-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAStar.hpp
558 lines (443 loc) · 16.8 KB
/
AStar.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#include <math.h>
#include <map>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
/*
* A* Pathfinding
*
* This module was developed to determine the shortest,
* (i.e. the fastest) path from a to b on a two-dimensional playing field called maze.
* A distinction is made between walkable and non-walkable paths.
* For the representation of a maze a two nested vector is used.
*
* why the A*-Algorithm is extremely fast:
* In the following,
* the path problem is solved as quickly as possible by calculating a score from the estimated distance
* and the sum of paths already taken,
* which is used to prioritize the order in which the neighbor nodes are investigated.
*This also has the effect that A* always knows in which direction the end node is
* and therefore does not first examine the neighbor away from it, but first all fast paths.
Copyright (c) 2022, LukeProducts
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// maze output formatting:
#define STARTSYMBOL 's' // the start Node
#define GOALSYMBOL 'g' // the end Node
#define BRANCH '+' // the Branches between start and end Node
#define BARRIER '#' // Barrier marks non-walkable path
#define PENETRABLE ' ' // marks walkable terrain
// maze input handling (astar()):
#define WALKABLE 0 // walkable terrain is interpreted like
#define NOT_WALKABLE 1 // non-walkable terrain is interpreted like
using namespace std;
using pos_type = vector<int>; // could be array<>, but we are saving ourselves the include statement of <array>
struct Node {
vector<pos_type> path{}; // saves the path to its origin
pos_type position{};
int g = 0, h = 0, f = 0;
Node(pos_type p): position(p) { // has no parent node
path.push_back(position); // actual move
}
Node(Node c, pos_type p): position{p}{
for (pos_type pos : c.path)
path.push_back(pos); // the went way back to the start node
path.push_back(position); // the actual move action
}
bool operator==(Node &other) {
return position == other.position;
}
bool operator<(Node &other) {
return f < other.f;
}
bool operator>(Node &other) {
return f > other.f;
}
/*operator < and > are needed to measure whether
* an Nodes f-score is good or bad
* */
};
ostream& operator<<(ostream& os, const Node &out) {
return os << "Node at (" << out.position[0] << ", " << out.position[1] << "), [" << out.f << " = " << out.g << " + " << out.h << "]";
/*setting up output routine for Node
* */
}
class AStarResult {
vector<vector<int>> defaultmaze{};
public:
vector<pos_type> path_went{};
int movements{};
AStarResult(vector<pos_type> m, vector<vector<int>> old): path_went{m}, defaultmaze{old} {
movements = path_went.size()-1;
}
void print_maze_solution_path() {
map<int, char> legend{{0, PENETRABLE}, {1, BARRIER}};
for (int i = 0; i < defaultmaze.size(); i++) {
for (int j = 0; j < defaultmaze[0].size(); j++) {
if (std::find(path_went.begin(), path_went.end(), vector<int>{i, j}) != path_went.end()) { // objekt enthalten
if (vector<int>{i, j} == path_went[0]) {
cout << STARTSYMBOL;
}
else if (vector<int>{i, j} == path_went[path_went.size()-1]) {
cout << GOALSYMBOL;
}
else {
cout << BRANCH;
}
}
else {
cout << legend[defaultmaze[i][j]];
}
}
cout << '\n';
}
}
};
Node pop(vector<Node> &heap) {
/*
* astar() - intern function to find the node with the snallest f score, which means,
* it is located potentially nearest to the end Node
* */
Node smallest = *min_element(heap.begin(), heap.end()); // get the Node with best chances to reach end note first
heap.erase(min_element(heap.begin(), heap.end())); // pop this Node out
return smallest;
}
AStarResult AStar(vector<vector<int>> maze, pos_type start, pos_type end, bool allow_diagonal_moves = false) {
/*
* the actual A* algorithm
*
*
vector<vector<int>> maze:
2-dimensional integer list between 0 and 1, where (if WALKABLE = 0) 0 meaning an possible way
and 1 (if NOT_WALKABLE = 1) symbolizes an barrier
maze formatting sample:
vector<vector<int>> maze{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1},
{1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1},
{1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
this structure can be created with the functions prepare_maze()
by an vector of strings, meaning the cols as one object or
an vector of an vector containing chars
* */
// create start and end node
Node start_node{start}; // has no parent
start_node.g = start_node.h = start_node.f = 0;
Node end_node{end}; // has not parent
end_node.g = end_node.h = end_node.f = 0;
// init open and closed list
vector<Node> open_list{};
vector<Node> closed_list{};
// push start_node into open list in order to start inspecting its neighbours and spawning child Nodes
open_list.push_back(start_node);
/*
* stop condition is equal to the area of the maze,
* to be able to figure out whether it is possible to find the solution path or not
* */
int outer_iterations = 0;
int max_iterations = maze[0].size() * maze.size() / 2;
// which squares to search
vector<pos_type> adjected_squares{{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
if (allow_diagonal_moves) { // if diagonal moves are allowed, we need to look further around the current parent node
adjected_squares = vector<pos_type>{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
}
// loop until end found
while (!open_list.empty()) {
outer_iterations++;
if (outer_iterations > max_iterations) {
return AStarResult(vector<pos_type>{{}}, maze);
}
// get the current Node
Node current_node = pop(open_list);
closed_list.push_back(current_node);
if (current_node.position[0] == end_node.position[0] && current_node.position[1] == end_node.position[1]) { // found the goal
return AStarResult(current_node.path, maze);
}
//generate children
vector<Node> children{};
for (pos_type new_position : adjected_squares) { // iterating through every square to cover all possible movement possibilities
//get nodes new position
pos_type node_position{current_node.position[0] + new_position[0], current_node.position[1] + new_position[1]};
// check if in range of maze
if (node_position[0] > (maze.size()-1) || node_position[0] < 0 || node_position[1] > (maze[maze.size()-1].size()-1) || node_position[1] < 0) {
continue; // out of range
}
// if we're operating within walkable terrain
if (maze[node_position[0]][node_position[1]] != WALKABLE)
continue; // barrier at this position
// create new node to inspect
Node new_node{current_node, node_position};
// add our new child to the childrens vector to be examined in the following
children.push_back(new_node);
}
// loop through children
for (Node child : children) {
// if child is on the closed list
vector<Node> bad{};
for (Node closed_child : closed_list) {
if (child == closed_child)
bad.push_back(closed_child);
}
if (!bad.empty())
continue; // no need to inspect this Node, as we know it's at the wrong path
// create f, g and h scores
child.g = current_node.g + 1;
child.h = ((pow(child.position[0] - end_node.position[0], 2)) +
(pow(child.position[1] - end_node.position[1], 2)));
child.f = child.g + child.h;
// if child is already in the open list, then
vector<Node> already{};
for (Node open_node : open_list) {
if (child.position == open_node.position && child.g > open_node.g)
already.push_back(open_node);
}
if (!already.empty())
continue; // continue with the next child
open_list.push_back(child);
}
}
cerr << "Could not find path to destination\n"; // A* searched up every possible path and did not find an valid solution
return AStarResult(vector<pos_type>{{}}, maze);
}
/*
* I've declared some helpful functions you might need here:
* */
/*
prepare_maze converts
##########
# #
# ##### ##
# ## ##
# ## ####
# ### #
# # ## #
### ## #
## ## ##
##########
to
1111111111
1000000001
1011111011
1011000011
1011001111
1011100001
1001001101
1110011001
1100110011
1111111111
in which 1 is NOT_WALKABLE and 0 is WALKABLE
the converted maze can be passed into the astar() function
* */
vector<vector<int>> prepare_maze(vector<vector<char>> curr_maze, char barrier = BARRIER) {
vector<vector<int>> res{};
for (int i = 0; i < curr_maze.size(); i++) {
vector<int> tmp{};
for (int j = 0; j < curr_maze[0].size(); j++) {
if (curr_maze[i][j] == barrier)
tmp.push_back(NOT_WALKABLE);
else
tmp.push_back(WALKABLE);
}
res.push_back(tmp);
}
return res;
/*
* returns both something like this:
*
1111111111
1000000001
1011111011
1011000011
1011001111
1011100001
1001001101
1110011001
1100110011
1111111111
* */
}
vector<vector<int>> prepare_maze(vector<string> curr_maze, char barrier = BARRIER) { // Overload for vector<string>
vector<vector<int>> res{};
for (int i = 0; i < curr_maze.size(); i++) {
vector<int> tmp{};
for (int j = 0; j < curr_maze[0].length(); j++) {
if (curr_maze[i][j] == barrier)
tmp.push_back(NOT_WALKABLE);
else
tmp.push_back(WALKABLE);
}
res.push_back(tmp);
}
return res;
}
/*
* findobj:
* finds an character out of the default maze,
* where maze needs to be in vector<vector<char>> or vector<string> format, like this:
##########
#a #
# ##### ##
# ## ##
# ## ####
# ### #
# # ## #
### ## #
## ## b##
##########
Sample Code:
pos_type startnode = findobj(upperobject, 'a');
pos_type endnode = findobj(upperobject, 'b');
* the whole maze can by read from the console via readunpreparedmaze(), which returns this type of maze
* read-in-functions are defined underneath
*
* returns pos_type (alias vector<int>),
* containing the position which is well suited for astar's start as well as end position param
* */
pos_type findobj(vector<string> maze, char query) {
for (int i = 0; i < maze.size(); i++) {
for (int j = 0; j < maze[0].length(); j++) {
if (maze[i][j] == query)
return pos_type{i, j};
}
}
return pos_type{-1, -1}; // position (-1, -1), if not found the query
/*
* returns an pos_type (x, y) position of query as well as its overload below
* */
}
pos_type findobj(vector<vector<char>> maze, char query) { // Overload for vector<vector<char>>
for (int i = 0; i < maze.size(); i++) {
for (int j = 0; j < maze[0].size(); j++) {
if (maze[i][j] == query)
return pos_type{i, j};
}
}
return pos_type{-1, -1}; // position (-1, -1), if not found the query
}
/*
* In the following, the functions are defined that can read in an game field
* and immediately transfer it to the correct format if desired
*
*
* readmaze() reads in the whole maze and converts it directly into the 2 Dim integer-vector, which astar() needs
*
* readunpreparedmaze() reads in the whole maze and returns an vector with each row as string,
* which is usable for cell-by-cell object search findobj(),
* but must be manually converted using prepare_maze() to use it in astar()
*
INPUT SAMPLE:
10 10 // first 10 = m = rows, second 10 = n = columns
##########
# #
# ##### ##
# ## ##
# ## ####
# ### #
# # ## #
### ## #
## ## ##
##########
* */
vector<vector<int>> readmaze() {
int m, n;
cin >> m; cin >> n;
vector<string> stringmaze{};
for (int i = 0; i < m+1; i++) {
string tmp{};
getline(cin, tmp);
if (!tmp.empty())
stringmaze.push_back(tmp);
}
return prepare_maze(stringmaze);
/*
* return something like:
1111111111
1000000001
1011111011
1011000011
1011001111
1011100001
1001001101
1110011001
1100110011
1111111111
* */
}
vector<string> readunpreparedmaze() {
int m, n;
cin >> m; cin >> n;
vector<string> stringmaze{};
for (int i = 0; i < m; i++) {
string tmp{};
getline(cin, tmp);
if (tmp.empty()) {
i--; // user entered empty string
continue;
}
stringmaze.push_back(tmp); // user entered valid sequence of symbols
}
return stringmaze;
/*
* returns something like:
##########
# #
# ##### ##
# ## ##
# ## ####
# ### #
# # ## #
### ## #
## ## ##
##########
* */
}
/*
* Here is a sample on how to proceed:
int main{
vector<string> myunprocessedmaze{ {"##########"},
{"# #"},
{"# ##### ##"},
{"# ## ##"},
{"# ## ####"},
{"# ### #"},
{"# a# ## #"},
{"### ## #"},
{"## ##b ##"},
{"##########"}};
// we could have also have read in this maze from the console with vector<string> readunpreparedmaze();
vector<int> start_pos = findobj(myunprocessedmaze, 'a'); // findobj finds a for us
vector<int> end_pos = findobj(myunprocessedmaze, 'b'); //findobj finds b for us
AStarResult res = AStar(prepare_maze(myunprocessedmaze), start_pos, end_pos); // calculates our results
res.print_maze_solution_path(); // prints our maze with the went path
cout << "We went " << res.movements << " blocks\n";
}
the console output is
##########
#+++++++ #
#+#####+##
#+## +++##
#+## +####
#+###++++#
#+s# ##+#
### ##++#
## ##g+##
##########
*/