From a2779ed63d27f738be39df4f46dffcc4a65fff9b Mon Sep 17 00:00:00 2001 From: Tarun Srivastava <120120552+Lord-Morpheus@users.noreply.github.com> Date: Fri, 6 Oct 2023 01:21:30 +0530 Subject: [PATCH] adding segment tree algorithm #6 contains general algorithm for all type of segment trees. --- .../Trees/Segment_Tree.cpp | 84 +++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 Computational Algorithms/Trees/Segment_Tree.cpp diff --git a/Computational Algorithms/Trees/Segment_Tree.cpp b/Computational Algorithms/Trees/Segment_Tree.cpp new file mode 100644 index 0000000..4fd0d78 --- /dev/null +++ b/Computational Algorithms/Trees/Segment_Tree.cpp @@ -0,0 +1,84 @@ +/*SEGMENT TREE*/ +/*Segment Trees are pre-computational algorithms used to reduce time comlexity.*/ + +/*SENARIO: we want to find min and max value in a given range of an array*/ +/*algorithm: + 1) create an empty array of size = 4*(size of input array) + reason for this is at max there will be these many number of indexes. + 2) divide the array about middle index till you get single index for a section. + 3) as you move above the tree keep updating values for parent node as per condtion + 4) you will get desired tree. +*/ + +/* TREE WILL LOOK LIKE THIS FOR SAY LENGTH OF ORIGINAL ARRAY IS 5 + [0-5] + / \ + / \ + [0-2] [3-5] + / \ / \ + [0-1] [2-2] [3-4] [5-5] + / \ / \ + [0-0] [1-1] [3-3] [4-4] + + THESE ARE THE INDEXES SPECIFIED +*/ + + +//this code is for finding min/max in a section of an arrray using segment tree but we can +//also rectify it for finding sum in a section of an arrray using segment tree. + +//time complexity is O(log n) for finding and O(n) for creating the tree +//space complexity is O(4*n) i.e. o(n) + +#include +using namespace std; + +vectorarr(100005);//initializing with large space just to ensure that array is inside it. + +vectorsegment((arr.size())*4); + +void tree(int node,int lowerIndex,int higherIndex){ + if(lowerIndex==higherIndex){ + segment[node]=arr[lowerIndex]; + return; + } + int mid=(lowerIndex+higherIndex)/2; + tree(node*2+1,lowerIndex,mid); + tree(node*2+2,mid+1,higherIndex); + segment[node]=max(segment[node*2+1],segment[node*2+2]); +} + +/*TO FIND THE MIN/MAX VALUE IN A PART OF */ +int find(int node,int low,int high,int l,int r){ + //here l and r is the range in which we want to find the min/max value + if(l<=low&&r>=high){ + return segment[node]; + } + if(l>high||r>n; + cout<<"enter values of elements of array"<>arr[i]; + } + + tree(0,0,arr.size()-1);//to build the tree + + int l,r; + cin>>l>>r; + int result=find(0,0,arr.size()-1,l,r);//to find the min/max value in a given range. + cout<