diff --git a/obsidian/dash/optimize.py b/obsidian/dash/optimize.py index cb45263..70cd171 100644 --- a/obsidian/dash/optimize.py +++ b/obsidian/dash/optimize.py @@ -117,7 +117,7 @@ def fit_statistics(opt_save, config, filename): [ dbc.ListGroupItem(['Model Type: ', f'{optimizer.surrogate_type}']), dbc.ListGroupItem(['Data Name: ', filename]), - dbc.ListGroupItem(['R', html.Sup('2'), ' Score: ', f'{optimizer.surrogate[0].score: .4g}']), # for SOO only + dbc.ListGroupItem(['R', html.Sup('2'), ' Score: ', f'{optimizer.surrogate[0].r2_score: .4g}']), # for SOO only dbc.ListGroupItem(['Marginal Log Likelihood: ', f'{optimizer.surrogate[0].loss: .4g}']), # for SOO only ], flush=True ) diff --git a/obsidian/optimizer/bayesian.py b/obsidian/optimizer/bayesian.py index 7f8dfb0..343b26b 100644 --- a/obsidian/optimizer/bayesian.py +++ b/obsidian/optimizer/bayesian.py @@ -244,7 +244,7 @@ def fit(self, if self.verbose > 0: print(f'{self.surrogate_type[i]} model has been fit \ - to data with a train-score of: {self.surrogate[i].score:.3g} for response: {self.y_names[i]}') + to data with a train-score of: {self.surrogate[i].r2_score:.3g} for response: {self.y_names[i]}') return def save_state(self) -> dict: diff --git a/obsidian/surrogates/botorch.py b/obsidian/surrogates/botorch.py index c1e57ea..109954b 100644 --- a/obsidian/surrogates/botorch.py +++ b/obsidian/surrogates/botorch.py @@ -46,7 +46,7 @@ class SurrogateBoTorch(SurrogateModel): mll (ExactMarginalLogLikelihood): The marginal log likelihood of the model. torch_model (torch.nn.Module): The torch model for the surrogate. loss (float): The loss of the model. - score (float): The R2 score of the model. + r2_score (float): The R2 score of the model. """ def __init__(self, model_type: str = 'GP',