-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_generate_instances.py
796 lines (672 loc) · 29 KB
/
01_generate_instances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
import os
import argparse
import numpy as np
import scipy.sparse
import utilities
from itertools import combinations
class Graph:
"""
Container for a graph.
Parameters
----------
number_of_nodes : int
The number of nodes in the graph.
edges : set of tuples (int, int)
The edges of the graph, where the integers refer to the nodes.
degrees : numpy array of integers
The degrees of the nodes in the graph.
neighbors : dictionary of type {int: set of ints}
The neighbors of each node in the graph.
"""
def __init__(self, number_of_nodes, edges, degrees, neighbors):
self.number_of_nodes = number_of_nodes
self.edges = edges
self.degrees = degrees
self.neighbors = neighbors
def __len__(self):
"""
The number of nodes in the graph.
"""
return self.number_of_nodes
def greedy_clique_partition(self):
"""
Partition the graph into cliques using a greedy algorithm.
Returns
-------
list of sets
The resulting clique partition.
"""
cliques = []
leftover_nodes = (-self.degrees).argsort().tolist()
while leftover_nodes:
clique_center, leftover_nodes = leftover_nodes[0], leftover_nodes[1:]
clique = {clique_center}
neighbors = self.neighbors[clique_center].intersection(leftover_nodes)
densest_neighbors = sorted(neighbors, key=lambda x: -self.degrees[x])
for neighbor in densest_neighbors:
# Can you add it to the clique, and maintain cliqueness?
if all([neighbor in self.neighbors[clique_node] for clique_node in clique]):
clique.add(neighbor)
cliques.append(clique)
leftover_nodes = [node for node in leftover_nodes if node not in clique]
return cliques
@staticmethod
def erdos_renyi(number_of_nodes, edge_probability, random):
"""
Generate an Erdös-Rényi random graph with a given edge probability.
Parameters
----------
number_of_nodes : int
The number of nodes in the graph.
edge_probability : float in [0,1]
The probability of generating each edge.
random : numpy.random.RandomState
A random number generator.
Returns
-------
Graph
The generated graph.
"""
edges = set()
degrees = np.zeros(number_of_nodes, dtype=int)
neighbors = {node: set() for node in range(number_of_nodes)}
for edge in combinations(np.arange(number_of_nodes), 2):
if random.uniform() < edge_probability:
edges.add(edge)
degrees[edge[0]] += 1
degrees[edge[1]] += 1
neighbors[edge[0]].add(edge[1])
neighbors[edge[1]].add(edge[0])
graph = Graph(number_of_nodes, edges, degrees, neighbors)
return graph
@staticmethod
def barabasi_albert(number_of_nodes, affinity, random):
"""
Generate a Barabási-Albert random graph with a given edge probability.
Parameters
----------
number_of_nodes : int
The number of nodes in the graph.
affinity : integer >= 1
The number of nodes each new node will be attached to, in the sampling scheme.
random : numpy.random.RandomState
A random number generator.
Returns
-------
Graph
The generated graph.
"""
assert affinity >= 1 and affinity < number_of_nodes
edges = set()
degrees = np.zeros(number_of_nodes, dtype=int)
neighbors = {node: set() for node in range(number_of_nodes)}
for new_node in range(affinity, number_of_nodes):
# first node is connected to all previous ones (star-shape)
if new_node == affinity:
neighborhood = np.arange(new_node)
# remaining nodes are picked stochastically
else:
neighbor_prob = degrees[:new_node] / (2*len(edges))
neighborhood = random.choice(new_node, affinity, replace=False, p=neighbor_prob)
for node in neighborhood:
edges.add((node, new_node))
degrees[node] += 1
degrees[new_node] += 1
neighbors[node].add(new_node)
neighbors[new_node].add(node)
graph = Graph(number_of_nodes, edges, degrees, neighbors)
return graph
def generate_indset(graph, filename):
"""
Generate a Maximum Independent Set (also known as Maximum Stable Set) instance
in CPLEX LP format from a previously generated graph.
Parameters
----------
graph : Graph
The graph from which to build the independent set problem.
filename : str
Path to the file to save.
"""
cliques = graph.greedy_clique_partition()
inequalities = set(graph.edges)
for clique in cliques:
clique = tuple(sorted(clique))
for edge in combinations(clique, 2):
inequalities.remove(edge)
if len(clique) > 1:
inequalities.add(clique)
# Put trivial inequalities for nodes that didn't appear
# in the constraints, otherwise SCIP will complain
used_nodes = set()
for group in inequalities:
used_nodes.update(group)
for node in range(10):
if node not in used_nodes:
inequalities.add((node,))
with open(filename, 'w') as lp_file:
lp_file.write("maximize\nOBJ:" + "".join([f" + 1 x{node+1}" for node in range(len(graph))]) + "\n")
lp_file.write("\nsubject to\n")
for count, group in enumerate(inequalities):
lp_file.write(f"C{count+1}:" + "".join([f" + x{node+1}" for node in sorted(group)]) + " <= 1\n")
lp_file.write("\nbinary\n" + " ".join([f"x{node+1}" for node in range(len(graph))]) + "\n")
def generate_setcover(nrows, ncols, density, filename, rng, max_coef=100):
"""
Generates a setcover instance with specified characteristics, and writes
it to a file in the LP format.
Approach described in:
E.Balas and A.Ho, Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: A computational study, Mathematical
Programming, 12 (1980), 37-60.
Parameters
----------
nrows : int
Desired number of rows
ncols : int
Desired number of columns
density: float between 0 (excluded) and 1 (included)
Desired density of the constraint matrix
filename: str
File to which the LP will be written
rng: numpy.random.RandomState
Random number generator
max_coef: int
Maximum objective coefficient (>=1)
"""
nnzrs = int(nrows * ncols * density)
assert nnzrs >= nrows # at least 1 col per row
assert nnzrs >= 2 * ncols # at leats 2 rows per col
# compute number of rows per column
indices = rng.choice(ncols, size=nnzrs) # random column indexes
indices[:2 * ncols] = np.repeat(np.arange(ncols), 2) # force at leats 2 rows per col
_, col_nrows = np.unique(indices, return_counts=True)
# for each column, sample random rows
indices[:nrows] = rng.permutation(nrows) # force at least 1 column per row
i = 0
indptr = [0]
for n in col_nrows:
# empty column, fill with random rows
if i >= nrows:
indices[i:i+n] = rng.choice(nrows, size=n, replace=False)
# partially filled column, complete with random rows among remaining ones
elif i + n > nrows:
remaining_rows = np.setdiff1d(np.arange(nrows), indices[i:nrows], assume_unique=True)
indices[nrows:i+n] = rng.choice(remaining_rows, size=i+n-nrows, replace=False)
i += n
indptr.append(i)
# objective coefficients
c = rng.randint(max_coef, size=ncols) + 1
# sparce CSC to sparse CSR matrix
A = scipy.sparse.csc_matrix(
(np.ones(len(indices), dtype=int), indices, indptr),
shape=(nrows, ncols)).tocsr()
indices = A.indices
indptr = A.indptr
# write problem
with open(filename, 'w') as file:
file.write("minimize\nOBJ:")
file.write("".join([f" +{c[j]} x{j+1}" for j in range(ncols)]))
file.write("\n\nsubject to\n")
for i in range(nrows):
row_cols_str = "".join([f" +1 x{j+1}" for j in indices[indptr[i]:indptr[i+1]]])
file.write(f"C{i}:" + row_cols_str + f" >= 1\n")
file.write("\nbinary\n")
file.write("".join([f" x{j+1}" for j in range(ncols)]))
def generate_cauctions(random, filename, n_items=100, n_bids=500, min_value=1, max_value=100,
value_deviation=0.5, add_item_prob=0.9, max_n_sub_bids=5,
additivity=0.2, budget_factor=1.5, resale_factor=0.5,
integers=False, warnings=False):
"""
Generate a Combinatorial Auction problem following the 'arbitrary' scheme found in section 4.3. of
Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. (2000).
Towards a universal test suite for combinatorial auction algorithms.
Proceedings of ACM Conference on Electronic Commerce (EC-00) 66-76.
Saves it as a CPLEX LP file.
Parameters
----------
random : numpy.random.RandomState
A random number generator.
filename : str
Path to the file to save.
n_items : int
The number of items.
n_bids : int
The number of bids.
min_value : int
The minimum resale value for an item.
max_value : int
The maximum resale value for an item.
value_deviation : int
The deviation allowed for each bidder's private value of an item, relative from max_value.
add_item_prob : float in [0, 1]
The probability of adding a new item to an existing bundle.
max_n_sub_bids : int
The maximum number of substitutable bids per bidder (+1 gives the maximum number of bids per bidder).
additivity : float
Additivity parameter for bundle prices. Note that additivity < 0 gives sub-additive bids, while additivity > 0 gives super-additive bids.
budget_factor : float
The budget factor for each bidder, relative to their initial bid's price.
resale_factor : float
The resale factor for each bidder, relative to their initial bid's resale value.
integers : logical
Should bid's prices be integral ?
warnings : logical
Should warnings be printed ?
"""
assert min_value >= 0 and max_value >= min_value
assert add_item_prob >= 0 and add_item_prob <= 1
def choose_next_item(bundle_mask, interests, compats, add_item_prob, random):
n_items = len(interests)
prob = (1 - bundle_mask) * interests * compats[bundle_mask, :].mean(axis=0)
prob /= prob.sum()
return random.choice(n_items, p=prob)
# common item values (resale price)
values = min_value + (max_value - min_value) * random.rand(n_items)
# item compatibilities
compats = np.triu(random.rand(n_items, n_items), k=1)
compats = compats + compats.transpose()
compats = compats / compats.sum(1)
bids = []
n_dummy_items = 0
# create bids, one bidder at a time
while len(bids) < n_bids:
# bidder item values (buy price) and interests
private_interests = random.rand(n_items)
private_values = values + max_value * value_deviation * (2 * private_interests - 1)
# substitutable bids of this bidder
bidder_bids = {}
# generate initial bundle, choose first item according to bidder interests
prob = private_interests / private_interests.sum()
item = random.choice(n_items, p=prob)
bundle_mask = np.full(n_items, 0)
bundle_mask[item] = 1
# add additional items, according to bidder interests and item compatibilities
while random.rand() < add_item_prob:
# stop when bundle full (no item left)
if bundle_mask.sum() == n_items:
break
item = choose_next_item(bundle_mask, private_interests, compats, add_item_prob, random)
bundle_mask[item] = 1
bundle = np.nonzero(bundle_mask)[0]
# compute bundle price with value additivity
price = private_values[bundle].sum() + np.power(len(bundle), 1 + additivity)
if integers:
price = int(price)
# drop negativaly priced bundles
if price < 0:
if warnings:
print("warning: negatively priced bundle avoided")
continue
# bid on initial bundle
bidder_bids[frozenset(bundle)] = price
# generate candidates substitutable bundles
sub_candidates = []
for item in bundle:
# at least one item must be shared with initial bundle
bundle_mask = np.full(n_items, 0)
bundle_mask[item] = 1
# add additional items, according to bidder interests and item compatibilities
while bundle_mask.sum() < len(bundle):
item = choose_next_item(bundle_mask, private_interests, compats, add_item_prob, random)
bundle_mask[item] = 1
sub_bundle = np.nonzero(bundle_mask)[0]
# compute bundle price with value additivity
sub_price = private_values[sub_bundle].sum() + np.power(len(sub_bundle), 1 + additivity)
if integers:
sub_price = int(sub_price)
sub_candidates.append((sub_bundle, sub_price))
# filter valid candidates, higher priced candidates first
budget = budget_factor * price
min_resale_value = resale_factor * values[bundle].sum()
for bundle, price in [
sub_candidates[i] for i in np.argsort([-price for bundle, price in sub_candidates])]:
if len(bidder_bids) >= max_n_sub_bids + 1 or len(bids) + len(bidder_bids) >= n_bids:
break
if price < 0:
if warnings:
print("warning: negatively priced substitutable bundle avoided")
continue
if price > budget:
if warnings:
print("warning: over priced substitutable bundle avoided")
continue
if values[bundle].sum() < min_resale_value:
if warnings:
print("warning: substitutable bundle below min resale value avoided")
continue
if frozenset(bundle) in bidder_bids:
if warnings:
print("warning: duplicated substitutable bundle avoided")
continue
bidder_bids[frozenset(bundle)] = price
# add XOR constraint if needed (dummy item)
if len(bidder_bids) > 2:
dummy_item = [n_items + n_dummy_items]
n_dummy_items += 1
else:
dummy_item = []
# place bids
for bundle, price in bidder_bids.items():
bids.append((list(bundle) + dummy_item, price))
# generate the LP file
with open(filename, 'w') as file:
bids_per_item = [[] for item in range(n_items + n_dummy_items)]
file.write("maximize\nOBJ:")
for i, bid in enumerate(bids):
bundle, price = bid
file.write(f" +{price} x{i+1}")
for item in bundle:
bids_per_item[item].append(i)
file.write("\n\nsubject to\n")
for item_bids in bids_per_item:
if item_bids:
for i in item_bids:
file.write(f" +1 x{i+1}")
file.write(f" <= 1\n")
file.write("\nbinary\n")
for i in range(len(bids)):
file.write(f" x{i+1}")
def generate_capacited_facility_location(random, filename, n_customers, n_facilities, ratio):
"""
Generate a Capacited Facility Location problem following
Cornuejols G, Sridharan R, Thizy J-M (1991)
A Comparison of Heuristics and Relaxations for the Capacitated Plant Location Problem.
European Journal of Operations Research 50:280-297.
Saves it as a CPLEX LP file.
Parameters
----------
random : numpy.random.RandomState
A random number generator.
filename : str
Path to the file to save.
n_customers: int
The desired number of customers.
n_facilities: int
The desired number of facilities.
ratio: float
The desired capacity / demand ratio.
"""
c_x = rng.rand(n_customers)
c_y = rng.rand(n_customers)
f_x = rng.rand(n_facilities)
f_y = rng.rand(n_facilities)
demands = rng.randint(5, 35+1, size=n_customers)
capacities = rng.randint(10, 160+1, size=n_facilities)
fixed_costs = rng.randint(100, 110+1, size=n_facilities) * np.sqrt(capacities) \
+ rng.randint(90+1, size=n_facilities)
fixed_costs = fixed_costs.astype(int)
total_demand = demands.sum()
total_capacity = capacities.sum()
# adjust capacities according to ratio
capacities = capacities * ratio * total_demand / total_capacity
capacities = capacities.astype(int)
total_capacity = capacities.sum()
# transportation costs
trans_costs = np.sqrt(
(c_x.reshape((-1, 1)) - f_x.reshape((1, -1))) ** 2 \
+ (c_y.reshape((-1, 1)) - f_y.reshape((1, -1))) ** 2) * 10 * demands.reshape((-1, 1))
# write problem
with open(filename, 'w') as file:
file.write("minimize\nobj:")
file.write("".join([f" +{trans_costs[i, j]} x_{i+1}_{j+1}" for i in range(n_customers) for j in range(n_facilities)]))
file.write("".join([f" +{fixed_costs[j]} y_{j+1}" for j in range(n_facilities)]))
file.write("\n\nsubject to\n")
for i in range(n_customers):
file.write(f"demand_{i+1}:" + "".join([f" -1 x_{i+1}_{j+1}" for j in range(n_facilities)]) + f" <= -1\n")
for j in range(n_facilities):
file.write(f"capacity_{j+1}:" + "".join([f" +{demands[i]} x_{i+1}_{j+1}" for i in range(n_customers)]) + f" -{capacities[j]} y_{j+1} <= 0\n")
# optional constraints for LP relaxation tightening
file.write("total_capacity:" + "".join([f" -{capacities[j]} y_{j+1}" for j in range(n_facilities)]) + f" <= -{total_demand}\n")
for i in range(n_customers):
for j in range(n_facilities):
file.write(f"affectation_{i+1}_{j+1}: +1 x_{i+1}_{j+1} -1 y_{j+1} <= 0")
file.write("\nbounds\n")
for i in range(n_customers):
for j in range(n_facilities):
file.write(f"0 <= x_{i+1}_{j+1} <= 1\n")
file.write("\nbinary\n")
file.write("".join([f" y_{j+1}" for j in range(n_facilities)]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'problem',
help='MILP instance type to process.',
choices=['setcover', 'cauctions', 'facilities', 'indset'],
)
parser.add_argument(
'-s', '--seed',
help='Random generator seed (default 0).',
type=utilities.valid_seed,
default=0,
)
args = parser.parse_args()
rng = np.random.RandomState(args.seed)
if args.problem == 'setcover':
nrows = 500
ncols = 1000
dens = 0.05
max_coef = 100
filenames = []
nrowss = []
ncolss = []
denss = []
# train instances
n = 10
lp_dir = f'data/instances/setcover/train_{nrows}r_{ncols}c_{dens}d'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nrowss.extend([nrows] * n)
ncolss.extend([ncols] * n)
denss.extend([dens] * n)
# validation instances
n = 4
lp_dir = f'data/instances/setcover/valid_{nrows}r_{ncols}c_{dens}d'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nrowss.extend([nrows] * n)
ncolss.extend([ncols] * n)
denss.extend([dens] * n)
# small transfer instances
n = 80
nrows = 500
lp_dir = f'data/instances/setcover/transfer_{nrows}r_{ncols}c_{dens}d'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nrowss.extend([nrows] * n)
ncolss.extend([ncols] * n)
denss.extend([dens] * n)
# medium transfer instances
n = 80
nrows = 1000
lp_dir = f'data/instances/setcover/transfer_{nrows}r_{ncols}c_{dens}d'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nrowss.extend([nrows] * n)
ncolss.extend([ncols] * n)
denss.extend([dens] * n)
# big transfer instances
n = 80
nrows = 2000
lp_dir = f'data/instances/setcover/transfer_{nrows}r_{ncols}c_{dens}d'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nrowss.extend([nrows] * n)
ncolss.extend([ncols] * n)
denss.extend([dens] * n)
# actually generate the instances
for filename, nrows, ncols, dens in zip(filenames, nrowss, ncolss, denss):
print(f' generating file {filename} ...')
generate_setcover(nrows=nrows, ncols=ncols, density=dens, filename=filename, rng=rng, max_coef=max_coef)
print('done.')
elif args.problem == 'indset':
number_of_nodes = 750
affinity = 4
filenames = []
nnodess = []
# train instances
n = 10
lp_dir = f'data/instances/indset/train_{number_of_nodes}_{affinity}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nnodess.extend([number_of_nodes] * n)
# validation instances
n = 4
lp_dir = f'data/instances/indset/valid_{number_of_nodes}_{affinity}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nnodess.extend([number_of_nodes] * n)
# small transfer instances
n = 80
number_of_nodes = 750
lp_dir = f'data/instances/indset/transfer_{number_of_nodes}_{affinity}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nnodess.extend([number_of_nodes] * n)
# medium transfer instances
n = 80
number_of_nodes = 1000
lp_dir = f'data/instances/indset/transfer_{number_of_nodes}_{affinity}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nnodess.extend([number_of_nodes] * n)
# big transfer instances
n = 80
number_of_nodes = 1500
lp_dir = f'data/instances/indset/transfer_{number_of_nodes}_{affinity}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nnodess.extend([number_of_nodes] * n)
# actually generate the instances
for filename, nnodes in zip(filenames, nnodess):
print(f" generating file {filename} ...")
graph = Graph.barabasi_albert(nnodes, affinity, rng)
generate_indset(graph, filename)
print("done.")
elif args.problem == 'cauctions':
number_of_items = 100
number_of_bids = 500
filenames = []
nitemss = []
nbidss = []
# train instances
n = 10
lp_dir = f'data/instances/cauctions/train_{number_of_items}_{number_of_bids}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nitemss.extend([number_of_items] * n)
nbidss.extend([number_of_bids ] * n)
# validation instances
n = 4
lp_dir = f'data/instances/cauctions/valid_{number_of_items}_{number_of_bids}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nitemss.extend([number_of_items] * n)
nbidss.extend([number_of_bids ] * n)
# small transfer instances
n = 80
number_of_items = 100
number_of_bids = 500
lp_dir = f'data/instances/cauctions/transfer_{number_of_items}_{number_of_bids}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nitemss.extend([number_of_items] * n)
nbidss.extend([number_of_bids ] * n)
# medium transfer instances
n = 80
number_of_items = 200
number_of_bids = 1000
lp_dir = f'data/instances/cauctions/transfer_{number_of_items}_{number_of_bids}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nitemss.extend([number_of_items] * n)
nbidss.extend([number_of_bids ] * n)
# big transfer instances
n = 80
number_of_items = 300
number_of_bids = 1500
lp_dir = f'data/instances/cauctions/transfer_{number_of_items}_{number_of_bids}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
nitemss.extend([number_of_items] * n)
nbidss.extend([number_of_bids ] * n)
# actually generate the instances
for filename, nitems, nbids in zip(filenames, nitemss, nbidss):
print(f" generating file {filename} ...")
generate_cauctions(rng, filename, n_items=nitems, n_bids=nbids, add_item_prob=0.7)
print("done.")
elif args.problem == 'facilities':
number_of_customers = 100
number_of_facilities = 100
ratio = 5
filenames = []
ncustomerss = []
nfacilitiess = []
ratios = []
# train instances
n = 10
lp_dir = f'data/instances/facilities/train_{number_of_customers}_{number_of_facilities}_{ratio}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
ncustomerss.extend([number_of_customers] * n)
nfacilitiess.extend([number_of_facilities] * n)
ratios.extend([ratio] * n)
# validation instances
n = 4
lp_dir = f'data/instances/facilities/valid_{number_of_customers}_{number_of_facilities}_{ratio}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
ncustomerss.extend([number_of_customers] * n)
nfacilitiess.extend([number_of_facilities] * n)
ratios.extend([ratio] * n)
# small transfer instances
n = 80
number_of_customers = 100
number_of_facilities = 100
lp_dir = f'data/instances/facilities/transfer_{number_of_customers}_{number_of_facilities}_{ratio}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
ncustomerss.extend([number_of_customers] * n)
nfacilitiess.extend([number_of_facilities] * n)
ratios.extend([ratio] * n)
# medium transfer instances
n = 80
number_of_customers = 200
lp_dir = f'data/instances/facilities/transfer_{number_of_customers}_{number_of_facilities}_{ratio}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
ncustomerss.extend([number_of_customers] * n)
nfacilitiess.extend([number_of_facilities] * n)
ratios.extend([ratio] * n)
# big transfer instances
n = 80
number_of_customers = 400
lp_dir = f'data/instances/facilities/transfer_{number_of_customers}_{number_of_facilities}_{ratio}'
print(f"{n} instances in {lp_dir}")
os.makedirs(lp_dir)
filenames.extend([os.path.join(lp_dir, f'instance_{i+1}.lp') for i in range(n)])
ncustomerss.extend([number_of_customers] * n)
nfacilitiess.extend([number_of_facilities] * n)
ratios.extend([ratio] * n)
# actually generate the instances
for filename, ncs, nfs, r in zip(filenames, ncustomerss, nfacilitiess, ratios):
print(f" generating file {filename} ...")
generate_capacited_facility_location(rng, filename, n_customers=ncs, n_facilities=nfs, ratio=r)
print("done.")