-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClarifai_Tagging.py
233 lines (189 loc) · 9.33 KB
/
Clarifai_Tagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Clarifai Tagging
Tag images with Clarifai API. (installed via 'pip install clarifai-grpc').
Images are tagged according to 14 selected categories stored in the file 'Data/Categories.txt'.
At the end of execution csv files with tags information are saved in './Data/Clarifai' folder.
To execute respectively on training, test or synthetic data, please uncomment the corresponding data path and insert
Clarifai key at line 144.
NB: Clarifai API allow a maximum of 1000 calls for month.
Produced annotations have been manually joined.
"""
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
import pandas as pd
import os
import json
from Utils import load_data
# _______________________________________Tag Training Data ___________________________________________
json_path = "./Data/Clarifai/image_data_train.json"
csv_path = './Data/training.xls'
image_path = './Data/TRAINING'
csv_out_path = 'Data/Clarifai/clarifai_train.csv'
# _______________________________________Tag Test Data ___________________________________________
"""
json_path = "./Data/Clarifai/image_data_test.json"
test_csv_path = './Data/test.xls'
image_path = './Data/TEST'
csv_out_path='Data/Clarifai/clarifai_test.csv'
"""
# _______________________________________Tag Synthetic Data ___________________________________________
"""
json_path = "./Data/Clarifai/image_data_syn.json"
csv_path = './Data/synthetic.csv'
image_path = './Data/SYNTHETIC'
csv_out_path='Data/Clarifai/clarifai_syn.csv'
"""
if not os.path.exists('./Data/Clarifai'):
os.makedirs('./Data/Clarifai')
# ___________________________________________Utils_____________________________________________________
def get_labels(file_bytes):
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
model_id='aaa03c23b3724a16a56b629203edc62c',
#version_id="{THE_MODEL_VERSION_ID}", # This is optional. Defaults to the latest model version.
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(
base64=file_bytes
)
)
)
],
model=resources_pb2.Model(
output_info=resources_pb2.OutputInfo(
output_config=resources_pb2.OutputConfig(
select_concepts=[
# When selecting concepts, value is ignored, so no need to specify it.
resources_pb2.Concept(name="animal"),
resources_pb2.Concept(name="broom"),
resources_pb2.Concept(name="car"),
resources_pb2.Concept(name="illustration"), #cartoon
resources_pb2.Concept(name="cat"),
resources_pb2.Concept(name="child"),
resources_pb2.Concept(name="dishware"), #crockery
resources_pb2.Concept(name="glass"), #crockery
resources_pb2.Concept(name="flatware"), #crockery
resources_pb2.Concept(name="dishwasher"),
resources_pb2.Concept(name="dog"),
resources_pb2.Concept(name="kitchenware"),#kitchenUtensil
resources_pb2.Concept(name="cookware"),#kitchenUtensil
resources_pb2.Concept(name="oven"), #kitchen
resources_pb2.Concept(name="stove"), #kitchen
resources_pb2.Concept(name="refrigerator"), #kitchen
resources_pb2.Concept(name="cabinet"), #kitchen
resources_pb2.Concept(name="man"),
resources_pb2.Concept(name="nude"),#nudity
resources_pb2.Concept(name="topless"),#nudity
resources_pb2.Concept(name="nudist"),#nudity
resources_pb2.Concept(name="bikini"),#nudity
resources_pb2.Concept(name="woman"),
]
)
)
)
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response)
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]
return output
def category_mapping(output):
results = dict((str.lower(el),0) for el in image_categories)
for concept in output.data.concepts:
for categoria in image_categories:
if concept.name == str.lower(categoria):
results[concept.name]= concept.value
elif concept.name == 'illustration':
results['cartoon']=concept.value
elif concept.name in ['dishware', 'glass', 'flatware'] and concept.value > results['crockery']:
results['crockery']=concept.value
elif concept.name in ['oven','stove', 'refrigerator', 'cabinet'] and concept.value > results['kitchen']:
results['kitchen']=concept.value
elif concept.name in ['nude','topless', 'nudist', 'bikini'] and concept.value > results['nudity']:
results['nudity']=concept.value
elif concept.name in ['kitchenware','cookware'] and concept.value > results['kitchenutensil']:
results['kitchenutensil']=concept.value
return results
def save_data(json_path, *runs):
with open(json_path, "a") as f:
json.dump(list(runs)[0], f)
f.write('\n')
# ___________________________________________CLARIFAI_____________________________________________________
# For every image in the dataframe get image categories.
# it creates a temporary dictionary with image data and labels.
# Set a threshold to select image tags, then write dictionary to csv.
channel = ClarifaiChannel.get_json_channel()
stub = service_pb2_grpc.V2Stub(ClarifaiChannel.get_json_channel()) # the HTTPS+JSON channel
metadata = (('authorization', 'INSERT Key '),)
get_model_response = stub.GetModelOutputInfo(
service_pb2.GetModelRequest(model_id="aaa03c23b3724a16a56b629203edc62c"),
metadata=metadata
)
if get_model_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Get model failed, status: " + get_model_response.status.description)
model = get_model_response.model
# _______________________________________________LOAD DATA________________________________________
image_categories = load_data.read_identity_tags()
image_df = pd.read_excel(csv_path, usecols=['file_name'])
path = image_path + '/'
image_df['image_path'] = path + image_df['file_name']
# _______________________________________________Image Prediction_________________________________________________
"""
Clarifai key allows 1,000 free operations monthly.
The following line of code allow to restore the annotations process by inserting the number of already annotated meme.
image_df = image_df[1000:]
"""
"""
Save percentages of confidence for every tag in a json file.
Stops after the firsts 1000 images because of Clarifai limitations
"""
for index, row in image_df[:1000].iterrows():
image_data = {'id': image_df.loc[index, 'file_name'],
'url': image_df.loc[index, 'image_path'],
'label': []}
# get image labels
with open(image_df.loc[index, 'image_path'], "rb") as f:
file_bytes = f.read()
try:
output = get_labels(file_bytes)
results = category_mapping(output)
except:
print('Amount of Clarifai monthly calls reached')
break
category_dic = dict((el, 0) for el in results)
for categoria in results:
category_dic[categoria] = results[categoria]
image_data['label'].append(str(category_dic))
# save to JSON
save_data(json_path, image_data)
# _______________________________________________Json to csv_________________________________________________
clarifai = pd.read_json(json_path, lines=True)
# save results on CSV
csv = clarifai['id'].to_frame()
csv['clarifai'] = None
rowsC = clarifai.shape[0]
soglia = 0.85
for i in range(rowsC):
clarifai_ID = clarifai['id'][i]
clarifai_labels_dic = json.loads(clarifai['label'][i][0].replace("\'", "\""))
clarifai_labels = []
for x in clarifai_labels_dic.keys():
if clarifai_labels_dic[x] > soglia:
clarifai_labels.append(x)
soglia2 = soglia
while (not clarifai_labels):
for x in clarifai_labels_dic.keys():
if clarifai_labels_dic[x]>soglia2:
clarifai_labels.append(x)
soglia2=soglia2-0.1
if clarifai_labels is None:
clarifai_labels = []
if clarifai_labels:
clarifai_labels = [x.lower() for x in clarifai_labels]
csv.loc[csv['id'] == clarifai_ID, 'clarifai'] = str(clarifai_labels)
csv.to_csv(csv_out_path, index=False)