-
Notifications
You must be signed in to change notification settings - Fork 65
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add function for converting MPAS meshes to viz triangles
Each pair of adjacent vertices on an MPAS cell is joined to the cell center to create a triangle. Interpolation weights and cell indices are computed so that MPAS fields at cell centers can either be plotted as "flat" to show the individual cell polygons or "gouraud" to smoothly interpolate between values from the closest cell centers.
- Loading branch information
Showing
2 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from mpas_tools.viz.mesh_to_triangles import mesh_to_triangles |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import xarray | ||
import numpy | ||
|
||
|
||
def mesh_to_triangles(dsMesh, periodicCopy=False): | ||
""" | ||
Construct a dataset in which each MPAS cell is divided into the triangles | ||
connecting pairs of adjacent vertices to cell centers. | ||
Parameters | ||
---------- | ||
dsMesh : xarray.Dataset | ||
An MPAS mesh | ||
periodicCopy : bool, optional | ||
Whether to make a periodic copy of triangles that cross -180/180 degrees | ||
longitude. This is helpful when plotting triangles in a lon/lat space. | ||
Returns | ||
------- | ||
dsTris : xarray.Dataset | ||
A dataset that defines triangles connecting pairs of adjacent vertices | ||
to cell centers as well as the cell index that each triangle is in and | ||
cell indices and weights for interpolating data defined at cell centers | ||
to triangle nodes. ``dsTris`` includes variables ``triCellIndices``, | ||
the cell that each triangle is part of; ``nodeCellIndices`` and | ||
``nodeCellWeights``, the indices and weights used to interpolate from | ||
MPAS cell centers to triangle nodes; Cartesian coordinates ``xNode``, | ||
``yNode``, and ``zNode``; and ``lonNode``` and ``latNode`` in radians. | ||
``lonNode`` is guaranteed to be within 180 degrees of the cell center | ||
corresponding to ``triCellIndices``. Nodes always have a | ||
counterclockwise winding. | ||
""" | ||
nVerticesOnCell = dsMesh.nEdgesOnCell.values | ||
verticesOnCell = dsMesh.verticesOnCell.values - 1 | ||
cellsOnVertex = dsMesh.cellsOnVertex.values - 1 | ||
|
||
kiteAreasOnVertex = dsMesh.kiteAreasOnVertex.values | ||
|
||
nTriangles = numpy.sum(nVerticesOnCell) | ||
|
||
maxEdges = dsMesh.sizes['maxEdges'] | ||
nCells = dsMesh.sizes['nCells'] | ||
if dsMesh.sizes['vertexDegree'] != 3: | ||
raise ValueError('mesh_to_triangles only supports meshes with ' | ||
'vertexDegree = 3') | ||
|
||
# find the third vertex for each triangle | ||
nextVertex = -1*numpy.ones(verticesOnCell.shape, int) | ||
for iVertex in range(maxEdges): | ||
valid = iVertex < nVerticesOnCell | ||
invalid = numpy.logical_not(valid) | ||
verticesOnCell[invalid, iVertex] = -1 | ||
nv = nVerticesOnCell[valid] | ||
cellIndices = numpy.arange(0, nCells)[valid] | ||
iNext = numpy.where(iVertex < nv - 1, iVertex + 1, 0) | ||
nextVertex[:, iVertex][valid] = verticesOnCell[cellIndices, iNext] | ||
|
||
valid = verticesOnCell >= 0 | ||
verticesOnCell = verticesOnCell[valid] | ||
nextVertex = nextVertex[valid] | ||
|
||
# find the cell index for each triangle | ||
triCellIndices, _ = numpy.meshgrid(numpy.arange(0, nCells), | ||
numpy.arange(0, maxEdges), | ||
indexing='ij') | ||
triCellIndices = triCellIndices[valid] | ||
|
||
# find list of cells and weights for each triangle node | ||
nodeCellIndices = -1*numpy.ones((nTriangles, 3, 3), int) | ||
nodeCellWeights = numpy.zeros((nTriangles, 3, 3)) | ||
|
||
# the first node is at the cell center, so the value is just the one from | ||
# that cell | ||
nodeCellIndices[:, 0, 0] = triCellIndices | ||
nodeCellWeights[:, 0, 0] = 1. | ||
|
||
# the other 2 nodes are associated with vertices | ||
nodeCellIndices[:, 1, :] = cellsOnVertex[verticesOnCell, :] | ||
nodeCellWeights[:, 1, :] = kiteAreasOnVertex[verticesOnCell, :] | ||
nodeCellIndices[:, 2, :] = cellsOnVertex[nextVertex, :] | ||
nodeCellWeights[:, 2, :] = kiteAreasOnVertex[nextVertex, :] | ||
|
||
weightSum = numpy.sum(nodeCellWeights, axis=2) | ||
for iNode in range(3): | ||
nodeCellWeights[:, :, iNode] = nodeCellWeights[:, :, iNode]/weightSum | ||
|
||
dsTris = xarray.Dataset() | ||
dsTris['triCellIndices'] = ('nTriangles', triCellIndices) | ||
dsTris['nodeCellIndices'] = (('nTriangles', 'nNode', 'nInterp'), | ||
nodeCellIndices) | ||
dsTris['nodeCellWeights'] = (('nTriangles', 'nNode', 'nInterp'), | ||
nodeCellWeights) | ||
|
||
# get Cartesian and lon/lat coordinates of each node | ||
for prefix in ['x', 'y', 'z', 'lat', 'lon']: | ||
outVar = '{}Node'.format(prefix) | ||
cellVar = '{}Cell'.format(prefix) | ||
vertexVar = '{}Vertex'.format(prefix) | ||
coord = numpy.zeros((nTriangles, 3)) | ||
coord[:, 0] = dsMesh[cellVar].values[triCellIndices] | ||
coord[:, 1] = dsMesh[vertexVar].values[verticesOnCell] | ||
coord[:, 2] = dsMesh[vertexVar].values[nextVertex] | ||
dsTris[outVar] = (('nTriangles', 'nNode'), coord) | ||
|
||
# nothing obvious we can do about triangles containing the poles | ||
|
||
# make sure node longitudes are within 180 degrees of the cell center | ||
lonNode = dsTris.lonNode.values | ||
lonCell = lonNode[:, 0] | ||
copyEast = numpy.zeros(lonCell.shape, bool) | ||
copyWest = numpy.zeros(lonCell.shape, bool) | ||
for iNode in [1, 2]: | ||
mask = lonNode[:, iNode] - lonCell > numpy.pi | ||
copyEast = numpy.logical_or(copyEast, mask) | ||
lonNode[:, iNode][mask] = lonNode[:, iNode][mask] - 2*numpy.pi | ||
mask = lonNode[:, iNode] - lonCell < -numpy.pi | ||
copyWest = numpy.logical_or(copyWest, mask) | ||
lonNode[:, iNode][mask] = lonNode[:, iNode][mask] + 2*numpy.pi | ||
if periodicCopy: | ||
dsNew = xarray.Dataset() | ||
eastIndices = numpy.nonzero(copyEast)[0] | ||
westIndices = numpy.nonzero(copyWest)[0] | ||
triIndices = numpy.append(numpy.append(numpy.arange(0, nTriangles), | ||
eastIndices), westIndices) | ||
|
||
dsNew['triCellIndices'] = ('nTriangles', triCellIndices[triIndices]) | ||
dsNew['nodeCellIndices'] = (('nTriangles', 'nNode', 'nInterp'), | ||
nodeCellIndices[triIndices, :, :]) | ||
dsNew['nodeCellWeights'] = (('nTriangles', 'nNode', 'nInterp'), | ||
nodeCellWeights[triIndices, :, :]) | ||
for prefix in ['x', 'y', 'z', 'lat']: | ||
outVar = '{}Node'.format(prefix) | ||
coord = dsTris[outVar].values | ||
dsNew[outVar] = (('nTriangles', 'nNode'), coord[triIndices, :]) | ||
|
||
coord = dsTris['lonNode'].values[triIndices, :] | ||
eastSlice = slice(nTriangles, nTriangles+len(eastIndices)) | ||
coord[eastSlice, :] = coord[eastSlice, :] + 2*numpy.pi | ||
westSlice = slice(nTriangles+len(eastIndices), | ||
nTriangles + len(eastIndices) + len(westIndices)) | ||
coord[westSlice, :] = coord[westSlice, :] - 2 * numpy.pi | ||
dsNew['lonNode'] = (('nTriangles', 'nNode'), coord) | ||
dsTris = dsNew | ||
|
||
return dsTris |