forked from davidsvy/transformer-xl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidi_parser.py
288 lines (206 loc) · 9.76 KB
/
midi_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import tensorflow as tf
import numpy as np
import mido
import re
import os
import joblib
import glob
import tqdm
import pathlib
from collections import Counter
__all__ = ('MIDI_parser')
class MIDI_parser():
def __init__(self, tempo, ppq, numerator, denominator, clocks_per_click, notated_32nd_notes_per_beat,
cc_kept, cc_threshold, cc_lower, cc_upper, n_notes, n_deltas, vel_value, idx_to_time, n_jobs):
self.tempo = tempo
self.ppq = ppq
self.numerator = numerator
self.denominator = denominator
self.clocks_per_click = clocks_per_click
self.notated_32nd_notes_per_beat = notated_32nd_notes_per_beat
self.cc_kept = cc_kept
self.cc_threshold = cc_threshold
self.cc_lower = cc_lower
self.cc_upper = cc_upper
self.vel_value = vel_value
assert n_notes <= 128
assert 128 % n_notes == 0
self.note_ratio = 128 // n_notes
self.n_notes = n_notes
self.n_cc = 2 * len(self.cc_kept)
self.n_sounds = 2 * self.n_notes + self.n_cc + 1
self.n_deltas = n_deltas
self.pad_idx = 0
self.n_jobs = n_jobs
assert self.n_deltas - 1 == len(idx_to_time)
assert idx_to_time[0] == 0
assert np.sum(idx_to_time == 0) == 1
self.idx_to_time = idx_to_time
self.closest_neighbors = [
(a + b) / 2 for a, b in zip(idx_to_time[1:-1], idx_to_time[2:])]
self.note_on_offset = 1
self.note_off_offset = self.note_on_offset + self.n_notes
self.cc_offset = self.note_off_offset + self.n_notes
def secs_to_ticks(self, secs):
return int(round(1e6 * self.ppq / self.tempo * secs))
def save_features(self, features, filename):
sounds, deltas = features
np.savez(filename, sounds=sounds, deltas=deltas)
def load_features(self, filename):
container = np.load(filename)
sounds = container['sounds']
deltas = container['deltas']
return sounds, deltas
def midi_to_features(self, src_file):
midi = mido.MidiFile(src_file)
sounds = []
deltas = []
for msg in midi:
if msg.time == 0:
time = 1
else:
time = 2 + np.digitize(msg.time, self.closest_neighbors)
# note on
if msg.type == 'note_on' and msg.velocity > 0:
note_on = msg.note
note_on = note_on // self.note_ratio
note_on += self.note_on_offset
sounds.append(note_on)
deltas.append(time)
# note_off
elif msg.type == 'note_off' or (msg.type == 'note_on' and msg.velocity == 0):
note_off = msg.note
note_off = note_off // self.note_ratio
note_off += self.note_off_offset
sounds.append(note_off)
deltas.append(time)
# control_change
elif msg.type == 'control_change' and msg.control in self.cc_kept:
control_idx = self.cc_kept.index(msg.control)
value = msg.value >= self.cc_threshold
cc = control_idx * 2 + value
cc += self.cc_offset
sounds.append(cc)
deltas.append(time)
assert len(sounds) == len(deltas)
sounds = np.array(sounds).astype(np.uint16)
deltas = np.array(deltas).astype(np.uint8)
return (sounds, deltas)
def features_to_midi(self, sounds, deltas):
assert len(sounds) == len(deltas)
track = mido.MidiTrack()
tempo = mido.MetaMessage('set_tempo', tempo=self.tempo, time=0)
time_signature = mido.MetaMessage('time_signature', numerator=self.numerator, denominator=self.denominator,
clocks_per_click=self.clocks_per_click,
notated_32nd_notes_per_beat=self.notated_32nd_notes_per_beat, time=0)
track.append(tempo)
track.append(time_signature)
mask = sounds != self.pad_idx
sounds = sounds[mask]
deltas = deltas[mask]
for sound, delta in zip(sounds, deltas):
delta_idx = delta - 1
secs = self.idx_to_time[delta_idx]
ticks = self.secs_to_ticks(secs)
# note_on
if sound < self.note_off_offset and sound >= self.note_on_offset:
note = sound - self.note_on_offset
note *= self.note_ratio
msg = mido.Message('note_on', channel=0, note=note,
velocity=self.vel_value, time=ticks)
track.append(msg)
# note_off
elif sound < self.cc_offset:
note = sound - self.note_off_offset
note *= self.note_ratio
msg = mido.Message('note_on', channel=0,
note=note, velocity=0, time=ticks)
track.append(msg)
# control_change
elif sound <= self.n_sounds:
cc_idx = sound - self.cc_offset
cc_control = self.cc_kept[cc_idx // 2]
cc_value = self.cc_upper if cc_idx % 2 else self.cc_lower
msg = mido.Message('control_change', channel=0,
control=cc_control, value=cc_value, time=ticks)
track.append(msg)
end_of_track = mido.MetaMessage('end_of_track', time=ticks)
track.append(end_of_track)
midi = mido.MidiFile()
midi.tracks.append(track)
return midi
def preprocess_dataset(self, src_filenames, dst_dir, batch_size, dst_filenames=None):
assert len(src_filenames) >= batch_size
if not dst_filenames is None:
assert len(set(dst_filenames)) == len(src_filenames)
assert re.findall('\/', ''.join(dst_filenames)) is None
dst_filenames = [f if f.endswith(
'.npz') else f + '.npz' for f in dst_filenames]
dst_filenames = [os.path.join(dst_dir, f) for f in dst_filenames]
else:
dst_filenames = [os.path.join(dst_dir, str(
f) + '.npz') for f in list(range(len(src_filenames)))]
for idx in tqdm.tqdm(range(0, len(src_filenames), batch_size)):
features_list = joblib.Parallel(n_jobs=self.n_jobs)(
joblib.delayed(self.midi_to_features)(f) for f in src_filenames[idx: idx + batch_size])
for features, f in zip(features_list, dst_filenames[idx: idx + batch_size]):
self.save_features(features, f)
def get_tf_dataset(self, file_directory, batch_size, n_samples=None):
filenames = sorted(glob.glob(os.path.join(file_directory, '*.npz')))
assert len(filenames) > 0
if n_samples:
n_samples = min(n_samples, len(filenames))
filenames = np.random.choice(
filenames, n_samples, replace=False).tolist()
buffer_size = len(filenames)
#feature_list = joblib.Parallel(n_jobs=self.n_jobs)(joblib.delayed(self.load_features)(file) for file in filenames)
feature_list = [self.load_features(file) for file in filenames]
sound_list = [x[0] for x in feature_list]
delta_list = [x[1] for x in feature_list]
sound_ragged = tf.ragged.constant(sound_list)
delta_ragged = tf.ragged.constant(delta_list)
dataset_sound = tf.data.Dataset.from_tensor_slices(sound_ragged)
dataset_delta = tf.data.Dataset.from_tensor_slices(delta_ragged)
tf_dataset = tf.data.Dataset.zip((dataset_sound, dataset_delta))
tf_dataset = tf.data.Dataset.from_tensor_slices(
(sound_ragged, delta_ragged))
tf_dataset = tf_dataset.cache()
tf_dataset = tf_dataset.shuffle(buffer_size).batch(
batch_size, drop_remainder=True)
tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE)
return tf_dataset
def get_bigram_probs(self, npz_dir):
'''
Returns a matrix of conditional probablilties:
P[D=d | S=s, S_prev=s_prev], where:
D is the delta of the current timestamp
S is the sound of the current timestamp
S_prev is the sound of the previous timestamp
'''
npz_files = pathlib.Path(npz_dir).rglob('*.npz')
npz_files = [str(f) for f in npz_files]
assert len(npz_files) > 0
freqs = np.zeros((self.n_sounds, self.n_sounds,
self.n_deltas), dtype=np.int32)
sound_list, delta_list = zip(*list(map(self.load_features, npz_files)))
for sounds, deltas in tqdm.tqdm(zip(sound_list, delta_list)):
for idx, (sound, delta) in enumerate(zip(sounds[1:], deltas[1:])):
freqs[sound, sounds[idx - 1], delta] += 1
freqs_sum = np.sum(freqs, axis=-1)
zero_mask = freqs_sum == 0
freqs_sum[zero_mask] = 1
freqs_sum = freqs_sum[:, :, np.newaxis]
freqs_norm = freqs / freqs_sum
return freqs_norm
@staticmethod
def build_from_config(config, idx_to_time):
parser = MIDI_parser(tempo=config.tempo, ppq=config.ppq,
numerator=config.numerator, denominator=config.denominator,
clocks_per_click=config.clocks_per_click,
notated_32nd_notes_per_beat=config.notated_32nd_notes_per_beat,
cc_kept=config.cc_kept, cc_threshold=config.cc_threshold,
cc_lower=config.cc_lower, cc_upper=config.cc_upper,
n_notes=config.n_notes, n_deltas=config.n_deltas,
vel_value=config.vel_value, idx_to_time=idx_to_time,
n_jobs=config.n_jobs)
return parser