvLgyjznhx9+UNOmTfXBBx84bN+xY4fq16+vUqVK2bdFRUUpPj7+Cq/QsypVqqS33npLFStWdNh+9uxZavQ/N9xwg6ZPn67SpUvLGKO4uDht3bpVTZo0oUYXmThxojp27KjatWvbt+3YsUNRUVH2v1/n5eWlW265pUTW55dfftHNN9+cazs1yhYXF6fSpUurSZMm9m39+vXT+PHjLVsjQo0LiYmJCg4OdviroBUrVlRaWppOnTrluYV50IMPPqjhw4crKCjIYXtiYqJuuOEGh20VKlTQsWPHruTyPK5MmTK67bbb7PezsrL03nvvqVmzZtQoD61atdKDDz6oyMhItWvXjhr9z6ZNm7Rt2zb95z//cdhOfbIZY3Tw4EF99913ateune644w5NmTJF6enp1Oh/Dh8+rCpVqmjFihW688471bp1a82aNUtZWVmWrZGvpxdwtUtNTc31Z85z7qenp3tiSVet/GpV0us0efJk7d69W0uXLtU777xDjS4xY8YMJSUlafTo0Ro/fjzPI2VfszZq1CiNHDlSgYGBDm3UJ9vRo0fttZg+fbqOHDmicePG6fz589Tof1JSUnTo0CG9//77Gj9+vBITEzVy5EgFBQVZtkaEGhcCAgJyPcg59y99sSnpAgICcp29Sk9PL9F1mjx5subPn69p06YpNDSUGuXBZrNJyv5F/uyzz6pr165KTU112Kek1WjmzJkKCwtzOOOXI7/XpJJUH0mqUqWKtmzZorJly8rLy0v16tVTVlaWBg8erCZNmlAjSb6+vjp79qymTp2qKlWqSMoOg4sXL1aNGjUsWSNCjQshISFKTk5WRkaGfH2zy5WYmKjAwECVKVPGw6u7uoSEhGj//v0O25KSknKd4iwpxo4dq8WLF2vy5Mlq166dJGqUIykpSfHx8brjjjvs22rXrq0LFy6oUqVKOnDgQK79S1KNPvvsMyUlJdmv5cv55fPll1+qQ4cOSkpKcti/pNUnR7ly5Rzu16pVS2lpaapUqRI1Uvb1fQEBAfZAI0n/+Mc/9Mcff6hJkyaWrBHX1LhQr149+fr6Olw8FRcXJ5vNJm9vynex8PBw/fTTTzp//rx9W1xcnMLDwz24Ks+YOXOm3n//fb3yyiu6++677dupUbYjR45owIAB+vPPP+3bdu3apfLlyysqKqrE1+jdd9/VJ598ohUrVmjFihVq1aqVWrVqpRUrVig8PFzbt2+3f9eIMUY//vhjiaqPJG3YsEFNmzZ1OKv3888/q1y5coqKiqJGyn69SUtL08GDB+3bDhw4oCpVqlj2ecRvZReCgoLUqVMnjR49Wjt37tSaNWsUGxurnj17enppV50mTZroxhtv1LBhw7Rv3z7NmTNHO3fuVLdu3Ty9tCvql19+0euvv66+ffsqKipKiYmJ9hs1ymaz2dSgQQMNHz5c+/fv1/r16zV58mQ98cQT1EjZb63UqFHDfrvuuut03XXXqUaNGrrzzjv1119/6aWXXtL+/fv10ksvKTU1VXfddZenl31FRUZGKiAgQC+88IIOHDig9evXa9KkSerTpw81+p+aNWuqZcuWGjZsmPbs2aMNGzZozpw5euCBB6xbI899mvzakZKSYp577jkTERFhYmJizLx58zy9pKvGxd9TY4wxv/76q3nooYdMWFiYufvuu83333/vwdV5xuzZs01oaGieN2OoUY5jx46Z/v37m1tuucVER0ebN954w/6dGdTI0ZAhQ+zfU2OMMTt27DCdOnUyNpvNdOvWzfz0008eXJ3n/N///Z955JFHTEREhImOjjavvfaa/TlEjbL99ddfZvDgwSYiIsI0b97c8jXyMuZ/554AAACuYbz9BAAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQA6DEa9WqlYYOHerpZQAoIr5RGECJt3v3bpUuXVrVq1f39FIAFAGhBgAAWAJvPwEoEmOM3nnnHd11111q2LCh2rRpo7fffls5/7+0ZMkSdenSRREREWrYsKE6duyoL774wt5/+fLlstls2rZtm7p27SqbzaZ27drpm2++0YEDB9SrVy+Fh4erTZs2+uyzzxz61alTRzt27FDnzp3VsGFD3XPPPVq1apXD+o4cOaLnnntOMTExatCggZo3b67nnntOycnJ9n0uffvp+PHjevrpp9WkSRM1btxYI0eO1LRp09SqVSuHPjNmzNDEiRN16623qmHDhnrsscf066+/FneJAbjJ19MLAHBtmzRpkubPn6/evXsrOjpaCQkJmjJlijIyMlS6dGmNGzdOAwcOVFRUlE6fPq25c+fq2WefVWRkpCpXrixJysjI0DPPPKMBAwboxhtv1JQpU/Tss8+qYsWKeuCBB/TEE09o5syZGjJkiKKiouz9JOnxxx/Xww8/rKefflpLly7VU089pdmzZ6tFixZKTU1Vz549FRwcrFGjRun666/X9u3bNXPmTAUGBmrMmDG5jic9PV29evVSSkqKhg8frtKlS2vOnDn6+eefValSJYd9FyxYoKioKI0fP16nT5/WSy+9pCFDhuiDDz64vEUHkCdCDYBC++uvv7RgwQI9/PDDGjx4sCTp1ltvVWJiorZu3aratWvrscce03/+8x97nypVqqhLly6Ki4vT3XffLUnKysrSE088oe7du9vHffrpp9WrVy/17t1bknT99dera9eu2rVrl0Oo6dGjh/r37y9Juu2229S5c2fNmjVLLVq00K+//qrKlStr4sSJqlatmiSpWbNm2rFjh3744Yc8j+njjz/WgQMHtGzZMoWFhdn73HHHHbn2LVOmjF5//XX5+PhIkn777Te99tprSk5OVnBwcOELC6BQCDUACi0+Pl4ZGRlq27atw/YXXnjB4f5ff/2lAwcO6NChQ9qyZYuk7DMiF4uMjLT/u0KFCpKk8PBw+7Zy5crZx7pY586d7f/28vJSmzZt9Nprr+n8+fOqV6+eFi1apKysLP366686dOiQ9u/frwMHDigjIyPPY9q8ebOqVatmDzSSVLp0ad1+++32teew2Wz2QCPJHrZSU1MJNYAHEGoAFNqpU6ckSeXLl8+z/bffftPIkSO1adMm+fn5qWbNmqpbt64k6dLPKJQuXTpX/6CgIJdruOGGGxzuV6hQQcYY/fXXXwoMDNS8efP05ptv6tSpU6pYsaLCwsIUFBSkM2fO5DlecnKyPVRdOq6r9Xl7Z1+mmJWV5XLdAIofFwoDKLQyZcpIkk6ePOmw/ejRo9q0aZMeffRRnThxQkuXLlV8fLw+/vhj9evXr1jXkBOsciQlJcnHx0flypXTJ598ogkTJqhv377atGmTvv/+e82ePVs333xzvuOFhIQoKSkp1/YTJ04U67oBFD9CDYBCa9iwofz8/LR27VqH7bGxsXrkkUd0+PBhdevWTTabTb6+2SeGv/32W0nFdzZjzZo19n8bY7R69WpFRUXJ399fcXFxKlOmjPr06WM/m3Tu3DnFxcXlO3+TJk105MgR/fzzz/Zt58+f14YNG4plvQAuH95+AlBo5cuXV8+ePfXOO+/I399fTZo00Y4dO7R48WINHz5c8+fP18KFC1W5cmWVKVNGGzZs0IIFCyRlX3dSHCZNmqS0tDT94x//0JIlS/TLL79o/vz5krJD1+LFizVhwgTdfvvtOn78uN5++20lJSWpbNmyeY7XoUMHzZkzR/3799eTTz6pMmXKaN68eTpx4oRuuummYlkzgMuDUAOgSAYPHqwKFSro/fff11tvvaWqVatqxIgRuv/++9W0aVO99NJLGjp0qPz9/VW7dm298cYbevnll7Vt2zb16NGjyPOPHj1as2fP1uHDh1W/fn3FxsaqUaNGkrIvIj5y5IiWLVumRYsWKSQkRC1atNCDDz6oESNG6JdfflGtWrUcxvP19dXbb7+tl156SaNHj5avr6/uvfdelStXTgcPHizyegFcPnyjMIBr0vLlyzVs2DB9/fXXqlq1arGNu2/fPh04cEBt27aVl5eXfXu3bt1UuXJlzZw5s9jmAlC8OFMDABdJSUnRk08+qQcffFBt2rRRZmamPv/8c+3atUvPPvusp5cHwAlCDQBcJDw8XNOnT9fbb7+tFStWyBij+vXr66233lKzZs08vTwATvD2EwAAsAQ+0g0AACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACzh/wOqR6eO4AQ4RgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYkUlEQVR4nO3deVxUZfs/8M/MwACmCAKioeL2BQEREBdUXCstbXFteaxsMa1Mq6fMpcz1l1tlmWZqWZZauWVpZWbl8qik4q654gYqDLKoMMwwM/fvD5gDsw+CDh0/79eLV84597nv69zXPcPVzJyDQgghQERERPQvp/R0AERERERVgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaomrK+L6Yc7pMph3MgouqLRQ2RG06ePInXX38dnTp1QsuWLZGcnIzXXnsNx48fr/Kx9Ho93nvvPaxfv17adurUKTzxxBNVPpbZ2rVrERkZafETFRWFtm3b4rnnnkNqaqrU9pNPPkFkZGSF+r9y5QqGDRuGjIyMSsd64sQJ9O3bFy1btkTv3r0r3Z+1yMhIfPLJJ1Xeb3UzduxY9OjRw9NhEFUpL08HQFTdnTp1Co899hji4+PxzjvvICgoCFeuXMGyZcvw6KOP4uuvv0Z8fHyVjZeVlYWlS5di+vTp0raNGzdi//79VTaGI/PmzUNISAgAwGQyITs7G/Pnz8eQIUOwevVqtGjR4qb63blzJ7Zu3VolMc6fPx+XLl3C/PnzUadOnSrpk4jkgUUNkQtffvklAgMDsXjxYnh5lT1l7r33Xtx///349NNPsWjRIg9GWHWioqLQoEEDi23R0dG47777sGLFCkyZMsVDkZXJzc1FREQEunbt6ulQiKia4cdPRC5kZ2dDCAGTyWSxvUaNGhg/fjweeOABi+3r1q1Dv379EBcXh27duuGDDz6AXq+X9m/evBn/+c9/kJCQgJYtW+L+++/H8uXLAQDp6em45557AADjxo1Djx498Mknn2DevHkALD8aMZlMWLRoEe677z60bNkSvXr1wjfffGMRy1NPPYU333wTo0aNQnx8PJ599tkKn3+DBg0QGBiIS5cuOWzzyy+/oH///khISECnTp3w7rvvIj8/H0DJR1vjxo0DANxzzz0YO3asw36ysrIwbtw4dO3aFa1atcLAgQPxxx9/SPsjIyOxe/du7NmzB5GRkVi7dq3dfp566imMHTsWn332GTp27IjExES8/PLLNh9/7d69G4899hji4uLQq1cv7Ny506av9PR0vPXWW0hOTkZMTAw6dOiAt956C7m5uQCAmTNnolWrVrh+/brFcZ9++ikSExOh1WpRVFSESZMmoUuXLlLOv/jiC4fzYLZq1Sr0798f8fHxaNWqFR555BH8+uuv0v61a9ciOjoaBw8exGOPPYbY2Fh0797dpu/8/HyMGzcO7dq1Q9u2bTF79myb9WxtwIABePzxx222P/PMMze1johuC0FETi1fvlxERESIfv36iWXLlonTp08Lk8lkt+2yZctERESEePvtt8W2bdvE8uXLRVxcnJgwYYIQQoi//vpLREREiGnTpomdO3eKP//8UwwdOlRERESIAwcOCJ1OJzZt2iQiIiLEnDlzxNGjR8Xly5fF+PHjRUREhNi/f7+4fPmyEEKICRMmiJiYGDF37lyxfft28eGHH4oWLVqIefPmSfE8+eSTIjo6WowdO1bs3LlT/O9//7Mb95o1a0RERIS4ePGizb6cnBzRokULMXnyZCGEEHPnzhURERHS/vnz54vIyEgxefJk6ZzbtWsnHnroIaHVasXVq1fFnDlzREREhNi0aZM4f/683Rg0Go3o3LmzuPfee8UPP/wgtmzZIkaNGiUiIyPFjz/+KIQQYv/+/aJv376ib9++Yv/+/eLq1at2+3ryySdFmzZtxH333Sd+/vlnsX79etGtWzfRvXt3UVhYKIQQ4siRIyImJkY8//zzYsuWLWLZsmWiffv2IiIiQsydO1cIIURhYaHo3r276N+/v9i0aZPYtWuX+PTTT0V0dLSU09OnT4uIiAixcuVKixh69uwp3nnnHSlX3bt3Fxs2bBApKSli1qxZIiIiQqxevdpu/EKUrKUWLVqI+fPni5SUFPHbb7+JgQMHiujoaGkNrFmzRkRGRopu3bqJr776SuzcuVP897//FREREWLbtm1CCCGMRqMYOHCg6NChg1i9erXYvHmzePzxx0VMTIzo3r27w/FXrFghIiIixLlz56Rtly5dEi1atBA//fSTw+OIPIlFDZEbPvroIxEbGysiIiJERESEaN++vXjjjTfEwYMHpTZGo1F06NBBvPzyyxbHfv7556Jfv35Cr9eLxYsXizFjxljsz83NFREREWLhwoVCCCEuXrwoIiIixJo1a6Q21oVEWlqaiIyMlI4xmzNnjoiNjRU5OTlCiJJf7nFxcUKn0zk9P3NRc/78eVFcXCyKi4vFjRs3xJEjR8QzzzwjoqOjxfHjx21iycvLEy1btpR+wZvt2bNHREREiGXLlln0b69oMps1a5aIiYkR6enpFtuHDBkiOnXqJIxGo3ROTz75pNPzefLJJ0VMTIy4cOGCtO3o0aMiIiJCrFixQgghxMiRI0WXLl2EXq+X2vz8888WRc2xY8fEE088YdGPEEIMHz5c9OrVS3r82GOPicGDB0uPU1NTRUREhNi3b58QQohevXpJBY7ZvHnzxF9//eXwHKZPny5mz55tse3IkSMiIiJCbNiwQQhRNq/lCyqdTidiY2PFlClThBBlhfTWrVulNgUFBaJ9+/ZOi5pr166JVq1aiY8//ljatmDBApGYmCi0Wq3D44g8id+pIXLDq6++imeeeQbbt2/Hrl278Pfff2P9+vXYsGEDxo8fj6effhpnz57F1atXcd9991kc+/zzz+P5558HAAwdOhQAUFBQgLNnz+LChQs4fPgwAFh8ROVKSkoKhBDo0aMHDAaDtL1Hjx5YsGABUlNTce+99wIAmjZtCrVa7Va/1rEDQFhYGGbPnm33iqcDBw5Ar9fjwQcftNjepk0bhIWFYffu3Rg8eLBbY+/evRsJCQkICwuz2P7www9j3LhxSEtLQ/Pmzd3qCwBat26Nhg0bSo+jo6PRsGFD7NmzB0888QRSU1PRvXt3eHt7S2169uwJlUolPY6KisKKFStgMplw7tw5nD9/HqdPn0ZaWprFvA8YMAATJkxARkYGwsLC8MMPP6BJkyZISEgAALRv3x7fffcdrly5gq5du6Jr164YMWKE0/jNH9Ndu3YNaWlpOH/+PP7++28AtmvFPA4AqNVq1KlTB4WFhQCAvXv3wtvbG507d5ba1KhRA127dsWePXscjl+rVi307NkTP/30E0aNGgUA+OGHH9C7d2/4+vo6jZ3IU1jUELmpdu3aePDBB6Vf4MeOHcPo0aMxe/ZsPPTQQ8jLywMABAUFOewjJycHEydOxObNm6FQKBAeHo42bdoAqNg9XMxj9enTx+7+zMxM6d933XWX2/0uWLBAuvrJ29sbgYGBCA0Nddje/L2Z4OBgm33BwcE23zNxJj8/36IIKd8PUPLLvSLsxR0UFCTFnJ+fj8DAQIv9Xl5eNtu+/PJLfPbZZ8jLy0NwcDBatmwJPz8/i3Pr3bs33nvvPfz44494/vnn8euvv2LYsGHS/rfffhv16tXDTz/9hKlTp2Lq1KlISEjApEmTHF5RduHCBbz77rvYtWsXvL290bRpU6mt9VqxLjKUSqXUJj8/HwEBAVAoFBZtzHl2ZuDAgfjpp5+wd+9eqFQqnDt3DjNnznR5HJGnsKghciIzMxMDBgzAq6++ikGDBlnsi46Oxuuvv44RI0bg4sWL8Pf3B1BSuJSXm5uLY8eOISEhAW+++SbS0tLw1VdfISEhAWq1GlqtFitXrqxQXOaxli5dardoufvuuyvUn1lERITN1U/O1K5dG0DJl6mbNm1qsU+j0dgtUpz1pdFobLabt1kXG66Yv8hbXnZ2Nho1agQACAgIQHZ2tsV+IYRU9ADA+vXrMWPGDIwePRr9+/eXLiF/9dVXpXfYgJLC8f7778evv/6KiIgIFBYW4pFHHpH2q9VqvPTSS3jppZdw6dIl/PXXX/j000/xxhtv4Oeff7aJ02QyYdiwYfD29sbq1asRFRUFLy8vnD59Gj/++GOF5iEwMBC5ubkwGo0W70KZC2Nn2rVrh0aNGmHjxo1QKpVo2rRpld6+gKiq8eonIieCg4Ph5eWFFStWQKfT2exPS0uDj48PwsPD0bRpUwQGBuKvv/6yaPPjjz9i2LBhKC4uRmpqKnr27In27dtLHwlt27YNAKSrUcr/4jFTKi2fquZ3d3JzcxEbGyv95OTk4OOPP3brF1ZViIuLg1qtxoYNGyy27927F5cuXULr1q3txm9P27ZtsX//fpsrlH766SeEhIQgPDy8QrGlpqZaFDZHjhxBeno6OnToAADo0KEDtm3bBq1WK7XZvn07iouLLfrw9/fH0KFDpYKmoKAAqampNlcPDRw4ECdPnsTSpUvRsWNH6Z2ioqIi9OrVC0uWLAFQUnAOHjwYffr0cXhFWW5uLs6ePYuBAwciNjZWupWA9VpxR4cOHWAwGLB582Zpm16vx44dO1weq1Ao0L9/f2zevBl//vkn+vXr5/a4RJ7Ad2qInFCpVJg0aRJGjBiBAQMGYPDgwWjWrBm0Wi127NiB5cuX49VXX5XesRg5ciSmTJmCoKAg9OjRA2fPnsXcuXMxePBg1K5dG61atcL69esRExODevXqYd++fVi0aBEUCoX0y7VWrVoAgF27dqFZs2aIi4uT3pnZsGED4uLiEBkZiYcfflj6HkfLli1x9uxZzJkzBw0aNEDjxo1vy/wEBARg2LBhmD9/Pry9vdG9e3ekp6fj448/RvPmzaVfgub4f//9d3Tp0gXNmjWz6evZZ5/FTz/9hGeeeQavvPIKAgICsG7dOqSkpOC9995zqzAqT6vVYujQoXjppZdQUFCAOXPmICIiQvr4cMSIEdi8eTOef/55DB06FDk5Ofjoo48svmPTqlUrfPvtt5gxYwa6d++OrKwsfPHFF8jOzpZybpaYmIgmTZpg9+7dmDNnjrTd19cXMTExmDdvHry9vREZGYmzZ8/ihx9+QK9evezGHhQUhLCwMCxfvhz16tWDv78/tm/fjq+//lo6N3d16NABycnJeOedd3D16lWEhYXh66+/Rk5OjtOPSs369+8v3Uag/LtPRNURixoiF7p164aVK1fiiy++wGeffYacnByo1WpER0djzpw56Nmzp9R28ODBqFGjBr744gt8//33qFevHl544QW88MILAIAZM2ZI36kAgMaNG2Py5MnS9xYAoGbNmnj22Wfx/fffY+vWrdixYwd69uyJH3/8EWPHjsXAgQMxadIkTJ8+HQsXLpS+gBoUFITevXvjtddes/tuz60ycuRIBAcHY9myZfj+++8REBCA+++/H6+99hpq1KgBoOSLsh07dsQHH3yAXbt22b1ZYUhICL799lt88MEHmDZtGoqLi9GiRQt8+umn0r17KqJNmzZISkrC22+/DaDkS9RvvfWW9A5Z48aNsWzZMsyYMQOvv/46goKCMGbMGMyYMUPqo1+/fkhPT8eaNWuwYsUKhIaGomvXrvjPf/6DCRMm4MyZMxYFWrdu3ZCTkyN9SdtsypQp+Oijj7BkyRJoNBoEBQVh4MCBePXVVx3G/+mnn+L//b//h7Fjx0KtVqN58+ZYsGAB3nvvPezduxdPPfWU23Mxb948vP/++5g7dy50Oh169+6NRx991OIeQI6EhoaiRYsWCA4Odvr9KqLqQCEq8u1EIqJ/AfMvfOubEd5KQgj06dMHycnJGD9+/G0b91bLzMxE9+7dMXfuXJtijai64Ts1RESVcOPGDXz11Vc4fPgwLl68WKF3UKqzf/75B3/88Qd+++03NG7cmH/8kv4VWNQQEVWCr68vvvvuO5hMJrz33nsVuuKrOtPpdPjyyy8RGhqKDz/8sMLfaSLyBH78RERERLLA0puIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEseHk6gNvJZDLBYDBAqVRCoVB4OhwiIiJygxACJpMJXl5eUCodvx9zRxU1BoMBhw8f9nQYREREdBNiY2OhVqsd7r+jihpzdRcbGwuVSlWlfRuNRhw+fPiW9E2Vw9xUb8xP9cXcVF93Wm7M5+vsXRrgDitqzB85qVSqW7YIbmXfVDnMTfXG/FRfzE31daflxtVXR/hFYSIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpKFanNHYb1ej/79+2PChAlo37693TbHjh3DxIkTcfLkSTRv3hyTJ09Gy5Ytb3Okluzd3bBTp064fv06zp49C51OB19fX8THx+OBBx5AXl4e9u3bhxo1aqBDhw4AgF27duH69eswGAw4fvw48vPzAQBqtRo1atRAkyZN8PDDD+P06dPYunUrrly5guLiYuj1egCAl5cXfH19UVBQACEElEollEoljEYjgJI/D2H+Y2CeYB5fCOGwjZeXFwwGAxQKBYQQ0n9vR2x33303GjVqhIcffhixsbFYvnw5Dh06BCEEgoKCkJGRgYKCAtSsWRP16tXD/v37YTKZoFQqERAQgOvXryMwMBDR0dEIDg7Gr7/+ioKCAhgMBhgMhlt6HgqFAiqVCgEBAfD29sa1a9eg0+mgVCrh6+sLHx8faW2ZTCapPVDyB+KMRiPUajWKioqqLCalUolatWohKSkJtWvXxqpVq2zmoFatWoiLi0NBQQEUCgXuuusutGvXDpcvX4ZCoUBoaCh+/vlnnDt3DkIItGjRAm3atEFWVhYyMjKg1WqRk5ODoqIi1KxZE7Vq1YLRaERxcTECAwPh6+sLPz8/5OfnQwgBPz8/tGzZEpGRkYiKisLXX3+NnTt3IjMzEwaDAb6+vujcuTNatWqFjIwMGAwGnDx5EpmZmSguLkZISAji4+PxzDPPoEePHgCALVu2YMuWLTCZTAgKCkJoaCjCwsLQpk0bjB07FqdOncL//d//Yfbs2fDz84PRaMT27duRkZGB9PR0/P7778jPz0fbtm0xa9Ys7N27FxkZGcjMzMTVq1ehVCrRuXNnqFQqXLlyBRqNBiEhIahXrx5MJhO2bNmCs2fPIisrC0VFRWjUqBH8/f2hUqnwf//3f3j55Zdt/kaOOYbLly+jfv36aN++PRYuXIgzZ86gWbNmGD58OP7++29pf8eOHWE0GrFlyxZkZWWhfv36UkzWfXXu3BkAbLY5u9utvT5u5u641v107NgRO3furHS/FY3RUVtX8ZV/XLduXZhMJmzbtg0A0K1bN3Tu3NnmfMzj/fHHH9i+fbvUtlu3bjc95+7GX5n5vOVENVBUVCRGjBghIiIiREpKit02BQUFolOnTmLGjBni9OnTYurUqaJjx46ioKDA7XEMBoPYu3evMBgMVRI3AAGlquS/5h/zY4VSAAr7+8w/CmVpO5T91/rf5R+XP95Rm/L/VjiIzdk2i/hd9e+ojcJxP1A4OE5hOV/WbWxiVziP33ruFXbmzmEcTmJ1OJ6THLuaT3fm3Z314ai9UuV6Lbp7Hq7Wsd04HOTc3W3urAeL54a92BUCKJffCo1t2Z9vjRqiVu0Ax2vHTmxt27YVDRuFuzG2wnmuHT5/bOdB5a0Wo0ePll6v1qxZUxaDm3kPCg4RtQPrWGxr2ChcjB492qavoOAQERRS16btmjVr7L5+2ovHWXtH7PWj8lZXut+Kxuiorb25so7P4rGdnCu9vG36ffPNN0XtgACb9kEhdW9qzisS/83OZ2W4+/tbIcRt+N9hJ06fPo033ngDQgicOHECX3/9td13alavXo0FCxZg8+bN0v/F9+rVCy+++CL69+/v1lhGoxEHDhxAfHx8patM8zs0fs3aoXaHR+EdEo5izXnk7/oe2jN7pHYBXYagVuKD5fbtRdCDb8B4TYO8bUuhDm0GfWYa/Jq1hU9YFPK2fQ2/Zm3t9lnS9oyDcVdCe2YPAro8DV3GP9Ce2Q11aDPUue8lFOddwdUNH0j9ljx+3634ayY+jJpRXaTYA7o8jcIT/4M+80xpf49ZxbAbAKRYy7e5nroBeduWOj2uRnQ3FB7bahXrBxZzYu7HnfiDHnwT3gH1pO01orvBcPWiy/hL4tgitbEXh3VOy8Ype5zz+wInY+2BukE09OlHoQ5tXq6dvdw3R43ITg7Wh3Xuy9ZKybZjpfuHQOUfYnEeeTu/Q1HaXofz6BXUEIar6fBr1hYKnxqlc9KuwuvI0X7z88PR2sj5/TPoM087ON563veUjuU4r9bxuHMO5rkMevBN6XnrbAxH/SjUNSD0hXaOtZ0re68Fzp8/eyxyXSO6G4SuANozezB69GgkJSVh4MCB8GvWFv5J9p9X5WOpmfgwvO4KtDvetZSVKDy9G+p6zVHn3hedxnYtpSS21atXW7xOr1271iIeV+0dse7H0XlVtN+Kxuisbfm5cjXv1uvX4fNi82fQXznteL2l7cWaCsx54endgEKBGi7ir8x8Vpa7v789XtSsWLEC586dw+uvv474+HiHRc2ECROg0+kwa9YsadvYsWOhVqsxZcoUt8aqqqJGoVAAShX8miQiZMA7UCjKvpokhAmaNVOhPbsPMBmh8q+LsOGLoVCqSvatnQZ91jkAgHdwIxRfvQB1cGME9xuHS4tfhDokHCH97fepzz4PY0E+/MJbIWTABNs2a6ehWHMe9V/4DNk/vAd99gXcPXQBLn3+ktQvhMCF2QMApXAR/35AoQSECQ1fXwmFyqs0hgsQJhN86ja2H8OaqSi6cAQK35oWbYTJiIxFL0AdHO7guGkounAYwlgM3yYJqDtgAiAEMhYNs5gTYTLi4oLnIQpz3YhfBeVdtdFg+GJAoSjZfu4AlDUC4FO3iYNjy+Lwa5KAEAdx2Jv3u4ctKhnHnIehC3Dp8xehDm7scCzt2VT4hCfAkHMB6pDGTnJ/AUKIkjl1EkP9Fz5D9rrp0GvOwzu4EQzZF0rXw3ToNecABaRxTMU6pH/8uMt1rA6PR91+45D+8RPwa5yAkAEl6yh94QsQ2mvwbdTK6fG+jVuj7kD7OS/ONs/TS6Vro6yfsjXjYP7KzbsQJqR//AR8G8U6X18GHXybtEbdge+6fQ767AvwDmoIffYFKICSdeBk7Td4dQWUKm+7c+ETHo/QQROdzlVI//E2rwUlczHMZo7s5v+H96A9dwANXv0WV3+cCd35A7i7fn3k+NRDcOlrgNP1XPr8UdWsU7JWnMxL2LBFAOA0tuy10xBUnIWzZ05LH2U0adoMV9WhCLYzvnV7R6z7cXVe7vZrr29nfQFw2tY8V9avxa7Wj6OcC5MR6QuHQmivO123wcUanE1zPecmY7GL505ZrhVKlbS9IvNZFdz9/e3xLwr/5z//wfjx4+Hn5+e0nUajQd26dS22BQUF4cqVKxUe02g0VuoHAGAyonaHRy0WAAAoFErU7vAoYCppZ7yWBV360bJ9SYNgvJYF47Us+DVtA2N+Fmp3eBT6jH9gzM9E7STHfRrzswCDDrU7PGa/TdIgGPIzoc/4p7R9Jm7s/8Wi35JYDG7EbwCMesBkwI39v5SLIROm6xrHMXR4FKJYa9NGl3609FwdHTcIolgLmAzwa5IoxWo9J7r0oxA3st2MXwdT6fxL243FpbE5OrYsDnOs9uKwN+/SOKWPS+Y+y+lYMBnhHVi/pJ3T3GfCdM1Jm/K5TxoEY34m/JokllsPpeuu3Dh5W750ax0rvdQoOLARMBZLbXXpR2G6lgVRXOTyeL+miQ7P31B+jVr1U7ZmXM+7PuOf0lhcrC9hgl/TNhU6B2N+JvyatoGp9Hnrau3rM/5xOBfegXe7nCt7rwXSGnQxF+bnPozFKDiwEbU7PAqToRjpFy/Av9xrgKvXGpgMpefqfF506UddxuafNAgXz5/Dli1bpO/nXLxwXorHVXtHP9b9uDovd/utaIyu2jp6LXa1fhzNa8m61bhctxcvuDfnrp87Zbm+2fmsqh93VJsvCrui1WptvvSmVqulL8tWxOHDh6skJu+QcPvbgy23G2/k2t2n8PaR+tGe3u12n67aGG/kwq9ZWwCAIe+KxTEWsbgZv9RHBWKwbmMe153jzPNi75ibiV/q5ybjdzd263Gs597RccJYXOGYnMVgzr3CS22zrXwfhtzL7sWnK6jUOjLn09F+R/NU0Xl3p235eCp0Dl5qt9uW79d6nznXDsfx9nG67iv63K/ZqqdN3BV5Llbl3KekpCAgIAApKSkVau+IdT/unperfu317awvaZuLtu6+HpjPw9H5VPWc38zzzN4Y1cW/pqjx8fGxKWD0ej18fX0r3FdsbGyVvF1WrDkPn7AWttuzz1s8VtUMtLtPFOukfsxt3OnTVRtVzUDp314B9SyOsYjFzfilPioQg3WbipyfeV7sHXMz8Uv93GT87sZuPY713Ds6TlH6UUVV514Y9DbbyvfhFVgfOLffdXw+d1VqHZnz6Wi/o3mq6Ly707Z8PBU6B4Pe7bbl+7Xepyj3sZTdcYp1UAWE2oxTkbkoP6+VWc8VPVdXbZOSkhAfH4+8vLwKtXfEuh93z8tVv/b6dtaXtM1FW3dfD8zn4eh8qnrOb+Z5Zm+MW81oNLr1hoTHP35yV2hoKLKzsy22ZWdn23wk5Q6VSlWpHwCAUoX8Xd9DCMvLpIUwIX/XSqD0s0eVf134NIgp25eyCir/ulD514U2bS9Utesif9dKqMOioKodivyUlQ77VNWuC3j5OB43ZRW8aodCHRZV2j4UNRN6W/RbEouXG/F7ASo1oPRCzYTe5WIIhbJWiNNjFd5+Nm18GsSUnquj41ZB4e0HKL2gPZsqxWo9Jz4NYqCoGexm/D5Qls6/tF3l7SL+sjjMbezFYW/epXFKH5fMvfNzhlKF4txLJe2c5j4USn8nbcrnPmUVVLVDoT2bWm49lK67cuMEdHvWrXVsMuhxV/z9gMrbYk6U/nWh8PZF/i7HcUOpgjYt1eH5e5Vfo1b9uFwz5eZdHRZVGouLvCqU0KbtrdA5qGqHQpu2F8rS562rta8Oi3I4F8W5l1zOlb3XAmkNOorT6rkPlTfuir8f+btWQunljQYNG+FaudcAV681UHqVnqvzefFpEOMytmspq9AwvLF0qXG3bt3QsFG4FI+r9o5+rPtxdV7u9lvRGF21dfRa7Gr9OJrXknUb4nLdNmzk3py7fu6U5fpm57Oqftzh8S8KlxcZGen06qfFixdj48aN0tVPPXv2xIsvvogBAwa41f+tufqp9FvsweEozi67EsEsoMvTqNX6wXL79iLowf+WXkXxtdXVTy2Qt+2b0j4H2fRpe/VT+TarSq+AeAq6jOPlrn4yf+P+Q/g1a2NxRZE78Zdc/dRZij2gy1MoPLHD8kodixjsXf1U0ub6vg2WV3TYOa5GdFcUHtsmzYF17OX7cSf+sqtjVpZeFdIVhqvpLuMvicP6KizLOKxzWjZO2eOSq3ccjbUH6gZR0Kcfs1gH9nPfHDUiOzpYH9a5L3/101PSFVEBXZ4uvfqp7Dzydn5fevWT/Xn0CmoAw9WM0quf/OxemWZ/Pa60uaLH3n7z88PR2sj5fWG5q5+sj7ee9z0O1kRZXq3jceccyq5+ekN63jobw9FcWl795HjNllz9ZPta4Pz5s8ci1zWiu0LoCh1c/WT/eVU+lpKrnwLsjnctZVW5K2KGO43tWsoqN65+GuSyvSPW/Tg6r4r2W9EYnbUtP1eu5t16/Th8XmxeaHX1k9W6dXn1k22MZVc/OY6/MvNZWW7//r6lF5ZXkPV9arKysoRWqxVCCHH9+nWRlJQkpk6dKk6dOiWmTp0qOnXqVI3vU+PGvUHcvk+NyvZ4R23Kj33T96mxdy8MO/cBcdhG6eQ+NUo79xFRCYt7iNg7ziZ2O/fuKR8/bjZ+peUYlb5Pjau5KrkPheP71NjZ7lZuVFYx3e771Fjdr8nefrfuFeNgXip0nxpzXit6nxo7cwlH96kpt3YqfJ+a8nPh6j41TuK0GvuW3acmvLH9+9SE2LlPTXjjit0zxUl7R9y6T81N9FvRGB21rfx9apS296kJb+zwPjXBFb1PTen5VCT+m53PyvjX3KemPOt3aiIjIzF9+nSpEjx06BAmTpyIM2fOIDIyEpMnT0Z0dLTb/VflOzVmvKOwa7yj8K07D95RmHcUvtV3FD5w4ACuX7/OOwpXwzsKp6amIi8v7464o/C/5j41t9OtKGpuR99UOcxN9cb8VF/MTfV1p+XmX3OfGiIiIqKqwKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIlnweFGj0+kwfvx4tGnTBsnJyViyZInDtr///jseeOABJCQk4IknnsDRo0dvY6RERERUnXm8qJk1axaOHDmCpUuXYuLEiZg3bx42btxo0+7UqVN44403MHz4cPz444+IiorC8OHDodVqPRA1ERERVTceLWoKCwuxatUqvP3224iJicF9992HoUOHYvny5TZtd+zYgebNm6Nv375o1KgR/vvf/0Kj0eD06dMeiJyIiIiqGy9PDn78+HEYDAYkJCRI2xITE/HZZ5/BZDJBqSyruQICAnD69GmkpqYiISEBa9euRc2aNdGoUaMKj2s0Gqskfnt93oq+qXKYm+qN+am+mJvq607Ljbvn6dGiRqPRIDAwEGq1WtoWHBwMnU6HvLw81KlTR9reu3dv/Pnnn/jPf/4DlUoFpVKJhQsXonbt2hUe9/Dhw1US/+3umyqHuanemJ/qi7mpvpgbSx4tarRarUVBA0B6rNfrLbbn5uZCo9Hg3XffRVxcHL799luMGzcOP/zwA4KCgio0bmxsLFQqVeWCt2I0GnH48OFb0jdVDnNTvTE/1RdzU33dabkxn68rHi1qfHx8bIoX82NfX1+L7e+//z4iIiIwePBgAMDUqVPxwAMPYM2aNRg2bFiFxlWpVLdsEdzKvqlymJvqjfmpvpib6ou5seTRLwqHhoYiNzcXBoNB2qbRaODr6wt/f3+LtkePHkWLFi2kx0qlEi1atMClS5duW7xERERUfXm0qImKioKXlxcOHDggbUtNTUVsbKzFl4QBoG7dujhz5ozFtrNnz6JBgwa3I1QiIiKq5jxa1Pj5+aFv376YNGkSDh06hM2bN2PJkiV4+umnAZS8a1NUVAQAePTRR7Fy5UqsW7cO58+fx/vvv49Lly6hX79+njwFIiIiqiY8+p0aABg3bhwmTZqEIUOGoGbNmhg5ciR69uwJAEhOTsb06dPRv39/9O7dGwUFBVi4cCGuXLmCqKgoLF26tMJfEiYiIiJ58nhR4+fnh5kzZ2LmzJk2+06cOGHxeNCgQRg0aNDtCo2IiIj+RTz+ZxKIiIiIqgKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLg8aJGp9Nh/PjxaNOmDZKTk7FkyRKHbU+cOIEnnngCrVq1wkMPPYSUlJTbGCkRERFVZx4vambNmoUjR45g6dKlmDhxIubNm4eNGzfatLt+/Tqee+45NG/eHOvXr8d9992HV155BVevXvVA1ERERFTdeLSoKSwsxKpVq/D2228jJiYG9913H4YOHYrly5fbtP3hhx9Qo0YNTJo0CeHh4Rg1ahTCw8Nx5MgRD0RORERE1Y2XJwc/fvw4DAYDEhISpG2JiYn47LPPYDKZoFSW1Vy7d+/GPffcA5VKJW1bs2bNTY1rNBpvPmgXfd6KvqlymJvqjfmpvpib6utOy4275+nRokaj0SAwMBBqtVraFhwcDJ1Oh7y8PNSpU0fafvHiRbRq1QoTJkzAn3/+ibCwMIwZMwaJiYkVHvfw4cNVEv/t7psqh7mp3pif6ou5qb6YG0seLWq0Wq1FQQNAeqzX6y22FxYWYtGiRXj66aexePFi/Pzzz3j++efx66+/on79+hUaNzY21uIdn6pgNBpx+PDhW9I3VQ5zU70xP9UXc1N93Wm5MZ+vKx4tanx8fGyKF/NjX19fi+0qlQpRUVEYNWoUACA6Oho7duzAjz/+iBdffLFC46pUqlu2CG5l31Q5zE31xvxUX8xN9cXcWPLoF4VDQ0ORm5sLg8EgbdNoNPD19YW/v79F25CQEDRt2tRiW+PGjXH58uXbEisRERFVbx4taqKiouDl5YUDBw5I21JTUxEbG2vxJWEAiI+Px4kTJyy2paWlISws7HaESkRERNWcR4saPz8/9O3bF5MmTcKhQ4ewefNmLFmyBE8//TSAkndtioqKAACPP/44Tpw4gU8++QTnz5/Hxx9/jIsXL+KRRx7x5CkQERFRNeHxm++NGzcOMTExGDJkCCZPnoyRI0eiZ8+eAIDk5GT88ssvAICwsDB8/vnn+Ouvv/Dggw/ir7/+wqJFixAaGurJ8ImIiKia8OgXhYGSd2tmzpyJmTNn2uyz/rgpMTERa9euvV2hERER0b+Ix9+pISIiIqoKLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJQoWLGp1OdyviICIiIqqUChc1nTp1wsSJE3Ho0KFbEQ8RERHRTalwUfPcc88hJSUFjz32GHr37o3PP/8cGo3mVsRGRERE5LYKFzUvv/wyfvvtNyxfvhyJiYlYuHAhunfvjmHDhuG3335DcXHxrYiTiIiIyKmb/qJw69atMXXqVOzYsQMff/wxtFotXnvtNSQnJ2PmzJnIyMioyjiJiIiInKrU1U+XL1/GkiVLMHfuXOzZsweNGzdG//79sW3bNvTu3Ru//PJLVcVJRERE5JRXRQ+4ceMGfvvtN6xbtw6pqanw9fXF/fffj4kTJ6J169YAgDFjxmD48OF477330Lt37yoPmoiIiMhahYuaTp06Qa/XIy4uDlOmTEHv3r1Ro0YNm3axsbE4duxYlQRJRERE5EqFi5rBgwdj4MCBaNq0qdN2zz77LF566aWbDoyIiIioIipc1Lz11ltutbvrrrsqHAwRERHRzeKfSSAiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLHi9qdDodxo8fjzZt2iA5ORlLlixxeUx6ejoSEhLw999/34YIiYiI6N/Ay9MBzJo1C0eOHMHSpUtx6dIljBkzBnfffTfuv/9+h8dMmjQJhYWFtzFKIiIiqu48WtQUFhZi1apVWLx4MWJiYhATE4NTp05h+fLlDouan376CQUFBbc5UiIiIqruPPrx0/Hjx2EwGJCQkCBtS0xMxMGDB2EymWza5+bmYvbs2ZgyZcrtDJOIiIj+BTz6To1Go0FgYCDUarW0LTg4GDqdDnl5eahTp45F+xkzZqBfv374v//7v0qNazQaK3W8sz5vRd9UOcxN9cb8VF/MTfV1p+XG3fP0aFGj1WotChoA0mO9Xm+xfefOnUhNTcWGDRsqPe7hw4cr3Ycn+qbKYW6qN+an+mJuqi/mxpJHixofHx+b4sX82NfXV9pWVFSEd999FxMnTrTYfrNiY2OhUqkq3U95RqMRhw8fviV9U+UwN9Ub81N9MTfV152WG/P5uuLRoiY0NBS5ubkwGAzw8ioJRaPRwNfXF/7+/lK7Q4cO4eLFixg1apTF8S+88AL69u1b4e/YqFSqW7YIbmXfVDnMTfXG/FRfzE31xdxY8mhRExUVBS8vLxw4cABt2rQBAKSmpiI2NhZKZdl3mFu1aoVNmzZZHNuzZ09MmzYNnTp1uq0xExERUfXk0aLGz88Pffv2xaRJk/Dee+8hKysLS5YswfTp0wGUvGtTq1Yt+Pr6Ijw83Ob40NBQBAUF3e6wiYiIqBry+B2Fx40bh5iYGAwZMgSTJ0/GyJEj0bNnTwBAcnIyfvnlFw9HSERERP8GHr+jsJ+fH2bOnImZM2fa7Dtx4oTD45ztIyIiojuPx9+pISIiIqoKLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJAosaIiIikgUWNURERCQLLGqIiIhIFljUEBERkSywqCEiIiJZYFFDREREssCihoiIiGSBRQ0RERHJgseLGp1Oh/Hjx6NNmzZITk7GkiVLHLbdsmULHnnkESQkJOChhx7CH3/8cRsjJSIiourM40XNrFmzcOTIESxduhQTJ07EvHnzsHHjRpt2x48fxyuvvIIBAwZg3bp1ePzxx/Hqq6/i+PHjHoiaiIiIqhsvTw5eWFiIVatWYfHixYiJiUFMTAxOnTqF5cuX4/7777dou2HDBiQlJeHpp58GAISHh+PPP//Er7/+ihYtWngifCIiIqpGPFrUHD9+HAaDAQkJCdK2xMREfPbZZzCZTFAqy95I6tevH4qLi236uH79+m2JlYiIiKo3jxY1Go0GgYGBUKvV0rbg4GDodDrk5eWhTp060vZmzZpZHHvq1Cns2rULjz/+eIXHNRqNNx+0iz5vRd9UOcxN9cb8VF/MTfV1p+XG3fP0aFGj1WotChoA0mO9Xu/wuJycHIwcORKtW7fGPffcU+FxDx8+XOFjqkPfVDnMTfXG/FRfzE31xdxY8mhR4+PjY1O8mB/7+vraPSY7OxvPPvsshBCYO3euxUdU7oqNjYVKpap4wE4YjUYcPnz4lvRNlcPcVG/MT/XF3FRfd1puzOfrikeLmtDQUOTm5sJgMMDLqyQUjUYDX19f+Pv727TPzMyUvij89ddfW3w8VREqleqWLYJb2TdVDnNTvTE/1RdzU30xN5Y8ekl3VFQUvLy8cODAAWlbamoqYmNjbd6BKSwsxNChQ6FUKrFs2TKEhobe5miJiIioOvNoUePn54e+ffti0qRJOHToEDZv3owlS5ZI78ZoNBoUFRUBABYuXIgLFy5g5syZ0j6NRsOrn4iIiAiAhz9+AoBx48Zh0qRJGDJkCGrWrImRI0eiZ8+eAIDk5GRMnz4d/fv3x2+//YaioiIMGjTI4vh+/fphxowZngidiIiIqhGPFzV+fn6YOXOm9A5MeSdOnJD+be8uw0RERERmHv8zCURERERVgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWWBRQ0RERLLAooaIiIhkgUUNERERyQKLGiIiIpIFFjVEREQkCyxqiIiISBZY1BAREZEssKghIiIiWfDydAA6nQ6TJ0/Gpk2b4Ovri+eeew7PPfec3bbHjh3DxIkTcfLkSTRv3hyTJ09Gy5Ytb3PElhQKRYXa+/n5Qa/XQ6FQQKVSQafTuTxGpVIhKCgIhYWFuHHjBgDAx8cHarUa169fv6m4iW4lHx8fGI1GqFQq+Pr6wtvbG8XFxbh27RqEEFCpVGjRogViYmKgUqmgVqvRsmVL1K9fH0FBQVi7di22bt0KtVqNpKQkhISEQKFQoE6dOqhXrx7CwsLQvn17zJ07F8uWLUNubi78/PzQokULhIWFITAwEF5eXujWrRs6d+6M7du3488//0RaWhquXLmCs2fP4saNGyguLkZBQQEUCgVq1qyJ+Ph4JCUl4d5770W3bt2g1WoxePBgHD58GIGBgejXrx+OHz+Oa9euQaPRIDs7GwaDAUlJSXj66aehVqtx5coVaDQaBAUF4erVq9J/AwMDsWfPHphMJhiNRly/fh0FBQUwmUxQKBQoLCyEEAI1a9ZE/fr1pXPo2LEjjh07hnPnzqFx48aIjY3F1atXUb9+fbRv3x7z5s3Djz/+CACIiYlBcnIyGjZsiM6dO0OlUlnkxWg0Yvv27bh8+TLq1q0LABbxZmVlIScnB0qlUpo7R8r3Vb9+fZfjOWqj1+vx6aef4tSpUxBCICAgACqVCt26dUO3bt2gUqlgNBqxZcsWbNmyBSaTSVoH9erVAwBkZWWhbt260Ov1WLFiBW7cuIHk5GSMHDkSarXarVjcibWic2HenpGRAY1Gg5CQEISFhUnzumXLFmzevBmpqanw8/NDvXr1cP36dWi1Wov4zXN05swZNGvWDC+//PJNzbWjeDp27IidO3c6jN+dOanM/FUp4WFTpkwRDz30kDhy5IjYtGmTSEhIEL/++qtNu4KCAtGpUycxY8YMcfr0aTF16lTRsWNHUVBQ4PZYBoNB7N27VxgMhiqJHYCAUlXyX/OP+bH5vwql/f3mn/L73TnGnf6s29jbZh2ndf+OzsvpeSgqdkxlH0tjKuycs9Vc2puTis6ty3hUtnNgL7/urgObffbO0+o87J2vo387ypv1NkdxW/flLD6FUgCOxlbYxuBsnPJ9urGuFSovyxjdzKvKy8vNNXgT66V8Th2uYQfPRbfWCkTDRuFizZo10uvVmjVrRMNG4e7nDBBBIXXFrFmzbF4z7fXlznjWbUaPHi1U3mqHeQ4KDhGjR48WQcEhrte2nflQenmL0aNHu4zFnVgdcXTs6NGjy7ZbxRkUHCJq+vu7nH+ll7do27Zt2RyV/qi81eLNN9+Ufp/dbD7MY1n3bxO/izmpzPy5y93f3wohhICHFBYWIikpCYsXL0b79u0BAJ9++il27dqFb775xqLt6tWrsWDBAmzevBkKhQJCCPTq1Qsvvvgi+vfv79Z4RqMRBw4cQHx8fKUrSPM7NH7N2qF2h0fhHRKOYs155O/6Htoze6R25v3FeVdwdcMH8GvW1qr9SmjP7EFAl6ehyzgG7Zk9UIc2R537XrTbp3v97QYA+DZtg6K0vRbH3fhnG26k/gQolIAwlR7/mM3xjmIo6TPVzrjfl57HEKj8QyxiM49pf672IujBN+AdUM/B4/Jz2RY+YdHI27bUJh+O8uBVux4M+VfsnM/K0rluCn3mGQAKKV7Hc+tevAFdhqBW4oMWx5TPr/14rddB+X7Lcmo/X2XnUXK+maVzFYW8bV/b/NtR3spiLhvPPKbC5y4UHtsCv2bt7PZ1PXUD8rYtdRmfs3FqRHdD4bEt0vw4ijnn98+gzzztNO/KGrVhKsy3id/xMfbXnfWas583y9w4Xz8l/apDm0vn4GoN21+7u53EY15H/6AobQ9Wr14NABg4cCD8mrWFf5J7OZPWYtperFq5EgMHDgQArF271qavYs15XEspOc7ReNZtUlJSMHv2bGkuHL0WmZW0O+PGeraXSwVqNLcfy5tvvon333/faayOfsc4m4vC07vhFVAPhrxMu88V53m3fM3wql0PwQ+9abM2nnrqKTz88MN49NFHbyofjl7vczZ/Bv2V06jRvJ3LOXFnPbj7O9oZd39/e7So2bdvH5588kkcOHBAeovw77//xgsvvIADBw5AqSz7ys+ECROg0+kwa9YsadvYsWOhVqsxZcoUt8arqqJGoVAAShX8miQiZMA7UCjK4hTCBM2aqdCe3QeYjGj01k+AEMhYNAzqkHCE9LfTfu00FGvOo/4LnyH7h/egz76AsGGLoFCqLPosungEDUatgEKhdN7fmmkounAYwqADVN7wC49DyIB3IIwGXPzoMSjrR8F06ajT+B3FoD27D76NW6PuwAkOjxNCwKduY4T0LxvTr3GC/bFKz/3uYYsAhcLmcdbqKSg6tx9+TVojuN94pC8cBnHjKqDylnLh26iV4zycOwCfRq1gyEm3PZ+106DXnIexIA9+4a0QMmCC27lyFK9mzTQUZ5c8VihVFvNS79m5yJj7H8fzbrEOpkv9CGFC+sdPwLdRLEIG2Jn30vPwDmqIovMH4ds4HiH9xuPS4hehDglHcN9xJf8ODncwT7YxZ62eiqJz++DXpDWCHhmD9I+fgF/jBAT3s+1LmIwlc+aofym+RjBcvWA1N6VrVQjAoAeUCvg1SSwbxyoPwmRE+mdDIYquO8/72X0AlPBrEl8S/5zHAAVczn1ZHqdCe3Y/wkYtx6UvXoEoyLF7rMlYbJEbl+tnzVQUXTgC+N4Fob3u1hq2fi5aj+lsHV1dNx1B+iwIYUKOTz0E93c/Z+Vfk4KLs3A27QwAoEnTZriqDpX6Kn9c9tppdsezbhOou4IrV67Au2EcirPPl8yXvXMptz6UNWrBp26TsvXsxnPU5XNnzVToLxyET3i84/MpzsLZM6ftfpTjbC6yVk9B0fmDFq99wmRE+sIXYCrMdyvvd5fOv/bcATR87XsovdQWbXTn9uPuu+92Otd19JkAgBwHcVqvsZK18QLUwY3txlZ+TtxaDw7mr6Lc/f3t0S8KazQaBAYGSgUNAAQHB0On0yEvL8+mrfkzYLOgoCBcuXKlwuMajcZK/QAATEbU7vCoRRIBQKFQonaHRwGTUXqsSz8KY34maic5aJ80CIb8TOgz/kHtDo/CmJ8JXfpRmz6FXgt9xj+u++swCKJYCwgTYNBJcd7Y/wtgLIbIuegyfkcxwGSEX9NEp8eZrmVJsZnHdDhW6bnr0o/afezXtE1prI9Bn/EPxHWNdF4w6CCKi5znwVgM78C77Z9P0iAY8zNL5+ixCuXKUby1O5Q9tp6X/K1Lnc+7xToo60ef8U/peT7m8DhjfmbJXBmL4dckEfqMf6TzkP7tcJ5sY/ZrmijNe8GBjVIO7fUlzZmT8yqJL9HO3JSuVUMRAJM0P+XjL9+nLv0oTNc1rvNuMgKm4rL4hdGtuS/L46OAyYD8rUtL1pyDY61z4/q5+ShEsRbierbba9h67bqzHszryD9pEC5eOIf0ixfgn1SxnJV/Tbp44bz0nZaLF85b9FX+OEfjWbfJuHgBxmI9/Jomwngty/G5lFsfpmsay/XsxnPU1Vz5NkmEsVjv/HzOn8OWLVtsfg+4mgvz89H6uWK6luV23s3zD2NxyWupVRuT0eByrtMvnEe6kzit11jJ2shyGFv5OXFrPTiYv5v+3euCR78orNVqLQoaANJjvV7vVlvrdu44fPhwhY+xxzsk3P72YMvtxhu5brU33siFX7O2FsfYa1PR8c3tDHklBaDQF7odj73tCm8fl+Naj+nuWNaPFaX/Z+IdEg7t6d12enDdtzDonZ5P+T4qkit3HpffZsi97Hbf9taBq+PMc6Xw9rE4D/O8VSTf5ee9oPRjG0d9uTtn5j7tzY1FeycxV3T9l4/fnWOs82jOmaNjrc/d3bmw2V6B3NzM64l1+5vpIyUlxe143W1jfi2pyGvZzaxnR23Lr3NnfaWkpCAgIMBin3k+KtK3zWtQBebf/Fpq3cadftwdq/x/3ZkTd/u2N3+3ikeLGh8fH5uixPzY19fXrbbW7dwRGxtbJd/KLtach09YC9vt2ectHqtqBrrVXlUz0OLfjtpUdHxzO6+AkisFFOoaEAadW/HY2y6K7V+xVX5c6zHdHcv6sbkgKdact4nHeixHfZtfXBydT/k+KpIrdx6X3+YVWB84t/+m14Gr48xzJYp1UAWESsdU9JzK91WsOW+RQ3t9udu/uU97c2PR3knMFV3/5eN35xjrPJpz5uhY6zjdnQt75+xubm7m9cS6/c30kZSU5Ha87rYxv5ZU5LXsZtazo7bl17mzvpKSkhAfH2+xz/xpQkX6tnkNqsD8l1/H5du404+7Y5X/rztz4m7f9uavooxGo1tvSHj046fQ0FDk5ubCYDBI2zQaDXx9feHv72/TNjs722Jbdna2zUdS7lCpVJX6AQAoVcjf9T2EMFn0LYQJ+btWAuW+u+HTIAaq2qHIT1lpv33KKnjVDoU6LAr5u1ZCVTsUPg1ibPpUqP2gDoty3d+uVVB4+5V8GdjLB/m7StrVTOgNqLyhqNPQZfyOYoBSBW1aqtPjlP51pdjMYzocq/TcfRrE2H2sTdsrxaoOi4KiVoh0XvDygcLbVzo/u3lQeaM495L980lZBVXt0NI5+r5CuXIUb/6ussfW81K76xDn826xDsr6UYdFlZ6n4+NUtUNL5krlDe3ZVKjDoqTzkP7tcJ5sY9ampUqx3hV/v5RDe31Jc+aofym+VDtzU7pWvXwBKC1ybS8PPg1ioKwV4jrvShWg9C6LX6Fya+7L8rgSUHqhdtchJWvOwbHWuXH93FwJhbcfFLWC3V7D1mvXnfVgXkfXUlahYaPGaNCwEa6lVCxn5V+TGjYKly6xbtgo3KKv8sc5Gs+6TVjDRlB5q6FN2wuVf10nr0Vl60PpH2K5nt14jrqaq6KzqVB5q52fT3hj6dLy8j+u5sL8fLR+rij967qdd/P8Q+Vd8lpq1Uap8nI51w0ahaOBkzit11jJ2nCck/Jz4tZ6cDB/N/271wWPflFYq9Wiffv2WLJkCdq0aQMAmD9/Pnbt2oVly5ZZtF29ejUWL16MjRs3wnz1U8+ePfHiiy9iwIABbo13a65+Kv1We3A4irPLrhwwK/lm+6DSKyI+hF+zNlbtV5VeafAUdBn/lLvaYbjdPt3rz9HVT4Nw45/tdq5+sj1eHdqs5NvwVjGUXf1kPW7ZFRMlVz+VxWYe0/5c7UXQg/8td5WP9WPrq59KrnqwZj4/63gsr34abjPvtlc/OZtb9+IN6PI0arV+0OKY8vm1v26s10H5fsty6ug4+1c/tUDetm9s/m1vnixjLhvPPKbCpwYKj20tlwPLvq7v22B5NYqD+JyNUyO6KwqPbbXKtW3MOb8vtLr6yfZ8bK9+qmHRt+u87rGK42sn82+ZG+frx9XVT7bnYvtcdL0eStbRcQdXP7mXM2ktOr36qSzeaymrHFxtY79N2dVPzaSrmhzNbdmcnXFjPdvLpfnqJ9tYLK9+sh+re1c/WR5re/WT5bw7z7vla4ZX7dCSq5+s1obt1U8Vy4ej1/uczQvLXf3kfE7cWQ+38+onVNlF5DdpwoQJok+fPuLgwYPi999/F61btxa//fabEEKIrKwsodVqhRBCXL9+XSQlJYmpU6eKU6dOialTp4pOnTrJ4D41du4BUqn71KgqeZ8aB9tv5h4t1eI+NQ7m1N553pL71Di4x4s768Bmn717EDlYb27fp8ZRzG7cX8fmPjVO4rPu02Kbi3scObsH0S27T43CzfvUOMlbpe9T4+I56mJfw/DGbtynxknOABFckfvUuDGedRvn96lRiaCQW3ifmnKxuBOrI46OdXqfmhBn96lRWcR/0/epcSf/pWPZ3KfGOn4Xc1KZ+XPXv+I+NUDJuzWTJk3Cpk2bULNmTTz//PN45plnAACRkZGYPn26VOUdOnQIEydOxJkzZxAZGYnJkycjOjra7bGq8p0aM95RmMgW7ygsnzsKHz582O5rJu8o7Po8b/Udhcv/PpP7HYX/Ffepud1uRVFzO/qmymFuqjfmp/pibqqvOy03/4r71BARERFVFRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKSBS9PB3A7mW+ebDQaq7xvc5+3om+qHOamemN+qi/mpvq603JjPk9XfwThjvozCXq9HocPH/Z0GERERHQTYmNjpb/nZc8dVdSYTCYYDAYolcoK/yFKIiIi8gwhBEwmE7y8vKBUOv7mzB1V1BAREZF88YvCREREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCi5pK0ul0GD9+PNq0aYPk5GQsWbLE0yHdUTIzMzFq1Ci0a9cOnTt3xvTp06HT6QAAFy9exDPPPIP4+Hj07t0b//vf/yyO3blzJx588EHExcXh6aefxsWLFz1xCneEYcOGYezYsdLjY8eOYdCgQYiLi8OAAQNw5MgRi/YbNmzAvffei7i4OIwYMQI5OTm3O2TZ0+v1mDx5Mtq2bYuOHTviww8/lG5Bz/x41uXLlzF8+HC0bt0aPXr0wFdffSXtY26cY1FTSbNmzcKRI0ewdOlSTJw4EfPmzcPGjRs9HdYdQQiBUaNGQavVYvny5ZgzZw7++usvfPTRRxBCYMSIEQgODsaaNWvwyCOP4JVXXsGlS5cAAJcuXcKIESPQv39/rF69GnXq1MHLL7/s8u+KUMX9/PPP2Lp1q/S4sLAQw4YNQ5s2bbB27VokJCRg+PDhKCwsBAAcOnQIb7/9Nl555RV8//33uHbtGsaNG+ep8GVr2rRp2LlzJ7744gt88MEHWLlyJb7//nvmpxp47bXXUKNGDaxduxbjx4/HRx99hN9//525cYegm1ZQUCBiY2NFSkqKtG3+/PniySef9GBUd47Tp0+LiIgIodFopG3r168XycnJYufOnSI+Pl4UFBRI+4YMGSLmzp0rhBDio48+sshTYWGhSEhIsMglVV5ubq7o0qWLGDBggBgzZowQQohVq1aJHj16CJPJJIQQwmQyifvuu0+sWbNGCCHE6NGjpbZCCHHp0iURGRkpLly4cPtPQKZyc3NFdHS0+Pvvv6VtCxcuFGPHjmV+PCwvL09ERESIEydOSNteeeUVMXnyZObGDXynphKOHz8Og8GAhIQEaVtiYiIOHjwIk8nkwcjuDCEhIfj8888RHBxssf3GjRs4ePAgoqOjUaNGDWl7YmIiDhw4AAA4ePAg2rRpI+3z8/NDTEyMtJ+qxsyZM/HII4+gefPm0raDBw8iMTFR+vtrCoUCrVu3dpib+vXr4+6778bBgwdva+xylpqaipo1a6Jdu3bStmHDhmH69OnMj4f5+vrCz88Pa9euRXFxMdLS0rBv3z5ERUUxN25gUVMJGo0GgYGBFn8xNDg4GDqdDnl5eZ4L7A7h7++Pzp07S49NJhOWLVuGpKQkaDQa1K1b16J9UFAQrly5AgAu91Pl7dq1C3v37sXLL79ssd3V3GdlZTE3t9jFixcRFhaGdevW4f7778c999yD+fPnw2QyMT8e5uPjg3fffRfff/894uLi8MADD6BLly4YNGgQc+MGL08H8G+m1Wpt/gS6+bFer/dESHe02bNn49ixY1i9ejW++uoru7kx58VR7pi3qqHT6TBx4kS8++678PX1tdjnau6LioqYm1ussLAQ58+fx3fffYfp06dDo9Hg3XffhZ+fH/NTDZw5cwbdu3fHs88+i1OnTmHq1Kno0KEDc+MGFjWV4OPjY7NYzI+tX8jp1po9ezaWLl2KOXPmICIiAj4+Pjbvlun1eikvjnLn7+9/u0KWtXnz5qFly5YW76SZOZp7V7nx8/O7dQHfYby8vHDjxg188MEHCAsLA1Dy5flvv/0W4eHhzI8H7dq1C6tXr8bWrVvh6+uL2NhYZGZmYsGCBWjYsCFz4wI/fqqE0NBQ5ObmwmAwSNs0Gg18fX35y/E2mjp1Kr788kvMnj0bvXr1AlCSm+zsbIt22dnZ0luzjvaHhITcnqBl7ueff8bmzZuRkJCAhIQErF+/HuvXr0dCQgJzUw2EhITAx8dHKmgAoEmTJrh8+TLz42FHjhxBeHi4xf8YR0dH49KlS8yNG1jUVEJUVBS8vLwsvlyampqK2NhYKJWc2tth3rx5+O677/Dhhx+iT58+0va4uDgcPXoURUVF0rbU1FTExcVJ+1NTU6V9Wq0Wx44dk/ZT5XzzzTdYv3491q1bh3Xr1qFHjx7o0aMH1q1bh7i4OOzfv1+6fF4IgX379jnMzeXLl3H58mXmpgrFxcVBp9Ph7Nmz0ra0tDSEhYUxPx5Wt25dnD9/3uIdl7S0NDRo0IC5cYcnL72SgwkTJog+ffqIgwcPit9//120bt1a/Pbbb54O645w+vRpERUVJebMmSOysrIsfgwGg+jdu7d47bXXxMmTJ8XChQtFfHy8yMjIEEIIcfHiRREbGysWLlwoTp48KV599VXx0EMPSZdKUtUaM2aMdKnp9evXRVJSkpg6dao4deqUmDp1qujUqZN0+f2+fftETEyMWLlypfjnn3/Ek08+KYYPH+7J8GVp2LBh4rHHHhP//POP2LZtm0hKShJLly5lfjzs2rVrolOnTmL06NEiLS1N/PHHH6Jdu3bi22+/ZW7cwKKmkgoLC8Vbb70l4uPjRXJysvjyyy89HdIdY+HChSIiIsLujxBCnDt3TgwePFi0bNlS9OnTR+zYscPi+C1btoiePXuKVq1aiSFDhtxR93K43coXNUIIcfDgQdG3b18RGxsrBg4cKI4ePWrRfs2aNaJr164iPj5ejBgxQuTk5NzukGXv2rVrYvTo0SI+Pl506NBBfPLJJ1JRz/x41qlTp8QzzzwjWrduLe69917x5ZdfMjduUgjBW6gSERHRvx+/+EFERESywKKGiIiIZIFFDREREckCixoiIiKSBRY1REREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNE/xrp6emIjIzE2rVrPR0KEVVDLGqIiIhIFljUEBERkSywqCEij+jRowfmzJmD9957D23btkX79u3x1ltvIS8vT2qzadMmPPzww2jVqhX69euH48eP2/Rz/PhxvPLKK0hKSkJMTAw6d+6MadOmoaioCAAwatQodOnSBSaTyeK4t99+G7169QIA5OTk4I033kCnTp0QGxuLRx55BOvWrbtl505EtwaLGiLymBUrVmDfvn2YPn063njjDWzduhXDhw+HEAJ//vknRo0ahcjISMyfPx8PPPAARo8ebXF8VlYWBg8eDK1WixkzZmDx4sXo06cPvvnmG3z99dcAgIEDByIzMxN///23dFxRURE2btyIfv36AQBGjx6NM2fOYPLkyVi8eDGio6MxZswYpKSk3L7JIKJK8/J0AER051Iqlfjyyy9Rq1YtAECdOnUwYsQIbN++HfPnz0erVq0we/ZsAEDnzp0BAB988IF0/MmTJxEVFYWPP/4YNWvWBAB07NgRO3bswN9//41hw4YhOTkZ9erVw7p169ChQwcAwO+//47CwkL07dsXALB7926MGDEC9957LwCgXbt2CAgIgFqtvi3zQERVg+/UEJHH9OjRQypozI+9vLzwv//9D0ePHkX37t0t2j/wwAMWj5OTk7Fs2TL4+Pjg9OnT+OOPP7BgwQLk5ORAr9cDKCmc+vXrh02bNkGr1QIAfvjhB3Ts2BH16tUDALRv3x6ffPIJRo0ahVWrViE7OxtjxoxB69atb+XpE1EVY1FDRB4TGhpq8VipVCIwMBCFhYUQQiAwMNBif926dS0em0wmvP/++2jXrh369OmDqVOn4p9//oGPj49FuwEDBkCr1WLTpk3IzMzErl270L9/f2n/nDlz8Mwzz+DIkSN455130LVrVzz//PPIyMio4jMmoluJHz8Rkcfk5uZaPDYajcjNzUWtWrWgVCqRnZ1tsb/8l4gBYNGiRfjqq68wefJk9OzZU3rXZ+DAgRbtGjZsiHbt2uHXX39FXl4eatasKX3UBAC1atXC6NGjMXr0aKSlpeGPP/7Ap59+ismTJ2PRokVVeMZEdCvxnRoi8pht27ZJHxMBwB9//AGDwYBu3bohISEBmzZtghBC2v/nn39aHJ+amormzZtjwIABUkGTmZmJkydP2lztNHDgQOzcuRMbNmxA7969pXdzMjIy0LVrV2zcuBEA0LRpU7zwwgvo2LEjLl26dEvOm4huDRY1ROQxly9fxksvvYStW7fiu+++wzvvvIPOnTujffv2+O9//4szZ87glVdewbZt27B06VLMnTvX4vhWrVrhxIkTWLRoEXbv3o1Vq1Zh8ODB0Ov10vdnzHr16gUfHx8cOnQIAwYMkLaHhYWhXr16mDZtGlavXo3du3djyZIl2Lp1q3TJNxH9OyhE+f8NIiK6TXr06IGEhAT4+/tj3bp1qFGjBh588EG8/vrr8PX1BQDs3LkTH374IU6ePIkGDRpg9OjRePHFFzF9+nT0798fer0eM2bMwKZNm3D9+nXUr18fffr0gUKhwMKFC7Fjxw74+/tLY44cORJpaWn4+eefLWLRaDT48MMP8b///Q+5ubmoX78+BgwYgGHDhkGp5P/7Ef1bsKghIo/o0aMH2rVrhxkzZtyW8YqKitC1a1e8/PLLGDJkyG0Zk4huL35RmIhkLSMjAz/88AN27twJhUJh8dETEckLixoikjWlUolvvvkGd911F+bMmSPdpI+I5IcfPxEREZEs8BtwREREJAssaoiIiEgWWNQQERGRLLCoISIiIllgUUNERESywKKGiIiIZIFFDREREckCixoiIiKShf8P6zxuZpVyNAcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHhCAYAAACWUk88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEpUlEQVR4nO3de3yP9f/H8ef2mR20GMYqlb5ow86bY6ZQDjnF0AGlgy+VqPhG+iZqfqGTnMpUSqW+iFRKpfoqqYWVNeQskdOWzRebzT57//5Y++RjBxsf+6xrj/vtthvX+3pf7+t9vVxtz67r+lzzMMYYAQAA/M15unsCAAAArkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAdzgzHdeWuEdmFY4BgB/b4QaVHnbtm3Tww8/rLZt2yosLExxcXF66KGHtGXLFpfvKzc3V08//bQ++ugjR9v27dt12223uXxfhZYuXaqQkBCnr6ZNm6pFixa6++67lZyc7Og7c+ZMhYSElGv8gwcPaujQofr999/Pe65bt25V7969FRYWpm7dup33eBfCDz/8oJCQEP3www/unsoFt2/fPoWEhGjp0qXungpQJl7ungDgTtu3b9ctt9yiqKgoPf7446pTp44OHjyot99+WzfffLPefPNNRUVFuWx/hw8f1vz58zV58mRH26effqqffvrJZfsoyaxZs1S3bl1JUn5+vtLT0zV79mwNHjxY7733npo0aXJO43733Xf6+uuvXTLH2bNna//+/Zo9e7Zq167tkjFdLTQ0VAsXLlTjxo3dPRUAZyDUoEp7/fXXVatWLb3yyivy8vrrP4cbbrhBXbt21UsvvaS5c+e6cYau07RpU11++eVObc2aNVOnTp30zjvv6KmnnnLTzP6SkZGh4OBgXXfdde6eSon8/f1dGnQBuA63n1Clpaenyxij/Px8p/bq1avrscce04033ujUvmzZMvXp00eRkZFq3769nn/+eeXm5jrWf/HFFxowYICio6MVFhamrl27asGCBZIKLuVff/31kqRx48apY8eOmjlzpmbNmiVJCgkJ0cyZMyUVXEmZO3euOnXqpLCwMHXp0kVvvfWW01xuv/12/etf/9LIkSMVFRWlu+66q9zHf/nll6tWrVrav39/iX0++eQTxcfHKzo6Wm3bttUTTzyho0ePSiq4tTVu3DhJ0vXXX69HH320xHEOHz6scePG6brrrlNERIT69eunL7/80rE+JCREa9eu1bp160q95XH77bfr0Ucf1Zw5c3TNNdcoNjZW999/v9Ptr5kzZ6pTp06aNWuWWrZsqbi4OMecFy9erO7duyssLEzt27fXzJkzZbfbJUkfffSRQkJCtG3bNqd9fvHFFwoJCdHmzZuLvf2Umpqqe+65R61atVJMTIzuvfdebd++3bG+8Bbgvn37nMbt2LGjU83WrFmjm2++WdHR0WrRooXuu+8+7dy5s8SaSgXn1ZgxYxQXF6fQ0FC1adNGY8aMUUZGhtN+ZsyYoalTp+qaa65RRESE7rnnHv36669OY33++efq1auXIiIi1KdPn7Pegl21apVCQkL07bffOrWvX79eISEhTrc2gYpAqEGV1r59e+3fv1+33nqrFixYoJ07dzoeeO3atav69Onj6LtgwQKNHTtWoaGhmjVrloYOHaq33npLkyZNklTwDX748OEKDQ3VSy+9pJkzZ+qKK67QU089pZSUFNWrV88RYO677z7NmjVL/fv3V79+/SRJCxcuVP/+/SVJEydO1IwZM9SrVy/NmTNHXbt21dNPP63Zs2c7zX/FihW66KKL9PLLL2vIkCHlPv6MjAxlZGToyiuvLHb9Sy+9pFGjRikqKkozZszQ8OHD9dlnn+n222/XyZMn1b59e913332SCm5v3X///cWOk56ern79+mn9+vV6+OGHNXPmTNWvX1/Dhw/Xhx9+6Dj+Zs2aqVmzZlq4cKHat29f4ry//PJLLV26VI8//riefPJJ/fLLL7r99tuVnZ3t6LN//359/fXXmjZtmsaNG6eaNWsqMTFR48ePV5s2bTRnzhwNHDhQr7zyisaPHy+p4Apd9erV9fHHHzvtb/ny5br66qvVrFmzInNJSkpyPBP19NNPa9KkSTpw4IBuvfXWswaS0+3du1f333+/wsLC9PLLL+v//u//tHv3bg0dOrRI6C6UnZ2tO+64Qzt37tSECRP02muv6Y477tDHH3+sadOmOfV98803tWvXLk2ePFmTJk3Sxo0bNXbsWMf6r776SiNHjlRISIhmz56tG2+8UY888kipc27Xrp3q1aunDz74wKl92bJluuqqqxQbG1vm4wdcwgBV3IsvvmjCw8NNcHCwCQ4ONq1atTKjR482KSkpjj52u920adPG3H///U7bvvrqq6ZPnz4mNzfXvPLKK2bs2LFO6zMyMkxwcLBJTEw0xhizd+9eExwcbJYsWeLoM2PGDBMcHOxY3rVrlwkJCXFsU2jatGkmPDzcHDlyxBhjzKBBg0xkZKTJyckp9fiWLFligoODzZ49e8ypU6fMqVOnzPHjx83GjRvNnXfeaZo1a2a2bNlSZC6ZmZkmLCzMjB8/3mm8devWmeDgYPP22287jb93794S5/DMM8+Y0NBQs2/fPqf2wYMHm7Zt2xq73e44pkGDBpV6PIMGDTKhoaHmt99+c7Rt2rTJBAcHm3feecfpONatW+fo87///c9ERESYJ554wmm8RYsWmeDgYLNt2zZjjDFjx441N9xwg2P98ePHTUREhOPfIykpyQQHB5ukpCRjjDH9+vUz3bp1M3l5eY5tjh49alq2bGlGjhxZao06dOjgOGeWL19ugoODzcGDBx3rU1JSzAsvvGCOHTtWbC02b95sbrvtNqdaGGPMsGHDTJcuXZz206FDB6c5zpw50wQHBzvOp/j4eNO/f3+ncRITE4ucr2d6/vnnTVRUlDl+/Lgxxpjs7GwTExNj5syZU+I2wIXClRpUeQ8++KBWr16t559/Xv369ZO/v78++ugjx4PCkrR792798ccf6tSpk9O299xzj5YuXapq1appyJAhmjJlik6cOKGNGzfqk08+UWJioiQ53aI6m6SkJBlj1LFjR+Xl5Tm+OnbsqJycHKdL+g0bNpS3t3eZxu3UqZNCQ0MVGhqqmJgYxcfHa8+ePXr22WeL/cTThg0blJubqx49eji1N2/eXPXr19fatWvLfExr165VdHS06tev79Teq1cvpaWladeuXWUeS5JiYmJ0xRVXOJabNWumK664QuvWrXPq17RpU8fff/rpJ508ebLYukoFt34k6aabbtJvv/2mn3/+WVLBVaHc3Fz16tWryDyysrKUmpqqG2+8UTabzdFeo0YNdejQoVw1ioyMlI+Pj/r166f/+7//0+rVq9WkSRM9/PDD8vf3L3abpk2b6p133lH9+vX166+/6uuvv9Zrr72mXbt2FTnnwsPDneZ4ySWXSCq42nPy5Elt2rRJHTp0cNrmzNuvxenbt6+ysrK0cuVKSdLKlSuVlZWl3r17l/nYAVfhQWFAUs2aNdWjRw/HD/DNmzfrkUce0bPPPquePXsqMzNTklSnTp0Sxzhy5IgmTJigL774Qh4eHmrQoIGaN28uqXzvcCncV/fu3Ytdf+jQIcffL7roojKP+/LLLzs+/VStWjXVqlVLQUFBJfYvfAYlMDCwyLrAwEAdO3aszPs+evSoUwg5fRxJ+t///lfmsSQVO+86deo45lzo9PoU1nXo0KHFjnn48GFJUqtWrRQUFKSPP/5YERER+vjjj9WyZUtHCDjdsWPHZIxxSY0uv/xyvf3225o7d67ee+89vfnmm6pRo4YGDBighx56SB4eHsVu9/rrr2vOnDnKzMxUYGCgwsLC5OfnV2Tffn5+TsuengX/T5ufn6+jR4/KGKNatWo59alXr95Z592gQQO1bNlSy5YtU+/evbVs2TJdc801pZ5bwIVCqEGVdejQIfXt21cPPvig41mWQs2aNdPDDz+s4cOHa+/evapRo4akguByuoyMDG3evFnR0dH617/+pV27dumNN95QdHS0vL29lZ2drUWLFpVrXoX7mj9/frGh5bLLLivXeIWCg4OLfPqpNDVr1pRU8DxMw4YNndalpaUVG1JKGystLa1Ie2HbmT9Mz+b0h2ALpaenl/hskPRXXZ977jldddVVRdYXBhNPT0/17NlTy5cv17333qs1a9aU+Mmwiy++WB4eHkpPTy+yLi0tTQEBAZLkCCRnPhtz4sQJp+WIiAjNmjVLubm5Sk5O1sKFCzVnzhw1adKk2KsmH330kaZMmaJHHnlE8fHxjo/BP/jgg0pNTS2xFmcKCAiQp6dnkeMoDIJn07dvXz322GPauXOnvv/+ez333HNl3jfgStx+QpUVGBgoLy8vvfPOO8rJySmyfteuXfLx8VGDBg3UsGFD1apVS//973+d+nzwwQcaOnSoTp06peTkZHXu3FmtWrVy3BL65ptvJP31w+z0y/+FCv+PuVDh1Z2MjAyFh4c7vo4cOaLp06eX+QfN+YqMjJS3t7eWL1/u1L5+/Xrt379fMTExxc6/OC1atNBPP/1U5AV9H374oerWrasGDRqUa27JyclOwWbjxo3at2+f2rRpU+I2kZGRqlatmg4dOuRUVy8vL73wwgtOn0y66aabdPDgQc2ePVs2m02dO3cudszq1asrLCxMK1ascHyCSiq4grNq1SrHg7KFt48OHjzo6LNz506nf8s33nhDHTp0UG5urry9vdWmTRslJCRIUomfTktOTlaNGjU0ZMgQR6A5ceKEkpOTS3y4uDg+Pj6Kjo7W559/7nRV8auvvirT9l26dJGfn58mTpyoiy66SDfccEOZ9w24EldqUGXZbDZNnDhRw4cPV9++fTVw4EA1atRI2dnZWrNmjRYsWKAHH3zQccVixIgReuqpp1SnTh117NhRu3fv1owZMzRw4EDVrFlTERER+uijjxQaGqpLLrlEP/74o+bOnSsPDw/Hp3IuvvhiSdL333+vRo0aKTIy0nEFYfny5YqMjFRISIh69eql8ePH6/fff1dYWJh2796tadOm6fLLLy/2KsOFEBAQoKFDh2r27NmqVq2aOnTooH379mn69Olq3Lix45NhhfNfuXKlrr32WjVq1KjIWHfddZc+/PBD3XnnnXrggQcUEBCgZcuWKSkpSU8//XSZgtHpsrOzNWTIEN133306ceKEpk2bpuDg4CLP/5yuVq1aGjJkiKZPn67jx4+rVatWOnTokKZPny4PDw+nlw8GBwc7nle58cYbS3ymRZJGjx6te+65R0OHDtWAAQN06tQpzZ07V7m5uRo+fLikgltavr6+mjJlih588EGdOHFCM2bMcFzJkaTWrVvrueee0/DhwzVo0CDZbDb95z//kbe3d5FnXQpFRETo3Xff1ZQpU9ShQwcdPnxYr732mtLT0x3nbVmNGjVKgwcP1gMPPKBbbrlFu3fv1pw5c8q0rZ+fn7p3766FCxfqtttuK/NzXoDLufUxZaAS2Lhxo3n44YfNtddea8LCwkxMTIwZNGiQ+eyzz4r0Xbp0qenevbsJDQ01119/vXnppZfMqVOnjDHG7Nu3zwwbNszExsaa2NhY07dvX/PBBx+Ye+65x/Tt29cxxuTJk01UVJRp0aKFyc3NNQcPHjR9+/Y1oaGhZsKECcYYY06dOmVmzZplrr/+ehMaGmquvfZaM2HCBJORkeEYpyyfFDKmbJ9OKnTmJ7GMMeadd94x3bp1M6GhoaZt27Zm4sSJJjMz07H++PHj5s477zShoaHmn//8Z4lj//bbb+bBBx80zZs3N5GRkeaWW24xX3zxhVOfsn76aeDAgWbmzJmmZcuWpmXLlubRRx91fIqnpOMo9PbbbzuO55prrjGjR482v//+e5F+8+bNM8HBwWbVqlVO7Wd++qmwbcCAASYiIsI0b97c3HvvvY5PUxX6+uuvTa9evUxoaKjp3Lmz+fDDD83dd9/t9Im51atXm1tvvdXExMSYyMhIM3DgQLN27doSa5Gfn2+mT59urr32WhMeHm5uuOEGk5CQYBYuXGiCg4PNjh07jDHOn7IqVNx5sWbNGtO3b18THh5ubrzxRvPVV1+d9dNPhb788ksTHBzs9KlBoKJ5GMNvoQPw93H77bdLUpGXEcK9JkyYoJSUFC1btszdU0EVxu0nAMA5K3yp36JFi/Tss8+6ezqo4gg1AIBztn79eq1evVqDBw8u9ZkmoCJw+wkAAFgCH+kGAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACW4OXuCVSk/Px85eXlydPTUx4eHu6eDgAAKANjjPLz8+Xl5SVPz5Kvx1SpUJOXl6fU1FR3TwMAAJyD8PBweXt7l7i+SoWawnQXHh4um83msnHtdrtSU1NdPm5VQx1dgzq6BnV0DeroGlW9joXHX9pVGqmKhZrCW042m+2CnBQXatyqhjq6BnV0DeroGtTRNap6Hc/26AgPCgMAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEsg1AAAAEuoNG8Uzs3NVXx8vMaPH69WrVoV22fz5s2aMGGCtm3bpsaNG+vJJ59UWFhYBc/UWUX9Yszg4GCNGTNGl19+uT744APt3LlTDRs21D/+8Q/t2bNHHh4eatGihdLT03XkyBFJUu3atXXJJZeofv36ateunSRp9erVOnDggC699FJH26pVq7Rq1SpJUvv27dW+fftK98ZKu91e7NzPbKts8wYAVJxKEWpycnI0evRobd++vcQ+WVlZGjp0qHr27KkpU6bo3Xff1bBhw7Ry5UpVr169Amf7Fw8PD8nTJuXbT2v88+KXyXduM/lF/yx05hieNik/X5JxNG3bvkND/jm0mO09JA+PYvZnnLavU7eeZIz+SE9zass5eVLHjx93bD9p0iTVqVtPc+e8rPj4+HOsjGstXbpUDz08Snt/2+NoK+54rriygV6c9kKlmTcAoGK5PdTs2LFDo0ePljGm1H6ffPKJfHx8NGbMGHl4eOjf//63vvnmG3366adu+SFWeIXG7x+xqtnmZlWr20DHkpcr85v58mvUQjXb3KJqdRvoVNoeHf1+kbJ3rpNXjXrKO3pQfg2bO7YpWL9Q2TvXyT+2l/ybXutYrt6svep0GX7aGGsL9l3NVyY3W9WbXaeszav+HO+WIuMFXDtYF8f2KL0tbZ28gxqrdqd7nbbv26+flrz3ntsDwtKlS9WvXz/5NWqhSwaNKPUY/0hapH79+um9SjBvAEDFc/szNWvXrlWrVq20cOHCUvulpKQoNjbWESY8PDwUExOjDRs2VMAsnRVeofFr1FJ1+z4un/pN5OHlrWMpn/7ZNl4+9ZvI09tPPvWbqG7fx+XXqIXyjv8h34YtHNv8tX68/Bq10PENK1QtqKFjOWvrGsnTdtoYLeVRzU/m1El5NYhS1tY1JexvvPwatdTxlE/l4eV9lrYWsp88Ju9Lr3bevmFzPfTwaNnt9rMX5AKx2+166OFR8mvUQoHxxdXM+XgC4wvq/NAo984bAOAebr9SM2DAgDL1S0tLU+PGjZ3a6tSpU+otq5K45Adevl0129wsjz9vN+Xs2yT70UOq2fMRR1shDw9P1WzTX9k718qvYWwJ629W9s51Ov7TJ6rRoneR5dPHkCRz4ohkP+U0hzP3d/DtR5Szb5N8r4wope1mp7bT57P37Ue0atUqtW/f/vzrVQaF/y6Ff65atUp7f9ujSwaNKPMx1mjdv8LnXdmcWUecG+roGtTRNap6Hct63G4PNWWVnZ0tb29vpzZvb2/l5uaWe6zU1FSXzKla3QaOv9uPZxRpc+obWNDuUc2n1PV5mQeLXT69TZJM9rEy7a9wXuVpO709KSlJAQEBxe7jQin890lKSiqYyzkcozvmXdm46jyv6qija1BH16COpfvbhBofH58iASY3N1e+vr7lHis8PNwln5I5lbZHPvWbSJJs/rWKtDn1TS94yNWcyil+rD/XewVcUuzy6W2S5OF3sXTiyFn3Vziv8rSd3t66dWtFRUUVO2dXs9vtSk1Ndfz7ZGZmFszlHI6xIudd2ZxZR5wb6uga1NE1qnodC4//bP42oSYoKEjp6elObenp6apXr165x7LZbOd/UnjadPT7harbd7w8PDzlc3mobDWDdPT7Rarb93Gn2yXG5Ovo94slWzVl71qvi2O6FbN+kWSrJv/obkWWTx/Do5qfTF6OPC6qLWXsL3V/XjWD5HN56FnaFsl2Wtvp7VdceZVbPt5d+O/Tvn17XXFlA/2RtEiB8WU7xv8lLdYVDdwz78rGJec5qKOLUEfXoI6lc/uDwmUVGRmpn376yfEpKWOMfvzxR0VGRlb4XIwxUr5d2TvXKW1JgnJ+/0XmVI4ujuyi7J1rHW35OVnK+f0XpS2ZVPDpJ/86OrlrvdKWTDpjfULBp5+ibtSpQzsdy9VDrpHseaeNsVbmVLY8qvkqb88GVQ+5poT9JSh751r5R3aROZVzlrZ1svlerNwD25y337VeL0573q3/8dhsNr047QVl71yn9KXF1cz5eNKXFtT5xRfcO28AgJuYSiQ4ONgkJSU5lg8fPmyys7ONMcYcO3bMtG7d2iQkJJjt27ebhIQE07ZtW3PixIkyj5+Xl2fWr19v8vLyXDJfSUaetsIXwhR8eXgWfDm12c7484z1Z47haTOSR9ExCrfzOL1/Sftz3j6wbj1TJ7BukTb/i2sU2T6wbj2zZMkSl9SoPEr691myZIm54soGZz2eKxpc5ZZ5VzauPs+rKuroGtTRNap6Hct6/JX69lNcXJwmT56s+Ph4+fv7KzExURMmTNCiRYsUEhKiuXPnuu3Fe1LBFZsibxQ+/SV4jjb7GX+e0SffXvqypOCrG1XZNwrHx8frpptu4o3CAIBSVapQs3Xr1lKXIyIi9P7771fklM7KGCO73a4NGzYoKiqqQn6odunS5Zy3Le5jztdff72uv/7685jRhVf4jM2ZqurHtgEARf1tnqkBAAAoDaEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYgttDTU5Ojh577DE1b95ccXFxmjdvXol9V65cqRtvvFHR0dG67bbbtGnTpgqcKQAAqMzcHmqeeeYZbdy4UfPnz9eECRM0a9Ysffrpp0X6bd++XaNHj9awYcP0wQcfqGnTpho2bJiys7PdMGsAAFDZuDXUZGVlafHixfr3v/+t0NBQderUSUOGDNGCBQuK9F2zZo0aN26s3r1768orr9SoUaOUlpamHTt2uGHmAACgsvFy5863bNmivLw8RUdHO9piY2M1Z84c5efny9Pzr8wVEBCgHTt2KDk5WdHR0Vq6dKn8/f115ZVXlnu/drvdJfM/czxXj1vVUEfXoI6uQR1dgzq6RlWvY1mP262hJi0tTbVq1ZK3t7ejLTAwUDk5OcrMzFTt2rUd7d26ddNXX32lAQMGyGazydPTU4mJiapZs2a595uamuqS+VfUuFUNdXQN6uga1NE1qKNrUMfSuTXUZGdnOwUaSY7l3Nxcp/aMjAylpaXpiSeeUGRkpN59912NGzdO77//vurUqVOu/YaHh8tms53f5E9jt9uVmprq8nGrGuroGtTRNaija1BH16jqdSw8/rNxa6jx8fEpEl4Kl319fZ3an3vuOQUHB2vgwIGSpISEBN14441asmSJhg4dWq792my2C3JSXKhxqxrq6BrU0TWoo2tQR9egjqVz64PCQUFBysjIUF5enqMtLS1Nvr6+qlGjhlPfTZs2qUmTJo5lT09PNWnSRPv376+w+QIAgMrLraGmadOm8vLy0oYNGxxtycnJCg8Pd3pIWJLq1aunnTt3OrXt3r1bl19+eUVMFQAAVHJuDTV+fn7q3bu3Jk6cqJ9//llffPGF5s2bpzvuuENSwVWbkydPSpJuvvlmLVq0SMuWLdOePXv03HPPaf/+/erTp487DwEAAFQSbn2mRpLGjRuniRMnavDgwfL399eIESPUuXNnSVJcXJwmT56s+Ph4devWTSdOnFBiYqIOHjyopk2bav78+eV+SBgAAFiT20ONn5+fpk6dqqlTpxZZt3XrVqfl/v37q3///hU1NQAA8Dfi9l+TAAAA4AqEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAluDzU5OTl67LHH1Lx5c8XFxWnevHkl9t26datuu+02RUREqGfPnkpKSqrAmQIAgMrM7aHmmWee0caNGzV//nxNmDBBs2bN0qefflqk37Fjx3T33XercePG+uijj9SpUyc98MAD+uOPP9wwawAAUNm4NdRkZWVp8eLF+ve//63Q0FB16tRJQ4YM0YIFC4r0ff/991W9enVNnDhRDRo00MiRI9WgQQNt3LjRDTMHAACVjZc7d75lyxbl5eUpOjra0RYbG6s5c+YoPz9fnp5/Za61a9fq+uuvl81mc7QtWbLknPZrt9vPfdKljOfqcasa6uga1NE1qKNrUEfXqOp1LOtxuzXUpKWlqVatWvL29na0BQYGKicnR5mZmapdu7ajfe/evYqIiND48eP11VdfqX79+ho7dqxiY2PLvd/U1FSXzL+ixq1qqKNrUEfXoI6uQR1dgzqWzq2hJjs72ynQSHIs5+bmOrVnZWVp7ty5uuOOO/TKK6/o448/1j333KMVK1bo0ksvLdd+w8PDna74nC+73a7U1FSXj1vVUEfXoI6uQR1dgzq6RlWvY+Hxn41bQ42Pj0+R8FK47Ovr69Rus9nUtGlTjRw5UpLUrFkzrVmzRh988IHuvffecu3XZrNdkJPiQo1b1VBH16COrkEdXYM6ugZ1LJ1bHxQOCgpSRkaG8vLyHG1paWny9fVVjRo1nPrWrVtXDRs2dGq76qqrdODAgQqZKwAAqNzcGmqaNm0qLy8vbdiwwdGWnJys8PBwp4eEJSkqKkpbt251atu1a5fq169fEVMFAACVnFtDjZ+fn3r37q2JEyfq559/1hdffKF58+bpjjvukFRw1ebkyZOSpFtvvVVbt27VzJkztWfPHk2fPl179+7VTTfd5M5DAAAAlYTbX743btw4hYaGavDgwXryySc1YsQIde7cWZIUFxenTz75RJJUv359vfrqq/rvf/+rHj166L///a/mzp2roKAgd04fAABUEm59UFgquFozdepUTZ06tci6M283xcbGaunSpRU1NQAA8Dfi9is1AAAArkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAllDuUJOTk3Mh5gEAAHBeyh1q2rZtqwkTJujnn3++EPMBAAA4J+UONXfffbeSkpJ0yy23qFu3bnr11VeVlpZ2IeYGAABQZuUONffff78+++wzLViwQLGxsUpMTFSHDh00dOhQffbZZzp16tSFmCcAAECpzvlB4ZiYGCUkJGjNmjWaPn26srOz9dBDDykuLk5Tp07V77//7sp5AgAAlOq8Pv104MABzZs3TzNmzNC6det01VVXKT4+Xt988426deumTz75xFXzBAAAKJVXeTc4fvy4PvvsMy1btkzJycny9fVV165dNWHCBMXExEiSxo4dq2HDhunpp59Wt27dXD5pAACAM5U71LRt21a5ubmKjIzUU089pW7duql69epF+oWHh2vz5s0umSQAAMDZlDvUDBw4UP369VPDhg1L7XfXXXfpvvvuO+eJAQAAlEe5Q82YMWPK1O+iiy4q92QAAADOFb8mAQAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWILbQ01OTo4ee+wxNW/eXHFxcZo3b95Zt9m3b5+io6P1ww8/VMAMAQDA34GXuyfwzDPPaOPGjZo/f77279+vsWPH6rLLLlPXrl1L3GbixInKysqqwFkCAIDKzq2hJisrS4sXL9Yrr7yi0NBQhYaGavv27VqwYEGJoebDDz/UiRMnKnimAACgsnPr7actW7YoLy9P0dHRjrbY2FilpKQoPz+/SP+MjAw9++yzeuqppypymgAA4G/ArVdq0tLSVKtWLXl7ezvaAgMDlZOTo8zMTNWuXdup/5QpU9SnTx9dffXV57Vfu91+XtuXNJ6rx61qqKNrUEfXoI6uQR1do6rXsazH7dZQk52d7RRoJDmWc3Nzndq/++47JScna/ny5ee939TU1PMeoyLHrWqoo2tQR9egjq5BHV2DOpbOraHGx8enSHgpXPb19XW0nTx5Uk888YQmTJjg1H6uwsPDZbPZznucQna7XampqS4ft6qhjq5BHV2DOroGdXSNql7HwuM/G7eGmqCgIGVkZCgvL09eXgVTSUtLk6+vr2rUqOHo9/PPP2vv3r0aOXKk0/b//Oc/1bt373I/Y2Oz2S7ISXGhxq1qqKNrUEfXoI6uQR1dgzqWzq2hpmnTpvLy8tKGDRvUvHlzSVJycrLCw8Pl6fnXM8wRERH6/PPPnbbt3LmzJk2apLZt21bonAEAQOXk1lDj5+en3r17a+LEiXr66ad1+PBhzZs3T5MnT5ZUcNXm4osvlq+vrxo0aFBk+6CgINWpU6eipw0AACoht79ReNy4cQoNDdXgwYP15JNPasSIEercubMkKS4uTp988ombZwgAAP4O3P5GYT8/P02dOlVTp04tsm7r1q0lblfaOgAAUPW4/UoNAACAKxBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJbg91OTk5Oixxx5T8+bNFRcXp3nz5pXYd9WqVbrpppsUHR2tnj176ssvv6zAmQIAgMrM7aHmmWee0caNGzV//nxNmDBBs2bN0qefflqk35YtW/TAAw+ob9++WrZsmW699VY9+OCD2rJlixtmDQAAKhsvd+48KytLixcv1iuvvKLQ0FCFhoZq+/btWrBggbp27erUd/ny5WrdurXuuOMOSVKDBg301VdfacWKFWrSpIk7pg8AACoRt4aaLVu2KC8vT9HR0Y622NhYzZkzR/n5+fL0/OtCUp8+fXTq1KkiYxw7dqxC5goAACo3t4aatLQ01apVS97e3o62wMBA5eTkKDMzU7Vr13a0N2rUyGnb7du36/vvv9ett95a7v3a7fZzn3Qp47l63KqGOroGdXQN6uga1NE1qnody3rcbg012dnZToFGkmM5Nze3xO2OHDmiESNGKCYmRtdff32595uamlrubdw5blVDHV2DOroGdXQN6uga1LF0bg01Pj4+RcJL4bKvr2+x26Snp+uuu+6SMUYzZsxwukVVVuHh4bLZbOWfcAnsdrtSU1NdPm5VQx1dgzq6BnV0DeroGlW9joXHfzZuDTVBQUHKyMhQXl6evLwKppKWliZfX1/VqFGjSP9Dhw45HhR+8803nW5PlYfNZrsgJ8WFGreqoY6uQR1dgzq6BnV0DepYOrd+pLtp06by8vLShg0bHG3JyckKDw8vcgUmKytLQ4YMkaenp95++20FBQVV8GwBAEBl5tZQ4+fnp969e2vixIn6+eef9cUXX2jevHmOqzFpaWk6efKkJCkxMVG//fabpk6d6liXlpbGp58AAIAkN99+kqRx48Zp4sSJGjx4sPz9/TVixAh17txZkhQXF6fJkycrPj5en332mU6ePKn+/fs7bd+nTx9NmTLFHVMHAACViNtDjZ+fn6ZOneq4AnO6rVu3Ov5e3FuGAQAACrn91yQAAAC4AqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYgpe7J5CTk6Mnn3xSn3/+uXx9fXX33Xfr7rvvLrbv5s2bNWHCBG3btk2NGzfWk08+qbCwsAqesTMPDw+37v90Pj4+stls8vT0VF5enux2u2w2m+x2uyTJy8tLTZs2VWZmpo4ePSp/f3917NhRW7ZsUXp6unx8fHT77bdrxIgR+uGHH3TgwAFdeumlateunSRp9erVOnDggAIDA5WamqodO3bowIEDuuSSS3T11VerWbNmWrNmjSSpffv2at++vWw2W7mOwW63a9WqVTp8+LBj3+UdAwBQsex2u+NnhFu/dxs3e+qpp0zPnj3Nxo0bzeeff26io6PNihUrivQ7ceKEadu2rZkyZYrZsWOHSUhIMNdcc405ceJEmfeVl5dn1q9fb/Ly8lwyd0lGnraCPwu/znXZ44x2D0/n9WcbRzKSx1/bFf555njFbV/aOsnUCaxr6tStV8p4Hs77Ltyubj2zZMmSMtdz8eLFJuiSS53GuOLKBuUaA64/z6sq6uga1NE1KnMdlyxZYq64ssEF/d5d1uN365WarKwsLV68WK+88opCQ0MVGhqq7du3a8GCBeratatT308++UQ+Pj4aM2aMPDw89O9//1vffPONPv30U8XHx1f43Auv0Pj9I1Y129ysanUb6FTaHh39fqGyd66TV50rlPfH3hLX+zZsroBrbtWRlS8r99BO+TWMUc02t5zWb5Gyd66Td92rlHtop7zrXqXane4rMo735aEK6j9Rx5KXK/Ob+fKu11C5h3bJr2HzM/b753iXN1Puvk3y+0esfOo3VeY3bxbTd6Gyd65XnR6jZf9fmv74Zr78GrXQJV3GFBmverPrlLV5VUEtGrYoMk7ffv205L33zvpvtHTpUt18880F+xk02jHGH0mL1K9fP71XhjEAABVr6dKl6tev35/fu0e4/Xu3W5+p2bJli/Ly8hQdHe1oi42NVUpKivLz8536pqSkKDY21hEmPDw8FBMTow0bNlTklB37lqdNfo1aqm7fx+VTv4k8vf3kU7+J6vYdL79GLZSXsV8+/2he4vqTv/4kW53LZT957M9xxp/R73H5NW4h+8nj8m3YXPaTx+V96dVFxsndv0X5+XYdS/lUvg1bFIzXuEUx+33c0d+3YQsF9hmnYymfltB3vPwat1DmN2/qWMqKkufXqIWytnwrj2q+JdeiYXM99PBoxy2w4tjtdj308Cj5NWqhwHjnMQLjC/bz0KjSxwAAVKzK+L3brVdq0tLSVKtWLXl7ezvaAgMDlZOTo8zMTNWuXdupb+PGjZ22r1OnjrZv317u/bqkwPl21Wxzszw8nHOhh4enara5Wdk716larUtLXf/Hx9NkP3pYNXuOKb5f6/46+PYjqtGij07uWq+cfZvke2VECeMc+rPfupLHa9Nf2TvXyq9hrHJ//0X2o4dUs+cjpe5b0lnHM/l5pdZi79uPaNWqVWrfvn2xpVy1apX2/rZHlwwaUewYNVr3P+sY+Evh+U0IPD/U0TWoo2tUxjpW5Pfush63W0NNdna2U6CR5FjOzc0tU98z+5VFampqubcpTrW6DYpvDyxoN/ZTpa63Zx4s0zgeXgXHbT+eUeo4HtV8yjZeNR/HWGfr66o+SUlJCggIKLZPUlLSeY+Bolx1nld11NE1qKNrVKY6Vsbv3W4NNT4+PkVCSeGyr69vmfqe2a8swsPDXfJU9qm0PfKp36Roe/oeSZKHrVrx2/253hZwiU6l7znrOCav4Lht/rVKHcecyinTvMypHNkCgsrU11V9WrduraioqCLrJSkzM/O8x8Bf7Ha7UlNTXXaeV1XU0TWoo2tUxjpW5PfuwuM/G7eGmqCgIGVkZCgvL09eXgVTSUtLk6+vr2rUqFGkb3p6ulNbenq66tWrV+792my28z8pPG06+v1C1e073umymzH5Ovr9IsnTplMZ+2VMfonr63R/WAffGFnyOEmLZasZpOxd62WrGSSfy0NLGedBZe9Klq1mPR1NWqS68Y8Xs9/FkqdN2bvWyz+qi2w1g0rum7RYthr1JA/p6PeLVLdvSeN5ycPmVUqfRbriyqtK/Xh3+/btdcWVDfRH0iIFFjOX/yUt1hUNSh8DRbnkPAd1dBHq6BqVqY6V8Xu3Wx8Ubtq0qby8vJwe9k1OTlZ4eLg8PZ2nFhkZqZ9++knGGEmSMUY//vijIiMjK3LKjn0r367sneuUtiRBOb//ovycLOX8/ovSliQUfPqp1qXK2Z1c4nrfq6Jl/2OvbL4XlzDOJGXvWCebr79O7lovm6+/cg9sKzKO92Uh8vTw1MWRXXRy17qC8XasU9qSSUXH+7P/yV3rlf7+07o4sksJfROUvWOdAq69XRdHdlX2zrXFz2/nOlVv0lbm1Mk/+xQzzq71enHa86We0DabTS9Oe0HZO9cpfanzGOlLC/bz4guljwEAqFiV8nu3yz5Efo7Gjx9vunfvblJSUszKlStNTEyM+eyzz4wxxhw+fNhkZ2cbY4w5duyYad26tUlISDDbt283CQkJpm3btpX8PTUe5/GemjPeT1Om99R4lvKemlLmdbb31NQt7j01Nuf9FvOemkBXvKemwVW8p6acKvP7LP5OqKNrUEfXqMx1LPY9NS7+3v23eE+NJI0bN04TJ07U4MGD5e/vrxEjRqhz586SpLi4OE2ePFnx8fHy9/dXYmKiJkyYoEWLFikkJERz585V9erV3TZ3Y0zRNwrnn/6Etjlj+cz1py2bM9oLl/PP+LOkcST5+FQ7yxuFvSv1G4X79OmjK6+8UseOHeONwgDwNxEfH6+bbrqpUrxR2MOYP+/nVAF2u10bNmxQVFSUS4t9ocataqija1BH16COrkEdXaOq17Gsx88vtAQAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJbg9l+TUJEKX55c+GsDXKVwPFePW9VQR9egjq5BHV2DOrpGVa9j4XGf7ZcgVKlfk5Cbm6vU1FR3TwMAAJyD8PBweXt7l7i+SoWa/Px85eXlydPTs+gvogQAAJWSMUb5+fny8vKSp2fJT85UqVADAACsiweFAQCAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqzlNOTo4ee+wxNW/eXHFxcZo3b567p/S3sHLlSoWEhDh9jRw5UpK0efNm9e/fX5GRkerbt682btzo5tlWPrm5uerRo4d++OEHR9vevXt15513KioqSt26ddO3337rtM13332nHj16KDIyUnfccYf27t1b0dOudIqr46RJk4qcm2+//bZj/fLly3XDDTcoMjJSw4cP15EjR9wx9Urh0KFDGjlypFq2bKl27dpp8uTJysnJkcT5WB6l1ZHzsZwMzstTTz1levbsaTZu3Gg+//xzEx0dbVasWOHuaVV6L730khk2bJg5fPiw4+vo0aPmxIkTpm3btmbKlClmx44dJiEhwVxzzTXmxIkT7p5ypXHy5EkzfPhwExwcbJKSkowxxuTn55uePXua0aNHmx07dpg5c+aYyMhI8/vvvxtjjPn9999NVFSUee2118y2bdvMgw8+aHr06GHy8/PdeShuVVwdjTHmzjvvNImJiU7nZlZWljHGmJSUFBMREWHef/9988svv5hBgwaZoUOHuusQ3Co/P9/cfPPNZsiQIWbbtm1m3bp1plOnTmbKlCmcj+VQWh2N4XwsL0LNeThx4oQJDw93+oY4e/ZsM2jQIDfO6u9h9OjR5vnnny/SvnjxYtOxY0fHN7f8/HzTqVMns2TJkoqeYqW0fft206tXL9OzZ0+nH8bfffediYqKcgp/gwcPNjNmzDDGGPPiiy86nZdZWVkmOjra6dytSkqqozHGtGvXzqxevbrY7R555BEzduxYx/L+/ftNSEiI+e233y74nCubHTt2mODgYJOWluZo++ijj0xcXBznYzmUVkdjOB/Li9tP52HLli3Ky8tTdHS0oy02NlYpKSnKz89348wqv507d+qqq64q0p6SkqLY2FjH7+by8PBQTEyMNmzYULETrKTWrl2rVq1aaeHChU7tKSkpatasmapXr+5oi42NddQtJSVFzZs3d6zz8/NTaGhola1rSXU8fvy4Dh06VOy5KRWt46WXXqrLLrtMKSkpF3K6lVLdunX16quvKjAw0Kn9+PHjnI/lUFodOR/Lz8vdE/g7S0tLU61atZx+Y2hgYKBycnKUmZmp2rVru3F2lZcxRrt379a3336rxMRE2e12de3aVSNHjlRaWpoaN27s1L9OnTravn27m2ZbuQwYMKDY9rS0NNWrV8+prU6dOjp48GCZ1lc1JdVx586d8vDw0Jw5c/TNN98oICBAd911l/r06SNJOnz4MHX8U40aNdSuXTvHcn5+vt5++221bt2a87EcSqsj52P5EWrOQ3Z2dpFfgV64nJub644p/S3s37/fUbsXX3xR+/bt06RJk3Ty5MkSa0o9S3e2ulHXstm1a5c8PDzUsGFDDRo0SOvWrdP48ePl7++vTp066eTJk9SxBM8++6w2b96s9957T2+88Qbn4zk6vY6bNm3ifCwnQs158PHxKXLyFC77+vq6Y0p/C/Xr19cPP/ygmjVrysPDQ02bNlV+fr4eeeQRtWzZstiaUs/S+fj4KDMz06nt9LqVdK7WqFGjoqb4t9C7d2916NBBAQEBkqQmTZro119/1bvvvqtOnTqVWEc/Pz83zLbyePbZZzV//nxNmzZNwcHBnI/n6Mw6Xn311ZyP5cQzNechKChIGRkZysvLc7SlpaXJ19e3yv/HeTYBAQGO52YkqVGjRsrJyVHdunWVnp7u1Dc9Pb3IJVY4CwoKKrVuJa2vW7duhc3x78DDw8PxA6RQw4YNdejQIUnUsTgJCQl6/fXX9eyzz6pLly6SOB/PRXF15HwsP0LNeWjatKm8vLycHm5LTk5WeHi4PD0pbUlWr16tVq1aKTs729H2yy+/KCAgQLGxsfrpp59kjJFU8PzNjz/+qMjISHdN928hMjJSmzZt0smTJx1tycnJjrpFRkYqOTnZsS47O1ubN2+mrmeYPn267rzzTqe2LVu2qGHDhpKK1vHAgQM6cOBAla3jrFmz9J///EcvvPCCunfv7mjnfCyfkurI+XgO3Pzpq7+98ePHm+7du5uUlBSzcuVKExMTYz777DN3T6tSO3bsmGnXrp0ZNWqU2blzp1m1apWJi4szc+fONceOHTOtW7c2CQkJZvv27SYhIcG0bduW99QU4/SPIufl5Zlu3bqZhx56yGzbts0kJiaaqKgox3tB9u7da8LDw01iYqLjvSA9e/asku8FOdPpdUxJSTHNmjUzr776qtmzZ49ZsGCBCQsLMz/++KMxxpgff/zRhIaGmkWLFjneCzJs2DB3Tt9tduzYYZo2bWqmTZvm9A6Vw4cPcz6WQ2l15HwsP0LNecrKyjJjxowxUVFRJi4uzrz++uvuntLfwrZt28ydd95poqKiTNu2bc3MmTMd39BSUlJM7969TXh4uOnXr5/ZtGmTm2dbOZ35fpVff/3VDBw40ISFhZnu3bubNWvWOPVftWqV6dy5s4mIiDCDBw+u0u+yON2ZdVy5cqXp2bOnCQ8PN127di3yPylLliwx1113nYmKijLDhw83R44cqegpVwqJiYkmODi42C9jOB/L6mx15HwsHw9j/rzODwAA8DfGgx8AAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUALGPp0qUKCQnRvn373D0VAG7AG4UBWMaRI0f022+/qVmzZvL29nb3dABUMEINAACwBG4/AXCpjh07atq0aXr66afVokULtWrVSmPGjFFmZqYk6dFHH9XgwYM1YcIExcTEqFu3brLb7crPz9fcuXPVqVMnhYWFqUuXLnrrrbcc486ZM0dhYWE6evSo0/7eeOMNhYaG6o8//ij29tOaNWs0YMAAxcbGqlWrVho9erQOHDjgWD9z5kyFhIQUOY6QkBDNnDnTsbx8+XL16tVLERERat26tf71r3/p0KFDriobABcg1ABwuXfeeUc//vijJk+erNGjR+vrr7/WsGHDVHhheP369Tpw4IBmz56t0aNHy2azaeLEiZoxY4Z69eqlOXPmqGvXrnr66ac1e/ZsSVLPnj2Vl5enzz//3GlfH3/8seLi4lSnTp0i81i2bJnuvvtuXXrppXrhhRc0btw4/fTTT7rlllv0xx9/lPl4kpOTNWbMGHXu3FmvvPKKxo0bp6SkJI0ePfo8qgTA1bzcPQEA1uPp6anXX39dF198sSSpdu3aGj58uFavXi1JysvL01NPPaVLLrlEkrR7924tWrRIo0aN0tChQyVJcXFx8vDwUGJiogYMGKD69eurRYsWWr58ufr37y9J+u233/Tzzz9r2rRpReaQn5+v5557TnFxcXr++ecd7YVXh1577TWNGTOmTMeTnJwsX19fDR061PGsTkBAgFJTU2WMkYeHxzlWCoArcaUGgMt17NjREWgKl728vLRu3TpJBYGgMNBIUlJSkowx6tixo/Ly8hxfHTt2VE5OjpKTkyVJvXr10rp165SWliap4CqNv7+/OnbsWGQOu3fvVlpamnr06OHUfuWVVyo6Olpr164t8/G0aNFC2dnZ6tGjh55//nmtX79ecXFxeuCBBwg0QCVCqAHgckFBQU7Lnp6eqlWrluN5mIsuushpfeHzNt27d1doaKjjq/CKTOGzK127dpWXl5dWrFghqSDUdOnSRb6+vkXmUDhmYGBgkXWBgYE6duxYmY8nOjpac+fO1RVXXKHXX39dAwcO1LXXXuv0zA8A9+P2EwCXy8jIcFq22+3KyMhQ7dq1dfDgwSL9a9SoIUmaP39+kcAjSZdddpkk6eKLL1bHjh21YsUKtW7dWtu3b9f48eOLnUNAQIAkKT09vci6tLQ01apVS5IcV1rsdrtsNpsk6cSJE0W2adeundq1a6fs7GwlJSXpzTff1KRJkxQZGamIiIhi5wCgYnGlBoDLffPNN8rNzXUsf/nll8rLy1ObNm2K7d+8eXNJBWEoPDzc8XXkyBFNnz7dcdVFkm666SZt2LBB7777ri677DK1bNmy2DH/8Y9/qG7dulq+fLlT+969e7VhwwbFxMRIkvz9/SXJKWwV3u4qNHXqVPXt21fGGPn5+alDhw4aO3asJGn//v1lKQmACkCoAeByBw4c0H333aevv/5a//nPf/T444+rXbt2atWqVbH9Q0JC1KtXL40fP16vvvqqkpKS9O677+qRRx7RkSNHdNVVVzn6tmvXTgEBAVq4cKF69uxZ4jMtnp6eGjVqlL799lvHJ7CWLVumu+66SzVr1tRdd90lSbruuuskSU888YS+++47LVmyRBMnTnS6YtS6dWtt2rRJjz76qNasWaNVq1Zp0qRJCggIUOvWrV1UNQDni9tPAFyue/fuqlGjhh566CFVr15dffr00cMPP1zqNpMnT1ZiYqL+85//6ODBg6pTp466deumhx56yHFbSJK8vLzUvXt3vfXWW+rVq1epY8bHx+uiiy5SYmKihg8fLn9/f7Vr106jRo1S3bp1JRVc0Zk6dapefvllDR06VI0aNVJCQoISEhIc41x33XV67rnnNG/ePMfDwbGxsXrzzTcdt7kAuB9vFAbgUh07dlTLli01ZcoUd08FQBXD7ScAAGAJhBoAAGAJ3H4CAACWwJUaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCf8Pmk9dha5Q6fsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for col in integer_columns:\n", + " scatter_plot(col)" + ] + }, + { + "cell_type": "markdown", + "id": "26522f3e", + "metadata": {}, + "source": [ + "# Handelling missing Data" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "0ada479a", + "metadata": {}, + "outputs": [], + "source": [ + "def missing_data(df,n): \n", + " total = df.isnull().sum().sort_values(ascending=False) \n", + " percentage = (df.isnull().sum() / df.isnull().count()).sort_values(ascending=False)*100\n", + " No_unique_val = df.nunique() \n", + " missing_data = pd.concat([total, percentage, No_unique_val], axis=1, \n", + " keys=['Total No of missing val', '% of Missing val','No of unique val'], sort = False)\n", + " \n", + " print(missing_data.head(n))" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "7ac4defa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Total No of missing val % of Missing val No of unique val\n", + "age 0 0.0 77\n", + "day 0 0.0 31\n", + "poutcome 0 0.0 4\n", + "previous 0 0.0 41\n", + "pdays 0 0.0 559\n", + "campaign 0 0.0 48\n", + "duration 0 0.0 1573\n", + "month 0 0.0 12\n", + "contact 0 0.0 3\n", + "job 0 0.0 12\n", + "loan 0 0.0 2\n", + "housing 0 0.0 2\n", + "balance 0 0.0 7168\n", + "default 0 0.0 2\n", + "education 0 0.0 4\n", + "marital 0 0.0 3\n", + "y 0 0.0 2\n" + ] + } + ], + "source": [ + "missing_data(df,20)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "d1d20841", + "metadata": {}, + "outputs": [], + "source": [ + "X = df.drop([\"y\"] , axis=1)\n", + "y = df[\"y\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "4839b73a", + "metadata": {}, + "outputs": [], + "source": [ + "X_train , X_test , y_train , y_test = train_test_split(X , y , test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "1963a18b", + "metadata": {}, + "outputs": [], + "source": [ + "num_pipeline = Pipeline([\n", + " (\"impute\", SimpleImputer(strategy=\"median\")),\n", + " (\"standardize\", StandardScaler())\n", + "])\n", + "\n", + "num_attribs = X_train.select_dtypes(include=['int64' , \"float\"]).columns\n", + "cat_attribs = X_train.select_dtypes(include=[\"object\"]).columns\n", + "\n", + "cat_pipeline = make_pipeline(\n", + " SimpleImputer(strategy=\"most_frequent\"),\n", + " OneHotEncoder(handle_unknown=\"ignore\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "3f28fe79", + "metadata": {}, + "outputs": [], + "source": [ + "preprocessing = ColumnTransformer([\n", + " (\"num\", num_pipeline, num_attribs),\n", + " (\"cat\", cat_pipeline, cat_attribs)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "id": "1ad7bbee", + "metadata": {}, + "source": [ + "# Linear Regresion" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "8bb9f498", + "metadata": {}, + "outputs": [], + "source": [ + "lin_reg = make_pipeline(preprocessing, LinearRegression())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "0dc9a685", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('columntransformer',\n",
+       "                 ColumnTransformer(transformers=[('num',\n",
+       "                                                  Pipeline(steps=[('impute',\n",
+       "                                                                   SimpleImputer(strategy='median')),\n",
+       "                                                                  ('standardize',\n",
+       "                                                                   StandardScaler())]),\n",
+       "                                                  Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n",
+       "                                                 ('cat',\n",
+       "                                                  Pipeline(steps=[('simpleimputer',\n",
+       "                                                                   SimpleImputer(strategy='most_frequent')),\n",
+       "                                                                  ('onehotencoder',\n",
+       "                                                                   OneHotEncoder(handle_unknown='ignore'))]),\n",
+       "                                                  Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n",
+       "       'month', 'poutcome'],\n",
+       "      dtype='object'))])),\n",
+       "                ('linearregression', LinearRegression())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('linearregression', LinearRegression())])" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "b2e469cc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.16291471404118021" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_absolute_error(y_train, lin_reg.predict(X_train))" + ] + }, + { + "cell_type": "markdown", + "id": "1b1f3d77", + "metadata": {}, + "source": [ + "# Randome forest" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "2d5cb292", + "metadata": {}, + "outputs": [], + "source": [ + "rfc = Pipeline([\n", + " (\"pre\" , preprocessing),\n", + " ('xgboost', RandomForestClassifier())\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "9386bfc7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('pre',\n",
+       "                 ColumnTransformer(transformers=[('num',\n",
+       "                                                  Pipeline(steps=[('impute',\n",
+       "                                                                   SimpleImputer(strategy='median')),\n",
+       "                                                                  ('standardize',\n",
+       "                                                                   StandardScaler())]),\n",
+       "                                                  Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n",
+       "                                                 ('cat',\n",
+       "                                                  Pipeline(steps=[('simpleimputer',\n",
+       "                                                                   SimpleImputer(strategy='most_frequent')),\n",
+       "                                                                  ('onehotencoder',\n",
+       "                                                                   OneHotEncoder(handle_unknown='ignore'))]),\n",
+       "                                                  Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n",
+       "       'month', 'poutcome'],\n",
+       "      dtype='object'))])),\n",
+       "                ('xgboost', RandomForestClassifier())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotEncoder(handle_unknown='ignore'))]),\n", + " Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',\n", + " 'month', 'poutcome'],\n", + " dtype='object'))])),\n", + " ('xgboost', RandomForestClassifier())])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rfc.fit(X_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "3502eb0e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.7648750276487504e-05" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_absolute_error(y_train, rfc.predict(X_train))" + ] + }, + { + "cell_type": "markdown", + "id": "175ccae2", + "metadata": {}, + "source": [ + "# XGBoost" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "f2a71fb1", + "metadata": {}, + "outputs": [], + "source": [ + "xgb = Pipeline([\n", + " (\"pre\" , preprocessing),\n", + " ('xgboost', XGBRegressor(gamma=100))\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "22566169", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('pre',\n",
+       "                 ColumnTransformer(transformers=[('num',\n",
+       "                                                  Pipeline(steps=[('impute',\n",
+       "                                                                   SimpleImputer(strategy='median')),\n",
+       "                                                                  ('standardize',\n",
+       "                                                                   StandardScaler())]),\n",
+       "                                                  Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n",
+       "                                                 ('cat',\n",
+       "                                                  Pipeline(steps=[('simpleimputer',\n",
+       "                                                                   SimpleImputer(strategy='most_frequent')),\n",
+       "                                                                  ('onehotencoder',\n",
+       "                                                                   OneHotE...\n",
+       "                              feature_types=None, gamma=100, grow_policy=None,\n",
+       "                              importance_type=None,\n",
+       "                              interaction_constraints=None, learning_rate=None,\n",
+       "                              max_bin=None, max_cat_threshold=None,\n",
+       "                              max_cat_to_onehot=None, max_delta_step=None,\n",
+       "                              max_depth=None, max_leaves=None,\n",
+       "                              min_child_weight=None, missing=nan,\n",
+       "                              monotone_constraints=None, multi_strategy=None,\n",
+       "                              n_estimators=None, n_jobs=None,\n",
+       "                              num_parallel_tree=None, random_state=None, ...))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent')),\n", + " ('onehotencoder',\n", + " OneHotE...\n", + " feature_types=None, gamma=100, grow_policy=None,\n", + " importance_type=None,\n", + " interaction_constraints=None, learning_rate=None,\n", + " max_bin=None, max_cat_threshold=None,\n", + " max_cat_to_onehot=None, max_delta_step=None,\n", + " max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan,\n", + " monotone_constraints=None, multi_strategy=None,\n", + " n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...))])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xgb.fit(X_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "cddd3428", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.17895237255175703" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_absolute_error(y_train, xgb.predict(X_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "fb6f0f5c", + "metadata": {}, + "outputs": [], + "source": [ + "param_grid = {\n", + " 'xgboost__n_estimators': [50, 100, 200],\n", + " 'xgboost__learning_rate': [0.01, 0.1, 0.2],\n", + " 'xgboost__max_depth': [3, 5, 7],\n", + " 'xgboost__subsample': [0.8, 1.0],\n", + " 'xgboost__colsample_bytree': [0.8, 1.0],\n", + " 'xgboost__gamma': [0, 1, 5],\n", + " 'xgboost__min_child_weight': [1, 5, 10],\n", + "\n", + "}\n", + "\n", + "grid_search = GridSearchCV(xgb, param_grid, cv=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "683527d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
GridSearchCV(cv=5,\n",
+       "             estimator=Pipeline(steps=[('pre',\n",
+       "                                        ColumnTransformer(transformers=[('num',\n",
+       "                                                                         Pipeline(steps=[('impute',\n",
+       "                                                                                          SimpleImputer(strategy='median')),\n",
+       "                                                                                         ('standardize',\n",
+       "                                                                                          StandardScaler())]),\n",
+       "                                                                         Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n",
+       "                                                                        ('cat',\n",
+       "                                                                         Pipeline(steps=[('simpleimputer',\n",
+       "                                                                                          SimpleImputer(strategy='most_frequent...\n",
+       "                                                     monotone_constraints=None,\n",
+       "                                                     multi_strategy=None,\n",
+       "                                                     n_estimators=None,\n",
+       "                                                     n_jobs=None,\n",
+       "                                                     num_parallel_tree=None,\n",
+       "                                                     random_state=None, ...))]),\n",
+       "             param_grid={'xgboost__colsample_bytree': [0.8, 1.0],\n",
+       "                         'xgboost__gamma': [0, 1, 5],\n",
+       "                         'xgboost__learning_rate': [0.01, 0.1, 0.2],\n",
+       "                         'xgboost__max_depth': [3, 5, 7],\n",
+       "                         'xgboost__min_child_weight': [1, 5, 10],\n",
+       "                         'xgboost__n_estimators': [50, 100, 200],\n",
+       "                         'xgboost__subsample': [0.8, 1.0]})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('pre',\n", + " ColumnTransformer(transformers=[('num',\n", + " Pipeline(steps=[('impute',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardize',\n", + " StandardScaler())]),\n", + " Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')),\n", + " ('cat',\n", + " Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='most_frequent...\n", + " monotone_constraints=None,\n", + " multi_strategy=None,\n", + " n_estimators=None,\n", + " n_jobs=None,\n", + " num_parallel_tree=None,\n", + " random_state=None, ...))]),\n", + " param_grid={'xgboost__colsample_bytree': [0.8, 1.0],\n", + " 'xgboost__gamma': [0, 1, 5],\n", + " 'xgboost__learning_rate': [0.01, 0.1, 0.2],\n", + " 'xgboost__max_depth': [3, 5, 7],\n", + " 'xgboost__min_child_weight': [1, 5, 10],\n", + " 'xgboost__n_estimators': [50, 100, 200],\n", + " 'xgboost__subsample': [0.8, 1.0]})" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid_search.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "a5912558", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best parameters found: {'xgboost__colsample_bytree': 1.0, 'xgboost__gamma': 0, 'xgboost__learning_rate': 0.1, 'xgboost__max_depth': 5, 'xgboost__min_child_weight': 10, 'xgboost__n_estimators': 200, 'xgboost__subsample': 1.0}\n", + "Best cross-validation score: 0.40\n" + ] + } + ], + "source": [ + "print(\"Best parameters found: \", grid_search.best_params_)\n", + "print(\"Best cross-validation score: {:.2f}\".format(grid_search.best_score_))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3728d34c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/pandas_q.ipynb b/pandas_q.ipynb new file mode 100644 index 0000000..d74e30c --- /dev/null +++ b/pandas_q.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "w9JF9U0GL6VR" + }, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "foyH8052MUCC", + "outputId": "a239f577-8d66-4608-9a11-b55e2bb89ecc" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idclient_iddriver_idcity_idstatusrequest_at
011101completed2013-10-01
122111cancelled_by_driver2013-10-01
233126completed2013-10-01
344136cancelled_by_client2013-10-01
451101completed2013-10-02
562116completed2013-10-02
673126completed2013-10-02
7821212completed2013-10-03
8931012completed2013-10-03
91041312cancelled_by_driver2013-10-03
\n", + "
" + ], + "text/plain": [ + " id client_id driver_id city_id status request_at\n", + "0 1 1 10 1 completed 2013-10-01\n", + "1 2 2 11 1 cancelled_by_driver 2013-10-01\n", + "2 3 3 12 6 completed 2013-10-01\n", + "3 4 4 13 6 cancelled_by_client 2013-10-01\n", + "4 5 1 10 1 completed 2013-10-02\n", + "5 6 2 11 6 completed 2013-10-02\n", + "6 7 3 12 6 completed 2013-10-02\n", + "7 8 2 12 12 completed 2013-10-03\n", + "8 9 3 10 12 completed 2013-10-03\n", + "9 10 4 13 12 cancelled_by_driver 2013-10-03" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trips_df = pd.DataFrame({\n", + " 'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n", + " 'client_id': [1, 2, 3, 4, 1, 2, 3, 2, 3, 4],\n", + " 'driver_id': [10, 11, 12, 13, 10, 11, 12, 12, 10, 13],\n", + " 'city_id': [1, 1, 6, 6, 1, 6, 6, 12, 12, 12],\n", + " 'status': ['completed', 'cancelled_by_driver', 'completed', 'cancelled_by_client', 'completed', 'completed', 'completed', 'completed', 'completed', 'cancelled_by_driver'],\n", + " 'request_at': ['2013-10-01', '2013-10-01', '2013-10-01', '2013-10-01', '2013-10-02', '2013-10-02', '2013-10-02', '2013-10-03', '2013-10-03', '2013-10-03']\n", + "})\n", + "trips_df" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "7ZbeOjcSMunr", + "outputId": "4629471b-16c0-4b56-ea17-b3fb71522a10" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
users_idbannedrole
01Falseclient
12Trueclient
23Falseclient
34Falseclient
410Falsedriver
511Falsedriver
612Falsedriver
713Falsedriver
\n", + "
" + ], + "text/plain": [ + " users_id banned role\n", + "0 1 False client\n", + "1 2 True client\n", + "2 3 False client\n", + "3 4 False client\n", + "4 10 False driver\n", + "5 11 False driver\n", + "6 12 False driver\n", + "7 13 False driver" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_df = pd.DataFrame({\n", + " 'users_id': [1, 2, 3, 4, 10, 11, 12, 13],\n", + " 'banned': [False, True, False, False, False, False, False, False],\n", + " 'role': ['client', 'client', 'client', 'client', 'driver', 'driver', 'driver', 'driver']\n", + "})\n", + "users_df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TWucKh9dNuCf" + }, + "source": [ + "How to calculate the cancellation rate of requests with unbanned users (client and driver both not banned) each day between October 1, 2013, and October 3, 2013? Ensure the solution rounds the cancellation rate to two decimal points." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "kKFn90U5N4V7", + "outputId": "cb36ff30-fa67-43e1-921f-0e15581e2a3a" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DayCancellation Rate
02013-10-010.33
12013-10-020.00
22013-10-030.50
\n", + "
" + ], + "text/plain": [ + " Day Cancellation Rate\n", + "0 2013-10-01 0.33\n", + "1 2013-10-02 0.00\n", + "2 2013-10-03 0.50" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output = pd.DataFrame({\n", + " \"Day\": [\"2013-10-01\", \"2013-10-02\", \"2013-10-03\"],\n", + " \"Cancellation Rate\": [0.33, 0.00, 0.50]\n", + "})\n", + "output" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mNTJ2-RvO82I" + }, + "source": [ + "Explanation:\n", + "\n", + "On 2013-10-01: Out of 4 total requests, 2 were canceled. Discounting a request from a banned client, there were 3 unbanned requests, with a cancellation rate of 0.33.\n", + "\n", + "On 2013-10-02: Among 3 total requests, none were canceled. Ignoring a request from a banned client, there were 2 unbanned requests, resulting in a cancellation rate of 0.00.\n", + "\n", + "On 2013-10-03: Out of 3 total requests, 1 was canceled. Disregarding a request from a banned client, there were 2 unbanned requests, leading to a cancellation rate of 0.50." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "merged_df = pd.merge(trips_df, users_df, left_on='client_id', right_on='users_id', how='left')\n", + "merged_df = pd.merge(merged_df, users_df, left_on='driver_id', right_on='users_id', how='left', suffixes=('_client', '_driver'))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\jrahm\\AppData\\Local\\Temp\\ipykernel_22108\\1669844010.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " filtered_df['request_at'] = pd.to_datetime(filtered_df['request_at'])\n" + ] + } + ], + "source": [ + "filtered_df = merged_df[(~merged_df['banned_client']) & (~merged_df['banned_driver'])]\n", + "filtered_df['request_at'] = pd.to_datetime(filtered_df['request_at'])\n", + "grouped_df = filtered_df.groupby('request_at')['status'].apply(lambda x: (x == 'cancelled_by_client').sum() / len(x)).reset_index()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "output = pd.DataFrame({\n", + " \"Day\": grouped_df['request_at'].dt.strftime('%Y-%m-%d'),\n", + " \"Cancellation Rate\": grouped_df['status'].round(2)\n", + "})" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DayCancellation Rate
02013-10-010.33
12013-10-020.00
22013-10-030.00
\n", + "
" + ], + "text/plain": [ + " Day Cancellation Rate\n", + "0 2013-10-01 0.33\n", + "1 2013-10-02 0.00\n", + "2 2013-10-03 0.00" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/python_q.ipynb b/python_q.ipynb new file mode 100644 index 0000000..c2354a8 --- /dev/null +++ b/python_q.ipynb @@ -0,0 +1,117 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "42976f64-9534-4f1c-ba5e-c21c3befa7a6", + "metadata": {}, + "source": [ + "Find the sum of three integers in the given array 'nums' of length 'n' such that the sum is closest to the target. Return the computed sum. Assume that there is exactly one solution for each input." + ] + }, + { + "cell_type": "markdown", + "id": "efd7fa7c-4865-4480-863b-7203874b40d6", + "metadata": {}, + "source": [ + "Example 1:\n", + "\n", + "Input: nums = [-1,2,1,-4], target = 1\n", + "Output: 2\n", + "Explanation: The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).\n", + "\n", + "Example 2:\n", + "\n", + "Input: nums = [0,0,0], target = 1\n", + "Output: 0\n", + "Explanation: The sum that is closest to the target is 0. (0 + 0 + 0 = 0)." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "8320f2ba", + "metadata": {}, + "outputs": [], + "source": [ + "def threeSumClosest(nums, target):\n", + " nums.sort()\n", + " closest_sum = float('inf')\n", + " result = None\n", + "\n", + " for i in range(len(nums) - 2):\n", + " left, right = i + 1, len(nums) - 1\n", + "\n", + " while left < right:\n", + " current_sum = nums[i] + nums[left] + nums[right]\n", + "\n", + " if abs(current_sum - target) < abs(closest_sum - target):\n", + " closest_sum = current_sum\n", + " result = (nums[i], nums[left], nums[right])\n", + "\n", + " if current_sum < target:\n", + " left += 1\n", + " elif current_sum > target:\n", + " right -= 1\n", + " else:\n", + " return result\n", + "\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "fb3ee719", + "metadata": {}, + "outputs": [], + "source": [ + "nums1 = [-1, 2, 1, -4]\n", + "nums2 = [0, 0, 0]\n", + "target1 = 1\n", + "target2 = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9b8dba50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((-1, 1, 2), (0, 0, 0))" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "threeSumClosest(nums1, target1) , threeSumClosest(nums2, target2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}