-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathegocentric_network_1_5.py
73 lines (57 loc) · 2.43 KB
/
egocentric_network_1_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import networkx as nx
import matplotlib.pyplot as plt
import itertools
def EgocentricNetwork(G,v):
egocentric_network_edge_list = []
egocentric_network_node_list = [v]
for i in G.neighbors(v):
egocentric_network_node_list.append(i)
egocentric_network_edge_list.append((v,i))
egocentric_network_node_list.sort()
egocentric_network_edge_list = list(tuple(sorted(p)) for p in egocentric_network_edge_list)
for i in list(itertools.combinations(egocentric_network_node_list, 2)): #generates all possible pairs of nodes
if i in G.edges() and i not in egocentric_network_edge_list:
egocentric_network_edge_list.append(i)
return egocentric_network_edge_list,egocentric_network_node_list
#takes input from the file and creates a graph
def CreateGraph():
G = nx.Graph()
f = open('input.txt')
n = int(f.readline())
for i in range(n):
G.add_node(i+1)
no_of_edges = int(f.readline())
for i in range(no_of_edges):
graph_edge_list = f.readline().split()
G.add_edge(int(graph_edge_list[0]), int(graph_edge_list[1]))
vert = int(f.readline())
return G, vert
#draws the graph and displays the weights on the edges
def DrawGraph(G, egocentric_network_edge_list, egocentric_network_node_list, vert):
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels = True, node_color = 'blue', alpha = 0.8) #with_labels=true is to show the node number in the output graph
nx.draw_networkx_edges(G, pos, edgelist = egocentric_network_edge_list , width = 2.5, alpha = 0.8, edge_color = 'red')
nx.draw_networkx_nodes(G,pos, nodelist = egocentric_network_node_list, node_color = 'red', alpha = 0.5)
nx.draw_networkx_nodes(G,pos,nodelist=[vert],node_color='green',node_size=500,alpha=0.8)
return pos
def CentralityMeasures(G):
# Betweenness centrality
bet_cen = nx.betweenness_centrality(G)
# Closeness centrality
clo_cen = nx.closeness_centrality(G)
# Eigenvector centrality
eig_cen = nx.eigenvector_centrality(G)
# Degree centrality
deg_cen = nx.degree_centrality(G)
#print bet_cen, clo_cen, eig_cen
print "# Betweenness centrality:" + str(bet_cen)
print "# Closeness centrality:" + str(clo_cen)
print "# Eigenvector centrality:" + str(eig_cen)
print "# Degree centrality:" + str(deg_cen)
#main function
if __name__== "__main__":
G, vert = CreateGraph()
egocentric_network_edge_list,egocentric_network_node_list = EgocentricNetwork(G, vert)
DrawGraph(G,egocentric_network_edge_list, egocentric_network_node_list, vert)
CentralityMeasures(G)
plt.show()