forked from li-xirong/jingwei
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtagprop.py
189 lines (152 loc) · 7.48 KB
/
tagprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
# encoding: utf-8
import sys, os, time
import subprocess
import cPickle as pickle
import h5py
from basic.constant import ROOT_PATH, MATLAB_PATH
from basic.common import checkToSkip, niceNumber, printStatus, makedirsforfile
from basic.util import readImageSet, getVocabMap
from basic.annotationtable import readConcepts
INFO = 'tagrelcodebase.tagprop'
DEFAULT_VARIANT = "ranksigmoids"
DEFAULT_K = 1000
DEFAULT_DISTANCE = "cosine"
def call_matlab(script):
id_file = os.getpid()
with open("/tmp/script_%d.m" % id_file, 'w') as f:
f.write(script)
printStatus(INFO, "Starting MATLAB to run /tmp/script_%d.m" % (id_file))
result = subprocess.call(MATLAB_PATH + '/bin/matlab -nodesktop -nosplash -nojvm -r "addpath(\'/tmp\'); script_%d"' % id_file, shell=True)
os.unlink("/tmp/script_%d.m" % id_file)
if result != 0:
printStatus(INFO, "Error while calling MATLAB, return value %s. Aborting..." % (str(result)))
sys.exit(2)
else:
printStatus(INFO, "MATLAB return value %s" % (str(result)))
def process(options, testCollection, trainCollection, annotationName, feature, outputpkl):
rootpath = options.rootpath
k = options.k
distance = options.distance
variant = options.variant
overwrite = options.overwrite
testset = testCollection
forcetrainmodel = options.trainmodel
modelName = "tagprop"
nnName = distance + "knn"
printStatus(INFO, "Starting TagProp %s,%s,%s,%s,%s" % (variant, trainCollection, testCollection, annotationName, feature))
resultfile = os.path.join(outputpkl)
resultfile_tagprop = os.path.join(rootpath, testCollection, 'TagProp-Prediction', testset, trainCollection, annotationName, modelName, '%s,%s,%s,%d'%(feature,nnName,variant,k), 'prediction.mat')
if checkToSkip(resultfile, overwrite) or checkToSkip(resultfile_tagprop, overwrite):
return 0
tagmatrix_file = os.path.join(rootpath, trainCollection, 'TextData', 'lemm_wordnet_freq_tags.h5')
if not os.path.exists(tagmatrix_file):
printStatus(INFO, "Tag matrix file not found at %s Did you run wordnet_frequency_tags.py?" % (tagmatrix_file))
sys.exit(1)
train_neighs_file = os.path.join(rootpath, trainCollection, 'TagProp-data', trainCollection, '%s,%s,%d'%(feature,nnName,k), 'nn_train.h5')
if not os.path.exists(train_neighs_file):
printStatus(INFO, "Matlab train neighbors file not found at %s Did you run prepare_tagprop_data.py?" % (train_neighs_file))
sys.exit(1)
# do we need to perform learning?
train_model_file = os.path.join(rootpath, trainCollection, 'TagProp-models', '%s,%s,%s,%d'%(feature,nnName,variant,k), 'model.mat')
if os.path.exists(train_model_file) and not forcetrainmodel:
printStatus(INFO, "model for %s available at %s" % (trainCollection, train_model_file))
else:
printStatus(INFO, "starting learning model for %s" % (trainCollection))
makedirsforfile(train_model_file)
script = """
tagprop_path = 'model_based/tagprop/TagProp/';
addpath(tagprop_path);
tagmatrix = h5read('%s', '/tagmatrix') > 0.5;
tagmatrix = sparse(tagmatrix);
NN = h5read('%s', '/NN');
NN = NN(2:end, :);
NN = double(NN);
""" % (tagmatrix_file, train_neighs_file)
if variant == 'dist' or variant == 'distsigmoids':
script += """
NND = h5read('%s', '/NND');
NND = NND(2:end, :);
NND = reshape(NND, 1, size(NND,1), size(NND,2));
NND = double(NND);
""" % train_neighs_file
if variant == 'rank':
script += """
m = tagprop_learn(NN,[],tagmatrix);
"""
elif variant == 'ranksigmoids':
script += """
m = tagprop_learn(NN,[],tagmatrix,'sigmoids',true);
"""
elif variant == 'dist':
script += """
m = tagprop_learn(NN,NND,tagmatrix,'type','dist');
"""
elif variant == 'distsigmoids':
script += """
m = tagprop_learn(NN,NND,tagmatrix,'type','dist','sigmoids',true);
"""
script += """
save('%s', 'm', '-v7.3');
exit;
""" % train_model_file
call_matlab(script)
# we perform prediction
printStatus(INFO, "starting prediction")
test_neighs_file = os.path.join(rootpath, testCollection, 'TagProp-data', testset, trainCollection, annotationName, '%s,%s,%d'%(feature,nnName,k), 'nn_test.h5')
if not os.path.exists(test_neighs_file):
printStatus(INFO, "Matlab test neighbors file not found at %s Did you run prepare_tagprop_data.py?" % (test_neighs_file))
sys.exit(1)
script = """
tagprop_path = 'model_based/tagprop/TagProp/';
addpath(tagprop_path);
load('%s');
tagmatrix = h5read('%s', '/tagmatrix') > 0.5;
tagmatrix = sparse(tagmatrix);
NNT = h5read('%s', '/NNT');
NNT = double(NNT);
""" % (train_model_file, tagmatrix_file, test_neighs_file)
if variant == 'dist' or variant == 'distsigmoids':
script += """
NNDT = h5read('%s', '/NNDT');
NNDT = reshape(NNDT, 1, size(NNDT,1), size(NNDT,2));
NNDT = double(NNDT);
""" % test_neighs_file
script += """
P = tagprop_predict(NNT,[],m)';
save('%s', '-v7.3');
exit;
""" % resultfile_tagprop
makedirsforfile(resultfile_tagprop)
call_matlab(script)
# save results in pkl format
printStatus(INFO, "Dump results in pkl format at %s" % resultfile)
concepts = readConcepts(testCollection, annotationName, rootpath)
id_images = readImageSet(testCollection, testset, rootpath)
id_images.sort()
# id_images = map(int, id_images)
# concepts mapping
tagprop_output = h5py.File(resultfile_tagprop, 'r')
tagprop_input = h5py.File(tagmatrix_file, 'r')
mapping = getVocabMap(list(tagprop_input['vocab'][:]),concepts)
final_tagmatrix = tagprop_output['P'][:][:,mapping]
with open(resultfile, 'w') as f:
pickle.dump({'concepts':concepts, 'id_images':id_images, 'scores':final_tagmatrix}, f, pickle.HIGHEST_PROTOCOL)
def main(argv=None):
if argv is None:
argv = sys.argv[1:]
from optparse import OptionParser
parser = OptionParser(usage="""usage: %prog [options] testCollection trainCollection annotationName feature outputpkl""")
parser.add_option("--overwrite", default=0, type="int", help="overwrite existing file (default=0)")
parser.add_option("--trainmodel", default=0, type="int", help="train the model even if already available (default=0)")
parser.add_option("--k", default=DEFAULT_K, type="int", help="number of neighbors (%d)" % DEFAULT_K)
parser.add_option("--variant", default="ranksigmoids", type="string", help="tagprop variant, can be rank, dist, ranksigmoids or distsigmoids (default: %s)" % DEFAULT_VARIANT)
parser.add_option("--distance", default=DEFAULT_DISTANCE, type="string", help="visual distance, can be l1, l2 or cosine (default: %s)" % DEFAULT_DISTANCE)
parser.add_option("--rootpath", default=ROOT_PATH, type="string", help="(default: %s)" % ROOT_PATH)
(options, args) = parser.parse_args(argv)
if len(args) < 5:
parser.print_help()
return 1
return process(options, args[0], args[1], args[2], args[3], args[4])
if __name__ == "__main__":
sys.exit(main())