-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path216_Combination_Sum_III.py
57 lines (41 loc) · 1.41 KB
/
216_Combination_Sum_III.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Note:
All numbers will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6], [1,3,5], [2,3,4]]
"""
class Solution:
def combinationSum3(self, k, n):
"""
:type k: int
:type n: int
:rtype: List[List[int]]
"""
"""
给定k,比如k=3,然后在1-9的数字中找到3个数,是这三个数的和为另一个给定的数n,比如n=12
跟39个40的差不多,区别就在于,39和40中的每条path的长度不限定
而在此题目中的长度是给定的,同时,所谓的candidated只能是[1-9]中选择
因此,也比较简单
"""
def dfs(index, path, target, rs):
if target == 0:
if path not in rs:
if len(path) == k:
rs.append(path)
else:
for i in range(index, 10):
if target < i:
break
dfs(i+1, path+[i], target-i, rs)
rs = []
dfs(1, [], n, rs)
return rs
so = Solution()
k = 3; n = 12
print(so.combinationSum3(k, n))