-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysis_Script.Rmd
156 lines (118 loc) · 4.89 KB
/
Analysis_Script.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
title: "Minimal generators from positive and negative attributes: analysing the knowledge space of a Mathematics course"
description: |
Script to reproduce the results of the paper.
author:
- name: Manuel Ojeda-Hernández
affiliation: Departamento de Matemática Aplicada, Universidad de Málaga
- name: Francisco Pérez-Gámez
affiliation: Departamento de Matemática Aplicada, Universidad de Málaga
- name: Domingo López-Rodríguez
url: https://dominlopez.netlify.app
affiliation: Departamento de Matemática Aplicada, Universidad de Málaga
- name: Nicolás Madrid
affiliation: Departamento de Matemática Aplicada, Universidad de Málaga
- name: Ángel Mora
affiliation: Departamento de Matemática Aplicada, Universidad de Málaga
date: "`r Sys.Date()`"
output:
distill::distill_article:
toc: true
toc_depth: 2
---
```{r setup, include=FALSE}
##%################################################%##
# #
#### Script for IJIS'2021 on e-learning ####
# #
##%################################################%##
knitr::opts_chunk$set(echo = TRUE)
```
# Introduction
This file accompanies the paper of the same title as a means to reproduce the results given in the paper.
We interleave text, code and results to make it simple for the reader to follow the results and check the code.
All the analyses can be reproduced using the commands below in a folder with `code` and `data` subfolders, which store the functions and the dataset and results used in the paper.
# Loading data
First, we must load some `R` libraries:
```{r}
# Load libraries
library(tidyverse)
library(here)
library(Matrix)
library(fcaR)
```
Now, the core of the code is the `fcaR` package, but there are some extensions (for example, to compute the minimal generators) that are, at this moment, outside the package, and are included in the `code` folder. We must load them.
```{r}
# Load functions from "code" folder
code_folder <- here("code")
list.files(path = code_folder,
pattern = "*.R",
full.names = TRUE) %>%
sapply(source) %>%
invisible() # To keep output clean
```
The data used in this paper is included in the `data` folder, so we must load it (it is a formal context named `context3.rds`):
```{r}
# Import data from data folder
data_folder <- normalizePath(here("data"))
fc <- FormalContext$new(file.path(data_folder, "context3.rds"))
```
# Formal Concept Analysis operations
We use the functions from the `fcaR` package to compute both the concept lattice and the basis of implications of the mixed context.
```{r}
# Find concept lattice and implications
fc$find_implications()
# Number of implications in the basis
fc$implications$cardinality()
# Number of concepts in the lattice
fc$concepts$size()
```
# First analysis: Exploration of the Knowledge Space
First, we build the sublattice formed by the concepts containing the attributes `-P` and `-F` (we use the notation `-X` to denote the negation of attribute `X`).
```{r}
# Concepts and sublattice of those concepts containing -P and -F
selected_attributes <- c("-P", "-F")
id_attr <- which(fc$attributes %in% selected_attributes)
which_attr <- colSums(fc$concepts$intents()[id_attr, ]) == length(selected_attributes)
# Creation of the sublattice
sublattice <- fc$concepts$sublattice(which_attr)
sublattice$plot()
```
# Second analysis: Minimal generators
The computation of the minimal generators is very computationally demanding (and may take hours to days, depending on the hardware), so we include the code but we provide the precomputed minimal generators in form of implication set.
This code would compute the minimal generators.
```{r eval = FALSE}
# Minimal Generators
lsi <- mingen0_minimals(
attributes = fc$attributes,
LHS = fc$implications$get_LHS_matrix(),
RHS = fc$implications$get_RHS_matrix())
```
This code would create the implication set from the minimal generators.
```{r eval = FALSE}
imps <- lsi$to_implications(context = fc$I)
```
Actually, we load the precomputed system of implications.
```{r}
imps <- readRDS(file = file.path(data_folder, "mingen_implications.RDS"))
```
From these implications, we select those that have `-Final` in the right-hand side:
```{r}
fail <- imps$filter(rhs = c("-Final"))
```
```{r echo = FALSE}
fail$.__enclos_env__$private$I <- fc$I
fail$.__enclos_env__$private$implication_support <- NULL
```
We only keep some of the implications, those whose support is above the 10\%. That is, implications applicable to, at least, 10\% of the students in the course. In addition, we remove some redundancies that appear by using Simplification Logic.
```{r}
fail <- fail[fail$support() > 0.1]
# This gives us 41 implications
fail$cardinality()
# We use simplification logic to remove redundancies:
fail$apply_rules("simp")
```
The resulting set of implications is:
```{r}
fail
```