___ ___ ___ ___ ___ ___
/\ \ /\ \ /\__\ /\ \ /\__\ /\__\
\:\ \ /::\ \ /::| | /::\ \ /::| | /::| |
\:\ \ /:/\:\ \ /:|:| | /:/\:\ \ /:|:| | /:|:| |
/::\ \ /::\~\:\ \ /:/|:|__|__ /::\~\:\ \ /:/|:| |__ /:/|:| |__
/:/\:\__\ /:/\:\ \:\__\ /:/ |::::\__\ /:/\:\ \:\__\ /:/ |:| /\__\ /:/ |:| /\__\
/:/ \/__/ \:\~\:\ \/__/ \/__/~~/:/ / \/__\:\/:/ / \/__|:|/:/ / \/__|:|/:/ /
/:/ / \:\ \:\__\ /:/ / \::/ / |:/:/ / |:/:/ /
\/__/ \:\ \/__/ /:/ / /:/ / |::/ / |::/ /
\:\__\ /:/ / /:/ / /:/ / /:/ /
\/__/ \/__/ \/__/ \/__/ \/__/
- ThermoElectric Materials Artifical Neural Network (TEMANN) is a python package that can be used to predict Seebeck coefficients for novel materials in units of uV/K. All that is required for prediction is the material's chemical formula, the space group of the material, and the temperature (K) of interest.
- Pipeline for easy datacleaning to accomidate growing dataset for improved ANN training.
- Supported by the DataSet component.
- Input novel materials to generate predicted Seebeck coefficent.
- Supported by the prediction, interpret, query, spacegroup, and util components.
- Input three elements and generate a ternary heatmap of the Seebeck coefficients.
- Support by the plotting, interpret, and prediction components.
>>> import temann
>>> temann.predict_seebeck('CaMnO3', 62, 400)
-435.9079284667969
>>> temann.plot_ternary('CaMnO')
git clone https://github.com/Luochenghuang/TEMANN.git
cd TEMANN
python setup.py install