Skip to content

MPCheng-ZW/TNT-VectorNet-and-HOME-Trajectory-Forecasting

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TNT-VectorNet-and-HOME-Trajectory-Forecasting

Master thesis (text is on Serbian) - Trajectory Forecasting on scenes with multiple moving objects

Setup

Install argoverse-api from Argoverse API GitHub.

Install packages:

pip3 install -r src/requirements.txt

Configuration

Example of config files can be found in src/configs. Config src/configs/vectornet.yaml gives best results for TNT-Vectornet and src/configs/home.yaml gives best results for HOME.

All training scripts have Tensorboard logging support.

Common Data Preparation

Check config examples in configs directory.

First step for both approaches is HD map vectorization (config section: data_process). Note: Set visualize: True to visualize output.

python3 common_data_processing/script_vectorize_hd_maps.py --cfg [cfg]

Data structure

Path where all data are stored (input data, intermediate data and results) is global_path defined in config yaml file. Relative to that directory path this structure can be found:

dataset/  # Add argoverse raw csv files here
  train/*
    ... csv files
  val/*
  test/*
internal/*  # Generated after running common_data_processing/script_vectorize_hd_maps.py
  train/*
  val/*
  test/*
internal_graph/*  # Generated after running vectornet/script_transform_to_polylines.py
  train/*
  val/*
  test/*

TNT-VectorNet

Original paper can be found here.

Usage

To train TNT-Vectornet it is also required to transform vectorized HD maps (acquired from previous step) into polylines structure (config section: graph/data_process) Note: Set visualize: True to visualize output.

Multiprocessing for this script is currently disabled until fixed. Please use single process (data_process: n_processes: 1).

python3 vectornet/script_transform_to_polylines.py --cfg [cfg]

To train a model run (50 epochs - 4h 45m):

python3 vectornet/script_train_vectornet.py --cfg [cfg]

To evaluate model run (requires trained TNT-Vectornet model):

python3 vectornet/script_evaluate_vectornet.py --cfg [cfg]

Estimated training time is for RTX 3070

Results

vectornet-example

Current results:

  • minADE:
    • custom (val): 1.03
    • original (val): 0.73
    • original (test): 0.91
  • minFDE:
    • custom (val): 1.91
    • original (val): 1.29
    • original (test): 1.45
  • MissRate:
    • custom (val): 0.30
    • original (val): 0.09
    • original (test): 0.22

HOME

Original paper can be found here

Usage

Transformation (rasterization) for HOME model is run during training.

To train HOME: Heatmap Estimation run (12 epochs - 4h 45m):

python3 home/script_train_heatmap.py --cfg [cfg]

To train HOME: Trajectory Forecaster run (30 epochs - 45m):

python3 home/script_train_trajectory_forecaster.py --cfg [cfg]

Estimated training time is for RTX 3070

To evaluate the model run (requires to be trained HOME-Heatmap and HOME-Forecaster model):

python3 home/script_evaluate_home.py --cfg [cfg]

Results

vectornet-example

Current results (optimal MR model):

  • minADE:
    • custom (val): 0.97
    • original (val): -
    • original (test): 0.92
  • minFDE:
    • custom (val): 1.71
    • original (val): 1.28
    • original (test): 1.45
  • MissRate:
    • custom (val): 0.15
    • original (val): 0.07
    • original (test): 0.10

Model Zoo

Best checkpoints for TNT-VectorNet and HOME can be found on google drive.

Citation

@misc{madzemovic_home_tnt-vectornet,
  author = {Adzemovic, Momir},
  title = {Trajectory Forecasting on scenes with multiple moving objects},
  year = {2022},
  publisher = {GitHub, MATF},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/Robotmurlock/TNT-VectorNet-and-HOME-Trajectory-Forecasting}},
}

About

Custom implementation of TNT-VectorNet and HOME architectures

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TeX 61.3%
  • Python 38.7%