forked from Qidian213/deep_sort_yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
172 lines (144 loc) · 6.13 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import os
import datetime
from timeit import time
import warnings
import cv2
import numpy as np
import argparse
from PIL import Image
from yolo import YOLO
from deep_sort import preprocessing
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from deep_sort.detection import Detection as ddet
from collections import deque
from keras import backend
backend.clear_session()
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input",help="path to input video", default = "./test_video/test.avi")
ap.add_argument("-c", "--class",help="name of class", default = "person")
args = vars(ap.parse_args())
pts = [deque(maxlen=30) for _ in range(9999)]
warnings.filterwarnings('ignore')
# initialize a list of colors to represent each possible class label
np.random.seed(100)
COLORS = np.random.randint(0, 255, size=(200, 3),
dtype="uint8")
def main(yolo):
start = time.time()
#Definition of the parameters
max_cosine_distance = 0.5 #余弦距离的控制阈值
nn_budget = None
nms_max_overlap = 0.3 #非极大抑制的阈值
counter = []
#deep_sort
model_filename = 'model_data/market1501.pb'
encoder = gdet.create_box_encoder(model_filename,batch_size=1)
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
tracker = Tracker(metric)
writeVideo_flag = True
#video_path = "./output/output.avi"
video_capture = cv2.VideoCapture(args["input"])
if writeVideo_flag:
# Define the codec and create VideoWriter object
w = int(video_capture.get(3))
h = int(video_capture.get(4))
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter('./output/'+args["input"][43:57]+ "_" + args["class"] + '_output.avi', fourcc, 15, (w, h))
list_file = open('detection.txt', 'w')
frame_index = -1
fps = 0.0
while True:
ret, frame = video_capture.read() # frame shape 640*480*3
if ret != True:
break
t1 = time.time()
# image = Image.fromarray(frame)
image = Image.fromarray(frame[...,::-1]) #bgr to rgb
boxs,class_names = yolo.detect_image(image)
features = encoder(frame,boxs)
# score to 1.0 here).
detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)]
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
i = int(0)
indexIDs = []
c = []
boxes = []
for det in detections:
bbox = det.to_tlbr()
cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
#boxes.append([track[0], track[1], track[2], track[3]])
indexIDs.append(int(track.track_id))
counter.append(int(track.track_id))
bbox = track.to_tlbr()
color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(color), 3)
cv2.putText(frame,str(track.track_id),(int(bbox[0]), int(bbox[1] -50)),0, 5e-3 * 150, (color),2)
if len(class_names) > 0:
class_name = class_names[0]
cv2.putText(frame, str(class_names[0]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (color),2)
i += 1
#bbox_center_point(x,y)
center = (int(((bbox[0])+(bbox[2]))/2),int(((bbox[1])+(bbox[3]))/2))
#track_id[center]
pts[track.track_id].append(center)
thickness = 5
#center point
cv2.circle(frame, (center), 1, color, thickness)
#draw motion path
for j in range(1, len(pts[track.track_id])):
if pts[track.track_id][j - 1] is None or pts[track.track_id][j] is None:
continue
thickness = int(np.sqrt(64 / float(j + 1)) * 2)
cv2.line(frame,(pts[track.track_id][j-1]), (pts[track.track_id][j]),(color),thickness)
#cv2.putText(frame, str(class_names[j]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (255,255,255),2)
count = len(set(counter))
cv2.putText(frame, "Total Object Counter: "+str(count),(int(20), int(120)),0, 5e-3 * 200, (0,255,0),2)
cv2.putText(frame, "Current Object Counter: "+str(i),(int(20), int(80)),0, 5e-3 * 200, (0,255,0),2)
cv2.putText(frame, "FPS: %f"%(fps),(int(20), int(40)),0, 5e-3 * 200, (0,255,0),3)
cv2.namedWindow("YOLO3_Deep_SORT", 0);
cv2.resizeWindow('YOLO3_Deep_SORT', 1024, 768);
cv2.imshow('YOLO3_Deep_SORT', frame)
if writeVideo_flag:
#save a frame
out.write(frame)
frame_index = frame_index + 1
list_file.write(str(frame_index)+' ')
if len(boxs) != 0:
for i in range(0,len(boxs)):
list_file.write(str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ')
list_file.write('\n')
fps = ( fps + (1./(time.time()-t1)) ) / 2
#print(set(counter))
# Press Q to stop!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print(" ")
print("[Finish]")
end = time.time()
if len(pts[track.track_id]) != None:
print(args["input"][43:57]+": "+ str(count) + " " + str(class_name) +' Found')
else:
print("[No Found]")
video_capture.release()
if writeVideo_flag:
out.release()
list_file.close()
cv2.destroyAllWindows()
if __name__ == '__main__':
main(YOLO())