From b6aea66005b8f76e7250f4c695d3f148afc50690 Mon Sep 17 00:00:00 2001 From: Mazztok45 Date: Mon, 4 Mar 2024 18:58:58 +0100 Subject: [PATCH] update of articles and software plain.xml. Addind nr_total_results and update the document_type node. run now without error. --- test/data/articles/plain.xml | 14 ++++++++++---- test/data/software/plain.xml | 2 +- 2 files changed, 11 insertions(+), 5 deletions(-) diff --git a/test/data/articles/plain.xml b/test/data/articles/plain.xml index 5fbefd5..759d171 100644 --- a/test/data/articles/plain.xml +++ b/test/data/articles/plain.xml @@ -12,9 +12,14 @@ Zbl - journal article + 2015-01-06 14:15:02 + + j + journal article + review + English siaulys.jonas Jonas Šiaulys @@ -22,8 +27,8 @@ Jonas Šiaulys (Vilnius) The prime \(k\)-tuples and small gaps between prime numbers are considered. Using a refinement of the Goldston-Pintz-Yildirim sieve method [\textit{D. A. Goldston} et al., Ann. Math. (2) 170, No. 2, 819--862 (2009; Zbl 1207.11096)] the author proves, for instance, the following estimates - \[ - \liminf_{n\to\infty}\,(p_{n+m}-p_n)\ll m^3\text{{e}}^{4m}, \quad \liminf_{n\to\infty}\,(p_{n+1}-p_n)\leq 600 + \[ + \liminf_{n\to\infty}\,(p_{n+m}-p_n)\ll m^3\text{{e}}^{4m}, \quad \liminf_{n\to\infty}\,(p_{n+1}-p_n)\leq 600 \] with an absolute constant in sign \(\ll\). Here \(m\) is a natural number, and \(p_{\,l}\) denote the \(l\)-th prime number. @@ -255,8 +260,9 @@ successful request True ok + 0 200 0 - + \ No newline at end of file diff --git a/test/data/software/plain.xml b/test/data/software/plain.xml index b1dc206..8edb5b2 100644 --- a/test/data/software/plain.xml +++ b/test/data/software/plain.xml @@ -127,4 +127,4 @@ 200 0 - + \ No newline at end of file