-
Notifications
You must be signed in to change notification settings - Fork 3
/
Trainer.py
219 lines (192 loc) · 8.22 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import tensorflow as tf
import Constants
from Log import log
from Util import average_gradients
PROFILE = False
if PROFILE:
first_run = True
def get_options():
global first_run
if PROFILE and not first_run:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
return run_options, run_metadata
else:
return None, None
class Trainer(object):
def __init__(self, config, train_network, test_network, global_step, session):
self.measures = config.unicode_list("measures", [])
self.opt_str = config.unicode("optimizer", "adam").lower()
self.train_network = train_network
self.test_network = test_network
self.session = session
self.global_step = global_step
self.learning_rates = config.int_key_dict("learning_rates")
assert 1 in self.learning_rates, "no initial learning rate specified"
self.curr_learning_rate = self.learning_rates[1]
self.lr_var = tf.placeholder(config.dtype, shape=[], name="learning_rate")
self.loss_scale_var = tf.placeholder_with_default(1.0, shape=[], name="loss_scale")
self.opt, self.reset_opt_op = self.create_optimizer(config)
if train_network is not None:
if train_network.use_partialflow:
self.prepare_partialflow()
self.step_op = tf.no_op("step")
else:
self.step_op = self.create_step_op()
if len(self.train_network.update_ops) == 0:
self.update_ops = []
else:
self.update_ops = self.train_network.update_ops
else:
self.step_op = None
self.update_ops = None
self.summary_writer, self.summary_op, self.summary_op_test = self.init_summaries(config)
def create_optimizer(self, config):
momentum = config.float("momentum", 0.9)
if self.opt_str == "sgd_nesterov":
return tf.train.MomentumOptimizer(self.lr_var, momentum, use_nesterov=True), None
elif self.opt_str == "sgd_momentum":
return tf.train.MomentumOptimizer(self.lr_var, momentum), None
elif self.opt_str == "sgd":
return tf.train.GradientDescentOptimizer(self.lr_var), None
elif self.opt_str == "adam":
opt = tf.train.AdamOptimizer(self.lr_var)
all_vars = tf.global_variables()
opt_vars = [v for v in all_vars if "Adam" in v.name]
reset_opt_op = tf.variables_initializer(opt_vars, "reset_optimizer")
return opt, reset_opt_op
else:
assert False, ("unknown optimizer", self.opt_str)
def reset_optimizer(self):
assert self.opt_str == "adam", "reset not implemented for other optimizers yet"
assert self.reset_opt_op is not None
self.session.run(self.reset_opt_op)
def prepare_partialflow(self):
sm = self.train_network.graph_section_manager
losses = self.train_network.losses
regularizers = self.train_network.regularizers
assert len(losses) == 1
assert len(regularizers) == 1
loss = losses[0] + tf.add_n(regularizers[0])
loss *= self.loss_scale_var
sm.add_training_ops(self.opt, loss, verbose=False, global_step=self.global_step)
sm.prepare_training()
#for sec in self.train_network.graph_sections:
# print sec.get_tensors_to_feed()
#for sec in self.train_network.graph_sections:
# print sec.get_tensors_to_cache()
def create_step_op(self):
losses, regularizers, setups = self.train_network.losses, self.train_network.regularizers, \
self.train_network.tower_setups
assert len(losses) == len(regularizers)
assert all(len(regularizers[0]) == len(x) for x in regularizers)
if len(regularizers[0]) > 0:
regularizers = [tf.add_n(x) for x in regularizers]
losses_with_regularizers = [l + r for l, r in zip(losses, regularizers)]
losses_with_regularizers = [x * self.loss_scale_var for x in losses_with_regularizers]
tower_grads = []
for l, s in zip(losses_with_regularizers, setups):
gpu_str = "/gpu:" + str(s.gpu)
with tf.device(gpu_str), tf.name_scope("tower_gpu_" + str(s.gpu) + "_opt"):
tower_grads.append(self.opt.compute_gradients(l))
if len(losses) == 1:
grads = tower_grads[0]
else:
# average the gradients over the towers
grads = average_gradients(tower_grads)
step_op = self.opt.apply_gradients(grads, global_step=self.global_step)
return step_op
def init_summaries(self, config):
summdir = config.dir("summary_dir", "summaries")
model = config.unicode("model")
summdir += model + "/"
tf.gfile.MakeDirs(summdir)
summary_writer = tf.summary.FileWriter(summdir, self.session.graph)
if config.bool("write_summaries", True) and self.train_network is not None \
and len(self.train_network.summaries) > 0:
# better do not merge ALL summaries, since otherwise we get summaries from different networks
# and might execute (parts of) the test network while training
# self.summary_op = tf.merge_all_summaries()
# atm we only collect summaries from the train network
summary_op = tf.summary.merge(self.train_network.summaries)
summary_op_test = tf.summary.merge(self.test_network.summaries)
else:
summary_op = None
summary_op_test = None
return summary_writer, summary_op, summary_op_test
# for profiling
def handle_run_metadata(self, metadata):
if not PROFILE:
return
global first_run
if first_run:
first_run = False
else:
self.summary_writer.add_run_metadata(metadata, 'profile', 0)
self.summary_writer.flush()
from tensorflow.python.client import timeline
tl = timeline.Timeline(metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(ctf)
quit()
def validation_step(self, _):
ops = [self.test_network.loss_summed, self.test_network.measures_accumulated, self.test_network.n_imgs]
if 'clicks' in self.measures:
ops.append(self.test_network.tags)
if self.summary_op_test is not None:
ops.append(self.summary_op_test)
res = self.session.run(ops)
if self.summary_op_test is not None:
summary_str = res[-1]
res = res[:-1]
self.summary_writer.add_summary(summary_str, global_step=None)
if len(res) > 3:
loss_summed, measures_accumulated, n_imgs, tags = res
measures_accumulated[Constants.CLICKS] = tags
else:
loss_summed, measures_accumulated, n_imgs = res
return loss_summed, measures_accumulated, n_imgs
def adjust_learning_rate(self, epoch, learning_rate=None):
if learning_rate is None:
key = max([k for k in self.learning_rates.keys() if k <= epoch + 1])
new_lr = self.learning_rates[key]
else:
new_lr = learning_rate
if self.curr_learning_rate != new_lr:
print >> log.v1, "changing learning rate to", new_lr
self.curr_learning_rate = new_lr
def train_step(self, epoch, feed_dict=None, loss_scale=1.0, learning_rate=None):
self.adjust_learning_rate(epoch, learning_rate)
if feed_dict is None:
feed_dict = {}
else:
feed_dict = feed_dict.copy()
feed_dict[self.lr_var] = self.curr_learning_rate
feed_dict[self.loss_scale_var] = loss_scale
ops = self.update_ops + [self.global_step, self.step_op, self.train_network.loss_summed,
self.train_network.measures_accumulated, self.train_network.n_imgs]
if Constants.CLICKS in self.measures:
ops.append(self.train_network.tags)
if self.summary_op is not None:
ops.append(self.summary_op)
if self.train_network.use_partialflow:
res = self.train_network.graph_section_manager.run_full_cycle(
self.session, fetches=ops, basic_feed=feed_dict)
else:
run_options, run_metadata = get_options()
res = self.session.run(ops, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
self.handle_run_metadata(run_metadata)
#remove update outputs
res = res[len(self.update_ops):]
if self.summary_op is not None:
summary_str = res[-1]
res = res[:-1]
step = res[0]
self.summary_writer.add_summary(summary_str, step)
if len(res) > 5:
_, _, loss_summed, measures_accumulated, n_imgs, tags = res
measures_accumulated[Constants.CLICKS] = tags
else:
_, _, loss_summed, measures_accumulated, n_imgs = res
return loss_summed, measures_accumulated, n_imgs