forked from leejimmy93/KIAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathF2_data_analysis.Rmd
270 lines (199 loc) · 14.4 KB
/
F2_data_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
title: "F2_data_analysis"
author: "Ruijuan Li"
date: "12/5/2016"
output: html_document
---
# download
```{r}
# wget -r ftp://FNP_KSJ:[email protected]/TBD160783_20161129/ (screen -r 35891.ttys009.coloma)
# wget -r ftp://FNP_KSJ:[email protected]/TBD160897_20161221/ (35901.ttys009.coloma)
```
# QC
```{r}
# QC already done by Korean side, I checked result by using make_summary_report.sh, OK
# finished mapping using kallisto
```
# trimming & mapping kallisto
```{r}
### bunchrun_kallisto.sh
### count number of HQ reads
# count_HQ_reads.sh
### get readcount output
# ls Sample*/HQ_single_end_count | sed 's/\/HQ_single_end_count//g' | sed 's/Sample_//g' > ID
# cat Sample*/HQ_single_end_count > reads_number
# paste ID reads_number > HQ_reads_lib
```
# F2 data stats
```{r}
F2.stats.1 <- read.csv("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/Sequencing_Statistics_Result_F2.csv")
F2.stats.2 <- read.table("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/HQ_reads_lib")
head(F2.stats.1)
head(F2.stats.2)
colnames(F2.stats.2)[1] <- "Sample.ID"
colnames(F2.stats.2)[2] <- "HQ.reads"
F2.stats <- merge(F2.stats.1[,c("Sample.ID", "TotalReads")], F2.stats.2, by="Sample.ID")
summary(F2.stats)
F2.stats$TotalReads.2 <- as.numeric(as.character(F2.stats$TotalReads))/2
F2.stats$HQ_percent <- round(F2.stats$HQ.reads/F2.stats$TotalReads.2, digits = 2)
head(F2.stats)
F2.stats <- F2.stats[,c("Sample.ID", "TotalReads.2", "HQ.reads", "HQ_percent")]
head(F2.stats)
colnames(F2.stats)[2] <- "TotalReads"
write.csv(F2.stats, file = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.stats.csv")
F2.stats.modified <- read.csv("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/modified.F2.stats.csv")
head(F2.stats.modified)
batch.a <- read.csv("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/Sequencing_Statistics_Result_16.12.05 (1).csv")
colnames(batch.a)[1] <- "Sample_ID"
batch.b <- read.csv("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/Sequencing_Statistics_Result_16.12.23 (1).csv")
colnames(batch.b)[1] <- "Sample_ID"
batch.a.stats <- merge(F2.stats.modified, batch.a, by="Sample_ID")
batch.a.stats$batch <- rep("a", nrow(batch.a.stats))
batch.b.stats <- merge(F2.stats.modified, batch.b, by="Sample_ID")
batch.b.stats$batch <- rep("b", nrow(batch.b.stats))
F2.stats.modified.2 <- rbind(batch.a.stats, batch.b.stats)
head(F2.stats.modified.2)
F2.stats.modified.2$batch
library(ggplot2)
p.uniq.mapping <- ggplot(data=F2.stats.modified.2)
p.uniq.mapping <- p.uniq.mapping + geom_histogram(aes(x=Percent_Unique_Mapped, fill=batch), binwidth = 2.5)
p.uniq.mapping <- p.uniq.mapping + labs(list(title = "", x = "Percent of uniquely mapped reads", y = "number of samples"))
p.uniq.mapping
ggsave(p.uniq.mapping, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.uniq.mapping.1.png", height = 8, width = 11)
p.uniq.mapping.2 <- ggplot(data=F2.stats.modified.2)
p.uniq.mapping.2 <- p.uniq.mapping.2 + geom_histogram(aes(x=Percent_Unique_Mapped), binwidth = 2.5)
p.uniq.mapping.2 <- p.uniq.mapping.2 + labs(list(title = "", x = "Percent of uniquely mapped reads", y = "number of samples"))
p.uniq.mapping.2
ggsave(p.uniq.mapping.2, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.uniq.mapping.png", height = 8, width = 11)
p.all.reads <- ggplot(data = F2.stats.modified.2)
p.all.reads <- p.all.reads + geom_bar(aes(x=Sample_ID, y=TotalReads.x, fill=batch), stat = "identity")
p.all.reads
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-106",]
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-72",]
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-38",]
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-105",]
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-10",]
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-118",]
sort(F2.stats.modified.2$TotalReads.x)
?sort
```
# batch effect of F2
```{r}
# map single reads
single.mapping.result.A <- read.table("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/batch_effect/Batch_A_Star_Stats.tab", header = T)
single.mapping.result.B <- read.table("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/batch_effect/Batch_B_Star_Stats.tab", header = T)
single.mapping.result.A$batch <- rep("a", 5)
single.mapping.result.B$batch <- rep("b", 5)
single.mapping.result <- rbind(single.mapping.result.A, single.mapping.result.B)
head(single.mapping.result)
single.mapping.result$Sample_ID <- gsub("(Sample_)([[:print:]]+)(\\.)(single)","\\2",single.mapping.result$Sample)
single.mapping.result$Sample_ID
library(ggplot2)
p.uniq.mapping.single <- ggplot(data=single.mapping.result)
p.uniq.mapping.single <- p.uniq.mapping.single + geom_bar(aes(x=reorder(Sample_ID, Percent_Unique_Mapped), y=Percent_Unique_Mapped, fill=batch), stat = "identity")
p.uniq.mapping.single <- p.uniq.mapping.single + labs(list(title = "", x = "Percent of uniquely mapped reads", y = "number of samples"))
p.uniq.mapping.single
ggsave(p.uniq.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.uniq.mapping.single.png", height = 8, width = 11)
p.multi.mapping.single <- ggplot(data=single.mapping.result)
p.multi.mapping.single <- p.multi.mapping.single + geom_bar(aes(x=reorder(Sample_ID, Percent_Multi_Mapped), y=Percent_Multi_Mapped, fill=batch), stat = "identity")
p.multi.mapping.single <- p.multi.mapping.single + labs(list(title = "", x = "Percent of multi mapped reads", y = "number of samples"))
p.multi.mapping.single
ggsave(p.multi.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.multi.mapping.single.png", height = 8, width = 11)
p.toomany.mapping.single <- ggplot(data=single.mapping.result)
p.toomany.mapping.single <- p.toomany.mapping.single + geom_bar(aes(x=reorder(Sample_ID, Percent_Too_Many_Multi_Mapped), y=Percent_Too_Many_Multi_Mapped, fill=batch), stat = "identity")
p.toomany.mapping.single <- p.toomany.mapping.single + labs(list(title = "", x = "Percent of toomany mapped reads", y = "number of samples"))
p.toomany.mapping.single
ggsave(p.toomany.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.toomany.mapping.single.png", height = 8, width = 11)
p.unmapped.mapping.single <- ggplot(data=single.mapping.result)
p.unmapped.mapping.single <- p.unmapped.mapping.single + geom_bar(aes(x=reorder(Sample_ID, Percent_Unmapped_Too_Short), y=Percent_Unmapped_Too_Short, fill=batch), stat = "identity")
p.unmapped.mapping.single <- p.unmapped.mapping.single + labs(list(title = "", x = "Percent of unmapped reads", y = "number of samples"))
p.unmapped.mapping.single
ggsave(p.unmapped.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.unmapped.mapping.single.png", height = 8, width = 11)
# remove reads less than 70bp
mapping.result.70 <- read.table("~/Desktop/Brassica_project/KIAT_RNA_seq/F2/batch_effect/Star_Stats.tab", header = T)
mapping.result.70$Sample
head(mapping.result.70)
mapping.result.70$batch <- c("a", "b", "b", "b", "a", "a")
p.uniq.mapping.single <- ggplot(data=mapping.result.70)
p.uniq.mapping.single <- p.uniq.mapping.single + geom_bar(aes(x=reorder(Sample, Percent_Unique_Mapped), y=Percent_Unique_Mapped, fill=batch), stat = "identity")
p.uniq.mapping.single <- p.uniq.mapping.single + labs(list(title = "", x = "Percent of uniquely mapped reads", y = "number of samples"))
p.uniq.mapping.single
ggsave(p.uniq.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.uniq.mapping.70.png", height = 8, width = 11)
p.multi.mapping.70 <- ggplot(data=mapping.result.70)
p.multi.mapping.70 <- p.multi.mapping.70 + geom_bar(aes(x=reorder(Sample, Percent_Multi_Mapped), y=Percent_Multi_Mapped, fill=batch), stat = "identity")
p.multi.mapping.70 <- p.multi.mapping.70 + labs(list(title = "", x = "Percent of multi mapped reads", y = "number of samples"))
p.multi.mapping.70
ggsave(p.multi.mapping.70, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.multi.mapping.70.png", height = 8, width = 11)
p.toomany.mapping.70 <- ggplot(data=mapping.result.70)
p.toomany.mapping.70 <- p.toomany.mapping.70 + geom_bar(aes(x=reorder(Sample, Percent_Too_Many_Multi_Mapped), y=Percent_Too_Many_Multi_Mapped, fill=batch), stat = "identity")
p.toomany.mapping.70 <- p.toomany.mapping.70 + labs(list(title = "", x = "Percent of toomany mapped reads", y = "number of samples"))
p.toomany.mapping.70
ggsave(p.toomany.mapping.70, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.toomany.mapping.70.png", height = 8, width = 11)
p.unmapped.mapping.70 <- ggplot(data=mapping.result.70)
p.unmapped.mapping.70 <- p.unmapped.mapping.70 + geom_bar(aes(x=reorder(Sample, Percent_Unmapped_Too_Short), y=Percent_Unmapped_Too_Short, fill=batch), stat = "identity")
p.unmapped.mapping.70 <- p.unmapped.mapping.70 + labs(list(title = "", x = "Percent of unmapped reads", y = "number of samples"))
p.unmapped.mapping.70
ggsave(p.unmapped.mapping.70, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/F2.unmapped.mapping.70.png", height = 8, width = 11)
# compare average of mapping result between batch a and b
average.mapping.single <- aggregate(single.mapping.result[,c("Percent_Unique_Mapped", "Percent_Multi_Mapped", "Percent_Too_Many_Multi_Mapped", "Percent_Unmapped_Too_Short")], list(single.mapping.result$batch), mean)
rownames(average.mapping.single) <- average.mapping.single$Group.1
library(reshape2)
average.mapping.single.melt <- melt(average.mapping.single, id.vars = "Group.1")
average.mapping.single.melt
average.mapping.single.melt$type <- c(rep("Unique",2), rep("multi",2), rep("too many", 2), rep("unmapped",2))
p.average.mapping.single <- ggplot(data = average.mapping.single.melt)
p.average.mapping.single <- p.average.mapping.single + geom_bar(aes(x=type, y=value, fill=type), stat = "identity")
p.average.mapping.single <- p.average.mapping.single + facet_wrap(~Group.1, ncol = 2)
p.average.mapping.single <- p.average.mapping.single + labs(list(title = "", x = "", y = "percentage"))
p.average.mapping.single <- p.average.mapping.single + theme(axis.text.x = element_text(angle = 90))
p.average.mapping.single <- p.average.mapping.single + geom_text(data = average.mapping.single.melt, aes(x=type, y=value, label=factor(round(value,0))))
p.average.mapping.single
ggsave(p.average.mapping.single, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/average.mapping.single.png", height = 5, width = 4)
# draw a same plot for paired end mapping
average.mapping.paired <- aggregate(F2.stats.modified.2[,c("Percent_Unique_Mapped", "Percent_Multi_Mapped", "Percent_Too_Many_Multi_Mapped", "Percent_Unmapped_Too_Short")], list(F2.stats.modified.2$batch), mean)
average.mapping.paired.melt <- melt(average.mapping.paired, id.vars = "Group.1")
average.mapping.paired.melt
average.mapping.paired.melt$type <- c(rep("Unique",2), rep("multi",2), rep("too many", 2), rep("unmapped",2))
p.average.mapping.paired <- ggplot(data = average.mapping.paired.melt)
p.average.mapping.paired <- p.average.mapping.paired + geom_bar(aes(x=type, y=value, fill=type), stat = "identity")
p.average.mapping.paired <- p.average.mapping.paired + facet_wrap(~Group.1, ncol = 2)
p.average.mapping.paired <- p.average.mapping.paired + labs(list(title = "", x = "", y = "percentage"))
p.average.mapping.paired <- p.average.mapping.paired + theme(axis.text.x = element_text(angle = 90))
p.average.mapping.paired <- p.average.mapping.paired + geom_text(data = average.mapping.paired.melt, aes(x=type, y=value, label=factor(round(value,0))))
# p.total_mapping <- p.total_mapping + geom_text(data = total_mapping, aes(x=factor(V2), y=value, label=factor(value))
p.average.mapping.paired
ggsave(p.average.mapping.paired, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/average.mapping.paired.png", height = 5, width = 4)
### plot throwing out reads strategy
colnames(mapping.result.70)[1] <- "Sample.ID"
mapping.result.70.all <- merge(mapping.result.70, F2.stats, by="Sample.ID")
mapping.result.70.all$HQ_percent <- mapping.result.70.all$Number_Input_Reads/mapping.result.70.all$TotalReads
mapping.result.70.all
average.mapping.70 <- aggregate(mapping.result.70.all[,c("Percent_Unique_Mapped", "Percent_Multi_Mapped", "Percent_Too_Many_Multi_Mapped", "Percent_Unmapped_Too_Short", "HQ_percent")], list(mapping.result.70.all$batch), mean)
average.mapping.70$HQ_percent <- average.mapping.70$HQ_percent * 100
average.mapping.70.melt <- melt(average.mapping.70, id.vars = "Group.1")
average.mapping.70.melt
average.mapping.70.melt$type <- c(rep("Unique",2), rep("multi",2), rep("too many", 2), rep("unmapped",2), rep("high qulity", 2))
p.average.mapping.70 <- ggplot(data = average.mapping.70.melt)
p.average.mapping.70 <- p.average.mapping.70 + geom_bar(aes(x=type, y=value, fill=type), stat = "identity")
p.average.mapping.70 <- p.average.mapping.70 + facet_wrap(~Group.1, ncol = 2)
p.average.mapping.70 <- p.average.mapping.70 + labs(list(title = "", x = "", y = "percentage"))
p.average.mapping.70 <- p.average.mapping.70 + theme(axis.text.x = element_text(angle = 90))
p.average.mapping.70 <- p.average.mapping.70 + geom_text(data = average.mapping.70.melt, aes(x=type, y=value, label=factor(round(value,0))))
p.average.mapping.70
ggsave(p.average.mapping.70, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/average.mapping.70.png", height = 5, width = 4)
### make a same plot for trimming using 36 bp as cutoff
average.mapping.36 <- aggregate(F2.stats.modified.2[,c("Percent_Unique_Mapped", "Percent_Multi_Mapped", "Percent_Too_Many_Multi_Mapped", "Percent_Unmapped_Too_Short", "HQ_percent")], list(F2.stats.modified.2$batch), mean)
average.mapping.36$HQ_percent <- average.mapping.36$HQ_percent * 100
average.mapping.36.melt <- melt(average.mapping.36, id.vars = "Group.1")
average.mapping.36.melt
average.mapping.36.melt$type <- c(rep("Unique",2), rep("multi",2), rep("too many", 2), rep("unmapped",2), rep("high qulity", 2))
p.average.mapping.36 <- ggplot(data = average.mapping.36.melt)
p.average.mapping.36 <- p.average.mapping.36 + geom_bar(aes(x=type, y=value, fill=type), stat = "identity")
p.average.mapping.36 <- p.average.mapping.36 + facet_wrap(~Group.1, ncol = 2)
p.average.mapping.36 <- p.average.mapping.36 + labs(list(title = "", x = "", y = "percentage"))
p.average.mapping.36 <- p.average.mapping.36 + theme(axis.text.x = element_text(angle = 90))
p.average.mapping.36 <- p.average.mapping.36 + geom_text(data = average.mapping.36.melt, aes(x=type, y=value, label=factor(round(value,0))))
p.average.mapping.36
ggsave(p.average.mapping.36, filename = "~/Desktop/Brassica_project/KIAT_RNA_seq/F2/average.mapping.36.png", height = 5, width = 4)
F2.stats.modified.2[F2.stats.modified.2$Sample_ID=="138-156",]$batch
```